xref: /illumos-gate/usr/src/uts/common/inet/ip/ip.c (revision 985cc36c07a787e0cb720fcf2fab565aa2a77590)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 1990 Mentat Inc.
25  * Copyright (c) 2012 Joyent, Inc. All rights reserved.
26  * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved.
27  * Copyright (c) 2016 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/sysmacros.h>
35 #include <sys/strsubr.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/zone.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/xti_inet.h>
42 #include <sys/ddi.h>
43 #include <sys/suntpi.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/kobj.h>
47 #include <sys/modctl.h>
48 #include <sys/atomic.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 #include <sys/taskq.h>
52 
53 #include <sys/systm.h>
54 #include <sys/param.h>
55 #include <sys/kmem.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/vtrace.h>
59 #include <sys/isa_defs.h>
60 #include <sys/mac.h>
61 #include <net/if.h>
62 #include <net/if_arp.h>
63 #include <net/route.h>
64 #include <sys/sockio.h>
65 #include <netinet/in.h>
66 #include <net/if_dl.h>
67 
68 #include <inet/common.h>
69 #include <inet/mi.h>
70 #include <inet/mib2.h>
71 #include <inet/nd.h>
72 #include <inet/arp.h>
73 #include <inet/snmpcom.h>
74 #include <inet/optcom.h>
75 #include <inet/kstatcom.h>
76 
77 #include <netinet/igmp_var.h>
78 #include <netinet/ip6.h>
79 #include <netinet/icmp6.h>
80 #include <netinet/sctp.h>
81 
82 #include <inet/ip.h>
83 #include <inet/ip_impl.h>
84 #include <inet/ip6.h>
85 #include <inet/ip6_asp.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/ip_multi.h>
89 #include <inet/ip_if.h>
90 #include <inet/ip_ire.h>
91 #include <inet/ip_ftable.h>
92 #include <inet/ip_rts.h>
93 #include <inet/ip_ndp.h>
94 #include <inet/ip_listutils.h>
95 #include <netinet/igmp.h>
96 #include <netinet/ip_mroute.h>
97 #include <inet/ipp_common.h>
98 
99 #include <net/pfkeyv2.h>
100 #include <inet/sadb.h>
101 #include <inet/ipsec_impl.h>
102 #include <inet/iptun/iptun_impl.h>
103 #include <inet/ipdrop.h>
104 #include <inet/ip_netinfo.h>
105 #include <inet/ilb_ip.h>
106 
107 #include <sys/ethernet.h>
108 #include <net/if_types.h>
109 #include <sys/cpuvar.h>
110 
111 #include <ipp/ipp.h>
112 #include <ipp/ipp_impl.h>
113 #include <ipp/ipgpc/ipgpc.h>
114 
115 #include <sys/pattr.h>
116 #include <inet/ipclassifier.h>
117 #include <inet/sctp_ip.h>
118 #include <inet/sctp/sctp_impl.h>
119 #include <inet/udp_impl.h>
120 #include <inet/rawip_impl.h>
121 #include <inet/rts_impl.h>
122 
123 #include <sys/tsol/label.h>
124 #include <sys/tsol/tnet.h>
125 
126 #include <sys/squeue_impl.h>
127 #include <inet/ip_arp.h>
128 
129 #include <sys/clock_impl.h>	/* For LBOLT_FASTPATH{,64} */
130 
131 /*
132  * Values for squeue switch:
133  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
134  * IP_SQUEUE_ENTER: SQ_PROCESS
135  * IP_SQUEUE_FILL: SQ_FILL
136  */
137 int ip_squeue_enter = IP_SQUEUE_ENTER;	/* Setable in /etc/system */
138 
139 int ip_squeue_flag;
140 
141 /*
142  * Setable in /etc/system
143  */
144 int ip_poll_normal_ms = 100;
145 int ip_poll_normal_ticks = 0;
146 int ip_modclose_ackwait_ms = 3000;
147 
148 /*
149  * It would be nice to have these present only in DEBUG systems, but the
150  * current design of the global symbol checking logic requires them to be
151  * unconditionally present.
152  */
153 uint_t ip_thread_data;			/* TSD key for debug support */
154 krwlock_t ip_thread_rwlock;
155 list_t	ip_thread_list;
156 
157 /*
158  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
159  */
160 
161 struct listptr_s {
162 	mblk_t	*lp_head;	/* pointer to the head of the list */
163 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
164 };
165 
166 typedef struct listptr_s listptr_t;
167 
168 /*
169  * This is used by ip_snmp_get_mib2_ip_route_media and
170  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
171  */
172 typedef struct iproutedata_s {
173 	uint_t		ird_idx;
174 	uint_t		ird_flags;	/* see below */
175 	listptr_t	ird_route;	/* ipRouteEntryTable */
176 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
177 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
178 } iproutedata_t;
179 
180 /* Include ire_testhidden and IRE_IF_CLONE routes */
181 #define	IRD_REPORT_ALL	0x01
182 
183 /*
184  * Cluster specific hooks. These should be NULL when booted as a non-cluster
185  */
186 
187 /*
188  * Hook functions to enable cluster networking
189  * On non-clustered systems these vectors must always be NULL.
190  *
191  * Hook function to Check ip specified ip address is a shared ip address
192  * in the cluster
193  *
194  */
195 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
196     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
197 
198 /*
199  * Hook function to generate cluster wide ip fragment identifier
200  */
201 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
202     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
203     void *args) = NULL;
204 
205 /*
206  * Hook function to generate cluster wide SPI.
207  */
208 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
209     void *) = NULL;
210 
211 /*
212  * Hook function to verify if the SPI is already utlized.
213  */
214 
215 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
216 
217 /*
218  * Hook function to delete the SPI from the cluster wide repository.
219  */
220 
221 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
222 
223 /*
224  * Hook function to inform the cluster when packet received on an IDLE SA
225  */
226 
227 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
228     in6_addr_t, in6_addr_t, void *) = NULL;
229 
230 /*
231  * Synchronization notes:
232  *
233  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
234  * MT level protection given by STREAMS. IP uses a combination of its own
235  * internal serialization mechanism and standard Solaris locking techniques.
236  * The internal serialization is per phyint.  This is used to serialize
237  * plumbing operations, IPMP operations, most set ioctls, etc.
238  *
239  * Plumbing is a long sequence of operations involving message
240  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
241  * involved in plumbing operations. A natural model is to serialize these
242  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
243  * parallel without any interference. But various set ioctls on hme0 are best
244  * serialized, along with IPMP operations and processing of DLPI control
245  * messages received from drivers on a per phyint basis. This serialization is
246  * provided by the ipsq_t and primitives operating on this. Details can
247  * be found in ip_if.c above the core primitives operating on ipsq_t.
248  *
249  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
250  * Simiarly lookup of an ire by a thread also returns a refheld ire.
251  * In addition ipif's and ill's referenced by the ire are also indirectly
252  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
253  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
254  * address of an ipif has to go through the ipsq_t. This ensures that only
255  * one such exclusive operation proceeds at any time on the ipif. It then
256  * waits for all refcnts
257  * associated with this ipif to come down to zero. The address is changed
258  * only after the ipif has been quiesced. Then the ipif is brought up again.
259  * More details are described above the comment in ip_sioctl_flags.
260  *
261  * Packet processing is based mostly on IREs and are fully multi-threaded
262  * using standard Solaris MT techniques.
263  *
264  * There are explicit locks in IP to handle:
265  * - The ip_g_head list maintained by mi_open_link() and friends.
266  *
267  * - The reassembly data structures (one lock per hash bucket)
268  *
269  * - conn_lock is meant to protect conn_t fields. The fields actually
270  *   protected by conn_lock are documented in the conn_t definition.
271  *
272  * - ire_lock to protect some of the fields of the ire, IRE tables
273  *   (one lock per hash bucket). Refer to ip_ire.c for details.
274  *
275  * - ndp_g_lock and ncec_lock for protecting NCEs.
276  *
277  * - ill_lock protects fields of the ill and ipif. Details in ip.h
278  *
279  * - ill_g_lock: This is a global reader/writer lock. Protects the following
280  *	* The AVL tree based global multi list of all ills.
281  *	* The linked list of all ipifs of an ill
282  *	* The <ipsq-xop> mapping
283  *	* <ill-phyint> association
284  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
285  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
286  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
287  *   writer for the actual duration of the insertion/deletion/change.
288  *
289  * - ill_lock:  This is a per ill mutex.
290  *   It protects some members of the ill_t struct; see ip.h for details.
291  *   It also protects the <ill-phyint> assoc.
292  *   It also protects the list of ipifs hanging off the ill.
293  *
294  * - ipsq_lock: This is a per ipsq_t mutex lock.
295  *   This protects some members of the ipsq_t struct; see ip.h for details.
296  *   It also protects the <ipsq-ipxop> mapping
297  *
298  * - ipx_lock: This is a per ipxop_t mutex lock.
299  *   This protects some members of the ipxop_t struct; see ip.h for details.
300  *
301  * - phyint_lock: This is a per phyint mutex lock. Protects just the
302  *   phyint_flags
303  *
304  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
305  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
306  *   uniqueness check also done atomically.
307  *
308  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
309  *   group list linked by ill_usesrc_grp_next. It also protects the
310  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
311  *   group is being added or deleted.  This lock is taken as a reader when
312  *   walking the list/group(eg: to get the number of members in a usesrc group).
313  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
314  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
315  *   example, it is not necessary to take this lock in the initial portion
316  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
317  *   operations are executed exclusively and that ensures that the "usesrc
318  *   group state" cannot change. The "usesrc group state" change can happen
319  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
320  *
321  * Changing <ill-phyint>, <ipsq-xop> assocications:
322  *
323  * To change the <ill-phyint> association, the ill_g_lock must be held
324  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
325  * must be held.
326  *
327  * To change the <ipsq-xop> association, the ill_g_lock must be held as
328  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
329  * This is only done when ills are added or removed from IPMP groups.
330  *
331  * To add or delete an ipif from the list of ipifs hanging off the ill,
332  * ill_g_lock (writer) and ill_lock must be held and the thread must be
333  * a writer on the associated ipsq.
334  *
335  * To add or delete an ill to the system, the ill_g_lock must be held as
336  * writer and the thread must be a writer on the associated ipsq.
337  *
338  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
339  * must be a writer on the associated ipsq.
340  *
341  * Lock hierarchy
342  *
343  * Some lock hierarchy scenarios are listed below.
344  *
345  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
346  * ill_g_lock -> ill_lock(s) -> phyint_lock
347  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
348  * ill_g_lock -> ip_addr_avail_lock
349  * conn_lock -> irb_lock -> ill_lock -> ire_lock
350  * ill_g_lock -> ip_g_nd_lock
351  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
352  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
353  * arl_lock -> ill_lock
354  * ips_ire_dep_lock -> irb_lock
355  *
356  * When more than 1 ill lock is needed to be held, all ill lock addresses
357  * are sorted on address and locked starting from highest addressed lock
358  * downward.
359  *
360  * Multicast scenarios
361  * ips_ill_g_lock -> ill_mcast_lock
362  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
363  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
364  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
365  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
366  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
367  *
368  * IPsec scenarios
369  *
370  * ipsa_lock -> ill_g_lock -> ill_lock
371  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
372  *
373  * Trusted Solaris scenarios
374  *
375  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
376  * igsa_lock -> gcdb_lock
377  * gcgrp_rwlock -> ire_lock
378  * gcgrp_rwlock -> gcdb_lock
379  *
380  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
381  *
382  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
383  * sq_lock -> conn_lock -> QLOCK(q)
384  * ill_lock -> ft_lock -> fe_lock
385  *
386  * Routing/forwarding table locking notes:
387  *
388  * Lock acquisition order: Radix tree lock, irb_lock.
389  * Requirements:
390  * i.  Walker must not hold any locks during the walker callback.
391  * ii  Walker must not see a truncated tree during the walk because of any node
392  *     deletion.
393  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
394  *     in many places in the code to walk the irb list. Thus even if all the
395  *     ires in a bucket have been deleted, we still can't free the radix node
396  *     until the ires have actually been inactive'd (freed).
397  *
398  * Tree traversal - Need to hold the global tree lock in read mode.
399  * Before dropping the global tree lock, need to either increment the ire_refcnt
400  * to ensure that the radix node can't be deleted.
401  *
402  * Tree add - Need to hold the global tree lock in write mode to add a
403  * radix node. To prevent the node from being deleted, increment the
404  * irb_refcnt, after the node is added to the tree. The ire itself is
405  * added later while holding the irb_lock, but not the tree lock.
406  *
407  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
408  * All associated ires must be inactive (i.e. freed), and irb_refcnt
409  * must be zero.
410  *
411  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
412  * global tree lock (read mode) for traversal.
413  *
414  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
415  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
416  *
417  * IPsec notes :
418  *
419  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
420  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
421  * ip_xmit_attr_t has the
422  * information used by the IPsec code for applying the right level of
423  * protection. The information initialized by IP in the ip_xmit_attr_t
424  * is determined by the per-socket policy or global policy in the system.
425  * For inbound datagrams, the ip_recv_attr_t
426  * starts out with nothing in it. It gets filled
427  * with the right information if it goes through the AH/ESP code, which
428  * happens if the incoming packet is secure. The information initialized
429  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
430  * the policy requirements needed by per-socket policy or global policy
431  * is met or not.
432  *
433  * For fully connected sockets i.e dst, src [addr, port] is known,
434  * conn_policy_cached is set indicating that policy has been cached.
435  * conn_in_enforce_policy may or may not be set depending on whether
436  * there is a global policy match or per-socket policy match.
437  * Policy inheriting happpens in ip_policy_set once the destination is known.
438  * Once the right policy is set on the conn_t, policy cannot change for
439  * this socket. This makes life simpler for TCP (UDP ?) where
440  * re-transmissions go out with the same policy. For symmetry, policy
441  * is cached for fully connected UDP sockets also. Thus if policy is cached,
442  * it also implies that policy is latched i.e policy cannot change
443  * on these sockets. As we have the right policy on the conn, we don't
444  * have to lookup global policy for every outbound and inbound datagram
445  * and thus serving as an optimization. Note that a global policy change
446  * does not affect fully connected sockets if they have policy. If fully
447  * connected sockets did not have any policy associated with it, global
448  * policy change may affect them.
449  *
450  * IP Flow control notes:
451  * ---------------------
452  * Non-TCP streams are flow controlled by IP. The way this is accomplished
453  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
454  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
455  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
456  * functions.
457  *
458  * Per Tx ring udp flow control:
459  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
460  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
461  *
462  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
463  * To achieve best performance, outgoing traffic need to be fanned out among
464  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
465  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
466  * the address of connp as fanout hint to mac_tx(). Under flow controlled
467  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
468  * cookie points to a specific Tx ring that is blocked. The cookie is used to
469  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
470  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
471  * connp's. The drain list is not a single list but a configurable number of
472  * lists.
473  *
474  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
475  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
476  * which is equal to 128. This array in turn contains a pointer to idl_t[],
477  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
478  * list will point to the list of connp's that are flow controlled.
479  *
480  *                      ---------------   -------   -------   -------
481  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
482  *                   |  ---------------   -------   -------   -------
483  *                   |  ---------------   -------   -------   -------
484  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
485  * ----------------  |  ---------------   -------   -------   -------
486  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
487  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
488  *                   |  ---------------   -------   -------   -------
489  *                   .        .              .         .         .
490  *                   |  ---------------   -------   -------   -------
491  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
492  *                      ---------------   -------   -------   -------
493  *                      ---------------   -------   -------   -------
494  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
495  *                   |  ---------------   -------   -------   -------
496  *                   |  ---------------   -------   -------   -------
497  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
498  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
499  * ----------------  |        .              .         .         .
500  *                   |  ---------------   -------   -------   -------
501  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
502  *                      ---------------   -------   -------   -------
503  *     .....
504  * ----------------
505  * |idl_tx_list[n]|-> ...
506  * ----------------
507  *
508  * When mac_tx() returns a cookie, the cookie is hashed into an index into
509  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
510  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
511  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
512  * Further, conn_blocked is set to indicate that the conn is blocked.
513  *
514  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
515  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
516  * is again hashed to locate the appropriate idl_tx_list, which is then
517  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
518  * the drain list and calls conn_drain_remove() to clear flow control (via
519  * calling su_txq_full() or clearing QFULL), and remove the conn from the
520  * drain list.
521  *
522  * Note that the drain list is not a single list but a (configurable) array of
523  * lists (8 elements by default).  Synchronization between drain insertion and
524  * flow control wakeup is handled by using idl_txl->txl_lock, and only
525  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
526  *
527  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
528  * On the send side, if the packet cannot be sent down to the driver by IP
529  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
530  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
531  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
532  * control has been relieved, the blocked conns in the 0'th drain list are
533  * drained as in the non-STREAMS case.
534  *
535  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
536  * is done when the conn is inserted into the drain list (conn_drain_insert())
537  * and cleared when the conn is removed from the it (conn_drain_remove()).
538  *
539  * IPQOS notes:
540  *
541  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
542  * and IPQoS modules. IPPF includes hooks in IP at different control points
543  * (callout positions) which direct packets to IPQoS modules for policy
544  * processing. Policies, if present, are global.
545  *
546  * The callout positions are located in the following paths:
547  *		o local_in (packets destined for this host)
548  *		o local_out (packets orginating from this host )
549  *		o fwd_in  (packets forwarded by this m/c - inbound)
550  *		o fwd_out (packets forwarded by this m/c - outbound)
551  * Hooks at these callout points can be enabled/disabled using the ndd variable
552  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
553  * By default all the callout positions are enabled.
554  *
555  * Outbound (local_out)
556  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
557  *
558  * Inbound (local_in)
559  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
560  *
561  * Forwarding (in and out)
562  * Hooks are placed in ire_recv_forward_v4/v6.
563  *
564  * IP Policy Framework processing (IPPF processing)
565  * Policy processing for a packet is initiated by ip_process, which ascertains
566  * that the classifier (ipgpc) is loaded and configured, failing which the
567  * packet resumes normal processing in IP. If the clasifier is present, the
568  * packet is acted upon by one or more IPQoS modules (action instances), per
569  * filters configured in ipgpc and resumes normal IP processing thereafter.
570  * An action instance can drop a packet in course of its processing.
571  *
572  * Zones notes:
573  *
574  * The partitioning rules for networking are as follows:
575  * 1) Packets coming from a zone must have a source address belonging to that
576  * zone.
577  * 2) Packets coming from a zone can only be sent on a physical interface on
578  * which the zone has an IP address.
579  * 3) Between two zones on the same machine, packet delivery is only allowed if
580  * there's a matching route for the destination and zone in the forwarding
581  * table.
582  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
583  * different zones can bind to the same port with the wildcard address
584  * (INADDR_ANY).
585  *
586  * The granularity of interface partitioning is at the logical interface level.
587  * Therefore, every zone has its own IP addresses, and incoming packets can be
588  * attributed to a zone unambiguously. A logical interface is placed into a zone
589  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
590  * structure. Rule (1) is implemented by modifying the source address selection
591  * algorithm so that the list of eligible addresses is filtered based on the
592  * sending process zone.
593  *
594  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
595  * across all zones, depending on their type. Here is the break-up:
596  *
597  * IRE type				Shared/exclusive
598  * --------				----------------
599  * IRE_BROADCAST			Exclusive
600  * IRE_DEFAULT (default routes)		Shared (*)
601  * IRE_LOCAL				Exclusive (x)
602  * IRE_LOOPBACK				Exclusive
603  * IRE_PREFIX (net routes)		Shared (*)
604  * IRE_IF_NORESOLVER (interface routes)	Exclusive
605  * IRE_IF_RESOLVER (interface routes)	Exclusive
606  * IRE_IF_CLONE (interface routes)	Exclusive
607  * IRE_HOST (host routes)		Shared (*)
608  *
609  * (*) A zone can only use a default or off-subnet route if the gateway is
610  * directly reachable from the zone, that is, if the gateway's address matches
611  * one of the zone's logical interfaces.
612  *
613  * (x) IRE_LOCAL are handled a bit differently.
614  * When ip_restrict_interzone_loopback is set (the default),
615  * ire_route_recursive restricts loopback using an IRE_LOCAL
616  * between zone to the case when L2 would have conceptually looped the packet
617  * back, i.e. the loopback which is required since neither Ethernet drivers
618  * nor Ethernet hardware loops them back. This is the case when the normal
619  * routes (ignoring IREs with different zoneids) would send out the packet on
620  * the same ill as the ill with which is IRE_LOCAL is associated.
621  *
622  * Multiple zones can share a common broadcast address; typically all zones
623  * share the 255.255.255.255 address. Incoming as well as locally originated
624  * broadcast packets must be dispatched to all the zones on the broadcast
625  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
626  * since some zones may not be on the 10.16.72/24 network. To handle this, each
627  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
628  * sent to every zone that has an IRE_BROADCAST entry for the destination
629  * address on the input ill, see ip_input_broadcast().
630  *
631  * Applications in different zones can join the same multicast group address.
632  * The same logic applies for multicast as for broadcast. ip_input_multicast
633  * dispatches packets to all zones that have members on the physical interface.
634  */
635 
636 /*
637  * Squeue Fanout flags:
638  *	0: No fanout.
639  *	1: Fanout across all squeues
640  */
641 boolean_t	ip_squeue_fanout = 0;
642 
643 /*
644  * Maximum dups allowed per packet.
645  */
646 uint_t ip_max_frag_dups = 10;
647 
648 static int	ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
649 		    cred_t *credp, boolean_t isv6);
650 static mblk_t	*ip_xmit_attach_llhdr(mblk_t *, nce_t *);
651 
652 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
653 static void	icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
654 static void	icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
655     ip_recv_attr_t *);
656 static void	icmp_options_update(ipha_t *);
657 static void	icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
658 static void	icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
659 static mblk_t	*icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
660 static void	icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
661     ip_recv_attr_t *);
662 static void	icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
663 static void	icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
664     ip_recv_attr_t *);
665 
666 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
667 char		*ip_dot_addr(ipaddr_t, char *);
668 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
669 int		ip_close(queue_t *, int);
670 static char	*ip_dot_saddr(uchar_t *, char *);
671 static void	ip_lrput(queue_t *, mblk_t *);
672 ipaddr_t	ip_net_mask(ipaddr_t);
673 char		*ip_nv_lookup(nv_t *, int);
674 void	ip_rput(queue_t *, mblk_t *);
675 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
676 		    void *dummy_arg);
677 int		ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
678 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
679 		    mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
680 static mblk_t	*ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
681 		    ip_stack_t *, boolean_t);
682 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
683 		    boolean_t);
684 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
685 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
686 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
687 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
688 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
689 		    ip_stack_t *ipst, boolean_t);
690 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
691 		    ip_stack_t *ipst, boolean_t);
692 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
693 		    ip_stack_t *ipst);
694 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
695 		    ip_stack_t *ipst);
696 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
697 		    ip_stack_t *ipst);
698 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
699 		    ip_stack_t *ipst);
700 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
701 		    ip_stack_t *ipst);
702 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
703 		    ip_stack_t *ipst);
704 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
705 		    ip_stack_t *ipst);
706 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
707 		    ip_stack_t *ipst);
708 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
709 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
710 static int	ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *);
711 static int	ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *);
712 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
713 
714 static mblk_t	*ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
715 		    mblk_t *);
716 
717 static void	conn_drain_init(ip_stack_t *);
718 static void	conn_drain_fini(ip_stack_t *);
719 static void	conn_drain(conn_t *connp, boolean_t closing);
720 
721 static void	conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
722 static void	conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
723 
724 static void	*ip_stack_init(netstackid_t stackid, netstack_t *ns);
725 static void	ip_stack_shutdown(netstackid_t stackid, void *arg);
726 static void	ip_stack_fini(netstackid_t stackid, void *arg);
727 
728 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
729     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
730     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
731     const in6_addr_t *);
732 
733 static int	ip_squeue_switch(int);
734 
735 static void	*ip_kstat_init(netstackid_t, ip_stack_t *);
736 static void	ip_kstat_fini(netstackid_t, kstat_t *);
737 static int	ip_kstat_update(kstat_t *kp, int rw);
738 static void	*icmp_kstat_init(netstackid_t);
739 static void	icmp_kstat_fini(netstackid_t, kstat_t *);
740 static int	icmp_kstat_update(kstat_t *kp, int rw);
741 static void	*ip_kstat2_init(netstackid_t, ip_stat_t *);
742 static void	ip_kstat2_fini(netstackid_t, kstat_t *);
743 
744 static void	ipobs_init(ip_stack_t *);
745 static void	ipobs_fini(ip_stack_t *);
746 
747 static int	ip_tp_cpu_update(cpu_setup_t, int, void *);
748 
749 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
750 
751 static long ip_rput_pullups;
752 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
753 
754 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
755 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
756 
757 int	ip_debug;
758 
759 /*
760  * Multirouting/CGTP stuff
761  */
762 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
763 
764 /*
765  * IP tunables related declarations. Definitions are in ip_tunables.c
766  */
767 extern mod_prop_info_t ip_propinfo_tbl[];
768 extern int ip_propinfo_count;
769 
770 /*
771  * Table of IP ioctls encoding the various properties of the ioctl and
772  * indexed based on the last byte of the ioctl command. Occasionally there
773  * is a clash, and there is more than 1 ioctl with the same last byte.
774  * In such a case 1 ioctl is encoded in the ndx table and the remaining
775  * ioctls are encoded in the misc table. An entry in the ndx table is
776  * retrieved by indexing on the last byte of the ioctl command and comparing
777  * the ioctl command with the value in the ndx table. In the event of a
778  * mismatch the misc table is then searched sequentially for the desired
779  * ioctl command.
780  *
781  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
782  */
783 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
784 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
785 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
786 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
788 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
792 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
793 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
794 
795 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
796 			MISC_CMD, ip_siocaddrt, NULL },
797 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
798 			MISC_CMD, ip_siocdelrt, NULL },
799 
800 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
801 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
802 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
803 			IF_CMD, ip_sioctl_get_addr, NULL },
804 
805 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
806 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
807 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
808 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
809 
810 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
811 			IPI_PRIV | IPI_WR,
812 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
813 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
814 			IPI_MODOK | IPI_GET_CMD,
815 			IF_CMD, ip_sioctl_get_flags, NULL },
816 
817 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
818 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
819 
820 	/* copyin size cannot be coded for SIOCGIFCONF */
821 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
822 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
823 
824 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
825 			IF_CMD, ip_sioctl_mtu, NULL },
826 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD,
827 			IF_CMD, ip_sioctl_get_mtu, NULL },
828 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
829 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
830 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
831 			IF_CMD, ip_sioctl_brdaddr, NULL },
832 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
833 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
834 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
835 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
836 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
837 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
838 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
839 			IF_CMD, ip_sioctl_metric, NULL },
840 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
841 
842 	/* See 166-168 below for extended SIOC*XARP ioctls */
843 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
844 			ARP_CMD, ip_sioctl_arp, NULL },
845 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
846 			ARP_CMD, ip_sioctl_arp, NULL },
847 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
848 			ARP_CMD, ip_sioctl_arp, NULL },
849 
850 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
851 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
852 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
854 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
870 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
871 
872 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
873 			MISC_CMD, if_unitsel, if_unitsel_restart },
874 
875 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
876 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
892 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
893 
894 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
895 			IPI_PRIV | IPI_WR | IPI_MODOK,
896 			IF_CMD, ip_sioctl_sifname, NULL },
897 
898 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
899 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
910 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
911 
912 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
913 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
914 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
915 			IF_CMD, ip_sioctl_get_muxid, NULL },
916 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
917 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
918 
919 	/* Both if and lif variants share same func */
920 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
921 			IF_CMD, ip_sioctl_get_lifindex, NULL },
922 	/* Both if and lif variants share same func */
923 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
924 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
925 
926 	/* copyin size cannot be coded for SIOCGIFCONF */
927 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
928 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
929 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
930 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
931 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
945 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
946 
947 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
948 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
949 			ip_sioctl_removeif_restart },
950 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
951 			IPI_GET_CMD | IPI_PRIV | IPI_WR,
952 			LIF_CMD, ip_sioctl_addif, NULL },
953 #define	SIOCLIFADDR_NDX 112
954 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
955 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
956 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
957 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
958 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
959 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
960 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
961 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
962 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
963 			IPI_PRIV | IPI_WR,
964 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
965 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
966 			IPI_GET_CMD | IPI_MODOK,
967 			LIF_CMD, ip_sioctl_get_flags, NULL },
968 
969 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
970 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
971 
972 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
973 			ip_sioctl_get_lifconf, NULL },
974 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
975 			LIF_CMD, ip_sioctl_mtu, NULL },
976 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
977 			LIF_CMD, ip_sioctl_get_mtu, NULL },
978 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
979 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
980 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
981 			LIF_CMD, ip_sioctl_brdaddr, NULL },
982 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
983 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
984 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
985 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
986 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
987 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
988 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
989 			LIF_CMD, ip_sioctl_metric, NULL },
990 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
991 			IPI_PRIV | IPI_WR | IPI_MODOK,
992 			LIF_CMD, ip_sioctl_slifname,
993 			ip_sioctl_slifname_restart },
994 
995 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
996 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
997 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
998 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
999 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1000 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1001 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1002 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1003 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1004 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1005 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1006 			LIF_CMD, ip_sioctl_token, NULL },
1007 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1008 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1009 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1010 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1011 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1012 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1013 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1014 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1015 
1016 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1017 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1018 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1019 			LIF_CMD, ip_siocdelndp_v6, NULL },
1020 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1021 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1022 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1023 			LIF_CMD, ip_siocsetndp_v6, NULL },
1024 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1025 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1026 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1027 			MISC_CMD, ip_sioctl_tonlink, NULL },
1028 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1029 			MISC_CMD, ip_sioctl_tmysite, NULL },
1030 	/* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031 	/* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1032 
1033 	/* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1034 	/* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035 	/* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 	/* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 	/* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1038 
1039 	/* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1040 
1041 	/* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1042 			LIF_CMD, ip_sioctl_get_binding, NULL },
1043 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1044 			IPI_PRIV | IPI_WR,
1045 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1046 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1047 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1048 	/* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1049 			IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1050 
1051 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1052 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1055 
1056 	/* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1057 
1058 	/* These are handled in ip_sioctl_copyin_setup itself */
1059 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1060 			MISC_CMD, NULL, NULL },
1061 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1062 			MISC_CMD, NULL, NULL },
1063 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1064 
1065 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1066 			ip_sioctl_get_lifconf, NULL },
1067 
1068 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1069 			XARP_CMD, ip_sioctl_arp, NULL },
1070 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1071 			XARP_CMD, ip_sioctl_arp, NULL },
1072 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1073 			XARP_CMD, ip_sioctl_arp, NULL },
1074 
1075 	/* SIOCPOPSOCKFS is not handled by IP */
1076 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1077 
1078 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1079 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1080 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1081 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1082 			ip_sioctl_slifzone_restart },
1083 	/* 172-174 are SCTP ioctls and not handled by IP */
1084 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1087 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1088 			IPI_GET_CMD, LIF_CMD,
1089 			ip_sioctl_get_lifusesrc, 0 },
1090 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1091 			IPI_PRIV | IPI_WR,
1092 			LIF_CMD, ip_sioctl_slifusesrc,
1093 			NULL },
1094 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1095 			ip_sioctl_get_lifsrcof, NULL },
1096 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1097 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1098 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1099 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1100 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1101 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1102 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1103 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1104 	/* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1105 	/* SIOCSENABLESDP is handled by SDP */
1106 	/* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1107 	/* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1108 	/* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1109 			IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1110 	/* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1111 	/* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1112 			ip_sioctl_ilb_cmd, NULL },
1113 	/* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1114 	/* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1115 	/* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1116 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1117 	/* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1118 			LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1119 	/* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1120 			LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1121 };
1122 
1123 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1124 
1125 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1126 	{ I_LINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128 	{ I_PLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1130 	{ ND_GET,	0, 0, 0, NULL, NULL },
1131 	{ ND_SET,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1132 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1133 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1134 		MISC_CMD, mrt_ioctl},
1135 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_GET_CMD,
1136 		MISC_CMD, mrt_ioctl},
1137 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1138 		MISC_CMD, mrt_ioctl}
1139 };
1140 
1141 int ip_misc_ioctl_count =
1142     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1143 
1144 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1145 					/* Settable in /etc/system */
1146 /* Defined in ip_ire.c */
1147 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1148 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1149 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1150 
1151 static nv_t	ire_nv_arr[] = {
1152 	{ IRE_BROADCAST, "BROADCAST" },
1153 	{ IRE_LOCAL, "LOCAL" },
1154 	{ IRE_LOOPBACK, "LOOPBACK" },
1155 	{ IRE_DEFAULT, "DEFAULT" },
1156 	{ IRE_PREFIX, "PREFIX" },
1157 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1158 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1159 	{ IRE_IF_CLONE, "IF_CLONE" },
1160 	{ IRE_HOST, "HOST" },
1161 	{ IRE_MULTICAST, "MULTICAST" },
1162 	{ IRE_NOROUTE, "NOROUTE" },
1163 	{ 0 }
1164 };
1165 
1166 nv_t	*ire_nv_tbl = ire_nv_arr;
1167 
1168 /* Simple ICMP IP Header Template */
1169 static ipha_t icmp_ipha = {
1170 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1171 };
1172 
1173 struct module_info ip_mod_info = {
1174 	IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1175 	IP_MOD_LOWAT
1176 };
1177 
1178 /*
1179  * Duplicate static symbols within a module confuses mdb; so we avoid the
1180  * problem by making the symbols here distinct from those in udp.c.
1181  */
1182 
1183 /*
1184  * Entry points for IP as a device and as a module.
1185  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1186  */
1187 static struct qinit iprinitv4 = {
1188 	(pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL,
1189 	&ip_mod_info
1190 };
1191 
1192 struct qinit iprinitv6 = {
1193 	(pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL,
1194 	&ip_mod_info
1195 };
1196 
1197 static struct qinit ipwinit = {
1198 	(pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL,
1199 	&ip_mod_info
1200 };
1201 
1202 static struct qinit iplrinit = {
1203 	(pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL,
1204 	&ip_mod_info
1205 };
1206 
1207 static struct qinit iplwinit = {
1208 	(pfi_t)ip_lwput, NULL, NULL, NULL, NULL,
1209 	&ip_mod_info
1210 };
1211 
1212 /* For AF_INET aka /dev/ip */
1213 struct streamtab ipinfov4 = {
1214 	&iprinitv4, &ipwinit, &iplrinit, &iplwinit
1215 };
1216 
1217 /* For AF_INET6 aka /dev/ip6 */
1218 struct streamtab ipinfov6 = {
1219 	&iprinitv6, &ipwinit, &iplrinit, &iplwinit
1220 };
1221 
1222 #ifdef	DEBUG
1223 boolean_t skip_sctp_cksum = B_FALSE;
1224 #endif
1225 
1226 /*
1227  * Generate an ICMP fragmentation needed message.
1228  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1229  * constructed by the caller.
1230  */
1231 void
1232 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1233 {
1234 	icmph_t	icmph;
1235 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1236 
1237 	mp = icmp_pkt_err_ok(mp, ira);
1238 	if (mp == NULL)
1239 		return;
1240 
1241 	bzero(&icmph, sizeof (icmph_t));
1242 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1243 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1244 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1245 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1246 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1247 
1248 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1249 }
1250 
1251 /*
1252  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1253  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1254  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1255  * Likewise, if the ICMP error is misformed (too short, etc), then it
1256  * returns NULL. The caller uses this to determine whether or not to send
1257  * to raw sockets.
1258  *
1259  * All error messages are passed to the matching transport stream.
1260  *
1261  * The following cases are handled by icmp_inbound:
1262  * 1) It needs to send a reply back and possibly delivering it
1263  *    to the "interested" upper clients.
1264  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1265  * 3) It needs to change some values in IP only.
1266  * 4) It needs to change some values in IP and upper layers e.g TCP
1267  *    by delivering an error to the upper layers.
1268  *
1269  * We handle the above three cases in the context of IPsec in the
1270  * following way :
1271  *
1272  * 1) Send the reply back in the same way as the request came in.
1273  *    If it came in encrypted, it goes out encrypted. If it came in
1274  *    clear, it goes out in clear. Thus, this will prevent chosen
1275  *    plain text attack.
1276  * 2) The client may or may not expect things to come in secure.
1277  *    If it comes in secure, the policy constraints are checked
1278  *    before delivering it to the upper layers. If it comes in
1279  *    clear, ipsec_inbound_accept_clear will decide whether to
1280  *    accept this in clear or not. In both the cases, if the returned
1281  *    message (IP header + 8 bytes) that caused the icmp message has
1282  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1283  *    sending up. If there are only 8 bytes of returned message, then
1284  *    upper client will not be notified.
1285  * 3) Check with global policy to see whether it matches the constaints.
1286  *    But this will be done only if icmp_accept_messages_in_clear is
1287  *    zero.
1288  * 4) If we need to change both in IP and ULP, then the decision taken
1289  *    while affecting the values in IP and while delivering up to TCP
1290  *    should be the same.
1291  *
1292  * 	There are two cases.
1293  *
1294  * 	a) If we reject data at the IP layer (ipsec_check_global_policy()
1295  *	   failed), we will not deliver it to the ULP, even though they
1296  *	   are *willing* to accept in *clear*. This is fine as our global
1297  *	   disposition to icmp messages asks us reject the datagram.
1298  *
1299  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1300  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1301  *	   to deliver it to ULP (policy failed), it can lead to
1302  *	   consistency problems. The cases known at this time are
1303  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1304  *	   values :
1305  *
1306  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1307  *	     and Upper layer rejects. Then the communication will
1308  *	     come to a stop. This is solved by making similar decisions
1309  *	     at both levels. Currently, when we are unable to deliver
1310  *	     to the Upper Layer (due to policy failures) while IP has
1311  *	     adjusted dce_pmtu, the next outbound datagram would
1312  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1313  *	     will be with the right level of protection. Thus the right
1314  *	     value will be communicated even if we are not able to
1315  *	     communicate when we get from the wire initially. But this
1316  *	     assumes there would be at least one outbound datagram after
1317  *	     IP has adjusted its dce_pmtu value. To make things
1318  *	     simpler, we accept in clear after the validation of
1319  *	     AH/ESP headers.
1320  *
1321  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1322  *	     upper layer depending on the level of protection the upper
1323  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1324  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1325  *	     should be accepted in clear when the Upper layer expects secure.
1326  *	     Thus the communication may get aborted by some bad ICMP
1327  *	     packets.
1328  */
1329 mblk_t *
1330 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1331 {
1332 	icmph_t		*icmph;
1333 	ipha_t		*ipha;		/* Outer header */
1334 	int		ip_hdr_length;	/* Outer header length */
1335 	boolean_t	interested;
1336 	ipif_t		*ipif;
1337 	uint32_t	ts;
1338 	uint32_t	*tsp;
1339 	timestruc_t	now;
1340 	ill_t		*ill = ira->ira_ill;
1341 	ip_stack_t	*ipst = ill->ill_ipst;
1342 	zoneid_t	zoneid = ira->ira_zoneid;
1343 	int		len_needed;
1344 	mblk_t		*mp_ret = NULL;
1345 
1346 	ipha = (ipha_t *)mp->b_rptr;
1347 
1348 	BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1349 
1350 	ip_hdr_length = ira->ira_ip_hdr_length;
1351 	if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1352 		if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1353 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1354 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1355 			freemsg(mp);
1356 			return (NULL);
1357 		}
1358 		/* Last chance to get real. */
1359 		ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1360 		if (ipha == NULL) {
1361 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1362 			freemsg(mp);
1363 			return (NULL);
1364 		}
1365 	}
1366 
1367 	/* The IP header will always be a multiple of four bytes */
1368 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1369 	ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1370 	    icmph->icmph_code));
1371 
1372 	/*
1373 	 * We will set "interested" to "true" if we should pass a copy to
1374 	 * the transport or if we handle the packet locally.
1375 	 */
1376 	interested = B_FALSE;
1377 	switch (icmph->icmph_type) {
1378 	case ICMP_ECHO_REPLY:
1379 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1380 		break;
1381 	case ICMP_DEST_UNREACHABLE:
1382 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1383 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1384 		interested = B_TRUE;	/* Pass up to transport */
1385 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1386 		break;
1387 	case ICMP_SOURCE_QUENCH:
1388 		interested = B_TRUE;	/* Pass up to transport */
1389 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1390 		break;
1391 	case ICMP_REDIRECT:
1392 		if (!ipst->ips_ip_ignore_redirect)
1393 			interested = B_TRUE;
1394 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1395 		break;
1396 	case ICMP_ECHO_REQUEST:
1397 		/*
1398 		 * Whether to respond to echo requests that come in as IP
1399 		 * broadcasts or as IP multicast is subject to debate
1400 		 * (what isn't?).  We aim to please, you pick it.
1401 		 * Default is do it.
1402 		 */
1403 		if (ira->ira_flags & IRAF_MULTICAST) {
1404 			/* multicast: respond based on tunable */
1405 			interested = ipst->ips_ip_g_resp_to_echo_mcast;
1406 		} else if (ira->ira_flags & IRAF_BROADCAST) {
1407 			/* broadcast: respond based on tunable */
1408 			interested = ipst->ips_ip_g_resp_to_echo_bcast;
1409 		} else {
1410 			/* unicast: always respond */
1411 			interested = B_TRUE;
1412 		}
1413 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1414 		if (!interested) {
1415 			/* We never pass these to RAW sockets */
1416 			freemsg(mp);
1417 			return (NULL);
1418 		}
1419 
1420 		/* Check db_ref to make sure we can modify the packet. */
1421 		if (mp->b_datap->db_ref > 1) {
1422 			mblk_t	*mp1;
1423 
1424 			mp1 = copymsg(mp);
1425 			freemsg(mp);
1426 			if (!mp1) {
1427 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1428 				return (NULL);
1429 			}
1430 			mp = mp1;
1431 			ipha = (ipha_t *)mp->b_rptr;
1432 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1433 		}
1434 		icmph->icmph_type = ICMP_ECHO_REPLY;
1435 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1436 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1437 		return (NULL);
1438 
1439 	case ICMP_ROUTER_ADVERTISEMENT:
1440 	case ICMP_ROUTER_SOLICITATION:
1441 		break;
1442 	case ICMP_TIME_EXCEEDED:
1443 		interested = B_TRUE;	/* Pass up to transport */
1444 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1445 		break;
1446 	case ICMP_PARAM_PROBLEM:
1447 		interested = B_TRUE;	/* Pass up to transport */
1448 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1449 		break;
1450 	case ICMP_TIME_STAMP_REQUEST:
1451 		/* Response to Time Stamp Requests is local policy. */
1452 		if (ipst->ips_ip_g_resp_to_timestamp) {
1453 			if (ira->ira_flags & IRAF_MULTIBROADCAST)
1454 				interested =
1455 				    ipst->ips_ip_g_resp_to_timestamp_bcast;
1456 			else
1457 				interested = B_TRUE;
1458 		}
1459 		if (!interested) {
1460 			/* We never pass these to RAW sockets */
1461 			freemsg(mp);
1462 			return (NULL);
1463 		}
1464 
1465 		/* Make sure we have enough of the packet */
1466 		len_needed = ip_hdr_length + ICMPH_SIZE +
1467 		    3 * sizeof (uint32_t);
1468 
1469 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1470 			ipha = ip_pullup(mp, len_needed, ira);
1471 			if (ipha == NULL) {
1472 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1473 				ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1474 				    mp, ill);
1475 				freemsg(mp);
1476 				return (NULL);
1477 			}
1478 			/* Refresh following the pullup. */
1479 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1480 		}
1481 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1482 		/* Check db_ref to make sure we can modify the packet. */
1483 		if (mp->b_datap->db_ref > 1) {
1484 			mblk_t	*mp1;
1485 
1486 			mp1 = copymsg(mp);
1487 			freemsg(mp);
1488 			if (!mp1) {
1489 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1490 				return (NULL);
1491 			}
1492 			mp = mp1;
1493 			ipha = (ipha_t *)mp->b_rptr;
1494 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1495 		}
1496 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1497 		tsp = (uint32_t *)&icmph[1];
1498 		tsp++;		/* Skip past 'originate time' */
1499 		/* Compute # of milliseconds since midnight */
1500 		gethrestime(&now);
1501 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1502 		    NSEC2MSEC(now.tv_nsec);
1503 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1504 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1505 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1506 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1507 		return (NULL);
1508 
1509 	case ICMP_TIME_STAMP_REPLY:
1510 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1511 		break;
1512 	case ICMP_INFO_REQUEST:
1513 		/* Per RFC 1122 3.2.2.7, ignore this. */
1514 	case ICMP_INFO_REPLY:
1515 		break;
1516 	case ICMP_ADDRESS_MASK_REQUEST:
1517 		if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1518 			interested =
1519 			    ipst->ips_ip_respond_to_address_mask_broadcast;
1520 		} else {
1521 			interested = B_TRUE;
1522 		}
1523 		if (!interested) {
1524 			/* We never pass these to RAW sockets */
1525 			freemsg(mp);
1526 			return (NULL);
1527 		}
1528 		len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1529 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1530 			ipha = ip_pullup(mp, len_needed, ira);
1531 			if (ipha == NULL) {
1532 				BUMP_MIB(ill->ill_ip_mib,
1533 				    ipIfStatsInTruncatedPkts);
1534 				ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1535 				    ill);
1536 				freemsg(mp);
1537 				return (NULL);
1538 			}
1539 			/* Refresh following the pullup. */
1540 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1541 		}
1542 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1543 		/* Check db_ref to make sure we can modify the packet. */
1544 		if (mp->b_datap->db_ref > 1) {
1545 			mblk_t	*mp1;
1546 
1547 			mp1 = copymsg(mp);
1548 			freemsg(mp);
1549 			if (!mp1) {
1550 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1551 				return (NULL);
1552 			}
1553 			mp = mp1;
1554 			ipha = (ipha_t *)mp->b_rptr;
1555 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1556 		}
1557 		/*
1558 		 * Need the ipif with the mask be the same as the source
1559 		 * address of the mask reply. For unicast we have a specific
1560 		 * ipif. For multicast/broadcast we only handle onlink
1561 		 * senders, and use the source address to pick an ipif.
1562 		 */
1563 		ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1564 		if (ipif == NULL) {
1565 			/* Broadcast or multicast */
1566 			ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1567 			if (ipif == NULL) {
1568 				freemsg(mp);
1569 				return (NULL);
1570 			}
1571 		}
1572 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1573 		bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1574 		ipif_refrele(ipif);
1575 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1576 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1577 		return (NULL);
1578 
1579 	case ICMP_ADDRESS_MASK_REPLY:
1580 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1581 		break;
1582 	default:
1583 		interested = B_TRUE;	/* Pass up to transport */
1584 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1585 		break;
1586 	}
1587 	/*
1588 	 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1589 	 * if there isn't one.
1590 	 */
1591 	if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1592 		/* If there is an ICMP client and we want one too, copy it. */
1593 
1594 		if (!interested) {
1595 			/* Caller will deliver to RAW sockets */
1596 			return (mp);
1597 		}
1598 		mp_ret = copymsg(mp);
1599 		if (mp_ret == NULL) {
1600 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1601 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1602 		}
1603 	} else if (!interested) {
1604 		/* Neither we nor raw sockets are interested. Drop packet now */
1605 		freemsg(mp);
1606 		return (NULL);
1607 	}
1608 
1609 	/*
1610 	 * ICMP error or redirect packet. Make sure we have enough of
1611 	 * the header and that db_ref == 1 since we might end up modifying
1612 	 * the packet.
1613 	 */
1614 	if (mp->b_cont != NULL) {
1615 		if (ip_pullup(mp, -1, ira) == NULL) {
1616 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1617 			ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1618 			    mp, ill);
1619 			freemsg(mp);
1620 			return (mp_ret);
1621 		}
1622 	}
1623 
1624 	if (mp->b_datap->db_ref > 1) {
1625 		mblk_t	*mp1;
1626 
1627 		mp1 = copymsg(mp);
1628 		if (mp1 == NULL) {
1629 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1630 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1631 			freemsg(mp);
1632 			return (mp_ret);
1633 		}
1634 		freemsg(mp);
1635 		mp = mp1;
1636 	}
1637 
1638 	/*
1639 	 * In case mp has changed, verify the message before any further
1640 	 * processes.
1641 	 */
1642 	ipha = (ipha_t *)mp->b_rptr;
1643 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1644 	if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1645 		freemsg(mp);
1646 		return (mp_ret);
1647 	}
1648 
1649 	switch (icmph->icmph_type) {
1650 	case ICMP_REDIRECT:
1651 		icmp_redirect_v4(mp, ipha, icmph, ira);
1652 		break;
1653 	case ICMP_DEST_UNREACHABLE:
1654 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1655 			/* Update DCE and adjust MTU is icmp header if needed */
1656 			icmp_inbound_too_big_v4(icmph, ira);
1657 		}
1658 		/* FALLTHRU */
1659 	default:
1660 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
1661 		break;
1662 	}
1663 	return (mp_ret);
1664 }
1665 
1666 /*
1667  * Send an ICMP echo, timestamp or address mask reply.
1668  * The caller has already updated the payload part of the packet.
1669  * We handle the ICMP checksum, IP source address selection and feed
1670  * the packet into ip_output_simple.
1671  */
1672 static void
1673 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1674     ip_recv_attr_t *ira)
1675 {
1676 	uint_t		ip_hdr_length = ira->ira_ip_hdr_length;
1677 	ill_t		*ill = ira->ira_ill;
1678 	ip_stack_t	*ipst = ill->ill_ipst;
1679 	ip_xmit_attr_t	ixas;
1680 
1681 	/* Send out an ICMP packet */
1682 	icmph->icmph_checksum = 0;
1683 	icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1684 	/* Reset time to live. */
1685 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1686 	{
1687 		/* Swap source and destination addresses */
1688 		ipaddr_t tmp;
1689 
1690 		tmp = ipha->ipha_src;
1691 		ipha->ipha_src = ipha->ipha_dst;
1692 		ipha->ipha_dst = tmp;
1693 	}
1694 	ipha->ipha_ident = 0;
1695 	if (!IS_SIMPLE_IPH(ipha))
1696 		icmp_options_update(ipha);
1697 
1698 	bzero(&ixas, sizeof (ixas));
1699 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1700 	ixas.ixa_zoneid = ira->ira_zoneid;
1701 	ixas.ixa_cred = kcred;
1702 	ixas.ixa_cpid = NOPID;
1703 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
1704 	ixas.ixa_ifindex = 0;
1705 	ixas.ixa_ipst = ipst;
1706 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1707 
1708 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1709 		/*
1710 		 * This packet should go out the same way as it
1711 		 * came in i.e in clear, independent of the IPsec policy
1712 		 * for transmitting packets.
1713 		 */
1714 		ixas.ixa_flags |= IXAF_NO_IPSEC;
1715 	} else {
1716 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1717 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1718 			/* Note: mp already consumed and ip_drop_packet done */
1719 			return;
1720 		}
1721 	}
1722 	if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1723 		/*
1724 		 * Not one or our addresses (IRE_LOCALs), thus we let
1725 		 * ip_output_simple pick the source.
1726 		 */
1727 		ipha->ipha_src = INADDR_ANY;
1728 		ixas.ixa_flags |= IXAF_SET_SOURCE;
1729 	}
1730 	/* Should we send with DF and use dce_pmtu? */
1731 	if (ipst->ips_ipv4_icmp_return_pmtu) {
1732 		ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1733 		ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1734 	}
1735 
1736 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1737 
1738 	(void) ip_output_simple(mp, &ixas);
1739 	ixa_cleanup(&ixas);
1740 }
1741 
1742 /*
1743  * Verify the ICMP messages for either for ICMP error or redirect packet.
1744  * The caller should have fully pulled up the message. If it's a redirect
1745  * packet, only basic checks on IP header will be done; otherwise, verify
1746  * the packet by looking at the included ULP header.
1747  *
1748  * Called before icmp_inbound_error_fanout_v4 is called.
1749  */
1750 static boolean_t
1751 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1752 {
1753 	ill_t		*ill = ira->ira_ill;
1754 	int		hdr_length;
1755 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1756 	conn_t		*connp;
1757 	ipha_t		*ipha;	/* Inner IP header */
1758 
1759 	ipha = (ipha_t *)&icmph[1];
1760 	if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1761 		goto truncated;
1762 
1763 	hdr_length = IPH_HDR_LENGTH(ipha);
1764 
1765 	if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1766 		goto discard_pkt;
1767 
1768 	if (hdr_length < sizeof (ipha_t))
1769 		goto truncated;
1770 
1771 	if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1772 		goto truncated;
1773 
1774 	/*
1775 	 * Stop here for ICMP_REDIRECT.
1776 	 */
1777 	if (icmph->icmph_type == ICMP_REDIRECT)
1778 		return (B_TRUE);
1779 
1780 	/*
1781 	 * ICMP errors only.
1782 	 */
1783 	switch (ipha->ipha_protocol) {
1784 	case IPPROTO_UDP:
1785 		/*
1786 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1787 		 * transport header.
1788 		 */
1789 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1790 		    mp->b_wptr)
1791 			goto truncated;
1792 		break;
1793 	case IPPROTO_TCP: {
1794 		tcpha_t		*tcpha;
1795 
1796 		/*
1797 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1798 		 * transport header.
1799 		 */
1800 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1801 		    mp->b_wptr)
1802 			goto truncated;
1803 
1804 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1805 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1806 		    ipst);
1807 		if (connp == NULL)
1808 			goto discard_pkt;
1809 
1810 		if ((connp->conn_verifyicmp != NULL) &&
1811 		    !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1812 			CONN_DEC_REF(connp);
1813 			goto discard_pkt;
1814 		}
1815 		CONN_DEC_REF(connp);
1816 		break;
1817 	}
1818 	case IPPROTO_SCTP:
1819 		/*
1820 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1821 		 * transport header.
1822 		 */
1823 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1824 		    mp->b_wptr)
1825 			goto truncated;
1826 		break;
1827 	case IPPROTO_ESP:
1828 	case IPPROTO_AH:
1829 		break;
1830 	case IPPROTO_ENCAP:
1831 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1832 		    mp->b_wptr)
1833 			goto truncated;
1834 		break;
1835 	default:
1836 		break;
1837 	}
1838 
1839 	return (B_TRUE);
1840 
1841 discard_pkt:
1842 	/* Bogus ICMP error. */
1843 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1844 	return (B_FALSE);
1845 
1846 truncated:
1847 	/* We pulled up everthing already. Must be truncated */
1848 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1849 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1850 	return (B_FALSE);
1851 }
1852 
1853 /* Table from RFC 1191 */
1854 static int icmp_frag_size_table[] =
1855 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1856 
1857 /*
1858  * Process received ICMP Packet too big.
1859  * Just handles the DCE create/update, including using the above table of
1860  * PMTU guesses. The caller is responsible for validating the packet before
1861  * passing it in and also to fanout the ICMP error to any matching transport
1862  * conns. Assumes the message has been fully pulled up and verified.
1863  *
1864  * Before getting here, the caller has called icmp_inbound_verify_v4()
1865  * that should have verified with ULP to prevent undoing the changes we're
1866  * going to make to DCE. For example, TCP might have verified that the packet
1867  * which generated error is in the send window.
1868  *
1869  * In some cases modified this MTU in the ICMP header packet; the caller
1870  * should pass to the matching ULP after this returns.
1871  */
1872 static void
1873 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1874 {
1875 	dce_t		*dce;
1876 	int		old_mtu;
1877 	int		mtu, orig_mtu;
1878 	ipaddr_t	dst;
1879 	boolean_t	disable_pmtud;
1880 	ill_t		*ill = ira->ira_ill;
1881 	ip_stack_t	*ipst = ill->ill_ipst;
1882 	uint_t		hdr_length;
1883 	ipha_t		*ipha;
1884 
1885 	/* Caller already pulled up everything. */
1886 	ipha = (ipha_t *)&icmph[1];
1887 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1888 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1889 	ASSERT(ill != NULL);
1890 
1891 	hdr_length = IPH_HDR_LENGTH(ipha);
1892 
1893 	/*
1894 	 * We handle path MTU for source routed packets since the DCE
1895 	 * is looked up using the final destination.
1896 	 */
1897 	dst = ip_get_dst(ipha);
1898 
1899 	dce = dce_lookup_and_add_v4(dst, ipst);
1900 	if (dce == NULL) {
1901 		/* Couldn't add a unique one - ENOMEM */
1902 		ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1903 		    ntohl(dst)));
1904 		return;
1905 	}
1906 
1907 	/* Check for MTU discovery advice as described in RFC 1191 */
1908 	mtu = ntohs(icmph->icmph_du_mtu);
1909 	orig_mtu = mtu;
1910 	disable_pmtud = B_FALSE;
1911 
1912 	mutex_enter(&dce->dce_lock);
1913 	if (dce->dce_flags & DCEF_PMTU)
1914 		old_mtu = dce->dce_pmtu;
1915 	else
1916 		old_mtu = ill->ill_mtu;
1917 
1918 	if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1919 		uint32_t length;
1920 		int	i;
1921 
1922 		/*
1923 		 * Use the table from RFC 1191 to figure out
1924 		 * the next "plateau" based on the length in
1925 		 * the original IP packet.
1926 		 */
1927 		length = ntohs(ipha->ipha_length);
1928 		DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1929 		    uint32_t, length);
1930 		if (old_mtu <= length &&
1931 		    old_mtu >= length - hdr_length) {
1932 			/*
1933 			 * Handle broken BSD 4.2 systems that
1934 			 * return the wrong ipha_length in ICMP
1935 			 * errors.
1936 			 */
1937 			ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1938 			    length, old_mtu));
1939 			length -= hdr_length;
1940 		}
1941 		for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1942 			if (length > icmp_frag_size_table[i])
1943 				break;
1944 		}
1945 		if (i == A_CNT(icmp_frag_size_table)) {
1946 			/* Smaller than IP_MIN_MTU! */
1947 			ip1dbg(("Too big for packet size %d\n",
1948 			    length));
1949 			disable_pmtud = B_TRUE;
1950 			mtu = ipst->ips_ip_pmtu_min;
1951 		} else {
1952 			mtu = icmp_frag_size_table[i];
1953 			ip1dbg(("Calculated mtu %d, packet size %d, "
1954 			    "before %d\n", mtu, length, old_mtu));
1955 			if (mtu < ipst->ips_ip_pmtu_min) {
1956 				mtu = ipst->ips_ip_pmtu_min;
1957 				disable_pmtud = B_TRUE;
1958 			}
1959 		}
1960 	}
1961 	if (disable_pmtud)
1962 		dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1963 	else
1964 		dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1965 
1966 	dce->dce_pmtu = MIN(old_mtu, mtu);
1967 	/* Prepare to send the new max frag size for the ULP. */
1968 	icmph->icmph_du_zero = 0;
1969 	icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1970 	DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1971 	    dce, int, orig_mtu, int, mtu);
1972 
1973 	/* We now have a PMTU for sure */
1974 	dce->dce_flags |= DCEF_PMTU;
1975 	dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1976 	mutex_exit(&dce->dce_lock);
1977 	/*
1978 	 * After dropping the lock the new value is visible to everyone.
1979 	 * Then we bump the generation number so any cached values reinspect
1980 	 * the dce_t.
1981 	 */
1982 	dce_increment_generation(dce);
1983 	dce_refrele(dce);
1984 }
1985 
1986 /*
1987  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1988  * calls this function.
1989  */
1990 static mblk_t *
1991 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1992 {
1993 	int length;
1994 
1995 	ASSERT(mp->b_datap->db_type == M_DATA);
1996 
1997 	/* icmp_inbound_v4 has already pulled up the whole error packet */
1998 	ASSERT(mp->b_cont == NULL);
1999 
2000 	/*
2001 	 * The length that we want to overlay is the inner header
2002 	 * and what follows it.
2003 	 */
2004 	length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2005 
2006 	/*
2007 	 * Overlay the inner header and whatever follows it over the
2008 	 * outer header.
2009 	 */
2010 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2011 
2012 	/* Adjust for what we removed */
2013 	mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2014 	return (mp);
2015 }
2016 
2017 /*
2018  * Try to pass the ICMP message upstream in case the ULP cares.
2019  *
2020  * If the packet that caused the ICMP error is secure, we send
2021  * it to AH/ESP to make sure that the attached packet has a
2022  * valid association. ipha in the code below points to the
2023  * IP header of the packet that caused the error.
2024  *
2025  * For IPsec cases, we let the next-layer-up (which has access to
2026  * cached policy on the conn_t, or can query the SPD directly)
2027  * subtract out any IPsec overhead if they must.  We therefore make no
2028  * adjustments here for IPsec overhead.
2029  *
2030  * IFN could have been generated locally or by some router.
2031  *
2032  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2033  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2034  *	    This happens because IP adjusted its value of MTU on an
2035  *	    earlier IFN message and could not tell the upper layer,
2036  *	    the new adjusted value of MTU e.g. Packet was encrypted
2037  *	    or there was not enough information to fanout to upper
2038  *	    layers. Thus on the next outbound datagram, ire_send_wire
2039  *	    generates the IFN, where IPsec processing has *not* been
2040  *	    done.
2041  *
2042  *	    Note that we retain ixa_fragsize across IPsec thus once
2043  *	    we have picking ixa_fragsize and entered ipsec_out_process we do
2044  *	    no change the fragsize even if the path MTU changes before
2045  *	    we reach ip_output_post_ipsec.
2046  *
2047  *	    In the local case, IRAF_LOOPBACK will be set indicating
2048  *	    that IFN was generated locally.
2049  *
2050  * ROUTER : IFN could be secure or non-secure.
2051  *
2052  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2053  *	      packet in error has AH/ESP headers to validate the AH/ESP
2054  *	      headers. AH/ESP will verify whether there is a valid SA or
2055  *	      not and send it back. We will fanout again if we have more
2056  *	      data in the packet.
2057  *
2058  *	      If the packet in error does not have AH/ESP, we handle it
2059  *	      like any other case.
2060  *
2061  *	    * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2062  *	      up to AH/ESP for validation. AH/ESP will verify whether there is a
2063  *	      valid SA or not and send it back. We will fanout again if
2064  *	      we have more data in the packet.
2065  *
2066  *	      If the packet in error does not have AH/ESP, we handle it
2067  *	      like any other case.
2068  *
2069  * The caller must have called icmp_inbound_verify_v4.
