1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright (c) 2018 Joyent, Inc. All rights reserved. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/suntpi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 #include <sys/taskq.h> 52 53 #include <sys/systm.h> 54 #include <sys/param.h> 55 #include <sys/kmem.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/vtrace.h> 59 #include <sys/isa_defs.h> 60 #include <sys/mac.h> 61 #include <net/if.h> 62 #include <net/if_arp.h> 63 #include <net/route.h> 64 #include <sys/sockio.h> 65 #include <netinet/in.h> 66 #include <net/if_dl.h> 67 68 #include <inet/common.h> 69 #include <inet/mi.h> 70 #include <inet/mib2.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/snmpcom.h> 74 #include <inet/optcom.h> 75 #include <inet/kstatcom.h> 76 77 #include <netinet/igmp_var.h> 78 #include <netinet/ip6.h> 79 #include <netinet/icmp6.h> 80 #include <netinet/sctp.h> 81 82 #include <inet/ip.h> 83 #include <inet/ip_impl.h> 84 #include <inet/ip6.h> 85 #include <inet/ip6_asp.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/ip_multi.h> 89 #include <inet/ip_if.h> 90 #include <inet/ip_ire.h> 91 #include <inet/ip_ftable.h> 92 #include <inet/ip_rts.h> 93 #include <inet/ip_ndp.h> 94 #include <inet/ip_listutils.h> 95 #include <netinet/igmp.h> 96 #include <netinet/ip_mroute.h> 97 #include <inet/ipp_common.h> 98 99 #include <net/pfkeyv2.h> 100 #include <inet/sadb.h> 101 #include <inet/ipsec_impl.h> 102 #include <inet/iptun/iptun_impl.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 #include <inet/ilb_ip.h> 106 107 #include <sys/ethernet.h> 108 #include <net/if_types.h> 109 #include <sys/cpuvar.h> 110 111 #include <ipp/ipp.h> 112 #include <ipp/ipp_impl.h> 113 #include <ipp/ipgpc/ipgpc.h> 114 115 #include <sys/pattr.h> 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <sys/squeue_impl.h> 127 #include <inet/ip_arp.h> 128 129 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 134 * IP_SQUEUE_ENTER: SQ_PROCESS 135 * IP_SQUEUE_FILL: SQ_FILL 136 */ 137 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 138 139 int ip_squeue_flag; 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 uint_t ird_flags; /* see below */ 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* Include ire_testhidden and IRE_IF_CLONE routes */ 181 #define IRD_REPORT_ALL 0x01 182 183 /* 184 * Cluster specific hooks. These should be NULL when booted as a non-cluster 185 */ 186 187 /* 188 * Hook functions to enable cluster networking 189 * On non-clustered systems these vectors must always be NULL. 190 * 191 * Hook function to Check ip specified ip address is a shared ip address 192 * in the cluster 193 * 194 */ 195 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 196 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 197 198 /* 199 * Hook function to generate cluster wide ip fragment identifier 200 */ 201 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 202 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 203 void *args) = NULL; 204 205 /* 206 * Hook function to generate cluster wide SPI. 207 */ 208 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 209 void *) = NULL; 210 211 /* 212 * Hook function to verify if the SPI is already utlized. 213 */ 214 215 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 216 217 /* 218 * Hook function to delete the SPI from the cluster wide repository. 219 */ 220 221 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 222 223 /* 224 * Hook function to inform the cluster when packet received on an IDLE SA 225 */ 226 227 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 228 in6_addr_t, in6_addr_t, void *) = NULL; 229 230 /* 231 * Synchronization notes: 232 * 233 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 234 * MT level protection given by STREAMS. IP uses a combination of its own 235 * internal serialization mechanism and standard Solaris locking techniques. 236 * The internal serialization is per phyint. This is used to serialize 237 * plumbing operations, IPMP operations, most set ioctls, etc. 238 * 239 * Plumbing is a long sequence of operations involving message 240 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 241 * involved in plumbing operations. A natural model is to serialize these 242 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 243 * parallel without any interference. But various set ioctls on hme0 are best 244 * serialized, along with IPMP operations and processing of DLPI control 245 * messages received from drivers on a per phyint basis. This serialization is 246 * provided by the ipsq_t and primitives operating on this. Details can 247 * be found in ip_if.c above the core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 253 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 254 * address of an ipif has to go through the ipsq_t. This ensures that only 255 * one such exclusive operation proceeds at any time on the ipif. It then 256 * waits for all refcnts 257 * associated with this ipif to come down to zero. The address is changed 258 * only after the ipif has been quiesced. Then the ipif is brought up again. 259 * More details are described above the comment in ip_sioctl_flags. 260 * 261 * Packet processing is based mostly on IREs and are fully multi-threaded 262 * using standard Solaris MT techniques. 263 * 264 * There are explicit locks in IP to handle: 265 * - The ip_g_head list maintained by mi_open_link() and friends. 266 * 267 * - The reassembly data structures (one lock per hash bucket) 268 * 269 * - conn_lock is meant to protect conn_t fields. The fields actually 270 * protected by conn_lock are documented in the conn_t definition. 271 * 272 * - ire_lock to protect some of the fields of the ire, IRE tables 273 * (one lock per hash bucket). Refer to ip_ire.c for details. 274 * 275 * - ndp_g_lock and ncec_lock for protecting NCEs. 276 * 277 * - ill_lock protects fields of the ill and ipif. Details in ip.h 278 * 279 * - ill_g_lock: This is a global reader/writer lock. Protects the following 280 * * The AVL tree based global multi list of all ills. 281 * * The linked list of all ipifs of an ill 282 * * The <ipsq-xop> mapping 283 * * <ill-phyint> association 284 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 285 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 286 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 287 * writer for the actual duration of the insertion/deletion/change. 288 * 289 * - ill_lock: This is a per ill mutex. 290 * It protects some members of the ill_t struct; see ip.h for details. 291 * It also protects the <ill-phyint> assoc. 292 * It also protects the list of ipifs hanging off the ill. 293 * 294 * - ipsq_lock: This is a per ipsq_t mutex lock. 295 * This protects some members of the ipsq_t struct; see ip.h for details. 296 * It also protects the <ipsq-ipxop> mapping 297 * 298 * - ipx_lock: This is a per ipxop_t mutex lock. 299 * This protects some members of the ipxop_t struct; see ip.h for details. 300 * 301 * - phyint_lock: This is a per phyint mutex lock. Protects just the 302 * phyint_flags 303 * 304 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 305 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 306 * uniqueness check also done atomically. 307 * 308 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 309 * group list linked by ill_usesrc_grp_next. It also protects the 310 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 311 * group is being added or deleted. This lock is taken as a reader when 312 * walking the list/group(eg: to get the number of members in a usesrc group). 313 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 314 * field is changing state i.e from NULL to non-NULL or vice-versa. For 315 * example, it is not necessary to take this lock in the initial portion 316 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 317 * operations are executed exclusively and that ensures that the "usesrc 318 * group state" cannot change. The "usesrc group state" change can happen 319 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 320 * 321 * Changing <ill-phyint>, <ipsq-xop> assocications: 322 * 323 * To change the <ill-phyint> association, the ill_g_lock must be held 324 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 325 * must be held. 326 * 327 * To change the <ipsq-xop> association, the ill_g_lock must be held as 328 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 329 * This is only done when ills are added or removed from IPMP groups. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 352 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 353 * arl_lock -> ill_lock 354 * ips_ire_dep_lock -> irb_lock 355 * 356 * When more than 1 ill lock is needed to be held, all ill lock addresses 357 * are sorted on address and locked starting from highest addressed lock 358 * downward. 359 * 360 * Multicast scenarios 361 * ips_ill_g_lock -> ill_mcast_lock 362 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 364 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 372 * 373 * Trusted Solaris scenarios 374 * 375 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 376 * igsa_lock -> gcdb_lock 377 * gcgrp_rwlock -> ire_lock 378 * gcgrp_rwlock -> gcdb_lock 379 * 380 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 381 * 382 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 383 * sq_lock -> conn_lock -> QLOCK(q) 384 * ill_lock -> ft_lock -> fe_lock 385 * 386 * Routing/forwarding table locking notes: 387 * 388 * Lock acquisition order: Radix tree lock, irb_lock. 389 * Requirements: 390 * i. Walker must not hold any locks during the walker callback. 391 * ii Walker must not see a truncated tree during the walk because of any node 392 * deletion. 393 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 394 * in many places in the code to walk the irb list. Thus even if all the 395 * ires in a bucket have been deleted, we still can't free the radix node 396 * until the ires have actually been inactive'd (freed). 397 * 398 * Tree traversal - Need to hold the global tree lock in read mode. 399 * Before dropping the global tree lock, need to either increment the ire_refcnt 400 * to ensure that the radix node can't be deleted. 401 * 402 * Tree add - Need to hold the global tree lock in write mode to add a 403 * radix node. To prevent the node from being deleted, increment the 404 * irb_refcnt, after the node is added to the tree. The ire itself is 405 * added later while holding the irb_lock, but not the tree lock. 406 * 407 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 408 * All associated ires must be inactive (i.e. freed), and irb_refcnt 409 * must be zero. 410 * 411 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 412 * global tree lock (read mode) for traversal. 413 * 414 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 415 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 416 * 417 * IPsec notes : 418 * 419 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 420 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 421 * ip_xmit_attr_t has the 422 * information used by the IPsec code for applying the right level of 423 * protection. The information initialized by IP in the ip_xmit_attr_t 424 * is determined by the per-socket policy or global policy in the system. 425 * For inbound datagrams, the ip_recv_attr_t 426 * starts out with nothing in it. It gets filled 427 * with the right information if it goes through the AH/ESP code, which 428 * happens if the incoming packet is secure. The information initialized 429 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 430 * the policy requirements needed by per-socket policy or global policy 431 * is met or not. 432 * 433 * For fully connected sockets i.e dst, src [addr, port] is known, 434 * conn_policy_cached is set indicating that policy has been cached. 435 * conn_in_enforce_policy may or may not be set depending on whether 436 * there is a global policy match or per-socket policy match. 437 * Policy inheriting happpens in ip_policy_set once the destination is known. 438 * Once the right policy is set on the conn_t, policy cannot change for 439 * this socket. This makes life simpler for TCP (UDP ?) where 440 * re-transmissions go out with the same policy. For symmetry, policy 441 * is cached for fully connected UDP sockets also. Thus if policy is cached, 442 * it also implies that policy is latched i.e policy cannot change 443 * on these sockets. As we have the right policy on the conn, we don't 444 * have to lookup global policy for every outbound and inbound datagram 445 * and thus serving as an optimization. Note that a global policy change 446 * does not affect fully connected sockets if they have policy. If fully 447 * connected sockets did not have any policy associated with it, global 448 * policy change may affect them. 449 * 450 * IP Flow control notes: 451 * --------------------- 452 * Non-TCP streams are flow controlled by IP. The way this is accomplished 453 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 454 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 455 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 456 * functions. 457 * 458 * Per Tx ring udp flow control: 459 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 460 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 461 * 462 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 463 * To achieve best performance, outgoing traffic need to be fanned out among 464 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 465 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 466 * the address of connp as fanout hint to mac_tx(). Under flow controlled 467 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 468 * cookie points to a specific Tx ring that is blocked. The cookie is used to 469 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 470 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 471 * connp's. The drain list is not a single list but a configurable number of 472 * lists. 473 * 474 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 475 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 476 * which is equal to 128. This array in turn contains a pointer to idl_t[], 477 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 478 * list will point to the list of connp's that are flow controlled. 479 * 480 * --------------- ------- ------- ------- 481 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 482 * | --------------- ------- ------- ------- 483 * | --------------- ------- ------- ------- 484 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 485 * ---------------- | --------------- ------- ------- ------- 486 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 487 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 488 * | --------------- ------- ------- ------- 489 * . . . . . 490 * | --------------- ------- ------- ------- 491 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 492 * --------------- ------- ------- ------- 493 * --------------- ------- ------- ------- 494 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 495 * | --------------- ------- ------- ------- 496 * | --------------- ------- ------- ------- 497 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 498 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 499 * ---------------- | . . . . 500 * | --------------- ------- ------- ------- 501 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 502 * --------------- ------- ------- ------- 503 * ..... 504 * ---------------- 505 * |idl_tx_list[n]|-> ... 506 * ---------------- 507 * 508 * When mac_tx() returns a cookie, the cookie is hashed into an index into 509 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 510 * to insert the conn onto. conn_drain_insert() asserts flow control for the 511 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 512 * Further, conn_blocked is set to indicate that the conn is blocked. 513 * 514 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 515 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 516 * is again hashed to locate the appropriate idl_tx_list, which is then 517 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 518 * the drain list and calls conn_drain_remove() to clear flow control (via 519 * calling su_txq_full() or clearing QFULL), and remove the conn from the 520 * drain list. 521 * 522 * Note that the drain list is not a single list but a (configurable) array of 523 * lists (8 elements by default). Synchronization between drain insertion and 524 * flow control wakeup is handled by using idl_txl->txl_lock, and only 525 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 526 * 527 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 528 * On the send side, if the packet cannot be sent down to the driver by IP 529 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 530 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 531 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 532 * control has been relieved, the blocked conns in the 0'th drain list are 533 * drained as in the non-STREAMS case. 534 * 535 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 536 * is done when the conn is inserted into the drain list (conn_drain_insert()) 537 * and cleared when the conn is removed from the it (conn_drain_remove()). 538 * 539 * IPQOS notes: 540 * 541 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 542 * and IPQoS modules. IPPF includes hooks in IP at different control points 543 * (callout positions) which direct packets to IPQoS modules for policy 544 * processing. Policies, if present, are global. 545 * 546 * The callout positions are located in the following paths: 547 * o local_in (packets destined for this host) 548 * o local_out (packets orginating from this host ) 549 * o fwd_in (packets forwarded by this m/c - inbound) 550 * o fwd_out (packets forwarded by this m/c - outbound) 551 * Hooks at these callout points can be enabled/disabled using the ndd variable 552 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 553 * By default all the callout positions are enabled. 554 * 555 * Outbound (local_out) 556 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 557 * 558 * Inbound (local_in) 559 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 560 * 561 * Forwarding (in and out) 562 * Hooks are placed in ire_recv_forward_v4/v6. 563 * 564 * IP Policy Framework processing (IPPF processing) 565 * Policy processing for a packet is initiated by ip_process, which ascertains 566 * that the classifier (ipgpc) is loaded and configured, failing which the 567 * packet resumes normal processing in IP. If the clasifier is present, the 568 * packet is acted upon by one or more IPQoS modules (action instances), per 569 * filters configured in ipgpc and resumes normal IP processing thereafter. 570 * An action instance can drop a packet in course of its processing. 571 * 572 * Zones notes: 573 * 574 * The partitioning rules for networking are as follows: 575 * 1) Packets coming from a zone must have a source address belonging to that 576 * zone. 577 * 2) Packets coming from a zone can only be sent on a physical interface on 578 * which the zone has an IP address. 579 * 3) Between two zones on the same machine, packet delivery is only allowed if 580 * there's a matching route for the destination and zone in the forwarding 581 * table. 582 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 583 * different zones can bind to the same port with the wildcard address 584 * (INADDR_ANY). 585 * 586 * The granularity of interface partitioning is at the logical interface level. 587 * Therefore, every zone has its own IP addresses, and incoming packets can be 588 * attributed to a zone unambiguously. A logical interface is placed into a zone 589 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 590 * structure. Rule (1) is implemented by modifying the source address selection 591 * algorithm so that the list of eligible addresses is filtered based on the 592 * sending process zone. 593 * 594 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 595 * across all zones, depending on their type. Here is the break-up: 596 * 597 * IRE type Shared/exclusive 598 * -------- ---------------- 599 * IRE_BROADCAST Exclusive 600 * IRE_DEFAULT (default routes) Shared (*) 601 * IRE_LOCAL Exclusive (x) 602 * IRE_LOOPBACK Exclusive 603 * IRE_PREFIX (net routes) Shared (*) 604 * IRE_IF_NORESOLVER (interface routes) Exclusive 605 * IRE_IF_RESOLVER (interface routes) Exclusive 606 * IRE_IF_CLONE (interface routes) Exclusive 607 * IRE_HOST (host routes) Shared (*) 608 * 609 * (*) A zone can only use a default or off-subnet route if the gateway is 610 * directly reachable from the zone, that is, if the gateway's address matches 611 * one of the zone's logical interfaces. 612 * 613 * (x) IRE_LOCAL are handled a bit differently. 614 * When ip_restrict_interzone_loopback is set (the default), 615 * ire_route_recursive restricts loopback using an IRE_LOCAL 616 * between zone to the case when L2 would have conceptually looped the packet 617 * back, i.e. the loopback which is required since neither Ethernet drivers 618 * nor Ethernet hardware loops them back. This is the case when the normal 619 * routes (ignoring IREs with different zoneids) would send out the packet on 620 * the same ill as the ill with which is IRE_LOCAL is associated. 621 * 622 * Multiple zones can share a common broadcast address; typically all zones 623 * share the 255.255.255.255 address. Incoming as well as locally originated 624 * broadcast packets must be dispatched to all the zones on the broadcast 625 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 626 * since some zones may not be on the 10.16.72/24 network. To handle this, each 627 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 628 * sent to every zone that has an IRE_BROADCAST entry for the destination 629 * address on the input ill, see ip_input_broadcast(). 630 * 631 * Applications in different zones can join the same multicast group address. 632 * The same logic applies for multicast as for broadcast. ip_input_multicast 633 * dispatches packets to all zones that have members on the physical interface. 634 */ 635 636 /* 637 * Squeue Fanout flags: 638 * 0: No fanout. 639 * 1: Fanout across all squeues 640 */ 641 boolean_t ip_squeue_fanout = 0; 642 643 /* 644 * Maximum dups allowed per packet. 645 */ 646 uint_t ip_max_frag_dups = 10; 647 648 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 649 cred_t *credp, boolean_t isv6); 650 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 651 652 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 653 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 654 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 655 ip_recv_attr_t *); 656 static void icmp_options_update(ipha_t *); 657 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 658 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 659 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 660 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 661 ip_recv_attr_t *); 662 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 663 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 664 ip_recv_attr_t *); 665 666 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 667 char *ip_dot_addr(ipaddr_t, char *); 668 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 669 int ip_close(queue_t *, int); 670 static char *ip_dot_saddr(uchar_t *, char *); 671 static void ip_lrput(queue_t *, mblk_t *); 672 ipaddr_t ip_net_mask(ipaddr_t); 673 char *ip_nv_lookup(nv_t *, int); 674 void ip_rput(queue_t *, mblk_t *); 675 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 676 void *dummy_arg); 677 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 678 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 679 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 680 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 681 ip_stack_t *, boolean_t); 682 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 683 boolean_t); 684 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 689 ip_stack_t *ipst, boolean_t); 690 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 691 ip_stack_t *ipst, boolean_t); 692 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 705 ip_stack_t *ipst); 706 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 707 ip_stack_t *ipst); 708 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 709 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 710 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 711 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 712 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 713 714 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 715 mblk_t *); 716 717 static void conn_drain_init(ip_stack_t *); 718 static void conn_drain_fini(ip_stack_t *); 719 static void conn_drain(conn_t *connp, boolean_t closing); 720 721 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 722 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 723 724 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 725 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 726 static void ip_stack_fini(netstackid_t stackid, void *arg); 727 728 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 729 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 730 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 731 const in6_addr_t *); 732 733 static int ip_squeue_switch(int); 734 735 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 736 static void ip_kstat_fini(netstackid_t, kstat_t *); 737 static int ip_kstat_update(kstat_t *kp, int rw); 738 static void *icmp_kstat_init(netstackid_t); 739 static void icmp_kstat_fini(netstackid_t, kstat_t *); 740 static int icmp_kstat_update(kstat_t *kp, int rw); 741 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 742 static void ip_kstat2_fini(netstackid_t, kstat_t *); 743 744 static void ipobs_init(ip_stack_t *); 745 static void ipobs_fini(ip_stack_t *); 746 747 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 748 749 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 750 751 static long ip_rput_pullups; 752 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 753 754 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 755 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 756 757 int ip_debug; 758 759 /* 760 * Multirouting/CGTP stuff 761 */ 762 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 763 764 /* 765 * IP tunables related declarations. Definitions are in ip_tunables.c 766 */ 767 extern mod_prop_info_t ip_propinfo_tbl[]; 768 extern int ip_propinfo_count; 769 770 /* 771 * Table of IP ioctls encoding the various properties of the ioctl and 772 * indexed based on the last byte of the ioctl command. Occasionally there 773 * is a clash, and there is more than 1 ioctl with the same last byte. 774 * In such a case 1 ioctl is encoded in the ndx table and the remaining 775 * ioctls are encoded in the misc table. An entry in the ndx table is 776 * retrieved by indexing on the last byte of the ioctl command and comparing 777 * the ioctl command with the value in the ndx table. In the event of a 778 * mismatch the misc table is then searched sequentially for the desired 779 * ioctl command. 780 * 781 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 782 */ 783 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 784 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 794 795 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 796 MISC_CMD, ip_siocaddrt, NULL }, 797 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 798 MISC_CMD, ip_siocdelrt, NULL }, 799 800 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 801 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 802 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 803 IF_CMD, ip_sioctl_get_addr, NULL }, 804 805 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 806 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 807 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 808 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 809 810 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 811 IPI_PRIV | IPI_WR, 812 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 813 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 814 IPI_MODOK | IPI_GET_CMD, 815 IF_CMD, ip_sioctl_get_flags, NULL }, 816 817 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 818 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 819 820 /* copyin size cannot be coded for SIOCGIFCONF */ 821 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 822 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 823 824 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 825 IF_CMD, ip_sioctl_mtu, NULL }, 826 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 827 IF_CMD, ip_sioctl_get_mtu, NULL }, 828 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 829 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 830 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 831 IF_CMD, ip_sioctl_brdaddr, NULL }, 832 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 833 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 834 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 835 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 836 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 837 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 838 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 839 IF_CMD, ip_sioctl_metric, NULL }, 840 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 841 842 /* See 166-168 below for extended SIOC*XARP ioctls */ 843 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 844 ARP_CMD, ip_sioctl_arp, NULL }, 845 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 846 ARP_CMD, ip_sioctl_arp, NULL }, 847 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 848 ARP_CMD, ip_sioctl_arp, NULL }, 849 850 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 872 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 873 MISC_CMD, if_unitsel, if_unitsel_restart }, 874 875 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 894 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 895 IPI_PRIV | IPI_WR | IPI_MODOK, 896 IF_CMD, ip_sioctl_sifname, NULL }, 897 898 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 911 912 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 913 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 914 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 915 IF_CMD, ip_sioctl_get_muxid, NULL }, 916 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 917 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 918 919 /* Both if and lif variants share same func */ 920 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 921 IF_CMD, ip_sioctl_get_lifindex, NULL }, 922 /* Both if and lif variants share same func */ 923 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 924 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 925 926 /* copyin size cannot be coded for SIOCGIFCONF */ 927 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 928 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 929 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 947 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 948 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 949 ip_sioctl_removeif_restart }, 950 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 951 IPI_GET_CMD | IPI_PRIV | IPI_WR, 952 LIF_CMD, ip_sioctl_addif, NULL }, 953 #define SIOCLIFADDR_NDX 112 954 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 955 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 956 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 957 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 958 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 959 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 960 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 961 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 962 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 963 IPI_PRIV | IPI_WR, 964 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 965 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 966 IPI_GET_CMD | IPI_MODOK, 967 LIF_CMD, ip_sioctl_get_flags, NULL }, 968 969 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 970 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 971 972 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 973 ip_sioctl_get_lifconf, NULL }, 974 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 975 LIF_CMD, ip_sioctl_mtu, NULL }, 976 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 977 LIF_CMD, ip_sioctl_get_mtu, NULL }, 978 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 979 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 980 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 981 LIF_CMD, ip_sioctl_brdaddr, NULL }, 982 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 983 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 984 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 985 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 986 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 987 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 988 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 989 LIF_CMD, ip_sioctl_metric, NULL }, 990 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 991 IPI_PRIV | IPI_WR | IPI_MODOK, 992 LIF_CMD, ip_sioctl_slifname, 993 ip_sioctl_slifname_restart }, 994 995 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 996 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 997 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 998 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 999 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1000 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1001 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1002 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1003 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1004 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1005 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1006 LIF_CMD, ip_sioctl_token, NULL }, 1007 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1008 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1009 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1010 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1011 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1012 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1013 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1014 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1015 1016 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1017 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1018 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1019 LIF_CMD, ip_siocdelndp_v6, NULL }, 1020 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1021 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1022 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1023 LIF_CMD, ip_siocsetndp_v6, NULL }, 1024 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1025 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1026 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1027 MISC_CMD, ip_sioctl_tonlink, NULL }, 1028 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1029 MISC_CMD, ip_sioctl_tmysite, NULL }, 1030 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 1033 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */ 1034 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 1039 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 1041 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1042 LIF_CMD, ip_sioctl_get_binding, NULL }, 1043 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1044 IPI_PRIV | IPI_WR, 1045 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1046 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1047 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1048 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1049 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1050 1051 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1052 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 1056 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 1058 /* These are handled in ip_sioctl_copyin_setup itself */ 1059 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1060 MISC_CMD, NULL, NULL }, 1061 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1062 MISC_CMD, NULL, NULL }, 1063 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1064 1065 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1066 ip_sioctl_get_lifconf, NULL }, 1067 1068 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1069 XARP_CMD, ip_sioctl_arp, NULL }, 1070 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1071 XARP_CMD, ip_sioctl_arp, NULL }, 1072 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1073 XARP_CMD, ip_sioctl_arp, NULL }, 1074 1075 /* SIOCPOPSOCKFS is not handled by IP */ 1076 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1077 1078 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1079 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1080 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1081 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1082 ip_sioctl_slifzone_restart }, 1083 /* 172-174 are SCTP ioctls and not handled by IP */ 1084 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1088 IPI_GET_CMD, LIF_CMD, 1089 ip_sioctl_get_lifusesrc, 0 }, 1090 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1091 IPI_PRIV | IPI_WR, 1092 LIF_CMD, ip_sioctl_slifusesrc, 1093 NULL }, 1094 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1095 ip_sioctl_get_lifsrcof, NULL }, 1096 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1097 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1098 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1099 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1100 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1101 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1102 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1103 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1104 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* SIOCSENABLESDP is handled by SDP */ 1106 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1107 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1108 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1109 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1110 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1111 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1112 ip_sioctl_ilb_cmd, NULL }, 1113 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1114 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1115 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1116 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1117 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1118 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1119 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1120 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1121 }; 1122 1123 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1124 1125 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1126 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1127 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1130 { ND_GET, 0, 0, 0, NULL, NULL }, 1131 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1132 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1133 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1134 MISC_CMD, mrt_ioctl}, 1135 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1136 MISC_CMD, mrt_ioctl}, 1137 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1138 MISC_CMD, mrt_ioctl} 1139 }; 1140 1141 int ip_misc_ioctl_count = 1142 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1143 1144 int conn_drain_nthreads; /* Number of drainers reqd. */ 1145 /* Settable in /etc/system */ 1146 /* Defined in ip_ire.c */ 1147 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1148 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1149 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1150 1151 static nv_t ire_nv_arr[] = { 1152 { IRE_BROADCAST, "BROADCAST" }, 1153 { IRE_LOCAL, "LOCAL" }, 1154 { IRE_LOOPBACK, "LOOPBACK" }, 1155 { IRE_DEFAULT, "DEFAULT" }, 1156 { IRE_PREFIX, "PREFIX" }, 1157 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1158 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1159 { IRE_IF_CLONE, "IF_CLONE" }, 1160 { IRE_HOST, "HOST" }, 1161 { IRE_MULTICAST, "MULTICAST" }, 1162 { IRE_NOROUTE, "NOROUTE" }, 1163 { 0 } 1164 }; 1165 1166 nv_t *ire_nv_tbl = ire_nv_arr; 1167 1168 /* Simple ICMP IP Header Template */ 1169 static ipha_t icmp_ipha = { 1170 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1171 }; 1172 1173 struct module_info ip_mod_info = { 1174 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1175 IP_MOD_LOWAT 1176 }; 1177 1178 /* 1179 * Duplicate static symbols within a module confuses mdb; so we avoid the 1180 * problem by making the symbols here distinct from those in udp.c. 1181 */ 1182 1183 /* 1184 * Entry points for IP as a device and as a module. 1185 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1186 */ 1187 static struct qinit iprinitv4 = { 1188 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1189 &ip_mod_info 1190 }; 1191 1192 struct qinit iprinitv6 = { 1193 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1194 &ip_mod_info 1195 }; 1196 1197 static struct qinit ipwinit = { 1198 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1199 &ip_mod_info 1200 }; 1201 1202 static struct qinit iplrinit = { 1203 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1204 &ip_mod_info 1205 }; 1206 1207 static struct qinit iplwinit = { 1208 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1209 &ip_mod_info 1210 }; 1211 1212 /* For AF_INET aka /dev/ip */ 1213 struct streamtab ipinfov4 = { 1214 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1215 }; 1216 1217 /* For AF_INET6 aka /dev/ip6 */ 1218 struct streamtab ipinfov6 = { 1219 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1220 }; 1221 1222 #ifdef DEBUG 1223 boolean_t skip_sctp_cksum = B_FALSE; 1224 #endif 1225 1226 /* 1227 * Generate an ICMP fragmentation needed message. 1228 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1229 * constructed by the caller. 1230 */ 1231 void 1232 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1233 { 1234 icmph_t icmph; 1235 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1236 1237 mp = icmp_pkt_err_ok(mp, ira); 1238 if (mp == NULL) 1239 return; 1240 1241 bzero(&icmph, sizeof (icmph_t)); 1242 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1243 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1244 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1245 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1246 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1247 1248 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1249 } 1250 1251 /* 1252 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1253 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1254 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1255 * Likewise, if the ICMP error is misformed (too short, etc), then it 1256 * returns NULL. The caller uses this to determine whether or not to send 1257 * to raw sockets. 1258 * 1259 * All error messages are passed to the matching transport stream. 1260 * 1261 * The following cases are handled by icmp_inbound: 1262 * 1) It needs to send a reply back and possibly delivering it 1263 * to the "interested" upper clients. 1264 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1265 * 3) It needs to change some values in IP only. 1266 * 4) It needs to change some values in IP and upper layers e.g TCP 1267 * by delivering an error to the upper layers. 1268 * 1269 * We handle the above three cases in the context of IPsec in the 1270 * following way : 1271 * 1272 * 1) Send the reply back in the same way as the request came in. 1273 * If it came in encrypted, it goes out encrypted. If it came in 1274 * clear, it goes out in clear. Thus, this will prevent chosen 1275 * plain text attack. 1276 * 2) The client may or may not expect things to come in secure. 1277 * If it comes in secure, the policy constraints are checked 1278 * before delivering it to the upper layers. If it comes in 1279 * clear, ipsec_inbound_accept_clear will decide whether to 1280 * accept this in clear or not. In both the cases, if the returned 1281 * message (IP header + 8 bytes) that caused the icmp message has 1282 * AH/ESP headers, it is sent up to AH/ESP for validation before 1283 * sending up. If there are only 8 bytes of returned message, then 1284 * upper client will not be notified. 1285 * 3) Check with global policy to see whether it matches the constaints. 1286 * But this will be done only if icmp_accept_messages_in_clear is 1287 * zero. 1288 * 4) If we need to change both in IP and ULP, then the decision taken 1289 * while affecting the values in IP and while delivering up to TCP 1290 * should be the same. 1291 * 1292 * There are two cases. 1293 * 1294 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1295 * failed), we will not deliver it to the ULP, even though they 1296 * are *willing* to accept in *clear*. This is fine as our global 1297 * disposition to icmp messages asks us reject the datagram. 1298 * 1299 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1300 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1301 * to deliver it to ULP (policy failed), it can lead to 1302 * consistency problems. The cases known at this time are 1303 * ICMP_DESTINATION_UNREACHABLE messages with following code 1304 * values : 1305 * 1306 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1307 * and Upper layer rejects. Then the communication will 1308 * come to a stop. This is solved by making similar decisions 1309 * at both levels. Currently, when we are unable to deliver 1310 * to the Upper Layer (due to policy failures) while IP has 1311 * adjusted dce_pmtu, the next outbound datagram would 1312 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1313 * will be with the right level of protection. Thus the right 1314 * value will be communicated even if we are not able to 1315 * communicate when we get from the wire initially. But this 1316 * assumes there would be at least one outbound datagram after 1317 * IP has adjusted its dce_pmtu value. To make things 1318 * simpler, we accept in clear after the validation of 1319 * AH/ESP headers. 1320 * 1321 * - Other ICMP ERRORS : We may not be able to deliver it to the 1322 * upper layer depending on the level of protection the upper 1323 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1324 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1325 * should be accepted in clear when the Upper layer expects secure. 1326 * Thus the communication may get aborted by some bad ICMP 1327 * packets. 1328 */ 1329 mblk_t * 1330 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1331 { 1332 icmph_t *icmph; 1333 ipha_t *ipha; /* Outer header */ 1334 int ip_hdr_length; /* Outer header length */ 1335 boolean_t interested; 1336 ipif_t *ipif; 1337 uint32_t ts; 1338 uint32_t *tsp; 1339 timestruc_t now; 1340 ill_t *ill = ira->ira_ill; 1341 ip_stack_t *ipst = ill->ill_ipst; 1342 zoneid_t zoneid = ira->ira_zoneid; 1343 int len_needed; 1344 mblk_t *mp_ret = NULL; 1345 1346 ipha = (ipha_t *)mp->b_rptr; 1347 1348 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1349 1350 ip_hdr_length = ira->ira_ip_hdr_length; 1351 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1352 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1353 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1354 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1355 freemsg(mp); 1356 return (NULL); 1357 } 1358 /* Last chance to get real. */ 1359 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1360 if (ipha == NULL) { 1361 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1362 freemsg(mp); 1363 return (NULL); 1364 } 1365 } 1366 1367 /* The IP header will always be a multiple of four bytes */ 1368 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1369 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1370 icmph->icmph_code)); 1371 1372 /* 1373 * We will set "interested" to "true" if we should pass a copy to 1374 * the transport or if we handle the packet locally. 1375 */ 1376 interested = B_FALSE; 1377 switch (icmph->icmph_type) { 1378 case ICMP_ECHO_REPLY: 1379 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1380 break; 1381 case ICMP_DEST_UNREACHABLE: 1382 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1383 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1384 interested = B_TRUE; /* Pass up to transport */ 1385 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1386 break; 1387 case ICMP_SOURCE_QUENCH: 1388 interested = B_TRUE; /* Pass up to transport */ 1389 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1390 break; 1391 case ICMP_REDIRECT: 1392 if (!ipst->ips_ip_ignore_redirect) 1393 interested = B_TRUE; 1394 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1395 break; 1396 case ICMP_ECHO_REQUEST: 1397 /* 1398 * Whether to respond to echo requests that come in as IP 1399 * broadcasts or as IP multicast is subject to debate 1400 * (what isn't?). We aim to please, you pick it. 1401 * Default is do it. 1402 */ 1403 if (ira->ira_flags & IRAF_MULTICAST) { 1404 /* multicast: respond based on tunable */ 1405 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1406 } else if (ira->ira_flags & IRAF_BROADCAST) { 1407 /* broadcast: respond based on tunable */ 1408 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1409 } else { 1410 /* unicast: always respond */ 1411 interested = B_TRUE; 1412 } 1413 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1414 if (!interested) { 1415 /* We never pass these to RAW sockets */ 1416 freemsg(mp); 1417 return (NULL); 1418 } 1419 1420 /* Check db_ref to make sure we can modify the packet. */ 1421 if (mp->b_datap->db_ref > 1) { 1422 mblk_t *mp1; 1423 1424 mp1 = copymsg(mp); 1425 freemsg(mp); 1426 if (!mp1) { 1427 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1428 return (NULL); 1429 } 1430 mp = mp1; 1431 ipha = (ipha_t *)mp->b_rptr; 1432 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1433 } 1434 icmph->icmph_type = ICMP_ECHO_REPLY; 1435 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1436 icmp_send_reply_v4(mp, ipha, icmph, ira); 1437 return (NULL); 1438 1439 case ICMP_ROUTER_ADVERTISEMENT: 1440 case ICMP_ROUTER_SOLICITATION: 1441 break; 1442 case ICMP_TIME_EXCEEDED: 1443 interested = B_TRUE; /* Pass up to transport */ 1444 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1445 break; 1446 case ICMP_PARAM_PROBLEM: 1447 interested = B_TRUE; /* Pass up to transport */ 1448 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1449 break; 1450 case ICMP_TIME_STAMP_REQUEST: 1451 /* Response to Time Stamp Requests is local policy. */ 1452 if (ipst->ips_ip_g_resp_to_timestamp) { 1453 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1454 interested = 1455 ipst->ips_ip_g_resp_to_timestamp_bcast; 1456 else 1457 interested = B_TRUE; 1458 } 1459 if (!interested) { 1460 /* We never pass these to RAW sockets */ 1461 freemsg(mp); 1462 return (NULL); 1463 } 1464 1465 /* Make sure we have enough of the packet */ 1466 len_needed = ip_hdr_length + ICMPH_SIZE + 1467 3 * sizeof (uint32_t); 1468 1469 if (mp->b_wptr - mp->b_rptr < len_needed) { 1470 ipha = ip_pullup(mp, len_needed, ira); 1471 if (ipha == NULL) { 1472 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1473 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1474 mp, ill); 1475 freemsg(mp); 1476 return (NULL); 1477 } 1478 /* Refresh following the pullup. */ 1479 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1480 } 1481 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1482 /* Check db_ref to make sure we can modify the packet. */ 1483 if (mp->b_datap->db_ref > 1) { 1484 mblk_t *mp1; 1485 1486 mp1 = copymsg(mp); 1487 freemsg(mp); 1488 if (!mp1) { 1489 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1490 return (NULL); 1491 } 1492 mp = mp1; 1493 ipha = (ipha_t *)mp->b_rptr; 1494 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1495 } 1496 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1497 tsp = (uint32_t *)&icmph[1]; 1498 tsp++; /* Skip past 'originate time' */ 1499 /* Compute # of milliseconds since midnight */ 1500 gethrestime(&now); 1501 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1502 NSEC2MSEC(now.tv_nsec); 1503 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1504 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1505 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1506 icmp_send_reply_v4(mp, ipha, icmph, ira); 1507 return (NULL); 1508 1509 case ICMP_TIME_STAMP_REPLY: 1510 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1511 break; 1512 case ICMP_INFO_REQUEST: 1513 /* Per RFC 1122 3.2.2.7, ignore this. */ 1514 case ICMP_INFO_REPLY: 1515 break; 1516 case ICMP_ADDRESS_MASK_REQUEST: 1517 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1518 interested = 1519 ipst->ips_ip_respond_to_address_mask_broadcast; 1520 } else { 1521 interested = B_TRUE; 1522 } 1523 if (!interested) { 1524 /* We never pass these to RAW sockets */ 1525 freemsg(mp); 1526 return (NULL); 1527 } 1528 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1529 if (mp->b_wptr - mp->b_rptr < len_needed) { 1530 ipha = ip_pullup(mp, len_needed, ira); 1531 if (ipha == NULL) { 1532 BUMP_MIB(ill->ill_ip_mib, 1533 ipIfStatsInTruncatedPkts); 1534 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1535 ill); 1536 freemsg(mp); 1537 return (NULL); 1538 } 1539 /* Refresh following the pullup. */ 1540 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1541 } 1542 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1543 /* Check db_ref to make sure we can modify the packet. */ 1544 if (mp->b_datap->db_ref > 1) { 1545 mblk_t *mp1; 1546 1547 mp1 = copymsg(mp); 1548 freemsg(mp); 1549 if (!mp1) { 1550 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1551 return (NULL); 1552 } 1553 mp = mp1; 1554 ipha = (ipha_t *)mp->b_rptr; 1555 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1556 } 1557 /* 1558 * Need the ipif with the mask be the same as the source 1559 * address of the mask reply. For unicast we have a specific 1560 * ipif. For multicast/broadcast we only handle onlink 1561 * senders, and use the source address to pick an ipif. 1562 */ 1563 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1564 if (ipif == NULL) { 1565 /* Broadcast or multicast */ 1566 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1567 if (ipif == NULL) { 1568 freemsg(mp); 1569 return (NULL); 1570 } 1571 } 1572 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1573 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1574 ipif_refrele(ipif); 1575 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1576 icmp_send_reply_v4(mp, ipha, icmph, ira); 1577 return (NULL); 1578 1579 case ICMP_ADDRESS_MASK_REPLY: 1580 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1581 break; 1582 default: 1583 interested = B_TRUE; /* Pass up to transport */ 1584 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1585 break; 1586 } 1587 /* 1588 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1589 * if there isn't one. 1590 */ 1591 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1592 /* If there is an ICMP client and we want one too, copy it. */ 1593 1594 if (!interested) { 1595 /* Caller will deliver to RAW sockets */ 1596 return (mp); 1597 } 1598 mp_ret = copymsg(mp); 1599 if (mp_ret == NULL) { 1600 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1601 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1602 } 1603 } else if (!interested) { 1604 /* Neither we nor raw sockets are interested. Drop packet now */ 1605 freemsg(mp); 1606 return (NULL); 1607 } 1608 1609 /* 1610 * ICMP error or redirect packet. Make sure we have enough of 1611 * the header and that db_ref == 1 since we might end up modifying 1612 * the packet. 1613 */ 1614 if (mp->b_cont != NULL) { 1615 if (ip_pullup(mp, -1, ira) == NULL) { 1616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1617 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1618 mp, ill); 1619 freemsg(mp); 1620 return (mp_ret); 1621 } 1622 } 1623 1624 if (mp->b_datap->db_ref > 1) { 1625 mblk_t *mp1; 1626 1627 mp1 = copymsg(mp); 1628 if (mp1 == NULL) { 1629 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1630 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1631 freemsg(mp); 1632 return (mp_ret); 1633 } 1634 freemsg(mp); 1635 mp = mp1; 1636 } 1637 1638 /* 1639 * In case mp has changed, verify the message before any further 1640 * processes. 1641 */ 1642 ipha = (ipha_t *)mp->b_rptr; 1643 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1644 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1645 freemsg(mp); 1646 return (mp_ret); 1647 } 1648 1649 switch (icmph->icmph_type) { 1650 case ICMP_REDIRECT: 1651 icmp_redirect_v4(mp, ipha, icmph, ira); 1652 break; 1653 case ICMP_DEST_UNREACHABLE: 1654 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1655 /* Update DCE and adjust MTU is icmp header if needed */ 1656 icmp_inbound_too_big_v4(icmph, ira); 1657 } 1658 /* FALLTHRU */ 1659 default: 1660 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1661 break; 1662 } 1663 return (mp_ret); 1664 } 1665 1666 /* 1667 * Send an ICMP echo, timestamp or address mask reply. 1668 * The caller has already updated the payload part of the packet. 1669 * We handle the ICMP checksum, IP source address selection and feed 1670 * the packet into ip_output_simple. 1671 */ 1672 static void 1673 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1674 ip_recv_attr_t *ira) 1675 { 1676 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1677 ill_t *ill = ira->ira_ill; 1678 ip_stack_t *ipst = ill->ill_ipst; 1679 ip_xmit_attr_t ixas; 1680 1681 /* Send out an ICMP packet */ 1682 icmph->icmph_checksum = 0; 1683 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1684 /* Reset time to live. */ 1685 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1686 { 1687 /* Swap source and destination addresses */ 1688 ipaddr_t tmp; 1689 1690 tmp = ipha->ipha_src; 1691 ipha->ipha_src = ipha->ipha_dst; 1692 ipha->ipha_dst = tmp; 1693 } 1694 ipha->ipha_ident = 0; 1695 if (!IS_SIMPLE_IPH(ipha)) 1696 icmp_options_update(ipha); 1697 1698 bzero(&ixas, sizeof (ixas)); 1699 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1700 ixas.ixa_zoneid = ira->ira_zoneid; 1701 ixas.ixa_cred = kcred; 1702 ixas.ixa_cpid = NOPID; 1703 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1704 ixas.ixa_ifindex = 0; 1705 ixas.ixa_ipst = ipst; 1706 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1707 1708 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1709 /* 1710 * This packet should go out the same way as it 1711 * came in i.e in clear, independent of the IPsec policy 1712 * for transmitting packets. 1713 */ 1714 ixas.ixa_flags |= IXAF_NO_IPSEC; 1715 } else { 1716 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1718 /* Note: mp already consumed and ip_drop_packet done */ 1719 return; 1720 } 1721 } 1722 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1723 /* 1724 * Not one or our addresses (IRE_LOCALs), thus we let 1725 * ip_output_simple pick the source. 1726 */ 1727 ipha->ipha_src = INADDR_ANY; 1728 ixas.ixa_flags |= IXAF_SET_SOURCE; 1729 } 1730 /* Should we send with DF and use dce_pmtu? */ 1731 if (ipst->ips_ipv4_icmp_return_pmtu) { 1732 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1733 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1734 } 1735 1736 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1737 1738 (void) ip_output_simple(mp, &ixas); 1739 ixa_cleanup(&ixas); 1740 } 1741 1742 /* 1743 * Verify the ICMP messages for either for ICMP error or redirect packet. 1744 * The caller should have fully pulled up the message. If it's a redirect 1745 * packet, only basic checks on IP header will be done; otherwise, verify 1746 * the packet by looking at the included ULP header. 1747 * 1748 * Called before icmp_inbound_error_fanout_v4 is called. 