1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright (c) 2019 Joyent, Inc. All rights reserved. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/suntpi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 #include <sys/taskq.h> 52 53 #include <sys/systm.h> 54 #include <sys/param.h> 55 #include <sys/kmem.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/vtrace.h> 59 #include <sys/isa_defs.h> 60 #include <sys/mac.h> 61 #include <net/if.h> 62 #include <net/if_arp.h> 63 #include <net/route.h> 64 #include <sys/sockio.h> 65 #include <netinet/in.h> 66 #include <net/if_dl.h> 67 68 #include <inet/common.h> 69 #include <inet/mi.h> 70 #include <inet/mib2.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/snmpcom.h> 74 #include <inet/optcom.h> 75 #include <inet/kstatcom.h> 76 77 #include <netinet/igmp_var.h> 78 #include <netinet/ip6.h> 79 #include <netinet/icmp6.h> 80 #include <netinet/sctp.h> 81 82 #include <inet/ip.h> 83 #include <inet/ip_impl.h> 84 #include <inet/ip6.h> 85 #include <inet/ip6_asp.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/ip_multi.h> 89 #include <inet/ip_if.h> 90 #include <inet/ip_ire.h> 91 #include <inet/ip_ftable.h> 92 #include <inet/ip_rts.h> 93 #include <inet/ip_ndp.h> 94 #include <inet/ip_listutils.h> 95 #include <netinet/igmp.h> 96 #include <netinet/ip_mroute.h> 97 #include <inet/ipp_common.h> 98 #include <inet/cc.h> 99 100 #include <net/pfkeyv2.h> 101 #include <inet/sadb.h> 102 #include <inet/ipsec_impl.h> 103 #include <inet/iptun/iptun_impl.h> 104 #include <inet/ipdrop.h> 105 #include <inet/ip_netinfo.h> 106 #include <inet/ilb_ip.h> 107 108 #include <sys/ethernet.h> 109 #include <net/if_types.h> 110 #include <sys/cpuvar.h> 111 112 #include <ipp/ipp.h> 113 #include <ipp/ipp_impl.h> 114 #include <ipp/ipgpc/ipgpc.h> 115 116 #include <sys/pattr.h> 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <inet/rawip_impl.h> 122 #include <inet/rts_impl.h> 123 124 #include <sys/tsol/label.h> 125 #include <sys/tsol/tnet.h> 126 127 #include <sys/squeue_impl.h> 128 #include <inet/ip_arp.h> 129 130 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 131 132 /* 133 * Values for squeue switch: 134 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 135 * IP_SQUEUE_ENTER: SQ_PROCESS 136 * IP_SQUEUE_FILL: SQ_FILL 137 */ 138 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 139 140 int ip_squeue_flag; 141 142 /* 143 * Setable in /etc/system 144 */ 145 int ip_poll_normal_ms = 100; 146 int ip_poll_normal_ticks = 0; 147 int ip_modclose_ackwait_ms = 3000; 148 149 /* 150 * It would be nice to have these present only in DEBUG systems, but the 151 * current design of the global symbol checking logic requires them to be 152 * unconditionally present. 153 */ 154 uint_t ip_thread_data; /* TSD key for debug support */ 155 krwlock_t ip_thread_rwlock; 156 list_t ip_thread_list; 157 158 /* 159 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 160 */ 161 162 struct listptr_s { 163 mblk_t *lp_head; /* pointer to the head of the list */ 164 mblk_t *lp_tail; /* pointer to the tail of the list */ 165 }; 166 167 typedef struct listptr_s listptr_t; 168 169 /* 170 * This is used by ip_snmp_get_mib2_ip_route_media and 171 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 172 */ 173 typedef struct iproutedata_s { 174 uint_t ird_idx; 175 uint_t ird_flags; /* see below */ 176 listptr_t ird_route; /* ipRouteEntryTable */ 177 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 178 listptr_t ird_attrs; /* ipRouteAttributeTable */ 179 } iproutedata_t; 180 181 /* Include ire_testhidden and IRE_IF_CLONE routes */ 182 #define IRD_REPORT_ALL 0x01 183 184 /* 185 * Cluster specific hooks. These should be NULL when booted as a non-cluster 186 */ 187 188 /* 189 * Hook functions to enable cluster networking 190 * On non-clustered systems these vectors must always be NULL. 191 * 192 * Hook function to Check ip specified ip address is a shared ip address 193 * in the cluster 194 * 195 */ 196 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 197 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 198 199 /* 200 * Hook function to generate cluster wide ip fragment identifier 201 */ 202 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 203 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 204 void *args) = NULL; 205 206 /* 207 * Hook function to generate cluster wide SPI. 208 */ 209 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 210 void *) = NULL; 211 212 /* 213 * Hook function to verify if the SPI is already utlized. 214 */ 215 216 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 217 218 /* 219 * Hook function to delete the SPI from the cluster wide repository. 220 */ 221 222 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 223 224 /* 225 * Hook function to inform the cluster when packet received on an IDLE SA 226 */ 227 228 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 229 in6_addr_t, in6_addr_t, void *) = NULL; 230 231 /* 232 * Synchronization notes: 233 * 234 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 235 * MT level protection given by STREAMS. IP uses a combination of its own 236 * internal serialization mechanism and standard Solaris locking techniques. 237 * The internal serialization is per phyint. This is used to serialize 238 * plumbing operations, IPMP operations, most set ioctls, etc. 239 * 240 * Plumbing is a long sequence of operations involving message 241 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 242 * involved in plumbing operations. A natural model is to serialize these 243 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 244 * parallel without any interference. But various set ioctls on hme0 are best 245 * serialized, along with IPMP operations and processing of DLPI control 246 * messages received from drivers on a per phyint basis. This serialization is 247 * provided by the ipsq_t and primitives operating on this. Details can 248 * be found in ip_if.c above the core primitives operating on ipsq_t. 249 * 250 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 251 * Simiarly lookup of an ire by a thread also returns a refheld ire. 252 * In addition ipif's and ill's referenced by the ire are also indirectly 253 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * one such exclusive operation proceeds at any time on the ipif. It then 257 * waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and ncec_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 306 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 307 * uniqueness check also done atomically. 308 * 309 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 310 * group list linked by ill_usesrc_grp_next. It also protects the 311 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 312 * group is being added or deleted. This lock is taken as a reader when 313 * walking the list/group(eg: to get the number of members in a usesrc group). 314 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 315 * field is changing state i.e from NULL to non-NULL or vice-versa. For 316 * example, it is not necessary to take this lock in the initial portion 317 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 318 * operations are executed exclusively and that ensures that the "usesrc 319 * group state" cannot change. The "usesrc group state" change can happen 320 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 321 * 322 * Changing <ill-phyint>, <ipsq-xop> assocications: 323 * 324 * To change the <ill-phyint> association, the ill_g_lock must be held 325 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 326 * must be held. 327 * 328 * To change the <ipsq-xop> association, the ill_g_lock must be held as 329 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 330 * This is only done when ills are added or removed from IPMP groups. 331 * 332 * To add or delete an ipif from the list of ipifs hanging off the ill, 333 * ill_g_lock (writer) and ill_lock must be held and the thread must be 334 * a writer on the associated ipsq. 335 * 336 * To add or delete an ill to the system, the ill_g_lock must be held as 337 * writer and the thread must be a writer on the associated ipsq. 338 * 339 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 340 * must be a writer on the associated ipsq. 341 * 342 * Lock hierarchy 343 * 344 * Some lock hierarchy scenarios are listed below. 345 * 346 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 347 * ill_g_lock -> ill_lock(s) -> phyint_lock 348 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 349 * ill_g_lock -> ip_addr_avail_lock 350 * conn_lock -> irb_lock -> ill_lock -> ire_lock 351 * ill_g_lock -> ip_g_nd_lock 352 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 353 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 354 * arl_lock -> ill_lock 355 * ips_ire_dep_lock -> irb_lock 356 * 357 * When more than 1 ill lock is needed to be held, all ill lock addresses 358 * are sorted on address and locked starting from highest addressed lock 359 * downward. 360 * 361 * Multicast scenarios 362 * ips_ill_g_lock -> ill_mcast_lock 363 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 364 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 367 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 368 * 369 * IPsec scenarios 370 * 371 * ipsa_lock -> ill_g_lock -> ill_lock 372 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 373 * 374 * Trusted Solaris scenarios 375 * 376 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 377 * igsa_lock -> gcdb_lock 378 * gcgrp_rwlock -> ire_lock 379 * gcgrp_rwlock -> gcdb_lock 380 * 381 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 382 * 383 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 384 * sq_lock -> conn_lock -> QLOCK(q) 385 * ill_lock -> ft_lock -> fe_lock 386 * 387 * Routing/forwarding table locking notes: 388 * 389 * Lock acquisition order: Radix tree lock, irb_lock. 390 * Requirements: 391 * i. Walker must not hold any locks during the walker callback. 392 * ii Walker must not see a truncated tree during the walk because of any node 393 * deletion. 394 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 395 * in many places in the code to walk the irb list. Thus even if all the 396 * ires in a bucket have been deleted, we still can't free the radix node 397 * until the ires have actually been inactive'd (freed). 398 * 399 * Tree traversal - Need to hold the global tree lock in read mode. 400 * Before dropping the global tree lock, need to either increment the ire_refcnt 401 * to ensure that the radix node can't be deleted. 402 * 403 * Tree add - Need to hold the global tree lock in write mode to add a 404 * radix node. To prevent the node from being deleted, increment the 405 * irb_refcnt, after the node is added to the tree. The ire itself is 406 * added later while holding the irb_lock, but not the tree lock. 407 * 408 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 409 * All associated ires must be inactive (i.e. freed), and irb_refcnt 410 * must be zero. 411 * 412 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 413 * global tree lock (read mode) for traversal. 414 * 415 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 416 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 417 * 418 * IPsec notes : 419 * 420 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 421 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 422 * ip_xmit_attr_t has the 423 * information used by the IPsec code for applying the right level of 424 * protection. The information initialized by IP in the ip_xmit_attr_t 425 * is determined by the per-socket policy or global policy in the system. 426 * For inbound datagrams, the ip_recv_attr_t 427 * starts out with nothing in it. It gets filled 428 * with the right information if it goes through the AH/ESP code, which 429 * happens if the incoming packet is secure. The information initialized 430 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 431 * the policy requirements needed by per-socket policy or global policy 432 * is met or not. 433 * 434 * For fully connected sockets i.e dst, src [addr, port] is known, 435 * conn_policy_cached is set indicating that policy has been cached. 436 * conn_in_enforce_policy may or may not be set depending on whether 437 * there is a global policy match or per-socket policy match. 438 * Policy inheriting happpens in ip_policy_set once the destination is known. 439 * Once the right policy is set on the conn_t, policy cannot change for 440 * this socket. This makes life simpler for TCP (UDP ?) where 441 * re-transmissions go out with the same policy. For symmetry, policy 442 * is cached for fully connected UDP sockets also. Thus if policy is cached, 443 * it also implies that policy is latched i.e policy cannot change 444 * on these sockets. As we have the right policy on the conn, we don't 445 * have to lookup global policy for every outbound and inbound datagram 446 * and thus serving as an optimization. Note that a global policy change 447 * does not affect fully connected sockets if they have policy. If fully 448 * connected sockets did not have any policy associated with it, global 449 * policy change may affect them. 450 * 451 * IP Flow control notes: 452 * --------------------- 453 * Non-TCP streams are flow controlled by IP. The way this is accomplished 454 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 455 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 456 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 457 * functions. 458 * 459 * Per Tx ring udp flow control: 460 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 461 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 462 * 463 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 464 * To achieve best performance, outgoing traffic need to be fanned out among 465 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 466 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 467 * the address of connp as fanout hint to mac_tx(). Under flow controlled 468 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 469 * cookie points to a specific Tx ring that is blocked. The cookie is used to 470 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 471 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 472 * connp's. The drain list is not a single list but a configurable number of 473 * lists. 474 * 475 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 476 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 477 * which is equal to 128. This array in turn contains a pointer to idl_t[], 478 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 479 * list will point to the list of connp's that are flow controlled. 480 * 481 * --------------- ------- ------- ------- 482 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 483 * | --------------- ------- ------- ------- 484 * | --------------- ------- ------- ------- 485 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 486 * ---------------- | --------------- ------- ------- ------- 487 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 488 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 489 * | --------------- ------- ------- ------- 490 * . . . . . 491 * | --------------- ------- ------- ------- 492 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 493 * --------------- ------- ------- ------- 494 * --------------- ------- ------- ------- 495 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 496 * | --------------- ------- ------- ------- 497 * | --------------- ------- ------- ------- 498 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 499 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 500 * ---------------- | . . . . 501 * | --------------- ------- ------- ------- 502 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 503 * --------------- ------- ------- ------- 504 * ..... 505 * ---------------- 506 * |idl_tx_list[n]|-> ... 507 * ---------------- 508 * 509 * When mac_tx() returns a cookie, the cookie is hashed into an index into 510 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 511 * to insert the conn onto. conn_drain_insert() asserts flow control for the 512 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 513 * Further, conn_blocked is set to indicate that the conn is blocked. 514 * 515 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 516 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 517 * is again hashed to locate the appropriate idl_tx_list, which is then 518 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 519 * the drain list and calls conn_drain_remove() to clear flow control (via 520 * calling su_txq_full() or clearing QFULL), and remove the conn from the 521 * drain list. 522 * 523 * Note that the drain list is not a single list but a (configurable) array of 524 * lists (8 elements by default). Synchronization between drain insertion and 525 * flow control wakeup is handled by using idl_txl->txl_lock, and only 526 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 527 * 528 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 529 * On the send side, if the packet cannot be sent down to the driver by IP 530 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 531 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 532 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 533 * control has been relieved, the blocked conns in the 0'th drain list are 534 * drained as in the non-STREAMS case. 535 * 536 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 537 * is done when the conn is inserted into the drain list (conn_drain_insert()) 538 * and cleared when the conn is removed from the it (conn_drain_remove()). 539 * 540 * IPQOS notes: 541 * 542 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 543 * and IPQoS modules. IPPF includes hooks in IP at different control points 544 * (callout positions) which direct packets to IPQoS modules for policy 545 * processing. Policies, if present, are global. 546 * 547 * The callout positions are located in the following paths: 548 * o local_in (packets destined for this host) 549 * o local_out (packets orginating from this host ) 550 * o fwd_in (packets forwarded by this m/c - inbound) 551 * o fwd_out (packets forwarded by this m/c - outbound) 552 * Hooks at these callout points can be enabled/disabled using the ndd variable 553 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 554 * By default all the callout positions are enabled. 555 * 556 * Outbound (local_out) 557 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 558 * 559 * Inbound (local_in) 560 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 561 * 562 * Forwarding (in and out) 563 * Hooks are placed in ire_recv_forward_v4/v6. 564 * 565 * IP Policy Framework processing (IPPF processing) 566 * Policy processing for a packet is initiated by ip_process, which ascertains 567 * that the classifier (ipgpc) is loaded and configured, failing which the 568 * packet resumes normal processing in IP. If the clasifier is present, the 569 * packet is acted upon by one or more IPQoS modules (action instances), per 570 * filters configured in ipgpc and resumes normal IP processing thereafter. 571 * An action instance can drop a packet in course of its processing. 572 * 573 * Zones notes: 574 * 575 * The partitioning rules for networking are as follows: 576 * 1) Packets coming from a zone must have a source address belonging to that 577 * zone. 578 * 2) Packets coming from a zone can only be sent on a physical interface on 579 * which the zone has an IP address. 580 * 3) Between two zones on the same machine, packet delivery is only allowed if 581 * there's a matching route for the destination and zone in the forwarding 582 * table. 583 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 584 * different zones can bind to the same port with the wildcard address 585 * (INADDR_ANY). 586 * 587 * The granularity of interface partitioning is at the logical interface level. 588 * Therefore, every zone has its own IP addresses, and incoming packets can be 589 * attributed to a zone unambiguously. A logical interface is placed into a zone 590 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 591 * structure. Rule (1) is implemented by modifying the source address selection 592 * algorithm so that the list of eligible addresses is filtered based on the 593 * sending process zone. 594 * 595 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 596 * across all zones, depending on their type. Here is the break-up: 597 * 598 * IRE type Shared/exclusive 599 * -------- ---------------- 600 * IRE_BROADCAST Exclusive 601 * IRE_DEFAULT (default routes) Shared (*) 602 * IRE_LOCAL Exclusive (x) 603 * IRE_LOOPBACK Exclusive 604 * IRE_PREFIX (net routes) Shared (*) 605 * IRE_IF_NORESOLVER (interface routes) Exclusive 606 * IRE_IF_RESOLVER (interface routes) Exclusive 607 * IRE_IF_CLONE (interface routes) Exclusive 608 * IRE_HOST (host routes) Shared (*) 609 * 610 * (*) A zone can only use a default or off-subnet route if the gateway is 611 * directly reachable from the zone, that is, if the gateway's address matches 612 * one of the zone's logical interfaces. 613 * 614 * (x) IRE_LOCAL are handled a bit differently. 615 * When ip_restrict_interzone_loopback is set (the default), 616 * ire_route_recursive restricts loopback using an IRE_LOCAL 617 * between zone to the case when L2 would have conceptually looped the packet 618 * back, i.e. the loopback which is required since neither Ethernet drivers 619 * nor Ethernet hardware loops them back. This is the case when the normal 620 * routes (ignoring IREs with different zoneids) would send out the packet on 621 * the same ill as the ill with which is IRE_LOCAL is associated. 622 * 623 * Multiple zones can share a common broadcast address; typically all zones 624 * share the 255.255.255.255 address. Incoming as well as locally originated 625 * broadcast packets must be dispatched to all the zones on the broadcast 626 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 627 * since some zones may not be on the 10.16.72/24 network. To handle this, each 628 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 629 * sent to every zone that has an IRE_BROADCAST entry for the destination 630 * address on the input ill, see ip_input_broadcast(). 631 * 632 * Applications in different zones can join the same multicast group address. 633 * The same logic applies for multicast as for broadcast. ip_input_multicast 634 * dispatches packets to all zones that have members on the physical interface. 635 */ 636 637 /* 638 * Squeue Fanout flags: 639 * 0: No fanout. 640 * 1: Fanout across all squeues 641 */ 642 boolean_t ip_squeue_fanout = 0; 643 644 /* 645 * Maximum dups allowed per packet. 646 */ 647 uint_t ip_max_frag_dups = 10; 648 649 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 650 cred_t *credp, boolean_t isv6); 651 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 652 653 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 654 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 655 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 656 ip_recv_attr_t *); 657 static void icmp_options_update(ipha_t *); 658 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 659 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 660 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 661 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 662 ip_recv_attr_t *); 663 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 664 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 665 ip_recv_attr_t *); 666 667 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 668 char *ip_dot_addr(ipaddr_t, char *); 669 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 670 static char *ip_dot_saddr(uchar_t *, char *); 671 static int ip_lrput(queue_t *, mblk_t *); 672 ipaddr_t ip_net_mask(ipaddr_t); 673 char *ip_nv_lookup(nv_t *, int); 674 int ip_rput(queue_t *, mblk_t *); 675 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 676 void *dummy_arg); 677 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 678 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 679 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 680 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 681 ip_stack_t *, boolean_t); 682 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 683 boolean_t); 684 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 689 ip_stack_t *ipst, boolean_t); 690 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 691 ip_stack_t *ipst, boolean_t); 692 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 693 ip_stack_t *ipst); 694 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 705 ip_stack_t *ipst); 706 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 707 ip_stack_t *ipst); 708 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 709 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 710 static void ip_snmp_get2_v4_media(ncec_t *, void *); 711 static void ip_snmp_get2_v6_media(ncec_t *, void *); 712 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 713 714 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 715 mblk_t *); 716 717 static void conn_drain_init(ip_stack_t *); 718 static void conn_drain_fini(ip_stack_t *); 719 static void conn_drain(conn_t *connp, boolean_t closing); 720 721 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 722 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 723 724 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 725 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 726 static void ip_stack_fini(netstackid_t stackid, void *arg); 727 728 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 729 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 730 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 731 const in6_addr_t *); 732 733 static int ip_squeue_switch(int); 734 735 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 736 static void ip_kstat_fini(netstackid_t, kstat_t *); 737 static int ip_kstat_update(kstat_t *kp, int rw); 738 static void *icmp_kstat_init(netstackid_t); 739 static void icmp_kstat_fini(netstackid_t, kstat_t *); 740 static int icmp_kstat_update(kstat_t *kp, int rw); 741 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 742 static void ip_kstat2_fini(netstackid_t, kstat_t *); 743 744 static void ipobs_init(ip_stack_t *); 745 static void ipobs_fini(ip_stack_t *); 746 747 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 748 749 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 750 751 static long ip_rput_pullups; 752 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 753 754 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 755 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 756 757 int ip_debug; 758 759 /* 760 * Multirouting/CGTP stuff 761 */ 762 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 763 764 /* 765 * IP tunables related declarations. Definitions are in ip_tunables.c 766 */ 767 extern mod_prop_info_t ip_propinfo_tbl[]; 768 extern int ip_propinfo_count; 769 770 /* 771 * Table of IP ioctls encoding the various properties of the ioctl and 772 * indexed based on the last byte of the ioctl command. Occasionally there 773 * is a clash, and there is more than 1 ioctl with the same last byte. 774 * In such a case 1 ioctl is encoded in the ndx table and the remaining 775 * ioctls are encoded in the misc table. An entry in the ndx table is 776 * retrieved by indexing on the last byte of the ioctl command and comparing 777 * the ioctl command with the value in the ndx table. In the event of a 778 * mismatch the misc table is then searched sequentially for the desired 779 * ioctl command. 780 * 781 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 782 */ 783 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 784 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 794 795 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 796 MISC_CMD, ip_siocaddrt, NULL }, 797 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 798 MISC_CMD, ip_siocdelrt, NULL }, 799 800 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 801 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 802 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 803 IF_CMD, ip_sioctl_get_addr, NULL }, 804 805 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 806 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 807 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 808 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 809 810 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 811 IPI_PRIV | IPI_WR, 812 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 813 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 814 IPI_MODOK | IPI_GET_CMD, 815 IF_CMD, ip_sioctl_get_flags, NULL }, 816 817 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 818 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 819 820 /* copyin size cannot be coded for SIOCGIFCONF */ 821 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 822 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 823 824 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 825 IF_CMD, ip_sioctl_mtu, NULL }, 826 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 827 IF_CMD, ip_sioctl_get_mtu, NULL }, 828 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 829 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 830 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 831 IF_CMD, ip_sioctl_brdaddr, NULL }, 832 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 833 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 834 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 835 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 836 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 837 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 838 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 839 IF_CMD, ip_sioctl_metric, NULL }, 840 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 841 842 /* See 166-168 below for extended SIOC*XARP ioctls */ 843 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 844 ARP_CMD, ip_sioctl_arp, NULL }, 845 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 846 ARP_CMD, ip_sioctl_arp, NULL }, 847 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 848 ARP_CMD, ip_sioctl_arp, NULL }, 849 850 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 872 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 873 MISC_CMD, if_unitsel, if_unitsel_restart }, 874 875 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 894 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 895 IPI_PRIV | IPI_WR | IPI_MODOK, 896 IF_CMD, ip_sioctl_sifname, NULL }, 897 898 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 911 912 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 913 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 914 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 915 IF_CMD, ip_sioctl_get_muxid, NULL }, 916 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 917 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 918 919 /* Both if and lif variants share same func */ 920 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 921 IF_CMD, ip_sioctl_get_lifindex, NULL }, 922 /* Both if and lif variants share same func */ 923 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 924 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 925 926 /* copyin size cannot be coded for SIOCGIFCONF */ 927 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 928 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 929 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 947 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 948 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 949 ip_sioctl_removeif_restart }, 950 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 951 IPI_GET_CMD | IPI_PRIV | IPI_WR, 952 LIF_CMD, ip_sioctl_addif, NULL }, 953 #define SIOCLIFADDR_NDX 112 954 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 955 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 956 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 957 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 958 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 959 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 960 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 961 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 962 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 963 IPI_PRIV | IPI_WR, 964 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 965 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 966 IPI_GET_CMD | IPI_MODOK, 967 LIF_CMD, ip_sioctl_get_flags, NULL }, 968 969 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 970 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 971 972 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 973 ip_sioctl_get_lifconf, NULL }, 974 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 975 LIF_CMD, ip_sioctl_mtu, NULL }, 976 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 977 LIF_CMD, ip_sioctl_get_mtu, NULL }, 978 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 979 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 980 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 981 LIF_CMD, ip_sioctl_brdaddr, NULL }, 982 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 983 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 984 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 985 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 986 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 987 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 988 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 989 LIF_CMD, ip_sioctl_metric, NULL }, 990 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 991 IPI_PRIV | IPI_WR | IPI_MODOK, 992 LIF_CMD, ip_sioctl_slifname, 993 ip_sioctl_slifname_restart }, 994 995 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 996 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 997 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 998 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 999 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1000 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1001 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1002 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1003 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1004 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1005 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1006 LIF_CMD, ip_sioctl_token, NULL }, 1007 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1008 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1009 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1010 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1011 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1012 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1013 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1014 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1015 1016 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1017 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1018 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1019 LIF_CMD, ip_siocdelndp_v6, NULL }, 1020 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1021 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1022 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1023 LIF_CMD, ip_siocsetndp_v6, NULL }, 1024 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1025 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1026 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1027 MISC_CMD, ip_sioctl_tonlink, NULL }, 1028 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1029 MISC_CMD, ip_sioctl_tmysite, NULL }, 1030 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 1033 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */ 1034 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 1039 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 1041 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1042 LIF_CMD, ip_sioctl_get_binding, NULL }, 1043 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1044 IPI_PRIV | IPI_WR, 1045 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1046 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1047 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1048 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1049 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1050 1051 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1052 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 1056 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 1058 /* These are handled in ip_sioctl_copyin_setup itself */ 1059 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1060 MISC_CMD, NULL, NULL }, 1061 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1062 MISC_CMD, NULL, NULL }, 1063 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1064 1065 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1066 ip_sioctl_get_lifconf, NULL }, 1067 1068 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1069 XARP_CMD, ip_sioctl_arp, NULL }, 1070 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1071 XARP_CMD, ip_sioctl_arp, NULL }, 1072 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1073 XARP_CMD, ip_sioctl_arp, NULL }, 1074 1075 /* SIOCPOPSOCKFS is not handled by IP */ 1076 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1077 1078 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1079 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1080 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1081 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1082 ip_sioctl_slifzone_restart }, 1083 /* 172-174 are SCTP ioctls and not handled by IP */ 1084 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1088 IPI_GET_CMD, LIF_CMD, 1089 ip_sioctl_get_lifusesrc, 0 }, 1090 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1091 IPI_PRIV | IPI_WR, 1092 LIF_CMD, ip_sioctl_slifusesrc, 1093 NULL }, 1094 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1095 ip_sioctl_get_lifsrcof, NULL }, 1096 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1097 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1098 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1099 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1100 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1101 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1102 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1103 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1104 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* SIOCSENABLESDP is handled by SDP */ 1106 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1107 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1108 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1109 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1110 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1111 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1112 ip_sioctl_ilb_cmd, NULL }, 1113 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1114 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1115 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1116 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1117 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1118 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1119 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1120 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1121 }; 1122 1123 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1124 1125 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1126 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1127 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1130 { ND_GET, 0, 0, 0, NULL, NULL }, 1131 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1132 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1133 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1134 MISC_CMD, mrt_ioctl}, 1135 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1136 MISC_CMD, mrt_ioctl}, 1137 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1138 MISC_CMD, mrt_ioctl} 1139 }; 1140 1141 int ip_misc_ioctl_count = 1142 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1143 1144 int conn_drain_nthreads; /* Number of drainers reqd. */ 1145 /* Settable in /etc/system */ 1146 /* Defined in ip_ire.c */ 1147 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1148 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1149 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1150 1151 static nv_t ire_nv_arr[] = { 1152 { IRE_BROADCAST, "BROADCAST" }, 1153 { IRE_LOCAL, "LOCAL" }, 1154 { IRE_LOOPBACK, "LOOPBACK" }, 1155 { IRE_DEFAULT, "DEFAULT" }, 1156 { IRE_PREFIX, "PREFIX" }, 1157 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1158 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1159 { IRE_IF_CLONE, "IF_CLONE" }, 1160 { IRE_HOST, "HOST" }, 1161 { IRE_MULTICAST, "MULTICAST" }, 1162 { IRE_NOROUTE, "NOROUTE" }, 1163 { 0 } 1164 }; 1165 1166 nv_t *ire_nv_tbl = ire_nv_arr; 1167 1168 /* Simple ICMP IP Header Template */ 1169 static ipha_t icmp_ipha = { 1170 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1171 }; 1172 1173 struct module_info ip_mod_info = { 1174 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1175 IP_MOD_LOWAT 1176 }; 1177 1178 /* 1179 * Duplicate static symbols within a module confuses mdb; so we avoid the 1180 * problem by making the symbols here distinct from those in udp.c. 1181 */ 1182 1183 /* 1184 * Entry points for IP as a device and as a module. 1185 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1186 */ 1187 static struct qinit iprinitv4 = { 1188 ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1189 }; 1190 1191 struct qinit iprinitv6 = { 1192 ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info 1193 }; 1194 1195 static struct qinit ipwinit = { 1196 ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info 1197 }; 1198 1199 static struct qinit iplrinit = { 1200 ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1201 }; 1202 1203 static struct qinit iplwinit = { 1204 ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info 1205 }; 1206 1207 /* For AF_INET aka /dev/ip */ 1208 struct streamtab ipinfov4 = { 1209 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1210 }; 1211 1212 /* For AF_INET6 aka /dev/ip6 */ 1213 struct streamtab ipinfov6 = { 1214 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1215 }; 1216 1217 #ifdef DEBUG 1218 boolean_t skip_sctp_cksum = B_FALSE; 1219 #endif 1220 1221 /* 1222 * Generate an ICMP fragmentation needed message. 1223 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1224 * constructed by the caller. 1225 */ 1226 void 1227 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1228 { 1229 icmph_t icmph; 1230 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1231 1232 mp = icmp_pkt_err_ok(mp, ira); 1233 if (mp == NULL) 1234 return; 1235 1236 bzero(&icmph, sizeof (icmph_t)); 1237 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1238 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1239 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1240 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1241 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1242 1243 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1244 } 1245 1246 /* 1247 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1248 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1249 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1250 * Likewise, if the ICMP error is misformed (too short, etc), then it 1251 * returns NULL. The caller uses this to determine whether or not to send 1252 * to raw sockets. 1253 * 1254 * All error messages are passed to the matching transport stream. 1255 * 1256 * The following cases are handled by icmp_inbound: 1257 * 1) It needs to send a reply back and possibly delivering it 1258 * to the "interested" upper clients. 1259 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1260 * 3) It needs to change some values in IP only. 1261 * 4) It needs to change some values in IP and upper layers e.g TCP 1262 * by delivering an error to the upper layers. 1263 * 1264 * We handle the above three cases in the context of IPsec in the 1265 * following way : 1266 * 1267 * 1) Send the reply back in the same way as the request came in. 1268 * If it came in encrypted, it goes out encrypted. If it came in 1269 * clear, it goes out in clear. Thus, this will prevent chosen 1270 * plain text attack. 1271 * 2) The client may or may not expect things to come in secure. 1272 * If it comes in secure, the policy constraints are checked 1273 * before delivering it to the upper layers. If it comes in 1274 * clear, ipsec_inbound_accept_clear will decide whether to 1275 * accept this in clear or not. In both the cases, if the returned 1276 * message (IP header + 8 bytes) that caused the icmp message has 1277 * AH/ESP headers, it is sent up to AH/ESP for validation before 1278 * sending up. If there are only 8 bytes of returned message, then 1279 * upper client will not be notified. 1280 * 3) Check with global policy to see whether it matches the constaints. 1281 * But this will be done only if icmp_accept_messages_in_clear is 1282 * zero. 1283 * 4) If we need to change both in IP and ULP, then the decision taken 1284 * while affecting the values in IP and while delivering up to TCP 1285 * should be the same. 1286 * 1287 * There are two cases. 1288 * 1289 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1290 * failed), we will not deliver it to the ULP, even though they 1291 * are *willing* to accept in *clear*. This is fine as our global 1292 * disposition to icmp messages asks us reject the datagram. 1293 * 1294 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1295 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1296 * to deliver it to ULP (policy failed), it can lead to 1297 * consistency problems. The cases known at this time are 1298 * ICMP_DESTINATION_UNREACHABLE messages with following code 1299 * values : 1300 * 1301 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1302 * and Upper layer rejects. Then the communication will 1303 * come to a stop. This is solved by making similar decisions 1304 * at both levels. Currently, when we are unable to deliver 1305 * to the Upper Layer (due to policy failures) while IP has 1306 * adjusted dce_pmtu, the next outbound datagram would 1307 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1308 * will be with the right level of protection. Thus the right 1309 * value will be communicated even if we are not able to 1310 * communicate when we get from the wire initially. But this 1311 * assumes there would be at least one outbound datagram after 1312 * IP has adjusted its dce_pmtu value. To make things 1313 * simpler, we accept in clear after the validation of 1314 * AH/ESP headers. 1315 * 1316 * - Other ICMP ERRORS : We may not be able to deliver it to the 1317 * upper layer depending on the level of protection the upper 1318 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1319 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1320 * should be accepted in clear when the Upper layer expects secure. 1321 * Thus the communication may get aborted by some bad ICMP 1322 * packets. 1323 */ 1324 mblk_t * 1325 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1326 { 1327 icmph_t *icmph; 1328 ipha_t *ipha; /* Outer header */ 1329 int ip_hdr_length; /* Outer header length */ 1330 boolean_t interested; 1331 ipif_t *ipif; 1332 uint32_t ts; 1333 uint32_t *tsp; 1334 timestruc_t now; 1335 ill_t *ill = ira->ira_ill; 1336 ip_stack_t *ipst = ill->ill_ipst; 1337 zoneid_t zoneid = ira->ira_zoneid; 1338 int len_needed; 1339 mblk_t *mp_ret = NULL; 1340 1341 ipha = (ipha_t *)mp->b_rptr; 1342 1343 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1344 1345 ip_hdr_length = ira->ira_ip_hdr_length; 1346 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1347 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1348 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1349 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1350 freemsg(mp); 1351 return (NULL); 1352 } 1353 /* Last chance to get real. */ 1354 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1355 if (ipha == NULL) { 1356 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1357 freemsg(mp); 1358 return (NULL); 1359 } 1360 } 1361 1362 /* The IP header will always be a multiple of four bytes */ 1363 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1364 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1365 icmph->icmph_code)); 1366 1367 /* 1368 * We will set "interested" to "true" if we should pass a copy to 1369 * the transport or if we handle the packet locally. 1370 */ 1371 interested = B_FALSE; 1372 switch (icmph->icmph_type) { 1373 case ICMP_ECHO_REPLY: 1374 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1375 break; 1376 case ICMP_DEST_UNREACHABLE: 1377 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1378 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1379 interested = B_TRUE; /* Pass up to transport */ 1380 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1381 break; 1382 case ICMP_SOURCE_QUENCH: 1383 interested = B_TRUE; /* Pass up to transport */ 1384 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1385 break; 1386 case ICMP_REDIRECT: 1387 if (!ipst->ips_ip_ignore_redirect) 1388 interested = B_TRUE; 1389 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1390 break; 1391 case ICMP_ECHO_REQUEST: 1392 /* 1393 * Whether to respond to echo requests that come in as IP 1394 * broadcasts or as IP multicast is subject to debate 1395 * (what isn't?). We aim to please, you pick it. 1396 * Default is do it. 1397 */ 1398 if (ira->ira_flags & IRAF_MULTICAST) { 1399 /* multicast: respond based on tunable */ 1400 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1401 } else if (ira->ira_flags & IRAF_BROADCAST) { 1402 /* broadcast: respond based on tunable */ 1403 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1404 } else { 1405 /* unicast: always respond */ 1406 interested = B_TRUE; 1407 } 1408 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1409 if (!interested) { 1410 /* We never pass these to RAW sockets */ 1411 freemsg(mp); 1412 return (NULL); 1413 } 1414 1415 /* Check db_ref to make sure we can modify the packet. */ 1416 if (mp->b_datap->db_ref > 1) { 1417 mblk_t *mp1; 1418 1419 mp1 = copymsg(mp); 1420 freemsg(mp); 1421 if (!mp1) { 1422 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1423 return (NULL); 1424 } 1425 mp = mp1; 1426 ipha = (ipha_t *)mp->b_rptr; 1427 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1428 } 1429 icmph->icmph_type = ICMP_ECHO_REPLY; 1430 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1431 icmp_send_reply_v4(mp, ipha, icmph, ira); 1432 return (NULL); 1433 1434 case ICMP_ROUTER_ADVERTISEMENT: 1435 case ICMP_ROUTER_SOLICITATION: 1436 break; 1437 case ICMP_TIME_EXCEEDED: 1438 interested = B_TRUE; /* Pass up to transport */ 1439 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1440 break; 1441 case ICMP_PARAM_PROBLEM: 1442 interested = B_TRUE; /* Pass up to transport */ 1443 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1444 break; 1445 case ICMP_TIME_STAMP_REQUEST: 1446 /* Response to Time Stamp Requests is local policy. */ 1447 if (ipst->ips_ip_g_resp_to_timestamp) { 1448 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1449 interested = 1450 ipst->ips_ip_g_resp_to_timestamp_bcast; 1451 else 1452 interested = B_TRUE; 1453 } 1454 if (!interested) { 1455 /* We never pass these to RAW sockets */ 1456 freemsg(mp); 1457 return (NULL); 1458 } 1459 1460 /* Make sure we have enough of the packet */ 1461 len_needed = ip_hdr_length + ICMPH_SIZE + 1462 3 * sizeof (uint32_t); 1463 1464 if (mp->b_wptr - mp->b_rptr < len_needed) { 1465 ipha = ip_pullup(mp, len_needed, ira); 1466 if (ipha == NULL) { 1467 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1468 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1469 mp, ill); 1470 freemsg(mp); 1471 return (NULL); 1472 } 1473 /* Refresh following the pullup. */ 1474 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1475 } 1476 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1477 /* Check db_ref to make sure we can modify the packet. */ 1478 if (mp->b_datap->db_ref > 1) { 1479 mblk_t *mp1; 1480 1481 mp1 = copymsg(mp); 1482 freemsg(mp); 1483 if (!mp1) { 1484 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1485 return (NULL); 1486 } 1487 mp = mp1; 1488 ipha = (ipha_t *)mp->b_rptr; 1489 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1490 } 1491 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1492 tsp = (uint32_t *)&icmph[1]; 1493 tsp++; /* Skip past 'originate time' */ 1494 /* Compute # of milliseconds since midnight */ 1495 gethrestime(&now); 1496 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1497 NSEC2MSEC(now.tv_nsec); 1498 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1499 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1500 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1501 icmp_send_reply_v4(mp, ipha, icmph, ira); 1502 return (NULL); 1503 1504 case ICMP_TIME_STAMP_REPLY: 1505 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1506 break; 1507 case ICMP_INFO_REQUEST: 1508 /* Per RFC 1122 3.2.2.7, ignore this. */ 1509 case ICMP_INFO_REPLY: 1510 break; 1511 case ICMP_ADDRESS_MASK_REQUEST: 1512 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1513 interested = 1514 ipst->ips_ip_respond_to_address_mask_broadcast; 1515 } else { 1516 interested = B_TRUE; 1517 } 1518 if (!interested) { 1519 /* We never pass these to RAW sockets */ 1520 freemsg(mp); 1521 return (NULL); 1522 } 1523 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1524 if (mp->b_wptr - mp->b_rptr < len_needed) { 1525 ipha = ip_pullup(mp, len_needed, ira); 1526 if (ipha == NULL) { 1527 BUMP_MIB(ill->ill_ip_mib, 1528 ipIfStatsInTruncatedPkts); 1529 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1530 ill); 1531 freemsg(mp); 1532 return (NULL); 1533 } 1534 /* Refresh following the pullup. */ 1535 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1536 } 1537 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1538 /* Check db_ref to make sure we can modify the packet. */ 1539 if (mp->b_datap->db_ref > 1) { 1540 mblk_t *mp1; 1541 1542 mp1 = copymsg(mp); 1543 freemsg(mp); 1544 if (!mp1) { 1545 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1546 return (NULL); 1547 } 1548 mp = mp1; 1549 ipha = (ipha_t *)mp->b_rptr; 1550 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1551 } 1552 /* 1553 * Need the ipif with the mask be the same as the source 1554 * address of the mask reply. For unicast we have a specific 1555 * ipif. For multicast/broadcast we only handle onlink 1556 * senders, and use the source address to pick an ipif. 1557 */ 1558 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1559 if (ipif == NULL) { 1560 /* Broadcast or multicast */ 1561 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1562 if (ipif == NULL) { 1563 freemsg(mp); 1564 return (NULL); 1565 } 1566 } 1567 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1568 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1569 ipif_refrele(ipif); 1570 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1571 icmp_send_reply_v4(mp, ipha, icmph, ira); 1572 return (NULL); 1573 1574 case ICMP_ADDRESS_MASK_REPLY: 1575 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1576 break; 1577 default: 1578 interested = B_TRUE; /* Pass up to transport */ 1579 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1580 break; 1581 } 1582 /* 1583 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1584 * if there isn't one. 1585 */ 1586 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1587 /* If there is an ICMP client and we want one too, copy it. */ 1588 1589 if (!interested) { 1590 /* Caller will deliver to RAW sockets */ 1591 return (mp); 1592 } 1593 mp_ret = copymsg(mp); 1594 if (mp_ret == NULL) { 1595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1596 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1597 } 1598 } else if (!interested) { 1599 /* Neither we nor raw sockets are interested. Drop packet now */ 1600 freemsg(mp); 1601 return (NULL); 1602 } 1603 1604 /* 1605 * ICMP error or redirect packet. Make sure we have enough of 1606 * the header and that db_ref == 1 since we might end up modifying 1607 * the packet. 1608 */ 1609 if (mp->b_cont != NULL) { 1610 if (ip_pullup(mp, -1, ira) == NULL) { 1611 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1612 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1613 mp, ill); 1614 freemsg(mp); 1615 return (mp_ret); 1616 } 1617 } 1618 1619 if (mp->b_datap->db_ref > 1) { 1620 mblk_t *mp1; 1621 1622 mp1 = copymsg(mp); 1623 if (mp1 == NULL) { 1624 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1625 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1626 freemsg(mp); 1627 return (mp_ret); 1628 } 1629 freemsg(mp); 1630 mp = mp1; 1631 } 1632 1633 /* 1634 * In case mp has changed, verify the message before any further 1635 * processes. 1636 */ 1637 ipha = (ipha_t *)mp->b_rptr; 1638 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1639 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1640 freemsg(mp); 1641 return (mp_ret); 1642 } 1643 1644 switch (icmph->icmph_type) { 1645 case ICMP_REDIRECT: 1646 icmp_redirect_v4(mp, ipha, icmph, ira); 1647 break; 1648 case ICMP_DEST_UNREACHABLE: 1649 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1650 /* Update DCE and adjust MTU is icmp header if needed */ 1651 icmp_inbound_too_big_v4(icmph, ira); 1652 } 1653 /* FALLTHROUGH */ 1654 default: 1655 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1656 break; 1657 } 1658 return (mp_ret); 1659 } 1660 1661 /* 1662 * Send an ICMP echo, timestamp or address mask reply. 1663 * The caller has already updated the payload part of the packet. 1664 * We handle the ICMP checksum, IP source address selection and feed 1665 * the packet into ip_output_simple. 1666 */ 1667 static void 1668 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1669 ip_recv_attr_t *ira) 1670 { 1671 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1672 ill_t *ill = ira->ira_ill; 1673 ip_stack_t *ipst = ill->ill_ipst; 1674 ip_xmit_attr_t ixas; 1675 1676 /* Send out an ICMP packet */ 1677 icmph->icmph_checksum = 0; 1678 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1679 /* Reset time to live. */ 1680 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1681 { 1682 /* Swap source and destination addresses */ 1683 ipaddr_t tmp; 1684 1685 tmp = ipha->ipha_src; 1686 ipha->ipha_src = ipha->ipha_dst; 1687 ipha->ipha_dst = tmp; 1688 } 1689 ipha->ipha_ident = 0; 1690 if (!IS_SIMPLE_IPH(ipha)) 1691 icmp_options_update(ipha); 1692 1693 bzero(&ixas, sizeof (ixas)); 1694 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1695 ixas.ixa_zoneid = ira->ira_zoneid; 1696 ixas.ixa_cred = kcred; 1697 ixas.ixa_cpid = NOPID; 1698 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1699 ixas.ixa_ifindex = 0; 1700 ixas.ixa_ipst = ipst; 1701 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1702 1703 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1704 /* 1705 * This packet should go out the same way as it 1706 * came in i.e in clear, independent of the IPsec policy 1707 * for transmitting packets. 1708 */ 1709 ixas.ixa_flags |= IXAF_NO_IPSEC; 1710 } else { 1711 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1712 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1713 /* Note: mp already consumed and ip_drop_packet done */ 1714 return; 1715 } 1716 } 1717 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1718 /* 1719 * Not one or our addresses (IRE_LOCALs), thus we let 1720 * ip_output_simple pick the source. 1721 */ 1722 ipha->ipha_src = INADDR_ANY; 1723 ixas.ixa_flags |= IXAF_SET_SOURCE; 1724 } 1725 /* Should we send with DF and use dce_pmtu? */ 1726 if (ipst->ips_ipv4_icmp_return_pmtu) { 1727 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1728 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1729 } 1730 1731 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1732 1733 (void) ip_output_simple(mp, &ixas); 1734 ixa_cleanup(&ixas); 1735 } 1736 1737 /* 1738 * Verify the ICMP messages for either for ICMP error or redirect packet. 1739 * The caller should have fully pulled up the message. If it's a redirect 1740 * packet, only basic checks on IP header will be done; otherwise, verify 1741 * the packet by looking at the included ULP header. 1742 * 1743 * Called before icmp_inbound_error_fanout_v4 is called. 