1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 28 * Copyright 2021 Joyent, Inc. 29 * Copyright 2022 Oxide Computer Company 30 */ 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/dlpi.h> 35 #include <sys/stropts.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/strsun.h> 40 #include <sys/zone.h> 41 #define _SUN_TPI_VERSION 2 42 #include <sys/tihdr.h> 43 #include <sys/xti_inet.h> 44 #include <sys/ddi.h> 45 #include <sys/suntpi.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/kobj.h> 49 #include <sys/modctl.h> 50 #include <sys/atomic.h> 51 #include <sys/policy.h> 52 #include <sys/priv.h> 53 #include <sys/taskq.h> 54 55 #include <sys/systm.h> 56 #include <sys/param.h> 57 #include <sys/kmem.h> 58 #include <sys/sdt.h> 59 #include <sys/socket.h> 60 #include <sys/vtrace.h> 61 #include <sys/isa_defs.h> 62 #include <sys/mac.h> 63 #include <net/if.h> 64 #include <net/if_arp.h> 65 #include <net/route.h> 66 #include <sys/sockio.h> 67 #include <netinet/in.h> 68 #include <net/if_dl.h> 69 70 #include <inet/common.h> 71 #include <inet/mi.h> 72 #include <inet/mib2.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/snmpcom.h> 76 #include <inet/optcom.h> 77 #include <inet/kstatcom.h> 78 79 #include <netinet/igmp_var.h> 80 #include <netinet/ip6.h> 81 #include <netinet/icmp6.h> 82 #include <netinet/sctp.h> 83 84 #include <inet/ip.h> 85 #include <inet/ip_impl.h> 86 #include <inet/ip6.h> 87 #include <inet/ip6_asp.h> 88 #include <inet/tcp.h> 89 #include <inet/tcp_impl.h> 90 #include <inet/ip_multi.h> 91 #include <inet/ip_if.h> 92 #include <inet/ip_ire.h> 93 #include <inet/ip_ftable.h> 94 #include <inet/ip_rts.h> 95 #include <inet/ip_ndp.h> 96 #include <inet/ip_listutils.h> 97 #include <netinet/igmp.h> 98 #include <netinet/ip_mroute.h> 99 #include <inet/ipp_common.h> 100 #include <inet/cc.h> 101 102 #include <net/pfkeyv2.h> 103 #include <inet/sadb.h> 104 #include <inet/ipsec_impl.h> 105 #include <inet/iptun/iptun_impl.h> 106 #include <inet/ipdrop.h> 107 #include <inet/ip_netinfo.h> 108 #include <inet/ilb_ip.h> 109 110 #include <sys/ethernet.h> 111 #include <net/if_types.h> 112 #include <sys/cpuvar.h> 113 114 #include <ipp/ipp.h> 115 #include <ipp/ipp_impl.h> 116 #include <ipp/ipgpc/ipgpc.h> 117 118 #include <sys/pattr.h> 119 #include <inet/ipclassifier.h> 120 #include <inet/sctp_ip.h> 121 #include <inet/sctp/sctp_impl.h> 122 #include <inet/udp_impl.h> 123 #include <inet/rawip_impl.h> 124 #include <inet/rts_impl.h> 125 126 #include <sys/tsol/label.h> 127 #include <sys/tsol/tnet.h> 128 129 #include <sys/squeue_impl.h> 130 #include <inet/ip_arp.h> 131 132 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 133 134 /* 135 * Values for squeue switch: 136 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 137 * IP_SQUEUE_ENTER: SQ_PROCESS 138 * IP_SQUEUE_FILL: SQ_FILL 139 */ 140 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 141 142 int ip_squeue_flag; 143 144 /* 145 * Setable in /etc/system 146 */ 147 int ip_poll_normal_ms = 100; 148 int ip_poll_normal_ticks = 0; 149 int ip_modclose_ackwait_ms = 3000; 150 151 /* 152 * It would be nice to have these present only in DEBUG systems, but the 153 * current design of the global symbol checking logic requires them to be 154 * unconditionally present. 155 */ 156 uint_t ip_thread_data; /* TSD key for debug support */ 157 krwlock_t ip_thread_rwlock; 158 list_t ip_thread_list; 159 160 /* 161 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 162 */ 163 164 struct listptr_s { 165 mblk_t *lp_head; /* pointer to the head of the list */ 166 mblk_t *lp_tail; /* pointer to the tail of the list */ 167 }; 168 169 typedef struct listptr_s listptr_t; 170 171 /* 172 * This is used by ip_snmp_get_mib2_ip_route_media and 173 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 174 */ 175 typedef struct iproutedata_s { 176 uint_t ird_idx; 177 uint_t ird_flags; /* see below */ 178 listptr_t ird_route; /* ipRouteEntryTable */ 179 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 180 listptr_t ird_attrs; /* ipRouteAttributeTable */ 181 } iproutedata_t; 182 183 /* Include ire_testhidden and IRE_IF_CLONE routes */ 184 #define IRD_REPORT_ALL 0x01 185 186 /* 187 * Cluster specific hooks. These should be NULL when booted as a non-cluster 188 */ 189 190 /* 191 * Hook functions to enable cluster networking 192 * On non-clustered systems these vectors must always be NULL. 193 * 194 * Hook function to Check ip specified ip address is a shared ip address 195 * in the cluster 196 * 197 */ 198 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 199 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 200 201 /* 202 * Hook function to generate cluster wide ip fragment identifier 203 */ 204 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 205 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 206 void *args) = NULL; 207 208 /* 209 * Hook function to generate cluster wide SPI. 210 */ 211 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 212 void *) = NULL; 213 214 /* 215 * Hook function to verify if the SPI is already utlized. 216 */ 217 218 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 219 220 /* 221 * Hook function to delete the SPI from the cluster wide repository. 222 */ 223 224 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 225 226 /* 227 * Hook function to inform the cluster when packet received on an IDLE SA 228 */ 229 230 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 231 in6_addr_t, in6_addr_t, void *) = NULL; 232 233 /* 234 * Synchronization notes: 235 * 236 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 237 * MT level protection given by STREAMS. IP uses a combination of its own 238 * internal serialization mechanism and standard Solaris locking techniques. 239 * The internal serialization is per phyint. This is used to serialize 240 * plumbing operations, IPMP operations, most set ioctls, etc. 241 * 242 * Plumbing is a long sequence of operations involving message 243 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 244 * involved in plumbing operations. A natural model is to serialize these 245 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 246 * parallel without any interference. But various set ioctls on hme0 are best 247 * serialized, along with IPMP operations and processing of DLPI control 248 * messages received from drivers on a per phyint basis. This serialization is 249 * provided by the ipsq_t and primitives operating on this. Details can 250 * be found in ip_if.c above the core primitives operating on ipsq_t. 251 * 252 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 253 * Simiarly lookup of an ire by a thread also returns a refheld ire. 254 * In addition ipif's and ill's referenced by the ire are also indirectly 255 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 256 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 257 * address of an ipif has to go through the ipsq_t. This ensures that only 258 * one such exclusive operation proceeds at any time on the ipif. It then 259 * waits for all refcnts 260 * associated with this ipif to come down to zero. The address is changed 261 * only after the ipif has been quiesced. Then the ipif is brought up again. 262 * More details are described above the comment in ip_sioctl_flags. 263 * 264 * Packet processing is based mostly on IREs and are fully multi-threaded 265 * using standard Solaris MT techniques. 266 * 267 * There are explicit locks in IP to handle: 268 * - The ip_g_head list maintained by mi_open_link() and friends. 269 * 270 * - The reassembly data structures (one lock per hash bucket) 271 * 272 * - conn_lock is meant to protect conn_t fields. The fields actually 273 * protected by conn_lock are documented in the conn_t definition. 274 * 275 * - ire_lock to protect some of the fields of the ire, IRE tables 276 * (one lock per hash bucket). Refer to ip_ire.c for details. 277 * 278 * - ndp_g_lock and ncec_lock for protecting NCEs. 279 * 280 * - ill_lock protects fields of the ill and ipif. Details in ip.h 281 * 282 * - ill_g_lock: This is a global reader/writer lock. Protects the following 283 * * The AVL tree based global multi list of all ills. 284 * * The linked list of all ipifs of an ill 285 * * The <ipsq-xop> mapping 286 * * <ill-phyint> association 287 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 288 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 289 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 290 * writer for the actual duration of the insertion/deletion/change. 291 * 292 * - ill_lock: This is a per ill mutex. 293 * It protects some members of the ill_t struct; see ip.h for details. 294 * It also protects the <ill-phyint> assoc. 295 * It also protects the list of ipifs hanging off the ill. 296 * 297 * - ipsq_lock: This is a per ipsq_t mutex lock. 298 * This protects some members of the ipsq_t struct; see ip.h for details. 299 * It also protects the <ipsq-ipxop> mapping 300 * 301 * - ipx_lock: This is a per ipxop_t mutex lock. 302 * This protects some members of the ipxop_t struct; see ip.h for details. 303 * 304 * - phyint_lock: This is a per phyint mutex lock. Protects just the 305 * phyint_flags 306 * 307 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 308 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 309 * uniqueness check also done atomically. 310 * 311 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 312 * group list linked by ill_usesrc_grp_next. It also protects the 313 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 314 * group is being added or deleted. This lock is taken as a reader when 315 * walking the list/group(eg: to get the number of members in a usesrc group). 316 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 317 * field is changing state i.e from NULL to non-NULL or vice-versa. For 318 * example, it is not necessary to take this lock in the initial portion 319 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 320 * operations are executed exclusively and that ensures that the "usesrc 321 * group state" cannot change. The "usesrc group state" change can happen 322 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 323 * 324 * Changing <ill-phyint>, <ipsq-xop> assocications: 325 * 326 * To change the <ill-phyint> association, the ill_g_lock must be held 327 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 328 * must be held. 329 * 330 * To change the <ipsq-xop> association, the ill_g_lock must be held as 331 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 332 * This is only done when ills are added or removed from IPMP groups. 333 * 334 * To add or delete an ipif from the list of ipifs hanging off the ill, 335 * ill_g_lock (writer) and ill_lock must be held and the thread must be 336 * a writer on the associated ipsq. 337 * 338 * To add or delete an ill to the system, the ill_g_lock must be held as 339 * writer and the thread must be a writer on the associated ipsq. 340 * 341 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 342 * must be a writer on the associated ipsq. 343 * 344 * Lock hierarchy 345 * 346 * Some lock hierarchy scenarios are listed below. 347 * 348 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 349 * ill_g_lock -> ill_lock(s) -> phyint_lock 350 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 351 * ill_g_lock -> ip_addr_avail_lock 352 * conn_lock -> irb_lock -> ill_lock -> ire_lock 353 * ill_g_lock -> ip_g_nd_lock 354 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 355 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 356 * arl_lock -> ill_lock 357 * ips_ire_dep_lock -> irb_lock 358 * 359 * When more than 1 ill lock is needed to be held, all ill lock addresses 360 * are sorted on address and locked starting from highest addressed lock 361 * downward. 362 * 363 * Multicast scenarios 364 * ips_ill_g_lock -> ill_mcast_lock 365 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 367 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 368 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 369 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 370 * 371 * IPsec scenarios 372 * 373 * ipsa_lock -> ill_g_lock -> ill_lock 374 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 375 * 376 * Trusted Solaris scenarios 377 * 378 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 379 * igsa_lock -> gcdb_lock 380 * gcgrp_rwlock -> ire_lock 381 * gcgrp_rwlock -> gcdb_lock 382 * 383 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 384 * 385 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 386 * sq_lock -> conn_lock -> QLOCK(q) 387 * ill_lock -> ft_lock -> fe_lock 388 * 389 * Routing/forwarding table locking notes: 390 * 391 * Lock acquisition order: Radix tree lock, irb_lock. 392 * Requirements: 393 * i. Walker must not hold any locks during the walker callback. 394 * ii Walker must not see a truncated tree during the walk because of any node 395 * deletion. 396 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 397 * in many places in the code to walk the irb list. Thus even if all the 398 * ires in a bucket have been deleted, we still can't free the radix node 399 * until the ires have actually been inactive'd (freed). 400 * 401 * Tree traversal - Need to hold the global tree lock in read mode. 402 * Before dropping the global tree lock, need to either increment the ire_refcnt 403 * to ensure that the radix node can't be deleted. 404 * 405 * Tree add - Need to hold the global tree lock in write mode to add a 406 * radix node. To prevent the node from being deleted, increment the 407 * irb_refcnt, after the node is added to the tree. The ire itself is 408 * added later while holding the irb_lock, but not the tree lock. 409 * 410 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 411 * All associated ires must be inactive (i.e. freed), and irb_refcnt 412 * must be zero. 413 * 414 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 415 * global tree lock (read mode) for traversal. 416 * 417 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 418 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 419 * 420 * IPsec notes : 421 * 422 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 423 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 424 * ip_xmit_attr_t has the 425 * information used by the IPsec code for applying the right level of 426 * protection. The information initialized by IP in the ip_xmit_attr_t 427 * is determined by the per-socket policy or global policy in the system. 428 * For inbound datagrams, the ip_recv_attr_t 429 * starts out with nothing in it. It gets filled 430 * with the right information if it goes through the AH/ESP code, which 431 * happens if the incoming packet is secure. The information initialized 432 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 433 * the policy requirements needed by per-socket policy or global policy 434 * is met or not. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_policy_set once the destination is known. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is hashed into an index into 512 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 513 * to insert the conn onto. conn_drain_insert() asserts flow control for the 514 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 515 * Further, conn_blocked is set to indicate that the conn is blocked. 516 * 517 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 518 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 519 * is again hashed to locate the appropriate idl_tx_list, which is then 520 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 521 * the drain list and calls conn_drain_remove() to clear flow control (via 522 * calling su_txq_full() or clearing QFULL), and remove the conn from the 523 * drain list. 524 * 525 * Note that the drain list is not a single list but a (configurable) array of 526 * lists (8 elements by default). Synchronization between drain insertion and 527 * flow control wakeup is handled by using idl_txl->txl_lock, and only 528 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 529 * 530 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 531 * On the send side, if the packet cannot be sent down to the driver by IP 532 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 533 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 534 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 535 * control has been relieved, the blocked conns in the 0'th drain list are 536 * drained as in the non-STREAMS case. 537 * 538 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 539 * is done when the conn is inserted into the drain list (conn_drain_insert()) 540 * and cleared when the conn is removed from the it (conn_drain_remove()). 541 * 542 * IPQOS notes: 543 * 544 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 545 * and IPQoS modules. IPPF includes hooks in IP at different control points 546 * (callout positions) which direct packets to IPQoS modules for policy 547 * processing. Policies, if present, are global. 548 * 549 * The callout positions are located in the following paths: 550 * o local_in (packets destined for this host) 551 * o local_out (packets orginating from this host ) 552 * o fwd_in (packets forwarded by this m/c - inbound) 553 * o fwd_out (packets forwarded by this m/c - outbound) 554 * Hooks at these callout points can be enabled/disabled using the ndd variable 555 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 556 * By default all the callout positions are enabled. 557 * 558 * Outbound (local_out) 559 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 560 * 561 * Inbound (local_in) 562 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 563 * 564 * Forwarding (in and out) 565 * Hooks are placed in ire_recv_forward_v4/v6. 566 * 567 * IP Policy Framework processing (IPPF processing) 568 * Policy processing for a packet is initiated by ip_process, which ascertains 569 * that the classifier (ipgpc) is loaded and configured, failing which the 570 * packet resumes normal processing in IP. If the clasifier is present, the 571 * packet is acted upon by one or more IPQoS modules (action instances), per 572 * filters configured in ipgpc and resumes normal IP processing thereafter. 573 * An action instance can drop a packet in course of its processing. 574 * 575 * Zones notes: 576 * 577 * The partitioning rules for networking are as follows: 578 * 1) Packets coming from a zone must have a source address belonging to that 579 * zone. 580 * 2) Packets coming from a zone can only be sent on a physical interface on 581 * which the zone has an IP address. 582 * 3) Between two zones on the same machine, packet delivery is only allowed if 583 * there's a matching route for the destination and zone in the forwarding 584 * table. 585 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 586 * different zones can bind to the same port with the wildcard address 587 * (INADDR_ANY). 588 * 589 * The granularity of interface partitioning is at the logical interface level. 590 * Therefore, every zone has its own IP addresses, and incoming packets can be 591 * attributed to a zone unambiguously. A logical interface is placed into a zone 592 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 593 * structure. Rule (1) is implemented by modifying the source address selection 594 * algorithm so that the list of eligible addresses is filtered based on the 595 * sending process zone. 596 * 597 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 598 * across all zones, depending on their type. Here is the break-up: 599 * 600 * IRE type Shared/exclusive 601 * -------- ---------------- 602 * IRE_BROADCAST Exclusive 603 * IRE_DEFAULT (default routes) Shared (*) 604 * IRE_LOCAL Exclusive (x) 605 * IRE_LOOPBACK Exclusive 606 * IRE_PREFIX (net routes) Shared (*) 607 * IRE_IF_NORESOLVER (interface routes) Exclusive 608 * IRE_IF_RESOLVER (interface routes) Exclusive 609 * IRE_IF_CLONE (interface routes) Exclusive 610 * IRE_HOST (host routes) Shared (*) 611 * 612 * (*) A zone can only use a default or off-subnet route if the gateway is 613 * directly reachable from the zone, that is, if the gateway's address matches 614 * one of the zone's logical interfaces. 615 * 616 * (x) IRE_LOCAL are handled a bit differently. 617 * When ip_restrict_interzone_loopback is set (the default), 618 * ire_route_recursive restricts loopback using an IRE_LOCAL 619 * between zone to the case when L2 would have conceptually looped the packet 620 * back, i.e. the loopback which is required since neither Ethernet drivers 621 * nor Ethernet hardware loops them back. This is the case when the normal 622 * routes (ignoring IREs with different zoneids) would send out the packet on 623 * the same ill as the ill with which is IRE_LOCAL is associated. 624 * 625 * Multiple zones can share a common broadcast address; typically all zones 626 * share the 255.255.255.255 address. Incoming as well as locally originated 627 * broadcast packets must be dispatched to all the zones on the broadcast 628 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 629 * since some zones may not be on the 10.16.72/24 network. To handle this, each 630 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 631 * sent to every zone that has an IRE_BROADCAST entry for the destination 632 * address on the input ill, see ip_input_broadcast(). 633 * 634 * Applications in different zones can join the same multicast group address. 635 * The same logic applies for multicast as for broadcast. ip_input_multicast 636 * dispatches packets to all zones that have members on the physical interface. 637 */ 638 639 /* 640 * Squeue Fanout flags: 641 * 0: No fanout. 642 * 1: Fanout across all squeues 643 */ 644 boolean_t ip_squeue_fanout = 0; 645 646 /* 647 * Maximum dups allowed per packet. 648 */ 649 uint_t ip_max_frag_dups = 10; 650 651 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 652 cred_t *credp, boolean_t isv6); 653 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 654 655 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 656 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 657 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 658 ip_recv_attr_t *); 659 static void icmp_options_update(ipha_t *); 660 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 661 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 662 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 663 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 664 ip_recv_attr_t *); 665 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 666 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 667 ip_recv_attr_t *); 668 669 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 670 char *ip_dot_addr(ipaddr_t, char *); 671 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 672 static char *ip_dot_saddr(uchar_t *, char *); 673 static int ip_lrput(queue_t *, mblk_t *); 674 ipaddr_t ip_net_mask(ipaddr_t); 675 char *ip_nv_lookup(nv_t *, int); 676 int ip_rput(queue_t *, mblk_t *); 677 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 678 void *dummy_arg); 679 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 680 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 681 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 682 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 683 ip_stack_t *, boolean_t); 684 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 685 boolean_t); 686 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 691 ip_stack_t *ipst, boolean_t); 692 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 693 ip_stack_t *ipst, boolean_t); 694 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 705 ip_stack_t *ipst); 706 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 707 ip_stack_t *ipst); 708 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 709 ip_stack_t *ipst); 710 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 711 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 712 static void ip_snmp_get2_v4_media(ncec_t *, void *); 713 static void ip_snmp_get2_v6_media(ncec_t *, void *); 714 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 715 716 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 717 mblk_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 724 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 725 726 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 727 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 728 static void ip_stack_fini(netstackid_t stackid, void *arg); 729 730 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 731 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 732 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 733 const in6_addr_t *); 734 735 static int ip_squeue_switch(int); 736 737 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 738 static void ip_kstat_fini(netstackid_t, kstat_t *); 739 static int ip_kstat_update(kstat_t *kp, int rw); 740 static void *icmp_kstat_init(netstackid_t); 741 static void icmp_kstat_fini(netstackid_t, kstat_t *); 742 static int icmp_kstat_update(kstat_t *kp, int rw); 743 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 744 static void ip_kstat2_fini(netstackid_t, kstat_t *); 745 746 static void ipobs_init(ip_stack_t *); 747 static void ipobs_fini(ip_stack_t *); 748 749 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 750 751 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 752 753 static long ip_rput_pullups; 754 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 755 756 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 757 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 758 759 int ip_debug; 760 761 /* 762 * Multirouting/CGTP stuff 763 */ 764 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 765 766 /* 767 * IP tunables related declarations. Definitions are in ip_tunables.c 768 */ 769 extern mod_prop_info_t ip_propinfo_tbl[]; 770 extern int ip_propinfo_count; 771 772 /* 773 * Table of IP ioctls encoding the various properties of the ioctl and 774 * indexed based on the last byte of the ioctl command. Occasionally there 775 * is a clash, and there is more than 1 ioctl with the same last byte. 776 * In such a case 1 ioctl is encoded in the ndx table and the remaining 777 * ioctls are encoded in the misc table. An entry in the ndx table is 778 * retrieved by indexing on the last byte of the ioctl command and comparing 779 * the ioctl command with the value in the ndx table. In the event of a 780 * mismatch the misc table is then searched sequentially for the desired 781 * ioctl command. 782 * 783 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 784 */ 785 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 786 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 794 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 795 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 796 797 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 798 MISC_CMD, ip_siocaddrt, NULL }, 799 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 800 MISC_CMD, ip_siocdelrt, NULL }, 801 802 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 803 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 804 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 805 IF_CMD, ip_sioctl_get_addr, NULL }, 806 807 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 808 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 809 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 810 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 811 812 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 813 IPI_PRIV | IPI_WR, 814 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 815 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 816 IPI_MODOK | IPI_GET_CMD, 817 IF_CMD, ip_sioctl_get_flags, NULL }, 818 819 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 820 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 821 822 /* copyin size cannot be coded for SIOCGIFCONF */ 823 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 824 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 825 826 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 827 IF_CMD, ip_sioctl_mtu, NULL }, 828 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 829 IF_CMD, ip_sioctl_get_mtu, NULL }, 830 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 831 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 832 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 833 IF_CMD, ip_sioctl_brdaddr, NULL }, 834 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 835 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 836 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 837 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 838 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 839 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 840 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 841 IF_CMD, ip_sioctl_metric, NULL }, 842 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 843 844 /* See 166-168 below for extended SIOC*XARP ioctls */ 845 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 846 ARP_CMD, ip_sioctl_arp, NULL }, 847 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 848 ARP_CMD, ip_sioctl_arp, NULL }, 849 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 850 ARP_CMD, ip_sioctl_arp, NULL }, 851 852 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 872 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 873 874 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 875 MISC_CMD, if_unitsel, if_unitsel_restart }, 876 877 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 894 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 895 896 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 897 IPI_PRIV | IPI_WR | IPI_MODOK, 898 IF_CMD, ip_sioctl_sifname, NULL }, 899 900 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 911 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 912 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 913 914 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 915 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 916 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 917 IF_CMD, ip_sioctl_get_muxid, NULL }, 918 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 919 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 920 921 /* Both if and lif variants share same func */ 922 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 923 IF_CMD, ip_sioctl_get_lifindex, NULL }, 924 /* Both if and lif variants share same func */ 925 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 926 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 927 928 /* copyin size cannot be coded for SIOCGIFCONF */ 929 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 930 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 931 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 949 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 950 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 951 ip_sioctl_removeif_restart }, 952 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 953 IPI_GET_CMD | IPI_PRIV | IPI_WR, 954 LIF_CMD, ip_sioctl_addif, NULL }, 955 #define SIOCLIFADDR_NDX 112 956 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 957 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 958 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 959 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 960 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 961 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 962 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 963 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 964 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 965 IPI_PRIV | IPI_WR, 966 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 967 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 968 IPI_GET_CMD | IPI_MODOK, 969 LIF_CMD, ip_sioctl_get_flags, NULL }, 970 971 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 972 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 973 974 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 975 ip_sioctl_get_lifconf, NULL }, 976 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 977 LIF_CMD, ip_sioctl_mtu, NULL }, 978 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 979 LIF_CMD, ip_sioctl_get_mtu, NULL }, 980 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 981 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 982 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 983 LIF_CMD, ip_sioctl_brdaddr, NULL }, 984 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 985 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 986 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 987 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 988 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 