1749 */ 1750 static boolean_t 1751 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1752 { 1753 ill_t *ill = ira->ira_ill; 1754 int hdr_length; 1755 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1756 conn_t *connp; 1757 ipha_t *ipha; /* Inner IP header */ 1758 1759 ipha = (ipha_t *)&icmph[1]; 1760 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1761 goto truncated; 1762 1763 hdr_length = IPH_HDR_LENGTH(ipha); 1764 1765 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1766 goto discard_pkt; 1767 1768 if (hdr_length < sizeof (ipha_t)) 1769 goto truncated; 1770 1771 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1772 goto truncated; 1773 1774 /* 1775 * Stop here for ICMP_REDIRECT. 1776 */ 1777 if (icmph->icmph_type == ICMP_REDIRECT) 1778 return (B_TRUE); 1779 1780 /* 1781 * ICMP errors only. 1782 */ 1783 switch (ipha->ipha_protocol) { 1784 case IPPROTO_UDP: 1785 /* 1786 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1787 * transport header. 1788 */ 1789 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1790 mp->b_wptr) 1791 goto truncated; 1792 break; 1793 case IPPROTO_TCP: { 1794 tcpha_t *tcpha; 1795 1796 /* 1797 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1798 * transport header. 1799 */ 1800 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1801 mp->b_wptr) 1802 goto truncated; 1803 1804 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1805 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1806 ipst); 1807 if (connp == NULL) 1808 goto discard_pkt; 1809 1810 if ((connp->conn_verifyicmp != NULL) && 1811 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1812 CONN_DEC_REF(connp); 1813 goto discard_pkt; 1814 } 1815 CONN_DEC_REF(connp); 1816 break; 1817 } 1818 case IPPROTO_SCTP: 1819 /* 1820 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1821 * transport header. 1822 */ 1823 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1824 mp->b_wptr) 1825 goto truncated; 1826 break; 1827 case IPPROTO_ESP: 1828 case IPPROTO_AH: 1829 break; 1830 case IPPROTO_ENCAP: 1831 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1832 mp->b_wptr) 1833 goto truncated; 1834 break; 1835 default: 1836 break; 1837 } 1838 1839 return (B_TRUE); 1840 1841 discard_pkt: 1842 /* Bogus ICMP error. */ 1843 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1844 return (B_FALSE); 1845 1846 truncated: 1847 /* We pulled up everthing already. Must be truncated */ 1848 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1849 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1850 return (B_FALSE); 1851 } 1852 1853 /* Table from RFC 1191 */ 1854 static int icmp_frag_size_table[] = 1855 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1856 1857 /* 1858 * Process received ICMP Packet too big. 1859 * Just handles the DCE create/update, including using the above table of 1860 * PMTU guesses. The caller is responsible for validating the packet before 1861 * passing it in and also to fanout the ICMP error to any matching transport 1862 * conns. Assumes the message has been fully pulled up and verified. 1863 * 1864 * Before getting here, the caller has called icmp_inbound_verify_v4() 1865 * that should have verified with ULP to prevent undoing the changes we're 1866 * going to make to DCE. For example, TCP might have verified that the packet 1867 * which generated error is in the send window. 1868 * 1869 * In some cases modified this MTU in the ICMP header packet; the caller 1870 * should pass to the matching ULP after this returns. 1871 */ 1872 static void 1873 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1874 { 1875 dce_t *dce; 1876 int old_mtu; 1877 int mtu, orig_mtu; 1878 ipaddr_t dst; 1879 boolean_t disable_pmtud; 1880 ill_t *ill = ira->ira_ill; 1881 ip_stack_t *ipst = ill->ill_ipst; 1882 uint_t hdr_length; 1883 ipha_t *ipha; 1884 1885 /* Caller already pulled up everything. */ 1886 ipha = (ipha_t *)&icmph[1]; 1887 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1888 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1889 ASSERT(ill != NULL); 1890 1891 hdr_length = IPH_HDR_LENGTH(ipha); 1892 1893 /* 1894 * We handle path MTU for source routed packets since the DCE 1895 * is looked up using the final destination. 1896 */ 1897 dst = ip_get_dst(ipha); 1898 1899 dce = dce_lookup_and_add_v4(dst, ipst); 1900 if (dce == NULL) { 1901 /* Couldn't add a unique one - ENOMEM */ 1902 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1903 ntohl(dst))); 1904 return; 1905 } 1906 1907 /* Check for MTU discovery advice as described in RFC 1191 */ 1908 mtu = ntohs(icmph->icmph_du_mtu); 1909 orig_mtu = mtu; 1910 disable_pmtud = B_FALSE; 1911 1912 mutex_enter(&dce->dce_lock); 1913 if (dce->dce_flags & DCEF_PMTU) 1914 old_mtu = dce->dce_pmtu; 1915 else 1916 old_mtu = ill->ill_mtu; 1917 1918 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1919 uint32_t length; 1920 int i; 1921 1922 /* 1923 * Use the table from RFC 1191 to figure out 1924 * the next "plateau" based on the length in 1925 * the original IP packet. 1926 */ 1927 length = ntohs(ipha->ipha_length); 1928 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1929 uint32_t, length); 1930 if (old_mtu <= length && 1931 old_mtu >= length - hdr_length) { 1932 /* 1933 * Handle broken BSD 4.2 systems that 1934 * return the wrong ipha_length in ICMP 1935 * errors. 1936 */ 1937 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1938 length, old_mtu)); 1939 length -= hdr_length; 1940 } 1941 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1942 if (length > icmp_frag_size_table[i]) 1943 break; 1944 } 1945 if (i == A_CNT(icmp_frag_size_table)) { 1946 /* Smaller than IP_MIN_MTU! */ 1947 ip1dbg(("Too big for packet size %d\n", 1948 length)); 1949 disable_pmtud = B_TRUE; 1950 mtu = ipst->ips_ip_pmtu_min; 1951 } else { 1952 mtu = icmp_frag_size_table[i]; 1953 ip1dbg(("Calculated mtu %d, packet size %d, " 1954 "before %d\n", mtu, length, old_mtu)); 1955 if (mtu < ipst->ips_ip_pmtu_min) { 1956 mtu = ipst->ips_ip_pmtu_min; 1957 disable_pmtud = B_TRUE; 1958 } 1959 } 1960 } 1961 if (disable_pmtud) 1962 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1963 else 1964 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1965 1966 dce->dce_pmtu = MIN(old_mtu, mtu); 1967 /* Prepare to send the new max frag size for the ULP. */ 1968 icmph->icmph_du_zero = 0; 1969 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1970 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1971 dce, int, orig_mtu, int, mtu); 1972 1973 /* We now have a PMTU for sure */ 1974 dce->dce_flags |= DCEF_PMTU; 1975 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1976 mutex_exit(&dce->dce_lock); 1977 /* 1978 * After dropping the lock the new value is visible to everyone. 1979 * Then we bump the generation number so any cached values reinspect 1980 * the dce_t. 1981 */ 1982 dce_increment_generation(dce); 1983 dce_refrele(dce); 1984 } 1985 1986 /* 1987 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1988 * calls this function. 1989 */ 1990 static mblk_t * 1991 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1992 { 1993 int length; 1994 1995 ASSERT(mp->b_datap->db_type == M_DATA); 1996 1997 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1998 ASSERT(mp->b_cont == NULL); 1999 2000 /* 2001 * The length that we want to overlay is the inner header 2002 * and what follows it. 2003 */ 2004 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2005 2006 /* 2007 * Overlay the inner header and whatever follows it over the 2008 * outer header. 2009 */ 2010 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2011 2012 /* Adjust for what we removed */ 2013 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2014 return (mp); 2015 } 2016 2017 /* 2018 * Try to pass the ICMP message upstream in case the ULP cares. 2019 * 2020 * If the packet that caused the ICMP error is secure, we send 2021 * it to AH/ESP to make sure that the attached packet has a 2022 * valid association. ipha in the code below points to the 2023 * IP header of the packet that caused the error. 2024 * 2025 * For IPsec cases, we let the next-layer-up (which has access to 2026 * cached policy on the conn_t, or can query the SPD directly) 2027 * subtract out any IPsec overhead if they must. We therefore make no 2028 * adjustments here for IPsec overhead. 2029 * 2030 * IFN could have been generated locally or by some router. 2031 * 2032 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2033 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2034 * This happens because IP adjusted its value of MTU on an 2035 * earlier IFN message and could not tell the upper layer, 2036 * the new adjusted value of MTU e.g. Packet was encrypted 2037 * or there was not enough information to fanout to upper 2038 * layers. Thus on the next outbound datagram, ire_send_wire 2039 * generates the IFN, where IPsec processing has *not* been 2040 * done. 2041 * 2042 * Note that we retain ixa_fragsize across IPsec thus once 2043 * we have picking ixa_fragsize and entered ipsec_out_process we do 2044 * no change the fragsize even if the path MTU changes before 2045 * we reach ip_output_post_ipsec. 2046 * 2047 * In the local case, IRAF_LOOPBACK will be set indicating 2048 * that IFN was generated locally. 2049 * 2050 * ROUTER : IFN could be secure or non-secure. 2051 * 2052 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2053 * packet in error has AH/ESP headers to validate the AH/ESP 2054 * headers. AH/ESP will verify whether there is a valid SA or 2055 * not and send it back. We will fanout again if we have more 2056 * data in the packet. 2057 * 2058 * If the packet in error does not have AH/ESP, we handle it 2059 * like any other case. 2060 * 2061 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2062 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2063 * valid SA or not and send it back. We will fanout again if 2064 * we have more data in the packet. 2065 * 2066 * If the packet in error does not have AH/ESP, we handle it 2067 * like any other case. 2068 * 2069 * The caller must have called icmp_inbound_verify_v4. 2070 */ 2071 static void 2072 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2073 { 2074 uint16_t *up; /* Pointer to ports in ULP header */ 2075 uint32_t ports; /* reversed ports for fanout */ 2076 ipha_t ripha; /* With reversed addresses */ 2077 ipha_t *ipha; /* Inner IP header */ 2078 uint_t hdr_length; /* Inner IP header length */ 2079 tcpha_t *tcpha; 2080 conn_t *connp; 2081 ill_t *ill = ira->ira_ill; 2082 ip_stack_t *ipst = ill->ill_ipst; 2083 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2084 ill_t *rill = ira->ira_rill; 2085 2086 /* Caller already pulled up everything. */ 2087 ipha = (ipha_t *)&icmph[1]; 2088 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2089 ASSERT(mp->b_cont == NULL); 2090 2091 hdr_length = IPH_HDR_LENGTH(ipha); 2092 ira->ira_protocol = ipha->ipha_protocol; 2093 2094 /* 2095 * We need a separate IP header with the source and destination 2096 * addresses reversed to do fanout/classification because the ipha in 2097 * the ICMP error is in the form we sent it out. 2098 */ 2099 ripha.ipha_src = ipha->ipha_dst; 2100 ripha.ipha_dst = ipha->ipha_src; 2101 ripha.ipha_protocol = ipha->ipha_protocol; 2102 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2103 2104 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2105 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2106 ntohl(ipha->ipha_dst), 2107 icmph->icmph_type, icmph->icmph_code)); 2108 2109 switch (ipha->ipha_protocol) { 2110 case IPPROTO_UDP: 2111 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2112 2113 /* Attempt to find a client stream based on port. */ 2114 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2115 ntohs(up[0]), ntohs(up[1]))); 2116 2117 /* Note that we send error to all matches. */ 2118 ira->ira_flags |= IRAF_ICMP_ERROR; 2119 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2120 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2121 return; 2122 2123 case IPPROTO_TCP: 2124 /* 2125 * Find a TCP client stream for this packet. 2126 * Note that we do a reverse lookup since the header is 2127 * in the form we sent it out. 2128 */ 2129 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2130 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2131 ipst); 2132 if (connp == NULL) 2133 goto discard_pkt; 2134 2135 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2136 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2137 mp = ipsec_check_inbound_policy(mp, connp, 2138 ipha, NULL, ira); 2139 if (mp == NULL) { 2140 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2141 /* Note that mp is NULL */ 2142 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2143 CONN_DEC_REF(connp); 2144 return; 2145 } 2146 } 2147 2148 ira->ira_flags |= IRAF_ICMP_ERROR; 2149 ira->ira_ill = ira->ira_rill = NULL; 2150 if (IPCL_IS_TCP(connp)) { 2151 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2152 connp->conn_recvicmp, connp, ira, SQ_FILL, 2153 SQTAG_TCP_INPUT_ICMP_ERR); 2154 } else { 2155 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2156 (connp->conn_recv)(connp, mp, NULL, ira); 2157 CONN_DEC_REF(connp); 2158 } 2159 ira->ira_ill = ill; 2160 ira->ira_rill = rill; 2161 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2162 return; 2163 2164 case IPPROTO_SCTP: 2165 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2166 /* Find a SCTP client stream for this packet. */ 2167 ((uint16_t *)&ports)[0] = up[1]; 2168 ((uint16_t *)&ports)[1] = up[0]; 2169 2170 ira->ira_flags |= IRAF_ICMP_ERROR; 2171 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2172 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2173 return; 2174 2175 case IPPROTO_ESP: 2176 case IPPROTO_AH: 2177 if (!ipsec_loaded(ipss)) { 2178 ip_proto_not_sup(mp, ira); 2179 return; 2180 } 2181 2182 if (ipha->ipha_protocol == IPPROTO_ESP) 2183 mp = ipsecesp_icmp_error(mp, ira); 2184 else 2185 mp = ipsecah_icmp_error(mp, ira); 2186 if (mp == NULL) 2187 return; 2188 2189 /* Just in case ipsec didn't preserve the NULL b_cont */ 2190 if (mp->b_cont != NULL) { 2191 if (!pullupmsg(mp, -1)) 2192 goto discard_pkt; 2193 } 2194 2195 /* 2196 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2197 * correct, but we don't use them any more here. 2198 * 2199 * If succesful, the mp has been modified to not include 2200 * the ESP/AH header so we can fanout to the ULP's icmp 2201 * error handler. 2202 */ 2203 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2204 goto truncated; 2205 2206 /* Verify the modified message before any further processes. */ 2207 ipha = (ipha_t *)mp->b_rptr; 2208 hdr_length = IPH_HDR_LENGTH(ipha); 2209 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2210 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2211 freemsg(mp); 2212 return; 2213 } 2214 2215 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2216 return; 2217 2218 case IPPROTO_ENCAP: { 2219 /* Look for self-encapsulated packets that caused an error */ 2220 ipha_t *in_ipha; 2221 2222 /* 2223 * Caller has verified that length has to be 2224 * at least the size of IP header. 2225 */ 2226 ASSERT(hdr_length >= sizeof (ipha_t)); 2227 /* 2228 * Check the sanity of the inner IP header like 2229 * we did for the outer header. 2230 */ 2231 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2232 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2233 goto discard_pkt; 2234 } 2235 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2236 goto discard_pkt; 2237 } 2238 /* Check for Self-encapsulated tunnels */ 2239 if (in_ipha->ipha_src == ipha->ipha_src && 2240 in_ipha->ipha_dst == ipha->ipha_dst) { 2241 2242 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2243 in_ipha); 2244 if (mp == NULL) 2245 goto discard_pkt; 2246 2247 /* 2248 * Just in case self_encap didn't preserve the NULL 2249 * b_cont 2250 */ 2251 if (mp->b_cont != NULL) { 2252 if (!pullupmsg(mp, -1)) 2253 goto discard_pkt; 2254 } 2255 /* 2256 * Note that ira_pktlen and ira_ip_hdr_length are no 2257 * longer correct, but we don't use them any more here. 2258 */ 2259 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2260 goto truncated; 2261 2262 /* 2263 * Verify the modified message before any further 2264 * processes. 2265 */ 2266 ipha = (ipha_t *)mp->b_rptr; 2267 hdr_length = IPH_HDR_LENGTH(ipha); 2268 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2269 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2270 freemsg(mp); 2271 return; 2272 } 2273 2274 /* 2275 * The packet in error is self-encapsualted. 2276 * And we are finding it further encapsulated 2277 * which we could not have possibly generated. 2278 */ 2279 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2280 goto discard_pkt; 2281 } 2282 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2283 return; 2284 } 2285 /* No self-encapsulated */ 2286 /* FALLTHRU */ 2287 } 2288 case IPPROTO_IPV6: 2289 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2290 &ripha.ipha_dst, ipst)) != NULL) { 2291 ira->ira_flags |= IRAF_ICMP_ERROR; 2292 connp->conn_recvicmp(connp, mp, NULL, ira); 2293 CONN_DEC_REF(connp); 2294 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2295 return; 2296 } 2297 /* 2298 * No IP tunnel is interested, fallthrough and see 2299 * if a raw socket will want it. 2300 */ 2301 /* FALLTHRU */ 2302 default: 2303 ira->ira_flags |= IRAF_ICMP_ERROR; 2304 ip_fanout_proto_v4(mp, &ripha, ira); 2305 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2306 return; 2307 } 2308 /* NOTREACHED */ 2309 discard_pkt: 2310 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2311 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2312 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2313 freemsg(mp); 2314 return; 2315 2316 truncated: 2317 /* We pulled up everthing already. Must be truncated */ 2318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2319 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2320 freemsg(mp); 2321 } 2322 2323 /* 2324 * Common IP options parser. 2325 * 2326 * Setup routine: fill in *optp with options-parsing state, then 2327 * tail-call ipoptp_next to return the first option. 2328 */ 2329 uint8_t 2330 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2331 { 2332 uint32_t totallen; /* total length of all options */ 2333 2334 totallen = ipha->ipha_version_and_hdr_length - 2335 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2336 totallen <<= 2; 2337 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2338 optp->ipoptp_end = optp->ipoptp_next + totallen; 2339 optp->ipoptp_flags = 0; 2340 return (ipoptp_next(optp)); 2341 } 2342 2343 /* Like above but without an ipha_t */ 2344 uint8_t 2345 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2346 { 2347 optp->ipoptp_next = opt; 2348 optp->ipoptp_end = optp->ipoptp_next + totallen; 2349 optp->ipoptp_flags = 0; 2350 return (ipoptp_next(optp)); 2351 } 2352 2353 /* 2354 * Common IP options parser: extract next option. 2355 */ 2356 uint8_t 2357 ipoptp_next(ipoptp_t *optp) 2358 { 2359 uint8_t *end = optp->ipoptp_end; 2360 uint8_t *cur = optp->ipoptp_next; 2361 uint8_t opt, len, pointer; 2362 2363 /* 2364 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2365 * has been corrupted. 2366 */ 2367 ASSERT(cur <= end); 2368 2369 if (cur == end) 2370 return (IPOPT_EOL); 2371 2372 opt = cur[IPOPT_OPTVAL]; 2373 2374 /* 2375 * Skip any NOP options. 2376 */ 2377 while (opt == IPOPT_NOP) { 2378 cur++; 2379 if (cur == end) 2380 return (IPOPT_EOL); 2381 opt = cur[IPOPT_OPTVAL]; 2382 } 2383 2384 if (opt == IPOPT_EOL) 2385 return (IPOPT_EOL); 2386 2387 /* 2388 * Option requiring a length. 2389 */ 2390 if ((cur + 1) >= end) { 2391 optp->ipoptp_flags |= IPOPTP_ERROR; 2392 return (IPOPT_EOL); 2393 } 2394 len = cur[IPOPT_OLEN]; 2395 if (len < 2) { 2396 optp->ipoptp_flags |= IPOPTP_ERROR; 2397 return (IPOPT_EOL); 2398 } 2399 optp->ipoptp_cur = cur; 2400 optp->ipoptp_len = len; 2401 optp->ipoptp_next = cur + len; 2402 if (cur + len > end) { 2403 optp->ipoptp_flags |= IPOPTP_ERROR; 2404 return (IPOPT_EOL); 2405 } 2406 2407 /* 2408 * For the options which require a pointer field, make sure 2409 * its there, and make sure it points to either something 2410 * inside this option, or the end of the option. 2411 */ 2412 switch (opt) { 2413 case IPOPT_RR: 2414 case IPOPT_TS: 2415 case IPOPT_LSRR: 2416 case IPOPT_SSRR: 2417 if (len <= IPOPT_OFFSET) { 2418 optp->ipoptp_flags |= IPOPTP_ERROR; 2419 return (opt); 2420 } 2421 pointer = cur[IPOPT_OFFSET]; 2422 if (pointer - 1 > len) { 2423 optp->ipoptp_flags |= IPOPTP_ERROR; 2424 return (opt); 2425 } 2426 break; 2427 } 2428 2429 /* 2430 * Sanity check the pointer field based on the type of the 2431 * option. 2432 */ 2433 switch (opt) { 2434 case IPOPT_RR: 2435 case IPOPT_SSRR: 2436 case IPOPT_LSRR: 2437 if (pointer < IPOPT_MINOFF_SR) 2438 optp->ipoptp_flags |= IPOPTP_ERROR; 2439 break; 2440 case IPOPT_TS: 2441 if (pointer < IPOPT_MINOFF_IT) 2442 optp->ipoptp_flags |= IPOPTP_ERROR; 2443 /* 2444 * Note that the Internet Timestamp option also 2445 * contains two four bit fields (the Overflow field, 2446 * and the Flag field), which follow the pointer 2447 * field. We don't need to check that these fields 2448 * fall within the length of the option because this 2449 * was implicitely done above. We've checked that the 2450 * pointer value is at least IPOPT_MINOFF_IT, and that 2451 * it falls within the option. Since IPOPT_MINOFF_IT > 2452 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2453 */ 2454 ASSERT(len > IPOPT_POS_OV_FLG); 2455 break; 2456 } 2457 2458 return (opt); 2459 } 2460 2461 /* 2462 * Use the outgoing IP header to create an IP_OPTIONS option the way 2463 * it was passed down from the application. 2464 * 2465 * This is compatible with BSD in that it returns 2466 * the reverse source route with the final destination 2467 * as the last entry. The first 4 bytes of the option 2468 * will contain the final destination. 2469 */ 2470 int 2471 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2472 { 2473 ipoptp_t opts; 2474 uchar_t *opt; 2475 uint8_t optval; 2476 uint8_t optlen; 2477 uint32_t len = 0; 2478 uchar_t *buf1 = buf; 2479 uint32_t totallen; 2480 ipaddr_t dst; 2481 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2482 2483 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2484 return (0); 2485 2486 totallen = ipp->ipp_ipv4_options_len; 2487 if (totallen & 0x3) 2488 return (0); 2489 2490 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2491 len += IP_ADDR_LEN; 2492 bzero(buf1, IP_ADDR_LEN); 2493 2494 dst = connp->conn_faddr_v4; 2495 2496 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2497 optval != IPOPT_EOL; 2498 optval = ipoptp_next(&opts)) { 2499 int off; 2500 2501 opt = opts.ipoptp_cur; 2502 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2503 break; 2504 } 2505 optlen = opts.ipoptp_len; 2506 2507 switch (optval) { 2508 case IPOPT_SSRR: 2509 case IPOPT_LSRR: 2510 2511 /* 2512 * Insert destination as the first entry in the source 2513 * route and move down the entries on step. 2514 * The last entry gets placed at buf1. 2515 */ 2516 buf[IPOPT_OPTVAL] = optval; 2517 buf[IPOPT_OLEN] = optlen; 2518 buf[IPOPT_OFFSET] = optlen; 2519 2520 off = optlen - IP_ADDR_LEN; 2521 if (off < 0) { 2522 /* No entries in source route */ 2523 break; 2524 } 2525 /* Last entry in source route if not already set */ 2526 if (dst == INADDR_ANY) 2527 bcopy(opt + off, buf1, IP_ADDR_LEN); 2528 off -= IP_ADDR_LEN; 2529 2530 while (off > 0) { 2531 bcopy(opt + off, 2532 buf + off + IP_ADDR_LEN, 2533 IP_ADDR_LEN); 2534 off -= IP_ADDR_LEN; 2535 } 2536 /* ipha_dst into first slot */ 2537 bcopy(&dst, buf + off + IP_ADDR_LEN, 2538 IP_ADDR_LEN); 2539 buf += optlen; 2540 len += optlen; 2541 break; 2542 2543 default: 2544 bcopy(opt, buf, optlen); 2545 buf += optlen; 2546 len += optlen; 2547 break; 2548 } 2549 } 2550 done: 2551 /* Pad the resulting options */ 2552 while (len & 0x3) { 2553 *buf++ = IPOPT_EOL; 2554 len++; 2555 } 2556 return (len); 2557 } 2558 2559 /* 2560 * Update any record route or timestamp options to include this host. 2561 * Reverse any source route option. 2562 * This routine assumes that the options are well formed i.e. that they 2563 * have already been checked. 2564 */ 2565 static void 2566 icmp_options_update(ipha_t *ipha) 2567 { 2568 ipoptp_t opts; 2569 uchar_t *opt; 2570 uint8_t optval; 2571 ipaddr_t src; /* Our local address */ 2572 ipaddr_t dst; 2573 2574 ip2dbg(("icmp_options_update\n")); 2575 src = ipha->ipha_src; 2576 dst = ipha->ipha_dst; 2577 2578 for (optval = ipoptp_first(&opts, ipha); 2579 optval != IPOPT_EOL; 2580 optval = ipoptp_next(&opts)) { 2581 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2582 opt = opts.ipoptp_cur; 2583 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2584 optval, opts.ipoptp_len)); 2585 switch (optval) { 2586 int off1, off2; 2587 case IPOPT_SSRR: 2588 case IPOPT_LSRR: 2589 /* 2590 * Reverse the source route. The first entry 2591 * should be the next to last one in the current 2592 * source route (the last entry is our address). 2593 * The last entry should be the final destination. 2594 */ 2595 off1 = IPOPT_MINOFF_SR - 1; 2596 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2597 if (off2 < 0) { 2598 /* No entries in source route */ 2599 ip1dbg(( 2600 "icmp_options_update: bad src route\n")); 2601 break; 2602 } 2603 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2604 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2605 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2606 off2 -= IP_ADDR_LEN; 2607 2608 while (off1 < off2) { 2609 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2610 bcopy((char *)opt + off2, (char *)opt + off1, 2611 IP_ADDR_LEN); 2612 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2613 off1 += IP_ADDR_LEN; 2614 off2 -= IP_ADDR_LEN; 2615 } 2616 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2617 break; 2618 } 2619 } 2620 } 2621 2622 /* 2623 * Process received ICMP Redirect messages. 2624 * Assumes the caller has verified that the headers are in the pulled up mblk. 2625 * Consumes mp. 2626 */ 2627 static void 2628 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2629 { 2630 ire_t *ire, *nire; 2631 ire_t *prev_ire; 2632 ipaddr_t src, dst, gateway; 2633 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2634 ipha_t *inner_ipha; /* Inner IP header */ 2635 2636 /* Caller already pulled up everything. */ 2637 inner_ipha = (ipha_t *)&icmph[1]; 2638 src = ipha->ipha_src; 2639 dst = inner_ipha->ipha_dst; 2640 gateway = icmph->icmph_rd_gateway; 2641 /* Make sure the new gateway is reachable somehow. */ 2642 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2643 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2644 /* 2645 * Make sure we had a route for the dest in question and that 2646 * that route was pointing to the old gateway (the source of the 2647 * redirect packet.) 2648 * We do longest match and then compare ire_gateway_addr below. 2649 */ 2650 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2651 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2652 /* 2653 * Check that 2654 * the redirect was not from ourselves 2655 * the new gateway and the old gateway are directly reachable 2656 */ 2657 if (prev_ire == NULL || ire == NULL || 2658 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2659 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2660 !(ire->ire_type & IRE_IF_ALL) || 2661 prev_ire->ire_gateway_addr != src) { 2662 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2663 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2664 freemsg(mp); 2665 if (ire != NULL) 2666 ire_refrele(ire); 2667 if (prev_ire != NULL) 2668 ire_refrele(prev_ire); 2669 return; 2670 } 2671 2672 ire_refrele(prev_ire); 2673 ire_refrele(ire); 2674 2675 /* 2676 * TODO: more precise handling for cases 0, 2, 3, the latter two 2677 * require TOS routing 2678 */ 2679 switch (icmph->icmph_code) { 2680 case 0: 2681 case 1: 2682 /* TODO: TOS specificity for cases 2 and 3 */ 2683 case 2: 2684 case 3: 2685 break; 2686 default: 2687 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2688 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2689 freemsg(mp); 2690 return; 2691 } 2692 /* 2693 * Create a Route Association. This will allow us to remember that 2694 * someone we believe told us to use the particular gateway. 2695 */ 2696 ire = ire_create( 2697 (uchar_t *)&dst, /* dest addr */ 2698 (uchar_t *)&ip_g_all_ones, /* mask */ 2699 (uchar_t *)&gateway, /* gateway addr */ 2700 IRE_HOST, 2701 NULL, /* ill */ 2702 ALL_ZONES, 2703 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2704 NULL, /* tsol_gc_t */ 2705 ipst); 2706 2707 if (ire == NULL) { 2708 freemsg(mp); 2709 return; 2710 } 2711 nire = ire_add(ire); 2712 /* Check if it was a duplicate entry */ 2713 if (nire != NULL && nire != ire) { 2714 ASSERT(nire->ire_identical_ref > 1); 2715 ire_delete(nire); 2716 ire_refrele(nire); 2717 nire = NULL; 2718 } 2719 ire = nire; 2720 if (ire != NULL) { 2721 ire_refrele(ire); /* Held in ire_add */ 2722 2723 /* tell routing sockets that we received a redirect */ 2724 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2725 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2726 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2727 } 2728 2729 /* 2730 * Delete any existing IRE_HOST type redirect ires for this destination. 2731 * This together with the added IRE has the effect of 2732 * modifying an existing redirect. 2733 */ 2734 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2735 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2736 if (prev_ire != NULL) { 2737 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2738 ire_delete(prev_ire); 2739 ire_refrele(prev_ire); 2740 } 2741 2742 freemsg(mp); 2743 } 2744 2745 /* 2746 * Generate an ICMP parameter problem message. 2747 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2748 * constructed by the caller. 2749 */ 2750 static void 2751 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2752 { 2753 icmph_t icmph; 2754 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2755 2756 mp = icmp_pkt_err_ok(mp, ira); 2757 if (mp == NULL) 2758 return; 2759 2760 bzero(&icmph, sizeof (icmph_t)); 2761 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2762 icmph.icmph_pp_ptr = ptr; 2763 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2764 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2765 } 2766 2767 /* 2768 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2769 * the ICMP header pointed to by "stuff". (May be called as writer.) 2770 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2771 * an icmp error packet can be sent. 2772 * Assigns an appropriate source address to the packet. If ipha_dst is 2773 * one of our addresses use it for source. Otherwise let ip_output_simple 2774 * pick the source address. 2775 */ 2776 static void 2777 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2778 { 2779 ipaddr_t dst; 2780 icmph_t *icmph; 2781 ipha_t *ipha; 2782 uint_t len_needed; 2783 size_t msg_len; 2784 mblk_t *mp1; 2785 ipaddr_t src; 2786 ire_t *ire; 2787 ip_xmit_attr_t ixas; 2788 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2789 2790 ipha = (ipha_t *)mp->b_rptr; 2791 2792 bzero(&ixas, sizeof (ixas)); 2793 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2794 ixas.ixa_zoneid = ira->ira_zoneid; 2795 ixas.ixa_ifindex = 0; 2796 ixas.ixa_ipst = ipst; 2797 ixas.ixa_cred = kcred; 2798 ixas.ixa_cpid = NOPID; 2799 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2800 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2801 2802 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2803 /* 2804 * Apply IPsec based on how IPsec was applied to 2805 * the packet that had the error. 2806 * 2807 * If it was an outbound packet that caused the ICMP 2808 * error, then the caller will have setup the IRA 2809 * appropriately. 2810 */ 2811 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2812 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2813 /* Note: mp already consumed and ip_drop_packet done */ 2814 return; 2815 } 2816 } else { 2817 /* 2818 * This is in clear. The icmp message we are building 2819 * here should go out in clear, independent of our policy. 2820 */ 2821 ixas.ixa_flags |= IXAF_NO_IPSEC; 2822 } 2823 2824 /* Remember our eventual destination */ 2825 dst = ipha->ipha_src; 2826 2827 /* 2828 * If the packet was for one of our unicast addresses, make 2829 * sure we respond with that as the source. Otherwise 2830 * have ip_output_simple pick the source address. 2831 */ 2832 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2833 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2834 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2835 if (ire != NULL) { 2836 ire_refrele(ire); 2837 src = ipha->ipha_dst; 2838 } else { 2839 src = INADDR_ANY; 2840 ixas.ixa_flags |= IXAF_SET_SOURCE; 2841 } 2842 2843 /* 2844 * Check if we can send back more then 8 bytes in addition to 2845 * the IP header. We try to send 64 bytes of data and the internal 2846 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2847 */ 2848 len_needed = IPH_HDR_LENGTH(ipha); 2849 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2850 ipha->ipha_protocol == IPPROTO_IPV6) { 2851 if (!pullupmsg(mp, -1)) { 2852 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2853 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2854 freemsg(mp); 2855 return; 2856 } 2857 ipha = (ipha_t *)mp->b_rptr; 2858 2859 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2860 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2861 len_needed)); 2862 } else { 2863 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2864 2865 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2866 len_needed += ip_hdr_length_v6(mp, ip6h); 2867 } 2868 } 2869 len_needed += ipst->ips_ip_icmp_return; 2870 msg_len = msgdsize(mp); 2871 if (msg_len > len_needed) { 2872 (void) adjmsg(mp, len_needed - msg_len); 2873 msg_len = len_needed; 2874 } 2875 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2876 if (mp1 == NULL) { 2877 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2878 freemsg(mp); 2879 return; 2880 } 2881 mp1->b_cont = mp; 2882 mp = mp1; 2883 2884 /* 2885 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2886 * node generates be accepted in peace by all on-host destinations. 2887 * If we do NOT assume that all on-host destinations trust 2888 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2889 * (Look for IXAF_TRUSTED_ICMP). 2890 */ 2891 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2892 2893 ipha = (ipha_t *)mp->b_rptr; 2894 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2895 *ipha = icmp_ipha; 2896 ipha->ipha_src = src; 2897 ipha->ipha_dst = dst; 2898 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2899 msg_len += sizeof (icmp_ipha) + len; 2900 if (msg_len > IP_MAXPACKET) { 2901 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2902 msg_len = IP_MAXPACKET; 2903 } 2904 ipha->ipha_length = htons((uint16_t)msg_len); 2905 icmph = (icmph_t *)&ipha[1]; 2906 bcopy(stuff, icmph, len); 2907 icmph->icmph_checksum = 0; 2908 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2909 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2910 2911 (void) ip_output_simple(mp, &ixas); 2912 ixa_cleanup(&ixas); 2913 } 2914 2915 /* 2916 * Determine if an ICMP error packet can be sent given the rate limit. 2917 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2918 * in milliseconds) and a burst size. Burst size number of packets can 2919 * be sent arbitrarely closely spaced. 2920 * The state is tracked using two variables to implement an approximate 2921 * token bucket filter: 2922 * icmp_pkt_err_last - lbolt value when the last burst started 2923 * icmp_pkt_err_sent - number of packets sent in current burst 2924 */ 2925 boolean_t 2926 icmp_err_rate_limit(ip_stack_t *ipst) 2927 { 2928 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2929 uint_t refilled; /* Number of packets refilled in tbf since last */ 2930 /* Guard against changes by loading into local variable */ 2931 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2932 2933 if (err_interval == 0) 2934 return (B_FALSE); 2935 2936 if (ipst->ips_icmp_pkt_err_last > now) { 2937 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2938 ipst->ips_icmp_pkt_err_last = 0; 2939 ipst->ips_icmp_pkt_err_sent = 0; 2940 } 2941 /* 2942 * If we are in a burst update the token bucket filter. 2943 * Update the "last" time to be close to "now" but make sure 2944 * we don't loose precision. 2945 */ 2946 if (ipst->ips_icmp_pkt_err_sent != 0) { 2947 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2948 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2949 ipst->ips_icmp_pkt_err_sent = 0; 2950 } else { 2951 ipst->ips_icmp_pkt_err_sent -= refilled; 2952 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2953 } 2954 } 2955 if (ipst->ips_icmp_pkt_err_sent == 0) { 2956 /* Start of new burst */ 2957 ipst->ips_icmp_pkt_err_last = now; 2958 } 2959 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2960 ipst->ips_icmp_pkt_err_sent++; 2961 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2962 ipst->ips_icmp_pkt_err_sent)); 2963 return (B_FALSE); 2964 } 2965 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2966 return (B_TRUE); 2967 } 2968 2969 /* 2970 * Check if it is ok to send an IPv4 ICMP error packet in 2971 * response to the IPv4 packet in mp. 2972 * Free the message and return null if no 2973 * ICMP error packet should be sent. 2974 */ 2975 static mblk_t * 2976 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2977 { 2978 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2979 icmph_t *icmph; 2980 ipha_t *ipha; 2981 uint_t len_needed; 2982 2983 if (!mp) 2984 return (NULL); 2985 ipha = (ipha_t *)mp->b_rptr; 2986 if (ip_csum_hdr(ipha)) { 2987 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2988 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2989 freemsg(mp); 2990 return (NULL); 2991 } 2992 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2993 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2994 CLASSD(ipha->ipha_dst) || 2995 CLASSD(ipha->ipha_src) || 2996 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2997 /* Note: only errors to the fragment with offset 0 */ 2998 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2999 freemsg(mp); 3000 return (NULL); 3001 } 3002 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3003 /* 3004 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3005 * errors in response to any ICMP errors. 3006 */ 3007 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3008 if (mp->b_wptr - mp->b_rptr < len_needed) { 3009 if (!pullupmsg(mp, len_needed)) { 3010 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3011 freemsg(mp); 3012 return (NULL); 3013 } 3014 ipha = (ipha_t *)mp->b_rptr; 3015 } 3016 icmph = (icmph_t *) 3017 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3018 switch (icmph->icmph_type) { 3019 case ICMP_DEST_UNREACHABLE: 3020 case ICMP_SOURCE_QUENCH: 3021 case ICMP_TIME_EXCEEDED: 3022 case ICMP_PARAM_PROBLEM: 3023 case ICMP_REDIRECT: 3024 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3025 freemsg(mp); 3026 return (NULL); 3027 default: 3028 break; 3029 } 3030 } 3031 /* 3032 * If this is a labeled system, then check to see if we're allowed to 3033 * send a response to this particular sender. If not, then just drop. 3034 */ 3035 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3036 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3037 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3038 freemsg(mp); 3039 return (NULL); 3040 } 3041 if (icmp_err_rate_limit(ipst)) { 3042 /* 3043 * Only send ICMP error packets every so often. 3044 * This should be done on a per port/source basis, 3045 * but for now this will suffice. 3046 */ 3047 freemsg(mp); 3048 return (NULL); 3049 } 3050 return (mp); 3051 } 3052 3053 /* 3054 * Called when a packet was sent out the same link that it arrived on. 3055 * Check if it is ok to send a redirect and then send it. 3056 */ 3057 void 3058 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3059 ip_recv_attr_t *ira) 3060 { 3061 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3062 ipaddr_t src, nhop; 3063 mblk_t *mp1; 3064 ire_t *nhop_ire; 3065 3066 /* 3067 * Check the source address to see if it originated 3068 * on the same logical subnet it is going back out on. 3069 * If so, we should be able to send it a redirect. 3070 * Avoid sending a redirect if the destination 3071 * is directly connected (i.e., we matched an IRE_ONLINK), 3072 * or if the packet was source routed out this interface. 3073 * 3074 * We avoid sending a redirect if the 3075 * destination is directly connected 3076 * because it is possible that multiple 3077 * IP subnets may have been configured on 3078 * the link, and the source may not 3079 * be on the same subnet as ip destination, 3080 * even though they are on the same 3081 * physical link. 3082 */ 3083 if ((ire->ire_type & IRE_ONLINK) || 3084 ip_source_routed(ipha, ipst)) 3085 return; 3086 3087 nhop_ire = ire_nexthop(ire); 3088 if (nhop_ire == NULL) 3089 return; 3090 3091 nhop = nhop_ire->ire_addr; 3092 3093 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3094 ire_t *ire2; 3095 3096 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3097 mutex_enter(&nhop_ire->ire_lock); 3098 ire2 = nhop_ire->ire_dep_parent; 3099 if (ire2 != NULL) 3100 ire_refhold(ire2); 3101 mutex_exit(&nhop_ire->ire_lock); 3102 ire_refrele(nhop_ire); 3103 nhop_ire = ire2; 3104 } 3105 if (nhop_ire == NULL) 3106 return; 3107 3108 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3109 3110 src = ipha->ipha_src; 3111 3112 /* 3113 * We look at the interface ire for the nexthop, 3114 * to see if ipha_src is in the same subnet 3115 * as the nexthop. 3116 */ 3117 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3118 /* 3119 * The source is directly connected. 3120 */ 3121 mp1 = copymsg(mp); 3122 if (mp1 != NULL) { 3123 icmp_send_redirect(mp1, nhop, ira); 3124 } 3125 } 3126 ire_refrele(nhop_ire); 3127 } 3128 3129 /* 3130 * Generate an ICMP redirect message. 3131 */ 3132 static void 3133 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3134 { 3135 icmph_t icmph; 3136 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3137 3138 mp = icmp_pkt_err_ok(mp, ira); 3139 if (mp == NULL) 3140 return; 3141 3142 bzero(&icmph, sizeof (icmph_t)); 3143 icmph.icmph_type = ICMP_REDIRECT; 3144 icmph.icmph_code = 1; 3145 icmph.icmph_rd_gateway = gateway; 3146 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3147 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3148 } 3149 3150 /* 3151 * Generate an ICMP time exceeded message. 3152 */ 3153 void 3154 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3155 { 3156 icmph_t icmph; 3157 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3158 3159 mp = icmp_pkt_err_ok(mp, ira); 3160 if (mp == NULL) 3161 return; 3162 3163 bzero(&icmph, sizeof (icmph_t)); 3164 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3165 icmph.icmph_code = code; 3166 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3167 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3168 } 3169 3170 /* 3171 * Generate an ICMP unreachable message. 3172 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3173 * constructed by the caller. 3174 */ 3175 void 3176 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3177 { 3178 icmph_t icmph; 3179 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3180 3181 mp = icmp_pkt_err_ok(mp, ira); 3182 if (mp == NULL) 3183 return; 3184 3185 bzero(&icmph, sizeof (icmph_t)); 3186 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3187 icmph.icmph_code = code; 3188 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3189 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3190 } 3191 3192 /* 3193 * Latch in the IPsec state for a stream based the policy in the listener 3194 * and the actions in the ip_recv_attr_t. 3195 * Called directly from TCP and SCTP. 3196 */ 3197 boolean_t 3198 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3199 { 3200 ASSERT(lconnp->conn_policy != NULL); 3201 ASSERT(connp->conn_policy == NULL); 3202 3203 IPPH_REFHOLD(lconnp->conn_policy); 3204 connp->conn_policy = lconnp->conn_policy; 3205 3206 if (ira->ira_ipsec_action != NULL) { 3207 if (connp->conn_latch == NULL) { 3208 connp->conn_latch = iplatch_create(); 3209 if (connp->conn_latch == NULL) 3210 return (B_FALSE); 3211 } 3212 ipsec_latch_inbound(connp, ira); 3213 } 3214 return (B_TRUE); 3215 } 3216 3217 /* 3218 * Verify whether or not the IP address is a valid local address. 3219 * Could be a unicast, including one for a down interface. 3220 * If allow_mcbc then a multicast or broadcast address is also 3221 * acceptable. 3222 * 3223 * In the case of a broadcast/multicast address, however, the 3224 * upper protocol is expected to reset the src address 3225 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3226 * no packets are emitted with broadcast/multicast address as 3227 * source address (that violates hosts requirements RFC 1122) 3228 * The addresses valid for bind are: 3229 * (1) - INADDR_ANY (0) 3230 * (2) - IP address of an UP interface 3231 * (3) - IP address of a DOWN interface 3232 * (4) - valid local IP broadcast addresses. In this case 3233 * the conn will only receive packets destined to 3234 * the specified broadcast address. 3235 * (5) - a multicast address. In this case 3236 * the conn will only receive packets destined to 3237 * the specified multicast address. Note: the 3238 * application still has to issue an 3239 * IP_ADD_MEMBERSHIP socket option. 3240 * 3241 * In all the above cases, the bound address must be valid in the current zone. 3242 * When the address is loopback, multicast or broadcast, there might be many 3243 * matching IREs so bind has to look up based on the zone. 3244 */ 3245 ip_laddr_t 3246 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3247 ip_stack_t *ipst, boolean_t allow_mcbc) 3248 { 3249 ire_t *src_ire; 3250 3251 ASSERT(src_addr != INADDR_ANY); 3252 3253 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3254 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3255 3256 /* 3257 * If an address other than in6addr_any is requested, 3258 * we verify that it is a valid address for bind 3259 * Note: Following code is in if-else-if form for 3260 * readability compared to a condition check. 3261 */ 3262 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3263 /* 3264 * (2) Bind to address of local UP interface 3265 */ 3266 ire_refrele(src_ire); 3267 return (IPVL_UNICAST_UP); 3268 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3269 /* 3270 * (4) Bind to broadcast address 3271 */ 3272 ire_refrele(src_ire); 3273 if (allow_mcbc) 3274 return (IPVL_BCAST); 3275 else 3276 return (IPVL_BAD); 3277 } else if (CLASSD(src_addr)) { 3278 /* (5) bind to multicast address. */ 3279 if (src_ire != NULL) 3280 ire_refrele(src_ire); 3281 3282 if (allow_mcbc) 3283 return (IPVL_MCAST); 3284 else 3285 return (IPVL_BAD); 3286 } else { 3287 ipif_t *ipif; 3288 3289 /* 3290 * (3) Bind to address of local DOWN interface? 3291 * (ipif_lookup_addr() looks up all interfaces 3292 * but we do not get here for UP interfaces 3293 * - case (2) above) 3294 */ 3295 if (src_ire != NULL) 3296 ire_refrele(src_ire); 3297 3298 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3299 if (ipif == NULL) 3300 return (IPVL_BAD); 3301 3302 /* Not a useful source? */ 3303 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3304 ipif_refrele(ipif); 3305 return (IPVL_BAD); 3306 } 3307 ipif_refrele(ipif); 3308 return (IPVL_UNICAST_DOWN); 3309 } 3310 } 3311 3312 /* 3313 * Insert in the bind fanout for IPv4 and IPv6. 3314 * The caller should already have used ip_laddr_verify_v*() before calling 3315 * this. 3316 */ 3317 int 3318 ip_laddr_fanout_insert(conn_t *connp) 3319 { 3320 int error; 3321 3322 /* 3323 * Allow setting new policies. For example, disconnects result 3324 * in us being called. As we would have set conn_policy_cached 3325 * to B_TRUE before, we should set it to B_FALSE, so that policy 3326 * can change after the disconnect. 3327 */ 3328 connp->conn_policy_cached = B_FALSE; 3329 3330 error = ipcl_bind_insert(connp); 3331 if (error != 0) { 3332 if (connp->conn_anon_port) { 3333 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3334 connp->conn_mlp_type, connp->conn_proto, 3335 ntohs(connp->conn_lport), B_FALSE); 3336 } 3337 connp->conn_mlp_type = mlptSingle; 3338 } 3339 return (error); 3340 } 3341 3342 /* 3343 * Verify that both the source and destination addresses are valid. If 3344 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3345 * i.e. have no route to it. Protocols like TCP want to verify destination 3346 * reachability, while tunnels do not. 3347 * 3348 * Determine the route, the interface, and (optionally) the source address 3349 * to use to reach a given destination. 3350 * Note that we allow connect to broadcast and multicast addresses when 3351 * IPDF_ALLOW_MCBC is set. 3352 * first_hop and dst_addr are normally the same, but if source routing 3353 * they will differ; in that case the first_hop is what we'll use for the 3354 * routing lookup but the dce and label checks will be done on dst_addr, 3355 * 3356 * If uinfo is set, then we fill in the best available information 3357 * we have for the destination. This is based on (in priority order) any 3358 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3359 * ill_mtu/ill_mc_mtu. 3360 * 3361 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3362 * always do the label check on dst_addr. 3363 */ 3364 int 3365 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3366 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3367 { 3368 ire_t *ire = NULL; 3369 int error = 0; 3370 ipaddr_t setsrc; /* RTF_SETSRC */ 3371 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3372 ip_stack_t *ipst = ixa->ixa_ipst; 3373 dce_t *dce; 3374 uint_t pmtu; 3375 uint_t generation; 3376 nce_t *nce; 3377 ill_t *ill = NULL; 3378 boolean_t multirt = B_FALSE; 3379 3380 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3381 3382 /* 3383 * We never send to zero; the ULPs map it to the loopback address. 3384 * We can't allow it since we use zero to mean unitialized in some 3385 * places. 3386 */ 3387 ASSERT(dst_addr != INADDR_ANY); 3388 3389 if (is_system_labeled()) { 3390 ts_label_t *tsl = NULL; 3391 3392 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3393 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3394 if (error != 0) 3395 return (error); 3396 if (tsl != NULL) { 3397 /* Update the label */ 3398 ip_xmit_attr_replace_tsl(ixa, tsl); 3399 } 3400 } 3401 3402 setsrc = INADDR_ANY; 3403 /* 3404 * Select a route; For IPMP interfaces, we would only select 3405 * a "hidden" route (i.e., going through a specific under_ill) 3406 * if ixa_ifindex has been specified. 3407 */ 3408 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3409 &generation, &setsrc, &error, &multirt); 3410 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3411 if (error != 0) 3412 goto bad_addr; 3413 3414 /* 3415 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3416 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3417 * Otherwise the destination needn't be reachable. 3418 * 3419 * If we match on a reject or black hole, then we've got a 3420 * local failure. May as well fail out the connect() attempt, 3421 * since it's never going to succeed. 3422 */ 3423 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3424 /* 3425 * If we're verifying destination reachability, we always want 3426 * to complain here. 3427 * 3428 * If we're not verifying destination reachability but the 3429 * destination has a route, we still want to fail on the 3430 * temporary address and broadcast address tests. 3431 * 3432 * In both cases do we let the code continue so some reasonable 3433 * information is returned to the caller. That enables the 3434 * caller to use (and even cache) the IRE. conn_ip_ouput will 3435 * use the generation mismatch path to check for the unreachable 3436 * case thereby avoiding any specific check in the main path. 3437 */ 3438 ASSERT(generation == IRE_GENERATION_VERIFY); 3439 if (flags & IPDF_VERIFY_DST) { 3440 /* 3441 * Set errno but continue to set up ixa_ire to be 3442 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3443 * That allows callers to use ip_output to get an 3444 * ICMP error back. 3445 */ 3446 if (!(ire->ire_type & IRE_HOST)) 3447 error = ENETUNREACH; 3448 else 3449 error = EHOSTUNREACH; 3450 } 3451 } 3452 3453 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3454 !(flags & IPDF_ALLOW_MCBC)) { 3455 ire_refrele(ire); 3456 ire = ire_reject(ipst, B_FALSE); 3457 generation = IRE_GENERATION_VERIFY; 3458 error = ENETUNREACH; 3459 } 3460 3461 /* Cache things */ 3462 if (ixa->ixa_ire != NULL) 3463 ire_refrele_notr(ixa->ixa_ire); 3464 #ifdef DEBUG 3465 ire_refhold_notr(ire); 3466 ire_refrele(ire); 3467 #endif 3468 ixa->ixa_ire = ire; 3469 ixa->ixa_ire_generation = generation; 3470 3471 /* 3472 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3473 * since some callers will send a packet to conn_ip_output() even if 3474 * there's an error. 3475 */ 3476 if (flags & IPDF_UNIQUE_DCE) { 3477 /* Fallback to the default dce if allocation fails */ 3478 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3479 if (dce != NULL) 3480 generation = dce->dce_generation; 3481 else 3482 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3483 } else { 3484 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3485 } 3486 ASSERT(dce != NULL); 3487 if (ixa->ixa_dce != NULL) 3488 dce_refrele_notr(ixa->ixa_dce); 3489 #ifdef DEBUG 3490 dce_refhold_notr(dce); 3491 dce_refrele(dce); 3492 #endif 3493 ixa->ixa_dce = dce; 3494 ixa->ixa_dce_generation = generation; 3495 3496 /* 3497 * For multicast with multirt we have a flag passed back from 3498 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3499 * possible multicast address. 3500 * We also need a flag for multicast since we can't check 3501 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3502 */ 3503 if (multirt) { 3504 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3505 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3506 } else { 3507 ixa->ixa_postfragfn = ire->ire_postfragfn; 3508 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3509 } 3510 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3511 /* Get an nce to cache. */ 3512 nce = ire_to_nce(ire, firsthop, NULL); 3513 if (nce == NULL) { 3514 /* Allocation failure? */ 3515 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3516 } else { 3517 if (ixa->ixa_nce != NULL) 3518 nce_refrele(ixa->ixa_nce); 3519 ixa->ixa_nce = nce; 3520 } 3521 } 3522 3523 /* 3524 * If the source address is a loopback address, the 3525 * destination had best be local or multicast. 3526 * If we are sending to an IRE_LOCAL using a loopback source then 3527 * it had better be the same zoneid. 3528 */ 3529 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3530 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3531 ire = NULL; /* Stored in ixa_ire */ 3532 error = EADDRNOTAVAIL; 3533 goto bad_addr; 3534 } 3535 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3536 ire = NULL; /* Stored in ixa_ire */ 3537 error = EADDRNOTAVAIL; 3538 goto bad_addr; 3539 } 3540 } 3541 if (ire->ire_type & IRE_BROADCAST) { 3542 /* 3543 * If the ULP didn't have a specified source, then we 3544 * make sure we reselect the source when sending 3545 * broadcasts out different interfaces. 3546 */ 3547 if (flags & IPDF_SELECT_SRC) 3548 ixa->ixa_flags |= IXAF_SET_SOURCE; 3549 else 3550 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3551 } 3552 3553 /* 3554 * Does the caller want us to pick a source address? 3555 */ 3556 if (flags & IPDF_SELECT_SRC) { 3557 ipaddr_t src_addr; 3558 3559 /* 3560 * We use use ire_nexthop_ill to avoid the under ipmp 3561 * interface for source address selection. Note that for ipmp 3562 * probe packets, ixa_ifindex would have been specified, and 3563 * the ip_select_route() invocation would have picked an ire 3564 * will ire_ill pointing at an under interface. 3565 */ 3566 ill = ire_nexthop_ill(ire); 3567 3568 /* If unreachable we have no ill but need some source */ 3569 if (ill == NULL) { 3570 src_addr = htonl(INADDR_LOOPBACK); 3571 /* Make sure we look for a better source address */ 3572 generation = SRC_GENERATION_VERIFY; 3573 } else { 3574 error = ip_select_source_v4(ill, setsrc, dst_addr, 3575 ixa->ixa_multicast_ifaddr, zoneid, 3576 ipst, &src_addr, &generation, NULL); 3577 if (error != 0) { 3578 ire = NULL; /* Stored in ixa_ire */ 3579 goto bad_addr; 3580 } 3581 } 3582 3583 /* 3584 * We allow the source address to to down. 3585 * However, we check that we don't use the loopback address 3586 * as a source when sending out on the wire. 3587 */ 3588 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3589 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3590 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3591 ire = NULL; /* Stored in ixa_ire */ 3592 error = EADDRNOTAVAIL; 3593 goto bad_addr; 3594 } 3595 3596 *src_addrp = src_addr; 3597 ixa->ixa_src_generation = generation; 3598 } 3599 3600 /* 3601 * Make sure we don't leave an unreachable ixa_nce in place 3602 * since ip_select_route is used when we unplumb i.e., remove 3603 * references on ixa_ire, ixa_nce, and ixa_dce. 3604 */ 3605 nce = ixa->ixa_nce; 3606 if (nce != NULL && nce->nce_is_condemned) { 3607 nce_refrele(nce); 3608 ixa->ixa_nce = NULL; 3609 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3610 } 3611 3612 /* 3613 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3614 * However, we can't do it for IPv4 multicast or broadcast. 3615 */ 3616 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3617 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3618 3619 /* 3620 * Set initial value for fragmentation limit. Either conn_ip_output 3621 * or ULP might updates it when there are routing changes. 3622 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3623 */ 3624 pmtu = ip_get_pmtu(ixa); 3625 ixa->ixa_fragsize = pmtu; 3626 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3627 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3628 ixa->ixa_pmtu = pmtu; 3629 3630 /* 3631 * Extract information useful for some transports. 3632 * First we look for DCE metrics. Then we take what we have in 3633 * the metrics in the route, where the offlink is used if we have 3634 * one. 3635 */ 3636 if (uinfo != NULL) { 3637 bzero(uinfo, sizeof (*uinfo)); 3638 3639 if (dce->dce_flags & DCEF_UINFO) 3640 *uinfo = dce->dce_uinfo; 3641 3642 rts_merge_metrics(uinfo, &ire->ire_metrics); 3643 3644 /* Allow ire_metrics to decrease the path MTU from above */ 3645 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3646 uinfo->iulp_mtu = pmtu; 3647 3648 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3649 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3650 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3651 } 3652 3653 if (ill != NULL) 3654 ill_refrele(ill); 3655 3656 return (error); 3657 3658 bad_addr: 3659 if (ire != NULL) 3660 ire_refrele(ire); 3661 3662 if (ill != NULL) 3663 ill_refrele(ill); 3664 3665 /* 3666 * Make sure we don't leave an unreachable ixa_nce in place 3667 * since ip_select_route is used when we unplumb i.e., remove 3668 * references on ixa_ire, ixa_nce, and ixa_dce. 3669 */ 3670 nce = ixa->ixa_nce; 3671 if (nce != NULL && nce->nce_is_condemned) { 3672 nce_refrele(nce); 3673 ixa->ixa_nce = NULL; 3674 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3675 } 3676 3677 return (error); 3678 } 3679 3680 3681 /* 3682 * Get the base MTU for the case when path MTU discovery is not used. 3683 * Takes the MTU of the IRE into account. 3684 */ 3685 uint_t 3686 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3687 { 3688 uint_t mtu; 3689 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3690 3691 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3692 mtu = ill->ill_mc_mtu; 3693 else 3694 mtu = ill->ill_mtu; 3695 3696 if (iremtu != 0 && iremtu < mtu) 3697 mtu = iremtu; 3698 3699 return (mtu); 3700 } 3701 3702 /* 3703 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3704 * Assumes that ixa_ire, dce, and nce have already been set up. 3705 * 3706 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3707 * We avoid path MTU discovery if it is disabled with ndd. 3708 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3709 * 3710 * NOTE: We also used to turn it off for source routed packets. That 3711 * is no longer required since the dce is per final destination. 