1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <net/if.h> 58 #include <net/if_arp.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <net/if_dl.h> 63 64 #include <inet/common.h> 65 #include <inet/mi.h> 66 #include <inet/mib2.h> 67 #include <inet/nd.h> 68 #include <inet/arp.h> 69 #include <inet/snmpcom.h> 70 #include <inet/kstatcom.h> 71 72 #include <netinet/igmp_var.h> 73 #include <netinet/ip6.h> 74 #include <netinet/icmp6.h> 75 #include <netinet/sctp.h> 76 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip6_asp.h> 81 #include <inet/tcp.h> 82 #include <inet/tcp_impl.h> 83 #include <inet/ip_multi.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_ire.h> 86 #include <inet/ip_rts.h> 87 #include <inet/optcom.h> 88 #include <inet/ip_ndp.h> 89 #include <inet/ip_listutils.h> 90 #include <netinet/igmp.h> 91 #include <netinet/ip_mroute.h> 92 #include <inet/ipp_common.h> 93 94 #include <net/pfkeyv2.h> 95 #include <inet/ipsec_info.h> 96 #include <inet/sadb.h> 97 #include <inet/ipsec_impl.h> 98 #include <sys/iphada.h> 99 #include <inet/tun.h> 100 #include <inet/ipdrop.h> 101 102 #include <sys/ethernet.h> 103 #include <net/if_types.h> 104 #include <sys/cpuvar.h> 105 106 #include <ipp/ipp.h> 107 #include <ipp/ipp_impl.h> 108 #include <ipp/ipgpc/ipgpc.h> 109 110 #include <sys/multidata.h> 111 #include <sys/pattr.h> 112 113 #include <inet/ipclassifier.h> 114 #include <inet/sctp_ip.h> 115 #include <inet/udp_impl.h> 116 117 /* 118 * Values for squeue switch: 119 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 120 * IP_SQUEUE_ENTER: squeue_enter 121 * IP_SQUEUE_FILL: squeue_fill 122 */ 123 int ip_squeue_enter = 2; 124 squeue_func_t ip_input_proc; 125 /* 126 * IP statistics. 127 */ 128 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 129 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 130 131 typedef struct ip_stat { 132 kstat_named_t ipsec_fanout_proto; 133 kstat_named_t ip_udp_fannorm; 134 kstat_named_t ip_udp_fanmb; 135 kstat_named_t ip_udp_fanothers; 136 kstat_named_t ip_udp_fast_path; 137 kstat_named_t ip_udp_slow_path; 138 kstat_named_t ip_udp_input_err; 139 kstat_named_t ip_tcppullup; 140 kstat_named_t ip_tcpoptions; 141 kstat_named_t ip_multipkttcp; 142 kstat_named_t ip_tcp_fast_path; 143 kstat_named_t ip_tcp_slow_path; 144 kstat_named_t ip_tcp_input_error; 145 kstat_named_t ip_db_ref; 146 kstat_named_t ip_notaligned1; 147 kstat_named_t ip_notaligned2; 148 kstat_named_t ip_multimblk3; 149 kstat_named_t ip_multimblk4; 150 kstat_named_t ip_ipoptions; 151 kstat_named_t ip_classify_fail; 152 kstat_named_t ip_opt; 153 kstat_named_t ip_udp_rput_local; 154 kstat_named_t ipsec_proto_ahesp; 155 kstat_named_t ip_conn_flputbq; 156 kstat_named_t ip_conn_walk_drain; 157 kstat_named_t ip_out_sw_cksum; 158 kstat_named_t ip_in_sw_cksum; 159 kstat_named_t ip_trash_ire_reclaim_calls; 160 kstat_named_t ip_trash_ire_reclaim_success; 161 kstat_named_t ip_ire_arp_timer_expired; 162 kstat_named_t ip_ire_redirect_timer_expired; 163 kstat_named_t ip_ire_pmtu_timer_expired; 164 kstat_named_t ip_input_multi_squeue; 165 kstat_named_t ip_tcp_in_full_hw_cksum_err; 166 kstat_named_t ip_tcp_in_part_hw_cksum_err; 167 kstat_named_t ip_tcp_in_sw_cksum_err; 168 kstat_named_t ip_tcp_out_sw_cksum_bytes; 169 kstat_named_t ip_udp_in_full_hw_cksum_err; 170 kstat_named_t ip_udp_in_part_hw_cksum_err; 171 kstat_named_t ip_udp_in_sw_cksum_err; 172 kstat_named_t ip_udp_out_sw_cksum_bytes; 173 kstat_named_t ip_frag_mdt_pkt_out; 174 kstat_named_t ip_frag_mdt_discarded; 175 kstat_named_t ip_frag_mdt_allocfail; 176 kstat_named_t ip_frag_mdt_addpdescfail; 177 kstat_named_t ip_frag_mdt_allocd; 178 } ip_stat_t; 179 180 static ip_stat_t ip_statistics = { 181 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 182 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 183 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 184 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 185 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 186 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 187 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 188 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 189 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 190 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 191 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 192 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 193 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 194 { "ip_db_ref", KSTAT_DATA_UINT64 }, 195 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 196 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 197 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 198 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 199 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 200 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 201 { "ip_opt", KSTAT_DATA_UINT64 }, 202 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 203 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 204 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 205 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 206 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 207 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 208 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 209 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 210 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 211 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 212 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 213 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 214 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 215 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 216 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 217 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 218 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 219 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 220 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 221 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 222 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 223 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 224 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 225 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 226 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 227 }; 228 229 static kstat_t *ip_kstat; 230 231 #define TCP6 "tcp6" 232 #define TCP "tcp" 233 #define SCTP "sctp" 234 #define SCTP6 "sctp6" 235 236 major_t TCP6_MAJ; 237 major_t TCP_MAJ; 238 major_t SCTP_MAJ; 239 major_t SCTP6_MAJ; 240 241 int ip_poll_normal_ms = 100; 242 int ip_poll_normal_ticks = 0; 243 244 /* 245 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 246 */ 247 248 struct listptr_s { 249 mblk_t *lp_head; /* pointer to the head of the list */ 250 mblk_t *lp_tail; /* pointer to the tail of the list */ 251 }; 252 253 typedef struct listptr_s listptr_t; 254 255 /* 256 * Cluster specific hooks. These should be NULL when booted as a non-cluster 257 */ 258 259 /* 260 * Hook functions to enable cluster networking 261 * On non-clustered systems these vectors must always be NULL. 262 * 263 * Hook function to Check ip specified ip address is a shared ip address 264 * in the cluster 265 * 266 */ 267 int (*cl_inet_isclusterwide)(uint8_t protocol, 268 sa_family_t addr_family, uint8_t *laddrp) = NULL; 269 270 /* 271 * Hook function to generate cluster wide ip fragment identifier 272 */ 273 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 274 uint8_t *laddrp, uint8_t *faddrp) = NULL; 275 276 /* 277 * Synchronization notes: 278 * 279 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 280 * MT level protection given by STREAMS. IP uses a combination of its own 281 * internal serialization mechanism and standard Solaris locking techniques. 282 * The internal serialization is per phyint (no IPMP) or per IPMP group. 283 * This is used to serialize plumbing operations, IPMP operations, certain 284 * multicast operations, most set ioctls, igmp/mld timers etc. 285 * 286 * Plumbing is a long sequence of operations involving message 287 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 288 * involved in plumbing operations. A natural model is to serialize these 289 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 290 * parallel without any interference. But various set ioctls on hme0 are best 291 * serialized. However if the system uses IPMP, the operations are easier if 292 * they are serialized on a per IPMP group basis since IPMP operations 293 * happen across ill's of a group. Thus the lowest common denominator is to 294 * serialize most set ioctls, multicast join/leave operations, IPMP operations 295 * igmp/mld timer operations, and processing of DLPI control messages received 296 * from drivers on a per IPMP group basis. If the system does not employ 297 * IPMP the serialization is on a per phyint basis. This serialization is 298 * provided by the ipsq_t and primitives operating on this. Details can 299 * be found in ip_if.c above the core primitives operating on ipsq_t. 300 * 301 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 302 * Simiarly lookup of an ire by a thread also returns a refheld ire. 303 * In addition ipif's and ill's referenced by the ire are also indirectly 304 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 305 * the ipif's address or netmask change as long as an ipif is refheld 306 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 307 * address of an ipif has to go through the ipsq_t. This ensures that only 308 * 1 such exclusive operation proceeds at any time on the ipif. It then 309 * deletes all ires associated with this ipif, and waits for all refcnts 310 * associated with this ipif to come down to zero. The address is changed 311 * only after the ipif has been quiesced. Then the ipif is brought up again. 312 * More details are described above the comment in ip_sioctl_flags. 313 * 314 * Packet processing is based mostly on IREs and are fully multi-threaded 315 * using standard Solaris MT techniques. 316 * 317 * There are explicit locks in IP to handle: 318 * - The ip_g_head list maintained by mi_open_link() and friends. 319 * 320 * - The reassembly data structures (one lock per hash bucket) 321 * 322 * - conn_lock is meant to protect conn_t fields. The fields actually 323 * protected by conn_lock are documented in the conn_t definition. 324 * 325 * - ire_lock to protect some of the fields of the ire, IRE tables 326 * (one lock per hash bucket). Refer to ip_ire.c for details. 327 * 328 * - ndp_g_lock and nce_lock for protecting NCEs. 329 * 330 * - ill_lock protects fields of the ill and ipif. Details in ip.h 331 * 332 * - ill_g_lock: This is a global reader/writer lock. Protects the following 333 * * The AVL tree based global multi list of all ills. 334 * * The linked list of all ipifs of an ill 335 * * The <ill-ipsq> mapping 336 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 337 * * The illgroup list threaded by ill_group_next. 338 * * <ill-phyint> association 339 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 340 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 341 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 342 * will all have to hold the ill_g_lock as writer for the actual duration 343 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 344 * may be found in the IPMP section. 345 * 346 * - ill_lock: This is a per ill mutex. 347 * It protects some members of the ill and is documented below. 348 * It also protects the <ill-ipsq> mapping 349 * It also protects the illgroup list threaded by ill_group_next. 350 * It also protects the <ill-phyint> assoc. 351 * It also protects the list of ipifs hanging off the ill. 352 * 353 * - ipsq_lock: This is a per ipsq_t mutex lock. 354 * This protects all the other members of the ipsq struct except 355 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 356 * 357 * - illgrp_lock: This is a per ill_group mutex lock. 358 * The only thing it protects is the illgrp_ill_schednext member of ill_group 359 * which dictates which is the next ill in an ill_group that is to be chosen 360 * for sending outgoing packets, through creation of an IRE_CACHE that 361 * references this ill. 362 * 363 * - phyint_lock: This is a per phyint mutex lock. Protects just the 364 * phyint_flags 365 * 366 * - ip_g_nd_lock: This is a global reader/writer lock. 367 * Any call to nd_load to load a new parameter to the ND table must hold the 368 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 369 * as reader. 370 * 371 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 372 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 373 * uniqueness check also done atomically. 374 * 375 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 376 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 377 * as a writer when adding or deleting elements from these lists, and 378 * as a reader when walking these lists to send a SADB update to the 379 * IPsec capable ills. 380 * 381 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 382 * group list linked by ill_usesrc_grp_next. It also protects the 383 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 384 * group is being added or deleted. This lock is taken as a reader when 385 * walking the list/group(eg: to get the number of members in a usesrc group). 386 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 387 * field is changing state i.e from NULL to non-NULL or vice-versa. For 388 * example, it is not necessary to take this lock in the initial portion 389 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 390 * ip_sioctl_flags since the these operations are executed exclusively and 391 * that ensures that the "usesrc group state" cannot change. The "usesrc 392 * group state" change can happen only in the latter part of 393 * ip_sioctl_slifusesrc and in ill_delete. 394 * 395 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 396 * 397 * To change the <ill-phyint> association, the ill_g_lock must be held 398 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 399 * must be held. 400 * 401 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 402 * and the ill_lock of the ill in question must be held. 403 * 404 * To change the <ill-illgroup> association the ill_g_lock must be held as 405 * writer and the ill_lock of the ill in question must be held. 406 * 407 * To add or delete an ipif from the list of ipifs hanging off the ill, 408 * ill_g_lock (writer) and ill_lock must be held and the thread must be 409 * a writer on the associated ipsq,. 410 * 411 * To add or delete an ill to the system, the ill_g_lock must be held as 412 * writer and the thread must be a writer on the associated ipsq. 413 * 414 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 415 * must be a writer on the associated ipsq. 416 * 417 * Lock hierarchy 418 * 419 * Some lock hierarchy scenarios are listed below. 420 * 421 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 422 * ill_g_lock -> illgrp_lock -> ill_lock 423 * ill_g_lock -> ill_lock(s) -> phyint_lock 424 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 425 * ill_g_lock -> ip_addr_avail_lock 426 * conn_lock -> irb_lock -> ill_lock -> ire_lock 427 * ipsa_lock -> ill_g_lock -> ill_lock 428 * ill_g_lock -> ip_g_nd_lock 429 * irb_lock -> ill_lock -> ire_mrtun_lock 430 * irb_lock -> ill_lock -> ire_srcif_table_lock 431 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 432 * ipsec_capab_ills_lock -> ipsa_lock 433 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 434 * 435 * When more than 1 ill lock is needed to be held, all ill lock addresses 436 * are sorted on address and locked starting from highest addressed lock 437 * downward. 438 * 439 * IPSEC notes : 440 * 441 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 442 * in front of the actual packet. For outbound datagrams, the M_CTL 443 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 444 * information used by the IPSEC code for applying the right level of 445 * protection. The information initialized by IP in the ipsec_out_t 446 * is determined by the per-socket policy or global policy in the system. 447 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 448 * ipsec_info.h) which starts out with nothing in it. It gets filled 449 * with the right information if it goes through the AH/ESP code, which 450 * happens if the incoming packet is secure. The information initialized 451 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 452 * the policy requirements needed by per-socket policy or global policy 453 * is met or not. 454 * 455 * If there is both per-socket policy (set using setsockopt) and there 456 * is also global policy match for the 5 tuples of the socket, 457 * ipsec_override_policy() makes the decision of which one to use. 458 * 459 * For fully connected sockets i.e dst, src [addr, port] is known, 460 * conn_policy_cached is set indicating that policy has been cached. 461 * conn_in_enforce_policy may or may not be set depending on whether 462 * there is a global policy match or per-socket policy match. 463 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 464 * Once the right policy is set on the conn_t, policy cannot change for 465 * this socket. This makes life simpler for TCP (UDP ?) where 466 * re-transmissions go out with the same policy. For symmetry, policy 467 * is cached for fully connected UDP sockets also. Thus if policy is cached, 468 * it also implies that policy is latched i.e policy cannot change 469 * on these sockets. As we have the right policy on the conn, we don't 470 * have to lookup global policy for every outbound and inbound datagram 471 * and thus serving as an optimization. Note that a global policy change 472 * does not affect fully connected sockets if they have policy. If fully 473 * connected sockets did not have any policy associated with it, global 474 * policy change may affect them. 475 * 476 * IP Flow control notes: 477 * 478 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 479 * cannot be sent down to the driver by IP, because of a canput failure, IP 480 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 481 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 482 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 483 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 484 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 485 * the queued messages, and removes the conn from the drain list, if all 486 * messages were drained. It also qenables the next conn in the drain list to 487 * continue the drain process. 488 * 489 * In reality the drain list is not a single list, but a configurable number 490 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 491 * list. If the ip_wsrv of the next qenabled conn does not run, because the 492 * stream closes, ip_close takes responsibility to qenable the next conn in 493 * the drain list. The directly called ip_wput path always does a putq, if 494 * it cannot putnext. Thus synchronization problems are handled between 495 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 496 * functions that manipulate this drain list. Furthermore conn_drain_insert 497 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 498 * running on a queue at any time. conn_drain_tail can be simultaneously called 499 * from both ip_wsrv and ip_close. 500 * 501 * IPQOS notes: 502 * 503 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 504 * and IPQoS modules. IPPF includes hooks in IP at different control points 505 * (callout positions) which direct packets to IPQoS modules for policy 506 * processing. Policies, if present, are global. 507 * 508 * The callout positions are located in the following paths: 509 * o local_in (packets destined for this host) 510 * o local_out (packets orginating from this host ) 511 * o fwd_in (packets forwarded by this m/c - inbound) 512 * o fwd_out (packets forwarded by this m/c - outbound) 513 * Hooks at these callout points can be enabled/disabled using the ndd variable 514 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 515 * By default all the callout positions are enabled. 516 * 517 * Outbound (local_out) 518 * Hooks are placed in ip_wput_ire and ipsec_out_process. 519 * 520 * Inbound (local_in) 521 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 522 * TCP and UDP fanout routines. 523 * 524 * Forwarding (in and out) 525 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 526 * 527 * IP Policy Framework processing (IPPF processing) 528 * Policy processing for a packet is initiated by ip_process, which ascertains 529 * that the classifier (ipgpc) is loaded and configured, failing which the 530 * packet resumes normal processing in IP. If the clasifier is present, the 531 * packet is acted upon by one or more IPQoS modules (action instances), per 532 * filters configured in ipgpc and resumes normal IP processing thereafter. 533 * An action instance can drop a packet in course of its processing. 534 * 535 * A boolean variable, ip_policy, is used in all the fanout routines that can 536 * invoke ip_process for a packet. This variable indicates if the packet should 537 * to be sent for policy processing. The variable is set to B_TRUE by default, 538 * i.e. when the routines are invoked in the normal ip procesing path for a 539 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 540 * ip_policy is set to B_FALSE for all the routines called in these two 541 * functions because, in the former case, we don't process loopback traffic 542 * currently while in the latter, the packets have already been processed in 543 * icmp_inbound. 544 * 545 * Zones notes: 546 * 547 * The partitioning rules for networking are as follows: 548 * 1) Packets coming from a zone must have a source address belonging to that 549 * zone. 550 * 2) Packets coming from a zone can only be sent on a physical interface on 551 * which the zone has an IP address. 552 * 3) Between two zones on the same machine, packet delivery is only allowed if 553 * there's a matching route for the destination and zone in the forwarding 554 * table. 555 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 556 * different zones can bind to the same port with the wildcard address 557 * (INADDR_ANY). 558 * 559 * The granularity of interface partitioning is at the logical interface level. 560 * Therefore, every zone has its own IP addresses, and incoming packets can be 561 * attributed to a zone unambiguously. A logical interface is placed into a zone 562 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 563 * structure. Rule (1) is implemented by modifying the source address selection 564 * algorithm so that the list of eligible addresses is filtered based on the 565 * sending process zone. 566 * 567 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 568 * across all zones, depending on their type. Here is the break-up: 569 * 570 * IRE type Shared/exclusive 571 * -------- ---------------- 572 * IRE_BROADCAST Exclusive 573 * IRE_DEFAULT (default routes) Shared (*) 574 * IRE_LOCAL Exclusive 575 * IRE_LOOPBACK Exclusive 576 * IRE_PREFIX (net routes) Shared (*) 577 * IRE_CACHE Exclusive 578 * IRE_IF_NORESOLVER (interface routes) Exclusive 579 * IRE_IF_RESOLVER (interface routes) Exclusive 580 * IRE_HOST (host routes) Shared (*) 581 * 582 * (*) A zone can only use a default or off-subnet route if the gateway is 583 * directly reachable from the zone, that is, if the gateway's address matches 584 * one of the zone's logical interfaces. 585 * 586 * Multiple zones can share a common broadcast address; typically all zones 587 * share the 255.255.255.255 address. Incoming as well as locally originated 588 * broadcast packets must be dispatched to all the zones on the broadcast 589 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 590 * since some zones may not be on the 10.16.72/24 network. To handle this, each 591 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 592 * sent to every zone that has an IRE_BROADCAST entry for the destination 593 * address on the input ill, see conn_wantpacket(). 594 * 595 * Applications in different zones can join the same multicast group address. 596 * For IPv4, group memberships are per-logical interface, so they're already 597 * inherently part of a zone. For IPv6, group memberships are per-physical 598 * interface, so we distinguish IPv6 group memberships based on group address, 599 * interface and zoneid. In both cases, received multicast packets are sent to 600 * every zone for which a group membership entry exists. On IPv6 we need to 601 * check that the target zone still has an address on the receiving physical 602 * interface; it could have been removed since the application issued the 603 * IPV6_JOIN_GROUP. 604 */ 605 606 /* 607 * Squeue Fanout flags: 608 * 0: No fanout. 609 * 1: Fanout across all squeues 610 */ 611 boolean_t ip_squeue_fanout = 0; 612 613 /* 614 * Maximum dups allowed per packet. 615 */ 616 uint_t ip_max_frag_dups = 10; 617 618 #define IS_SIMPLE_IPH(ipha) \ 619 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 620 621 /* RFC1122 Conformance */ 622 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 623 624 #define ILL_MAX_NAMELEN LIFNAMSIZ 625 626 /* Leave room for ip_newroute to tack on the src and target addresses */ 627 #define OK_RESOLVER_MP(mp) \ 628 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 629 630 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 631 632 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 633 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 634 635 static void icmp_frag_needed(queue_t *, mblk_t *, int); 636 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 637 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 638 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *); 639 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 640 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 641 ill_t *, zoneid_t); 642 static void icmp_options_update(ipha_t *); 643 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t); 644 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t); 645 static mblk_t *icmp_pkt_err_ok(mblk_t *); 646 static void icmp_redirect(mblk_t *); 647 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 648 649 static void ip_arp_news(queue_t *, mblk_t *); 650 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 651 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 652 char *ip_dot_addr(ipaddr_t, char *); 653 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 654 int ip_close(queue_t *, int); 655 static char *ip_dot_saddr(uchar_t *, char *); 656 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 657 boolean_t, boolean_t, ill_t *, zoneid_t); 658 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 659 boolean_t, boolean_t, zoneid_t); 660 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 661 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 662 static void ip_lrput(queue_t *, mblk_t *); 663 ipaddr_t ip_massage_options(ipha_t *); 664 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 665 ipaddr_t ip_net_mask(ipaddr_t); 666 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *); 667 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 668 conn_t *, uint32_t); 669 static int ip_hdr_complete(ipha_t *, zoneid_t); 670 char *ip_nv_lookup(nv_t *, int); 671 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 672 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 673 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 674 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 675 size_t); 676 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 677 void ip_rput(queue_t *, mblk_t *); 678 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 679 void *dummy_arg); 680 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 681 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 682 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 683 ire_t *); 684 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 685 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 686 uint16_t *); 687 int ip_snmp_get(queue_t *, mblk_t *); 688 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *); 689 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 690 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 691 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 692 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 693 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 694 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 695 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 696 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 697 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 698 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 699 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 700 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 701 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 702 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 703 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 704 static void ip_snmp_get2_v4(ire_t *, listptr_t []); 705 static void ip_snmp_get2_v6_route(ire_t *, listptr_t *); 706 static int ip_snmp_get2_v6_media(nce_t *, listptr_t *); 707 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 708 static boolean_t ip_source_routed(ipha_t *); 709 static boolean_t ip_source_route_included(ipha_t *); 710 711 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t); 712 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 713 static void ip_wput_local_options(ipha_t *); 714 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 715 zoneid_t); 716 717 static void conn_drain_init(void); 718 static void conn_drain_fini(void); 719 static void conn_drain_tail(conn_t *connp, boolean_t closing); 720 721 static void conn_walk_drain(void); 722 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 723 zoneid_t); 724 725 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 726 zoneid_t); 727 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 728 void *dummy_arg); 729 730 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 731 732 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 733 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 734 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 735 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 736 737 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 738 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 739 caddr_t, cred_t *); 740 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 741 caddr_t cp, cred_t *cr); 742 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 743 cred_t *); 744 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 745 caddr_t cp, cred_t *cr); 746 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 747 cred_t *); 748 static squeue_func_t ip_squeue_switch(int); 749 750 static void ip_kstat_init(void); 751 static void ip_kstat_fini(void); 752 static int ip_kstat_update(kstat_t *kp, int rw); 753 static void icmp_kstat_init(void); 754 static void icmp_kstat_fini(void); 755 static int icmp_kstat_update(kstat_t *kp, int rw); 756 757 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 758 759 static boolean_t ip_no_forward(ipha_t *, ill_t *); 760 static boolean_t ip_loopback_src_or_dst(ipha_t *, ill_t *); 761 762 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 763 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 764 765 void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t); 766 767 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 768 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 769 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 770 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 771 772 uint_t ip_ire_default_count; /* Number of IPv4 IRE_DEFAULT entries. */ 773 uint_t ip_ire_default_index; /* Walking index used to mod in */ 774 775 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 776 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 777 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 778 779 /* How long, in seconds, we allow frags to hang around. */ 780 #define IP_FRAG_TIMEOUT 60 781 782 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 783 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 784 785 /* 786 * Threshold which determines whether MDT should be used when 787 * generating IP fragments; payload size must be greater than 788 * this threshold for MDT to take place. 789 */ 790 #define IP_WPUT_FRAG_MDT_MIN 32768 791 792 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 793 794 /* Protected by ip_mi_lock */ 795 static void *ip_g_head; /* Instance Data List Head */ 796 kmutex_t ip_mi_lock; /* Lock for list of instances */ 797 798 /* Only modified during _init and _fini thus no locking is needed. */ 799 caddr_t ip_g_nd; /* Named Dispatch List Head */ 800 801 802 static long ip_rput_pullups; 803 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 804 805 vmem_t *ip_minor_arena; 806 807 /* 808 * MIB-2 stuff for SNMP (both IP and ICMP) 809 */ 810 mib2_ip_t ip_mib; 811 mib2_icmp_t icmp_mib; 812 813 #ifdef DEBUG 814 uint32_t ipsechw_debug = 0; 815 #endif 816 817 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 818 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 819 820 uint_t loopback_packets = 0; 821 822 /* 823 * Multirouting/CGTP stuff 824 */ 825 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 826 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 827 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 828 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 829 hrtime_t ip_multirt_log_interval = 1000; 830 /* Time since last warning issued. */ 831 static hrtime_t multirt_bad_mtu_last_time = 0; 832 833 kmutex_t ip_trash_timer_lock; 834 krwlock_t ip_g_nd_lock; 835 836 /* 837 * XXX following really should only be in a header. Would need more 838 * header and .c clean up first. 839 */ 840 extern optdb_obj_t ip_opt_obj; 841 842 ulong_t ip_squeue_enter_unbound = 0; 843 844 /* 845 * Named Dispatch Parameter Table. 846 * All of these are alterable, within the min/max values given, at run time. 847 */ 848 static ipparam_t lcl_param_arr[] = { 849 /* min max value name */ 850 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 851 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 852 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 853 { 0, 1, 0, "ip_respond_to_timestamp"}, 854 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 855 { 0, 1, 1, "ip_send_redirects"}, 856 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 857 { 0, 10, 0, "ip_debug"}, 858 { 0, 10, 0, "ip_mrtdebug"}, 859 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 860 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 861 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 862 { 1, 255, 255, "ip_def_ttl" }, 863 { 0, 1, 0, "ip_forward_src_routed"}, 864 { 0, 256, 32, "ip_wroff_extra" }, 865 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 866 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 867 { 0, 1, 1, "ip_path_mtu_discovery" }, 868 { 0, 240, 30, "ip_ignore_delete_time" }, 869 { 0, 1, 0, "ip_ignore_redirect" }, 870 { 0, 1, 1, "ip_output_queue" }, 871 { 1, 254, 1, "ip_broadcast_ttl" }, 872 { 0, 99999, 100, "ip_icmp_err_interval" }, 873 { 1, 99999, 10, "ip_icmp_err_burst" }, 874 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 875 { 0, 1, 0, "ip_strict_dst_multihoming" }, 876 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 877 { 0, 1, 0, "ipsec_override_persocket_policy" }, 878 { 0, 1, 1, "icmp_accept_clear_messages" }, 879 { 0, 1, 1, "igmp_accept_clear_messages" }, 880 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 881 "ip_ndp_delay_first_probe_time"}, 882 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 883 "ip_ndp_max_unicast_solicit"}, 884 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 885 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 886 { 0, 1, 0, "ip6_forward_src_routed"}, 887 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 888 { 0, 1, 1, "ip6_send_redirects"}, 889 { 0, 1, 0, "ip6_ignore_redirect" }, 890 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 891 892 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 893 894 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 895 896 { 0, 1, 1, "pim_accept_clear_messages" }, 897 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 898 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 899 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 900 { 0, 15, 0, "ip_policy_mask" }, 901 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 902 { 0, 255, 1, "ip_multirt_ttl" }, 903 { 0, 1, 1, "ip_multidata_outbound" }, 904 #ifdef DEBUG 905 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 906 #endif 907 }; 908 909 ipparam_t *ip_param_arr = lcl_param_arr; 910 911 /* Extended NDP table */ 912 static ipndp_t lcl_ndp_arr[] = { 913 /* getf setf data name */ 914 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 915 "ip_forwarding" }, 916 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 917 "ip6_forwarding" }, 918 { ip_ill_report, NULL, NULL, 919 "ip_ill_status" }, 920 { ip_ipif_report, NULL, NULL, 921 "ip_ipif_status" }, 922 { ip_ire_report, NULL, NULL, 923 "ipv4_ire_status" }, 924 { ip_ire_report_mrtun, NULL, NULL, 925 "ipv4_mrtun_ire_status" }, 926 { ip_ire_report_srcif, NULL, NULL, 927 "ipv4_srcif_ire_status" }, 928 { ip_ire_report_v6, NULL, NULL, 929 "ipv6_ire_status" }, 930 { ip_conn_report, NULL, NULL, 931 "ip_conn_status" }, 932 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 933 "ip_rput_pullups" }, 934 { ndp_report, NULL, NULL, 935 "ip_ndp_cache_report" }, 936 { ip_srcid_report, NULL, NULL, 937 "ip_srcid_status" }, 938 { ip_param_generic_get, ip_squeue_profile_set, 939 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 940 { ip_param_generic_get, ip_squeue_bind_set, 941 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 942 { ip_param_generic_get, ip_input_proc_set, 943 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 944 { ip_param_generic_get, ip_int_set, 945 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 946 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 947 "ip_cgtp_filter" }, 948 { ip_param_generic_get, ip_int_set, 949 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 950 }; 951 952 /* 953 * ip_g_forward controls IP forwarding. It takes two values: 954 * 0: IP_FORWARD_NEVER Don't forward packets ever. 955 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 956 * 957 * RFC1122 says there must be a configuration switch to control forwarding, 958 * but that the default MUST be to not forward packets ever. Implicit 959 * control based on configuration of multiple interfaces MUST NOT be 960 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 961 * and, in fact, it was the default. That capability is now provided in the 962 * /etc/rc2.d/S69inet script. 963 */ 964 int ip_g_forward = IP_FORWARD_DEFAULT; 965 966 /* It also has an IPv6 counterpart. */ 967 968 int ipv6_forward = IP_FORWARD_DEFAULT; 969 970 /* Following line is external, and in ip.h. Normally marked with * *. */ 971 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 972 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 973 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 974 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 975 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 976 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 977 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 978 #define ip_debug ip_param_arr[7].ip_param_value /* */ 979 #define ip_mrtdebug ip_param_arr[8].ip_param_value /* */ 980 #define ip_timer_interval ip_param_arr[9].ip_param_value /* */ 981 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value /* */ 982 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 983 #define ip_def_ttl ip_param_arr[12].ip_param_value 984 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 985 #define ip_wroff_extra ip_param_arr[14].ip_param_value 986 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 987 #define ip_icmp_return ip_param_arr[16].ip_param_value 988 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value /* */ 989 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value /* */ 990 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 991 #define ip_output_queue ip_param_arr[20].ip_param_value 992 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 993 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 994 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 995 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 996 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 997 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 998 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value /* */ 999 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 1000 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 1001 1002 /* IPv6 configuration knobs */ 1003 #define delay_first_probe_time ip_param_arr[30].ip_param_value 1004 #define max_unicast_solicit ip_param_arr[31].ip_param_value 1005 #define ipv6_def_hops ip_param_arr[32].ip_param_value 1006 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 1007 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 1008 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 1009 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 1010 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 1011 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 1012 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 1013 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 1014 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 1015 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 1016 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 1017 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 1018 #define ip_policy_mask ip_param_arr[45].ip_param_value 1019 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 1020 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 1021 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 1022 #ifdef DEBUG 1023 #define ipv6_drop_inbound_icmpv6 ip_param_arr[49].ip_param_value 1024 #else 1025 #define ipv6_drop_inbound_icmpv6 0 1026 #endif 1027 1028 1029 /* 1030 * Table of IP ioctls encoding the various properties of the ioctl and 1031 * indexed based on the last byte of the ioctl command. Occasionally there 1032 * is a clash, and there is more than 1 ioctl with the same last byte. 1033 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1034 * ioctls are encoded in the misc table. An entry in the ndx table is 1035 * retrieved by indexing on the last byte of the ioctl command and comparing 1036 * the ioctl command with the value in the ndx table. In the event of a 1037 * mismatch the misc table is then searched sequentially for the desired 1038 * ioctl command. 1039 * 1040 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1041 */ 1042 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1043 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 1054 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1055 MISC_CMD, ip_siocaddrt, NULL }, 1056 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1057 MISC_CMD, ip_siocdelrt, NULL }, 1058 1059 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1060 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1061 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1062 IF_CMD, ip_sioctl_get_addr, NULL }, 1063 1064 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1065 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1066 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1067 IPI_GET_CMD | IPI_REPL, 1068 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1069 1070 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1071 IPI_PRIV | IPI_WR | IPI_REPL, 1072 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1073 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1074 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1075 IF_CMD, ip_sioctl_get_flags, NULL }, 1076 1077 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 1080 /* copyin size cannot be coded for SIOCGIFCONF */ 1081 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1082 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1083 1084 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1085 IF_CMD, ip_sioctl_mtu, NULL }, 1086 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1087 IF_CMD, ip_sioctl_get_mtu, NULL }, 1088 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1089 IPI_GET_CMD | IPI_REPL, 1090 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1091 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1092 IF_CMD, ip_sioctl_brdaddr, NULL }, 1093 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1094 IPI_GET_CMD | IPI_REPL, 1095 IF_CMD, ip_sioctl_get_netmask, NULL }, 1096 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1097 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1098 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1099 IPI_GET_CMD | IPI_REPL, 1100 IF_CMD, ip_sioctl_get_metric, NULL }, 1101 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1102 IF_CMD, ip_sioctl_metric, NULL }, 1103 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 1105 /* See 166-168 below for extended SIOC*XARP ioctls */ 1106 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1107 MISC_CMD, ip_sioctl_arp, NULL }, 1108 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1109 MISC_CMD, ip_sioctl_arp, NULL }, 1110 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1111 MISC_CMD, ip_sioctl_arp, NULL }, 1112 1113 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1114 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1115 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1116 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1136 MISC_CMD, if_unitsel, if_unitsel_restart }, 1137 1138 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 1157 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1158 IPI_PRIV | IPI_WR | IPI_MODOK, 1159 IF_CMD, ip_sioctl_sifname, NULL }, 1160 1161 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1164 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1165 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1166 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1167 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 1175 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1176 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1177 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1178 IF_CMD, ip_sioctl_get_muxid, NULL }, 1179 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1180 IPI_PRIV | IPI_WR | IPI_REPL, 1181 IF_CMD, ip_sioctl_muxid, NULL }, 1182 1183 /* Both if and lif variants share same func */ 1184 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1185 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1186 /* Both if and lif variants share same func */ 1187 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1188 IPI_PRIV | IPI_WR | IPI_REPL, 1189 IF_CMD, ip_sioctl_slifindex, NULL }, 1190 1191 /* copyin size cannot be coded for SIOCGIFCONF */ 1192 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1193 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1194 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1204 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1205 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1206 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1207 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1208 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1209 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1210 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 1212 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1213 IPI_PRIV | IPI_WR | IPI_REPL, 1214 LIF_CMD, ip_sioctl_removeif, 1215 ip_sioctl_removeif_restart }, 1216 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1217 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1218 LIF_CMD, ip_sioctl_addif, NULL }, 1219 #define SIOCLIFADDR_NDX 112 1220 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1221 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1222 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1223 IPI_GET_CMD | IPI_REPL, 1224 LIF_CMD, ip_sioctl_get_addr, NULL }, 1225 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1227 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1228 IPI_GET_CMD | IPI_REPL, 1229 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1230 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1231 IPI_PRIV | IPI_WR | IPI_REPL, 1232 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1233 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1234 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1235 LIF_CMD, ip_sioctl_get_flags, NULL }, 1236 1237 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1238 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 1240 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1241 ip_sioctl_get_lifconf, NULL }, 1242 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1243 LIF_CMD, ip_sioctl_mtu, NULL }, 1244 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1245 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1246 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1247 IPI_GET_CMD | IPI_REPL, 1248 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1249 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1250 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1251 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1252 IPI_GET_CMD | IPI_REPL, 1253 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1254 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1256 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1257 IPI_GET_CMD | IPI_REPL, 1258 LIF_CMD, ip_sioctl_get_metric, NULL }, 1259 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1260 LIF_CMD, ip_sioctl_metric, NULL }, 1261 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1262 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1263 LIF_CMD, ip_sioctl_slifname, 1264 ip_sioctl_slifname_restart }, 1265 1266 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1267 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1268 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1269 IPI_GET_CMD | IPI_REPL, 1270 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1271 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1272 IPI_PRIV | IPI_WR | IPI_REPL, 1273 LIF_CMD, ip_sioctl_muxid, NULL }, 1274 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1275 IPI_GET_CMD | IPI_REPL, 1276 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1277 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1278 IPI_PRIV | IPI_WR | IPI_REPL, 1279 LIF_CMD, ip_sioctl_slifindex, 0 }, 1280 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1281 LIF_CMD, ip_sioctl_token, NULL }, 1282 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1283 IPI_GET_CMD | IPI_REPL, 1284 LIF_CMD, ip_sioctl_get_token, NULL }, 1285 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1286 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1287 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1288 IPI_GET_CMD | IPI_REPL, 1289 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1290 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1291 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1292 1293 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1294 IPI_GET_CMD | IPI_REPL, 1295 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1296 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1297 LIF_CMD, ip_siocdelndp_v6, NULL }, 1298 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1299 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1300 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1301 LIF_CMD, ip_siocsetndp_v6, NULL }, 1302 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1303 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1304 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1305 MISC_CMD, ip_sioctl_tonlink, NULL }, 1306 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1307 MISC_CMD, ip_sioctl_tmysite, NULL }, 1308 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1309 TUN_CMD, ip_sioctl_tunparam, NULL }, 1310 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1311 IPI_PRIV | IPI_WR, 1312 TUN_CMD, ip_sioctl_tunparam, NULL }, 1313 1314 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1315 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1316 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1317 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1318 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1319 1320 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1321 IPI_PRIV | IPI_WR | IPI_REPL, 1322 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1323 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1324 IPI_PRIV | IPI_WR | IPI_REPL, 1325 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1326 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1327 IPI_PRIV | IPI_WR, 1328 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1329 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1330 IPI_GET_CMD | IPI_REPL, 1331 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1332 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1333 IPI_GET_CMD | IPI_REPL, 1334 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1335 1336 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1337 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1338 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1339 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1340 1341 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1342 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1343 1344 /* These are handled in ip_sioctl_copyin_setup itself */ 1345 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1346 MISC_CMD, NULL, NULL }, 1347 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1348 MISC_CMD, NULL, NULL }, 1349 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1350 1351 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1352 ip_sioctl_get_lifconf, NULL }, 1353 1354 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1355 MISC_CMD, ip_sioctl_xarp, NULL }, 1356 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1357 MISC_CMD, ip_sioctl_xarp, NULL }, 1358 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1359 MISC_CMD, ip_sioctl_xarp, NULL }, 1360 1361 /* SIOCPOPSOCKFS is not handled by IP */ 1362 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1363 1364 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1365 IPI_GET_CMD | IPI_REPL, 1366 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1367 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1368 IPI_PRIV | IPI_WR | IPI_REPL, 1369 LIF_CMD, ip_sioctl_slifzone, 1370 ip_sioctl_slifzone_restart }, 1371 /* 172-174 are SCTP ioctls and not handled by IP */ 1372 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1373 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1374 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1375 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1376 IPI_GET_CMD, LIF_CMD, 1377 ip_sioctl_get_lifusesrc, 0 }, 1378 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1379 IPI_PRIV | IPI_WR, 1380 LIF_CMD, ip_sioctl_slifusesrc, 1381 NULL }, 1382 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1383 ip_sioctl_get_lifsrcof, NULL }, 1384 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1385 MISC_CMD, ip_sioctl_msfilter, NULL }, 1386 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1387 MISC_CMD, ip_sioctl_msfilter, NULL }, 1388 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1389 MISC_CMD, ip_sioctl_msfilter, NULL }, 1390 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1391 MISC_CMD, ip_sioctl_msfilter, NULL }, 1392 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1393 ip_sioctl_set_ipmpfailback, NULL } 1394 }; 1395 1396 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1397 1398 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1399 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1400 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1401 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1402 TUN_CMD, ip_sioctl_tunparam, NULL }, 1403 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1404 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1405 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1406 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1407 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1408 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1409 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1410 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1411 MISC_CMD, mrt_ioctl}, 1412 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1413 MISC_CMD, mrt_ioctl}, 1414 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1415 MISC_CMD, mrt_ioctl} 1416 }; 1417 1418 int ip_misc_ioctl_count = 1419 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1420 1421 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1422 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1423 static int conn_drain_list_index; /* Next drain_list to be used */ 1424 int conn_drain_nthreads; /* Number of drainers reqd. */ 1425 /* Settable in /etc/system */ 1426 1427 /* Defined in ip_ire.c */ 1428 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1429 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1430 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1431 1432 static nv_t ire_nv_arr[] = { 1433 { IRE_BROADCAST, "BROADCAST" }, 1434 { IRE_LOCAL, "LOCAL" }, 1435 { IRE_LOOPBACK, "LOOPBACK" }, 1436 { IRE_CACHE, "CACHE" }, 1437 { IRE_DEFAULT, "DEFAULT" }, 1438 { IRE_PREFIX, "PREFIX" }, 1439 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1440 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1441 { IRE_HOST, "HOST" }, 1442 { IRE_HOST_REDIRECT, "HOST_REDIRECT" }, 1443 { 0 } 1444 }; 1445 1446 nv_t *ire_nv_tbl = ire_nv_arr; 1447 1448 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1449 extern krwlock_t ipsec_capab_ills_lock; 1450 1451 /* Packet dropper for IP IPsec processing failures */ 1452 ipdropper_t ip_dropper; 1453 1454 /* Simple ICMP IP Header Template */ 1455 static ipha_t icmp_ipha = { 1456 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1457 }; 1458 1459 struct module_info ip_mod_info = { 1460 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1461 }; 1462 1463 static struct qinit rinit = { 1464 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1465 &ip_mod_info 1466 }; 1467 1468 static struct qinit winit = { 1469 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1470 &ip_mod_info 1471 }; 1472 1473 static struct qinit lrinit = { 1474 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1475 &ip_mod_info 1476 }; 1477 1478 static struct qinit lwinit = { 1479 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1480 &ip_mod_info 1481 }; 1482 1483 struct streamtab ipinfo = { 1484 &rinit, &winit, &lrinit, &lwinit 1485 }; 1486 1487 #ifdef DEBUG 1488 static boolean_t skip_sctp_cksum = B_FALSE; 1489 #endif 1490 /* 1491 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1492 */ 1493 mblk_t * 1494 ip_copymsg(mblk_t *mp) 1495 { 1496 mblk_t *nmp; 1497 ipsec_info_t *in; 1498 1499 if (mp->b_datap->db_type != M_CTL) 1500 return (copymsg(mp)); 1501 1502 in = (ipsec_info_t *)mp->b_rptr; 1503 1504 /* 1505 * Note that M_CTL is also used for delivering ICMP error messages 1506 * upstream to transport layers. 1507 */ 1508 if (in->ipsec_info_type != IPSEC_OUT && 1509 in->ipsec_info_type != IPSEC_IN) 1510 return (copymsg(mp)); 1511 1512 nmp = copymsg(mp->b_cont); 1513 1514 if (in->ipsec_info_type == IPSEC_OUT) 1515 return (ipsec_out_tag(mp, nmp)); 1516 else 1517 return (ipsec_in_tag(mp, nmp)); 1518 } 1519 1520 /* Generate an ICMP fragmentation needed message. */ 1521 static void 1522 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu) 1523 { 1524 icmph_t icmph; 1525 mblk_t *first_mp; 1526 boolean_t mctl_present; 1527 1528 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1529 1530 if (!(mp = icmp_pkt_err_ok(mp))) { 1531 if (mctl_present) 1532 freeb(first_mp); 1533 return; 1534 } 1535 1536 bzero(&icmph, sizeof (icmph_t)); 1537 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1538 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1539 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1540 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1541 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1542 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 1543 } 1544 1545 /* 1546 * icmp_inbound deals with ICMP messages in the following ways. 1547 * 1548 * 1) It needs to send a reply back and possibly delivering it 1549 * to the "interested" upper clients. 1550 * 2) It needs to send it to the upper clients only. 1551 * 3) It needs to change some values in IP only. 1552 * 4) It needs to change some values in IP and upper layers e.g TCP. 1553 * 1554 * We need to accomodate icmp messages coming in clear until we get 1555 * everything secure from the wire. If icmp_accept_clear_messages 1556 * is zero we check with the global policy and act accordingly. If 1557 * it is non-zero, we accept the message without any checks. But 1558 * *this does not mean* that this will be delivered to the upper 1559 * clients. By accepting we might send replies back, change our MTU 1560 * value etc. but delivery to the ULP/clients depends on their policy 1561 * dispositions. 1562 * 1563 * We handle the above 4 cases in the context of IPSEC in the 1564 * following way : 1565 * 1566 * 1) Send the reply back in the same way as the request came in. 1567 * If it came in encrypted, it goes out encrypted. If it came in 1568 * clear, it goes out in clear. Thus, this will prevent chosen 1569 * plain text attack. 1570 * 2) The client may or may not expect things to come in secure. 1571 * If it comes in secure, the policy constraints are checked 1572 * before delivering it to the upper layers. If it comes in 1573 * clear, ipsec_inbound_accept_clear will decide whether to 1574 * accept this in clear or not. In both the cases, if the returned 1575 * message (IP header + 8 bytes) that caused the icmp message has 1576 * AH/ESP headers, it is sent up to AH/ESP for validation before 1577 * sending up. If there are only 8 bytes of returned message, then 1578 * upper client will not be notified. 1579 * 3) Check with global policy to see whether it matches the constaints. 1580 * But this will be done only if icmp_accept_messages_in_clear is 1581 * zero. 1582 * 4) If we need to change both in IP and ULP, then the decision taken 1583 * while affecting the values in IP and while delivering up to TCP 1584 * should be the same. 1585 * 1586 * There are two cases. 1587 * 1588 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1589 * failed), we will not deliver it to the ULP, even though they 1590 * are *willing* to accept in *clear*. This is fine as our global 1591 * disposition to icmp messages asks us reject the datagram. 1592 * 1593 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1594 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1595 * to deliver it to ULP (policy failed), it can lead to 1596 * consistency problems. The cases known at this time are 1597 * ICMP_DESTINATION_UNREACHABLE messages with following code 1598 * values : 1599 * 1600 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1601 * and Upper layer rejects. Then the communication will 1602 * come to a stop. This is solved by making similar decisions 1603 * at both levels. Currently, when we are unable to deliver 1604 * to the Upper Layer (due to policy failures) while IP has 1605 * adjusted ire_max_frag, the next outbound datagram would 1606 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1607 * will be with the right level of protection. Thus the right 1608 * value will be communicated even if we are not able to 1609 * communicate when we get from the wire initially. But this 1610 * assumes there would be at least one outbound datagram after 1611 * IP has adjusted its ire_max_frag value. To make things 1612 * simpler, we accept in clear after the validation of 1613 * AH/ESP headers. 1614 * 1615 * - Other ICMP ERRORS : We may not be able to deliver it to the 1616 * upper layer depending on the level of protection the upper 1617 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1618 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1619 * should be accepted in clear when the Upper layer expects secure. 1620 * Thus the communication may get aborted by some bad ICMP 1621 * packets. 1622 * 1623 * IPQoS Notes: 1624 * The only instance when a packet is sent for processing is when there 1625 * isn't an ICMP client and if we are interested in it. 1626 * If there is a client, IPPF processing will take place in the 1627 * ip_fanout_proto routine. 1628 * 1629 * Zones notes: 1630 * The packet is only processed in the context of the specified zone: typically 1631 * only this zone will reply to an echo request, and only interested clients in 1632 * this zone will receive a copy of the packet. This means that the caller must 1633 * call icmp_inbound() for each relevant zone. 1634 */ 1635 static void 1636 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1637 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1638 ill_t *recv_ill, zoneid_t zoneid) 1639 { 1640 icmph_t *icmph; 1641 ipha_t *ipha; 1642 int iph_hdr_length; 1643 int hdr_length; 1644 boolean_t interested; 1645 uint32_t ts; 1646 uchar_t *wptr; 1647 ipif_t *ipif; 1648 mblk_t *first_mp; 1649 ipsec_in_t *ii; 1650 ire_t *src_ire; 1651 boolean_t onlink; 1652 timestruc_t now; 1653 uint32_t ill_index; 1654 1655 ASSERT(ill != NULL); 1656 1657 first_mp = mp; 1658 if (mctl_present) { 1659 mp = first_mp->b_cont; 1660 ASSERT(mp != NULL); 1661 } 1662 1663 ipha = (ipha_t *)mp->b_rptr; 1664 if (icmp_accept_clear_messages == 0) { 1665 first_mp = ipsec_check_global_policy(first_mp, NULL, 1666 ipha, NULL, mctl_present); 1667 if (first_mp == NULL) 1668 return; 1669 } 1670 /* 1671 * We have accepted the ICMP message. It means that we will 1672 * respond to the packet if needed. It may not be delivered 1673 * to the upper client depending on the policy constraints 1674 * and the disposition in ipsec_inbound_accept_clear. 1675 */ 1676 1677 ASSERT(ill != NULL); 1678 1679 BUMP_MIB(&icmp_mib, icmpInMsgs); 1680 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1681 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1682 /* Last chance to get real. */ 1683 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1684 BUMP_MIB(&icmp_mib, icmpInErrors); 1685 freemsg(first_mp); 1686 return; 1687 } 1688 /* Refresh iph following the pullup. */ 1689 ipha = (ipha_t *)mp->b_rptr; 1690 } 1691 /* ICMP header checksum, including checksum field, should be zero. */ 1692 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1693 IP_CSUM(mp, iph_hdr_length, 0)) { 1694 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1695 freemsg(first_mp); 1696 return; 1697 } 1698 /* The IP header will always be a multiple of four bytes */ 1699 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1700 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1701 icmph->icmph_code)); 1702 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1703 /* We will set "interested" to "true" if we want a copy */ 1704 interested = B_FALSE; 1705 switch (icmph->icmph_type) { 1706 case ICMP_ECHO_REPLY: 1707 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1708 break; 1709 case ICMP_DEST_UNREACHABLE: 1710 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1711 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1712 interested = B_TRUE; /* Pass up to transport */ 1713 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1714 break; 1715 case ICMP_SOURCE_QUENCH: 1716 interested = B_TRUE; /* Pass up to transport */ 1717 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1718 break; 1719 case ICMP_REDIRECT: 1720 if (!ip_ignore_redirect) 1721 interested = B_TRUE; 1722 BUMP_MIB(&icmp_mib, icmpInRedirects); 1723 break; 1724 case ICMP_ECHO_REQUEST: 1725 /* 1726 * Whether to respond to echo requests that come in as IP 1727 * broadcasts or as IP multicast is subject to debate 1728 * (what isn't?). We aim to please, you pick it. 1729 * Default is do it. 1730 */ 1731 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1732 /* unicast: always respond */ 1733 interested = B_TRUE; 1734 } else if (CLASSD(ipha->ipha_dst)) { 1735 /* multicast: respond based on tunable */ 1736 interested = ip_g_resp_to_echo_mcast; 1737 } else if (broadcast) { 1738 /* broadcast: respond based on tunable */ 1739 interested = ip_g_resp_to_echo_bcast; 1740 } 1741 BUMP_MIB(&icmp_mib, icmpInEchos); 1742 break; 1743 case ICMP_ROUTER_ADVERTISEMENT: 1744 case ICMP_ROUTER_SOLICITATION: 1745 break; 1746 case ICMP_TIME_EXCEEDED: 1747 interested = B_TRUE; /* Pass up to transport */ 1748 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1749 break; 1750 case ICMP_PARAM_PROBLEM: 1751 interested = B_TRUE; /* Pass up to transport */ 1752 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1753 break; 1754 case ICMP_TIME_STAMP_REQUEST: 1755 /* Response to Time Stamp Requests is local policy. */ 1756 if (ip_g_resp_to_timestamp && 1757 /* So is whether to respond if it was an IP broadcast. */ 1758 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1759 int tstamp_len = 3 * sizeof (uint32_t); 1760 1761 if (wptr + tstamp_len > mp->b_wptr) { 1762 if (!pullupmsg(mp, wptr + tstamp_len - 1763 mp->b_rptr)) { 1764 BUMP_MIB(&ip_mib, ipInDiscards); 1765 freemsg(first_mp); 1766 return; 1767 } 1768 /* Refresh ipha following the pullup. */ 1769 ipha = (ipha_t *)mp->b_rptr; 1770 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1771 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1772 } 1773 interested = B_TRUE; 1774 } 1775 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1776 break; 1777 case ICMP_TIME_STAMP_REPLY: 1778 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1779 break; 1780 case ICMP_INFO_REQUEST: 1781 /* Per RFC 1122 3.2.2.7, ignore this. */ 1782 case ICMP_INFO_REPLY: 1783 break; 1784 case ICMP_ADDRESS_MASK_REQUEST: 1785 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1786 /* TODO m_pullup of complete header? */ 1787 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1788 interested = B_TRUE; 1789 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1790 break; 1791 case ICMP_ADDRESS_MASK_REPLY: 1792 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1793 break; 1794 default: 1795 interested = B_TRUE; /* Pass up to transport */ 1796 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1797 break; 1798 } 1799 /* See if there is an ICMP client. */ 1800 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1801 /* If there is an ICMP client and we want one too, copy it. */ 1802 mblk_t *first_mp1; 1803 1804 if (!interested) { 1805 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1806 ip_policy, recv_ill, zoneid); 1807 return; 1808 } 1809 first_mp1 = ip_copymsg(first_mp); 1810 if (first_mp1 != NULL) { 1811 ip_fanout_proto(q, first_mp1, ill, ipha, 1812 0, mctl_present, ip_policy, recv_ill, zoneid); 1813 } 1814 } else if (!interested) { 1815 freemsg(first_mp); 1816 return; 1817 } else { 1818 /* 1819 * Initiate policy processing for this packet if ip_policy 1820 * is true. 1821 */ 1822 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1823 ill_index = ill->ill_phyint->phyint_ifindex; 1824 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1825 if (mp == NULL) { 1826 if (mctl_present) { 1827 freeb(first_mp); 1828 } 1829 BUMP_MIB(&icmp_mib, icmpInErrors); 1830 return; 1831 } 1832 } 1833 } 1834 /* We want to do something with it. */ 1835 /* Check db_ref to make sure we can modify the packet. */ 1836 if (mp->b_datap->db_ref > 1) { 1837 mblk_t *first_mp1; 1838 1839 first_mp1 = ip_copymsg(first_mp); 1840 freemsg(first_mp); 1841 if (!first_mp1) { 1842 BUMP_MIB(&icmp_mib, icmpOutDrops); 1843 return; 1844 } 1845 first_mp = first_mp1; 1846 if (mctl_present) { 1847 mp = first_mp->b_cont; 1848 ASSERT(mp != NULL); 1849 } else { 1850 mp = first_mp; 1851 } 1852 ipha = (ipha_t *)mp->b_rptr; 1853 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1854 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1855 } 1856 switch (icmph->icmph_type) { 1857 case ICMP_ADDRESS_MASK_REQUEST: 1858 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1859 if (ipif == NULL) { 1860 freemsg(first_mp); 1861 return; 1862 } 1863 /* 1864 * outging interface must be IPv4 1865 */ 1866 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1867 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1868 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1869 ipif_refrele(ipif); 1870 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1871 break; 1872 case ICMP_ECHO_REQUEST: 1873 icmph->icmph_type = ICMP_ECHO_REPLY; 1874 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1875 break; 1876 case ICMP_TIME_STAMP_REQUEST: { 1877 uint32_t *tsp; 1878 1879 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1880 tsp = (uint32_t *)wptr; 1881 tsp++; /* Skip past 'originate time' */ 1882 /* Compute # of milliseconds since midnight */ 1883 gethrestime(&now); 1884 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1885 now.tv_nsec / (NANOSEC / MILLISEC); 1886 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1887 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1888 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1889 break; 1890 } 1891 default: 1892 ipha = (ipha_t *)&icmph[1]; 1893 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1894 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1895 BUMP_MIB(&ip_mib, ipInDiscards); 1896 freemsg(first_mp); 1897 return; 1898 } 1899 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1900 ipha = (ipha_t *)&icmph[1]; 1901 } 1902 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1903 BUMP_MIB(&ip_mib, ipInDiscards); 1904 freemsg(first_mp); 1905 return; 1906 } 1907 hdr_length = IPH_HDR_LENGTH(ipha); 1908 if (hdr_length < sizeof (ipha_t)) { 1909 BUMP_MIB(&ip_mib, ipInDiscards); 1910 freemsg(first_mp); 1911 return; 1912 } 1913 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1914 if (!pullupmsg(mp, 1915 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1916 BUMP_MIB(&ip_mib, ipInDiscards); 1917 freemsg(first_mp); 1918 return; 1919 } 1920 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1921 ipha = (ipha_t *)&icmph[1]; 1922 } 1923 switch (icmph->icmph_type) { 1924 case ICMP_REDIRECT: 1925 /* 1926 * As there is no upper client to deliver, we don't 1927 * need the first_mp any more. 1928 */ 1929 if (mctl_present) { 1930 freeb(first_mp); 1931 } 1932 icmp_redirect(mp); 1933 return; 1934 case ICMP_DEST_UNREACHABLE: 1935 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1936 if (!icmp_inbound_too_big(icmph, ipha)) { 1937 freemsg(first_mp); 1938 return; 1939 } 1940 } 1941 /* FALLTHRU */ 1942 default : 1943 /* 1944 * IPQoS notes: Since we have already done IPQoS 1945 * processing we don't want to do it again in 1946 * the fanout routines called by 1947 * icmp_inbound_error_fanout, hence the last 1948 * argument, ip_policy, is B_FALSE. 1949 */ 1950 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1951 ipha, iph_hdr_length, hdr_length, mctl_present, 1952 B_FALSE, recv_ill, zoneid); 1953 } 1954 return; 1955 } 1956 /* Send out an ICMP packet */ 1957 icmph->icmph_checksum = 0; 1958 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1959 if (icmph->icmph_checksum == 0) 1960 icmph->icmph_checksum = 0xFFFF; 1961 if (broadcast || CLASSD(ipha->ipha_dst)) { 1962 ipif_t *ipif_chosen; 1963 /* 1964 * Make it look like it was directed to us, so we don't look 1965 * like a fool with a broadcast or multicast source address. 1966 */ 1967 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1968 /* 1969 * Make sure that we haven't grabbed an interface that's DOWN. 1970 */ 1971 if (ipif != NULL) { 1972 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1973 ipha->ipha_src, zoneid); 1974 if (ipif_chosen != NULL) { 1975 ipif_refrele(ipif); 1976 ipif = ipif_chosen; 1977 } 1978 } 1979 if (ipif == NULL) { 1980 ip0dbg(("icmp_inbound: " 1981 "No source for broadcast/multicast:\n" 1982 "\tsrc 0x%x dst 0x%x ill %p " 1983 "ipif_lcl_addr 0x%x\n", 1984 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1985 (void *)ill, 1986 ill->ill_ipif->ipif_lcl_addr)); 1987 freemsg(first_mp); 1988 return; 1989 } 1990 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1991 ipha->ipha_dst = ipif->ipif_src_addr; 1992 ipif_refrele(ipif); 1993 } 1994 /* Reset time to live. */ 1995 ipha->ipha_ttl = ip_def_ttl; 1996 { 1997 /* Swap source and destination addresses */ 1998 ipaddr_t tmp; 1999 2000 tmp = ipha->ipha_src; 2001 ipha->ipha_src = ipha->ipha_dst; 2002 ipha->ipha_dst = tmp; 2003 } 2004 ipha->ipha_ident = 0; 2005 if (!IS_SIMPLE_IPH(ipha)) 2006 icmp_options_update(ipha); 2007 2008 /* 2009 * ICMP echo replies should go out on the same interface 2010 * the request came on as probes used by in.mpathd for detecting 2011 * NIC failures are ECHO packets. We turn-off load spreading 2012 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2013 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2014 * function. This is in turn handled by ip_wput and ip_newroute 2015 * to make sure that the packet goes out on the interface it came 2016 * in on. If we don't turnoff load spreading, the packets might get 2017 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2018 * to go out and in.mpathd would wrongly detect a failure or 2019 * mis-detect a NIC failure for link failure. As load spreading 2020 * can happen only if ill_group is not NULL, we do only for 2021 * that case and this does not affect the normal case. 2022 * 2023 * We turn off load spreading only on echo packets that came from 2024 * on-link hosts. If the interface route has been deleted, this will 2025 * not be enforced as we can't do much. For off-link hosts, as the 2026 * default routes in IPv4 does not typically have an ire_ipif 2027 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2028 * Moreover, expecting a default route through this interface may 2029 * not be correct. We use ipha_dst because of the swap above. 2030 */ 2031 onlink = B_FALSE; 2032 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2033 /* 2034 * First, we need to make sure that it is not one of our 2035 * local addresses. If we set onlink when it is one of 2036 * our local addresses, we will end up creating IRE_CACHES 2037 * for one of our local addresses. Then, we will never 2038 * accept packets for them afterwards. 2039 */ 2040 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2041 NULL, ALL_ZONES, MATCH_IRE_TYPE); 2042 if (src_ire == NULL) { 2043 ipif = ipif_get_next_ipif(NULL, ill); 2044 if (ipif == NULL) { 2045 BUMP_MIB(&ip_mib, ipInDiscards); 2046 freemsg(mp); 2047 return; 2048 } 2049 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2050 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2051 MATCH_IRE_ILL | MATCH_IRE_TYPE); 2052 ipif_refrele(ipif); 2053 if (src_ire != NULL) { 2054 onlink = B_TRUE; 2055 ire_refrele(src_ire); 2056 } 2057 } else { 2058 ire_refrele(src_ire); 2059 } 2060 } 2061 if (!mctl_present) { 2062 /* 2063 * This packet should go out the same way as it 2064 * came in i.e in clear. To make sure that global 2065 * policy will not be applied to this in ip_wput_ire, 2066 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2067 */ 2068 ASSERT(first_mp == mp); 2069 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2070 BUMP_MIB(&ip_mib, ipInDiscards); 2071 freemsg(mp); 2072 return; 2073 } 2074 ii = (ipsec_in_t *)first_mp->b_rptr; 2075 2076 /* This is not a secure packet */ 2077 ii->ipsec_in_secure = B_FALSE; 2078 if (onlink) { 2079 ii->ipsec_in_attach_if = B_TRUE; 2080 ii->ipsec_in_ill_index = 2081 ill->ill_phyint->phyint_ifindex; 2082 ii->ipsec_in_rill_index = 2083 recv_ill->ill_phyint->phyint_ifindex; 2084 } 2085 first_mp->b_cont = mp; 2086 } else if (onlink) { 2087 ii = (ipsec_in_t *)first_mp->b_rptr; 2088 ii->ipsec_in_attach_if = B_TRUE; 2089 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2090 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2091 } else { 2092 ii = (ipsec_in_t *)first_mp->b_rptr; 2093 } 2094 ii->ipsec_in_zoneid = zoneid; 2095 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2096 BUMP_MIB(&ip_mib, ipInDiscards); 2097 return; 2098 } 2099 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2100 put(WR(q), first_mp); 2101 } 2102 2103 /* Table from RFC 1191 */ 2104 static int icmp_frag_size_table[] = 2105 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2106 2107 /* 2108 * Process received ICMP Packet too big. 2109 * After updating any IRE it does the fanout to any matching transport streams. 2110 * Assumes the message has been pulled up till the IP header that caused 2111 * the error. 2112 * 2113 * Returns B_FALSE on failure and B_TRUE on success. 2114 */ 2115 static boolean_t 2116 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha) 2117 { 2118 ire_t *ire, *first_ire; 2119 int mtu; 2120 int hdr_length; 2121 2122 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2123 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2124 2125 hdr_length = IPH_HDR_LENGTH(ipha); 2126 2127 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, NULL, 2128 ALL_ZONES, MATCH_IRE_TYPE); 2129 2130 if (!first_ire) { 2131 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2132 ntohl(ipha->ipha_dst))); 2133 return (B_FALSE); 2134 } 2135 /* Drop if the original packet contained a source route */ 2136 if (ip_source_route_included(ipha)) { 2137 ire_refrele(first_ire); 2138 return (B_FALSE); 2139 } 2140 /* Check for MTU discovery advice as described in RFC 1191 */ 2141 mtu = ntohs(icmph->icmph_du_mtu); 2142 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2143 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2144 ire = ire->ire_next) { 2145 mutex_enter(&ire->ire_lock); 2146 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2147 /* Reduce the IRE max frag value as advised. */ 2148 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2149 ip1dbg(("Received mtu from router: %d\n", mtu)); 2150 } else { 2151 uint32_t length; 2152 int i; 2153 2154 /* 2155 * Use the table from RFC 1191 to figure out 2156 * the next "plateau" based on the length in 2157 * the original IP packet. 2158 */ 2159 length = ntohs(ipha->ipha_length); 2160 if (ire->ire_max_frag <= length && 2161 ire->ire_max_frag >= length - hdr_length) { 2162 /* 2163 * Handle broken BSD 4.2 systems that 2164 * return the wrong iph_length in ICMP 2165 * errors. 2166 */ 2167 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2168 length, ire->ire_max_frag)); 2169 length -= hdr_length; 2170 } 2171 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2172 if (length > icmp_frag_size_table[i]) 2173 break; 2174 } 2175 if (i == A_CNT(icmp_frag_size_table)) { 2176 /* Smaller than 68! */ 2177 ip1dbg(("Too big for packet size %d\n", 2178 length)); 2179 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2180 ire->ire_frag_flag = 0; 2181 } else { 2182 mtu = icmp_frag_size_table[i]; 2183 ip1dbg(("Calculated mtu %d, packet size %d, " 2184 "before %d", mtu, length, 2185 ire->ire_max_frag)); 2186 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2187 ip1dbg((", after %d\n", ire->ire_max_frag)); 2188 } 2189 /* Record the new max frag size for the ULP. */ 2190 icmph->icmph_du_zero = 0; 2191 icmph->icmph_du_mtu = 2192 htons((uint16_t)ire->ire_max_frag); 2193 } 2194 mutex_exit(&ire->ire_lock); 2195 } 2196 rw_exit(&first_ire->ire_bucket->irb_lock); 2197 ire_refrele(first_ire); 2198 return (B_TRUE); 2199 } 2200 2201 /* 2202 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2203 * calls this function. 2204 */ 2205 static mblk_t * 2206 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2207 { 2208 ipha_t *ipha; 2209 icmph_t *icmph; 2210 ipha_t *in_ipha; 2211 int length; 2212 2213 ASSERT(mp->b_datap->db_type == M_DATA); 2214 2215 /* 2216 * For Self-encapsulated packets, we added an extra IP header 2217 * without the options. Inner IP header is the one from which 2218 * the outer IP header was formed. Thus, we need to remove the 2219 * outer IP header. To do this, we pullup the whole message 2220 * and overlay whatever follows the outer IP header over the 2221 * outer IP header. 2222 */ 2223 2224 if (!pullupmsg(mp, -1)) { 2225 BUMP_MIB(&ip_mib, ipInDiscards); 2226 return (NULL); 2227 } 2228 2229 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2230 ipha = (ipha_t *)&icmph[1]; 2231 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2232 2233 /* 2234 * The length that we want to overlay is following the inner 2235 * IP header. Subtracting the IP header + icmp header + outer 2236 * IP header's length should give us the length that we want to 2237 * overlay. 2238 */ 2239 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2240 hdr_length; 2241 /* 2242 * Overlay whatever follows the inner header over the 2243 * outer header. 2244 */ 2245 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2246 2247 /* Set the wptr to account for the outer header */ 2248 mp->b_wptr -= hdr_length; 2249 return (mp); 2250 } 2251 2252 /* 2253 * Try to pass the ICMP message upstream in case the ULP cares. 2254 * 2255 * If the packet that caused the ICMP error is secure, we send 2256 * it to AH/ESP to make sure that the attached packet has a 2257 * valid association. ipha in the code below points to the 2258 * IP header of the packet that caused the error. 2259 * 2260 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2261 * in the context of IPSEC. Normally we tell the upper layer 2262 * whenever we send the ire (including ip_bind), the IPSEC header 2263 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2264 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2265 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2266 * same thing. As TCP has the IPSEC options size that needs to be 2267 * adjusted, we just pass the MTU unchanged. 2268 * 2269 * IFN could have been generated locally or by some router. 2270 * 2271 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2272 * This happens because IP adjusted its value of MTU on an 2273 * earlier IFN message and could not tell the upper layer, 2274 * the new adjusted value of MTU e.g. Packet was encrypted 2275 * or there was not enough information to fanout to upper 2276 * layers. Thus on the next outbound datagram, ip_wput_ire 2277 * generates the IFN, where IPSEC processing has *not* been 2278 * done. 2279 * 2280 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2281 * could have generated this. This happens because ire_max_frag 2282 * value in IP was set to a new value, while the IPSEC processing 2283 * was being done and after we made the fragmentation check in 2284 * ip_wput_ire. Thus on return from IPSEC processing, 2285 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2286 * and generates the IFN. As IPSEC processing is over, we fanout 2287 * to AH/ESP to remove the header. 2288 * 2289 * In both these cases, ipsec_in_loopback will be set indicating 2290 * that IFN was generated locally. 2291 * 2292 * ROUTER : IFN could be secure or non-secure. 2293 * 2294 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2295 * packet in error has AH/ESP headers to validate the AH/ESP 2296 * headers. AH/ESP will verify whether there is a valid SA or 2297 * not and send it back. We will fanout again if we have more 2298 * data in the packet. 2299 * 2300 * If the packet in error does not have AH/ESP, we handle it 2301 * like any other case. 2302 * 2303 * * NON_SECURE : If the packet in error has AH/ESP headers, 2304 * we attach a dummy ipsec_in and send it up to AH/ESP 2305 * for validation. AH/ESP will verify whether there is a 2306 * valid SA or not and send it back. We will fanout again if 2307 * we have more data in the packet. 2308 * 2309 * If the packet in error does not have AH/ESP, we handle it 2310 * like any other case. 2311 */ 2312 static void 2313 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2314 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2315 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2316 zoneid_t zoneid) 2317 { 2318 uint16_t *up; /* Pointer to ports in ULP header */ 2319 uint32_t ports; /* reversed ports for fanout */ 2320 ipha_t ripha; /* With reversed addresses */ 2321 mblk_t *first_mp; 2322 ipsec_in_t *ii; 2323 tcph_t *tcph; 2324 conn_t *connp; 2325 2326 first_mp = mp; 2327 if (mctl_present) { 2328 mp = first_mp->b_cont; 2329 ASSERT(mp != NULL); 2330 2331 ii = (ipsec_in_t *)first_mp->b_rptr; 2332 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2333 } else { 2334 ii = NULL; 2335 } 2336 2337 switch (ipha->ipha_protocol) { 2338 case IPPROTO_UDP: 2339 /* 2340 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2341 * transport header. 2342 */ 2343 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2344 mp->b_wptr) { 2345 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2346 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2347 BUMP_MIB(&ip_mib, ipInDiscards); 2348 goto drop_pkt; 2349 } 2350 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2351 ipha = (ipha_t *)&icmph[1]; 2352 } 2353 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2354 2355 /* 2356 * Attempt to find a client stream based on port. 2357 * Note that we do a reverse lookup since the header is 2358 * in the form we sent it out. 2359 * The ripha header is only used for the IP_UDP_MATCH and we 2360 * only set the src and dst addresses and protocol. 2361 */ 2362 ripha.ipha_src = ipha->ipha_dst; 2363 ripha.ipha_dst = ipha->ipha_src; 2364 ripha.ipha_protocol = ipha->ipha_protocol; 2365 ((uint16_t *)&ports)[0] = up[1]; 2366 ((uint16_t *)&ports)[1] = up[0]; 2367 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2368 ntohl(ipha->ipha_src), ntohs(up[0]), 2369 ntohl(ipha->ipha_dst), ntohs(up[1]), 2370 icmph->icmph_type, icmph->icmph_code)); 2371 2372 /* Have to change db_type after any pullupmsg */ 2373 DB_TYPE(mp) = M_CTL; 2374 2375 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2376 mctl_present, ip_policy, recv_ill, zoneid); 2377 return; 2378 2379 case IPPROTO_TCP: 2380 /* 2381 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2382 * transport header. 2383 */ 2384 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2385 mp->b_wptr) { 2386 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2387 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2388 BUMP_MIB(&ip_mib, ipInDiscards); 2389 goto drop_pkt; 2390 } 2391 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2392 ipha = (ipha_t *)&icmph[1]; 2393 } 2394 /* 2395 * Find a TCP client stream for this packet. 2396 * Note that we do a reverse lookup since the header is 2397 * in the form we sent it out. 2398 */ 2399 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2400 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2401 if (connp == NULL) { 2402 BUMP_MIB(&ip_mib, ipInDiscards); 2403 goto drop_pkt; 2404 } 2405 2406 /* Have to change db_type after any pullupmsg */ 2407 DB_TYPE(mp) = M_CTL; 2408 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2409 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2410 return; 2411 2412 case IPPROTO_SCTP: 2413 /* 2414 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2415 * transport header. 2416 */ 2417 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2418 mp->b_wptr) { 2419 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2420 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2421 BUMP_MIB(&ip_mib, ipInDiscards); 2422 goto drop_pkt; 2423 } 2424 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2425 ipha = (ipha_t *)&icmph[1]; 2426 } 2427 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2428 /* 2429 * Find a SCTP client stream for this packet. 2430 * Note that we do a reverse lookup since the header is 2431 * in the form we sent it out. 2432 * The ripha header is only used for the matching and we 2433 * only set the src and dst addresses, protocol, and version. 2434 */ 2435 ripha.ipha_src = ipha->ipha_dst; 2436 ripha.ipha_dst = ipha->ipha_src; 2437 ripha.ipha_protocol = ipha->ipha_protocol; 2438 ripha.ipha_version_and_hdr_length = 2439 ipha->ipha_version_and_hdr_length; 2440 ((uint16_t *)&ports)[0] = up[1]; 2441 ((uint16_t *)&ports)[1] = up[0]; 2442 2443 /* Have to change db_type after any pullupmsg */ 2444 DB_TYPE(mp) = M_CTL; 2445 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2446 mctl_present, ip_policy, 0, zoneid); 2447 return; 2448 2449 case IPPROTO_ESP: 2450 case IPPROTO_AH: { 2451 int ipsec_rc; 2452 2453 /* 2454 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2455 * We will re-use the IPSEC_IN if it is already present as 2456 * AH/ESP will not affect any fields in the IPSEC_IN for 2457 * ICMP errors. If there is no IPSEC_IN, allocate a new 2458 * one and attach it in the front. 2459 */ 2460 if (ii != NULL) { 2461 /* 2462 * ip_fanout_proto_again converts the ICMP errors 2463 * that come back from AH/ESP to M_DATA so that 2464 * if it is non-AH/ESP and we do a pullupmsg in 2465 * this function, it would work. Convert it back 2466 * to M_CTL before we send up as this is a ICMP 2467 * error. This could have been generated locally or 2468 * by some router. Validate the inner IPSEC 2469 * headers. 2470 * 2471 * NOTE : ill_index is used by ip_fanout_proto_again 2472 * to locate the ill. 2473 */ 2474 ASSERT(ill != NULL); 2475 ii->ipsec_in_ill_index = 2476 ill->ill_phyint->phyint_ifindex; 2477 ii->ipsec_in_rill_index = 2478 recv_ill->ill_phyint->phyint_ifindex; 2479 DB_TYPE(first_mp->b_cont) = M_CTL; 2480 } else { 2481 /* 2482 * IPSEC_IN is not present. We attach a ipsec_in 2483 * message and send up to IPSEC for validating 2484 * and removing the IPSEC headers. Clear 2485 * ipsec_in_secure so that when we return 2486 * from IPSEC, we don't mistakenly think that this 2487 * is a secure packet came from the network. 2488 * 2489 * NOTE : ill_index is used by ip_fanout_proto_again 2490 * to locate the ill. 2491 */ 2492 ASSERT(first_mp == mp); 2493 first_mp = ipsec_in_alloc(B_TRUE); 2494 if (first_mp == NULL) { 2495 freemsg(mp); 2496 BUMP_MIB(&ip_mib, ipInDiscards); 2497 return; 2498 } 2499 ii = (ipsec_in_t *)first_mp->b_rptr; 2500 2501 /* This is not a secure packet */ 2502 ii->ipsec_in_secure = B_FALSE; 2503 first_mp->b_cont = mp; 2504 DB_TYPE(mp) = M_CTL; 2505 ASSERT(ill != NULL); 2506 ii->ipsec_in_ill_index = 2507 ill->ill_phyint->phyint_ifindex; 2508 ii->ipsec_in_rill_index = 2509 recv_ill->ill_phyint->phyint_ifindex; 2510 } 2511 ip2dbg(("icmp_inbound_error: ipsec\n")); 2512 2513 if (!ipsec_loaded()) { 2514 ip_proto_not_sup(q, first_mp, 0, zoneid); 2515 return; 2516 } 2517 2518 if (ipha->ipha_protocol == IPPROTO_ESP) 2519 ipsec_rc = ipsecesp_icmp_error(first_mp); 2520 else 2521 ipsec_rc = ipsecah_icmp_error(first_mp); 2522 if (ipsec_rc == IPSEC_STATUS_FAILED) 2523 return; 2524 2525 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2526 return; 2527 } 2528 default: 2529 /* 2530 * The ripha header is only used for the lookup and we 2531 * only set the src and dst addresses and protocol. 2532 */ 2533 ripha.ipha_src = ipha->ipha_dst; 2534 ripha.ipha_dst = ipha->ipha_src; 2535 ripha.ipha_protocol = ipha->ipha_protocol; 2536 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2537 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2538 ntohl(ipha->ipha_dst), 2539 icmph->icmph_type, icmph->icmph_code)); 2540 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2541 ipha_t *in_ipha; 2542 2543 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2544 mp->b_wptr) { 2545 if (!pullupmsg(mp, (uchar_t *)ipha + 2546 hdr_length + sizeof (ipha_t) - 2547 mp->b_rptr)) { 2548 2549 BUMP_MIB(&ip_mib, ipInDiscards); 2550 goto drop_pkt; 2551 } 2552 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2553 ipha = (ipha_t *)&icmph[1]; 2554 } 2555 /* 2556 * Caller has verified that length has to be 2557 * at least the size of IP header. 2558 */ 2559 ASSERT(hdr_length >= sizeof (ipha_t)); 2560 /* 2561 * Check the sanity of the inner IP header like 2562 * we did for the outer header. 2563 */ 2564 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2565 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2566 BUMP_MIB(&ip_mib, ipInDiscards); 2567 goto drop_pkt; 2568 } 2569 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2570 BUMP_MIB(&ip_mib, ipInDiscards); 2571 goto drop_pkt; 2572 } 2573 /* Check for Self-encapsulated tunnels */ 2574 if (in_ipha->ipha_src == ipha->ipha_src && 2575 in_ipha->ipha_dst == ipha->ipha_dst) { 2576 2577 mp = icmp_inbound_self_encap_error(mp, 2578 iph_hdr_length, hdr_length); 2579 if (mp == NULL) 2580 goto drop_pkt; 2581 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2582 ipha = (ipha_t *)&icmph[1]; 2583 hdr_length = IPH_HDR_LENGTH(ipha); 2584 /* 2585 * The packet in error is self-encapsualted. 2586 * And we are finding it further encapsulated 2587 * which we could not have possibly generated. 2588 */ 2589 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2590 BUMP_MIB(&ip_mib, ipInDiscards); 2591 goto drop_pkt; 2592 } 2593 icmp_inbound_error_fanout(q, ill, first_mp, 2594 icmph, ipha, iph_hdr_length, hdr_length, 2595 mctl_present, ip_policy, recv_ill, zoneid); 2596 return; 2597 } 2598 } 2599 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2600 ipha->ipha_protocol == IPPROTO_IPV6) && 2601 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2602 ii != NULL && 2603 ii->ipsec_in_loopback && 2604 ii->ipsec_in_secure) { 2605 /* 2606 * For IP tunnels that get a looped-back 2607 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2608 * reported new MTU to take into account the IPsec 2609 * headers protecting this configured tunnel. 2610 * 2611 * This allows the tunnel module (tun.c) to blindly 2612 * accept the MTU reported in an ICMP "too big" 2613 * message. 2614 * 2615 * Non-looped back ICMP messages will just be 2616 * handled by the security protocols (if needed), 2617 * and the first subsequent packet will hit this 2618 * path. 2619 */ 2620 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2621 ipsec_in_extra_length(first_mp)); 2622 } 2623 /* Have to change db_type after any pullupmsg */ 2624 DB_TYPE(mp) = M_CTL; 2625 2626 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2627 ip_policy, recv_ill, zoneid); 2628 return; 2629 } 2630 /* NOTREACHED */ 2631 drop_pkt:; 2632 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2633 freemsg(first_mp); 2634 } 2635 2636 /* 2637 * Common IP options parser. 2638 * 2639 * Setup routine: fill in *optp with options-parsing state, then 2640 * tail-call ipoptp_next to return the first option. 2641 */ 2642 uint8_t 2643 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2644 { 2645 uint32_t totallen; /* total length of all options */ 2646 2647 totallen = ipha->ipha_version_and_hdr_length - 2648 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2649 totallen <<= 2; 2650 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2651 optp->ipoptp_end = optp->ipoptp_next + totallen; 2652 optp->ipoptp_flags = 0; 2653 return (ipoptp_next(optp)); 2654 } 2655 2656 /* 2657 * Common IP options parser: extract next option. 2658 */ 2659 uint8_t 2660 ipoptp_next(ipoptp_t *optp) 2661 { 2662 uint8_t *end = optp->ipoptp_end; 2663 uint8_t *cur = optp->ipoptp_next; 2664 uint8_t opt, len, pointer; 2665 2666 /* 2667 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2668 * has been corrupted. 2669 */ 2670 ASSERT(cur <= end); 2671 2672 if (cur == end) 2673 return (IPOPT_EOL); 2674 2675 opt = cur[IPOPT_OPTVAL]; 2676 2677 /* 2678 * Skip any NOP options. 2679 */ 2680 while (opt == IPOPT_NOP) { 2681 cur++; 2682 if (cur == end) 2683 return (IPOPT_EOL); 2684 opt = cur[IPOPT_OPTVAL]; 2685 } 2686 2687 if (opt == IPOPT_EOL) 2688 return (IPOPT_EOL); 2689 2690 /* 2691 * Option requiring a length. 2692 */ 2693 if ((cur + 1) >= end) { 2694 optp->ipoptp_flags |= IPOPTP_ERROR; 2695 return (IPOPT_EOL); 2696 } 2697 len = cur[IPOPT_OLEN]; 2698 if (len < 2) { 2699 optp->ipoptp_flags |= IPOPTP_ERROR; 2700 return (IPOPT_EOL); 2701 } 2702 optp->ipoptp_cur = cur; 2703 optp->ipoptp_len = len; 2704 optp->ipoptp_next = cur + len; 2705 if (cur + len > end) { 2706 optp->ipoptp_flags |= IPOPTP_ERROR; 2707 return (IPOPT_EOL); 2708 } 2709 2710 /* 2711 * For the options which require a pointer field, make sure 2712 * its there, and make sure it points to either something 2713 * inside this option, or the end of the option. 2714 */ 2715 switch (opt) { 2716 case IPOPT_RR: 2717 case IPOPT_TS: 2718 case IPOPT_LSRR: 2719 case IPOPT_SSRR: 2720 if (len <= IPOPT_OFFSET) { 2721 optp->ipoptp_flags |= IPOPTP_ERROR; 2722 return (opt); 2723 } 2724 pointer = cur[IPOPT_OFFSET]; 2725 if (pointer - 1 > len) { 2726 optp->ipoptp_flags |= IPOPTP_ERROR; 2727 return (opt); 2728 } 2729 break; 2730 } 2731 2732 /* 2733 * Sanity check the pointer field based on the type of the 2734 * option. 2735 */ 2736 switch (opt) { 2737 case IPOPT_RR: 2738 case IPOPT_SSRR: 2739 case IPOPT_LSRR: 2740 if (pointer < IPOPT_MINOFF_SR) 2741 optp->ipoptp_flags |= IPOPTP_ERROR; 2742 break; 2743 case IPOPT_TS: 2744 if (pointer < IPOPT_MINOFF_IT) 2745 optp->ipoptp_flags |= IPOPTP_ERROR; 2746 /* 2747 * Note that the Internet Timestamp option also 2748 * contains two four bit fields (the Overflow field, 2749 * and the Flag field), which follow the pointer 2750 * field. We don't need to check that these fields 2751 * fall within the length of the option because this 2752 * was implicitely done above. We've checked that the 2753 * pointer value is at least IPOPT_MINOFF_IT, and that 2754 * it falls within the option. Since IPOPT_MINOFF_IT > 2755 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2756 */ 2757 ASSERT(len > IPOPT_POS_OV_FLG); 2758 break; 2759 } 2760 2761 return (opt); 2762 } 2763 2764 /* 2765 * Update any record route or timestamp options to include this host. 2766 * Reverse any source route option. 2767 * This routine assumes that the options are well formed i.e. that they 2768 * have already been checked. 2769 */ 2770 static void 2771 icmp_options_update(ipha_t *ipha) 2772 { 2773 ipoptp_t opts; 2774 uchar_t *opt; 2775 uint8_t optval; 2776 ipaddr_t src; /* Our local address */ 2777 ipaddr_t dst; 2778 2779 ip2dbg(("icmp_options_update\n")); 2780 src = ipha->ipha_src; 2781 dst = ipha->ipha_dst; 2782 2783 for (optval = ipoptp_first(&opts, ipha); 2784 optval != IPOPT_EOL; 2785 optval = ipoptp_next(&opts)) { 2786 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2787 opt = opts.ipoptp_cur; 2788 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2789 optval, opts.ipoptp_len)); 2790 switch (optval) { 2791 int off1, off2; 2792 case IPOPT_SSRR: 2793 case IPOPT_LSRR: 2794 /* 2795 * Reverse the source route. The first entry 2796 * should be the next to last one in the current 2797 * source route (the last entry is our address). 2798 * The last entry should be the final destination. 2799 */ 2800 off1 = IPOPT_MINOFF_SR - 1; 2801 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2802 if (off2 < 0) { 2803 /* No entries in source route */ 2804 ip1dbg(( 2805 "icmp_options_update: bad src route\n")); 2806 break; 2807 } 2808 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2809 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2810 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2811 off2 -= IP_ADDR_LEN; 2812 2813 while (off1 < off2) { 2814 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2815 bcopy((char *)opt + off2, (char *)opt + off1, 2816 IP_ADDR_LEN); 2817 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2818 off1 += IP_ADDR_LEN; 2819 off2 -= IP_ADDR_LEN; 2820 } 2821 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2822 break; 2823 } 2824 } 2825 } 2826 2827 /* 2828 * Process received ICMP Redirect messages. 