989 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 990 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 991 LIF_CMD, ip_sioctl_metric, NULL }, 992 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 993 IPI_PRIV | IPI_WR | IPI_MODOK, 994 LIF_CMD, ip_sioctl_slifname, 995 ip_sioctl_slifname_restart }, 996 997 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 998 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 999 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1000 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1001 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1002 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1003 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1004 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1005 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1006 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1007 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1008 LIF_CMD, ip_sioctl_token, NULL }, 1009 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1010 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1011 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1012 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1013 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1014 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1015 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1016 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1017 1018 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1019 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1020 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1021 LIF_CMD, ip_siocdelndp_v6, NULL }, 1022 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1023 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1024 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1025 LIF_CMD, ip_siocsetndp_v6, NULL }, 1026 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1027 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1028 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1029 MISC_CMD, ip_sioctl_tonlink, NULL }, 1030 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1031 MISC_CMD, ip_sioctl_tmysite, NULL }, 1032 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 1035 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */ 1036 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 1041 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 1043 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1044 LIF_CMD, ip_sioctl_get_binding, NULL }, 1045 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1046 IPI_PRIV | IPI_WR, 1047 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1048 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1049 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1050 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1051 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1052 1053 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1054 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 1058 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 1060 /* These are handled in ip_sioctl_copyin_setup itself */ 1061 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1062 MISC_CMD, NULL, NULL }, 1063 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1064 MISC_CMD, NULL, NULL }, 1065 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1066 1067 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1068 ip_sioctl_get_lifconf, NULL }, 1069 1070 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1071 XARP_CMD, ip_sioctl_arp, NULL }, 1072 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1073 XARP_CMD, ip_sioctl_arp, NULL }, 1074 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1075 XARP_CMD, ip_sioctl_arp, NULL }, 1076 1077 /* SIOCPOPSOCKFS is not handled by IP */ 1078 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1079 1080 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1081 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1082 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1083 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1084 ip_sioctl_slifzone_restart }, 1085 /* 172-174 are SCTP ioctls and not handled by IP */ 1086 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1088 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1089 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1090 IPI_GET_CMD, LIF_CMD, 1091 ip_sioctl_get_lifusesrc, 0 }, 1092 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1093 IPI_PRIV | IPI_WR, 1094 LIF_CMD, ip_sioctl_slifusesrc, 1095 NULL }, 1096 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1097 ip_sioctl_get_lifsrcof, NULL }, 1098 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1099 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1100 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1101 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1102 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1103 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1104 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1105 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1106 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* SIOCSENABLESDP is handled by SDP */ 1108 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1109 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1110 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1111 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1112 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1113 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1114 ip_sioctl_ilb_cmd, NULL }, 1115 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1116 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1117 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1118 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1119 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1120 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1121 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1122 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1123 }; 1124 1125 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1126 1127 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1128 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1130 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1131 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1132 { ND_GET, 0, 0, 0, NULL, NULL }, 1133 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1134 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1135 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1136 MISC_CMD, mrt_ioctl}, 1137 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1138 MISC_CMD, mrt_ioctl}, 1139 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1140 MISC_CMD, mrt_ioctl} 1141 }; 1142 1143 int ip_misc_ioctl_count = 1144 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1145 1146 int conn_drain_nthreads; /* Number of drainers reqd. */ 1147 /* Settable in /etc/system */ 1148 /* Defined in ip_ire.c */ 1149 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1150 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1151 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1152 1153 static nv_t ire_nv_arr[] = { 1154 { IRE_BROADCAST, "BROADCAST" }, 1155 { IRE_LOCAL, "LOCAL" }, 1156 { IRE_LOOPBACK, "LOOPBACK" }, 1157 { IRE_DEFAULT, "DEFAULT" }, 1158 { IRE_PREFIX, "PREFIX" }, 1159 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1160 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1161 { IRE_IF_CLONE, "IF_CLONE" }, 1162 { IRE_HOST, "HOST" }, 1163 { IRE_MULTICAST, "MULTICAST" }, 1164 { IRE_NOROUTE, "NOROUTE" }, 1165 { 0 } 1166 }; 1167 1168 nv_t *ire_nv_tbl = ire_nv_arr; 1169 1170 /* Simple ICMP IP Header Template */ 1171 static ipha_t icmp_ipha = { 1172 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1173 }; 1174 1175 struct module_info ip_mod_info = { 1176 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1177 IP_MOD_LOWAT 1178 }; 1179 1180 /* 1181 * Duplicate static symbols within a module confuses mdb; so we avoid the 1182 * problem by making the symbols here distinct from those in udp.c. 1183 */ 1184 1185 /* 1186 * Entry points for IP as a device and as a module. 1187 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1188 */ 1189 static struct qinit iprinitv4 = { 1190 ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1191 }; 1192 1193 struct qinit iprinitv6 = { 1194 ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info 1195 }; 1196 1197 static struct qinit ipwinit = { 1198 ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info 1199 }; 1200 1201 static struct qinit iplrinit = { 1202 ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1203 }; 1204 1205 static struct qinit iplwinit = { 1206 ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info 1207 }; 1208 1209 /* For AF_INET aka /dev/ip */ 1210 struct streamtab ipinfov4 = { 1211 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1212 }; 1213 1214 /* For AF_INET6 aka /dev/ip6 */ 1215 struct streamtab ipinfov6 = { 1216 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1217 }; 1218 1219 #ifdef DEBUG 1220 boolean_t skip_sctp_cksum = B_FALSE; 1221 #endif 1222 1223 /* 1224 * Generate an ICMP fragmentation needed message. 1225 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1226 * constructed by the caller. 1227 */ 1228 void 1229 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1230 { 1231 icmph_t icmph; 1232 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1233 1234 mp = icmp_pkt_err_ok(mp, ira); 1235 if (mp == NULL) 1236 return; 1237 1238 bzero(&icmph, sizeof (icmph_t)); 1239 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1240 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1241 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1242 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1243 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1244 1245 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1246 } 1247 1248 /* 1249 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1250 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1251 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1252 * Likewise, if the ICMP error is misformed (too short, etc), then it 1253 * returns NULL. The caller uses this to determine whether or not to send 1254 * to raw sockets. 1255 * 1256 * All error messages are passed to the matching transport stream. 1257 * 1258 * The following cases are handled by icmp_inbound: 1259 * 1) It needs to send a reply back and possibly delivering it 1260 * to the "interested" upper clients. 1261 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1262 * 3) It needs to change some values in IP only. 1263 * 4) It needs to change some values in IP and upper layers e.g TCP 1264 * by delivering an error to the upper layers. 1265 * 1266 * We handle the above three cases in the context of IPsec in the 1267 * following way : 1268 * 1269 * 1) Send the reply back in the same way as the request came in. 1270 * If it came in encrypted, it goes out encrypted. If it came in 1271 * clear, it goes out in clear. Thus, this will prevent chosen 1272 * plain text attack. 1273 * 2) The client may or may not expect things to come in secure. 1274 * If it comes in secure, the policy constraints are checked 1275 * before delivering it to the upper layers. If it comes in 1276 * clear, ipsec_inbound_accept_clear will decide whether to 1277 * accept this in clear or not. In both the cases, if the returned 1278 * message (IP header + 8 bytes) that caused the icmp message has 1279 * AH/ESP headers, it is sent up to AH/ESP for validation before 1280 * sending up. If there are only 8 bytes of returned message, then 1281 * upper client will not be notified. 1282 * 3) Check with global policy to see whether it matches the constaints. 1283 * But this will be done only if icmp_accept_messages_in_clear is 1284 * zero. 1285 * 4) If we need to change both in IP and ULP, then the decision taken 1286 * while affecting the values in IP and while delivering up to TCP 1287 * should be the same. 1288 * 1289 * There are two cases. 1290 * 1291 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1292 * failed), we will not deliver it to the ULP, even though they 1293 * are *willing* to accept in *clear*. This is fine as our global 1294 * disposition to icmp messages asks us reject the datagram. 1295 * 1296 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1297 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1298 * to deliver it to ULP (policy failed), it can lead to 1299 * consistency problems. The cases known at this time are 1300 * ICMP_DESTINATION_UNREACHABLE messages with following code 1301 * values : 1302 * 1303 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1304 * and Upper layer rejects. Then the communication will 1305 * come to a stop. This is solved by making similar decisions 1306 * at both levels. Currently, when we are unable to deliver 1307 * to the Upper Layer (due to policy failures) while IP has 1308 * adjusted dce_pmtu, the next outbound datagram would 1309 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1310 * will be with the right level of protection. Thus the right 1311 * value will be communicated even if we are not able to 1312 * communicate when we get from the wire initially. But this 1313 * assumes there would be at least one outbound datagram after 1314 * IP has adjusted its dce_pmtu value. To make things 1315 * simpler, we accept in clear after the validation of 1316 * AH/ESP headers. 1317 * 1318 * - Other ICMP ERRORS : We may not be able to deliver it to the 1319 * upper layer depending on the level of protection the upper 1320 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1321 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1322 * should be accepted in clear when the Upper layer expects secure. 1323 * Thus the communication may get aborted by some bad ICMP 1324 * packets. 1325 */ 1326 mblk_t * 1327 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1328 { 1329 icmph_t *icmph; 1330 ipha_t *ipha; /* Outer header */ 1331 int ip_hdr_length; /* Outer header length */ 1332 boolean_t interested; 1333 ipif_t *ipif; 1334 uint32_t ts; 1335 uint32_t *tsp; 1336 timestruc_t now; 1337 ill_t *ill = ira->ira_ill; 1338 ip_stack_t *ipst = ill->ill_ipst; 1339 zoneid_t zoneid = ira->ira_zoneid; 1340 int len_needed; 1341 mblk_t *mp_ret = NULL; 1342 1343 ipha = (ipha_t *)mp->b_rptr; 1344 1345 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1346 1347 ip_hdr_length = ira->ira_ip_hdr_length; 1348 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1349 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1351 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1352 freemsg(mp); 1353 return (NULL); 1354 } 1355 /* Last chance to get real. */ 1356 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1357 if (ipha == NULL) { 1358 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1359 freemsg(mp); 1360 return (NULL); 1361 } 1362 } 1363 1364 /* The IP header will always be a multiple of four bytes */ 1365 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1366 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1367 icmph->icmph_code)); 1368 1369 /* 1370 * We will set "interested" to "true" if we should pass a copy to 1371 * the transport or if we handle the packet locally. 1372 */ 1373 interested = B_FALSE; 1374 switch (icmph->icmph_type) { 1375 case ICMP_ECHO_REPLY: 1376 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1377 break; 1378 case ICMP_DEST_UNREACHABLE: 1379 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1380 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1381 interested = B_TRUE; /* Pass up to transport */ 1382 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1383 break; 1384 case ICMP_SOURCE_QUENCH: 1385 interested = B_TRUE; /* Pass up to transport */ 1386 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1387 break; 1388 case ICMP_REDIRECT: 1389 if (!ipst->ips_ip_ignore_redirect) 1390 interested = B_TRUE; 1391 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1392 break; 1393 case ICMP_ECHO_REQUEST: 1394 /* 1395 * Whether to respond to echo requests that come in as IP 1396 * broadcasts or as IP multicast is subject to debate 1397 * (what isn't?). We aim to please, you pick it. 1398 * Default is do it. 1399 */ 1400 if (ira->ira_flags & IRAF_MULTICAST) { 1401 /* multicast: respond based on tunable */ 1402 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1403 } else if (ira->ira_flags & IRAF_BROADCAST) { 1404 /* broadcast: respond based on tunable */ 1405 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1406 } else { 1407 /* unicast: always respond */ 1408 interested = B_TRUE; 1409 } 1410 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1411 if (!interested) { 1412 /* We never pass these to RAW sockets */ 1413 freemsg(mp); 1414 return (NULL); 1415 } 1416 1417 /* Check db_ref to make sure we can modify the packet. */ 1418 if (mp->b_datap->db_ref > 1) { 1419 mblk_t *mp1; 1420 1421 mp1 = copymsg(mp); 1422 freemsg(mp); 1423 if (!mp1) { 1424 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1425 return (NULL); 1426 } 1427 mp = mp1; 1428 ipha = (ipha_t *)mp->b_rptr; 1429 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1430 } 1431 icmph->icmph_type = ICMP_ECHO_REPLY; 1432 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1433 icmp_send_reply_v4(mp, ipha, icmph, ira); 1434 return (NULL); 1435 1436 case ICMP_ROUTER_ADVERTISEMENT: 1437 case ICMP_ROUTER_SOLICITATION: 1438 break; 1439 case ICMP_TIME_EXCEEDED: 1440 interested = B_TRUE; /* Pass up to transport */ 1441 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1442 break; 1443 case ICMP_PARAM_PROBLEM: 1444 interested = B_TRUE; /* Pass up to transport */ 1445 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1446 break; 1447 case ICMP_TIME_STAMP_REQUEST: 1448 /* Response to Time Stamp Requests is local policy. */ 1449 if (ipst->ips_ip_g_resp_to_timestamp) { 1450 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1451 interested = 1452 ipst->ips_ip_g_resp_to_timestamp_bcast; 1453 else 1454 interested = B_TRUE; 1455 } 1456 if (!interested) { 1457 /* We never pass these to RAW sockets */ 1458 freemsg(mp); 1459 return (NULL); 1460 } 1461 1462 /* Make sure we have enough of the packet */ 1463 len_needed = ip_hdr_length + ICMPH_SIZE + 1464 3 * sizeof (uint32_t); 1465 1466 if (mp->b_wptr - mp->b_rptr < len_needed) { 1467 ipha = ip_pullup(mp, len_needed, ira); 1468 if (ipha == NULL) { 1469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1470 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1471 mp, ill); 1472 freemsg(mp); 1473 return (NULL); 1474 } 1475 /* Refresh following the pullup. */ 1476 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1477 } 1478 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1479 /* Check db_ref to make sure we can modify the packet. */ 1480 if (mp->b_datap->db_ref > 1) { 1481 mblk_t *mp1; 1482 1483 mp1 = copymsg(mp); 1484 freemsg(mp); 1485 if (!mp1) { 1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1487 return (NULL); 1488 } 1489 mp = mp1; 1490 ipha = (ipha_t *)mp->b_rptr; 1491 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1492 } 1493 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1494 tsp = (uint32_t *)&icmph[1]; 1495 tsp++; /* Skip past 'originate time' */ 1496 /* Compute # of milliseconds since midnight */ 1497 gethrestime(&now); 1498 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1499 NSEC2MSEC(now.tv_nsec); 1500 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1501 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1502 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1503 icmp_send_reply_v4(mp, ipha, icmph, ira); 1504 return (NULL); 1505 1506 case ICMP_TIME_STAMP_REPLY: 1507 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1508 break; 1509 case ICMP_INFO_REQUEST: 1510 /* Per RFC 1122 3.2.2.7, ignore this. */ 1511 case ICMP_INFO_REPLY: 1512 break; 1513 case ICMP_ADDRESS_MASK_REQUEST: 1514 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1515 interested = 1516 ipst->ips_ip_respond_to_address_mask_broadcast; 1517 } else { 1518 interested = B_TRUE; 1519 } 1520 if (!interested) { 1521 /* We never pass these to RAW sockets */ 1522 freemsg(mp); 1523 return (NULL); 1524 } 1525 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1526 if (mp->b_wptr - mp->b_rptr < len_needed) { 1527 ipha = ip_pullup(mp, len_needed, ira); 1528 if (ipha == NULL) { 1529 BUMP_MIB(ill->ill_ip_mib, 1530 ipIfStatsInTruncatedPkts); 1531 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1532 ill); 1533 freemsg(mp); 1534 return (NULL); 1535 } 1536 /* Refresh following the pullup. */ 1537 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1538 } 1539 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1540 /* Check db_ref to make sure we can modify the packet. */ 1541 if (mp->b_datap->db_ref > 1) { 1542 mblk_t *mp1; 1543 1544 mp1 = copymsg(mp); 1545 freemsg(mp); 1546 if (!mp1) { 1547 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1548 return (NULL); 1549 } 1550 mp = mp1; 1551 ipha = (ipha_t *)mp->b_rptr; 1552 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1553 } 1554 /* 1555 * Need the ipif with the mask be the same as the source 1556 * address of the mask reply. For unicast we have a specific 1557 * ipif. For multicast/broadcast we only handle onlink 1558 * senders, and use the source address to pick an ipif. 1559 */ 1560 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1561 if (ipif == NULL) { 1562 /* Broadcast or multicast */ 1563 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1564 if (ipif == NULL) { 1565 freemsg(mp); 1566 return (NULL); 1567 } 1568 } 1569 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1570 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1571 ipif_refrele(ipif); 1572 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1573 icmp_send_reply_v4(mp, ipha, icmph, ira); 1574 return (NULL); 1575 1576 case ICMP_ADDRESS_MASK_REPLY: 1577 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1578 break; 1579 default: 1580 interested = B_TRUE; /* Pass up to transport */ 1581 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1582 break; 1583 } 1584 /* 1585 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1586 * if there isn't one. 1587 */ 1588 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1589 /* If there is an ICMP client and we want one too, copy it. */ 1590 1591 if (!interested) { 1592 /* Caller will deliver to RAW sockets */ 1593 return (mp); 1594 } 1595 mp_ret = copymsg(mp); 1596 if (mp_ret == NULL) { 1597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1598 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1599 } 1600 } else if (!interested) { 1601 /* Neither we nor raw sockets are interested. Drop packet now */ 1602 freemsg(mp); 1603 return (NULL); 1604 } 1605 1606 /* 1607 * ICMP error or redirect packet. Make sure we have enough of 1608 * the header and that db_ref == 1 since we might end up modifying 1609 * the packet. 1610 */ 1611 if (mp->b_cont != NULL) { 1612 if (ip_pullup(mp, -1, ira) == NULL) { 1613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1614 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1615 mp, ill); 1616 freemsg(mp); 1617 return (mp_ret); 1618 } 1619 } 1620 1621 if (mp->b_datap->db_ref > 1) { 1622 mblk_t *mp1; 1623 1624 mp1 = copymsg(mp); 1625 if (mp1 == NULL) { 1626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1627 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1628 freemsg(mp); 1629 return (mp_ret); 1630 } 1631 freemsg(mp); 1632 mp = mp1; 1633 } 1634 1635 /* 1636 * In case mp has changed, verify the message before any further 1637 * processes. 1638 */ 1639 ipha = (ipha_t *)mp->b_rptr; 1640 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1641 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1642 freemsg(mp); 1643 return (mp_ret); 1644 } 1645 1646 switch (icmph->icmph_type) { 1647 case ICMP_REDIRECT: 1648 icmp_redirect_v4(mp, ipha, icmph, ira); 1649 break; 1650 case ICMP_DEST_UNREACHABLE: 1651 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1652 /* Update DCE and adjust MTU is icmp header if needed */ 1653 icmp_inbound_too_big_v4(icmph, ira); 1654 } 1655 /* FALLTHROUGH */ 1656 default: 1657 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1658 break; 1659 } 1660 return (mp_ret); 1661 } 1662 1663 /* 1664 * Send an ICMP echo, timestamp or address mask reply. 1665 * The caller has already updated the payload part of the packet. 1666 * We handle the ICMP checksum, IP source address selection and feed 1667 * the packet into ip_output_simple. 1668 */ 1669 static void 1670 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1671 ip_recv_attr_t *ira) 1672 { 1673 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1674 ill_t *ill = ira->ira_ill; 1675 ip_stack_t *ipst = ill->ill_ipst; 1676 ip_xmit_attr_t ixas; 1677 1678 /* Send out an ICMP packet */ 1679 icmph->icmph_checksum = 0; 1680 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1681 /* Reset time to live. */ 1682 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1683 { 1684 /* Swap source and destination addresses */ 1685 ipaddr_t tmp; 1686 1687 tmp = ipha->ipha_src; 1688 ipha->ipha_src = ipha->ipha_dst; 1689 ipha->ipha_dst = tmp; 1690 } 1691 ipha->ipha_ident = 0; 1692 if (!IS_SIMPLE_IPH(ipha)) 1693 icmp_options_update(ipha); 1694 1695 bzero(&ixas, sizeof (ixas)); 1696 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1697 ixas.ixa_zoneid = ira->ira_zoneid; 1698 ixas.ixa_cred = kcred; 1699 ixas.ixa_cpid = NOPID; 1700 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1701 ixas.ixa_ifindex = 0; 1702 ixas.ixa_ipst = ipst; 1703 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1704 1705 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1706 /* 1707 * This packet should go out the same way as it 1708 * came in i.e in clear, independent of the IPsec policy 1709 * for transmitting packets. 1710 */ 1711 ixas.ixa_flags |= IXAF_NO_IPSEC; 1712 } else { 1713 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1715 /* Note: mp already consumed and ip_drop_packet done */ 1716 return; 1717 } 1718 } 1719 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1720 /* 1721 * Not one or our addresses (IRE_LOCALs), thus we let 1722 * ip_output_simple pick the source. 1723 */ 1724 ipha->ipha_src = INADDR_ANY; 1725 ixas.ixa_flags |= IXAF_SET_SOURCE; 1726 } 1727 /* Should we send with DF and use dce_pmtu? */ 1728 if (ipst->ips_ipv4_icmp_return_pmtu) { 1729 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1730 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1731 } 1732 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1734 1735 (void) ip_output_simple(mp, &ixas); 1736 ixa_cleanup(&ixas); 1737 } 1738 1739 /* 1740 * Verify the ICMP messages for either for ICMP error or redirect packet. 1741 * The caller should have fully pulled up the message. If it's a redirect 1742 * packet, only basic checks on IP header will be done; otherwise, verify 1743 * the packet by looking at the included ULP header. 1744 * 1745 * Called before icmp_inbound_error_fanout_v4 is called. 1746 */ 1747 static boolean_t 1748 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1749 { 1750 ill_t *ill = ira->ira_ill; 1751 int hdr_length; 1752 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1753 conn_t *connp; 1754 ipha_t *ipha; /* Inner IP header */ 1755 1756 ipha = (ipha_t *)&icmph[1]; 1757 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1758 goto truncated; 1759 1760 hdr_length = IPH_HDR_LENGTH(ipha); 1761 1762 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1763 goto discard_pkt; 1764 1765 if (hdr_length < sizeof (ipha_t)) 1766 goto truncated; 1767 1768 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1769 goto truncated; 1770 1771 /* 1772 * Stop here for ICMP_REDIRECT. 1773 */ 1774 if (icmph->icmph_type == ICMP_REDIRECT) 1775 return (B_TRUE); 1776 1777 /* 1778 * ICMP errors only. 1779 */ 1780 switch (ipha->ipha_protocol) { 1781 case IPPROTO_UDP: 1782 /* 1783 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1784 * transport header. 1785 */ 1786 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1787 mp->b_wptr) 1788 goto truncated; 1789 break; 1790 case IPPROTO_TCP: { 1791 tcpha_t *tcpha; 1792 1793 /* 1794 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1795 * transport header. 1796 */ 1797 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1798 mp->b_wptr) 1799 goto truncated; 1800 1801 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1802 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1803 ipst); 1804 if (connp == NULL) 1805 goto discard_pkt; 1806 1807 if ((connp->conn_verifyicmp != NULL) && 1808 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1809 CONN_DEC_REF(connp); 1810 goto discard_pkt; 1811 } 1812 CONN_DEC_REF(connp); 1813 break; 1814 } 1815 case IPPROTO_SCTP: 1816 /* 1817 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1818 * transport header. 1819 */ 1820 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1821 mp->b_wptr) 1822 goto truncated; 1823 break; 1824 case IPPROTO_ESP: 1825 case IPPROTO_AH: 1826 break; 1827 case IPPROTO_ENCAP: 1828 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1829 mp->b_wptr) 1830 goto truncated; 1831 break; 1832 default: 1833 break; 1834 } 1835 1836 return (B_TRUE); 1837 1838 discard_pkt: 1839 /* Bogus ICMP error. */ 1840 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1841 return (B_FALSE); 1842 1843 truncated: 1844 /* We pulled up everthing already. Must be truncated */ 1845 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1846 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1847 return (B_FALSE); 1848 } 1849 1850 /* Table from RFC 1191 */ 1851 static int icmp_frag_size_table[] = 1852 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1853 1854 /* 1855 * Process received ICMP Packet too big. 1856 * Just handles the DCE create/update, including using the above table of 1857 * PMTU guesses. The caller is responsible for validating the packet before 1858 * passing it in and also to fanout the ICMP error to any matching transport 1859 * conns. Assumes the message has been fully pulled up and verified. 1860 * 1861 * Before getting here, the caller has called icmp_inbound_verify_v4() 1862 * that should have verified with ULP to prevent undoing the changes we're 1863 * going to make to DCE. For example, TCP might have verified that the packet 1864 * which generated error is in the send window. 1865 * 1866 * In some cases modified this MTU in the ICMP header packet; the caller 1867 * should pass to the matching ULP after this returns. 1868 */ 1869 static void 1870 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1871 { 1872 dce_t *dce; 1873 int old_mtu; 1874 int mtu, orig_mtu; 1875 ipaddr_t dst; 1876 boolean_t disable_pmtud; 1877 ill_t *ill = ira->ira_ill; 1878 ip_stack_t *ipst = ill->ill_ipst; 1879 uint_t hdr_length; 1880 ipha_t *ipha; 1881 1882 /* Caller already pulled up everything. */ 1883 ipha = (ipha_t *)&icmph[1]; 1884 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1885 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1886 ASSERT(ill != NULL); 1887 1888 hdr_length = IPH_HDR_LENGTH(ipha); 1889 1890 /* 1891 * We handle path MTU for source routed packets since the DCE 1892 * is looked up using the final destination. 1893 */ 1894 dst = ip_get_dst(ipha); 1895 1896 dce = dce_lookup_and_add_v4(dst, ipst); 1897 if (dce == NULL) { 1898 /* Couldn't add a unique one - ENOMEM */ 1899 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1900 ntohl(dst))); 1901 return; 1902 } 1903 1904 /* Check for MTU discovery advice as described in RFC 1191 */ 1905 mtu = ntohs(icmph->icmph_du_mtu); 1906 orig_mtu = mtu; 1907 disable_pmtud = B_FALSE; 1908 1909 mutex_enter(&dce->dce_lock); 1910 if (dce->dce_flags & DCEF_PMTU) 1911 old_mtu = dce->dce_pmtu; 1912 else 1913 old_mtu = ill->ill_mtu; 1914 1915 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1916 uint32_t length; 1917 int i; 1918 1919 /* 1920 * Use the table from RFC 1191 to figure out 1921 * the next "plateau" based on the length in 1922 * the original IP packet. 1923 */ 1924 length = ntohs(ipha->ipha_length); 1925 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1926 uint32_t, length); 1927 if (old_mtu <= length && 1928 old_mtu >= length - hdr_length) { 1929 /* 1930 * Handle broken BSD 4.2 systems that 1931 * return the wrong ipha_length in ICMP 1932 * errors. 