1744 */ 1745 static boolean_t 1746 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1747 { 1748 ill_t *ill = ira->ira_ill; 1749 int hdr_length; 1750 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1751 conn_t *connp; 1752 ipha_t *ipha; /* Inner IP header */ 1753 1754 ipha = (ipha_t *)&icmph[1]; 1755 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1756 goto truncated; 1757 1758 hdr_length = IPH_HDR_LENGTH(ipha); 1759 1760 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1761 goto discard_pkt; 1762 1763 if (hdr_length < sizeof (ipha_t)) 1764 goto truncated; 1765 1766 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1767 goto truncated; 1768 1769 /* 1770 * Stop here for ICMP_REDIRECT. 1771 */ 1772 if (icmph->icmph_type == ICMP_REDIRECT) 1773 return (B_TRUE); 1774 1775 /* 1776 * ICMP errors only. 1777 */ 1778 switch (ipha->ipha_protocol) { 1779 case IPPROTO_UDP: 1780 /* 1781 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1782 * transport header. 1783 */ 1784 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1785 mp->b_wptr) 1786 goto truncated; 1787 break; 1788 case IPPROTO_TCP: { 1789 tcpha_t *tcpha; 1790 1791 /* 1792 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1793 * transport header. 1794 */ 1795 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1796 mp->b_wptr) 1797 goto truncated; 1798 1799 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1800 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1801 ipst); 1802 if (connp == NULL) 1803 goto discard_pkt; 1804 1805 if ((connp->conn_verifyicmp != NULL) && 1806 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1807 CONN_DEC_REF(connp); 1808 goto discard_pkt; 1809 } 1810 CONN_DEC_REF(connp); 1811 break; 1812 } 1813 case IPPROTO_SCTP: 1814 /* 1815 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1816 * transport header. 1817 */ 1818 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1819 mp->b_wptr) 1820 goto truncated; 1821 break; 1822 case IPPROTO_ESP: 1823 case IPPROTO_AH: 1824 break; 1825 case IPPROTO_ENCAP: 1826 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1827 mp->b_wptr) 1828 goto truncated; 1829 break; 1830 default: 1831 break; 1832 } 1833 1834 return (B_TRUE); 1835 1836 discard_pkt: 1837 /* Bogus ICMP error. */ 1838 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1839 return (B_FALSE); 1840 1841 truncated: 1842 /* We pulled up everthing already. Must be truncated */ 1843 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1844 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1845 return (B_FALSE); 1846 } 1847 1848 /* Table from RFC 1191 */ 1849 static int icmp_frag_size_table[] = 1850 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1851 1852 /* 1853 * Process received ICMP Packet too big. 1854 * Just handles the DCE create/update, including using the above table of 1855 * PMTU guesses. The caller is responsible for validating the packet before 1856 * passing it in and also to fanout the ICMP error to any matching transport 1857 * conns. Assumes the message has been fully pulled up and verified. 1858 * 1859 * Before getting here, the caller has called icmp_inbound_verify_v4() 1860 * that should have verified with ULP to prevent undoing the changes we're 1861 * going to make to DCE. For example, TCP might have verified that the packet 1862 * which generated error is in the send window. 1863 * 1864 * In some cases modified this MTU in the ICMP header packet; the caller 1865 * should pass to the matching ULP after this returns. 1866 */ 1867 static void 1868 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1869 { 1870 dce_t *dce; 1871 int old_mtu; 1872 int mtu, orig_mtu; 1873 ipaddr_t dst; 1874 boolean_t disable_pmtud; 1875 ill_t *ill = ira->ira_ill; 1876 ip_stack_t *ipst = ill->ill_ipst; 1877 uint_t hdr_length; 1878 ipha_t *ipha; 1879 1880 /* Caller already pulled up everything. */ 1881 ipha = (ipha_t *)&icmph[1]; 1882 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1883 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1884 ASSERT(ill != NULL); 1885 1886 hdr_length = IPH_HDR_LENGTH(ipha); 1887 1888 /* 1889 * We handle path MTU for source routed packets since the DCE 1890 * is looked up using the final destination. 1891 */ 1892 dst = ip_get_dst(ipha); 1893 1894 dce = dce_lookup_and_add_v4(dst, ipst); 1895 if (dce == NULL) { 1896 /* Couldn't add a unique one - ENOMEM */ 1897 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1898 ntohl(dst))); 1899 return; 1900 } 1901 1902 /* Check for MTU discovery advice as described in RFC 1191 */ 1903 mtu = ntohs(icmph->icmph_du_mtu); 1904 orig_mtu = mtu; 1905 disable_pmtud = B_FALSE; 1906 1907 mutex_enter(&dce->dce_lock); 1908 if (dce->dce_flags & DCEF_PMTU) 1909 old_mtu = dce->dce_pmtu; 1910 else 1911 old_mtu = ill->ill_mtu; 1912 1913 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1914 uint32_t length; 1915 int i; 1916 1917 /* 1918 * Use the table from RFC 1191 to figure out 1919 * the next "plateau" based on the length in 1920 * the original IP packet. 1921 */ 1922 length = ntohs(ipha->ipha_length); 1923 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1924 uint32_t, length); 1925 if (old_mtu <= length && 1926 old_mtu >= length - hdr_length) { 1927 /* 1928 * Handle broken BSD 4.2 systems that 1929 * return the wrong ipha_length in ICMP 1930 * errors. 1931 */ 1932 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1933 length, old_mtu)); 1934 length -= hdr_length; 1935 } 1936 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1937 if (length > icmp_frag_size_table[i]) 1938 break; 1939 } 1940 if (i == A_CNT(icmp_frag_size_table)) { 1941 /* Smaller than IP_MIN_MTU! */ 1942 ip1dbg(("Too big for packet size %d\n", 1943 length)); 1944 disable_pmtud = B_TRUE; 1945 mtu = ipst->ips_ip_pmtu_min; 1946 } else { 1947 mtu = icmp_frag_size_table[i]; 1948 ip1dbg(("Calculated mtu %d, packet size %d, " 1949 "before %d\n", mtu, length, old_mtu)); 1950 if (mtu < ipst->ips_ip_pmtu_min) { 1951 mtu = ipst->ips_ip_pmtu_min; 1952 disable_pmtud = B_TRUE; 1953 } 1954 } 1955 } 1956 if (disable_pmtud) 1957 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1958 else 1959 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1960 1961 dce->dce_pmtu = MIN(old_mtu, mtu); 1962 /* Prepare to send the new max frag size for the ULP. */ 1963 icmph->icmph_du_zero = 0; 1964 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1965 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1966 dce, int, orig_mtu, int, mtu); 1967 1968 /* We now have a PMTU for sure */ 1969 dce->dce_flags |= DCEF_PMTU; 1970 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1971 mutex_exit(&dce->dce_lock); 1972 /* 1973 * After dropping the lock the new value is visible to everyone. 1974 * Then we bump the generation number so any cached values reinspect 1975 * the dce_t. 1976 */ 1977 dce_increment_generation(dce); 1978 dce_refrele(dce); 1979 } 1980 1981 /* 1982 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1983 * calls this function. 1984 */ 1985 static mblk_t * 1986 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1987 { 1988 int length; 1989 1990 ASSERT(mp->b_datap->db_type == M_DATA); 1991 1992 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1993 ASSERT(mp->b_cont == NULL); 1994 1995 /* 1996 * The length that we want to overlay is the inner header 1997 * and what follows it. 1998 */ 1999 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2000 2001 /* 2002 * Overlay the inner header and whatever follows it over the 2003 * outer header. 2004 */ 2005 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2006 2007 /* Adjust for what we removed */ 2008 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2009 return (mp); 2010 } 2011 2012 /* 2013 * Try to pass the ICMP message upstream in case the ULP cares. 2014 * 2015 * If the packet that caused the ICMP error is secure, we send 2016 * it to AH/ESP to make sure that the attached packet has a 2017 * valid association. ipha in the code below points to the 2018 * IP header of the packet that caused the error. 2019 * 2020 * For IPsec cases, we let the next-layer-up (which has access to 2021 * cached policy on the conn_t, or can query the SPD directly) 2022 * subtract out any IPsec overhead if they must. We therefore make no 2023 * adjustments here for IPsec overhead. 2024 * 2025 * IFN could have been generated locally or by some router. 2026 * 2027 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2028 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2029 * This happens because IP adjusted its value of MTU on an 2030 * earlier IFN message and could not tell the upper layer, 2031 * the new adjusted value of MTU e.g. Packet was encrypted 2032 * or there was not enough information to fanout to upper 2033 * layers. Thus on the next outbound datagram, ire_send_wire 2034 * generates the IFN, where IPsec processing has *not* been 2035 * done. 2036 * 2037 * Note that we retain ixa_fragsize across IPsec thus once 2038 * we have picking ixa_fragsize and entered ipsec_out_process we do 2039 * no change the fragsize even if the path MTU changes before 2040 * we reach ip_output_post_ipsec. 2041 * 2042 * In the local case, IRAF_LOOPBACK will be set indicating 2043 * that IFN was generated locally. 2044 * 2045 * ROUTER : IFN could be secure or non-secure. 2046 * 2047 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2048 * packet in error has AH/ESP headers to validate the AH/ESP 2049 * headers. AH/ESP will verify whether there is a valid SA or 2050 * not and send it back. We will fanout again if we have more 2051 * data in the packet. 2052 * 2053 * If the packet in error does not have AH/ESP, we handle it 2054 * like any other case. 2055 * 2056 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2057 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2058 * valid SA or not and send it back. We will fanout again if 2059 * we have more data in the packet. 2060 * 2061 * If the packet in error does not have AH/ESP, we handle it 2062 * like any other case. 2063 * 2064 * The caller must have called icmp_inbound_verify_v4. 2065 */ 2066 static void 2067 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2068 { 2069 uint16_t *up; /* Pointer to ports in ULP header */ 2070 uint32_t ports; /* reversed ports for fanout */ 2071 ipha_t ripha; /* With reversed addresses */ 2072 ipha_t *ipha; /* Inner IP header */ 2073 uint_t hdr_length; /* Inner IP header length */ 2074 tcpha_t *tcpha; 2075 conn_t *connp; 2076 ill_t *ill = ira->ira_ill; 2077 ip_stack_t *ipst = ill->ill_ipst; 2078 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2079 ill_t *rill = ira->ira_rill; 2080 2081 /* Caller already pulled up everything. */ 2082 ipha = (ipha_t *)&icmph[1]; 2083 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2084 ASSERT(mp->b_cont == NULL); 2085 2086 hdr_length = IPH_HDR_LENGTH(ipha); 2087 ira->ira_protocol = ipha->ipha_protocol; 2088 2089 /* 2090 * We need a separate IP header with the source and destination 2091 * addresses reversed to do fanout/classification because the ipha in 2092 * the ICMP error is in the form we sent it out. 2093 */ 2094 ripha.ipha_src = ipha->ipha_dst; 2095 ripha.ipha_dst = ipha->ipha_src; 2096 ripha.ipha_protocol = ipha->ipha_protocol; 2097 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2098 2099 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2100 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2101 ntohl(ipha->ipha_dst), 2102 icmph->icmph_type, icmph->icmph_code)); 2103 2104 switch (ipha->ipha_protocol) { 2105 case IPPROTO_UDP: 2106 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2107 2108 /* Attempt to find a client stream based on port. */ 2109 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2110 ntohs(up[0]), ntohs(up[1]))); 2111 2112 /* Note that we send error to all matches. */ 2113 ira->ira_flags |= IRAF_ICMP_ERROR; 2114 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2115 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2116 return; 2117 2118 case IPPROTO_TCP: 2119 /* 2120 * Find a TCP client stream for this packet. 2121 * Note that we do a reverse lookup since the header is 2122 * in the form we sent it out. 2123 */ 2124 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2125 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2126 ipst); 2127 if (connp == NULL) 2128 goto discard_pkt; 2129 2130 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2131 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2132 mp = ipsec_check_inbound_policy(mp, connp, 2133 ipha, NULL, ira); 2134 if (mp == NULL) { 2135 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2136 /* Note that mp is NULL */ 2137 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2138 CONN_DEC_REF(connp); 2139 return; 2140 } 2141 } 2142 2143 ira->ira_flags |= IRAF_ICMP_ERROR; 2144 ira->ira_ill = ira->ira_rill = NULL; 2145 if (IPCL_IS_TCP(connp)) { 2146 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2147 connp->conn_recvicmp, connp, ira, SQ_FILL, 2148 SQTAG_TCP_INPUT_ICMP_ERR); 2149 } else { 2150 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2151 (connp->conn_recv)(connp, mp, NULL, ira); 2152 CONN_DEC_REF(connp); 2153 } 2154 ira->ira_ill = ill; 2155 ira->ira_rill = rill; 2156 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2157 return; 2158 2159 case IPPROTO_SCTP: 2160 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2161 /* Find a SCTP client stream for this packet. */ 2162 ((uint16_t *)&ports)[0] = up[1]; 2163 ((uint16_t *)&ports)[1] = up[0]; 2164 2165 ira->ira_flags |= IRAF_ICMP_ERROR; 2166 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2167 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2168 return; 2169 2170 case IPPROTO_ESP: 2171 case IPPROTO_AH: 2172 if (!ipsec_loaded(ipss)) { 2173 ip_proto_not_sup(mp, ira); 2174 return; 2175 } 2176 2177 if (ipha->ipha_protocol == IPPROTO_ESP) 2178 mp = ipsecesp_icmp_error(mp, ira); 2179 else 2180 mp = ipsecah_icmp_error(mp, ira); 2181 if (mp == NULL) 2182 return; 2183 2184 /* Just in case ipsec didn't preserve the NULL b_cont */ 2185 if (mp->b_cont != NULL) { 2186 if (!pullupmsg(mp, -1)) 2187 goto discard_pkt; 2188 } 2189 2190 /* 2191 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2192 * correct, but we don't use them any more here. 2193 * 2194 * If succesful, the mp has been modified to not include 2195 * the ESP/AH header so we can fanout to the ULP's icmp 2196 * error handler. 2197 */ 2198 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2199 goto truncated; 2200 2201 /* Verify the modified message before any further processes. */ 2202 ipha = (ipha_t *)mp->b_rptr; 2203 hdr_length = IPH_HDR_LENGTH(ipha); 2204 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2205 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2206 freemsg(mp); 2207 return; 2208 } 2209 2210 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2211 return; 2212 2213 case IPPROTO_ENCAP: { 2214 /* Look for self-encapsulated packets that caused an error */ 2215 ipha_t *in_ipha; 2216 2217 /* 2218 * Caller has verified that length has to be 2219 * at least the size of IP header. 2220 */ 2221 ASSERT(hdr_length >= sizeof (ipha_t)); 2222 /* 2223 * Check the sanity of the inner IP header like 2224 * we did for the outer header. 2225 */ 2226 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2227 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2228 goto discard_pkt; 2229 } 2230 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2231 goto discard_pkt; 2232 } 2233 /* Check for Self-encapsulated tunnels */ 2234 if (in_ipha->ipha_src == ipha->ipha_src && 2235 in_ipha->ipha_dst == ipha->ipha_dst) { 2236 2237 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2238 in_ipha); 2239 if (mp == NULL) 2240 goto discard_pkt; 2241 2242 /* 2243 * Just in case self_encap didn't preserve the NULL 2244 * b_cont 2245 */ 2246 if (mp->b_cont != NULL) { 2247 if (!pullupmsg(mp, -1)) 2248 goto discard_pkt; 2249 } 2250 /* 2251 * Note that ira_pktlen and ira_ip_hdr_length are no 2252 * longer correct, but we don't use them any more here. 2253 */ 2254 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2255 goto truncated; 2256 2257 /* 2258 * Verify the modified message before any further 2259 * processes. 2260 */ 2261 ipha = (ipha_t *)mp->b_rptr; 2262 hdr_length = IPH_HDR_LENGTH(ipha); 2263 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2264 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2265 freemsg(mp); 2266 return; 2267 } 2268 2269 /* 2270 * The packet in error is self-encapsualted. 2271 * And we are finding it further encapsulated 2272 * which we could not have possibly generated. 2273 */ 2274 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2275 goto discard_pkt; 2276 } 2277 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2278 return; 2279 } 2280 /* No self-encapsulated */ 2281 } 2282 /* FALLTHROUGH */ 2283 case IPPROTO_IPV6: 2284 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2285 &ripha.ipha_dst, ipst)) != NULL) { 2286 ira->ira_flags |= IRAF_ICMP_ERROR; 2287 connp->conn_recvicmp(connp, mp, NULL, ira); 2288 CONN_DEC_REF(connp); 2289 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2290 return; 2291 } 2292 /* 2293 * No IP tunnel is interested, fallthrough and see 2294 * if a raw socket will want it. 2295 */ 2296 /* FALLTHROUGH */ 2297 default: 2298 ira->ira_flags |= IRAF_ICMP_ERROR; 2299 ip_fanout_proto_v4(mp, &ripha, ira); 2300 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2301 return; 2302 } 2303 /* NOTREACHED */ 2304 discard_pkt: 2305 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2306 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2307 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2308 freemsg(mp); 2309 return; 2310 2311 truncated: 2312 /* We pulled up everthing already. Must be truncated */ 2313 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2314 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2315 freemsg(mp); 2316 } 2317 2318 /* 2319 * Common IP options parser. 2320 * 2321 * Setup routine: fill in *optp with options-parsing state, then 2322 * tail-call ipoptp_next to return the first option. 2323 */ 2324 uint8_t 2325 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2326 { 2327 uint32_t totallen; /* total length of all options */ 2328 2329 totallen = ipha->ipha_version_and_hdr_length - 2330 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2331 totallen <<= 2; 2332 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2333 optp->ipoptp_end = optp->ipoptp_next + totallen; 2334 optp->ipoptp_flags = 0; 2335 return (ipoptp_next(optp)); 2336 } 2337 2338 /* Like above but without an ipha_t */ 2339 uint8_t 2340 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2341 { 2342 optp->ipoptp_next = opt; 2343 optp->ipoptp_end = optp->ipoptp_next + totallen; 2344 optp->ipoptp_flags = 0; 2345 return (ipoptp_next(optp)); 2346 } 2347 2348 /* 2349 * Common IP options parser: extract next option. 2350 */ 2351 uint8_t 2352 ipoptp_next(ipoptp_t *optp) 2353 { 2354 uint8_t *end = optp->ipoptp_end; 2355 uint8_t *cur = optp->ipoptp_next; 2356 uint8_t opt, len, pointer; 2357 2358 /* 2359 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2360 * has been corrupted. 2361 */ 2362 ASSERT(cur <= end); 2363 2364 if (cur == end) 2365 return (IPOPT_EOL); 2366 2367 opt = cur[IPOPT_OPTVAL]; 2368 2369 /* 2370 * Skip any NOP options. 2371 */ 2372 while (opt == IPOPT_NOP) { 2373 cur++; 2374 if (cur == end) 2375 return (IPOPT_EOL); 2376 opt = cur[IPOPT_OPTVAL]; 2377 } 2378 2379 if (opt == IPOPT_EOL) 2380 return (IPOPT_EOL); 2381 2382 /* 2383 * Option requiring a length. 2384 */ 2385 if ((cur + 1) >= end) { 2386 optp->ipoptp_flags |= IPOPTP_ERROR; 2387 return (IPOPT_EOL); 2388 } 2389 len = cur[IPOPT_OLEN]; 2390 if (len < 2) { 2391 optp->ipoptp_flags |= IPOPTP_ERROR; 2392 return (IPOPT_EOL); 2393 } 2394 optp->ipoptp_cur = cur; 2395 optp->ipoptp_len = len; 2396 optp->ipoptp_next = cur + len; 2397 if (cur + len > end) { 2398 optp->ipoptp_flags |= IPOPTP_ERROR; 2399 return (IPOPT_EOL); 2400 } 2401 2402 /* 2403 * For the options which require a pointer field, make sure 2404 * its there, and make sure it points to either something 2405 * inside this option, or the end of the option. 2406 */ 2407 switch (opt) { 2408 case IPOPT_RR: 2409 case IPOPT_TS: 2410 case IPOPT_LSRR: 2411 case IPOPT_SSRR: 2412 if (len <= IPOPT_OFFSET) { 2413 optp->ipoptp_flags |= IPOPTP_ERROR; 2414 return (opt); 2415 } 2416 pointer = cur[IPOPT_OFFSET]; 2417 if (pointer - 1 > len) { 2418 optp->ipoptp_flags |= IPOPTP_ERROR; 2419 return (opt); 2420 } 2421 break; 2422 } 2423 2424 /* 2425 * Sanity check the pointer field based on the type of the 2426 * option. 2427 */ 2428 switch (opt) { 2429 case IPOPT_RR: 2430 case IPOPT_SSRR: 2431 case IPOPT_LSRR: 2432 if (pointer < IPOPT_MINOFF_SR) 2433 optp->ipoptp_flags |= IPOPTP_ERROR; 2434 break; 2435 case IPOPT_TS: 2436 if (pointer < IPOPT_MINOFF_IT) 2437 optp->ipoptp_flags |= IPOPTP_ERROR; 2438 /* 2439 * Note that the Internet Timestamp option also 2440 * contains two four bit fields (the Overflow field, 2441 * and the Flag field), which follow the pointer 2442 * field. We don't need to check that these fields 2443 * fall within the length of the option because this 2444 * was implicitely done above. We've checked that the 2445 * pointer value is at least IPOPT_MINOFF_IT, and that 2446 * it falls within the option. Since IPOPT_MINOFF_IT > 2447 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2448 */ 2449 ASSERT(len > IPOPT_POS_OV_FLG); 2450 break; 2451 } 2452 2453 return (opt); 2454 } 2455 2456 /* 2457 * Use the outgoing IP header to create an IP_OPTIONS option the way 2458 * it was passed down from the application. 2459 * 2460 * This is compatible with BSD in that it returns 2461 * the reverse source route with the final destination 2462 * as the last entry. The first 4 bytes of the option 2463 * will contain the final destination. 2464 */ 2465 int 2466 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2467 { 2468 ipoptp_t opts; 2469 uchar_t *opt; 2470 uint8_t optval; 2471 uint8_t optlen; 2472 uint32_t len = 0; 2473 uchar_t *buf1 = buf; 2474 uint32_t totallen; 2475 ipaddr_t dst; 2476 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2477 2478 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2479 return (0); 2480 2481 totallen = ipp->ipp_ipv4_options_len; 2482 if (totallen & 0x3) 2483 return (0); 2484 2485 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2486 len += IP_ADDR_LEN; 2487 bzero(buf1, IP_ADDR_LEN); 2488 2489 dst = connp->conn_faddr_v4; 2490 2491 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2492 optval != IPOPT_EOL; 2493 optval = ipoptp_next(&opts)) { 2494 int off; 2495 2496 opt = opts.ipoptp_cur; 2497 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2498 break; 2499 } 2500 optlen = opts.ipoptp_len; 2501 2502 switch (optval) { 2503 case IPOPT_SSRR: 2504 case IPOPT_LSRR: 2505 2506 /* 2507 * Insert destination as the first entry in the source 2508 * route and move down the entries on step. 2509 * The last entry gets placed at buf1. 2510 */ 2511 buf[IPOPT_OPTVAL] = optval; 2512 buf[IPOPT_OLEN] = optlen; 2513 buf[IPOPT_OFFSET] = optlen; 2514 2515 off = optlen - IP_ADDR_LEN; 2516 if (off < 0) { 2517 /* No entries in source route */ 2518 break; 2519 } 2520 /* Last entry in source route if not already set */ 2521 if (dst == INADDR_ANY) 2522 bcopy(opt + off, buf1, IP_ADDR_LEN); 2523 off -= IP_ADDR_LEN; 2524 2525 while (off > 0) { 2526 bcopy(opt + off, 2527 buf + off + IP_ADDR_LEN, 2528 IP_ADDR_LEN); 2529 off -= IP_ADDR_LEN; 2530 } 2531 /* ipha_dst into first slot */ 2532 bcopy(&dst, buf + off + IP_ADDR_LEN, 2533 IP_ADDR_LEN); 2534 buf += optlen; 2535 len += optlen; 2536 break; 2537 2538 default: 2539 bcopy(opt, buf, optlen); 2540 buf += optlen; 2541 len += optlen; 2542 break; 2543 } 2544 } 2545 done: 2546 /* Pad the resulting options */ 2547 while (len & 0x3) { 2548 *buf++ = IPOPT_EOL; 2549 len++; 2550 } 2551 return (len); 2552 } 2553 2554 /* 2555 * Update any record route or timestamp options to include this host. 2556 * Reverse any source route option. 2557 * This routine assumes that the options are well formed i.e. that they 2558 * have already been checked. 2559 */ 2560 static void 2561 icmp_options_update(ipha_t *ipha) 2562 { 2563 ipoptp_t opts; 2564 uchar_t *opt; 2565 uint8_t optval; 2566 ipaddr_t src; /* Our local address */ 2567 ipaddr_t dst; 2568 2569 ip2dbg(("icmp_options_update\n")); 2570 src = ipha->ipha_src; 2571 dst = ipha->ipha_dst; 2572 2573 for (optval = ipoptp_first(&opts, ipha); 2574 optval != IPOPT_EOL; 2575 optval = ipoptp_next(&opts)) { 2576 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2577 opt = opts.ipoptp_cur; 2578 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2579 optval, opts.ipoptp_len)); 2580 switch (optval) { 2581 int off1, off2; 2582 case IPOPT_SSRR: 2583 case IPOPT_LSRR: 2584 /* 2585 * Reverse the source route. The first entry 2586 * should be the next to last one in the current 2587 * source route (the last entry is our address). 2588 * The last entry should be the final destination. 2589 */ 2590 off1 = IPOPT_MINOFF_SR - 1; 2591 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2592 if (off2 < 0) { 2593 /* No entries in source route */ 2594 ip1dbg(( 2595 "icmp_options_update: bad src route\n")); 2596 break; 2597 } 2598 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2599 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2600 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2601 off2 -= IP_ADDR_LEN; 2602 2603 while (off1 < off2) { 2604 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2605 bcopy((char *)opt + off2, (char *)opt + off1, 2606 IP_ADDR_LEN); 2607 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2608 off1 += IP_ADDR_LEN; 2609 off2 -= IP_ADDR_LEN; 2610 } 2611 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2612 break; 2613 } 2614 } 2615 } 2616 2617 /* 2618 * Process received ICMP Redirect messages. 2619 * Assumes the caller has verified that the headers are in the pulled up mblk. 2620 * Consumes mp. 2621 */ 2622 static void 2623 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2624 { 2625 ire_t *ire, *nire; 2626 ire_t *prev_ire; 2627 ipaddr_t src, dst, gateway; 2628 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2629 ipha_t *inner_ipha; /* Inner IP header */ 2630 2631 /* Caller already pulled up everything. */ 2632 inner_ipha = (ipha_t *)&icmph[1]; 2633 src = ipha->ipha_src; 2634 dst = inner_ipha->ipha_dst; 2635 gateway = icmph->icmph_rd_gateway; 2636 /* Make sure the new gateway is reachable somehow. */ 2637 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2638 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2639 /* 2640 * Make sure we had a route for the dest in question and that 2641 * that route was pointing to the old gateway (the source of the 2642 * redirect packet.) 2643 * We do longest match and then compare ire_gateway_addr below. 2644 */ 2645 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2646 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2647 /* 2648 * Check that 2649 * the redirect was not from ourselves 2650 * the new gateway and the old gateway are directly reachable 2651 */ 2652 if (prev_ire == NULL || ire == NULL || 2653 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2654 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2655 !(ire->ire_type & IRE_IF_ALL) || 2656 prev_ire->ire_gateway_addr != src) { 2657 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2658 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2659 freemsg(mp); 2660 if (ire != NULL) 2661 ire_refrele(ire); 2662 if (prev_ire != NULL) 2663 ire_refrele(prev_ire); 2664 return; 2665 } 2666 2667 ire_refrele(prev_ire); 2668 ire_refrele(ire); 2669 2670 /* 2671 * TODO: more precise handling for cases 0, 2, 3, the latter two 2672 * require TOS routing 2673 */ 2674 switch (icmph->icmph_code) { 2675 case 0: 2676 case 1: 2677 /* TODO: TOS specificity for cases 2 and 3 */ 2678 case 2: 2679 case 3: 2680 break; 2681 default: 2682 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2683 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2684 freemsg(mp); 2685 return; 2686 } 2687 /* 2688 * Create a Route Association. This will allow us to remember that 2689 * someone we believe told us to use the particular gateway. 2690 */ 2691 ire = ire_create( 2692 (uchar_t *)&dst, /* dest addr */ 2693 (uchar_t *)&ip_g_all_ones, /* mask */ 2694 (uchar_t *)&gateway, /* gateway addr */ 2695 IRE_HOST, 2696 NULL, /* ill */ 2697 ALL_ZONES, 2698 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2699 NULL, /* tsol_gc_t */ 2700 ipst); 2701 2702 if (ire == NULL) { 2703 freemsg(mp); 2704 return; 2705 } 2706 nire = ire_add(ire); 2707 /* Check if it was a duplicate entry */ 2708 if (nire != NULL && nire != ire) { 2709 ASSERT(nire->ire_identical_ref > 1); 2710 ire_delete(nire); 2711 ire_refrele(nire); 2712 nire = NULL; 2713 } 2714 ire = nire; 2715 if (ire != NULL) { 2716 ire_refrele(ire); /* Held in ire_add */ 2717 2718 /* tell routing sockets that we received a redirect */ 2719 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2720 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2721 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2722 } 2723 2724 /* 2725 * Delete any existing IRE_HOST type redirect ires for this destination. 2726 * This together with the added IRE has the effect of 2727 * modifying an existing redirect. 2728 */ 2729 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2730 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2731 if (prev_ire != NULL) { 2732 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2733 ire_delete(prev_ire); 2734 ire_refrele(prev_ire); 2735 } 2736 2737 freemsg(mp); 2738 } 2739 2740 /* 2741 * Generate an ICMP parameter problem message. 2742 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2743 * constructed by the caller. 2744 */ 2745 static void 2746 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2747 { 2748 icmph_t icmph; 2749 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2750 2751 mp = icmp_pkt_err_ok(mp, ira); 2752 if (mp == NULL) 2753 return; 2754 2755 bzero(&icmph, sizeof (icmph_t)); 2756 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2757 icmph.icmph_pp_ptr = ptr; 2758 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2759 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2760 } 2761 2762 /* 2763 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2764 * the ICMP header pointed to by "stuff". (May be called as writer.) 2765 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2766 * an icmp error packet can be sent. 2767 * Assigns an appropriate source address to the packet. If ipha_dst is 2768 * one of our addresses use it for source. Otherwise let ip_output_simple 2769 * pick the source address. 2770 */ 2771 static void 2772 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2773 { 2774 ipaddr_t dst; 2775 icmph_t *icmph; 2776 ipha_t *ipha; 2777 uint_t len_needed; 2778 size_t msg_len; 2779 mblk_t *mp1; 2780 ipaddr_t src; 2781 ire_t *ire; 2782 ip_xmit_attr_t ixas; 2783 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2784 2785 ipha = (ipha_t *)mp->b_rptr; 2786 2787 bzero(&ixas, sizeof (ixas)); 2788 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2789 ixas.ixa_zoneid = ira->ira_zoneid; 2790 ixas.ixa_ifindex = 0; 2791 ixas.ixa_ipst = ipst; 2792 ixas.ixa_cred = kcred; 2793 ixas.ixa_cpid = NOPID; 2794 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2795 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2796 2797 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2798 /* 2799 * Apply IPsec based on how IPsec was applied to 2800 * the packet that had the error. 2801 * 2802 * If it was an outbound packet that caused the ICMP 2803 * error, then the caller will have setup the IRA 2804 * appropriately. 2805 */ 2806 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2807 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2808 /* Note: mp already consumed and ip_drop_packet done */ 2809 return; 2810 } 2811 } else { 2812 /* 2813 * This is in clear. The icmp message we are building 2814 * here should go out in clear, independent of our policy. 2815 */ 2816 ixas.ixa_flags |= IXAF_NO_IPSEC; 2817 } 2818 2819 /* Remember our eventual destination */ 2820 dst = ipha->ipha_src; 2821 2822 /* 2823 * If the packet was for one of our unicast addresses, make 2824 * sure we respond with that as the source. Otherwise 2825 * have ip_output_simple pick the source address. 2826 */ 2827 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2828 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2829 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2830 if (ire != NULL) { 2831 ire_refrele(ire); 2832 src = ipha->ipha_dst; 2833 } else { 2834 src = INADDR_ANY; 2835 ixas.ixa_flags |= IXAF_SET_SOURCE; 2836 } 2837 2838 /* 2839 * Check if we can send back more then 8 bytes in addition to 2840 * the IP header. We try to send 64 bytes of data and the internal 2841 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2842 */ 2843 len_needed = IPH_HDR_LENGTH(ipha); 2844 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2845 ipha->ipha_protocol == IPPROTO_IPV6) { 2846 if (!pullupmsg(mp, -1)) { 2847 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2848 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2849 freemsg(mp); 2850 return; 2851 } 2852 ipha = (ipha_t *)mp->b_rptr; 2853 2854 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2855 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2856 len_needed)); 2857 } else { 2858 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2859 2860 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2861 len_needed += ip_hdr_length_v6(mp, ip6h); 2862 } 2863 } 2864 len_needed += ipst->ips_ip_icmp_return; 2865 msg_len = msgdsize(mp); 2866 if (msg_len > len_needed) { 2867 (void) adjmsg(mp, len_needed - msg_len); 2868 msg_len = len_needed; 2869 } 2870 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2871 if (mp1 == NULL) { 2872 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2873 freemsg(mp); 2874 return; 2875 } 2876 mp1->b_cont = mp; 2877 mp = mp1; 2878 2879 /* 2880 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2881 * node generates be accepted in peace by all on-host destinations. 2882 * If we do NOT assume that all on-host destinations trust 2883 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2884 * (Look for IXAF_TRUSTED_ICMP). 2885 */ 2886 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2887 2888 ipha = (ipha_t *)mp->b_rptr; 2889 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2890 *ipha = icmp_ipha; 2891 ipha->ipha_src = src; 2892 ipha->ipha_dst = dst; 2893 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2894 msg_len += sizeof (icmp_ipha) + len; 2895 if (msg_len > IP_MAXPACKET) { 2896 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2897 msg_len = IP_MAXPACKET; 2898 } 2899 ipha->ipha_length = htons((uint16_t)msg_len); 2900 icmph = (icmph_t *)&ipha[1]; 2901 bcopy(stuff, icmph, len); 2902 icmph->icmph_checksum = 0; 2903 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2904 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2905 2906 (void) ip_output_simple(mp, &ixas); 2907 ixa_cleanup(&ixas); 2908 } 2909 2910 /* 2911 * Determine if an ICMP error packet can be sent given the rate limit. 2912 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2913 * in milliseconds) and a burst size. Burst size number of packets can 2914 * be sent arbitrarely closely spaced. 2915 * The state is tracked using two variables to implement an approximate 2916 * token bucket filter: 2917 * icmp_pkt_err_last - lbolt value when the last burst started 2918 * icmp_pkt_err_sent - number of packets sent in current burst 2919 */ 2920 boolean_t 2921 icmp_err_rate_limit(ip_stack_t *ipst) 2922 { 2923 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2924 uint_t refilled; /* Number of packets refilled in tbf since last */ 2925 /* Guard against changes by loading into local variable */ 2926 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2927 2928 if (err_interval == 0) 2929 return (B_FALSE); 2930 2931 if (ipst->ips_icmp_pkt_err_last > now) { 2932 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2933 ipst->ips_icmp_pkt_err_last = 0; 2934 ipst->ips_icmp_pkt_err_sent = 0; 2935 } 2936 /* 2937 * If we are in a burst update the token bucket filter. 2938 * Update the "last" time to be close to "now" but make sure 2939 * we don't loose precision. 2940 */ 2941 if (ipst->ips_icmp_pkt_err_sent != 0) { 2942 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2943 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2944 ipst->ips_icmp_pkt_err_sent = 0; 2945 } else { 2946 ipst->ips_icmp_pkt_err_sent -= refilled; 2947 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2948 } 2949 } 2950 if (ipst->ips_icmp_pkt_err_sent == 0) { 2951 /* Start of new burst */ 2952 ipst->ips_icmp_pkt_err_last = now; 2953 } 2954 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2955 ipst->ips_icmp_pkt_err_sent++; 2956 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2957 ipst->ips_icmp_pkt_err_sent)); 2958 return (B_FALSE); 2959 } 2960 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2961 return (B_TRUE); 2962 } 2963 2964 /* 2965 * Check if it is ok to send an IPv4 ICMP error packet in 2966 * response to the IPv4 packet in mp. 2967 * Free the message and return null if no 2968 * ICMP error packet should be sent. 2969 */ 2970 static mblk_t * 2971 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2972 { 2973 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2974 icmph_t *icmph; 2975 ipha_t *ipha; 2976 uint_t len_needed; 2977 2978 if (!mp) 2979 return (NULL); 2980 ipha = (ipha_t *)mp->b_rptr; 2981 if (ip_csum_hdr(ipha)) { 2982 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2983 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2984 freemsg(mp); 2985 return (NULL); 2986 } 2987 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2988 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2989 CLASSD(ipha->ipha_dst) || 2990 CLASSD(ipha->ipha_src) || 2991 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2992 /* Note: only errors to the fragment with offset 0 */ 2993 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2994 freemsg(mp); 2995 return (NULL); 2996 } 2997 if (ipha->ipha_protocol == IPPROTO_ICMP) { 2998 /* 2999 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3000 * errors in response to any ICMP errors. 3001 */ 3002 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3003 if (mp->b_wptr - mp->b_rptr < len_needed) { 3004 if (!pullupmsg(mp, len_needed)) { 3005 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3006 freemsg(mp); 3007 return (NULL); 3008 } 3009 ipha = (ipha_t *)mp->b_rptr; 3010 } 3011 icmph = (icmph_t *) 3012 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3013 switch (icmph->icmph_type) { 3014 case ICMP_DEST_UNREACHABLE: 3015 case ICMP_SOURCE_QUENCH: 3016 case ICMP_TIME_EXCEEDED: 3017 case ICMP_PARAM_PROBLEM: 3018 case ICMP_REDIRECT: 3019 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3020 freemsg(mp); 3021 return (NULL); 3022 default: 3023 break; 3024 } 3025 } 3026 /* 3027 * If this is a labeled system, then check to see if we're allowed to 3028 * send a response to this particular sender. If not, then just drop. 3029 */ 3030 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3031 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3032 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3033 freemsg(mp); 3034 return (NULL); 3035 } 3036 if (icmp_err_rate_limit(ipst)) { 3037 /* 3038 * Only send ICMP error packets every so often. 3039 * This should be done on a per port/source basis, 3040 * but for now this will suffice. 3041 */ 3042 freemsg(mp); 3043 return (NULL); 3044 } 3045 return (mp); 3046 } 3047 3048 /* 3049 * Called when a packet was sent out the same link that it arrived on. 3050 * Check if it is ok to send a redirect and then send it. 3051 */ 3052 void 3053 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3054 ip_recv_attr_t *ira) 3055 { 3056 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3057 ipaddr_t src, nhop; 3058 mblk_t *mp1; 3059 ire_t *nhop_ire; 3060 3061 /* 3062 * Check the source address to see if it originated 3063 * on the same logical subnet it is going back out on. 3064 * If so, we should be able to send it a redirect. 3065 * Avoid sending a redirect if the destination 3066 * is directly connected (i.e., we matched an IRE_ONLINK), 3067 * or if the packet was source routed out this interface. 3068 * 3069 * We avoid sending a redirect if the 3070 * destination is directly connected 3071 * because it is possible that multiple 3072 * IP subnets may have been configured on 3073 * the link, and the source may not 3074 * be on the same subnet as ip destination, 3075 * even though they are on the same 3076 * physical link. 3077 */ 3078 if ((ire->ire_type & IRE_ONLINK) || 3079 ip_source_routed(ipha, ipst)) 3080 return; 3081 3082 nhop_ire = ire_nexthop(ire); 3083 if (nhop_ire == NULL) 3084 return; 3085 3086 nhop = nhop_ire->ire_addr; 3087 3088 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3089 ire_t *ire2; 3090 3091 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3092 mutex_enter(&nhop_ire->ire_lock); 3093 ire2 = nhop_ire->ire_dep_parent; 3094 if (ire2 != NULL) 3095 ire_refhold(ire2); 3096 mutex_exit(&nhop_ire->ire_lock); 3097 ire_refrele(nhop_ire); 3098 nhop_ire = ire2; 3099 } 3100 if (nhop_ire == NULL) 3101 return; 3102 3103 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3104 3105 src = ipha->ipha_src; 3106 3107 /* 3108 * We look at the interface ire for the nexthop, 3109 * to see if ipha_src is in the same subnet 3110 * as the nexthop. 3111 */ 3112 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3113 /* 3114 * The source is directly connected. 3115 */ 3116 mp1 = copymsg(mp); 3117 if (mp1 != NULL) { 3118 icmp_send_redirect(mp1, nhop, ira); 3119 } 3120 } 3121 ire_refrele(nhop_ire); 3122 } 3123 3124 /* 3125 * Generate an ICMP redirect message. 3126 */ 3127 static void 3128 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3129 { 3130 icmph_t icmph; 3131 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3132 3133 mp = icmp_pkt_err_ok(mp, ira); 3134 if (mp == NULL) 3135 return; 3136 3137 bzero(&icmph, sizeof (icmph_t)); 3138 icmph.icmph_type = ICMP_REDIRECT; 3139 icmph.icmph_code = 1; 3140 icmph.icmph_rd_gateway = gateway; 3141 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3142 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3143 } 3144 3145 /* 3146 * Generate an ICMP time exceeded message. 3147 */ 3148 void 3149 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3150 { 3151 icmph_t icmph; 3152 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3153 3154 mp = icmp_pkt_err_ok(mp, ira); 3155 if (mp == NULL) 3156 return; 3157 3158 bzero(&icmph, sizeof (icmph_t)); 3159 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3160 icmph.icmph_code = code; 3161 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3162 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3163 } 3164 3165 /* 3166 * Generate an ICMP unreachable message. 3167 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3168 * constructed by the caller. 3169 */ 3170 void 3171 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3172 { 3173 icmph_t icmph; 3174 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3175 3176 mp = icmp_pkt_err_ok(mp, ira); 3177 if (mp == NULL) 3178 return; 3179 3180 bzero(&icmph, sizeof (icmph_t)); 3181 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3182 icmph.icmph_code = code; 3183 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3184 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3185 } 3186 3187 /* 3188 * Latch in the IPsec state for a stream based the policy in the listener 3189 * and the actions in the ip_recv_attr_t. 3190 * Called directly from TCP and SCTP. 3191 */ 3192 boolean_t 3193 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3194 { 3195 ASSERT(lconnp->conn_policy != NULL); 3196 ASSERT(connp->conn_policy == NULL); 3197 3198 IPPH_REFHOLD(lconnp->conn_policy); 3199 connp->conn_policy = lconnp->conn_policy; 3200 3201 if (ira->ira_ipsec_action != NULL) { 3202 if (connp->conn_latch == NULL) { 3203 connp->conn_latch = iplatch_create(); 3204 if (connp->conn_latch == NULL) 3205 return (B_FALSE); 3206 } 3207 ipsec_latch_inbound(connp, ira); 3208 } 3209 return (B_TRUE); 3210 } 3211 3212 /* 3213 * Verify whether or not the IP address is a valid local address. 3214 * Could be a unicast, including one for a down interface. 3215 * If allow_mcbc then a multicast or broadcast address is also 3216 * acceptable. 3217 * 3218 * In the case of a broadcast/multicast address, however, the 3219 * upper protocol is expected to reset the src address 3220 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3221 * no packets are emitted with broadcast/multicast address as 3222 * source address (that violates hosts requirements RFC 1122) 3223 * The addresses valid for bind are: 3224 * (1) - INADDR_ANY (0) 3225 * (2) - IP address of an UP interface 3226 * (3) - IP address of a DOWN interface 3227 * (4) - valid local IP broadcast addresses. In this case 3228 * the conn will only receive packets destined to 3229 * the specified broadcast address. 3230 * (5) - a multicast address. In this case 3231 * the conn will only receive packets destined to 3232 * the specified multicast address. Note: the 3233 * application still has to issue an 3234 * IP_ADD_MEMBERSHIP socket option. 3235 * 3236 * In all the above cases, the bound address must be valid in the current zone. 3237 * When the address is loopback, multicast or broadcast, there might be many 3238 * matching IREs so bind has to look up based on the zone. 3239 */ 3240 ip_laddr_t 3241 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3242 ip_stack_t *ipst, boolean_t allow_mcbc) 3243 { 3244 ire_t *src_ire; 3245 3246 ASSERT(src_addr != INADDR_ANY); 3247 3248 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3249 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3250 3251 /* 3252 * If an address other than in6addr_any is requested, 3253 * we verify that it is a valid address for bind 3254 * Note: Following code is in if-else-if form for 3255 * readability compared to a condition check. 3256 */ 3257 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3258 /* 3259 * (2) Bind to address of local UP interface 3260 */ 3261 ire_refrele(src_ire); 3262 return (IPVL_UNICAST_UP); 3263 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3264 /* 3265 * (4) Bind to broadcast address 3266 */ 3267 ire_refrele(src_ire); 3268 if (allow_mcbc) 3269 return (IPVL_BCAST); 3270 else 3271 return (IPVL_BAD); 3272 } else if (CLASSD(src_addr)) { 3273 /* (5) bind to multicast address. */ 3274 if (src_ire != NULL) 3275 ire_refrele(src_ire); 3276 3277 if (allow_mcbc) 3278 return (IPVL_MCAST); 3279 else 3280 return (IPVL_BAD); 3281 } else { 3282 ipif_t *ipif; 3283 3284 /* 3285 * (3) Bind to address of local DOWN interface? 3286 * (ipif_lookup_addr() looks up all interfaces 3287 * but we do not get here for UP interfaces 3288 * - case (2) above) 3289 */ 3290 if (src_ire != NULL) 3291 ire_refrele(src_ire); 3292 3293 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3294 if (ipif == NULL) 3295 return (IPVL_BAD); 3296 3297 /* Not a useful source? */ 3298 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3299 ipif_refrele(ipif); 3300 return (IPVL_BAD); 3301 } 3302 ipif_refrele(ipif); 3303 return (IPVL_UNICAST_DOWN); 3304 } 3305 } 3306 3307 /* 3308 * Insert in the bind fanout for IPv4 and IPv6. 3309 * The caller should already have used ip_laddr_verify_v*() before calling 3310 * this. 3311 */ 3312 int 3313 ip_laddr_fanout_insert(conn_t *connp) 3314 { 3315 int error; 3316 3317 /* 3318 * Allow setting new policies. For example, disconnects result 3319 * in us being called. As we would have set conn_policy_cached 3320 * to B_TRUE before, we should set it to B_FALSE, so that policy 3321 * can change after the disconnect. 3322 */ 3323 connp->conn_policy_cached = B_FALSE; 3324 3325 error = ipcl_bind_insert(connp); 3326 if (error != 0) { 3327 if (connp->conn_anon_port) { 3328 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3329 connp->conn_mlp_type, connp->conn_proto, 3330 ntohs(connp->conn_lport), B_FALSE); 3331 } 3332 connp->conn_mlp_type = mlptSingle; 3333 } 3334 return (error); 3335 } 3336 3337 /* 3338 * Verify that both the source and destination addresses are valid. If 3339 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3340 * i.e. have no route to it. Protocols like TCP want to verify destination 3341 * reachability, while tunnels do not. 3342 * 3343 * Determine the route, the interface, and (optionally) the source address 3344 * to use to reach a given destination. 3345 * Note that we allow connect to broadcast and multicast addresses when 3346 * IPDF_ALLOW_MCBC is set. 3347 * first_hop and dst_addr are normally the same, but if source routing 3348 * they will differ; in that case the first_hop is what we'll use for the 3349 * routing lookup but the dce and label checks will be done on dst_addr, 3350 * 3351 * If uinfo is set, then we fill in the best available information 3352 * we have for the destination. This is based on (in priority order) any 3353 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3354 * ill_mtu/ill_mc_mtu. 3355 * 3356 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3357 * always do the label check on dst_addr. 3358 */ 3359 int 3360 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3361 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3362 { 3363 ire_t *ire = NULL; 3364 int error = 0; 3365 ipaddr_t setsrc; /* RTF_SETSRC */ 3366 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3367 ip_stack_t *ipst = ixa->ixa_ipst; 3368 dce_t *dce; 3369 uint_t pmtu; 3370 uint_t generation; 3371 nce_t *nce; 3372 ill_t *ill = NULL; 3373 boolean_t multirt = B_FALSE; 3374 3375 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3376 3377 /* 3378 * We never send to zero; the ULPs map it to the loopback address. 3379 * We can't allow it since we use zero to mean unitialized in some 3380 * places. 3381 */ 3382 ASSERT(dst_addr != INADDR_ANY); 3383 3384 if (is_system_labeled()) { 3385 ts_label_t *tsl = NULL; 3386 3387 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3388 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3389 if (error != 0) 3390 return (error); 3391 if (tsl != NULL) { 3392 /* Update the label */ 3393 ip_xmit_attr_replace_tsl(ixa, tsl); 3394 } 3395 } 3396 3397 setsrc = INADDR_ANY; 3398 /* 3399 * Select a route; For IPMP interfaces, we would only select 3400 * a "hidden" route (i.e., going through a specific under_ill) 3401 * if ixa_ifindex has been specified. 3402 */ 3403 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3404 &generation, &setsrc, &error, &multirt); 3405 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3406 if (error != 0) 3407 goto bad_addr; 3408 3409 /* 3410 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3411 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3412 * Otherwise the destination needn't be reachable. 3413 * 3414 * If we match on a reject or black hole, then we've got a 3415 * local failure. May as well fail out the connect() attempt, 3416 * since it's never going to succeed. 3417 */ 3418 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3419 /* 3420 * If we're verifying destination reachability, we always want 3421 * to complain here. 3422 * 3423 * If we're not verifying destination reachability but the 3424 * destination has a route, we still want to fail on the 3425 * temporary address and broadcast address tests. 3426 * 3427 * In both cases do we let the code continue so some reasonable 3428 * information is returned to the caller. That enables the 3429 * caller to use (and even cache) the IRE. conn_ip_ouput will 3430 * use the generation mismatch path to check for the unreachable 3431 * case thereby avoiding any specific check in the main path. 3432 */ 3433 ASSERT(generation == IRE_GENERATION_VERIFY); 3434 if (flags & IPDF_VERIFY_DST) { 3435 /* 3436 * Set errno but continue to set up ixa_ire to be 3437 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3438 * That allows callers to use ip_output to get an 3439 * ICMP error back. 3440 */ 3441 if (!(ire->ire_type & IRE_HOST)) 3442 error = ENETUNREACH; 3443 else 3444 error = EHOSTUNREACH; 3445 } 3446 } 3447 3448 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3449 !(flags & IPDF_ALLOW_MCBC)) { 3450 ire_refrele(ire); 3451 ire = ire_reject(ipst, B_FALSE); 3452 generation = IRE_GENERATION_VERIFY; 3453 error = ENETUNREACH; 3454 } 3455 3456 /* Cache things */ 3457 if (ixa->ixa_ire != NULL) 3458 ire_refrele_notr(ixa->ixa_ire); 3459 #ifdef DEBUG 3460 ire_refhold_notr(ire); 3461 ire_refrele(ire); 3462 #endif 3463 ixa->ixa_ire = ire; 3464 ixa->ixa_ire_generation = generation; 3465 3466 /* 3467 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3468 * since some callers will send a packet to conn_ip_output() even if 3469 * there's an error. 3470 */ 3471 if (flags & IPDF_UNIQUE_DCE) { 3472 /* Fallback to the default dce if allocation fails */ 3473 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3474 if (dce != NULL) 3475 generation = dce->dce_generation; 3476 else 3477 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3478 } else { 3479 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3480 } 3481 ASSERT(dce != NULL); 3482 if (ixa->ixa_dce != NULL) 3483 dce_refrele_notr(ixa->ixa_dce); 3484 #ifdef DEBUG 3485 dce_refhold_notr(dce); 3486 dce_refrele(dce); 3487 #endif 3488 ixa->ixa_dce = dce; 3489 ixa->ixa_dce_generation = generation; 3490 3491 /* 3492 * For multicast with multirt we have a flag passed back from 3493 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3494 * possible multicast address. 3495 * We also need a flag for multicast since we can't check 3496 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3497 */ 3498 if (multirt) { 3499 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3500 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3501 } else { 3502 ixa->ixa_postfragfn = ire->ire_postfragfn; 3503 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3504 } 3505 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3506 /* Get an nce to cache. */ 3507 nce = ire_to_nce(ire, firsthop, NULL); 3508 if (nce == NULL) { 3509 /* Allocation failure? */ 3510 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3511 } else { 3512 if (ixa->ixa_nce != NULL) 3513 nce_refrele(ixa->ixa_nce); 3514 ixa->ixa_nce = nce; 3515 } 3516 } 3517 3518 /* 3519 * If the source address is a loopback address, the 3520 * destination had best be local or multicast. 3521 * If we are sending to an IRE_LOCAL using a loopback source then 3522 * it had better be the same zoneid. 3523 */ 3524 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3525 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3526 ire = NULL; /* Stored in ixa_ire */ 3527 error = EADDRNOTAVAIL; 3528 goto bad_addr; 3529 } 3530 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3531 ire = NULL; /* Stored in ixa_ire */ 3532 error = EADDRNOTAVAIL; 3533 goto bad_addr; 3534 } 3535 } 3536 if (ire->ire_type & IRE_BROADCAST) { 3537 /* 3538 * If the ULP didn't have a specified source, then we 3539 * make sure we reselect the source when sending 3540 * broadcasts out different interfaces. 3541 */ 3542 if (flags & IPDF_SELECT_SRC) 3543 ixa->ixa_flags |= IXAF_SET_SOURCE; 3544 else 3545 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3546 } 3547 3548 /* 3549 * Does the caller want us to pick a source address? 3550 */ 3551 if (flags & IPDF_SELECT_SRC) { 3552 ipaddr_t src_addr; 3553 3554 /* 3555 * We use use ire_nexthop_ill to avoid the under ipmp 3556 * interface for source address selection. Note that for ipmp 3557 * probe packets, ixa_ifindex would have been specified, and 3558 * the ip_select_route() invocation would have picked an ire 3559 * will ire_ill pointing at an under interface. 3560 */ 3561 ill = ire_nexthop_ill(ire); 3562 3563 /* If unreachable we have no ill but need some source */ 3564 if (ill == NULL) { 3565 src_addr = htonl(INADDR_LOOPBACK); 3566 /* Make sure we look for a better source address */ 3567 generation = SRC_GENERATION_VERIFY; 3568 } else { 3569 error = ip_select_source_v4(ill, setsrc, dst_addr, 3570 ixa->ixa_multicast_ifaddr, zoneid, 3571 ipst, &src_addr, &generation, NULL); 3572 if (error != 0) { 3573 ire = NULL; /* Stored in ixa_ire */ 3574 goto bad_addr; 3575 } 3576 } 3577 3578 /* 3579 * We allow the source address to to down. 3580 * However, we check that we don't use the loopback address 3581 * as a source when sending out on the wire. 3582 */ 3583 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3584 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3585 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3586 ire = NULL; /* Stored in ixa_ire */ 3587 error = EADDRNOTAVAIL; 3588 goto bad_addr; 3589 } 3590 3591 *src_addrp = src_addr; 3592 ixa->ixa_src_generation = generation; 3593 } 3594 3595 /* 3596 * Make sure we don't leave an unreachable ixa_nce in place 3597 * since ip_select_route is used when we unplumb i.e., remove 3598 * references on ixa_ire, ixa_nce, and ixa_dce. 3599 */ 3600 nce = ixa->ixa_nce; 3601 if (nce != NULL && nce->nce_is_condemned) { 3602 nce_refrele(nce); 3603 ixa->ixa_nce = NULL; 3604 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3605 } 3606 3607 /* 3608 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3609 * However, we can't do it for IPv4 multicast or broadcast. 3610 */ 3611 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3612 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3613 3614 /* 3615 * Set initial value for fragmentation limit. Either conn_ip_output 3616 * or ULP might updates it when there are routing changes. 3617 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3618 */ 3619 pmtu = ip_get_pmtu(ixa); 3620 ixa->ixa_fragsize = pmtu; 3621 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3622 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3623 ixa->ixa_pmtu = pmtu; 3624 3625 /* 3626 * Extract information useful for some transports. 3627 * First we look for DCE metrics. Then we take what we have in 3628 * the metrics in the route, where the offlink is used if we have 3629 * one. 3630 */ 3631 if (uinfo != NULL) { 3632 bzero(uinfo, sizeof (*uinfo)); 3633 3634 if (dce->dce_flags & DCEF_UINFO) 3635 *uinfo = dce->dce_uinfo; 3636 3637 rts_merge_metrics(uinfo, &ire->ire_metrics); 3638 3639 /* Allow ire_metrics to decrease the path MTU from above */ 3640 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3641 uinfo->iulp_mtu = pmtu; 3642 3643 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3644 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3645 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3646 } 3647 3648 if (ill != NULL) 3649 ill_refrele(ill); 3650 3651 return (error); 3652 3653 bad_addr: 3654 if (ire != NULL) 3655 ire_refrele(ire); 3656 3657 if (ill != NULL) 3658 ill_refrele(ill); 3659 3660 /* 3661 * Make sure we don't leave an unreachable ixa_nce in place 3662 * since ip_select_route is used when we unplumb i.e., remove 3663 * references on ixa_ire, ixa_nce, and ixa_dce. 3664 */ 3665 nce = ixa->ixa_nce; 3666 if (nce != NULL && nce->nce_is_condemned) { 3667 nce_refrele(nce); 3668 ixa->ixa_nce = NULL; 3669 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3670 } 3671 3672 return (error); 3673 } 3674 3675 3676 /* 3677 * Get the base MTU for the case when path MTU discovery is not used. 3678 * Takes the MTU of the IRE into account. 3679 */ 3680 uint_t 3681 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3682 { 3683 uint_t mtu; 3684 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3685 3686 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3687 mtu = ill->ill_mc_mtu; 3688 else 3689 mtu = ill->ill_mtu; 3690 3691 if (iremtu != 0 && iremtu < mtu) 3692 mtu = iremtu; 3693 3694 return (mtu); 3695 } 3696 3697 /* 3698 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3699 * Assumes that ixa_ire, dce, and nce have already been set up. 3700 * 3701 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3702 * We avoid path MTU discovery if it is disabled with ndd. 3703 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3704 * 3705 * NOTE: We also used to turn it off for source routed packets. That 3706 * is no longer required since the dce is per final destination. 