2829 */ 2830 /* ARGSUSED */ 2831 static void 2832 icmp_redirect(mblk_t *mp) 2833 { 2834 ipha_t *ipha; 2835 int iph_hdr_length; 2836 icmph_t *icmph; 2837 ipha_t *ipha_err; 2838 ire_t *ire; 2839 ire_t *prev_ire; 2840 ire_t *save_ire; 2841 ipaddr_t src, dst, gateway; 2842 iulp_t ulp_info = { 0 }; 2843 int error; 2844 2845 ipha = (ipha_t *)mp->b_rptr; 2846 iph_hdr_length = IPH_HDR_LENGTH(ipha); 2847 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 2848 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 2849 BUMP_MIB(&icmp_mib, icmpInErrors); 2850 freemsg(mp); 2851 return; 2852 } 2853 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2854 ipha_err = (ipha_t *)&icmph[1]; 2855 src = ipha->ipha_src; 2856 dst = ipha_err->ipha_dst; 2857 gateway = icmph->icmph_rd_gateway; 2858 /* Make sure the new gateway is reachable somehow. */ 2859 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 2860 ALL_ZONES, MATCH_IRE_TYPE); 2861 /* 2862 * Make sure we had a route for the dest in question and that 2863 * that route was pointing to the old gateway (the source of the 2864 * redirect packet.) 2865 */ 2866 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 2867 MATCH_IRE_GW); 2868 /* 2869 * Check that 2870 * the redirect was not from ourselves 2871 * the new gateway and the old gateway are directly reachable 2872 */ 2873 if (!prev_ire || 2874 !ire || 2875 ire->ire_type == IRE_LOCAL) { 2876 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2877 freemsg(mp); 2878 if (ire != NULL) 2879 ire_refrele(ire); 2880 if (prev_ire != NULL) 2881 ire_refrele(prev_ire); 2882 return; 2883 } 2884 2885 /* 2886 * Should we use the old ULP info to create the new gateway? From 2887 * a user's perspective, we should inherit the info so that it 2888 * is a "smooth" transition. If we do not do that, then new 2889 * connections going thru the new gateway will have no route metrics, 2890 * which is counter-intuitive to user. From a network point of 2891 * view, this may or may not make sense even though the new gateway 2892 * is still directly connected to us so the route metrics should not 2893 * change much. 2894 * 2895 * But if the old ire_uinfo is not initialized, we do another 2896 * recursive lookup on the dest using the new gateway. There may 2897 * be a route to that. If so, use it to initialize the redirect 2898 * route. 2899 */ 2900 if (prev_ire->ire_uinfo.iulp_set) { 2901 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2902 } else { 2903 ire_t *tmp_ire; 2904 ire_t *sire; 2905 2906 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 2907 ALL_ZONES, 0, 2908 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 2909 if (sire != NULL) { 2910 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 2911 /* 2912 * If sire != NULL, ire_ftable_lookup() should not 2913 * return a NULL value. 2914 */ 2915 ASSERT(tmp_ire != NULL); 2916 ire_refrele(tmp_ire); 2917 ire_refrele(sire); 2918 } else if (tmp_ire != NULL) { 2919 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 2920 sizeof (iulp_t)); 2921 ire_refrele(tmp_ire); 2922 } 2923 } 2924 if (prev_ire->ire_type == IRE_CACHE) 2925 ire_delete(prev_ire); 2926 ire_refrele(prev_ire); 2927 /* 2928 * TODO: more precise handling for cases 0, 2, 3, the latter two 2929 * require TOS routing 2930 */ 2931 switch (icmph->icmph_code) { 2932 case 0: 2933 case 1: 2934 /* TODO: TOS specificity for cases 2 and 3 */ 2935 case 2: 2936 case 3: 2937 break; 2938 default: 2939 freemsg(mp); 2940 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 2941 ire_refrele(ire); 2942 return; 2943 } 2944 /* 2945 * Create a Route Association. This will allow us to remember that 2946 * someone we believe told us to use the particular gateway. 2947 */ 2948 save_ire = ire; 2949 ire = ire_create( 2950 (uchar_t *)&dst, /* dest addr */ 2951 (uchar_t *)&ip_g_all_ones, /* mask */ 2952 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 2953 (uchar_t *)&gateway, /* gateway addr */ 2954 NULL, /* no in_srcaddr */ 2955 &save_ire->ire_max_frag, /* max frag */ 2956 NULL, /* Fast Path header */ 2957 NULL, /* no rfq */ 2958 NULL, /* no stq */ 2959 IRE_HOST_REDIRECT, 2960 NULL, 2961 NULL, 2962 NULL, 2963 0, 2964 0, 2965 0, 2966 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2967 &ulp_info); 2968 2969 if (ire == NULL) { 2970 freemsg(mp); 2971 ire_refrele(save_ire); 2972 return; 2973 } 2974 error = ire_add(&ire, NULL, NULL, NULL); 2975 ire_refrele(save_ire); 2976 if (error == 0) { 2977 ire_refrele(ire); /* Held in ire_add_v4 */ 2978 /* tell routing sockets that we received a redirect */ 2979 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2980 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2981 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 2982 } 2983 2984 /* 2985 * Delete any existing IRE_HOST_REDIRECT for this destination. 2986 * This together with the added IRE has the effect of 2987 * modifying an existing redirect. 2988 */ 2989 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL, 2990 ALL_ZONES, 0, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 2991 if (prev_ire) { 2992 ire_delete(prev_ire); 2993 ire_refrele(prev_ire); 2994 } 2995 2996 freemsg(mp); 2997 } 2998 2999 /* 3000 * Generate an ICMP parameter problem message. 3001 */ 3002 static void 3003 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr) 3004 { 3005 icmph_t icmph; 3006 boolean_t mctl_present; 3007 mblk_t *first_mp; 3008 3009 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3010 3011 if (!(mp = icmp_pkt_err_ok(mp))) { 3012 if (mctl_present) 3013 freeb(first_mp); 3014 return; 3015 } 3016 3017 bzero(&icmph, sizeof (icmph_t)); 3018 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3019 icmph.icmph_pp_ptr = ptr; 3020 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3021 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3022 } 3023 3024 /* 3025 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3026 * the ICMP header pointed to by "stuff". (May be called as writer.) 3027 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3028 * an icmp error packet can be sent. 3029 * Assigns an appropriate source address to the packet. If ipha_dst is 3030 * one of our addresses use it for source. Otherwise pick a source based 3031 * on a route lookup back to ipha_src. 3032 * Note that ipha_src must be set here since the 3033 * packet is likely to arrive on an ill queue in ip_wput() which will 3034 * not set a source address. 3035 */ 3036 static void 3037 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3038 boolean_t mctl_present) 3039 { 3040 ipaddr_t dst; 3041 icmph_t *icmph; 3042 ipha_t *ipha; 3043 uint_t len_needed; 3044 size_t msg_len; 3045 mblk_t *mp1; 3046 ipaddr_t src; 3047 ire_t *ire; 3048 mblk_t *ipsec_mp; 3049 ipsec_out_t *io = NULL; 3050 boolean_t xmit_if_on = B_FALSE; 3051 zoneid_t zoneid; 3052 3053 if (mctl_present) { 3054 /* 3055 * If it is : 3056 * 3057 * 1) a IPSEC_OUT, then this is caused by outbound 3058 * datagram originating on this host. IPSEC processing 3059 * may or may not have been done. Refer to comments above 3060 * icmp_inbound_error_fanout for details. 3061 * 3062 * 2) a IPSEC_IN if we are generating a icmp_message 3063 * for an incoming datagram destined for us i.e called 3064 * from ip_fanout_send_icmp. 3065 */ 3066 ipsec_info_t *in; 3067 ipsec_mp = mp; 3068 mp = ipsec_mp->b_cont; 3069 3070 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3071 ipha = (ipha_t *)mp->b_rptr; 3072 3073 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3074 in->ipsec_info_type == IPSEC_IN); 3075 3076 if (in->ipsec_info_type == IPSEC_IN) { 3077 /* 3078 * Convert the IPSEC_IN to IPSEC_OUT. 3079 */ 3080 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3081 BUMP_MIB(&ip_mib, ipOutDiscards); 3082 return; 3083 } 3084 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3085 } else { 3086 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3087 io = (ipsec_out_t *)in; 3088 if (io->ipsec_out_xmit_if) 3089 xmit_if_on = B_TRUE; 3090 /* 3091 * Clear out ipsec_out_proc_begin, so we do a fresh 3092 * ire lookup. 3093 */ 3094 io->ipsec_out_proc_begin = B_FALSE; 3095 } 3096 zoneid = io->ipsec_out_zoneid; 3097 ASSERT(zoneid != ALL_ZONES); 3098 } else { 3099 /* 3100 * This is in clear. The icmp message we are building 3101 * here should go out in clear. 3102 * 3103 * Pardon the convolution of it all, but it's easier to 3104 * allocate a "use cleartext" IPSEC_IN message and convert 3105 * it than it is to allocate a new one. 3106 */ 3107 ipsec_in_t *ii; 3108 ASSERT(DB_TYPE(mp) == M_DATA); 3109 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3110 freemsg(mp); 3111 BUMP_MIB(&ip_mib, ipOutDiscards); 3112 return; 3113 } 3114 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3115 3116 /* This is not a secure packet */ 3117 ii->ipsec_in_secure = B_FALSE; 3118 if (CONN_Q(q)) { 3119 zoneid = Q_TO_CONN(q)->conn_zoneid; 3120 } else { 3121 zoneid = GLOBAL_ZONEID; 3122 } 3123 ii->ipsec_in_zoneid = zoneid; 3124 ipsec_mp->b_cont = mp; 3125 ipha = (ipha_t *)mp->b_rptr; 3126 /* 3127 * Convert the IPSEC_IN to IPSEC_OUT. 3128 */ 3129 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3130 BUMP_MIB(&ip_mib, ipOutDiscards); 3131 return; 3132 } 3133 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3134 } 3135 3136 /* Remember our eventual destination */ 3137 dst = ipha->ipha_src; 3138 3139 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3140 NULL, NULL, zoneid, MATCH_IRE_TYPE); 3141 if (ire != NULL && ire->ire_zoneid == zoneid) { 3142 src = ipha->ipha_dst; 3143 } else if (!xmit_if_on) { 3144 if (ire != NULL) 3145 ire_refrele(ire); 3146 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, 3147 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3148 if (ire == NULL) { 3149 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3150 freemsg(ipsec_mp); 3151 return; 3152 } 3153 src = ire->ire_src_addr; 3154 } else { 3155 ipif_t *ipif = NULL; 3156 ill_t *ill; 3157 /* 3158 * This must be an ICMP error coming from 3159 * ip_mrtun_forward(). The src addr should 3160 * be equal to the IP-addr of the outgoing 3161 * interface. 3162 */ 3163 if (io == NULL) { 3164 /* This is not a IPSEC_OUT type control msg */ 3165 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3166 freemsg(ipsec_mp); 3167 return; 3168 } 3169 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3170 NULL, NULL, NULL, NULL); 3171 if (ill != NULL) { 3172 ipif = ipif_get_next_ipif(NULL, ill); 3173 ill_refrele(ill); 3174 } 3175 if (ipif == NULL) { 3176 BUMP_MIB(&ip_mib, ipOutNoRoutes); 3177 freemsg(ipsec_mp); 3178 return; 3179 } 3180 src = ipif->ipif_src_addr; 3181 ipif_refrele(ipif); 3182 } 3183 3184 if (ire != NULL) 3185 ire_refrele(ire); 3186 3187 /* 3188 * Check if we can send back more then 8 bytes in addition 3189 * to the IP header. We will include as much as 64 bytes. 3190 */ 3191 len_needed = IPH_HDR_LENGTH(ipha) + ip_icmp_return; 3192 msg_len = msgdsize(mp); 3193 if (msg_len > len_needed) { 3194 (void) adjmsg(mp, len_needed - msg_len); 3195 msg_len = len_needed; 3196 } 3197 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3198 if (!mp1) { 3199 BUMP_MIB(&icmp_mib, icmpOutErrors); 3200 freemsg(ipsec_mp); 3201 return; 3202 } 3203 mp1->b_cont = mp; 3204 mp = mp1; 3205 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3206 ipsec_mp->b_rptr == (uint8_t *)io && 3207 io->ipsec_out_type == IPSEC_OUT); 3208 ipsec_mp->b_cont = mp; 3209 3210 /* 3211 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3212 * node generates be accepted in peace by all on-host destinations. 3213 * If we do NOT assume that all on-host destinations trust 3214 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3215 * (Look for ipsec_out_icmp_loopback). 3216 */ 3217 io->ipsec_out_icmp_loopback = B_TRUE; 3218 3219 ipha = (ipha_t *)mp->b_rptr; 3220 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3221 *ipha = icmp_ipha; 3222 ipha->ipha_src = src; 3223 ipha->ipha_dst = dst; 3224 ipha->ipha_ttl = ip_def_ttl; 3225 msg_len += sizeof (icmp_ipha) + len; 3226 if (msg_len > IP_MAXPACKET) { 3227 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3228 msg_len = IP_MAXPACKET; 3229 } 3230 ipha->ipha_length = htons((uint16_t)msg_len); 3231 icmph = (icmph_t *)&ipha[1]; 3232 bcopy(stuff, icmph, len); 3233 icmph->icmph_checksum = 0; 3234 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3235 if (icmph->icmph_checksum == 0) 3236 icmph->icmph_checksum = 0xFFFF; 3237 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3238 put(q, ipsec_mp); 3239 } 3240 3241 /* 3242 * Determine if an ICMP error packet can be sent given the rate limit. 3243 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3244 * in milliseconds) and a burst size. Burst size number of packets can 3245 * be sent arbitrarely closely spaced. 3246 * The state is tracked using two variables to implement an approximate 3247 * token bucket filter: 3248 * icmp_pkt_err_last - lbolt value when the last burst started 3249 * icmp_pkt_err_sent - number of packets sent in current burst 3250 */ 3251 boolean_t 3252 icmp_err_rate_limit(void) 3253 { 3254 clock_t now = TICK_TO_MSEC(lbolt); 3255 uint_t refilled; /* Number of packets refilled in tbf since last */ 3256 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3257 3258 if (err_interval == 0) 3259 return (B_FALSE); 3260 3261 if (icmp_pkt_err_last > now) { 3262 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3263 icmp_pkt_err_last = 0; 3264 icmp_pkt_err_sent = 0; 3265 } 3266 /* 3267 * If we are in a burst update the token bucket filter. 3268 * Update the "last" time to be close to "now" but make sure 3269 * we don't loose precision. 3270 */ 3271 if (icmp_pkt_err_sent != 0) { 3272 refilled = (now - icmp_pkt_err_last)/err_interval; 3273 if (refilled > icmp_pkt_err_sent) { 3274 icmp_pkt_err_sent = 0; 3275 } else { 3276 icmp_pkt_err_sent -= refilled; 3277 icmp_pkt_err_last += refilled * err_interval; 3278 } 3279 } 3280 if (icmp_pkt_err_sent == 0) { 3281 /* Start of new burst */ 3282 icmp_pkt_err_last = now; 3283 } 3284 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3285 icmp_pkt_err_sent++; 3286 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3287 icmp_pkt_err_sent)); 3288 return (B_FALSE); 3289 } 3290 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3291 return (B_TRUE); 3292 } 3293 3294 /* 3295 * Check if it is ok to send an IPv4 ICMP error packet in 3296 * response to the IPv4 packet in mp. 3297 * Free the message and return null if no 3298 * ICMP error packet should be sent. 3299 */ 3300 static mblk_t * 3301 icmp_pkt_err_ok(mblk_t *mp) 3302 { 3303 icmph_t *icmph; 3304 ipha_t *ipha; 3305 uint_t len_needed; 3306 ire_t *src_ire; 3307 ire_t *dst_ire; 3308 3309 if (!mp) 3310 return (NULL); 3311 ipha = (ipha_t *)mp->b_rptr; 3312 if (ip_csum_hdr(ipha)) { 3313 BUMP_MIB(&ip_mib, ipInCksumErrs); 3314 freemsg(mp); 3315 return (NULL); 3316 } 3317 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3318 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3319 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3320 NULL, ALL_ZONES, MATCH_IRE_TYPE); 3321 if (src_ire != NULL || dst_ire != NULL || 3322 CLASSD(ipha->ipha_dst) || 3323 CLASSD(ipha->ipha_src) || 3324 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3325 /* Note: only errors to the fragment with offset 0 */ 3326 BUMP_MIB(&icmp_mib, icmpOutDrops); 3327 freemsg(mp); 3328 if (src_ire != NULL) 3329 ire_refrele(src_ire); 3330 if (dst_ire != NULL) 3331 ire_refrele(dst_ire); 3332 return (NULL); 3333 } 3334 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3335 /* 3336 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3337 * errors in response to any ICMP errors. 3338 */ 3339 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3340 if (mp->b_wptr - mp->b_rptr < len_needed) { 3341 if (!pullupmsg(mp, len_needed)) { 3342 BUMP_MIB(&icmp_mib, icmpInErrors); 3343 freemsg(mp); 3344 return (NULL); 3345 } 3346 ipha = (ipha_t *)mp->b_rptr; 3347 } 3348 icmph = (icmph_t *) 3349 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3350 switch (icmph->icmph_type) { 3351 case ICMP_DEST_UNREACHABLE: 3352 case ICMP_SOURCE_QUENCH: 3353 case ICMP_TIME_EXCEEDED: 3354 case ICMP_PARAM_PROBLEM: 3355 case ICMP_REDIRECT: 3356 BUMP_MIB(&icmp_mib, icmpOutDrops); 3357 freemsg(mp); 3358 return (NULL); 3359 default: 3360 break; 3361 } 3362 } 3363 if (icmp_err_rate_limit()) { 3364 /* 3365 * Only send ICMP error packets every so often. 3366 * This should be done on a per port/source basis, 3367 * but for now this will suffice. 3368 */ 3369 freemsg(mp); 3370 return (NULL); 3371 } 3372 return (mp); 3373 } 3374 3375 /* 3376 * Generate an ICMP redirect message. 3377 */ 3378 static void 3379 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3380 { 3381 icmph_t icmph; 3382 3383 /* 3384 * We are called from ip_rput where we could 3385 * not have attached an IPSEC_IN. 3386 */ 3387 ASSERT(mp->b_datap->db_type == M_DATA); 3388 3389 if (!(mp = icmp_pkt_err_ok(mp))) { 3390 return; 3391 } 3392 3393 bzero(&icmph, sizeof (icmph_t)); 3394 icmph.icmph_type = ICMP_REDIRECT; 3395 icmph.icmph_code = 1; 3396 icmph.icmph_rd_gateway = gateway; 3397 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3398 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE); 3399 } 3400 3401 /* 3402 * Generate an ICMP time exceeded message. 3403 */ 3404 void 3405 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code) 3406 { 3407 icmph_t icmph; 3408 boolean_t mctl_present; 3409 mblk_t *first_mp; 3410 3411 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3412 3413 if (!(mp = icmp_pkt_err_ok(mp))) { 3414 if (mctl_present) 3415 freeb(first_mp); 3416 return; 3417 } 3418 3419 bzero(&icmph, sizeof (icmph_t)); 3420 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3421 icmph.icmph_code = code; 3422 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3423 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present); 3424 } 3425 3426 /* 3427 * Generate an ICMP unreachable message. 3428 */ 3429 void 3430 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code) 3431 { 3432 icmph_t icmph; 3433 mblk_t *first_mp; 3434 boolean_t mctl_present; 3435 3436 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3437 3438 if (!(mp = icmp_pkt_err_ok(mp))) { 3439 if (mctl_present) 3440 freeb(first_mp); 3441 return; 3442 } 3443 3444 bzero(&icmph, sizeof (icmph_t)); 3445 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3446 icmph.icmph_code = code; 3447 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3448 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3449 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present); 3450 } 3451 3452 /* 3453 * News from ARP. ARP sends notification of interesting events down 3454 * to its clients using M_CTL messages with the interesting ARP packet 3455 * attached via b_cont. 3456 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3457 * queue as opposed to ARP sending the message to all the clients, i.e. all 3458 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3459 * table if a cache IRE is found to delete all the entries for the address in 3460 * the packet. 3461 */ 3462 static void 3463 ip_arp_news(queue_t *q, mblk_t *mp) 3464 { 3465 arcn_t *arcn; 3466 arh_t *arh; 3467 char *cp1; 3468 uchar_t *cp2; 3469 ire_t *ire = NULL; 3470 int i1; 3471 char hbuf[128]; 3472 char sbuf[16]; 3473 ipaddr_t src; 3474 in6_addr_t v6src; 3475 boolean_t isv6 = B_FALSE; 3476 3477 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3478 if (q->q_next) { 3479 putnext(q, mp); 3480 } else 3481 freemsg(mp); 3482 return; 3483 } 3484 arh = (arh_t *)mp->b_cont->b_rptr; 3485 /* Is it one we are interested in? */ 3486 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3487 isv6 = B_TRUE; 3488 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3489 IPV6_ADDR_LEN); 3490 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3491 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3492 IP_ADDR_LEN); 3493 } else { 3494 freemsg(mp); 3495 return; 3496 } 3497 3498 arcn = (arcn_t *)mp->b_rptr; 3499 switch (arcn->arcn_code) { 3500 case AR_CN_BOGON: 3501 /* 3502 * Someone is sending ARP packets with a source protocol 3503 * address which we have published. Either they are 3504 * pretending to be us, or we have been asked to proxy 3505 * for a machine that can do fine for itself, or two 3506 * different machines are providing proxy service for the 3507 * same protocol address, or something. We try and do 3508 * something appropriate here. 3509 */ 3510 cp2 = (uchar_t *)&arh[1]; 3511 cp1 = hbuf; 3512 *cp1 = '\0'; 3513 for (i1 = arh->arh_hlen; i1--; cp1 += 3) 3514 (void) sprintf(cp1, "%02x:", *cp2++ & 0xff); 3515 if (cp1 != hbuf) 3516 cp1[-1] = '\0'; 3517 (void) ip_dot_addr(src, sbuf); 3518 if (isv6) 3519 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES); 3520 else 3521 ire = ire_cache_lookup(src, ALL_ZONES); 3522 3523 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3524 cmn_err(CE_WARN, 3525 "IP: Hardware address '%s' trying" 3526 " to be our address %s!", 3527 hbuf, sbuf); 3528 } else { 3529 cmn_err(CE_WARN, 3530 "IP: Proxy ARP problem? " 3531 "Hardware address '%s' thinks it is %s", 3532 hbuf, sbuf); 3533 } 3534 if (ire != NULL) 3535 ire_refrele(ire); 3536 break; 3537 case AR_CN_ANNOUNCE: 3538 if (isv6) { 3539 /* 3540 * For XRESOLV interfaces. 3541 * Delete the IRE cache entry and NCE for this 3542 * v6 address 3543 */ 3544 ip_ire_clookup_and_delete_v6(&v6src); 3545 /* 3546 * If v6src is a non-zero, it's a router address 3547 * as below. Do the same sort of thing to clean 3548 * out off-net IRE_CACHE entries that go through 3549 * the router. 3550 */ 3551 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 3552 ire_walk_v6(ire_delete_cache_gw_v6, 3553 (char *)&v6src, ALL_ZONES); 3554 } 3555 break; 3556 } 3557 /* 3558 * ARP gives us a copy of any broadcast packet with identical 3559 * sender and receiver protocol address, in 3560 * case we want to intuit something from it. Such a packet 3561 * usually means that a machine has just come up on the net. 3562 * If we have an IRE_CACHE, we blow it away. This way we will 3563 * immediately pick up the rare case of a host changing 3564 * hardware address. ip_ire_clookup_and_delete achieves this. 3565 * 3566 * The address in "src" may be an entry for a router. 3567 * (Default router, or non-default router.) If 3568 * that's true, then any off-net IRE_CACHE entries 3569 * that go through the router with address "src" 3570 * must be clobbered. Use ire_walk to achieve this 3571 * goal. 3572 * 3573 * It should be possible to determine if the address 3574 * in src is or is not for a router. This way, 3575 * the ire_walk() isn't called all of the time here. 3576 * Do not pass 'src' value of 0 to ire_delete_cache_gw, 3577 * as it would remove all IRE_CACHE entries for onlink 3578 * destinations. All onlink destinations have 3579 * ire_gateway_addr == 0. 3580 */ 3581 if ((ip_ire_clookup_and_delete(src, NULL) || 3582 (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL, 3583 0, MATCH_IRE_DSTONLY)) != NULL) && src != 0) { 3584 ire_walk_v4(ire_delete_cache_gw, (char *)&src, 3585 ALL_ZONES); 3586 } 3587 /* From ire_ftable_lookup */ 3588 if (ire != NULL) 3589 ire_refrele(ire); 3590 break; 3591 default: 3592 if (ire != NULL) 3593 ire_refrele(ire); 3594 break; 3595 } 3596 freemsg(mp); 3597 } 3598 3599 /* 3600 * Create a mblk suitable for carrying the interface index and/or source link 3601 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 3602 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 3603 * application. 3604 */ 3605 mblk_t * 3606 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 3607 { 3608 mblk_t *mp; 3609 in_pktinfo_t *pinfo; 3610 ipha_t *ipha; 3611 struct ether_header *pether; 3612 3613 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 3614 if (mp == NULL) { 3615 ip1dbg(("ip_add_info: allocation failure.\n")); 3616 return (data_mp); 3617 } 3618 3619 ipha = (ipha_t *)data_mp->b_rptr; 3620 pinfo = (in_pktinfo_t *)mp->b_rptr; 3621 bzero(pinfo, sizeof (in_pktinfo_t)); 3622 pinfo->in_pkt_flags = (uchar_t)flags; 3623 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 3624 3625 if (flags & IPF_RECVIF) 3626 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 3627 3628 pether = (struct ether_header *)((char *)ipha 3629 - sizeof (struct ether_header)); 3630 /* 3631 * Make sure the interface is an ethernet type, since this option 3632 * is currently supported only on this type of interface. Also make 3633 * sure we are pointing correctly above db_base. 3634 */ 3635 3636 if ((flags & IPF_RECVSLLA) && 3637 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 3638 (ill->ill_type == IFT_ETHER) && 3639 (ill->ill_net_type == IRE_IF_RESOLVER)) { 3640 3641 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 3642 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 3643 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 3644 } else { 3645 /* 3646 * Clear the bit. Indicate to upper layer that IP is not 3647 * sending this ancillary info. 3648 */ 3649 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 3650 } 3651 3652 mp->b_datap->db_type = M_CTL; 3653 mp->b_wptr += sizeof (in_pktinfo_t); 3654 mp->b_cont = data_mp; 3655 3656 return (mp); 3657 } 3658 3659 /* 3660 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 3661 * part of the bind request. 3662 */ 3663 3664 boolean_t 3665 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 3666 { 3667 ipsec_in_t *ii; 3668 3669 ASSERT(policy_mp != NULL); 3670 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 3671 3672 ii = (ipsec_in_t *)policy_mp->b_rptr; 3673 ASSERT(ii->ipsec_in_type == IPSEC_IN); 3674 3675 connp->conn_policy = ii->ipsec_in_policy; 3676 ii->ipsec_in_policy = NULL; 3677 3678 if (ii->ipsec_in_action != NULL) { 3679 if (connp->conn_latch == NULL) { 3680 connp->conn_latch = iplatch_create(); 3681 if (connp->conn_latch == NULL) 3682 return (B_FALSE); 3683 } 3684 ipsec_latch_inbound(connp->conn_latch, ii); 3685 } 3686 return (B_TRUE); 3687 } 3688 3689 /* 3690 * Upper level protocols (ULP) pass through bind requests to IP for inspection 3691 * and to arrange for power-fanout assist. The ULP is identified by 3692 * adding a single byte at the end of the original bind message. 3693 * A ULP other than UDP or TCP that wishes to be recognized passes 3694 * down a bind with a zero length address. 3695 * 3696 * The binding works as follows: 3697 * - A zero byte address means just bind to the protocol. 3698 * - A four byte address is treated as a request to validate 3699 * that the address is a valid local address, appropriate for 3700 * an application to bind to. This does not affect any fanout 3701 * information in IP. 3702 * - A sizeof sin_t byte address is used to bind to only the local address 3703 * and port. 3704 * - A sizeof ipa_conn_t byte address contains complete fanout information 3705 * consisting of local and remote addresses and ports. In 3706 * this case, the addresses are both validated as appropriate 3707 * for this operation, and, if so, the information is retained 3708 * for use in the inbound fanout. 3709 * 3710 * The ULP (except in the zero-length bind) can append an 3711 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 3712 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 3713 * a copy of the source or destination IRE (source for local bind; 3714 * destination for complete bind). IPSEC_POLICY_SET indicates that the 3715 * policy information contained should be copied on to the conn. 3716 * 3717 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 3718 */ 3719 mblk_t * 3720 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 3721 { 3722 ssize_t len; 3723 struct T_bind_req *tbr; 3724 sin_t *sin; 3725 ipa_conn_t *ac; 3726 uchar_t *ucp; 3727 mblk_t *mp1; 3728 boolean_t ire_requested; 3729 boolean_t ipsec_policy_set = B_FALSE; 3730 int error = 0; 3731 int protocol; 3732 ipa_conn_x_t *acx; 3733 3734 ASSERT(!connp->conn_af_isv6); 3735 connp->conn_pkt_isv6 = B_FALSE; 3736 3737 len = MBLKL(mp); 3738 if (len < (sizeof (*tbr) + 1)) { 3739 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 3740 "ip_bind: bogus msg, len %ld", len); 3741 /* XXX: Need to return something better */ 3742 goto bad_addr; 3743 } 3744 /* Back up and extract the protocol identifier. */ 3745 mp->b_wptr--; 3746 protocol = *mp->b_wptr & 0xFF; 3747 tbr = (struct T_bind_req *)mp->b_rptr; 3748 /* Reset the message type in preparation for shipping it back. */ 3749 DB_TYPE(mp) = M_PCPROTO; 3750 3751 connp->conn_ulp = (uint8_t)protocol; 3752 3753 /* 3754 * Check for a zero length address. This is from a protocol that 3755 * wants to register to receive all packets of its type. 3756 */ 3757 if (tbr->ADDR_length == 0) { 3758 /* 3759 * These protocols are now intercepted in ip_bind_v6(). 3760 * Reject protocol-level binds here for now. 3761 * 3762 * For SCTP raw socket, ICMP sends down a bind with sin_t 3763 * so that the protocol type cannot be SCTP. 3764 */ 3765 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 3766 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 3767 goto bad_addr; 3768 } 3769 3770 /* No hash here really. The table is big enough. */ 3771 connp->conn_srcv6 = ipv6_all_zeros; 3772 3773 ipcl_proto_insert(connp, protocol); 3774 3775 tbr->PRIM_type = T_BIND_ACK; 3776 return (mp); 3777 } 3778 3779 /* Extract the address pointer from the message. */ 3780 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 3781 tbr->ADDR_length); 3782 if (ucp == NULL) { 3783 ip1dbg(("ip_bind: no address\n")); 3784 goto bad_addr; 3785 } 3786 if (!OK_32PTR(ucp)) { 3787 ip1dbg(("ip_bind: unaligned address\n")); 3788 goto bad_addr; 3789 } 3790 /* 3791 * Check for trailing mps. 3792 */ 3793 3794 mp1 = mp->b_cont; 3795 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 3796 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 3797 3798 switch (tbr->ADDR_length) { 3799 default: 3800 ip1dbg(("ip_bind: bad address length %d\n", 3801 (int)tbr->ADDR_length)); 3802 goto bad_addr; 3803 3804 case IP_ADDR_LEN: 3805 /* Verification of local address only */ 3806 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 3807 ire_requested, ipsec_policy_set, B_FALSE); 3808 break; 3809 3810 case sizeof (sin_t): 3811 sin = (sin_t *)ucp; 3812 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 3813 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 3814 if (protocol == IPPROTO_TCP) 3815 connp->conn_recv = tcp_conn_request; 3816 break; 3817 3818 case sizeof (ipa_conn_t): 3819 ac = (ipa_conn_t *)ucp; 3820 /* For raw socket, the local port is not set. */ 3821 if (ac->ac_lport == 0) 3822 ac->ac_lport = connp->conn_lport; 3823 /* Always verify destination reachability. */ 3824 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 3825 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 3826 ipsec_policy_set, B_TRUE, B_TRUE); 3827 if (protocol == IPPROTO_TCP) 3828 connp->conn_recv = tcp_input; 3829 break; 3830 3831 case sizeof (ipa_conn_x_t): 3832 acx = (ipa_conn_x_t *)ucp; 3833 /* 3834 * Whether or not to verify destination reachability depends 3835 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 3836 */ 3837 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 3838 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 3839 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 3840 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 3841 if (protocol == IPPROTO_TCP) 3842 connp->conn_recv = tcp_input; 3843 break; 3844 } 3845 if (error == EINPROGRESS) 3846 return (NULL); 3847 else if (error != 0) 3848 goto bad_addr; 3849 /* 3850 * Pass the IPSEC headers size in ire_ipsec_overhead. 3851 * We can't do this in ip_bind_insert_ire because the policy 3852 * may not have been inherited at that point in time and hence 3853 * conn_out_enforce_policy may not be set. 3854 */ 3855 mp1 = mp->b_cont; 3856 if (ire_requested && connp->conn_out_enforce_policy && 3857 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 3858 ire_t *ire = (ire_t *)mp1->b_rptr; 3859 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 3860 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 3861 } 3862 3863 /* Send it home. */ 3864 mp->b_datap->db_type = M_PCPROTO; 3865 tbr->PRIM_type = T_BIND_ACK; 3866 return (mp); 3867 3868 bad_addr: 3869 /* 3870 * If error = -1 then we generate a TBADADDR - otherwise error is 3871 * a unix errno. 3872 */ 3873 if (error > 0) 3874 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 3875 else 3876 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 3877 return (mp); 3878 } 3879 3880 /* 3881 * Here address is verified to be a valid local address. 3882 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 3883 * address is also considered a valid local address. 3884 * In the case of a broadcast/multicast address, however, the 3885 * upper protocol is expected to reset the src address 3886 * to 0 if it sees a IRE_BROADCAST type returned so that 3887 * no packets are emitted with broadcast/multicast address as 3888 * source address (that violates hosts requirements RFC1122) 3889 * The addresses valid for bind are: 3890 * (1) - INADDR_ANY (0) 3891 * (2) - IP address of an UP interface 3892 * (3) - IP address of a DOWN interface 3893 * (4) - valid local IP broadcast addresses. In this case 3894 * the conn will only receive packets destined to 3895 * the specified broadcast address. 3896 * (5) - a multicast address. In this case 3897 * the conn will only receive packets destined to 3898 * the specified multicast address. Note: the 3899 * application still has to issue an 3900 * IP_ADD_MEMBERSHIP socket option. 3901 * 3902 * On error, return -1 for TBADADDR otherwise pass the 3903 * errno with TSYSERR reply. 3904 * 3905 * In all the above cases, the bound address must be valid in the current zone. 3906 * When the address is loopback, multicast or broadcast, there might be many 3907 * matching IREs so bind has to look up based on the zone. 3908 */ 3909 int 3910 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 3911 boolean_t ire_requested, boolean_t ipsec_policy_set, 3912 boolean_t fanout_insert) 3913 { 3914 int error = 0; 3915 ire_t *src_ire; 3916 mblk_t *policy_mp; 3917 ipif_t *ipif; 3918 zoneid_t zoneid; 3919 3920 if (ipsec_policy_set) { 3921 policy_mp = mp->b_cont; 3922 } 3923 3924 /* 3925 * If it was previously connected, conn_fully_bound would have 3926 * been set. 3927 */ 3928 connp->conn_fully_bound = B_FALSE; 3929 3930 src_ire = NULL; 3931 ipif = NULL; 3932 3933 zoneid = connp->conn_zoneid; 3934 3935 if (src_addr) { 3936 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 3937 NULL, NULL, zoneid, MATCH_IRE_ZONEONLY); 3938 /* 3939 * If an address other than 0.0.0.0 is requested, 3940 * we verify that it is a valid address for bind 3941 * Note: Following code is in if-else-if form for 3942 * readability compared to a condition check. 3943 */ 3944 /* LINTED - statement has no consequent */ 3945 if (IRE_IS_LOCAL(src_ire)) { 3946 /* 3947 * (2) Bind to address of local UP interface 3948 */ 3949 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 3950 /* 3951 * (4) Bind to broadcast address 3952 * Note: permitted only from transports that 3953 * request IRE 3954 */ 3955 if (!ire_requested) 3956 error = EADDRNOTAVAIL; 3957 } else { 3958 /* 3959 * (3) Bind to address of local DOWN interface 3960 * (ipif_lookup_addr() looks up all interfaces 3961 * but we do not get here for UP interfaces 3962 * - case (2) above) 3963 * We put the protocol byte back into the mblk 3964 * since we may come back via ip_wput_nondata() 3965 * later with this mblk if ipif_lookup_addr chooses 3966 * to defer processing. 3967 */ 3968 *mp->b_wptr++ = (char)connp->conn_ulp; 3969 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 3970 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 3971 &error)) != NULL) { 3972 ipif_refrele(ipif); 3973 } else if (error == EINPROGRESS) { 3974 if (src_ire != NULL) 3975 ire_refrele(src_ire); 3976 return (EINPROGRESS); 3977 } else if (CLASSD(src_addr)) { 3978 error = 0; 3979 if (src_ire != NULL) 3980 ire_refrele(src_ire); 3981 /* 3982 * (5) bind to multicast address. 3983 * Fake out the IRE returned to upper 3984 * layer to be a broadcast IRE. 3985 */ 3986 src_ire = ire_ctable_lookup( 3987 INADDR_BROADCAST, INADDR_ANY, 3988 IRE_BROADCAST, NULL, zoneid, 3989 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 3990 if (src_ire == NULL || !ire_requested) 3991 error = EADDRNOTAVAIL; 3992 } else { 3993 /* 3994 * Not a valid address for bind 3995 */ 3996 error = EADDRNOTAVAIL; 3997 } 3998 /* 3999 * Just to keep it consistent with the processing in 4000 * ip_bind_v4() 4001 */ 4002 mp->b_wptr--; 4003 } 4004 if (error) { 4005 /* Red Alert! Attempting to be a bogon! */ 4006 ip1dbg(("ip_bind: bad src address 0x%x\n", 4007 ntohl(src_addr))); 4008 goto bad_addr; 4009 } 4010 } 4011 4012 /* 4013 * Allow setting new policies. For example, disconnects come 4014 * down as ipa_t bind. As we would have set conn_policy_cached 4015 * to B_TRUE before, we should set it to B_FALSE, so that policy 4016 * can change after the disconnect. 4017 */ 4018 connp->conn_policy_cached = B_FALSE; 4019 4020 /* 4021 * If not fanout_insert this was just an address verification 4022 */ 4023 if (fanout_insert) { 4024 /* 4025 * The addresses have been verified. Time to insert in 4026 * the correct fanout list. 4027 */ 4028 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4029 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4030 connp->conn_lport = lport; 4031 connp->conn_fport = 0; 4032 /* 4033 * Do we need to add a check to reject Multicast packets 4034 */ 4035 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4036 } 4037 done: 4038 if (error == 0) { 4039 if (ire_requested) { 4040 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4041 error = -1; 4042 /* Falls through to bad_addr */ 4043 } 4044 } else if (ipsec_policy_set) { 4045 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4046 error = -1; 4047 /* Falls through to bad_addr */ 4048 } 4049 } 4050 } 4051 bad_addr: 4052 if (src_ire != NULL) 4053 IRE_REFRELE(src_ire); 4054 if (ipsec_policy_set) { 4055 ASSERT(policy_mp == mp->b_cont); 4056 ASSERT(policy_mp != NULL); 4057 freeb(policy_mp); 4058 /* 4059 * As of now assume that nothing else accompanies 4060 * IPSEC_POLICY_SET. 4061 */ 4062 mp->b_cont = NULL; 4063 } 4064 return (error); 4065 } 4066 4067 /* 4068 * Verify that both the source and destination addresses 4069 * are valid. If verify_dst is false, then the destination address may be 4070 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4071 * destination reachability, while tunnels do not. 4072 * Note that we allow connect to broadcast and multicast 4073 * addresses when ire_requested is set. Thus the ULP 4074 * has to check for IRE_BROADCAST and multicast. 4075 * 4076 * Returns zero if ok. 4077 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4078 * (for use with TSYSERR reply). 4079 */ 4080 int 4081 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4082 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4083 boolean_t ire_requested, boolean_t ipsec_policy_set, 4084 boolean_t fanout_insert, boolean_t verify_dst) 4085 { 4086 ire_t *src_ire; 4087 ire_t *dst_ire; 4088 int error = 0; 4089 int protocol; 4090 mblk_t *policy_mp; 4091 ire_t *sire = NULL; 4092 ire_t *md_dst_ire = NULL; 4093 ill_t *md_ill = NULL; 4094 zoneid_t zoneid; 4095 ipaddr_t src_addr = *src_addrp; 4096 4097 src_ire = dst_ire = NULL; 4098 protocol = *mp->b_wptr & 0xFF; 4099 4100 /* 4101 * If we never got a disconnect before, clear it now. 4102 */ 4103 connp->conn_fully_bound = B_FALSE; 4104 4105 if (ipsec_policy_set) { 4106 policy_mp = mp->b_cont; 4107 } 4108 4109 zoneid = connp->conn_zoneid; 4110 4111 if (CLASSD(dst_addr)) { 4112 /* Pick up an IRE_BROADCAST */ 4113 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4114 NULL, zoneid, (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4115 MATCH_IRE_RJ_BHOLE)); 4116 } else { 4117 /* 4118 * If conn_dontroute is set or if conn_nexthop_set is set, 4119 * and onlink ipif is not found set ENETUNREACH error. 4120 */ 4121 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4122 ipif_t *ipif; 4123 4124 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4125 dst_addr : connp->conn_nexthop_v4, zoneid); 4126 if (ipif == NULL) { 4127 error = ENETUNREACH; 4128 goto bad_addr; 4129 } 4130 ipif_refrele(ipif); 4131 } 4132 4133 if (connp->conn_nexthop_set) { 4134 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4135 0, 0, NULL, NULL, zoneid, 0); 4136 } else { 4137 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4138 &sire, zoneid, 4139 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4140 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE)); 4141 } 4142 } 4143 /* 4144 * dst_ire can't be a broadcast when not ire_requested. 4145 * We also prevent ire's with src address INADDR_ANY to 4146 * be used, which are created temporarily for 4147 * sending out packets from endpoints that have 4148 * conn_unspec_src set. If verify_dst is true, the destination must be 4149 * reachable. If verify_dst is false, the destination needn't be 4150 * reachable. 4151 * 4152 * If we match on a reject or black hole, then we've got a 4153 * local failure. May as well fail out the connect() attempt, 4154 * since it's never going to succeed. 4155 */ 4156 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4157 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4158 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4159 /* 4160 * If we're verifying destination reachability, we always want 4161 * to complain here. 4162 * 4163 * If we're not verifying destination reachability but the 4164 * destination has a route, we still want to fail on the 4165 * temporary address and broadcast address tests. 4166 */ 4167 if (verify_dst || (dst_ire != NULL)) { 4168 if (ip_debug > 2) { 4169 pr_addr_dbg("ip_bind_connected: bad connected " 4170 "dst %s\n", AF_INET, &dst_addr); 4171 } 4172 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4173 error = ENETUNREACH; 4174 else 4175 error = EHOSTUNREACH; 4176 goto bad_addr; 4177 } 4178 } 4179 /* 4180 * If the app does a connect(), it means that it will most likely 4181 * send more than 1 packet to the destination. It makes sense 4182 * to clear the temporary flag. 4183 */ 4184 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4185 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4186 irb_t *irb = dst_ire->ire_bucket; 4187 4188 rw_enter(&irb->irb_lock, RW_WRITER); 4189 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4190 irb->irb_tmp_ire_cnt--; 4191 rw_exit(&irb->irb_lock); 4192 } 4193 4194 /* 4195 * See if we should notify ULP about MDT; we do this whether or not 4196 * ire_requested is TRUE, in order to handle active connects; MDT 4197 * eligibility tests for passive connects are handled separately 4198 * through tcp_adapt_ire(). We do this before the source address 4199 * selection, because dst_ire may change after a call to 4200 * ipif_select_source(). This is a best-effort check, as the 4201 * packet for this connection may not actually go through 4202 * dst_ire->ire_stq, and the exact IRE can only be known after 4203 * calling ip_newroute(). This is why we further check on the 4204 * IRE during Multidata packet transmission in tcp_multisend(). 4205 */ 4206 if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL && 4207 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4208 (md_ill = ire_to_ill(dst_ire), md_ill != NULL) && 4209 ILL_MDT_CAPABLE(md_ill)) { 4210 md_dst_ire = dst_ire; 4211 IRE_REFHOLD(md_dst_ire); 4212 } 4213 4214 if (dst_ire != NULL && 4215 dst_ire->ire_type == IRE_LOCAL && 4216 dst_ire->ire_zoneid != zoneid) { 4217 /* 4218 * If the IRE belongs to a different zone, look for a matching 4219 * route in the forwarding table and use the source address from 4220 * that route. 4221 */ 4222 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4223 zoneid, 0, 4224 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4225 MATCH_IRE_RJ_BHOLE); 4226 if (src_ire == NULL) { 4227 error = EHOSTUNREACH; 4228 goto bad_addr; 4229 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4230 if (!(src_ire->ire_type & IRE_HOST)) 4231 error = ENETUNREACH; 4232 else 4233 error = EHOSTUNREACH; 4234 goto bad_addr; 4235 } 4236 if (src_addr == INADDR_ANY) 4237 src_addr = src_ire->ire_src_addr; 4238 ire_refrele(src_ire); 4239 src_ire = NULL; 4240 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4241 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4242 src_addr = sire->ire_src_addr; 4243 ire_refrele(dst_ire); 4244 dst_ire = sire; 4245 sire = NULL; 4246 } else { 4247 /* 4248 * Pick a source address so that a proper inbound 4249 * load spreading would happen. 4250 */ 4251 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4252 ipif_t *src_ipif = NULL; 4253 ire_t *ipif_ire; 4254 4255 /* 4256 * Supply a local source address such that inbound 4257 * load spreading happens. 4258 * 4259 * Determine the best source address on this ill for 4260 * the destination. 4261 * 4262 * 1) For broadcast, we should return a broadcast ire 4263 * found above so that upper layers know that the 4264 * destination address is a broadcast address. 4265 * 4266 * 2) If this is part of a group, select a better 4267 * source address so that better inbound load 4268 * balancing happens. Do the same if the ipif 4269 * is DEPRECATED. 4270 * 4271 * 3) If the outgoing interface is part of a usesrc 4272 * group, then try selecting a source address from 4273 * the usesrc ILL. 4274 */ 4275 if (!(dst_ire->ire_type & IRE_BROADCAST) && 4276 ((dst_ill->ill_group != NULL) || 4277 (dst_ire->ire_ipif->ipif_flags & 4278 IPIF_DEPRECATED) || 4279 (dst_ill->ill_usesrc_ifindex != 0))) { 4280 /* 4281 * If the destination is reachable via a 4282 * given gateway, the selected source address 4283 * should be in the same subnet as the gateway. 4284 * Otherwise, the destination is not reachable. 4285 * 4286 * If there are no interfaces on the same subnet 4287 * as the destination, ipif_select_source gives 4288 * first non-deprecated interface which might be 4289 * on a different subnet than the gateway. 4290 * This is not desirable. Hence pass the dst_ire 4291 * source address to ipif_select_source. 4292 * It is sure that the destination is reachable 4293 * with the dst_ire source address subnet. 4294 * So passing dst_ire source address to 4295 * ipif_select_source will make sure that the 4296 * selected source will be on the same subnet 4297 * as dst_ire source address. 4298 */ 4299 ipaddr_t saddr = 4300 dst_ire->ire_ipif->ipif_src_addr; 4301 src_ipif = ipif_select_source(dst_ill, 4302 saddr, zoneid); 4303 if (src_ipif != NULL) { 4304 if (IS_VNI(src_ipif->ipif_ill)) { 4305 /* 4306 * For VNI there is no 4307 * interface route 4308 */ 4309 src_addr = 4310 src_ipif->ipif_src_addr; 4311 } else { 4312 ipif_ire = 4313 ipif_to_ire(src_ipif); 4314 if (ipif_ire != NULL) { 4315 IRE_REFRELE(dst_ire); 4316 dst_ire = ipif_ire; 4317 } 4318 src_addr = 4319 dst_ire->ire_src_addr; 4320 } 4321 ipif_refrele(src_ipif); 4322 } else { 4323 src_addr = dst_ire->ire_src_addr; 4324 } 4325 } else { 4326 src_addr = dst_ire->ire_src_addr; 4327 } 4328 } 4329 } 4330 4331 /* 4332 * We do ire_route_lookup() here (and not 4333 * interface lookup as we assert that 4334 * src_addr should only come from an 4335 * UP interface for hard binding. 4336 */ 4337 ASSERT(src_ire == NULL); 4338 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 4339 NULL, zoneid, MATCH_IRE_ZONEONLY); 4340 /* src_ire must be a local|loopback */ 4341 if (!IRE_IS_LOCAL(src_ire)) { 4342 if (ip_debug > 2) { 4343 pr_addr_dbg("ip_bind_connected: bad connected " 4344 "src %s\n", AF_INET, &src_addr); 4345 } 4346 error = EADDRNOTAVAIL; 4347 goto bad_addr; 4348 } 4349 4350 /* 4351 * If the source address is a loopback address, the 4352 * destination had best be local or multicast. 4353 * The transports that can't handle multicast will reject 4354 * those addresses. 4355 */ 4356 if (src_ire->ire_type == IRE_LOOPBACK && 4357 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 4358 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 4359 error = -1; 4360 goto bad_addr; 4361 } 4362 4363 /* 4364 * Allow setting new policies. For example, disconnects come 4365 * down as ipa_t bind. As we would have set conn_policy_cached 4366 * to B_TRUE before, we should set it to B_FALSE, so that policy 4367 * can change after the disconnect. 4368 */ 4369 connp->conn_policy_cached = B_FALSE; 4370 4371 /* 4372 * Set the conn addresses/ports immediately, so the IPsec policy calls 4373 * can handle their passed-in conn's. 4374 */ 4375 4376 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4377 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 4378 connp->conn_lport = lport; 4379 connp->conn_fport = fport; 4380 *src_addrp = src_addr; 4381 4382 ASSERT(!(ipsec_policy_set && ire_requested)); 4383 if (ire_requested) { 4384 iulp_t *ulp_info = NULL; 4385 4386 /* 4387 * Note that sire will not be NULL if this is an off-link 4388 * connection and there is not cache for that dest yet. 4389 * 4390 * XXX Because of an existing bug, if there are multiple 4391 * default routes, the IRE returned now may not be the actual 4392 * default route used (default routes are chosen in a 4393 * round robin fashion). So if the metrics for different 4394 * default routes are different, we may return the wrong 4395 * metrics. This will not be a problem if the existing 4396 * bug is fixed. 4397 */ 4398 if (sire != NULL) { 4399 ulp_info = &(sire->ire_uinfo); 4400 } 4401 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 4402 error = -1; 4403 goto bad_addr; 4404 } 4405 } else if (ipsec_policy_set) { 4406 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4407 error = -1; 4408 goto bad_addr; 4409 } 4410 } 4411 4412 /* 4413 * Cache IPsec policy in this conn. If we have per-socket policy, 4414 * we'll cache that. If we don't, we'll inherit global policy. 4415 * 4416 * We can't insert until the conn reflects the policy. Note that 4417 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 4418 * connections where we don't have a policy. This is to prevent 4419 * global policy lookups in the inbound path. 4420 * 4421 * If we insert before we set conn_policy_cached, 4422 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 4423 * because global policy cound be non-empty. We normally call 4424 * ipsec_check_policy() for conn_policy_cached connections only if 4425 * ipc_in_enforce_policy is set. But in this case, 4426 * conn_policy_cached can get set anytime since we made the 4427 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 4428 * called, which will make the above assumption false. Thus, we 4429 * need to insert after we set conn_policy_cached. 4430 */ 4431 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 4432 goto bad_addr; 4433 4434 if (fanout_insert) { 4435 /* 4436 * The addresses have been verified. Time to insert in 4437 * the correct fanout list. 4438 */ 4439 error = ipcl_conn_insert(connp, protocol, src_addr, 4440 dst_addr, connp->conn_ports); 4441 } 4442 4443 if (error == 0) { 4444 connp->conn_fully_bound = B_TRUE; 4445 /* 4446 * Our initial checks for MDT have passed; the IRE is not 4447 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 4448 * be supporting MDT. Pass the IRE, IPC and ILL into 4449 * ip_mdinfo_return(), which performs further checks 4450 * against them and upon success, returns the MDT info 4451 * mblk which we will attach to the bind acknowledgment. 4452 */ 4453 if (md_dst_ire != NULL) { 4454 mblk_t *mdinfo_mp; 4455 4456 ASSERT(md_ill != NULL); 4457 ASSERT(md_ill->ill_mdt_capab != NULL); 4458 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 4459 md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL) 4460 linkb(mp, mdinfo_mp); 4461 } 4462 } 4463 bad_addr: 4464 if (ipsec_policy_set) { 4465 ASSERT(policy_mp == mp->b_cont); 4466 ASSERT(policy_mp != NULL); 4467 freeb(policy_mp); 4468 /* 4469 * As of now assume that nothing else accompanies 4470 * IPSEC_POLICY_SET. 4471 */ 4472 mp->b_cont = NULL; 4473 } 4474 if (src_ire != NULL) 4475 IRE_REFRELE(src_ire); 4476 if (dst_ire != NULL) 4477 IRE_REFRELE(dst_ire); 4478 if (sire != NULL) 4479 IRE_REFRELE(sire); 4480 if (md_dst_ire != NULL) 4481 IRE_REFRELE(md_dst_ire); 4482 return (error); 4483 } 4484 4485 /* 4486 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 4487 * Prefers dst_ire over src_ire. 4488 */ 4489 static boolean_t 4490 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 4491 { 4492 mblk_t *mp1; 4493 ire_t *ret_ire = NULL; 4494 4495 mp1 = mp->b_cont; 4496 ASSERT(mp1 != NULL); 4497 4498 if (ire != NULL) { 4499 /* 4500 * mp1 initialized above to IRE_DB_REQ_TYPE 4501 * appended mblk. Its <upper protocol>'s 4502 * job to make sure there is room. 4503 */ 4504 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 4505 return (0); 4506 4507 mp1->b_datap->db_type = IRE_DB_TYPE; 4508 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 4509 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 4510 ret_ire = (ire_t *)mp1->b_rptr; 4511 /* 4512 * Pass the latest setting of the ip_path_mtu_discovery and 4513 * copy the ulp info if any. 4514 */ 4515 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 4516 IPH_DF : 0; 4517 if (ulp_info != NULL) { 4518 bcopy(ulp_info, &(ret_ire->ire_uinfo), 4519 sizeof (iulp_t)); 4520 } 4521 ret_ire->ire_mp = mp1; 4522 } else { 4523 /* 4524 * No IRE was found. Remove IRE mblk. 4525 */ 4526 mp->b_cont = mp1->b_cont; 4527 freeb(mp1); 4528 } 4529 4530 return (1); 4531 } 4532 4533 /* 4534 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 4535 * the final piece where we don't. Return a pointer to the first mblk in the 4536 * result, and update the pointer to the next mblk to chew on. If anything 4537 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 4538 * NULL pointer. 4539 */ 4540 mblk_t * 4541 ip_carve_mp(mblk_t **mpp, ssize_t len) 4542 { 4543 mblk_t *mp0; 4544 mblk_t *mp1; 4545 mblk_t *mp2; 4546 4547 if (!len || !mpp || !(mp0 = *mpp)) 4548 return (NULL); 4549 /* If we aren't going to consume the first mblk, we need a dup. */ 4550 if (mp0->b_wptr - mp0->b_rptr > len) { 4551 mp1 = dupb(mp0); 4552 if (mp1) { 4553 /* Partition the data between the two mblks. */ 4554 mp1->b_wptr = mp1->b_rptr + len; 4555 mp0->b_rptr = mp1->b_wptr; 4556 /* 4557 * after adjustments if mblk not consumed is now 4558 * unaligned, try to align it. If this fails free 4559 * all messages and let upper layer recover. 4560 */ 4561 if (!OK_32PTR(mp0->b_rptr)) { 4562 if (!pullupmsg(mp0, -1)) { 4563 freemsg(mp0); 4564 freemsg(mp1); 4565 *mpp = NULL; 4566 return (NULL); 4567 } 4568 } 4569 } 4570 return (mp1); 4571 } 4572 /* Eat through as many mblks as we need to get len bytes. */ 4573 len -= mp0->b_wptr - mp0->b_rptr; 4574 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 4575 if (mp2->b_wptr - mp2->b_rptr > len) { 4576 /* 4577 * We won't consume the entire last mblk. Like 4578 * above, dup and partition it. 4579 */ 4580 mp1->b_cont = dupb(mp2); 4581 mp1 = mp1->b_cont; 4582 if (!mp1) { 4583 /* 4584 * Trouble. Rather than go to a lot of 4585 * trouble to clean up, we free the messages. 4586 * This won't be any worse than losing it on 4587 * the wire. 4588 */ 4589 freemsg(mp0); 4590 freemsg(mp2); 4591 *mpp = NULL; 4592 return (NULL); 4593 } 4594 mp1->b_wptr = mp1->b_rptr + len; 4595 mp2->b_rptr = mp1->b_wptr; 4596 /* 4597 * after adjustments if mblk not consumed is now 4598 * unaligned, try to align it. If this fails free 4599 * all messages and let upper layer recover. 4600 */ 4601 if (!OK_32PTR(mp2->b_rptr)) { 4602 if (!pullupmsg(mp2, -1)) { 4603 freemsg(mp0); 4604 freemsg(mp2); 4605 *mpp = NULL; 4606 return (NULL); 4607 } 4608 } 4609 *mpp = mp2; 4610 return (mp0); 4611 } 4612 /* Decrement len by the amount we just got. */ 4613 len -= mp2->b_wptr - mp2->b_rptr; 4614 } 4615 /* 4616 * len should be reduced to zero now. If not our caller has 4617 * screwed up. 4618 */ 4619 if (len) { 4620 /* Shouldn't happen! */ 4621 freemsg(mp0); 4622 *mpp = NULL; 4623 return (NULL); 4624 } 4625 /* 4626 * We consumed up to exactly the end of an mblk. Detach the part 4627 * we are returning from the rest of the chain. 4628 */ 4629 mp1->b_cont = NULL; 4630 *mpp = mp2; 4631 return (mp0); 4632 } 4633 4634 /* The ill stream is being unplumbed. Called from ip_close */ 4635 int 4636 ip_modclose(ill_t *ill) 4637 { 4638 4639 boolean_t success; 4640 ipsq_t *ipsq; 4641 ipif_t *ipif; 4642 queue_t *q = ill->ill_rq; 4643 4644 /* 4645 * Forcibly enter the ipsq after some delay. This is to take 4646 * care of the case when some ioctl does not complete because 4647 * we sent a control message to the driver and it did not 4648 * send us a reply. We want to be able to at least unplumb 4649 * and replumb rather than force the user to reboot the system. 4650 */ 4651 success = ipsq_enter(ill, B_FALSE); 4652 4653 /* 4654 * Open/close/push/pop is guaranteed to be single threaded 4655 * per stream by STREAMS. FS guarantees that all references 4656 * from top are gone before close is called. So there can't 4657 * be another close thread that has set CONDEMNED on this ill. 4658 * and cause ipsq_enter to return failure. 4659 */ 4660 ASSERT(success); 4661 ipsq = ill->ill_phyint->phyint_ipsq; 4662 4663 /* 4664 * Mark it condemned. No new reference will be made to this ill. 4665 * Lookup functions will return an error. Threads that try to 4666 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4667 * that the refcnt will drop down to zero. 4668 */ 4669 mutex_enter(&ill->ill_lock); 4670 ill->ill_state_flags |= ILL_CONDEMNED; 4671 for (ipif = ill->ill_ipif; ipif != NULL; 4672 ipif = ipif->ipif_next) { 4673 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4674 } 4675 /* 4676 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4677 * returns error if ILL_CONDEMNED is set 4678 */ 4679 cv_broadcast(&ill->ill_cv); 4680 mutex_exit(&ill->ill_lock); 4681 4682 /* 4683 * Shut down fragmentation reassembly. 4684 * ill_frag_timer won't start a timer again. 4685 * Now cancel any existing timer 4686 */ 4687 (void) untimeout(ill->ill_frag_timer_id); 4688 (void) ill_frag_timeout(ill, 0); 4689 4690 /* 4691 * If MOVE was in progress, clear the 4692 * move_in_progress fields also. 4693 */ 4694 if (ill->ill_move_in_progress) { 4695 ILL_CLEAR_MOVE(ill); 4696 } 4697 4698 /* 4699 * Call ill_delete to bring down the ipifs, ilms and ill on 4700 * this ill. Then wait for the refcnts to drop to zero. 4701 * ill_is_quiescent checks whether the ill is really quiescent. 4702 * Then make sure that threads that are waiting to enter the 4703 * ipsq have seen the error returned by ipsq_enter and have 4704 * gone away. Then we call ill_delete_tail which does the 4705 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 4706 */ 4707 ill_delete(ill); 4708 mutex_enter(&ill->ill_lock); 4709 while (!ill_is_quiescent(ill)) 4710 cv_wait(&ill->ill_cv, &ill->ill_lock); 4711 while (ill->ill_waiters) 4712 cv_wait(&ill->ill_cv, &ill->ill_lock); 4713 4714 mutex_exit(&ill->ill_lock); 4715 4716 /* qprocsoff is called in ill_delete_tail */ 4717 ill_delete_tail(ill); 4718 4719 /* 4720 * Walk through all upper (conn) streams and qenable 4721 * those that have queued data. 4722 * close synchronization needs this to 4723 * be done to ensure that all upper layers blocked 4724 * due to flow control to the closing device 4725 * get unblocked. 4726 */ 4727 ip1dbg(("ip_wsrv: walking\n")); 4728 conn_walk_drain(); 4729 4730 mutex_enter(&ip_mi_lock); 4731 mi_close_unlink(&ip_g_head, (IDP)ill); 4732 mutex_exit(&ip_mi_lock); 4733 4734 /* 4735 * credp could be null if the open didn't succeed and ip_modopen 4736 * itself calls ip_close. 4737 */ 4738 if (ill->ill_credp != NULL) 4739 crfree(ill->ill_credp); 4740 4741 mi_close_free((IDP)ill); 4742 q->q_ptr = WR(q)->q_ptr = NULL; 4743 4744 ipsq_exit(ipsq, B_TRUE, B_TRUE); 4745 4746 return (0); 4747 } 4748 4749 /* 4750 * This is called as part of close() for both IP and UDP 4751 * in order to quiesce the conn. 4752 */ 4753 void 4754 ip_quiesce_conn(conn_t *connp) 4755 { 4756 boolean_t drain_cleanup_reqd = B_FALSE; 4757 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4758 boolean_t ilg_cleanup_reqd = B_FALSE; 4759 4760 ASSERT(!IPCL_IS_TCP(connp)); 4761 4762 /* 4763 * Mark the conn as closing, and this conn must not be 4764 * inserted in future into any list. Eg. conn_drain_insert(), 4765 * won't insert this conn into the conn_drain_list. 4766 * Similarly ill_pending_mp_add() will not add any mp to 4767 * the pending mp list, after this conn has started closing. 4768 * 4769 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 4770 * cannot get set henceforth. 4771 */ 4772 mutex_enter(&connp->conn_lock); 4773 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4774 connp->conn_state_flags |= CONN_CLOSING; 4775 if (connp->conn_idl != NULL) 4776 drain_cleanup_reqd = B_TRUE; 4777 if (connp->conn_oper_pending_ill != NULL) 4778 conn_ioctl_cleanup_reqd = B_TRUE; 4779 if (connp->conn_ilg_inuse != 0) 4780 ilg_cleanup_reqd = B_TRUE; 4781 mutex_exit(&connp->conn_lock); 4782 4783 if (IPCL_IS_UDP(connp)) 4784 udp_quiesce_conn(connp); 4785 4786 if (conn_ioctl_cleanup_reqd) 4787 conn_ioctl_cleanup(connp); 4788 4789 /* 4790 * Remove this conn from any fanout list it is on. 4791 * and then wait for any threads currently operating 4792 * on this endpoint to finish 4793 */ 4794 ipcl_hash_remove(connp); 4795 4796 /* 4797 * Remove this conn from the drain list, and do 4798 * any other cleanup that may be required. 4799 * (Only non-tcp streams may have a non-null conn_idl. 4800 * TCP streams are never flow controlled, and 4801 * conn_idl will be null) 4802 */ 4803 if (drain_cleanup_reqd) 4804 conn_drain_tail(connp, B_TRUE); 4805 4806 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 4807 (void) ip_mrouter_done(NULL); 4808 4809 if (ilg_cleanup_reqd) 4810 ilg_delete_all(connp); 4811 4812 conn_delete_ire(connp, NULL); 4813 4814 /* 4815 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4816 * callers from write side can't be there now because close 4817 * is in progress. The only other caller is ipcl_walk 4818 * which checks for the condemned flag. 4819 */ 4820 mutex_enter(&connp->conn_lock); 4821 connp->conn_state_flags |= CONN_CONDEMNED; 4822 while (connp->conn_ref != 1) 4823 cv_wait(&connp->conn_cv, &connp->conn_lock); 4824 connp->conn_state_flags |= CONN_QUIESCED; 4825 mutex_exit(&connp->conn_lock); 4826 } 4827 4828 /* ARGSUSED */ 4829 int 4830 ip_close(queue_t *q, int flags) 4831 { 4832 conn_t *connp; 4833 4834 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 4835 4836 /* 4837 * Call the appropriate delete routine depending on whether this is 4838 * a module or device. 4839 */ 4840 if (WR(q)->q_next != NULL) { 4841 /* This is a module close */ 4842 return (ip_modclose((ill_t *)q->q_ptr)); 4843 } 4844 4845 connp = q->q_ptr; 4846 ip_quiesce_conn(connp); 4847 4848 qprocsoff(q); 4849 4850 /* 4851 * Now we are truly single threaded on this stream, and can 4852 * delete the things hanging off the connp, and finally the connp. 4853 * We removed this connp from the fanout list, it cannot be 4854 * accessed thru the fanouts, and we already waited for the 4855 * conn_ref to drop to 0. We are already in close, so 4856 * there cannot be any other thread from the top. qprocsoff 4857 * has completed, and service has completed or won't run in 4858 * future. 4859 */ 4860 ASSERT(connp->conn_ref == 1); 4861 4862 /* 4863 * A conn which was previously marked as IPCL_UDP cannot 4864 * retain the flag because it would have been cleared by 4865 * udp_close(). 4866 */ 4867 ASSERT(!IPCL_IS_UDP(connp)); 4868 4869 if (connp->conn_latch != NULL) { 4870 IPLATCH_REFRELE(connp->conn_latch); 4871 connp->conn_latch = NULL; 4872 } 4873 if (connp->conn_policy != NULL) { 4874 IPPH_REFRELE(connp->conn_policy); 4875 connp->conn_policy = NULL; 4876 } 4877 if (connp->conn_ipsec_opt_mp != NULL) { 4878 freemsg(connp->conn_ipsec_opt_mp); 4879 connp->conn_ipsec_opt_mp = NULL; 4880 } 4881 if (connp->conn_cred != NULL) { 4882 crfree(connp->conn_cred); 4883 connp->conn_cred = NULL; 4884 } 4885 4886 inet_minor_free(ip_minor_arena, connp->conn_dev); 4887 4888 connp->conn_ref--; 4889 ipcl_conn_destroy(connp); 4890 4891 q->q_ptr = WR(q)->q_ptr = NULL; 4892 return (0); 4893 } 4894 4895 int 4896 ip_snmpmod_close(queue_t *q) 4897 { 4898 conn_t *connp = Q_TO_CONN(q); 4899 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 4900 4901 qprocsoff(q); 4902 4903 if (connp->conn_flags & IPCL_UDPMOD) 4904 udp_close_free(connp); 4905 4906 if (connp->conn_cred != NULL) { 4907 crfree(connp->conn_cred); 4908 connp->conn_cred = NULL; 4909 } 4910 CONN_DEC_REF(connp); 4911 q->q_ptr = WR(q)->q_ptr = NULL; 4912 return (0); 4913 } 4914 4915 /* 4916 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 4917 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 4918 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 4919 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 4920 * queues as we never enqueue messages there and we don't handle any ioctls. 4921 * Everything else is freed. 4922 */ 4923 void 4924 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 4925 { 4926 conn_t *connp = q->q_ptr; 4927 pfi_t setfn; 4928 pfi_t getfn; 4929 4930 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 4931 4932 switch (DB_TYPE(mp)) { 4933 case M_PROTO: 4934 case M_PCPROTO: 4935 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 4936 ((((union T_primitives *)mp->b_rptr)->type == 4937 T_SVR4_OPTMGMT_REQ) || 4938 (((union T_primitives *)mp->b_rptr)->type == 4939 T_OPTMGMT_REQ))) { 4940 /* 4941 * This is the only TPI primitive supported. Its 4942 * handling does not require tcp_t, but it does require 4943 * conn_t to check permissions. 4944 */ 4945 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 4946 4947 if (connp->conn_flags & IPCL_TCPMOD) { 4948 setfn = tcp_snmp_set; 4949 getfn = tcp_snmp_get; 4950 } else { 4951 setfn = udp_snmp_set; 4952 getfn = udp_snmp_get; 4953 } 4954 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 4955 freemsg(mp); 4956 return; 4957 } 4958 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 4959 != NULL) 4960 qreply(q, mp); 4961 break; 4962 case M_FLUSH: 4963 case M_IOCTL: 4964 putnext(q, mp); 4965 break; 4966 default: 4967 freemsg(mp); 4968 break; 4969 } 4970 } 4971 4972 /* Return the IP checksum for the IP header at "iph". */ 4973 uint16_t 4974 ip_csum_hdr(ipha_t *ipha) 4975 { 4976 uint16_t *uph; 4977 uint32_t sum; 4978 int opt_len; 4979 4980 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 4981 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 4982 uph = (uint16_t *)ipha; 4983 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 4984 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 4985 if (opt_len > 0) { 4986 do { 4987 sum += uph[10]; 4988 sum += uph[11]; 4989 uph += 2; 4990 } while (--opt_len); 4991 } 4992 sum = (sum & 0xFFFF) + (sum >> 16); 4993 sum = ~(sum + (sum >> 16)) & 0xFFFF; 4994 if (sum == 0xffff) 4995 sum = 0; 4996 return ((uint16_t)sum); 4997 } 4998 4999 void 5000 ip_ddi_destroy(void) 5001 { 5002 tcp_ddi_destroy(); 5003 sctp_ddi_destroy(); 5004 ipsec_loader_destroy(); 5005 ipsec_policy_destroy(); 5006 ipsec_kstat_destroy(); 5007 nd_free(&ip_g_nd); 5008 mutex_destroy(&igmp_timer_lock); 5009 mutex_destroy(&mld_timer_lock); 5010 mutex_destroy(&igmp_slowtimeout_lock); 5011 mutex_destroy(&mld_slowtimeout_lock); 5012 mutex_destroy(&ip_mi_lock); 5013 mutex_destroy(&rts_clients.connf_lock); 5014 ip_ire_fini(); 5015 ip6_asp_free(); 5016 conn_drain_fini(); 5017 ipcl_destroy(); 5018 inet_minor_destroy(ip_minor_arena); 5019 icmp_kstat_fini(); 5020 ip_kstat_fini(); 5021 rw_destroy(&ipsec_capab_ills_lock); 5022 rw_destroy(&ill_g_usesrc_lock); 5023 ip_drop_unregister(&ip_dropper); 5024 } 5025 5026 5027 void 5028 ip_ddi_init(void) 5029 { 5030 TCP6_MAJ = ddi_name_to_major(TCP6); 5031 TCP_MAJ = ddi_name_to_major(TCP); 5032 SCTP_MAJ = ddi_name_to_major(SCTP); 5033 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5034 5035 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5036 5037 /* IP's IPsec code calls the packet dropper */ 5038 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5039 5040 if (!ip_g_nd) { 5041 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5042 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5043 nd_free(&ip_g_nd); 5044 } 5045 } 5046 5047 ipsec_loader_init(); 5048 ipsec_policy_init(); 5049 ipsec_kstat_init(); 5050 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5051 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5052 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5053 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5054 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5055 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5056 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5057 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5058 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5059 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5060 5061 /* 5062 * For IP and TCP the minor numbers should start from 2 since we have 4 5063 * initial devices: ip, ip6, tcp, tcp6. 5064 */ 5065 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5066 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5067 cmn_err(CE_PANIC, 5068 "ip_ddi_init: ip_minor_arena creation failed\n"); 5069 } 5070 5071 ipcl_init(); 5072 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5073 ip_ire_init(); 5074 ip6_asp_init(); 5075 ipif_init(); 5076 conn_drain_init(); 5077 tcp_ddi_init(); 5078 sctp_ddi_init(); 5079 5080 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5081 5082 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5083 "net", KSTAT_TYPE_NAMED, 5084 sizeof (ip_statistics) / sizeof (kstat_named_t), 5085 KSTAT_FLAG_VIRTUAL)) != NULL) { 5086 ip_kstat->ks_data = &ip_statistics; 5087 kstat_install(ip_kstat); 5088 } 5089 ip_kstat_init(); 5090 ip6_kstat_init(); 5091 icmp_kstat_init(); 5092 5093 ipsec_loader_start(); 5094 } 5095 5096 /* 5097 * Allocate and initialize a DLPI template of the specified length. (May be 5098 * called as writer.) 5099 */ 5100 mblk_t * 5101 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5102 { 5103 mblk_t *mp; 5104 5105 mp = allocb(len, BPRI_MED); 5106 if (!mp) 5107 return (NULL); 5108 5109 /* 5110 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5111 * of which we don't seem to use) are sent with M_PCPROTO, and 5112 * that other DLPI are M_PROTO. 5113 */ 5114 if (prim == DL_INFO_REQ) { 5115 mp->b_datap->db_type = M_PCPROTO; 5116 } else { 5117 mp->b_datap->db_type = M_PROTO; 5118 } 5119 5120 mp->b_wptr = mp->b_rptr + len; 5121 bzero(mp->b_rptr, len); 5122 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5123 return (mp); 5124 } 5125 5126 const char * 5127 dlpi_prim_str(int prim) 5128 { 5129 switch (prim) { 5130 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5131 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5132 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5133 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5134 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5135 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5136 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5137 case DL_OK_ACK: return ("DL_OK_ACK"); 5138 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5139 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5140 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5141 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5142 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5143 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5144 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5145 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5146 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5147 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5148 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5149 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5150 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5151 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5152 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5153 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5154 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5155 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5156 default: return ("<unknown primitive>"); 5157 } 5158 } 5159 5160 const char * 5161 dlpi_err_str(int err) 5162 { 5163 switch (err) { 5164 case DL_ACCESS: return ("DL_ACCESS"); 5165 case DL_BADADDR: return ("DL_BADADDR"); 5166 case DL_BADCORR: return ("DL_BADCORR"); 5167 case DL_BADDATA: return ("DL_BADDATA"); 5168 case DL_BADPPA: return ("DL_BADPPA"); 5169 case DL_BADPRIM: return ("DL_BADPRIM"); 5170 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5171 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5172 case DL_BADSAP: return ("DL_BADSAP"); 5173 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5174 case DL_BOUND: return ("DL_BOUND"); 5175 case DL_INITFAILED: return ("DL_INITFAILED"); 5176 case DL_NOADDR: return ("DL_NOADDR"); 5177 case DL_NOTINIT: return ("DL_NOTINIT"); 5178 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5179 case DL_SYSERR: return ("DL_SYSERR"); 5180 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5181 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5182 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5183 case DL_TOOMANY: return ("DL_TOOMANY"); 5184 case DL_NOTENAB: return ("DL_NOTENAB"); 5185 case DL_BUSY: return ("DL_BUSY"); 5186 case DL_NOAUTO: return ("DL_NOAUTO"); 5187 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5188 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5189 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5190 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5191 case DL_PENDING: return ("DL_PENDING"); 5192 default: return ("<unknown error>"); 5193 } 5194 } 5195 5196 /* 5197 * Debug formatting routine. Returns a character string representation of the 5198 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5199 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5200 */ 5201 char * 5202 ip_dot_addr(ipaddr_t addr, char *buf) 5203 { 5204 return (ip_dot_saddr((uchar_t *)&addr, buf)); 5205 } 5206 5207 /* 5208 * Debug formatting routine. Returns a character string representation of the 5209 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5210 * as a pointer. The "xxx" parts including left zero padding so the final 5211 * string will fit easily in tables. It would be nice to take a padding 5212 * length argument instead. 5213 */ 5214 static char * 5215 ip_dot_saddr(uchar_t *addr, char *buf) 5216 { 5217 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5218 addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF); 5219 return (buf); 5220 } 5221 5222 /* 5223 * Send an ICMP error after patching up the packet appropriately. Returns 5224 * non-zero if the appropriate MIB should be bumped; zero otherwise. 5225 */ 5226 static boolean_t 5227 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 5228 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 5229 { 5230 ipha_t *ipha; 5231 mblk_t *first_mp; 5232 boolean_t secure; 5233 unsigned char db_type; 5234 5235 first_mp = mp; 5236 if (mctl_present) { 5237 mp = mp->b_cont; 5238 secure = ipsec_in_is_secure(first_mp); 5239 ASSERT(mp != NULL); 5240 } else { 5241 /* 5242 * If this is an ICMP error being reported - which goes 5243 * up as M_CTLs, we need to convert them to M_DATA till 5244 * we finish checking with global policy because 5245 * ipsec_check_global_policy() assumes M_DATA as clear 5246 * and M_CTL as secure. 5247 */ 5248 db_type = DB_TYPE(mp); 5249 DB_TYPE(mp) = M_DATA; 5250 secure = B_FALSE; 5251 } 5252 /* 5253 * We are generating an icmp error for some inbound packet. 5254 * Called from all ip_fanout_(udp, tcp, proto) functions. 5255 * Before we generate an error, check with global policy 5256 * to see whether this is allowed to enter the system. As 5257 * there is no "conn", we are checking with global policy. 5258 */ 5259 ipha = (ipha_t *)mp->b_rptr; 5260 if (secure || ipsec_inbound_v4_policy_present) { 5261 first_mp = ipsec_check_global_policy(first_mp, NULL, 5262 ipha, NULL, mctl_present); 5263 if (first_mp == NULL) 5264 return (B_FALSE); 5265 } 5266 5267 if (!mctl_present) 5268 DB_TYPE(mp) = db_type; 5269 5270 if (flags & IP_FF_SEND_ICMP) { 5271 if (flags & IP_FF_HDR_COMPLETE) { 5272 if (ip_hdr_complete(ipha, zoneid)) { 5273 freemsg(first_mp); 5274 return (B_TRUE); 5275 } 5276 } 5277 if (flags & IP_FF_CKSUM) { 5278 /* 5279 * Have to correct checksum since 5280 * the packet might have been 5281 * fragmented and the reassembly code in ip_rput 5282 * does not restore the IP checksum. 5283 */ 5284 ipha->ipha_hdr_checksum = 0; 5285 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 5286 } 5287 switch (icmp_type) { 5288 case ICMP_DEST_UNREACHABLE: 5289 icmp_unreachable(WR(q), first_mp, icmp_code); 5290 break; 5291 default: 5292 freemsg(first_mp); 5293 break; 5294 } 5295 } else { 5296 freemsg(first_mp); 5297 return (B_FALSE); 5298 } 5299 5300 return (B_TRUE); 5301 } 5302 5303 #ifdef DEBUG 5304 /* 5305 * Copy the header into the IPSEC_IN message. 5306 */ 5307 static void 5308 ipsec_inbound_debug_tag(mblk_t *ipsec_mp) 5309 { 5310 mblk_t *data_mp = ipsec_mp->b_cont; 5311 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5312 ipha_t *ipha; 5313 5314 if (ii->ipsec_in_type != IPSEC_IN) 5315 return; 5316 ASSERT(data_mp != NULL); 5317 5318 ipha = (ipha_t *)data_mp->b_rptr; 5319 bcopy(ipha, ii->ipsec_in_saved_hdr, 5320 (IPH_HDR_VERSION(ipha) == IP_VERSION) ? 5321 sizeof (ipha_t) : sizeof (ip6_t)); 5322 } 5323 #else 5324 #define ipsec_inbound_debug_tag(x) /* NOP */ 5325 #endif /* DEBUG */ 5326 5327 /* 5328 * Used to send an ICMP error message when a packet is received for 5329 * a protocol that is not supported. The mblk passed as argument 5330 * is consumed by this function. 5331 */ 5332 void 5333 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 5334 { 5335 mblk_t *mp; 5336 ipha_t *ipha; 5337 ill_t *ill; 5338 ipsec_in_t *ii; 5339 5340 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5341 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5342 5343 mp = ipsec_mp->b_cont; 5344 ipsec_mp->b_cont = NULL; 5345 ipha = (ipha_t *)mp->b_rptr; 5346 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 5347 if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE, 5348 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 5349 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5350 } 5351 } else { 5352 /* Get ill from index in ipsec_in_t. */ 5353 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 5354 B_TRUE, NULL, NULL, NULL, NULL); 5355 if (ill != NULL) { 5356 if (ip_fanout_send_icmp_v6(q, mp, flags, 5357 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 5358 0, B_FALSE, zoneid)) { 5359 BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos); 5360 } 5361 5362 ill_refrele(ill); 5363 } else { /* re-link for the freemsg() below. */ 5364 ipsec_mp->b_cont = mp; 5365 } 5366 } 5367 5368 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 5369 freemsg(ipsec_mp); 5370 } 5371 5372 /* 5373 * See if the inbound datagram has had IPsec processing applied to it. 5374 */ 5375 boolean_t 5376 ipsec_in_is_secure(mblk_t *ipsec_mp) 5377 { 5378 ipsec_in_t *ii; 5379 5380 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 5381 ASSERT(ii->ipsec_in_type == IPSEC_IN); 5382 5383 if (ii->ipsec_in_loopback) { 5384 return (ii->ipsec_in_secure); 5385 } else { 5386 return (ii->ipsec_in_ah_sa != NULL || 5387 ii->ipsec_in_esp_sa != NULL || 5388 ii->ipsec_in_decaps); 5389 } 5390 } 5391 5392 /* 5393 * Handle protocols with which IP is less intimate. There 5394 * can be more than one stream bound to a particular 5395 * protocol. When this is the case, normally each one gets a copy 5396 * of any incoming packets. 5397 * 5398 * IPSEC NOTE : 5399 * 5400 * Don't allow a secure packet going up a non-secure connection. 5401 * We don't allow this because 5402 * 5403 * 1) Reply might go out in clear which will be dropped at 5404 * the sending side. 5405 * 2) If the reply goes out in clear it will give the 5406 * adversary enough information for getting the key in 5407 * most of the cases. 5408 * 5409 * Moreover getting a secure packet when we expect clear 5410 * implies that SA's were added without checking for 5411 * policy on both ends. This should not happen once ISAKMP 5412 * is used to negotiate SAs as SAs will be added only after 5413 * verifying the policy. 5414 * 5415 * NOTE : If the packet was tunneled and not multicast we only send 5416 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 5417 * back to delivering packets to AF_INET6 raw sockets. 5418 * 5419 * IPQoS Notes: 5420 * Once we have determined the client, invoke IPPF processing. 5421 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5422 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5423 * ip_policy will be false. 5424 * 5425 * Zones notes: 5426 * Currently only applications in the global zone can create raw sockets for 5427 * protocols other than ICMP. So unlike the broadcast / multicast case of 5428 * ip_fanout_udp(), we only send a copy of the packet to streams in the 5429 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 5430 */ 5431 static void 5432 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 5433 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 5434 zoneid_t zoneid) 5435 { 5436 queue_t *rq; 5437 mblk_t *mp1, *first_mp1; 5438 uint_t protocol = ipha->ipha_protocol; 5439 ipaddr_t dst; 5440 boolean_t one_only; 5441 mblk_t *first_mp = mp; 5442 boolean_t secure; 5443 uint32_t ill_index; 5444 conn_t *connp, *first_connp, *next_connp; 5445 connf_t *connfp; 5446 5447 if (mctl_present) { 5448 mp = first_mp->b_cont; 5449 secure = ipsec_in_is_secure(first_mp); 5450 ASSERT(mp != NULL); 5451 } else { 5452 secure = B_FALSE; 5453 } 5454 dst = ipha->ipha_dst; 5455 /* 5456 * If the packet was tunneled and not multicast we only send to it 5457 * the first match. 5458 */ 5459 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 5460 !CLASSD(dst)); 5461 5462 connfp = &ipcl_proto_fanout[protocol]; 5463 mutex_enter(&connfp->connf_lock); 5464 connp = connfp->connf_head; 5465 for (connp = connfp->connf_head; connp != NULL; 5466 connp = connp->conn_next) { 5467 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, zoneid)) 5468 break; 5469 } 5470 5471 if (connp == NULL || connp->conn_upq == NULL) { 5472 /* 5473 * No one bound to these addresses. Is 5474 * there a client that wants all 5475 * unclaimed datagrams? 5476 */ 5477 mutex_exit(&connfp->connf_lock); 5478 /* 5479 * Check for IPPROTO_ENCAP... 5480 */ 5481 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 5482 /* 5483 * XXX If an IPsec mblk is here on a multicast 5484 * tunnel (using ip_mroute stuff), what should 5485 * I do? 5486 * 5487 * For now, just free the IPsec mblk before 5488 * passing it up to the multicast routing 5489 * stuff. 5490 * 5491 * BTW, If I match a configured IP-in-IP 5492 * tunnel, ip_mroute_decap will never be 5493 * called. 5494 */ 5495 if (mp != first_mp) 5496 freeb(first_mp); 5497 ip_mroute_decap(q, mp); 5498 } else { 5499 /* 5500 * Otherwise send an ICMP protocol unreachable. 5501 */ 5502 if (ip_fanout_send_icmp(q, first_mp, flags, 5503 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 5504 mctl_present, zoneid)) { 5505 BUMP_MIB(&ip_mib, ipInUnknownProtos); 5506 } 5507 } 5508 return; 5509 } 5510 CONN_INC_REF(connp); 5511 first_connp = connp; 5512 5513 /* 5514 * Only send message to one tunnel driver by immediately 5515 * terminating the loop. 5516 */ 5517 connp = one_only ? NULL : connp->conn_next; 5518 5519 for (;;) { 5520 while (connp != NULL) { 5521 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 5522 flags, zoneid)) 5523 break; 5524 connp = connp->conn_next; 5525 } 5526 5527 /* 5528 * Copy the packet. 5529 */ 5530 if (connp == NULL || connp->conn_upq == NULL || 5531 (((first_mp1 = dupmsg(first_mp)) == NULL) && 5532 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 5533 /* 5534 * No more interested clients or memory 5535 * allocation failed 5536 */ 5537 connp = first_connp; 5538 break; 5539 } 5540 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 5541 CONN_INC_REF(connp); 5542 mutex_exit(&connfp->connf_lock); 5543 rq = connp->conn_rq; 5544 if (!canputnext(rq)) { 5545 if (flags & IP_FF_RAWIP) { 5546 BUMP_MIB(&ip_mib, rawipInOverflows); 5547 } else { 5548 BUMP_MIB(&icmp_mib, icmpInOverflows); 5549 } 5550 5551 freemsg(first_mp1); 5552 } else { 5553 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5554 first_mp1 = ipsec_check_inbound_policy 5555 (first_mp1, connp, ipha, NULL, 5556 mctl_present); 5557 } 5558 if (first_mp1 != NULL) { 5559 /* 5560 * ip_fanout_proto also gets called from 5561 * icmp_inbound_error_fanout, in which case 5562 * the msg type is M_CTL. Don't add info 5563 * in this case for the time being. In future 5564 * when there is a need for knowing the 5565 * inbound iface index for ICMP error msgs, 5566 * then this can be changed. 5567 */ 5568 if ((connp->conn_recvif != 0) && 5569 (mp->b_datap->db_type != M_CTL)) { 5570 /* 5571 * the actual data will be 5572 * contained in b_cont upon 5573 * successful return of the 5574 * following call else 5575 * original mblk is returned 5576 */ 5577 ASSERT(recv_ill != NULL); 5578 mp1 = ip_add_info(mp1, recv_ill, 5579 IPF_RECVIF); 5580 } 5581 BUMP_MIB(&ip_mib, ipInDelivers); 5582 if (mctl_present) 5583 freeb(first_mp1); 5584 putnext(rq, mp1); 5585 } 5586 } 5587 mutex_enter(&connfp->connf_lock); 5588 /* Follow the next pointer before releasing the conn. */ 5589 next_connp = connp->conn_next; 5590 CONN_DEC_REF(connp); 5591 connp = next_connp; 5592 } 5593 5594 /* Last one. Send it upstream. */ 5595 mutex_exit(&connfp->connf_lock); 5596 5597 /* 5598 * If this packet is coming from icmp_inbound_error_fanout ip_policy 5599 * will be set to false. 5600 */ 5601 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5602 ill_index = ill->ill_phyint->phyint_ifindex; 5603 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5604 if (mp == NULL) { 5605 CONN_DEC_REF(connp); 5606 if (mctl_present) { 5607 freeb(first_mp); 5608 } 5609 return; 5610 } 5611 } 5612 5613 rq = connp->conn_rq; 5614 if (!canputnext(rq)) { 5615 if (flags & IP_FF_RAWIP) { 5616 BUMP_MIB(&ip_mib, rawipInOverflows); 5617 } else { 5618 BUMP_MIB(&icmp_mib, icmpInOverflows); 5619 } 5620 5621 freemsg(first_mp); 5622 } else { 5623 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5624 first_mp = ipsec_check_inbound_policy(first_mp, connp, 5625 ipha, NULL, mctl_present); 5626 } 5627 if (first_mp != NULL) { 5628 /* 5629 * ip_fanout_proto also gets called 5630 * from icmp_inbound_error_fanout, in 5631 * which case the msg type is M_CTL. 5632 * Don't add info in this case for time 5633 * being. In future when there is a 5634 * need for knowing the inbound iface 5635 * index for ICMP error msgs, then this 5636 * can be changed 5637 */ 5638 if ((connp->conn_recvif != 0) && 5639 (mp->b_datap->db_type != M_CTL)) { 5640 /* 5641 * the actual data will be contained in 5642 * b_cont upon successful return 5643 * of the following call else original 5644 * mblk is returned 5645 */ 5646 ASSERT(recv_ill != NULL); 5647 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5648 } 5649 BUMP_MIB(&ip_mib, ipInDelivers); 5650 putnext(rq, mp); 5651 if (mctl_present) 5652 freeb(first_mp); 5653 } 5654 } 5655 CONN_DEC_REF(connp); 5656 } 5657 5658 /* 5659 * Fanout for TCP packets 5660 * The caller puts <fport, lport> in the ports parameter. 5661 * 5662 * IPQoS Notes 5663 * Before sending it to the client, invoke IPPF processing. 5664 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 5665 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 5666 * ip_policy is false. 5667 */ 5668 static void 5669 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 5670 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 5671 { 5672 mblk_t *first_mp; 5673 boolean_t secure; 5674 uint32_t ill_index; 5675 int ip_hdr_len; 5676 tcph_t *tcph; 5677 boolean_t syn_present = B_FALSE; 5678 conn_t *connp; 5679 5680 first_mp = mp; 5681 if (mctl_present) { 5682 ASSERT(first_mp->b_datap->db_type == M_CTL); 5683 mp = first_mp->b_cont; 5684 secure = ipsec_in_is_secure(first_mp); 5685 ASSERT(mp != NULL); 5686 } else { 5687 secure = B_FALSE; 5688 } 5689 5690 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 5691 5692 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 5693 NULL) { 5694 /* 5695 * No connected connection or listener. Send a 5696 * TH_RST via tcp_xmit_listeners_reset. 5697 */ 5698 5699 /* Initiate IPPf processing, if needed. */ 5700 if (IPP_ENABLED(IPP_LOCAL_IN)) { 5701 uint32_t ill_index; 5702 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5703 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 5704 if (first_mp == NULL) 5705 return; 5706 } 5707 BUMP_MIB(&ip_mib, ipInDelivers); 5708 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5709 return; 5710 } 5711 5712 /* 5713 * Allocate the SYN for the TCP connection here itself 5714 */ 5715 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5716 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 5717 if (IPCL_IS_TCP(connp)) { 5718 squeue_t *sqp; 5719 5720 /* 5721 * For fused tcp loopback, assign the eager's 5722 * squeue to be that of the active connect's. 5723 * Note that we don't check for IP_FF_LOOPBACK 5724 * here since this routine gets called only 5725 * for loopback (unlike the IPv6 counterpart). 5726 */ 5727 ASSERT(Q_TO_CONN(q) != NULL); 5728 if (do_tcp_fusion && 5729 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 5730 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 5731 IPCL_IS_TCP(Q_TO_CONN(q))) { 5732 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 5733 sqp = Q_TO_CONN(q)->conn_sqp; 5734 } else { 5735 sqp = IP_SQUEUE_GET(lbolt); 5736 } 5737 5738 mp->b_datap->db_struioflag |= STRUIO_EAGER; 5739 DB_CKSUMSTART(mp) = (intptr_t)sqp; 5740 syn_present = B_TRUE; 5741 } 5742 } 5743 5744 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 5745 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 5746 if ((flags & TH_RST) || (flags & TH_URG)) { 5747 CONN_DEC_REF(connp); 5748 freemsg(first_mp); 5749 return; 5750 } 5751 if (flags & TH_ACK) { 5752 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 5753 CONN_DEC_REF(connp); 5754 return; 5755 } 5756 5757 CONN_DEC_REF(connp); 5758 freemsg(first_mp); 5759 return; 5760 } 5761 5762 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5763 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5764 NULL, mctl_present); 5765 if (first_mp == NULL) { 5766 CONN_DEC_REF(connp); 5767 return; 5768 } 5769 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 5770 ASSERT(syn_present); 5771 if (mctl_present) { 5772 ASSERT(first_mp != mp); 5773 first_mp->b_datap->db_struioflag |= 5774 STRUIO_POLICY; 5775 } else { 5776 ASSERT(first_mp == mp); 5777 mp->b_datap->db_struioflag &= 5778 ~STRUIO_EAGER; 5779 mp->b_datap->db_struioflag |= 5780 STRUIO_POLICY; 5781 } 5782 } else { 5783 /* 5784 * Discard first_mp early since we're dealing with a 5785 * fully-connected conn_t and tcp doesn't do policy in 5786 * this case. 5787 */ 5788 if (mctl_present) { 5789 freeb(first_mp); 5790 mctl_present = B_FALSE; 5791 } 5792 first_mp = mp; 5793 } 5794 } 5795 5796 /* 5797 * Initiate policy processing here if needed. If we get here from 5798 * icmp_inbound_error_fanout, ip_policy is false. 5799 */ 5800 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5801 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5802 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5803 if (mp == NULL) { 5804 CONN_DEC_REF(connp); 5805 if (mctl_present) 5806 freeb(first_mp); 5807 return; 5808 } else if (mctl_present) { 5809 ASSERT(first_mp != mp); 5810 first_mp->b_cont = mp; 5811 } else { 5812 first_mp = mp; 5813 } 5814 } 5815 5816 5817 5818 /* Handle IPv6 socket options. */ 5819 if (!syn_present && 5820 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 5821 /* Add header */ 5822 ASSERT(recv_ill != NULL); 5823 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 5824 if (mp == NULL) { 5825 CONN_DEC_REF(connp); 5826 if (mctl_present) 5827 freeb(first_mp); 5828 return; 5829 } else if (mctl_present) { 5830 /* 5831 * ip_add_info might return a new mp. 5832 */ 5833 ASSERT(first_mp != mp); 5834 first_mp->b_cont = mp; 5835 } else { 5836 first_mp = mp; 5837 } 5838 } 5839 5840 BUMP_MIB(&ip_mib, ipInDelivers); 5841 if (IPCL_IS_TCP(connp)) { 5842 (*ip_input_proc)(connp->conn_sqp, first_mp, 5843 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 5844 } else { 5845 putnext(connp->conn_rq, first_mp); 5846 CONN_DEC_REF(connp); 5847 } 5848 } 5849 5850 /* 5851 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5852 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5853 * Caller is responsible for dropping references to the conn, and freeing 5854 * first_mp. 5855 * 5856 * IPQoS Notes 5857 * Before sending it to the client, invoke IPPF processing. Policy processing 5858 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 5859 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 5860 * ip_wput_local, ip_policy is false. 5861 */ 5862 static void 5863 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 5864 boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 5865 boolean_t ip_policy) 5866 { 5867 boolean_t mctl_present = (first_mp != NULL); 5868 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 5869 uint32_t ill_index; 5870 5871 if (mctl_present) 5872 first_mp->b_cont = mp; 5873 else 5874 first_mp = mp; 5875 5876 if (CONN_UDP_FLOWCTLD(connp)) { 5877 BUMP_MIB(&ip_mib, udpInOverflows); 5878 freemsg(first_mp); 5879 return; 5880 } 5881 5882 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 5883 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 5884 NULL, mctl_present); 5885 if (first_mp == NULL) 5886 return; /* Freed by ipsec_check_inbound_policy(). */ 5887 } 5888 if (mctl_present) 5889 freeb(first_mp); 5890 5891 if (connp->conn_recvif) 5892 in_flags = IPF_RECVIF; 5893 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 5894 in_flags |= IPF_RECVSLLA; 5895 5896 /* Handle IPv6 options. */ 5897 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 5898 in_flags |= IPF_RECVIF; 5899 5900 /* 5901 * Initiate IPPF processing here, if needed. Note first_mp won't be 5902 * freed if the packet is dropped. The caller will do so. 5903 */ 5904 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 5905 ill_index = recv_ill->ill_phyint->phyint_ifindex; 5906 ip_process(IPP_LOCAL_IN, &mp, ill_index); 5907 if (mp == NULL) { 5908 return; 5909 } 5910 } 5911 if ((in_flags != 0) && 5912 (mp->b_datap->db_type != M_CTL)) { 5913 /* 5914 * The actual data will be contained in b_cont 5915 * upon successful return of the following call 5916 * else original mblk is returned 5917 */ 5918 ASSERT(recv_ill != NULL); 5919 mp = ip_add_info(mp, recv_ill, in_flags); 5920 } 5921 BUMP_MIB(&ip_mib, ipInDelivers); 5922 5923 /* Send it upstream */ 5924 CONN_UDP_RECV(connp, mp); 5925 } 5926 5927 /* 5928 * Fanout for UDP packets. 5929 * The caller puts <fport, lport> in the ports parameter. 5930 * 5931 * If SO_REUSEADDR is set all multicast and broadcast packets 5932 * will be delivered to all streams bound to the same port. 5933 * 5934 * Zones notes: 5935 * Multicast and broadcast packets will be distributed to streams in all zones. 5936 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5937 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5938 * packets. To maintain this behavior with multiple zones, the conns are grouped 5939 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 5940 * each zone. If unset, all the following conns in the same zone are skipped. 5941 */ 5942 static void 5943 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 5944 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 5945 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 5946 { 5947 uint32_t dstport, srcport; 5948 ipaddr_t dst; 5949 mblk_t *first_mp; 5950 boolean_t secure; 5951 in6_addr_t v6src; 5952 conn_t *connp; 5953 connf_t *connfp; 5954 conn_t *first_connp; 5955 conn_t *next_connp; 5956 mblk_t *mp1, *first_mp1; 5957 ipaddr_t src; 5958 zoneid_t last_zoneid; 5959 boolean_t reuseaddr; 5960 5961 first_mp = mp; 5962 if (mctl_present) { 5963 mp = first_mp->b_cont; 5964 first_mp->b_cont = NULL; 5965 secure = ipsec_in_is_secure(first_mp); 5966 ASSERT(mp != NULL); 5967 } else { 5968 first_mp = NULL; 5969 secure = B_FALSE; 5970 } 5971 5972 /* Extract ports in net byte order */ 5973 dstport = htons(ntohl(ports) & 0xFFFF); 5974 srcport = htons(ntohl(ports) >> 16); 5975 dst = ipha->ipha_dst; 5976 src = ipha->ipha_src; 5977 5978 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 5979 mutex_enter(&connfp->connf_lock); 5980 connp = connfp->connf_head; 5981 if (!broadcast && !CLASSD(dst)) { 5982 /* 5983 * Not broadcast or multicast. Send to the one (first) 5984 * client we find. No need to check conn_wantpacket() 5985 * since IP_BOUND_IF/conn_incoming_ill does not apply to 5986 * IPv4 unicast packets. 5987 */ 5988 while ((connp != NULL) && 5989 (!IPCL_UDP_MATCH(connp, dstport, dst, 5990 srcport, src) || connp->conn_zoneid != zoneid)) { 5991 connp = connp->conn_next; 5992 } 5993 5994 if (connp == NULL || connp->conn_upq == NULL) 5995 goto notfound; 5996 CONN_INC_REF(connp); 5997 mutex_exit(&connfp->connf_lock); 5998 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 5999 recv_ill, ip_policy); 6000 IP_STAT(ip_udp_fannorm); 6001 CONN_DEC_REF(connp); 6002 return; 6003 } 6004 6005 /* 6006 * Broadcast and multicast case 6007 * 6008 * Need to check conn_wantpacket(). 6009 * If SO_REUSEADDR has been set on the first we send the 6010 * packet to all clients that have joined the group and 6011 * match the port. 6012 */ 6013 6014 while (connp != NULL) { 6015 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6016 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6017 break; 6018 connp = connp->conn_next; 6019 } 6020 6021 if (connp == NULL || connp->conn_upq == NULL) 6022 goto notfound; 6023 6024 first_connp = connp; 6025 /* 6026 * When SO_REUSEADDR is not set, send the packet only to the first 6027 * matching connection in its zone by keeping track of the zoneid. 6028 */ 6029 reuseaddr = first_connp->conn_reuseaddr; 6030 last_zoneid = first_connp->conn_zoneid; 6031 6032 CONN_INC_REF(connp); 6033 connp = connp->conn_next; 6034 for (;;) { 6035 while (connp != NULL) { 6036 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6037 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6038 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6039 break; 6040 connp = connp->conn_next; 6041 } 6042 /* 6043 * Just copy the data part alone. The mctl part is 6044 * needed just for verifying policy and it is never 6045 * sent up. 6046 */ 6047 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6048 ((mp1 = copymsg(mp)) == NULL))) { 6049 /* 6050 * No more interested clients or memory 6051 * allocation failed 6052 */ 6053 connp = first_connp; 6054 break; 6055 } 6056 if (connp->conn_zoneid != last_zoneid) { 6057 /* 6058 * Update the zoneid so that the packet isn't sent to 6059 * any more conns in the same zone unless SO_REUSEADDR 6060 * is set. 6061 */ 6062 reuseaddr = connp->conn_reuseaddr; 6063 last_zoneid = connp->conn_zoneid; 6064 } 6065 if (first_mp != NULL) { 6066 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6067 ipsec_info_type == IPSEC_IN); 6068 first_mp1 = ipsec_in_tag(first_mp, NULL); 6069 if (first_mp1 == NULL) { 6070 freemsg(mp1); 6071 connp = first_connp; 6072 break; 6073 } 6074 } else { 6075 first_mp1 = NULL; 6076 } 6077 CONN_INC_REF(connp); 6078 mutex_exit(&connfp->connf_lock); 6079 /* 6080 * IPQoS notes: We don't send the packet for policy 6081 * processing here, will do it for the last one (below). 6082 * i.e. we do it per-packet now, but if we do policy 6083 * processing per-conn, then we would need to do it 6084 * here too. 6085 */ 6086 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6087 ipha, flags, recv_ill, B_FALSE); 6088 mutex_enter(&connfp->connf_lock); 6089 /* Follow the next pointer before releasing the conn. */ 6090 next_connp = connp->conn_next; 6091 IP_STAT(ip_udp_fanmb); 6092 CONN_DEC_REF(connp); 6093 connp = next_connp; 6094 } 6095 6096 /* Last one. Send it upstream. */ 6097 mutex_exit(&connfp->connf_lock); 6098 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6099 ip_policy); 6100 IP_STAT(ip_udp_fanmb); 6101 CONN_DEC_REF(connp); 6102 return; 6103 6104 notfound: 6105 6106 mutex_exit(&connfp->connf_lock); 6107 IP_STAT(ip_udp_fanothers); 6108 /* 6109 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6110 * have already been matched above, since they live in the IPv4 6111 * fanout tables. This implies we only need to 6112 * check for IPv6 in6addr_any endpoints here. 6113 * Thus we compare using ipv6_all_zeros instead of the destination 6114 * address, except for the multicast group membership lookup which 6115 * uses the IPv4 destination. 6116 */ 6117 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6118 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6119 mutex_enter(&connfp->connf_lock); 6120 connp = connfp->connf_head; 6121 if (!broadcast && !CLASSD(dst)) { 6122 while (connp != NULL) { 6123 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6124 srcport, v6src) && connp->conn_zoneid == zoneid && 6125 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6126 !connp->conn_ipv6_v6only) 6127 break; 6128 connp = connp->conn_next; 6129 } 6130 6131 if (connp == NULL || connp->conn_upq == NULL) { 6132 /* 6133 * No one bound to this port. Is 6134 * there a client that wants all 6135 * unclaimed datagrams? 6136 */ 6137 mutex_exit(&connfp->connf_lock); 6138 6139 if (mctl_present) 6140 first_mp->b_cont = mp; 6141 else 6142 first_mp = mp; 6143 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6144 ip_fanout_proto(q, first_mp, ill, ipha, 6145 flags | IP_FF_RAWIP, mctl_present, 6146 ip_policy, recv_ill, zoneid); 6147 } else { 6148 if (ip_fanout_send_icmp(q, first_mp, flags, 6149 ICMP_DEST_UNREACHABLE, 6150 ICMP_PORT_UNREACHABLE, 6151 mctl_present, zoneid)) { 6152 BUMP_MIB(&ip_mib, udpNoPorts); 6153 } 6154 } 6155 return; 6156 } 6157 CONN_INC_REF(connp); 6158 mutex_exit(&connfp->connf_lock); 6159 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, 6160 recv_ill, ip_policy); 6161 CONN_DEC_REF(connp); 6162 return; 6163 } 6164 /* 6165 * IPv4 multicast packet being delivered to an AF_INET6 6166 * in6addr_any endpoint. 6167 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 6168 * and not conn_wantpacket_v6() since any multicast membership is 6169 * for an IPv4-mapped multicast address. 6170 * The packet is sent to all clients in all zones that have joined the 6171 * group and match the port. 6172 */ 6173 while (connp != NULL) { 6174 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6175 srcport, v6src) && 6176 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6177 break; 6178 connp = connp->conn_next; 6179 } 6180 6181 if (connp == NULL || connp->conn_upq == NULL) { 6182 /* 6183 * No one bound to this port. Is 6184 * there a client that wants all 6185 * unclaimed datagrams? 6186 */ 6187 mutex_exit(&connfp->connf_lock); 6188 6189 if (mctl_present) 6190 first_mp->b_cont = mp; 6191 else 6192 first_mp = mp; 6193 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 6194 ip_fanout_proto(q, first_mp, ill, ipha, 6195 flags | IP_FF_RAWIP, mctl_present, ip_policy, 6196 recv_ill, zoneid); 6197 } else { 6198 /* 6199 * We used to attempt to send an icmp error here, but 6200 * since this is known to be a multicast packet 6201 * and we don't send icmp errors in response to 6202 * multicast, just drop the packet and give up sooner. 6203 */ 6204 BUMP_MIB(&ip_mib, udpNoPorts); 6205 freemsg(first_mp); 6206 } 6207 return; 6208 } 6209 6210 first_connp = connp; 6211 6212 CONN_INC_REF(connp); 6213 connp = connp->conn_next; 6214 for (;;) { 6215 while (connp != NULL) { 6216 if (IPCL_UDP_MATCH_V6(connp, dstport, 6217 ipv6_all_zeros, srcport, v6src) && 6218 conn_wantpacket(connp, ill, ipha, flags, zoneid)) 6219 break; 6220 connp = connp->conn_next; 6221 } 6222 /* 6223 * Just copy the data part alone. The mctl part is 6224 * needed just for verifying policy and it is never 6225 * sent up. 6226 */ 6227 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6228 ((mp1 = copymsg(mp)) == NULL))) { 6229 /* 6230 * No more intested clients or memory 6231 * allocation failed 6232 */ 6233 connp = first_connp; 6234 break; 6235 } 6236 if (first_mp != NULL) { 6237 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6238 ipsec_info_type == IPSEC_IN); 6239 first_mp1 = ipsec_in_tag(first_mp, NULL); 6240 if (first_mp1 == NULL) { 6241 freemsg(mp1); 6242 connp = first_connp; 6243 break; 6244 } 6245 } else { 6246 first_mp1 = NULL; 6247 } 6248 CONN_INC_REF(connp); 6249 mutex_exit(&connfp->connf_lock); 6250 /* 6251 * IPQoS notes: We don't send the packet for policy 6252 * processing here, will do it for the last one (below). 