1933 */ 1934 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1935 length, old_mtu)); 1936 length -= hdr_length; 1937 } 1938 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1939 if (length > icmp_frag_size_table[i]) 1940 break; 1941 } 1942 if (i == A_CNT(icmp_frag_size_table)) { 1943 /* Smaller than IP_MIN_MTU! */ 1944 ip1dbg(("Too big for packet size %d\n", 1945 length)); 1946 disable_pmtud = B_TRUE; 1947 mtu = ipst->ips_ip_pmtu_min; 1948 } else { 1949 mtu = icmp_frag_size_table[i]; 1950 ip1dbg(("Calculated mtu %d, packet size %d, " 1951 "before %d\n", mtu, length, old_mtu)); 1952 if (mtu < ipst->ips_ip_pmtu_min) { 1953 mtu = ipst->ips_ip_pmtu_min; 1954 disable_pmtud = B_TRUE; 1955 } 1956 } 1957 } 1958 if (disable_pmtud) 1959 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1960 else 1961 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1962 1963 dce->dce_pmtu = MIN(old_mtu, mtu); 1964 /* Prepare to send the new max frag size for the ULP. */ 1965 icmph->icmph_du_zero = 0; 1966 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1967 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1968 dce, int, orig_mtu, int, mtu); 1969 1970 /* We now have a PMTU for sure */ 1971 dce->dce_flags |= DCEF_PMTU; 1972 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1973 mutex_exit(&dce->dce_lock); 1974 /* 1975 * After dropping the lock the new value is visible to everyone. 1976 * Then we bump the generation number so any cached values reinspect 1977 * the dce_t. 1978 */ 1979 dce_increment_generation(dce); 1980 dce_refrele(dce); 1981 } 1982 1983 /* 1984 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1985 * calls this function. 1986 */ 1987 static mblk_t * 1988 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1989 { 1990 int length; 1991 1992 ASSERT(mp->b_datap->db_type == M_DATA); 1993 1994 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1995 ASSERT(mp->b_cont == NULL); 1996 1997 /* 1998 * The length that we want to overlay is the inner header 1999 * and what follows it. 2000 */ 2001 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2002 2003 /* 2004 * Overlay the inner header and whatever follows it over the 2005 * outer header. 2006 */ 2007 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2008 2009 /* Adjust for what we removed */ 2010 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2011 return (mp); 2012 } 2013 2014 /* 2015 * Try to pass the ICMP message upstream in case the ULP cares. 2016 * 2017 * If the packet that caused the ICMP error is secure, we send 2018 * it to AH/ESP to make sure that the attached packet has a 2019 * valid association. ipha in the code below points to the 2020 * IP header of the packet that caused the error. 2021 * 2022 * For IPsec cases, we let the next-layer-up (which has access to 2023 * cached policy on the conn_t, or can query the SPD directly) 2024 * subtract out any IPsec overhead if they must. We therefore make no 2025 * adjustments here for IPsec overhead. 2026 * 2027 * IFN could have been generated locally or by some router. 2028 * 2029 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2030 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2031 * This happens because IP adjusted its value of MTU on an 2032 * earlier IFN message and could not tell the upper layer, 2033 * the new adjusted value of MTU e.g. Packet was encrypted 2034 * or there was not enough information to fanout to upper 2035 * layers. Thus on the next outbound datagram, ire_send_wire 2036 * generates the IFN, where IPsec processing has *not* been 2037 * done. 2038 * 2039 * Note that we retain ixa_fragsize across IPsec thus once 2040 * we have picking ixa_fragsize and entered ipsec_out_process we do 2041 * no change the fragsize even if the path MTU changes before 2042 * we reach ip_output_post_ipsec. 2043 * 2044 * In the local case, IRAF_LOOPBACK will be set indicating 2045 * that IFN was generated locally. 2046 * 2047 * ROUTER : IFN could be secure or non-secure. 2048 * 2049 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2050 * packet in error has AH/ESP headers to validate the AH/ESP 2051 * headers. AH/ESP will verify whether there is a valid SA or 2052 * not and send it back. We will fanout again if we have more 2053 * data in the packet. 2054 * 2055 * If the packet in error does not have AH/ESP, we handle it 2056 * like any other case. 2057 * 2058 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2059 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2060 * valid SA or not and send it back. We will fanout again if 2061 * we have more data in the packet. 2062 * 2063 * If the packet in error does not have AH/ESP, we handle it 2064 * like any other case. 2065 * 2066 * The caller must have called icmp_inbound_verify_v4. 2067 */ 2068 static void 2069 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2070 { 2071 uint16_t *up; /* Pointer to ports in ULP header */ 2072 uint32_t ports; /* reversed ports for fanout */ 2073 ipha_t ripha; /* With reversed addresses */ 2074 ipha_t *ipha; /* Inner IP header */ 2075 uint_t hdr_length; /* Inner IP header length */ 2076 tcpha_t *tcpha; 2077 conn_t *connp; 2078 ill_t *ill = ira->ira_ill; 2079 ip_stack_t *ipst = ill->ill_ipst; 2080 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2081 ill_t *rill = ira->ira_rill; 2082 2083 /* Caller already pulled up everything. */ 2084 ipha = (ipha_t *)&icmph[1]; 2085 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2086 ASSERT(mp->b_cont == NULL); 2087 2088 hdr_length = IPH_HDR_LENGTH(ipha); 2089 ira->ira_protocol = ipha->ipha_protocol; 2090 2091 /* 2092 * We need a separate IP header with the source and destination 2093 * addresses reversed to do fanout/classification because the ipha in 2094 * the ICMP error is in the form we sent it out. 2095 */ 2096 ripha.ipha_src = ipha->ipha_dst; 2097 ripha.ipha_dst = ipha->ipha_src; 2098 ripha.ipha_protocol = ipha->ipha_protocol; 2099 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2100 2101 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2102 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2103 ntohl(ipha->ipha_dst), 2104 icmph->icmph_type, icmph->icmph_code)); 2105 2106 switch (ipha->ipha_protocol) { 2107 case IPPROTO_UDP: 2108 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2109 2110 /* Attempt to find a client stream based on port. */ 2111 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2112 ntohs(up[0]), ntohs(up[1]))); 2113 2114 /* Note that we send error to all matches. */ 2115 ira->ira_flags |= IRAF_ICMP_ERROR; 2116 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2117 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2118 return; 2119 2120 case IPPROTO_TCP: 2121 /* 2122 * Find a TCP client stream for this packet. 2123 * Note that we do a reverse lookup since the header is 2124 * in the form we sent it out. 2125 */ 2126 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2127 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2128 ipst); 2129 if (connp == NULL) 2130 goto discard_pkt; 2131 2132 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2133 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2134 mp = ipsec_check_inbound_policy(mp, connp, 2135 ipha, NULL, ira); 2136 if (mp == NULL) { 2137 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2138 /* Note that mp is NULL */ 2139 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2140 CONN_DEC_REF(connp); 2141 return; 2142 } 2143 } 2144 2145 ira->ira_flags |= IRAF_ICMP_ERROR; 2146 ira->ira_ill = ira->ira_rill = NULL; 2147 if (IPCL_IS_TCP(connp)) { 2148 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2149 connp->conn_recvicmp, connp, ira, SQ_FILL, 2150 SQTAG_TCP_INPUT_ICMP_ERR); 2151 } else { 2152 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2153 (connp->conn_recv)(connp, mp, NULL, ira); 2154 CONN_DEC_REF(connp); 2155 } 2156 ira->ira_ill = ill; 2157 ira->ira_rill = rill; 2158 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2159 return; 2160 2161 case IPPROTO_SCTP: 2162 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2163 /* Find a SCTP client stream for this packet. */ 2164 ((uint16_t *)&ports)[0] = up[1]; 2165 ((uint16_t *)&ports)[1] = up[0]; 2166 2167 ira->ira_flags |= IRAF_ICMP_ERROR; 2168 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2169 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2170 return; 2171 2172 case IPPROTO_ESP: 2173 case IPPROTO_AH: 2174 if (!ipsec_loaded(ipss)) { 2175 ip_proto_not_sup(mp, ira); 2176 return; 2177 } 2178 2179 if (ipha->ipha_protocol == IPPROTO_ESP) 2180 mp = ipsecesp_icmp_error(mp, ira); 2181 else 2182 mp = ipsecah_icmp_error(mp, ira); 2183 if (mp == NULL) 2184 return; 2185 2186 /* Just in case ipsec didn't preserve the NULL b_cont */ 2187 if (mp->b_cont != NULL) { 2188 if (!pullupmsg(mp, -1)) 2189 goto discard_pkt; 2190 } 2191 2192 /* 2193 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2194 * correct, but we don't use them any more here. 2195 * 2196 * If succesful, the mp has been modified to not include 2197 * the ESP/AH header so we can fanout to the ULP's icmp 2198 * error handler. 2199 */ 2200 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2201 goto truncated; 2202 2203 /* Verify the modified message before any further processes. */ 2204 ipha = (ipha_t *)mp->b_rptr; 2205 hdr_length = IPH_HDR_LENGTH(ipha); 2206 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2207 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2208 freemsg(mp); 2209 return; 2210 } 2211 2212 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2213 return; 2214 2215 case IPPROTO_ENCAP: { 2216 /* Look for self-encapsulated packets that caused an error */ 2217 ipha_t *in_ipha; 2218 2219 /* 2220 * Caller has verified that length has to be 2221 * at least the size of IP header. 2222 */ 2223 ASSERT(hdr_length >= sizeof (ipha_t)); 2224 /* 2225 * Check the sanity of the inner IP header like 2226 * we did for the outer header. 2227 */ 2228 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2229 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2230 goto discard_pkt; 2231 } 2232 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2233 goto discard_pkt; 2234 } 2235 /* Check for Self-encapsulated tunnels */ 2236 if (in_ipha->ipha_src == ipha->ipha_src && 2237 in_ipha->ipha_dst == ipha->ipha_dst) { 2238 2239 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2240 in_ipha); 2241 if (mp == NULL) 2242 goto discard_pkt; 2243 2244 /* 2245 * Just in case self_encap didn't preserve the NULL 2246 * b_cont 2247 */ 2248 if (mp->b_cont != NULL) { 2249 if (!pullupmsg(mp, -1)) 2250 goto discard_pkt; 2251 } 2252 /* 2253 * Note that ira_pktlen and ira_ip_hdr_length are no 2254 * longer correct, but we don't use them any more here. 2255 */ 2256 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2257 goto truncated; 2258 2259 /* 2260 * Verify the modified message before any further 2261 * processes. 2262 */ 2263 ipha = (ipha_t *)mp->b_rptr; 2264 hdr_length = IPH_HDR_LENGTH(ipha); 2265 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2266 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2267 freemsg(mp); 2268 return; 2269 } 2270 2271 /* 2272 * The packet in error is self-encapsualted. 2273 * And we are finding it further encapsulated 2274 * which we could not have possibly generated. 2275 */ 2276 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2277 goto discard_pkt; 2278 } 2279 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2280 return; 2281 } 2282 /* No self-encapsulated */ 2283 } 2284 /* FALLTHROUGH */ 2285 case IPPROTO_IPV6: 2286 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2287 &ripha.ipha_dst, ipst)) != NULL) { 2288 ira->ira_flags |= IRAF_ICMP_ERROR; 2289 connp->conn_recvicmp(connp, mp, NULL, ira); 2290 CONN_DEC_REF(connp); 2291 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2292 return; 2293 } 2294 /* 2295 * No IP tunnel is interested, fallthrough and see 2296 * if a raw socket will want it. 2297 */ 2298 /* FALLTHROUGH */ 2299 default: 2300 ira->ira_flags |= IRAF_ICMP_ERROR; 2301 ip_fanout_proto_v4(mp, &ripha, ira); 2302 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2303 return; 2304 } 2305 /* NOTREACHED */ 2306 discard_pkt: 2307 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2308 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2309 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2310 freemsg(mp); 2311 return; 2312 2313 truncated: 2314 /* We pulled up everthing already. Must be truncated */ 2315 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2316 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2317 freemsg(mp); 2318 } 2319 2320 /* 2321 * Common IP options parser. 2322 * 2323 * Setup routine: fill in *optp with options-parsing state, then 2324 * tail-call ipoptp_next to return the first option. 2325 */ 2326 uint8_t 2327 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2328 { 2329 uint32_t totallen; /* total length of all options */ 2330 2331 totallen = ipha->ipha_version_and_hdr_length - 2332 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2333 totallen <<= 2; 2334 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2335 optp->ipoptp_end = optp->ipoptp_next + totallen; 2336 optp->ipoptp_flags = 0; 2337 return (ipoptp_next(optp)); 2338 } 2339 2340 /* Like above but without an ipha_t */ 2341 uint8_t 2342 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2343 { 2344 optp->ipoptp_next = opt; 2345 optp->ipoptp_end = optp->ipoptp_next + totallen; 2346 optp->ipoptp_flags = 0; 2347 return (ipoptp_next(optp)); 2348 } 2349 2350 /* 2351 * Common IP options parser: extract next option. 2352 */ 2353 uint8_t 2354 ipoptp_next(ipoptp_t *optp) 2355 { 2356 uint8_t *end = optp->ipoptp_end; 2357 uint8_t *cur = optp->ipoptp_next; 2358 uint8_t opt, len, pointer; 2359 2360 /* 2361 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2362 * has been corrupted. 2363 */ 2364 ASSERT(cur <= end); 2365 2366 if (cur == end) 2367 return (IPOPT_EOL); 2368 2369 opt = cur[IPOPT_OPTVAL]; 2370 2371 /* 2372 * Skip any NOP options. 2373 */ 2374 while (opt == IPOPT_NOP) { 2375 cur++; 2376 if (cur == end) 2377 return (IPOPT_EOL); 2378 opt = cur[IPOPT_OPTVAL]; 2379 } 2380 2381 if (opt == IPOPT_EOL) 2382 return (IPOPT_EOL); 2383 2384 /* 2385 * Option requiring a length. 2386 */ 2387 if ((cur + 1) >= end) { 2388 optp->ipoptp_flags |= IPOPTP_ERROR; 2389 return (IPOPT_EOL); 2390 } 2391 len = cur[IPOPT_OLEN]; 2392 if (len < 2) { 2393 optp->ipoptp_flags |= IPOPTP_ERROR; 2394 return (IPOPT_EOL); 2395 } 2396 optp->ipoptp_cur = cur; 2397 optp->ipoptp_len = len; 2398 optp->ipoptp_next = cur + len; 2399 if (cur + len > end) { 2400 optp->ipoptp_flags |= IPOPTP_ERROR; 2401 return (IPOPT_EOL); 2402 } 2403 2404 /* 2405 * For the options which require a pointer field, make sure 2406 * its there, and make sure it points to either something 2407 * inside this option, or the end of the option. 2408 */ 2409 pointer = IPOPT_EOL; 2410 switch (opt) { 2411 case IPOPT_RR: 2412 case IPOPT_TS: 2413 case IPOPT_LSRR: 2414 case IPOPT_SSRR: 2415 if (len <= IPOPT_OFFSET) { 2416 optp->ipoptp_flags |= IPOPTP_ERROR; 2417 return (opt); 2418 } 2419 pointer = cur[IPOPT_OFFSET]; 2420 if (pointer - 1 > len) { 2421 optp->ipoptp_flags |= IPOPTP_ERROR; 2422 return (opt); 2423 } 2424 break; 2425 } 2426 2427 /* 2428 * Sanity check the pointer field based on the type of the 2429 * option. 2430 */ 2431 switch (opt) { 2432 case IPOPT_RR: 2433 case IPOPT_SSRR: 2434 case IPOPT_LSRR: 2435 if (pointer < IPOPT_MINOFF_SR) 2436 optp->ipoptp_flags |= IPOPTP_ERROR; 2437 break; 2438 case IPOPT_TS: 2439 if (pointer < IPOPT_MINOFF_IT) 2440 optp->ipoptp_flags |= IPOPTP_ERROR; 2441 /* 2442 * Note that the Internet Timestamp option also 2443 * contains two four bit fields (the Overflow field, 2444 * and the Flag field), which follow the pointer 2445 * field. We don't need to check that these fields 2446 * fall within the length of the option because this 2447 * was implicitely done above. We've checked that the 2448 * pointer value is at least IPOPT_MINOFF_IT, and that 2449 * it falls within the option. Since IPOPT_MINOFF_IT > 2450 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2451 */ 2452 ASSERT(len > IPOPT_POS_OV_FLG); 2453 break; 2454 } 2455 2456 return (opt); 2457 } 2458 2459 /* 2460 * Use the outgoing IP header to create an IP_OPTIONS option the way 2461 * it was passed down from the application. 2462 * 2463 * This is compatible with BSD in that it returns 2464 * the reverse source route with the final destination 2465 * as the last entry. The first 4 bytes of the option 2466 * will contain the final destination. 2467 */ 2468 int 2469 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2470 { 2471 ipoptp_t opts; 2472 uchar_t *opt; 2473 uint8_t optval; 2474 uint8_t optlen; 2475 uint32_t len = 0; 2476 uchar_t *buf1 = buf; 2477 uint32_t totallen; 2478 ipaddr_t dst; 2479 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2480 2481 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2482 return (0); 2483 2484 totallen = ipp->ipp_ipv4_options_len; 2485 if (totallen & 0x3) 2486 return (0); 2487 2488 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2489 len += IP_ADDR_LEN; 2490 bzero(buf1, IP_ADDR_LEN); 2491 2492 dst = connp->conn_faddr_v4; 2493 2494 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2495 optval != IPOPT_EOL; 2496 optval = ipoptp_next(&opts)) { 2497 int off; 2498 2499 opt = opts.ipoptp_cur; 2500 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2501 break; 2502 } 2503 optlen = opts.ipoptp_len; 2504 2505 switch (optval) { 2506 case IPOPT_SSRR: 2507 case IPOPT_LSRR: 2508 2509 /* 2510 * Insert destination as the first entry in the source 2511 * route and move down the entries on step. 2512 * The last entry gets placed at buf1. 2513 */ 2514 buf[IPOPT_OPTVAL] = optval; 2515 buf[IPOPT_OLEN] = optlen; 2516 buf[IPOPT_OFFSET] = optlen; 2517 2518 off = optlen - IP_ADDR_LEN; 2519 if (off < 0) { 2520 /* No entries in source route */ 2521 break; 2522 } 2523 /* Last entry in source route if not already set */ 2524 if (dst == INADDR_ANY) 2525 bcopy(opt + off, buf1, IP_ADDR_LEN); 2526 off -= IP_ADDR_LEN; 2527 2528 while (off > 0) { 2529 bcopy(opt + off, 2530 buf + off + IP_ADDR_LEN, 2531 IP_ADDR_LEN); 2532 off -= IP_ADDR_LEN; 2533 } 2534 /* ipha_dst into first slot */ 2535 bcopy(&dst, buf + off + IP_ADDR_LEN, 2536 IP_ADDR_LEN); 2537 buf += optlen; 2538 len += optlen; 2539 break; 2540 2541 default: 2542 bcopy(opt, buf, optlen); 2543 buf += optlen; 2544 len += optlen; 2545 break; 2546 } 2547 } 2548 done: 2549 /* Pad the resulting options */ 2550 while (len & 0x3) { 2551 *buf++ = IPOPT_EOL; 2552 len++; 2553 } 2554 return (len); 2555 } 2556 2557 /* 2558 * Update any record route or timestamp options to include this host. 2559 * Reverse any source route option. 2560 * This routine assumes that the options are well formed i.e. that they 2561 * have already been checked. 2562 */ 2563 static void 2564 icmp_options_update(ipha_t *ipha) 2565 { 2566 ipoptp_t opts; 2567 uchar_t *opt; 2568 uint8_t optval; 2569 ipaddr_t src; /* Our local address */ 2570 ipaddr_t dst; 2571 2572 ip2dbg(("icmp_options_update\n")); 2573 src = ipha->ipha_src; 2574 dst = ipha->ipha_dst; 2575 2576 for (optval = ipoptp_first(&opts, ipha); 2577 optval != IPOPT_EOL; 2578 optval = ipoptp_next(&opts)) { 2579 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2580 opt = opts.ipoptp_cur; 2581 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2582 optval, opts.ipoptp_len)); 2583 switch (optval) { 2584 int off1, off2; 2585 case IPOPT_SSRR: 2586 case IPOPT_LSRR: 2587 /* 2588 * Reverse the source route. The first entry 2589 * should be the next to last one in the current 2590 * source route (the last entry is our address). 2591 * The last entry should be the final destination. 2592 */ 2593 off1 = IPOPT_MINOFF_SR - 1; 2594 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2595 if (off2 < 0) { 2596 /* No entries in source route */ 2597 ip1dbg(( 2598 "icmp_options_update: bad src route\n")); 2599 break; 2600 } 2601 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2602 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2603 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2604 off2 -= IP_ADDR_LEN; 2605 2606 while (off1 < off2) { 2607 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2608 bcopy((char *)opt + off2, (char *)opt + off1, 2609 IP_ADDR_LEN); 2610 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2611 off1 += IP_ADDR_LEN; 2612 off2 -= IP_ADDR_LEN; 2613 } 2614 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2615 break; 2616 } 2617 } 2618 } 2619 2620 /* 2621 * Process received ICMP Redirect messages. 2622 * Assumes the caller has verified that the headers are in the pulled up mblk. 2623 * Consumes mp. 2624 */ 2625 static void 2626 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2627 { 2628 ire_t *ire, *nire; 2629 ire_t *prev_ire; 2630 ipaddr_t src, dst, gateway; 2631 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2632 ipha_t *inner_ipha; /* Inner IP header */ 2633 2634 /* Caller already pulled up everything. */ 2635 inner_ipha = (ipha_t *)&icmph[1]; 2636 src = ipha->ipha_src; 2637 dst = inner_ipha->ipha_dst; 2638 gateway = icmph->icmph_rd_gateway; 2639 /* Make sure the new gateway is reachable somehow. */ 2640 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2641 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2642 /* 2643 * Make sure we had a route for the dest in question and that 2644 * that route was pointing to the old gateway (the source of the 2645 * redirect packet.) 2646 * We do longest match and then compare ire_gateway_addr below. 2647 */ 2648 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2649 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2650 /* 2651 * Check that 2652 * the redirect was not from ourselves 2653 * the new gateway and the old gateway are directly reachable 2654 */ 2655 if (prev_ire == NULL || ire == NULL || 2656 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2657 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2658 !(ire->ire_type & IRE_IF_ALL) || 2659 prev_ire->ire_gateway_addr != src) { 2660 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2661 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2662 freemsg(mp); 2663 if (ire != NULL) 2664 ire_refrele(ire); 2665 if (prev_ire != NULL) 2666 ire_refrele(prev_ire); 2667 return; 2668 } 2669 2670 ire_refrele(prev_ire); 2671 ire_refrele(ire); 2672 2673 /* 2674 * TODO: more precise handling for cases 0, 2, 3, the latter two 2675 * require TOS routing 2676 */ 2677 switch (icmph->icmph_code) { 2678 case 0: 2679 case 1: 2680 /* TODO: TOS specificity for cases 2 and 3 */ 2681 case 2: 2682 case 3: 2683 break; 2684 default: 2685 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2686 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2687 freemsg(mp); 2688 return; 2689 } 2690 /* 2691 * Create a Route Association. This will allow us to remember that 2692 * someone we believe told us to use the particular gateway. 2693 */ 2694 ire = ire_create( 2695 (uchar_t *)&dst, /* dest addr */ 2696 (uchar_t *)&ip_g_all_ones, /* mask */ 2697 (uchar_t *)&gateway, /* gateway addr */ 2698 IRE_HOST, 2699 NULL, /* ill */ 2700 ALL_ZONES, 2701 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2702 NULL, /* tsol_gc_t */ 2703 ipst); 2704 2705 if (ire == NULL) { 2706 freemsg(mp); 2707 return; 2708 } 2709 nire = ire_add(ire); 2710 /* Check if it was a duplicate entry */ 2711 if (nire != NULL && nire != ire) { 2712 ASSERT(nire->ire_identical_ref > 1); 2713 ire_delete(nire); 2714 ire_refrele(nire); 2715 nire = NULL; 2716 } 2717 ire = nire; 2718 if (ire != NULL) { 2719 ire_refrele(ire); /* Held in ire_add */ 2720 2721 /* tell routing sockets that we received a redirect */ 2722 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2723 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2724 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2725 } 2726 2727 /* 2728 * Delete any existing IRE_HOST type redirect ires for this destination. 2729 * This together with the added IRE has the effect of 2730 * modifying an existing redirect. 2731 */ 2732 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2733 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2734 if (prev_ire != NULL) { 2735 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2736 ire_delete(prev_ire); 2737 ire_refrele(prev_ire); 2738 } 2739 2740 freemsg(mp); 2741 } 2742 2743 /* 2744 * Generate an ICMP parameter problem message. 2745 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2746 * constructed by the caller. 2747 */ 2748 static void 2749 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2750 { 2751 icmph_t icmph; 2752 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2753 2754 mp = icmp_pkt_err_ok(mp, ira); 2755 if (mp == NULL) 2756 return; 2757 2758 bzero(&icmph, sizeof (icmph_t)); 2759 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2760 icmph.icmph_pp_ptr = ptr; 2761 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2762 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2763 } 2764 2765 /* 2766 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2767 * the ICMP header pointed to by "stuff". (May be called as writer.) 2768 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2769 * an icmp error packet can be sent. 2770 * Assigns an appropriate source address to the packet. If ipha_dst is 2771 * one of our addresses use it for source. Otherwise let ip_output_simple 2772 * pick the source address. 2773 */ 2774 static void 2775 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2776 { 2777 ipaddr_t dst; 2778 icmph_t *icmph; 2779 ipha_t *ipha; 2780 uint_t len_needed; 2781 size_t msg_len; 2782 mblk_t *mp1; 2783 ipaddr_t src; 2784 ire_t *ire; 2785 ip_xmit_attr_t ixas; 2786 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2787 2788 ipha = (ipha_t *)mp->b_rptr; 2789 2790 bzero(&ixas, sizeof (ixas)); 2791 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2792 ixas.ixa_zoneid = ira->ira_zoneid; 2793 ixas.ixa_ifindex = 0; 2794 ixas.ixa_ipst = ipst; 2795 ixas.ixa_cred = kcred; 2796 ixas.ixa_cpid = NOPID; 2797 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2798 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2799 2800 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2801 /* 2802 * Apply IPsec based on how IPsec was applied to 2803 * the packet that had the error. 2804 * 2805 * If it was an outbound packet that caused the ICMP 2806 * error, then the caller will have setup the IRA 2807 * appropriately. 2808 */ 2809 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2810 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2811 /* Note: mp already consumed and ip_drop_packet done */ 2812 return; 2813 } 2814 } else { 2815 /* 2816 * This is in clear. The icmp message we are building 2817 * here should go out in clear, independent of our policy. 2818 */ 2819 ixas.ixa_flags |= IXAF_NO_IPSEC; 2820 } 2821 2822 /* Remember our eventual destination */ 2823 dst = ipha->ipha_src; 2824 2825 /* 2826 * If the packet was for one of our unicast addresses, make 2827 * sure we respond with that as the source. Otherwise 2828 * have ip_output_simple pick the source address. 2829 */ 2830 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2831 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2832 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2833 if (ire != NULL) { 2834 ire_refrele(ire); 2835 src = ipha->ipha_dst; 2836 } else { 2837 src = INADDR_ANY; 2838 ixas.ixa_flags |= IXAF_SET_SOURCE; 2839 } 2840 2841 /* 2842 * Check if we can send back more then 8 bytes in addition to 2843 * the IP header. We try to send 64 bytes of data and the internal 2844 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2845 */ 2846 len_needed = IPH_HDR_LENGTH(ipha); 2847 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2848 ipha->ipha_protocol == IPPROTO_IPV6) { 2849 /* 2850 * NOTE: It is posssible that the inner packet is poorly 2851 * formed (e.g. IP version is corrupt, or v6 extension headers 2852 * got cut off). The receiver of the ICMP message should see 2853 * what we saw. In the absence of a sane inner-packet (which 2854 * protocol types IPPPROTO_ENCAP and IPPROTO_IPV6 indicate 2855 * would be an IP header), we should send the size of what is 2856 * normally expected to be there (either sizeof (ipha_t) or 2857 * sizeof (ip6_t). It may be useful for diagnostic purposes. 2858 * 2859 * ALSO NOTE: "inner_ip6h" is the inner packet header, v4 or v6. 2860 */ 2861 ip6_t *inner_ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2862 2863 if (!pullupmsg(mp, -1)) { 2864 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2865 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2866 freemsg(mp); 2867 return; 2868 } 2869 ipha = (ipha_t *)mp->b_rptr; 2870 2871 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2872 /* 2873 * Check the inner IP version here to guard against 2874 * bogons. 2875 */ 2876 if (IPH_HDR_VERSION(inner_ip6h) == IPV4_VERSION) { 2877 len_needed += 2878 IPH_HDR_LENGTH(((uchar_t *)inner_ip6h)); 2879 } else { 2880 len_needed = sizeof (ipha_t); 2881 } 2882 } else { 2883 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2884 /* function called next-line checks inner IP version */ 2885 len_needed += ip_hdr_length_v6(mp, inner_ip6h); 2886 } 2887 } 2888 len_needed += ipst->ips_ip_icmp_return; 2889 msg_len = msgdsize(mp); 2890 if (msg_len > len_needed) { 2891 (void) adjmsg(mp, len_needed - msg_len); 2892 msg_len = len_needed; 2893 } 2894 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2895 if (mp1 == NULL) { 2896 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2897 freemsg(mp); 2898 return; 2899 } 2900 mp1->b_cont = mp; 2901 mp = mp1; 2902 2903 /* 2904 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2905 * node generates be accepted in peace by all on-host destinations. 2906 * If we do NOT assume that all on-host destinations trust 2907 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2908 * (Look for IXAF_TRUSTED_ICMP). 2909 */ 2910 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2911 2912 ipha = (ipha_t *)mp->b_rptr; 2913 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2914 *ipha = icmp_ipha; 2915 ipha->ipha_src = src; 2916 ipha->ipha_dst = dst; 2917 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2918 msg_len += sizeof (icmp_ipha) + len; 2919 if (msg_len > IP_MAXPACKET) { 2920 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2921 msg_len = IP_MAXPACKET; 2922 } 2923 ipha->ipha_length = htons((uint16_t)msg_len); 2924 icmph = (icmph_t *)&ipha[1]; 2925 bcopy(stuff, icmph, len); 2926 icmph->icmph_checksum = 0; 2927 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2928 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2929 2930 (void) ip_output_simple(mp, &ixas); 2931 ixa_cleanup(&ixas); 2932 } 2933 2934 /* 2935 * Determine if an ICMP error packet can be sent given the rate limit. 2936 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2937 * in milliseconds) and a burst size. Burst size number of packets can 2938 * be sent arbitrarely closely spaced. 2939 * The state is tracked using two variables to implement an approximate 2940 * token bucket filter: 2941 * icmp_pkt_err_last - lbolt value when the last burst started 2942 * icmp_pkt_err_sent - number of packets sent in current burst 2943 */ 2944 boolean_t 2945 icmp_err_rate_limit(ip_stack_t *ipst) 2946 { 2947 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2948 uint_t refilled; /* Number of packets refilled in tbf since last */ 2949 /* Guard against changes by loading into local variable */ 2950 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2951 2952 if (err_interval == 0) 2953 return (B_FALSE); 2954 2955 if (ipst->ips_icmp_pkt_err_last > now) { 2956 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2957 ipst->ips_icmp_pkt_err_last = 0; 2958 ipst->ips_icmp_pkt_err_sent = 0; 2959 } 2960 /* 2961 * If we are in a burst update the token bucket filter. 2962 * Update the "last" time to be close to "now" but make sure 2963 * we don't loose precision. 