3707 */ 3708 uint_t 3709 ip_get_pmtu(ip_xmit_attr_t *ixa) 3710 { 3711 ip_stack_t *ipst = ixa->ixa_ipst; 3712 dce_t *dce; 3713 nce_t *nce; 3714 ire_t *ire; 3715 uint_t pmtu; 3716 3717 ire = ixa->ixa_ire; 3718 dce = ixa->ixa_dce; 3719 nce = ixa->ixa_nce; 3720 3721 /* 3722 * If path MTU discovery has been turned off by ndd, then we ignore 3723 * any dce_pmtu and for IPv4 we will not set DF. 3724 */ 3725 if (!ipst->ips_ip_path_mtu_discovery) 3726 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3727 3728 pmtu = IP_MAXPACKET; 3729 /* 3730 * Decide whether whether IPv4 sets DF 3731 * For IPv6 "no DF" means to use the 1280 mtu 3732 */ 3733 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3734 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3735 } else { 3736 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3737 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3738 pmtu = IPV6_MIN_MTU; 3739 } 3740 3741 /* Check if the PMTU is to old before we use it */ 3742 if ((dce->dce_flags & DCEF_PMTU) && 3743 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3744 ipst->ips_ip_pathmtu_interval) { 3745 /* 3746 * Older than 20 minutes. Drop the path MTU information. 3747 */ 3748 mutex_enter(&dce->dce_lock); 3749 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3750 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3751 mutex_exit(&dce->dce_lock); 3752 dce_increment_generation(dce); 3753 } 3754 3755 /* The metrics on the route can lower the path MTU */ 3756 if (ire->ire_metrics.iulp_mtu != 0 && 3757 ire->ire_metrics.iulp_mtu < pmtu) 3758 pmtu = ire->ire_metrics.iulp_mtu; 3759 3760 /* 3761 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3762 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3763 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3764 */ 3765 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3766 if (dce->dce_flags & DCEF_PMTU) { 3767 if (dce->dce_pmtu < pmtu) 3768 pmtu = dce->dce_pmtu; 3769 3770 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3771 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3772 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3773 } else { 3774 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3775 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3776 } 3777 } else { 3778 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3779 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3780 } 3781 } 3782 3783 /* 3784 * If we have an IRE_LOCAL we use the loopback mtu instead of 3785 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3786 * mtu as IRE_LOOPBACK. 3787 */ 3788 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3789 uint_t loopback_mtu; 3790 3791 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3792 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3793 3794 if (loopback_mtu < pmtu) 3795 pmtu = loopback_mtu; 3796 } else if (nce != NULL) { 3797 /* 3798 * Make sure we don't exceed the interface MTU. 3799 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3800 * an ill. We'd use the above IP_MAXPACKET in that case just 3801 * to tell the transport something larger than zero. 3802 */ 3803 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3804 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3805 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3806 if (nce->nce_common->ncec_ill != nce->nce_ill && 3807 nce->nce_ill->ill_mc_mtu < pmtu) { 3808 /* 3809 * for interfaces in an IPMP group, the mtu of 3810 * the nce_ill (under_ill) could be different 3811 * from the mtu of the ncec_ill, so we take the 3812 * min of the two. 3813 */ 3814 pmtu = nce->nce_ill->ill_mc_mtu; 3815 } 3816 } else { 3817 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3818 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3819 if (nce->nce_common->ncec_ill != nce->nce_ill && 3820 nce->nce_ill->ill_mtu < pmtu) { 3821 /* 3822 * for interfaces in an IPMP group, the mtu of 3823 * the nce_ill (under_ill) could be different 3824 * from the mtu of the ncec_ill, so we take the 3825 * min of the two. 3826 */ 3827 pmtu = nce->nce_ill->ill_mtu; 3828 } 3829 } 3830 } 3831 3832 /* 3833 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3834 * Only applies to IPv6. 3835 */ 3836 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3837 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3838 switch (ixa->ixa_use_min_mtu) { 3839 case IPV6_USE_MIN_MTU_MULTICAST: 3840 if (ire->ire_type & IRE_MULTICAST) 3841 pmtu = IPV6_MIN_MTU; 3842 break; 3843 case IPV6_USE_MIN_MTU_ALWAYS: 3844 pmtu = IPV6_MIN_MTU; 3845 break; 3846 case IPV6_USE_MIN_MTU_NEVER: 3847 break; 3848 } 3849 } else { 3850 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3851 if (ire->ire_type & IRE_MULTICAST) 3852 pmtu = IPV6_MIN_MTU; 3853 } 3854 } 3855 3856 /* 3857 * For multirouted IPv6 packets, the IP layer will insert a 8-byte 3858 * fragment header in every packet. We compensate for those cases by 3859 * returning a smaller path MTU to the ULP. 3860 * 3861 * In the case of CGTP then ip_output will add a fragment header. 3862 * Make sure there is room for it by telling a smaller number 3863 * to the transport. 3864 * 3865 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3866 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3867 * which is the size of the packets it can send. 3868 */ 3869 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3870 if ((ire->ire_flags & RTF_MULTIRT) || 3871 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3872 pmtu -= sizeof (ip6_frag_t); 3873 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3874 } 3875 } 3876 3877 return (pmtu); 3878 } 3879 3880 /* 3881 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3882 * the final piece where we don't. Return a pointer to the first mblk in the 3883 * result, and update the pointer to the next mblk to chew on. If anything 3884 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3885 * NULL pointer. 3886 */ 3887 mblk_t * 3888 ip_carve_mp(mblk_t **mpp, ssize_t len) 3889 { 3890 mblk_t *mp0; 3891 mblk_t *mp1; 3892 mblk_t *mp2; 3893 3894 if (!len || !mpp || !(mp0 = *mpp)) 3895 return (NULL); 3896 /* If we aren't going to consume the first mblk, we need a dup. */ 3897 if (mp0->b_wptr - mp0->b_rptr > len) { 3898 mp1 = dupb(mp0); 3899 if (mp1) { 3900 /* Partition the data between the two mblks. */ 3901 mp1->b_wptr = mp1->b_rptr + len; 3902 mp0->b_rptr = mp1->b_wptr; 3903 /* 3904 * after adjustments if mblk not consumed is now 3905 * unaligned, try to align it. If this fails free 3906 * all messages and let upper layer recover. 3907 */ 3908 if (!OK_32PTR(mp0->b_rptr)) { 3909 if (!pullupmsg(mp0, -1)) { 3910 freemsg(mp0); 3911 freemsg(mp1); 3912 *mpp = NULL; 3913 return (NULL); 3914 } 3915 } 3916 } 3917 return (mp1); 3918 } 3919 /* Eat through as many mblks as we need to get len bytes. */ 3920 len -= mp0->b_wptr - mp0->b_rptr; 3921 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3922 if (mp2->b_wptr - mp2->b_rptr > len) { 3923 /* 3924 * We won't consume the entire last mblk. Like 3925 * above, dup and partition it. 3926 */ 3927 mp1->b_cont = dupb(mp2); 3928 mp1 = mp1->b_cont; 3929 if (!mp1) { 3930 /* 3931 * Trouble. Rather than go to a lot of 3932 * trouble to clean up, we free the messages. 3933 * This won't be any worse than losing it on 3934 * the wire. 3935 */ 3936 freemsg(mp0); 3937 freemsg(mp2); 3938 *mpp = NULL; 3939 return (NULL); 3940 } 3941 mp1->b_wptr = mp1->b_rptr + len; 3942 mp2->b_rptr = mp1->b_wptr; 3943 /* 3944 * after adjustments if mblk not consumed is now 3945 * unaligned, try to align it. If this fails free 3946 * all messages and let upper layer recover. 3947 */ 3948 if (!OK_32PTR(mp2->b_rptr)) { 3949 if (!pullupmsg(mp2, -1)) { 3950 freemsg(mp0); 3951 freemsg(mp2); 3952 *mpp = NULL; 3953 return (NULL); 3954 } 3955 } 3956 *mpp = mp2; 3957 return (mp0); 3958 } 3959 /* Decrement len by the amount we just got. */ 3960 len -= mp2->b_wptr - mp2->b_rptr; 3961 } 3962 /* 3963 * len should be reduced to zero now. If not our caller has 3964 * screwed up. 3965 */ 3966 if (len) { 3967 /* Shouldn't happen! */ 3968 freemsg(mp0); 3969 *mpp = NULL; 3970 return (NULL); 3971 } 3972 /* 3973 * We consumed up to exactly the end of an mblk. Detach the part 3974 * we are returning from the rest of the chain. 3975 */ 3976 mp1->b_cont = NULL; 3977 *mpp = mp2; 3978 return (mp0); 3979 } 3980 3981 /* The ill stream is being unplumbed. Called from ip_close */ 3982 int 3983 ip_modclose(ill_t *ill) 3984 { 3985 boolean_t success; 3986 ipsq_t *ipsq; 3987 ipif_t *ipif; 3988 queue_t *q = ill->ill_rq; 3989 ip_stack_t *ipst = ill->ill_ipst; 3990 int i; 3991 arl_ill_common_t *ai = ill->ill_common; 3992 3993 /* 3994 * The punlink prior to this may have initiated a capability 3995 * negotiation. But ipsq_enter will block until that finishes or 3996 * times out. 3997 */ 3998 success = ipsq_enter(ill, B_FALSE, NEW_OP); 3999 4000 /* 4001 * Open/close/push/pop is guaranteed to be single threaded 4002 * per stream by STREAMS. FS guarantees that all references 4003 * from top are gone before close is called. So there can't 4004 * be another close thread that has set CONDEMNED on this ill. 4005 * and cause ipsq_enter to return failure. 4006 */ 4007 ASSERT(success); 4008 ipsq = ill->ill_phyint->phyint_ipsq; 4009 4010 /* 4011 * Mark it condemned. No new reference will be made to this ill. 4012 * Lookup functions will return an error. Threads that try to 4013 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4014 * that the refcnt will drop down to zero. 4015 */ 4016 mutex_enter(&ill->ill_lock); 4017 ill->ill_state_flags |= ILL_CONDEMNED; 4018 for (ipif = ill->ill_ipif; ipif != NULL; 4019 ipif = ipif->ipif_next) { 4020 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4021 } 4022 /* 4023 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4024 * returns error if ILL_CONDEMNED is set 4025 */ 4026 cv_broadcast(&ill->ill_cv); 4027 mutex_exit(&ill->ill_lock); 4028 4029 /* 4030 * Send all the deferred DLPI messages downstream which came in 4031 * during the small window right before ipsq_enter(). We do this 4032 * without waiting for the ACKs because all the ACKs for M_PROTO 4033 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4034 */ 4035 ill_dlpi_send_deferred(ill); 4036 4037 /* 4038 * Shut down fragmentation reassembly. 4039 * ill_frag_timer won't start a timer again. 4040 * Now cancel any existing timer 4041 */ 4042 (void) untimeout(ill->ill_frag_timer_id); 4043 (void) ill_frag_timeout(ill, 0); 4044 4045 /* 4046 * Call ill_delete to bring down the ipifs, ilms and ill on 4047 * this ill. Then wait for the refcnts to drop to zero. 4048 * ill_is_freeable checks whether the ill is really quiescent. 4049 * Then make sure that threads that are waiting to enter the 4050 * ipsq have seen the error returned by ipsq_enter and have 4051 * gone away. Then we call ill_delete_tail which does the 4052 * DL_UNBIND_REQ with the driver and then qprocsoff. 4053 */ 4054 ill_delete(ill); 4055 mutex_enter(&ill->ill_lock); 4056 while (!ill_is_freeable(ill)) 4057 cv_wait(&ill->ill_cv, &ill->ill_lock); 4058 4059 while (ill->ill_waiters) 4060 cv_wait(&ill->ill_cv, &ill->ill_lock); 4061 4062 mutex_exit(&ill->ill_lock); 4063 4064 /* 4065 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4066 * it held until the end of the function since the cleanup 4067 * below needs to be able to use the ip_stack_t. 4068 */ 4069 netstack_hold(ipst->ips_netstack); 4070 4071 /* qprocsoff is done via ill_delete_tail */ 4072 ill_delete_tail(ill); 4073 /* 4074 * synchronously wait for arp stream to unbind. After this, we 4075 * cannot get any data packets up from the driver. 4076 */ 4077 arp_unbind_complete(ill); 4078 ASSERT(ill->ill_ipst == NULL); 4079 4080 /* 4081 * Walk through all conns and qenable those that have queued data. 4082 * Close synchronization needs this to 4083 * be done to ensure that all upper layers blocked 4084 * due to flow control to the closing device 4085 * get unblocked. 4086 */ 4087 ip1dbg(("ip_wsrv: walking\n")); 4088 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4089 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4090 } 4091 4092 /* 4093 * ai can be null if this is an IPv6 ill, or if the IPv4 4094 * stream is being torn down before ARP was plumbed (e.g., 4095 * /sbin/ifconfig plumbing a stream twice, and encountering 4096 * an error 4097 */ 4098 if (ai != NULL) { 4099 ASSERT(!ill->ill_isv6); 4100 mutex_enter(&ai->ai_lock); 4101 ai->ai_ill = NULL; 4102 if (ai->ai_arl == NULL) { 4103 mutex_destroy(&ai->ai_lock); 4104 kmem_free(ai, sizeof (*ai)); 4105 } else { 4106 cv_signal(&ai->ai_ill_unplumb_done); 4107 mutex_exit(&ai->ai_lock); 4108 } 4109 } 4110 4111 mutex_enter(&ipst->ips_ip_mi_lock); 4112 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4113 mutex_exit(&ipst->ips_ip_mi_lock); 4114 4115 /* 4116 * credp could be null if the open didn't succeed and ip_modopen 4117 * itself calls ip_close. 4118 */ 4119 if (ill->ill_credp != NULL) 4120 crfree(ill->ill_credp); 4121 4122 mutex_destroy(&ill->ill_saved_ire_lock); 4123 mutex_destroy(&ill->ill_lock); 4124 rw_destroy(&ill->ill_mcast_lock); 4125 mutex_destroy(&ill->ill_mcast_serializer); 4126 list_destroy(&ill->ill_nce); 4127 4128 /* 4129 * Now we are done with the module close pieces that 4130 * need the netstack_t. 4131 */ 4132 netstack_rele(ipst->ips_netstack); 4133 4134 mi_close_free((IDP)ill); 4135 q->q_ptr = WR(q)->q_ptr = NULL; 4136 4137 ipsq_exit(ipsq); 4138 4139 return (0); 4140 } 4141 4142 /* 4143 * This is called as part of close() for IP, UDP, ICMP, and RTS 4144 * in order to quiesce the conn. 4145 */ 4146 void 4147 ip_quiesce_conn(conn_t *connp) 4148 { 4149 boolean_t drain_cleanup_reqd = B_FALSE; 4150 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4151 boolean_t ilg_cleanup_reqd = B_FALSE; 4152 ip_stack_t *ipst; 4153 4154 ASSERT(!IPCL_IS_TCP(connp)); 4155 ipst = connp->conn_netstack->netstack_ip; 4156 4157 /* 4158 * Mark the conn as closing, and this conn must not be 4159 * inserted in future into any list. Eg. conn_drain_insert(), 4160 * won't insert this conn into the conn_drain_list. 4161 * 4162 * conn_idl, and conn_ilg cannot get set henceforth. 4163 */ 4164 mutex_enter(&connp->conn_lock); 4165 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4166 connp->conn_state_flags |= CONN_CLOSING; 4167 if (connp->conn_idl != NULL) 4168 drain_cleanup_reqd = B_TRUE; 4169 if (connp->conn_oper_pending_ill != NULL) 4170 conn_ioctl_cleanup_reqd = B_TRUE; 4171 if (connp->conn_dhcpinit_ill != NULL) { 4172 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4173 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4174 ill_set_inputfn(connp->conn_dhcpinit_ill); 4175 connp->conn_dhcpinit_ill = NULL; 4176 } 4177 if (connp->conn_ilg != NULL) 4178 ilg_cleanup_reqd = B_TRUE; 4179 mutex_exit(&connp->conn_lock); 4180 4181 if (conn_ioctl_cleanup_reqd) 4182 conn_ioctl_cleanup(connp); 4183 4184 if (is_system_labeled() && connp->conn_anon_port) { 4185 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4186 connp->conn_mlp_type, connp->conn_proto, 4187 ntohs(connp->conn_lport), B_FALSE); 4188 connp->conn_anon_port = 0; 4189 } 4190 connp->conn_mlp_type = mlptSingle; 4191 4192 /* 4193 * Remove this conn from any fanout list it is on. 4194 * and then wait for any threads currently operating 4195 * on this endpoint to finish 4196 */ 4197 ipcl_hash_remove(connp); 4198 4199 /* 4200 * Remove this conn from the drain list, and do any other cleanup that 4201 * may be required. (TCP conns are never flow controlled, and 4202 * conn_idl will be NULL.) 4203 */ 4204 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4205 idl_t *idl = connp->conn_idl; 4206 4207 mutex_enter(&idl->idl_lock); 4208 conn_drain(connp, B_TRUE); 4209 mutex_exit(&idl->idl_lock); 4210 } 4211 4212 if (connp == ipst->ips_ip_g_mrouter) 4213 (void) ip_mrouter_done(ipst); 4214 4215 if (ilg_cleanup_reqd) 4216 ilg_delete_all(connp); 4217 4218 /* 4219 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4220 * callers from write side can't be there now because close 4221 * is in progress. The only other caller is ipcl_walk 4222 * which checks for the condemned flag. 4223 */ 4224 mutex_enter(&connp->conn_lock); 4225 connp->conn_state_flags |= CONN_CONDEMNED; 4226 while (connp->conn_ref != 1) 4227 cv_wait(&connp->conn_cv, &connp->conn_lock); 4228 connp->conn_state_flags |= CONN_QUIESCED; 4229 mutex_exit(&connp->conn_lock); 4230 } 4231 4232 /* ARGSUSED */ 4233 int 4234 ip_close(queue_t *q, int flags, cred_t *credp __unused) 4235 { 4236 conn_t *connp; 4237 4238 /* 4239 * Call the appropriate delete routine depending on whether this is 4240 * a module or device. 4241 */ 4242 if (WR(q)->q_next != NULL) { 4243 /* This is a module close */ 4244 return (ip_modclose((ill_t *)q->q_ptr)); 4245 } 4246 4247 connp = q->q_ptr; 4248 ip_quiesce_conn(connp); 4249 4250 qprocsoff(q); 4251 4252 /* 4253 * Now we are truly single threaded on this stream, and can 4254 * delete the things hanging off the connp, and finally the connp. 4255 * We removed this connp from the fanout list, it cannot be 4256 * accessed thru the fanouts, and we already waited for the 4257 * conn_ref to drop to 0. We are already in close, so 4258 * there cannot be any other thread from the top. qprocsoff 4259 * has completed, and service has completed or won't run in 4260 * future. 4261 */ 4262 ASSERT(connp->conn_ref == 1); 4263 4264 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4265 4266 connp->conn_ref--; 4267 ipcl_conn_destroy(connp); 4268 4269 q->q_ptr = WR(q)->q_ptr = NULL; 4270 return (0); 4271 } 4272 4273 /* 4274 * Wapper around putnext() so that ip_rts_request can merely use 4275 * conn_recv. 4276 */ 4277 /*ARGSUSED2*/ 4278 static void 4279 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4280 { 4281 conn_t *connp = (conn_t *)arg1; 4282 4283 putnext(connp->conn_rq, mp); 4284 } 4285 4286 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4287 /* ARGSUSED */ 4288 static void 4289 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4290 { 4291 freemsg(mp); 4292 } 4293 4294 /* 4295 * Called when the module is about to be unloaded 4296 */ 4297 void 4298 ip_ddi_destroy(void) 4299 { 4300 /* This needs to be called before destroying any transports. */ 4301 mutex_enter(&cpu_lock); 4302 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4303 mutex_exit(&cpu_lock); 4304 4305 tnet_fini(); 4306 4307 icmp_ddi_g_destroy(); 4308 rts_ddi_g_destroy(); 4309 udp_ddi_g_destroy(); 4310 sctp_ddi_g_destroy(); 4311 tcp_ddi_g_destroy(); 4312 ilb_ddi_g_destroy(); 4313 dce_g_destroy(); 4314 ipsec_policy_g_destroy(); 4315 ipcl_g_destroy(); 4316 ip_net_g_destroy(); 4317 ip_ire_g_fini(); 4318 inet_minor_destroy(ip_minor_arena_sa); 4319 #if defined(_LP64) 4320 inet_minor_destroy(ip_minor_arena_la); 4321 #endif 4322 4323 #ifdef DEBUG 4324 list_destroy(&ip_thread_list); 4325 rw_destroy(&ip_thread_rwlock); 4326 tsd_destroy(&ip_thread_data); 4327 #endif 4328 4329 netstack_unregister(NS_IP); 4330 } 4331 4332 /* 4333 * First step in cleanup. 4334 */ 4335 /* ARGSUSED */ 4336 static void 4337 ip_stack_shutdown(netstackid_t stackid, void *arg) 4338 { 4339 ip_stack_t *ipst = (ip_stack_t *)arg; 4340 kt_did_t ktid; 4341 4342 #ifdef NS_DEBUG 4343 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4344 #endif 4345 4346 /* 4347 * Perform cleanup for special interfaces (loopback and IPMP). 4348 */ 4349 ip_interface_cleanup(ipst); 4350 4351 /* 4352 * The *_hook_shutdown()s start the process of notifying any 4353 * consumers that things are going away.... nothing is destroyed. 4354 */ 4355 ipv4_hook_shutdown(ipst); 4356 ipv6_hook_shutdown(ipst); 4357 arp_hook_shutdown(ipst); 4358 4359 mutex_enter(&ipst->ips_capab_taskq_lock); 4360 ktid = ipst->ips_capab_taskq_thread->t_did; 4361 ipst->ips_capab_taskq_quit = B_TRUE; 4362 cv_signal(&ipst->ips_capab_taskq_cv); 4363 mutex_exit(&ipst->ips_capab_taskq_lock); 4364 4365 /* 4366 * In rare occurrences, particularly on virtual hardware where CPUs can 4367 * be de-scheduled, the thread that we just signaled will not run until 4368 * after we have gotten through parts of ip_stack_fini. If that happens 4369 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4370 * from cv_wait which no longer exists. 4371 */ 4372 thread_join(ktid); 4373 } 4374 4375 /* 4376 * Free the IP stack instance. 4377 */ 4378 static void 4379 ip_stack_fini(netstackid_t stackid, void *arg) 4380 { 4381 ip_stack_t *ipst = (ip_stack_t *)arg; 4382 int ret; 4383 4384 #ifdef NS_DEBUG 4385 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4386 #endif 4387 /* 4388 * At this point, all of the notifications that the events and 4389 * protocols are going away have been run, meaning that we can 4390 * now set about starting to clean things up. 4391 */ 4392 ipobs_fini(ipst); 4393 ipv4_hook_destroy(ipst); 4394 ipv6_hook_destroy(ipst); 4395 arp_hook_destroy(ipst); 4396 ip_net_destroy(ipst); 4397 4398 ipmp_destroy(ipst); 4399 4400 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4401 ipst->ips_ip_mibkp = NULL; 4402 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4403 ipst->ips_icmp_mibkp = NULL; 4404 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4405 ipst->ips_ip_kstat = NULL; 4406 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4407 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4408 ipst->ips_ip6_kstat = NULL; 4409 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4410 4411 kmem_free(ipst->ips_propinfo_tbl, 4412 ip_propinfo_count * sizeof (mod_prop_info_t)); 4413 ipst->ips_propinfo_tbl = NULL; 4414 4415 dce_stack_destroy(ipst); 4416 ip_mrouter_stack_destroy(ipst); 4417 4418 /* 4419 * Quiesce all of our timers. Note we set the quiesce flags before we 4420 * call untimeout. The slowtimers may actually kick off another instance 4421 * of the non-slow timers. 4422 */ 4423 mutex_enter(&ipst->ips_igmp_timer_lock); 4424 ipst->ips_igmp_timer_quiesce = B_TRUE; 4425 mutex_exit(&ipst->ips_igmp_timer_lock); 4426 4427 mutex_enter(&ipst->ips_mld_timer_lock); 4428 ipst->ips_mld_timer_quiesce = B_TRUE; 4429 mutex_exit(&ipst->ips_mld_timer_lock); 4430 4431 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 4432 ipst->ips_igmp_slowtimeout_quiesce = B_TRUE; 4433 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 4434 4435 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 4436 ipst->ips_mld_slowtimeout_quiesce = B_TRUE; 4437 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 4438 4439 ret = untimeout(ipst->ips_igmp_timeout_id); 4440 if (ret == -1) { 4441 ASSERT(ipst->ips_igmp_timeout_id == 0); 4442 } else { 4443 ASSERT(ipst->ips_igmp_timeout_id != 0); 4444 ipst->ips_igmp_timeout_id = 0; 4445 } 4446 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4447 if (ret == -1) { 4448 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4449 } else { 4450 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4451 ipst->ips_igmp_slowtimeout_id = 0; 4452 } 4453 ret = untimeout(ipst->ips_mld_timeout_id); 4454 if (ret == -1) { 4455 ASSERT(ipst->ips_mld_timeout_id == 0); 4456 } else { 4457 ASSERT(ipst->ips_mld_timeout_id != 0); 4458 ipst->ips_mld_timeout_id = 0; 4459 } 4460 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4461 if (ret == -1) { 4462 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4463 } else { 4464 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4465 ipst->ips_mld_slowtimeout_id = 0; 4466 } 4467 4468 ip_ire_fini(ipst); 4469 ip6_asp_free(ipst); 4470 conn_drain_fini(ipst); 4471 ipcl_destroy(ipst); 4472 4473 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4474 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4475 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4476 ipst->ips_ndp4 = NULL; 4477 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4478 ipst->ips_ndp6 = NULL; 4479 4480 if (ipst->ips_loopback_ksp != NULL) { 4481 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4482 ipst->ips_loopback_ksp = NULL; 4483 } 4484 4485 mutex_destroy(&ipst->ips_capab_taskq_lock); 4486 cv_destroy(&ipst->ips_capab_taskq_cv); 4487 4488 rw_destroy(&ipst->ips_srcid_lock); 4489 4490 mutex_destroy(&ipst->ips_ip_mi_lock); 4491 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4492 4493 mutex_destroy(&ipst->ips_igmp_timer_lock); 4494 mutex_destroy(&ipst->ips_mld_timer_lock); 4495 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4496 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4497 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4498 rw_destroy(&ipst->ips_ill_g_lock); 4499 4500 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4501 ipst->ips_phyint_g_list = NULL; 4502 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4503 ipst->ips_ill_g_heads = NULL; 4504 4505 ldi_ident_release(ipst->ips_ldi_ident); 4506 kmem_free(ipst, sizeof (*ipst)); 4507 } 4508 4509 /* 4510 * This function is called from the TSD destructor, and is used to debug 4511 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4512 * details. 4513 */ 4514 static void 4515 ip_thread_exit(void *phash) 4516 { 4517 th_hash_t *thh = phash; 4518 4519 rw_enter(&ip_thread_rwlock, RW_WRITER); 4520 list_remove(&ip_thread_list, thh); 4521 rw_exit(&ip_thread_rwlock); 4522 mod_hash_destroy_hash(thh->thh_hash); 4523 kmem_free(thh, sizeof (*thh)); 4524 } 4525 4526 /* 4527 * Called when the IP kernel module is loaded into the kernel 4528 */ 4529 void 4530 ip_ddi_init(void) 4531 { 4532 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4533 4534 /* 4535 * For IP and TCP the minor numbers should start from 2 since we have 4 4536 * initial devices: ip, ip6, tcp, tcp6. 4537 */ 4538 /* 4539 * If this is a 64-bit kernel, then create two separate arenas - 4540 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4541 * other for socket apps in the range 2^^18 through 2^^32-1. 4542 */ 4543 ip_minor_arena_la = NULL; 4544 ip_minor_arena_sa = NULL; 4545 #if defined(_LP64) 4546 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4547 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4548 cmn_err(CE_PANIC, 4549 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4550 } 4551 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4552 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4553 cmn_err(CE_PANIC, 4554 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4555 } 4556 #else 4557 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4558 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4559 cmn_err(CE_PANIC, 4560 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4561 } 4562 #endif 4563 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4564 4565 ipcl_g_init(); 4566 ip_ire_g_init(); 4567 ip_net_g_init(); 4568 4569 #ifdef DEBUG 4570 tsd_create(&ip_thread_data, ip_thread_exit); 4571 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4572 list_create(&ip_thread_list, sizeof (th_hash_t), 4573 offsetof(th_hash_t, thh_link)); 4574 #endif 4575 ipsec_policy_g_init(); 4576 tcp_ddi_g_init(); 4577 sctp_ddi_g_init(); 4578 dce_g_init(); 4579 4580 /* 4581 * We want to be informed each time a stack is created or 4582 * destroyed in the kernel, so we can maintain the 4583 * set of udp_stack_t's. 4584 */ 4585 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4586 ip_stack_fini); 4587 4588 tnet_init(); 4589 4590 udp_ddi_g_init(); 4591 rts_ddi_g_init(); 4592 icmp_ddi_g_init(); 4593 ilb_ddi_g_init(); 4594 4595 /* This needs to be called after all transports are initialized. */ 4596 mutex_enter(&cpu_lock); 4597 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4598 mutex_exit(&cpu_lock); 4599 } 4600 4601 /* 4602 * Initialize the IP stack instance. 4603 */ 4604 static void * 4605 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4606 { 4607 ip_stack_t *ipst; 4608 size_t arrsz; 4609 major_t major; 4610 4611 #ifdef NS_DEBUG 4612 printf("ip_stack_init(stack %d)\n", stackid); 4613 #endif 4614 4615 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4616 ipst->ips_netstack = ns; 4617 4618 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4619 KM_SLEEP); 4620 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4621 KM_SLEEP); 4622 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4623 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4624 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4625 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4626 4627 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4628 ipst->ips_igmp_deferred_next = INFINITY; 4629 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4630 ipst->ips_mld_deferred_next = INFINITY; 4631 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4632 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4633 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4634 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4635 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4636 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4637 4638 ipcl_init(ipst); 4639 ip_ire_init(ipst); 4640 ip6_asp_init(ipst); 4641 ipif_init(ipst); 4642 conn_drain_init(ipst); 4643 ip_mrouter_stack_init(ipst); 4644 dce_stack_init(ipst); 4645 4646 ipst->ips_ip_multirt_log_interval = 1000; 4647 4648 ipst->ips_ill_index = 1; 4649 4650 ipst->ips_saved_ip_forwarding = -1; 4651 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4652 4653 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4654 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4655 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4656 4657 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4658 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4659 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4660 ipst->ips_ip6_kstat = 4661 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4662 4663 ipst->ips_ip_src_id = 1; 4664 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4665 4666 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4667 4668 ip_net_init(ipst, ns); 4669 ipv4_hook_init(ipst); 4670 ipv6_hook_init(ipst); 4671 arp_hook_init(ipst); 4672 ipmp_init(ipst); 4673 ipobs_init(ipst); 4674 4675 /* 4676 * Create the taskq dispatcher thread and initialize related stuff. 4677 */ 4678 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4679 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4680 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4681 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4682 4683 major = mod_name_to_major(INET_NAME); 4684 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4685 return (ipst); 4686 } 4687 4688 /* 4689 * Allocate and initialize a DLPI template of the specified length. (May be 4690 * called as writer.) 4691 */ 4692 mblk_t * 4693 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4694 { 4695 mblk_t *mp; 4696 4697 mp = allocb(len, BPRI_MED); 4698 if (!mp) 4699 return (NULL); 4700 4701 /* 4702 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4703 * of which we don't seem to use) are sent with M_PCPROTO, and 4704 * that other DLPI are M_PROTO. 4705 */ 4706 if (prim == DL_INFO_REQ) { 4707 mp->b_datap->db_type = M_PCPROTO; 4708 } else { 4709 mp->b_datap->db_type = M_PROTO; 4710 } 4711 4712 mp->b_wptr = mp->b_rptr + len; 4713 bzero(mp->b_rptr, len); 4714 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4715 return (mp); 4716 } 4717 4718 /* 4719 * Allocate and initialize a DLPI notification. (May be called as writer.) 4720 */ 4721 mblk_t * 4722 ip_dlnotify_alloc(uint_t notification, uint_t data) 4723 { 4724 dl_notify_ind_t *notifyp; 4725 mblk_t *mp; 4726 4727 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4728 return (NULL); 4729 4730 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4731 notifyp->dl_notification = notification; 4732 notifyp->dl_data = data; 4733 return (mp); 4734 } 4735 4736 mblk_t * 4737 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4738 { 4739 dl_notify_ind_t *notifyp; 4740 mblk_t *mp; 4741 4742 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4743 return (NULL); 4744 4745 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4746 notifyp->dl_notification = notification; 4747 notifyp->dl_data1 = data1; 4748 notifyp->dl_data2 = data2; 4749 return (mp); 4750 } 4751 4752 /* 4753 * Debug formatting routine. Returns a character string representation of the 4754 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4755 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4756 * 4757 * Once the ndd table-printing interfaces are removed, this can be changed to 4758 * standard dotted-decimal form. 4759 */ 4760 char * 4761 ip_dot_addr(ipaddr_t addr, char *buf) 4762 { 4763 uint8_t *ap = (uint8_t *)&addr; 4764 4765 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4766 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4767 return (buf); 4768 } 4769 4770 /* 4771 * Write the given MAC address as a printable string in the usual colon- 4772 * separated format. 4773 */ 4774 const char * 4775 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4776 { 4777 char *bp; 4778 4779 if (alen == 0 || buflen < 4) 4780 return ("?"); 4781 bp = buf; 4782 for (;;) { 4783 /* 4784 * If there are more MAC address bytes available, but we won't 4785 * have any room to print them, then add "..." to the string 4786 * instead. See below for the 'magic number' explanation. 4787 */ 4788 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4789 (void) strcpy(bp, "..."); 4790 break; 4791 } 4792 (void) sprintf(bp, "%02x", *addr++); 4793 bp += 2; 4794 if (--alen == 0) 4795 break; 4796 *bp++ = ':'; 4797 buflen -= 3; 4798 /* 4799 * At this point, based on the first 'if' statement above, 4800 * either alen == 1 and buflen >= 3, or alen > 1 and 4801 * buflen >= 4. The first case leaves room for the final "xx" 4802 * number and trailing NUL byte. The second leaves room for at 4803 * least "...". Thus the apparently 'magic' numbers chosen for 4804 * that statement. 4805 */ 4806 } 4807 return (buf); 4808 } 4809 4810 /* 4811 * Called when it is conceptually a ULP that would sent the packet 4812 * e.g., port unreachable and protocol unreachable. Check that the packet 4813 * would have passed the IPsec global policy before sending the error. 4814 * 4815 * Send an ICMP error after patching up the packet appropriately. 4816 * Uses ip_drop_input and bumps the appropriate MIB. 4817 */ 4818 void 4819 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4820 ip_recv_attr_t *ira) 4821 { 4822 ipha_t *ipha; 4823 boolean_t secure; 4824 ill_t *ill = ira->ira_ill; 4825 ip_stack_t *ipst = ill->ill_ipst; 4826 netstack_t *ns = ipst->ips_netstack; 4827 ipsec_stack_t *ipss = ns->netstack_ipsec; 4828 4829 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4830 4831 /* 4832 * We are generating an icmp error for some inbound packet. 4833 * Called from all ip_fanout_(udp, tcp, proto) functions. 4834 * Before we generate an error, check with global policy 4835 * to see whether this is allowed to enter the system. As 4836 * there is no "conn", we are checking with global policy. 4837 */ 4838 ipha = (ipha_t *)mp->b_rptr; 4839 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4840 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4841 if (mp == NULL) 4842 return; 4843 } 4844 4845 /* We never send errors for protocols that we do implement */ 4846 if (ira->ira_protocol == IPPROTO_ICMP || 4847 ira->ira_protocol == IPPROTO_IGMP) { 4848 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4849 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4850 freemsg(mp); 4851 return; 4852 } 4853 /* 4854 * Have to correct checksum since 4855 * the packet might have been 4856 * fragmented and the reassembly code in ip_rput 4857 * does not restore the IP checksum. 4858 */ 4859 ipha->ipha_hdr_checksum = 0; 4860 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4861 4862 switch (icmp_type) { 4863 case ICMP_DEST_UNREACHABLE: 4864 switch (icmp_code) { 4865 case ICMP_PROTOCOL_UNREACHABLE: 4866 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4867 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4868 break; 4869 case ICMP_PORT_UNREACHABLE: 4870 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4871 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4872 break; 4873 } 4874 4875 icmp_unreachable(mp, icmp_code, ira); 4876 break; 4877 default: 4878 #ifdef DEBUG 4879 panic("ip_fanout_send_icmp_v4: wrong type"); 4880 /*NOTREACHED*/ 4881 #else 4882 freemsg(mp); 4883 break; 4884 #endif 4885 } 4886 } 4887 4888 /* 4889 * Used to send an ICMP error message when a packet is received for 4890 * a protocol that is not supported. The mblk passed as argument 4891 * is consumed by this function. 4892 */ 4893 void 4894 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4895 { 4896 ipha_t *ipha; 4897 4898 ipha = (ipha_t *)mp->b_rptr; 4899 if (ira->ira_flags & IRAF_IS_IPV4) { 4900 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4901 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4902 ICMP_PROTOCOL_UNREACHABLE, ira); 4903 } else { 4904 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4905 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4906 ICMP6_PARAMPROB_NEXTHEADER, ira); 4907 } 4908 } 4909 4910 /* 4911 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4912 * Handles IPv4 and IPv6. 4913 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4914 * Caller is responsible for dropping references to the conn. 4915 */ 4916 void 4917 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4918 ip_recv_attr_t *ira) 4919 { 4920 ill_t *ill = ira->ira_ill; 4921 ip_stack_t *ipst = ill->ill_ipst; 4922 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4923 boolean_t secure; 4924 uint_t protocol = ira->ira_protocol; 4925 iaflags_t iraflags = ira->ira_flags; 4926 queue_t *rq; 4927 4928 secure = iraflags & IRAF_IPSEC_SECURE; 4929 4930 rq = connp->conn_rq; 4931 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4932 switch (protocol) { 4933 case IPPROTO_ICMPV6: 4934 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4935 break; 4936 case IPPROTO_ICMP: 4937 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4938 break; 4939 default: 4940 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4941 break; 4942 } 4943 freemsg(mp); 4944 return; 4945 } 4946 4947 ASSERT(!(IPCL_IS_IPTUN(connp))); 4948 4949 if (((iraflags & IRAF_IS_IPV4) ? 4950 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4951 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4952 secure) { 4953 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4954 ip6h, ira); 4955 if (mp == NULL) { 4956 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4957 /* Note that mp is NULL */ 4958 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4959 return; 4960 } 4961 } 4962 4963 if (iraflags & IRAF_ICMP_ERROR) { 4964 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4965 } else { 4966 ill_t *rill = ira->ira_rill; 4967 4968 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4969 ira->ira_ill = ira->ira_rill = NULL; 4970 /* Send it upstream */ 4971 (connp->conn_recv)(connp, mp, NULL, ira); 4972 ira->ira_ill = ill; 4973 ira->ira_rill = rill; 4974 } 4975 } 4976 4977 /* 4978 * Handle protocols with which IP is less intimate. There 4979 * can be more than one stream bound to a particular 4980 * protocol. When this is the case, normally each one gets a copy 4981 * of any incoming packets. 4982 * 4983 * IPsec NOTE : 4984 * 4985 * Don't allow a secure packet going up a non-secure connection. 4986 * We don't allow this because 4987 * 4988 * 1) Reply might go out in clear which will be dropped at 4989 * the sending side. 4990 * 2) If the reply goes out in clear it will give the 4991 * adversary enough information for getting the key in 4992 * most of the cases. 4993 * 4994 * Moreover getting a secure packet when we expect clear 4995 * implies that SA's were added without checking for 4996 * policy on both ends. This should not happen once ISAKMP 4997 * is used to negotiate SAs as SAs will be added only after 4998 * verifying the policy. 4999 * 5000 * Zones notes: 5001 * Earlier in ip_input on a system with multiple shared-IP zones we 5002 * duplicate the multicast and broadcast packets and send them up 5003 * with each explicit zoneid that exists on that ill. 5004 * This means that here we can match the zoneid with SO_ALLZONES being special. 5005 */ 5006 void 5007 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5008 { 5009 mblk_t *mp1; 5010 ipaddr_t laddr; 5011 conn_t *connp, *first_connp, *next_connp; 5012 connf_t *connfp; 5013 ill_t *ill = ira->ira_ill; 5014 ip_stack_t *ipst = ill->ill_ipst; 5015 5016 laddr = ipha->ipha_dst; 5017 5018 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5019 mutex_enter(&connfp->connf_lock); 5020 connp = connfp->connf_head; 5021 for (connp = connfp->connf_head; connp != NULL; 5022 connp = connp->conn_next) { 5023 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5024 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5025 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5026 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5027 break; 5028 } 5029 } 5030 5031 if (connp == NULL) { 5032 /* 5033 * No one bound to these addresses. Is 5034 * there a client that wants all 5035 * unclaimed datagrams? 5036 */ 5037 mutex_exit(&connfp->connf_lock); 5038 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5039 ICMP_PROTOCOL_UNREACHABLE, ira); 5040 return; 5041 } 5042 5043 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5044 5045 CONN_INC_REF(connp); 5046 first_connp = connp; 5047 connp = connp->conn_next; 5048 5049 for (;;) { 5050 while (connp != NULL) { 5051 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5052 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5053 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5054 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5055 ira, connp))) 5056 break; 5057 connp = connp->conn_next; 5058 } 5059 5060 if (connp == NULL) { 5061 /* No more interested clients */ 5062 connp = first_connp; 5063 break; 5064 } 5065 if (((mp1 = dupmsg(mp)) == NULL) && 5066 ((mp1 = copymsg(mp)) == NULL)) { 5067 /* Memory allocation failed */ 5068 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5069 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5070 connp = first_connp; 5071 break; 5072 } 5073 5074 CONN_INC_REF(connp); 5075 mutex_exit(&connfp->connf_lock); 5076 5077 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5078 ira); 5079 5080 mutex_enter(&connfp->connf_lock); 5081 /* Follow the next pointer before releasing the conn. */ 5082 next_connp = connp->conn_next; 5083 CONN_DEC_REF(connp); 5084 connp = next_connp; 5085 } 5086 5087 /* Last one. Send it upstream. */ 5088 mutex_exit(&connfp->connf_lock); 5089 5090 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5091 5092 CONN_DEC_REF(connp); 5093 } 5094 5095 /* 5096 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5097 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5098 * is not consumed. 5099 * 5100 * One of three things can happen, all of which affect the passed-in mblk: 5101 * 5102 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5103 * 5104 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5105 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5106 * 5107 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5108 */ 5109 mblk_t * 5110 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5111 { 5112 int shift, plen, iph_len; 5113 ipha_t *ipha; 5114 udpha_t *udpha; 5115 uint32_t *spi; 5116 uint32_t esp_ports; 5117 uint8_t *orptr; 5118 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5119 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5120 5121 ipha = (ipha_t *)mp->b_rptr; 5122 iph_len = ira->ira_ip_hdr_length; 5123 plen = ira->ira_pktlen; 5124 5125 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5126 /* 5127 * Most likely a keepalive for the benefit of an intervening 5128 * NAT. These aren't for us, per se, so drop it. 5129 * 5130 * RFC 3947/8 doesn't say for sure what to do for 2-3 5131 * byte packets (keepalives are 1-byte), but we'll drop them 5132 * also. 5133 */ 5134 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5135 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5136 return (NULL); 5137 } 5138 5139 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5140 /* might as well pull it all up - it might be ESP. */ 5141 if (!pullupmsg(mp, -1)) { 5142 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5143 DROPPER(ipss, ipds_esp_nomem), 5144 &ipss->ipsec_dropper); 5145 return (NULL); 5146 } 5147 5148 ipha = (ipha_t *)mp->b_rptr; 5149 } 5150 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5151 if (*spi == 0) { 5152 /* UDP packet - remove 0-spi. */ 5153 shift = sizeof (uint32_t); 5154 } else { 5155 /* ESP-in-UDP packet - reduce to ESP. */ 5156 ipha->ipha_protocol = IPPROTO_ESP; 5157 shift = sizeof (udpha_t); 5158 } 5159 5160 /* Fix IP header */ 5161 ira->ira_pktlen = (plen - shift); 5162 ipha->ipha_length = htons(ira->ira_pktlen); 5163 ipha->ipha_hdr_checksum = 0; 5164 5165 orptr = mp->b_rptr; 5166 mp->b_rptr += shift; 5167 5168 udpha = (udpha_t *)(orptr + iph_len); 5169 if (*spi == 0) { 5170 ASSERT((uint8_t *)ipha == orptr); 5171 udpha->uha_length = htons(plen - shift - iph_len); 5172 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5173 esp_ports = 0; 5174 } else { 5175 esp_ports = *((uint32_t *)udpha); 5176 ASSERT(esp_ports != 0); 5177 } 5178 ovbcopy(orptr, orptr + shift, iph_len); 5179 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5180 ipha = (ipha_t *)(orptr + shift); 5181 5182 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5183 ira->ira_esp_udp_ports = esp_ports; 5184 ip_fanout_v4(mp, ipha, ira); 5185 return (NULL); 5186 } 5187 return (mp); 5188 } 5189 5190 /* 5191 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5192 * Handles IPv4 and IPv6. 5193 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5194 * Caller is responsible for dropping references to the conn. 5195 */ 5196 void 5197 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5198 ip_recv_attr_t *ira) 5199 { 5200 ill_t *ill = ira->ira_ill; 5201 ip_stack_t *ipst = ill->ill_ipst; 5202 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5203 boolean_t secure; 5204 iaflags_t iraflags = ira->ira_flags; 5205 5206 secure = iraflags & IRAF_IPSEC_SECURE; 5207 5208 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5209 !canputnext(connp->conn_rq)) { 5210 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5211 freemsg(mp); 5212 return; 5213 } 5214 5215 if (((iraflags & IRAF_IS_IPV4) ? 5216 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5217 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5218 secure) { 5219 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5220 ip6h, ira); 5221 if (mp == NULL) { 5222 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5223 /* Note that mp is NULL */ 5224 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5225 return; 5226 } 5227 } 5228 5229 /* 5230 * Since this code is not used for UDP unicast we don't need a NAT_T 5231 * check. Only ip_fanout_v4 has that check. 5232 */ 5233 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5234 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5235 } else { 5236 ill_t *rill = ira->ira_rill; 5237 5238 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5239 ira->ira_ill = ira->ira_rill = NULL; 5240 /* Send it upstream */ 5241 (connp->conn_recv)(connp, mp, NULL, ira); 5242 ira->ira_ill = ill; 5243 ira->ira_rill = rill; 5244 } 5245 } 5246 5247 /* 5248 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5249 * (Unicast fanout is handled in ip_input_v4.) 5250 * 5251 * If SO_REUSEADDR is set all multicast and broadcast packets 5252 * will be delivered to all conns bound to the same port. 5253 * 5254 * If there is at least one matching AF_INET receiver, then we will 5255 * ignore any AF_INET6 receivers. 5256 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5257 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5258 * packets. 5259 * 5260 * Zones notes: 5261 * Earlier in ip_input on a system with multiple shared-IP zones we 5262 * duplicate the multicast and broadcast packets and send them up 5263 * with each explicit zoneid that exists on that ill. 5264 * This means that here we can match the zoneid with SO_ALLZONES being special. 5265 */ 5266 void 5267 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5268 ip_recv_attr_t *ira) 5269 { 5270 ipaddr_t laddr; 5271 in6_addr_t v6faddr; 5272 conn_t *connp; 5273 connf_t *connfp; 5274 ipaddr_t faddr; 5275 ill_t *ill = ira->ira_ill; 5276 ip_stack_t *ipst = ill->ill_ipst; 5277 5278 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5279 5280 laddr = ipha->ipha_dst; 5281 faddr = ipha->ipha_src; 5282 5283 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5284 mutex_enter(&connfp->connf_lock); 5285 connp = connfp->connf_head; 5286 5287 /* 5288 * If SO_REUSEADDR has been set on the first we send the 5289 * packet to all clients that have joined the group and 5290 * match the port. 5291 */ 5292 while (connp != NULL) { 5293 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5294 conn_wantpacket(connp, ira, ipha) && 5295 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5296 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5297 break; 5298 connp = connp->conn_next; 5299 } 5300 5301 if (connp == NULL) 5302 goto notfound; 5303 5304 CONN_INC_REF(connp); 5305 5306 if (connp->conn_reuseaddr) { 5307 conn_t *first_connp = connp; 5308 conn_t *next_connp; 5309 mblk_t *mp1; 5310 5311 connp = connp->conn_next; 5312 for (;;) { 5313 while (connp != NULL) { 5314 if (IPCL_UDP_MATCH(connp, lport, laddr, 5315 fport, faddr) && 5316 conn_wantpacket(connp, ira, ipha) && 5317 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5318 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5319 ira, connp))) 5320 break; 5321 connp = connp->conn_next; 5322 } 5323 if (connp == NULL) { 5324 /* No more interested clients */ 5325 connp = first_connp; 5326 break; 5327 } 5328 if (((mp1 = dupmsg(mp)) == NULL) && 5329 ((mp1 = copymsg(mp)) == NULL)) { 5330 /* Memory allocation failed */ 5331 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5332 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5333 connp = first_connp; 5334 break; 5335 } 5336 CONN_INC_REF(connp); 5337 mutex_exit(&connfp->connf_lock); 5338 5339 IP_STAT(ipst, ip_udp_fanmb); 5340 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5341 NULL, ira); 5342 mutex_enter(&connfp->connf_lock); 5343 /* Follow the next pointer before releasing the conn */ 5344 next_connp = connp->conn_next; 5345 CONN_DEC_REF(connp); 5346 connp = next_connp; 5347 } 5348 } 5349 5350 /* Last one. Send it upstream. */ 5351 mutex_exit(&connfp->connf_lock); 5352 IP_STAT(ipst, ip_udp_fanmb); 5353 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5354 CONN_DEC_REF(connp); 5355 return; 5356 5357 notfound: 5358 mutex_exit(&connfp->connf_lock); 5359 /* 5360 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5361 * have already been matched above, since they live in the IPv4 5362 * fanout tables. This implies we only need to 5363 * check for IPv6 in6addr_any endpoints here. 5364 * Thus we compare using ipv6_all_zeros instead of the destination 5365 * address, except for the multicast group membership lookup which 5366 * uses the IPv4 destination. 5367 */ 5368 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5369 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5370 mutex_enter(&connfp->connf_lock); 5371 connp = connfp->connf_head; 5372 /* 5373 * IPv4 multicast packet being delivered to an AF_INET6 5374 * in6addr_any endpoint. 5375 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5376 * and not conn_wantpacket_v6() since any multicast membership is 5377 * for an IPv4-mapped multicast address. 5378 */ 5379 while (connp != NULL) { 5380 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5381 fport, v6faddr) && 5382 conn_wantpacket(connp, ira, ipha) && 5383 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5384 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5385 break; 5386 connp = connp->conn_next; 5387 } 5388 5389 if (connp == NULL) { 5390 /* 5391 * No one bound to this port. Is 5392 * there a client that wants all 5393 * unclaimed datagrams? 5394 */ 5395 mutex_exit(&connfp->connf_lock); 5396 5397 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5398 NULL) { 5399 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5400 ip_fanout_proto_v4(mp, ipha, ira); 5401 } else { 5402 /* 5403 * We used to attempt to send an icmp error here, but 5404 * since this is known to be a multicast packet 5405 * and we don't send icmp errors in response to 5406 * multicast, just drop the packet and give up sooner. 5407 */ 5408 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5409 freemsg(mp); 5410 } 5411 return; 5412 } 5413 CONN_INC_REF(connp); 5414 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5415 5416 /* 5417 * If SO_REUSEADDR has been set on the first we send the 5418 * packet to all clients that have joined the group and 5419 * match the port. 5420 */ 5421 if (connp->conn_reuseaddr) { 5422 conn_t *first_connp = connp; 5423 conn_t *next_connp; 5424 mblk_t *mp1; 5425 5426 connp = connp->conn_next; 5427 for (;;) { 5428 while (connp != NULL) { 5429 if (IPCL_UDP_MATCH_V6(connp, lport, 5430 ipv6_all_zeros, fport, v6faddr) && 5431 conn_wantpacket(connp, ira, ipha) && 5432 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5433 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5434 ira, connp))) 5435 break; 5436 connp = connp->conn_next; 5437 } 5438 if (connp == NULL) { 5439 /* No more interested clients */ 5440 connp = first_connp; 5441 break; 5442 } 5443 if (((mp1 = dupmsg(mp)) == NULL) && 5444 ((mp1 = copymsg(mp)) == NULL)) { 5445 /* Memory allocation failed */ 5446 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5447 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5448 connp = first_connp; 5449 break; 5450 } 5451 CONN_INC_REF(connp); 5452 mutex_exit(&connfp->connf_lock); 5453 5454 IP_STAT(ipst, ip_udp_fanmb); 5455 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5456 NULL, ira); 5457 mutex_enter(&connfp->connf_lock); 5458 /* Follow the next pointer before releasing the conn */ 5459 next_connp = connp->conn_next; 5460 CONN_DEC_REF(connp); 5461 connp = next_connp; 5462 } 5463 } 5464 5465 /* Last one. Send it upstream. */ 5466 mutex_exit(&connfp->connf_lock); 5467 IP_STAT(ipst, ip_udp_fanmb); 5468 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5469 CONN_DEC_REF(connp); 5470 } 5471 5472 /* 5473 * Split an incoming packet's IPv4 options into the label and the other options. 5474 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5475 * clearing out any leftover label or options. 5476 * Otherwise it just makes ipp point into the packet. 5477 * 5478 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5479 */ 5480 int 5481 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5482 { 5483 uchar_t *opt; 5484 uint32_t totallen; 5485 uint32_t optval; 5486 uint32_t optlen; 5487 5488 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5489 ipp->ipp_hoplimit = ipha->ipha_ttl; 5490 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5491 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5492 5493 /* 5494 * Get length (in 4 byte octets) of IP header options. 5495 */ 5496 totallen = ipha->ipha_version_and_hdr_length - 5497 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5498 5499 if (totallen == 0) { 5500 if (!allocate) 5501 return (0); 5502 5503 /* Clear out anything from a previous packet */ 5504 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5505 kmem_free(ipp->ipp_ipv4_options, 5506 ipp->ipp_ipv4_options_len); 5507 ipp->ipp_ipv4_options = NULL; 5508 ipp->ipp_ipv4_options_len = 0; 5509 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5510 } 5511 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5512 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5513 ipp->ipp_label_v4 = NULL; 5514 ipp->ipp_label_len_v4 = 0; 5515 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5516 } 5517 return (0); 5518 } 5519 5520 totallen <<= 2; 5521 opt = (uchar_t *)&ipha[1]; 5522 if (!is_system_labeled()) { 5523 5524 copyall: 5525 if (!allocate) { 5526 if (totallen != 0) { 5527 ipp->ipp_ipv4_options = opt; 5528 ipp->ipp_ipv4_options_len = totallen; 5529 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5530 } 5531 return (0); 5532 } 5533 /* Just copy all of options */ 5534 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5535 if (totallen == ipp->ipp_ipv4_options_len) { 5536 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5537 return (0); 5538 } 5539 kmem_free(ipp->ipp_ipv4_options, 5540 ipp->ipp_ipv4_options_len); 5541 ipp->ipp_ipv4_options = NULL; 5542 ipp->ipp_ipv4_options_len = 0; 5543 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5544 } 5545 if (totallen == 0) 5546 return (0); 5547 5548 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5549 if (ipp->ipp_ipv4_options == NULL) 5550 return (ENOMEM); 5551 ipp->ipp_ipv4_options_len = totallen; 5552 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5553 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5554 return (0); 5555 } 5556 5557 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5558 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5559 ipp->ipp_label_v4 = NULL; 5560 ipp->ipp_label_len_v4 = 0; 5561 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5562 } 5563 5564 /* 5565 * Search for CIPSO option. 5566 * We assume CIPSO is first in options if it is present. 5567 * If it isn't, then ipp_opt_ipv4_options will not include the options 5568 * prior to the CIPSO option. 5569 */ 5570 while (totallen != 0) { 5571 switch (optval = opt[IPOPT_OPTVAL]) { 5572 case IPOPT_EOL: 5573 return (0); 5574 case IPOPT_NOP: 5575 optlen = 1; 5576 break; 5577 default: 5578 if (totallen <= IPOPT_OLEN) 5579 return (EINVAL); 5580 optlen = opt[IPOPT_OLEN]; 5581 if (optlen < 2) 5582 return (EINVAL); 5583 } 5584 if (optlen > totallen) 5585 return (EINVAL); 5586 5587 switch (optval) { 5588 case IPOPT_COMSEC: 5589 if (!allocate) { 5590 ipp->ipp_label_v4 = opt; 5591 ipp->ipp_label_len_v4 = optlen; 5592 ipp->ipp_fields |= IPPF_LABEL_V4; 5593 } else { 5594 ipp->ipp_label_v4 = kmem_alloc(optlen, 5595 KM_NOSLEEP); 5596 if (ipp->ipp_label_v4 == NULL) 5597 return (ENOMEM); 5598 ipp->ipp_label_len_v4 = optlen; 5599 ipp->ipp_fields |= IPPF_LABEL_V4; 5600 bcopy(opt, ipp->ipp_label_v4, optlen); 5601 } 5602 totallen -= optlen; 5603 opt += optlen; 5604 5605 /* Skip padding bytes until we get to a multiple of 4 */ 5606 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5607 totallen--; 5608 opt++; 5609 } 5610 /* Remaining as ipp_ipv4_options */ 5611 goto copyall; 5612 } 5613 totallen -= optlen; 5614 opt += optlen; 5615 } 5616 /* No CIPSO found; return everything as ipp_ipv4_options */ 5617 totallen = ipha->ipha_version_and_hdr_length - 5618 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5619 totallen <<= 2; 5620 opt = (uchar_t *)&ipha[1]; 5621 goto copyall; 5622 } 5623 5624 /* 5625 * Efficient versions of lookup for an IRE when we only 5626 * match the address. 5627 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5628 * Does not handle multicast addresses. 5629 */ 5630 uint_t 5631 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5632 { 5633 ire_t *ire; 5634 uint_t result; 5635 5636 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5637 ASSERT(ire != NULL); 5638 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5639 result = IRE_NOROUTE; 5640 else 5641 result = ire->ire_type; 5642 ire_refrele(ire); 5643 return (result); 5644 } 5645 5646 /* 5647 * Efficient versions of lookup for an IRE when we only 5648 * match the address. 5649 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5650 * Does not handle multicast addresses. 5651 */ 5652 uint_t 5653 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5654 { 5655 ire_t *ire; 5656 uint_t result; 5657 5658 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5659 ASSERT(ire != NULL); 5660 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5661 result = IRE_NOROUTE; 5662 else 5663 result = ire->ire_type; 5664 ire_refrele(ire); 5665 return (result); 5666 } 5667 5668 /* 5669 * Nobody should be sending 5670 * packets up this stream 5671 */ 5672 static int 5673 ip_lrput(queue_t *q, mblk_t *mp) 5674 { 5675 switch (mp->b_datap->db_type) { 5676 case M_FLUSH: 5677 /* Turn around */ 5678 if (*mp->b_rptr & FLUSHW) { 5679 *mp->b_rptr &= ~FLUSHR; 5680 qreply(q, mp); 5681 return (0); 5682 } 5683 break; 5684 } 5685 freemsg(mp); 5686 return (0); 5687 } 5688 5689 /* Nobody should be sending packets down this stream */ 5690 /* ARGSUSED */ 5691 int 5692 ip_lwput(queue_t *q, mblk_t *mp) 5693 { 5694 freemsg(mp); 5695 return (0); 5696 } 5697 5698 /* 5699 * Move the first hop in any source route to ipha_dst and remove that part of 5700 * the source route. Called by other protocols. Errors in option formatting 5701 * are ignored - will be handled by ip_output_options. Return the final 5702 * destination (either ipha_dst or the last entry in a source route.) 