6253 * i.e. we do it per-packet now, but if we do policy 6254 * processing per-conn, then we would need to do it 6255 * here too. 6256 */ 6257 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, 6258 ipha, flags, recv_ill, B_FALSE); 6259 mutex_enter(&connfp->connf_lock); 6260 /* Follow the next pointer before releasing the conn. */ 6261 next_connp = connp->conn_next; 6262 CONN_DEC_REF(connp); 6263 connp = next_connp; 6264 } 6265 6266 /* Last one. Send it upstream. */ 6267 mutex_exit(&connfp->connf_lock); 6268 ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill, 6269 ip_policy); 6270 CONN_DEC_REF(connp); 6271 } 6272 6273 /* 6274 * Complete the ip_wput header so that it 6275 * is possible to generate ICMP 6276 * errors. 6277 */ 6278 static int 6279 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 6280 { 6281 ire_t *ire; 6282 6283 if (ipha->ipha_src == INADDR_ANY) { 6284 ire = ire_lookup_local(zoneid); 6285 if (ire == NULL) { 6286 ip1dbg(("ip_hdr_complete: no source IRE\n")); 6287 return (1); 6288 } 6289 ipha->ipha_src = ire->ire_addr; 6290 ire_refrele(ire); 6291 } 6292 ipha->ipha_ttl = ip_def_ttl; 6293 ipha->ipha_hdr_checksum = 0; 6294 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6295 return (0); 6296 } 6297 6298 /* 6299 * Nobody should be sending 6300 * packets up this stream 6301 */ 6302 static void 6303 ip_lrput(queue_t *q, mblk_t *mp) 6304 { 6305 mblk_t *mp1; 6306 6307 switch (mp->b_datap->db_type) { 6308 case M_FLUSH: 6309 /* Turn around */ 6310 if (*mp->b_rptr & FLUSHW) { 6311 *mp->b_rptr &= ~FLUSHR; 6312 qreply(q, mp); 6313 return; 6314 } 6315 break; 6316 } 6317 /* Could receive messages that passed through ar_rput */ 6318 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 6319 mp1->b_prev = mp1->b_next = NULL; 6320 freemsg(mp); 6321 } 6322 6323 /* Nobody should be sending packets down this stream */ 6324 /* ARGSUSED */ 6325 void 6326 ip_lwput(queue_t *q, mblk_t *mp) 6327 { 6328 freemsg(mp); 6329 } 6330 6331 /* 6332 * Move the first hop in any source route to ipha_dst and remove that part of 6333 * the source route. Called by other protocols. Errors in option formatting 6334 * are ignored - will be handled by ip_wput_options Return the final 6335 * destination (either ipha_dst or the last entry in a source route.) 6336 */ 6337 ipaddr_t 6338 ip_massage_options(ipha_t *ipha) 6339 { 6340 ipoptp_t opts; 6341 uchar_t *opt; 6342 uint8_t optval; 6343 uint8_t optlen; 6344 ipaddr_t dst; 6345 int i; 6346 ire_t *ire; 6347 6348 ip2dbg(("ip_massage_options\n")); 6349 dst = ipha->ipha_dst; 6350 for (optval = ipoptp_first(&opts, ipha); 6351 optval != IPOPT_EOL; 6352 optval = ipoptp_next(&opts)) { 6353 opt = opts.ipoptp_cur; 6354 switch (optval) { 6355 uint8_t off; 6356 case IPOPT_SSRR: 6357 case IPOPT_LSRR: 6358 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 6359 ip1dbg(("ip_massage_options: bad src route\n")); 6360 break; 6361 } 6362 optlen = opts.ipoptp_len; 6363 off = opt[IPOPT_OFFSET]; 6364 off--; 6365 redo_srr: 6366 if (optlen < IP_ADDR_LEN || 6367 off > optlen - IP_ADDR_LEN) { 6368 /* End of source route */ 6369 ip1dbg(("ip_massage_options: end of SR\n")); 6370 break; 6371 } 6372 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 6373 ip1dbg(("ip_massage_options: next hop 0x%x\n", 6374 ntohl(dst))); 6375 /* 6376 * Check if our address is present more than 6377 * once as consecutive hops in source route. 6378 * XXX verify per-interface ip_forwarding 6379 * for source route? 6380 */ 6381 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 6382 ALL_ZONES, MATCH_IRE_TYPE); 6383 if (ire != NULL) { 6384 ire_refrele(ire); 6385 off += IP_ADDR_LEN; 6386 goto redo_srr; 6387 } 6388 if (dst == htonl(INADDR_LOOPBACK)) { 6389 ip1dbg(("ip_massage_options: loopback addr in " 6390 "source route!\n")); 6391 break; 6392 } 6393 /* 6394 * Update ipha_dst to be the first hop and remove the 6395 * first hop from the source route (by overwriting 6396 * part of the option with NOP options). 6397 */ 6398 ipha->ipha_dst = dst; 6399 /* Put the last entry in dst */ 6400 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 6401 3; 6402 bcopy(&opt[off], &dst, IP_ADDR_LEN); 6403 6404 ip1dbg(("ip_massage_options: last hop 0x%x\n", 6405 ntohl(dst))); 6406 /* Move down and overwrite */ 6407 opt[IP_ADDR_LEN] = opt[0]; 6408 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 6409 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 6410 for (i = 0; i < IP_ADDR_LEN; i++) 6411 opt[i] = IPOPT_NOP; 6412 break; 6413 } 6414 } 6415 return (dst); 6416 } 6417 6418 /* 6419 * This function's job is to forward data to the reverse tunnel (FA->HA) 6420 * after doing a few checks. It is assumed that the incoming interface 6421 * of the packet is always different than the outgoing interface and the 6422 * ire_type of the found ire has to be a non-resolver type. 6423 * 6424 * IPQoS notes 6425 * IP policy is invoked twice for a forwarded packet, once on the read side 6426 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 6427 * enabled. 6428 */ 6429 static void 6430 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 6431 { 6432 ipha_t *ipha; 6433 queue_t *q; 6434 uint32_t pkt_len; 6435 #define rptr ((uchar_t *)ipha) 6436 uint32_t sum; 6437 uint32_t max_frag; 6438 mblk_t *first_mp; 6439 uint32_t ill_index; 6440 6441 ASSERT(ire != NULL); 6442 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 6443 ASSERT(ire->ire_stq != NULL); 6444 6445 /* Initiate read side IPPF processing */ 6446 if (IPP_ENABLED(IPP_FWD_IN)) { 6447 ill_index = in_ill->ill_phyint->phyint_ifindex; 6448 ip_process(IPP_FWD_IN, &mp, ill_index); 6449 if (mp == NULL) { 6450 ip2dbg(("ip_mrtun_forward: inbound pkt " 6451 "dropped during IPPF processing\n")); 6452 return; 6453 } 6454 } 6455 6456 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 6457 ILLF_ROUTER) == 0) || 6458 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 6459 BUMP_MIB(&ip_mib, ipForwProhibits); 6460 ip0dbg(("ip_mrtun_forward: Can't forward :" 6461 "forwarding is not turned on\n")); 6462 goto drop_pkt; 6463 } 6464 6465 /* 6466 * Don't forward if the interface is down 6467 */ 6468 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 6469 BUMP_MIB(&ip_mib, ipInDiscards); 6470 goto drop_pkt; 6471 } 6472 6473 ipha = (ipha_t *)mp->b_rptr; 6474 pkt_len = ntohs(ipha->ipha_length); 6475 /* Adjust the checksum to reflect the ttl decrement. */ 6476 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 6477 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 6478 if (ipha->ipha_ttl-- <= 1) { 6479 if (ip_csum_hdr(ipha)) { 6480 BUMP_MIB(&ip_mib, ipInCksumErrs); 6481 goto drop_pkt; 6482 } 6483 q = ire->ire_stq; 6484 if ((first_mp = allocb(sizeof (ipsec_info_t), 6485 BPRI_HI)) == NULL) { 6486 goto drop_pkt; 6487 } 6488 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6489 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED); 6490 6491 return; 6492 } 6493 6494 /* Get the ill_index of the ILL */ 6495 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 6496 6497 /* 6498 * ip_mrtun_forward is only used by foreign agent to reverse 6499 * tunnel the incoming packet. So it does not do any option 6500 * processing for source routing. 6501 */ 6502 max_frag = ire->ire_max_frag; 6503 if (pkt_len > max_frag) { 6504 /* 6505 * It needs fragging on its way out. We haven't 6506 * verified the header checksum yet. Since we 6507 * are going to put a surely good checksum in the 6508 * outgoing header, we have to make sure that it 6509 * was good coming in. 6510 */ 6511 if (ip_csum_hdr(ipha)) { 6512 BUMP_MIB(&ip_mib, ipInCksumErrs); 6513 goto drop_pkt; 6514 } 6515 6516 /* Initiate write side IPPF processing */ 6517 if (IPP_ENABLED(IPP_FWD_OUT)) { 6518 ip_process(IPP_FWD_OUT, &mp, ill_index); 6519 if (mp == NULL) { 6520 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 6521 "dropped/deferred during ip policy "\ 6522 "processing\n")); 6523 return; 6524 } 6525 } 6526 if ((first_mp = allocb(sizeof (ipsec_info_t), 6527 BPRI_HI)) == NULL) { 6528 goto drop_pkt; 6529 } 6530 ip_ipsec_out_prepend(first_mp, mp, in_ill); 6531 mp = first_mp; 6532 6533 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 6534 return; 6535 } 6536 6537 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 6538 6539 ASSERT(ire->ire_ipif != NULL); 6540 6541 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 6542 if (mp == NULL) { 6543 BUMP_MIB(&ip_mib, ipInDiscards); 6544 return; 6545 } 6546 6547 /* Now send the packet to the tunnel interface */ 6548 q = ire->ire_stq; 6549 UPDATE_IB_PKT_COUNT(ire); 6550 ire->ire_last_used_time = lbolt; 6551 BUMP_MIB(&ip_mib, ipForwDatagrams); 6552 putnext(q, mp); 6553 ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr)); 6554 return; 6555 6556 drop_pkt:; 6557 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 6558 freemsg(mp); 6559 #undef rptr 6560 } 6561 6562 /* 6563 * Fills the ipsec_out_t data structure with appropriate fields and 6564 * prepends it to mp which contains the IP hdr + data that was meant 6565 * to be forwarded. Please note that ipsec_out_info data structure 6566 * is used here to communicate the outgoing ill path at ip_wput() 6567 * for the ICMP error packet. This has nothing to do with ipsec IP 6568 * security. ipsec_out_t is really used to pass the info to the module 6569 * IP where this information cannot be extracted from conn. 6570 * This functions is called by ip_mrtun_forward(). 6571 */ 6572 void 6573 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 6574 { 6575 ipsec_out_t *io; 6576 6577 ASSERT(xmit_ill != NULL); 6578 first_mp->b_datap->db_type = M_CTL; 6579 first_mp->b_wptr += sizeof (ipsec_info_t); 6580 /* 6581 * This is to pass info to ip_wput in absence of conn. 6582 * ipsec_out_secure will be B_FALSE because of this. 6583 * Thus ipsec_out_secure being B_FALSE indicates that 6584 * this is not IPSEC security related information. 6585 */ 6586 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 6587 io = (ipsec_out_t *)first_mp->b_rptr; 6588 io->ipsec_out_type = IPSEC_OUT; 6589 io->ipsec_out_len = sizeof (ipsec_out_t); 6590 first_mp->b_cont = mp; 6591 io->ipsec_out_ill_index = 6592 xmit_ill->ill_phyint->phyint_ifindex; 6593 io->ipsec_out_xmit_if = B_TRUE; 6594 } 6595 6596 /* 6597 * Return the network mask 6598 * associated with the specified address. 6599 */ 6600 ipaddr_t 6601 ip_net_mask(ipaddr_t addr) 6602 { 6603 uchar_t *up = (uchar_t *)&addr; 6604 ipaddr_t mask = 0; 6605 uchar_t *maskp = (uchar_t *)&mask; 6606 6607 #if defined(__i386) || defined(__amd64) 6608 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 6609 #endif 6610 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 6611 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 6612 #endif 6613 if (CLASSD(addr)) { 6614 maskp[0] = 0xF0; 6615 return (mask); 6616 } 6617 if (addr == 0) 6618 return (0); 6619 maskp[0] = 0xFF; 6620 if ((up[0] & 0x80) == 0) 6621 return (mask); 6622 6623 maskp[1] = 0xFF; 6624 if ((up[0] & 0xC0) == 0x80) 6625 return (mask); 6626 6627 maskp[2] = 0xFF; 6628 if ((up[0] & 0xE0) == 0xC0) 6629 return (mask); 6630 6631 /* Must be experimental or multicast, indicate as much */ 6632 return ((ipaddr_t)0); 6633 } 6634 6635 /* 6636 * Select an ill for the packet by considering load spreading across 6637 * a different ill in the group if dst_ill is part of some group. 6638 */ 6639 static ill_t * 6640 ip_newroute_get_dst_ill(ill_t *dst_ill) 6641 { 6642 ill_t *ill; 6643 6644 /* 6645 * We schedule irrespective of whether the source address is 6646 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 6647 */ 6648 ill = illgrp_scheduler(dst_ill); 6649 if (ill == NULL) 6650 return (NULL); 6651 6652 /* 6653 * For groups with names ip_sioctl_groupname ensures that all 6654 * ills are of same type. For groups without names, ifgrp_insert 6655 * ensures this. 6656 */ 6657 ASSERT(dst_ill->ill_type == ill->ill_type); 6658 6659 return (ill); 6660 } 6661 6662 /* 6663 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 6664 */ 6665 ill_t * 6666 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 6667 { 6668 ill_t *ret_ill; 6669 6670 ASSERT(ifindex != 0); 6671 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 6672 if (ret_ill == NULL || 6673 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 6674 if (isv6) { 6675 if (ill != NULL) { 6676 BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards); 6677 } else { 6678 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 6679 } 6680 ip1dbg(("ip_grab_attach_ill (IPv6): " 6681 "bad ifindex %d.\n", ifindex)); 6682 } else { 6683 BUMP_MIB(&ip_mib, ipOutDiscards); 6684 ip1dbg(("ip_grab_attach_ill (IPv4): " 6685 "bad ifindex %d.\n", ifindex)); 6686 } 6687 if (ret_ill != NULL) 6688 ill_refrele(ret_ill); 6689 freemsg(first_mp); 6690 return (NULL); 6691 } 6692 6693 return (ret_ill); 6694 } 6695 6696 /* 6697 * IPv4 - 6698 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 6699 * out a packet to a destination address for which we do not have specific 6700 * (or sufficient) routing information. 6701 * 6702 * NOTE : These are the scopes of some of the variables that point at IRE, 6703 * which needs to be followed while making any future modifications 6704 * to avoid memory leaks. 6705 * 6706 * - ire and sire are the entries looked up initially by 6707 * ire_ftable_lookup. 6708 * - ipif_ire is used to hold the interface ire associated with 6709 * the new cache ire. But it's scope is limited, so we always REFRELE 6710 * it before branching out to error paths. 6711 * - save_ire is initialized before ire_create, so that ire returned 6712 * by ire_create will not over-write the ire. We REFRELE save_ire 6713 * before breaking out of the switch. 6714 * 6715 * Thus on failures, we have to REFRELE only ire and sire, if they 6716 * are not NULL. 6717 */ 6718 void 6719 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp) 6720 { 6721 areq_t *areq; 6722 ipaddr_t gw = 0; 6723 ire_t *ire = NULL; 6724 mblk_t *res_mp; 6725 ipaddr_t *addrp; 6726 ipaddr_t nexthop_addr; 6727 ipif_t *src_ipif = NULL; 6728 ill_t *dst_ill = NULL; 6729 ipha_t *ipha; 6730 ire_t *sire = NULL; 6731 mblk_t *first_mp; 6732 ire_t *save_ire; 6733 mblk_t *dlureq_mp; 6734 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 6735 ushort_t ire_marks = 0; 6736 boolean_t mctl_present; 6737 ipsec_out_t *io; 6738 mblk_t *saved_mp; 6739 ire_t *first_sire = NULL; 6740 mblk_t *copy_mp = NULL; 6741 mblk_t *xmit_mp = NULL; 6742 ipaddr_t save_dst; 6743 uint32_t multirt_flags = 6744 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 6745 boolean_t multirt_is_resolvable; 6746 boolean_t multirt_resolve_next; 6747 boolean_t do_attach_ill = B_FALSE; 6748 boolean_t ip_nexthop = B_FALSE; 6749 zoneid_t zoneid; 6750 6751 if (ip_debug > 2) { 6752 /* ip1dbg */ 6753 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 6754 } 6755 6756 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 6757 if (mctl_present) { 6758 io = (ipsec_out_t *)first_mp->b_rptr; 6759 zoneid = io->ipsec_out_zoneid; 6760 ASSERT(zoneid != ALL_ZONES); 6761 } else if (connp != NULL) { 6762 zoneid = connp->conn_zoneid; 6763 } else { 6764 zoneid = GLOBAL_ZONEID; 6765 } 6766 6767 ipha = (ipha_t *)mp->b_rptr; 6768 6769 /* All multicast lookups come through ip_newroute_ipif() */ 6770 if (CLASSD(dst)) { 6771 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 6772 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 6773 freemsg(first_mp); 6774 return; 6775 } 6776 6777 if (ip_loopback_src_or_dst(ipha, NULL)) { 6778 goto icmp_err_ret; 6779 } 6780 6781 if (mctl_present && io->ipsec_out_attach_if) { 6782 /* ip_grab_attach_ill returns a held ill */ 6783 attach_ill = ip_grab_attach_ill(NULL, first_mp, 6784 io->ipsec_out_ill_index, B_FALSE); 6785 6786 /* Failure case frees things for us. */ 6787 if (attach_ill == NULL) 6788 return; 6789 6790 /* 6791 * Check if we need an ire that will not be 6792 * looked up by anybody else i.e. HIDDEN. 6793 */ 6794 if (ill_is_probeonly(attach_ill)) 6795 ire_marks = IRE_MARK_HIDDEN; 6796 } 6797 if (mctl_present && io->ipsec_out_ip_nexthop) { 6798 ip_nexthop = B_TRUE; 6799 nexthop_addr = io->ipsec_out_nexthop_addr; 6800 } 6801 /* 6802 * If this IRE is created for forwarding or it is not for 6803 * traffic for congestion controlled protocols, mark it as temporary. 6804 */ 6805 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 6806 ire_marks |= IRE_MARK_TEMPORARY; 6807 6808 /* 6809 * Get what we can from ire_ftable_lookup which will follow an IRE 6810 * chain until it gets the most specific information available. 6811 * For example, we know that there is no IRE_CACHE for this dest, 6812 * but there may be an IRE_OFFSUBNET which specifies a gateway. 6813 * ire_ftable_lookup will look up the gateway, etc. 6814 * Check if in_ill != NULL. If it is true, the packet must be 6815 * from an incoming interface where RTA_SRCIFP is set. 6816 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 6817 * to the destination, of equal netmask length in the forward table, 6818 * will be recursively explored. If no information is available 6819 * for the final gateway of that route, we force the returned ire 6820 * to be equal to sire using MATCH_IRE_PARENT. 6821 * At least, in this case we have a starting point (in the buckets) 6822 * to look for other routes to the destination in the forward table. 6823 * This is actually used only for multirouting, where a list 6824 * of routes has to be processed in sequence. 6825 */ 6826 if (in_ill != NULL) { 6827 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 6828 in_ill, MATCH_IRE_TYPE); 6829 } else if (ip_nexthop) { 6830 /* 6831 * The first time we come here, we look for an IRE_INTERFACE 6832 * entry for the specified nexthop, set the dst to be the 6833 * nexthop address and create an IRE_CACHE entry for the 6834 * nexthop. The next time around, we are able to find an 6835 * IRE_CACHE entry for the nexthop, set the gateway to be the 6836 * nexthop address and create an IRE_CACHE entry for the 6837 * destination address via the specified nexthop. 6838 */ 6839 ire = ire_cache_lookup(nexthop_addr, zoneid); 6840 if (ire != NULL) { 6841 gw = nexthop_addr; 6842 ire_marks |= IRE_MARK_PRIVATE_ADDR; 6843 } else { 6844 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 6845 IRE_INTERFACE, NULL, NULL, zoneid, 0, 6846 MATCH_IRE_TYPE); 6847 if (ire != NULL) { 6848 dst = nexthop_addr; 6849 } 6850 } 6851 } else if (attach_ill == NULL) { 6852 ire = ire_ftable_lookup(dst, 0, 0, 0, 6853 NULL, &sire, zoneid, 0, 6854 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 6855 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT); 6856 } else { 6857 /* 6858 * attach_ill is set only for communicating with 6859 * on-link hosts. So, don't look for DEFAULT. 6860 */ 6861 ipif_t *attach_ipif; 6862 6863 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 6864 if (attach_ipif == NULL) { 6865 ill_refrele(attach_ill); 6866 goto icmp_err_ret; 6867 } 6868 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 6869 &sire, zoneid, 0, 6870 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL); 6871 ipif_refrele(attach_ipif); 6872 } 6873 ip3dbg(("ip_newroute: ire_ftable_lookup() " 6874 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 6875 6876 /* 6877 * This loop is run only once in most cases. 6878 * We loop to resolve further routes only when the destination 6879 * can be reached through multiple RTF_MULTIRT-flagged ires. 6880 */ 6881 do { 6882 /* Clear the previous iteration's values */ 6883 if (src_ipif != NULL) { 6884 ipif_refrele(src_ipif); 6885 src_ipif = NULL; 6886 } 6887 if (dst_ill != NULL) { 6888 ill_refrele(dst_ill); 6889 dst_ill = NULL; 6890 } 6891 6892 multirt_resolve_next = B_FALSE; 6893 /* 6894 * We check if packets have to be multirouted. 6895 * In this case, given the current <ire, sire> couple, 6896 * we look for the next suitable <ire, sire>. 6897 * This check is done in ire_multirt_lookup(), 6898 * which applies various criteria to find the next route 6899 * to resolve. ire_multirt_lookup() leaves <ire, sire> 6900 * unchanged if it detects it has not been tried yet. 6901 */ 6902 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 6903 ip3dbg(("ip_newroute: starting next_resolution " 6904 "with first_mp %p, tag %d\n", 6905 (void *)first_mp, 6906 MULTIRT_DEBUG_TAGGED(first_mp))); 6907 6908 ASSERT(sire != NULL); 6909 multirt_is_resolvable = 6910 ire_multirt_lookup(&ire, &sire, multirt_flags); 6911 6912 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 6913 "ire %p, sire %p\n", 6914 multirt_is_resolvable, 6915 (void *)ire, (void *)sire)); 6916 6917 if (!multirt_is_resolvable) { 6918 /* 6919 * No more multirt route to resolve; give up 6920 * (all routes resolved or no more 6921 * resolvable routes). 6922 */ 6923 if (ire != NULL) { 6924 ire_refrele(ire); 6925 ire = NULL; 6926 } 6927 } else { 6928 ASSERT(sire != NULL); 6929 ASSERT(ire != NULL); 6930 /* 6931 * We simply use first_sire as a flag that 6932 * indicates if a resolvable multirt route 6933 * has already been found. 6934 * If it is not the case, we may have to send 6935 * an ICMP error to report that the 6936 * destination is unreachable. 6937 * We do not IRE_REFHOLD first_sire. 6938 */ 6939 if (first_sire == NULL) { 6940 first_sire = sire; 6941 } 6942 } 6943 } 6944 if (ire == NULL) { 6945 if (ip_debug > 3) { 6946 /* ip2dbg */ 6947 pr_addr_dbg("ip_newroute: " 6948 "can't resolve %s\n", AF_INET, &dst); 6949 } 6950 ip3dbg(("ip_newroute: " 6951 "ire %p, sire %p, first_sire %p\n", 6952 (void *)ire, (void *)sire, (void *)first_sire)); 6953 6954 if (sire != NULL) { 6955 ire_refrele(sire); 6956 sire = NULL; 6957 } 6958 6959 if (first_sire != NULL) { 6960 /* 6961 * At least one multirt route has been found 6962 * in the same call to ip_newroute(); 6963 * there is no need to report an ICMP error. 6964 * first_sire was not IRE_REFHOLDed. 6965 */ 6966 MULTIRT_DEBUG_UNTAG(first_mp); 6967 freemsg(first_mp); 6968 return; 6969 } 6970 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 6971 RTA_DST); 6972 if (attach_ill != NULL) 6973 ill_refrele(attach_ill); 6974 goto icmp_err_ret; 6975 } 6976 6977 /* 6978 * When RTA_SRCIFP is used to add a route, then an interface 6979 * route is added in the source interface's routing table. 6980 * If the outgoing interface of this route is of type 6981 * IRE_IF_RESOLVER, then upon creation of the ire, 6982 * ire_dlureq_mp is set to NULL. Later, when this route is 6983 * first used for forwarding packet, ip_newroute() is called 6984 * to resolve the hardware address of the outgoing ipif. 6985 * We do not come here for IRE_IF_NORESOLVER entries in the 6986 * source interface based table. We only come here if the 6987 * outgoing interface is a resolver interface and we don't 6988 * have the ire_dlureq_mp information yet. 6989 * If in_ill is not null that means it is called from 6990 * ip_rput. 6991 */ 6992 6993 ASSERT(ire->ire_in_ill == NULL || 6994 (ire->ire_type == IRE_IF_RESOLVER && 6995 ire->ire_dlureq_mp == NULL)); 6996 6997 /* 6998 * Verify that the returned IRE does not have either 6999 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7000 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7001 */ 7002 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7003 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7004 if (attach_ill != NULL) 7005 ill_refrele(attach_ill); 7006 goto icmp_err_ret; 7007 } 7008 /* 7009 * Increment the ire_ob_pkt_count field for ire if it is an 7010 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7011 * increment the same for the parent IRE, sire, if it is some 7012 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7013 * and HOST_REDIRECT). 7014 */ 7015 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7016 UPDATE_OB_PKT_COUNT(ire); 7017 ire->ire_last_used_time = lbolt; 7018 } 7019 7020 if (sire != NULL) { 7021 gw = sire->ire_gateway_addr; 7022 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7023 IRE_INTERFACE)) == 0); 7024 UPDATE_OB_PKT_COUNT(sire); 7025 sire->ire_last_used_time = lbolt; 7026 } 7027 /* 7028 * We have a route to reach the destination. 7029 * 7030 * 1) If the interface is part of ill group, try to get a new 7031 * ill taking load spreading into account. 7032 * 7033 * 2) After selecting the ill, get a source address that 7034 * might create good inbound load spreading. 7035 * ipif_select_source does this for us. 7036 * 7037 * If the application specified the ill (ifindex), we still 7038 * load spread. Only if the packets needs to go out 7039 * specifically on a given ill e.g. binding to 7040 * IPIF_NOFAILOVER address, then we don't try to use a 7041 * different ill for load spreading. 7042 */ 7043 if (attach_ill == NULL) { 7044 /* 7045 * Don't perform outbound load spreading in the 7046 * case of an RTF_MULTIRT route, as we actually 7047 * typically want to replicate outgoing packets 7048 * through particular interfaces. 7049 */ 7050 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7051 dst_ill = ire->ire_ipif->ipif_ill; 7052 /* for uniformity */ 7053 ill_refhold(dst_ill); 7054 } else { 7055 /* 7056 * If we are here trying to create an IRE_CACHE 7057 * for an offlink destination and have the 7058 * IRE_CACHE for the next hop and the latter is 7059 * using virtual IP source address selection i.e 7060 * it's ire->ire_ipif is pointing to a virtual 7061 * network interface (vni) then 7062 * ip_newroute_get_dst_ll() will return the vni 7063 * interface as the dst_ill. Since the vni is 7064 * virtual i.e not associated with any physical 7065 * interface, it cannot be the dst_ill, hence 7066 * in such a case call ip_newroute_get_dst_ll() 7067 * with the stq_ill instead of the ire_ipif ILL. 7068 * The function returns a refheld ill. 7069 */ 7070 if ((ire->ire_type == IRE_CACHE) && 7071 IS_VNI(ire->ire_ipif->ipif_ill)) 7072 dst_ill = ip_newroute_get_dst_ill( 7073 ire->ire_stq->q_ptr); 7074 else 7075 dst_ill = ip_newroute_get_dst_ill( 7076 ire->ire_ipif->ipif_ill); 7077 } 7078 if (dst_ill == NULL) { 7079 if (ip_debug > 2) { 7080 pr_addr_dbg("ip_newroute: " 7081 "no dst ill for dst" 7082 " %s\n", AF_INET, &dst); 7083 } 7084 goto icmp_err_ret; 7085 } 7086 } else { 7087 dst_ill = ire->ire_ipif->ipif_ill; 7088 /* for uniformity */ 7089 ill_refhold(dst_ill); 7090 /* 7091 * We should have found a route matching ill as we 7092 * called ire_ftable_lookup with MATCH_IRE_ILL. 7093 * Rather than asserting, when there is a mismatch, 7094 * we just drop the packet. 7095 */ 7096 if (dst_ill != attach_ill) { 7097 ip0dbg(("ip_newroute: Packet dropped as " 7098 "IPIF_NOFAILOVER ill is %s, " 7099 "ire->ire_ipif->ipif_ill is %s\n", 7100 attach_ill->ill_name, 7101 dst_ill->ill_name)); 7102 ill_refrele(attach_ill); 7103 goto icmp_err_ret; 7104 } 7105 } 7106 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 7107 if (attach_ill != NULL) { 7108 ill_refrele(attach_ill); 7109 attach_ill = NULL; 7110 do_attach_ill = B_TRUE; 7111 } 7112 ASSERT(dst_ill != NULL); 7113 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 7114 7115 /* 7116 * Pick the best source address from dst_ill. 7117 * 7118 * 1) If it is part of a multipathing group, we would 7119 * like to spread the inbound packets across different 7120 * interfaces. ipif_select_source picks a random source 7121 * across the different ills in the group. 7122 * 7123 * 2) If it is not part of a multipathing group, we try 7124 * to pick the source address from the destination 7125 * route. Clustering assumes that when we have multiple 7126 * prefixes hosted on an interface, the prefix of the 7127 * source address matches the prefix of the destination 7128 * route. We do this only if the address is not 7129 * DEPRECATED. 7130 * 7131 * 3) If the conn is in a different zone than the ire, we 7132 * need to pick a source address from the right zone. 7133 * 7134 * NOTE : If we hit case (1) above, the prefix of the source 7135 * address picked may not match the prefix of the 7136 * destination routes prefix as ipif_select_source 7137 * does not look at "dst" while picking a source 7138 * address. 7139 * If we want the same behavior as (2), we will need 7140 * to change the behavior of ipif_select_source. 7141 */ 7142 ASSERT(src_ipif == NULL); 7143 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 7144 /* 7145 * The RTF_SETSRC flag is set in the parent ire (sire). 7146 * Check that the ipif matching the requested source 7147 * address still exists. 7148 */ 7149 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 7150 zoneid, NULL, NULL, NULL, NULL); 7151 } 7152 if (src_ipif == NULL) { 7153 ire_marks |= IRE_MARK_USESRC_CHECK; 7154 if ((dst_ill->ill_group != NULL) || 7155 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 7156 (connp != NULL && ire->ire_zoneid != zoneid) || 7157 (dst_ill->ill_usesrc_ifindex != 0)) { 7158 /* 7159 * If the destination is reachable via a 7160 * given gateway, the selected source address 7161 * should be in the same subnet as the gateway. 7162 * Otherwise, the destination is not reachable. 7163 * 7164 * If there are no interfaces on the same subnet 7165 * as the destination, ipif_select_source gives 7166 * first non-deprecated interface which might be 7167 * on a different subnet than the gateway. 7168 * This is not desirable. Hence pass the dst_ire 7169 * source address to ipif_select_source. 7170 * It is sure that the destination is reachable 7171 * with the dst_ire source address subnet. 7172 * So passing dst_ire source address to 7173 * ipif_select_source will make sure that the 7174 * selected source will be on the same subnet 7175 * as dst_ire source address. 7176 */ 7177 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 7178 src_ipif = ipif_select_source(dst_ill, saddr, 7179 zoneid); 7180 if (src_ipif == NULL) { 7181 if (ip_debug > 2) { 7182 pr_addr_dbg("ip_newroute: " 7183 "no src for dst %s ", 7184 AF_INET, &dst); 7185 printf("through interface %s\n", 7186 dst_ill->ill_name); 7187 } 7188 goto icmp_err_ret; 7189 } 7190 } else { 7191 src_ipif = ire->ire_ipif; 7192 ASSERT(src_ipif != NULL); 7193 /* hold src_ipif for uniformity */ 7194 ipif_refhold(src_ipif); 7195 } 7196 } 7197 7198 /* 7199 * Assign a source address while we have the conn. 7200 * We can't have ip_wput_ire pick a source address when the 7201 * packet returns from arp since we need to look at 7202 * conn_unspec_src and conn_zoneid, and we lose the conn when 7203 * going through arp. 7204 * 7205 * NOTE : ip_newroute_v6 does not have this piece of code as 7206 * it uses ip6i to store this information. 7207 */ 7208 if (ipha->ipha_src == INADDR_ANY && 7209 (connp == NULL || !connp->conn_unspec_src)) { 7210 ipha->ipha_src = src_ipif->ipif_src_addr; 7211 } 7212 if (ip_debug > 3) { 7213 /* ip2dbg */ 7214 pr_addr_dbg("ip_newroute: first hop %s\n", 7215 AF_INET, &gw); 7216 } 7217 ip2dbg(("\tire type %s (%d)\n", 7218 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 7219 7220 /* 7221 * The TTL of multirouted packets is bounded by the 7222 * ip_multirt_ttl ndd variable. 7223 */ 7224 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7225 /* Force TTL of multirouted packets */ 7226 if ((ip_multirt_ttl > 0) && 7227 (ipha->ipha_ttl > ip_multirt_ttl)) { 7228 ip2dbg(("ip_newroute: forcing multirt TTL " 7229 "to %d (was %d), dst 0x%08x\n", 7230 ip_multirt_ttl, ipha->ipha_ttl, 7231 ntohl(sire->ire_addr))); 7232 ipha->ipha_ttl = ip_multirt_ttl; 7233 } 7234 } 7235 /* 7236 * At this point in ip_newroute(), ire is either the 7237 * IRE_CACHE of the next-hop gateway for an off-subnet 7238 * destination or an IRE_INTERFACE type that should be used 7239 * to resolve an on-subnet destination or an on-subnet 7240 * next-hop gateway. 7241 * 7242 * In the IRE_CACHE case, we have the following : 7243 * 7244 * 1) src_ipif - used for getting a source address. 7245 * 7246 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7247 * means packets using this IRE_CACHE will go out on 7248 * dst_ill. 7249 * 7250 * 3) The IRE sire will point to the prefix that is the 7251 * longest matching route for the destination. These 7252 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST, 7253 * and IRE_HOST_REDIRECT. 7254 * 7255 * The newly created IRE_CACHE entry for the off-subnet 7256 * destination is tied to both the prefix route and the 7257 * interface route used to resolve the next-hop gateway 7258 * via the ire_phandle and ire_ihandle fields, 7259 * respectively. 7260 * 7261 * In the IRE_INTERFACE case, we have the following : 7262 * 7263 * 1) src_ipif - used for getting a source address. 7264 * 7265 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 7266 * means packets using the IRE_CACHE that we will build 7267 * here will go out on dst_ill. 7268 * 7269 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 7270 * to be created will only be tied to the IRE_INTERFACE 7271 * that was derived from the ire_ihandle field. 7272 * 7273 * If sire is non-NULL, it means the destination is 7274 * off-link and we will first create the IRE_CACHE for the 7275 * gateway. Next time through ip_newroute, we will create 7276 * the IRE_CACHE for the final destination as described 7277 * above. 7278 * 7279 * In both cases, after the current resolution has been 7280 * completed (or possibly initialised, in the IRE_INTERFACE 7281 * case), the loop may be re-entered to attempt the resolution 7282 * of another RTF_MULTIRT route. 7283 * 7284 * When an IRE_CACHE entry for the off-subnet destination is 7285 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 7286 * for further processing in emission loops. 7287 */ 7288 save_ire = ire; 7289 switch (ire->ire_type) { 7290 case IRE_CACHE: { 7291 ire_t *ipif_ire; 7292 mblk_t *ire_fp_mp; 7293 7294 if (gw == 0) 7295 gw = ire->ire_gateway_addr; 7296 /* 7297 * We need 3 ire's to create a new cache ire for an 7298 * off-link destination from the cache ire of the 7299 * gateway. 7300 * 7301 * 1. The prefix ire 'sire' (Note that this does 7302 * not apply to the conn_nexthop_set case) 7303 * 2. The cache ire of the gateway 'ire' 7304 * 3. The interface ire 'ipif_ire' 7305 * 7306 * We have (1) and (2). We lookup (3) below. 7307 * 7308 * If there is no interface route to the gateway, 7309 * it is a race condition, where we found the cache 7310 * but the interface route has been deleted. 7311 */ 7312 if (ip_nexthop) { 7313 ipif_ire = ire_ihandle_lookup_onlink(ire); 7314 } else { 7315 ipif_ire = 7316 ire_ihandle_lookup_offlink(ire, sire); 7317 } 7318 if (ipif_ire == NULL) { 7319 ip1dbg(("ip_newroute: " 7320 "ire_ihandle_lookup_offlink failed\n")); 7321 goto icmp_err_ret; 7322 } 7323 /* 7324 * XXX We are using the same dlureq_mp 7325 * (DL_UNITDATA_REQ) though the save_ire is not 7326 * pointing at the same ill. 7327 * This is incorrect. We need to send it up to the 7328 * resolver to get the right dlureq_mp. For ethernets 7329 * this may be okay (ill_type == DL_ETHER). 7330 */ 7331 dlureq_mp = save_ire->ire_dlureq_mp; 7332 ire_fp_mp = NULL; 7333 /* 7334 * save_ire's ire_fp_mp can't change since it is 7335 * not an IRE_MIPRTUN or IRE_BROADCAST 7336 * LOCK_IRE_FP_MP does not do any useful work in 7337 * the case of IRE_CACHE. So we don't use it below. 7338 */ 7339 if (save_ire->ire_stq == dst_ill->ill_wq) 7340 ire_fp_mp = save_ire->ire_fp_mp; 7341 7342 ire = ire_create( 7343 (uchar_t *)&dst, /* dest address */ 7344 (uchar_t *)&ip_g_all_ones, /* mask */ 7345 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7346 (uchar_t *)&gw, /* gateway address */ 7347 NULL, 7348 &save_ire->ire_max_frag, 7349 ire_fp_mp, /* Fast Path header */ 7350 dst_ill->ill_rq, /* recv-from queue */ 7351 dst_ill->ill_wq, /* send-to queue */ 7352 IRE_CACHE, /* IRE type */ 7353 save_ire->ire_dlureq_mp, 7354 src_ipif, 7355 in_ill, /* incoming ill */ 7356 (sire != NULL) ? 7357 sire->ire_mask : 0, /* Parent mask */ 7358 (sire != NULL) ? 7359 sire->ire_phandle : 0, /* Parent handle */ 7360 ipif_ire->ire_ihandle, /* Interface handle */ 7361 (sire != NULL) ? (sire->ire_flags & 7362 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 7363 (sire != NULL) ? 7364 &(sire->ire_uinfo) : &(save_ire->ire_uinfo)); 7365 7366 if (ire == NULL) { 7367 ire_refrele(ipif_ire); 7368 ire_refrele(save_ire); 7369 break; 7370 } 7371 ire->ire_marks |= ire_marks; 7372 7373 /* 7374 * Prevent sire and ipif_ire from getting deleted. 7375 * The newly created ire is tied to both of them via 7376 * the phandle and ihandle respectively. 7377 */ 7378 if (sire != NULL) { 7379 IRB_REFHOLD(sire->ire_bucket); 7380 /* Has it been removed already ? */ 7381 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 7382 IRB_REFRELE(sire->ire_bucket); 7383 ire_refrele(ipif_ire); 7384 ire_refrele(save_ire); 7385 break; 7386 } 7387 } 7388 7389 IRB_REFHOLD(ipif_ire->ire_bucket); 7390 /* Has it been removed already ? */ 7391 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 7392 IRB_REFRELE(ipif_ire->ire_bucket); 7393 if (sire != NULL) 7394 IRB_REFRELE(sire->ire_bucket); 7395 ire_refrele(ipif_ire); 7396 ire_refrele(save_ire); 7397 break; 7398 } 7399 7400 xmit_mp = first_mp; 7401 /* 7402 * In the case of multirouting, a copy 7403 * of the packet is done before its sending. 7404 * The copy is used to attempt another 7405 * route resolution, in a next loop. 7406 */ 7407 if (ire->ire_flags & RTF_MULTIRT) { 7408 copy_mp = copymsg(first_mp); 7409 if (copy_mp != NULL) { 7410 xmit_mp = copy_mp; 7411 MULTIRT_DEBUG_TAG(first_mp); 7412 } 7413 } 7414 ire_add_then_send(q, ire, xmit_mp); 7415 ire_refrele(save_ire); 7416 7417 /* Assert that sire is not deleted yet. */ 7418 if (sire != NULL) { 7419 ASSERT(sire->ire_ptpn != NULL); 7420 IRB_REFRELE(sire->ire_bucket); 7421 } 7422 7423 /* Assert that ipif_ire is not deleted yet. */ 7424 ASSERT(ipif_ire->ire_ptpn != NULL); 7425 IRB_REFRELE(ipif_ire->ire_bucket); 7426 ire_refrele(ipif_ire); 7427 7428 /* 7429 * If copy_mp is not NULL, multirouting was 7430 * requested. We loop to initiate a next 7431 * route resolution attempt, starting from sire. 7432 */ 7433 if (copy_mp != NULL) { 7434 /* 7435 * Search for the next unresolved 7436 * multirt route. 7437 */ 7438 copy_mp = NULL; 7439 ipif_ire = NULL; 7440 ire = NULL; 7441 multirt_resolve_next = B_TRUE; 7442 continue; 7443 } 7444 if (sire != NULL) 7445 ire_refrele(sire); 7446 ipif_refrele(src_ipif); 7447 ill_refrele(dst_ill); 7448 return; 7449 } 7450 case IRE_IF_NORESOLVER: { 7451 /* 7452 * We have what we need to build an IRE_CACHE. 7453 * 7454 * Create a new dlureq_mp with the IP gateway address 7455 * in destination address in the DLPI hdr if the 7456 * physical length is exactly 4 bytes. 7457 */ 7458 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 7459 uchar_t *addr; 7460 7461 if (gw) 7462 addr = (uchar_t *)&gw; 7463 else 7464 addr = (uchar_t *)&dst; 7465 7466 dlureq_mp = ill_dlur_gen(addr, 7467 dst_ill->ill_phys_addr_length, 7468 dst_ill->ill_sap, 7469 dst_ill->ill_sap_length); 7470 } else { 7471 dlureq_mp = ire->ire_dlureq_mp; 7472 } 7473 7474 if (dlureq_mp == NULL) { 7475 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 7476 break; 7477 } 7478 7479 ire = ire_create( 7480 (uchar_t *)&dst, /* dest address */ 7481 (uchar_t *)&ip_g_all_ones, /* mask */ 7482 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7483 (uchar_t *)&gw, /* gateway address */ 7484 NULL, 7485 &save_ire->ire_max_frag, 7486 NULL, /* Fast Path header */ 7487 dst_ill->ill_rq, /* recv-from queue */ 7488 dst_ill->ill_wq, /* send-to queue */ 7489 IRE_CACHE, 7490 dlureq_mp, 7491 src_ipif, 7492 in_ill, /* Incoming ill */ 7493 save_ire->ire_mask, /* Parent mask */ 7494 (sire != NULL) ? /* Parent handle */ 7495 sire->ire_phandle : 0, 7496 save_ire->ire_ihandle, /* Interface handle */ 7497 (sire != NULL) ? sire->ire_flags & 7498 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 7499 &(save_ire->ire_uinfo)); 7500 7501 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 7502 freeb(dlureq_mp); 7503 7504 if (ire == NULL) { 7505 ire_refrele(save_ire); 7506 break; 7507 } 7508 7509 ire->ire_marks |= ire_marks; 7510 7511 /* Prevent save_ire from getting deleted */ 7512 IRB_REFHOLD(save_ire->ire_bucket); 7513 /* Has it been removed already ? */ 7514 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 7515 IRB_REFRELE(save_ire->ire_bucket); 7516 ire_refrele(save_ire); 7517 break; 7518 } 7519 7520 /* 7521 * In the case of multirouting, a copy 7522 * of the packet is made before it is sent. 7523 * The copy is used in the next 7524 * loop to attempt another resolution. 7525 */ 7526 xmit_mp = first_mp; 7527 if ((sire != NULL) && 7528 (sire->ire_flags & RTF_MULTIRT)) { 7529 copy_mp = copymsg(first_mp); 7530 if (copy_mp != NULL) { 7531 xmit_mp = copy_mp; 7532 MULTIRT_DEBUG_TAG(first_mp); 7533 } 7534 } 7535 ire_add_then_send(q, ire, xmit_mp); 7536 7537 /* Assert that it is not deleted yet. */ 7538 ASSERT(save_ire->ire_ptpn != NULL); 7539 IRB_REFRELE(save_ire->ire_bucket); 7540 ire_refrele(save_ire); 7541 7542 if (copy_mp != NULL) { 7543 /* 7544 * If we found a (no)resolver, we ignore any 7545 * trailing top priority IRE_CACHE in further 7546 * loops. This ensures that we do not omit any 7547 * (no)resolver. 7548 * This IRE_CACHE, if any, will be processed 7549 * by another thread entering ip_newroute(). 7550 * IRE_CACHE entries, if any, will be processed 7551 * by another thread entering ip_newroute(), 7552 * (upon resolver response, for instance). 7553 * This aims to force parallel multirt 7554 * resolutions as soon as a packet must be sent. 7555 * In the best case, after the tx of only one 7556 * packet, all reachable routes are resolved. 7557 * Otherwise, the resolution of all RTF_MULTIRT 7558 * routes would require several emissions. 7559 */ 7560 multirt_flags &= ~MULTIRT_CACHEGW; 7561 7562 /* 7563 * Search for the next unresolved multirt 7564 * route. 7565 */ 7566 copy_mp = NULL; 7567 save_ire = NULL; 7568 ire = NULL; 7569 multirt_resolve_next = B_TRUE; 7570 continue; 7571 } 7572 7573 /* 7574 * Don't need sire anymore 7575 */ 7576 if (sire != NULL) 7577 ire_refrele(sire); 7578 7579 ipif_refrele(src_ipif); 7580 ill_refrele(dst_ill); 7581 return; 7582 } 7583 case IRE_IF_RESOLVER: 7584 /* 7585 * We can't build an IRE_CACHE yet, but at least we 7586 * found a resolver that can help. 7587 */ 7588 res_mp = dst_ill->ill_resolver_mp; 7589 if (!OK_RESOLVER_MP(res_mp)) 7590 break; 7591 /* 7592 * To be at this point in the code with a non-zero gw 7593 * means that dst is reachable through a gateway that 7594 * we have never resolved. By changing dst to the gw 7595 * addr we resolve the gateway first. 7596 * When ire_add_then_send() tries to put the IP dg 7597 * to dst, it will reenter ip_newroute() at which 7598 * time we will find the IRE_CACHE for the gw and 7599 * create another IRE_CACHE in case IRE_CACHE above. 7600 */ 7601 if (gw != INADDR_ANY) { 7602 /* 7603 * The source ipif that was determined above was 7604 * relative to the destination address, not the 7605 * gateway's. If src_ipif was not taken out of 7606 * the IRE_IF_RESOLVER entry, we'll need to call 7607 * ipif_select_source() again. 7608 */ 7609 if (src_ipif != ire->ire_ipif) { 7610 ipif_refrele(src_ipif); 7611 src_ipif = ipif_select_source(dst_ill, 7612 gw, zoneid); 7613 if (src_ipif == NULL) { 7614 if (ip_debug > 2) { 7615 pr_addr_dbg( 7616 "ip_newroute: no " 7617 "src for gw %s ", 7618 AF_INET, &gw); 7619 printf("through " 7620 "interface %s\n", 7621 dst_ill->ill_name); 7622 } 7623 goto icmp_err_ret; 7624 } 7625 } 7626 save_dst = dst; 7627 dst = gw; 7628 gw = INADDR_ANY; 7629 } 7630 /* 7631 * We obtain a partial IRE_CACHE which we will pass 7632 * along with the resolver query. When the response 7633 * comes back it will be there ready for us to add. 7634 * The ire_max_frag is atomically set under the 7635 * irebucket lock in ire_add_v[46]. 7636 */ 7637 ire = ire_create_mp( 7638 (uchar_t *)&dst, /* dest address */ 7639 (uchar_t *)&ip_g_all_ones, /* mask */ 7640 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 7641 (uchar_t *)&gw, /* gateway address */ 7642 NULL, /* no in_src_addr */ 7643 NULL, /* ire_max_frag */ 7644 NULL, /* Fast Path header */ 7645 dst_ill->ill_rq, /* recv-from queue */ 7646 dst_ill->ill_wq, /* send-to queue */ 7647 IRE_CACHE, 7648 res_mp, 7649 src_ipif, /* Interface ipif */ 7650 in_ill, /* Incoming ILL */ 7651 save_ire->ire_mask, /* Parent mask */ 7652 0, 7653 save_ire->ire_ihandle, /* Interface handle */ 7654 0, /* flags if any */ 7655 &(save_ire->ire_uinfo)); 7656 7657 if (ire == NULL) { 7658 ire_refrele(save_ire); 7659 break; 7660 } 7661 7662 if ((sire != NULL) && 7663 (sire->ire_flags & RTF_MULTIRT)) { 7664 copy_mp = copymsg(first_mp); 7665 if (copy_mp != NULL) 7666 MULTIRT_DEBUG_TAG(copy_mp); 7667 } 7668 7669 ire->ire_marks |= ire_marks; 7670 7671 /* 7672 * Construct message chain for the resolver 7673 * of the form: 7674 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 7675 * Packet could contain a IPSEC_OUT mp. 7676 * 7677 * NOTE : ire will be added later when the response 7678 * comes back from ARP. If the response does not 7679 * come back, ARP frees the packet. For this reason, 7680 * we can't REFHOLD the bucket of save_ire to prevent 7681 * deletions. We may not be able to REFRELE the bucket 7682 * if the response never comes back. Thus, before 7683 * adding the ire, ire_add_v4 will make sure that the 7684 * interface route does not get deleted. This is the 7685 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 7686 * where we can always prevent deletions because of 7687 * the synchronous nature of adding IRES i.e 7688 * ire_add_then_send is called after creating the IRE. 7689 */ 7690 ASSERT(ire->ire_mp != NULL); 7691 ire->ire_mp->b_cont = first_mp; 7692 /* Have saved_mp handy, for cleanup if canput fails */ 7693 saved_mp = mp; 7694 mp = ire->ire_dlureq_mp; 7695 ASSERT(mp != NULL); 7696 ire->ire_dlureq_mp = NULL; 7697 linkb(mp, ire->ire_mp); 7698 7699 7700 /* 7701 * Fill in the source and dest addrs for the resolver. 7702 * NOTE: this depends on memory layouts imposed by 7703 * ill_init(). 7704 */ 7705 areq = (areq_t *)mp->b_rptr; 7706 addrp = (ipaddr_t *)((char *)areq + 7707 areq->areq_sender_addr_offset); 7708 if (do_attach_ill) { 7709 /* 7710 * This is bind to no failover case. 7711 * arp packet also must go out on attach_ill. 7712 */ 7713 ASSERT(ipha->ipha_src != NULL); 7714 *addrp = ipha->ipha_src; 7715 } else { 7716 *addrp = save_ire->ire_src_addr; 7717 } 7718 7719 ire_refrele(save_ire); 7720 addrp = (ipaddr_t *)((char *)areq + 7721 areq->areq_target_addr_offset); 7722 *addrp = dst; 7723 /* Up to the resolver. */ 7724 if (canputnext(dst_ill->ill_rq)) { 7725 putnext(dst_ill->ill_rq, mp); 7726 ire = NULL; 7727 if (copy_mp != NULL) { 7728 /* 7729 * If we found a resolver, we ignore 7730 * any trailing top priority IRE_CACHE 7731 * in the further loops. This ensures 7732 * that we do not omit any resolver. 7733 * IRE_CACHE entries, if any, will be 7734 * processed next time we enter 7735 * ip_newroute(). 7736 */ 7737 multirt_flags &= ~MULTIRT_CACHEGW; 7738 /* 7739 * Search for the next unresolved 7740 * multirt route. 7741 */ 7742 first_mp = copy_mp; 7743 copy_mp = NULL; 7744 /* Prepare the next resolution loop. */ 7745 mp = first_mp; 7746 EXTRACT_PKT_MP(mp, first_mp, 7747 mctl_present); 7748 if (mctl_present) 7749 io = (ipsec_out_t *) 7750 first_mp->b_rptr; 7751 ipha = (ipha_t *)mp->b_rptr; 7752 7753 ASSERT(sire != NULL); 7754 7755 dst = save_dst; 7756 multirt_resolve_next = B_TRUE; 7757 continue; 7758 } 7759 7760 if (sire != NULL) 7761 ire_refrele(sire); 7762 7763 /* 7764 * The response will come back in ip_wput 7765 * with db_type IRE_DB_TYPE. 7766 */ 7767 ipif_refrele(src_ipif); 7768 ill_refrele(dst_ill); 7769 return; 7770 } else { 7771 /* Prepare for cleanup */ 7772 ire->ire_dlureq_mp = mp; 7773 mp->b_cont = NULL; 7774 ire_delete(ire); 7775 mp = saved_mp; 7776 ire = NULL; 7777 if (copy_mp != NULL) { 7778 MULTIRT_DEBUG_UNTAG(copy_mp); 7779 freemsg(copy_mp); 7780 copy_mp = NULL; 7781 } 7782 break; 7783 } 7784 default: 7785 break; 7786 } 7787 } while (multirt_resolve_next); 7788 7789 ip1dbg(("ip_newroute: dropped\n")); 7790 /* Did this packet originate externally? */ 7791 if (mp->b_prev) { 7792 mp->b_next = NULL; 7793 mp->b_prev = NULL; 7794 BUMP_MIB(&ip_mib, ipInDiscards); 7795 } else { 7796 BUMP_MIB(&ip_mib, ipOutDiscards); 7797 } 7798 ASSERT(copy_mp == NULL); 7799 MULTIRT_DEBUG_UNTAG(first_mp); 7800 freemsg(first_mp); 7801 if (ire != NULL) 7802 ire_refrele(ire); 7803 if (sire != NULL) 7804 ire_refrele(sire); 7805 if (src_ipif != NULL) 7806 ipif_refrele(src_ipif); 7807 if (dst_ill != NULL) 7808 ill_refrele(dst_ill); 7809 return; 7810 7811 icmp_err_ret: 7812 ip1dbg(("ip_newroute: no route\n")); 7813 if (src_ipif != NULL) 7814 ipif_refrele(src_ipif); 7815 if (dst_ill != NULL) 7816 ill_refrele(dst_ill); 7817 if (sire != NULL) 7818 ire_refrele(sire); 7819 /* Did this packet originate externally? */ 7820 if (mp->b_prev) { 7821 mp->b_next = NULL; 7822 mp->b_prev = NULL; 7823 /* XXX ipInNoRoutes */ 7824 q = WR(q); 7825 } else { 7826 /* 7827 * Since ip_wput() isn't close to finished, we fill 7828 * in enough of the header for credible error reporting. 7829 */ 7830 if (ip_hdr_complete(ipha, zoneid)) { 7831 /* Failed */ 7832 MULTIRT_DEBUG_UNTAG(first_mp); 7833 freemsg(first_mp); 7834 if (ire != NULL) 7835 ire_refrele(ire); 7836 return; 7837 } 7838 } 7839 BUMP_MIB(&ip_mib, ipOutNoRoutes); 7840 7841 /* 7842 * At this point we will have ire only if RTF_BLACKHOLE 7843 * or RTF_REJECT flags are set on the IRE. It will not 7844 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 7845 */ 7846 if (ire != NULL) { 7847 if (ire->ire_flags & RTF_BLACKHOLE) { 7848 ire_refrele(ire); 7849 MULTIRT_DEBUG_UNTAG(first_mp); 7850 freemsg(first_mp); 7851 return; 7852 } 7853 ire_refrele(ire); 7854 } 7855 if (ip_source_routed(ipha)) { 7856 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED); 7857 return; 7858 } 7859 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 7860 } 7861 7862 /* 7863 * IPv4 - 7864 * ip_newroute_ipif is called by ip_wput_multicast and 7865 * ip_rput_forward_multicast whenever we need to send 7866 * out a packet to a destination address for which we do not have specific 7867 * routing information. It is used when the packet will be sent out 7868 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 7869 * socket option is set or icmp error message wants to go out on a particular 7870 * interface for a unicast packet. 7871 * 7872 * In most cases, the destination address is resolved thanks to the ipif 7873 * intrinsic resolver. However, there are some cases where the call to 7874 * ip_newroute_ipif must take into account the potential presence of 7875 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 7876 * that uses the interface. This is specified through flags, 7877 * which can be a combination of: 7878 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 7879 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 7880 * and flags. Additionally, the packet source address has to be set to 7881 * the specified address. The caller is thus expected to set this flag 7882 * if the packet has no specific source address yet. 7883 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 7884 * flag, the resulting ire will inherit the flag. All unresolved routes 7885 * to the destination must be explored in the same call to 7886 * ip_newroute_ipif(). 7887 */ 7888 static void 7889 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 7890 conn_t *connp, uint32_t flags) 7891 { 7892 areq_t *areq; 7893 ire_t *ire = NULL; 7894 mblk_t *res_mp; 7895 ipaddr_t *addrp; 7896 mblk_t *first_mp; 7897 ire_t *save_ire = NULL; 7898 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 7899 ipif_t *src_ipif = NULL; 7900 ushort_t ire_marks = 0; 7901 ill_t *dst_ill = NULL; 7902 boolean_t mctl_present; 7903 ipsec_out_t *io; 7904 ipha_t *ipha; 7905 int ihandle = 0; 7906 mblk_t *saved_mp; 7907 ire_t *fire = NULL; 7908 mblk_t *copy_mp = NULL; 7909 boolean_t multirt_resolve_next; 7910 ipaddr_t ipha_dst; 7911 zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 7912 7913 /* 7914 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 7915 * here for uniformity 7916 */ 7917 ipif_refhold(ipif); 7918 7919 /* 7920 * This loop is run only once in most cases. 7921 * We loop to resolve further routes only when the destination 7922 * can be reached through multiple RTF_MULTIRT-flagged ires. 7923 */ 7924 do { 7925 if (dst_ill != NULL) { 7926 ill_refrele(dst_ill); 7927 dst_ill = NULL; 7928 } 7929 if (src_ipif != NULL) { 7930 ipif_refrele(src_ipif); 7931 src_ipif = NULL; 7932 } 7933 multirt_resolve_next = B_FALSE; 7934 7935 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 7936 ipif->ipif_ill->ill_name)); 7937 7938 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7939 if (mctl_present) 7940 io = (ipsec_out_t *)first_mp->b_rptr; 7941 7942 ipha = (ipha_t *)mp->b_rptr; 7943 7944 /* 7945 * Save the packet destination address, we may need it after 7946 * the packet has been consumed. 7947 */ 7948 ipha_dst = ipha->ipha_dst; 7949 7950 /* 7951 * If the interface is a pt-pt interface we look for an 7952 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 7953 * local_address and the pt-pt destination address. Otherwise 7954 * we just match the local address. 7955 * NOTE: dst could be different than ipha->ipha_dst in case 7956 * of sending igmp multicast packets over a point-to-point 7957 * connection. 7958 * Thus we must be careful enough to check ipha_dst to be a 7959 * multicast address, otherwise it will take xmit_if path for 7960 * multicast packets resulting into kernel stack overflow by 7961 * repeated calls to ip_newroute_ipif from ire_send(). 7962 */ 7963 if (CLASSD(ipha_dst) && 7964 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 7965 goto err_ret; 7966 } 7967 7968 /* 7969 * We check if an IRE_OFFSUBNET for the addr that goes through 7970 * ipif exists. We need it to determine if the RTF_SETSRC and/or 7971 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 7972 * propagate its flags to the new ire. 7973 */ 7974 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 7975 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 7976 ip2dbg(("ip_newroute_ipif: " 7977 "ipif_lookup_multi_ire(" 7978 "ipif %p, dst %08x) = fire %p\n", 7979 (void *)ipif, ntohl(dst), (void *)fire)); 7980 } 7981 7982 if (mctl_present && io->ipsec_out_attach_if) { 7983 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7984 io->ipsec_out_ill_index, B_FALSE); 7985 7986 /* Failure case frees things for us. */ 7987 if (attach_ill == NULL) { 7988 ipif_refrele(ipif); 7989 if (fire != NULL) 7990 ire_refrele(fire); 7991 return; 7992 } 7993 7994 /* 7995 * Check if we need an ire that will not be 7996 * looked up by anybody else i.e. HIDDEN. 7997 */ 7998 if (ill_is_probeonly(attach_ill)) { 7999 ire_marks = IRE_MARK_HIDDEN; 8000 } 8001 /* 8002 * ip_wput passes the right ipif for IPIF_NOFAILOVER 8003 * case. 8004 */ 8005 dst_ill = ipif->ipif_ill; 8006 /* attach_ill has been refheld by ip_grab_attach_ill */ 8007 ASSERT(dst_ill == attach_ill); 8008 } else { 8009 /* 8010 * If this is set by IP_XMIT_IF, then make sure that 8011 * ipif is pointing to the same ill as the IP_XMIT_IF 8012 * specified ill. 8013 */ 8014 ASSERT((connp == NULL) || 8015 (connp->conn_xmit_if_ill == NULL) || 8016 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 8017 /* 8018 * If the interface belongs to an interface group, 8019 * make sure the next possible interface in the group 8020 * is used. This encourages load spreading among 8021 * peers in an interface group. 8022 * Note: load spreading is disabled for RTF_MULTIRT 8023 * routes. 8024 */ 8025 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8026 (fire->ire_flags & RTF_MULTIRT)) { 8027 /* 8028 * Don't perform outbound load spreading 8029 * in the case of an RTF_MULTIRT issued route, 8030 * we actually typically want to replicate 8031 * outgoing packets through particular 8032 * interfaces. 8033 */ 8034 dst_ill = ipif->ipif_ill; 8035 ill_refhold(dst_ill); 8036 } else { 8037 dst_ill = ip_newroute_get_dst_ill( 8038 ipif->ipif_ill); 8039 } 8040 if (dst_ill == NULL) { 8041 if (ip_debug > 2) { 8042 pr_addr_dbg("ip_newroute_ipif: " 8043 "no dst ill for dst %s\n", 8044 AF_INET, &dst); 8045 } 8046 goto err_ret; 8047 } 8048 } 8049 8050 /* 8051 * Pick a source address preferring non-deprecated ones. 8052 * Unlike ip_newroute, we don't do any source address 8053 * selection here since for multicast it really does not help 8054 * in inbound load spreading as in the unicast case. 8055 */ 8056 if ((flags & RTF_SETSRC) && (fire != NULL) && 8057 (fire->ire_flags & RTF_SETSRC)) { 8058 /* 8059 * As requested by flags, an IRE_OFFSUBNET was looked up 8060 * on that interface. This ire has RTF_SETSRC flag, so 8061 * the source address of the packet must be changed. 8062 * Check that the ipif matching the requested source 8063 * address still exists. 8064 */ 8065 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 8066 zoneid, NULL, NULL, NULL, NULL); 8067 } 8068 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 8069 (connp != NULL && ipif->ipif_zoneid != zoneid)) && 8070 (src_ipif == NULL)) { 8071 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 8072 if (src_ipif == NULL) { 8073 if (ip_debug > 2) { 8074 /* ip1dbg */ 8075 pr_addr_dbg("ip_newroute_ipif: " 8076 "no src for dst %s", 8077 AF_INET, &dst); 8078 } 8079 ip1dbg((" through interface %s\n", 8080 dst_ill->ill_name)); 8081 goto err_ret; 8082 } 8083 ipif_refrele(ipif); 8084 ipif = src_ipif; 8085 ipif_refhold(ipif); 8086 } 8087 if (src_ipif == NULL) { 8088 src_ipif = ipif; 8089 ipif_refhold(src_ipif); 8090 } 8091 8092 /* 8093 * Assign a source address while we have the conn. 8094 * We can't have ip_wput_ire pick a source address when the 8095 * packet returns from arp since conn_unspec_src might be set 8096 * and we loose the conn when going through arp. 8097 */ 8098 if (ipha->ipha_src == INADDR_ANY && 8099 (connp == NULL || !connp->conn_unspec_src)) { 8100 ipha->ipha_src = src_ipif->ipif_src_addr; 8101 } 8102 8103 /* 8104 * In case of IP_XMIT_IF, it is possible that the outgoing 8105 * interface does not have an interface ire. 8106 * Example: Thousands of mobileip PPP interfaces to mobile 8107 * nodes. We don't want to create interface ires because 8108 * packets from other mobile nodes must not take the route 8109 * via interface ires to the visiting mobile node without 8110 * going through the home agent, in absence of mobileip 8111 * route optimization. 8112 */ 8113 if (CLASSD(ipha_dst) && (connp == NULL || 8114 connp->conn_xmit_if_ill == NULL)) { 8115 /* ipif_to_ire returns an held ire */ 8116 ire = ipif_to_ire(ipif); 8117 if (ire == NULL) 8118 goto err_ret; 8119 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 8120 goto err_ret; 8121 /* 8122 * ihandle is needed when the ire is added to 8123 * cache table. 8124 */ 8125 save_ire = ire; 8126 ihandle = save_ire->ire_ihandle; 8127 8128 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 8129 "flags %04x\n", 8130 (void *)ire, (void *)ipif, flags)); 8131 if ((flags & RTF_MULTIRT) && (fire != NULL) && 8132 (fire->ire_flags & RTF_MULTIRT)) { 8133 /* 8134 * As requested by flags, an IRE_OFFSUBNET was 8135 * looked up on that interface. This ire has 8136 * RTF_MULTIRT flag, so the resolution loop will 8137 * be re-entered to resolve additional routes on 8138 * other interfaces. For that purpose, a copy of 8139 * the packet is performed at this point. 8140 */ 8141 fire->ire_last_used_time = lbolt; 8142 copy_mp = copymsg(first_mp); 8143 if (copy_mp) { 8144 MULTIRT_DEBUG_TAG(copy_mp); 8145 } 8146 } 8147 if ((flags & RTF_SETSRC) && (fire != NULL) && 8148 (fire->ire_flags & RTF_SETSRC)) { 8149 /* 8150 * As requested by flags, an IRE_OFFSUBET was 8151 * looked up on that interface. This ire has 8152 * RTF_SETSRC flag, so the source address of the 8153 * packet must be changed. 8154 */ 8155 ipha->ipha_src = fire->ire_src_addr; 8156 } 8157 } else { 8158 ASSERT((connp == NULL) || 8159 (connp->conn_xmit_if_ill != NULL) || 8160 (connp->conn_dontroute)); 8161 /* 8162 * The only ways we can come here are: 8163 * 1) IP_XMIT_IF socket option is set 8164 * 2) ICMP error message generated from 8165 * ip_mrtun_forward() routine and it needs 8166 * to go through the specified ill. 8167 * 3) SO_DONTROUTE socket option is set 8168 * In all cases, the new ire will not be added 8169 * into cache table. 8170 */ 8171 ire_marks |= IRE_MARK_NOADD; 8172 } 8173 8174 switch (ipif->ipif_net_type) { 8175 case IRE_IF_NORESOLVER: { 8176 /* We have what we need to build an IRE_CACHE. */ 8177 mblk_t *dlureq_mp; 8178 8179 /* 8180 * Create a new dlureq_mp with the 8181 * IP gateway address as destination address in the 8182 * DLPI hdr if the physical length is exactly 4 bytes. 8183 */ 8184 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8185 dlureq_mp = ill_dlur_gen((uchar_t *)&dst, 8186 dst_ill->ill_phys_addr_length, 8187 dst_ill->ill_sap, 8188 dst_ill->ill_sap_length); 8189 } else { 8190 /* use the value set in ip_ll_subnet_defaults */ 8191 dlureq_mp = ill_dlur_gen(NULL, 8192 dst_ill->ill_phys_addr_length, 8193 dst_ill->ill_sap, 8194 dst_ill->ill_sap_length); 8195 } 8196 8197 if (dlureq_mp == NULL) 8198 break; 8199 /* 8200 * The new ire inherits the IRE_OFFSUBNET flags 8201 * and source address, if this was requested. 8202 */ 8203 ire = ire_create( 8204 (uchar_t *)&dst, /* dest address */ 8205 (uchar_t *)&ip_g_all_ones, /* mask */ 8206 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8207 NULL, /* gateway address */ 8208 NULL, 8209 &ipif->ipif_mtu, 8210 NULL, /* Fast Path header */ 8211 dst_ill->ill_rq, /* recv-from queue */ 8212 dst_ill->ill_wq, /* send-to queue */ 8213 IRE_CACHE, 8214 dlureq_mp, 8215 src_ipif, 8216 NULL, 8217 (save_ire != NULL ? save_ire->ire_mask : 0), 8218 (fire != NULL) ? /* Parent handle */ 8219 fire->ire_phandle : 0, 8220 ihandle, /* Interface handle */ 8221 (fire != NULL) ? 8222 (fire->ire_flags & 8223 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8224 (save_ire == NULL ? &ire_uinfo_null : 8225 &save_ire->ire_uinfo)); 8226 8227 freeb(dlureq_mp); 8228 8229 if (ire == NULL) { 8230 if (save_ire != NULL) 8231 ire_refrele(save_ire); 8232 break; 8233 } 8234 8235 ire->ire_marks |= ire_marks; 8236 8237 /* Prevent save_ire from getting deleted */ 8238 if (save_ire != NULL) { 8239 IRB_REFHOLD(save_ire->ire_bucket); 8240 /* Has it been removed already ? */ 8241 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8242 IRB_REFRELE(save_ire->ire_bucket); 8243 ire_refrele(save_ire); 8244 break; 8245 } 8246 } 8247 8248 ire_add_then_send(q, ire, first_mp); 8249 8250 /* Assert that save_ire is not deleted yet. */ 8251 if (save_ire != NULL) { 8252 ASSERT(save_ire->ire_ptpn != NULL); 8253 IRB_REFRELE(save_ire->ire_bucket); 8254 ire_refrele(save_ire); 8255 save_ire = NULL; 8256 } 8257 if (fire != NULL) { 8258 ire_refrele(fire); 8259 fire = NULL; 8260 } 8261 8262 /* 8263 * the resolution loop is re-entered if this 8264 * was requested through flags and if we 8265 * actually are in a multirouting case. 8266 */ 8267 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8268 boolean_t need_resolve = 8269 ire_multirt_need_resolve(ipha_dst); 8270 if (!need_resolve) { 8271 MULTIRT_DEBUG_UNTAG(copy_mp); 8272 freemsg(copy_mp); 8273 copy_mp = NULL; 8274 } else { 8275 /* 8276 * ipif_lookup_group() calls 8277 * ire_lookup_multi() that uses 8278 * ire_ftable_lookup() to find 8279 * an IRE_INTERFACE for the group. 8280 * In the multirt case, 8281 * ire_lookup_multi() then invokes 8282 * ire_multirt_lookup() to find 8283 * the next resolvable ire. 8284 * As a result, we obtain an new 8285 * interface, derived from the 8286 * next ire. 8287 */ 8288 ipif_refrele(ipif); 8289 ipif = ipif_lookup_group(ipha_dst, 8290 zoneid); 8291 ip2dbg(("ip_newroute_ipif: " 8292 "multirt dst %08x, ipif %p\n", 8293 htonl(dst), (void *)ipif)); 8294 if (ipif != NULL) { 8295 mp = copy_mp; 8296 copy_mp = NULL; 8297 multirt_resolve_next = B_TRUE; 8298 continue; 8299 } else { 8300 freemsg(copy_mp); 8301 } 8302 } 8303 } 8304 if (ipif != NULL) 8305 ipif_refrele(ipif); 8306 ill_refrele(dst_ill); 8307 ipif_refrele(src_ipif); 8308 return; 8309 } 8310 case IRE_IF_RESOLVER: 8311 /* 8312 * We can't build an IRE_CACHE yet, but at least 8313 * we found a resolver that can help. 8314 */ 8315 res_mp = dst_ill->ill_resolver_mp; 8316 if (!OK_RESOLVER_MP(res_mp)) 8317 break; 8318 8319 /* 8320 * We obtain a partial IRE_CACHE which we will pass 8321 * along with the resolver query. When the response 8322 * comes back it will be there ready for us to add. 8323 * The new ire inherits the IRE_OFFSUBNET flags 8324 * and source address, if this was requested. 8325 * The ire_max_frag is atomically set under the 8326 * irebucket lock in ire_add_v[46]. Only in the 8327 * case of IRE_MARK_NOADD, we set it here itself. 8328 */ 8329 ire = ire_create_mp( 8330 (uchar_t *)&dst, /* dest address */ 8331 (uchar_t *)&ip_g_all_ones, /* mask */ 8332 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8333 NULL, /* gateway address */ 8334 NULL, /* no in_src_addr */ 8335 (ire_marks & IRE_MARK_NOADD) ? 8336 ipif->ipif_mtu : 0, /* max_frag */ 8337 NULL, /* Fast path header */ 8338 dst_ill->ill_rq, /* recv-from queue */ 8339 dst_ill->ill_wq, /* send-to queue */ 8340 IRE_CACHE, 8341 res_mp, 8342 src_ipif, 8343 NULL, 8344 (save_ire != NULL ? save_ire->ire_mask : 0), 8345 (fire != NULL) ? /* Parent handle */ 8346 fire->ire_phandle : 0, 8347 ihandle, /* Interface handle */ 8348 (fire != NULL) ? /* flags if any */ 8349 (fire->ire_flags & 8350 (RTF_SETSRC | RTF_MULTIRT)) : 0, 8351 (save_ire == NULL ? &ire_uinfo_null : 8352 &save_ire->ire_uinfo)); 8353 8354 if (save_ire != NULL) { 8355 ire_refrele(save_ire); 8356 save_ire = NULL; 8357 } 8358 if (ire == NULL) 8359 break; 8360 8361 ire->ire_marks |= ire_marks; 8362 /* 8363 * Construct message chain for the resolver of the 8364 * form: 8365 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8366 * 8367 * NOTE : ire will be added later when the response 8368 * comes back from ARP. If the response does not 8369 * come back, ARP frees the packet. For this reason, 8370 * we can't REFHOLD the bucket of save_ire to prevent 8371 * deletions. We may not be able to REFRELE the 8372 * bucket if the response never comes back. 8373 * Thus, before adding the ire, ire_add_v4 will make 8374 * sure that the interface route does not get deleted. 8375 * This is the only case unlike ip_newroute_v6, 8376 * ip_newroute_ipif_v6 where we can always prevent 8377 * deletions because ire_add_then_send is called after 8378 * creating the IRE. 8379 * If IRE_MARK_NOADD is set, then ire_add_then_send 8380 * does not add this IRE into the IRE CACHE. 8381 */ 8382 ASSERT(ire->ire_mp != NULL); 8383 ire->ire_mp->b_cont = first_mp; 8384 /* Have saved_mp handy, for cleanup if canput fails */ 8385 saved_mp = mp; 8386 mp = ire->ire_dlureq_mp; 8387 ASSERT(mp != NULL); 8388 ire->ire_dlureq_mp = NULL; 8389 linkb(mp, ire->ire_mp); 8390 8391 /* 8392 * Fill in the source and dest addrs for the resolver. 8393 * NOTE: this depends on memory layouts imposed by 8394 * ill_init(). 8395 */ 8396 areq = (areq_t *)mp->b_rptr; 8397 addrp = (ipaddr_t *)((char *)areq + 8398 areq->areq_sender_addr_offset); 8399 *addrp = ire->ire_src_addr; 8400 addrp = (ipaddr_t *)((char *)areq + 8401 areq->areq_target_addr_offset); 8402 *addrp = dst; 8403 /* Up to the resolver. */ 8404 if (canputnext(dst_ill->ill_rq)) { 8405 putnext(dst_ill->ill_rq, mp); 8406 /* 8407 * The response will come back in ip_wput 8408 * with db_type IRE_DB_TYPE. 8409 */ 8410 } else { 8411 ire->ire_dlureq_mp = mp; 8412 mp->b_cont = NULL; 8413 ire_delete(ire); 8414 saved_mp->b_next = NULL; 8415 saved_mp->b_prev = NULL; 8416 freemsg(first_mp); 8417 ip2dbg(("ip_newroute_ipif: dropped\n")); 8418 } 8419 8420 if (fire != NULL) { 8421 ire_refrele(fire); 8422 fire = NULL; 8423 } 8424 8425 8426 /* 8427 * The resolution loop is re-entered if this was 8428 * requested through flags and we actually are 8429 * in a multirouting case. 8430 */ 8431 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 8432 boolean_t need_resolve = 8433 ire_multirt_need_resolve(ipha_dst); 8434 if (!need_resolve) { 8435 MULTIRT_DEBUG_UNTAG(copy_mp); 8436 freemsg(copy_mp); 8437 copy_mp = NULL; 8438 } else { 8439 /* 8440 * ipif_lookup_group() calls 8441 * ire_lookup_multi() that uses 8442 * ire_ftable_lookup() to find 8443 * an IRE_INTERFACE for the group. 8444 * In the multirt case, 8445 * ire_lookup_multi() then invokes 8446 * ire_multirt_lookup() to find 8447 * the next resolvable ire. 8448 * As a result, we obtain an new 8449 * interface, derived from the 8450 * next ire. 8451 */ 8452 ipif_refrele(ipif); 8453 ipif = ipif_lookup_group(ipha_dst, 8454 zoneid); 8455 if (ipif != NULL) { 8456 mp = copy_mp; 8457 copy_mp = NULL; 8458 multirt_resolve_next = B_TRUE; 8459 continue; 8460 } else { 8461 freemsg(copy_mp); 8462 } 8463 } 8464 } 8465 if (ipif != NULL) 8466 ipif_refrele(ipif); 8467 ill_refrele(dst_ill); 8468 ipif_refrele(src_ipif); 8469 return; 8470 default: 8471 break; 8472 } 8473 } while (multirt_resolve_next); 8474 8475 err_ret: 8476 ip2dbg(("ip_newroute_ipif: dropped\n")); 8477 if (fire != NULL) 8478 ire_refrele(fire); 8479 ipif_refrele(ipif); 8480 /* Did this packet originate externally? */ 8481 if (dst_ill != NULL) 8482 ill_refrele(dst_ill); 8483 if (src_ipif != NULL) 8484 ipif_refrele(src_ipif); 8485 if (mp->b_prev || mp->b_next) { 8486 mp->b_next = NULL; 8487 mp->b_prev = NULL; 8488 } else { 8489 /* 8490 * Since ip_wput() isn't close to finished, we fill 8491 * in enough of the header for credible error reporting. 8492 */ 8493 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 8494 /* Failed */ 8495 freemsg(first_mp); 8496 if (ire != NULL) 8497 ire_refrele(ire); 8498 return; 8499 } 8500 } 8501 /* 8502 * At this point we will have ire only if RTF_BLACKHOLE 8503 * or RTF_REJECT flags are set on the IRE. It will not 8504 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8505 */ 8506 if (ire != NULL) { 8507 if (ire->ire_flags & RTF_BLACKHOLE) { 8508 ire_refrele(ire); 8509 freemsg(first_mp); 8510 return; 8511 } 8512 ire_refrele(ire); 8513 } 8514 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE); 8515 } 8516 8517 /* Name/Value Table Lookup Routine */ 8518 char * 8519 ip_nv_lookup(nv_t *nv, int value) 8520 { 8521 if (!nv) 8522 return (NULL); 8523 for (; nv->nv_name; nv++) { 8524 if (nv->nv_value == value) 8525 return (nv->nv_name); 8526 } 8527 return ("unknown"); 8528 } 8529 8530 /* 8531 * one day it can be patched to 1 from /etc/system for machines that have few 8532 * fast network interfaces feeding multiple cpus. 8533 */ 8534 int ill_stream_putlocks = 0; 8535 8536 /* 8537 * This is a module open, i.e. this is a control stream for access 8538 * to a DLPI device. We allocate an ill_t as the instance data in 8539 * this case. 8540 */ 8541 int 8542 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8543 { 8544 uint32_t mem_cnt; 8545 uint32_t cpu_cnt; 8546 uint32_t min_cnt; 8547 pgcnt_t mem_avail; 8548 extern uint32_t ip_cache_table_size, ip6_cache_table_size; 8549 ill_t *ill; 8550 int err; 8551 8552 /* 8553 * Prevent unprivileged processes from pushing IP so that 8554 * they can't send raw IP. 8555 */ 8556 if (secpolicy_net_rawaccess(credp) != 0) 8557 return (EPERM); 8558 8559 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 8560 q->q_ptr = WR(q)->q_ptr = ill; 8561 8562 /* 8563 * ill_init initializes the ill fields and then sends down 8564 * down a DL_INFO_REQ after calling qprocson. 8565 */ 8566 err = ill_init(q, ill); 8567 if (err != 0) { 8568 mi_free(ill); 8569 q->q_ptr = NULL; 8570 WR(q)->q_ptr = NULL; 8571 return (err); 8572 } 8573 8574 /* ill_init initializes the ipsq marking this thread as writer */ 8575 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 8576 /* Wait for the DL_INFO_ACK */ 8577 mutex_enter(&ill->ill_lock); 8578 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 8579 /* 8580 * Return value of 0 indicates a pending signal. 8581 */ 8582 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 8583 if (err == 0) { 8584 mutex_exit(&ill->ill_lock); 8585 (void) ip_close(q, 0); 8586 return (EINTR); 8587 } 8588 } 8589 mutex_exit(&ill->ill_lock); 8590 8591 /* 8592 * ip_rput_other could have set an error in ill_error on 8593 * receipt of M_ERROR. 8594 */ 8595 8596 err = ill->ill_error; 8597 if (err != 0) { 8598 (void) ip_close(q, 0); 8599 return (err); 8600 } 8601 8602 /* 8603 * ip_ire_max_bucket_cnt is sized below based on the memory 8604 * size and the cpu speed of the machine. This is upper 8605 * bounded by the compile time value of ip_ire_max_bucket_cnt 8606 * and is lower bounded by the compile time value of 8607 * ip_ire_min_bucket_cnt. Similar logic applies to 8608 * ip6_ire_max_bucket_cnt. 8609 */ 8610 mem_avail = kmem_avail(); 8611 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8612 ip_cache_table_size / sizeof (ire_t); 8613 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 8614 8615 min_cnt = MIN(cpu_cnt, mem_cnt); 8616 if (min_cnt < ip_ire_min_bucket_cnt) 8617 min_cnt = ip_ire_min_bucket_cnt; 8618 if (ip_ire_max_bucket_cnt > min_cnt) { 8619 ip_ire_max_bucket_cnt = min_cnt; 8620 } 8621 8622 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 8623 ip6_cache_table_size / sizeof (ire_t); 8624 min_cnt = MIN(cpu_cnt, mem_cnt); 8625 if (min_cnt < ip6_ire_min_bucket_cnt) 8626 min_cnt = ip6_ire_min_bucket_cnt; 8627 if (ip6_ire_max_bucket_cnt > min_cnt) { 8628 ip6_ire_max_bucket_cnt = min_cnt; 8629 } 8630 8631 ill->ill_credp = credp; 8632 crhold(credp); 8633 8634 mutex_enter(&ip_mi_lock); 8635 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 8636 mutex_exit(&ip_mi_lock); 8637 if (err) { 8638 (void) ip_close(q, 0); 8639 return (err); 8640 } 8641 return (0); 8642 } 8643 8644 /* IP open routine. */ 8645 int 8646 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 8647 { 8648 conn_t *connp; 8649 major_t maj; 8650 8651 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 8652 8653 /* Allow reopen. */ 8654 if (q->q_ptr != NULL) 8655 return (0); 8656 8657 if (sflag & MODOPEN) { 8658 /* This is a module open */ 8659 return (ip_modopen(q, devp, flag, sflag, credp)); 8660 } 8661 8662 /* 8663 * We are opening as a device. This is an IP client stream, and we 8664 * allocate an conn_t as the instance data. 8665 */ 8666 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 8667 connp->conn_upq = q; 8668 q->q_ptr = WR(q)->q_ptr = connp; 8669 8670 if (flag & SO_SOCKSTR) 8671 connp->conn_flags |= IPCL_SOCKET; 8672 8673 /* Minor tells us which /dev entry was opened */ 8674 if (geteminor(*devp) == IPV6_MINOR) { 8675 connp->conn_flags |= IPCL_ISV6; 8676 connp->conn_af_isv6 = B_TRUE; 8677 ip_setqinfo(q, geteminor(*devp), B_FALSE); 8678 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 8679 } else { 8680 connp->conn_af_isv6 = B_FALSE; 8681 connp->conn_pkt_isv6 = B_FALSE; 8682 } 8683 8684 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 8685 q->q_ptr = WR(q)->q_ptr = NULL; 8686 CONN_DEC_REF(connp); 8687 return (EBUSY); 8688 } 8689 8690 maj = getemajor(*devp); 8691 *devp = makedevice(maj, (minor_t)connp->conn_dev); 8692 8693 /* 8694 * connp->conn_cred is crfree()ed in ip_close(). 8695 */ 8696 connp->conn_cred = credp; 8697 crhold(connp->conn_cred); 8698 8699 connp->conn_zoneid = getzoneid(); 8700 8701 /* 8702 * This should only happen for ndd, netstat, raw socket or other SCTP 8703 * administrative ops. In these cases, we just need a normal conn_t 8704 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 8705 * an error will be returned. 8706 */ 8707 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 8708 connp->conn_rq = q; 8709 connp->conn_wq = WR(q); 8710 } else { 8711 connp->conn_ulp = IPPROTO_SCTP; 8712 connp->conn_rq = connp->conn_wq = NULL; 8713 } 8714 /* Non-zero default values */ 8715 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 8716 8717 /* 8718 * Make the conn globally visible to walkers 8719 */ 8720 mutex_enter(&connp->conn_lock); 8721 connp->conn_state_flags &= ~CONN_INCIPIENT; 8722 mutex_exit(&connp->conn_lock); 8723 ASSERT(connp->conn_ref == 1); 8724 8725 qprocson(q); 8726 8727 return (0); 8728 } 8729 8730 /* 8731 * Change q_qinfo based on the value of isv6. 8732 * This can not called on an ill queue. 8733 * Note that there is no race since either q_qinfo works for conn queues - it 8734 * is just an optimization to enter the best wput routine directly. 8735 */ 8736 void 8737 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 8738 { 8739 ASSERT(q->q_flag & QREADR); 8740 ASSERT(WR(q)->q_next == NULL); 8741 ASSERT(q->q_ptr != NULL); 8742 8743 if (minor == IPV6_MINOR) { 8744 if (bump_mib) 8745 BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4); 8746 q->q_qinfo = &rinit_ipv6; 8747 WR(q)->q_qinfo = &winit_ipv6; 8748 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 8749 } else { 8750 if (bump_mib) 8751 BUMP_MIB(&ip_mib, ipOutSwitchIPv6); 8752 q->q_qinfo = &rinit; 8753 WR(q)->q_qinfo = &winit; 8754 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 8755 } 8756 8757 } 8758 8759 /* 8760 * See if IPsec needs loading because of the options in mp. 8761 */ 8762 static boolean_t 8763 ipsec_opt_present(mblk_t *mp) 8764 { 8765 uint8_t *optcp, *next_optcp, *opt_endcp; 8766 struct opthdr *opt; 8767 struct T_opthdr *topt; 8768 int opthdr_len; 8769 t_uscalar_t optname, optlevel; 8770 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 8771 ipsec_req_t *ipsr; 8772 8773 /* 8774 * Walk through the mess, and find IP_SEC_OPT. If it's there, 8775 * return TRUE. 8776 */ 8777 8778 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 8779 opt_endcp = optcp + tor->OPT_length; 8780 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8781 opthdr_len = sizeof (struct T_opthdr); 8782 } else { /* O_OPTMGMT_REQ */ 8783 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 8784 opthdr_len = sizeof (struct opthdr); 8785 } 8786 for (; optcp < opt_endcp; optcp = next_optcp) { 8787 if (optcp + opthdr_len > opt_endcp) 8788 return (B_FALSE); /* Not enough option header. */ 8789 if (tor->PRIM_type == T_OPTMGMT_REQ) { 8790 topt = (struct T_opthdr *)optcp; 8791 optlevel = topt->level; 8792 optname = topt->name; 8793 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 8794 } else { 8795 opt = (struct opthdr *)optcp; 8796 optlevel = opt->level; 8797 optname = opt->name; 8798 next_optcp = optcp + opthdr_len + 8799 _TPI_ALIGN_OPT(opt->len); 8800 } 8801 if ((next_optcp < optcp) || /* wraparound pointer space */ 8802 ((next_optcp >= opt_endcp) && /* last option bad len */ 8803 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 8804 return (B_FALSE); /* bad option buffer */ 8805 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 8806 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 8807 /* 8808 * Check to see if it's an all-bypass or all-zeroes 8809 * IPsec request. Don't bother loading IPsec if 8810 * the socket doesn't want to use it. (A good example 8811 * is a bypass request.) 8812 * 8813 * Basically, if any of the non-NEVER bits are set, 8814 * load IPsec. 8815 */ 8816 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 8817 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 8818 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 8819 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 8820 != 0) 8821 return (B_TRUE); 8822 } 8823 } 8824 return (B_FALSE); 8825 } 8826 8827 /* 8828 * If conn is is waiting for ipsec to finish loading, kick it. 8829 */ 8830 /* ARGSUSED */ 8831 static void 8832 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 8833 { 8834 t_scalar_t optreq_prim; 8835 mblk_t *mp; 8836 cred_t *cr; 8837 int err = 0; 8838 8839 /* 8840 * This function is called, after ipsec loading is complete. 8841 * Since IP checks exclusively and atomically (i.e it prevents 8842 * ipsec load from completing until ip_optcom_req completes) 8843 * whether ipsec load is complete, there cannot be a race with IP 8844 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 8845 */ 8846 mutex_enter(&connp->conn_lock); 8847 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 8848 ASSERT(connp->conn_ipsec_opt_mp != NULL); 8849 mp = connp->conn_ipsec_opt_mp; 8850 connp->conn_ipsec_opt_mp = NULL; 8851 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 8852 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 8853 mutex_exit(&connp->conn_lock); 8854 8855 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 8856 8857 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 8858 if (optreq_prim == T_OPTMGMT_REQ) { 8859 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8860 &ip_opt_obj); 8861 } else { 8862 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 8863 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 8864 &ip_opt_obj); 8865 } 8866 if (err != EINPROGRESS) 8867 CONN_OPER_PENDING_DONE(connp); 8868 return; 8869 } 8870 mutex_exit(&connp->conn_lock); 8871 } 8872 8873 /* 8874 * Called from the ipsec_loader thread, outside any perimeter, to tell 8875 * ip qenable any of the queues waiting for the ipsec loader to 8876 * complete. 8877 * 8878 * Use ip_mi_lock to be safe here: all modifications of the mi lists 8879 * are done with this lock held, so it's guaranteed that none of the 8880 * links will change along the way. 8881 */ 8882 void 8883 ip_ipsec_load_complete() 8884 { 8885 ipcl_walk(conn_restart_ipsec_waiter, NULL); 8886 } 8887 8888 /* 8889 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 8890 * determines the grp on which it has to become exclusive, queues the mp 8891 * and sq draining restarts the optmgmt 8892 */ 8893 static boolean_t 8894 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 8895 { 8896 conn_t *connp; 8897 8898 /* 8899 * Take IPsec requests and treat them special. 8900 */ 8901 if (ipsec_opt_present(mp)) { 8902 /* First check if IPsec is loaded. */ 8903 mutex_enter(&ipsec_loader_lock); 8904 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 8905 mutex_exit(&ipsec_loader_lock); 8906 return (B_FALSE); 8907 } 8908 connp = Q_TO_CONN(q); 8909 mutex_enter(&connp->conn_lock); 8910 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 8911 8912 ASSERT(connp->conn_ipsec_opt_mp == NULL); 8913 connp->conn_ipsec_opt_mp = mp; 8914 mutex_exit(&connp->conn_lock); 8915 mutex_exit(&ipsec_loader_lock); 8916 8917 ipsec_loader_loadnow(); 8918 return (B_TRUE); 8919 } 8920 return (B_FALSE); 8921 } 8922 8923 /* 8924 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 8925 * all of them are copied to the conn_t. If the req is "zero", the policy is 8926 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 8927 * fields. 8928 * We keep only the latest setting of the policy and thus policy setting 8929 * is not incremental/cumulative. 8930 * 8931 * Requests to set policies with multiple alternative actions will 8932 * go through a different API. 8933 */ 8934 int 8935 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 8936 { 8937 uint_t ah_req = 0; 8938 uint_t esp_req = 0; 8939 uint_t se_req = 0; 8940 ipsec_selkey_t sel; 8941 ipsec_act_t *actp = NULL; 8942 uint_t nact; 8943 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 8944 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 8945 ipsec_policy_root_t *pr; 8946 ipsec_policy_head_t *ph; 8947 int fam; 8948 boolean_t is_pol_reset; 8949 int error = 0; 8950 8951 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 8952 8953 /* 8954 * The IP_SEC_OPT option does not allow variable length parameters, 8955 * hence a request cannot be NULL. 8956 */ 8957 if (req == NULL) 8958 return (EINVAL); 8959 8960 ah_req = req->ipsr_ah_req; 8961 esp_req = req->ipsr_esp_req; 8962 se_req = req->ipsr_self_encap_req; 8963 8964 /* 8965 * Are we dealing with a request to reset the policy (i.e. 8966 * zero requests). 8967 */ 8968 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 8969 (esp_req & REQ_MASK) == 0 && 8970 (se_req & REQ_MASK) == 0); 8971 8972 if (!is_pol_reset) { 8973 /* 8974 * If we couldn't load IPsec, fail with "protocol 8975 * not supported". 8976 * IPsec may not have been loaded for a request with zero 8977 * policies, so we don't fail in this case. 8978 */ 8979 mutex_enter(&ipsec_loader_lock); 8980 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 8981 mutex_exit(&ipsec_loader_lock); 8982 return (EPROTONOSUPPORT); 8983 } 8984 mutex_exit(&ipsec_loader_lock); 8985 8986 /* 8987 * Test for valid requests. Invalid algorithms 8988 * need to be tested by IPSEC code because new 8989 * algorithms can be added dynamically. 8990 */ 8991 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8992 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 8993 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 8994 return (EINVAL); 8995 } 8996 8997 /* 8998 * Only privileged users can issue these 8999 * requests. 9000 */ 9001 if (((ah_req & IPSEC_PREF_NEVER) || 9002 (esp_req & IPSEC_PREF_NEVER) || 9003 (se_req & IPSEC_PREF_NEVER)) && 9004 secpolicy_net_config(cr, B_FALSE) != 0) { 9005 return (EPERM); 9006 } 9007 9008 /* 9009 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 9010 * are mutually exclusive. 9011 */ 9012 if (((ah_req & REQ_MASK) == REQ_MASK) || 9013 ((esp_req & REQ_MASK) == REQ_MASK) || 9014 ((se_req & REQ_MASK) == REQ_MASK)) { 9015 /* Both of them are set */ 9016 return (EINVAL); 9017 } 9018 } 9019 9020 mutex_enter(&connp->conn_lock); 9021 9022 /* 9023 * If we have already cached policies in ip_bind_connected*(), don't 9024 * let them change now. We cache policies for connections 9025 * whose src,dst [addr, port] is known. The exception to this is 9026 * tunnels. Tunnels are allowed to change policies after having 9027 * become fully bound. 9028 */ 9029 if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) { 9030 mutex_exit(&connp->conn_lock); 9031 return (EINVAL); 9032 } 9033 9034 /* 9035 * We have a zero policies, reset the connection policy if already 9036 * set. This will cause the connection to inherit the 9037 * global policy, if any. 9038 */ 9039 if (is_pol_reset) { 9040 if (connp->conn_policy != NULL) { 9041 IPPH_REFRELE(connp->conn_policy); 9042 connp->conn_policy = NULL; 9043 } 9044 connp->conn_flags &= ~IPCL_CHECK_POLICY; 9045 connp->conn_in_enforce_policy = B_FALSE; 9046 connp->conn_out_enforce_policy = B_FALSE; 9047 mutex_exit(&connp->conn_lock); 9048 return (0); 9049 } 9050 9051 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 9052 if (ph == NULL) 9053 goto enomem; 9054 9055 ipsec_actvec_from_req(req, &actp, &nact); 9056 if (actp == NULL) 9057 goto enomem; 9058 9059 /* 9060 * Always allocate IPv4 policy entries, since they can also 9061 * apply to ipv6 sockets being used in ipv4-compat mode. 9062 */ 9063 bzero(&sel, sizeof (sel)); 9064 sel.ipsl_valid = IPSL_IPV4; 9065 9066 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9067 if (pin4 == NULL) 9068 goto enomem; 9069 9070 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET); 9071 if (pout4 == NULL) 9072 goto enomem; 9073 9074 if (connp->conn_pkt_isv6) { 9075 /* 9076 * We're looking at a v6 socket, also allocate the 9077 * v6-specific entries... 9078 */ 9079 sel.ipsl_valid = IPSL_IPV6; 9080 pin6 = ipsec_policy_create(&sel, actp, nact, 9081 IPSEC_PRIO_SOCKET); 9082 if (pin6 == NULL) 9083 goto enomem; 9084 9085 pout6 = ipsec_policy_create(&sel, actp, nact, 9086 IPSEC_PRIO_SOCKET); 9087 if (pout6 == NULL) 9088 goto enomem; 9089 9090 /* 9091 * .. and file them away in the right place. 9092 */ 9093 fam = IPSEC_AF_V6; 9094 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9095 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 9096 ipsec_insert_always(&ph->iph_rulebyid, pin6); 9097 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9098 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 9099 ipsec_insert_always(&ph->iph_rulebyid, pout6); 9100 } 9101 9102 ipsec_actvec_free(actp, nact); 9103 9104 /* 9105 * File the v4 policies. 9106 */ 9107 fam = IPSEC_AF_V4; 9108 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 9109 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 9110 ipsec_insert_always(&ph->iph_rulebyid, pin4); 9111 9112 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 9113 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 9114 ipsec_insert_always(&ph->iph_rulebyid, pout4); 9115 9116 /* 9117 * If the requests need security, set enforce_policy. 9118 * If the requests are IPSEC_PREF_NEVER, one should 9119 * still set conn_out_enforce_policy so that an ipsec_out 9120 * gets attached in ip_wput. This is needed so that 9121 * for connections that we don't cache policy in ip_bind, 9122 * if global policy matches in ip_wput_attach_policy, we 9123 * don't wrongly inherit global policy. Similarly, we need 9124 * to set conn_in_enforce_policy also so that we don't verify 9125 * policy wrongly. 9126 */ 9127 if ((ah_req & REQ_MASK) != 0 || 9128 (esp_req & REQ_MASK) != 0 || 9129 (se_req & REQ_MASK) != 0) { 9130 connp->conn_in_enforce_policy = B_TRUE; 9131 connp->conn_out_enforce_policy = B_TRUE; 9132 connp->conn_flags |= IPCL_CHECK_POLICY; 9133 } 9134 9135 /* 9136 * Tunnels are allowed to set policy after having been fully bound. 9137 * If that's the case, cache policy here. 9138 */ 9139 if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound) 9140 error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6); 9141 9142 mutex_exit(&connp->conn_lock); 9143 return (error); 9144 #undef REQ_MASK 9145 9146 /* 9147 * Common memory-allocation-failure exit path. 9148 */ 9149 enomem: 9150 mutex_exit(&connp->conn_lock); 9151 if (actp != NULL) 9152 ipsec_actvec_free(actp, nact); 9153 if (pin4 != NULL) 9154 IPPOL_REFRELE(pin4); 9155 if (pout4 != NULL) 9156 IPPOL_REFRELE(pout4); 9157 if (pin6 != NULL) 9158 IPPOL_REFRELE(pin6); 9159 if (pout6 != NULL) 9160 IPPOL_REFRELE(pout6); 9161 return (ENOMEM); 9162 } 9163 9164 /* 9165 * Only for options that pass in an IP addr. Currently only V4 options 9166 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 9167 * So this function assumes level is IPPROTO_IP 9168 */ 9169 int 9170 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 9171 mblk_t *first_mp) 9172 { 9173 ipif_t *ipif = NULL; 9174 int error; 9175 ill_t *ill; 9176 9177 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 9178 9179 if (addr != INADDR_ANY || checkonly) { 9180 ASSERT(connp != NULL); 9181 if (option == IP_NEXTHOP) { 9182 ipif = 9183 ipif_lookup_onlink_addr(addr, connp->conn_zoneid); 9184 } else { 9185 ipif = ipif_lookup_addr(addr, NULL, connp->conn_zoneid, 9186 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 9187 &error); 9188 } 9189 if (ipif == NULL) { 9190 if (error == EINPROGRESS) 9191 return (error); 9192 else if ((option == IP_MULTICAST_IF) || 9193 (option == IP_NEXTHOP)) 9194 return (EHOSTUNREACH); 9195 else 9196 return (EINVAL); 9197 } else if (checkonly) { 9198 if (option == IP_MULTICAST_IF) { 9199 ill = ipif->ipif_ill; 9200 /* not supported by the virtual network iface */ 9201 if (IS_VNI(ill)) { 9202 ipif_refrele(ipif); 9203 return (EINVAL); 9204 } 9205 } 9206 ipif_refrele(ipif); 9207 return (0); 9208 } 9209 ill = ipif->ipif_ill; 9210 mutex_enter(&connp->conn_lock); 9211 mutex_enter(&ill->ill_lock); 9212 if ((ill->ill_state_flags & ILL_CONDEMNED) || 9213 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 9214 mutex_exit(&ill->ill_lock); 9215 mutex_exit(&connp->conn_lock); 9216 ipif_refrele(ipif); 9217 return (option == IP_MULTICAST_IF ? 9218 EHOSTUNREACH : EINVAL); 9219 } 9220 } else { 9221 mutex_enter(&connp->conn_lock); 9222 } 9223 9224 /* None of the options below are supported on the VNI */ 9225 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 9226 mutex_exit(&ill->ill_lock); 9227 mutex_exit(&connp->conn_lock); 9228 ipif_refrele(ipif); 9229 return (EINVAL); 9230 } 9231 9232 switch (option) { 9233 case IP_DONTFAILOVER_IF: 9234 /* 9235 * This option is used by in.mpathd to ensure 9236 * that IPMP probe packets only go out on the 9237 * test interfaces. in.mpathd sets this option 9238 * on the non-failover interfaces. 9239 * For backward compatibility, this option 9240 * implicitly sets IP_MULTICAST_IF, as used 9241 * be done in bind(), so that ip_wput gets 9242 * this ipif to send mcast packets. 9243 */ 9244 if (ipif != NULL) { 9245 ASSERT(addr != INADDR_ANY); 9246 connp->conn_nofailover_ill = ipif->ipif_ill; 9247 connp->conn_multicast_ipif = ipif; 9248 } else { 9249 ASSERT(addr == INADDR_ANY); 9250 connp->conn_nofailover_ill = NULL; 9251 connp->conn_multicast_ipif = NULL; 9252 } 9253 break; 9254 9255 case IP_MULTICAST_IF: 9256 connp->conn_multicast_ipif = ipif; 9257 break; 9258 case IP_NEXTHOP: 9259 connp->conn_nexthop_v4 = addr; 9260 connp->conn_nexthop_set = B_TRUE; 9261 break; 9262 } 9263 9264 if (ipif != NULL) { 9265 mutex_exit(&ill->ill_lock); 9266 mutex_exit(&connp->conn_lock); 9267 ipif_refrele(ipif); 9268 return (0); 9269 } 9270 mutex_exit(&connp->conn_lock); 9271 /* We succeded in cleared the option */ 9272 return (0); 9273 } 9274 9275 /* 9276 * For options that pass in an ifindex specifying the ill. V6 options always 9277 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 9278 */ 9279 int 9280 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 9281 int level, int option, mblk_t *first_mp) 9282 { 9283 ill_t *ill = NULL; 9284 int error = 0; 9285 9286 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 9287 if (ifindex != 0) { 9288 ASSERT(connp != NULL); 9289 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 9290 first_mp, ip_restart_optmgmt, &error); 9291 if (ill != NULL) { 9292 if (checkonly) { 9293 /* not supported by the virtual network iface */ 9294 if (IS_VNI(ill)) { 9295 ill_refrele(ill); 9296 return (EINVAL); 9297 } 9298 ill_refrele(ill); 9299 return (0); 9300 } 9301 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 9302 0, NULL)) { 9303 ill_refrele(ill); 9304 ill = NULL; 9305 mutex_enter(&connp->conn_lock); 9306 goto setit; 9307 } 9308 mutex_enter(&connp->conn_lock); 9309 mutex_enter(&ill->ill_lock); 9310 if (ill->ill_state_flags & ILL_CONDEMNED) { 9311 mutex_exit(&ill->ill_lock); 9312 mutex_exit(&connp->conn_lock); 9313 ill_refrele(ill); 9314 ill = NULL; 9315 mutex_enter(&connp->conn_lock); 9316 } 9317 goto setit; 9318 } else if (error == EINPROGRESS) { 9319 return (error); 9320 } else { 9321 error = 0; 9322 } 9323 } 9324 mutex_enter(&connp->conn_lock); 9325 setit: 9326 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 9327 9328 /* 9329 * The options below assume that the ILL (if any) transmits and/or 9330 * receives traffic. Neither of which is true for the virtual network 9331 * interface, so fail setting these on a VNI. 9332 */ 9333 if (IS_VNI(ill)) { 9334 ASSERT(ill != NULL); 9335 mutex_exit(&ill->ill_lock); 9336 mutex_exit(&connp->conn_lock); 9337 ill_refrele(ill); 9338 return (EINVAL); 9339 } 9340 9341 if (level == IPPROTO_IP) { 9342 switch (option) { 9343 case IP_BOUND_IF: 9344 connp->conn_incoming_ill = ill; 9345 connp->conn_outgoing_ill = ill; 9346 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9347 0 : ifindex; 9348 break; 9349 9350 case IP_XMIT_IF: 9351 /* 9352 * Similar to IP_BOUND_IF, but this only 9353 * determines the outgoing interface for 9354 * unicast packets. Also no IRE_CACHE entry 9355 * is added for the destination of the 9356 * outgoing packets. This feature is needed 9357 * for mobile IP. 9358 */ 9359 connp->conn_xmit_if_ill = ill; 9360 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 9361 0 : ifindex; 9362 break; 9363 9364 case IP_MULTICAST_IF: 9365 /* 9366 * This option is an internal special. The socket 9367 * level IP_MULTICAST_IF specifies an 'ipaddr' and 9368 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 9369 * specifies an ifindex and we try first on V6 ill's. 9370 * If we don't find one, we they try using on v4 ill's 9371 * intenally and we come here. 9372 */ 9373 if (!checkonly && ill != NULL) { 9374 ipif_t *ipif; 9375 ipif = ill->ill_ipif; 9376 9377 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 9378 mutex_exit(&ill->ill_lock); 9379 mutex_exit(&connp->conn_lock); 9380 ill_refrele(ill); 9381 ill = NULL; 9382 mutex_enter(&connp->conn_lock); 9383 } else { 9384 connp->conn_multicast_ipif = ipif; 9385 } 9386 } 9387 break; 9388 } 9389 } else { 9390 switch (option) { 9391 case IPV6_BOUND_IF: 9392 connp->conn_incoming_ill = ill; 9393 connp->conn_outgoing_ill = ill; 9394 connp->conn_orig_bound_ifindex = (ill == NULL) ? 9395 0 : ifindex; 9396 break; 9397 9398 case IPV6_BOUND_PIF: 9399 /* 9400 * Limit all transmit to this ill. 9401 * Unlike IPV6_BOUND_IF, using this option 9402 * prevents load spreading and failover from 9403 * happening when the interface is part of the 9404 * group. That's why we don't need to remember 9405 * the ifindex in orig_bound_ifindex as in 9406 * IPV6_BOUND_IF. 9407 */ 9408 connp->conn_outgoing_pill = ill; 9409 break; 9410 9411 case IPV6_DONTFAILOVER_IF: 9412 /* 9413 * This option is used by in.mpathd to ensure 9414 * that IPMP probe packets only go out on the 9415 * test interfaces. in.mpathd sets this option 9416 * on the non-failover interfaces. 9417 */ 9418 connp->conn_nofailover_ill = ill; 9419 /* 9420 * For backward compatibility, this option 9421 * implicitly sets ip_multicast_ill as used in 9422 * IP_MULTICAST_IF so that ip_wput gets 9423 * this ipif to send mcast packets. 9424 */ 9425 connp->conn_multicast_ill = ill; 9426 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 9427 0 : ifindex; 9428 break; 9429 9430 case IPV6_MULTICAST_IF: 9431 /* 9432 * Set conn_multicast_ill to be the IPv6 ill. 9433 * Set conn_multicast_ipif to be an IPv4 ipif 9434 * for ifindex to make IPv4 mapped addresses 9435 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 9436 * Even if no IPv6 ill exists for the ifindex 9437 * we need to check for an IPv4 ifindex in order 9438 * for this to work with mapped addresses. In that 9439 * case only set conn_multicast_ipif. 9440 */ 9441 if (!checkonly) { 9442 if (ifindex == 0) { 9443 connp->conn_multicast_ill = NULL; 9444 connp->conn_orig_multicast_ifindex = 0; 9445 connp->conn_multicast_ipif = NULL; 9446 } else if (ill != NULL) { 9447 connp->conn_multicast_ill = ill; 9448 connp->conn_orig_multicast_ifindex = 9449 ifindex; 9450 } 9451 } 9452 break; 9453 } 9454 } 9455 9456 if (ill != NULL) { 9457 mutex_exit(&ill->ill_lock); 9458 mutex_exit(&connp->conn_lock); 9459 ill_refrele(ill); 9460 return (0); 9461 } 9462 mutex_exit(&connp->conn_lock); 9463 /* 9464 * We succeeded in clearing the option (ifindex == 0) or failed to 9465 * locate the ill and could not set the option (ifindex != 0) 9466 */ 9467 return (ifindex == 0 ? 0 : EINVAL); 9468 } 9469 9470 /* This routine sets socket options. */ 9471 /* ARGSUSED */ 9472 int 9473 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9474 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9475 void *dummy, cred_t *cr, mblk_t *first_mp) 9476 { 9477 int *i1 = (int *)invalp; 9478 conn_t *connp = Q_TO_CONN(q); 9479 int error = 0; 9480 boolean_t checkonly; 9481 ire_t *ire; 9482 boolean_t found; 9483 9484 switch (optset_context) { 9485 9486 case SETFN_OPTCOM_CHECKONLY: 9487 checkonly = B_TRUE; 9488 /* 9489 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9490 * inlen != 0 implies value supplied and 9491 * we have to "pretend" to set it. 9492 * inlen == 0 implies that there is no 9493 * value part in T_CHECK request and just validation 9494 * done elsewhere should be enough, we just return here. 9495 */ 9496 if (inlen == 0) { 9497 *outlenp = 0; 9498 return (0); 9499 } 9500 break; 9501 case SETFN_OPTCOM_NEGOTIATE: 9502 case SETFN_UD_NEGOTIATE: 9503 case SETFN_CONN_NEGOTIATE: 9504 checkonly = B_FALSE; 9505 break; 9506 default: 9507 /* 9508 * We should never get here 9509 */ 9510 *outlenp = 0; 9511 return (EINVAL); 9512 } 9513 9514 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9515 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9516 9517 /* 9518 * For fixed length options, no sanity check 9519 * of passed in length is done. It is assumed *_optcom_req() 9520 * routines do the right thing. 9521 */ 9522 9523 switch (level) { 9524 case SOL_SOCKET: 9525 /* 9526 * conn_lock protects the bitfields, and is used to 9527 * set the fields atomically. 9528 */ 9529 switch (name) { 9530 case SO_BROADCAST: 9531 if (!checkonly) { 9532 /* TODO: use value someplace? */ 9533 mutex_enter(&connp->conn_lock); 9534 connp->conn_broadcast = *i1 ? 1 : 0; 9535 mutex_exit(&connp->conn_lock); 9536 } 9537 break; /* goto sizeof (int) option return */ 9538 case SO_USELOOPBACK: 9539 if (!checkonly) { 9540 /* TODO: use value someplace? */ 9541 mutex_enter(&connp->conn_lock); 9542 connp->conn_loopback = *i1 ? 1 : 0; 9543 mutex_exit(&connp->conn_lock); 9544 } 9545 break; /* goto sizeof (int) option return */ 9546 case SO_DONTROUTE: 9547 if (!checkonly) { 9548 mutex_enter(&connp->conn_lock); 9549 connp->conn_dontroute = *i1 ? 1 : 0; 9550 mutex_exit(&connp->conn_lock); 9551 } 9552 break; /* goto sizeof (int) option return */ 9553 case SO_REUSEADDR: 9554 if (!checkonly) { 9555 mutex_enter(&connp->conn_lock); 9556 connp->conn_reuseaddr = *i1 ? 1 : 0; 9557 mutex_exit(&connp->conn_lock); 9558 } 9559 break; /* goto sizeof (int) option return */ 9560 case SO_PROTOTYPE: 9561 if (!checkonly) { 9562 mutex_enter(&connp->conn_lock); 9563 connp->conn_proto = *i1; 9564 mutex_exit(&connp->conn_lock); 9565 } 9566 break; /* goto sizeof (int) option return */ 9567 default: 9568 /* 9569 * "soft" error (negative) 9570 * option not handled at this level 9571 * Note: Do not modify *outlenp 9572 */ 9573 return (-EINVAL); 9574 } 9575 break; 9576 case IPPROTO_IP: 9577 switch (name) { 9578 case IP_NEXTHOP: 9579 case IP_MULTICAST_IF: 9580 case IP_DONTFAILOVER_IF: { 9581 ipaddr_t addr = *i1; 9582 9583 error = ip_opt_set_ipif(connp, addr, checkonly, name, 9584 first_mp); 9585 if (error != 0) 9586 return (error); 9587 break; /* goto sizeof (int) option return */ 9588 } 9589 9590 case IP_MULTICAST_TTL: 9591 /* Recorded in transport above IP */ 9592 *outvalp = *invalp; 9593 *outlenp = sizeof (uchar_t); 9594 return (0); 9595 case IP_MULTICAST_LOOP: 9596 if (!checkonly) { 9597 mutex_enter(&connp->conn_lock); 9598 connp->conn_multicast_loop = *invalp ? 1 : 0; 9599 mutex_exit(&connp->conn_lock); 9600 } 9601 *outvalp = *invalp; 9602 *outlenp = sizeof (uchar_t); 9603 return (0); 9604 case IP_ADD_MEMBERSHIP: 9605 case MCAST_JOIN_GROUP: 9606 case IP_DROP_MEMBERSHIP: 9607 case MCAST_LEAVE_GROUP: { 9608 struct ip_mreq *mreqp; 9609 struct group_req *greqp; 9610 ire_t *ire; 9611 boolean_t done = B_FALSE; 9612 ipaddr_t group, ifaddr; 9613 struct sockaddr_in *sin; 9614 uint32_t *ifindexp; 9615 boolean_t mcast_opt = B_TRUE; 9616 mcast_record_t fmode; 9617 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9618 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9619 9620 switch (name) { 9621 case IP_ADD_MEMBERSHIP: 9622 mcast_opt = B_FALSE; 9623 /* FALLTHRU */ 9624 case MCAST_JOIN_GROUP: 9625 fmode = MODE_IS_EXCLUDE; 9626 optfn = ip_opt_add_group; 9627 break; 9628 9629 case IP_DROP_MEMBERSHIP: 9630 mcast_opt = B_FALSE; 9631 /* FALLTHRU */ 9632 case MCAST_LEAVE_GROUP: 9633 fmode = MODE_IS_INCLUDE; 9634 optfn = ip_opt_delete_group; 9635 break; 9636 } 9637 9638 if (mcast_opt) { 9639 greqp = (struct group_req *)i1; 9640 sin = (struct sockaddr_in *)&greqp->gr_group; 9641 if (sin->sin_family != AF_INET) { 9642 *outlenp = 0; 9643 return (ENOPROTOOPT); 9644 } 9645 group = (ipaddr_t)sin->sin_addr.s_addr; 9646 ifaddr = INADDR_ANY; 9647 ifindexp = &greqp->gr_interface; 9648 } else { 9649 mreqp = (struct ip_mreq *)i1; 9650 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 9651 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 9652 ifindexp = NULL; 9653 } 9654 9655 /* 9656 * In the multirouting case, we need to replicate 9657 * the request on all interfaces that will take part 9658 * in replication. We do so because multirouting is 9659 * reflective, thus we will probably receive multi- 9660 * casts on those interfaces. 9661 * The ip_multirt_apply_membership() succeeds if the 9662 * operation succeeds on at least one interface. 