2070  */
2071 static void
2072 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2073 {
2074 	uint16_t	*up;	/* Pointer to ports in ULP header */
2075 	uint32_t	ports;	/* reversed ports for fanout */
2076 	ipha_t		ripha;	/* With reversed addresses */
2077 	ipha_t		*ipha;  /* Inner IP header */
2078 	uint_t		hdr_length; /* Inner IP header length */
2079 	tcpha_t		*tcpha;
2080 	conn_t		*connp;
2081 	ill_t		*ill = ira->ira_ill;
2082 	ip_stack_t	*ipst = ill->ill_ipst;
2083 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
2084 	ill_t		*rill = ira->ira_rill;
2085 
2086 	/* Caller already pulled up everything. */
2087 	ipha = (ipha_t *)&icmph[1];
2088 	ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2089 	ASSERT(mp->b_cont == NULL);
2090 
2091 	hdr_length = IPH_HDR_LENGTH(ipha);
2092 	ira->ira_protocol = ipha->ipha_protocol;
2093 
2094 	/*
2095 	 * We need a separate IP header with the source and destination
2096 	 * addresses reversed to do fanout/classification because the ipha in
2097 	 * the ICMP error is in the form we sent it out.
2098 	 */
2099 	ripha.ipha_src = ipha->ipha_dst;
2100 	ripha.ipha_dst = ipha->ipha_src;
2101 	ripha.ipha_protocol = ipha->ipha_protocol;
2102 	ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2103 
2104 	ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2105 	    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2106 	    ntohl(ipha->ipha_dst),
2107 	    icmph->icmph_type, icmph->icmph_code));
2108 
2109 	switch (ipha->ipha_protocol) {
2110 	case IPPROTO_UDP:
2111 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2112 
2113 		/* Attempt to find a client stream based on port. */
2114 		ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2115 		    ntohs(up[0]), ntohs(up[1])));
2116 
2117 		/* Note that we send error to all matches. */
2118 		ira->ira_flags |= IRAF_ICMP_ERROR;
2119 		ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2120 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2121 		return;
2122 
2123 	case IPPROTO_TCP:
2124 		/*
2125 		 * Find a TCP client stream for this packet.
2126 		 * Note that we do a reverse lookup since the header is
2127 		 * in the form we sent it out.
2128 		 */
2129 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2130 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2131 		    ipst);
2132 		if (connp == NULL)
2133 			goto discard_pkt;
2134 
2135 		if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2136 		    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2137 			mp = ipsec_check_inbound_policy(mp, connp,
2138 			    ipha, NULL, ira);
2139 			if (mp == NULL) {
2140 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2141 				/* Note that mp is NULL */
2142 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
2143 				CONN_DEC_REF(connp);
2144 				return;
2145 			}
2146 		}
2147 
2148 		ira->ira_flags |= IRAF_ICMP_ERROR;
2149 		ira->ira_ill = ira->ira_rill = NULL;
2150 		if (IPCL_IS_TCP(connp)) {
2151 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2152 			    connp->conn_recvicmp, connp, ira, SQ_FILL,
2153 			    SQTAG_TCP_INPUT_ICMP_ERR);
2154 		} else {
2155 			/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2156 			(connp->conn_recv)(connp, mp, NULL, ira);
2157 			CONN_DEC_REF(connp);
2158 		}
2159 		ira->ira_ill = ill;
2160 		ira->ira_rill = rill;
2161 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2162 		return;
2163 
2164 	case IPPROTO_SCTP:
2165 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2166 		/* Find a SCTP client stream for this packet. */
2167 		((uint16_t *)&ports)[0] = up[1];
2168 		((uint16_t *)&ports)[1] = up[0];
2169 
2170 		ira->ira_flags |= IRAF_ICMP_ERROR;
2171 		ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2172 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2173 		return;
2174 
2175 	case IPPROTO_ESP:
2176 	case IPPROTO_AH:
2177 		if (!ipsec_loaded(ipss)) {
2178 			ip_proto_not_sup(mp, ira);
2179 			return;
2180 		}
2181 
2182 		if (ipha->ipha_protocol == IPPROTO_ESP)
2183 			mp = ipsecesp_icmp_error(mp, ira);
2184 		else
2185 			mp = ipsecah_icmp_error(mp, ira);
2186 		if (mp == NULL)
2187 			return;
2188 
2189 		/* Just in case ipsec didn't preserve the NULL b_cont */
2190 		if (mp->b_cont != NULL) {
2191 			if (!pullupmsg(mp, -1))
2192 				goto discard_pkt;
2193 		}
2194 
2195 		/*
2196 		 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2197 		 * correct, but we don't use them any more here.
2198 		 *
2199 		 * If succesful, the mp has been modified to not include
2200 		 * the ESP/AH header so we can fanout to the ULP's icmp
2201 		 * error handler.
2202 		 */
2203 		if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2204 			goto truncated;
2205 
2206 		/* Verify the modified message before any further processes. */
2207 		ipha = (ipha_t *)mp->b_rptr;
2208 		hdr_length = IPH_HDR_LENGTH(ipha);
2209 		icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2210 		if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2211 			freemsg(mp);
2212 			return;
2213 		}
2214 
2215 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
2216 		return;
2217 
2218 	case IPPROTO_ENCAP: {
2219 		/* Look for self-encapsulated packets that caused an error */
2220 		ipha_t *in_ipha;
2221 
2222 		/*
2223 		 * Caller has verified that length has to be
2224 		 * at least the size of IP header.
2225 		 */
2226 		ASSERT(hdr_length >= sizeof (ipha_t));
2227 		/*
2228 		 * Check the sanity of the inner IP header like
2229 		 * we did for the outer header.
2230 		 */
2231 		in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2232 		if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2233 			goto discard_pkt;
2234 		}
2235 		if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2236 			goto discard_pkt;
2237 		}
2238 		/* Check for Self-encapsulated tunnels */
2239 		if (in_ipha->ipha_src == ipha->ipha_src &&
2240 		    in_ipha->ipha_dst == ipha->ipha_dst) {
2241 
2242 			mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2243 			    in_ipha);
2244 			if (mp == NULL)
2245 				goto discard_pkt;
2246 
2247 			/*
2248 			 * Just in case self_encap didn't preserve the NULL
2249 			 * b_cont
2250 			 */
2251 			if (mp->b_cont != NULL) {
2252 				if (!pullupmsg(mp, -1))
2253 					goto discard_pkt;
2254 			}
2255 			/*
2256 			 * Note that ira_pktlen and ira_ip_hdr_length are no
2257 			 * longer correct, but we don't use them any more here.
2258 			 */
2259 			if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2260 				goto truncated;
2261 
2262 			/*
2263 			 * Verify the modified message before any further
2264 			 * processes.
2265 			 */
2266 			ipha = (ipha_t *)mp->b_rptr;
2267 			hdr_length = IPH_HDR_LENGTH(ipha);
2268 			icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2269 			if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2270 				freemsg(mp);
2271 				return;
2272 			}
2273 
2274 			/*
2275 			 * The packet in error is self-encapsualted.
2276 			 * And we are finding it further encapsulated
2277 			 * which we could not have possibly generated.
2278 			 */
2279 			if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2280 				goto discard_pkt;
2281 			}
2282 			icmp_inbound_error_fanout_v4(mp, icmph, ira);
2283 			return;
2284 		}
2285 		/* No self-encapsulated */
2286 		/* FALLTHRU */
2287 	}
2288 	case IPPROTO_IPV6:
2289 		if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2290 		    &ripha.ipha_dst, ipst)) != NULL) {
2291 			ira->ira_flags |= IRAF_ICMP_ERROR;
2292 			connp->conn_recvicmp(connp, mp, NULL, ira);
2293 			CONN_DEC_REF(connp);
2294 			ira->ira_flags &= ~IRAF_ICMP_ERROR;
2295 			return;
2296 		}
2297 		/*
2298 		 * No IP tunnel is interested, fallthrough and see
2299 		 * if a raw socket will want it.
2300 		 */
2301 		/* FALLTHRU */
2302 	default:
2303 		ira->ira_flags |= IRAF_ICMP_ERROR;
2304 		ip_fanout_proto_v4(mp, &ripha, ira);
2305 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2306 		return;
2307 	}
2308 	/* NOTREACHED */
2309 discard_pkt:
2310 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2311 	ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2312 	ip_drop_input("ipIfStatsInDiscards", mp, ill);
2313 	freemsg(mp);
2314 	return;
2315 
2316 truncated:
2317 	/* We pulled up everthing already. Must be truncated */
2318 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2319 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2320 	freemsg(mp);
2321 }
2322 
2323 /*
2324  * Common IP options parser.
2325  *
2326  * Setup routine: fill in *optp with options-parsing state, then
2327  * tail-call ipoptp_next to return the first option.
2328  */
2329 uint8_t
2330 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2331 {
2332 	uint32_t totallen; /* total length of all options */
2333 
2334 	totallen = ipha->ipha_version_and_hdr_length -
2335 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2336 	totallen <<= 2;
2337 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2338 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2339 	optp->ipoptp_flags = 0;
2340 	return (ipoptp_next(optp));
2341 }
2342 
2343 /* Like above but without an ipha_t */
2344 uint8_t
2345 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2346 {
2347 	optp->ipoptp_next = opt;
2348 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2349 	optp->ipoptp_flags = 0;
2350 	return (ipoptp_next(optp));
2351 }
2352 
2353 /*
2354  * Common IP options parser: extract next option.
2355  */
2356 uint8_t
2357 ipoptp_next(ipoptp_t *optp)
2358 {
2359 	uint8_t *end = optp->ipoptp_end;
2360 	uint8_t *cur = optp->ipoptp_next;
2361 	uint8_t opt, len, pointer;
2362 
2363 	/*
2364 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2365 	 * has been corrupted.
2366 	 */
2367 	ASSERT(cur <= end);
2368 
2369 	if (cur == end)
2370 		return (IPOPT_EOL);
2371 
2372 	opt = cur[IPOPT_OPTVAL];
2373 
2374 	/*
2375 	 * Skip any NOP options.
2376 	 */
2377 	while (opt == IPOPT_NOP) {
2378 		cur++;
2379 		if (cur == end)
2380 			return (IPOPT_EOL);
2381 		opt = cur[IPOPT_OPTVAL];
2382 	}
2383 
2384 	if (opt == IPOPT_EOL)
2385 		return (IPOPT_EOL);
2386 
2387 	/*
2388 	 * Option requiring a length.
2389 	 */
2390 	if ((cur + 1) >= end) {
2391 		optp->ipoptp_flags |= IPOPTP_ERROR;
2392 		return (IPOPT_EOL);
2393 	}
2394 	len = cur[IPOPT_OLEN];
2395 	if (len < 2) {
2396 		optp->ipoptp_flags |= IPOPTP_ERROR;
2397 		return (IPOPT_EOL);
2398 	}
2399 	optp->ipoptp_cur = cur;
2400 	optp->ipoptp_len = len;
2401 	optp->ipoptp_next = cur + len;
2402 	if (cur + len > end) {
2403 		optp->ipoptp_flags |= IPOPTP_ERROR;
2404 		return (IPOPT_EOL);
2405 	}
2406 
2407 	/*
2408 	 * For the options which require a pointer field, make sure
2409 	 * its there, and make sure it points to either something
2410 	 * inside this option, or the end of the option.
2411 	 */
2412 	switch (opt) {
2413 	case IPOPT_RR:
2414 	case IPOPT_TS:
2415 	case IPOPT_LSRR:
2416 	case IPOPT_SSRR:
2417 		if (len <= IPOPT_OFFSET) {
2418 			optp->ipoptp_flags |= IPOPTP_ERROR;
2419 			return (opt);
2420 		}
2421 		pointer = cur[IPOPT_OFFSET];
2422 		if (pointer - 1 > len) {
2423 			optp->ipoptp_flags |= IPOPTP_ERROR;
2424 			return (opt);
2425 		}
2426 		break;
2427 	}
2428 
2429 	/*
2430 	 * Sanity check the pointer field based on the type of the
2431 	 * option.
2432 	 */
2433 	switch (opt) {
2434 	case IPOPT_RR:
2435 	case IPOPT_SSRR:
2436 	case IPOPT_LSRR:
2437 		if (pointer < IPOPT_MINOFF_SR)
2438 			optp->ipoptp_flags |= IPOPTP_ERROR;
2439 		break;
2440 	case IPOPT_TS:
2441 		if (pointer < IPOPT_MINOFF_IT)
2442 			optp->ipoptp_flags |= IPOPTP_ERROR;
2443 		/*
2444 		 * Note that the Internet Timestamp option also
2445 		 * contains two four bit fields (the Overflow field,
2446 		 * and the Flag field), which follow the pointer
2447 		 * field.  We don't need to check that these fields
2448 		 * fall within the length of the option because this
2449 		 * was implicitely done above.  We've checked that the
2450 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2451 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2452 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2453 		 */
2454 		ASSERT(len > IPOPT_POS_OV_FLG);
2455 		break;
2456 	}
2457 
2458 	return (opt);
2459 }
2460 
2461 /*
2462  * Use the outgoing IP header to create an IP_OPTIONS option the way
2463  * it was passed down from the application.
2464  *
2465  * This is compatible with BSD in that it returns
2466  * the reverse source route with the final destination
2467  * as the last entry. The first 4 bytes of the option
2468  * will contain the final destination.
2469  */
2470 int
2471 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2472 {
2473 	ipoptp_t	opts;
2474 	uchar_t		*opt;
2475 	uint8_t		optval;
2476 	uint8_t		optlen;
2477 	uint32_t	len = 0;
2478 	uchar_t		*buf1 = buf;
2479 	uint32_t	totallen;
2480 	ipaddr_t	dst;
2481 	ip_pkt_t	*ipp = &connp->conn_xmit_ipp;
2482 
2483 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2484 		return (0);
2485 
2486 	totallen = ipp->ipp_ipv4_options_len;
2487 	if (totallen & 0x3)
2488 		return (0);
2489 
2490 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2491 	len += IP_ADDR_LEN;
2492 	bzero(buf1, IP_ADDR_LEN);
2493 
2494 	dst = connp->conn_faddr_v4;
2495 
2496 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2497 	    optval != IPOPT_EOL;
2498 	    optval = ipoptp_next(&opts)) {
2499 		int	off;
2500 
2501 		opt = opts.ipoptp_cur;
2502 		if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2503 			break;
2504 		}
2505 		optlen = opts.ipoptp_len;
2506 
2507 		switch (optval) {
2508 		case IPOPT_SSRR:
2509 		case IPOPT_LSRR:
2510 
2511 			/*
2512 			 * Insert destination as the first entry in the source
2513 			 * route and move down the entries on step.
2514 			 * The last entry gets placed at buf1.
2515 			 */
2516 			buf[IPOPT_OPTVAL] = optval;
2517 			buf[IPOPT_OLEN] = optlen;
2518 			buf[IPOPT_OFFSET] = optlen;
2519 
2520 			off = optlen - IP_ADDR_LEN;
2521 			if (off < 0) {
2522 				/* No entries in source route */
2523 				break;
2524 			}
2525 			/* Last entry in source route if not already set */
2526 			if (dst == INADDR_ANY)
2527 				bcopy(opt + off, buf1, IP_ADDR_LEN);
2528 			off -= IP_ADDR_LEN;
2529 
2530 			while (off > 0) {
2531 				bcopy(opt + off,
2532 				    buf + off + IP_ADDR_LEN,
2533 				    IP_ADDR_LEN);
2534 				off -= IP_ADDR_LEN;
2535 			}
2536 			/* ipha_dst into first slot */
2537 			bcopy(&dst, buf + off + IP_ADDR_LEN,
2538 			    IP_ADDR_LEN);
2539 			buf += optlen;
2540 			len += optlen;
2541 			break;
2542 
2543 		default:
2544 			bcopy(opt, buf, optlen);
2545 			buf += optlen;
2546 			len += optlen;
2547 			break;
2548 		}
2549 	}
2550 done:
2551 	/* Pad the resulting options */
2552 	while (len & 0x3) {
2553 		*buf++ = IPOPT_EOL;
2554 		len++;
2555 	}
2556 	return (len);
2557 }
2558 
2559 /*
2560  * Update any record route or timestamp options to include this host.
2561  * Reverse any source route option.
2562  * This routine assumes that the options are well formed i.e. that they
2563  * have already been checked.
2564  */
2565 static void
2566 icmp_options_update(ipha_t *ipha)
2567 {
2568 	ipoptp_t	opts;
2569 	uchar_t		*opt;
2570 	uint8_t		optval;
2571 	ipaddr_t	src;		/* Our local address */
2572 	ipaddr_t	dst;
2573 
2574 	ip2dbg(("icmp_options_update\n"));
2575 	src = ipha->ipha_src;
2576 	dst = ipha->ipha_dst;
2577 
2578 	for (optval = ipoptp_first(&opts, ipha);
2579 	    optval != IPOPT_EOL;
2580 	    optval = ipoptp_next(&opts)) {
2581 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2582 		opt = opts.ipoptp_cur;
2583 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
2584 		    optval, opts.ipoptp_len));
2585 		switch (optval) {
2586 			int off1, off2;
2587 		case IPOPT_SSRR:
2588 		case IPOPT_LSRR:
2589 			/*
2590 			 * Reverse the source route.  The first entry
2591 			 * should be the next to last one in the current
2592 			 * source route (the last entry is our address).
2593 			 * The last entry should be the final destination.
2594 			 */
2595 			off1 = IPOPT_MINOFF_SR - 1;
2596 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2597 			if (off2 < 0) {
2598 				/* No entries in source route */
2599 				ip1dbg((
2600 				    "icmp_options_update: bad src route\n"));
2601 				break;
2602 			}
2603 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2604 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2605 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2606 			off2 -= IP_ADDR_LEN;
2607 
2608 			while (off1 < off2) {
2609 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2610 				bcopy((char *)opt + off2, (char *)opt + off1,
2611 				    IP_ADDR_LEN);
2612 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2613 				off1 += IP_ADDR_LEN;
2614 				off2 -= IP_ADDR_LEN;
2615 			}
2616 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2617 			break;
2618 		}
2619 	}
2620 }
2621 
2622 /*
2623  * Process received ICMP Redirect messages.
2624  * Assumes the caller has verified that the headers are in the pulled up mblk.
2625  * Consumes mp.
2626  */
2627 static void
2628 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2629 {
2630 	ire_t		*ire, *nire;
2631 	ire_t		*prev_ire;
2632 	ipaddr_t  	src, dst, gateway;
2633 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2634 	ipha_t		*inner_ipha;	/* Inner IP header */
2635 
2636 	/* Caller already pulled up everything. */
2637 	inner_ipha = (ipha_t *)&icmph[1];
2638 	src = ipha->ipha_src;
2639 	dst = inner_ipha->ipha_dst;
2640 	gateway = icmph->icmph_rd_gateway;
2641 	/* Make sure the new gateway is reachable somehow. */
2642 	ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2643 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2644 	/*
2645 	 * Make sure we had a route for the dest in question and that
2646 	 * that route was pointing to the old gateway (the source of the
2647 	 * redirect packet.)
2648 	 * We do longest match and then compare ire_gateway_addr below.
2649 	 */
2650 	prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2651 	    NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2652 	/*
2653 	 * Check that
2654 	 *	the redirect was not from ourselves
2655 	 *	the new gateway and the old gateway are directly reachable
2656 	 */
2657 	if (prev_ire == NULL || ire == NULL ||
2658 	    (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2659 	    (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2660 	    !(ire->ire_type & IRE_IF_ALL) ||
2661 	    prev_ire->ire_gateway_addr != src) {
2662 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2663 		ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2664 		freemsg(mp);
2665 		if (ire != NULL)
2666 			ire_refrele(ire);
2667 		if (prev_ire != NULL)
2668 			ire_refrele(prev_ire);
2669 		return;
2670 	}
2671 
2672 	ire_refrele(prev_ire);
2673 	ire_refrele(ire);
2674 
2675 	/*
2676 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
2677 	 * require TOS routing
2678 	 */
2679 	switch (icmph->icmph_code) {
2680 	case 0:
2681 	case 1:
2682 		/* TODO: TOS specificity for cases 2 and 3 */
2683 	case 2:
2684 	case 3:
2685 		break;
2686 	default:
2687 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2688 		ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2689 		freemsg(mp);
2690 		return;
2691 	}
2692 	/*
2693 	 * Create a Route Association.  This will allow us to remember that
2694 	 * someone we believe told us to use the particular gateway.
2695 	 */
2696 	ire = ire_create(
2697 	    (uchar_t *)&dst,			/* dest addr */
2698 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2699 	    (uchar_t *)&gateway,		/* gateway addr */
2700 	    IRE_HOST,
2701 	    NULL,				/* ill */
2702 	    ALL_ZONES,
2703 	    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2704 	    NULL,				/* tsol_gc_t */
2705 	    ipst);
2706 
2707 	if (ire == NULL) {
2708 		freemsg(mp);
2709 		return;
2710 	}
2711 	nire = ire_add(ire);
2712 	/* Check if it was a duplicate entry */
2713 	if (nire != NULL && nire != ire) {
2714 		ASSERT(nire->ire_identical_ref > 1);
2715 		ire_delete(nire);
2716 		ire_refrele(nire);
2717 		nire = NULL;
2718 	}
2719 	ire = nire;
2720 	if (ire != NULL) {
2721 		ire_refrele(ire);		/* Held in ire_add */
2722 
2723 		/* tell routing sockets that we received a redirect */
2724 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2725 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2726 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2727 	}
2728 
2729 	/*
2730 	 * Delete any existing IRE_HOST type redirect ires for this destination.
2731 	 * This together with the added IRE has the effect of
2732 	 * modifying an existing redirect.
2733 	 */
2734 	prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2735 	    ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2736 	if (prev_ire != NULL) {
2737 		if (prev_ire ->ire_flags & RTF_DYNAMIC)
2738 			ire_delete(prev_ire);
2739 		ire_refrele(prev_ire);
2740 	}
2741 
2742 	freemsg(mp);
2743 }
2744 
2745 /*
2746  * Generate an ICMP parameter problem message.
2747  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2748  * constructed by the caller.
2749  */
2750 static void
2751 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2752 {
2753 	icmph_t	icmph;
2754 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2755 
2756 	mp = icmp_pkt_err_ok(mp, ira);
2757 	if (mp == NULL)
2758 		return;
2759 
2760 	bzero(&icmph, sizeof (icmph_t));
2761 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
2762 	icmph.icmph_pp_ptr = ptr;
2763 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2764 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2765 }
2766 
2767 /*
2768  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2769  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2770  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2771  * an icmp error packet can be sent.
2772  * Assigns an appropriate source address to the packet. If ipha_dst is
2773  * one of our addresses use it for source. Otherwise let ip_output_simple
2774  * pick the source address.
2775  */
2776 static void
2777 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2778 {
2779 	ipaddr_t dst;
2780 	icmph_t	*icmph;
2781 	ipha_t	*ipha;
2782 	uint_t	len_needed;
2783 	size_t	msg_len;
2784 	mblk_t	*mp1;
2785 	ipaddr_t src;
2786 	ire_t	*ire;
2787 	ip_xmit_attr_t ixas;
2788 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2789 
2790 	ipha = (ipha_t *)mp->b_rptr;
2791 
2792 	bzero(&ixas, sizeof (ixas));
2793 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2794 	ixas.ixa_zoneid = ira->ira_zoneid;
2795 	ixas.ixa_ifindex = 0;
2796 	ixas.ixa_ipst = ipst;
2797 	ixas.ixa_cred = kcred;
2798 	ixas.ixa_cpid = NOPID;
2799 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
2800 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2801 
2802 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2803 		/*
2804 		 * Apply IPsec based on how IPsec was applied to
2805 		 * the packet that had the error.
2806 		 *
2807 		 * If it was an outbound packet that caused the ICMP
2808 		 * error, then the caller will have setup the IRA
2809 		 * appropriately.
2810 		 */
2811 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2812 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2813 			/* Note: mp already consumed and ip_drop_packet done */
2814 			return;
2815 		}
2816 	} else {
2817 		/*
2818 		 * This is in clear. The icmp message we are building
2819 		 * here should go out in clear, independent of our policy.
2820 		 */
2821 		ixas.ixa_flags |= IXAF_NO_IPSEC;
2822 	}
2823 
2824 	/* Remember our eventual destination */
2825 	dst = ipha->ipha_src;
2826 
2827 	/*
2828 	 * If the packet was for one of our unicast addresses, make
2829 	 * sure we respond with that as the source. Otherwise
2830 	 * have ip_output_simple pick the source address.
2831 	 */
2832 	ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2833 	    (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2834 	    MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2835 	if (ire != NULL) {
2836 		ire_refrele(ire);
2837 		src = ipha->ipha_dst;
2838 	} else {
2839 		src = INADDR_ANY;
2840 		ixas.ixa_flags |= IXAF_SET_SOURCE;
2841 	}
2842 
2843 	/*
2844 	 * Check if we can send back more then 8 bytes in addition to
2845 	 * the IP header.  We try to send 64 bytes of data and the internal
2846 	 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2847 	 */
2848 	len_needed = IPH_HDR_LENGTH(ipha);
2849 	if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2850 	    ipha->ipha_protocol == IPPROTO_IPV6) {
2851 		if (!pullupmsg(mp, -1)) {
2852 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2853 			ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2854 			freemsg(mp);
2855 			return;
2856 		}
2857 		ipha = (ipha_t *)mp->b_rptr;
2858 
2859 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2860 			len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2861 			    len_needed));
2862 		} else {
2863 			ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2864 
2865 			ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2866 			len_needed += ip_hdr_length_v6(mp, ip6h);
2867 		}
2868 	}
2869 	len_needed += ipst->ips_ip_icmp_return;
2870 	msg_len = msgdsize(mp);
2871 	if (msg_len > len_needed) {
2872 		(void) adjmsg(mp, len_needed - msg_len);
2873 		msg_len = len_needed;
2874 	}
2875 	mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2876 	if (mp1 == NULL) {
2877 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2878 		freemsg(mp);
2879 		return;
2880 	}
2881 	mp1->b_cont = mp;
2882 	mp = mp1;
2883 
2884 	/*
2885 	 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2886 	 * node generates be accepted in peace by all on-host destinations.
2887 	 * If we do NOT assume that all on-host destinations trust
2888 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2889 	 * (Look for IXAF_TRUSTED_ICMP).
2890 	 */
2891 	ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2892 
2893 	ipha = (ipha_t *)mp->b_rptr;
2894 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2895 	*ipha = icmp_ipha;
2896 	ipha->ipha_src = src;
2897 	ipha->ipha_dst = dst;
2898 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2899 	msg_len += sizeof (icmp_ipha) + len;
2900 	if (msg_len > IP_MAXPACKET) {
2901 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
2902 		msg_len = IP_MAXPACKET;
2903 	}
2904 	ipha->ipha_length = htons((uint16_t)msg_len);
2905 	icmph = (icmph_t *)&ipha[1];
2906 	bcopy(stuff, icmph, len);
2907 	icmph->icmph_checksum = 0;
2908 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2909 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2910 
2911 	(void) ip_output_simple(mp, &ixas);
2912 	ixa_cleanup(&ixas);
2913 }
2914 
2915 /*
2916  * Determine if an ICMP error packet can be sent given the rate limit.
2917  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2918  * in milliseconds) and a burst size. Burst size number of packets can
2919  * be sent arbitrarely closely spaced.
2920  * The state is tracked using two variables to implement an approximate
2921  * token bucket filter:
2922  *	icmp_pkt_err_last - lbolt value when the last burst started
2923  *	icmp_pkt_err_sent - number of packets sent in current burst
2924  */
2925 boolean_t
2926 icmp_err_rate_limit(ip_stack_t *ipst)
2927 {
2928 	clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2929 	uint_t refilled; /* Number of packets refilled in tbf since last */
2930 	/* Guard against changes by loading into local variable */
2931 	uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2932 
2933 	if (err_interval == 0)
2934 		return (B_FALSE);
2935 
2936 	if (ipst->ips_icmp_pkt_err_last > now) {
2937 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2938 		ipst->ips_icmp_pkt_err_last = 0;
2939 		ipst->ips_icmp_pkt_err_sent = 0;
2940 	}
2941 	/*
2942 	 * If we are in a burst update the token bucket filter.
2943 	 * Update the "last" time to be close to "now" but make sure
2944 	 * we don't loose precision.
2945 	 */
2946 	if (ipst->ips_icmp_pkt_err_sent != 0) {
2947 		refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2948 		if (refilled > ipst->ips_icmp_pkt_err_sent) {
2949 			ipst->ips_icmp_pkt_err_sent = 0;
2950 		} else {
2951 			ipst->ips_icmp_pkt_err_sent -= refilled;
2952 			ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2953 		}
2954 	}
2955 	if (ipst->ips_icmp_pkt_err_sent == 0) {
2956 		/* Start of new burst */
2957 		ipst->ips_icmp_pkt_err_last = now;
2958 	}
2959 	if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2960 		ipst->ips_icmp_pkt_err_sent++;
2961 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2962 		    ipst->ips_icmp_pkt_err_sent));
2963 		return (B_FALSE);
2964 	}
2965 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
2966 	return (B_TRUE);
2967 }
2968 
2969 /*
2970  * Check if it is ok to send an IPv4 ICMP error packet in
2971  * response to the IPv4 packet in mp.
2972  * Free the message and return null if no
2973  * ICMP error packet should be sent.
2974  */
2975 static mblk_t *
2976 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2977 {
2978 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2979 	icmph_t	*icmph;
2980 	ipha_t	*ipha;
2981 	uint_t	len_needed;
2982 
2983 	if (!mp)
2984 		return (NULL);
2985 	ipha = (ipha_t *)mp->b_rptr;
2986 	if (ip_csum_hdr(ipha)) {
2987 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2988 		ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2989 		freemsg(mp);
2990 		return (NULL);
2991 	}
2992 	if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2993 	    ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2994 	    CLASSD(ipha->ipha_dst) ||
2995 	    CLASSD(ipha->ipha_src) ||
2996 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2997 		/* Note: only errors to the fragment with offset 0 */
2998 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2999 		freemsg(mp);
3000 		return (NULL);
3001 	}
3002 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
3003 		/*
3004 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3005 		 * errors in response to any ICMP errors.
3006 		 */
3007 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3008 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3009 			if (!pullupmsg(mp, len_needed)) {
3010 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3011 				freemsg(mp);
3012 				return (NULL);
3013 			}
3014 			ipha = (ipha_t *)mp->b_rptr;
3015 		}
3016 		icmph = (icmph_t *)
3017 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3018 		switch (icmph->icmph_type) {
3019 		case ICMP_DEST_UNREACHABLE:
3020 		case ICMP_SOURCE_QUENCH:
3021 		case ICMP_TIME_EXCEEDED:
3022 		case ICMP_PARAM_PROBLEM:
3023 		case ICMP_REDIRECT:
3024 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3025 			freemsg(mp);
3026 			return (NULL);
3027 		default:
3028 			break;
3029 		}
3030 	}
3031 	/*
3032 	 * If this is a labeled system, then check to see if we're allowed to
3033 	 * send a response to this particular sender.  If not, then just drop.
3034 	 */
3035 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3036 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3037 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3038 		freemsg(mp);
3039 		return (NULL);
3040 	}
3041 	if (icmp_err_rate_limit(ipst)) {
3042 		/*
3043 		 * Only send ICMP error packets every so often.
3044 		 * This should be done on a per port/source basis,
3045 		 * but for now this will suffice.
3046 		 */
3047 		freemsg(mp);
3048 		return (NULL);
3049 	}
3050 	return (mp);
3051 }
3052 
3053 /*
3054  * Called when a packet was sent out the same link that it arrived on.
3055  * Check if it is ok to send a redirect and then send it.
3056  */
3057 void
3058 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3059     ip_recv_attr_t *ira)
3060 {
3061 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
3062 	ipaddr_t	src, nhop;
3063 	mblk_t		*mp1;
3064 	ire_t		*nhop_ire;
3065 
3066 	/*
3067 	 * Check the source address to see if it originated
3068 	 * on the same logical subnet it is going back out on.
3069 	 * If so, we should be able to send it a redirect.
3070 	 * Avoid sending a redirect if the destination
3071 	 * is directly connected (i.e., we matched an IRE_ONLINK),
3072 	 * or if the packet was source routed out this interface.
3073 	 *
3074 	 * We avoid sending a redirect if the
3075 	 * destination is directly connected
3076 	 * because it is possible that multiple
3077 	 * IP subnets may have been configured on
3078 	 * the link, and the source may not
3079 	 * be on the same subnet as ip destination,
3080 	 * even though they are on the same
3081 	 * physical link.
3082 	 */
3083 	if ((ire->ire_type & IRE_ONLINK) ||
3084 	    ip_source_routed(ipha, ipst))
3085 		return;
3086 
3087 	nhop_ire = ire_nexthop(ire);
3088 	if (nhop_ire == NULL)
3089 		return;
3090 
3091 	nhop = nhop_ire->ire_addr;
3092 
3093 	if (nhop_ire->ire_type & IRE_IF_CLONE) {
3094 		ire_t	*ire2;
3095 
3096 		/* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3097 		mutex_enter(&nhop_ire->ire_lock);
3098 		ire2 = nhop_ire->ire_dep_parent;
3099 		if (ire2 != NULL)
3100 			ire_refhold(ire2);
3101 		mutex_exit(&nhop_ire->ire_lock);
3102 		ire_refrele(nhop_ire);
3103 		nhop_ire = ire2;
3104 	}
3105 	if (nhop_ire == NULL)
3106 		return;
3107 
3108 	ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3109 
3110 	src = ipha->ipha_src;
3111 
3112 	/*
3113 	 * We look at the interface ire for the nexthop,
3114 	 * to see if ipha_src is in the same subnet
3115 	 * as the nexthop.
3116 	 */
3117 	if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3118 		/*
3119 		 * The source is directly connected.
3120 		 */
3121 		mp1 = copymsg(mp);
3122 		if (mp1 != NULL) {
3123 			icmp_send_redirect(mp1, nhop, ira);
3124 		}
3125 	}
3126 	ire_refrele(nhop_ire);
3127 }
3128 
3129 /*
3130  * Generate an ICMP redirect message.
3131  */
3132 static void
3133 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3134 {
3135 	icmph_t	icmph;
3136 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3137 
3138 	mp = icmp_pkt_err_ok(mp, ira);
3139 	if (mp == NULL)
3140 		return;
3141 
3142 	bzero(&icmph, sizeof (icmph_t));
3143 	icmph.icmph_type = ICMP_REDIRECT;
3144 	icmph.icmph_code = 1;
3145 	icmph.icmph_rd_gateway = gateway;
3146 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3147 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3148 }
3149 
3150 /*
3151  * Generate an ICMP time exceeded message.
3152  */
3153 void
3154 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3155 {
3156 	icmph_t	icmph;
3157 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3158 
3159 	mp = icmp_pkt_err_ok(mp, ira);
3160 	if (mp == NULL)
3161 		return;
3162 
3163 	bzero(&icmph, sizeof (icmph_t));
3164 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3165 	icmph.icmph_code = code;
3166 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3167 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3168 }
3169 
3170 /*
3171  * Generate an ICMP unreachable message.
3172  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3173  * constructed by the caller.
3174  */
3175 void
3176 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3177 {
3178 	icmph_t	icmph;
3179 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3180 
3181 	mp = icmp_pkt_err_ok(mp, ira);
3182 	if (mp == NULL)
3183 		return;
3184 
3185 	bzero(&icmph, sizeof (icmph_t));
3186 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3187 	icmph.icmph_code = code;
3188 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3189 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3190 }
3191 
3192 /*
3193  * Latch in the IPsec state for a stream based the policy in the listener
3194  * and the actions in the ip_recv_attr_t.
3195  * Called directly from TCP and SCTP.
3196  */
3197 boolean_t
3198 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3199 {
3200 	ASSERT(lconnp->conn_policy != NULL);
3201 	ASSERT(connp->conn_policy == NULL);
3202 
3203 	IPPH_REFHOLD(lconnp->conn_policy);
3204 	connp->conn_policy = lconnp->conn_policy;
3205 
3206 	if (ira->ira_ipsec_action != NULL) {
3207 		if (connp->conn_latch == NULL) {
3208 			connp->conn_latch = iplatch_create();
3209 			if (connp->conn_latch == NULL)
3210 				return (B_FALSE);
3211 		}
3212 		ipsec_latch_inbound(connp, ira);
3213 	}
3214 	return (B_TRUE);
3215 }
3216 
3217 /*
3218  * Verify whether or not the IP address is a valid local address.
3219  * Could be a unicast, including one for a down interface.
3220  * If allow_mcbc then a multicast or broadcast address is also
3221  * acceptable.
3222  *
3223  * In the case of a broadcast/multicast address, however, the
3224  * upper protocol is expected to reset the src address
3225  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3226  * no packets are emitted with broadcast/multicast address as
3227  * source address (that violates hosts requirements RFC 1122)
3228  * The addresses valid for bind are:
3229  *	(1) - INADDR_ANY (0)
3230  *	(2) - IP address of an UP interface
3231  *	(3) - IP address of a DOWN interface
3232  *	(4) - valid local IP broadcast addresses. In this case
3233  *	the conn will only receive packets destined to
3234  *	the specified broadcast address.
3235  *	(5) - a multicast address. In this case
3236  *	the conn will only receive packets destined to
3237  *	the specified multicast address. Note: the
3238  *	application still has to issue an
3239  *	IP_ADD_MEMBERSHIP socket option.
3240  *
3241  * In all the above cases, the bound address must be valid in the current zone.
3242  * When the address is loopback, multicast or broadcast, there might be many
3243  * matching IREs so bind has to look up based on the zone.
3244  */
3245 ip_laddr_t
3246 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3247     ip_stack_t *ipst, boolean_t allow_mcbc)
3248 {
3249 	ire_t *src_ire;
3250 
3251 	ASSERT(src_addr != INADDR_ANY);
3252 
3253 	src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3254 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3255 
3256 	/*
3257 	 * If an address other than in6addr_any is requested,
3258 	 * we verify that it is a valid address for bind
3259 	 * Note: Following code is in if-else-if form for
3260 	 * readability compared to a condition check.
3261 	 */
3262 	if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3263 		/*
3264 		 * (2) Bind to address of local UP interface
3265 		 */
3266 		ire_refrele(src_ire);
3267 		return (IPVL_UNICAST_UP);
3268 	} else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3269 		/*
3270 		 * (4) Bind to broadcast address
3271 		 */
3272 		ire_refrele(src_ire);
3273 		if (allow_mcbc)
3274 			return (IPVL_BCAST);
3275 		else
3276 			return (IPVL_BAD);
3277 	} else if (CLASSD(src_addr)) {
3278 		/* (5) bind to multicast address. */
3279 		if (src_ire != NULL)
3280 			ire_refrele(src_ire);
3281 
3282 		if (allow_mcbc)
3283 			return (IPVL_MCAST);
3284 		else
3285 			return (IPVL_BAD);
3286 	} else {
3287 		ipif_t *ipif;
3288 
3289 		/*
3290 		 * (3) Bind to address of local DOWN interface?
3291 		 * (ipif_lookup_addr() looks up all interfaces
3292 		 * but we do not get here for UP interfaces
3293 		 * - case (2) above)
3294 		 */
3295 		if (src_ire != NULL)
3296 			ire_refrele(src_ire);
3297 
3298 		ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3299 		if (ipif == NULL)
3300 			return (IPVL_BAD);
3301 
3302 		/* Not a useful source? */
3303 		if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3304 			ipif_refrele(ipif);
3305 			return (IPVL_BAD);
3306 		}
3307 		ipif_refrele(ipif);
3308 		return (IPVL_UNICAST_DOWN);
3309 	}
3310 }
3311 
3312 /*
3313  * Insert in the bind fanout for IPv4 and IPv6.
3314  * The caller should already have used ip_laddr_verify_v*() before calling
3315  * this.
3316  */
3317 int
3318 ip_laddr_fanout_insert(conn_t *connp)
3319 {
3320 	int		error;
3321 
3322 	/*
3323 	 * Allow setting new policies. For example, disconnects result
3324 	 * in us being called. As we would have set conn_policy_cached
3325 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
3326 	 * can change after the disconnect.
3327 	 */
3328 	connp->conn_policy_cached = B_FALSE;
3329 
3330 	error = ipcl_bind_insert(connp);
3331 	if (error != 0) {
3332 		if (connp->conn_anon_port) {
3333 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3334 			    connp->conn_mlp_type, connp->conn_proto,
3335 			    ntohs(connp->conn_lport), B_FALSE);
3336 		}
3337 		connp->conn_mlp_type = mlptSingle;
3338 	}
3339 	return (error);
3340 }
3341 
3342 /*
3343  * Verify that both the source and destination addresses are valid. If
3344  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3345  * i.e. have no route to it.  Protocols like TCP want to verify destination
3346  * reachability, while tunnels do not.
3347  *
3348  * Determine the route, the interface, and (optionally) the source address
3349  * to use to reach a given destination.
3350  * Note that we allow connect to broadcast and multicast addresses when
3351  * IPDF_ALLOW_MCBC is set.
3352  * first_hop and dst_addr are normally the same, but if source routing
3353  * they will differ; in that case the first_hop is what we'll use for the
3354  * routing lookup but the dce and label checks will be done on dst_addr,
3355  *
3356  * If uinfo is set, then we fill in the best available information
3357  * we have for the destination. This is based on (in priority order) any
3358  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3359  * ill_mtu/ill_mc_mtu.
3360  *
3361  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3362  * always do the label check on dst_addr.
3363  */
3364 int
3365 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3366     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3367 {
3368 	ire_t		*ire = NULL;
3369 	int		error = 0;
3370 	ipaddr_t	setsrc;				/* RTF_SETSRC */
3371 	zoneid_t	zoneid = ixa->ixa_zoneid;	/* Honors SO_ALLZONES */
3372 	ip_stack_t	*ipst = ixa->ixa_ipst;
3373 	dce_t		*dce;
3374 	uint_t		pmtu;
3375 	uint_t		generation;
3376 	nce_t		*nce;
3377 	ill_t		*ill = NULL;
3378 	boolean_t	multirt = B_FALSE;
3379 
3380 	ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3381 
3382 	/*
3383 	 * We never send to zero; the ULPs map it to the loopback address.
3384 	 * We can't allow it since we use zero to mean unitialized in some
3385 	 * places.
3386 	 */
3387 	ASSERT(dst_addr != INADDR_ANY);
3388 
3389 	if (is_system_labeled()) {
3390 		ts_label_t *tsl = NULL;
3391 
3392 		error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3393 		    mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3394 		if (error != 0)
3395 			return (error);
3396 		if (tsl != NULL) {
3397 			/* Update the label */
3398 			ip_xmit_attr_replace_tsl(ixa, tsl);
3399 		}
3400 	}
3401 
3402 	setsrc = INADDR_ANY;
3403 	/*
3404 	 * Select a route; For IPMP interfaces, we would only select
3405 	 * a "hidden" route (i.e., going through a specific under_ill)
3406 	 * if ixa_ifindex has been specified.
3407 	 */
3408 	ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3409 	    &generation, &setsrc, &error, &multirt);
3410 	ASSERT(ire != NULL);	/* IRE_NOROUTE if none found */
3411 	if (error != 0)
3412 		goto bad_addr;
3413 
3414 	/*
3415 	 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3416 	 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3417 	 * Otherwise the destination needn't be reachable.
3418 	 *
3419 	 * If we match on a reject or black hole, then we've got a
3420 	 * local failure.  May as well fail out the connect() attempt,
3421 	 * since it's never going to succeed.
3422 	 */
3423 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3424 		/*
3425 		 * If we're verifying destination reachability, we always want
3426 		 * to complain here.
3427 		 *
3428 		 * If we're not verifying destination reachability but the
3429 		 * destination has a route, we still want to fail on the
3430 		 * temporary address and broadcast address tests.
3431 		 *
3432 		 * In both cases do we let the code continue so some reasonable
3433 		 * information is returned to the caller. That enables the
3434 		 * caller to use (and even cache) the IRE. conn_ip_ouput will
3435 		 * use the generation mismatch path to check for the unreachable
3436 		 * case thereby avoiding any specific check in the main path.
3437 		 */
3438 		ASSERT(generation == IRE_GENERATION_VERIFY);
3439 		if (flags & IPDF_VERIFY_DST) {
3440 			/*
3441 			 * Set errno but continue to set up ixa_ire to be
3442 			 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3443 			 * That allows callers to use ip_output to get an
3444 			 * ICMP error back.
3445 			 */
3446 			if (!(ire->ire_type & IRE_HOST))
3447 				error = ENETUNREACH;
3448 			else
3449 				error = EHOSTUNREACH;
3450 		}
3451 	}
3452 
3453 	if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3454 	    !(flags & IPDF_ALLOW_MCBC)) {
3455 		ire_refrele(ire);
3456 		ire = ire_reject(ipst, B_FALSE);
3457 		generation = IRE_GENERATION_VERIFY;
3458 		error = ENETUNREACH;
3459 	}
3460 
3461 	/* Cache things */
3462 	if (ixa->ixa_ire != NULL)
3463 		ire_refrele_notr(ixa->ixa_ire);
3464 #ifdef DEBUG
3465 	ire_refhold_notr(ire);
3466 	ire_refrele(ire);
3467 #endif
3468 	ixa->ixa_ire = ire;
3469 	ixa->ixa_ire_generation = generation;
3470 
3471 	/*
3472 	 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3473 	 * since some callers will send a packet to conn_ip_output() even if
3474 	 * there's an error.
3475 	 */
3476 	if (flags & IPDF_UNIQUE_DCE) {
3477 		/* Fallback to the default dce if allocation fails */
3478 		dce = dce_lookup_and_add_v4(dst_addr, ipst);
3479 		if (dce != NULL)
3480 			generation = dce->dce_generation;
3481 		else
3482 			dce = dce_lookup_v4(dst_addr, ipst, &generation);
3483 	} else {
3484 		dce = dce_lookup_v4(dst_addr, ipst, &generation);
3485 	}
3486 	ASSERT(dce != NULL);
3487 	if (ixa->ixa_dce != NULL)
3488 		dce_refrele_notr(ixa->ixa_dce);
3489 #ifdef DEBUG
3490 	dce_refhold_notr(dce);
3491 	dce_refrele(dce);
3492 #endif
3493 	ixa->ixa_dce = dce;
3494 	ixa->ixa_dce_generation = generation;
3495 
3496 	/*
3497 	 * For multicast with multirt we have a flag passed back from
3498 	 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3499 	 * possible multicast address.
3500 	 * We also need a flag for multicast since we can't check
3501 	 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3502 	 */
3503 	if (multirt) {
3504 		ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3505 		ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3506 	} else {
3507 		ixa->ixa_postfragfn = ire->ire_postfragfn;
3508 		ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3509 	}
3510 	if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3511 		/* Get an nce to cache. */
3512 		nce = ire_to_nce(ire, firsthop, NULL);
3513 		if (nce == NULL) {
3514 			/* Allocation failure? */
3515 			ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3516 		} else {
3517 			if (ixa->ixa_nce != NULL)
3518 				nce_refrele(ixa->ixa_nce);
3519 			ixa->ixa_nce = nce;
3520 		}
3521 	}
3522 
3523 	/*
3524 	 * If the source address is a loopback address, the
3525 	 * destination had best be local or multicast.
3526 	 * If we are sending to an IRE_LOCAL using a loopback source then
3527 	 * it had better be the same zoneid.
3528 	 */
3529 	if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3530 		if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3531 			ire = NULL;	/* Stored in ixa_ire */
3532 			error = EADDRNOTAVAIL;
3533 			goto bad_addr;
3534 		}
3535 		if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3536 			ire = NULL;	/* Stored in ixa_ire */
3537 			error = EADDRNOTAVAIL;
3538 			goto bad_addr;
3539 		}
3540 	}
3541 	if (ire->ire_type & IRE_BROADCAST) {
3542 		/*
3543 		 * If the ULP didn't have a specified source, then we
3544 		 * make sure we reselect the source when sending
3545 		 * broadcasts out different interfaces.
3546 		 */
3547 		if (flags & IPDF_SELECT_SRC)
3548 			ixa->ixa_flags |= IXAF_SET_SOURCE;
3549 		else
3550 			ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3551 	}
3552 
3553 	/*
3554 	 * Does the caller want us to pick a source address?
3555 	 */
3556 	if (flags & IPDF_SELECT_SRC) {
3557 		ipaddr_t	src_addr;
3558 
3559 		/*
3560 		 * We use use ire_nexthop_ill to avoid the under ipmp
3561 		 * interface for source address selection. Note that for ipmp
3562 		 * probe packets, ixa_ifindex would have been specified, and
3563 		 * the ip_select_route() invocation would have picked an ire
3564 		 * will ire_ill pointing at an under interface.
3565 		 */
3566 		ill = ire_nexthop_ill(ire);
3567 
3568 		/* If unreachable we have no ill but need some source */
3569 		if (ill == NULL) {
3570 			src_addr = htonl(INADDR_LOOPBACK);
3571 			/* Make sure we look for a better source address */
3572 			generation = SRC_GENERATION_VERIFY;
3573 		} else {
3574 			error = ip_select_source_v4(ill, setsrc, dst_addr,
3575 			    ixa->ixa_multicast_ifaddr, zoneid,
3576 			    ipst, &src_addr, &generation, NULL);
3577 			if (error != 0) {
3578 				ire = NULL;	/* Stored in ixa_ire */
3579 				goto bad_addr;
3580 			}
3581 		}
3582 
3583 		/*
3584 		 * We allow the source address to to down.
3585 		 * However, we check that we don't use the loopback address
3586 		 * as a source when sending out on the wire.
3587 		 */
3588 		if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3589 		    !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3590 		    !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3591 			ire = NULL;	/* Stored in ixa_ire */
3592 			error = EADDRNOTAVAIL;
3593 			goto bad_addr;
3594 		}
3595 
3596 		*src_addrp = src_addr;
3597 		ixa->ixa_src_generation = generation;
3598 	}
3599 
3600 	/*
3601 	 * Make sure we don't leave an unreachable ixa_nce in place
3602 	 * since ip_select_route is used when we unplumb i.e., remove
3603 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3604 	 */
3605 	nce = ixa->ixa_nce;
3606 	if (nce != NULL && nce->nce_is_condemned) {
3607 		nce_refrele(nce);
3608 		ixa->ixa_nce = NULL;
3609 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3610 	}
3611 
3612 	/*
3613 	 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3614 	 * However, we can't do it for IPv4 multicast or broadcast.
3615 	 */
3616 	if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3617 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3618 
3619 	/*
3620 	 * Set initial value for fragmentation limit. Either conn_ip_output
3621 	 * or ULP might updates it when there are routing changes.
3622 	 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3623 	 */
3624 	pmtu = ip_get_pmtu(ixa);
3625 	ixa->ixa_fragsize = pmtu;
3626 	/* Make sure ixa_fragsize and ixa_pmtu remain identical */
3627 	if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3628 		ixa->ixa_pmtu = pmtu;
3629 
3630 	/*
3631 	 * Extract information useful for some transports.
3632 	 * First we look for DCE metrics. Then we take what we have in
3633 	 * the metrics in the route, where the offlink is used if we have
3634 	 * one.
3635 	 */
3636 	if (uinfo != NULL) {
3637 		bzero(uinfo, sizeof (*uinfo));
3638 
3639 		if (dce->dce_flags & DCEF_UINFO)
3640 			*uinfo = dce->dce_uinfo;
3641 
3642 		rts_merge_metrics(uinfo, &ire->ire_metrics);
3643 
3644 		/* Allow ire_metrics to decrease the path MTU from above */
3645 		if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3646 			uinfo->iulp_mtu = pmtu;
3647 
3648 		uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3649 		uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3650 		uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3651 	}
3652 
3653 	if (ill != NULL)
3654 		ill_refrele(ill);
3655 
3656 	return (error);
3657 
3658 bad_addr:
3659 	if (ire != NULL)
3660 		ire_refrele(ire);
3661 
3662 	if (ill != NULL)
3663 		ill_refrele(ill);
3664 
3665 	/*
3666 	 * Make sure we don't leave an unreachable ixa_nce in place
3667 	 * since ip_select_route is used when we unplumb i.e., remove
3668 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3669 	 */
3670 	nce = ixa->ixa_nce;
3671 	if (nce != NULL && nce->nce_is_condemned) {
3672 		nce_refrele(nce);
3673 		ixa->ixa_nce = NULL;
3674 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3675 	}
3676 
3677 	return (error);
3678 }
3679 
3680 
3681 /*
3682  * Get the base MTU for the case when path MTU discovery is not used.
3683  * Takes the MTU of the IRE into account.
3684  */
3685 uint_t
3686 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3687 {
3688 	uint_t mtu;
3689 	uint_t iremtu = ire->ire_metrics.iulp_mtu;
3690 
3691 	if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3692 		mtu = ill->ill_mc_mtu;
3693 	else
3694 		mtu = ill->ill_mtu;
3695 
3696 	if (iremtu != 0 && iremtu < mtu)
3697 		mtu = iremtu;
3698 
3699 	return (mtu);
3700 }
3701 
3702 /*
3703  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3704  * Assumes that ixa_ire, dce, and nce have already been set up.
3705  *
3706  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3707  * We avoid path MTU discovery if it is disabled with ndd.
3708  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3709  *
3710  * NOTE: We also used to turn it off for source routed packets. That
3711  * is no longer required since the dce is per final destination.
3712  */
3713 uint_t
3714 ip_get_pmtu(ip_xmit_attr_t *ixa)
3715 {
3716 	ip_stack_t	*ipst = ixa->ixa_ipst;
3717 	dce_t		*dce;
3718 	nce_t		*nce;
3719 	ire_t		*ire;
3720 	uint_t		pmtu;
3721 
3722 	ire = ixa->ixa_ire;
3723 	dce = ixa->ixa_dce;
3724 	nce = ixa->ixa_nce;
3725 
3726 	/*
3727 	 * If path MTU discovery has been turned off by ndd, then we ignore
3728 	 * any dce_pmtu and for IPv4 we will not set DF.
3729 	 */
3730 	if (!ipst->ips_ip_path_mtu_discovery)
3731 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3732 
3733 	pmtu = IP_MAXPACKET;
3734 	/*
3735 	 * Decide whether whether IPv4 sets DF
3736 	 * For IPv6 "no DF" means to use the 1280 mtu
3737 	 */
3738 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3739 		ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3740 	} else {
3741 		ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3742 		if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3743 			pmtu = IPV6_MIN_MTU;
3744 	}
3745 
3746 	/* Check if the PMTU is to old before we use it */
3747 	if ((dce->dce_flags & DCEF_PMTU) &&
3748 	    TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3749 	    ipst->ips_ip_pathmtu_interval) {
3750 		/*
3751 		 * Older than 20 minutes. Drop the path MTU information.
3752 		 */
3753 		mutex_enter(&dce->dce_lock);
3754 		dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3755 		dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3756 		mutex_exit(&dce->dce_lock);
3757 		dce_increment_generation(dce);
3758 	}
3759 
3760 	/* The metrics on the route can lower the path MTU */
3761 	if (ire->ire_metrics.iulp_mtu != 0 &&
3762 	    ire->ire_metrics.iulp_mtu < pmtu)
3763 		pmtu = ire->ire_metrics.iulp_mtu;
3764 
3765 	/*
3766 	 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3767 	 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3768 	 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3769 	 */
3770 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3771 		if (dce->dce_flags & DCEF_PMTU) {
3772 			if (dce->dce_pmtu < pmtu)
3773 				pmtu = dce->dce_pmtu;
3774 
3775 			if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3776 				ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3777 				ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3778 			} else {
3779 				ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3780 				ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3781 			}
3782 		} else {
3783 			ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3784 			ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3785 		}
3786 	}
3787 
3788 	/*
3789 	 * If we have an IRE_LOCAL we use the loopback mtu instead of
3790 	 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3791 	 * mtu as IRE_LOOPBACK.
3792 	 */
3793 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3794 		uint_t loopback_mtu;
3795 
3796 		loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3797 		    ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3798 
3799 		if (loopback_mtu < pmtu)
3800 			pmtu = loopback_mtu;
3801 	} else if (nce != NULL) {
3802 		/*
3803 		 * Make sure we don't exceed the interface MTU.
3804 		 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3805 		 * an ill. We'd use the above IP_MAXPACKET in that case just
3806 		 * to tell the transport something larger than zero.
3807 		 */
3808 		if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3809 			if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3810 				pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3811 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3812 			    nce->nce_ill->ill_mc_mtu < pmtu) {
3813 				/*
3814 				 * for interfaces in an IPMP group, the mtu of
3815 				 * the nce_ill (under_ill) could be different
3816 				 * from the mtu of the ncec_ill, so we take the
3817 				 * min of the two.
3818 				 */
3819 				pmtu = nce->nce_ill->ill_mc_mtu;
3820 			}
3821 		} else {
3822 			if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3823 				pmtu = nce->nce_common->ncec_ill->ill_mtu;
3824 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3825 			    nce->nce_ill->ill_mtu < pmtu) {
3826 				/*
3827 				 * for interfaces in an IPMP group, the mtu of
3828 				 * the nce_ill (under_ill) could be different
3829 				 * from the mtu of the ncec_ill, so we take the
3830 				 * min of the two.
3831 				 */
3832 				pmtu = nce->nce_ill->ill_mtu;
3833 			}
3834 		}
3835 	}
3836 
3837 	/*
3838 	 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3839 	 * Only applies to IPv6.
3840 	 */
3841 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3842 		if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3843 			switch (ixa->ixa_use_min_mtu) {
3844 			case IPV6_USE_MIN_MTU_MULTICAST:
3845 				if (ire->ire_type & IRE_MULTICAST)
3846 					pmtu = IPV6_MIN_MTU;
3847 				break;
3848 			case IPV6_USE_MIN_MTU_ALWAYS:
3849 				pmtu = IPV6_MIN_MTU;
3850 				break;
3851 			case IPV6_USE_MIN_MTU_NEVER:
3852 				break;
3853 			}
3854 		} else {
3855 			/* Default is IPV6_USE_MIN_MTU_MULTICAST */
3856 			if (ire->ire_type & IRE_MULTICAST)
3857 				pmtu = IPV6_MIN_MTU;
3858 		}
3859 	}
3860 
3861 	/*
3862 	 * For multirouted IPv6 packets, the IP layer will insert a 8-byte
3863 	 * fragment header in every packet. We compensate for those cases by
3864 	 * returning a smaller path MTU to the ULP.
3865 	 *
3866 	 * In the case of CGTP then ip_output will add a fragment header.
3867 	 * Make sure there is room for it by telling a smaller number
3868 	 * to the transport.
3869 	 *
3870 	 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3871 	 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3872 	 * which is the size of the packets it can send.
3873 	 */
3874 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3875 		if ((ire->ire_flags & RTF_MULTIRT) ||
3876 		    (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3877 			pmtu -= sizeof (ip6_frag_t);
3878 			ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3879 		}
3880 	}
3881 
3882 	return (pmtu);
3883 }
3884 
3885 /*
3886  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3887  * the final piece where we don't.  Return a pointer to the first mblk in the
3888  * result, and update the pointer to the next mblk to chew on.  If anything
3889  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3890  * NULL pointer.
3891  */
3892 mblk_t *
3893 ip_carve_mp(mblk_t **mpp, ssize_t len)
3894 {
3895 	mblk_t	*mp0;
3896 	mblk_t	*mp1;
3897 	mblk_t	*mp2;
3898 
3899 	if (!len || !mpp || !(mp0 = *mpp))
3900 		return (NULL);
3901 	/* If we aren't going to consume the first mblk, we need a dup. */
3902 	if (mp0->b_wptr - mp0->b_rptr > len) {
3903 		mp1 = dupb(mp0);
3904 		if (mp1) {
3905 			/* Partition the data between the two mblks. */
3906 			mp1->b_wptr = mp1->b_rptr + len;
3907 			mp0->b_rptr = mp1->b_wptr;
3908 			/*
3909 			 * after adjustments if mblk not consumed is now
3910 			 * unaligned, try to align it. If this fails free
3911 			 * all messages and let upper layer recover.
3912 			 */
3913 			if (!OK_32PTR(mp0->b_rptr)) {
3914 				if (!pullupmsg(mp0, -1)) {
3915 					freemsg(mp0);
3916 					freemsg(mp1);
3917 					*mpp = NULL;
3918 					return (NULL);
3919 				}
3920 			}
3921 		}
3922 		return (mp1);
3923 	}
3924 	/* Eat through as many mblks as we need to get len bytes. */
3925 	len -= mp0->b_wptr - mp0->b_rptr;
3926 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3927 		if (mp2->b_wptr - mp2->b_rptr > len) {
3928 			/*
3929 			 * We won't consume the entire last mblk.  Like
3930 			 * above, dup and partition it.
3931 			 */
3932 			mp1->b_cont = dupb(mp2);
3933 			mp1 = mp1->b_cont;
3934 			if (!mp1) {
3935 				/*
3936 				 * Trouble.  Rather than go to a lot of
3937 				 * trouble to clean up, we free the messages.
3938 				 * This won't be any worse than losing it on
3939 				 * the wire.
3940 				 */
3941 				freemsg(mp0);
3942 				freemsg(mp2);
3943 				*mpp = NULL;
3944 				return (NULL);
3945 			}
3946 			mp1->b_wptr = mp1->b_rptr + len;
3947 			mp2->b_rptr = mp1->b_wptr;
3948 			/*
3949 			 * after adjustments if mblk not consumed is now
3950 			 * unaligned, try to align it. If this fails free
3951 			 * all messages and let upper layer recover.
3952 			 */
3953 			if (!OK_32PTR(mp2->b_rptr)) {
3954 				if (!pullupmsg(mp2, -1)) {
3955 					freemsg(mp0);
3956 					freemsg(mp2);
3957 					*mpp = NULL;
3958 					return (NULL);
3959 				}
3960 			}
3961 			*mpp = mp2;
3962 			return (mp0);
3963 		}
3964 		/* Decrement len by the amount we just got. */
3965 		len -= mp2->b_wptr - mp2->b_rptr;
3966 	}
3967 	/*
3968 	 * len should be reduced to zero now.  If not our caller has
3969 	 * screwed up.
3970 	 */
3971 	if (len) {
3972 		/* Shouldn't happen! */
3973 		freemsg(mp0);
3974 		*mpp = NULL;
3975 		return (NULL);
3976 	}
3977 	/*
3978 	 * We consumed up to exactly the end of an mblk.  Detach the part
3979 	 * we are returning from the rest of the chain.