5703 */ 5704 ipaddr_t 5705 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5706 { 5707 ipoptp_t opts; 5708 uchar_t *opt; 5709 uint8_t optval; 5710 uint8_t optlen; 5711 ipaddr_t dst; 5712 int i; 5713 ip_stack_t *ipst = ns->netstack_ip; 5714 5715 ip2dbg(("ip_massage_options\n")); 5716 dst = ipha->ipha_dst; 5717 for (optval = ipoptp_first(&opts, ipha); 5718 optval != IPOPT_EOL; 5719 optval = ipoptp_next(&opts)) { 5720 opt = opts.ipoptp_cur; 5721 switch (optval) { 5722 uint8_t off; 5723 case IPOPT_SSRR: 5724 case IPOPT_LSRR: 5725 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5726 ip1dbg(("ip_massage_options: bad src route\n")); 5727 break; 5728 } 5729 optlen = opts.ipoptp_len; 5730 off = opt[IPOPT_OFFSET]; 5731 off--; 5732 redo_srr: 5733 if (optlen < IP_ADDR_LEN || 5734 off > optlen - IP_ADDR_LEN) { 5735 /* End of source route */ 5736 ip1dbg(("ip_massage_options: end of SR\n")); 5737 break; 5738 } 5739 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5740 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5741 ntohl(dst))); 5742 /* 5743 * Check if our address is present more than 5744 * once as consecutive hops in source route. 5745 * XXX verify per-interface ip_forwarding 5746 * for source route? 5747 */ 5748 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5749 off += IP_ADDR_LEN; 5750 goto redo_srr; 5751 } 5752 if (dst == htonl(INADDR_LOOPBACK)) { 5753 ip1dbg(("ip_massage_options: loopback addr in " 5754 "source route!\n")); 5755 break; 5756 } 5757 /* 5758 * Update ipha_dst to be the first hop and remove the 5759 * first hop from the source route (by overwriting 5760 * part of the option with NOP options). 5761 */ 5762 ipha->ipha_dst = dst; 5763 /* Put the last entry in dst */ 5764 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5765 3; 5766 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5767 5768 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5769 ntohl(dst))); 5770 /* Move down and overwrite */ 5771 opt[IP_ADDR_LEN] = opt[0]; 5772 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5773 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5774 for (i = 0; i < IP_ADDR_LEN; i++) 5775 opt[i] = IPOPT_NOP; 5776 break; 5777 } 5778 } 5779 return (dst); 5780 } 5781 5782 /* 5783 * Return the network mask 5784 * associated with the specified address. 5785 */ 5786 ipaddr_t 5787 ip_net_mask(ipaddr_t addr) 5788 { 5789 uchar_t *up = (uchar_t *)&addr; 5790 ipaddr_t mask = 0; 5791 uchar_t *maskp = (uchar_t *)&mask; 5792 5793 #if defined(__i386) || defined(__amd64) 5794 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5795 #endif 5796 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5797 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5798 #endif 5799 if (CLASSD(addr)) { 5800 maskp[0] = 0xF0; 5801 return (mask); 5802 } 5803 5804 /* We assume Class E default netmask to be 32 */ 5805 if (CLASSE(addr)) 5806 return (0xffffffffU); 5807 5808 if (addr == 0) 5809 return (0); 5810 maskp[0] = 0xFF; 5811 if ((up[0] & 0x80) == 0) 5812 return (mask); 5813 5814 maskp[1] = 0xFF; 5815 if ((up[0] & 0xC0) == 0x80) 5816 return (mask); 5817 5818 maskp[2] = 0xFF; 5819 if ((up[0] & 0xE0) == 0xC0) 5820 return (mask); 5821 5822 /* Otherwise return no mask */ 5823 return ((ipaddr_t)0); 5824 } 5825 5826 /* Name/Value Table Lookup Routine */ 5827 char * 5828 ip_nv_lookup(nv_t *nv, int value) 5829 { 5830 if (!nv) 5831 return (NULL); 5832 for (; nv->nv_name; nv++) { 5833 if (nv->nv_value == value) 5834 return (nv->nv_name); 5835 } 5836 return ("unknown"); 5837 } 5838 5839 static int 5840 ip_wait_for_info_ack(ill_t *ill) 5841 { 5842 int err; 5843 5844 mutex_enter(&ill->ill_lock); 5845 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5846 /* 5847 * Return value of 0 indicates a pending signal. 5848 */ 5849 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5850 if (err == 0) { 5851 mutex_exit(&ill->ill_lock); 5852 return (EINTR); 5853 } 5854 } 5855 mutex_exit(&ill->ill_lock); 5856 /* 5857 * ip_rput_other could have set an error in ill_error on 5858 * receipt of M_ERROR. 5859 */ 5860 return (ill->ill_error); 5861 } 5862 5863 /* 5864 * This is a module open, i.e. this is a control stream for access 5865 * to a DLPI device. We allocate an ill_t as the instance data in 5866 * this case. 5867 */ 5868 static int 5869 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5870 { 5871 ill_t *ill; 5872 int err; 5873 zoneid_t zoneid; 5874 netstack_t *ns; 5875 ip_stack_t *ipst; 5876 5877 /* 5878 * Prevent unprivileged processes from pushing IP so that 5879 * they can't send raw IP. 5880 */ 5881 if (secpolicy_net_rawaccess(credp) != 0) 5882 return (EPERM); 5883 5884 ns = netstack_find_by_cred(credp); 5885 ASSERT(ns != NULL); 5886 ipst = ns->netstack_ip; 5887 ASSERT(ipst != NULL); 5888 5889 /* 5890 * For exclusive stacks we set the zoneid to zero 5891 * to make IP operate as if in the global zone. 5892 */ 5893 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5894 zoneid = GLOBAL_ZONEID; 5895 else 5896 zoneid = crgetzoneid(credp); 5897 5898 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5899 q->q_ptr = WR(q)->q_ptr = ill; 5900 ill->ill_ipst = ipst; 5901 ill->ill_zoneid = zoneid; 5902 5903 /* 5904 * ill_init initializes the ill fields and then sends down 5905 * down a DL_INFO_REQ after calling qprocson. 5906 */ 5907 err = ill_init(q, ill); 5908 5909 if (err != 0) { 5910 mi_free(ill); 5911 netstack_rele(ipst->ips_netstack); 5912 q->q_ptr = NULL; 5913 WR(q)->q_ptr = NULL; 5914 return (err); 5915 } 5916 5917 /* 5918 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5919 * 5920 * ill_init initializes the ipsq marking this thread as 5921 * writer 5922 */ 5923 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5924 err = ip_wait_for_info_ack(ill); 5925 if (err == 0) 5926 ill->ill_credp = credp; 5927 else 5928 goto fail; 5929 5930 crhold(credp); 5931 5932 mutex_enter(&ipst->ips_ip_mi_lock); 5933 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5934 sflag, credp); 5935 mutex_exit(&ipst->ips_ip_mi_lock); 5936 fail: 5937 if (err) { 5938 (void) ip_close(q, 0, credp); 5939 return (err); 5940 } 5941 return (0); 5942 } 5943 5944 /* For /dev/ip aka AF_INET open */ 5945 int 5946 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5947 { 5948 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5949 } 5950 5951 /* For /dev/ip6 aka AF_INET6 open */ 5952 int 5953 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5954 { 5955 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5956 } 5957 5958 /* IP open routine. */ 5959 int 5960 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5961 boolean_t isv6) 5962 { 5963 conn_t *connp; 5964 major_t maj; 5965 zoneid_t zoneid; 5966 netstack_t *ns; 5967 ip_stack_t *ipst; 5968 5969 /* Allow reopen. */ 5970 if (q->q_ptr != NULL) 5971 return (0); 5972 5973 if (sflag & MODOPEN) { 5974 /* This is a module open */ 5975 return (ip_modopen(q, devp, flag, sflag, credp)); 5976 } 5977 5978 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5979 /* 5980 * Non streams based socket looking for a stream 5981 * to access IP 5982 */ 5983 return (ip_helper_stream_setup(q, devp, flag, sflag, 5984 credp, isv6)); 5985 } 5986 5987 ns = netstack_find_by_cred(credp); 5988 ASSERT(ns != NULL); 5989 ipst = ns->netstack_ip; 5990 ASSERT(ipst != NULL); 5991 5992 /* 5993 * For exclusive stacks we set the zoneid to zero 5994 * to make IP operate as if in the global zone. 5995 */ 5996 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5997 zoneid = GLOBAL_ZONEID; 5998 else 5999 zoneid = crgetzoneid(credp); 6000 6001 /* 6002 * We are opening as a device. This is an IP client stream, and we 6003 * allocate an conn_t as the instance data. 6004 */ 6005 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6006 6007 /* 6008 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6009 * done by netstack_find_by_cred() 6010 */ 6011 netstack_rele(ipst->ips_netstack); 6012 6013 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6014 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6015 connp->conn_ixa->ixa_zoneid = zoneid; 6016 connp->conn_zoneid = zoneid; 6017 6018 connp->conn_rq = q; 6019 q->q_ptr = WR(q)->q_ptr = connp; 6020 6021 /* Minor tells us which /dev entry was opened */ 6022 if (isv6) { 6023 connp->conn_family = AF_INET6; 6024 connp->conn_ipversion = IPV6_VERSION; 6025 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6026 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6027 } else { 6028 connp->conn_family = AF_INET; 6029 connp->conn_ipversion = IPV4_VERSION; 6030 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6031 } 6032 6033 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6034 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6035 connp->conn_minor_arena = ip_minor_arena_la; 6036 } else { 6037 /* 6038 * Either minor numbers in the large arena were exhausted 6039 * or a non socket application is doing the open. 6040 * Try to allocate from the small arena. 6041 */ 6042 if ((connp->conn_dev = 6043 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6044 /* CONN_DEC_REF takes care of netstack_rele() */ 6045 q->q_ptr = WR(q)->q_ptr = NULL; 6046 CONN_DEC_REF(connp); 6047 return (EBUSY); 6048 } 6049 connp->conn_minor_arena = ip_minor_arena_sa; 6050 } 6051 6052 maj = getemajor(*devp); 6053 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6054 6055 /* 6056 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6057 */ 6058 connp->conn_cred = credp; 6059 connp->conn_cpid = curproc->p_pid; 6060 /* Cache things in ixa without an extra refhold */ 6061 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6062 connp->conn_ixa->ixa_cred = connp->conn_cred; 6063 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6064 if (is_system_labeled()) 6065 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6066 6067 /* 6068 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6069 */ 6070 connp->conn_recv = ip_conn_input; 6071 connp->conn_recvicmp = ip_conn_input_icmp; 6072 6073 crhold(connp->conn_cred); 6074 6075 /* 6076 * If the caller has the process-wide flag set, then default to MAC 6077 * exempt mode. This allows read-down to unlabeled hosts. 6078 */ 6079 if (getpflags(NET_MAC_AWARE, credp) != 0) 6080 connp->conn_mac_mode = CONN_MAC_AWARE; 6081 6082 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6083 6084 connp->conn_rq = q; 6085 connp->conn_wq = WR(q); 6086 6087 /* Non-zero default values */ 6088 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6089 6090 /* 6091 * Make the conn globally visible to walkers 6092 */ 6093 ASSERT(connp->conn_ref == 1); 6094 mutex_enter(&connp->conn_lock); 6095 connp->conn_state_flags &= ~CONN_INCIPIENT; 6096 mutex_exit(&connp->conn_lock); 6097 6098 qprocson(q); 6099 6100 return (0); 6101 } 6102 6103 /* 6104 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6105 * all of them are copied to the conn_t. If the req is "zero", the policy is 6106 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6107 * fields. 6108 * We keep only the latest setting of the policy and thus policy setting 6109 * is not incremental/cumulative. 6110 * 6111 * Requests to set policies with multiple alternative actions will 6112 * go through a different API. 6113 */ 6114 int 6115 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6116 { 6117 uint_t ah_req = 0; 6118 uint_t esp_req = 0; 6119 uint_t se_req = 0; 6120 ipsec_act_t *actp = NULL; 6121 uint_t nact; 6122 ipsec_policy_head_t *ph; 6123 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6124 int error = 0; 6125 netstack_t *ns = connp->conn_netstack; 6126 ip_stack_t *ipst = ns->netstack_ip; 6127 ipsec_stack_t *ipss = ns->netstack_ipsec; 6128 6129 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6130 6131 /* 6132 * The IP_SEC_OPT option does not allow variable length parameters, 6133 * hence a request cannot be NULL. 6134 */ 6135 if (req == NULL) 6136 return (EINVAL); 6137 6138 ah_req = req->ipsr_ah_req; 6139 esp_req = req->ipsr_esp_req; 6140 se_req = req->ipsr_self_encap_req; 6141 6142 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6143 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6144 return (EINVAL); 6145 6146 /* 6147 * Are we dealing with a request to reset the policy (i.e. 6148 * zero requests). 6149 */ 6150 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6151 (esp_req & REQ_MASK) == 0 && 6152 (se_req & REQ_MASK) == 0); 6153 6154 if (!is_pol_reset) { 6155 /* 6156 * If we couldn't load IPsec, fail with "protocol 6157 * not supported". 6158 * IPsec may not have been loaded for a request with zero 6159 * policies, so we don't fail in this case. 6160 */ 6161 mutex_enter(&ipss->ipsec_loader_lock); 6162 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6163 mutex_exit(&ipss->ipsec_loader_lock); 6164 return (EPROTONOSUPPORT); 6165 } 6166 mutex_exit(&ipss->ipsec_loader_lock); 6167 6168 /* 6169 * Test for valid requests. Invalid algorithms 6170 * need to be tested by IPsec code because new 6171 * algorithms can be added dynamically. 6172 */ 6173 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6174 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6175 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6176 return (EINVAL); 6177 } 6178 6179 /* 6180 * Only privileged users can issue these 6181 * requests. 6182 */ 6183 if (((ah_req & IPSEC_PREF_NEVER) || 6184 (esp_req & IPSEC_PREF_NEVER) || 6185 (se_req & IPSEC_PREF_NEVER)) && 6186 secpolicy_ip_config(cr, B_FALSE) != 0) { 6187 return (EPERM); 6188 } 6189 6190 /* 6191 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6192 * are mutually exclusive. 6193 */ 6194 if (((ah_req & REQ_MASK) == REQ_MASK) || 6195 ((esp_req & REQ_MASK) == REQ_MASK) || 6196 ((se_req & REQ_MASK) == REQ_MASK)) { 6197 /* Both of them are set */ 6198 return (EINVAL); 6199 } 6200 } 6201 6202 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6203 6204 /* 6205 * If we have already cached policies in conn_connect(), don't 6206 * let them change now. We cache policies for connections 6207 * whose src,dst [addr, port] is known. 6208 */ 6209 if (connp->conn_policy_cached) { 6210 return (EINVAL); 6211 } 6212 6213 /* 6214 * We have a zero policies, reset the connection policy if already 6215 * set. This will cause the connection to inherit the 6216 * global policy, if any. 6217 */ 6218 if (is_pol_reset) { 6219 if (connp->conn_policy != NULL) { 6220 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6221 connp->conn_policy = NULL; 6222 } 6223 connp->conn_in_enforce_policy = B_FALSE; 6224 connp->conn_out_enforce_policy = B_FALSE; 6225 return (0); 6226 } 6227 6228 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6229 ipst->ips_netstack); 6230 if (ph == NULL) 6231 goto enomem; 6232 6233 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6234 if (actp == NULL) 6235 goto enomem; 6236 6237 /* 6238 * Always insert IPv4 policy entries, since they can also apply to 6239 * ipv6 sockets being used in ipv4-compat mode. 6240 */ 6241 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6242 IPSEC_TYPE_INBOUND, ns)) 6243 goto enomem; 6244 is_pol_inserted = B_TRUE; 6245 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6246 IPSEC_TYPE_OUTBOUND, ns)) 6247 goto enomem; 6248 6249 /* 6250 * We're looking at a v6 socket, also insert the v6-specific 6251 * entries. 6252 */ 6253 if (connp->conn_family == AF_INET6) { 6254 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6255 IPSEC_TYPE_INBOUND, ns)) 6256 goto enomem; 6257 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6258 IPSEC_TYPE_OUTBOUND, ns)) 6259 goto enomem; 6260 } 6261 6262 ipsec_actvec_free(actp, nact); 6263 6264 /* 6265 * If the requests need security, set enforce_policy. 6266 * If the requests are IPSEC_PREF_NEVER, one should 6267 * still set conn_out_enforce_policy so that ip_set_destination 6268 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6269 * for connections that we don't cache policy in at connect time, 6270 * if global policy matches in ip_output_attach_policy, we 6271 * don't wrongly inherit global policy. Similarly, we need 6272 * to set conn_in_enforce_policy also so that we don't verify 6273 * policy wrongly. 6274 */ 6275 if ((ah_req & REQ_MASK) != 0 || 6276 (esp_req & REQ_MASK) != 0 || 6277 (se_req & REQ_MASK) != 0) { 6278 connp->conn_in_enforce_policy = B_TRUE; 6279 connp->conn_out_enforce_policy = B_TRUE; 6280 } 6281 6282 return (error); 6283 #undef REQ_MASK 6284 6285 /* 6286 * Common memory-allocation-failure exit path. 6287 */ 6288 enomem: 6289 if (actp != NULL) 6290 ipsec_actvec_free(actp, nact); 6291 if (is_pol_inserted) 6292 ipsec_polhead_flush(ph, ns); 6293 return (ENOMEM); 6294 } 6295 6296 /* 6297 * Set socket options for joining and leaving multicast groups. 6298 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6299 * The caller has already check that the option name is consistent with 6300 * the address family of the socket. 6301 */ 6302 int 6303 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6304 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6305 { 6306 int *i1 = (int *)invalp; 6307 int error = 0; 6308 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6309 struct ip_mreq *v4_mreqp; 6310 struct ipv6_mreq *v6_mreqp; 6311 struct group_req *greqp; 6312 ire_t *ire; 6313 boolean_t done = B_FALSE; 6314 ipaddr_t ifaddr; 6315 in6_addr_t v6group; 6316 uint_t ifindex; 6317 boolean_t mcast_opt = B_TRUE; 6318 mcast_record_t fmode; 6319 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6320 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6321 6322 switch (name) { 6323 case IP_ADD_MEMBERSHIP: 6324 case IPV6_JOIN_GROUP: 6325 mcast_opt = B_FALSE; 6326 /* FALLTHROUGH */ 6327 case MCAST_JOIN_GROUP: 6328 fmode = MODE_IS_EXCLUDE; 6329 optfn = ip_opt_add_group; 6330 break; 6331 6332 case IP_DROP_MEMBERSHIP: 6333 case IPV6_LEAVE_GROUP: 6334 mcast_opt = B_FALSE; 6335 /* FALLTHROUGH */ 6336 case MCAST_LEAVE_GROUP: 6337 fmode = MODE_IS_INCLUDE; 6338 optfn = ip_opt_delete_group; 6339 break; 6340 default: 6341 ASSERT(0); 6342 } 6343 6344 if (mcast_opt) { 6345 struct sockaddr_in *sin; 6346 struct sockaddr_in6 *sin6; 6347 6348 greqp = (struct group_req *)i1; 6349 if (greqp->gr_group.ss_family == AF_INET) { 6350 sin = (struct sockaddr_in *)&(greqp->gr_group); 6351 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6352 } else { 6353 if (!inet6) 6354 return (EINVAL); /* Not on INET socket */ 6355 6356 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6357 v6group = sin6->sin6_addr; 6358 } 6359 ifaddr = INADDR_ANY; 6360 ifindex = greqp->gr_interface; 6361 } else if (inet6) { 6362 v6_mreqp = (struct ipv6_mreq *)i1; 6363 v6group = v6_mreqp->ipv6mr_multiaddr; 6364 ifaddr = INADDR_ANY; 6365 ifindex = v6_mreqp->ipv6mr_interface; 6366 } else { 6367 v4_mreqp = (struct ip_mreq *)i1; 6368 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6369 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6370 ifindex = 0; 6371 } 6372 6373 /* 6374 * In the multirouting case, we need to replicate 6375 * the request on all interfaces that will take part 6376 * in replication. We do so because multirouting is 6377 * reflective, thus we will probably receive multi- 6378 * casts on those interfaces. 6379 * The ip_multirt_apply_membership() succeeds if 6380 * the operation succeeds on at least one interface. 6381 */ 6382 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6383 ipaddr_t group; 6384 6385 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6386 6387 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6388 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6389 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6390 } else { 6391 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6392 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6393 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6394 } 6395 if (ire != NULL) { 6396 if (ire->ire_flags & RTF_MULTIRT) { 6397 error = ip_multirt_apply_membership(optfn, ire, connp, 6398 checkonly, &v6group, fmode, &ipv6_all_zeros); 6399 done = B_TRUE; 6400 } 6401 ire_refrele(ire); 6402 } 6403 6404 if (!done) { 6405 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6406 fmode, &ipv6_all_zeros); 6407 } 6408 return (error); 6409 } 6410 6411 /* 6412 * Set socket options for joining and leaving multicast groups 6413 * for specific sources. 6414 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6415 * The caller has already check that the option name is consistent with 6416 * the address family of the socket. 6417 */ 6418 int 6419 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6420 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6421 { 6422 int *i1 = (int *)invalp; 6423 int error = 0; 6424 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6425 struct ip_mreq_source *imreqp; 6426 struct group_source_req *gsreqp; 6427 in6_addr_t v6group, v6src; 6428 uint32_t ifindex; 6429 ipaddr_t ifaddr; 6430 boolean_t mcast_opt = B_TRUE; 6431 mcast_record_t fmode; 6432 ire_t *ire; 6433 boolean_t done = B_FALSE; 6434 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6435 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6436 6437 switch (name) { 6438 case IP_BLOCK_SOURCE: 6439 mcast_opt = B_FALSE; 6440 /* FALLTHROUGH */ 6441 case MCAST_BLOCK_SOURCE: 6442 fmode = MODE_IS_EXCLUDE; 6443 optfn = ip_opt_add_group; 6444 break; 6445 6446 case IP_UNBLOCK_SOURCE: 6447 mcast_opt = B_FALSE; 6448 /* FALLTHROUGH */ 6449 case MCAST_UNBLOCK_SOURCE: 6450 fmode = MODE_IS_EXCLUDE; 6451 optfn = ip_opt_delete_group; 6452 break; 6453 6454 case IP_ADD_SOURCE_MEMBERSHIP: 6455 mcast_opt = B_FALSE; 6456 /* FALLTHROUGH */ 6457 case MCAST_JOIN_SOURCE_GROUP: 6458 fmode = MODE_IS_INCLUDE; 6459 optfn = ip_opt_add_group; 6460 break; 6461 6462 case IP_DROP_SOURCE_MEMBERSHIP: 6463 mcast_opt = B_FALSE; 6464 /* FALLTHROUGH */ 6465 case MCAST_LEAVE_SOURCE_GROUP: 6466 fmode = MODE_IS_INCLUDE; 6467 optfn = ip_opt_delete_group; 6468 break; 6469 default: 6470 ASSERT(0); 6471 } 6472 6473 if (mcast_opt) { 6474 gsreqp = (struct group_source_req *)i1; 6475 ifindex = gsreqp->gsr_interface; 6476 if (gsreqp->gsr_group.ss_family == AF_INET) { 6477 struct sockaddr_in *s; 6478 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6479 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6480 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6481 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6482 } else { 6483 struct sockaddr_in6 *s6; 6484 6485 if (!inet6) 6486 return (EINVAL); /* Not on INET socket */ 6487 6488 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6489 v6group = s6->sin6_addr; 6490 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6491 v6src = s6->sin6_addr; 6492 } 6493 ifaddr = INADDR_ANY; 6494 } else { 6495 imreqp = (struct ip_mreq_source *)i1; 6496 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6497 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6498 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6499 ifindex = 0; 6500 } 6501 6502 /* 6503 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6504 */ 6505 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6506 v6src = ipv6_all_zeros; 6507 6508 /* 6509 * In the multirouting case, we need to replicate 6510 * the request as noted in the mcast cases above. 6511 */ 6512 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6513 ipaddr_t group; 6514 6515 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6516 6517 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6518 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6519 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6520 } else { 6521 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6522 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6523 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6524 } 6525 if (ire != NULL) { 6526 if (ire->ire_flags & RTF_MULTIRT) { 6527 error = ip_multirt_apply_membership(optfn, ire, connp, 6528 checkonly, &v6group, fmode, &v6src); 6529 done = B_TRUE; 6530 } 6531 ire_refrele(ire); 6532 } 6533 if (!done) { 6534 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6535 fmode, &v6src); 6536 } 6537 return (error); 6538 } 6539 6540 /* 6541 * Given a destination address and a pointer to where to put the information 6542 * this routine fills in the mtuinfo. 6543 * The socket must be connected. 6544 * For sctp conn_faddr is the primary address. 6545 */ 6546 int 6547 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6548 { 6549 uint32_t pmtu = IP_MAXPACKET; 6550 uint_t scopeid; 6551 6552 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6553 return (-1); 6554 6555 /* In case we never sent or called ip_set_destination_v4/v6 */ 6556 if (ixa->ixa_ire != NULL) 6557 pmtu = ip_get_pmtu(ixa); 6558 6559 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6560 scopeid = ixa->ixa_scopeid; 6561 else 6562 scopeid = 0; 6563 6564 bzero(mtuinfo, sizeof (*mtuinfo)); 6565 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6566 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6567 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6568 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6569 mtuinfo->ip6m_mtu = pmtu; 6570 6571 return (sizeof (struct ip6_mtuinfo)); 6572 } 6573 6574 /* 6575 * When the src multihoming is changed from weak to [strong, preferred] 6576 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6577 * and identify routes that were created by user-applications in the 6578 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6579 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6580 * is selected by finding an interface route for the gateway. 6581 */ 6582 /* ARGSUSED */ 6583 void 6584 ip_ire_rebind_walker(ire_t *ire, void *notused) 6585 { 6586 if (!ire->ire_unbound || ire->ire_ill != NULL) 6587 return; 6588 ire_rebind(ire); 6589 ire_delete(ire); 6590 } 6591 6592 /* 6593 * When the src multihoming is changed from [strong, preferred] to weak, 6594 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6595 * set any entries that were created by user-applications in the unbound state 6596 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6597 */ 6598 /* ARGSUSED */ 6599 void 6600 ip_ire_unbind_walker(ire_t *ire, void *notused) 6601 { 6602 ire_t *new_ire; 6603 6604 if (!ire->ire_unbound || ire->ire_ill == NULL) 6605 return; 6606 if (ire->ire_ipversion == IPV6_VERSION) { 6607 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6608 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6609 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6610 } else { 6611 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6612 (uchar_t *)&ire->ire_mask, 6613 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6614 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6615 } 6616 if (new_ire == NULL) 6617 return; 6618 new_ire->ire_unbound = B_TRUE; 6619 /* 6620 * The bound ire must first be deleted so that we don't return 6621 * the existing one on the attempt to add the unbound new_ire. 6622 */ 6623 ire_delete(ire); 6624 new_ire = ire_add(new_ire); 6625 if (new_ire != NULL) 6626 ire_refrele(new_ire); 6627 } 6628 6629 /* 6630 * When the settings of ip*_strict_src_multihoming tunables are changed, 6631 * all cached routes need to be recomputed. This recomputation needs to be 6632 * done when going from weaker to stronger modes so that the cached ire 6633 * for the connection does not violate the current ip*_strict_src_multihoming 6634 * setting. It also needs to be done when going from stronger to weaker modes, 6635 * so that we fall back to matching on the longest-matching-route (as opposed 6636 * to a shorter match that may have been selected in the strong mode 6637 * to satisfy src_multihoming settings). 6638 * 6639 * The cached ixa_ire entires for all conn_t entries are marked as 6640 * "verify" so that they will be recomputed for the next packet. 6641 */ 6642 void 6643 conn_ire_revalidate(conn_t *connp, void *arg) 6644 { 6645 boolean_t isv6 = (boolean_t)arg; 6646 6647 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6648 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6649 return; 6650 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6651 } 6652 6653 /* 6654 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6655 * When an ipf is passed here for the first time, if 6656 * we already have in-order fragments on the queue, we convert from the fast- 6657 * path reassembly scheme to the hard-case scheme. From then on, additional 6658 * fragments are reassembled here. We keep track of the start and end offsets 6659 * of each piece, and the number of holes in the chain. When the hole count 6660 * goes to zero, we are done! 6661 * 6662 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6663 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6664 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6665 * after the call to ip_reassemble(). 6666 */ 6667 int 6668 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6669 size_t msg_len) 6670 { 6671 uint_t end; 6672 mblk_t *next_mp; 6673 mblk_t *mp1; 6674 uint_t offset; 6675 boolean_t incr_dups = B_TRUE; 6676 boolean_t offset_zero_seen = B_FALSE; 6677 boolean_t pkt_boundary_checked = B_FALSE; 6678 6679 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6680 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6681 6682 /* Add in byte count */ 6683 ipf->ipf_count += msg_len; 6684 if (ipf->ipf_end) { 6685 /* 6686 * We were part way through in-order reassembly, but now there 6687 * is a hole. We walk through messages already queued, and 6688 * mark them for hard case reassembly. We know that up till 6689 * now they were in order starting from offset zero. 6690 */ 6691 offset = 0; 6692 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6693 IP_REASS_SET_START(mp1, offset); 6694 if (offset == 0) { 6695 ASSERT(ipf->ipf_nf_hdr_len != 0); 6696 offset = -ipf->ipf_nf_hdr_len; 6697 } 6698 offset += mp1->b_wptr - mp1->b_rptr; 6699 IP_REASS_SET_END(mp1, offset); 6700 } 6701 /* One hole at the end. */ 6702 ipf->ipf_hole_cnt = 1; 6703 /* Brand it as a hard case, forever. */ 6704 ipf->ipf_end = 0; 6705 } 6706 /* Walk through all the new pieces. */ 6707 do { 6708 end = start + (mp->b_wptr - mp->b_rptr); 6709 /* 6710 * If start is 0, decrease 'end' only for the first mblk of 6711 * the fragment. Otherwise 'end' can get wrong value in the 6712 * second pass of the loop if first mblk is exactly the 6713 * size of ipf_nf_hdr_len. 6714 */ 6715 if (start == 0 && !offset_zero_seen) { 6716 /* First segment */ 6717 ASSERT(ipf->ipf_nf_hdr_len != 0); 6718 end -= ipf->ipf_nf_hdr_len; 6719 offset_zero_seen = B_TRUE; 6720 } 6721 next_mp = mp->b_cont; 6722 /* 6723 * We are checking to see if there is any interesing data 6724 * to process. If there isn't and the mblk isn't the 6725 * one which carries the unfragmentable header then we 6726 * drop it. It's possible to have just the unfragmentable 6727 * header come through without any data. That needs to be 6728 * saved. 6729 * 6730 * If the assert at the top of this function holds then the 6731 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6732 * is infrequently traveled enough that the test is left in 6733 * to protect against future code changes which break that 6734 * invariant. 6735 */ 6736 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6737 /* Empty. Blast it. */ 6738 IP_REASS_SET_START(mp, 0); 6739 IP_REASS_SET_END(mp, 0); 6740 /* 6741 * If the ipf points to the mblk we are about to free, 6742 * update ipf to point to the next mblk (or NULL 6743 * if none). 6744 */ 6745 if (ipf->ipf_mp->b_cont == mp) 6746 ipf->ipf_mp->b_cont = next_mp; 6747 freeb(mp); 6748 continue; 6749 } 6750 mp->b_cont = NULL; 6751 IP_REASS_SET_START(mp, start); 6752 IP_REASS_SET_END(mp, end); 6753 if (!ipf->ipf_tail_mp) { 6754 ipf->ipf_tail_mp = mp; 6755 ipf->ipf_mp->b_cont = mp; 6756 if (start == 0 || !more) { 6757 ipf->ipf_hole_cnt = 1; 6758 /* 6759 * if the first fragment comes in more than one 6760 * mblk, this loop will be executed for each 6761 * mblk. Need to adjust hole count so exiting 6762 * this routine will leave hole count at 1. 6763 */ 6764 if (next_mp) 6765 ipf->ipf_hole_cnt++; 6766 } else 6767 ipf->ipf_hole_cnt = 2; 6768 continue; 6769 } else if (ipf->ipf_last_frag_seen && !more && 6770 !pkt_boundary_checked) { 6771 /* 6772 * We check datagram boundary only if this fragment 6773 * claims to be the last fragment and we have seen a 6774 * last fragment in the past too. We do this only 6775 * once for a given fragment. 6776 * 6777 * start cannot be 0 here as fragments with start=0 6778 * and MF=0 gets handled as a complete packet. These 6779 * fragments should not reach here. 6780 */ 6781 6782 if (start + msgdsize(mp) != 6783 IP_REASS_END(ipf->ipf_tail_mp)) { 6784 /* 6785 * We have two fragments both of which claim 6786 * to be the last fragment but gives conflicting 6787 * information about the whole datagram size. 6788 * Something fishy is going on. Drop the 6789 * fragment and free up the reassembly list. 6790 */ 6791 return (IP_REASS_FAILED); 6792 } 6793 6794 /* 6795 * We shouldn't come to this code block again for this 6796 * particular fragment. 6797 */ 6798 pkt_boundary_checked = B_TRUE; 6799 } 6800 6801 /* New stuff at or beyond tail? */ 6802 offset = IP_REASS_END(ipf->ipf_tail_mp); 6803 if (start >= offset) { 6804 if (ipf->ipf_last_frag_seen) { 6805 /* current fragment is beyond last fragment */ 6806 return (IP_REASS_FAILED); 6807 } 6808 /* Link it on end. */ 6809 ipf->ipf_tail_mp->b_cont = mp; 6810 ipf->ipf_tail_mp = mp; 6811 if (more) { 6812 if (start != offset) 6813 ipf->ipf_hole_cnt++; 6814 } else if (start == offset && next_mp == NULL) 6815 ipf->ipf_hole_cnt--; 6816 continue; 6817 } 6818 mp1 = ipf->ipf_mp->b_cont; 6819 offset = IP_REASS_START(mp1); 6820 /* New stuff at the front? */ 6821 if (start < offset) { 6822 if (start == 0) { 6823 if (end >= offset) { 6824 /* Nailed the hole at the begining. */ 6825 ipf->ipf_hole_cnt--; 6826 } 6827 } else if (end < offset) { 6828 /* 6829 * A hole, stuff, and a hole where there used 6830 * to be just a hole. 6831 */ 6832 ipf->ipf_hole_cnt++; 6833 } 6834 mp->b_cont = mp1; 6835 /* Check for overlap. */ 6836 while (end > offset) { 6837 if (end < IP_REASS_END(mp1)) { 6838 mp->b_wptr -= end - offset; 6839 IP_REASS_SET_END(mp, offset); 6840 BUMP_MIB(ill->ill_ip_mib, 6841 ipIfStatsReasmPartDups); 6842 break; 6843 } 6844 /* Did we cover another hole? */ 6845 if ((mp1->b_cont && 6846 IP_REASS_END(mp1) != 6847 IP_REASS_START(mp1->b_cont) && 6848 end >= IP_REASS_START(mp1->b_cont)) || 6849 (!ipf->ipf_last_frag_seen && !more)) { 6850 ipf->ipf_hole_cnt--; 6851 } 6852 /* Clip out mp1. */ 6853 if ((mp->b_cont = mp1->b_cont) == NULL) { 6854 /* 6855 * After clipping out mp1, this guy 6856 * is now hanging off the end. 6857 */ 6858 ipf->ipf_tail_mp = mp; 6859 } 6860 IP_REASS_SET_START(mp1, 0); 6861 IP_REASS_SET_END(mp1, 0); 6862 /* Subtract byte count */ 6863 ipf->ipf_count -= mp1->b_datap->db_lim - 6864 mp1->b_datap->db_base; 6865 freeb(mp1); 6866 BUMP_MIB(ill->ill_ip_mib, 6867 ipIfStatsReasmPartDups); 6868 mp1 = mp->b_cont; 6869 if (!mp1) 6870 break; 6871 offset = IP_REASS_START(mp1); 6872 } 6873 ipf->ipf_mp->b_cont = mp; 6874 continue; 6875 } 6876 /* 6877 * The new piece starts somewhere between the start of the head 6878 * and before the end of the tail. 6879 */ 6880 for (; mp1; mp1 = mp1->b_cont) { 6881 offset = IP_REASS_END(mp1); 6882 if (start < offset) { 6883 if (end <= offset) { 6884 /* Nothing new. */ 6885 IP_REASS_SET_START(mp, 0); 6886 IP_REASS_SET_END(mp, 0); 6887 /* Subtract byte count */ 6888 ipf->ipf_count -= mp->b_datap->db_lim - 6889 mp->b_datap->db_base; 6890 if (incr_dups) { 6891 ipf->ipf_num_dups++; 6892 incr_dups = B_FALSE; 6893 } 6894 freeb(mp); 6895 BUMP_MIB(ill->ill_ip_mib, 6896 ipIfStatsReasmDuplicates); 6897 break; 6898 } 6899 /* 6900 * Trim redundant stuff off beginning of new 6901 * piece. 6902 */ 6903 IP_REASS_SET_START(mp, offset); 6904 mp->b_rptr += offset - start; 6905 BUMP_MIB(ill->ill_ip_mib, 6906 ipIfStatsReasmPartDups); 6907 start = offset; 6908 if (!mp1->b_cont) { 6909 /* 6910 * After trimming, this guy is now 6911 * hanging off the end. 6912 */ 6913 mp1->b_cont = mp; 6914 ipf->ipf_tail_mp = mp; 6915 if (!more) { 6916 ipf->ipf_hole_cnt--; 6917 } 6918 break; 6919 } 6920 } 6921 if (start >= IP_REASS_START(mp1->b_cont)) 6922 continue; 6923 /* Fill a hole */ 6924 if (start > offset) 6925 ipf->ipf_hole_cnt++; 6926 mp->b_cont = mp1->b_cont; 6927 mp1->b_cont = mp; 6928 mp1 = mp->b_cont; 6929 offset = IP_REASS_START(mp1); 6930 if (end >= offset) { 6931 ipf->ipf_hole_cnt--; 6932 /* Check for overlap. */ 6933 while (end > offset) { 6934 if (end < IP_REASS_END(mp1)) { 6935 mp->b_wptr -= end - offset; 6936 IP_REASS_SET_END(mp, offset); 6937 /* 6938 * TODO we might bump 6939 * this up twice if there is 6940 * overlap at both ends. 6941 */ 6942 BUMP_MIB(ill->ill_ip_mib, 6943 ipIfStatsReasmPartDups); 6944 break; 6945 } 6946 /* Did we cover another hole? */ 6947 if ((mp1->b_cont && 6948 IP_REASS_END(mp1) 6949 != IP_REASS_START(mp1->b_cont) && 6950 end >= 6951 IP_REASS_START(mp1->b_cont)) || 6952 (!ipf->ipf_last_frag_seen && 6953 !more)) { 6954 ipf->ipf_hole_cnt--; 6955 } 6956 /* Clip out mp1. */ 6957 if ((mp->b_cont = mp1->b_cont) == 6958 NULL) { 6959 /* 6960 * After clipping out mp1, 6961 * this guy is now hanging 6962 * off the end. 6963 */ 6964 ipf->ipf_tail_mp = mp; 6965 } 6966 IP_REASS_SET_START(mp1, 0); 6967 IP_REASS_SET_END(mp1, 0); 6968 /* Subtract byte count */ 6969 ipf->ipf_count -= 6970 mp1->b_datap->db_lim - 6971 mp1->b_datap->db_base; 6972 freeb(mp1); 6973 BUMP_MIB(ill->ill_ip_mib, 6974 ipIfStatsReasmPartDups); 6975 mp1 = mp->b_cont; 6976 if (!mp1) 6977 break; 6978 offset = IP_REASS_START(mp1); 6979 } 6980 } 6981 break; 6982 } 6983 } while (start = end, mp = next_mp); 6984 6985 /* Fragment just processed could be the last one. Remember this fact */ 6986 if (!more) 6987 ipf->ipf_last_frag_seen = B_TRUE; 6988 6989 /* Still got holes? */ 6990 if (ipf->ipf_hole_cnt) 6991 return (IP_REASS_PARTIAL); 6992 /* Clean up overloaded fields to avoid upstream disasters. */ 6993 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6994 IP_REASS_SET_START(mp1, 0); 6995 IP_REASS_SET_END(mp1, 0); 6996 } 6997 return (IP_REASS_COMPLETE); 6998 } 6999 7000 /* 7001 * Fragmentation reassembly. Each ILL has a hash table for 7002 * queuing packets undergoing reassembly for all IPIFs 7003 * associated with the ILL. The hash is based on the packet 7004 * IP ident field. The ILL frag hash table was allocated 7005 * as a timer block at the time the ILL was created. Whenever 7006 * there is anything on the reassembly queue, the timer will 7007 * be running. Returns the reassembled packet if reassembly completes. 7008 */ 7009 mblk_t * 7010 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7011 { 7012 uint32_t frag_offset_flags; 7013 mblk_t *t_mp; 7014 ipaddr_t dst; 7015 uint8_t proto = ipha->ipha_protocol; 7016 uint32_t sum_val; 7017 uint16_t sum_flags; 7018 ipf_t *ipf; 7019 ipf_t **ipfp; 7020 ipfb_t *ipfb; 7021 uint16_t ident; 7022 uint32_t offset; 7023 ipaddr_t src; 7024 uint_t hdr_length; 7025 uint32_t end; 7026 mblk_t *mp1; 7027 mblk_t *tail_mp; 7028 size_t count; 7029 size_t msg_len; 7030 uint8_t ecn_info = 0; 7031 uint32_t packet_size; 7032 boolean_t pruned = B_FALSE; 7033 ill_t *ill = ira->ira_ill; 7034 ip_stack_t *ipst = ill->ill_ipst; 7035 7036 /* 7037 * Drop the fragmented as early as possible, if 7038 * we don't have resource(s) to re-assemble. 7039 */ 7040 if (ipst->ips_ip_reass_queue_bytes == 0) { 7041 freemsg(mp); 7042 return (NULL); 7043 } 7044 7045 /* Check for fragmentation offset; return if there's none */ 7046 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7047 (IPH_MF | IPH_OFFSET)) == 0) 7048 return (mp); 7049 7050 /* 7051 * We utilize hardware computed checksum info only for UDP since 7052 * IP fragmentation is a normal occurrence for the protocol. In 7053 * addition, checksum offload support for IP fragments carrying 7054 * UDP payload is commonly implemented across network adapters. 7055 */ 7056 ASSERT(ira->ira_rill != NULL); 7057 if (proto == IPPROTO_UDP && dohwcksum && 7058 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7059 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7060 mblk_t *mp1 = mp->b_cont; 7061 int32_t len; 7062 7063 /* Record checksum information from the packet */ 7064 sum_val = (uint32_t)DB_CKSUM16(mp); 7065 sum_flags = DB_CKSUMFLAGS(mp); 7066 7067 /* IP payload offset from beginning of mblk */ 7068 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7069 7070 if ((sum_flags & HCK_PARTIALCKSUM) && 7071 (mp1 == NULL || mp1->b_cont == NULL) && 7072 offset >= DB_CKSUMSTART(mp) && 7073 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7074 uint32_t adj; 7075 /* 7076 * Partial checksum has been calculated by hardware 7077 * and attached to the packet; in addition, any 7078 * prepended extraneous data is even byte aligned. 7079 * If any such data exists, we adjust the checksum; 7080 * this would also handle any postpended data. 7081 */ 7082 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7083 mp, mp1, len, adj); 7084 7085 /* One's complement subtract extraneous checksum */ 7086 if (adj >= sum_val) 7087 sum_val = ~(adj - sum_val) & 0xFFFF; 7088 else 7089 sum_val -= adj; 7090 } 7091 } else { 7092 sum_val = 0; 7093 sum_flags = 0; 7094 } 7095 7096 /* Clear hardware checksumming flag */ 7097 DB_CKSUMFLAGS(mp) = 0; 7098 7099 ident = ipha->ipha_ident; 7100 offset = (frag_offset_flags << 3) & 0xFFFF; 7101 src = ipha->ipha_src; 7102 dst = ipha->ipha_dst; 7103 hdr_length = IPH_HDR_LENGTH(ipha); 7104 end = ntohs(ipha->ipha_length) - hdr_length; 7105 7106 /* If end == 0 then we have a packet with no data, so just free it */ 7107 if (end == 0) { 7108 freemsg(mp); 7109 return (NULL); 7110 } 7111 7112 /* Record the ECN field info. */ 7113 ecn_info = (ipha->ipha_type_of_service & 0x3); 7114 if (offset != 0) { 7115 /* 7116 * If this isn't the first piece, strip the header, and 7117 * add the offset to the end value. 7118 */ 7119 mp->b_rptr += hdr_length; 7120 end += offset; 7121 } 7122 7123 /* Handle vnic loopback of fragments */ 7124 if (mp->b_datap->db_ref > 2) 7125 msg_len = 0; 7126 else 7127 msg_len = MBLKSIZE(mp); 7128 7129 tail_mp = mp; 7130 while (tail_mp->b_cont != NULL) { 7131 tail_mp = tail_mp->b_cont; 7132 if (tail_mp->b_datap->db_ref <= 2) 7133 msg_len += MBLKSIZE(tail_mp); 7134 } 7135 7136 /* If the reassembly list for this ILL will get too big, prune it */ 7137 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7138 ipst->ips_ip_reass_queue_bytes) { 7139 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7140 uint_t, ill->ill_frag_count, 7141 uint_t, ipst->ips_ip_reass_queue_bytes); 7142 ill_frag_prune(ill, 7143 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7144 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7145 pruned = B_TRUE; 7146 } 7147 7148 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7149 mutex_enter(&ipfb->ipfb_lock); 7150 7151 ipfp = &ipfb->ipfb_ipf; 7152 /* Try to find an existing fragment queue for this packet. */ 7153 for (;;) { 7154 ipf = ipfp[0]; 7155 if (ipf != NULL) { 7156 /* 7157 * It has to match on ident and src/dst address. 7158 */ 7159 if (ipf->ipf_ident == ident && 7160 ipf->ipf_src == src && 7161 ipf->ipf_dst == dst && 7162 ipf->ipf_protocol == proto) { 7163 /* 7164 * If we have received too many 7165 * duplicate fragments for this packet 7166 * free it. 7167 */ 7168 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7169 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7170 freemsg(mp); 7171 mutex_exit(&ipfb->ipfb_lock); 7172 return (NULL); 7173 } 7174 /* Found it. */ 7175 break; 7176 } 7177 ipfp = &ipf->ipf_hash_next; 7178 continue; 7179 } 7180 7181 /* 7182 * If we pruned the list, do we want to store this new 7183 * fragment?. We apply an optimization here based on the 7184 * fact that most fragments will be received in order. 7185 * So if the offset of this incoming fragment is zero, 7186 * it is the first fragment of a new packet. We will 7187 * keep it. Otherwise drop the fragment, as we have 7188 * probably pruned the packet already (since the 7189 * packet cannot be found). 7190 */ 7191 if (pruned && offset != 0) { 7192 mutex_exit(&ipfb->ipfb_lock); 7193 freemsg(mp); 7194 return (NULL); 7195 } 7196 7197 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7198 /* 7199 * Too many fragmented packets in this hash 7200 * bucket. Free the oldest. 7201 */ 7202 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7203 } 7204 7205 /* New guy. Allocate a frag message. */ 7206 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7207 if (mp1 == NULL) { 7208 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7209 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7210 freemsg(mp); 7211 reass_done: 7212 mutex_exit(&ipfb->ipfb_lock); 7213 return (NULL); 7214 } 7215 7216 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7217 mp1->b_cont = mp; 7218 7219 /* Initialize the fragment header. */ 7220 ipf = (ipf_t *)mp1->b_rptr; 7221 ipf->ipf_mp = mp1; 7222 ipf->ipf_ptphn = ipfp; 7223 ipfp[0] = ipf; 7224 ipf->ipf_hash_next = NULL; 7225 ipf->ipf_ident = ident; 7226 ipf->ipf_protocol = proto; 7227 ipf->ipf_src = src; 7228 ipf->ipf_dst = dst; 7229 ipf->ipf_nf_hdr_len = 0; 7230 /* Record reassembly start time. */ 7231 ipf->ipf_timestamp = gethrestime_sec(); 7232 /* Record ipf generation and account for frag header */ 7233 ipf->ipf_gen = ill->ill_ipf_gen++; 7234 ipf->ipf_count = MBLKSIZE(mp1); 7235 ipf->ipf_last_frag_seen = B_FALSE; 7236 ipf->ipf_ecn = ecn_info; 7237 ipf->ipf_num_dups = 0; 7238 ipfb->ipfb_frag_pkts++; 7239 ipf->ipf_checksum = 0; 7240 ipf->ipf_checksum_flags = 0; 7241 7242 /* Store checksum value in fragment header */ 7243 if (sum_flags != 0) { 7244 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7245 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7246 ipf->ipf_checksum = sum_val; 7247 ipf->ipf_checksum_flags = sum_flags; 7248 } 7249 7250 /* 7251 * We handle reassembly two ways. In the easy case, 7252 * where all the fragments show up in order, we do 7253 * minimal bookkeeping, and just clip new pieces on 7254 * the end. If we ever see a hole, then we go off 7255 * to ip_reassemble which has to mark the pieces and 7256 * keep track of the number of holes, etc. Obviously, 7257 * the point of having both mechanisms is so we can 7258 * handle the easy case as efficiently as possible. 7259 */ 7260 if (offset == 0) { 7261 /* Easy case, in-order reassembly so far. */ 7262 ipf->ipf_count += msg_len; 7263 ipf->ipf_tail_mp = tail_mp; 7264 /* 7265 * Keep track of next expected offset in 7266 * ipf_end. 7267 */ 7268 ipf->ipf_end = end; 7269 ipf->ipf_nf_hdr_len = hdr_length; 7270 } else { 7271 /* Hard case, hole at the beginning. */ 7272 ipf->ipf_tail_mp = NULL; 7273 /* 7274 * ipf_end == 0 means that we have given up 7275 * on easy reassembly. 7276 */ 7277 ipf->ipf_end = 0; 7278 7279 /* Forget checksum offload from now on */ 7280 ipf->ipf_checksum_flags = 0; 7281 7282 /* 7283 * ipf_hole_cnt is set by ip_reassemble. 7284 * ipf_count is updated by ip_reassemble. 7285 * No need to check for return value here 7286 * as we don't expect reassembly to complete 7287 * or fail for the first fragment itself. 7288 */ 7289 (void) ip_reassemble(mp, ipf, 7290 (frag_offset_flags & IPH_OFFSET) << 3, 7291 (frag_offset_flags & IPH_MF), ill, msg_len); 7292 } 7293 /* Update per ipfb and ill byte counts */ 7294 ipfb->ipfb_count += ipf->ipf_count; 7295 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7296 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7297 /* If the frag timer wasn't already going, start it. */ 7298 mutex_enter(&ill->ill_lock); 7299 ill_frag_timer_start(ill); 7300 mutex_exit(&ill->ill_lock); 7301 goto reass_done; 7302 } 7303 7304 /* 7305 * If the packet's flag has changed (it could be coming up 7306 * from an interface different than the previous, therefore 7307 * possibly different checksum capability), then forget about 7308 * any stored checksum states. Otherwise add the value to 7309 * the existing one stored in the fragment header. 7310 */ 7311 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7312 sum_val += ipf->ipf_checksum; 7313 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7314 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7315 ipf->ipf_checksum = sum_val; 7316 } else if (ipf->ipf_checksum_flags != 0) { 7317 /* Forget checksum offload from now on */ 7318 ipf->ipf_checksum_flags = 0; 7319 } 7320 7321 /* 7322 * We have a new piece of a datagram which is already being 7323 * reassembled. Update the ECN info if all IP fragments 7324 * are ECN capable. If there is one which is not, clear 7325 * all the info. If there is at least one which has CE 7326 * code point, IP needs to report that up to transport. 7327 */ 7328 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7329 if (ecn_info == IPH_ECN_CE) 7330 ipf->ipf_ecn = IPH_ECN_CE; 7331 } else { 7332 ipf->ipf_ecn = IPH_ECN_NECT; 7333 } 7334 if (offset && ipf->ipf_end == offset) { 7335 /* The new fragment fits at the end */ 7336 ipf->ipf_tail_mp->b_cont = mp; 7337 /* Update the byte count */ 7338 ipf->ipf_count += msg_len; 7339 /* Update per ipfb and ill byte counts */ 7340 ipfb->ipfb_count += msg_len; 7341 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7342 atomic_add_32(&ill->ill_frag_count, msg_len); 7343 if (frag_offset_flags & IPH_MF) { 7344 /* More to come. */ 7345 ipf->ipf_end = end; 7346 ipf->ipf_tail_mp = tail_mp; 7347 goto reass_done; 7348 } 7349 } else { 7350 /* Go do the hard cases. */ 7351 int ret; 7352 7353 if (offset == 0) 7354 ipf->ipf_nf_hdr_len = hdr_length; 7355 7356 /* Save current byte count */ 7357 count = ipf->ipf_count; 7358 ret = ip_reassemble(mp, ipf, 7359 (frag_offset_flags & IPH_OFFSET) << 3, 7360 (frag_offset_flags & IPH_MF), ill, msg_len); 7361 /* Count of bytes added and subtracted (freeb()ed) */ 7362 count = ipf->ipf_count - count; 7363 if (count) { 7364 /* Update per ipfb and ill byte counts */ 7365 ipfb->ipfb_count += count; 7366 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7367 atomic_add_32(&ill->ill_frag_count, count); 7368 } 7369 if (ret == IP_REASS_PARTIAL) { 7370 goto reass_done; 7371 } else if (ret == IP_REASS_FAILED) { 7372 /* Reassembly failed. Free up all resources */ 7373 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7374 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7375 IP_REASS_SET_START(t_mp, 0); 7376 IP_REASS_SET_END(t_mp, 0); 7377 } 7378 freemsg(mp); 7379 goto reass_done; 7380 } 7381 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7382 } 7383 /* 7384 * We have completed reassembly. Unhook the frag header from 7385 * the reassembly list. 7386 * 7387 * Before we free the frag header, record the ECN info 7388 * to report back to the transport. 7389 */ 7390 ecn_info = ipf->ipf_ecn; 7391 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7392 ipfp = ipf->ipf_ptphn; 7393 7394 /* We need to supply these to caller */ 7395 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7396 sum_val = ipf->ipf_checksum; 7397 else 7398 sum_val = 0; 7399 7400 mp1 = ipf->ipf_mp; 7401 count = ipf->ipf_count; 7402 ipf = ipf->ipf_hash_next; 7403 if (ipf != NULL) 7404 ipf->ipf_ptphn = ipfp; 7405 ipfp[0] = ipf; 7406 atomic_add_32(&ill->ill_frag_count, -count); 7407 ASSERT(ipfb->ipfb_count >= count); 7408 ipfb->ipfb_count -= count; 7409 ipfb->ipfb_frag_pkts--; 7410 mutex_exit(&ipfb->ipfb_lock); 7411 /* Ditch the frag header. */ 7412 mp = mp1->b_cont; 7413 7414 freeb(mp1); 7415 7416 /* Restore original IP length in header. */ 7417 packet_size = (uint32_t)msgdsize(mp); 7418 if (packet_size > IP_MAXPACKET) { 7419 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7420 ip_drop_input("Reassembled packet too large", mp, ill); 7421 freemsg(mp); 7422 return (NULL); 7423 } 7424 7425 if (DB_REF(mp) > 1) { 7426 mblk_t *mp2 = copymsg(mp); 7427 7428 if (mp2 == NULL) { 7429 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7430 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7431 freemsg(mp); 7432 return (NULL); 7433 } 7434 freemsg(mp); 7435 mp = mp2; 7436 } 7437 ipha = (ipha_t *)mp->b_rptr; 7438 7439 ipha->ipha_length = htons((uint16_t)packet_size); 7440 /* We're now complete, zip the frag state */ 7441 ipha->ipha_fragment_offset_and_flags = 0; 7442 /* Record the ECN info. */ 7443 ipha->ipha_type_of_service &= 0xFC; 7444 ipha->ipha_type_of_service |= ecn_info; 7445 7446 /* Update the receive attributes */ 7447 ira->ira_pktlen = packet_size; 7448 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7449 7450 /* Reassembly is successful; set checksum information in packet */ 7451 DB_CKSUM16(mp) = (uint16_t)sum_val; 7452 DB_CKSUMFLAGS(mp) = sum_flags; 7453 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7454 7455 return (mp); 7456 } 7457 7458 /* 7459 * Pullup function that should be used for IP input in order to 7460 * ensure we do not loose the L2 source address; we need the l2 source 7461 * address for IP_RECVSLLA and for ndp_input. 7462 * 7463 * We return either NULL or b_rptr. 7464 */ 7465 void * 7466 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7467 { 7468 ill_t *ill = ira->ira_ill; 7469 7470 if (ip_rput_pullups++ == 0) { 7471 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7472 "ip_pullup: %s forced us to " 7473 " pullup pkt, hdr len %ld, hdr addr %p", 7474 ill->ill_name, len, (void *)mp->b_rptr); 7475 } 7476 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7477 ip_setl2src(mp, ira, ira->ira_rill); 7478 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7479 if (!pullupmsg(mp, len)) 7480 return (NULL); 7481 else 7482 return (mp->b_rptr); 7483 } 7484 7485 /* 7486 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7487 * When called from the ULP ira_rill will be NULL hence the caller has to 7488 * pass in the ill. 7489 */ 7490 /* ARGSUSED */ 7491 void 7492 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7493 { 7494 const uchar_t *addr; 7495 int alen; 7496 7497 if (ira->ira_flags & IRAF_L2SRC_SET) 7498 return; 7499 7500 ASSERT(ill != NULL); 7501 alen = ill->ill_phys_addr_length; 7502 ASSERT(alen <= sizeof (ira->ira_l2src)); 7503 if (ira->ira_mhip != NULL && 7504 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7505 bcopy(addr, ira->ira_l2src, alen); 7506 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7507 (addr = ill->ill_phys_addr) != NULL) { 7508 bcopy(addr, ira->ira_l2src, alen); 7509 } else { 7510 bzero(ira->ira_l2src, alen); 7511 } 7512 ira->ira_flags |= IRAF_L2SRC_SET; 7513 } 7514 7515 /* 7516 * check ip header length and align it. 7517 */ 7518 mblk_t * 7519 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7520 { 7521 ill_t *ill = ira->ira_ill; 7522 ssize_t len; 7523 7524 len = MBLKL(mp); 7525 7526 if (!OK_32PTR(mp->b_rptr)) 7527 IP_STAT(ill->ill_ipst, ip_notaligned); 7528 else 7529 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7530 7531 /* Guard against bogus device drivers */ 7532 if (len < 0) { 7533 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7534 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7535 freemsg(mp); 7536 return (NULL); 7537 } 7538 7539 if (len == 0) { 7540 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7541 mblk_t *mp1 = mp->b_cont; 7542 7543 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7544 ip_setl2src(mp, ira, ira->ira_rill); 7545 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7546 7547 freeb(mp); 7548 mp = mp1; 7549 if (mp == NULL) 7550 return (NULL); 7551 7552 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7553 return (mp); 7554 } 7555 if (ip_pullup(mp, min_size, ira) == NULL) { 7556 if (msgdsize(mp) < min_size) { 7557 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7558 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7559 } else { 7560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7561 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7562 } 7563 freemsg(mp); 7564 return (NULL); 7565 } 7566 return (mp); 7567 } 7568 7569 /* 7570 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7571 */ 7572 mblk_t * 7573 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7574 uint_t min_size, ip_recv_attr_t *ira) 7575 { 7576 ill_t *ill = ira->ira_ill; 7577 7578 /* 7579 * Make sure we have data length consistent 7580 * with the IP header. 7581 */ 7582 if (mp->b_cont == NULL) { 7583 /* pkt_len is based on ipha_len, not the mblk length */ 7584 if (pkt_len < min_size) { 7585 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7586 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7587 freemsg(mp); 7588 return (NULL); 7589 } 7590 if (len < 0) { 7591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7592 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7593 freemsg(mp); 7594 return (NULL); 7595 } 7596 /* Drop any pad */ 7597 mp->b_wptr = rptr + pkt_len; 7598 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7599 ASSERT(pkt_len >= min_size); 7600 if (pkt_len < min_size) { 7601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7602 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7603 freemsg(mp); 7604 return (NULL); 7605 } 7606 if (len < 0) { 7607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7608 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7609 freemsg(mp); 7610 return (NULL); 7611 } 7612 /* Drop any pad */ 7613 (void) adjmsg(mp, -len); 7614 /* 7615 * adjmsg may have freed an mblk from the chain, hence 7616 * invalidate any hw checksum here. This will force IP to 7617 * calculate the checksum in sw, but only for this packet. 7618 */ 7619 DB_CKSUMFLAGS(mp) = 0; 7620 IP_STAT(ill->ill_ipst, ip_multimblk); 7621 } 7622 return (mp); 7623 } 7624 7625 /* 7626 * Check that the IPv4 opt_len is consistent with the packet and pullup 7627 * the options. 7628 */ 7629 mblk_t * 7630 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7631 ip_recv_attr_t *ira) 7632 { 7633 ill_t *ill = ira->ira_ill; 7634 ssize_t len; 7635 7636 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7637 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7639 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7640 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7641 freemsg(mp); 7642 return (NULL); 7643 } 7644 7645 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7646 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7647 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7648 freemsg(mp); 7649 return (NULL); 7650 } 7651 /* 7652 * Recompute complete header length and make sure we 7653 * have access to all of it. 7654 */ 7655 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7656 if (len > (mp->b_wptr - mp->b_rptr)) { 7657 if (len > pkt_len) { 7658 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7659 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7660 freemsg(mp); 7661 return (NULL); 7662 } 7663 if (ip_pullup(mp, len, ira) == NULL) { 7664 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7665 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7666 freemsg(mp); 7667 return (NULL); 7668 } 7669 } 7670 return (mp); 7671 } 7672 7673 /* 7674 * Returns a new ire, or the same ire, or NULL. 7675 * If a different IRE is returned, then it is held; the caller 7676 * needs to release it. 7677 * In no case is there any hold/release on the ire argument. 7678 */ 7679 ire_t * 7680 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7681 { 7682 ire_t *new_ire; 7683 ill_t *ire_ill; 7684 uint_t ifindex; 7685 ip_stack_t *ipst = ill->ill_ipst; 7686 boolean_t strict_check = B_FALSE; 7687 7688 /* 7689 * IPMP common case: if IRE and ILL are in the same group, there's no 7690 * issue (e.g. packet received on an underlying interface matched an 7691 * IRE_LOCAL on its associated group interface). 7692 */ 7693 ASSERT(ire->ire_ill != NULL); 7694 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7695 return (ire); 7696 7697 /* 7698 * Do another ire lookup here, using the ingress ill, to see if the 7699 * interface is in a usesrc group. 7700 * As long as the ills belong to the same group, we don't consider 7701 * them to be arriving on the wrong interface. Thus, if the switch 7702 * is doing inbound load spreading, we won't drop packets when the 7703 * ip*_strict_dst_multihoming switch is on. 7704 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7705 * where the local address may not be unique. In this case we were 7706 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7707 * actually returned. The new lookup, which is more specific, should 7708 * only find the IRE_LOCAL associated with the ingress ill if one 7709 * exists. 