9663 */ 9664 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 9665 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9666 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9667 if (ire != NULL) { 9668 if (ire->ire_flags & RTF_MULTIRT) { 9669 error = ip_multirt_apply_membership( 9670 optfn, ire, connp, checkonly, group, 9671 fmode, INADDR_ANY, first_mp); 9672 done = B_TRUE; 9673 } 9674 ire_refrele(ire); 9675 } 9676 if (!done) { 9677 error = optfn(connp, checkonly, group, ifaddr, 9678 ifindexp, fmode, INADDR_ANY, first_mp); 9679 } 9680 if (error) { 9681 /* 9682 * EINPROGRESS is a soft error, needs retry 9683 * so don't make *outlenp zero. 9684 */ 9685 if (error != EINPROGRESS) 9686 *outlenp = 0; 9687 return (error); 9688 } 9689 /* OK return - copy input buffer into output buffer */ 9690 if (invalp != outvalp) { 9691 /* don't trust bcopy for identical src/dst */ 9692 bcopy(invalp, outvalp, inlen); 9693 } 9694 *outlenp = inlen; 9695 return (0); 9696 } 9697 case IP_BLOCK_SOURCE: 9698 case IP_UNBLOCK_SOURCE: 9699 case IP_ADD_SOURCE_MEMBERSHIP: 9700 case IP_DROP_SOURCE_MEMBERSHIP: 9701 case MCAST_BLOCK_SOURCE: 9702 case MCAST_UNBLOCK_SOURCE: 9703 case MCAST_JOIN_SOURCE_GROUP: 9704 case MCAST_LEAVE_SOURCE_GROUP: { 9705 struct ip_mreq_source *imreqp; 9706 struct group_source_req *gsreqp; 9707 in_addr_t grp, src, ifaddr = INADDR_ANY; 9708 uint32_t ifindex = 0; 9709 mcast_record_t fmode; 9710 struct sockaddr_in *sin; 9711 ire_t *ire; 9712 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 9713 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 9714 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 9715 9716 switch (name) { 9717 case IP_BLOCK_SOURCE: 9718 mcast_opt = B_FALSE; 9719 /* FALLTHRU */ 9720 case MCAST_BLOCK_SOURCE: 9721 fmode = MODE_IS_EXCLUDE; 9722 optfn = ip_opt_add_group; 9723 break; 9724 9725 case IP_UNBLOCK_SOURCE: 9726 mcast_opt = B_FALSE; 9727 /* FALLTHRU */ 9728 case MCAST_UNBLOCK_SOURCE: 9729 fmode = MODE_IS_EXCLUDE; 9730 optfn = ip_opt_delete_group; 9731 break; 9732 9733 case IP_ADD_SOURCE_MEMBERSHIP: 9734 mcast_opt = B_FALSE; 9735 /* FALLTHRU */ 9736 case MCAST_JOIN_SOURCE_GROUP: 9737 fmode = MODE_IS_INCLUDE; 9738 optfn = ip_opt_add_group; 9739 break; 9740 9741 case IP_DROP_SOURCE_MEMBERSHIP: 9742 mcast_opt = B_FALSE; 9743 /* FALLTHRU */ 9744 case MCAST_LEAVE_SOURCE_GROUP: 9745 fmode = MODE_IS_INCLUDE; 9746 optfn = ip_opt_delete_group; 9747 break; 9748 } 9749 9750 if (mcast_opt) { 9751 gsreqp = (struct group_source_req *)i1; 9752 if (gsreqp->gsr_group.ss_family != AF_INET) { 9753 *outlenp = 0; 9754 return (ENOPROTOOPT); 9755 } 9756 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 9757 grp = (ipaddr_t)sin->sin_addr.s_addr; 9758 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 9759 src = (ipaddr_t)sin->sin_addr.s_addr; 9760 ifindex = gsreqp->gsr_interface; 9761 } else { 9762 imreqp = (struct ip_mreq_source *)i1; 9763 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 9764 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 9765 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 9766 } 9767 9768 /* 9769 * In the multirouting case, we need to replicate 9770 * the request as noted in the mcast cases above. 9771 */ 9772 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 9773 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 9774 MATCH_IRE_MASK | MATCH_IRE_TYPE); 9775 if (ire != NULL) { 9776 if (ire->ire_flags & RTF_MULTIRT) { 9777 error = ip_multirt_apply_membership( 9778 optfn, ire, connp, checkonly, grp, 9779 fmode, src, first_mp); 9780 done = B_TRUE; 9781 } 9782 ire_refrele(ire); 9783 } 9784 if (!done) { 9785 error = optfn(connp, checkonly, grp, ifaddr, 9786 &ifindex, fmode, src, first_mp); 9787 } 9788 if (error != 0) { 9789 /* 9790 * EINPROGRESS is a soft error, needs retry 9791 * so don't make *outlenp zero. 9792 */ 9793 if (error != EINPROGRESS) 9794 *outlenp = 0; 9795 return (error); 9796 } 9797 /* OK return - copy input buffer into output buffer */ 9798 if (invalp != outvalp) { 9799 bcopy(invalp, outvalp, inlen); 9800 } 9801 *outlenp = inlen; 9802 return (0); 9803 } 9804 case IP_SEC_OPT: 9805 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 9806 if (error != 0) { 9807 *outlenp = 0; 9808 return (error); 9809 } 9810 break; 9811 case IP_HDRINCL: 9812 case IP_OPTIONS: 9813 case T_IP_OPTIONS: 9814 case IP_TOS: 9815 case T_IP_TOS: 9816 case IP_TTL: 9817 case IP_RECVDSTADDR: 9818 case IP_RECVOPTS: 9819 /* OK return - copy input buffer into output buffer */ 9820 if (invalp != outvalp) { 9821 /* don't trust bcopy for identical src/dst */ 9822 bcopy(invalp, outvalp, inlen); 9823 } 9824 *outlenp = inlen; 9825 return (0); 9826 case IP_RECVIF: 9827 /* Retrieve the inbound interface index */ 9828 if (!checkonly) { 9829 mutex_enter(&connp->conn_lock); 9830 connp->conn_recvif = *i1 ? 1 : 0; 9831 mutex_exit(&connp->conn_lock); 9832 } 9833 break; /* goto sizeof (int) option return */ 9834 case IP_RECVSLLA: 9835 /* Retrieve the source link layer address */ 9836 if (!checkonly) { 9837 mutex_enter(&connp->conn_lock); 9838 connp->conn_recvslla = *i1 ? 1 : 0; 9839 mutex_exit(&connp->conn_lock); 9840 } 9841 break; /* goto sizeof (int) option return */ 9842 case MRT_INIT: 9843 case MRT_DONE: 9844 case MRT_ADD_VIF: 9845 case MRT_DEL_VIF: 9846 case MRT_ADD_MFC: 9847 case MRT_DEL_MFC: 9848 case MRT_ASSERT: 9849 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 9850 *outlenp = 0; 9851 return (error); 9852 } 9853 error = ip_mrouter_set((int)name, q, checkonly, 9854 (uchar_t *)invalp, inlen, first_mp); 9855 if (error) { 9856 *outlenp = 0; 9857 return (error); 9858 } 9859 /* OK return - copy input buffer into output buffer */ 9860 if (invalp != outvalp) { 9861 /* don't trust bcopy for identical src/dst */ 9862 bcopy(invalp, outvalp, inlen); 9863 } 9864 *outlenp = inlen; 9865 return (0); 9866 case IP_BOUND_IF: 9867 case IP_XMIT_IF: 9868 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9869 level, name, first_mp); 9870 if (error != 0) 9871 return (error); 9872 break; /* goto sizeof (int) option return */ 9873 9874 case IP_UNSPEC_SRC: 9875 /* Allow sending with a zero source address */ 9876 if (!checkonly) { 9877 mutex_enter(&connp->conn_lock); 9878 connp->conn_unspec_src = *i1 ? 1 : 0; 9879 mutex_exit(&connp->conn_lock); 9880 } 9881 break; /* goto sizeof (int) option return */ 9882 default: 9883 /* 9884 * "soft" error (negative) 9885 * option not handled at this level 9886 * Note: Do not modify *outlenp 9887 */ 9888 return (-EINVAL); 9889 } 9890 break; 9891 case IPPROTO_IPV6: 9892 switch (name) { 9893 case IPV6_BOUND_IF: 9894 case IPV6_BOUND_PIF: 9895 case IPV6_DONTFAILOVER_IF: 9896 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9897 level, name, first_mp); 9898 if (error != 0) 9899 return (error); 9900 break; /* goto sizeof (int) option return */ 9901 9902 case IPV6_MULTICAST_IF: 9903 /* 9904 * The only possible errors are EINPROGRESS and 9905 * EINVAL. EINPROGRESS will be restarted and is not 9906 * a hard error. We call this option on both V4 and V6 9907 * If both return EINVAL, then this call returns 9908 * EINVAL. If at least one of them succeeds we 9909 * return success. 9910 */ 9911 found = B_FALSE; 9912 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 9913 level, name, first_mp); 9914 if (error == EINPROGRESS) 9915 return (error); 9916 if (error == 0) 9917 found = B_TRUE; 9918 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 9919 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 9920 if (error == 0) 9921 found = B_TRUE; 9922 if (!found) 9923 return (error); 9924 break; /* goto sizeof (int) option return */ 9925 9926 case IPV6_MULTICAST_HOPS: 9927 /* Recorded in transport above IP */ 9928 break; /* goto sizeof (int) option return */ 9929 case IPV6_MULTICAST_LOOP: 9930 if (!checkonly) { 9931 mutex_enter(&connp->conn_lock); 9932 connp->conn_multicast_loop = *i1; 9933 mutex_exit(&connp->conn_lock); 9934 } 9935 break; /* goto sizeof (int) option return */ 9936 case IPV6_JOIN_GROUP: 9937 case MCAST_JOIN_GROUP: 9938 case IPV6_LEAVE_GROUP: 9939 case MCAST_LEAVE_GROUP: { 9940 struct ipv6_mreq *ip_mreqp; 9941 struct group_req *greqp; 9942 ire_t *ire; 9943 boolean_t done = B_FALSE; 9944 in6_addr_t groupv6; 9945 uint32_t ifindex; 9946 boolean_t mcast_opt = B_TRUE; 9947 mcast_record_t fmode; 9948 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 9949 int, mcast_record_t, const in6_addr_t *, mblk_t *); 9950 9951 switch (name) { 9952 case IPV6_JOIN_GROUP: 9953 mcast_opt = B_FALSE; 9954 /* FALLTHRU */ 9955 case MCAST_JOIN_GROUP: 9956 fmode = MODE_IS_EXCLUDE; 9957 optfn = ip_opt_add_group_v6; 9958 break; 9959 9960 case IPV6_LEAVE_GROUP: 9961 mcast_opt = B_FALSE; 9962 /* FALLTHRU */ 9963 case MCAST_LEAVE_GROUP: 9964 fmode = MODE_IS_INCLUDE; 9965 optfn = ip_opt_delete_group_v6; 9966 break; 9967 } 9968 9969 if (mcast_opt) { 9970 struct sockaddr_in *sin; 9971 struct sockaddr_in6 *sin6; 9972 greqp = (struct group_req *)i1; 9973 if (greqp->gr_group.ss_family == AF_INET) { 9974 sin = (struct sockaddr_in *) 9975 &(greqp->gr_group); 9976 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 9977 &groupv6); 9978 } else { 9979 sin6 = (struct sockaddr_in6 *) 9980 &(greqp->gr_group); 9981 groupv6 = sin6->sin6_addr; 9982 } 9983 ifindex = greqp->gr_interface; 9984 } else { 9985 ip_mreqp = (struct ipv6_mreq *)i1; 9986 groupv6 = ip_mreqp->ipv6mr_multiaddr; 9987 ifindex = ip_mreqp->ipv6mr_interface; 9988 } 9989 /* 9990 * In the multirouting case, we need to replicate 9991 * the request on all interfaces that will take part 9992 * in replication. We do so because multirouting is 9993 * reflective, thus we will probably receive multi- 9994 * casts on those interfaces. 9995 * The ip_multirt_apply_membership_v6() succeeds if 9996 * the operation succeeds on at least one interface. 9997 */ 9998 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 9999 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 10000 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10001 if (ire != NULL) { 10002 if (ire->ire_flags & RTF_MULTIRT) { 10003 error = ip_multirt_apply_membership_v6( 10004 optfn, ire, connp, checkonly, 10005 &groupv6, fmode, &ipv6_all_zeros, 10006 first_mp); 10007 done = B_TRUE; 10008 } 10009 ire_refrele(ire); 10010 } 10011 if (!done) { 10012 error = optfn(connp, checkonly, &groupv6, 10013 ifindex, fmode, &ipv6_all_zeros, first_mp); 10014 } 10015 if (error) { 10016 /* 10017 * EINPROGRESS is a soft error, needs retry 10018 * so don't make *outlenp zero. 10019 */ 10020 if (error != EINPROGRESS) 10021 *outlenp = 0; 10022 return (error); 10023 } 10024 /* OK return - copy input buffer into output buffer */ 10025 if (invalp != outvalp) { 10026 /* don't trust bcopy for identical src/dst */ 10027 bcopy(invalp, outvalp, inlen); 10028 } 10029 *outlenp = inlen; 10030 return (0); 10031 } 10032 case MCAST_BLOCK_SOURCE: 10033 case MCAST_UNBLOCK_SOURCE: 10034 case MCAST_JOIN_SOURCE_GROUP: 10035 case MCAST_LEAVE_SOURCE_GROUP: { 10036 struct group_source_req *gsreqp; 10037 in6_addr_t v6grp, v6src; 10038 uint32_t ifindex; 10039 mcast_record_t fmode; 10040 ire_t *ire; 10041 boolean_t done = B_FALSE; 10042 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 10043 int, mcast_record_t, const in6_addr_t *, mblk_t *); 10044 10045 switch (name) { 10046 case MCAST_BLOCK_SOURCE: 10047 fmode = MODE_IS_EXCLUDE; 10048 optfn = ip_opt_add_group_v6; 10049 break; 10050 case MCAST_UNBLOCK_SOURCE: 10051 fmode = MODE_IS_EXCLUDE; 10052 optfn = ip_opt_delete_group_v6; 10053 break; 10054 case MCAST_JOIN_SOURCE_GROUP: 10055 fmode = MODE_IS_INCLUDE; 10056 optfn = ip_opt_add_group_v6; 10057 break; 10058 case MCAST_LEAVE_SOURCE_GROUP: 10059 fmode = MODE_IS_INCLUDE; 10060 optfn = ip_opt_delete_group_v6; 10061 break; 10062 } 10063 10064 gsreqp = (struct group_source_req *)i1; 10065 ifindex = gsreqp->gsr_interface; 10066 if (gsreqp->gsr_group.ss_family == AF_INET) { 10067 struct sockaddr_in *s; 10068 s = (struct sockaddr_in *)&gsreqp->gsr_group; 10069 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 10070 s = (struct sockaddr_in *)&gsreqp->gsr_source; 10071 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 10072 } else { 10073 struct sockaddr_in6 *s6; 10074 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 10075 v6grp = s6->sin6_addr; 10076 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 10077 v6src = s6->sin6_addr; 10078 } 10079 10080 /* 10081 * In the multirouting case, we need to replicate 10082 * the request as noted in the mcast cases above. 10083 */ 10084 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 10085 IRE_HOST, NULL, NULL, ALL_ZONES, 0, 10086 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10087 if (ire != NULL) { 10088 if (ire->ire_flags & RTF_MULTIRT) { 10089 error = ip_multirt_apply_membership_v6( 10090 optfn, ire, connp, checkonly, 10091 &v6grp, fmode, &v6src, first_mp); 10092 done = B_TRUE; 10093 } 10094 ire_refrele(ire); 10095 } 10096 if (!done) { 10097 error = optfn(connp, checkonly, &v6grp, 10098 ifindex, fmode, &v6src, first_mp); 10099 } 10100 if (error != 0) { 10101 /* 10102 * EINPROGRESS is a soft error, needs retry 10103 * so don't make *outlenp zero. 10104 */ 10105 if (error != EINPROGRESS) 10106 *outlenp = 0; 10107 return (error); 10108 } 10109 /* OK return - copy input buffer into output buffer */ 10110 if (invalp != outvalp) { 10111 bcopy(invalp, outvalp, inlen); 10112 } 10113 *outlenp = inlen; 10114 return (0); 10115 } 10116 case IPV6_UNICAST_HOPS: 10117 /* Recorded in transport above IP */ 10118 break; /* goto sizeof (int) option return */ 10119 case IPV6_UNSPEC_SRC: 10120 /* Allow sending with a zero source address */ 10121 if (!checkonly) { 10122 mutex_enter(&connp->conn_lock); 10123 connp->conn_unspec_src = *i1 ? 1 : 0; 10124 mutex_exit(&connp->conn_lock); 10125 } 10126 break; /* goto sizeof (int) option return */ 10127 case IPV6_RECVPKTINFO: 10128 if (!checkonly) { 10129 mutex_enter(&connp->conn_lock); 10130 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 10131 mutex_exit(&connp->conn_lock); 10132 } 10133 break; /* goto sizeof (int) option return */ 10134 case IPV6_RECVTCLASS: 10135 if (!checkonly) { 10136 if (*i1 < 0 || *i1 > 1) { 10137 return (EINVAL); 10138 } 10139 mutex_enter(&connp->conn_lock); 10140 connp->conn_ipv6_recvtclass = *i1; 10141 mutex_exit(&connp->conn_lock); 10142 } 10143 break; 10144 case IPV6_RECVPATHMTU: 10145 if (!checkonly) { 10146 if (*i1 < 0 || *i1 > 1) { 10147 return (EINVAL); 10148 } 10149 mutex_enter(&connp->conn_lock); 10150 connp->conn_ipv6_recvpathmtu = *i1; 10151 mutex_exit(&connp->conn_lock); 10152 } 10153 break; 10154 case IPV6_RECVHOPLIMIT: 10155 if (!checkonly) { 10156 mutex_enter(&connp->conn_lock); 10157 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 10158 mutex_exit(&connp->conn_lock); 10159 } 10160 break; /* goto sizeof (int) option return */ 10161 case IPV6_RECVHOPOPTS: 10162 if (!checkonly) { 10163 mutex_enter(&connp->conn_lock); 10164 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 10165 mutex_exit(&connp->conn_lock); 10166 } 10167 break; /* goto sizeof (int) option return */ 10168 case IPV6_RECVDSTOPTS: 10169 if (!checkonly) { 10170 mutex_enter(&connp->conn_lock); 10171 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 10172 mutex_exit(&connp->conn_lock); 10173 } 10174 break; /* goto sizeof (int) option return */ 10175 case IPV6_RECVRTHDR: 10176 if (!checkonly) { 10177 mutex_enter(&connp->conn_lock); 10178 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 10179 mutex_exit(&connp->conn_lock); 10180 } 10181 break; /* goto sizeof (int) option return */ 10182 case IPV6_RECVRTHDRDSTOPTS: 10183 if (!checkonly) { 10184 mutex_enter(&connp->conn_lock); 10185 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 10186 mutex_exit(&connp->conn_lock); 10187 } 10188 break; /* goto sizeof (int) option return */ 10189 case IPV6_PKTINFO: 10190 if (inlen == 0) 10191 return (-EINVAL); /* clearing option */ 10192 error = ip6_set_pktinfo(cr, connp, 10193 (struct in6_pktinfo *)invalp, first_mp); 10194 if (error != 0) 10195 *outlenp = 0; 10196 else 10197 *outlenp = inlen; 10198 return (error); 10199 case IPV6_NEXTHOP: { 10200 struct sockaddr_in6 *sin6; 10201 10202 /* Verify that the nexthop is reachable */ 10203 if (inlen == 0) 10204 return (-EINVAL); /* clearing option */ 10205 10206 sin6 = (struct sockaddr_in6 *)invalp; 10207 ire = ire_route_lookup_v6(&sin6->sin6_addr, 10208 0, 0, 0, NULL, NULL, connp->conn_zoneid, 10209 MATCH_IRE_DEFAULT); 10210 10211 if (ire == NULL) { 10212 *outlenp = 0; 10213 return (EHOSTUNREACH); 10214 } 10215 ire_refrele(ire); 10216 return (-EINVAL); 10217 } 10218 case IPV6_SEC_OPT: 10219 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10220 if (error != 0) { 10221 *outlenp = 0; 10222 return (error); 10223 } 10224 break; 10225 case IPV6_SRC_PREFERENCES: { 10226 /* 10227 * This is implemented strictly in the ip module 10228 * (here and in tcp_opt_*() to accomodate tcp 10229 * sockets). Modules above ip pass this option 10230 * down here since ip is the only one that needs to 10231 * be aware of source address preferences. 10232 * 10233 * This socket option only affects connected 10234 * sockets that haven't already bound to a specific 10235 * IPv6 address. In other words, sockets that 10236 * don't call bind() with an address other than the 10237 * unspecified address and that call connect(). 10238 * ip_bind_connected_v6() passes these preferences 10239 * to the ipif_select_source_v6() function. 10240 */ 10241 if (inlen != sizeof (uint32_t)) 10242 return (EINVAL); 10243 error = ip6_set_src_preferences(connp, 10244 *(uint32_t *)invalp); 10245 if (error != 0) { 10246 *outlenp = 0; 10247 return (error); 10248 } else { 10249 *outlenp = sizeof (uint32_t); 10250 } 10251 break; 10252 } 10253 case IPV6_V6ONLY: 10254 if (*i1 < 0 || *i1 > 1) { 10255 return (EINVAL); 10256 } 10257 mutex_enter(&connp->conn_lock); 10258 connp->conn_ipv6_v6only = *i1; 10259 mutex_exit(&connp->conn_lock); 10260 break; 10261 default: 10262 return (-EINVAL); 10263 } 10264 break; 10265 default: 10266 /* 10267 * "soft" error (negative) 10268 * option not handled at this level 10269 * Note: Do not modify *outlenp 10270 */ 10271 return (-EINVAL); 10272 } 10273 /* 10274 * Common case of return from an option that is sizeof (int) 10275 */ 10276 *(int *)outvalp = *i1; 10277 *outlenp = sizeof (int); 10278 return (0); 10279 } 10280 10281 /* 10282 * This routine gets default values of certain options whose default 10283 * values are maintained by protocol specific code 10284 */ 10285 /* ARGSUSED */ 10286 int 10287 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 10288 { 10289 int *i1 = (int *)ptr; 10290 10291 switch (level) { 10292 case IPPROTO_IP: 10293 switch (name) { 10294 case IP_MULTICAST_TTL: 10295 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 10296 return (sizeof (uchar_t)); 10297 case IP_MULTICAST_LOOP: 10298 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 10299 return (sizeof (uchar_t)); 10300 default: 10301 return (-1); 10302 } 10303 case IPPROTO_IPV6: 10304 switch (name) { 10305 case IPV6_UNICAST_HOPS: 10306 *i1 = ipv6_def_hops; 10307 return (sizeof (int)); 10308 case IPV6_MULTICAST_HOPS: 10309 *i1 = IP_DEFAULT_MULTICAST_TTL; 10310 return (sizeof (int)); 10311 case IPV6_MULTICAST_LOOP: 10312 *i1 = IP_DEFAULT_MULTICAST_LOOP; 10313 return (sizeof (int)); 10314 case IPV6_V6ONLY: 10315 *i1 = 1; 10316 return (sizeof (int)); 10317 default: 10318 return (-1); 10319 } 10320 default: 10321 return (-1); 10322 } 10323 /* NOTREACHED */ 10324 } 10325 10326 /* 10327 * Given a destination address and a pointer to where to put the information 10328 * this routine fills in the mtuinfo. 10329 */ 10330 int 10331 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 10332 struct ip6_mtuinfo *mtuinfo) 10333 { 10334 ire_t *ire; 10335 10336 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 10337 return (-1); 10338 10339 bzero(mtuinfo, sizeof (*mtuinfo)); 10340 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 10341 mtuinfo->ip6m_addr.sin6_port = port; 10342 mtuinfo->ip6m_addr.sin6_addr = *in6; 10343 10344 ire = ire_cache_lookup_v6(in6, ALL_ZONES); 10345 if (ire != NULL) { 10346 mtuinfo->ip6m_mtu = ire->ire_max_frag; 10347 ire_refrele(ire); 10348 } else { 10349 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 10350 } 10351 return (sizeof (struct ip6_mtuinfo)); 10352 } 10353 10354 /* 10355 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 10356 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 10357 * isn't. This doesn't matter as the error checking is done properly for the 10358 * other MRT options coming in through ip_opt_set. 10359 */ 10360 int 10361 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 10362 { 10363 conn_t *connp = Q_TO_CONN(q); 10364 ipsec_req_t *req = (ipsec_req_t *)ptr; 10365 10366 switch (level) { 10367 case IPPROTO_IP: 10368 switch (name) { 10369 case MRT_VERSION: 10370 case MRT_ASSERT: 10371 (void) ip_mrouter_get(name, q, ptr); 10372 return (sizeof (int)); 10373 case IP_SEC_OPT: 10374 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 10375 case IP_NEXTHOP: 10376 if (connp->conn_nexthop_set) { 10377 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 10378 return (sizeof (ipaddr_t)); 10379 } else 10380 return (0); 10381 default: 10382 break; 10383 } 10384 break; 10385 case IPPROTO_IPV6: 10386 switch (name) { 10387 case IPV6_SEC_OPT: 10388 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 10389 case IPV6_SRC_PREFERENCES: { 10390 return (ip6_get_src_preferences(connp, 10391 (uint32_t *)ptr)); 10392 } 10393 case IPV6_V6ONLY: 10394 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 10395 return (sizeof (int)); 10396 case IPV6_PATHMTU: 10397 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 10398 (struct ip6_mtuinfo *)ptr)); 10399 default: 10400 break; 10401 } 10402 break; 10403 default: 10404 break; 10405 } 10406 return (-1); 10407 } 10408 10409 /* Named Dispatch routine to get a current value out of our parameter table. */ 10410 /* ARGSUSED */ 10411 static int 10412 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10413 { 10414 ipparam_t *ippa = (ipparam_t *)cp; 10415 10416 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 10417 return (0); 10418 } 10419 10420 /* ARGSUSED */ 10421 static int 10422 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 10423 { 10424 10425 (void) mi_mpprintf(mp, "%d", *(int *)cp); 10426 return (0); 10427 } 10428 10429 /* 10430 * Set ip{,6}_forwarding values. This means walking through all of the 10431 * ill's and toggling their forwarding values. 10432 */ 10433 /* ARGSUSED */ 10434 static int 10435 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10436 { 10437 long new_value; 10438 int *forwarding_value = (int *)cp; 10439 ill_t *walker; 10440 boolean_t isv6 = (forwarding_value == &ipv6_forward); 10441 ill_walk_context_t ctx; 10442 10443 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10444 new_value < 0 || new_value > 1) { 10445 return (EINVAL); 10446 } 10447 10448 *forwarding_value = new_value; 10449 10450 /* 10451 * Regardless of the current value of ip_forwarding, set all per-ill 10452 * values of ip_forwarding to the value being set. 10453 * 10454 * Bring all the ill's up to date with the new global value. 10455 */ 10456 rw_enter(&ill_g_lock, RW_READER); 10457 10458 if (isv6) 10459 walker = ILL_START_WALK_V6(&ctx); 10460 else 10461 walker = ILL_START_WALK_V4(&ctx); 10462 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 10463 (void) ill_forward_set(q, mp, (new_value != 0), 10464 (caddr_t)walker); 10465 } 10466 rw_exit(&ill_g_lock); 10467 10468 return (0); 10469 } 10470 10471 /* 10472 * Walk through the param array specified registering each element with the 10473 * Named Dispatch handler. This is called only during init. So it is ok 10474 * not to acquire any locks 10475 */ 10476 static boolean_t 10477 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 10478 ipndp_t *ipnd, size_t ipnd_cnt) 10479 { 10480 for (; ippa_cnt-- > 0; ippa++) { 10481 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 10482 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 10483 ip_param_get, ip_param_set, (caddr_t)ippa)) { 10484 nd_free(&ip_g_nd); 10485 return (B_FALSE); 10486 } 10487 } 10488 } 10489 10490 for (; ipnd_cnt-- > 0; ipnd++) { 10491 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 10492 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 10493 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 10494 ipnd->ip_ndp_data)) { 10495 nd_free(&ip_g_nd); 10496 return (B_FALSE); 10497 } 10498 } 10499 } 10500 10501 return (B_TRUE); 10502 } 10503 10504 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 10505 /* ARGSUSED */ 10506 static int 10507 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 10508 { 10509 long new_value; 10510 ipparam_t *ippa = (ipparam_t *)cp; 10511 10512 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10513 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 10514 return (EINVAL); 10515 } 10516 ippa->ip_param_value = new_value; 10517 return (0); 10518 } 10519 10520 /* 10521 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 10522 * When an ipf is passed here for the first time, if 10523 * we already have in-order fragments on the queue, we convert from the fast- 10524 * path reassembly scheme to the hard-case scheme. From then on, additional 10525 * fragments are reassembled here. We keep track of the start and end offsets 10526 * of each piece, and the number of holes in the chain. When the hole count 10527 * goes to zero, we are done! 10528 * 10529 * The ipf_count will be updated to account for any mblk(s) added (pointed to 10530 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 10531 * ipfb_count and ill_frag_count by the difference of ipf_count before and 10532 * after the call to ip_reassemble(). 10533 */ 10534 int 10535 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 10536 size_t msg_len) 10537 { 10538 uint_t end; 10539 mblk_t *next_mp; 10540 mblk_t *mp1; 10541 uint_t offset; 10542 boolean_t incr_dups = B_TRUE; 10543 boolean_t offset_zero_seen = B_FALSE; 10544 boolean_t pkt_boundary_checked = B_FALSE; 10545 10546 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 10547 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 10548 10549 /* Add in byte count */ 10550 ipf->ipf_count += msg_len; 10551 if (ipf->ipf_end) { 10552 /* 10553 * We were part way through in-order reassembly, but now there 10554 * is a hole. We walk through messages already queued, and 10555 * mark them for hard case reassembly. We know that up till 10556 * now they were in order starting from offset zero. 10557 */ 10558 offset = 0; 10559 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10560 IP_REASS_SET_START(mp1, offset); 10561 if (offset == 0) { 10562 ASSERT(ipf->ipf_nf_hdr_len != 0); 10563 offset = -ipf->ipf_nf_hdr_len; 10564 } 10565 offset += mp1->b_wptr - mp1->b_rptr; 10566 IP_REASS_SET_END(mp1, offset); 10567 } 10568 /* One hole at the end. */ 10569 ipf->ipf_hole_cnt = 1; 10570 /* Brand it as a hard case, forever. */ 10571 ipf->ipf_end = 0; 10572 } 10573 /* Walk through all the new pieces. */ 10574 do { 10575 end = start + (mp->b_wptr - mp->b_rptr); 10576 /* 10577 * If start is 0, decrease 'end' only for the first mblk of 10578 * the fragment. Otherwise 'end' can get wrong value in the 10579 * second pass of the loop if first mblk is exactly the 10580 * size of ipf_nf_hdr_len. 10581 */ 10582 if (start == 0 && !offset_zero_seen) { 10583 /* First segment */ 10584 ASSERT(ipf->ipf_nf_hdr_len != 0); 10585 end -= ipf->ipf_nf_hdr_len; 10586 offset_zero_seen = B_TRUE; 10587 } 10588 next_mp = mp->b_cont; 10589 /* 10590 * We are checking to see if there is any interesing data 10591 * to process. If there isn't and the mblk isn't the 10592 * one which carries the unfragmentable header then we 10593 * drop it. It's possible to have just the unfragmentable 10594 * header come through without any data. That needs to be 10595 * saved. 10596 * 10597 * If the assert at the top of this function holds then the 10598 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 10599 * is infrequently traveled enough that the test is left in 10600 * to protect against future code changes which break that 10601 * invariant. 10602 */ 10603 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 10604 /* Empty. Blast it. */ 10605 IP_REASS_SET_START(mp, 0); 10606 IP_REASS_SET_END(mp, 0); 10607 /* 10608 * If the ipf points to the mblk we are about to free, 10609 * update ipf to point to the next mblk (or NULL 10610 * if none). 10611 */ 10612 if (ipf->ipf_mp->b_cont == mp) 10613 ipf->ipf_mp->b_cont = next_mp; 10614 freeb(mp); 10615 continue; 10616 } 10617 mp->b_cont = NULL; 10618 IP_REASS_SET_START(mp, start); 10619 IP_REASS_SET_END(mp, end); 10620 if (!ipf->ipf_tail_mp) { 10621 ipf->ipf_tail_mp = mp; 10622 ipf->ipf_mp->b_cont = mp; 10623 if (start == 0 || !more) { 10624 ipf->ipf_hole_cnt = 1; 10625 /* 10626 * if the first fragment comes in more than one 10627 * mblk, this loop will be executed for each 10628 * mblk. Need to adjust hole count so exiting 10629 * this routine will leave hole count at 1. 10630 */ 10631 if (next_mp) 10632 ipf->ipf_hole_cnt++; 10633 } else 10634 ipf->ipf_hole_cnt = 2; 10635 continue; 10636 } else if (ipf->ipf_last_frag_seen && !more && 10637 !pkt_boundary_checked) { 10638 /* 10639 * We check datagram boundary only if this fragment 10640 * claims to be the last fragment and we have seen a 10641 * last fragment in the past too. We do this only 10642 * once for a given fragment. 10643 * 10644 * start cannot be 0 here as fragments with start=0 10645 * and MF=0 gets handled as a complete packet. These 10646 * fragments should not reach here. 10647 */ 10648 10649 if (start + msgdsize(mp) != 10650 IP_REASS_END(ipf->ipf_tail_mp)) { 10651 /* 10652 * We have two fragments both of which claim 10653 * to be the last fragment but gives conflicting 10654 * information about the whole datagram size. 10655 * Something fishy is going on. Drop the 10656 * fragment and free up the reassembly list. 10657 */ 10658 return (IP_REASS_FAILED); 10659 } 10660 10661 /* 10662 * We shouldn't come to this code block again for this 10663 * particular fragment. 10664 */ 10665 pkt_boundary_checked = B_TRUE; 10666 } 10667 10668 /* New stuff at or beyond tail? */ 10669 offset = IP_REASS_END(ipf->ipf_tail_mp); 10670 if (start >= offset) { 10671 if (ipf->ipf_last_frag_seen) { 10672 /* current fragment is beyond last fragment */ 10673 return (IP_REASS_FAILED); 10674 } 10675 /* Link it on end. */ 10676 ipf->ipf_tail_mp->b_cont = mp; 10677 ipf->ipf_tail_mp = mp; 10678 if (more) { 10679 if (start != offset) 10680 ipf->ipf_hole_cnt++; 10681 } else if (start == offset && next_mp == NULL) 10682 ipf->ipf_hole_cnt--; 10683 continue; 10684 } 10685 mp1 = ipf->ipf_mp->b_cont; 10686 offset = IP_REASS_START(mp1); 10687 /* New stuff at the front? */ 10688 if (start < offset) { 10689 if (start == 0) { 10690 if (end >= offset) { 10691 /* Nailed the hole at the begining. */ 10692 ipf->ipf_hole_cnt--; 10693 } 10694 } else if (end < offset) { 10695 /* 10696 * A hole, stuff, and a hole where there used 10697 * to be just a hole. 10698 */ 10699 ipf->ipf_hole_cnt++; 10700 } 10701 mp->b_cont = mp1; 10702 /* Check for overlap. */ 10703 while (end > offset) { 10704 if (end < IP_REASS_END(mp1)) { 10705 mp->b_wptr -= end - offset; 10706 IP_REASS_SET_END(mp, offset); 10707 if (ill->ill_isv6) { 10708 BUMP_MIB(ill->ill_ip6_mib, 10709 ipv6ReasmPartDups); 10710 } else { 10711 BUMP_MIB(&ip_mib, 10712 ipReasmPartDups); 10713 } 10714 break; 10715 } 10716 /* Did we cover another hole? */ 10717 if ((mp1->b_cont && 10718 IP_REASS_END(mp1) != 10719 IP_REASS_START(mp1->b_cont) && 10720 end >= IP_REASS_START(mp1->b_cont)) || 10721 (!ipf->ipf_last_frag_seen && !more)) { 10722 ipf->ipf_hole_cnt--; 10723 } 10724 /* Clip out mp1. */ 10725 if ((mp->b_cont = mp1->b_cont) == NULL) { 10726 /* 10727 * After clipping out mp1, this guy 10728 * is now hanging off the end. 10729 */ 10730 ipf->ipf_tail_mp = mp; 10731 } 10732 IP_REASS_SET_START(mp1, 0); 10733 IP_REASS_SET_END(mp1, 0); 10734 /* Subtract byte count */ 10735 ipf->ipf_count -= mp1->b_datap->db_lim - 10736 mp1->b_datap->db_base; 10737 freeb(mp1); 10738 if (ill->ill_isv6) { 10739 BUMP_MIB(ill->ill_ip6_mib, 10740 ipv6ReasmPartDups); 10741 } else { 10742 BUMP_MIB(&ip_mib, ipReasmPartDups); 10743 } 10744 mp1 = mp->b_cont; 10745 if (!mp1) 10746 break; 10747 offset = IP_REASS_START(mp1); 10748 } 10749 ipf->ipf_mp->b_cont = mp; 10750 continue; 10751 } 10752 /* 10753 * The new piece starts somewhere between the start of the head 10754 * and before the end of the tail. 10755 */ 10756 for (; mp1; mp1 = mp1->b_cont) { 10757 offset = IP_REASS_END(mp1); 10758 if (start < offset) { 10759 if (end <= offset) { 10760 /* Nothing new. */ 10761 IP_REASS_SET_START(mp, 0); 10762 IP_REASS_SET_END(mp, 0); 10763 /* Subtract byte count */ 10764 ipf->ipf_count -= mp->b_datap->db_lim - 10765 mp->b_datap->db_base; 10766 if (incr_dups) { 10767 ipf->ipf_num_dups++; 10768 incr_dups = B_FALSE; 10769 } 10770 freeb(mp); 10771 if (ill->ill_isv6) { 10772 BUMP_MIB(ill->ill_ip6_mib, 10773 ipv6ReasmDuplicates); 10774 } else { 10775 BUMP_MIB(&ip_mib, 10776 ipReasmDuplicates); 10777 } 10778 break; 10779 } 10780 /* 10781 * Trim redundant stuff off beginning of new 10782 * piece. 10783 */ 10784 IP_REASS_SET_START(mp, offset); 10785 mp->b_rptr += offset - start; 10786 if (ill->ill_isv6) { 10787 BUMP_MIB(ill->ill_ip6_mib, 10788 ipv6ReasmPartDups); 10789 } else { 10790 BUMP_MIB(&ip_mib, ipReasmPartDups); 10791 } 10792 start = offset; 10793 if (!mp1->b_cont) { 10794 /* 10795 * After trimming, this guy is now 10796 * hanging off the end. 10797 */ 10798 mp1->b_cont = mp; 10799 ipf->ipf_tail_mp = mp; 10800 if (!more) { 10801 ipf->ipf_hole_cnt--; 10802 } 10803 break; 10804 } 10805 } 10806 if (start >= IP_REASS_START(mp1->b_cont)) 10807 continue; 10808 /* Fill a hole */ 10809 if (start > offset) 10810 ipf->ipf_hole_cnt++; 10811 mp->b_cont = mp1->b_cont; 10812 mp1->b_cont = mp; 10813 mp1 = mp->b_cont; 10814 offset = IP_REASS_START(mp1); 10815 if (end >= offset) { 10816 ipf->ipf_hole_cnt--; 10817 /* Check for overlap. */ 10818 while (end > offset) { 10819 if (end < IP_REASS_END(mp1)) { 10820 mp->b_wptr -= end - offset; 10821 IP_REASS_SET_END(mp, offset); 10822 /* 10823 * TODO we might bump 10824 * this up twice if there is 10825 * overlap at both ends. 10826 */ 10827 if (ill->ill_isv6) { 10828 BUMP_MIB( 10829 ill->ill_ip6_mib, 10830 ipv6ReasmPartDups); 10831 } else { 10832 BUMP_MIB(&ip_mib, 10833 ipReasmPartDups); 10834 } 10835 break; 10836 } 10837 /* Did we cover another hole? */ 10838 if ((mp1->b_cont && 10839 IP_REASS_END(mp1) 10840 != IP_REASS_START(mp1->b_cont) && 10841 end >= 10842 IP_REASS_START(mp1->b_cont)) || 10843 (!ipf->ipf_last_frag_seen && 10844 !more)) { 10845 ipf->ipf_hole_cnt--; 10846 } 10847 /* Clip out mp1. */ 10848 if ((mp->b_cont = mp1->b_cont) == 10849 NULL) { 10850 /* 10851 * After clipping out mp1, 10852 * this guy is now hanging 10853 * off the end. 10854 */ 10855 ipf->ipf_tail_mp = mp; 10856 } 10857 IP_REASS_SET_START(mp1, 0); 10858 IP_REASS_SET_END(mp1, 0); 10859 /* Subtract byte count */ 10860 ipf->ipf_count -= 10861 mp1->b_datap->db_lim - 10862 mp1->b_datap->db_base; 10863 freeb(mp1); 10864 if (ill->ill_isv6) { 10865 BUMP_MIB(ill->ill_ip6_mib, 10866 ipv6ReasmPartDups); 10867 } else { 10868 BUMP_MIB(&ip_mib, 10869 ipReasmPartDups); 10870 } 10871 mp1 = mp->b_cont; 10872 if (!mp1) 10873 break; 10874 offset = IP_REASS_START(mp1); 10875 } 10876 } 10877 break; 10878 } 10879 } while (start = end, mp = next_mp); 10880 10881 /* Fragment just processed could be the last one. Remember this fact */ 10882 if (!more) 10883 ipf->ipf_last_frag_seen = B_TRUE; 10884 10885 /* Still got holes? */ 10886 if (ipf->ipf_hole_cnt) 10887 return (IP_REASS_PARTIAL); 10888 /* Clean up overloaded fields to avoid upstream disasters. */ 10889 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 10890 IP_REASS_SET_START(mp1, 0); 10891 IP_REASS_SET_END(mp1, 0); 10892 } 10893 return (IP_REASS_COMPLETE); 10894 } 10895 10896 /* 10897 * ipsec processing for the fast path, used for input UDP Packets 10898 */ 10899 static boolean_t 10900 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 10901 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 10902 { 10903 uint32_t ill_index; 10904 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 10905 10906 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 10907 /* The ill_index of the incoming ILL */ 10908 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 10909 10910 /* pass packet up to the transport */ 10911 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 10912 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 10913 NULL, mctl_present); 10914 if (*first_mpp == NULL) { 10915 return (B_FALSE); 10916 } 10917 } 10918 10919 /* Initiate IPPF processing for fastpath UDP */ 10920 if (IPP_ENABLED(IPP_LOCAL_IN)) { 10921 ip_process(IPP_LOCAL_IN, mpp, ill_index); 10922 if (*mpp == NULL) { 10923 ip2dbg(("ip_input_ipsec_process: UDP pkt " 10924 "deferred/dropped during IPPF processing\n")); 10925 return (B_FALSE); 10926 } 10927 } 10928 /* 10929 * We make the checks as below since we are in the fast path 10930 * and want to minimize the number of checks if the IP_RECVIF and/or 10931 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 10932 */ 10933 if (connp->conn_recvif || connp->conn_recvslla || 10934 connp->conn_ipv6_recvpktinfo) { 10935 if (connp->conn_recvif || 10936 connp->conn_ipv6_recvpktinfo) { 10937 in_flags = IPF_RECVIF; 10938 } 10939 if (connp->conn_recvslla) { 10940 in_flags |= IPF_RECVSLLA; 10941 } 10942 /* 10943 * since in_flags are being set ill will be 10944 * referenced in ip_add_info, so it better not 10945 * be NULL. 10946 */ 10947 /* 10948 * the actual data will be contained in b_cont 10949 * upon successful return of the following call. 10950 * If the call fails then the original mblk is 10951 * returned. 10952 */ 10953 *mpp = ip_add_info(*mpp, ill, in_flags); 10954 } 10955 10956 return (B_TRUE); 10957 } 10958 10959 /* 10960 * Fragmentation reassembly. Each ILL has a hash table for 10961 * queuing packets undergoing reassembly for all IPIFs 10962 * associated with the ILL. The hash is based on the packet 10963 * IP ident field. The ILL frag hash table was allocated 10964 * as a timer block at the time the ILL was created. Whenever 10965 * there is anything on the reassembly queue, the timer will 10966 * be running. Returns B_TRUE if successful else B_FALSE; 10967 * frees mp on failure. 10968 */ 10969 static boolean_t 10970 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 10971 uint32_t *cksum_val, uint16_t *cksum_flags) 10972 { 10973 uint32_t frag_offset_flags; 10974 ill_t *ill = (ill_t *)q->q_ptr; 10975 mblk_t *mp = *mpp; 10976 mblk_t *t_mp; 10977 ipaddr_t dst; 10978 uint8_t proto = ipha->ipha_protocol; 10979 uint32_t sum_val; 10980 uint16_t sum_flags; 10981 ipf_t *ipf; 10982 ipf_t **ipfp; 10983 ipfb_t *ipfb; 10984 uint16_t ident; 10985 uint32_t offset; 10986 ipaddr_t src; 10987 uint_t hdr_length; 10988 uint32_t end; 10989 mblk_t *mp1; 10990 mblk_t *tail_mp; 10991 size_t count; 10992 size_t msg_len; 10993 uint8_t ecn_info = 0; 10994 uint32_t packet_size; 10995 boolean_t pruned = B_FALSE; 10996 10997 if (cksum_val != NULL) 10998 *cksum_val = 0; 10999 if (cksum_flags != NULL) 11000 *cksum_flags = 0; 11001 11002 /* 11003 * Drop the fragmented as early as possible, if 11004 * we don't have resource(s) to re-assemble. 11005 */ 11006 if (ip_reass_queue_bytes == 0) { 11007 freemsg(mp); 11008 return (B_FALSE); 11009 } 11010 11011 /* Check for fragmentation offset; return if there's none */ 11012 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 11013 (IPH_MF | IPH_OFFSET)) == 0) 11014 return (B_TRUE); 11015 11016 /* 11017 * We utilize hardware computed checksum info only for UDP since 11018 * IP fragmentation is a normal occurence for the protocol. In 11019 * addition, checksum offload support for IP fragments carrying 11020 * UDP payload is commonly implemented across network adapters. 11021 */ 11022 ASSERT(ill != NULL); 11023 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 11024 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 11025 mblk_t *mp1 = mp->b_cont; 11026 int32_t len; 11027 11028 /* Record checksum information from the packet */ 11029 sum_val = (uint32_t)DB_CKSUM16(mp); 11030 sum_flags = DB_CKSUMFLAGS(mp); 11031 11032 /* IP payload offset from beginning of mblk */ 11033 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 11034 11035 if ((sum_flags & HCK_PARTIALCKSUM) && 11036 (mp1 == NULL || mp1->b_cont == NULL) && 11037 offset >= DB_CKSUMSTART(mp) && 11038 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 11039 uint32_t adj; 11040 /* 11041 * Partial checksum has been calculated by hardware 11042 * and attached to the packet; in addition, any 11043 * prepended extraneous data is even byte aligned. 11044 * If any such data exists, we adjust the checksum; 11045 * this would also handle any postpended data. 11046 */ 11047 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 11048 mp, mp1, len, adj); 11049 11050 /* One's complement subtract extraneous checksum */ 11051 if (adj >= sum_val) 11052 sum_val = ~(adj - sum_val) & 0xFFFF; 11053 else 11054 sum_val -= adj; 11055 } 11056 } else { 11057 sum_val = 0; 11058 sum_flags = 0; 11059 } 11060 11061 /* Clear hardware checksumming flag */ 11062 DB_CKSUMFLAGS(mp) = 0; 11063 11064 ident = ipha->ipha_ident; 11065 offset = (frag_offset_flags << 3) & 0xFFFF; 11066 src = ipha->ipha_src; 11067 dst = ipha->ipha_dst; 11068 hdr_length = IPH_HDR_LENGTH(ipha); 11069 end = ntohs(ipha->ipha_length) - hdr_length; 11070 11071 /* If end == 0 then we have a packet with no data, so just free it */ 11072 if (end == 0) { 11073 freemsg(mp); 11074 return (B_FALSE); 11075 } 11076 11077 /* Record the ECN field info. */ 11078 ecn_info = (ipha->ipha_type_of_service & 0x3); 11079 if (offset != 0) { 11080 /* 11081 * If this isn't the first piece, strip the header, and 11082 * add the offset to the end value. 11083 */ 11084 mp->b_rptr += hdr_length; 11085 end += offset; 11086 } 11087 11088 msg_len = MBLKSIZE(mp); 11089 tail_mp = mp; 11090 while (tail_mp->b_cont != NULL) { 11091 tail_mp = tail_mp->b_cont; 11092 msg_len += MBLKSIZE(tail_mp); 11093 } 11094 11095 /* If the reassembly list for this ILL will get too big, prune it */ 11096 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 11097 ip_reass_queue_bytes) { 11098 ill_frag_prune(ill, 11099 (ip_reass_queue_bytes < msg_len) ? 0 : 11100 (ip_reass_queue_bytes - msg_len)); 11101 pruned = B_TRUE; 11102 } 11103 11104 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 11105 mutex_enter(&ipfb->ipfb_lock); 11106 11107 ipfp = &ipfb->ipfb_ipf; 11108 /* Try to find an existing fragment queue for this packet. */ 11109 for (;;) { 11110 ipf = ipfp[0]; 11111 if (ipf != NULL) { 11112 /* 11113 * It has to match on ident and src/dst address. 11114 */ 11115 if (ipf->ipf_ident == ident && 11116 ipf->ipf_src == src && 11117 ipf->ipf_dst == dst && 11118 ipf->ipf_protocol == proto) { 11119 /* 11120 * If we have received too many 11121 * duplicate fragments for this packet 11122 * free it. 11123 */ 11124 if (ipf->ipf_num_dups > ip_max_frag_dups) { 11125 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11126 freemsg(mp); 11127 mutex_exit(&ipfb->ipfb_lock); 11128 return (B_FALSE); 11129 } 11130 /* Found it. */ 11131 break; 11132 } 11133 ipfp = &ipf->ipf_hash_next; 11134 continue; 11135 } 11136 11137 /* 11138 * If we pruned the list, do we want to store this new 11139 * fragment?. We apply an optimization here based on the 11140 * fact that most fragments will be received in order. 11141 * So if the offset of this incoming fragment is zero, 11142 * it is the first fragment of a new packet. We will 11143 * keep it. Otherwise drop the fragment, as we have 11144 * probably pruned the packet already (since the 11145 * packet cannot be found). 11146 */ 11147 if (pruned && offset != 0) { 11148 mutex_exit(&ipfb->ipfb_lock); 11149 freemsg(mp); 11150 return (B_FALSE); 11151 } 11152 11153 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 11154 /* 11155 * Too many fragmented packets in this hash 11156 * bucket. Free the oldest. 11157 */ 11158 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 11159 } 11160 11161 /* New guy. Allocate a frag message. */ 11162 mp1 = allocb(sizeof (*ipf), BPRI_MED); 11163 if (mp1 == NULL) { 11164 BUMP_MIB(&ip_mib, ipInDiscards); 11165 freemsg(mp); 11166 reass_done: 11167 mutex_exit(&ipfb->ipfb_lock); 11168 return (B_FALSE); 11169 } 11170 11171 11172 BUMP_MIB(&ip_mib, ipReasmReqds); 11173 mp1->b_cont = mp; 11174 11175 /* Initialize the fragment header. */ 11176 ipf = (ipf_t *)mp1->b_rptr; 11177 ipf->ipf_mp = mp1; 11178 ipf->ipf_ptphn = ipfp; 11179 ipfp[0] = ipf; 11180 ipf->ipf_hash_next = NULL; 11181 ipf->ipf_ident = ident; 11182 ipf->ipf_protocol = proto; 11183 ipf->ipf_src = src; 11184 ipf->ipf_dst = dst; 11185 ipf->ipf_nf_hdr_len = 0; 11186 /* Record reassembly start time. */ 11187 ipf->ipf_timestamp = gethrestime_sec(); 11188 /* Record ipf generation and account for frag header */ 11189 ipf->ipf_gen = ill->ill_ipf_gen++; 11190 ipf->ipf_count = MBLKSIZE(mp1); 11191 ipf->ipf_last_frag_seen = B_FALSE; 11192 ipf->ipf_ecn = ecn_info; 11193 ipf->ipf_num_dups = 0; 11194 ipfb->ipfb_frag_pkts++; 11195 ipf->ipf_checksum = 0; 11196 ipf->ipf_checksum_flags = 0; 11197 11198 /* Store checksum value in fragment header */ 11199 if (sum_flags != 0) { 11200 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11201 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11202 ipf->ipf_checksum = sum_val; 11203 ipf->ipf_checksum_flags = sum_flags; 11204 } 11205 11206 /* 11207 * We handle reassembly two ways. In the easy case, 11208 * where all the fragments show up in order, we do 11209 * minimal bookkeeping, and just clip new pieces on 11210 * the end. If we ever see a hole, then we go off 11211 * to ip_reassemble which has to mark the pieces and 11212 * keep track of the number of holes, etc. Obviously, 11213 * the point of having both mechanisms is so we can 11214 * handle the easy case as efficiently as possible. 11215 */ 11216 if (offset == 0) { 11217 /* Easy case, in-order reassembly so far. */ 11218 ipf->ipf_count += msg_len; 11219 ipf->ipf_tail_mp = tail_mp; 11220 /* 11221 * Keep track of next expected offset in 11222 * ipf_end. 11223 */ 11224 ipf->ipf_end = end; 11225 ipf->ipf_nf_hdr_len = hdr_length; 11226 } else { 11227 /* Hard case, hole at the beginning. */ 11228 ipf->ipf_tail_mp = NULL; 11229 /* 11230 * ipf_end == 0 means that we have given up 11231 * on easy reassembly. 11232 */ 11233 ipf->ipf_end = 0; 11234 11235 /* Forget checksum offload from now on */ 11236 ipf->ipf_checksum_flags = 0; 11237 11238 /* 11239 * ipf_hole_cnt is set by ip_reassemble. 11240 * ipf_count is updated by ip_reassemble. 11241 * No need to check for return value here 11242 * as we don't expect reassembly to complete 11243 * or fail for the first fragment itself. 11244 */ 11245 (void) ip_reassemble(mp, ipf, 11246 (frag_offset_flags & IPH_OFFSET) << 3, 11247 (frag_offset_flags & IPH_MF), ill, msg_len); 11248 } 11249 /* Update per ipfb and ill byte counts */ 11250 ipfb->ipfb_count += ipf->ipf_count; 11251 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11252 ill->ill_frag_count += ipf->ipf_count; 11253 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11254 /* If the frag timer wasn't already going, start it. */ 11255 mutex_enter(&ill->ill_lock); 11256 ill_frag_timer_start(ill); 11257 mutex_exit(&ill->ill_lock); 11258 goto reass_done; 11259 } 11260 11261 /* 11262 * If the packet's flag has changed (it could be coming up 11263 * from an interface different than the previous, therefore 11264 * possibly different checksum capability), then forget about 11265 * any stored checksum states. Otherwise add the value to 11266 * the existing one stored in the fragment header. 11267 */ 11268 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 11269 sum_val += ipf->ipf_checksum; 11270 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11271 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 11272 ipf->ipf_checksum = sum_val; 11273 } else if (ipf->ipf_checksum_flags != 0) { 11274 /* Forget checksum offload from now on */ 11275 ipf->ipf_checksum_flags = 0; 11276 } 11277 11278 /* 11279 * We have a new piece of a datagram which is already being 11280 * reassembled. Update the ECN info if all IP fragments 11281 * are ECN capable. If there is one which is not, clear 11282 * all the info. If there is at least one which has CE 11283 * code point, IP needs to report that up to transport. 11284 */ 11285 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 11286 if (ecn_info == IPH_ECN_CE) 11287 ipf->ipf_ecn = IPH_ECN_CE; 11288 } else { 11289 ipf->ipf_ecn = IPH_ECN_NECT; 11290 } 11291 if (offset && ipf->ipf_end == offset) { 11292 /* The new fragment fits at the end */ 11293 ipf->ipf_tail_mp->b_cont = mp; 11294 /* Update the byte count */ 11295 ipf->ipf_count += msg_len; 11296 /* Update per ipfb and ill byte counts */ 11297 ipfb->ipfb_count += msg_len; 11298 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11299 ill->ill_frag_count += msg_len; 11300 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 11301 if (frag_offset_flags & IPH_MF) { 11302 /* More to come. */ 11303 ipf->ipf_end = end; 11304 ipf->ipf_tail_mp = tail_mp; 11305 goto reass_done; 11306 } 11307 } else { 11308 /* Go do the hard cases. */ 11309 int ret; 11310 11311 if (offset == 0) 11312 ipf->ipf_nf_hdr_len = hdr_length; 11313 11314 /* Save current byte count */ 11315 count = ipf->ipf_count; 11316 ret = ip_reassemble(mp, ipf, 11317 (frag_offset_flags & IPH_OFFSET) << 3, 11318 (frag_offset_flags & IPH_MF), ill, msg_len); 11319 /* Count of bytes added and subtracted (freeb()ed) */ 11320 count = ipf->ipf_count - count; 11321 if (count) { 11322 /* Update per ipfb and ill byte counts */ 11323 ipfb->ipfb_count += count; 11324 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 11325 ill->ill_frag_count += count; 11326 ASSERT(ill->ill_frag_count > 0); 11327 } 11328 if (ret == IP_REASS_PARTIAL) { 11329 goto reass_done; 11330 } else if (ret == IP_REASS_FAILED) { 11331 /* Reassembly failed. Free up all resources */ 11332 ill_frag_free_pkts(ill, ipfb, ipf, 1); 11333 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 11334 IP_REASS_SET_START(t_mp, 0); 11335 IP_REASS_SET_END(t_mp, 0); 11336 } 11337 freemsg(mp); 11338 goto reass_done; 11339 } 11340 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 11341 } 11342 /* 11343 * We have completed reassembly. Unhook the frag header from 11344 * the reassembly list. 11345 * 11346 * Before we free the frag header, record the ECN info 11347 * to report back to the transport. 11348 */ 11349 ecn_info = ipf->ipf_ecn; 11350 BUMP_MIB(&ip_mib, ipReasmOKs); 11351 ipfp = ipf->ipf_ptphn; 11352 11353 /* We need to supply these to caller */ 11354 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 11355 sum_val = ipf->ipf_checksum; 11356 else 11357 sum_val = 0; 11358 11359 mp1 = ipf->ipf_mp; 11360 count = ipf->ipf_count; 11361 ipf = ipf->ipf_hash_next; 11362 if (ipf != NULL) 11363 ipf->ipf_ptphn = ipfp; 11364 ipfp[0] = ipf; 11365 ill->ill_frag_count -= count; 11366 ASSERT(ipfb->ipfb_count >= count); 11367 ipfb->ipfb_count -= count; 11368 ipfb->ipfb_frag_pkts--; 11369 mutex_exit(&ipfb->ipfb_lock); 11370 /* Ditch the frag header. */ 11371 mp = mp1->b_cont; 11372 11373 freeb(mp1); 11374 11375 /* Restore original IP length in header. */ 11376 packet_size = (uint32_t)msgdsize(mp); 11377 if (packet_size > IP_MAXPACKET) { 11378 freemsg(mp); 11379 BUMP_MIB(&ip_mib, ipInHdrErrors); 11380 return (B_FALSE); 11381 } 11382 11383 if (DB_REF(mp) > 1) { 11384 mblk_t *mp2 = copymsg(mp); 11385 11386 freemsg(mp); 11387 if (mp2 == NULL) { 11388 BUMP_MIB(&ip_mib, ipInDiscards); 11389 return (B_FALSE); 11390 } 11391 mp = mp2; 11392 } 11393 ipha = (ipha_t *)mp->b_rptr; 11394 11395 ipha->ipha_length = htons((uint16_t)packet_size); 11396 /* We're now complete, zip the frag state */ 11397 ipha->ipha_fragment_offset_and_flags = 0; 11398 /* Record the ECN info. */ 11399 ipha->ipha_type_of_service &= 0xFC; 11400 ipha->ipha_type_of_service |= ecn_info; 11401 *mpp = mp; 11402 11403 /* Reassembly is successful; return checksum information if needed */ 11404 if (cksum_val != NULL) 11405 *cksum_val = sum_val; 11406 if (cksum_flags != NULL) 11407 *cksum_flags = sum_flags; 11408 11409 return (B_TRUE); 11410 } 11411 11412 /* 11413 * Perform ip header check sum update local options. 11414 * return B_TRUE if all is well, else return B_FALSE and release 11415 * the mp. caller is responsible for decrementing ire ref cnt. 11416 */ 11417 static boolean_t 11418 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 11419 { 11420 mblk_t *first_mp; 11421 boolean_t mctl_present; 11422 uint16_t sum; 11423 11424 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11425 /* 11426 * Don't do the checksum if it has gone through AH/ESP 11427 * processing. 11428 */ 11429 if (!mctl_present) { 11430 sum = ip_csum_hdr(ipha); 11431 if (sum != 0) { 11432 BUMP_MIB(&ip_mib, ipInCksumErrs); 11433 freemsg(first_mp); 11434 return (B_FALSE); 11435 } 11436 } 11437 11438 if (!ip_rput_local_options(q, mp, ipha, ire)) { 11439 if (mctl_present) 11440 freeb(first_mp); 11441 return (B_FALSE); 11442 } 11443 11444 return (B_TRUE); 11445 } 11446 11447 /* 11448 * All udp packet are delivered to the local host via this routine. 11449 */ 11450 void 11451 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 11452 ill_t *recv_ill) 11453 { 11454 uint32_t sum; 11455 uint32_t u1; 11456 boolean_t mctl_present; 11457 conn_t *connp; 11458 mblk_t *first_mp; 11459 uint16_t *up; 11460 ill_t *ill = (ill_t *)q->q_ptr; 11461 uint16_t reass_hck_flags = 0; 11462 11463 #define rptr ((uchar_t *)ipha) 11464 11465 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 11466 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 11467 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11468 11469 /* 11470 * FAST PATH for udp packets 11471 */ 11472 11473 /* u1 is # words of IP options */ 11474 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 11475 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11476 11477 /* IP options present */ 11478 if (u1 != 0) 11479 goto ipoptions; 11480 11481 /* Check the IP header checksum. */ 11482 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 11483 /* Clear the IP header h/w cksum flag */ 11484 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 11485 } else { 11486 #define uph ((uint16_t *)ipha) 11487 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 11488 uph[6] + uph[7] + uph[8] + uph[9]; 11489 #undef uph 11490 /* finish doing IP checksum */ 11491 sum = (sum & 0xFFFF) + (sum >> 16); 11492 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11493 /* 11494 * Don't verify header checksum if this packet is coming 11495 * back from AH/ESP as we already did it. 11496 */ 11497 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 11498 BUMP_MIB(&ip_mib, ipInCksumErrs); 11499 freemsg(first_mp); 11500 return; 11501 } 11502 } 11503 11504 /* 11505 * Count for SNMP of inbound packets for ire. 11506 * if mctl is present this might be a secure packet and 11507 * has already been counted for in ip_proto_input(). 11508 */ 11509 if (!mctl_present) { 11510 UPDATE_IB_PKT_COUNT(ire); 11511 ire->ire_last_used_time = lbolt; 11512 } 11513 11514 /* packet part of fragmented IP packet? */ 11515 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11516 if (u1 & (IPH_MF | IPH_OFFSET)) { 11517 goto fragmented; 11518 } 11519 11520 /* u1 = IP header length (20 bytes) */ 11521 u1 = IP_SIMPLE_HDR_LENGTH; 11522 11523 /* packet does not contain complete IP & UDP headers */ 11524 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 11525 goto udppullup; 11526 11527 /* up points to UDP header */ 11528 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 11529 #define iphs ((uint16_t *)ipha) 11530 11531 /* if udp hdr cksum != 0, then need to checksum udp packet */ 11532 if (up[3] != 0) { 11533 mblk_t *mp1 = mp->b_cont; 11534 boolean_t cksum_err; 11535 uint16_t hck_flags = 0; 11536 11537 /* Pseudo-header checksum */ 11538 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11539 iphs[9] + up[2]; 11540 11541 /* 11542 * Revert to software checksum calculation if the interface 11543 * isn't capable of checksum offload or if IPsec is present. 11544 */ 11545 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 11546 hck_flags = DB_CKSUMFLAGS(mp); 11547 11548 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11549 IP_STAT(ip_in_sw_cksum); 11550 11551 IP_CKSUM_RECV(hck_flags, u1, 11552 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 11553 (int32_t)((uchar_t *)up - rptr), 11554 mp, mp1, cksum_err); 11555 11556 if (cksum_err) { 11557 BUMP_MIB(&ip_mib, udpInCksumErrs); 11558 11559 if (hck_flags & HCK_FULLCKSUM) 11560 IP_STAT(ip_udp_in_full_hw_cksum_err); 11561 else if (hck_flags & HCK_PARTIALCKSUM) 11562 IP_STAT(ip_udp_in_part_hw_cksum_err); 11563 else 11564 IP_STAT(ip_udp_in_sw_cksum_err); 11565 11566 freemsg(first_mp); 11567 return; 11568 } 11569 } 11570 11571 /* Non-fragmented broadcast or multicast packet? */ 11572 if (ire->ire_type == IRE_BROADCAST) 11573 goto udpslowpath; 11574 11575 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 11576 ire->ire_zoneid)) != NULL) { 11577 ASSERT(connp->conn_upq != NULL); 11578 IP_STAT(ip_udp_fast_path); 11579 11580 if (CONN_UDP_FLOWCTLD(connp)) { 11581 freemsg(mp); 11582 BUMP_MIB(&ip_mib, udpInOverflows); 11583 } else { 11584 if (!mctl_present) { 11585 BUMP_MIB(&ip_mib, ipInDelivers); 11586 } 11587 /* 11588 * mp and first_mp can change. 11589 */ 11590 if (ip_udp_check(q, connp, recv_ill, 11591 ipha, &mp, &first_mp, mctl_present)) { 11592 /* Send it upstream */ 11593 CONN_UDP_RECV(connp, mp); 11594 } 11595 } 11596 /* 11597 * freeb() cannot deal with null mblk being passed 11598 * in and first_mp can be set to null in the call 11599 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 11600 */ 11601 if (mctl_present && first_mp != NULL) { 11602 freeb(first_mp); 11603 } 11604 CONN_DEC_REF(connp); 11605 return; 11606 } 11607 11608 /* 11609 * if we got here we know the packet is not fragmented and 11610 * has no options. The classifier could not find a conn_t and 11611 * most likely its an icmp packet so send it through slow path. 11612 */ 11613 11614 goto udpslowpath; 11615 11616 ipoptions: 11617 if (!ip_options_cksum(q, mp, ipha, ire)) { 11618 goto slow_done; 11619 } 11620 11621 UPDATE_IB_PKT_COUNT(ire); 11622 ire->ire_last_used_time = lbolt; 11623 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11624 if (u1 & (IPH_MF | IPH_OFFSET)) { 11625 fragmented: 11626 /* 11627 * "sum" and "reass_hck_flags" are non-zero if the 11628 * reassembled packet has a valid hardware computed 11629 * checksum information associated with it. 11630 */ 11631 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 11632 goto slow_done; 11633 /* 11634 * Make sure that first_mp points back to mp as 11635 * the mp we came in with could have changed in 11636 * ip_rput_fragment(). 11637 */ 11638 ASSERT(!mctl_present); 11639 ipha = (ipha_t *)mp->b_rptr; 11640 first_mp = mp; 11641 } 11642 11643 /* Now we have a complete datagram, destined for this machine. */ 11644 u1 = IPH_HDR_LENGTH(ipha); 11645 /* Pull up the UDP header, if necessary. */ 11646 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 11647 udppullup: 11648 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 11649 BUMP_MIB(&ip_mib, ipInDiscards); 11650 freemsg(first_mp); 11651 goto slow_done; 11652 } 11653 ipha = (ipha_t *)mp->b_rptr; 11654 } 11655 11656 /* 11657 * Validate the checksum for the reassembled packet; for the 11658 * pullup case we calculate the payload checksum in software. 11659 */ 11660 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 11661 if (up[3] != 0) { 11662 boolean_t cksum_err; 11663 11664 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11665 IP_STAT(ip_in_sw_cksum); 11666 11667 IP_CKSUM_RECV_REASS(reass_hck_flags, 11668 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 11669 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 11670 iphs[9] + up[2], sum, cksum_err); 11671 11672 if (cksum_err) { 11673 BUMP_MIB(&ip_mib, udpInCksumErrs); 11674 11675 if (reass_hck_flags & HCK_FULLCKSUM) 11676 IP_STAT(ip_udp_in_full_hw_cksum_err); 11677 else if (reass_hck_flags & HCK_PARTIALCKSUM) 11678 IP_STAT(ip_udp_in_part_hw_cksum_err); 11679 else 11680 IP_STAT(ip_udp_in_sw_cksum_err); 11681 11682 freemsg(first_mp); 11683 goto slow_done; 11684 } 11685 } 11686 udpslowpath: 11687 11688 /* Clear hardware checksum flag to be safe */ 11689 DB_CKSUMFLAGS(mp) = 0; 11690 11691 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 11692 (ire->ire_type == IRE_BROADCAST), 11693 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 11694 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 11695 11696 slow_done: 11697 IP_STAT(ip_udp_slow_path); 11698 return; 11699 11700 #undef iphs 11701 #undef rptr 11702 } 11703 11704 /* ARGSUSED */ 11705 static mblk_t * 11706 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 11707 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 11708 ill_rx_ring_t *ill_ring) 11709 { 11710 conn_t *connp; 11711 uint32_t sum; 11712 uint32_t u1; 11713 uint16_t *up; 11714 int offset; 11715 ssize_t len; 11716 mblk_t *mp1; 11717 boolean_t syn_present = B_FALSE; 11718 tcph_t *tcph; 11719 uint_t ip_hdr_len; 11720 ill_t *ill = (ill_t *)q->q_ptr; 11721 zoneid_t zoneid = ire->ire_zoneid; 11722 boolean_t cksum_err; 11723 uint16_t hck_flags = 0; 11724 11725 #define rptr ((uchar_t *)ipha) 11726 11727 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 11728 11729 /* 11730 * FAST PATH for tcp packets 11731 */ 11732 11733 /* u1 is # words of IP options */ 11734 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 11735 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 11736 11737 /* IP options present */ 11738 if (u1) { 11739 goto ipoptions; 11740 } else { 11741 /* Check the IP header checksum. */ 11742 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 11743 /* Clear the IP header h/w cksum flag */ 11744 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 11745 } else { 11746 #define uph ((uint16_t *)ipha) 11747 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 11748 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 11749 #undef uph 11750 /* finish doing IP checksum */ 11751 sum = (sum & 0xFFFF) + (sum >> 16); 11752 sum = ~(sum + (sum >> 16)) & 0xFFFF; 11753 /* 11754 * Don't verify header checksum if this packet 11755 * is coming back from AH/ESP as we already did it. 11756 */ 11757 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 11758 BUMP_MIB(&ip_mib, ipInCksumErrs); 11759 goto error; 11760 } 11761 } 11762 } 11763 11764 if (!mctl_present) { 11765 UPDATE_IB_PKT_COUNT(ire); 11766 ire->ire_last_used_time = lbolt; 11767 } 11768 11769 /* packet part of fragmented IP packet? */ 11770 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 11771 if (u1 & (IPH_MF | IPH_OFFSET)) { 11772 goto fragmented; 11773 } 11774 11775 /* u1 = IP header length (20 bytes) */ 11776 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 11777 11778 /* does packet contain IP+TCP headers? */ 11779 len = mp->b_wptr - rptr; 11780 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 11781 IP_STAT(ip_tcppullup); 11782 goto tcppullup; 11783 } 11784 11785 /* TCP options present? */ 11786 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 11787 11788 /* 11789 * If options need to be pulled up, then goto tcpoptions. 11790 * otherwise we are still in the fast path 11791 */ 11792 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 11793 IP_STAT(ip_tcpoptions); 11794 goto tcpoptions; 11795 } 11796 11797 /* multiple mblks of tcp data? */ 11798 if ((mp1 = mp->b_cont) != NULL) { 11799 /* more then two? */ 11800 if (mp1->b_cont != NULL) { 11801 IP_STAT(ip_multipkttcp); 11802 goto multipkttcp; 11803 } 11804 len += mp1->b_wptr - mp1->b_rptr; 11805 } 11806 11807 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 11808 11809 /* part of pseudo checksum */ 11810 11811 /* TCP datagram length */ 11812 u1 = len - IP_SIMPLE_HDR_LENGTH; 11813 11814 #define iphs ((uint16_t *)ipha) 11815 11816 #ifdef _BIG_ENDIAN 11817 u1 += IPPROTO_TCP; 11818 #else 11819 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 11820 #endif 11821 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 11822 11823 /* 11824 * Revert to software checksum calculation if the interface 11825 * isn't capable of checksum offload or if IPsec is present. 11826 */ 11827 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 11828 hck_flags = DB_CKSUMFLAGS(mp); 11829 11830 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 11831 IP_STAT(ip_in_sw_cksum); 11832 11833 IP_CKSUM_RECV(hck_flags, u1, 11834 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 11835 (int32_t)((uchar_t *)up - rptr), 11836 mp, mp1, cksum_err); 11837 11838 if (cksum_err) { 11839 BUMP_MIB(&ip_mib, tcpInErrs); 11840 11841 if (hck_flags & HCK_FULLCKSUM) 11842 IP_STAT(ip_tcp_in_full_hw_cksum_err); 11843 else if (hck_flags & HCK_PARTIALCKSUM) 11844 IP_STAT(ip_tcp_in_part_hw_cksum_err); 11845 else 11846 IP_STAT(ip_tcp_in_sw_cksum_err); 11847 11848 goto error; 11849 } 11850 11851 try_again: 11852 11853 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 11854 NULL) { 11855 /* Send the TH_RST */ 11856 goto no_conn; 11857 } 11858 11859 /* 11860 * TCP FAST PATH for AF_INET socket. 11861 * 11862 * TCP fast path to avoid extra work. An AF_INET socket type 11863 * does not have facility to receive extra information via 11864 * ip_process or ip_add_info. Also, when the connection was 11865 * established, we made a check if this connection is impacted 11866 * by any global IPSec policy or per connection policy (a 11867 * policy that comes in effect later will not apply to this 11868 * connection). Since all this can be determined at the 11869 * connection establishment time, a quick check of flags 11870 * can avoid extra work. 11871 */ 11872 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 11873 !IPP_ENABLED(IPP_LOCAL_IN)) { 11874 ASSERT(first_mp == mp); 11875 SET_SQUEUE(mp, tcp_rput_data, connp); 11876 return (mp); 11877 } 11878 11879 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 11880 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 11881 if (IPCL_IS_TCP(connp)) { 11882 mp->b_datap->db_struioflag |= STRUIO_EAGER; 11883 DB_CKSUMSTART(mp) = 11884 (intptr_t)ip_squeue_get(ill_ring); 11885 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 11886 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11887 SET_SQUEUE(mp, connp->conn_recv, connp); 11888 return (mp); 11889 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 11890 !CONN_INBOUND_POLICY_PRESENT(connp)) { 11891 ip_squeue_enter_unbound++; 11892 SET_SQUEUE(mp, tcp_conn_request_unbound, 11893 connp); 11894 return (mp); 11895 } 11896 syn_present = B_TRUE; 11897 } 11898 11899 } 11900 11901 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 11902 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 11903 11904 /* No need to send this packet to TCP */ 11905 if ((flags & TH_RST) || (flags & TH_URG)) { 11906 CONN_DEC_REF(connp); 11907 freemsg(first_mp); 11908 return (NULL); 11909 } 11910 if (flags & TH_ACK) { 11911 tcp_xmit_listeners_reset(first_mp, ip_hdr_len); 11912 CONN_DEC_REF(connp); 11913 return (NULL); 11914 } 11915 11916 CONN_DEC_REF(connp); 11917 freemsg(first_mp); 11918 return (NULL); 11919 } 11920 11921 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11922 first_mp = ipsec_check_inbound_policy(first_mp, connp, 11923 ipha, NULL, mctl_present); 11924 if (first_mp == NULL) { 11925 CONN_DEC_REF(connp); 11926 return (NULL); 11927 } 11928 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 11929 ASSERT(syn_present); 11930 if (mctl_present) { 11931 ASSERT(first_mp != mp); 11932 first_mp->b_datap->db_struioflag |= 11933 STRUIO_POLICY; 11934 } else { 11935 ASSERT(first_mp == mp); 11936 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 11937 mp->b_datap->db_struioflag |= STRUIO_POLICY; 11938 } 11939 } else { 11940 /* 11941 * Discard first_mp early since we're dealing with a 11942 * fully-connected conn_t and tcp doesn't do policy in 11943 * this case. 11944 */ 11945 if (mctl_present) { 11946 freeb(first_mp); 11947 mctl_present = B_FALSE; 11948 } 11949 first_mp = mp; 11950 } 11951 } 11952 11953 /* Initiate IPPF processing for fastpath */ 11954 if (IPP_ENABLED(IPP_LOCAL_IN)) { 11955 uint32_t ill_index; 11956 11957 ill_index = recv_ill->ill_phyint->phyint_ifindex; 11958 ip_process(IPP_LOCAL_IN, &mp, ill_index); 11959 if (mp == NULL) { 11960 ip2dbg(("ip_input_ipsec_process: TCP pkt " 11961 "deferred/dropped during IPPF processing\n")); 11962 CONN_DEC_REF(connp); 11963 if (mctl_present) 11964 freeb(first_mp); 11965 return (NULL); 11966 } else if (mctl_present) { 11967 /* 11968 * ip_process might return a new mp. 11969 */ 11970 ASSERT(first_mp != mp); 11971 first_mp->b_cont = mp; 11972 } else { 11973 first_mp = mp; 11974 } 11975 11976 } 11977 11978 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 11979 mp = ip_add_info(mp, recv_ill, flags); 11980 if (mp == NULL) { 11981 CONN_DEC_REF(connp); 11982 if (mctl_present) 11983 freeb(first_mp); 11984 return (NULL); 11985 } else if (mctl_present) { 11986 /* 11987 * ip_add_info might return a new mp. 11988 */ 11989 ASSERT(first_mp != mp); 11990 first_mp->b_cont = mp; 11991 } else { 11992 first_mp = mp; 11993 } 11994 } 11995 11996 if (IPCL_IS_TCP(connp)) { 11997 SET_SQUEUE(first_mp, connp->conn_recv, connp); 11998 return (first_mp); 11999 } else { 12000 putnext(connp->conn_rq, first_mp); 12001 CONN_DEC_REF(connp); 12002 return (NULL); 12003 } 12004 12005 no_conn: 12006 /* Initiate IPPf processing, if needed. */ 12007 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12008 uint32_t ill_index; 12009 ill_index = recv_ill->ill_phyint->phyint_ifindex; 12010 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 12011 if (first_mp == NULL) { 12012 return (NULL); 12013 } 12014 } 12015 BUMP_MIB(&ip_mib, ipInDelivers); 12016 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr)); 12017 return (NULL); 12018 ipoptions: 12019 if (!ip_options_cksum(q, first_mp, ipha, ire)) { 12020 goto slow_done; 12021 } 12022 12023 UPDATE_IB_PKT_COUNT(ire); 12024 ire->ire_last_used_time = lbolt; 12025 12026 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12027 if (u1 & (IPH_MF | IPH_OFFSET)) { 12028 fragmented: 12029 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 12030 if (mctl_present) 12031 freeb(first_mp); 12032 goto slow_done; 12033 } 12034 /* 12035 * Make sure that first_mp points back to mp as 12036 * the mp we came in with could have changed in 12037 * ip_rput_fragment(). 12038 */ 12039 ASSERT(!mctl_present); 12040 ipha = (ipha_t *)mp->b_rptr; 12041 first_mp = mp; 12042 } 12043 12044 tcp_slow: 12045 /* Now we have a complete datagram, destined for this machine. */ 12046 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 12047 12048 len = mp->b_wptr - mp->b_rptr; 12049 /* Pull up a minimal TCP header, if necessary. */ 12050 if (len < (u1 + 20)) { 12051 tcppullup: 12052 if (!pullupmsg(mp, u1 + 20)) { 12053 BUMP_MIB(&ip_mib, ipInDiscards); 12054 goto error; 12055 } 12056 ipha = (ipha_t *)mp->b_rptr; 12057 len = mp->b_wptr - mp->b_rptr; 12058 } 12059 12060 /* 12061 * Extract the offset field from the TCP header. As usual, we 12062 * try to help the compiler more than the reader. 12063 */ 12064 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 12065 if (offset != 5) { 12066 tcpoptions: 12067 if (offset < 5) { 12068 BUMP_MIB(&ip_mib, ipInDiscards); 12069 goto error; 12070 } 12071 /* 12072 * There must be TCP options. 12073 * Make sure we can grab them. 12074 */ 12075 offset <<= 2; 12076 offset += u1; 12077 if (len < offset) { 12078 if (!pullupmsg(mp, offset)) { 12079 BUMP_MIB(&ip_mib, ipInDiscards); 12080 goto error; 12081 } 12082 ipha = (ipha_t *)mp->b_rptr; 12083 len = mp->b_wptr - rptr; 12084 } 12085 } 12086 12087 /* Get the total packet length in len, including headers. */ 12088 if (mp->b_cont) { 12089 multipkttcp: 12090 len = msgdsize(mp); 12091 } 12092 12093 /* 12094 * Check the TCP checksum by pulling together the pseudo- 12095 * header checksum, and passing it to ip_csum to be added in 12096 * with the TCP datagram. 12097 * 12098 * Since we are not using the hwcksum if available we must 12099 * clear the flag. We may come here via tcppullup or tcpoptions. 12100 * If either of these fails along the way the mblk is freed. 12101 * If this logic ever changes and mblk is reused to say send 12102 * ICMP's back, then this flag may need to be cleared in 12103 * other places as well. 12104 */ 12105 DB_CKSUMFLAGS(mp) = 0; 12106 12107 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 12108 12109 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 12110 #ifdef _BIG_ENDIAN 12111 u1 += IPPROTO_TCP; 12112 #else 12113 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12114 #endif 12115 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12116 /* 12117 * Not M_DATA mblk or its a dup, so do the checksum now. 12118 */ 12119 IP_STAT(ip_in_sw_cksum); 12120 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 12121 BUMP_MIB(&ip_mib, tcpInErrs); 12122 goto error; 12123 } 12124 12125 IP_STAT(ip_tcp_slow_path); 12126 goto try_again; 12127 #undef iphs 12128 #undef rptr 12129 12130 error: 12131 freemsg(first_mp); 12132 slow_done: 12133 return (NULL); 12134 } 12135 12136 /* ARGSUSED */ 12137 static void 12138 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12139 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 12140 { 12141 conn_t *connp; 12142 uint32_t sum; 12143 uint32_t u1; 12144 ssize_t len; 12145 sctp_hdr_t *sctph; 12146 zoneid_t zoneid = ire->ire_zoneid; 12147 uint32_t pktsum; 12148 uint32_t calcsum; 12149 uint32_t ports; 12150 uint_t ipif_seqid; 12151 in6_addr_t map_src, map_dst; 12152 ill_t *ill = (ill_t *)q->q_ptr; 12153 12154 #define rptr ((uchar_t *)ipha) 12155 12156 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 12157 12158 /* u1 is # words of IP options */ 12159 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12160 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12161 12162 /* IP options present */ 12163 if (u1 > 0) { 12164 goto ipoptions; 12165 } else { 12166 /* Check the IP header checksum. */ 12167 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12168 /* 12169 * Since there is no SCTP h/w cksum support yet, just 12170 * clear the flag. 12171 */ 12172 DB_CKSUMFLAGS(mp) = 0; 12173 } else { 12174 #define uph ((uint16_t *)ipha) 12175 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12176 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12177 #undef uph 12178 /* finish doing IP checksum */ 12179 sum = (sum & 0xFFFF) + (sum >> 16); 12180 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12181 /* 12182 * Don't verify header checksum if this packet 12183 * is coming back from AH/ESP as we already did it. 12184 */ 12185 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12186 BUMP_MIB(&ip_mib, ipInCksumErrs); 12187 goto error; 12188 } 12189 } 12190 } 12191 12192 /* 12193 * Don't verify header checksum if this packet is coming 12194 * back from AH/ESP as we already did it. 12195 */ 12196 if (!mctl_present) { 12197 UPDATE_IB_PKT_COUNT(ire); 12198 ire->ire_last_used_time = lbolt; 12199 } 12200 12201 /* packet part of fragmented IP packet? */ 12202 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12203 if (u1 & (IPH_MF | IPH_OFFSET)) 12204 goto fragmented; 12205 12206 /* u1 = IP header length (20 bytes) */ 12207 u1 = IP_SIMPLE_HDR_LENGTH; 12208 12209 find_sctp_client: 12210 /* Pullup if we don't have the sctp common header. */ 12211 len = MBLKL(mp); 12212 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 12213 if (mp->b_cont == NULL || 12214 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 12215 BUMP_MIB(&ip_mib, ipInDiscards); 12216 goto error; 12217 } 12218 ipha = (ipha_t *)mp->b_rptr; 12219 len = MBLKL(mp); 12220 } 12221 12222 sctph = (sctp_hdr_t *)(rptr + u1); 12223 #ifdef DEBUG 12224 if (!skip_sctp_cksum) { 12225 #endif 12226 pktsum = sctph->sh_chksum; 12227 sctph->sh_chksum = 0; 12228 calcsum = sctp_cksum(mp, u1); 12229 if (calcsum != pktsum) { 12230 BUMP_MIB(&sctp_mib, sctpChecksumError); 12231 goto error; 12232 } 12233 sctph->sh_chksum = pktsum; 12234 #ifdef DEBUG /* skip_sctp_cksum */ 12235 } 12236 #endif 12237 /* get the ports */ 12238 ports = *(uint32_t *)&sctph->sh_sport; 12239 12240 ipif_seqid = ire->ire_ipif->ipif_seqid; 12241 IRE_REFRELE(ire); 12242 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 12243 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 12244 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, ipif_seqid, 12245 zoneid)) == NULL) { 12246 /* Check for raw socket or OOTB handling */ 12247 goto no_conn; 12248 } 12249 12250 /* Found a client; up it goes */ 12251 BUMP_MIB(&ip_mib, ipInDelivers); 12252 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 12253 return; 12254 12255 no_conn: 12256 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 12257 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 12258 return; 12259 12260 ipoptions: 12261 DB_CKSUMFLAGS(mp) = 0; 12262 if (!ip_options_cksum(q, first_mp, ipha, ire)) 12263 goto slow_done; 12264 12265 UPDATE_IB_PKT_COUNT(ire); 12266 ire->ire_last_used_time = lbolt; 12267 12268 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12269 if (u1 & (IPH_MF | IPH_OFFSET)) { 12270 fragmented: 12271 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 12272 goto slow_done; 12273 /* 12274 * Make sure that first_mp points back to mp as 12275 * the mp we came in with could have changed in 12276 * ip_rput_fragment(). 12277 */ 12278 ASSERT(!mctl_present); 12279 ipha = (ipha_t *)mp->b_rptr; 12280 first_mp = mp; 12281 } 12282 12283 /* Now we have a complete datagram, destined for this machine. */ 12284 u1 = IPH_HDR_LENGTH(ipha); 12285 goto find_sctp_client; 12286 #undef iphs 12287 #undef rptr 12288 12289 error: 12290 freemsg(first_mp); 12291 slow_done: 12292 IRE_REFRELE(ire); 12293 } 12294 12295 #define VER_BITS 0xF0 12296 #define VERSION_6 0x60 12297 12298 static boolean_t 12299 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp, 12300 ipaddr_t *dstp) 12301 { 12302 uint_t opt_len; 12303 ipha_t *ipha; 12304 ssize_t len; 12305 uint_t pkt_len; 12306 12307 IP_STAT(ip_ipoptions); 12308 ipha = *iphapp; 12309 12310 #define rptr ((uchar_t *)ipha) 12311 /* Assume no IPv6 packets arrive over the IPv4 queue */ 12312 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 12313 BUMP_MIB(&ip_mib, ipInIPv6); 12314 freemsg(mp); 12315 return (B_FALSE); 12316 } 12317 12318 /* multiple mblk or too short */ 12319 pkt_len = ntohs(ipha->ipha_length); 12320 12321 /* Get the number of words of IP options in the IP header. */ 12322 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 12323 if (opt_len) { 12324 /* IP Options present! Validate and process. */ 12325 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 12326 BUMP_MIB(&ip_mib, ipInHdrErrors); 12327 goto done; 12328 } 12329 /* 12330 * Recompute complete header length and make sure we 12331 * have access to all of it. 12332 */ 12333 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 12334 if (len > (mp->b_wptr - rptr)) { 12335 if (len > pkt_len) { 12336 BUMP_MIB(&ip_mib, ipInHdrErrors); 12337 goto done; 12338 } 12339 if (!pullupmsg(mp, len)) { 12340 BUMP_MIB(&ip_mib, ipInDiscards); 12341 goto done; 12342 } 12343 ipha = (ipha_t *)mp->b_rptr; 12344 } 12345 /* 12346 * Go off to ip_rput_options which returns the next hop 12347 * destination address, which may have been affected 12348 * by source routing. 12349 */ 12350 IP_STAT(ip_opt); 12351 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 12352 return (B_FALSE); 12353 } 12354 } 12355 *iphapp = ipha; 12356 return (B_TRUE); 12357 done: 12358 /* clear b_prev - used by ip_mroute_decap */ 12359 mp->b_prev = NULL; 12360 freemsg(mp); 12361 return (B_FALSE); 12362 #undef rptr 12363 } 12364 12365 /* 12366 * Deal with the fact that there is no ire for the destination. 12367 * The incoming ill (in_ill) is passed in to ip_newroute only 12368 * in the case of packets coming from mobile ip forward tunnel. 12369 * It must be null otherwise. 12370 */ 12371 static void 12372 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 12373 ipaddr_t dst) 12374 { 12375 ipha_t *ipha; 12376 ill_t *ill; 12377 12378 ipha = (ipha_t *)mp->b_rptr; 12379 ill = (ill_t *)q->q_ptr; 12380 12381 ASSERT(ill != NULL); 12382 /* 12383 * No IRE for this destination, so it can't be for us. 12384 * Unless we are forwarding, drop the packet. 12385 * We have to let source routed packets through 12386 * since we don't yet know if they are 'ping -l' 12387 * packets i.e. if they will go out over the 12388 * same interface as they came in on. 12389 */ 12390 if (ll_multicast) { 12391 freemsg(mp); 12392 return; 12393 } 12394 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 12395 BUMP_MIB(&ip_mib, ipForwProhibits); 12396 freemsg(mp); 12397 return; 12398 } 12399 12400 /* Check for Martian addresses */ 12401 if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) { 12402 freemsg(mp); 12403 return; 12404 } 12405 12406 /* Mark this packet as having originated externally */ 12407 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 12408 12409 /* 12410 * Clear the indication that this may have a hardware checksum 12411 * as we are not using it 12412 */ 12413 DB_CKSUMFLAGS(mp) = 0; 12414 12415 /* 12416 * Now hand the packet to ip_newroute. 12417 */ 12418 ip_newroute(q, mp, dst, in_ill, NULL); 12419 } 12420 12421 /* 12422 * check ip header length and align it. 12423 */ 12424 static boolean_t 12425 ip_check_and_align_header(queue_t *q, mblk_t *mp) 12426 { 12427 ssize_t len; 12428 ill_t *ill; 12429 ipha_t *ipha; 12430 12431 len = MBLKL(mp); 12432 12433 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 12434 if (!OK_32PTR(mp->b_rptr)) 12435 IP_STAT(ip_notaligned1); 12436 else 12437 IP_STAT(ip_notaligned2); 12438 /* Guard against bogus device drivers */ 12439 if (len < 0) { 12440 /* clear b_prev - used by ip_mroute_decap */ 12441 mp->b_prev = NULL; 12442 BUMP_MIB(&ip_mib, ipInHdrErrors); 12443 freemsg(mp); 12444 return (B_FALSE); 12445 } 12446 12447 if (ip_rput_pullups++ == 0) { 12448 ill = (ill_t *)q->q_ptr; 12449 ipha = (ipha_t *)mp->b_rptr; 12450 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12451 "ip_check_and_align_header: %s forced us to " 12452 " pullup pkt, hdr len %ld, hdr addr %p", 12453 ill->ill_name, len, ipha); 12454 } 12455 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 12456 /* clear b_prev - used by ip_mroute_decap */ 12457 mp->b_prev = NULL; 12458 BUMP_MIB(&ip_mib, ipInDiscards); 12459 freemsg(mp); 12460 return (B_FALSE); 12461 } 12462 } 12463 return (B_TRUE); 12464 } 12465 12466 static boolean_t 12467 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 12468 { 12469 ill_group_t *ill_group; 12470 ill_group_t *ire_group; 12471 queue_t *q; 12472 ill_t *ire_ill; 12473 uint_t ill_ifindex; 12474 12475 q = *qp; 12476 /* 12477 * We need to check to make sure the packet came in 12478 * on the queue associated with the destination IRE. 12479 * Note that for multicast packets and broadcast packets sent to 12480 * a broadcast address which is shared between multiple interfaces 12481 * we should not do this since we just got a random broadcast ire. 12482 */ 12483 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 12484 boolean_t check_multi = B_TRUE; 12485 12486 /* 12487 * This packet came in on an interface other than the 12488 * one associated with the destination address. 12489 * "Gateway" it to the appropriate interface here. 12490 * As long as the ills belong to the same group, 12491 * we don't consider them to arriving on the wrong 12492 * interface. Thus, when the switch is doing inbound 12493 * load spreading, we won't drop packets when we 12494 * are doing strict multihoming checks. Note, the 12495 * same holds true for 'usesrc groups' where the 12496 * destination address may belong to another interface 12497 * to allow multipathing to happen 12498 */ 12499 ill_group = ill->ill_group; 12500 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 12501 ill_ifindex = ill->ill_usesrc_ifindex; 12502 ire_group = ire_ill->ill_group; 12503 12504 /* 12505 * If it's part of the same IPMP group, or if it's a legal 12506 * address on the 'usesrc' interface, then bypass strict 12507 * checks. 12508 */ 12509 if (ill_group != NULL && ill_group == ire_group) { 12510 check_multi = B_FALSE; 12511 } else if (ill_ifindex != 0 && 12512 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 12513 check_multi = B_FALSE; 12514 } 12515 12516 if (check_multi && 12517 ip_strict_dst_multihoming && 12518 ((ill->ill_flags & 12519 ire->ire_ipif->ipif_ill->ill_flags & 12520 ILLF_ROUTER) == 0)) { 12521 /* Drop packet */ 12522 BUMP_MIB(&ip_mib, ipForwProhibits); 12523 freemsg(mp); 12524 ire_refrele(ire); 12525 return (B_TRUE); 12526 } 12527 12528 /* 12529 * Change the queue (for non-virtual destination network 12530 * interfaces) and ip_rput_local will be called with the right 12531 * queue 12532 */ 12533 q = ire->ire_rfq; 12534 } 12535 /* Must be broadcast. We'll take it. */ 12536 *qp = q; 12537 return (B_FALSE); 12538 } 12539 12540 static void 12541 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 12542 ill_t *ill, int ll_multicast) 12543 { 12544 ill_group_t *ill_group; 12545 ill_group_t *ire_group; 12546 queue_t *dev_q; 12547 12548 ASSERT(ire->ire_stq != NULL); 12549 if (ll_multicast != 0) 12550 goto drop_pkt; 12551 12552 if (ip_no_forward(ipha, ill)) 12553 goto drop_pkt; 12554 12555 ill_group = ill->ill_group; 12556 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 12557 /* 12558 * Check if we want to forward this one at this time. 12559 * We allow source routed packets on a host provided that 12560 * they go out the same interface or same interface group 12561 * as they came in on. 12562 * 12563 * XXX To be quicker, we may wish to not chase pointers to 12564 * get the ILLF_ROUTER flag and instead store the 12565 * forwarding policy in the ire. An unfortunate 12566 * side-effect of that would be requiring an ire flush 12567 * whenever the ILLF_ROUTER flag changes. 12568 */ 12569 if (((ill->ill_flags & 12570 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 12571 ILLF_ROUTER) == 0) && 12572 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 12573 (ill_group != NULL && ill_group == ire_group)))) { 12574 BUMP_MIB(&ip_mib, ipForwProhibits); 12575 if (ip_source_routed(ipha)) { 12576 q = WR(q); 12577 /* 12578 * Clear the indication that this may have 12579 * hardware checksum as we are not using it. 12580 */ 12581 DB_CKSUMFLAGS(mp) = 0; 12582 icmp_unreachable(q, mp, 12583 ICMP_SOURCE_ROUTE_FAILED); 12584 ire_refrele(ire); 12585 return; 12586 } 12587 goto drop_pkt; 12588 } 12589 12590 /* Packet is being forwarded. Turning off hwcksum flag. */ 12591 DB_CKSUMFLAGS(mp) = 0; 12592 if (ip_g_send_redirects) { 12593 /* 12594 * Check whether the incoming interface and outgoing 12595 * interface is part of the same group. If so, 12596 * send redirects. 12597 * 12598 * Check the source address to see if it originated 12599 * on the same logical subnet it is going back out on. 12600 * If so, we should be able to send it a redirect. 12601 * Avoid sending a redirect if the destination 12602 * is directly connected (gw_addr == 0), 12603 * or if the packet was source routed out this 12604 * interface. 12605 */ 12606 ipaddr_t src; 12607 mblk_t *mp1; 12608 ire_t *src_ire = NULL; 12609 12610 /* 12611 * Check whether ire_rfq and q are from the same ill 12612 * or if they are not same, they at least belong 12613 * to the same group. If so, send redirects. 12614 */ 12615 if ((ire->ire_rfq == q || 12616 (ill_group != NULL && ill_group == ire_group)) && 12617 (ire->ire_gateway_addr != 0) && 12618 !ip_source_routed(ipha)) { 12619 12620 src = ipha->ipha_src; 12621 src_ire = ire_ftable_lookup(src, 0, 0, 12622 IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES, 12623 0, MATCH_IRE_IPIF | MATCH_IRE_TYPE); 12624 12625 if (src_ire != NULL) { 12626 /* 12627 * The source is directly connected. 12628 * Just copy the ip header (which is 12629 * in the first mblk) 12630 */ 12631 mp1 = copyb(mp); 12632 if (mp1 != NULL) { 12633 icmp_send_redirect(WR(q), mp1, 12634 ire->ire_gateway_addr); 12635 } 12636 ire_refrele(src_ire); 12637 } 12638 } 12639 } 12640 12641 dev_q = ire->ire_stq->q_next; 12642 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 12643 BUMP_MIB(&ip_mib, ipInDiscards); 12644 freemsg(mp); 12645 ire_refrele(ire); 12646 return; 12647 } 12648 12649 ip_rput_forward(ire, ipha, mp, ill); 12650 IRE_REFRELE(ire); 12651 return; 12652 12653 drop_pkt: 12654 ire_refrele(ire); 12655 ip2dbg(("ip_rput_forward: drop pkt\n")); 12656 freemsg(mp); 12657 } 12658 12659 static boolean_t 12660 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha, 12661 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 12662 { 12663 queue_t *q; 12664 ire_t *ire; 12665 uint16_t hcksumflags; 12666 12667 q = *qp; 12668 ire = *irep; 12669 12670 /* 12671 * Clear the indication that this may have hardware 12672 * checksum as we are not using it for forwarding. 12673 */ 12674 hcksumflags = DB_CKSUMFLAGS(mp); 12675 DB_CKSUMFLAGS(mp) = 0; 12676 12677 /* 12678 * Directed broadcast forwarding: if the packet came in over a 12679 * different interface then it is routed out over we can forward it. 12680 */ 12681 if (ipha->ipha_protocol == IPPROTO_TCP) { 12682 ire_refrele(ire); 12683 freemsg(mp); 12684 BUMP_MIB(&ip_mib, ipInDiscards); 12685 return (B_TRUE); 12686 } 12687 /* 12688 * For multicast we have set dst to be INADDR_BROADCAST 12689 * for delivering to all STREAMS. IRE_MARK_NORECV is really 12690 * only for broadcast packets. 12691 */ 12692 if (!CLASSD(ipha->ipha_dst)) { 12693 ire_t *new_ire; 12694 ipif_t *ipif; 12695 /* 12696 * For ill groups, as the switch duplicates broadcasts 12697 * across all the ports, we need to filter out and 12698 * send up only one copy. There is one copy for every 12699 * broadcast address on each ill. Thus, we look for a 12700 * specific IRE on this ill and look at IRE_MARK_NORECV 12701 * later to see whether this ill is eligible to receive 12702 * them or not. ill_nominate_bcast_rcv() nominates only 12703 * one set of IREs for receiving. 12704 */ 12705 12706 ipif = ipif_get_next_ipif(NULL, ill); 12707 if (ipif == NULL) { 12708 ire_refrele(ire); 12709 freemsg(mp); 12710 BUMP_MIB(&ip_mib, ipInDiscards); 12711 return (B_TRUE); 12712 } 12713 new_ire = ire_ctable_lookup(dst, 0, 0, 12714 ipif, ALL_ZONES, MATCH_IRE_ILL); 12715 ipif_refrele(ipif); 12716 12717 if (new_ire != NULL) { 12718 if (new_ire->ire_marks & IRE_MARK_NORECV) { 12719 ire_refrele(ire); 12720 ire_refrele(new_ire); 12721 freemsg(mp); 12722 BUMP_MIB(&ip_mib, ipInDiscards); 12723 return (B_TRUE); 12724 } 12725 /* 12726 * In the special case of multirouted broadcast 12727 * packets, we unconditionally need to "gateway" 12728 * them to the appropriate interface here. 12729 * In the normal case, this cannot happen, because 12730 * there is no broadcast IRE tagged with the 12731 * RTF_MULTIRT flag. 12732 */ 12733 if (new_ire->ire_flags & RTF_MULTIRT) { 12734 ire_refrele(new_ire); 12735 if (ire->ire_rfq != NULL) { 12736 q = ire->ire_rfq; 12737 *qp = q; 12738 } 12739 } else { 12740 ire_refrele(ire); 12741 ire = new_ire; 12742 } 12743 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 12744 if (!ip_g_forward_directed_bcast) { 12745 /* 12746 * Free the message if 12747 * ip_g_forward_directed_bcast is turned 12748 * off for non-local broadcast. 12749 */ 12750 ire_refrele(ire); 12751 freemsg(mp); 12752 BUMP_MIB(&ip_mib, ipInDiscards); 12753 return (B_TRUE); 12754 } 12755 } else { 12756 /* 12757 * This CGTP packet successfully passed the 12758 * CGTP filter, but the related CGTP 12759 * broadcast IRE has not been found, 12760 * meaning that the redundant ipif is 12761 * probably down. However, if we discarded 12762 * this packet, its duplicate would be 12763 * filtered out by the CGTP filter so none 12764 * of them would get through. So we keep 12765 * going with this one. 12766 */ 12767 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 12768 if (ire->ire_rfq != NULL) { 12769 q = ire->ire_rfq; 12770 *qp = q; 12771 } 12772 } 12773 } 12774 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 12775 /* 12776 * Verify that there are not more then one 12777 * IRE_BROADCAST with this broadcast address which 12778 * has ire_stq set. 12779 * TODO: simplify, loop over all IRE's 12780 */ 12781 ire_t *ire1; 12782 int num_stq = 0; 12783 mblk_t *mp1; 12784 12785 /* Find the first one with ire_stq set */ 12786 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 12787 for (ire1 = ire; ire1 && 12788 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 12789 ire1 = ire1->ire_next) 12790 ; 12791 if (ire1) { 12792 ire_refrele(ire); 12793 ire = ire1; 12794 IRE_REFHOLD(ire); 12795 } 12796 12797 /* Check if there are additional ones with stq set */ 12798 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 12799 if (ire->ire_addr != ire1->ire_addr) 12800 break; 12801 if (ire1->ire_stq) { 12802 num_stq++; 12803 break; 12804 } 12805 } 12806 rw_exit(&ire->ire_bucket->irb_lock); 12807 if (num_stq == 1 && ire->ire_stq != NULL) { 12808 ip1dbg(("ip_rput_process_broadcast: directed " 12809 "broadcast to 0x%x\n", 12810 ntohl(ire->ire_addr))); 12811 mp1 = copymsg(mp); 12812 if (mp1) { 12813 switch (ipha->ipha_protocol) { 12814 case IPPROTO_UDP: 12815 ip_udp_input(q, mp1, ipha, ire, ill); 12816 break; 12817 default: 12818 ip_proto_input(q, mp1, ipha, ire, ill); 12819 break; 12820 } 12821 } 12822 /* 12823 * Adjust ttl to 2 (1+1 - the forward engine 12824 * will decrement it by one. 12825 */ 12826 if (ip_csum_hdr(ipha)) { 12827 BUMP_MIB(&ip_mib, ipInCksumErrs); 12828 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 12829 freemsg(mp); 12830 ire_refrele(ire); 12831 return (B_TRUE); 12832 } 12833 ipha->ipha_ttl = ip_broadcast_ttl + 1; 12834 ipha->ipha_hdr_checksum = 0; 12835 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 12836 ip_rput_process_forward(q, mp, ire, ipha, 12837 ill, ll_multicast); 12838 return (B_TRUE); 12839 } 12840 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 12841 ntohl(ire->ire_addr))); 12842 } 12843 12844 *irep = ire; 12845 12846 /* Restore any hardware checksum flags */ 12847 DB_CKSUMFLAGS(mp) = hcksumflags; 12848 return (B_FALSE); 12849 } 12850 12851 /* ARGSUSED */ 12852 static boolean_t 12853 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 12854 int *ll_multicast, ipaddr_t *dstp) 12855 { 12856 /* 12857 * Forward packets only if we have joined the allmulti 12858 * group on this interface. 12859 */ 12860 if (ip_g_mrouter && ill->ill_join_allmulti) { 12861 int retval; 12862 12863 /* 12864 * Clear the indication that this may have hardware 12865 * checksum as we are not using it. 12866 */ 12867 DB_CKSUMFLAGS(mp) = 0; 12868 retval = ip_mforward(ill, ipha, mp); 12869 /* ip_mforward updates mib variables if needed */ 12870 /* clear b_prev - used by ip_mroute_decap */ 12871 mp->b_prev = NULL; 12872 12873 switch (retval) { 12874 case 0: 12875 /* 12876 * pkt is okay and arrived on phyint. 12877 * 12878 * If we are running as a multicast router 12879 * we need to see all IGMP and/or PIM packets. 12880 */ 12881 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 12882 (ipha->ipha_protocol == IPPROTO_PIM)) { 12883 goto done; 12884 } 12885 break; 12886 case -1: 12887 /* pkt is mal-formed, toss it */ 12888 goto drop_pkt; 12889 case 1: 12890 /* pkt is okay and arrived on a tunnel */ 12891 /* 12892 * If we are running a multicast router 12893 * we need to see all igmp packets. 12894 */ 12895 if (ipha->ipha_protocol == IPPROTO_IGMP) { 12896 *dstp = INADDR_BROADCAST; 12897 *ll_multicast = 1; 12898 return (B_FALSE); 12899 } 12900 12901 goto drop_pkt; 12902 } 12903 } 12904 12905 ILM_WALKER_HOLD(ill); 12906 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 12907 /* 12908 * This might just be caused by the fact that 12909 * multiple IP Multicast addresses map to the same 12910 * link layer multicast - no need to increment counter! 12911 */ 12912 ILM_WALKER_RELE(ill); 12913 freemsg(mp); 12914 return (B_TRUE); 12915 } 12916 ILM_WALKER_RELE(ill); 12917 done: 12918 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 12919 /* 12920 * This assumes the we deliver to all streams for multicast 12921 * and broadcast packets. 12922 */ 12923 *dstp = INADDR_BROADCAST; 12924 *ll_multicast = 1; 12925 return (B_FALSE); 12926 drop_pkt: 12927 ip2dbg(("ip_rput: drop pkt\n")); 12928 freemsg(mp); 12929 return (B_TRUE); 12930 } 12931 12932 static boolean_t 12933 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 12934 int *ll_multicast, mblk_t **mpp) 12935 { 12936 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 12937 boolean_t must_copy = B_FALSE; 12938 struct iocblk *iocp; 12939 ipha_t *ipha; 12940 12941 #define rptr ((uchar_t *)ipha) 12942 12943 first_mp = *first_mpp; 12944 mp = *mpp; 12945 12946 ASSERT(first_mp == mp); 12947 12948 /* 12949 * if db_ref > 1 then copymsg and free original. Packet may be 12950 * changed and do not want other entity who has a reference to this 12951 * message to trip over the changes. This is a blind change because 12952 * trying to catch all places that might change packet is too 12953 * difficult (since it may be a module above this one) 12954 * 12955 * This corresponds to the non-fast path case. We walk down the full 12956 * chain in this case, and check the db_ref count of all the dblks, 12957 * and do a copymsg if required. It is possible that the db_ref counts 12958 * of the data blocks in the mblk chain can be different. 12959 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 12960 * count of 1, followed by a M_DATA block with a ref count of 2, if 12961 * 'snoop' is running. 12962 */ 12963 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 12964 if (mp1->b_datap->db_ref > 1) { 12965 must_copy = B_TRUE; 12966 break; 12967 } 12968 } 12969 12970 if (must_copy) { 12971 mp1 = copymsg(mp); 12972 if (mp1 == NULL) { 12973 for (mp1 = mp; mp1 != NULL; 12974 mp1 = mp1->b_cont) { 12975 mp1->b_next = NULL; 12976 mp1->b_prev = NULL; 12977 } 12978 freemsg(mp); 12979 BUMP_MIB(&ip_mib, ipInDiscards); 12980 return (B_TRUE); 12981 } 12982 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 12983 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 12984 /* Copy b_next - used in M_BREAK messages */ 12985 to_mp->b_next = from_mp->b_next; 12986 from_mp->b_next = NULL; 12987 /* Copy b_prev - used by ip_mroute_decap */ 12988 to_mp->b_prev = from_mp->b_prev; 12989 from_mp->b_prev = NULL; 12990 } 12991 *first_mpp = first_mp = mp1; 12992 freemsg(mp); 12993 mp = mp1; 12994 *mpp = mp1; 12995 } 12996 12997 ipha = (ipha_t *)mp->b_rptr; 12998 12999 /* 13000 * previous code has a case for M_DATA. 13001 * We want to check how that happens. 13002 */ 13003 ASSERT(first_mp->b_datap->db_type != M_DATA); 13004 switch (first_mp->b_datap->db_type) { 13005 case M_PROTO: 13006 case M_PCPROTO: 13007 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 13008 DL_UNITDATA_IND) { 13009 /* Go handle anything other than data elsewhere. */ 13010 ip_rput_dlpi(q, mp); 13011 return (B_TRUE); 13012 } 13013 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 13014 /* Ditch the DLPI header. */ 13015 mp1 = mp->b_cont; 13016 ASSERT(first_mp == mp); 13017 *first_mpp = mp1; 13018 freeb(mp); 13019 *mpp = mp1; 13020 return (B_FALSE); 13021 case M_BREAK: 13022 /* 13023 * A packet arrives as M_BREAK following a cycle through 13024 * ip_rput, ip_newroute, ... and finally ire_add_then_send. 13025 * This is an IP datagram sans lower level header. 13026 * M_BREAK are also used to pass back in multicast packets 13027 * that are encapsulated with a source route. 13028 */ 13029 /* Ditch the M_BREAK mblk */ 13030 mp1 = mp->b_cont; 13031 ASSERT(first_mp == mp); 13032 *first_mpp = mp1; 13033 freeb(mp); 13034 mp = mp1; 13035 mp->b_next = NULL; 13036 *mpp = mp; 13037 *ll_multicast = 0; 13038 return (B_FALSE); 13039 case M_IOCACK: 13040 ip1dbg(("got iocack ")); 13041 iocp = (struct iocblk *)mp->b_rptr; 13042 switch (iocp->ioc_cmd) { 13043 case DL_IOC_HDR_INFO: 13044 ill = (ill_t *)q->q_ptr; 13045 ill_fastpath_ack(ill, mp); 13046 return (B_TRUE); 13047 case SIOCSTUNPARAM: 13048 case OSIOCSTUNPARAM: 13049 /* Go through qwriter_ip */ 13050 break; 13051 case SIOCGTUNPARAM: 13052 case OSIOCGTUNPARAM: 13053 ip_rput_other(NULL, q, mp, NULL); 13054 return (B_TRUE); 13055 default: 13056 putnext(q, mp); 13057 return (B_TRUE); 13058 } 13059 /* FALLTHRU */ 13060 case M_ERROR: 13061 case M_HANGUP: 13062 /* 13063 * Since this is on the ill stream we unconditionally 13064 * bump up the refcount 13065 */ 13066 ill_refhold(ill); 13067 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 13068 B_FALSE); 13069 return (B_TRUE); 13070 case M_CTL: 13071 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 13072 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 13073 IPHADA_M_CTL)) { 13074 /* 13075 * It's an IPsec accelerated packet. 13076 * Make sure that the ill from which we received the 13077 * packet has enabled IPsec hardware acceleration. 13078 */ 13079 if (!(ill->ill_capabilities & 13080 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 13081 /* IPsec kstats: bean counter */ 13082 freemsg(mp); 13083 return (B_TRUE); 13084 } 13085 13086 /* 13087 * Make mp point to the mblk following the M_CTL, 13088 * then process according to type of mp. 13089 * After this processing, first_mp will point to 13090 * the data-attributes and mp to the pkt following 13091 * the M_CTL. 13092 */ 13093 mp = first_mp->b_cont; 13094 if (mp == NULL) { 13095 freemsg(first_mp); 13096 return (B_TRUE); 13097 } 13098 /* 13099 * A Hardware Accelerated packet can only be M_DATA 13100 * ESP or AH packet. 13101 */ 13102 if (mp->b_datap->db_type != M_DATA) { 13103 /* non-M_DATA IPsec accelerated packet */ 13104 IPSECHW_DEBUG(IPSECHW_PKT, 13105 ("non-M_DATA IPsec accelerated pkt\n")); 13106 freemsg(first_mp); 13107 return (B_TRUE); 13108 } 13109 ipha = (ipha_t *)mp->b_rptr; 13110 if (ipha->ipha_protocol != IPPROTO_AH && 13111 ipha->ipha_protocol != IPPROTO_ESP) { 13112 IPSECHW_DEBUG(IPSECHW_PKT, 13113 ("non-M_DATA IPsec accelerated pkt\n")); 13114 freemsg(first_mp); 13115 return (B_TRUE); 13116 } 13117 *mpp = mp; 13118 return (B_FALSE); 13119 } 13120 putnext(q, mp); 13121 return (B_TRUE); 13122 case M_FLUSH: 13123 if (*mp->b_rptr & FLUSHW) { 13124 *mp->b_rptr &= ~FLUSHR; 13125 qreply(q, mp); 13126 return (B_TRUE); 13127 } 13128 freemsg(mp); 13129 return (B_TRUE); 13130 case M_IOCNAK: 13131 ip1dbg(("got iocnak ")); 13132 iocp = (struct iocblk *)mp->b_rptr; 13133 switch (iocp->ioc_cmd) { 13134 case DL_IOC_HDR_INFO: 13135 case SIOCSTUNPARAM: 13136 case OSIOCSTUNPARAM: 13137 /* 13138 * Since this is on the ill stream we unconditionally 13139 * bump up the refcount 13140 */ 13141 ill_refhold(ill); 13142 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 13143 CUR_OP, B_FALSE); 13144 return (B_TRUE); 13145 case SIOCGTUNPARAM: 13146 case OSIOCGTUNPARAM: 13147 ip_rput_other(NULL, q, mp, NULL); 13148 return (B_TRUE); 13149 default: 13150 break; 13151 } 13152 /* FALLTHRU */ 13153 default: 13154 putnext(q, mp); 13155 return (B_TRUE); 13156 } 13157 } 13158 13159 /* Read side put procedure. Packets coming from the wire arrive here. */ 13160 void 13161 ip_rput(queue_t *q, mblk_t *mp) 13162 { 13163 ill_t *ill; 13164 13165 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 13166 13167 ill = (ill_t *)q->q_ptr; 13168 13169 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 13170 union DL_primitives *dl; 13171 13172 /* 13173 * Things are opening or closing. Only accept DLPI control 13174 * messages. In the open case, the ill->ill_ipif has not yet 13175 * been created. In the close case, things hanging off the 13176 * ill could have been freed already. In either case it 13177 * may not be safe to proceed further. 