3712 */ 3713 uint_t 3714 ip_get_pmtu(ip_xmit_attr_t *ixa) 3715 { 3716 ip_stack_t *ipst = ixa->ixa_ipst; 3717 dce_t *dce; 3718 nce_t *nce; 3719 ire_t *ire; 3720 uint_t pmtu; 3721 3722 ire = ixa->ixa_ire; 3723 dce = ixa->ixa_dce; 3724 nce = ixa->ixa_nce; 3725 3726 /* 3727 * If path MTU discovery has been turned off by ndd, then we ignore 3728 * any dce_pmtu and for IPv4 we will not set DF. 3729 */ 3730 if (!ipst->ips_ip_path_mtu_discovery) 3731 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3732 3733 pmtu = IP_MAXPACKET; 3734 /* 3735 * Decide whether whether IPv4 sets DF 3736 * For IPv6 "no DF" means to use the 1280 mtu 3737 */ 3738 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3739 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3740 } else { 3741 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3742 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3743 pmtu = IPV6_MIN_MTU; 3744 } 3745 3746 /* Check if the PMTU is to old before we use it */ 3747 if ((dce->dce_flags & DCEF_PMTU) && 3748 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3749 ipst->ips_ip_pathmtu_interval) { 3750 /* 3751 * Older than 20 minutes. Drop the path MTU information. 3752 */ 3753 mutex_enter(&dce->dce_lock); 3754 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3755 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3756 mutex_exit(&dce->dce_lock); 3757 dce_increment_generation(dce); 3758 } 3759 3760 /* The metrics on the route can lower the path MTU */ 3761 if (ire->ire_metrics.iulp_mtu != 0 && 3762 ire->ire_metrics.iulp_mtu < pmtu) 3763 pmtu = ire->ire_metrics.iulp_mtu; 3764 3765 /* 3766 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3767 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3768 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3769 */ 3770 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3771 if (dce->dce_flags & DCEF_PMTU) { 3772 if (dce->dce_pmtu < pmtu) 3773 pmtu = dce->dce_pmtu; 3774 3775 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3776 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3777 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3778 } else { 3779 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3780 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3781 } 3782 } else { 3783 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3784 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3785 } 3786 } 3787 3788 /* 3789 * If we have an IRE_LOCAL we use the loopback mtu instead of 3790 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3791 * mtu as IRE_LOOPBACK. 3792 */ 3793 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3794 uint_t loopback_mtu; 3795 3796 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3797 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3798 3799 if (loopback_mtu < pmtu) 3800 pmtu = loopback_mtu; 3801 } else if (nce != NULL) { 3802 /* 3803 * Make sure we don't exceed the interface MTU. 3804 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3805 * an ill. We'd use the above IP_MAXPACKET in that case just 3806 * to tell the transport something larger than zero. 3807 */ 3808 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3809 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3810 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3811 if (nce->nce_common->ncec_ill != nce->nce_ill && 3812 nce->nce_ill->ill_mc_mtu < pmtu) { 3813 /* 3814 * for interfaces in an IPMP group, the mtu of 3815 * the nce_ill (under_ill) could be different 3816 * from the mtu of the ncec_ill, so we take the 3817 * min of the two. 3818 */ 3819 pmtu = nce->nce_ill->ill_mc_mtu; 3820 } 3821 } else { 3822 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3823 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3824 if (nce->nce_common->ncec_ill != nce->nce_ill && 3825 nce->nce_ill->ill_mtu < pmtu) { 3826 /* 3827 * for interfaces in an IPMP group, the mtu of 3828 * the nce_ill (under_ill) could be different 3829 * from the mtu of the ncec_ill, so we take the 3830 * min of the two. 3831 */ 3832 pmtu = nce->nce_ill->ill_mtu; 3833 } 3834 } 3835 } 3836 3837 /* 3838 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3839 * Only applies to IPv6. 3840 */ 3841 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3842 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3843 switch (ixa->ixa_use_min_mtu) { 3844 case IPV6_USE_MIN_MTU_MULTICAST: 3845 if (ire->ire_type & IRE_MULTICAST) 3846 pmtu = IPV6_MIN_MTU; 3847 break; 3848 case IPV6_USE_MIN_MTU_ALWAYS: 3849 pmtu = IPV6_MIN_MTU; 3850 break; 3851 case IPV6_USE_MIN_MTU_NEVER: 3852 break; 3853 } 3854 } else { 3855 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3856 if (ire->ire_type & IRE_MULTICAST) 3857 pmtu = IPV6_MIN_MTU; 3858 } 3859 } 3860 3861 /* 3862 * For multirouted IPv6 packets, the IP layer will insert a 8-byte 3863 * fragment header in every packet. We compensate for those cases by 3864 * returning a smaller path MTU to the ULP. 3865 * 3866 * In the case of CGTP then ip_output will add a fragment header. 3867 * Make sure there is room for it by telling a smaller number 3868 * to the transport. 3869 * 3870 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3871 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3872 * which is the size of the packets it can send. 3873 */ 3874 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3875 if ((ire->ire_flags & RTF_MULTIRT) || 3876 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3877 pmtu -= sizeof (ip6_frag_t); 3878 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3879 } 3880 } 3881 3882 return (pmtu); 3883 } 3884 3885 /* 3886 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3887 * the final piece where we don't. Return a pointer to the first mblk in the 3888 * result, and update the pointer to the next mblk to chew on. If anything 3889 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3890 * NULL pointer. 3891 */ 3892 mblk_t * 3893 ip_carve_mp(mblk_t **mpp, ssize_t len) 3894 { 3895 mblk_t *mp0; 3896 mblk_t *mp1; 3897 mblk_t *mp2; 3898 3899 if (!len || !mpp || !(mp0 = *mpp)) 3900 return (NULL); 3901 /* If we aren't going to consume the first mblk, we need a dup. */ 3902 if (mp0->b_wptr - mp0->b_rptr > len) { 3903 mp1 = dupb(mp0); 3904 if (mp1) { 3905 /* Partition the data between the two mblks. */ 3906 mp1->b_wptr = mp1->b_rptr + len; 3907 mp0->b_rptr = mp1->b_wptr; 3908 /* 3909 * after adjustments if mblk not consumed is now 3910 * unaligned, try to align it. If this fails free 3911 * all messages and let upper layer recover. 3912 */ 3913 if (!OK_32PTR(mp0->b_rptr)) { 3914 if (!pullupmsg(mp0, -1)) { 3915 freemsg(mp0); 3916 freemsg(mp1); 3917 *mpp = NULL; 3918 return (NULL); 3919 } 3920 } 3921 } 3922 return (mp1); 3923 } 3924 /* Eat through as many mblks as we need to get len bytes. */ 3925 len -= mp0->b_wptr - mp0->b_rptr; 3926 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3927 if (mp2->b_wptr - mp2->b_rptr > len) { 3928 /* 3929 * We won't consume the entire last mblk. Like 3930 * above, dup and partition it. 3931 */ 3932 mp1->b_cont = dupb(mp2); 3933 mp1 = mp1->b_cont; 3934 if (!mp1) { 3935 /* 3936 * Trouble. Rather than go to a lot of 3937 * trouble to clean up, we free the messages. 3938 * This won't be any worse than losing it on 3939 * the wire. 3940 */ 3941 freemsg(mp0); 3942 freemsg(mp2); 3943 *mpp = NULL; 3944 return (NULL); 3945 } 3946 mp1->b_wptr = mp1->b_rptr + len; 3947 mp2->b_rptr = mp1->b_wptr; 3948 /* 3949 * after adjustments if mblk not consumed is now 3950 * unaligned, try to align it. If this fails free 3951 * all messages and let upper layer recover. 3952 */ 3953 if (!OK_32PTR(mp2->b_rptr)) { 3954 if (!pullupmsg(mp2, -1)) { 3955 freemsg(mp0); 3956 freemsg(mp2); 3957 *mpp = NULL; 3958 return (NULL); 3959 } 3960 } 3961 *mpp = mp2; 3962 return (mp0); 3963 } 3964 /* Decrement len by the amount we just got. */ 3965 len -= mp2->b_wptr - mp2->b_rptr; 3966 } 3967 /* 3968 * len should be reduced to zero now. If not our caller has 3969 * screwed up. 3970 */ 3971 if (len) { 3972 /* Shouldn't happen! */ 3973 freemsg(mp0); 3974 *mpp = NULL; 3975 return (NULL); 3976 } 3977 /* 3978 * We consumed up to exactly the end of an mblk. Detach the part 3979 * we are returning from the rest of the chain. 3980 */ 3981 mp1->b_cont = NULL; 3982 *mpp = mp2; 3983 return (mp0); 3984 } 3985 3986 /* The ill stream is being unplumbed. Called from ip_close */ 3987 int 3988 ip_modclose(ill_t *ill) 3989 { 3990 boolean_t success; 3991 ipsq_t *ipsq; 3992 ipif_t *ipif; 3993 queue_t *q = ill->ill_rq; 3994 ip_stack_t *ipst = ill->ill_ipst; 3995 int i; 3996 arl_ill_common_t *ai = ill->ill_common; 3997 3998 /* 3999 * The punlink prior to this may have initiated a capability 4000 * negotiation. But ipsq_enter will block until that finishes or 4001 * times out. 4002 */ 4003 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4004 4005 /* 4006 * Open/close/push/pop is guaranteed to be single threaded 4007 * per stream by STREAMS. FS guarantees that all references 4008 * from top are gone before close is called. So there can't 4009 * be another close thread that has set CONDEMNED on this ill. 4010 * and cause ipsq_enter to return failure. 4011 */ 4012 ASSERT(success); 4013 ipsq = ill->ill_phyint->phyint_ipsq; 4014 4015 /* 4016 * Mark it condemned. No new reference will be made to this ill. 4017 * Lookup functions will return an error. Threads that try to 4018 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4019 * that the refcnt will drop down to zero. 4020 */ 4021 mutex_enter(&ill->ill_lock); 4022 ill->ill_state_flags |= ILL_CONDEMNED; 4023 for (ipif = ill->ill_ipif; ipif != NULL; 4024 ipif = ipif->ipif_next) { 4025 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4026 } 4027 /* 4028 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4029 * returns error if ILL_CONDEMNED is set 4030 */ 4031 cv_broadcast(&ill->ill_cv); 4032 mutex_exit(&ill->ill_lock); 4033 4034 /* 4035 * Send all the deferred DLPI messages downstream which came in 4036 * during the small window right before ipsq_enter(). We do this 4037 * without waiting for the ACKs because all the ACKs for M_PROTO 4038 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4039 */ 4040 ill_dlpi_send_deferred(ill); 4041 4042 /* 4043 * Shut down fragmentation reassembly. 4044 * ill_frag_timer won't start a timer again. 4045 * Now cancel any existing timer 4046 */ 4047 (void) untimeout(ill->ill_frag_timer_id); 4048 (void) ill_frag_timeout(ill, 0); 4049 4050 /* 4051 * Call ill_delete to bring down the ipifs, ilms and ill on 4052 * this ill. Then wait for the refcnts to drop to zero. 4053 * ill_is_freeable checks whether the ill is really quiescent. 4054 * Then make sure that threads that are waiting to enter the 4055 * ipsq have seen the error returned by ipsq_enter and have 4056 * gone away. Then we call ill_delete_tail which does the 4057 * DL_UNBIND_REQ with the driver and then qprocsoff. 4058 */ 4059 ill_delete(ill); 4060 mutex_enter(&ill->ill_lock); 4061 while (!ill_is_freeable(ill)) 4062 cv_wait(&ill->ill_cv, &ill->ill_lock); 4063 4064 while (ill->ill_waiters) 4065 cv_wait(&ill->ill_cv, &ill->ill_lock); 4066 4067 mutex_exit(&ill->ill_lock); 4068 4069 /* 4070 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4071 * it held until the end of the function since the cleanup 4072 * below needs to be able to use the ip_stack_t. 4073 */ 4074 netstack_hold(ipst->ips_netstack); 4075 4076 /* qprocsoff is done via ill_delete_tail */ 4077 ill_delete_tail(ill); 4078 /* 4079 * synchronously wait for arp stream to unbind. After this, we 4080 * cannot get any data packets up from the driver. 4081 */ 4082 arp_unbind_complete(ill); 4083 ASSERT(ill->ill_ipst == NULL); 4084 4085 /* 4086 * Walk through all conns and qenable those that have queued data. 4087 * Close synchronization needs this to 4088 * be done to ensure that all upper layers blocked 4089 * due to flow control to the closing device 4090 * get unblocked. 4091 */ 4092 ip1dbg(("ip_wsrv: walking\n")); 4093 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4094 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4095 } 4096 4097 /* 4098 * ai can be null if this is an IPv6 ill, or if the IPv4 4099 * stream is being torn down before ARP was plumbed (e.g., 4100 * /sbin/ifconfig plumbing a stream twice, and encountering 4101 * an error 4102 */ 4103 if (ai != NULL) { 4104 ASSERT(!ill->ill_isv6); 4105 mutex_enter(&ai->ai_lock); 4106 ai->ai_ill = NULL; 4107 if (ai->ai_arl == NULL) { 4108 mutex_destroy(&ai->ai_lock); 4109 kmem_free(ai, sizeof (*ai)); 4110 } else { 4111 cv_signal(&ai->ai_ill_unplumb_done); 4112 mutex_exit(&ai->ai_lock); 4113 } 4114 } 4115 4116 mutex_enter(&ipst->ips_ip_mi_lock); 4117 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4118 mutex_exit(&ipst->ips_ip_mi_lock); 4119 4120 /* 4121 * credp could be null if the open didn't succeed and ip_modopen 4122 * itself calls ip_close. 4123 */ 4124 if (ill->ill_credp != NULL) 4125 crfree(ill->ill_credp); 4126 4127 mutex_destroy(&ill->ill_saved_ire_lock); 4128 mutex_destroy(&ill->ill_lock); 4129 rw_destroy(&ill->ill_mcast_lock); 4130 mutex_destroy(&ill->ill_mcast_serializer); 4131 list_destroy(&ill->ill_nce); 4132 4133 /* 4134 * Now we are done with the module close pieces that 4135 * need the netstack_t. 4136 */ 4137 netstack_rele(ipst->ips_netstack); 4138 4139 mi_close_free((IDP)ill); 4140 q->q_ptr = WR(q)->q_ptr = NULL; 4141 4142 ipsq_exit(ipsq); 4143 4144 return (0); 4145 } 4146 4147 /* 4148 * This is called as part of close() for IP, UDP, ICMP, and RTS 4149 * in order to quiesce the conn. 4150 */ 4151 void 4152 ip_quiesce_conn(conn_t *connp) 4153 { 4154 boolean_t drain_cleanup_reqd = B_FALSE; 4155 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4156 boolean_t ilg_cleanup_reqd = B_FALSE; 4157 ip_stack_t *ipst; 4158 4159 ASSERT(!IPCL_IS_TCP(connp)); 4160 ipst = connp->conn_netstack->netstack_ip; 4161 4162 /* 4163 * Mark the conn as closing, and this conn must not be 4164 * inserted in future into any list. Eg. conn_drain_insert(), 4165 * won't insert this conn into the conn_drain_list. 4166 * 4167 * conn_idl, and conn_ilg cannot get set henceforth. 4168 */ 4169 mutex_enter(&connp->conn_lock); 4170 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4171 connp->conn_state_flags |= CONN_CLOSING; 4172 if (connp->conn_idl != NULL) 4173 drain_cleanup_reqd = B_TRUE; 4174 if (connp->conn_oper_pending_ill != NULL) 4175 conn_ioctl_cleanup_reqd = B_TRUE; 4176 if (connp->conn_dhcpinit_ill != NULL) { 4177 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4178 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4179 ill_set_inputfn(connp->conn_dhcpinit_ill); 4180 connp->conn_dhcpinit_ill = NULL; 4181 } 4182 if (connp->conn_ilg != NULL) 4183 ilg_cleanup_reqd = B_TRUE; 4184 mutex_exit(&connp->conn_lock); 4185 4186 if (conn_ioctl_cleanup_reqd) 4187 conn_ioctl_cleanup(connp); 4188 4189 if (is_system_labeled() && connp->conn_anon_port) { 4190 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4191 connp->conn_mlp_type, connp->conn_proto, 4192 ntohs(connp->conn_lport), B_FALSE); 4193 connp->conn_anon_port = 0; 4194 } 4195 connp->conn_mlp_type = mlptSingle; 4196 4197 /* 4198 * Remove this conn from any fanout list it is on. 4199 * and then wait for any threads currently operating 4200 * on this endpoint to finish 4201 */ 4202 ipcl_hash_remove(connp); 4203 4204 /* 4205 * Remove this conn from the drain list, and do any other cleanup that 4206 * may be required. (TCP conns are never flow controlled, and 4207 * conn_idl will be NULL.) 4208 */ 4209 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4210 idl_t *idl = connp->conn_idl; 4211 4212 mutex_enter(&idl->idl_lock); 4213 conn_drain(connp, B_TRUE); 4214 mutex_exit(&idl->idl_lock); 4215 } 4216 4217 if (connp == ipst->ips_ip_g_mrouter) 4218 (void) ip_mrouter_done(ipst); 4219 4220 if (ilg_cleanup_reqd) 4221 ilg_delete_all(connp); 4222 4223 /* 4224 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4225 * callers from write side can't be there now because close 4226 * is in progress. The only other caller is ipcl_walk 4227 * which checks for the condemned flag. 4228 */ 4229 mutex_enter(&connp->conn_lock); 4230 connp->conn_state_flags |= CONN_CONDEMNED; 4231 while (connp->conn_ref != 1) 4232 cv_wait(&connp->conn_cv, &connp->conn_lock); 4233 connp->conn_state_flags |= CONN_QUIESCED; 4234 mutex_exit(&connp->conn_lock); 4235 } 4236 4237 /* ARGSUSED */ 4238 int 4239 ip_close(queue_t *q, int flags) 4240 { 4241 conn_t *connp; 4242 4243 /* 4244 * Call the appropriate delete routine depending on whether this is 4245 * a module or device. 4246 */ 4247 if (WR(q)->q_next != NULL) { 4248 /* This is a module close */ 4249 return (ip_modclose((ill_t *)q->q_ptr)); 4250 } 4251 4252 connp = q->q_ptr; 4253 ip_quiesce_conn(connp); 4254 4255 qprocsoff(q); 4256 4257 /* 4258 * Now we are truly single threaded on this stream, and can 4259 * delete the things hanging off the connp, and finally the connp. 4260 * We removed this connp from the fanout list, it cannot be 4261 * accessed thru the fanouts, and we already waited for the 4262 * conn_ref to drop to 0. We are already in close, so 4263 * there cannot be any other thread from the top. qprocsoff 4264 * has completed, and service has completed or won't run in 4265 * future. 4266 */ 4267 ASSERT(connp->conn_ref == 1); 4268 4269 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4270 4271 connp->conn_ref--; 4272 ipcl_conn_destroy(connp); 4273 4274 q->q_ptr = WR(q)->q_ptr = NULL; 4275 return (0); 4276 } 4277 4278 /* 4279 * Wapper around putnext() so that ip_rts_request can merely use 4280 * conn_recv. 4281 */ 4282 /*ARGSUSED2*/ 4283 static void 4284 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4285 { 4286 conn_t *connp = (conn_t *)arg1; 4287 4288 putnext(connp->conn_rq, mp); 4289 } 4290 4291 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4292 /* ARGSUSED */ 4293 static void 4294 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4295 { 4296 freemsg(mp); 4297 } 4298 4299 /* 4300 * Called when the module is about to be unloaded 4301 */ 4302 void 4303 ip_ddi_destroy(void) 4304 { 4305 /* This needs to be called before destroying any transports. */ 4306 mutex_enter(&cpu_lock); 4307 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4308 mutex_exit(&cpu_lock); 4309 4310 tnet_fini(); 4311 4312 icmp_ddi_g_destroy(); 4313 rts_ddi_g_destroy(); 4314 udp_ddi_g_destroy(); 4315 sctp_ddi_g_destroy(); 4316 tcp_ddi_g_destroy(); 4317 ilb_ddi_g_destroy(); 4318 dce_g_destroy(); 4319 ipsec_policy_g_destroy(); 4320 ipcl_g_destroy(); 4321 ip_net_g_destroy(); 4322 ip_ire_g_fini(); 4323 inet_minor_destroy(ip_minor_arena_sa); 4324 #if defined(_LP64) 4325 inet_minor_destroy(ip_minor_arena_la); 4326 #endif 4327 4328 #ifdef DEBUG 4329 list_destroy(&ip_thread_list); 4330 rw_destroy(&ip_thread_rwlock); 4331 tsd_destroy(&ip_thread_data); 4332 #endif 4333 4334 netstack_unregister(NS_IP); 4335 } 4336 4337 /* 4338 * First step in cleanup. 4339 */ 4340 /* ARGSUSED */ 4341 static void 4342 ip_stack_shutdown(netstackid_t stackid, void *arg) 4343 { 4344 ip_stack_t *ipst = (ip_stack_t *)arg; 4345 kt_did_t ktid; 4346 4347 #ifdef NS_DEBUG 4348 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4349 #endif 4350 4351 /* 4352 * Perform cleanup for special interfaces (loopback and IPMP). 4353 */ 4354 ip_interface_cleanup(ipst); 4355 4356 /* 4357 * The *_hook_shutdown()s start the process of notifying any 4358 * consumers that things are going away.... nothing is destroyed. 4359 */ 4360 ipv4_hook_shutdown(ipst); 4361 ipv6_hook_shutdown(ipst); 4362 arp_hook_shutdown(ipst); 4363 4364 mutex_enter(&ipst->ips_capab_taskq_lock); 4365 ktid = ipst->ips_capab_taskq_thread->t_did; 4366 ipst->ips_capab_taskq_quit = B_TRUE; 4367 cv_signal(&ipst->ips_capab_taskq_cv); 4368 mutex_exit(&ipst->ips_capab_taskq_lock); 4369 4370 /* 4371 * In rare occurrences, particularly on virtual hardware where CPUs can 4372 * be de-scheduled, the thread that we just signaled will not run until 4373 * after we have gotten through parts of ip_stack_fini. If that happens 4374 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4375 * from cv_wait which no longer exists. 4376 */ 4377 thread_join(ktid); 4378 } 4379 4380 /* 4381 * Free the IP stack instance. 4382 */ 4383 static void 4384 ip_stack_fini(netstackid_t stackid, void *arg) 4385 { 4386 ip_stack_t *ipst = (ip_stack_t *)arg; 4387 int ret; 4388 4389 #ifdef NS_DEBUG 4390 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4391 #endif 4392 /* 4393 * At this point, all of the notifications that the events and 4394 * protocols are going away have been run, meaning that we can 4395 * now set about starting to clean things up. 4396 */ 4397 ipobs_fini(ipst); 4398 ipv4_hook_destroy(ipst); 4399 ipv6_hook_destroy(ipst); 4400 arp_hook_destroy(ipst); 4401 ip_net_destroy(ipst); 4402 4403 ipmp_destroy(ipst); 4404 4405 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4406 ipst->ips_ip_mibkp = NULL; 4407 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4408 ipst->ips_icmp_mibkp = NULL; 4409 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4410 ipst->ips_ip_kstat = NULL; 4411 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4412 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4413 ipst->ips_ip6_kstat = NULL; 4414 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4415 4416 kmem_free(ipst->ips_propinfo_tbl, 4417 ip_propinfo_count * sizeof (mod_prop_info_t)); 4418 ipst->ips_propinfo_tbl = NULL; 4419 4420 dce_stack_destroy(ipst); 4421 ip_mrouter_stack_destroy(ipst); 4422 4423 /* 4424 * Quiesce all of our timers. Note we set the quiesce flags before we 4425 * call untimeout. The slowtimers may actually kick off another instance 4426 * of the non-slow timers. 4427 */ 4428 mutex_enter(&ipst->ips_igmp_timer_lock); 4429 ipst->ips_igmp_timer_quiesce = B_TRUE; 4430 mutex_exit(&ipst->ips_igmp_timer_lock); 4431 4432 mutex_enter(&ipst->ips_mld_timer_lock); 4433 ipst->ips_mld_timer_quiesce = B_TRUE; 4434 mutex_exit(&ipst->ips_mld_timer_lock); 4435 4436 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 4437 ipst->ips_igmp_slowtimeout_quiesce = B_TRUE; 4438 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 4439 4440 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 4441 ipst->ips_mld_slowtimeout_quiesce = B_TRUE; 4442 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 4443 4444 ret = untimeout(ipst->ips_igmp_timeout_id); 4445 if (ret == -1) { 4446 ASSERT(ipst->ips_igmp_timeout_id == 0); 4447 } else { 4448 ASSERT(ipst->ips_igmp_timeout_id != 0); 4449 ipst->ips_igmp_timeout_id = 0; 4450 } 4451 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4452 if (ret == -1) { 4453 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4454 } else { 4455 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4456 ipst->ips_igmp_slowtimeout_id = 0; 4457 } 4458 ret = untimeout(ipst->ips_mld_timeout_id); 4459 if (ret == -1) { 4460 ASSERT(ipst->ips_mld_timeout_id == 0); 4461 } else { 4462 ASSERT(ipst->ips_mld_timeout_id != 0); 4463 ipst->ips_mld_timeout_id = 0; 4464 } 4465 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4466 if (ret == -1) { 4467 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4468 } else { 4469 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4470 ipst->ips_mld_slowtimeout_id = 0; 4471 } 4472 4473 ip_ire_fini(ipst); 4474 ip6_asp_free(ipst); 4475 conn_drain_fini(ipst); 4476 ipcl_destroy(ipst); 4477 4478 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4479 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4480 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4481 ipst->ips_ndp4 = NULL; 4482 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4483 ipst->ips_ndp6 = NULL; 4484 4485 if (ipst->ips_loopback_ksp != NULL) { 4486 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4487 ipst->ips_loopback_ksp = NULL; 4488 } 4489 4490 mutex_destroy(&ipst->ips_capab_taskq_lock); 4491 cv_destroy(&ipst->ips_capab_taskq_cv); 4492 4493 rw_destroy(&ipst->ips_srcid_lock); 4494 4495 mutex_destroy(&ipst->ips_ip_mi_lock); 4496 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4497 4498 mutex_destroy(&ipst->ips_igmp_timer_lock); 4499 mutex_destroy(&ipst->ips_mld_timer_lock); 4500 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4501 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4502 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4503 rw_destroy(&ipst->ips_ill_g_lock); 4504 4505 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4506 ipst->ips_phyint_g_list = NULL; 4507 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4508 ipst->ips_ill_g_heads = NULL; 4509 4510 ldi_ident_release(ipst->ips_ldi_ident); 4511 kmem_free(ipst, sizeof (*ipst)); 4512 } 4513 4514 /* 4515 * This function is called from the TSD destructor, and is used to debug 4516 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4517 * details. 4518 */ 4519 static void 4520 ip_thread_exit(void *phash) 4521 { 4522 th_hash_t *thh = phash; 4523 4524 rw_enter(&ip_thread_rwlock, RW_WRITER); 4525 list_remove(&ip_thread_list, thh); 4526 rw_exit(&ip_thread_rwlock); 4527 mod_hash_destroy_hash(thh->thh_hash); 4528 kmem_free(thh, sizeof (*thh)); 4529 } 4530 4531 /* 4532 * Called when the IP kernel module is loaded into the kernel 4533 */ 4534 void 4535 ip_ddi_init(void) 4536 { 4537 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4538 4539 /* 4540 * For IP and TCP the minor numbers should start from 2 since we have 4 4541 * initial devices: ip, ip6, tcp, tcp6. 4542 */ 4543 /* 4544 * If this is a 64-bit kernel, then create two separate arenas - 4545 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4546 * other for socket apps in the range 2^^18 through 2^^32-1. 4547 */ 4548 ip_minor_arena_la = NULL; 4549 ip_minor_arena_sa = NULL; 4550 #if defined(_LP64) 4551 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4552 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4553 cmn_err(CE_PANIC, 4554 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4555 } 4556 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4557 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4558 cmn_err(CE_PANIC, 4559 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4560 } 4561 #else 4562 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4563 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4564 cmn_err(CE_PANIC, 4565 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4566 } 4567 #endif 4568 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4569 4570 ipcl_g_init(); 4571 ip_ire_g_init(); 4572 ip_net_g_init(); 4573 4574 #ifdef DEBUG 4575 tsd_create(&ip_thread_data, ip_thread_exit); 4576 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4577 list_create(&ip_thread_list, sizeof (th_hash_t), 4578 offsetof(th_hash_t, thh_link)); 4579 #endif 4580 ipsec_policy_g_init(); 4581 tcp_ddi_g_init(); 4582 sctp_ddi_g_init(); 4583 dce_g_init(); 4584 4585 /* 4586 * We want to be informed each time a stack is created or 4587 * destroyed in the kernel, so we can maintain the 4588 * set of udp_stack_t's. 4589 */ 4590 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4591 ip_stack_fini); 4592 4593 tnet_init(); 4594 4595 udp_ddi_g_init(); 4596 rts_ddi_g_init(); 4597 icmp_ddi_g_init(); 4598 ilb_ddi_g_init(); 4599 4600 /* This needs to be called after all transports are initialized. */ 4601 mutex_enter(&cpu_lock); 4602 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4603 mutex_exit(&cpu_lock); 4604 } 4605 4606 /* 4607 * Initialize the IP stack instance. 4608 */ 4609 static void * 4610 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4611 { 4612 ip_stack_t *ipst; 4613 size_t arrsz; 4614 major_t major; 4615 4616 #ifdef NS_DEBUG 4617 printf("ip_stack_init(stack %d)\n", stackid); 4618 #endif 4619 4620 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4621 ipst->ips_netstack = ns; 4622 4623 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4624 KM_SLEEP); 4625 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4626 KM_SLEEP); 4627 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4628 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4629 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4630 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4631 4632 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4633 ipst->ips_igmp_deferred_next = INFINITY; 4634 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4635 ipst->ips_mld_deferred_next = INFINITY; 4636 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4637 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4638 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4639 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4640 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4641 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4642 4643 ipcl_init(ipst); 4644 ip_ire_init(ipst); 4645 ip6_asp_init(ipst); 4646 ipif_init(ipst); 4647 conn_drain_init(ipst); 4648 ip_mrouter_stack_init(ipst); 4649 dce_stack_init(ipst); 4650 4651 ipst->ips_ip_multirt_log_interval = 1000; 4652 4653 ipst->ips_ill_index = 1; 4654 4655 ipst->ips_saved_ip_forwarding = -1; 4656 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4657 4658 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4659 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4660 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4661 4662 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4663 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4664 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4665 ipst->ips_ip6_kstat = 4666 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4667 4668 ipst->ips_ip_src_id = 1; 4669 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4670 4671 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4672 4673 ip_net_init(ipst, ns); 4674 ipv4_hook_init(ipst); 4675 ipv6_hook_init(ipst); 4676 arp_hook_init(ipst); 4677 ipmp_init(ipst); 4678 ipobs_init(ipst); 4679 4680 /* 4681 * Create the taskq dispatcher thread and initialize related stuff. 4682 */ 4683 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4684 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4685 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4686 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4687 4688 major = mod_name_to_major(INET_NAME); 4689 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4690 return (ipst); 4691 } 4692 4693 /* 4694 * Allocate and initialize a DLPI template of the specified length. (May be 4695 * called as writer.) 4696 */ 4697 mblk_t * 4698 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4699 { 4700 mblk_t *mp; 4701 4702 mp = allocb(len, BPRI_MED); 4703 if (!mp) 4704 return (NULL); 4705 4706 /* 4707 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4708 * of which we don't seem to use) are sent with M_PCPROTO, and 4709 * that other DLPI are M_PROTO. 4710 */ 4711 if (prim == DL_INFO_REQ) { 4712 mp->b_datap->db_type = M_PCPROTO; 4713 } else { 4714 mp->b_datap->db_type = M_PROTO; 4715 } 4716 4717 mp->b_wptr = mp->b_rptr + len; 4718 bzero(mp->b_rptr, len); 4719 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4720 return (mp); 4721 } 4722 4723 /* 4724 * Allocate and initialize a DLPI notification. (May be called as writer.) 4725 */ 4726 mblk_t * 4727 ip_dlnotify_alloc(uint_t notification, uint_t data) 4728 { 4729 dl_notify_ind_t *notifyp; 4730 mblk_t *mp; 4731 4732 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4733 return (NULL); 4734 4735 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4736 notifyp->dl_notification = notification; 4737 notifyp->dl_data = data; 4738 return (mp); 4739 } 4740 4741 mblk_t * 4742 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4743 { 4744 dl_notify_ind_t *notifyp; 4745 mblk_t *mp; 4746 4747 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4748 return (NULL); 4749 4750 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4751 notifyp->dl_notification = notification; 4752 notifyp->dl_data1 = data1; 4753 notifyp->dl_data2 = data2; 4754 return (mp); 4755 } 4756 4757 /* 4758 * Debug formatting routine. Returns a character string representation of the 4759 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4760 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4761 * 4762 * Once the ndd table-printing interfaces are removed, this can be changed to 4763 * standard dotted-decimal form. 4764 */ 4765 char * 4766 ip_dot_addr(ipaddr_t addr, char *buf) 4767 { 4768 uint8_t *ap = (uint8_t *)&addr; 4769 4770 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4771 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4772 return (buf); 4773 } 4774 4775 /* 4776 * Write the given MAC address as a printable string in the usual colon- 4777 * separated format. 4778 */ 4779 const char * 4780 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4781 { 4782 char *bp; 4783 4784 if (alen == 0 || buflen < 4) 4785 return ("?"); 4786 bp = buf; 4787 for (;;) { 4788 /* 4789 * If there are more MAC address bytes available, but we won't 4790 * have any room to print them, then add "..." to the string 4791 * instead. See below for the 'magic number' explanation. 4792 */ 4793 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4794 (void) strcpy(bp, "..."); 4795 break; 4796 } 4797 (void) sprintf(bp, "%02x", *addr++); 4798 bp += 2; 4799 if (--alen == 0) 4800 break; 4801 *bp++ = ':'; 4802 buflen -= 3; 4803 /* 4804 * At this point, based on the first 'if' statement above, 4805 * either alen == 1 and buflen >= 3, or alen > 1 and 4806 * buflen >= 4. The first case leaves room for the final "xx" 4807 * number and trailing NUL byte. The second leaves room for at 4808 * least "...". Thus the apparently 'magic' numbers chosen for 4809 * that statement. 4810 */ 4811 } 4812 return (buf); 4813 } 4814 4815 /* 4816 * Called when it is conceptually a ULP that would sent the packet 4817 * e.g., port unreachable and protocol unreachable. Check that the packet 4818 * would have passed the IPsec global policy before sending the error. 4819 * 4820 * Send an ICMP error after patching up the packet appropriately. 4821 * Uses ip_drop_input and bumps the appropriate MIB. 4822 */ 4823 void 4824 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4825 ip_recv_attr_t *ira) 4826 { 4827 ipha_t *ipha; 4828 boolean_t secure; 4829 ill_t *ill = ira->ira_ill; 4830 ip_stack_t *ipst = ill->ill_ipst; 4831 netstack_t *ns = ipst->ips_netstack; 4832 ipsec_stack_t *ipss = ns->netstack_ipsec; 4833 4834 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4835 4836 /* 4837 * We are generating an icmp error for some inbound packet. 4838 * Called from all ip_fanout_(udp, tcp, proto) functions. 4839 * Before we generate an error, check with global policy 4840 * to see whether this is allowed to enter the system. As 4841 * there is no "conn", we are checking with global policy. 4842 */ 4843 ipha = (ipha_t *)mp->b_rptr; 4844 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4845 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4846 if (mp == NULL) 4847 return; 4848 } 4849 4850 /* We never send errors for protocols that we do implement */ 4851 if (ira->ira_protocol == IPPROTO_ICMP || 4852 ira->ira_protocol == IPPROTO_IGMP) { 4853 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4854 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4855 freemsg(mp); 4856 return; 4857 } 4858 /* 4859 * Have to correct checksum since 4860 * the packet might have been 4861 * fragmented and the reassembly code in ip_rput 4862 * does not restore the IP checksum. 4863 */ 4864 ipha->ipha_hdr_checksum = 0; 4865 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4866 4867 switch (icmp_type) { 4868 case ICMP_DEST_UNREACHABLE: 4869 switch (icmp_code) { 4870 case ICMP_PROTOCOL_UNREACHABLE: 4871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4872 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4873 break; 4874 case ICMP_PORT_UNREACHABLE: 4875 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4876 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4877 break; 4878 } 4879 4880 icmp_unreachable(mp, icmp_code, ira); 4881 break; 4882 default: 4883 #ifdef DEBUG 4884 panic("ip_fanout_send_icmp_v4: wrong type"); 4885 /*NOTREACHED*/ 4886 #else 4887 freemsg(mp); 4888 break; 4889 #endif 4890 } 4891 } 4892 4893 /* 4894 * Used to send an ICMP error message when a packet is received for 4895 * a protocol that is not supported. The mblk passed as argument 4896 * is consumed by this function. 4897 */ 4898 void 4899 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4900 { 4901 ipha_t *ipha; 4902 4903 ipha = (ipha_t *)mp->b_rptr; 4904 if (ira->ira_flags & IRAF_IS_IPV4) { 4905 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4906 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4907 ICMP_PROTOCOL_UNREACHABLE, ira); 4908 } else { 4909 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4910 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4911 ICMP6_PARAMPROB_NEXTHEADER, ira); 4912 } 4913 } 4914 4915 /* 4916 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4917 * Handles IPv4 and IPv6. 4918 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4919 * Caller is responsible for dropping references to the conn. 4920 */ 4921 void 4922 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4923 ip_recv_attr_t *ira) 4924 { 4925 ill_t *ill = ira->ira_ill; 4926 ip_stack_t *ipst = ill->ill_ipst; 4927 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4928 boolean_t secure; 4929 uint_t protocol = ira->ira_protocol; 4930 iaflags_t iraflags = ira->ira_flags; 4931 queue_t *rq; 4932 4933 secure = iraflags & IRAF_IPSEC_SECURE; 4934 4935 rq = connp->conn_rq; 4936 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4937 switch (protocol) { 4938 case IPPROTO_ICMPV6: 4939 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4940 break; 4941 case IPPROTO_ICMP: 4942 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4943 break; 4944 default: 4945 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4946 break; 4947 } 4948 freemsg(mp); 4949 return; 4950 } 4951 4952 ASSERT(!(IPCL_IS_IPTUN(connp))); 4953 4954 if (((iraflags & IRAF_IS_IPV4) ? 4955 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4956 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4957 secure) { 4958 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4959 ip6h, ira); 4960 if (mp == NULL) { 4961 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4962 /* Note that mp is NULL */ 4963 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4964 return; 4965 } 4966 } 4967 4968 if (iraflags & IRAF_ICMP_ERROR) { 4969 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4970 } else { 4971 ill_t *rill = ira->ira_rill; 4972 4973 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4974 ira->ira_ill = ira->ira_rill = NULL; 4975 /* Send it upstream */ 4976 (connp->conn_recv)(connp, mp, NULL, ira); 4977 ira->ira_ill = ill; 4978 ira->ira_rill = rill; 4979 } 4980 } 4981 4982 /* 4983 * Handle protocols with which IP is less intimate. There 4984 * can be more than one stream bound to a particular 4985 * protocol. When this is the case, normally each one gets a copy 4986 * of any incoming packets. 4987 * 4988 * IPsec NOTE : 4989 * 4990 * Don't allow a secure packet going up a non-secure connection. 4991 * We don't allow this because 4992 * 4993 * 1) Reply might go out in clear which will be dropped at 4994 * the sending side. 4995 * 2) If the reply goes out in clear it will give the 4996 * adversary enough information for getting the key in 4997 * most of the cases. 4998 * 4999 * Moreover getting a secure packet when we expect clear 5000 * implies that SA's were added without checking for 5001 * policy on both ends. This should not happen once ISAKMP 5002 * is used to negotiate SAs as SAs will be added only after 5003 * verifying the policy. 5004 * 5005 * Zones notes: 5006 * Earlier in ip_input on a system with multiple shared-IP zones we 5007 * duplicate the multicast and broadcast packets and send them up 5008 * with each explicit zoneid that exists on that ill. 5009 * This means that here we can match the zoneid with SO_ALLZONES being special. 5010 */ 5011 void 5012 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5013 { 5014 mblk_t *mp1; 5015 ipaddr_t laddr; 5016 conn_t *connp, *first_connp, *next_connp; 5017 connf_t *connfp; 5018 ill_t *ill = ira->ira_ill; 5019 ip_stack_t *ipst = ill->ill_ipst; 5020 5021 laddr = ipha->ipha_dst; 5022 5023 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5024 mutex_enter(&connfp->connf_lock); 5025 connp = connfp->connf_head; 5026 for (connp = connfp->connf_head; connp != NULL; 5027 connp = connp->conn_next) { 5028 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5029 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5030 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5031 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5032 break; 5033 } 5034 } 5035 5036 if (connp == NULL) { 5037 /* 5038 * No one bound to these addresses. Is 5039 * there a client that wants all 5040 * unclaimed datagrams? 5041 */ 5042 mutex_exit(&connfp->connf_lock); 5043 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5044 ICMP_PROTOCOL_UNREACHABLE, ira); 5045 return; 5046 } 5047 5048 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5049 5050 CONN_INC_REF(connp); 5051 first_connp = connp; 5052 connp = connp->conn_next; 5053 5054 for (;;) { 5055 while (connp != NULL) { 5056 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5057 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5058 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5059 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5060 ira, connp))) 5061 break; 5062 connp = connp->conn_next; 5063 } 5064 5065 if (connp == NULL) { 5066 /* No more interested clients */ 5067 connp = first_connp; 5068 break; 5069 } 5070 if (((mp1 = dupmsg(mp)) == NULL) && 5071 ((mp1 = copymsg(mp)) == NULL)) { 5072 /* Memory allocation failed */ 5073 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5074 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5075 connp = first_connp; 5076 break; 5077 } 5078 5079 CONN_INC_REF(connp); 5080 mutex_exit(&connfp->connf_lock); 5081 5082 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5083 ira); 5084 5085 mutex_enter(&connfp->connf_lock); 5086 /* Follow the next pointer before releasing the conn. */ 5087 next_connp = connp->conn_next; 5088 CONN_DEC_REF(connp); 5089 connp = next_connp; 5090 } 5091 5092 /* Last one. Send it upstream. */ 5093 mutex_exit(&connfp->connf_lock); 5094 5095 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5096 5097 CONN_DEC_REF(connp); 5098 } 5099 5100 /* 5101 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5102 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5103 * is not consumed. 5104 * 5105 * One of three things can happen, all of which affect the passed-in mblk: 5106 * 5107 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5108 * 5109 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5110 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5111 * 5112 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5113 */ 5114 mblk_t * 5115 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5116 { 5117 int shift, plen, iph_len; 5118 ipha_t *ipha; 5119 udpha_t *udpha; 5120 uint32_t *spi; 5121 uint32_t esp_ports; 5122 uint8_t *orptr; 5123 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5124 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5125 5126 ipha = (ipha_t *)mp->b_rptr; 5127 iph_len = ira->ira_ip_hdr_length; 5128 plen = ira->ira_pktlen; 5129 5130 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5131 /* 5132 * Most likely a keepalive for the benefit of an intervening 5133 * NAT. These aren't for us, per se, so drop it. 5134 * 5135 * RFC 3947/8 doesn't say for sure what to do for 2-3 5136 * byte packets (keepalives are 1-byte), but we'll drop them 5137 * also. 5138 */ 5139 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5140 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5141 return (NULL); 5142 } 5143 5144 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5145 /* might as well pull it all up - it might be ESP. */ 5146 if (!pullupmsg(mp, -1)) { 5147 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5148 DROPPER(ipss, ipds_esp_nomem), 5149 &ipss->ipsec_dropper); 5150 return (NULL); 5151 } 5152 5153 ipha = (ipha_t *)mp->b_rptr; 5154 } 5155 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5156 if (*spi == 0) { 5157 /* UDP packet - remove 0-spi. */ 5158 shift = sizeof (uint32_t); 5159 } else { 5160 /* ESP-in-UDP packet - reduce to ESP. */ 5161 ipha->ipha_protocol = IPPROTO_ESP; 5162 shift = sizeof (udpha_t); 5163 } 5164 5165 /* Fix IP header */ 5166 ira->ira_pktlen = (plen - shift); 5167 ipha->ipha_length = htons(ira->ira_pktlen); 5168 ipha->ipha_hdr_checksum = 0; 5169 5170 orptr = mp->b_rptr; 5171 mp->b_rptr += shift; 5172 5173 udpha = (udpha_t *)(orptr + iph_len); 5174 if (*spi == 0) { 5175 ASSERT((uint8_t *)ipha == orptr); 5176 udpha->uha_length = htons(plen - shift - iph_len); 5177 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5178 esp_ports = 0; 5179 } else { 5180 esp_ports = *((uint32_t *)udpha); 5181 ASSERT(esp_ports != 0); 5182 } 5183 ovbcopy(orptr, orptr + shift, iph_len); 5184 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5185 ipha = (ipha_t *)(orptr + shift); 5186 5187 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5188 ira->ira_esp_udp_ports = esp_ports; 5189 ip_fanout_v4(mp, ipha, ira); 5190 return (NULL); 5191 } 5192 return (mp); 5193 } 5194 5195 /* 5196 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5197 * Handles IPv4 and IPv6. 5198 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5199 * Caller is responsible for dropping references to the conn. 5200 */ 5201 void 5202 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5203 ip_recv_attr_t *ira) 5204 { 5205 ill_t *ill = ira->ira_ill; 5206 ip_stack_t *ipst = ill->ill_ipst; 5207 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5208 boolean_t secure; 5209 iaflags_t iraflags = ira->ira_flags; 5210 5211 secure = iraflags & IRAF_IPSEC_SECURE; 5212 5213 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5214 !canputnext(connp->conn_rq)) { 5215 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5216 freemsg(mp); 5217 return; 5218 } 5219 5220 if (((iraflags & IRAF_IS_IPV4) ? 5221 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5222 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5223 secure) { 5224 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5225 ip6h, ira); 5226 if (mp == NULL) { 5227 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5228 /* Note that mp is NULL */ 5229 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5230 return; 5231 } 5232 } 5233 5234 /* 5235 * Since this code is not used for UDP unicast we don't need a NAT_T 5236 * check. Only ip_fanout_v4 has that check. 5237 */ 5238 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5239 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5240 } else { 5241 ill_t *rill = ira->ira_rill; 5242 5243 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5244 ira->ira_ill = ira->ira_rill = NULL; 5245 /* Send it upstream */ 5246 (connp->conn_recv)(connp, mp, NULL, ira); 5247 ira->ira_ill = ill; 5248 ira->ira_rill = rill; 5249 } 5250 } 5251 5252 /* 5253 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5254 * (Unicast fanout is handled in ip_input_v4.) 5255 * 5256 * If SO_REUSEADDR is set all multicast and broadcast packets 5257 * will be delivered to all conns bound to the same port. 5258 * 5259 * If there is at least one matching AF_INET receiver, then we will 5260 * ignore any AF_INET6 receivers. 5261 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5262 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5263 * packets. 5264 * 5265 * Zones notes: 5266 * Earlier in ip_input on a system with multiple shared-IP zones we 5267 * duplicate the multicast and broadcast packets and send them up 5268 * with each explicit zoneid that exists on that ill. 5269 * This means that here we can match the zoneid with SO_ALLZONES being special. 5270 */ 5271 void 5272 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5273 ip_recv_attr_t *ira) 5274 { 5275 ipaddr_t laddr; 5276 in6_addr_t v6faddr; 5277 conn_t *connp; 5278 connf_t *connfp; 5279 ipaddr_t faddr; 5280 ill_t *ill = ira->ira_ill; 5281 ip_stack_t *ipst = ill->ill_ipst; 5282 5283 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5284 5285 laddr = ipha->ipha_dst; 5286 faddr = ipha->ipha_src; 5287 5288 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5289 mutex_enter(&connfp->connf_lock); 5290 connp = connfp->connf_head; 5291 5292 /* 5293 * If SO_REUSEADDR has been set on the first we send the 5294 * packet to all clients that have joined the group and 5295 * match the port. 5296 */ 5297 while (connp != NULL) { 5298 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5299 conn_wantpacket(connp, ira, ipha) && 5300 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5301 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5302 break; 5303 connp = connp->conn_next; 5304 } 5305 5306 if (connp == NULL) 5307 goto notfound; 5308 5309 CONN_INC_REF(connp); 5310 5311 if (connp->conn_reuseaddr) { 5312 conn_t *first_connp = connp; 5313 conn_t *next_connp; 5314 mblk_t *mp1; 5315 5316 connp = connp->conn_next; 5317 for (;;) { 5318 while (connp != NULL) { 5319 if (IPCL_UDP_MATCH(connp, lport, laddr, 5320 fport, faddr) && 5321 conn_wantpacket(connp, ira, ipha) && 5322 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5323 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5324 ira, connp))) 5325 break; 5326 connp = connp->conn_next; 5327 } 5328 if (connp == NULL) { 5329 /* No more interested clients */ 5330 connp = first_connp; 5331 break; 5332 } 5333 if (((mp1 = dupmsg(mp)) == NULL) && 5334 ((mp1 = copymsg(mp)) == NULL)) { 5335 /* Memory allocation failed */ 5336 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5337 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5338 connp = first_connp; 5339 break; 5340 } 5341 CONN_INC_REF(connp); 5342 mutex_exit(&connfp->connf_lock); 5343 5344 IP_STAT(ipst, ip_udp_fanmb); 5345 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5346 NULL, ira); 5347 mutex_enter(&connfp->connf_lock); 5348 /* Follow the next pointer before releasing the conn */ 5349 next_connp = connp->conn_next; 5350 CONN_DEC_REF(connp); 5351 connp = next_connp; 5352 } 5353 } 5354 5355 /* Last one. Send it upstream. */ 5356 mutex_exit(&connfp->connf_lock); 5357 IP_STAT(ipst, ip_udp_fanmb); 5358 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5359 CONN_DEC_REF(connp); 5360 return; 5361 5362 notfound: 5363 mutex_exit(&connfp->connf_lock); 5364 /* 5365 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5366 * have already been matched above, since they live in the IPv4 5367 * fanout tables. This implies we only need to 5368 * check for IPv6 in6addr_any endpoints here. 5369 * Thus we compare using ipv6_all_zeros instead of the destination 5370 * address, except for the multicast group membership lookup which 5371 * uses the IPv4 destination. 5372 */ 5373 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5374 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5375 mutex_enter(&connfp->connf_lock); 5376 connp = connfp->connf_head; 5377 /* 5378 * IPv4 multicast packet being delivered to an AF_INET6 5379 * in6addr_any endpoint. 5380 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5381 * and not conn_wantpacket_v6() since any multicast membership is 5382 * for an IPv4-mapped multicast address. 5383 */ 5384 while (connp != NULL) { 5385 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5386 fport, v6faddr) && 5387 conn_wantpacket(connp, ira, ipha) && 5388 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5389 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5390 break; 5391 connp = connp->conn_next; 5392 } 5393 5394 if (connp == NULL) { 5395 /* 5396 * No one bound to this port. Is 5397 * there a client that wants all 5398 * unclaimed datagrams? 5399 */ 5400 mutex_exit(&connfp->connf_lock); 5401 5402 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5403 NULL) { 5404 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5405 ip_fanout_proto_v4(mp, ipha, ira); 5406 } else { 5407 /* 5408 * We used to attempt to send an icmp error here, but 5409 * since this is known to be a multicast packet 5410 * and we don't send icmp errors in response to 5411 * multicast, just drop the packet and give up sooner. 5412 */ 5413 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5414 freemsg(mp); 5415 } 5416 return; 5417 } 5418 CONN_INC_REF(connp); 5419 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5420 5421 /* 5422 * If SO_REUSEADDR has been set on the first we send the 5423 * packet to all clients that have joined the group and 5424 * match the port. 5425 */ 5426 if (connp->conn_reuseaddr) { 5427 conn_t *first_connp = connp; 5428 conn_t *next_connp; 5429 mblk_t *mp1; 5430 5431 connp = connp->conn_next; 5432 for (;;) { 5433 while (connp != NULL) { 5434 if (IPCL_UDP_MATCH_V6(connp, lport, 5435 ipv6_all_zeros, fport, v6faddr) && 5436 conn_wantpacket(connp, ira, ipha) && 5437 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5438 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5439 ira, connp))) 5440 break; 5441 connp = connp->conn_next; 5442 } 5443 if (connp == NULL) { 5444 /* No more interested clients */ 5445 connp = first_connp; 5446 break; 5447 } 5448 if (((mp1 = dupmsg(mp)) == NULL) && 5449 ((mp1 = copymsg(mp)) == NULL)) { 5450 /* Memory allocation failed */ 5451 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5452 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5453 connp = first_connp; 5454 break; 5455 } 5456 CONN_INC_REF(connp); 5457 mutex_exit(&connfp->connf_lock); 5458 5459 IP_STAT(ipst, ip_udp_fanmb); 5460 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5461 NULL, ira); 5462 mutex_enter(&connfp->connf_lock); 5463 /* Follow the next pointer before releasing the conn */ 5464 next_connp = connp->conn_next; 5465 CONN_DEC_REF(connp); 5466 connp = next_connp; 5467 } 5468 } 5469 5470 /* Last one. Send it upstream. */ 5471 mutex_exit(&connfp->connf_lock); 5472 IP_STAT(ipst, ip_udp_fanmb); 5473 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5474 CONN_DEC_REF(connp); 5475 } 5476 5477 /* 5478 * Split an incoming packet's IPv4 options into the label and the other options. 5479 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5480 * clearing out any leftover label or options. 5481 * Otherwise it just makes ipp point into the packet. 5482 * 5483 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5484 */ 5485 int 5486 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5487 { 5488 uchar_t *opt; 5489 uint32_t totallen; 5490 uint32_t optval; 5491 uint32_t optlen; 5492 5493 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5494 ipp->ipp_hoplimit = ipha->ipha_ttl; 5495 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5496 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5497 5498 /* 5499 * Get length (in 4 byte octets) of IP header options. 5500 */ 5501 totallen = ipha->ipha_version_and_hdr_length - 5502 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5503 5504 if (totallen == 0) { 5505 if (!allocate) 5506 return (0); 5507 5508 /* Clear out anything from a previous packet */ 5509 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5510 kmem_free(ipp->ipp_ipv4_options, 5511 ipp->ipp_ipv4_options_len); 5512 ipp->ipp_ipv4_options = NULL; 5513 ipp->ipp_ipv4_options_len = 0; 5514 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5515 } 5516 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5517 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5518 ipp->ipp_label_v4 = NULL; 5519 ipp->ipp_label_len_v4 = 0; 5520 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5521 } 5522 return (0); 5523 } 5524 5525 totallen <<= 2; 5526 opt = (uchar_t *)&ipha[1]; 5527 if (!is_system_labeled()) { 5528 5529 copyall: 5530 if (!allocate) { 5531 if (totallen != 0) { 5532 ipp->ipp_ipv4_options = opt; 5533 ipp->ipp_ipv4_options_len = totallen; 5534 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5535 } 5536 return (0); 5537 } 5538 /* Just copy all of options */ 5539 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5540 if (totallen == ipp->ipp_ipv4_options_len) { 5541 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5542 return (0); 5543 } 5544 kmem_free(ipp->ipp_ipv4_options, 5545 ipp->ipp_ipv4_options_len); 5546 ipp->ipp_ipv4_options = NULL; 5547 ipp->ipp_ipv4_options_len = 0; 5548 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5549 } 5550 if (totallen == 0) 5551 return (0); 5552 5553 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5554 if (ipp->ipp_ipv4_options == NULL) 5555 return (ENOMEM); 5556 ipp->ipp_ipv4_options_len = totallen; 5557 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5558 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5559 return (0); 5560 } 5561 5562 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5563 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5564 ipp->ipp_label_v4 = NULL; 5565 ipp->ipp_label_len_v4 = 0; 5566 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5567 } 5568 5569 /* 5570 * Search for CIPSO option. 5571 * We assume CIPSO is first in options if it is present. 5572 * If it isn't, then ipp_opt_ipv4_options will not include the options 5573 * prior to the CIPSO option. 5574 */ 5575 while (totallen != 0) { 5576 switch (optval = opt[IPOPT_OPTVAL]) { 5577 case IPOPT_EOL: 5578 return (0); 5579 case IPOPT_NOP: 5580 optlen = 1; 5581 break; 5582 default: 5583 if (totallen <= IPOPT_OLEN) 5584 return (EINVAL); 5585 optlen = opt[IPOPT_OLEN]; 5586 if (optlen < 2) 5587 return (EINVAL); 5588 } 5589 if (optlen > totallen) 5590 return (EINVAL); 5591 5592 switch (optval) { 5593 case IPOPT_COMSEC: 5594 if (!allocate) { 5595 ipp->ipp_label_v4 = opt; 5596 ipp->ipp_label_len_v4 = optlen; 5597 ipp->ipp_fields |= IPPF_LABEL_V4; 5598 } else { 5599 ipp->ipp_label_v4 = kmem_alloc(optlen, 5600 KM_NOSLEEP); 5601 if (ipp->ipp_label_v4 == NULL) 5602 return (ENOMEM); 5603 ipp->ipp_label_len_v4 = optlen; 5604 ipp->ipp_fields |= IPPF_LABEL_V4; 5605 bcopy(opt, ipp->ipp_label_v4, optlen); 5606 } 5607 totallen -= optlen; 5608 opt += optlen; 5609 5610 /* Skip padding bytes until we get to a multiple of 4 */ 5611 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5612 totallen--; 5613 opt++; 5614 } 5615 /* Remaining as ipp_ipv4_options */ 5616 goto copyall; 5617 } 5618 totallen -= optlen; 5619 opt += optlen; 5620 } 5621 /* No CIPSO found; return everything as ipp_ipv4_options */ 5622 totallen = ipha->ipha_version_and_hdr_length - 5623 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5624 totallen <<= 2; 5625 opt = (uchar_t *)&ipha[1]; 5626 goto copyall; 5627 } 5628 5629 /* 5630 * Efficient versions of lookup for an IRE when we only 5631 * match the address. 5632 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5633 * Does not handle multicast addresses. 5634 */ 5635 uint_t 5636 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5637 { 5638 ire_t *ire; 5639 uint_t result; 5640 5641 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5642 ASSERT(ire != NULL); 5643 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5644 result = IRE_NOROUTE; 5645 else 5646 result = ire->ire_type; 5647 ire_refrele(ire); 5648 return (result); 5649 } 5650 5651 /* 5652 * Efficient versions of lookup for an IRE when we only 5653 * match the address. 5654 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5655 * Does not handle multicast addresses. 5656 */ 5657 uint_t 5658 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5659 { 5660 ire_t *ire; 5661 uint_t result; 5662 5663 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5664 ASSERT(ire != NULL); 5665 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5666 result = IRE_NOROUTE; 5667 else 5668 result = ire->ire_type; 5669 ire_refrele(ire); 5670 return (result); 5671 } 5672 5673 /* 5674 * Nobody should be sending 5675 * packets up this stream 5676 */ 5677 static void 5678 ip_lrput(queue_t *q, mblk_t *mp) 5679 { 5680 switch (mp->b_datap->db_type) { 5681 case M_FLUSH: 5682 /* Turn around */ 5683 if (*mp->b_rptr & FLUSHW) { 5684 *mp->b_rptr &= ~FLUSHR; 5685 qreply(q, mp); 5686 return; 5687 } 5688 break; 5689 } 5690 freemsg(mp); 5691 } 5692 5693 /* Nobody should be sending packets down this stream */ 5694 /* ARGSUSED */ 5695 void 5696 ip_lwput(queue_t *q, mblk_t *mp) 5697 { 5698 freemsg(mp); 5699 } 5700 5701 /* 5702 * Move the first hop in any source route to ipha_dst and remove that part of 5703 * the source route. Called by other protocols. Errors in option formatting 5704 * are ignored - will be handled by ip_output_options. Return the final 5705 * destination (either ipha_dst or the last entry in a source route.) 