7710 */ 7711 if (ire->ire_ipversion == IPV4_VERSION) { 7712 if (ipst->ips_ip_strict_dst_multihoming) 7713 strict_check = B_TRUE; 7714 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7715 IRE_LOCAL, ill, ALL_ZONES, NULL, 7716 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7717 } else { 7718 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7719 if (ipst->ips_ipv6_strict_dst_multihoming) 7720 strict_check = B_TRUE; 7721 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7722 IRE_LOCAL, ill, ALL_ZONES, NULL, 7723 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7724 } 7725 /* 7726 * If the same ire that was returned in ip_input() is found then this 7727 * is an indication that usesrc groups are in use. The packet 7728 * arrived on a different ill in the group than the one associated with 7729 * the destination address. If a different ire was found then the same 7730 * IP address must be hosted on multiple ills. This is possible with 7731 * unnumbered point2point interfaces. We switch to use this new ire in 7732 * order to have accurate interface statistics. 7733 */ 7734 if (new_ire != NULL) { 7735 /* Note: held in one case but not the other? Caller handles */ 7736 if (new_ire != ire) 7737 return (new_ire); 7738 /* Unchanged */ 7739 ire_refrele(new_ire); 7740 return (ire); 7741 } 7742 7743 /* 7744 * Chase pointers once and store locally. 7745 */ 7746 ASSERT(ire->ire_ill != NULL); 7747 ire_ill = ire->ire_ill; 7748 ifindex = ill->ill_usesrc_ifindex; 7749 7750 /* 7751 * Check if it's a legal address on the 'usesrc' interface. 7752 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7753 * can just check phyint_ifindex. 7754 */ 7755 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7756 return (ire); 7757 } 7758 7759 /* 7760 * If the ip*_strict_dst_multihoming switch is on then we can 7761 * only accept this packet if the interface is marked as routing. 7762 */ 7763 if (!(strict_check)) 7764 return (ire); 7765 7766 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7767 return (ire); 7768 } 7769 return (NULL); 7770 } 7771 7772 /* 7773 * This function is used to construct a mac_header_info_s from a 7774 * DL_UNITDATA_IND message. 7775 * The address fields in the mhi structure points into the message, 7776 * thus the caller can't use those fields after freeing the message. 7777 * 7778 * We determine whether the packet received is a non-unicast packet 7779 * and in doing so, determine whether or not it is broadcast vs multicast. 7780 * For it to be a broadcast packet, we must have the appropriate mblk_t 7781 * hanging off the ill_t. If this is either not present or doesn't match 7782 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7783 * to be multicast. Thus NICs that have no broadcast address (or no 7784 * capability for one, such as point to point links) cannot return as 7785 * the packet being broadcast. 7786 */ 7787 void 7788 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7789 { 7790 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7791 mblk_t *bmp; 7792 uint_t extra_offset; 7793 7794 bzero(mhip, sizeof (struct mac_header_info_s)); 7795 7796 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7797 7798 if (ill->ill_sap_length < 0) 7799 extra_offset = 0; 7800 else 7801 extra_offset = ill->ill_sap_length; 7802 7803 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7804 extra_offset; 7805 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7806 extra_offset; 7807 7808 if (!ind->dl_group_address) 7809 return; 7810 7811 /* Multicast or broadcast */ 7812 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7813 7814 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7815 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7816 (bmp = ill->ill_bcast_mp) != NULL) { 7817 dl_unitdata_req_t *dlur; 7818 uint8_t *bphys_addr; 7819 7820 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7821 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7822 extra_offset; 7823 7824 if (bcmp(mhip->mhi_daddr, bphys_addr, 7825 ind->dl_dest_addr_length) == 0) 7826 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7827 } 7828 } 7829 7830 /* 7831 * This function is used to construct a mac_header_info_s from a 7832 * M_DATA fastpath message from a DLPI driver. 7833 * The address fields in the mhi structure points into the message, 7834 * thus the caller can't use those fields after freeing the message. 7835 * 7836 * We determine whether the packet received is a non-unicast packet 7837 * and in doing so, determine whether or not it is broadcast vs multicast. 7838 * For it to be a broadcast packet, we must have the appropriate mblk_t 7839 * hanging off the ill_t. If this is either not present or doesn't match 7840 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7841 * to be multicast. Thus NICs that have no broadcast address (or no 7842 * capability for one, such as point to point links) cannot return as 7843 * the packet being broadcast. 7844 */ 7845 void 7846 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7847 { 7848 mblk_t *bmp; 7849 struct ether_header *pether; 7850 7851 bzero(mhip, sizeof (struct mac_header_info_s)); 7852 7853 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7854 7855 pether = (struct ether_header *)((char *)mp->b_rptr 7856 - sizeof (struct ether_header)); 7857 7858 /* 7859 * Make sure the interface is an ethernet type, since we don't 7860 * know the header format for anything but Ethernet. Also make 7861 * sure we are pointing correctly above db_base. 7862 */ 7863 if (ill->ill_type != IFT_ETHER) 7864 return; 7865 7866 retry: 7867 if ((uchar_t *)pether < mp->b_datap->db_base) 7868 return; 7869 7870 /* Is there a VLAN tag? */ 7871 if (ill->ill_isv6) { 7872 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7873 pether = (struct ether_header *)((char *)pether - 4); 7874 goto retry; 7875 } 7876 } else { 7877 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7878 pether = (struct ether_header *)((char *)pether - 4); 7879 goto retry; 7880 } 7881 } 7882 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7883 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7884 7885 if (!(mhip->mhi_daddr[0] & 0x01)) 7886 return; 7887 7888 /* Multicast or broadcast */ 7889 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7890 7891 if ((bmp = ill->ill_bcast_mp) != NULL) { 7892 dl_unitdata_req_t *dlur; 7893 uint8_t *bphys_addr; 7894 uint_t addrlen; 7895 7896 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7897 addrlen = dlur->dl_dest_addr_length; 7898 if (ill->ill_sap_length < 0) { 7899 bphys_addr = (uchar_t *)dlur + 7900 dlur->dl_dest_addr_offset; 7901 addrlen += ill->ill_sap_length; 7902 } else { 7903 bphys_addr = (uchar_t *)dlur + 7904 dlur->dl_dest_addr_offset + 7905 ill->ill_sap_length; 7906 addrlen -= ill->ill_sap_length; 7907 } 7908 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7909 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7910 } 7911 } 7912 7913 /* 7914 * Handle anything but M_DATA messages 7915 * We see the DL_UNITDATA_IND which are part 7916 * of the data path, and also the other messages from the driver. 7917 */ 7918 void 7919 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7920 { 7921 mblk_t *first_mp; 7922 struct iocblk *iocp; 7923 struct mac_header_info_s mhi; 7924 7925 switch (DB_TYPE(mp)) { 7926 case M_PROTO: 7927 case M_PCPROTO: { 7928 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7929 DL_UNITDATA_IND) { 7930 /* Go handle anything other than data elsewhere. */ 7931 ip_rput_dlpi(ill, mp); 7932 return; 7933 } 7934 7935 first_mp = mp; 7936 mp = first_mp->b_cont; 7937 first_mp->b_cont = NULL; 7938 7939 if (mp == NULL) { 7940 freeb(first_mp); 7941 return; 7942 } 7943 ip_dlur_to_mhi(ill, first_mp, &mhi); 7944 if (ill->ill_isv6) 7945 ip_input_v6(ill, NULL, mp, &mhi); 7946 else 7947 ip_input(ill, NULL, mp, &mhi); 7948 7949 /* Ditch the DLPI header. */ 7950 freeb(first_mp); 7951 return; 7952 } 7953 case M_IOCACK: 7954 iocp = (struct iocblk *)mp->b_rptr; 7955 switch (iocp->ioc_cmd) { 7956 case DL_IOC_HDR_INFO: 7957 ill_fastpath_ack(ill, mp); 7958 return; 7959 default: 7960 putnext(ill->ill_rq, mp); 7961 return; 7962 } 7963 /* FALLTHROUGH */ 7964 case M_ERROR: 7965 case M_HANGUP: 7966 mutex_enter(&ill->ill_lock); 7967 if (ill->ill_state_flags & ILL_CONDEMNED) { 7968 mutex_exit(&ill->ill_lock); 7969 freemsg(mp); 7970 return; 7971 } 7972 ill_refhold_locked(ill); 7973 mutex_exit(&ill->ill_lock); 7974 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7975 B_FALSE); 7976 return; 7977 case M_CTL: 7978 putnext(ill->ill_rq, mp); 7979 return; 7980 case M_IOCNAK: 7981 ip1dbg(("got iocnak ")); 7982 iocp = (struct iocblk *)mp->b_rptr; 7983 switch (iocp->ioc_cmd) { 7984 case DL_IOC_HDR_INFO: 7985 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7986 return; 7987 default: 7988 break; 7989 } 7990 /* FALLTHROUGH */ 7991 default: 7992 putnext(ill->ill_rq, mp); 7993 return; 7994 } 7995 } 7996 7997 /* Read side put procedure. Packets coming from the wire arrive here. */ 7998 int 7999 ip_rput(queue_t *q, mblk_t *mp) 8000 { 8001 ill_t *ill; 8002 union DL_primitives *dl; 8003 8004 ill = (ill_t *)q->q_ptr; 8005 8006 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8007 /* 8008 * If things are opening or closing, only accept high-priority 8009 * DLPI messages. (On open ill->ill_ipif has not yet been 8010 * created; on close, things hanging off the ill may have been 8011 * freed already.) 8012 */ 8013 dl = (union DL_primitives *)mp->b_rptr; 8014 if (DB_TYPE(mp) != M_PCPROTO || 8015 dl->dl_primitive == DL_UNITDATA_IND) { 8016 inet_freemsg(mp); 8017 return (0); 8018 } 8019 } 8020 if (DB_TYPE(mp) == M_DATA) { 8021 struct mac_header_info_s mhi; 8022 8023 ip_mdata_to_mhi(ill, mp, &mhi); 8024 ip_input(ill, NULL, mp, &mhi); 8025 } else { 8026 ip_rput_notdata(ill, mp); 8027 } 8028 return (0); 8029 } 8030 8031 /* 8032 * Move the information to a copy. 8033 */ 8034 mblk_t * 8035 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8036 { 8037 mblk_t *mp1; 8038 ill_t *ill = ira->ira_ill; 8039 ip_stack_t *ipst = ill->ill_ipst; 8040 8041 IP_STAT(ipst, ip_db_ref); 8042 8043 /* Make sure we have ira_l2src before we loose the original mblk */ 8044 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8045 ip_setl2src(mp, ira, ira->ira_rill); 8046 8047 mp1 = copymsg(mp); 8048 if (mp1 == NULL) { 8049 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8050 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8051 freemsg(mp); 8052 return (NULL); 8053 } 8054 /* preserve the hardware checksum flags and data, if present */ 8055 if (DB_CKSUMFLAGS(mp) != 0) { 8056 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8057 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8058 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8059 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8060 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8061 } 8062 freemsg(mp); 8063 return (mp1); 8064 } 8065 8066 static void 8067 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8068 t_uscalar_t err) 8069 { 8070 if (dl_err == DL_SYSERR) { 8071 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8072 "%s: %s failed: DL_SYSERR (errno %u)\n", 8073 ill->ill_name, dl_primstr(prim), err); 8074 return; 8075 } 8076 8077 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8078 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8079 dl_errstr(dl_err)); 8080 } 8081 8082 /* 8083 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8084 * than DL_UNITDATA_IND messages. If we need to process this message 8085 * exclusively, we call qwriter_ip, in which case we also need to call 8086 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8087 */ 8088 void 8089 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8090 { 8091 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8092 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8093 queue_t *q = ill->ill_rq; 8094 t_uscalar_t prim = dloa->dl_primitive; 8095 t_uscalar_t reqprim = DL_PRIM_INVAL; 8096 8097 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8098 char *, dl_primstr(prim), ill_t *, ill); 8099 ip1dbg(("ip_rput_dlpi")); 8100 8101 /* 8102 * If we received an ACK but didn't send a request for it, then it 8103 * can't be part of any pending operation; discard up-front. 8104 */ 8105 switch (prim) { 8106 case DL_ERROR_ACK: 8107 reqprim = dlea->dl_error_primitive; 8108 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8109 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8110 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8111 dlea->dl_unix_errno)); 8112 break; 8113 case DL_OK_ACK: 8114 reqprim = dloa->dl_correct_primitive; 8115 break; 8116 case DL_INFO_ACK: 8117 reqprim = DL_INFO_REQ; 8118 break; 8119 case DL_BIND_ACK: 8120 reqprim = DL_BIND_REQ; 8121 break; 8122 case DL_PHYS_ADDR_ACK: 8123 reqprim = DL_PHYS_ADDR_REQ; 8124 break; 8125 case DL_NOTIFY_ACK: 8126 reqprim = DL_NOTIFY_REQ; 8127 break; 8128 case DL_CAPABILITY_ACK: 8129 reqprim = DL_CAPABILITY_REQ; 8130 break; 8131 } 8132 8133 if (prim != DL_NOTIFY_IND) { 8134 if (reqprim == DL_PRIM_INVAL || 8135 !ill_dlpi_pending(ill, reqprim)) { 8136 /* Not a DLPI message we support or expected */ 8137 freemsg(mp); 8138 return; 8139 } 8140 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8141 dl_primstr(reqprim))); 8142 } 8143 8144 switch (reqprim) { 8145 case DL_UNBIND_REQ: 8146 /* 8147 * NOTE: we mark the unbind as complete even if we got a 8148 * DL_ERROR_ACK, since there's not much else we can do. 8149 */ 8150 mutex_enter(&ill->ill_lock); 8151 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8152 cv_signal(&ill->ill_cv); 8153 mutex_exit(&ill->ill_lock); 8154 break; 8155 8156 case DL_ENABMULTI_REQ: 8157 if (prim == DL_OK_ACK) { 8158 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8159 ill->ill_dlpi_multicast_state = IDS_OK; 8160 } 8161 break; 8162 } 8163 8164 /* 8165 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8166 * need to become writer to continue to process it. Because an 8167 * exclusive operation doesn't complete until replies to all queued 8168 * DLPI messages have been received, we know we're in the middle of an 8169 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8170 * 8171 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8172 * Since this is on the ill stream we unconditionally bump up the 8173 * refcount without doing ILL_CAN_LOOKUP(). 8174 */ 8175 ill_refhold(ill); 8176 if (prim == DL_NOTIFY_IND) 8177 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8178 else 8179 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8180 } 8181 8182 /* 8183 * Handling of DLPI messages that require exclusive access to the ipsq. 8184 * 8185 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8186 * happen here. (along with mi_copy_done) 8187 */ 8188 /* ARGSUSED */ 8189 static void 8190 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8191 { 8192 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8193 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8194 int err = 0; 8195 ill_t *ill = (ill_t *)q->q_ptr; 8196 ipif_t *ipif = NULL; 8197 mblk_t *mp1 = NULL; 8198 conn_t *connp = NULL; 8199 t_uscalar_t paddrreq; 8200 mblk_t *mp_hw; 8201 boolean_t success; 8202 boolean_t ioctl_aborted = B_FALSE; 8203 boolean_t log = B_TRUE; 8204 8205 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8206 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8207 8208 ip1dbg(("ip_rput_dlpi_writer ..")); 8209 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8210 ASSERT(IAM_WRITER_ILL(ill)); 8211 8212 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8213 /* 8214 * The current ioctl could have been aborted by the user and a new 8215 * ioctl to bring up another ill could have started. We could still 8216 * get a response from the driver later. 8217 */ 8218 if (ipif != NULL && ipif->ipif_ill != ill) 8219 ioctl_aborted = B_TRUE; 8220 8221 switch (dloa->dl_primitive) { 8222 case DL_ERROR_ACK: 8223 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8224 dl_primstr(dlea->dl_error_primitive))); 8225 8226 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8227 char *, dl_primstr(dlea->dl_error_primitive), 8228 ill_t *, ill); 8229 8230 switch (dlea->dl_error_primitive) { 8231 case DL_DISABMULTI_REQ: 8232 ill_dlpi_done(ill, dlea->dl_error_primitive); 8233 break; 8234 case DL_PROMISCON_REQ: 8235 case DL_PROMISCOFF_REQ: 8236 case DL_UNBIND_REQ: 8237 case DL_ATTACH_REQ: 8238 case DL_INFO_REQ: 8239 ill_dlpi_done(ill, dlea->dl_error_primitive); 8240 break; 8241 case DL_NOTIFY_REQ: 8242 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8243 log = B_FALSE; 8244 break; 8245 case DL_PHYS_ADDR_REQ: 8246 /* 8247 * For IPv6 only, there are two additional 8248 * phys_addr_req's sent to the driver to get the 8249 * IPv6 token and lla. This allows IP to acquire 8250 * the hardware address format for a given interface 8251 * without having built in knowledge of the hardware 8252 * address. ill_phys_addr_pend keeps track of the last 8253 * DL_PAR sent so we know which response we are 8254 * dealing with. ill_dlpi_done will update 8255 * ill_phys_addr_pend when it sends the next req. 8256 * We don't complete the IOCTL until all three DL_PARs 8257 * have been attempted, so set *_len to 0 and break. 8258 */ 8259 paddrreq = ill->ill_phys_addr_pend; 8260 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8261 if (paddrreq == DL_IPV6_TOKEN) { 8262 ill->ill_token_length = 0; 8263 log = B_FALSE; 8264 break; 8265 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8266 ill->ill_nd_lla_len = 0; 8267 log = B_FALSE; 8268 break; 8269 } 8270 /* 8271 * Something went wrong with the DL_PHYS_ADDR_REQ. 8272 * We presumably have an IOCTL hanging out waiting 8273 * for completion. Find it and complete the IOCTL 8274 * with the error noted. 8275 * However, ill_dl_phys was called on an ill queue 8276 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8277 * set. But the ioctl is known to be pending on ill_wq. 8278 */ 8279 if (!ill->ill_ifname_pending) 8280 break; 8281 ill->ill_ifname_pending = 0; 8282 if (!ioctl_aborted) 8283 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8284 if (mp1 != NULL) { 8285 /* 8286 * This operation (SIOCSLIFNAME) must have 8287 * happened on the ill. Assert there is no conn 8288 */ 8289 ASSERT(connp == NULL); 8290 q = ill->ill_wq; 8291 } 8292 break; 8293 case DL_BIND_REQ: 8294 ill_dlpi_done(ill, DL_BIND_REQ); 8295 if (ill->ill_ifname_pending) 8296 break; 8297 mutex_enter(&ill->ill_lock); 8298 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8299 mutex_exit(&ill->ill_lock); 8300 /* 8301 * Something went wrong with the bind. We presumably 8302 * have an IOCTL hanging out waiting for completion. 8303 * Find it, take down the interface that was coming 8304 * up, and complete the IOCTL with the error noted. 8305 */ 8306 if (!ioctl_aborted) 8307 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8308 if (mp1 != NULL) { 8309 /* 8310 * This might be a result of a DL_NOTE_REPLUMB 8311 * notification. In that case, connp is NULL. 8312 */ 8313 if (connp != NULL) 8314 q = CONNP_TO_WQ(connp); 8315 8316 (void) ipif_down(ipif, NULL, NULL); 8317 /* error is set below the switch */ 8318 } 8319 break; 8320 case DL_ENABMULTI_REQ: 8321 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8322 8323 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8324 ill->ill_dlpi_multicast_state = IDS_FAILED; 8325 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8326 8327 printf("ip: joining multicasts failed (%d)" 8328 " on %s - will use link layer " 8329 "broadcasts for multicast\n", 8330 dlea->dl_errno, ill->ill_name); 8331 8332 /* 8333 * Set up for multi_bcast; We are the 8334 * writer, so ok to access ill->ill_ipif 8335 * without any lock. 8336 */ 8337 mutex_enter(&ill->ill_phyint->phyint_lock); 8338 ill->ill_phyint->phyint_flags |= 8339 PHYI_MULTI_BCAST; 8340 mutex_exit(&ill->ill_phyint->phyint_lock); 8341 8342 } 8343 freemsg(mp); /* Don't want to pass this up */ 8344 return; 8345 case DL_CAPABILITY_REQ: 8346 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8347 "DL_CAPABILITY REQ\n")); 8348 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8349 ill->ill_dlpi_capab_state = IDCS_FAILED; 8350 ill_capability_done(ill); 8351 freemsg(mp); 8352 return; 8353 } 8354 /* 8355 * Note the error for IOCTL completion (mp1 is set when 8356 * ready to complete ioctl). If ill_ifname_pending_err is 8357 * set, an error occured during plumbing (ill_ifname_pending), 8358 * so we want to report that error. 8359 * 8360 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8361 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8362 * expected to get errack'd if the driver doesn't support 8363 * these flags (e.g. ethernet). log will be set to B_FALSE 8364 * if these error conditions are encountered. 8365 */ 8366 if (mp1 != NULL) { 8367 if (ill->ill_ifname_pending_err != 0) { 8368 err = ill->ill_ifname_pending_err; 8369 ill->ill_ifname_pending_err = 0; 8370 } else { 8371 err = dlea->dl_unix_errno ? 8372 dlea->dl_unix_errno : ENXIO; 8373 } 8374 /* 8375 * If we're plumbing an interface and an error hasn't already 8376 * been saved, set ill_ifname_pending_err to the error passed 8377 * up. Ignore the error if log is B_FALSE (see comment above). 8378 */ 8379 } else if (log && ill->ill_ifname_pending && 8380 ill->ill_ifname_pending_err == 0) { 8381 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8382 dlea->dl_unix_errno : ENXIO; 8383 } 8384 8385 if (log) 8386 ip_dlpi_error(ill, dlea->dl_error_primitive, 8387 dlea->dl_errno, dlea->dl_unix_errno); 8388 break; 8389 case DL_CAPABILITY_ACK: 8390 ill_capability_ack(ill, mp); 8391 /* 8392 * The message has been handed off to ill_capability_ack 8393 * and must not be freed below 8394 */ 8395 mp = NULL; 8396 break; 8397 8398 case DL_INFO_ACK: 8399 /* Call a routine to handle this one. */ 8400 ill_dlpi_done(ill, DL_INFO_REQ); 8401 ip_ll_subnet_defaults(ill, mp); 8402 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8403 return; 8404 case DL_BIND_ACK: 8405 /* 8406 * We should have an IOCTL waiting on this unless 8407 * sent by ill_dl_phys, in which case just return 8408 */ 8409 ill_dlpi_done(ill, DL_BIND_REQ); 8410 8411 if (ill->ill_ifname_pending) { 8412 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8413 ill_t *, ill, mblk_t *, mp); 8414 break; 8415 } 8416 mutex_enter(&ill->ill_lock); 8417 ill->ill_dl_up = 1; 8418 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8419 mutex_exit(&ill->ill_lock); 8420 8421 if (!ioctl_aborted) 8422 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8423 if (mp1 == NULL) { 8424 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8425 break; 8426 } 8427 /* 8428 * mp1 was added by ill_dl_up(). if that is a result of 8429 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8430 */ 8431 if (connp != NULL) 8432 q = CONNP_TO_WQ(connp); 8433 /* 8434 * We are exclusive. So nothing can change even after 8435 * we get the pending mp. 8436 */ 8437 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8438 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8439 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8440 8441 /* 8442 * Now bring up the resolver; when that is complete, we'll 8443 * create IREs. Note that we intentionally mirror what 8444 * ipif_up() would have done, because we got here by way of 8445 * ill_dl_up(), which stopped ipif_up()'s processing. 8446 */ 8447 if (ill->ill_isv6) { 8448 /* 8449 * v6 interfaces. 8450 * Unlike ARP which has to do another bind 8451 * and attach, once we get here we are 8452 * done with NDP 8453 */ 8454 (void) ipif_resolver_up(ipif, Res_act_initial); 8455 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8456 err = ipif_up_done_v6(ipif); 8457 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8458 /* 8459 * ARP and other v4 external resolvers. 8460 * Leave the pending mblk intact so that 8461 * the ioctl completes in ip_rput(). 8462 */ 8463 if (connp != NULL) 8464 mutex_enter(&connp->conn_lock); 8465 mutex_enter(&ill->ill_lock); 8466 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8467 mutex_exit(&ill->ill_lock); 8468 if (connp != NULL) 8469 mutex_exit(&connp->conn_lock); 8470 if (success) { 8471 err = ipif_resolver_up(ipif, Res_act_initial); 8472 if (err == EINPROGRESS) { 8473 freemsg(mp); 8474 return; 8475 } 8476 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8477 } else { 8478 /* The conn has started closing */ 8479 err = EINTR; 8480 } 8481 } else { 8482 /* 8483 * This one is complete. Reply to pending ioctl. 8484 */ 8485 (void) ipif_resolver_up(ipif, Res_act_initial); 8486 err = ipif_up_done(ipif); 8487 } 8488 8489 if ((err == 0) && (ill->ill_up_ipifs)) { 8490 err = ill_up_ipifs(ill, q, mp1); 8491 if (err == EINPROGRESS) { 8492 freemsg(mp); 8493 return; 8494 } 8495 } 8496 8497 /* 8498 * If we have a moved ipif to bring up, and everything has 8499 * succeeded to this point, bring it up on the IPMP ill. 8500 * Otherwise, leave it down -- the admin can try to bring it 8501 * up by hand if need be. 8502 */ 8503 if (ill->ill_move_ipif != NULL) { 8504 if (err != 0) { 8505 ill->ill_move_ipif = NULL; 8506 } else { 8507 ipif = ill->ill_move_ipif; 8508 ill->ill_move_ipif = NULL; 8509 err = ipif_up(ipif, q, mp1); 8510 if (err == EINPROGRESS) { 8511 freemsg(mp); 8512 return; 8513 } 8514 } 8515 } 8516 break; 8517 8518 case DL_NOTIFY_IND: { 8519 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8520 uint_t orig_mtu, orig_mc_mtu; 8521 8522 switch (notify->dl_notification) { 8523 case DL_NOTE_PHYS_ADDR: 8524 err = ill_set_phys_addr(ill, mp); 8525 break; 8526 8527 case DL_NOTE_REPLUMB: 8528 /* 8529 * Directly return after calling ill_replumb(). 8530 * Note that we should not free mp as it is reused 8531 * in the ill_replumb() function. 8532 */ 8533 err = ill_replumb(ill, mp); 8534 return; 8535 8536 case DL_NOTE_FASTPATH_FLUSH: 8537 nce_flush(ill, B_FALSE); 8538 break; 8539 8540 case DL_NOTE_SDU_SIZE: 8541 case DL_NOTE_SDU_SIZE2: 8542 /* 8543 * The dce and fragmentation code can cope with 8544 * this changing while packets are being sent. 8545 * When packets are sent ip_output will discover 8546 * a change. 8547 * 8548 * Change the MTU size of the interface. 8549 */ 8550 mutex_enter(&ill->ill_lock); 8551 orig_mtu = ill->ill_mtu; 8552 orig_mc_mtu = ill->ill_mc_mtu; 8553 switch (notify->dl_notification) { 8554 case DL_NOTE_SDU_SIZE: 8555 ill->ill_current_frag = 8556 (uint_t)notify->dl_data; 8557 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8558 break; 8559 case DL_NOTE_SDU_SIZE2: 8560 ill->ill_current_frag = 8561 (uint_t)notify->dl_data1; 8562 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8563 break; 8564 } 8565 if (ill->ill_current_frag > ill->ill_max_frag) 8566 ill->ill_max_frag = ill->ill_current_frag; 8567 8568 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8569 ill->ill_mtu = ill->ill_current_frag; 8570 8571 /* 8572 * If ill_user_mtu was set (via 8573 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8574 */ 8575 if (ill->ill_user_mtu != 0 && 8576 ill->ill_user_mtu < ill->ill_mtu) 8577 ill->ill_mtu = ill->ill_user_mtu; 8578 8579 if (ill->ill_user_mtu != 0 && 8580 ill->ill_user_mtu < ill->ill_mc_mtu) 8581 ill->ill_mc_mtu = ill->ill_user_mtu; 8582 8583 if (ill->ill_isv6) { 8584 if (ill->ill_mtu < IPV6_MIN_MTU) 8585 ill->ill_mtu = IPV6_MIN_MTU; 8586 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8587 ill->ill_mc_mtu = IPV6_MIN_MTU; 8588 } else { 8589 if (ill->ill_mtu < IP_MIN_MTU) 8590 ill->ill_mtu = IP_MIN_MTU; 8591 if (ill->ill_mc_mtu < IP_MIN_MTU) 8592 ill->ill_mc_mtu = IP_MIN_MTU; 8593 } 8594 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8595 ill->ill_mc_mtu = ill->ill_mtu; 8596 } 8597 8598 mutex_exit(&ill->ill_lock); 8599 /* 8600 * Make sure all dce_generation checks find out 8601 * that ill_mtu/ill_mc_mtu has changed. 8602 */ 8603 if (orig_mtu != ill->ill_mtu || 8604 orig_mc_mtu != ill->ill_mc_mtu) { 8605 dce_increment_all_generations(ill->ill_isv6, 8606 ill->ill_ipst); 8607 } 8608 8609 /* 8610 * Refresh IPMP meta-interface MTU if necessary. 8611 */ 8612 if (IS_UNDER_IPMP(ill)) 8613 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8614 break; 8615 8616 case DL_NOTE_LINK_UP: 8617 case DL_NOTE_LINK_DOWN: { 8618 /* 8619 * We are writer. ill / phyint / ipsq assocs stable. 8620 * The RUNNING flag reflects the state of the link. 8621 */ 8622 phyint_t *phyint = ill->ill_phyint; 8623 uint64_t new_phyint_flags; 8624 boolean_t changed = B_FALSE; 8625 boolean_t went_up; 8626 8627 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8628 mutex_enter(&phyint->phyint_lock); 8629 8630 new_phyint_flags = went_up ? 8631 phyint->phyint_flags | PHYI_RUNNING : 8632 phyint->phyint_flags & ~PHYI_RUNNING; 8633 8634 if (IS_IPMP(ill)) { 8635 new_phyint_flags = went_up ? 8636 new_phyint_flags & ~PHYI_FAILED : 8637 new_phyint_flags | PHYI_FAILED; 8638 } 8639 8640 if (new_phyint_flags != phyint->phyint_flags) { 8641 phyint->phyint_flags = new_phyint_flags; 8642 changed = B_TRUE; 8643 } 8644 mutex_exit(&phyint->phyint_lock); 8645 /* 8646 * ill_restart_dad handles the DAD restart and routing 8647 * socket notification logic. 8648 */ 8649 if (changed) { 8650 ill_restart_dad(phyint->phyint_illv4, went_up); 8651 ill_restart_dad(phyint->phyint_illv6, went_up); 8652 } 8653 break; 8654 } 8655 case DL_NOTE_PROMISC_ON_PHYS: { 8656 phyint_t *phyint = ill->ill_phyint; 8657 8658 mutex_enter(&phyint->phyint_lock); 8659 phyint->phyint_flags |= PHYI_PROMISC; 8660 mutex_exit(&phyint->phyint_lock); 8661 break; 8662 } 8663 case DL_NOTE_PROMISC_OFF_PHYS: { 8664 phyint_t *phyint = ill->ill_phyint; 8665 8666 mutex_enter(&phyint->phyint_lock); 8667 phyint->phyint_flags &= ~PHYI_PROMISC; 8668 mutex_exit(&phyint->phyint_lock); 8669 break; 8670 } 8671 case DL_NOTE_CAPAB_RENEG: 8672 /* 8673 * Something changed on the driver side. 8674 * It wants us to renegotiate the capabilities 8675 * on this ill. One possible cause is the aggregation 8676 * interface under us where a port got added or 8677 * went away. 8678 * 8679 * If the capability negotiation is already done 8680 * or is in progress, reset the capabilities and 8681 * mark the ill's ill_capab_reneg to be B_TRUE, 8682 * so that when the ack comes back, we can start 8683 * the renegotiation process. 8684 * 8685 * Note that if ill_capab_reneg is already B_TRUE 8686 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8687 * the capability resetting request has been sent 8688 * and the renegotiation has not been started yet; 8689 * nothing needs to be done in this case. 8690 */ 8691 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8692 ill_capability_reset(ill, B_TRUE); 8693 ipsq_current_finish(ipsq); 8694 break; 8695 8696 case DL_NOTE_ALLOWED_IPS: 8697 ill_set_allowed_ips(ill, mp); 8698 break; 8699 default: 8700 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8701 "type 0x%x for DL_NOTIFY_IND\n", 8702 notify->dl_notification)); 8703 break; 8704 } 8705 8706 /* 8707 * As this is an asynchronous operation, we 8708 * should not call ill_dlpi_done 8709 */ 8710 break; 8711 } 8712 case DL_NOTIFY_ACK: { 8713 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8714 8715 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8716 ill->ill_note_link = 1; 8717 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8718 break; 8719 } 8720 case DL_PHYS_ADDR_ACK: { 8721 /* 8722 * As part of plumbing the interface via SIOCSLIFNAME, 8723 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8724 * whose answers we receive here. As each answer is received, 8725 * we call ill_dlpi_done() to dispatch the next request as 8726 * we're processing the current one. Once all answers have 8727 * been received, we use ipsq_pending_mp_get() to dequeue the 8728 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8729 * is invoked from an ill queue, conn_oper_pending_ill is not 8730 * available, but we know the ioctl is pending on ill_wq.) 8731 */ 8732 uint_t paddrlen, paddroff; 8733 uint8_t *addr; 8734 8735 paddrreq = ill->ill_phys_addr_pend; 8736 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8737 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8738 addr = mp->b_rptr + paddroff; 8739 8740 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8741 if (paddrreq == DL_IPV6_TOKEN) { 8742 /* 8743 * bcopy to low-order bits of ill_token 8744 * 8745 * XXX Temporary hack - currently, all known tokens 8746 * are 64 bits, so I'll cheat for the moment. 8747 */ 8748 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8749 ill->ill_token_length = paddrlen; 8750 break; 8751 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8752 ASSERT(ill->ill_nd_lla_mp == NULL); 8753 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8754 mp = NULL; 8755 break; 8756 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8757 ASSERT(ill->ill_dest_addr_mp == NULL); 8758 ill->ill_dest_addr_mp = mp; 8759 ill->ill_dest_addr = addr; 8760 mp = NULL; 8761 if (ill->ill_isv6) { 8762 ill_setdesttoken(ill); 8763 ipif_setdestlinklocal(ill->ill_ipif); 8764 } 8765 break; 8766 } 8767 8768 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8769 ASSERT(ill->ill_phys_addr_mp == NULL); 8770 if (!ill->ill_ifname_pending) 8771 break; 8772 ill->ill_ifname_pending = 0; 8773 if (!ioctl_aborted) 8774 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8775 if (mp1 != NULL) { 8776 ASSERT(connp == NULL); 8777 q = ill->ill_wq; 8778 } 8779 /* 8780 * If any error acks received during the plumbing sequence, 8781 * ill_ifname_pending_err will be set. Break out and send up 8782 * the error to the pending ioctl. 8783 */ 8784 if (ill->ill_ifname_pending_err != 0) { 8785 err = ill->ill_ifname_pending_err; 8786 ill->ill_ifname_pending_err = 0; 8787 break; 8788 } 8789 8790 ill->ill_phys_addr_mp = mp; 8791 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8792 mp = NULL; 8793 8794 /* 8795 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8796 * provider doesn't support physical addresses. We check both 8797 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8798 * not have physical addresses, but historically adversises a 8799 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8800 * its DL_PHYS_ADDR_ACK. 8801 */ 8802 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8803 ill->ill_phys_addr = NULL; 8804 } else if (paddrlen != ill->ill_phys_addr_length) { 8805 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8806 paddrlen, ill->ill_phys_addr_length)); 8807 err = EINVAL; 8808 break; 8809 } 8810 8811 if (ill->ill_nd_lla_mp == NULL) { 8812 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8813 err = ENOMEM; 8814 break; 8815 } 8816 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8817 } 8818 8819 if (ill->ill_isv6) { 8820 ill_setdefaulttoken(ill); 8821 ipif_setlinklocal(ill->ill_ipif); 8822 } 8823 break; 8824 } 8825 case DL_OK_ACK: 8826 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8827 dl_primstr((int)dloa->dl_correct_primitive), 8828 dloa->dl_correct_primitive)); 8829 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8830 char *, dl_primstr(dloa->dl_correct_primitive), 8831 ill_t *, ill); 8832 8833 switch (dloa->dl_correct_primitive) { 8834 case DL_ENABMULTI_REQ: 8835 case DL_DISABMULTI_REQ: 8836 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8837 break; 8838 case DL_PROMISCON_REQ: 8839 case DL_PROMISCOFF_REQ: 8840 case DL_UNBIND_REQ: 8841 case DL_ATTACH_REQ: 8842 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8843 break; 8844 } 8845 break; 8846 default: 8847 break; 8848 } 8849 8850 freemsg(mp); 8851 if (mp1 == NULL) 8852 return; 8853 8854 /* 8855 * The operation must complete without EINPROGRESS since 8856 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8857 * the operation will be stuck forever inside the IPSQ. 8858 */ 8859 ASSERT(err != EINPROGRESS); 8860 8861 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8862 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8863 ipif_t *, NULL); 8864 8865 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8866 case 0: 8867 ipsq_current_finish(ipsq); 8868 break; 8869 8870 case SIOCSLIFNAME: 8871 case IF_UNITSEL: { 8872 ill_t *ill_other = ILL_OTHER(ill); 8873 8874 /* 8875 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8876 * ill has a peer which is in an IPMP group, then place ill 8877 * into the same group. One catch: although ifconfig plumbs 8878 * the appropriate IPMP meta-interface prior to plumbing this 8879 * ill, it is possible for multiple ifconfig applications to 8880 * race (or for another application to adjust plumbing), in 8881 * which case the IPMP meta-interface we need will be missing. 8882 * If so, kick the phyint out of the group. 8883 */ 8884 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8885 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8886 ipmp_illgrp_t *illg; 8887 8888 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8889 if (illg == NULL) 8890 ipmp_phyint_leave_grp(ill->ill_phyint); 8891 else 8892 ipmp_ill_join_illgrp(ill, illg); 8893 } 8894 8895 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8896 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8897 else 8898 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8899 break; 8900 } 8901 case SIOCLIFADDIF: 8902 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8903 break; 8904 8905 default: 8906 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8907 break; 8908 } 8909 } 8910 8911 /* 8912 * ip_rput_other is called by ip_rput to handle messages modifying the global 8913 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8914 */ 8915 /* ARGSUSED */ 8916 void 8917 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8918 { 8919 ill_t *ill = q->q_ptr; 8920 struct iocblk *iocp; 8921 8922 ip1dbg(("ip_rput_other ")); 8923 if (ipsq != NULL) { 8924 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8925 ASSERT(ipsq->ipsq_xop == 8926 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8927 } 8928 8929 switch (mp->b_datap->db_type) { 8930 case M_ERROR: 8931 case M_HANGUP: 8932 /* 8933 * The device has a problem. We force the ILL down. It can 8934 * be brought up again manually using SIOCSIFFLAGS (via 8935 * ifconfig or equivalent). 8936 */ 8937 ASSERT(ipsq != NULL); 8938 if (mp->b_rptr < mp->b_wptr) 8939 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8940 if (ill->ill_error == 0) 8941 ill->ill_error = ENXIO; 8942 if (!ill_down_start(q, mp)) 8943 return; 8944 ipif_all_down_tail(ipsq, q, mp, NULL); 8945 break; 8946 case M_IOCNAK: { 8947 iocp = (struct iocblk *)mp->b_rptr; 8948 8949 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8950 /* 8951 * If this was the first attempt, turn off the fastpath 8952 * probing. 8953 */ 8954 mutex_enter(&ill->ill_lock); 8955 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8956 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8957 mutex_exit(&ill->ill_lock); 8958 /* 8959 * don't flush the nce_t entries: we use them 8960 * as an index to the ncec itself. 8961 */ 8962 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8963 ill->ill_name)); 8964 } else { 8965 mutex_exit(&ill->ill_lock); 8966 } 8967 freemsg(mp); 8968 break; 8969 } 8970 default: 8971 ASSERT(0); 8972 break; 8973 } 8974 } 8975 8976 /* 8977 * Update any source route, record route or timestamp options 8978 * When it fails it has consumed the message and BUMPed the MIB. 8979 */ 8980 boolean_t 8981 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8982 ip_recv_attr_t *ira) 8983 { 8984 ipoptp_t opts; 8985 uchar_t *opt; 8986 uint8_t optval; 8987 uint8_t optlen; 8988 ipaddr_t dst; 8989 ipaddr_t ifaddr; 8990 uint32_t ts; 8991 timestruc_t now; 8992 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8993 8994 ip2dbg(("ip_forward_options\n")); 8995 dst = ipha->ipha_dst; 8996 for (optval = ipoptp_first(&opts, ipha); 8997 optval != IPOPT_EOL; 8998 optval = ipoptp_next(&opts)) { 8999 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9000 opt = opts.ipoptp_cur; 9001 optlen = opts.ipoptp_len; 9002 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9003 optval, opts.ipoptp_len)); 9004 switch (optval) { 9005 uint32_t off; 9006 case IPOPT_SSRR: 9007 case IPOPT_LSRR: 9008 /* Check if adminstratively disabled */ 9009 if (!ipst->ips_ip_forward_src_routed) { 9010 BUMP_MIB(dst_ill->ill_ip_mib, 9011 ipIfStatsForwProhibits); 9012 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9013 mp, dst_ill); 9014 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9015 ira); 9016 return (B_FALSE); 9017 } 9018 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9019 /* 9020 * Must be partial since ip_input_options 9021 * checked for strict. 9022 */ 9023 break; 9024 } 9025 off = opt[IPOPT_OFFSET]; 9026 off--; 9027 redo_srr: 9028 if (optlen < IP_ADDR_LEN || 9029 off > optlen - IP_ADDR_LEN) { 9030 /* End of source route */ 9031 ip1dbg(( 9032 "ip_forward_options: end of SR\n")); 9033 break; 9034 } 9035 /* Pick a reasonable address on the outbound if */ 9036 ASSERT(dst_ill != NULL); 9037 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9038 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9039 NULL) != 0) { 9040 /* No source! Shouldn't happen */ 9041 ifaddr = INADDR_ANY; 9042 } 9043 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9044 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9045 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9046 ntohl(dst))); 9047 9048 /* 9049 * Check if our address is present more than 9050 * once as consecutive hops in source route. 9051 */ 9052 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9053 off += IP_ADDR_LEN; 9054 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9055 goto redo_srr; 9056 } 9057 ipha->ipha_dst = dst; 9058 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9059 break; 9060 case IPOPT_RR: 9061 off = opt[IPOPT_OFFSET]; 9062 off--; 9063 if (optlen < IP_ADDR_LEN || 9064 off > optlen - IP_ADDR_LEN) { 9065 /* No more room - ignore */ 9066 ip1dbg(( 9067 "ip_forward_options: end of RR\n")); 9068 break; 9069 } 9070 /* Pick a reasonable address on the outbound if */ 9071 ASSERT(dst_ill != NULL); 9072 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9073 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9074 NULL) != 0) { 9075 /* No source! Shouldn't happen */ 9076 ifaddr = INADDR_ANY; 9077 } 9078 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9079 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9080 break; 9081 case IPOPT_TS: 9082 /* Insert timestamp if there is room */ 9083 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9084 case IPOPT_TS_TSONLY: 9085 off = IPOPT_TS_TIMELEN; 9086 break; 9087 case IPOPT_TS_PRESPEC: 9088 case IPOPT_TS_PRESPEC_RFC791: 9089 /* Verify that the address matched */ 9090 off = opt[IPOPT_OFFSET] - 1; 9091 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9092 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9093 /* Not for us */ 9094 break; 9095 } 9096 /* FALLTHROUGH */ 9097 case IPOPT_TS_TSANDADDR: 9098 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9099 break; 9100 default: 9101 /* 9102 * ip_*put_options should have already 9103 * dropped this packet. 9104 */ 9105 cmn_err(CE_PANIC, "ip_forward_options: " 9106 "unknown IT - bug in ip_input_options?\n"); 9107 } 9108 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9109 /* Increase overflow counter */ 9110 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9111 opt[IPOPT_POS_OV_FLG] = 9112 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9113 (off << 4)); 9114 break; 9115 } 9116 off = opt[IPOPT_OFFSET] - 1; 9117 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9118 case IPOPT_TS_PRESPEC: 9119 case IPOPT_TS_PRESPEC_RFC791: 9120 case IPOPT_TS_TSANDADDR: 9121 /* Pick a reasonable addr on the outbound if */ 9122 ASSERT(dst_ill != NULL); 9123 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9124 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9125 NULL, NULL) != 0) { 9126 /* No source! Shouldn't happen */ 9127 ifaddr = INADDR_ANY; 9128 } 9129 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9130 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9131 /* FALLTHROUGH */ 9132 case IPOPT_TS_TSONLY: 9133 off = opt[IPOPT_OFFSET] - 1; 9134 /* Compute # of milliseconds since midnight */ 9135 gethrestime(&now); 9136 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9137 NSEC2MSEC(now.tv_nsec); 9138 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9139 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9140 break; 9141 } 9142 break; 9143 } 9144 } 9145 return (B_TRUE); 9146 } 9147 9148 /* 9149 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9150 * returns 'true' if there are still fragments left on the queue, in 9151 * which case we restart the timer. 9152 */ 9153 void 9154 ill_frag_timer(void *arg) 9155 { 9156 ill_t *ill = (ill_t *)arg; 9157 boolean_t frag_pending; 9158 ip_stack_t *ipst = ill->ill_ipst; 9159 time_t timeout; 9160 9161 mutex_enter(&ill->ill_lock); 9162 ASSERT(!ill->ill_fragtimer_executing); 9163 if (ill->ill_state_flags & ILL_CONDEMNED) { 9164 ill->ill_frag_timer_id = 0; 9165 mutex_exit(&ill->ill_lock); 9166 return; 9167 } 9168 ill->ill_fragtimer_executing = 1; 9169 mutex_exit(&ill->ill_lock); 9170 9171 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9172 ipst->ips_ip_reassembly_timeout); 9173 9174 frag_pending = ill_frag_timeout(ill, timeout); 9175 9176 /* 9177 * Restart the timer, if we have fragments pending or if someone 9178 * wanted us to be scheduled again. 9179 */ 9180 mutex_enter(&ill->ill_lock); 9181 ill->ill_fragtimer_executing = 0; 9182 ill->ill_frag_timer_id = 0; 9183 if (frag_pending || ill->ill_fragtimer_needrestart) 9184 ill_frag_timer_start(ill); 9185 mutex_exit(&ill->ill_lock); 9186 } 9187 9188 void 9189 ill_frag_timer_start(ill_t *ill) 9190 { 9191 ip_stack_t *ipst = ill->ill_ipst; 9192 clock_t timeo_ms; 9193 9194 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9195 9196 /* If the ill is closing or opening don't proceed */ 9197 if (ill->ill_state_flags & ILL_CONDEMNED) 9198 return; 9199 9200 if (ill->ill_fragtimer_executing) { 9201 /* 9202 * ill_frag_timer is currently executing. Just record the 9203 * the fact that we want the timer to be restarted. 9204 * ill_frag_timer will post a timeout before it returns, 9205 * ensuring it will be called again. 9206 */ 9207 ill->ill_fragtimer_needrestart = 1; 9208 return; 9209 } 9210 9211 if (ill->ill_frag_timer_id == 0) { 9212 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9213 ipst->ips_ip_reassembly_timeout) * SECONDS; 9214 9215 /* 9216 * The timer is neither running nor is the timeout handler 9217 * executing. Post a timeout so that ill_frag_timer will be 9218 * called 9219 */ 9220 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9221 MSEC_TO_TICK(timeo_ms >> 1)); 9222 ill->ill_fragtimer_needrestart = 0; 9223 } 9224 } 9225 9226 /* 9227 * Update any source route, record route or timestamp options. 9228 * Check that we are at end of strict source route. 9229 * The options have already been checked for sanity in ip_input_options(). 9230 */ 9231 boolean_t 9232 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9233 { 9234 ipoptp_t opts; 9235 uchar_t *opt; 9236 uint8_t optval; 9237 uint8_t optlen; 9238 ipaddr_t dst; 9239 ipaddr_t ifaddr; 9240 uint32_t ts; 9241 timestruc_t now; 9242 ill_t *ill = ira->ira_ill; 9243 ip_stack_t *ipst = ill->ill_ipst; 9244 9245 ip2dbg(("ip_input_local_options\n")); 9246 9247 for (optval = ipoptp_first(&opts, ipha); 9248 optval != IPOPT_EOL; 9249 optval = ipoptp_next(&opts)) { 9250 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9251 opt = opts.ipoptp_cur; 9252 optlen = opts.ipoptp_len; 9253 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9254 optval, optlen)); 9255 switch (optval) { 9256 uint32_t off; 9257 case IPOPT_SSRR: 9258 case IPOPT_LSRR: 9259 off = opt[IPOPT_OFFSET]; 9260 off--; 9261 if (optlen < IP_ADDR_LEN || 9262 off > optlen - IP_ADDR_LEN) { 9263 /* End of source route */ 9264 ip1dbg(("ip_input_local_options: end of SR\n")); 9265 break; 9266 } 9267 /* 9268 * This will only happen if two consecutive entries 9269 * in the source route contains our address or if 9270 * it is a packet with a loose source route which 9271 * reaches us before consuming the whole source route 9272 */ 9273 ip1dbg(("ip_input_local_options: not end of SR\n")); 9274 if (optval == IPOPT_SSRR) { 9275 goto bad_src_route; 9276 } 9277 /* 9278 * Hack: instead of dropping the packet truncate the 9279 * source route to what has been used by filling the 9280 * rest with IPOPT_NOP. 9281 */ 9282 opt[IPOPT_OLEN] = (uint8_t)off; 9283 while (off < optlen) { 9284 opt[off++] = IPOPT_NOP; 9285 } 9286 break; 9287 case IPOPT_RR: 9288 off = opt[IPOPT_OFFSET]; 9289 off--; 9290 if (optlen < IP_ADDR_LEN || 9291 off > optlen - IP_ADDR_LEN) { 9292 /* No more room - ignore */ 9293 ip1dbg(( 9294 "ip_input_local_options: end of RR\n")); 9295 break; 9296 } 9297 /* Pick a reasonable address on the outbound if */ 9298 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9299 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9300 NULL) != 0) { 9301 /* No source! Shouldn't happen */ 9302 ifaddr = INADDR_ANY; 9303 } 9304 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9305 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9306 break; 9307 case IPOPT_TS: 9308 /* Insert timestamp if there is romm */ 9309 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9310 case IPOPT_TS_TSONLY: 9311 off = IPOPT_TS_TIMELEN; 9312 break; 9313 case IPOPT_TS_PRESPEC: 9314 case IPOPT_TS_PRESPEC_RFC791: 9315 /* Verify that the address matched */ 9316 off = opt[IPOPT_OFFSET] - 1; 9317 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9318 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9319 /* Not for us */ 9320 break; 9321 } 9322 /* FALLTHROUGH */ 9323 case IPOPT_TS_TSANDADDR: 9324 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9325 break; 9326 default: 9327 /* 9328 * ip_*put_options should have already 9329 * dropped this packet. 9330 */ 9331 cmn_err(CE_PANIC, "ip_input_local_options: " 9332 "unknown IT - bug in ip_input_options?\n"); 9333 } 9334 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9335 /* Increase overflow counter */ 9336 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9337 opt[IPOPT_POS_OV_FLG] = 9338 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9339 (off << 4)); 9340 break; 9341 } 9342 off = opt[IPOPT_OFFSET] - 1; 9343 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9344 case IPOPT_TS_PRESPEC: 9345 case IPOPT_TS_PRESPEC_RFC791: 9346 case IPOPT_TS_TSANDADDR: 9347 /* Pick a reasonable addr on the outbound if */ 9348 if (ip_select_source_v4(ill, INADDR_ANY, 9349 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9350 &ifaddr, NULL, NULL) != 0) { 9351 /* No source! Shouldn't happen */ 9352 ifaddr = INADDR_ANY; 9353 } 9354 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9355 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9356 /* FALLTHROUGH */ 9357 case IPOPT_TS_TSONLY: 9358 off = opt[IPOPT_OFFSET] - 1; 9359 /* Compute # of milliseconds since midnight */ 9360 gethrestime(&now); 9361 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9362 NSEC2MSEC(now.tv_nsec); 9363 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9364 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9365 break; 9366 } 9367 break; 9368 } 9369 } 9370 return (B_TRUE); 9371 9372 bad_src_route: 9373 /* make sure we clear any indication of a hardware checksum */ 9374 DB_CKSUMFLAGS(mp) = 0; 9375 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9376 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9377 return (B_FALSE); 9378 9379 } 9380 9381 /* 9382 * Process IP options in an inbound packet. Always returns the nexthop. 9383 * Normally this is the passed in nexthop, but if there is an option 9384 * that effects the nexthop (such as a source route) that will be returned. 9385 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9386 * and mp freed. 9387 */ 9388 ipaddr_t 9389 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9390 ip_recv_attr_t *ira, int *errorp) 9391 { 9392 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9393 ipoptp_t opts; 9394 uchar_t *opt; 9395 uint8_t optval; 9396 uint8_t optlen; 9397 intptr_t code = 0; 9398 ire_t *ire; 9399 9400 ip2dbg(("ip_input_options\n")); 9401 *errorp = 0; 9402 for (optval = ipoptp_first(&opts, ipha); 9403 optval != IPOPT_EOL; 9404 optval = ipoptp_next(&opts)) { 9405 opt = opts.ipoptp_cur; 9406 optlen = opts.ipoptp_len; 9407 ip2dbg(("ip_input_options: opt %d, len %d\n", 9408 optval, optlen)); 9409 /* 9410 * Note: we need to verify the checksum before we 9411 * modify anything thus this routine only extracts the next 9412 * hop dst from any source route. 9413 */ 9414 switch (optval) { 9415 uint32_t off; 9416 case IPOPT_SSRR: 9417 case IPOPT_LSRR: 9418 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9419 if (optval == IPOPT_SSRR) { 9420 ip1dbg(("ip_input_options: not next" 9421 " strict source route 0x%x\n", 9422 ntohl(dst))); 9423 code = (char *)&ipha->ipha_dst - 9424 (char *)ipha; 9425 goto param_prob; /* RouterReq's */ 9426 } 9427 ip2dbg(("ip_input_options: " 9428 "not next source route 0x%x\n", 9429 ntohl(dst))); 9430 break; 9431 } 9432 9433 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9434 ip1dbg(( 9435 "ip_input_options: bad option offset\n")); 9436 code = (char *)&opt[IPOPT_OLEN] - 9437 (char *)ipha; 9438 goto param_prob; 9439 } 9440 off = opt[IPOPT_OFFSET]; 9441 off--; 9442 redo_srr: 9443 if (optlen < IP_ADDR_LEN || 9444 off > optlen - IP_ADDR_LEN) { 9445 /* End of source route */ 9446 ip1dbg(("ip_input_options: end of SR\n")); 9447 break; 9448 } 9449 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9450 ip1dbg(("ip_input_options: next hop 0x%x\n", 9451 ntohl(dst))); 9452 9453 /* 9454 * Check if our address is present more than 9455 * once as consecutive hops in source route. 9456 * XXX verify per-interface ip_forwarding 9457 * for source route? 9458 */ 9459 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9460 off += IP_ADDR_LEN; 9461 goto redo_srr; 9462 } 9463 9464 if (dst == htonl(INADDR_LOOPBACK)) { 9465 ip1dbg(("ip_input_options: loopback addr in " 9466 "source route!\n")); 9467 goto bad_src_route; 9468 } 9469 /* 9470 * For strict: verify that dst is directly 9471 * reachable. 9472 */ 9473 if (optval == IPOPT_SSRR) { 9474 ire = ire_ftable_lookup_v4(dst, 0, 0, 9475 IRE_INTERFACE, NULL, ALL_ZONES, 9476 ira->ira_tsl, 9477 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9478 NULL); 9479 if (ire == NULL) { 9480 ip1dbg(("ip_input_options: SSRR not " 9481 "directly reachable: 0x%x\n", 9482 ntohl(dst))); 9483 goto bad_src_route; 9484 } 9485 ire_refrele(ire); 9486 } 9487 /* 9488 * Defer update of the offset and the record route 9489 * until the packet is forwarded. 9490 */ 9491 break; 9492 case IPOPT_RR: 9493 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9494 ip1dbg(( 9495 "ip_input_options: bad option offset\n")); 9496 code = (char *)&opt[IPOPT_OLEN] - 9497 (char *)ipha; 9498 goto param_prob; 9499 } 9500 break; 9501 case IPOPT_TS: 9502 /* 9503 * Verify that length >= 5 and that there is either 9504 * room for another timestamp or that the overflow 9505 * counter is not maxed out. 9506 */ 9507 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9508 if (optlen < IPOPT_MINLEN_IT) { 9509 goto param_prob; 9510 } 9511 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9512 ip1dbg(( 9513 "ip_input_options: bad option offset\n")); 9514 code = (char *)&opt[IPOPT_OFFSET] - 9515 (char *)ipha; 9516 goto param_prob; 9517 } 9518 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9519 case IPOPT_TS_TSONLY: 9520 off = IPOPT_TS_TIMELEN; 9521 break; 9522 case IPOPT_TS_TSANDADDR: 9523 case IPOPT_TS_PRESPEC: 9524 case IPOPT_TS_PRESPEC_RFC791: 9525 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9526 break; 9527 default: 9528 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9529 (char *)ipha; 9530 goto param_prob; 9531 } 9532 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9533 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9534 /* 9535 * No room and the overflow counter is 15 9536 * already. 9537 */ 9538 goto param_prob; 9539 } 9540 break; 9541 } 9542 } 9543 9544 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9545 return (dst); 9546 } 9547 9548 ip1dbg(("ip_input_options: error processing IP options.")); 9549 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9550 9551 param_prob: 9552 /* make sure we clear any indication of a hardware checksum */ 9553 DB_CKSUMFLAGS(mp) = 0; 9554 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9555 icmp_param_problem(mp, (uint8_t)code, ira); 9556 *errorp = -1; 9557 return (dst); 9558 9559 bad_src_route: 9560 /* make sure we clear any indication of a hardware checksum */ 9561 DB_CKSUMFLAGS(mp) = 0; 9562 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9563 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9564 *errorp = -1; 9565 return (dst); 9566 } 9567 9568 /* 9569 * IP & ICMP info in >=14 msg's ... 9570 * - ip fixed part (mib2_ip_t) 9571 * - icmp fixed part (mib2_icmp_t) 9572 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9573 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9574 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9575 * - ipRouteAttributeTable (ip 102) labeled routes 9576 * - ip multicast membership (ip_member_t) 9577 * - ip multicast source filtering (ip_grpsrc_t) 9578 * - igmp fixed part (struct igmpstat) 9579 * - multicast routing stats (struct mrtstat) 9580 * - multicast routing vifs (array of struct vifctl) 9581 * - multicast routing routes (array of struct mfcctl) 9582 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9583 * One per ill plus one generic 9584 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9585 * One per ill plus one generic 9586 * - ipv6RouteEntry all IPv6 IREs 9587 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9588 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9589 * - ipv6AddrEntry all IPv6 ipifs 9590 * - ipv6 multicast membership (ipv6_member_t) 9591 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9592 * 9593 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9594 * already filled in by the caller. 9595 * If legacy_req is true then MIB structures needs to be truncated to their 9596 * legacy sizes before being returned. 9597 * Return value of 0 indicates that no messages were sent and caller 9598 * should free mpctl. 9599 */ 9600 int 9601 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9602 { 9603 ip_stack_t *ipst; 9604 sctp_stack_t *sctps; 9605 9606 if (q->q_next != NULL) { 9607 ipst = ILLQ_TO_IPST(q); 9608 } else { 9609 ipst = CONNQ_TO_IPST(q); 9610 } 9611 ASSERT(ipst != NULL); 9612 sctps = ipst->ips_netstack->netstack_sctp; 9613 9614 if (mpctl == NULL || mpctl->b_cont == NULL) { 9615 return (0); 9616 } 9617 9618 /* 9619 * For the purposes of the (broken) packet shell use 9620 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9621 * to make TCP and UDP appear first in the list of mib items. 9622 * TBD: We could expand this and use it in netstat so that 9623 * the kernel doesn't have to produce large tables (connections, 9624 * routes, etc) when netstat only wants the statistics or a particular 9625 * table. 