3980 	 */
3981 	mp1->b_cont = NULL;
3982 	*mpp = mp2;
3983 	return (mp0);
3984 }
3985 
3986 /* The ill stream is being unplumbed. Called from ip_close */
3987 int
3988 ip_modclose(ill_t *ill)
3989 {
3990 	boolean_t success;
3991 	ipsq_t	*ipsq;
3992 	ipif_t	*ipif;
3993 	queue_t	*q = ill->ill_rq;
3994 	ip_stack_t	*ipst = ill->ill_ipst;
3995 	int	i;
3996 	arl_ill_common_t *ai = ill->ill_common;
3997 
3998 	/*
3999 	 * The punlink prior to this may have initiated a capability
4000 	 * negotiation. But ipsq_enter will block until that finishes or
4001 	 * times out.
4002 	 */
4003 	success = ipsq_enter(ill, B_FALSE, NEW_OP);
4004 
4005 	/*
4006 	 * Open/close/push/pop is guaranteed to be single threaded
4007 	 * per stream by STREAMS. FS guarantees that all references
4008 	 * from top are gone before close is called. So there can't
4009 	 * be another close thread that has set CONDEMNED on this ill.
4010 	 * and cause ipsq_enter to return failure.
4011 	 */
4012 	ASSERT(success);
4013 	ipsq = ill->ill_phyint->phyint_ipsq;
4014 
4015 	/*
4016 	 * Mark it condemned. No new reference will be made to this ill.
4017 	 * Lookup functions will return an error. Threads that try to
4018 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4019 	 * that the refcnt will drop down to zero.
4020 	 */
4021 	mutex_enter(&ill->ill_lock);
4022 	ill->ill_state_flags |= ILL_CONDEMNED;
4023 	for (ipif = ill->ill_ipif; ipif != NULL;
4024 	    ipif = ipif->ipif_next) {
4025 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
4026 	}
4027 	/*
4028 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4029 	 * returns  error if ILL_CONDEMNED is set
4030 	 */
4031 	cv_broadcast(&ill->ill_cv);
4032 	mutex_exit(&ill->ill_lock);
4033 
4034 	/*
4035 	 * Send all the deferred DLPI messages downstream which came in
4036 	 * during the small window right before ipsq_enter(). We do this
4037 	 * without waiting for the ACKs because all the ACKs for M_PROTO
4038 	 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4039 	 */
4040 	ill_dlpi_send_deferred(ill);
4041 
4042 	/*
4043 	 * Shut down fragmentation reassembly.
4044 	 * ill_frag_timer won't start a timer again.
4045 	 * Now cancel any existing timer
4046 	 */
4047 	(void) untimeout(ill->ill_frag_timer_id);
4048 	(void) ill_frag_timeout(ill, 0);
4049 
4050 	/*
4051 	 * Call ill_delete to bring down the ipifs, ilms and ill on
4052 	 * this ill. Then wait for the refcnts to drop to zero.
4053 	 * ill_is_freeable checks whether the ill is really quiescent.
4054 	 * Then make sure that threads that are waiting to enter the
4055 	 * ipsq have seen the error returned by ipsq_enter and have
4056 	 * gone away. Then we call ill_delete_tail which does the
4057 	 * DL_UNBIND_REQ with the driver and then qprocsoff.
4058 	 */
4059 	ill_delete(ill);
4060 	mutex_enter(&ill->ill_lock);
4061 	while (!ill_is_freeable(ill))
4062 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4063 
4064 	while (ill->ill_waiters)
4065 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4066 
4067 	mutex_exit(&ill->ill_lock);
4068 
4069 	/*
4070 	 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4071 	 * it held until the end of the function since the cleanup
4072 	 * below needs to be able to use the ip_stack_t.
4073 	 */
4074 	netstack_hold(ipst->ips_netstack);
4075 
4076 	/* qprocsoff is done via ill_delete_tail */
4077 	ill_delete_tail(ill);
4078 	/*
4079 	 * synchronously wait for arp stream to unbind. After this, we
4080 	 * cannot get any data packets up from the driver.
4081 	 */
4082 	arp_unbind_complete(ill);
4083 	ASSERT(ill->ill_ipst == NULL);
4084 
4085 	/*
4086 	 * Walk through all conns and qenable those that have queued data.
4087 	 * Close synchronization needs this to
4088 	 * be done to ensure that all upper layers blocked
4089 	 * due to flow control to the closing device
4090 	 * get unblocked.
4091 	 */
4092 	ip1dbg(("ip_wsrv: walking\n"));
4093 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
4094 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4095 	}
4096 
4097 	/*
4098 	 * ai can be null if this is an IPv6 ill, or if the IPv4
4099 	 * stream is being torn down before ARP was plumbed (e.g.,
4100 	 * /sbin/ifconfig plumbing a stream twice, and encountering
4101 	 * an error
4102 	 */
4103 	if (ai != NULL) {
4104 		ASSERT(!ill->ill_isv6);
4105 		mutex_enter(&ai->ai_lock);
4106 		ai->ai_ill = NULL;
4107 		if (ai->ai_arl == NULL) {
4108 			mutex_destroy(&ai->ai_lock);
4109 			kmem_free(ai, sizeof (*ai));
4110 		} else {
4111 			cv_signal(&ai->ai_ill_unplumb_done);
4112 			mutex_exit(&ai->ai_lock);
4113 		}
4114 	}
4115 
4116 	mutex_enter(&ipst->ips_ip_mi_lock);
4117 	mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4118 	mutex_exit(&ipst->ips_ip_mi_lock);
4119 
4120 	/*
4121 	 * credp could be null if the open didn't succeed and ip_modopen
4122 	 * itself calls ip_close.
4123 	 */
4124 	if (ill->ill_credp != NULL)
4125 		crfree(ill->ill_credp);
4126 
4127 	mutex_destroy(&ill->ill_saved_ire_lock);
4128 	mutex_destroy(&ill->ill_lock);
4129 	rw_destroy(&ill->ill_mcast_lock);
4130 	mutex_destroy(&ill->ill_mcast_serializer);
4131 	list_destroy(&ill->ill_nce);
4132 
4133 	/*
4134 	 * Now we are done with the module close pieces that
4135 	 * need the netstack_t.
4136 	 */
4137 	netstack_rele(ipst->ips_netstack);
4138 
4139 	mi_close_free((IDP)ill);
4140 	q->q_ptr = WR(q)->q_ptr = NULL;
4141 
4142 	ipsq_exit(ipsq);
4143 
4144 	return (0);
4145 }
4146 
4147 /*
4148  * This is called as part of close() for IP, UDP, ICMP, and RTS
4149  * in order to quiesce the conn.
4150  */
4151 void
4152 ip_quiesce_conn(conn_t *connp)
4153 {
4154 	boolean_t	drain_cleanup_reqd = B_FALSE;
4155 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4156 	boolean_t	ilg_cleanup_reqd = B_FALSE;
4157 	ip_stack_t	*ipst;
4158 
4159 	ASSERT(!IPCL_IS_TCP(connp));
4160 	ipst = connp->conn_netstack->netstack_ip;
4161 
4162 	/*
4163 	 * Mark the conn as closing, and this conn must not be
4164 	 * inserted in future into any list. Eg. conn_drain_insert(),
4165 	 * won't insert this conn into the conn_drain_list.
4166 	 *
4167 	 * conn_idl, and conn_ilg cannot get set henceforth.
4168 	 */
4169 	mutex_enter(&connp->conn_lock);
4170 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4171 	connp->conn_state_flags |= CONN_CLOSING;
4172 	if (connp->conn_idl != NULL)
4173 		drain_cleanup_reqd = B_TRUE;
4174 	if (connp->conn_oper_pending_ill != NULL)
4175 		conn_ioctl_cleanup_reqd = B_TRUE;
4176 	if (connp->conn_dhcpinit_ill != NULL) {
4177 		ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4178 		atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4179 		ill_set_inputfn(connp->conn_dhcpinit_ill);
4180 		connp->conn_dhcpinit_ill = NULL;
4181 	}
4182 	if (connp->conn_ilg != NULL)
4183 		ilg_cleanup_reqd = B_TRUE;
4184 	mutex_exit(&connp->conn_lock);
4185 
4186 	if (conn_ioctl_cleanup_reqd)
4187 		conn_ioctl_cleanup(connp);
4188 
4189 	if (is_system_labeled() && connp->conn_anon_port) {
4190 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4191 		    connp->conn_mlp_type, connp->conn_proto,
4192 		    ntohs(connp->conn_lport), B_FALSE);
4193 		connp->conn_anon_port = 0;
4194 	}
4195 	connp->conn_mlp_type = mlptSingle;
4196 
4197 	/*
4198 	 * Remove this conn from any fanout list it is on.
4199 	 * and then wait for any threads currently operating
4200 	 * on this endpoint to finish
4201 	 */
4202 	ipcl_hash_remove(connp);
4203 
4204 	/*
4205 	 * Remove this conn from the drain list, and do any other cleanup that
4206 	 * may be required.  (TCP conns are never flow controlled, and
4207 	 * conn_idl will be NULL.)
4208 	 */
4209 	if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4210 		idl_t *idl = connp->conn_idl;
4211 
4212 		mutex_enter(&idl->idl_lock);
4213 		conn_drain(connp, B_TRUE);
4214 		mutex_exit(&idl->idl_lock);
4215 	}
4216 
4217 	if (connp == ipst->ips_ip_g_mrouter)
4218 		(void) ip_mrouter_done(ipst);
4219 
4220 	if (ilg_cleanup_reqd)
4221 		ilg_delete_all(connp);
4222 
4223 	/*
4224 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4225 	 * callers from write side can't be there now because close
4226 	 * is in progress. The only other caller is ipcl_walk
4227 	 * which checks for the condemned flag.
4228 	 */
4229 	mutex_enter(&connp->conn_lock);
4230 	connp->conn_state_flags |= CONN_CONDEMNED;
4231 	while (connp->conn_ref != 1)
4232 		cv_wait(&connp->conn_cv, &connp->conn_lock);
4233 	connp->conn_state_flags |= CONN_QUIESCED;
4234 	mutex_exit(&connp->conn_lock);
4235 }
4236 
4237 /* ARGSUSED */
4238 int
4239 ip_close(queue_t *q, int flags)
4240 {
4241 	conn_t		*connp;
4242 
4243 	/*
4244 	 * Call the appropriate delete routine depending on whether this is
4245 	 * a module or device.
4246 	 */
4247 	if (WR(q)->q_next != NULL) {
4248 		/* This is a module close */
4249 		return (ip_modclose((ill_t *)q->q_ptr));
4250 	}
4251 
4252 	connp = q->q_ptr;
4253 	ip_quiesce_conn(connp);
4254 
4255 	qprocsoff(q);
4256 
4257 	/*
4258 	 * Now we are truly single threaded on this stream, and can
4259 	 * delete the things hanging off the connp, and finally the connp.
4260 	 * We removed this connp from the fanout list, it cannot be
4261 	 * accessed thru the fanouts, and we already waited for the
4262 	 * conn_ref to drop to 0. We are already in close, so
4263 	 * there cannot be any other thread from the top. qprocsoff
4264 	 * has completed, and service has completed or won't run in
4265 	 * future.
4266 	 */
4267 	ASSERT(connp->conn_ref == 1);
4268 
4269 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4270 
4271 	connp->conn_ref--;
4272 	ipcl_conn_destroy(connp);
4273 
4274 	q->q_ptr = WR(q)->q_ptr = NULL;
4275 	return (0);
4276 }
4277 
4278 /*
4279  * Wapper around putnext() so that ip_rts_request can merely use
4280  * conn_recv.
4281  */
4282 /*ARGSUSED2*/
4283 static void
4284 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4285 {
4286 	conn_t *connp = (conn_t *)arg1;
4287 
4288 	putnext(connp->conn_rq, mp);
4289 }
4290 
4291 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4292 /* ARGSUSED */
4293 static void
4294 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4295 {
4296 	freemsg(mp);
4297 }
4298 
4299 /*
4300  * Called when the module is about to be unloaded
4301  */
4302 void
4303 ip_ddi_destroy(void)
4304 {
4305 	/* This needs to be called before destroying any transports. */
4306 	mutex_enter(&cpu_lock);
4307 	unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4308 	mutex_exit(&cpu_lock);
4309 
4310 	tnet_fini();
4311 
4312 	icmp_ddi_g_destroy();
4313 	rts_ddi_g_destroy();
4314 	udp_ddi_g_destroy();
4315 	sctp_ddi_g_destroy();
4316 	tcp_ddi_g_destroy();
4317 	ilb_ddi_g_destroy();
4318 	dce_g_destroy();
4319 	ipsec_policy_g_destroy();
4320 	ipcl_g_destroy();
4321 	ip_net_g_destroy();
4322 	ip_ire_g_fini();
4323 	inet_minor_destroy(ip_minor_arena_sa);
4324 #if defined(_LP64)
4325 	inet_minor_destroy(ip_minor_arena_la);
4326 #endif
4327 
4328 #ifdef DEBUG
4329 	list_destroy(&ip_thread_list);
4330 	rw_destroy(&ip_thread_rwlock);
4331 	tsd_destroy(&ip_thread_data);
4332 #endif
4333 
4334 	netstack_unregister(NS_IP);
4335 }
4336 
4337 /*
4338  * First step in cleanup.
4339  */
4340 /* ARGSUSED */
4341 static void
4342 ip_stack_shutdown(netstackid_t stackid, void *arg)
4343 {
4344 	ip_stack_t *ipst = (ip_stack_t *)arg;
4345 	kt_did_t ktid;
4346 
4347 #ifdef NS_DEBUG
4348 	printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4349 #endif
4350 
4351 	/*
4352 	 * Perform cleanup for special interfaces (loopback and IPMP).
4353 	 */
4354 	ip_interface_cleanup(ipst);
4355 
4356 	/*
4357 	 * The *_hook_shutdown()s start the process of notifying any
4358 	 * consumers that things are going away.... nothing is destroyed.
4359 	 */
4360 	ipv4_hook_shutdown(ipst);
4361 	ipv6_hook_shutdown(ipst);
4362 	arp_hook_shutdown(ipst);
4363 
4364 	mutex_enter(&ipst->ips_capab_taskq_lock);
4365 	ktid = ipst->ips_capab_taskq_thread->t_did;
4366 	ipst->ips_capab_taskq_quit = B_TRUE;
4367 	cv_signal(&ipst->ips_capab_taskq_cv);
4368 	mutex_exit(&ipst->ips_capab_taskq_lock);
4369 
4370 	/*
4371 	 * In rare occurrences, particularly on virtual hardware where CPUs can
4372 	 * be de-scheduled, the thread that we just signaled will not run until
4373 	 * after we have gotten through parts of ip_stack_fini. If that happens
4374 	 * then we'll try to grab the ips_capab_taskq_lock as part of returning
4375 	 * from cv_wait which no longer exists.
4376 	 */
4377 	thread_join(ktid);
4378 }
4379 
4380 /*
4381  * Free the IP stack instance.
4382  */
4383 static void
4384 ip_stack_fini(netstackid_t stackid, void *arg)
4385 {
4386 	ip_stack_t *ipst = (ip_stack_t *)arg;
4387 	int ret;
4388 
4389 #ifdef NS_DEBUG
4390 	printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4391 #endif
4392 	/*
4393 	 * At this point, all of the notifications that the events and
4394 	 * protocols are going away have been run, meaning that we can
4395 	 * now set about starting to clean things up.
4396 	 */
4397 	ipobs_fini(ipst);
4398 	ipv4_hook_destroy(ipst);
4399 	ipv6_hook_destroy(ipst);
4400 	arp_hook_destroy(ipst);
4401 	ip_net_destroy(ipst);
4402 
4403 	ipmp_destroy(ipst);
4404 
4405 	ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4406 	ipst->ips_ip_mibkp = NULL;
4407 	icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4408 	ipst->ips_icmp_mibkp = NULL;
4409 	ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4410 	ipst->ips_ip_kstat = NULL;
4411 	bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4412 	ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4413 	ipst->ips_ip6_kstat = NULL;
4414 	bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4415 
4416 	kmem_free(ipst->ips_propinfo_tbl,
4417 	    ip_propinfo_count * sizeof (mod_prop_info_t));
4418 	ipst->ips_propinfo_tbl = NULL;
4419 
4420 	dce_stack_destroy(ipst);
4421 	ip_mrouter_stack_destroy(ipst);
4422 
4423 	/*
4424 	 * Quiesce all of our timers. Note we set the quiesce flags before we
4425 	 * call untimeout. The slowtimers may actually kick off another instance
4426 	 * of the non-slow timers.
4427 	 */
4428 	mutex_enter(&ipst->ips_igmp_timer_lock);
4429 	ipst->ips_igmp_timer_quiesce = B_TRUE;
4430 	mutex_exit(&ipst->ips_igmp_timer_lock);
4431 
4432 	mutex_enter(&ipst->ips_mld_timer_lock);
4433 	ipst->ips_mld_timer_quiesce = B_TRUE;
4434 	mutex_exit(&ipst->ips_mld_timer_lock);
4435 
4436 	mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
4437 	ipst->ips_igmp_slowtimeout_quiesce = B_TRUE;
4438 	mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
4439 
4440 	mutex_enter(&ipst->ips_mld_slowtimeout_lock);
4441 	ipst->ips_mld_slowtimeout_quiesce = B_TRUE;
4442 	mutex_exit(&ipst->ips_mld_slowtimeout_lock);
4443 
4444 	ret = untimeout(ipst->ips_igmp_timeout_id);
4445 	if (ret == -1) {
4446 		ASSERT(ipst->ips_igmp_timeout_id == 0);
4447 	} else {
4448 		ASSERT(ipst->ips_igmp_timeout_id != 0);
4449 		ipst->ips_igmp_timeout_id = 0;
4450 	}
4451 	ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4452 	if (ret == -1) {
4453 		ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4454 	} else {
4455 		ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4456 		ipst->ips_igmp_slowtimeout_id = 0;
4457 	}
4458 	ret = untimeout(ipst->ips_mld_timeout_id);
4459 	if (ret == -1) {
4460 		ASSERT(ipst->ips_mld_timeout_id == 0);
4461 	} else {
4462 		ASSERT(ipst->ips_mld_timeout_id != 0);
4463 		ipst->ips_mld_timeout_id = 0;
4464 	}
4465 	ret = untimeout(ipst->ips_mld_slowtimeout_id);
4466 	if (ret == -1) {
4467 		ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4468 	} else {
4469 		ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4470 		ipst->ips_mld_slowtimeout_id = 0;
4471 	}
4472 
4473 	ip_ire_fini(ipst);
4474 	ip6_asp_free(ipst);
4475 	conn_drain_fini(ipst);
4476 	ipcl_destroy(ipst);
4477 
4478 	mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4479 	mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4480 	kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4481 	ipst->ips_ndp4 = NULL;
4482 	kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4483 	ipst->ips_ndp6 = NULL;
4484 
4485 	if (ipst->ips_loopback_ksp != NULL) {
4486 		kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4487 		ipst->ips_loopback_ksp = NULL;
4488 	}
4489 
4490 	mutex_destroy(&ipst->ips_capab_taskq_lock);
4491 	cv_destroy(&ipst->ips_capab_taskq_cv);
4492 
4493 	rw_destroy(&ipst->ips_srcid_lock);
4494 
4495 	mutex_destroy(&ipst->ips_ip_mi_lock);
4496 	rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4497 
4498 	mutex_destroy(&ipst->ips_igmp_timer_lock);
4499 	mutex_destroy(&ipst->ips_mld_timer_lock);
4500 	mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4501 	mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4502 	mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4503 	rw_destroy(&ipst->ips_ill_g_lock);
4504 
4505 	kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4506 	ipst->ips_phyint_g_list = NULL;
4507 	kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4508 	ipst->ips_ill_g_heads = NULL;
4509 
4510 	ldi_ident_release(ipst->ips_ldi_ident);
4511 	kmem_free(ipst, sizeof (*ipst));
4512 }
4513 
4514 /*
4515  * This function is called from the TSD destructor, and is used to debug
4516  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4517  * details.
4518  */
4519 static void
4520 ip_thread_exit(void *phash)
4521 {
4522 	th_hash_t *thh = phash;
4523 
4524 	rw_enter(&ip_thread_rwlock, RW_WRITER);
4525 	list_remove(&ip_thread_list, thh);
4526 	rw_exit(&ip_thread_rwlock);
4527 	mod_hash_destroy_hash(thh->thh_hash);
4528 	kmem_free(thh, sizeof (*thh));
4529 }
4530 
4531 /*
4532  * Called when the IP kernel module is loaded into the kernel
4533  */
4534 void
4535 ip_ddi_init(void)
4536 {
4537 	ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4538 
4539 	/*
4540 	 * For IP and TCP the minor numbers should start from 2 since we have 4
4541 	 * initial devices: ip, ip6, tcp, tcp6.
4542 	 */
4543 	/*
4544 	 * If this is a 64-bit kernel, then create two separate arenas -
4545 	 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4546 	 * other for socket apps in the range 2^^18 through 2^^32-1.
4547 	 */
4548 	ip_minor_arena_la = NULL;
4549 	ip_minor_arena_sa = NULL;
4550 #if defined(_LP64)
4551 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4552 	    INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4553 		cmn_err(CE_PANIC,
4554 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4555 	}
4556 	if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4557 	    MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4558 		cmn_err(CE_PANIC,
4559 		    "ip_ddi_init: ip_minor_arena_la creation failed\n");
4560 	}
4561 #else
4562 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4563 	    INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4564 		cmn_err(CE_PANIC,
4565 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4566 	}
4567 #endif
4568 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4569 
4570 	ipcl_g_init();
4571 	ip_ire_g_init();
4572 	ip_net_g_init();
4573 
4574 #ifdef DEBUG
4575 	tsd_create(&ip_thread_data, ip_thread_exit);
4576 	rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4577 	list_create(&ip_thread_list, sizeof (th_hash_t),
4578 	    offsetof(th_hash_t, thh_link));
4579 #endif
4580 	ipsec_policy_g_init();
4581 	tcp_ddi_g_init();
4582 	sctp_ddi_g_init();
4583 	dce_g_init();
4584 
4585 	/*
4586 	 * We want to be informed each time a stack is created or
4587 	 * destroyed in the kernel, so we can maintain the
4588 	 * set of udp_stack_t's.
4589 	 */
4590 	netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4591 	    ip_stack_fini);
4592 
4593 	tnet_init();
4594 
4595 	udp_ddi_g_init();
4596 	rts_ddi_g_init();
4597 	icmp_ddi_g_init();
4598 	ilb_ddi_g_init();
4599 
4600 	/* This needs to be called after all transports are initialized. */
4601 	mutex_enter(&cpu_lock);
4602 	register_cpu_setup_func(ip_tp_cpu_update, NULL);
4603 	mutex_exit(&cpu_lock);
4604 }
4605 
4606 /*
4607  * Initialize the IP stack instance.
4608  */
4609 static void *
4610 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4611 {
4612 	ip_stack_t	*ipst;
4613 	size_t		arrsz;
4614 	major_t		major;
4615 
4616 #ifdef NS_DEBUG
4617 	printf("ip_stack_init(stack %d)\n", stackid);
4618 #endif
4619 
4620 	ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4621 	ipst->ips_netstack = ns;
4622 
4623 	ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4624 	    KM_SLEEP);
4625 	ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4626 	    KM_SLEEP);
4627 	ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4628 	ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4629 	mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4630 	mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4631 
4632 	mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4633 	ipst->ips_igmp_deferred_next = INFINITY;
4634 	mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4635 	ipst->ips_mld_deferred_next = INFINITY;
4636 	mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4637 	mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4638 	mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4639 	mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4640 	rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4641 	rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4642 
4643 	ipcl_init(ipst);
4644 	ip_ire_init(ipst);
4645 	ip6_asp_init(ipst);
4646 	ipif_init(ipst);
4647 	conn_drain_init(ipst);
4648 	ip_mrouter_stack_init(ipst);
4649 	dce_stack_init(ipst);
4650 
4651 	ipst->ips_ip_multirt_log_interval = 1000;
4652 
4653 	ipst->ips_ill_index = 1;
4654 
4655 	ipst->ips_saved_ip_forwarding = -1;
4656 	ipst->ips_reg_vif_num = ALL_VIFS; 	/* Index to Register vif */
4657 
4658 	arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4659 	ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4660 	bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4661 
4662 	ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4663 	ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4664 	ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4665 	ipst->ips_ip6_kstat =
4666 	    ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4667 
4668 	ipst->ips_ip_src_id = 1;
4669 	rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4670 
4671 	ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4672 
4673 	ip_net_init(ipst, ns);
4674 	ipv4_hook_init(ipst);
4675 	ipv6_hook_init(ipst);
4676 	arp_hook_init(ipst);
4677 	ipmp_init(ipst);
4678 	ipobs_init(ipst);
4679 
4680 	/*
4681 	 * Create the taskq dispatcher thread and initialize related stuff.
4682 	 */
4683 	mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4684 	cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4685 	ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4686 	    ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4687 
4688 	major = mod_name_to_major(INET_NAME);
4689 	(void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4690 	return (ipst);
4691 }
4692 
4693 /*
4694  * Allocate and initialize a DLPI template of the specified length.  (May be
4695  * called as writer.)
4696  */
4697 mblk_t *
4698 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4699 {
4700 	mblk_t	*mp;
4701 
4702 	mp = allocb(len, BPRI_MED);
4703 	if (!mp)
4704 		return (NULL);
4705 
4706 	/*
4707 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4708 	 * of which we don't seem to use) are sent with M_PCPROTO, and
4709 	 * that other DLPI are M_PROTO.
4710 	 */
4711 	if (prim == DL_INFO_REQ) {
4712 		mp->b_datap->db_type = M_PCPROTO;
4713 	} else {
4714 		mp->b_datap->db_type = M_PROTO;
4715 	}
4716 
4717 	mp->b_wptr = mp->b_rptr + len;
4718 	bzero(mp->b_rptr, len);
4719 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4720 	return (mp);
4721 }
4722 
4723 /*
4724  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4725  */
4726 mblk_t *
4727 ip_dlnotify_alloc(uint_t notification, uint_t data)
4728 {
4729 	dl_notify_ind_t	*notifyp;
4730 	mblk_t		*mp;
4731 
4732 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4733 		return (NULL);
4734 
4735 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4736 	notifyp->dl_notification = notification;
4737 	notifyp->dl_data = data;
4738 	return (mp);
4739 }
4740 
4741 mblk_t *
4742 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4743 {
4744 	dl_notify_ind_t	*notifyp;
4745 	mblk_t		*mp;
4746 
4747 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4748 		return (NULL);
4749 
4750 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4751 	notifyp->dl_notification = notification;
4752 	notifyp->dl_data1 = data1;
4753 	notifyp->dl_data2 = data2;
4754 	return (mp);
4755 }
4756 
4757 /*
4758  * Debug formatting routine.  Returns a character string representation of the
4759  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4760  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4761  *
4762  * Once the ndd table-printing interfaces are removed, this can be changed to
4763  * standard dotted-decimal form.
4764  */
4765 char *
4766 ip_dot_addr(ipaddr_t addr, char *buf)
4767 {
4768 	uint8_t *ap = (uint8_t *)&addr;
4769 
4770 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4771 	    ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4772 	return (buf);
4773 }
4774 
4775 /*
4776  * Write the given MAC address as a printable string in the usual colon-
4777  * separated format.
4778  */
4779 const char *
4780 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4781 {
4782 	char *bp;
4783 
4784 	if (alen == 0 || buflen < 4)
4785 		return ("?");
4786 	bp = buf;
4787 	for (;;) {
4788 		/*
4789 		 * If there are more MAC address bytes available, but we won't
4790 		 * have any room to print them, then add "..." to the string
4791 		 * instead.  See below for the 'magic number' explanation.
4792 		 */
4793 		if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4794 			(void) strcpy(bp, "...");
4795 			break;
4796 		}
4797 		(void) sprintf(bp, "%02x", *addr++);
4798 		bp += 2;
4799 		if (--alen == 0)
4800 			break;
4801 		*bp++ = ':';
4802 		buflen -= 3;
4803 		/*
4804 		 * At this point, based on the first 'if' statement above,
4805 		 * either alen == 1 and buflen >= 3, or alen > 1 and
4806 		 * buflen >= 4.  The first case leaves room for the final "xx"
4807 		 * number and trailing NUL byte.  The second leaves room for at
4808 		 * least "...".  Thus the apparently 'magic' numbers chosen for
4809 		 * that statement.
4810 		 */
4811 	}
4812 	return (buf);
4813 }
4814 
4815 /*
4816  * Called when it is conceptually a ULP that would sent the packet
4817  * e.g., port unreachable and protocol unreachable. Check that the packet
4818  * would have passed the IPsec global policy before sending the error.
4819  *
4820  * Send an ICMP error after patching up the packet appropriately.
4821  * Uses ip_drop_input and bumps the appropriate MIB.
4822  */
4823 void
4824 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4825     ip_recv_attr_t *ira)
4826 {
4827 	ipha_t		*ipha;
4828 	boolean_t	secure;
4829 	ill_t		*ill = ira->ira_ill;
4830 	ip_stack_t	*ipst = ill->ill_ipst;
4831 	netstack_t	*ns = ipst->ips_netstack;
4832 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4833 
4834 	secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4835 
4836 	/*
4837 	 * We are generating an icmp error for some inbound packet.
4838 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
4839 	 * Before we generate an error, check with global policy
4840 	 * to see whether this is allowed to enter the system. As
4841 	 * there is no "conn", we are checking with global policy.
4842 	 */
4843 	ipha = (ipha_t *)mp->b_rptr;
4844 	if (secure || ipss->ipsec_inbound_v4_policy_present) {
4845 		mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4846 		if (mp == NULL)
4847 			return;
4848 	}
4849 
4850 	/* We never send errors for protocols that we do implement */
4851 	if (ira->ira_protocol == IPPROTO_ICMP ||
4852 	    ira->ira_protocol == IPPROTO_IGMP) {
4853 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4854 		ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4855 		freemsg(mp);
4856 		return;
4857 	}
4858 	/*
4859 	 * Have to correct checksum since
4860 	 * the packet might have been
4861 	 * fragmented and the reassembly code in ip_rput
4862 	 * does not restore the IP checksum.
4863 	 */
4864 	ipha->ipha_hdr_checksum = 0;
4865 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4866 
4867 	switch (icmp_type) {
4868 	case ICMP_DEST_UNREACHABLE:
4869 		switch (icmp_code) {
4870 		case ICMP_PROTOCOL_UNREACHABLE:
4871 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4872 			ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4873 			break;
4874 		case ICMP_PORT_UNREACHABLE:
4875 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4876 			ip_drop_input("ipIfStatsNoPorts", mp, ill);
4877 			break;
4878 		}
4879 
4880 		icmp_unreachable(mp, icmp_code, ira);
4881 		break;
4882 	default:
4883 #ifdef DEBUG
4884 		panic("ip_fanout_send_icmp_v4: wrong type");
4885 		/*NOTREACHED*/
4886 #else
4887 		freemsg(mp);
4888 		break;
4889 #endif
4890 	}
4891 }
4892 
4893 /*
4894  * Used to send an ICMP error message when a packet is received for
4895  * a protocol that is not supported. The mblk passed as argument
4896  * is consumed by this function.
4897  */
4898 void
4899 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4900 {
4901 	ipha_t		*ipha;
4902 
4903 	ipha = (ipha_t *)mp->b_rptr;
4904 	if (ira->ira_flags & IRAF_IS_IPV4) {
4905 		ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4906 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4907 		    ICMP_PROTOCOL_UNREACHABLE, ira);
4908 	} else {
4909 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4910 		ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4911 		    ICMP6_PARAMPROB_NEXTHEADER, ira);
4912 	}
4913 }
4914 
4915 /*
4916  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4917  * Handles IPv4 and IPv6.
4918  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4919  * Caller is responsible for dropping references to the conn.
4920  */
4921 void
4922 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4923     ip_recv_attr_t *ira)
4924 {
4925 	ill_t		*ill = ira->ira_ill;
4926 	ip_stack_t	*ipst = ill->ill_ipst;
4927 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
4928 	boolean_t	secure;
4929 	uint_t		protocol = ira->ira_protocol;
4930 	iaflags_t	iraflags = ira->ira_flags;
4931 	queue_t		*rq;
4932 
4933 	secure = iraflags & IRAF_IPSEC_SECURE;
4934 
4935 	rq = connp->conn_rq;
4936 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4937 		switch (protocol) {
4938 		case IPPROTO_ICMPV6:
4939 			BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4940 			break;
4941 		case IPPROTO_ICMP:
4942 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4943 			break;
4944 		default:
4945 			BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4946 			break;
4947 		}
4948 		freemsg(mp);
4949 		return;
4950 	}
4951 
4952 	ASSERT(!(IPCL_IS_IPTUN(connp)));
4953 
4954 	if (((iraflags & IRAF_IS_IPV4) ?
4955 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4956 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4957 	    secure) {
4958 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
4959 		    ip6h, ira);
4960 		if (mp == NULL) {
4961 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4962 			/* Note that mp is NULL */
4963 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
4964 			return;
4965 		}
4966 	}
4967 
4968 	if (iraflags & IRAF_ICMP_ERROR) {
4969 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
4970 	} else {
4971 		ill_t *rill = ira->ira_rill;
4972 
4973 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4974 		ira->ira_ill = ira->ira_rill = NULL;
4975 		/* Send it upstream */
4976 		(connp->conn_recv)(connp, mp, NULL, ira);
4977 		ira->ira_ill = ill;
4978 		ira->ira_rill = rill;
4979 	}
4980 }
4981 
4982 /*
4983  * Handle protocols with which IP is less intimate.  There
4984  * can be more than one stream bound to a particular
4985  * protocol.  When this is the case, normally each one gets a copy
4986  * of any incoming packets.
4987  *
4988  * IPsec NOTE :
4989  *
4990  * Don't allow a secure packet going up a non-secure connection.
4991  * We don't allow this because
4992  *
4993  * 1) Reply might go out in clear which will be dropped at
4994  *    the sending side.
4995  * 2) If the reply goes out in clear it will give the
4996  *    adversary enough information for getting the key in
4997  *    most of the cases.
4998  *
4999  * Moreover getting a secure packet when we expect clear
5000  * implies that SA's were added without checking for
5001  * policy on both ends. This should not happen once ISAKMP
5002  * is used to negotiate SAs as SAs will be added only after
5003  * verifying the policy.
5004  *
5005  * Zones notes:
5006  * Earlier in ip_input on a system with multiple shared-IP zones we
5007  * duplicate the multicast and broadcast packets and send them up
5008  * with each explicit zoneid that exists on that ill.
5009  * This means that here we can match the zoneid with SO_ALLZONES being special.
5010  */
5011 void
5012 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5013 {
5014 	mblk_t		*mp1;
5015 	ipaddr_t	laddr;
5016 	conn_t		*connp, *first_connp, *next_connp;
5017 	connf_t		*connfp;
5018 	ill_t		*ill = ira->ira_ill;
5019 	ip_stack_t	*ipst = ill->ill_ipst;
5020 
5021 	laddr = ipha->ipha_dst;
5022 
5023 	connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5024 	mutex_enter(&connfp->connf_lock);
5025 	connp = connfp->connf_head;
5026 	for (connp = connfp->connf_head; connp != NULL;
5027 	    connp = connp->conn_next) {
5028 		/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5029 		if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5030 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5031 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5032 			break;
5033 		}
5034 	}
5035 
5036 	if (connp == NULL) {
5037 		/*
5038 		 * No one bound to these addresses.  Is
5039 		 * there a client that wants all
5040 		 * unclaimed datagrams?
5041 		 */
5042 		mutex_exit(&connfp->connf_lock);
5043 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5044 		    ICMP_PROTOCOL_UNREACHABLE, ira);
5045 		return;
5046 	}
5047 
5048 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5049 
5050 	CONN_INC_REF(connp);
5051 	first_connp = connp;
5052 	connp = connp->conn_next;
5053 
5054 	for (;;) {
5055 		while (connp != NULL) {
5056 			/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5057 			if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5058 			    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5059 			    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5060 			    ira, connp)))
5061 				break;
5062 			connp = connp->conn_next;
5063 		}
5064 
5065 		if (connp == NULL) {
5066 			/* No more interested clients */
5067 			connp = first_connp;
5068 			break;
5069 		}
5070 		if (((mp1 = dupmsg(mp)) == NULL) &&
5071 		    ((mp1 = copymsg(mp)) == NULL)) {
5072 			/* Memory allocation failed */
5073 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5074 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5075 			connp = first_connp;
5076 			break;
5077 		}
5078 
5079 		CONN_INC_REF(connp);
5080 		mutex_exit(&connfp->connf_lock);
5081 
5082 		ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5083 		    ira);
5084 
5085 		mutex_enter(&connfp->connf_lock);
5086 		/* Follow the next pointer before releasing the conn. */
5087 		next_connp = connp->conn_next;
5088 		CONN_DEC_REF(connp);
5089 		connp = next_connp;
5090 	}
5091 
5092 	/* Last one.  Send it upstream. */
5093 	mutex_exit(&connfp->connf_lock);
5094 
5095 	ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5096 
5097 	CONN_DEC_REF(connp);
5098 }
5099 
5100 /*
5101  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5102  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5103  * is not consumed.
5104  *
5105  * One of three things can happen, all of which affect the passed-in mblk:
5106  *
5107  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5108  *
5109  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5110  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5111  *
5112  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5113  */
5114 mblk_t *
5115 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5116 {
5117 	int shift, plen, iph_len;
5118 	ipha_t *ipha;
5119 	udpha_t *udpha;
5120 	uint32_t *spi;
5121 	uint32_t esp_ports;
5122 	uint8_t *orptr;
5123 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
5124 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5125 
5126 	ipha = (ipha_t *)mp->b_rptr;
5127 	iph_len = ira->ira_ip_hdr_length;
5128 	plen = ira->ira_pktlen;
5129 
5130 	if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5131 		/*
5132 		 * Most likely a keepalive for the benefit of an intervening
5133 		 * NAT.  These aren't for us, per se, so drop it.
5134 		 *
5135 		 * RFC 3947/8 doesn't say for sure what to do for 2-3
5136 		 * byte packets (keepalives are 1-byte), but we'll drop them
5137 		 * also.
5138 		 */
5139 		ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5140 		    DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5141 		return (NULL);
5142 	}
5143 
5144 	if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5145 		/* might as well pull it all up - it might be ESP. */
5146 		if (!pullupmsg(mp, -1)) {
5147 			ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5148 			    DROPPER(ipss, ipds_esp_nomem),
5149 			    &ipss->ipsec_dropper);
5150 			return (NULL);
5151 		}
5152 
5153 		ipha = (ipha_t *)mp->b_rptr;
5154 	}
5155 	spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5156 	if (*spi == 0) {
5157 		/* UDP packet - remove 0-spi. */
5158 		shift = sizeof (uint32_t);
5159 	} else {
5160 		/* ESP-in-UDP packet - reduce to ESP. */
5161 		ipha->ipha_protocol = IPPROTO_ESP;
5162 		shift = sizeof (udpha_t);
5163 	}
5164 
5165 	/* Fix IP header */
5166 	ira->ira_pktlen = (plen - shift);
5167 	ipha->ipha_length = htons(ira->ira_pktlen);
5168 	ipha->ipha_hdr_checksum = 0;
5169 
5170 	orptr = mp->b_rptr;
5171 	mp->b_rptr += shift;
5172 
5173 	udpha = (udpha_t *)(orptr + iph_len);
5174 	if (*spi == 0) {
5175 		ASSERT((uint8_t *)ipha == orptr);
5176 		udpha->uha_length = htons(plen - shift - iph_len);
5177 		iph_len += sizeof (udpha_t);	/* For the call to ovbcopy(). */
5178 		esp_ports = 0;
5179 	} else {
5180 		esp_ports = *((uint32_t *)udpha);
5181 		ASSERT(esp_ports != 0);
5182 	}
5183 	ovbcopy(orptr, orptr + shift, iph_len);
5184 	if (esp_ports != 0) /* Punt up for ESP processing. */ {
5185 		ipha = (ipha_t *)(orptr + shift);
5186 
5187 		ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5188 		ira->ira_esp_udp_ports = esp_ports;
5189 		ip_fanout_v4(mp, ipha, ira);
5190 		return (NULL);
5191 	}
5192 	return (mp);
5193 }
5194 
5195 /*
5196  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5197  * Handles IPv4 and IPv6.
5198  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5199  * Caller is responsible for dropping references to the conn.
5200  */
5201 void
5202 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5203     ip_recv_attr_t *ira)
5204 {
5205 	ill_t		*ill = ira->ira_ill;
5206 	ip_stack_t	*ipst = ill->ill_ipst;
5207 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5208 	boolean_t	secure;
5209 	iaflags_t	iraflags = ira->ira_flags;
5210 
5211 	secure = iraflags & IRAF_IPSEC_SECURE;
5212 
5213 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5214 	    !canputnext(connp->conn_rq)) {
5215 		BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5216 		freemsg(mp);
5217 		return;
5218 	}
5219 
5220 	if (((iraflags & IRAF_IS_IPV4) ?
5221 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5222 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5223 	    secure) {
5224 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
5225 		    ip6h, ira);
5226 		if (mp == NULL) {
5227 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5228 			/* Note that mp is NULL */
5229 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5230 			return;
5231 		}
5232 	}
5233 
5234 	/*
5235 	 * Since this code is not used for UDP unicast we don't need a NAT_T
5236 	 * check. Only ip_fanout_v4 has that check.
5237 	 */
5238 	if (ira->ira_flags & IRAF_ICMP_ERROR) {
5239 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
5240 	} else {
5241 		ill_t *rill = ira->ira_rill;
5242 
5243 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5244 		ira->ira_ill = ira->ira_rill = NULL;
5245 		/* Send it upstream */
5246 		(connp->conn_recv)(connp, mp, NULL, ira);
5247 		ira->ira_ill = ill;
5248 		ira->ira_rill = rill;
5249 	}
5250 }
5251 
5252 /*
5253  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5254  * (Unicast fanout is handled in ip_input_v4.)
5255  *
5256  * If SO_REUSEADDR is set all multicast and broadcast packets
5257  * will be delivered to all conns bound to the same port.
5258  *
5259  * If there is at least one matching AF_INET receiver, then we will
5260  * ignore any AF_INET6 receivers.
5261  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5262  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5263  * packets.
5264  *
5265  * Zones notes:
5266  * Earlier in ip_input on a system with multiple shared-IP zones we
5267  * duplicate the multicast and broadcast packets and send them up
5268  * with each explicit zoneid that exists on that ill.
5269  * This means that here we can match the zoneid with SO_ALLZONES being special.
5270  */
5271 void
5272 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5273     ip_recv_attr_t *ira)
5274 {
5275 	ipaddr_t	laddr;
5276 	in6_addr_t	v6faddr;
5277 	conn_t		*connp;
5278 	connf_t		*connfp;
5279 	ipaddr_t	faddr;
5280 	ill_t		*ill = ira->ira_ill;
5281 	ip_stack_t	*ipst = ill->ill_ipst;
5282 
5283 	ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5284 
5285 	laddr = ipha->ipha_dst;
5286 	faddr = ipha->ipha_src;
5287 
5288 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5289 	mutex_enter(&connfp->connf_lock);
5290 	connp = connfp->connf_head;
5291 
5292 	/*
5293 	 * If SO_REUSEADDR has been set on the first we send the
5294 	 * packet to all clients that have joined the group and
5295 	 * match the port.
5296 	 */
5297 	while (connp != NULL) {
5298 		if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5299 		    conn_wantpacket(connp, ira, ipha) &&
5300 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5301 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5302 			break;
5303 		connp = connp->conn_next;
5304 	}
5305 
5306 	if (connp == NULL)
5307 		goto notfound;
5308 
5309 	CONN_INC_REF(connp);
5310 
5311 	if (connp->conn_reuseaddr) {
5312 		conn_t		*first_connp = connp;
5313 		conn_t		*next_connp;
5314 		mblk_t		*mp1;
5315 
5316 		connp = connp->conn_next;
5317 		for (;;) {
5318 			while (connp != NULL) {
5319 				if (IPCL_UDP_MATCH(connp, lport, laddr,
5320 				    fport, faddr) &&
5321 				    conn_wantpacket(connp, ira, ipha) &&
5322 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5323 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5324 				    ira, connp)))
5325 					break;
5326 				connp = connp->conn_next;
5327 			}
5328 			if (connp == NULL) {
5329 				/* No more interested clients */
5330 				connp = first_connp;
5331 				break;
5332 			}
5333 			if (((mp1 = dupmsg(mp)) == NULL) &&
5334 			    ((mp1 = copymsg(mp)) == NULL)) {
5335 				/* Memory allocation failed */
5336 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5337 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5338 				connp = first_connp;
5339 				break;
5340 			}
5341 			CONN_INC_REF(connp);
5342 			mutex_exit(&connfp->connf_lock);
5343 
5344 			IP_STAT(ipst, ip_udp_fanmb);
5345 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5346 			    NULL, ira);
5347 			mutex_enter(&connfp->connf_lock);
5348 			/* Follow the next pointer before releasing the conn */
5349 			next_connp = connp->conn_next;
5350 			CONN_DEC_REF(connp);
5351 			connp = next_connp;
5352 		}
5353 	}
5354 
5355 	/* Last one.  Send it upstream. */
5356 	mutex_exit(&connfp->connf_lock);
5357 	IP_STAT(ipst, ip_udp_fanmb);
5358 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5359 	CONN_DEC_REF(connp);
5360 	return;
5361 
5362 notfound:
5363 	mutex_exit(&connfp->connf_lock);
5364 	/*
5365 	 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5366 	 * have already been matched above, since they live in the IPv4
5367 	 * fanout tables. This implies we only need to
5368 	 * check for IPv6 in6addr_any endpoints here.
5369 	 * Thus we compare using ipv6_all_zeros instead of the destination
5370 	 * address, except for the multicast group membership lookup which
5371 	 * uses the IPv4 destination.
5372 	 */
5373 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5374 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5375 	mutex_enter(&connfp->connf_lock);
5376 	connp = connfp->connf_head;
5377 	/*
5378 	 * IPv4 multicast packet being delivered to an AF_INET6
5379 	 * in6addr_any endpoint.
5380 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5381 	 * and not conn_wantpacket_v6() since any multicast membership is
5382 	 * for an IPv4-mapped multicast address.
5383 	 */
5384 	while (connp != NULL) {
5385 		if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5386 		    fport, v6faddr) &&
5387 		    conn_wantpacket(connp, ira, ipha) &&
5388 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5389 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5390 			break;
5391 		connp = connp->conn_next;
5392 	}
5393 
5394 	if (connp == NULL) {
5395 		/*
5396 		 * No one bound to this port.  Is
5397 		 * there a client that wants all
5398 		 * unclaimed datagrams?
5399 		 */
5400 		mutex_exit(&connfp->connf_lock);
5401 
5402 		if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5403 		    NULL) {
5404 			ASSERT(ira->ira_protocol == IPPROTO_UDP);
5405 			ip_fanout_proto_v4(mp, ipha, ira);
5406 		} else {
5407 			/*
5408 			 * We used to attempt to send an icmp error here, but
5409 			 * since this is known to be a multicast packet
5410 			 * and we don't send icmp errors in response to
5411 			 * multicast, just drop the packet and give up sooner.
5412 			 */
5413 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5414 			freemsg(mp);
5415 		}
5416 		return;
5417 	}
5418 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5419 
5420 	/*
5421 	 * If SO_REUSEADDR has been set on the first we send the
5422 	 * packet to all clients that have joined the group and
5423 	 * match the port.
5424 	 */
5425 	if (connp->conn_reuseaddr) {
5426 		conn_t		*first_connp = connp;
5427 		conn_t		*next_connp;
5428 		mblk_t		*mp1;
5429 
5430 		CONN_INC_REF(connp);
5431 		connp = connp->conn_next;
5432 		for (;;) {
5433 			while (connp != NULL) {
5434 				if (IPCL_UDP_MATCH_V6(connp, lport,
5435 				    ipv6_all_zeros, fport, v6faddr) &&
5436 				    conn_wantpacket(connp, ira, ipha) &&
5437 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5438 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5439 				    ira, connp)))
5440 					break;
5441 				connp = connp->conn_next;
5442 			}
5443 			if (connp == NULL) {
5444 				/* No more interested clients */
5445 				connp = first_connp;
5446 				break;
5447 			}
5448 			if (((mp1 = dupmsg(mp)) == NULL) &&
5449 			    ((mp1 = copymsg(mp)) == NULL)) {
5450 				/* Memory allocation failed */
5451 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5452 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5453 				connp = first_connp;
5454 				break;
5455 			}
5456 			CONN_INC_REF(connp);
5457 			mutex_exit(&connfp->connf_lock);
5458 
5459 			IP_STAT(ipst, ip_udp_fanmb);
5460 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5461 			    NULL, ira);
5462 			mutex_enter(&connfp->connf_lock);
5463 			/* Follow the next pointer before releasing the conn */
5464 			next_connp = connp->conn_next;
5465 			CONN_DEC_REF(connp);
5466 			connp = next_connp;
5467 		}
5468 	}
5469 
5470 	/* Last one.  Send it upstream. */
5471 	mutex_exit(&connfp->connf_lock);
5472 	IP_STAT(ipst, ip_udp_fanmb);
5473 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5474 	CONN_DEC_REF(connp);
5475 }
5476 
5477 /*
5478  * Split an incoming packet's IPv4 options into the label and the other options.
5479  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5480  * clearing out any leftover label or options.
5481  * Otherwise it just makes ipp point into the packet.
5482  *
5483  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5484  */
5485 int
5486 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5487 {
5488 	uchar_t		*opt;
5489 	uint32_t	totallen;
5490 	uint32_t	optval;
5491 	uint32_t	optlen;
5492 
5493 	ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5494 	ipp->ipp_hoplimit = ipha->ipha_ttl;
5495 	ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5496 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5497 
5498 	/*
5499 	 * Get length (in 4 byte octets) of IP header options.
5500 	 */
5501 	totallen = ipha->ipha_version_and_hdr_length -
5502 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5503 
5504 	if (totallen == 0) {
5505 		if (!allocate)
5506 			return (0);
5507 
5508 		/* Clear out anything from a previous packet */
5509 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5510 			kmem_free(ipp->ipp_ipv4_options,
5511 			    ipp->ipp_ipv4_options_len);
5512 			ipp->ipp_ipv4_options = NULL;
5513 			ipp->ipp_ipv4_options_len = 0;
5514 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5515 		}
5516 		if (ipp->ipp_fields & IPPF_LABEL_V4) {
5517 			kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5518 			ipp->ipp_label_v4 = NULL;
5519 			ipp->ipp_label_len_v4 = 0;
5520 			ipp->ipp_fields &= ~IPPF_LABEL_V4;
5521 		}
5522 		return (0);
5523 	}
5524 
5525 	totallen <<= 2;
5526 	opt = (uchar_t *)&ipha[1];
5527 	if (!is_system_labeled()) {
5528 
5529 	copyall:
5530 		if (!allocate) {
5531 			if (totallen != 0) {
5532 				ipp->ipp_ipv4_options = opt;
5533 				ipp->ipp_ipv4_options_len = totallen;
5534 				ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5535 			}
5536 			return (0);
5537 		}
5538 		/* Just copy all of options */
5539 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5540 			if (totallen == ipp->ipp_ipv4_options_len) {
5541 				bcopy(opt, ipp->ipp_ipv4_options, totallen);
5542 				return (0);
5543 			}
5544 			kmem_free(ipp->ipp_ipv4_options,
5545 			    ipp->ipp_ipv4_options_len);
5546 			ipp->ipp_ipv4_options = NULL;
5547 			ipp->ipp_ipv4_options_len = 0;
5548 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5549 		}
5550 		if (totallen == 0)
5551 			return (0);
5552 
5553 		ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5554 		if (ipp->ipp_ipv4_options == NULL)
5555 			return (ENOMEM);
5556 		ipp->ipp_ipv4_options_len = totallen;
5557 		ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5558 		bcopy(opt, ipp->ipp_ipv4_options, totallen);
5559 		return (0);
5560 	}
5561 
5562 	if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5563 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5564 		ipp->ipp_label_v4 = NULL;
5565 		ipp->ipp_label_len_v4 = 0;
5566 		ipp->ipp_fields &= ~IPPF_LABEL_V4;
5567 	}
5568 
5569 	/*
5570 	 * Search for CIPSO option.
5571 	 * We assume CIPSO is first in options if it is present.
5572 	 * If it isn't, then ipp_opt_ipv4_options will not include the options
5573 	 * prior to the CIPSO option.
5574 	 */
5575 	while (totallen != 0) {
5576 		switch (optval = opt[IPOPT_OPTVAL]) {
5577 		case IPOPT_EOL:
5578 			return (0);
5579 		case IPOPT_NOP:
5580 			optlen = 1;
5581 			break;
5582 		default:
5583 			if (totallen <= IPOPT_OLEN)
5584 				return (EINVAL);
5585 			optlen = opt[IPOPT_OLEN];
5586 			if (optlen < 2)
5587 				return (EINVAL);
5588 		}
5589 		if (optlen > totallen)
5590 			return (EINVAL);
5591 
5592 		switch (optval) {
5593 		case IPOPT_COMSEC:
5594 			if (!allocate) {
5595 				ipp->ipp_label_v4 = opt;
5596 				ipp->ipp_label_len_v4 = optlen;
5597 				ipp->ipp_fields |= IPPF_LABEL_V4;
5598 			} else {
5599 				ipp->ipp_label_v4 = kmem_alloc(optlen,
5600 				    KM_NOSLEEP);
5601 				if (ipp->ipp_label_v4 == NULL)
5602 					return (ENOMEM);
5603 				ipp->ipp_label_len_v4 = optlen;
5604 				ipp->ipp_fields |= IPPF_LABEL_V4;
5605 				bcopy(opt, ipp->ipp_label_v4, optlen);
5606 			}
5607 			totallen -= optlen;
5608 			opt += optlen;
5609 
5610 			/* Skip padding bytes until we get to a multiple of 4 */
5611 			while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5612 				totallen--;
5613 				opt++;
5614 			}
5615 			/* Remaining as ipp_ipv4_options */
5616 			goto copyall;
5617 		}
5618 		totallen -= optlen;
5619 		opt += optlen;
5620 	}
5621 	/* No CIPSO found; return everything as ipp_ipv4_options */
5622 	totallen = ipha->ipha_version_and_hdr_length -
5623 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5624 	totallen <<= 2;
5625 	opt = (uchar_t *)&ipha[1];
5626 	goto copyall;
5627 }
5628 
5629 /*
5630  * Efficient versions of lookup for an IRE when we only
5631  * match the address.
5632  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5633  * Does not handle multicast addresses.
5634  */
5635 uint_t
5636 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5637 {
5638 	ire_t *ire;
5639 	uint_t result;
5640 
5641 	ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5642 	ASSERT(ire != NULL);
5643 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5644 		result = IRE_NOROUTE;
5645 	else
5646 		result = ire->ire_type;
5647 	ire_refrele(ire);
5648 	return (result);
5649 }
5650 
5651 /*
5652  * Efficient versions of lookup for an IRE when we only
5653  * match the address.
5654  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5655  * Does not handle multicast addresses.
5656  */
5657 uint_t
5658 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5659 {
5660 	ire_t *ire;
5661 	uint_t result;
5662 
5663 	ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5664 	ASSERT(ire != NULL);
5665 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5666 		result = IRE_NOROUTE;
5667 	else
5668 		result = ire->ire_type;
5669 	ire_refrele(ire);
5670 	return (result);
5671 }
5672 
5673 /*
5674  * Nobody should be sending
5675  * packets up this stream
5676  */
5677 static void
5678 ip_lrput(queue_t *q, mblk_t *mp)
5679 {
5680 	switch (mp->b_datap->db_type) {
5681 	case M_FLUSH:
5682 		/* Turn around */
5683 		if (*mp->b_rptr & FLUSHW) {
5684 			*mp->b_rptr &= ~FLUSHR;
5685 			qreply(q, mp);
5686 			return;
5687 		}
5688 		break;
5689 	}
5690 	freemsg(mp);
5691 }
5692 
5693 /* Nobody should be sending packets down this stream */
5694 /* ARGSUSED */
5695 void
5696 ip_lwput(queue_t *q, mblk_t *mp)
5697 {
5698 	freemsg(mp);
5699 }
5700 
5701 /*
5702  * Move the first hop in any source route to ipha_dst and remove that part of
5703  * the source route.  Called by other protocols.  Errors in option formatting
5704  * are ignored - will be handled by ip_output_options. Return the final
5705  * destination (either ipha_dst or the last entry in a source route.)
5706  */
5707 ipaddr_t
5708 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5709 {
5710 	ipoptp_t	opts;
5711 	uchar_t		*opt;
5712 	uint8_t		optval;
5713 	uint8_t		optlen;
5714 	ipaddr_t	dst;
5715 	int		i;
5716 	ip_stack_t	*ipst = ns->netstack_ip;
5717 
5718 	ip2dbg(("ip_massage_options\n"));
5719 	dst = ipha->ipha_dst;
5720 	for (optval = ipoptp_first(&opts, ipha);
5721 	    optval != IPOPT_EOL;
5722 	    optval = ipoptp_next(&opts)) {
5723 		opt = opts.ipoptp_cur;
5724 		switch (optval) {
5725 			uint8_t off;
5726 		case IPOPT_SSRR:
5727 		case IPOPT_LSRR:
5728 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5729 				ip1dbg(("ip_massage_options: bad src route\n"));
5730 				break;
5731 			}
5732 			optlen = opts.ipoptp_len;
5733 			off = opt[IPOPT_OFFSET];
5734 			off--;
5735 		redo_srr:
5736 			if (optlen < IP_ADDR_LEN ||
5737 			    off > optlen - IP_ADDR_LEN) {
5738 				/* End of source route */
5739 				ip1dbg(("ip_massage_options: end of SR\n"));
5740 				break;
5741 			}
5742 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5743 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
5744 			    ntohl(dst)));
5745 			/*
5746 			 * Check if our address is present more than
5747 			 * once as consecutive hops in source route.
5748 			 * XXX verify per-interface ip_forwarding
5749 			 * for source route?
5750 			 */
5751 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5752 				off += IP_ADDR_LEN;
5753 				goto redo_srr;
5754 			}
5755 			if (dst == htonl(INADDR_LOOPBACK)) {
5756 				ip1dbg(("ip_massage_options: loopback addr in "
5757 				    "source route!\n"));
5758 				break;
5759 			}
5760 			/*
5761 			 * Update ipha_dst to be the first hop and remove the
5762 			 * first hop from the source route (by overwriting
5763 			 * part of the option with NOP options).
5764 			 */
5765 			ipha->ipha_dst = dst;
5766 			/* Put the last entry in dst */
5767 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5768 			    3;
5769 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
5770 
5771 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
5772 			    ntohl(dst)));
5773 			/* Move down and overwrite */
5774 			opt[IP_ADDR_LEN] = opt[0];
5775 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5776 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5777 			for (i = 0; i < IP_ADDR_LEN; i++)
5778 				opt[i] = IPOPT_NOP;
5779 			break;
5780 		}
5781 	}
5782 	return (dst);
5783 }
5784 
5785 /*
5786  * Return the network mask
5787  * associated with the specified address.
5788  */
5789 ipaddr_t
5790 ip_net_mask(ipaddr_t addr)
5791 {
5792 	uchar_t	*up = (uchar_t *)&addr;
5793 	ipaddr_t mask = 0;
5794 	uchar_t	*maskp = (uchar_t *)&mask;
5795 
5796 #if defined(__i386) || defined(__amd64)
5797 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
5798 #endif
5799 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5800 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5801 #endif
5802 	if (CLASSD(addr)) {
5803 		maskp[0] = 0xF0;
5804 		return (mask);
5805 	}
5806 
5807 	/* We assume Class E default netmask to be 32 */
5808 	if (CLASSE(addr))
5809 		return (0xffffffffU);
5810 
5811 	if (addr == 0)
5812 		return (0);
5813 	maskp[0] = 0xFF;
5814 	if ((up[0] & 0x80) == 0)
5815 		return (mask);
5816 
5817 	maskp[1] = 0xFF;
5818 	if ((up[0] & 0xC0) == 0x80)
5819 		return (mask);
5820 
5821 	maskp[2] = 0xFF;
5822 	if ((up[0] & 0xE0) == 0xC0)
5823 		return (mask);
5824 
5825 	/* Otherwise return no mask */
5826 	return ((ipaddr_t)0);
5827 }
5828 
5829 /* Name/Value Table Lookup Routine */
5830 char *
5831 ip_nv_lookup(nv_t *nv, int value)
5832 {
5833 	if (!nv)
5834 		return (NULL);
5835 	for (; nv->nv_name; nv++) {
5836 		if (nv->nv_value == value)
5837 			return (nv->nv_name);
5838 	}
5839 	return ("unknown");
5840 }
5841 
5842 static int
5843 ip_wait_for_info_ack(ill_t *ill)
5844 {
5845 	int err;
5846 
5847 	mutex_enter(&ill->ill_lock);
5848 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5849 		/*
5850 		 * Return value of 0 indicates a pending signal.
5851 		 */
5852 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5853 		if (err == 0) {
5854 			mutex_exit(&ill->ill_lock);
5855 			return (EINTR);
5856 		}
5857 	}
5858 	mutex_exit(&ill->ill_lock);
5859 	/*
5860 	 * ip_rput_other could have set an error  in ill_error on
5861 	 * receipt of M_ERROR.
5862 	 */
5863 	return (ill->ill_error);
5864 }
5865 
5866 /*
5867  * This is a module open, i.e. this is a control stream for access
5868  * to a DLPI device.  We allocate an ill_t as the instance data in
5869  * this case.
5870  */
5871 static int
5872 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5873 {
5874 	ill_t	*ill;
5875 	int	err;
5876 	zoneid_t zoneid;
5877 	netstack_t *ns;
5878 	ip_stack_t *ipst;
5879 
5880 	/*
5881 	 * Prevent unprivileged processes from pushing IP so that
5882 	 * they can't send raw IP.
5883 	 */
5884 	if (secpolicy_net_rawaccess(credp) != 0)
5885 		return (EPERM);
5886 
5887 	ns = netstack_find_by_cred(credp);
5888 	ASSERT(ns != NULL);
5889 	ipst = ns->netstack_ip;
5890 	ASSERT(ipst != NULL);
5891 
5892 	/*
5893 	 * For exclusive stacks we set the zoneid to zero
5894 	 * to make IP operate as if in the global zone.