2964 */ 2965 if (ipst->ips_icmp_pkt_err_sent != 0) { 2966 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2967 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2968 ipst->ips_icmp_pkt_err_sent = 0; 2969 } else { 2970 ipst->ips_icmp_pkt_err_sent -= refilled; 2971 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2972 } 2973 } 2974 if (ipst->ips_icmp_pkt_err_sent == 0) { 2975 /* Start of new burst */ 2976 ipst->ips_icmp_pkt_err_last = now; 2977 } 2978 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2979 ipst->ips_icmp_pkt_err_sent++; 2980 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2981 ipst->ips_icmp_pkt_err_sent)); 2982 return (B_FALSE); 2983 } 2984 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2985 return (B_TRUE); 2986 } 2987 2988 /* 2989 * Check if it is ok to send an IPv4 ICMP error packet in 2990 * response to the IPv4 packet in mp. 2991 * Free the message and return null if no 2992 * ICMP error packet should be sent. 2993 */ 2994 static mblk_t * 2995 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2996 { 2997 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2998 icmph_t *icmph; 2999 ipha_t *ipha; 3000 uint_t len_needed; 3001 3002 if (!mp) 3003 return (NULL); 3004 ipha = (ipha_t *)mp->b_rptr; 3005 if (ip_csum_hdr(ipha)) { 3006 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3007 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 3008 freemsg(mp); 3009 return (NULL); 3010 } 3011 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 3012 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 3013 CLASSD(ipha->ipha_dst) || 3014 CLASSD(ipha->ipha_src) || 3015 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3016 /* Note: only errors to the fragment with offset 0 */ 3017 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3018 freemsg(mp); 3019 return (NULL); 3020 } 3021 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3022 /* 3023 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3024 * errors in response to any ICMP errors. 3025 */ 3026 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3027 if (mp->b_wptr - mp->b_rptr < len_needed) { 3028 if (!pullupmsg(mp, len_needed)) { 3029 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3030 freemsg(mp); 3031 return (NULL); 3032 } 3033 ipha = (ipha_t *)mp->b_rptr; 3034 } 3035 icmph = (icmph_t *) 3036 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3037 switch (icmph->icmph_type) { 3038 case ICMP_DEST_UNREACHABLE: 3039 case ICMP_SOURCE_QUENCH: 3040 case ICMP_TIME_EXCEEDED: 3041 case ICMP_PARAM_PROBLEM: 3042 case ICMP_REDIRECT: 3043 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3044 freemsg(mp); 3045 return (NULL); 3046 default: 3047 break; 3048 } 3049 } 3050 /* 3051 * If this is a labeled system, then check to see if we're allowed to 3052 * send a response to this particular sender. If not, then just drop. 3053 */ 3054 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3055 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3056 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3057 freemsg(mp); 3058 return (NULL); 3059 } 3060 if (icmp_err_rate_limit(ipst)) { 3061 /* 3062 * Only send ICMP error packets every so often. 3063 * This should be done on a per port/source basis, 3064 * but for now this will suffice. 3065 */ 3066 freemsg(mp); 3067 return (NULL); 3068 } 3069 return (mp); 3070 } 3071 3072 /* 3073 * Called when a packet was sent out the same link that it arrived on. 3074 * Check if it is ok to send a redirect and then send it. 3075 */ 3076 void 3077 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3078 ip_recv_attr_t *ira) 3079 { 3080 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3081 ipaddr_t src, nhop; 3082 mblk_t *mp1; 3083 ire_t *nhop_ire; 3084 3085 /* 3086 * Check the source address to see if it originated 3087 * on the same logical subnet it is going back out on. 3088 * If so, we should be able to send it a redirect. 3089 * Avoid sending a redirect if the destination 3090 * is directly connected (i.e., we matched an IRE_ONLINK), 3091 * or if the packet was source routed out this interface. 3092 * 3093 * We avoid sending a redirect if the 3094 * destination is directly connected 3095 * because it is possible that multiple 3096 * IP subnets may have been configured on 3097 * the link, and the source may not 3098 * be on the same subnet as ip destination, 3099 * even though they are on the same 3100 * physical link. 3101 */ 3102 if ((ire->ire_type & IRE_ONLINK) || 3103 ip_source_routed(ipha, ipst)) 3104 return; 3105 3106 nhop_ire = ire_nexthop(ire); 3107 if (nhop_ire == NULL) 3108 return; 3109 3110 nhop = nhop_ire->ire_addr; 3111 3112 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3113 ire_t *ire2; 3114 3115 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3116 mutex_enter(&nhop_ire->ire_lock); 3117 ire2 = nhop_ire->ire_dep_parent; 3118 if (ire2 != NULL) 3119 ire_refhold(ire2); 3120 mutex_exit(&nhop_ire->ire_lock); 3121 ire_refrele(nhop_ire); 3122 nhop_ire = ire2; 3123 } 3124 if (nhop_ire == NULL) 3125 return; 3126 3127 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3128 3129 src = ipha->ipha_src; 3130 3131 /* 3132 * We look at the interface ire for the nexthop, 3133 * to see if ipha_src is in the same subnet 3134 * as the nexthop. 3135 */ 3136 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3137 /* 3138 * The source is directly connected. 3139 */ 3140 mp1 = copymsg(mp); 3141 if (mp1 != NULL) { 3142 icmp_send_redirect(mp1, nhop, ira); 3143 } 3144 } 3145 ire_refrele(nhop_ire); 3146 } 3147 3148 /* 3149 * Generate an ICMP redirect message. 3150 */ 3151 static void 3152 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3153 { 3154 icmph_t icmph; 3155 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3156 3157 mp = icmp_pkt_err_ok(mp, ira); 3158 if (mp == NULL) 3159 return; 3160 3161 bzero(&icmph, sizeof (icmph_t)); 3162 icmph.icmph_type = ICMP_REDIRECT; 3163 icmph.icmph_code = 1; 3164 icmph.icmph_rd_gateway = gateway; 3165 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3166 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3167 } 3168 3169 /* 3170 * Generate an ICMP time exceeded message. 3171 */ 3172 void 3173 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3174 { 3175 icmph_t icmph; 3176 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3177 3178 mp = icmp_pkt_err_ok(mp, ira); 3179 if (mp == NULL) 3180 return; 3181 3182 bzero(&icmph, sizeof (icmph_t)); 3183 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3184 icmph.icmph_code = code; 3185 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3186 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3187 } 3188 3189 /* 3190 * Generate an ICMP unreachable message. 3191 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3192 * constructed by the caller. 3193 */ 3194 void 3195 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3196 { 3197 icmph_t icmph; 3198 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3199 3200 mp = icmp_pkt_err_ok(mp, ira); 3201 if (mp == NULL) 3202 return; 3203 3204 bzero(&icmph, sizeof (icmph_t)); 3205 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3206 icmph.icmph_code = code; 3207 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3208 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3209 } 3210 3211 /* 3212 * Latch in the IPsec state for a stream based the policy in the listener 3213 * and the actions in the ip_recv_attr_t. 3214 * Called directly from TCP and SCTP. 3215 */ 3216 boolean_t 3217 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3218 { 3219 ASSERT(lconnp->conn_policy != NULL); 3220 ASSERT(connp->conn_policy == NULL); 3221 3222 IPPH_REFHOLD(lconnp->conn_policy); 3223 connp->conn_policy = lconnp->conn_policy; 3224 3225 if (ira->ira_ipsec_action != NULL) { 3226 if (connp->conn_latch == NULL) { 3227 connp->conn_latch = iplatch_create(); 3228 if (connp->conn_latch == NULL) 3229 return (B_FALSE); 3230 } 3231 ipsec_latch_inbound(connp, ira); 3232 } 3233 return (B_TRUE); 3234 } 3235 3236 /* 3237 * Verify whether or not the IP address is a valid local address. 3238 * Could be a unicast, including one for a down interface. 3239 * If allow_mcbc then a multicast or broadcast address is also 3240 * acceptable. 3241 * 3242 * In the case of a broadcast/multicast address, however, the 3243 * upper protocol is expected to reset the src address 3244 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3245 * no packets are emitted with broadcast/multicast address as 3246 * source address (that violates hosts requirements RFC 1122) 3247 * The addresses valid for bind are: 3248 * (1) - INADDR_ANY (0) 3249 * (2) - IP address of an UP interface 3250 * (3) - IP address of a DOWN interface 3251 * (4) - valid local IP broadcast addresses. In this case 3252 * the conn will only receive packets destined to 3253 * the specified broadcast address. 3254 * (5) - a multicast address. In this case 3255 * the conn will only receive packets destined to 3256 * the specified multicast address. Note: the 3257 * application still has to issue an 3258 * IP_ADD_MEMBERSHIP socket option. 3259 * 3260 * In all the above cases, the bound address must be valid in the current zone. 3261 * When the address is loopback, multicast or broadcast, there might be many 3262 * matching IREs so bind has to look up based on the zone. 3263 */ 3264 ip_laddr_t 3265 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3266 ip_stack_t *ipst, boolean_t allow_mcbc) 3267 { 3268 ire_t *src_ire; 3269 3270 ASSERT(src_addr != INADDR_ANY); 3271 3272 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3273 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3274 3275 /* 3276 * If an address other than in6addr_any is requested, 3277 * we verify that it is a valid address for bind 3278 * Note: Following code is in if-else-if form for 3279 * readability compared to a condition check. 3280 */ 3281 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3282 /* 3283 * (2) Bind to address of local UP interface 3284 */ 3285 ire_refrele(src_ire); 3286 return (IPVL_UNICAST_UP); 3287 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3288 /* 3289 * (4) Bind to broadcast address 3290 */ 3291 ire_refrele(src_ire); 3292 if (allow_mcbc) 3293 return (IPVL_BCAST); 3294 else 3295 return (IPVL_BAD); 3296 } else if (CLASSD(src_addr)) { 3297 /* (5) bind to multicast address. */ 3298 if (src_ire != NULL) 3299 ire_refrele(src_ire); 3300 3301 if (allow_mcbc) 3302 return (IPVL_MCAST); 3303 else 3304 return (IPVL_BAD); 3305 } else { 3306 ipif_t *ipif; 3307 3308 /* 3309 * (3) Bind to address of local DOWN interface? 3310 * (ipif_lookup_addr() looks up all interfaces 3311 * but we do not get here for UP interfaces 3312 * - case (2) above) 3313 */ 3314 if (src_ire != NULL) 3315 ire_refrele(src_ire); 3316 3317 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3318 if (ipif == NULL) 3319 return (IPVL_BAD); 3320 3321 /* Not a useful source? */ 3322 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3323 ipif_refrele(ipif); 3324 return (IPVL_BAD); 3325 } 3326 ipif_refrele(ipif); 3327 return (IPVL_UNICAST_DOWN); 3328 } 3329 } 3330 3331 /* 3332 * Insert in the bind fanout for IPv4 and IPv6. 3333 * The caller should already have used ip_laddr_verify_v*() before calling 3334 * this. 3335 */ 3336 int 3337 ip_laddr_fanout_insert(conn_t *connp) 3338 { 3339 int error; 3340 3341 /* 3342 * Allow setting new policies. For example, disconnects result 3343 * in us being called. As we would have set conn_policy_cached 3344 * to B_TRUE before, we should set it to B_FALSE, so that policy 3345 * can change after the disconnect. 3346 */ 3347 connp->conn_policy_cached = B_FALSE; 3348 3349 error = ipcl_bind_insert(connp); 3350 if (error != 0) { 3351 if (connp->conn_anon_port) { 3352 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3353 connp->conn_mlp_type, connp->conn_proto, 3354 ntohs(connp->conn_lport), B_FALSE); 3355 } 3356 connp->conn_mlp_type = mlptSingle; 3357 } 3358 return (error); 3359 } 3360 3361 /* 3362 * Verify that both the source and destination addresses are valid. If 3363 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3364 * i.e. have no route to it. Protocols like TCP want to verify destination 3365 * reachability, while tunnels do not. 3366 * 3367 * Determine the route, the interface, and (optionally) the source address 3368 * to use to reach a given destination. 3369 * Note that we allow connect to broadcast and multicast addresses when 3370 * IPDF_ALLOW_MCBC is set. 3371 * first_hop and dst_addr are normally the same, but if source routing 3372 * they will differ; in that case the first_hop is what we'll use for the 3373 * routing lookup but the dce and label checks will be done on dst_addr, 3374 * 3375 * If uinfo is set, then we fill in the best available information 3376 * we have for the destination. This is based on (in priority order) any 3377 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3378 * ill_mtu/ill_mc_mtu. 3379 * 3380 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3381 * always do the label check on dst_addr. 3382 */ 3383 int 3384 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3385 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3386 { 3387 ire_t *ire = NULL; 3388 int error = 0; 3389 ipaddr_t setsrc; /* RTF_SETSRC */ 3390 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3391 ip_stack_t *ipst = ixa->ixa_ipst; 3392 dce_t *dce; 3393 uint_t pmtu; 3394 uint_t generation; 3395 nce_t *nce; 3396 ill_t *ill = NULL; 3397 boolean_t multirt = B_FALSE; 3398 3399 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3400 3401 /* 3402 * We never send to zero; the ULPs map it to the loopback address. 3403 * We can't allow it since we use zero to mean unitialized in some 3404 * places. 3405 */ 3406 ASSERT(dst_addr != INADDR_ANY); 3407 3408 if (is_system_labeled()) { 3409 ts_label_t *tsl = NULL; 3410 3411 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3412 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3413 if (error != 0) 3414 return (error); 3415 if (tsl != NULL) { 3416 /* Update the label */ 3417 ip_xmit_attr_replace_tsl(ixa, tsl); 3418 } 3419 } 3420 3421 setsrc = INADDR_ANY; 3422 /* 3423 * Select a route; For IPMP interfaces, we would only select 3424 * a "hidden" route (i.e., going through a specific under_ill) 3425 * if ixa_ifindex has been specified. 3426 */ 3427 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3428 &generation, &setsrc, &error, &multirt); 3429 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3430 if (error != 0) 3431 goto bad_addr; 3432 3433 /* 3434 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3435 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3436 * Otherwise the destination needn't be reachable. 3437 * 3438 * If we match on a reject or black hole, then we've got a 3439 * local failure. May as well fail out the connect() attempt, 3440 * since it's never going to succeed. 3441 */ 3442 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3443 /* 3444 * If we're verifying destination reachability, we always want 3445 * to complain here. 3446 * 3447 * If we're not verifying destination reachability but the 3448 * destination has a route, we still want to fail on the 3449 * temporary address and broadcast address tests. 3450 * 3451 * In both cases do we let the code continue so some reasonable 3452 * information is returned to the caller. That enables the 3453 * caller to use (and even cache) the IRE. conn_ip_ouput will 3454 * use the generation mismatch path to check for the unreachable 3455 * case thereby avoiding any specific check in the main path. 3456 */ 3457 ASSERT(generation == IRE_GENERATION_VERIFY); 3458 if (flags & IPDF_VERIFY_DST) { 3459 /* 3460 * Set errno but continue to set up ixa_ire to be 3461 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3462 * That allows callers to use ip_output to get an 3463 * ICMP error back. 3464 */ 3465 if (!(ire->ire_type & IRE_HOST)) 3466 error = ENETUNREACH; 3467 else 3468 error = EHOSTUNREACH; 3469 } 3470 } 3471 3472 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3473 !(flags & IPDF_ALLOW_MCBC)) { 3474 ire_refrele(ire); 3475 ire = ire_reject(ipst, B_FALSE); 3476 generation = IRE_GENERATION_VERIFY; 3477 error = ENETUNREACH; 3478 } 3479 3480 /* Cache things */ 3481 if (ixa->ixa_ire != NULL) 3482 ire_refrele_notr(ixa->ixa_ire); 3483 #ifdef DEBUG 3484 ire_refhold_notr(ire); 3485 ire_refrele(ire); 3486 #endif 3487 ixa->ixa_ire = ire; 3488 ixa->ixa_ire_generation = generation; 3489 3490 /* 3491 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3492 * since some callers will send a packet to conn_ip_output() even if 3493 * there's an error. 3494 */ 3495 if (flags & IPDF_UNIQUE_DCE) { 3496 /* Fallback to the default dce if allocation fails */ 3497 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3498 if (dce != NULL) 3499 generation = dce->dce_generation; 3500 else 3501 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3502 } else { 3503 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3504 } 3505 ASSERT(dce != NULL); 3506 if (ixa->ixa_dce != NULL) 3507 dce_refrele_notr(ixa->ixa_dce); 3508 #ifdef DEBUG 3509 dce_refhold_notr(dce); 3510 dce_refrele(dce); 3511 #endif 3512 ixa->ixa_dce = dce; 3513 ixa->ixa_dce_generation = generation; 3514 3515 /* 3516 * For multicast with multirt we have a flag passed back from 3517 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3518 * possible multicast address. 3519 * We also need a flag for multicast since we can't check 3520 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3521 */ 3522 if (multirt) { 3523 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3524 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3525 } else { 3526 ixa->ixa_postfragfn = ire->ire_postfragfn; 3527 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3528 } 3529 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3530 /* Get an nce to cache. */ 3531 nce = ire_to_nce(ire, firsthop, NULL); 3532 if (nce == NULL) { 3533 /* Allocation failure? */ 3534 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3535 } else { 3536 if (ixa->ixa_nce != NULL) 3537 nce_refrele(ixa->ixa_nce); 3538 ixa->ixa_nce = nce; 3539 } 3540 } 3541 3542 /* 3543 * If the source address is a loopback address, the 3544 * destination had best be local or multicast. 3545 * If we are sending to an IRE_LOCAL using a loopback source then 3546 * it had better be the same zoneid. 3547 */ 3548 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3549 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3550 ire = NULL; /* Stored in ixa_ire */ 3551 error = EADDRNOTAVAIL; 3552 goto bad_addr; 3553 } 3554 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3555 ire = NULL; /* Stored in ixa_ire */ 3556 error = EADDRNOTAVAIL; 3557 goto bad_addr; 3558 } 3559 } 3560 if (ire->ire_type & IRE_BROADCAST) { 3561 /* 3562 * If the ULP didn't have a specified source, then we 3563 * make sure we reselect the source when sending 3564 * broadcasts out different interfaces. 3565 */ 3566 if (flags & IPDF_SELECT_SRC) 3567 ixa->ixa_flags |= IXAF_SET_SOURCE; 3568 else 3569 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3570 } 3571 3572 /* 3573 * Does the caller want us to pick a source address? 3574 */ 3575 if (flags & IPDF_SELECT_SRC) { 3576 ipaddr_t src_addr; 3577 3578 /* 3579 * We use use ire_nexthop_ill to avoid the under ipmp 3580 * interface for source address selection. Note that for ipmp 3581 * probe packets, ixa_ifindex would have been specified, and 3582 * the ip_select_route() invocation would have picked an ire 3583 * will ire_ill pointing at an under interface. 3584 */ 3585 ill = ire_nexthop_ill(ire); 3586 3587 /* If unreachable we have no ill but need some source */ 3588 if (ill == NULL) { 3589 src_addr = htonl(INADDR_LOOPBACK); 3590 /* Make sure we look for a better source address */ 3591 generation = SRC_GENERATION_VERIFY; 3592 } else { 3593 error = ip_select_source_v4(ill, setsrc, dst_addr, 3594 ixa->ixa_multicast_ifaddr, zoneid, 3595 ipst, &src_addr, &generation, NULL); 3596 if (error != 0) { 3597 ire = NULL; /* Stored in ixa_ire */ 3598 goto bad_addr; 3599 } 3600 } 3601 3602 /* 3603 * We allow the source address to to down. 3604 * However, we check that we don't use the loopback address 3605 * as a source when sending out on the wire. 3606 */ 3607 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3608 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3609 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3610 ire = NULL; /* Stored in ixa_ire */ 3611 error = EADDRNOTAVAIL; 3612 goto bad_addr; 3613 } 3614 3615 *src_addrp = src_addr; 3616 ixa->ixa_src_generation = generation; 3617 } 3618 3619 /* 3620 * Make sure we don't leave an unreachable ixa_nce in place 3621 * since ip_select_route is used when we unplumb i.e., remove 3622 * references on ixa_ire, ixa_nce, and ixa_dce. 3623 */ 3624 nce = ixa->ixa_nce; 3625 if (nce != NULL && nce->nce_is_condemned) { 3626 nce_refrele(nce); 3627 ixa->ixa_nce = NULL; 3628 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3629 } 3630 3631 /* 3632 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3633 * However, we can't do it for IPv4 multicast or broadcast. 3634 */ 3635 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3636 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3637 3638 /* 3639 * Set initial value for fragmentation limit. Either conn_ip_output 3640 * or ULP might updates it when there are routing changes. 3641 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3642 */ 3643 pmtu = ip_get_pmtu(ixa); 3644 ixa->ixa_fragsize = pmtu; 3645 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3646 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3647 ixa->ixa_pmtu = pmtu; 3648 3649 /* 3650 * Extract information useful for some transports. 3651 * First we look for DCE metrics. Then we take what we have in 3652 * the metrics in the route, where the offlink is used if we have 3653 * one. 3654 */ 3655 if (uinfo != NULL) { 3656 bzero(uinfo, sizeof (*uinfo)); 3657 3658 if (dce->dce_flags & DCEF_UINFO) 3659 *uinfo = dce->dce_uinfo; 3660 3661 rts_merge_metrics(uinfo, &ire->ire_metrics); 3662 3663 /* Allow ire_metrics to decrease the path MTU from above */ 3664 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3665 uinfo->iulp_mtu = pmtu; 3666 3667 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3668 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3669 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3670 } 3671 3672 if (ill != NULL) 3673 ill_refrele(ill); 3674 3675 return (error); 3676 3677 bad_addr: 3678 if (ire != NULL) 3679 ire_refrele(ire); 3680 3681 if (ill != NULL) 3682 ill_refrele(ill); 3683 3684 /* 3685 * Make sure we don't leave an unreachable ixa_nce in place 3686 * since ip_select_route is used when we unplumb i.e., remove 3687 * references on ixa_ire, ixa_nce, and ixa_dce. 3688 */ 3689 nce = ixa->ixa_nce; 3690 if (nce != NULL && nce->nce_is_condemned) { 3691 nce_refrele(nce); 3692 ixa->ixa_nce = NULL; 3693 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3694 } 3695 3696 return (error); 3697 } 3698 3699 3700 /* 3701 * Get the base MTU for the case when path MTU discovery is not used. 3702 * Takes the MTU of the IRE into account. 3703 */ 3704 uint_t 3705 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3706 { 3707 uint_t mtu; 3708 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3709 3710 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3711 mtu = ill->ill_mc_mtu; 3712 else 3713 mtu = ill->ill_mtu; 3714 3715 if (iremtu != 0 && iremtu < mtu) 3716 mtu = iremtu; 3717 3718 return (mtu); 3719 } 3720 3721 /* 3722 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3723 * Assumes that ixa_ire, dce, and nce have already been set up. 3724 * 3725 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3726 * We avoid path MTU discovery if it is disabled with ndd. 3727 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3728 * 3729 * NOTE: We also used to turn it off for source routed packets. That 3730 * is no longer required since the dce is per final destination. 3731 */ 3732 uint_t 3733 ip_get_pmtu(ip_xmit_attr_t *ixa) 3734 { 3735 ip_stack_t *ipst = ixa->ixa_ipst; 3736 dce_t *dce; 3737 nce_t *nce; 3738 ire_t *ire; 3739 uint_t pmtu; 3740 3741 ire = ixa->ixa_ire; 3742 dce = ixa->ixa_dce; 3743 nce = ixa->ixa_nce; 3744 3745 /* 3746 * If path MTU discovery has been turned off by ndd, then we ignore 3747 * any dce_pmtu and for IPv4 we will not set DF. 3748 */ 3749 if (!ipst->ips_ip_path_mtu_discovery) 3750 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3751 3752 pmtu = IP_MAXPACKET; 3753 /* 3754 * We need to determine if it is acceptable to set DF for IPv4 or not 3755 * and for IPv6 if we need to use the minimum MTU. If a connection has 3756 * opted into path MTU discovery, then we can use 'DF' in IPv4 and do 3757 * not have to constrain ourselves to the IPv6 minimum MTU. There is a 3758 * second consideration here: IXAF_DONTFRAG. This is set as a result of 3759 * someone setting the IP_DONTFRAG or IPV6_DONTFRAG socket option. In 3760 * such a case, it is acceptable to set DF for IPv4 and to use a larger 3761 * MTU. Note, the actual MTU is constrained by the ill_t later on in 3762 * this function. 3763 */ 3764 if (ixa->ixa_flags & (IXAF_PMTU_DISCOVERY | IXAF_DONTFRAG)) { 3765 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3766 } else { 3767 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3768 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3769 pmtu = IPV6_MIN_MTU; 3770 } 3771 3772 /* Check if the PMTU is to old before we use it */ 3773 if ((dce->dce_flags & DCEF_PMTU) && 3774 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3775 ipst->ips_ip_pathmtu_interval) { 3776 /* 3777 * Older than 20 minutes. Drop the path MTU information. 3778 */ 3779 mutex_enter(&dce->dce_lock); 3780 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3781 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3782 mutex_exit(&dce->dce_lock); 3783 dce_increment_generation(dce); 3784 } 3785 3786 /* The metrics on the route can lower the path MTU */ 3787 if (ire->ire_metrics.iulp_mtu != 0 && 3788 ire->ire_metrics.iulp_mtu < pmtu) 3789 pmtu = ire->ire_metrics.iulp_mtu; 3790 3791 /* 3792 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3793 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3794 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3795 */ 3796 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3797 if (dce->dce_flags & DCEF_PMTU) { 3798 if (dce->dce_pmtu < pmtu) 3799 pmtu = dce->dce_pmtu; 3800 3801 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3802 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3803 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3804 } else { 3805 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3806 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3807 } 3808 } else { 3809 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3810 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3811 } 3812 } 3813 3814 /* 3815 * If we have an IRE_LOCAL we use the loopback mtu instead of 3816 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3817 * mtu as IRE_LOOPBACK. 3818 */ 3819 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3820 uint_t loopback_mtu; 3821 3822 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3823 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3824 3825 if (loopback_mtu < pmtu) 3826 pmtu = loopback_mtu; 3827 } else if (nce != NULL) { 3828 /* 3829 * Make sure we don't exceed the interface MTU. 3830 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3831 * an ill. We'd use the above IP_MAXPACKET in that case just 3832 * to tell the transport something larger than zero. 3833 */ 3834 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3835 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3836 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3837 if (nce->nce_common->ncec_ill != nce->nce_ill && 3838 nce->nce_ill->ill_mc_mtu < pmtu) { 3839 /* 3840 * for interfaces in an IPMP group, the mtu of 3841 * the nce_ill (under_ill) could be different 3842 * from the mtu of the ncec_ill, so we take the 3843 * min of the two. 3844 */ 3845 pmtu = nce->nce_ill->ill_mc_mtu; 3846 } 3847 } else { 3848 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3849 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3850 if (nce->nce_common->ncec_ill != nce->nce_ill && 3851 nce->nce_ill->ill_mtu < pmtu) { 3852 /* 3853 * for interfaces in an IPMP group, the mtu of 3854 * the nce_ill (under_ill) could be different 3855 * from the mtu of the ncec_ill, so we take the 3856 * min of the two. 3857 */ 3858 pmtu = nce->nce_ill->ill_mtu; 3859 } 3860 } 3861 } 3862 3863 /* 3864 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3865 * Only applies to IPv6. 3866 */ 3867 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3868 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3869 switch (ixa->ixa_use_min_mtu) { 3870 case IPV6_USE_MIN_MTU_MULTICAST: 3871 if (ire->ire_type & IRE_MULTICAST) 3872 pmtu = IPV6_MIN_MTU; 3873 break; 3874 case IPV6_USE_MIN_MTU_ALWAYS: 3875 pmtu = IPV6_MIN_MTU; 3876 break; 3877 case IPV6_USE_MIN_MTU_NEVER: 3878 break; 3879 } 3880 } else { 3881 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3882 if (ire->ire_type & IRE_MULTICAST) 3883 pmtu = IPV6_MIN_MTU; 3884 } 3885 } 3886 3887 /* 3888 * For multirouted IPv6 packets, the IP layer will insert a 8-byte 3889 * fragment header in every packet. We compensate for those cases by 3890 * returning a smaller path MTU to the ULP. 3891 * 3892 * In the case of CGTP then ip_output will add a fragment header. 3893 * Make sure there is room for it by telling a smaller number 3894 * to the transport. 3895 * 3896 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3897 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3898 * which is the size of the packets it can send. 3899 */ 3900 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3901 if ((ire->ire_flags & RTF_MULTIRT) || 3902 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3903 pmtu -= sizeof (ip6_frag_t); 3904 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3905 } 3906 } 3907 3908 return (pmtu); 3909 } 3910 3911 /* 3912 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3913 * the final piece where we don't. Return a pointer to the first mblk in the 3914 * result, and update the pointer to the next mblk to chew on. If anything 3915 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3916 * NULL pointer. 3917 */ 3918 mblk_t * 3919 ip_carve_mp(mblk_t **mpp, ssize_t len) 3920 { 3921 mblk_t *mp0; 3922 mblk_t *mp1; 3923 mblk_t *mp2; 3924 3925 if (!len || !mpp || !(mp0 = *mpp)) 3926 return (NULL); 3927 /* If we aren't going to consume the first mblk, we need a dup. */ 3928 if (mp0->b_wptr - mp0->b_rptr > len) { 3929 mp1 = dupb(mp0); 3930 if (mp1) { 3931 /* Partition the data between the two mblks. */ 3932 mp1->b_wptr = mp1->b_rptr + len; 3933 mp0->b_rptr = mp1->b_wptr; 3934 /* 3935 * after adjustments if mblk not consumed is now 3936 * unaligned, try to align it. If this fails free 3937 * all messages and let upper layer recover. 3938 */ 3939 if (!OK_32PTR(mp0->b_rptr)) { 3940 if (!pullupmsg(mp0, -1)) { 3941 freemsg(mp0); 3942 freemsg(mp1); 3943 *mpp = NULL; 3944 return (NULL); 3945 } 3946 } 3947 } 3948 return (mp1); 3949 } 3950 /* Eat through as many mblks as we need to get len bytes. */ 3951 len -= mp0->b_wptr - mp0->b_rptr; 3952 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3953 if (mp2->b_wptr - mp2->b_rptr > len) { 3954 /* 3955 * We won't consume the entire last mblk. Like 3956 * above, dup and partition it. 3957 */ 3958 mp1->b_cont = dupb(mp2); 3959 mp1 = mp1->b_cont; 3960 if (!mp1) { 3961 /* 3962 * Trouble. Rather than go to a lot of 3963 * trouble to clean up, we free the messages. 3964 * This won't be any worse than losing it on 3965 * the wire. 3966 */ 3967 freemsg(mp0); 3968 freemsg(mp2); 3969 *mpp = NULL; 3970 return (NULL); 3971 } 3972 mp1->b_wptr = mp1->b_rptr + len; 3973 mp2->b_rptr = mp1->b_wptr; 3974 /* 3975 * after adjustments if mblk not consumed is now 3976 * unaligned, try to align it. If this fails free 3977 * all messages and let upper layer recover. 3978 */ 3979 if (!OK_32PTR(mp2->b_rptr)) { 3980 if (!pullupmsg(mp2, -1)) { 3981 freemsg(mp0); 3982 freemsg(mp2); 3983 *mpp = NULL; 3984 return (NULL); 3985 } 3986 } 3987 *mpp = mp2; 3988 return (mp0); 3989 } 3990 /* Decrement len by the amount we just got. */ 3991 len -= mp2->b_wptr - mp2->b_rptr; 3992 } 3993 /* 3994 * len should be reduced to zero now. If not our caller has 3995 * screwed up. 3996 */ 3997 if (len) { 3998 /* Shouldn't happen! */ 3999 freemsg(mp0); 4000 *mpp = NULL; 4001 return (NULL); 4002 } 4003 /* 4004 * We consumed up to exactly the end of an mblk. Detach the part 4005 * we are returning from the rest of the chain. 4006 */ 4007 mp1->b_cont = NULL; 4008 *mpp = mp2; 4009 return (mp0); 4010 } 4011 4012 /* The ill stream is being unplumbed. Called from ip_close */ 4013 int 4014 ip_modclose(ill_t *ill) 4015 { 4016 boolean_t success; 4017 ipsq_t *ipsq; 4018 ipif_t *ipif; 4019 queue_t *q = ill->ill_rq; 4020 ip_stack_t *ipst = ill->ill_ipst; 4021 int i; 4022 arl_ill_common_t *ai = ill->ill_common; 4023 4024 /* 4025 * The punlink prior to this may have initiated a capability 4026 * negotiation. But ipsq_enter will block until that finishes or 4027 * times out. 4028 */ 4029 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4030 4031 /* 4032 * Open/close/push/pop is guaranteed to be single threaded 4033 * per stream by STREAMS. FS guarantees that all references 4034 * from top are gone before close is called. So there can't 4035 * be another close thread that has set CONDEMNED on this ill. 4036 * and cause ipsq_enter to return failure. 