9626 */ 9627 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9628 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9629 return (1); 9630 } 9631 } 9632 9633 if (level != MIB2_TCP) { 9634 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9635 return (1); 9636 } 9637 if (level == MIB2_UDP) { 9638 goto done; 9639 } 9640 } 9641 9642 if (level != MIB2_UDP) { 9643 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9644 return (1); 9645 } 9646 if (level == MIB2_TCP) { 9647 goto done; 9648 } 9649 } 9650 9651 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9652 ipst, legacy_req)) == NULL) { 9653 return (1); 9654 } 9655 9656 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9657 legacy_req)) == NULL) { 9658 return (1); 9659 } 9660 9661 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9662 return (1); 9663 } 9664 9665 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9666 return (1); 9667 } 9668 9669 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9670 return (1); 9671 } 9672 9673 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9674 return (1); 9675 } 9676 9677 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9678 legacy_req)) == NULL) { 9679 return (1); 9680 } 9681 9682 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9683 legacy_req)) == NULL) { 9684 return (1); 9685 } 9686 9687 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9688 return (1); 9689 } 9690 9691 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9692 return (1); 9693 } 9694 9695 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9696 return (1); 9697 } 9698 9699 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9700 return (1); 9701 } 9702 9703 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9704 return (1); 9705 } 9706 9707 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9708 return (1); 9709 } 9710 9711 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9712 if (mpctl == NULL) 9713 return (1); 9714 9715 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9716 if (mpctl == NULL) 9717 return (1); 9718 9719 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9720 return (1); 9721 } 9722 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9723 return (1); 9724 } 9725 done: 9726 freemsg(mpctl); 9727 return (1); 9728 } 9729 9730 /* Get global (legacy) IPv4 statistics */ 9731 static mblk_t * 9732 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9733 ip_stack_t *ipst, boolean_t legacy_req) 9734 { 9735 mib2_ip_t old_ip_mib; 9736 struct opthdr *optp; 9737 mblk_t *mp2ctl; 9738 mib2_ipAddrEntry_t mae; 9739 9740 /* 9741 * make a copy of the original message 9742 */ 9743 mp2ctl = copymsg(mpctl); 9744 9745 /* fixed length IP structure... */ 9746 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9747 optp->level = MIB2_IP; 9748 optp->name = 0; 9749 SET_MIB(old_ip_mib.ipForwarding, 9750 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9751 SET_MIB(old_ip_mib.ipDefaultTTL, 9752 (uint32_t)ipst->ips_ip_def_ttl); 9753 SET_MIB(old_ip_mib.ipReasmTimeout, 9754 ipst->ips_ip_reassembly_timeout); 9755 SET_MIB(old_ip_mib.ipAddrEntrySize, 9756 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9757 sizeof (mib2_ipAddrEntry_t)); 9758 SET_MIB(old_ip_mib.ipRouteEntrySize, 9759 sizeof (mib2_ipRouteEntry_t)); 9760 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9761 sizeof (mib2_ipNetToMediaEntry_t)); 9762 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9763 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9764 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9765 sizeof (mib2_ipAttributeEntry_t)); 9766 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9767 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9768 9769 /* 9770 * Grab the statistics from the new IP MIB 9771 */ 9772 SET_MIB(old_ip_mib.ipInReceives, 9773 (uint32_t)ipmib->ipIfStatsHCInReceives); 9774 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9775 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9776 SET_MIB(old_ip_mib.ipForwDatagrams, 9777 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9778 SET_MIB(old_ip_mib.ipInUnknownProtos, 9779 ipmib->ipIfStatsInUnknownProtos); 9780 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9781 SET_MIB(old_ip_mib.ipInDelivers, 9782 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9783 SET_MIB(old_ip_mib.ipOutRequests, 9784 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9785 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9786 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9787 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9788 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9789 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9790 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9791 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9792 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9793 9794 /* ipRoutingDiscards is not being used */ 9795 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9796 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9797 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9798 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9799 SET_MIB(old_ip_mib.ipReasmDuplicates, 9800 ipmib->ipIfStatsReasmDuplicates); 9801 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9802 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9803 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9804 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9805 SET_MIB(old_ip_mib.rawipInOverflows, 9806 ipmib->rawipIfStatsInOverflows); 9807 9808 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9809 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9810 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9811 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9812 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9813 ipmib->ipIfStatsOutSwitchIPVersion); 9814 9815 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9816 (int)sizeof (old_ip_mib))) { 9817 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9818 (uint_t)sizeof (old_ip_mib))); 9819 } 9820 9821 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9822 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9823 (int)optp->level, (int)optp->name, (int)optp->len)); 9824 qreply(q, mpctl); 9825 return (mp2ctl); 9826 } 9827 9828 /* Per interface IPv4 statistics */ 9829 static mblk_t * 9830 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9831 boolean_t legacy_req) 9832 { 9833 struct opthdr *optp; 9834 mblk_t *mp2ctl; 9835 ill_t *ill; 9836 ill_walk_context_t ctx; 9837 mblk_t *mp_tail = NULL; 9838 mib2_ipIfStatsEntry_t global_ip_mib; 9839 mib2_ipAddrEntry_t mae; 9840 9841 /* 9842 * Make a copy of the original message 9843 */ 9844 mp2ctl = copymsg(mpctl); 9845 9846 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9847 optp->level = MIB2_IP; 9848 optp->name = MIB2_IP_TRAFFIC_STATS; 9849 /* Include "unknown interface" ip_mib */ 9850 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9851 ipst->ips_ip_mib.ipIfStatsIfIndex = 9852 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9853 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9854 (ipst->ips_ip_forwarding ? 1 : 2)); 9855 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9856 (uint32_t)ipst->ips_ip_def_ttl); 9857 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9858 sizeof (mib2_ipIfStatsEntry_t)); 9859 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9860 sizeof (mib2_ipAddrEntry_t)); 9861 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9862 sizeof (mib2_ipRouteEntry_t)); 9863 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9864 sizeof (mib2_ipNetToMediaEntry_t)); 9865 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9866 sizeof (ip_member_t)); 9867 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9868 sizeof (ip_grpsrc_t)); 9869 9870 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9871 9872 if (legacy_req) { 9873 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9874 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9875 } 9876 9877 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9878 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9879 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9880 "failed to allocate %u bytes\n", 9881 (uint_t)sizeof (global_ip_mib))); 9882 } 9883 9884 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9885 ill = ILL_START_WALK_V4(&ctx, ipst); 9886 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9887 ill->ill_ip_mib->ipIfStatsIfIndex = 9888 ill->ill_phyint->phyint_ifindex; 9889 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9890 (ipst->ips_ip_forwarding ? 1 : 2)); 9891 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9892 (uint32_t)ipst->ips_ip_def_ttl); 9893 9894 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9895 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9896 (char *)ill->ill_ip_mib, 9897 (int)sizeof (*ill->ill_ip_mib))) { 9898 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9899 "failed to allocate %u bytes\n", 9900 (uint_t)sizeof (*ill->ill_ip_mib))); 9901 } 9902 } 9903 rw_exit(&ipst->ips_ill_g_lock); 9904 9905 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9906 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9907 "level %d, name %d, len %d\n", 9908 (int)optp->level, (int)optp->name, (int)optp->len)); 9909 qreply(q, mpctl); 9910 9911 if (mp2ctl == NULL) 9912 return (NULL); 9913 9914 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9915 legacy_req)); 9916 } 9917 9918 /* Global IPv4 ICMP statistics */ 9919 static mblk_t * 9920 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9921 { 9922 struct opthdr *optp; 9923 mblk_t *mp2ctl; 9924 9925 /* 9926 * Make a copy of the original message 9927 */ 9928 mp2ctl = copymsg(mpctl); 9929 9930 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9931 optp->level = MIB2_ICMP; 9932 optp->name = 0; 9933 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9934 (int)sizeof (ipst->ips_icmp_mib))) { 9935 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9936 (uint_t)sizeof (ipst->ips_icmp_mib))); 9937 } 9938 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9939 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9940 (int)optp->level, (int)optp->name, (int)optp->len)); 9941 qreply(q, mpctl); 9942 return (mp2ctl); 9943 } 9944 9945 /* Global IPv4 IGMP statistics */ 9946 static mblk_t * 9947 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9948 { 9949 struct opthdr *optp; 9950 mblk_t *mp2ctl; 9951 9952 /* 9953 * make a copy of the original message 9954 */ 9955 mp2ctl = copymsg(mpctl); 9956 9957 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9958 optp->level = EXPER_IGMP; 9959 optp->name = 0; 9960 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9961 (int)sizeof (ipst->ips_igmpstat))) { 9962 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9963 (uint_t)sizeof (ipst->ips_igmpstat))); 9964 } 9965 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9966 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9967 (int)optp->level, (int)optp->name, (int)optp->len)); 9968 qreply(q, mpctl); 9969 return (mp2ctl); 9970 } 9971 9972 /* Global IPv4 Multicast Routing statistics */ 9973 static mblk_t * 9974 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9975 { 9976 struct opthdr *optp; 9977 mblk_t *mp2ctl; 9978 9979 /* 9980 * make a copy of the original message 9981 */ 9982 mp2ctl = copymsg(mpctl); 9983 9984 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9985 optp->level = EXPER_DVMRP; 9986 optp->name = 0; 9987 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9988 ip0dbg(("ip_mroute_stats: failed\n")); 9989 } 9990 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9991 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9992 (int)optp->level, (int)optp->name, (int)optp->len)); 9993 qreply(q, mpctl); 9994 return (mp2ctl); 9995 } 9996 9997 /* IPv4 address information */ 9998 static mblk_t * 9999 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10000 boolean_t legacy_req) 10001 { 10002 struct opthdr *optp; 10003 mblk_t *mp2ctl; 10004 mblk_t *mp_tail = NULL; 10005 ill_t *ill; 10006 ipif_t *ipif; 10007 uint_t bitval; 10008 mib2_ipAddrEntry_t mae; 10009 size_t mae_size; 10010 zoneid_t zoneid; 10011 ill_walk_context_t ctx; 10012 10013 /* 10014 * make a copy of the original message 10015 */ 10016 mp2ctl = copymsg(mpctl); 10017 10018 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 10019 sizeof (mib2_ipAddrEntry_t); 10020 10021 /* ipAddrEntryTable */ 10022 10023 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10024 optp->level = MIB2_IP; 10025 optp->name = MIB2_IP_ADDR; 10026 zoneid = Q_TO_CONN(q)->conn_zoneid; 10027 10028 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10029 ill = ILL_START_WALK_V4(&ctx, ipst); 10030 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10031 for (ipif = ill->ill_ipif; ipif != NULL; 10032 ipif = ipif->ipif_next) { 10033 if (ipif->ipif_zoneid != zoneid && 10034 ipif->ipif_zoneid != ALL_ZONES) 10035 continue; 10036 /* Sum of count from dead IRE_LO* and our current */ 10037 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10038 if (ipif->ipif_ire_local != NULL) { 10039 mae.ipAdEntInfo.ae_ibcnt += 10040 ipif->ipif_ire_local->ire_ib_pkt_count; 10041 } 10042 mae.ipAdEntInfo.ae_obcnt = 0; 10043 mae.ipAdEntInfo.ae_focnt = 0; 10044 10045 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10046 OCTET_LENGTH); 10047 mae.ipAdEntIfIndex.o_length = 10048 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10049 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10050 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10051 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10052 mae.ipAdEntInfo.ae_subnet_len = 10053 ip_mask_to_plen(ipif->ipif_net_mask); 10054 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10055 for (bitval = 1; 10056 bitval && 10057 !(bitval & ipif->ipif_brd_addr); 10058 bitval <<= 1) 10059 noop; 10060 mae.ipAdEntBcastAddr = bitval; 10061 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10062 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10063 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10064 mae.ipAdEntInfo.ae_broadcast_addr = 10065 ipif->ipif_brd_addr; 10066 mae.ipAdEntInfo.ae_pp_dst_addr = 10067 ipif->ipif_pp_dst_addr; 10068 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10069 ill->ill_flags | ill->ill_phyint->phyint_flags; 10070 mae.ipAdEntRetransmitTime = 10071 ill->ill_reachable_retrans_time; 10072 10073 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10074 (char *)&mae, (int)mae_size)) { 10075 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10076 "allocate %u bytes\n", (uint_t)mae_size)); 10077 } 10078 } 10079 } 10080 rw_exit(&ipst->ips_ill_g_lock); 10081 10082 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10083 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10084 (int)optp->level, (int)optp->name, (int)optp->len)); 10085 qreply(q, mpctl); 10086 return (mp2ctl); 10087 } 10088 10089 /* IPv6 address information */ 10090 static mblk_t * 10091 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10092 boolean_t legacy_req) 10093 { 10094 struct opthdr *optp; 10095 mblk_t *mp2ctl; 10096 mblk_t *mp_tail = NULL; 10097 ill_t *ill; 10098 ipif_t *ipif; 10099 mib2_ipv6AddrEntry_t mae6; 10100 size_t mae6_size; 10101 zoneid_t zoneid; 10102 ill_walk_context_t ctx; 10103 10104 /* 10105 * make a copy of the original message 10106 */ 10107 mp2ctl = copymsg(mpctl); 10108 10109 mae6_size = (legacy_req) ? 10110 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10111 sizeof (mib2_ipv6AddrEntry_t); 10112 10113 /* ipv6AddrEntryTable */ 10114 10115 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10116 optp->level = MIB2_IP6; 10117 optp->name = MIB2_IP6_ADDR; 10118 zoneid = Q_TO_CONN(q)->conn_zoneid; 10119 10120 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10121 ill = ILL_START_WALK_V6(&ctx, ipst); 10122 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10123 for (ipif = ill->ill_ipif; ipif != NULL; 10124 ipif = ipif->ipif_next) { 10125 if (ipif->ipif_zoneid != zoneid && 10126 ipif->ipif_zoneid != ALL_ZONES) 10127 continue; 10128 /* Sum of count from dead IRE_LO* and our current */ 10129 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10130 if (ipif->ipif_ire_local != NULL) { 10131 mae6.ipv6AddrInfo.ae_ibcnt += 10132 ipif->ipif_ire_local->ire_ib_pkt_count; 10133 } 10134 mae6.ipv6AddrInfo.ae_obcnt = 0; 10135 mae6.ipv6AddrInfo.ae_focnt = 0; 10136 10137 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10138 OCTET_LENGTH); 10139 mae6.ipv6AddrIfIndex.o_length = 10140 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10141 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10142 mae6.ipv6AddrPfxLength = 10143 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10144 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10145 mae6.ipv6AddrInfo.ae_subnet_len = 10146 mae6.ipv6AddrPfxLength; 10147 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10148 10149 /* Type: stateless(1), stateful(2), unknown(3) */ 10150 if (ipif->ipif_flags & IPIF_ADDRCONF) 10151 mae6.ipv6AddrType = 1; 10152 else 10153 mae6.ipv6AddrType = 2; 10154 /* Anycast: true(1), false(2) */ 10155 if (ipif->ipif_flags & IPIF_ANYCAST) 10156 mae6.ipv6AddrAnycastFlag = 1; 10157 else 10158 mae6.ipv6AddrAnycastFlag = 2; 10159 10160 /* 10161 * Address status: preferred(1), deprecated(2), 10162 * invalid(3), inaccessible(4), unknown(5) 10163 */ 10164 if (ipif->ipif_flags & IPIF_NOLOCAL) 10165 mae6.ipv6AddrStatus = 3; 10166 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10167 mae6.ipv6AddrStatus = 2; 10168 else 10169 mae6.ipv6AddrStatus = 1; 10170 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10171 mae6.ipv6AddrInfo.ae_metric = 10172 ipif->ipif_ill->ill_metric; 10173 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10174 ipif->ipif_v6pp_dst_addr; 10175 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10176 ill->ill_flags | ill->ill_phyint->phyint_flags; 10177 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10178 mae6.ipv6AddrIdentifier = ill->ill_token; 10179 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10180 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10181 mae6.ipv6AddrRetransmitTime = 10182 ill->ill_reachable_retrans_time; 10183 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10184 (char *)&mae6, (int)mae6_size)) { 10185 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10186 "allocate %u bytes\n", 10187 (uint_t)mae6_size)); 10188 } 10189 } 10190 } 10191 rw_exit(&ipst->ips_ill_g_lock); 10192 10193 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10194 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10195 (int)optp->level, (int)optp->name, (int)optp->len)); 10196 qreply(q, mpctl); 10197 return (mp2ctl); 10198 } 10199 10200 /* IPv4 multicast group membership. */ 10201 static mblk_t * 10202 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10203 { 10204 struct opthdr *optp; 10205 mblk_t *mp2ctl; 10206 ill_t *ill; 10207 ipif_t *ipif; 10208 ilm_t *ilm; 10209 ip_member_t ipm; 10210 mblk_t *mp_tail = NULL; 10211 ill_walk_context_t ctx; 10212 zoneid_t zoneid; 10213 10214 /* 10215 * make a copy of the original message 10216 */ 10217 mp2ctl = copymsg(mpctl); 10218 zoneid = Q_TO_CONN(q)->conn_zoneid; 10219 10220 /* ipGroupMember table */ 10221 optp = (struct opthdr *)&mpctl->b_rptr[ 10222 sizeof (struct T_optmgmt_ack)]; 10223 optp->level = MIB2_IP; 10224 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10225 10226 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10227 ill = ILL_START_WALK_V4(&ctx, ipst); 10228 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10229 /* Make sure the ill isn't going away. */ 10230 if (!ill_check_and_refhold(ill)) 10231 continue; 10232 rw_exit(&ipst->ips_ill_g_lock); 10233 rw_enter(&ill->ill_mcast_lock, RW_READER); 10234 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10235 if (ilm->ilm_zoneid != zoneid && 10236 ilm->ilm_zoneid != ALL_ZONES) 10237 continue; 10238 10239 /* Is there an ipif for ilm_ifaddr? */ 10240 for (ipif = ill->ill_ipif; ipif != NULL; 10241 ipif = ipif->ipif_next) { 10242 if (!IPIF_IS_CONDEMNED(ipif) && 10243 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10244 ilm->ilm_ifaddr != INADDR_ANY) 10245 break; 10246 } 10247 if (ipif != NULL) { 10248 ipif_get_name(ipif, 10249 ipm.ipGroupMemberIfIndex.o_bytes, 10250 OCTET_LENGTH); 10251 } else { 10252 ill_get_name(ill, 10253 ipm.ipGroupMemberIfIndex.o_bytes, 10254 OCTET_LENGTH); 10255 } 10256 ipm.ipGroupMemberIfIndex.o_length = 10257 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10258 10259 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10260 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10261 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10262 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10263 (char *)&ipm, (int)sizeof (ipm))) { 10264 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10265 "failed to allocate %u bytes\n", 10266 (uint_t)sizeof (ipm))); 10267 } 10268 } 10269 rw_exit(&ill->ill_mcast_lock); 10270 ill_refrele(ill); 10271 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10272 } 10273 rw_exit(&ipst->ips_ill_g_lock); 10274 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10275 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10276 (int)optp->level, (int)optp->name, (int)optp->len)); 10277 qreply(q, mpctl); 10278 return (mp2ctl); 10279 } 10280 10281 /* IPv6 multicast group membership. */ 10282 static mblk_t * 10283 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10284 { 10285 struct opthdr *optp; 10286 mblk_t *mp2ctl; 10287 ill_t *ill; 10288 ilm_t *ilm; 10289 ipv6_member_t ipm6; 10290 mblk_t *mp_tail = NULL; 10291 ill_walk_context_t ctx; 10292 zoneid_t zoneid; 10293 10294 /* 10295 * make a copy of the original message 10296 */ 10297 mp2ctl = copymsg(mpctl); 10298 zoneid = Q_TO_CONN(q)->conn_zoneid; 10299 10300 /* ip6GroupMember table */ 10301 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10302 optp->level = MIB2_IP6; 10303 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10304 10305 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10306 ill = ILL_START_WALK_V6(&ctx, ipst); 10307 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10308 /* Make sure the ill isn't going away. */ 10309 if (!ill_check_and_refhold(ill)) 10310 continue; 10311 rw_exit(&ipst->ips_ill_g_lock); 10312 /* 10313 * Normally we don't have any members on under IPMP interfaces. 10314 * We report them as a debugging aid. 10315 */ 10316 rw_enter(&ill->ill_mcast_lock, RW_READER); 10317 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10318 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10319 if (ilm->ilm_zoneid != zoneid && 10320 ilm->ilm_zoneid != ALL_ZONES) 10321 continue; /* not this zone */ 10322 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10323 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10324 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10325 if (!snmp_append_data2(mpctl->b_cont, 10326 &mp_tail, 10327 (char *)&ipm6, (int)sizeof (ipm6))) { 10328 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10329 "failed to allocate %u bytes\n", 10330 (uint_t)sizeof (ipm6))); 10331 } 10332 } 10333 rw_exit(&ill->ill_mcast_lock); 10334 ill_refrele(ill); 10335 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10336 } 10337 rw_exit(&ipst->ips_ill_g_lock); 10338 10339 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10340 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10341 (int)optp->level, (int)optp->name, (int)optp->len)); 10342 qreply(q, mpctl); 10343 return (mp2ctl); 10344 } 10345 10346 /* IP multicast filtered sources */ 10347 static mblk_t * 10348 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10349 { 10350 struct opthdr *optp; 10351 mblk_t *mp2ctl; 10352 ill_t *ill; 10353 ipif_t *ipif; 10354 ilm_t *ilm; 10355 ip_grpsrc_t ips; 10356 mblk_t *mp_tail = NULL; 10357 ill_walk_context_t ctx; 10358 zoneid_t zoneid; 10359 int i; 10360 slist_t *sl; 10361 10362 /* 10363 * make a copy of the original message 10364 */ 10365 mp2ctl = copymsg(mpctl); 10366 zoneid = Q_TO_CONN(q)->conn_zoneid; 10367 10368 /* ipGroupSource table */ 10369 optp = (struct opthdr *)&mpctl->b_rptr[ 10370 sizeof (struct T_optmgmt_ack)]; 10371 optp->level = MIB2_IP; 10372 optp->name = EXPER_IP_GROUP_SOURCES; 10373 10374 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10375 ill = ILL_START_WALK_V4(&ctx, ipst); 10376 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10377 /* Make sure the ill isn't going away. */ 10378 if (!ill_check_and_refhold(ill)) 10379 continue; 10380 rw_exit(&ipst->ips_ill_g_lock); 10381 rw_enter(&ill->ill_mcast_lock, RW_READER); 10382 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10383 sl = ilm->ilm_filter; 10384 if (ilm->ilm_zoneid != zoneid && 10385 ilm->ilm_zoneid != ALL_ZONES) 10386 continue; 10387 if (SLIST_IS_EMPTY(sl)) 10388 continue; 10389 10390 /* Is there an ipif for ilm_ifaddr? */ 10391 for (ipif = ill->ill_ipif; ipif != NULL; 10392 ipif = ipif->ipif_next) { 10393 if (!IPIF_IS_CONDEMNED(ipif) && 10394 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10395 ilm->ilm_ifaddr != INADDR_ANY) 10396 break; 10397 } 10398 if (ipif != NULL) { 10399 ipif_get_name(ipif, 10400 ips.ipGroupSourceIfIndex.o_bytes, 10401 OCTET_LENGTH); 10402 } else { 10403 ill_get_name(ill, 10404 ips.ipGroupSourceIfIndex.o_bytes, 10405 OCTET_LENGTH); 10406 } 10407 ips.ipGroupSourceIfIndex.o_length = 10408 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10409 10410 ips.ipGroupSourceGroup = ilm->ilm_addr; 10411 for (i = 0; i < sl->sl_numsrc; i++) { 10412 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10413 continue; 10414 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10415 ips.ipGroupSourceAddress); 10416 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10417 (char *)&ips, (int)sizeof (ips)) == 0) { 10418 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10419 " failed to allocate %u bytes\n", 10420 (uint_t)sizeof (ips))); 10421 } 10422 } 10423 } 10424 rw_exit(&ill->ill_mcast_lock); 10425 ill_refrele(ill); 10426 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10427 } 10428 rw_exit(&ipst->ips_ill_g_lock); 10429 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10430 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10431 (int)optp->level, (int)optp->name, (int)optp->len)); 10432 qreply(q, mpctl); 10433 return (mp2ctl); 10434 } 10435 10436 /* IPv6 multicast filtered sources. */ 10437 static mblk_t * 10438 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10439 { 10440 struct opthdr *optp; 10441 mblk_t *mp2ctl; 10442 ill_t *ill; 10443 ilm_t *ilm; 10444 ipv6_grpsrc_t ips6; 10445 mblk_t *mp_tail = NULL; 10446 ill_walk_context_t ctx; 10447 zoneid_t zoneid; 10448 int i; 10449 slist_t *sl; 10450 10451 /* 10452 * make a copy of the original message 10453 */ 10454 mp2ctl = copymsg(mpctl); 10455 zoneid = Q_TO_CONN(q)->conn_zoneid; 10456 10457 /* ip6GroupMember table */ 10458 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10459 optp->level = MIB2_IP6; 10460 optp->name = EXPER_IP6_GROUP_SOURCES; 10461 10462 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10463 ill = ILL_START_WALK_V6(&ctx, ipst); 10464 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10465 /* Make sure the ill isn't going away. */ 10466 if (!ill_check_and_refhold(ill)) 10467 continue; 10468 rw_exit(&ipst->ips_ill_g_lock); 10469 /* 10470 * Normally we don't have any members on under IPMP interfaces. 10471 * We report them as a debugging aid. 10472 */ 10473 rw_enter(&ill->ill_mcast_lock, RW_READER); 10474 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10475 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10476 sl = ilm->ilm_filter; 10477 if (ilm->ilm_zoneid != zoneid && 10478 ilm->ilm_zoneid != ALL_ZONES) 10479 continue; 10480 if (SLIST_IS_EMPTY(sl)) 10481 continue; 10482 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10483 for (i = 0; i < sl->sl_numsrc; i++) { 10484 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10485 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10486 (char *)&ips6, (int)sizeof (ips6))) { 10487 ip1dbg(("ip_snmp_get_mib2_ip6_" 10488 "group_src: failed to allocate " 10489 "%u bytes\n", 10490 (uint_t)sizeof (ips6))); 10491 } 10492 } 10493 } 10494 rw_exit(&ill->ill_mcast_lock); 10495 ill_refrele(ill); 10496 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10497 } 10498 rw_exit(&ipst->ips_ill_g_lock); 10499 10500 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10501 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10502 (int)optp->level, (int)optp->name, (int)optp->len)); 10503 qreply(q, mpctl); 10504 return (mp2ctl); 10505 } 10506 10507 /* Multicast routing virtual interface table. */ 10508 static mblk_t * 10509 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10510 { 10511 struct opthdr *optp; 10512 mblk_t *mp2ctl; 10513 10514 /* 10515 * make a copy of the original message 10516 */ 10517 mp2ctl = copymsg(mpctl); 10518 10519 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10520 optp->level = EXPER_DVMRP; 10521 optp->name = EXPER_DVMRP_VIF; 10522 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10523 ip0dbg(("ip_mroute_vif: failed\n")); 10524 } 10525 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10526 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10527 (int)optp->level, (int)optp->name, (int)optp->len)); 10528 qreply(q, mpctl); 10529 return (mp2ctl); 10530 } 10531 10532 /* Multicast routing table. */ 10533 static mblk_t * 10534 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10535 { 10536 struct opthdr *optp; 10537 mblk_t *mp2ctl; 10538 10539 /* 10540 * make a copy of the original message 10541 */ 10542 mp2ctl = copymsg(mpctl); 10543 10544 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10545 optp->level = EXPER_DVMRP; 10546 optp->name = EXPER_DVMRP_MRT; 10547 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10548 ip0dbg(("ip_mroute_mrt: failed\n")); 10549 } 10550 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10551 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10552 (int)optp->level, (int)optp->name, (int)optp->len)); 10553 qreply(q, mpctl); 10554 return (mp2ctl); 10555 } 10556 10557 /* 10558 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10559 * in one IRE walk. 10560 */ 10561 static mblk_t * 10562 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10563 ip_stack_t *ipst) 10564 { 10565 struct opthdr *optp; 10566 mblk_t *mp2ctl; /* Returned */ 10567 mblk_t *mp3ctl; /* nettomedia */ 10568 mblk_t *mp4ctl; /* routeattrs */ 10569 iproutedata_t ird; 10570 zoneid_t zoneid; 10571 10572 /* 10573 * make copies of the original message 10574 * - mp2ctl is returned unchanged to the caller for its use 10575 * - mpctl is sent upstream as ipRouteEntryTable 10576 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10577 * - mp4ctl is sent upstream as ipRouteAttributeTable 10578 */ 10579 mp2ctl = copymsg(mpctl); 10580 mp3ctl = copymsg(mpctl); 10581 mp4ctl = copymsg(mpctl); 10582 if (mp3ctl == NULL || mp4ctl == NULL) { 10583 freemsg(mp4ctl); 10584 freemsg(mp3ctl); 10585 freemsg(mp2ctl); 10586 freemsg(mpctl); 10587 return (NULL); 10588 } 10589 10590 bzero(&ird, sizeof (ird)); 10591 10592 ird.ird_route.lp_head = mpctl->b_cont; 10593 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10594 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10595 /* 10596 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10597 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10598 * intended a temporary solution until a proper MIB API is provided 10599 * that provides complete filtering/caller-opt-in. 10600 */ 10601 if (level == EXPER_IP_AND_ALL_IRES) 10602 ird.ird_flags |= IRD_REPORT_ALL; 10603 10604 zoneid = Q_TO_CONN(q)->conn_zoneid; 10605 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10606 10607 /* ipRouteEntryTable in mpctl */ 10608 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10609 optp->level = MIB2_IP; 10610 optp->name = MIB2_IP_ROUTE; 10611 optp->len = msgdsize(ird.ird_route.lp_head); 10612 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10613 (int)optp->level, (int)optp->name, (int)optp->len)); 10614 qreply(q, mpctl); 10615 10616 /* ipNetToMediaEntryTable in mp3ctl */ 10617 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10618 10619 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10620 optp->level = MIB2_IP; 10621 optp->name = MIB2_IP_MEDIA; 10622 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10623 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10624 (int)optp->level, (int)optp->name, (int)optp->len)); 10625 qreply(q, mp3ctl); 10626 10627 /* ipRouteAttributeTable in mp4ctl */ 10628 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10629 optp->level = MIB2_IP; 10630 optp->name = EXPER_IP_RTATTR; 10631 optp->len = msgdsize(ird.ird_attrs.lp_head); 10632 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10633 (int)optp->level, (int)optp->name, (int)optp->len)); 10634 if (optp->len == 0) 10635 freemsg(mp4ctl); 10636 else 10637 qreply(q, mp4ctl); 10638 10639 return (mp2ctl); 10640 } 10641 10642 /* 10643 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10644 * ipv6NetToMediaEntryTable in an NDP walk. 10645 */ 10646 static mblk_t * 10647 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10648 ip_stack_t *ipst) 10649 { 10650 struct opthdr *optp; 10651 mblk_t *mp2ctl; /* Returned */ 10652 mblk_t *mp3ctl; /* nettomedia */ 10653 mblk_t *mp4ctl; /* routeattrs */ 10654 iproutedata_t ird; 10655 zoneid_t zoneid; 10656 10657 /* 10658 * make copies of the original message 10659 * - mp2ctl is returned unchanged to the caller for its use 10660 * - mpctl is sent upstream as ipv6RouteEntryTable 10661 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10662 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10663 */ 10664 mp2ctl = copymsg(mpctl); 10665 mp3ctl = copymsg(mpctl); 10666 mp4ctl = copymsg(mpctl); 10667 if (mp3ctl == NULL || mp4ctl == NULL) { 10668 freemsg(mp4ctl); 10669 freemsg(mp3ctl); 10670 freemsg(mp2ctl); 10671 freemsg(mpctl); 10672 return (NULL); 10673 } 10674 10675 bzero(&ird, sizeof (ird)); 10676 10677 ird.ird_route.lp_head = mpctl->b_cont; 10678 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10679 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10680 /* 10681 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10682 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10683 * intended a temporary solution until a proper MIB API is provided 10684 * that provides complete filtering/caller-opt-in. 10685 */ 10686 if (level == EXPER_IP_AND_ALL_IRES) 10687 ird.ird_flags |= IRD_REPORT_ALL; 10688 10689 zoneid = Q_TO_CONN(q)->conn_zoneid; 10690 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10691 10692 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10693 optp->level = MIB2_IP6; 10694 optp->name = MIB2_IP6_ROUTE; 10695 optp->len = msgdsize(ird.ird_route.lp_head); 10696 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10697 (int)optp->level, (int)optp->name, (int)optp->len)); 10698 qreply(q, mpctl); 10699 10700 /* ipv6NetToMediaEntryTable in mp3ctl */ 10701 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10702 10703 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10704 optp->level = MIB2_IP6; 10705 optp->name = MIB2_IP6_MEDIA; 10706 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10707 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10708 (int)optp->level, (int)optp->name, (int)optp->len)); 10709 qreply(q, mp3ctl); 10710 10711 /* ipv6RouteAttributeTable in mp4ctl */ 10712 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10713 optp->level = MIB2_IP6; 10714 optp->name = EXPER_IP_RTATTR; 10715 optp->len = msgdsize(ird.ird_attrs.lp_head); 10716 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10717 (int)optp->level, (int)optp->name, (int)optp->len)); 10718 if (optp->len == 0) 10719 freemsg(mp4ctl); 10720 else 10721 qreply(q, mp4ctl); 10722 10723 return (mp2ctl); 10724 } 10725 10726 /* 10727 * IPv6 mib: One per ill 10728 */ 10729 static mblk_t * 10730 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10731 boolean_t legacy_req) 10732 { 10733 struct opthdr *optp; 10734 mblk_t *mp2ctl; 10735 ill_t *ill; 10736 ill_walk_context_t ctx; 10737 mblk_t *mp_tail = NULL; 10738 mib2_ipv6AddrEntry_t mae6; 10739 mib2_ipIfStatsEntry_t *ise; 10740 size_t ise_size, iae_size; 10741 10742 /* 10743 * Make a copy of the original message 10744 */ 10745 mp2ctl = copymsg(mpctl); 10746 10747 /* fixed length IPv6 structure ... */ 10748 10749 if (legacy_req) { 10750 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10751 mib2_ipIfStatsEntry_t); 10752 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10753 } else { 10754 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10755 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10756 } 10757 10758 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10759 optp->level = MIB2_IP6; 10760 optp->name = 0; 10761 /* Include "unknown interface" ip6_mib */ 10762 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10763 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10764 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10765 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10766 ipst->ips_ipv6_forwarding ? 1 : 2); 10767 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10768 ipst->ips_ipv6_def_hops); 10769 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10770 sizeof (mib2_ipIfStatsEntry_t)); 10771 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10772 sizeof (mib2_ipv6AddrEntry_t)); 10773 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10774 sizeof (mib2_ipv6RouteEntry_t)); 10775 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10776 sizeof (mib2_ipv6NetToMediaEntry_t)); 10777 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10778 sizeof (ipv6_member_t)); 10779 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10780 sizeof (ipv6_grpsrc_t)); 10781 10782 /* 10783 * Synchronize 64- and 32-bit counters 10784 */ 10785 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10786 ipIfStatsHCInReceives); 10787 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10788 ipIfStatsHCInDelivers); 10789 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10790 ipIfStatsHCOutRequests); 10791 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10792 ipIfStatsHCOutForwDatagrams); 10793 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10794 ipIfStatsHCOutMcastPkts); 10795 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10796 ipIfStatsHCInMcastPkts); 10797 10798 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10799 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10800 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10801 (uint_t)ise_size)); 10802 } else if (legacy_req) { 10803 /* Adjust the EntrySize fields for legacy requests. */ 10804 ise = 10805 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10806 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10807 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10808 } 10809 10810 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10811 ill = ILL_START_WALK_V6(&ctx, ipst); 10812 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10813 ill->ill_ip_mib->ipIfStatsIfIndex = 10814 ill->ill_phyint->phyint_ifindex; 10815 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10816 ipst->ips_ipv6_forwarding ? 1 : 2); 10817 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10818 ill->ill_max_hops); 10819 10820 /* 10821 * Synchronize 64- and 32-bit counters 10822 */ 10823 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10824 ipIfStatsHCInReceives); 10825 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10826 ipIfStatsHCInDelivers); 10827 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10828 ipIfStatsHCOutRequests); 10829 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10830 ipIfStatsHCOutForwDatagrams); 10831 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10832 ipIfStatsHCOutMcastPkts); 10833 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10834 ipIfStatsHCInMcastPkts); 10835 10836 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10837 (char *)ill->ill_ip_mib, (int)ise_size)) { 10838 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10839 "%u bytes\n", (uint_t)ise_size)); 10840 } else if (legacy_req) { 10841 /* Adjust the EntrySize fields for legacy requests. */ 10842 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10843 (int)ise_size); 10844 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10845 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10846 } 10847 } 10848 rw_exit(&ipst->ips_ill_g_lock); 10849 10850 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10851 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10852 (int)optp->level, (int)optp->name, (int)optp->len)); 10853 qreply(q, mpctl); 10854 return (mp2ctl); 10855 } 10856 10857 /* 10858 * ICMPv6 mib: One per ill 10859 */ 10860 static mblk_t * 10861 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10862 { 10863 struct opthdr *optp; 10864 mblk_t *mp2ctl; 10865 ill_t *ill; 10866 ill_walk_context_t ctx; 10867 mblk_t *mp_tail = NULL; 10868 /* 10869 * Make a copy of the original message 10870 */ 10871 mp2ctl = copymsg(mpctl); 10872 10873 /* fixed length ICMPv6 structure ... */ 10874 10875 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10876 optp->level = MIB2_ICMP6; 10877 optp->name = 0; 10878 /* Include "unknown interface" icmp6_mib */ 10879 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10880 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10881 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10882 sizeof (mib2_ipv6IfIcmpEntry_t); 10883 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10884 (char *)&ipst->ips_icmp6_mib, 10885 (int)sizeof (ipst->ips_icmp6_mib))) { 10886 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10887 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10888 } 10889 10890 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10891 ill = ILL_START_WALK_V6(&ctx, ipst); 10892 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10893 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10894 ill->ill_phyint->phyint_ifindex; 10895 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10896 (char *)ill->ill_icmp6_mib, 10897 (int)sizeof (*ill->ill_icmp6_mib))) { 10898 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10899 "%u bytes\n", 10900 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10901 } 10902 } 10903 rw_exit(&ipst->ips_ill_g_lock); 10904 10905 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10906 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10907 (int)optp->level, (int)optp->name, (int)optp->len)); 10908 qreply(q, mpctl); 10909 return (mp2ctl); 10910 } 10911 10912 /* 10913 * ire_walk routine to create both ipRouteEntryTable and 10914 * ipRouteAttributeTable in one IRE walk 10915 */ 10916 static void 10917 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10918 { 10919 ill_t *ill; 10920 mib2_ipRouteEntry_t *re; 10921 mib2_ipAttributeEntry_t iaes; 10922 tsol_ire_gw_secattr_t *attrp; 10923 tsol_gc_t *gc = NULL; 10924 tsol_gcgrp_t *gcgrp = NULL; 10925 ip_stack_t *ipst = ire->ire_ipst; 10926 10927 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10928 10929 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10930 if (ire->ire_testhidden) 10931 return; 10932 if (ire->ire_type & IRE_IF_CLONE) 10933 return; 10934 } 10935 10936 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10937 return; 10938 10939 if ((attrp = ire->ire_gw_secattr) != NULL) { 10940 mutex_enter(&attrp->igsa_lock); 10941 if ((gc = attrp->igsa_gc) != NULL) { 10942 gcgrp = gc->gc_grp; 10943 ASSERT(gcgrp != NULL); 10944 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10945 } 10946 mutex_exit(&attrp->igsa_lock); 10947 } 10948 /* 10949 * Return all IRE types for route table... let caller pick and choose 10950 */ 10951 re->ipRouteDest = ire->ire_addr; 10952 ill = ire->ire_ill; 10953 re->ipRouteIfIndex.o_length = 0; 10954 if (ill != NULL) { 10955 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10956 re->ipRouteIfIndex.o_length = 10957 mi_strlen(re->ipRouteIfIndex.o_bytes); 10958 } 10959 re->ipRouteMetric1 = -1; 10960 re->ipRouteMetric2 = -1; 10961 re->ipRouteMetric3 = -1; 10962 re->ipRouteMetric4 = -1; 10963 10964 re->ipRouteNextHop = ire->ire_gateway_addr; 10965 /* indirect(4), direct(3), or invalid(2) */ 10966 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10967 re->ipRouteType = 2; 10968 else if (ire->ire_type & IRE_ONLINK) 10969 re->ipRouteType = 3; 10970 else 10971 re->ipRouteType = 4; 10972 10973 re->ipRouteProto = -1; 10974 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10975 re->ipRouteMask = ire->ire_mask; 10976 re->ipRouteMetric5 = -1; 10977 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10978 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10979 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10980 10981 re->ipRouteInfo.re_frag_flag = 0; 10982 re->ipRouteInfo.re_rtt = 0; 10983 re->ipRouteInfo.re_src_addr = 0; 10984 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10985 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10986 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10987 re->ipRouteInfo.re_flags = ire->ire_flags; 10988 10989 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10990 if (ire->ire_type & IRE_INTERFACE) { 10991 ire_t *child; 10992 10993 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10994 child = ire->ire_dep_children; 10995 while (child != NULL) { 10996 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10997 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10998 child = child->ire_dep_sib_next; 10999 } 11000 rw_exit(&ipst->ips_ire_dep_lock); 11001 } 11002 11003 if (ire->ire_flags & RTF_DYNAMIC) { 11004 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11005 } else { 11006 re->ipRouteInfo.re_ire_type = ire->ire_type; 11007 } 11008 11009 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11010 (char *)re, (int)sizeof (*re))) { 11011 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11012 (uint_t)sizeof (*re))); 11013 } 11014 11015 if (gc != NULL) { 11016 iaes.iae_routeidx = ird->ird_idx; 11017 iaes.iae_doi = gc->gc_db->gcdb_doi; 11018 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11019 11020 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11021 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11022 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11023 "bytes\n", (uint_t)sizeof (iaes))); 11024 } 11025 } 11026 11027 /* bump route index for next pass */ 11028 ird->ird_idx++; 11029 11030 kmem_free(re, sizeof (*re)); 11031 if (gcgrp != NULL) 11032 rw_exit(&gcgrp->gcgrp_rwlock); 11033 } 11034 11035 /* 11036 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11037 */ 11038 static void 11039 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11040 { 11041 ill_t *ill; 11042 mib2_ipv6RouteEntry_t *re; 11043 mib2_ipAttributeEntry_t iaes; 11044 tsol_ire_gw_secattr_t *attrp; 11045 tsol_gc_t *gc = NULL; 11046 tsol_gcgrp_t *gcgrp = NULL; 11047 ip_stack_t *ipst = ire->ire_ipst; 11048 11049 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11050 11051 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11052 if (ire->ire_testhidden) 11053 return; 11054 if (ire->ire_type & IRE_IF_CLONE) 11055 return; 11056 } 11057 11058 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11059 return; 11060 11061 if ((attrp = ire->ire_gw_secattr) != NULL) { 11062 mutex_enter(&attrp->igsa_lock); 11063 if ((gc = attrp->igsa_gc) != NULL) { 11064 gcgrp = gc->gc_grp; 11065 ASSERT(gcgrp != NULL); 11066 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11067 } 11068 mutex_exit(&attrp->igsa_lock); 11069 } 11070 /* 11071 * Return all IRE types for route table... let caller pick and choose 11072 */ 11073 re->ipv6RouteDest = ire->ire_addr_v6; 11074 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11075 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11076 re->ipv6RouteIfIndex.o_length = 0; 11077 ill = ire->ire_ill; 11078 if (ill != NULL) { 11079 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11080 re->ipv6RouteIfIndex.o_length = 11081 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11082 } 11083 11084 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11085 11086 mutex_enter(&ire->ire_lock); 11087 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11088 mutex_exit(&ire->ire_lock); 11089 11090 /* remote(4), local(3), or discard(2) */ 11091 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11092 re->ipv6RouteType = 2; 11093 else if (ire->ire_type & IRE_ONLINK) 11094 re->ipv6RouteType = 3; 11095 else 11096 re->ipv6RouteType = 4; 11097 11098 re->ipv6RouteProtocol = -1; 11099 re->ipv6RoutePolicy = 0; 11100 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11101 re->ipv6RouteNextHopRDI = 0; 11102 re->ipv6RouteWeight = 0; 11103 re->ipv6RouteMetric = 0; 11104 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11105 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11106 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11107 11108 re->ipv6RouteInfo.re_frag_flag = 0; 11109 re->ipv6RouteInfo.re_rtt = 0; 11110 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11111 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11112 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11113 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11114 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11115 11116 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11117 if (ire->ire_type & IRE_INTERFACE) { 11118 ire_t *child; 11119 11120 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11121 child = ire->ire_dep_children; 11122 while (child != NULL) { 11123 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11124 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11125 child = child->ire_dep_sib_next; 11126 } 11127 rw_exit(&ipst->ips_ire_dep_lock); 11128 } 11129 if (ire->ire_flags & RTF_DYNAMIC) { 11130 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11131 } else { 11132 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11133 } 11134 11135 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11136 (char *)re, (int)sizeof (*re))) { 11137 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11138 (uint_t)sizeof (*re))); 11139 } 11140 11141 if (gc != NULL) { 11142 iaes.iae_routeidx = ird->ird_idx; 11143 iaes.iae_doi = gc->gc_db->gcdb_doi; 11144 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11145 11146 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11147 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11148 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11149 "bytes\n", (uint_t)sizeof (iaes))); 11150 } 11151 } 11152 11153 /* bump route index for next pass */ 11154 ird->ird_idx++; 11155 11156 kmem_free(re, sizeof (*re)); 11157 if (gcgrp != NULL) 11158 rw_exit(&gcgrp->gcgrp_rwlock); 11159 } 11160 11161 /* 11162 * ncec_walk routine to create ipv6NetToMediaEntryTable 11163 */ 11164 static void 11165 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr) 11166 { 11167 iproutedata_t *ird = ptr; 11168 ill_t *ill; 11169 mib2_ipv6NetToMediaEntry_t ntme; 11170 11171 ill = ncec->ncec_ill; 11172 /* skip arpce entries, and loopback ncec entries */ 11173 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11174 return; 11175 /* 11176 * Neighbor cache entry attached to IRE with on-link 11177 * destination. 11178 * We report all IPMP groups on ncec_ill which is normally the upper. 11179 */ 11180 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11181 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11182 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11183 if (ncec->ncec_lladdr != NULL) { 11184 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11185 ntme.ipv6NetToMediaPhysAddress.o_length); 11186 } 11187 /* 11188 * Note: Returns ND_* states. Should be: 11189 * reachable(1), stale(2), delay(3), probe(4), 11190 * invalid(5), unknown(6) 11191 */ 11192 ntme.ipv6NetToMediaState = ncec->ncec_state; 11193 ntme.ipv6NetToMediaLastUpdated = 0; 11194 11195 /* other(1), dynamic(2), static(3), local(4) */ 11196 if (NCE_MYADDR(ncec)) { 11197 ntme.ipv6NetToMediaType = 4; 11198 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11199 ntme.ipv6NetToMediaType = 1; /* proxy */ 11200 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11201 ntme.ipv6NetToMediaType = 3; 11202 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11203 ntme.ipv6NetToMediaType = 1; 11204 } else { 11205 ntme.ipv6NetToMediaType = 2; 11206 } 11207 11208 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11209 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11210 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11211 (uint_t)sizeof (ntme))); 11212 } 11213 } 11214 11215 int 11216 nce2ace(ncec_t *ncec) 11217 { 11218 int flags = 0; 11219 11220 if (NCE_ISREACHABLE(ncec)) 11221 flags |= ACE_F_RESOLVED; 11222 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11223 flags |= ACE_F_AUTHORITY; 11224 if (ncec->ncec_flags & NCE_F_PUBLISH) 11225 flags |= ACE_F_PUBLISH; 11226 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11227 flags |= ACE_F_PERMANENT; 11228 if (NCE_MYADDR(ncec)) 11229 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11230 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11231 flags |= ACE_F_UNVERIFIED; 11232 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11233 flags |= ACE_F_AUTHORITY; 11234 if (ncec->ncec_flags & NCE_F_DELAYED) 11235 flags |= ACE_F_DELAYED; 11236 return (flags); 11237 } 11238 11239 /* 11240 * ncec_walk routine to create ipNetToMediaEntryTable 11241 */ 11242 static void 11243 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr) 11244 { 11245 iproutedata_t *ird = ptr; 11246 ill_t *ill; 11247 mib2_ipNetToMediaEntry_t ntme; 11248 const char *name = "unknown"; 11249 ipaddr_t ncec_addr; 11250 11251 ill = ncec->ncec_ill; 11252 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11253 ill->ill_net_type == IRE_LOOPBACK) 11254 return; 11255 11256 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11257 name = ill->ill_name; 11258 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11259 if (NCE_MYADDR(ncec)) { 11260 ntme.ipNetToMediaType = 4; 11261 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11262 ntme.ipNetToMediaType = 1; 11263 } else { 11264 ntme.ipNetToMediaType = 3; 11265 } 11266 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11267 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11268 ntme.ipNetToMediaIfIndex.o_length); 11269 11270 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11271 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11272 11273 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11274 ncec_addr = INADDR_BROADCAST; 11275 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11276 sizeof (ncec_addr)); 11277 /* 11278 * map all the flags to the ACE counterpart. 11279 */ 11280 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11281 11282 ntme.ipNetToMediaPhysAddress.o_length = 11283 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11284 11285 if (!NCE_ISREACHABLE(ncec)) 11286 ntme.ipNetToMediaPhysAddress.o_length = 0; 11287 else { 11288 if (ncec->ncec_lladdr != NULL) { 11289 bcopy(ncec->ncec_lladdr, 11290 ntme.ipNetToMediaPhysAddress.o_bytes, 11291 ntme.ipNetToMediaPhysAddress.o_length); 11292 } 11293 } 11294 11295 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11296 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11297 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11298 (uint_t)sizeof (ntme))); 11299 } 11300 } 11301 11302 /* 11303 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11304 */ 11305 /* ARGSUSED */ 11306 int 11307 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11308 { 11309 switch (level) { 11310 case MIB2_IP: 11311 case MIB2_ICMP: 11312 switch (name) { 11313 default: 11314 break; 11315 } 11316 return (1); 11317 default: 11318 return (1); 11319 } 11320 } 11321 11322 /* 11323 * When there exists both a 64- and 32-bit counter of a particular type 11324 * (i.e., InReceives), only the 64-bit counters are added. 11325 */ 11326 void 11327 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11328 { 11329 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11330 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11331 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11332 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11333 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11334 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11335 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11336 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11337 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11338 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11339 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11340 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11341 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11342 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11343 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11344 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11345 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11346 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11347 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11348 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11349 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11350 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11351 o2->ipIfStatsInWrongIPVersion); 11352 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11353 o2->ipIfStatsInWrongIPVersion); 11354 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11355 o2->ipIfStatsOutSwitchIPVersion); 11356 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11357 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11358 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11359 o2->ipIfStatsHCInForwDatagrams); 11360 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11361 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11362 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11363 o2->ipIfStatsHCOutForwDatagrams); 11364 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11365 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11366 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11367 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11368 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11369 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11370 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11371 o2->ipIfStatsHCOutMcastOctets); 11372 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11373 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11374 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11375 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11376 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11377 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11378 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11379 } 11380 11381 void 11382 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11383 { 11384 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11385 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11386 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11387 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11388 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11389 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11390 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11391 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11392 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11393 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11394 o2->ipv6IfIcmpInRouterSolicits); 11395 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11396 o2->ipv6IfIcmpInRouterAdvertisements); 11397 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11398 o2->ipv6IfIcmpInNeighborSolicits); 11399 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11400 o2->ipv6IfIcmpInNeighborAdvertisements); 11401 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11402 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11403 o2->ipv6IfIcmpInGroupMembQueries); 11404 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11405 o2->ipv6IfIcmpInGroupMembResponses); 11406 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11407 o2->ipv6IfIcmpInGroupMembReductions); 11408 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11409 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11410 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11411 o2->ipv6IfIcmpOutDestUnreachs); 11412 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11413 o2->ipv6IfIcmpOutAdminProhibs); 11414 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11415 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11416 o2->ipv6IfIcmpOutParmProblems); 11417 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11418 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11419 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11420 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11421 o2->ipv6IfIcmpOutRouterSolicits); 11422 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11423 o2->ipv6IfIcmpOutRouterAdvertisements); 11424 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11425 o2->ipv6IfIcmpOutNeighborSolicits); 11426 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11427 o2->ipv6IfIcmpOutNeighborAdvertisements); 11428 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11429 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11430 o2->ipv6IfIcmpOutGroupMembQueries); 11431 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11432 o2->ipv6IfIcmpOutGroupMembResponses); 11433 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11434 o2->ipv6IfIcmpOutGroupMembReductions); 11435 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11436 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11437 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11438 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11439 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11440 o2->ipv6IfIcmpInBadNeighborSolicitations); 11441 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11442 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11443 o2->ipv6IfIcmpInGroupMembTotal); 11444 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11445 o2->ipv6IfIcmpInGroupMembBadQueries); 11446 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11447 o2->ipv6IfIcmpInGroupMembBadReports); 11448 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11449 o2->ipv6IfIcmpInGroupMembOurReports); 11450 } 11451 11452 /* 11453 * Called before the options are updated to check if this packet will 11454 * be source routed from here. 11455 * This routine assumes that the options are well formed i.e. that they 11456 * have already been checked. 