5706 */ 5707 ipaddr_t 5708 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5709 { 5710 ipoptp_t opts; 5711 uchar_t *opt; 5712 uint8_t optval; 5713 uint8_t optlen; 5714 ipaddr_t dst; 5715 int i; 5716 ip_stack_t *ipst = ns->netstack_ip; 5717 5718 ip2dbg(("ip_massage_options\n")); 5719 dst = ipha->ipha_dst; 5720 for (optval = ipoptp_first(&opts, ipha); 5721 optval != IPOPT_EOL; 5722 optval = ipoptp_next(&opts)) { 5723 opt = opts.ipoptp_cur; 5724 switch (optval) { 5725 uint8_t off; 5726 case IPOPT_SSRR: 5727 case IPOPT_LSRR: 5728 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5729 ip1dbg(("ip_massage_options: bad src route\n")); 5730 break; 5731 } 5732 optlen = opts.ipoptp_len; 5733 off = opt[IPOPT_OFFSET]; 5734 off--; 5735 redo_srr: 5736 if (optlen < IP_ADDR_LEN || 5737 off > optlen - IP_ADDR_LEN) { 5738 /* End of source route */ 5739 ip1dbg(("ip_massage_options: end of SR\n")); 5740 break; 5741 } 5742 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5743 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5744 ntohl(dst))); 5745 /* 5746 * Check if our address is present more than 5747 * once as consecutive hops in source route. 5748 * XXX verify per-interface ip_forwarding 5749 * for source route? 5750 */ 5751 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5752 off += IP_ADDR_LEN; 5753 goto redo_srr; 5754 } 5755 if (dst == htonl(INADDR_LOOPBACK)) { 5756 ip1dbg(("ip_massage_options: loopback addr in " 5757 "source route!\n")); 5758 break; 5759 } 5760 /* 5761 * Update ipha_dst to be the first hop and remove the 5762 * first hop from the source route (by overwriting 5763 * part of the option with NOP options). 5764 */ 5765 ipha->ipha_dst = dst; 5766 /* Put the last entry in dst */ 5767 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5768 3; 5769 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5770 5771 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5772 ntohl(dst))); 5773 /* Move down and overwrite */ 5774 opt[IP_ADDR_LEN] = opt[0]; 5775 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5776 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5777 for (i = 0; i < IP_ADDR_LEN; i++) 5778 opt[i] = IPOPT_NOP; 5779 break; 5780 } 5781 } 5782 return (dst); 5783 } 5784 5785 /* 5786 * Return the network mask 5787 * associated with the specified address. 5788 */ 5789 ipaddr_t 5790 ip_net_mask(ipaddr_t addr) 5791 { 5792 uchar_t *up = (uchar_t *)&addr; 5793 ipaddr_t mask = 0; 5794 uchar_t *maskp = (uchar_t *)&mask; 5795 5796 #if defined(__i386) || defined(__amd64) 5797 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5798 #endif 5799 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5800 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5801 #endif 5802 if (CLASSD(addr)) { 5803 maskp[0] = 0xF0; 5804 return (mask); 5805 } 5806 5807 /* We assume Class E default netmask to be 32 */ 5808 if (CLASSE(addr)) 5809 return (0xffffffffU); 5810 5811 if (addr == 0) 5812 return (0); 5813 maskp[0] = 0xFF; 5814 if ((up[0] & 0x80) == 0) 5815 return (mask); 5816 5817 maskp[1] = 0xFF; 5818 if ((up[0] & 0xC0) == 0x80) 5819 return (mask); 5820 5821 maskp[2] = 0xFF; 5822 if ((up[0] & 0xE0) == 0xC0) 5823 return (mask); 5824 5825 /* Otherwise return no mask */ 5826 return ((ipaddr_t)0); 5827 } 5828 5829 /* Name/Value Table Lookup Routine */ 5830 char * 5831 ip_nv_lookup(nv_t *nv, int value) 5832 { 5833 if (!nv) 5834 return (NULL); 5835 for (; nv->nv_name; nv++) { 5836 if (nv->nv_value == value) 5837 return (nv->nv_name); 5838 } 5839 return ("unknown"); 5840 } 5841 5842 static int 5843 ip_wait_for_info_ack(ill_t *ill) 5844 { 5845 int err; 5846 5847 mutex_enter(&ill->ill_lock); 5848 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5849 /* 5850 * Return value of 0 indicates a pending signal. 5851 */ 5852 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5853 if (err == 0) { 5854 mutex_exit(&ill->ill_lock); 5855 return (EINTR); 5856 } 5857 } 5858 mutex_exit(&ill->ill_lock); 5859 /* 5860 * ip_rput_other could have set an error in ill_error on 5861 * receipt of M_ERROR. 5862 */ 5863 return (ill->ill_error); 5864 } 5865 5866 /* 5867 * This is a module open, i.e. this is a control stream for access 5868 * to a DLPI device. We allocate an ill_t as the instance data in 5869 * this case. 5870 */ 5871 static int 5872 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5873 { 5874 ill_t *ill; 5875 int err; 5876 zoneid_t zoneid; 5877 netstack_t *ns; 5878 ip_stack_t *ipst; 5879 5880 /* 5881 * Prevent unprivileged processes from pushing IP so that 5882 * they can't send raw IP. 5883 */ 5884 if (secpolicy_net_rawaccess(credp) != 0) 5885 return (EPERM); 5886 5887 ns = netstack_find_by_cred(credp); 5888 ASSERT(ns != NULL); 5889 ipst = ns->netstack_ip; 5890 ASSERT(ipst != NULL); 5891 5892 /* 5893 * For exclusive stacks we set the zoneid to zero 5894 * to make IP operate as if in the global zone. 5895 */ 5896 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5897 zoneid = GLOBAL_ZONEID; 5898 else 5899 zoneid = crgetzoneid(credp); 5900 5901 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5902 q->q_ptr = WR(q)->q_ptr = ill; 5903 ill->ill_ipst = ipst; 5904 ill->ill_zoneid = zoneid; 5905 5906 /* 5907 * ill_init initializes the ill fields and then sends down 5908 * down a DL_INFO_REQ after calling qprocson. 5909 */ 5910 err = ill_init(q, ill); 5911 5912 if (err != 0) { 5913 mi_free(ill); 5914 netstack_rele(ipst->ips_netstack); 5915 q->q_ptr = NULL; 5916 WR(q)->q_ptr = NULL; 5917 return (err); 5918 } 5919 5920 /* 5921 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5922 * 5923 * ill_init initializes the ipsq marking this thread as 5924 * writer 5925 */ 5926 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5927 err = ip_wait_for_info_ack(ill); 5928 if (err == 0) 5929 ill->ill_credp = credp; 5930 else 5931 goto fail; 5932 5933 crhold(credp); 5934 5935 mutex_enter(&ipst->ips_ip_mi_lock); 5936 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5937 sflag, credp); 5938 mutex_exit(&ipst->ips_ip_mi_lock); 5939 fail: 5940 if (err) { 5941 (void) ip_close(q, 0); 5942 return (err); 5943 } 5944 return (0); 5945 } 5946 5947 /* For /dev/ip aka AF_INET open */ 5948 int 5949 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5950 { 5951 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5952 } 5953 5954 /* For /dev/ip6 aka AF_INET6 open */ 5955 int 5956 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5957 { 5958 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5959 } 5960 5961 /* IP open routine. */ 5962 int 5963 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5964 boolean_t isv6) 5965 { 5966 conn_t *connp; 5967 major_t maj; 5968 zoneid_t zoneid; 5969 netstack_t *ns; 5970 ip_stack_t *ipst; 5971 5972 /* Allow reopen. */ 5973 if (q->q_ptr != NULL) 5974 return (0); 5975 5976 if (sflag & MODOPEN) { 5977 /* This is a module open */ 5978 return (ip_modopen(q, devp, flag, sflag, credp)); 5979 } 5980 5981 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5982 /* 5983 * Non streams based socket looking for a stream 5984 * to access IP 5985 */ 5986 return (ip_helper_stream_setup(q, devp, flag, sflag, 5987 credp, isv6)); 5988 } 5989 5990 ns = netstack_find_by_cred(credp); 5991 ASSERT(ns != NULL); 5992 ipst = ns->netstack_ip; 5993 ASSERT(ipst != NULL); 5994 5995 /* 5996 * For exclusive stacks we set the zoneid to zero 5997 * to make IP operate as if in the global zone. 5998 */ 5999 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6000 zoneid = GLOBAL_ZONEID; 6001 else 6002 zoneid = crgetzoneid(credp); 6003 6004 /* 6005 * We are opening as a device. This is an IP client stream, and we 6006 * allocate an conn_t as the instance data. 6007 */ 6008 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6009 6010 /* 6011 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6012 * done by netstack_find_by_cred() 6013 */ 6014 netstack_rele(ipst->ips_netstack); 6015 6016 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6017 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6018 connp->conn_ixa->ixa_zoneid = zoneid; 6019 connp->conn_zoneid = zoneid; 6020 6021 connp->conn_rq = q; 6022 q->q_ptr = WR(q)->q_ptr = connp; 6023 6024 /* Minor tells us which /dev entry was opened */ 6025 if (isv6) { 6026 connp->conn_family = AF_INET6; 6027 connp->conn_ipversion = IPV6_VERSION; 6028 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6029 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6030 } else { 6031 connp->conn_family = AF_INET; 6032 connp->conn_ipversion = IPV4_VERSION; 6033 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6034 } 6035 6036 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6037 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6038 connp->conn_minor_arena = ip_minor_arena_la; 6039 } else { 6040 /* 6041 * Either minor numbers in the large arena were exhausted 6042 * or a non socket application is doing the open. 6043 * Try to allocate from the small arena. 6044 */ 6045 if ((connp->conn_dev = 6046 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6047 /* CONN_DEC_REF takes care of netstack_rele() */ 6048 q->q_ptr = WR(q)->q_ptr = NULL; 6049 CONN_DEC_REF(connp); 6050 return (EBUSY); 6051 } 6052 connp->conn_minor_arena = ip_minor_arena_sa; 6053 } 6054 6055 maj = getemajor(*devp); 6056 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6057 6058 /* 6059 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6060 */ 6061 connp->conn_cred = credp; 6062 connp->conn_cpid = curproc->p_pid; 6063 /* Cache things in ixa without an extra refhold */ 6064 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6065 connp->conn_ixa->ixa_cred = connp->conn_cred; 6066 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6067 if (is_system_labeled()) 6068 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6069 6070 /* 6071 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6072 */ 6073 connp->conn_recv = ip_conn_input; 6074 connp->conn_recvicmp = ip_conn_input_icmp; 6075 6076 crhold(connp->conn_cred); 6077 6078 /* 6079 * If the caller has the process-wide flag set, then default to MAC 6080 * exempt mode. This allows read-down to unlabeled hosts. 6081 */ 6082 if (getpflags(NET_MAC_AWARE, credp) != 0) 6083 connp->conn_mac_mode = CONN_MAC_AWARE; 6084 6085 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6086 6087 connp->conn_rq = q; 6088 connp->conn_wq = WR(q); 6089 6090 /* Non-zero default values */ 6091 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6092 6093 /* 6094 * Make the conn globally visible to walkers 6095 */ 6096 ASSERT(connp->conn_ref == 1); 6097 mutex_enter(&connp->conn_lock); 6098 connp->conn_state_flags &= ~CONN_INCIPIENT; 6099 mutex_exit(&connp->conn_lock); 6100 6101 qprocson(q); 6102 6103 return (0); 6104 } 6105 6106 /* 6107 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6108 * all of them are copied to the conn_t. If the req is "zero", the policy is 6109 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6110 * fields. 6111 * We keep only the latest setting of the policy and thus policy setting 6112 * is not incremental/cumulative. 6113 * 6114 * Requests to set policies with multiple alternative actions will 6115 * go through a different API. 6116 */ 6117 int 6118 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6119 { 6120 uint_t ah_req = 0; 6121 uint_t esp_req = 0; 6122 uint_t se_req = 0; 6123 ipsec_act_t *actp = NULL; 6124 uint_t nact; 6125 ipsec_policy_head_t *ph; 6126 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6127 int error = 0; 6128 netstack_t *ns = connp->conn_netstack; 6129 ip_stack_t *ipst = ns->netstack_ip; 6130 ipsec_stack_t *ipss = ns->netstack_ipsec; 6131 6132 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6133 6134 /* 6135 * The IP_SEC_OPT option does not allow variable length parameters, 6136 * hence a request cannot be NULL. 6137 */ 6138 if (req == NULL) 6139 return (EINVAL); 6140 6141 ah_req = req->ipsr_ah_req; 6142 esp_req = req->ipsr_esp_req; 6143 se_req = req->ipsr_self_encap_req; 6144 6145 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6146 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6147 return (EINVAL); 6148 6149 /* 6150 * Are we dealing with a request to reset the policy (i.e. 6151 * zero requests). 6152 */ 6153 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6154 (esp_req & REQ_MASK) == 0 && 6155 (se_req & REQ_MASK) == 0); 6156 6157 if (!is_pol_reset) { 6158 /* 6159 * If we couldn't load IPsec, fail with "protocol 6160 * not supported". 6161 * IPsec may not have been loaded for a request with zero 6162 * policies, so we don't fail in this case. 6163 */ 6164 mutex_enter(&ipss->ipsec_loader_lock); 6165 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6166 mutex_exit(&ipss->ipsec_loader_lock); 6167 return (EPROTONOSUPPORT); 6168 } 6169 mutex_exit(&ipss->ipsec_loader_lock); 6170 6171 /* 6172 * Test for valid requests. Invalid algorithms 6173 * need to be tested by IPsec code because new 6174 * algorithms can be added dynamically. 6175 */ 6176 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6177 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6178 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6179 return (EINVAL); 6180 } 6181 6182 /* 6183 * Only privileged users can issue these 6184 * requests. 6185 */ 6186 if (((ah_req & IPSEC_PREF_NEVER) || 6187 (esp_req & IPSEC_PREF_NEVER) || 6188 (se_req & IPSEC_PREF_NEVER)) && 6189 secpolicy_ip_config(cr, B_FALSE) != 0) { 6190 return (EPERM); 6191 } 6192 6193 /* 6194 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6195 * are mutually exclusive. 6196 */ 6197 if (((ah_req & REQ_MASK) == REQ_MASK) || 6198 ((esp_req & REQ_MASK) == REQ_MASK) || 6199 ((se_req & REQ_MASK) == REQ_MASK)) { 6200 /* Both of them are set */ 6201 return (EINVAL); 6202 } 6203 } 6204 6205 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6206 6207 /* 6208 * If we have already cached policies in conn_connect(), don't 6209 * let them change now. We cache policies for connections 6210 * whose src,dst [addr, port] is known. 6211 */ 6212 if (connp->conn_policy_cached) { 6213 return (EINVAL); 6214 } 6215 6216 /* 6217 * We have a zero policies, reset the connection policy if already 6218 * set. This will cause the connection to inherit the 6219 * global policy, if any. 6220 */ 6221 if (is_pol_reset) { 6222 if (connp->conn_policy != NULL) { 6223 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6224 connp->conn_policy = NULL; 6225 } 6226 connp->conn_in_enforce_policy = B_FALSE; 6227 connp->conn_out_enforce_policy = B_FALSE; 6228 return (0); 6229 } 6230 6231 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6232 ipst->ips_netstack); 6233 if (ph == NULL) 6234 goto enomem; 6235 6236 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6237 if (actp == NULL) 6238 goto enomem; 6239 6240 /* 6241 * Always insert IPv4 policy entries, since they can also apply to 6242 * ipv6 sockets being used in ipv4-compat mode. 6243 */ 6244 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6245 IPSEC_TYPE_INBOUND, ns)) 6246 goto enomem; 6247 is_pol_inserted = B_TRUE; 6248 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6249 IPSEC_TYPE_OUTBOUND, ns)) 6250 goto enomem; 6251 6252 /* 6253 * We're looking at a v6 socket, also insert the v6-specific 6254 * entries. 6255 */ 6256 if (connp->conn_family == AF_INET6) { 6257 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6258 IPSEC_TYPE_INBOUND, ns)) 6259 goto enomem; 6260 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6261 IPSEC_TYPE_OUTBOUND, ns)) 6262 goto enomem; 6263 } 6264 6265 ipsec_actvec_free(actp, nact); 6266 6267 /* 6268 * If the requests need security, set enforce_policy. 6269 * If the requests are IPSEC_PREF_NEVER, one should 6270 * still set conn_out_enforce_policy so that ip_set_destination 6271 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6272 * for connections that we don't cache policy in at connect time, 6273 * if global policy matches in ip_output_attach_policy, we 6274 * don't wrongly inherit global policy. Similarly, we need 6275 * to set conn_in_enforce_policy also so that we don't verify 6276 * policy wrongly. 6277 */ 6278 if ((ah_req & REQ_MASK) != 0 || 6279 (esp_req & REQ_MASK) != 0 || 6280 (se_req & REQ_MASK) != 0) { 6281 connp->conn_in_enforce_policy = B_TRUE; 6282 connp->conn_out_enforce_policy = B_TRUE; 6283 } 6284 6285 return (error); 6286 #undef REQ_MASK 6287 6288 /* 6289 * Common memory-allocation-failure exit path. 6290 */ 6291 enomem: 6292 if (actp != NULL) 6293 ipsec_actvec_free(actp, nact); 6294 if (is_pol_inserted) 6295 ipsec_polhead_flush(ph, ns); 6296 return (ENOMEM); 6297 } 6298 6299 /* 6300 * Set socket options for joining and leaving multicast groups. 6301 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6302 * The caller has already check that the option name is consistent with 6303 * the address family of the socket. 6304 */ 6305 int 6306 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6307 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6308 { 6309 int *i1 = (int *)invalp; 6310 int error = 0; 6311 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6312 struct ip_mreq *v4_mreqp; 6313 struct ipv6_mreq *v6_mreqp; 6314 struct group_req *greqp; 6315 ire_t *ire; 6316 boolean_t done = B_FALSE; 6317 ipaddr_t ifaddr; 6318 in6_addr_t v6group; 6319 uint_t ifindex; 6320 boolean_t mcast_opt = B_TRUE; 6321 mcast_record_t fmode; 6322 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6323 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6324 6325 switch (name) { 6326 case IP_ADD_MEMBERSHIP: 6327 case IPV6_JOIN_GROUP: 6328 mcast_opt = B_FALSE; 6329 /* FALLTHRU */ 6330 case MCAST_JOIN_GROUP: 6331 fmode = MODE_IS_EXCLUDE; 6332 optfn = ip_opt_add_group; 6333 break; 6334 6335 case IP_DROP_MEMBERSHIP: 6336 case IPV6_LEAVE_GROUP: 6337 mcast_opt = B_FALSE; 6338 /* FALLTHRU */ 6339 case MCAST_LEAVE_GROUP: 6340 fmode = MODE_IS_INCLUDE; 6341 optfn = ip_opt_delete_group; 6342 break; 6343 default: 6344 ASSERT(0); 6345 } 6346 6347 if (mcast_opt) { 6348 struct sockaddr_in *sin; 6349 struct sockaddr_in6 *sin6; 6350 6351 greqp = (struct group_req *)i1; 6352 if (greqp->gr_group.ss_family == AF_INET) { 6353 sin = (struct sockaddr_in *)&(greqp->gr_group); 6354 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6355 } else { 6356 if (!inet6) 6357 return (EINVAL); /* Not on INET socket */ 6358 6359 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6360 v6group = sin6->sin6_addr; 6361 } 6362 ifaddr = INADDR_ANY; 6363 ifindex = greqp->gr_interface; 6364 } else if (inet6) { 6365 v6_mreqp = (struct ipv6_mreq *)i1; 6366 v6group = v6_mreqp->ipv6mr_multiaddr; 6367 ifaddr = INADDR_ANY; 6368 ifindex = v6_mreqp->ipv6mr_interface; 6369 } else { 6370 v4_mreqp = (struct ip_mreq *)i1; 6371 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6372 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6373 ifindex = 0; 6374 } 6375 6376 /* 6377 * In the multirouting case, we need to replicate 6378 * the request on all interfaces that will take part 6379 * in replication. We do so because multirouting is 6380 * reflective, thus we will probably receive multi- 6381 * casts on those interfaces. 6382 * The ip_multirt_apply_membership() succeeds if 6383 * the operation succeeds on at least one interface. 6384 */ 6385 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6386 ipaddr_t group; 6387 6388 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6389 6390 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6391 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6392 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6393 } else { 6394 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6395 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6396 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6397 } 6398 if (ire != NULL) { 6399 if (ire->ire_flags & RTF_MULTIRT) { 6400 error = ip_multirt_apply_membership(optfn, ire, connp, 6401 checkonly, &v6group, fmode, &ipv6_all_zeros); 6402 done = B_TRUE; 6403 } 6404 ire_refrele(ire); 6405 } 6406 6407 if (!done) { 6408 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6409 fmode, &ipv6_all_zeros); 6410 } 6411 return (error); 6412 } 6413 6414 /* 6415 * Set socket options for joining and leaving multicast groups 6416 * for specific sources. 6417 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6418 * The caller has already check that the option name is consistent with 6419 * the address family of the socket. 6420 */ 6421 int 6422 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6423 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6424 { 6425 int *i1 = (int *)invalp; 6426 int error = 0; 6427 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6428 struct ip_mreq_source *imreqp; 6429 struct group_source_req *gsreqp; 6430 in6_addr_t v6group, v6src; 6431 uint32_t ifindex; 6432 ipaddr_t ifaddr; 6433 boolean_t mcast_opt = B_TRUE; 6434 mcast_record_t fmode; 6435 ire_t *ire; 6436 boolean_t done = B_FALSE; 6437 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6438 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6439 6440 switch (name) { 6441 case IP_BLOCK_SOURCE: 6442 mcast_opt = B_FALSE; 6443 /* FALLTHRU */ 6444 case MCAST_BLOCK_SOURCE: 6445 fmode = MODE_IS_EXCLUDE; 6446 optfn = ip_opt_add_group; 6447 break; 6448 6449 case IP_UNBLOCK_SOURCE: 6450 mcast_opt = B_FALSE; 6451 /* FALLTHRU */ 6452 case MCAST_UNBLOCK_SOURCE: 6453 fmode = MODE_IS_EXCLUDE; 6454 optfn = ip_opt_delete_group; 6455 break; 6456 6457 case IP_ADD_SOURCE_MEMBERSHIP: 6458 mcast_opt = B_FALSE; 6459 /* FALLTHRU */ 6460 case MCAST_JOIN_SOURCE_GROUP: 6461 fmode = MODE_IS_INCLUDE; 6462 optfn = ip_opt_add_group; 6463 break; 6464 6465 case IP_DROP_SOURCE_MEMBERSHIP: 6466 mcast_opt = B_FALSE; 6467 /* FALLTHRU */ 6468 case MCAST_LEAVE_SOURCE_GROUP: 6469 fmode = MODE_IS_INCLUDE; 6470 optfn = ip_opt_delete_group; 6471 break; 6472 default: 6473 ASSERT(0); 6474 } 6475 6476 if (mcast_opt) { 6477 gsreqp = (struct group_source_req *)i1; 6478 ifindex = gsreqp->gsr_interface; 6479 if (gsreqp->gsr_group.ss_family == AF_INET) { 6480 struct sockaddr_in *s; 6481 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6482 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6483 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6484 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6485 } else { 6486 struct sockaddr_in6 *s6; 6487 6488 if (!inet6) 6489 return (EINVAL); /* Not on INET socket */ 6490 6491 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6492 v6group = s6->sin6_addr; 6493 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6494 v6src = s6->sin6_addr; 6495 } 6496 ifaddr = INADDR_ANY; 6497 } else { 6498 imreqp = (struct ip_mreq_source *)i1; 6499 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6500 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6501 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6502 ifindex = 0; 6503 } 6504 6505 /* 6506 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6507 */ 6508 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6509 v6src = ipv6_all_zeros; 6510 6511 /* 6512 * In the multirouting case, we need to replicate 6513 * the request as noted in the mcast cases above. 6514 */ 6515 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6516 ipaddr_t group; 6517 6518 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6519 6520 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6521 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6522 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6523 } else { 6524 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6525 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6526 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6527 } 6528 if (ire != NULL) { 6529 if (ire->ire_flags & RTF_MULTIRT) { 6530 error = ip_multirt_apply_membership(optfn, ire, connp, 6531 checkonly, &v6group, fmode, &v6src); 6532 done = B_TRUE; 6533 } 6534 ire_refrele(ire); 6535 } 6536 if (!done) { 6537 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6538 fmode, &v6src); 6539 } 6540 return (error); 6541 } 6542 6543 /* 6544 * Given a destination address and a pointer to where to put the information 6545 * this routine fills in the mtuinfo. 6546 * The socket must be connected. 6547 * For sctp conn_faddr is the primary address. 6548 */ 6549 int 6550 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6551 { 6552 uint32_t pmtu = IP_MAXPACKET; 6553 uint_t scopeid; 6554 6555 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6556 return (-1); 6557 6558 /* In case we never sent or called ip_set_destination_v4/v6 */ 6559 if (ixa->ixa_ire != NULL) 6560 pmtu = ip_get_pmtu(ixa); 6561 6562 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6563 scopeid = ixa->ixa_scopeid; 6564 else 6565 scopeid = 0; 6566 6567 bzero(mtuinfo, sizeof (*mtuinfo)); 6568 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6569 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6570 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6571 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6572 mtuinfo->ip6m_mtu = pmtu; 6573 6574 return (sizeof (struct ip6_mtuinfo)); 6575 } 6576 6577 /* 6578 * When the src multihoming is changed from weak to [strong, preferred] 6579 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6580 * and identify routes that were created by user-applications in the 6581 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6582 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6583 * is selected by finding an interface route for the gateway. 6584 */ 6585 /* ARGSUSED */ 6586 void 6587 ip_ire_rebind_walker(ire_t *ire, void *notused) 6588 { 6589 if (!ire->ire_unbound || ire->ire_ill != NULL) 6590 return; 6591 ire_rebind(ire); 6592 ire_delete(ire); 6593 } 6594 6595 /* 6596 * When the src multihoming is changed from [strong, preferred] to weak, 6597 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6598 * set any entries that were created by user-applications in the unbound state 6599 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6600 */ 6601 /* ARGSUSED */ 6602 void 6603 ip_ire_unbind_walker(ire_t *ire, void *notused) 6604 { 6605 ire_t *new_ire; 6606 6607 if (!ire->ire_unbound || ire->ire_ill == NULL) 6608 return; 6609 if (ire->ire_ipversion == IPV6_VERSION) { 6610 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6611 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6612 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6613 } else { 6614 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6615 (uchar_t *)&ire->ire_mask, 6616 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6617 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6618 } 6619 if (new_ire == NULL) 6620 return; 6621 new_ire->ire_unbound = B_TRUE; 6622 /* 6623 * The bound ire must first be deleted so that we don't return 6624 * the existing one on the attempt to add the unbound new_ire. 6625 */ 6626 ire_delete(ire); 6627 new_ire = ire_add(new_ire); 6628 if (new_ire != NULL) 6629 ire_refrele(new_ire); 6630 } 6631 6632 /* 6633 * When the settings of ip*_strict_src_multihoming tunables are changed, 6634 * all cached routes need to be recomputed. This recomputation needs to be 6635 * done when going from weaker to stronger modes so that the cached ire 6636 * for the connection does not violate the current ip*_strict_src_multihoming 6637 * setting. It also needs to be done when going from stronger to weaker modes, 6638 * so that we fall back to matching on the longest-matching-route (as opposed 6639 * to a shorter match that may have been selected in the strong mode 6640 * to satisfy src_multihoming settings). 6641 * 6642 * The cached ixa_ire entires for all conn_t entries are marked as 6643 * "verify" so that they will be recomputed for the next packet. 6644 */ 6645 void 6646 conn_ire_revalidate(conn_t *connp, void *arg) 6647 { 6648 boolean_t isv6 = (boolean_t)arg; 6649 6650 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6651 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6652 return; 6653 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6654 } 6655 6656 /* 6657 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6658 * When an ipf is passed here for the first time, if 6659 * we already have in-order fragments on the queue, we convert from the fast- 6660 * path reassembly scheme to the hard-case scheme. From then on, additional 6661 * fragments are reassembled here. We keep track of the start and end offsets 6662 * of each piece, and the number of holes in the chain. When the hole count 6663 * goes to zero, we are done! 6664 * 6665 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6666 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6667 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6668 * after the call to ip_reassemble(). 6669 */ 6670 int 6671 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6672 size_t msg_len) 6673 { 6674 uint_t end; 6675 mblk_t *next_mp; 6676 mblk_t *mp1; 6677 uint_t offset; 6678 boolean_t incr_dups = B_TRUE; 6679 boolean_t offset_zero_seen = B_FALSE; 6680 boolean_t pkt_boundary_checked = B_FALSE; 6681 6682 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6683 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6684 6685 /* Add in byte count */ 6686 ipf->ipf_count += msg_len; 6687 if (ipf->ipf_end) { 6688 /* 6689 * We were part way through in-order reassembly, but now there 6690 * is a hole. We walk through messages already queued, and 6691 * mark them for hard case reassembly. We know that up till 6692 * now they were in order starting from offset zero. 6693 */ 6694 offset = 0; 6695 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6696 IP_REASS_SET_START(mp1, offset); 6697 if (offset == 0) { 6698 ASSERT(ipf->ipf_nf_hdr_len != 0); 6699 offset = -ipf->ipf_nf_hdr_len; 6700 } 6701 offset += mp1->b_wptr - mp1->b_rptr; 6702 IP_REASS_SET_END(mp1, offset); 6703 } 6704 /* One hole at the end. */ 6705 ipf->ipf_hole_cnt = 1; 6706 /* Brand it as a hard case, forever. */ 6707 ipf->ipf_end = 0; 6708 } 6709 /* Walk through all the new pieces. */ 6710 do { 6711 end = start + (mp->b_wptr - mp->b_rptr); 6712 /* 6713 * If start is 0, decrease 'end' only for the first mblk of 6714 * the fragment. Otherwise 'end' can get wrong value in the 6715 * second pass of the loop if first mblk is exactly the 6716 * size of ipf_nf_hdr_len. 6717 */ 6718 if (start == 0 && !offset_zero_seen) { 6719 /* First segment */ 6720 ASSERT(ipf->ipf_nf_hdr_len != 0); 6721 end -= ipf->ipf_nf_hdr_len; 6722 offset_zero_seen = B_TRUE; 6723 } 6724 next_mp = mp->b_cont; 6725 /* 6726 * We are checking to see if there is any interesing data 6727 * to process. If there isn't and the mblk isn't the 6728 * one which carries the unfragmentable header then we 6729 * drop it. It's possible to have just the unfragmentable 6730 * header come through without any data. That needs to be 6731 * saved. 6732 * 6733 * If the assert at the top of this function holds then the 6734 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6735 * is infrequently traveled enough that the test is left in 6736 * to protect against future code changes which break that 6737 * invariant. 6738 */ 6739 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6740 /* Empty. Blast it. */ 6741 IP_REASS_SET_START(mp, 0); 6742 IP_REASS_SET_END(mp, 0); 6743 /* 6744 * If the ipf points to the mblk we are about to free, 6745 * update ipf to point to the next mblk (or NULL 6746 * if none). 6747 */ 6748 if (ipf->ipf_mp->b_cont == mp) 6749 ipf->ipf_mp->b_cont = next_mp; 6750 freeb(mp); 6751 continue; 6752 } 6753 mp->b_cont = NULL; 6754 IP_REASS_SET_START(mp, start); 6755 IP_REASS_SET_END(mp, end); 6756 if (!ipf->ipf_tail_mp) { 6757 ipf->ipf_tail_mp = mp; 6758 ipf->ipf_mp->b_cont = mp; 6759 if (start == 0 || !more) { 6760 ipf->ipf_hole_cnt = 1; 6761 /* 6762 * if the first fragment comes in more than one 6763 * mblk, this loop will be executed for each 6764 * mblk. Need to adjust hole count so exiting 6765 * this routine will leave hole count at 1. 6766 */ 6767 if (next_mp) 6768 ipf->ipf_hole_cnt++; 6769 } else 6770 ipf->ipf_hole_cnt = 2; 6771 continue; 6772 } else if (ipf->ipf_last_frag_seen && !more && 6773 !pkt_boundary_checked) { 6774 /* 6775 * We check datagram boundary only if this fragment 6776 * claims to be the last fragment and we have seen a 6777 * last fragment in the past too. We do this only 6778 * once for a given fragment. 6779 * 6780 * start cannot be 0 here as fragments with start=0 6781 * and MF=0 gets handled as a complete packet. These 6782 * fragments should not reach here. 6783 */ 6784 6785 if (start + msgdsize(mp) != 6786 IP_REASS_END(ipf->ipf_tail_mp)) { 6787 /* 6788 * We have two fragments both of which claim 6789 * to be the last fragment but gives conflicting 6790 * information about the whole datagram size. 6791 * Something fishy is going on. Drop the 6792 * fragment and free up the reassembly list. 6793 */ 6794 return (IP_REASS_FAILED); 6795 } 6796 6797 /* 6798 * We shouldn't come to this code block again for this 6799 * particular fragment. 6800 */ 6801 pkt_boundary_checked = B_TRUE; 6802 } 6803 6804 /* New stuff at or beyond tail? */ 6805 offset = IP_REASS_END(ipf->ipf_tail_mp); 6806 if (start >= offset) { 6807 if (ipf->ipf_last_frag_seen) { 6808 /* current fragment is beyond last fragment */ 6809 return (IP_REASS_FAILED); 6810 } 6811 /* Link it on end. */ 6812 ipf->ipf_tail_mp->b_cont = mp; 6813 ipf->ipf_tail_mp = mp; 6814 if (more) { 6815 if (start != offset) 6816 ipf->ipf_hole_cnt++; 6817 } else if (start == offset && next_mp == NULL) 6818 ipf->ipf_hole_cnt--; 6819 continue; 6820 } 6821 mp1 = ipf->ipf_mp->b_cont; 6822 offset = IP_REASS_START(mp1); 6823 /* New stuff at the front? */ 6824 if (start < offset) { 6825 if (start == 0) { 6826 if (end >= offset) { 6827 /* Nailed the hole at the begining. */ 6828 ipf->ipf_hole_cnt--; 6829 } 6830 } else if (end < offset) { 6831 /* 6832 * A hole, stuff, and a hole where there used 6833 * to be just a hole. 6834 */ 6835 ipf->ipf_hole_cnt++; 6836 } 6837 mp->b_cont = mp1; 6838 /* Check for overlap. */ 6839 while (end > offset) { 6840 if (end < IP_REASS_END(mp1)) { 6841 mp->b_wptr -= end - offset; 6842 IP_REASS_SET_END(mp, offset); 6843 BUMP_MIB(ill->ill_ip_mib, 6844 ipIfStatsReasmPartDups); 6845 break; 6846 } 6847 /* Did we cover another hole? */ 6848 if ((mp1->b_cont && 6849 IP_REASS_END(mp1) != 6850 IP_REASS_START(mp1->b_cont) && 6851 end >= IP_REASS_START(mp1->b_cont)) || 6852 (!ipf->ipf_last_frag_seen && !more)) { 6853 ipf->ipf_hole_cnt--; 6854 } 6855 /* Clip out mp1. */ 6856 if ((mp->b_cont = mp1->b_cont) == NULL) { 6857 /* 6858 * After clipping out mp1, this guy 6859 * is now hanging off the end. 6860 */ 6861 ipf->ipf_tail_mp = mp; 6862 } 6863 IP_REASS_SET_START(mp1, 0); 6864 IP_REASS_SET_END(mp1, 0); 6865 /* Subtract byte count */ 6866 ipf->ipf_count -= mp1->b_datap->db_lim - 6867 mp1->b_datap->db_base; 6868 freeb(mp1); 6869 BUMP_MIB(ill->ill_ip_mib, 6870 ipIfStatsReasmPartDups); 6871 mp1 = mp->b_cont; 6872 if (!mp1) 6873 break; 6874 offset = IP_REASS_START(mp1); 6875 } 6876 ipf->ipf_mp->b_cont = mp; 6877 continue; 6878 } 6879 /* 6880 * The new piece starts somewhere between the start of the head 6881 * and before the end of the tail. 6882 */ 6883 for (; mp1; mp1 = mp1->b_cont) { 6884 offset = IP_REASS_END(mp1); 6885 if (start < offset) { 6886 if (end <= offset) { 6887 /* Nothing new. */ 6888 IP_REASS_SET_START(mp, 0); 6889 IP_REASS_SET_END(mp, 0); 6890 /* Subtract byte count */ 6891 ipf->ipf_count -= mp->b_datap->db_lim - 6892 mp->b_datap->db_base; 6893 if (incr_dups) { 6894 ipf->ipf_num_dups++; 6895 incr_dups = B_FALSE; 6896 } 6897 freeb(mp); 6898 BUMP_MIB(ill->ill_ip_mib, 6899 ipIfStatsReasmDuplicates); 6900 break; 6901 } 6902 /* 6903 * Trim redundant stuff off beginning of new 6904 * piece. 6905 */ 6906 IP_REASS_SET_START(mp, offset); 6907 mp->b_rptr += offset - start; 6908 BUMP_MIB(ill->ill_ip_mib, 6909 ipIfStatsReasmPartDups); 6910 start = offset; 6911 if (!mp1->b_cont) { 6912 /* 6913 * After trimming, this guy is now 6914 * hanging off the end. 6915 */ 6916 mp1->b_cont = mp; 6917 ipf->ipf_tail_mp = mp; 6918 if (!more) { 6919 ipf->ipf_hole_cnt--; 6920 } 6921 break; 6922 } 6923 } 6924 if (start >= IP_REASS_START(mp1->b_cont)) 6925 continue; 6926 /* Fill a hole */ 6927 if (start > offset) 6928 ipf->ipf_hole_cnt++; 6929 mp->b_cont = mp1->b_cont; 6930 mp1->b_cont = mp; 6931 mp1 = mp->b_cont; 6932 offset = IP_REASS_START(mp1); 6933 if (end >= offset) { 6934 ipf->ipf_hole_cnt--; 6935 /* Check for overlap. */ 6936 while (end > offset) { 6937 if (end < IP_REASS_END(mp1)) { 6938 mp->b_wptr -= end - offset; 6939 IP_REASS_SET_END(mp, offset); 6940 /* 6941 * TODO we might bump 6942 * this up twice if there is 6943 * overlap at both ends. 6944 */ 6945 BUMP_MIB(ill->ill_ip_mib, 6946 ipIfStatsReasmPartDups); 6947 break; 6948 } 6949 /* Did we cover another hole? */ 6950 if ((mp1->b_cont && 6951 IP_REASS_END(mp1) 6952 != IP_REASS_START(mp1->b_cont) && 6953 end >= 6954 IP_REASS_START(mp1->b_cont)) || 6955 (!ipf->ipf_last_frag_seen && 6956 !more)) { 6957 ipf->ipf_hole_cnt--; 6958 } 6959 /* Clip out mp1. */ 6960 if ((mp->b_cont = mp1->b_cont) == 6961 NULL) { 6962 /* 6963 * After clipping out mp1, 6964 * this guy is now hanging 6965 * off the end. 6966 */ 6967 ipf->ipf_tail_mp = mp; 6968 } 6969 IP_REASS_SET_START(mp1, 0); 6970 IP_REASS_SET_END(mp1, 0); 6971 /* Subtract byte count */ 6972 ipf->ipf_count -= 6973 mp1->b_datap->db_lim - 6974 mp1->b_datap->db_base; 6975 freeb(mp1); 6976 BUMP_MIB(ill->ill_ip_mib, 6977 ipIfStatsReasmPartDups); 6978 mp1 = mp->b_cont; 6979 if (!mp1) 6980 break; 6981 offset = IP_REASS_START(mp1); 6982 } 6983 } 6984 break; 6985 } 6986 } while (start = end, mp = next_mp); 6987 6988 /* Fragment just processed could be the last one. Remember this fact */ 6989 if (!more) 6990 ipf->ipf_last_frag_seen = B_TRUE; 6991 6992 /* Still got holes? */ 6993 if (ipf->ipf_hole_cnt) 6994 return (IP_REASS_PARTIAL); 6995 /* Clean up overloaded fields to avoid upstream disasters. */ 6996 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6997 IP_REASS_SET_START(mp1, 0); 6998 IP_REASS_SET_END(mp1, 0); 6999 } 7000 return (IP_REASS_COMPLETE); 7001 } 7002 7003 /* 7004 * Fragmentation reassembly. Each ILL has a hash table for 7005 * queuing packets undergoing reassembly for all IPIFs 7006 * associated with the ILL. The hash is based on the packet 7007 * IP ident field. The ILL frag hash table was allocated 7008 * as a timer block at the time the ILL was created. Whenever 7009 * there is anything on the reassembly queue, the timer will 7010 * be running. Returns the reassembled packet if reassembly completes. 7011 */ 7012 mblk_t * 7013 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7014 { 7015 uint32_t frag_offset_flags; 7016 mblk_t *t_mp; 7017 ipaddr_t dst; 7018 uint8_t proto = ipha->ipha_protocol; 7019 uint32_t sum_val; 7020 uint16_t sum_flags; 7021 ipf_t *ipf; 7022 ipf_t **ipfp; 7023 ipfb_t *ipfb; 7024 uint16_t ident; 7025 uint32_t offset; 7026 ipaddr_t src; 7027 uint_t hdr_length; 7028 uint32_t end; 7029 mblk_t *mp1; 7030 mblk_t *tail_mp; 7031 size_t count; 7032 size_t msg_len; 7033 uint8_t ecn_info = 0; 7034 uint32_t packet_size; 7035 boolean_t pruned = B_FALSE; 7036 ill_t *ill = ira->ira_ill; 7037 ip_stack_t *ipst = ill->ill_ipst; 7038 7039 /* 7040 * Drop the fragmented as early as possible, if 7041 * we don't have resource(s) to re-assemble. 7042 */ 7043 if (ipst->ips_ip_reass_queue_bytes == 0) { 7044 freemsg(mp); 7045 return (NULL); 7046 } 7047 7048 /* Check for fragmentation offset; return if there's none */ 7049 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7050 (IPH_MF | IPH_OFFSET)) == 0) 7051 return (mp); 7052 7053 /* 7054 * We utilize hardware computed checksum info only for UDP since 7055 * IP fragmentation is a normal occurrence for the protocol. In 7056 * addition, checksum offload support for IP fragments carrying 7057 * UDP payload is commonly implemented across network adapters. 7058 */ 7059 ASSERT(ira->ira_rill != NULL); 7060 if (proto == IPPROTO_UDP && dohwcksum && 7061 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7062 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7063 mblk_t *mp1 = mp->b_cont; 7064 int32_t len; 7065 7066 /* Record checksum information from the packet */ 7067 sum_val = (uint32_t)DB_CKSUM16(mp); 7068 sum_flags = DB_CKSUMFLAGS(mp); 7069 7070 /* IP payload offset from beginning of mblk */ 7071 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7072 7073 if ((sum_flags & HCK_PARTIALCKSUM) && 7074 (mp1 == NULL || mp1->b_cont == NULL) && 7075 offset >= DB_CKSUMSTART(mp) && 7076 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7077 uint32_t adj; 7078 /* 7079 * Partial checksum has been calculated by hardware 7080 * and attached to the packet; in addition, any 7081 * prepended extraneous data is even byte aligned. 7082 * If any such data exists, we adjust the checksum; 7083 * this would also handle any postpended data. 7084 */ 7085 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7086 mp, mp1, len, adj); 7087 7088 /* One's complement subtract extraneous checksum */ 7089 if (adj >= sum_val) 7090 sum_val = ~(adj - sum_val) & 0xFFFF; 7091 else 7092 sum_val -= adj; 7093 } 7094 } else { 7095 sum_val = 0; 7096 sum_flags = 0; 7097 } 7098 7099 /* Clear hardware checksumming flag */ 7100 DB_CKSUMFLAGS(mp) = 0; 7101 7102 ident = ipha->ipha_ident; 7103 offset = (frag_offset_flags << 3) & 0xFFFF; 7104 src = ipha->ipha_src; 7105 dst = ipha->ipha_dst; 7106 hdr_length = IPH_HDR_LENGTH(ipha); 7107 end = ntohs(ipha->ipha_length) - hdr_length; 7108 7109 /* If end == 0 then we have a packet with no data, so just free it */ 7110 if (end == 0) { 7111 freemsg(mp); 7112 return (NULL); 7113 } 7114 7115 /* Record the ECN field info. */ 7116 ecn_info = (ipha->ipha_type_of_service & 0x3); 7117 if (offset != 0) { 7118 /* 7119 * If this isn't the first piece, strip the header, and 7120 * add the offset to the end value. 7121 */ 7122 mp->b_rptr += hdr_length; 7123 end += offset; 7124 } 7125 7126 /* Handle vnic loopback of fragments */ 7127 if (mp->b_datap->db_ref > 2) 7128 msg_len = 0; 7129 else 7130 msg_len = MBLKSIZE(mp); 7131 7132 tail_mp = mp; 7133 while (tail_mp->b_cont != NULL) { 7134 tail_mp = tail_mp->b_cont; 7135 if (tail_mp->b_datap->db_ref <= 2) 7136 msg_len += MBLKSIZE(tail_mp); 7137 } 7138 7139 /* If the reassembly list for this ILL will get too big, prune it */ 7140 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7141 ipst->ips_ip_reass_queue_bytes) { 7142 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7143 uint_t, ill->ill_frag_count, 7144 uint_t, ipst->ips_ip_reass_queue_bytes); 7145 ill_frag_prune(ill, 7146 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7147 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7148 pruned = B_TRUE; 7149 } 7150 7151 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7152 mutex_enter(&ipfb->ipfb_lock); 7153 7154 ipfp = &ipfb->ipfb_ipf; 7155 /* Try to find an existing fragment queue for this packet. */ 7156 for (;;) { 7157 ipf = ipfp[0]; 7158 if (ipf != NULL) { 7159 /* 7160 * It has to match on ident and src/dst address. 7161 */ 7162 if (ipf->ipf_ident == ident && 7163 ipf->ipf_src == src && 7164 ipf->ipf_dst == dst && 7165 ipf->ipf_protocol == proto) { 7166 /* 7167 * If we have received too many 7168 * duplicate fragments for this packet 7169 * free it. 7170 */ 7171 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7172 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7173 freemsg(mp); 7174 mutex_exit(&ipfb->ipfb_lock); 7175 return (NULL); 7176 } 7177 /* Found it. */ 7178 break; 7179 } 7180 ipfp = &ipf->ipf_hash_next; 7181 continue; 7182 } 7183 7184 /* 7185 * If we pruned the list, do we want to store this new 7186 * fragment?. We apply an optimization here based on the 7187 * fact that most fragments will be received in order. 7188 * So if the offset of this incoming fragment is zero, 7189 * it is the first fragment of a new packet. We will 7190 * keep it. Otherwise drop the fragment, as we have 7191 * probably pruned the packet already (since the 7192 * packet cannot be found). 7193 */ 7194 if (pruned && offset != 0) { 7195 mutex_exit(&ipfb->ipfb_lock); 7196 freemsg(mp); 7197 return (NULL); 7198 } 7199 7200 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7201 /* 7202 * Too many fragmented packets in this hash 7203 * bucket. Free the oldest. 7204 */ 7205 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7206 } 7207 7208 /* New guy. Allocate a frag message. */ 7209 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7210 if (mp1 == NULL) { 7211 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7212 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7213 freemsg(mp); 7214 reass_done: 7215 mutex_exit(&ipfb->ipfb_lock); 7216 return (NULL); 7217 } 7218 7219 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7220 mp1->b_cont = mp; 7221 7222 /* Initialize the fragment header. */ 7223 ipf = (ipf_t *)mp1->b_rptr; 7224 ipf->ipf_mp = mp1; 7225 ipf->ipf_ptphn = ipfp; 7226 ipfp[0] = ipf; 7227 ipf->ipf_hash_next = NULL; 7228 ipf->ipf_ident = ident; 7229 ipf->ipf_protocol = proto; 7230 ipf->ipf_src = src; 7231 ipf->ipf_dst = dst; 7232 ipf->ipf_nf_hdr_len = 0; 7233 /* Record reassembly start time. */ 7234 ipf->ipf_timestamp = gethrestime_sec(); 7235 /* Record ipf generation and account for frag header */ 7236 ipf->ipf_gen = ill->ill_ipf_gen++; 7237 ipf->ipf_count = MBLKSIZE(mp1); 7238 ipf->ipf_last_frag_seen = B_FALSE; 7239 ipf->ipf_ecn = ecn_info; 7240 ipf->ipf_num_dups = 0; 7241 ipfb->ipfb_frag_pkts++; 7242 ipf->ipf_checksum = 0; 7243 ipf->ipf_checksum_flags = 0; 7244 7245 /* Store checksum value in fragment header */ 7246 if (sum_flags != 0) { 7247 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7248 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7249 ipf->ipf_checksum = sum_val; 7250 ipf->ipf_checksum_flags = sum_flags; 7251 } 7252 7253 /* 7254 * We handle reassembly two ways. In the easy case, 7255 * where all the fragments show up in order, we do 7256 * minimal bookkeeping, and just clip new pieces on 7257 * the end. If we ever see a hole, then we go off 7258 * to ip_reassemble which has to mark the pieces and 7259 * keep track of the number of holes, etc. Obviously, 7260 * the point of having both mechanisms is so we can 7261 * handle the easy case as efficiently as possible. 7262 */ 7263 if (offset == 0) { 7264 /* Easy case, in-order reassembly so far. */ 7265 ipf->ipf_count += msg_len; 7266 ipf->ipf_tail_mp = tail_mp; 7267 /* 7268 * Keep track of next expected offset in 7269 * ipf_end. 7270 */ 7271 ipf->ipf_end = end; 7272 ipf->ipf_nf_hdr_len = hdr_length; 7273 } else { 7274 /* Hard case, hole at the beginning. */ 7275 ipf->ipf_tail_mp = NULL; 7276 /* 7277 * ipf_end == 0 means that we have given up 7278 * on easy reassembly. 7279 */ 7280 ipf->ipf_end = 0; 7281 7282 /* Forget checksum offload from now on */ 7283 ipf->ipf_checksum_flags = 0; 7284 7285 /* 7286 * ipf_hole_cnt is set by ip_reassemble. 7287 * ipf_count is updated by ip_reassemble. 7288 * No need to check for return value here 7289 * as we don't expect reassembly to complete 7290 * or fail for the first fragment itself. 7291 */ 7292 (void) ip_reassemble(mp, ipf, 7293 (frag_offset_flags & IPH_OFFSET) << 3, 7294 (frag_offset_flags & IPH_MF), ill, msg_len); 7295 } 7296 /* Update per ipfb and ill byte counts */ 7297 ipfb->ipfb_count += ipf->ipf_count; 7298 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7299 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7300 /* If the frag timer wasn't already going, start it. */ 7301 mutex_enter(&ill->ill_lock); 7302 ill_frag_timer_start(ill); 7303 mutex_exit(&ill->ill_lock); 7304 goto reass_done; 7305 } 7306 7307 /* 7308 * If the packet's flag has changed (it could be coming up 7309 * from an interface different than the previous, therefore 7310 * possibly different checksum capability), then forget about 7311 * any stored checksum states. Otherwise add the value to 7312 * the existing one stored in the fragment header. 7313 */ 7314 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7315 sum_val += ipf->ipf_checksum; 7316 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7317 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7318 ipf->ipf_checksum = sum_val; 7319 } else if (ipf->ipf_checksum_flags != 0) { 7320 /* Forget checksum offload from now on */ 7321 ipf->ipf_checksum_flags = 0; 7322 } 7323 7324 /* 7325 * We have a new piece of a datagram which is already being 7326 * reassembled. Update the ECN info if all IP fragments 7327 * are ECN capable. If there is one which is not, clear 7328 * all the info. If there is at least one which has CE 7329 * code point, IP needs to report that up to transport. 7330 */ 7331 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7332 if (ecn_info == IPH_ECN_CE) 7333 ipf->ipf_ecn = IPH_ECN_CE; 7334 } else { 7335 ipf->ipf_ecn = IPH_ECN_NECT; 7336 } 7337 if (offset && ipf->ipf_end == offset) { 7338 /* The new fragment fits at the end */ 7339 ipf->ipf_tail_mp->b_cont = mp; 7340 /* Update the byte count */ 7341 ipf->ipf_count += msg_len; 7342 /* Update per ipfb and ill byte counts */ 7343 ipfb->ipfb_count += msg_len; 7344 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7345 atomic_add_32(&ill->ill_frag_count, msg_len); 7346 if (frag_offset_flags & IPH_MF) { 7347 /* More to come. */ 7348 ipf->ipf_end = end; 7349 ipf->ipf_tail_mp = tail_mp; 7350 goto reass_done; 7351 } 7352 } else { 7353 /* Go do the hard cases. */ 7354 int ret; 7355 7356 if (offset == 0) 7357 ipf->ipf_nf_hdr_len = hdr_length; 7358 7359 /* Save current byte count */ 7360 count = ipf->ipf_count; 7361 ret = ip_reassemble(mp, ipf, 7362 (frag_offset_flags & IPH_OFFSET) << 3, 7363 (frag_offset_flags & IPH_MF), ill, msg_len); 7364 /* Count of bytes added and subtracted (freeb()ed) */ 7365 count = ipf->ipf_count - count; 7366 if (count) { 7367 /* Update per ipfb and ill byte counts */ 7368 ipfb->ipfb_count += count; 7369 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7370 atomic_add_32(&ill->ill_frag_count, count); 7371 } 7372 if (ret == IP_REASS_PARTIAL) { 7373 goto reass_done; 7374 } else if (ret == IP_REASS_FAILED) { 7375 /* Reassembly failed. Free up all resources */ 7376 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7377 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7378 IP_REASS_SET_START(t_mp, 0); 7379 IP_REASS_SET_END(t_mp, 0); 7380 } 7381 freemsg(mp); 7382 goto reass_done; 7383 } 7384 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7385 } 7386 /* 7387 * We have completed reassembly. Unhook the frag header from 7388 * the reassembly list. 7389 * 7390 * Before we free the frag header, record the ECN info 7391 * to report back to the transport. 7392 */ 7393 ecn_info = ipf->ipf_ecn; 7394 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7395 ipfp = ipf->ipf_ptphn; 7396 7397 /* We need to supply these to caller */ 7398 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7399 sum_val = ipf->ipf_checksum; 7400 else 7401 sum_val = 0; 7402 7403 mp1 = ipf->ipf_mp; 7404 count = ipf->ipf_count; 7405 ipf = ipf->ipf_hash_next; 7406 if (ipf != NULL) 7407 ipf->ipf_ptphn = ipfp; 7408 ipfp[0] = ipf; 7409 atomic_add_32(&ill->ill_frag_count, -count); 7410 ASSERT(ipfb->ipfb_count >= count); 7411 ipfb->ipfb_count -= count; 7412 ipfb->ipfb_frag_pkts--; 7413 mutex_exit(&ipfb->ipfb_lock); 7414 /* Ditch the frag header. */ 7415 mp = mp1->b_cont; 7416 7417 freeb(mp1); 7418 7419 /* Restore original IP length in header. */ 7420 packet_size = (uint32_t)msgdsize(mp); 7421 if (packet_size > IP_MAXPACKET) { 7422 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7423 ip_drop_input("Reassembled packet too large", mp, ill); 7424 freemsg(mp); 7425 return (NULL); 7426 } 7427 7428 if (DB_REF(mp) > 1) { 7429 mblk_t *mp2 = copymsg(mp); 7430 7431 if (mp2 == NULL) { 7432 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7433 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7434 freemsg(mp); 7435 return (NULL); 7436 } 7437 freemsg(mp); 7438 mp = mp2; 7439 } 7440 ipha = (ipha_t *)mp->b_rptr; 7441 7442 ipha->ipha_length = htons((uint16_t)packet_size); 7443 /* We're now complete, zip the frag state */ 7444 ipha->ipha_fragment_offset_and_flags = 0; 7445 /* Record the ECN info. */ 7446 ipha->ipha_type_of_service &= 0xFC; 7447 ipha->ipha_type_of_service |= ecn_info; 7448 7449 /* Update the receive attributes */ 7450 ira->ira_pktlen = packet_size; 7451 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7452 7453 /* Reassembly is successful; set checksum information in packet */ 7454 DB_CKSUM16(mp) = (uint16_t)sum_val; 7455 DB_CKSUMFLAGS(mp) = sum_flags; 7456 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7457 7458 return (mp); 7459 } 7460 7461 /* 7462 * Pullup function that should be used for IP input in order to 7463 * ensure we do not loose the L2 source address; we need the l2 source 7464 * address for IP_RECVSLLA and for ndp_input. 7465 * 7466 * We return either NULL or b_rptr. 7467 */ 7468 void * 7469 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7470 { 7471 ill_t *ill = ira->ira_ill; 7472 7473 if (ip_rput_pullups++ == 0) { 7474 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7475 "ip_pullup: %s forced us to " 7476 " pullup pkt, hdr len %ld, hdr addr %p", 7477 ill->ill_name, len, (void *)mp->b_rptr); 7478 } 7479 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7480 ip_setl2src(mp, ira, ira->ira_rill); 7481 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7482 if (!pullupmsg(mp, len)) 7483 return (NULL); 7484 else 7485 return (mp->b_rptr); 7486 } 7487 7488 /* 7489 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7490 * When called from the ULP ira_rill will be NULL hence the caller has to 7491 * pass in the ill. 7492 */ 7493 /* ARGSUSED */ 7494 void 7495 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7496 { 7497 const uchar_t *addr; 7498 int alen; 7499 7500 if (ira->ira_flags & IRAF_L2SRC_SET) 7501 return; 7502 7503 ASSERT(ill != NULL); 7504 alen = ill->ill_phys_addr_length; 7505 ASSERT(alen <= sizeof (ira->ira_l2src)); 7506 if (ira->ira_mhip != NULL && 7507 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7508 bcopy(addr, ira->ira_l2src, alen); 7509 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7510 (addr = ill->ill_phys_addr) != NULL) { 7511 bcopy(addr, ira->ira_l2src, alen); 7512 } else { 7513 bzero(ira->ira_l2src, alen); 7514 } 7515 ira->ira_flags |= IRAF_L2SRC_SET; 7516 } 7517 7518 /* 7519 * check ip header length and align it. 7520 */ 7521 mblk_t * 7522 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7523 { 7524 ill_t *ill = ira->ira_ill; 7525 ssize_t len; 7526 7527 len = MBLKL(mp); 7528 7529 if (!OK_32PTR(mp->b_rptr)) 7530 IP_STAT(ill->ill_ipst, ip_notaligned); 7531 else 7532 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7533 7534 /* Guard against bogus device drivers */ 7535 if (len < 0) { 7536 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7537 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7538 freemsg(mp); 7539 return (NULL); 7540 } 7541 7542 if (len == 0) { 7543 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7544 mblk_t *mp1 = mp->b_cont; 7545 7546 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7547 ip_setl2src(mp, ira, ira->ira_rill); 7548 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7549 7550 freeb(mp); 7551 mp = mp1; 7552 if (mp == NULL) 7553 return (NULL); 7554 7555 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7556 return (mp); 7557 } 7558 if (ip_pullup(mp, min_size, ira) == NULL) { 7559 if (msgdsize(mp) < min_size) { 7560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7561 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7562 } else { 7563 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7564 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7565 } 7566 freemsg(mp); 7567 return (NULL); 7568 } 7569 return (mp); 7570 } 7571 7572 /* 7573 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7574 */ 7575 mblk_t * 7576 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7577 uint_t min_size, ip_recv_attr_t *ira) 7578 { 7579 ill_t *ill = ira->ira_ill; 7580 7581 /* 7582 * Make sure we have data length consistent 7583 * with the IP header. 7584 */ 7585 if (mp->b_cont == NULL) { 7586 /* pkt_len is based on ipha_len, not the mblk length */ 7587 if (pkt_len < min_size) { 7588 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7589 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7590 freemsg(mp); 7591 return (NULL); 7592 } 7593 if (len < 0) { 7594 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7595 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7596 freemsg(mp); 7597 return (NULL); 7598 } 7599 /* Drop any pad */ 7600 mp->b_wptr = rptr + pkt_len; 7601 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7602 ASSERT(pkt_len >= min_size); 7603 if (pkt_len < min_size) { 7604 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7605 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7606 freemsg(mp); 7607 return (NULL); 7608 } 7609 if (len < 0) { 7610 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7611 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7612 freemsg(mp); 7613 return (NULL); 7614 } 7615 /* Drop any pad */ 7616 (void) adjmsg(mp, -len); 7617 /* 7618 * adjmsg may have freed an mblk from the chain, hence 7619 * invalidate any hw checksum here. This will force IP to 7620 * calculate the checksum in sw, but only for this packet. 7621 */ 7622 DB_CKSUMFLAGS(mp) = 0; 7623 IP_STAT(ill->ill_ipst, ip_multimblk); 7624 } 7625 return (mp); 7626 } 7627 7628 /* 7629 * Check that the IPv4 opt_len is consistent with the packet and pullup 7630 * the options. 7631 */ 7632 mblk_t * 7633 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7634 ip_recv_attr_t *ira) 7635 { 7636 ill_t *ill = ira->ira_ill; 7637 ssize_t len; 7638 7639 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7640 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7641 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7642 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7643 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7644 freemsg(mp); 7645 return (NULL); 7646 } 7647 7648 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7649 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7650 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7651 freemsg(mp); 7652 return (NULL); 7653 } 7654 /* 7655 * Recompute complete header length and make sure we 7656 * have access to all of it. 7657 */ 7658 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7659 if (len > (mp->b_wptr - mp->b_rptr)) { 7660 if (len > pkt_len) { 7661 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7662 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7663 freemsg(mp); 7664 return (NULL); 7665 } 7666 if (ip_pullup(mp, len, ira) == NULL) { 7667 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7668 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7669 freemsg(mp); 7670 return (NULL); 7671 } 7672 } 7673 return (mp); 7674 } 7675 7676 /* 7677 * Returns a new ire, or the same ire, or NULL. 7678 * If a different IRE is returned, then it is held; the caller 7679 * needs to release it. 7680 * In no case is there any hold/release on the ire argument. 7681 */ 7682 ire_t * 7683 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7684 { 7685 ire_t *new_ire; 7686 ill_t *ire_ill; 7687 uint_t ifindex; 7688 ip_stack_t *ipst = ill->ill_ipst; 7689 boolean_t strict_check = B_FALSE; 7690 7691 /* 7692 * IPMP common case: if IRE and ILL are in the same group, there's no 7693 * issue (e.g. packet received on an underlying interface matched an 7694 * IRE_LOCAL on its associated group interface). 7695 */ 7696 ASSERT(ire->ire_ill != NULL); 7697 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7698 return (ire); 7699 7700 /* 7701 * Do another ire lookup here, using the ingress ill, to see if the 7702 * interface is in a usesrc group. 7703 * As long as the ills belong to the same group, we don't consider 7704 * them to be arriving on the wrong interface. Thus, if the switch 7705 * is doing inbound load spreading, we won't drop packets when the 7706 * ip*_strict_dst_multihoming switch is on. 7707 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7708 * where the local address may not be unique. In this case we were 7709 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7710 * actually returned. The new lookup, which is more specific, should 7711 * only find the IRE_LOCAL associated with the ingress ill if one 7712 * exists. 