5895 	 */
5896 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5897 		zoneid = GLOBAL_ZONEID;
5898 	else
5899 		zoneid = crgetzoneid(credp);
5900 
5901 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5902 	q->q_ptr = WR(q)->q_ptr = ill;
5903 	ill->ill_ipst = ipst;
5904 	ill->ill_zoneid = zoneid;
5905 
5906 	/*
5907 	 * ill_init initializes the ill fields and then sends down
5908 	 * down a DL_INFO_REQ after calling qprocson.
5909 	 */
5910 	err = ill_init(q, ill);
5911 
5912 	if (err != 0) {
5913 		mi_free(ill);
5914 		netstack_rele(ipst->ips_netstack);
5915 		q->q_ptr = NULL;
5916 		WR(q)->q_ptr = NULL;
5917 		return (err);
5918 	}
5919 
5920 	/*
5921 	 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5922 	 *
5923 	 * ill_init initializes the ipsq marking this thread as
5924 	 * writer
5925 	 */
5926 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
5927 	err = ip_wait_for_info_ack(ill);
5928 	if (err == 0)
5929 		ill->ill_credp = credp;
5930 	else
5931 		goto fail;
5932 
5933 	crhold(credp);
5934 
5935 	mutex_enter(&ipst->ips_ip_mi_lock);
5936 	err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5937 	    sflag, credp);
5938 	mutex_exit(&ipst->ips_ip_mi_lock);
5939 fail:
5940 	if (err) {
5941 		(void) ip_close(q, 0);
5942 		return (err);
5943 	}
5944 	return (0);
5945 }
5946 
5947 /* For /dev/ip aka AF_INET open */
5948 int
5949 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5950 {
5951 	return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5952 }
5953 
5954 /* For /dev/ip6 aka AF_INET6 open */
5955 int
5956 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5957 {
5958 	return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5959 }
5960 
5961 /* IP open routine. */
5962 int
5963 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5964     boolean_t isv6)
5965 {
5966 	conn_t 		*connp;
5967 	major_t		maj;
5968 	zoneid_t	zoneid;
5969 	netstack_t	*ns;
5970 	ip_stack_t	*ipst;
5971 
5972 	/* Allow reopen. */
5973 	if (q->q_ptr != NULL)
5974 		return (0);
5975 
5976 	if (sflag & MODOPEN) {
5977 		/* This is a module open */
5978 		return (ip_modopen(q, devp, flag, sflag, credp));
5979 	}
5980 
5981 	if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5982 		/*
5983 		 * Non streams based socket looking for a stream
5984 		 * to access IP
5985 		 */
5986 		return (ip_helper_stream_setup(q, devp, flag, sflag,
5987 		    credp, isv6));
5988 	}
5989 
5990 	ns = netstack_find_by_cred(credp);
5991 	ASSERT(ns != NULL);
5992 	ipst = ns->netstack_ip;
5993 	ASSERT(ipst != NULL);
5994 
5995 	/*
5996 	 * For exclusive stacks we set the zoneid to zero
5997 	 * to make IP operate as if in the global zone.
5998 	 */
5999 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
6000 		zoneid = GLOBAL_ZONEID;
6001 	else
6002 		zoneid = crgetzoneid(credp);
6003 
6004 	/*
6005 	 * We are opening as a device. This is an IP client stream, and we
6006 	 * allocate an conn_t as the instance data.
6007 	 */
6008 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
6009 
6010 	/*
6011 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
6012 	 * done by netstack_find_by_cred()
6013 	 */
6014 	netstack_rele(ipst->ips_netstack);
6015 
6016 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6017 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6018 	connp->conn_ixa->ixa_zoneid = zoneid;
6019 	connp->conn_zoneid = zoneid;
6020 
6021 	connp->conn_rq = q;
6022 	q->q_ptr = WR(q)->q_ptr = connp;
6023 
6024 	/* Minor tells us which /dev entry was opened */
6025 	if (isv6) {
6026 		connp->conn_family = AF_INET6;
6027 		connp->conn_ipversion = IPV6_VERSION;
6028 		connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6029 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6030 	} else {
6031 		connp->conn_family = AF_INET;
6032 		connp->conn_ipversion = IPV4_VERSION;
6033 		connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6034 	}
6035 
6036 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6037 	    ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6038 		connp->conn_minor_arena = ip_minor_arena_la;
6039 	} else {
6040 		/*
6041 		 * Either minor numbers in the large arena were exhausted
6042 		 * or a non socket application is doing the open.
6043 		 * Try to allocate from the small arena.
6044 		 */
6045 		if ((connp->conn_dev =
6046 		    inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6047 			/* CONN_DEC_REF takes care of netstack_rele() */
6048 			q->q_ptr = WR(q)->q_ptr = NULL;
6049 			CONN_DEC_REF(connp);
6050 			return (EBUSY);
6051 		}
6052 		connp->conn_minor_arena = ip_minor_arena_sa;
6053 	}
6054 
6055 	maj = getemajor(*devp);
6056 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
6057 
6058 	/*
6059 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6060 	 */
6061 	connp->conn_cred = credp;
6062 	connp->conn_cpid = curproc->p_pid;
6063 	/* Cache things in ixa without an extra refhold */
6064 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6065 	connp->conn_ixa->ixa_cred = connp->conn_cred;
6066 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6067 	if (is_system_labeled())
6068 		connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6069 
6070 	/*
6071 	 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6072 	 */
6073 	connp->conn_recv = ip_conn_input;
6074 	connp->conn_recvicmp = ip_conn_input_icmp;
6075 
6076 	crhold(connp->conn_cred);
6077 
6078 	/*
6079 	 * If the caller has the process-wide flag set, then default to MAC
6080 	 * exempt mode.  This allows read-down to unlabeled hosts.
6081 	 */
6082 	if (getpflags(NET_MAC_AWARE, credp) != 0)
6083 		connp->conn_mac_mode = CONN_MAC_AWARE;
6084 
6085 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6086 
6087 	connp->conn_rq = q;
6088 	connp->conn_wq = WR(q);
6089 
6090 	/* Non-zero default values */
6091 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6092 
6093 	/*
6094 	 * Make the conn globally visible to walkers
6095 	 */
6096 	ASSERT(connp->conn_ref == 1);
6097 	mutex_enter(&connp->conn_lock);
6098 	connp->conn_state_flags &= ~CONN_INCIPIENT;
6099 	mutex_exit(&connp->conn_lock);
6100 
6101 	qprocson(q);
6102 
6103 	return (0);
6104 }
6105 
6106 /*
6107  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6108  * all of them are copied to the conn_t. If the req is "zero", the policy is
6109  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6110  * fields.
6111  * We keep only the latest setting of the policy and thus policy setting
6112  * is not incremental/cumulative.
6113  *
6114  * Requests to set policies with multiple alternative actions will
6115  * go through a different API.
6116  */
6117 int
6118 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6119 {
6120 	uint_t ah_req = 0;
6121 	uint_t esp_req = 0;
6122 	uint_t se_req = 0;
6123 	ipsec_act_t *actp = NULL;
6124 	uint_t nact;
6125 	ipsec_policy_head_t *ph;
6126 	boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6127 	int error = 0;
6128 	netstack_t	*ns = connp->conn_netstack;
6129 	ip_stack_t	*ipst = ns->netstack_ip;
6130 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
6131 
6132 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6133 
6134 	/*
6135 	 * The IP_SEC_OPT option does not allow variable length parameters,
6136 	 * hence a request cannot be NULL.
6137 	 */
6138 	if (req == NULL)
6139 		return (EINVAL);
6140 
6141 	ah_req = req->ipsr_ah_req;
6142 	esp_req = req->ipsr_esp_req;
6143 	se_req = req->ipsr_self_encap_req;
6144 
6145 	/* Don't allow setting self-encap without one or more of AH/ESP. */
6146 	if (se_req != 0 && esp_req == 0 && ah_req == 0)
6147 		return (EINVAL);
6148 
6149 	/*
6150 	 * Are we dealing with a request to reset the policy (i.e.
6151 	 * zero requests).
6152 	 */
6153 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6154 	    (esp_req & REQ_MASK) == 0 &&
6155 	    (se_req & REQ_MASK) == 0);
6156 
6157 	if (!is_pol_reset) {
6158 		/*
6159 		 * If we couldn't load IPsec, fail with "protocol
6160 		 * not supported".
6161 		 * IPsec may not have been loaded for a request with zero
6162 		 * policies, so we don't fail in this case.
6163 		 */
6164 		mutex_enter(&ipss->ipsec_loader_lock);
6165 		if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6166 			mutex_exit(&ipss->ipsec_loader_lock);
6167 			return (EPROTONOSUPPORT);
6168 		}
6169 		mutex_exit(&ipss->ipsec_loader_lock);
6170 
6171 		/*
6172 		 * Test for valid requests. Invalid algorithms
6173 		 * need to be tested by IPsec code because new
6174 		 * algorithms can be added dynamically.
6175 		 */
6176 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6177 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6178 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6179 			return (EINVAL);
6180 		}
6181 
6182 		/*
6183 		 * Only privileged users can issue these
6184 		 * requests.
6185 		 */
6186 		if (((ah_req & IPSEC_PREF_NEVER) ||
6187 		    (esp_req & IPSEC_PREF_NEVER) ||
6188 		    (se_req & IPSEC_PREF_NEVER)) &&
6189 		    secpolicy_ip_config(cr, B_FALSE) != 0) {
6190 			return (EPERM);
6191 		}
6192 
6193 		/*
6194 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6195 		 * are mutually exclusive.
6196 		 */
6197 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
6198 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
6199 		    ((se_req & REQ_MASK) == REQ_MASK)) {
6200 			/* Both of them are set */
6201 			return (EINVAL);
6202 		}
6203 	}
6204 
6205 	ASSERT(MUTEX_HELD(&connp->conn_lock));
6206 
6207 	/*
6208 	 * If we have already cached policies in conn_connect(), don't
6209 	 * let them change now. We cache policies for connections
6210 	 * whose src,dst [addr, port] is known.
6211 	 */
6212 	if (connp->conn_policy_cached) {
6213 		return (EINVAL);
6214 	}
6215 
6216 	/*
6217 	 * We have a zero policies, reset the connection policy if already
6218 	 * set. This will cause the connection to inherit the
6219 	 * global policy, if any.
6220 	 */
6221 	if (is_pol_reset) {
6222 		if (connp->conn_policy != NULL) {
6223 			IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6224 			connp->conn_policy = NULL;
6225 		}
6226 		connp->conn_in_enforce_policy = B_FALSE;
6227 		connp->conn_out_enforce_policy = B_FALSE;
6228 		return (0);
6229 	}
6230 
6231 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6232 	    ipst->ips_netstack);
6233 	if (ph == NULL)
6234 		goto enomem;
6235 
6236 	ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6237 	if (actp == NULL)
6238 		goto enomem;
6239 
6240 	/*
6241 	 * Always insert IPv4 policy entries, since they can also apply to
6242 	 * ipv6 sockets being used in ipv4-compat mode.
6243 	 */
6244 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6245 	    IPSEC_TYPE_INBOUND, ns))
6246 		goto enomem;
6247 	is_pol_inserted = B_TRUE;
6248 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6249 	    IPSEC_TYPE_OUTBOUND, ns))
6250 		goto enomem;
6251 
6252 	/*
6253 	 * We're looking at a v6 socket, also insert the v6-specific
6254 	 * entries.
6255 	 */
6256 	if (connp->conn_family == AF_INET6) {
6257 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6258 		    IPSEC_TYPE_INBOUND, ns))
6259 			goto enomem;
6260 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6261 		    IPSEC_TYPE_OUTBOUND, ns))
6262 			goto enomem;
6263 	}
6264 
6265 	ipsec_actvec_free(actp, nact);
6266 
6267 	/*
6268 	 * If the requests need security, set enforce_policy.
6269 	 * If the requests are IPSEC_PREF_NEVER, one should
6270 	 * still set conn_out_enforce_policy so that ip_set_destination
6271 	 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6272 	 * for connections that we don't cache policy in at connect time,
6273 	 * if global policy matches in ip_output_attach_policy, we
6274 	 * don't wrongly inherit global policy. Similarly, we need
6275 	 * to set conn_in_enforce_policy also so that we don't verify
6276 	 * policy wrongly.
6277 	 */
6278 	if ((ah_req & REQ_MASK) != 0 ||
6279 	    (esp_req & REQ_MASK) != 0 ||
6280 	    (se_req & REQ_MASK) != 0) {
6281 		connp->conn_in_enforce_policy = B_TRUE;
6282 		connp->conn_out_enforce_policy = B_TRUE;
6283 	}
6284 
6285 	return (error);
6286 #undef REQ_MASK
6287 
6288 	/*
6289 	 * Common memory-allocation-failure exit path.
6290 	 */
6291 enomem:
6292 	if (actp != NULL)
6293 		ipsec_actvec_free(actp, nact);
6294 	if (is_pol_inserted)
6295 		ipsec_polhead_flush(ph, ns);
6296 	return (ENOMEM);
6297 }
6298 
6299 /*
6300  * Set socket options for joining and leaving multicast groups.
6301  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6302  * The caller has already check that the option name is consistent with
6303  * the address family of the socket.
6304  */
6305 int
6306 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6307     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6308 {
6309 	int		*i1 = (int *)invalp;
6310 	int		error = 0;
6311 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6312 	struct ip_mreq	*v4_mreqp;
6313 	struct ipv6_mreq *v6_mreqp;
6314 	struct group_req *greqp;
6315 	ire_t *ire;
6316 	boolean_t done = B_FALSE;
6317 	ipaddr_t ifaddr;
6318 	in6_addr_t v6group;
6319 	uint_t ifindex;
6320 	boolean_t mcast_opt = B_TRUE;
6321 	mcast_record_t fmode;
6322 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6323 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6324 
6325 	switch (name) {
6326 	case IP_ADD_MEMBERSHIP:
6327 	case IPV6_JOIN_GROUP:
6328 		mcast_opt = B_FALSE;
6329 		/* FALLTHRU */
6330 	case MCAST_JOIN_GROUP:
6331 		fmode = MODE_IS_EXCLUDE;
6332 		optfn = ip_opt_add_group;
6333 		break;
6334 
6335 	case IP_DROP_MEMBERSHIP:
6336 	case IPV6_LEAVE_GROUP:
6337 		mcast_opt = B_FALSE;
6338 		/* FALLTHRU */
6339 	case MCAST_LEAVE_GROUP:
6340 		fmode = MODE_IS_INCLUDE;
6341 		optfn = ip_opt_delete_group;
6342 		break;
6343 	default:
6344 		ASSERT(0);
6345 	}
6346 
6347 	if (mcast_opt) {
6348 		struct sockaddr_in *sin;
6349 		struct sockaddr_in6 *sin6;
6350 
6351 		greqp = (struct group_req *)i1;
6352 		if (greqp->gr_group.ss_family == AF_INET) {
6353 			sin = (struct sockaddr_in *)&(greqp->gr_group);
6354 			IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6355 		} else {
6356 			if (!inet6)
6357 				return (EINVAL);	/* Not on INET socket */
6358 
6359 			sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6360 			v6group = sin6->sin6_addr;
6361 		}
6362 		ifaddr = INADDR_ANY;
6363 		ifindex = greqp->gr_interface;
6364 	} else if (inet6) {
6365 		v6_mreqp = (struct ipv6_mreq *)i1;
6366 		v6group = v6_mreqp->ipv6mr_multiaddr;
6367 		ifaddr = INADDR_ANY;
6368 		ifindex = v6_mreqp->ipv6mr_interface;
6369 	} else {
6370 		v4_mreqp = (struct ip_mreq *)i1;
6371 		IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6372 		ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6373 		ifindex = 0;
6374 	}
6375 
6376 	/*
6377 	 * In the multirouting case, we need to replicate
6378 	 * the request on all interfaces that will take part
6379 	 * in replication.  We do so because multirouting is
6380 	 * reflective, thus we will probably receive multi-
6381 	 * casts on those interfaces.
6382 	 * The ip_multirt_apply_membership() succeeds if
6383 	 * the operation succeeds on at least one interface.
6384 	 */
6385 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6386 		ipaddr_t group;
6387 
6388 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6389 
6390 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6391 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6392 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6393 	} else {
6394 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6395 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6396 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6397 	}
6398 	if (ire != NULL) {
6399 		if (ire->ire_flags & RTF_MULTIRT) {
6400 			error = ip_multirt_apply_membership(optfn, ire, connp,
6401 			    checkonly, &v6group, fmode, &ipv6_all_zeros);
6402 			done = B_TRUE;
6403 		}
6404 		ire_refrele(ire);
6405 	}
6406 
6407 	if (!done) {
6408 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6409 		    fmode, &ipv6_all_zeros);
6410 	}
6411 	return (error);
6412 }
6413 
6414 /*
6415  * Set socket options for joining and leaving multicast groups
6416  * for specific sources.
6417  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6418  * The caller has already check that the option name is consistent with
6419  * the address family of the socket.
6420  */
6421 int
6422 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6423     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6424 {
6425 	int		*i1 = (int *)invalp;
6426 	int		error = 0;
6427 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6428 	struct ip_mreq_source *imreqp;
6429 	struct group_source_req *gsreqp;
6430 	in6_addr_t v6group, v6src;
6431 	uint32_t ifindex;
6432 	ipaddr_t ifaddr;
6433 	boolean_t mcast_opt = B_TRUE;
6434 	mcast_record_t fmode;
6435 	ire_t *ire;
6436 	boolean_t done = B_FALSE;
6437 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6438 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6439 
6440 	switch (name) {
6441 	case IP_BLOCK_SOURCE:
6442 		mcast_opt = B_FALSE;
6443 		/* FALLTHRU */
6444 	case MCAST_BLOCK_SOURCE:
6445 		fmode = MODE_IS_EXCLUDE;
6446 		optfn = ip_opt_add_group;
6447 		break;
6448 
6449 	case IP_UNBLOCK_SOURCE:
6450 		mcast_opt = B_FALSE;
6451 		/* FALLTHRU */
6452 	case MCAST_UNBLOCK_SOURCE:
6453 		fmode = MODE_IS_EXCLUDE;
6454 		optfn = ip_opt_delete_group;
6455 		break;
6456 
6457 	case IP_ADD_SOURCE_MEMBERSHIP:
6458 		mcast_opt = B_FALSE;
6459 		/* FALLTHRU */
6460 	case MCAST_JOIN_SOURCE_GROUP:
6461 		fmode = MODE_IS_INCLUDE;
6462 		optfn = ip_opt_add_group;
6463 		break;
6464 
6465 	case IP_DROP_SOURCE_MEMBERSHIP:
6466 		mcast_opt = B_FALSE;
6467 		/* FALLTHRU */
6468 	case MCAST_LEAVE_SOURCE_GROUP:
6469 		fmode = MODE_IS_INCLUDE;
6470 		optfn = ip_opt_delete_group;
6471 		break;
6472 	default:
6473 		ASSERT(0);
6474 	}
6475 
6476 	if (mcast_opt) {
6477 		gsreqp = (struct group_source_req *)i1;
6478 		ifindex = gsreqp->gsr_interface;
6479 		if (gsreqp->gsr_group.ss_family == AF_INET) {
6480 			struct sockaddr_in *s;
6481 			s = (struct sockaddr_in *)&gsreqp->gsr_group;
6482 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6483 			s = (struct sockaddr_in *)&gsreqp->gsr_source;
6484 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6485 		} else {
6486 			struct sockaddr_in6 *s6;
6487 
6488 			if (!inet6)
6489 				return (EINVAL);	/* Not on INET socket */
6490 
6491 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6492 			v6group = s6->sin6_addr;
6493 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6494 			v6src = s6->sin6_addr;
6495 		}
6496 		ifaddr = INADDR_ANY;
6497 	} else {
6498 		imreqp = (struct ip_mreq_source *)i1;
6499 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6500 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6501 		ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6502 		ifindex = 0;
6503 	}
6504 
6505 	/*
6506 	 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6507 	 */
6508 	if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6509 		v6src = ipv6_all_zeros;
6510 
6511 	/*
6512 	 * In the multirouting case, we need to replicate
6513 	 * the request as noted in the mcast cases above.
6514 	 */
6515 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6516 		ipaddr_t group;
6517 
6518 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6519 
6520 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6521 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6522 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6523 	} else {
6524 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6525 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6526 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6527 	}
6528 	if (ire != NULL) {
6529 		if (ire->ire_flags & RTF_MULTIRT) {
6530 			error = ip_multirt_apply_membership(optfn, ire, connp,
6531 			    checkonly, &v6group, fmode, &v6src);
6532 			done = B_TRUE;
6533 		}
6534 		ire_refrele(ire);
6535 	}
6536 	if (!done) {
6537 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6538 		    fmode, &v6src);
6539 	}
6540 	return (error);
6541 }
6542 
6543 /*
6544  * Given a destination address and a pointer to where to put the information
6545  * this routine fills in the mtuinfo.
6546  * The socket must be connected.
6547  * For sctp conn_faddr is the primary address.
6548  */
6549 int
6550 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6551 {
6552 	uint32_t	pmtu = IP_MAXPACKET;
6553 	uint_t		scopeid;
6554 
6555 	if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6556 		return (-1);
6557 
6558 	/* In case we never sent or called ip_set_destination_v4/v6 */
6559 	if (ixa->ixa_ire != NULL)
6560 		pmtu = ip_get_pmtu(ixa);
6561 
6562 	if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6563 		scopeid = ixa->ixa_scopeid;
6564 	else
6565 		scopeid = 0;
6566 
6567 	bzero(mtuinfo, sizeof (*mtuinfo));
6568 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6569 	mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6570 	mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6571 	mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6572 	mtuinfo->ip6m_mtu = pmtu;
6573 
6574 	return (sizeof (struct ip6_mtuinfo));
6575 }
6576 
6577 /*
6578  * When the src multihoming is changed from weak to [strong, preferred]
6579  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6580  * and identify routes that were created by user-applications in the
6581  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6582  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6583  * is selected by finding an interface route for the gateway.
6584  */
6585 /* ARGSUSED */
6586 void
6587 ip_ire_rebind_walker(ire_t *ire, void *notused)
6588 {
6589 	if (!ire->ire_unbound || ire->ire_ill != NULL)
6590 		return;
6591 	ire_rebind(ire);
6592 	ire_delete(ire);
6593 }
6594 
6595 /*
6596  * When the src multihoming is changed from  [strong, preferred] to weak,
6597  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6598  * set any entries that were created by user-applications in the unbound state
6599  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6600  */
6601 /* ARGSUSED */
6602 void
6603 ip_ire_unbind_walker(ire_t *ire, void *notused)
6604 {
6605 	ire_t *new_ire;
6606 
6607 	if (!ire->ire_unbound || ire->ire_ill == NULL)
6608 		return;
6609 	if (ire->ire_ipversion == IPV6_VERSION) {
6610 		new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6611 		    &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6612 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6613 	} else {
6614 		new_ire = ire_create((uchar_t *)&ire->ire_addr,
6615 		    (uchar_t *)&ire->ire_mask,
6616 		    (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6617 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6618 	}
6619 	if (new_ire == NULL)
6620 		return;
6621 	new_ire->ire_unbound = B_TRUE;
6622 	/*
6623 	 * The bound ire must first be deleted so that we don't return
6624 	 * the existing one on the attempt to add the unbound new_ire.
6625 	 */
6626 	ire_delete(ire);
6627 	new_ire = ire_add(new_ire);
6628 	if (new_ire != NULL)
6629 		ire_refrele(new_ire);
6630 }
6631 
6632 /*
6633  * When the settings of ip*_strict_src_multihoming tunables are changed,
6634  * all cached routes need to be recomputed. This recomputation needs to be
6635  * done when going from weaker to stronger modes so that the cached ire
6636  * for the connection does not violate the current ip*_strict_src_multihoming
6637  * setting. It also needs to be done when going from stronger to weaker modes,
6638  * so that we fall back to matching on the longest-matching-route (as opposed
6639  * to a shorter match that may have been selected in the strong mode
6640  * to satisfy src_multihoming settings).
6641  *
6642  * The cached ixa_ire entires for all conn_t entries are marked as
6643  * "verify" so that they will be recomputed for the next packet.
6644  */
6645 void
6646 conn_ire_revalidate(conn_t *connp, void *arg)
6647 {
6648 	boolean_t isv6 = (boolean_t)arg;
6649 
6650 	if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6651 	    (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6652 		return;
6653 	connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6654 }
6655 
6656 /*
6657  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6658  * When an ipf is passed here for the first time, if
6659  * we already have in-order fragments on the queue, we convert from the fast-
6660  * path reassembly scheme to the hard-case scheme.  From then on, additional
6661  * fragments are reassembled here.  We keep track of the start and end offsets
6662  * of each piece, and the number of holes in the chain.  When the hole count
6663  * goes to zero, we are done!
6664  *
6665  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6666  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6667  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6668  * after the call to ip_reassemble().
6669  */
6670 int
6671 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6672     size_t msg_len)
6673 {
6674 	uint_t	end;
6675 	mblk_t	*next_mp;
6676 	mblk_t	*mp1;
6677 	uint_t	offset;
6678 	boolean_t incr_dups = B_TRUE;
6679 	boolean_t offset_zero_seen = B_FALSE;
6680 	boolean_t pkt_boundary_checked = B_FALSE;
6681 
6682 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
6683 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6684 
6685 	/* Add in byte count */
6686 	ipf->ipf_count += msg_len;
6687 	if (ipf->ipf_end) {
6688 		/*
6689 		 * We were part way through in-order reassembly, but now there
6690 		 * is a hole.  We walk through messages already queued, and
6691 		 * mark them for hard case reassembly.  We know that up till
6692 		 * now they were in order starting from offset zero.
6693 		 */
6694 		offset = 0;
6695 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6696 			IP_REASS_SET_START(mp1, offset);
6697 			if (offset == 0) {
6698 				ASSERT(ipf->ipf_nf_hdr_len != 0);
6699 				offset = -ipf->ipf_nf_hdr_len;
6700 			}
6701 			offset += mp1->b_wptr - mp1->b_rptr;
6702 			IP_REASS_SET_END(mp1, offset);
6703 		}
6704 		/* One hole at the end. */
6705 		ipf->ipf_hole_cnt = 1;
6706 		/* Brand it as a hard case, forever. */
6707 		ipf->ipf_end = 0;
6708 	}
6709 	/* Walk through all the new pieces. */
6710 	do {
6711 		end = start + (mp->b_wptr - mp->b_rptr);
6712 		/*
6713 		 * If start is 0, decrease 'end' only for the first mblk of
6714 		 * the fragment. Otherwise 'end' can get wrong value in the
6715 		 * second pass of the loop if first mblk is exactly the
6716 		 * size of ipf_nf_hdr_len.
6717 		 */
6718 		if (start == 0 && !offset_zero_seen) {
6719 			/* First segment */
6720 			ASSERT(ipf->ipf_nf_hdr_len != 0);
6721 			end -= ipf->ipf_nf_hdr_len;
6722 			offset_zero_seen = B_TRUE;
6723 		}
6724 		next_mp = mp->b_cont;
6725 		/*
6726 		 * We are checking to see if there is any interesing data
6727 		 * to process.  If there isn't and the mblk isn't the
6728 		 * one which carries the unfragmentable header then we
6729 		 * drop it.  It's possible to have just the unfragmentable
6730 		 * header come through without any data.  That needs to be
6731 		 * saved.
6732 		 *
6733 		 * If the assert at the top of this function holds then the
6734 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6735 		 * is infrequently traveled enough that the test is left in
6736 		 * to protect against future code changes which break that
6737 		 * invariant.
6738 		 */
6739 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6740 			/* Empty.  Blast it. */
6741 			IP_REASS_SET_START(mp, 0);
6742 			IP_REASS_SET_END(mp, 0);
6743 			/*
6744 			 * If the ipf points to the mblk we are about to free,
6745 			 * update ipf to point to the next mblk (or NULL
6746 			 * if none).
6747 			 */
6748 			if (ipf->ipf_mp->b_cont == mp)
6749 				ipf->ipf_mp->b_cont = next_mp;
6750 			freeb(mp);
6751 			continue;
6752 		}
6753 		mp->b_cont = NULL;
6754 		IP_REASS_SET_START(mp, start);
6755 		IP_REASS_SET_END(mp, end);
6756 		if (!ipf->ipf_tail_mp) {
6757 			ipf->ipf_tail_mp = mp;
6758 			ipf->ipf_mp->b_cont = mp;
6759 			if (start == 0 || !more) {
6760 				ipf->ipf_hole_cnt = 1;
6761 				/*
6762 				 * if the first fragment comes in more than one
6763 				 * mblk, this loop will be executed for each
6764 				 * mblk. Need to adjust hole count so exiting
6765 				 * this routine will leave hole count at 1.
6766 				 */
6767 				if (next_mp)
6768 					ipf->ipf_hole_cnt++;
6769 			} else
6770 				ipf->ipf_hole_cnt = 2;
6771 			continue;
6772 		} else if (ipf->ipf_last_frag_seen && !more &&
6773 		    !pkt_boundary_checked) {
6774 			/*
6775 			 * We check datagram boundary only if this fragment
6776 			 * claims to be the last fragment and we have seen a
6777 			 * last fragment in the past too. We do this only
6778 			 * once for a given fragment.
6779 			 *
6780 			 * start cannot be 0 here as fragments with start=0
6781 			 * and MF=0 gets handled as a complete packet. These
6782 			 * fragments should not reach here.
6783 			 */
6784 
6785 			if (start + msgdsize(mp) !=
6786 			    IP_REASS_END(ipf->ipf_tail_mp)) {
6787 				/*
6788 				 * We have two fragments both of which claim
6789 				 * to be the last fragment but gives conflicting
6790 				 * information about the whole datagram size.
6791 				 * Something fishy is going on. Drop the
6792 				 * fragment and free up the reassembly list.
6793 				 */
6794 				return (IP_REASS_FAILED);
6795 			}
6796 
6797 			/*
6798 			 * We shouldn't come to this code block again for this
6799 			 * particular fragment.
6800 			 */
6801 			pkt_boundary_checked = B_TRUE;
6802 		}
6803 
6804 		/* New stuff at or beyond tail? */
6805 		offset = IP_REASS_END(ipf->ipf_tail_mp);
6806 		if (start >= offset) {
6807 			if (ipf->ipf_last_frag_seen) {
6808 				/* current fragment is beyond last fragment */
6809 				return (IP_REASS_FAILED);
6810 			}
6811 			/* Link it on end. */
6812 			ipf->ipf_tail_mp->b_cont = mp;
6813 			ipf->ipf_tail_mp = mp;
6814 			if (more) {
6815 				if (start != offset)
6816 					ipf->ipf_hole_cnt++;
6817 			} else if (start == offset && next_mp == NULL)
6818 					ipf->ipf_hole_cnt--;
6819 			continue;
6820 		}
6821 		mp1 = ipf->ipf_mp->b_cont;
6822 		offset = IP_REASS_START(mp1);
6823 		/* New stuff at the front? */
6824 		if (start < offset) {
6825 			if (start == 0) {
6826 				if (end >= offset) {
6827 					/* Nailed the hole at the begining. */
6828 					ipf->ipf_hole_cnt--;
6829 				}
6830 			} else if (end < offset) {
6831 				/*
6832 				 * A hole, stuff, and a hole where there used
6833 				 * to be just a hole.
6834 				 */
6835 				ipf->ipf_hole_cnt++;
6836 			}
6837 			mp->b_cont = mp1;
6838 			/* Check for overlap. */
6839 			while (end > offset) {
6840 				if (end < IP_REASS_END(mp1)) {
6841 					mp->b_wptr -= end - offset;
6842 					IP_REASS_SET_END(mp, offset);
6843 					BUMP_MIB(ill->ill_ip_mib,
6844 					    ipIfStatsReasmPartDups);
6845 					break;
6846 				}
6847 				/* Did we cover another hole? */
6848 				if ((mp1->b_cont &&
6849 				    IP_REASS_END(mp1) !=
6850 				    IP_REASS_START(mp1->b_cont) &&
6851 				    end >= IP_REASS_START(mp1->b_cont)) ||
6852 				    (!ipf->ipf_last_frag_seen && !more)) {
6853 					ipf->ipf_hole_cnt--;
6854 				}
6855 				/* Clip out mp1. */
6856 				if ((mp->b_cont = mp1->b_cont) == NULL) {
6857 					/*
6858 					 * After clipping out mp1, this guy
6859 					 * is now hanging off the end.
6860 					 */
6861 					ipf->ipf_tail_mp = mp;
6862 				}
6863 				IP_REASS_SET_START(mp1, 0);
6864 				IP_REASS_SET_END(mp1, 0);
6865 				/* Subtract byte count */
6866 				ipf->ipf_count -= mp1->b_datap->db_lim -
6867 				    mp1->b_datap->db_base;
6868 				freeb(mp1);
6869 				BUMP_MIB(ill->ill_ip_mib,
6870 				    ipIfStatsReasmPartDups);
6871 				mp1 = mp->b_cont;
6872 				if (!mp1)
6873 					break;
6874 				offset = IP_REASS_START(mp1);
6875 			}
6876 			ipf->ipf_mp->b_cont = mp;
6877 			continue;
6878 		}
6879 		/*
6880 		 * The new piece starts somewhere between the start of the head
6881 		 * and before the end of the tail.
6882 		 */
6883 		for (; mp1; mp1 = mp1->b_cont) {
6884 			offset = IP_REASS_END(mp1);
6885 			if (start < offset) {
6886 				if (end <= offset) {
6887 					/* Nothing new. */
6888 					IP_REASS_SET_START(mp, 0);
6889 					IP_REASS_SET_END(mp, 0);
6890 					/* Subtract byte count */
6891 					ipf->ipf_count -= mp->b_datap->db_lim -
6892 					    mp->b_datap->db_base;
6893 					if (incr_dups) {
6894 						ipf->ipf_num_dups++;
6895 						incr_dups = B_FALSE;
6896 					}
6897 					freeb(mp);
6898 					BUMP_MIB(ill->ill_ip_mib,
6899 					    ipIfStatsReasmDuplicates);
6900 					break;
6901 				}
6902 				/*
6903 				 * Trim redundant stuff off beginning of new
6904 				 * piece.
6905 				 */
6906 				IP_REASS_SET_START(mp, offset);
6907 				mp->b_rptr += offset - start;
6908 				BUMP_MIB(ill->ill_ip_mib,
6909 				    ipIfStatsReasmPartDups);
6910 				start = offset;
6911 				if (!mp1->b_cont) {
6912 					/*
6913 					 * After trimming, this guy is now
6914 					 * hanging off the end.
6915 					 */
6916 					mp1->b_cont = mp;
6917 					ipf->ipf_tail_mp = mp;
6918 					if (!more) {
6919 						ipf->ipf_hole_cnt--;
6920 					}
6921 					break;
6922 				}
6923 			}
6924 			if (start >= IP_REASS_START(mp1->b_cont))
6925 				continue;
6926 			/* Fill a hole */
6927 			if (start > offset)
6928 				ipf->ipf_hole_cnt++;
6929 			mp->b_cont = mp1->b_cont;
6930 			mp1->b_cont = mp;
6931 			mp1 = mp->b_cont;
6932 			offset = IP_REASS_START(mp1);
6933 			if (end >= offset) {
6934 				ipf->ipf_hole_cnt--;
6935 				/* Check for overlap. */
6936 				while (end > offset) {
6937 					if (end < IP_REASS_END(mp1)) {
6938 						mp->b_wptr -= end - offset;
6939 						IP_REASS_SET_END(mp, offset);
6940 						/*
6941 						 * TODO we might bump
6942 						 * this up twice if there is
6943 						 * overlap at both ends.
6944 						 */
6945 						BUMP_MIB(ill->ill_ip_mib,
6946 						    ipIfStatsReasmPartDups);
6947 						break;
6948 					}
6949 					/* Did we cover another hole? */
6950 					if ((mp1->b_cont &&
6951 					    IP_REASS_END(mp1)
6952 					    != IP_REASS_START(mp1->b_cont) &&
6953 					    end >=
6954 					    IP_REASS_START(mp1->b_cont)) ||
6955 					    (!ipf->ipf_last_frag_seen &&
6956 					    !more)) {
6957 						ipf->ipf_hole_cnt--;
6958 					}
6959 					/* Clip out mp1. */
6960 					if ((mp->b_cont = mp1->b_cont) ==
6961 					    NULL) {
6962 						/*
6963 						 * After clipping out mp1,
6964 						 * this guy is now hanging
6965 						 * off the end.
6966 						 */
6967 						ipf->ipf_tail_mp = mp;
6968 					}
6969 					IP_REASS_SET_START(mp1, 0);
6970 					IP_REASS_SET_END(mp1, 0);
6971 					/* Subtract byte count */
6972 					ipf->ipf_count -=
6973 					    mp1->b_datap->db_lim -
6974 					    mp1->b_datap->db_base;
6975 					freeb(mp1);
6976 					BUMP_MIB(ill->ill_ip_mib,
6977 					    ipIfStatsReasmPartDups);
6978 					mp1 = mp->b_cont;
6979 					if (!mp1)
6980 						break;
6981 					offset = IP_REASS_START(mp1);
6982 				}
6983 			}
6984 			break;
6985 		}
6986 	} while (start = end, mp = next_mp);
6987 
6988 	/* Fragment just processed could be the last one. Remember this fact */
6989 	if (!more)
6990 		ipf->ipf_last_frag_seen = B_TRUE;
6991 
6992 	/* Still got holes? */
6993 	if (ipf->ipf_hole_cnt)
6994 		return (IP_REASS_PARTIAL);
6995 	/* Clean up overloaded fields to avoid upstream disasters. */
6996 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6997 		IP_REASS_SET_START(mp1, 0);
6998 		IP_REASS_SET_END(mp1, 0);
6999 	}
7000 	return (IP_REASS_COMPLETE);
7001 }
7002 
7003 /*
7004  * Fragmentation reassembly.  Each ILL has a hash table for
7005  * queuing packets undergoing reassembly for all IPIFs
7006  * associated with the ILL.  The hash is based on the packet
7007  * IP ident field.  The ILL frag hash table was allocated
7008  * as a timer block at the time the ILL was created.  Whenever
7009  * there is anything on the reassembly queue, the timer will
7010  * be running.  Returns the reassembled packet if reassembly completes.
7011  */
7012 mblk_t *
7013 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7014 {
7015 	uint32_t	frag_offset_flags;
7016 	mblk_t		*t_mp;
7017 	ipaddr_t	dst;
7018 	uint8_t		proto = ipha->ipha_protocol;
7019 	uint32_t	sum_val;
7020 	uint16_t	sum_flags;
7021 	ipf_t		*ipf;
7022 	ipf_t		**ipfp;
7023 	ipfb_t		*ipfb;
7024 	uint16_t	ident;
7025 	uint32_t	offset;
7026 	ipaddr_t	src;
7027 	uint_t		hdr_length;
7028 	uint32_t	end;
7029 	mblk_t		*mp1;
7030 	mblk_t		*tail_mp;
7031 	size_t		count;
7032 	size_t		msg_len;
7033 	uint8_t		ecn_info = 0;
7034 	uint32_t	packet_size;
7035 	boolean_t	pruned = B_FALSE;
7036 	ill_t		*ill = ira->ira_ill;
7037 	ip_stack_t	*ipst = ill->ill_ipst;
7038 
7039 	/*
7040 	 * Drop the fragmented as early as possible, if
7041 	 * we don't have resource(s) to re-assemble.
7042 	 */
7043 	if (ipst->ips_ip_reass_queue_bytes == 0) {
7044 		freemsg(mp);
7045 		return (NULL);
7046 	}
7047 
7048 	/* Check for fragmentation offset; return if there's none */
7049 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7050 	    (IPH_MF | IPH_OFFSET)) == 0)
7051 		return (mp);
7052 
7053 	/*
7054 	 * We utilize hardware computed checksum info only for UDP since
7055 	 * IP fragmentation is a normal occurrence for the protocol.  In
7056 	 * addition, checksum offload support for IP fragments carrying
7057 	 * UDP payload is commonly implemented across network adapters.
7058 	 */
7059 	ASSERT(ira->ira_rill != NULL);
7060 	if (proto == IPPROTO_UDP && dohwcksum &&
7061 	    ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7062 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7063 		mblk_t *mp1 = mp->b_cont;
7064 		int32_t len;
7065 
7066 		/* Record checksum information from the packet */
7067 		sum_val = (uint32_t)DB_CKSUM16(mp);
7068 		sum_flags = DB_CKSUMFLAGS(mp);
7069 
7070 		/* IP payload offset from beginning of mblk */
7071 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7072 
7073 		if ((sum_flags & HCK_PARTIALCKSUM) &&
7074 		    (mp1 == NULL || mp1->b_cont == NULL) &&
7075 		    offset >= DB_CKSUMSTART(mp) &&
7076 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7077 			uint32_t adj;
7078 			/*
7079 			 * Partial checksum has been calculated by hardware
7080 			 * and attached to the packet; in addition, any
7081 			 * prepended extraneous data is even byte aligned.
7082 			 * If any such data exists, we adjust the checksum;
7083 			 * this would also handle any postpended data.
7084 			 */
7085 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7086 			    mp, mp1, len, adj);
7087 
7088 			/* One's complement subtract extraneous checksum */
7089 			if (adj >= sum_val)
7090 				sum_val = ~(adj - sum_val) & 0xFFFF;
7091 			else
7092 				sum_val -= adj;
7093 		}
7094 	} else {
7095 		sum_val = 0;
7096 		sum_flags = 0;
7097 	}
7098 
7099 	/* Clear hardware checksumming flag */
7100 	DB_CKSUMFLAGS(mp) = 0;
7101 
7102 	ident = ipha->ipha_ident;
7103 	offset = (frag_offset_flags << 3) & 0xFFFF;
7104 	src = ipha->ipha_src;
7105 	dst = ipha->ipha_dst;
7106 	hdr_length = IPH_HDR_LENGTH(ipha);
7107 	end = ntohs(ipha->ipha_length) - hdr_length;
7108 
7109 	/* If end == 0 then we have a packet with no data, so just free it */
7110 	if (end == 0) {
7111 		freemsg(mp);
7112 		return (NULL);
7113 	}
7114 
7115 	/* Record the ECN field info. */
7116 	ecn_info = (ipha->ipha_type_of_service & 0x3);
7117 	if (offset != 0) {
7118 		/*
7119 		 * If this isn't the first piece, strip the header, and
7120 		 * add the offset to the end value.
7121 		 */
7122 		mp->b_rptr += hdr_length;
7123 		end += offset;
7124 	}
7125 
7126 	/* Handle vnic loopback of fragments */
7127 	if (mp->b_datap->db_ref > 2)
7128 		msg_len = 0;
7129 	else
7130 		msg_len = MBLKSIZE(mp);
7131 
7132 	tail_mp = mp;
7133 	while (tail_mp->b_cont != NULL) {
7134 		tail_mp = tail_mp->b_cont;
7135 		if (tail_mp->b_datap->db_ref <= 2)
7136 			msg_len += MBLKSIZE(tail_mp);
7137 	}
7138 
7139 	/* If the reassembly list for this ILL will get too big, prune it */
7140 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7141 	    ipst->ips_ip_reass_queue_bytes) {
7142 		DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7143 		    uint_t, ill->ill_frag_count,
7144 		    uint_t, ipst->ips_ip_reass_queue_bytes);
7145 		ill_frag_prune(ill,
7146 		    (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7147 		    (ipst->ips_ip_reass_queue_bytes - msg_len));
7148 		pruned = B_TRUE;
7149 	}
7150 
7151 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7152 	mutex_enter(&ipfb->ipfb_lock);
7153 
7154 	ipfp = &ipfb->ipfb_ipf;
7155 	/* Try to find an existing fragment queue for this packet. */
7156 	for (;;) {
7157 		ipf = ipfp[0];
7158 		if (ipf != NULL) {
7159 			/*
7160 			 * It has to match on ident and src/dst address.
7161 			 */
7162 			if (ipf->ipf_ident == ident &&
7163 			    ipf->ipf_src == src &&
7164 			    ipf->ipf_dst == dst &&
7165 			    ipf->ipf_protocol == proto) {
7166 				/*
7167 				 * If we have received too many
7168 				 * duplicate fragments for this packet
7169 				 * free it.
7170 				 */
7171 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
7172 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
7173 					freemsg(mp);
7174 					mutex_exit(&ipfb->ipfb_lock);
7175 					return (NULL);
7176 				}
7177 				/* Found it. */
7178 				break;
7179 			}
7180 			ipfp = &ipf->ipf_hash_next;
7181 			continue;
7182 		}
7183 
7184 		/*
7185 		 * If we pruned the list, do we want to store this new
7186 		 * fragment?. We apply an optimization here based on the
7187 		 * fact that most fragments will be received in order.
7188 		 * So if the offset of this incoming fragment is zero,
7189 		 * it is the first fragment of a new packet. We will
7190 		 * keep it.  Otherwise drop the fragment, as we have
7191 		 * probably pruned the packet already (since the
7192 		 * packet cannot be found).
7193 		 */
7194 		if (pruned && offset != 0) {
7195 			mutex_exit(&ipfb->ipfb_lock);
7196 			freemsg(mp);
7197 			return (NULL);
7198 		}
7199 
7200 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7201 			/*
7202 			 * Too many fragmented packets in this hash
7203 			 * bucket. Free the oldest.
7204 			 */
7205 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7206 		}
7207 
7208 		/* New guy.  Allocate a frag message. */
7209 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
7210 		if (mp1 == NULL) {
7211 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7212 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7213 			freemsg(mp);
7214 reass_done:
7215 			mutex_exit(&ipfb->ipfb_lock);
7216 			return (NULL);
7217 		}
7218 
7219 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7220 		mp1->b_cont = mp;
7221 
7222 		/* Initialize the fragment header. */
7223 		ipf = (ipf_t *)mp1->b_rptr;
7224 		ipf->ipf_mp = mp1;
7225 		ipf->ipf_ptphn = ipfp;
7226 		ipfp[0] = ipf;
7227 		ipf->ipf_hash_next = NULL;
7228 		ipf->ipf_ident = ident;
7229 		ipf->ipf_protocol = proto;
7230 		ipf->ipf_src = src;
7231 		ipf->ipf_dst = dst;
7232 		ipf->ipf_nf_hdr_len = 0;
7233 		/* Record reassembly start time. */
7234 		ipf->ipf_timestamp = gethrestime_sec();
7235 		/* Record ipf generation and account for frag header */
7236 		ipf->ipf_gen = ill->ill_ipf_gen++;
7237 		ipf->ipf_count = MBLKSIZE(mp1);
7238 		ipf->ipf_last_frag_seen = B_FALSE;
7239 		ipf->ipf_ecn = ecn_info;
7240 		ipf->ipf_num_dups = 0;
7241 		ipfb->ipfb_frag_pkts++;
7242 		ipf->ipf_checksum = 0;
7243 		ipf->ipf_checksum_flags = 0;
7244 
7245 		/* Store checksum value in fragment header */
7246 		if (sum_flags != 0) {
7247 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7248 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7249 			ipf->ipf_checksum = sum_val;
7250 			ipf->ipf_checksum_flags = sum_flags;
7251 		}
7252 
7253 		/*
7254 		 * We handle reassembly two ways.  In the easy case,
7255 		 * where all the fragments show up in order, we do
7256 		 * minimal bookkeeping, and just clip new pieces on
7257 		 * the end.  If we ever see a hole, then we go off
7258 		 * to ip_reassemble which has to mark the pieces and
7259 		 * keep track of the number of holes, etc.  Obviously,
7260 		 * the point of having both mechanisms is so we can
7261 		 * handle the easy case as efficiently as possible.
7262 		 */
7263 		if (offset == 0) {
7264 			/* Easy case, in-order reassembly so far. */
7265 			ipf->ipf_count += msg_len;
7266 			ipf->ipf_tail_mp = tail_mp;
7267 			/*
7268 			 * Keep track of next expected offset in
7269 			 * ipf_end.
7270 			 */
7271 			ipf->ipf_end = end;
7272 			ipf->ipf_nf_hdr_len = hdr_length;
7273 		} else {
7274 			/* Hard case, hole at the beginning. */
7275 			ipf->ipf_tail_mp = NULL;
7276 			/*
7277 			 * ipf_end == 0 means that we have given up
7278 			 * on easy reassembly.
7279 			 */
7280 			ipf->ipf_end = 0;
7281 
7282 			/* Forget checksum offload from now on */
7283 			ipf->ipf_checksum_flags = 0;
7284 
7285 			/*
7286 			 * ipf_hole_cnt is set by ip_reassemble.
7287 			 * ipf_count is updated by ip_reassemble.
7288 			 * No need to check for return value here
7289 			 * as we don't expect reassembly to complete
7290 			 * or fail for the first fragment itself.
7291 			 */
7292 			(void) ip_reassemble(mp, ipf,
7293 			    (frag_offset_flags & IPH_OFFSET) << 3,
7294 			    (frag_offset_flags & IPH_MF), ill, msg_len);
7295 		}
7296 		/* Update per ipfb and ill byte counts */
7297 		ipfb->ipfb_count += ipf->ipf_count;
7298 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7299 		atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7300 		/* If the frag timer wasn't already going, start it. */
7301 		mutex_enter(&ill->ill_lock);
7302 		ill_frag_timer_start(ill);
7303 		mutex_exit(&ill->ill_lock);
7304 		goto reass_done;
7305 	}
7306 
7307 	/*
7308 	 * If the packet's flag has changed (it could be coming up
7309 	 * from an interface different than the previous, therefore
7310 	 * possibly different checksum capability), then forget about
7311 	 * any stored checksum states.  Otherwise add the value to
7312 	 * the existing one stored in the fragment header.
7313 	 */
7314 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7315 		sum_val += ipf->ipf_checksum;
7316 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7317 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7318 		ipf->ipf_checksum = sum_val;
7319 	} else if (ipf->ipf_checksum_flags != 0) {
7320 		/* Forget checksum offload from now on */
7321 		ipf->ipf_checksum_flags = 0;
7322 	}
7323 
7324 	/*
7325 	 * We have a new piece of a datagram which is already being
7326 	 * reassembled.  Update the ECN info if all IP fragments
7327 	 * are ECN capable.  If there is one which is not, clear
7328 	 * all the info.  If there is at least one which has CE
7329 	 * code point, IP needs to report that up to transport.
7330 	 */
7331 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7332 		if (ecn_info == IPH_ECN_CE)
7333 			ipf->ipf_ecn = IPH_ECN_CE;
7334 	} else {
7335 		ipf->ipf_ecn = IPH_ECN_NECT;
7336 	}
7337 	if (offset && ipf->ipf_end == offset) {
7338 		/* The new fragment fits at the end */
7339 		ipf->ipf_tail_mp->b_cont = mp;
7340 		/* Update the byte count */
7341 		ipf->ipf_count += msg_len;
7342 		/* Update per ipfb and ill byte counts */
7343 		ipfb->ipfb_count += msg_len;
7344 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7345 		atomic_add_32(&ill->ill_frag_count, msg_len);
7346 		if (frag_offset_flags & IPH_MF) {
7347 			/* More to come. */
7348 			ipf->ipf_end = end;
7349 			ipf->ipf_tail_mp = tail_mp;
7350 			goto reass_done;
7351 		}
7352 	} else {
7353 		/* Go do the hard cases. */
7354 		int ret;
7355 
7356 		if (offset == 0)
7357 			ipf->ipf_nf_hdr_len = hdr_length;
7358 
7359 		/* Save current byte count */
7360 		count = ipf->ipf_count;
7361 		ret = ip_reassemble(mp, ipf,
7362 		    (frag_offset_flags & IPH_OFFSET) << 3,
7363 		    (frag_offset_flags & IPH_MF), ill, msg_len);
7364 		/* Count of bytes added and subtracted (freeb()ed) */
7365 		count = ipf->ipf_count - count;
7366 		if (count) {
7367 			/* Update per ipfb and ill byte counts */
7368 			ipfb->ipfb_count += count;
7369 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7370 			atomic_add_32(&ill->ill_frag_count, count);
7371 		}
7372 		if (ret == IP_REASS_PARTIAL) {
7373 			goto reass_done;
7374 		} else if (ret == IP_REASS_FAILED) {
7375 			/* Reassembly failed. Free up all resources */
7376 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
7377 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7378 				IP_REASS_SET_START(t_mp, 0);
7379 				IP_REASS_SET_END(t_mp, 0);
7380 			}
7381 			freemsg(mp);
7382 			goto reass_done;
7383 		}
7384 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7385 	}
7386 	/*
7387 	 * We have completed reassembly.  Unhook the frag header from
7388 	 * the reassembly list.
7389 	 *
7390 	 * Before we free the frag header, record the ECN info
7391 	 * to report back to the transport.
7392 	 */
7393 	ecn_info = ipf->ipf_ecn;
7394 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7395 	ipfp = ipf->ipf_ptphn;
7396 
7397 	/* We need to supply these to caller */
7398 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7399 		sum_val = ipf->ipf_checksum;
7400 	else
7401 		sum_val = 0;
7402 
7403 	mp1 = ipf->ipf_mp;
7404 	count = ipf->ipf_count;
7405 	ipf = ipf->ipf_hash_next;
7406 	if (ipf != NULL)
7407 		ipf->ipf_ptphn = ipfp;
7408 	ipfp[0] = ipf;
7409 	atomic_add_32(&ill->ill_frag_count, -count);
7410 	ASSERT(ipfb->ipfb_count >= count);
7411 	ipfb->ipfb_count -= count;
7412 	ipfb->ipfb_frag_pkts--;
7413 	mutex_exit(&ipfb->ipfb_lock);
7414 	/* Ditch the frag header. */
7415 	mp = mp1->b_cont;
7416 
7417 	freeb(mp1);
7418 
7419 	/* Restore original IP length in header. */
7420 	packet_size = (uint32_t)msgdsize(mp);
7421 	if (packet_size > IP_MAXPACKET) {
7422 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7423 		ip_drop_input("Reassembled packet too large", mp, ill);
7424 		freemsg(mp);
7425 		return (NULL);
7426 	}
7427 
7428 	if (DB_REF(mp) > 1) {
7429 		mblk_t *mp2 = copymsg(mp);
7430 
7431 		if (mp2 == NULL) {
7432 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7433 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7434 			freemsg(mp);
7435 			return (NULL);
7436 		}
7437 		freemsg(mp);
7438 		mp = mp2;
7439 	}
7440 	ipha = (ipha_t *)mp->b_rptr;
7441 
7442 	ipha->ipha_length = htons((uint16_t)packet_size);
7443 	/* We're now complete, zip the frag state */
7444 	ipha->ipha_fragment_offset_and_flags = 0;
7445 	/* Record the ECN info. */
7446 	ipha->ipha_type_of_service &= 0xFC;
7447 	ipha->ipha_type_of_service |= ecn_info;
7448 
7449 	/* Update the receive attributes */
7450 	ira->ira_pktlen = packet_size;
7451 	ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7452 
7453 	/* Reassembly is successful; set checksum information in packet */
7454 	DB_CKSUM16(mp) = (uint16_t)sum_val;
7455 	DB_CKSUMFLAGS(mp) = sum_flags;
7456 	DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7457 
7458 	return (mp);
7459 }
7460 
7461 /*
7462  * Pullup function that should be used for IP input in order to
7463  * ensure we do not loose the L2 source address; we need the l2 source
7464  * address for IP_RECVSLLA and for ndp_input.
7465  *
7466  * We return either NULL or b_rptr.
7467  */
7468 void *
7469 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7470 {
7471 	ill_t		*ill = ira->ira_ill;
7472 
7473 	if (ip_rput_pullups++ == 0) {
7474 		(void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7475 		    "ip_pullup: %s forced us to "
7476 		    " pullup pkt, hdr len %ld, hdr addr %p",
7477 		    ill->ill_name, len, (void *)mp->b_rptr);
7478 	}
7479 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
7480 		ip_setl2src(mp, ira, ira->ira_rill);
7481 	ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7482 	if (!pullupmsg(mp, len))
7483 		return (NULL);
7484 	else
7485 		return (mp->b_rptr);
7486 }
7487 
7488 /*
7489  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7490  * When called from the ULP ira_rill will be NULL hence the caller has to
7491  * pass in the ill.
7492  */
7493 /* ARGSUSED */
7494 void
7495 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7496 {
7497 	const uchar_t *addr;
7498 	int alen;
7499 
7500 	if (ira->ira_flags & IRAF_L2SRC_SET)
7501 		return;
7502 
7503 	ASSERT(ill != NULL);
7504 	alen = ill->ill_phys_addr_length;
7505 	ASSERT(alen <= sizeof (ira->ira_l2src));
7506 	if (ira->ira_mhip != NULL &&
7507 	    (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7508 		bcopy(addr, ira->ira_l2src, alen);
7509 	} else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7510 	    (addr = ill->ill_phys_addr) != NULL) {
7511 		bcopy(addr, ira->ira_l2src, alen);
7512 	} else {
7513 		bzero(ira->ira_l2src, alen);
7514 	}
7515 	ira->ira_flags |= IRAF_L2SRC_SET;
7516 }
7517 
7518 /*
7519  * check ip header length and align it.
7520  */
7521 mblk_t *
7522 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7523 {
7524 	ill_t	*ill = ira->ira_ill;
7525 	ssize_t len;
7526 
7527 	len = MBLKL(mp);
7528 
7529 	if (!OK_32PTR(mp->b_rptr))
7530 		IP_STAT(ill->ill_ipst, ip_notaligned);
7531 	else
7532 		IP_STAT(ill->ill_ipst, ip_recv_pullup);
7533 
7534 	/* Guard against bogus device drivers */
7535 	if (len < 0) {
7536 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7537 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7538 		freemsg(mp);
7539 		return (NULL);
7540 	}
7541 
7542 	if (len == 0) {
7543 		/* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7544 		mblk_t *mp1 = mp->b_cont;
7545 
7546 		if (!(ira->ira_flags & IRAF_L2SRC_SET))
7547 			ip_setl2src(mp, ira, ira->ira_rill);
7548 		ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7549 
7550 		freeb(mp);
7551 		mp = mp1;
7552 		if (mp == NULL)
7553 			return (NULL);
7554 
7555 		if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7556 			return (mp);
7557 	}
7558 	if (ip_pullup(mp, min_size, ira) == NULL) {
7559 		if (msgdsize(mp) < min_size) {
7560 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7561 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7562 		} else {
7563 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7564 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7565 		}
7566 		freemsg(mp);
7567 		return (NULL);
7568 	}
7569 	return (mp);
7570 }
7571 
7572 /*
7573  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7574  */
7575 mblk_t *
7576 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len,	uint_t pkt_len,
7577     uint_t min_size, ip_recv_attr_t *ira)
7578 {
7579 	ill_t	*ill = ira->ira_ill;
7580 
7581 	/*
7582 	 * Make sure we have data length consistent
7583 	 * with the IP header.
7584 	 */
7585 	if (mp->b_cont == NULL) {
7586 		/* pkt_len is based on ipha_len, not the mblk length */
7587 		if (pkt_len < min_size) {
7588 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7589 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7590 			freemsg(mp);
7591 			return (NULL);
7592 		}
7593 		if (len < 0) {
7594 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7595 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7596 			freemsg(mp);
7597 			return (NULL);
7598 		}
7599 		/* Drop any pad */
7600 		mp->b_wptr = rptr + pkt_len;
7601 	} else if ((len += msgdsize(mp->b_cont)) != 0) {
7602 		ASSERT(pkt_len >= min_size);
7603 		if (pkt_len < min_size) {
7604 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7605 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7606 			freemsg(mp);
7607 			return (NULL);
7608 		}
7609 		if (len < 0) {
7610 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7611 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7612 			freemsg(mp);
7613 			return (NULL);
7614 		}
7615 		/* Drop any pad */
7616 		(void) adjmsg(mp, -len);
7617 		/*
7618 		 * adjmsg may have freed an mblk from the chain, hence
7619 		 * invalidate any hw checksum here. This will force IP to
7620 		 * calculate the checksum in sw, but only for this packet.
7621 		 */
7622 		DB_CKSUMFLAGS(mp) = 0;
7623 		IP_STAT(ill->ill_ipst, ip_multimblk);
7624 	}
7625 	return (mp);
7626 }
7627 
7628 /*
7629  * Check that the IPv4 opt_len is consistent with the packet and pullup
7630  * the options.
7631  */
7632 mblk_t *
7633 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7634     ip_recv_attr_t *ira)
7635 {
7636 	ill_t	*ill = ira->ira_ill;
7637 	ssize_t len;
7638 
7639 	/* Assume no IPv6 packets arrive over the IPv4 queue */
7640 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7641 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7642 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7643 		ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7644 		freemsg(mp);
7645 		return (NULL);
7646 	}
7647 
7648 	if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7649 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7650 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7651 		freemsg(mp);
7652 		return (NULL);
7653 	}
7654 	/*
7655 	 * Recompute complete header length and make sure we
7656 	 * have access to all of it.
7657 	 */
7658 	len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7659 	if (len > (mp->b_wptr - mp->b_rptr)) {
7660 		if (len > pkt_len) {
7661 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7662 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7663 			freemsg(mp);
7664 			return (NULL);
7665 		}
7666 		if (ip_pullup(mp, len, ira) == NULL) {
7667 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7668 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7669 			freemsg(mp);
7670 			return (NULL);
7671 		}
7672 	}
7673 	return (mp);
7674 }
7675 
7676 /*
7677  * Returns a new ire, or the same ire, or NULL.
7678  * If a different IRE is returned, then it is held; the caller
7679  * needs to release it.
7680  * In no case is there any hold/release on the ire argument.
7681  */
7682 ire_t *
7683 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7684 {
7685 	ire_t		*new_ire;
7686 	ill_t		*ire_ill;
7687 	uint_t		ifindex;
7688 	ip_stack_t	*ipst = ill->ill_ipst;
7689 	boolean_t	strict_check = B_FALSE;
7690 
7691 	/*
7692 	 * IPMP common case: if IRE and ILL are in the same group, there's no
7693 	 * issue (e.g. packet received on an underlying interface matched an
7694 	 * IRE_LOCAL on its associated group interface).
7695 	 */
7696 	ASSERT(ire->ire_ill != NULL);
7697 	if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7698 		return (ire);
7699 
7700 	/*
7701 	 * Do another ire lookup here, using the ingress ill, to see if the
7702 	 * interface is in a usesrc group.
7703 	 * As long as the ills belong to the same group, we don't consider
7704 	 * them to be arriving on the wrong interface. Thus, if the switch
7705 	 * is doing inbound load spreading, we won't drop packets when the
7706 	 * ip*_strict_dst_multihoming switch is on.