4037 */ 4038 ASSERT(success); 4039 ipsq = ill->ill_phyint->phyint_ipsq; 4040 4041 /* 4042 * Mark it condemned. No new reference will be made to this ill. 4043 * Lookup functions will return an error. Threads that try to 4044 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4045 * that the refcnt will drop down to zero. 4046 */ 4047 mutex_enter(&ill->ill_lock); 4048 ill->ill_state_flags |= ILL_CONDEMNED; 4049 for (ipif = ill->ill_ipif; ipif != NULL; 4050 ipif = ipif->ipif_next) { 4051 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4052 } 4053 /* 4054 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4055 * returns error if ILL_CONDEMNED is set 4056 */ 4057 cv_broadcast(&ill->ill_cv); 4058 mutex_exit(&ill->ill_lock); 4059 4060 /* 4061 * Send all the deferred DLPI messages downstream which came in 4062 * during the small window right before ipsq_enter(). We do this 4063 * without waiting for the ACKs because all the ACKs for M_PROTO 4064 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4065 */ 4066 ill_dlpi_send_deferred(ill); 4067 4068 /* 4069 * Shut down fragmentation reassembly. 4070 * ill_frag_timer won't start a timer again. 4071 * Now cancel any existing timer 4072 */ 4073 (void) untimeout(ill->ill_frag_timer_id); 4074 (void) ill_frag_timeout(ill, 0); 4075 4076 /* 4077 * Call ill_delete to bring down the ipifs, ilms and ill on 4078 * this ill. Then wait for the refcnts to drop to zero. 4079 * ill_is_freeable checks whether the ill is really quiescent. 4080 * Then make sure that threads that are waiting to enter the 4081 * ipsq have seen the error returned by ipsq_enter and have 4082 * gone away. Then we call ill_delete_tail which does the 4083 * DL_UNBIND_REQ with the driver and then qprocsoff. 4084 */ 4085 ill_delete(ill); 4086 mutex_enter(&ill->ill_lock); 4087 while (!ill_is_freeable(ill)) 4088 cv_wait(&ill->ill_cv, &ill->ill_lock); 4089 4090 while (ill->ill_waiters) 4091 cv_wait(&ill->ill_cv, &ill->ill_lock); 4092 4093 mutex_exit(&ill->ill_lock); 4094 4095 /* 4096 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4097 * it held until the end of the function since the cleanup 4098 * below needs to be able to use the ip_stack_t. 4099 */ 4100 netstack_hold(ipst->ips_netstack); 4101 4102 /* qprocsoff is done via ill_delete_tail */ 4103 ill_delete_tail(ill); 4104 /* 4105 * synchronously wait for arp stream to unbind. After this, we 4106 * cannot get any data packets up from the driver. 4107 */ 4108 arp_unbind_complete(ill); 4109 ASSERT(ill->ill_ipst == NULL); 4110 4111 /* 4112 * Walk through all conns and qenable those that have queued data. 4113 * Close synchronization needs this to 4114 * be done to ensure that all upper layers blocked 4115 * due to flow control to the closing device 4116 * get unblocked. 4117 */ 4118 ip1dbg(("ip_wsrv: walking\n")); 4119 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4120 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4121 } 4122 4123 /* 4124 * ai can be null if this is an IPv6 ill, or if the IPv4 4125 * stream is being torn down before ARP was plumbed (e.g., 4126 * /sbin/ifconfig plumbing a stream twice, and encountering 4127 * an error 4128 */ 4129 if (ai != NULL) { 4130 ASSERT(!ill->ill_isv6); 4131 mutex_enter(&ai->ai_lock); 4132 ai->ai_ill = NULL; 4133 if (ai->ai_arl == NULL) { 4134 mutex_destroy(&ai->ai_lock); 4135 kmem_free(ai, sizeof (*ai)); 4136 } else { 4137 cv_signal(&ai->ai_ill_unplumb_done); 4138 mutex_exit(&ai->ai_lock); 4139 } 4140 } 4141 4142 mutex_enter(&ipst->ips_ip_mi_lock); 4143 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4144 mutex_exit(&ipst->ips_ip_mi_lock); 4145 4146 /* 4147 * credp could be null if the open didn't succeed and ip_modopen 4148 * itself calls ip_close. 4149 */ 4150 if (ill->ill_credp != NULL) 4151 crfree(ill->ill_credp); 4152 4153 mutex_destroy(&ill->ill_saved_ire_lock); 4154 mutex_destroy(&ill->ill_lock); 4155 rw_destroy(&ill->ill_mcast_lock); 4156 mutex_destroy(&ill->ill_mcast_serializer); 4157 list_destroy(&ill->ill_nce); 4158 4159 /* 4160 * Now we are done with the module close pieces that 4161 * need the netstack_t. 4162 */ 4163 netstack_rele(ipst->ips_netstack); 4164 4165 mi_close_free((IDP)ill); 4166 q->q_ptr = WR(q)->q_ptr = NULL; 4167 4168 ipsq_exit(ipsq); 4169 4170 return (0); 4171 } 4172 4173 /* 4174 * This is called as part of close() for IP, UDP, ICMP, and RTS 4175 * in order to quiesce the conn. 4176 */ 4177 void 4178 ip_quiesce_conn(conn_t *connp) 4179 { 4180 boolean_t drain_cleanup_reqd = B_FALSE; 4181 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4182 boolean_t ilg_cleanup_reqd = B_FALSE; 4183 ip_stack_t *ipst; 4184 4185 ASSERT(!IPCL_IS_TCP(connp)); 4186 ipst = connp->conn_netstack->netstack_ip; 4187 4188 /* 4189 * Mark the conn as closing, and this conn must not be 4190 * inserted in future into any list. Eg. conn_drain_insert(), 4191 * won't insert this conn into the conn_drain_list. 4192 * 4193 * conn_idl, and conn_ilg cannot get set henceforth. 4194 */ 4195 mutex_enter(&connp->conn_lock); 4196 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4197 connp->conn_state_flags |= CONN_CLOSING; 4198 if (connp->conn_idl != NULL) 4199 drain_cleanup_reqd = B_TRUE; 4200 if (connp->conn_oper_pending_ill != NULL) 4201 conn_ioctl_cleanup_reqd = B_TRUE; 4202 if (connp->conn_dhcpinit_ill != NULL) { 4203 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4204 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4205 ill_set_inputfn(connp->conn_dhcpinit_ill); 4206 connp->conn_dhcpinit_ill = NULL; 4207 } 4208 if (connp->conn_ilg != NULL) 4209 ilg_cleanup_reqd = B_TRUE; 4210 mutex_exit(&connp->conn_lock); 4211 4212 if (conn_ioctl_cleanup_reqd) 4213 conn_ioctl_cleanup(connp); 4214 4215 if (is_system_labeled() && connp->conn_anon_port) { 4216 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4217 connp->conn_mlp_type, connp->conn_proto, 4218 ntohs(connp->conn_lport), B_FALSE); 4219 connp->conn_anon_port = 0; 4220 } 4221 connp->conn_mlp_type = mlptSingle; 4222 4223 /* 4224 * Remove this conn from any fanout list it is on. 4225 * and then wait for any threads currently operating 4226 * on this endpoint to finish 4227 */ 4228 ipcl_hash_remove(connp); 4229 4230 /* 4231 * Remove this conn from the drain list, and do any other cleanup that 4232 * may be required. (TCP conns are never flow controlled, and 4233 * conn_idl will be NULL.) 4234 */ 4235 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4236 idl_t *idl = connp->conn_idl; 4237 4238 mutex_enter(&idl->idl_lock); 4239 conn_drain(connp, B_TRUE); 4240 mutex_exit(&idl->idl_lock); 4241 } 4242 4243 if (connp == ipst->ips_ip_g_mrouter) 4244 (void) ip_mrouter_done(ipst); 4245 4246 if (ilg_cleanup_reqd) 4247 ilg_delete_all(connp); 4248 4249 /* 4250 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4251 * callers from write side can't be there now because close 4252 * is in progress. The only other caller is ipcl_walk 4253 * which checks for the condemned flag. 4254 */ 4255 mutex_enter(&connp->conn_lock); 4256 connp->conn_state_flags |= CONN_CONDEMNED; 4257 while (connp->conn_ref != 1) 4258 cv_wait(&connp->conn_cv, &connp->conn_lock); 4259 connp->conn_state_flags |= CONN_QUIESCED; 4260 mutex_exit(&connp->conn_lock); 4261 } 4262 4263 /* ARGSUSED */ 4264 int 4265 ip_close(queue_t *q, int flags, cred_t *credp __unused) 4266 { 4267 conn_t *connp; 4268 4269 /* 4270 * Call the appropriate delete routine depending on whether this is 4271 * a module or device. 4272 */ 4273 if (WR(q)->q_next != NULL) { 4274 /* This is a module close */ 4275 return (ip_modclose((ill_t *)q->q_ptr)); 4276 } 4277 4278 connp = q->q_ptr; 4279 ip_quiesce_conn(connp); 4280 4281 qprocsoff(q); 4282 4283 /* 4284 * Now we are truly single threaded on this stream, and can 4285 * delete the things hanging off the connp, and finally the connp. 4286 * We removed this connp from the fanout list, it cannot be 4287 * accessed thru the fanouts, and we already waited for the 4288 * conn_ref to drop to 0. We are already in close, so 4289 * there cannot be any other thread from the top. qprocsoff 4290 * has completed, and service has completed or won't run in 4291 * future. 4292 */ 4293 ASSERT(connp->conn_ref == 1); 4294 4295 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4296 4297 connp->conn_ref--; 4298 ipcl_conn_destroy(connp); 4299 4300 q->q_ptr = WR(q)->q_ptr = NULL; 4301 return (0); 4302 } 4303 4304 /* 4305 * Wapper around putnext() so that ip_rts_request can merely use 4306 * conn_recv. 4307 */ 4308 /*ARGSUSED2*/ 4309 static void 4310 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4311 { 4312 conn_t *connp = (conn_t *)arg1; 4313 4314 putnext(connp->conn_rq, mp); 4315 } 4316 4317 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4318 /* ARGSUSED */ 4319 static void 4320 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4321 { 4322 freemsg(mp); 4323 } 4324 4325 /* 4326 * Called when the module is about to be unloaded 4327 */ 4328 void 4329 ip_ddi_destroy(void) 4330 { 4331 /* This needs to be called before destroying any transports. */ 4332 mutex_enter(&cpu_lock); 4333 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4334 mutex_exit(&cpu_lock); 4335 4336 tnet_fini(); 4337 4338 icmp_ddi_g_destroy(); 4339 rts_ddi_g_destroy(); 4340 udp_ddi_g_destroy(); 4341 sctp_ddi_g_destroy(); 4342 tcp_ddi_g_destroy(); 4343 ilb_ddi_g_destroy(); 4344 dce_g_destroy(); 4345 ipsec_policy_g_destroy(); 4346 ipcl_g_destroy(); 4347 ip_net_g_destroy(); 4348 ip_ire_g_fini(); 4349 inet_minor_destroy(ip_minor_arena_sa); 4350 #if defined(_LP64) 4351 inet_minor_destroy(ip_minor_arena_la); 4352 #endif 4353 4354 #ifdef DEBUG 4355 list_destroy(&ip_thread_list); 4356 rw_destroy(&ip_thread_rwlock); 4357 tsd_destroy(&ip_thread_data); 4358 #endif 4359 4360 netstack_unregister(NS_IP); 4361 } 4362 4363 /* 4364 * First step in cleanup. 4365 */ 4366 /* ARGSUSED */ 4367 static void 4368 ip_stack_shutdown(netstackid_t stackid, void *arg) 4369 { 4370 ip_stack_t *ipst = (ip_stack_t *)arg; 4371 kt_did_t ktid; 4372 4373 #ifdef NS_DEBUG 4374 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4375 #endif 4376 4377 /* 4378 * Perform cleanup for special interfaces (loopback and IPMP). 4379 */ 4380 ip_interface_cleanup(ipst); 4381 4382 /* 4383 * The *_hook_shutdown()s start the process of notifying any 4384 * consumers that things are going away.... nothing is destroyed. 4385 */ 4386 ipv4_hook_shutdown(ipst); 4387 ipv6_hook_shutdown(ipst); 4388 arp_hook_shutdown(ipst); 4389 4390 mutex_enter(&ipst->ips_capab_taskq_lock); 4391 ktid = ipst->ips_capab_taskq_thread->t_did; 4392 ipst->ips_capab_taskq_quit = B_TRUE; 4393 cv_signal(&ipst->ips_capab_taskq_cv); 4394 mutex_exit(&ipst->ips_capab_taskq_lock); 4395 4396 /* 4397 * In rare occurrences, particularly on virtual hardware where CPUs can 4398 * be de-scheduled, the thread that we just signaled will not run until 4399 * after we have gotten through parts of ip_stack_fini. If that happens 4400 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4401 * from cv_wait which no longer exists. 4402 */ 4403 thread_join(ktid); 4404 } 4405 4406 /* 4407 * Free the IP stack instance. 4408 */ 4409 static void 4410 ip_stack_fini(netstackid_t stackid, void *arg) 4411 { 4412 ip_stack_t *ipst = (ip_stack_t *)arg; 4413 int ret; 4414 4415 #ifdef NS_DEBUG 4416 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4417 #endif 4418 /* 4419 * At this point, all of the notifications that the events and 4420 * protocols are going away have been run, meaning that we can 4421 * now set about starting to clean things up. 4422 */ 4423 ipobs_fini(ipst); 4424 ipv4_hook_destroy(ipst); 4425 ipv6_hook_destroy(ipst); 4426 arp_hook_destroy(ipst); 4427 ip_net_destroy(ipst); 4428 4429 ipmp_destroy(ipst); 4430 4431 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4432 ipst->ips_ip_mibkp = NULL; 4433 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4434 ipst->ips_icmp_mibkp = NULL; 4435 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4436 ipst->ips_ip_kstat = NULL; 4437 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4438 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4439 ipst->ips_ip6_kstat = NULL; 4440 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4441 4442 kmem_free(ipst->ips_propinfo_tbl, 4443 ip_propinfo_count * sizeof (mod_prop_info_t)); 4444 ipst->ips_propinfo_tbl = NULL; 4445 4446 dce_stack_destroy(ipst); 4447 ip_mrouter_stack_destroy(ipst); 4448 4449 /* 4450 * Quiesce all of our timers. Note we set the quiesce flags before we 4451 * call untimeout. The slowtimers may actually kick off another instance 4452 * of the non-slow timers. 4453 */ 4454 mutex_enter(&ipst->ips_igmp_timer_lock); 4455 ipst->ips_igmp_timer_quiesce = B_TRUE; 4456 mutex_exit(&ipst->ips_igmp_timer_lock); 4457 4458 mutex_enter(&ipst->ips_mld_timer_lock); 4459 ipst->ips_mld_timer_quiesce = B_TRUE; 4460 mutex_exit(&ipst->ips_mld_timer_lock); 4461 4462 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 4463 ipst->ips_igmp_slowtimeout_quiesce = B_TRUE; 4464 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 4465 4466 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 4467 ipst->ips_mld_slowtimeout_quiesce = B_TRUE; 4468 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 4469 4470 ret = untimeout(ipst->ips_igmp_timeout_id); 4471 if (ret == -1) { 4472 ASSERT(ipst->ips_igmp_timeout_id == 0); 4473 } else { 4474 ASSERT(ipst->ips_igmp_timeout_id != 0); 4475 ipst->ips_igmp_timeout_id = 0; 4476 } 4477 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4478 if (ret == -1) { 4479 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4480 } else { 4481 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4482 ipst->ips_igmp_slowtimeout_id = 0; 4483 } 4484 ret = untimeout(ipst->ips_mld_timeout_id); 4485 if (ret == -1) { 4486 ASSERT(ipst->ips_mld_timeout_id == 0); 4487 } else { 4488 ASSERT(ipst->ips_mld_timeout_id != 0); 4489 ipst->ips_mld_timeout_id = 0; 4490 } 4491 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4492 if (ret == -1) { 4493 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4494 } else { 4495 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4496 ipst->ips_mld_slowtimeout_id = 0; 4497 } 4498 4499 ip_ire_fini(ipst); 4500 ip6_asp_free(ipst); 4501 conn_drain_fini(ipst); 4502 ipcl_destroy(ipst); 4503 4504 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4505 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4506 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4507 ipst->ips_ndp4 = NULL; 4508 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4509 ipst->ips_ndp6 = NULL; 4510 4511 if (ipst->ips_loopback_ksp != NULL) { 4512 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4513 ipst->ips_loopback_ksp = NULL; 4514 } 4515 4516 mutex_destroy(&ipst->ips_capab_taskq_lock); 4517 cv_destroy(&ipst->ips_capab_taskq_cv); 4518 4519 rw_destroy(&ipst->ips_srcid_lock); 4520 4521 mutex_destroy(&ipst->ips_ip_mi_lock); 4522 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4523 4524 mutex_destroy(&ipst->ips_igmp_timer_lock); 4525 mutex_destroy(&ipst->ips_mld_timer_lock); 4526 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4527 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4528 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4529 rw_destroy(&ipst->ips_ill_g_lock); 4530 4531 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4532 ipst->ips_phyint_g_list = NULL; 4533 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4534 ipst->ips_ill_g_heads = NULL; 4535 4536 ldi_ident_release(ipst->ips_ldi_ident); 4537 kmem_free(ipst, sizeof (*ipst)); 4538 } 4539 4540 /* 4541 * This function is called from the TSD destructor, and is used to debug 4542 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4543 * details. 4544 */ 4545 static void 4546 ip_thread_exit(void *phash) 4547 { 4548 th_hash_t *thh = phash; 4549 4550 rw_enter(&ip_thread_rwlock, RW_WRITER); 4551 list_remove(&ip_thread_list, thh); 4552 rw_exit(&ip_thread_rwlock); 4553 mod_hash_destroy_hash(thh->thh_hash); 4554 kmem_free(thh, sizeof (*thh)); 4555 } 4556 4557 /* 4558 * Called when the IP kernel module is loaded into the kernel 4559 */ 4560 void 4561 ip_ddi_init(void) 4562 { 4563 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4564 4565 /* 4566 * For IP and TCP the minor numbers should start from 2 since we have 4 4567 * initial devices: ip, ip6, tcp, tcp6. 4568 */ 4569 /* 4570 * If this is a 64-bit kernel, then create two separate arenas - 4571 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4572 * other for socket apps in the range 2^^18 through 2^^32-1. 4573 */ 4574 ip_minor_arena_la = NULL; 4575 ip_minor_arena_sa = NULL; 4576 #if defined(_LP64) 4577 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4578 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4579 cmn_err(CE_PANIC, 4580 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4581 } 4582 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4583 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4584 cmn_err(CE_PANIC, 4585 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4586 } 4587 #else 4588 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4589 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4590 cmn_err(CE_PANIC, 4591 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4592 } 4593 #endif 4594 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4595 4596 ipcl_g_init(); 4597 ip_ire_g_init(); 4598 ip_net_g_init(); 4599 4600 #ifdef DEBUG 4601 tsd_create(&ip_thread_data, ip_thread_exit); 4602 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4603 list_create(&ip_thread_list, sizeof (th_hash_t), 4604 offsetof(th_hash_t, thh_link)); 4605 #endif 4606 ipsec_policy_g_init(); 4607 tcp_ddi_g_init(); 4608 sctp_ddi_g_init(); 4609 dce_g_init(); 4610 4611 /* 4612 * We want to be informed each time a stack is created or 4613 * destroyed in the kernel, so we can maintain the 4614 * set of udp_stack_t's. 4615 */ 4616 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4617 ip_stack_fini); 4618 4619 tnet_init(); 4620 4621 udp_ddi_g_init(); 4622 rts_ddi_g_init(); 4623 icmp_ddi_g_init(); 4624 ilb_ddi_g_init(); 4625 4626 /* This needs to be called after all transports are initialized. */ 4627 mutex_enter(&cpu_lock); 4628 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4629 mutex_exit(&cpu_lock); 4630 } 4631 4632 /* 4633 * Initialize the IP stack instance. 4634 */ 4635 static void * 4636 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4637 { 4638 ip_stack_t *ipst; 4639 size_t arrsz; 4640 major_t major; 4641 4642 #ifdef NS_DEBUG 4643 printf("ip_stack_init(stack %d)\n", stackid); 4644 #endif 4645 4646 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4647 ipst->ips_netstack = ns; 4648 4649 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4650 KM_SLEEP); 4651 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4652 KM_SLEEP); 4653 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4654 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4655 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4656 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4657 4658 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4659 ipst->ips_igmp_deferred_next = INFINITY; 4660 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4661 ipst->ips_mld_deferred_next = INFINITY; 4662 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4663 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4664 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4665 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4666 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4667 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4668 4669 ipcl_init(ipst); 4670 ip_ire_init(ipst); 4671 ip6_asp_init(ipst); 4672 ipif_init(ipst); 4673 conn_drain_init(ipst); 4674 ip_mrouter_stack_init(ipst); 4675 dce_stack_init(ipst); 4676 4677 ipst->ips_ip_multirt_log_interval = 1000; 4678 4679 ipst->ips_ill_index = 1; 4680 4681 ipst->ips_saved_ip_forwarding = -1; 4682 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4683 4684 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4685 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4686 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4687 4688 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4689 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4690 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4691 ipst->ips_ip6_kstat = 4692 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4693 4694 ipst->ips_ip_src_id = 1; 4695 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4696 4697 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4698 4699 ip_net_init(ipst, ns); 4700 ipv4_hook_init(ipst); 4701 ipv6_hook_init(ipst); 4702 arp_hook_init(ipst); 4703 ipmp_init(ipst); 4704 ipobs_init(ipst); 4705 4706 /* 4707 * Create the taskq dispatcher thread and initialize related stuff. 4708 */ 4709 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4710 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4711 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4712 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4713 4714 major = mod_name_to_major(INET_NAME); 4715 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4716 return (ipst); 4717 } 4718 4719 /* 4720 * Allocate and initialize a DLPI template of the specified length. (May be 4721 * called as writer.) 4722 */ 4723 mblk_t * 4724 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4725 { 4726 mblk_t *mp; 4727 4728 mp = allocb(len, BPRI_MED); 4729 if (!mp) 4730 return (NULL); 4731 4732 /* 4733 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4734 * of which we don't seem to use) are sent with M_PCPROTO, and 4735 * that other DLPI are M_PROTO. 4736 */ 4737 if (prim == DL_INFO_REQ) { 4738 mp->b_datap->db_type = M_PCPROTO; 4739 } else { 4740 mp->b_datap->db_type = M_PROTO; 4741 } 4742 4743 mp->b_wptr = mp->b_rptr + len; 4744 bzero(mp->b_rptr, len); 4745 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4746 return (mp); 4747 } 4748 4749 /* 4750 * Allocate and initialize a DLPI notification. (May be called as writer.) 4751 */ 4752 mblk_t * 4753 ip_dlnotify_alloc(uint_t notification, uint_t data) 4754 { 4755 dl_notify_ind_t *notifyp; 4756 mblk_t *mp; 4757 4758 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4759 return (NULL); 4760 4761 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4762 notifyp->dl_notification = notification; 4763 notifyp->dl_data = data; 4764 return (mp); 4765 } 4766 4767 mblk_t * 4768 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4769 { 4770 dl_notify_ind_t *notifyp; 4771 mblk_t *mp; 4772 4773 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4774 return (NULL); 4775 4776 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4777 notifyp->dl_notification = notification; 4778 notifyp->dl_data1 = data1; 4779 notifyp->dl_data2 = data2; 4780 return (mp); 4781 } 4782 4783 /* 4784 * Debug formatting routine. Returns a character string representation of the 4785 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4786 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4787 * 4788 * Once the ndd table-printing interfaces are removed, this can be changed to 4789 * standard dotted-decimal form. 4790 */ 4791 char * 4792 ip_dot_addr(ipaddr_t addr, char *buf) 4793 { 4794 uint8_t *ap = (uint8_t *)&addr; 4795 4796 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4797 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4798 return (buf); 4799 } 4800 4801 /* 4802 * Write the given MAC address as a printable string in the usual colon- 4803 * separated format. 4804 */ 4805 const char * 4806 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4807 { 4808 char *bp; 4809 4810 if (alen == 0 || buflen < 4) 4811 return ("?"); 4812 bp = buf; 4813 for (;;) { 4814 /* 4815 * If there are more MAC address bytes available, but we won't 4816 * have any room to print them, then add "..." to the string 4817 * instead. See below for the 'magic number' explanation. 4818 */ 4819 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4820 (void) strcpy(bp, "..."); 4821 break; 4822 } 4823 (void) sprintf(bp, "%02x", *addr++); 4824 bp += 2; 4825 if (--alen == 0) 4826 break; 4827 *bp++ = ':'; 4828 buflen -= 3; 4829 /* 4830 * At this point, based on the first 'if' statement above, 4831 * either alen == 1 and buflen >= 3, or alen > 1 and 4832 * buflen >= 4. The first case leaves room for the final "xx" 4833 * number and trailing NUL byte. The second leaves room for at 4834 * least "...". Thus the apparently 'magic' numbers chosen for 4835 * that statement. 4836 */ 4837 } 4838 return (buf); 4839 } 4840 4841 /* 4842 * Called when it is conceptually a ULP that would sent the packet 4843 * e.g., port unreachable and protocol unreachable. Check that the packet 4844 * would have passed the IPsec global policy before sending the error. 4845 * 4846 * Send an ICMP error after patching up the packet appropriately. 4847 * Uses ip_drop_input and bumps the appropriate MIB. 4848 */ 4849 void 4850 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4851 ip_recv_attr_t *ira) 4852 { 4853 ipha_t *ipha; 4854 boolean_t secure; 4855 ill_t *ill = ira->ira_ill; 4856 ip_stack_t *ipst = ill->ill_ipst; 4857 netstack_t *ns = ipst->ips_netstack; 4858 ipsec_stack_t *ipss = ns->netstack_ipsec; 4859 4860 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4861 4862 /* 4863 * We are generating an icmp error for some inbound packet. 4864 * Called from all ip_fanout_(udp, tcp, proto) functions. 4865 * Before we generate an error, check with global policy 4866 * to see whether this is allowed to enter the system. As 4867 * there is no "conn", we are checking with global policy. 4868 */ 4869 ipha = (ipha_t *)mp->b_rptr; 4870 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4871 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4872 if (mp == NULL) 4873 return; 4874 } 4875 4876 /* We never send errors for protocols that we do implement */ 4877 if (ira->ira_protocol == IPPROTO_ICMP || 4878 ira->ira_protocol == IPPROTO_IGMP) { 4879 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4880 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4881 freemsg(mp); 4882 return; 4883 } 4884 /* 4885 * Have to correct checksum since 4886 * the packet might have been 4887 * fragmented and the reassembly code in ip_rput 4888 * does not restore the IP checksum. 4889 */ 4890 ipha->ipha_hdr_checksum = 0; 4891 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4892 4893 switch (icmp_type) { 4894 case ICMP_DEST_UNREACHABLE: 4895 switch (icmp_code) { 4896 case ICMP_PROTOCOL_UNREACHABLE: 4897 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4898 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4899 break; 4900 case ICMP_PORT_UNREACHABLE: 4901 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4902 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4903 break; 4904 } 4905 4906 icmp_unreachable(mp, icmp_code, ira); 4907 break; 4908 default: 4909 #ifdef DEBUG 4910 panic("ip_fanout_send_icmp_v4: wrong type"); 4911 /*NOTREACHED*/ 4912 #else 4913 freemsg(mp); 4914 break; 4915 #endif 4916 } 4917 } 4918 4919 /* 4920 * Used to send an ICMP error message when a packet is received for 4921 * a protocol that is not supported. The mblk passed as argument 4922 * is consumed by this function. 4923 */ 4924 void 4925 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4926 { 4927 ipha_t *ipha; 4928 4929 ipha = (ipha_t *)mp->b_rptr; 4930 if (ira->ira_flags & IRAF_IS_IPV4) { 4931 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4932 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4933 ICMP_PROTOCOL_UNREACHABLE, ira); 4934 } else { 4935 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4936 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4937 ICMP6_PARAMPROB_NEXTHEADER, ira); 4938 } 4939 } 4940 4941 /* 4942 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4943 * Handles IPv4 and IPv6. 4944 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4945 * Caller is responsible for dropping references to the conn. 4946 */ 4947 void 4948 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4949 ip_recv_attr_t *ira) 4950 { 4951 ill_t *ill = ira->ira_ill; 4952 ip_stack_t *ipst = ill->ill_ipst; 4953 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4954 boolean_t secure; 4955 uint_t protocol = ira->ira_protocol; 4956 iaflags_t iraflags = ira->ira_flags; 4957 queue_t *rq; 4958 4959 secure = iraflags & IRAF_IPSEC_SECURE; 4960 4961 rq = connp->conn_rq; 4962 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4963 switch (protocol) { 4964 case IPPROTO_ICMPV6: 4965 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4966 break; 4967 case IPPROTO_ICMP: 4968 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4969 break; 4970 default: 4971 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4972 break; 4973 } 4974 freemsg(mp); 4975 return; 4976 } 4977 4978 ASSERT(!(IPCL_IS_IPTUN(connp))); 4979 4980 if (((iraflags & IRAF_IS_IPV4) ? 4981 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4982 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4983 secure) { 4984 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4985 ip6h, ira); 4986 if (mp == NULL) { 4987 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4988 /* Note that mp is NULL */ 4989 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4990 return; 4991 } 4992 } 4993 4994 if (iraflags & IRAF_ICMP_ERROR) { 4995 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4996 } else { 4997 ill_t *rill = ira->ira_rill; 4998 4999 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5000 ira->ira_ill = ira->ira_rill = NULL; 5001 /* Send it upstream */ 5002 (connp->conn_recv)(connp, mp, NULL, ira); 5003 ira->ira_ill = ill; 5004 ira->ira_rill = rill; 5005 } 5006 } 5007 5008 /* 5009 * Handle protocols with which IP is less intimate. There 5010 * can be more than one stream bound to a particular 5011 * protocol. When this is the case, normally each one gets a copy 5012 * of any incoming packets. 5013 * 5014 * IPsec NOTE : 5015 * 5016 * Don't allow a secure packet going up a non-secure connection. 5017 * We don't allow this because 5018 * 5019 * 1) Reply might go out in clear which will be dropped at 5020 * the sending side. 5021 * 2) If the reply goes out in clear it will give the 5022 * adversary enough information for getting the key in 5023 * most of the cases. 5024 * 5025 * Moreover getting a secure packet when we expect clear 5026 * implies that SA's were added without checking for 5027 * policy on both ends. This should not happen once ISAKMP 5028 * is used to negotiate SAs as SAs will be added only after 5029 * verifying the policy. 5030 * 5031 * Zones notes: 5032 * Earlier in ip_input on a system with multiple shared-IP zones we 5033 * duplicate the multicast and broadcast packets and send them up 5034 * with each explicit zoneid that exists on that ill. 5035 * This means that here we can match the zoneid with SO_ALLZONES being special. 5036 */ 5037 void 5038 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5039 { 5040 mblk_t *mp1; 5041 ipaddr_t laddr; 5042 conn_t *connp, *first_connp, *next_connp; 5043 connf_t *connfp; 5044 ill_t *ill = ira->ira_ill; 5045 ip_stack_t *ipst = ill->ill_ipst; 5046 5047 laddr = ipha->ipha_dst; 5048 5049 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5050 mutex_enter(&connfp->connf_lock); 5051 connp = connfp->connf_head; 5052 for (connp = connfp->connf_head; connp != NULL; 5053 connp = connp->conn_next) { 5054 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5055 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5056 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5057 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5058 break; 5059 } 5060 } 5061 5062 if (connp == NULL) { 5063 /* 5064 * No one bound to these addresses. Is 5065 * there a client that wants all 5066 * unclaimed datagrams? 