7713 */ 7714 if (ire->ire_ipversion == IPV4_VERSION) { 7715 if (ipst->ips_ip_strict_dst_multihoming) 7716 strict_check = B_TRUE; 7717 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7718 IRE_LOCAL, ill, ALL_ZONES, NULL, 7719 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7720 } else { 7721 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7722 if (ipst->ips_ipv6_strict_dst_multihoming) 7723 strict_check = B_TRUE; 7724 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7725 IRE_LOCAL, ill, ALL_ZONES, NULL, 7726 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7727 } 7728 /* 7729 * If the same ire that was returned in ip_input() is found then this 7730 * is an indication that usesrc groups are in use. The packet 7731 * arrived on a different ill in the group than the one associated with 7732 * the destination address. If a different ire was found then the same 7733 * IP address must be hosted on multiple ills. This is possible with 7734 * unnumbered point2point interfaces. We switch to use this new ire in 7735 * order to have accurate interface statistics. 7736 */ 7737 if (new_ire != NULL) { 7738 /* Note: held in one case but not the other? Caller handles */ 7739 if (new_ire != ire) 7740 return (new_ire); 7741 /* Unchanged */ 7742 ire_refrele(new_ire); 7743 return (ire); 7744 } 7745 7746 /* 7747 * Chase pointers once and store locally. 7748 */ 7749 ASSERT(ire->ire_ill != NULL); 7750 ire_ill = ire->ire_ill; 7751 ifindex = ill->ill_usesrc_ifindex; 7752 7753 /* 7754 * Check if it's a legal address on the 'usesrc' interface. 7755 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7756 * can just check phyint_ifindex. 7757 */ 7758 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7759 return (ire); 7760 } 7761 7762 /* 7763 * If the ip*_strict_dst_multihoming switch is on then we can 7764 * only accept this packet if the interface is marked as routing. 7765 */ 7766 if (!(strict_check)) 7767 return (ire); 7768 7769 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7770 return (ire); 7771 } 7772 return (NULL); 7773 } 7774 7775 /* 7776 * This function is used to construct a mac_header_info_s from a 7777 * DL_UNITDATA_IND message. 7778 * The address fields in the mhi structure points into the message, 7779 * thus the caller can't use those fields after freeing the message. 7780 * 7781 * We determine whether the packet received is a non-unicast packet 7782 * and in doing so, determine whether or not it is broadcast vs multicast. 7783 * For it to be a broadcast packet, we must have the appropriate mblk_t 7784 * hanging off the ill_t. If this is either not present or doesn't match 7785 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7786 * to be multicast. Thus NICs that have no broadcast address (or no 7787 * capability for one, such as point to point links) cannot return as 7788 * the packet being broadcast. 7789 */ 7790 void 7791 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7792 { 7793 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7794 mblk_t *bmp; 7795 uint_t extra_offset; 7796 7797 bzero(mhip, sizeof (struct mac_header_info_s)); 7798 7799 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7800 7801 if (ill->ill_sap_length < 0) 7802 extra_offset = 0; 7803 else 7804 extra_offset = ill->ill_sap_length; 7805 7806 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7807 extra_offset; 7808 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7809 extra_offset; 7810 7811 if (!ind->dl_group_address) 7812 return; 7813 7814 /* Multicast or broadcast */ 7815 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7816 7817 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7818 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7819 (bmp = ill->ill_bcast_mp) != NULL) { 7820 dl_unitdata_req_t *dlur; 7821 uint8_t *bphys_addr; 7822 7823 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7824 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7825 extra_offset; 7826 7827 if (bcmp(mhip->mhi_daddr, bphys_addr, 7828 ind->dl_dest_addr_length) == 0) 7829 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7830 } 7831 } 7832 7833 /* 7834 * This function is used to construct a mac_header_info_s from a 7835 * M_DATA fastpath message from a DLPI driver. 7836 * The address fields in the mhi structure points into the message, 7837 * thus the caller can't use those fields after freeing the message. 7838 * 7839 * We determine whether the packet received is a non-unicast packet 7840 * and in doing so, determine whether or not it is broadcast vs multicast. 7841 * For it to be a broadcast packet, we must have the appropriate mblk_t 7842 * hanging off the ill_t. If this is either not present or doesn't match 7843 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7844 * to be multicast. Thus NICs that have no broadcast address (or no 7845 * capability for one, such as point to point links) cannot return as 7846 * the packet being broadcast. 7847 */ 7848 void 7849 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7850 { 7851 mblk_t *bmp; 7852 struct ether_header *pether; 7853 7854 bzero(mhip, sizeof (struct mac_header_info_s)); 7855 7856 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7857 7858 pether = (struct ether_header *)((char *)mp->b_rptr 7859 - sizeof (struct ether_header)); 7860 7861 /* 7862 * Make sure the interface is an ethernet type, since we don't 7863 * know the header format for anything but Ethernet. Also make 7864 * sure we are pointing correctly above db_base. 7865 */ 7866 if (ill->ill_type != IFT_ETHER) 7867 return; 7868 7869 retry: 7870 if ((uchar_t *)pether < mp->b_datap->db_base) 7871 return; 7872 7873 /* Is there a VLAN tag? */ 7874 if (ill->ill_isv6) { 7875 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7876 pether = (struct ether_header *)((char *)pether - 4); 7877 goto retry; 7878 } 7879 } else { 7880 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7881 pether = (struct ether_header *)((char *)pether - 4); 7882 goto retry; 7883 } 7884 } 7885 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7886 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7887 7888 if (!(mhip->mhi_daddr[0] & 0x01)) 7889 return; 7890 7891 /* Multicast or broadcast */ 7892 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7893 7894 if ((bmp = ill->ill_bcast_mp) != NULL) { 7895 dl_unitdata_req_t *dlur; 7896 uint8_t *bphys_addr; 7897 uint_t addrlen; 7898 7899 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7900 addrlen = dlur->dl_dest_addr_length; 7901 if (ill->ill_sap_length < 0) { 7902 bphys_addr = (uchar_t *)dlur + 7903 dlur->dl_dest_addr_offset; 7904 addrlen += ill->ill_sap_length; 7905 } else { 7906 bphys_addr = (uchar_t *)dlur + 7907 dlur->dl_dest_addr_offset + 7908 ill->ill_sap_length; 7909 addrlen -= ill->ill_sap_length; 7910 } 7911 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7912 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7913 } 7914 } 7915 7916 /* 7917 * Handle anything but M_DATA messages 7918 * We see the DL_UNITDATA_IND which are part 7919 * of the data path, and also the other messages from the driver. 7920 */ 7921 void 7922 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7923 { 7924 mblk_t *first_mp; 7925 struct iocblk *iocp; 7926 struct mac_header_info_s mhi; 7927 7928 switch (DB_TYPE(mp)) { 7929 case M_PROTO: 7930 case M_PCPROTO: { 7931 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7932 DL_UNITDATA_IND) { 7933 /* Go handle anything other than data elsewhere. */ 7934 ip_rput_dlpi(ill, mp); 7935 return; 7936 } 7937 7938 first_mp = mp; 7939 mp = first_mp->b_cont; 7940 first_mp->b_cont = NULL; 7941 7942 if (mp == NULL) { 7943 freeb(first_mp); 7944 return; 7945 } 7946 ip_dlur_to_mhi(ill, first_mp, &mhi); 7947 if (ill->ill_isv6) 7948 ip_input_v6(ill, NULL, mp, &mhi); 7949 else 7950 ip_input(ill, NULL, mp, &mhi); 7951 7952 /* Ditch the DLPI header. */ 7953 freeb(first_mp); 7954 return; 7955 } 7956 case M_IOCACK: 7957 iocp = (struct iocblk *)mp->b_rptr; 7958 switch (iocp->ioc_cmd) { 7959 case DL_IOC_HDR_INFO: 7960 ill_fastpath_ack(ill, mp); 7961 return; 7962 default: 7963 putnext(ill->ill_rq, mp); 7964 return; 7965 } 7966 /* FALLTHRU */ 7967 case M_ERROR: 7968 case M_HANGUP: 7969 mutex_enter(&ill->ill_lock); 7970 if (ill->ill_state_flags & ILL_CONDEMNED) { 7971 mutex_exit(&ill->ill_lock); 7972 freemsg(mp); 7973 return; 7974 } 7975 ill_refhold_locked(ill); 7976 mutex_exit(&ill->ill_lock); 7977 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7978 B_FALSE); 7979 return; 7980 case M_CTL: 7981 putnext(ill->ill_rq, mp); 7982 return; 7983 case M_IOCNAK: 7984 ip1dbg(("got iocnak ")); 7985 iocp = (struct iocblk *)mp->b_rptr; 7986 switch (iocp->ioc_cmd) { 7987 case DL_IOC_HDR_INFO: 7988 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7989 return; 7990 default: 7991 break; 7992 } 7993 /* FALLTHRU */ 7994 default: 7995 putnext(ill->ill_rq, mp); 7996 return; 7997 } 7998 } 7999 8000 /* Read side put procedure. Packets coming from the wire arrive here. */ 8001 void 8002 ip_rput(queue_t *q, mblk_t *mp) 8003 { 8004 ill_t *ill; 8005 union DL_primitives *dl; 8006 8007 ill = (ill_t *)q->q_ptr; 8008 8009 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8010 /* 8011 * If things are opening or closing, only accept high-priority 8012 * DLPI messages. (On open ill->ill_ipif has not yet been 8013 * created; on close, things hanging off the ill may have been 8014 * freed already.) 8015 */ 8016 dl = (union DL_primitives *)mp->b_rptr; 8017 if (DB_TYPE(mp) != M_PCPROTO || 8018 dl->dl_primitive == DL_UNITDATA_IND) { 8019 inet_freemsg(mp); 8020 return; 8021 } 8022 } 8023 if (DB_TYPE(mp) == M_DATA) { 8024 struct mac_header_info_s mhi; 8025 8026 ip_mdata_to_mhi(ill, mp, &mhi); 8027 ip_input(ill, NULL, mp, &mhi); 8028 } else { 8029 ip_rput_notdata(ill, mp); 8030 } 8031 } 8032 8033 /* 8034 * Move the information to a copy. 8035 */ 8036 mblk_t * 8037 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8038 { 8039 mblk_t *mp1; 8040 ill_t *ill = ira->ira_ill; 8041 ip_stack_t *ipst = ill->ill_ipst; 8042 8043 IP_STAT(ipst, ip_db_ref); 8044 8045 /* Make sure we have ira_l2src before we loose the original mblk */ 8046 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8047 ip_setl2src(mp, ira, ira->ira_rill); 8048 8049 mp1 = copymsg(mp); 8050 if (mp1 == NULL) { 8051 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8052 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8053 freemsg(mp); 8054 return (NULL); 8055 } 8056 /* preserve the hardware checksum flags and data, if present */ 8057 if (DB_CKSUMFLAGS(mp) != 0) { 8058 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8059 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8060 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8061 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8062 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8063 } 8064 freemsg(mp); 8065 return (mp1); 8066 } 8067 8068 static void 8069 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8070 t_uscalar_t err) 8071 { 8072 if (dl_err == DL_SYSERR) { 8073 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8074 "%s: %s failed: DL_SYSERR (errno %u)\n", 8075 ill->ill_name, dl_primstr(prim), err); 8076 return; 8077 } 8078 8079 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8080 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8081 dl_errstr(dl_err)); 8082 } 8083 8084 /* 8085 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8086 * than DL_UNITDATA_IND messages. If we need to process this message 8087 * exclusively, we call qwriter_ip, in which case we also need to call 8088 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8089 */ 8090 void 8091 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8092 { 8093 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8094 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8095 queue_t *q = ill->ill_rq; 8096 t_uscalar_t prim = dloa->dl_primitive; 8097 t_uscalar_t reqprim = DL_PRIM_INVAL; 8098 8099 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8100 char *, dl_primstr(prim), ill_t *, ill); 8101 ip1dbg(("ip_rput_dlpi")); 8102 8103 /* 8104 * If we received an ACK but didn't send a request for it, then it 8105 * can't be part of any pending operation; discard up-front. 8106 */ 8107 switch (prim) { 8108 case DL_ERROR_ACK: 8109 reqprim = dlea->dl_error_primitive; 8110 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8111 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8112 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8113 dlea->dl_unix_errno)); 8114 break; 8115 case DL_OK_ACK: 8116 reqprim = dloa->dl_correct_primitive; 8117 break; 8118 case DL_INFO_ACK: 8119 reqprim = DL_INFO_REQ; 8120 break; 8121 case DL_BIND_ACK: 8122 reqprim = DL_BIND_REQ; 8123 break; 8124 case DL_PHYS_ADDR_ACK: 8125 reqprim = DL_PHYS_ADDR_REQ; 8126 break; 8127 case DL_NOTIFY_ACK: 8128 reqprim = DL_NOTIFY_REQ; 8129 break; 8130 case DL_CAPABILITY_ACK: 8131 reqprim = DL_CAPABILITY_REQ; 8132 break; 8133 } 8134 8135 if (prim != DL_NOTIFY_IND) { 8136 if (reqprim == DL_PRIM_INVAL || 8137 !ill_dlpi_pending(ill, reqprim)) { 8138 /* Not a DLPI message we support or expected */ 8139 freemsg(mp); 8140 return; 8141 } 8142 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8143 dl_primstr(reqprim))); 8144 } 8145 8146 switch (reqprim) { 8147 case DL_UNBIND_REQ: 8148 /* 8149 * NOTE: we mark the unbind as complete even if we got a 8150 * DL_ERROR_ACK, since there's not much else we can do. 8151 */ 8152 mutex_enter(&ill->ill_lock); 8153 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8154 cv_signal(&ill->ill_cv); 8155 mutex_exit(&ill->ill_lock); 8156 break; 8157 8158 case DL_ENABMULTI_REQ: 8159 if (prim == DL_OK_ACK) { 8160 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8161 ill->ill_dlpi_multicast_state = IDS_OK; 8162 } 8163 break; 8164 } 8165 8166 /* 8167 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8168 * need to become writer to continue to process it. Because an 8169 * exclusive operation doesn't complete until replies to all queued 8170 * DLPI messages have been received, we know we're in the middle of an 8171 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8172 * 8173 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8174 * Since this is on the ill stream we unconditionally bump up the 8175 * refcount without doing ILL_CAN_LOOKUP(). 8176 */ 8177 ill_refhold(ill); 8178 if (prim == DL_NOTIFY_IND) 8179 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8180 else 8181 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8182 } 8183 8184 /* 8185 * Handling of DLPI messages that require exclusive access to the ipsq. 8186 * 8187 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8188 * happen here. (along with mi_copy_done) 8189 */ 8190 /* ARGSUSED */ 8191 static void 8192 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8193 { 8194 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8195 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8196 int err = 0; 8197 ill_t *ill = (ill_t *)q->q_ptr; 8198 ipif_t *ipif = NULL; 8199 mblk_t *mp1 = NULL; 8200 conn_t *connp = NULL; 8201 t_uscalar_t paddrreq; 8202 mblk_t *mp_hw; 8203 boolean_t success; 8204 boolean_t ioctl_aborted = B_FALSE; 8205 boolean_t log = B_TRUE; 8206 8207 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8208 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8209 8210 ip1dbg(("ip_rput_dlpi_writer ..")); 8211 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8212 ASSERT(IAM_WRITER_ILL(ill)); 8213 8214 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8215 /* 8216 * The current ioctl could have been aborted by the user and a new 8217 * ioctl to bring up another ill could have started. We could still 8218 * get a response from the driver later. 8219 */ 8220 if (ipif != NULL && ipif->ipif_ill != ill) 8221 ioctl_aborted = B_TRUE; 8222 8223 switch (dloa->dl_primitive) { 8224 case DL_ERROR_ACK: 8225 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8226 dl_primstr(dlea->dl_error_primitive))); 8227 8228 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8229 char *, dl_primstr(dlea->dl_error_primitive), 8230 ill_t *, ill); 8231 8232 switch (dlea->dl_error_primitive) { 8233 case DL_DISABMULTI_REQ: 8234 ill_dlpi_done(ill, dlea->dl_error_primitive); 8235 break; 8236 case DL_PROMISCON_REQ: 8237 case DL_PROMISCOFF_REQ: 8238 case DL_UNBIND_REQ: 8239 case DL_ATTACH_REQ: 8240 case DL_INFO_REQ: 8241 ill_dlpi_done(ill, dlea->dl_error_primitive); 8242 break; 8243 case DL_NOTIFY_REQ: 8244 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8245 log = B_FALSE; 8246 break; 8247 case DL_PHYS_ADDR_REQ: 8248 /* 8249 * For IPv6 only, there are two additional 8250 * phys_addr_req's sent to the driver to get the 8251 * IPv6 token and lla. This allows IP to acquire 8252 * the hardware address format for a given interface 8253 * without having built in knowledge of the hardware 8254 * address. ill_phys_addr_pend keeps track of the last 8255 * DL_PAR sent so we know which response we are 8256 * dealing with. ill_dlpi_done will update 8257 * ill_phys_addr_pend when it sends the next req. 8258 * We don't complete the IOCTL until all three DL_PARs 8259 * have been attempted, so set *_len to 0 and break. 8260 */ 8261 paddrreq = ill->ill_phys_addr_pend; 8262 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8263 if (paddrreq == DL_IPV6_TOKEN) { 8264 ill->ill_token_length = 0; 8265 log = B_FALSE; 8266 break; 8267 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8268 ill->ill_nd_lla_len = 0; 8269 log = B_FALSE; 8270 break; 8271 } 8272 /* 8273 * Something went wrong with the DL_PHYS_ADDR_REQ. 8274 * We presumably have an IOCTL hanging out waiting 8275 * for completion. Find it and complete the IOCTL 8276 * with the error noted. 8277 * However, ill_dl_phys was called on an ill queue 8278 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8279 * set. But the ioctl is known to be pending on ill_wq. 8280 */ 8281 if (!ill->ill_ifname_pending) 8282 break; 8283 ill->ill_ifname_pending = 0; 8284 if (!ioctl_aborted) 8285 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8286 if (mp1 != NULL) { 8287 /* 8288 * This operation (SIOCSLIFNAME) must have 8289 * happened on the ill. Assert there is no conn 8290 */ 8291 ASSERT(connp == NULL); 8292 q = ill->ill_wq; 8293 } 8294 break; 8295 case DL_BIND_REQ: 8296 ill_dlpi_done(ill, DL_BIND_REQ); 8297 if (ill->ill_ifname_pending) 8298 break; 8299 mutex_enter(&ill->ill_lock); 8300 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8301 mutex_exit(&ill->ill_lock); 8302 /* 8303 * Something went wrong with the bind. We presumably 8304 * have an IOCTL hanging out waiting for completion. 8305 * Find it, take down the interface that was coming 8306 * up, and complete the IOCTL with the error noted. 8307 */ 8308 if (!ioctl_aborted) 8309 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8310 if (mp1 != NULL) { 8311 /* 8312 * This might be a result of a DL_NOTE_REPLUMB 8313 * notification. In that case, connp is NULL. 8314 */ 8315 if (connp != NULL) 8316 q = CONNP_TO_WQ(connp); 8317 8318 (void) ipif_down(ipif, NULL, NULL); 8319 /* error is set below the switch */ 8320 } 8321 break; 8322 case DL_ENABMULTI_REQ: 8323 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8324 8325 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8326 ill->ill_dlpi_multicast_state = IDS_FAILED; 8327 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8328 8329 printf("ip: joining multicasts failed (%d)" 8330 " on %s - will use link layer " 8331 "broadcasts for multicast\n", 8332 dlea->dl_errno, ill->ill_name); 8333 8334 /* 8335 * Set up for multi_bcast; We are the 8336 * writer, so ok to access ill->ill_ipif 8337 * without any lock. 8338 */ 8339 mutex_enter(&ill->ill_phyint->phyint_lock); 8340 ill->ill_phyint->phyint_flags |= 8341 PHYI_MULTI_BCAST; 8342 mutex_exit(&ill->ill_phyint->phyint_lock); 8343 8344 } 8345 freemsg(mp); /* Don't want to pass this up */ 8346 return; 8347 case DL_CAPABILITY_REQ: 8348 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8349 "DL_CAPABILITY REQ\n")); 8350 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8351 ill->ill_dlpi_capab_state = IDCS_FAILED; 8352 ill_capability_done(ill); 8353 freemsg(mp); 8354 return; 8355 } 8356 /* 8357 * Note the error for IOCTL completion (mp1 is set when 8358 * ready to complete ioctl). If ill_ifname_pending_err is 8359 * set, an error occured during plumbing (ill_ifname_pending), 8360 * so we want to report that error. 8361 * 8362 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8363 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8364 * expected to get errack'd if the driver doesn't support 8365 * these flags (e.g. ethernet). log will be set to B_FALSE 8366 * if these error conditions are encountered. 8367 */ 8368 if (mp1 != NULL) { 8369 if (ill->ill_ifname_pending_err != 0) { 8370 err = ill->ill_ifname_pending_err; 8371 ill->ill_ifname_pending_err = 0; 8372 } else { 8373 err = dlea->dl_unix_errno ? 8374 dlea->dl_unix_errno : ENXIO; 8375 } 8376 /* 8377 * If we're plumbing an interface and an error hasn't already 8378 * been saved, set ill_ifname_pending_err to the error passed 8379 * up. Ignore the error if log is B_FALSE (see comment above). 8380 */ 8381 } else if (log && ill->ill_ifname_pending && 8382 ill->ill_ifname_pending_err == 0) { 8383 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8384 dlea->dl_unix_errno : ENXIO; 8385 } 8386 8387 if (log) 8388 ip_dlpi_error(ill, dlea->dl_error_primitive, 8389 dlea->dl_errno, dlea->dl_unix_errno); 8390 break; 8391 case DL_CAPABILITY_ACK: 8392 ill_capability_ack(ill, mp); 8393 /* 8394 * The message has been handed off to ill_capability_ack 8395 * and must not be freed below 8396 */ 8397 mp = NULL; 8398 break; 8399 8400 case DL_INFO_ACK: 8401 /* Call a routine to handle this one. */ 8402 ill_dlpi_done(ill, DL_INFO_REQ); 8403 ip_ll_subnet_defaults(ill, mp); 8404 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8405 return; 8406 case DL_BIND_ACK: 8407 /* 8408 * We should have an IOCTL waiting on this unless 8409 * sent by ill_dl_phys, in which case just return 8410 */ 8411 ill_dlpi_done(ill, DL_BIND_REQ); 8412 8413 if (ill->ill_ifname_pending) { 8414 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8415 ill_t *, ill, mblk_t *, mp); 8416 break; 8417 } 8418 mutex_enter(&ill->ill_lock); 8419 ill->ill_dl_up = 1; 8420 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8421 mutex_exit(&ill->ill_lock); 8422 8423 if (!ioctl_aborted) 8424 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8425 if (mp1 == NULL) { 8426 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8427 break; 8428 } 8429 /* 8430 * mp1 was added by ill_dl_up(). if that is a result of 8431 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8432 */ 8433 if (connp != NULL) 8434 q = CONNP_TO_WQ(connp); 8435 /* 8436 * We are exclusive. So nothing can change even after 8437 * we get the pending mp. 8438 */ 8439 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8440 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8441 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8442 8443 /* 8444 * Now bring up the resolver; when that is complete, we'll 8445 * create IREs. Note that we intentionally mirror what 8446 * ipif_up() would have done, because we got here by way of 8447 * ill_dl_up(), which stopped ipif_up()'s processing. 8448 */ 8449 if (ill->ill_isv6) { 8450 /* 8451 * v6 interfaces. 8452 * Unlike ARP which has to do another bind 8453 * and attach, once we get here we are 8454 * done with NDP 8455 */ 8456 (void) ipif_resolver_up(ipif, Res_act_initial); 8457 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8458 err = ipif_up_done_v6(ipif); 8459 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8460 /* 8461 * ARP and other v4 external resolvers. 8462 * Leave the pending mblk intact so that 8463 * the ioctl completes in ip_rput(). 8464 */ 8465 if (connp != NULL) 8466 mutex_enter(&connp->conn_lock); 8467 mutex_enter(&ill->ill_lock); 8468 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8469 mutex_exit(&ill->ill_lock); 8470 if (connp != NULL) 8471 mutex_exit(&connp->conn_lock); 8472 if (success) { 8473 err = ipif_resolver_up(ipif, Res_act_initial); 8474 if (err == EINPROGRESS) { 8475 freemsg(mp); 8476 return; 8477 } 8478 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8479 } else { 8480 /* The conn has started closing */ 8481 err = EINTR; 8482 } 8483 } else { 8484 /* 8485 * This one is complete. Reply to pending ioctl. 8486 */ 8487 (void) ipif_resolver_up(ipif, Res_act_initial); 8488 err = ipif_up_done(ipif); 8489 } 8490 8491 if ((err == 0) && (ill->ill_up_ipifs)) { 8492 err = ill_up_ipifs(ill, q, mp1); 8493 if (err == EINPROGRESS) { 8494 freemsg(mp); 8495 return; 8496 } 8497 } 8498 8499 /* 8500 * If we have a moved ipif to bring up, and everything has 8501 * succeeded to this point, bring it up on the IPMP ill. 8502 * Otherwise, leave it down -- the admin can try to bring it 8503 * up by hand if need be. 8504 */ 8505 if (ill->ill_move_ipif != NULL) { 8506 if (err != 0) { 8507 ill->ill_move_ipif = NULL; 8508 } else { 8509 ipif = ill->ill_move_ipif; 8510 ill->ill_move_ipif = NULL; 8511 err = ipif_up(ipif, q, mp1); 8512 if (err == EINPROGRESS) { 8513 freemsg(mp); 8514 return; 8515 } 8516 } 8517 } 8518 break; 8519 8520 case DL_NOTIFY_IND: { 8521 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8522 uint_t orig_mtu, orig_mc_mtu; 8523 8524 switch (notify->dl_notification) { 8525 case DL_NOTE_PHYS_ADDR: 8526 err = ill_set_phys_addr(ill, mp); 8527 break; 8528 8529 case DL_NOTE_REPLUMB: 8530 /* 8531 * Directly return after calling ill_replumb(). 8532 * Note that we should not free mp as it is reused 8533 * in the ill_replumb() function. 8534 */ 8535 err = ill_replumb(ill, mp); 8536 return; 8537 8538 case DL_NOTE_FASTPATH_FLUSH: 8539 nce_flush(ill, B_FALSE); 8540 break; 8541 8542 case DL_NOTE_SDU_SIZE: 8543 case DL_NOTE_SDU_SIZE2: 8544 /* 8545 * The dce and fragmentation code can cope with 8546 * this changing while packets are being sent. 8547 * When packets are sent ip_output will discover 8548 * a change. 8549 * 8550 * Change the MTU size of the interface. 8551 */ 8552 mutex_enter(&ill->ill_lock); 8553 orig_mtu = ill->ill_mtu; 8554 orig_mc_mtu = ill->ill_mc_mtu; 8555 switch (notify->dl_notification) { 8556 case DL_NOTE_SDU_SIZE: 8557 ill->ill_current_frag = 8558 (uint_t)notify->dl_data; 8559 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8560 break; 8561 case DL_NOTE_SDU_SIZE2: 8562 ill->ill_current_frag = 8563 (uint_t)notify->dl_data1; 8564 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8565 break; 8566 } 8567 if (ill->ill_current_frag > ill->ill_max_frag) 8568 ill->ill_max_frag = ill->ill_current_frag; 8569 8570 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8571 ill->ill_mtu = ill->ill_current_frag; 8572 8573 /* 8574 * If ill_user_mtu was set (via 8575 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8576 */ 8577 if (ill->ill_user_mtu != 0 && 8578 ill->ill_user_mtu < ill->ill_mtu) 8579 ill->ill_mtu = ill->ill_user_mtu; 8580 8581 if (ill->ill_user_mtu != 0 && 8582 ill->ill_user_mtu < ill->ill_mc_mtu) 8583 ill->ill_mc_mtu = ill->ill_user_mtu; 8584 8585 if (ill->ill_isv6) { 8586 if (ill->ill_mtu < IPV6_MIN_MTU) 8587 ill->ill_mtu = IPV6_MIN_MTU; 8588 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8589 ill->ill_mc_mtu = IPV6_MIN_MTU; 8590 } else { 8591 if (ill->ill_mtu < IP_MIN_MTU) 8592 ill->ill_mtu = IP_MIN_MTU; 8593 if (ill->ill_mc_mtu < IP_MIN_MTU) 8594 ill->ill_mc_mtu = IP_MIN_MTU; 8595 } 8596 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8597 ill->ill_mc_mtu = ill->ill_mtu; 8598 } 8599 8600 mutex_exit(&ill->ill_lock); 8601 /* 8602 * Make sure all dce_generation checks find out 8603 * that ill_mtu/ill_mc_mtu has changed. 8604 */ 8605 if (orig_mtu != ill->ill_mtu || 8606 orig_mc_mtu != ill->ill_mc_mtu) { 8607 dce_increment_all_generations(ill->ill_isv6, 8608 ill->ill_ipst); 8609 } 8610 8611 /* 8612 * Refresh IPMP meta-interface MTU if necessary. 8613 */ 8614 if (IS_UNDER_IPMP(ill)) 8615 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8616 break; 8617 8618 case DL_NOTE_LINK_UP: 8619 case DL_NOTE_LINK_DOWN: { 8620 /* 8621 * We are writer. ill / phyint / ipsq assocs stable. 8622 * The RUNNING flag reflects the state of the link. 8623 */ 8624 phyint_t *phyint = ill->ill_phyint; 8625 uint64_t new_phyint_flags; 8626 boolean_t changed = B_FALSE; 8627 boolean_t went_up; 8628 8629 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8630 mutex_enter(&phyint->phyint_lock); 8631 8632 new_phyint_flags = went_up ? 8633 phyint->phyint_flags | PHYI_RUNNING : 8634 phyint->phyint_flags & ~PHYI_RUNNING; 8635 8636 if (IS_IPMP(ill)) { 8637 new_phyint_flags = went_up ? 8638 new_phyint_flags & ~PHYI_FAILED : 8639 new_phyint_flags | PHYI_FAILED; 8640 } 8641 8642 if (new_phyint_flags != phyint->phyint_flags) { 8643 phyint->phyint_flags = new_phyint_flags; 8644 changed = B_TRUE; 8645 } 8646 mutex_exit(&phyint->phyint_lock); 8647 /* 8648 * ill_restart_dad handles the DAD restart and routing 8649 * socket notification logic. 8650 */ 8651 if (changed) { 8652 ill_restart_dad(phyint->phyint_illv4, went_up); 8653 ill_restart_dad(phyint->phyint_illv6, went_up); 8654 } 8655 break; 8656 } 8657 case DL_NOTE_PROMISC_ON_PHYS: { 8658 phyint_t *phyint = ill->ill_phyint; 8659 8660 mutex_enter(&phyint->phyint_lock); 8661 phyint->phyint_flags |= PHYI_PROMISC; 8662 mutex_exit(&phyint->phyint_lock); 8663 break; 8664 } 8665 case DL_NOTE_PROMISC_OFF_PHYS: { 8666 phyint_t *phyint = ill->ill_phyint; 8667 8668 mutex_enter(&phyint->phyint_lock); 8669 phyint->phyint_flags &= ~PHYI_PROMISC; 8670 mutex_exit(&phyint->phyint_lock); 8671 break; 8672 } 8673 case DL_NOTE_CAPAB_RENEG: 8674 /* 8675 * Something changed on the driver side. 8676 * It wants us to renegotiate the capabilities 8677 * on this ill. One possible cause is the aggregation 8678 * interface under us where a port got added or 8679 * went away. 8680 * 8681 * If the capability negotiation is already done 8682 * or is in progress, reset the capabilities and 8683 * mark the ill's ill_capab_reneg to be B_TRUE, 8684 * so that when the ack comes back, we can start 8685 * the renegotiation process. 8686 * 8687 * Note that if ill_capab_reneg is already B_TRUE 8688 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8689 * the capability resetting request has been sent 8690 * and the renegotiation has not been started yet; 8691 * nothing needs to be done in this case. 8692 */ 8693 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8694 ill_capability_reset(ill, B_TRUE); 8695 ipsq_current_finish(ipsq); 8696 break; 8697 8698 case DL_NOTE_ALLOWED_IPS: 8699 ill_set_allowed_ips(ill, mp); 8700 break; 8701 default: 8702 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8703 "type 0x%x for DL_NOTIFY_IND\n", 8704 notify->dl_notification)); 8705 break; 8706 } 8707 8708 /* 8709 * As this is an asynchronous operation, we 8710 * should not call ill_dlpi_done 8711 */ 8712 break; 8713 } 8714 case DL_NOTIFY_ACK: { 8715 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8716 8717 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8718 ill->ill_note_link = 1; 8719 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8720 break; 8721 } 8722 case DL_PHYS_ADDR_ACK: { 8723 /* 8724 * As part of plumbing the interface via SIOCSLIFNAME, 8725 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8726 * whose answers we receive here. As each answer is received, 8727 * we call ill_dlpi_done() to dispatch the next request as 8728 * we're processing the current one. Once all answers have 8729 * been received, we use ipsq_pending_mp_get() to dequeue the 8730 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8731 * is invoked from an ill queue, conn_oper_pending_ill is not 8732 * available, but we know the ioctl is pending on ill_wq.) 8733 */ 8734 uint_t paddrlen, paddroff; 8735 uint8_t *addr; 8736 8737 paddrreq = ill->ill_phys_addr_pend; 8738 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8739 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8740 addr = mp->b_rptr + paddroff; 8741 8742 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8743 if (paddrreq == DL_IPV6_TOKEN) { 8744 /* 8745 * bcopy to low-order bits of ill_token 8746 * 8747 * XXX Temporary hack - currently, all known tokens 8748 * are 64 bits, so I'll cheat for the moment. 8749 */ 8750 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8751 ill->ill_token_length = paddrlen; 8752 break; 8753 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8754 ASSERT(ill->ill_nd_lla_mp == NULL); 8755 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8756 mp = NULL; 8757 break; 8758 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8759 ASSERT(ill->ill_dest_addr_mp == NULL); 8760 ill->ill_dest_addr_mp = mp; 8761 ill->ill_dest_addr = addr; 8762 mp = NULL; 8763 if (ill->ill_isv6) { 8764 ill_setdesttoken(ill); 8765 ipif_setdestlinklocal(ill->ill_ipif); 8766 } 8767 break; 8768 } 8769 8770 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8771 ASSERT(ill->ill_phys_addr_mp == NULL); 8772 if (!ill->ill_ifname_pending) 8773 break; 8774 ill->ill_ifname_pending = 0; 8775 if (!ioctl_aborted) 8776 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8777 if (mp1 != NULL) { 8778 ASSERT(connp == NULL); 8779 q = ill->ill_wq; 8780 } 8781 /* 8782 * If any error acks received during the plumbing sequence, 8783 * ill_ifname_pending_err will be set. Break out and send up 8784 * the error to the pending ioctl. 8785 */ 8786 if (ill->ill_ifname_pending_err != 0) { 8787 err = ill->ill_ifname_pending_err; 8788 ill->ill_ifname_pending_err = 0; 8789 break; 8790 } 8791 8792 ill->ill_phys_addr_mp = mp; 8793 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8794 mp = NULL; 8795 8796 /* 8797 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8798 * provider doesn't support physical addresses. We check both 8799 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8800 * not have physical addresses, but historically adversises a 8801 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8802 * its DL_PHYS_ADDR_ACK. 8803 */ 8804 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8805 ill->ill_phys_addr = NULL; 8806 } else if (paddrlen != ill->ill_phys_addr_length) { 8807 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8808 paddrlen, ill->ill_phys_addr_length)); 8809 err = EINVAL; 8810 break; 8811 } 8812 8813 if (ill->ill_nd_lla_mp == NULL) { 8814 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8815 err = ENOMEM; 8816 break; 8817 } 8818 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8819 } 8820 8821 if (ill->ill_isv6) { 8822 ill_setdefaulttoken(ill); 8823 ipif_setlinklocal(ill->ill_ipif); 8824 } 8825 break; 8826 } 8827 case DL_OK_ACK: 8828 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8829 dl_primstr((int)dloa->dl_correct_primitive), 8830 dloa->dl_correct_primitive)); 8831 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8832 char *, dl_primstr(dloa->dl_correct_primitive), 8833 ill_t *, ill); 8834 8835 switch (dloa->dl_correct_primitive) { 8836 case DL_ENABMULTI_REQ: 8837 case DL_DISABMULTI_REQ: 8838 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8839 break; 8840 case DL_PROMISCON_REQ: 8841 case DL_PROMISCOFF_REQ: 8842 case DL_UNBIND_REQ: 8843 case DL_ATTACH_REQ: 8844 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8845 break; 8846 } 8847 break; 8848 default: 8849 break; 8850 } 8851 8852 freemsg(mp); 8853 if (mp1 == NULL) 8854 return; 8855 8856 /* 8857 * The operation must complete without EINPROGRESS since 8858 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8859 * the operation will be stuck forever inside the IPSQ. 8860 */ 8861 ASSERT(err != EINPROGRESS); 8862 8863 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8864 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8865 ipif_t *, NULL); 8866 8867 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8868 case 0: 8869 ipsq_current_finish(ipsq); 8870 break; 8871 8872 case SIOCSLIFNAME: 8873 case IF_UNITSEL: { 8874 ill_t *ill_other = ILL_OTHER(ill); 8875 8876 /* 8877 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8878 * ill has a peer which is in an IPMP group, then place ill 8879 * into the same group. One catch: although ifconfig plumbs 8880 * the appropriate IPMP meta-interface prior to plumbing this 8881 * ill, it is possible for multiple ifconfig applications to 8882 * race (or for another application to adjust plumbing), in 8883 * which case the IPMP meta-interface we need will be missing. 8884 * If so, kick the phyint out of the group. 8885 */ 8886 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8887 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8888 ipmp_illgrp_t *illg; 8889 8890 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8891 if (illg == NULL) 8892 ipmp_phyint_leave_grp(ill->ill_phyint); 8893 else 8894 ipmp_ill_join_illgrp(ill, illg); 8895 } 8896 8897 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8898 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8899 else 8900 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8901 break; 8902 } 8903 case SIOCLIFADDIF: 8904 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8905 break; 8906 8907 default: 8908 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8909 break; 8910 } 8911 } 8912 8913 /* 8914 * ip_rput_other is called by ip_rput to handle messages modifying the global 8915 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8916 */ 8917 /* ARGSUSED */ 8918 void 8919 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8920 { 8921 ill_t *ill = q->q_ptr; 8922 struct iocblk *iocp; 8923 8924 ip1dbg(("ip_rput_other ")); 8925 if (ipsq != NULL) { 8926 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8927 ASSERT(ipsq->ipsq_xop == 8928 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8929 } 8930 8931 switch (mp->b_datap->db_type) { 8932 case M_ERROR: 8933 case M_HANGUP: 8934 /* 8935 * The device has a problem. We force the ILL down. It can 8936 * be brought up again manually using SIOCSIFFLAGS (via 8937 * ifconfig or equivalent). 8938 */ 8939 ASSERT(ipsq != NULL); 8940 if (mp->b_rptr < mp->b_wptr) 8941 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8942 if (ill->ill_error == 0) 8943 ill->ill_error = ENXIO; 8944 if (!ill_down_start(q, mp)) 8945 return; 8946 ipif_all_down_tail(ipsq, q, mp, NULL); 8947 break; 8948 case M_IOCNAK: { 8949 iocp = (struct iocblk *)mp->b_rptr; 8950 8951 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8952 /* 8953 * If this was the first attempt, turn off the fastpath 8954 * probing. 8955 */ 8956 mutex_enter(&ill->ill_lock); 8957 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8958 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8959 mutex_exit(&ill->ill_lock); 8960 /* 8961 * don't flush the nce_t entries: we use them 8962 * as an index to the ncec itself. 8963 */ 8964 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8965 ill->ill_name)); 8966 } else { 8967 mutex_exit(&ill->ill_lock); 8968 } 8969 freemsg(mp); 8970 break; 8971 } 8972 default: 8973 ASSERT(0); 8974 break; 8975 } 8976 } 8977 8978 /* 8979 * Update any source route, record route or timestamp options 8980 * When it fails it has consumed the message and BUMPed the MIB. 8981 */ 8982 boolean_t 8983 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8984 ip_recv_attr_t *ira) 8985 { 8986 ipoptp_t opts; 8987 uchar_t *opt; 8988 uint8_t optval; 8989 uint8_t optlen; 8990 ipaddr_t dst; 8991 ipaddr_t ifaddr; 8992 uint32_t ts; 8993 timestruc_t now; 8994 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8995 8996 ip2dbg(("ip_forward_options\n")); 8997 dst = ipha->ipha_dst; 8998 for (optval = ipoptp_first(&opts, ipha); 8999 optval != IPOPT_EOL; 9000 optval = ipoptp_next(&opts)) { 9001 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9002 opt = opts.ipoptp_cur; 9003 optlen = opts.ipoptp_len; 9004 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9005 optval, opts.ipoptp_len)); 9006 switch (optval) { 9007 uint32_t off; 9008 case IPOPT_SSRR: 9009 case IPOPT_LSRR: 9010 /* Check if adminstratively disabled */ 9011 if (!ipst->ips_ip_forward_src_routed) { 9012 BUMP_MIB(dst_ill->ill_ip_mib, 9013 ipIfStatsForwProhibits); 9014 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9015 mp, dst_ill); 9016 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9017 ira); 9018 return (B_FALSE); 9019 } 9020 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9021 /* 9022 * Must be partial since ip_input_options 9023 * checked for strict. 9024 */ 9025 break; 9026 } 9027 off = opt[IPOPT_OFFSET]; 9028 off--; 9029 redo_srr: 9030 if (optlen < IP_ADDR_LEN || 9031 off > optlen - IP_ADDR_LEN) { 9032 /* End of source route */ 9033 ip1dbg(( 9034 "ip_forward_options: end of SR\n")); 9035 break; 9036 } 9037 /* Pick a reasonable address on the outbound if */ 9038 ASSERT(dst_ill != NULL); 9039 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9040 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9041 NULL) != 0) { 9042 /* No source! Shouldn't happen */ 9043 ifaddr = INADDR_ANY; 9044 } 9045 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9046 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9047 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9048 ntohl(dst))); 9049 9050 /* 9051 * Check if our address is present more than 9052 * once as consecutive hops in source route. 9053 */ 9054 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9055 off += IP_ADDR_LEN; 9056 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9057 goto redo_srr; 9058 } 9059 ipha->ipha_dst = dst; 9060 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9061 break; 9062 case IPOPT_RR: 9063 off = opt[IPOPT_OFFSET]; 9064 off--; 9065 if (optlen < IP_ADDR_LEN || 9066 off > optlen - IP_ADDR_LEN) { 9067 /* No more room - ignore */ 9068 ip1dbg(( 9069 "ip_forward_options: end of RR\n")); 9070 break; 9071 } 9072 /* Pick a reasonable address on the outbound if */ 9073 ASSERT(dst_ill != NULL); 9074 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9075 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9076 NULL) != 0) { 9077 /* No source! Shouldn't happen */ 9078 ifaddr = INADDR_ANY; 9079 } 9080 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9081 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9082 break; 9083 case IPOPT_TS: 9084 /* Insert timestamp if there is room */ 9085 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9086 case IPOPT_TS_TSONLY: 9087 off = IPOPT_TS_TIMELEN; 9088 break; 9089 case IPOPT_TS_PRESPEC: 9090 case IPOPT_TS_PRESPEC_RFC791: 9091 /* Verify that the address matched */ 9092 off = opt[IPOPT_OFFSET] - 1; 9093 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9094 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9095 /* Not for us */ 9096 break; 9097 } 9098 /* FALLTHRU */ 9099 case IPOPT_TS_TSANDADDR: 9100 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9101 break; 9102 default: 9103 /* 9104 * ip_*put_options should have already 9105 * dropped this packet. 9106 */ 9107 cmn_err(CE_PANIC, "ip_forward_options: " 9108 "unknown IT - bug in ip_input_options?\n"); 9109 return (B_TRUE); /* Keep "lint" happy */ 9110 } 9111 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9112 /* Increase overflow counter */ 9113 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9114 opt[IPOPT_POS_OV_FLG] = 9115 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9116 (off << 4)); 9117 break; 9118 } 9119 off = opt[IPOPT_OFFSET] - 1; 9120 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9121 case IPOPT_TS_PRESPEC: 9122 case IPOPT_TS_PRESPEC_RFC791: 9123 case IPOPT_TS_TSANDADDR: 9124 /* Pick a reasonable addr on the outbound if */ 9125 ASSERT(dst_ill != NULL); 9126 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9127 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9128 NULL, NULL) != 0) { 9129 /* No source! Shouldn't happen */ 9130 ifaddr = INADDR_ANY; 9131 } 9132 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9133 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9134 /* FALLTHRU */ 9135 case IPOPT_TS_TSONLY: 9136 off = opt[IPOPT_OFFSET] - 1; 9137 /* Compute # of milliseconds since midnight */ 9138 gethrestime(&now); 9139 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9140 NSEC2MSEC(now.tv_nsec); 9141 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9142 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9143 break; 9144 } 9145 break; 9146 } 9147 } 9148 return (B_TRUE); 9149 } 9150 9151 /* 9152 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9153 * returns 'true' if there are still fragments left on the queue, in 9154 * which case we restart the timer. 9155 */ 9156 void 9157 ill_frag_timer(void *arg) 9158 { 9159 ill_t *ill = (ill_t *)arg; 9160 boolean_t frag_pending; 9161 ip_stack_t *ipst = ill->ill_ipst; 9162 time_t timeout; 9163 9164 mutex_enter(&ill->ill_lock); 9165 ASSERT(!ill->ill_fragtimer_executing); 9166 if (ill->ill_state_flags & ILL_CONDEMNED) { 9167 ill->ill_frag_timer_id = 0; 9168 mutex_exit(&ill->ill_lock); 9169 return; 9170 } 9171 ill->ill_fragtimer_executing = 1; 9172 mutex_exit(&ill->ill_lock); 9173 9174 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9175 ipst->ips_ip_reassembly_timeout); 9176 9177 frag_pending = ill_frag_timeout(ill, timeout); 9178 9179 /* 9180 * Restart the timer, if we have fragments pending or if someone 9181 * wanted us to be scheduled again. 9182 */ 9183 mutex_enter(&ill->ill_lock); 9184 ill->ill_fragtimer_executing = 0; 9185 ill->ill_frag_timer_id = 0; 9186 if (frag_pending || ill->ill_fragtimer_needrestart) 9187 ill_frag_timer_start(ill); 9188 mutex_exit(&ill->ill_lock); 9189 } 9190 9191 void 9192 ill_frag_timer_start(ill_t *ill) 9193 { 9194 ip_stack_t *ipst = ill->ill_ipst; 9195 clock_t timeo_ms; 9196 9197 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9198 9199 /* If the ill is closing or opening don't proceed */ 9200 if (ill->ill_state_flags & ILL_CONDEMNED) 9201 return; 9202 9203 if (ill->ill_fragtimer_executing) { 9204 /* 9205 * ill_frag_timer is currently executing. Just record the 9206 * the fact that we want the timer to be restarted. 9207 * ill_frag_timer will post a timeout before it returns, 9208 * ensuring it will be called again. 9209 */ 9210 ill->ill_fragtimer_needrestart = 1; 9211 return; 9212 } 9213 9214 if (ill->ill_frag_timer_id == 0) { 9215 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9216 ipst->ips_ip_reassembly_timeout) * SECONDS; 9217 9218 /* 9219 * The timer is neither running nor is the timeout handler 9220 * executing. Post a timeout so that ill_frag_timer will be 9221 * called 9222 */ 9223 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9224 MSEC_TO_TICK(timeo_ms >> 1)); 9225 ill->ill_fragtimer_needrestart = 0; 9226 } 9227 } 9228 9229 /* 9230 * Update any source route, record route or timestamp options. 9231 * Check that we are at end of strict source route. 9232 * The options have already been checked for sanity in ip_input_options(). 9233 */ 9234 boolean_t 9235 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9236 { 9237 ipoptp_t opts; 9238 uchar_t *opt; 9239 uint8_t optval; 9240 uint8_t optlen; 9241 ipaddr_t dst; 9242 ipaddr_t ifaddr; 9243 uint32_t ts; 9244 timestruc_t now; 9245 ill_t *ill = ira->ira_ill; 9246 ip_stack_t *ipst = ill->ill_ipst; 9247 9248 ip2dbg(("ip_input_local_options\n")); 9249 9250 for (optval = ipoptp_first(&opts, ipha); 9251 optval != IPOPT_EOL; 9252 optval = ipoptp_next(&opts)) { 9253 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9254 opt = opts.ipoptp_cur; 9255 optlen = opts.ipoptp_len; 9256 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9257 optval, optlen)); 9258 switch (optval) { 9259 uint32_t off; 9260 case IPOPT_SSRR: 9261 case IPOPT_LSRR: 9262 off = opt[IPOPT_OFFSET]; 9263 off--; 9264 if (optlen < IP_ADDR_LEN || 9265 off > optlen - IP_ADDR_LEN) { 9266 /* End of source route */ 9267 ip1dbg(("ip_input_local_options: end of SR\n")); 9268 break; 9269 } 9270 /* 9271 * This will only happen if two consecutive entries 9272 * in the source route contains our address or if 9273 * it is a packet with a loose source route which 9274 * reaches us before consuming the whole source route 9275 */ 9276 ip1dbg(("ip_input_local_options: not end of SR\n")); 9277 if (optval == IPOPT_SSRR) { 9278 goto bad_src_route; 9279 } 9280 /* 9281 * Hack: instead of dropping the packet truncate the 9282 * source route to what has been used by filling the 9283 * rest with IPOPT_NOP. 9284 */ 9285 opt[IPOPT_OLEN] = (uint8_t)off; 9286 while (off < optlen) { 9287 opt[off++] = IPOPT_NOP; 9288 } 9289 break; 9290 case IPOPT_RR: 9291 off = opt[IPOPT_OFFSET]; 9292 off--; 9293 if (optlen < IP_ADDR_LEN || 9294 off > optlen - IP_ADDR_LEN) { 9295 /* No more room - ignore */ 9296 ip1dbg(( 9297 "ip_input_local_options: end of RR\n")); 9298 break; 9299 } 9300 /* Pick a reasonable address on the outbound if */ 9301 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9302 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9303 NULL) != 0) { 9304 /* No source! Shouldn't happen */ 9305 ifaddr = INADDR_ANY; 9306 } 9307 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9308 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9309 break; 9310 case IPOPT_TS: 9311 /* Insert timestamp if there is romm */ 9312 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9313 case IPOPT_TS_TSONLY: 9314 off = IPOPT_TS_TIMELEN; 9315 break; 9316 case IPOPT_TS_PRESPEC: 9317 case IPOPT_TS_PRESPEC_RFC791: 9318 /* Verify that the address matched */ 9319 off = opt[IPOPT_OFFSET] - 1; 9320 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9321 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9322 /* Not for us */ 9323 break; 9324 } 9325 /* FALLTHRU */ 9326 case IPOPT_TS_TSANDADDR: 9327 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9328 break; 9329 default: 9330 /* 9331 * ip_*put_options should have already 9332 * dropped this packet. 9333 */ 9334 cmn_err(CE_PANIC, "ip_input_local_options: " 9335 "unknown IT - bug in ip_input_options?\n"); 9336 return (B_TRUE); /* Keep "lint" happy */ 9337 } 9338 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9339 /* Increase overflow counter */ 9340 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9341 opt[IPOPT_POS_OV_FLG] = 9342 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9343 (off << 4)); 9344 break; 9345 } 9346 off = opt[IPOPT_OFFSET] - 1; 9347 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9348 case IPOPT_TS_PRESPEC: 9349 case IPOPT_TS_PRESPEC_RFC791: 9350 case IPOPT_TS_TSANDADDR: 9351 /* Pick a reasonable addr on the outbound if */ 9352 if (ip_select_source_v4(ill, INADDR_ANY, 9353 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9354 &ifaddr, NULL, NULL) != 0) { 9355 /* No source! Shouldn't happen */ 9356 ifaddr = INADDR_ANY; 9357 } 9358 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9359 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9360 /* FALLTHRU */ 9361 case IPOPT_TS_TSONLY: 9362 off = opt[IPOPT_OFFSET] - 1; 9363 /* Compute # of milliseconds since midnight */ 9364 gethrestime(&now); 9365 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9366 NSEC2MSEC(now.tv_nsec); 9367 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9368 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9369 break; 9370 } 9371 break; 9372 } 9373 } 9374 return (B_TRUE); 9375 9376 bad_src_route: 9377 /* make sure we clear any indication of a hardware checksum */ 9378 DB_CKSUMFLAGS(mp) = 0; 9379 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9380 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9381 return (B_FALSE); 9382 9383 } 9384 9385 /* 9386 * Process IP options in an inbound packet. Always returns the nexthop. 9387 * Normally this is the passed in nexthop, but if there is an option 9388 * that effects the nexthop (such as a source route) that will be returned. 9389 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9390 * and mp freed. 9391 */ 9392 ipaddr_t 9393 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9394 ip_recv_attr_t *ira, int *errorp) 9395 { 9396 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9397 ipoptp_t opts; 9398 uchar_t *opt; 9399 uint8_t optval; 9400 uint8_t optlen; 9401 intptr_t code = 0; 9402 ire_t *ire; 9403 9404 ip2dbg(("ip_input_options\n")); 9405 *errorp = 0; 9406 for (optval = ipoptp_first(&opts, ipha); 9407 optval != IPOPT_EOL; 9408 optval = ipoptp_next(&opts)) { 9409 opt = opts.ipoptp_cur; 9410 optlen = opts.ipoptp_len; 9411 ip2dbg(("ip_input_options: opt %d, len %d\n", 9412 optval, optlen)); 9413 /* 9414 * Note: we need to verify the checksum before we 9415 * modify anything thus this routine only extracts the next 9416 * hop dst from any source route. 9417 */ 9418 switch (optval) { 9419 uint32_t off; 9420 case IPOPT_SSRR: 9421 case IPOPT_LSRR: 9422 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9423 if (optval == IPOPT_SSRR) { 9424 ip1dbg(("ip_input_options: not next" 9425 " strict source route 0x%x\n", 9426 ntohl(dst))); 9427 code = (char *)&ipha->ipha_dst - 9428 (char *)ipha; 9429 goto param_prob; /* RouterReq's */ 9430 } 9431 ip2dbg(("ip_input_options: " 9432 "not next source route 0x%x\n", 9433 ntohl(dst))); 9434 break; 9435 } 9436 9437 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9438 ip1dbg(( 9439 "ip_input_options: bad option offset\n")); 9440 code = (char *)&opt[IPOPT_OLEN] - 9441 (char *)ipha; 9442 goto param_prob; 9443 } 9444 off = opt[IPOPT_OFFSET]; 9445 off--; 9446 redo_srr: 9447 if (optlen < IP_ADDR_LEN || 9448 off > optlen - IP_ADDR_LEN) { 9449 /* End of source route */ 9450 ip1dbg(("ip_input_options: end of SR\n")); 9451 break; 9452 } 9453 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9454 ip1dbg(("ip_input_options: next hop 0x%x\n", 9455 ntohl(dst))); 9456 9457 /* 9458 * Check if our address is present more than 9459 * once as consecutive hops in source route. 9460 * XXX verify per-interface ip_forwarding 9461 * for source route? 9462 */ 9463 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9464 off += IP_ADDR_LEN; 9465 goto redo_srr; 9466 } 9467 9468 if (dst == htonl(INADDR_LOOPBACK)) { 9469 ip1dbg(("ip_input_options: loopback addr in " 9470 "source route!\n")); 9471 goto bad_src_route; 9472 } 9473 /* 9474 * For strict: verify that dst is directly 9475 * reachable. 9476 */ 9477 if (optval == IPOPT_SSRR) { 9478 ire = ire_ftable_lookup_v4(dst, 0, 0, 9479 IRE_INTERFACE, NULL, ALL_ZONES, 9480 ira->ira_tsl, 9481 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9482 NULL); 9483 if (ire == NULL) { 9484 ip1dbg(("ip_input_options: SSRR not " 9485 "directly reachable: 0x%x\n", 9486 ntohl(dst))); 9487 goto bad_src_route; 9488 } 9489 ire_refrele(ire); 9490 } 9491 /* 9492 * Defer update of the offset and the record route 9493 * until the packet is forwarded. 9494 */ 9495 break; 9496 case IPOPT_RR: 9497 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9498 ip1dbg(( 9499 "ip_input_options: bad option offset\n")); 9500 code = (char *)&opt[IPOPT_OLEN] - 9501 (char *)ipha; 9502 goto param_prob; 9503 } 9504 break; 9505 case IPOPT_TS: 9506 /* 9507 * Verify that length >= 5 and that there is either 9508 * room for another timestamp or that the overflow 9509 * counter is not maxed out. 9510 */ 9511 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9512 if (optlen < IPOPT_MINLEN_IT) { 9513 goto param_prob; 9514 } 9515 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9516 ip1dbg(( 9517 "ip_input_options: bad option offset\n")); 9518 code = (char *)&opt[IPOPT_OFFSET] - 9519 (char *)ipha; 9520 goto param_prob; 9521 } 9522 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9523 case IPOPT_TS_TSONLY: 9524 off = IPOPT_TS_TIMELEN; 9525 break; 9526 case IPOPT_TS_TSANDADDR: 9527 case IPOPT_TS_PRESPEC: 9528 case IPOPT_TS_PRESPEC_RFC791: 9529 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9530 break; 9531 default: 9532 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9533 (char *)ipha; 9534 goto param_prob; 9535 } 9536 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9537 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9538 /* 9539 * No room and the overflow counter is 15 9540 * already. 9541 */ 9542 goto param_prob; 9543 } 9544 break; 9545 } 9546 } 9547 9548 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9549 return (dst); 9550 } 9551 9552 ip1dbg(("ip_input_options: error processing IP options.")); 9553 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9554 9555 param_prob: 9556 /* make sure we clear any indication of a hardware checksum */ 9557 DB_CKSUMFLAGS(mp) = 0; 9558 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9559 icmp_param_problem(mp, (uint8_t)code, ira); 9560 *errorp = -1; 9561 return (dst); 9562 9563 bad_src_route: 9564 /* make sure we clear any indication of a hardware checksum */ 9565 DB_CKSUMFLAGS(mp) = 0; 9566 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9567 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9568 *errorp = -1; 9569 return (dst); 9570 } 9571 9572 /* 9573 * IP & ICMP info in >=14 msg's ... 9574 * - ip fixed part (mib2_ip_t) 9575 * - icmp fixed part (mib2_icmp_t) 9576 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9577 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9578 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9579 * - ipRouteAttributeTable (ip 102) labeled routes 9580 * - ip multicast membership (ip_member_t) 9581 * - ip multicast source filtering (ip_grpsrc_t) 9582 * - igmp fixed part (struct igmpstat) 9583 * - multicast routing stats (struct mrtstat) 9584 * - multicast routing vifs (array of struct vifctl) 9585 * - multicast routing routes (array of struct mfcctl) 9586 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9587 * One per ill plus one generic 9588 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9589 * One per ill plus one generic 9590 * - ipv6RouteEntry all IPv6 IREs 9591 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9592 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9593 * - ipv6AddrEntry all IPv6 ipifs 9594 * - ipv6 multicast membership (ipv6_member_t) 9595 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9596 * 9597 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9598 * already filled in by the caller. 9599 * If legacy_req is true then MIB structures needs to be truncated to their 9600 * legacy sizes before being returned. 9601 * Return value of 0 indicates that no messages were sent and caller 9602 * should free mpctl. 9603 */ 9604 int 9605 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9606 { 9607 ip_stack_t *ipst; 9608 sctp_stack_t *sctps; 9609 9610 if (q->q_next != NULL) { 9611 ipst = ILLQ_TO_IPST(q); 9612 } else { 9613 ipst = CONNQ_TO_IPST(q); 9614 } 9615 ASSERT(ipst != NULL); 9616 sctps = ipst->ips_netstack->netstack_sctp; 9617 9618 if (mpctl == NULL || mpctl->b_cont == NULL) { 9619 return (0); 9620 } 9621 9622 /* 9623 * For the purposes of the (broken) packet shell use 9624 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9625 * to make TCP and UDP appear first in the list of mib items. 9626 * TBD: We could expand this and use it in netstat so that 9627 * the kernel doesn't have to produce large tables (connections, 9628 * routes, etc) when netstat only wants the statistics or a particular 9629 * table. 