7707 	 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7708 	 * where the local address may not be unique. In this case we were
7709 	 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7710 	 * actually returned. The new lookup, which is more specific, should
7711 	 * only find the IRE_LOCAL associated with the ingress ill if one
7712 	 * exists.
7713 	 */
7714 	if (ire->ire_ipversion == IPV4_VERSION) {
7715 		if (ipst->ips_ip_strict_dst_multihoming)
7716 			strict_check = B_TRUE;
7717 		new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7718 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7719 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7720 	} else {
7721 		ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7722 		if (ipst->ips_ipv6_strict_dst_multihoming)
7723 			strict_check = B_TRUE;
7724 		new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7725 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7726 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7727 	}
7728 	/*
7729 	 * If the same ire that was returned in ip_input() is found then this
7730 	 * is an indication that usesrc groups are in use. The packet
7731 	 * arrived on a different ill in the group than the one associated with
7732 	 * the destination address.  If a different ire was found then the same
7733 	 * IP address must be hosted on multiple ills. This is possible with
7734 	 * unnumbered point2point interfaces. We switch to use this new ire in
7735 	 * order to have accurate interface statistics.
7736 	 */
7737 	if (new_ire != NULL) {
7738 		/* Note: held in one case but not the other? Caller handles */
7739 		if (new_ire != ire)
7740 			return (new_ire);
7741 		/* Unchanged */
7742 		ire_refrele(new_ire);
7743 		return (ire);
7744 	}
7745 
7746 	/*
7747 	 * Chase pointers once and store locally.
7748 	 */
7749 	ASSERT(ire->ire_ill != NULL);
7750 	ire_ill = ire->ire_ill;
7751 	ifindex = ill->ill_usesrc_ifindex;
7752 
7753 	/*
7754 	 * Check if it's a legal address on the 'usesrc' interface.
7755 	 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7756 	 * can just check phyint_ifindex.
7757 	 */
7758 	if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7759 		return (ire);
7760 	}
7761 
7762 	/*
7763 	 * If the ip*_strict_dst_multihoming switch is on then we can
7764 	 * only accept this packet if the interface is marked as routing.
7765 	 */
7766 	if (!(strict_check))
7767 		return (ire);
7768 
7769 	if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7770 		return (ire);
7771 	}
7772 	return (NULL);
7773 }
7774 
7775 /*
7776  * This function is used to construct a mac_header_info_s from a
7777  * DL_UNITDATA_IND message.
7778  * The address fields in the mhi structure points into the message,
7779  * thus the caller can't use those fields after freeing the message.
7780  *
7781  * We determine whether the packet received is a non-unicast packet
7782  * and in doing so, determine whether or not it is broadcast vs multicast.
7783  * For it to be a broadcast packet, we must have the appropriate mblk_t
7784  * hanging off the ill_t.  If this is either not present or doesn't match
7785  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7786  * to be multicast.  Thus NICs that have no broadcast address (or no
7787  * capability for one, such as point to point links) cannot return as
7788  * the packet being broadcast.
7789  */
7790 void
7791 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7792 {
7793 	dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7794 	mblk_t *bmp;
7795 	uint_t extra_offset;
7796 
7797 	bzero(mhip, sizeof (struct mac_header_info_s));
7798 
7799 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7800 
7801 	if (ill->ill_sap_length < 0)
7802 		extra_offset = 0;
7803 	else
7804 		extra_offset = ill->ill_sap_length;
7805 
7806 	mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7807 	    extra_offset;
7808 	mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7809 	    extra_offset;
7810 
7811 	if (!ind->dl_group_address)
7812 		return;
7813 
7814 	/* Multicast or broadcast */
7815 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7816 
7817 	if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7818 	    ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7819 	    (bmp = ill->ill_bcast_mp) != NULL) {
7820 		dl_unitdata_req_t *dlur;
7821 		uint8_t *bphys_addr;
7822 
7823 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7824 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7825 		    extra_offset;
7826 
7827 		if (bcmp(mhip->mhi_daddr, bphys_addr,
7828 		    ind->dl_dest_addr_length) == 0)
7829 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7830 	}
7831 }
7832 
7833 /*
7834  * This function is used to construct a mac_header_info_s from a
7835  * M_DATA fastpath message from a DLPI driver.
7836  * The address fields in the mhi structure points into the message,
7837  * thus the caller can't use those fields after freeing the message.
7838  *
7839  * We determine whether the packet received is a non-unicast packet
7840  * and in doing so, determine whether or not it is broadcast vs multicast.
7841  * For it to be a broadcast packet, we must have the appropriate mblk_t
7842  * hanging off the ill_t.  If this is either not present or doesn't match
7843  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7844  * to be multicast.  Thus NICs that have no broadcast address (or no
7845  * capability for one, such as point to point links) cannot return as
7846  * the packet being broadcast.
7847  */
7848 void
7849 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7850 {
7851 	mblk_t *bmp;
7852 	struct ether_header *pether;
7853 
7854 	bzero(mhip, sizeof (struct mac_header_info_s));
7855 
7856 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7857 
7858 	pether = (struct ether_header *)((char *)mp->b_rptr
7859 	    - sizeof (struct ether_header));
7860 
7861 	/*
7862 	 * Make sure the interface is an ethernet type, since we don't
7863 	 * know the header format for anything but Ethernet. Also make
7864 	 * sure we are pointing correctly above db_base.
7865 	 */
7866 	if (ill->ill_type != IFT_ETHER)
7867 		return;
7868 
7869 retry:
7870 	if ((uchar_t *)pether < mp->b_datap->db_base)
7871 		return;
7872 
7873 	/* Is there a VLAN tag? */
7874 	if (ill->ill_isv6) {
7875 		if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7876 			pether = (struct ether_header *)((char *)pether - 4);
7877 			goto retry;
7878 		}
7879 	} else {
7880 		if (pether->ether_type != htons(ETHERTYPE_IP)) {
7881 			pether = (struct ether_header *)((char *)pether - 4);
7882 			goto retry;
7883 		}
7884 	}
7885 	mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7886 	mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7887 
7888 	if (!(mhip->mhi_daddr[0] & 0x01))
7889 		return;
7890 
7891 	/* Multicast or broadcast */
7892 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7893 
7894 	if ((bmp = ill->ill_bcast_mp) != NULL) {
7895 		dl_unitdata_req_t *dlur;
7896 		uint8_t *bphys_addr;
7897 		uint_t	addrlen;
7898 
7899 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7900 		addrlen = dlur->dl_dest_addr_length;
7901 		if (ill->ill_sap_length < 0) {
7902 			bphys_addr = (uchar_t *)dlur +
7903 			    dlur->dl_dest_addr_offset;
7904 			addrlen += ill->ill_sap_length;
7905 		} else {
7906 			bphys_addr = (uchar_t *)dlur +
7907 			    dlur->dl_dest_addr_offset +
7908 			    ill->ill_sap_length;
7909 			addrlen -= ill->ill_sap_length;
7910 		}
7911 		if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7912 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7913 	}
7914 }
7915 
7916 /*
7917  * Handle anything but M_DATA messages
7918  * We see the DL_UNITDATA_IND which are part
7919  * of the data path, and also the other messages from the driver.
7920  */
7921 void
7922 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7923 {
7924 	mblk_t		*first_mp;
7925 	struct iocblk   *iocp;
7926 	struct mac_header_info_s mhi;
7927 
7928 	switch (DB_TYPE(mp)) {
7929 	case M_PROTO:
7930 	case M_PCPROTO: {
7931 		if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7932 		    DL_UNITDATA_IND) {
7933 			/* Go handle anything other than data elsewhere. */
7934 			ip_rput_dlpi(ill, mp);
7935 			return;
7936 		}
7937 
7938 		first_mp = mp;
7939 		mp = first_mp->b_cont;
7940 		first_mp->b_cont = NULL;
7941 
7942 		if (mp == NULL) {
7943 			freeb(first_mp);
7944 			return;
7945 		}
7946 		ip_dlur_to_mhi(ill, first_mp, &mhi);
7947 		if (ill->ill_isv6)
7948 			ip_input_v6(ill, NULL, mp, &mhi);
7949 		else
7950 			ip_input(ill, NULL, mp, &mhi);
7951 
7952 		/* Ditch the DLPI header. */
7953 		freeb(first_mp);
7954 		return;
7955 	}
7956 	case M_IOCACK:
7957 		iocp = (struct iocblk *)mp->b_rptr;
7958 		switch (iocp->ioc_cmd) {
7959 		case DL_IOC_HDR_INFO:
7960 			ill_fastpath_ack(ill, mp);
7961 			return;
7962 		default:
7963 			putnext(ill->ill_rq, mp);
7964 			return;
7965 		}
7966 		/* FALLTHRU */
7967 	case M_ERROR:
7968 	case M_HANGUP:
7969 		mutex_enter(&ill->ill_lock);
7970 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7971 			mutex_exit(&ill->ill_lock);
7972 			freemsg(mp);
7973 			return;
7974 		}
7975 		ill_refhold_locked(ill);
7976 		mutex_exit(&ill->ill_lock);
7977 		qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7978 		    B_FALSE);
7979 		return;
7980 	case M_CTL:
7981 		putnext(ill->ill_rq, mp);
7982 		return;
7983 	case M_IOCNAK:
7984 		ip1dbg(("got iocnak "));
7985 		iocp = (struct iocblk *)mp->b_rptr;
7986 		switch (iocp->ioc_cmd) {
7987 		case DL_IOC_HDR_INFO:
7988 			ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7989 			return;
7990 		default:
7991 			break;
7992 		}
7993 		/* FALLTHRU */
7994 	default:
7995 		putnext(ill->ill_rq, mp);
7996 		return;
7997 	}
7998 }
7999 
8000 /* Read side put procedure.  Packets coming from the wire arrive here. */
8001 void
8002 ip_rput(queue_t *q, mblk_t *mp)
8003 {
8004 	ill_t	*ill;
8005 	union DL_primitives *dl;
8006 
8007 	ill = (ill_t *)q->q_ptr;
8008 
8009 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8010 		/*
8011 		 * If things are opening or closing, only accept high-priority
8012 		 * DLPI messages.  (On open ill->ill_ipif has not yet been
8013 		 * created; on close, things hanging off the ill may have been
8014 		 * freed already.)
8015 		 */
8016 		dl = (union DL_primitives *)mp->b_rptr;
8017 		if (DB_TYPE(mp) != M_PCPROTO ||
8018 		    dl->dl_primitive == DL_UNITDATA_IND) {
8019 			inet_freemsg(mp);
8020 			return;
8021 		}
8022 	}
8023 	if (DB_TYPE(mp) == M_DATA) {
8024 		struct mac_header_info_s mhi;
8025 
8026 		ip_mdata_to_mhi(ill, mp, &mhi);
8027 		ip_input(ill, NULL, mp, &mhi);
8028 	} else {
8029 		ip_rput_notdata(ill, mp);
8030 	}
8031 }
8032 
8033 /*
8034  * Move the information to a copy.
8035  */
8036 mblk_t *
8037 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8038 {
8039 	mblk_t		*mp1;
8040 	ill_t		*ill = ira->ira_ill;
8041 	ip_stack_t	*ipst = ill->ill_ipst;
8042 
8043 	IP_STAT(ipst, ip_db_ref);
8044 
8045 	/* Make sure we have ira_l2src before we loose the original mblk */
8046 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
8047 		ip_setl2src(mp, ira, ira->ira_rill);
8048 
8049 	mp1 = copymsg(mp);
8050 	if (mp1 == NULL) {
8051 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8052 		ip_drop_input("ipIfStatsInDiscards", mp, ill);
8053 		freemsg(mp);
8054 		return (NULL);
8055 	}
8056 	/* preserve the hardware checksum flags and data, if present */
8057 	if (DB_CKSUMFLAGS(mp) != 0) {
8058 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8059 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8060 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8061 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8062 		DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8063 	}
8064 	freemsg(mp);
8065 	return (mp1);
8066 }
8067 
8068 static void
8069 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8070     t_uscalar_t err)
8071 {
8072 	if (dl_err == DL_SYSERR) {
8073 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8074 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
8075 		    ill->ill_name, dl_primstr(prim), err);
8076 		return;
8077 	}
8078 
8079 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8080 	    "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8081 	    dl_errstr(dl_err));
8082 }
8083 
8084 /*
8085  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8086  * than DL_UNITDATA_IND messages. If we need to process this message
8087  * exclusively, we call qwriter_ip, in which case we also need to call
8088  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8089  */
8090 void
8091 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8092 {
8093 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8094 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8095 	queue_t		*q = ill->ill_rq;
8096 	t_uscalar_t	prim = dloa->dl_primitive;
8097 	t_uscalar_t	reqprim = DL_PRIM_INVAL;
8098 
8099 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8100 	    char *, dl_primstr(prim), ill_t *, ill);
8101 	ip1dbg(("ip_rput_dlpi"));
8102 
8103 	/*
8104 	 * If we received an ACK but didn't send a request for it, then it
8105 	 * can't be part of any pending operation; discard up-front.
8106 	 */
8107 	switch (prim) {
8108 	case DL_ERROR_ACK:
8109 		reqprim = dlea->dl_error_primitive;
8110 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8111 		    "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8112 		    reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8113 		    dlea->dl_unix_errno));
8114 		break;
8115 	case DL_OK_ACK:
8116 		reqprim = dloa->dl_correct_primitive;
8117 		break;
8118 	case DL_INFO_ACK:
8119 		reqprim = DL_INFO_REQ;
8120 		break;
8121 	case DL_BIND_ACK:
8122 		reqprim = DL_BIND_REQ;
8123 		break;
8124 	case DL_PHYS_ADDR_ACK:
8125 		reqprim = DL_PHYS_ADDR_REQ;
8126 		break;
8127 	case DL_NOTIFY_ACK:
8128 		reqprim = DL_NOTIFY_REQ;
8129 		break;
8130 	case DL_CAPABILITY_ACK:
8131 		reqprim = DL_CAPABILITY_REQ;
8132 		break;
8133 	}
8134 
8135 	if (prim != DL_NOTIFY_IND) {
8136 		if (reqprim == DL_PRIM_INVAL ||
8137 		    !ill_dlpi_pending(ill, reqprim)) {
8138 			/* Not a DLPI message we support or expected */
8139 			freemsg(mp);
8140 			return;
8141 		}
8142 		ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8143 		    dl_primstr(reqprim)));
8144 	}
8145 
8146 	switch (reqprim) {
8147 	case DL_UNBIND_REQ:
8148 		/*
8149 		 * NOTE: we mark the unbind as complete even if we got a
8150 		 * DL_ERROR_ACK, since there's not much else we can do.
8151 		 */
8152 		mutex_enter(&ill->ill_lock);
8153 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8154 		cv_signal(&ill->ill_cv);
8155 		mutex_exit(&ill->ill_lock);
8156 		break;
8157 
8158 	case DL_ENABMULTI_REQ:
8159 		if (prim == DL_OK_ACK) {
8160 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8161 				ill->ill_dlpi_multicast_state = IDS_OK;
8162 		}
8163 		break;
8164 	}
8165 
8166 	/*
8167 	 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8168 	 * need to become writer to continue to process it.  Because an
8169 	 * exclusive operation doesn't complete until replies to all queued
8170 	 * DLPI messages have been received, we know we're in the middle of an
8171 	 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8172 	 *
8173 	 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8174 	 * Since this is on the ill stream we unconditionally bump up the
8175 	 * refcount without doing ILL_CAN_LOOKUP().
8176 	 */
8177 	ill_refhold(ill);
8178 	if (prim == DL_NOTIFY_IND)
8179 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8180 	else
8181 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8182 }
8183 
8184 /*
8185  * Handling of DLPI messages that require exclusive access to the ipsq.
8186  *
8187  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8188  * happen here. (along with mi_copy_done)
8189  */
8190 /* ARGSUSED */
8191 static void
8192 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8193 {
8194 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8195 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8196 	int		err = 0;
8197 	ill_t		*ill = (ill_t *)q->q_ptr;
8198 	ipif_t		*ipif = NULL;
8199 	mblk_t		*mp1 = NULL;
8200 	conn_t		*connp = NULL;
8201 	t_uscalar_t	paddrreq;
8202 	mblk_t		*mp_hw;
8203 	boolean_t	success;
8204 	boolean_t	ioctl_aborted = B_FALSE;
8205 	boolean_t	log = B_TRUE;
8206 
8207 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8208 	    char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8209 
8210 	ip1dbg(("ip_rput_dlpi_writer .."));
8211 	ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8212 	ASSERT(IAM_WRITER_ILL(ill));
8213 
8214 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8215 	/*
8216 	 * The current ioctl could have been aborted by the user and a new
8217 	 * ioctl to bring up another ill could have started. We could still
8218 	 * get a response from the driver later.
8219 	 */
8220 	if (ipif != NULL && ipif->ipif_ill != ill)
8221 		ioctl_aborted = B_TRUE;
8222 
8223 	switch (dloa->dl_primitive) {
8224 	case DL_ERROR_ACK:
8225 		ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8226 		    dl_primstr(dlea->dl_error_primitive)));
8227 
8228 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8229 		    char *, dl_primstr(dlea->dl_error_primitive),
8230 		    ill_t *, ill);
8231 
8232 		switch (dlea->dl_error_primitive) {
8233 		case DL_DISABMULTI_REQ:
8234 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8235 			break;
8236 		case DL_PROMISCON_REQ:
8237 		case DL_PROMISCOFF_REQ:
8238 		case DL_UNBIND_REQ:
8239 		case DL_ATTACH_REQ:
8240 		case DL_INFO_REQ:
8241 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8242 			break;
8243 		case DL_NOTIFY_REQ:
8244 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
8245 			log = B_FALSE;
8246 			break;
8247 		case DL_PHYS_ADDR_REQ:
8248 			/*
8249 			 * For IPv6 only, there are two additional
8250 			 * phys_addr_req's sent to the driver to get the
8251 			 * IPv6 token and lla. This allows IP to acquire
8252 			 * the hardware address format for a given interface
8253 			 * without having built in knowledge of the hardware
8254 			 * address. ill_phys_addr_pend keeps track of the last
8255 			 * DL_PAR sent so we know which response we are
8256 			 * dealing with. ill_dlpi_done will update
8257 			 * ill_phys_addr_pend when it sends the next req.
8258 			 * We don't complete the IOCTL until all three DL_PARs
8259 			 * have been attempted, so set *_len to 0 and break.
8260 			 */
8261 			paddrreq = ill->ill_phys_addr_pend;
8262 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8263 			if (paddrreq == DL_IPV6_TOKEN) {
8264 				ill->ill_token_length = 0;
8265 				log = B_FALSE;
8266 				break;
8267 			} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8268 				ill->ill_nd_lla_len = 0;
8269 				log = B_FALSE;
8270 				break;
8271 			}
8272 			/*
8273 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
8274 			 * We presumably have an IOCTL hanging out waiting
8275 			 * for completion. Find it and complete the IOCTL
8276 			 * with the error noted.
8277 			 * However, ill_dl_phys was called on an ill queue
8278 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8279 			 * set. But the ioctl is known to be pending on ill_wq.
8280 			 */
8281 			if (!ill->ill_ifname_pending)
8282 				break;
8283 			ill->ill_ifname_pending = 0;
8284 			if (!ioctl_aborted)
8285 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8286 			if (mp1 != NULL) {
8287 				/*
8288 				 * This operation (SIOCSLIFNAME) must have
8289 				 * happened on the ill. Assert there is no conn
8290 				 */
8291 				ASSERT(connp == NULL);
8292 				q = ill->ill_wq;
8293 			}
8294 			break;
8295 		case DL_BIND_REQ:
8296 			ill_dlpi_done(ill, DL_BIND_REQ);
8297 			if (ill->ill_ifname_pending)
8298 				break;
8299 			mutex_enter(&ill->ill_lock);
8300 			ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8301 			mutex_exit(&ill->ill_lock);
8302 			/*
8303 			 * Something went wrong with the bind.  We presumably
8304 			 * have an IOCTL hanging out waiting for completion.
8305 			 * Find it, take down the interface that was coming
8306 			 * up, and complete the IOCTL with the error noted.
8307 			 */
8308 			if (!ioctl_aborted)
8309 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8310 			if (mp1 != NULL) {
8311 				/*
8312 				 * This might be a result of a DL_NOTE_REPLUMB
8313 				 * notification. In that case, connp is NULL.
8314 				 */
8315 				if (connp != NULL)
8316 					q = CONNP_TO_WQ(connp);
8317 
8318 				(void) ipif_down(ipif, NULL, NULL);
8319 				/* error is set below the switch */
8320 			}
8321 			break;
8322 		case DL_ENABMULTI_REQ:
8323 			ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8324 
8325 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8326 				ill->ill_dlpi_multicast_state = IDS_FAILED;
8327 			if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8328 
8329 				printf("ip: joining multicasts failed (%d)"
8330 				    " on %s - will use link layer "
8331 				    "broadcasts for multicast\n",
8332 				    dlea->dl_errno, ill->ill_name);
8333 
8334 				/*
8335 				 * Set up for multi_bcast; We are the
8336 				 * writer, so ok to access ill->ill_ipif
8337 				 * without any lock.
8338 				 */
8339 				mutex_enter(&ill->ill_phyint->phyint_lock);
8340 				ill->ill_phyint->phyint_flags |=
8341 				    PHYI_MULTI_BCAST;
8342 				mutex_exit(&ill->ill_phyint->phyint_lock);
8343 
8344 			}
8345 			freemsg(mp);	/* Don't want to pass this up */
8346 			return;
8347 		case DL_CAPABILITY_REQ:
8348 			ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8349 			    "DL_CAPABILITY REQ\n"));
8350 			if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8351 				ill->ill_dlpi_capab_state = IDCS_FAILED;
8352 			ill_capability_done(ill);
8353 			freemsg(mp);
8354 			return;
8355 		}
8356 		/*
8357 		 * Note the error for IOCTL completion (mp1 is set when
8358 		 * ready to complete ioctl). If ill_ifname_pending_err is
8359 		 * set, an error occured during plumbing (ill_ifname_pending),
8360 		 * so we want to report that error.
8361 		 *
8362 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8363 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8364 		 * expected to get errack'd if the driver doesn't support
8365 		 * these flags (e.g. ethernet). log will be set to B_FALSE
8366 		 * if these error conditions are encountered.
8367 		 */
8368 		if (mp1 != NULL) {
8369 			if (ill->ill_ifname_pending_err != 0)  {
8370 				err = ill->ill_ifname_pending_err;
8371 				ill->ill_ifname_pending_err = 0;
8372 			} else {
8373 				err = dlea->dl_unix_errno ?
8374 				    dlea->dl_unix_errno : ENXIO;
8375 			}
8376 		/*
8377 		 * If we're plumbing an interface and an error hasn't already
8378 		 * been saved, set ill_ifname_pending_err to the error passed
8379 		 * up. Ignore the error if log is B_FALSE (see comment above).
8380 		 */
8381 		} else if (log && ill->ill_ifname_pending &&
8382 		    ill->ill_ifname_pending_err == 0) {
8383 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8384 			    dlea->dl_unix_errno : ENXIO;
8385 		}
8386 
8387 		if (log)
8388 			ip_dlpi_error(ill, dlea->dl_error_primitive,
8389 			    dlea->dl_errno, dlea->dl_unix_errno);
8390 		break;
8391 	case DL_CAPABILITY_ACK:
8392 		ill_capability_ack(ill, mp);
8393 		/*
8394 		 * The message has been handed off to ill_capability_ack
8395 		 * and must not be freed below
8396 		 */
8397 		mp = NULL;
8398 		break;
8399 
8400 	case DL_INFO_ACK:
8401 		/* Call a routine to handle this one. */
8402 		ill_dlpi_done(ill, DL_INFO_REQ);
8403 		ip_ll_subnet_defaults(ill, mp);
8404 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8405 		return;
8406 	case DL_BIND_ACK:
8407 		/*
8408 		 * We should have an IOCTL waiting on this unless
8409 		 * sent by ill_dl_phys, in which case just return
8410 		 */
8411 		ill_dlpi_done(ill, DL_BIND_REQ);
8412 
8413 		if (ill->ill_ifname_pending) {
8414 			DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8415 			    ill_t *, ill, mblk_t *, mp);
8416 			break;
8417 		}
8418 		mutex_enter(&ill->ill_lock);
8419 		ill->ill_dl_up = 1;
8420 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8421 		mutex_exit(&ill->ill_lock);
8422 
8423 		if (!ioctl_aborted)
8424 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8425 		if (mp1 == NULL) {
8426 			DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8427 			break;
8428 		}
8429 		/*
8430 		 * mp1 was added by ill_dl_up(). if that is a result of
8431 		 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8432 		 */
8433 		if (connp != NULL)
8434 			q = CONNP_TO_WQ(connp);
8435 		/*
8436 		 * We are exclusive. So nothing can change even after
8437 		 * we get the pending mp.
8438 		 */
8439 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8440 		DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8441 		ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8442 
8443 		/*
8444 		 * Now bring up the resolver; when that is complete, we'll
8445 		 * create IREs.  Note that we intentionally mirror what
8446 		 * ipif_up() would have done, because we got here by way of
8447 		 * ill_dl_up(), which stopped ipif_up()'s processing.
8448 		 */
8449 		if (ill->ill_isv6) {
8450 			/*
8451 			 * v6 interfaces.
8452 			 * Unlike ARP which has to do another bind
8453 			 * and attach, once we get here we are
8454 			 * done with NDP
8455 			 */
8456 			(void) ipif_resolver_up(ipif, Res_act_initial);
8457 			if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8458 				err = ipif_up_done_v6(ipif);
8459 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8460 			/*
8461 			 * ARP and other v4 external resolvers.
8462 			 * Leave the pending mblk intact so that
8463 			 * the ioctl completes in ip_rput().
8464 			 */
8465 			if (connp != NULL)
8466 				mutex_enter(&connp->conn_lock);
8467 			mutex_enter(&ill->ill_lock);
8468 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8469 			mutex_exit(&ill->ill_lock);
8470 			if (connp != NULL)
8471 				mutex_exit(&connp->conn_lock);
8472 			if (success) {
8473 				err = ipif_resolver_up(ipif, Res_act_initial);
8474 				if (err == EINPROGRESS) {
8475 					freemsg(mp);
8476 					return;
8477 				}
8478 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8479 			} else {
8480 				/* The conn has started closing */
8481 				err = EINTR;
8482 			}
8483 		} else {
8484 			/*
8485 			 * This one is complete. Reply to pending ioctl.
8486 			 */
8487 			(void) ipif_resolver_up(ipif, Res_act_initial);
8488 			err = ipif_up_done(ipif);
8489 		}
8490 
8491 		if ((err == 0) && (ill->ill_up_ipifs)) {
8492 			err = ill_up_ipifs(ill, q, mp1);
8493 			if (err == EINPROGRESS) {
8494 				freemsg(mp);
8495 				return;
8496 			}
8497 		}
8498 
8499 		/*
8500 		 * If we have a moved ipif to bring up, and everything has
8501 		 * succeeded to this point, bring it up on the IPMP ill.
8502 		 * Otherwise, leave it down -- the admin can try to bring it
8503 		 * up by hand if need be.
8504 		 */
8505 		if (ill->ill_move_ipif != NULL) {
8506 			if (err != 0) {
8507 				ill->ill_move_ipif = NULL;
8508 			} else {
8509 				ipif = ill->ill_move_ipif;
8510 				ill->ill_move_ipif = NULL;
8511 				err = ipif_up(ipif, q, mp1);
8512 				if (err == EINPROGRESS) {
8513 					freemsg(mp);
8514 					return;
8515 				}
8516 			}
8517 		}
8518 		break;
8519 
8520 	case DL_NOTIFY_IND: {
8521 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8522 		uint_t orig_mtu, orig_mc_mtu;
8523 
8524 		switch (notify->dl_notification) {
8525 		case DL_NOTE_PHYS_ADDR:
8526 			err = ill_set_phys_addr(ill, mp);
8527 			break;
8528 
8529 		case DL_NOTE_REPLUMB:
8530 			/*
8531 			 * Directly return after calling ill_replumb().
8532 			 * Note that we should not free mp as it is reused
8533 			 * in the ill_replumb() function.
8534 			 */
8535 			err = ill_replumb(ill, mp);
8536 			return;
8537 
8538 		case DL_NOTE_FASTPATH_FLUSH:
8539 			nce_flush(ill, B_FALSE);
8540 			break;
8541 
8542 		case DL_NOTE_SDU_SIZE:
8543 		case DL_NOTE_SDU_SIZE2:
8544 			/*
8545 			 * The dce and fragmentation code can cope with
8546 			 * this changing while packets are being sent.
8547 			 * When packets are sent ip_output will discover
8548 			 * a change.
8549 			 *
8550 			 * Change the MTU size of the interface.
8551 			 */
8552 			mutex_enter(&ill->ill_lock);
8553 			orig_mtu = ill->ill_mtu;
8554 			orig_mc_mtu = ill->ill_mc_mtu;
8555 			switch (notify->dl_notification) {
8556 			case DL_NOTE_SDU_SIZE:
8557 				ill->ill_current_frag =
8558 				    (uint_t)notify->dl_data;
8559 				ill->ill_mc_mtu = (uint_t)notify->dl_data;
8560 				break;
8561 			case DL_NOTE_SDU_SIZE2:
8562 				ill->ill_current_frag =
8563 				    (uint_t)notify->dl_data1;
8564 				ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8565 				break;
8566 			}
8567 			if (ill->ill_current_frag > ill->ill_max_frag)
8568 				ill->ill_max_frag = ill->ill_current_frag;
8569 
8570 			if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8571 				ill->ill_mtu = ill->ill_current_frag;
8572 
8573 				/*
8574 				 * If ill_user_mtu was set (via
8575 				 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8576 				 */
8577 				if (ill->ill_user_mtu != 0 &&
8578 				    ill->ill_user_mtu < ill->ill_mtu)
8579 					ill->ill_mtu = ill->ill_user_mtu;
8580 
8581 				if (ill->ill_user_mtu != 0 &&
8582 				    ill->ill_user_mtu < ill->ill_mc_mtu)
8583 					ill->ill_mc_mtu = ill->ill_user_mtu;
8584 
8585 				if (ill->ill_isv6) {
8586 					if (ill->ill_mtu < IPV6_MIN_MTU)
8587 						ill->ill_mtu = IPV6_MIN_MTU;
8588 					if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8589 						ill->ill_mc_mtu = IPV6_MIN_MTU;
8590 				} else {
8591 					if (ill->ill_mtu < IP_MIN_MTU)
8592 						ill->ill_mtu = IP_MIN_MTU;
8593 					if (ill->ill_mc_mtu < IP_MIN_MTU)
8594 						ill->ill_mc_mtu = IP_MIN_MTU;
8595 				}
8596 			} else if (ill->ill_mc_mtu > ill->ill_mtu) {
8597 				ill->ill_mc_mtu = ill->ill_mtu;
8598 			}
8599 
8600 			mutex_exit(&ill->ill_lock);
8601 			/*
8602 			 * Make sure all dce_generation checks find out
8603 			 * that ill_mtu/ill_mc_mtu has changed.
8604 			 */
8605 			if (orig_mtu != ill->ill_mtu ||
8606 			    orig_mc_mtu != ill->ill_mc_mtu) {
8607 				dce_increment_all_generations(ill->ill_isv6,
8608 				    ill->ill_ipst);
8609 			}
8610 
8611 			/*
8612 			 * Refresh IPMP meta-interface MTU if necessary.
8613 			 */
8614 			if (IS_UNDER_IPMP(ill))
8615 				ipmp_illgrp_refresh_mtu(ill->ill_grp);
8616 			break;
8617 
8618 		case DL_NOTE_LINK_UP:
8619 		case DL_NOTE_LINK_DOWN: {
8620 			/*
8621 			 * We are writer. ill / phyint / ipsq assocs stable.
8622 			 * The RUNNING flag reflects the state of the link.
8623 			 */
8624 			phyint_t *phyint = ill->ill_phyint;
8625 			uint64_t new_phyint_flags;
8626 			boolean_t changed = B_FALSE;
8627 			boolean_t went_up;
8628 
8629 			went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8630 			mutex_enter(&phyint->phyint_lock);
8631 
8632 			new_phyint_flags = went_up ?
8633 			    phyint->phyint_flags | PHYI_RUNNING :
8634 			    phyint->phyint_flags & ~PHYI_RUNNING;
8635 
8636 			if (IS_IPMP(ill)) {
8637 				new_phyint_flags = went_up ?
8638 				    new_phyint_flags & ~PHYI_FAILED :
8639 				    new_phyint_flags | PHYI_FAILED;
8640 			}
8641 
8642 			if (new_phyint_flags != phyint->phyint_flags) {
8643 				phyint->phyint_flags = new_phyint_flags;
8644 				changed = B_TRUE;
8645 			}
8646 			mutex_exit(&phyint->phyint_lock);
8647 			/*
8648 			 * ill_restart_dad handles the DAD restart and routing
8649 			 * socket notification logic.
8650 			 */
8651 			if (changed) {
8652 				ill_restart_dad(phyint->phyint_illv4, went_up);
8653 				ill_restart_dad(phyint->phyint_illv6, went_up);
8654 			}
8655 			break;
8656 		}
8657 		case DL_NOTE_PROMISC_ON_PHYS: {
8658 			phyint_t *phyint = ill->ill_phyint;
8659 
8660 			mutex_enter(&phyint->phyint_lock);
8661 			phyint->phyint_flags |= PHYI_PROMISC;
8662 			mutex_exit(&phyint->phyint_lock);
8663 			break;
8664 		}
8665 		case DL_NOTE_PROMISC_OFF_PHYS: {
8666 			phyint_t *phyint = ill->ill_phyint;
8667 
8668 			mutex_enter(&phyint->phyint_lock);
8669 			phyint->phyint_flags &= ~PHYI_PROMISC;
8670 			mutex_exit(&phyint->phyint_lock);
8671 			break;
8672 		}
8673 		case DL_NOTE_CAPAB_RENEG:
8674 			/*
8675 			 * Something changed on the driver side.
8676 			 * It wants us to renegotiate the capabilities
8677 			 * on this ill. One possible cause is the aggregation
8678 			 * interface under us where a port got added or
8679 			 * went away.
8680 			 *
8681 			 * If the capability negotiation is already done
8682 			 * or is in progress, reset the capabilities and
8683 			 * mark the ill's ill_capab_reneg to be B_TRUE,
8684 			 * so that when the ack comes back, we can start
8685 			 * the renegotiation process.
8686 			 *
8687 			 * Note that if ill_capab_reneg is already B_TRUE
8688 			 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8689 			 * the capability resetting request has been sent
8690 			 * and the renegotiation has not been started yet;
8691 			 * nothing needs to be done in this case.
8692 			 */
8693 			ipsq_current_start(ipsq, ill->ill_ipif, 0);
8694 			ill_capability_reset(ill, B_TRUE);
8695 			ipsq_current_finish(ipsq);
8696 			break;
8697 
8698 		case DL_NOTE_ALLOWED_IPS:
8699 			ill_set_allowed_ips(ill, mp);
8700 			break;
8701 		default:
8702 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8703 			    "type 0x%x for DL_NOTIFY_IND\n",
8704 			    notify->dl_notification));
8705 			break;
8706 		}
8707 
8708 		/*
8709 		 * As this is an asynchronous operation, we
8710 		 * should not call ill_dlpi_done
8711 		 */
8712 		break;
8713 	}
8714 	case DL_NOTIFY_ACK: {
8715 		dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8716 
8717 		if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8718 			ill->ill_note_link = 1;
8719 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
8720 		break;
8721 	}
8722 	case DL_PHYS_ADDR_ACK: {
8723 		/*
8724 		 * As part of plumbing the interface via SIOCSLIFNAME,
8725 		 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8726 		 * whose answers we receive here.  As each answer is received,
8727 		 * we call ill_dlpi_done() to dispatch the next request as
8728 		 * we're processing the current one.  Once all answers have
8729 		 * been received, we use ipsq_pending_mp_get() to dequeue the
8730 		 * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8731 		 * is invoked from an ill queue, conn_oper_pending_ill is not
8732 		 * available, but we know the ioctl is pending on ill_wq.)
8733 		 */
8734 		uint_t	paddrlen, paddroff;
8735 		uint8_t	*addr;
8736 
8737 		paddrreq = ill->ill_phys_addr_pend;
8738 		paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8739 		paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8740 		addr = mp->b_rptr + paddroff;
8741 
8742 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8743 		if (paddrreq == DL_IPV6_TOKEN) {
8744 			/*
8745 			 * bcopy to low-order bits of ill_token
8746 			 *
8747 			 * XXX Temporary hack - currently, all known tokens
8748 			 * are 64 bits, so I'll cheat for the moment.
8749 			 */
8750 			bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8751 			ill->ill_token_length = paddrlen;
8752 			break;
8753 		} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8754 			ASSERT(ill->ill_nd_lla_mp == NULL);
8755 			ill_set_ndmp(ill, mp, paddroff, paddrlen);
8756 			mp = NULL;
8757 			break;
8758 		} else if (paddrreq == DL_CURR_DEST_ADDR) {
8759 			ASSERT(ill->ill_dest_addr_mp == NULL);
8760 			ill->ill_dest_addr_mp = mp;
8761 			ill->ill_dest_addr = addr;
8762 			mp = NULL;
8763 			if (ill->ill_isv6) {
8764 				ill_setdesttoken(ill);
8765 				ipif_setdestlinklocal(ill->ill_ipif);
8766 			}
8767 			break;
8768 		}
8769 
8770 		ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8771 		ASSERT(ill->ill_phys_addr_mp == NULL);
8772 		if (!ill->ill_ifname_pending)
8773 			break;
8774 		ill->ill_ifname_pending = 0;
8775 		if (!ioctl_aborted)
8776 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8777 		if (mp1 != NULL) {
8778 			ASSERT(connp == NULL);
8779 			q = ill->ill_wq;
8780 		}
8781 		/*
8782 		 * If any error acks received during the plumbing sequence,
8783 		 * ill_ifname_pending_err will be set. Break out and send up
8784 		 * the error to the pending ioctl.
8785 		 */
8786 		if (ill->ill_ifname_pending_err != 0) {
8787 			err = ill->ill_ifname_pending_err;
8788 			ill->ill_ifname_pending_err = 0;
8789 			break;
8790 		}
8791 
8792 		ill->ill_phys_addr_mp = mp;
8793 		ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8794 		mp = NULL;
8795 
8796 		/*
8797 		 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8798 		 * provider doesn't support physical addresses.  We check both
8799 		 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8800 		 * not have physical addresses, but historically adversises a
8801 		 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8802 		 * its DL_PHYS_ADDR_ACK.
8803 		 */
8804 		if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8805 			ill->ill_phys_addr = NULL;
8806 		} else if (paddrlen != ill->ill_phys_addr_length) {
8807 			ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8808 			    paddrlen, ill->ill_phys_addr_length));
8809 			err = EINVAL;
8810 			break;
8811 		}
8812 
8813 		if (ill->ill_nd_lla_mp == NULL) {
8814 			if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8815 				err = ENOMEM;
8816 				break;
8817 			}
8818 			ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8819 		}
8820 
8821 		if (ill->ill_isv6) {
8822 			ill_setdefaulttoken(ill);
8823 			ipif_setlinklocal(ill->ill_ipif);
8824 		}
8825 		break;
8826 	}
8827 	case DL_OK_ACK:
8828 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8829 		    dl_primstr((int)dloa->dl_correct_primitive),
8830 		    dloa->dl_correct_primitive));
8831 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8832 		    char *, dl_primstr(dloa->dl_correct_primitive),
8833 		    ill_t *, ill);
8834 
8835 		switch (dloa->dl_correct_primitive) {
8836 		case DL_ENABMULTI_REQ:
8837 		case DL_DISABMULTI_REQ:
8838 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8839 			break;
8840 		case DL_PROMISCON_REQ:
8841 		case DL_PROMISCOFF_REQ:
8842 		case DL_UNBIND_REQ:
8843 		case DL_ATTACH_REQ:
8844 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8845 			break;
8846 		}
8847 		break;
8848 	default:
8849 		break;
8850 	}
8851 
8852 	freemsg(mp);
8853 	if (mp1 == NULL)
8854 		return;
8855 
8856 	/*
8857 	 * The operation must complete without EINPROGRESS since
8858 	 * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8859 	 * the operation will be stuck forever inside the IPSQ.
8860 	 */
8861 	ASSERT(err != EINPROGRESS);
8862 
8863 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8864 	    int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8865 	    ipif_t *, NULL);
8866 
8867 	switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8868 	case 0:
8869 		ipsq_current_finish(ipsq);
8870 		break;
8871 
8872 	case SIOCSLIFNAME:
8873 	case IF_UNITSEL: {
8874 		ill_t *ill_other = ILL_OTHER(ill);
8875 
8876 		/*
8877 		 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8878 		 * ill has a peer which is in an IPMP group, then place ill
8879 		 * into the same group.  One catch: although ifconfig plumbs
8880 		 * the appropriate IPMP meta-interface prior to plumbing this
8881 		 * ill, it is possible for multiple ifconfig applications to
8882 		 * race (or for another application to adjust plumbing), in
8883 		 * which case the IPMP meta-interface we need will be missing.
8884 		 * If so, kick the phyint out of the group.
8885 		 */
8886 		if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8887 			ipmp_grp_t	*grp = ill->ill_phyint->phyint_grp;
8888 			ipmp_illgrp_t	*illg;
8889 
8890 			illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8891 			if (illg == NULL)
8892 				ipmp_phyint_leave_grp(ill->ill_phyint);
8893 			else
8894 				ipmp_ill_join_illgrp(ill, illg);
8895 		}
8896 
8897 		if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8898 			ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8899 		else
8900 			ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8901 		break;
8902 	}
8903 	case SIOCLIFADDIF:
8904 		ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8905 		break;
8906 
8907 	default:
8908 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8909 		break;
8910 	}
8911 }
8912 
8913 /*
8914  * ip_rput_other is called by ip_rput to handle messages modifying the global
8915  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8916  */
8917 /* ARGSUSED */
8918 void
8919 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8920 {
8921 	ill_t		*ill = q->q_ptr;
8922 	struct iocblk	*iocp;
8923 
8924 	ip1dbg(("ip_rput_other "));
8925 	if (ipsq != NULL) {
8926 		ASSERT(IAM_WRITER_IPSQ(ipsq));
8927 		ASSERT(ipsq->ipsq_xop ==
8928 		    ill->ill_phyint->phyint_ipsq->ipsq_xop);
8929 	}
8930 
8931 	switch (mp->b_datap->db_type) {
8932 	case M_ERROR:
8933 	case M_HANGUP:
8934 		/*
8935 		 * The device has a problem.  We force the ILL down.  It can
8936 		 * be brought up again manually using SIOCSIFFLAGS (via
8937 		 * ifconfig or equivalent).
8938 		 */
8939 		ASSERT(ipsq != NULL);
8940 		if (mp->b_rptr < mp->b_wptr)
8941 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8942 		if (ill->ill_error == 0)
8943 			ill->ill_error = ENXIO;
8944 		if (!ill_down_start(q, mp))
8945 			return;
8946 		ipif_all_down_tail(ipsq, q, mp, NULL);
8947 		break;
8948 	case M_IOCNAK: {
8949 		iocp = (struct iocblk *)mp->b_rptr;
8950 
8951 		ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8952 		/*
8953 		 * If this was the first attempt, turn off the fastpath
8954 		 * probing.
8955 		 */
8956 		mutex_enter(&ill->ill_lock);
8957 		if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8958 			ill->ill_dlpi_fastpath_state = IDS_FAILED;
8959 			mutex_exit(&ill->ill_lock);
8960 			/*
8961 			 * don't flush the nce_t entries: we use them
8962 			 * as an index to the ncec itself.
8963 			 */
8964 			ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8965 			    ill->ill_name));
8966 		} else {
8967 			mutex_exit(&ill->ill_lock);
8968 		}
8969 		freemsg(mp);
8970 		break;
8971 	}
8972 	default:
8973 		ASSERT(0);
8974 		break;
8975 	}
8976 }
8977 
8978 /*
8979  * Update any source route, record route or timestamp options
8980  * When it fails it has consumed the message and BUMPed the MIB.
8981  */
8982 boolean_t
8983 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8984     ip_recv_attr_t *ira)
8985 {
8986 	ipoptp_t	opts;
8987 	uchar_t		*opt;
8988 	uint8_t		optval;
8989 	uint8_t		optlen;
8990 	ipaddr_t	dst;
8991 	ipaddr_t	ifaddr;
8992 	uint32_t	ts;
8993 	timestruc_t	now;
8994 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
8995 
8996 	ip2dbg(("ip_forward_options\n"));
8997 	dst = ipha->ipha_dst;
8998 	for (optval = ipoptp_first(&opts, ipha);
8999 	    optval != IPOPT_EOL;
9000 	    optval = ipoptp_next(&opts)) {
9001 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9002 		opt = opts.ipoptp_cur;
9003 		optlen = opts.ipoptp_len;
9004 		ip2dbg(("ip_forward_options: opt %d, len %d\n",
9005 		    optval, opts.ipoptp_len));
9006 		switch (optval) {
9007 			uint32_t off;
9008 		case IPOPT_SSRR:
9009 		case IPOPT_LSRR:
9010 			/* Check if adminstratively disabled */
9011 			if (!ipst->ips_ip_forward_src_routed) {
9012 				BUMP_MIB(dst_ill->ill_ip_mib,
9013 				    ipIfStatsForwProhibits);
9014 				ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
9015 				    mp, dst_ill);
9016 				icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
9017 				    ira);
9018 				return (B_FALSE);
9019 			}
9020 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9021 				/*
9022 				 * Must be partial since ip_input_options
9023 				 * checked for strict.
9024 				 */
9025 				break;
9026 			}
9027 			off = opt[IPOPT_OFFSET];
9028 			off--;
9029 		redo_srr:
9030 			if (optlen < IP_ADDR_LEN ||
9031 			    off > optlen - IP_ADDR_LEN) {
9032 				/* End of source route */
9033 				ip1dbg((
9034 				    "ip_forward_options: end of SR\n"));
9035 				break;
9036 			}
9037 			/* Pick a reasonable address on the outbound if */
9038 			ASSERT(dst_ill != NULL);
9039 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9040 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9041 			    NULL) != 0) {
9042 				/* No source! Shouldn't happen */
9043 				ifaddr = INADDR_ANY;
9044 			}
9045 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9046 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9047 			ip1dbg(("ip_forward_options: next hop 0x%x\n",
9048 			    ntohl(dst)));
9049 
9050 			/*
9051 			 * Check if our address is present more than
9052 			 * once as consecutive hops in source route.
9053 			 */
9054 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9055 				off += IP_ADDR_LEN;
9056 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9057 				goto redo_srr;
9058 			}
9059 			ipha->ipha_dst = dst;
9060 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9061 			break;
9062 		case IPOPT_RR:
9063 			off = opt[IPOPT_OFFSET];
9064 			off--;
9065 			if (optlen < IP_ADDR_LEN ||
9066 			    off > optlen - IP_ADDR_LEN) {
9067 				/* No more room - ignore */
9068 				ip1dbg((
9069 				    "ip_forward_options: end of RR\n"));
9070 				break;
9071 			}
9072 			/* Pick a reasonable address on the outbound if */
9073 			ASSERT(dst_ill != NULL);
9074 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9075 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9076 			    NULL) != 0) {
9077 				/* No source! Shouldn't happen */
9078 				ifaddr = INADDR_ANY;
9079 			}
9080 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9081 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9082 			break;
9083 		case IPOPT_TS:
9084 			/* Insert timestamp if there is room */
9085 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9086 			case IPOPT_TS_TSONLY:
9087 				off = IPOPT_TS_TIMELEN;
9088 				break;
9089 			case IPOPT_TS_PRESPEC:
9090 			case IPOPT_TS_PRESPEC_RFC791:
9091 				/* Verify that the address matched */
9092 				off = opt[IPOPT_OFFSET] - 1;
9093 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9094 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9095 					/* Not for us */
9096 					break;
9097 				}
9098 				/* FALLTHRU */
9099 			case IPOPT_TS_TSANDADDR:
9100 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9101 				break;
9102 			default:
9103 				/*
9104 				 * ip_*put_options should have already
9105 				 * dropped this packet.
9106 				 */
9107 				cmn_err(CE_PANIC, "ip_forward_options: "
9108 				    "unknown IT - bug in ip_input_options?\n");
9109 				return (B_TRUE);	/* Keep "lint" happy */
9110 			}
9111 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9112 				/* Increase overflow counter */
9113 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9114 				opt[IPOPT_POS_OV_FLG] =
9115 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9116 				    (off << 4));
9117 				break;
9118 			}
9119 			off = opt[IPOPT_OFFSET] - 1;
9120 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9121 			case IPOPT_TS_PRESPEC:
9122 			case IPOPT_TS_PRESPEC_RFC791:
9123 			case IPOPT_TS_TSANDADDR:
9124 				/* Pick a reasonable addr on the outbound if */
9125 				ASSERT(dst_ill != NULL);
9126 				if (ip_select_source_v4(dst_ill, INADDR_ANY,
9127 				    dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9128 				    NULL, NULL) != 0) {
9129 					/* No source! Shouldn't happen */
9130 					ifaddr = INADDR_ANY;
9131 				}
9132 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9133 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9134 				/* FALLTHRU */
9135 			case IPOPT_TS_TSONLY:
9136 				off = opt[IPOPT_OFFSET] - 1;
9137 				/* Compute # of milliseconds since midnight */
9138 				gethrestime(&now);
9139 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9140 				    NSEC2MSEC(now.tv_nsec);
9141 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9142 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9143 				break;
9144 			}
9145 			break;
9146 		}
9147 	}
9148 	return (B_TRUE);
9149 }
9150 
9151 /*
9152  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9153  * returns 'true' if there are still fragments left on the queue, in
9154  * which case we restart the timer.
9155  */
9156 void
9157 ill_frag_timer(void *arg)
9158 {
9159 	ill_t	*ill = (ill_t *)arg;
9160 	boolean_t frag_pending;
9161 	ip_stack_t *ipst = ill->ill_ipst;
9162 	time_t	timeout;
9163 
9164 	mutex_enter(&ill->ill_lock);
9165 	ASSERT(!ill->ill_fragtimer_executing);
9166 	if (ill->ill_state_flags & ILL_CONDEMNED) {
9167 		ill->ill_frag_timer_id = 0;
9168 		mutex_exit(&ill->ill_lock);
9169 		return;
9170 	}
9171 	ill->ill_fragtimer_executing = 1;
9172 	mutex_exit(&ill->ill_lock);
9173 
9174 	timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9175 	    ipst->ips_ip_reassembly_timeout);
9176 
9177 	frag_pending = ill_frag_timeout(ill, timeout);
9178 
9179 	/*
9180 	 * Restart the timer, if we have fragments pending or if someone
9181 	 * wanted us to be scheduled again.
9182 	 */
9183 	mutex_enter(&ill->ill_lock);
9184 	ill->ill_fragtimer_executing = 0;
9185 	ill->ill_frag_timer_id = 0;
9186 	if (frag_pending || ill->ill_fragtimer_needrestart)
9187 		ill_frag_timer_start(ill);
9188 	mutex_exit(&ill->ill_lock);
9189 }
9190 
9191 void
9192 ill_frag_timer_start(ill_t *ill)
9193 {
9194 	ip_stack_t *ipst = ill->ill_ipst;
9195 	clock_t	timeo_ms;
9196 
9197 	ASSERT(MUTEX_HELD(&ill->ill_lock));
9198 
9199 	/* If the ill is closing or opening don't proceed */
9200 	if (ill->ill_state_flags & ILL_CONDEMNED)
9201 		return;
9202 
9203 	if (ill->ill_fragtimer_executing) {
9204 		/*
9205 		 * ill_frag_timer is currently executing. Just record the
9206 		 * the fact that we want the timer to be restarted.
9207 		 * ill_frag_timer will post a timeout before it returns,
9208 		 * ensuring it will be called again.
9209 		 */
9210 		ill->ill_fragtimer_needrestart = 1;
9211 		return;
9212 	}
9213 
9214 	if (ill->ill_frag_timer_id == 0) {
9215 		timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9216 		    ipst->ips_ip_reassembly_timeout) * SECONDS;
9217 
9218 		/*
9219 		 * The timer is neither running nor is the timeout handler
9220 		 * executing. Post a timeout so that ill_frag_timer will be
9221 		 * called
9222 		 */
9223 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9224 		    MSEC_TO_TICK(timeo_ms >> 1));
9225 		ill->ill_fragtimer_needrestart = 0;
9226 	}
9227 }
9228 
9229 /*
9230  * Update any source route, record route or timestamp options.
9231  * Check that we are at end of strict source route.
9232  * The options have already been checked for sanity in ip_input_options().
9233  */
9234 boolean_t
9235 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9236 {
9237 	ipoptp_t	opts;
9238 	uchar_t		*opt;
9239 	uint8_t		optval;
9240 	uint8_t		optlen;
9241 	ipaddr_t	dst;
9242 	ipaddr_t	ifaddr;
9243 	uint32_t	ts;
9244 	timestruc_t	now;
9245 	ill_t		*ill = ira->ira_ill;
9246 	ip_stack_t	*ipst = ill->ill_ipst;
9247 
9248 	ip2dbg(("ip_input_local_options\n"));
9249 
9250 	for (optval = ipoptp_first(&opts, ipha);
9251 	    optval != IPOPT_EOL;
9252 	    optval = ipoptp_next(&opts)) {
9253 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9254 		opt = opts.ipoptp_cur;
9255 		optlen = opts.ipoptp_len;
9256 		ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9257 		    optval, optlen));
9258 		switch (optval) {
9259 			uint32_t off;
9260 		case IPOPT_SSRR:
9261 		case IPOPT_LSRR:
9262 			off = opt[IPOPT_OFFSET];
9263 			off--;
9264 			if (optlen < IP_ADDR_LEN ||
9265 			    off > optlen - IP_ADDR_LEN) {
9266 				/* End of source route */
9267 				ip1dbg(("ip_input_local_options: end of SR\n"));
9268 				break;
9269 			}
9270 			/*
9271 			 * This will only happen if two consecutive entries
9272 			 * in the source route contains our address or if
9273 			 * it is a packet with a loose source route which
9274 			 * reaches us before consuming the whole source route
9275 			 */
9276 			ip1dbg(("ip_input_local_options: not end of SR\n"));
9277 			if (optval == IPOPT_SSRR) {
9278 				goto bad_src_route;
9279 			}
9280 			/*
9281 			 * Hack: instead of dropping the packet truncate the
9282 			 * source route to what has been used by filling the
9283 			 * rest with IPOPT_NOP.
9284 			 */
9285 			opt[IPOPT_OLEN] = (uint8_t)off;
9286 			while (off < optlen) {
9287 				opt[off++] = IPOPT_NOP;
9288 			}
9289 			break;
9290 		case IPOPT_RR:
9291 			off = opt[IPOPT_OFFSET];
9292 			off--;
9293 			if (optlen < IP_ADDR_LEN ||
9294 			    off > optlen - IP_ADDR_LEN) {
9295 				/* No more room - ignore */
9296 				ip1dbg((
9297 				    "ip_input_local_options: end of RR\n"));
9298 				break;
9299 			}
9300 			/* Pick a reasonable address on the outbound if */
9301 			if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9302 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9303 			    NULL) != 0) {
9304 				/* No source! Shouldn't happen */
9305 				ifaddr = INADDR_ANY;
9306 			}
9307 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9308 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9309 			break;
9310 		case IPOPT_TS:
9311 			/* Insert timestamp if there is romm */
9312 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9313 			case IPOPT_TS_TSONLY:
9314 				off = IPOPT_TS_TIMELEN;
9315 				break;
9316 			case IPOPT_TS_PRESPEC:
9317 			case IPOPT_TS_PRESPEC_RFC791:
9318 				/* Verify that the address matched */
9319 				off = opt[IPOPT_OFFSET] - 1;
9320 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9321 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9322 					/* Not for us */
9323 					break;
9324 				}
9325 				/* FALLTHRU */
9326 			case IPOPT_TS_TSANDADDR:
9327 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9328 				break;
9329 			default:
9330 				/*
9331 				 * ip_*put_options should have already
9332 				 * dropped this packet.
9333 				 */
9334 				cmn_err(CE_PANIC, "ip_input_local_options: "
9335 				    "unknown IT - bug in ip_input_options?\n");
9336 				return (B_TRUE);	/* Keep "lint" happy */
9337 			}
9338 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9339 				/* Increase overflow counter */
9340 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9341 				opt[IPOPT_POS_OV_FLG] =
9342 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9343 				    (off << 4));
9344 				break;
9345 			}
9346 			off = opt[IPOPT_OFFSET] - 1;
9347 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9348 			case IPOPT_TS_PRESPEC:
9349 			case IPOPT_TS_PRESPEC_RFC791:
9350 			case IPOPT_TS_TSANDADDR:
9351 				/* Pick a reasonable addr on the outbound if */
9352 				if (ip_select_source_v4(ill, INADDR_ANY,
9353 				    ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9354 				    &ifaddr, NULL, NULL) != 0) {
9355 					/* No source! Shouldn't happen */
9356 					ifaddr = INADDR_ANY;
9357 				}
9358 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9359 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9360 				/* FALLTHRU */
9361 			case IPOPT_TS_TSONLY:
9362 				off = opt[IPOPT_OFFSET] - 1;
9363 				/* Compute # of milliseconds since midnight */
9364 				gethrestime(&now);
9365 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9366 				    NSEC2MSEC(now.tv_nsec);
9367 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9368 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9369 				break;
9370 			}
9371 			break;
9372 		}
9373 	}
9374 	return (B_TRUE);
9375 
9376 bad_src_route:
9377 	/* make sure we clear any indication of a hardware checksum */
9378 	DB_CKSUMFLAGS(mp) = 0;
9379 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9380 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9381 	return (B_FALSE);
9382 
9383 }
9384 
9385 /*
9386  * Process IP options in an inbound packet.  Always returns the nexthop.
9387  * Normally this is the passed in nexthop, but if there is an option
9388  * that effects the nexthop (such as a source route) that will be returned.
9389  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9390  * and mp freed.
9391  */
9392 ipaddr_t
9393 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9394     ip_recv_attr_t *ira, int *errorp)
9395 {
9396 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9397 	ipoptp_t	opts;
9398 	uchar_t		*opt;
9399 	uint8_t		optval;
9400 	uint8_t		optlen;
9401 	intptr_t	code = 0;
9402 	ire_t		*ire;
9403 
9404 	ip2dbg(("ip_input_options\n"));
9405 	*errorp = 0;
9406 	for (optval = ipoptp_first(&opts, ipha);
9407 	    optval != IPOPT_EOL;
9408 	    optval = ipoptp_next(&opts)) {
9409 		opt = opts.ipoptp_cur;
9410 		optlen = opts.ipoptp_len;
9411 		ip2dbg(("ip_input_options: opt %d, len %d\n",
9412 		    optval, optlen));
9413 		/*
9414 		 * Note: we need to verify the checksum before we
9415 		 * modify anything thus this routine only extracts the next
9416 		 * hop dst from any source route.
9417 		 */
9418 		switch (optval) {
9419 			uint32_t off;
9420 		case IPOPT_SSRR:
9421 		case IPOPT_LSRR:
9422 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9423 				if (optval == IPOPT_SSRR) {
9424 					ip1dbg(("ip_input_options: not next"
9425 					    " strict source route 0x%x\n",
9426 					    ntohl(dst)));
9427 					code = (char *)&ipha->ipha_dst -
9428 					    (char *)ipha;
9429 					goto param_prob; /* RouterReq's */
9430 				}
9431 				ip2dbg(("ip_input_options: "
9432 				    "not next source route 0x%x\n",
9433 				    ntohl(dst)));
9434 				break;
9435 			}
9436 
9437 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9438 				ip1dbg((
9439 				    "ip_input_options: bad option offset\n"));
9440 				code = (char *)&opt[IPOPT_OLEN] -
9441 				    (char *)ipha;
9442 				goto param_prob;
9443 			}
9444 			off = opt[IPOPT_OFFSET];
9445 			off--;
9446 		redo_srr:
9447 			if (optlen < IP_ADDR_LEN ||
9448 			    off > optlen - IP_ADDR_LEN) {
9449 				/* End of source route */
9450 				ip1dbg(("ip_input_options: end of SR\n"));
9451 				break;
9452 			}
9453 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9454 			ip1dbg(("ip_input_options: next hop 0x%x\n",
9455 			    ntohl(dst)));
9456 
9457 			/*
9458 			 * Check if our address is present more than
9459 			 * once as consecutive hops in source route.
9460 			 * XXX verify per-interface ip_forwarding
9461 			 * for source route?
9462 			 */
9463 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9464 				off += IP_ADDR_LEN;
9465 				goto redo_srr;
9466 			}
9467 
9468 			if (dst == htonl(INADDR_LOOPBACK)) {
9469 				ip1dbg(("ip_input_options: loopback addr in "
9470 				    "source route!\n"));
9471 				goto bad_src_route;
9472 			}
9473 			/*
9474 			 * For strict: verify that dst is directly
9475 			 * reachable.
9476 			 */
9477 			if (optval == IPOPT_SSRR) {
9478 				ire = ire_ftable_lookup_v4(dst, 0, 0,
9479 				    IRE_INTERFACE, NULL, ALL_ZONES,
9480 				    ira->ira_tsl,
9481 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9482 				    NULL);
9483 				if (ire == NULL) {
9484 					ip1dbg(("ip_input_options: SSRR not "
9485 					    "directly reachable: 0x%x\n",
9486 					    ntohl(dst)));
9487 					goto bad_src_route;
9488 				}
9489 				ire_refrele(ire);
9490 			}
9491 			/*
9492 			 * Defer update of the offset and the record route
9493 			 * until the packet is forwarded.
9494 			 */
9495 			break;
9496 		case IPOPT_RR:
9497 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9498 				ip1dbg((
9499 				    "ip_input_options: bad option offset\n"));
9500 				code = (char *)&opt[IPOPT_OLEN] -
9501 				    (char *)ipha;
9502 				goto param_prob;
9503 			}
9504 			break;
9505 		case IPOPT_TS:
9506 			/*
9507 			 * Verify that length >= 5 and that there is either
9508 			 * room for another timestamp or that the overflow
9509 			 * counter is not maxed out.