13178 */ 13179 13180 dl = (union DL_primitives *)mp->b_rptr; 13181 if ((mp->b_datap->db_type != M_PCPROTO) || 13182 (dl->dl_primitive == DL_UNITDATA_IND)) { 13183 /* 13184 * Also SIOC[GS]TUN* ioctls can come here. 13185 */ 13186 inet_freemsg(mp); 13187 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13188 "ip_input_end: q %p (%S)", q, "uninit"); 13189 return; 13190 } 13191 } 13192 13193 /* 13194 * if db_ref > 1 then copymsg and free original. Packet may be 13195 * changed and we do not want the other entity who has a reference to 13196 * this message to trip over the changes. This is a blind change because 13197 * trying to catch all places that might change the packet is too 13198 * difficult. 13199 * 13200 * This corresponds to the fast path case, where we have a chain of 13201 * M_DATA mblks. We check the db_ref count of only the 1st data block 13202 * in the mblk chain. There doesn't seem to be a reason why a device 13203 * driver would send up data with varying db_ref counts in the mblk 13204 * chain. In any case the Fast path is a private interface, and our 13205 * drivers don't do such a thing. Given the above assumption, there is 13206 * no need to walk down the entire mblk chain (which could have a 13207 * potential performance problem) 13208 */ 13209 if (mp->b_datap->db_ref > 1) { 13210 mblk_t *mp1; 13211 boolean_t adjusted = B_FALSE; 13212 IP_STAT(ip_db_ref); 13213 13214 /* 13215 * The IP_RECVSLLA option depends on having the link layer 13216 * header. First check that: 13217 * a> the underlying device is of type ether, since this 13218 * option is currently supported only over ethernet. 13219 * b> there is enough room to copy over the link layer header. 13220 * 13221 * Once the checks are done, adjust rptr so that the link layer 13222 * header will be copied via copymsg. Note that, IFT_ETHER may 13223 * be returned by some non-ethernet drivers but in this case the 13224 * second check will fail. 13225 */ 13226 if (ill->ill_type == IFT_ETHER && 13227 (mp->b_rptr - mp->b_datap->db_base) >= 13228 sizeof (struct ether_header)) { 13229 mp->b_rptr -= sizeof (struct ether_header); 13230 adjusted = B_TRUE; 13231 } 13232 mp1 = copymsg(mp); 13233 if (mp1 == NULL) { 13234 /* Clear b_next - used in M_BREAK messages */ 13235 mp->b_next = NULL; 13236 /* clear b_prev - used by ip_mroute_decap */ 13237 mp->b_prev = NULL; 13238 freemsg(mp); 13239 BUMP_MIB(&ip_mib, ipInDiscards); 13240 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13241 "ip_rput_end: q %p (%S)", q, "copymsg"); 13242 return; 13243 } 13244 if (adjusted) { 13245 /* 13246 * Copy is done. Restore the pointer in the _new_ mblk 13247 */ 13248 mp1->b_rptr += sizeof (struct ether_header); 13249 } 13250 /* Copy b_next - used in M_BREAK messages */ 13251 mp1->b_next = mp->b_next; 13252 mp->b_next = NULL; 13253 /* Copy b_prev - used by ip_mroute_decap */ 13254 mp1->b_prev = mp->b_prev; 13255 mp->b_prev = NULL; 13256 freemsg(mp); 13257 mp = mp1; 13258 } 13259 13260 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13261 "ip_rput_end: q %p (%S)", q, "end"); 13262 13263 ip_input(ill, NULL, mp, 0); 13264 } 13265 13266 /* 13267 * Direct read side procedure capable of dealing with chains. GLDv3 based 13268 * drivers call this function directly with mblk chains while STREAMS 13269 * read side procedure ip_rput() calls this for single packet with ip_ring 13270 * set to NULL to process one packet at a time. 13271 * 13272 * The ill will always be valid if this function is called directly from 13273 * the driver. 13274 */ 13275 /*ARGSUSED*/ 13276 void 13277 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen) 13278 { 13279 ipaddr_t dst; 13280 ire_t *ire; 13281 ipha_t *ipha; 13282 uint_t pkt_len; 13283 ssize_t len; 13284 uint_t opt_len; 13285 int ll_multicast; 13286 int cgtp_flt_pkt; 13287 queue_t *q = ill->ill_rq; 13288 squeue_t *curr_sqp = NULL; 13289 mblk_t *head = NULL; 13290 mblk_t *tail = NULL; 13291 mblk_t *first_mp; 13292 mblk_t *mp; 13293 int cnt = 0; 13294 13295 ASSERT(mp_chain != NULL); 13296 ASSERT(ill != NULL); 13297 13298 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 13299 13300 #define rptr ((uchar_t *)ipha) 13301 13302 while (mp_chain != NULL) { 13303 first_mp = mp = mp_chain; 13304 mp_chain = mp_chain->b_next; 13305 mp->b_next = NULL; 13306 ll_multicast = 0; 13307 ire = NULL; 13308 13309 /* 13310 * ip_input fast path 13311 */ 13312 13313 /* mblk type is not M_DATA */ 13314 if (mp->b_datap->db_type != M_DATA) { 13315 if (ip_rput_process_notdata(q, &first_mp, ill, 13316 &ll_multicast, &mp)) 13317 continue; 13318 } 13319 13320 ASSERT(mp->b_datap->db_type == M_DATA); 13321 ASSERT(mp->b_datap->db_ref == 1); 13322 13323 /* 13324 * Invoke the CGTP (multirouting) filtering module to process 13325 * the incoming packet. Packets identified as duplicates 13326 * must be discarded. Filtering is active only if the 13327 * the ip_cgtp_filter ndd variable is non-zero. 13328 */ 13329 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 13330 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 13331 cgtp_flt_pkt = 13332 ip_cgtp_filter_ops->cfo_filter_fp(q, mp); 13333 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 13334 freemsg(first_mp); 13335 continue; 13336 } 13337 } 13338 13339 ipha = (ipha_t *)mp->b_rptr; 13340 len = mp->b_wptr - rptr; 13341 13342 BUMP_MIB(&ip_mib, ipInReceives); 13343 13344 /* 13345 * IP header ptr not aligned? 13346 * OR IP header not complete in first mblk 13347 */ 13348 if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13349 if (!ip_check_and_align_header(q, mp)) 13350 continue; 13351 ipha = (ipha_t *)mp->b_rptr; 13352 len = mp->b_wptr - rptr; 13353 } 13354 13355 /* multiple mblk or too short */ 13356 pkt_len = ntohs(ipha->ipha_length); 13357 len -= pkt_len; 13358 if (len != 0) { 13359 /* 13360 * Make sure we have data length consistent 13361 * with the IP header. 13362 */ 13363 if (mp->b_cont == NULL) { 13364 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13365 BUMP_MIB(&ip_mib, ipInHdrErrors); 13366 ip2dbg(("ip_input: drop pkt\n")); 13367 freemsg(mp); 13368 continue; 13369 } 13370 mp->b_wptr = rptr + pkt_len; 13371 } else if (len += msgdsize(mp->b_cont)) { 13372 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 13373 BUMP_MIB(&ip_mib, ipInHdrErrors); 13374 ip2dbg(("ip_input: drop pkt\n")); 13375 freemsg(mp); 13376 continue; 13377 } 13378 (void) adjmsg(mp, -len); 13379 IP_STAT(ip_multimblk3); 13380 } 13381 } 13382 13383 if (ip_loopback_src_or_dst(ipha, ill)) { 13384 ip2dbg(("ip_input: drop pkt\n")); 13385 freemsg(mp); 13386 continue; 13387 } 13388 13389 opt_len = ipha->ipha_version_and_hdr_length - 13390 IP_SIMPLE_HDR_VERSION; 13391 /* IP version bad or there are IP options */ 13392 if (opt_len) { 13393 if (len != 0) 13394 IP_STAT(ip_multimblk4); 13395 else 13396 IP_STAT(ip_ipoptions); 13397 if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst)) 13398 continue; 13399 } else { 13400 dst = ipha->ipha_dst; 13401 } 13402 13403 /* 13404 * If rsvpd is running, let RSVP daemon handle its processing 13405 * and forwarding of RSVP multicast/unicast packets. 13406 * If rsvpd is not running but mrouted is running, RSVP 13407 * multicast packets are forwarded as multicast traffic 13408 * and RSVP unicast packets are forwarded by unicast router. 13409 * If neither rsvpd nor mrouted is running, RSVP multicast 13410 * packets are not forwarded, but the unicast packets are 13411 * forwarded like unicast traffic. 13412 */ 13413 if (ipha->ipha_protocol == IPPROTO_RSVP && 13414 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 13415 /* RSVP packet and rsvpd running. Treat as ours */ 13416 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 13417 /* 13418 * This assumes that we deliver to all streams for 13419 * multicast and broadcast packets. 13420 * We have to force ll_multicast to 1 to handle the 13421 * M_DATA messages passed in from ip_mroute_decap. 13422 */ 13423 dst = INADDR_BROADCAST; 13424 ll_multicast = 1; 13425 } else if (CLASSD(dst)) { 13426 /* packet is multicast */ 13427 mp->b_next = NULL; 13428 if (ip_rput_process_multicast(q, mp, ill, ipha, 13429 &ll_multicast, &dst)) 13430 continue; 13431 } 13432 13433 13434 /* 13435 * Check if the packet is coming from the Mobile IP 13436 * forward tunnel interface 13437 */ 13438 if (ill->ill_srcif_refcnt > 0) { 13439 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 13440 NULL, ill, MATCH_IRE_TYPE); 13441 if (ire != NULL && ire->ire_dlureq_mp == NULL && 13442 ire->ire_ipif->ipif_net_type == 13443 IRE_IF_RESOLVER) { 13444 /* We need to resolve the link layer info */ 13445 ire_refrele(ire); 13446 ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 13447 ll_multicast, dst); 13448 continue; 13449 } 13450 } 13451 13452 if (ire == NULL) 13453 ire = ire_cache_lookup(dst, ALL_ZONES); 13454 13455 /* 13456 * If mipagent is running and reverse tunnel is created as per 13457 * mobile node request, then any packet coming through the 13458 * incoming interface from the mobile-node, should be reverse 13459 * tunneled to it's home agent except those that are destined 13460 * to foreign agent only. 13461 * This needs source address based ire lookup. The routing 13462 * entries for source address based lookup are only created by 13463 * mipagent program only when a reverse tunnel is created. 13464 * Reference : RFC2002, RFC2344 13465 */ 13466 if (ill->ill_mrtun_refcnt > 0) { 13467 ipaddr_t srcaddr; 13468 ire_t *tmp_ire; 13469 13470 tmp_ire = ire; /* Save, we might need it later */ 13471 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 13472 ire->ire_type != IRE_BROADCAST)) { 13473 srcaddr = ipha->ipha_src; 13474 ire = ire_mrtun_lookup(srcaddr, ill); 13475 if (ire != NULL) { 13476 /* 13477 * Should not be getting iphada packet 13478 * here. we should only get those for 13479 * IRE_LOCAL traffic, excluded above. 13480 * Fail-safe (drop packet) in the event 13481 * hardware is misbehaving. 13482 */ 13483 if (first_mp != mp) { 13484 /* IPsec KSTATS: beancount me */ 13485 freemsg(first_mp); 13486 } else { 13487 /* 13488 * This packet must be forwarded 13489 * to Reverse Tunnel 13490 */ 13491 ip_mrtun_forward(ire, ill, mp); 13492 } 13493 ire_refrele(ire); 13494 if (tmp_ire != NULL) 13495 ire_refrele(tmp_ire); 13496 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13497 "ip_input_end: q %p (%S)", 13498 q, "uninit"); 13499 continue; 13500 } 13501 } 13502 /* 13503 * If this packet is from a non-mobilenode or a 13504 * mobile-node which does not request reverse 13505 * tunnel service 13506 */ 13507 ire = tmp_ire; 13508 } 13509 13510 13511 /* 13512 * If we reach here that means the incoming packet satisfies 13513 * one of the following conditions: 13514 * - packet is from a mobile node which does not request 13515 * reverse tunnel 13516 * - packet is from a non-mobile node, which is the most 13517 * common case 13518 * - packet is from a reverse tunnel enabled mobile node 13519 * and destined to foreign agent only 13520 */ 13521 13522 if (ire == NULL) { 13523 /* 13524 * No IRE for this destination, so it can't be for us. 13525 * Unless we are forwarding, drop the packet. 13526 * We have to let source routed packets through 13527 * since we don't yet know if they are 'ping -l' 13528 * packets i.e. if they will go out over the 13529 * same interface as they came in on. 13530 */ 13531 ip_rput_noire(q, NULL, mp, ll_multicast, dst); 13532 continue; 13533 } 13534 13535 /* 13536 * Broadcast IRE may indicate either broadcast or 13537 * multicast packet 13538 */ 13539 if (ire->ire_type == IRE_BROADCAST) { 13540 /* 13541 * Skip broadcast checks if packet is UDP multicast; 13542 * we'd rather not enter ip_rput_process_broadcast() 13543 * unless the packet is broadcast for real, since 13544 * that routine is a no-op for multicast. 13545 */ 13546 if ((ipha->ipha_protocol != IPPROTO_UDP || 13547 !CLASSD(ipha->ipha_dst)) && 13548 ip_rput_process_broadcast(&q, mp, &ire, ipha, ill, 13549 dst, cgtp_flt_pkt, ll_multicast)) { 13550 continue; 13551 } 13552 } else if (ire->ire_stq != NULL) { 13553 /* fowarding? */ 13554 ip_rput_process_forward(q, mp, ire, ipha, ill, 13555 ll_multicast); 13556 continue; 13557 } 13558 13559 /* packet not for us */ 13560 if (ire->ire_rfq != q) { 13561 if (ip_rput_notforus(&q, mp, ire, ill)) { 13562 continue; 13563 } 13564 } 13565 13566 switch (ipha->ipha_protocol) { 13567 case IPPROTO_TCP: 13568 ASSERT(first_mp == mp); 13569 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 13570 mp, 0, q, ip_ring)) != NULL) { 13571 if (curr_sqp == NULL) { 13572 curr_sqp = GET_SQUEUE(mp); 13573 ASSERT(cnt == 0); 13574 cnt++; 13575 head = tail = mp; 13576 } else if (curr_sqp == GET_SQUEUE(mp)) { 13577 ASSERT(tail != NULL); 13578 cnt++; 13579 tail->b_next = mp; 13580 tail = mp; 13581 } else { 13582 /* 13583 * A different squeue. Send the 13584 * chain for the previous squeue on 13585 * its way. This shouldn't happen 13586 * often unless interrupt binding 13587 * changes. 13588 */ 13589 IP_STAT(ip_input_multi_squeue); 13590 squeue_enter_chain(curr_sqp, head, 13591 tail, cnt, SQTAG_IP_INPUT); 13592 curr_sqp = GET_SQUEUE(mp); 13593 head = mp; 13594 tail = mp; 13595 cnt = 1; 13596 } 13597 } 13598 IRE_REFRELE(ire); 13599 continue; 13600 case IPPROTO_UDP: 13601 ASSERT(first_mp == mp); 13602 ip_udp_input(q, mp, ipha, ire, ill); 13603 IRE_REFRELE(ire); 13604 continue; 13605 case IPPROTO_SCTP: 13606 ASSERT(first_mp == mp); 13607 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 13608 q, dst); 13609 continue; 13610 default: 13611 ip_proto_input(q, first_mp, ipha, ire, ill); 13612 IRE_REFRELE(ire); 13613 continue; 13614 } 13615 } 13616 13617 if (head != NULL) 13618 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 13619 13620 /* 13621 * This code is there just to make netperf/ttcp look good. 13622 * 13623 * Its possible that after being in polling mode (and having cleared 13624 * the backlog), squeues have turned the interrupt frequency higher 13625 * to improve latency at the expense of more CPU utilization (less 13626 * packets per interrupts or more number of interrupts). Workloads 13627 * like ttcp/netperf do manage to tickle polling once in a while 13628 * but for the remaining time, stay in higher interrupt mode since 13629 * their packet arrival rate is pretty uniform and this shows up 13630 * as higher CPU utilization. Since people care about CPU utilization 13631 * while running netperf/ttcp, turn the interrupt frequency back to 13632 * normal/default if polling has not been used in ip_poll_normal_ticks. 13633 */ 13634 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 13635 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 13636 ip_ring->rr_poll_state &= ~ILL_POLLING; 13637 ip_ring->rr_blank(ip_ring->rr_handle, 13638 ip_ring->rr_normal_blank_time, 13639 ip_ring->rr_normal_pkt_cnt); 13640 } 13641 } 13642 13643 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 13644 "ip_input_end: q %p (%S)", q, "end"); 13645 #undef rptr 13646 } 13647 13648 static void 13649 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 13650 t_uscalar_t err) 13651 { 13652 if (dl_err == DL_SYSERR) { 13653 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13654 "%s: %s failed: DL_SYSERR (errno %u)\n", 13655 ill->ill_name, dlpi_prim_str(prim), err); 13656 return; 13657 } 13658 13659 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 13660 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 13661 dlpi_err_str(dl_err)); 13662 } 13663 13664 /* 13665 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 13666 * than DL_UNITDATA_IND messages. If we need to process this message 13667 * exclusively, we call qwriter_ip, in which case we also need to call 13668 * ill_refhold before that, since qwriter_ip does an ill_refrele. 13669 */ 13670 void 13671 ip_rput_dlpi(queue_t *q, mblk_t *mp) 13672 { 13673 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13674 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13675 ill_t *ill; 13676 13677 ip1dbg(("ip_rput_dlpi")); 13678 ill = (ill_t *)q->q_ptr; 13679 switch (dloa->dl_primitive) { 13680 case DL_ERROR_ACK: 13681 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 13682 "%s (0x%x), unix %u\n", ill->ill_name, 13683 dlpi_prim_str(dlea->dl_error_primitive), 13684 dlea->dl_error_primitive, 13685 dlpi_err_str(dlea->dl_errno), 13686 dlea->dl_errno, 13687 dlea->dl_unix_errno)); 13688 switch (dlea->dl_error_primitive) { 13689 case DL_NOTIFY_REQ: 13690 case DL_UNBIND_REQ: 13691 case DL_ATTACH_REQ: 13692 case DL_DETACH_REQ: 13693 case DL_INFO_REQ: 13694 case DL_BIND_REQ: 13695 case DL_ENABMULTI_REQ: 13696 case DL_PHYS_ADDR_REQ: 13697 case DL_CAPABILITY_REQ: 13698 case DL_CONTROL_REQ: 13699 /* 13700 * Refhold the ill to match qwriter_ip which does a 13701 * refrele. Since this is on the ill stream we 13702 * unconditionally bump up the refcount without 13703 * checking for ILL_CAN_LOOKUP 13704 */ 13705 ill_refhold(ill); 13706 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13707 CUR_OP, B_FALSE); 13708 return; 13709 case DL_DISABMULTI_REQ: 13710 freemsg(mp); /* Don't want to pass this up */ 13711 return; 13712 default: 13713 break; 13714 } 13715 ip_dlpi_error(ill, dlea->dl_error_primitive, 13716 dlea->dl_errno, dlea->dl_unix_errno); 13717 freemsg(mp); 13718 return; 13719 case DL_INFO_ACK: 13720 case DL_BIND_ACK: 13721 case DL_PHYS_ADDR_ACK: 13722 case DL_NOTIFY_ACK: 13723 case DL_CAPABILITY_ACK: 13724 case DL_CONTROL_ACK: 13725 /* 13726 * Refhold the ill to match qwriter_ip which does a refrele 13727 * Since this is on the ill stream we unconditionally 13728 * bump up the refcount without doing ILL_CAN_LOOKUP. 13729 */ 13730 ill_refhold(ill); 13731 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13732 CUR_OP, B_FALSE); 13733 return; 13734 case DL_NOTIFY_IND: 13735 ill_refhold(ill); 13736 /* 13737 * The DL_NOTIFY_IND is an asynchronous message that has no 13738 * relation to the current ioctl in progress (if any). Hence we 13739 * pass in NEW_OP in this case. 13740 */ 13741 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13742 NEW_OP, B_FALSE); 13743 return; 13744 case DL_OK_ACK: 13745 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 13746 dlpi_prim_str((int)dloa->dl_correct_primitive))); 13747 switch (dloa->dl_correct_primitive) { 13748 case DL_UNBIND_REQ: 13749 mutex_enter(&ill->ill_lock); 13750 ill->ill_state_flags |= ILL_DL_UNBIND_DONE; 13751 cv_signal(&ill->ill_cv); 13752 mutex_exit(&ill->ill_lock); 13753 /* FALLTHRU */ 13754 case DL_ATTACH_REQ: 13755 case DL_DETACH_REQ: 13756 /* 13757 * Refhold the ill to match qwriter_ip which does a 13758 * refrele. Since this is on the ill stream we 13759 * unconditionally bump up the refcount 13760 */ 13761 ill_refhold(ill); 13762 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 13763 CUR_OP, B_FALSE); 13764 return; 13765 case DL_ENABMULTI_REQ: 13766 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13767 ill->ill_dlpi_multicast_state = IDMS_OK; 13768 break; 13769 13770 } 13771 break; 13772 default: 13773 break; 13774 } 13775 freemsg(mp); 13776 } 13777 13778 /* 13779 * Handling of DLPI messages that require exclusive access to the ipsq. 13780 * 13781 * Need to do ill_pending_mp_release on ioctl completion, which could 13782 * happen here. (along with mi_copy_done) 13783 */ 13784 /* ARGSUSED */ 13785 static void 13786 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 13787 { 13788 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 13789 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 13790 int err = 0; 13791 ill_t *ill; 13792 ipif_t *ipif = NULL; 13793 mblk_t *mp1 = NULL; 13794 conn_t *connp = NULL; 13795 t_uscalar_t physaddr_req; 13796 mblk_t *mp_hw; 13797 union DL_primitives *dlp; 13798 boolean_t success; 13799 boolean_t ioctl_aborted = B_FALSE; 13800 boolean_t log = B_TRUE; 13801 13802 ip1dbg(("ip_rput_dlpi_writer ..")); 13803 ill = (ill_t *)q->q_ptr; 13804 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 13805 13806 ASSERT(IAM_WRITER_ILL(ill)); 13807 13808 /* 13809 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 13810 * both are null or non-null. However we can assert that only 13811 * after grabbing the ipsq_lock. So we don't make any assertion 13812 * here and in other places in the code. 13813 */ 13814 ipif = ipsq->ipsq_pending_ipif; 13815 /* 13816 * The current ioctl could have been aborted by the user and a new 13817 * ioctl to bring up another ill could have started. We could still 13818 * get a response from the driver later. 13819 */ 13820 if (ipif != NULL && ipif->ipif_ill != ill) 13821 ioctl_aborted = B_TRUE; 13822 13823 switch (dloa->dl_primitive) { 13824 case DL_ERROR_ACK: 13825 switch (dlea->dl_error_primitive) { 13826 case DL_UNBIND_REQ: 13827 case DL_ATTACH_REQ: 13828 case DL_DETACH_REQ: 13829 case DL_INFO_REQ: 13830 ill_dlpi_done(ill, dlea->dl_error_primitive); 13831 break; 13832 case DL_NOTIFY_REQ: 13833 ill_dlpi_done(ill, DL_NOTIFY_REQ); 13834 log = B_FALSE; 13835 break; 13836 case DL_PHYS_ADDR_REQ: 13837 /* 13838 * For IPv6 only, there are two additional 13839 * phys_addr_req's sent to the driver to get the 13840 * IPv6 token and lla. This allows IP to acquire 13841 * the hardware address format for a given interface 13842 * without having built in knowledge of the hardware 13843 * address. ill_phys_addr_pend keeps track of the last 13844 * DL_PAR sent so we know which response we are 13845 * dealing with. ill_dlpi_done will update 13846 * ill_phys_addr_pend when it sends the next req. 13847 * We don't complete the IOCTL until all three DL_PARs 13848 * have been attempted, so set *_len to 0 and break. 13849 */ 13850 physaddr_req = ill->ill_phys_addr_pend; 13851 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 13852 if (physaddr_req == DL_IPV6_TOKEN) { 13853 ill->ill_token_length = 0; 13854 log = B_FALSE; 13855 break; 13856 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 13857 ill->ill_nd_lla_len = 0; 13858 log = B_FALSE; 13859 break; 13860 } 13861 /* 13862 * Something went wrong with the DL_PHYS_ADDR_REQ. 13863 * We presumably have an IOCTL hanging out waiting 13864 * for completion. Find it and complete the IOCTL 13865 * with the error noted. 13866 * However, ill_dl_phys was called on an ill queue 13867 * (from SIOCSLIFNAME), thus conn_pending_ill is not 13868 * set. But the ioctl is known to be pending on ill_wq. 13869 */ 13870 if (!ill->ill_ifname_pending) 13871 break; 13872 ill->ill_ifname_pending = 0; 13873 if (!ioctl_aborted) 13874 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13875 if (mp1 != NULL) { 13876 /* 13877 * This operation (SIOCSLIFNAME) must have 13878 * happened on the ill. Assert there is no conn 13879 */ 13880 ASSERT(connp == NULL); 13881 q = ill->ill_wq; 13882 } 13883 break; 13884 case DL_BIND_REQ: 13885 ill_dlpi_done(ill, DL_BIND_REQ); 13886 if (ill->ill_ifname_pending) 13887 break; 13888 /* 13889 * Something went wrong with the bind. We presumably 13890 * have an IOCTL hanging out waiting for completion. 13891 * Find it, take down the interface that was coming 13892 * up, and complete the IOCTL with the error noted. 13893 */ 13894 if (!ioctl_aborted) 13895 mp1 = ipsq_pending_mp_get(ipsq, &connp); 13896 if (mp1 != NULL) { 13897 /* 13898 * This operation (SIOCSLIFFLAGS) must have 13899 * happened from a conn. 13900 */ 13901 ASSERT(connp != NULL); 13902 q = CONNP_TO_WQ(connp); 13903 if (ill->ill_move_in_progress) { 13904 ILL_CLEAR_MOVE(ill); 13905 } 13906 (void) ipif_down(ipif, NULL, NULL); 13907 /* error is set below the switch */ 13908 } 13909 break; 13910 case DL_ENABMULTI_REQ: 13911 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 13912 13913 if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS) 13914 ill->ill_dlpi_multicast_state = IDMS_FAILED; 13915 if (ill->ill_dlpi_multicast_state == IDMS_FAILED) { 13916 ipif_t *ipif; 13917 13918 log = B_FALSE; 13919 printf("ip: joining multicasts failed (%d)" 13920 " on %s - will use link layer " 13921 "broadcasts for multicast\n", 13922 dlea->dl_errno, ill->ill_name); 13923 13924 /* 13925 * Set up the multicast mapping alone. 13926 * writer, so ok to access ill->ill_ipif 13927 * without any lock. 13928 */ 13929 ipif = ill->ill_ipif; 13930 mutex_enter(&ill->ill_phyint->phyint_lock); 13931 ill->ill_phyint->phyint_flags |= 13932 PHYI_MULTI_BCAST; 13933 mutex_exit(&ill->ill_phyint->phyint_lock); 13934 13935 if (!ill->ill_isv6) { 13936 (void) ipif_arp_setup_multicast(ipif, 13937 NULL); 13938 } else { 13939 (void) ipif_ndp_setup_multicast(ipif, 13940 NULL); 13941 } 13942 } 13943 freemsg(mp); /* Don't want to pass this up */ 13944 return; 13945 case DL_CAPABILITY_REQ: 13946 case DL_CONTROL_REQ: 13947 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 13948 "DL_CAPABILITY/CONTROL REQ\n")); 13949 ill_dlpi_done(ill, dlea->dl_error_primitive); 13950 ill->ill_capab_state = IDMS_FAILED; 13951 freemsg(mp); 13952 return; 13953 } 13954 /* 13955 * Note the error for IOCTL completion (mp1 is set when 13956 * ready to complete ioctl). If ill_ifname_pending_err is 13957 * set, an error occured during plumbing (ill_ifname_pending), 13958 * so we want to report that error. 13959 * 13960 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 13961 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 13962 * expected to get errack'd if the driver doesn't support 13963 * these flags (e.g. ethernet). log will be set to B_FALSE 13964 * if these error conditions are encountered. 13965 */ 13966 if (mp1 != NULL) { 13967 if (ill->ill_ifname_pending_err != 0) { 13968 err = ill->ill_ifname_pending_err; 13969 ill->ill_ifname_pending_err = 0; 13970 } else { 13971 err = dlea->dl_unix_errno ? 13972 dlea->dl_unix_errno : ENXIO; 13973 } 13974 /* 13975 * If we're plumbing an interface and an error hasn't already 13976 * been saved, set ill_ifname_pending_err to the error passed 13977 * up. Ignore the error if log is B_FALSE (see comment above). 13978 */ 13979 } else if (log && ill->ill_ifname_pending && 13980 ill->ill_ifname_pending_err == 0) { 13981 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 13982 dlea->dl_unix_errno : ENXIO; 13983 } 13984 13985 if (log) 13986 ip_dlpi_error(ill, dlea->dl_error_primitive, 13987 dlea->dl_errno, dlea->dl_unix_errno); 13988 break; 13989 case DL_CAPABILITY_ACK: { 13990 boolean_t reneg_flag = B_FALSE; 13991 /* Call a routine to handle this one. */ 13992 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 13993 /* 13994 * Check if the ACK is due to renegotiation case since we 13995 * will need to send a new CAPABILITY_REQ later. 13996 */ 13997 if (ill->ill_capab_state == IDMS_RENEG) { 13998 /* This is the ack for a renogiation case */ 13999 reneg_flag = B_TRUE; 14000 ill->ill_capab_state = IDMS_UNKNOWN; 14001 } 14002 ill_capability_ack(ill, mp); 14003 if (reneg_flag) 14004 ill_capability_probe(ill); 14005 break; 14006 } 14007 case DL_CONTROL_ACK: 14008 /* We treat all of these as "fire and forget" */ 14009 ill_dlpi_done(ill, DL_CONTROL_REQ); 14010 break; 14011 case DL_INFO_ACK: 14012 /* Call a routine to handle this one. */ 14013 ill_dlpi_done(ill, DL_INFO_REQ); 14014 ip_ll_subnet_defaults(ill, mp); 14015 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 14016 return; 14017 case DL_BIND_ACK: 14018 /* 14019 * We should have an IOCTL waiting on this unless 14020 * sent by ill_dl_phys, in which case just return 14021 */ 14022 ill_dlpi_done(ill, DL_BIND_REQ); 14023 if (ill->ill_ifname_pending) 14024 break; 14025 14026 if (!ioctl_aborted) 14027 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14028 if (mp1 == NULL) 14029 break; 14030 ASSERT(connp != NULL); 14031 q = CONNP_TO_WQ(connp); 14032 14033 /* 14034 * We are exclusive. So nothing can change even after 14035 * we get the pending mp. If need be we can put it back 14036 * and restart, as in calling ipif_arp_up() below. 14037 */ 14038 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 14039 14040 mutex_enter(&ill->ill_lock); 14041 ill->ill_dl_up = 1; 14042 mutex_exit(&ill->ill_lock); 14043 14044 /* 14045 * Now bring up the resolver, when that is 14046 * done we'll create IREs and we are done. 14047 */ 14048 if (ill->ill_isv6) { 14049 /* 14050 * v6 interfaces. 14051 * Unlike ARP which has to do another bind 14052 * and attach, once we get here we are 14053 * done withh NDP. Except in the case of 14054 * ILLF_XRESOLV, in which case we send an 14055 * AR_INTERFACE_UP to the external resolver. 14056 * If all goes well, the ioctl will complete 14057 * in ip_rput(). If there's an error, we 14058 * complete it here. 14059 */ 14060 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 14061 B_FALSE); 14062 if (err == 0) { 14063 if (ill->ill_flags & ILLF_XRESOLV) { 14064 mutex_enter(&connp->conn_lock); 14065 mutex_enter(&ill->ill_lock); 14066 success = ipsq_pending_mp_add( 14067 connp, ipif, q, mp1, 0); 14068 mutex_exit(&ill->ill_lock); 14069 mutex_exit(&connp->conn_lock); 14070 if (success) { 14071 err = ipif_resolver_up(ipif, 14072 B_FALSE); 14073 if (err == EINPROGRESS) { 14074 freemsg(mp); 14075 return; 14076 } 14077 ASSERT(err != 0); 14078 mp1 = ipsq_pending_mp_get(ipsq, 14079 &connp); 14080 ASSERT(mp1 != NULL); 14081 } else { 14082 /* conn has started closing */ 14083 err = EINTR; 14084 } 14085 } else { /* Non XRESOLV interface */ 14086 err = ipif_up_done_v6(ipif); 14087 } 14088 } 14089 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 14090 /* 14091 * ARP and other v4 external resolvers. 14092 * Leave the pending mblk intact so that 14093 * the ioctl completes in ip_rput(). 14094 */ 14095 mutex_enter(&connp->conn_lock); 14096 mutex_enter(&ill->ill_lock); 14097 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 14098 mutex_exit(&ill->ill_lock); 14099 mutex_exit(&connp->conn_lock); 14100 if (success) { 14101 err = ipif_resolver_up(ipif, B_FALSE); 14102 if (err == EINPROGRESS) { 14103 freemsg(mp); 14104 return; 14105 } 14106 ASSERT(err != 0); 14107 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14108 } else { 14109 /* The conn has started closing */ 14110 err = EINTR; 14111 } 14112 } else { 14113 /* 14114 * This one is complete. Reply to pending ioctl. 14115 */ 14116 err = ipif_up_done(ipif); 14117 } 14118 14119 if ((err == 0) && (ill->ill_up_ipifs)) { 14120 err = ill_up_ipifs(ill, q, mp1); 14121 if (err == EINPROGRESS) { 14122 freemsg(mp); 14123 return; 14124 } 14125 } 14126 14127 if (ill->ill_up_ipifs) { 14128 ill_group_cleanup(ill); 14129 } 14130 14131 break; 14132 case DL_NOTIFY_IND: { 14133 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 14134 ire_t *ire; 14135 boolean_t need_ire_walk_v4 = B_FALSE; 14136 boolean_t need_ire_walk_v6 = B_FALSE; 14137 14138 /* 14139 * Change the address everywhere we need to. 14140 * What we're getting here is a link-level addr or phys addr. 14141 * The new addr is at notify + notify->dl_addr_offset 14142 * The address length is notify->dl_addr_length; 14143 */ 14144 switch (notify->dl_notification) { 14145 case DL_NOTE_PHYS_ADDR: 14146 mp_hw = copyb(mp); 14147 if (mp_hw == NULL) { 14148 err = ENOMEM; 14149 break; 14150 } 14151 dlp = (union DL_primitives *)mp_hw->b_rptr; 14152 /* 14153 * We currently don't support changing 14154 * the token via DL_NOTIFY_IND. 14155 * When we do support it, we have to consider 14156 * what the implications are with respect to 14157 * the token and the link local address. 14158 */ 14159 mutex_enter(&ill->ill_lock); 14160 if (dlp->notify_ind.dl_data == 14161 DL_IPV6_LINK_LAYER_ADDR) { 14162 if (ill->ill_nd_lla_mp != NULL) 14163 freemsg(ill->ill_nd_lla_mp); 14164 ill->ill_nd_lla_mp = mp_hw; 14165 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14166 dlp->notify_ind.dl_addr_offset; 14167 ill->ill_nd_lla_len = 14168 dlp->notify_ind.dl_addr_length - 14169 ABS(ill->ill_sap_length); 14170 mutex_exit(&ill->ill_lock); 14171 break; 14172 } else if (dlp->notify_ind.dl_data == 14173 DL_CURR_PHYS_ADDR) { 14174 if (ill->ill_phys_addr_mp != NULL) 14175 freemsg(ill->ill_phys_addr_mp); 14176 ill->ill_phys_addr_mp = mp_hw; 14177 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14178 dlp->notify_ind.dl_addr_offset; 14179 ill->ill_phys_addr_length = 14180 dlp->notify_ind.dl_addr_length - 14181 ABS(ill->ill_sap_length); 14182 if (ill->ill_isv6 && 14183 !(ill->ill_flags & ILLF_XRESOLV)) { 14184 if (ill->ill_nd_lla_mp != NULL) 14185 freemsg(ill->ill_nd_lla_mp); 14186 ill->ill_nd_lla_mp = copyb(mp_hw); 14187 ill->ill_nd_lla = (uchar_t *) 14188 ill->ill_nd_lla_mp->b_rptr + 14189 dlp->notify_ind.dl_addr_offset; 14190 ill->ill_nd_lla_len = 14191 ill->ill_phys_addr_length; 14192 } 14193 } 14194 mutex_exit(&ill->ill_lock); 14195 /* 14196 * Send out gratuitous arp request for our new 14197 * hardware address. 14198 */ 14199 for (ipif = ill->ill_ipif; ipif != NULL; 14200 ipif = ipif->ipif_next) { 14201 if (!(ipif->ipif_flags & IPIF_UP)) 14202 continue; 14203 if (ill->ill_isv6) { 14204 ipif_ndp_down(ipif); 14205 /* 14206 * Set B_TRUE to enable 14207 * ipif_ndp_up() to send out 14208 * unsolicited advertisements. 14209 */ 14210 err = ipif_ndp_up(ipif, 14211 &ipif->ipif_v6lcl_addr, 14212 B_TRUE); 14213 if (err) { 14214 ip1dbg(( 14215 "ip_rput_dlpi_writer: " 14216 "Failed to update ndp " 14217 "err %d\n", err)); 14218 } 14219 } else { 14220 /* 14221 * IPv4 ARP case 14222 * 14223 * Set B_TRUE, as we only want 14224 * ipif_resolver_up to send an 14225 * AR_ENTRY_ADD request up to 14226 * ARP. 14227 */ 14228 err = ipif_resolver_up(ipif, 14229 B_TRUE); 14230 if (err) { 14231 ip1dbg(( 14232 "ip_rput_dlpi_writer: " 14233 "Failed to update arp " 14234 "err %d\n", err)); 14235 } 14236 } 14237 } 14238 /* 14239 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 14240 * case so that all old fastpath information can be 14241 * purged from IRE caches. 14242 */ 14243 /* FALLTHRU */ 14244 case DL_NOTE_FASTPATH_FLUSH: 14245 /* 14246 * Any fastpath probe sent henceforth will get the 14247 * new fp mp. So we first delete any ires that are 14248 * waiting for the fastpath. Then walk all ires and 14249 * delete the ire or delete the fp mp. In the case of 14250 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 14251 * recreate the ire's without going through a complex 14252 * ipif up/down dance. So we don't delete the ire 14253 * itself, but just the ire_fp_mp for these 2 ire's 14254 * In the case of the other ire's we delete the ire's 14255 * themselves. Access to ire_fp_mp is completely 14256 * protected by ire_lock for IRE_MIPRTUN and 14257 * IRE_BROADCAST. Deleting the ire is preferable in the 14258 * other cases for performance. 14259 */ 14260 if (ill->ill_isv6) { 14261 nce_fastpath_list_dispatch(ill, NULL, NULL); 14262 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 14263 NULL); 14264 } else { 14265 ire_fastpath_list_dispatch(ill, NULL, NULL); 14266 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 14267 IRE_CACHE | IRE_BROADCAST, 14268 ire_fastpath_flush, NULL, ill); 14269 mutex_enter(&ire_mrtun_lock); 14270 if (ire_mrtun_count != 0) { 14271 mutex_exit(&ire_mrtun_lock); 14272 ire_walk_ill_mrtun(MATCH_IRE_WQ, 14273 IRE_MIPRTUN, ire_fastpath_flush, 14274 NULL, ill); 14275 } else { 14276 mutex_exit(&ire_mrtun_lock); 14277 } 14278 } 14279 break; 14280 case DL_NOTE_SDU_SIZE: 14281 /* 14282 * Change the MTU size of the interface, of all 14283 * attached ipif's, and of all relevant ire's. The 14284 * new value's a uint32_t at notify->dl_data. 14285 * Mtu change Vs. new ire creation - protocol below. 14286 * 14287 * a Mark the ipif as IPIF_CHANGING. 14288 * b Set the new mtu in the ipif. 14289 * c Change the ire_max_frag on all affected ires 14290 * d Unmark the IPIF_CHANGING 14291 * 14292 * To see how the protocol works, assume an interface 14293 * route is also being added simultaneously by 14294 * ip_rt_add and let 'ipif' be the ipif referenced by 14295 * the ire. If the ire is created before step a, 14296 * it will be cleaned up by step c. If the ire is 14297 * created after step d, it will see the new value of 14298 * ipif_mtu. Any attempt to create the ire between 14299 * steps a to d will fail because of the IPIF_CHANGING 14300 * flag. Note that ire_create() is passed a pointer to 14301 * the ipif_mtu, and not the value. During ire_add 14302 * under the bucket lock, the ire_max_frag of the 14303 * new ire being created is set from the ipif/ire from 14304 * which it is being derived. 14305 */ 14306 mutex_enter(&ill->ill_lock); 14307 ill->ill_max_frag = (uint_t)notify->dl_data; 14308 14309 /* 14310 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 14311 * leave it alone 14312 */ 14313 if (ill->ill_mtu_userspecified) { 14314 mutex_exit(&ill->ill_lock); 14315 break; 14316 } 14317 ill->ill_max_mtu = ill->ill_max_frag; 14318 if (ill->ill_isv6) { 14319 if (ill->ill_max_mtu < IPV6_MIN_MTU) 14320 ill->ill_max_mtu = IPV6_MIN_MTU; 14321 } else { 14322 if (ill->ill_max_mtu < IP_MIN_MTU) 14323 ill->ill_max_mtu = IP_MIN_MTU; 14324 } 14325 for (ipif = ill->ill_ipif; ipif != NULL; 14326 ipif = ipif->ipif_next) { 14327 /* 14328 * Don't override the mtu if the user 14329 * has explicitly set it. 14330 */ 14331 if (ipif->ipif_flags & IPIF_FIXEDMTU) 14332 continue; 14333 ipif->ipif_mtu = (uint_t)notify->dl_data; 14334 if (ipif->ipif_isv6) 14335 ire = ipif_to_ire_v6(ipif); 14336 else 14337 ire = ipif_to_ire(ipif); 14338 if (ire != NULL) { 14339 ire->ire_max_frag = ipif->ipif_mtu; 14340 ire_refrele(ire); 14341 } 14342 if (ipif->ipif_flags & IPIF_UP) { 14343 if (ill->ill_isv6) 14344 need_ire_walk_v6 = B_TRUE; 14345 else 14346 need_ire_walk_v4 = B_TRUE; 14347 } 14348 } 14349 mutex_exit(&ill->ill_lock); 14350 if (need_ire_walk_v4) 14351 ire_walk_v4(ill_mtu_change, (char *)ill, 14352 ALL_ZONES); 14353 if (need_ire_walk_v6) 14354 ire_walk_v6(ill_mtu_change, (char *)ill, 14355 ALL_ZONES); 14356 break; 14357 case DL_NOTE_LINK_UP: 14358 case DL_NOTE_LINK_DOWN: { 14359 /* 14360 * We are writer. ill / phyint / ipsq assocs stable. 14361 * The RUNNING flag reflects the state of the link. 14362 */ 14363 phyint_t *phyint = ill->ill_phyint; 14364 uint64_t new_phyint_flags; 14365 boolean_t changed = B_FALSE; 14366 14367 mutex_enter(&phyint->phyint_lock); 14368 new_phyint_flags = 14369 (notify->dl_notification == DL_NOTE_LINK_UP) ? 14370 phyint->phyint_flags | PHYI_RUNNING : 14371 phyint->phyint_flags & ~PHYI_RUNNING; 14372 if (new_phyint_flags != phyint->phyint_flags) { 14373 phyint->phyint_flags = new_phyint_flags; 14374 changed = B_TRUE; 14375 } 14376 mutex_exit(&phyint->phyint_lock); 14377 /* 14378 * If the flags have changed, send a message to 14379 * the routing socket. 14380 */ 14381 if (changed) { 14382 if (phyint->phyint_illv4 != NULL) { 14383 ip_rts_ifmsg( 14384 phyint->phyint_illv4->ill_ipif); 14385 } 14386 if (phyint->phyint_illv6 != NULL) { 14387 ip_rts_ifmsg( 14388 phyint->phyint_illv6->ill_ipif); 14389 } 14390 } 14391 break; 14392 } 14393 case DL_NOTE_PROMISC_ON_PHYS: 14394 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14395 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 14396 mutex_enter(&ill->ill_lock); 14397 ill->ill_promisc_on_phys = B_TRUE; 14398 mutex_exit(&ill->ill_lock); 14399 break; 14400 case DL_NOTE_PROMISC_OFF_PHYS: 14401 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 14402 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 14403 mutex_enter(&ill->ill_lock); 14404 ill->ill_promisc_on_phys = B_FALSE; 14405 mutex_exit(&ill->ill_lock); 14406 break; 14407 case DL_NOTE_CAPAB_RENEG: 14408 /* 14409 * Something changed on the driver side. 14410 * It wants us to renegotiate the capabilities 14411 * on this ill. The most likely cause is the 14412 * aggregation interface under us where a 14413 * port got added or went away. 14414 * 14415 * We reset the capabilities and set the 14416 * state to IDMS_RENG so that when the ack 14417 * comes back, we can start the 14418 * renegotiation process. 14419 */ 14420 ill_capability_reset(ill); 14421 ill->ill_capab_state = IDMS_RENEG; 14422 break; 14423 default: 14424 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 14425 "type 0x%x for DL_NOTIFY_IND\n", 14426 notify->dl_notification)); 14427 break; 14428 } 14429 14430 /* 14431 * As this is an asynchronous operation, we 14432 * should not call ill_dlpi_done 14433 */ 14434 break; 14435 } 14436 case DL_NOTIFY_ACK: 14437 /* 14438 * Don't really need to check for what notifications 14439 * are supported; we'll process what gets sent upstream, 14440 * and we know it'll be something we support changing 14441 * based on our DL_NOTIFY_REQ. 14442 */ 14443 ill_dlpi_done(ill, DL_NOTIFY_REQ); 14444 break; 14445 case DL_PHYS_ADDR_ACK: { 14446 /* 14447 * We should have an IOCTL waiting on this when request 14448 * sent by ill_dl_phys. 14449 * However, ill_dl_phys was called on an ill queue (from 14450 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 14451 * ioctl is known to be pending on ill_wq. 14452 * There are two additional phys_addr_req's sent to the 14453 * driver to get the token and lla. ill_phys_addr_pend 14454 * keeps track of the last one sent so we know which 14455 * response we are dealing with. ill_dlpi_done will 14456 * update ill_phys_addr_pend when it sends the next req. 14457 * We don't complete the IOCTL until all three DL_PARs 14458 * have been attempted. 14459 * 14460 * We don't need any lock to update ill_nd_lla* fields, 14461 * since the ill is not yet up, We grab the lock just 14462 * for uniformity with other code that accesses ill_nd_lla. 14463 */ 14464 physaddr_req = ill->ill_phys_addr_pend; 14465 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 14466 if (physaddr_req == DL_IPV6_TOKEN || 14467 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 14468 if (physaddr_req == DL_IPV6_TOKEN) { 14469 /* 14470 * bcopy to low-order bits of ill_token 14471 * 14472 * XXX Temporary hack - currently, 14473 * all known tokens are 64 bits, 14474 * so I'll cheat for the moment. 14475 */ 14476 dlp = (union DL_primitives *)mp->b_rptr; 14477 14478 mutex_enter(&ill->ill_lock); 14479 bcopy((uchar_t *)(mp->b_rptr + 14480 dlp->physaddr_ack.dl_addr_offset), 14481 (void *)&ill->ill_token.s6_addr32[2], 14482 dlp->physaddr_ack.dl_addr_length); 14483 ill->ill_token_length = 14484 dlp->physaddr_ack.dl_addr_length; 14485 mutex_exit(&ill->ill_lock); 14486 } else { 14487 ASSERT(ill->ill_nd_lla_mp == NULL); 14488 mp_hw = copyb(mp); 14489 if (mp_hw == NULL) { 14490 err = ENOMEM; 14491 break; 14492 } 14493 dlp = (union DL_primitives *)mp_hw->b_rptr; 14494 mutex_enter(&ill->ill_lock); 14495 ill->ill_nd_lla_mp = mp_hw; 14496 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 14497 dlp->physaddr_ack.dl_addr_offset; 14498 ill->ill_nd_lla_len = 14499 dlp->physaddr_ack.dl_addr_length; 14500 mutex_exit(&ill->ill_lock); 14501 } 14502 break; 14503 } 14504 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 14505 ASSERT(ill->ill_phys_addr_mp == NULL); 14506 if (!ill->ill_ifname_pending) 14507 break; 14508 ill->ill_ifname_pending = 0; 14509 if (!ioctl_aborted) 14510 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14511 if (mp1 != NULL) { 14512 ASSERT(connp == NULL); 14513 q = ill->ill_wq; 14514 } 14515 /* 14516 * If any error acks received during the plumbing sequence, 14517 * ill_ifname_pending_err will be set. Break out and send up 14518 * the error to the pending ioctl. 14519 */ 14520 if (ill->ill_ifname_pending_err != 0) { 14521 err = ill->ill_ifname_pending_err; 14522 ill->ill_ifname_pending_err = 0; 14523 break; 14524 } 14525 /* 14526 * Get the interface token. If the zeroth interface 14527 * address is zero then set the address to the link local 14528 * address 14529 */ 14530 mp_hw = copyb(mp); 14531 if (mp_hw == NULL) { 14532 err = ENOMEM; 14533 break; 14534 } 14535 dlp = (union DL_primitives *)mp_hw->b_rptr; 14536 ill->ill_phys_addr_mp = mp_hw; 14537 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 14538 dlp->physaddr_ack.dl_addr_offset; 14539 if (dlp->physaddr_ack.dl_addr_length == 0 || 14540 ill->ill_phys_addr_length == 0 || 14541 ill->ill_phys_addr_length == IP_ADDR_LEN) { 14542 /* 14543 * Compatibility: atun driver returns a length of 0. 14544 * ipdptp has an ill_phys_addr_length of zero(from 14545 * DL_BIND_ACK) but a non-zero length here. 14546 * ipd has an ill_phys_addr_length of 4(from 14547 * DL_BIND_ACK) but a non-zero length here. 14548 */ 14549 ill->ill_phys_addr = NULL; 14550 } else if (dlp->physaddr_ack.dl_addr_length != 14551 ill->ill_phys_addr_length) { 14552 ip0dbg(("DL_PHYS_ADDR_ACK: " 14553 "Address length mismatch %d %d\n", 14554 dlp->physaddr_ack.dl_addr_length, 14555 ill->ill_phys_addr_length)); 14556 err = EINVAL; 14557 break; 14558 } 14559 mutex_enter(&ill->ill_lock); 14560 if (ill->ill_nd_lla_mp == NULL) { 14561 ill->ill_nd_lla_mp = copyb(mp_hw); 14562 if (ill->ill_nd_lla_mp == NULL) { 14563 err = ENOMEM; 14564 mutex_exit(&ill->ill_lock); 14565 break; 14566 } 14567 ill->ill_nd_lla = 14568 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 14569 dlp->physaddr_ack.dl_addr_offset; 14570 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 14571 } 14572 mutex_exit(&ill->ill_lock); 14573 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 14574 (void) ill_setdefaulttoken(ill); 14575 14576 /* 14577 * If the ill zero interface has a zero address assign 14578 * it the proper link local address. 14579 */ 14580 ASSERT(ill->ill_ipif->ipif_id == 0); 14581 if (ipif != NULL && 14582 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14583 (void) ipif_setlinklocal(ipif); 14584 break; 14585 } 14586 case DL_OK_ACK: 14587 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 14588 dlpi_prim_str((int)dloa->dl_correct_primitive), 14589 dloa->dl_correct_primitive)); 14590 switch (dloa->dl_correct_primitive) { 14591 case DL_UNBIND_REQ: 14592 case DL_ATTACH_REQ: 14593 case DL_DETACH_REQ: 14594 ill_dlpi_done(ill, dloa->dl_correct_primitive); 14595 break; 14596 } 14597 break; 14598 default: 14599 break; 14600 } 14601 14602 freemsg(mp); 14603 if (mp1) { 14604 struct iocblk *iocp; 14605 int mode; 14606 14607 /* 14608 * Complete the waiting IOCTL. For SIOCLIFADDIF or 14609 * SIOCSLIFNAME do a copyout. 14610 */ 14611 iocp = (struct iocblk *)mp1->b_rptr; 14612 14613 if (iocp->ioc_cmd == SIOCLIFADDIF || 14614 iocp->ioc_cmd == SIOCSLIFNAME) 14615 mode = COPYOUT; 14616 else 14617 mode = NO_COPYOUT; 14618 /* 14619 * The ioctl must complete now without EINPROGRESS 14620 * since ipsq_pending_mp_get has removed the ioctl mblk 14621 * from ipsq_pending_mp. Otherwise the ioctl will be 14622 * stuck for ever in the ipsq. 14623 */ 14624 ASSERT(err != EINPROGRESS); 14625 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 14626 14627 } 14628 } 14629 14630 /* 14631 * ip_rput_other is called by ip_rput to handle messages modifying the global 14632 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 14633 */ 14634 /* ARGSUSED */ 14635 void 14636 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 14637 { 14638 ill_t *ill; 14639 struct iocblk *iocp; 14640 mblk_t *mp1; 14641 conn_t *connp = NULL; 14642 14643 ip1dbg(("ip_rput_other ")); 14644 ill = (ill_t *)q->q_ptr; 14645 /* 14646 * This routine is not a writer in the case of SIOCGTUNPARAM 14647 * in which case ipsq is NULL. 14648 */ 14649 if (ipsq != NULL) { 14650 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14651 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 14652 } 14653 14654 switch (mp->b_datap->db_type) { 14655 case M_ERROR: 14656 case M_HANGUP: 14657 /* 14658 * The device has a problem. We force the ILL down. It can 14659 * be brought up again manually using SIOCSIFFLAGS (via 14660 * ifconfig or equivalent). 14661 */ 14662 ASSERT(ipsq != NULL); 14663 if (mp->b_rptr < mp->b_wptr) 14664 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 14665 if (ill->ill_error == 0) 14666 ill->ill_error = ENXIO; 14667 if (!ill_down_start(q, mp)) 14668 return; 14669 ipif_all_down_tail(ipsq, q, mp, NULL); 14670 break; 14671 case M_IOCACK: 14672 iocp = (struct iocblk *)mp->b_rptr; 14673 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 14674 switch (iocp->ioc_cmd) { 14675 case SIOCSTUNPARAM: 14676 case OSIOCSTUNPARAM: 14677 ASSERT(ipsq != NULL); 14678 /* 14679 * Finish socket ioctl passed through to tun. 14680 * We should have an IOCTL waiting on this. 14681 */ 14682 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14683 if (ill->ill_isv6) { 14684 struct iftun_req *ta; 14685 14686 /* 14687 * if a source or destination is 14688 * being set, try and set the link 14689 * local address for the tunnel 14690 */ 14691 ta = (struct iftun_req *)mp->b_cont-> 14692 b_cont->b_rptr; 14693 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 14694 ipif_set_tun_llink(ill, ta); 14695 } 14696 14697 } 14698 if (mp1 != NULL) { 14699 /* 14700 * Now copy back the b_next/b_prev used by 14701 * mi code for the mi_copy* functions. 14702 * See ip_sioctl_tunparam() for the reason. 14703 * Also protect against missing b_cont. 14704 */ 14705 if (mp->b_cont != NULL) { 14706 mp->b_cont->b_next = 14707 mp1->b_cont->b_next; 14708 mp->b_cont->b_prev = 14709 mp1->b_cont->b_prev; 14710 } 14711 inet_freemsg(mp1); 14712 ASSERT(ipsq->ipsq_current_ipif != NULL); 14713 ASSERT(connp != NULL); 14714 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14715 iocp->ioc_error, NO_COPYOUT, 14716 ipsq->ipsq_current_ipif, ipsq); 14717 } else { 14718 ASSERT(connp == NULL); 14719 putnext(q, mp); 14720 } 14721 break; 14722 case SIOCGTUNPARAM: 14723 case OSIOCGTUNPARAM: 14724 /* 14725 * This is really M_IOCDATA from the tunnel driver. 14726 * convert back and complete the ioctl. 14727 * We should have an IOCTL waiting on this. 14728 */ 14729 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 14730 if (mp1) { 14731 /* 14732 * Now copy back the b_next/b_prev used by 14733 * mi code for the mi_copy* functions. 14734 * See ip_sioctl_tunparam() for the reason. 14735 * Also protect against missing b_cont. 14736 */ 14737 if (mp->b_cont != NULL) { 14738 mp->b_cont->b_next = 14739 mp1->b_cont->b_next; 14740 mp->b_cont->b_prev = 14741 mp1->b_cont->b_prev; 14742 } 14743 inet_freemsg(mp1); 14744 if (iocp->ioc_error == 0) 14745 mp->b_datap->db_type = M_IOCDATA; 14746 ASSERT(connp != NULL); 14747 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14748 iocp->ioc_error, COPYOUT, NULL, NULL); 14749 } else { 14750 ASSERT(connp == NULL); 14751 putnext(q, mp); 14752 } 14753 break; 14754 default: 14755 break; 14756 } 14757 break; 14758 case M_IOCNAK: 14759 iocp = (struct iocblk *)mp->b_rptr; 14760 14761 switch (iocp->ioc_cmd) { 14762 int mode; 14763 ipif_t *ipif; 14764 14765 case DL_IOC_HDR_INFO: 14766 /* 14767 * If this was the first attempt turn of the 14768 * fastpath probing. 14769 */ 14770 mutex_enter(&ill->ill_lock); 14771 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) { 14772 ill->ill_dlpi_fastpath_state = IDMS_FAILED; 14773 mutex_exit(&ill->ill_lock); 14774 ill_fastpath_nack(ill); 14775 ip1dbg(("ip_rput: DLPI fastpath off on " 14776 "interface %s\n", 14777 ill->ill_name)); 14778 } else { 14779 mutex_exit(&ill->ill_lock); 14780 } 14781 freemsg(mp); 14782 break; 14783 case SIOCSTUNPARAM: 14784 case OSIOCSTUNPARAM: 14785 ASSERT(ipsq != NULL); 14786 /* 14787 * Finish socket ioctl passed through to tun 14788 * We should have an IOCTL waiting on this. 14789 */ 14790 /* FALLTHRU */ 14791 case SIOCGTUNPARAM: 14792 case OSIOCGTUNPARAM: 14793 /* 14794 * This is really M_IOCDATA from the tunnel driver. 14795 * convert back and complete the ioctl. 14796 * We should have an IOCTL waiting on this. 14797 */ 14798 if (iocp->ioc_cmd == SIOCGTUNPARAM || 14799 iocp->ioc_cmd == OSIOCGTUNPARAM) { 14800 mp1 = ill_pending_mp_get(ill, &connp, 14801 iocp->ioc_id); 14802 mode = COPYOUT; 14803 ipsq = NULL; 14804 ipif = NULL; 14805 } else { 14806 mp1 = ipsq_pending_mp_get(ipsq, &connp); 14807 mode = NO_COPYOUT; 14808 ASSERT(ipsq->ipsq_current_ipif != NULL); 14809 ipif = ipsq->ipsq_current_ipif; 14810 } 14811 if (mp1 != NULL) { 14812 /* 14813 * Now copy back the b_next/b_prev used by 14814 * mi code for the mi_copy* functions. 14815 * See ip_sioctl_tunparam() for the reason. 14816 * Also protect against missing b_cont. 14817 */ 14818 if (mp->b_cont != NULL) { 14819 mp->b_cont->b_next = 14820 mp1->b_cont->b_next; 14821 mp->b_cont->b_prev = 14822 mp1->b_cont->b_prev; 14823 } 14824 inet_freemsg(mp1); 14825 if (iocp->ioc_error == 0) 14826 iocp->ioc_error = EINVAL; 14827 ASSERT(connp != NULL); 14828 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 14829 iocp->ioc_error, mode, ipif, ipsq); 14830 } else { 14831 ASSERT(connp == NULL); 14832 putnext(q, mp); 14833 } 14834 break; 14835 default: 14836 break; 14837 } 14838 default: 14839 break; 14840 } 14841 } 14842 14843 /* 14844 * NOTE : This function does not ire_refrele the ire argument passed in. 14845 * 14846 * IPQoS notes 14847 * IP policy is invoked twice for a forwarded packet, once on the read side 14848 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 14849 * enabled. An additional parameter, in_ill, has been added for this purpose. 14850 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 14851 * because ip_mroute drops this information. 14852 * 14853 */ 14854 void 14855 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 14856 { 14857 uint32_t pkt_len; 14858 queue_t *q; 14859 uint32_t sum; 14860 #define rptr ((uchar_t *)ipha) 14861 uint32_t max_frag; 14862 uint32_t ill_index; 14863 14864 /* Get the ill_index of the incoming ILL */ 14865 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 14866 14867 /* Initiate Read side IPPF processing */ 14868 if (IPP_ENABLED(IPP_FWD_IN)) { 14869 ip_process(IPP_FWD_IN, &mp, ill_index); 14870 if (mp == NULL) { 14871 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 14872 "during IPPF processing\n")); 14873 return; 14874 } 14875 } 14876 pkt_len = ntohs(ipha->ipha_length); 14877 14878 /* Adjust the checksum to reflect the ttl decrement. */ 14879 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14880 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14881 14882 if (ipha->ipha_ttl-- <= 1) { 14883 if (ip_csum_hdr(ipha)) { 14884 BUMP_MIB(&ip_mib, ipInCksumErrs); 14885 goto drop_pkt; 14886 } 14887 /* 14888 * Note: ire_stq this will be NULL for multicast 14889 * datagrams using the long path through arp (the IRE 14890 * is not an IRE_CACHE). This should not cause 14891 * problems since we don't generate ICMP errors for 14892 * multicast packets. 14893 */ 14894 q = ire->ire_stq; 14895 if (q) 14896 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED); 14897 else 14898 freemsg(mp); 14899 return; 14900 } 14901 14902 /* 14903 * Don't forward if the interface is down 14904 */ 14905 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 14906 BUMP_MIB(&ip_mib, ipInDiscards); 14907 goto drop_pkt; 14908 } 14909 14910 /* Get the ill_index of the outgoing ILL */ 14911 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 14912 14913 /* Check if there are options to update */ 14914 if (!IS_SIMPLE_IPH(ipha)) { 14915 if (ip_csum_hdr(ipha)) { 14916 BUMP_MIB(&ip_mib, ipInCksumErrs); 14917 goto drop_pkt; 14918 } 14919 if (ip_rput_forward_options(mp, ipha, ire)) { 14920 return; 14921 } 14922 14923 ipha->ipha_hdr_checksum = 0; 14924 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14925 } 14926 max_frag = ire->ire_max_frag; 14927 if (pkt_len > max_frag) { 14928 /* 14929 * It needs fragging on its way out. We haven't 14930 * verified the header checksum yet. Since we 14931 * are going to put a surely good checksum in the 14932 * outgoing header, we have to make sure that it 14933 * was good coming in. 14934 */ 14935 if (ip_csum_hdr(ipha)) { 14936 BUMP_MIB(&ip_mib, ipInCksumErrs); 14937 goto drop_pkt; 14938 } 14939 /* Initiate Write side IPPF processing */ 14940 if (IPP_ENABLED(IPP_FWD_OUT)) { 14941 ip_process(IPP_FWD_OUT, &mp, ill_index); 14942 if (mp == NULL) { 14943 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 14944 " during IPPF processing\n")); 14945 return; 14946 } 14947 } 14948 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0); 14949 return; 14950 } 14951 14952 mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index); 14953 if (mp == NULL) { 14954 BUMP_MIB(&ip_mib, ipInDiscards); 14955 return; 14956 } 14957 14958 q = ire->ire_stq; 14959 UPDATE_IB_PKT_COUNT(ire); 14960 ire->ire_last_used_time = lbolt; 14961 BUMP_MIB(&ip_mib, ipForwDatagrams); 14962 putnext(q, mp); 14963 return; 14964 14965 drop_pkt:; 14966 ip1dbg(("ip_rput_forward: drop pkt\n")); 14967 freemsg(mp); 14968 #undef rptr 14969 } 14970 14971 void 14972 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 14973 { 14974 ire_t *ire; 14975 14976 ASSERT(!ipif->ipif_isv6); 14977 /* 14978 * Find an IRE which matches the destination and the outgoing 14979 * queue in the cache table. All we need is an IRE_CACHE which 14980 * is pointing at ipif->ipif_ill. If it is part of some ill group, 14981 * then it is enough to have some IRE_CACHE in the group. 14982 */ 14983 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14984 dst = ipif->ipif_pp_dst_addr; 14985 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, 14986 MATCH_IRE_ILL_GROUP); 14987 if (!ire) { 14988 /* 14989 * Mark this packet to make it be delivered to 14990 * ip_rput_forward after the new ire has been 14991 * created. 14992 */ 14993 mp->b_prev = NULL; 14994 mp->b_next = mp; 14995 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 14996 NULL, 0); 14997 } else { 14998 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 14999 IRE_REFRELE(ire); 15000 } 15001 } 15002 15003 /* Update any source route, record route or timestamp options */ 15004 static int 15005 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 15006 { 15007 ipoptp_t opts; 15008 uchar_t *opt; 15009 uint8_t optval; 15010 uint8_t optlen; 15011 ipaddr_t dst; 15012 uint32_t ts; 15013 ire_t *dst_ire = NULL; 15014 ire_t *tmp_ire = NULL; 15015 timestruc_t now; 15016 15017 ip2dbg(("ip_rput_forward_options\n")); 15018 dst = ipha->ipha_dst; 15019 for (optval = ipoptp_first(&opts, ipha); 15020 optval != IPOPT_EOL; 15021 optval = ipoptp_next(&opts)) { 15022 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15023 opt = opts.ipoptp_cur; 15024 optlen = opts.ipoptp_len; 15025 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 15026 optval, opts.ipoptp_len)); 15027 switch (optval) { 15028 uint32_t off; 15029 case IPOPT_SSRR: 15030 case IPOPT_LSRR: 15031 /* Check if adminstratively disabled */ 15032 if (!ip_forward_src_routed) { 15033 BUMP_MIB(&ip_mib, ipForwProhibits); 15034 if (ire->ire_stq) 15035 icmp_unreachable(ire->ire_stq, mp, 15036 ICMP_SOURCE_ROUTE_FAILED); 15037 else { 15038 ip0dbg(("ip_rput_forward_options: " 15039 "unable to send unreach\n")); 15040 freemsg(mp); 15041 } 15042 return (-1); 15043 } 15044 15045 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15046 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15047 if (dst_ire == NULL) { 15048 /* 15049 * Must be partial since ip_rput_options 15050 * checked for strict. 15051 */ 15052 break; 15053 } 15054 off = opt[IPOPT_OFFSET]; 15055 off--; 15056 redo_srr: 15057 if (optlen < IP_ADDR_LEN || 15058 off > optlen - IP_ADDR_LEN) { 15059 /* End of source route */ 15060 ip1dbg(( 15061 "ip_rput_forward_options: end of SR\n")); 15062 ire_refrele(dst_ire); 15063 break; 15064 } 15065 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15066 bcopy(&ire->ire_src_addr, (char *)opt + off, 15067 IP_ADDR_LEN); 15068 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 15069 ntohl(dst))); 15070 15071 /* 15072 * Check if our address is present more than 15073 * once as consecutive hops in source route. 15074 */ 15075 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 15076 NULL, ALL_ZONES, MATCH_IRE_TYPE); 15077 if (tmp_ire != NULL) { 15078 ire_refrele(tmp_ire); 15079 off += IP_ADDR_LEN; 15080 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15081 goto redo_srr; 15082 } 15083 ipha->ipha_dst = dst; 15084 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15085 ire_refrele(dst_ire); 15086 break; 15087 case IPOPT_RR: 15088 off = opt[IPOPT_OFFSET]; 15089 off--; 15090 if (optlen < IP_ADDR_LEN || 15091 off > optlen - IP_ADDR_LEN) { 15092 /* No more room - ignore */ 15093 ip1dbg(( 15094 "ip_rput_forward_options: end of RR\n")); 15095 break; 15096 } 15097 bcopy(&ire->ire_src_addr, (char *)opt + off, 15098 IP_ADDR_LEN); 15099 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15100 break; 15101 case IPOPT_TS: 15102 /* Insert timestamp if there is room */ 15103 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15104 case IPOPT_TS_TSONLY: 15105 off = IPOPT_TS_TIMELEN; 15106 break; 15107 case IPOPT_TS_PRESPEC: 15108 case IPOPT_TS_PRESPEC_RFC791: 15109 /* Verify that the address matched */ 15110 off = opt[IPOPT_OFFSET] - 1; 15111 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 15112 dst_ire = ire_ctable_lookup(dst, 0, 15113 IRE_LOCAL, NULL, ALL_ZONES, MATCH_IRE_TYPE); 15114 if (dst_ire == NULL) { 15115 /* Not for us */ 15116 break; 15117 } 15118 ire_refrele(dst_ire); 15119 /* FALLTHRU */ 15120 case IPOPT_TS_TSANDADDR: 15121 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 15122 break; 15123 default: 15124 /* 15125 * ip_*put_options should have already 15126 * dropped this packet. 15127 */ 15128 cmn_err(CE_PANIC, "ip_rput_forward_options: " 15129 "unknown IT - bug in ip_rput_options?\n"); 15130 return (0); /* Keep "lint" happy */ 15131 } 15132 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 15133 /* Increase overflow counter */ 15134 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 15135 opt[IPOPT_POS_OV_FLG] = 15136 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 15137 (off << 4)); 15138 break; 15139 } 15140 off = opt[IPOPT_OFFSET] - 1; 15141 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 15142 case IPOPT_TS_PRESPEC: 15143 case IPOPT_TS_PRESPEC_RFC791: 15144 case IPOPT_TS_TSANDADDR: 15145 bcopy(&ire->ire_src_addr, 15146 (char *)opt + off, IP_ADDR_LEN); 15147 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 15148 /* FALLTHRU */ 15149 case IPOPT_TS_TSONLY: 15150 off = opt[IPOPT_OFFSET] - 1; 15151 /* Compute # of milliseconds since midnight */ 15152 gethrestime(&now); 15153 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 15154 now.tv_nsec / (NANOSEC / MILLISEC); 15155 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 15156 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 15157 break; 15158 } 15159 break; 15160 } 15161 } 15162 return (0); 15163 } 15164 15165 /* 15166 * This is called after processing at least one of AH/ESP headers. 15167 * 15168 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 15169 * the actual, physical interface on which the packet was received, 15170 * but, when ip_strict_dst_multihoming is set to 1, could be the 15171 * interface which had the ipha_dst configured when the packet went 15172 * through ip_rput. The ill_index corresponding to the recv_ill 15173 * is saved in ipsec_in_rill_index 15174 */ 15175 void 15176 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 15177 { 15178 mblk_t *mp; 15179 ipaddr_t dst; 15180 in6_addr_t *v6dstp; 15181 ipha_t *ipha; 15182 ip6_t *ip6h; 15183 ipsec_in_t *ii; 15184 boolean_t ill_need_rele = B_FALSE; 15185 boolean_t rill_need_rele = B_FALSE; 15186 boolean_t ire_need_rele = B_FALSE; 15187 15188 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 15189 ASSERT(ii->ipsec_in_ill_index != 0); 15190 15191 mp = ipsec_mp->b_cont; 15192 ASSERT(mp != NULL); 15193 15194 15195 if (ill == NULL) { 15196 ASSERT(recv_ill == NULL); 15197 /* 15198 * We need to get the original queue on which ip_rput_local 15199 * or ip_rput_data_v6 was called. 15200 */ 15201 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 15202 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 15203 ill_need_rele = B_TRUE; 15204 15205 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 15206 recv_ill = ill_lookup_on_ifindex( 15207 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 15208 NULL, NULL, NULL, NULL); 15209 rill_need_rele = B_TRUE; 15210 } else { 15211 recv_ill = ill; 15212 } 15213 15214 if ((ill == NULL) || (recv_ill == NULL)) { 15215 ip0dbg(("ip_fanout_proto_again: interface " 15216 "disappeared\n")); 15217 if (ill != NULL) 15218 ill_refrele(ill); 15219 if (recv_ill != NULL) 15220 ill_refrele(recv_ill); 15221 freemsg(ipsec_mp); 15222 return; 15223 } 15224 } 15225 15226 ASSERT(ill != NULL && recv_ill != NULL); 15227 15228 if (mp->b_datap->db_type == M_CTL) { 15229 /* 15230 * AH/ESP is returning the ICMP message after 15231 * removing their headers. Fanout again till 15232 * it gets to the right protocol. 15233 */ 15234 if (ii->ipsec_in_v4) { 15235 icmph_t *icmph; 15236 int iph_hdr_length; 15237 int hdr_length; 15238 15239 ipha = (ipha_t *)mp->b_rptr; 15240 iph_hdr_length = IPH_HDR_LENGTH(ipha); 15241 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 15242 ipha = (ipha_t *)&icmph[1]; 15243 hdr_length = IPH_HDR_LENGTH(ipha); 15244 /* 15245 * icmp_inbound_error_fanout may need to do pullupmsg. 15246 * Reset the type to M_DATA. 15247 */ 15248 mp->b_datap->db_type = M_DATA; 15249 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 15250 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 15251 B_FALSE, ill, ii->ipsec_in_zoneid); 15252 } else { 15253 icmp6_t *icmp6; 15254 int hdr_length; 15255 15256 ip6h = (ip6_t *)mp->b_rptr; 15257 /* Don't call hdr_length_v6() unless you have to. */ 15258 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 15259 hdr_length = ip_hdr_length_v6(mp, ip6h); 15260 else 15261 hdr_length = IPV6_HDR_LEN; 15262 15263 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 15264 /* 15265 * icmp_inbound_error_fanout_v6 may need to do 15266 * pullupmsg. Reset the type to M_DATA. 15267 */ 15268 mp->b_datap->db_type = M_DATA; 15269 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 15270 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 15271 } 15272 if (ill_need_rele) 15273 ill_refrele(ill); 15274 if (rill_need_rele) 15275 ill_refrele(recv_ill); 15276 return; 15277 } 15278 15279 if (ii->ipsec_in_v4) { 15280 ipha = (ipha_t *)mp->b_rptr; 15281 dst = ipha->ipha_dst; 15282 if (CLASSD(dst)) { 15283 /* 15284 * Multicast has to be delivered to all streams. 15285 */ 15286 dst = INADDR_BROADCAST; 15287 } 15288 15289 if (ire == NULL) { 15290 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid); 15291 if (ire == NULL) { 15292 if (ill_need_rele) 15293 ill_refrele(ill); 15294 if (rill_need_rele) 15295 ill_refrele(recv_ill); 15296 ip1dbg(("ip_fanout_proto_again: " 15297 "IRE not found")); 15298 freemsg(ipsec_mp); 15299 return; 15300 } 15301 ire_need_rele = B_TRUE; 15302 } 15303 15304 switch (ipha->ipha_protocol) { 15305 case IPPROTO_UDP: 15306 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 15307 recv_ill); 15308 if (ire_need_rele) 15309 ire_refrele(ire); 15310 break; 15311 case IPPROTO_TCP: 15312 if (!ire_need_rele) 15313 IRE_REFHOLD(ire); 15314 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 15315 ire, ipsec_mp, 0, ill->ill_rq, NULL); 15316 IRE_REFRELE(ire); 15317 if (mp != NULL) 15318 squeue_enter_chain(GET_SQUEUE(mp), mp, 15319 mp, 1, SQTAG_IP_PROTO_AGAIN); 15320 break; 15321 case IPPROTO_SCTP: 15322 if (!ire_need_rele) 15323 IRE_REFHOLD(ire); 15324 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 15325 ipsec_mp, 0, ill->ill_rq, dst); 15326 break; 15327 default: 15328 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 15329 recv_ill); 15330 if (ire_need_rele) 15331 ire_refrele(ire); 15332 break; 15333 } 15334 } else { 15335 uint32_t rput_flags = 0; 15336 15337 ip6h = (ip6_t *)mp->b_rptr; 15338 v6dstp = &ip6h->ip6_dst; 15339 /* 15340 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 15341 * address. 15342 * 15343 * Currently, we don't store that state in the IPSEC_IN 15344 * message, and we may need to. 15345 */ 15346 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 15347 IP6_IN_LLMCAST : 0); 15348 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 15349 NULL); 15350 } 15351 if (ill_need_rele) 15352 ill_refrele(ill); 15353 if (rill_need_rele) 15354 ill_refrele(recv_ill); 15355 } 15356 15357 /* 15358 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 15359 * returns 'true' if there are still fragments left on the queue, in 15360 * which case we restart the timer. 15361 */ 15362 void 15363 ill_frag_timer(void *arg) 15364 { 15365 ill_t *ill = (ill_t *)arg; 15366 boolean_t frag_pending; 15367 15368 mutex_enter(&ill->ill_lock); 15369 ASSERT(!ill->ill_fragtimer_executing); 15370 if (ill->ill_state_flags & ILL_CONDEMNED) { 15371 ill->ill_frag_timer_id = 0; 15372 mutex_exit(&ill->ill_lock); 15373 return; 15374 } 15375 ill->ill_fragtimer_executing = 1; 15376 mutex_exit(&ill->ill_lock); 15377 15378 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 15379 15380 /* 15381 * Restart the timer, if we have fragments pending or if someone 15382 * wanted us to be scheduled again. 15383 */ 15384 mutex_enter(&ill->ill_lock); 15385 ill->ill_fragtimer_executing = 0; 15386 ill->ill_frag_timer_id = 0; 15387 if (frag_pending || ill->ill_fragtimer_needrestart) 15388 ill_frag_timer_start(ill); 15389 mutex_exit(&ill->ill_lock); 15390 } 15391 15392 void 15393 ill_frag_timer_start(ill_t *ill) 15394 { 15395 ASSERT(MUTEX_HELD(&ill->ill_lock)); 15396 15397 /* If the ill is closing or opening don't proceed */ 15398 if (ill->ill_state_flags & ILL_CONDEMNED) 15399 return; 15400 15401 if (ill->ill_fragtimer_executing) { 15402 /* 15403 * ill_frag_timer is currently executing. Just record the 15404 * the fact that we want the timer to be restarted. 15405 * ill_frag_timer will post a timeout before it returns, 15406 * ensuring it will be called again. 15407 */ 15408 ill->ill_fragtimer_needrestart = 1; 15409 return; 15410 } 15411 15412 if (ill->ill_frag_timer_id == 0) { 15413 /* 15414 * The timer is neither running nor is the timeout handler 15415 * executing. Post a timeout so that ill_frag_timer will be 15416 * called 15417 */ 15418 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 15419 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 15420 ill->ill_fragtimer_needrestart = 0; 15421 } 15422 } 15423 15424 /* 15425 * This routine is needed for loopback when forwarding multicasts. 15426 * 15427 * IPQoS Notes: 15428 * IPPF processing is done in fanout routines. 15429 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 15430 * processing for IPSec packets is done when it comes back in clear. 15431 * NOTE : The callers of this function need to do the ire_refrele for the 15432 * ire that is being passed in. 15433 */ 15434 void 15435 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 15436 ill_t *recv_ill) 15437 { 15438 ill_t *ill = (ill_t *)q->q_ptr; 15439 uint32_t sum; 15440 uint32_t u1; 15441 uint32_t u2; 15442 int hdr_length; 15443 boolean_t mctl_present; 15444 mblk_t *first_mp = mp; 15445 mblk_t *hada_mp = NULL; 15446 ipha_t *inner_ipha; 15447 15448 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 15449 "ip_rput_locl_start: q %p", q); 15450 15451 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15452 15453 15454 #define rptr ((uchar_t *)ipha) 15455 #define iphs ((uint16_t *)ipha) 15456 15457 /* 15458 * no UDP or TCP packet should come here anymore. 15459 */ 15460 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 15461 (ipha->ipha_protocol != IPPROTO_UDP)); 15462 15463 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 15464 if (mctl_present && 15465 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 15466 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 15467 15468 /* 15469 * It's an IPsec accelerated packet. 15470 * Keep a pointer to the data attributes around until 15471 * we allocate the ipsec_info_t. 15472 */ 15473 IPSECHW_DEBUG(IPSECHW_PKT, 15474 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 15475 hada_mp = first_mp; 15476 hada_mp->b_cont = NULL; 15477 /* 15478 * Since it is accelerated, it comes directly from 15479 * the ill and the data attributes is followed by 15480 * the packet data. 15481 */ 15482 ASSERT(mp->b_datap->db_type != M_CTL); 15483 first_mp = mp; 15484 mctl_present = B_FALSE; 15485 } 15486 15487 /* 15488 * IF M_CTL is not present, then ipsec_in_is_secure 15489 * should return B_TRUE. There is a case where loopback 15490 * packets has an M_CTL in the front with all the 15491 * IPSEC options set to IPSEC_PREF_NEVER - which means 15492 * ipsec_in_is_secure will return B_FALSE. As loopback 15493 * packets never comes here, it is safe to ASSERT the 15494 * following. 15495 */ 15496 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 15497 15498 15499 /* u1 is # words of IP options */ 15500 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 15501 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 15502 15503 if (u1) { 15504 if (!ip_options_cksum(q, mp, ipha, ire)) { 15505 if (hada_mp != NULL) 15506 freemsg(hada_mp); 15507 return; 15508 } 15509 } else { 15510 /* Check the IP header checksum. */ 15511 #define uph ((uint16_t *)ipha) 15512 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 15513 uph[6] + uph[7] + uph[8] + uph[9]; 15514 #undef uph 15515 /* finish doing IP checksum */ 15516 sum = (sum & 0xFFFF) + (sum >> 16); 15517 sum = ~(sum + (sum >> 16)) & 0xFFFF; 15518 /* 15519 * Don't verify header checksum if this packet is coming 15520 * back from AH/ESP as we already did it. 15521 */ 15522 if (!mctl_present && (sum && sum != 0xFFFF)) { 15523 BUMP_MIB(&ip_mib, ipInCksumErrs); 15524 goto drop_pkt; 15525 } 15526 } 15527 15528 /* 15529 * Count for SNMP of inbound packets for ire. As ip_proto_input 15530 * might be called more than once for secure packets, count only 15531 * the first time. 15532 */ 15533 if (!mctl_present) { 15534 UPDATE_IB_PKT_COUNT(ire); 15535 ire->ire_last_used_time = lbolt; 15536 } 15537 15538 /* Check for fragmentation offset. */ 15539 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 15540 u1 = u2 & (IPH_MF | IPH_OFFSET); 15541 if (u1) { 15542 /* 15543 * We re-assemble fragments before we do the AH/ESP 15544 * processing. Thus, M_CTL should not be present 15545 * while we are re-assembling. 15546 */ 15547 ASSERT(!mctl_present); 15548 ASSERT(first_mp == mp); 15549 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 15550 return; 15551 } 15552 /* 15553 * Make sure that first_mp points back to mp as 15554 * the mp we came in with could have changed in 15555 * ip_rput_fragment(). 15556 */ 15557 ipha = (ipha_t *)mp->b_rptr; 15558 first_mp = mp; 15559 } 15560 15561 /* 15562 * Clear hardware checksumming flag as it is currently only 15563 * used by TCP and UDP. 15564 */ 15565 DB_CKSUMFLAGS(mp) = 0; 15566 15567 /* Now we have a complete datagram, destined for this machine. */ 15568 u1 = IPH_HDR_LENGTH(ipha); 15569 switch (ipha->ipha_protocol) { 15570 case IPPROTO_ICMP: { 15571 ire_t *ire_zone; 15572 ilm_t *ilm; 15573 mblk_t *mp1; 15574 zoneid_t last_zoneid; 15575 15576 if (CLASSD(ipha->ipha_dst) && 15577 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 15578 ASSERT(ire->ire_type == IRE_BROADCAST); 15579 /* 15580 * In the multicast case, applications may have joined 15581 * the group from different zones, so we need to deliver 15582 * the packet to each of them. Loop through the 15583 * multicast memberships structures (ilm) on the receive 15584 * ill and send a copy of the packet up each matching 15585 * one. However, we don't do this for multicasts sent on 15586 * the loopback interface (PHYI_LOOPBACK flag set) as 15587 * they must stay in the sender's zone. 15588 * 15589 * ilm_add_v6() ensures that ilms in the same zone are 15590 * contiguous in the ill_ilm list. We use this property 15591 * to avoid sending duplicates needed when two 15592 * applications in the same zone join the same group on 15593 * different logical interfaces: we ignore the ilm if 15594 * its zoneid is the same as the last matching one. 15595 * In addition, the sending of the packet for 15596 * ire_zoneid is delayed until all of the other ilms 15597 * have been exhausted. 15598 */ 15599 last_zoneid = -1; 15600 ILM_WALKER_HOLD(recv_ill); 15601 for (ilm = recv_ill->ill_ilm; ilm != NULL; 15602 ilm = ilm->ilm_next) { 15603 if ((ilm->ilm_flags & ILM_DELETED) || 15604 ipha->ipha_dst != ilm->ilm_addr || 15605 ilm->ilm_zoneid == last_zoneid || 15606 ilm->ilm_zoneid == ire->ire_zoneid || 15607 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 15608 continue; 15609 mp1 = ip_copymsg(first_mp); 15610 if (mp1 == NULL) 15611 continue; 15612 icmp_inbound(q, mp1, B_TRUE, ill, 15613 0, sum, mctl_present, B_TRUE, 15614 recv_ill, ilm->ilm_zoneid); 15615 last_zoneid = ilm->ilm_zoneid; 15616 } 15617 ILM_WALKER_RELE(recv_ill); 15618 } else if (ire->ire_type == IRE_BROADCAST) { 15619 /* 15620 * In the broadcast case, there may be many zones 15621 * which need a copy of the packet delivered to them. 15622 * There is one IRE_BROADCAST per broadcast address 15623 * and per zone; we walk those using a helper function. 15624 * In addition, the sending of the packet for ire is 15625 * delayed until all of the other ires have been 15626 * processed. 15627 */ 15628 IRB_REFHOLD(ire->ire_bucket); 15629 ire_zone = NULL; 15630 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 15631 ire)) != NULL) { 15632 mp1 = ip_copymsg(first_mp); 15633 if (mp1 == NULL) 15634 continue; 15635 15636 UPDATE_IB_PKT_COUNT(ire_zone); 15637 ire_zone->ire_last_used_time = lbolt; 15638 icmp_inbound(q, mp1, B_TRUE, ill, 15639 0, sum, mctl_present, B_TRUE, 15640 recv_ill, ire_zone->ire_zoneid); 15641 } 15642 IRB_REFRELE(ire->ire_bucket); 15643 } 15644 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 15645 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 15646 ire->ire_zoneid); 15647 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15648 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 15649 return; 15650 } 15651 case IPPROTO_IGMP: 15652 /* 15653 * If we are not willing to accept IGMP packets in clear, 15654 * then check with global policy. 15655 */ 15656 if (igmp_accept_clear_messages == 0) { 15657 first_mp = ipsec_check_global_policy(first_mp, NULL, 15658 ipha, NULL, mctl_present); 15659 if (first_mp == NULL) 15660 return; 15661 } 15662 if (igmp_input(q, mp, ill)) { 15663 /* Bad packet - discarded by igmp_input */ 15664 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15665 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 15666 if (mctl_present) 15667 freeb(first_mp); 15668 return; 15669 } 15670 /* 15671 * igmp_input() may have pulled up the message so ipha needs to 15672 * be reinitialized. 15673 */ 15674 ipha = (ipha_t *)mp->b_rptr; 15675 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15676 /* No user-level listener for IGMP packets */ 15677 goto drop_pkt; 15678 } 15679 /* deliver to local raw users */ 15680 break; 15681 case IPPROTO_PIM: 15682 /* 15683 * If we are not willing to accept PIM packets in clear, 15684 * then check with global policy. 15685 */ 15686 if (pim_accept_clear_messages == 0) { 15687 first_mp = ipsec_check_global_policy(first_mp, NULL, 15688 ipha, NULL, mctl_present); 15689 if (first_mp == NULL) 15690 return; 15691 } 15692 if (pim_input(q, mp) != 0) { 15693 /* Bad packet - discarded by pim_input */ 15694 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15695 "ip_rput_locl_end: q %p (%S)", q, "pim"); 15696 if (mctl_present) 15697 freeb(first_mp); 15698 return; 15699 } 15700 15701 /* 15702 * pim_input() may have pulled up the message so ipha needs to 15703 * be reinitialized. 15704 */ 15705 ipha = (ipha_t *)mp->b_rptr; 15706 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 15707 /* No user-level listener for PIM packets */ 15708 goto drop_pkt; 15709 } 15710 /* deliver to local raw users */ 15711 break; 15712 case IPPROTO_ENCAP: 15713 /* 15714 * Handle self-encapsulated packets (IP-in-IP where 15715 * the inner addresses == the outer addresses). 15716 */ 15717 hdr_length = IPH_HDR_LENGTH(ipha); 15718 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 15719 mp->b_wptr) { 15720 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 15721 sizeof (ipha_t) - mp->b_rptr)) { 15722 BUMP_MIB(&ip_mib, ipInDiscards); 15723 freemsg(first_mp); 15724 return; 15725 } 15726 ipha = (ipha_t *)mp->b_rptr; 15727 } 15728 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 15729 /* 15730 * Check the sanity of the inner IP header. 15731 */ 15732 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 15733 BUMP_MIB(&ip_mib, ipInDiscards); 15734 freemsg(first_mp); 15735 return; 15736 } 15737 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 15738 BUMP_MIB(&ip_mib, ipInDiscards); 15739 freemsg(first_mp); 15740 return; 15741 } 15742 if (inner_ipha->ipha_src == ipha->ipha_src && 15743 inner_ipha->ipha_dst == ipha->ipha_dst) { 15744 ipsec_in_t *ii; 15745 15746 /* 15747 * Self-encapsulated tunnel packet. Remove 15748 * the outer IP header and fanout again. 15749 * We also need to make sure that the inner 15750 * header is pulled up until options. 15751 */ 15752 mp->b_rptr = (uchar_t *)inner_ipha; 15753 ipha = inner_ipha; 15754 hdr_length = IPH_HDR_LENGTH(ipha); 15755 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 15756 if (!pullupmsg(mp, (uchar_t *)ipha + 15757 + hdr_length - mp->b_rptr)) { 15758 freemsg(first_mp); 15759 return; 15760 } 15761 ipha = (ipha_t *)mp->b_rptr; 15762 } 15763 if (!mctl_present) { 15764 ASSERT(first_mp == mp); 15765 /* 15766 * This means that somebody is sending 15767 * Self-encapsualted packets without AH/ESP. 15768 * If AH/ESP was present, we would have already 15769 * allocated the first_mp. 15770 */ 15771 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 15772 NULL) { 15773 ip1dbg(("ip_proto_input: IPSEC_IN " 15774 "allocation failure.\n")); 15775 BUMP_MIB(&ip_mib, ipInDiscards); 15776 freemsg(mp); 15777 return; 15778 } 15779 first_mp->b_cont = mp; 15780 } 15781 /* 15782 * We generally store the ill_index if we need to 15783 * do IPSEC processing as we lose the ill queue when 15784 * we come back. But in this case, we never should 15785 * have to store the ill_index here as it should have 15786 * been stored previously when we processed the 15787 * AH/ESP header in this routine or for non-ipsec 15788 * cases, we still have the queue. But for some bad 15789 * packets from the wire, we can get to IPSEC after 15790 * this and we better store the index for that case. 15791 */ 15792 ill = (ill_t *)q->q_ptr; 15793 ii = (ipsec_in_t *)first_mp->b_rptr; 15794 ii->ipsec_in_ill_index = 15795 ill->ill_phyint->phyint_ifindex; 15796 ii->ipsec_in_rill_index = 15797 recv_ill->ill_phyint->phyint_ifindex; 15798 if (ii->ipsec_in_decaps) { 15799 /* 15800 * This packet is self-encapsulated multiple 15801 * times. We don't want to recurse infinitely. 15802 * To keep it simple, drop the packet. 15803 */ 15804 BUMP_MIB(&ip_mib, ipInDiscards); 15805 freemsg(first_mp); 15806 return; 15807 } 15808 ii->ipsec_in_decaps = B_TRUE; 15809 ip_proto_input(q, first_mp, ipha, ire, recv_ill); 15810 return; 15811 } 15812 break; 15813 case IPPROTO_AH: 15814 case IPPROTO_ESP: { 15815 /* 15816 * Fast path for AH/ESP. If this is the first time 15817 * we are sending a datagram to AH/ESP, allocate 15818 * a IPSEC_IN message and prepend it. Otherwise, 15819 * just fanout. 15820 */ 15821 15822 int ipsec_rc; 15823 ipsec_in_t *ii; 15824 15825 IP_STAT(ipsec_proto_ahesp); 15826 if (!mctl_present) { 15827 ASSERT(first_mp == mp); 15828 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 15829 ip1dbg(("ip_proto_input: IPSEC_IN " 15830 "allocation failure.\n")); 15831 freemsg(hada_mp); /* okay ifnull */ 15832 BUMP_MIB(&ip_mib, ipInDiscards); 15833 freemsg(mp); 15834 return; 15835 } 15836 /* 15837 * Store the ill_index so that when we come back 15838 * from IPSEC we ride on the same queue. 15839 */ 15840 ill = (ill_t *)q->q_ptr; 15841 ii = (ipsec_in_t *)first_mp->b_rptr; 15842 ii->ipsec_in_ill_index = 15843 ill->ill_phyint->phyint_ifindex; 15844 ii->ipsec_in_rill_index = 15845 recv_ill->ill_phyint->phyint_ifindex; 15846 first_mp->b_cont = mp; 15847 /* 15848 * Cache hardware acceleration info. 15849 */ 15850 if (hada_mp != NULL) { 15851 IPSECHW_DEBUG(IPSECHW_PKT, 15852 ("ip_rput_local: caching data attr.\n")); 15853 ii->ipsec_in_accelerated = B_TRUE; 15854 ii->ipsec_in_da = hada_mp; 15855 hada_mp = NULL; 15856 } 15857 } else { 15858 ii = (ipsec_in_t *)first_mp->b_rptr; 15859 } 15860 15861 if (!ipsec_loaded()) { 15862 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 15863 ire->ire_zoneid); 15864 return; 15865 } 15866 15867 /* select inbound SA and have IPsec process the pkt */ 15868 if (ipha->ipha_protocol == IPPROTO_ESP) { 15869 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 15870 if (esph == NULL) 15871 return; 15872 ASSERT(ii->ipsec_in_esp_sa != NULL); 15873 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 15874 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 15875 first_mp, esph); 15876 } else { 15877 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 15878 if (ah == NULL) 15879 return; 15880 ASSERT(ii->ipsec_in_ah_sa != NULL); 15881 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 15882 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 15883 first_mp, ah); 15884 } 15885 15886 switch (ipsec_rc) { 15887 case IPSEC_STATUS_SUCCESS: 15888 break; 15889 case IPSEC_STATUS_FAILED: 15890 BUMP_MIB(&ip_mib, ipInDiscards); 15891 /* FALLTHRU */ 15892 case IPSEC_STATUS_PENDING: 15893 return; 15894 } 15895 /* we're done with IPsec processing, send it up */ 15896 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 15897 return; 15898 } 15899 default: 15900 break; 15901 } 15902 /* 15903 * Handle protocols with which IP is less intimate. There 15904 * can be more than one stream bound to a particular 15905 * protocol. When this is the case, each one gets a copy 15906 * of any incoming packets. 15907 */ 15908 ip_fanout_proto(q, first_mp, ill, ipha, 15909 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 15910 B_TRUE, recv_ill, ire->ire_zoneid); 15911 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15912 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 15913 return; 15914 15915 drop_pkt: 15916 freemsg(first_mp); 15917 if (hada_mp != NULL) 15918 freeb(hada_mp); 15919 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 15920 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 15921 #undef rptr 15922 #undef iphs 15923 15924 } 15925 15926 /* 15927 * Update any source route, record route or timestamp options. 15928 * Check that we are at end of strict source route. 15929 * The options have already been checked for sanity in ip_rput_options(). 15930 */ 15931 static boolean_t 15932 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 15933 { 15934 ipoptp_t opts; 15935 uchar_t *opt; 15936 uint8_t optval; 15937 uint8_t optlen; 15938 ipaddr_t dst; 15939 uint32_t ts; 15940 ire_t *dst_ire; 15941 timestruc_t now; 15942 15943 ASSERT(ire->ire_ipversion == IPV4_VERSION); 15944 15945 ip2dbg(("ip_rput_local_options\n")); 15946 15947 for (optval = ipoptp_first(&opts, ipha); 15948 optval != IPOPT_EOL; 15949 optval = ipoptp_next(&opts)) { 15950 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 15951 opt = opts.ipoptp_cur; 15952 optlen = opts.ipoptp_len; 15953 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 15954 optval, optlen)); 15955 switch (optval) { 15956 uint32_t off; 15957 case IPOPT_SSRR: 15958 case IPOPT_LSRR: 15959 off = opt[IPOPT_OFFSET]; 15960 off--; 15961 if (optlen < IP_ADDR_LEN || 15962 off > optlen - IP_ADDR_LEN) { 15963 /* End of source route */ 15964 ip1dbg(("ip_rput_local_options: end of SR\n")); 15965 break; 15966 } 15967 /* 15968 * This will only happen if two consecutive entries 15969 * in the source route contains our address or if 15970 * it is a packet with a loose source route which 15971 * reaches us before consuming the whole source route 15972 */ 15973 ip1dbg(("ip_rput_local_options: not end of SR\n")); 15974 if (optval == IPOPT_SSRR) { 15975 goto bad_src_route; 15976 } 15977 /* 15978 * Hack: instead of dropping the packet truncate the 15979 * source route to what has been used by filling the 15980 * rest with IPOPT_NOP. 15981 */ 15982 opt[IPOPT_OLEN] = (uint8_t)off; 15983 while (off < optlen) { 15984 opt[off++] = IPOPT_NOP; 15985 } 15986 break; 15987 case IPOPT_RR: 15988 off = opt[IPOPT_OFFSET]; 15989 off--; 15990 if (optlen < IP_ADDR_LEN || 15991 off > optlen - IP_ADDR_LEN) { 15992 /* No more room - ignore */ 15993 ip1dbg(( 15994 "ip_rput_local_options: end of RR\n")); 15995 break; 15996 } 15997 bcopy(&ire->ire_src_addr, (char *)opt + off, 15998 IP_ADDR_LEN); 15999 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16000 break; 16001 case IPOPT_TS: 16002 /* Insert timestamp if there is romm */ 16003 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16004 case IPOPT_TS_TSONLY: 16005 off = IPOPT_TS_TIMELEN; 16006 break; 16007 case IPOPT_TS_PRESPEC: 16008 case IPOPT_TS_PRESPEC_RFC791: 16009 /* Verify that the address matched */ 16010 off = opt[IPOPT_OFFSET] - 1; 16011 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16012 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16013 NULL, ALL_ZONES, MATCH_IRE_TYPE); 16014 if (dst_ire == NULL) { 16015 /* Not for us */ 16016 break; 16017 } 16018 ire_refrele(dst_ire); 16019 /* FALLTHRU */ 16020 case IPOPT_TS_TSANDADDR: 16021 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16022 break; 16023 default: 16024 /* 16025 * ip_*put_options should have already 16026 * dropped this packet. 16027 */ 16028 cmn_err(CE_PANIC, "ip_rput_local_options: " 16029 "unknown IT - bug in ip_rput_options?\n"); 16030 return (B_TRUE); /* Keep "lint" happy */ 16031 } 16032 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16033 /* Increase overflow counter */ 16034 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16035 opt[IPOPT_POS_OV_FLG] = 16036 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16037 (off << 4)); 16038 break; 16039 } 16040 off = opt[IPOPT_OFFSET] - 1; 16041 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16042 case IPOPT_TS_PRESPEC: 16043 case IPOPT_TS_PRESPEC_RFC791: 16044 case IPOPT_TS_TSANDADDR: 16045 bcopy(&ire->ire_src_addr, (char *)opt + off, 16046 IP_ADDR_LEN); 16047 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16048 /* FALLTHRU */ 16049 case IPOPT_TS_TSONLY: 16050 off = opt[IPOPT_OFFSET] - 1; 16051 /* Compute # of milliseconds since midnight */ 16052 gethrestime(&now); 16053 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16054 now.tv_nsec / (NANOSEC / MILLISEC); 16055 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16056 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16057 break; 16058 } 16059 break; 16060 } 16061 } 16062 return (B_TRUE); 16063 16064 bad_src_route: 16065 q = WR(q); 16066 /* make sure we clear any indication of a hardware checksum */ 16067 DB_CKSUMFLAGS(mp) = 0; 16068 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16069 return (B_FALSE); 16070 16071 } 16072 16073 /* 16074 * Process IP options in an inbound packet. If an option affects the 16075 * effective destination address, return the next hop address via dstp. 16076 * Returns -1 if something fails in which case an ICMP error has been sent 16077 * and mp freed. 16078 */ 16079 static int 16080 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 16081 { 16082 ipoptp_t opts; 16083 uchar_t *opt; 16084 uint8_t optval; 16085 uint8_t optlen; 16086 ipaddr_t dst; 16087 intptr_t code = 0; 16088 ire_t *ire = NULL; 16089 16090 ip2dbg(("ip_rput_options\n")); 16091 dst = ipha->ipha_dst; 16092 for (optval = ipoptp_first(&opts, ipha); 16093 optval != IPOPT_EOL; 16094 optval = ipoptp_next(&opts)) { 16095 opt = opts.ipoptp_cur; 16096 optlen = opts.ipoptp_len; 16097 ip2dbg(("ip_rput_options: opt %d, len %d\n", 16098 optval, optlen)); 16099 /* 16100 * Note: we need to verify the checksum before we 16101 * modify anything thus this routine only extracts the next 16102 * hop dst from any source route. 16103 */ 16104 switch (optval) { 16105 uint32_t off; 16106 case IPOPT_SSRR: 16107 case IPOPT_LSRR: 16108 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16109 ALL_ZONES, MATCH_IRE_TYPE); 16110 if (ire == NULL) { 16111 if (optval == IPOPT_SSRR) { 16112 ip1dbg(("ip_rput_options: not next" 16113 " strict source route 0x%x\n", 16114 ntohl(dst))); 16115 code = (char *)&ipha->ipha_dst - 16116 (char *)ipha; 16117 goto param_prob; /* RouterReq's */ 16118 } 16119 ip2dbg(("ip_rput_options: " 16120 "not next source route 0x%x\n", 16121 ntohl(dst))); 16122 break; 16123 } 16124 ire_refrele(ire); 16125 16126 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16127 ip1dbg(( 16128 "ip_rput_options: bad option offset\n")); 16129 code = (char *)&opt[IPOPT_OLEN] - 16130 (char *)ipha; 16131 goto param_prob; 16132 } 16133 off = opt[IPOPT_OFFSET]; 16134 off--; 16135 redo_srr: 16136 if (optlen < IP_ADDR_LEN || 16137 off > optlen - IP_ADDR_LEN) { 16138 /* End of source route */ 16139 ip1dbg(("ip_rput_options: end of SR\n")); 16140 break; 16141 } 16142 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16143 ip1dbg(("ip_rput_options: next hop 0x%x\n", 16144 ntohl(dst))); 16145 16146 /* 16147 * Check if our address is present more than 16148 * once as consecutive hops in source route. 16149 * XXX verify per-interface ip_forwarding 16150 * for source route? 16151 */ 16152 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 16153 ALL_ZONES, MATCH_IRE_TYPE); 16154 16155 if (ire != NULL) { 16156 ire_refrele(ire); 16157 off += IP_ADDR_LEN; 16158 goto redo_srr; 16159 } 16160 16161 if (dst == htonl(INADDR_LOOPBACK)) { 16162 ip1dbg(("ip_rput_options: loopback addr in " 16163 "source route!\n")); 16164 goto bad_src_route; 16165 } 16166 /* 16167 * For strict: verify that dst is directly 16168 * reachable. 16169 */ 16170 if (optval == IPOPT_SSRR) { 16171 ire = ire_ftable_lookup(dst, 0, 0, 16172 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 16173 MATCH_IRE_TYPE); 16174 if (ire == NULL) { 16175 ip1dbg(("ip_rput_options: SSRR not " 16176 "directly reachable: 0x%x\n", 16177 ntohl(dst))); 16178 goto bad_src_route; 16179 } 16180 ire_refrele(ire); 16181 } 16182 /* 16183 * Defer update of the offset and the record route 16184 * until the packet is forwarded. 16185 */ 16186 break; 16187 case IPOPT_RR: 16188 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16189 ip1dbg(( 16190 "ip_rput_options: bad option offset\n")); 16191 code = (char *)&opt[IPOPT_OLEN] - 16192 (char *)ipha; 16193 goto param_prob; 16194 } 16195 break; 16196 case IPOPT_TS: 16197 /* 16198 * Verify that length >= 5 and that there is either 16199 * room for another timestamp or that the overflow 16200 * counter is not maxed out. 16201 */ 16202 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 16203 if (optlen < IPOPT_MINLEN_IT) { 16204 goto param_prob; 16205 } 16206 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 16207 ip1dbg(( 16208 "ip_rput_options: bad option offset\n")); 16209 code = (char *)&opt[IPOPT_OFFSET] - 16210 (char *)ipha; 16211 goto param_prob; 16212 } 16213 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16214 case IPOPT_TS_TSONLY: 16215 off = IPOPT_TS_TIMELEN; 16216 break; 16217 case IPOPT_TS_TSANDADDR: 16218 case IPOPT_TS_PRESPEC: 16219 case IPOPT_TS_PRESPEC_RFC791: 16220 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16221 break; 16222 default: 16223 code = (char *)&opt[IPOPT_POS_OV_FLG] - 16224 (char *)ipha; 16225 goto param_prob; 16226 } 16227 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 16228 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 16229 /* 16230 * No room and the overflow counter is 15 16231 * already. 16232 */ 16233 goto param_prob; 16234 } 16235 break; 16236 } 16237 } 16238 16239 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 16240 *dstp = dst; 16241 return (0); 16242 } 16243 16244 ip1dbg(("ip_rput_options: error processing IP options.")); 16245 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 16246 16247 param_prob: 16248 q = WR(q); 16249 /* make sure we clear any indication of a hardware checksum */ 16250 DB_CKSUMFLAGS(mp) = 0; 16251 icmp_param_problem(q, mp, (uint8_t)code); 16252 return (-1); 16253 16254 bad_src_route: 16255 q = WR(q); 16256 /* make sure we clear any indication of a hardware checksum */ 16257 DB_CKSUMFLAGS(mp) = 0; 16258 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED); 16259 return (-1); 16260 } 16261 16262 /* 16263 * IP & ICMP info in >=14 msg's ... 16264 * - ip fixed part (mib2_ip_t) 16265 * - icmp fixed part (mib2_icmp_t) 16266 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 16267 * - ipRouteEntryTable (ip 21) all IPv4 IREs 16268 * - ipNetToMediaEntryTable (ip 22) IPv4 IREs for on-link destinations 16269 * - ip multicast membership (ip_member_t) 16270 * - ip multicast source filtering (ip_grpsrc_t) 16271 * - igmp fixed part (struct igmpstat) 16272 * - multicast routing stats (struct mrtstat) 16273 * - multicast routing vifs (array of struct vifctl) 16274 * - multicast routing routes (array of struct mfcctl) 16275 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 16276 * One per ill plus one generic 16277 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 16278 * One per ill plus one generic 16279 * - ipv6RouteEntry all IPv6 IREs 16280 * - ipv6NetToMediaEntry all Neighbor Cache entries 16281 * - ipv6AddrEntry all IPv6 ipifs 16282 * - ipv6 multicast membership (ipv6_member_t) 16283 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 16284 * 16285 * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not 16286 * already present. 16287 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part 16288 * already filled in by caller. 16289 * Return value of 0 indicates that no messages were sent and caller 16290 * should free mpctl. 16291 */ 16292 int 16293 ip_snmp_get(queue_t *q, mblk_t *mpctl) 16294 { 16295 16296 if (mpctl == NULL || mpctl->b_cont == NULL) { 16297 return (0); 16298 } 16299 16300 if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) { 16301 return (1); 16302 } 16303 16304 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 16305 return (1); 16306 } 16307 16308 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 16309 return (1); 16310 } 16311 16312 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 16313 return (1); 16314 } 16315 16316 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 16317 return (1); 16318 } 16319 16320 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 16321 return (1); 16322 } 16323 16324 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 16325 return (1); 16326 } 16327 16328 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 16329 return (1); 16330 } 16331 16332 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 16333 return (1); 16334 } 16335 16336 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 16337 return (1); 16338 } 16339 16340 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 16341 return (1); 16342 } 16343 16344 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 16345 return (1); 16346 } 16347 16348 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 16349 return (1); 16350 } 16351 16352 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 16353 return (1); 16354 } 16355 16356 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 16357 return (1); 16358 } 16359 16360 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 16361 return (1); 16362 } 16363 16364 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 16365 return (1); 16366 } 16367 freemsg(mpctl); 16368 return (1); 16369 } 16370 16371 16372 /* Get global IPv4 statistics */ 16373 static mblk_t * 16374 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl) 16375 { 16376 struct opthdr *optp; 16377 mblk_t *mp2ctl; 16378 16379 /* 16380 * make a copy of the original message 16381 */ 16382 mp2ctl = copymsg(mpctl); 16383 16384 /* fixed length IP structure... */ 16385 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16386 optp->level = MIB2_IP; 16387 optp->name = 0; 16388 SET_MIB(ip_mib.ipForwarding, 16389 (WE_ARE_FORWARDING ? 1 : 2)); 16390 SET_MIB(ip_mib.ipDefaultTTL, 16391 (uint32_t)ip_def_ttl); 16392 SET_MIB(ip_mib.ipReasmTimeout, 16393 ip_g_frag_timeout); 16394 SET_MIB(ip_mib.ipAddrEntrySize, 16395 sizeof (mib2_ipAddrEntry_t)); 16396 SET_MIB(ip_mib.ipRouteEntrySize, 16397 sizeof (mib2_ipRouteEntry_t)); 16398 SET_MIB(ip_mib.ipNetToMediaEntrySize, 16399 sizeof (mib2_ipNetToMediaEntry_t)); 16400 SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 16401 SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 16402 if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib, 16403 (int)sizeof (ip_mib))) { 16404 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 16405 (uint_t)sizeof (ip_mib))); 16406 } 16407 16408 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16409 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 16410 (int)optp->level, (int)optp->name, (int)optp->len)); 16411 qreply(q, mpctl); 16412 return (mp2ctl); 16413 } 16414 16415 /* Global IPv4 ICMP statistics */ 16416 static mblk_t * 16417 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 16418 { 16419 struct opthdr *optp; 16420 mblk_t *mp2ctl; 16421 16422 /* 16423 * Make a copy of the original message 16424 */ 16425 mp2ctl = copymsg(mpctl); 16426 16427 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16428 optp->level = MIB2_ICMP; 16429 optp->name = 0; 16430 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 16431 (int)sizeof (icmp_mib))) { 16432 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 16433 (uint_t)sizeof (icmp_mib))); 16434 } 16435 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16436 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 16437 (int)optp->level, (int)optp->name, (int)optp->len)); 16438 qreply(q, mpctl); 16439 return (mp2ctl); 16440 } 16441 16442 /* Global IPv4 IGMP statistics */ 16443 static mblk_t * 16444 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 16445 { 16446 struct opthdr *optp; 16447 mblk_t *mp2ctl; 16448 16449 /* 16450 * make a copy of the original message 16451 */ 16452 mp2ctl = copymsg(mpctl); 16453 16454 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16455 optp->level = EXPER_IGMP; 16456 optp->name = 0; 16457 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 16458 (int)sizeof (igmpstat))) { 16459 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 16460 (uint_t)sizeof (igmpstat))); 16461 } 16462 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16463 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 16464 (int)optp->level, (int)optp->name, (int)optp->len)); 16465 qreply(q, mpctl); 16466 return (mp2ctl); 16467 } 16468 16469 /* Global IPv4 Multicast Routing statistics */ 16470 static mblk_t * 16471 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 16472 { 16473 struct opthdr *optp; 16474 mblk_t *mp2ctl; 16475 16476 /* 16477 * make a copy of the original message 16478 */ 16479 mp2ctl = copymsg(mpctl); 16480 16481 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16482 optp->level = EXPER_DVMRP; 16483 optp->name = 0; 16484 if (!ip_mroute_stats(mpctl->b_cont)) { 16485 ip0dbg(("ip_mroute_stats: failed\n")); 16486 } 16487 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16488 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 16489 (int)optp->level, (int)optp->name, (int)optp->len)); 16490 qreply(q, mpctl); 16491 return (mp2ctl); 16492 } 16493 16494 /* IPv4 address information */ 16495 static mblk_t * 16496 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 16497 { 16498 struct opthdr *optp; 16499 mblk_t *mp2ctl; 16500 mblk_t *mp_tail = NULL; 16501 ill_t *ill; 16502 ipif_t *ipif; 16503 uint_t bitval; 16504 mib2_ipAddrEntry_t mae; 16505 zoneid_t zoneid; 16506 ill_walk_context_t ctx; 16507 16508 /* 16509 * make a copy of the original message 16510 */ 16511 mp2ctl = copymsg(mpctl); 16512 16513 /* ipAddrEntryTable */ 16514 16515 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16516 optp->level = MIB2_IP; 16517 optp->name = MIB2_IP_ADDR; 16518 zoneid = Q_TO_CONN(q)->conn_zoneid; 16519 16520 rw_enter(&ill_g_lock, RW_READER); 16521 ill = ILL_START_WALK_V4(&ctx); 16522 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16523 for (ipif = ill->ill_ipif; ipif != NULL; 16524 ipif = ipif->ipif_next) { 16525 if (ipif->ipif_zoneid != zoneid) 16526 continue; 16527 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16528 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16529 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16530 16531 (void) ipif_get_name(ipif, 16532 mae.ipAdEntIfIndex.o_bytes, 16533 OCTET_LENGTH); 16534 mae.ipAdEntIfIndex.o_length = 16535 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 16536 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 16537 mae.ipAdEntNetMask = ipif->ipif_net_mask; 16538 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 16539 mae.ipAdEntInfo.ae_subnet_len = 16540 ip_mask_to_plen(ipif->ipif_net_mask); 16541 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 16542 for (bitval = 1; 16543 bitval && 16544 !