9630 */ 9631 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9632 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9633 return (1); 9634 } 9635 } 9636 9637 if (level != MIB2_TCP) { 9638 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9639 return (1); 9640 } 9641 } 9642 9643 if (level != MIB2_UDP) { 9644 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9645 return (1); 9646 } 9647 } 9648 9649 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9650 ipst, legacy_req)) == NULL) { 9651 return (1); 9652 } 9653 9654 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9655 legacy_req)) == NULL) { 9656 return (1); 9657 } 9658 9659 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9660 return (1); 9661 } 9662 9663 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9664 return (1); 9665 } 9666 9667 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9668 return (1); 9669 } 9670 9671 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9672 return (1); 9673 } 9674 9675 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9676 legacy_req)) == NULL) { 9677 return (1); 9678 } 9679 9680 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9681 legacy_req)) == NULL) { 9682 return (1); 9683 } 9684 9685 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9686 return (1); 9687 } 9688 9689 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9690 return (1); 9691 } 9692 9693 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9694 return (1); 9695 } 9696 9697 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9698 return (1); 9699 } 9700 9701 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9702 return (1); 9703 } 9704 9705 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9706 return (1); 9707 } 9708 9709 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9710 if (mpctl == NULL) 9711 return (1); 9712 9713 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9714 if (mpctl == NULL) 9715 return (1); 9716 9717 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9718 return (1); 9719 } 9720 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9721 return (1); 9722 } 9723 freemsg(mpctl); 9724 return (1); 9725 } 9726 9727 /* Get global (legacy) IPv4 statistics */ 9728 static mblk_t * 9729 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9730 ip_stack_t *ipst, boolean_t legacy_req) 9731 { 9732 mib2_ip_t old_ip_mib; 9733 struct opthdr *optp; 9734 mblk_t *mp2ctl; 9735 mib2_ipAddrEntry_t mae; 9736 9737 /* 9738 * make a copy of the original message 9739 */ 9740 mp2ctl = copymsg(mpctl); 9741 9742 /* fixed length IP structure... */ 9743 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9744 optp->level = MIB2_IP; 9745 optp->name = 0; 9746 SET_MIB(old_ip_mib.ipForwarding, 9747 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9748 SET_MIB(old_ip_mib.ipDefaultTTL, 9749 (uint32_t)ipst->ips_ip_def_ttl); 9750 SET_MIB(old_ip_mib.ipReasmTimeout, 9751 ipst->ips_ip_reassembly_timeout); 9752 SET_MIB(old_ip_mib.ipAddrEntrySize, 9753 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9754 sizeof (mib2_ipAddrEntry_t)); 9755 SET_MIB(old_ip_mib.ipRouteEntrySize, 9756 sizeof (mib2_ipRouteEntry_t)); 9757 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9758 sizeof (mib2_ipNetToMediaEntry_t)); 9759 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9760 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9761 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9762 sizeof (mib2_ipAttributeEntry_t)); 9763 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9764 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9765 9766 /* 9767 * Grab the statistics from the new IP MIB 9768 */ 9769 SET_MIB(old_ip_mib.ipInReceives, 9770 (uint32_t)ipmib->ipIfStatsHCInReceives); 9771 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9772 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9773 SET_MIB(old_ip_mib.ipForwDatagrams, 9774 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9775 SET_MIB(old_ip_mib.ipInUnknownProtos, 9776 ipmib->ipIfStatsInUnknownProtos); 9777 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9778 SET_MIB(old_ip_mib.ipInDelivers, 9779 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9780 SET_MIB(old_ip_mib.ipOutRequests, 9781 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9782 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9783 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9784 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9785 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9786 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9787 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9788 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9789 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9790 9791 /* ipRoutingDiscards is not being used */ 9792 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9793 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9794 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9795 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9796 SET_MIB(old_ip_mib.ipReasmDuplicates, 9797 ipmib->ipIfStatsReasmDuplicates); 9798 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9799 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9800 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9801 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9802 SET_MIB(old_ip_mib.rawipInOverflows, 9803 ipmib->rawipIfStatsInOverflows); 9804 9805 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9806 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9807 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9808 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9809 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9810 ipmib->ipIfStatsOutSwitchIPVersion); 9811 9812 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9813 (int)sizeof (old_ip_mib))) { 9814 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9815 (uint_t)sizeof (old_ip_mib))); 9816 } 9817 9818 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9819 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9820 (int)optp->level, (int)optp->name, (int)optp->len)); 9821 qreply(q, mpctl); 9822 return (mp2ctl); 9823 } 9824 9825 /* Per interface IPv4 statistics */ 9826 static mblk_t * 9827 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9828 boolean_t legacy_req) 9829 { 9830 struct opthdr *optp; 9831 mblk_t *mp2ctl; 9832 ill_t *ill; 9833 ill_walk_context_t ctx; 9834 mblk_t *mp_tail = NULL; 9835 mib2_ipIfStatsEntry_t global_ip_mib; 9836 mib2_ipAddrEntry_t mae; 9837 9838 /* 9839 * Make a copy of the original message 9840 */ 9841 mp2ctl = copymsg(mpctl); 9842 9843 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9844 optp->level = MIB2_IP; 9845 optp->name = MIB2_IP_TRAFFIC_STATS; 9846 /* Include "unknown interface" ip_mib */ 9847 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9848 ipst->ips_ip_mib.ipIfStatsIfIndex = 9849 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9850 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9851 (ipst->ips_ip_forwarding ? 1 : 2)); 9852 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9853 (uint32_t)ipst->ips_ip_def_ttl); 9854 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9855 sizeof (mib2_ipIfStatsEntry_t)); 9856 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9857 sizeof (mib2_ipAddrEntry_t)); 9858 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9859 sizeof (mib2_ipRouteEntry_t)); 9860 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9861 sizeof (mib2_ipNetToMediaEntry_t)); 9862 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9863 sizeof (ip_member_t)); 9864 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9865 sizeof (ip_grpsrc_t)); 9866 9867 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9868 9869 if (legacy_req) { 9870 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9871 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9872 } 9873 9874 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9875 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9876 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9877 "failed to allocate %u bytes\n", 9878 (uint_t)sizeof (global_ip_mib))); 9879 } 9880 9881 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9882 ill = ILL_START_WALK_V4(&ctx, ipst); 9883 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9884 ill->ill_ip_mib->ipIfStatsIfIndex = 9885 ill->ill_phyint->phyint_ifindex; 9886 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9887 (ipst->ips_ip_forwarding ? 1 : 2)); 9888 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9889 (uint32_t)ipst->ips_ip_def_ttl); 9890 9891 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9892 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9893 (char *)ill->ill_ip_mib, 9894 (int)sizeof (*ill->ill_ip_mib))) { 9895 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9896 "failed to allocate %u bytes\n", 9897 (uint_t)sizeof (*ill->ill_ip_mib))); 9898 } 9899 } 9900 rw_exit(&ipst->ips_ill_g_lock); 9901 9902 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9903 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9904 "level %d, name %d, len %d\n", 9905 (int)optp->level, (int)optp->name, (int)optp->len)); 9906 qreply(q, mpctl); 9907 9908 if (mp2ctl == NULL) 9909 return (NULL); 9910 9911 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9912 legacy_req)); 9913 } 9914 9915 /* Global IPv4 ICMP statistics */ 9916 static mblk_t * 9917 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9918 { 9919 struct opthdr *optp; 9920 mblk_t *mp2ctl; 9921 9922 /* 9923 * Make a copy of the original message 9924 */ 9925 mp2ctl = copymsg(mpctl); 9926 9927 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9928 optp->level = MIB2_ICMP; 9929 optp->name = 0; 9930 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9931 (int)sizeof (ipst->ips_icmp_mib))) { 9932 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9933 (uint_t)sizeof (ipst->ips_icmp_mib))); 9934 } 9935 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9936 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9937 (int)optp->level, (int)optp->name, (int)optp->len)); 9938 qreply(q, mpctl); 9939 return (mp2ctl); 9940 } 9941 9942 /* Global IPv4 IGMP statistics */ 9943 static mblk_t * 9944 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9945 { 9946 struct opthdr *optp; 9947 mblk_t *mp2ctl; 9948 9949 /* 9950 * make a copy of the original message 9951 */ 9952 mp2ctl = copymsg(mpctl); 9953 9954 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9955 optp->level = EXPER_IGMP; 9956 optp->name = 0; 9957 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9958 (int)sizeof (ipst->ips_igmpstat))) { 9959 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9960 (uint_t)sizeof (ipst->ips_igmpstat))); 9961 } 9962 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9963 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9964 (int)optp->level, (int)optp->name, (int)optp->len)); 9965 qreply(q, mpctl); 9966 return (mp2ctl); 9967 } 9968 9969 /* Global IPv4 Multicast Routing statistics */ 9970 static mblk_t * 9971 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9972 { 9973 struct opthdr *optp; 9974 mblk_t *mp2ctl; 9975 9976 /* 9977 * make a copy of the original message 9978 */ 9979 mp2ctl = copymsg(mpctl); 9980 9981 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9982 optp->level = EXPER_DVMRP; 9983 optp->name = 0; 9984 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9985 ip0dbg(("ip_mroute_stats: failed\n")); 9986 } 9987 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9988 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9989 (int)optp->level, (int)optp->name, (int)optp->len)); 9990 qreply(q, mpctl); 9991 return (mp2ctl); 9992 } 9993 9994 /* IPv4 address information */ 9995 static mblk_t * 9996 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9997 boolean_t legacy_req) 9998 { 9999 struct opthdr *optp; 10000 mblk_t *mp2ctl; 10001 mblk_t *mp_tail = NULL; 10002 ill_t *ill; 10003 ipif_t *ipif; 10004 uint_t bitval; 10005 mib2_ipAddrEntry_t mae; 10006 size_t mae_size; 10007 zoneid_t zoneid; 10008 ill_walk_context_t ctx; 10009 10010 /* 10011 * make a copy of the original message 10012 */ 10013 mp2ctl = copymsg(mpctl); 10014 10015 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 10016 sizeof (mib2_ipAddrEntry_t); 10017 10018 /* ipAddrEntryTable */ 10019 10020 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10021 optp->level = MIB2_IP; 10022 optp->name = MIB2_IP_ADDR; 10023 zoneid = Q_TO_CONN(q)->conn_zoneid; 10024 10025 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10026 ill = ILL_START_WALK_V4(&ctx, ipst); 10027 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10028 for (ipif = ill->ill_ipif; ipif != NULL; 10029 ipif = ipif->ipif_next) { 10030 if (ipif->ipif_zoneid != zoneid && 10031 ipif->ipif_zoneid != ALL_ZONES) 10032 continue; 10033 /* Sum of count from dead IRE_LO* and our current */ 10034 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10035 if (ipif->ipif_ire_local != NULL) { 10036 mae.ipAdEntInfo.ae_ibcnt += 10037 ipif->ipif_ire_local->ire_ib_pkt_count; 10038 } 10039 mae.ipAdEntInfo.ae_obcnt = 0; 10040 mae.ipAdEntInfo.ae_focnt = 0; 10041 10042 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10043 OCTET_LENGTH); 10044 mae.ipAdEntIfIndex.o_length = 10045 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10046 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10047 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10048 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10049 mae.ipAdEntInfo.ae_subnet_len = 10050 ip_mask_to_plen(ipif->ipif_net_mask); 10051 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10052 for (bitval = 1; 10053 bitval && 10054 !(bitval & ipif->ipif_brd_addr); 10055 bitval <<= 1) 10056 noop; 10057 mae.ipAdEntBcastAddr = bitval; 10058 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10059 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10060 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10061 mae.ipAdEntInfo.ae_broadcast_addr = 10062 ipif->ipif_brd_addr; 10063 mae.ipAdEntInfo.ae_pp_dst_addr = 10064 ipif->ipif_pp_dst_addr; 10065 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10066 ill->ill_flags | ill->ill_phyint->phyint_flags; 10067 mae.ipAdEntRetransmitTime = 10068 ill->ill_reachable_retrans_time; 10069 10070 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10071 (char *)&mae, (int)mae_size)) { 10072 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10073 "allocate %u bytes\n", (uint_t)mae_size)); 10074 } 10075 } 10076 } 10077 rw_exit(&ipst->ips_ill_g_lock); 10078 10079 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10080 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10081 (int)optp->level, (int)optp->name, (int)optp->len)); 10082 qreply(q, mpctl); 10083 return (mp2ctl); 10084 } 10085 10086 /* IPv6 address information */ 10087 static mblk_t * 10088 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10089 boolean_t legacy_req) 10090 { 10091 struct opthdr *optp; 10092 mblk_t *mp2ctl; 10093 mblk_t *mp_tail = NULL; 10094 ill_t *ill; 10095 ipif_t *ipif; 10096 mib2_ipv6AddrEntry_t mae6; 10097 size_t mae6_size; 10098 zoneid_t zoneid; 10099 ill_walk_context_t ctx; 10100 10101 /* 10102 * make a copy of the original message 10103 */ 10104 mp2ctl = copymsg(mpctl); 10105 10106 mae6_size = (legacy_req) ? 10107 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10108 sizeof (mib2_ipv6AddrEntry_t); 10109 10110 /* ipv6AddrEntryTable */ 10111 10112 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10113 optp->level = MIB2_IP6; 10114 optp->name = MIB2_IP6_ADDR; 10115 zoneid = Q_TO_CONN(q)->conn_zoneid; 10116 10117 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10118 ill = ILL_START_WALK_V6(&ctx, ipst); 10119 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10120 for (ipif = ill->ill_ipif; ipif != NULL; 10121 ipif = ipif->ipif_next) { 10122 if (ipif->ipif_zoneid != zoneid && 10123 ipif->ipif_zoneid != ALL_ZONES) 10124 continue; 10125 /* Sum of count from dead IRE_LO* and our current */ 10126 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10127 if (ipif->ipif_ire_local != NULL) { 10128 mae6.ipv6AddrInfo.ae_ibcnt += 10129 ipif->ipif_ire_local->ire_ib_pkt_count; 10130 } 10131 mae6.ipv6AddrInfo.ae_obcnt = 0; 10132 mae6.ipv6AddrInfo.ae_focnt = 0; 10133 10134 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10135 OCTET_LENGTH); 10136 mae6.ipv6AddrIfIndex.o_length = 10137 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10138 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10139 mae6.ipv6AddrPfxLength = 10140 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10141 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10142 mae6.ipv6AddrInfo.ae_subnet_len = 10143 mae6.ipv6AddrPfxLength; 10144 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10145 10146 /* Type: stateless(1), stateful(2), unknown(3) */ 10147 if (ipif->ipif_flags & IPIF_ADDRCONF) 10148 mae6.ipv6AddrType = 1; 10149 else 10150 mae6.ipv6AddrType = 2; 10151 /* Anycast: true(1), false(2) */ 10152 if (ipif->ipif_flags & IPIF_ANYCAST) 10153 mae6.ipv6AddrAnycastFlag = 1; 10154 else 10155 mae6.ipv6AddrAnycastFlag = 2; 10156 10157 /* 10158 * Address status: preferred(1), deprecated(2), 10159 * invalid(3), inaccessible(4), unknown(5) 10160 */ 10161 if (ipif->ipif_flags & IPIF_NOLOCAL) 10162 mae6.ipv6AddrStatus = 3; 10163 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10164 mae6.ipv6AddrStatus = 2; 10165 else 10166 mae6.ipv6AddrStatus = 1; 10167 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10168 mae6.ipv6AddrInfo.ae_metric = 10169 ipif->ipif_ill->ill_metric; 10170 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10171 ipif->ipif_v6pp_dst_addr; 10172 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10173 ill->ill_flags | ill->ill_phyint->phyint_flags; 10174 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10175 mae6.ipv6AddrIdentifier = ill->ill_token; 10176 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10177 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10178 mae6.ipv6AddrRetransmitTime = 10179 ill->ill_reachable_retrans_time; 10180 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10181 (char *)&mae6, (int)mae6_size)) { 10182 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10183 "allocate %u bytes\n", 10184 (uint_t)mae6_size)); 10185 } 10186 } 10187 } 10188 rw_exit(&ipst->ips_ill_g_lock); 10189 10190 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10191 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10192 (int)optp->level, (int)optp->name, (int)optp->len)); 10193 qreply(q, mpctl); 10194 return (mp2ctl); 10195 } 10196 10197 /* IPv4 multicast group membership. */ 10198 static mblk_t * 10199 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10200 { 10201 struct opthdr *optp; 10202 mblk_t *mp2ctl; 10203 ill_t *ill; 10204 ipif_t *ipif; 10205 ilm_t *ilm; 10206 ip_member_t ipm; 10207 mblk_t *mp_tail = NULL; 10208 ill_walk_context_t ctx; 10209 zoneid_t zoneid; 10210 10211 /* 10212 * make a copy of the original message 10213 */ 10214 mp2ctl = copymsg(mpctl); 10215 zoneid = Q_TO_CONN(q)->conn_zoneid; 10216 10217 /* ipGroupMember table */ 10218 optp = (struct opthdr *)&mpctl->b_rptr[ 10219 sizeof (struct T_optmgmt_ack)]; 10220 optp->level = MIB2_IP; 10221 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10222 10223 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10224 ill = ILL_START_WALK_V4(&ctx, ipst); 10225 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10226 /* Make sure the ill isn't going away. */ 10227 if (!ill_check_and_refhold(ill)) 10228 continue; 10229 rw_exit(&ipst->ips_ill_g_lock); 10230 rw_enter(&ill->ill_mcast_lock, RW_READER); 10231 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10232 if (ilm->ilm_zoneid != zoneid && 10233 ilm->ilm_zoneid != ALL_ZONES) 10234 continue; 10235 10236 /* Is there an ipif for ilm_ifaddr? */ 10237 for (ipif = ill->ill_ipif; ipif != NULL; 10238 ipif = ipif->ipif_next) { 10239 if (!IPIF_IS_CONDEMNED(ipif) && 10240 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10241 ilm->ilm_ifaddr != INADDR_ANY) 10242 break; 10243 } 10244 if (ipif != NULL) { 10245 ipif_get_name(ipif, 10246 ipm.ipGroupMemberIfIndex.o_bytes, 10247 OCTET_LENGTH); 10248 } else { 10249 ill_get_name(ill, 10250 ipm.ipGroupMemberIfIndex.o_bytes, 10251 OCTET_LENGTH); 10252 } 10253 ipm.ipGroupMemberIfIndex.o_length = 10254 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10255 10256 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10257 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10258 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10259 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10260 (char *)&ipm, (int)sizeof (ipm))) { 10261 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10262 "failed to allocate %u bytes\n", 10263 (uint_t)sizeof (ipm))); 10264 } 10265 } 10266 rw_exit(&ill->ill_mcast_lock); 10267 ill_refrele(ill); 10268 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10269 } 10270 rw_exit(&ipst->ips_ill_g_lock); 10271 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10272 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10273 (int)optp->level, (int)optp->name, (int)optp->len)); 10274 qreply(q, mpctl); 10275 return (mp2ctl); 10276 } 10277 10278 /* IPv6 multicast group membership. */ 10279 static mblk_t * 10280 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10281 { 10282 struct opthdr *optp; 10283 mblk_t *mp2ctl; 10284 ill_t *ill; 10285 ilm_t *ilm; 10286 ipv6_member_t ipm6; 10287 mblk_t *mp_tail = NULL; 10288 ill_walk_context_t ctx; 10289 zoneid_t zoneid; 10290 10291 /* 10292 * make a copy of the original message 10293 */ 10294 mp2ctl = copymsg(mpctl); 10295 zoneid = Q_TO_CONN(q)->conn_zoneid; 10296 10297 /* ip6GroupMember table */ 10298 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10299 optp->level = MIB2_IP6; 10300 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10301 10302 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10303 ill = ILL_START_WALK_V6(&ctx, ipst); 10304 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10305 /* Make sure the ill isn't going away. */ 10306 if (!ill_check_and_refhold(ill)) 10307 continue; 10308 rw_exit(&ipst->ips_ill_g_lock); 10309 /* 10310 * Normally we don't have any members on under IPMP interfaces. 10311 * We report them as a debugging aid. 10312 */ 10313 rw_enter(&ill->ill_mcast_lock, RW_READER); 10314 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10315 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10316 if (ilm->ilm_zoneid != zoneid && 10317 ilm->ilm_zoneid != ALL_ZONES) 10318 continue; /* not this zone */ 10319 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10320 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10321 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10322 if (!snmp_append_data2(mpctl->b_cont, 10323 &mp_tail, 10324 (char *)&ipm6, (int)sizeof (ipm6))) { 10325 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10326 "failed to allocate %u bytes\n", 10327 (uint_t)sizeof (ipm6))); 10328 } 10329 } 10330 rw_exit(&ill->ill_mcast_lock); 10331 ill_refrele(ill); 10332 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10333 } 10334 rw_exit(&ipst->ips_ill_g_lock); 10335 10336 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10337 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10338 (int)optp->level, (int)optp->name, (int)optp->len)); 10339 qreply(q, mpctl); 10340 return (mp2ctl); 10341 } 10342 10343 /* IP multicast filtered sources */ 10344 static mblk_t * 10345 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10346 { 10347 struct opthdr *optp; 10348 mblk_t *mp2ctl; 10349 ill_t *ill; 10350 ipif_t *ipif; 10351 ilm_t *ilm; 10352 ip_grpsrc_t ips; 10353 mblk_t *mp_tail = NULL; 10354 ill_walk_context_t ctx; 10355 zoneid_t zoneid; 10356 int i; 10357 slist_t *sl; 10358 10359 /* 10360 * make a copy of the original message 10361 */ 10362 mp2ctl = copymsg(mpctl); 10363 zoneid = Q_TO_CONN(q)->conn_zoneid; 10364 10365 /* ipGroupSource table */ 10366 optp = (struct opthdr *)&mpctl->b_rptr[ 10367 sizeof (struct T_optmgmt_ack)]; 10368 optp->level = MIB2_IP; 10369 optp->name = EXPER_IP_GROUP_SOURCES; 10370 10371 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10372 ill = ILL_START_WALK_V4(&ctx, ipst); 10373 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10374 /* Make sure the ill isn't going away. */ 10375 if (!ill_check_and_refhold(ill)) 10376 continue; 10377 rw_exit(&ipst->ips_ill_g_lock); 10378 rw_enter(&ill->ill_mcast_lock, RW_READER); 10379 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10380 sl = ilm->ilm_filter; 10381 if (ilm->ilm_zoneid != zoneid && 10382 ilm->ilm_zoneid != ALL_ZONES) 10383 continue; 10384 if (SLIST_IS_EMPTY(sl)) 10385 continue; 10386 10387 /* Is there an ipif for ilm_ifaddr? */ 10388 for (ipif = ill->ill_ipif; ipif != NULL; 10389 ipif = ipif->ipif_next) { 10390 if (!IPIF_IS_CONDEMNED(ipif) && 10391 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10392 ilm->ilm_ifaddr != INADDR_ANY) 10393 break; 10394 } 10395 if (ipif != NULL) { 10396 ipif_get_name(ipif, 10397 ips.ipGroupSourceIfIndex.o_bytes, 10398 OCTET_LENGTH); 10399 } else { 10400 ill_get_name(ill, 10401 ips.ipGroupSourceIfIndex.o_bytes, 10402 OCTET_LENGTH); 10403 } 10404 ips.ipGroupSourceIfIndex.o_length = 10405 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10406 10407 ips.ipGroupSourceGroup = ilm->ilm_addr; 10408 for (i = 0; i < sl->sl_numsrc; i++) { 10409 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10410 continue; 10411 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10412 ips.ipGroupSourceAddress); 10413 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10414 (char *)&ips, (int)sizeof (ips)) == 0) { 10415 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10416 " failed to allocate %u bytes\n", 10417 (uint_t)sizeof (ips))); 10418 } 10419 } 10420 } 10421 rw_exit(&ill->ill_mcast_lock); 10422 ill_refrele(ill); 10423 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10424 } 10425 rw_exit(&ipst->ips_ill_g_lock); 10426 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10427 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10428 (int)optp->level, (int)optp->name, (int)optp->len)); 10429 qreply(q, mpctl); 10430 return (mp2ctl); 10431 } 10432 10433 /* IPv6 multicast filtered sources. */ 10434 static mblk_t * 10435 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10436 { 10437 struct opthdr *optp; 10438 mblk_t *mp2ctl; 10439 ill_t *ill; 10440 ilm_t *ilm; 10441 ipv6_grpsrc_t ips6; 10442 mblk_t *mp_tail = NULL; 10443 ill_walk_context_t ctx; 10444 zoneid_t zoneid; 10445 int i; 10446 slist_t *sl; 10447 10448 /* 10449 * make a copy of the original message 10450 */ 10451 mp2ctl = copymsg(mpctl); 10452 zoneid = Q_TO_CONN(q)->conn_zoneid; 10453 10454 /* ip6GroupMember table */ 10455 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10456 optp->level = MIB2_IP6; 10457 optp->name = EXPER_IP6_GROUP_SOURCES; 10458 10459 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10460 ill = ILL_START_WALK_V6(&ctx, ipst); 10461 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10462 /* Make sure the ill isn't going away. */ 10463 if (!ill_check_and_refhold(ill)) 10464 continue; 10465 rw_exit(&ipst->ips_ill_g_lock); 10466 /* 10467 * Normally we don't have any members on under IPMP interfaces. 10468 * We report them as a debugging aid. 10469 */ 10470 rw_enter(&ill->ill_mcast_lock, RW_READER); 10471 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10472 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10473 sl = ilm->ilm_filter; 10474 if (ilm->ilm_zoneid != zoneid && 10475 ilm->ilm_zoneid != ALL_ZONES) 10476 continue; 10477 if (SLIST_IS_EMPTY(sl)) 10478 continue; 10479 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10480 for (i = 0; i < sl->sl_numsrc; i++) { 10481 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10482 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10483 (char *)&ips6, (int)sizeof (ips6))) { 10484 ip1dbg(("ip_snmp_get_mib2_ip6_" 10485 "group_src: failed to allocate " 10486 "%u bytes\n", 10487 (uint_t)sizeof (ips6))); 10488 } 10489 } 10490 } 10491 rw_exit(&ill->ill_mcast_lock); 10492 ill_refrele(ill); 10493 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10494 } 10495 rw_exit(&ipst->ips_ill_g_lock); 10496 10497 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10498 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10499 (int)optp->level, (int)optp->name, (int)optp->len)); 10500 qreply(q, mpctl); 10501 return (mp2ctl); 10502 } 10503 10504 /* Multicast routing virtual interface table. */ 10505 static mblk_t * 10506 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10507 { 10508 struct opthdr *optp; 10509 mblk_t *mp2ctl; 10510 10511 /* 10512 * make a copy of the original message 10513 */ 10514 mp2ctl = copymsg(mpctl); 10515 10516 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10517 optp->level = EXPER_DVMRP; 10518 optp->name = EXPER_DVMRP_VIF; 10519 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10520 ip0dbg(("ip_mroute_vif: failed\n")); 10521 } 10522 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10523 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10524 (int)optp->level, (int)optp->name, (int)optp->len)); 10525 qreply(q, mpctl); 10526 return (mp2ctl); 10527 } 10528 10529 /* Multicast routing table. */ 10530 static mblk_t * 10531 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10532 { 10533 struct opthdr *optp; 10534 mblk_t *mp2ctl; 10535 10536 /* 10537 * make a copy of the original message 10538 */ 10539 mp2ctl = copymsg(mpctl); 10540 10541 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10542 optp->level = EXPER_DVMRP; 10543 optp->name = EXPER_DVMRP_MRT; 10544 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10545 ip0dbg(("ip_mroute_mrt: failed\n")); 10546 } 10547 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10548 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10549 (int)optp->level, (int)optp->name, (int)optp->len)); 10550 qreply(q, mpctl); 10551 return (mp2ctl); 10552 } 10553 10554 /* 10555 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10556 * in one IRE walk. 10557 */ 10558 static mblk_t * 10559 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10560 ip_stack_t *ipst) 10561 { 10562 struct opthdr *optp; 10563 mblk_t *mp2ctl; /* Returned */ 10564 mblk_t *mp3ctl; /* nettomedia */ 10565 mblk_t *mp4ctl; /* routeattrs */ 10566 iproutedata_t ird; 10567 zoneid_t zoneid; 10568 10569 /* 10570 * make copies of the original message 10571 * - mp2ctl is returned unchanged to the caller for its use 10572 * - mpctl is sent upstream as ipRouteEntryTable 10573 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10574 * - mp4ctl is sent upstream as ipRouteAttributeTable 10575 */ 10576 mp2ctl = copymsg(mpctl); 10577 mp3ctl = copymsg(mpctl); 10578 mp4ctl = copymsg(mpctl); 10579 if (mp3ctl == NULL || mp4ctl == NULL) { 10580 freemsg(mp4ctl); 10581 freemsg(mp3ctl); 10582 freemsg(mp2ctl); 10583 freemsg(mpctl); 10584 return (NULL); 10585 } 10586 10587 bzero(&ird, sizeof (ird)); 10588 10589 ird.ird_route.lp_head = mpctl->b_cont; 10590 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10591 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10592 /* 10593 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10594 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10595 * intended a temporary solution until a proper MIB API is provided 10596 * that provides complete filtering/caller-opt-in. 10597 */ 10598 if (level == EXPER_IP_AND_ALL_IRES) 10599 ird.ird_flags |= IRD_REPORT_ALL; 10600 10601 zoneid = Q_TO_CONN(q)->conn_zoneid; 10602 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10603 10604 /* ipRouteEntryTable in mpctl */ 10605 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10606 optp->level = MIB2_IP; 10607 optp->name = MIB2_IP_ROUTE; 10608 optp->len = msgdsize(ird.ird_route.lp_head); 10609 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10610 (int)optp->level, (int)optp->name, (int)optp->len)); 10611 qreply(q, mpctl); 10612 10613 /* ipNetToMediaEntryTable in mp3ctl */ 10614 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10615 10616 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10617 optp->level = MIB2_IP; 10618 optp->name = MIB2_IP_MEDIA; 10619 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10620 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10621 (int)optp->level, (int)optp->name, (int)optp->len)); 10622 qreply(q, mp3ctl); 10623 10624 /* ipRouteAttributeTable in mp4ctl */ 10625 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10626 optp->level = MIB2_IP; 10627 optp->name = EXPER_IP_RTATTR; 10628 optp->len = msgdsize(ird.ird_attrs.lp_head); 10629 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10630 (int)optp->level, (int)optp->name, (int)optp->len)); 10631 if (optp->len == 0) 10632 freemsg(mp4ctl); 10633 else 10634 qreply(q, mp4ctl); 10635 10636 return (mp2ctl); 10637 } 10638 10639 /* 10640 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10641 * ipv6NetToMediaEntryTable in an NDP walk. 10642 */ 10643 static mblk_t * 10644 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10645 ip_stack_t *ipst) 10646 { 10647 struct opthdr *optp; 10648 mblk_t *mp2ctl; /* Returned */ 10649 mblk_t *mp3ctl; /* nettomedia */ 10650 mblk_t *mp4ctl; /* routeattrs */ 10651 iproutedata_t ird; 10652 zoneid_t zoneid; 10653 10654 /* 10655 * make copies of the original message 10656 * - mp2ctl is returned unchanged to the caller for its use 10657 * - mpctl is sent upstream as ipv6RouteEntryTable 10658 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10659 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10660 */ 10661 mp2ctl = copymsg(mpctl); 10662 mp3ctl = copymsg(mpctl); 10663 mp4ctl = copymsg(mpctl); 10664 if (mp3ctl == NULL || mp4ctl == NULL) { 10665 freemsg(mp4ctl); 10666 freemsg(mp3ctl); 10667 freemsg(mp2ctl); 10668 freemsg(mpctl); 10669 return (NULL); 10670 } 10671 10672 bzero(&ird, sizeof (ird)); 10673 10674 ird.ird_route.lp_head = mpctl->b_cont; 10675 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10676 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10677 /* 10678 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10679 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10680 * intended a temporary solution until a proper MIB API is provided 10681 * that provides complete filtering/caller-opt-in. 10682 */ 10683 if (level == EXPER_IP_AND_ALL_IRES) 10684 ird.ird_flags |= IRD_REPORT_ALL; 10685 10686 zoneid = Q_TO_CONN(q)->conn_zoneid; 10687 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10688 10689 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10690 optp->level = MIB2_IP6; 10691 optp->name = MIB2_IP6_ROUTE; 10692 optp->len = msgdsize(ird.ird_route.lp_head); 10693 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10694 (int)optp->level, (int)optp->name, (int)optp->len)); 10695 qreply(q, mpctl); 10696 10697 /* ipv6NetToMediaEntryTable in mp3ctl */ 10698 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10699 10700 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10701 optp->level = MIB2_IP6; 10702 optp->name = MIB2_IP6_MEDIA; 10703 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10704 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10705 (int)optp->level, (int)optp->name, (int)optp->len)); 10706 qreply(q, mp3ctl); 10707 10708 /* ipv6RouteAttributeTable in mp4ctl */ 10709 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10710 optp->level = MIB2_IP6; 10711 optp->name = EXPER_IP_RTATTR; 10712 optp->len = msgdsize(ird.ird_attrs.lp_head); 10713 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10714 (int)optp->level, (int)optp->name, (int)optp->len)); 10715 if (optp->len == 0) 10716 freemsg(mp4ctl); 10717 else 10718 qreply(q, mp4ctl); 10719 10720 return (mp2ctl); 10721 } 10722 10723 /* 10724 * IPv6 mib: One per ill 10725 */ 10726 static mblk_t * 10727 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10728 boolean_t legacy_req) 10729 { 10730 struct opthdr *optp; 10731 mblk_t *mp2ctl; 10732 ill_t *ill; 10733 ill_walk_context_t ctx; 10734 mblk_t *mp_tail = NULL; 10735 mib2_ipv6AddrEntry_t mae6; 10736 mib2_ipIfStatsEntry_t *ise; 10737 size_t ise_size, iae_size; 10738 10739 /* 10740 * Make a copy of the original message 10741 */ 10742 mp2ctl = copymsg(mpctl); 10743 10744 /* fixed length IPv6 structure ... */ 10745 10746 if (legacy_req) { 10747 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10748 mib2_ipIfStatsEntry_t); 10749 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10750 } else { 10751 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10752 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10753 } 10754 10755 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10756 optp->level = MIB2_IP6; 10757 optp->name = 0; 10758 /* Include "unknown interface" ip6_mib */ 10759 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10760 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10761 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10762 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10763 ipst->ips_ipv6_forwarding ? 1 : 2); 10764 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10765 ipst->ips_ipv6_def_hops); 10766 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10767 sizeof (mib2_ipIfStatsEntry_t)); 10768 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10769 sizeof (mib2_ipv6AddrEntry_t)); 10770 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10771 sizeof (mib2_ipv6RouteEntry_t)); 10772 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10773 sizeof (mib2_ipv6NetToMediaEntry_t)); 10774 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10775 sizeof (ipv6_member_t)); 10776 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10777 sizeof (ipv6_grpsrc_t)); 10778 10779 /* 10780 * Synchronize 64- and 32-bit counters 10781 */ 10782 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10783 ipIfStatsHCInReceives); 10784 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10785 ipIfStatsHCInDelivers); 10786 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10787 ipIfStatsHCOutRequests); 10788 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10789 ipIfStatsHCOutForwDatagrams); 10790 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10791 ipIfStatsHCOutMcastPkts); 10792 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10793 ipIfStatsHCInMcastPkts); 10794 10795 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10796 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10797 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10798 (uint_t)ise_size)); 10799 } else if (legacy_req) { 10800 /* Adjust the EntrySize fields for legacy requests. */ 10801 ise = 10802 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10803 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10804 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10805 } 10806 10807 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10808 ill = ILL_START_WALK_V6(&ctx, ipst); 10809 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10810 ill->ill_ip_mib->ipIfStatsIfIndex = 10811 ill->ill_phyint->phyint_ifindex; 10812 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10813 ipst->ips_ipv6_forwarding ? 1 : 2); 10814 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10815 ill->ill_max_hops); 10816 10817 /* 10818 * Synchronize 64- and 32-bit counters 10819 */ 10820 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10821 ipIfStatsHCInReceives); 10822 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10823 ipIfStatsHCInDelivers); 10824 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10825 ipIfStatsHCOutRequests); 10826 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10827 ipIfStatsHCOutForwDatagrams); 10828 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10829 ipIfStatsHCOutMcastPkts); 10830 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10831 ipIfStatsHCInMcastPkts); 10832 10833 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10834 (char *)ill->ill_ip_mib, (int)ise_size)) { 10835 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10836 "%u bytes\n", (uint_t)ise_size)); 10837 } else if (legacy_req) { 10838 /* Adjust the EntrySize fields for legacy requests. */ 10839 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10840 (int)ise_size); 10841 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10842 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10843 } 10844 } 10845 rw_exit(&ipst->ips_ill_g_lock); 10846 10847 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10848 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10849 (int)optp->level, (int)optp->name, (int)optp->len)); 10850 qreply(q, mpctl); 10851 return (mp2ctl); 10852 } 10853 10854 /* 10855 * ICMPv6 mib: One per ill 10856 */ 10857 static mblk_t * 10858 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10859 { 10860 struct opthdr *optp; 10861 mblk_t *mp2ctl; 10862 ill_t *ill; 10863 ill_walk_context_t ctx; 10864 mblk_t *mp_tail = NULL; 10865 /* 10866 * Make a copy of the original message 10867 */ 10868 mp2ctl = copymsg(mpctl); 10869 10870 /* fixed length ICMPv6 structure ... */ 10871 10872 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10873 optp->level = MIB2_ICMP6; 10874 optp->name = 0; 10875 /* Include "unknown interface" icmp6_mib */ 10876 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10877 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10878 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10879 sizeof (mib2_ipv6IfIcmpEntry_t); 10880 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10881 (char *)&ipst->ips_icmp6_mib, 10882 (int)sizeof (ipst->ips_icmp6_mib))) { 10883 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10884 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10885 } 10886 10887 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10888 ill = ILL_START_WALK_V6(&ctx, ipst); 10889 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10890 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10891 ill->ill_phyint->phyint_ifindex; 10892 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10893 (char *)ill->ill_icmp6_mib, 10894 (int)sizeof (*ill->ill_icmp6_mib))) { 10895 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10896 "%u bytes\n", 10897 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10898 } 10899 } 10900 rw_exit(&ipst->ips_ill_g_lock); 10901 10902 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10903 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10904 (int)optp->level, (int)optp->name, (int)optp->len)); 10905 qreply(q, mpctl); 10906 return (mp2ctl); 10907 } 10908 10909 /* 10910 * ire_walk routine to create both ipRouteEntryTable and 10911 * ipRouteAttributeTable in one IRE walk 10912 */ 10913 static void 10914 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10915 { 10916 ill_t *ill; 10917 mib2_ipRouteEntry_t *re; 10918 mib2_ipAttributeEntry_t iaes; 10919 tsol_ire_gw_secattr_t *attrp; 10920 tsol_gc_t *gc = NULL; 10921 tsol_gcgrp_t *gcgrp = NULL; 10922 ip_stack_t *ipst = ire->ire_ipst; 10923 10924 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10925 10926 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10927 if (ire->ire_testhidden) 10928 return; 10929 if (ire->ire_type & IRE_IF_CLONE) 10930 return; 10931 } 10932 10933 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10934 return; 10935 10936 if ((attrp = ire->ire_gw_secattr) != NULL) { 10937 mutex_enter(&attrp->igsa_lock); 10938 if ((gc = attrp->igsa_gc) != NULL) { 10939 gcgrp = gc->gc_grp; 10940 ASSERT(gcgrp != NULL); 10941 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10942 } 10943 mutex_exit(&attrp->igsa_lock); 10944 } 10945 /* 10946 * Return all IRE types for route table... let caller pick and choose 10947 */ 10948 re->ipRouteDest = ire->ire_addr; 10949 ill = ire->ire_ill; 10950 re->ipRouteIfIndex.o_length = 0; 10951 if (ill != NULL) { 10952 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10953 re->ipRouteIfIndex.o_length = 10954 mi_strlen(re->ipRouteIfIndex.o_bytes); 10955 } 10956 re->ipRouteMetric1 = -1; 10957 re->ipRouteMetric2 = -1; 10958 re->ipRouteMetric3 = -1; 10959 re->ipRouteMetric4 = -1; 10960 10961 re->ipRouteNextHop = ire->ire_gateway_addr; 10962 /* indirect(4), direct(3), or invalid(2) */ 10963 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10964 re->ipRouteType = 2; 10965 else if (ire->ire_type & IRE_ONLINK) 10966 re->ipRouteType = 3; 10967 else 10968 re->ipRouteType = 4; 10969 10970 re->ipRouteProto = -1; 10971 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10972 re->ipRouteMask = ire->ire_mask; 10973 re->ipRouteMetric5 = -1; 10974 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10975 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10976 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10977 10978 re->ipRouteInfo.re_frag_flag = 0; 10979 re->ipRouteInfo.re_rtt = 0; 10980 re->ipRouteInfo.re_src_addr = 0; 10981 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10982 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10983 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10984 re->ipRouteInfo.re_flags = ire->ire_flags; 10985 10986 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10987 if (ire->ire_type & IRE_INTERFACE) { 10988 ire_t *child; 10989 10990 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10991 child = ire->ire_dep_children; 10992 while (child != NULL) { 10993 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10994 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10995 child = child->ire_dep_sib_next; 10996 } 10997 rw_exit(&ipst->ips_ire_dep_lock); 10998 } 10999 11000 if (ire->ire_flags & RTF_DYNAMIC) { 11001 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11002 } else { 11003 re->ipRouteInfo.re_ire_type = ire->ire_type; 11004 } 11005 11006 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11007 (char *)re, (int)sizeof (*re))) { 11008 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11009 (uint_t)sizeof (*re))); 11010 } 11011 11012 if (gc != NULL) { 11013 iaes.iae_routeidx = ird->ird_idx; 11014 iaes.iae_doi = gc->gc_db->gcdb_doi; 11015 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11016 11017 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11018 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11019 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11020 "bytes\n", (uint_t)sizeof (iaes))); 11021 } 11022 } 11023 11024 /* bump route index for next pass */ 11025 ird->ird_idx++; 11026 11027 kmem_free(re, sizeof (*re)); 11028 if (gcgrp != NULL) 11029 rw_exit(&gcgrp->gcgrp_rwlock); 11030 } 11031 11032 /* 11033 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11034 */ 11035 static void 11036 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11037 { 11038 ill_t *ill; 11039 mib2_ipv6RouteEntry_t *re; 11040 mib2_ipAttributeEntry_t iaes; 11041 tsol_ire_gw_secattr_t *attrp; 11042 tsol_gc_t *gc = NULL; 11043 tsol_gcgrp_t *gcgrp = NULL; 11044 ip_stack_t *ipst = ire->ire_ipst; 11045 11046 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11047 11048 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11049 if (ire->ire_testhidden) 11050 return; 11051 if (ire->ire_type & IRE_IF_CLONE) 11052 return; 11053 } 11054 11055 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11056 return; 11057 11058 if ((attrp = ire->ire_gw_secattr) != NULL) { 11059 mutex_enter(&attrp->igsa_lock); 11060 if ((gc = attrp->igsa_gc) != NULL) { 11061 gcgrp = gc->gc_grp; 11062 ASSERT(gcgrp != NULL); 11063 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11064 } 11065 mutex_exit(&attrp->igsa_lock); 11066 } 11067 /* 11068 * Return all IRE types for route table... let caller pick and choose 11069 */ 11070 re->ipv6RouteDest = ire->ire_addr_v6; 11071 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11072 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11073 re->ipv6RouteIfIndex.o_length = 0; 11074 ill = ire->ire_ill; 11075 if (ill != NULL) { 11076 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11077 re->ipv6RouteIfIndex.o_length = 11078 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11079 } 11080 11081 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11082 11083 mutex_enter(&ire->ire_lock); 11084 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11085 mutex_exit(&ire->ire_lock); 11086 11087 /* remote(4), local(3), or discard(2) */ 11088 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11089 re->ipv6RouteType = 2; 11090 else if (ire->ire_type & IRE_ONLINK) 11091 re->ipv6RouteType = 3; 11092 else 11093 re->ipv6RouteType = 4; 11094 11095 re->ipv6RouteProtocol = -1; 11096 re->ipv6RoutePolicy = 0; 11097 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11098 re->ipv6RouteNextHopRDI = 0; 11099 re->ipv6RouteWeight = 0; 11100 re->ipv6RouteMetric = 0; 11101 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11102 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11103 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11104 11105 re->ipv6RouteInfo.re_frag_flag = 0; 11106 re->ipv6RouteInfo.re_rtt = 0; 11107 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11108 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11109 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11110 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11111 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11112 11113 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11114 if (ire->ire_type & IRE_INTERFACE) { 11115 ire_t *child; 11116 11117 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11118 child = ire->ire_dep_children; 11119 while (child != NULL) { 11120 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11121 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11122 child = child->ire_dep_sib_next; 11123 } 11124 rw_exit(&ipst->ips_ire_dep_lock); 11125 } 11126 if (ire->ire_flags & RTF_DYNAMIC) { 11127 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11128 } else { 11129 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11130 } 11131 11132 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11133 (char *)re, (int)sizeof (*re))) { 11134 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11135 (uint_t)sizeof (*re))); 11136 } 11137 11138 if (gc != NULL) { 11139 iaes.iae_routeidx = ird->ird_idx; 11140 iaes.iae_doi = gc->gc_db->gcdb_doi; 11141 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11142 11143 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11144 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11145 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11146 "bytes\n", (uint_t)sizeof (iaes))); 11147 } 11148 } 11149 11150 /* bump route index for next pass */ 11151 ird->ird_idx++; 11152 11153 kmem_free(re, sizeof (*re)); 11154 if (gcgrp != NULL) 11155 rw_exit(&gcgrp->gcgrp_rwlock); 11156 } 11157 11158 /* 11159 * ncec_walk routine to create ipv6NetToMediaEntryTable 11160 */ 11161 static int 11162 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11163 { 11164 ill_t *ill; 11165 mib2_ipv6NetToMediaEntry_t ntme; 11166 11167 ill = ncec->ncec_ill; 11168 /* skip arpce entries, and loopback ncec entries */ 11169 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11170 return (0); 11171 /* 11172 * Neighbor cache entry attached to IRE with on-link 11173 * destination. 11174 * We report all IPMP groups on ncec_ill which is normally the upper. 11175 */ 11176 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11177 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11178 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11179 if (ncec->ncec_lladdr != NULL) { 11180 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11181 ntme.ipv6NetToMediaPhysAddress.o_length); 11182 } 11183 /* 11184 * Note: Returns ND_* states. Should be: 11185 * reachable(1), stale(2), delay(3), probe(4), 11186 * invalid(5), unknown(6) 11187 */ 11188 ntme.ipv6NetToMediaState = ncec->ncec_state; 11189 ntme.ipv6NetToMediaLastUpdated = 0; 11190 11191 /* other(1), dynamic(2), static(3), local(4) */ 11192 if (NCE_MYADDR(ncec)) { 11193 ntme.ipv6NetToMediaType = 4; 11194 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11195 ntme.ipv6NetToMediaType = 1; /* proxy */ 11196 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11197 ntme.ipv6NetToMediaType = 3; 11198 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11199 ntme.ipv6NetToMediaType = 1; 11200 } else { 11201 ntme.ipv6NetToMediaType = 2; 11202 } 11203 11204 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11205 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11206 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11207 (uint_t)sizeof (ntme))); 11208 } 11209 return (0); 11210 } 11211 11212 int 11213 nce2ace(ncec_t *ncec) 11214 { 11215 int flags = 0; 11216 11217 if (NCE_ISREACHABLE(ncec)) 11218 flags |= ACE_F_RESOLVED; 11219 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11220 flags |= ACE_F_AUTHORITY; 11221 if (ncec->ncec_flags & NCE_F_PUBLISH) 11222 flags |= ACE_F_PUBLISH; 11223 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11224 flags |= ACE_F_PERMANENT; 11225 if (NCE_MYADDR(ncec)) 11226 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11227 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11228 flags |= ACE_F_UNVERIFIED; 11229 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11230 flags |= ACE_F_AUTHORITY; 11231 if (ncec->ncec_flags & NCE_F_DELAYED) 11232 flags |= ACE_F_DELAYED; 11233 return (flags); 11234 } 11235 11236 /* 11237 * ncec_walk routine to create ipNetToMediaEntryTable 11238 */ 11239 static int 11240 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11241 { 11242 ill_t *ill; 11243 mib2_ipNetToMediaEntry_t ntme; 11244 const char *name = "unknown"; 11245 ipaddr_t ncec_addr; 11246 11247 ill = ncec->ncec_ill; 11248 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11249 ill->ill_net_type == IRE_LOOPBACK) 11250 return (0); 11251 11252 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11253 name = ill->ill_name; 11254 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11255 if (NCE_MYADDR(ncec)) { 11256 ntme.ipNetToMediaType = 4; 11257 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11258 ntme.ipNetToMediaType = 1; 11259 } else { 11260 ntme.ipNetToMediaType = 3; 11261 } 11262 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11263 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11264 ntme.ipNetToMediaIfIndex.o_length); 11265 11266 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11267 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11268 11269 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11270 ncec_addr = INADDR_BROADCAST; 11271 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11272 sizeof (ncec_addr)); 11273 /* 11274 * map all the flags to the ACE counterpart. 11275 */ 11276 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11277 11278 ntme.ipNetToMediaPhysAddress.o_length = 11279 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11280 11281 if (!NCE_ISREACHABLE(ncec)) 11282 ntme.ipNetToMediaPhysAddress.o_length = 0; 11283 else { 11284 if (ncec->ncec_lladdr != NULL) { 11285 bcopy(ncec->ncec_lladdr, 11286 ntme.ipNetToMediaPhysAddress.o_bytes, 11287 ntme.ipNetToMediaPhysAddress.o_length); 11288 } 11289 } 11290 11291 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11292 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11293 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11294 (uint_t)sizeof (ntme))); 11295 } 11296 return (0); 11297 } 11298 11299 /* 11300 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11301 */ 11302 /* ARGSUSED */ 11303 int 11304 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11305 { 11306 switch (level) { 11307 case MIB2_IP: 11308 case MIB2_ICMP: 11309 switch (name) { 11310 default: 11311 break; 11312 } 11313 return (1); 11314 default: 11315 return (1); 11316 } 11317 } 11318 11319 /* 11320 * When there exists both a 64- and 32-bit counter of a particular type 11321 * (i.e., InReceives), only the 64-bit counters are added. 11322 */ 11323 void 11324 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11325 { 11326 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11327 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11328 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11329 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11330 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11331 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11332 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11333 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11334 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11335 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11336 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11337 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11338 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11339 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11340 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11341 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11342 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11343 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11344 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11345 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11346 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11347 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11348 o2->ipIfStatsInWrongIPVersion); 11349 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11350 o2->ipIfStatsInWrongIPVersion); 11351 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11352 o2->ipIfStatsOutSwitchIPVersion); 11353 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11354 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11355 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11356 o2->ipIfStatsHCInForwDatagrams); 11357 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11358 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11359 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11360 o2->ipIfStatsHCOutForwDatagrams); 11361 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11362 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11363 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11364 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11365 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11366 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11367 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11368 o2->ipIfStatsHCOutMcastOctets); 11369 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11370 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11371 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11372 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11373 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11374 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11375 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11376 } 11377 11378 void 11379 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11380 { 11381 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11382 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11383 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11384 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11385 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11386 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11387 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11388 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11389 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11390 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11391 o2->ipv6IfIcmpInRouterSolicits); 11392 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11393 o2->ipv6IfIcmpInRouterAdvertisements); 11394 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11395 o2->ipv6IfIcmpInNeighborSolicits); 11396 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11397 o2->ipv6IfIcmpInNeighborAdvertisements); 11398 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11399 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11400 o2->ipv6IfIcmpInGroupMembQueries); 11401 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11402 o2->ipv6IfIcmpInGroupMembResponses); 11403 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11404 o2->ipv6IfIcmpInGroupMembReductions); 11405 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11406 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11407 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11408 o2->ipv6IfIcmpOutDestUnreachs); 11409 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11410 o2->ipv6IfIcmpOutAdminProhibs); 11411 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11412 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11413 o2->ipv6IfIcmpOutParmProblems); 11414 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11415 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11416 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11417 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11418 o2->ipv6IfIcmpOutRouterSolicits); 11419 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11420 o2->ipv6IfIcmpOutRouterAdvertisements); 11421 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11422 o2->ipv6IfIcmpOutNeighborSolicits); 11423 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11424 o2->ipv6IfIcmpOutNeighborAdvertisements); 11425 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11426 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11427 o2->ipv6IfIcmpOutGroupMembQueries); 11428 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11429 o2->ipv6IfIcmpOutGroupMembResponses); 11430 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11431 o2->ipv6IfIcmpOutGroupMembReductions); 11432 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11433 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11434 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11435 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11436 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11437 o2->ipv6IfIcmpInBadNeighborSolicitations); 11438 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11439 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11440 o2->ipv6IfIcmpInGroupMembTotal); 11441 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11442 o2->ipv6IfIcmpInGroupMembBadQueries); 11443 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11444 o2->ipv6IfIcmpInGroupMembBadReports); 11445 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11446 o2->ipv6IfIcmpInGroupMembOurReports); 11447 } 11448 11449 /* 11450 * Called before the options are updated to check if this packet will 11451 * be source routed from here. 11452 * This routine assumes that the options are well formed i.e. that they 11453 * have already been checked. 