9510 			 */
9511 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9512 			if (optlen < IPOPT_MINLEN_IT) {
9513 				goto param_prob;
9514 			}
9515 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9516 				ip1dbg((
9517 				    "ip_input_options: bad option offset\n"));
9518 				code = (char *)&opt[IPOPT_OFFSET] -
9519 				    (char *)ipha;
9520 				goto param_prob;
9521 			}
9522 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9523 			case IPOPT_TS_TSONLY:
9524 				off = IPOPT_TS_TIMELEN;
9525 				break;
9526 			case IPOPT_TS_TSANDADDR:
9527 			case IPOPT_TS_PRESPEC:
9528 			case IPOPT_TS_PRESPEC_RFC791:
9529 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9530 				break;
9531 			default:
9532 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
9533 				    (char *)ipha;
9534 				goto param_prob;
9535 			}
9536 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9537 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9538 				/*
9539 				 * No room and the overflow counter is 15
9540 				 * already.
9541 				 */
9542 				goto param_prob;
9543 			}
9544 			break;
9545 		}
9546 	}
9547 
9548 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9549 		return (dst);
9550 	}
9551 
9552 	ip1dbg(("ip_input_options: error processing IP options."));
9553 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9554 
9555 param_prob:
9556 	/* make sure we clear any indication of a hardware checksum */
9557 	DB_CKSUMFLAGS(mp) = 0;
9558 	ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9559 	icmp_param_problem(mp, (uint8_t)code, ira);
9560 	*errorp = -1;
9561 	return (dst);
9562 
9563 bad_src_route:
9564 	/* make sure we clear any indication of a hardware checksum */
9565 	DB_CKSUMFLAGS(mp) = 0;
9566 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9567 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9568 	*errorp = -1;
9569 	return (dst);
9570 }
9571 
9572 /*
9573  * IP & ICMP info in >=14 msg's ...
9574  *  - ip fixed part (mib2_ip_t)
9575  *  - icmp fixed part (mib2_icmp_t)
9576  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
9577  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
9578  *  - ipNetToMediaEntryTable (ip 22)	all IPv4 Neighbor Cache entries
9579  *  - ipRouteAttributeTable (ip 102)	labeled routes
9580  *  - ip multicast membership (ip_member_t)
9581  *  - ip multicast source filtering (ip_grpsrc_t)
9582  *  - igmp fixed part (struct igmpstat)
9583  *  - multicast routing stats (struct mrtstat)
9584  *  - multicast routing vifs (array of struct vifctl)
9585  *  - multicast routing routes (array of struct mfcctl)
9586  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9587  *					One per ill plus one generic
9588  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9589  *					One per ill plus one generic
9590  *  - ipv6RouteEntry			all IPv6 IREs
9591  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
9592  *  - ipv6NetToMediaEntry		all IPv6 Neighbor Cache entries
9593  *  - ipv6AddrEntry			all IPv6 ipifs
9594  *  - ipv6 multicast membership (ipv6_member_t)
9595  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9596  *
9597  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9598  * already filled in by the caller.
9599  * If legacy_req is true then MIB structures needs to be truncated to their
9600  * legacy sizes before being returned.
9601  * Return value of 0 indicates that no messages were sent and caller
9602  * should free mpctl.
9603  */
9604 int
9605 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9606 {
9607 	ip_stack_t *ipst;
9608 	sctp_stack_t *sctps;
9609 
9610 	if (q->q_next != NULL) {
9611 		ipst = ILLQ_TO_IPST(q);
9612 	} else {
9613 		ipst = CONNQ_TO_IPST(q);
9614 	}
9615 	ASSERT(ipst != NULL);
9616 	sctps = ipst->ips_netstack->netstack_sctp;
9617 
9618 	if (mpctl == NULL || mpctl->b_cont == NULL) {
9619 		return (0);
9620 	}
9621 
9622 	/*
9623 	 * For the purposes of the (broken) packet shell use
9624 	 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9625 	 * to make TCP and UDP appear first in the list of mib items.
9626 	 * TBD: We could expand this and use it in netstat so that
9627 	 * the kernel doesn't have to produce large tables (connections,
9628 	 * routes, etc) when netstat only wants the statistics or a particular
9629 	 * table.
9630 	 */
9631 	if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9632 		if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9633 			return (1);
9634 		}
9635 	}
9636 
9637 	if (level != MIB2_TCP) {
9638 		if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9639 			return (1);
9640 		}
9641 	}
9642 
9643 	if (level != MIB2_UDP) {
9644 		if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9645 			return (1);
9646 		}
9647 	}
9648 
9649 	if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9650 	    ipst, legacy_req)) == NULL) {
9651 		return (1);
9652 	}
9653 
9654 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9655 	    legacy_req)) == NULL) {
9656 		return (1);
9657 	}
9658 
9659 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9660 		return (1);
9661 	}
9662 
9663 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9664 		return (1);
9665 	}
9666 
9667 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9668 		return (1);
9669 	}
9670 
9671 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9672 		return (1);
9673 	}
9674 
9675 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9676 	    legacy_req)) == NULL) {
9677 		return (1);
9678 	}
9679 
9680 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9681 	    legacy_req)) == NULL) {
9682 		return (1);
9683 	}
9684 
9685 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9686 		return (1);
9687 	}
9688 
9689 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9690 		return (1);
9691 	}
9692 
9693 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9694 		return (1);
9695 	}
9696 
9697 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9698 		return (1);
9699 	}
9700 
9701 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9702 		return (1);
9703 	}
9704 
9705 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9706 		return (1);
9707 	}
9708 
9709 	mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9710 	if (mpctl == NULL)
9711 		return (1);
9712 
9713 	mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9714 	if (mpctl == NULL)
9715 		return (1);
9716 
9717 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9718 		return (1);
9719 	}
9720 	if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9721 		return (1);
9722 	}
9723 	freemsg(mpctl);
9724 	return (1);
9725 }
9726 
9727 /* Get global (legacy) IPv4 statistics */
9728 static mblk_t *
9729 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9730     ip_stack_t *ipst, boolean_t legacy_req)
9731 {
9732 	mib2_ip_t		old_ip_mib;
9733 	struct opthdr		*optp;
9734 	mblk_t			*mp2ctl;
9735 	mib2_ipAddrEntry_t	mae;
9736 
9737 	/*
9738 	 * make a copy of the original message
9739 	 */
9740 	mp2ctl = copymsg(mpctl);
9741 
9742 	/* fixed length IP structure... */
9743 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9744 	optp->level = MIB2_IP;
9745 	optp->name = 0;
9746 	SET_MIB(old_ip_mib.ipForwarding,
9747 	    (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9748 	SET_MIB(old_ip_mib.ipDefaultTTL,
9749 	    (uint32_t)ipst->ips_ip_def_ttl);
9750 	SET_MIB(old_ip_mib.ipReasmTimeout,
9751 	    ipst->ips_ip_reassembly_timeout);
9752 	SET_MIB(old_ip_mib.ipAddrEntrySize,
9753 	    (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9754 	    sizeof (mib2_ipAddrEntry_t));
9755 	SET_MIB(old_ip_mib.ipRouteEntrySize,
9756 	    sizeof (mib2_ipRouteEntry_t));
9757 	SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9758 	    sizeof (mib2_ipNetToMediaEntry_t));
9759 	SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9760 	SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9761 	SET_MIB(old_ip_mib.ipRouteAttributeSize,
9762 	    sizeof (mib2_ipAttributeEntry_t));
9763 	SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9764 	SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9765 
9766 	/*
9767 	 * Grab the statistics from the new IP MIB
9768 	 */
9769 	SET_MIB(old_ip_mib.ipInReceives,
9770 	    (uint32_t)ipmib->ipIfStatsHCInReceives);
9771 	SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9772 	SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9773 	SET_MIB(old_ip_mib.ipForwDatagrams,
9774 	    (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9775 	SET_MIB(old_ip_mib.ipInUnknownProtos,
9776 	    ipmib->ipIfStatsInUnknownProtos);
9777 	SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9778 	SET_MIB(old_ip_mib.ipInDelivers,
9779 	    (uint32_t)ipmib->ipIfStatsHCInDelivers);
9780 	SET_MIB(old_ip_mib.ipOutRequests,
9781 	    (uint32_t)ipmib->ipIfStatsHCOutRequests);
9782 	SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9783 	SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9784 	SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9785 	SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9786 	SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9787 	SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9788 	SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9789 	SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9790 
9791 	/* ipRoutingDiscards is not being used */
9792 	SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9793 	SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9794 	SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9795 	SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9796 	SET_MIB(old_ip_mib.ipReasmDuplicates,
9797 	    ipmib->ipIfStatsReasmDuplicates);
9798 	SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9799 	SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9800 	SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9801 	SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9802 	SET_MIB(old_ip_mib.rawipInOverflows,
9803 	    ipmib->rawipIfStatsInOverflows);
9804 
9805 	SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9806 	SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9807 	SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9808 	SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9809 	SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9810 	    ipmib->ipIfStatsOutSwitchIPVersion);
9811 
9812 	if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9813 	    (int)sizeof (old_ip_mib))) {
9814 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9815 		    (uint_t)sizeof (old_ip_mib)));
9816 	}
9817 
9818 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9819 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9820 	    (int)optp->level, (int)optp->name, (int)optp->len));
9821 	qreply(q, mpctl);
9822 	return (mp2ctl);
9823 }
9824 
9825 /* Per interface IPv4 statistics */
9826 static mblk_t *
9827 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9828     boolean_t legacy_req)
9829 {
9830 	struct opthdr		*optp;
9831 	mblk_t			*mp2ctl;
9832 	ill_t			*ill;
9833 	ill_walk_context_t	ctx;
9834 	mblk_t			*mp_tail = NULL;
9835 	mib2_ipIfStatsEntry_t	global_ip_mib;
9836 	mib2_ipAddrEntry_t	mae;
9837 
9838 	/*
9839 	 * Make a copy of the original message
9840 	 */
9841 	mp2ctl = copymsg(mpctl);
9842 
9843 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9844 	optp->level = MIB2_IP;
9845 	optp->name = MIB2_IP_TRAFFIC_STATS;
9846 	/* Include "unknown interface" ip_mib */
9847 	ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9848 	ipst->ips_ip_mib.ipIfStatsIfIndex =
9849 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9850 	SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9851 	    (ipst->ips_ip_forwarding ? 1 : 2));
9852 	SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9853 	    (uint32_t)ipst->ips_ip_def_ttl);
9854 	SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9855 	    sizeof (mib2_ipIfStatsEntry_t));
9856 	SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9857 	    sizeof (mib2_ipAddrEntry_t));
9858 	SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9859 	    sizeof (mib2_ipRouteEntry_t));
9860 	SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9861 	    sizeof (mib2_ipNetToMediaEntry_t));
9862 	SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9863 	    sizeof (ip_member_t));
9864 	SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9865 	    sizeof (ip_grpsrc_t));
9866 
9867 	bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9868 
9869 	if (legacy_req) {
9870 		SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9871 		    LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9872 	}
9873 
9874 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9875 	    (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9876 		ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9877 		    "failed to allocate %u bytes\n",
9878 		    (uint_t)sizeof (global_ip_mib)));
9879 	}
9880 
9881 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9882 	ill = ILL_START_WALK_V4(&ctx, ipst);
9883 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9884 		ill->ill_ip_mib->ipIfStatsIfIndex =
9885 		    ill->ill_phyint->phyint_ifindex;
9886 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9887 		    (ipst->ips_ip_forwarding ? 1 : 2));
9888 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9889 		    (uint32_t)ipst->ips_ip_def_ttl);
9890 
9891 		ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9892 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9893 		    (char *)ill->ill_ip_mib,
9894 		    (int)sizeof (*ill->ill_ip_mib))) {
9895 			ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9896 			    "failed to allocate %u bytes\n",
9897 			    (uint_t)sizeof (*ill->ill_ip_mib)));
9898 		}
9899 	}
9900 	rw_exit(&ipst->ips_ill_g_lock);
9901 
9902 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9903 	ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9904 	    "level %d, name %d, len %d\n",
9905 	    (int)optp->level, (int)optp->name, (int)optp->len));
9906 	qreply(q, mpctl);
9907 
9908 	if (mp2ctl == NULL)
9909 		return (NULL);
9910 
9911 	return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9912 	    legacy_req));
9913 }
9914 
9915 /* Global IPv4 ICMP statistics */
9916 static mblk_t *
9917 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9918 {
9919 	struct opthdr		*optp;
9920 	mblk_t			*mp2ctl;
9921 
9922 	/*
9923 	 * Make a copy of the original message
9924 	 */
9925 	mp2ctl = copymsg(mpctl);
9926 
9927 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9928 	optp->level = MIB2_ICMP;
9929 	optp->name = 0;
9930 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9931 	    (int)sizeof (ipst->ips_icmp_mib))) {
9932 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9933 		    (uint_t)sizeof (ipst->ips_icmp_mib)));
9934 	}
9935 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9936 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9937 	    (int)optp->level, (int)optp->name, (int)optp->len));
9938 	qreply(q, mpctl);
9939 	return (mp2ctl);
9940 }
9941 
9942 /* Global IPv4 IGMP statistics */
9943 static mblk_t *
9944 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9945 {
9946 	struct opthdr		*optp;
9947 	mblk_t			*mp2ctl;
9948 
9949 	/*
9950 	 * make a copy of the original message
9951 	 */
9952 	mp2ctl = copymsg(mpctl);
9953 
9954 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9955 	optp->level = EXPER_IGMP;
9956 	optp->name = 0;
9957 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9958 	    (int)sizeof (ipst->ips_igmpstat))) {
9959 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9960 		    (uint_t)sizeof (ipst->ips_igmpstat)));
9961 	}
9962 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9963 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9964 	    (int)optp->level, (int)optp->name, (int)optp->len));
9965 	qreply(q, mpctl);
9966 	return (mp2ctl);
9967 }
9968 
9969 /* Global IPv4 Multicast Routing statistics */
9970 static mblk_t *
9971 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9972 {
9973 	struct opthdr		*optp;
9974 	mblk_t			*mp2ctl;
9975 
9976 	/*
9977 	 * make a copy of the original message
9978 	 */
9979 	mp2ctl = copymsg(mpctl);
9980 
9981 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9982 	optp->level = EXPER_DVMRP;
9983 	optp->name = 0;
9984 	if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9985 		ip0dbg(("ip_mroute_stats: failed\n"));
9986 	}
9987 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9988 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9989 	    (int)optp->level, (int)optp->name, (int)optp->len));
9990 	qreply(q, mpctl);
9991 	return (mp2ctl);
9992 }
9993 
9994 /* IPv4 address information */
9995 static mblk_t *
9996 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9997     boolean_t legacy_req)
9998 {
9999 	struct opthdr		*optp;
10000 	mblk_t			*mp2ctl;
10001 	mblk_t			*mp_tail = NULL;
10002 	ill_t			*ill;
10003 	ipif_t			*ipif;
10004 	uint_t			bitval;
10005 	mib2_ipAddrEntry_t	mae;
10006 	size_t			mae_size;
10007 	zoneid_t		zoneid;
10008 	ill_walk_context_t	ctx;
10009 
10010 	/*
10011 	 * make a copy of the original message
10012 	 */
10013 	mp2ctl = copymsg(mpctl);
10014 
10015 	mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
10016 	    sizeof (mib2_ipAddrEntry_t);
10017 
10018 	/* ipAddrEntryTable */
10019 
10020 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10021 	optp->level = MIB2_IP;
10022 	optp->name = MIB2_IP_ADDR;
10023 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10024 
10025 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10026 	ill = ILL_START_WALK_V4(&ctx, ipst);
10027 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10028 		for (ipif = ill->ill_ipif; ipif != NULL;
10029 		    ipif = ipif->ipif_next) {
10030 			if (ipif->ipif_zoneid != zoneid &&
10031 			    ipif->ipif_zoneid != ALL_ZONES)
10032 				continue;
10033 			/* Sum of count from dead IRE_LO* and our current */
10034 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10035 			if (ipif->ipif_ire_local != NULL) {
10036 				mae.ipAdEntInfo.ae_ibcnt +=
10037 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10038 			}
10039 			mae.ipAdEntInfo.ae_obcnt = 0;
10040 			mae.ipAdEntInfo.ae_focnt = 0;
10041 
10042 			ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10043 			    OCTET_LENGTH);
10044 			mae.ipAdEntIfIndex.o_length =
10045 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10046 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10047 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
10048 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10049 			mae.ipAdEntInfo.ae_subnet_len =
10050 			    ip_mask_to_plen(ipif->ipif_net_mask);
10051 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10052 			for (bitval = 1;
10053 			    bitval &&
10054 			    !(bitval & ipif->ipif_brd_addr);
10055 			    bitval <<= 1)
10056 				noop;
10057 			mae.ipAdEntBcastAddr = bitval;
10058 			mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10059 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10060 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10061 			mae.ipAdEntInfo.ae_broadcast_addr =
10062 			    ipif->ipif_brd_addr;
10063 			mae.ipAdEntInfo.ae_pp_dst_addr =
10064 			    ipif->ipif_pp_dst_addr;
10065 			mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10066 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10067 			mae.ipAdEntRetransmitTime =
10068 			    ill->ill_reachable_retrans_time;
10069 
10070 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10071 			    (char *)&mae, (int)mae_size)) {
10072 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10073 				    "allocate %u bytes\n", (uint_t)mae_size));
10074 			}
10075 		}
10076 	}
10077 	rw_exit(&ipst->ips_ill_g_lock);
10078 
10079 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10080 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10081 	    (int)optp->level, (int)optp->name, (int)optp->len));
10082 	qreply(q, mpctl);
10083 	return (mp2ctl);
10084 }
10085 
10086 /* IPv6 address information */
10087 static mblk_t *
10088 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10089     boolean_t legacy_req)
10090 {
10091 	struct opthdr		*optp;
10092 	mblk_t			*mp2ctl;
10093 	mblk_t			*mp_tail = NULL;
10094 	ill_t			*ill;
10095 	ipif_t			*ipif;
10096 	mib2_ipv6AddrEntry_t	mae6;
10097 	size_t			mae6_size;
10098 	zoneid_t		zoneid;
10099 	ill_walk_context_t	ctx;
10100 
10101 	/*
10102 	 * make a copy of the original message
10103 	 */
10104 	mp2ctl = copymsg(mpctl);
10105 
10106 	mae6_size = (legacy_req) ?
10107 	    LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10108 	    sizeof (mib2_ipv6AddrEntry_t);
10109 
10110 	/* ipv6AddrEntryTable */
10111 
10112 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10113 	optp->level = MIB2_IP6;
10114 	optp->name = MIB2_IP6_ADDR;
10115 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10116 
10117 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10118 	ill = ILL_START_WALK_V6(&ctx, ipst);
10119 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10120 		for (ipif = ill->ill_ipif; ipif != NULL;
10121 		    ipif = ipif->ipif_next) {
10122 			if (ipif->ipif_zoneid != zoneid &&
10123 			    ipif->ipif_zoneid != ALL_ZONES)
10124 				continue;
10125 			/* Sum of count from dead IRE_LO* and our current */
10126 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10127 			if (ipif->ipif_ire_local != NULL) {
10128 				mae6.ipv6AddrInfo.ae_ibcnt +=
10129 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10130 			}
10131 			mae6.ipv6AddrInfo.ae_obcnt = 0;
10132 			mae6.ipv6AddrInfo.ae_focnt = 0;
10133 
10134 			ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10135 			    OCTET_LENGTH);
10136 			mae6.ipv6AddrIfIndex.o_length =
10137 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10138 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10139 			mae6.ipv6AddrPfxLength =
10140 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10141 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10142 			mae6.ipv6AddrInfo.ae_subnet_len =
10143 			    mae6.ipv6AddrPfxLength;
10144 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10145 
10146 			/* Type: stateless(1), stateful(2), unknown(3) */
10147 			if (ipif->ipif_flags & IPIF_ADDRCONF)
10148 				mae6.ipv6AddrType = 1;
10149 			else
10150 				mae6.ipv6AddrType = 2;
10151 			/* Anycast: true(1), false(2) */
10152 			if (ipif->ipif_flags & IPIF_ANYCAST)
10153 				mae6.ipv6AddrAnycastFlag = 1;
10154 			else
10155 				mae6.ipv6AddrAnycastFlag = 2;
10156 
10157 			/*
10158 			 * Address status: preferred(1), deprecated(2),
10159 			 * invalid(3), inaccessible(4), unknown(5)
10160 			 */
10161 			if (ipif->ipif_flags & IPIF_NOLOCAL)
10162 				mae6.ipv6AddrStatus = 3;
10163 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
10164 				mae6.ipv6AddrStatus = 2;
10165 			else
10166 				mae6.ipv6AddrStatus = 1;
10167 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10168 			mae6.ipv6AddrInfo.ae_metric  =
10169 			    ipif->ipif_ill->ill_metric;
10170 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
10171 			    ipif->ipif_v6pp_dst_addr;
10172 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10173 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10174 			mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10175 			mae6.ipv6AddrIdentifier = ill->ill_token;
10176 			mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10177 			mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10178 			mae6.ipv6AddrRetransmitTime =
10179 			    ill->ill_reachable_retrans_time;
10180 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10181 			    (char *)&mae6, (int)mae6_size)) {
10182 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10183 				    "allocate %u bytes\n",
10184 				    (uint_t)mae6_size));
10185 			}
10186 		}
10187 	}
10188 	rw_exit(&ipst->ips_ill_g_lock);
10189 
10190 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10191 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10192 	    (int)optp->level, (int)optp->name, (int)optp->len));
10193 	qreply(q, mpctl);
10194 	return (mp2ctl);
10195 }
10196 
10197 /* IPv4 multicast group membership. */
10198 static mblk_t *
10199 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10200 {
10201 	struct opthdr		*optp;
10202 	mblk_t			*mp2ctl;
10203 	ill_t			*ill;
10204 	ipif_t			*ipif;
10205 	ilm_t			*ilm;
10206 	ip_member_t		ipm;
10207 	mblk_t			*mp_tail = NULL;
10208 	ill_walk_context_t	ctx;
10209 	zoneid_t		zoneid;
10210 
10211 	/*
10212 	 * make a copy of the original message
10213 	 */
10214 	mp2ctl = copymsg(mpctl);
10215 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10216 
10217 	/* ipGroupMember table */
10218 	optp = (struct opthdr *)&mpctl->b_rptr[
10219 	    sizeof (struct T_optmgmt_ack)];
10220 	optp->level = MIB2_IP;
10221 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10222 
10223 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10224 	ill = ILL_START_WALK_V4(&ctx, ipst);
10225 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10226 		/* Make sure the ill isn't going away. */
10227 		if (!ill_check_and_refhold(ill))
10228 			continue;
10229 		rw_exit(&ipst->ips_ill_g_lock);
10230 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10231 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10232 			if (ilm->ilm_zoneid != zoneid &&
10233 			    ilm->ilm_zoneid != ALL_ZONES)
10234 				continue;
10235 
10236 			/* Is there an ipif for ilm_ifaddr? */
10237 			for (ipif = ill->ill_ipif; ipif != NULL;
10238 			    ipif = ipif->ipif_next) {
10239 				if (!IPIF_IS_CONDEMNED(ipif) &&
10240 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10241 				    ilm->ilm_ifaddr != INADDR_ANY)
10242 					break;
10243 			}
10244 			if (ipif != NULL) {
10245 				ipif_get_name(ipif,
10246 				    ipm.ipGroupMemberIfIndex.o_bytes,
10247 				    OCTET_LENGTH);
10248 			} else {
10249 				ill_get_name(ill,
10250 				    ipm.ipGroupMemberIfIndex.o_bytes,
10251 				    OCTET_LENGTH);
10252 			}
10253 			ipm.ipGroupMemberIfIndex.o_length =
10254 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10255 
10256 			ipm.ipGroupMemberAddress = ilm->ilm_addr;
10257 			ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10258 			ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10259 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10260 			    (char *)&ipm, (int)sizeof (ipm))) {
10261 				ip1dbg(("ip_snmp_get_mib2_ip_group: "
10262 				    "failed to allocate %u bytes\n",
10263 				    (uint_t)sizeof (ipm)));
10264 			}
10265 		}
10266 		rw_exit(&ill->ill_mcast_lock);
10267 		ill_refrele(ill);
10268 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10269 	}
10270 	rw_exit(&ipst->ips_ill_g_lock);
10271 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10272 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10273 	    (int)optp->level, (int)optp->name, (int)optp->len));
10274 	qreply(q, mpctl);
10275 	return (mp2ctl);
10276 }
10277 
10278 /* IPv6 multicast group membership. */
10279 static mblk_t *
10280 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10281 {
10282 	struct opthdr		*optp;
10283 	mblk_t			*mp2ctl;
10284 	ill_t			*ill;
10285 	ilm_t			*ilm;
10286 	ipv6_member_t		ipm6;
10287 	mblk_t			*mp_tail = NULL;
10288 	ill_walk_context_t	ctx;
10289 	zoneid_t		zoneid;
10290 
10291 	/*
10292 	 * make a copy of the original message
10293 	 */
10294 	mp2ctl = copymsg(mpctl);
10295 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10296 
10297 	/* ip6GroupMember table */
10298 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10299 	optp->level = MIB2_IP6;
10300 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10301 
10302 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10303 	ill = ILL_START_WALK_V6(&ctx, ipst);
10304 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10305 		/* Make sure the ill isn't going away. */
10306 		if (!ill_check_and_refhold(ill))
10307 			continue;
10308 		rw_exit(&ipst->ips_ill_g_lock);
10309 		/*
10310 		 * Normally we don't have any members on under IPMP interfaces.
10311 		 * We report them as a debugging aid.
10312 		 */
10313 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10314 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10315 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10316 			if (ilm->ilm_zoneid != zoneid &&
10317 			    ilm->ilm_zoneid != ALL_ZONES)
10318 				continue;	/* not this zone */
10319 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10320 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10321 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10322 			if (!snmp_append_data2(mpctl->b_cont,
10323 			    &mp_tail,
10324 			    (char *)&ipm6, (int)sizeof (ipm6))) {
10325 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10326 				    "failed to allocate %u bytes\n",
10327 				    (uint_t)sizeof (ipm6)));
10328 			}
10329 		}
10330 		rw_exit(&ill->ill_mcast_lock);
10331 		ill_refrele(ill);
10332 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10333 	}
10334 	rw_exit(&ipst->ips_ill_g_lock);
10335 
10336 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10337 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10338 	    (int)optp->level, (int)optp->name, (int)optp->len));
10339 	qreply(q, mpctl);
10340 	return (mp2ctl);
10341 }
10342 
10343 /* IP multicast filtered sources */
10344 static mblk_t *
10345 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10346 {
10347 	struct opthdr		*optp;
10348 	mblk_t			*mp2ctl;
10349 	ill_t			*ill;
10350 	ipif_t			*ipif;
10351 	ilm_t			*ilm;
10352 	ip_grpsrc_t		ips;
10353 	mblk_t			*mp_tail = NULL;
10354 	ill_walk_context_t	ctx;
10355 	zoneid_t		zoneid;
10356 	int			i;
10357 	slist_t			*sl;
10358 
10359 	/*
10360 	 * make a copy of the original message
10361 	 */
10362 	mp2ctl = copymsg(mpctl);
10363 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10364 
10365 	/* ipGroupSource table */
10366 	optp = (struct opthdr *)&mpctl->b_rptr[
10367 	    sizeof (struct T_optmgmt_ack)];
10368 	optp->level = MIB2_IP;
10369 	optp->name = EXPER_IP_GROUP_SOURCES;
10370 
10371 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10372 	ill = ILL_START_WALK_V4(&ctx, ipst);
10373 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10374 		/* Make sure the ill isn't going away. */
10375 		if (!ill_check_and_refhold(ill))
10376 			continue;
10377 		rw_exit(&ipst->ips_ill_g_lock);
10378 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10379 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10380 			sl = ilm->ilm_filter;
10381 			if (ilm->ilm_zoneid != zoneid &&
10382 			    ilm->ilm_zoneid != ALL_ZONES)
10383 				continue;
10384 			if (SLIST_IS_EMPTY(sl))
10385 				continue;
10386 
10387 			/* Is there an ipif for ilm_ifaddr? */
10388 			for (ipif = ill->ill_ipif; ipif != NULL;
10389 			    ipif = ipif->ipif_next) {
10390 				if (!IPIF_IS_CONDEMNED(ipif) &&
10391 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10392 				    ilm->ilm_ifaddr != INADDR_ANY)
10393 					break;
10394 			}
10395 			if (ipif != NULL) {
10396 				ipif_get_name(ipif,
10397 				    ips.ipGroupSourceIfIndex.o_bytes,
10398 				    OCTET_LENGTH);
10399 			} else {
10400 				ill_get_name(ill,
10401 				    ips.ipGroupSourceIfIndex.o_bytes,
10402 				    OCTET_LENGTH);
10403 			}
10404 			ips.ipGroupSourceIfIndex.o_length =
10405 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10406 
10407 			ips.ipGroupSourceGroup = ilm->ilm_addr;
10408 			for (i = 0; i < sl->sl_numsrc; i++) {
10409 				if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10410 					continue;
10411 				IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10412 				    ips.ipGroupSourceAddress);
10413 				if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10414 				    (char *)&ips, (int)sizeof (ips)) == 0) {
10415 					ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10416 					    " failed to allocate %u bytes\n",
10417 					    (uint_t)sizeof (ips)));
10418 				}
10419 			}
10420 		}
10421 		rw_exit(&ill->ill_mcast_lock);
10422 		ill_refrele(ill);
10423 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10424 	}
10425 	rw_exit(&ipst->ips_ill_g_lock);
10426 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10427 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10428 	    (int)optp->level, (int)optp->name, (int)optp->len));
10429 	qreply(q, mpctl);
10430 	return (mp2ctl);
10431 }
10432 
10433 /* IPv6 multicast filtered sources. */
10434 static mblk_t *
10435 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10436 {
10437 	struct opthdr		*optp;
10438 	mblk_t			*mp2ctl;
10439 	ill_t			*ill;
10440 	ilm_t			*ilm;
10441 	ipv6_grpsrc_t		ips6;
10442 	mblk_t			*mp_tail = NULL;
10443 	ill_walk_context_t	ctx;
10444 	zoneid_t		zoneid;
10445 	int			i;
10446 	slist_t			*sl;
10447 
10448 	/*
10449 	 * make a copy of the original message
10450 	 */
10451 	mp2ctl = copymsg(mpctl);
10452 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10453 
10454 	/* ip6GroupMember table */
10455 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10456 	optp->level = MIB2_IP6;
10457 	optp->name = EXPER_IP6_GROUP_SOURCES;
10458 
10459 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10460 	ill = ILL_START_WALK_V6(&ctx, ipst);
10461 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10462 		/* Make sure the ill isn't going away. */
10463 		if (!ill_check_and_refhold(ill))
10464 			continue;
10465 		rw_exit(&ipst->ips_ill_g_lock);
10466 		/*
10467 		 * Normally we don't have any members on under IPMP interfaces.
10468 		 * We report them as a debugging aid.
10469 		 */
10470 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10471 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10472 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10473 			sl = ilm->ilm_filter;
10474 			if (ilm->ilm_zoneid != zoneid &&
10475 			    ilm->ilm_zoneid != ALL_ZONES)
10476 				continue;
10477 			if (SLIST_IS_EMPTY(sl))
10478 				continue;
10479 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10480 			for (i = 0; i < sl->sl_numsrc; i++) {
10481 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10482 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10483 				    (char *)&ips6, (int)sizeof (ips6))) {
10484 					ip1dbg(("ip_snmp_get_mib2_ip6_"
10485 					    "group_src: failed to allocate "
10486 					    "%u bytes\n",
10487 					    (uint_t)sizeof (ips6)));
10488 				}
10489 			}
10490 		}
10491 		rw_exit(&ill->ill_mcast_lock);
10492 		ill_refrele(ill);
10493 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10494 	}
10495 	rw_exit(&ipst->ips_ill_g_lock);
10496 
10497 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10498 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10499 	    (int)optp->level, (int)optp->name, (int)optp->len));
10500 	qreply(q, mpctl);
10501 	return (mp2ctl);
10502 }
10503 
10504 /* Multicast routing virtual interface table. */
10505 static mblk_t *
10506 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10507 {
10508 	struct opthdr		*optp;
10509 	mblk_t			*mp2ctl;
10510 
10511 	/*
10512 	 * make a copy of the original message
10513 	 */
10514 	mp2ctl = copymsg(mpctl);
10515 
10516 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10517 	optp->level = EXPER_DVMRP;
10518 	optp->name = EXPER_DVMRP_VIF;
10519 	if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10520 		ip0dbg(("ip_mroute_vif: failed\n"));
10521 	}
10522 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10523 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10524 	    (int)optp->level, (int)optp->name, (int)optp->len));
10525 	qreply(q, mpctl);
10526 	return (mp2ctl);
10527 }
10528 
10529 /* Multicast routing table. */
10530 static mblk_t *
10531 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10532 {
10533 	struct opthdr		*optp;
10534 	mblk_t			*mp2ctl;
10535 
10536 	/*
10537 	 * make a copy of the original message
10538 	 */
10539 	mp2ctl = copymsg(mpctl);
10540 
10541 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10542 	optp->level = EXPER_DVMRP;
10543 	optp->name = EXPER_DVMRP_MRT;
10544 	if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10545 		ip0dbg(("ip_mroute_mrt: failed\n"));
10546 	}
10547 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10548 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10549 	    (int)optp->level, (int)optp->name, (int)optp->len));
10550 	qreply(q, mpctl);
10551 	return (mp2ctl);
10552 }
10553 
10554 /*
10555  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10556  * in one IRE walk.
10557  */
10558 static mblk_t *
10559 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10560     ip_stack_t *ipst)
10561 {
10562 	struct opthdr	*optp;
10563 	mblk_t		*mp2ctl;	/* Returned */
10564 	mblk_t		*mp3ctl;	/* nettomedia */
10565 	mblk_t		*mp4ctl;	/* routeattrs */
10566 	iproutedata_t	ird;
10567 	zoneid_t	zoneid;
10568 
10569 	/*
10570 	 * make copies of the original message
10571 	 *	- mp2ctl is returned unchanged to the caller for its use
10572 	 *	- mpctl is sent upstream as ipRouteEntryTable
10573 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
10574 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
10575 	 */
10576 	mp2ctl = copymsg(mpctl);
10577 	mp3ctl = copymsg(mpctl);
10578 	mp4ctl = copymsg(mpctl);
10579 	if (mp3ctl == NULL || mp4ctl == NULL) {
10580 		freemsg(mp4ctl);
10581 		freemsg(mp3ctl);
10582 		freemsg(mp2ctl);
10583 		freemsg(mpctl);
10584 		return (NULL);
10585 	}
10586 
10587 	bzero(&ird, sizeof (ird));
10588 
10589 	ird.ird_route.lp_head = mpctl->b_cont;
10590 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10591 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10592 	/*
10593 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10594 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10595 	 * intended a temporary solution until a proper MIB API is provided
10596 	 * that provides complete filtering/caller-opt-in.
10597 	 */
10598 	if (level == EXPER_IP_AND_ALL_IRES)
10599 		ird.ird_flags |= IRD_REPORT_ALL;
10600 
10601 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10602 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10603 
10604 	/* ipRouteEntryTable in mpctl */
10605 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10606 	optp->level = MIB2_IP;
10607 	optp->name = MIB2_IP_ROUTE;
10608 	optp->len = msgdsize(ird.ird_route.lp_head);
10609 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10610 	    (int)optp->level, (int)optp->name, (int)optp->len));
10611 	qreply(q, mpctl);
10612 
10613 	/* ipNetToMediaEntryTable in mp3ctl */
10614 	ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10615 
10616 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10617 	optp->level = MIB2_IP;
10618 	optp->name = MIB2_IP_MEDIA;
10619 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10620 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10621 	    (int)optp->level, (int)optp->name, (int)optp->len));
10622 	qreply(q, mp3ctl);
10623 
10624 	/* ipRouteAttributeTable in mp4ctl */
10625 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10626 	optp->level = MIB2_IP;
10627 	optp->name = EXPER_IP_RTATTR;
10628 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10629 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10630 	    (int)optp->level, (int)optp->name, (int)optp->len));
10631 	if (optp->len == 0)
10632 		freemsg(mp4ctl);
10633 	else
10634 		qreply(q, mp4ctl);
10635 
10636 	return (mp2ctl);
10637 }
10638 
10639 /*
10640  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10641  * ipv6NetToMediaEntryTable in an NDP walk.
10642  */
10643 static mblk_t *
10644 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10645     ip_stack_t *ipst)
10646 {
10647 	struct opthdr	*optp;
10648 	mblk_t		*mp2ctl;	/* Returned */
10649 	mblk_t		*mp3ctl;	/* nettomedia */
10650 	mblk_t		*mp4ctl;	/* routeattrs */
10651 	iproutedata_t	ird;
10652 	zoneid_t	zoneid;
10653 
10654 	/*
10655 	 * make copies of the original message
10656 	 *	- mp2ctl is returned unchanged to the caller for its use
10657 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
10658 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10659 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
10660 	 */
10661 	mp2ctl = copymsg(mpctl);
10662 	mp3ctl = copymsg(mpctl);
10663 	mp4ctl = copymsg(mpctl);
10664 	if (mp3ctl == NULL || mp4ctl == NULL) {
10665 		freemsg(mp4ctl);
10666 		freemsg(mp3ctl);
10667 		freemsg(mp2ctl);
10668 		freemsg(mpctl);
10669 		return (NULL);
10670 	}
10671 
10672 	bzero(&ird, sizeof (ird));
10673 
10674 	ird.ird_route.lp_head = mpctl->b_cont;
10675 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10676 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10677 	/*
10678 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10679 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10680 	 * intended a temporary solution until a proper MIB API is provided
10681 	 * that provides complete filtering/caller-opt-in.
10682 	 */
10683 	if (level == EXPER_IP_AND_ALL_IRES)
10684 		ird.ird_flags |= IRD_REPORT_ALL;
10685 
10686 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10687 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10688 
10689 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10690 	optp->level = MIB2_IP6;
10691 	optp->name = MIB2_IP6_ROUTE;
10692 	optp->len = msgdsize(ird.ird_route.lp_head);
10693 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10694 	    (int)optp->level, (int)optp->name, (int)optp->len));
10695 	qreply(q, mpctl);
10696 
10697 	/* ipv6NetToMediaEntryTable in mp3ctl */
10698 	ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10699 
10700 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10701 	optp->level = MIB2_IP6;
10702 	optp->name = MIB2_IP6_MEDIA;
10703 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10704 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10705 	    (int)optp->level, (int)optp->name, (int)optp->len));
10706 	qreply(q, mp3ctl);
10707 
10708 	/* ipv6RouteAttributeTable in mp4ctl */
10709 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10710 	optp->level = MIB2_IP6;
10711 	optp->name = EXPER_IP_RTATTR;
10712 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10713 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10714 	    (int)optp->level, (int)optp->name, (int)optp->len));
10715 	if (optp->len == 0)
10716 		freemsg(mp4ctl);
10717 	else
10718 		qreply(q, mp4ctl);
10719 
10720 	return (mp2ctl);
10721 }
10722 
10723 /*
10724  * IPv6 mib: One per ill
10725  */
10726 static mblk_t *
10727 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10728     boolean_t legacy_req)
10729 {
10730 	struct opthdr		*optp;
10731 	mblk_t			*mp2ctl;
10732 	ill_t			*ill;
10733 	ill_walk_context_t	ctx;
10734 	mblk_t			*mp_tail = NULL;
10735 	mib2_ipv6AddrEntry_t	mae6;
10736 	mib2_ipIfStatsEntry_t	*ise;
10737 	size_t			ise_size, iae_size;
10738 
10739 	/*
10740 	 * Make a copy of the original message
10741 	 */
10742 	mp2ctl = copymsg(mpctl);
10743 
10744 	/* fixed length IPv6 structure ... */
10745 
10746 	if (legacy_req) {
10747 		ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10748 		    mib2_ipIfStatsEntry_t);
10749 		iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10750 	} else {
10751 		ise_size = sizeof (mib2_ipIfStatsEntry_t);
10752 		iae_size = sizeof (mib2_ipv6AddrEntry_t);
10753 	}
10754 
10755 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10756 	optp->level = MIB2_IP6;
10757 	optp->name = 0;
10758 	/* Include "unknown interface" ip6_mib */
10759 	ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10760 	ipst->ips_ip6_mib.ipIfStatsIfIndex =
10761 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10762 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10763 	    ipst->ips_ipv6_forwarding ? 1 : 2);
10764 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10765 	    ipst->ips_ipv6_def_hops);
10766 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10767 	    sizeof (mib2_ipIfStatsEntry_t));
10768 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10769 	    sizeof (mib2_ipv6AddrEntry_t));
10770 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10771 	    sizeof (mib2_ipv6RouteEntry_t));
10772 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10773 	    sizeof (mib2_ipv6NetToMediaEntry_t));
10774 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10775 	    sizeof (ipv6_member_t));
10776 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10777 	    sizeof (ipv6_grpsrc_t));
10778 
10779 	/*
10780 	 * Synchronize 64- and 32-bit counters
10781 	 */
10782 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10783 	    ipIfStatsHCInReceives);
10784 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10785 	    ipIfStatsHCInDelivers);
10786 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10787 	    ipIfStatsHCOutRequests);
10788 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10789 	    ipIfStatsHCOutForwDatagrams);
10790 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10791 	    ipIfStatsHCOutMcastPkts);
10792 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10793 	    ipIfStatsHCInMcastPkts);
10794 
10795 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10796 	    (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10797 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10798 		    (uint_t)ise_size));
10799 	} else if (legacy_req) {
10800 		/* Adjust the EntrySize fields for legacy requests. */
10801 		ise =
10802 		    (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10803 		SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10804 		SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10805 	}
10806 
10807 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10808 	ill = ILL_START_WALK_V6(&ctx, ipst);
10809 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10810 		ill->ill_ip_mib->ipIfStatsIfIndex =
10811 		    ill->ill_phyint->phyint_ifindex;
10812 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10813 		    ipst->ips_ipv6_forwarding ? 1 : 2);
10814 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10815 		    ill->ill_max_hops);
10816 
10817 		/*
10818 		 * Synchronize 64- and 32-bit counters
10819 		 */
10820 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10821 		    ipIfStatsHCInReceives);
10822 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10823 		    ipIfStatsHCInDelivers);
10824 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10825 		    ipIfStatsHCOutRequests);
10826 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10827 		    ipIfStatsHCOutForwDatagrams);
10828 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10829 		    ipIfStatsHCOutMcastPkts);
10830 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10831 		    ipIfStatsHCInMcastPkts);
10832 
10833 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10834 		    (char *)ill->ill_ip_mib, (int)ise_size)) {
10835 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10836 			"%u bytes\n", (uint_t)ise_size));
10837 		} else if (legacy_req) {
10838 			/* Adjust the EntrySize fields for legacy requests. */
10839 			ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10840 			    (int)ise_size);
10841 			SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10842 			SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10843 		}
10844 	}
10845 	rw_exit(&ipst->ips_ill_g_lock);
10846 
10847 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10848 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10849 	    (int)optp->level, (int)optp->name, (int)optp->len));
10850 	qreply(q, mpctl);
10851 	return (mp2ctl);
10852 }
10853 
10854 /*
10855  * ICMPv6 mib: One per ill
10856  */
10857 static mblk_t *
10858 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10859 {
10860 	struct opthdr		*optp;
10861 	mblk_t			*mp2ctl;
10862 	ill_t			*ill;
10863 	ill_walk_context_t	ctx;
10864 	mblk_t			*mp_tail = NULL;
10865 	/*
10866 	 * Make a copy of the original message
10867 	 */
10868 	mp2ctl = copymsg(mpctl);
10869 
10870 	/* fixed length ICMPv6 structure ... */
10871 
10872 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10873 	optp->level = MIB2_ICMP6;
10874 	optp->name = 0;
10875 	/* Include "unknown interface" icmp6_mib */
10876 	ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10877 	    MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10878 	ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10879 	    sizeof (mib2_ipv6IfIcmpEntry_t);
10880 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10881 	    (char *)&ipst->ips_icmp6_mib,
10882 	    (int)sizeof (ipst->ips_icmp6_mib))) {
10883 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10884 		    (uint_t)sizeof (ipst->ips_icmp6_mib)));
10885 	}
10886 
10887 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10888 	ill = ILL_START_WALK_V6(&ctx, ipst);
10889 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10890 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10891 		    ill->ill_phyint->phyint_ifindex;
10892 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10893 		    (char *)ill->ill_icmp6_mib,
10894 		    (int)sizeof (*ill->ill_icmp6_mib))) {
10895 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10896 			    "%u bytes\n",
10897 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
10898 		}
10899 	}
10900 	rw_exit(&ipst->ips_ill_g_lock);
10901 
10902 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10903 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10904 	    (int)optp->level, (int)optp->name, (int)optp->len));
10905 	qreply(q, mpctl);
10906 	return (mp2ctl);
10907 }
10908 
10909 /*
10910  * ire_walk routine to create both ipRouteEntryTable and
10911  * ipRouteAttributeTable in one IRE walk
10912  */
10913 static void
10914 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10915 {
10916 	ill_t				*ill;
10917 	mib2_ipRouteEntry_t		*re;
10918 	mib2_ipAttributeEntry_t		iaes;
10919 	tsol_ire_gw_secattr_t		*attrp;
10920 	tsol_gc_t			*gc = NULL;
10921 	tsol_gcgrp_t			*gcgrp = NULL;
10922 	ip_stack_t			*ipst = ire->ire_ipst;
10923 
10924 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
10925 
10926 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10927 		if (ire->ire_testhidden)
10928 			return;
10929 		if (ire->ire_type & IRE_IF_CLONE)
10930 			return;
10931 	}
10932 
10933 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10934 		return;
10935 
10936 	if ((attrp = ire->ire_gw_secattr) != NULL) {
10937 		mutex_enter(&attrp->igsa_lock);
10938 		if ((gc = attrp->igsa_gc) != NULL) {
10939 			gcgrp = gc->gc_grp;
10940 			ASSERT(gcgrp != NULL);
10941 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10942 		}
10943 		mutex_exit(&attrp->igsa_lock);
10944 	}
10945 	/*
10946 	 * Return all IRE types for route table... let caller pick and choose
10947 	 */
10948 	re->ipRouteDest = ire->ire_addr;
10949 	ill = ire->ire_ill;
10950 	re->ipRouteIfIndex.o_length = 0;
10951 	if (ill != NULL) {
10952 		ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10953 		re->ipRouteIfIndex.o_length =
10954 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
10955 	}
10956 	re->ipRouteMetric1 = -1;
10957 	re->ipRouteMetric2 = -1;
10958 	re->ipRouteMetric3 = -1;
10959 	re->ipRouteMetric4 = -1;
10960 
10961 	re->ipRouteNextHop = ire->ire_gateway_addr;
10962 	/* indirect(4), direct(3), or invalid(2) */
10963 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10964 		re->ipRouteType = 2;
10965 	else if (ire->ire_type & IRE_ONLINK)
10966 		re->ipRouteType = 3;
10967 	else
10968 		re->ipRouteType = 4;
10969 
10970 	re->ipRouteProto = -1;
10971 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10972 	re->ipRouteMask = ire->ire_mask;
10973 	re->ipRouteMetric5 = -1;
10974 	re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10975 	if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10976 		re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10977 
10978 	re->ipRouteInfo.re_frag_flag	= 0;
10979 	re->ipRouteInfo.re_rtt		= 0;
10980 	re->ipRouteInfo.re_src_addr	= 0;
10981 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
10982 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
10983 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
10984 	re->ipRouteInfo.re_flags	= ire->ire_flags;
10985 
10986 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10987 	if (ire->ire_type & IRE_INTERFACE) {
10988 		ire_t *child;
10989 
10990 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10991 		child = ire->ire_dep_children;
10992 		while (child != NULL) {
10993 			re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10994 			re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10995 			child = child->ire_dep_sib_next;
10996 		}
10997 		rw_exit(&ipst->ips_ire_dep_lock);
10998 	}
10999 
11000 	if (ire->ire_flags & RTF_DYNAMIC) {
11001 		re->ipRouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11002 	} else {
11003 		re->ipRouteInfo.re_ire_type	= ire->ire_type;
11004 	}
11005 
11006 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11007 	    (char *)re, (int)sizeof (*re))) {
11008 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
11009 		    (uint_t)sizeof (*re)));
11010 	}
11011 
11012 	if (gc != NULL) {
11013 		iaes.iae_routeidx = ird->ird_idx;
11014 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11015 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11016 
11017 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11018 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11019 			ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11020 			    "bytes\n", (uint_t)sizeof (iaes)));
11021 		}
11022 	}
11023 
11024 	/* bump route index for next pass */
11025 	ird->ird_idx++;
11026 
11027 	kmem_free(re, sizeof (*re));
11028 	if (gcgrp != NULL)
11029 		rw_exit(&gcgrp->gcgrp_rwlock);
11030 }
11031 
11032 /*
11033  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11034  */
11035 static void
11036 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11037 {
11038 	ill_t				*ill;
11039 	mib2_ipv6RouteEntry_t		*re;
11040 	mib2_ipAttributeEntry_t		iaes;
11041 	tsol_ire_gw_secattr_t		*attrp;
11042 	tsol_gc_t			*gc = NULL;
11043 	tsol_gcgrp_t			*gcgrp = NULL;
11044 	ip_stack_t			*ipst = ire->ire_ipst;
11045 
11046 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
11047 
11048 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11049 		if (ire->ire_testhidden)
11050 			return;
11051 		if (ire->ire_type & IRE_IF_CLONE)
11052 			return;
11053 	}
11054 
11055 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11056 		return;
11057 
11058 	if ((attrp = ire->ire_gw_secattr) != NULL) {
11059 		mutex_enter(&attrp->igsa_lock);
11060 		if ((gc = attrp->igsa_gc) != NULL) {
11061 			gcgrp = gc->gc_grp;
11062 			ASSERT(gcgrp != NULL);
11063 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11064 		}
11065 		mutex_exit(&attrp->igsa_lock);
11066 	}
11067 	/*
11068 	 * Return all IRE types for route table... let caller pick and choose
11069 	 */
11070 	re->ipv6RouteDest = ire->ire_addr_v6;
11071 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11072 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
11073 	re->ipv6RouteIfIndex.o_length = 0;
11074 	ill = ire->ire_ill;
11075 	if (ill != NULL) {
11076 		ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11077 		re->ipv6RouteIfIndex.o_length =
11078 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11079 	}
11080 
11081 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
11082 
11083 	mutex_enter(&ire->ire_lock);
11084 	re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11085 	mutex_exit(&ire->ire_lock);
11086 
11087 	/* remote(4), local(3), or discard(2) */
11088 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11089 		re->ipv6RouteType = 2;
11090 	else if (ire->ire_type & IRE_ONLINK)
11091 		re->ipv6RouteType = 3;
11092 	else
11093 		re->ipv6RouteType = 4;
11094 
11095 	re->ipv6RouteProtocol	= -1;
11096 	re->ipv6RoutePolicy	= 0;
11097 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
11098 	re->ipv6RouteNextHopRDI	= 0;
11099 	re->ipv6RouteWeight	= 0;
11100 	re->ipv6RouteMetric	= 0;
11101 	re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11102 	if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11103 		re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11104 
11105 	re->ipv6RouteInfo.re_frag_flag	= 0;
11106 	re->ipv6RouteInfo.re_rtt	= 0;
11107 	re->ipv6RouteInfo.re_src_addr	= ipv6_all_zeros;
11108 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
11109 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
11110 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
11111 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
11112 
11113 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11114 	if (ire->ire_type & IRE_INTERFACE) {
11115 		ire_t *child;
11116 
11117 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11118 		child = ire->ire_dep_children;
11119 		while (child != NULL) {
11120 			re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11121 			re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11122 			child = child->ire_dep_sib_next;
11123 		}
11124 		rw_exit(&ipst->ips_ire_dep_lock);
11125 	}
11126 	if (ire->ire_flags & RTF_DYNAMIC) {
11127 		re->ipv6RouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11128 	} else {
11129 		re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
11130 	}
11131 
11132 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11133 	    (char *)re, (int)sizeof (*re))) {
11134 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11135 		    (uint_t)sizeof (*re)));
11136 	}
11137 
11138 	if (gc != NULL) {
11139 		iaes.iae_routeidx = ird->ird_idx;
11140 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11141 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11142 
11143 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11144 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11145 			ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11146 			    "bytes\n", (uint_t)sizeof (iaes)));
11147 		}
11148 	}
11149 
11150 	/* bump route index for next pass */
11151 	ird->ird_idx++;
11152 
11153 	kmem_free(re, sizeof (*re));
11154 	if (gcgrp != NULL)
11155 		rw_exit(&gcgrp->gcgrp_rwlock);
11156 }
11157 
11158 /*
11159  * ncec_walk routine to create ipv6NetToMediaEntryTable
11160  */
11161 static int
11162 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird)
11163 {
11164 	ill_t				*ill;
11165 	mib2_ipv6NetToMediaEntry_t	ntme;
11166 
11167 	ill = ncec->ncec_ill;
11168 	/* skip arpce entries, and loopback ncec entries */
11169 	if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11170 		return (0);
11171 	/*
11172 	 * Neighbor cache entry attached to IRE with on-link
11173 	 * destination.
11174 	 * We report all IPMP groups on ncec_ill which is normally the upper.
11175 	 */
11176 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11177 	ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11178 	ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11179 	if (ncec->ncec_lladdr != NULL) {
11180 		bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11181 		    ntme.ipv6NetToMediaPhysAddress.o_length);
11182 	}
11183 	/*
11184 	 * Note: Returns ND_* states. Should be:
11185 	 * reachable(1), stale(2), delay(3), probe(4),
11186 	 * invalid(5), unknown(6)
11187 	 */
11188 	ntme.ipv6NetToMediaState = ncec->ncec_state;
11189 	ntme.ipv6NetToMediaLastUpdated = 0;
11190 
11191 	/* other(1), dynamic(2), static(3), local(4) */
11192 	if (NCE_MYADDR(ncec)) {
11193 		ntme.ipv6NetToMediaType = 4;
11194 	} else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11195 		ntme.ipv6NetToMediaType = 1; /* proxy */
11196 	} else if (ncec->ncec_flags & NCE_F_STATIC) {
11197 		ntme.ipv6NetToMediaType = 3;
11198 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11199 		ntme.ipv6NetToMediaType = 1;
11200 	} else {
11201 		ntme.ipv6NetToMediaType = 2;
11202 	}
11203 
11204 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11205 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11206 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11207 		    (uint_t)sizeof (ntme)));
11208 	}
11209 	return (0);
11210 }
11211 
11212 int
11213 nce2ace(ncec_t *ncec)
11214 {
11215 	int flags = 0;
11216 
11217 	if (NCE_ISREACHABLE(ncec))
11218 		flags |= ACE_F_RESOLVED;
11219 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11220 		flags |= ACE_F_AUTHORITY;
11221 	if (ncec->ncec_flags & NCE_F_PUBLISH)
11222 		flags |= ACE_F_PUBLISH;
11223 	if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11224 		flags |= ACE_F_PERMANENT;
11225 	if (NCE_MYADDR(ncec))
11226 		flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11227 	if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11228 		flags |= ACE_F_UNVERIFIED;
11229 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11230 		flags |= ACE_F_AUTHORITY;
11231 	if (ncec->ncec_flags & NCE_F_DELAYED)
11232 		flags |= ACE_F_DELAYED;
11233 	return (flags);
11234 }
11235 
11236 /*
11237  * ncec_walk routine to create ipNetToMediaEntryTable
11238  */
11239 static int
11240 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird)
11241 {
11242 	ill_t				*ill;
11243 	mib2_ipNetToMediaEntry_t	ntme;
11244 	const char			*name = "unknown";
11245 	ipaddr_t			ncec_addr;
11246 
11247 	ill = ncec->ncec_ill;
11248 	if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11249 	    ill->ill_net_type == IRE_LOOPBACK)
11250 		return (0);
11251 
11252 	/* We report all IPMP groups on ncec_ill which is normally the upper. */
11253 	name = ill->ill_name;
11254 	/* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11255 	if (NCE_MYADDR(ncec)) {
11256 		ntme.ipNetToMediaType = 4;
11257 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11258 		ntme.ipNetToMediaType = 1;
11259 	} else {
11260 		ntme.ipNetToMediaType = 3;
11261 	}
11262 	ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11263 	bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11264 	    ntme.ipNetToMediaIfIndex.o_length);
11265 
11266 	IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11267 	bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11268 
11269 	ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11270 	ncec_addr = INADDR_BROADCAST;
11271 	bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11272 	    sizeof (ncec_addr));
11273 	/*
11274 	 * map all the flags to the ACE counterpart.
11275 	 */
11276 	ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11277 
11278 	ntme.ipNetToMediaPhysAddress.o_length =
11279 	    MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11280 
11281 	if (!NCE_ISREACHABLE(ncec))
11282 		ntme.ipNetToMediaPhysAddress.o_length = 0;
11283 	else {
11284 		if (ncec->ncec_lladdr != NULL) {
11285 			bcopy(ncec->ncec_lladdr,
11286 			    ntme.ipNetToMediaPhysAddress.o_bytes,
11287 			    ntme.ipNetToMediaPhysAddress.o_length);
11288 		}
11289 	}
11290 
11291 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11292 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11293 		ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11294 		    (uint_t)sizeof (ntme)));
11295 	}
11296 	return (0);
11297 }
11298 
11299 /*
11300  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11301  */
11302 /* ARGSUSED */
11303 int
11304 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11305 {
11306 	switch (level) {
11307 	case MIB2_IP:
11308 	case MIB2_ICMP:
11309 		switch (name) {
11310 		default:
11311 			break;
11312 		}
11313 		return (1);
11314 	default:
11315 		return (1);
11316 	}
11317 }
11318 
11319 /*
11320  * When there exists both a 64- and 32-bit counter of a particular type
11321  * (i.e., InReceives), only the 64-bit counters are added.
11322  */
11323 void
11324 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11325 {
11326 	UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11327 	UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11328 	UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11329 	UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11330 	UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11331 	UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11332 	UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11333 	UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11334 	UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11335 	UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11336 	UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11337 	UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11338 	UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11339 	UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11340 	UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11341 	UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11342 	UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11343 	UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11344 	UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11345 	UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11346 	UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11347 	UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11348 	    o2->ipIfStatsInWrongIPVersion);
11349 	UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11350 	    o2->ipIfStatsInWrongIPVersion);
11351 	UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11352 	    o2->ipIfStatsOutSwitchIPVersion);
11353 	UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11354 	UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11355 	UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11356 	    o2->ipIfStatsHCInForwDatagrams);
11357 	UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11358 	UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11359 	UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11360 	    o2->ipIfStatsHCOutForwDatagrams);
11361 	UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11362 	UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11363 	UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11364 	UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11365 	UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11366 	UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11367 	UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11368 	    o2->ipIfStatsHCOutMcastOctets);
11369 	UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11370 	UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11371 	UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11372 	UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11373 	UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11374 	UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11375 	UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11376 }
11377 
11378 void
11379 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11380 {
11381 	UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11382 	UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11383 	UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11384 	UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11385 	UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11386 	UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11387 	UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11388 	UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11389 	UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11390 	UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11391 	    o2->ipv6IfIcmpInRouterSolicits);
11392 	UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11393 	    o2->ipv6IfIcmpInRouterAdvertisements);
11394 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11395 	    o2->ipv6IfIcmpInNeighborSolicits);
11396 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11397 	    o2->ipv6IfIcmpInNeighborAdvertisements);
11398 	UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11399 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11400 	    o2->ipv6IfIcmpInGroupMembQueries);
11401 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11402 	    o2->ipv6IfIcmpInGroupMembResponses);
11403 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11404 	    o2->ipv6IfIcmpInGroupMembReductions);
11405 	UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11406 	UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11407 	UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11408 	    o2->ipv6IfIcmpOutDestUnreachs);
11409 	UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11410 	    o2->ipv6IfIcmpOutAdminProhibs);
11411 	UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11412 	UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11413 	    o2->ipv6IfIcmpOutParmProblems);
11414 	UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11415 	UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11416 	UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11417 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11418 	    o2->ipv6IfIcmpOutRouterSolicits);
11419 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11420 	    o2->ipv6IfIcmpOutRouterAdvertisements);
11421 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11422 	    o2->ipv6IfIcmpOutNeighborSolicits);
11423 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11424 	    o2->ipv6IfIcmpOutNeighborAdvertisements);
11425 	UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11426 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11427 	    o2->ipv6IfIcmpOutGroupMembQueries);
11428 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11429 	    o2->ipv6IfIcmpOutGroupMembResponses);
11430 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11431 	    o2->ipv6IfIcmpOutGroupMembReductions);
11432 	UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11433 	UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11434 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11435 	    o2->ipv6IfIcmpInBadNeighborAdvertisements);
11436 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11437 	    o2->ipv6IfIcmpInBadNeighborSolicitations);
11438 	UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11439 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11440 	    o2->ipv6IfIcmpInGroupMembTotal);
11441 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11442 	    o2->ipv6IfIcmpInGroupMembBadQueries);
11443 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11444 	    o2->ipv6IfIcmpInGroupMembBadReports);
11445 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11446 	    o2->ipv6IfIcmpInGroupMembOurReports);
11447 }
11448 
11449 /*
11450  * Called before the options are updated to check if this packet will
11451  * be source routed from here.
11452  * This routine assumes that the options are well formed i.e. that they
11453  * have already been checked.
11454  */
11455 boolean_t
11456 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11457 {
11458 	ipoptp_t	opts;
11459 	uchar_t		*opt;
11460 	uint8_t		optval;
11461 	uint8_t		optlen;
11462 	ipaddr_t	dst;
11463 
11464 	if (IS_SIMPLE_IPH(ipha)) {
11465 		ip2dbg(("not source routed\n"));
11466 		return (B_FALSE);
11467 	}
11468 	dst = ipha->ipha_dst;
11469 	for (optval = ipoptp_first(&opts, ipha);
11470 	    optval != IPOPT_EOL;
11471 	    optval = ipoptp_next(&opts)) {
11472 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11473 		opt = opts.ipoptp_cur;
11474 		optlen = opts.ipoptp_len;
11475 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
11476 		    optval, optlen));
11477 		switch (optval) {
11478 			uint32_t off;
11479 		case IPOPT_SSRR:
11480 		case IPOPT_LSRR:
11481 			/*
11482 			 * If dst is one of our addresses and there are some
11483 			 * entries left in the source route return (true).