(bitval & ipif->ipif_brd_addr); 16545 bitval <<= 1) 16546 noop; 16547 mae.ipAdEntBcastAddr = bitval; 16548 mae.ipAdEntReasmMaxSize = 65535; 16549 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 16550 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 16551 mae.ipAdEntInfo.ae_broadcast_addr = 16552 ipif->ipif_brd_addr; 16553 mae.ipAdEntInfo.ae_pp_dst_addr = 16554 ipif->ipif_pp_dst_addr; 16555 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 16556 ill->ill_flags | ill->ill_phyint->phyint_flags; 16557 16558 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16559 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 16560 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 16561 "allocate %u bytes\n", 16562 (uint_t)sizeof (mib2_ipAddrEntry_t))); 16563 } 16564 } 16565 } 16566 rw_exit(&ill_g_lock); 16567 16568 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16569 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 16570 (int)optp->level, (int)optp->name, (int)optp->len)); 16571 qreply(q, mpctl); 16572 return (mp2ctl); 16573 } 16574 16575 /* IPv6 address information */ 16576 static mblk_t * 16577 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 16578 { 16579 struct opthdr *optp; 16580 mblk_t *mp2ctl; 16581 mblk_t *mp_tail = NULL; 16582 ill_t *ill; 16583 ipif_t *ipif; 16584 mib2_ipv6AddrEntry_t mae6; 16585 zoneid_t zoneid; 16586 ill_walk_context_t ctx; 16587 16588 /* 16589 * make a copy of the original message 16590 */ 16591 mp2ctl = copymsg(mpctl); 16592 16593 /* ipv6AddrEntryTable */ 16594 16595 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16596 optp->level = MIB2_IP6; 16597 optp->name = MIB2_IP6_ADDR; 16598 zoneid = Q_TO_CONN(q)->conn_zoneid; 16599 16600 rw_enter(&ill_g_lock, RW_READER); 16601 ill = ILL_START_WALK_V6(&ctx); 16602 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16603 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 16604 if (ipif->ipif_zoneid != zoneid) 16605 continue; 16606 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 16607 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 16608 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 16609 16610 (void) ipif_get_name(ipif, 16611 mae6.ipv6AddrIfIndex.o_bytes, 16612 OCTET_LENGTH); 16613 mae6.ipv6AddrIfIndex.o_length = 16614 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 16615 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 16616 mae6.ipv6AddrPfxLength = 16617 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 16618 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 16619 mae6.ipv6AddrInfo.ae_subnet_len = 16620 mae6.ipv6AddrPfxLength; 16621 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 16622 16623 /* Type: stateless(1), stateful(2), unknown(3) */ 16624 if (ipif->ipif_flags & IPIF_ADDRCONF) 16625 mae6.ipv6AddrType = 1; 16626 else 16627 mae6.ipv6AddrType = 2; 16628 /* Anycast: true(1), false(2) */ 16629 if (ipif->ipif_flags & IPIF_ANYCAST) 16630 mae6.ipv6AddrAnycastFlag = 1; 16631 else 16632 mae6.ipv6AddrAnycastFlag = 2; 16633 16634 /* 16635 * Address status: preferred(1), deprecated(2), 16636 * invalid(3), inaccessible(4), unknown(5) 16637 */ 16638 if (ipif->ipif_flags & IPIF_NOLOCAL) 16639 mae6.ipv6AddrStatus = 3; 16640 else if (ipif->ipif_flags & IPIF_DEPRECATED) 16641 mae6.ipv6AddrStatus = 2; 16642 else 16643 mae6.ipv6AddrStatus = 1; 16644 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 16645 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 16646 mae6.ipv6AddrInfo.ae_pp_dst_addr = 16647 ipif->ipif_v6pp_dst_addr; 16648 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 16649 ill->ill_flags | ill->ill_phyint->phyint_flags; 16650 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16651 (char *)&mae6, 16652 (int)sizeof (mib2_ipv6AddrEntry_t))) { 16653 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 16654 "allocate %u bytes\n", 16655 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 16656 } 16657 } 16658 } 16659 rw_exit(&ill_g_lock); 16660 16661 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16662 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 16663 (int)optp->level, (int)optp->name, (int)optp->len)); 16664 qreply(q, mpctl); 16665 return (mp2ctl); 16666 } 16667 16668 /* IPv4 multicast group membership. */ 16669 static mblk_t * 16670 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 16671 { 16672 struct opthdr *optp; 16673 mblk_t *mp2ctl; 16674 ill_t *ill; 16675 ipif_t *ipif; 16676 ilm_t *ilm; 16677 ip_member_t ipm; 16678 mblk_t *mp_tail = NULL; 16679 ill_walk_context_t ctx; 16680 zoneid_t zoneid; 16681 16682 /* 16683 * make a copy of the original message 16684 */ 16685 mp2ctl = copymsg(mpctl); 16686 zoneid = Q_TO_CONN(q)->conn_zoneid; 16687 16688 /* ipGroupMember table */ 16689 optp = (struct opthdr *)&mpctl->b_rptr[ 16690 sizeof (struct T_optmgmt_ack)]; 16691 optp->level = MIB2_IP; 16692 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 16693 16694 rw_enter(&ill_g_lock, RW_READER); 16695 ill = ILL_START_WALK_V4(&ctx); 16696 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16697 ILM_WALKER_HOLD(ill); 16698 for (ipif = ill->ill_ipif; ipif != NULL; 16699 ipif = ipif->ipif_next) { 16700 if (ipif->ipif_zoneid != zoneid) 16701 continue; /* not this zone */ 16702 (void) ipif_get_name(ipif, 16703 ipm.ipGroupMemberIfIndex.o_bytes, 16704 OCTET_LENGTH); 16705 ipm.ipGroupMemberIfIndex.o_length = 16706 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 16707 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16708 ASSERT(ilm->ilm_ipif != NULL); 16709 ASSERT(ilm->ilm_ill == NULL); 16710 if (ilm->ilm_ipif != ipif) 16711 continue; 16712 ipm.ipGroupMemberAddress = ilm->ilm_addr; 16713 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 16714 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 16715 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16716 (char *)&ipm, (int)sizeof (ipm))) { 16717 ip1dbg(("ip_snmp_get_mib2_ip_group: " 16718 "failed to allocate %u bytes\n", 16719 (uint_t)sizeof (ipm))); 16720 } 16721 } 16722 } 16723 ILM_WALKER_RELE(ill); 16724 } 16725 rw_exit(&ill_g_lock); 16726 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16727 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16728 (int)optp->level, (int)optp->name, (int)optp->len)); 16729 qreply(q, mpctl); 16730 return (mp2ctl); 16731 } 16732 16733 /* IPv6 multicast group membership. */ 16734 static mblk_t * 16735 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 16736 { 16737 struct opthdr *optp; 16738 mblk_t *mp2ctl; 16739 ill_t *ill; 16740 ilm_t *ilm; 16741 ipv6_member_t ipm6; 16742 mblk_t *mp_tail = NULL; 16743 ill_walk_context_t ctx; 16744 zoneid_t zoneid; 16745 16746 /* 16747 * make a copy of the original message 16748 */ 16749 mp2ctl = copymsg(mpctl); 16750 zoneid = Q_TO_CONN(q)->conn_zoneid; 16751 16752 /* ip6GroupMember table */ 16753 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16754 optp->level = MIB2_IP6; 16755 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 16756 16757 rw_enter(&ill_g_lock, RW_READER); 16758 ill = ILL_START_WALK_V6(&ctx); 16759 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16760 ILM_WALKER_HOLD(ill); 16761 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 16762 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16763 ASSERT(ilm->ilm_ipif == NULL); 16764 ASSERT(ilm->ilm_ill != NULL); 16765 if (ilm->ilm_zoneid != zoneid) 16766 continue; /* not this zone */ 16767 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 16768 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 16769 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 16770 if (!snmp_append_data2(mpctl->b_cont, 16771 &mp_tail, 16772 (char *)&ipm6, (int)sizeof (ipm6))) { 16773 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 16774 "failed to allocate %u bytes\n", 16775 (uint_t)sizeof (ipm6))); 16776 } 16777 } 16778 ILM_WALKER_RELE(ill); 16779 } 16780 rw_exit(&ill_g_lock); 16781 16782 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16783 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16784 (int)optp->level, (int)optp->name, (int)optp->len)); 16785 qreply(q, mpctl); 16786 return (mp2ctl); 16787 } 16788 16789 /* IP multicast filtered sources */ 16790 static mblk_t * 16791 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 16792 { 16793 struct opthdr *optp; 16794 mblk_t *mp2ctl; 16795 ill_t *ill; 16796 ipif_t *ipif; 16797 ilm_t *ilm; 16798 ip_grpsrc_t ips; 16799 mblk_t *mp_tail = NULL; 16800 ill_walk_context_t ctx; 16801 zoneid_t zoneid; 16802 int i; 16803 slist_t *sl; 16804 16805 /* 16806 * make a copy of the original message 16807 */ 16808 mp2ctl = copymsg(mpctl); 16809 zoneid = Q_TO_CONN(q)->conn_zoneid; 16810 16811 /* ipGroupSource table */ 16812 optp = (struct opthdr *)&mpctl->b_rptr[ 16813 sizeof (struct T_optmgmt_ack)]; 16814 optp->level = MIB2_IP; 16815 optp->name = EXPER_IP_GROUP_SOURCES; 16816 16817 rw_enter(&ill_g_lock, RW_READER); 16818 ill = ILL_START_WALK_V4(&ctx); 16819 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16820 ILM_WALKER_HOLD(ill); 16821 for (ipif = ill->ill_ipif; ipif != NULL; 16822 ipif = ipif->ipif_next) { 16823 if (ipif->ipif_zoneid != zoneid) 16824 continue; /* not this zone */ 16825 (void) ipif_get_name(ipif, 16826 ips.ipGroupSourceIfIndex.o_bytes, 16827 OCTET_LENGTH); 16828 ips.ipGroupSourceIfIndex.o_length = 16829 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 16830 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16831 ASSERT(ilm->ilm_ipif != NULL); 16832 ASSERT(ilm->ilm_ill == NULL); 16833 sl = ilm->ilm_filter; 16834 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 16835 continue; 16836 ips.ipGroupSourceGroup = ilm->ilm_addr; 16837 for (i = 0; i < sl->sl_numsrc; i++) { 16838 if (!IN6_IS_ADDR_V4MAPPED( 16839 &sl->sl_addr[i])) 16840 continue; 16841 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 16842 ips.ipGroupSourceAddress); 16843 if (snmp_append_data2(mpctl->b_cont, 16844 &mp_tail, (char *)&ips, 16845 (int)sizeof (ips)) == 0) { 16846 ip1dbg(("ip_snmp_get_mib2_" 16847 "ip_group_src: failed to " 16848 "allocate %u bytes\n", 16849 (uint_t)sizeof (ips))); 16850 } 16851 } 16852 } 16853 } 16854 ILM_WALKER_RELE(ill); 16855 } 16856 rw_exit(&ill_g_lock); 16857 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16858 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16859 (int)optp->level, (int)optp->name, (int)optp->len)); 16860 qreply(q, mpctl); 16861 return (mp2ctl); 16862 } 16863 16864 /* IPv6 multicast filtered sources. */ 16865 static mblk_t * 16866 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 16867 { 16868 struct opthdr *optp; 16869 mblk_t *mp2ctl; 16870 ill_t *ill; 16871 ilm_t *ilm; 16872 ipv6_grpsrc_t ips6; 16873 mblk_t *mp_tail = NULL; 16874 ill_walk_context_t ctx; 16875 zoneid_t zoneid; 16876 int i; 16877 slist_t *sl; 16878 16879 /* 16880 * make a copy of the original message 16881 */ 16882 mp2ctl = copymsg(mpctl); 16883 zoneid = Q_TO_CONN(q)->conn_zoneid; 16884 16885 /* ip6GroupMember table */ 16886 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16887 optp->level = MIB2_IP6; 16888 optp->name = EXPER_IP6_GROUP_SOURCES; 16889 16890 rw_enter(&ill_g_lock, RW_READER); 16891 ill = ILL_START_WALK_V6(&ctx); 16892 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 16893 ILM_WALKER_HOLD(ill); 16894 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 16895 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 16896 ASSERT(ilm->ilm_ipif == NULL); 16897 ASSERT(ilm->ilm_ill != NULL); 16898 sl = ilm->ilm_filter; 16899 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 16900 continue; 16901 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 16902 for (i = 0; i < sl->sl_numsrc; i++) { 16903 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 16904 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 16905 (char *)&ips6, (int)sizeof (ips6))) { 16906 ip1dbg(("ip_snmp_get_mib2_ip6_" 16907 "group_src: failed to allocate " 16908 "%u bytes\n", 16909 (uint_t)sizeof (ips6))); 16910 } 16911 } 16912 } 16913 ILM_WALKER_RELE(ill); 16914 } 16915 rw_exit(&ill_g_lock); 16916 16917 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16918 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 16919 (int)optp->level, (int)optp->name, (int)optp->len)); 16920 qreply(q, mpctl); 16921 return (mp2ctl); 16922 } 16923 16924 /* Multicast routing virtual interface table. */ 16925 static mblk_t * 16926 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 16927 { 16928 struct opthdr *optp; 16929 mblk_t *mp2ctl; 16930 16931 /* 16932 * make a copy of the original message 16933 */ 16934 mp2ctl = copymsg(mpctl); 16935 16936 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16937 optp->level = EXPER_DVMRP; 16938 optp->name = EXPER_DVMRP_VIF; 16939 if (!ip_mroute_vif(mpctl->b_cont)) { 16940 ip0dbg(("ip_mroute_vif: failed\n")); 16941 } 16942 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16943 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 16944 (int)optp->level, (int)optp->name, (int)optp->len)); 16945 qreply(q, mpctl); 16946 return (mp2ctl); 16947 } 16948 16949 /* Multicast routing table. */ 16950 static mblk_t * 16951 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 16952 { 16953 struct opthdr *optp; 16954 mblk_t *mp2ctl; 16955 16956 /* 16957 * make a copy of the original message 16958 */ 16959 mp2ctl = copymsg(mpctl); 16960 16961 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16962 optp->level = EXPER_DVMRP; 16963 optp->name = EXPER_DVMRP_MRT; 16964 if (!ip_mroute_mrt(mpctl->b_cont)) { 16965 ip0dbg(("ip_mroute_mrt: failed\n")); 16966 } 16967 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 16968 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 16969 (int)optp->level, (int)optp->name, (int)optp->len)); 16970 qreply(q, mpctl); 16971 return (mp2ctl); 16972 } 16973 16974 /* 16975 * Return both ipRouteEntryTable, and ipNetToMediaEntryTable 16976 * in one IRE walk. 16977 */ 16978 static mblk_t * 16979 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 16980 { 16981 struct opthdr *optp; 16982 mblk_t *mp2ctl; /* Returned */ 16983 mblk_t *mp3ctl; /* nettomedia */ 16984 /* 16985 * We need two listptrs, for ipRouteEntryTable and 16986 * ipNetToMediaEntryTable to pass to ip_snmp_get2_v4() 16987 */ 16988 listptr_t re_ntme_v4[2]; 16989 zoneid_t zoneid; 16990 16991 /* 16992 * make a copy of the original message 16993 */ 16994 mp2ctl = copymsg(mpctl); 16995 mp3ctl = copymsg(mpctl); 16996 if (mp3ctl == NULL) { 16997 freemsg(mp2ctl); 16998 freemsg(mpctl); 16999 return (NULL); 17000 } 17001 17002 re_ntme_v4[0].lp_head = mpctl->b_cont; /* ipRouteEntryTable */ 17003 re_ntme_v4[1].lp_head = mp3ctl->b_cont; /* ipNetToMediaEntryTable */ 17004 /* 17005 * We assign NULL to tail ptrs as snmp_append_data2() will assign 17006 * proper values when called. 17007 */ 17008 re_ntme_v4[0].lp_tail = NULL; 17009 re_ntme_v4[1].lp_tail = NULL; 17010 17011 zoneid = Q_TO_CONN(q)->conn_zoneid; 17012 ire_walk_v4(ip_snmp_get2_v4, (char *)re_ntme_v4, zoneid); 17013 if (zoneid == GLOBAL_ZONEID) { 17014 /* 17015 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 17016 * the sys_net_config privilege, it can only run in the global 17017 * zone, so we don't display these IREs in the other zones. 17018 */ 17019 ire_walk_srcif_table_v4(ip_snmp_get2_v4, (char *)re_ntme_v4); 17020 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, (char *)re_ntme_v4, 17021 NULL); 17022 } 17023 17024 /* ipRouteEntryTable in mpctl */ 17025 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17026 optp->level = MIB2_IP; 17027 optp->name = MIB2_IP_ROUTE; 17028 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[0].lp_head); 17029 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17030 (int)optp->level, (int)optp->name, (int)optp->len)); 17031 qreply(q, mpctl); 17032 17033 /* ipNetToMediaEntryTable in mp3ctl */ 17034 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17035 optp->level = MIB2_IP; 17036 optp->name = MIB2_IP_MEDIA; 17037 optp->len = (t_uscalar_t)msgdsize(re_ntme_v4[1].lp_head); 17038 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 17039 (int)optp->level, (int)optp->name, (int)optp->len)); 17040 qreply(q, mp3ctl); 17041 return (mp2ctl); 17042 } 17043 17044 /* 17045 * Return both ipv6RouteEntryTable, and ipv6NetToMediaEntryTable 17046 * in one IRE walk. 17047 */ 17048 static mblk_t * 17049 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 17050 { 17051 struct opthdr *optp; 17052 mblk_t *mp2ctl; /* Returned */ 17053 mblk_t *mp3ctl; /* nettomedia */ 17054 listptr_t re_ntme_v6; 17055 zoneid_t zoneid; 17056 17057 /* 17058 * make a copy of the original message 17059 */ 17060 mp2ctl = copymsg(mpctl); 17061 mp3ctl = copymsg(mpctl); 17062 if (mp3ctl == NULL) { 17063 freemsg(mp2ctl); 17064 freemsg(mpctl); 17065 return (NULL); 17066 } 17067 17068 /* 17069 * We assign NULL to tail ptrs as snmp_append_data2() will assign 17070 * proper values when called. ipv6RouteEntryTable in is placed 17071 * in mpctl. 17072 */ 17073 re_ntme_v6.lp_head = mpctl->b_cont; /* ip6RouteEntryTable */ 17074 re_ntme_v6.lp_tail = NULL; 17075 zoneid = Q_TO_CONN(q)->conn_zoneid; 17076 ire_walk_v6(ip_snmp_get2_v6_route, (char *)&re_ntme_v6, zoneid); 17077 17078 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17079 optp->level = MIB2_IP6; 17080 optp->name = MIB2_IP6_ROUTE; 17081 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 17082 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17083 (int)optp->level, (int)optp->name, (int)optp->len)); 17084 qreply(q, mpctl); 17085 17086 /* ipv6NetToMediaEntryTable in mp3ctl */ 17087 re_ntme_v6.lp_head = mp3ctl->b_cont; /* ip6NetToMediaEntryTable */ 17088 re_ntme_v6.lp_tail = NULL; 17089 ndp_walk(NULL, ip_snmp_get2_v6_media, (uchar_t *)&re_ntme_v6); 17090 17091 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17092 optp->level = MIB2_IP6; 17093 optp->name = MIB2_IP6_MEDIA; 17094 optp->len = (t_uscalar_t)msgdsize(re_ntme_v6.lp_head); 17095 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 17096 (int)optp->level, (int)optp->name, (int)optp->len)); 17097 qreply(q, mp3ctl); 17098 return (mp2ctl); 17099 } 17100 17101 /* 17102 * ICMPv6 mib: One per ill 17103 */ 17104 static mblk_t * 17105 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 17106 { 17107 struct opthdr *optp; 17108 mblk_t *mp2ctl; 17109 ill_t *ill; 17110 ill_walk_context_t ctx; 17111 mblk_t *mp_tail = NULL; 17112 17113 /* 17114 * Make a copy of the original message 17115 */ 17116 mp2ctl = copymsg(mpctl); 17117 17118 /* fixed length IPv6 structure ... */ 17119 17120 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17121 optp->level = MIB2_IP6; 17122 optp->name = 0; 17123 /* Include "unknown interface" ip6_mib */ 17124 ip6_mib.ipv6IfIndex = 0; /* Flag to netstat */ 17125 SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2); 17126 SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops); 17127 SET_MIB(ip6_mib.ipv6IfStatsEntrySize, 17128 sizeof (mib2_ipv6IfStatsEntry_t)); 17129 SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 17130 SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); 17131 SET_MIB(ip6_mib.ipv6NetToMediaEntrySize, 17132 sizeof (mib2_ipv6NetToMediaEntry_t)); 17133 SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t)); 17134 SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 17135 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 17136 (int)sizeof (ip6_mib))) { 17137 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 17138 (uint_t)sizeof (ip6_mib))); 17139 } 17140 17141 rw_enter(&ill_g_lock, RW_READER); 17142 ill = ILL_START_WALK_V6(&ctx); 17143 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17144 ill->ill_ip6_mib->ipv6IfIndex = 17145 ill->ill_phyint->phyint_ifindex; 17146 SET_MIB(ill->ill_ip6_mib->ipv6Forwarding, 17147 ipv6_forward ? 1 : 2); 17148 SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit, 17149 ill->ill_max_hops); 17150 SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize, 17151 sizeof (mib2_ipv6IfStatsEntry_t)); 17152 SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize, 17153 sizeof (mib2_ipv6AddrEntry_t)); 17154 SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize, 17155 sizeof (mib2_ipv6RouteEntry_t)); 17156 SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize, 17157 sizeof (mib2_ipv6NetToMediaEntry_t)); 17158 SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize, 17159 sizeof (ipv6_member_t)); 17160 17161 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17162 (char *)ill->ill_ip6_mib, 17163 (int)sizeof (*ill->ill_ip6_mib))) { 17164 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 17165 "%u bytes\n", 17166 (uint_t)sizeof (*ill->ill_ip6_mib))); 17167 } 17168 } 17169 rw_exit(&ill_g_lock); 17170 17171 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17172 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 17173 (int)optp->level, (int)optp->name, (int)optp->len)); 17174 qreply(q, mpctl); 17175 return (mp2ctl); 17176 } 17177 17178 /* 17179 * ICMPv6 mib: One per ill 17180 */ 17181 static mblk_t * 17182 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 17183 { 17184 struct opthdr *optp; 17185 mblk_t *mp2ctl; 17186 ill_t *ill; 17187 ill_walk_context_t ctx; 17188 mblk_t *mp_tail = NULL; 17189 /* 17190 * Make a copy of the original message 17191 */ 17192 mp2ctl = copymsg(mpctl); 17193 17194 /* fixed length ICMPv6 structure ... */ 17195 17196 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17197 optp->level = MIB2_ICMP6; 17198 optp->name = 0; 17199 /* Include "unknown interface" icmp6_mib */ 17200 icmp6_mib.ipv6IfIcmpIfIndex = 0; /* Flag to netstat */ 17201 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 17202 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 17203 (int)sizeof (icmp6_mib))) { 17204 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 17205 (uint_t)sizeof (icmp6_mib))); 17206 } 17207 17208 rw_enter(&ill_g_lock, RW_READER); 17209 ill = ILL_START_WALK_V6(&ctx); 17210 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17211 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 17212 ill->ill_phyint->phyint_ifindex; 17213 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 17214 sizeof (mib2_ipv6IfIcmpEntry_t); 17215 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17216 (char *)ill->ill_icmp6_mib, 17217 (int)sizeof (*ill->ill_icmp6_mib))) { 17218 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 17219 "%u bytes\n", 17220 (uint_t)sizeof (*ill->ill_icmp6_mib))); 17221 } 17222 } 17223 rw_exit(&ill_g_lock); 17224 17225 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17226 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 17227 (int)optp->level, (int)optp->name, (int)optp->len)); 17228 qreply(q, mpctl); 17229 return (mp2ctl); 17230 } 17231 17232 /* 17233 * ire_walk routine to create both ipRouteEntryTable and 17234 * ipNetToMediaEntryTable in one IRE walk 17235 */ 17236 static void 17237 ip_snmp_get2_v4(ire_t *ire, listptr_t re_ntme[]) 17238 { 17239 ill_t *ill; 17240 ipif_t *ipif; 17241 mblk_t *llmp; 17242 dl_unitdata_req_t *dlup; 17243 mib2_ipRouteEntry_t re; 17244 mib2_ipNetToMediaEntry_t ntme; 17245 ipaddr_t gw_addr; 17246 17247 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17248 17249 /* 17250 * Return all IRE types for route table... let caller pick and choose 17251 */ 17252 re.ipRouteDest = ire->ire_addr; 17253 ipif = ire->ire_ipif; 17254 re.ipRouteIfIndex.o_length = 0; 17255 if (ire->ire_type == IRE_CACHE) { 17256 ill = (ill_t *)ire->ire_stq->q_ptr; 17257 re.ipRouteIfIndex.o_length = 17258 ill->ill_name_length == 0 ? 0 : 17259 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17260 bcopy(ill->ill_name, re.ipRouteIfIndex.o_bytes, 17261 re.ipRouteIfIndex.o_length); 17262 } else if (ipif != NULL) { 17263 (void) ipif_get_name(ipif, re.ipRouteIfIndex.o_bytes, 17264 OCTET_LENGTH); 17265 re.ipRouteIfIndex.o_length = 17266 mi_strlen(re.ipRouteIfIndex.o_bytes); 17267 } 17268 re.ipRouteMetric1 = -1; 17269 re.ipRouteMetric2 = -1; 17270 re.ipRouteMetric3 = -1; 17271 re.ipRouteMetric4 = -1; 17272 17273 gw_addr = ire->ire_gateway_addr; 17274 17275 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 17276 re.ipRouteNextHop = ire->ire_src_addr; 17277 else 17278 re.ipRouteNextHop = gw_addr; 17279 /* indirect(4), direct(3), or invalid(2) */ 17280 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17281 re.ipRouteType = 2; 17282 else 17283 re.ipRouteType = (gw_addr != 0) ? 4 : 3; 17284 re.ipRouteProto = -1; 17285 re.ipRouteAge = gethrestime_sec() - ire->ire_create_time; 17286 re.ipRouteMask = ire->ire_mask; 17287 re.ipRouteMetric5 = -1; 17288 re.ipRouteInfo.re_max_frag = ire->ire_max_frag; 17289 re.ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 17290 re.ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17291 llmp = ire->ire_dlureq_mp; 17292 re.ipRouteInfo.re_ref = ire->ire_refcnt; 17293 re.ipRouteInfo.re_src_addr = ire->ire_src_addr; 17294 re.ipRouteInfo.re_ire_type = ire->ire_type; 17295 re.ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17296 re.ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17297 re.ipRouteInfo.re_flags = ire->ire_flags; 17298 re.ipRouteInfo.re_in_ill.o_length = 0; 17299 if (ire->ire_in_ill != NULL) { 17300 re.ipRouteInfo.re_in_ill.o_length = 17301 ire->ire_in_ill->ill_name_length == 0 ? 0 : 17302 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 17303 bcopy(ire->ire_in_ill->ill_name, 17304 re.ipRouteInfo.re_in_ill.o_bytes, 17305 re.ipRouteInfo.re_in_ill.o_length); 17306 } 17307 re.ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 17308 if (!snmp_append_data2(re_ntme[0].lp_head, &(re_ntme[0].lp_tail), 17309 (char *)&re, (int)sizeof (re))) { 17310 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17311 (uint_t)sizeof (re))); 17312 } 17313 17314 if (ire->ire_type != IRE_CACHE || gw_addr != 0) 17315 return; 17316 /* 17317 * only IRE_CACHE entries that are for a directly connected subnet 17318 * get appended to net -> phys addr table 17319 * (others in arp) 17320 */ 17321 ntme.ipNetToMediaIfIndex.o_length = 0; 17322 ill = ire_to_ill(ire); 17323 ASSERT(ill != NULL); 17324 ntme.ipNetToMediaIfIndex.o_length = 17325 ill->ill_name_length == 0 ? 0 : 17326 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17327 bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes, 17328 ntme.ipNetToMediaIfIndex.o_length); 17329 17330 ntme.ipNetToMediaPhysAddress.o_length = 0; 17331 if (llmp) { 17332 uchar_t *addr; 17333 17334 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 17335 /* Remove sap from address */ 17336 if (ill->ill_sap_length < 0) 17337 addr = llmp->b_rptr + dlup->dl_dest_addr_offset; 17338 else 17339 addr = llmp->b_rptr + dlup->dl_dest_addr_offset + 17340 ill->ill_sap_length; 17341 17342 ntme.ipNetToMediaPhysAddress.o_length = 17343 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 17344 bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes, 17345 ntme.ipNetToMediaPhysAddress.o_length); 17346 } 17347 ntme.ipNetToMediaNetAddress = ire->ire_addr; 17348 /* assume dynamic (may be changed in arp) */ 17349 ntme.ipNetToMediaType = 3; 17350 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t); 17351 bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 17352 ntme.ipNetToMediaInfo.ntm_mask.o_length); 17353 ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED; 17354 if (!snmp_append_data2(re_ntme[1].lp_head, &(re_ntme[1].lp_tail), 17355 (char *)&ntme, (int)sizeof (ntme))) { 17356 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 17357 (uint_t)sizeof (ntme))); 17358 } 17359 } 17360 17361 /* 17362 * ire_walk routine to create ipv6RouteEntryTable. 17363 */ 17364 static void 17365 ip_snmp_get2_v6_route(ire_t *ire, listptr_t *re_ntme) 17366 { 17367 ill_t *ill; 17368 ipif_t *ipif; 17369 mib2_ipv6RouteEntry_t re; 17370 in6_addr_t gw_addr_v6; 17371 17372 ASSERT(ire->ire_ipversion == IPV6_VERSION); 17373 17374 /* 17375 * Return all IRE types for route table... let caller pick and choose 17376 */ 17377 re.ipv6RouteDest = ire->ire_addr_v6; 17378 re.ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 17379 re.ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 17380 re.ipv6RouteIfIndex.o_length = 0; 17381 ipif = ire->ire_ipif; 17382 if (ire->ire_type == IRE_CACHE) { 17383 ill = (ill_t *)ire->ire_stq->q_ptr; 17384 re.ipv6RouteIfIndex.o_length = 17385 ill->ill_name_length == 0 ? 0 : 17386 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 17387 bcopy(ill->ill_name, re.ipv6RouteIfIndex.o_bytes, 17388 re.ipv6RouteIfIndex.o_length); 17389 } else if (ipif != NULL) { 17390 (void) ipif_get_name(ipif, re.ipv6RouteIfIndex.o_bytes, 17391 OCTET_LENGTH); 17392 re.ipv6RouteIfIndex.o_length = 17393 mi_strlen(re.ipv6RouteIfIndex.o_bytes); 17394 } 17395 17396 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 17397 17398 mutex_enter(&ire->ire_lock); 17399 gw_addr_v6 = ire->ire_gateway_addr_v6; 17400 mutex_exit(&ire->ire_lock); 17401 17402 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 17403 re.ipv6RouteNextHop = ire->ire_src_addr_v6; 17404 else 17405 re.ipv6RouteNextHop = gw_addr_v6; 17406 17407 /* remote(4), local(3), or discard(2) */ 17408 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 17409 re.ipv6RouteType = 2; 17410 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 17411 re.ipv6RouteType = 3; 17412 else 17413 re.ipv6RouteType = 4; 17414 17415 re.ipv6RouteProtocol = -1; 17416 re.ipv6RoutePolicy = 0; 17417 re.ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 17418 re.ipv6RouteNextHopRDI = 0; 17419 re.ipv6RouteWeight = 0; 17420 re.ipv6RouteMetric = 0; 17421 re.ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 17422 re.ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 17423 re.ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 17424 re.ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 17425 re.ipv6RouteInfo.re_ire_type = ire->ire_type; 17426 re.ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 17427 re.ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 17428 re.ipv6RouteInfo.re_ref = ire->ire_refcnt; 17429 re.ipv6RouteInfo.re_flags = ire->ire_flags; 17430 17431 if (!snmp_append_data2(re_ntme->lp_head, &(re_ntme->lp_tail), 17432 (char *)&re, (int)sizeof (re))) { 17433 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 17434 (uint_t)sizeof (re))); 17435 } 17436 } 17437 17438 /* 17439 * ndp_walk routine to create ipv6NetToMediaEntryTable 17440 */ 17441 static int 17442 ip_snmp_get2_v6_media(nce_t *nce, listptr_t *re_ntme) 17443 { 17444 ill_t *ill; 17445 mib2_ipv6NetToMediaEntry_t ntme; 17446 dl_unitdata_req_t *dl; 17447 17448 ill = nce->nce_ill; 17449 ASSERT(ill->ill_isv6); 17450 17451 /* 17452 * Neighbor cache entry attached to IRE with on-link 17453 * destination. 17454 */ 17455 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 17456 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 17457 if ((ill->ill_flags & ILLF_XRESOLV) && 17458 (nce->nce_res_mp != NULL)) { 17459 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 17460 ntme.ipv6NetToMediaPhysAddress.o_length = 17461 dl->dl_dest_addr_length; 17462 } else { 17463 ntme.ipv6NetToMediaPhysAddress.o_length = 17464 ill->ill_phys_addr_length; 17465 } 17466 if (nce->nce_res_mp != NULL) { 17467 bcopy((char *)nce->nce_res_mp->b_rptr + 17468 NCE_LL_ADDR_OFFSET(ill), 17469 ntme.ipv6NetToMediaPhysAddress.o_bytes, 17470 ntme.ipv6NetToMediaPhysAddress.o_length); 17471 } else { 17472 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 17473 ill->ill_phys_addr_length); 17474 } 17475 /* 17476 * Note: Returns ND_* states. Should be: 17477 * reachable(1), stale(2), delay(3), probe(4), 17478 * invalid(5), unknown(6) 17479 */ 17480 ntme.ipv6NetToMediaState = nce->nce_state; 17481 ntme.ipv6NetToMediaLastUpdated = 0; 17482 17483 /* other(1), dynamic(2), static(3), local(4) */ 17484 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 17485 ntme.ipv6NetToMediaType = 4; 17486 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 17487 ntme.ipv6NetToMediaType = 1; 17488 } else { 17489 ntme.ipv6NetToMediaType = 2; 17490 } 17491 17492 if (!snmp_append_data2(re_ntme->lp_head, 17493 &(re_ntme->lp_tail), (char *)&ntme, (int)sizeof (ntme))) { 17494 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 17495 (uint_t)sizeof (ntme))); 17496 } 17497 return (0); 17498 } 17499 17500 /* 17501 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 17502 */ 17503 /* ARGSUSED */ 17504 int 17505 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 17506 { 17507 switch (level) { 17508 case MIB2_IP: 17509 case MIB2_ICMP: 17510 switch (name) { 17511 default: 17512 break; 17513 } 17514 return (1); 17515 default: 17516 return (1); 17517 } 17518 } 17519 17520 /* 17521 * Called before the options are updated to check if this packet will 17522 * be source routed from here. 17523 * This routine assumes that the options are well formed i.e. that they 17524 * have already been checked. 17525 */ 17526 static boolean_t 17527 ip_source_routed(ipha_t *ipha) 17528 { 17529 ipoptp_t opts; 17530 uchar_t *opt; 17531 uint8_t optval; 17532 uint8_t optlen; 17533 ipaddr_t dst; 17534 ire_t *ire; 17535 17536 if (IS_SIMPLE_IPH(ipha)) { 17537 ip2dbg(("not source routed\n")); 17538 return (B_FALSE); 17539 } 17540 dst = ipha->ipha_dst; 17541 for (optval = ipoptp_first(&opts, ipha); 17542 optval != IPOPT_EOL; 17543 optval = ipoptp_next(&opts)) { 17544 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17545 opt = opts.ipoptp_cur; 17546 optlen = opts.ipoptp_len; 17547 ip2dbg(("ip_source_routed: opt %d, len %d\n", 17548 optval, optlen)); 17549 switch (optval) { 17550 uint32_t off; 17551 case IPOPT_SSRR: 17552 case IPOPT_LSRR: 17553 /* 17554 * If dst is one of our addresses and there are some 17555 * entries left in the source route return (true). 17556 */ 17557 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17558 ALL_ZONES, MATCH_IRE_TYPE); 17559 if (ire == NULL) { 17560 ip2dbg(("ip_source_routed: not next" 17561 " source route 0x%x\n", 17562 ntohl(dst))); 17563 return (B_FALSE); 17564 } 17565 ire_refrele(ire); 17566 off = opt[IPOPT_OFFSET]; 17567 off--; 17568 if (optlen < IP_ADDR_LEN || 17569 off > optlen - IP_ADDR_LEN) { 17570 /* End of source route */ 17571 ip1dbg(("ip_source_routed: end of SR\n")); 17572 return (B_FALSE); 17573 } 17574 return (B_TRUE); 17575 } 17576 } 17577 ip2dbg(("not source routed\n")); 17578 return (B_FALSE); 17579 } 17580 17581 /* 17582 * Check if the packet contains any source route. 17583 */ 17584 static boolean_t 17585 ip_source_route_included(ipha_t *ipha) 17586 { 17587 ipoptp_t opts; 17588 uint8_t optval; 17589 17590 if (IS_SIMPLE_IPH(ipha)) 17591 return (B_FALSE); 17592 for (optval = ipoptp_first(&opts, ipha); 17593 optval != IPOPT_EOL; 17594 optval = ipoptp_next(&opts)) { 17595 switch (optval) { 17596 case IPOPT_SSRR: 17597 case IPOPT_LSRR: 17598 return (B_TRUE); 17599 } 17600 } 17601 return (B_FALSE); 17602 } 17603 17604 /* 17605 * Called when the IRE expiration timer fires. 17606 */ 17607 /* ARGSUSED */ 17608 void 17609 ip_trash_timer_expire(void *args) 17610 { 17611 int flush_flag = 0; 17612 17613 /* 17614 * ip_ire_expire_id is protected by ip_trash_timer_lock. 17615 * This lock makes sure that a new invocation of this function 17616 * that occurs due to an almost immediate timer firing will not 17617 * progress beyond this point until the current invocation is done 17618 */ 17619 mutex_enter(&ip_trash_timer_lock); 17620 ip_ire_expire_id = 0; 17621 mutex_exit(&ip_trash_timer_lock); 17622 17623 /* Periodic timer */ 17624 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 17625 /* 17626 * Remove all IRE_CACHE entries since they might 17627 * contain arp information. 17628 */ 17629 flush_flag |= FLUSH_ARP_TIME; 17630 ip_ire_arp_time_elapsed = 0; 17631 IP_STAT(ip_ire_arp_timer_expired); 17632 } 17633 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 17634 /* Remove all redirects */ 17635 flush_flag |= FLUSH_REDIRECT_TIME; 17636 ip_ire_rd_time_elapsed = 0; 17637 IP_STAT(ip_ire_redirect_timer_expired); 17638 } 17639 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 17640 /* Increase path mtu */ 17641 flush_flag |= FLUSH_MTU_TIME; 17642 ip_ire_pmtu_time_elapsed = 0; 17643 IP_STAT(ip_ire_pmtu_timer_expired); 17644 } 17645 if (flush_flag != 0) { 17646 /* Walk all IPv4 IRE's and update them */ 17647 ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag, 17648 ALL_ZONES); 17649 } 17650 if (flush_flag & FLUSH_MTU_TIME) { 17651 /* 17652 * Walk all IPv6 IRE's and update them 17653 * Note that ARP and redirect timers are not 17654 * needed since NUD handles stale entries. 17655 */ 17656 flush_flag = FLUSH_MTU_TIME; 17657 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 17658 ALL_ZONES); 17659 } 17660 17661 ip_ire_arp_time_elapsed += ip_timer_interval; 17662 ip_ire_rd_time_elapsed += ip_timer_interval; 17663 ip_ire_pmtu_time_elapsed += ip_timer_interval; 17664 17665 /* 17666 * Hold the lock to serialize timeout calls and prevent 17667 * stale values in ip_ire_expire_id. Otherwise it is possible 17668 * for the timer to fire and a new invocation of this function 17669 * to start before the return value of timeout has been stored 17670 * in ip_ire_expire_id by the current invocation. 17671 */ 17672 mutex_enter(&ip_trash_timer_lock); 17673 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 17674 MSEC_TO_TICK(ip_timer_interval)); 17675 mutex_exit(&ip_trash_timer_lock); 17676 } 17677 17678 /* 17679 * Called by the memory allocator subsystem directly, when the system 17680 * is running low on memory. 17681 */ 17682 /* ARGSUSED */ 17683 void 17684 ip_trash_ire_reclaim(void *args) 17685 { 17686 ire_cache_count_t icc; 17687 ire_cache_reclaim_t icr; 17688 ncc_cache_count_t ncc; 17689 nce_cache_reclaim_t ncr; 17690 uint_t delete_cnt; 17691 /* 17692 * Memory reclaim call back. 17693 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 17694 * Then, with a target of freeing 1/Nth of IRE_CACHE 17695 * entries, determine what fraction to free for 17696 * each category of IRE_CACHE entries giving absolute priority 17697 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 17698 * entry will be freed unless all offlink entries are freed). 17699 */ 17700 icc.icc_total = 0; 17701 icc.icc_unused = 0; 17702 icc.icc_offlink = 0; 17703 icc.icc_pmtu = 0; 17704 icc.icc_onlink = 0; 17705 ire_walk(ire_cache_count, (char *)&icc); 17706 17707 /* 17708 * Free NCEs for IPv6 like the onlink ires. 17709 */ 17710 ncc.ncc_total = 0; 17711 ncc.ncc_host = 0; 17712 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 17713 17714 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 17715 icc.icc_pmtu + icc.icc_onlink); 17716 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 17717 IP_STAT(ip_trash_ire_reclaim_calls); 17718 if (delete_cnt == 0) 17719 return; 17720 IP_STAT(ip_trash_ire_reclaim_success); 17721 /* Always delete all unused offlink entries */ 17722 icr.icr_unused = 1; 17723 if (delete_cnt <= icc.icc_unused) { 17724 /* 17725 * Only need to free unused entries. In other words, 17726 * there are enough unused entries to free to meet our 17727 * target number of freed ire cache entries. 17728 */ 17729 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 17730 ncr.ncr_host = 0; 17731 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 17732 /* 17733 * Only need to free unused entries, plus a fraction of offlink 17734 * entries. It follows from the first if statement that 17735 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 17736 */ 17737 delete_cnt -= icc.icc_unused; 17738 /* Round up # deleted by truncating fraction */ 17739 icr.icr_offlink = icc.icc_offlink / delete_cnt; 17740 icr.icr_pmtu = icr.icr_onlink = 0; 17741 ncr.ncr_host = 0; 17742 } else if (delete_cnt <= 17743 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 17744 /* 17745 * Free all unused and offlink entries, plus a fraction of 17746 * pmtu entries. It follows from the previous if statement 17747 * that icc_pmtu is non-zero, and that 17748 * delete_cnt != icc_unused + icc_offlink. 17749 */ 17750 icr.icr_offlink = 1; 17751 delete_cnt -= icc.icc_unused + icc.icc_offlink; 17752 /* Round up # deleted by truncating fraction */ 17753 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 17754 icr.icr_onlink = 0; 17755 ncr.ncr_host = 0; 17756 } else { 17757 /* 17758 * Free all unused, offlink, and pmtu entries, plus a fraction 17759 * of onlink entries. If we're here, then we know that 17760 * icc_onlink is non-zero, and that 17761 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 17762 */ 17763 icr.icr_offlink = icr.icr_pmtu = 1; 17764 delete_cnt -= icc.icc_unused + icc.icc_offlink + 17765 icc.icc_pmtu; 17766 /* Round up # deleted by truncating fraction */ 17767 icr.icr_onlink = icc.icc_onlink / delete_cnt; 17768 /* Using the same delete fraction as for onlink IREs */ 17769 ncr.ncr_host = ncc.ncc_host / delete_cnt; 17770 } 17771 #ifdef DEBUG 17772 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 17773 "fractions %d/%d/%d/%d\n", 17774 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 17775 icc.icc_unused, icc.icc_offlink, 17776 icc.icc_pmtu, icc.icc_onlink, 17777 icr.icr_unused, icr.icr_offlink, 17778 icr.icr_pmtu, icr.icr_onlink)); 17779 #endif 17780 ire_walk(ire_cache_reclaim, (char *)&icr); 17781 if (ncr.ncr_host != 0) 17782 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 17783 (uchar_t *)&ncr); 17784 #ifdef DEBUG 17785 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 17786 icc.icc_pmtu = 0; icc.icc_onlink = 0; 17787 ire_walk(ire_cache_count, (char *)&icc); 17788 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 17789 icc.icc_total, icc.icc_unused, icc.icc_offlink, 17790 icc.icc_pmtu, icc.icc_onlink)); 17791 #endif 17792 } 17793 17794 /* 17795 * ip_unbind is called when a copy of an unbind request is received from the 17796 * upper level protocol. We remove this conn from any fanout hash list it is 17797 * on, and zero out the bind information. No reply is expected up above. 17798 */ 17799 mblk_t * 17800 ip_unbind(queue_t *q, mblk_t *mp) 17801 { 17802 conn_t *connp = Q_TO_CONN(q); 17803 17804 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 17805 17806 ipcl_hash_remove(connp); 17807 17808 ASSERT(mp->b_cont == NULL); 17809 /* 17810 * Convert mp into a T_OK_ACK 17811 */ 17812 mp = mi_tpi_ok_ack_alloc(mp); 17813 17814 /* 17815 * should not happen in practice... T_OK_ACK is smaller than the 17816 * original message. 17817 */ 17818 if (mp == NULL) 17819 return (NULL); 17820 17821 /* 17822 * Don't bzero the ports if its TCP since TCP still needs the 17823 * lport to remove it from its own bind hash. TCP will do the 17824 * cleanup. 17825 */ 17826 if (!IPCL_IS_TCP(connp)) 17827 bzero(&connp->u_port, sizeof (connp->u_port)); 17828 17829 return (mp); 17830 } 17831 17832 /* 17833 * Write side put procedure. Outbound data, IOCTLs, responses from 17834 * resolvers, etc, come down through here. 17835 */ 17836 void 17837 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 17838 { 17839 conn_t *connp = NULL; 17840 queue_t *q = (queue_t *)arg2; 17841 ipha_t *ipha; 17842 #define rptr ((uchar_t *)ipha) 17843 ire_t *ire = NULL; 17844 ire_t *sctp_ire = NULL; 17845 uint32_t v_hlen_tos_len; 17846 ipaddr_t dst; 17847 mblk_t *first_mp = NULL; 17848 boolean_t mctl_present; 17849 ipsec_out_t *io; 17850 int match_flags; 17851 ill_t *attach_ill = NULL; 17852 /* Bind to IPIF_NOFAILOVER ill etc. */ 17853 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 17854 ipif_t *dst_ipif; 17855 boolean_t multirt_need_resolve = B_FALSE; 17856 mblk_t *copy_mp = NULL; 17857 int err; 17858 zoneid_t zoneid; 17859 boolean_t need_decref = B_FALSE; 17860 boolean_t ignore_dontroute = B_FALSE; 17861 boolean_t ignore_nexthop = B_FALSE; 17862 boolean_t ip_nexthop = B_FALSE; 17863 ipaddr_t nexthop_addr; 17864 17865 #ifdef _BIG_ENDIAN 17866 #define V_HLEN (v_hlen_tos_len >> 24) 17867 #else 17868 #define V_HLEN (v_hlen_tos_len & 0xFF) 17869 #endif 17870 17871 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 17872 "ip_wput_start: q %p", q); 17873 17874 /* 17875 * ip_wput fast path 17876 */ 17877 17878 /* is packet from ARP ? */ 17879 if (q->q_next != NULL) 17880 goto qnext; 17881 17882 connp = (conn_t *)arg; 17883 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 17884 17885 /* is queue flow controlled? */ 17886 if ((q->q_first != NULL || connp->conn_draining) && 17887 (caller == IP_WPUT)) { 17888 ASSERT(!need_decref); 17889 (void) putq(q, mp); 17890 return; 17891 } 17892 17893 /* Multidata transmit? */ 17894 if (DB_TYPE(mp) == M_MULTIDATA) { 17895 /* 17896 * We should never get here, since all Multidata messages 17897 * originating from tcp should have been directed over to 17898 * tcp_multisend() in the first place. 17899 */ 17900 BUMP_MIB(&ip_mib, ipOutDiscards); 17901 freemsg(mp); 17902 return; 17903 } else if (DB_TYPE(mp) != M_DATA) 17904 goto notdata; 17905 if (mp->b_flag & MSGHASREF) { 17906 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 17907 mp->b_flag &= ~MSGHASREF; 17908 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 17909 need_decref = B_TRUE; 17910 } 17911 ipha = (ipha_t *)mp->b_rptr; 17912 17913 /* is IP header non-aligned or mblk smaller than basic IP header */ 17914 #ifndef SAFETY_BEFORE_SPEED 17915 if (!OK_32PTR(rptr) || 17916 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 17917 goto hdrtoosmall; 17918 #endif 17919 17920 /* 17921 * If there is a policy, try to attach an ipsec_out in 17922 * the front. At the end, first_mp either points to a 17923 * M_DATA message or IPSEC_OUT message linked to a 17924 * M_DATA message. We have to do it now as we might 17925 * lose the "conn" if we go through ip_newroute. 17926 */ 17927 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 17928 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 17929 ipha->ipha_protocol)) == NULL)) { 17930 if (need_decref) 17931 CONN_DEC_REF(connp); 17932 return; 17933 } else { 17934 ASSERT(mp->b_datap->db_type == M_CTL); 17935 first_mp = mp; 17936 mp = mp->b_cont; 17937 mctl_present = B_TRUE; 17938 } 17939 } else { 17940 first_mp = mp; 17941 mctl_present = B_FALSE; 17942 } 17943 17944 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 17945 17946 /* is wrong version or IP options present */ 17947 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 17948 goto version_hdrlen_check; 17949 dst = ipha->ipha_dst; 17950 17951 if (connp->conn_nofailover_ill != NULL) { 17952 attach_ill = conn_get_held_ill(connp, 17953 &connp->conn_nofailover_ill, &err); 17954 if (err == ILL_LOOKUP_FAILED) { 17955 if (need_decref) 17956 CONN_DEC_REF(connp); 17957 freemsg(first_mp); 17958 return; 17959 } 17960 } 17961 17962 /* is packet multicast? */ 17963 if (CLASSD(dst)) 17964 goto multicast; 17965 17966 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 17967 (connp->conn_nexthop_set)) { 17968 /* 17969 * If the destination is a broadcast or a loopback 17970 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 17971 * through the standard path. But in the case of local 17972 * destination only SO_DONTROUTE and IP_NEXTHOP go through 17973 * the standard path not IP_XMIT_IF. 17974 */ 17975 ire = ire_cache_lookup(dst, zoneid); 17976 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 17977 (ire->ire_type != IRE_LOOPBACK))) { 17978 if ((connp->conn_dontroute || 17979 connp->conn_nexthop_set) && (ire != NULL) && 17980 (ire->ire_type == IRE_LOCAL)) 17981 goto standard_path; 17982 17983 if (ire != NULL) { 17984 ire_refrele(ire); 17985 /* No more access to ire */ 17986 ire = NULL; 17987 } 17988 /* 17989 * bypass routing checks and go directly to 17990 * interface. 17991 */ 17992 if (connp->conn_dontroute) { 17993 goto dontroute; 17994 } else if (connp->conn_nexthop_set) { 17995 ip_nexthop = B_TRUE; 17996 nexthop_addr = connp->conn_nexthop_v4; 17997 goto send_from_ill; 17998 } 17999 18000 /* 18001 * If IP_XMIT_IF socket option is set, 18002 * then we allow unicast and multicast 18003 * packets to go through the ill. It is 18004 * quite possible that the destination 18005 * is not in the ire cache table and we 18006 * do not want to go to ip_newroute() 18007 * instead we call ip_newroute_ipif. 18008 */ 18009 xmit_ill = conn_get_held_ill(connp, 18010 &connp->conn_xmit_if_ill, &err); 18011 if (err == ILL_LOOKUP_FAILED) { 18012 if (attach_ill != NULL) 18013 ill_refrele(attach_ill); 18014 if (need_decref) 18015 CONN_DEC_REF(connp); 18016 freemsg(first_mp); 18017 return; 18018 } 18019 goto send_from_ill; 18020 } 18021 standard_path: 18022 /* Must be a broadcast, a loopback or a local ire */ 18023 if (ire != NULL) { 18024 ire_refrele(ire); 18025 /* No more access to ire */ 18026 ire = NULL; 18027 } 18028 } 18029 18030 if (attach_ill != NULL) 18031 goto send_from_ill; 18032 18033 /* 18034 * We cache IRE_CACHEs to avoid lookups. We don't do 18035 * this for the tcp global queue and listen end point 18036 * as it does not really have a real destination to 18037 * talk to. This is also true for SCTP. 18038 */ 18039 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 18040 !connp->conn_fully_bound) { 18041 ire = ire_cache_lookup(dst, zoneid); 18042 if (ire == NULL) 18043 goto noirefound; 18044 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18045 "ip_wput_end: q %p (%S)", q, "end"); 18046 18047 /* 18048 * Check if the ire has the RTF_MULTIRT flag, inherited 18049 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18050 */ 18051 if (ire->ire_flags & RTF_MULTIRT) { 18052 18053 /* 18054 * Force the TTL of multirouted packets if required. 18055 * The TTL of such packets is bounded by the 18056 * ip_multirt_ttl ndd variable. 18057 */ 18058 if ((ip_multirt_ttl > 0) && 18059 (ipha->ipha_ttl > ip_multirt_ttl)) { 18060 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18061 "(was %d), dst 0x%08x\n", 18062 ip_multirt_ttl, ipha->ipha_ttl, 18063 ntohl(ire->ire_addr))); 18064 ipha->ipha_ttl = ip_multirt_ttl; 18065 } 18066 /* 18067 * We look at this point if there are pending 18068 * unresolved routes. ire_multirt_resolvable() 18069 * checks in O(n) that all IRE_OFFSUBNET ire 18070 * entries for the packet's destination and 18071 * flagged RTF_MULTIRT are currently resolved. 18072 * If some remain unresolved, we make a copy 18073 * of the current message. It will be used 18074 * to initiate additional route resolutions. 18075 */ 18076 multirt_need_resolve = 18077 ire_multirt_need_resolve(ire->ire_addr); 18078 ip2dbg(("ip_wput[TCP]: ire %p, " 18079 "multirt_need_resolve %d, first_mp %p\n", 18080 (void *)ire, multirt_need_resolve, 18081 (void *)first_mp)); 18082 if (multirt_need_resolve) { 18083 copy_mp = copymsg(first_mp); 18084 if (copy_mp != NULL) { 18085 MULTIRT_DEBUG_TAG(copy_mp); 18086 } 18087 } 18088 } 18089 18090 ip_wput_ire(q, first_mp, ire, connp, caller); 18091 18092 /* 18093 * Try to resolve another multiroute if 18094 * ire_multirt_need_resolve() deemed it necessary. 18095 */ 18096 if (copy_mp != NULL) { 18097 ip_newroute(q, copy_mp, dst, NULL, connp); 18098 } 18099 if (need_decref) 18100 CONN_DEC_REF(connp); 18101 return; 18102 } 18103 18104 /* 18105 * Access to conn_ire_cache. (protected by conn_lock) 18106 * 18107 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 18108 * the ire bucket lock here to check for CONDEMNED as it is okay to 18109 * send a packet or two with the IRE_CACHE that is going away. 18110 * Access to the ire requires an ire refhold on the ire prior to 18111 * its use since an interface unplumb thread may delete the cached 18112 * ire and release the refhold at any time. 18113 * 18114 * Caching an ire in the conn_ire_cache 18115 * 18116 * o Caching an ire pointer in the conn requires a strict check for 18117 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 18118 * ires before cleaning up the conns. So the caching of an ire pointer 18119 * in the conn is done after making sure under the bucket lock that the 18120 * ire has not yet been marked CONDEMNED. Otherwise we will end up 18121 * caching an ire after the unplumb thread has cleaned up the conn. 18122 * If the conn does not send a packet subsequently the unplumb thread 18123 * will be hanging waiting for the ire count to drop to zero. 18124 * 18125 * o We also need to atomically test for a null conn_ire_cache and 18126 * set the conn_ire_cache under the the protection of the conn_lock 18127 * to avoid races among concurrent threads trying to simultaneously 18128 * cache an ire in the conn_ire_cache. 18129 */ 18130 mutex_enter(&connp->conn_lock); 18131 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 18132 18133 if (ire != NULL && ire->ire_addr == dst && 18134 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18135 18136 IRE_REFHOLD(ire); 18137 mutex_exit(&connp->conn_lock); 18138 18139 } else { 18140 boolean_t cached = B_FALSE; 18141 connp->conn_ire_cache = NULL; 18142 mutex_exit(&connp->conn_lock); 18143 /* Release the old ire */ 18144 if (ire != NULL && sctp_ire == NULL) 18145 IRE_REFRELE_NOTR(ire); 18146 18147 ire = (ire_t *)ire_cache_lookup(dst, zoneid); 18148 if (ire == NULL) 18149 goto noirefound; 18150 IRE_REFHOLD_NOTR(ire); 18151 18152 mutex_enter(&connp->conn_lock); 18153 if (!(connp->conn_state_flags & CONN_CLOSING) && 18154 connp->conn_ire_cache == NULL) { 18155 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18156 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18157 connp->conn_ire_cache = ire; 18158 cached = B_TRUE; 18159 } 18160 rw_exit(&ire->ire_bucket->irb_lock); 18161 } 18162 mutex_exit(&connp->conn_lock); 18163 18164 /* 18165 * We can continue to use the ire but since it was 18166 * not cached, we should drop the extra reference. 18167 */ 18168 if (!cached) 18169 IRE_REFRELE_NOTR(ire); 18170 } 18171 18172 18173 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18174 "ip_wput_end: q %p (%S)", q, "end"); 18175 18176 /* 18177 * Check if the ire has the RTF_MULTIRT flag, inherited 18178 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 18179 */ 18180 if (ire->ire_flags & RTF_MULTIRT) { 18181 18182 /* 18183 * Force the TTL of multirouted packets if required. 18184 * The TTL of such packets is bounded by the 18185 * ip_multirt_ttl ndd variable. 18186 */ 18187 if ((ip_multirt_ttl > 0) && 18188 (ipha->ipha_ttl > ip_multirt_ttl)) { 18189 ip2dbg(("ip_wput: forcing multirt TTL to %d " 18190 "(was %d), dst 0x%08x\n", 18191 ip_multirt_ttl, ipha->ipha_ttl, 18192 ntohl(ire->ire_addr))); 18193 ipha->ipha_ttl = ip_multirt_ttl; 18194 } 18195 18196 /* 18197 * At this point, we check to see if there are any pending 18198 * unresolved routes. ire_multirt_resolvable() 18199 * checks in O(n) that all IRE_OFFSUBNET ire 18200 * entries for the packet's destination and 18201 * flagged RTF_MULTIRT are currently resolved. 18202 * If some remain unresolved, we make a copy 18203 * of the current message. It will be used 18204 * to initiate additional route resolutions. 18205 */ 18206 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 18207 ip2dbg(("ip_wput[not TCP]: ire %p, " 18208 "multirt_need_resolve %d, first_mp %p\n", 18209 (void *)ire, multirt_need_resolve, (void *)first_mp)); 18210 if (multirt_need_resolve) { 18211 copy_mp = copymsg(first_mp); 18212 if (copy_mp != NULL) { 18213 MULTIRT_DEBUG_TAG(copy_mp); 18214 } 18215 } 18216 } 18217 18218 ip_wput_ire(q, first_mp, ire, connp, caller); 18219 18220 /* 18221 * Try to resolve another multiroute if 18222 * ire_multirt_resolvable() deemed it necessary 18223 */ 18224 if (copy_mp != NULL) { 18225 ip_newroute(q, copy_mp, dst, NULL, connp); 18226 } 18227 if (need_decref) 18228 CONN_DEC_REF(connp); 18229 return; 18230 18231 qnext: 18232 /* 18233 * Upper Level Protocols pass down complete IP datagrams 18234 * as M_DATA messages. Everything else is a sideshow. 18235 * 18236 * 1) We could be re-entering ip_wput because of ip_neworute 18237 * in which case we could have a IPSEC_OUT message. We 18238 * need to pass through ip_wput like other datagrams and 18239 * hence cannot branch to ip_wput_nondata. 18240 * 18241 * 2) ARP, AH, ESP, and other clients who are on the module 18242 * instance of IP stream, give us something to deal with. 18243 * We will handle AH and ESP here and rest in ip_wput_nondata. 18244 * 18245 * 3) ICMP replies also could come here. 18246 */ 18247 if (DB_TYPE(mp) != M_DATA) { 18248 notdata: 18249 if (DB_TYPE(mp) == M_CTL) { 18250 /* 18251 * M_CTL messages are used by ARP, AH and ESP to 18252 * communicate with IP. We deal with IPSEC_IN and 18253 * IPSEC_OUT here. ip_wput_nondata handles other 18254 * cases. 18255 */ 18256 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 18257 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 18258 first_mp = mp->b_cont; 18259 first_mp->b_flag &= ~MSGHASREF; 18260 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 18261 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 18262 CONN_DEC_REF(connp); 18263 connp = NULL; 18264 } 18265 if (ii->ipsec_info_type == IPSEC_IN) { 18266 /* 18267 * Either this message goes back to 18268 * IPSEC for further processing or to 18269 * ULP after policy checks. 18270 */ 18271 ip_fanout_proto_again(mp, NULL, NULL, NULL); 18272 return; 18273 } else if (ii->ipsec_info_type == IPSEC_OUT) { 18274 io = (ipsec_out_t *)ii; 18275 if (io->ipsec_out_proc_begin) { 18276 /* 18277 * IPSEC processing has already started. 18278 * Complete it. 18279 * IPQoS notes: We don't care what is 18280 * in ipsec_out_ill_index since this 18281 * won't be processed for IPQoS policies 18282 * in ipsec_out_process. 18283 */ 18284 ipsec_out_process(q, mp, NULL, 18285 io->ipsec_out_ill_index); 18286 return; 18287 } else { 18288 connp = (q->q_next != NULL) ? 18289 NULL : Q_TO_CONN(q); 18290 first_mp = mp; 18291 mp = mp->b_cont; 18292 mctl_present = B_TRUE; 18293 } 18294 zoneid = io->ipsec_out_zoneid; 18295 ASSERT(zoneid != ALL_ZONES); 18296 } else if (ii->ipsec_info_type == IPSEC_CTL) { 18297 /* 18298 * It's an IPsec control message requesting 18299 * an SADB update to be sent to the IPsec 18300 * hardware acceleration capable ills. 18301 */ 18302 ipsec_ctl_t *ipsec_ctl = 18303 (ipsec_ctl_t *)mp->b_rptr; 18304 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 18305 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 18306 mblk_t *cmp = mp->b_cont; 18307 18308 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 18309 ASSERT(cmp != NULL); 18310 18311 freeb(mp); 18312 ill_ipsec_capab_send_all(satype, cmp, sa); 18313 return; 18314 } else { 18315 /* 18316 * This must be ARP. 18317 */ 18318 ip_wput_nondata(NULL, q, mp, NULL); 18319 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18320 "ip_wput_end: q %p (%S)", q, "nondata"); 18321 return; 18322 } 18323 } else { 18324 /* 18325 * This must be non-(ARP/AH/ESP) messages. 18326 */ 18327 ASSERT(!need_decref); 18328 ip_wput_nondata(NULL, q, mp, NULL); 18329 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18330 "ip_wput_end: q %p (%S)", q, "nondata"); 18331 return; 18332 } 18333 } else { 18334 first_mp = mp; 18335 mctl_present = B_FALSE; 18336 } 18337 18338 ASSERT(first_mp != NULL); 18339 /* 18340 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 18341 * to make sure that this packet goes out on the same interface it 18342 * came in. We handle that here. 18343 */ 18344 if (mctl_present) { 18345 uint_t ifindex; 18346 18347 io = (ipsec_out_t *)first_mp->b_rptr; 18348 if (io->ipsec_out_attach_if || 18349 io->ipsec_out_xmit_if || 18350 io->ipsec_out_ip_nexthop) { 18351 ill_t *ill; 18352 18353 /* 18354 * We may have lost the conn context if we are 18355 * coming here from ip_newroute(). Copy the 18356 * nexthop information. 18357 */ 18358 if (io->ipsec_out_ip_nexthop) { 18359 ip_nexthop = B_TRUE; 18360 nexthop_addr = io->ipsec_out_nexthop_addr; 18361 18362 ipha = (ipha_t *)mp->b_rptr; 18363 dst = ipha->ipha_dst; 18364 goto send_from_ill; 18365 } else { 18366 ASSERT(io->ipsec_out_ill_index != 0); 18367 ifindex = io->ipsec_out_ill_index; 18368 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 18369 NULL, NULL, NULL, NULL); 18370 /* 18371 * ipsec_out_xmit_if bit is used to tell 18372 * ip_wput to use the ill to send outgoing data 18373 * as we have no conn when data comes from ICMP 18374 * error msg routines. Currently this feature is 18375 * only used by ip_mrtun_forward routine. 18376 */ 18377 if (io->ipsec_out_xmit_if) { 18378 xmit_ill = ill; 18379 if (xmit_ill == NULL) { 18380 ip1dbg(("ip_output:bad ifindex " 18381 "for xmit_ill %d\n", 18382 ifindex)); 18383 freemsg(first_mp); 18384 BUMP_MIB(&ip_mib, 18385 ipOutDiscards); 18386 ASSERT(!need_decref); 18387 return; 18388 } 18389 /* Free up the ipsec_out_t mblk */ 18390 ASSERT(first_mp->b_cont == mp); 18391 first_mp->b_cont = NULL; 18392 freeb(first_mp); 18393 /* Just send the IP header+ICMP+data */ 18394 first_mp = mp; 18395 ipha = (ipha_t *)mp->b_rptr; 18396 dst = ipha->ipha_dst; 18397 goto send_from_ill; 18398 } else { 18399 attach_ill = ill; 18400 } 18401 18402 if (attach_ill == NULL) { 18403 ASSERT(xmit_ill == NULL); 18404 ip1dbg(("ip_output: bad ifindex for " 18405 "(BIND TO IPIF_NOFAILOVER) %d\n", 18406 ifindex)); 18407 freemsg(first_mp); 18408 BUMP_MIB(&ip_mib, ipOutDiscards); 18409 ASSERT(!need_decref); 18410 return; 18411 } 18412 } 18413 } 18414 } 18415 18416 ASSERT(xmit_ill == NULL); 18417 18418 /* We have a complete IP datagram heading outbound. */ 18419 ipha = (ipha_t *)mp->b_rptr; 18420 18421 #ifndef SPEED_BEFORE_SAFETY 18422 /* 18423 * Make sure we have a full-word aligned message and that at least 18424 * a simple IP header is accessible in the first message. If not, 18425 * try a pullup. 18426 */ 18427 if (!OK_32PTR(rptr) || 18428 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 18429 hdrtoosmall: 18430 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 18431 BUMP_MIB(&ip_mib, ipOutDiscards); 18432 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18433 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 18434 if (first_mp == NULL) 18435 first_mp = mp; 18436 goto drop_pkt; 18437 } 18438 ipha = (ipha_t *)mp->b_rptr; 18439 if (first_mp == NULL) { 18440 ASSERT(attach_ill == NULL && xmit_ill == NULL); 18441 /* 18442 * If we got here because of "goto hdrtoosmall" 18443 * We need to attach a IPSEC_OUT. 18444 */ 18445 if (connp->conn_out_enforce_policy) { 18446 if (((mp = ipsec_attach_ipsec_out(mp, connp, 18447 NULL, ipha->ipha_protocol)) == NULL)) { 18448 if (need_decref) 18449 CONN_DEC_REF(connp); 18450 return; 18451 } else { 18452 ASSERT(mp->b_datap->db_type == M_CTL); 18453 first_mp = mp; 18454 mp = mp->b_cont; 18455 mctl_present = B_TRUE; 18456 } 18457 } else { 18458 first_mp = mp; 18459 mctl_present = B_FALSE; 18460 } 18461 } 18462 } 18463 #endif 18464 18465 /* Most of the code below is written for speed, not readability */ 18466 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 18467 18468 /* 18469 * If ip_newroute() fails, we're going to need a full 18470 * header for the icmp wraparound. 18471 */ 18472 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 18473 uint_t v_hlen; 18474 version_hdrlen_check: 18475 ASSERT(first_mp != NULL); 18476 v_hlen = V_HLEN; 18477 /* 18478 * siphon off IPv6 packets coming down from transport 18479 * layer modules here. 18480 * Note: high-order bit carries NUD reachability confirmation 18481 */ 18482 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 18483 /* 18484 * XXX implement a IPv4 and IPv6 packet counter per 18485 * conn and switch when ratio exceeds e.g. 10:1 18486 */ 18487 #ifdef notyet 18488 if (q->q_next == NULL) /* Avoid ill queue */ 18489 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 18490 #endif 18491 BUMP_MIB(&ip_mib, ipOutIPv6); 18492 ASSERT(xmit_ill == NULL); 18493 if (attach_ill != NULL) 18494 ill_refrele(attach_ill); 18495 if (need_decref) 18496 mp->b_flag |= MSGHASREF; 18497 (void) ip_output_v6(connp, first_mp, q, caller); 18498 return; 18499 } 18500 18501 if ((v_hlen >> 4) != IP_VERSION) { 18502 BUMP_MIB(&ip_mib, ipOutDiscards); 18503 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18504 "ip_wput_end: q %p (%S)", q, "badvers"); 18505 goto drop_pkt; 18506 } 18507 /* 18508 * Is the header length at least 20 bytes? 18509 * 18510 * Are there enough bytes accessible in the header? If 18511 * not, try a pullup. 18512 */ 18513 v_hlen &= 0xF; 18514 v_hlen <<= 2; 18515 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 18516 BUMP_MIB(&ip_mib, ipOutDiscards); 18517 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18518 "ip_wput_end: q %p (%S)", q, "badlen"); 18519 goto drop_pkt; 18520 } 18521 if (v_hlen > (mp->b_wptr - rptr)) { 18522 if (!pullupmsg(mp, v_hlen)) { 18523 BUMP_MIB(&ip_mib, ipOutDiscards); 18524 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18525 "ip_wput_end: q %p (%S)", q, "badpullup2"); 18526 goto drop_pkt; 18527 } 18528 ipha = (ipha_t *)mp->b_rptr; 18529 } 18530 /* 18531 * Move first entry from any source route into ipha_dst and 18532 * verify the options 18533 */ 18534 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 18535 ASSERT(xmit_ill == NULL); 18536 if (attach_ill != NULL) 18537 ill_refrele(attach_ill); 18538 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18539 "ip_wput_end: q %p (%S)", q, "badopts"); 18540 if (need_decref) 18541 CONN_DEC_REF(connp); 18542 return; 18543 } 18544 } 18545 dst = ipha->ipha_dst; 18546 18547 /* 18548 * Try to get an IRE_CACHE for the destination address. If we can't, 18549 * we have to run the packet through ip_newroute which will take 18550 * the appropriate action to arrange for an IRE_CACHE, such as querying 18551 * a resolver, or assigning a default gateway, etc. 18552 */ 18553 if (CLASSD(dst)) { 18554 ipif_t *ipif; 18555 uint32_t setsrc = 0; 18556 18557 multicast: 18558 ASSERT(first_mp != NULL); 18559 ASSERT(xmit_ill == NULL); 18560 ip2dbg(("ip_wput: CLASSD\n")); 18561 if (connp == NULL) { 18562 /* 18563 * Use the first good ipif on the ill. 18564 * XXX Should this ever happen? (Appears 18565 * to show up with just ppp and no ethernet due 18566 * to in.rdisc.) 18567 * However, ire_send should be able to 18568 * call ip_wput_ire directly. 18569 * 18570 * XXX Also, this can happen for ICMP and other packets 18571 * with multicast source addresses. Perhaps we should 18572 * fix things so that we drop the packet in question, 18573 * but for now, just run with it. 18574 */ 18575 ill_t *ill = (ill_t *)q->q_ptr; 18576 18577 /* 18578 * Don't honor attach_if for this case. If ill 18579 * is part of the group, ipif could belong to 18580 * any ill and we cannot maintain attach_ill 18581 * and ipif_ill same anymore and the assert 18582 * below would fail. 18583 */ 18584 if (mctl_present) { 18585 io->ipsec_out_ill_index = 0; 18586 io->ipsec_out_attach_if = B_FALSE; 18587 ASSERT(attach_ill != NULL); 18588 ill_refrele(attach_ill); 18589 attach_ill = NULL; 18590 } 18591 18592 ASSERT(attach_ill == NULL); 18593 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 18594 if (ipif == NULL) { 18595 if (need_decref) 18596 CONN_DEC_REF(connp); 18597 freemsg(first_mp); 18598 return; 18599 } 18600 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 18601 ntohl(dst), ill->ill_name)); 18602 } else { 18603 /* 18604 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 18605 * IP_XMIT_IF is honoured. 18606 * Block comment above this function explains the 18607 * locking mechanism used here 18608 */ 18609 xmit_ill = conn_get_held_ill(connp, 18610 &connp->conn_xmit_if_ill, &err); 18611 if (err == ILL_LOOKUP_FAILED) { 18612 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 18613 goto drop_pkt; 18614 } 18615 if (xmit_ill == NULL) { 18616 ipif = conn_get_held_ipif(connp, 18617 &connp->conn_multicast_ipif, &err); 18618 if (err == IPIF_LOOKUP_FAILED) { 18619 ip1dbg(("ip_wput: No ipif for " 18620 "multicast\n")); 18621 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18622 goto drop_pkt; 18623 } 18624 } 18625 if (xmit_ill != NULL) { 18626 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18627 if (ipif == NULL) { 18628 ip1dbg(("ip_wput: No ipif for " 18629 "IP_XMIT_IF\n")); 18630 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18631 goto drop_pkt; 18632 } 18633 } else if (ipif == NULL || ipif->ipif_isv6) { 18634 /* 18635 * We must do this ipif determination here 18636 * else we could pass through ip_newroute 18637 * and come back here without the conn context. 18638 * 18639 * Note: we do late binding i.e. we bind to 18640 * the interface when the first packet is sent. 18641 * For performance reasons we do not rebind on 18642 * each packet but keep the binding until the 18643 * next IP_MULTICAST_IF option. 18644 * 18645 * conn_multicast_{ipif,ill} are shared between 18646 * IPv4 and IPv6 and AF_INET6 sockets can 18647 * send both IPv4 and IPv6 packets. Hence 18648 * we have to check that "isv6" matches above. 18649 */ 18650 if (ipif != NULL) 18651 ipif_refrele(ipif); 18652 ipif = ipif_lookup_group(dst, zoneid); 18653 if (ipif == NULL) { 18654 ip1dbg(("ip_wput: No ipif for " 18655 "multicast\n")); 18656 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18657 goto drop_pkt; 18658 } 18659 err = conn_set_held_ipif(connp, 18660 &connp->conn_multicast_ipif, ipif); 18661 if (err == IPIF_LOOKUP_FAILED) { 18662 ipif_refrele(ipif); 18663 ip1dbg(("ip_wput: No ipif for " 18664 "multicast\n")); 18665 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18666 goto drop_pkt; 18667 } 18668 } 18669 } 18670 ASSERT(!ipif->ipif_isv6); 18671 /* 18672 * As we may lose the conn by the time we reach ip_wput_ire, 18673 * we copy conn_multicast_loop and conn_dontroute on to an 18674 * ipsec_out. In case if this datagram goes out secure, 18675 * we need the ill_index also. Copy that also into the 18676 * ipsec_out. 18677 */ 18678 if (mctl_present) { 18679 io = (ipsec_out_t *)first_mp->b_rptr; 18680 ASSERT(first_mp->b_datap->db_type == M_CTL); 18681 ASSERT(io->ipsec_out_type == IPSEC_OUT); 18682 } else { 18683 ASSERT(mp == first_mp); 18684 if ((first_mp = allocb(sizeof (ipsec_info_t), 18685 BPRI_HI)) == NULL) { 18686 ipif_refrele(ipif); 18687 first_mp = mp; 18688 goto drop_pkt; 18689 } 18690 first_mp->b_datap->db_type = M_CTL; 18691 first_mp->b_wptr += sizeof (ipsec_info_t); 18692 /* ipsec_out_secure is B_FALSE now */ 18693 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 18694 io = (ipsec_out_t *)first_mp->b_rptr; 18695 io->ipsec_out_type = IPSEC_OUT; 18696 io->ipsec_out_len = sizeof (ipsec_out_t); 18697 io->ipsec_out_use_global_policy = B_TRUE; 18698 first_mp->b_cont = mp; 18699 mctl_present = B_TRUE; 18700 } 18701 if (attach_ill != NULL) { 18702 ASSERT(attach_ill == ipif->ipif_ill); 18703 match_flags = MATCH_IRE_ILL; 18704 18705 /* 18706 * Check if we need an ire that will not be 18707 * looked up by anybody else i.e. HIDDEN. 18708 */ 18709 if (ill_is_probeonly(attach_ill)) { 18710 match_flags |= MATCH_IRE_MARK_HIDDEN; 18711 } 18712 io->ipsec_out_ill_index = 18713 attach_ill->ill_phyint->phyint_ifindex; 18714 io->ipsec_out_attach_if = B_TRUE; 18715 } else { 18716 match_flags = MATCH_IRE_ILL_GROUP; 18717 io->ipsec_out_ill_index = 18718 ipif->ipif_ill->ill_phyint->phyint_ifindex; 18719 } 18720 if (connp != NULL) { 18721 io->ipsec_out_multicast_loop = 18722 connp->conn_multicast_loop; 18723 io->ipsec_out_dontroute = connp->conn_dontroute; 18724 io->ipsec_out_zoneid = connp->conn_zoneid; 18725 } 18726 /* 18727 * If the application uses IP_MULTICAST_IF with 18728 * different logical addresses of the same ILL, we 18729 * need to make sure that the soruce address of 18730 * the packet matches the logical IP address used 18731 * in the option. We do it by initializing ipha_src 18732 * here. This should keep IPSEC also happy as 18733 * when we return from IPSEC processing, we don't 18734 * have to worry about getting the right address on 18735 * the packet. Thus it is sufficient to look for 18736 * IRE_CACHE using MATCH_IRE_ILL rathen than 18737 * MATCH_IRE_IPIF. 18738 * 18739 * NOTE : We need to do it for non-secure case also as 18740 * this might go out secure if there is a global policy 18741 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 18742 * address, the source should be initialized already and 18743 * hence we won't be initializing here. 18744 * 18745 * As we do not have the ire yet, it is possible that 18746 * we set the source address here and then later discover 18747 * that the ire implies the source address to be assigned 18748 * through the RTF_SETSRC flag. 18749 * In that case, the setsrc variable will remind us 18750 * that overwritting the source address by the one 18751 * of the RTF_SETSRC-flagged ire is allowed. 18752 */ 18753 if (ipha->ipha_src == INADDR_ANY && 18754 (connp == NULL || !connp->conn_unspec_src)) { 18755 ipha->ipha_src = ipif->ipif_src_addr; 18756 setsrc = RTF_SETSRC; 18757 } 18758 /* 18759 * Find an IRE which matches the destination and the outgoing 18760 * queue (i.e. the outgoing interface.) 18761 * For loopback use a unicast IP address for 18762 * the ire lookup. 18763 */ 18764 if (ipif->ipif_ill->ill_phyint->phyint_flags & 18765 PHYI_LOOPBACK) { 18766 dst = ipif->ipif_lcl_addr; 18767 } 18768 /* 18769 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 18770 * We don't need to lookup ire in ctable as the packet 18771 * needs to be sent to the destination through the specified 18772 * ill irrespective of ires in the cache table. 18773 */ 18774 ire = NULL; 18775 if (xmit_ill == NULL) { 18776 ire = ire_ctable_lookup(dst, 0, 0, ipif, 18777 zoneid, match_flags); 18778 } 18779 18780 /* 18781 * refrele attach_ill as its not needed anymore. 18782 */ 18783 if (attach_ill != NULL) { 18784 ill_refrele(attach_ill); 18785 attach_ill = NULL; 18786 } 18787 18788 if (ire == NULL) { 18789 /* 18790 * Multicast loopback and multicast forwarding is 18791 * done in ip_wput_ire. 18792 * 18793 * Mark this packet to make it be delivered to 18794 * ip_wput_ire after the new ire has been 18795 * created. 18796 * 18797 * The call to ip_newroute_ipif takes into account 18798 * the setsrc reminder. In any case, we take care 18799 * of the RTF_MULTIRT flag. 18800 */ 18801 mp->b_prev = mp->b_next = NULL; 18802 if (xmit_ill == NULL || 18803 xmit_ill->ill_ipif_up_count > 0) { 18804 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 18805 setsrc | RTF_MULTIRT); 18806 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18807 "ip_wput_end: q %p (%S)", q, "noire"); 18808 } else { 18809 freemsg(first_mp); 18810 } 18811 ipif_refrele(ipif); 18812 if (xmit_ill != NULL) 18813 ill_refrele(xmit_ill); 18814 if (need_decref) 18815 CONN_DEC_REF(connp); 18816 return; 18817 } 18818 18819 ipif_refrele(ipif); 18820 ipif = NULL; 18821 ASSERT(xmit_ill == NULL); 18822 18823 /* 18824 * Honor the RTF_SETSRC flag for multicast packets, 18825 * if allowed by the setsrc reminder. 18826 */ 18827 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 18828 ipha->ipha_src = ire->ire_src_addr; 18829 } 18830 18831 /* 18832 * Unconditionally force the TTL to 1 for 18833 * multirouted multicast packets: 18834 * multirouted multicast should not cross 18835 * multicast routers. 18836 */ 18837 if (ire->ire_flags & RTF_MULTIRT) { 18838 if (ipha->ipha_ttl > 1) { 18839 ip2dbg(("ip_wput: forcing multicast " 18840 "multirt TTL to 1 (was %d), dst 0x%08x\n", 18841 ipha->ipha_ttl, ntohl(ire->ire_addr))); 18842 ipha->ipha_ttl = 1; 18843 } 18844 } 18845 } else { 18846 ire = ire_cache_lookup(dst, zoneid); 18847 if ((ire != NULL) && (ire->ire_type & 18848 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 18849 ignore_dontroute = B_TRUE; 18850 ignore_nexthop = B_TRUE; 18851 } 18852 if (ire != NULL) { 18853 ire_refrele(ire); 18854 ire = NULL; 18855 } 18856 /* 18857 * Guard against coming in from arp in which case conn is NULL. 18858 * Also guard against non M_DATA with dontroute set but 18859 * destined to local, loopback or broadcast addresses. 18860 */ 18861 if (connp != NULL && connp->conn_dontroute && 18862 !ignore_dontroute) { 18863 dontroute: 18864 /* 18865 * Set TTL to 1 if SO_DONTROUTE is set to prevent 18866 * routing protocols from seeing false direct 18867 * connectivity. 18868 */ 18869 ipha->ipha_ttl = 1; 18870 /* 18871 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 18872 * along with SO_DONTROUTE, higher precedence is 18873 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 18874 */ 18875 if (connp->conn_xmit_if_ill == NULL) { 18876 /* If suitable ipif not found, drop packet */ 18877 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 18878 if (dst_ipif == NULL) { 18879 ip1dbg(("ip_wput: no route for " 18880 "dst using SO_DONTROUTE\n")); 18881 BUMP_MIB(&ip_mib, ipOutNoRoutes); 18882 mp->b_prev = mp->b_next = NULL; 18883 if (first_mp == NULL) 18884 first_mp = mp; 18885 goto drop_pkt; 18886 } else { 18887 /* 18888 * If suitable ipif has been found, set 18889 * xmit_ill to the corresponding 18890 * ipif_ill because we'll be following 18891 * the IP_XMIT_IF logic. 18892 */ 18893 ASSERT(xmit_ill == NULL); 18894 xmit_ill = dst_ipif->ipif_ill; 18895 mutex_enter(&xmit_ill->ill_lock); 18896 if (!ILL_CAN_LOOKUP(xmit_ill)) { 18897 mutex_exit(&xmit_ill->ill_lock); 18898 xmit_ill = NULL; 18899 ipif_refrele(dst_ipif); 18900 ip1dbg(("ip_wput: no route for" 18901 " dst using" 18902 " SO_DONTROUTE\n")); 18903 BUMP_MIB(&ip_mib, 18904 ipOutNoRoutes); 18905 mp->b_prev = mp->b_next = NULL; 18906 if (first_mp == NULL) 18907 first_mp = mp; 18908 goto drop_pkt; 18909 } 18910 ill_refhold_locked(xmit_ill); 18911 mutex_exit(&xmit_ill->ill_lock); 18912 ipif_refrele(dst_ipif); 18913 } 18914 } 18915 18916 } 18917 /* 18918 * If we are bound to IPIF_NOFAILOVER address, look for 18919 * an IRE_CACHE matching the ill. 18920 */ 18921 send_from_ill: 18922 if (attach_ill != NULL) { 18923 ipif_t *attach_ipif; 18924 18925 match_flags = MATCH_IRE_ILL; 18926 18927 /* 18928 * Check if we need an ire that will not be 18929 * looked up by anybody else i.e. HIDDEN. 18930 */ 18931 if (ill_is_probeonly(attach_ill)) { 18932 match_flags |= MATCH_IRE_MARK_HIDDEN; 18933 } 18934 18935 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 18936 if (attach_ipif == NULL) { 18937 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 18938 goto drop_pkt; 18939 } 18940 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 18941 zoneid, match_flags); 18942 ipif_refrele(attach_ipif); 18943 } else if (xmit_ill != NULL || (connp != NULL && 18944 connp->conn_xmit_if_ill != NULL)) { 18945 /* 18946 * Mark this packet as originated locally 18947 */ 18948 mp->b_prev = mp->b_next = NULL; 18949 /* 18950 * xmit_ill could be NULL if SO_DONTROUTE 18951 * is also set. 18952 */ 18953 if (xmit_ill == NULL) { 18954 xmit_ill = conn_get_held_ill(connp, 18955 &connp->conn_xmit_if_ill, &err); 18956 if (err == ILL_LOOKUP_FAILED) { 18957 if (need_decref) 18958 CONN_DEC_REF(connp); 18959 freemsg(first_mp); 18960 return; 18961 } 18962 if (xmit_ill == NULL) { 18963 if (connp->conn_dontroute) 18964 goto dontroute; 18965 goto send_from_ill; 18966 } 18967 } 18968 /* 18969 * could be SO_DONTROUTE case also. 18970 * check at least one interface is UP as 18971 * spcified by this ILL, and then call 18972 * ip_newroute_ipif() 18973 */ 18974 if (xmit_ill->ill_ipif_up_count > 0) { 18975 ipif_t *ipif; 18976 18977 ipif = ipif_get_next_ipif(NULL, xmit_ill); 18978 if (ipif != NULL) { 18979 ip_newroute_ipif(q, first_mp, ipif, 18980 dst, connp, 0); 18981 ipif_refrele(ipif); 18982 ip1dbg(("ip_wput: ip_unicast_if\n")); 18983 } 18984 } else { 18985 freemsg(first_mp); 18986 } 18987 ill_refrele(xmit_ill); 18988 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 18989 "ip_wput_end: q %p (%S)", q, "unicast_if"); 18990 if (need_decref) 18991 CONN_DEC_REF(connp); 18992 return; 18993 } else if (ip_nexthop || (connp != NULL && 18994 (connp->conn_nexthop_set)) && !ignore_nexthop) { 18995 if (!ip_nexthop) { 18996 ip_nexthop = B_TRUE; 18997 nexthop_addr = connp->conn_nexthop_v4; 18998 } 18999 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 19000 MATCH_IRE_GW; 19001 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 19002 NULL, zoneid, match_flags); 19003 } else { 19004 ire = ire_cache_lookup(dst, zoneid); 19005 } 19006 if (!ire) { 19007 /* 19008 * Make sure we don't load spread if this 19009 * is IPIF_NOFAILOVER case. 19010 */ 19011 if ((attach_ill != NULL) || 19012 (ip_nexthop && !ignore_nexthop)) { 19013 if (mctl_present) { 19014 io = (ipsec_out_t *)first_mp->b_rptr; 19015 ASSERT(first_mp->b_datap->db_type == 19016 M_CTL); 19017 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19018 } else { 19019 ASSERT(mp == first_mp); 19020 first_mp = allocb( 19021 sizeof (ipsec_info_t), BPRI_HI); 19022 if (first_mp == NULL) { 19023 first_mp = mp; 19024 goto drop_pkt; 19025 } 19026 first_mp->b_datap->db_type = M_CTL; 19027 first_mp->b_wptr += 19028 sizeof (ipsec_info_t); 19029 /* ipsec_out_secure is B_FALSE now */ 19030 bzero(first_mp->b_rptr, 19031 sizeof (ipsec_info_t)); 19032 io = (ipsec_out_t *)first_mp->b_rptr; 19033 io->ipsec_out_type = IPSEC_OUT; 19034 io->ipsec_out_len = 19035 sizeof (ipsec_out_t); 19036 io->ipsec_out_use_global_policy = 19037 B_TRUE; 19038 first_mp->b_cont = mp; 19039 mctl_present = B_TRUE; 19040 } 19041 if (attach_ill != NULL) { 19042 io->ipsec_out_ill_index = attach_ill-> 19043 ill_phyint->phyint_ifindex; 19044 io->ipsec_out_attach_if = B_TRUE; 19045 } else { 19046 io->ipsec_out_ip_nexthop = ip_nexthop; 19047 io->ipsec_out_nexthop_addr = 19048 nexthop_addr; 19049 } 19050 } 19051 noirefound: 19052 /* 19053 * Mark this packet as having originated on 19054 * this machine. This will be noted in 19055 * ire_add_then_send, which needs to know 19056 * whether to run it back through ip_wput or 19057 * ip_rput following successful resolution. 19058 */ 19059 mp->b_prev = NULL; 19060 mp->b_next = NULL; 19061 ip_newroute(q, first_mp, dst, NULL, connp); 19062 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19063 "ip_wput_end: q %p (%S)", q, "newroute"); 19064 if (attach_ill != NULL) 19065 ill_refrele(attach_ill); 19066 if (xmit_ill != NULL) 19067 ill_refrele(xmit_ill); 19068 if (need_decref) 19069 CONN_DEC_REF(connp); 19070 return; 19071 } 19072 } 19073 19074 /* We now know where we are going with it. */ 19075 19076 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19077 "ip_wput_end: q %p (%S)", q, "end"); 19078 19079 /* 19080 * Check if the ire has the RTF_MULTIRT flag, inherited 19081 * from an IRE_OFFSUBNET ire entry in ip_newroute. 19082 */ 19083 if (ire->ire_flags & RTF_MULTIRT) { 19084 /* 19085 * Force the TTL of multirouted packets if required. 19086 * The TTL of such packets is bounded by the 19087 * ip_multirt_ttl ndd variable. 19088 */ 19089 if ((ip_multirt_ttl > 0) && 19090 (ipha->ipha_ttl > ip_multirt_ttl)) { 19091 ip2dbg(("ip_wput: forcing multirt TTL to %d " 19092 "(was %d), dst 0x%08x\n", 19093 ip_multirt_ttl, ipha->ipha_ttl, 19094 ntohl(ire->ire_addr))); 19095 ipha->ipha_ttl = ip_multirt_ttl; 19096 } 19097 /* 19098 * At this point, we check to see if there are any pending 19099 * unresolved routes. ire_multirt_resolvable() 19100 * checks in O(n) that all IRE_OFFSUBNET ire 19101 * entries for the packet's destination and 19102 * flagged RTF_MULTIRT are currently resolved. 19103 * If some remain unresolved, we make a copy 19104 * of the current message. It will be used 19105 * to initiate additional route resolutions. 19106 */ 19107 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr); 19108 ip2dbg(("ip_wput[noirefound]: ire %p, " 19109 "multirt_need_resolve %d, first_mp %p\n", 19110 (void *)ire, multirt_need_resolve, (void *)first_mp)); 19111 if (multirt_need_resolve) { 19112 copy_mp = copymsg(first_mp); 19113 if (copy_mp != NULL) { 19114 MULTIRT_DEBUG_TAG(copy_mp); 19115 } 19116 } 19117 } 19118 19119 ip_wput_ire(q, first_mp, ire, connp, caller); 19120 /* 19121 * Try to resolve another multiroute if 19122 * ire_multirt_resolvable() deemed it necessary. 19123 * At this point, we need to distinguish 19124 * multicasts from other packets. For multicasts, 19125 * we call ip_newroute_ipif() and request that both 19126 * multirouting and setsrc flags are checked. 19127 */ 19128 if (copy_mp != NULL) { 19129 if (CLASSD(dst)) { 19130 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 19131 if (ipif) { 19132 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 19133 RTF_SETSRC | RTF_MULTIRT); 19134 ipif_refrele(ipif); 19135 } else { 19136 MULTIRT_DEBUG_UNTAG(copy_mp); 19137 freemsg(copy_mp); 19138 copy_mp = NULL; 19139 } 19140 } else { 19141 ip_newroute(q, copy_mp, dst, NULL, connp); 19142 } 19143 } 19144 if (attach_ill != NULL) 19145 ill_refrele(attach_ill); 19146 if (xmit_ill != NULL) 19147 ill_refrele(xmit_ill); 19148 if (need_decref) 19149 CONN_DEC_REF(connp); 19150 return; 19151 19152 drop_pkt: 19153 ip1dbg(("ip_wput: dropped packet\n")); 19154 if (ire != NULL) 19155 ire_refrele(ire); 19156 if (need_decref) 19157 CONN_DEC_REF(connp); 19158 freemsg(first_mp); 19159 if (attach_ill != NULL) 19160 ill_refrele(attach_ill); 19161 if (xmit_ill != NULL) 19162 ill_refrele(xmit_ill); 19163 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 19164 "ip_wput_end: q %p (%S)", q, "droppkt"); 19165 } 19166 19167 void 19168 ip_wput(queue_t *q, mblk_t *mp) 19169 { 19170 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 19171 } 19172 19173 /* 19174 * 19175 * The following rules must be observed when accessing any ipif or ill 19176 * that has been cached in the conn. Typically conn_nofailover_ill, 19177 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 19178 * 19179 * Access: The ipif or ill pointed to from the conn can be accessed under 19180 * the protection of the conn_lock or after it has been refheld under the 19181 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 19182 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 19183 * The reason for this is that a concurrent unplumb could actually be 19184 * cleaning up these cached pointers by walking the conns and might have 19185 * finished cleaning up the conn in question. The macros check that an 19186 * unplumb has not yet started on the ipif or ill. 19187 * 19188 * Caching: An ipif or ill pointer may be cached in the conn only after 19189 * making sure that an unplumb has not started. So the caching is done 19190 * while holding both the conn_lock and the ill_lock and after using the 19191 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 19192 * flag before starting the cleanup of conns. 19193 * 19194 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 19195 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 19196 * or a reference to the ipif or a reference to an ire that references the 19197 * ipif. An ipif does not change its ill except for failover/failback. Since 19198 * failover/failback happens only after bringing down the ipif and making sure 19199 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 19200 * the above holds. 19201 */ 19202 ipif_t * 19203 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 19204 { 19205 ipif_t *ipif; 19206 ill_t *ill; 19207 19208 *err = 0; 19209 rw_enter(&ill_g_lock, RW_READER); 19210 mutex_enter(&connp->conn_lock); 19211 ipif = *ipifp; 19212 if (ipif != NULL) { 19213 ill = ipif->ipif_ill; 19214 mutex_enter(&ill->ill_lock); 19215 if (IPIF_CAN_LOOKUP(ipif)) { 19216 ipif_refhold_locked(ipif); 19217 mutex_exit(&ill->ill_lock); 19218 mutex_exit(&connp->conn_lock); 19219 rw_exit(&ill_g_lock); 19220 return (ipif); 19221 } else { 19222 *err = IPIF_LOOKUP_FAILED; 19223 } 19224 mutex_exit(&ill->ill_lock); 19225 } 19226 mutex_exit(&connp->conn_lock); 19227 rw_exit(&ill_g_lock); 19228 return (NULL); 19229 } 19230 19231 ill_t * 19232 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 19233 { 19234 ill_t *ill; 19235 19236 *err = 0; 19237 mutex_enter(&connp->conn_lock); 19238 ill = *illp; 19239 if (ill != NULL) { 19240 mutex_enter(&ill->ill_lock); 19241 if (ILL_CAN_LOOKUP(ill)) { 19242 ill_refhold_locked(ill); 19243 mutex_exit(&ill->ill_lock); 19244 mutex_exit(&connp->conn_lock); 19245 return (ill); 19246 } else { 19247 *err = ILL_LOOKUP_FAILED; 19248 } 19249 mutex_exit(&ill->ill_lock); 19250 } 19251 mutex_exit(&connp->conn_lock); 19252 return (NULL); 19253 } 19254 19255 static int 19256 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 19257 { 19258 ill_t *ill; 19259 19260 ill = ipif->ipif_ill; 19261 mutex_enter(&connp->conn_lock); 19262 mutex_enter(&ill->ill_lock); 19263 if (IPIF_CAN_LOOKUP(ipif)) { 19264 *ipifp = ipif; 19265 mutex_exit(&ill->ill_lock); 19266 mutex_exit(&connp->conn_lock); 19267 return (0); 19268 } 19269 mutex_exit(&ill->ill_lock); 19270 mutex_exit(&connp->conn_lock); 19271 return (IPIF_LOOKUP_FAILED); 19272 } 19273 19274 /* 19275 * This is called if the outbound datagram needs fragmentation. 19276 * 19277 * NOTE : This function does not ire_refrele the ire argument passed in. 19278 */ 19279 static void 19280 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire) 19281 { 19282 ipha_t *ipha; 19283 mblk_t *mp; 19284 uint32_t v_hlen_tos_len; 19285 uint32_t max_frag; 19286 uint32_t frag_flag; 19287 boolean_t dont_use; 19288 19289 if (ipsec_mp->b_datap->db_type == M_CTL) { 19290 mp = ipsec_mp->b_cont; 19291 } else { 19292 mp = ipsec_mp; 19293 } 19294 19295 ipha = (ipha_t *)mp->b_rptr; 19296 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19297 19298 #ifdef _BIG_ENDIAN 19299 #define V_HLEN (v_hlen_tos_len >> 24) 19300 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19301 #else 19302 #define V_HLEN (v_hlen_tos_len & 0xFF) 19303 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19304 #endif 19305 19306 #ifndef SPEED_BEFORE_SAFETY 19307 /* 19308 * Check that ipha_length is consistent with 19309 * the mblk length 19310 */ 19311 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 19312 ip0dbg(("Packet length mismatch: %d, %ld\n", 19313 LENGTH, msgdsize(mp))); 19314 freemsg(ipsec_mp); 19315 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 19316 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 19317 "packet length mismatch"); 19318 return; 19319 } 19320 #endif 19321 /* 19322 * Don't use frag_flag if pre-built packet or source 19323 * routed or if multicast (since multicast packets do not solicit 19324 * ICMP "packet too big" messages). Get the values of 19325 * max_frag and frag_flag atomically by acquiring the 19326 * ire_lock. 19327 */ 19328 mutex_enter(&ire->ire_lock); 19329 max_frag = ire->ire_max_frag; 19330 frag_flag = ire->ire_frag_flag; 19331 mutex_exit(&ire->ire_lock); 19332 19333 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 19334 (V_HLEN != IP_SIMPLE_HDR_VERSION && 19335 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 19336 19337 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 19338 (dont_use ? 0 : frag_flag)); 19339 } 19340 19341 /* 19342 * Used for deciding the MSS size for the upper layer. Thus 19343 * we need to check the outbound policy values in the conn. 19344 */ 19345 int 19346 conn_ipsec_length(conn_t *connp) 19347 { 19348 ipsec_latch_t *ipl; 19349 19350 ipl = connp->conn_latch; 19351 if (ipl == NULL) 19352 return (0); 19353 19354 if (ipl->ipl_out_policy == NULL) 19355 return (0); 19356 19357 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 19358 } 19359 19360 /* 19361 * Returns an estimate of the IPSEC headers size. This is used if 19362 * we don't want to call into IPSEC to get the exact size. 19363 */ 19364 int 19365 ipsec_out_extra_length(mblk_t *ipsec_mp) 19366 { 19367 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 19368 ipsec_action_t *a; 19369 19370 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19371 if (!io->ipsec_out_secure) 19372 return (0); 19373 19374 a = io->ipsec_out_act; 19375 19376 if (a == NULL) { 19377 ASSERT(io->ipsec_out_policy != NULL); 19378 a = io->ipsec_out_policy->ipsp_act; 19379 } 19380 ASSERT(a != NULL); 19381 19382 return (a->ipa_ovhd); 19383 } 19384 19385 /* 19386 * Returns an estimate of the IPSEC headers size. This is used if 19387 * we don't want to call into IPSEC to get the exact size. 19388 */ 19389 int 19390 ipsec_in_extra_length(mblk_t *ipsec_mp) 19391 { 19392 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 19393 ipsec_action_t *a; 19394 19395 ASSERT(ii->ipsec_in_type == IPSEC_IN); 19396 19397 a = ii->ipsec_in_action; 19398 return (a == NULL ? 0 : a->ipa_ovhd); 19399 } 19400 19401 /* 19402 * If there are any source route options, return the true final 19403 * destination. Otherwise, return the destination. 19404 */ 19405 ipaddr_t 19406 ip_get_dst(ipha_t *ipha) 19407 { 19408 ipoptp_t opts; 19409 uchar_t *opt; 19410 uint8_t optval; 19411 uint8_t optlen; 19412 ipaddr_t dst; 19413 uint32_t off; 19414 19415 dst = ipha->ipha_dst; 19416 19417 if (IS_SIMPLE_IPH(ipha)) 19418 return (dst); 19419 19420 for (optval = ipoptp_first(&opts, ipha); 19421 optval != IPOPT_EOL; 19422 optval = ipoptp_next(&opts)) { 19423 opt = opts.ipoptp_cur; 19424 optlen = opts.ipoptp_len; 19425 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19426 switch (optval) { 19427 case IPOPT_SSRR: 19428 case IPOPT_LSRR: 19429 off = opt[IPOPT_OFFSET]; 19430 /* 19431 * If one of the conditions is true, it means 19432 * end of options and dst already has the right 19433 * value. 19434 */ 19435 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 19436 off = optlen - IP_ADDR_LEN; 19437 bcopy(&opt[off], &dst, IP_ADDR_LEN); 19438 } 19439 return (dst); 19440 default: 19441 break; 19442 } 19443 } 19444 19445 return (dst); 19446 } 19447 19448 mblk_t * 19449 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 19450 conn_t *connp, boolean_t unspec_src) 19451 { 19452 ipsec_out_t *io; 19453 mblk_t *first_mp; 19454 boolean_t policy_present; 19455 19456 first_mp = mp; 19457 if (mp->b_datap->db_type == M_CTL) { 19458 io = (ipsec_out_t *)first_mp->b_rptr; 19459 /* 19460 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 19461 * 19462 * 1) There is per-socket policy (including cached global 19463 * policy). 19464 * 2) There is no per-socket policy, but it is 19465 * a multicast packet that needs to go out 19466 * on a specific interface. This is the case 19467 * where (ip_wput and ip_wput_multicast) attaches 19468 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 19469 * 19470 * In case (2) we check with global policy to 19471 * see if there is a match and set the ill_index 19472 * appropriately so that we can lookup the ire 19473 * properly in ip_wput_ipsec_out. 19474 */ 19475 19476 /* 19477 * ipsec_out_use_global_policy is set to B_FALSE 19478 * in ipsec_in_to_out(). Refer to that function for 19479 * details. 19480 */ 19481 if ((io->ipsec_out_latch == NULL) && 19482 (io->ipsec_out_use_global_policy)) { 19483 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 19484 ire, connp, unspec_src)); 19485 } 19486 if (!io->ipsec_out_secure) { 19487 /* 19488 * If this is not a secure packet, drop 19489 * the IPSEC_OUT mp and treat it as a clear 19490 * packet. This happens when we are sending 19491 * a ICMP reply back to a clear packet. See 19492 * ipsec_in_to_out() for details. 19493 */ 19494 mp = first_mp->b_cont; 19495 freeb(first_mp); 19496 } 19497 return (mp); 19498 } 19499 /* 19500 * See whether we need to attach a global policy here. We 19501 * don't depend on the conn (as it could be null) for deciding 19502 * what policy this datagram should go through because it 19503 * should have happened in ip_wput if there was some 19504 * policy. This normally happens for connections which are not 19505 * fully bound preventing us from caching policies in 19506 * ip_bind. Packets coming from the TCP listener/global queue 19507 * - which are non-hard_bound - could also be affected by 19508 * applying policy here. 19509 * 19510 * If this packet is coming from tcp global queue or listener, 19511 * we will be applying policy here. This may not be *right* 19512 * if these packets are coming from the detached connection as 19513 * it could have gone in clear before. This happens only if a 19514 * TCP connection started when there is no policy and somebody 19515 * added policy before it became detached. Thus packets of the 19516 * detached connection could go out secure and the other end 19517 * would drop it because it will be expecting in clear. The 19518 * converse is not true i.e if somebody starts a TCP 19519 * connection and deletes the policy, all the packets will 19520 * still go out with the policy that existed before deleting 19521 * because ip_unbind sends up policy information which is used 19522 * by TCP on subsequent ip_wputs. The right solution is to fix 19523 * TCP to attach a dummy IPSEC_OUT and set 19524 * ipsec_out_use_global_policy to B_FALSE. As this might 19525 * affect performance for normal cases, we are not doing it. 19526 * Thus, set policy before starting any TCP connections. 19527 * 19528 * NOTE - We might apply policy even for a hard bound connection 19529 * - for which we cached policy in ip_bind - if somebody added 19530 * global policy after we inherited the policy in ip_bind. 19531 * This means that the packets that were going out in clear 19532 * previously would start going secure and hence get dropped 19533 * on the other side. To fix this, TCP attaches a dummy 19534 * ipsec_out and make sure that we don't apply global policy. 19535 */ 19536 if (ipha != NULL) 19537 policy_present = ipsec_outbound_v4_policy_present; 19538 else 19539 policy_present = ipsec_outbound_v6_policy_present; 19540 if (!policy_present) 19541 return (mp); 19542 19543 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src)); 19544 } 19545 19546 ire_t * 19547 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 19548 { 19549 ipaddr_t addr; 19550 ire_t *save_ire; 19551 irb_t *irb; 19552 ill_group_t *illgrp; 19553 int err; 19554 19555 save_ire = ire; 19556 addr = ire->ire_addr; 19557 19558 ASSERT(ire->ire_type == IRE_BROADCAST); 19559 19560 illgrp = connp->conn_outgoing_ill->ill_group; 19561 if (illgrp == NULL) { 19562 *conn_outgoing_ill = conn_get_held_ill(connp, 19563 &connp->conn_outgoing_ill, &err); 19564 if (err == ILL_LOOKUP_FAILED) { 19565 ire_refrele(save_ire); 19566 return (NULL); 19567 } 19568 return (save_ire); 19569 } 19570 /* 19571 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 19572 * If it is part of the group, we need to send on the ire 19573 * that has been cleared of IRE_MARK_NORECV and that belongs 19574 * to this group. This is okay as IP_BOUND_IF really means 19575 * any ill in the group. We depend on the fact that the 19576 * first ire in the group is always cleared of IRE_MARK_NORECV 19577 * if such an ire exists. This is possible only if you have 19578 * at least one ill in the group that has not failed. 19579 * 19580 * First get to the ire that matches the address and group. 19581 * 19582 * We don't look for an ire with a matching zoneid because a given zone 19583 * won't always have broadcast ires on all ills in the group. 19584 */ 19585 irb = ire->ire_bucket; 19586 rw_enter(&irb->irb_lock, RW_READER); 19587 if (ire->ire_marks & IRE_MARK_NORECV) { 19588 /* 19589 * If the current zone only has an ire broadcast for this 19590 * address marked NORECV, the ire we want is ahead in the 19591 * bucket, so we look it up deliberately ignoring the zoneid. 19592 */ 19593 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 19594 if (ire->ire_addr != addr) 19595 continue; 19596 /* skip over deleted ires */ 19597 if (ire->ire_marks & IRE_MARK_CONDEMNED) 19598 continue; 19599 } 19600 } 19601 while (ire != NULL) { 19602 /* 19603 * If a new interface is coming up, we could end up 19604 * seeing the loopback ire and the non-loopback ire 19605 * may not have been added yet. So check for ire_stq 19606 */ 19607 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 19608 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 19609 break; 19610 } 19611 ire = ire->ire_next; 19612 } 19613 if (ire != NULL && ire->ire_addr == addr && 19614 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 19615 IRE_REFHOLD(ire); 19616 rw_exit(&irb->irb_lock); 19617 ire_refrele(save_ire); 19618 *conn_outgoing_ill = ire_to_ill(ire); 19619 /* 19620 * Refhold the ill to make the conn_outgoing_ill 19621 * independent of the ire. ip_wput_ire goes in a loop 19622 * and may refrele the ire. Since we have an ire at this 19623 * point we don't need to use ILL_CAN_LOOKUP on the ill. 19624 */ 19625 ill_refhold(*conn_outgoing_ill); 19626 return (ire); 19627 } 19628 rw_exit(&irb->irb_lock); 19629 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 19630 /* 19631 * If we can't find a suitable ire, return the original ire. 19632 */ 19633 return (save_ire); 19634 } 19635 19636 /* 19637 * This function does the ire_refrele of the ire passed in as the 19638 * argument. As this function looks up more ires i.e broadcast ires, 19639 * it needs to REFRELE them. Currently, for simplicity we don't 19640 * differentiate the one passed in and looked up here. We always 19641 * REFRELE. 19642 * IPQoS Notes: 19643 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 19644 * IPSec packets are done in ipsec_out_process. 19645 * 19646 */ 19647 void 19648 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller) 19649 { 19650 ipha_t *ipha; 19651 #define rptr ((uchar_t *)ipha) 19652 mblk_t *mp1; 19653 queue_t *stq; 19654 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 19655 uint32_t v_hlen_tos_len; 19656 uint32_t ttl_protocol; 19657 ipaddr_t src; 19658 ipaddr_t dst; 19659 uint32_t cksum; 19660 ipaddr_t orig_src; 19661 ire_t *ire1; 19662 mblk_t *next_mp; 19663 uint_t hlen; 19664 uint16_t *up; 19665 uint32_t max_frag = ire->ire_max_frag; 19666 ill_t *ill = ire_to_ill(ire); 19667 int clusterwide; 19668 uint16_t ip_hdr_included; /* IP header included by ULP? */ 19669 int ipsec_len; 19670 mblk_t *first_mp; 19671 ipsec_out_t *io; 19672 boolean_t conn_dontroute; /* conn value for multicast */ 19673 boolean_t conn_multicast_loop; /* conn value for multicast */ 19674 boolean_t multicast_forward; /* Should we forward ? */ 19675 boolean_t unspec_src; 19676 ill_t *conn_outgoing_ill = NULL; 19677 ill_t *ire_ill; 19678 ill_t *ire1_ill; 19679 uint32_t ill_index = 0; 19680 boolean_t multirt_send = B_FALSE; 19681 int err; 19682 zoneid_t zoneid; 19683 19684 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 19685 "ip_wput_ire_start: q %p", q); 19686 19687 multicast_forward = B_FALSE; 19688 unspec_src = (connp != NULL && connp->conn_unspec_src); 19689 19690 if (ire->ire_flags & RTF_MULTIRT) { 19691 /* 19692 * Multirouting case. The bucket where ire is stored 19693 * probably holds other RTF_MULTIRT flagged ire 19694 * to the destination. In this call to ip_wput_ire, 19695 * we attempt to send the packet through all 19696 * those ires. Thus, we first ensure that ire is the 19697 * first RTF_MULTIRT ire in the bucket, 19698 * before walking the ire list. 19699 */ 19700 ire_t *first_ire; 19701 irb_t *irb = ire->ire_bucket; 19702 ASSERT(irb != NULL); 19703 19704 /* Make sure we do not omit any multiroute ire. */ 19705 IRB_REFHOLD(irb); 19706 for (first_ire = irb->irb_ire; 19707 first_ire != NULL; 19708 first_ire = first_ire->ire_next) { 19709 if ((first_ire->ire_flags & RTF_MULTIRT) && 19710 (first_ire->ire_addr == ire->ire_addr) && 19711 !