11457 */ 11458 boolean_t 11459 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11460 { 11461 ipoptp_t opts; 11462 uchar_t *opt; 11463 uint8_t optval; 11464 uint8_t optlen; 11465 ipaddr_t dst; 11466 11467 if (IS_SIMPLE_IPH(ipha)) { 11468 ip2dbg(("not source routed\n")); 11469 return (B_FALSE); 11470 } 11471 dst = ipha->ipha_dst; 11472 for (optval = ipoptp_first(&opts, ipha); 11473 optval != IPOPT_EOL; 11474 optval = ipoptp_next(&opts)) { 11475 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11476 opt = opts.ipoptp_cur; 11477 optlen = opts.ipoptp_len; 11478 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11479 optval, optlen)); 11480 switch (optval) { 11481 uint32_t off; 11482 case IPOPT_SSRR: 11483 case IPOPT_LSRR: 11484 /* 11485 * If dst is one of our addresses and there are some 11486 * entries left in the source route return (true). 11487 */ 11488 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11489 ip2dbg(("ip_source_routed: not next" 11490 " source route 0x%x\n", 11491 ntohl(dst))); 11492 return (B_FALSE); 11493 } 11494 off = opt[IPOPT_OFFSET]; 11495 off--; 11496 if (optlen < IP_ADDR_LEN || 11497 off > optlen - IP_ADDR_LEN) { 11498 /* End of source route */ 11499 ip1dbg(("ip_source_routed: end of SR\n")); 11500 return (B_FALSE); 11501 } 11502 return (B_TRUE); 11503 } 11504 } 11505 ip2dbg(("not source routed\n")); 11506 return (B_FALSE); 11507 } 11508 11509 /* 11510 * ip_unbind is called by the transports to remove a conn from 11511 * the fanout table. 11512 */ 11513 void 11514 ip_unbind(conn_t *connp) 11515 { 11516 11517 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11518 11519 if (is_system_labeled() && connp->conn_anon_port) { 11520 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11521 connp->conn_mlp_type, connp->conn_proto, 11522 ntohs(connp->conn_lport), B_FALSE); 11523 connp->conn_anon_port = 0; 11524 } 11525 connp->conn_mlp_type = mlptSingle; 11526 11527 ipcl_hash_remove(connp); 11528 } 11529 11530 /* 11531 * Used for deciding the MSS size for the upper layer. Thus 11532 * we need to check the outbound policy values in the conn. 11533 */ 11534 int 11535 conn_ipsec_length(conn_t *connp) 11536 { 11537 ipsec_latch_t *ipl; 11538 11539 ipl = connp->conn_latch; 11540 if (ipl == NULL) 11541 return (0); 11542 11543 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11544 return (0); 11545 11546 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11547 } 11548 11549 /* 11550 * Returns an estimate of the IPsec headers size. This is used if 11551 * we don't want to call into IPsec to get the exact size. 11552 */ 11553 int 11554 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11555 { 11556 ipsec_action_t *a; 11557 11558 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11559 return (0); 11560 11561 a = ixa->ixa_ipsec_action; 11562 if (a == NULL) { 11563 ASSERT(ixa->ixa_ipsec_policy != NULL); 11564 a = ixa->ixa_ipsec_policy->ipsp_act; 11565 } 11566 ASSERT(a != NULL); 11567 11568 return (a->ipa_ovhd); 11569 } 11570 11571 /* 11572 * If there are any source route options, return the true final 11573 * destination. Otherwise, return the destination. 11574 */ 11575 ipaddr_t 11576 ip_get_dst(ipha_t *ipha) 11577 { 11578 ipoptp_t opts; 11579 uchar_t *opt; 11580 uint8_t optval; 11581 uint8_t optlen; 11582 ipaddr_t dst; 11583 uint32_t off; 11584 11585 dst = ipha->ipha_dst; 11586 11587 if (IS_SIMPLE_IPH(ipha)) 11588 return (dst); 11589 11590 for (optval = ipoptp_first(&opts, ipha); 11591 optval != IPOPT_EOL; 11592 optval = ipoptp_next(&opts)) { 11593 opt = opts.ipoptp_cur; 11594 optlen = opts.ipoptp_len; 11595 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11596 switch (optval) { 11597 case IPOPT_SSRR: 11598 case IPOPT_LSRR: 11599 off = opt[IPOPT_OFFSET]; 11600 /* 11601 * If one of the conditions is true, it means 11602 * end of options and dst already has the right 11603 * value. 11604 */ 11605 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11606 off = optlen - IP_ADDR_LEN; 11607 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11608 } 11609 return (dst); 11610 default: 11611 break; 11612 } 11613 } 11614 11615 return (dst); 11616 } 11617 11618 /* 11619 * Outbound IP fragmentation routine. 11620 * Assumes the caller has checked whether or not fragmentation should 11621 * be allowed. Here we copy the DF bit from the header to all the generated 11622 * fragments. 11623 */ 11624 int 11625 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11626 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11627 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11628 { 11629 int i1; 11630 int hdr_len; 11631 mblk_t *hdr_mp; 11632 ipha_t *ipha; 11633 int ip_data_end; 11634 int len; 11635 mblk_t *mp = mp_orig; 11636 int offset; 11637 ill_t *ill = nce->nce_ill; 11638 ip_stack_t *ipst = ill->ill_ipst; 11639 mblk_t *carve_mp; 11640 uint32_t frag_flag; 11641 uint_t priority = mp->b_band; 11642 int error = 0; 11643 11644 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11645 11646 if (pkt_len != msgdsize(mp)) { 11647 ip0dbg(("Packet length mismatch: %d, %ld\n", 11648 pkt_len, msgdsize(mp))); 11649 freemsg(mp); 11650 return (EINVAL); 11651 } 11652 11653 if (max_frag == 0) { 11654 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11656 ip_drop_output("FragFails: zero max_frag", mp, ill); 11657 freemsg(mp); 11658 return (EINVAL); 11659 } 11660 11661 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11662 ipha = (ipha_t *)mp->b_rptr; 11663 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11664 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11665 11666 /* 11667 * Establish the starting offset. May not be zero if we are fragging 11668 * a fragment that is being forwarded. 11669 */ 11670 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11671 11672 /* TODO why is this test needed? */ 11673 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11674 /* TODO: notify ulp somehow */ 11675 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11676 ip_drop_output("FragFails: bad starting offset", mp, ill); 11677 freemsg(mp); 11678 return (EINVAL); 11679 } 11680 11681 hdr_len = IPH_HDR_LENGTH(ipha); 11682 ipha->ipha_hdr_checksum = 0; 11683 11684 /* 11685 * Establish the number of bytes maximum per frag, after putting 11686 * in the header. 11687 */ 11688 len = (max_frag - hdr_len) & ~7; 11689 11690 /* Get a copy of the header for the trailing frags */ 11691 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11692 mp); 11693 if (hdr_mp == NULL) { 11694 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11695 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11696 freemsg(mp); 11697 return (ENOBUFS); 11698 } 11699 11700 /* Store the starting offset, with the MoreFrags flag. */ 11701 i1 = offset | IPH_MF | frag_flag; 11702 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11703 11704 /* Establish the ending byte offset, based on the starting offset. */ 11705 offset <<= 3; 11706 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11707 11708 /* Store the length of the first fragment in the IP header. */ 11709 i1 = len + hdr_len; 11710 ASSERT(i1 <= IP_MAXPACKET); 11711 ipha->ipha_length = htons((uint16_t)i1); 11712 11713 /* 11714 * Compute the IP header checksum for the first frag. We have to 11715 * watch out that we stop at the end of the header. 11716 */ 11717 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11718 11719 /* 11720 * Now carve off the first frag. Note that this will include the 11721 * original IP header. 11722 */ 11723 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11724 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11725 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11726 freeb(hdr_mp); 11727 freemsg(mp_orig); 11728 return (ENOBUFS); 11729 } 11730 11731 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11732 11733 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11734 ixa_cookie); 11735 if (error != 0 && error != EWOULDBLOCK) { 11736 /* No point in sending the other fragments */ 11737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11738 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11739 freeb(hdr_mp); 11740 freemsg(mp_orig); 11741 return (error); 11742 } 11743 11744 /* No need to redo state machine in loop */ 11745 ixaflags &= ~IXAF_REACH_CONF; 11746 11747 /* Advance the offset to the second frag starting point. */ 11748 offset += len; 11749 /* 11750 * Update hdr_len from the copied header - there might be less options 11751 * in the later fragments. 11752 */ 11753 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11754 /* Loop until done. */ 11755 for (;;) { 11756 uint16_t offset_and_flags; 11757 uint16_t ip_len; 11758 11759 if (ip_data_end - offset > len) { 11760 /* 11761 * Carve off the appropriate amount from the original 11762 * datagram. 11763 */ 11764 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11765 mp = NULL; 11766 break; 11767 } 11768 /* 11769 * More frags after this one. Get another copy 11770 * of the header. 11771 */ 11772 if (carve_mp->b_datap->db_ref == 1 && 11773 hdr_mp->b_wptr - hdr_mp->b_rptr < 11774 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11775 /* Inline IP header */ 11776 carve_mp->b_rptr -= hdr_mp->b_wptr - 11777 hdr_mp->b_rptr; 11778 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11779 hdr_mp->b_wptr - hdr_mp->b_rptr); 11780 mp = carve_mp; 11781 } else { 11782 if (!(mp = copyb(hdr_mp))) { 11783 freemsg(carve_mp); 11784 break; 11785 } 11786 /* Get priority marking, if any. */ 11787 mp->b_band = priority; 11788 mp->b_cont = carve_mp; 11789 } 11790 ipha = (ipha_t *)mp->b_rptr; 11791 offset_and_flags = IPH_MF; 11792 } else { 11793 /* 11794 * Last frag. Consume the header. Set len to 11795 * the length of this last piece. 11796 */ 11797 len = ip_data_end - offset; 11798 11799 /* 11800 * Carve off the appropriate amount from the original 11801 * datagram. 11802 */ 11803 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11804 mp = NULL; 11805 break; 11806 } 11807 if (carve_mp->b_datap->db_ref == 1 && 11808 hdr_mp->b_wptr - hdr_mp->b_rptr < 11809 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11810 /* Inline IP header */ 11811 carve_mp->b_rptr -= hdr_mp->b_wptr - 11812 hdr_mp->b_rptr; 11813 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11814 hdr_mp->b_wptr - hdr_mp->b_rptr); 11815 mp = carve_mp; 11816 freeb(hdr_mp); 11817 hdr_mp = mp; 11818 } else { 11819 mp = hdr_mp; 11820 /* Get priority marking, if any. */ 11821 mp->b_band = priority; 11822 mp->b_cont = carve_mp; 11823 } 11824 ipha = (ipha_t *)mp->b_rptr; 11825 /* A frag of a frag might have IPH_MF non-zero */ 11826 offset_and_flags = 11827 ntohs(ipha->ipha_fragment_offset_and_flags) & 11828 IPH_MF; 11829 } 11830 offset_and_flags |= (uint16_t)(offset >> 3); 11831 offset_and_flags |= (uint16_t)frag_flag; 11832 /* Store the offset and flags in the IP header. */ 11833 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11834 11835 /* Store the length in the IP header. */ 11836 ip_len = (uint16_t)(len + hdr_len); 11837 ipha->ipha_length = htons(ip_len); 11838 11839 /* 11840 * Set the IP header checksum. Note that mp is just 11841 * the header, so this is easy to pass to ip_csum. 11842 */ 11843 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11844 11845 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11846 11847 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11848 nolzid, ixa_cookie); 11849 /* All done if we just consumed the hdr_mp. */ 11850 if (mp == hdr_mp) { 11851 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11852 return (error); 11853 } 11854 if (error != 0 && error != EWOULDBLOCK) { 11855 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11856 mblk_t *, hdr_mp); 11857 /* No point in sending the other fragments */ 11858 break; 11859 } 11860 11861 /* Otherwise, advance and loop. */ 11862 offset += len; 11863 } 11864 /* Clean up following allocation failure. */ 11865 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11866 ip_drop_output("FragFails: loop ended", NULL, ill); 11867 if (mp != hdr_mp) 11868 freeb(hdr_mp); 11869 if (mp != mp_orig) 11870 freemsg(mp_orig); 11871 return (error); 11872 } 11873 11874 /* 11875 * Copy the header plus those options which have the copy bit set 11876 */ 11877 static mblk_t * 11878 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11879 mblk_t *src) 11880 { 11881 mblk_t *mp; 11882 uchar_t *up; 11883 11884 /* 11885 * Quick check if we need to look for options without the copy bit 11886 * set 11887 */ 11888 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11889 if (!mp) 11890 return (mp); 11891 mp->b_rptr += ipst->ips_ip_wroff_extra; 11892 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11893 bcopy(rptr, mp->b_rptr, hdr_len); 11894 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11895 return (mp); 11896 } 11897 up = mp->b_rptr; 11898 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11899 up += IP_SIMPLE_HDR_LENGTH; 11900 rptr += IP_SIMPLE_HDR_LENGTH; 11901 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11902 while (hdr_len > 0) { 11903 uint32_t optval; 11904 uint32_t optlen; 11905 11906 optval = *rptr; 11907 if (optval == IPOPT_EOL) 11908 break; 11909 if (optval == IPOPT_NOP) 11910 optlen = 1; 11911 else 11912 optlen = rptr[1]; 11913 if (optval & IPOPT_COPY) { 11914 bcopy(rptr, up, optlen); 11915 up += optlen; 11916 } 11917 rptr += optlen; 11918 hdr_len -= optlen; 11919 } 11920 /* 11921 * Make sure that we drop an even number of words by filling 11922 * with EOL to the next word boundary. 11923 */ 11924 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11925 hdr_len & 0x3; hdr_len++) 11926 *up++ = IPOPT_EOL; 11927 mp->b_wptr = up; 11928 /* Update header length */ 11929 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11930 return (mp); 11931 } 11932 11933 /* 11934 * Update any source route, record route, or timestamp options when 11935 * sending a packet back to ourselves. 11936 * Check that we are at end of strict source route. 11937 * The options have been sanity checked by ip_output_options(). 11938 */ 11939 void 11940 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11941 { 11942 ipoptp_t opts; 11943 uchar_t *opt; 11944 uint8_t optval; 11945 uint8_t optlen; 11946 ipaddr_t dst; 11947 uint32_t ts; 11948 timestruc_t now; 11949 11950 for (optval = ipoptp_first(&opts, ipha); 11951 optval != IPOPT_EOL; 11952 optval = ipoptp_next(&opts)) { 11953 opt = opts.ipoptp_cur; 11954 optlen = opts.ipoptp_len; 11955 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11956 switch (optval) { 11957 uint32_t off; 11958 case IPOPT_SSRR: 11959 case IPOPT_LSRR: 11960 off = opt[IPOPT_OFFSET]; 11961 off--; 11962 if (optlen < IP_ADDR_LEN || 11963 off > optlen - IP_ADDR_LEN) { 11964 /* End of source route */ 11965 break; 11966 } 11967 /* 11968 * This will only happen if two consecutive entries 11969 * in the source route contains our address or if 11970 * it is a packet with a loose source route which 11971 * reaches us before consuming the whole source route 11972 */ 11973 11974 if (optval == IPOPT_SSRR) { 11975 return; 11976 } 11977 /* 11978 * Hack: instead of dropping the packet truncate the 11979 * source route to what has been used by filling the 11980 * rest with IPOPT_NOP. 11981 */ 11982 opt[IPOPT_OLEN] = (uint8_t)off; 11983 while (off < optlen) { 11984 opt[off++] = IPOPT_NOP; 11985 } 11986 break; 11987 case IPOPT_RR: 11988 off = opt[IPOPT_OFFSET]; 11989 off--; 11990 if (optlen < IP_ADDR_LEN || 11991 off > optlen - IP_ADDR_LEN) { 11992 /* No more room - ignore */ 11993 ip1dbg(( 11994 "ip_output_local_options: end of RR\n")); 11995 break; 11996 } 11997 dst = htonl(INADDR_LOOPBACK); 11998 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11999 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12000 break; 12001 case IPOPT_TS: 12002 /* Insert timestamp if there is romm */ 12003 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12004 case IPOPT_TS_TSONLY: 12005 off = IPOPT_TS_TIMELEN; 12006 break; 12007 case IPOPT_TS_PRESPEC: 12008 case IPOPT_TS_PRESPEC_RFC791: 12009 /* Verify that the address matched */ 12010 off = opt[IPOPT_OFFSET] - 1; 12011 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12012 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12013 /* Not for us */ 12014 break; 12015 } 12016 /* FALLTHROUGH */ 12017 case IPOPT_TS_TSANDADDR: 12018 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12019 break; 12020 default: 12021 /* 12022 * ip_*put_options should have already 12023 * dropped this packet. 12024 */ 12025 cmn_err(CE_PANIC, "ip_output_local_options: " 12026 "unknown IT - bug in ip_output_options?\n"); 12027 } 12028 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12029 /* Increase overflow counter */ 12030 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12031 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12032 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12033 (off << 4); 12034 break; 12035 } 12036 off = opt[IPOPT_OFFSET] - 1; 12037 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12038 case IPOPT_TS_PRESPEC: 12039 case IPOPT_TS_PRESPEC_RFC791: 12040 case IPOPT_TS_TSANDADDR: 12041 dst = htonl(INADDR_LOOPBACK); 12042 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12043 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12044 /* FALLTHROUGH */ 12045 case IPOPT_TS_TSONLY: 12046 off = opt[IPOPT_OFFSET] - 1; 12047 /* Compute # of milliseconds since midnight */ 12048 gethrestime(&now); 12049 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12050 NSEC2MSEC(now.tv_nsec); 12051 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12052 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12053 break; 12054 } 12055 break; 12056 } 12057 } 12058 } 12059 12060 /* 12061 * Prepend an M_DATA fastpath header, and if none present prepend a 12062 * DL_UNITDATA_REQ. Frees the mblk on failure. 12063 * 12064 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12065 * If there is a change to them, the nce will be deleted (condemned) and 12066 * a new nce_t will be created when packets are sent. Thus we need no locks 12067 * to access those fields. 12068 * 12069 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12070 * we place b_band in dl_priority.dl_max. 12071 */ 12072 static mblk_t * 12073 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12074 { 12075 uint_t hlen; 12076 mblk_t *mp1; 12077 uint_t priority; 12078 uchar_t *rptr; 12079 12080 rptr = mp->b_rptr; 12081 12082 ASSERT(DB_TYPE(mp) == M_DATA); 12083 priority = mp->b_band; 12084 12085 ASSERT(nce != NULL); 12086 if ((mp1 = nce->nce_fp_mp) != NULL) { 12087 hlen = MBLKL(mp1); 12088 /* 12089 * Check if we have enough room to prepend fastpath 12090 * header 12091 */ 12092 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12093 rptr -= hlen; 12094 bcopy(mp1->b_rptr, rptr, hlen); 12095 /* 12096 * Set the b_rptr to the start of the link layer 12097 * header 12098 */ 12099 mp->b_rptr = rptr; 12100 return (mp); 12101 } 12102 mp1 = copyb(mp1); 12103 if (mp1 == NULL) { 12104 ill_t *ill = nce->nce_ill; 12105 12106 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12107 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12108 freemsg(mp); 12109 return (NULL); 12110 } 12111 mp1->b_band = priority; 12112 mp1->b_cont = mp; 12113 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12114 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12115 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12116 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12117 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12118 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12119 /* 12120 * XXX disable ICK_VALID and compute checksum 12121 * here; can happen if nce_fp_mp changes and 12122 * it can't be copied now due to insufficient 12123 * space. (unlikely, fp mp can change, but it 12124 * does not increase in length) 12125 */ 12126 return (mp1); 12127 } 12128 mp1 = copyb(nce->nce_dlur_mp); 12129 12130 if (mp1 == NULL) { 12131 ill_t *ill = nce->nce_ill; 12132 12133 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12134 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12135 freemsg(mp); 12136 return (NULL); 12137 } 12138 mp1->b_cont = mp; 12139 if (priority != 0) { 12140 mp1->b_band = priority; 12141 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12142 priority; 12143 } 12144 return (mp1); 12145 } 12146 12147 /* 12148 * Finish the outbound IPsec processing. This function is called from 12149 * ipsec_out_process() if the IPsec packet was processed 12150 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12151 * asynchronously. 12152 * 12153 * This is common to IPv4 and IPv6. 12154 */ 12155 int 12156 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12157 { 12158 iaflags_t ixaflags = ixa->ixa_flags; 12159 uint_t pktlen; 12160 12161 12162 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12163 if (ixaflags & IXAF_IS_IPV4) { 12164 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12165 12166 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12167 pktlen = ntohs(ipha->ipha_length); 12168 } else { 12169 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12170 12171 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12172 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12173 } 12174 12175 /* 12176 * We release any hard reference on the SAs here to make 12177 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12178 * on the SAs. 12179 * If in the future we want the hard latching of the SAs in the 12180 * ip_xmit_attr_t then we should remove this. 12181 */ 12182 if (ixa->ixa_ipsec_esp_sa != NULL) { 12183 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12184 ixa->ixa_ipsec_esp_sa = NULL; 12185 } 12186 if (ixa->ixa_ipsec_ah_sa != NULL) { 12187 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12188 ixa->ixa_ipsec_ah_sa = NULL; 12189 } 12190 12191 /* Do we need to fragment? */ 12192 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12193 pktlen > ixa->ixa_fragsize) { 12194 if (ixaflags & IXAF_IS_IPV4) { 12195 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12196 /* 12197 * We check for the DF case in ipsec_out_process 12198 * hence this only handles the non-DF case. 12199 */ 12200 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12201 pktlen, ixa->ixa_fragsize, 12202 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12203 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12204 &ixa->ixa_cookie)); 12205 } else { 12206 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12207 if (mp == NULL) { 12208 /* MIB and ip_drop_output already done */ 12209 return (ENOMEM); 12210 } 12211 pktlen += sizeof (ip6_frag_t); 12212 if (pktlen > ixa->ixa_fragsize) { 12213 return (ip_fragment_v6(mp, ixa->ixa_nce, 12214 ixa->ixa_flags, pktlen, 12215 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12216 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12217 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12218 } 12219 } 12220 } 12221 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12222 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12223 ixa->ixa_no_loop_zoneid, NULL)); 12224 } 12225 12226 /* 12227 * Finish the inbound IPsec processing. This function is called from 12228 * ipsec_out_process() if the IPsec packet was processed 12229 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12230 * asynchronously. 12231 * 12232 * This is common to IPv4 and IPv6. 12233 */ 12234 void 12235 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12236 { 12237 iaflags_t iraflags = ira->ira_flags; 12238 12239 /* Length might have changed */ 12240 if (iraflags & IRAF_IS_IPV4) { 12241 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12242 12243 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12244 ira->ira_pktlen = ntohs(ipha->ipha_length); 12245 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12246 ira->ira_protocol = ipha->ipha_protocol; 12247 12248 ip_fanout_v4(mp, ipha, ira); 12249 } else { 12250 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12251 uint8_t *nexthdrp; 12252 12253 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12254 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12255 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12256 &nexthdrp)) { 12257 /* Malformed packet */ 12258 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12259 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12260 freemsg(mp); 12261 return; 12262 } 12263 ira->ira_protocol = *nexthdrp; 12264 ip_fanout_v6(mp, ip6h, ira); 12265 } 12266 } 12267 12268 /* 12269 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12270 * 12271 * If this function returns B_TRUE, the requested SA's have been filled 12272 * into the ixa_ipsec_*_sa pointers. 12273 * 12274 * If the function returns B_FALSE, the packet has been "consumed", most 12275 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12276 * 12277 * The SA references created by the protocol-specific "select" 12278 * function will be released in ip_output_post_ipsec. 12279 */ 12280 static boolean_t 12281 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12282 { 12283 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12284 ipsec_policy_t *pp; 12285 ipsec_action_t *ap; 12286 12287 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12288 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12289 (ixa->ixa_ipsec_action != NULL)); 12290 12291 ap = ixa->ixa_ipsec_action; 12292 if (ap == NULL) { 12293 pp = ixa->ixa_ipsec_policy; 12294 ASSERT(pp != NULL); 12295 ap = pp->ipsp_act; 12296 ASSERT(ap != NULL); 12297 } 12298 12299 /* 12300 * We have an action. now, let's select SA's. 12301 * A side effect of setting ixa_ipsec_*_sa is that it will 12302 * be cached in the conn_t. 12303 */ 12304 if (ap->ipa_want_esp) { 12305 if (ixa->ixa_ipsec_esp_sa == NULL) { 12306 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12307 IPPROTO_ESP); 12308 } 12309 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12310 } 12311 12312 if (ap->ipa_want_ah) { 12313 if (ixa->ixa_ipsec_ah_sa == NULL) { 12314 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12315 IPPROTO_AH); 12316 } 12317 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12318 /* 12319 * The ESP and AH processing order needs to be preserved 12320 * when both protocols are required (ESP should be applied 12321 * before AH for an outbound packet). Force an ESP ACQUIRE 12322 * when both ESP and AH are required, and an AH ACQUIRE 12323 * is needed. 12324 */ 12325 if (ap->ipa_want_esp && need_ah_acquire) 12326 need_esp_acquire = B_TRUE; 12327 } 12328 12329 /* 12330 * Send an ACQUIRE (extended, regular, or both) if we need one. 12331 * Release SAs that got referenced, but will not be used until we 12332 * acquire _all_ of the SAs we need. 12333 */ 12334 if (need_ah_acquire || need_esp_acquire) { 12335 if (ixa->ixa_ipsec_ah_sa != NULL) { 12336 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12337 ixa->ixa_ipsec_ah_sa = NULL; 12338 } 12339 if (ixa->ixa_ipsec_esp_sa != NULL) { 12340 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12341 ixa->ixa_ipsec_esp_sa = NULL; 12342 } 12343 12344 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12345 return (B_FALSE); 12346 } 12347 12348 return (B_TRUE); 12349 } 12350 12351 /* 12352 * Handle IPsec output processing. 12353 * This function is only entered once for a given packet. 12354 * We try to do things synchronously, but if we need to have user-level 12355 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12356 * will be completed 12357 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12358 * - when asynchronous ESP is done it will do AH 12359 * 12360 * In all cases we come back in ip_output_post_ipsec() to fragment and 12361 * send out the packet. 12362 */ 12363 int 12364 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12365 { 12366 ill_t *ill = ixa->ixa_nce->nce_ill; 12367 ip_stack_t *ipst = ixa->ixa_ipst; 12368 ipsec_stack_t *ipss; 12369 ipsec_policy_t *pp; 12370 ipsec_action_t *ap; 12371 12372 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12373 12374 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12375 (ixa->ixa_ipsec_action != NULL)); 12376 12377 ipss = ipst->ips_netstack->netstack_ipsec; 12378 if (!ipsec_loaded(ipss)) { 12379 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12380 ip_drop_packet(mp, B_TRUE, ill, 12381 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12382 &ipss->ipsec_dropper); 12383 return (ENOTSUP); 12384 } 12385 12386 ap = ixa->ixa_ipsec_action; 12387 if (ap == NULL) { 12388 pp = ixa->ixa_ipsec_policy; 12389 ASSERT(pp != NULL); 12390 ap = pp->ipsp_act; 12391 ASSERT(ap != NULL); 12392 } 12393 12394 /* Handle explicit drop action and bypass. */ 12395 switch (ap->ipa_act.ipa_type) { 12396 case IPSEC_ACT_DISCARD: 12397 case IPSEC_ACT_REJECT: 12398 ip_drop_packet(mp, B_FALSE, ill, 12399 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12400 return (EHOSTUNREACH); /* IPsec policy failure */ 12401 case IPSEC_ACT_BYPASS: 12402 return (ip_output_post_ipsec(mp, ixa)); 12403 } 12404 12405 /* 12406 * The order of processing is first insert a IP header if needed. 12407 * Then insert the ESP header and then the AH header. 12408 */ 12409 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12410 /* 12411 * First get the outer IP header before sending 12412 * it to ESP. 12413 */ 12414 ipha_t *oipha, *iipha; 12415 mblk_t *outer_mp, *inner_mp; 12416 12417 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12418 (void) mi_strlog(ill->ill_rq, 0, 12419 SL_ERROR|SL_TRACE|SL_CONSOLE, 12420 "ipsec_out_process: " 12421 "Self-Encapsulation failed: Out of memory\n"); 12422 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12423 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12424 freemsg(mp); 12425 return (ENOBUFS); 12426 } 12427 inner_mp = mp; 12428 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12429 oipha = (ipha_t *)outer_mp->b_rptr; 12430 iipha = (ipha_t *)inner_mp->b_rptr; 12431 *oipha = *iipha; 12432 outer_mp->b_wptr += sizeof (ipha_t); 12433 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12434 sizeof (ipha_t)); 12435 oipha->ipha_protocol = IPPROTO_ENCAP; 12436 oipha->ipha_version_and_hdr_length = 12437 IP_SIMPLE_HDR_VERSION; 12438 oipha->ipha_hdr_checksum = 0; 12439 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12440 outer_mp->b_cont = inner_mp; 12441 mp = outer_mp; 12442 12443 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12444 } 12445 12446 /* If we need to wait for a SA then we can't return any errno */ 12447 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12448 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12449 !ipsec_out_select_sa(mp, ixa)) 12450 return (0); 12451 12452 /* 12453 * By now, we know what SA's to use. Toss over to ESP & AH 12454 * to do the heavy lifting. 12455 */ 12456 if (ap->ipa_want_esp) { 12457 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12458 12459 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12460 if (mp == NULL) { 12461 /* 12462 * Either it failed or is pending. In the former case 12463 * ipIfStatsInDiscards was increased. 12464 */ 12465 return (0); 12466 } 12467 } 12468 12469 if (ap->ipa_want_ah) { 12470 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12471 12472 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12473 if (mp == NULL) { 12474 /* 12475 * Either it failed or is pending. In the former case 12476 * ipIfStatsInDiscards was increased. 12477 */ 12478 return (0); 12479 } 12480 } 12481 /* 12482 * We are done with IPsec processing. Send it over 12483 * the wire. 12484 */ 12485 return (ip_output_post_ipsec(mp, ixa)); 12486 } 12487 12488 /* 12489 * ioctls that go through a down/up sequence may need to wait for the down 12490 * to complete. This involves waiting for the ire and ipif refcnts to go down 12491 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12492 */ 12493 /* ARGSUSED */ 12494 void 12495 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12496 { 12497 struct iocblk *iocp; 12498 mblk_t *mp1; 12499 ip_ioctl_cmd_t *ipip; 12500 int err; 12501 sin_t *sin; 12502 struct lifreq *lifr; 12503 struct ifreq *ifr; 12504 12505 iocp = (struct iocblk *)mp->b_rptr; 12506 ASSERT(ipsq != NULL); 12507 /* Existence of mp1 verified in ip_wput_nondata */ 12508 mp1 = mp->b_cont->b_cont; 12509 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12510 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12511 /* 12512 * Special case where ipx_current_ipif is not set: 12513 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12514 * We are here as were not able to complete the operation in 12515 * ipif_set_values because we could not become exclusive on 12516 * the new ipsq. 12517 */ 12518 ill_t *ill = q->q_ptr; 12519 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12520 } 12521 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12522 12523 if (ipip->ipi_cmd_type == IF_CMD) { 12524 /* This a old style SIOC[GS]IF* command */ 12525 ifr = (struct ifreq *)mp1->b_rptr; 12526 sin = (sin_t *)&ifr->ifr_addr; 12527 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12528 /* This a new style SIOC[GS]LIF* command */ 12529 lifr = (struct lifreq *)mp1->b_rptr; 12530 sin = (sin_t *)&lifr->lifr_addr; 12531 } else { 12532 sin = NULL; 12533 } 12534 12535 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12536 q, mp, ipip, mp1->b_rptr); 12537 12538 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12539 int, ipip->ipi_cmd, 12540 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12541 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12542 12543 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12544 } 12545 12546 /* 12547 * ioctl processing 12548 * 12549 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12550 * the ioctl command in the ioctl tables, determines the copyin data size 12551 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12552 * 12553 * ioctl processing then continues when the M_IOCDATA makes its way down to 12554 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12555 * associated 'conn' is refheld till the end of the ioctl and the general 12556 * ioctl processing function ip_process_ioctl() is called to extract the 12557 * arguments and process the ioctl. To simplify extraction, ioctl commands 12558 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12559 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12560 * is used to extract the ioctl's arguments. 12561 * 12562 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12563 * so goes thru the serialization primitive ipsq_try_enter. Then the 12564 * appropriate function to handle the ioctl is called based on the entry in 12565 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12566 * which also refreleases the 'conn' that was refheld at the start of the 12567 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12568 * 12569 * Many exclusive ioctls go thru an internal down up sequence as part of 12570 * the operation. For example an attempt to change the IP address of an 12571 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12572 * does all the cleanup such as deleting all ires that use this address. 12573 * Then we need to wait till all references to the interface go away. 12574 */ 12575 void 12576 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12577 { 12578 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12579 ip_ioctl_cmd_t *ipip = arg; 12580 ip_extract_func_t *extract_funcp; 12581 cmd_info_t ci; 12582 int err; 12583 boolean_t entered_ipsq = B_FALSE; 12584 12585 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12586 12587 if (ipip == NULL) 12588 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12589 12590 /* 12591 * SIOCLIFADDIF needs to go thru a special path since the 12592 * ill may not exist yet. This happens in the case of lo0 12593 * which is created using this ioctl. 12594 */ 12595 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12596 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12597 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12598 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12599 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12600 return; 12601 } 12602 12603 ci.ci_ipif = NULL; 12604 switch (ipip->ipi_cmd_type) { 12605 case MISC_CMD: 12606 case MSFILT_CMD: 12607 /* 12608 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12609 */ 12610 if (ipip->ipi_cmd == IF_UNITSEL) { 12611 /* ioctl comes down the ill */ 12612 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12613 ipif_refhold(ci.ci_ipif); 12614 } 12615 err = 0; 12616 ci.ci_sin = NULL; 12617 ci.ci_sin6 = NULL; 12618 ci.ci_lifr = NULL; 12619 extract_funcp = NULL; 12620 break; 12621 12622 case IF_CMD: 12623 case LIF_CMD: 12624 extract_funcp = ip_extract_lifreq; 12625 break; 12626 12627 case ARP_CMD: 12628 case XARP_CMD: 12629 extract_funcp = ip_extract_arpreq; 12630 break; 12631 12632 default: 12633 ASSERT(0); 12634 } 12635 12636 if (extract_funcp != NULL) { 12637 err = (*extract_funcp)(q, mp, ipip, &ci); 12638 if (err != 0) { 12639 DTRACE_PROBE4(ipif__ioctl, 12640 char *, "ip_process_ioctl finish err", 12641 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12642 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12643 return; 12644 } 12645 12646 /* 12647 * All of the extraction functions return a refheld ipif. 12648 */ 12649 ASSERT(ci.ci_ipif != NULL); 12650 } 12651 12652 if (!(ipip->ipi_flags & IPI_WR)) { 12653 /* 12654 * A return value of EINPROGRESS means the ioctl is 12655 * either queued and waiting for some reason or has 12656 * already completed. 12657 */ 12658 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12659 ci.ci_lifr); 12660 if (ci.ci_ipif != NULL) { 12661 DTRACE_PROBE4(ipif__ioctl, 12662 char *, "ip_process_ioctl finish RD", 12663 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12664 ipif_t *, ci.ci_ipif); 12665 ipif_refrele(ci.ci_ipif); 12666 } else { 12667 DTRACE_PROBE4(ipif__ioctl, 12668 char *, "ip_process_ioctl finish RD", 12669 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12670 } 12671 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12672 return; 12673 } 12674 12675 ASSERT(ci.ci_ipif != NULL); 12676 12677 /* 12678 * If ipsq is non-NULL, we are already being called exclusively 12679 */ 12680 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12681 if (ipsq == NULL) { 12682 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12683 NEW_OP, B_TRUE); 12684 if (ipsq == NULL) { 12685 ipif_refrele(ci.ci_ipif); 12686 return; 12687 } 12688 entered_ipsq = B_TRUE; 12689 } 12690 /* 12691 * Release the ipif so that ipif_down and friends that wait for 12692 * references to go away are not misled about the current ipif_refcnt 12693 * values. We are writer so we can access the ipif even after releasing 12694 * the ipif. 12695 */ 12696 ipif_refrele(ci.ci_ipif); 12697 12698 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12699 12700 /* 12701 * A return value of EINPROGRESS means the ioctl is 12702 * either queued and waiting for some reason or has 12703 * already completed. 12704 */ 12705 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12706 12707 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12708 int, ipip->ipi_cmd, 12709 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12710 ipif_t *, ci.ci_ipif); 12711 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12712 12713 if (entered_ipsq) 12714 ipsq_exit(ipsq); 12715 } 12716 12717 /* 12718 * Complete the ioctl. Typically ioctls use the mi package and need to 12719 * do mi_copyout/mi_copy_done. 12720 */ 12721 void 12722 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12723 { 12724 conn_t *connp = NULL; 12725 12726 if (err == EINPROGRESS) 12727 return; 12728 12729 if (CONN_Q(q)) { 12730 connp = Q_TO_CONN(q); 12731 ASSERT(connp->conn_ref >= 2); 12732 } 12733 12734 switch (mode) { 12735 case COPYOUT: 12736 if (err == 0) 12737 mi_copyout(q, mp); 12738 else 12739 mi_copy_done(q, mp, err); 12740 break; 12741 12742 case NO_COPYOUT: 12743 mi_copy_done(q, mp, err); 12744 break; 12745 12746 default: 12747 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12748 break; 12749 } 12750 12751 /* 12752 * The conn refhold and ioctlref placed on the conn at the start of the 12753 * ioctl are released here. 12754 */ 12755 if (connp != NULL) { 12756 CONN_DEC_IOCTLREF(connp); 12757 CONN_OPER_PENDING_DONE(connp); 12758 } 12759 12760 if (ipsq != NULL) 12761 ipsq_current_finish(ipsq); 12762 } 12763 12764 /* Handles all non data messages */ 12765 int 12766 ip_wput_nondata(queue_t *q, mblk_t *mp) 12767 { 12768 mblk_t *mp1; 12769 struct iocblk *iocp; 12770 ip_ioctl_cmd_t *ipip; 12771 conn_t *connp; 12772 cred_t *cr; 12773 char *proto_str; 12774 12775 if (CONN_Q(q)) 12776 connp = Q_TO_CONN(q); 12777 else 12778 connp = NULL; 12779 12780 switch (DB_TYPE(mp)) { 12781 case M_IOCTL: 12782 /* 12783 * IOCTL processing begins in ip_sioctl_copyin_setup which 12784 * will arrange to copy in associated control structures. 12785 */ 12786 ip_sioctl_copyin_setup(q, mp); 12787 return (0); 12788 case M_IOCDATA: 12789 /* 12790 * Ensure that this is associated with one of our trans- 12791 * parent ioctls. If it's not ours, discard it if we're 12792 * running as a driver, or pass it on if we're a module. 12793 */ 12794 iocp = (struct iocblk *)mp->b_rptr; 12795 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12796 if (ipip == NULL) { 12797 if (q->q_next == NULL) { 12798 goto nak; 12799 } else { 12800 putnext(q, mp); 12801 } 12802 return (0); 12803 } 12804 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12805 /* 12806 * The ioctl is one we recognise, but is not consumed 12807 * by IP as a module and we are a module, so we drop 12808 */ 12809 goto nak; 12810 } 12811 12812 /* IOCTL continuation following copyin or copyout. */ 12813 if (mi_copy_state(q, mp, NULL) == -1) { 12814 /* 12815 * The copy operation failed. mi_copy_state already 12816 * cleaned up, so we're out of here. 12817 */ 12818 return (0); 12819 } 12820 /* 12821 * If we just completed a copy in, we become writer and 12822 * continue processing in ip_sioctl_copyin_done. If it 12823 * was a copy out, we call mi_copyout again. If there is 12824 * nothing more to copy out, it will complete the IOCTL. 12825 */ 12826 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12827 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12828 mi_copy_done(q, mp, EPROTO); 12829 return (0); 12830 } 12831 /* 12832 * Check for cases that need more copying. A return 12833 * value of 0 means a second copyin has been started, 12834 * so we return; a return value of 1 means no more 12835 * copying is needed, so we continue. 12836 */ 12837 if (ipip->ipi_cmd_type == MSFILT_CMD && 12838 MI_COPY_COUNT(mp) == 1) { 12839 if (ip_copyin_msfilter(q, mp) == 0) 12840 return (0); 12841 } 12842 /* 12843 * Refhold the conn, till the ioctl completes. This is 12844 * needed in case the ioctl ends up in the pending mp 12845 * list. Every mp in the ipx_pending_mp list must have 12846 * a refhold on the conn to resume processing. The 12847 * refhold is released when the ioctl completes 12848 * (whether normally or abnormally). An ioctlref is also 12849 * placed on the conn to prevent TCP from removing the 12850 * queue needed to send the ioctl reply back. 12851 * In all cases ip_ioctl_finish is called to finish 12852 * the ioctl and release the refholds. 12853 */ 12854 if (connp != NULL) { 12855 /* This is not a reentry */ 12856 CONN_INC_REF(connp); 12857 CONN_INC_IOCTLREF(connp); 12858 } else { 12859 if (!(ipip->ipi_flags & IPI_MODOK)) { 12860 mi_copy_done(q, mp, EINVAL); 12861 return (0); 12862 } 12863 } 12864 12865 ip_process_ioctl(NULL, q, mp, ipip); 12866 12867 } else { 12868 mi_copyout(q, mp); 12869 } 12870 return (0); 12871 12872 case M_IOCNAK: 12873 /* 12874 * The only way we could get here is if a resolver didn't like 12875 * an IOCTL we sent it. This shouldn't happen. 12876 */ 12877 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12878 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12879 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12880 freemsg(mp); 12881 return (0); 12882 case M_IOCACK: 12883 /* /dev/ip shouldn't see this */ 12884 goto nak; 12885 case M_FLUSH: 12886 if (*mp->b_rptr & FLUSHW) 12887 flushq(q, FLUSHALL); 12888 if (q->q_next) { 12889 putnext(q, mp); 12890 return (0); 12891 } 12892 if (*mp->b_rptr & FLUSHR) { 12893 *mp->b_rptr &= ~FLUSHW; 12894 qreply(q, mp); 12895 return (0); 12896 } 12897 freemsg(mp); 12898 return (0); 12899 case M_CTL: 12900 break; 12901 case M_PROTO: 12902 case M_PCPROTO: 12903 /* 12904 * The only PROTO messages we expect are SNMP-related. 12905 */ 12906 switch (((union T_primitives *)mp->b_rptr)->type) { 12907 case T_SVR4_OPTMGMT_REQ: 12908 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12909 "flags %x\n", 12910 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12911 12912 if (connp == NULL) { 12913 proto_str = "T_SVR4_OPTMGMT_REQ"; 12914 goto protonak; 12915 } 12916 12917 /* 12918 * All Solaris components should pass a db_credp 12919 * for this TPI message, hence we ASSERT. 12920 * But in case there is some other M_PROTO that looks 12921 * like a TPI message sent by some other kernel 12922 * component, we check and return an error. 12923 */ 12924 cr = msg_getcred(mp, NULL); 12925 ASSERT(cr != NULL); 12926 if (cr == NULL) { 12927 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12928 if (mp != NULL) 12929 qreply(q, mp); 12930 return (0); 12931 } 12932 12933 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12934 proto_str = "Bad SNMPCOM request?"; 12935 goto protonak; 12936 } 12937 return (0); 12938 default: 12939 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12940 (int)*(uint_t *)mp->b_rptr)); 12941 freemsg(mp); 12942 return (0); 12943 } 12944 default: 12945 break; 12946 } 12947 if (q->q_next) { 12948 putnext(q, mp); 12949 } else 12950 freemsg(mp); 12951 return (0); 12952 12953 nak: 12954 iocp->ioc_error = EINVAL; 12955 mp->b_datap->db_type = M_IOCNAK; 12956 iocp->ioc_count = 0; 12957 qreply(q, mp); 12958 return (0); 12959 12960 protonak: 12961 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12962 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12963 qreply(q, mp); 12964 return (0); 12965 } 12966 12967 /* 12968 * Process IP options in an outbound packet. Verify that the nexthop in a 12969 * strict source route is onlink. 12970 * Returns non-zero if something fails in which case an ICMP error has been 12971 * sent and mp freed. 12972 * 12973 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12974 */ 12975 int 12976 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12977 { 12978 ipoptp_t opts; 12979 uchar_t *opt; 12980 uint8_t optval; 12981 uint8_t optlen; 12982 ipaddr_t dst; 12983 intptr_t code = 0; 12984 ire_t *ire; 12985 ip_stack_t *ipst = ixa->ixa_ipst; 12986 ip_recv_attr_t iras; 12987 12988 ip2dbg(("ip_output_options\n")); 12989 12990 dst = ipha->ipha_dst; 12991 for (optval = ipoptp_first(&opts, ipha); 12992 optval != IPOPT_EOL; 12993 optval = ipoptp_next(&opts)) { 12994 opt = opts.ipoptp_cur; 12995 optlen = opts.ipoptp_len; 12996 ip2dbg(("ip_output_options: opt %d, len %d\n", 12997 optval, optlen)); 12998 switch (optval) { 12999 uint32_t off; 13000 case IPOPT_SSRR: 13001 case IPOPT_LSRR: 13002 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13003 ip1dbg(( 13004 "ip_output_options: bad option offset\n")); 13005 code = (char *)&opt[IPOPT_OLEN] - 13006 (char *)ipha; 13007 goto param_prob; 13008 } 13009 off = opt[IPOPT_OFFSET]; 13010 ip1dbg(("ip_output_options: next hop 0x%x\n", 13011 ntohl(dst))); 13012 /* 13013 * For strict: verify that dst is directly 13014 * reachable. 13015 */ 13016 if (optval == IPOPT_SSRR) { 13017 ire = ire_ftable_lookup_v4(dst, 0, 0, 13018 IRE_INTERFACE, NULL, ALL_ZONES, 13019 ixa->ixa_tsl, 13020 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13021 NULL); 13022 if (ire == NULL) { 13023 ip1dbg(("ip_output_options: SSRR not" 13024 " directly reachable: 0x%x\n", 13025 ntohl(dst))); 13026 goto bad_src_route; 13027 } 13028 ire_refrele(ire); 13029 } 13030 break; 13031 case IPOPT_RR: 13032 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13033 ip1dbg(( 13034 "ip_output_options: bad option offset\n")); 13035 code = (char *)&opt[IPOPT_OLEN] - 13036 (char *)ipha; 13037 goto param_prob; 13038 } 13039 break; 13040 case IPOPT_TS: 13041 /* 13042 * Verify that length >=5 and that there is either 13043 * room for another timestamp or that the overflow 13044 * counter is not maxed out. 13045 */ 13046 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13047 if (optlen < IPOPT_MINLEN_IT) { 13048 goto param_prob; 13049 } 13050 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13051 ip1dbg(( 13052 "ip_output_options: bad option offset\n")); 13053 code = (char *)&opt[IPOPT_OFFSET] - 13054 (char *)ipha; 13055 goto param_prob; 13056 } 13057 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13058 case IPOPT_TS_TSONLY: 13059 off = IPOPT_TS_TIMELEN; 13060 break; 13061 case IPOPT_TS_TSANDADDR: 13062 case IPOPT_TS_PRESPEC: 13063 case IPOPT_TS_PRESPEC_RFC791: 13064 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13065 break; 13066 default: 13067 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13068 (char *)ipha; 13069 goto param_prob; 13070 } 13071 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13072 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13073 /* 13074 * No room and the overflow counter is 15 13075 * already. 13076 */ 13077 goto param_prob; 13078 } 13079 break; 13080 } 13081 } 13082 13083 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13084 return (0); 13085 13086 ip1dbg(("ip_output_options: error processing IP options.")); 13087 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13088 13089 param_prob: 13090 bzero(&iras, sizeof (iras)); 13091 iras.ira_ill = iras.ira_rill = ill; 13092 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13093 iras.ira_rifindex = iras.ira_ruifindex; 13094 iras.ira_flags = IRAF_IS_IPV4; 13095 13096 ip_drop_output("ip_output_options", mp, ill); 13097 icmp_param_problem(mp, (uint8_t)code, &iras); 13098 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13099 return (-1); 13100 13101 bad_src_route: 13102 bzero(&iras, sizeof (iras)); 13103 iras.ira_ill = iras.ira_rill = ill; 13104 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13105 iras.ira_rifindex = iras.ira_ruifindex; 13106 iras.ira_flags = IRAF_IS_IPV4; 13107 13108 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13109 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13110 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13111 return (-1); 13112 } 13113 13114 /* 13115 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13116 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13117 * thru /etc/system. 13118 */ 13119 #define CONN_MAXDRAINCNT 64 13120 13121 static void 13122 conn_drain_init(ip_stack_t *ipst) 13123 { 13124 int i, j; 13125 idl_tx_list_t *itl_tx; 13126 13127 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13128 13129 if ((ipst->ips_conn_drain_list_cnt == 0) || 13130 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13131 /* 13132 * Default value of the number of drainers is the 13133 * number of cpus, subject to maximum of 8 drainers. 13134 */ 13135 if (boot_max_ncpus != -1) 13136 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13137 else 13138 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13139 } 13140 13141 ipst->ips_idl_tx_list = 13142 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13143 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13144 itl_tx = &ipst->ips_idl_tx_list[i]; 13145 itl_tx->txl_drain_list = 13146 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13147 sizeof (idl_t), KM_SLEEP); 13148 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13149 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13150 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13151 MUTEX_DEFAULT, NULL); 13152 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13153 } 13154 } 13155 } 13156 13157 static void 13158 conn_drain_fini(ip_stack_t *ipst) 13159 { 13160 int i; 13161 idl_tx_list_t *itl_tx; 13162 13163 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13164 itl_tx = &ipst->ips_idl_tx_list[i]; 13165 kmem_free(itl_tx->txl_drain_list, 13166 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13167 } 13168 kmem_free(ipst->ips_idl_tx_list, 13169 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13170 ipst->ips_idl_tx_list = NULL; 13171 } 13172 13173 /* 13174 * Flow control has blocked us from proceeding. Insert the given conn in one 13175 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13176 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13177 * will call conn_walk_drain(). See the flow control notes at the top of this 13178 * file for more details. 13179 */ 13180 void 13181 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13182 { 13183 idl_t *idl = tx_list->txl_drain_list; 13184 uint_t index; 13185 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13186 13187 mutex_enter(&connp->conn_lock); 13188 if (connp->conn_state_flags & CONN_CLOSING) { 13189 /* 13190 * The conn is closing as a result of which CONN_CLOSING 13191 * is set. Return. 13192 */ 13193 mutex_exit(&connp->conn_lock); 13194 return; 13195 } else if (connp->conn_idl == NULL) { 13196 /* 13197 * Assign the next drain list round robin. We dont' use 13198 * a lock, and thus it may not be strictly round robin. 13199 * Atomicity of load/stores is enough to make sure that 13200 * conn_drain_list_index is always within bounds. 13201 */ 13202 index = tx_list->txl_drain_index; 13203 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13204 connp->conn_idl = &tx_list->txl_drain_list[index]; 13205 index++; 13206 if (index == ipst->ips_conn_drain_list_cnt) 13207 index = 0; 13208 tx_list->txl_drain_index = index; 13209 } else { 13210 ASSERT(connp->conn_idl->idl_itl == tx_list); 13211 } 13212 mutex_exit(&connp->conn_lock); 13213 13214 idl = connp->conn_idl; 13215 mutex_enter(&idl->idl_lock); 13216 if ((connp->conn_drain_prev != NULL) || 13217 (connp->conn_state_flags & CONN_CLOSING)) { 13218 /* 13219 * The conn is either already in the drain list or closing. 13220 * (We needed to check for CONN_CLOSING again since close can 13221 * sneak in between dropping conn_lock and acquiring idl_lock.) 13222 */ 13223 mutex_exit(&idl->idl_lock); 13224 return; 13225 } 13226 13227 /* 13228 * The conn is not in the drain list. Insert it at the 13229 * tail of the drain list. The drain list is circular 13230 * and doubly linked. idl_conn points to the 1st element 13231 * in the list. 13232 */ 13233 if (idl->idl_conn == NULL) { 13234 idl->idl_conn = connp; 13235 connp->conn_drain_next = connp; 13236 connp->conn_drain_prev = connp; 13237 } else { 13238 conn_t *head = idl->idl_conn; 13239 13240 connp->conn_drain_next = head; 13241 connp->conn_drain_prev = head->conn_drain_prev; 13242 head->conn_drain_prev->conn_drain_next = connp; 13243 head->conn_drain_prev = connp; 13244 } 13245 /* 13246 * For non streams based sockets assert flow control. 13247 */ 13248 conn_setqfull(connp, NULL); 13249 mutex_exit(&idl->idl_lock); 13250 } 13251 13252 static void 13253 conn_drain_remove(conn_t *connp) 13254 { 13255 idl_t *idl = connp->conn_idl; 13256 13257 if (idl != NULL) { 13258 /* 13259 * Remove ourself from the drain list. 13260 */ 13261 if (connp->conn_drain_next == connp) { 13262 /* Singleton in the list */ 13263 ASSERT(connp->conn_drain_prev == connp); 13264 idl->idl_conn = NULL; 13265 } else { 13266 connp->conn_drain_prev->conn_drain_next = 13267 connp->conn_drain_next; 13268 connp->conn_drain_next->conn_drain_prev = 13269 connp->conn_drain_prev; 13270 if (idl->idl_conn == connp) 13271 idl->idl_conn = connp->conn_drain_next; 13272 } 13273 13274 /* 13275 * NOTE: because conn_idl is associated with a specific drain 13276 * list which in turn is tied to the index the TX ring 13277 * (txl_cookie) hashes to, and because the TX ring can change 13278 * over the lifetime of the conn_t, we must clear conn_idl so 13279 * a subsequent conn_drain_insert() will set conn_idl again 13280 * based on the latest txl_cookie. 13281 */ 13282 connp->conn_idl = NULL; 13283 } 13284 connp->conn_drain_next = NULL; 13285 connp->conn_drain_prev = NULL; 13286 13287 conn_clrqfull(connp, NULL); 13288 /* 13289 * For streams based sockets open up flow control. 13290 */ 13291 if (!IPCL_IS_NONSTR(connp)) 13292 enableok(connp->conn_wq); 13293 } 13294 13295 /* 13296 * This conn is closing, and we are called from ip_close. OR 13297 * this conn is draining because flow-control on the ill has been relieved. 13298 * 13299 * We must also need to remove conn's on this idl from the list, and also 13300 * inform the sockfs upcalls about the change in flow-control. 13301 */ 13302 static void 13303 conn_drain(conn_t *connp, boolean_t closing) 13304 { 13305 idl_t *idl; 13306 conn_t *next_connp; 13307 13308 /* 13309 * connp->conn_idl is stable at this point, and no lock is needed 13310 * to check it. If we are called from ip_close, close has already 13311 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13312 * called us only because conn_idl is non-null. If we are called thru 13313 * service, conn_idl could be null, but it cannot change because 13314 * service is single-threaded per queue, and there cannot be another 13315 * instance of service trying to call conn_drain_insert on this conn 13316 * now. 13317 */ 13318 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13319 13320 /* 13321 * If the conn doesn't exist or is not on a drain list, bail. 13322 */ 13323 if (connp == NULL || connp->conn_idl == NULL || 13324 connp->conn_drain_prev == NULL) { 13325 return; 13326 } 13327 13328 idl = connp->conn_idl; 13329 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13330 13331 if (!closing) { 13332 next_connp = connp->conn_drain_next; 13333 while (next_connp != connp) { 13334 conn_t *delconnp = next_connp; 13335 13336 next_connp = next_connp->conn_drain_next; 13337 conn_drain_remove(delconnp); 13338 } 13339 ASSERT(connp->conn_drain_next == idl->idl_conn); 13340 } 13341 conn_drain_remove(connp); 13342 } 13343 13344 /* 13345 * Write service routine. Shared perimeter entry point. 13346 * The device queue's messages has fallen below the low water mark and STREAMS 13347 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13348 * each waiting conn. 13349 */ 13350 int 13351 ip_wsrv(queue_t *q) 13352 { 13353 ill_t *ill; 13354 13355 ill = (ill_t *)q->q_ptr; 13356 if (ill->ill_state_flags == 0) { 13357 ip_stack_t *ipst = ill->ill_ipst; 13358 13359 /* 13360 * The device flow control has opened up. 13361 * Walk through conn drain lists and qenable the 13362 * first conn in each list. This makes sense only 13363 * if the stream is fully plumbed and setup. 13364 * Hence the ill_state_flags check above. 13365 */ 13366 ip1dbg(("ip_wsrv: walking\n")); 13367 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13368 enableok(ill->ill_wq); 13369 } 13370 return (0); 13371 } 13372 13373 /* 13374 * Callback to disable flow control in IP. 13375 * 13376 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13377 * is enabled. 13378 * 13379 * When MAC_TX() is not able to send any more packets, dld sets its queue 13380 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13381 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13382 * function and wakes up corresponding mac worker threads, which in turn 13383 * calls this callback function, and disables flow control. 13384 */ 13385 void 13386 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13387 { 13388 ill_t *ill = (ill_t *)arg; 13389 ip_stack_t *ipst = ill->ill_ipst; 13390 idl_tx_list_t *idl_txl; 13391 13392 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13393 mutex_enter(&idl_txl->txl_lock); 13394 /* add code to to set a flag to indicate idl_txl is enabled */ 13395 conn_walk_drain(ipst, idl_txl); 13396 mutex_exit(&idl_txl->txl_lock); 13397 } 13398 13399 /* 13400 * Flow control has been relieved and STREAMS has backenabled us; drain 13401 * all the conn lists on `tx_list'. 