11484 			 */
11485 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11486 				ip2dbg(("ip_source_routed: not next"
11487 				    " source route 0x%x\n",
11488 				    ntohl(dst)));
11489 				return (B_FALSE);
11490 			}
11491 			off = opt[IPOPT_OFFSET];
11492 			off--;
11493 			if (optlen < IP_ADDR_LEN ||
11494 			    off > optlen - IP_ADDR_LEN) {
11495 				/* End of source route */
11496 				ip1dbg(("ip_source_routed: end of SR\n"));
11497 				return (B_FALSE);
11498 			}
11499 			return (B_TRUE);
11500 		}
11501 	}
11502 	ip2dbg(("not source routed\n"));
11503 	return (B_FALSE);
11504 }
11505 
11506 /*
11507  * ip_unbind is called by the transports to remove a conn from
11508  * the fanout table.
11509  */
11510 void
11511 ip_unbind(conn_t *connp)
11512 {
11513 
11514 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
11515 
11516 	if (is_system_labeled() && connp->conn_anon_port) {
11517 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11518 		    connp->conn_mlp_type, connp->conn_proto,
11519 		    ntohs(connp->conn_lport), B_FALSE);
11520 		connp->conn_anon_port = 0;
11521 	}
11522 	connp->conn_mlp_type = mlptSingle;
11523 
11524 	ipcl_hash_remove(connp);
11525 }
11526 
11527 /*
11528  * Used for deciding the MSS size for the upper layer. Thus
11529  * we need to check the outbound policy values in the conn.
11530  */
11531 int
11532 conn_ipsec_length(conn_t *connp)
11533 {
11534 	ipsec_latch_t *ipl;
11535 
11536 	ipl = connp->conn_latch;
11537 	if (ipl == NULL)
11538 		return (0);
11539 
11540 	if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11541 		return (0);
11542 
11543 	return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11544 }
11545 
11546 /*
11547  * Returns an estimate of the IPsec headers size. This is used if
11548  * we don't want to call into IPsec to get the exact size.
11549  */
11550 int
11551 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11552 {
11553 	ipsec_action_t *a;
11554 
11555 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11556 		return (0);
11557 
11558 	a = ixa->ixa_ipsec_action;
11559 	if (a == NULL) {
11560 		ASSERT(ixa->ixa_ipsec_policy != NULL);
11561 		a = ixa->ixa_ipsec_policy->ipsp_act;
11562 	}
11563 	ASSERT(a != NULL);
11564 
11565 	return (a->ipa_ovhd);
11566 }
11567 
11568 /*
11569  * If there are any source route options, return the true final
11570  * destination. Otherwise, return the destination.
11571  */
11572 ipaddr_t
11573 ip_get_dst(ipha_t *ipha)
11574 {
11575 	ipoptp_t	opts;
11576 	uchar_t		*opt;
11577 	uint8_t		optval;
11578 	uint8_t		optlen;
11579 	ipaddr_t	dst;
11580 	uint32_t off;
11581 
11582 	dst = ipha->ipha_dst;
11583 
11584 	if (IS_SIMPLE_IPH(ipha))
11585 		return (dst);
11586 
11587 	for (optval = ipoptp_first(&opts, ipha);
11588 	    optval != IPOPT_EOL;
11589 	    optval = ipoptp_next(&opts)) {
11590 		opt = opts.ipoptp_cur;
11591 		optlen = opts.ipoptp_len;
11592 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11593 		switch (optval) {
11594 		case IPOPT_SSRR:
11595 		case IPOPT_LSRR:
11596 			off = opt[IPOPT_OFFSET];
11597 			/*
11598 			 * If one of the conditions is true, it means
11599 			 * end of options and dst already has the right
11600 			 * value.
11601 			 */
11602 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11603 				off = optlen - IP_ADDR_LEN;
11604 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
11605 			}
11606 			return (dst);
11607 		default:
11608 			break;
11609 		}
11610 	}
11611 
11612 	return (dst);
11613 }
11614 
11615 /*
11616  * Outbound IP fragmentation routine.
11617  * Assumes the caller has checked whether or not fragmentation should
11618  * be allowed. Here we copy the DF bit from the header to all the generated
11619  * fragments.
11620  */
11621 int
11622 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11623     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11624     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11625 {
11626 	int		i1;
11627 	int		hdr_len;
11628 	mblk_t		*hdr_mp;
11629 	ipha_t		*ipha;
11630 	int		ip_data_end;
11631 	int		len;
11632 	mblk_t		*mp = mp_orig;
11633 	int		offset;
11634 	ill_t		*ill = nce->nce_ill;
11635 	ip_stack_t	*ipst = ill->ill_ipst;
11636 	mblk_t		*carve_mp;
11637 	uint32_t	frag_flag;
11638 	uint_t		priority = mp->b_band;
11639 	int		error = 0;
11640 
11641 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11642 
11643 	if (pkt_len != msgdsize(mp)) {
11644 		ip0dbg(("Packet length mismatch: %d, %ld\n",
11645 		    pkt_len, msgdsize(mp)));
11646 		freemsg(mp);
11647 		return (EINVAL);
11648 	}
11649 
11650 	if (max_frag == 0) {
11651 		ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11652 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11653 		ip_drop_output("FragFails: zero max_frag", mp, ill);
11654 		freemsg(mp);
11655 		return (EINVAL);
11656 	}
11657 
11658 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11659 	ipha = (ipha_t *)mp->b_rptr;
11660 	ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11661 	frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11662 
11663 	/*
11664 	 * Establish the starting offset.  May not be zero if we are fragging
11665 	 * a fragment that is being forwarded.
11666 	 */
11667 	offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11668 
11669 	/* TODO why is this test needed? */
11670 	if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11671 		/* TODO: notify ulp somehow */
11672 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11673 		ip_drop_output("FragFails: bad starting offset", mp, ill);
11674 		freemsg(mp);
11675 		return (EINVAL);
11676 	}
11677 
11678 	hdr_len = IPH_HDR_LENGTH(ipha);
11679 	ipha->ipha_hdr_checksum = 0;
11680 
11681 	/*
11682 	 * Establish the number of bytes maximum per frag, after putting
11683 	 * in the header.
11684 	 */
11685 	len = (max_frag - hdr_len) & ~7;
11686 
11687 	/* Get a copy of the header for the trailing frags */
11688 	hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11689 	    mp);
11690 	if (hdr_mp == NULL) {
11691 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11692 		ip_drop_output("FragFails: no hdr_mp", mp, ill);
11693 		freemsg(mp);
11694 		return (ENOBUFS);
11695 	}
11696 
11697 	/* Store the starting offset, with the MoreFrags flag. */
11698 	i1 = offset | IPH_MF | frag_flag;
11699 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11700 
11701 	/* Establish the ending byte offset, based on the starting offset. */
11702 	offset <<= 3;
11703 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11704 
11705 	/* Store the length of the first fragment in the IP header. */
11706 	i1 = len + hdr_len;
11707 	ASSERT(i1 <= IP_MAXPACKET);
11708 	ipha->ipha_length = htons((uint16_t)i1);
11709 
11710 	/*
11711 	 * Compute the IP header checksum for the first frag.  We have to
11712 	 * watch out that we stop at the end of the header.
11713 	 */
11714 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11715 
11716 	/*
11717 	 * Now carve off the first frag.  Note that this will include the
11718 	 * original IP header.
11719 	 */
11720 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11721 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11722 		ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11723 		freeb(hdr_mp);
11724 		freemsg(mp_orig);
11725 		return (ENOBUFS);
11726 	}
11727 
11728 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11729 
11730 	error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11731 	    ixa_cookie);
11732 	if (error != 0 && error != EWOULDBLOCK) {
11733 		/* No point in sending the other fragments */
11734 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11735 		ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11736 		freeb(hdr_mp);
11737 		freemsg(mp_orig);
11738 		return (error);
11739 	}
11740 
11741 	/* No need to redo state machine in loop */
11742 	ixaflags &= ~IXAF_REACH_CONF;
11743 
11744 	/* Advance the offset to the second frag starting point. */
11745 	offset += len;
11746 	/*
11747 	 * Update hdr_len from the copied header - there might be less options
11748 	 * in the later fragments.
11749 	 */
11750 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11751 	/* Loop until done. */
11752 	for (;;) {
11753 		uint16_t	offset_and_flags;
11754 		uint16_t	ip_len;
11755 
11756 		if (ip_data_end - offset > len) {
11757 			/*
11758 			 * Carve off the appropriate amount from the original
11759 			 * datagram.
11760 			 */
11761 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11762 				mp = NULL;
11763 				break;
11764 			}
11765 			/*
11766 			 * More frags after this one.  Get another copy
11767 			 * of the header.
11768 			 */
11769 			if (carve_mp->b_datap->db_ref == 1 &&
11770 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11771 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11772 				/* Inline IP header */
11773 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11774 				    hdr_mp->b_rptr;
11775 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11776 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11777 				mp = carve_mp;
11778 			} else {
11779 				if (!(mp = copyb(hdr_mp))) {
11780 					freemsg(carve_mp);
11781 					break;
11782 				}
11783 				/* Get priority marking, if any. */
11784 				mp->b_band = priority;
11785 				mp->b_cont = carve_mp;
11786 			}
11787 			ipha = (ipha_t *)mp->b_rptr;
11788 			offset_and_flags = IPH_MF;
11789 		} else {
11790 			/*
11791 			 * Last frag.  Consume the header. Set len to
11792 			 * the length of this last piece.
11793 			 */
11794 			len = ip_data_end - offset;
11795 
11796 			/*
11797 			 * Carve off the appropriate amount from the original
11798 			 * datagram.
11799 			 */
11800 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11801 				mp = NULL;
11802 				break;
11803 			}
11804 			if (carve_mp->b_datap->db_ref == 1 &&
11805 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11806 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11807 				/* Inline IP header */
11808 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11809 				    hdr_mp->b_rptr;
11810 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11811 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11812 				mp = carve_mp;
11813 				freeb(hdr_mp);
11814 				hdr_mp = mp;
11815 			} else {
11816 				mp = hdr_mp;
11817 				/* Get priority marking, if any. */
11818 				mp->b_band = priority;
11819 				mp->b_cont = carve_mp;
11820 			}
11821 			ipha = (ipha_t *)mp->b_rptr;
11822 			/* A frag of a frag might have IPH_MF non-zero */
11823 			offset_and_flags =
11824 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
11825 			    IPH_MF;
11826 		}
11827 		offset_and_flags |= (uint16_t)(offset >> 3);
11828 		offset_and_flags |= (uint16_t)frag_flag;
11829 		/* Store the offset and flags in the IP header. */
11830 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11831 
11832 		/* Store the length in the IP header. */
11833 		ip_len = (uint16_t)(len + hdr_len);
11834 		ipha->ipha_length = htons(ip_len);
11835 
11836 		/*
11837 		 * Set the IP header checksum.	Note that mp is just
11838 		 * the header, so this is easy to pass to ip_csum.
11839 		 */
11840 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11841 
11842 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11843 
11844 		error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11845 		    nolzid, ixa_cookie);
11846 		/* All done if we just consumed the hdr_mp. */
11847 		if (mp == hdr_mp) {
11848 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11849 			return (error);
11850 		}
11851 		if (error != 0 && error != EWOULDBLOCK) {
11852 			DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11853 			    mblk_t *, hdr_mp);
11854 			/* No point in sending the other fragments */
11855 			break;
11856 		}
11857 
11858 		/* Otherwise, advance and loop. */
11859 		offset += len;
11860 	}
11861 	/* Clean up following allocation failure. */
11862 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11863 	ip_drop_output("FragFails: loop ended", NULL, ill);
11864 	if (mp != hdr_mp)
11865 		freeb(hdr_mp);
11866 	if (mp != mp_orig)
11867 		freemsg(mp_orig);
11868 	return (error);
11869 }
11870 
11871 /*
11872  * Copy the header plus those options which have the copy bit set
11873  */
11874 static mblk_t *
11875 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11876     mblk_t *src)
11877 {
11878 	mblk_t	*mp;
11879 	uchar_t	*up;
11880 
11881 	/*
11882 	 * Quick check if we need to look for options without the copy bit
11883 	 * set
11884 	 */
11885 	mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11886 	if (!mp)
11887 		return (mp);
11888 	mp->b_rptr += ipst->ips_ip_wroff_extra;
11889 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11890 		bcopy(rptr, mp->b_rptr, hdr_len);
11891 		mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11892 		return (mp);
11893 	}
11894 	up  = mp->b_rptr;
11895 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11896 	up += IP_SIMPLE_HDR_LENGTH;
11897 	rptr += IP_SIMPLE_HDR_LENGTH;
11898 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
11899 	while (hdr_len > 0) {
11900 		uint32_t optval;
11901 		uint32_t optlen;
11902 
11903 		optval = *rptr;
11904 		if (optval == IPOPT_EOL)
11905 			break;
11906 		if (optval == IPOPT_NOP)
11907 			optlen = 1;
11908 		else
11909 			optlen = rptr[1];
11910 		if (optval & IPOPT_COPY) {
11911 			bcopy(rptr, up, optlen);
11912 			up += optlen;
11913 		}
11914 		rptr += optlen;
11915 		hdr_len -= optlen;
11916 	}
11917 	/*
11918 	 * Make sure that we drop an even number of words by filling
11919 	 * with EOL to the next word boundary.
11920 	 */
11921 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11922 	    hdr_len & 0x3; hdr_len++)
11923 		*up++ = IPOPT_EOL;
11924 	mp->b_wptr = up;
11925 	/* Update header length */
11926 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11927 	return (mp);
11928 }
11929 
11930 /*
11931  * Update any source route, record route, or timestamp options when
11932  * sending a packet back to ourselves.
11933  * Check that we are at end of strict source route.
11934  * The options have been sanity checked by ip_output_options().
11935  */
11936 void
11937 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11938 {
11939 	ipoptp_t	opts;
11940 	uchar_t		*opt;
11941 	uint8_t		optval;
11942 	uint8_t		optlen;
11943 	ipaddr_t	dst;
11944 	uint32_t	ts;
11945 	timestruc_t	now;
11946 
11947 	for (optval = ipoptp_first(&opts, ipha);
11948 	    optval != IPOPT_EOL;
11949 	    optval = ipoptp_next(&opts)) {
11950 		opt = opts.ipoptp_cur;
11951 		optlen = opts.ipoptp_len;
11952 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11953 		switch (optval) {
11954 			uint32_t off;
11955 		case IPOPT_SSRR:
11956 		case IPOPT_LSRR:
11957 			off = opt[IPOPT_OFFSET];
11958 			off--;
11959 			if (optlen < IP_ADDR_LEN ||
11960 			    off > optlen - IP_ADDR_LEN) {
11961 				/* End of source route */
11962 				break;
11963 			}
11964 			/*
11965 			 * This will only happen if two consecutive entries
11966 			 * in the source route contains our address or if
11967 			 * it is a packet with a loose source route which
11968 			 * reaches us before consuming the whole source route
11969 			 */
11970 
11971 			if (optval == IPOPT_SSRR) {
11972 				return;
11973 			}
11974 			/*
11975 			 * Hack: instead of dropping the packet truncate the
11976 			 * source route to what has been used by filling the
11977 			 * rest with IPOPT_NOP.
11978 			 */
11979 			opt[IPOPT_OLEN] = (uint8_t)off;
11980 			while (off < optlen) {
11981 				opt[off++] = IPOPT_NOP;
11982 			}
11983 			break;
11984 		case IPOPT_RR:
11985 			off = opt[IPOPT_OFFSET];
11986 			off--;
11987 			if (optlen < IP_ADDR_LEN ||
11988 			    off > optlen - IP_ADDR_LEN) {
11989 				/* No more room - ignore */
11990 				ip1dbg((
11991 				    "ip_output_local_options: end of RR\n"));
11992 				break;
11993 			}
11994 			dst = htonl(INADDR_LOOPBACK);
11995 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11996 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11997 			break;
11998 		case IPOPT_TS:
11999 			/* Insert timestamp if there is romm */
12000 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12001 			case IPOPT_TS_TSONLY:
12002 				off = IPOPT_TS_TIMELEN;
12003 				break;
12004 			case IPOPT_TS_PRESPEC:
12005 			case IPOPT_TS_PRESPEC_RFC791:
12006 				/* Verify that the address matched */
12007 				off = opt[IPOPT_OFFSET] - 1;
12008 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
12009 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
12010 					/* Not for us */
12011 					break;
12012 				}
12013 				/* FALLTHRU */
12014 			case IPOPT_TS_TSANDADDR:
12015 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12016 				break;
12017 			default:
12018 				/*
12019 				 * ip_*put_options should have already
12020 				 * dropped this packet.
12021 				 */
12022 				cmn_err(CE_PANIC, "ip_output_local_options: "
12023 				    "unknown IT - bug in ip_output_options?\n");
12024 				return;	/* Keep "lint" happy */
12025 			}
12026 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12027 				/* Increase overflow counter */
12028 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12029 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
12030 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12031 				    (off << 4);
12032 				break;
12033 			}
12034 			off = opt[IPOPT_OFFSET] - 1;
12035 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12036 			case IPOPT_TS_PRESPEC:
12037 			case IPOPT_TS_PRESPEC_RFC791:
12038 			case IPOPT_TS_TSANDADDR:
12039 				dst = htonl(INADDR_LOOPBACK);
12040 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12041 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12042 				/* FALLTHRU */
12043 			case IPOPT_TS_TSONLY:
12044 				off = opt[IPOPT_OFFSET] - 1;
12045 				/* Compute # of milliseconds since midnight */
12046 				gethrestime(&now);
12047 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12048 				    NSEC2MSEC(now.tv_nsec);
12049 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12050 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12051 				break;
12052 			}
12053 			break;
12054 		}
12055 	}
12056 }
12057 
12058 /*
12059  * Prepend an M_DATA fastpath header, and if none present prepend a
12060  * DL_UNITDATA_REQ. Frees the mblk on failure.
12061  *
12062  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12063  * If there is a change to them, the nce will be deleted (condemned) and
12064  * a new nce_t will be created when packets are sent. Thus we need no locks
12065  * to access those fields.
12066  *
12067  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12068  * we place b_band in dl_priority.dl_max.
12069  */
12070 static mblk_t *
12071 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12072 {
12073 	uint_t	hlen;
12074 	mblk_t *mp1;
12075 	uint_t	priority;
12076 	uchar_t *rptr;
12077 
12078 	rptr = mp->b_rptr;
12079 
12080 	ASSERT(DB_TYPE(mp) == M_DATA);
12081 	priority = mp->b_band;
12082 
12083 	ASSERT(nce != NULL);
12084 	if ((mp1 = nce->nce_fp_mp) != NULL) {
12085 		hlen = MBLKL(mp1);
12086 		/*
12087 		 * Check if we have enough room to prepend fastpath
12088 		 * header
12089 		 */
12090 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12091 			rptr -= hlen;
12092 			bcopy(mp1->b_rptr, rptr, hlen);
12093 			/*
12094 			 * Set the b_rptr to the start of the link layer
12095 			 * header
12096 			 */
12097 			mp->b_rptr = rptr;
12098 			return (mp);
12099 		}
12100 		mp1 = copyb(mp1);
12101 		if (mp1 == NULL) {
12102 			ill_t *ill = nce->nce_ill;
12103 
12104 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12105 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12106 			freemsg(mp);
12107 			return (NULL);
12108 		}
12109 		mp1->b_band = priority;
12110 		mp1->b_cont = mp;
12111 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12112 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12113 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12114 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12115 		DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12116 		DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12117 		/*
12118 		 * XXX disable ICK_VALID and compute checksum
12119 		 * here; can happen if nce_fp_mp changes and
12120 		 * it can't be copied now due to insufficient
12121 		 * space. (unlikely, fp mp can change, but it
12122 		 * does not increase in length)
12123 		 */
12124 		return (mp1);
12125 	}
12126 	mp1 = copyb(nce->nce_dlur_mp);
12127 
12128 	if (mp1 == NULL) {
12129 		ill_t *ill = nce->nce_ill;
12130 
12131 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12132 		ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12133 		freemsg(mp);
12134 		return (NULL);
12135 	}
12136 	mp1->b_cont = mp;
12137 	if (priority != 0) {
12138 		mp1->b_band = priority;
12139 		((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12140 		    priority;
12141 	}
12142 	return (mp1);
12143 }
12144 
12145 /*
12146  * Finish the outbound IPsec processing. This function is called from
12147  * ipsec_out_process() if the IPsec packet was processed
12148  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12149  * asynchronously.
12150  *
12151  * This is common to IPv4 and IPv6.
12152  */
12153 int
12154 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12155 {
12156 	iaflags_t	ixaflags = ixa->ixa_flags;
12157 	uint_t		pktlen;
12158 
12159 
12160 	/* AH/ESP don't update ixa_pktlen when they modify the packet */
12161 	if (ixaflags & IXAF_IS_IPV4) {
12162 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12163 
12164 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12165 		pktlen = ntohs(ipha->ipha_length);
12166 	} else {
12167 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12168 
12169 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12170 		pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12171 	}
12172 
12173 	/*
12174 	 * We release any hard reference on the SAs here to make
12175 	 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12176 	 * on the SAs.
12177 	 * If in the future we want the hard latching of the SAs in the
12178 	 * ip_xmit_attr_t then we should remove this.
12179 	 */
12180 	if (ixa->ixa_ipsec_esp_sa != NULL) {
12181 		IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12182 		ixa->ixa_ipsec_esp_sa = NULL;
12183 	}
12184 	if (ixa->ixa_ipsec_ah_sa != NULL) {
12185 		IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12186 		ixa->ixa_ipsec_ah_sa = NULL;
12187 	}
12188 
12189 	/* Do we need to fragment? */
12190 	if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12191 	    pktlen > ixa->ixa_fragsize) {
12192 		if (ixaflags & IXAF_IS_IPV4) {
12193 			ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12194 			/*
12195 			 * We check for the DF case in ipsec_out_process
12196 			 * hence this only handles the non-DF case.
12197 			 */
12198 			return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12199 			    pktlen, ixa->ixa_fragsize,
12200 			    ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12201 			    ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12202 			    &ixa->ixa_cookie));
12203 		} else {
12204 			mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12205 			if (mp == NULL) {
12206 				/* MIB and ip_drop_output already done */
12207 				return (ENOMEM);
12208 			}
12209 			pktlen += sizeof (ip6_frag_t);
12210 			if (pktlen > ixa->ixa_fragsize) {
12211 				return (ip_fragment_v6(mp, ixa->ixa_nce,
12212 				    ixa->ixa_flags, pktlen,
12213 				    ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12214 				    ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12215 				    ixa->ixa_postfragfn, &ixa->ixa_cookie));
12216 			}
12217 		}
12218 	}
12219 	return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12220 	    pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12221 	    ixa->ixa_no_loop_zoneid, NULL));
12222 }
12223 
12224 /*
12225  * Finish the inbound IPsec processing. This function is called from
12226  * ipsec_out_process() if the IPsec packet was processed
12227  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12228  * asynchronously.
12229  *
12230  * This is common to IPv4 and IPv6.
12231  */
12232 void
12233 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12234 {
12235 	iaflags_t	iraflags = ira->ira_flags;
12236 
12237 	/* Length might have changed */
12238 	if (iraflags & IRAF_IS_IPV4) {
12239 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12240 
12241 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12242 		ira->ira_pktlen = ntohs(ipha->ipha_length);
12243 		ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12244 		ira->ira_protocol = ipha->ipha_protocol;
12245 
12246 		ip_fanout_v4(mp, ipha, ira);
12247 	} else {
12248 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12249 		uint8_t		*nexthdrp;
12250 
12251 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12252 		ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12253 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12254 		    &nexthdrp)) {
12255 			/* Malformed packet */
12256 			BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12257 			ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12258 			freemsg(mp);
12259 			return;
12260 		}
12261 		ira->ira_protocol = *nexthdrp;
12262 		ip_fanout_v6(mp, ip6h, ira);
12263 	}
12264 }
12265 
12266 /*
12267  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12268  *
12269  * If this function returns B_TRUE, the requested SA's have been filled
12270  * into the ixa_ipsec_*_sa pointers.
12271  *
12272  * If the function returns B_FALSE, the packet has been "consumed", most
12273  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12274  *
12275  * The SA references created by the protocol-specific "select"
12276  * function will be released in ip_output_post_ipsec.
12277  */
12278 static boolean_t
12279 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12280 {
12281 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12282 	ipsec_policy_t *pp;
12283 	ipsec_action_t *ap;
12284 
12285 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12286 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12287 	    (ixa->ixa_ipsec_action != NULL));
12288 
12289 	ap = ixa->ixa_ipsec_action;
12290 	if (ap == NULL) {
12291 		pp = ixa->ixa_ipsec_policy;
12292 		ASSERT(pp != NULL);
12293 		ap = pp->ipsp_act;
12294 		ASSERT(ap != NULL);
12295 	}
12296 
12297 	/*
12298 	 * We have an action.  now, let's select SA's.
12299 	 * A side effect of setting ixa_ipsec_*_sa is that it will
12300 	 * be cached in the conn_t.
12301 	 */
12302 	if (ap->ipa_want_esp) {
12303 		if (ixa->ixa_ipsec_esp_sa == NULL) {
12304 			need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12305 			    IPPROTO_ESP);
12306 		}
12307 		ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12308 	}
12309 
12310 	if (ap->ipa_want_ah) {
12311 		if (ixa->ixa_ipsec_ah_sa == NULL) {
12312 			need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12313 			    IPPROTO_AH);
12314 		}
12315 		ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12316 		/*
12317 		 * The ESP and AH processing order needs to be preserved
12318 		 * when both protocols are required (ESP should be applied
12319 		 * before AH for an outbound packet). Force an ESP ACQUIRE
12320 		 * when both ESP and AH are required, and an AH ACQUIRE
12321 		 * is needed.
12322 		 */
12323 		if (ap->ipa_want_esp && need_ah_acquire)
12324 			need_esp_acquire = B_TRUE;
12325 	}
12326 
12327 	/*
12328 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
12329 	 * Release SAs that got referenced, but will not be used until we
12330 	 * acquire _all_ of the SAs we need.
12331 	 */
12332 	if (need_ah_acquire || need_esp_acquire) {
12333 		if (ixa->ixa_ipsec_ah_sa != NULL) {
12334 			IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12335 			ixa->ixa_ipsec_ah_sa = NULL;
12336 		}
12337 		if (ixa->ixa_ipsec_esp_sa != NULL) {
12338 			IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12339 			ixa->ixa_ipsec_esp_sa = NULL;
12340 		}
12341 
12342 		sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12343 		return (B_FALSE);
12344 	}
12345 
12346 	return (B_TRUE);
12347 }
12348 
12349 /*
12350  * Handle IPsec output processing.
12351  * This function is only entered once for a given packet.
12352  * We try to do things synchronously, but if we need to have user-level
12353  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12354  * will be completed
12355  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12356  *  - when asynchronous ESP is done it will do AH
12357  *
12358  * In all cases we come back in ip_output_post_ipsec() to fragment and
12359  * send out the packet.
12360  */
12361 int
12362 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12363 {
12364 	ill_t		*ill = ixa->ixa_nce->nce_ill;
12365 	ip_stack_t	*ipst = ixa->ixa_ipst;
12366 	ipsec_stack_t	*ipss;
12367 	ipsec_policy_t	*pp;
12368 	ipsec_action_t	*ap;
12369 
12370 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12371 
12372 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12373 	    (ixa->ixa_ipsec_action != NULL));
12374 
12375 	ipss = ipst->ips_netstack->netstack_ipsec;
12376 	if (!ipsec_loaded(ipss)) {
12377 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12378 		ip_drop_packet(mp, B_TRUE, ill,
12379 		    DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12380 		    &ipss->ipsec_dropper);
12381 		return (ENOTSUP);
12382 	}
12383 
12384 	ap = ixa->ixa_ipsec_action;
12385 	if (ap == NULL) {
12386 		pp = ixa->ixa_ipsec_policy;
12387 		ASSERT(pp != NULL);
12388 		ap = pp->ipsp_act;
12389 		ASSERT(ap != NULL);
12390 	}
12391 
12392 	/* Handle explicit drop action and bypass. */
12393 	switch (ap->ipa_act.ipa_type) {
12394 	case IPSEC_ACT_DISCARD:
12395 	case IPSEC_ACT_REJECT:
12396 		ip_drop_packet(mp, B_FALSE, ill,
12397 		    DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12398 		return (EHOSTUNREACH);	/* IPsec policy failure */
12399 	case IPSEC_ACT_BYPASS:
12400 		return (ip_output_post_ipsec(mp, ixa));
12401 	}
12402 
12403 	/*
12404 	 * The order of processing is first insert a IP header if needed.
12405 	 * Then insert the ESP header and then the AH header.
12406 	 */
12407 	if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12408 		/*
12409 		 * First get the outer IP header before sending
12410 		 * it to ESP.
12411 		 */
12412 		ipha_t *oipha, *iipha;
12413 		mblk_t *outer_mp, *inner_mp;
12414 
12415 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12416 			(void) mi_strlog(ill->ill_rq, 0,
12417 			    SL_ERROR|SL_TRACE|SL_CONSOLE,
12418 			    "ipsec_out_process: "
12419 			    "Self-Encapsulation failed: Out of memory\n");
12420 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12421 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12422 			freemsg(mp);
12423 			return (ENOBUFS);
12424 		}
12425 		inner_mp = mp;
12426 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
12427 		oipha = (ipha_t *)outer_mp->b_rptr;
12428 		iipha = (ipha_t *)inner_mp->b_rptr;
12429 		*oipha = *iipha;
12430 		outer_mp->b_wptr += sizeof (ipha_t);
12431 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12432 		    sizeof (ipha_t));
12433 		oipha->ipha_protocol = IPPROTO_ENCAP;
12434 		oipha->ipha_version_and_hdr_length =
12435 		    IP_SIMPLE_HDR_VERSION;
12436 		oipha->ipha_hdr_checksum = 0;
12437 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12438 		outer_mp->b_cont = inner_mp;
12439 		mp = outer_mp;
12440 
12441 		ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12442 	}
12443 
12444 	/* If we need to wait for a SA then we can't return any errno */
12445 	if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12446 	    (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12447 	    !ipsec_out_select_sa(mp, ixa))
12448 		return (0);
12449 
12450 	/*
12451 	 * By now, we know what SA's to use.  Toss over to ESP & AH
12452 	 * to do the heavy lifting.
12453 	 */
12454 	if (ap->ipa_want_esp) {
12455 		ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12456 
12457 		mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12458 		if (mp == NULL) {
12459 			/*
12460 			 * Either it failed or is pending. In the former case
12461 			 * ipIfStatsInDiscards was increased.
12462 			 */
12463 			return (0);
12464 		}
12465 	}
12466 
12467 	if (ap->ipa_want_ah) {
12468 		ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12469 
12470 		mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12471 		if (mp == NULL) {
12472 			/*
12473 			 * Either it failed or is pending. In the former case
12474 			 * ipIfStatsInDiscards was increased.
12475 			 */
12476 			return (0);
12477 		}
12478 	}
12479 	/*
12480 	 * We are done with IPsec processing. Send it over
12481 	 * the wire.
12482 	 */
12483 	return (ip_output_post_ipsec(mp, ixa));
12484 }
12485 
12486 /*
12487  * ioctls that go through a down/up sequence may need to wait for the down
12488  * to complete. This involves waiting for the ire and ipif refcnts to go down
12489  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12490  */
12491 /* ARGSUSED */
12492 void
12493 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12494 {
12495 	struct iocblk *iocp;
12496 	mblk_t *mp1;
12497 	ip_ioctl_cmd_t *ipip;
12498 	int err;
12499 	sin_t	*sin;
12500 	struct lifreq *lifr;
12501 	struct ifreq *ifr;
12502 
12503 	iocp = (struct iocblk *)mp->b_rptr;
12504 	ASSERT(ipsq != NULL);
12505 	/* Existence of mp1 verified in ip_wput_nondata */
12506 	mp1 = mp->b_cont->b_cont;
12507 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12508 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12509 		/*
12510 		 * Special case where ipx_current_ipif is not set:
12511 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12512 		 * We are here as were not able to complete the operation in
12513 		 * ipif_set_values because we could not become exclusive on
12514 		 * the new ipsq.
12515 		 */
12516 		ill_t *ill = q->q_ptr;
12517 		ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12518 	}
12519 	ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12520 
12521 	if (ipip->ipi_cmd_type == IF_CMD) {
12522 		/* This a old style SIOC[GS]IF* command */
12523 		ifr = (struct ifreq *)mp1->b_rptr;
12524 		sin = (sin_t *)&ifr->ifr_addr;
12525 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
12526 		/* This a new style SIOC[GS]LIF* command */
12527 		lifr = (struct lifreq *)mp1->b_rptr;
12528 		sin = (sin_t *)&lifr->lifr_addr;
12529 	} else {
12530 		sin = NULL;
12531 	}
12532 
12533 	err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12534 	    q, mp, ipip, mp1->b_rptr);
12535 
12536 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12537 	    int, ipip->ipi_cmd,
12538 	    ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12539 	    ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12540 
12541 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12542 }
12543 
12544 /*
12545  * ioctl processing
12546  *
12547  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12548  * the ioctl command in the ioctl tables, determines the copyin data size
12549  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12550  *
12551  * ioctl processing then continues when the M_IOCDATA makes its way down to
12552  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12553  * associated 'conn' is refheld till the end of the ioctl and the general
12554  * ioctl processing function ip_process_ioctl() is called to extract the
12555  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12556  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12557  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12558  * is used to extract the ioctl's arguments.
12559  *
12560  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12561  * so goes thru the serialization primitive ipsq_try_enter. Then the
12562  * appropriate function to handle the ioctl is called based on the entry in
12563  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12564  * which also refreleases the 'conn' that was refheld at the start of the
12565  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12566  *
12567  * Many exclusive ioctls go thru an internal down up sequence as part of
12568  * the operation. For example an attempt to change the IP address of an
12569  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12570  * does all the cleanup such as deleting all ires that use this address.
12571  * Then we need to wait till all references to the interface go away.
12572  */
12573 void
12574 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12575 {
12576 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12577 	ip_ioctl_cmd_t *ipip = arg;
12578 	ip_extract_func_t *extract_funcp;
12579 	cmd_info_t ci;
12580 	int err;
12581 	boolean_t entered_ipsq = B_FALSE;
12582 
12583 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12584 
12585 	if (ipip == NULL)
12586 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12587 
12588 	/*
12589 	 * SIOCLIFADDIF needs to go thru a special path since the
12590 	 * ill may not exist yet. This happens in the case of lo0
12591 	 * which is created using this ioctl.
12592 	 */
12593 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
12594 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12595 		DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12596 		    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12597 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12598 		return;
12599 	}
12600 
12601 	ci.ci_ipif = NULL;
12602 	switch (ipip->ipi_cmd_type) {
12603 	case MISC_CMD:
12604 	case MSFILT_CMD:
12605 		/*
12606 		 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12607 		 */
12608 		if (ipip->ipi_cmd == IF_UNITSEL) {
12609 			/* ioctl comes down the ill */
12610 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12611 			ipif_refhold(ci.ci_ipif);
12612 		}
12613 		err = 0;
12614 		ci.ci_sin = NULL;
12615 		ci.ci_sin6 = NULL;
12616 		ci.ci_lifr = NULL;
12617 		extract_funcp = NULL;
12618 		break;
12619 
12620 	case IF_CMD:
12621 	case LIF_CMD:
12622 		extract_funcp = ip_extract_lifreq;
12623 		break;
12624 
12625 	case ARP_CMD:
12626 	case XARP_CMD:
12627 		extract_funcp = ip_extract_arpreq;
12628 		break;
12629 
12630 	default:
12631 		ASSERT(0);
12632 	}
12633 
12634 	if (extract_funcp != NULL) {
12635 		err = (*extract_funcp)(q, mp, ipip, &ci);
12636 		if (err != 0) {
12637 			DTRACE_PROBE4(ipif__ioctl,
12638 			    char *, "ip_process_ioctl finish err",
12639 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12640 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12641 			return;
12642 		}
12643 
12644 		/*
12645 		 * All of the extraction functions return a refheld ipif.
12646 		 */
12647 		ASSERT(ci.ci_ipif != NULL);
12648 	}
12649 
12650 	if (!(ipip->ipi_flags & IPI_WR)) {
12651 		/*
12652 		 * A return value of EINPROGRESS means the ioctl is
12653 		 * either queued and waiting for some reason or has
12654 		 * already completed.
12655 		 */
12656 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12657 		    ci.ci_lifr);
12658 		if (ci.ci_ipif != NULL) {
12659 			DTRACE_PROBE4(ipif__ioctl,
12660 			    char *, "ip_process_ioctl finish RD",
12661 			    int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12662 			    ipif_t *, ci.ci_ipif);
12663 			ipif_refrele(ci.ci_ipif);
12664 		} else {
12665 			DTRACE_PROBE4(ipif__ioctl,
12666 			    char *, "ip_process_ioctl finish RD",
12667 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12668 		}
12669 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12670 		return;
12671 	}
12672 
12673 	ASSERT(ci.ci_ipif != NULL);
12674 
12675 	/*
12676 	 * If ipsq is non-NULL, we are already being called exclusively
12677 	 */
12678 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12679 	if (ipsq == NULL) {
12680 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12681 		    NEW_OP, B_TRUE);
12682 		if (ipsq == NULL) {
12683 			ipif_refrele(ci.ci_ipif);
12684 			return;
12685 		}
12686 		entered_ipsq = B_TRUE;
12687 	}
12688 	/*
12689 	 * Release the ipif so that ipif_down and friends that wait for
12690 	 * references to go away are not misled about the current ipif_refcnt
12691 	 * values. We are writer so we can access the ipif even after releasing
12692 	 * the ipif.
12693 	 */
12694 	ipif_refrele(ci.ci_ipif);
12695 
12696 	ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12697 
12698 	/*
12699 	 * A return value of EINPROGRESS means the ioctl is
12700 	 * either queued and waiting for some reason or has
12701 	 * already completed.
12702 	 */
12703 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12704 
12705 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12706 	    int, ipip->ipi_cmd,
12707 	    ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12708 	    ipif_t *, ci.ci_ipif);
12709 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12710 
12711 	if (entered_ipsq)
12712 		ipsq_exit(ipsq);
12713 }
12714 
12715 /*
12716  * Complete the ioctl. Typically ioctls use the mi package and need to
12717  * do mi_copyout/mi_copy_done.
12718  */
12719 void
12720 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12721 {
12722 	conn_t	*connp = NULL;
12723 
12724 	if (err == EINPROGRESS)
12725 		return;
12726 
12727 	if (CONN_Q(q)) {
12728 		connp = Q_TO_CONN(q);
12729 		ASSERT(connp->conn_ref >= 2);
12730 	}
12731 
12732 	switch (mode) {
12733 	case COPYOUT:
12734 		if (err == 0)
12735 			mi_copyout(q, mp);
12736 		else
12737 			mi_copy_done(q, mp, err);
12738 		break;
12739 
12740 	case NO_COPYOUT:
12741 		mi_copy_done(q, mp, err);
12742 		break;
12743 
12744 	default:
12745 		ASSERT(mode == CONN_CLOSE);	/* aborted through CONN_CLOSE */
12746 		break;
12747 	}
12748 
12749 	/*
12750 	 * The conn refhold and ioctlref placed on the conn at the start of the
12751 	 * ioctl are released here.
12752 	 */
12753 	if (connp != NULL) {
12754 		CONN_DEC_IOCTLREF(connp);
12755 		CONN_OPER_PENDING_DONE(connp);
12756 	}
12757 
12758 	if (ipsq != NULL)
12759 		ipsq_current_finish(ipsq);
12760 }
12761 
12762 /* Handles all non data messages */
12763 void
12764 ip_wput_nondata(queue_t *q, mblk_t *mp)
12765 {
12766 	mblk_t		*mp1;
12767 	struct iocblk	*iocp;
12768 	ip_ioctl_cmd_t	*ipip;
12769 	conn_t		*connp;
12770 	cred_t		*cr;
12771 	char		*proto_str;
12772 
12773 	if (CONN_Q(q))
12774 		connp = Q_TO_CONN(q);
12775 	else
12776 		connp = NULL;
12777 
12778 	switch (DB_TYPE(mp)) {
12779 	case M_IOCTL:
12780 		/*
12781 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
12782 		 * will arrange to copy in associated control structures.
12783 		 */
12784 		ip_sioctl_copyin_setup(q, mp);
12785 		return;
12786 	case M_IOCDATA:
12787 		/*
12788 		 * Ensure that this is associated with one of our trans-
12789 		 * parent ioctls.  If it's not ours, discard it if we're
12790 		 * running as a driver, or pass it on if we're a module.
12791 		 */
12792 		iocp = (struct iocblk *)mp->b_rptr;
12793 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12794 		if (ipip == NULL) {
12795 			if (q->q_next == NULL) {
12796 				goto nak;
12797 			} else {
12798 				putnext(q, mp);
12799 			}
12800 			return;
12801 		}
12802 		if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12803 			/*
12804 			 * The ioctl is one we recognise, but is not consumed
12805 			 * by IP as a module and we are a module, so we drop
12806 			 */
12807 			goto nak;
12808 		}
12809 
12810 		/* IOCTL continuation following copyin or copyout. */
12811 		if (mi_copy_state(q, mp, NULL) == -1) {
12812 			/*
12813 			 * The copy operation failed.  mi_copy_state already
12814 			 * cleaned up, so we're out of here.
12815 			 */
12816 			return;
12817 		}
12818 		/*
12819 		 * If we just completed a copy in, we become writer and
12820 		 * continue processing in ip_sioctl_copyin_done.  If it
12821 		 * was a copy out, we call mi_copyout again.  If there is
12822 		 * nothing more to copy out, it will complete the IOCTL.
12823 		 */
12824 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12825 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12826 				mi_copy_done(q, mp, EPROTO);
12827 				return;
12828 			}
12829 			/*
12830 			 * Check for cases that need more copying.  A return
12831 			 * value of 0 means a second copyin has been started,
12832 			 * so we return; a return value of 1 means no more
12833 			 * copying is needed, so we continue.
12834 			 */
12835 			if (ipip->ipi_cmd_type == MSFILT_CMD &&
12836 			    MI_COPY_COUNT(mp) == 1) {
12837 				if (ip_copyin_msfilter(q, mp) == 0)
12838 					return;
12839 			}
12840 			/*
12841 			 * Refhold the conn, till the ioctl completes. This is
12842 			 * needed in case the ioctl ends up in the pending mp
12843 			 * list. Every mp in the ipx_pending_mp list must have
12844 			 * a refhold on the conn to resume processing. The
12845 			 * refhold is released when the ioctl completes
12846 			 * (whether normally or abnormally). An ioctlref is also
12847 			 * placed on the conn to prevent TCP from removing the
12848 			 * queue needed to send the ioctl reply back.
12849 			 * In all cases ip_ioctl_finish is called to finish
12850 			 * the ioctl and release the refholds.
12851 			 */
12852 			if (connp != NULL) {
12853 				/* This is not a reentry */
12854 				CONN_INC_REF(connp);
12855 				CONN_INC_IOCTLREF(connp);
12856 			} else {
12857 				if (!(ipip->ipi_flags & IPI_MODOK)) {
12858 					mi_copy_done(q, mp, EINVAL);
12859 					return;
12860 				}
12861 			}
12862 
12863 			ip_process_ioctl(NULL, q, mp, ipip);
12864 
12865 		} else {
12866 			mi_copyout(q, mp);
12867 		}
12868 		return;
12869 
12870 	case M_IOCNAK:
12871 		/*
12872 		 * The only way we could get here is if a resolver didn't like
12873 		 * an IOCTL we sent it.	 This shouldn't happen.
12874 		 */
12875 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12876 		    "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12877 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12878 		freemsg(mp);
12879 		return;
12880 	case M_IOCACK:
12881 		/* /dev/ip shouldn't see this */
12882 		goto nak;
12883 	case M_FLUSH:
12884 		if (*mp->b_rptr & FLUSHW)
12885 			flushq(q, FLUSHALL);
12886 		if (q->q_next) {
12887 			putnext(q, mp);
12888 			return;
12889 		}
12890 		if (*mp->b_rptr & FLUSHR) {
12891 			*mp->b_rptr &= ~FLUSHW;
12892 			qreply(q, mp);
12893 			return;
12894 		}
12895 		freemsg(mp);
12896 		return;
12897 	case M_CTL:
12898 		break;
12899 	case M_PROTO:
12900 	case M_PCPROTO:
12901 		/*
12902 		 * The only PROTO messages we expect are SNMP-related.
12903 		 */
12904 		switch (((union T_primitives *)mp->b_rptr)->type) {
12905 		case T_SVR4_OPTMGMT_REQ:
12906 			ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12907 			    "flags %x\n",
12908 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12909 
12910 			if (connp == NULL) {
12911 				proto_str = "T_SVR4_OPTMGMT_REQ";
12912 				goto protonak;
12913 			}
12914 
12915 			/*
12916 			 * All Solaris components should pass a db_credp
12917 			 * for this TPI message, hence we ASSERT.
12918 			 * But in case there is some other M_PROTO that looks
12919 			 * like a TPI message sent by some other kernel
12920 			 * component, we check and return an error.
12921 			 */
12922 			cr = msg_getcred(mp, NULL);
12923 			ASSERT(cr != NULL);
12924 			if (cr == NULL) {
12925 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12926 				if (mp != NULL)
12927 					qreply(q, mp);
12928 				return;
12929 			}
12930 
12931 			if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12932 				proto_str = "Bad SNMPCOM request?";
12933 				goto protonak;
12934 			}
12935 			return;
12936 		default:
12937 			ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12938 			    (int)*(uint_t *)mp->b_rptr));
12939 			freemsg(mp);
12940 			return;
12941 		}
12942 	default:
12943 		break;
12944 	}
12945 	if (q->q_next) {
12946 		putnext(q, mp);
12947 	} else
12948 		freemsg(mp);
12949 	return;
12950 
12951 nak:
12952 	iocp->ioc_error = EINVAL;
12953 	mp->b_datap->db_type = M_IOCNAK;
12954 	iocp->ioc_count = 0;
12955 	qreply(q, mp);
12956 	return;
12957 
12958 protonak:
12959 	cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12960 	if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12961 		qreply(q, mp);
12962 }
12963 
12964 /*
12965  * Process IP options in an outbound packet.  Verify that the nexthop in a
12966  * strict source route is onlink.
12967  * Returns non-zero if something fails in which case an ICMP error has been
12968  * sent and mp freed.
12969  *
12970  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12971  */
12972 int
12973 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12974 {
12975 	ipoptp_t	opts;
12976 	uchar_t		*opt;
12977 	uint8_t		optval;
12978 	uint8_t		optlen;
12979 	ipaddr_t	dst;
12980 	intptr_t	code = 0;
12981 	ire_t		*ire;
12982 	ip_stack_t	*ipst = ixa->ixa_ipst;
12983 	ip_recv_attr_t	iras;
12984 
12985 	ip2dbg(("ip_output_options\n"));
12986 
12987 	dst = ipha->ipha_dst;
12988 	for (optval = ipoptp_first(&opts, ipha);
12989 	    optval != IPOPT_EOL;
12990 	    optval = ipoptp_next(&opts)) {
12991 		opt = opts.ipoptp_cur;
12992 		optlen = opts.ipoptp_len;
12993 		ip2dbg(("ip_output_options: opt %d, len %d\n",
12994 		    optval, optlen));
12995 		switch (optval) {
12996 			uint32_t off;
12997 		case IPOPT_SSRR:
12998 		case IPOPT_LSRR:
12999 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13000 				ip1dbg((
13001 				    "ip_output_options: bad option offset\n"));
13002 				code = (char *)&opt[IPOPT_OLEN] -
13003 				    (char *)ipha;
13004 				goto param_prob;
13005 			}
13006 			off = opt[IPOPT_OFFSET];
13007 			ip1dbg(("ip_output_options: next hop 0x%x\n",
13008 			    ntohl(dst)));
13009 			/*
13010 			 * For strict: verify that dst is directly
13011 			 * reachable.
13012 			 */
13013 			if (optval == IPOPT_SSRR) {
13014 				ire = ire_ftable_lookup_v4(dst, 0, 0,
13015 				    IRE_INTERFACE, NULL, ALL_ZONES,
13016 				    ixa->ixa_tsl,
13017 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
13018 				    NULL);
13019 				if (ire == NULL) {
13020 					ip1dbg(("ip_output_options: SSRR not"
13021 					    " directly reachable: 0x%x\n",
13022 					    ntohl(dst)));
13023 					goto bad_src_route;
13024 				}
13025 				ire_refrele(ire);
13026 			}
13027 			break;
13028 		case IPOPT_RR:
13029 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13030 				ip1dbg((
13031 				    "ip_output_options: bad option offset\n"));
13032 				code = (char *)&opt[IPOPT_OLEN] -
13033 				    (char *)ipha;
13034 				goto param_prob;
13035 			}
13036 			break;
13037 		case IPOPT_TS:
13038 			/*
13039 			 * Verify that length >=5 and that there is either
13040 			 * room for another timestamp or that the overflow
13041 			 * counter is not maxed out.
13042 			 */
13043 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13044 			if (optlen < IPOPT_MINLEN_IT) {
13045 				goto param_prob;
13046 			}
13047 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13048 				ip1dbg((
13049 				    "ip_output_options: bad option offset\n"));
13050 				code = (char *)&opt[IPOPT_OFFSET] -
13051 				    (char *)ipha;
13052 				goto param_prob;
13053 			}
13054 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13055 			case IPOPT_TS_TSONLY:
13056 				off = IPOPT_TS_TIMELEN;
13057 				break;
13058 			case IPOPT_TS_TSANDADDR:
13059 			case IPOPT_TS_PRESPEC:
13060 			case IPOPT_TS_PRESPEC_RFC791:
13061 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13062 				break;
13063 			default:
13064 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
13065 				    (char *)ipha;
13066 				goto param_prob;
13067 			}
13068 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13069 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13070 				/*
13071 				 * No room and the overflow counter is 15
13072 				 * already.
13073 				 */
13074 				goto param_prob;
13075 			}
13076 			break;
13077 		}
13078 	}
13079 
13080 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13081 		return (0);
13082 
13083 	ip1dbg(("ip_output_options: error processing IP options."));
13084 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13085 
13086 param_prob:
13087 	bzero(&iras, sizeof (iras));
13088 	iras.ira_ill = iras.ira_rill = ill;
13089 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13090 	iras.ira_rifindex = iras.ira_ruifindex;
13091 	iras.ira_flags = IRAF_IS_IPV4;
13092 
13093 	ip_drop_output("ip_output_options", mp, ill);
13094 	icmp_param_problem(mp, (uint8_t)code, &iras);
13095 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13096 	return (-1);
13097 
13098 bad_src_route:
13099 	bzero(&iras, sizeof (iras));
13100 	iras.ira_ill = iras.ira_rill = ill;
13101 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13102 	iras.ira_rifindex = iras.ira_ruifindex;
13103 	iras.ira_flags = IRAF_IS_IPV4;
13104 
13105 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13106 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13107 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13108 	return (-1);
13109 }
13110 
13111 /*
13112  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13113  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13114  * thru /etc/system.
13115  */
13116 #define	CONN_MAXDRAINCNT	64
13117 
13118 static void
13119 conn_drain_init(ip_stack_t *ipst)
13120 {
13121 	int i, j;
13122 	idl_tx_list_t *itl_tx;
13123 
13124 	ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13125 
13126 	if ((ipst->ips_conn_drain_list_cnt == 0) ||
13127 	    (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13128 		/*
13129 		 * Default value of the number of drainers is the
13130 		 * number of cpus, subject to maximum of 8 drainers.
13131 		 */
13132 		if (boot_max_ncpus != -1)
13133 			ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13134 		else
13135 			ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13136 	}
13137 
13138 	ipst->ips_idl_tx_list =
13139 	    kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13140 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13141 		itl_tx =  &ipst->ips_idl_tx_list[i];
13142 		itl_tx->txl_drain_list =
13143 		    kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13144 		    sizeof (idl_t), KM_SLEEP);
13145 		mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13146 		for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13147 			mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13148 			    MUTEX_DEFAULT, NULL);
13149 			itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13150 		}
13151 	}
13152 }
13153 
13154 static void
13155 conn_drain_fini(ip_stack_t *ipst)
13156 {
13157 	int i;
13158 	idl_tx_list_t *itl_tx;
13159 
13160 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13161 		itl_tx =  &ipst->ips_idl_tx_list[i];
13162 		kmem_free(itl_tx->txl_drain_list,
13163 		    ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13164 	}
13165 	kmem_free(ipst->ips_idl_tx_list,
13166 	    TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13167 	ipst->ips_idl_tx_list = NULL;
13168 }
13169 
13170 /*
13171  * Flow control has blocked us from proceeding.  Insert the given conn in one
13172  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13173  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13174  * will call conn_walk_drain().  See the flow control notes at the top of this
13175  * file for more details.
13176  */
13177 void
13178 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13179 {
13180 	idl_t	*idl = tx_list->txl_drain_list;
13181 	uint_t	index;
13182 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
13183 
13184 	mutex_enter(&connp->conn_lock);
13185 	if (connp->conn_state_flags & CONN_CLOSING) {
13186 		/*
13187 		 * The conn is closing as a result of which CONN_CLOSING
13188 		 * is set. Return.
13189 		 */
13190 		mutex_exit(&connp->conn_lock);
13191 		return;
13192 	} else if (connp->conn_idl == NULL) {
13193 		/*
13194 		 * Assign the next drain list round robin. We dont' use
13195 		 * a lock, and thus it may not be strictly round robin.
13196 		 * Atomicity of load/stores is enough to make sure that
13197 		 * conn_drain_list_index is always within bounds.
13198 		 */
13199 		index = tx_list->txl_drain_index;
13200 		ASSERT(index < ipst->ips_conn_drain_list_cnt);
13201 		connp->conn_idl = &tx_list->txl_drain_list[index];
13202 		index++;
13203 		if (index == ipst->ips_conn_drain_list_cnt)
13204 			index = 0;
13205 		tx_list->txl_drain_index = index;
13206 	} else {
13207 		ASSERT(connp->conn_idl->idl_itl == tx_list);
13208 	}
13209 	mutex_exit(&connp->conn_lock);
13210 
13211 	idl = connp->conn_idl;
13212 	mutex_enter(&idl->idl_lock);
13213 	if ((connp->conn_drain_prev != NULL) ||
13214 	    (connp->conn_state_flags & CONN_CLOSING)) {
13215 		/*
13216 		 * The conn is either already in the drain list or closing.
13217 		 * (We needed to check for CONN_CLOSING again since close can
13218 		 * sneak in between dropping conn_lock and acquiring idl_lock.)
13219 		 */
13220 		mutex_exit(&idl->idl_lock);
13221 		return;
13222 	}
13223 
13224 	/*
13225 	 * The conn is not in the drain list. Insert it at the
13226 	 * tail of the drain list. The drain list is circular
13227 	 * and doubly linked. idl_conn points to the 1st element
13228 	 * in the list.
13229 	 */
13230 	if (idl->idl_conn == NULL) {
13231 		idl->idl_conn = connp;
13232 		connp->conn_drain_next = connp;
13233 		connp->conn_drain_prev = connp;
13234 	} else {
13235 		conn_t *head = idl->idl_conn;
13236 
13237 		connp->conn_drain_next = head;
13238 		connp->conn_drain_prev = head->conn_drain_prev;
13239 		head->conn_drain_prev->conn_drain_next = connp;
13240 		head->conn_drain_prev = connp;
13241 	}
13242 	/*
13243 	 * For non streams based sockets assert flow control.
13244 	 */
13245 	conn_setqfull(connp, NULL);
13246 	mutex_exit(&idl->idl_lock);
13247 }
13248 
13249 static void
13250 conn_drain_remove(conn_t *connp)
13251 {
13252 	idl_t *idl = connp->conn_idl;
13253 
13254 	if (idl != NULL) {
13255 		/*
13256 		 * Remove ourself from the drain list.
13257 		 */
13258 		if (connp->conn_drain_next == connp) {
13259 			/* Singleton in the list */
13260 			ASSERT(connp->conn_drain_prev == connp);
13261 			idl->idl_conn = NULL;
13262 		} else {
13263 			connp->conn_drain_prev->conn_drain_next =
13264 			    connp->conn_drain_next;
13265 			connp->conn_drain_next->conn_drain_prev =
13266 			    connp->conn_drain_prev;
13267 			if (idl->idl_conn == connp)
13268 				idl->idl_conn = connp->conn_drain_next;
13269 		}
13270 
13271 		/*
13272 		 * NOTE: because conn_idl is associated with a specific drain
13273 		 * list which in turn is tied to the index the TX ring
13274 		 * (txl_cookie) hashes to, and because the TX ring can change
13275 		 * over the lifetime of the conn_t, we must clear conn_idl so
13276 		 * a subsequent conn_drain_insert() will set conn_idl again
13277 		 * based on the latest txl_cookie.
13278 		 */
13279 		connp->conn_idl = NULL;
13280 	}
13281 	connp->conn_drain_next = NULL;
13282 	connp->conn_drain_prev = NULL;
13283 
13284 	conn_clrqfull(connp, NULL);
13285 	/*
13286 	 * For streams based sockets open up flow control.
13287 	 */
13288 	if (!IPCL_IS_NONSTR(connp))
13289 		enableok(connp->conn_wq);
13290 }
13291 
13292 /*
13293  * This conn is closing, and we are called from ip_close. OR
13294  * this conn is draining because flow-control on the ill has been relieved.
13295  *
13296  * We must also need to remove conn's on this idl from the list, and also
13297  * inform the sockfs upcalls about the change in flow-control.
13298  */
13299 static void
13300 conn_drain(conn_t *connp, boolean_t closing)
13301 {
13302 	idl_t *idl;
13303 	conn_t *next_connp;
13304 
13305 	/*
13306 	 * connp->conn_idl is stable at this point, and no lock is needed
13307 	 * to check it. If we are called from ip_close, close has already
13308 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13309 	 * called us only because conn_idl is non-null. If we are called thru
13310 	 * service, conn_idl could be null, but it cannot change because
13311 	 * service is single-threaded per queue, and there cannot be another
13312 	 * instance of service trying to call conn_drain_insert on this conn
13313 	 * now.
13314 	 */
13315 	ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13316 
13317 	/*
13318 	 * If the conn doesn't exist or is not on a drain list, bail.
13319 	 */
13320 	if (connp == NULL || connp->conn_idl == NULL ||
13321 	    connp->conn_drain_prev == NULL) {
13322 		return;
13323 	}
13324 
13325 	idl = connp->conn_idl;
13326 	ASSERT(MUTEX_HELD(&idl->idl_lock));
13327 
13328 	if (!closing) {
13329 		next_connp = connp->conn_drain_next;
13330 		while (next_connp != connp) {
13331 			conn_t *delconnp = next_connp;
13332 
13333 			next_connp = next_connp->conn_drain_next;
13334 			conn_drain_remove(delconnp);
13335 		}
13336 		ASSERT(connp->conn_drain_next == idl->idl_conn);
13337 	}
13338 	conn_drain_remove(connp);
13339 }
13340 
13341 /*
13342  * Write service routine. Shared perimeter entry point.
13343  * The device queue's messages has fallen below the low water mark and STREAMS
13344  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13345  * each waiting conn.
13346  */
13347 void
13348 ip_wsrv(queue_t *q)
13349 {
13350 	ill_t	*ill;
13351 
13352 	ill = (ill_t *)q->q_ptr;
13353 	if (ill->ill_state_flags == 0) {
13354 		ip_stack_t *ipst = ill->ill_ipst;
13355 
13356 		/*
13357 		 * The device flow control has opened up.
13358 		 * Walk through conn drain lists and qenable the
13359 		 * first conn in each list. This makes sense only
13360 		 * if the stream is fully plumbed and setup.
13361 		 * Hence the ill_state_flags check above.
13362 		 */
13363 		ip1dbg(("ip_wsrv: walking\n"));
13364 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13365 		enableok(ill->ill_wq);
13366 	}
13367 }
13368 
13369 /*
13370  * Callback to disable flow control in IP.
13371  *
13372  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13373  * is enabled.
13374  *
13375  * When MAC_TX() is not able to send any more packets, dld sets its queue
13376  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13377  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13378  * function and wakes up corresponding mac worker threads, which in turn
13379  * calls this callback function, and disables flow control.
13380  */
13381 void
13382 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13383 {
13384 	ill_t *ill = (ill_t *)arg;
13385 	ip_stack_t *ipst = ill->ill_ipst;
13386 	idl_tx_list_t *idl_txl;
13387 
13388 	idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13389 	mutex_enter(&idl_txl->txl_lock);
13390 	/* add code to to set a flag to indicate idl_txl is enabled */
13391 	conn_walk_drain(ipst, idl_txl);
13392 	mutex_exit(&idl_txl->txl_lock);
13393 }
13394 
13395 /*
13396  * Flow control has been relieved and STREAMS has backenabled us; drain
13397  * all the conn lists on `tx_list'.
13398  */
13399 static void
13400 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13401 {
13402 	int i;
13403 	idl_t *idl;
13404 
13405 	IP_STAT(ipst, ip_conn_walk_drain);
13406 
13407 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13408 		idl = &tx_list->txl_drain_list[i];
13409 		mutex_enter(&idl->idl_lock);
13410 		conn_drain(idl->idl_conn, B_FALSE);
13411 		mutex_exit(&idl->idl_lock);
13412 	}
13413 }
13414 
13415 /*
13416  * Determine if the ill and multicast aspects of that packets
13417  * "matches" the conn.
13418  */
13419 boolean_t
13420 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13421 {
13422 	ill_t		*ill = ira->ira_rill;
13423 	zoneid_t	zoneid = ira->ira_zoneid;
13424 	uint_t		in_ifindex;
13425 	ipaddr_t	dst, src;
13426 
13427 	dst = ipha->ipha_dst;
13428 	src = ipha->ipha_src;
13429 
13430 	/*
13431 	 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13432 	 * unicast, broadcast and multicast reception to
13433 	 * conn_incoming_ifindex.
13434 	 * conn_wantpacket is called for unicast, broadcast and
13435 	 * multicast packets.