5067 */ 5068 mutex_exit(&connfp->connf_lock); 5069 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5070 ICMP_PROTOCOL_UNREACHABLE, ira); 5071 return; 5072 } 5073 5074 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5075 5076 CONN_INC_REF(connp); 5077 first_connp = connp; 5078 connp = connp->conn_next; 5079 5080 for (;;) { 5081 while (connp != NULL) { 5082 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5083 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5084 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5085 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5086 ira, connp))) 5087 break; 5088 connp = connp->conn_next; 5089 } 5090 5091 if (connp == NULL) { 5092 /* No more interested clients */ 5093 connp = first_connp; 5094 break; 5095 } 5096 if (((mp1 = dupmsg(mp)) == NULL) && 5097 ((mp1 = copymsg(mp)) == NULL)) { 5098 /* Memory allocation failed */ 5099 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5100 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5101 connp = first_connp; 5102 break; 5103 } 5104 5105 CONN_INC_REF(connp); 5106 mutex_exit(&connfp->connf_lock); 5107 5108 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5109 ira); 5110 5111 mutex_enter(&connfp->connf_lock); 5112 /* Follow the next pointer before releasing the conn. */ 5113 next_connp = connp->conn_next; 5114 CONN_DEC_REF(connp); 5115 connp = next_connp; 5116 } 5117 5118 /* Last one. Send it upstream. */ 5119 mutex_exit(&connfp->connf_lock); 5120 5121 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5122 5123 CONN_DEC_REF(connp); 5124 } 5125 5126 /* 5127 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5128 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5129 * is not consumed. 5130 * 5131 * One of three things can happen, all of which affect the passed-in mblk: 5132 * 5133 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5134 * 5135 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5136 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5137 * 5138 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5139 */ 5140 mblk_t * 5141 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5142 { 5143 int shift, plen, iph_len; 5144 ipha_t *ipha; 5145 udpha_t *udpha; 5146 uint32_t *spi; 5147 uint32_t esp_ports; 5148 uint8_t *orptr; 5149 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5150 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5151 5152 ipha = (ipha_t *)mp->b_rptr; 5153 iph_len = ira->ira_ip_hdr_length; 5154 plen = ira->ira_pktlen; 5155 5156 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5157 /* 5158 * Most likely a keepalive for the benefit of an intervening 5159 * NAT. These aren't for us, per se, so drop it. 5160 * 5161 * RFC 3947/8 doesn't say for sure what to do for 2-3 5162 * byte packets (keepalives are 1-byte), but we'll drop them 5163 * also. 5164 */ 5165 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5166 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5167 return (NULL); 5168 } 5169 5170 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5171 /* might as well pull it all up - it might be ESP. */ 5172 if (!pullupmsg(mp, -1)) { 5173 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5174 DROPPER(ipss, ipds_esp_nomem), 5175 &ipss->ipsec_dropper); 5176 return (NULL); 5177 } 5178 5179 ipha = (ipha_t *)mp->b_rptr; 5180 } 5181 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5182 if (*spi == 0) { 5183 /* UDP packet - remove 0-spi. */ 5184 shift = sizeof (uint32_t); 5185 } else { 5186 /* ESP-in-UDP packet - reduce to ESP. */ 5187 ipha->ipha_protocol = IPPROTO_ESP; 5188 shift = sizeof (udpha_t); 5189 } 5190 5191 /* Fix IP header */ 5192 ira->ira_pktlen = (plen - shift); 5193 ipha->ipha_length = htons(ira->ira_pktlen); 5194 ipha->ipha_hdr_checksum = 0; 5195 5196 orptr = mp->b_rptr; 5197 mp->b_rptr += shift; 5198 5199 udpha = (udpha_t *)(orptr + iph_len); 5200 if (*spi == 0) { 5201 ASSERT((uint8_t *)ipha == orptr); 5202 udpha->uha_length = htons(plen - shift - iph_len); 5203 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5204 esp_ports = 0; 5205 } else { 5206 esp_ports = *((uint32_t *)udpha); 5207 ASSERT(esp_ports != 0); 5208 } 5209 ovbcopy(orptr, orptr + shift, iph_len); 5210 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5211 ipha = (ipha_t *)(orptr + shift); 5212 5213 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5214 ira->ira_esp_udp_ports = esp_ports; 5215 ip_fanout_v4(mp, ipha, ira); 5216 return (NULL); 5217 } 5218 return (mp); 5219 } 5220 5221 /* 5222 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5223 * Handles IPv4 and IPv6. 5224 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5225 * Caller is responsible for dropping references to the conn. 5226 */ 5227 void 5228 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5229 ip_recv_attr_t *ira) 5230 { 5231 ill_t *ill = ira->ira_ill; 5232 ip_stack_t *ipst = ill->ill_ipst; 5233 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5234 boolean_t secure; 5235 iaflags_t iraflags = ira->ira_flags; 5236 5237 secure = iraflags & IRAF_IPSEC_SECURE; 5238 5239 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5240 !canputnext(connp->conn_rq)) { 5241 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5242 freemsg(mp); 5243 return; 5244 } 5245 5246 if (((iraflags & IRAF_IS_IPV4) ? 5247 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5248 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5249 secure) { 5250 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5251 ip6h, ira); 5252 if (mp == NULL) { 5253 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5254 /* Note that mp is NULL */ 5255 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5256 return; 5257 } 5258 } 5259 5260 /* 5261 * Since this code is not used for UDP unicast we don't need a NAT_T 5262 * check. Only ip_fanout_v4 has that check. 5263 */ 5264 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5265 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5266 } else { 5267 ill_t *rill = ira->ira_rill; 5268 5269 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5270 ira->ira_ill = ira->ira_rill = NULL; 5271 /* Send it upstream */ 5272 (connp->conn_recv)(connp, mp, NULL, ira); 5273 ira->ira_ill = ill; 5274 ira->ira_rill = rill; 5275 } 5276 } 5277 5278 /* 5279 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5280 * (Unicast fanout is handled in ip_input_v4.) 5281 * 5282 * If SO_REUSEADDR is set all multicast and broadcast packets 5283 * will be delivered to all conns bound to the same port. 5284 * 5285 * If there is at least one matching AF_INET receiver, then we will 5286 * ignore any AF_INET6 receivers. 5287 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5288 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5289 * packets. 5290 * 5291 * Zones notes: 5292 * Earlier in ip_input on a system with multiple shared-IP zones we 5293 * duplicate the multicast and broadcast packets and send them up 5294 * with each explicit zoneid that exists on that ill. 5295 * This means that here we can match the zoneid with SO_ALLZONES being special. 5296 */ 5297 void 5298 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5299 ip_recv_attr_t *ira) 5300 { 5301 ipaddr_t laddr; 5302 in6_addr_t v6faddr; 5303 conn_t *connp; 5304 connf_t *connfp; 5305 ipaddr_t faddr; 5306 ill_t *ill = ira->ira_ill; 5307 ip_stack_t *ipst = ill->ill_ipst; 5308 5309 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5310 5311 laddr = ipha->ipha_dst; 5312 faddr = ipha->ipha_src; 5313 5314 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5315 mutex_enter(&connfp->connf_lock); 5316 connp = connfp->connf_head; 5317 5318 /* 5319 * If SO_REUSEADDR has been set on the first we send the 5320 * packet to all clients that have joined the group and 5321 * match the port. 5322 */ 5323 while (connp != NULL) { 5324 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5325 conn_wantpacket(connp, ira, ipha) && 5326 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5327 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5328 break; 5329 connp = connp->conn_next; 5330 } 5331 5332 if (connp == NULL) 5333 goto notfound; 5334 5335 CONN_INC_REF(connp); 5336 5337 if (connp->conn_reuseaddr) { 5338 conn_t *first_connp = connp; 5339 conn_t *next_connp; 5340 mblk_t *mp1; 5341 5342 connp = connp->conn_next; 5343 for (;;) { 5344 while (connp != NULL) { 5345 if (IPCL_UDP_MATCH(connp, lport, laddr, 5346 fport, faddr) && 5347 conn_wantpacket(connp, ira, ipha) && 5348 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5349 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5350 ira, connp))) 5351 break; 5352 connp = connp->conn_next; 5353 } 5354 if (connp == NULL) { 5355 /* No more interested clients */ 5356 connp = first_connp; 5357 break; 5358 } 5359 if (((mp1 = dupmsg(mp)) == NULL) && 5360 ((mp1 = copymsg(mp)) == NULL)) { 5361 /* Memory allocation failed */ 5362 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5363 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5364 connp = first_connp; 5365 break; 5366 } 5367 CONN_INC_REF(connp); 5368 mutex_exit(&connfp->connf_lock); 5369 5370 IP_STAT(ipst, ip_udp_fanmb); 5371 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5372 NULL, ira); 5373 mutex_enter(&connfp->connf_lock); 5374 /* Follow the next pointer before releasing the conn */ 5375 next_connp = connp->conn_next; 5376 CONN_DEC_REF(connp); 5377 connp = next_connp; 5378 } 5379 } 5380 5381 /* Last one. Send it upstream. */ 5382 mutex_exit(&connfp->connf_lock); 5383 IP_STAT(ipst, ip_udp_fanmb); 5384 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5385 CONN_DEC_REF(connp); 5386 return; 5387 5388 notfound: 5389 mutex_exit(&connfp->connf_lock); 5390 /* 5391 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5392 * have already been matched above, since they live in the IPv4 5393 * fanout tables. This implies we only need to 5394 * check for IPv6 in6addr_any endpoints here. 5395 * Thus we compare using ipv6_all_zeros instead of the destination 5396 * address, except for the multicast group membership lookup which 5397 * uses the IPv4 destination. 5398 */ 5399 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5400 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5401 mutex_enter(&connfp->connf_lock); 5402 connp = connfp->connf_head; 5403 /* 5404 * IPv4 multicast packet being delivered to an AF_INET6 5405 * in6addr_any endpoint. 5406 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5407 * and not conn_wantpacket_v6() since any multicast membership is 5408 * for an IPv4-mapped multicast address. 5409 */ 5410 while (connp != NULL) { 5411 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5412 fport, v6faddr) && 5413 conn_wantpacket(connp, ira, ipha) && 5414 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5415 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5416 break; 5417 connp = connp->conn_next; 5418 } 5419 5420 if (connp == NULL) { 5421 /* 5422 * No one bound to this port. Is 5423 * there a client that wants all 5424 * unclaimed datagrams? 5425 */ 5426 mutex_exit(&connfp->connf_lock); 5427 5428 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5429 NULL) { 5430 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5431 ip_fanout_proto_v4(mp, ipha, ira); 5432 } else { 5433 /* 5434 * We used to attempt to send an icmp error here, but 5435 * since this is known to be a multicast packet 5436 * and we don't send icmp errors in response to 5437 * multicast, just drop the packet and give up sooner. 5438 */ 5439 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5440 freemsg(mp); 5441 } 5442 return; 5443 } 5444 CONN_INC_REF(connp); 5445 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5446 5447 /* 5448 * If SO_REUSEADDR has been set on the first we send the 5449 * packet to all clients that have joined the group and 5450 * match the port. 5451 */ 5452 if (connp->conn_reuseaddr) { 5453 conn_t *first_connp = connp; 5454 conn_t *next_connp; 5455 mblk_t *mp1; 5456 5457 connp = connp->conn_next; 5458 for (;;) { 5459 while (connp != NULL) { 5460 if (IPCL_UDP_MATCH_V6(connp, lport, 5461 ipv6_all_zeros, fport, v6faddr) && 5462 conn_wantpacket(connp, ira, ipha) && 5463 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5464 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5465 ira, connp))) 5466 break; 5467 connp = connp->conn_next; 5468 } 5469 if (connp == NULL) { 5470 /* No more interested clients */ 5471 connp = first_connp; 5472 break; 5473 } 5474 if (((mp1 = dupmsg(mp)) == NULL) && 5475 ((mp1 = copymsg(mp)) == NULL)) { 5476 /* Memory allocation failed */ 5477 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5478 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5479 connp = first_connp; 5480 break; 5481 } 5482 CONN_INC_REF(connp); 5483 mutex_exit(&connfp->connf_lock); 5484 5485 IP_STAT(ipst, ip_udp_fanmb); 5486 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5487 NULL, ira); 5488 mutex_enter(&connfp->connf_lock); 5489 /* Follow the next pointer before releasing the conn */ 5490 next_connp = connp->conn_next; 5491 CONN_DEC_REF(connp); 5492 connp = next_connp; 5493 } 5494 } 5495 5496 /* Last one. Send it upstream. */ 5497 mutex_exit(&connfp->connf_lock); 5498 IP_STAT(ipst, ip_udp_fanmb); 5499 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5500 CONN_DEC_REF(connp); 5501 } 5502 5503 /* 5504 * Split an incoming packet's IPv4 options into the label and the other options. 5505 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5506 * clearing out any leftover label or options. 5507 * Otherwise it just makes ipp point into the packet. 5508 * 5509 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5510 */ 5511 int 5512 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5513 { 5514 uchar_t *opt; 5515 uint32_t totallen; 5516 uint32_t optval; 5517 uint32_t optlen; 5518 5519 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5520 ipp->ipp_hoplimit = ipha->ipha_ttl; 5521 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5522 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5523 5524 /* 5525 * Get length (in 4 byte octets) of IP header options. 5526 */ 5527 totallen = ipha->ipha_version_and_hdr_length - 5528 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5529 5530 if (totallen == 0) { 5531 if (!allocate) 5532 return (0); 5533 5534 /* Clear out anything from a previous packet */ 5535 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5536 kmem_free(ipp->ipp_ipv4_options, 5537 ipp->ipp_ipv4_options_len); 5538 ipp->ipp_ipv4_options = NULL; 5539 ipp->ipp_ipv4_options_len = 0; 5540 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5541 } 5542 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5543 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5544 ipp->ipp_label_v4 = NULL; 5545 ipp->ipp_label_len_v4 = 0; 5546 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5547 } 5548 return (0); 5549 } 5550 5551 totallen <<= 2; 5552 opt = (uchar_t *)&ipha[1]; 5553 if (!is_system_labeled()) { 5554 5555 copyall: 5556 if (!allocate) { 5557 if (totallen != 0) { 5558 ipp->ipp_ipv4_options = opt; 5559 ipp->ipp_ipv4_options_len = totallen; 5560 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5561 } 5562 return (0); 5563 } 5564 /* Just copy all of options */ 5565 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5566 if (totallen == ipp->ipp_ipv4_options_len) { 5567 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5568 return (0); 5569 } 5570 kmem_free(ipp->ipp_ipv4_options, 5571 ipp->ipp_ipv4_options_len); 5572 ipp->ipp_ipv4_options = NULL; 5573 ipp->ipp_ipv4_options_len = 0; 5574 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5575 } 5576 if (totallen == 0) 5577 return (0); 5578 5579 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5580 if (ipp->ipp_ipv4_options == NULL) 5581 return (ENOMEM); 5582 ipp->ipp_ipv4_options_len = totallen; 5583 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5584 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5585 return (0); 5586 } 5587 5588 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5589 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5590 ipp->ipp_label_v4 = NULL; 5591 ipp->ipp_label_len_v4 = 0; 5592 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5593 } 5594 5595 /* 5596 * Search for CIPSO option. 5597 * We assume CIPSO is first in options if it is present. 5598 * If it isn't, then ipp_opt_ipv4_options will not include the options 5599 * prior to the CIPSO option. 5600 */ 5601 while (totallen != 0) { 5602 switch (optval = opt[IPOPT_OPTVAL]) { 5603 case IPOPT_EOL: 5604 return (0); 5605 case IPOPT_NOP: 5606 optlen = 1; 5607 break; 5608 default: 5609 if (totallen <= IPOPT_OLEN) 5610 return (EINVAL); 5611 optlen = opt[IPOPT_OLEN]; 5612 if (optlen < 2) 5613 return (EINVAL); 5614 } 5615 if (optlen > totallen) 5616 return (EINVAL); 5617 5618 switch (optval) { 5619 case IPOPT_COMSEC: 5620 if (!allocate) { 5621 ipp->ipp_label_v4 = opt; 5622 ipp->ipp_label_len_v4 = optlen; 5623 ipp->ipp_fields |= IPPF_LABEL_V4; 5624 } else { 5625 ipp->ipp_label_v4 = kmem_alloc(optlen, 5626 KM_NOSLEEP); 5627 if (ipp->ipp_label_v4 == NULL) 5628 return (ENOMEM); 5629 ipp->ipp_label_len_v4 = optlen; 5630 ipp->ipp_fields |= IPPF_LABEL_V4; 5631 bcopy(opt, ipp->ipp_label_v4, optlen); 5632 } 5633 totallen -= optlen; 5634 opt += optlen; 5635 5636 /* Skip padding bytes until we get to a multiple of 4 */ 5637 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5638 totallen--; 5639 opt++; 5640 } 5641 /* Remaining as ipp_ipv4_options */ 5642 goto copyall; 5643 } 5644 totallen -= optlen; 5645 opt += optlen; 5646 } 5647 /* No CIPSO found; return everything as ipp_ipv4_options */ 5648 totallen = ipha->ipha_version_and_hdr_length - 5649 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5650 totallen <<= 2; 5651 opt = (uchar_t *)&ipha[1]; 5652 goto copyall; 5653 } 5654 5655 /* 5656 * Efficient versions of lookup for an IRE when we only 5657 * match the address. 5658 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5659 * Does not handle multicast addresses. 5660 */ 5661 uint_t 5662 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5663 { 5664 ire_t *ire; 5665 uint_t result; 5666 5667 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5668 ASSERT(ire != NULL); 5669 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5670 result = IRE_NOROUTE; 5671 else 5672 result = ire->ire_type; 5673 ire_refrele(ire); 5674 return (result); 5675 } 5676 5677 /* 5678 * Efficient versions of lookup for an IRE when we only 5679 * match the address. 5680 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5681 * Does not handle multicast addresses. 5682 */ 5683 uint_t 5684 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5685 { 5686 ire_t *ire; 5687 uint_t result; 5688 5689 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5690 ASSERT(ire != NULL); 5691 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5692 result = IRE_NOROUTE; 5693 else 5694 result = ire->ire_type; 5695 ire_refrele(ire); 5696 return (result); 5697 } 5698 5699 /* 5700 * Nobody should be sending 5701 * packets up this stream 5702 */ 5703 static int 5704 ip_lrput(queue_t *q, mblk_t *mp) 5705 { 5706 switch (mp->b_datap->db_type) { 5707 case M_FLUSH: 5708 /* Turn around */ 5709 if (*mp->b_rptr & FLUSHW) { 5710 *mp->b_rptr &= ~FLUSHR; 5711 qreply(q, mp); 5712 return (0); 5713 } 5714 break; 5715 } 5716 freemsg(mp); 5717 return (0); 5718 } 5719 5720 /* Nobody should be sending packets down this stream */ 5721 /* ARGSUSED */ 5722 int 5723 ip_lwput(queue_t *q, mblk_t *mp) 5724 { 5725 freemsg(mp); 5726 return (0); 5727 } 5728 5729 /* 5730 * Move the first hop in any source route to ipha_dst and remove that part of 5731 * the source route. Called by other protocols. Errors in option formatting 5732 * are ignored - will be handled by ip_output_options. Return the final 5733 * destination (either ipha_dst or the last entry in a source route.) 5734 */ 5735 ipaddr_t 5736 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5737 { 5738 ipoptp_t opts; 5739 uchar_t *opt; 5740 uint8_t optval; 5741 uint8_t optlen; 5742 ipaddr_t dst; 5743 int i; 5744 ip_stack_t *ipst = ns->netstack_ip; 5745 5746 ip2dbg(("ip_massage_options\n")); 5747 dst = ipha->ipha_dst; 5748 for (optval = ipoptp_first(&opts, ipha); 5749 optval != IPOPT_EOL; 5750 optval = ipoptp_next(&opts)) { 5751 opt = opts.ipoptp_cur; 5752 switch (optval) { 5753 uint8_t off; 5754 case IPOPT_SSRR: 5755 case IPOPT_LSRR: 5756 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5757 ip1dbg(("ip_massage_options: bad src route\n")); 5758 break; 5759 } 5760 optlen = opts.ipoptp_len; 5761 off = opt[IPOPT_OFFSET]; 5762 off--; 5763 redo_srr: 5764 if (optlen < IP_ADDR_LEN || 5765 off > optlen - IP_ADDR_LEN) { 5766 /* End of source route */ 5767 ip1dbg(("ip_massage_options: end of SR\n")); 5768 break; 5769 } 5770 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5771 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5772 ntohl(dst))); 5773 /* 5774 * Check if our address is present more than 5775 * once as consecutive hops in source route. 5776 * XXX verify per-interface ip_forwarding 5777 * for source route? 5778 */ 5779 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5780 off += IP_ADDR_LEN; 5781 goto redo_srr; 5782 } 5783 if (dst == htonl(INADDR_LOOPBACK)) { 5784 ip1dbg(("ip_massage_options: loopback addr in " 5785 "source route!\n")); 5786 break; 5787 } 5788 /* 5789 * Update ipha_dst to be the first hop and remove the 5790 * first hop from the source route (by overwriting 5791 * part of the option with NOP options). 5792 */ 5793 ipha->ipha_dst = dst; 5794 /* Put the last entry in dst */ 5795 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5796 3; 5797 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5798 5799 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5800 ntohl(dst))); 5801 /* Move down and overwrite */ 5802 opt[IP_ADDR_LEN] = opt[0]; 5803 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5804 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5805 for (i = 0; i < IP_ADDR_LEN; i++) 5806 opt[i] = IPOPT_NOP; 5807 break; 5808 } 5809 } 5810 return (dst); 5811 } 5812 5813 /* 5814 * Return the network mask 5815 * associated with the specified address. 5816 */ 5817 ipaddr_t 5818 ip_net_mask(ipaddr_t addr) 5819 { 5820 uchar_t *up = (uchar_t *)&addr; 5821 ipaddr_t mask = 0; 5822 uchar_t *maskp = (uchar_t *)&mask; 5823 5824 #if defined(__x86) 5825 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5826 #endif 5827 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5828 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5829 #endif 5830 if (CLASSD(addr)) { 5831 maskp[0] = 0xF0; 5832 return (mask); 5833 } 5834 5835 /* We assume Class E default netmask to be 32 */ 5836 if (CLASSE(addr)) 5837 return (0xffffffffU); 5838 5839 if (addr == 0) 5840 return (0); 5841 maskp[0] = 0xFF; 5842 if ((up[0] & 0x80) == 0) 5843 return (mask); 5844 5845 maskp[1] = 0xFF; 5846 if ((up[0] & 0xC0) == 0x80) 5847 return (mask); 5848 5849 maskp[2] = 0xFF; 5850 if ((up[0] & 0xE0) == 0xC0) 5851 return (mask); 5852 5853 /* Otherwise return no mask */ 5854 return ((ipaddr_t)0); 5855 } 5856 5857 /* Name/Value Table Lookup Routine */ 5858 char * 5859 ip_nv_lookup(nv_t *nv, int value) 5860 { 5861 if (!nv) 5862 return (NULL); 5863 for (; nv->nv_name; nv++) { 5864 if (nv->nv_value == value) 5865 return (nv->nv_name); 5866 } 5867 return ("unknown"); 5868 } 5869 5870 static int 5871 ip_wait_for_info_ack(ill_t *ill) 5872 { 5873 int err; 5874 5875 mutex_enter(&ill->ill_lock); 5876 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5877 /* 5878 * Return value of 0 indicates a pending signal. 5879 */ 5880 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5881 if (err == 0) { 5882 mutex_exit(&ill->ill_lock); 5883 return (EINTR); 5884 } 5885 } 5886 mutex_exit(&ill->ill_lock); 5887 /* 5888 * ip_rput_other could have set an error in ill_error on 5889 * receipt of M_ERROR. 5890 */ 5891 return (ill->ill_error); 5892 } 5893 5894 /* 5895 * This is a module open, i.e. this is a control stream for access 5896 * to a DLPI device. We allocate an ill_t as the instance data in 5897 * this case. 5898 */ 5899 static int 5900 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5901 { 5902 ill_t *ill; 5903 int err; 5904 zoneid_t zoneid; 5905 netstack_t *ns; 5906 ip_stack_t *ipst; 5907 5908 /* 5909 * Prevent unprivileged processes from pushing IP so that 5910 * they can't send raw IP. 5911 */ 5912 if (secpolicy_net_rawaccess(credp) != 0) 5913 return (EPERM); 5914 5915 ns = netstack_find_by_cred(credp); 5916 ASSERT(ns != NULL); 5917 ipst = ns->netstack_ip; 5918 ASSERT(ipst != NULL); 5919 5920 /* 5921 * For exclusive stacks we set the zoneid to zero 5922 * to make IP operate as if in the global zone. 5923 */ 5924 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5925 zoneid = GLOBAL_ZONEID; 5926 else 5927 zoneid = crgetzoneid(credp); 5928 5929 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5930 q->q_ptr = WR(q)->q_ptr = ill; 5931 ill->ill_ipst = ipst; 5932 ill->ill_zoneid = zoneid; 5933 5934 /* 5935 * ill_init initializes the ill fields and then sends down 5936 * down a DL_INFO_REQ after calling qprocson. 5937 */ 5938 err = ill_init(q, ill); 5939 5940 if (err != 0) { 5941 mi_free(ill); 5942 netstack_rele(ipst->ips_netstack); 5943 q->q_ptr = NULL; 5944 WR(q)->q_ptr = NULL; 5945 return (err); 5946 } 5947 5948 /* 5949 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5950 * 5951 * ill_init initializes the ipsq marking this thread as 5952 * writer 5953 */ 5954 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5955 err = ip_wait_for_info_ack(ill); 5956 if (err == 0) 5957 ill->ill_credp = credp; 5958 else 5959 goto fail; 5960 5961 crhold(credp); 5962 5963 mutex_enter(&ipst->ips_ip_mi_lock); 5964 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5965 sflag, credp); 5966 mutex_exit(&ipst->ips_ip_mi_lock); 5967 fail: 5968 if (err) { 5969 (void) ip_close(q, 0, credp); 5970 return (err); 5971 } 5972 return (0); 5973 } 5974 5975 /* For /dev/ip aka AF_INET open */ 5976 int 5977 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5978 { 5979 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5980 } 5981 5982 /* For /dev/ip6 aka AF_INET6 open */ 5983 int 5984 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5985 { 5986 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5987 } 5988 5989 /* IP open routine. */ 5990 int 5991 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5992 boolean_t isv6) 5993 { 5994 conn_t *connp; 5995 major_t maj; 5996 zoneid_t zoneid; 5997 netstack_t *ns; 5998 ip_stack_t *ipst; 5999 6000 /* Allow reopen. */ 6001 if (q->q_ptr != NULL) 6002 return (0); 6003 6004 if (sflag & MODOPEN) { 6005 /* This is a module open */ 6006 return (ip_modopen(q, devp, flag, sflag, credp)); 6007 } 6008 6009 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 6010 /* 6011 * Non streams based socket looking for a stream 6012 * to access IP 6013 */ 6014 return (ip_helper_stream_setup(q, devp, flag, sflag, 6015 credp, isv6)); 6016 } 6017 6018 ns = netstack_find_by_cred(credp); 6019 ASSERT(ns != NULL); 6020 ipst = ns->netstack_ip; 6021 ASSERT(ipst != NULL); 6022 6023 /* 6024 * For exclusive stacks we set the zoneid to zero 6025 * to make IP operate as if in the global zone. 6026 */ 6027 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6028 zoneid = GLOBAL_ZONEID; 6029 else 6030 zoneid = crgetzoneid(credp); 6031 6032 /* 6033 * We are opening as a device. This is an IP client stream, and we 6034 * allocate an conn_t as the instance data. 6035 */ 6036 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6037 6038 /* 6039 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6040 * done by netstack_find_by_cred() 6041 */ 6042 netstack_rele(ipst->ips_netstack); 6043 6044 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6045 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6046 connp->conn_ixa->ixa_zoneid = zoneid; 6047 connp->conn_zoneid = zoneid; 6048 6049 connp->conn_rq = q; 6050 q->q_ptr = WR(q)->q_ptr = connp; 6051 6052 /* Minor tells us which /dev entry was opened */ 6053 if (isv6) { 6054 connp->conn_family = AF_INET6; 6055 connp->conn_ipversion = IPV6_VERSION; 6056 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6057 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6058 } else { 6059 connp->conn_family = AF_INET; 6060 connp->conn_ipversion = IPV4_VERSION; 6061 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6062 } 6063 6064 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6065 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6066 connp->conn_minor_arena = ip_minor_arena_la; 6067 } else { 6068 /* 6069 * Either minor numbers in the large arena were exhausted 6070 * or a non socket application is doing the open. 6071 * Try to allocate from the small arena. 6072 */ 6073 if ((connp->conn_dev = 6074 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6075 /* CONN_DEC_REF takes care of netstack_rele() */ 6076 q->q_ptr = WR(q)->q_ptr = NULL; 6077 CONN_DEC_REF(connp); 6078 return (EBUSY); 6079 } 6080 connp->conn_minor_arena = ip_minor_arena_sa; 6081 } 6082 6083 maj = getemajor(*devp); 6084 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6085 6086 /* 6087 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6088 */ 6089 connp->conn_cred = credp; 6090 connp->conn_cpid = curproc->p_pid; 6091 /* Cache things in ixa without an extra refhold */ 6092 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6093 connp->conn_ixa->ixa_cred = connp->conn_cred; 6094 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6095 if (is_system_labeled()) 6096 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6097 6098 /* 6099 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6100 */ 6101 connp->conn_recv = ip_conn_input; 6102 connp->conn_recvicmp = ip_conn_input_icmp; 6103 6104 crhold(connp->conn_cred); 6105 6106 /* 6107 * If the caller has the process-wide flag set, then default to MAC 6108 * exempt mode. This allows read-down to unlabeled hosts. 6109 */ 6110 if (getpflags(NET_MAC_AWARE, credp) != 0) 6111 connp->conn_mac_mode = CONN_MAC_AWARE; 6112 6113 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6114 6115 connp->conn_rq = q; 6116 connp->conn_wq = WR(q); 6117 6118 /* Non-zero default values */ 6119 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6120 6121 /* 6122 * Make the conn globally visible to walkers 6123 */ 6124 ASSERT(connp->conn_ref == 1); 6125 mutex_enter(&connp->conn_lock); 6126 connp->conn_state_flags &= ~CONN_INCIPIENT; 6127 mutex_exit(&connp->conn_lock); 6128 6129 qprocson(q); 6130 6131 return (0); 6132 } 6133 6134 /* 6135 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6136 * all of them are copied to the conn_t. If the req is "zero", the policy is 6137 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6138 * fields. 6139 * We keep only the latest setting of the policy and thus policy setting 6140 * is not incremental/cumulative. 6141 * 6142 * Requests to set policies with multiple alternative actions will 6143 * go through a different API. 6144 */ 6145 int 6146 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6147 { 6148 uint_t ah_req = 0; 6149 uint_t esp_req = 0; 6150 uint_t se_req = 0; 6151 ipsec_act_t *actp = NULL; 6152 uint_t nact; 6153 ipsec_policy_head_t *ph; 6154 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6155 int error = 0; 6156 netstack_t *ns = connp->conn_netstack; 6157 ip_stack_t *ipst = ns->netstack_ip; 6158 ipsec_stack_t *ipss = ns->netstack_ipsec; 6159 6160 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6161 6162 /* 6163 * The IP_SEC_OPT option does not allow variable length parameters, 6164 * hence a request cannot be NULL. 6165 */ 6166 if (req == NULL) 6167 return (EINVAL); 6168 6169 ah_req = req->ipsr_ah_req; 6170 esp_req = req->ipsr_esp_req; 6171 se_req = req->ipsr_self_encap_req; 6172 6173 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6174 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6175 return (EINVAL); 6176 6177 /* 6178 * Are we dealing with a request to reset the policy (i.e. 6179 * zero requests). 6180 */ 6181 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6182 (esp_req & REQ_MASK) == 0 && 6183 (se_req & REQ_MASK) == 0); 6184 6185 if (!is_pol_reset) { 6186 /* 6187 * If we couldn't load IPsec, fail with "protocol 6188 * not supported". 6189 * IPsec may not have been loaded for a request with zero 6190 * policies, so we don't fail in this case. 6191 */ 6192 mutex_enter(&ipss->ipsec_loader_lock); 6193 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6194 mutex_exit(&ipss->ipsec_loader_lock); 6195 return (EPROTONOSUPPORT); 6196 } 6197 mutex_exit(&ipss->ipsec_loader_lock); 6198 6199 /* 6200 * Test for valid requests. Invalid algorithms 6201 * need to be tested by IPsec code because new 6202 * algorithms can be added dynamically. 6203 */ 6204 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6205 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6206 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6207 return (EINVAL); 6208 } 6209 6210 /* 6211 * Only privileged users can issue these 6212 * requests. 6213 */ 6214 if (((ah_req & IPSEC_PREF_NEVER) || 6215 (esp_req & IPSEC_PREF_NEVER) || 6216 (se_req & IPSEC_PREF_NEVER)) && 6217 secpolicy_ip_config(cr, B_FALSE) != 0) { 6218 return (EPERM); 6219 } 6220 6221 /* 6222 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6223 * are mutually exclusive. 