(first_ire->ire_marks & 19712 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 19713 break; 19714 } 19715 19716 if ((first_ire != NULL) && (first_ire != ire)) { 19717 IRE_REFHOLD(first_ire); 19718 ire_refrele(ire); 19719 ire = first_ire; 19720 ill = ire_to_ill(ire); 19721 } 19722 IRB_REFRELE(irb); 19723 } 19724 19725 /* 19726 * conn_outgoing_ill is used only in the broadcast loop. 19727 * for performance we don't grab the mutexs in the fastpath 19728 */ 19729 if ((connp != NULL) && 19730 (connp->conn_xmit_if_ill == NULL) && 19731 (ire->ire_type == IRE_BROADCAST) && 19732 ((connp->conn_nofailover_ill != NULL) || 19733 (connp->conn_outgoing_ill != NULL))) { 19734 /* 19735 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 19736 * option. So, see if this endpoint is bound to a 19737 * IPIF_NOFAILOVER address. If so, honor it. This implies 19738 * that if the interface is failed, we will still send 19739 * the packet on the same ill which is what we want. 19740 */ 19741 conn_outgoing_ill = conn_get_held_ill(connp, 19742 &connp->conn_nofailover_ill, &err); 19743 if (err == ILL_LOOKUP_FAILED) { 19744 ire_refrele(ire); 19745 freemsg(mp); 19746 return; 19747 } 19748 if (conn_outgoing_ill == NULL) { 19749 /* 19750 * Choose a good ill in the group to send the 19751 * packets on. 19752 */ 19753 ire = conn_set_outgoing_ill(connp, ire, 19754 &conn_outgoing_ill); 19755 if (ire == NULL) { 19756 freemsg(mp); 19757 return; 19758 } 19759 } 19760 } 19761 19762 if (mp->b_datap->db_type != M_CTL) { 19763 ipha = (ipha_t *)mp->b_rptr; 19764 zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES); 19765 } else { 19766 io = (ipsec_out_t *)mp->b_rptr; 19767 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19768 zoneid = io->ipsec_out_zoneid; 19769 ASSERT(zoneid != ALL_ZONES); 19770 ipha = (ipha_t *)mp->b_cont->b_rptr; 19771 dst = ipha->ipha_dst; 19772 /* 19773 * For the multicast case, ipsec_out carries conn_dontroute and 19774 * conn_multicast_loop as conn may not be available here. We 19775 * need this for multicast loopback and forwarding which is done 19776 * later in the code. 19777 */ 19778 if (CLASSD(dst)) { 19779 conn_dontroute = io->ipsec_out_dontroute; 19780 conn_multicast_loop = io->ipsec_out_multicast_loop; 19781 /* 19782 * If conn_dontroute is not set or conn_multicast_loop 19783 * is set, we need to do forwarding/loopback. For 19784 * datagrams from ip_wput_multicast, conn_dontroute is 19785 * set to B_TRUE and conn_multicast_loop is set to 19786 * B_FALSE so that we neither do forwarding nor 19787 * loopback. 19788 */ 19789 if (!conn_dontroute || conn_multicast_loop) 19790 multicast_forward = B_TRUE; 19791 } 19792 } 19793 19794 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid) { 19795 /* 19796 * When a zone sends a packet to another zone, we try to deliver 19797 * the packet under the same conditions as if the destination 19798 * was a real node on the network. To do so, we look for a 19799 * matching route in the forwarding table. 19800 * RTF_REJECT and RTF_BLACKHOLE are handled just like 19801 * ip_newroute() does. 19802 */ 19803 ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 19804 NULL, NULL, zoneid, 0, (MATCH_IRE_RECURSIVE | 19805 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 19806 if (src_ire != NULL && 19807 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) { 19808 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 19809 ipha->ipha_src = src_ire->ire_src_addr; 19810 ire_refrele(src_ire); 19811 } else { 19812 ire_refrele(ire); 19813 if (conn_outgoing_ill != NULL) 19814 ill_refrele(conn_outgoing_ill); 19815 BUMP_MIB(&ip_mib, ipOutNoRoutes); 19816 if (src_ire != NULL) { 19817 if (src_ire->ire_flags & RTF_BLACKHOLE) { 19818 ire_refrele(src_ire); 19819 freemsg(mp); 19820 return; 19821 } 19822 ire_refrele(src_ire); 19823 } 19824 if (ip_hdr_complete(ipha, zoneid)) { 19825 /* Failed */ 19826 freemsg(mp); 19827 return; 19828 } 19829 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE); 19830 return; 19831 } 19832 } 19833 19834 if (mp->b_datap->db_type == M_CTL || 19835 ipsec_outbound_v4_policy_present) { 19836 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 19837 unspec_src); 19838 if (mp == NULL) { 19839 ire_refrele(ire); 19840 if (conn_outgoing_ill != NULL) 19841 ill_refrele(conn_outgoing_ill); 19842 return; 19843 } 19844 } 19845 19846 first_mp = mp; 19847 ipsec_len = 0; 19848 19849 if (first_mp->b_datap->db_type == M_CTL) { 19850 io = (ipsec_out_t *)first_mp->b_rptr; 19851 ASSERT(io->ipsec_out_type == IPSEC_OUT); 19852 mp = first_mp->b_cont; 19853 ipsec_len = ipsec_out_extra_length(first_mp); 19854 ASSERT(ipsec_len >= 0); 19855 zoneid = io->ipsec_out_zoneid; 19856 ASSERT(zoneid != ALL_ZONES); 19857 19858 /* 19859 * Drop M_CTL here if IPsec processing is not needed. 19860 * (Non-IPsec use of M_CTL extracted any information it 19861 * needed above). 19862 */ 19863 if (ipsec_len == 0) { 19864 freeb(first_mp); 19865 first_mp = mp; 19866 } 19867 } 19868 19869 /* 19870 * Fast path for ip_wput_ire 19871 */ 19872 19873 ipha = (ipha_t *)mp->b_rptr; 19874 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19875 dst = ipha->ipha_dst; 19876 19877 /* 19878 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 19879 * if the socket is a SOCK_RAW type. The transport checksum should 19880 * be provided in the pre-built packet, so we don't need to compute it. 19881 * Also, other application set flags, like DF, should not be altered. 19882 * Other transport MUST pass down zero. 19883 */ 19884 ip_hdr_included = ipha->ipha_ident; 19885 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19886 19887 if (CLASSD(dst)) { 19888 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 19889 ntohl(dst), 19890 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 19891 ntohl(ire->ire_addr))); 19892 } 19893 19894 /* Macros to extract header fields from data already in registers */ 19895 #ifdef _BIG_ENDIAN 19896 #define V_HLEN (v_hlen_tos_len >> 24) 19897 #define LENGTH (v_hlen_tos_len & 0xFFFF) 19898 #define PROTO (ttl_protocol & 0xFF) 19899 #else 19900 #define V_HLEN (v_hlen_tos_len & 0xFF) 19901 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 19902 #define PROTO (ttl_protocol >> 8) 19903 #endif 19904 19905 19906 orig_src = src = ipha->ipha_src; 19907 /* (The loop back to "another" is explained down below.) */ 19908 another:; 19909 /* 19910 * Assign an ident value for this packet. We assign idents on 19911 * a per destination basis out of the IRE. There could be 19912 * other threads targeting the same destination, so we have to 19913 * arrange for a atomic increment. Note that we use a 32-bit 19914 * atomic add because it has better performance than its 19915 * 16-bit sibling. 19916 * 19917 * If running in cluster mode and if the source address 19918 * belongs to a replicated service then vector through 19919 * cl_inet_ipident vector to allocate ip identifier 19920 * NOTE: This is a contract private interface with the 19921 * clustering group. 19922 */ 19923 clusterwide = 0; 19924 if (cl_inet_ipident) { 19925 ASSERT(cl_inet_isclusterwide); 19926 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19927 AF_INET, (uint8_t *)(uintptr_t)src)) { 19928 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 19929 AF_INET, (uint8_t *)(uintptr_t)src, 19930 (uint8_t *)(uintptr_t)dst); 19931 clusterwide = 1; 19932 } 19933 } 19934 if (!clusterwide) { 19935 ipha->ipha_ident = 19936 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19937 } 19938 19939 #ifndef _BIG_ENDIAN 19940 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19941 #endif 19942 19943 /* 19944 * Set source address unless sent on an ill or conn_unspec_src is set. 19945 * This is needed to obey conn_unspec_src when packets go through 19946 * ip_newroute + arp. 19947 * Assumes ip_newroute{,_multi} sets the source address as well. 19948 */ 19949 if (src == INADDR_ANY && !unspec_src) { 19950 /* 19951 * Assign the appropriate source address from the IRE if none 19952 * was specified. 19953 */ 19954 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19955 19956 /* 19957 * With IP multipathing, broadcast packets are sent on the ire 19958 * that has been cleared of IRE_MARK_NORECV and that belongs to 19959 * the group. However, this ire might not be in the same zone so 19960 * we can't always use its source address. We look for a 19961 * broadcast ire in the same group and in the right zone. 19962 */ 19963 if (ire->ire_type == IRE_BROADCAST && 19964 ire->ire_zoneid != zoneid) { 19965 ire_t *src_ire = ire_ctable_lookup(dst, 0, 19966 IRE_BROADCAST, ire->ire_ipif, zoneid, 19967 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 19968 if (src_ire != NULL) { 19969 src = src_ire->ire_src_addr; 19970 ire_refrele(src_ire); 19971 } else { 19972 ire_refrele(ire); 19973 if (conn_outgoing_ill != NULL) 19974 ill_refrele(conn_outgoing_ill); 19975 freemsg(first_mp); 19976 BUMP_MIB(&ip_mib, ipOutDiscards); 19977 return; 19978 } 19979 } else { 19980 src = ire->ire_src_addr; 19981 } 19982 19983 if (connp == NULL) { 19984 ip1dbg(("ip_wput_ire: no connp and no src " 19985 "address for dst 0x%x, using src 0x%x\n", 19986 ntohl(dst), 19987 ntohl(src))); 19988 } 19989 ipha->ipha_src = src; 19990 } 19991 stq = ire->ire_stq; 19992 19993 /* 19994 * We only allow ire chains for broadcasts since there will 19995 * be multiple IRE_CACHE entries for the same multicast 19996 * address (one per ipif). 19997 */ 19998 next_mp = NULL; 19999 20000 /* broadcast packet */ 20001 if (ire->ire_type == IRE_BROADCAST) 20002 goto broadcast; 20003 20004 /* loopback ? */ 20005 if (stq == NULL) 20006 goto nullstq; 20007 20008 /* The ill_index for outbound ILL */ 20009 ill_index = Q_TO_INDEX(stq); 20010 20011 BUMP_MIB(&ip_mib, ipOutRequests); 20012 ttl_protocol = ((uint16_t *)ipha)[4]; 20013 20014 /* pseudo checksum (do it in parts for IP header checksum) */ 20015 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20016 20017 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 20018 queue_t *dev_q = stq->q_next; 20019 20020 /* flow controlled */ 20021 if ((dev_q->q_next || dev_q->q_first) && 20022 !canput(dev_q)) 20023 goto blocked; 20024 if ((PROTO == IPPROTO_UDP) && 20025 (ip_hdr_included != IP_HDR_INCLUDED)) { 20026 hlen = (V_HLEN & 0xF) << 2; 20027 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20028 if (*up != 0) { 20029 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 20030 hlen, LENGTH, max_frag, ipsec_len, cksum); 20031 /* Software checksum? */ 20032 if (DB_CKSUMFLAGS(mp) == 0) { 20033 IP_STAT(ip_out_sw_cksum); 20034 IP_STAT_UPDATE( 20035 ip_udp_out_sw_cksum_bytes, 20036 LENGTH - hlen); 20037 } 20038 } 20039 } 20040 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 20041 hlen = (V_HLEN & 0xF) << 2; 20042 if (PROTO == IPPROTO_TCP) { 20043 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20044 /* 20045 * The packet header is processed once and for all, even 20046 * in the multirouting case. We disable hardware 20047 * checksum if the packet is multirouted, as it will be 20048 * replicated via several interfaces, and not all of 20049 * them may have this capability. 20050 */ 20051 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 20052 LENGTH, max_frag, ipsec_len, cksum); 20053 /* Software checksum? */ 20054 if (DB_CKSUMFLAGS(mp) == 0) { 20055 IP_STAT(ip_out_sw_cksum); 20056 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 20057 LENGTH - hlen); 20058 } 20059 } else { 20060 sctp_hdr_t *sctph; 20061 20062 ASSERT(PROTO == IPPROTO_SCTP); 20063 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20064 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20065 /* 20066 * Zero out the checksum field to ensure proper 20067 * checksum calculation. 20068 */ 20069 sctph->sh_chksum = 0; 20070 #ifdef DEBUG 20071 if (!skip_sctp_cksum) 20072 #endif 20073 sctph->sh_chksum = sctp_cksum(mp, hlen); 20074 } 20075 } 20076 20077 /* 20078 * If this is a multicast packet and originated from ip_wput 20079 * we need to do loopback and forwarding checks. If it comes 20080 * from ip_wput_multicast, we SHOULD not do this. 20081 */ 20082 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 20083 20084 /* checksum */ 20085 cksum += ttl_protocol; 20086 20087 /* fragment the packet */ 20088 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 20089 goto fragmentit; 20090 /* 20091 * Don't use frag_flag if packet is pre-built or source 20092 * routed or if multicast (since multicast packets do 20093 * not solicit ICMP "packet too big" messages). 20094 */ 20095 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20096 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20097 !ip_source_route_included(ipha)) && 20098 !CLASSD(ipha->ipha_dst)) 20099 ipha->ipha_fragment_offset_and_flags |= 20100 htons(ire->ire_frag_flag); 20101 20102 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 20103 /* calculate IP header checksum */ 20104 cksum += ipha->ipha_ident; 20105 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 20106 cksum += ipha->ipha_fragment_offset_and_flags; 20107 20108 /* IP options present */ 20109 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20110 if (hlen) 20111 goto checksumoptions; 20112 20113 /* calculate hdr checksum */ 20114 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20115 cksum = ~(cksum + (cksum >> 16)); 20116 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20117 } 20118 if (ipsec_len != 0) { 20119 /* 20120 * We will do the rest of the processing after 20121 * we come back from IPSEC in ip_wput_ipsec_out(). 20122 */ 20123 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 20124 20125 io = (ipsec_out_t *)first_mp->b_rptr; 20126 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 20127 ill_phyint->phyint_ifindex; 20128 20129 ipsec_out_process(q, first_mp, ire, ill_index); 20130 ire_refrele(ire); 20131 if (conn_outgoing_ill != NULL) 20132 ill_refrele(conn_outgoing_ill); 20133 return; 20134 } 20135 20136 /* 20137 * In most cases, the emission loop below is entered only 20138 * once. Only in the case where the ire holds the 20139 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 20140 * flagged ires in the bucket, and send the packet 20141 * through all crossed RTF_MULTIRT routes. 20142 */ 20143 if (ire->ire_flags & RTF_MULTIRT) { 20144 multirt_send = B_TRUE; 20145 } 20146 do { 20147 if (multirt_send) { 20148 irb_t *irb; 20149 /* 20150 * We are in a multiple send case, need to get 20151 * the next ire and make a duplicate of the packet. 20152 * ire1 holds here the next ire to process in the 20153 * bucket. If multirouting is expected, 20154 * any non-RTF_MULTIRT ire that has the 20155 * right destination address is ignored. 20156 */ 20157 irb = ire->ire_bucket; 20158 ASSERT(irb != NULL); 20159 20160 IRB_REFHOLD(irb); 20161 for (ire1 = ire->ire_next; 20162 ire1 != NULL; 20163 ire1 = ire1->ire_next) { 20164 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 20165 continue; 20166 if (ire1->ire_addr != ire->ire_addr) 20167 continue; 20168 if (ire1->ire_marks & 20169 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 20170 continue; 20171 20172 /* Got one */ 20173 IRE_REFHOLD(ire1); 20174 break; 20175 } 20176 IRB_REFRELE(irb); 20177 20178 if (ire1 != NULL) { 20179 next_mp = copyb(mp); 20180 if ((next_mp == NULL) || 20181 ((mp->b_cont != NULL) && 20182 ((next_mp->b_cont = 20183 dupmsg(mp->b_cont)) == NULL))) { 20184 freemsg(next_mp); 20185 next_mp = NULL; 20186 ire_refrele(ire1); 20187 ire1 = NULL; 20188 } 20189 } 20190 20191 /* Last multiroute ire; don't loop anymore. */ 20192 if (ire1 == NULL) { 20193 multirt_send = B_FALSE; 20194 } 20195 } 20196 mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index); 20197 if (mp == NULL) { 20198 BUMP_MIB(&ip_mib, ipOutDiscards); 20199 ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\ 20200 "during IPPF processing\n")); 20201 ire_refrele(ire); 20202 if (next_mp != NULL) { 20203 freemsg(next_mp); 20204 ire_refrele(ire1); 20205 } 20206 if (conn_outgoing_ill != NULL) 20207 ill_refrele(conn_outgoing_ill); 20208 return; 20209 } 20210 UPDATE_OB_PKT_COUNT(ire); 20211 ire->ire_last_used_time = lbolt; 20212 20213 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20214 "ip_wput_ire_end: q %p (%S)", 20215 q, "last copy out"); 20216 putnext(stq, mp); 20217 IRE_REFRELE(ire); 20218 20219 if (multirt_send) { 20220 ASSERT(ire1); 20221 /* 20222 * Proceed with the next RTF_MULTIRT ire, 20223 * Also set up the send-to queue accordingly. 20224 */ 20225 ire = ire1; 20226 ire1 = NULL; 20227 stq = ire->ire_stq; 20228 mp = next_mp; 20229 next_mp = NULL; 20230 ipha = (ipha_t *)mp->b_rptr; 20231 ill_index = Q_TO_INDEX(stq); 20232 } 20233 } while (multirt_send); 20234 if (conn_outgoing_ill != NULL) 20235 ill_refrele(conn_outgoing_ill); 20236 return; 20237 20238 /* 20239 * ire->ire_type == IRE_BROADCAST (minimize diffs) 20240 */ 20241 broadcast: 20242 { 20243 /* 20244 * Avoid broadcast storms by setting the ttl to 1 20245 * for broadcasts. This parameter can be set 20246 * via ndd, so make sure that for the SO_DONTROUTE 20247 * case that ipha_ttl is always set to 1. 20248 * In the event that we are replying to incoming 20249 * ICMP packets, conn could be NULL. 20250 */ 20251 if ((connp != NULL) && connp->conn_dontroute) 20252 ipha->ipha_ttl = 1; 20253 else 20254 ipha->ipha_ttl = ip_broadcast_ttl; 20255 20256 /* 20257 * Note that we are not doing a IRB_REFHOLD here. 20258 * Actually we don't care if the list changes i.e 20259 * if somebody deletes an IRE from the list while 20260 * we drop the lock, the next time we come around 20261 * ire_next will be NULL and hence we won't send 20262 * out multiple copies which is fine. 20263 */ 20264 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20265 ire1 = ire->ire_next; 20266 if (conn_outgoing_ill != NULL) { 20267 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 20268 ASSERT(ire1 == ire->ire_next); 20269 if (ire1 != NULL && ire1->ire_addr == dst) { 20270 ire_refrele(ire); 20271 ire = ire1; 20272 IRE_REFHOLD(ire); 20273 ire1 = ire->ire_next; 20274 continue; 20275 } 20276 rw_exit(&ire->ire_bucket->irb_lock); 20277 /* Did not find a matching ill */ 20278 ip1dbg(("ip_wput_ire: broadcast with no " 20279 "matching IP_BOUND_IF ill %s\n", 20280 conn_outgoing_ill->ill_name)); 20281 freemsg(first_mp); 20282 if (ire != NULL) 20283 ire_refrele(ire); 20284 ill_refrele(conn_outgoing_ill); 20285 return; 20286 } 20287 } else if (ire1 != NULL && ire1->ire_addr == dst) { 20288 /* 20289 * If the next IRE has the same address and is not one 20290 * of the two copies that we need to send, try to see 20291 * whether this copy should be sent at all. This 20292 * assumes that we insert loopbacks first and then 20293 * non-loopbacks. This is acheived by inserting the 20294 * loopback always before non-loopback. 20295 * This is used to send a single copy of a broadcast 20296 * packet out all physical interfaces that have an 20297 * matching IRE_BROADCAST while also looping 20298 * back one copy (to ip_wput_local) for each 20299 * matching physical interface. However, we avoid 20300 * sending packets out different logical that match by 20301 * having ipif_up/ipif_down supress duplicate 20302 * IRE_BROADCASTS. 20303 * 20304 * This feature is currently used to get broadcasts 20305 * sent to multiple interfaces, when the broadcast 20306 * address being used applies to multiple interfaces. 20307 * For example, a whole net broadcast will be 20308 * replicated on every connected subnet of 20309 * the target net. 20310 * 20311 * Each zone has its own set of IRE_BROADCASTs, so that 20312 * we're able to distribute inbound packets to multiple 20313 * zones who share a broadcast address. We avoid looping 20314 * back outbound packets in different zones but on the 20315 * same ill, as the application would see duplicates. 20316 * 20317 * If the interfaces are part of the same group, 20318 * we would want to send only one copy out for 20319 * whole group. 20320 * 20321 * This logic assumes that ire_add_v4() groups the 20322 * IRE_BROADCAST entries so that those with the same 20323 * ire_addr and ill_group are kept together. 20324 */ 20325 ire_ill = ire->ire_ipif->ipif_ill; 20326 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 20327 if (ire_ill->ill_group != NULL && 20328 (ire->ire_marks & IRE_MARK_NORECV)) { 20329 /* 20330 * If the current zone only has an ire 20331 * broadcast for this address marked 20332 * NORECV, the ire we want is ahead in 20333 * the bucket, so we look it up 20334 * deliberately ignoring the zoneid. 20335 */ 20336 for (ire1 = ire->ire_bucket->irb_ire; 20337 ire1 != NULL; 20338 ire1 = ire1->ire_next) { 20339 ire1_ill = 20340 ire1->ire_ipif->ipif_ill; 20341 if (ire1->ire_addr != dst) 20342 continue; 20343 /* skip over the current ire */ 20344 if (ire1 == ire) 20345 continue; 20346 /* skip over deleted ires */ 20347 if (ire1->ire_marks & 20348 IRE_MARK_CONDEMNED) 20349 continue; 20350 /* 20351 * non-loopback ire in our 20352 * group: use it for the next 20353 * pass in the loop 20354 */ 20355 if (ire1->ire_stq != NULL && 20356 ire1_ill->ill_group == 20357 ire_ill->ill_group) 20358 break; 20359 } 20360 } 20361 } else { 20362 while (ire1 != NULL && ire1->ire_addr == dst) { 20363 ire1_ill = ire1->ire_ipif->ipif_ill; 20364 /* 20365 * We can have two broadcast ires on the 20366 * same ill in different zones; here 20367 * we'll send a copy of the packet on 20368 * each ill and the fanout code will 20369 * call conn_wantpacket() to check that 20370 * the zone has the broadcast address 20371 * configured on the ill. If the two 20372 * ires are in the same group we only 20373 * send one copy up. 20374 */ 20375 if (ire1_ill != ire_ill && 20376 (ire1_ill->ill_group == NULL || 20377 ire_ill->ill_group == NULL || 20378 ire1_ill->ill_group != 20379 ire_ill->ill_group)) { 20380 break; 20381 } 20382 ire1 = ire1->ire_next; 20383 } 20384 } 20385 } 20386 ASSERT(multirt_send == B_FALSE); 20387 if (ire1 != NULL && ire1->ire_addr == dst) { 20388 if ((ire->ire_flags & RTF_MULTIRT) && 20389 (ire1->ire_flags & RTF_MULTIRT)) { 20390 /* 20391 * We are in the multirouting case. 20392 * The message must be sent at least 20393 * on both ires. These ires have been 20394 * inserted AFTER the standard ones 20395 * in ip_rt_add(). There are thus no 20396 * other ire entries for the destination 20397 * address in the rest of the bucket 20398 * that do not have the RTF_MULTIRT 20399 * flag. We don't process a copy 20400 * of the message here. This will be 20401 * done in the final sending loop. 20402 */ 20403 multirt_send = B_TRUE; 20404 } else { 20405 next_mp = ip_copymsg(first_mp); 20406 if (next_mp != NULL) 20407 IRE_REFHOLD(ire1); 20408 } 20409 } 20410 rw_exit(&ire->ire_bucket->irb_lock); 20411 } 20412 20413 if (stq) { 20414 /* 20415 * A non-NULL send-to queue means this packet is going 20416 * out of this machine. 20417 */ 20418 20419 BUMP_MIB(&ip_mib, ipOutRequests); 20420 ttl_protocol = ((uint16_t *)ipha)[4]; 20421 /* 20422 * We accumulate the pseudo header checksum in cksum. 20423 * This is pretty hairy code, so watch close. One 20424 * thing to keep in mind is that UDP and TCP have 20425 * stored their respective datagram lengths in their 20426 * checksum fields. This lines things up real nice. 20427 */ 20428 cksum = (dst >> 16) + (dst & 0xFFFF) + 20429 (src >> 16) + (src & 0xFFFF); 20430 /* 20431 * We assume the udp checksum field contains the 20432 * length, so to compute the pseudo header checksum, 20433 * all we need is the protocol number and src/dst. 20434 */ 20435 /* Provide the checksums for UDP and TCP. */ 20436 if ((PROTO == IPPROTO_TCP) && 20437 (ip_hdr_included != IP_HDR_INCLUDED)) { 20438 /* hlen gets the number of uchar_ts in the IP header */ 20439 hlen = (V_HLEN & 0xF) << 2; 20440 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 20441 IP_STAT(ip_out_sw_cksum); 20442 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 20443 LENGTH - hlen); 20444 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 20445 if (*up == 0) 20446 *up = 0xFFFF; 20447 } else if (PROTO == IPPROTO_SCTP && 20448 (ip_hdr_included != IP_HDR_INCLUDED)) { 20449 sctp_hdr_t *sctph; 20450 20451 hlen = (V_HLEN & 0xF) << 2; 20452 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 20453 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 20454 sctph->sh_chksum = 0; 20455 #ifdef DEBUG 20456 if (!skip_sctp_cksum) 20457 #endif 20458 sctph->sh_chksum = sctp_cksum(mp, hlen); 20459 } else { 20460 queue_t *dev_q = stq->q_next; 20461 20462 if ((dev_q->q_next || dev_q->q_first) && 20463 !canput(dev_q)) { 20464 blocked: 20465 ipha->ipha_ident = ip_hdr_included; 20466 /* 20467 * If we don't have a conn to apply 20468 * backpressure, free the message. 20469 * In the ire_send path, we don't know 20470 * the position to requeue the packet. Rather 20471 * than reorder packets, we just drop this 20472 * packet. 20473 */ 20474 if (ip_output_queue && connp != NULL && 20475 caller != IRE_SEND) { 20476 if (caller == IP_WSRV) { 20477 connp->conn_did_putbq = 1; 20478 (void) putbq(connp->conn_wq, 20479 first_mp); 20480 conn_drain_insert(connp); 20481 /* 20482 * This is the service thread, 20483 * and the queue is already 20484 * noenabled. The check for 20485 * canput and the putbq is not 20486 * atomic. So we need to check 20487 * again. 20488 */ 20489 if (canput(stq->q_next)) 20490 connp->conn_did_putbq 20491 = 0; 20492 IP_STAT(ip_conn_flputbq); 20493 } else { 20494 /* 20495 * We are not the service proc. 20496 * ip_wsrv will be scheduled or 20497 * is already running. 20498 */ 20499 (void) putq(connp->conn_wq, 20500 first_mp); 20501 } 20502 } else { 20503 BUMP_MIB(&ip_mib, ipOutDiscards); 20504 freemsg(first_mp); 20505 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20506 "ip_wput_ire_end: q %p (%S)", 20507 q, "discard"); 20508 } 20509 ire_refrele(ire); 20510 if (next_mp) { 20511 ire_refrele(ire1); 20512 freemsg(next_mp); 20513 } 20514 if (conn_outgoing_ill != NULL) 20515 ill_refrele(conn_outgoing_ill); 20516 return; 20517 } 20518 if ((PROTO == IPPROTO_UDP) && 20519 (ip_hdr_included != IP_HDR_INCLUDED)) { 20520 /* 20521 * hlen gets the number of uchar_ts in the 20522 * IP header 20523 */ 20524 hlen = (V_HLEN & 0xF) << 2; 20525 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 20526 max_frag = ire->ire_max_frag; 20527 if (*up != 0) { 20528 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 20529 up, PROTO, hlen, LENGTH, max_frag, 20530 ipsec_len, cksum); 20531 /* Software checksum? */ 20532 if (DB_CKSUMFLAGS(mp) == 0) { 20533 IP_STAT(ip_out_sw_cksum); 20534 IP_STAT_UPDATE( 20535 ip_udp_out_sw_cksum_bytes, 20536 LENGTH - hlen); 20537 } 20538 } 20539 } 20540 } 20541 /* 20542 * Need to do this even when fragmenting. The local 20543 * loopback can be done without computing checksums 20544 * but forwarding out other interface must be done 20545 * after the IP checksum (and ULP checksums) have been 20546 * computed. 20547 * 20548 * NOTE : multicast_forward is set only if this packet 20549 * originated from ip_wput. For packets originating from 20550 * ip_wput_multicast, it is not set. 20551 */ 20552 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 20553 multi_loopback: 20554 ip2dbg(("ip_wput: multicast, loop %d\n", 20555 conn_multicast_loop)); 20556 20557 /* Forget header checksum offload */ 20558 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 20559 20560 /* 20561 * Local loopback of multicasts? Check the 20562 * ill. 20563 * 20564 * Note that the loopback function will not come 20565 * in through ip_rput - it will only do the 20566 * client fanout thus we need to do an mforward 20567 * as well. The is different from the BSD 20568 * logic. 20569 */ 20570 if (ill != NULL) { 20571 ilm_t *ilm; 20572 20573 ILM_WALKER_HOLD(ill); 20574 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 20575 ALL_ZONES); 20576 ILM_WALKER_RELE(ill); 20577 if (ilm != NULL) { 20578 /* 20579 * Pass along the virtual output q. 20580 * ip_wput_local() will distribute the 20581 * packet to all the matching zones, 20582 * except the sending zone when 20583 * IP_MULTICAST_LOOP is false. 20584 */ 20585 ip_multicast_loopback(q, ill, first_mp, 20586 conn_multicast_loop ? 0 : 20587 IP_FF_NO_MCAST_LOOP, zoneid); 20588 } 20589 } 20590 if (ipha->ipha_ttl == 0) { 20591 /* 20592 * 0 => only to this host i.e. we are 20593 * done. We are also done if this was the 20594 * loopback interface since it is sufficient 20595 * to loopback one copy of a multicast packet. 20596 */ 20597 freemsg(first_mp); 20598 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20599 "ip_wput_ire_end: q %p (%S)", 20600 q, "loopback"); 20601 ire_refrele(ire); 20602 if (conn_outgoing_ill != NULL) 20603 ill_refrele(conn_outgoing_ill); 20604 return; 20605 } 20606 /* 20607 * ILLF_MULTICAST is checked in ip_newroute 20608 * i.e. we don't need to check it here since 20609 * all IRE_CACHEs come from ip_newroute. 20610 * For multicast traffic, SO_DONTROUTE is interpreted 20611 * to mean only send the packet out the interface 20612 * (optionally specified with IP_MULTICAST_IF) 20613 * and do not forward it out additional interfaces. 20614 * RSVP and the rsvp daemon is an example of a 20615 * protocol and user level process that 20616 * handles it's own routing. Hence, it uses the 20617 * SO_DONTROUTE option to accomplish this. 20618 */ 20619 20620 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 20621 /* Unconditionally redo the checksum */ 20622 ipha->ipha_hdr_checksum = 0; 20623 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 20624 20625 /* 20626 * If this needs to go out secure, we need 20627 * to wait till we finish the IPSEC 20628 * processing. 20629 */ 20630 if (ipsec_len == 0 && 20631 ip_mforward(ill, ipha, mp)) { 20632 freemsg(first_mp); 20633 ip1dbg(("ip_wput: mforward failed\n")); 20634 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20635 "ip_wput_ire_end: q %p (%S)", 20636 q, "mforward failed"); 20637 ire_refrele(ire); 20638 if (conn_outgoing_ill != NULL) 20639 ill_refrele(conn_outgoing_ill); 20640 return; 20641 } 20642 } 20643 } 20644 max_frag = ire->ire_max_frag; 20645 cksum += ttl_protocol; 20646 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 20647 /* No fragmentation required for this one. */ 20648 /* 20649 * Don't use frag_flag if packet is pre-built or source 20650 * routed or if multicast (since multicast packets do 20651 * not solicit ICMP "packet too big" messages). 20652 */ 20653 if ((ip_hdr_included != IP_HDR_INCLUDED) && 20654 (V_HLEN == IP_SIMPLE_HDR_VERSION || 20655 !ip_source_route_included(ipha)) && 20656 !CLASSD(ipha->ipha_dst)) 20657 ipha->ipha_fragment_offset_and_flags |= 20658 htons(ire->ire_frag_flag); 20659 20660 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 20661 /* Complete the IP header checksum. */ 20662 cksum += ipha->ipha_ident; 20663 cksum += (v_hlen_tos_len >> 16)+ 20664 (v_hlen_tos_len & 0xFFFF); 20665 cksum += ipha->ipha_fragment_offset_and_flags; 20666 hlen = (V_HLEN & 0xF) - 20667 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 20668 if (hlen) { 20669 checksumoptions: 20670 /* 20671 * Account for the IP Options in the IP 20672 * header checksum. 20673 */ 20674 up = (uint16_t *)(rptr+ 20675 IP_SIMPLE_HDR_LENGTH); 20676 do { 20677 cksum += up[0]; 20678 cksum += up[1]; 20679 up += 2; 20680 } while (--hlen); 20681 } 20682 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 20683 cksum = ~(cksum + (cksum >> 16)); 20684 ipha->ipha_hdr_checksum = (uint16_t)cksum; 20685 } 20686 if (ipsec_len != 0) { 20687 ipsec_out_process(q, first_mp, ire, ill_index); 20688 if (!next_mp) { 20689 ire_refrele(ire); 20690 if (conn_outgoing_ill != NULL) 20691 ill_refrele(conn_outgoing_ill); 20692 return; 20693 } 20694 goto next; 20695 } 20696 20697 /* 20698 * multirt_send has already been handled 20699 * for broadcast, but not yet for multicast 20700 * or IP options. 20701 */ 20702 if (next_mp == NULL) { 20703 if (ire->ire_flags & RTF_MULTIRT) { 20704 multirt_send = B_TRUE; 20705 } 20706 } 20707 20708 /* 20709 * In most cases, the emission loop below is 20710 * entered only once. Only in the case where 20711 * the ire holds the RTF_MULTIRT flag, do we loop 20712 * to process all RTF_MULTIRT ires in the bucket, 20713 * and send the packet through all crossed 20714 * RTF_MULTIRT routes. 20715 */ 20716 do { 20717 if (multirt_send) { 20718 irb_t *irb; 20719 20720 irb = ire->ire_bucket; 20721 ASSERT(irb != NULL); 20722 /* 20723 * We are in a multiple send case, 20724 * need to get the next IRE and make 20725 * a duplicate of the packet. 20726 */ 20727 IRB_REFHOLD(irb); 20728 for (ire1 = ire->ire_next; 20729 ire1 != NULL; 20730 ire1 = ire1->ire_next) { 20731 if (!(ire1->ire_flags & 20732 RTF_MULTIRT)) 20733 continue; 20734 if (ire1->ire_addr != 20735 ire->ire_addr) 20736 continue; 20737 if (ire1->ire_marks & 20738 (IRE_MARK_CONDEMNED| 20739 IRE_MARK_HIDDEN)) 20740 continue; 20741 20742 /* Got one */ 20743 IRE_REFHOLD(ire1); 20744 break; 20745 } 20746 IRB_REFRELE(irb); 20747 20748 if (ire1 != NULL) { 20749 next_mp = copyb(mp); 20750 if ((next_mp == NULL) || 20751 ((mp->b_cont != NULL) && 20752 ((next_mp->b_cont = 20753 dupmsg(mp->b_cont)) 20754 == NULL))) { 20755 freemsg(next_mp); 20756 next_mp = NULL; 20757 ire_refrele(ire1); 20758 ire1 = NULL; 20759 } 20760 } 20761 20762 /* 20763 * Last multiroute ire; don't loop 20764 * anymore. The emission is over 20765 * and next_mp is NULL. 20766 */ 20767 if (ire1 == NULL) { 20768 multirt_send = B_FALSE; 20769 } 20770 } 20771 20772 noprepend: 20773 ASSERT(ipsec_len == 0); 20774 mp1 = ip_wput_attach_llhdr(mp, ire, 20775 IPP_LOCAL_OUT, ill_index); 20776 if (mp1 == NULL) { 20777 BUMP_MIB(&ip_mib, ipOutDiscards); 20778 if (next_mp) { 20779 freemsg(next_mp); 20780 ire_refrele(ire1); 20781 } 20782 ire_refrele(ire); 20783 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20784 "ip_wput_ire_end: q %p (%S)", 20785 q, "discard MDATA"); 20786 if (conn_outgoing_ill != NULL) 20787 ill_refrele(conn_outgoing_ill); 20788 return; 20789 } 20790 UPDATE_OB_PKT_COUNT(ire); 20791 ire->ire_last_used_time = lbolt; 20792 20793 if (multirt_send) { 20794 /* 20795 * We are in a multiple send case, 20796 * need to re-enter the sending loop 20797 * using the next ire. 20798 */ 20799 putnext(stq, mp1); 20800 ire_refrele(ire); 20801 ire = ire1; 20802 stq = ire->ire_stq; 20803 mp = next_mp; 20804 next_mp = NULL; 20805 ipha = (ipha_t *)mp->b_rptr; 20806 ill_index = Q_TO_INDEX(stq); 20807 } 20808 } while (multirt_send); 20809 20810 if (!next_mp) { 20811 /* 20812 * Last copy going out (the ultra-common 20813 * case). Note that we intentionally replicate 20814 * the putnext rather than calling it before 20815 * the next_mp check in hopes of a little 20816 * tail-call action out of the compiler. 20817 */ 20818 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20819 "ip_wput_ire_end: q %p (%S)", 20820 q, "last copy out(1)"); 20821 putnext(stq, mp1); 20822 ire_refrele(ire); 20823 if (conn_outgoing_ill != NULL) 20824 ill_refrele(conn_outgoing_ill); 20825 return; 20826 } 20827 /* More copies going out below. */ 20828 putnext(stq, mp1); 20829 } else { 20830 int offset; 20831 fragmentit: 20832 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 20833 /* 20834 * If this would generate a icmp_frag_needed message, 20835 * we need to handle it before we do the IPSEC 20836 * processing. Otherwise, we need to strip the IPSEC 20837 * headers before we send up the message to the ULPs 20838 * which becomes messy and difficult. 20839 */ 20840 if (ipsec_len != 0) { 20841 if ((max_frag < (unsigned int)(LENGTH + 20842 ipsec_len)) && (offset & IPH_DF)) { 20843 20844 BUMP_MIB(&ip_mib, ipFragFails); 20845 ipha->ipha_hdr_checksum = 0; 20846 ipha->ipha_hdr_checksum = 20847 (uint16_t)ip_csum_hdr(ipha); 20848 icmp_frag_needed(ire->ire_stq, first_mp, 20849 max_frag); 20850 if (!next_mp) { 20851 ire_refrele(ire); 20852 if (conn_outgoing_ill != NULL) { 20853 ill_refrele( 20854 conn_outgoing_ill); 20855 } 20856 return; 20857 } 20858 } else { 20859 /* 20860 * This won't cause a icmp_frag_needed 20861 * message. to be gnerated. Send it on 20862 * the wire. Note that this could still 20863 * cause fragmentation and all we 20864 * do is the generation of the message 20865 * to the ULP if needed before IPSEC. 20866 */ 20867 if (!next_mp) { 20868 ipsec_out_process(q, first_mp, 20869 ire, ill_index); 20870 TRACE_2(TR_FAC_IP, 20871 TR_IP_WPUT_IRE_END, 20872 "ip_wput_ire_end: q %p " 20873 "(%S)", q, 20874 "last ipsec_out_process"); 20875 ire_refrele(ire); 20876 if (conn_outgoing_ill != NULL) { 20877 ill_refrele( 20878 conn_outgoing_ill); 20879 } 20880 return; 20881 } 20882 ipsec_out_process(q, first_mp, 20883 ire, ill_index); 20884 } 20885 } else { 20886 /* Initiate IPPF processing */ 20887 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 20888 ip_process(IPP_LOCAL_OUT, &mp, 20889 ill_index); 20890 if (mp == NULL) { 20891 BUMP_MIB(&ip_mib, 20892 ipOutDiscards); 20893 if (next_mp != NULL) { 20894 freemsg(next_mp); 20895 ire_refrele(ire1); 20896 } 20897 ire_refrele(ire); 20898 TRACE_2(TR_FAC_IP, 20899 TR_IP_WPUT_IRE_END, 20900 "ip_wput_ire: q %p (%S)", 20901 q, "discard MDATA"); 20902 if (conn_outgoing_ill != NULL) { 20903 ill_refrele( 20904 conn_outgoing_ill); 20905 } 20906 return; 20907 } 20908 } 20909 if (!next_mp) { 20910 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20911 "ip_wput_ire_end: q %p (%S)", 20912 q, "last fragmentation"); 20913 ip_wput_ire_fragmentit(mp, ire); 20914 ire_refrele(ire); 20915 if (conn_outgoing_ill != NULL) 20916 ill_refrele(conn_outgoing_ill); 20917 return; 20918 } 20919 ip_wput_ire_fragmentit(mp, ire); 20920 } 20921 } 20922 } else { 20923 nullstq: 20924 /* A NULL stq means the destination address is local. */ 20925 UPDATE_OB_PKT_COUNT(ire); 20926 ire->ire_last_used_time = lbolt; 20927 ASSERT(ire->ire_ipif != NULL); 20928 if (!next_mp) { 20929 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 20930 "ip_wput_ire_end: q %p (%S)", 20931 q, "local address"); 20932 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, 20933 first_mp, ire, 0, ire->ire_zoneid); 20934 ire_refrele(ire); 20935 if (conn_outgoing_ill != NULL) 20936 ill_refrele(conn_outgoing_ill); 20937 return; 20938 } 20939 ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp, 20940 ire, 0, ire->ire_zoneid); 20941 } 20942 next: 20943 /* 20944 * More copies going out to additional interfaces. 20945 * ire1 has already been held. We don't need the 20946 * "ire" anymore. 20947 */ 20948 ire_refrele(ire); 20949 ire = ire1; 20950 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 20951 mp = next_mp; 20952 ASSERT(ire->ire_ipversion == IPV4_VERSION); 20953 ill = ire_to_ill(ire); 20954 first_mp = mp; 20955 if (ipsec_len != 0) { 20956 ASSERT(first_mp->b_datap->db_type == M_CTL); 20957 mp = mp->b_cont; 20958 } 20959 dst = ire->ire_addr; 20960 ipha = (ipha_t *)mp->b_rptr; 20961 /* 20962 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 20963 * Restore ipha_ident "no checksum" flag. 20964 */ 20965 src = orig_src; 20966 ipha->ipha_ident = ip_hdr_included; 20967 goto another; 20968 20969 #undef rptr 20970 #undef Q_TO_INDEX 20971 } 20972 20973 /* 20974 * Routine to allocate a message that is used to notify the ULP about MDT. 20975 * The caller may provide a pointer to the link-layer MDT capabilities, 20976 * or NULL if MDT is to be disabled on the stream. 20977 */ 20978 mblk_t * 20979 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 20980 { 20981 mblk_t *mp; 20982 ip_mdt_info_t *mdti; 20983 ill_mdt_capab_t *idst; 20984 20985 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 20986 DB_TYPE(mp) = M_CTL; 20987 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 20988 mdti = (ip_mdt_info_t *)mp->b_rptr; 20989 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 20990 idst = &(mdti->mdt_capab); 20991 20992 /* 20993 * If the caller provides us with the capability, copy 20994 * it over into our notification message; otherwise 20995 * we zero out the capability portion. 20996 */ 20997 if (isrc != NULL) 20998 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 20999 else 21000 bzero((caddr_t)idst, sizeof (*idst)); 21001 } 21002 return (mp); 21003 } 21004 21005 /* 21006 * Routine which determines whether MDT can be enabled on the destination 21007 * IRE and IPC combination, and if so, allocates and returns the MDT 21008 * notification mblk that may be used by ULP. We also check if we need to 21009 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 21010 * MDT usage in the past have been lifted. This gets called during IP 21011 * and ULP binding. 21012 */ 21013 mblk_t * 21014 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 21015 ill_mdt_capab_t *mdt_cap) 21016 { 21017 mblk_t *mp; 21018 boolean_t rc = B_FALSE; 21019 21020 ASSERT(dst_ire != NULL); 21021 ASSERT(connp != NULL); 21022 ASSERT(mdt_cap != NULL); 21023 21024 /* 21025 * Currently, we only support simple TCP/{IPv4,IPv6} with 21026 * Multidata, which is handled in tcp_multisend(). This 21027 * is the reason why we do all these checks here, to ensure 21028 * that we don't enable Multidata for the cases which we 21029 * can't handle at the moment. 21030 */ 21031 do { 21032 /* Only do TCP at the moment */ 21033 if (connp->conn_ulp != IPPROTO_TCP) 21034 break; 21035 21036 /* 21037 * IPSEC outbound policy present? Note that we get here 21038 * after calling ipsec_conn_cache_policy() where the global 21039 * policy checking is performed. conn_latch will be 21040 * non-NULL as long as there's a policy defined, 21041 * i.e. conn_out_enforce_policy may be NULL in such case 21042 * when the connection is non-secure, and hence we check 21043 * further if the latch refers to an outbound policy. 21044 */ 21045 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 21046 break; 21047 21048 /* CGTP (multiroute) is enabled? */ 21049 if (dst_ire->ire_flags & RTF_MULTIRT) 21050 break; 21051 21052 /* Outbound IPQoS enabled? */ 21053 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 21054 /* 21055 * In this case, we disable MDT for this and all 21056 * future connections going over the interface. 21057 */ 21058 mdt_cap->ill_mdt_on = 0; 21059 break; 21060 } 21061 21062 /* socket option(s) present? */ 21063 if (!CONN_IS_MD_FASTPATH(connp)) 21064 break; 21065 21066 rc = B_TRUE; 21067 /* CONSTCOND */ 21068 } while (0); 21069 21070 /* Remember the result */ 21071 connp->conn_mdt_ok = rc; 21072 21073 if (!rc) 21074 return (NULL); 21075 else if (!mdt_cap->ill_mdt_on) { 21076 /* 21077 * If MDT has been previously turned off in the past, and we 21078 * currently can do MDT (due to IPQoS policy removal, etc.) 21079 * then enable it for this interface. 21080 */ 21081 mdt_cap->ill_mdt_on = 1; 21082 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 21083 "interface %s\n", ill_name)); 21084 } 21085 21086 /* Allocate the MDT info mblk */ 21087 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 21088 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 21089 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 21090 return (NULL); 21091 } 21092 return (mp); 21093 } 21094 21095 /* 21096 * Create destination address attribute, and fill it with the physical 21097 * destination address and SAP taken from the template DL_UNITDATA_REQ 21098 * message block. 21099 */ 21100 boolean_t 21101 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 21102 { 21103 dl_unitdata_req_t *dlurp; 21104 pattr_t *pa; 21105 pattrinfo_t pa_info; 21106 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 21107 uint_t das_len, das_off; 21108 21109 ASSERT(dlmp != NULL); 21110 21111 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 21112 das_len = dlurp->dl_dest_addr_length; 21113 das_off = dlurp->dl_dest_addr_offset; 21114 21115 pa_info.type = PATTR_DSTADDRSAP; 21116 pa_info.len = sizeof (**das) + das_len - 1; 21117 21118 /* create and associate the attribute */ 21119 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21120 if (pa != NULL) { 21121 ASSERT(*das != NULL); 21122 (*das)->addr_is_group = 0; 21123 (*das)->addr_len = (uint8_t)das_len; 21124 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 21125 } 21126 21127 return (pa != NULL); 21128 } 21129 21130 /* 21131 * Create hardware checksum attribute and fill it with the values passed. 21132 */ 21133 boolean_t 21134 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 21135 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 21136 { 21137 pattr_t *pa; 21138 pattrinfo_t pa_info; 21139 21140 ASSERT(mmd != NULL); 21141 21142 pa_info.type = PATTR_HCKSUM; 21143 pa_info.len = sizeof (pattr_hcksum_t); 21144 21145 /* create and associate the attribute */ 21146 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21147 if (pa != NULL) { 21148 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 21149 21150 hck->hcksum_start_offset = start_offset; 21151 hck->hcksum_stuff_offset = stuff_offset; 21152 hck->hcksum_end_offset = end_offset; 21153 hck->hcksum_flags = flags; 21154 } 21155 return (pa != NULL); 21156 } 21157 21158 /* 21159 * Create zerocopy attribute and fill it with the specified flags 21160 */ 21161 boolean_t 21162 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 21163 { 21164 pattr_t *pa; 21165 pattrinfo_t pa_info; 21166 21167 ASSERT(mmd != NULL); 21168 pa_info.type = PATTR_ZCOPY; 21169 pa_info.len = sizeof (pattr_zcopy_t); 21170 21171 /* create and associate the attribute */ 21172 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 21173 if (pa != NULL) { 21174 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 21175 21176 zcopy->zcopy_flags = flags; 21177 } 21178 return (pa != NULL); 21179 } 21180 21181 /* 21182 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 21183 * block chain. We could rewrite to handle arbitrary message block chains but 21184 * that would make the code complicated and slow. Right now there three 21185 * restrictions: 21186 * 21187 * 1. The first message block must contain the complete IP header and 21188 * at least 1 byte of payload data. 21189 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 21190 * so that we can use a single Multidata message. 21191 * 3. No frag must be distributed over two or more message blocks so 21192 * that we don't need more than two packet descriptors per frag. 21193 * 21194 * The above restrictions allow us to support userland applications (which 21195 * will send down a single message block) and NFS over UDP (which will 21196 * send down a chain of at most three message blocks). 21197 * 21198 * We also don't use MDT for payloads with less than or equal to 21199 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 21200 */ 21201 boolean_t 21202 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 21203 { 21204 int blocks; 21205 ssize_t total, missing, size; 21206 21207 ASSERT(mp != NULL); 21208 ASSERT(hdr_len > 0); 21209 21210 size = MBLKL(mp) - hdr_len; 21211 if (size <= 0) 21212 return (B_FALSE); 21213 21214 /* The first mblk contains the header and some payload. */ 21215 blocks = 1; 21216 total = size; 21217 size %= len; 21218 missing = (size == 0) ? 0 : (len - size); 21219 mp = mp->b_cont; 21220 21221 while (mp != NULL) { 21222 /* 21223 * Give up if we encounter a zero length message block. 21224 * In practice, this should rarely happen and therefore 21225 * not worth the trouble of freeing and re-linking the 21226 * mblk from the chain to handle such case. 21227 */ 21228 if ((size = MBLKL(mp)) == 0) 21229 return (B_FALSE); 21230 21231 /* Too many payload buffers for a single Multidata message? */ 21232 if (++blocks > MULTIDATA_MAX_PBUFS) 21233 return (B_FALSE); 21234 21235 total += size; 21236 /* Is a frag distributed over two or more message blocks? */ 21237 if (missing > size) 21238 return (B_FALSE); 21239 size -= missing; 21240 21241 size %= len; 21242 missing = (size == 0) ? 0 : (len - size); 21243 21244 mp = mp->b_cont; 21245 } 21246 21247 return (total > ip_wput_frag_mdt_min); 21248 } 21249 21250 /* 21251 * Outbound IPv4 fragmentation routine using MDT. 21252 */ 21253 static void 21254 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 21255 uint32_t frag_flag, int offset) 21256 { 21257 ipha_t *ipha_orig; 21258 int i1, ip_data_end; 21259 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 21260 mblk_t *hdr_mp, *md_mp = NULL; 21261 unsigned char *hdr_ptr, *pld_ptr; 21262 multidata_t *mmd; 21263 ip_pdescinfo_t pdi; 21264 21265 ASSERT(DB_TYPE(mp) == M_DATA); 21266 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 21267 21268 ipha_orig = (ipha_t *)mp->b_rptr; 21269 mp->b_rptr += sizeof (ipha_t); 21270 21271 /* Calculate how many packets we will send out */ 21272 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 21273 pkts = (i1 + len - 1) / len; 21274 ASSERT(pkts > 1); 21275 21276 /* Allocate a message block which will hold all the IP Headers. */ 21277 wroff = ip_wroff_extra; 21278 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 21279 21280 i1 = pkts * hdr_chunk_len; 21281 /* 21282 * Create the header buffer, Multidata and destination address 21283 * and SAP attribute that should be associated with it. 21284 */ 21285 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 21286 ((hdr_mp->b_wptr += i1), 21287 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 21288 !ip_md_addr_attr(mmd, NULL, ire->ire_dlureq_mp)) { 21289 freemsg(mp); 21290 if (md_mp == NULL) { 21291 freemsg(hdr_mp); 21292 } else { 21293 free_mmd: IP_STAT(ip_frag_mdt_discarded); 21294 freemsg(md_mp); 21295 } 21296 IP_STAT(ip_frag_mdt_allocfail); 21297 UPDATE_MIB(&ip_mib, ipOutDiscards, pkts); 21298 return; 21299 } 21300 IP_STAT(ip_frag_mdt_allocd); 21301 21302 /* 21303 * Add a payload buffer to the Multidata; this operation must not 21304 * fail, or otherwise our logic in this routine is broken. There 21305 * is no memory allocation done by the routine, so any returned 21306 * failure simply tells us that we've done something wrong. 21307 * 21308 * A failure tells us that either we're adding the same payload 21309 * buffer more than once, or we're trying to add more buffers than 21310 * allowed. None of the above cases should happen, and we panic 21311 * because either there's horrible heap corruption, and/or 21312 * programming mistake. 21313 */ 21314 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21315 goto pbuf_panic; 21316 21317 hdr_ptr = hdr_mp->b_rptr; 21318 pld_ptr = mp->b_rptr; 21319 21320 /* Establish the ending byte offset, based on the starting offset. */ 21321 offset <<= 3; 21322 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 21323 IP_SIMPLE_HDR_LENGTH; 21324 21325 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 21326 21327 while (pld_ptr < mp->b_wptr) { 21328 ipha_t *ipha; 21329 uint16_t offset_and_flags; 21330 uint16_t ip_len; 21331 int error; 21332 21333 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 21334 ipha = (ipha_t *)(hdr_ptr + wroff); 21335 ASSERT(OK_32PTR(ipha)); 21336 *ipha = *ipha_orig; 21337 21338 if (ip_data_end - offset > len) { 21339 offset_and_flags = IPH_MF; 21340 } else { 21341 /* 21342 * Last frag. Set len to the length of this last piece. 21343 */ 21344 len = ip_data_end - offset; 21345 /* A frag of a frag might have IPH_MF non-zero */ 21346 offset_and_flags = 21347 ntohs(ipha->ipha_fragment_offset_and_flags) & 21348 IPH_MF; 21349 } 21350 offset_and_flags |= (uint16_t)(offset >> 3); 21351 offset_and_flags |= (uint16_t)frag_flag; 21352 /* Store the offset and flags in the IP header. */ 21353 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21354 21355 /* Store the length in the IP header. */ 21356 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 21357 ipha->ipha_length = htons(ip_len); 21358 21359 /* 21360 * Set the IP header checksum. Note that mp is just 21361 * the header, so this is easy to pass to ip_csum. 21362 */ 21363 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21364 21365 /* 21366 * Record offset and size of header and data of the next packet 21367 * in the multidata message. 21368 */ 21369 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 21370 PDESC_PLD_INIT(&pdi); 21371 i1 = MIN(mp->b_wptr - pld_ptr, len); 21372 ASSERT(i1 > 0); 21373 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 21374 if (i1 == len) { 21375 pld_ptr += len; 21376 } else { 21377 i1 = len - i1; 21378 mp = mp->b_cont; 21379 ASSERT(mp != NULL); 21380 ASSERT(MBLKL(mp) >= i1); 21381 /* 21382 * Attach the next payload message block to the 21383 * multidata message. 21384 */ 21385 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21386 goto pbuf_panic; 21387 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 21388 pld_ptr = mp->b_rptr + i1; 21389 } 21390 21391 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 21392 KM_NOSLEEP)) == NULL) { 21393 /* 21394 * Any failure other than ENOMEM indicates that we 21395 * have passed in invalid pdesc info or parameters 21396 * to mmd_addpdesc, which must not happen. 21397 * 21398 * EINVAL is a result of failure on boundary checks 21399 * against the pdesc info contents. It should not 21400 * happen, and we panic because either there's 21401 * horrible heap corruption, and/or programming 21402 * mistake. 21403 */ 21404 if (error != ENOMEM) { 21405 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 21406 "pdesc logic error detected for " 21407 "mmd %p pinfo %p (%d)\n", 21408 (void *)mmd, (void *)&pdi, error); 21409 /* NOTREACHED */ 21410 } 21411 IP_STAT(ip_frag_mdt_addpdescfail); 21412 /* Free unattached payload message blocks as well */ 21413 md_mp->b_cont = mp->b_cont; 21414 goto free_mmd; 21415 } 21416 21417 /* Advance fragment offset. */ 21418 offset += len; 21419 21420 /* Advance to location for next header in the buffer. */ 21421 hdr_ptr += hdr_chunk_len; 21422 21423 /* Did we reach the next payload message block? */ 21424 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 21425 mp = mp->b_cont; 21426 /* 21427 * Attach the next message block with payload 21428 * data to the multidata message. 21429 */ 21430 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 21431 goto pbuf_panic; 21432 pld_ptr = mp->b_rptr; 21433 } 21434 } 21435 21436 ASSERT(hdr_mp->b_wptr == hdr_ptr); 21437 ASSERT(mp->b_wptr == pld_ptr); 21438 21439 /* Update IP statistics */ 21440 UPDATE_MIB(&ip_mib, ipFragCreates, pkts); 21441 BUMP_MIB(&ip_mib, ipFragOKs); 21442 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 21443 21444 if (pkt_type == OB_PKT) { 21445 ire->ire_ob_pkt_count += pkts; 21446 if (ire->ire_ipif != NULL) 21447 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 21448 } else { 21449 /* 21450 * The type is IB_PKT in the forwarding path and in 21451 * the mobile IP case when the packet is being reverse- 21452 * tunneled to the home agent. 21453 */ 21454 ire->ire_ib_pkt_count += pkts; 21455 ASSERT(!IRE_IS_LOCAL(ire)); 21456 if (ire->ire_type & IRE_BROADCAST) 21457 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 21458 else 21459 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 21460 } 21461 ire->ire_last_used_time = lbolt; 21462 /* Send it down */ 21463 putnext(ire->ire_stq, md_mp); 21464 return; 21465 21466 pbuf_panic: 21467 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 21468 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 21469 pbuf_idx); 21470 /* NOTREACHED */ 21471 } 21472 21473 /* 21474 * Outbound IP fragmentation routine. 21475 * 21476 * NOTE : This routine does not ire_refrele the ire that is passed in 21477 * as the argument. 21478 */ 21479 static void 21480 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 21481 uint32_t frag_flag) 21482 { 21483 int i1; 21484 mblk_t *ll_hdr_mp; 21485 int ll_hdr_len; 21486 int hdr_len; 21487 mblk_t *hdr_mp; 21488 ipha_t *ipha; 21489 int ip_data_end; 21490 int len; 21491 mblk_t *mp = mp_orig; 21492 int offset; 21493 queue_t *q; 21494 uint32_t v_hlen_tos_len; 21495 mblk_t *first_mp; 21496 boolean_t mctl_present; 21497 ill_t *ill; 21498 mblk_t *xmit_mp; 21499 mblk_t *carve_mp; 21500 ire_t *ire1 = NULL; 21501 ire_t *save_ire = NULL; 21502 mblk_t *next_mp = NULL; 21503 boolean_t last_frag = B_FALSE; 21504 boolean_t multirt_send = B_FALSE; 21505 ire_t *first_ire = NULL; 21506 irb_t *irb = NULL; 21507 21508 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 21509 "ip_wput_frag_start:"); 21510 21511 if (mp->b_datap->db_type == M_CTL) { 21512 first_mp = mp; 21513 mp_orig = mp = mp->b_cont; 21514 mctl_present = B_TRUE; 21515 } else { 21516 first_mp = mp; 21517 mctl_present = B_FALSE; 21518 } 21519 21520 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 21521 ipha = (ipha_t *)mp->b_rptr; 21522 21523 /* 21524 * If the Don't Fragment flag is on, generate an ICMP destination 21525 * unreachable, fragmentation needed. 21526 */ 21527 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 21528 if (offset & IPH_DF) { 21529 BUMP_MIB(&ip_mib, ipFragFails); 21530 /* 21531 * Need to compute hdr checksum if called from ip_wput_ire. 21532 * Note that ip_rput_forward verifies the checksum before 21533 * calling this routine so in that case this is a noop. 21534 */ 21535 ipha->ipha_hdr_checksum = 0; 21536 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21537 icmp_frag_needed(ire->ire_stq, first_mp, max_frag); 21538 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21539 "ip_wput_frag_end:(%S)", 21540 "don't fragment"); 21541 return; 21542 } 21543 if (mctl_present) 21544 freeb(first_mp); 21545 /* 21546 * Establish the starting offset. May not be zero if we are fragging 21547 * a fragment that is being forwarded. 21548 */ 21549 offset = offset & IPH_OFFSET; 21550 21551 /* TODO why is this test needed? */ 21552 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21553 if (((max_frag - LENGTH) & ~7) < 8) { 21554 /* TODO: notify ulp somehow */ 21555 BUMP_MIB(&ip_mib, ipFragFails); 21556 freemsg(mp); 21557 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21558 "ip_wput_frag_end:(%S)", 21559 "len < 8"); 21560 return; 21561 } 21562 21563 hdr_len = (V_HLEN & 0xF) << 2; 21564 21565 ipha->ipha_hdr_checksum = 0; 21566 21567 /* 21568 * Establish the number of bytes maximum per frag, after putting 21569 * in the header. 21570 */ 21571 len = (max_frag - hdr_len) & ~7; 21572 21573 /* Check if we can use MDT to send out the frags. */ 21574 ASSERT(!IRE_IS_LOCAL(ire)); 21575 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 21576 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 21577 (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) && 21578 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 21579 ASSERT(ill->ill_mdt_capab != NULL); 21580 if (!ill->ill_mdt_capab->ill_mdt_on) { 21581 /* 21582 * If MDT has been previously turned off in the past, 21583 * and we currently can do MDT (due to IPQoS policy 21584 * removal, etc.) then enable it for this interface. 21585 */ 21586 ill->ill_mdt_capab->ill_mdt_on = 1; 21587 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 21588 ill->ill_name)); 21589 } 21590 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 21591 offset); 21592 return; 21593 } 21594 21595 /* Get a copy of the header for the trailing frags */ 21596 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 21597 if (!hdr_mp) { 21598 BUMP_MIB(&ip_mib, ipOutDiscards); 21599 freemsg(mp); 21600 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21601 "ip_wput_frag_end:(%S)", 21602 "couldn't copy hdr"); 21603 return; 21604 } 21605 21606 /* Store the starting offset, with the MoreFrags flag. */ 21607 i1 = offset | IPH_MF | frag_flag; 21608 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 21609 21610 /* Establish the ending byte offset, based on the starting offset. */ 21611 offset <<= 3; 21612 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 21613 21614 /* Store the length of the first fragment in the IP header. */ 21615 i1 = len + hdr_len; 21616 ASSERT(i1 <= IP_MAXPACKET); 21617 ipha->ipha_length = htons((uint16_t)i1); 21618 21619 /* 21620 * Compute the IP header checksum for the first frag. We have to 21621 * watch out that we stop at the end of the header. 21622 */ 21623 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21624 21625 /* 21626 * Now carve off the first frag. Note that this will include the 21627 * original IP header. 21628 */ 21629 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 21630 BUMP_MIB(&ip_mib, ipOutDiscards); 21631 freeb(hdr_mp); 21632 freemsg(mp_orig); 21633 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21634 "ip_wput_frag_end:(%S)", 21635 "couldn't carve first"); 21636 return; 21637 } 21638 21639 /* 21640 * Multirouting case. Each fragment is replicated 21641 * via all non-condemned RTF_MULTIRT routes 21642 * currently resolved. 21643 * We ensure that first_ire is the first RTF_MULTIRT 21644 * ire in the bucket. 21645 */ 21646 if (ire->ire_flags & RTF_MULTIRT) { 21647 irb = ire->ire_bucket; 21648 ASSERT(irb != NULL); 21649 21650 multirt_send = B_TRUE; 21651 21652 /* Make sure we do not omit any multiroute ire. */ 21653 IRB_REFHOLD(irb); 21654 for (first_ire = irb->irb_ire; 21655 first_ire != NULL; 21656 first_ire = first_ire->ire_next) { 21657 if ((first_ire->ire_flags & RTF_MULTIRT) && 21658 (first_ire->ire_addr == ire->ire_addr) && 21659 !(first_ire->ire_marks & 21660 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21661 break; 21662 } 21663 21664 if (first_ire != NULL) { 21665 if (first_ire != ire) { 21666 IRE_REFHOLD(first_ire); 21667 /* 21668 * Do not release the ire passed in 21669 * as the argument. 21670 */ 21671 ire = first_ire; 21672 } else { 21673 first_ire = NULL; 21674 } 21675 } 21676 IRB_REFRELE(irb); 21677 21678 /* 21679 * Save the first ire; we will need to restore it 21680 * for the trailing frags. 21681 * We REFHOLD save_ire, as each iterated ire will be 21682 * REFRELEd. 21683 */ 21684 save_ire = ire; 21685 IRE_REFHOLD(save_ire); 21686 } 21687 21688 /* 21689 * First fragment emission loop. 21690 * In most cases, the emission loop below is entered only 21691 * once. Only in the case where the ire holds the RTF_MULTIRT 21692 * flag, do we loop to process all RTF_MULTIRT ires in the 21693 * bucket, and send the fragment through all crossed 21694 * RTF_MULTIRT routes. 21695 */ 21696 do { 21697 if (ire->ire_flags & RTF_MULTIRT) { 21698 /* 21699 * We are in a multiple send case, need to get 21700 * the next ire and make a copy of the packet. 21701 * ire1 holds here the next ire to process in the 21702 * bucket. If multirouting is expected, 21703 * any non-RTF_MULTIRT ire that has the 21704 * right destination address is ignored. 21705 * 21706 * We have to take into account the MTU of 21707 * each walked ire. max_frag is set by the 21708 * the caller and generally refers to 21709 * the primary ire entry. Here we ensure that 21710 * no route with a lower MTU will be used, as 21711 * fragments are carved once for all ires, 21712 * then replicated. 21713 */ 21714 ASSERT(irb != NULL); 21715 IRB_REFHOLD(irb); 21716 for (ire1 = ire->ire_next; 21717 ire1 != NULL; 21718 ire1 = ire1->ire_next) { 21719 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 21720 continue; 21721 if (ire1->ire_addr != ire->ire_addr) 21722 continue; 21723 if (ire1->ire_marks & 21724 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 21725 continue; 21726 /* 21727 * Ensure we do not exceed the MTU 21728 * of the next route. 21729 */ 21730 if (ire1->ire_max_frag < max_frag) { 21731 ip_multirt_bad_mtu(ire1, max_frag); 21732 continue; 21733 } 21734 21735 /* Got one. */ 21736 IRE_REFHOLD(ire1); 21737 break; 21738 } 21739 IRB_REFRELE(irb); 21740 21741 if (ire1 != NULL) { 21742 next_mp = copyb(mp); 21743 if ((next_mp == NULL) || 21744 ((mp->b_cont != NULL) && 21745 ((next_mp->b_cont = 21746 dupmsg(mp->b_cont)) == NULL))) { 21747 freemsg(next_mp); 21748 next_mp = NULL; 21749 ire_refrele(ire1); 21750 ire1 = NULL; 21751 } 21752 } 21753 21754 /* Last multiroute ire; don't loop anymore. */ 21755 if (ire1 == NULL) { 21756 multirt_send = B_FALSE; 21757 } 21758 } 21759 21760 ll_hdr_len = 0; 21761 LOCK_IRE_FP_MP(ire); 21762 ll_hdr_mp = ire->ire_fp_mp; 21763 if (ll_hdr_mp != NULL) { 21764 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 21765 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 21766 } else { 21767 ll_hdr_mp = ire->ire_dlureq_mp; 21768 } 21769 21770 /* If there is a transmit header, get a copy for this frag. */ 21771 /* 21772 * TODO: should check db_ref before calling ip_carve_mp since 21773 * it might give us a dup. 21774 */ 21775 if (!ll_hdr_mp) { 21776 /* No xmit header. */ 21777 xmit_mp = mp; 21778 } else if (mp->b_datap->db_ref == 1 && 21779 ll_hdr_len != 0 && 21780 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 21781 /* M_DATA fastpath */ 21782 mp->b_rptr -= ll_hdr_len; 21783 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 21784 xmit_mp = mp; 21785 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 21786 UNLOCK_IRE_FP_MP(ire); 21787 BUMP_MIB(&ip_mib, ipOutDiscards); 21788 freeb(hdr_mp); 21789 freemsg(mp); 21790 freemsg(mp_orig); 21791 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 21792 "ip_wput_frag_end:(%S)", 21793 "discard"); 21794 21795 if (multirt_send) { 21796 ASSERT(ire1); 21797 ASSERT(next_mp); 21798 21799 freemsg(next_mp); 21800 ire_refrele(ire1); 21801 } 21802 if (save_ire != NULL) 21803 IRE_REFRELE(save_ire); 21804 21805 if (first_ire != NULL) 21806 ire_refrele(first_ire); 21807 return; 21808 } else { 21809 xmit_mp->b_cont = mp; 21810 /* Get priority marking, if any. */ 21811 if (DB_TYPE(xmit_mp) == M_DATA) 21812 xmit_mp->b_band = mp->b_band; 21813 } 21814 UNLOCK_IRE_FP_MP(ire); 21815 q = ire->ire_stq; 21816 BUMP_MIB(&ip_mib, ipFragCreates); 21817 putnext(q, xmit_mp); 21818 if (pkt_type != OB_PKT) { 21819 /* 21820 * Update the packet count of trailing 21821 * RTF_MULTIRT ires. 21822 */ 21823 UPDATE_OB_PKT_COUNT(ire); 21824 } 21825 21826 if (multirt_send) { 21827 /* 21828 * We are in a multiple send case; look for 21829 * the next ire and re-enter the loop. 21830 */ 21831 ASSERT(ire1); 21832 ASSERT(next_mp); 21833 /* REFRELE the current ire before looping */ 21834 ire_refrele(ire); 21835 ire = ire1; 21836 ire1 = NULL; 21837 mp = next_mp; 21838 next_mp = NULL; 21839 } 21840 } while (multirt_send); 21841 21842 ASSERT(ire1 == NULL); 21843 21844 /* Restore the original ire; we need it for the trailing frags */ 21845 if (save_ire != NULL) { 21846 /* REFRELE the last iterated ire */ 21847 ire_refrele(ire); 21848 /* save_ire has been REFHOLDed */ 21849 ire = save_ire; 21850 save_ire = NULL; 21851 q = ire->ire_stq; 21852 } 21853 21854 if (pkt_type == OB_PKT) { 21855 UPDATE_OB_PKT_COUNT(ire); 21856 } else { 21857 UPDATE_IB_PKT_COUNT(ire); 21858 } 21859 21860 /* Advance the offset to the second frag starting point. */ 21861 offset += len; 21862 /* 21863 * Update hdr_len from the copied header - there might be less options 21864 * in the later fragments. 21865 */ 21866 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 21867 /* Loop until done. */ 21868 for (;;) { 21869 uint16_t offset_and_flags; 21870 uint16_t ip_len; 21871 21872 if (ip_data_end - offset > len) { 21873 /* 21874 * Carve off the appropriate amount from the original 21875 * datagram. 21876 */ 21877 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21878 mp = NULL; 21879 break; 21880 } 21881 /* 21882 * More frags after this one. Get another copy 21883 * of the header. 21884 */ 21885 if (carve_mp->b_datap->db_ref == 1 && 21886 hdr_mp->b_wptr - hdr_mp->b_rptr < 21887 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21888 /* Inline IP header */ 21889 carve_mp->b_rptr -= hdr_mp->b_wptr - 21890 hdr_mp->b_rptr; 21891 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21892 hdr_mp->b_wptr - hdr_mp->b_rptr); 21893 mp = carve_mp; 21894 } else { 21895 if (!(mp = copyb(hdr_mp))) { 21896 freemsg(carve_mp); 21897 break; 21898 } 21899 /* Get priority marking, if any. */ 21900 mp->b_band = carve_mp->b_band; 21901 mp->b_cont = carve_mp; 21902 } 21903 ipha = (ipha_t *)mp->b_rptr; 21904 offset_and_flags = IPH_MF; 21905 } else { 21906 /* 21907 * Last frag. Consume the header. Set len to 21908 * the length of this last piece. 21909 */ 21910 len = ip_data_end - offset; 21911 21912 /* 21913 * Carve off the appropriate amount from the original 21914 * datagram. 21915 */ 21916 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 21917 mp = NULL; 21918 break; 21919 } 21920 if (carve_mp->b_datap->db_ref == 1 && 21921 hdr_mp->b_wptr - hdr_mp->b_rptr < 21922 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 21923 /* Inline IP header */ 21924 carve_mp->b_rptr -= hdr_mp->b_wptr - 21925 hdr_mp->b_rptr; 21926 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 21927 hdr_mp->b_wptr - hdr_mp->b_rptr); 21928 mp = carve_mp; 21929 freeb(hdr_mp); 21930 hdr_mp = mp; 21931 } else { 21932 mp = hdr_mp; 21933 /* Get priority marking, if any. */ 21934 mp->b_band = carve_mp->b_band; 21935 mp->b_cont = carve_mp; 21936 } 21937 ipha = (ipha_t *)mp->b_rptr; 21938 /* A frag of a frag might have IPH_MF non-zero */ 21939 offset_and_flags = 21940 ntohs(ipha->ipha_fragment_offset_and_flags) & 21941 IPH_MF; 21942 } 21943 offset_and_flags |= (uint16_t)(offset >> 3); 21944 offset_and_flags |= (uint16_t)frag_flag; 21945 /* Store the offset and flags in the IP header. */ 21946 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 21947 21948 /* Store the length in the IP header. */ 21949 ip_len = (uint16_t)(len + hdr_len); 21950 ipha->ipha_length = htons(ip_len); 21951 21952 /* 21953 * Set the IP header checksum. Note that mp is just 21954 * the header, so this is easy to pass to ip_csum. 21955 */ 21956 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 21957 21958 /* Attach a transmit header, if any, and ship it. */ 21959 if (pkt_type == OB_PKT) { 21960 UPDATE_OB_PKT_COUNT(ire); 21961 } else { 21962 UPDATE_IB_PKT_COUNT(ire); 21963 } 21964 21965 if (ire->ire_flags & RTF_MULTIRT) { 21966 irb = ire->ire_bucket; 21967 ASSERT(irb != NULL); 21968 21969 multirt_send = B_TRUE; 21970 21971 /* 21972 * Save the original ire; we will need to restore it 21973 * for the tailing frags. 21974 */ 21975 save_ire = ire; 21976 IRE_REFHOLD(save_ire); 21977 } 21978 /* 21979 * Emission loop for this fragment, similar 21980 * to what is done for the first fragment. 21981 */ 21982 do { 21983 if (multirt_send) { 21984 /* 21985 * We are in a multiple send case, need to get 21986 * the next ire and make a copy of the packet. 21987 */ 21988 ASSERT(irb != NULL); 21989 IRB_REFHOLD(irb); 21990 for (ire1 = ire->ire_next; 21991 ire1 != NULL; 21992 ire1 = ire1->ire_next) { 21993 if (!(ire1->ire_flags & RTF_MULTIRT)) 21994 continue; 21995 if (ire1->ire_addr != ire->ire_addr) 21996 continue; 21997 if (ire1->ire_marks & 21998 (IRE_MARK_CONDEMNED| 21999 IRE_MARK_HIDDEN)) 22000 continue; 22001 /* 22002 * Ensure we do not exceed the MTU 22003 * of the next route. 22004 */ 22005 if (ire1->ire_max_frag < max_frag) { 22006 ip_multirt_bad_mtu(ire1, 22007 max_frag); 22008 continue; 22009 } 22010 22011 /* Got one. */ 22012 IRE_REFHOLD(ire1); 22013 break; 22014 } 22015 IRB_REFRELE(irb); 22016 22017 if (ire1 != NULL) { 22018 next_mp = copyb(mp); 22019 if ((next_mp == NULL) || 22020 ((mp->b_cont != NULL) && 22021 ((next_mp->b_cont = 22022 dupmsg(mp->b_cont)) == NULL))) { 22023 freemsg(next_mp); 22024 next_mp = NULL; 22025 ire_refrele(ire1); 22026 ire1 = NULL; 22027 } 22028 } 22029 22030 /* Last multiroute ire; don't loop anymore. */ 22031 if (ire1 == NULL) { 22032 multirt_send = B_FALSE; 22033 } 22034 } 22035 22036 /* Update transmit header */ 22037 ll_hdr_len = 0; 22038 LOCK_IRE_FP_MP(ire); 22039 ll_hdr_mp = ire->ire_fp_mp; 22040 if (ll_hdr_mp != NULL) { 22041 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 22042 ll_hdr_len = MBLKL(ll_hdr_mp); 22043 } else { 22044 ll_hdr_mp = ire->ire_dlureq_mp; 22045 } 22046 22047 if (!ll_hdr_mp) { 22048 xmit_mp = mp; 22049 } else if (mp->b_datap->db_ref == 1 && 22050 ll_hdr_len != 0 && 22051 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 22052 /* M_DATA fastpath */ 22053 mp->b_rptr -= ll_hdr_len; 22054 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 22055 ll_hdr_len); 22056 xmit_mp = mp; 22057 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 22058 xmit_mp->b_cont = mp; 22059 /* Get priority marking, if any. */ 22060 if (DB_TYPE(xmit_mp) == M_DATA) 22061 xmit_mp->b_band = mp->b_band; 22062 } else { 22063 /* 22064 * Exit both the replication and 22065 * fragmentation loops. 22066 */ 22067 UNLOCK_IRE_FP_MP(ire); 22068 goto drop_pkt; 22069 } 22070 UNLOCK_IRE_FP_MP(ire); 22071 BUMP_MIB(&ip_mib, ipFragCreates); 22072 putnext(q, xmit_mp); 22073 22074 if (pkt_type != OB_PKT) { 22075 /* 22076 * Update the packet count of trailing 22077 * RTF_MULTIRT ires. 22078 */ 22079 UPDATE_OB_PKT_COUNT(ire); 22080 } 22081 22082 /* All done if we just consumed the hdr_mp. */ 22083 if (mp == hdr_mp) { 22084 last_frag = B_TRUE; 22085 } 22086 22087 if (multirt_send) { 22088 /* 22089 * We are in a multiple send case; look for 22090 * the next ire and re-enter the loop. 22091 */ 22092 ASSERT(ire1); 22093 ASSERT(next_mp); 22094 /* REFRELE the current ire before looping */ 22095 ire_refrele(ire); 22096 ire = ire1; 22097 ire1 = NULL; 22098 q = ire->ire_stq; 22099 mp = next_mp; 22100 next_mp = NULL; 22101 } 22102 } while (multirt_send); 22103 /* 22104 * Restore the original ire; we need it for the 22105 * trailing frags 22106 */ 22107 if (save_ire != NULL) { 22108 ASSERT(ire1 == NULL); 22109 /* REFRELE the last iterated ire */ 22110 ire_refrele(ire); 22111 /* save_ire has been REFHOLDed */ 22112 ire = save_ire; 22113 q = ire->ire_stq; 22114 save_ire = NULL; 22115 } 22116 22117 if (last_frag) { 22118 BUMP_MIB(&ip_mib, ipFragOKs); 22119 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22120 "ip_wput_frag_end:(%S)", 22121 "consumed hdr_mp"); 22122 22123 if (first_ire != NULL) 22124 ire_refrele(first_ire); 22125 return; 22126 } 22127 /* Otherwise, advance and loop. */ 22128 offset += len; 22129 } 22130 22131 drop_pkt: 22132 /* Clean up following allocation failure. */ 22133 BUMP_MIB(&ip_mib, ipOutDiscards); 22134 freemsg(mp); 22135 if (mp != hdr_mp) 22136 freeb(hdr_mp); 22137 if (mp != mp_orig) 22138 freemsg(mp_orig); 22139 22140 if (save_ire != NULL) 22141 IRE_REFRELE(save_ire); 22142 if (first_ire != NULL) 22143 ire_refrele(first_ire); 22144 22145 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 22146 "ip_wput_frag_end:(%S)", 22147 "end--alloc failure"); 22148 } 22149 22150 /* 22151 * Copy the header plus those options which have the copy bit set 22152 */ 22153 static mblk_t * 22154 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 22155 { 22156 mblk_t *mp; 22157 uchar_t *up; 22158 22159 /* 22160 * Quick check if we need to look for options without the copy bit 22161 * set 22162 */ 22163 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 22164 if (!mp) 22165 return (mp); 22166 mp->b_rptr += ip_wroff_extra; 22167 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 22168 bcopy(rptr, mp->b_rptr, hdr_len); 22169 mp->b_wptr += hdr_len + ip_wroff_extra; 22170 return (mp); 22171 } 22172 up = mp->b_rptr; 22173 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 22174 up += IP_SIMPLE_HDR_LENGTH; 22175 rptr += IP_SIMPLE_HDR_LENGTH; 22176 hdr_len -= IP_SIMPLE_HDR_LENGTH; 22177 while (hdr_len > 0) { 22178 uint32_t optval; 22179 uint32_t optlen; 22180 22181 optval = *rptr; 22182 if (optval == IPOPT_EOL) 22183 break; 22184 if (optval == IPOPT_NOP) 22185 optlen = 1; 22186 else 22187 optlen = rptr[1]; 22188 if (optval & IPOPT_COPY) { 22189 bcopy(rptr, up, optlen); 22190 up += optlen; 22191 } 22192 rptr += optlen; 22193 hdr_len -= optlen; 22194 } 22195 /* 22196 * Make sure that we drop an even number of words by filling 22197 * with EOL to the next word boundary. 22198 */ 22199 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 22200 hdr_len & 0x3; hdr_len++) 22201 *up++ = IPOPT_EOL; 22202 mp->b_wptr = up; 22203 /* Update header length */ 22204 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 22205 return (mp); 22206 } 22207 22208 /* 22209 * Delivery to local recipients including fanout to multiple recipients. 22210 * Does not do checksumming of UDP/TCP. 22211 * Note: q should be the read side queue for either the ill or conn. 22212 * Note: rq should be the read side q for the lower (ill) stream. 22213 * We don't send packets to IPPF processing, thus the last argument 22214 * to all the fanout calls are B_FALSE. 22215 */ 22216 void 22217 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 22218 int fanout_flags, zoneid_t zoneid) 22219 { 22220 uint32_t protocol; 22221 mblk_t *first_mp; 22222 boolean_t mctl_present; 22223 int ire_type; 22224 #define rptr ((uchar_t *)ipha) 22225 22226 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 22227 "ip_wput_local_start: q %p", q); 22228 22229 if (ire != NULL) { 22230 ire_type = ire->ire_type; 22231 } else { 22232 /* 22233 * Only ip_multicast_loopback() calls us with a NULL ire. If the 22234 * packet is not multicast, we can't tell the ire type. 22235 */ 22236 ASSERT(CLASSD(ipha->ipha_dst)); 22237 ire_type = IRE_BROADCAST; 22238 } 22239 22240 first_mp = mp; 22241 if (first_mp->b_datap->db_type == M_CTL) { 22242 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 22243 if (!io->ipsec_out_secure) { 22244 /* 22245 * This ipsec_out_t was allocated in ip_wput 22246 * for multicast packets to store the ill_index. 22247 * As this is being delivered locally, we don't 22248 * need this anymore. 22249 */ 22250 mp = first_mp->b_cont; 22251 freeb(first_mp); 22252 first_mp = mp; 22253 mctl_present = B_FALSE; 22254 } else { 22255 mctl_present = B_TRUE; 22256 mp = first_mp->b_cont; 22257 ASSERT(mp != NULL); 22258 ipsec_out_to_in(first_mp); 22259 } 22260 } else { 22261 mctl_present = B_FALSE; 22262 } 22263 22264 loopback_packets++; 22265 22266 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 22267 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 22268 if (!IS_SIMPLE_IPH(ipha)) { 22269 ip_wput_local_options(ipha); 22270 } 22271 22272 protocol = ipha->ipha_protocol; 22273 switch (protocol) { 22274 case IPPROTO_ICMP: { 22275 ire_t *ire_zone; 22276 ilm_t *ilm; 22277 mblk_t *mp1; 22278 zoneid_t last_zoneid; 22279 22280 if (CLASSD(ipha->ipha_dst) && 22281 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 22282 ASSERT(ire_type == IRE_BROADCAST); 22283 /* 22284 * In the multicast case, applications may have joined 22285 * the group from different zones, so we need to deliver 22286 * the packet to each of them. Loop through the 22287 * multicast memberships structures (ilm) on the receive 22288 * ill and send a copy of the packet up each matching 22289 * one. However, we don't do this for multicasts sent on 22290 * the loopback interface (PHYI_LOOPBACK flag set) as 22291 * they must stay in the sender's zone. 22292 * 22293 * ilm_add_v6() ensures that ilms in the same zone are 22294 * contiguous in the ill_ilm list. We use this property 22295 * to avoid sending duplicates needed when two 22296 * applications in the same zone join the same group on 22297 * different logical interfaces: we ignore the ilm if 22298 * its zoneid is the same as the last matching one. 22299 * In addition, the sending of the packet for 22300 * ire_zoneid is delayed until all of the other ilms 22301 * have been exhausted. 22302 */ 22303 last_zoneid = -1; 22304 ILM_WALKER_HOLD(ill); 22305 for (ilm = ill->ill_ilm; ilm != NULL; 22306 ilm = ilm->ilm_next) { 22307 if ((ilm->ilm_flags & ILM_DELETED) || 22308 ipha->ipha_dst != ilm->ilm_addr || 22309 ilm->ilm_zoneid == last_zoneid || 22310 ilm->ilm_zoneid == zoneid || 22311 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 22312 continue; 22313 mp1 = ip_copymsg(first_mp); 22314 if (mp1 == NULL) 22315 continue; 22316 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 22317 mctl_present, B_FALSE, ill, 22318 ilm->ilm_zoneid); 22319 last_zoneid = ilm->ilm_zoneid; 22320 } 22321 ILM_WALKER_RELE(ill); 22322 /* 22323 * Loopback case: the sending endpoint has 22324 * IP_MULTICAST_LOOP disabled, therefore we don't 22325 * dispatch the multicast packet to the sending zone. 22326 */ 22327 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 22328 freemsg(first_mp); 22329 return; 22330 } 22331 } else if (ire_type == IRE_BROADCAST) { 22332 /* 22333 * In the broadcast case, there may be many zones 22334 * which need a copy of the packet delivered to them. 22335 * There is one IRE_BROADCAST per broadcast address 22336 * and per zone; we walk those using a helper function. 22337 * In addition, the sending of the packet for zoneid is 22338 * delayed until all of the other ires have been 22339 * processed. 22340 */ 22341 IRB_REFHOLD(ire->ire_bucket); 22342 ire_zone = NULL; 22343 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 22344 ire)) != NULL) { 22345 mp1 = ip_copymsg(first_mp); 22346 if (mp1 == NULL) 22347 continue; 22348 22349 UPDATE_IB_PKT_COUNT(ire_zone); 22350 ire_zone->ire_last_used_time = lbolt; 22351 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 22352 mctl_present, B_FALSE, ill, 22353 ire_zone->ire_zoneid); 22354 } 22355 IRB_REFRELE(ire->ire_bucket); 22356 } 22357 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 22358 0, mctl_present, B_FALSE, ill, zoneid); 22359 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22360 "ip_wput_local_end: q %p (%S)", 22361 q, "icmp"); 22362 return; 22363 } 22364 case IPPROTO_IGMP: 22365 if (igmp_input(q, mp, ill)) { 22366 /* Bad packet - discarded by igmp_input */ 22367 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22368 "ip_wput_local_end: q %p (%S)", 22369 q, "igmp_input--bad packet"); 22370 if (mctl_present) 22371 freeb(first_mp); 22372 return; 22373 } 22374 /* 22375 * igmp_input() may have pulled up the message so ipha needs to 22376 * be reinitialized. 22377 */ 22378 ipha = (ipha_t *)mp->b_rptr; 22379 /* deliver to local raw users */ 22380 break; 22381 case IPPROTO_ENCAP: 22382 /* 22383 * This case is covered by either ip_fanout_proto, or by 22384 * the above security processing for self-tunneled packets. 22385 */ 22386 break; 22387 case IPPROTO_UDP: { 22388 uint16_t *up; 22389 uint32_t ports; 22390 22391 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 22392 UDP_PORTS_OFFSET); 22393 /* Force a 'valid' checksum. */ 22394 up[3] = 0; 22395 22396 ports = *(uint32_t *)up; 22397 ip_fanout_udp(q, first_mp, ill, ipha, ports, 22398 (ire_type == IRE_BROADCAST), 22399 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22400 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 22401 ill, zoneid); 22402 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22403 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 22404 return; 22405 } 22406 case IPPROTO_TCP: { 22407 22408 /* 22409 * For TCP, discard broadcast packets. 22410 */ 22411 if ((ushort_t)ire_type == IRE_BROADCAST) { 22412 freemsg(first_mp); 22413 BUMP_MIB(&ip_mib, ipInDiscards); 22414 return; 22415 } 22416 22417 if (mp->b_datap->db_type == M_DATA) { 22418 /* 22419 * M_DATA mblk, so init mblk (chain) for no struio(). 22420 */ 22421 mblk_t *mp1 = mp; 22422 22423 do 22424 mp1->b_datap->db_struioflag = 0; 22425 while ((mp1 = mp1->b_cont) != NULL); 22426 } 22427 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 22428 <= mp->b_wptr); 22429 ip_fanout_tcp(q, first_mp, ill, ipha, 22430 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22431 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 22432 mctl_present, B_FALSE, zoneid); 22433 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22434 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 22435 return; 22436 } 22437 case IPPROTO_SCTP: 22438 { 22439 uint32_t ports; 22440 22441 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 22442 ip_fanout_sctp(first_mp, ill, ipha, ports, 22443 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 22444 IP_FF_IP6INFO, 22445 mctl_present, B_FALSE, 0, zoneid); 22446 return; 22447 } 22448 22449 default: 22450 break; 22451 } 22452 /* 22453 * Find a client for some other protocol. We give 22454 * copies to multiple clients, if more than one is 22455 * bound. 22456 */ 22457 ip_fanout_proto(q, first_mp, ill, ipha, 22458 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 22459 mctl_present, B_FALSE, ill, zoneid); 22460 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 22461 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 22462 #undef rptr 22463 } 22464 22465 /* 22466 * Update any source route, record route, or timestamp options. 22467 * Check that we are at end of strict source route. 22468 * The options have been sanity checked by ip_wput_options(). 22469 */ 22470 static void 22471 ip_wput_local_options(ipha_t *ipha) 22472 { 22473 ipoptp_t opts; 22474 uchar_t *opt; 22475 uint8_t optval; 22476 uint8_t optlen; 22477 ipaddr_t dst; 22478 uint32_t ts; 22479 ire_t *ire; 22480 timestruc_t now; 22481 22482 ip2dbg(("ip_wput_local_options\n")); 22483 for (optval = ipoptp_first(&opts, ipha); 22484 optval != IPOPT_EOL; 22485 optval = ipoptp_next(&opts)) { 22486 opt = opts.ipoptp_cur; 22487 optlen = opts.ipoptp_len; 22488 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22489 switch (optval) { 22490 uint32_t off; 22491 case IPOPT_SSRR: 22492 case IPOPT_LSRR: 22493 off = opt[IPOPT_OFFSET]; 22494 off--; 22495 if (optlen < IP_ADDR_LEN || 22496 off > optlen - IP_ADDR_LEN) { 22497 /* End of source route */ 22498 break; 22499 } 22500 /* 22501 * This will only happen if two consecutive entries 22502 * in the source route contains our address or if 22503 * it is a packet with a loose source route which 22504 * reaches us before consuming the whole source route 22505 */ 22506 ip1dbg(("ip_wput_local_options: not end of SR\n")); 22507 if (optval == IPOPT_SSRR) { 22508 return; 22509 } 22510 /* 22511 * Hack: instead of dropping the packet truncate the 22512 * source route to what has been used by filling the 22513 * rest with IPOPT_NOP. 22514 */ 22515 opt[IPOPT_OLEN] = (uint8_t)off; 22516 while (off < optlen) { 22517 opt[off++] = IPOPT_NOP; 22518 } 22519 break; 22520 case IPOPT_RR: 22521 off = opt[IPOPT_OFFSET]; 22522 off--; 22523 if (optlen < IP_ADDR_LEN || 22524 off > optlen - IP_ADDR_LEN) { 22525 /* No more room - ignore */ 22526 ip1dbg(( 22527 "ip_wput_forward_options: end of RR\n")); 22528 break; 22529 } 22530 dst = htonl(INADDR_LOOPBACK); 22531 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22532 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22533 break; 22534 case IPOPT_TS: 22535 /* Insert timestamp if there is romm */ 22536 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22537 case IPOPT_TS_TSONLY: 22538 off = IPOPT_TS_TIMELEN; 22539 break; 22540 case IPOPT_TS_PRESPEC: 22541 case IPOPT_TS_PRESPEC_RFC791: 22542 /* Verify that the address matched */ 22543 off = opt[IPOPT_OFFSET] - 1; 22544 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 22545 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 22546 NULL, ALL_ZONES, MATCH_IRE_TYPE); 22547 if (ire == NULL) { 22548 /* Not for us */ 22549 break; 22550 } 22551 ire_refrele(ire); 22552 /* FALLTHRU */ 22553 case IPOPT_TS_TSANDADDR: 22554 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 22555 break; 22556 default: 22557 /* 22558 * ip_*put_options should have already 22559 * dropped this packet. 22560 */ 22561 cmn_err(CE_PANIC, "ip_wput_local_options: " 22562 "unknown IT - bug in ip_wput_options?\n"); 22563 return; /* Keep "lint" happy */ 22564 } 22565 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 22566 /* Increase overflow counter */ 22567 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 22568 opt[IPOPT_POS_OV_FLG] = (uint8_t) 22569 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 22570 (off << 4); 22571 break; 22572 } 22573 off = opt[IPOPT_OFFSET] - 1; 22574 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 22575 case IPOPT_TS_PRESPEC: 22576 case IPOPT_TS_PRESPEC_RFC791: 22577 case IPOPT_TS_TSANDADDR: 22578 dst = htonl(INADDR_LOOPBACK); 22579 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 22580 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 22581 /* FALLTHRU */ 22582 case IPOPT_TS_TSONLY: 22583 off = opt[IPOPT_OFFSET] - 1; 22584 /* Compute # of milliseconds since midnight */ 22585 gethrestime(&now); 22586 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 22587 now.tv_nsec / (NANOSEC / MILLISEC); 22588 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 22589 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 22590 break; 22591 } 22592 break; 22593 } 22594 } 22595 } 22596 22597 /* 22598 * Send out a multicast packet on interface ipif. 22599 * The sender does not have an conn. 22600 * Caller verifies that this isn't a PHYI_LOOPBACK. 22601 */ 22602 void 22603 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif) 22604 { 22605 ipha_t *ipha; 22606 ire_t *ire; 22607 ipaddr_t dst; 22608 mblk_t *first_mp; 22609 22610 /* igmp_sendpkt always allocates a ipsec_out_t */ 22611 ASSERT(mp->b_datap->db_type == M_CTL); 22612 ASSERT(!ipif->ipif_isv6); 22613 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 22614 22615 first_mp = mp; 22616 mp = first_mp->b_cont; 22617 ASSERT(mp->b_datap->db_type == M_DATA); 22618 ipha = (ipha_t *)mp->b_rptr; 22619 22620 /* 22621 * Find an IRE which matches the destination and the outgoing 22622 * queue (i.e. the outgoing interface.) 22623 */ 22624 if (ipif->ipif_flags & IPIF_POINTOPOINT) 22625 dst = ipif->ipif_pp_dst_addr; 22626 else 22627 dst = ipha->ipha_dst; 22628 /* 22629 * The source address has already been initialized by the 22630 * caller and hence matching on ILL (MATCH_IRE_ILL) would 22631 * be sufficient rather than MATCH_IRE_IPIF. 22632 * 22633 * This function is used for sending IGMP packets. We need 22634 * to make sure that we send the packet out of the interface 22635 * (ipif->ipif_ill) where we joined the group. This is to 22636 * prevent from switches doing IGMP snooping to send us multicast 22637 * packets for a given group on the interface we have joined. 22638 * If we can't find an ire, igmp_sendpkt has already initialized 22639 * ipsec_out_attach_if so that this will not be load spread in 22640 * ip_newroute_ipif. 22641 */ 22642 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MATCH_IRE_ILL); 22643 if (!ire) { 22644 /* 22645 * Mark this packet to make it be delivered to 22646 * ip_wput_ire after the new ire has been 22647 * created. 22648 */ 22649 mp->b_prev = NULL; 22650 mp->b_next = NULL; 22651 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC); 22652 return; 22653 } 22654 22655 /* 22656 * Honor the RTF_SETSRC flag; this is the only case 22657 * where we force this addr whatever the current src addr is, 22658 * because this address is set by igmp_sendpkt(), and 22659 * cannot be specified by any user. 22660 */ 22661 if (ire->ire_flags & RTF_SETSRC) { 22662 ipha->ipha_src = ire->ire_src_addr; 22663 } 22664 22665 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE); 22666 } 22667 22668 /* 22669 * NOTE : This function does not ire_refrele the ire argument passed in. 22670 * 22671 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 22672 * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN 22673 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 22674 * the ire_lock to access the ire_fp_mp in this case. 22675 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 22676 * prepending a fastpath message IPQoS processing must precede it, we also set 22677 * the b_band of the fastpath message to that of the mblk returned by IPQoS 22678 * (IPQoS might have set the b_band for CoS marking). 22679 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 22680 * must follow it so that IPQoS can mark the dl_priority field for CoS 22681 * marking, if needed. 22682 */ 22683 static mblk_t * 22684 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 22685 { 22686 uint_t hlen; 22687 ipha_t *ipha; 22688 mblk_t *mp1; 22689 boolean_t qos_done = B_FALSE; 22690 uchar_t *ll_hdr; 22691 22692 #define rptr ((uchar_t *)ipha) 22693 22694 ipha = (ipha_t *)mp->b_rptr; 22695 hlen = 0; 22696 LOCK_IRE_FP_MP(ire); 22697 if ((mp1 = ire->ire_fp_mp) != NULL) { 22698 ASSERT(DB_TYPE(mp1) == M_DATA); 22699 /* Initiate IPPF processing */ 22700 if ((proc != 0) && IPP_ENABLED(proc)) { 22701 UNLOCK_IRE_FP_MP(ire); 22702 ip_process(proc, &mp, ill_index); 22703 if (mp == NULL) 22704 return (NULL); 22705 22706 ipha = (ipha_t *)mp->b_rptr; 22707 LOCK_IRE_FP_MP(ire); 22708 if ((mp1 = ire->ire_fp_mp) == NULL) { 22709 qos_done = B_TRUE; 22710 goto no_fp_mp; 22711 } 22712 ASSERT(DB_TYPE(mp1) == M_DATA); 22713 } 22714 hlen = MBLKL(mp1); 22715 /* 22716 * Check if we have enough room to prepend fastpath 22717 * header 22718 */ 22719 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 22720 ll_hdr = rptr - hlen; 22721 bcopy(mp1->b_rptr, ll_hdr, hlen); 22722 /* XXX ipha is not aligned here */ 22723 ipha = (ipha_t *)(rptr - hlen); 22724 /* 22725 * Set the b_rptr to the start of the link layer 22726 * header 22727 */ 22728 mp->b_rptr = rptr; 22729 mp1 = mp; 22730 } else { 22731 mp1 = copyb(mp1); 22732 if (mp1 == NULL) 22733 goto unlock_err; 22734 mp1->b_band = mp->b_band; 22735 mp1->b_cont = mp; 22736 /* 22737 * XXX disable ICK_VALID and compute checksum 22738 * here; can happen if ire_fp_mp changes and 22739 * it can't be copied now due to insufficient 22740 * space. (unlikely, fp mp can change, but it 22741 * does not increase in length) 22742 */ 22743 } 22744 UNLOCK_IRE_FP_MP(ire); 22745 } else { 22746 no_fp_mp: 22747 mp1 = copyb(ire->ire_dlureq_mp); 22748 if (mp1 == NULL) { 22749 unlock_err: 22750 UNLOCK_IRE_FP_MP(ire); 22751 freemsg(mp); 22752 return (NULL); 22753 } 22754 UNLOCK_IRE_FP_MP(ire); 22755 mp1->b_cont = mp; 22756 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 22757 ip_process(proc, &mp1, ill_index); 22758 if (mp1 == NULL) 22759 return (NULL); 22760 } 22761 } 22762 return (mp1); 22763 #undef rptr 22764 } 22765 22766 /* 22767 * Finish the outbound IPsec processing for an IPv6 packet. This function 22768 * is called from ipsec_out_process() if the IPsec packet was processed 22769 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 22770 * asynchronously. 22771 */ 22772 void 22773 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 22774 ire_t *ire_arg) 22775 { 22776 in6_addr_t *v6dstp; 22777 ire_t *ire; 22778 mblk_t *mp; 22779 uint_t ill_index; 22780 ipsec_out_t *io; 22781 boolean_t attach_if, hwaccel; 22782 uint32_t flags = IP6_NO_IPPOLICY; 22783 int match_flags; 22784 zoneid_t zoneid; 22785 boolean_t ill_need_rele = B_FALSE; 22786 boolean_t ire_need_rele = B_FALSE; 22787 22788 mp = ipsec_mp->b_cont; 22789 io = (ipsec_out_t *)ipsec_mp->b_rptr; 22790 ill_index = io->ipsec_out_ill_index; 22791 if (io->ipsec_out_reachable) { 22792 flags |= IPV6_REACHABILITY_CONFIRMATION; 22793 } 22794 attach_if = io->ipsec_out_attach_if; 22795 hwaccel = io->ipsec_out_accelerated; 22796 zoneid = io->ipsec_out_zoneid; 22797 ASSERT(zoneid != ALL_ZONES); 22798 match_flags = MATCH_IRE_ILL_GROUP; 22799 /* Multicast addresses should have non-zero ill_index. */ 22800 v6dstp = &ip6h->ip6_dst; 22801 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 22802 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 22803 ASSERT(!attach_if || ill_index != 0); 22804 if (ill_index != 0) { 22805 if (ill == NULL) { 22806 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 22807 B_TRUE); 22808 22809 /* Failure case frees things for us. */ 22810 if (ill == NULL) 22811 return; 22812 22813 ill_need_rele = B_TRUE; 22814 } 22815 /* 22816 * If this packet needs to go out on a particular interface 22817 * honor it. 22818 */ 22819 if (attach_if) { 22820 match_flags = MATCH_IRE_ILL; 22821 22822 /* 22823 * Check if we need an ire that will not be 22824 * looked up by anybody else i.e. HIDDEN. 22825 */ 22826 if (ill_is_probeonly(ill)) { 22827 match_flags |= MATCH_IRE_MARK_HIDDEN; 22828 } 22829 } 22830 } 22831 ASSERT(mp != NULL); 22832 22833 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 22834 boolean_t unspec_src; 22835 ipif_t *ipif; 22836 22837 /* 22838 * Use the ill_index to get the right ill. 22839 */ 22840 unspec_src = io->ipsec_out_unspec_src; 22841 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 22842 if (ipif == NULL) { 22843 if (ill_need_rele) 22844 ill_refrele(ill); 22845 freemsg(ipsec_mp); 22846 return; 22847 } 22848 22849 if (ire_arg != NULL) { 22850 ire = ire_arg; 22851 } else { 22852 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22853 zoneid, match_flags); 22854 ire_need_rele = B_TRUE; 22855 } 22856 if (ire != NULL) { 22857 ipif_refrele(ipif); 22858 /* 22859 * XXX Do the multicast forwarding now, as the IPSEC 22860 * processing has been done. 22861 */ 22862 goto send; 22863 } 22864 22865 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 22866 mp->b_prev = NULL; 22867 mp->b_next = NULL; 22868 22869 /* 22870 * If the IPsec packet was processed asynchronously, 22871 * drop it now. 22872 */ 22873 if (q == NULL) { 22874 if (ill_need_rele) 22875 ill_refrele(ill); 22876 freemsg(ipsec_mp); 22877 return; 22878 } 22879 22880 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 22881 unspec_src, zoneid); 22882 ipif_refrele(ipif); 22883 } else { 22884 if (attach_if) { 22885 ipif_t *ipif; 22886 22887 ipif = ipif_get_next_ipif(NULL, ill); 22888 if (ipif == NULL) { 22889 if (ill_need_rele) 22890 ill_refrele(ill); 22891 freemsg(ipsec_mp); 22892 return; 22893 } 22894 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 22895 zoneid, match_flags); 22896 ire_need_rele = B_TRUE; 22897 ipif_refrele(ipif); 22898 } else { 22899 if (ire_arg != NULL) { 22900 ire = ire_arg; 22901 } else { 22902 ire = ire_cache_lookup_v6(v6dstp, zoneid); 22903 ire_need_rele = B_TRUE; 22904 } 22905 } 22906 if (ire != NULL) 22907 goto send; 22908 /* 22909 * ire disappeared underneath. 22910 * 22911 * What we need to do here is the ip_newroute 22912 * logic to get the ire without doing the IPSEC 22913 * processing. Follow the same old path. But this 22914 * time, ip_wput or ire_add_then_send will call us 22915 * directly as all the IPSEC operations are done. 22916 */ 22917 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 22918 mp->b_prev = NULL; 22919 mp->b_next = NULL; 22920 22921 /* 22922 * If the IPsec packet was processed asynchronously, 22923 * drop it now. 22924 */ 22925 if (q == NULL) { 22926 if (ill_need_rele) 22927 ill_refrele(ill); 22928 freemsg(ipsec_mp); 22929 return; 22930 } 22931 22932 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 22933 zoneid); 22934 } 22935 if (ill != NULL && ill_need_rele) 22936 ill_refrele(ill); 22937 return; 22938 send: 22939 if (ill != NULL && ill_need_rele) 22940 ill_refrele(ill); 22941 22942 /* Local delivery */ 22943 if (ire->ire_stq == NULL) { 22944 ASSERT(q != NULL); 22945 ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp, 22946 ire, 0); 22947 if (ire_need_rele) 22948 ire_refrele(ire); 22949 return; 22950 } 22951 /* 22952 * Everything is done. Send it out on the wire. 22953 * We force the insertion of a fragment header using the 22954 * IPH_FRAG_HDR flag in two cases: 22955 * - after reception of an ICMPv6 "packet too big" message 22956 * with a MTU < 1280 (cf. RFC 2460 section 5) 22957 * - for multirouted IPv6 packets, so that the receiver can 22958 * discard duplicates according to their fragment identifier 22959 */ 22960 /* XXX fix flow control problems. */ 22961 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 22962 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 22963 if (hwaccel) { 22964 /* 22965 * hardware acceleration does not handle these 22966 * "slow path" cases. 22967 */ 22968 /* IPsec KSTATS: should bump bean counter here. */ 22969 if (ire_need_rele) 22970 ire_refrele(ire); 22971 freemsg(ipsec_mp); 22972 return; 22973 } 22974 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 22975 (mp->b_cont ? msgdsize(mp) : 22976 mp->b_wptr - (uchar_t *)ip6h)) { 22977 /* IPsec KSTATS: should bump bean counter here. */ 22978 ip0dbg(("Packet length mismatch: %d, %ld\n", 22979 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 22980 msgdsize(mp))); 22981 if (ire_need_rele) 22982 ire_refrele(ire); 22983 freemsg(ipsec_mp); 22984 return; 22985 } 22986 ASSERT(mp->b_prev == NULL); 22987 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 22988 ntohs(ip6h->ip6_plen) + 22989 IPV6_HDR_LEN, ire->ire_max_frag)); 22990 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 22991 ire->ire_max_frag); 22992 } else { 22993 UPDATE_OB_PKT_COUNT(ire); 22994 ire->ire_last_used_time = lbolt; 22995 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 22996 } 22997 if (ire_need_rele) 22998 ire_refrele(ire); 22999 freeb(ipsec_mp); 23000 } 23001 23002 void 23003 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 23004 { 23005 mblk_t *hada_mp; /* attributes M_CTL mblk */ 23006 da_ipsec_t *hada; /* data attributes */ 23007 ill_t *ill = (ill_t *)q->q_ptr; 23008 23009 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 23010 23011 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 23012 /* IPsec KSTATS: Bump lose counter here! */ 23013 freemsg(mp); 23014 return; 23015 } 23016 23017 /* 23018 * It's an IPsec packet that must be 23019 * accelerated by the Provider, and the 23020 * outbound ill is IPsec acceleration capable. 23021 * Prepends the mblk with an IPHADA_M_CTL, and ship it 23022 * to the ill. 23023 * IPsec KSTATS: should bump packet counter here. 23024 */ 23025 23026 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 23027 if (hada_mp == NULL) { 23028 /* IPsec KSTATS: should bump packet counter here. */ 23029 freemsg(mp); 23030 return; 23031 } 23032 23033 hada_mp->b_datap->db_type = M_CTL; 23034 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 23035 hada_mp->b_cont = mp; 23036 23037 hada = (da_ipsec_t *)hada_mp->b_rptr; 23038 bzero(hada, sizeof (da_ipsec_t)); 23039 hada->da_type = IPHADA_M_CTL; 23040 23041 putnext(q, hada_mp); 23042 } 23043 23044 /* 23045 * Finish the outbound IPsec processing. This function is called from 23046 * ipsec_out_process() if the IPsec packet was processed 23047 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 23048 * asynchronously. 23049 */ 23050 void 23051 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 23052 ire_t *ire_arg) 23053 { 23054 uint32_t v_hlen_tos_len; 23055 ipaddr_t dst; 23056 ipif_t *ipif = NULL; 23057 ire_t *ire; 23058 ire_t *ire1 = NULL; 23059 mblk_t *next_mp = NULL; 23060 uint32_t max_frag; 23061 boolean_t multirt_send = B_FALSE; 23062 mblk_t *mp; 23063 mblk_t *mp1; 23064 uint_t ill_index; 23065 ipsec_out_t *io; 23066 boolean_t attach_if; 23067 int match_flags, offset; 23068 irb_t *irb = NULL; 23069 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 23070 zoneid_t zoneid; 23071 uint32_t cksum; 23072 uint16_t *up; 23073 #ifdef _BIG_ENDIAN 23074 #define LENGTH (v_hlen_tos_len & 0xFFFF) 23075 #else 23076 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 23077 #endif 23078 23079 mp = ipsec_mp->b_cont; 23080 ASSERT(mp != NULL); 23081 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23082 dst = ipha->ipha_dst; 23083 23084 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23085 ill_index = io->ipsec_out_ill_index; 23086 attach_if = io->ipsec_out_attach_if; 23087 zoneid = io->ipsec_out_zoneid; 23088 ASSERT(zoneid != ALL_ZONES); 23089 match_flags = MATCH_IRE_ILL_GROUP; 23090 if (ill_index != 0) { 23091 if (ill == NULL) { 23092 ill = ip_grab_attach_ill(NULL, ipsec_mp, 23093 ill_index, B_FALSE); 23094 23095 /* Failure case frees things for us. */ 23096 if (ill == NULL) 23097 return; 23098 23099 ill_need_rele = B_TRUE; 23100 } 23101 /* 23102 * If this packet needs to go out on a particular interface 23103 * honor it. 23104 */ 23105 if (attach_if) { 23106 match_flags = MATCH_IRE_ILL; 23107 23108 /* 23109 * Check if we need an ire that will not be 23110 * looked up by anybody else i.e. HIDDEN. 23111 */ 23112 if (ill_is_probeonly(ill)) { 23113 match_flags |= MATCH_IRE_MARK_HIDDEN; 23114 } 23115 } 23116 } 23117 23118 if (CLASSD(dst)) { 23119 boolean_t conn_dontroute; 23120 /* 23121 * Use the ill_index to get the right ipif. 23122 */ 23123 conn_dontroute = io->ipsec_out_dontroute; 23124 if (ill_index == 0) 23125 ipif = ipif_lookup_group(dst, zoneid); 23126 else 23127 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 23128 if (ipif == NULL) { 23129 ip1dbg(("ip_wput_ipsec_out: No ipif for" 23130 " multicast\n")); 23131 BUMP_MIB(&ip_mib, ipOutNoRoutes); 23132 freemsg(ipsec_mp); 23133 goto done; 23134 } 23135 /* 23136 * ipha_src has already been intialized with the 23137 * value of the ipif in ip_wput. All we need now is 23138 * an ire to send this downstream. 23139 */ 23140 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, match_flags); 23141 if (ire != NULL) { 23142 ill_t *ill1; 23143 /* 23144 * Do the multicast forwarding now, as the IPSEC 23145 * processing has been done. 23146 */ 23147 if (ip_g_mrouter && !conn_dontroute && 23148 (ill1 = ire_to_ill(ire))) { 23149 if (ip_mforward(ill1, ipha, mp)) { 23150 freemsg(ipsec_mp); 23151 ip1dbg(("ip_wput_ipsec_out: mforward " 23152 "failed\n")); 23153 ire_refrele(ire); 23154 goto done; 23155 } 23156 } 23157 goto send; 23158 } 23159 23160 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 23161 mp->b_prev = NULL; 23162 mp->b_next = NULL; 23163 23164 /* 23165 * If the IPsec packet was processed asynchronously, 23166 * drop it now. 23167 */ 23168 if (q == NULL) { 23169 freemsg(ipsec_mp); 23170 goto done; 23171 } 23172 23173 /* 23174 * We may be using a wrong ipif to create the ire. 23175 * But it is okay as the source address is assigned 23176 * for the packet already. Next outbound packet would 23177 * create the IRE with the right IPIF in ip_wput. 23178 * 23179 * Also handle RTF_MULTIRT routes. 