13436 	 */
13437 	in_ifindex = connp->conn_incoming_ifindex;
13438 
13439 	/* mpathd can bind to the under IPMP interface, which we allow */
13440 	if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13441 		if (!IS_UNDER_IPMP(ill))
13442 			return (B_FALSE);
13443 
13444 		if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13445 			return (B_FALSE);
13446 	}
13447 
13448 	if (!IPCL_ZONE_MATCH(connp, zoneid))
13449 		return (B_FALSE);
13450 
13451 	if (!(ira->ira_flags & IRAF_MULTICAST))
13452 		return (B_TRUE);
13453 
13454 	if (connp->conn_multi_router) {
13455 		/* multicast packet and multicast router socket: send up */
13456 		return (B_TRUE);
13457 	}
13458 
13459 	if (ipha->ipha_protocol == IPPROTO_PIM ||
13460 	    ipha->ipha_protocol == IPPROTO_RSVP)
13461 		return (B_TRUE);
13462 
13463 	return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13464 }
13465 
13466 void
13467 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13468 {
13469 	if (IPCL_IS_NONSTR(connp)) {
13470 		(*connp->conn_upcalls->su_txq_full)
13471 		    (connp->conn_upper_handle, B_TRUE);
13472 		if (flow_stopped != NULL)
13473 			*flow_stopped = B_TRUE;
13474 	} else {
13475 		queue_t *q = connp->conn_wq;
13476 
13477 		ASSERT(q != NULL);
13478 		if (!(q->q_flag & QFULL)) {
13479 			mutex_enter(QLOCK(q));
13480 			if (!(q->q_flag & QFULL)) {
13481 				/* still need to set QFULL */
13482 				q->q_flag |= QFULL;
13483 				/* set flow_stopped to true under QLOCK */
13484 				if (flow_stopped != NULL)
13485 					*flow_stopped = B_TRUE;
13486 				mutex_exit(QLOCK(q));
13487 			} else {
13488 				/* flow_stopped is left unchanged */
13489 				mutex_exit(QLOCK(q));
13490 			}
13491 		}
13492 	}
13493 }
13494 
13495 void
13496 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13497 {
13498 	if (IPCL_IS_NONSTR(connp)) {
13499 		(*connp->conn_upcalls->su_txq_full)
13500 		    (connp->conn_upper_handle, B_FALSE);
13501 		if (flow_stopped != NULL)
13502 			*flow_stopped = B_FALSE;
13503 	} else {
13504 		queue_t *q = connp->conn_wq;
13505 
13506 		ASSERT(q != NULL);
13507 		if (q->q_flag & QFULL) {
13508 			mutex_enter(QLOCK(q));
13509 			if (q->q_flag & QFULL) {
13510 				q->q_flag &= ~QFULL;
13511 				/* set flow_stopped to false under QLOCK */
13512 				if (flow_stopped != NULL)
13513 					*flow_stopped = B_FALSE;
13514 				mutex_exit(QLOCK(q));
13515 				if (q->q_flag & QWANTW)
13516 					qbackenable(q, 0);
13517 			} else {
13518 				/* flow_stopped is left unchanged */
13519 				mutex_exit(QLOCK(q));
13520 			}
13521 		}
13522 	}
13523 
13524 	mutex_enter(&connp->conn_lock);
13525 	connp->conn_blocked = B_FALSE;
13526 	mutex_exit(&connp->conn_lock);
13527 }
13528 
13529 /*
13530  * Return the length in bytes of the IPv4 headers (base header, label, and
13531  * other IP options) that will be needed based on the
13532  * ip_pkt_t structure passed by the caller.
13533  *
13534  * The returned length does not include the length of the upper level
13535  * protocol (ULP) header.
13536  * The caller needs to check that the length doesn't exceed the max for IPv4.
13537  */
13538 int
13539 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13540 {
13541 	int len;
13542 
13543 	len = IP_SIMPLE_HDR_LENGTH;
13544 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13545 		ASSERT(ipp->ipp_label_len_v4 != 0);
13546 		/* We need to round up here */
13547 		len += (ipp->ipp_label_len_v4 + 3) & ~3;
13548 	}
13549 
13550 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13551 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13552 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13553 		len += ipp->ipp_ipv4_options_len;
13554 	}
13555 	return (len);
13556 }
13557 
13558 /*
13559  * All-purpose routine to build an IPv4 header with options based
13560  * on the abstract ip_pkt_t.
13561  *
13562  * The caller has to set the source and destination address as well as
13563  * ipha_length. The caller has to massage any source route and compensate
13564  * for the ULP pseudo-header checksum due to the source route.
13565  */
13566 void
13567 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13568     uint8_t protocol)
13569 {
13570 	ipha_t	*ipha = (ipha_t *)buf;
13571 	uint8_t *cp;
13572 
13573 	/* Initialize IPv4 header */
13574 	ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13575 	ipha->ipha_length = 0;	/* Caller will set later */
13576 	ipha->ipha_ident = 0;
13577 	ipha->ipha_fragment_offset_and_flags = 0;
13578 	ipha->ipha_ttl = ipp->ipp_unicast_hops;
13579 	ipha->ipha_protocol = protocol;
13580 	ipha->ipha_hdr_checksum = 0;
13581 
13582 	if ((ipp->ipp_fields & IPPF_ADDR) &&
13583 	    IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13584 		ipha->ipha_src = ipp->ipp_addr_v4;
13585 
13586 	cp = (uint8_t *)&ipha[1];
13587 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13588 		ASSERT(ipp->ipp_label_len_v4 != 0);
13589 		bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13590 		cp += ipp->ipp_label_len_v4;
13591 		/* We need to round up here */
13592 		while ((uintptr_t)cp & 0x3) {
13593 			*cp++ = IPOPT_NOP;
13594 		}
13595 	}
13596 
13597 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13598 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13599 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13600 		bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13601 		cp += ipp->ipp_ipv4_options_len;
13602 	}
13603 	ipha->ipha_version_and_hdr_length =
13604 	    (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13605 
13606 	ASSERT((int)(cp - buf) == buf_len);
13607 }
13608 
13609 /* Allocate the private structure */
13610 static int
13611 ip_priv_alloc(void **bufp)
13612 {
13613 	void	*buf;
13614 
13615 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13616 		return (ENOMEM);
13617 
13618 	*bufp = buf;
13619 	return (0);
13620 }
13621 
13622 /* Function to delete the private structure */
13623 void
13624 ip_priv_free(void *buf)
13625 {
13626 	ASSERT(buf != NULL);
13627 	kmem_free(buf, sizeof (ip_priv_t));
13628 }
13629 
13630 /*
13631  * The entry point for IPPF processing.
13632  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13633  * routine just returns.
13634  *
13635  * When called, ip_process generates an ipp_packet_t structure
13636  * which holds the state information for this packet and invokes the
13637  * the classifier (via ipp_packet_process). The classification, depending on
13638  * configured filters, results in a list of actions for this packet. Invoking
13639  * an action may cause the packet to be dropped, in which case we return NULL.
13640  * proc indicates the callout position for
13641  * this packet and ill is the interface this packet arrived on or will leave
13642  * on (inbound and outbound resp.).
13643  *
13644  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13645  * on the ill corrsponding to the destination IP address.
13646  */
13647 mblk_t *
13648 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13649 {
13650 	ip_priv_t	*priv;
13651 	ipp_action_id_t	aid;
13652 	int		rc = 0;
13653 	ipp_packet_t	*pp;
13654 
13655 	/* If the classifier is not loaded, return  */
13656 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13657 		return (mp);
13658 	}
13659 
13660 	ASSERT(mp != NULL);
13661 
13662 	/* Allocate the packet structure */
13663 	rc = ipp_packet_alloc(&pp, "ip", aid);
13664 	if (rc != 0)
13665 		goto drop;
13666 
13667 	/* Allocate the private structure */
13668 	rc = ip_priv_alloc((void **)&priv);
13669 	if (rc != 0) {
13670 		ipp_packet_free(pp);
13671 		goto drop;
13672 	}
13673 	priv->proc = proc;
13674 	priv->ill_index = ill_get_upper_ifindex(rill);
13675 
13676 	ipp_packet_set_private(pp, priv, ip_priv_free);
13677 	ipp_packet_set_data(pp, mp);
13678 
13679 	/* Invoke the classifier */
13680 	rc = ipp_packet_process(&pp);
13681 	if (pp != NULL) {
13682 		mp = ipp_packet_get_data(pp);
13683 		ipp_packet_free(pp);
13684 		if (rc != 0)
13685 			goto drop;
13686 		return (mp);
13687 	} else {
13688 		/* No mp to trace in ip_drop_input/ip_drop_output  */
13689 		mp = NULL;
13690 	}
13691 drop:
13692 	if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13693 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13694 		ip_drop_input("ip_process", mp, ill);
13695 	} else {
13696 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13697 		ip_drop_output("ip_process", mp, ill);
13698 	}
13699 	freemsg(mp);
13700 	return (NULL);
13701 }
13702 
13703 /*
13704  * Propagate a multicast group membership operation (add/drop) on
13705  * all the interfaces crossed by the related multirt routes.
13706  * The call is considered successful if the operation succeeds
13707  * on at least one interface.
13708  *
13709  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13710  * multicast addresses with the ire argument being the first one.
13711  * We walk the bucket to find all the of those.
13712  *
13713  * Common to IPv4 and IPv6.
13714  */
13715 static int
13716 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13717     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13718     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13719     mcast_record_t fmode, const in6_addr_t *v6src)
13720 {
13721 	ire_t		*ire_gw;
13722 	irb_t		*irb;
13723 	int		ifindex;
13724 	int		error = 0;
13725 	int		result;
13726 	ip_stack_t	*ipst = ire->ire_ipst;
13727 	ipaddr_t	group;
13728 	boolean_t	isv6;
13729 	int		match_flags;
13730 
13731 	if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13732 		IN6_V4MAPPED_TO_IPADDR(v6group, group);
13733 		isv6 = B_FALSE;
13734 	} else {
13735 		isv6 = B_TRUE;
13736 	}
13737 
13738 	irb = ire->ire_bucket;
13739 	ASSERT(irb != NULL);
13740 
13741 	result = 0;
13742 	irb_refhold(irb);
13743 	for (; ire != NULL; ire = ire->ire_next) {
13744 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
13745 			continue;
13746 
13747 		/* We handle -ifp routes by matching on the ill if set */
13748 		match_flags = MATCH_IRE_TYPE;
13749 		if (ire->ire_ill != NULL)
13750 			match_flags |= MATCH_IRE_ILL;
13751 
13752 		if (isv6) {
13753 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13754 				continue;
13755 
13756 			ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13757 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13758 			    match_flags, 0, ipst, NULL);
13759 		} else {
13760 			if (ire->ire_addr != group)
13761 				continue;
13762 
13763 			ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13764 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13765 			    match_flags, 0, ipst, NULL);
13766 		}
13767 		/* No interface route exists for the gateway; skip this ire. */
13768 		if (ire_gw == NULL)
13769 			continue;
13770 		if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13771 			ire_refrele(ire_gw);
13772 			continue;
13773 		}
13774 		ASSERT(ire_gw->ire_ill != NULL);	/* IRE_INTERFACE */
13775 		ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13776 
13777 		/*
13778 		 * The operation is considered a success if
13779 		 * it succeeds at least once on any one interface.
13780 		 */
13781 		error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13782 		    fmode, v6src);
13783 		if (error == 0)
13784 			result = CGTP_MCAST_SUCCESS;
13785 
13786 		ire_refrele(ire_gw);
13787 	}
13788 	irb_refrele(irb);
13789 	/*
13790 	 * Consider the call as successful if we succeeded on at least
13791 	 * one interface. Otherwise, return the last encountered error.
13792 	 */
13793 	return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13794 }
13795 
13796 /*
13797  * Return the expected CGTP hooks version number.
13798  */
13799 int
13800 ip_cgtp_filter_supported(void)
13801 {
13802 	return (ip_cgtp_filter_rev);
13803 }
13804 
13805 /*
13806  * CGTP hooks can be registered by invoking this function.
13807  * Checks that the version number matches.
13808  */
13809 int
13810 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13811 {
13812 	netstack_t *ns;
13813 	ip_stack_t *ipst;
13814 
13815 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13816 		return (ENOTSUP);
13817 
13818 	ns = netstack_find_by_stackid(stackid);
13819 	if (ns == NULL)
13820 		return (EINVAL);
13821 	ipst = ns->netstack_ip;
13822 	ASSERT(ipst != NULL);
13823 
13824 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13825 		netstack_rele(ns);
13826 		return (EALREADY);
13827 	}
13828 
13829 	ipst->ips_ip_cgtp_filter_ops = ops;
13830 
13831 	ill_set_inputfn_all(ipst);
13832 
13833 	netstack_rele(ns);
13834 	return (0);
13835 }
13836 
13837 /*
13838  * CGTP hooks can be unregistered by invoking this function.
13839  * Returns ENXIO if there was no registration.
13840  * Returns EBUSY if the ndd variable has not been turned off.
13841  */
13842 int
13843 ip_cgtp_filter_unregister(netstackid_t stackid)
13844 {
13845 	netstack_t *ns;
13846 	ip_stack_t *ipst;
13847 
13848 	ns = netstack_find_by_stackid(stackid);
13849 	if (ns == NULL)
13850 		return (EINVAL);
13851 	ipst = ns->netstack_ip;
13852 	ASSERT(ipst != NULL);
13853 
13854 	if (ipst->ips_ip_cgtp_filter) {
13855 		netstack_rele(ns);
13856 		return (EBUSY);
13857 	}
13858 
13859 	if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13860 		netstack_rele(ns);
13861 		return (ENXIO);
13862 	}
13863 	ipst->ips_ip_cgtp_filter_ops = NULL;
13864 
13865 	ill_set_inputfn_all(ipst);
13866 
13867 	netstack_rele(ns);
13868 	return (0);
13869 }
13870 
13871 /*
13872  * Check whether there is a CGTP filter registration.
13873  * Returns non-zero if there is a registration, otherwise returns zero.
13874  * Note: returns zero if bad stackid.
13875  */
13876 int
13877 ip_cgtp_filter_is_registered(netstackid_t stackid)
13878 {
13879 	netstack_t *ns;
13880 	ip_stack_t *ipst;
13881 	int ret;
13882 
13883 	ns = netstack_find_by_stackid(stackid);
13884 	if (ns == NULL)
13885 		return (0);
13886 	ipst = ns->netstack_ip;
13887 	ASSERT(ipst != NULL);
13888 
13889 	if (ipst->ips_ip_cgtp_filter_ops != NULL)
13890 		ret = 1;
13891 	else
13892 		ret = 0;
13893 
13894 	netstack_rele(ns);
13895 	return (ret);
13896 }
13897 
13898 static int
13899 ip_squeue_switch(int val)
13900 {
13901 	int rval;
13902 
13903 	switch (val) {
13904 	case IP_SQUEUE_ENTER_NODRAIN:
13905 		rval = SQ_NODRAIN;
13906 		break;
13907 	case IP_SQUEUE_ENTER:
13908 		rval = SQ_PROCESS;
13909 		break;
13910 	case IP_SQUEUE_FILL:
13911 	default:
13912 		rval = SQ_FILL;
13913 		break;
13914 	}
13915 	return (rval);
13916 }
13917 
13918 static void *
13919 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13920 {
13921 	kstat_t *ksp;
13922 
13923 	ip_stat_t template = {
13924 		{ "ip_udp_fannorm", 		KSTAT_DATA_UINT64 },
13925 		{ "ip_udp_fanmb", 		KSTAT_DATA_UINT64 },
13926 		{ "ip_recv_pullup", 		KSTAT_DATA_UINT64 },
13927 		{ "ip_db_ref",			KSTAT_DATA_UINT64 },
13928 		{ "ip_notaligned",		KSTAT_DATA_UINT64 },
13929 		{ "ip_multimblk",		KSTAT_DATA_UINT64 },
13930 		{ "ip_opt",			KSTAT_DATA_UINT64 },
13931 		{ "ipsec_proto_ahesp",		KSTAT_DATA_UINT64 },
13932 		{ "ip_conn_flputbq",		KSTAT_DATA_UINT64 },
13933 		{ "ip_conn_walk_drain",		KSTAT_DATA_UINT64 },
13934 		{ "ip_out_sw_cksum",		KSTAT_DATA_UINT64 },
13935 		{ "ip_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
13936 		{ "ip_in_sw_cksum",		KSTAT_DATA_UINT64 },
13937 		{ "ip_ire_reclaim_calls",	KSTAT_DATA_UINT64 },
13938 		{ "ip_ire_reclaim_deleted",	KSTAT_DATA_UINT64 },
13939 		{ "ip_nce_reclaim_calls",	KSTAT_DATA_UINT64 },
13940 		{ "ip_nce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13941 		{ "ip_dce_reclaim_calls",	KSTAT_DATA_UINT64 },
13942 		{ "ip_dce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13943 		{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13944 		{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13945 		{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
13946 		{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13947 		{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13948 		{ "ip_udp_in_sw_cksum_err",	KSTAT_DATA_UINT64 },
13949 		{ "conn_in_recvdstaddr",	KSTAT_DATA_UINT64 },
13950 		{ "conn_in_recvopts",		KSTAT_DATA_UINT64 },
13951 		{ "conn_in_recvif",		KSTAT_DATA_UINT64 },
13952 		{ "conn_in_recvslla",		KSTAT_DATA_UINT64 },
13953 		{ "conn_in_recvucred",		KSTAT_DATA_UINT64 },
13954 		{ "conn_in_recvttl",		KSTAT_DATA_UINT64 },
13955 		{ "conn_in_recvhopopts",	KSTAT_DATA_UINT64 },
13956 		{ "conn_in_recvhoplimit",	KSTAT_DATA_UINT64 },
13957 		{ "conn_in_recvdstopts",	KSTAT_DATA_UINT64 },
13958 		{ "conn_in_recvrthdrdstopts",	KSTAT_DATA_UINT64 },
13959 		{ "conn_in_recvrthdr",		KSTAT_DATA_UINT64 },
13960 		{ "conn_in_recvpktinfo",	KSTAT_DATA_UINT64 },
13961 		{ "conn_in_recvtclass",		KSTAT_DATA_UINT64 },
13962 		{ "conn_in_timestamp",		KSTAT_DATA_UINT64 },
13963 	};
13964 
13965 	ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13966 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13967 	    KSTAT_FLAG_VIRTUAL, stackid);
13968 
13969 	if (ksp == NULL)
13970 		return (NULL);
13971 
13972 	bcopy(&template, ip_statisticsp, sizeof (template));
13973 	ksp->ks_data = (void *)ip_statisticsp;
13974 	ksp->ks_private = (void *)(uintptr_t)stackid;
13975 
13976 	kstat_install(ksp);
13977 	return (ksp);
13978 }
13979 
13980 static void
13981 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13982 {
13983 	if (ksp != NULL) {
13984 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13985 		kstat_delete_netstack(ksp, stackid);
13986 	}
13987 }
13988 
13989 static void *
13990 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13991 {
13992 	kstat_t	*ksp;
13993 
13994 	ip_named_kstat_t template = {
13995 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
13996 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
13997 		{ "inReceives",		KSTAT_DATA_UINT64, 0 },
13998 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
13999 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
14000 		{ "forwDatagrams",	KSTAT_DATA_UINT64, 0 },
14001 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
14002 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
14003 		{ "inDelivers",		KSTAT_DATA_UINT64, 0 },
14004 		{ "outRequests",	KSTAT_DATA_UINT64, 0 },
14005 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
14006 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
14007 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
14008 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
14009 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
14010 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
14011 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
14012 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
14013 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
14014 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
14015 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
14016 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
14017 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
14018 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
14019 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
14020 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
14021 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
14022 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
14023 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
14024 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
14025 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
14026 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
14027 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
14028 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
14029 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
14030 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
14031 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
14032 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
14033 	};
14034 
14035 	ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14036 	    NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14037 	if (ksp == NULL || ksp->ks_data == NULL)
14038 		return (NULL);
14039 
14040 	template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14041 	template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14042 	template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14043 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14044 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14045 
14046 	template.netToMediaEntrySize.value.i32 =
14047 	    sizeof (mib2_ipNetToMediaEntry_t);
14048 
14049 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14050 
14051 	bcopy(&template, ksp->ks_data, sizeof (template));
14052 	ksp->ks_update = ip_kstat_update;
14053 	ksp->ks_private = (void *)(uintptr_t)stackid;
14054 
14055 	kstat_install(ksp);
14056 	return (ksp);
14057 }
14058 
14059 static void
14060 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14061 {
14062 	if (ksp != NULL) {
14063 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14064 		kstat_delete_netstack(ksp, stackid);
14065 	}
14066 }
14067 
14068 static int
14069 ip_kstat_update(kstat_t *kp, int rw)
14070 {
14071 	ip_named_kstat_t *ipkp;
14072 	mib2_ipIfStatsEntry_t ipmib;
14073 	ill_walk_context_t ctx;
14074 	ill_t *ill;
14075 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14076 	netstack_t	*ns;
14077 	ip_stack_t	*ipst;
14078 
14079 	if (kp == NULL || kp->ks_data == NULL)
14080 		return (EIO);
14081 
14082 	if (rw == KSTAT_WRITE)
14083 		return (EACCES);
14084 
14085 	ns = netstack_find_by_stackid(stackid);
14086 	if (ns == NULL)
14087 		return (-1);
14088 	ipst = ns->netstack_ip;
14089 	if (ipst == NULL) {
14090 		netstack_rele(ns);
14091 		return (-1);
14092 	}
14093 	ipkp = (ip_named_kstat_t *)kp->ks_data;
14094 
14095 	bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14096 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14097 	ill = ILL_START_WALK_V4(&ctx, ipst);
14098 	for (; ill != NULL; ill = ill_next(&ctx, ill))
14099 		ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14100 	rw_exit(&ipst->ips_ill_g_lock);
14101 
14102 	ipkp->forwarding.value.ui32 =		ipmib.ipIfStatsForwarding;
14103 	ipkp->defaultTTL.value.ui32 =		ipmib.ipIfStatsDefaultTTL;
14104 	ipkp->inReceives.value.ui64 =		ipmib.ipIfStatsHCInReceives;
14105 	ipkp->inHdrErrors.value.ui32 =		ipmib.ipIfStatsInHdrErrors;
14106 	ipkp->inAddrErrors.value.ui32 =		ipmib.ipIfStatsInAddrErrors;
14107 	ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14108 	ipkp->inUnknownProtos.value.ui32 =	ipmib.ipIfStatsInUnknownProtos;
14109 	ipkp->inDiscards.value.ui32 =		ipmib.ipIfStatsInDiscards;
14110 	ipkp->inDelivers.value.ui64 =		ipmib.ipIfStatsHCInDelivers;
14111 	ipkp->outRequests.value.ui64 =		ipmib.ipIfStatsHCOutRequests;
14112 	ipkp->outDiscards.value.ui32 =		ipmib.ipIfStatsOutDiscards;
14113 	ipkp->outNoRoutes.value.ui32 =		ipmib.ipIfStatsOutNoRoutes;
14114 	ipkp->reasmTimeout.value.ui32 =		ipst->ips_ip_reassembly_timeout;
14115 	ipkp->reasmReqds.value.ui32 =		ipmib.ipIfStatsReasmReqds;
14116 	ipkp->reasmOKs.value.ui32 =		ipmib.ipIfStatsReasmOKs;
14117 	ipkp->reasmFails.value.ui32 =		ipmib.ipIfStatsReasmFails;
14118 	ipkp->fragOKs.value.ui32 =		ipmib.ipIfStatsOutFragOKs;
14119 	ipkp->fragFails.value.ui32 =		ipmib.ipIfStatsOutFragFails;
14120 	ipkp->fragCreates.value.ui32 =		ipmib.ipIfStatsOutFragCreates;
14121 
14122 	ipkp->routingDiscards.value.ui32 =	0;
14123 	ipkp->inErrs.value.ui32 =		ipmib.tcpIfStatsInErrs;
14124 	ipkp->noPorts.value.ui32 =		ipmib.udpIfStatsNoPorts;
14125 	ipkp->inCksumErrs.value.ui32 =		ipmib.ipIfStatsInCksumErrs;
14126 	ipkp->reasmDuplicates.value.ui32 =	ipmib.ipIfStatsReasmDuplicates;
14127 	ipkp->reasmPartDups.value.ui32 =	ipmib.ipIfStatsReasmPartDups;
14128 	ipkp->forwProhibits.value.ui32 =	ipmib.ipIfStatsForwProhibits;
14129 	ipkp->udpInCksumErrs.value.ui32 =	ipmib.udpIfStatsInCksumErrs;
14130 	ipkp->udpInOverflows.value.ui32 =	ipmib.udpIfStatsInOverflows;
14131 	ipkp->rawipInOverflows.value.ui32 =	ipmib.rawipIfStatsInOverflows;
14132 	ipkp->ipsecInSucceeded.value.ui32 =	ipmib.ipsecIfStatsInSucceeded;
14133 	ipkp->ipsecInFailed.value.i32 =		ipmib.ipsecIfStatsInFailed;
14134 
14135 	ipkp->inIPv6.value.ui32 =	ipmib.ipIfStatsInWrongIPVersion;
14136 	ipkp->outIPv6.value.ui32 =	ipmib.ipIfStatsOutWrongIPVersion;
14137 	ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14138 
14139 	netstack_rele(ns);
14140 
14141 	return (0);
14142 }
14143 
14144 static void *
14145 icmp_kstat_init(netstackid_t stackid)
14146 {
14147 	kstat_t	*ksp;
14148 
14149 	icmp_named_kstat_t template = {
14150 		{ "inMsgs",		KSTAT_DATA_UINT32 },
14151 		{ "inErrors",		KSTAT_DATA_UINT32 },
14152 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
14153 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
14154 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
14155 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
14156 		{ "inRedirects",	KSTAT_DATA_UINT32 },
14157 		{ "inEchos",		KSTAT_DATA_UINT32 },
14158 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
14159 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
14160 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
14161 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
14162 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
14163 		{ "outMsgs",		KSTAT_DATA_UINT32 },
14164 		{ "outErrors",		KSTAT_DATA_UINT32 },
14165 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
14166 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
14167 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
14168 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
14169 		{ "outRedirects",	KSTAT_DATA_UINT32 },
14170 		{ "outEchos",		KSTAT_DATA_UINT32 },
14171 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
14172 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
14173 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
14174 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
14175 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
14176 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
14177 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
14178 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
14179 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
14180 		{ "outDrops",		KSTAT_DATA_UINT32 },
14181 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
14182 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
14183 	};
14184 
14185 	ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14186 	    NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14187 	if (ksp == NULL || ksp->ks_data == NULL)
14188 		return (NULL);
14189 
14190 	bcopy(&template, ksp->ks_data, sizeof (template));
14191 
14192 	ksp->ks_update = icmp_kstat_update;
14193 	ksp->ks_private = (void *)(uintptr_t)stackid;
14194 
14195 	kstat_install(ksp);
14196 	return (ksp);
14197 }
14198 
14199 static void
14200 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14201 {
14202 	if (ksp != NULL) {
14203 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14204 		kstat_delete_netstack(ksp, stackid);
14205 	}
14206 }
14207 
14208 static int
14209 icmp_kstat_update(kstat_t *kp, int rw)
14210 {
14211 	icmp_named_kstat_t *icmpkp;
14212 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14213 	netstack_t	*ns;
14214 	ip_stack_t	*ipst;
14215 
14216 	if ((kp == NULL) || (kp->ks_data == NULL))
14217 		return (EIO);
14218 
14219 	if (rw == KSTAT_WRITE)
14220 		return (EACCES);
14221 
14222 	ns = netstack_find_by_stackid(stackid);
14223 	if (ns == NULL)
14224 		return (-1);
14225 	ipst = ns->netstack_ip;
14226 	if (ipst == NULL) {
14227 		netstack_rele(ns);
14228 		return (-1);
14229 	}
14230 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14231 
14232 	icmpkp->inMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpInMsgs;
14233 	icmpkp->inErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpInErrors;
14234 	icmpkp->inDestUnreachs.value.ui32 =
14235 	    ipst->ips_icmp_mib.icmpInDestUnreachs;
14236 	icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14237 	icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14238 	icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14239 	icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14240 	icmpkp->inEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchos;
14241 	icmpkp->inEchoReps.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchoReps;
14242 	icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14243 	icmpkp->inTimestampReps.value.ui32 =
14244 	    ipst->ips_icmp_mib.icmpInTimestampReps;
14245 	icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14246 	icmpkp->inAddrMaskReps.value.ui32 =
14247 	    ipst->ips_icmp_mib.icmpInAddrMaskReps;
14248 	icmpkp->outMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpOutMsgs;
14249 	icmpkp->outErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpOutErrors;
14250 	icmpkp->outDestUnreachs.value.ui32 =
14251 	    ipst->ips_icmp_mib.icmpOutDestUnreachs;
14252 	icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14253 	icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14254 	icmpkp->outSrcQuenchs.value.ui32 =
14255 	    ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14256 	icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14257 	icmpkp->outEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpOutEchos;
14258 	icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14259 	icmpkp->outTimestamps.value.ui32 =
14260 	    ipst->ips_icmp_mib.icmpOutTimestamps;
14261 	icmpkp->outTimestampReps.value.ui32 =
14262 	    ipst->ips_icmp_mib.icmpOutTimestampReps;
14263 	icmpkp->outAddrMasks.value.ui32 =
14264 	    ipst->ips_icmp_mib.icmpOutAddrMasks;
14265 	icmpkp->outAddrMaskReps.value.ui32 =
14266 	    ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14267 	icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14268 	icmpkp->inUnknowns.value.ui32 =	    ipst->ips_icmp_mib.icmpInUnknowns;
14269 	icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14270 	icmpkp->outFragNeeded.value.ui32 =
14271 	    ipst->ips_icmp_mib.icmpOutFragNeeded;
14272 	icmpkp->outDrops.value.ui32 =	    ipst->ips_icmp_mib.icmpOutDrops;
14273 	icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14274 	icmpkp->inBadRedirects.value.ui32 =
14275 	    ipst->ips_icmp_mib.icmpInBadRedirects;
14276 
14277 	netstack_rele(ns);
14278 	return (0);
14279 }
14280 
14281 /*
14282  * This is the fanout function for raw socket opened for SCTP.  Note
14283  * that it is called after SCTP checks that there is no socket which
14284  * wants a packet.  Then before SCTP handles this out of the blue packet,
14285  * this function is called to see if there is any raw socket for SCTP.
14286  * If there is and it is bound to the correct address, the packet will
14287  * be sent to that socket.  Note that only one raw socket can be bound to
14288  * a port.  This is assured in ipcl_sctp_hash_insert();
14289  */
14290 void
14291 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14292     ip_recv_attr_t *ira)
14293 {
14294 	conn_t		*connp;
14295 	queue_t		*rq;
14296 	boolean_t	secure;
14297 	ill_t		*ill = ira->ira_ill;
14298 	ip_stack_t	*ipst = ill->ill_ipst;
14299 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
14300 	sctp_stack_t	*sctps = ipst->ips_netstack->netstack_sctp;
14301 	iaflags_t	iraflags = ira->ira_flags;
14302 	ill_t		*rill = ira->ira_rill;
14303 
14304 	secure = iraflags & IRAF_IPSEC_SECURE;
14305 
14306 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14307 	    ira, ipst);
14308 	if (connp == NULL) {
14309 		/*
14310 		 * Although raw sctp is not summed, OOB chunks must be.
14311 		 * Drop the packet here if the sctp checksum failed.
14312 		 */
14313 		if (iraflags & IRAF_SCTP_CSUM_ERR) {
14314 			SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14315 			freemsg(mp);
14316 			return;
14317 		}
14318 		ira->ira_ill = ira->ira_rill = NULL;
14319 		sctp_ootb_input(mp, ira, ipst);
14320 		ira->ira_ill = ill;
14321 		ira->ira_rill = rill;
14322 		return;
14323 	}
14324 	rq = connp->conn_rq;
14325 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14326 		CONN_DEC_REF(connp);
14327 		BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14328 		freemsg(mp);
14329 		return;
14330 	}
14331 	if (((iraflags & IRAF_IS_IPV4) ?
14332 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14333 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14334 	    secure) {
14335 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
14336 		    ip6h, ira);
14337 		if (mp == NULL) {
14338 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14339 			/* Note that mp is NULL */
14340 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
14341 			CONN_DEC_REF(connp);
14342 			return;
14343 		}
14344 	}
14345 
14346 	if (iraflags & IRAF_ICMP_ERROR) {
14347 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
14348 	} else {
14349 		ill_t *rill = ira->ira_rill;
14350 
14351 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14352 		/* This is the SOCK_RAW, IPPROTO_SCTP case. */
14353 		ira->ira_ill = ira->ira_rill = NULL;
14354 		(connp->conn_recv)(connp, mp, NULL, ira);
14355 		ira->ira_ill = ill;
14356 		ira->ira_rill = rill;
14357 	}
14358 	CONN_DEC_REF(connp);
14359 }
14360 
14361 /*
14362  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14363  * header before the ip payload.
14364  */
14365 static void
14366 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14367 {
14368 	int len = (mp->b_wptr - mp->b_rptr);
14369 	mblk_t *ip_mp;
14370 
14371 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14372 	if (is_fp_mp || len != fp_mp_len) {
14373 		if (len > fp_mp_len) {
14374 			/*
14375 			 * fastpath header and ip header in the first mblk
14376 			 */
14377 			mp->b_rptr += fp_mp_len;
14378 		} else {
14379 			/*
14380 			 * ip_xmit_attach_llhdr had to prepend an mblk to
14381 			 * attach the fastpath header before ip header.
14382 			 */
14383 			ip_mp = mp->b_cont;
14384 			freeb(mp);
14385 			mp = ip_mp;
14386 			mp->b_rptr += (fp_mp_len - len);
14387 		}
14388 	} else {
14389 		ip_mp = mp->b_cont;
14390 		freeb(mp);
14391 		mp = ip_mp;
14392 	}
14393 	ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14394 	freemsg(mp);
14395 }
14396 
14397 /*
14398  * Normal post fragmentation function.
14399  *
14400  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14401  * using the same state machine.
14402  *
14403  * We return an error on failure. In particular we return EWOULDBLOCK
14404  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14405  * (currently by canputnext failure resulting in backenabling from GLD.)
14406  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14407  * indication that they can flow control until ip_wsrv() tells then to restart.
14408  *
14409  * If the nce passed by caller is incomplete, this function
14410  * queues the packet and if necessary, sends ARP request and bails.
14411  * If the Neighbor Cache passed is fully resolved, we simply prepend
14412  * the link-layer header to the packet, do ipsec hw acceleration
14413  * work if necessary, and send the packet out on the wire.
14414  */
14415 /* ARGSUSED6 */
14416 int
14417 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14418     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14419 {
14420 	queue_t		*wq;
14421 	ill_t		*ill = nce->nce_ill;
14422 	ip_stack_t	*ipst = ill->ill_ipst;
14423 	uint64_t	delta;
14424 	boolean_t	isv6 = ill->ill_isv6;
14425 	boolean_t	fp_mp;
14426 	ncec_t		*ncec = nce->nce_common;
14427 	int64_t		now = LBOLT_FASTPATH64;
14428 	boolean_t	is_probe;
14429 
14430 	DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14431 
14432 	ASSERT(mp != NULL);
14433 	ASSERT(mp->b_datap->db_type == M_DATA);
14434 	ASSERT(pkt_len == msgdsize(mp));
14435 
14436 	/*
14437 	 * If we have already been here and are coming back after ARP/ND.
14438 	 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14439 	 * in that case since they have seen the packet when it came here
14440 	 * the first time.
14441 	 */
14442 	if (ixaflags & IXAF_NO_TRACE)
14443 		goto sendit;
14444 
14445 	if (ixaflags & IXAF_IS_IPV4) {
14446 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
14447 
14448 		ASSERT(!isv6);
14449 		ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14450 		if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14451 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14452 			int	error;
14453 
14454 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
14455 			    ipst->ips_ipv4firewall_physical_out,
14456 			    NULL, ill, ipha, mp, mp, 0, ipst, error);
14457 			DTRACE_PROBE1(ip4__physical__out__end,
14458 			    mblk_t *, mp);
14459 			if (mp == NULL)
14460 				return (error);
14461 
14462 			/* The length could have changed */
14463 			pkt_len = msgdsize(mp);
14464 		}
14465 		if (ipst->ips_ip4_observe.he_interested) {
14466 			/*
14467 			 * Note that for TX the zoneid is the sending
14468 			 * zone, whether or not MLP is in play.
14469 			 * Since the szone argument is the IP zoneid (i.e.,
14470 			 * zero for exclusive-IP zones) and ipobs wants
14471 			 * the system zoneid, we map it here.
14472 			 */
14473 			szone = IP_REAL_ZONEID(szone, ipst);
14474 
14475 			/*
14476 			 * On the outbound path the destination zone will be
14477 			 * unknown as we're sending this packet out on the
14478 			 * wire.
14479 			 */
14480 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14481 			    ill, ipst);
14482 		}
14483 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14484 		    void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14485 		    ipha_t *, ipha, ip6_t *, NULL, int, 0);
14486 	} else {
14487 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14488 
14489 		ASSERT(isv6);
14490 		ASSERT(pkt_len ==
14491 		    ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14492 		if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14493 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14494 			int	error;
14495 
14496 			FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14497 			    ipst->ips_ipv6firewall_physical_out,
14498 			    NULL, ill, ip6h, mp, mp, 0, ipst, error);
14499 			DTRACE_PROBE1(ip6__physical__out__end,
14500 			    mblk_t *, mp);
14501 			if (mp == NULL)
14502 				return (error);
14503 
14504 			/* The length could have changed */
14505 			pkt_len = msgdsize(mp);
14506 		}
14507 		if (ipst->ips_ip6_observe.he_interested) {
14508 			/* See above */
14509 			szone = IP_REAL_ZONEID(szone, ipst);
14510 
14511 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14512 			    ill, ipst);
14513 		}
14514 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14515 		    void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14516 		    ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14517 	}
14518 
14519 sendit:
14520 	/*
14521 	 * We check the state without a lock because the state can never
14522 	 * move "backwards" to initial or incomplete.
14523 	 */
14524 	switch (ncec->ncec_state) {
14525 	case ND_REACHABLE:
14526 	case ND_STALE:
14527 	case ND_DELAY:
14528 	case ND_PROBE:
14529 		mp = ip_xmit_attach_llhdr(mp, nce);
14530 		if (mp == NULL) {
14531 			/*
14532 			 * ip_xmit_attach_llhdr has increased
14533 			 * ipIfStatsOutDiscards and called ip_drop_output()
14534 			 */
14535 			return (ENOBUFS);
14536 		}
14537 		/*
14538 		 * check if nce_fastpath completed and we tagged on a
14539 		 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14540 		 */
14541 		fp_mp = (mp->b_datap->db_type == M_DATA);
14542 
14543 		if (fp_mp &&
14544 		    (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14545 			ill_dld_direct_t *idd;
14546 
14547 			idd = &ill->ill_dld_capab->idc_direct;
14548 			/*
14549 			 * Send the packet directly to DLD, where it
14550 			 * may be queued depending on the availability
14551 			 * of transmit resources at the media layer.
14552 			 * Return value should be taken into
14553 			 * account and flow control the TCP.
14554 			 */
14555 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14556 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14557 			    pkt_len);
14558 
14559 			if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14560 				(void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14561 				    (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14562 			} else {
14563 				uintptr_t cookie;
14564 
14565 				if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14566 				    mp, (uintptr_t)xmit_hint, 0)) != 0) {
14567 					if (ixacookie != NULL)
14568 						*ixacookie = cookie;
14569 					return (EWOULDBLOCK);
14570 				}
14571 			}
14572 		} else {
14573 			wq = ill->ill_wq;
14574 
14575 			if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14576 			    !canputnext(wq)) {
14577 				if (ixacookie != NULL)
14578 					*ixacookie = 0;
14579 				ip_xmit_flowctl_drop(ill, mp, fp_mp,
14580 				    nce->nce_fp_mp != NULL ?
14581 				    MBLKL(nce->nce_fp_mp) : 0);
14582 				return (EWOULDBLOCK);
14583 			}
14584 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14585 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14586 			    pkt_len);
14587 			putnext(wq, mp);
14588 		}
14589 
14590 		/*
14591 		 * The rest of this function implements Neighbor Unreachability
14592 		 * detection. Determine if the ncec is eligible for NUD.
14593 		 */
14594 		if (ncec->ncec_flags & NCE_F_NONUD)
14595 			return (0);
14596 
14597 		ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14598 
14599 		/*
14600 		 * Check for upper layer advice
14601 		 */
14602 		if (ixaflags & IXAF_REACH_CONF) {
14603 			timeout_id_t tid;
14604 
14605 			/*
14606 			 * It should be o.k. to check the state without
14607 			 * a lock here, at most we lose an advice.
14608 			 */
14609 			ncec->ncec_last = TICK_TO_MSEC(now);
14610 			if (ncec->ncec_state != ND_REACHABLE) {
14611 				mutex_enter(&ncec->ncec_lock);
14612 				ncec->ncec_state = ND_REACHABLE;
14613 				tid = ncec->ncec_timeout_id;
14614 				ncec->ncec_timeout_id = 0;
14615 				mutex_exit(&ncec->ncec_lock);
14616 				(void) untimeout(tid);
14617 				if (ip_debug > 2) {
14618 					/* ip1dbg */
14619 					pr_addr_dbg("ip_xmit: state"
14620 					    " for %s changed to"
14621 					    " REACHABLE\n", AF_INET6,
14622 					    &ncec->ncec_addr);
14623 				}
14624 			}
14625 			return (0);
14626 		}
14627 
14628 		delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14629 		ip1dbg(("ip_xmit: delta = %" PRId64
14630 		    " ill_reachable_time = %d \n", delta,
14631 		    ill->ill_reachable_time));
14632 		if (delta > (uint64_t)ill->ill_reachable_time) {
14633 			mutex_enter(&ncec->ncec_lock);
14634 			switch (ncec->ncec_state) {
14635 			case ND_REACHABLE:
14636 				ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14637 				/* FALLTHROUGH */
14638 			case ND_STALE:
14639 				/*
14640 				 * ND_REACHABLE is identical to
14641 				 * ND_STALE in this specific case. If
14642 				 * reachable time has expired for this
14643 				 * neighbor (delta is greater than
14644 				 * reachable time), conceptually, the
14645 				 * neighbor cache is no longer in
14646 				 * REACHABLE state, but already in
14647 				 * STALE state.  So the correct
14648 				 * transition here is to ND_DELAY.
14649 				 */
14650 				ncec->ncec_state = ND_DELAY;
14651 				mutex_exit(&ncec->ncec_lock);
14652 				nce_restart_timer(ncec,
14653 				    ipst->ips_delay_first_probe_time);
14654 				if (ip_debug > 3) {
14655 					/* ip2dbg */
14656 					pr_addr_dbg("ip_xmit: state"
14657 					    " for %s changed to"
14658 					    " DELAY\n", AF_INET6,
14659 					    &ncec->ncec_addr);
14660 				}
14661 				break;
14662 			case ND_DELAY:
14663 			case ND_PROBE:
14664 				mutex_exit(&ncec->ncec_lock);
14665 				/* Timers have already started */
14666 				break;
14667 			case ND_UNREACHABLE:
14668 				/*
14669 				 * nce_timer has detected that this ncec
14670 				 * is unreachable and initiated deleting
14671 				 * this ncec.
14672 				 * This is a harmless race where we found the
14673 				 * ncec before it was deleted and have
14674 				 * just sent out a packet using this
14675 				 * unreachable ncec.
14676 				 */
14677 				mutex_exit(&ncec->ncec_lock);
14678 				break;
14679 			default:
14680 				ASSERT(0);
14681 				mutex_exit(&ncec->ncec_lock);
14682 			}
14683 		}
14684 		return (0);
14685 
14686 	case ND_INCOMPLETE:
14687 		/*
14688 		 * the state could have changed since we didn't hold the lock.
14689 		 * Re-verify state under lock.
14690 		 */
14691 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14692 		mutex_enter(&ncec->ncec_lock);
14693 		if (NCE_ISREACHABLE(ncec)) {
14694 			mutex_exit(&ncec->ncec_lock);
14695 			goto sendit;
14696 		}
14697 		/* queue the packet */
14698 		nce_queue_mp(ncec, mp, is_probe);
14699 		mutex_exit(&ncec->ncec_lock);
14700 		DTRACE_PROBE2(ip__xmit__incomplete,
14701 		    (ncec_t *), ncec, (mblk_t *), mp);
14702 		return (0);
14703 
14704 	case ND_INITIAL:
14705 		/*
14706 		 * State could have changed since we didn't hold the lock, so
14707 		 * re-verify state.
14708 		 */
14709 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14710 		mutex_enter(&ncec->ncec_lock);
14711 		if (NCE_ISREACHABLE(ncec))  {
14712 			mutex_exit(&ncec->ncec_lock);
14713 			goto sendit;
14714 		}
14715 		nce_queue_mp(ncec, mp, is_probe);
14716 		if (ncec->ncec_state == ND_INITIAL) {
14717 			ncec->ncec_state = ND_INCOMPLETE;
14718 			mutex_exit(&ncec->ncec_lock);
14719 			/*
14720 			 * figure out the source we want to use
14721 			 * and resolve it.
14722 			 */
14723 			ip_ndp_resolve(ncec);
14724 		} else  {
14725 			mutex_exit(&ncec->ncec_lock);
14726 		}
14727 		return (0);
14728 
14729 	case ND_UNREACHABLE:
14730 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14731 		ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14732 		    mp, ill);
14733 		freemsg(mp);
14734 		return (0);
14735 
14736 	default:
14737 		ASSERT(0);
14738 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14739 		ip_drop_output("ipIfStatsOutDiscards - ND_other",
14740 		    mp, ill);
14741 		freemsg(mp);
14742 		return (ENETUNREACH);
14743 	}
14744 }
14745 
14746 /*
14747  * Return B_TRUE if the buffers differ in length or content.
14748  * This is used for comparing extension header buffers.
14749  * Note that an extension header would be declared different
14750  * even if all that changed was the next header value in that header i.e.
14751  * what really changed is the next extension header.
14752  */
14753 boolean_t
14754 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14755     uint_t blen)
14756 {
14757 	if (!b_valid)
14758 		blen = 0;
14759 
14760 	if (alen != blen)
14761 		return (B_TRUE);
14762 	if (alen == 0)
14763 		return (B_FALSE);	/* Both zero length */
14764 	return (bcmp(abuf, bbuf, alen));
14765 }
14766 
14767 /*
14768  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14769  * Return B_FALSE if memory allocation fails - don't change any state!
14770  */
14771 boolean_t
14772 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14773     const void *src, uint_t srclen)
14774 {
14775 	void *dst;
14776 
14777 	if (!src_valid)
14778 		srclen = 0;
14779 
14780 	ASSERT(*dstlenp == 0);
14781 	if (src != NULL && srclen != 0) {
14782 		dst = mi_alloc(srclen, BPRI_MED);
14783 		if (dst == NULL)
14784 			return (B_FALSE);
14785 	} else {
14786 		dst = NULL;
14787 	}
14788 	if (*dstp != NULL)
14789 		mi_free(*dstp);
14790 	*dstp = dst;
14791 	*dstlenp = dst == NULL ? 0 : srclen;
14792 	return (B_TRUE);
14793 }
14794 
14795 /*
14796  * Replace what is in *dst, *dstlen with the source.
14797  * Assumes ip_allocbuf has already been called.
14798  */
14799 void
14800 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14801     const void *src, uint_t srclen)
14802 {
14803 	if (!src_valid)
14804 		srclen = 0;
14805 
14806 	ASSERT(*dstlenp == srclen);
14807 	if (src != NULL && srclen != 0)
14808 		bcopy(src, *dstp, srclen);
14809 }
14810 
14811 /*
14812  * Free the storage pointed to by the members of an ip_pkt_t.
14813  */
14814 void
14815 ip_pkt_free(ip_pkt_t *ipp)
14816 {
14817 	uint_t	fields = ipp->ipp_fields;
14818 
14819 	if (fields & IPPF_HOPOPTS) {
14820 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14821 		ipp->ipp_hopopts = NULL;
14822 		ipp->ipp_hopoptslen = 0;
14823 	}
14824 	if (fields & IPPF_RTHDRDSTOPTS) {
14825 		kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14826 		ipp->ipp_rthdrdstopts = NULL;
14827 		ipp->ipp_rthdrdstoptslen = 0;
14828 	}
14829 	if (fields & IPPF_DSTOPTS) {
14830 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14831 		ipp->ipp_dstopts = NULL;
14832 		ipp->ipp_dstoptslen = 0;
14833 	}
14834 	if (fields & IPPF_RTHDR) {
14835 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14836 		ipp->ipp_rthdr = NULL;
14837 		ipp->ipp_rthdrlen = 0;
14838 	}
14839 	if (fields & IPPF_IPV4_OPTIONS) {
14840 		kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14841 		ipp->ipp_ipv4_options = NULL;
14842 		ipp->ipp_ipv4_options_len = 0;
14843 	}
14844 	if (fields & IPPF_LABEL_V4) {
14845 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14846 		ipp->ipp_label_v4 = NULL;
14847 		ipp->ipp_label_len_v4 = 0;
14848 	}
14849 	if (fields & IPPF_LABEL_V6) {
14850 		kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14851 		ipp->ipp_label_v6 = NULL;
14852 		ipp->ipp_label_len_v6 = 0;
14853 	}
14854 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14855 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14856 }
14857 
14858 /*
14859  * Copy from src to dst and allocate as needed.
14860  * Returns zero or ENOMEM.
14861  *
14862  * The caller must initialize dst to zero.
14863  */
14864 int
14865 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14866 {
14867 	uint_t	fields = src->ipp_fields;
14868 
14869 	/* Start with fields that don't require memory allocation */
14870 	dst->ipp_fields = fields &
14871 	    ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14872 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14873 
14874 	dst->ipp_addr = src->ipp_addr;
14875 	dst->ipp_unicast_hops = src->ipp_unicast_hops;
14876 	dst->ipp_hoplimit = src->ipp_hoplimit;
14877 	dst->ipp_tclass = src->ipp_tclass;
14878 	dst->ipp_type_of_service = src->ipp_type_of_service;
14879 
14880 	if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14881 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14882 		return (0);
14883 
14884 	if (fields & IPPF_HOPOPTS) {
14885 		dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14886 		if (dst->ipp_hopopts == NULL) {
14887 			ip_pkt_free(dst);
14888 			return (ENOMEM);
14889 		}
14890 		dst->ipp_fields |= IPPF_HOPOPTS;
14891 		bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14892 		    src->ipp_hopoptslen);
14893 		dst->ipp_hopoptslen = src->ipp_hopoptslen;
14894 	}
14895 	if (fields & IPPF_RTHDRDSTOPTS) {
14896 		dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14897 		    kmflag);
14898 		if (dst->ipp_rthdrdstopts == NULL) {
14899 			ip_pkt_free(dst);
14900 			return (ENOMEM);
14901 		}
14902 		dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14903 		bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14904 		    src->ipp_rthdrdstoptslen);
14905 		dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14906 	}
14907 	if (fields & IPPF_DSTOPTS) {
14908 		dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14909 		if (dst->ipp_dstopts == NULL) {
14910 			ip_pkt_free(dst);
14911 			return (ENOMEM);
14912 		}
14913 		dst->ipp_fields |= IPPF_DSTOPTS;
14914 		bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14915 		    src->ipp_dstoptslen);
14916 		dst->ipp_dstoptslen = src->ipp_dstoptslen;
14917 	}
14918 	if (fields & IPPF_RTHDR) {
14919 		dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14920 		if (dst->ipp_rthdr == NULL) {
14921 			ip_pkt_free(dst);
14922 			return (ENOMEM);
14923 		}
14924 		dst->ipp_fields |= IPPF_RTHDR;
14925 		bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14926 		    src->ipp_rthdrlen);
14927 		dst->ipp_rthdrlen = src->ipp_rthdrlen;
14928 	}
14929 	if (fields & IPPF_IPV4_OPTIONS) {
14930 		dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14931 		    kmflag);
14932 		if (dst->ipp_ipv4_options == NULL) {
14933 			ip_pkt_free(dst);
14934 			return (ENOMEM);
14935 		}
14936 		dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14937 		bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14938 		    src->ipp_ipv4_options_len);
14939 		dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14940 	}
14941 	if (fields & IPPF_LABEL_V4) {
14942 		dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14943 		if (dst->ipp_label_v4 == NULL) {
14944 			ip_pkt_free(dst);
14945 			return (ENOMEM);
14946 		}
14947 		dst->ipp_fields |= IPPF_LABEL_V4;
14948 		bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14949 		    src->ipp_label_len_v4);
14950 		dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14951 	}
14952 	if (fields & IPPF_LABEL_V6) {
14953 		dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14954 		if (dst->ipp_label_v6 == NULL) {
14955 			ip_pkt_free(dst);
14956 			return (ENOMEM);
14957 		}
14958 		dst->ipp_fields |= IPPF_LABEL_V6;
14959 		bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14960 		    src->ipp_label_len_v6);
14961 		dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14962 	}
14963 	if (fields & IPPF_FRAGHDR) {
14964 		dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14965 		if (dst->ipp_fraghdr == NULL) {
14966 			ip_pkt_free(dst);
14967 			return (ENOMEM);
14968 		}
14969 		dst->ipp_fields |= IPPF_FRAGHDR;
14970 		bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14971 		    src->ipp_fraghdrlen);
14972 		dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14973 	}
14974 	return (0);
14975 }
14976 
14977 /*
14978  * Returns INADDR_ANY if no source route
14979  */
14980 ipaddr_t
14981 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14982 {
14983 	ipaddr_t	nexthop = INADDR_ANY;
14984 	ipoptp_t	opts;
14985 	uchar_t		*opt;
14986 	uint8_t		optval;
14987 	uint8_t		optlen;
14988 	uint32_t	totallen;
14989 
14990 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14991 		return (INADDR_ANY);
14992 
14993 	totallen = ipp->ipp_ipv4_options_len;
14994 	if (totallen & 0x3)
14995 		return (INADDR_ANY);
14996 
14997 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14998 	    optval != IPOPT_EOL;
14999 	    optval = ipoptp_next(&opts)) {
15000 		opt = opts.ipoptp_cur;
15001 		switch (optval) {
15002 			uint8_t off;
15003 		case IPOPT_SSRR:
15004 		case IPOPT_LSRR:
15005 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15006 				break;
15007 			}
15008 			optlen = opts.ipoptp_len;
15009 			off = opt[IPOPT_OFFSET];
15010 			off--;
15011 			if (optlen < IP_ADDR_LEN ||
15012 			    off > optlen - IP_ADDR_LEN) {
15013 				/* End of source route */
15014 				break;
15015 			}
15016 			bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
15017 			if (nexthop == htonl(INADDR_LOOPBACK)) {
15018 				/* Ignore */
15019 				nexthop = INADDR_ANY;
15020 				break;
15021 			}
15022 			break;
15023 		}
15024 	}
15025 	return (nexthop);
15026 }
15027 
15028 /*
15029  * Reverse a source route.
15030  */
15031 void
15032 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15033 {
15034 	ipaddr_t	tmp;
15035 	ipoptp_t	opts;
15036 	uchar_t		*opt;
15037 	uint8_t		optval;
15038 	uint32_t	totallen;
15039 
15040 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15041 		return;
15042 
15043 	totallen = ipp->ipp_ipv4_options_len;
15044 	if (totallen & 0x3)
15045 		return;
15046 
15047 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15048 	    optval != IPOPT_EOL;
15049 	    optval = ipoptp_next(&opts)) {
15050 		uint8_t off1, off2;
15051 
15052 		opt = opts.ipoptp_cur;
15053 		switch (optval) {
15054 		case IPOPT_SSRR:
15055 		case IPOPT_LSRR:
15056 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15057 				break;
15058 			}
15059 			off1 = IPOPT_MINOFF_SR - 1;
15060 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15061 			while (off2 > off1) {
15062 				bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15063 				bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15064 				bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15065 				off2 -= IP_ADDR_LEN;
15066 				off1 += IP_ADDR_LEN;
15067 			}
15068 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15069 			break;
15070 		}
15071 	}
15072 }
15073 
15074 /*
15075  * Returns NULL if no routing header
15076  */
15077 in6_addr_t *
15078 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15079 {
15080 	in6_addr_t	*nexthop = NULL;
15081 	ip6_rthdr0_t	*rthdr;
15082 
15083 	if (!(ipp->ipp_fields & IPPF_RTHDR))
15084 		return (NULL);
15085 
15086 	rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15087 	if (rthdr->ip6r0_segleft == 0)
15088 		return (NULL);
15089 
15090 	nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15091 	return (nexthop);
15092 }
15093 
15094 zoneid_t
15095 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15096     zoneid_t lookup_zoneid)
15097 {
15098 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15099 	ire_t		*ire;
15100 	int		ire_flags = MATCH_IRE_TYPE;
15101 	zoneid_t	zoneid = ALL_ZONES;
15102 
15103 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15104 		return (ALL_ZONES);
15105 
15106 	if (lookup_zoneid != ALL_ZONES)
15107 		ire_flags |= MATCH_IRE_ZONEONLY;
15108 	ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15109 	    NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15110 	if (ire != NULL) {
15111 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15112 		ire_refrele(ire);
15113 	}
15114 	return (zoneid);
15115 }
15116 
15117 zoneid_t
15118 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15119     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15120 {
15121 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15122 	ire_t		*ire;
15123 	int		ire_flags = MATCH_IRE_TYPE;
15124 	zoneid_t	zoneid = ALL_ZONES;
15125 
15126 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15127 		return (ALL_ZONES);
15128 
15129 	if (IN6_IS_ADDR_LINKLOCAL(addr))
15130 		ire_flags |= MATCH_IRE_ILL;
15131 
15132 	if (lookup_zoneid != ALL_ZONES)
15133 		ire_flags |= MATCH_IRE_ZONEONLY;
15134 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15135 	    ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15136 	if (ire != NULL) {
15137 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15138 		ire_refrele(ire);
15139 	}
15140 	return (zoneid);
15141 }
15142 
15143 /*
15144  * IP obserability hook support functions.
15145  */
15146 static void
15147 ipobs_init(ip_stack_t *ipst)
15148 {
15149 	netid_t id;
15150 
15151 	id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15152 
15153 	ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15154 	VERIFY(ipst->ips_ip4_observe_pr != NULL);
15155 
15156 	ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15157 	VERIFY(ipst->ips_ip6_observe_pr != NULL);
15158 }
15159 
15160 static void
15161 ipobs_fini(ip_stack_t *ipst)
15162 {
15163 
15164 	VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15165 	VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15166 }
15167 
15168 /*
15169  * hook_pkt_observe_t is composed in network byte order so that the
15170  * entire mblk_t chain handed into hook_run can be used as-is.
15171  * The caveat is that use of the fields, such as the zone fields,
15172  * requires conversion into host byte order first.
15173  */
15174 void
15175 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15176     const ill_t *ill, ip_stack_t *ipst)
15177 {
15178 	hook_pkt_observe_t *hdr;
15179 	uint64_t grifindex;
15180 	mblk_t *imp;
15181 
15182 	imp = allocb(sizeof (*hdr), BPRI_HI);
15183 	if (imp == NULL)
15184 		return;
15185 
15186 	hdr = (hook_pkt_observe_t *)imp->b_rptr;
15187 	/*
15188 	 * b_wptr is set to make the apparent size of the data in the mblk_t
15189 	 * to exclude the pointers at the end of hook_pkt_observer_t.
15190 	 */
15191 	imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15192 	imp->b_cont = mp;
15193 
15194 	ASSERT(DB_TYPE(mp) == M_DATA);
15195 
15196 	if (IS_UNDER_IPMP(ill))
15197 		grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15198 	else
15199 		grifindex = 0;
15200 
15201 	hdr->hpo_version = 1;
15202 	hdr->hpo_htype = htons(htype);
15203 	hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15204 	hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15205 	hdr->hpo_grifindex = htonl(grifindex);
15206 	hdr->hpo_zsrc = htonl(zsrc);
15207 	hdr->hpo_zdst = htonl(zdst);
15208 	hdr->hpo_pkt = imp;
15209 	hdr->hpo_ctx = ipst->ips_netstack;
15210 
15211 	if (ill->ill_isv6) {
15212 		hdr->hpo_family = AF_INET6;
15213 		(void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15214 		    ipst->ips_ipv6observing, (hook_data_t)hdr);
15215 	} else {
15216 		hdr->hpo_family = AF_INET;
15217 		(void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15218 		    ipst->ips_ipv4observing, (hook_data_t)hdr);
15219 	}
15220 
15221 	imp->b_cont = NULL;
15222 	freemsg(imp);
15223 }
15224 
15225 /*
15226  * Utility routine that checks if `v4srcp' is a valid address on underlying
15227  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15228  * associated with `v4srcp' on success.  NOTE: if this is not called from
15229  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15230  * group during or after this lookup.
15231  */
15232 boolean_t
15233 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15234 {
15235 	ipif_t *ipif;
15236 
15237 	ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15238 	if (ipif != NULL) {
15239 		if (ipifp != NULL)
15240 			*ipifp = ipif;
15241 		else
15242 			ipif_refrele(ipif);
15243 		return (B_TRUE);
15244 	}
15245 
15246 	ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15247 	    *v4srcp));
15248 	return (B_FALSE);
15249 }
15250 
15251 /*
15252  * Transport protocol call back function for CPU state change.
15253  */
15254 /* ARGSUSED */
15255 static int
15256 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15257 {
15258 	processorid_t cpu_seqid;
15259 	netstack_handle_t nh;
15260 	netstack_t *ns;
15261 
15262 	ASSERT(MUTEX_HELD(&cpu_lock));
15263 
15264 	switch (what) {
15265 	case CPU_CONFIG:
15266 	case CPU_ON:
15267 	case CPU_INIT:
15268 	case CPU_CPUPART_IN:
15269 		cpu_seqid = cpu[id]->cpu_seqid;
15270 		netstack_next_init(&nh);
15271 		while ((ns = netstack_next(&nh)) != NULL) {
15272 			tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15273 			sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15274 			udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15275 			netstack_rele(ns);
15276 		}
15277 		netstack_next_fini(&nh);
15278 		break;
15279 	case CPU_UNCONFIG:
15280 	case CPU_OFF:
15281 	case CPU_CPUPART_OUT:
15282 		/*
15283 		 * Nothing to do.  We don't remove the per CPU stats from
15284 		 * the IP stack even when the CPU goes offline.
15285 		 */
15286 		break;
15287 	default:
15288 		break;
15289 	}
15290 	return (0);
15291 }
15292