6224 */ 6225 if (((ah_req & REQ_MASK) == REQ_MASK) || 6226 ((esp_req & REQ_MASK) == REQ_MASK) || 6227 ((se_req & REQ_MASK) == REQ_MASK)) { 6228 /* Both of them are set */ 6229 return (EINVAL); 6230 } 6231 } 6232 6233 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6234 6235 /* 6236 * If we have already cached policies in conn_connect(), don't 6237 * let them change now. We cache policies for connections 6238 * whose src,dst [addr, port] is known. 6239 */ 6240 if (connp->conn_policy_cached) { 6241 return (EINVAL); 6242 } 6243 6244 /* 6245 * We have a zero policies, reset the connection policy if already 6246 * set. This will cause the connection to inherit the 6247 * global policy, if any. 6248 */ 6249 if (is_pol_reset) { 6250 if (connp->conn_policy != NULL) { 6251 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6252 connp->conn_policy = NULL; 6253 } 6254 connp->conn_in_enforce_policy = B_FALSE; 6255 connp->conn_out_enforce_policy = B_FALSE; 6256 return (0); 6257 } 6258 6259 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6260 ipst->ips_netstack); 6261 if (ph == NULL) 6262 goto enomem; 6263 6264 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6265 if (actp == NULL) 6266 goto enomem; 6267 6268 /* 6269 * Always insert IPv4 policy entries, since they can also apply to 6270 * ipv6 sockets being used in ipv4-compat mode. 6271 */ 6272 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6273 IPSEC_TYPE_INBOUND, ns)) 6274 goto enomem; 6275 is_pol_inserted = B_TRUE; 6276 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6277 IPSEC_TYPE_OUTBOUND, ns)) 6278 goto enomem; 6279 6280 /* 6281 * We're looking at a v6 socket, also insert the v6-specific 6282 * entries. 6283 */ 6284 if (connp->conn_family == AF_INET6) { 6285 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6286 IPSEC_TYPE_INBOUND, ns)) 6287 goto enomem; 6288 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6289 IPSEC_TYPE_OUTBOUND, ns)) 6290 goto enomem; 6291 } 6292 6293 ipsec_actvec_free(actp, nact); 6294 6295 /* 6296 * If the requests need security, set enforce_policy. 6297 * If the requests are IPSEC_PREF_NEVER, one should 6298 * still set conn_out_enforce_policy so that ip_set_destination 6299 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6300 * for connections that we don't cache policy in at connect time, 6301 * if global policy matches in ip_output_attach_policy, we 6302 * don't wrongly inherit global policy. Similarly, we need 6303 * to set conn_in_enforce_policy also so that we don't verify 6304 * policy wrongly. 6305 */ 6306 if ((ah_req & REQ_MASK) != 0 || 6307 (esp_req & REQ_MASK) != 0 || 6308 (se_req & REQ_MASK) != 0) { 6309 connp->conn_in_enforce_policy = B_TRUE; 6310 connp->conn_out_enforce_policy = B_TRUE; 6311 } 6312 6313 return (error); 6314 #undef REQ_MASK 6315 6316 /* 6317 * Common memory-allocation-failure exit path. 6318 */ 6319 enomem: 6320 if (actp != NULL) 6321 ipsec_actvec_free(actp, nact); 6322 if (is_pol_inserted) 6323 ipsec_polhead_flush(ph, ns); 6324 return (ENOMEM); 6325 } 6326 6327 /* 6328 * Set socket options for joining and leaving multicast groups. 6329 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6330 * The caller has already check that the option name is consistent with 6331 * the address family of the socket. 6332 */ 6333 int 6334 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6335 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6336 { 6337 int *i1 = (int *)invalp; 6338 int error = 0; 6339 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6340 struct ip_mreq *v4_mreqp; 6341 struct ipv6_mreq *v6_mreqp; 6342 struct group_req *greqp; 6343 ire_t *ire; 6344 boolean_t done = B_FALSE; 6345 ipaddr_t ifaddr; 6346 in6_addr_t v6group; 6347 uint_t ifindex; 6348 boolean_t mcast_opt = B_TRUE; 6349 mcast_record_t fmode; 6350 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6351 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6352 6353 switch (name) { 6354 case IP_ADD_MEMBERSHIP: 6355 case IPV6_JOIN_GROUP: 6356 mcast_opt = B_FALSE; 6357 /* FALLTHROUGH */ 6358 case MCAST_JOIN_GROUP: 6359 fmode = MODE_IS_EXCLUDE; 6360 optfn = ip_opt_add_group; 6361 break; 6362 6363 case IP_DROP_MEMBERSHIP: 6364 case IPV6_LEAVE_GROUP: 6365 mcast_opt = B_FALSE; 6366 /* FALLTHROUGH */ 6367 case MCAST_LEAVE_GROUP: 6368 fmode = MODE_IS_INCLUDE; 6369 optfn = ip_opt_delete_group; 6370 break; 6371 default: 6372 /* Should not be reached. */ 6373 fmode = MODE_IS_INCLUDE; 6374 optfn = NULL; 6375 ASSERT(0); 6376 } 6377 6378 if (mcast_opt) { 6379 struct sockaddr_in *sin; 6380 struct sockaddr_in6 *sin6; 6381 6382 greqp = (struct group_req *)i1; 6383 if (greqp->gr_group.ss_family == AF_INET) { 6384 sin = (struct sockaddr_in *)&(greqp->gr_group); 6385 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6386 } else { 6387 if (!inet6) 6388 return (EINVAL); /* Not on INET socket */ 6389 6390 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6391 v6group = sin6->sin6_addr; 6392 } 6393 ifaddr = INADDR_ANY; 6394 ifindex = greqp->gr_interface; 6395 } else if (inet6) { 6396 v6_mreqp = (struct ipv6_mreq *)i1; 6397 v6group = v6_mreqp->ipv6mr_multiaddr; 6398 ifaddr = INADDR_ANY; 6399 ifindex = v6_mreqp->ipv6mr_interface; 6400 } else { 6401 v4_mreqp = (struct ip_mreq *)i1; 6402 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6403 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6404 ifindex = 0; 6405 } 6406 6407 /* 6408 * In the multirouting case, we need to replicate 6409 * the request on all interfaces that will take part 6410 * in replication. We do so because multirouting is 6411 * reflective, thus we will probably receive multi- 6412 * casts on those interfaces. 6413 * The ip_multirt_apply_membership() succeeds if 6414 * the operation succeeds on at least one interface. 6415 */ 6416 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6417 ipaddr_t group; 6418 6419 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6420 6421 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6422 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6423 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6424 } else { 6425 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6426 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6427 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6428 } 6429 if (ire != NULL) { 6430 if (ire->ire_flags & RTF_MULTIRT) { 6431 error = ip_multirt_apply_membership(optfn, ire, connp, 6432 checkonly, &v6group, fmode, &ipv6_all_zeros); 6433 done = B_TRUE; 6434 } 6435 ire_refrele(ire); 6436 } 6437 6438 if (!done) { 6439 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6440 fmode, &ipv6_all_zeros); 6441 } 6442 return (error); 6443 } 6444 6445 /* 6446 * Set socket options for joining and leaving multicast groups 6447 * for specific sources. 6448 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6449 * The caller has already check that the option name is consistent with 6450 * the address family of the socket. 6451 */ 6452 int 6453 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6454 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6455 { 6456 int *i1 = (int *)invalp; 6457 int error = 0; 6458 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6459 struct ip_mreq_source *imreqp; 6460 struct group_source_req *gsreqp; 6461 in6_addr_t v6group, v6src; 6462 uint32_t ifindex; 6463 ipaddr_t ifaddr; 6464 boolean_t mcast_opt = B_TRUE; 6465 mcast_record_t fmode; 6466 ire_t *ire; 6467 boolean_t done = B_FALSE; 6468 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6469 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6470 6471 switch (name) { 6472 case IP_BLOCK_SOURCE: 6473 mcast_opt = B_FALSE; 6474 /* FALLTHROUGH */ 6475 case MCAST_BLOCK_SOURCE: 6476 fmode = MODE_IS_EXCLUDE; 6477 optfn = ip_opt_add_group; 6478 break; 6479 6480 case IP_UNBLOCK_SOURCE: 6481 mcast_opt = B_FALSE; 6482 /* FALLTHROUGH */ 6483 case MCAST_UNBLOCK_SOURCE: 6484 fmode = MODE_IS_EXCLUDE; 6485 optfn = ip_opt_delete_group; 6486 break; 6487 6488 case IP_ADD_SOURCE_MEMBERSHIP: 6489 mcast_opt = B_FALSE; 6490 /* FALLTHROUGH */ 6491 case MCAST_JOIN_SOURCE_GROUP: 6492 fmode = MODE_IS_INCLUDE; 6493 optfn = ip_opt_add_group; 6494 break; 6495 6496 case IP_DROP_SOURCE_MEMBERSHIP: 6497 mcast_opt = B_FALSE; 6498 /* FALLTHROUGH */ 6499 case MCAST_LEAVE_SOURCE_GROUP: 6500 fmode = MODE_IS_INCLUDE; 6501 optfn = ip_opt_delete_group; 6502 break; 6503 default: 6504 /* Should not be reached. */ 6505 optfn = NULL; 6506 fmode = 0; 6507 ASSERT(0); 6508 } 6509 6510 if (mcast_opt) { 6511 gsreqp = (struct group_source_req *)i1; 6512 ifindex = gsreqp->gsr_interface; 6513 if (gsreqp->gsr_group.ss_family == AF_INET) { 6514 struct sockaddr_in *s; 6515 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6516 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6517 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6518 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6519 } else { 6520 struct sockaddr_in6 *s6; 6521 6522 if (!inet6) 6523 return (EINVAL); /* Not on INET socket */ 6524 6525 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6526 v6group = s6->sin6_addr; 6527 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6528 v6src = s6->sin6_addr; 6529 } 6530 ifaddr = INADDR_ANY; 6531 } else { 6532 imreqp = (struct ip_mreq_source *)i1; 6533 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6534 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6535 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6536 ifindex = 0; 6537 } 6538 6539 /* 6540 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6541 */ 6542 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6543 v6src = ipv6_all_zeros; 6544 6545 /* 6546 * In the multirouting case, we need to replicate 6547 * the request as noted in the mcast cases above. 6548 */ 6549 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6550 ipaddr_t group; 6551 6552 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6553 6554 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6555 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6556 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6557 } else { 6558 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6559 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6560 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6561 } 6562 if (ire != NULL) { 6563 if (ire->ire_flags & RTF_MULTIRT) { 6564 error = ip_multirt_apply_membership(optfn, ire, connp, 6565 checkonly, &v6group, fmode, &v6src); 6566 done = B_TRUE; 6567 } 6568 ire_refrele(ire); 6569 } 6570 if (!done) { 6571 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6572 fmode, &v6src); 6573 } 6574 return (error); 6575 } 6576 6577 /* 6578 * Given a destination address and a pointer to where to put the information 6579 * this routine fills in the mtuinfo. 6580 * The socket must be connected. 6581 * For sctp conn_faddr is the primary address. 6582 */ 6583 int 6584 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6585 { 6586 uint32_t pmtu = IP_MAXPACKET; 6587 uint_t scopeid; 6588 6589 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6590 return (-1); 6591 6592 /* In case we never sent or called ip_set_destination_v4/v6 */ 6593 if (ixa->ixa_ire != NULL) 6594 pmtu = ip_get_pmtu(ixa); 6595 6596 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6597 scopeid = ixa->ixa_scopeid; 6598 else 6599 scopeid = 0; 6600 6601 bzero(mtuinfo, sizeof (*mtuinfo)); 6602 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6603 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6604 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6605 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6606 mtuinfo->ip6m_mtu = pmtu; 6607 6608 return (sizeof (struct ip6_mtuinfo)); 6609 } 6610 6611 /* 6612 * When the src multihoming is changed from weak to [strong, preferred] 6613 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6614 * and identify routes that were created by user-applications in the 6615 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6616 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6617 * is selected by finding an interface route for the gateway. 6618 */ 6619 /* ARGSUSED */ 6620 void 6621 ip_ire_rebind_walker(ire_t *ire, void *notused) 6622 { 6623 if (!ire->ire_unbound || ire->ire_ill != NULL) 6624 return; 6625 ire_rebind(ire); 6626 ire_delete(ire); 6627 } 6628 6629 /* 6630 * When the src multihoming is changed from [strong, preferred] to weak, 6631 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6632 * set any entries that were created by user-applications in the unbound state 6633 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6634 */ 6635 /* ARGSUSED */ 6636 void 6637 ip_ire_unbind_walker(ire_t *ire, void *notused) 6638 { 6639 ire_t *new_ire; 6640 6641 if (!ire->ire_unbound || ire->ire_ill == NULL) 6642 return; 6643 if (ire->ire_ipversion == IPV6_VERSION) { 6644 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6645 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6646 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6647 } else { 6648 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6649 (uchar_t *)&ire->ire_mask, 6650 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6651 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6652 } 6653 if (new_ire == NULL) 6654 return; 6655 new_ire->ire_unbound = B_TRUE; 6656 /* 6657 * The bound ire must first be deleted so that we don't return 6658 * the existing one on the attempt to add the unbound new_ire. 6659 */ 6660 ire_delete(ire); 6661 new_ire = ire_add(new_ire); 6662 if (new_ire != NULL) 6663 ire_refrele(new_ire); 6664 } 6665 6666 /* 6667 * When the settings of ip*_strict_src_multihoming tunables are changed, 6668 * all cached routes need to be recomputed. This recomputation needs to be 6669 * done when going from weaker to stronger modes so that the cached ire 6670 * for the connection does not violate the current ip*_strict_src_multihoming 6671 * setting. It also needs to be done when going from stronger to weaker modes, 6672 * so that we fall back to matching on the longest-matching-route (as opposed 6673 * to a shorter match that may have been selected in the strong mode 6674 * to satisfy src_multihoming settings). 6675 * 6676 * The cached ixa_ire entires for all conn_t entries are marked as 6677 * "verify" so that they will be recomputed for the next packet. 6678 */ 6679 void 6680 conn_ire_revalidate(conn_t *connp, void *arg) 6681 { 6682 boolean_t isv6 = (boolean_t)arg; 6683 6684 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6685 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6686 return; 6687 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6688 } 6689 6690 /* 6691 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6692 * When an ipf is passed here for the first time, if 6693 * we already have in-order fragments on the queue, we convert from the fast- 6694 * path reassembly scheme to the hard-case scheme. From then on, additional 6695 * fragments are reassembled here. We keep track of the start and end offsets 6696 * of each piece, and the number of holes in the chain. When the hole count 6697 * goes to zero, we are done! 6698 * 6699 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6700 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6701 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6702 * after the call to ip_reassemble(). 6703 */ 6704 int 6705 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6706 size_t msg_len) 6707 { 6708 uint_t end; 6709 mblk_t *next_mp; 6710 mblk_t *mp1; 6711 uint_t offset; 6712 boolean_t incr_dups = B_TRUE; 6713 boolean_t offset_zero_seen = B_FALSE; 6714 boolean_t pkt_boundary_checked = B_FALSE; 6715 6716 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6717 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6718 6719 /* Add in byte count */ 6720 ipf->ipf_count += msg_len; 6721 if (ipf->ipf_end) { 6722 /* 6723 * We were part way through in-order reassembly, but now there 6724 * is a hole. We walk through messages already queued, and 6725 * mark them for hard case reassembly. We know that up till 6726 * now they were in order starting from offset zero. 6727 */ 6728 offset = 0; 6729 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6730 IP_REASS_SET_START(mp1, offset); 6731 if (offset == 0) { 6732 ASSERT(ipf->ipf_nf_hdr_len != 0); 6733 offset = -ipf->ipf_nf_hdr_len; 6734 } 6735 offset += mp1->b_wptr - mp1->b_rptr; 6736 IP_REASS_SET_END(mp1, offset); 6737 } 6738 /* One hole at the end. */ 6739 ipf->ipf_hole_cnt = 1; 6740 /* Brand it as a hard case, forever. */ 6741 ipf->ipf_end = 0; 6742 } 6743 /* Walk through all the new pieces. */ 6744 do { 6745 end = start + (mp->b_wptr - mp->b_rptr); 6746 /* 6747 * If start is 0, decrease 'end' only for the first mblk of 6748 * the fragment. Otherwise 'end' can get wrong value in the 6749 * second pass of the loop if first mblk is exactly the 6750 * size of ipf_nf_hdr_len. 6751 */ 6752 if (start == 0 && !offset_zero_seen) { 6753 /* First segment */ 6754 ASSERT(ipf->ipf_nf_hdr_len != 0); 6755 end -= ipf->ipf_nf_hdr_len; 6756 offset_zero_seen = B_TRUE; 6757 } 6758 next_mp = mp->b_cont; 6759 /* 6760 * We are checking to see if there is any interesing data 6761 * to process. If there isn't and the mblk isn't the 6762 * one which carries the unfragmentable header then we 6763 * drop it. It's possible to have just the unfragmentable 6764 * header come through without any data. That needs to be 6765 * saved. 6766 * 6767 * If the assert at the top of this function holds then the 6768 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6769 * is infrequently traveled enough that the test is left in 6770 * to protect against future code changes which break that 6771 * invariant. 6772 */ 6773 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6774 /* Empty. Blast it. */ 6775 IP_REASS_SET_START(mp, 0); 6776 IP_REASS_SET_END(mp, 0); 6777 /* 6778 * If the ipf points to the mblk we are about to free, 6779 * update ipf to point to the next mblk (or NULL 6780 * if none). 6781 */ 6782 if (ipf->ipf_mp->b_cont == mp) 6783 ipf->ipf_mp->b_cont = next_mp; 6784 freeb(mp); 6785 continue; 6786 } 6787 mp->b_cont = NULL; 6788 IP_REASS_SET_START(mp, start); 6789 IP_REASS_SET_END(mp, end); 6790 if (!ipf->ipf_tail_mp) { 6791 ipf->ipf_tail_mp = mp; 6792 ipf->ipf_mp->b_cont = mp; 6793 if (start == 0 || !more) { 6794 ipf->ipf_hole_cnt = 1; 6795 /* 6796 * if the first fragment comes in more than one 6797 * mblk, this loop will be executed for each 6798 * mblk. Need to adjust hole count so exiting 6799 * this routine will leave hole count at 1. 6800 */ 6801 if (next_mp) 6802 ipf->ipf_hole_cnt++; 6803 } else 6804 ipf->ipf_hole_cnt = 2; 6805 continue; 6806 } else if (ipf->ipf_last_frag_seen && !more && 6807 !pkt_boundary_checked) { 6808 /* 6809 * We check datagram boundary only if this fragment 6810 * claims to be the last fragment and we have seen a 6811 * last fragment in the past too. We do this only 6812 * once for a given fragment. 6813 * 6814 * start cannot be 0 here as fragments with start=0 6815 * and MF=0 gets handled as a complete packet. These 6816 * fragments should not reach here. 6817 */ 6818 6819 if (start + msgdsize(mp) != 6820 IP_REASS_END(ipf->ipf_tail_mp)) { 6821 /* 6822 * We have two fragments both of which claim 6823 * to be the last fragment but gives conflicting 6824 * information about the whole datagram size. 6825 * Something fishy is going on. Drop the 6826 * fragment and free up the reassembly list. 6827 */ 6828 return (IP_REASS_FAILED); 6829 } 6830 6831 /* 6832 * We shouldn't come to this code block again for this 6833 * particular fragment. 6834 */ 6835 pkt_boundary_checked = B_TRUE; 6836 } 6837 6838 /* New stuff at or beyond tail? */ 6839 offset = IP_REASS_END(ipf->ipf_tail_mp); 6840 if (start >= offset) { 6841 if (ipf->ipf_last_frag_seen) { 6842 /* current fragment is beyond last fragment */ 6843 return (IP_REASS_FAILED); 6844 } 6845 /* Link it on end. */ 6846 ipf->ipf_tail_mp->b_cont = mp; 6847 ipf->ipf_tail_mp = mp; 6848 if (more) { 6849 if (start != offset) 6850 ipf->ipf_hole_cnt++; 6851 } else if (start == offset && next_mp == NULL) 6852 ipf->ipf_hole_cnt--; 6853 continue; 6854 } 6855 mp1 = ipf->ipf_mp->b_cont; 6856 offset = IP_REASS_START(mp1); 6857 /* New stuff at the front? */ 6858 if (start < offset) { 6859 if (start == 0) { 6860 if (end >= offset) { 6861 /* Nailed the hole at the begining. */ 6862 ipf->ipf_hole_cnt--; 6863 } 6864 } else if (end < offset) { 6865 /* 6866 * A hole, stuff, and a hole where there used 6867 * to be just a hole. 6868 */ 6869 ipf->ipf_hole_cnt++; 6870 } 6871 mp->b_cont = mp1; 6872 /* Check for overlap. */ 6873 while (end > offset) { 6874 if (end < IP_REASS_END(mp1)) { 6875 mp->b_wptr -= end - offset; 6876 IP_REASS_SET_END(mp, offset); 6877 BUMP_MIB(ill->ill_ip_mib, 6878 ipIfStatsReasmPartDups); 6879 break; 6880 } 6881 /* Did we cover another hole? */ 6882 if ((mp1->b_cont && 6883 IP_REASS_END(mp1) != 6884 IP_REASS_START(mp1->b_cont) && 6885 end >= IP_REASS_START(mp1->b_cont)) || 6886 (!ipf->ipf_last_frag_seen && !more)) { 6887 ipf->ipf_hole_cnt--; 6888 } 6889 /* Clip out mp1. */ 6890 if ((mp->b_cont = mp1->b_cont) == NULL) { 6891 /* 6892 * After clipping out mp1, this guy 6893 * is now hanging off the end. 6894 */ 6895 ipf->ipf_tail_mp = mp; 6896 } 6897 IP_REASS_SET_START(mp1, 0); 6898 IP_REASS_SET_END(mp1, 0); 6899 /* Subtract byte count */ 6900 ipf->ipf_count -= mp1->b_datap->db_lim - 6901 mp1->b_datap->db_base; 6902 freeb(mp1); 6903 BUMP_MIB(ill->ill_ip_mib, 6904 ipIfStatsReasmPartDups); 6905 mp1 = mp->b_cont; 6906 if (!mp1) 6907 break; 6908 offset = IP_REASS_START(mp1); 6909 } 6910 ipf->ipf_mp->b_cont = mp; 6911 continue; 6912 } 6913 /* 6914 * The new piece starts somewhere between the start of the head 6915 * and before the end of the tail. 6916 */ 6917 for (; mp1; mp1 = mp1->b_cont) { 6918 offset = IP_REASS_END(mp1); 6919 if (start < offset) { 6920 if (end <= offset) { 6921 /* Nothing new. */ 6922 IP_REASS_SET_START(mp, 0); 6923 IP_REASS_SET_END(mp, 0); 6924 /* Subtract byte count */ 6925 ipf->ipf_count -= mp->b_datap->db_lim - 6926 mp->b_datap->db_base; 6927 if (incr_dups) { 6928 ipf->ipf_num_dups++; 6929 incr_dups = B_FALSE; 6930 } 6931 freeb(mp); 6932 BUMP_MIB(ill->ill_ip_mib, 6933 ipIfStatsReasmDuplicates); 6934 break; 6935 } 6936 /* 6937 * Trim redundant stuff off beginning of new 6938 * piece. 6939 */ 6940 IP_REASS_SET_START(mp, offset); 6941 mp->b_rptr += offset - start; 6942 BUMP_MIB(ill->ill_ip_mib, 6943 ipIfStatsReasmPartDups); 6944 start = offset; 6945 if (!mp1->b_cont) { 6946 /* 6947 * After trimming, this guy is now 6948 * hanging off the end. 6949 */ 6950 mp1->b_cont = mp; 6951 ipf->ipf_tail_mp = mp; 6952 if (!more) { 6953 ipf->ipf_hole_cnt--; 6954 } 6955 break; 6956 } 6957 } 6958 if (start >= IP_REASS_START(mp1->b_cont)) 6959 continue; 6960 /* Fill a hole */ 6961 if (start > offset) 6962 ipf->ipf_hole_cnt++; 6963 mp->b_cont = mp1->b_cont; 6964 mp1->b_cont = mp; 6965 mp1 = mp->b_cont; 6966 offset = IP_REASS_START(mp1); 6967 if (end >= offset) { 6968 ipf->ipf_hole_cnt--; 6969 /* Check for overlap. */ 6970 while (end > offset) { 6971 if (end < IP_REASS_END(mp1)) { 6972 mp->b_wptr -= end - offset; 6973 IP_REASS_SET_END(mp, offset); 6974 /* 6975 * TODO we might bump 6976 * this up twice if there is 6977 * overlap at both ends. 6978 */ 6979 BUMP_MIB(ill->ill_ip_mib, 6980 ipIfStatsReasmPartDups); 6981 break; 6982 } 6983 /* Did we cover another hole? */ 6984 if ((mp1->b_cont && 6985 IP_REASS_END(mp1) 6986 != IP_REASS_START(mp1->b_cont) && 6987 end >= 6988 IP_REASS_START(mp1->b_cont)) || 6989 (!ipf->ipf_last_frag_seen && 6990 !more)) { 6991 ipf->ipf_hole_cnt--; 6992 } 6993 /* Clip out mp1. */ 6994 if ((mp->b_cont = mp1->b_cont) == 6995 NULL) { 6996 /* 6997 * After clipping out mp1, 6998 * this guy is now hanging 6999 * off the end. 7000 */ 7001 ipf->ipf_tail_mp = mp; 7002 } 7003 IP_REASS_SET_START(mp1, 0); 7004 IP_REASS_SET_END(mp1, 0); 7005 /* Subtract byte count */ 7006 ipf->ipf_count -= 7007 mp1->b_datap->db_lim - 7008 mp1->b_datap->db_base; 7009 freeb(mp1); 7010 BUMP_MIB(ill->ill_ip_mib, 7011 ipIfStatsReasmPartDups); 7012 mp1 = mp->b_cont; 7013 if (!mp1) 7014 break; 7015 offset = IP_REASS_START(mp1); 7016 } 7017 } 7018 break; 7019 } 7020 } while (start = end, mp = next_mp); 7021 7022 /* Fragment just processed could be the last one. Remember this fact */ 7023 if (!more) 7024 ipf->ipf_last_frag_seen = B_TRUE; 7025 7026 /* Still got holes? */ 7027 if (ipf->ipf_hole_cnt) 7028 return (IP_REASS_PARTIAL); 7029 /* Clean up overloaded fields to avoid upstream disasters. */ 7030 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 7031 IP_REASS_SET_START(mp1, 0); 7032 IP_REASS_SET_END(mp1, 0); 7033 } 7034 return (IP_REASS_COMPLETE); 7035 } 7036 7037 /* 7038 * Fragmentation reassembly. Each ILL has a hash table for 7039 * queuing packets undergoing reassembly for all IPIFs 7040 * associated with the ILL. The hash is based on the packet 7041 * IP ident field. The ILL frag hash table was allocated 7042 * as a timer block at the time the ILL was created. Whenever 7043 * there is anything on the reassembly queue, the timer will 7044 * be running. Returns the reassembled packet if reassembly completes. 7045 */ 7046 mblk_t * 7047 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7048 { 7049 uint32_t frag_offset_flags; 7050 mblk_t *t_mp; 7051 ipaddr_t dst; 7052 uint8_t proto = ipha->ipha_protocol; 7053 uint32_t sum_val; 7054 uint16_t sum_flags; 7055 ipf_t *ipf; 7056 ipf_t **ipfp; 7057 ipfb_t *ipfb; 7058 uint16_t ident; 7059 uint32_t offset; 7060 ipaddr_t src; 7061 uint_t hdr_length; 7062 uint32_t end; 7063 mblk_t *mp1; 7064 mblk_t *tail_mp; 7065 size_t count; 7066 size_t msg_len; 7067 uint8_t ecn_info = 0; 7068 uint32_t packet_size; 7069 boolean_t pruned = B_FALSE; 7070 ill_t *ill = ira->ira_ill; 7071 ip_stack_t *ipst = ill->ill_ipst; 7072 7073 /* 7074 * Drop the fragmented as early as possible, if 7075 * we don't have resource(s) to re-assemble. 7076 */ 7077 if (ipst->ips_ip_reass_queue_bytes == 0) { 7078 freemsg(mp); 7079 return (NULL); 7080 } 7081 7082 /* Check for fragmentation offset; return if there's none */ 7083 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7084 (IPH_MF | IPH_OFFSET)) == 0) 7085 return (mp); 7086 7087 /* 7088 * We utilize hardware computed checksum info only for UDP since 7089 * IP fragmentation is a normal occurrence for the protocol. In 7090 * addition, checksum offload support for IP fragments carrying 7091 * UDP payload is commonly implemented across network adapters. 7092 */ 7093 ASSERT(ira->ira_rill != NULL); 7094 if (proto == IPPROTO_UDP && dohwcksum && 7095 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7096 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7097 mblk_t *mp1 = mp->b_cont; 7098 int32_t len; 7099 7100 /* Record checksum information from the packet */ 7101 sum_val = (uint32_t)DB_CKSUM16(mp); 7102 sum_flags = DB_CKSUMFLAGS(mp); 7103 7104 /* IP payload offset from beginning of mblk */ 7105 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7106 7107 if ((sum_flags & HCK_PARTIALCKSUM) && 7108 (mp1 == NULL || mp1->b_cont == NULL) && 7109 offset >= DB_CKSUMSTART(mp) && 7110 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7111 uint32_t adj; 7112 /* 7113 * Partial checksum has been calculated by hardware 7114 * and attached to the packet; in addition, any 7115 * prepended extraneous data is even byte aligned. 7116 * If any such data exists, we adjust the checksum; 7117 * this would also handle any postpended data. 7118 */ 7119 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7120 mp, mp1, len, adj); 7121 7122 /* One's complement subtract extraneous checksum */ 7123 if (adj >= sum_val) 7124 sum_val = ~(adj - sum_val) & 0xFFFF; 7125 else 7126 sum_val -= adj; 7127 } 7128 } else { 7129 sum_val = 0; 7130 sum_flags = 0; 7131 } 7132 7133 /* Clear hardware checksumming flag */ 7134 DB_CKSUMFLAGS(mp) = 0; 7135 7136 ident = ipha->ipha_ident; 7137 offset = (frag_offset_flags << 3) & 0xFFFF; 7138 src = ipha->ipha_src; 7139 dst = ipha->ipha_dst; 7140 hdr_length = IPH_HDR_LENGTH(ipha); 7141 end = ntohs(ipha->ipha_length) - hdr_length; 7142 7143 /* If end == 0 then we have a packet with no data, so just free it */ 7144 if (end == 0) { 7145 freemsg(mp); 7146 return (NULL); 7147 } 7148 7149 /* Record the ECN field info. */ 7150 ecn_info = (ipha->ipha_type_of_service & 0x3); 7151 if (offset != 0) { 7152 /* 7153 * If this isn't the first piece, strip the header, and 7154 * add the offset to the end value. 7155 */ 7156 mp->b_rptr += hdr_length; 7157 end += offset; 7158 } 7159 7160 /* Handle vnic loopback of fragments */ 7161 if (mp->b_datap->db_ref > 2) 7162 msg_len = 0; 7163 else 7164 msg_len = MBLKSIZE(mp); 7165 7166 tail_mp = mp; 7167 while (tail_mp->b_cont != NULL) { 7168 tail_mp = tail_mp->b_cont; 7169 if (tail_mp->b_datap->db_ref <= 2) 7170 msg_len += MBLKSIZE(tail_mp); 7171 } 7172 7173 /* If the reassembly list for this ILL will get too big, prune it */ 7174 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7175 ipst->ips_ip_reass_queue_bytes) { 7176 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7177 uint_t, ill->ill_frag_count, 7178 uint_t, ipst->ips_ip_reass_queue_bytes); 7179 ill_frag_prune(ill, 7180 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7181 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7182 pruned = B_TRUE; 7183 } 7184 7185 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7186 mutex_enter(&ipfb->ipfb_lock); 7187 7188 ipfp = &ipfb->ipfb_ipf; 7189 /* Try to find an existing fragment queue for this packet. */ 7190 for (;;) { 7191 ipf = ipfp[0]; 7192 if (ipf != NULL) { 7193 /* 7194 * It has to match on ident and src/dst address. 7195 */ 7196 if (ipf->ipf_ident == ident && 7197 ipf->ipf_src == src && 7198 ipf->ipf_dst == dst && 7199 ipf->ipf_protocol == proto) { 7200 /* 7201 * If we have received too many 7202 * duplicate fragments for this packet 7203 * free it. 7204 */ 7205 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7206 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7207 freemsg(mp); 7208 mutex_exit(&ipfb->ipfb_lock); 7209 return (NULL); 7210 } 7211 /* Found it. */ 7212 break; 7213 } 7214 ipfp = &ipf->ipf_hash_next; 7215 continue; 7216 } 7217 7218 /* 7219 * If we pruned the list, do we want to store this new 7220 * fragment?. We apply an optimization here based on the 7221 * fact that most fragments will be received in order. 7222 * So if the offset of this incoming fragment is zero, 7223 * it is the first fragment of a new packet. We will 7224 * keep it. Otherwise drop the fragment, as we have 7225 * probably pruned the packet already (since the 7226 * packet cannot be found). 7227 */ 7228 if (pruned && offset != 0) { 7229 mutex_exit(&ipfb->ipfb_lock); 7230 freemsg(mp); 7231 return (NULL); 7232 } 7233 7234 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7235 /* 7236 * Too many fragmented packets in this hash 7237 * bucket. Free the oldest. 7238 */ 7239 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7240 } 7241 7242 /* New guy. Allocate a frag message. */ 7243 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7244 if (mp1 == NULL) { 7245 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7246 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7247 freemsg(mp); 7248 reass_done: 7249 mutex_exit(&ipfb->ipfb_lock); 7250 return (NULL); 7251 } 7252 7253 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7254 mp1->b_cont = mp; 7255 7256 /* Initialize the fragment header. */ 7257 ipf = (ipf_t *)mp1->b_rptr; 7258 ipf->ipf_mp = mp1; 7259 ipf->ipf_ptphn = ipfp; 7260 ipfp[0] = ipf; 7261 ipf->ipf_hash_next = NULL; 7262 ipf->ipf_ident = ident; 7263 ipf->ipf_protocol = proto; 7264 ipf->ipf_src = src; 7265 ipf->ipf_dst = dst; 7266 ipf->ipf_nf_hdr_len = 0; 7267 /* Record reassembly start time. */ 7268 ipf->ipf_timestamp = gethrestime_sec(); 7269 /* Record ipf generation and account for frag header */ 7270 ipf->ipf_gen = ill->ill_ipf_gen++; 7271 ipf->ipf_count = MBLKSIZE(mp1); 7272 ipf->ipf_last_frag_seen = B_FALSE; 7273 ipf->ipf_ecn = ecn_info; 7274 ipf->ipf_num_dups = 0; 7275 ipfb->ipfb_frag_pkts++; 7276 ipf->ipf_checksum = 0; 7277 ipf->ipf_checksum_flags = 0; 7278 7279 /* Store checksum value in fragment header */ 7280 if (sum_flags != 0) { 7281 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7282 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7283 ipf->ipf_checksum = sum_val; 7284 ipf->ipf_checksum_flags = sum_flags; 7285 } 7286 7287 /* 7288 * We handle reassembly two ways. In the easy case, 7289 * where all the fragments show up in order, we do 7290 * minimal bookkeeping, and just clip new pieces on 7291 * the end. If we ever see a hole, then we go off 7292 * to ip_reassemble which has to mark the pieces and 7293 * keep track of the number of holes, etc. Obviously, 7294 * the point of having both mechanisms is so we can 7295 * handle the easy case as efficiently as possible. 