11454 */ 11455 boolean_t 11456 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11457 { 11458 ipoptp_t opts; 11459 uchar_t *opt; 11460 uint8_t optval; 11461 uint8_t optlen; 11462 ipaddr_t dst; 11463 11464 if (IS_SIMPLE_IPH(ipha)) { 11465 ip2dbg(("not source routed\n")); 11466 return (B_FALSE); 11467 } 11468 dst = ipha->ipha_dst; 11469 for (optval = ipoptp_first(&opts, ipha); 11470 optval != IPOPT_EOL; 11471 optval = ipoptp_next(&opts)) { 11472 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11473 opt = opts.ipoptp_cur; 11474 optlen = opts.ipoptp_len; 11475 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11476 optval, optlen)); 11477 switch (optval) { 11478 uint32_t off; 11479 case IPOPT_SSRR: 11480 case IPOPT_LSRR: 11481 /* 11482 * If dst is one of our addresses and there are some 11483 * entries left in the source route return (true). 11484 */ 11485 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11486 ip2dbg(("ip_source_routed: not next" 11487 " source route 0x%x\n", 11488 ntohl(dst))); 11489 return (B_FALSE); 11490 } 11491 off = opt[IPOPT_OFFSET]; 11492 off--; 11493 if (optlen < IP_ADDR_LEN || 11494 off > optlen - IP_ADDR_LEN) { 11495 /* End of source route */ 11496 ip1dbg(("ip_source_routed: end of SR\n")); 11497 return (B_FALSE); 11498 } 11499 return (B_TRUE); 11500 } 11501 } 11502 ip2dbg(("not source routed\n")); 11503 return (B_FALSE); 11504 } 11505 11506 /* 11507 * ip_unbind is called by the transports to remove a conn from 11508 * the fanout table. 11509 */ 11510 void 11511 ip_unbind(conn_t *connp) 11512 { 11513 11514 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11515 11516 if (is_system_labeled() && connp->conn_anon_port) { 11517 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11518 connp->conn_mlp_type, connp->conn_proto, 11519 ntohs(connp->conn_lport), B_FALSE); 11520 connp->conn_anon_port = 0; 11521 } 11522 connp->conn_mlp_type = mlptSingle; 11523 11524 ipcl_hash_remove(connp); 11525 } 11526 11527 /* 11528 * Used for deciding the MSS size for the upper layer. Thus 11529 * we need to check the outbound policy values in the conn. 11530 */ 11531 int 11532 conn_ipsec_length(conn_t *connp) 11533 { 11534 ipsec_latch_t *ipl; 11535 11536 ipl = connp->conn_latch; 11537 if (ipl == NULL) 11538 return (0); 11539 11540 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11541 return (0); 11542 11543 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11544 } 11545 11546 /* 11547 * Returns an estimate of the IPsec headers size. This is used if 11548 * we don't want to call into IPsec to get the exact size. 11549 */ 11550 int 11551 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11552 { 11553 ipsec_action_t *a; 11554 11555 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11556 return (0); 11557 11558 a = ixa->ixa_ipsec_action; 11559 if (a == NULL) { 11560 ASSERT(ixa->ixa_ipsec_policy != NULL); 11561 a = ixa->ixa_ipsec_policy->ipsp_act; 11562 } 11563 ASSERT(a != NULL); 11564 11565 return (a->ipa_ovhd); 11566 } 11567 11568 /* 11569 * If there are any source route options, return the true final 11570 * destination. Otherwise, return the destination. 11571 */ 11572 ipaddr_t 11573 ip_get_dst(ipha_t *ipha) 11574 { 11575 ipoptp_t opts; 11576 uchar_t *opt; 11577 uint8_t optval; 11578 uint8_t optlen; 11579 ipaddr_t dst; 11580 uint32_t off; 11581 11582 dst = ipha->ipha_dst; 11583 11584 if (IS_SIMPLE_IPH(ipha)) 11585 return (dst); 11586 11587 for (optval = ipoptp_first(&opts, ipha); 11588 optval != IPOPT_EOL; 11589 optval = ipoptp_next(&opts)) { 11590 opt = opts.ipoptp_cur; 11591 optlen = opts.ipoptp_len; 11592 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11593 switch (optval) { 11594 case IPOPT_SSRR: 11595 case IPOPT_LSRR: 11596 off = opt[IPOPT_OFFSET]; 11597 /* 11598 * If one of the conditions is true, it means 11599 * end of options and dst already has the right 11600 * value. 11601 */ 11602 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11603 off = optlen - IP_ADDR_LEN; 11604 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11605 } 11606 return (dst); 11607 default: 11608 break; 11609 } 11610 } 11611 11612 return (dst); 11613 } 11614 11615 /* 11616 * Outbound IP fragmentation routine. 11617 * Assumes the caller has checked whether or not fragmentation should 11618 * be allowed. Here we copy the DF bit from the header to all the generated 11619 * fragments. 11620 */ 11621 int 11622 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11623 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11624 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11625 { 11626 int i1; 11627 int hdr_len; 11628 mblk_t *hdr_mp; 11629 ipha_t *ipha; 11630 int ip_data_end; 11631 int len; 11632 mblk_t *mp = mp_orig; 11633 int offset; 11634 ill_t *ill = nce->nce_ill; 11635 ip_stack_t *ipst = ill->ill_ipst; 11636 mblk_t *carve_mp; 11637 uint32_t frag_flag; 11638 uint_t priority = mp->b_band; 11639 int error = 0; 11640 11641 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11642 11643 if (pkt_len != msgdsize(mp)) { 11644 ip0dbg(("Packet length mismatch: %d, %ld\n", 11645 pkt_len, msgdsize(mp))); 11646 freemsg(mp); 11647 return (EINVAL); 11648 } 11649 11650 if (max_frag == 0) { 11651 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11653 ip_drop_output("FragFails: zero max_frag", mp, ill); 11654 freemsg(mp); 11655 return (EINVAL); 11656 } 11657 11658 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11659 ipha = (ipha_t *)mp->b_rptr; 11660 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11661 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11662 11663 /* 11664 * Establish the starting offset. May not be zero if we are fragging 11665 * a fragment that is being forwarded. 11666 */ 11667 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11668 11669 /* TODO why is this test needed? */ 11670 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11671 /* TODO: notify ulp somehow */ 11672 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11673 ip_drop_output("FragFails: bad starting offset", mp, ill); 11674 freemsg(mp); 11675 return (EINVAL); 11676 } 11677 11678 hdr_len = IPH_HDR_LENGTH(ipha); 11679 ipha->ipha_hdr_checksum = 0; 11680 11681 /* 11682 * Establish the number of bytes maximum per frag, after putting 11683 * in the header. 11684 */ 11685 len = (max_frag - hdr_len) & ~7; 11686 11687 /* Get a copy of the header for the trailing frags */ 11688 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11689 mp); 11690 if (hdr_mp == NULL) { 11691 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11692 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11693 freemsg(mp); 11694 return (ENOBUFS); 11695 } 11696 11697 /* Store the starting offset, with the MoreFrags flag. */ 11698 i1 = offset | IPH_MF | frag_flag; 11699 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11700 11701 /* Establish the ending byte offset, based on the starting offset. */ 11702 offset <<= 3; 11703 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11704 11705 /* Store the length of the first fragment in the IP header. */ 11706 i1 = len + hdr_len; 11707 ASSERT(i1 <= IP_MAXPACKET); 11708 ipha->ipha_length = htons((uint16_t)i1); 11709 11710 /* 11711 * Compute the IP header checksum for the first frag. We have to 11712 * watch out that we stop at the end of the header. 11713 */ 11714 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11715 11716 /* 11717 * Now carve off the first frag. Note that this will include the 11718 * original IP header. 11719 */ 11720 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11721 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11722 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11723 freeb(hdr_mp); 11724 freemsg(mp_orig); 11725 return (ENOBUFS); 11726 } 11727 11728 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11729 11730 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11731 ixa_cookie); 11732 if (error != 0 && error != EWOULDBLOCK) { 11733 /* No point in sending the other fragments */ 11734 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11735 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11736 freeb(hdr_mp); 11737 freemsg(mp_orig); 11738 return (error); 11739 } 11740 11741 /* No need to redo state machine in loop */ 11742 ixaflags &= ~IXAF_REACH_CONF; 11743 11744 /* Advance the offset to the second frag starting point. */ 11745 offset += len; 11746 /* 11747 * Update hdr_len from the copied header - there might be less options 11748 * in the later fragments. 11749 */ 11750 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11751 /* Loop until done. */ 11752 for (;;) { 11753 uint16_t offset_and_flags; 11754 uint16_t ip_len; 11755 11756 if (ip_data_end - offset > len) { 11757 /* 11758 * Carve off the appropriate amount from the original 11759 * datagram. 11760 */ 11761 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11762 mp = NULL; 11763 break; 11764 } 11765 /* 11766 * More frags after this one. Get another copy 11767 * of the header. 11768 */ 11769 if (carve_mp->b_datap->db_ref == 1 && 11770 hdr_mp->b_wptr - hdr_mp->b_rptr < 11771 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11772 /* Inline IP header */ 11773 carve_mp->b_rptr -= hdr_mp->b_wptr - 11774 hdr_mp->b_rptr; 11775 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11776 hdr_mp->b_wptr - hdr_mp->b_rptr); 11777 mp = carve_mp; 11778 } else { 11779 if (!(mp = copyb(hdr_mp))) { 11780 freemsg(carve_mp); 11781 break; 11782 } 11783 /* Get priority marking, if any. */ 11784 mp->b_band = priority; 11785 mp->b_cont = carve_mp; 11786 } 11787 ipha = (ipha_t *)mp->b_rptr; 11788 offset_and_flags = IPH_MF; 11789 } else { 11790 /* 11791 * Last frag. Consume the header. Set len to 11792 * the length of this last piece. 11793 */ 11794 len = ip_data_end - offset; 11795 11796 /* 11797 * Carve off the appropriate amount from the original 11798 * datagram. 11799 */ 11800 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11801 mp = NULL; 11802 break; 11803 } 11804 if (carve_mp->b_datap->db_ref == 1 && 11805 hdr_mp->b_wptr - hdr_mp->b_rptr < 11806 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11807 /* Inline IP header */ 11808 carve_mp->b_rptr -= hdr_mp->b_wptr - 11809 hdr_mp->b_rptr; 11810 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11811 hdr_mp->b_wptr - hdr_mp->b_rptr); 11812 mp = carve_mp; 11813 freeb(hdr_mp); 11814 hdr_mp = mp; 11815 } else { 11816 mp = hdr_mp; 11817 /* Get priority marking, if any. */ 11818 mp->b_band = priority; 11819 mp->b_cont = carve_mp; 11820 } 11821 ipha = (ipha_t *)mp->b_rptr; 11822 /* A frag of a frag might have IPH_MF non-zero */ 11823 offset_and_flags = 11824 ntohs(ipha->ipha_fragment_offset_and_flags) & 11825 IPH_MF; 11826 } 11827 offset_and_flags |= (uint16_t)(offset >> 3); 11828 offset_and_flags |= (uint16_t)frag_flag; 11829 /* Store the offset and flags in the IP header. */ 11830 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11831 11832 /* Store the length in the IP header. */ 11833 ip_len = (uint16_t)(len + hdr_len); 11834 ipha->ipha_length = htons(ip_len); 11835 11836 /* 11837 * Set the IP header checksum. Note that mp is just 11838 * the header, so this is easy to pass to ip_csum. 11839 */ 11840 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11841 11842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11843 11844 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11845 nolzid, ixa_cookie); 11846 /* All done if we just consumed the hdr_mp. */ 11847 if (mp == hdr_mp) { 11848 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11849 return (error); 11850 } 11851 if (error != 0 && error != EWOULDBLOCK) { 11852 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11853 mblk_t *, hdr_mp); 11854 /* No point in sending the other fragments */ 11855 break; 11856 } 11857 11858 /* Otherwise, advance and loop. */ 11859 offset += len; 11860 } 11861 /* Clean up following allocation failure. */ 11862 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11863 ip_drop_output("FragFails: loop ended", NULL, ill); 11864 if (mp != hdr_mp) 11865 freeb(hdr_mp); 11866 if (mp != mp_orig) 11867 freemsg(mp_orig); 11868 return (error); 11869 } 11870 11871 /* 11872 * Copy the header plus those options which have the copy bit set 11873 */ 11874 static mblk_t * 11875 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11876 mblk_t *src) 11877 { 11878 mblk_t *mp; 11879 uchar_t *up; 11880 11881 /* 11882 * Quick check if we need to look for options without the copy bit 11883 * set 11884 */ 11885 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11886 if (!mp) 11887 return (mp); 11888 mp->b_rptr += ipst->ips_ip_wroff_extra; 11889 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11890 bcopy(rptr, mp->b_rptr, hdr_len); 11891 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11892 return (mp); 11893 } 11894 up = mp->b_rptr; 11895 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11896 up += IP_SIMPLE_HDR_LENGTH; 11897 rptr += IP_SIMPLE_HDR_LENGTH; 11898 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11899 while (hdr_len > 0) { 11900 uint32_t optval; 11901 uint32_t optlen; 11902 11903 optval = *rptr; 11904 if (optval == IPOPT_EOL) 11905 break; 11906 if (optval == IPOPT_NOP) 11907 optlen = 1; 11908 else 11909 optlen = rptr[1]; 11910 if (optval & IPOPT_COPY) { 11911 bcopy(rptr, up, optlen); 11912 up += optlen; 11913 } 11914 rptr += optlen; 11915 hdr_len -= optlen; 11916 } 11917 /* 11918 * Make sure that we drop an even number of words by filling 11919 * with EOL to the next word boundary. 11920 */ 11921 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11922 hdr_len & 0x3; hdr_len++) 11923 *up++ = IPOPT_EOL; 11924 mp->b_wptr = up; 11925 /* Update header length */ 11926 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11927 return (mp); 11928 } 11929 11930 /* 11931 * Update any source route, record route, or timestamp options when 11932 * sending a packet back to ourselves. 11933 * Check that we are at end of strict source route. 11934 * The options have been sanity checked by ip_output_options(). 11935 */ 11936 void 11937 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11938 { 11939 ipoptp_t opts; 11940 uchar_t *opt; 11941 uint8_t optval; 11942 uint8_t optlen; 11943 ipaddr_t dst; 11944 uint32_t ts; 11945 timestruc_t now; 11946 11947 for (optval = ipoptp_first(&opts, ipha); 11948 optval != IPOPT_EOL; 11949 optval = ipoptp_next(&opts)) { 11950 opt = opts.ipoptp_cur; 11951 optlen = opts.ipoptp_len; 11952 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11953 switch (optval) { 11954 uint32_t off; 11955 case IPOPT_SSRR: 11956 case IPOPT_LSRR: 11957 off = opt[IPOPT_OFFSET]; 11958 off--; 11959 if (optlen < IP_ADDR_LEN || 11960 off > optlen - IP_ADDR_LEN) { 11961 /* End of source route */ 11962 break; 11963 } 11964 /* 11965 * This will only happen if two consecutive entries 11966 * in the source route contains our address or if 11967 * it is a packet with a loose source route which 11968 * reaches us before consuming the whole source route 11969 */ 11970 11971 if (optval == IPOPT_SSRR) { 11972 return; 11973 } 11974 /* 11975 * Hack: instead of dropping the packet truncate the 11976 * source route to what has been used by filling the 11977 * rest with IPOPT_NOP. 11978 */ 11979 opt[IPOPT_OLEN] = (uint8_t)off; 11980 while (off < optlen) { 11981 opt[off++] = IPOPT_NOP; 11982 } 11983 break; 11984 case IPOPT_RR: 11985 off = opt[IPOPT_OFFSET]; 11986 off--; 11987 if (optlen < IP_ADDR_LEN || 11988 off > optlen - IP_ADDR_LEN) { 11989 /* No more room - ignore */ 11990 ip1dbg(( 11991 "ip_output_local_options: end of RR\n")); 11992 break; 11993 } 11994 dst = htonl(INADDR_LOOPBACK); 11995 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11996 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11997 break; 11998 case IPOPT_TS: 11999 /* Insert timestamp if there is romm */ 12000 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12001 case IPOPT_TS_TSONLY: 12002 off = IPOPT_TS_TIMELEN; 12003 break; 12004 case IPOPT_TS_PRESPEC: 12005 case IPOPT_TS_PRESPEC_RFC791: 12006 /* Verify that the address matched */ 12007 off = opt[IPOPT_OFFSET] - 1; 12008 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12009 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12010 /* Not for us */ 12011 break; 12012 } 12013 /* FALLTHRU */ 12014 case IPOPT_TS_TSANDADDR: 12015 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12016 break; 12017 default: 12018 /* 12019 * ip_*put_options should have already 12020 * dropped this packet. 12021 */ 12022 cmn_err(CE_PANIC, "ip_output_local_options: " 12023 "unknown IT - bug in ip_output_options?\n"); 12024 return; /* Keep "lint" happy */ 12025 } 12026 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12027 /* Increase overflow counter */ 12028 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12029 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12030 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12031 (off << 4); 12032 break; 12033 } 12034 off = opt[IPOPT_OFFSET] - 1; 12035 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12036 case IPOPT_TS_PRESPEC: 12037 case IPOPT_TS_PRESPEC_RFC791: 12038 case IPOPT_TS_TSANDADDR: 12039 dst = htonl(INADDR_LOOPBACK); 12040 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12041 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12042 /* FALLTHRU */ 12043 case IPOPT_TS_TSONLY: 12044 off = opt[IPOPT_OFFSET] - 1; 12045 /* Compute # of milliseconds since midnight */ 12046 gethrestime(&now); 12047 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12048 NSEC2MSEC(now.tv_nsec); 12049 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12050 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12051 break; 12052 } 12053 break; 12054 } 12055 } 12056 } 12057 12058 /* 12059 * Prepend an M_DATA fastpath header, and if none present prepend a 12060 * DL_UNITDATA_REQ. Frees the mblk on failure. 12061 * 12062 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12063 * If there is a change to them, the nce will be deleted (condemned) and 12064 * a new nce_t will be created when packets are sent. Thus we need no locks 12065 * to access those fields. 12066 * 12067 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12068 * we place b_band in dl_priority.dl_max. 12069 */ 12070 static mblk_t * 12071 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12072 { 12073 uint_t hlen; 12074 mblk_t *mp1; 12075 uint_t priority; 12076 uchar_t *rptr; 12077 12078 rptr = mp->b_rptr; 12079 12080 ASSERT(DB_TYPE(mp) == M_DATA); 12081 priority = mp->b_band; 12082 12083 ASSERT(nce != NULL); 12084 if ((mp1 = nce->nce_fp_mp) != NULL) { 12085 hlen = MBLKL(mp1); 12086 /* 12087 * Check if we have enough room to prepend fastpath 12088 * header 12089 */ 12090 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12091 rptr -= hlen; 12092 bcopy(mp1->b_rptr, rptr, hlen); 12093 /* 12094 * Set the b_rptr to the start of the link layer 12095 * header 12096 */ 12097 mp->b_rptr = rptr; 12098 return (mp); 12099 } 12100 mp1 = copyb(mp1); 12101 if (mp1 == NULL) { 12102 ill_t *ill = nce->nce_ill; 12103 12104 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12105 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12106 freemsg(mp); 12107 return (NULL); 12108 } 12109 mp1->b_band = priority; 12110 mp1->b_cont = mp; 12111 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12112 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12113 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12114 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12115 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12116 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12117 /* 12118 * XXX disable ICK_VALID and compute checksum 12119 * here; can happen if nce_fp_mp changes and 12120 * it can't be copied now due to insufficient 12121 * space. (unlikely, fp mp can change, but it 12122 * does not increase in length) 12123 */ 12124 return (mp1); 12125 } 12126 mp1 = copyb(nce->nce_dlur_mp); 12127 12128 if (mp1 == NULL) { 12129 ill_t *ill = nce->nce_ill; 12130 12131 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12132 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12133 freemsg(mp); 12134 return (NULL); 12135 } 12136 mp1->b_cont = mp; 12137 if (priority != 0) { 12138 mp1->b_band = priority; 12139 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12140 priority; 12141 } 12142 return (mp1); 12143 } 12144 12145 /* 12146 * Finish the outbound IPsec processing. This function is called from 12147 * ipsec_out_process() if the IPsec packet was processed 12148 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12149 * asynchronously. 12150 * 12151 * This is common to IPv4 and IPv6. 12152 */ 12153 int 12154 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12155 { 12156 iaflags_t ixaflags = ixa->ixa_flags; 12157 uint_t pktlen; 12158 12159 12160 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12161 if (ixaflags & IXAF_IS_IPV4) { 12162 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12163 12164 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12165 pktlen = ntohs(ipha->ipha_length); 12166 } else { 12167 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12168 12169 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12170 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12171 } 12172 12173 /* 12174 * We release any hard reference on the SAs here to make 12175 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12176 * on the SAs. 12177 * If in the future we want the hard latching of the SAs in the 12178 * ip_xmit_attr_t then we should remove this. 12179 */ 12180 if (ixa->ixa_ipsec_esp_sa != NULL) { 12181 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12182 ixa->ixa_ipsec_esp_sa = NULL; 12183 } 12184 if (ixa->ixa_ipsec_ah_sa != NULL) { 12185 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12186 ixa->ixa_ipsec_ah_sa = NULL; 12187 } 12188 12189 /* Do we need to fragment? */ 12190 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12191 pktlen > ixa->ixa_fragsize) { 12192 if (ixaflags & IXAF_IS_IPV4) { 12193 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12194 /* 12195 * We check for the DF case in ipsec_out_process 12196 * hence this only handles the non-DF case. 12197 */ 12198 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12199 pktlen, ixa->ixa_fragsize, 12200 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12201 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12202 &ixa->ixa_cookie)); 12203 } else { 12204 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12205 if (mp == NULL) { 12206 /* MIB and ip_drop_output already done */ 12207 return (ENOMEM); 12208 } 12209 pktlen += sizeof (ip6_frag_t); 12210 if (pktlen > ixa->ixa_fragsize) { 12211 return (ip_fragment_v6(mp, ixa->ixa_nce, 12212 ixa->ixa_flags, pktlen, 12213 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12214 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12215 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12216 } 12217 } 12218 } 12219 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12220 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12221 ixa->ixa_no_loop_zoneid, NULL)); 12222 } 12223 12224 /* 12225 * Finish the inbound IPsec processing. This function is called from 12226 * ipsec_out_process() if the IPsec packet was processed 12227 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12228 * asynchronously. 12229 * 12230 * This is common to IPv4 and IPv6. 12231 */ 12232 void 12233 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12234 { 12235 iaflags_t iraflags = ira->ira_flags; 12236 12237 /* Length might have changed */ 12238 if (iraflags & IRAF_IS_IPV4) { 12239 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12240 12241 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12242 ira->ira_pktlen = ntohs(ipha->ipha_length); 12243 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12244 ira->ira_protocol = ipha->ipha_protocol; 12245 12246 ip_fanout_v4(mp, ipha, ira); 12247 } else { 12248 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12249 uint8_t *nexthdrp; 12250 12251 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12252 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12253 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12254 &nexthdrp)) { 12255 /* Malformed packet */ 12256 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12257 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12258 freemsg(mp); 12259 return; 12260 } 12261 ira->ira_protocol = *nexthdrp; 12262 ip_fanout_v6(mp, ip6h, ira); 12263 } 12264 } 12265 12266 /* 12267 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12268 * 12269 * If this function returns B_TRUE, the requested SA's have been filled 12270 * into the ixa_ipsec_*_sa pointers. 12271 * 12272 * If the function returns B_FALSE, the packet has been "consumed", most 12273 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12274 * 12275 * The SA references created by the protocol-specific "select" 12276 * function will be released in ip_output_post_ipsec. 12277 */ 12278 static boolean_t 12279 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12280 { 12281 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12282 ipsec_policy_t *pp; 12283 ipsec_action_t *ap; 12284 12285 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12286 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12287 (ixa->ixa_ipsec_action != NULL)); 12288 12289 ap = ixa->ixa_ipsec_action; 12290 if (ap == NULL) { 12291 pp = ixa->ixa_ipsec_policy; 12292 ASSERT(pp != NULL); 12293 ap = pp->ipsp_act; 12294 ASSERT(ap != NULL); 12295 } 12296 12297 /* 12298 * We have an action. now, let's select SA's. 12299 * A side effect of setting ixa_ipsec_*_sa is that it will 12300 * be cached in the conn_t. 12301 */ 12302 if (ap->ipa_want_esp) { 12303 if (ixa->ixa_ipsec_esp_sa == NULL) { 12304 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12305 IPPROTO_ESP); 12306 } 12307 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12308 } 12309 12310 if (ap->ipa_want_ah) { 12311 if (ixa->ixa_ipsec_ah_sa == NULL) { 12312 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12313 IPPROTO_AH); 12314 } 12315 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12316 /* 12317 * The ESP and AH processing order needs to be preserved 12318 * when both protocols are required (ESP should be applied 12319 * before AH for an outbound packet). Force an ESP ACQUIRE 12320 * when both ESP and AH are required, and an AH ACQUIRE 12321 * is needed. 12322 */ 12323 if (ap->ipa_want_esp && need_ah_acquire) 12324 need_esp_acquire = B_TRUE; 12325 } 12326 12327 /* 12328 * Send an ACQUIRE (extended, regular, or both) if we need one. 12329 * Release SAs that got referenced, but will not be used until we 12330 * acquire _all_ of the SAs we need. 12331 */ 12332 if (need_ah_acquire || need_esp_acquire) { 12333 if (ixa->ixa_ipsec_ah_sa != NULL) { 12334 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12335 ixa->ixa_ipsec_ah_sa = NULL; 12336 } 12337 if (ixa->ixa_ipsec_esp_sa != NULL) { 12338 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12339 ixa->ixa_ipsec_esp_sa = NULL; 12340 } 12341 12342 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12343 return (B_FALSE); 12344 } 12345 12346 return (B_TRUE); 12347 } 12348 12349 /* 12350 * Handle IPsec output processing. 12351 * This function is only entered once for a given packet. 12352 * We try to do things synchronously, but if we need to have user-level 12353 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12354 * will be completed 12355 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12356 * - when asynchronous ESP is done it will do AH 12357 * 12358 * In all cases we come back in ip_output_post_ipsec() to fragment and 12359 * send out the packet. 12360 */ 12361 int 12362 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12363 { 12364 ill_t *ill = ixa->ixa_nce->nce_ill; 12365 ip_stack_t *ipst = ixa->ixa_ipst; 12366 ipsec_stack_t *ipss; 12367 ipsec_policy_t *pp; 12368 ipsec_action_t *ap; 12369 12370 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12371 12372 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12373 (ixa->ixa_ipsec_action != NULL)); 12374 12375 ipss = ipst->ips_netstack->netstack_ipsec; 12376 if (!ipsec_loaded(ipss)) { 12377 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12378 ip_drop_packet(mp, B_TRUE, ill, 12379 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12380 &ipss->ipsec_dropper); 12381 return (ENOTSUP); 12382 } 12383 12384 ap = ixa->ixa_ipsec_action; 12385 if (ap == NULL) { 12386 pp = ixa->ixa_ipsec_policy; 12387 ASSERT(pp != NULL); 12388 ap = pp->ipsp_act; 12389 ASSERT(ap != NULL); 12390 } 12391 12392 /* Handle explicit drop action and bypass. */ 12393 switch (ap->ipa_act.ipa_type) { 12394 case IPSEC_ACT_DISCARD: 12395 case IPSEC_ACT_REJECT: 12396 ip_drop_packet(mp, B_FALSE, ill, 12397 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12398 return (EHOSTUNREACH); /* IPsec policy failure */ 12399 case IPSEC_ACT_BYPASS: 12400 return (ip_output_post_ipsec(mp, ixa)); 12401 } 12402 12403 /* 12404 * The order of processing is first insert a IP header if needed. 12405 * Then insert the ESP header and then the AH header. 12406 */ 12407 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12408 /* 12409 * First get the outer IP header before sending 12410 * it to ESP. 12411 */ 12412 ipha_t *oipha, *iipha; 12413 mblk_t *outer_mp, *inner_mp; 12414 12415 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12416 (void) mi_strlog(ill->ill_rq, 0, 12417 SL_ERROR|SL_TRACE|SL_CONSOLE, 12418 "ipsec_out_process: " 12419 "Self-Encapsulation failed: Out of memory\n"); 12420 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12421 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12422 freemsg(mp); 12423 return (ENOBUFS); 12424 } 12425 inner_mp = mp; 12426 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12427 oipha = (ipha_t *)outer_mp->b_rptr; 12428 iipha = (ipha_t *)inner_mp->b_rptr; 12429 *oipha = *iipha; 12430 outer_mp->b_wptr += sizeof (ipha_t); 12431 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12432 sizeof (ipha_t)); 12433 oipha->ipha_protocol = IPPROTO_ENCAP; 12434 oipha->ipha_version_and_hdr_length = 12435 IP_SIMPLE_HDR_VERSION; 12436 oipha->ipha_hdr_checksum = 0; 12437 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12438 outer_mp->b_cont = inner_mp; 12439 mp = outer_mp; 12440 12441 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12442 } 12443 12444 /* If we need to wait for a SA then we can't return any errno */ 12445 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12446 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12447 !ipsec_out_select_sa(mp, ixa)) 12448 return (0); 12449 12450 /* 12451 * By now, we know what SA's to use. Toss over to ESP & AH 12452 * to do the heavy lifting. 12453 */ 12454 if (ap->ipa_want_esp) { 12455 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12456 12457 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12458 if (mp == NULL) { 12459 /* 12460 * Either it failed or is pending. In the former case 12461 * ipIfStatsInDiscards was increased. 12462 */ 12463 return (0); 12464 } 12465 } 12466 12467 if (ap->ipa_want_ah) { 12468 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12469 12470 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12471 if (mp == NULL) { 12472 /* 12473 * Either it failed or is pending. In the former case 12474 * ipIfStatsInDiscards was increased. 12475 */ 12476 return (0); 12477 } 12478 } 12479 /* 12480 * We are done with IPsec processing. Send it over 12481 * the wire. 12482 */ 12483 return (ip_output_post_ipsec(mp, ixa)); 12484 } 12485 12486 /* 12487 * ioctls that go through a down/up sequence may need to wait for the down 12488 * to complete. This involves waiting for the ire and ipif refcnts to go down 12489 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12490 */ 12491 /* ARGSUSED */ 12492 void 12493 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12494 { 12495 struct iocblk *iocp; 12496 mblk_t *mp1; 12497 ip_ioctl_cmd_t *ipip; 12498 int err; 12499 sin_t *sin; 12500 struct lifreq *lifr; 12501 struct ifreq *ifr; 12502 12503 iocp = (struct iocblk *)mp->b_rptr; 12504 ASSERT(ipsq != NULL); 12505 /* Existence of mp1 verified in ip_wput_nondata */ 12506 mp1 = mp->b_cont->b_cont; 12507 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12508 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12509 /* 12510 * Special case where ipx_current_ipif is not set: 12511 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12512 * We are here as were not able to complete the operation in 12513 * ipif_set_values because we could not become exclusive on 12514 * the new ipsq. 12515 */ 12516 ill_t *ill = q->q_ptr; 12517 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12518 } 12519 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12520 12521 if (ipip->ipi_cmd_type == IF_CMD) { 12522 /* This a old style SIOC[GS]IF* command */ 12523 ifr = (struct ifreq *)mp1->b_rptr; 12524 sin = (sin_t *)&ifr->ifr_addr; 12525 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12526 /* This a new style SIOC[GS]LIF* command */ 12527 lifr = (struct lifreq *)mp1->b_rptr; 12528 sin = (sin_t *)&lifr->lifr_addr; 12529 } else { 12530 sin = NULL; 12531 } 12532 12533 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12534 q, mp, ipip, mp1->b_rptr); 12535 12536 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12537 int, ipip->ipi_cmd, 12538 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12539 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12540 12541 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12542 } 12543 12544 /* 12545 * ioctl processing 12546 * 12547 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12548 * the ioctl command in the ioctl tables, determines the copyin data size 12549 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12550 * 12551 * ioctl processing then continues when the M_IOCDATA makes its way down to 12552 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12553 * associated 'conn' is refheld till the end of the ioctl and the general 12554 * ioctl processing function ip_process_ioctl() is called to extract the 12555 * arguments and process the ioctl. To simplify extraction, ioctl commands 12556 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12557 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12558 * is used to extract the ioctl's arguments. 12559 * 12560 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12561 * so goes thru the serialization primitive ipsq_try_enter. Then the 12562 * appropriate function to handle the ioctl is called based on the entry in 12563 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12564 * which also refreleases the 'conn' that was refheld at the start of the 12565 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12566 * 12567 * Many exclusive ioctls go thru an internal down up sequence as part of 12568 * the operation. For example an attempt to change the IP address of an 12569 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12570 * does all the cleanup such as deleting all ires that use this address. 12571 * Then we need to wait till all references to the interface go away. 12572 */ 12573 void 12574 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12575 { 12576 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12577 ip_ioctl_cmd_t *ipip = arg; 12578 ip_extract_func_t *extract_funcp; 12579 cmd_info_t ci; 12580 int err; 12581 boolean_t entered_ipsq = B_FALSE; 12582 12583 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12584 12585 if (ipip == NULL) 12586 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12587 12588 /* 12589 * SIOCLIFADDIF needs to go thru a special path since the 12590 * ill may not exist yet. This happens in the case of lo0 12591 * which is created using this ioctl. 12592 */ 12593 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12594 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12595 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12596 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12597 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12598 return; 12599 } 12600 12601 ci.ci_ipif = NULL; 12602 switch (ipip->ipi_cmd_type) { 12603 case MISC_CMD: 12604 case MSFILT_CMD: 12605 /* 12606 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12607 */ 12608 if (ipip->ipi_cmd == IF_UNITSEL) { 12609 /* ioctl comes down the ill */ 12610 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12611 ipif_refhold(ci.ci_ipif); 12612 } 12613 err = 0; 12614 ci.ci_sin = NULL; 12615 ci.ci_sin6 = NULL; 12616 ci.ci_lifr = NULL; 12617 extract_funcp = NULL; 12618 break; 12619 12620 case IF_CMD: 12621 case LIF_CMD: 12622 extract_funcp = ip_extract_lifreq; 12623 break; 12624 12625 case ARP_CMD: 12626 case XARP_CMD: 12627 extract_funcp = ip_extract_arpreq; 12628 break; 12629 12630 default: 12631 ASSERT(0); 12632 } 12633 12634 if (extract_funcp != NULL) { 12635 err = (*extract_funcp)(q, mp, ipip, &ci); 12636 if (err != 0) { 12637 DTRACE_PROBE4(ipif__ioctl, 12638 char *, "ip_process_ioctl finish err", 12639 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12640 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12641 return; 12642 } 12643 12644 /* 12645 * All of the extraction functions return a refheld ipif. 12646 */ 12647 ASSERT(ci.ci_ipif != NULL); 12648 } 12649 12650 if (!(ipip->ipi_flags & IPI_WR)) { 12651 /* 12652 * A return value of EINPROGRESS means the ioctl is 12653 * either queued and waiting for some reason or has 12654 * already completed. 12655 */ 12656 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12657 ci.ci_lifr); 12658 if (ci.ci_ipif != NULL) { 12659 DTRACE_PROBE4(ipif__ioctl, 12660 char *, "ip_process_ioctl finish RD", 12661 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12662 ipif_t *, ci.ci_ipif); 12663 ipif_refrele(ci.ci_ipif); 12664 } else { 12665 DTRACE_PROBE4(ipif__ioctl, 12666 char *, "ip_process_ioctl finish RD", 12667 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12668 } 12669 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12670 return; 12671 } 12672 12673 ASSERT(ci.ci_ipif != NULL); 12674 12675 /* 12676 * If ipsq is non-NULL, we are already being called exclusively 12677 */ 12678 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12679 if (ipsq == NULL) { 12680 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12681 NEW_OP, B_TRUE); 12682 if (ipsq == NULL) { 12683 ipif_refrele(ci.ci_ipif); 12684 return; 12685 } 12686 entered_ipsq = B_TRUE; 12687 } 12688 /* 12689 * Release the ipif so that ipif_down and friends that wait for 12690 * references to go away are not misled about the current ipif_refcnt 12691 * values. We are writer so we can access the ipif even after releasing 12692 * the ipif. 12693 */ 12694 ipif_refrele(ci.ci_ipif); 12695 12696 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12697 12698 /* 12699 * A return value of EINPROGRESS means the ioctl is 12700 * either queued and waiting for some reason or has 12701 * already completed. 12702 */ 12703 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12704 12705 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12706 int, ipip->ipi_cmd, 12707 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12708 ipif_t *, ci.ci_ipif); 12709 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12710 12711 if (entered_ipsq) 12712 ipsq_exit(ipsq); 12713 } 12714 12715 /* 12716 * Complete the ioctl. Typically ioctls use the mi package and need to 12717 * do mi_copyout/mi_copy_done. 12718 */ 12719 void 12720 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12721 { 12722 conn_t *connp = NULL; 12723 12724 if (err == EINPROGRESS) 12725 return; 12726 12727 if (CONN_Q(q)) { 12728 connp = Q_TO_CONN(q); 12729 ASSERT(connp->conn_ref >= 2); 12730 } 12731 12732 switch (mode) { 12733 case COPYOUT: 12734 if (err == 0) 12735 mi_copyout(q, mp); 12736 else 12737 mi_copy_done(q, mp, err); 12738 break; 12739 12740 case NO_COPYOUT: 12741 mi_copy_done(q, mp, err); 12742 break; 12743 12744 default: 12745 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12746 break; 12747 } 12748 12749 /* 12750 * The conn refhold and ioctlref placed on the conn at the start of the 12751 * ioctl are released here. 12752 */ 12753 if (connp != NULL) { 12754 CONN_DEC_IOCTLREF(connp); 12755 CONN_OPER_PENDING_DONE(connp); 12756 } 12757 12758 if (ipsq != NULL) 12759 ipsq_current_finish(ipsq); 12760 } 12761 12762 /* Handles all non data messages */ 12763 void 12764 ip_wput_nondata(queue_t *q, mblk_t *mp) 12765 { 12766 mblk_t *mp1; 12767 struct iocblk *iocp; 12768 ip_ioctl_cmd_t *ipip; 12769 conn_t *connp; 12770 cred_t *cr; 12771 char *proto_str; 12772 12773 if (CONN_Q(q)) 12774 connp = Q_TO_CONN(q); 12775 else 12776 connp = NULL; 12777 12778 switch (DB_TYPE(mp)) { 12779 case M_IOCTL: 12780 /* 12781 * IOCTL processing begins in ip_sioctl_copyin_setup which 12782 * will arrange to copy in associated control structures. 12783 */ 12784 ip_sioctl_copyin_setup(q, mp); 12785 return; 12786 case M_IOCDATA: 12787 /* 12788 * Ensure that this is associated with one of our trans- 12789 * parent ioctls. If it's not ours, discard it if we're 12790 * running as a driver, or pass it on if we're a module. 12791 */ 12792 iocp = (struct iocblk *)mp->b_rptr; 12793 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12794 if (ipip == NULL) { 12795 if (q->q_next == NULL) { 12796 goto nak; 12797 } else { 12798 putnext(q, mp); 12799 } 12800 return; 12801 } 12802 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12803 /* 12804 * The ioctl is one we recognise, but is not consumed 12805 * by IP as a module and we are a module, so we drop 12806 */ 12807 goto nak; 12808 } 12809 12810 /* IOCTL continuation following copyin or copyout. */ 12811 if (mi_copy_state(q, mp, NULL) == -1) { 12812 /* 12813 * The copy operation failed. mi_copy_state already 12814 * cleaned up, so we're out of here. 12815 */ 12816 return; 12817 } 12818 /* 12819 * If we just completed a copy in, we become writer and 12820 * continue processing in ip_sioctl_copyin_done. If it 12821 * was a copy out, we call mi_copyout again. If there is 12822 * nothing more to copy out, it will complete the IOCTL. 12823 */ 12824 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12825 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12826 mi_copy_done(q, mp, EPROTO); 12827 return; 12828 } 12829 /* 12830 * Check for cases that need more copying. A return 12831 * value of 0 means a second copyin has been started, 12832 * so we return; a return value of 1 means no more 12833 * copying is needed, so we continue. 12834 */ 12835 if (ipip->ipi_cmd_type == MSFILT_CMD && 12836 MI_COPY_COUNT(mp) == 1) { 12837 if (ip_copyin_msfilter(q, mp) == 0) 12838 return; 12839 } 12840 /* 12841 * Refhold the conn, till the ioctl completes. This is 12842 * needed in case the ioctl ends up in the pending mp 12843 * list. Every mp in the ipx_pending_mp list must have 12844 * a refhold on the conn to resume processing. The 12845 * refhold is released when the ioctl completes 12846 * (whether normally or abnormally). An ioctlref is also 12847 * placed on the conn to prevent TCP from removing the 12848 * queue needed to send the ioctl reply back. 12849 * In all cases ip_ioctl_finish is called to finish 12850 * the ioctl and release the refholds. 12851 */ 12852 if (connp != NULL) { 12853 /* This is not a reentry */ 12854 CONN_INC_REF(connp); 12855 CONN_INC_IOCTLREF(connp); 12856 } else { 12857 if (!(ipip->ipi_flags & IPI_MODOK)) { 12858 mi_copy_done(q, mp, EINVAL); 12859 return; 12860 } 12861 } 12862 12863 ip_process_ioctl(NULL, q, mp, ipip); 12864 12865 } else { 12866 mi_copyout(q, mp); 12867 } 12868 return; 12869 12870 case M_IOCNAK: 12871 /* 12872 * The only way we could get here is if a resolver didn't like 12873 * an IOCTL we sent it. This shouldn't happen. 12874 */ 12875 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12876 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12877 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12878 freemsg(mp); 12879 return; 12880 case M_IOCACK: 12881 /* /dev/ip shouldn't see this */ 12882 goto nak; 12883 case M_FLUSH: 12884 if (*mp->b_rptr & FLUSHW) 12885 flushq(q, FLUSHALL); 12886 if (q->q_next) { 12887 putnext(q, mp); 12888 return; 12889 } 12890 if (*mp->b_rptr & FLUSHR) { 12891 *mp->b_rptr &= ~FLUSHW; 12892 qreply(q, mp); 12893 return; 12894 } 12895 freemsg(mp); 12896 return; 12897 case M_CTL: 12898 break; 12899 case M_PROTO: 12900 case M_PCPROTO: 12901 /* 12902 * The only PROTO messages we expect are SNMP-related. 12903 */ 12904 switch (((union T_primitives *)mp->b_rptr)->type) { 12905 case T_SVR4_OPTMGMT_REQ: 12906 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12907 "flags %x\n", 12908 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12909 12910 if (connp == NULL) { 12911 proto_str = "T_SVR4_OPTMGMT_REQ"; 12912 goto protonak; 12913 } 12914 12915 /* 12916 * All Solaris components should pass a db_credp 12917 * for this TPI message, hence we ASSERT. 12918 * But in case there is some other M_PROTO that looks 12919 * like a TPI message sent by some other kernel 12920 * component, we check and return an error. 12921 */ 12922 cr = msg_getcred(mp, NULL); 12923 ASSERT(cr != NULL); 12924 if (cr == NULL) { 12925 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12926 if (mp != NULL) 12927 qreply(q, mp); 12928 return; 12929 } 12930 12931 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12932 proto_str = "Bad SNMPCOM request?"; 12933 goto protonak; 12934 } 12935 return; 12936 default: 12937 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12938 (int)*(uint_t *)mp->b_rptr)); 12939 freemsg(mp); 12940 return; 12941 } 12942 default: 12943 break; 12944 } 12945 if (q->q_next) { 12946 putnext(q, mp); 12947 } else 12948 freemsg(mp); 12949 return; 12950 12951 nak: 12952 iocp->ioc_error = EINVAL; 12953 mp->b_datap->db_type = M_IOCNAK; 12954 iocp->ioc_count = 0; 12955 qreply(q, mp); 12956 return; 12957 12958 protonak: 12959 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12960 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12961 qreply(q, mp); 12962 } 12963 12964 /* 12965 * Process IP options in an outbound packet. Verify that the nexthop in a 12966 * strict source route is onlink. 12967 * Returns non-zero if something fails in which case an ICMP error has been 12968 * sent and mp freed. 12969 * 12970 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12971 */ 12972 int 12973 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12974 { 12975 ipoptp_t opts; 12976 uchar_t *opt; 12977 uint8_t optval; 12978 uint8_t optlen; 12979 ipaddr_t dst; 12980 intptr_t code = 0; 12981 ire_t *ire; 12982 ip_stack_t *ipst = ixa->ixa_ipst; 12983 ip_recv_attr_t iras; 12984 12985 ip2dbg(("ip_output_options\n")); 12986 12987 dst = ipha->ipha_dst; 12988 for (optval = ipoptp_first(&opts, ipha); 12989 optval != IPOPT_EOL; 12990 optval = ipoptp_next(&opts)) { 12991 opt = opts.ipoptp_cur; 12992 optlen = opts.ipoptp_len; 12993 ip2dbg(("ip_output_options: opt %d, len %d\n", 12994 optval, optlen)); 12995 switch (optval) { 12996 uint32_t off; 12997 case IPOPT_SSRR: 12998 case IPOPT_LSRR: 12999 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13000 ip1dbg(( 13001 "ip_output_options: bad option offset\n")); 13002 code = (char *)&opt[IPOPT_OLEN] - 13003 (char *)ipha; 13004 goto param_prob; 13005 } 13006 off = opt[IPOPT_OFFSET]; 13007 ip1dbg(("ip_output_options: next hop 0x%x\n", 13008 ntohl(dst))); 13009 /* 13010 * For strict: verify that dst is directly 13011 * reachable. 13012 */ 13013 if (optval == IPOPT_SSRR) { 13014 ire = ire_ftable_lookup_v4(dst, 0, 0, 13015 IRE_INTERFACE, NULL, ALL_ZONES, 13016 ixa->ixa_tsl, 13017 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13018 NULL); 13019 if (ire == NULL) { 13020 ip1dbg(("ip_output_options: SSRR not" 13021 " directly reachable: 0x%x\n", 13022 ntohl(dst))); 13023 goto bad_src_route; 13024 } 13025 ire_refrele(ire); 13026 } 13027 break; 13028 case IPOPT_RR: 13029 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13030 ip1dbg(( 13031 "ip_output_options: bad option offset\n")); 13032 code = (char *)&opt[IPOPT_OLEN] - 13033 (char *)ipha; 13034 goto param_prob; 13035 } 13036 break; 13037 case IPOPT_TS: 13038 /* 13039 * Verify that length >=5 and that there is either 13040 * room for another timestamp or that the overflow 13041 * counter is not maxed out. 13042 */ 13043 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13044 if (optlen < IPOPT_MINLEN_IT) { 13045 goto param_prob; 13046 } 13047 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13048 ip1dbg(( 13049 "ip_output_options: bad option offset\n")); 13050 code = (char *)&opt[IPOPT_OFFSET] - 13051 (char *)ipha; 13052 goto param_prob; 13053 } 13054 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13055 case IPOPT_TS_TSONLY: 13056 off = IPOPT_TS_TIMELEN; 13057 break; 13058 case IPOPT_TS_TSANDADDR: 13059 case IPOPT_TS_PRESPEC: 13060 case IPOPT_TS_PRESPEC_RFC791: 13061 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13062 break; 13063 default: 13064 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13065 (char *)ipha; 13066 goto param_prob; 13067 } 13068 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13069 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13070 /* 13071 * No room and the overflow counter is 15 13072 * already. 13073 */ 13074 goto param_prob; 13075 } 13076 break; 13077 } 13078 } 13079 13080 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13081 return (0); 13082 13083 ip1dbg(("ip_output_options: error processing IP options.")); 13084 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13085 13086 param_prob: 13087 bzero(&iras, sizeof (iras)); 13088 iras.ira_ill = iras.ira_rill = ill; 13089 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13090 iras.ira_rifindex = iras.ira_ruifindex; 13091 iras.ira_flags = IRAF_IS_IPV4; 13092 13093 ip_drop_output("ip_output_options", mp, ill); 13094 icmp_param_problem(mp, (uint8_t)code, &iras); 13095 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13096 return (-1); 13097 13098 bad_src_route: 13099 bzero(&iras, sizeof (iras)); 13100 iras.ira_ill = iras.ira_rill = ill; 13101 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13102 iras.ira_rifindex = iras.ira_ruifindex; 13103 iras.ira_flags = IRAF_IS_IPV4; 13104 13105 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13106 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13107 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13108 return (-1); 13109 } 13110 13111 /* 13112 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13113 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13114 * thru /etc/system. 13115 */ 13116 #define CONN_MAXDRAINCNT 64 13117 13118 static void 13119 conn_drain_init(ip_stack_t *ipst) 13120 { 13121 int i, j; 13122 idl_tx_list_t *itl_tx; 13123 13124 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13125 13126 if ((ipst->ips_conn_drain_list_cnt == 0) || 13127 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13128 /* 13129 * Default value of the number of drainers is the 13130 * number of cpus, subject to maximum of 8 drainers. 13131 */ 13132 if (boot_max_ncpus != -1) 13133 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13134 else 13135 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13136 } 13137 13138 ipst->ips_idl_tx_list = 13139 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13140 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13141 itl_tx = &ipst->ips_idl_tx_list[i]; 13142 itl_tx->txl_drain_list = 13143 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13144 sizeof (idl_t), KM_SLEEP); 13145 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13146 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13147 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13148 MUTEX_DEFAULT, NULL); 13149 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13150 } 13151 } 13152 } 13153 13154 static void 13155 conn_drain_fini(ip_stack_t *ipst) 13156 { 13157 int i; 13158 idl_tx_list_t *itl_tx; 13159 13160 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13161 itl_tx = &ipst->ips_idl_tx_list[i]; 13162 kmem_free(itl_tx->txl_drain_list, 13163 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13164 } 13165 kmem_free(ipst->ips_idl_tx_list, 13166 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13167 ipst->ips_idl_tx_list = NULL; 13168 } 13169 13170 /* 13171 * Flow control has blocked us from proceeding. Insert the given conn in one 13172 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13173 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13174 * will call conn_walk_drain(). See the flow control notes at the top of this 13175 * file for more details. 13176 */ 13177 void 13178 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13179 { 13180 idl_t *idl = tx_list->txl_drain_list; 13181 uint_t index; 13182 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13183 13184 mutex_enter(&connp->conn_lock); 13185 if (connp->conn_state_flags & CONN_CLOSING) { 13186 /* 13187 * The conn is closing as a result of which CONN_CLOSING 13188 * is set. Return. 13189 */ 13190 mutex_exit(&connp->conn_lock); 13191 return; 13192 } else if (connp->conn_idl == NULL) { 13193 /* 13194 * Assign the next drain list round robin. We dont' use 13195 * a lock, and thus it may not be strictly round robin. 13196 * Atomicity of load/stores is enough to make sure that 13197 * conn_drain_list_index is always within bounds. 13198 */ 13199 index = tx_list->txl_drain_index; 13200 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13201 connp->conn_idl = &tx_list->txl_drain_list[index]; 13202 index++; 13203 if (index == ipst->ips_conn_drain_list_cnt) 13204 index = 0; 13205 tx_list->txl_drain_index = index; 13206 } else { 13207 ASSERT(connp->conn_idl->idl_itl == tx_list); 13208 } 13209 mutex_exit(&connp->conn_lock); 13210 13211 idl = connp->conn_idl; 13212 mutex_enter(&idl->idl_lock); 13213 if ((connp->conn_drain_prev != NULL) || 13214 (connp->conn_state_flags & CONN_CLOSING)) { 13215 /* 13216 * The conn is either already in the drain list or closing. 13217 * (We needed to check for CONN_CLOSING again since close can 13218 * sneak in between dropping conn_lock and acquiring idl_lock.) 13219 */ 13220 mutex_exit(&idl->idl_lock); 13221 return; 13222 } 13223 13224 /* 13225 * The conn is not in the drain list. Insert it at the 13226 * tail of the drain list. The drain list is circular 13227 * and doubly linked. idl_conn points to the 1st element 13228 * in the list. 13229 */ 13230 if (idl->idl_conn == NULL) { 13231 idl->idl_conn = connp; 13232 connp->conn_drain_next = connp; 13233 connp->conn_drain_prev = connp; 13234 } else { 13235 conn_t *head = idl->idl_conn; 13236 13237 connp->conn_drain_next = head; 13238 connp->conn_drain_prev = head->conn_drain_prev; 13239 head->conn_drain_prev->conn_drain_next = connp; 13240 head->conn_drain_prev = connp; 13241 } 13242 /* 13243 * For non streams based sockets assert flow control. 13244 */ 13245 conn_setqfull(connp, NULL); 13246 mutex_exit(&idl->idl_lock); 13247 } 13248 13249 static void 13250 conn_drain_remove(conn_t *connp) 13251 { 13252 idl_t *idl = connp->conn_idl; 13253 13254 if (idl != NULL) { 13255 /* 13256 * Remove ourself from the drain list. 13257 */ 13258 if (connp->conn_drain_next == connp) { 13259 /* Singleton in the list */ 13260 ASSERT(connp->conn_drain_prev == connp); 13261 idl->idl_conn = NULL; 13262 } else { 13263 connp->conn_drain_prev->conn_drain_next = 13264 connp->conn_drain_next; 13265 connp->conn_drain_next->conn_drain_prev = 13266 connp->conn_drain_prev; 13267 if (idl->idl_conn == connp) 13268 idl->idl_conn = connp->conn_drain_next; 13269 } 13270 13271 /* 13272 * NOTE: because conn_idl is associated with a specific drain 13273 * list which in turn is tied to the index the TX ring 13274 * (txl_cookie) hashes to, and because the TX ring can change 13275 * over the lifetime of the conn_t, we must clear conn_idl so 13276 * a subsequent conn_drain_insert() will set conn_idl again 13277 * based on the latest txl_cookie. 13278 */ 13279 connp->conn_idl = NULL; 13280 } 13281 connp->conn_drain_next = NULL; 13282 connp->conn_drain_prev = NULL; 13283 13284 conn_clrqfull(connp, NULL); 13285 /* 13286 * For streams based sockets open up flow control. 13287 */ 13288 if (!IPCL_IS_NONSTR(connp)) 13289 enableok(connp->conn_wq); 13290 } 13291 13292 /* 13293 * This conn is closing, and we are called from ip_close. OR 13294 * this conn is draining because flow-control on the ill has been relieved. 13295 * 13296 * We must also need to remove conn's on this idl from the list, and also 13297 * inform the sockfs upcalls about the change in flow-control. 13298 */ 13299 static void 13300 conn_drain(conn_t *connp, boolean_t closing) 13301 { 13302 idl_t *idl; 13303 conn_t *next_connp; 13304 13305 /* 13306 * connp->conn_idl is stable at this point, and no lock is needed 13307 * to check it. If we are called from ip_close, close has already 13308 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13309 * called us only because conn_idl is non-null. If we are called thru 13310 * service, conn_idl could be null, but it cannot change because 13311 * service is single-threaded per queue, and there cannot be another 13312 * instance of service trying to call conn_drain_insert on this conn 13313 * now. 13314 */ 13315 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13316 13317 /* 13318 * If the conn doesn't exist or is not on a drain list, bail. 13319 */ 13320 if (connp == NULL || connp->conn_idl == NULL || 13321 connp->conn_drain_prev == NULL) { 13322 return; 13323 } 13324 13325 idl = connp->conn_idl; 13326 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13327 13328 if (!closing) { 13329 next_connp = connp->conn_drain_next; 13330 while (next_connp != connp) { 13331 conn_t *delconnp = next_connp; 13332 13333 next_connp = next_connp->conn_drain_next; 13334 conn_drain_remove(delconnp); 13335 } 13336 ASSERT(connp->conn_drain_next == idl->idl_conn); 13337 } 13338 conn_drain_remove(connp); 13339 } 13340 13341 /* 13342 * Write service routine. Shared perimeter entry point. 13343 * The device queue's messages has fallen below the low water mark and STREAMS 13344 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13345 * each waiting conn. 13346 */ 13347 void 13348 ip_wsrv(queue_t *q) 13349 { 13350 ill_t *ill; 13351 13352 ill = (ill_t *)q->q_ptr; 13353 if (ill->ill_state_flags == 0) { 13354 ip_stack_t *ipst = ill->ill_ipst; 13355 13356 /* 13357 * The device flow control has opened up. 13358 * Walk through conn drain lists and qenable the 13359 * first conn in each list. This makes sense only 13360 * if the stream is fully plumbed and setup. 13361 * Hence the ill_state_flags check above. 13362 */ 13363 ip1dbg(("ip_wsrv: walking\n")); 13364 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13365 enableok(ill->ill_wq); 13366 } 13367 } 13368 13369 /* 13370 * Callback to disable flow control in IP. 13371 * 13372 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13373 * is enabled. 13374 * 13375 * When MAC_TX() is not able to send any more packets, dld sets its queue 13376 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13377 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13378 * function and wakes up corresponding mac worker threads, which in turn 13379 * calls this callback function, and disables flow control. 13380 */ 13381 void 13382 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13383 { 13384 ill_t *ill = (ill_t *)arg; 13385 ip_stack_t *ipst = ill->ill_ipst; 13386 idl_tx_list_t *idl_txl; 13387 13388 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13389 mutex_enter(&idl_txl->txl_lock); 13390 /* add code to to set a flag to indicate idl_txl is enabled */ 13391 conn_walk_drain(ipst, idl_txl); 13392 mutex_exit(&idl_txl->txl_lock); 13393 } 13394 13395 /* 13396 * Flow control has been relieved and STREAMS has backenabled us; drain 13397 * all the conn lists on `tx_list'. 