13402 */ 13403 static void 13404 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13405 { 13406 int i; 13407 idl_t *idl; 13408 13409 IP_STAT(ipst, ip_conn_walk_drain); 13410 13411 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13412 idl = &tx_list->txl_drain_list[i]; 13413 mutex_enter(&idl->idl_lock); 13414 conn_drain(idl->idl_conn, B_FALSE); 13415 mutex_exit(&idl->idl_lock); 13416 } 13417 } 13418 13419 /* 13420 * Determine if the ill and multicast aspects of that packets 13421 * "matches" the conn. 13422 */ 13423 boolean_t 13424 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13425 { 13426 ill_t *ill = ira->ira_rill; 13427 zoneid_t zoneid = ira->ira_zoneid; 13428 uint_t in_ifindex; 13429 ipaddr_t dst, src; 13430 13431 dst = ipha->ipha_dst; 13432 src = ipha->ipha_src; 13433 13434 /* 13435 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13436 * unicast, broadcast and multicast reception to 13437 * conn_incoming_ifindex. 13438 * conn_wantpacket is called for unicast, broadcast and 13439 * multicast packets. 13440 */ 13441 in_ifindex = connp->conn_incoming_ifindex; 13442 13443 /* mpathd can bind to the under IPMP interface, which we allow */ 13444 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13445 if (!IS_UNDER_IPMP(ill)) 13446 return (B_FALSE); 13447 13448 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13449 return (B_FALSE); 13450 } 13451 13452 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13453 return (B_FALSE); 13454 13455 if (!(ira->ira_flags & IRAF_MULTICAST)) 13456 return (B_TRUE); 13457 13458 if (connp->conn_multi_router) { 13459 /* multicast packet and multicast router socket: send up */ 13460 return (B_TRUE); 13461 } 13462 13463 if (ipha->ipha_protocol == IPPROTO_PIM || 13464 ipha->ipha_protocol == IPPROTO_RSVP) 13465 return (B_TRUE); 13466 13467 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13468 } 13469 13470 void 13471 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13472 { 13473 if (IPCL_IS_NONSTR(connp)) { 13474 (*connp->conn_upcalls->su_txq_full) 13475 (connp->conn_upper_handle, B_TRUE); 13476 if (flow_stopped != NULL) 13477 *flow_stopped = B_TRUE; 13478 } else { 13479 queue_t *q = connp->conn_wq; 13480 13481 ASSERT(q != NULL); 13482 if (!(q->q_flag & QFULL)) { 13483 mutex_enter(QLOCK(q)); 13484 if (!(q->q_flag & QFULL)) { 13485 /* still need to set QFULL */ 13486 q->q_flag |= QFULL; 13487 /* set flow_stopped to true under QLOCK */ 13488 if (flow_stopped != NULL) 13489 *flow_stopped = B_TRUE; 13490 mutex_exit(QLOCK(q)); 13491 } else { 13492 /* flow_stopped is left unchanged */ 13493 mutex_exit(QLOCK(q)); 13494 } 13495 } 13496 } 13497 } 13498 13499 void 13500 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13501 { 13502 if (IPCL_IS_NONSTR(connp)) { 13503 (*connp->conn_upcalls->su_txq_full) 13504 (connp->conn_upper_handle, B_FALSE); 13505 if (flow_stopped != NULL) 13506 *flow_stopped = B_FALSE; 13507 } else { 13508 queue_t *q = connp->conn_wq; 13509 13510 ASSERT(q != NULL); 13511 if (q->q_flag & QFULL) { 13512 mutex_enter(QLOCK(q)); 13513 if (q->q_flag & QFULL) { 13514 q->q_flag &= ~QFULL; 13515 /* set flow_stopped to false under QLOCK */ 13516 if (flow_stopped != NULL) 13517 *flow_stopped = B_FALSE; 13518 mutex_exit(QLOCK(q)); 13519 if (q->q_flag & QWANTW) 13520 qbackenable(q, 0); 13521 } else { 13522 /* flow_stopped is left unchanged */ 13523 mutex_exit(QLOCK(q)); 13524 } 13525 } 13526 } 13527 13528 mutex_enter(&connp->conn_lock); 13529 connp->conn_blocked = B_FALSE; 13530 mutex_exit(&connp->conn_lock); 13531 } 13532 13533 /* 13534 * Return the length in bytes of the IPv4 headers (base header, label, and 13535 * other IP options) that will be needed based on the 13536 * ip_pkt_t structure passed by the caller. 13537 * 13538 * The returned length does not include the length of the upper level 13539 * protocol (ULP) header. 13540 * The caller needs to check that the length doesn't exceed the max for IPv4. 13541 */ 13542 int 13543 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13544 { 13545 int len; 13546 13547 len = IP_SIMPLE_HDR_LENGTH; 13548 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13549 ASSERT(ipp->ipp_label_len_v4 != 0); 13550 /* We need to round up here */ 13551 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13552 } 13553 13554 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13555 ASSERT(ipp->ipp_ipv4_options_len != 0); 13556 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13557 len += ipp->ipp_ipv4_options_len; 13558 } 13559 return (len); 13560 } 13561 13562 /* 13563 * All-purpose routine to build an IPv4 header with options based 13564 * on the abstract ip_pkt_t. 13565 * 13566 * The caller has to set the source and destination address as well as 13567 * ipha_length. The caller has to massage any source route and compensate 13568 * for the ULP pseudo-header checksum due to the source route. 13569 */ 13570 void 13571 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13572 uint8_t protocol) 13573 { 13574 ipha_t *ipha = (ipha_t *)buf; 13575 uint8_t *cp; 13576 13577 /* Initialize IPv4 header */ 13578 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13579 ipha->ipha_length = 0; /* Caller will set later */ 13580 ipha->ipha_ident = 0; 13581 ipha->ipha_fragment_offset_and_flags = 0; 13582 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13583 ipha->ipha_protocol = protocol; 13584 ipha->ipha_hdr_checksum = 0; 13585 13586 if ((ipp->ipp_fields & IPPF_ADDR) && 13587 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13588 ipha->ipha_src = ipp->ipp_addr_v4; 13589 13590 cp = (uint8_t *)&ipha[1]; 13591 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13592 ASSERT(ipp->ipp_label_len_v4 != 0); 13593 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13594 cp += ipp->ipp_label_len_v4; 13595 /* We need to round up here */ 13596 while ((uintptr_t)cp & 0x3) { 13597 *cp++ = IPOPT_NOP; 13598 } 13599 } 13600 13601 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13602 ASSERT(ipp->ipp_ipv4_options_len != 0); 13603 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13604 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13605 cp += ipp->ipp_ipv4_options_len; 13606 } 13607 ipha->ipha_version_and_hdr_length = 13608 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13609 13610 ASSERT((int)(cp - buf) == buf_len); 13611 } 13612 13613 /* Allocate the private structure */ 13614 static int 13615 ip_priv_alloc(void **bufp) 13616 { 13617 void *buf; 13618 13619 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13620 return (ENOMEM); 13621 13622 *bufp = buf; 13623 return (0); 13624 } 13625 13626 /* Function to delete the private structure */ 13627 void 13628 ip_priv_free(void *buf) 13629 { 13630 ASSERT(buf != NULL); 13631 kmem_free(buf, sizeof (ip_priv_t)); 13632 } 13633 13634 /* 13635 * The entry point for IPPF processing. 13636 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13637 * routine just returns. 13638 * 13639 * When called, ip_process generates an ipp_packet_t structure 13640 * which holds the state information for this packet and invokes the 13641 * the classifier (via ipp_packet_process). The classification, depending on 13642 * configured filters, results in a list of actions for this packet. Invoking 13643 * an action may cause the packet to be dropped, in which case we return NULL. 13644 * proc indicates the callout position for 13645 * this packet and ill is the interface this packet arrived on or will leave 13646 * on (inbound and outbound resp.). 13647 * 13648 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13649 * on the ill corrsponding to the destination IP address. 13650 */ 13651 mblk_t * 13652 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13653 { 13654 ip_priv_t *priv; 13655 ipp_action_id_t aid; 13656 int rc = 0; 13657 ipp_packet_t *pp; 13658 13659 /* If the classifier is not loaded, return */ 13660 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13661 return (mp); 13662 } 13663 13664 ASSERT(mp != NULL); 13665 13666 /* Allocate the packet structure */ 13667 rc = ipp_packet_alloc(&pp, "ip", aid); 13668 if (rc != 0) 13669 goto drop; 13670 13671 /* Allocate the private structure */ 13672 rc = ip_priv_alloc((void **)&priv); 13673 if (rc != 0) { 13674 ipp_packet_free(pp); 13675 goto drop; 13676 } 13677 priv->proc = proc; 13678 priv->ill_index = ill_get_upper_ifindex(rill); 13679 13680 ipp_packet_set_private(pp, priv, ip_priv_free); 13681 ipp_packet_set_data(pp, mp); 13682 13683 /* Invoke the classifier */ 13684 rc = ipp_packet_process(&pp); 13685 if (pp != NULL) { 13686 mp = ipp_packet_get_data(pp); 13687 ipp_packet_free(pp); 13688 if (rc != 0) 13689 goto drop; 13690 return (mp); 13691 } else { 13692 /* No mp to trace in ip_drop_input/ip_drop_output */ 13693 mp = NULL; 13694 } 13695 drop: 13696 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13697 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13698 ip_drop_input("ip_process", mp, ill); 13699 } else { 13700 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13701 ip_drop_output("ip_process", mp, ill); 13702 } 13703 freemsg(mp); 13704 return (NULL); 13705 } 13706 13707 /* 13708 * Propagate a multicast group membership operation (add/drop) on 13709 * all the interfaces crossed by the related multirt routes. 13710 * The call is considered successful if the operation succeeds 13711 * on at least one interface. 13712 * 13713 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13714 * multicast addresses with the ire argument being the first one. 13715 * We walk the bucket to find all the of those. 13716 * 13717 * Common to IPv4 and IPv6. 13718 */ 13719 static int 13720 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13721 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13722 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13723 mcast_record_t fmode, const in6_addr_t *v6src) 13724 { 13725 ire_t *ire_gw; 13726 irb_t *irb; 13727 int ifindex; 13728 int error = 0; 13729 int result; 13730 ip_stack_t *ipst = ire->ire_ipst; 13731 ipaddr_t group; 13732 boolean_t isv6; 13733 int match_flags; 13734 13735 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13736 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13737 isv6 = B_FALSE; 13738 } else { 13739 isv6 = B_TRUE; 13740 } 13741 13742 irb = ire->ire_bucket; 13743 ASSERT(irb != NULL); 13744 13745 result = 0; 13746 irb_refhold(irb); 13747 for (; ire != NULL; ire = ire->ire_next) { 13748 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13749 continue; 13750 13751 /* We handle -ifp routes by matching on the ill if set */ 13752 match_flags = MATCH_IRE_TYPE; 13753 if (ire->ire_ill != NULL) 13754 match_flags |= MATCH_IRE_ILL; 13755 13756 if (isv6) { 13757 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13758 continue; 13759 13760 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13761 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13762 match_flags, 0, ipst, NULL); 13763 } else { 13764 if (ire->ire_addr != group) 13765 continue; 13766 13767 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13768 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13769 match_flags, 0, ipst, NULL); 13770 } 13771 /* No interface route exists for the gateway; skip this ire. */ 13772 if (ire_gw == NULL) 13773 continue; 13774 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13775 ire_refrele(ire_gw); 13776 continue; 13777 } 13778 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13779 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13780 13781 /* 13782 * The operation is considered a success if 13783 * it succeeds at least once on any one interface. 13784 */ 13785 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13786 fmode, v6src); 13787 if (error == 0) 13788 result = CGTP_MCAST_SUCCESS; 13789 13790 ire_refrele(ire_gw); 13791 } 13792 irb_refrele(irb); 13793 /* 13794 * Consider the call as successful if we succeeded on at least 13795 * one interface. Otherwise, return the last encountered error. 13796 */ 13797 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13798 } 13799 13800 /* 13801 * Return the expected CGTP hooks version number. 13802 */ 13803 int 13804 ip_cgtp_filter_supported(void) 13805 { 13806 return (ip_cgtp_filter_rev); 13807 } 13808 13809 /* 13810 * CGTP hooks can be registered by invoking this function. 13811 * Checks that the version number matches. 13812 */ 13813 int 13814 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13815 { 13816 netstack_t *ns; 13817 ip_stack_t *ipst; 13818 13819 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13820 return (ENOTSUP); 13821 13822 ns = netstack_find_by_stackid(stackid); 13823 if (ns == NULL) 13824 return (EINVAL); 13825 ipst = ns->netstack_ip; 13826 ASSERT(ipst != NULL); 13827 13828 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13829 netstack_rele(ns); 13830 return (EALREADY); 13831 } 13832 13833 ipst->ips_ip_cgtp_filter_ops = ops; 13834 13835 ill_set_inputfn_all(ipst); 13836 13837 netstack_rele(ns); 13838 return (0); 13839 } 13840 13841 /* 13842 * CGTP hooks can be unregistered by invoking this function. 13843 * Returns ENXIO if there was no registration. 13844 * Returns EBUSY if the ndd variable has not been turned off. 13845 */ 13846 int 13847 ip_cgtp_filter_unregister(netstackid_t stackid) 13848 { 13849 netstack_t *ns; 13850 ip_stack_t *ipst; 13851 13852 ns = netstack_find_by_stackid(stackid); 13853 if (ns == NULL) 13854 return (EINVAL); 13855 ipst = ns->netstack_ip; 13856 ASSERT(ipst != NULL); 13857 13858 if (ipst->ips_ip_cgtp_filter) { 13859 netstack_rele(ns); 13860 return (EBUSY); 13861 } 13862 13863 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13864 netstack_rele(ns); 13865 return (ENXIO); 13866 } 13867 ipst->ips_ip_cgtp_filter_ops = NULL; 13868 13869 ill_set_inputfn_all(ipst); 13870 13871 netstack_rele(ns); 13872 return (0); 13873 } 13874 13875 /* 13876 * Check whether there is a CGTP filter registration. 13877 * Returns non-zero if there is a registration, otherwise returns zero. 13878 * Note: returns zero if bad stackid. 13879 */ 13880 int 13881 ip_cgtp_filter_is_registered(netstackid_t stackid) 13882 { 13883 netstack_t *ns; 13884 ip_stack_t *ipst; 13885 int ret; 13886 13887 ns = netstack_find_by_stackid(stackid); 13888 if (ns == NULL) 13889 return (0); 13890 ipst = ns->netstack_ip; 13891 ASSERT(ipst != NULL); 13892 13893 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13894 ret = 1; 13895 else 13896 ret = 0; 13897 13898 netstack_rele(ns); 13899 return (ret); 13900 } 13901 13902 static int 13903 ip_squeue_switch(int val) 13904 { 13905 int rval; 13906 13907 switch (val) { 13908 case IP_SQUEUE_ENTER_NODRAIN: 13909 rval = SQ_NODRAIN; 13910 break; 13911 case IP_SQUEUE_ENTER: 13912 rval = SQ_PROCESS; 13913 break; 13914 case IP_SQUEUE_FILL: 13915 default: 13916 rval = SQ_FILL; 13917 break; 13918 } 13919 return (rval); 13920 } 13921 13922 static void * 13923 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13924 { 13925 kstat_t *ksp; 13926 13927 ip_stat_t template = { 13928 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13929 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13930 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13931 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13932 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13933 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13934 { "ip_opt", KSTAT_DATA_UINT64 }, 13935 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13936 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13937 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13938 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13939 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13940 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13941 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13942 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13943 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13944 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13945 { "ip_nce_mcast_reclaim_calls", KSTAT_DATA_UINT64 }, 13946 { "ip_nce_mcast_reclaim_deleted", KSTAT_DATA_UINT64 }, 13947 { "ip_nce_mcast_reclaim_tqfail", KSTAT_DATA_UINT64 }, 13948 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13949 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13950 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13951 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13952 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13953 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13954 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13955 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13956 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13957 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13958 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13959 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13960 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13961 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13962 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13963 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13964 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13965 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13966 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13967 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13968 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13969 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13970 }; 13971 13972 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13973 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13974 KSTAT_FLAG_VIRTUAL, stackid); 13975 13976 if (ksp == NULL) 13977 return (NULL); 13978 13979 bcopy(&template, ip_statisticsp, sizeof (template)); 13980 ksp->ks_data = (void *)ip_statisticsp; 13981 ksp->ks_private = (void *)(uintptr_t)stackid; 13982 13983 kstat_install(ksp); 13984 return (ksp); 13985 } 13986 13987 static void 13988 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13989 { 13990 if (ksp != NULL) { 13991 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13992 kstat_delete_netstack(ksp, stackid); 13993 } 13994 } 13995 13996 static void * 13997 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13998 { 13999 kstat_t *ksp; 14000 14001 ip_named_kstat_t template = { 14002 { "forwarding", KSTAT_DATA_UINT32, 0 }, 14003 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 14004 { "inReceives", KSTAT_DATA_UINT64, 0 }, 14005 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 14006 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 14007 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14008 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14009 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14010 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14011 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14012 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14013 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14014 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14015 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14016 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14017 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14018 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14019 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14020 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14021 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14022 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14023 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14024 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14025 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14026 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14027 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14028 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14029 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14030 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14031 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14032 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14033 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14034 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14035 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14036 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14037 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14038 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14039 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14040 }; 14041 14042 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14043 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14044 if (ksp == NULL || ksp->ks_data == NULL) 14045 return (NULL); 14046 14047 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14048 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14049 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14050 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14051 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14052 14053 template.netToMediaEntrySize.value.i32 = 14054 sizeof (mib2_ipNetToMediaEntry_t); 14055 14056 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14057 14058 bcopy(&template, ksp->ks_data, sizeof (template)); 14059 ksp->ks_update = ip_kstat_update; 14060 ksp->ks_private = (void *)(uintptr_t)stackid; 14061 14062 kstat_install(ksp); 14063 return (ksp); 14064 } 14065 14066 static void 14067 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14068 { 14069 if (ksp != NULL) { 14070 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14071 kstat_delete_netstack(ksp, stackid); 14072 } 14073 } 14074 14075 static int 14076 ip_kstat_update(kstat_t *kp, int rw) 14077 { 14078 ip_named_kstat_t *ipkp; 14079 mib2_ipIfStatsEntry_t ipmib; 14080 ill_walk_context_t ctx; 14081 ill_t *ill; 14082 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14083 netstack_t *ns; 14084 ip_stack_t *ipst; 14085 14086 if (kp->ks_data == NULL) 14087 return (EIO); 14088 14089 if (rw == KSTAT_WRITE) 14090 return (EACCES); 14091 14092 ns = netstack_find_by_stackid(stackid); 14093 if (ns == NULL) 14094 return (-1); 14095 ipst = ns->netstack_ip; 14096 if (ipst == NULL) { 14097 netstack_rele(ns); 14098 return (-1); 14099 } 14100 ipkp = (ip_named_kstat_t *)kp->ks_data; 14101 14102 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14103 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14104 ill = ILL_START_WALK_V4(&ctx, ipst); 14105 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14106 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14107 rw_exit(&ipst->ips_ill_g_lock); 14108 14109 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14110 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14111 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14112 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14113 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14114 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14115 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14116 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14117 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14118 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14119 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14120 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14121 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14122 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14123 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14124 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14125 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14126 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14127 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14128 14129 ipkp->routingDiscards.value.ui32 = 0; 14130 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14131 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14132 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14133 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14134 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14135 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14136 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14137 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14138 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14139 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14140 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14141 14142 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14143 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14144 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14145 14146 netstack_rele(ns); 14147 14148 return (0); 14149 } 14150 14151 static void * 14152 icmp_kstat_init(netstackid_t stackid) 14153 { 14154 kstat_t *ksp; 14155 14156 icmp_named_kstat_t template = { 14157 { "inMsgs", KSTAT_DATA_UINT32 }, 14158 { "inErrors", KSTAT_DATA_UINT32 }, 14159 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14160 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14161 { "inParmProbs", KSTAT_DATA_UINT32 }, 14162 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14163 { "inRedirects", KSTAT_DATA_UINT32 }, 14164 { "inEchos", KSTAT_DATA_UINT32 }, 14165 { "inEchoReps", KSTAT_DATA_UINT32 }, 14166 { "inTimestamps", KSTAT_DATA_UINT32 }, 14167 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14168 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14169 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14170 { "outMsgs", KSTAT_DATA_UINT32 }, 14171 { "outErrors", KSTAT_DATA_UINT32 }, 14172 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14173 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14174 { "outParmProbs", KSTAT_DATA_UINT32 }, 14175 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14176 { "outRedirects", KSTAT_DATA_UINT32 }, 14177 { "outEchos", KSTAT_DATA_UINT32 }, 14178 { "outEchoReps", KSTAT_DATA_UINT32 }, 14179 { "outTimestamps", KSTAT_DATA_UINT32 }, 14180 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14181 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14182 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14183 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14184 { "inUnknowns", KSTAT_DATA_UINT32 }, 14185 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14186 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14187 { "outDrops", KSTAT_DATA_UINT32 }, 14188 { "inOverFlows", KSTAT_DATA_UINT32 }, 14189 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14190 }; 14191 14192 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14193 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14194 if (ksp == NULL || ksp->ks_data == NULL) 14195 return (NULL); 14196 14197 bcopy(&template, ksp->ks_data, sizeof (template)); 14198 14199 ksp->ks_update = icmp_kstat_update; 14200 ksp->ks_private = (void *)(uintptr_t)stackid; 14201 14202 kstat_install(ksp); 14203 return (ksp); 14204 } 14205 14206 static void 14207 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14208 { 14209 if (ksp != NULL) { 14210 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14211 kstat_delete_netstack(ksp, stackid); 14212 } 14213 } 14214 14215 static int 14216 icmp_kstat_update(kstat_t *kp, int rw) 14217 { 14218 icmp_named_kstat_t *icmpkp; 14219 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14220 netstack_t *ns; 14221 ip_stack_t *ipst; 14222 14223 if (kp->ks_data == NULL) 14224 return (EIO); 14225 14226 if (rw == KSTAT_WRITE) 14227 return (EACCES); 14228 14229 ns = netstack_find_by_stackid(stackid); 14230 if (ns == NULL) 14231 return (-1); 14232 ipst = ns->netstack_ip; 14233 if (ipst == NULL) { 14234 netstack_rele(ns); 14235 return (-1); 14236 } 14237 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14238 14239 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14240 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14241 icmpkp->inDestUnreachs.value.ui32 = 14242 ipst->ips_icmp_mib.icmpInDestUnreachs; 14243 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14244 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14245 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14246 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14247 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14248 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14249 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14250 icmpkp->inTimestampReps.value.ui32 = 14251 ipst->ips_icmp_mib.icmpInTimestampReps; 14252 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14253 icmpkp->inAddrMaskReps.value.ui32 = 14254 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14255 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14256 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14257 icmpkp->outDestUnreachs.value.ui32 = 14258 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14259 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14260 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14261 icmpkp->outSrcQuenchs.value.ui32 = 14262 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14263 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14264 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14265 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14266 icmpkp->outTimestamps.value.ui32 = 14267 ipst->ips_icmp_mib.icmpOutTimestamps; 14268 icmpkp->outTimestampReps.value.ui32 = 14269 ipst->ips_icmp_mib.icmpOutTimestampReps; 14270 icmpkp->outAddrMasks.value.ui32 = 14271 ipst->ips_icmp_mib.icmpOutAddrMasks; 14272 icmpkp->outAddrMaskReps.value.ui32 = 14273 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14274 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14275 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14276 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14277 icmpkp->outFragNeeded.value.ui32 = 14278 ipst->ips_icmp_mib.icmpOutFragNeeded; 14279 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14280 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14281 icmpkp->inBadRedirects.value.ui32 = 14282 ipst->ips_icmp_mib.icmpInBadRedirects; 14283 14284 netstack_rele(ns); 14285 return (0); 14286 } 14287 14288 /* 14289 * This is the fanout function for raw socket opened for SCTP. Note 14290 * that it is called after SCTP checks that there is no socket which 14291 * wants a packet. Then before SCTP handles this out of the blue packet, 14292 * this function is called to see if there is any raw socket for SCTP. 14293 * If there is and it is bound to the correct address, the packet will 14294 * be sent to that socket. Note that only one raw socket can be bound to 14295 * a port. This is assured in ipcl_sctp_hash_insert(); 14296 */ 14297 void 14298 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14299 ip_recv_attr_t *ira) 14300 { 14301 conn_t *connp; 14302 queue_t *rq; 14303 boolean_t secure; 14304 ill_t *ill = ira->ira_ill; 14305 ip_stack_t *ipst = ill->ill_ipst; 14306 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14307 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14308 iaflags_t iraflags = ira->ira_flags; 14309 ill_t *rill = ira->ira_rill; 14310 14311 secure = iraflags & IRAF_IPSEC_SECURE; 14312 14313 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14314 ira, ipst); 14315 if (connp == NULL) { 14316 /* 14317 * Although raw sctp is not summed, OOB chunks must be. 14318 * Drop the packet here if the sctp checksum failed. 14319 */ 14320 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14321 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14322 freemsg(mp); 14323 return; 14324 } 14325 ira->ira_ill = ira->ira_rill = NULL; 14326 sctp_ootb_input(mp, ira, ipst); 14327 ira->ira_ill = ill; 14328 ira->ira_rill = rill; 14329 return; 14330 } 14331 rq = connp->conn_rq; 14332 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14333 CONN_DEC_REF(connp); 14334 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14335 freemsg(mp); 14336 return; 14337 } 14338 if (((iraflags & IRAF_IS_IPV4) ? 14339 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14340 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14341 secure) { 14342 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14343 ip6h, ira); 14344 if (mp == NULL) { 14345 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14346 /* Note that mp is NULL */ 14347 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14348 CONN_DEC_REF(connp); 14349 return; 14350 } 14351 } 14352 14353 if (iraflags & IRAF_ICMP_ERROR) { 14354 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14355 } else { 14356 ill_t *rill = ira->ira_rill; 14357 14358 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14359 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14360 ira->ira_ill = ira->ira_rill = NULL; 14361 (connp->conn_recv)(connp, mp, NULL, ira); 14362 ira->ira_ill = ill; 14363 ira->ira_rill = rill; 14364 } 14365 CONN_DEC_REF(connp); 14366 } 14367 14368 /* 14369 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14370 * header before the ip payload. 14371 */ 14372 static void 14373 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14374 { 14375 int len = (mp->b_wptr - mp->b_rptr); 14376 mblk_t *ip_mp; 14377 14378 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14379 if (is_fp_mp || len != fp_mp_len) { 14380 if (len > fp_mp_len) { 14381 /* 14382 * fastpath header and ip header in the first mblk 14383 */ 14384 mp->b_rptr += fp_mp_len; 14385 } else { 14386 /* 14387 * ip_xmit_attach_llhdr had to prepend an mblk to 14388 * attach the fastpath header before ip header. 14389 */ 14390 ip_mp = mp->b_cont; 14391 freeb(mp); 14392 mp = ip_mp; 14393 mp->b_rptr += (fp_mp_len - len); 14394 } 14395 } else { 14396 ip_mp = mp->b_cont; 14397 freeb(mp); 14398 mp = ip_mp; 14399 } 14400 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14401 freemsg(mp); 14402 } 14403 14404 /* 14405 * Normal post fragmentation function. 14406 * 14407 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14408 * using the same state machine. 14409 * 14410 * We return an error on failure. In particular we return EWOULDBLOCK 14411 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14412 * (currently by canputnext failure resulting in backenabling from GLD.) 14413 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14414 * indication that they can flow control until ip_wsrv() tells then to restart. 14415 * 14416 * If the nce passed by caller is incomplete, this function 14417 * queues the packet and if necessary, sends ARP request and bails. 14418 * If the Neighbor Cache passed is fully resolved, we simply prepend 14419 * the link-layer header to the packet, do ipsec hw acceleration 14420 * work if necessary, and send the packet out on the wire. 14421 */ 14422 /* ARGSUSED6 */ 14423 int 14424 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14425 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14426 { 14427 queue_t *wq; 14428 ill_t *ill = nce->nce_ill; 14429 ip_stack_t *ipst = ill->ill_ipst; 14430 uint64_t delta; 14431 boolean_t isv6 = ill->ill_isv6; 14432 boolean_t fp_mp; 14433 ncec_t *ncec = nce->nce_common; 14434 int64_t now = LBOLT_FASTPATH64; 14435 boolean_t is_probe; 14436 14437 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14438 14439 ASSERT(mp != NULL); 14440 ASSERT(mp->b_datap->db_type == M_DATA); 14441 ASSERT(pkt_len == msgdsize(mp)); 14442 14443 /* 14444 * If we have already been here and are coming back after ARP/ND. 14445 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14446 * in that case since they have seen the packet when it came here 14447 * the first time. 14448 */ 14449 if (ixaflags & IXAF_NO_TRACE) 14450 goto sendit; 14451 14452 if (ixaflags & IXAF_IS_IPV4) { 14453 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14454 14455 ASSERT(!isv6); 14456 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14457 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14458 !(ixaflags & IXAF_NO_PFHOOK)) { 14459 int error; 14460 14461 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14462 ipst->ips_ipv4firewall_physical_out, 14463 NULL, ill, ipha, mp, mp, 0, ipst, error); 14464 DTRACE_PROBE1(ip4__physical__out__end, 14465 mblk_t *, mp); 14466 if (mp == NULL) 14467 return (error); 14468 14469 /* The length could have changed */ 14470 pkt_len = msgdsize(mp); 14471 } 14472 if (ipst->ips_ip4_observe.he_interested) { 14473 /* 14474 * Note that for TX the zoneid is the sending 14475 * zone, whether or not MLP is in play. 14476 * Since the szone argument is the IP zoneid (i.e., 14477 * zero for exclusive-IP zones) and ipobs wants 14478 * the system zoneid, we map it here. 14479 */ 14480 szone = IP_REAL_ZONEID(szone, ipst); 14481 14482 /* 14483 * On the outbound path the destination zone will be 14484 * unknown as we're sending this packet out on the 14485 * wire. 14486 */ 14487 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14488 ill, ipst); 14489 } 14490 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14491 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14492 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14493 } else { 14494 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14495 14496 ASSERT(isv6); 14497 ASSERT(pkt_len == 14498 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14499 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14500 !(ixaflags & IXAF_NO_PFHOOK)) { 14501 int error; 14502 14503 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14504 ipst->ips_ipv6firewall_physical_out, 14505 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14506 DTRACE_PROBE1(ip6__physical__out__end, 14507 mblk_t *, mp); 14508 if (mp == NULL) 14509 return (error); 14510 14511 /* The length could have changed */ 14512 pkt_len = msgdsize(mp); 14513 } 14514 if (ipst->ips_ip6_observe.he_interested) { 14515 /* See above */ 14516 szone = IP_REAL_ZONEID(szone, ipst); 14517 14518 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14519 ill, ipst); 14520 } 14521 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14522 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14523 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14524 } 14525 14526 sendit: 14527 /* 14528 * We check the state without a lock because the state can never 14529 * move "backwards" to initial or incomplete. 14530 */ 14531 switch (ncec->ncec_state) { 14532 case ND_REACHABLE: 14533 case ND_STALE: 14534 case ND_DELAY: 14535 case ND_PROBE: 14536 mp = ip_xmit_attach_llhdr(mp, nce); 14537 if (mp == NULL) { 14538 /* 14539 * ip_xmit_attach_llhdr has increased 14540 * ipIfStatsOutDiscards and called ip_drop_output() 14541 */ 14542 return (ENOBUFS); 14543 } 14544 /* 14545 * check if nce_fastpath completed and we tagged on a 14546 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14547 */ 14548 fp_mp = (mp->b_datap->db_type == M_DATA); 14549 14550 if (fp_mp && 14551 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14552 ill_dld_direct_t *idd; 14553 14554 idd = &ill->ill_dld_capab->idc_direct; 14555 /* 14556 * Send the packet directly to DLD, where it 14557 * may be queued depending on the availability 14558 * of transmit resources at the media layer. 14559 * Return value should be taken into 14560 * account and flow control the TCP. 14561 */ 14562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14563 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14564 pkt_len); 14565 14566 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14567 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14568 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14569 } else { 14570 uintptr_t cookie; 14571 14572 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14573 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14574 if (ixacookie != NULL) 14575 *ixacookie = cookie; 14576 return (EWOULDBLOCK); 14577 } 14578 } 14579 } else { 14580 wq = ill->ill_wq; 14581 14582 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14583 !canputnext(wq)) { 14584 if (ixacookie != NULL) 14585 *ixacookie = 0; 14586 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14587 nce->nce_fp_mp != NULL ? 14588 MBLKL(nce->nce_fp_mp) : 0); 14589 return (EWOULDBLOCK); 14590 } 14591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14592 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14593 pkt_len); 14594 putnext(wq, mp); 14595 } 14596 14597 /* 14598 * The rest of this function implements Neighbor Unreachability 14599 * detection. Determine if the ncec is eligible for NUD. 14600 */ 14601 if (ncec->ncec_flags & NCE_F_NONUD) 14602 return (0); 14603 14604 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14605 14606 /* 14607 * Check for upper layer advice 14608 */ 14609 if (ixaflags & IXAF_REACH_CONF) { 14610 timeout_id_t tid; 14611 14612 /* 14613 * It should be o.k. to check the state without 14614 * a lock here, at most we lose an advice. 14615 */ 14616 ncec->ncec_last = TICK_TO_MSEC(now); 14617 if (ncec->ncec_state != ND_REACHABLE) { 14618 mutex_enter(&ncec->ncec_lock); 14619 ncec->ncec_state = ND_REACHABLE; 14620 tid = ncec->ncec_timeout_id; 14621 ncec->ncec_timeout_id = 0; 14622 mutex_exit(&ncec->ncec_lock); 14623 (void) untimeout(tid); 14624 if (ip_debug > 2) { 14625 /* ip1dbg */ 14626 pr_addr_dbg("ip_xmit: state" 14627 " for %s changed to" 14628 " REACHABLE\n", AF_INET6, 14629 &ncec->ncec_addr); 14630 } 14631 } 14632 return (0); 14633 } 14634 14635 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14636 ip1dbg(("ip_xmit: delta = %" PRId64 14637 " ill_reachable_time = %d \n", delta, 14638 ill->ill_reachable_time)); 14639 if (delta > (uint64_t)ill->ill_reachable_time) { 14640 mutex_enter(&ncec->ncec_lock); 14641 switch (ncec->ncec_state) { 14642 case ND_REACHABLE: 14643 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14644 /* FALLTHROUGH */ 14645 case ND_STALE: 14646 /* 14647 * ND_REACHABLE is identical to 14648 * ND_STALE in this specific case. If 14649 * reachable time has expired for this 14650 * neighbor (delta is greater than 14651 * reachable time), conceptually, the 14652 * neighbor cache is no longer in 14653 * REACHABLE state, but already in 14654 * STALE state. So the correct 14655 * transition here is to ND_DELAY. 14656 */ 14657 ncec->ncec_state = ND_DELAY; 14658 mutex_exit(&ncec->ncec_lock); 14659 nce_restart_timer(ncec, 14660 ipst->ips_delay_first_probe_time); 14661 if (ip_debug > 3) { 14662 /* ip2dbg */ 14663 pr_addr_dbg("ip_xmit: state" 14664 " for %s changed to" 14665 " DELAY\n", AF_INET6, 14666 &ncec->ncec_addr); 14667 } 14668 break; 14669 case ND_DELAY: 14670 case ND_PROBE: 14671 mutex_exit(&ncec->ncec_lock); 14672 /* Timers have already started */ 14673 break; 14674 case ND_UNREACHABLE: 14675 /* 14676 * nce_timer has detected that this ncec 14677 * is unreachable and initiated deleting 14678 * this ncec. 14679 * This is a harmless race where we found the 14680 * ncec before it was deleted and have 14681 * just sent out a packet using this 14682 * unreachable ncec. 14683 */ 14684 mutex_exit(&ncec->ncec_lock); 14685 break; 14686 default: 14687 ASSERT(0); 14688 mutex_exit(&ncec->ncec_lock); 14689 } 14690 } 14691 return (0); 14692 14693 case ND_INCOMPLETE: 14694 /* 14695 * the state could have changed since we didn't hold the lock. 14696 * Re-verify state under lock. 14697 */ 14698 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14699 mutex_enter(&ncec->ncec_lock); 14700 if (NCE_ISREACHABLE(ncec)) { 14701 mutex_exit(&ncec->ncec_lock); 14702 goto sendit; 14703 } 14704 /* queue the packet */ 14705 nce_queue_mp(ncec, mp, is_probe); 14706 mutex_exit(&ncec->ncec_lock); 14707 DTRACE_PROBE2(ip__xmit__incomplete, 14708 (ncec_t *), ncec, (mblk_t *), mp); 14709 return (0); 14710 14711 case ND_INITIAL: 14712 /* 14713 * State could have changed since we didn't hold the lock, so 14714 * re-verify state. 14715 */ 14716 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14717 mutex_enter(&ncec->ncec_lock); 14718 if (NCE_ISREACHABLE(ncec)) { 14719 mutex_exit(&ncec->ncec_lock); 14720 goto sendit; 14721 } 14722 nce_queue_mp(ncec, mp, is_probe); 14723 if (ncec->ncec_state == ND_INITIAL) { 14724 ncec->ncec_state = ND_INCOMPLETE; 14725 mutex_exit(&ncec->ncec_lock); 14726 /* 14727 * figure out the source we want to use 14728 * and resolve it. 14729 */ 14730 ip_ndp_resolve(ncec); 14731 } else { 14732 mutex_exit(&ncec->ncec_lock); 14733 } 14734 return (0); 14735 14736 case ND_UNREACHABLE: 14737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14738 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14739 mp, ill); 14740 freemsg(mp); 14741 return (0); 14742 14743 default: 14744 ASSERT(0); 14745 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14746 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14747 mp, ill); 14748 freemsg(mp); 14749 return (ENETUNREACH); 14750 } 14751 } 14752 14753 /* 14754 * Return B_TRUE if the buffers differ in length or content. 14755 * This is used for comparing extension header buffers. 14756 * Note that an extension header would be declared different 14757 * even if all that changed was the next header value in that header i.e. 14758 * what really changed is the next extension header. 14759 */ 14760 boolean_t 14761 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14762 uint_t blen) 14763 { 14764 if (!b_valid) 14765 blen = 0; 14766 14767 if (alen != blen) 14768 return (B_TRUE); 14769 if (alen == 0) 14770 return (B_FALSE); /* Both zero length */ 14771 return (bcmp(abuf, bbuf, alen)); 14772 } 14773 14774 /* 14775 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14776 * Return B_FALSE if memory allocation fails - don't change any state! 14777 */ 14778 boolean_t 14779 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14780 const void *src, uint_t srclen) 14781 { 14782 void *dst; 14783 14784 if (!src_valid) 14785 srclen = 0; 14786 14787 ASSERT(*dstlenp == 0); 14788 if (src != NULL && srclen != 0) { 14789 dst = mi_alloc(srclen, BPRI_MED); 14790 if (dst == NULL) 14791 return (B_FALSE); 14792 } else { 14793 dst = NULL; 14794 } 14795 if (*dstp != NULL) 14796 mi_free(*dstp); 14797 *dstp = dst; 14798 *dstlenp = dst == NULL ? 0 : srclen; 14799 return (B_TRUE); 14800 } 14801 14802 /* 14803 * Replace what is in *dst, *dstlen with the source. 14804 * Assumes ip_allocbuf has already been called. 14805 */ 14806 void 14807 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14808 const void *src, uint_t srclen) 14809 { 14810 if (!src_valid) 14811 srclen = 0; 14812 14813 ASSERT(*dstlenp == srclen); 14814 if (src != NULL && srclen != 0) 14815 bcopy(src, *dstp, srclen); 14816 } 14817 14818 /* 14819 * Free the storage pointed to by the members of an ip_pkt_t. 14820 */ 14821 void 14822 ip_pkt_free(ip_pkt_t *ipp) 14823 { 14824 uint_t fields = ipp->ipp_fields; 14825 14826 if (fields & IPPF_HOPOPTS) { 14827 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14828 ipp->ipp_hopopts = NULL; 14829 ipp->ipp_hopoptslen = 0; 14830 } 14831 if (fields & IPPF_RTHDRDSTOPTS) { 14832 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14833 ipp->ipp_rthdrdstopts = NULL; 14834 ipp->ipp_rthdrdstoptslen = 0; 14835 } 14836 if (fields & IPPF_DSTOPTS) { 14837 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14838 ipp->ipp_dstopts = NULL; 14839 ipp->ipp_dstoptslen = 0; 14840 } 14841 if (fields & IPPF_RTHDR) { 14842 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14843 ipp->ipp_rthdr = NULL; 14844 ipp->ipp_rthdrlen = 0; 14845 } 14846 if (fields & IPPF_IPV4_OPTIONS) { 14847 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14848 ipp->ipp_ipv4_options = NULL; 14849 ipp->ipp_ipv4_options_len = 0; 14850 } 14851 if (fields & IPPF_LABEL_V4) { 14852 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14853 ipp->ipp_label_v4 = NULL; 14854 ipp->ipp_label_len_v4 = 0; 14855 } 14856 if (fields & IPPF_LABEL_V6) { 14857 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14858 ipp->ipp_label_v6 = NULL; 14859 ipp->ipp_label_len_v6 = 0; 14860 } 14861 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14862 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14863 } 14864 14865 /* 14866 * Copy from src to dst and allocate as needed. 14867 * Returns zero or ENOMEM. 14868 * 14869 * The caller must initialize dst to zero. 14870 */ 14871 int 14872 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14873 { 14874 uint_t fields = src->ipp_fields; 14875 14876 /* Start with fields that don't require memory allocation */ 14877 dst->ipp_fields = fields & 14878 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14879 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14880 14881 dst->ipp_addr = src->ipp_addr; 14882 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14883 dst->ipp_hoplimit = src->ipp_hoplimit; 14884 dst->ipp_tclass = src->ipp_tclass; 14885 dst->ipp_type_of_service = src->ipp_type_of_service; 14886 14887 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14888 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14889 return (0); 14890 14891 if (fields & IPPF_HOPOPTS) { 14892 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14893 if (dst->ipp_hopopts == NULL) { 14894 ip_pkt_free(dst); 14895 return (ENOMEM); 14896 } 14897 dst->ipp_fields |= IPPF_HOPOPTS; 14898 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14899 src->ipp_hopoptslen); 14900 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14901 } 14902 if (fields & IPPF_RTHDRDSTOPTS) { 14903 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14904 kmflag); 14905 if (dst->ipp_rthdrdstopts == NULL) { 14906 ip_pkt_free(dst); 14907 return (ENOMEM); 14908 } 14909 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14910 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14911 src->ipp_rthdrdstoptslen); 14912 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14913 } 14914 if (fields & IPPF_DSTOPTS) { 14915 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14916 if (dst->ipp_dstopts == NULL) { 14917 ip_pkt_free(dst); 14918 return (ENOMEM); 14919 } 14920 dst->ipp_fields |= IPPF_DSTOPTS; 14921 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14922 src->ipp_dstoptslen); 14923 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14924 } 14925 if (fields & IPPF_RTHDR) { 14926 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14927 if (dst->ipp_rthdr == NULL) { 14928 ip_pkt_free(dst); 14929 return (ENOMEM); 14930 } 14931 dst->ipp_fields |= IPPF_RTHDR; 14932 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14933 src->ipp_rthdrlen); 14934 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14935 } 14936 if (fields & IPPF_IPV4_OPTIONS) { 14937 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14938 kmflag); 14939 if (dst->ipp_ipv4_options == NULL) { 14940 ip_pkt_free(dst); 14941 return (ENOMEM); 14942 } 14943 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14944 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14945 src->ipp_ipv4_options_len); 14946 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14947 } 14948 if (fields & IPPF_LABEL_V4) { 14949 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14950 if (dst->ipp_label_v4 == NULL) { 14951 ip_pkt_free(dst); 14952 return (ENOMEM); 14953 } 14954 dst->ipp_fields |= IPPF_LABEL_V4; 14955 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14956 src->ipp_label_len_v4); 14957 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14958 } 14959 if (fields & IPPF_LABEL_V6) { 14960 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14961 if (dst->ipp_label_v6 == NULL) { 14962 ip_pkt_free(dst); 14963 return (ENOMEM); 14964 } 14965 dst->ipp_fields |= IPPF_LABEL_V6; 14966 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14967 src->ipp_label_len_v6); 14968 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14969 } 14970 if (fields & IPPF_FRAGHDR) { 14971 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14972 if (dst->ipp_fraghdr == NULL) { 14973 ip_pkt_free(dst); 14974 return (ENOMEM); 14975 } 14976 dst->ipp_fields |= IPPF_FRAGHDR; 14977 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14978 src->ipp_fraghdrlen); 14979 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14980 } 14981 return (0); 14982 } 14983 14984 /* 14985 * Returns INADDR_ANY if no source route 14986 */ 14987 ipaddr_t 14988 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14989 { 14990 ipaddr_t nexthop = INADDR_ANY; 14991 ipoptp_t opts; 14992 uchar_t *opt; 14993 uint8_t optval; 14994 uint8_t optlen; 14995 uint32_t totallen; 14996 14997 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14998 return (INADDR_ANY); 14999 15000 totallen = ipp->ipp_ipv4_options_len; 15001 if (totallen & 0x3) 15002 return (INADDR_ANY); 15003 15004 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15005 optval != IPOPT_EOL; 15006 optval = ipoptp_next(&opts)) { 15007 opt = opts.ipoptp_cur; 15008 switch (optval) { 15009 uint8_t off; 15010 case IPOPT_SSRR: 15011 case IPOPT_LSRR: 15012 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15013 break; 15014 } 15015 optlen = opts.ipoptp_len; 15016 off = opt[IPOPT_OFFSET]; 15017 off--; 15018 if (optlen < IP_ADDR_LEN || 15019 off > optlen - IP_ADDR_LEN) { 15020 /* End of source route */ 15021 break; 15022 } 15023 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15024 if (nexthop == htonl(INADDR_LOOPBACK)) { 15025 /* Ignore */ 15026 nexthop = INADDR_ANY; 15027 break; 15028 } 15029 break; 15030 } 15031 } 15032 return (nexthop); 15033 } 15034 15035 /* 15036 * Reverse a source route. 15037 */ 15038 void 15039 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15040 { 15041 ipaddr_t tmp; 15042 ipoptp_t opts; 15043 uchar_t *opt; 15044 uint8_t optval; 15045 uint32_t totallen; 15046 15047 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15048 return; 15049 15050 totallen = ipp->ipp_ipv4_options_len; 15051 if (totallen & 0x3) 15052 return; 15053 15054 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15055 optval != IPOPT_EOL; 15056 optval = ipoptp_next(&opts)) { 15057 uint8_t off1, off2; 15058 15059 opt = opts.ipoptp_cur; 15060 switch (optval) { 15061 case IPOPT_SSRR: 15062 case IPOPT_LSRR: 15063 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15064 break; 15065 } 15066 off1 = IPOPT_MINOFF_SR - 1; 15067 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15068 while (off2 > off1) { 15069 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15070 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15071 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15072 off2 -= IP_ADDR_LEN; 15073 off1 += IP_ADDR_LEN; 15074 } 15075 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15076 break; 15077 } 15078 } 15079 } 15080 15081 /* 15082 * Returns NULL if no routing header 15083 */ 15084 in6_addr_t * 15085 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15086 { 15087 in6_addr_t *nexthop = NULL; 15088 ip6_rthdr0_t *rthdr; 15089 15090 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15091 return (NULL); 15092 15093 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15094 if (rthdr->ip6r0_segleft == 0) 15095 return (NULL); 15096 15097 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15098 return (nexthop); 15099 } 15100 15101 zoneid_t 15102 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15103 zoneid_t lookup_zoneid) 15104 { 15105 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15106 ire_t *ire; 15107 int ire_flags = MATCH_IRE_TYPE; 15108 zoneid_t zoneid = ALL_ZONES; 15109 15110 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15111 return (ALL_ZONES); 15112 15113 if (lookup_zoneid != ALL_ZONES) 15114 ire_flags |= MATCH_IRE_ZONEONLY; 15115 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK, 15116 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15117 if (ire != NULL) { 15118 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15119 ire_refrele(ire); 15120 } 15121 return (zoneid); 15122 } 15123 15124 zoneid_t 15125 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15126 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15127 { 15128 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15129 ire_t *ire; 15130 int ire_flags = MATCH_IRE_TYPE; 15131 zoneid_t zoneid = ALL_ZONES; 15132 15133 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15134 return (ALL_ZONES); 15135 15136 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15137 ire_flags |= MATCH_IRE_ILL; 15138 15139 if (lookup_zoneid != ALL_ZONES) 15140 ire_flags |= MATCH_IRE_ZONEONLY; 15141 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15142 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15143 if (ire != NULL) { 15144 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15145 ire_refrele(ire); 15146 } 15147 return (zoneid); 15148 } 15149 15150 /* 15151 * IP obserability hook support functions. 15152 */ 15153 static void 15154 ipobs_init(ip_stack_t *ipst) 15155 { 15156 netid_t id; 15157 15158 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15159 15160 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15161 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15162 15163 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15164 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15165 } 15166 15167 static void 15168 ipobs_fini(ip_stack_t *ipst) 15169 { 15170 15171 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15172 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15173 } 15174 15175 /* 15176 * hook_pkt_observe_t is composed in network byte order so that the 15177 * entire mblk_t chain handed into hook_run can be used as-is. 15178 * The caveat is that use of the fields, such as the zone fields, 15179 * requires conversion into host byte order first. 15180 */ 15181 void 15182 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15183 const ill_t *ill, ip_stack_t *ipst) 15184 { 15185 hook_pkt_observe_t *hdr; 15186 uint64_t grifindex; 15187 mblk_t *imp; 15188 15189 imp = allocb(sizeof (*hdr), BPRI_HI); 15190 if (imp == NULL) 15191 return; 15192 15193 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15194 /* 15195 * b_wptr is set to make the apparent size of the data in the mblk_t 15196 * to exclude the pointers at the end of hook_pkt_observer_t. 15197 */ 15198 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15199 imp->b_cont = mp; 15200 15201 ASSERT(DB_TYPE(mp) == M_DATA); 15202 15203 if (IS_UNDER_IPMP(ill)) 15204 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15205 else 15206 grifindex = 0; 15207 15208 hdr->hpo_version = 1; 15209 hdr->hpo_htype = htons(htype); 15210 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15211 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15212 hdr->hpo_grifindex = htonl(grifindex); 15213 hdr->hpo_zsrc = htonl(zsrc); 15214 hdr->hpo_zdst = htonl(zdst); 15215 hdr->hpo_pkt = imp; 15216 hdr->hpo_ctx = ipst->ips_netstack; 15217 15218 if (ill->ill_isv6) { 15219 hdr->hpo_family = AF_INET6; 15220 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15221 ipst->ips_ipv6observing, (hook_data_t)hdr); 15222 } else { 15223 hdr->hpo_family = AF_INET; 15224 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15225 ipst->ips_ipv4observing, (hook_data_t)hdr); 15226 } 15227 15228 imp->b_cont = NULL; 15229 freemsg(imp); 15230 } 15231 15232 /* 15233 * Utility routine that checks if `v4srcp' is a valid address on underlying 15234 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15235 * associated with `v4srcp' on success. NOTE: if this is not called from 15236 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15237 * group during or after this lookup. 15238 */ 15239 boolean_t 15240 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15241 { 15242 ipif_t *ipif; 15243 15244 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15245 if (ipif != NULL) { 15246 if (ipifp != NULL) 15247 *ipifp = ipif; 15248 else 15249 ipif_refrele(ipif); 15250 return (B_TRUE); 15251 } 15252 15253 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15254 *v4srcp)); 15255 return (B_FALSE); 15256 } 15257 15258 /* 15259 * Transport protocol call back function for CPU state change. 15260 */ 15261 /* ARGSUSED */ 15262 static int 15263 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15264 { 15265 processorid_t cpu_seqid; 15266 netstack_handle_t nh; 15267 netstack_t *ns; 15268 15269 ASSERT(MUTEX_HELD(&cpu_lock)); 15270 15271 switch (what) { 15272 case CPU_CONFIG: 15273 case CPU_ON: 15274 case CPU_INIT: 15275 case CPU_CPUPART_IN: 15276 cpu_seqid = cpu[id]->cpu_seqid; 15277 netstack_next_init(&nh); 15278 while ((ns = netstack_next(&nh)) != NULL) { 15279 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15280 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15281 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15282 netstack_rele(ns); 15283 } 15284 netstack_next_fini(&nh); 15285 break; 15286 case CPU_UNCONFIG: 15287 case CPU_OFF: 15288 case CPU_CPUPART_OUT: 15289 /* 15290 * Nothing to do. We don't remove the per CPU stats from 15291 * the IP stack even when the CPU goes offline. 15292 */ 15293 break; 15294 default: 15295 break; 15296 } 15297 return (0); 15298 } 15299