23180 */ 23181 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT); 23182 } else { 23183 if (attach_if) { 23184 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 23185 zoneid, match_flags); 23186 } else { 23187 if (ire_arg != NULL) { 23188 ire = ire_arg; 23189 ire_need_rele = B_FALSE; 23190 } else { 23191 ire = ire_cache_lookup(dst, zoneid); 23192 } 23193 } 23194 if (ire != NULL) { 23195 goto send; 23196 } 23197 23198 /* 23199 * ire disappeared underneath. 23200 * 23201 * What we need to do here is the ip_newroute 23202 * logic to get the ire without doing the IPSEC 23203 * processing. Follow the same old path. But this 23204 * time, ip_wput or ire_add_then_put will call us 23205 * directly as all the IPSEC operations are done. 23206 */ 23207 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 23208 mp->b_prev = NULL; 23209 mp->b_next = NULL; 23210 23211 /* 23212 * If the IPsec packet was processed asynchronously, 23213 * drop it now. 23214 */ 23215 if (q == NULL) { 23216 freemsg(ipsec_mp); 23217 goto done; 23218 } 23219 23220 /* 23221 * Since we're going through ip_newroute() again, we 23222 * need to make sure we don't: 23223 * 23224 * 1.) Trigger the ASSERT() with the ipha_ident 23225 * overloading. 23226 * 2.) Redo transport-layer checksumming, since we've 23227 * already done all that to get this far. 23228 * 23229 * The easiest way not do either of the above is to set 23230 * the ipha_ident field to IP_HDR_INCLUDED. 23231 */ 23232 ipha->ipha_ident = IP_HDR_INCLUDED; 23233 ip_newroute(q, ipsec_mp, dst, NULL, 23234 (CONN_Q(q) ? Q_TO_CONN(q) : NULL)); 23235 } 23236 goto done; 23237 send: 23238 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 23239 /* 23240 * ESP NAT-Traversal packet. 23241 * 23242 * Just do software checksum for now. 23243 */ 23244 23245 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 23246 IP_STAT(ip_out_sw_cksum); 23247 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 23248 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 23249 #define iphs ((uint16_t *)ipha) 23250 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 23251 iphs[9] + ntohs(htons(ipha->ipha_length) - 23252 IP_SIMPLE_HDR_LENGTH); 23253 #undef iphs 23254 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 23255 cksum = 0xFFFF; 23256 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 23257 if (mp1->b_wptr - mp1->b_rptr >= 23258 offset + sizeof (uint16_t)) { 23259 up = (uint16_t *)(mp1->b_rptr + offset); 23260 *up = cksum; 23261 break; /* out of for loop */ 23262 } else { 23263 offset -= (mp->b_wptr - mp->b_rptr); 23264 } 23265 } /* Otherwise, just keep the all-zero checksum. */ 23266 23267 if (ire->ire_stq == NULL) { 23268 /* 23269 * Loopbacks go through ip_wput_local except for one case. 23270 * We come here if we generate a icmp_frag_needed message 23271 * after IPSEC processing is over. When this function calls 23272 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 23273 * icmp_frag_needed. The message generated comes back here 23274 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 23275 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 23276 * source address as it is usually set in ip_wput_ire. As 23277 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 23278 * and we end up here. We can't enter ip_wput_ire once the 23279 * IPSEC processing is over and hence we need to do it here. 23280 */ 23281 ASSERT(q != NULL); 23282 UPDATE_OB_PKT_COUNT(ire); 23283 ire->ire_last_used_time = lbolt; 23284 if (ipha->ipha_src == 0) 23285 ipha->ipha_src = ire->ire_src_addr; 23286 ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp, 23287 ire, 0, zoneid); 23288 if (ire_need_rele) 23289 ire_refrele(ire); 23290 goto done; 23291 } 23292 23293 if (ire->ire_max_frag < (unsigned int)LENGTH) { 23294 /* 23295 * We are through with IPSEC processing. 23296 * Fragment this and send it on the wire. 23297 */ 23298 if (io->ipsec_out_accelerated) { 23299 /* 23300 * The packet has been accelerated but must 23301 * be fragmented. This should not happen 23302 * since AH and ESP must not accelerate 23303 * packets that need fragmentation, however 23304 * the configuration could have changed 23305 * since the AH or ESP processing. 23306 * Drop packet. 23307 * IPsec KSTATS: bump bean counter here. 23308 */ 23309 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 23310 "fragmented accelerated packet!\n")); 23311 freemsg(ipsec_mp); 23312 } else { 23313 ip_wput_ire_fragmentit(ipsec_mp, ire); 23314 } 23315 if (ire_need_rele) 23316 ire_refrele(ire); 23317 goto done; 23318 } 23319 23320 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 23321 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 23322 (void *)ire->ire_ipif, (void *)ipif)); 23323 23324 /* 23325 * Multiroute the secured packet, unless IPsec really 23326 * requires the packet to go out only through a particular 23327 * interface. 23328 */ 23329 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 23330 ire_t *first_ire; 23331 irb = ire->ire_bucket; 23332 ASSERT(irb != NULL); 23333 /* 23334 * This ire has been looked up as the one that 23335 * goes through the given ipif; 23336 * make sure we do not omit any other multiroute ire 23337 * that may be present in the bucket before this one. 23338 */ 23339 IRB_REFHOLD(irb); 23340 for (first_ire = irb->irb_ire; 23341 first_ire != NULL; 23342 first_ire = first_ire->ire_next) { 23343 if ((first_ire->ire_flags & RTF_MULTIRT) && 23344 (first_ire->ire_addr == ire->ire_addr) && 23345 !(first_ire->ire_marks & 23346 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 23347 break; 23348 } 23349 23350 if ((first_ire != NULL) && (first_ire != ire)) { 23351 /* 23352 * Don't change the ire if the packet must 23353 * be fragmented if sent via this new one. 23354 */ 23355 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 23356 IRE_REFHOLD(first_ire); 23357 if (ire_need_rele) 23358 ire_refrele(ire); 23359 else 23360 ire_need_rele = B_TRUE; 23361 ire = first_ire; 23362 } 23363 } 23364 IRB_REFRELE(irb); 23365 23366 multirt_send = B_TRUE; 23367 max_frag = ire->ire_max_frag; 23368 } else { 23369 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 23370 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 23371 "flag, attach_if %d\n", attach_if)); 23372 } 23373 } 23374 23375 /* 23376 * In most cases, the emission loop below is entered only once. 23377 * Only in the case where the ire holds the RTF_MULTIRT 23378 * flag, we loop to process all RTF_MULTIRT ires in the 23379 * bucket, and send the packet through all crossed 23380 * RTF_MULTIRT routes. 23381 */ 23382 do { 23383 if (multirt_send) { 23384 /* 23385 * ire1 holds here the next ire to process in the 23386 * bucket. If multirouting is expected, 23387 * any non-RTF_MULTIRT ire that has the 23388 * right destination address is ignored. 23389 */ 23390 ASSERT(irb != NULL); 23391 IRB_REFHOLD(irb); 23392 for (ire1 = ire->ire_next; 23393 ire1 != NULL; 23394 ire1 = ire1->ire_next) { 23395 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 23396 continue; 23397 if (ire1->ire_addr != ire->ire_addr) 23398 continue; 23399 if (ire1->ire_marks & 23400 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 23401 continue; 23402 /* No loopback here */ 23403 if (ire1->ire_stq == NULL) 23404 continue; 23405 /* 23406 * Ensure we do not exceed the MTU 23407 * of the next route. 23408 */ 23409 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 23410 ip_multirt_bad_mtu(ire1, max_frag); 23411 continue; 23412 } 23413 23414 IRE_REFHOLD(ire1); 23415 break; 23416 } 23417 IRB_REFRELE(irb); 23418 if (ire1 != NULL) { 23419 /* 23420 * We are in a multiple send case, need to 23421 * make a copy of the packet. 23422 */ 23423 next_mp = copymsg(ipsec_mp); 23424 if (next_mp == NULL) { 23425 ire_refrele(ire1); 23426 ire1 = NULL; 23427 } 23428 } 23429 } 23430 23431 /* Everything is done. Send it out on the wire */ 23432 mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0); 23433 if (mp1 == NULL) { 23434 BUMP_MIB(&ip_mib, ipOutDiscards); 23435 freemsg(ipsec_mp); 23436 if (ire_need_rele) 23437 ire_refrele(ire); 23438 if (ire1 != NULL) { 23439 ire_refrele(ire1); 23440 freemsg(next_mp); 23441 } 23442 goto done; 23443 } 23444 UPDATE_OB_PKT_COUNT(ire); 23445 ire->ire_last_used_time = lbolt; 23446 if (!io->ipsec_out_accelerated) { 23447 putnext(ire->ire_stq, mp1); 23448 } else { 23449 /* 23450 * Safety Pup says: make sure this is going to 23451 * the right interface! 23452 */ 23453 ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr; 23454 int ifindex = ill1->ill_phyint->phyint_ifindex; 23455 23456 if (ifindex != io->ipsec_out_capab_ill_index) { 23457 /* IPsec kstats: bump lose counter */ 23458 freemsg(mp1); 23459 } else { 23460 ipsec_hw_putnext(ire->ire_stq, mp1); 23461 } 23462 } 23463 23464 freeb(ipsec_mp); 23465 if (ire_need_rele) 23466 ire_refrele(ire); 23467 23468 if (ire1 != NULL) { 23469 ire = ire1; 23470 ire_need_rele = B_TRUE; 23471 ASSERT(next_mp); 23472 ipsec_mp = next_mp; 23473 mp = ipsec_mp->b_cont; 23474 ire1 = NULL; 23475 next_mp = NULL; 23476 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23477 } else { 23478 multirt_send = B_FALSE; 23479 } 23480 } while (multirt_send); 23481 done: 23482 if (ill != NULL && ill_need_rele) 23483 ill_refrele(ill); 23484 if (ipif != NULL) 23485 ipif_refrele(ipif); 23486 } 23487 23488 /* 23489 * Get the ill corresponding to the specified ire, and compare its 23490 * capabilities with the protocol and algorithms specified by the 23491 * the SA obtained from ipsec_out. If they match, annotate the 23492 * ipsec_out structure to indicate that the packet needs acceleration. 23493 * 23494 * 23495 * A packet is eligible for outbound hardware acceleration if the 23496 * following conditions are satisfied: 23497 * 23498 * 1. the packet will not be fragmented 23499 * 2. the provider supports the algorithm 23500 * 3. there is no pending control message being exchanged 23501 * 4. snoop is not attached 23502 * 5. the destination address is not a broadcast or multicast address. 23503 * 23504 * Rationale: 23505 * - Hardware drivers do not support fragmentation with 23506 * the current interface. 23507 * - snoop, multicast, and broadcast may result in exposure of 23508 * a cleartext datagram. 23509 * We check all five of these conditions here. 23510 * 23511 * XXX would like to nuke "ire_t *" parameter here; problem is that 23512 * IRE is only way to figure out if a v4 address is a broadcast and 23513 * thus ineligible for acceleration... 23514 */ 23515 static void 23516 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 23517 { 23518 ipsec_out_t *io; 23519 mblk_t *data_mp; 23520 uint_t plen, overhead; 23521 23522 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 23523 return; 23524 23525 if (ill == NULL) 23526 return; 23527 23528 /* 23529 * Destination address is a broadcast or multicast. Punt. 23530 */ 23531 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 23532 IRE_LOCAL))) 23533 return; 23534 23535 data_mp = ipsec_mp->b_cont; 23536 23537 if (ill->ill_isv6) { 23538 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 23539 23540 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 23541 return; 23542 23543 plen = ip6h->ip6_plen; 23544 } else { 23545 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 23546 23547 if (CLASSD(ipha->ipha_dst)) 23548 return; 23549 23550 plen = ipha->ipha_length; 23551 } 23552 /* 23553 * Is there a pending DLPI control message being exchanged 23554 * between IP/IPsec and the DLS Provider? If there is, it 23555 * could be a SADB update, and the state of the DLS Provider 23556 * SADB might not be in sync with the SADB maintained by 23557 * IPsec. To avoid dropping packets or using the wrong keying 23558 * material, we do not accelerate this packet. 23559 */ 23560 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 23561 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23562 "ill_dlpi_pending! don't accelerate packet\n")); 23563 return; 23564 } 23565 23566 /* 23567 * Is the Provider in promiscous mode? If it does, we don't 23568 * accelerate the packet since it will bounce back up to the 23569 * listeners in the clear. 23570 */ 23571 if (ill->ill_promisc_on_phys) { 23572 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 23573 "ill in promiscous mode, don't accelerate packet\n")); 23574 return; 23575 } 23576 23577 /* 23578 * Will the packet require fragmentation? 23579 */ 23580 23581 /* 23582 * IPsec ESP note: this is a pessimistic estimate, but the same 23583 * as is used elsewhere. 23584 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 23585 * + 2-byte trailer 23586 */ 23587 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 23588 IPSEC_BASE_ESP_HDR_SIZE(sa); 23589 23590 if ((plen + overhead) > ill->ill_max_mtu) 23591 return; 23592 23593 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23594 23595 /* 23596 * Can the ill accelerate this IPsec protocol and algorithm 23597 * specified by the SA? 23598 */ 23599 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 23600 ill->ill_isv6, sa)) { 23601 return; 23602 } 23603 23604 /* 23605 * Tell AH or ESP that the outbound ill is capable of 23606 * accelerating this packet. 23607 */ 23608 io->ipsec_out_is_capab_ill = B_TRUE; 23609 } 23610 23611 /* 23612 * Select which AH & ESP SA's to use (if any) for the outbound packet. 23613 * 23614 * If this function returns B_TRUE, the requested SA's have been filled 23615 * into the ipsec_out_*_sa pointers. 23616 * 23617 * If the function returns B_FALSE, the packet has been "consumed", most 23618 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 23619 * 23620 * The SA references created by the protocol-specific "select" 23621 * function will be released when the ipsec_mp is freed, thanks to the 23622 * ipsec_out_free destructor -- see spd.c. 23623 */ 23624 static boolean_t 23625 ipsec_out_select_sa(mblk_t *ipsec_mp) 23626 { 23627 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 23628 ipsec_out_t *io; 23629 ipsec_policy_t *pp; 23630 ipsec_action_t *ap; 23631 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23632 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23633 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23634 23635 if (!io->ipsec_out_secure) { 23636 /* 23637 * We came here by mistake. 23638 * Don't bother with ipsec processing 23639 * We should "discourage" this path in the future. 23640 */ 23641 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23642 return (B_FALSE); 23643 } 23644 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23645 ASSERT((io->ipsec_out_policy != NULL) || 23646 (io->ipsec_out_act != NULL)); 23647 23648 ASSERT(io->ipsec_out_failed == B_FALSE); 23649 23650 /* 23651 * IPSEC processing has started. 23652 */ 23653 io->ipsec_out_proc_begin = B_TRUE; 23654 ap = io->ipsec_out_act; 23655 if (ap == NULL) { 23656 pp = io->ipsec_out_policy; 23657 ASSERT(pp != NULL); 23658 ap = pp->ipsp_act; 23659 ASSERT(ap != NULL); 23660 } 23661 23662 /* 23663 * We have an action. now, let's select SA's. 23664 * (In the future, we can cache this in the conn_t..) 23665 */ 23666 if (ap->ipa_want_esp) { 23667 if (io->ipsec_out_esp_sa == NULL) { 23668 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 23669 IPPROTO_ESP); 23670 } 23671 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 23672 } 23673 23674 if (ap->ipa_want_ah) { 23675 if (io->ipsec_out_ah_sa == NULL) { 23676 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 23677 IPPROTO_AH); 23678 } 23679 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 23680 /* 23681 * The ESP and AH processing order needs to be preserved 23682 * when both protocols are required (ESP should be applied 23683 * before AH for an outbound packet). Force an ESP ACQUIRE 23684 * when both ESP and AH are required, and an AH ACQUIRE 23685 * is needed. 23686 */ 23687 if (ap->ipa_want_esp && need_ah_acquire) 23688 need_esp_acquire = B_TRUE; 23689 } 23690 23691 /* 23692 * Send an ACQUIRE (extended, regular, or both) if we need one. 23693 * Release SAs that got referenced, but will not be used until we 23694 * acquire _all_ of the SAs we need. 23695 */ 23696 if (need_ah_acquire || need_esp_acquire) { 23697 if (io->ipsec_out_ah_sa != NULL) { 23698 IPSA_REFRELE(io->ipsec_out_ah_sa); 23699 io->ipsec_out_ah_sa = NULL; 23700 } 23701 if (io->ipsec_out_esp_sa != NULL) { 23702 IPSA_REFRELE(io->ipsec_out_esp_sa); 23703 io->ipsec_out_esp_sa = NULL; 23704 } 23705 23706 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 23707 return (B_FALSE); 23708 } 23709 23710 return (B_TRUE); 23711 } 23712 23713 /* 23714 * Process an IPSEC_OUT message and see what you can 23715 * do with it. 23716 * IPQoS Notes: 23717 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 23718 * IPSec. 23719 * XXX would like to nuke ire_t. 23720 * XXX ill_index better be "real" 23721 */ 23722 void 23723 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 23724 { 23725 ipsec_out_t *io; 23726 ipsec_policy_t *pp; 23727 ipsec_action_t *ap; 23728 ipha_t *ipha; 23729 ip6_t *ip6h; 23730 mblk_t *mp; 23731 ill_t *ill; 23732 zoneid_t zoneid; 23733 ipsec_status_t ipsec_rc; 23734 boolean_t ill_need_rele = B_FALSE; 23735 23736 io = (ipsec_out_t *)ipsec_mp->b_rptr; 23737 ASSERT(io->ipsec_out_type == IPSEC_OUT); 23738 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 23739 mp = ipsec_mp->b_cont; 23740 23741 /* 23742 * Initiate IPPF processing. We do it here to account for packets 23743 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 23744 * We can check for ipsec_out_proc_begin even for such packets, as 23745 * they will always be false (asserted below). 23746 */ 23747 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 23748 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 23749 io->ipsec_out_ill_index : ill_index); 23750 if (mp == NULL) { 23751 ip2dbg(("ipsec_out_process: packet dropped "\ 23752 "during IPPF processing\n")); 23753 freeb(ipsec_mp); 23754 BUMP_MIB(&ip_mib, ipOutDiscards); 23755 return; 23756 } 23757 } 23758 23759 if (!io->ipsec_out_secure) { 23760 /* 23761 * We came here by mistake. 23762 * Don't bother with ipsec processing 23763 * Should "discourage" this path in the future. 23764 */ 23765 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 23766 goto done; 23767 } 23768 ASSERT(io->ipsec_out_need_policy == B_FALSE); 23769 ASSERT((io->ipsec_out_policy != NULL) || 23770 (io->ipsec_out_act != NULL)); 23771 ASSERT(io->ipsec_out_failed == B_FALSE); 23772 23773 if (!ipsec_loaded()) { 23774 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 23775 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23776 BUMP_MIB(&ip_mib, ipOutDiscards); 23777 } else { 23778 BUMP_MIB(&ip6_mib, ipv6OutDiscards); 23779 } 23780 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 23781 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 23782 return; 23783 } 23784 23785 /* 23786 * IPSEC processing has started. 23787 */ 23788 io->ipsec_out_proc_begin = B_TRUE; 23789 ap = io->ipsec_out_act; 23790 if (ap == NULL) { 23791 pp = io->ipsec_out_policy; 23792 ASSERT(pp != NULL); 23793 ap = pp->ipsp_act; 23794 ASSERT(ap != NULL); 23795 } 23796 23797 /* 23798 * Save the outbound ill index. When the packet comes back 23799 * from IPsec, we make sure the ill hasn't changed or disappeared 23800 * before sending it the accelerated packet. 23801 */ 23802 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 23803 int ifindex; 23804 ill = ire_to_ill(ire); 23805 ifindex = ill->ill_phyint->phyint_ifindex; 23806 io->ipsec_out_capab_ill_index = ifindex; 23807 } 23808 23809 /* 23810 * The order of processing is first insert a IP header if needed. 23811 * Then insert the ESP header and then the AH header. 23812 */ 23813 if ((io->ipsec_out_se_done == B_FALSE) && 23814 (ap->ipa_want_se)) { 23815 /* 23816 * First get the outer IP header before sending 23817 * it to ESP. 23818 */ 23819 ipha_t *oipha, *iipha; 23820 mblk_t *outer_mp, *inner_mp; 23821 23822 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 23823 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 23824 "ipsec_out_process: " 23825 "Self-Encapsulation failed: Out of memory\n"); 23826 freemsg(ipsec_mp); 23827 BUMP_MIB(&ip_mib, ipOutDiscards); 23828 return; 23829 } 23830 inner_mp = ipsec_mp->b_cont; 23831 ASSERT(inner_mp->b_datap->db_type == M_DATA); 23832 oipha = (ipha_t *)outer_mp->b_rptr; 23833 iipha = (ipha_t *)inner_mp->b_rptr; 23834 *oipha = *iipha; 23835 outer_mp->b_wptr += sizeof (ipha_t); 23836 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 23837 sizeof (ipha_t)); 23838 oipha->ipha_protocol = IPPROTO_ENCAP; 23839 oipha->ipha_version_and_hdr_length = 23840 IP_SIMPLE_HDR_VERSION; 23841 oipha->ipha_hdr_checksum = 0; 23842 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 23843 outer_mp->b_cont = inner_mp; 23844 ipsec_mp->b_cont = outer_mp; 23845 23846 io->ipsec_out_se_done = B_TRUE; 23847 io->ipsec_out_encaps = B_TRUE; 23848 } 23849 23850 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 23851 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 23852 !ipsec_out_select_sa(ipsec_mp)) 23853 return; 23854 23855 /* 23856 * By now, we know what SA's to use. Toss over to ESP & AH 23857 * to do the heavy lifting. 23858 */ 23859 zoneid = io->ipsec_out_zoneid; 23860 ASSERT(zoneid != ALL_ZONES); 23861 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 23862 ASSERT(io->ipsec_out_esp_sa != NULL); 23863 io->ipsec_out_esp_done = B_TRUE; 23864 /* 23865 * Note that since hw accel can only apply one transform, 23866 * not two, we skip hw accel for ESP if we also have AH 23867 * This is an design limitation of the interface 23868 * which should be revisited. 23869 */ 23870 ASSERT(ire != NULL); 23871 if (io->ipsec_out_ah_sa == NULL) { 23872 ill = (ill_t *)ire->ire_stq->q_ptr; 23873 ipsec_out_is_accelerated(ipsec_mp, 23874 io->ipsec_out_esp_sa, ill, ire); 23875 } 23876 23877 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 23878 switch (ipsec_rc) { 23879 case IPSEC_STATUS_SUCCESS: 23880 break; 23881 case IPSEC_STATUS_FAILED: 23882 BUMP_MIB(&ip_mib, ipOutDiscards); 23883 /* FALLTHRU */ 23884 case IPSEC_STATUS_PENDING: 23885 return; 23886 } 23887 } 23888 23889 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 23890 ASSERT(io->ipsec_out_ah_sa != NULL); 23891 io->ipsec_out_ah_done = B_TRUE; 23892 if (ire == NULL) { 23893 int idx = io->ipsec_out_capab_ill_index; 23894 ill = ill_lookup_on_ifindex(idx, B_FALSE, 23895 NULL, NULL, NULL, NULL); 23896 ill_need_rele = B_TRUE; 23897 } else { 23898 ill = (ill_t *)ire->ire_stq->q_ptr; 23899 } 23900 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 23901 ire); 23902 23903 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 23904 switch (ipsec_rc) { 23905 case IPSEC_STATUS_SUCCESS: 23906 break; 23907 case IPSEC_STATUS_FAILED: 23908 BUMP_MIB(&ip_mib, ipOutDiscards); 23909 /* FALLTHRU */ 23910 case IPSEC_STATUS_PENDING: 23911 if (ill != NULL && ill_need_rele) 23912 ill_refrele(ill); 23913 return; 23914 } 23915 } 23916 /* 23917 * We are done with IPSEC processing. Send it over 23918 * the wire. 23919 */ 23920 done: 23921 mp = ipsec_mp->b_cont; 23922 ipha = (ipha_t *)mp->b_rptr; 23923 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 23924 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 23925 } else { 23926 ip6h = (ip6_t *)ipha; 23927 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 23928 } 23929 if (ill != NULL && ill_need_rele) 23930 ill_refrele(ill); 23931 } 23932 23933 /* ARGSUSED */ 23934 void 23935 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 23936 { 23937 opt_restart_t *or; 23938 int err; 23939 conn_t *connp; 23940 23941 ASSERT(CONN_Q(q)); 23942 connp = Q_TO_CONN(q); 23943 23944 ASSERT(first_mp->b_datap->db_type == M_CTL); 23945 or = (opt_restart_t *)first_mp->b_rptr; 23946 /* 23947 * We don't need to pass any credentials here since this is just 23948 * a restart. The credentials are passed in when svr4_optcom_req 23949 * is called the first time (from ip_wput_nondata). 23950 */ 23951 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 23952 err = svr4_optcom_req(q, first_mp, NULL, 23953 &ip_opt_obj); 23954 } else { 23955 ASSERT(or->or_type == T_OPTMGMT_REQ); 23956 err = tpi_optcom_req(q, first_mp, NULL, 23957 &ip_opt_obj); 23958 } 23959 if (err != EINPROGRESS) { 23960 /* operation is done */ 23961 CONN_OPER_PENDING_DONE(connp); 23962 } 23963 } 23964 23965 /* 23966 * ioctls that go through a down/up sequence may need to wait for the down 23967 * to complete. This involves waiting for the ire and ipif refcnts to go down 23968 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 23969 */ 23970 /* ARGSUSED */ 23971 void 23972 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 23973 { 23974 struct iocblk *iocp; 23975 mblk_t *mp1; 23976 ipif_t *ipif; 23977 ip_ioctl_cmd_t *ipip; 23978 int err; 23979 sin_t *sin; 23980 struct lifreq *lifr; 23981 struct ifreq *ifr; 23982 23983 iocp = (struct iocblk *)mp->b_rptr; 23984 ASSERT(ipsq != NULL); 23985 /* Existence of mp1 verified in ip_wput_nondata */ 23986 mp1 = mp->b_cont->b_cont; 23987 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 23988 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 23989 ill_t *ill; 23990 /* 23991 * Special case where ipsq_current_ipif may not be set. 23992 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 23993 * ill could also have become part of a ipmp group in the 23994 * process, we are here as were not able to complete the 23995 * operation in ipif_set_values because we could not become 23996 * exclusive on the new ipsq, In such a case ipsq_current_ipif 23997 * will not be set so we need to set it. 23998 */ 23999 ill = (ill_t *)q->q_ptr; 24000 ipsq->ipsq_current_ipif = ill->ill_ipif; 24001 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 24002 } 24003 24004 ipif = ipsq->ipsq_current_ipif; 24005 ASSERT(ipif != NULL); 24006 if (ipip->ipi_cmd_type == IF_CMD) { 24007 /* This a old style SIOC[GS]IF* command */ 24008 ifr = (struct ifreq *)mp1->b_rptr; 24009 sin = (sin_t *)&ifr->ifr_addr; 24010 } else if (ipip->ipi_cmd_type == LIF_CMD) { 24011 /* This a new style SIOC[GS]LIF* command */ 24012 lifr = (struct lifreq *)mp1->b_rptr; 24013 sin = (sin_t *)&lifr->lifr_addr; 24014 } else { 24015 sin = NULL; 24016 } 24017 24018 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 24019 (void *)mp1->b_rptr); 24020 24021 /* SIOCLIFREMOVEIF could have removed the ipif */ 24022 ip_ioctl_finish(q, mp, err, 24023 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24024 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 24025 } 24026 24027 /* 24028 * ioctl processing 24029 * 24030 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 24031 * the ioctl command in the ioctl tables and determines the copyin data size 24032 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 24033 * size. 24034 * 24035 * ioctl processing then continues when the M_IOCDATA makes its way down. 24036 * Now the ioctl is looked up again in the ioctl table, and its properties are 24037 * extracted. The associated 'conn' is then refheld till the end of the ioctl 24038 * and the general ioctl processing function ip_process_ioctl is called. 24039 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 24040 * so goes thru the serialization primitive ipsq_try_enter. Then the 24041 * appropriate function to handle the ioctl is called based on the entry in 24042 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 24043 * which also refreleases the 'conn' that was refheld at the start of the 24044 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 24045 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 24046 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 24047 * 24048 * Many exclusive ioctls go thru an internal down up sequence as part of 24049 * the operation. For example an attempt to change the IP address of an 24050 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 24051 * does all the cleanup such as deleting all ires that use this address. 24052 * Then we need to wait till all references to the interface go away. 24053 */ 24054 void 24055 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24056 { 24057 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 24058 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 24059 cmd_info_t ci; 24060 int err; 24061 boolean_t entered_ipsq = B_FALSE; 24062 24063 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 24064 24065 if (ipip == NULL) 24066 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24067 24068 /* 24069 * SIOCLIFADDIF needs to go thru a special path since the 24070 * ill may not exist yet. This happens in the case of lo0 24071 * which is created using this ioctl. 24072 */ 24073 if (ipip->ipi_cmd == SIOCLIFADDIF) { 24074 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 24075 ip_ioctl_finish(q, mp, err, 24076 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24077 NULL, NULL); 24078 return; 24079 } 24080 24081 ci.ci_ipif = NULL; 24082 switch (ipip->ipi_cmd_type) { 24083 case IF_CMD: 24084 case LIF_CMD: 24085 /* 24086 * ioctls that pass in a [l]ifreq appear here. 24087 * ip_extract_lifreq_cmn returns a refheld ipif in 24088 * ci.ci_ipif 24089 */ 24090 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 24091 ipip->ipi_flags, &ci, ip_process_ioctl); 24092 if (err != 0) { 24093 ip_ioctl_finish(q, mp, err, 24094 ipip->ipi_flags & IPI_GET_CMD ? 24095 COPYOUT : NO_COPYOUT, NULL, NULL); 24096 return; 24097 } 24098 ASSERT(ci.ci_ipif != NULL); 24099 break; 24100 24101 case TUN_CMD: 24102 /* 24103 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 24104 * a refheld ipif in ci.ci_ipif 24105 */ 24106 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 24107 if (err != 0) { 24108 ip_ioctl_finish(q, mp, err, 24109 ipip->ipi_flags & IPI_GET_CMD ? 24110 COPYOUT : NO_COPYOUT, NULL, NULL); 24111 return; 24112 } 24113 ASSERT(ci.ci_ipif != NULL); 24114 break; 24115 24116 case MISC_CMD: 24117 /* 24118 * ioctls that neither pass in [l]ifreq or iftun_req come here 24119 * For eg. SIOCGLIFCONF will appear here. 24120 */ 24121 switch (ipip->ipi_cmd) { 24122 case IF_UNITSEL: 24123 /* ioctl comes down the ill */ 24124 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 24125 ipif_refhold(ci.ci_ipif); 24126 break; 24127 case SIOCGMSFILTER: 24128 case SIOCSMSFILTER: 24129 case SIOCGIPMSFILTER: 24130 case SIOCSIPMSFILTER: 24131 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 24132 ip_process_ioctl); 24133 if (err != 0) { 24134 ip_ioctl_finish(q, mp, err, 24135 ipip->ipi_flags & IPI_GET_CMD ? 24136 COPYOUT : NO_COPYOUT, NULL, NULL); 24137 return; 24138 } 24139 break; 24140 } 24141 err = 0; 24142 ci.ci_sin = NULL; 24143 ci.ci_sin6 = NULL; 24144 ci.ci_lifr = NULL; 24145 break; 24146 } 24147 24148 /* 24149 * If ipsq is non-null, we are already being called exclusively 24150 */ 24151 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 24152 if (!(ipip->ipi_flags & IPI_WR)) { 24153 /* 24154 * A return value of EINPROGRESS means the ioctl is 24155 * either queued and waiting for some reason or has 24156 * already completed. 24157 */ 24158 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 24159 ci.ci_lifr); 24160 if (ci.ci_ipif != NULL) 24161 ipif_refrele(ci.ci_ipif); 24162 ip_ioctl_finish(q, mp, err, 24163 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24164 NULL, NULL); 24165 return; 24166 } 24167 24168 ASSERT(ci.ci_ipif != NULL); 24169 24170 if (ipsq == NULL) { 24171 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 24172 ip_process_ioctl, NEW_OP, B_TRUE); 24173 entered_ipsq = B_TRUE; 24174 } 24175 /* 24176 * Release the ipif so that ipif_down and friends that wait for 24177 * references to go away are not misled about the current ipif_refcnt 24178 * values. We are writer so we can access the ipif even after releasing 24179 * the ipif. 24180 */ 24181 ipif_refrele(ci.ci_ipif); 24182 if (ipsq == NULL) 24183 return; 24184 24185 mutex_enter(&ipsq->ipsq_lock); 24186 ASSERT(ipsq->ipsq_current_ipif == NULL); 24187 ipsq->ipsq_current_ipif = ci.ci_ipif; 24188 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 24189 mutex_exit(&ipsq->ipsq_lock); 24190 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 24191 /* 24192 * For most set ioctls that come here, this serves as a single point 24193 * where we set the IPIF_CHANGING flag. This ensures that there won't 24194 * be any new references to the ipif. This helps functions that go 24195 * through this path and end up trying to wait for the refcnts 24196 * associated with the ipif to go down to zero. Some exceptions are 24197 * Failover, Failback, and Groupname commands that operate on more than 24198 * just the ci.ci_ipif. These commands internally determine the 24199 * set of ipif's they operate on and set and clear the IPIF_CHANGING 24200 * flags on that set. Another exception is the Removeif command that 24201 * sets the IPIF_CONDEMNED flag internally after identifying the right 24202 * ipif to operate on. 24203 */ 24204 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 24205 ipip->ipi_cmd != SIOCLIFFAILOVER && 24206 ipip->ipi_cmd != SIOCLIFFAILBACK && 24207 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 24208 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 24209 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 24210 24211 /* 24212 * A return value of EINPROGRESS means the ioctl is 24213 * either queued and waiting for some reason or has 24214 * already completed. 24215 */ 24216 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 24217 ci.ci_lifr); 24218 24219 /* SIOCLIFREMOVEIF could have removed the ipif */ 24220 ip_ioctl_finish(q, mp, err, 24221 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 24222 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 24223 24224 if (entered_ipsq) 24225 ipsq_exit(ipsq, B_TRUE, B_TRUE); 24226 } 24227 24228 /* 24229 * Complete the ioctl. Typically ioctls use the mi package and need to 24230 * do mi_copyout/mi_copy_done. 24231 */ 24232 void 24233 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 24234 ipif_t *ipif, ipsq_t *ipsq) 24235 { 24236 conn_t *connp = NULL; 24237 24238 if (err == EINPROGRESS) 24239 return; 24240 24241 if (CONN_Q(q)) { 24242 connp = Q_TO_CONN(q); 24243 ASSERT(connp->conn_ref >= 2); 24244 } 24245 24246 switch (mode) { 24247 case COPYOUT: 24248 if (err == 0) 24249 mi_copyout(q, mp); 24250 else 24251 mi_copy_done(q, mp, err); 24252 break; 24253 24254 case NO_COPYOUT: 24255 mi_copy_done(q, mp, err); 24256 break; 24257 24258 default: 24259 /* An ioctl aborted through a conn close would take this path */ 24260 break; 24261 } 24262 24263 /* 24264 * The refhold placed at the start of the ioctl is released here. 24265 */ 24266 if (connp != NULL) 24267 CONN_OPER_PENDING_DONE(connp); 24268 24269 /* 24270 * If the ioctl were an exclusive ioctl it would have set 24271 * IPIF_CHANGING at the start of the ioctl which is undone here. 24272 */ 24273 if (ipif != NULL) { 24274 mutex_enter(&(ipif)->ipif_ill->ill_lock); 24275 ipif->ipif_state_flags &= ~IPIF_CHANGING; 24276 mutex_exit(&(ipif)->ipif_ill->ill_lock); 24277 } 24278 24279 /* 24280 * Clear the current ipif in the ipsq at the completion of the ioctl. 24281 * Note that a non-null ipsq_current_ipif prevents new ioctls from 24282 * entering the ipsq 24283 */ 24284 if (ipsq != NULL) { 24285 mutex_enter(&ipsq->ipsq_lock); 24286 ipsq->ipsq_current_ipif = NULL; 24287 mutex_exit(&ipsq->ipsq_lock); 24288 } 24289 } 24290 24291 /* 24292 * This is called from ip_wput_nondata to resume a deferred TCP bind. 24293 */ 24294 /* ARGSUSED */ 24295 void 24296 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 24297 { 24298 conn_t *connp = arg; 24299 tcp_t *tcp; 24300 24301 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 24302 tcp = connp->conn_tcp; 24303 24304 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 24305 freemsg(mp); 24306 else 24307 tcp_rput_other(tcp, mp); 24308 CONN_OPER_PENDING_DONE(connp); 24309 } 24310 24311 /* Called from ip_wput for all non data messages */ 24312 /* ARGSUSED */ 24313 void 24314 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 24315 { 24316 mblk_t *mp1; 24317 ire_t *ire; 24318 ill_t *ill; 24319 struct iocblk *iocp; 24320 ip_ioctl_cmd_t *ipip; 24321 cred_t *cr; 24322 conn_t *connp = NULL; 24323 int cmd, err; 24324 24325 if (CONN_Q(q)) 24326 connp = Q_TO_CONN(q); 24327 24328 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 24329 24330 /* Check if it is a queue to /dev/sctp. */ 24331 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 24332 connp->conn_rq == NULL) { 24333 sctp_wput(q, mp); 24334 return; 24335 } 24336 24337 switch (DB_TYPE(mp)) { 24338 case M_IOCTL: 24339 /* 24340 * IOCTL processing begins in ip_sioctl_copyin_setup which 24341 * will arrange to copy in associated control structures. 24342 */ 24343 ip_sioctl_copyin_setup(q, mp); 24344 return; 24345 case M_IOCDATA: 24346 /* 24347 * Ensure that this is associated with one of our trans- 24348 * parent ioctls. If it's not ours, discard it if we're 24349 * running as a driver, or pass it on if we're a module. 24350 */ 24351 iocp = (struct iocblk *)mp->b_rptr; 24352 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 24353 if (ipip == NULL) { 24354 if (q->q_next == NULL) { 24355 goto nak; 24356 } else { 24357 putnext(q, mp); 24358 } 24359 return; 24360 } else if ((q->q_next != NULL) && 24361 !(ipip->ipi_flags & IPI_MODOK)) { 24362 /* 24363 * the ioctl is one we recognise, but is not 24364 * consumed by IP as a module, pass M_IOCDATA 24365 * for processing downstream, but only for 24366 * common Streams ioctls. 24367 */ 24368 if (ipip->ipi_flags & IPI_PASS_DOWN) { 24369 putnext(q, mp); 24370 return; 24371 } else { 24372 goto nak; 24373 } 24374 } 24375 24376 /* IOCTL continuation following copyin or copyout. */ 24377 if (mi_copy_state(q, mp, NULL) == -1) { 24378 /* 24379 * The copy operation failed. mi_copy_state already 24380 * cleaned up, so we're out of here. 24381 */ 24382 return; 24383 } 24384 /* 24385 * If we just completed a copy in, we become writer and 24386 * continue processing in ip_sioctl_copyin_done. If it 24387 * was a copy out, we call mi_copyout again. If there is 24388 * nothing more to copy out, it will complete the IOCTL. 24389 */ 24390 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 24391 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 24392 mi_copy_done(q, mp, EPROTO); 24393 return; 24394 } 24395 /* 24396 * Check for cases that need more copying. A return 24397 * value of 0 means a second copyin has been started, 24398 * so we return; a return value of 1 means no more 24399 * copying is needed, so we continue. 24400 */ 24401 cmd = iocp->ioc_cmd; 24402 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 24403 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 24404 MI_COPY_COUNT(mp) == 1) { 24405 if (ip_copyin_msfilter(q, mp) == 0) 24406 return; 24407 } 24408 /* 24409 * Refhold the conn, till the ioctl completes. This is 24410 * needed in case the ioctl ends up in the pending mp 24411 * list. Every mp in the ill_pending_mp list and 24412 * the ipsq_pending_mp must have a refhold on the conn 24413 * to resume processing. The refhold is released when 24414 * the ioctl completes. (normally or abnormally) 24415 * In all cases ip_ioctl_finish is called to finish 24416 * the ioctl. 24417 */ 24418 if (connp != NULL) { 24419 /* This is not a reentry */ 24420 ASSERT(ipsq == NULL); 24421 CONN_INC_REF(connp); 24422 } else { 24423 if (!(ipip->ipi_flags & IPI_MODOK)) { 24424 mi_copy_done(q, mp, EINVAL); 24425 return; 24426 } 24427 } 24428 24429 ip_process_ioctl(ipsq, q, mp, ipip); 24430 24431 } else { 24432 mi_copyout(q, mp); 24433 } 24434 return; 24435 nak: 24436 iocp->ioc_error = EINVAL; 24437 mp->b_datap->db_type = M_IOCNAK; 24438 iocp->ioc_count = 0; 24439 qreply(q, mp); 24440 return; 24441 24442 case M_IOCNAK: 24443 /* 24444 * The only way we could get here is if a resolver didn't like 24445 * an IOCTL we sent it. This shouldn't happen. 24446 */ 24447 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 24448 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 24449 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 24450 freemsg(mp); 24451 return; 24452 case M_IOCACK: 24453 /* Finish socket ioctls passed through to ARP. */ 24454 ip_sioctl_iocack(q, mp); 24455 return; 24456 case M_FLUSH: 24457 if (*mp->b_rptr & FLUSHW) 24458 flushq(q, FLUSHALL); 24459 if (q->q_next) { 24460 /* 24461 * M_FLUSH is sent up to IP by some drivers during 24462 * unbind. ip_rput has already replied to it. We are 24463 * here for the M_FLUSH that we originated in IP 24464 * before sending the unbind request to the driver. 24465 * Just free it as we don't queue packets in IP 24466 * on the write side of the device instance. 24467 */ 24468 freemsg(mp); 24469 return; 24470 } 24471 if (*mp->b_rptr & FLUSHR) { 24472 *mp->b_rptr &= ~FLUSHW; 24473 qreply(q, mp); 24474 return; 24475 } 24476 freemsg(mp); 24477 return; 24478 case IRE_DB_REQ_TYPE: 24479 /* An Upper Level Protocol wants a copy of an IRE. */ 24480 ip_ire_req(q, mp); 24481 return; 24482 case M_CTL: 24483 /* M_CTL messages are used by ARP to tell us things. */ 24484 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 24485 break; 24486 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 24487 case AR_ENTRY_SQUERY: 24488 ip_wput_ctl(q, mp); 24489 return; 24490 case AR_CLIENT_NOTIFY: 24491 ip_arp_news(q, mp); 24492 return; 24493 case AR_DLPIOP_DONE: 24494 ASSERT(q->q_next != NULL); 24495 ill = (ill_t *)q->q_ptr; 24496 /* qwriter_ip releases the refhold */ 24497 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 24498 ill_refhold(ill); 24499 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 24500 CUR_OP, B_FALSE); 24501 return; 24502 case AR_ARP_CLOSING: 24503 /* 24504 * ARP (above us) is closing. If no ARP bringup is 24505 * currently pending, ack the message so that ARP 24506 * can complete its close. Also mark ill_arp_closing 24507 * so that new ARP bringups will fail. If any 24508 * ARP bringup is currently in progress, we will 24509 * ack this when the current ARP bringup completes. 24510 */ 24511 ASSERT(q->q_next != NULL); 24512 ill = (ill_t *)q->q_ptr; 24513 mutex_enter(&ill->ill_lock); 24514 ill->ill_arp_closing = 1; 24515 if (!ill->ill_arp_bringup_pending) { 24516 mutex_exit(&ill->ill_lock); 24517 qreply(q, mp); 24518 } else { 24519 mutex_exit(&ill->ill_lock); 24520 freemsg(mp); 24521 } 24522 return; 24523 default: 24524 break; 24525 } 24526 break; 24527 case M_PROTO: 24528 case M_PCPROTO: 24529 /* 24530 * The only PROTO messages we expect are ULP binds and 24531 * copies of option negotiation acknowledgements. 24532 */ 24533 switch (((union T_primitives *)mp->b_rptr)->type) { 24534 case O_T_BIND_REQ: 24535 case T_BIND_REQ: { 24536 /* Request can get queued in bind */ 24537 ASSERT(connp != NULL); 24538 /* 24539 * Both TCP and UDP call ip_bind_{v4,v6}() directly 24540 * instead of going through this path. We only get 24541 * here in the following cases: 24542 * 24543 * a. Bind retries, where ipsq is non-NULL. 24544 * b. T_BIND_REQ is issued from non TCP/UDP 24545 * transport, e.g. icmp for raw socket, 24546 * in which case ipsq will be NULL. 24547 */ 24548 ASSERT(ipsq != NULL || 24549 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 24550 24551 /* Don't increment refcnt if this is a re-entry */ 24552 if (ipsq == NULL) 24553 CONN_INC_REF(connp); 24554 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 24555 connp, NULL) : ip_bind_v4(q, mp, connp); 24556 if (mp == NULL) 24557 return; 24558 if (IPCL_IS_TCP(connp)) { 24559 /* 24560 * In the case of TCP endpoint we 24561 * come here only for bind retries 24562 */ 24563 ASSERT(ipsq != NULL); 24564 CONN_INC_REF(connp); 24565 squeue_fill(connp->conn_sqp, mp, 24566 ip_resume_tcp_bind, connp, 24567 SQTAG_BIND_RETRY); 24568 return; 24569 } else if (IPCL_IS_UDP(connp)) { 24570 /* 24571 * In the case of UDP endpoint we 24572 * come here only for bind retries 24573 */ 24574 ASSERT(ipsq != NULL); 24575 udp_resume_bind(connp, mp); 24576 return; 24577 } 24578 qreply(q, mp); 24579 CONN_OPER_PENDING_DONE(connp); 24580 return; 24581 } 24582 case T_SVR4_OPTMGMT_REQ: 24583 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 24584 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 24585 24586 ASSERT(connp != NULL); 24587 if (!snmpcom_req(q, mp, ip_snmp_set, 24588 ip_snmp_get, cr)) { 24589 /* 24590 * Call svr4_optcom_req so that it can 24591 * generate the ack. We don't come here 24592 * if this operation is being restarted. 24593 * ip_restart_optmgmt will drop the conn ref. 24594 * In the case of ipsec option after the ipsec 24595 * load is complete conn_restart_ipsec_waiter 24596 * drops the conn ref. 24597 */ 24598 ASSERT(ipsq == NULL); 24599 CONN_INC_REF(connp); 24600 if (ip_check_for_ipsec_opt(q, mp)) 24601 return; 24602 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 24603 if (err != EINPROGRESS) { 24604 /* Operation is done */ 24605 CONN_OPER_PENDING_DONE(connp); 24606 } 24607 } 24608 return; 24609 case T_OPTMGMT_REQ: 24610 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 24611 /* 24612 * Note: No snmpcom_req support through new 24613 * T_OPTMGMT_REQ. 24614 * Call tpi_optcom_req so that it can 24615 * generate the ack. 24616 */ 24617 ASSERT(connp != NULL); 24618 ASSERT(ipsq == NULL); 24619 /* 24620 * We don't come here for restart. ip_restart_optmgmt 24621 * will drop the conn ref. In the case of ipsec option 24622 * after the ipsec load is complete 24623 * conn_restart_ipsec_waiter drops the conn ref. 24624 */ 24625 CONN_INC_REF(connp); 24626 if (ip_check_for_ipsec_opt(q, mp)) 24627 return; 24628 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 24629 if (err != EINPROGRESS) { 24630 /* Operation is done */ 24631 CONN_OPER_PENDING_DONE(connp); 24632 } 24633 return; 24634 case T_UNBIND_REQ: 24635 mp = ip_unbind(q, mp); 24636 qreply(q, mp); 24637 return; 24638 default: 24639 /* 24640 * Have to drop any DLPI messages coming down from 24641 * arp (such as an info_req which would cause ip 24642 * to receive an extra info_ack if it was passed 24643 * through. 24644 */ 24645 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 24646 (int)*(uint_t *)mp->b_rptr)); 24647 freemsg(mp); 24648 return; 24649 } 24650 /* NOTREACHED */ 24651 case IRE_DB_TYPE: { 24652 nce_t *nce; 24653 ill_t *ill; 24654 in6_addr_t gw_addr_v6; 24655 24656 24657 /* 24658 * This is a response back from a resolver. It 24659 * consists of a message chain containing: 24660 * IRE_MBLK-->LL_HDR_MBLK->pkt 24661 * The IRE_MBLK is the one we allocated in ip_newroute. 24662 * The LL_HDR_MBLK is the DLPI header to use to get 24663 * the attached packet, and subsequent ones for the 24664 * same destination, transmitted. 24665 */ 24666 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 24667 break; 24668 /* 24669 * First, check to make sure the resolution succeeded. 24670 * If it failed, the second mblk will be empty. 24671 * If it is, free the chain, dropping the packet. 24672 * (We must ire_delete the ire; that frees the ire mblk) 24673 * We're doing this now to support PVCs for ATM; it's 24674 * a partial xresolv implementation. When we fully implement 24675 * xresolv interfaces, instead of freeing everything here 24676 * we'll initiate neighbor discovery. 24677 * 24678 * For v4 (ARP and other external resolvers) the resolver 24679 * frees the message, so no check is needed. This check 24680 * is required, though, for a full xresolve implementation. 24681 * Including this code here now both shows how external 24682 * resolvers can NACK a resolution request using an 24683 * existing design that has no specific provisions for NACKs, 24684 * and also takes into account that the current non-ARP 24685 * external resolver has been coded to use this method of 24686 * NACKing for all IPv6 (xresolv) cases, 24687 * whether our xresolv implementation is complete or not. 24688 * 24689 */ 24690 ire = (ire_t *)mp->b_rptr; 24691 ill = ire_to_ill(ire); 24692 mp1 = mp->b_cont; /* dl_unitdata_req */ 24693 if (mp1->b_rptr == mp1->b_wptr) { 24694 if (ire->ire_ipversion == IPV6_VERSION) { 24695 /* 24696 * XRESOLV interface. 24697 */ 24698 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24699 mutex_enter(&ire->ire_lock); 24700 gw_addr_v6 = ire->ire_gateway_addr_v6; 24701 mutex_exit(&ire->ire_lock); 24702 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24703 nce = ndp_lookup(ill, 24704 &ire->ire_addr_v6, B_FALSE); 24705 } else { 24706 nce = ndp_lookup(ill, &gw_addr_v6, 24707 B_FALSE); 24708 } 24709 if (nce != NULL) { 24710 nce_resolv_failed(nce); 24711 ndp_delete(nce); 24712 NCE_REFRELE(nce); 24713 } 24714 } 24715 mp->b_cont = NULL; 24716 freemsg(mp1); /* frees the pkt as well */ 24717 ire_delete((ire_t *)mp->b_rptr); 24718 return; 24719 } 24720 /* 24721 * Split them into IRE_MBLK and pkt and feed it into 24722 * ire_add_then_send. Then in ire_add_then_send 24723 * the IRE will be added, and then the packet will be 24724 * run back through ip_wput. This time it will make 24725 * it to the wire. 24726 */ 24727 mp->b_cont = NULL; 24728 mp = mp1->b_cont; /* now, mp points to pkt */ 24729 mp1->b_cont = NULL; 24730 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 24731 if (ire->ire_ipversion == IPV6_VERSION) { 24732 /* 24733 * XRESOLV interface. Find the nce and put a copy 24734 * of the dl_unitdata_req in nce_res_mp 24735 */ 24736 ASSERT(ill->ill_flags & ILLF_XRESOLV); 24737 mutex_enter(&ire->ire_lock); 24738 gw_addr_v6 = ire->ire_gateway_addr_v6; 24739 mutex_exit(&ire->ire_lock); 24740 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 24741 nce = ndp_lookup(ill, &ire->ire_addr_v6, 24742 B_FALSE); 24743 } else { 24744 nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE); 24745 } 24746 if (nce != NULL) { 24747 /* 24748 * We have to protect nce_res_mp here 24749 * from being accessed by other threads 24750 * while we change the mblk pointer. 24751 * Other functions will also lock the nce when 24752 * accessing nce_res_mp. 24753 * 24754 * The reason we change the mblk pointer 24755 * here rather than copying the resolved address 24756 * into the template is that, unlike with 24757 * ethernet, we have no guarantee that the 24758 * resolved address length will be 24759 * smaller than or equal to the lla length 24760 * with which the template was allocated, 24761 * (for ethernet, they're equal) 24762 * so we have to use the actual resolved 24763 * address mblk - which holds the real 24764 * dl_unitdata_req with the resolved address. 24765 * 24766 * Doing this is the same behavior as was 24767 * previously used in the v4 ARP case. 24768 */ 24769 mutex_enter(&nce->nce_lock); 24770 if (nce->nce_res_mp != NULL) 24771 freemsg(nce->nce_res_mp); 24772 nce->nce_res_mp = mp1; 24773 mutex_exit(&nce->nce_lock); 24774 /* 24775 * We do a fastpath probe here because 24776 * we have resolved the address without 24777 * using Neighbor Discovery. 24778 * In the non-XRESOLV v6 case, the fastpath 24779 * probe is done right after neighbor 24780 * discovery completes. 24781 */ 24782 if (nce->nce_res_mp != NULL) { 24783 int res; 24784 nce_fastpath_list_add(nce); 24785 res = ill_fastpath_probe(ill, 24786 nce->nce_res_mp); 24787 if (res != 0 && res != EAGAIN) 24788 nce_fastpath_list_delete(nce); 24789 } 24790 24791 ire_add_then_send(q, ire, mp); 24792 /* 24793 * Now we have to clean out any packets 24794 * that may have been queued on the nce 24795 * while it was waiting for address resolution 24796 * to complete. 24797 */ 24798 mutex_enter(&nce->nce_lock); 24799 mp1 = nce->nce_qd_mp; 24800 nce->nce_qd_mp = NULL; 24801 mutex_exit(&nce->nce_lock); 24802 while (mp1 != NULL) { 24803 mblk_t *nxt_mp; 24804 queue_t *fwdq = NULL; 24805 ill_t *inbound_ill; 24806 uint_t ifindex; 24807 24808 nxt_mp = mp1->b_next; 24809 mp1->b_next = NULL; 24810 /* 24811 * Retrieve ifindex stored in 24812 * ip_rput_data_v6() 24813 */ 24814 ifindex = 24815 (uint_t)(uintptr_t)mp1->b_prev; 24816 inbound_ill = 24817 ill_lookup_on_ifindex(ifindex, 24818 B_TRUE, NULL, NULL, NULL, 24819 NULL); 24820 mp1->b_prev = NULL; 24821 if (inbound_ill != NULL) 24822 fwdq = inbound_ill->ill_rq; 24823 24824 if (fwdq != NULL) { 24825 put(fwdq, mp1); 24826 ill_refrele(inbound_ill); 24827 } else 24828 put(WR(ill->ill_rq), mp1); 24829 mp1 = nxt_mp; 24830 } 24831 NCE_REFRELE(nce); 24832 } else { /* nce is NULL; clean up */ 24833 ire_delete(ire); 24834 freemsg(mp); 24835 freemsg(mp1); 24836 return; 24837 } 24838 } else { 24839 ire->ire_dlureq_mp = mp1; 24840 ire_add_then_send(q, ire, mp); 24841 } 24842 return; /* All is well, the packet has been sent. */ 24843 } 24844 default: 24845 break; 24846 } 24847 if (q->q_next) { 24848 putnext(q, mp); 24849 } else 24850 freemsg(mp); 24851 } 24852 24853 /* 24854 * Process IP options in an outbound packet. Modify the destination if there 24855 * is a source route option. 24856 * Returns non-zero if something fails in which case an ICMP error has been 24857 * sent and mp freed. 24858 */ 24859 static int 24860 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 24861 boolean_t mctl_present, zoneid_t zoneid) 24862 { 24863 ipoptp_t opts; 24864 uchar_t *opt; 24865 uint8_t optval; 24866 uint8_t optlen; 24867 ipaddr_t dst; 24868 intptr_t code = 0; 24869 mblk_t *mp; 24870 ire_t *ire = NULL; 24871 24872 ip2dbg(("ip_wput_options\n")); 24873 mp = ipsec_mp; 24874 if (mctl_present) { 24875 mp = ipsec_mp->b_cont; 24876 } 24877 24878 dst = ipha->ipha_dst; 24879 for (optval = ipoptp_first(&opts, ipha); 24880 optval != IPOPT_EOL; 24881 optval = ipoptp_next(&opts)) { 24882 opt = opts.ipoptp_cur; 24883 optlen = opts.ipoptp_len; 24884 ip2dbg(("ip_wput_options: opt %d, len %d\n", 24885 optval, optlen)); 24886 switch (optval) { 24887 uint32_t off; 24888 case IPOPT_SSRR: 24889 case IPOPT_LSRR: 24890 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24891 ip1dbg(( 24892 "ip_wput_options: bad option offset\n")); 24893 code = (char *)&opt[IPOPT_OLEN] - 24894 (char *)ipha; 24895 goto param_prob; 24896 } 24897 off = opt[IPOPT_OFFSET]; 24898 ip1dbg(("ip_wput_options: next hop 0x%x\n", 24899 ntohl(dst))); 24900 /* 24901 * For strict: verify that dst is directly 24902 * reachable. 24903 */ 24904 if (optval == IPOPT_SSRR) { 24905 ire = ire_ftable_lookup(dst, 0, 0, 24906 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 24907 MATCH_IRE_TYPE); 24908 if (ire == NULL) { 24909 ip1dbg(("ip_wput_options: SSRR not" 24910 " directly reachable: 0x%x\n", 24911 ntohl(dst))); 24912 goto bad_src_route; 24913 } 24914 ire_refrele(ire); 24915 } 24916 break; 24917 case IPOPT_RR: 24918 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24919 ip1dbg(( 24920 "ip_wput_options: bad option offset\n")); 24921 code = (char *)&opt[IPOPT_OLEN] - 24922 (char *)ipha; 24923 goto param_prob; 24924 } 24925 break; 24926 case IPOPT_TS: 24927 /* 24928 * Verify that length >=5 and that there is either 24929 * room for another timestamp or that the overflow 24930 * counter is not maxed out. 24931 */ 24932 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 24933 if (optlen < IPOPT_MINLEN_IT) { 24934 goto param_prob; 24935 } 24936 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 24937 ip1dbg(( 24938 "ip_wput_options: bad option offset\n")); 24939 code = (char *)&opt[IPOPT_OFFSET] - 24940 (char *)ipha; 24941 goto param_prob; 24942 } 24943 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 24944 case IPOPT_TS_TSONLY: 24945 off = IPOPT_TS_TIMELEN; 24946 break; 24947 case IPOPT_TS_TSANDADDR: 24948 case IPOPT_TS_PRESPEC: 24949 case IPOPT_TS_PRESPEC_RFC791: 24950 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 24951 break; 24952 default: 24953 code = (char *)&opt[IPOPT_POS_OV_FLG] - 24954 (char *)ipha; 24955 goto param_prob; 24956 } 24957 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 24958 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 24959 /* 24960 * No room and the overflow counter is 15 24961 * already. 24962 */ 24963 goto param_prob; 24964 } 24965 break; 24966 } 24967 } 24968 24969 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 24970 return (0); 24971 24972 ip1dbg(("ip_wput_options: error processing IP options.")); 24973 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 24974 24975 param_prob: 24976 /* 24977 * Since ip_wput() isn't close to finished, we fill 24978 * in enough of the header for credible error reporting. 24979 */ 24980 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24981 /* Failed */ 24982 freemsg(ipsec_mp); 24983 return (-1); 24984 } 24985 icmp_param_problem(q, ipsec_mp, (uint8_t)code); 24986 return (-1); 24987 24988 bad_src_route: 24989 /* 24990 * Since ip_wput() isn't close to finished, we fill 24991 * in enough of the header for credible error reporting. 24992 */ 24993 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 24994 /* Failed */ 24995 freemsg(ipsec_mp); 24996 return (-1); 24997 } 24998 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED); 24999 return (-1); 25000 } 25001 25002 /* 25003 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 25004 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 25005 * thru /etc/system. 25006 */ 25007 #define CONN_MAXDRAINCNT 64 25008 25009 static void 25010 conn_drain_init(void) 25011 { 25012 int i; 25013 25014 conn_drain_list_cnt = conn_drain_nthreads; 25015 25016 if ((conn_drain_list_cnt == 0) || 25017 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 25018 /* 25019 * Default value of the number of drainers is the 25020 * number of cpus, subject to maximum of 8 drainers. 25021 */ 25022 if (boot_max_ncpus != -1) 25023 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 25024 else 25025 conn_drain_list_cnt = MIN(max_ncpus, 8); 25026 } 25027 25028 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 25029 KM_SLEEP); 25030 25031 for (i = 0; i < conn_drain_list_cnt; i++) { 25032 mutex_init(&conn_drain_list[i].idl_lock, NULL, 25033 MUTEX_DEFAULT, NULL); 25034 } 25035 } 25036 25037 static void 25038 conn_drain_fini(void) 25039 { 25040 int i; 25041 25042 for (i = 0; i < conn_drain_list_cnt; i++) 25043 mutex_destroy(&conn_drain_list[i].idl_lock); 25044 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 25045 conn_drain_list = NULL; 25046 } 25047 25048 /* 25049 * Note: For an overview of how flowcontrol is handled in IP please see the 25050 * IP Flowcontrol notes at the top of this file. 25051 * 25052 * Flow control has blocked us from proceeding. Insert the given conn in one 25053 * of the conn drain lists. These conn wq's will be qenabled later on when 25054 * STREAMS flow control does a backenable. conn_walk_drain will enable 25055 * the first conn in each of these drain lists. Each of these qenabled conns 25056 * in turn enables the next in the list, after it runs, or when it closes, 25057 * thus sustaining the drain process. 25058 * 25059 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 25060 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 25061 * running at any time, on a given conn, since there can be only 1 service proc 25062 * running on a queue at any time. 25063 */ 25064 void 25065 conn_drain_insert(conn_t *connp) 25066 { 25067 idl_t *idl; 25068 uint_t index; 25069 25070 mutex_enter(&connp->conn_lock); 25071 if (connp->conn_state_flags & CONN_CLOSING) { 25072 /* 25073 * The conn is closing as a result of which CONN_CLOSING 25074 * is set. Return. 25075 */ 25076 mutex_exit(&connp->conn_lock); 25077 return; 25078 } else if (connp->conn_idl == NULL) { 25079 /* 25080 * Assign the next drain list round robin. We dont' use 25081 * a lock, and thus it may not be strictly round robin. 25082 * Atomicity of load/stores is enough to make sure that 25083 * conn_drain_list_index is always within bounds. 25084 */ 25085 index = conn_drain_list_index; 25086 ASSERT(index < conn_drain_list_cnt); 25087 connp->conn_idl = &conn_drain_list[index]; 25088 index++; 25089 if (index == conn_drain_list_cnt) 25090 index = 0; 25091 conn_drain_list_index = index; 25092 } 25093 mutex_exit(&connp->conn_lock); 25094 25095 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 25096 if ((connp->conn_drain_prev != NULL) || 25097 (connp->conn_state_flags & CONN_CLOSING)) { 25098 /* 25099 * The conn is already in the drain list, OR 25100 * the conn is closing. We need to check again for 25101 * the closing case again since close can happen 25102 * after we drop the conn_lock, and before we 25103 * acquire the CONN_DRAIN_LIST_LOCK. 25104 */ 25105 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25106 return; 25107 } else { 25108 idl = connp->conn_idl; 25109 } 25110 25111 /* 25112 * The conn is not in the drain list. Insert it at the 25113 * tail of the drain list. The drain list is circular 25114 * and doubly linked. idl_conn points to the 1st element 25115 * in the list. 25116 */ 25117 if (idl->idl_conn == NULL) { 25118 idl->idl_conn = connp; 25119 connp->conn_drain_next = connp; 25120 connp->conn_drain_prev = connp; 25121 } else { 25122 conn_t *head = idl->idl_conn; 25123 25124 connp->conn_drain_next = head; 25125 connp->conn_drain_prev = head->conn_drain_prev; 25126 head->conn_drain_prev->conn_drain_next = connp; 25127 head->conn_drain_prev = connp; 25128 } 25129 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25130 } 25131 25132 /* 25133 * This conn is closing, and we are called from ip_close. OR 25134 * This conn has been serviced by ip_wsrv, and we need to do the tail 25135 * processing. 25136 * If this conn is part of the drain list, we may need to sustain the drain 25137 * process by qenabling the next conn in the drain list. We may also need to 25138 * remove this conn from the list, if it is done. 25139 */ 25140 static void 25141 conn_drain_tail(conn_t *connp, boolean_t closing) 25142 { 25143 idl_t *idl; 25144 25145 /* 25146 * connp->conn_idl is stable at this point, and no lock is needed 25147 * to check it. If we are called from ip_close, close has already 25148 * set CONN_CLOSING, thus freezing the value of conn_idl, and 25149 * called us only because conn_idl is non-null. If we are called thru 25150 * service, conn_idl could be null, but it cannot change because 25151 * service is single-threaded per queue, and there cannot be another 25152 * instance of service trying to call conn_drain_insert on this conn 25153 * now. 25154 */ 25155 ASSERT(!closing || (connp->conn_idl != NULL)); 25156 25157 /* 25158 * If connp->conn_idl is null, the conn has not been inserted into any 25159 * drain list even once since creation of the conn. Just return. 25160 */ 25161 if (connp->conn_idl == NULL) 25162 return; 25163 25164 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 25165 25166 if (connp->conn_drain_prev == NULL) { 25167 /* This conn is currently not in the drain list. */ 25168 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25169 return; 25170 } 25171 idl = connp->conn_idl; 25172 if (idl->idl_conn_draining == connp) { 25173 /* 25174 * This conn is the current drainer. If this is the last conn 25175 * in the drain list, we need to do more checks, in the 'if' 25176 * below. Otherwwise we need to just qenable the next conn, 25177 * to sustain the draining, and is handled in the 'else' 25178 * below. 25179 */ 25180 if (connp->conn_drain_next == idl->idl_conn) { 25181 /* 25182 * This conn is the last in this list. This round 25183 * of draining is complete. If idl_repeat is set, 25184 * it means another flow enabling has happened from 25185 * the driver/streams and we need to another round 25186 * of draining. 25187 * If there are more than 2 conns in the drain list, 25188 * do a left rotate by 1, so that all conns except the 25189 * conn at the head move towards the head by 1, and the 25190 * the conn at the head goes to the tail. This attempts 25191 * a more even share for all queues that are being 25192 * drained. 25193 */ 25194 if ((connp->conn_drain_next != connp) && 25195 (idl->idl_conn->conn_drain_next != connp)) { 25196 idl->idl_conn = idl->idl_conn->conn_drain_next; 25197 } 25198 if (idl->idl_repeat) { 25199 qenable(idl->idl_conn->conn_wq); 25200 idl->idl_conn_draining = idl->idl_conn; 25201 idl->idl_repeat = 0; 25202 } else { 25203 idl->idl_conn_draining = NULL; 25204 } 25205 } else { 25206 /* 25207 * If the next queue that we are now qenable'ing, 25208 * is closing, it will remove itself from this list 25209 * and qenable the subsequent queue in ip_close(). 25210 * Serialization is acheived thru idl_lock. 25211 */ 25212 qenable(connp->conn_drain_next->conn_wq); 25213 idl->idl_conn_draining = connp->conn_drain_next; 25214 } 25215 } 25216 if (!connp->conn_did_putbq || closing) { 25217 /* 25218 * Remove ourself from the drain list, if we did not do 25219 * a putbq, or if the conn is closing. 25220 * Note: It is possible that q->q_first is non-null. It means 25221 * that these messages landed after we did a enableok() in 25222 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 25223 * service them. 25224 */ 25225 if (connp->conn_drain_next == connp) { 25226 /* Singleton in the list */ 25227 ASSERT(connp->conn_drain_prev == connp); 25228 idl->idl_conn = NULL; 25229 idl->idl_conn_draining = NULL; 25230 } else { 25231 connp->conn_drain_prev->conn_drain_next = 25232 connp->conn_drain_next; 25233 connp->conn_drain_next->conn_drain_prev = 25234 connp->conn_drain_prev; 25235 if (idl->idl_conn == connp) 25236 idl->idl_conn = connp->conn_drain_next; 25237 ASSERT(idl->idl_conn_draining != connp); 25238 25239 } 25240 connp->conn_drain_next = NULL; 25241 connp->conn_drain_prev = NULL; 25242 } 25243 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 25244 } 25245 25246 /* 25247 * Write service routine. Shared perimeter entry point. 25248 * ip_wsrv can be called in any of the following ways. 25249 * 1. The device queue's messages has fallen below the low water mark 25250 * and STREAMS has backenabled the ill_wq. We walk thru all the 25251 * the drain lists and backenable the first conn in each list. 25252 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 25253 * qenabled non-tcp upper layers. We start dequeing messages and call 25254 * ip_wput for each message. 25255 */ 25256 25257 void 25258 ip_wsrv(queue_t *q) 25259 { 25260 conn_t *connp; 25261 ill_t *ill; 25262 mblk_t *mp; 25263 25264 if (q->q_next) { 25265 ill = (ill_t *)q->q_ptr; 25266 if (ill->ill_state_flags == 0) { 25267 /* 25268 * The device flow control has opened up. 25269 * Walk through conn drain lists and qenable the 25270 * first conn in each list. This makes sense only 25271 * if the stream is fully plumbed and setup. 25272 * Hence the if check above. 25273 */ 25274 ip1dbg(("ip_wsrv: walking\n")); 25275 conn_walk_drain(); 25276 } 25277 return; 25278 } 25279 25280 connp = Q_TO_CONN(q); 25281 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 25282 25283 /* 25284 * 1. Set conn_draining flag to signal that service is active. 25285 * 25286 * 2. ip_output determines whether it has been called from service, 25287 * based on the last parameter. If it is IP_WSRV it concludes it 25288 * has been called from service. 25289 * 25290 * 3. Message ordering is preserved by the following logic. 25291 * i. A directly called ip_output (i.e. not thru service) will queue 25292 * the message at the tail, if conn_draining is set (i.e. service 25293 * is running) or if q->q_first is non-null. 25294 * 25295 * ii. If ip_output is called from service, and if ip_output cannot 25296 * putnext due to flow control, it does a putbq. 25297 * 25298 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 25299 * (causing an infinite loop). 25300 */ 25301 ASSERT(!connp->conn_did_putbq); 25302 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 25303 connp->conn_draining = 1; 25304 noenable(q); 25305 while ((mp = getq(q)) != NULL) { 25306 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 25307 if (connp->conn_did_putbq) { 25308 /* ip_wput did a putbq */ 25309 break; 25310 } 25311 } 25312 /* 25313 * At this point, a thread coming down from top, calling 25314 * ip_wput, may end up queueing the message. We have not yet 25315 * enabled the queue, so ip_wsrv won't be called again. 25316 * To avoid this race, check q->q_first again (in the loop) 25317 * If the other thread queued the message before we call 25318 * enableok(), we will catch it in the q->q_first check. 25319 * If the other thread queues the message after we call 25320 * enableok(), ip_wsrv will be called again by STREAMS. 25321 */ 25322 connp->conn_draining = 0; 25323 enableok(q); 25324 } 25325 25326 /* Enable the next conn for draining */ 25327 conn_drain_tail(connp, B_FALSE); 25328 25329 connp->conn_did_putbq = 0; 25330 } 25331 25332 /* 25333 * Walk the list of all conn's calling the function provided with the 25334 * specified argument for each. Note that this only walks conn's that 25335 * have been bound. 25336 * Applies to both IPv4 and IPv6. 25337 */ 25338 static void 25339 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 25340 { 25341 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 25342 func, arg, zoneid); 25343 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 25344 func, arg, zoneid); 25345 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 25346 func, arg, zoneid); 25347 conn_walk_fanout_table(ipcl_proto_fanout, 25348 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 25349 conn_walk_fanout_table(ipcl_proto_fanout_v6, 25350 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 25351 } 25352 25353 /* 25354 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 25355 * of conns that need to be drained, check if drain is already in progress. 25356 * If so set the idl_repeat bit, indicating that the last conn in the list 25357 * needs to reinitiate the drain once again, for the list. If drain is not 25358 * in progress for the list, initiate the draining, by qenabling the 1st 25359 * conn in the list. The drain is self-sustaining, each qenabled conn will 25360 * in turn qenable the next conn, when it is done/blocked/closing. 25361 */ 25362 static void 25363 conn_walk_drain(void) 25364 { 25365 int i; 25366 idl_t *idl; 25367 25368 IP_STAT(ip_conn_walk_drain); 25369 25370 for (i = 0; i < conn_drain_list_cnt; i++) { 25371 idl = &conn_drain_list[i]; 25372 mutex_enter(&idl->idl_lock); 25373 if (idl->idl_conn == NULL) { 25374 mutex_exit(&idl->idl_lock); 25375 continue; 25376 } 25377 /* 25378 * If this list is not being drained currently by 25379 * an ip_wsrv thread, start the process. 25380 */ 25381 if (idl->idl_conn_draining == NULL) { 25382 ASSERT(idl->idl_repeat == 0); 25383 qenable(idl->idl_conn->conn_wq); 25384 idl->idl_conn_draining = idl->idl_conn; 25385 } else { 25386 idl->idl_repeat = 1; 25387 } 25388 mutex_exit(&idl->idl_lock); 25389 } 25390 } 25391 25392 /* 25393 * Walk an conn hash table of `count' buckets, calling func for each entry. 25394 */ 25395 static void 25396 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 25397 zoneid_t zoneid) 25398 { 25399 conn_t *connp; 25400 25401 while (count-- > 0) { 25402 mutex_enter(&connfp->connf_lock); 25403 for (connp = connfp->connf_head; connp != NULL; 25404 connp = connp->conn_next) { 25405 if (zoneid == GLOBAL_ZONEID || 25406 zoneid == connp->conn_zoneid) { 25407 CONN_INC_REF(connp); 25408 mutex_exit(&connfp->connf_lock); 25409 (*func)(connp, arg); 25410 mutex_enter(&connfp->connf_lock); 25411 CONN_DEC_REF(connp); 25412 } 25413 } 25414 mutex_exit(&connfp->connf_lock); 25415 connfp++; 25416 } 25417 } 25418 25419 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 25420 static void 25421 conn_report1(conn_t *connp, void *mp) 25422 { 25423 char buf1[INET6_ADDRSTRLEN]; 25424 char buf2[INET6_ADDRSTRLEN]; 25425 uint_t print_len, buf_len; 25426 25427 ASSERT(connp != NULL); 25428 25429 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 25430 if (buf_len <= 0) 25431 return; 25432 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 25433 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 25434 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 25435 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 25436 "%5d %s/%05d %s/%05d\n", 25437 (void *)connp, (void *)CONNP_TO_RQ(connp), 25438 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 25439 buf1, connp->conn_lport, 25440 buf2, connp->conn_fport); 25441 if (print_len < buf_len) { 25442 ((mblk_t *)mp)->b_wptr += print_len; 25443 } else { 25444 ((mblk_t *)mp)->b_wptr += buf_len; 25445 } 25446 } 25447 25448 /* 25449 * Named Dispatch routine to produce a formatted report on all conns 25450 * that are listed in one of the fanout tables. 25451 * This report is accessed by using the ndd utility to "get" ND variable 25452 * "ip_conn_status". 25453 */ 25454 /* ARGSUSED */ 25455 static int 25456 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 25457 { 25458 (void) mi_mpprintf(mp, 25459 "CONN " MI_COL_HDRPAD_STR 25460 "rfq " MI_COL_HDRPAD_STR 25461 "stq " MI_COL_HDRPAD_STR 25462 " zone local remote"); 25463 25464 /* 25465 * Because of the ndd constraint, at most we can have 64K buffer 25466 * to put in all conn info. So to be more efficient, just 25467 * allocate a 64K buffer here, assuming we need that large buffer. 25468 * This should be OK as only privileged processes can do ndd /dev/ip. 25469 */ 25470 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 25471 /* The following may work even if we cannot get a large buf. */ 25472 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 25473 return (0); 25474 } 25475 25476 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 25477 return (0); 25478 } 25479 25480 /* 25481 * Determine if the ill and multicast aspects of that packets 25482 * "matches" the conn. 25483 */ 25484 boolean_t 25485 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 25486 zoneid_t zoneid) 25487 { 25488 ill_t *in_ill; 25489 boolean_t found; 25490 ipif_t *ipif; 25491 ire_t *ire; 25492 ipaddr_t dst, src; 25493 25494 dst = ipha->ipha_dst; 25495 src = ipha->ipha_src; 25496 25497 /* 25498 * conn_incoming_ill is set by IP_BOUND_IF which limits 25499 * unicast, broadcast and multicast reception to 25500 * conn_incoming_ill. conn_wantpacket itself is called 25501 * only for BROADCAST and multicast. 25502 * 25503 * 1) ip_rput supresses duplicate broadcasts if the ill 25504 * is part of a group. Hence, we should be receiving 25505 * just one copy of broadcast for the whole group. 25506 * Thus, if it is part of the group the packet could 25507 * come on any ill of the group and hence we need a 25508 * match on the group. Otherwise, match on ill should 25509 * be sufficient. 25510 * 25511 * 2) ip_rput does not suppress duplicate multicast packets. 25512 * If there are two interfaces in a ill group and we have 25513 * 2 applications (conns) joined a multicast group G on 25514 * both the interfaces, ilm_lookup_ill filter in ip_rput 25515 * will give us two packets because we join G on both the 25516 * interfaces rather than nominating just one interface 25517 * for receiving multicast like broadcast above. So, 25518 * we have to call ilg_lookup_ill to filter out duplicate 25519 * copies, if ill is part of a group. 25520 */ 25521 in_ill = connp->conn_incoming_ill; 25522 if (in_ill != NULL) { 25523 if (in_ill->ill_group == NULL) { 25524 if (in_ill != ill) 25525 return (B_FALSE); 25526 } else if (in_ill->ill_group != ill->ill_group) { 25527 return (B_FALSE); 25528 } 25529 } 25530 25531 if (!CLASSD(dst)) { 25532 if (connp->conn_zoneid == zoneid) 25533 return (B_TRUE); 25534 /* 25535 * The conn is in a different zone; we need to check that this 25536 * broadcast address is configured in the application's zone and 25537 * on one ill in the group. 25538 */ 25539 ipif = ipif_get_next_ipif(NULL, ill); 25540 if (ipif == NULL) 25541 return (B_FALSE); 25542 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 25543 connp->conn_zoneid, (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 25544 ipif_refrele(ipif); 25545 if (ire != NULL) { 25546 ire_refrele(ire); 25547 return (B_TRUE); 25548 } else { 25549 return (B_FALSE); 25550 } 25551 } 25552 25553 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 25554 connp->conn_zoneid == zoneid) { 25555 /* 25556 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 25557 * disabled, therefore we don't dispatch the multicast packet to 25558 * the sending zone. 25559 */ 25560 return (B_FALSE); 25561 } 25562 25563 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 25564 connp->conn_zoneid != zoneid) { 25565 /* 25566 * Multicast packet on the loopback interface: we only match 25567 * conns who joined the group in the specified zone. 25568 */ 25569 return (B_FALSE); 25570 } 25571 25572 if (connp->conn_multi_router) { 25573 /* multicast packet and multicast router socket: send up */ 25574 return (B_TRUE); 25575 } 25576 25577 mutex_enter(&connp->conn_lock); 25578 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 25579 mutex_exit(&connp->conn_lock); 25580 return (found); 25581 } 25582 25583 /* 25584 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 25585 */ 25586 /* ARGSUSED */ 25587 static void 25588 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 25589 { 25590 ill_t *ill = (ill_t *)q->q_ptr; 25591 mblk_t *mp1, *mp2; 25592 ipif_t *ipif; 25593 int err = 0; 25594 conn_t *connp = NULL; 25595 ipsq_t *ipsq; 25596 arc_t *arc; 25597 25598 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 25599 25600 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 25601 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 25602 25603 ASSERT(IAM_WRITER_ILL(ill)); 25604 mp2 = mp->b_cont; 25605 mp->b_cont = NULL; 25606 25607 /* 25608 * We have now received the arp bringup completion message 25609 * from ARP. Mark the arp bringup as done. Also if the arp 25610 * stream has already started closing, send up the AR_ARP_CLOSING 25611 * ack now since ARP is waiting in close for this ack. 25612 */ 25613 mutex_enter(&ill->ill_lock); 25614 ill->ill_arp_bringup_pending = 0; 25615 if (ill->ill_arp_closing) { 25616 mutex_exit(&ill->ill_lock); 25617 /* Let's reuse the mp for sending the ack */ 25618 arc = (arc_t *)mp->b_rptr; 25619 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 25620 arc->arc_cmd = AR_ARP_CLOSING; 25621 qreply(q, mp); 25622 } else { 25623 mutex_exit(&ill->ill_lock); 25624 freeb(mp); 25625 } 25626 25627 /* We should have an IOCTL waiting on this. */ 25628 ipsq = ill->ill_phyint->phyint_ipsq; 25629 ipif = ipsq->ipsq_pending_ipif; 25630 mp1 = ipsq_pending_mp_get(ipsq, &connp); 25631 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 25632 if (mp1 == NULL) { 25633 /* bringup was aborted by the user */ 25634 freemsg(mp2); 25635 return; 25636 } 25637 ASSERT(connp != NULL); 25638 q = CONNP_TO_WQ(connp); 25639 /* 25640 * If the DL_BIND_REQ fails, it is noted 25641 * in arc_name_offset. 25642 */ 25643 err = *((int *)mp2->b_rptr); 25644 if (err == 0) { 25645 if (ipif->ipif_isv6) { 25646 if ((err = ipif_up_done_v6(ipif)) != 0) 25647 ip0dbg(("ip_arp_done: init failed\n")); 25648 } else { 25649 if ((err = ipif_up_done(ipif)) != 0) 25650 ip0dbg(("ip_arp_done: init failed\n")); 25651 } 25652 } else { 25653 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 25654 } 25655 25656 freemsg(mp2); 25657 25658 if ((err == 0) && (ill->ill_up_ipifs)) { 25659 err = ill_up_ipifs(ill, q, mp1); 25660 if (err == EINPROGRESS) 25661 return; 25662 } 25663 25664 if (ill->ill_up_ipifs) { 25665 ill_group_cleanup(ill); 25666 } 25667 25668 /* 25669 * The ioctl must complete now without EINPROGRESS 25670 * since ipsq_pending_mp_get has removed the ioctl mblk 25671 * from ipsq_pending_mp. Otherwise the ioctl will be 25672 * stuck for ever in the ipsq. 25673 */ 25674 ASSERT(err != EINPROGRESS); 25675 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 25676 } 25677 25678 /* Allocate the private structure */ 25679 static int 25680 ip_priv_alloc(void **bufp) 25681 { 25682 void *buf; 25683 25684 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 25685 return (ENOMEM); 25686 25687 *bufp = buf; 25688 return (0); 25689 } 25690 25691 /* Function to delete the private structure */ 25692 void 25693 ip_priv_free(void *buf) 25694 { 25695 ASSERT(buf != NULL); 25696 kmem_free(buf, sizeof (ip_priv_t)); 25697 } 25698 25699 /* 25700 * The entry point for IPPF processing. 25701 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 25702 * routine just returns. 25703 * 25704 * When called, ip_process generates an ipp_packet_t structure 25705 * which holds the state information for this packet and invokes the 25706 * the classifier (via ipp_packet_process). The classification, depending on 25707 * configured filters, results in a list of actions for this packet. Invoking 25708 * an action may cause the packet to be dropped, in which case the resulting 25709 * mblk (*mpp) is NULL. proc indicates the callout position for 25710 * this packet and ill_index is the interface this packet on or will leave 25711 * on (inbound and outbound resp.). 25712 */ 25713 void 25714 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 25715 { 25716 mblk_t *mp; 25717 ip_priv_t *priv; 25718 ipp_action_id_t aid; 25719 int rc = 0; 25720 ipp_packet_t *pp; 25721 #define IP_CLASS "ip" 25722 25723 /* If the classifier is not loaded, return */ 25724 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 25725 return; 25726 } 25727 25728 mp = *mpp; 25729 ASSERT(mp != NULL); 25730 25731 /* Allocate the packet structure */ 25732 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 25733 if (rc != 0) { 25734 *mpp = NULL; 25735 freemsg(mp); 25736 return; 25737 } 25738 25739 /* Allocate the private structure */ 25740 rc = ip_priv_alloc((void **)&priv); 25741 if (rc != 0) { 25742 *mpp = NULL; 25743 freemsg(mp); 25744 ipp_packet_free(pp); 25745 return; 25746 } 25747 priv->proc = proc; 25748 priv->ill_index = ill_index; 25749 ipp_packet_set_private(pp, priv, ip_priv_free); 25750 ipp_packet_set_data(pp, mp); 25751 25752 /* Invoke the classifier */ 25753 rc = ipp_packet_process(&pp); 25754 if (pp != NULL) { 25755 mp = ipp_packet_get_data(pp); 25756 ipp_packet_free(pp); 25757 if (rc != 0) { 25758 freemsg(mp); 25759 *mpp = NULL; 25760 } 25761 } else { 25762 *mpp = NULL; 25763 } 25764 #undef IP_CLASS 25765 } 25766 25767 /* 25768 * Propagate a multicast group membership operation (add/drop) on 25769 * all the interfaces crossed by the related multirt routes. 25770 * The call is considered successful if the operation succeeds 25771 * on at least one interface. 25772 */ 25773 static int 25774 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 25775 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 25776 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 25777 mblk_t *first_mp) 25778 { 25779 ire_t *ire_gw; 25780 irb_t *irb; 25781 int error = 0; 25782 opt_restart_t *or; 25783 25784 irb = ire->ire_bucket; 25785 ASSERT(irb != NULL); 25786 25787 ASSERT(DB_TYPE(first_mp) == M_CTL); 25788 25789 or = (opt_restart_t *)first_mp->b_rptr; 25790 IRB_REFHOLD(irb); 25791 for (; ire != NULL; ire = ire->ire_next) { 25792 if ((ire->ire_flags & RTF_MULTIRT) == 0) 25793 continue; 25794 if (ire->ire_addr != group) 25795 continue; 25796 25797 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 25798 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 25799 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 25800 /* No resolver exists for the gateway; skip this ire. */ 25801 if (ire_gw == NULL) 25802 continue; 25803 25804 /* 25805 * This function can return EINPROGRESS. If so the operation 25806 * will be restarted from ip_restart_optmgmt which will 25807 * call ip_opt_set and option processing will restart for 25808 * this option. So we may end up calling 'fn' more than once. 25809 * This requires that 'fn' is idempotent except for the 25810 * return value. The operation is considered a success if 25811 * it succeeds at least once on any one interface. 25812 */ 25813 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 25814 NULL, fmode, src, first_mp); 25815 if (error == 0) 25816 or->or_private = CGTP_MCAST_SUCCESS; 25817 25818 if (ip_debug > 0) { 25819 ulong_t off; 25820 char *ksym; 25821 ksym = kobj_getsymname((uintptr_t)fn, &off); 25822 ip2dbg(("ip_multirt_apply_membership: " 25823 "called %s, multirt group 0x%08x via itf 0x%08x, " 25824 "error %d [success %u]\n", 25825 ksym ? ksym : "?", 25826 ntohl(group), ntohl(ire_gw->ire_src_addr), 25827 error, or->or_private)); 25828 } 25829 25830 ire_refrele(ire_gw); 25831 if (error == EINPROGRESS) { 25832 IRB_REFRELE(irb); 25833 return (error); 25834 } 25835 } 25836 IRB_REFRELE(irb); 25837 /* 25838 * Consider the call as successful if we succeeded on at least 25839 * one interface. Otherwise, return the last encountered error. 25840 */ 25841 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 25842 } 25843 25844 25845 /* 25846 * Issue a warning regarding a route crossing an interface with an 25847 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 25848 * amount of time is logged. 25849 */ 25850 static void 25851 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 25852 { 25853 hrtime_t current = gethrtime(); 25854 char buf[16]; 25855 25856 /* Convert interval in ms to hrtime in ns */ 25857 if (multirt_bad_mtu_last_time + 25858 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 25859 current) { 25860 cmn_err(CE_WARN, "ip: ignoring multiroute " 25861 "to %s, incorrect MTU %u (expected %u)\n", 25862 ip_dot_addr(ire->ire_addr, buf), 25863 ire->ire_max_frag, max_frag); 25864 25865 multirt_bad_mtu_last_time = current; 25866 } 25867 } 25868 25869 25870 /* 25871 * Get the CGTP (multirouting) filtering status. 25872 * If 0, the CGTP hooks are transparent. 25873 */ 25874 /* ARGSUSED */ 25875 static int 25876 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 25877 { 25878 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25879 25880 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 25881 return (0); 25882 } 25883 25884 25885 /* 25886 * Set the CGTP (multirouting) filtering status. 25887 * If the status is changed from active to transparent 25888 * or from transparent to active, forward the new status 25889 * to the filtering module (if loaded). 25890 */ 25891 /* ARGSUSED */ 25892 static int 25893 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 25894 cred_t *ioc_cr) 25895 { 25896 long new_value; 25897 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 25898 25899 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 25900 new_value < 0 || new_value > 1) { 25901 return (EINVAL); 25902 } 25903 25904 /* 25905 * Do not enable CGTP filtering - thus preventing the hooks 25906 * from being invoked - if the version number of the 25907 * filtering module hooks does not match. 25908 */ 25909 if ((ip_cgtp_filter_ops != NULL) && 25910 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 25911 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 25912 "(module hooks version %d, expecting %d)\n", 25913 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 25914 return (ENOTSUP); 25915 } 25916 25917 if ((!*ip_cgtp_filter_value) && new_value) { 25918 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 25919 ip_cgtp_filter_ops == NULL ? 25920 " (module not loaded)" : ""); 25921 } 25922 if (*ip_cgtp_filter_value && (!new_value)) { 25923 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 25924 ip_cgtp_filter_ops == NULL ? 25925 " (module not loaded)" : ""); 25926 } 25927 25928 if (ip_cgtp_filter_ops != NULL) { 25929 int res; 25930 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 25931 return (res); 25932 } 25933 } 25934 25935 *ip_cgtp_filter_value = (boolean_t)new_value; 25936 25937 return (0); 25938 } 25939 25940 25941 /* 25942 * Return the expected CGTP hooks version number. 25943 */ 25944 int 25945 ip_cgtp_filter_supported(void) 25946 { 25947 return (ip_cgtp_filter_rev); 25948 } 25949 25950 25951 /* 25952 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 25953 * or by invoking this function. In the first case, the version number 25954 * of the registered structure is checked at hooks activation time 25955 * in ip_cgtp_filter_set(). 25956 */ 25957 int 25958 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 25959 { 25960 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 25961 return (ENOTSUP); 25962 25963 ip_cgtp_filter_ops = ops; 25964 return (0); 25965 } 25966 25967 static squeue_func_t 25968 ip_squeue_switch(int val) 25969 { 25970 squeue_func_t rval = squeue_fill; 25971 25972 switch (val) { 25973 case IP_SQUEUE_ENTER_NODRAIN: 25974 rval = squeue_enter_nodrain; 25975 break; 25976 case IP_SQUEUE_ENTER: 25977 rval = squeue_enter; 25978 break; 25979 default: 25980 break; 25981 } 25982 return (rval); 25983 } 25984 25985 /* ARGSUSED */ 25986 static int 25987 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 25988 caddr_t addr, cred_t *cr) 25989 { 25990 int *v = (int *)addr; 25991 long new_value; 25992 25993 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 25994 return (EINVAL); 25995 25996 ip_input_proc = ip_squeue_switch(new_value); 25997 *v = new_value; 25998 return (0); 25999 } 26000 26001 /* ARGSUSED */ 26002 static int 26003 ip_int_set(queue_t *q, mblk_t *mp, char *value, 26004 caddr_t addr, cred_t *cr) 26005 { 26006 int *v = (int *)addr; 26007 long new_value; 26008 26009 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 26010 return (EINVAL); 26011 26012 *v = new_value; 26013 return (0); 26014 } 26015 26016 static void 26017 ip_kstat_init(void) 26018 { 26019 ip_named_kstat_t template = { 26020 { "forwarding", KSTAT_DATA_UINT32, 0 }, 26021 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 26022 { "inReceives", KSTAT_DATA_UINT32, 0 }, 26023 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 26024 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 26025 { "forwDatagrams", KSTAT_DATA_UINT32, 0 }, 26026 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 26027 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 26028 { "inDelivers", KSTAT_DATA_UINT32, 0 }, 26029 { "outRequests", KSTAT_DATA_UINT32, 0 }, 26030 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 26031 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 26032 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 26033 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 26034 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 26035 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 26036 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 26037 { "fragFails", KSTAT_DATA_UINT32, 0 }, 26038 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 26039 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 26040 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 26041 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 26042 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 26043 { "inErrs", KSTAT_DATA_UINT32, 0 }, 26044 { "noPorts", KSTAT_DATA_UINT32, 0 }, 26045 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 26046 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 26047 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 26048 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 26049 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 26050 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 26051 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 26052 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 26053 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 26054 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 26055 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 26056 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 26057 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 26058 }; 26059 26060 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 26061 NUM_OF_FIELDS(ip_named_kstat_t), 26062 0); 26063 if (!ip_mibkp) 26064 return; 26065 26066 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 26067 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 26068 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 26069 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 26070 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 26071 26072 template.netToMediaEntrySize.value.i32 = 26073 sizeof (mib2_ipNetToMediaEntry_t); 26074 26075 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 26076 26077 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 26078 26079 ip_mibkp->ks_update = ip_kstat_update; 26080 26081 kstat_install(ip_mibkp); 26082 } 26083 26084 static void 26085 ip_kstat_fini(void) 26086 { 26087 26088 if (ip_mibkp != NULL) { 26089 kstat_delete(ip_mibkp); 26090 ip_mibkp = NULL; 26091 } 26092 } 26093 26094 static int 26095 ip_kstat_update(kstat_t *kp, int rw) 26096 { 26097 ip_named_kstat_t *ipkp; 26098 26099 if (!kp || !kp->ks_data) 26100 return (EIO); 26101 26102 if (rw == KSTAT_WRITE) 26103 return (EACCES); 26104 26105 ipkp = (ip_named_kstat_t *)kp->ks_data; 26106 26107 ipkp->forwarding.value.ui32 = ip_mib.ipForwarding; 26108 ipkp->defaultTTL.value.ui32 = ip_mib.ipDefaultTTL; 26109 ipkp->inReceives.value.ui32 = ip_mib.ipInReceives; 26110 ipkp->inHdrErrors.value.ui32 = ip_mib.ipInHdrErrors; 26111 ipkp->inAddrErrors.value.ui32 = ip_mib.ipInAddrErrors; 26112 ipkp->forwDatagrams.value.ui32 = ip_mib.ipForwDatagrams; 26113 ipkp->inUnknownProtos.value.ui32 = ip_mib.ipInUnknownProtos; 26114 ipkp->inDiscards.value.ui32 = ip_mib.ipInDiscards; 26115 ipkp->inDelivers.value.ui32 = ip_mib.ipInDelivers; 26116 ipkp->outRequests.value.ui32 = ip_mib.ipOutRequests; 26117 ipkp->outDiscards.value.ui32 = ip_mib.ipOutDiscards; 26118 ipkp->outNoRoutes.value.ui32 = ip_mib.ipOutNoRoutes; 26119 ipkp->reasmTimeout.value.ui32 = ip_mib.ipReasmTimeout; 26120 ipkp->reasmReqds.value.ui32 = ip_mib.ipReasmReqds; 26121 ipkp->reasmOKs.value.ui32 = ip_mib.ipReasmOKs; 26122 ipkp->reasmFails.value.ui32 = ip_mib.ipReasmFails; 26123 ipkp->fragOKs.value.ui32 = ip_mib.ipFragOKs; 26124 ipkp->fragFails.value.ui32 = ip_mib.ipFragFails; 26125 ipkp->fragCreates.value.ui32 = ip_mib.ipFragCreates; 26126 26127 ipkp->routingDiscards.value.ui32 = ip_mib.ipRoutingDiscards; 26128 ipkp->inErrs.value.ui32 = ip_mib.tcpInErrs; 26129 ipkp->noPorts.value.ui32 = ip_mib.udpNoPorts; 26130 ipkp->inCksumErrs.value.ui32 = ip_mib.ipInCksumErrs; 26131 ipkp->reasmDuplicates.value.ui32 = ip_mib.ipReasmDuplicates; 26132 ipkp->reasmPartDups.value.ui32 = ip_mib.ipReasmPartDups; 26133 ipkp->forwProhibits.value.ui32 = ip_mib.ipForwProhibits; 26134 ipkp->udpInCksumErrs.value.ui32 = ip_mib.udpInCksumErrs; 26135 ipkp->udpInOverflows.value.ui32 = ip_mib.udpInOverflows; 26136 ipkp->rawipInOverflows.value.ui32 = ip_mib.rawipInOverflows; 26137 ipkp->ipsecInSucceeded.value.ui32 = ip_mib.ipsecInSucceeded; 26138 ipkp->ipsecInFailed.value.i32 = ip_mib.ipsecInFailed; 26139 26140 ipkp->inIPv6.value.ui32 = ip_mib.ipInIPv6; 26141 ipkp->outIPv6.value.ui32 = ip_mib.ipOutIPv6; 26142 ipkp->outSwitchIPv6.value.ui32 = ip_mib.ipOutSwitchIPv6; 26143 26144 return (0); 26145 } 26146 26147 static void 26148 icmp_kstat_init(void) 26149 { 26150 icmp_named_kstat_t template = { 26151 { "inMsgs", KSTAT_DATA_UINT32 }, 26152 { "inErrors", KSTAT_DATA_UINT32 }, 26153 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 26154 { "inTimeExcds", KSTAT_DATA_UINT32 }, 26155 { "inParmProbs", KSTAT_DATA_UINT32 }, 26156 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 26157 { "inRedirects", KSTAT_DATA_UINT32 }, 26158 { "inEchos", KSTAT_DATA_UINT32 }, 26159 { "inEchoReps", KSTAT_DATA_UINT32 }, 26160 { "inTimestamps", KSTAT_DATA_UINT32 }, 26161 { "inTimestampReps", KSTAT_DATA_UINT32 }, 26162 { "inAddrMasks", KSTAT_DATA_UINT32 }, 26163 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 26164 { "outMsgs", KSTAT_DATA_UINT32 }, 26165 { "outErrors", KSTAT_DATA_UINT32 }, 26166 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 26167 { "outTimeExcds", KSTAT_DATA_UINT32 }, 26168 { "outParmProbs", KSTAT_DATA_UINT32 }, 26169 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 26170 { "outRedirects", KSTAT_DATA_UINT32 }, 26171 { "outEchos", KSTAT_DATA_UINT32 }, 26172 { "outEchoReps", KSTAT_DATA_UINT32 }, 26173 { "outTimestamps", KSTAT_DATA_UINT32 }, 26174 { "outTimestampReps", KSTAT_DATA_UINT32 }, 26175 { "outAddrMasks", KSTAT_DATA_UINT32 }, 26176 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 26177 { "inChksumErrs", KSTAT_DATA_UINT32 }, 26178 { "inUnknowns", KSTAT_DATA_UINT32 }, 26179 { "inFragNeeded", KSTAT_DATA_UINT32 }, 26180 { "outFragNeeded", KSTAT_DATA_UINT32 }, 26181 { "outDrops", KSTAT_DATA_UINT32 }, 26182 { "inOverFlows", KSTAT_DATA_UINT32 }, 26183 { "inBadRedirects", KSTAT_DATA_UINT32 }, 26184 }; 26185 26186 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 26187 NUM_OF_FIELDS(icmp_named_kstat_t), 26188 0); 26189 if (icmp_mibkp == NULL) 26190 return; 26191 26192 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 26193 26194 icmp_mibkp->ks_update = icmp_kstat_update; 26195 26196 kstat_install(icmp_mibkp); 26197 } 26198 26199 static void 26200 icmp_kstat_fini(void) 26201 { 26202 26203 if (icmp_mibkp != NULL) { 26204 kstat_delete(icmp_mibkp); 26205 icmp_mibkp = NULL; 26206 } 26207 } 26208 26209 static int 26210 icmp_kstat_update(kstat_t *kp, int rw) 26211 { 26212 icmp_named_kstat_t *icmpkp; 26213 26214 if ((kp == NULL) || (kp->ks_data == NULL)) 26215 return (EIO); 26216 26217 if (rw == KSTAT_WRITE) 26218 return (EACCES); 26219 26220 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 26221 26222 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 26223 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 26224 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 26225 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 26226 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 26227 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 26228 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 26229 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 26230 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 26231 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 26232 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 26233 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 26234 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 26235 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 26236 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 26237 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 26238 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 26239 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 26240 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 26241 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 26242 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 26243 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 26244 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 26245 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 26246 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 26247 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 26248 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 26249 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 26250 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 26251 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 26252 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 26253 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 26254 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 26255 26256 return (0); 26257 } 26258 26259 /* 26260 * This is the fanout function for raw socket opened for SCTP. Note 26261 * that it is called after SCTP checks that there is no socket which 26262 * wants a packet. Then before SCTP handles this out of the blue packet, 26263 * this function is called to see if there is any raw socket for SCTP. 26264 * If there is and it is bound to the correct address, the packet will 26265 * be sent to that socket. Note that only one raw socket can be bound to 26266 * a port. This is assured in ipcl_sctp_hash_insert(); 26267 */ 26268 void 26269 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 26270 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 26271 uint_t ipif_seqid, zoneid_t zoneid) 26272 { 26273 conn_t *connp; 26274 queue_t *rq; 26275 mblk_t *first_mp; 26276 boolean_t secure; 26277 ip6_t *ip6h; 26278 26279 first_mp = mp; 26280 if (mctl_present) { 26281 mp = first_mp->b_cont; 26282 secure = ipsec_in_is_secure(first_mp); 26283 ASSERT(mp != NULL); 26284 } else { 26285 secure = B_FALSE; 26286 } 26287 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 26288 26289 connp = ipcl_classify_raw(IPPROTO_SCTP, zoneid, ports, ipha); 26290 if (connp == NULL) { 26291 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 26292 mctl_present); 26293 return; 26294 } 26295 rq = connp->conn_rq; 26296 if (!canputnext(rq)) { 26297 CONN_DEC_REF(connp); 26298 BUMP_MIB(&ip_mib, rawipInOverflows); 26299 freemsg(first_mp); 26300 return; 26301 } 26302 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 26303 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 26304 first_mp = ipsec_check_inbound_policy(first_mp, connp, 26305 (isv4 ? ipha : NULL), ip6h, mctl_present); 26306 if (first_mp == NULL) { 26307 CONN_DEC_REF(connp); 26308 return; 26309 } 26310 } 26311 /* 26312 * We probably should not send M_CTL message up to 26313 * raw socket. 26314 */ 26315 if (mctl_present) 26316 freeb(first_mp); 26317 26318 /* Initiate IPPF processing here if needed. */ 26319 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 26320 (!isv4 && IP6_IN_IPP(flags))) { 26321 ip_process(IPP_LOCAL_IN, &mp, 26322 recv_ill->ill_phyint->phyint_ifindex); 26323 if (mp == NULL) { 26324 CONN_DEC_REF(connp); 26325 return; 26326 } 26327 } 26328 26329 if (connp->conn_recvif || connp->conn_recvslla || 26330 ((connp->conn_ipv6_recvpktinfo || 26331 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 26332 (flags & IP_FF_IP6INFO))) { 26333 int in_flags = 0; 26334 26335 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 26336 in_flags = IPF_RECVIF; 26337 } 26338 if (connp->conn_recvslla) { 26339 in_flags |= IPF_RECVSLLA; 26340 } 26341 if (isv4) { 26342 mp = ip_add_info(mp, recv_ill, in_flags); 26343 } else { 26344 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 26345 if (mp == NULL) { 26346 CONN_DEC_REF(connp); 26347 return; 26348 } 26349 } 26350 } 26351 26352 BUMP_MIB(&ip_mib, ipInDelivers); 26353 /* 26354 * We are sending the IPSEC_IN message also up. Refer 26355 * to comments above this function. 26356 */ 26357 putnext(rq, mp); 26358 CONN_DEC_REF(connp); 26359 } 26360 26361 /* 26362 * Martian Address Filtering [RFC 1812, Section 5.3.7] 26363 */ 26364 static boolean_t 26365 ip_no_forward(ipha_t *ipha, ill_t *ill) 26366 { 26367 ipaddr_t ip_src, ip_dst; 26368 ire_t *src_ire = NULL; 26369 26370 ip_src = ntohl(ipha->ipha_src); 26371 ip_dst = ntohl(ipha->ipha_dst); 26372 26373 if (ip_dst == INADDR_ANY) 26374 goto dont_forward; 26375 26376 if (IN_CLASSD(ip_src)) 26377 goto dont_forward; 26378 26379 if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 26380 goto dont_forward; 26381 26382 if (IN_BADCLASS(ip_dst)) 26383 goto dont_forward; 26384 26385 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 26386 ALL_ZONES, MATCH_IRE_TYPE); 26387 if (src_ire != NULL) { 26388 ire_refrele(src_ire); 26389 goto dont_forward; 26390 } 26391 26392 return (B_FALSE); 26393 26394 dont_forward: 26395 if (ip_debug > 2) { 26396 printf("ip_no_forward: dropping packet received on %s\n", 26397 ill->ill_name); 26398 pr_addr_dbg("ip_no_forward: from src %s\n", 26399 AF_INET, &ipha->ipha_src); 26400 pr_addr_dbg("ip_no_forward: to dst %s\n", 26401 AF_INET, &ipha->ipha_dst); 26402 } 26403 BUMP_MIB(&ip_mib, ipForwProhibits); 26404 return (B_TRUE); 26405 } 26406 26407 static boolean_t 26408 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill) 26409 { 26410 if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) || 26411 ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { 26412 if (ip_debug > 2) { 26413 if (ill != NULL) { 26414 printf("ip_loopback_src_or_dst: " 26415 "dropping packet received on %s\n", 26416 ill->ill_name); 26417 } else { 26418 printf("ip_loopback_src_or_dst: " 26419 "dropping packet\n"); 26420 } 26421 26422 pr_addr_dbg( 26423 "ip_loopback_src_or_dst: from src %s\n", 26424 AF_INET, &ipha->ipha_src); 26425 pr_addr_dbg( 26426 "ip_loopback_src_or_dst: to dst %s\n", 26427 AF_INET, &ipha->ipha_dst); 26428 } 26429 26430 BUMP_MIB(&ip_mib, ipInAddrErrors); 26431 return (B_TRUE); 26432 } 26433 return (B_FALSE); 26434 } 26435