13398 */ 13399 static void 13400 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13401 { 13402 int i; 13403 idl_t *idl; 13404 13405 IP_STAT(ipst, ip_conn_walk_drain); 13406 13407 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13408 idl = &tx_list->txl_drain_list[i]; 13409 mutex_enter(&idl->idl_lock); 13410 conn_drain(idl->idl_conn, B_FALSE); 13411 mutex_exit(&idl->idl_lock); 13412 } 13413 } 13414 13415 /* 13416 * Determine if the ill and multicast aspects of that packets 13417 * "matches" the conn. 13418 */ 13419 boolean_t 13420 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13421 { 13422 ill_t *ill = ira->ira_rill; 13423 zoneid_t zoneid = ira->ira_zoneid; 13424 uint_t in_ifindex; 13425 ipaddr_t dst, src; 13426 13427 dst = ipha->ipha_dst; 13428 src = ipha->ipha_src; 13429 13430 /* 13431 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13432 * unicast, broadcast and multicast reception to 13433 * conn_incoming_ifindex. 13434 * conn_wantpacket is called for unicast, broadcast and 13435 * multicast packets. 13436 */ 13437 in_ifindex = connp->conn_incoming_ifindex; 13438 13439 /* mpathd can bind to the under IPMP interface, which we allow */ 13440 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13441 if (!IS_UNDER_IPMP(ill)) 13442 return (B_FALSE); 13443 13444 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13445 return (B_FALSE); 13446 } 13447 13448 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13449 return (B_FALSE); 13450 13451 if (!(ira->ira_flags & IRAF_MULTICAST)) 13452 return (B_TRUE); 13453 13454 if (connp->conn_multi_router) { 13455 /* multicast packet and multicast router socket: send up */ 13456 return (B_TRUE); 13457 } 13458 13459 if (ipha->ipha_protocol == IPPROTO_PIM || 13460 ipha->ipha_protocol == IPPROTO_RSVP) 13461 return (B_TRUE); 13462 13463 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13464 } 13465 13466 void 13467 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13468 { 13469 if (IPCL_IS_NONSTR(connp)) { 13470 (*connp->conn_upcalls->su_txq_full) 13471 (connp->conn_upper_handle, B_TRUE); 13472 if (flow_stopped != NULL) 13473 *flow_stopped = B_TRUE; 13474 } else { 13475 queue_t *q = connp->conn_wq; 13476 13477 ASSERT(q != NULL); 13478 if (!(q->q_flag & QFULL)) { 13479 mutex_enter(QLOCK(q)); 13480 if (!(q->q_flag & QFULL)) { 13481 /* still need to set QFULL */ 13482 q->q_flag |= QFULL; 13483 /* set flow_stopped to true under QLOCK */ 13484 if (flow_stopped != NULL) 13485 *flow_stopped = B_TRUE; 13486 mutex_exit(QLOCK(q)); 13487 } else { 13488 /* flow_stopped is left unchanged */ 13489 mutex_exit(QLOCK(q)); 13490 } 13491 } 13492 } 13493 } 13494 13495 void 13496 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13497 { 13498 if (IPCL_IS_NONSTR(connp)) { 13499 (*connp->conn_upcalls->su_txq_full) 13500 (connp->conn_upper_handle, B_FALSE); 13501 if (flow_stopped != NULL) 13502 *flow_stopped = B_FALSE; 13503 } else { 13504 queue_t *q = connp->conn_wq; 13505 13506 ASSERT(q != NULL); 13507 if (q->q_flag & QFULL) { 13508 mutex_enter(QLOCK(q)); 13509 if (q->q_flag & QFULL) { 13510 q->q_flag &= ~QFULL; 13511 /* set flow_stopped to false under QLOCK */ 13512 if (flow_stopped != NULL) 13513 *flow_stopped = B_FALSE; 13514 mutex_exit(QLOCK(q)); 13515 if (q->q_flag & QWANTW) 13516 qbackenable(q, 0); 13517 } else { 13518 /* flow_stopped is left unchanged */ 13519 mutex_exit(QLOCK(q)); 13520 } 13521 } 13522 } 13523 13524 mutex_enter(&connp->conn_lock); 13525 connp->conn_blocked = B_FALSE; 13526 mutex_exit(&connp->conn_lock); 13527 } 13528 13529 /* 13530 * Return the length in bytes of the IPv4 headers (base header, label, and 13531 * other IP options) that will be needed based on the 13532 * ip_pkt_t structure passed by the caller. 13533 * 13534 * The returned length does not include the length of the upper level 13535 * protocol (ULP) header. 13536 * The caller needs to check that the length doesn't exceed the max for IPv4. 13537 */ 13538 int 13539 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13540 { 13541 int len; 13542 13543 len = IP_SIMPLE_HDR_LENGTH; 13544 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13545 ASSERT(ipp->ipp_label_len_v4 != 0); 13546 /* We need to round up here */ 13547 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13548 } 13549 13550 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13551 ASSERT(ipp->ipp_ipv4_options_len != 0); 13552 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13553 len += ipp->ipp_ipv4_options_len; 13554 } 13555 return (len); 13556 } 13557 13558 /* 13559 * All-purpose routine to build an IPv4 header with options based 13560 * on the abstract ip_pkt_t. 13561 * 13562 * The caller has to set the source and destination address as well as 13563 * ipha_length. The caller has to massage any source route and compensate 13564 * for the ULP pseudo-header checksum due to the source route. 13565 */ 13566 void 13567 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13568 uint8_t protocol) 13569 { 13570 ipha_t *ipha = (ipha_t *)buf; 13571 uint8_t *cp; 13572 13573 /* Initialize IPv4 header */ 13574 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13575 ipha->ipha_length = 0; /* Caller will set later */ 13576 ipha->ipha_ident = 0; 13577 ipha->ipha_fragment_offset_and_flags = 0; 13578 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13579 ipha->ipha_protocol = protocol; 13580 ipha->ipha_hdr_checksum = 0; 13581 13582 if ((ipp->ipp_fields & IPPF_ADDR) && 13583 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13584 ipha->ipha_src = ipp->ipp_addr_v4; 13585 13586 cp = (uint8_t *)&ipha[1]; 13587 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13588 ASSERT(ipp->ipp_label_len_v4 != 0); 13589 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13590 cp += ipp->ipp_label_len_v4; 13591 /* We need to round up here */ 13592 while ((uintptr_t)cp & 0x3) { 13593 *cp++ = IPOPT_NOP; 13594 } 13595 } 13596 13597 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13598 ASSERT(ipp->ipp_ipv4_options_len != 0); 13599 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13600 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13601 cp += ipp->ipp_ipv4_options_len; 13602 } 13603 ipha->ipha_version_and_hdr_length = 13604 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13605 13606 ASSERT((int)(cp - buf) == buf_len); 13607 } 13608 13609 /* Allocate the private structure */ 13610 static int 13611 ip_priv_alloc(void **bufp) 13612 { 13613 void *buf; 13614 13615 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13616 return (ENOMEM); 13617 13618 *bufp = buf; 13619 return (0); 13620 } 13621 13622 /* Function to delete the private structure */ 13623 void 13624 ip_priv_free(void *buf) 13625 { 13626 ASSERT(buf != NULL); 13627 kmem_free(buf, sizeof (ip_priv_t)); 13628 } 13629 13630 /* 13631 * The entry point for IPPF processing. 13632 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13633 * routine just returns. 13634 * 13635 * When called, ip_process generates an ipp_packet_t structure 13636 * which holds the state information for this packet and invokes the 13637 * the classifier (via ipp_packet_process). The classification, depending on 13638 * configured filters, results in a list of actions for this packet. Invoking 13639 * an action may cause the packet to be dropped, in which case we return NULL. 13640 * proc indicates the callout position for 13641 * this packet and ill is the interface this packet arrived on or will leave 13642 * on (inbound and outbound resp.). 13643 * 13644 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13645 * on the ill corrsponding to the destination IP address. 13646 */ 13647 mblk_t * 13648 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13649 { 13650 ip_priv_t *priv; 13651 ipp_action_id_t aid; 13652 int rc = 0; 13653 ipp_packet_t *pp; 13654 13655 /* If the classifier is not loaded, return */ 13656 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13657 return (mp); 13658 } 13659 13660 ASSERT(mp != NULL); 13661 13662 /* Allocate the packet structure */ 13663 rc = ipp_packet_alloc(&pp, "ip", aid); 13664 if (rc != 0) 13665 goto drop; 13666 13667 /* Allocate the private structure */ 13668 rc = ip_priv_alloc((void **)&priv); 13669 if (rc != 0) { 13670 ipp_packet_free(pp); 13671 goto drop; 13672 } 13673 priv->proc = proc; 13674 priv->ill_index = ill_get_upper_ifindex(rill); 13675 13676 ipp_packet_set_private(pp, priv, ip_priv_free); 13677 ipp_packet_set_data(pp, mp); 13678 13679 /* Invoke the classifier */ 13680 rc = ipp_packet_process(&pp); 13681 if (pp != NULL) { 13682 mp = ipp_packet_get_data(pp); 13683 ipp_packet_free(pp); 13684 if (rc != 0) 13685 goto drop; 13686 return (mp); 13687 } else { 13688 /* No mp to trace in ip_drop_input/ip_drop_output */ 13689 mp = NULL; 13690 } 13691 drop: 13692 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13693 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13694 ip_drop_input("ip_process", mp, ill); 13695 } else { 13696 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13697 ip_drop_output("ip_process", mp, ill); 13698 } 13699 freemsg(mp); 13700 return (NULL); 13701 } 13702 13703 /* 13704 * Propagate a multicast group membership operation (add/drop) on 13705 * all the interfaces crossed by the related multirt routes. 13706 * The call is considered successful if the operation succeeds 13707 * on at least one interface. 13708 * 13709 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13710 * multicast addresses with the ire argument being the first one. 13711 * We walk the bucket to find all the of those. 13712 * 13713 * Common to IPv4 and IPv6. 13714 */ 13715 static int 13716 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13717 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13718 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13719 mcast_record_t fmode, const in6_addr_t *v6src) 13720 { 13721 ire_t *ire_gw; 13722 irb_t *irb; 13723 int ifindex; 13724 int error = 0; 13725 int result; 13726 ip_stack_t *ipst = ire->ire_ipst; 13727 ipaddr_t group; 13728 boolean_t isv6; 13729 int match_flags; 13730 13731 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13732 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13733 isv6 = B_FALSE; 13734 } else { 13735 isv6 = B_TRUE; 13736 } 13737 13738 irb = ire->ire_bucket; 13739 ASSERT(irb != NULL); 13740 13741 result = 0; 13742 irb_refhold(irb); 13743 for (; ire != NULL; ire = ire->ire_next) { 13744 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13745 continue; 13746 13747 /* We handle -ifp routes by matching on the ill if set */ 13748 match_flags = MATCH_IRE_TYPE; 13749 if (ire->ire_ill != NULL) 13750 match_flags |= MATCH_IRE_ILL; 13751 13752 if (isv6) { 13753 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13754 continue; 13755 13756 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13757 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13758 match_flags, 0, ipst, NULL); 13759 } else { 13760 if (ire->ire_addr != group) 13761 continue; 13762 13763 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13764 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13765 match_flags, 0, ipst, NULL); 13766 } 13767 /* No interface route exists for the gateway; skip this ire. */ 13768 if (ire_gw == NULL) 13769 continue; 13770 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13771 ire_refrele(ire_gw); 13772 continue; 13773 } 13774 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13775 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13776 13777 /* 13778 * The operation is considered a success if 13779 * it succeeds at least once on any one interface. 13780 */ 13781 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13782 fmode, v6src); 13783 if (error == 0) 13784 result = CGTP_MCAST_SUCCESS; 13785 13786 ire_refrele(ire_gw); 13787 } 13788 irb_refrele(irb); 13789 /* 13790 * Consider the call as successful if we succeeded on at least 13791 * one interface. Otherwise, return the last encountered error. 13792 */ 13793 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13794 } 13795 13796 /* 13797 * Return the expected CGTP hooks version number. 13798 */ 13799 int 13800 ip_cgtp_filter_supported(void) 13801 { 13802 return (ip_cgtp_filter_rev); 13803 } 13804 13805 /* 13806 * CGTP hooks can be registered by invoking this function. 13807 * Checks that the version number matches. 13808 */ 13809 int 13810 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13811 { 13812 netstack_t *ns; 13813 ip_stack_t *ipst; 13814 13815 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13816 return (ENOTSUP); 13817 13818 ns = netstack_find_by_stackid(stackid); 13819 if (ns == NULL) 13820 return (EINVAL); 13821 ipst = ns->netstack_ip; 13822 ASSERT(ipst != NULL); 13823 13824 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13825 netstack_rele(ns); 13826 return (EALREADY); 13827 } 13828 13829 ipst->ips_ip_cgtp_filter_ops = ops; 13830 13831 ill_set_inputfn_all(ipst); 13832 13833 netstack_rele(ns); 13834 return (0); 13835 } 13836 13837 /* 13838 * CGTP hooks can be unregistered by invoking this function. 13839 * Returns ENXIO if there was no registration. 13840 * Returns EBUSY if the ndd variable has not been turned off. 13841 */ 13842 int 13843 ip_cgtp_filter_unregister(netstackid_t stackid) 13844 { 13845 netstack_t *ns; 13846 ip_stack_t *ipst; 13847 13848 ns = netstack_find_by_stackid(stackid); 13849 if (ns == NULL) 13850 return (EINVAL); 13851 ipst = ns->netstack_ip; 13852 ASSERT(ipst != NULL); 13853 13854 if (ipst->ips_ip_cgtp_filter) { 13855 netstack_rele(ns); 13856 return (EBUSY); 13857 } 13858 13859 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13860 netstack_rele(ns); 13861 return (ENXIO); 13862 } 13863 ipst->ips_ip_cgtp_filter_ops = NULL; 13864 13865 ill_set_inputfn_all(ipst); 13866 13867 netstack_rele(ns); 13868 return (0); 13869 } 13870 13871 /* 13872 * Check whether there is a CGTP filter registration. 13873 * Returns non-zero if there is a registration, otherwise returns zero. 13874 * Note: returns zero if bad stackid. 13875 */ 13876 int 13877 ip_cgtp_filter_is_registered(netstackid_t stackid) 13878 { 13879 netstack_t *ns; 13880 ip_stack_t *ipst; 13881 int ret; 13882 13883 ns = netstack_find_by_stackid(stackid); 13884 if (ns == NULL) 13885 return (0); 13886 ipst = ns->netstack_ip; 13887 ASSERT(ipst != NULL); 13888 13889 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13890 ret = 1; 13891 else 13892 ret = 0; 13893 13894 netstack_rele(ns); 13895 return (ret); 13896 } 13897 13898 static int 13899 ip_squeue_switch(int val) 13900 { 13901 int rval; 13902 13903 switch (val) { 13904 case IP_SQUEUE_ENTER_NODRAIN: 13905 rval = SQ_NODRAIN; 13906 break; 13907 case IP_SQUEUE_ENTER: 13908 rval = SQ_PROCESS; 13909 break; 13910 case IP_SQUEUE_FILL: 13911 default: 13912 rval = SQ_FILL; 13913 break; 13914 } 13915 return (rval); 13916 } 13917 13918 static void * 13919 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13920 { 13921 kstat_t *ksp; 13922 13923 ip_stat_t template = { 13924 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13925 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13926 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13927 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13928 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13929 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13930 { "ip_opt", KSTAT_DATA_UINT64 }, 13931 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13932 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13933 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13934 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13935 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13936 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13937 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13938 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13939 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13940 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13941 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13942 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13943 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13944 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13945 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13946 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13947 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13948 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13949 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13950 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13951 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13952 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13953 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13954 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13955 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13956 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13957 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13958 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13959 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13960 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13961 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13962 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13963 }; 13964 13965 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13966 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13967 KSTAT_FLAG_VIRTUAL, stackid); 13968 13969 if (ksp == NULL) 13970 return (NULL); 13971 13972 bcopy(&template, ip_statisticsp, sizeof (template)); 13973 ksp->ks_data = (void *)ip_statisticsp; 13974 ksp->ks_private = (void *)(uintptr_t)stackid; 13975 13976 kstat_install(ksp); 13977 return (ksp); 13978 } 13979 13980 static void 13981 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13982 { 13983 if (ksp != NULL) { 13984 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13985 kstat_delete_netstack(ksp, stackid); 13986 } 13987 } 13988 13989 static void * 13990 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13991 { 13992 kstat_t *ksp; 13993 13994 ip_named_kstat_t template = { 13995 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13996 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13997 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13998 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13999 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 14000 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14001 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14002 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14003 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14004 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14005 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14006 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14007 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14008 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14009 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14010 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14011 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14012 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14013 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14014 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14015 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14016 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14017 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14018 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14019 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14020 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14021 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14022 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14023 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14024 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14025 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14026 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14027 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14028 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14029 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14030 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14031 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14032 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14033 }; 14034 14035 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14036 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14037 if (ksp == NULL || ksp->ks_data == NULL) 14038 return (NULL); 14039 14040 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14041 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14042 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14043 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14044 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14045 14046 template.netToMediaEntrySize.value.i32 = 14047 sizeof (mib2_ipNetToMediaEntry_t); 14048 14049 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14050 14051 bcopy(&template, ksp->ks_data, sizeof (template)); 14052 ksp->ks_update = ip_kstat_update; 14053 ksp->ks_private = (void *)(uintptr_t)stackid; 14054 14055 kstat_install(ksp); 14056 return (ksp); 14057 } 14058 14059 static void 14060 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14061 { 14062 if (ksp != NULL) { 14063 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14064 kstat_delete_netstack(ksp, stackid); 14065 } 14066 } 14067 14068 static int 14069 ip_kstat_update(kstat_t *kp, int rw) 14070 { 14071 ip_named_kstat_t *ipkp; 14072 mib2_ipIfStatsEntry_t ipmib; 14073 ill_walk_context_t ctx; 14074 ill_t *ill; 14075 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14076 netstack_t *ns; 14077 ip_stack_t *ipst; 14078 14079 if (kp == NULL || kp->ks_data == NULL) 14080 return (EIO); 14081 14082 if (rw == KSTAT_WRITE) 14083 return (EACCES); 14084 14085 ns = netstack_find_by_stackid(stackid); 14086 if (ns == NULL) 14087 return (-1); 14088 ipst = ns->netstack_ip; 14089 if (ipst == NULL) { 14090 netstack_rele(ns); 14091 return (-1); 14092 } 14093 ipkp = (ip_named_kstat_t *)kp->ks_data; 14094 14095 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14096 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14097 ill = ILL_START_WALK_V4(&ctx, ipst); 14098 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14099 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14100 rw_exit(&ipst->ips_ill_g_lock); 14101 14102 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14103 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14104 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14105 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14106 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14107 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14108 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14109 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14110 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14111 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14112 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14113 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14114 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14115 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14116 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14117 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14118 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14119 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14120 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14121 14122 ipkp->routingDiscards.value.ui32 = 0; 14123 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14124 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14125 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14126 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14127 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14128 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14129 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14130 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14131 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14132 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14133 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14134 14135 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14136 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14137 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14138 14139 netstack_rele(ns); 14140 14141 return (0); 14142 } 14143 14144 static void * 14145 icmp_kstat_init(netstackid_t stackid) 14146 { 14147 kstat_t *ksp; 14148 14149 icmp_named_kstat_t template = { 14150 { "inMsgs", KSTAT_DATA_UINT32 }, 14151 { "inErrors", KSTAT_DATA_UINT32 }, 14152 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14153 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14154 { "inParmProbs", KSTAT_DATA_UINT32 }, 14155 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14156 { "inRedirects", KSTAT_DATA_UINT32 }, 14157 { "inEchos", KSTAT_DATA_UINT32 }, 14158 { "inEchoReps", KSTAT_DATA_UINT32 }, 14159 { "inTimestamps", KSTAT_DATA_UINT32 }, 14160 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14161 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14162 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14163 { "outMsgs", KSTAT_DATA_UINT32 }, 14164 { "outErrors", KSTAT_DATA_UINT32 }, 14165 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14166 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14167 { "outParmProbs", KSTAT_DATA_UINT32 }, 14168 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14169 { "outRedirects", KSTAT_DATA_UINT32 }, 14170 { "outEchos", KSTAT_DATA_UINT32 }, 14171 { "outEchoReps", KSTAT_DATA_UINT32 }, 14172 { "outTimestamps", KSTAT_DATA_UINT32 }, 14173 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14174 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14175 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14176 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14177 { "inUnknowns", KSTAT_DATA_UINT32 }, 14178 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14179 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14180 { "outDrops", KSTAT_DATA_UINT32 }, 14181 { "inOverFlows", KSTAT_DATA_UINT32 }, 14182 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14183 }; 14184 14185 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14186 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14187 if (ksp == NULL || ksp->ks_data == NULL) 14188 return (NULL); 14189 14190 bcopy(&template, ksp->ks_data, sizeof (template)); 14191 14192 ksp->ks_update = icmp_kstat_update; 14193 ksp->ks_private = (void *)(uintptr_t)stackid; 14194 14195 kstat_install(ksp); 14196 return (ksp); 14197 } 14198 14199 static void 14200 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14201 { 14202 if (ksp != NULL) { 14203 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14204 kstat_delete_netstack(ksp, stackid); 14205 } 14206 } 14207 14208 static int 14209 icmp_kstat_update(kstat_t *kp, int rw) 14210 { 14211 icmp_named_kstat_t *icmpkp; 14212 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14213 netstack_t *ns; 14214 ip_stack_t *ipst; 14215 14216 if ((kp == NULL) || (kp->ks_data == NULL)) 14217 return (EIO); 14218 14219 if (rw == KSTAT_WRITE) 14220 return (EACCES); 14221 14222 ns = netstack_find_by_stackid(stackid); 14223 if (ns == NULL) 14224 return (-1); 14225 ipst = ns->netstack_ip; 14226 if (ipst == NULL) { 14227 netstack_rele(ns); 14228 return (-1); 14229 } 14230 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14231 14232 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14233 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14234 icmpkp->inDestUnreachs.value.ui32 = 14235 ipst->ips_icmp_mib.icmpInDestUnreachs; 14236 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14237 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14238 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14239 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14240 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14241 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14242 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14243 icmpkp->inTimestampReps.value.ui32 = 14244 ipst->ips_icmp_mib.icmpInTimestampReps; 14245 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14246 icmpkp->inAddrMaskReps.value.ui32 = 14247 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14248 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14249 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14250 icmpkp->outDestUnreachs.value.ui32 = 14251 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14252 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14253 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14254 icmpkp->outSrcQuenchs.value.ui32 = 14255 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14256 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14257 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14258 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14259 icmpkp->outTimestamps.value.ui32 = 14260 ipst->ips_icmp_mib.icmpOutTimestamps; 14261 icmpkp->outTimestampReps.value.ui32 = 14262 ipst->ips_icmp_mib.icmpOutTimestampReps; 14263 icmpkp->outAddrMasks.value.ui32 = 14264 ipst->ips_icmp_mib.icmpOutAddrMasks; 14265 icmpkp->outAddrMaskReps.value.ui32 = 14266 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14267 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14268 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14269 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14270 icmpkp->outFragNeeded.value.ui32 = 14271 ipst->ips_icmp_mib.icmpOutFragNeeded; 14272 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14273 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14274 icmpkp->inBadRedirects.value.ui32 = 14275 ipst->ips_icmp_mib.icmpInBadRedirects; 14276 14277 netstack_rele(ns); 14278 return (0); 14279 } 14280 14281 /* 14282 * This is the fanout function for raw socket opened for SCTP. Note 14283 * that it is called after SCTP checks that there is no socket which 14284 * wants a packet. Then before SCTP handles this out of the blue packet, 14285 * this function is called to see if there is any raw socket for SCTP. 14286 * If there is and it is bound to the correct address, the packet will 14287 * be sent to that socket. Note that only one raw socket can be bound to 14288 * a port. This is assured in ipcl_sctp_hash_insert(); 14289 */ 14290 void 14291 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14292 ip_recv_attr_t *ira) 14293 { 14294 conn_t *connp; 14295 queue_t *rq; 14296 boolean_t secure; 14297 ill_t *ill = ira->ira_ill; 14298 ip_stack_t *ipst = ill->ill_ipst; 14299 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14300 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14301 iaflags_t iraflags = ira->ira_flags; 14302 ill_t *rill = ira->ira_rill; 14303 14304 secure = iraflags & IRAF_IPSEC_SECURE; 14305 14306 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14307 ira, ipst); 14308 if (connp == NULL) { 14309 /* 14310 * Although raw sctp is not summed, OOB chunks must be. 14311 * Drop the packet here if the sctp checksum failed. 14312 */ 14313 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14314 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14315 freemsg(mp); 14316 return; 14317 } 14318 ira->ira_ill = ira->ira_rill = NULL; 14319 sctp_ootb_input(mp, ira, ipst); 14320 ira->ira_ill = ill; 14321 ira->ira_rill = rill; 14322 return; 14323 } 14324 rq = connp->conn_rq; 14325 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14326 CONN_DEC_REF(connp); 14327 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14328 freemsg(mp); 14329 return; 14330 } 14331 if (((iraflags & IRAF_IS_IPV4) ? 14332 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14333 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14334 secure) { 14335 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14336 ip6h, ira); 14337 if (mp == NULL) { 14338 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14339 /* Note that mp is NULL */ 14340 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14341 CONN_DEC_REF(connp); 14342 return; 14343 } 14344 } 14345 14346 if (iraflags & IRAF_ICMP_ERROR) { 14347 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14348 } else { 14349 ill_t *rill = ira->ira_rill; 14350 14351 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14352 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14353 ira->ira_ill = ira->ira_rill = NULL; 14354 (connp->conn_recv)(connp, mp, NULL, ira); 14355 ira->ira_ill = ill; 14356 ira->ira_rill = rill; 14357 } 14358 CONN_DEC_REF(connp); 14359 } 14360 14361 /* 14362 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14363 * header before the ip payload. 14364 */ 14365 static void 14366 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14367 { 14368 int len = (mp->b_wptr - mp->b_rptr); 14369 mblk_t *ip_mp; 14370 14371 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14372 if (is_fp_mp || len != fp_mp_len) { 14373 if (len > fp_mp_len) { 14374 /* 14375 * fastpath header and ip header in the first mblk 14376 */ 14377 mp->b_rptr += fp_mp_len; 14378 } else { 14379 /* 14380 * ip_xmit_attach_llhdr had to prepend an mblk to 14381 * attach the fastpath header before ip header. 14382 */ 14383 ip_mp = mp->b_cont; 14384 freeb(mp); 14385 mp = ip_mp; 14386 mp->b_rptr += (fp_mp_len - len); 14387 } 14388 } else { 14389 ip_mp = mp->b_cont; 14390 freeb(mp); 14391 mp = ip_mp; 14392 } 14393 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14394 freemsg(mp); 14395 } 14396 14397 /* 14398 * Normal post fragmentation function. 14399 * 14400 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14401 * using the same state machine. 14402 * 14403 * We return an error on failure. In particular we return EWOULDBLOCK 14404 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14405 * (currently by canputnext failure resulting in backenabling from GLD.) 14406 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14407 * indication that they can flow control until ip_wsrv() tells then to restart. 14408 * 14409 * If the nce passed by caller is incomplete, this function 14410 * queues the packet and if necessary, sends ARP request and bails. 14411 * If the Neighbor Cache passed is fully resolved, we simply prepend 14412 * the link-layer header to the packet, do ipsec hw acceleration 14413 * work if necessary, and send the packet out on the wire. 14414 */ 14415 /* ARGSUSED6 */ 14416 int 14417 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14418 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14419 { 14420 queue_t *wq; 14421 ill_t *ill = nce->nce_ill; 14422 ip_stack_t *ipst = ill->ill_ipst; 14423 uint64_t delta; 14424 boolean_t isv6 = ill->ill_isv6; 14425 boolean_t fp_mp; 14426 ncec_t *ncec = nce->nce_common; 14427 int64_t now = LBOLT_FASTPATH64; 14428 boolean_t is_probe; 14429 14430 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14431 14432 ASSERT(mp != NULL); 14433 ASSERT(mp->b_datap->db_type == M_DATA); 14434 ASSERT(pkt_len == msgdsize(mp)); 14435 14436 /* 14437 * If we have already been here and are coming back after ARP/ND. 14438 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14439 * in that case since they have seen the packet when it came here 14440 * the first time. 14441 */ 14442 if (ixaflags & IXAF_NO_TRACE) 14443 goto sendit; 14444 14445 if (ixaflags & IXAF_IS_IPV4) { 14446 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14447 14448 ASSERT(!isv6); 14449 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14450 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14451 !(ixaflags & IXAF_NO_PFHOOK)) { 14452 int error; 14453 14454 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14455 ipst->ips_ipv4firewall_physical_out, 14456 NULL, ill, ipha, mp, mp, 0, ipst, error); 14457 DTRACE_PROBE1(ip4__physical__out__end, 14458 mblk_t *, mp); 14459 if (mp == NULL) 14460 return (error); 14461 14462 /* The length could have changed */ 14463 pkt_len = msgdsize(mp); 14464 } 14465 if (ipst->ips_ip4_observe.he_interested) { 14466 /* 14467 * Note that for TX the zoneid is the sending 14468 * zone, whether or not MLP is in play. 14469 * Since the szone argument is the IP zoneid (i.e., 14470 * zero for exclusive-IP zones) and ipobs wants 14471 * the system zoneid, we map it here. 14472 */ 14473 szone = IP_REAL_ZONEID(szone, ipst); 14474 14475 /* 14476 * On the outbound path the destination zone will be 14477 * unknown as we're sending this packet out on the 14478 * wire. 14479 */ 14480 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14481 ill, ipst); 14482 } 14483 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14484 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14485 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14486 } else { 14487 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14488 14489 ASSERT(isv6); 14490 ASSERT(pkt_len == 14491 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14492 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14493 !(ixaflags & IXAF_NO_PFHOOK)) { 14494 int error; 14495 14496 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14497 ipst->ips_ipv6firewall_physical_out, 14498 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14499 DTRACE_PROBE1(ip6__physical__out__end, 14500 mblk_t *, mp); 14501 if (mp == NULL) 14502 return (error); 14503 14504 /* The length could have changed */ 14505 pkt_len = msgdsize(mp); 14506 } 14507 if (ipst->ips_ip6_observe.he_interested) { 14508 /* See above */ 14509 szone = IP_REAL_ZONEID(szone, ipst); 14510 14511 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14512 ill, ipst); 14513 } 14514 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14515 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14516 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14517 } 14518 14519 sendit: 14520 /* 14521 * We check the state without a lock because the state can never 14522 * move "backwards" to initial or incomplete. 14523 */ 14524 switch (ncec->ncec_state) { 14525 case ND_REACHABLE: 14526 case ND_STALE: 14527 case ND_DELAY: 14528 case ND_PROBE: 14529 mp = ip_xmit_attach_llhdr(mp, nce); 14530 if (mp == NULL) { 14531 /* 14532 * ip_xmit_attach_llhdr has increased 14533 * ipIfStatsOutDiscards and called ip_drop_output() 14534 */ 14535 return (ENOBUFS); 14536 } 14537 /* 14538 * check if nce_fastpath completed and we tagged on a 14539 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14540 */ 14541 fp_mp = (mp->b_datap->db_type == M_DATA); 14542 14543 if (fp_mp && 14544 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14545 ill_dld_direct_t *idd; 14546 14547 idd = &ill->ill_dld_capab->idc_direct; 14548 /* 14549 * Send the packet directly to DLD, where it 14550 * may be queued depending on the availability 14551 * of transmit resources at the media layer. 14552 * Return value should be taken into 14553 * account and flow control the TCP. 14554 */ 14555 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14556 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14557 pkt_len); 14558 14559 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14560 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14561 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14562 } else { 14563 uintptr_t cookie; 14564 14565 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14566 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14567 if (ixacookie != NULL) 14568 *ixacookie = cookie; 14569 return (EWOULDBLOCK); 14570 } 14571 } 14572 } else { 14573 wq = ill->ill_wq; 14574 14575 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14576 !canputnext(wq)) { 14577 if (ixacookie != NULL) 14578 *ixacookie = 0; 14579 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14580 nce->nce_fp_mp != NULL ? 14581 MBLKL(nce->nce_fp_mp) : 0); 14582 return (EWOULDBLOCK); 14583 } 14584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14585 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14586 pkt_len); 14587 putnext(wq, mp); 14588 } 14589 14590 /* 14591 * The rest of this function implements Neighbor Unreachability 14592 * detection. Determine if the ncec is eligible for NUD. 14593 */ 14594 if (ncec->ncec_flags & NCE_F_NONUD) 14595 return (0); 14596 14597 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14598 14599 /* 14600 * Check for upper layer advice 14601 */ 14602 if (ixaflags & IXAF_REACH_CONF) { 14603 timeout_id_t tid; 14604 14605 /* 14606 * It should be o.k. to check the state without 14607 * a lock here, at most we lose an advice. 14608 */ 14609 ncec->ncec_last = TICK_TO_MSEC(now); 14610 if (ncec->ncec_state != ND_REACHABLE) { 14611 mutex_enter(&ncec->ncec_lock); 14612 ncec->ncec_state = ND_REACHABLE; 14613 tid = ncec->ncec_timeout_id; 14614 ncec->ncec_timeout_id = 0; 14615 mutex_exit(&ncec->ncec_lock); 14616 (void) untimeout(tid); 14617 if (ip_debug > 2) { 14618 /* ip1dbg */ 14619 pr_addr_dbg("ip_xmit: state" 14620 " for %s changed to" 14621 " REACHABLE\n", AF_INET6, 14622 &ncec->ncec_addr); 14623 } 14624 } 14625 return (0); 14626 } 14627 14628 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14629 ip1dbg(("ip_xmit: delta = %" PRId64 14630 " ill_reachable_time = %d \n", delta, 14631 ill->ill_reachable_time)); 14632 if (delta > (uint64_t)ill->ill_reachable_time) { 14633 mutex_enter(&ncec->ncec_lock); 14634 switch (ncec->ncec_state) { 14635 case ND_REACHABLE: 14636 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14637 /* FALLTHROUGH */ 14638 case ND_STALE: 14639 /* 14640 * ND_REACHABLE is identical to 14641 * ND_STALE in this specific case. If 14642 * reachable time has expired for this 14643 * neighbor (delta is greater than 14644 * reachable time), conceptually, the 14645 * neighbor cache is no longer in 14646 * REACHABLE state, but already in 14647 * STALE state. So the correct 14648 * transition here is to ND_DELAY. 14649 */ 14650 ncec->ncec_state = ND_DELAY; 14651 mutex_exit(&ncec->ncec_lock); 14652 nce_restart_timer(ncec, 14653 ipst->ips_delay_first_probe_time); 14654 if (ip_debug > 3) { 14655 /* ip2dbg */ 14656 pr_addr_dbg("ip_xmit: state" 14657 " for %s changed to" 14658 " DELAY\n", AF_INET6, 14659 &ncec->ncec_addr); 14660 } 14661 break; 14662 case ND_DELAY: 14663 case ND_PROBE: 14664 mutex_exit(&ncec->ncec_lock); 14665 /* Timers have already started */ 14666 break; 14667 case ND_UNREACHABLE: 14668 /* 14669 * nce_timer has detected that this ncec 14670 * is unreachable and initiated deleting 14671 * this ncec. 14672 * This is a harmless race where we found the 14673 * ncec before it was deleted and have 14674 * just sent out a packet using this 14675 * unreachable ncec. 14676 */ 14677 mutex_exit(&ncec->ncec_lock); 14678 break; 14679 default: 14680 ASSERT(0); 14681 mutex_exit(&ncec->ncec_lock); 14682 } 14683 } 14684 return (0); 14685 14686 case ND_INCOMPLETE: 14687 /* 14688 * the state could have changed since we didn't hold the lock. 14689 * Re-verify state under lock. 14690 */ 14691 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14692 mutex_enter(&ncec->ncec_lock); 14693 if (NCE_ISREACHABLE(ncec)) { 14694 mutex_exit(&ncec->ncec_lock); 14695 goto sendit; 14696 } 14697 /* queue the packet */ 14698 nce_queue_mp(ncec, mp, is_probe); 14699 mutex_exit(&ncec->ncec_lock); 14700 DTRACE_PROBE2(ip__xmit__incomplete, 14701 (ncec_t *), ncec, (mblk_t *), mp); 14702 return (0); 14703 14704 case ND_INITIAL: 14705 /* 14706 * State could have changed since we didn't hold the lock, so 14707 * re-verify state. 14708 */ 14709 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14710 mutex_enter(&ncec->ncec_lock); 14711 if (NCE_ISREACHABLE(ncec)) { 14712 mutex_exit(&ncec->ncec_lock); 14713 goto sendit; 14714 } 14715 nce_queue_mp(ncec, mp, is_probe); 14716 if (ncec->ncec_state == ND_INITIAL) { 14717 ncec->ncec_state = ND_INCOMPLETE; 14718 mutex_exit(&ncec->ncec_lock); 14719 /* 14720 * figure out the source we want to use 14721 * and resolve it. 14722 */ 14723 ip_ndp_resolve(ncec); 14724 } else { 14725 mutex_exit(&ncec->ncec_lock); 14726 } 14727 return (0); 14728 14729 case ND_UNREACHABLE: 14730 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14731 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14732 mp, ill); 14733 freemsg(mp); 14734 return (0); 14735 14736 default: 14737 ASSERT(0); 14738 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14739 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14740 mp, ill); 14741 freemsg(mp); 14742 return (ENETUNREACH); 14743 } 14744 } 14745 14746 /* 14747 * Return B_TRUE if the buffers differ in length or content. 14748 * This is used for comparing extension header buffers. 14749 * Note that an extension header would be declared different 14750 * even if all that changed was the next header value in that header i.e. 14751 * what really changed is the next extension header. 14752 */ 14753 boolean_t 14754 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14755 uint_t blen) 14756 { 14757 if (!b_valid) 14758 blen = 0; 14759 14760 if (alen != blen) 14761 return (B_TRUE); 14762 if (alen == 0) 14763 return (B_FALSE); /* Both zero length */ 14764 return (bcmp(abuf, bbuf, alen)); 14765 } 14766 14767 /* 14768 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14769 * Return B_FALSE if memory allocation fails - don't change any state! 14770 */ 14771 boolean_t 14772 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14773 const void *src, uint_t srclen) 14774 { 14775 void *dst; 14776 14777 if (!src_valid) 14778 srclen = 0; 14779 14780 ASSERT(*dstlenp == 0); 14781 if (src != NULL && srclen != 0) { 14782 dst = mi_alloc(srclen, BPRI_MED); 14783 if (dst == NULL) 14784 return (B_FALSE); 14785 } else { 14786 dst = NULL; 14787 } 14788 if (*dstp != NULL) 14789 mi_free(*dstp); 14790 *dstp = dst; 14791 *dstlenp = dst == NULL ? 0 : srclen; 14792 return (B_TRUE); 14793 } 14794 14795 /* 14796 * Replace what is in *dst, *dstlen with the source. 14797 * Assumes ip_allocbuf has already been called. 14798 */ 14799 void 14800 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14801 const void *src, uint_t srclen) 14802 { 14803 if (!src_valid) 14804 srclen = 0; 14805 14806 ASSERT(*dstlenp == srclen); 14807 if (src != NULL && srclen != 0) 14808 bcopy(src, *dstp, srclen); 14809 } 14810 14811 /* 14812 * Free the storage pointed to by the members of an ip_pkt_t. 14813 */ 14814 void 14815 ip_pkt_free(ip_pkt_t *ipp) 14816 { 14817 uint_t fields = ipp->ipp_fields; 14818 14819 if (fields & IPPF_HOPOPTS) { 14820 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14821 ipp->ipp_hopopts = NULL; 14822 ipp->ipp_hopoptslen = 0; 14823 } 14824 if (fields & IPPF_RTHDRDSTOPTS) { 14825 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14826 ipp->ipp_rthdrdstopts = NULL; 14827 ipp->ipp_rthdrdstoptslen = 0; 14828 } 14829 if (fields & IPPF_DSTOPTS) { 14830 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14831 ipp->ipp_dstopts = NULL; 14832 ipp->ipp_dstoptslen = 0; 14833 } 14834 if (fields & IPPF_RTHDR) { 14835 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14836 ipp->ipp_rthdr = NULL; 14837 ipp->ipp_rthdrlen = 0; 14838 } 14839 if (fields & IPPF_IPV4_OPTIONS) { 14840 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14841 ipp->ipp_ipv4_options = NULL; 14842 ipp->ipp_ipv4_options_len = 0; 14843 } 14844 if (fields & IPPF_LABEL_V4) { 14845 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14846 ipp->ipp_label_v4 = NULL; 14847 ipp->ipp_label_len_v4 = 0; 14848 } 14849 if (fields & IPPF_LABEL_V6) { 14850 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14851 ipp->ipp_label_v6 = NULL; 14852 ipp->ipp_label_len_v6 = 0; 14853 } 14854 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14855 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14856 } 14857 14858 /* 14859 * Copy from src to dst and allocate as needed. 14860 * Returns zero or ENOMEM. 14861 * 14862 * The caller must initialize dst to zero. 14863 */ 14864 int 14865 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14866 { 14867 uint_t fields = src->ipp_fields; 14868 14869 /* Start with fields that don't require memory allocation */ 14870 dst->ipp_fields = fields & 14871 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14872 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14873 14874 dst->ipp_addr = src->ipp_addr; 14875 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14876 dst->ipp_hoplimit = src->ipp_hoplimit; 14877 dst->ipp_tclass = src->ipp_tclass; 14878 dst->ipp_type_of_service = src->ipp_type_of_service; 14879 14880 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14881 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14882 return (0); 14883 14884 if (fields & IPPF_HOPOPTS) { 14885 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14886 if (dst->ipp_hopopts == NULL) { 14887 ip_pkt_free(dst); 14888 return (ENOMEM); 14889 } 14890 dst->ipp_fields |= IPPF_HOPOPTS; 14891 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14892 src->ipp_hopoptslen); 14893 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14894 } 14895 if (fields & IPPF_RTHDRDSTOPTS) { 14896 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14897 kmflag); 14898 if (dst->ipp_rthdrdstopts == NULL) { 14899 ip_pkt_free(dst); 14900 return (ENOMEM); 14901 } 14902 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14903 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14904 src->ipp_rthdrdstoptslen); 14905 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14906 } 14907 if (fields & IPPF_DSTOPTS) { 14908 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14909 if (dst->ipp_dstopts == NULL) { 14910 ip_pkt_free(dst); 14911 return (ENOMEM); 14912 } 14913 dst->ipp_fields |= IPPF_DSTOPTS; 14914 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14915 src->ipp_dstoptslen); 14916 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14917 } 14918 if (fields & IPPF_RTHDR) { 14919 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14920 if (dst->ipp_rthdr == NULL) { 14921 ip_pkt_free(dst); 14922 return (ENOMEM); 14923 } 14924 dst->ipp_fields |= IPPF_RTHDR; 14925 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14926 src->ipp_rthdrlen); 14927 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14928 } 14929 if (fields & IPPF_IPV4_OPTIONS) { 14930 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14931 kmflag); 14932 if (dst->ipp_ipv4_options == NULL) { 14933 ip_pkt_free(dst); 14934 return (ENOMEM); 14935 } 14936 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14937 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14938 src->ipp_ipv4_options_len); 14939 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14940 } 14941 if (fields & IPPF_LABEL_V4) { 14942 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14943 if (dst->ipp_label_v4 == NULL) { 14944 ip_pkt_free(dst); 14945 return (ENOMEM); 14946 } 14947 dst->ipp_fields |= IPPF_LABEL_V4; 14948 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14949 src->ipp_label_len_v4); 14950 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14951 } 14952 if (fields & IPPF_LABEL_V6) { 14953 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14954 if (dst->ipp_label_v6 == NULL) { 14955 ip_pkt_free(dst); 14956 return (ENOMEM); 14957 } 14958 dst->ipp_fields |= IPPF_LABEL_V6; 14959 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14960 src->ipp_label_len_v6); 14961 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14962 } 14963 if (fields & IPPF_FRAGHDR) { 14964 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14965 if (dst->ipp_fraghdr == NULL) { 14966 ip_pkt_free(dst); 14967 return (ENOMEM); 14968 } 14969 dst->ipp_fields |= IPPF_FRAGHDR; 14970 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14971 src->ipp_fraghdrlen); 14972 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14973 } 14974 return (0); 14975 } 14976 14977 /* 14978 * Returns INADDR_ANY if no source route 14979 */ 14980 ipaddr_t 14981 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14982 { 14983 ipaddr_t nexthop = INADDR_ANY; 14984 ipoptp_t opts; 14985 uchar_t *opt; 14986 uint8_t optval; 14987 uint8_t optlen; 14988 uint32_t totallen; 14989 14990 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14991 return (INADDR_ANY); 14992 14993 totallen = ipp->ipp_ipv4_options_len; 14994 if (totallen & 0x3) 14995 return (INADDR_ANY); 14996 14997 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14998 optval != IPOPT_EOL; 14999 optval = ipoptp_next(&opts)) { 15000 opt = opts.ipoptp_cur; 15001 switch (optval) { 15002 uint8_t off; 15003 case IPOPT_SSRR: 15004 case IPOPT_LSRR: 15005 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15006 break; 15007 } 15008 optlen = opts.ipoptp_len; 15009 off = opt[IPOPT_OFFSET]; 15010 off--; 15011 if (optlen < IP_ADDR_LEN || 15012 off > optlen - IP_ADDR_LEN) { 15013 /* End of source route */ 15014 break; 15015 } 15016 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15017 if (nexthop == htonl(INADDR_LOOPBACK)) { 15018 /* Ignore */ 15019 nexthop = INADDR_ANY; 15020 break; 15021 } 15022 break; 15023 } 15024 } 15025 return (nexthop); 15026 } 15027 15028 /* 15029 * Reverse a source route. 15030 */ 15031 void 15032 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15033 { 15034 ipaddr_t tmp; 15035 ipoptp_t opts; 15036 uchar_t *opt; 15037 uint8_t optval; 15038 uint32_t totallen; 15039 15040 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15041 return; 15042 15043 totallen = ipp->ipp_ipv4_options_len; 15044 if (totallen & 0x3) 15045 return; 15046 15047 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15048 optval != IPOPT_EOL; 15049 optval = ipoptp_next(&opts)) { 15050 uint8_t off1, off2; 15051 15052 opt = opts.ipoptp_cur; 15053 switch (optval) { 15054 case IPOPT_SSRR: 15055 case IPOPT_LSRR: 15056 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15057 break; 15058 } 15059 off1 = IPOPT_MINOFF_SR - 1; 15060 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15061 while (off2 > off1) { 15062 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15063 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15064 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15065 off2 -= IP_ADDR_LEN; 15066 off1 += IP_ADDR_LEN; 15067 } 15068 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15069 break; 15070 } 15071 } 15072 } 15073 15074 /* 15075 * Returns NULL if no routing header 15076 */ 15077 in6_addr_t * 15078 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15079 { 15080 in6_addr_t *nexthop = NULL; 15081 ip6_rthdr0_t *rthdr; 15082 15083 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15084 return (NULL); 15085 15086 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15087 if (rthdr->ip6r0_segleft == 0) 15088 return (NULL); 15089 15090 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15091 return (nexthop); 15092 } 15093 15094 zoneid_t 15095 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15096 zoneid_t lookup_zoneid) 15097 { 15098 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15099 ire_t *ire; 15100 int ire_flags = MATCH_IRE_TYPE; 15101 zoneid_t zoneid = ALL_ZONES; 15102 15103 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15104 return (ALL_ZONES); 15105 15106 if (lookup_zoneid != ALL_ZONES) 15107 ire_flags |= MATCH_IRE_ZONEONLY; 15108 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15109 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15110 if (ire != NULL) { 15111 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15112 ire_refrele(ire); 15113 } 15114 return (zoneid); 15115 } 15116 15117 zoneid_t 15118 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15119 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15120 { 15121 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15122 ire_t *ire; 15123 int ire_flags = MATCH_IRE_TYPE; 15124 zoneid_t zoneid = ALL_ZONES; 15125 15126 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15127 return (ALL_ZONES); 15128 15129 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15130 ire_flags |= MATCH_IRE_ILL; 15131 15132 if (lookup_zoneid != ALL_ZONES) 15133 ire_flags |= MATCH_IRE_ZONEONLY; 15134 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15135 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15136 if (ire != NULL) { 15137 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15138 ire_refrele(ire); 15139 } 15140 return (zoneid); 15141 } 15142 15143 /* 15144 * IP obserability hook support functions. 15145 */ 15146 static void 15147 ipobs_init(ip_stack_t *ipst) 15148 { 15149 netid_t id; 15150 15151 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15152 15153 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15154 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15155 15156 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15157 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15158 } 15159 15160 static void 15161 ipobs_fini(ip_stack_t *ipst) 15162 { 15163 15164 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15165 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15166 } 15167 15168 /* 15169 * hook_pkt_observe_t is composed in network byte order so that the 15170 * entire mblk_t chain handed into hook_run can be used as-is. 15171 * The caveat is that use of the fields, such as the zone fields, 15172 * requires conversion into host byte order first. 15173 */ 15174 void 15175 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15176 const ill_t *ill, ip_stack_t *ipst) 15177 { 15178 hook_pkt_observe_t *hdr; 15179 uint64_t grifindex; 15180 mblk_t *imp; 15181 15182 imp = allocb(sizeof (*hdr), BPRI_HI); 15183 if (imp == NULL) 15184 return; 15185 15186 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15187 /* 15188 * b_wptr is set to make the apparent size of the data in the mblk_t 15189 * to exclude the pointers at the end of hook_pkt_observer_t. 15190 */ 15191 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15192 imp->b_cont = mp; 15193 15194 ASSERT(DB_TYPE(mp) == M_DATA); 15195 15196 if (IS_UNDER_IPMP(ill)) 15197 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15198 else 15199 grifindex = 0; 15200 15201 hdr->hpo_version = 1; 15202 hdr->hpo_htype = htons(htype); 15203 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15204 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15205 hdr->hpo_grifindex = htonl(grifindex); 15206 hdr->hpo_zsrc = htonl(zsrc); 15207 hdr->hpo_zdst = htonl(zdst); 15208 hdr->hpo_pkt = imp; 15209 hdr->hpo_ctx = ipst->ips_netstack; 15210 15211 if (ill->ill_isv6) { 15212 hdr->hpo_family = AF_INET6; 15213 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15214 ipst->ips_ipv6observing, (hook_data_t)hdr); 15215 } else { 15216 hdr->hpo_family = AF_INET; 15217 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15218 ipst->ips_ipv4observing, (hook_data_t)hdr); 15219 } 15220 15221 imp->b_cont = NULL; 15222 freemsg(imp); 15223 } 15224 15225 /* 15226 * Utility routine that checks if `v4srcp' is a valid address on underlying 15227 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15228 * associated with `v4srcp' on success. NOTE: if this is not called from 15229 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15230 * group during or after this lookup. 15231 */ 15232 boolean_t 15233 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15234 { 15235 ipif_t *ipif; 15236 15237 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15238 if (ipif != NULL) { 15239 if (ipifp != NULL) 15240 *ipifp = ipif; 15241 else 15242 ipif_refrele(ipif); 15243 return (B_TRUE); 15244 } 15245 15246 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15247 *v4srcp)); 15248 return (B_FALSE); 15249 } 15250 15251 /* 15252 * Transport protocol call back function for CPU state change. 15253 */ 15254 /* ARGSUSED */ 15255 static int 15256 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15257 { 15258 processorid_t cpu_seqid; 15259 netstack_handle_t nh; 15260 netstack_t *ns; 15261 15262 ASSERT(MUTEX_HELD(&cpu_lock)); 15263 15264 switch (what) { 15265 case CPU_CONFIG: 15266 case CPU_ON: 15267 case CPU_INIT: 15268 case CPU_CPUPART_IN: 15269 cpu_seqid = cpu[id]->cpu_seqid; 15270 netstack_next_init(&nh); 15271 while ((ns = netstack_next(&nh)) != NULL) { 15272 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15273 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15274 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15275 netstack_rele(ns); 15276 } 15277 netstack_next_fini(&nh); 15278 break; 15279 case CPU_UNCONFIG: 15280 case CPU_OFF: 15281 case CPU_CPUPART_OUT: 15282 /* 15283 * Nothing to do. We don't remove the per CPU stats from 15284 * the IP stack even when the CPU goes offline. 15285 */ 15286 break; 15287 default: 15288 break; 15289 } 15290 return (0); 15291 } 15292