7296 */ 7297 if (offset == 0) { 7298 /* Easy case, in-order reassembly so far. */ 7299 ipf->ipf_count += msg_len; 7300 ipf->ipf_tail_mp = tail_mp; 7301 /* 7302 * Keep track of next expected offset in 7303 * ipf_end. 7304 */ 7305 ipf->ipf_end = end; 7306 ipf->ipf_nf_hdr_len = hdr_length; 7307 } else { 7308 /* Hard case, hole at the beginning. */ 7309 ipf->ipf_tail_mp = NULL; 7310 /* 7311 * ipf_end == 0 means that we have given up 7312 * on easy reassembly. 7313 */ 7314 ipf->ipf_end = 0; 7315 7316 /* Forget checksum offload from now on */ 7317 ipf->ipf_checksum_flags = 0; 7318 7319 /* 7320 * ipf_hole_cnt is set by ip_reassemble. 7321 * ipf_count is updated by ip_reassemble. 7322 * No need to check for return value here 7323 * as we don't expect reassembly to complete 7324 * or fail for the first fragment itself. 7325 */ 7326 (void) ip_reassemble(mp, ipf, 7327 (frag_offset_flags & IPH_OFFSET) << 3, 7328 (frag_offset_flags & IPH_MF), ill, msg_len); 7329 } 7330 /* Update per ipfb and ill byte counts */ 7331 ipfb->ipfb_count += ipf->ipf_count; 7332 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7333 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7334 /* If the frag timer wasn't already going, start it. */ 7335 mutex_enter(&ill->ill_lock); 7336 ill_frag_timer_start(ill); 7337 mutex_exit(&ill->ill_lock); 7338 goto reass_done; 7339 } 7340 7341 /* 7342 * If the packet's flag has changed (it could be coming up 7343 * from an interface different than the previous, therefore 7344 * possibly different checksum capability), then forget about 7345 * any stored checksum states. Otherwise add the value to 7346 * the existing one stored in the fragment header. 7347 */ 7348 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7349 sum_val += ipf->ipf_checksum; 7350 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7351 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7352 ipf->ipf_checksum = sum_val; 7353 } else if (ipf->ipf_checksum_flags != 0) { 7354 /* Forget checksum offload from now on */ 7355 ipf->ipf_checksum_flags = 0; 7356 } 7357 7358 /* 7359 * We have a new piece of a datagram which is already being 7360 * reassembled. Update the ECN info if all IP fragments 7361 * are ECN capable. If there is one which is not, clear 7362 * all the info. If there is at least one which has CE 7363 * code point, IP needs to report that up to transport. 7364 */ 7365 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7366 if (ecn_info == IPH_ECN_CE) 7367 ipf->ipf_ecn = IPH_ECN_CE; 7368 } else { 7369 ipf->ipf_ecn = IPH_ECN_NECT; 7370 } 7371 if (offset && ipf->ipf_end == offset) { 7372 /* The new fragment fits at the end */ 7373 ipf->ipf_tail_mp->b_cont = mp; 7374 /* Update the byte count */ 7375 ipf->ipf_count += msg_len; 7376 /* Update per ipfb and ill byte counts */ 7377 ipfb->ipfb_count += msg_len; 7378 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7379 atomic_add_32(&ill->ill_frag_count, msg_len); 7380 if (frag_offset_flags & IPH_MF) { 7381 /* More to come. */ 7382 ipf->ipf_end = end; 7383 ipf->ipf_tail_mp = tail_mp; 7384 goto reass_done; 7385 } 7386 } else { 7387 /* Go do the hard cases. */ 7388 int ret; 7389 7390 if (offset == 0) 7391 ipf->ipf_nf_hdr_len = hdr_length; 7392 7393 /* Save current byte count */ 7394 count = ipf->ipf_count; 7395 ret = ip_reassemble(mp, ipf, 7396 (frag_offset_flags & IPH_OFFSET) << 3, 7397 (frag_offset_flags & IPH_MF), ill, msg_len); 7398 /* Count of bytes added and subtracted (freeb()ed) */ 7399 count = ipf->ipf_count - count; 7400 if (count) { 7401 /* Update per ipfb and ill byte counts */ 7402 ipfb->ipfb_count += count; 7403 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7404 atomic_add_32(&ill->ill_frag_count, count); 7405 } 7406 if (ret == IP_REASS_PARTIAL) { 7407 goto reass_done; 7408 } else if (ret == IP_REASS_FAILED) { 7409 /* Reassembly failed. Free up all resources */ 7410 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7411 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7412 IP_REASS_SET_START(t_mp, 0); 7413 IP_REASS_SET_END(t_mp, 0); 7414 } 7415 freemsg(mp); 7416 goto reass_done; 7417 } 7418 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7419 } 7420 /* 7421 * We have completed reassembly. Unhook the frag header from 7422 * the reassembly list. 7423 * 7424 * Before we free the frag header, record the ECN info 7425 * to report back to the transport. 7426 */ 7427 ecn_info = ipf->ipf_ecn; 7428 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7429 ipfp = ipf->ipf_ptphn; 7430 7431 /* We need to supply these to caller */ 7432 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7433 sum_val = ipf->ipf_checksum; 7434 else 7435 sum_val = 0; 7436 7437 mp1 = ipf->ipf_mp; 7438 count = ipf->ipf_count; 7439 ipf = ipf->ipf_hash_next; 7440 if (ipf != NULL) 7441 ipf->ipf_ptphn = ipfp; 7442 ipfp[0] = ipf; 7443 atomic_add_32(&ill->ill_frag_count, -count); 7444 ASSERT(ipfb->ipfb_count >= count); 7445 ipfb->ipfb_count -= count; 7446 ipfb->ipfb_frag_pkts--; 7447 mutex_exit(&ipfb->ipfb_lock); 7448 /* Ditch the frag header. */ 7449 mp = mp1->b_cont; 7450 7451 freeb(mp1); 7452 7453 /* Restore original IP length in header. */ 7454 packet_size = (uint32_t)msgdsize(mp); 7455 if (packet_size > IP_MAXPACKET) { 7456 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7457 ip_drop_input("Reassembled packet too large", mp, ill); 7458 freemsg(mp); 7459 return (NULL); 7460 } 7461 7462 if (DB_REF(mp) > 1) { 7463 mblk_t *mp2 = copymsg(mp); 7464 7465 if (mp2 == NULL) { 7466 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7467 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7468 freemsg(mp); 7469 return (NULL); 7470 } 7471 freemsg(mp); 7472 mp = mp2; 7473 } 7474 ipha = (ipha_t *)mp->b_rptr; 7475 7476 ipha->ipha_length = htons((uint16_t)packet_size); 7477 /* We're now complete, zip the frag state */ 7478 ipha->ipha_fragment_offset_and_flags = 0; 7479 /* Record the ECN info. */ 7480 ipha->ipha_type_of_service &= 0xFC; 7481 ipha->ipha_type_of_service |= ecn_info; 7482 7483 /* Update the receive attributes */ 7484 ira->ira_pktlen = packet_size; 7485 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7486 7487 /* Reassembly is successful; set checksum information in packet */ 7488 DB_CKSUM16(mp) = (uint16_t)sum_val; 7489 DB_CKSUMFLAGS(mp) = sum_flags; 7490 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7491 7492 return (mp); 7493 } 7494 7495 /* 7496 * Pullup function that should be used for IP input in order to 7497 * ensure we do not loose the L2 source address; we need the l2 source 7498 * address for IP_RECVSLLA and for ndp_input. 7499 * 7500 * We return either NULL or b_rptr. 7501 */ 7502 void * 7503 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7504 { 7505 ill_t *ill = ira->ira_ill; 7506 7507 if (ip_rput_pullups++ == 0) { 7508 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7509 "ip_pullup: %s forced us to " 7510 " pullup pkt, hdr len %ld, hdr addr %p", 7511 ill->ill_name, len, (void *)mp->b_rptr); 7512 } 7513 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7514 ip_setl2src(mp, ira, ira->ira_rill); 7515 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7516 if (!pullupmsg(mp, len)) 7517 return (NULL); 7518 else 7519 return (mp->b_rptr); 7520 } 7521 7522 /* 7523 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7524 * When called from the ULP ira_rill will be NULL hence the caller has to 7525 * pass in the ill. 7526 */ 7527 /* ARGSUSED */ 7528 void 7529 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7530 { 7531 const uchar_t *addr; 7532 int alen; 7533 7534 if (ira->ira_flags & IRAF_L2SRC_SET) 7535 return; 7536 7537 ASSERT(ill != NULL); 7538 alen = ill->ill_phys_addr_length; 7539 ASSERT(alen <= sizeof (ira->ira_l2src)); 7540 if (ira->ira_mhip != NULL && 7541 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7542 bcopy(addr, ira->ira_l2src, alen); 7543 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7544 (addr = ill->ill_phys_addr) != NULL) { 7545 bcopy(addr, ira->ira_l2src, alen); 7546 } else { 7547 bzero(ira->ira_l2src, alen); 7548 } 7549 ira->ira_flags |= IRAF_L2SRC_SET; 7550 } 7551 7552 /* 7553 * check ip header length and align it. 7554 */ 7555 mblk_t * 7556 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7557 { 7558 ill_t *ill = ira->ira_ill; 7559 ssize_t len; 7560 7561 len = MBLKL(mp); 7562 7563 if (!OK_32PTR(mp->b_rptr)) 7564 IP_STAT(ill->ill_ipst, ip_notaligned); 7565 else 7566 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7567 7568 /* Guard against bogus device drivers */ 7569 if (len < 0) { 7570 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7571 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7572 freemsg(mp); 7573 return (NULL); 7574 } 7575 7576 if (len == 0) { 7577 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7578 mblk_t *mp1 = mp->b_cont; 7579 7580 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7581 ip_setl2src(mp, ira, ira->ira_rill); 7582 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7583 7584 freeb(mp); 7585 mp = mp1; 7586 if (mp == NULL) 7587 return (NULL); 7588 7589 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7590 return (mp); 7591 } 7592 if (ip_pullup(mp, min_size, ira) == NULL) { 7593 if (msgdsize(mp) < min_size) { 7594 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7595 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7596 } else { 7597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7598 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7599 } 7600 freemsg(mp); 7601 return (NULL); 7602 } 7603 return (mp); 7604 } 7605 7606 /* 7607 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7608 */ 7609 mblk_t * 7610 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7611 uint_t min_size, ip_recv_attr_t *ira) 7612 { 7613 ill_t *ill = ira->ira_ill; 7614 7615 /* 7616 * Make sure we have data length consistent 7617 * with the IP header. 7618 */ 7619 if (mp->b_cont == NULL) { 7620 /* pkt_len is based on ipha_len, not the mblk length */ 7621 if (pkt_len < min_size) { 7622 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7623 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7624 freemsg(mp); 7625 return (NULL); 7626 } 7627 if (len < 0) { 7628 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7629 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7630 freemsg(mp); 7631 return (NULL); 7632 } 7633 /* Drop any pad */ 7634 mp->b_wptr = rptr + pkt_len; 7635 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7636 ASSERT(pkt_len >= min_size); 7637 if (pkt_len < min_size) { 7638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7639 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7640 freemsg(mp); 7641 return (NULL); 7642 } 7643 if (len < 0) { 7644 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7645 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7646 freemsg(mp); 7647 return (NULL); 7648 } 7649 /* Drop any pad */ 7650 (void) adjmsg(mp, -len); 7651 /* 7652 * adjmsg may have freed an mblk from the chain, hence 7653 * invalidate any hw checksum here. This will force IP to 7654 * calculate the checksum in sw, but only for this packet. 7655 */ 7656 DB_CKSUMFLAGS(mp) = 0; 7657 IP_STAT(ill->ill_ipst, ip_multimblk); 7658 } 7659 return (mp); 7660 } 7661 7662 /* 7663 * Check that the IPv4 opt_len is consistent with the packet and pullup 7664 * the options. 7665 */ 7666 mblk_t * 7667 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7668 ip_recv_attr_t *ira) 7669 { 7670 ill_t *ill = ira->ira_ill; 7671 ssize_t len; 7672 7673 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7674 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7675 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7676 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7677 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7678 freemsg(mp); 7679 return (NULL); 7680 } 7681 7682 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7683 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7684 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7685 freemsg(mp); 7686 return (NULL); 7687 } 7688 /* 7689 * Recompute complete header length and make sure we 7690 * have access to all of it. 7691 */ 7692 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7693 if (len > (mp->b_wptr - mp->b_rptr)) { 7694 if (len > pkt_len) { 7695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7696 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7697 freemsg(mp); 7698 return (NULL); 7699 } 7700 if (ip_pullup(mp, len, ira) == NULL) { 7701 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7702 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7703 freemsg(mp); 7704 return (NULL); 7705 } 7706 } 7707 return (mp); 7708 } 7709 7710 /* 7711 * Returns a new ire, or the same ire, or NULL. 7712 * If a different IRE is returned, then it is held; the caller 7713 * needs to release it. 7714 * In no case is there any hold/release on the ire argument. 7715 */ 7716 ire_t * 7717 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7718 { 7719 ire_t *new_ire; 7720 ill_t *ire_ill; 7721 uint_t ifindex; 7722 ip_stack_t *ipst = ill->ill_ipst; 7723 boolean_t strict_check = B_FALSE; 7724 7725 /* 7726 * IPMP common case: if IRE and ILL are in the same group, there's no 7727 * issue (e.g. packet received on an underlying interface matched an 7728 * IRE_LOCAL on its associated group interface). 7729 */ 7730 ASSERT(ire->ire_ill != NULL); 7731 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7732 return (ire); 7733 7734 /* 7735 * Do another ire lookup here, using the ingress ill, to see if the 7736 * interface is in a usesrc group. 7737 * As long as the ills belong to the same group, we don't consider 7738 * them to be arriving on the wrong interface. Thus, if the switch 7739 * is doing inbound load spreading, we won't drop packets when the 7740 * ip*_strict_dst_multihoming switch is on. 7741 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7742 * where the local address may not be unique. In this case we were 7743 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7744 * actually returned. The new lookup, which is more specific, should 7745 * only find the IRE_LOCAL associated with the ingress ill if one 7746 * exists. 7747 */ 7748 if (ire->ire_ipversion == IPV4_VERSION) { 7749 if (ipst->ips_ip_strict_dst_multihoming) 7750 strict_check = B_TRUE; 7751 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7752 IRE_LOCAL, ill, ALL_ZONES, NULL, 7753 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7754 } else { 7755 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7756 if (ipst->ips_ipv6_strict_dst_multihoming) 7757 strict_check = B_TRUE; 7758 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7759 IRE_LOCAL, ill, ALL_ZONES, NULL, 7760 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7761 } 7762 /* 7763 * If the same ire that was returned in ip_input() is found then this 7764 * is an indication that usesrc groups are in use. The packet 7765 * arrived on a different ill in the group than the one associated with 7766 * the destination address. If a different ire was found then the same 7767 * IP address must be hosted on multiple ills. This is possible with 7768 * unnumbered point2point interfaces. We switch to use this new ire in 7769 * order to have accurate interface statistics. 7770 */ 7771 if (new_ire != NULL) { 7772 /* Note: held in one case but not the other? Caller handles */ 7773 if (new_ire != ire) 7774 return (new_ire); 7775 /* Unchanged */ 7776 ire_refrele(new_ire); 7777 return (ire); 7778 } 7779 7780 /* 7781 * Chase pointers once and store locally. 7782 */ 7783 ASSERT(ire->ire_ill != NULL); 7784 ire_ill = ire->ire_ill; 7785 ifindex = ill->ill_usesrc_ifindex; 7786 7787 /* 7788 * Check if it's a legal address on the 'usesrc' interface. 7789 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7790 * can just check phyint_ifindex. 7791 */ 7792 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7793 return (ire); 7794 } 7795 7796 /* 7797 * If the ip*_strict_dst_multihoming switch is on then we can 7798 * only accept this packet if the interface is marked as routing. 7799 */ 7800 if (!(strict_check)) 7801 return (ire); 7802 7803 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7804 return (ire); 7805 } 7806 return (NULL); 7807 } 7808 7809 /* 7810 * This function is used to construct a mac_header_info_s from a 7811 * DL_UNITDATA_IND message. 7812 * The address fields in the mhi structure points into the message, 7813 * thus the caller can't use those fields after freeing the message. 7814 * 7815 * We determine whether the packet received is a non-unicast packet 7816 * and in doing so, determine whether or not it is broadcast vs multicast. 7817 * For it to be a broadcast packet, we must have the appropriate mblk_t 7818 * hanging off the ill_t. If this is either not present or doesn't match 7819 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7820 * to be multicast. Thus NICs that have no broadcast address (or no 7821 * capability for one, such as point to point links) cannot return as 7822 * the packet being broadcast. 7823 */ 7824 void 7825 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7826 { 7827 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7828 mblk_t *bmp; 7829 uint_t extra_offset; 7830 7831 bzero(mhip, sizeof (struct mac_header_info_s)); 7832 7833 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7834 7835 if (ill->ill_sap_length < 0) 7836 extra_offset = 0; 7837 else 7838 extra_offset = ill->ill_sap_length; 7839 7840 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7841 extra_offset; 7842 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7843 extra_offset; 7844 7845 if (!ind->dl_group_address) 7846 return; 7847 7848 /* Multicast or broadcast */ 7849 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7850 7851 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7852 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7853 (bmp = ill->ill_bcast_mp) != NULL) { 7854 dl_unitdata_req_t *dlur; 7855 uint8_t *bphys_addr; 7856 7857 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7858 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7859 extra_offset; 7860 7861 if (bcmp(mhip->mhi_daddr, bphys_addr, 7862 ind->dl_dest_addr_length) == 0) 7863 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7864 } 7865 } 7866 7867 /* 7868 * This function is used to construct a mac_header_info_s from a 7869 * M_DATA fastpath message from a DLPI driver. 7870 * The address fields in the mhi structure points into the message, 7871 * thus the caller can't use those fields after freeing the message. 7872 * 7873 * We determine whether the packet received is a non-unicast packet 7874 * and in doing so, determine whether or not it is broadcast vs multicast. 7875 * For it to be a broadcast packet, we must have the appropriate mblk_t 7876 * hanging off the ill_t. If this is either not present or doesn't match 7877 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7878 * to be multicast. Thus NICs that have no broadcast address (or no 7879 * capability for one, such as point to point links) cannot return as 7880 * the packet being broadcast. 7881 */ 7882 void 7883 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7884 { 7885 mblk_t *bmp; 7886 struct ether_header *pether; 7887 7888 bzero(mhip, sizeof (struct mac_header_info_s)); 7889 7890 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7891 7892 pether = (struct ether_header *)((char *)mp->b_rptr 7893 - sizeof (struct ether_header)); 7894 7895 /* 7896 * Make sure the interface is an ethernet type, since we don't 7897 * know the header format for anything but Ethernet. Also make 7898 * sure we are pointing correctly above db_base. 7899 */ 7900 if (ill->ill_type != IFT_ETHER) 7901 return; 7902 7903 retry: 7904 if ((uchar_t *)pether < mp->b_datap->db_base) 7905 return; 7906 7907 /* Is there a VLAN tag? */ 7908 if (ill->ill_isv6) { 7909 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7910 pether = (struct ether_header *)((char *)pether - 4); 7911 goto retry; 7912 } 7913 } else { 7914 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7915 pether = (struct ether_header *)((char *)pether - 4); 7916 goto retry; 7917 } 7918 } 7919 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7920 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7921 7922 if (!(mhip->mhi_daddr[0] & 0x01)) 7923 return; 7924 7925 /* Multicast or broadcast */ 7926 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7927 7928 if ((bmp = ill->ill_bcast_mp) != NULL) { 7929 dl_unitdata_req_t *dlur; 7930 uint8_t *bphys_addr; 7931 uint_t addrlen; 7932 7933 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7934 addrlen = dlur->dl_dest_addr_length; 7935 if (ill->ill_sap_length < 0) { 7936 bphys_addr = (uchar_t *)dlur + 7937 dlur->dl_dest_addr_offset; 7938 addrlen += ill->ill_sap_length; 7939 } else { 7940 bphys_addr = (uchar_t *)dlur + 7941 dlur->dl_dest_addr_offset + 7942 ill->ill_sap_length; 7943 addrlen -= ill->ill_sap_length; 7944 } 7945 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7946 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7947 } 7948 } 7949 7950 /* 7951 * Handle anything but M_DATA messages 7952 * We see the DL_UNITDATA_IND which are part 7953 * of the data path, and also the other messages from the driver. 7954 */ 7955 void 7956 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7957 { 7958 mblk_t *first_mp; 7959 struct iocblk *iocp; 7960 struct mac_header_info_s mhi; 7961 7962 switch (DB_TYPE(mp)) { 7963 case M_PROTO: 7964 case M_PCPROTO: { 7965 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7966 DL_UNITDATA_IND) { 7967 /* Go handle anything other than data elsewhere. */ 7968 ip_rput_dlpi(ill, mp); 7969 return; 7970 } 7971 7972 first_mp = mp; 7973 mp = first_mp->b_cont; 7974 first_mp->b_cont = NULL; 7975 7976 if (mp == NULL) { 7977 freeb(first_mp); 7978 return; 7979 } 7980 ip_dlur_to_mhi(ill, first_mp, &mhi); 7981 if (ill->ill_isv6) 7982 ip_input_v6(ill, NULL, mp, &mhi); 7983 else 7984 ip_input(ill, NULL, mp, &mhi); 7985 7986 /* Ditch the DLPI header. */ 7987 freeb(first_mp); 7988 return; 7989 } 7990 case M_IOCACK: 7991 iocp = (struct iocblk *)mp->b_rptr; 7992 switch (iocp->ioc_cmd) { 7993 case DL_IOC_HDR_INFO: 7994 ill_fastpath_ack(ill, mp); 7995 return; 7996 default: 7997 putnext(ill->ill_rq, mp); 7998 return; 7999 } 8000 /* FALLTHROUGH */ 8001 case M_ERROR: 8002 case M_HANGUP: 8003 mutex_enter(&ill->ill_lock); 8004 if (ill->ill_state_flags & ILL_CONDEMNED) { 8005 mutex_exit(&ill->ill_lock); 8006 freemsg(mp); 8007 return; 8008 } 8009 ill_refhold_locked(ill); 8010 mutex_exit(&ill->ill_lock); 8011 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 8012 B_FALSE); 8013 return; 8014 case M_CTL: 8015 putnext(ill->ill_rq, mp); 8016 return; 8017 case M_IOCNAK: 8018 ip1dbg(("got iocnak ")); 8019 iocp = (struct iocblk *)mp->b_rptr; 8020 switch (iocp->ioc_cmd) { 8021 case DL_IOC_HDR_INFO: 8022 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 8023 return; 8024 default: 8025 break; 8026 } 8027 /* FALLTHROUGH */ 8028 default: 8029 putnext(ill->ill_rq, mp); 8030 return; 8031 } 8032 } 8033 8034 /* Read side put procedure. Packets coming from the wire arrive here. */ 8035 int 8036 ip_rput(queue_t *q, mblk_t *mp) 8037 { 8038 ill_t *ill; 8039 union DL_primitives *dl; 8040 8041 ill = (ill_t *)q->q_ptr; 8042 8043 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8044 /* 8045 * If things are opening or closing, only accept high-priority 8046 * DLPI messages. (On open ill->ill_ipif has not yet been 8047 * created; on close, things hanging off the ill may have been 8048 * freed already.) 8049 */ 8050 dl = (union DL_primitives *)mp->b_rptr; 8051 if (DB_TYPE(mp) != M_PCPROTO || 8052 dl->dl_primitive == DL_UNITDATA_IND) { 8053 inet_freemsg(mp); 8054 return (0); 8055 } 8056 } 8057 if (DB_TYPE(mp) == M_DATA) { 8058 struct mac_header_info_s mhi; 8059 8060 ip_mdata_to_mhi(ill, mp, &mhi); 8061 ip_input(ill, NULL, mp, &mhi); 8062 } else { 8063 ip_rput_notdata(ill, mp); 8064 } 8065 return (0); 8066 } 8067 8068 /* 8069 * Move the information to a copy. 8070 */ 8071 mblk_t * 8072 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8073 { 8074 mblk_t *mp1; 8075 ill_t *ill = ira->ira_ill; 8076 ip_stack_t *ipst = ill->ill_ipst; 8077 8078 IP_STAT(ipst, ip_db_ref); 8079 8080 /* Make sure we have ira_l2src before we loose the original mblk */ 8081 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8082 ip_setl2src(mp, ira, ira->ira_rill); 8083 8084 mp1 = copymsg(mp); 8085 if (mp1 == NULL) { 8086 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8087 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8088 freemsg(mp); 8089 return (NULL); 8090 } 8091 /* preserve the hardware checksum flags and data, if present */ 8092 if (DB_CKSUMFLAGS(mp) != 0) { 8093 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8094 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8095 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8096 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8097 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8098 } 8099 freemsg(mp); 8100 return (mp1); 8101 } 8102 8103 static void 8104 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8105 t_uscalar_t err) 8106 { 8107 if (dl_err == DL_SYSERR) { 8108 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8109 "%s: %s failed: DL_SYSERR (errno %u)\n", 8110 ill->ill_name, dl_primstr(prim), err); 8111 return; 8112 } 8113 8114 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8115 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8116 dl_errstr(dl_err)); 8117 } 8118 8119 /* 8120 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8121 * than DL_UNITDATA_IND messages. If we need to process this message 8122 * exclusively, we call qwriter_ip, in which case we also need to call 8123 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8124 */ 8125 void 8126 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8127 { 8128 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8129 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8130 queue_t *q = ill->ill_rq; 8131 t_uscalar_t prim = dloa->dl_primitive; 8132 t_uscalar_t reqprim = DL_PRIM_INVAL; 8133 8134 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8135 char *, dl_primstr(prim), ill_t *, ill); 8136 ip1dbg(("ip_rput_dlpi")); 8137 8138 /* 8139 * If we received an ACK but didn't send a request for it, then it 8140 * can't be part of any pending operation; discard up-front. 8141 */ 8142 switch (prim) { 8143 case DL_ERROR_ACK: 8144 reqprim = dlea->dl_error_primitive; 8145 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8146 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8147 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8148 dlea->dl_unix_errno)); 8149 break; 8150 case DL_OK_ACK: 8151 reqprim = dloa->dl_correct_primitive; 8152 break; 8153 case DL_INFO_ACK: 8154 reqprim = DL_INFO_REQ; 8155 break; 8156 case DL_BIND_ACK: 8157 reqprim = DL_BIND_REQ; 8158 break; 8159 case DL_PHYS_ADDR_ACK: 8160 reqprim = DL_PHYS_ADDR_REQ; 8161 break; 8162 case DL_NOTIFY_ACK: 8163 reqprim = DL_NOTIFY_REQ; 8164 break; 8165 case DL_CAPABILITY_ACK: 8166 reqprim = DL_CAPABILITY_REQ; 8167 break; 8168 } 8169 8170 if (prim != DL_NOTIFY_IND) { 8171 if (reqprim == DL_PRIM_INVAL || 8172 !ill_dlpi_pending(ill, reqprim)) { 8173 /* Not a DLPI message we support or expected */ 8174 freemsg(mp); 8175 return; 8176 } 8177 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8178 dl_primstr(reqprim))); 8179 } 8180 8181 switch (reqprim) { 8182 case DL_UNBIND_REQ: 8183 /* 8184 * NOTE: we mark the unbind as complete even if we got a 8185 * DL_ERROR_ACK, since there's not much else we can do. 8186 */ 8187 mutex_enter(&ill->ill_lock); 8188 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8189 cv_signal(&ill->ill_cv); 8190 mutex_exit(&ill->ill_lock); 8191 break; 8192 8193 case DL_ENABMULTI_REQ: 8194 if (prim == DL_OK_ACK) { 8195 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8196 ill->ill_dlpi_multicast_state = IDS_OK; 8197 } 8198 break; 8199 } 8200 8201 /* 8202 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8203 * need to become writer to continue to process it. Because an 8204 * exclusive operation doesn't complete until replies to all queued 8205 * DLPI messages have been received, we know we're in the middle of an 8206 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8207 * 8208 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8209 * Since this is on the ill stream we unconditionally bump up the 8210 * refcount without doing ILL_CAN_LOOKUP(). 8211 */ 8212 ill_refhold(ill); 8213 if (prim == DL_NOTIFY_IND) 8214 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8215 else 8216 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8217 } 8218 8219 /* 8220 * Handling of DLPI messages that require exclusive access to the ipsq. 8221 * 8222 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8223 * happen here. (along with mi_copy_done) 8224 */ 8225 /* ARGSUSED */ 8226 static void 8227 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8228 { 8229 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8230 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8231 int err = 0; 8232 ill_t *ill = (ill_t *)q->q_ptr; 8233 ipif_t *ipif = NULL; 8234 mblk_t *mp1 = NULL; 8235 conn_t *connp = NULL; 8236 t_uscalar_t paddrreq; 8237 mblk_t *mp_hw; 8238 boolean_t success; 8239 boolean_t ioctl_aborted = B_FALSE; 8240 boolean_t log = B_TRUE; 8241 8242 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8243 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8244 8245 ip1dbg(("ip_rput_dlpi_writer ..")); 8246 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8247 ASSERT(IAM_WRITER_ILL(ill)); 8248 8249 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8250 /* 8251 * The current ioctl could have been aborted by the user and a new 8252 * ioctl to bring up another ill could have started. We could still 8253 * get a response from the driver later. 8254 */ 8255 if (ipif != NULL && ipif->ipif_ill != ill) 8256 ioctl_aborted = B_TRUE; 8257 8258 switch (dloa->dl_primitive) { 8259 case DL_ERROR_ACK: 8260 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8261 dl_primstr(dlea->dl_error_primitive))); 8262 8263 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8264 char *, dl_primstr(dlea->dl_error_primitive), 8265 ill_t *, ill); 8266 8267 switch (dlea->dl_error_primitive) { 8268 case DL_DISABMULTI_REQ: 8269 ill_dlpi_done(ill, dlea->dl_error_primitive); 8270 break; 8271 case DL_PROMISCON_REQ: 8272 case DL_PROMISCOFF_REQ: 8273 case DL_UNBIND_REQ: 8274 case DL_ATTACH_REQ: 8275 case DL_INFO_REQ: 8276 ill_dlpi_done(ill, dlea->dl_error_primitive); 8277 break; 8278 case DL_NOTIFY_REQ: 8279 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8280 log = B_FALSE; 8281 break; 8282 case DL_PHYS_ADDR_REQ: 8283 /* 8284 * For IPv6 only, there are two additional 8285 * phys_addr_req's sent to the driver to get the 8286 * IPv6 token and lla. This allows IP to acquire 8287 * the hardware address format for a given interface 8288 * without having built in knowledge of the hardware 8289 * address. ill_phys_addr_pend keeps track of the last 8290 * DL_PAR sent so we know which response we are 8291 * dealing with. ill_dlpi_done will update 8292 * ill_phys_addr_pend when it sends the next req. 8293 * We don't complete the IOCTL until all three DL_PARs 8294 * have been attempted, so set *_len to 0 and break. 8295 */ 8296 paddrreq = ill->ill_phys_addr_pend; 8297 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8298 if (paddrreq == DL_IPV6_TOKEN) { 8299 ill->ill_token_length = 0; 8300 log = B_FALSE; 8301 break; 8302 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8303 ill->ill_nd_lla_len = 0; 8304 log = B_FALSE; 8305 break; 8306 } 8307 /* 8308 * Something went wrong with the DL_PHYS_ADDR_REQ. 8309 * We presumably have an IOCTL hanging out waiting 8310 * for completion. Find it and complete the IOCTL 8311 * with the error noted. 8312 * However, ill_dl_phys was called on an ill queue 8313 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8314 * set. But the ioctl is known to be pending on ill_wq. 8315 */ 8316 if (!ill->ill_ifname_pending) 8317 break; 8318 ill->ill_ifname_pending = 0; 8319 if (!ioctl_aborted) 8320 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8321 if (mp1 != NULL) { 8322 /* 8323 * This operation (SIOCSLIFNAME) must have 8324 * happened on the ill. Assert there is no conn 8325 */ 8326 ASSERT(connp == NULL); 8327 q = ill->ill_wq; 8328 } 8329 break; 8330 case DL_BIND_REQ: 8331 ill_dlpi_done(ill, DL_BIND_REQ); 8332 if (ill->ill_ifname_pending) 8333 break; 8334 mutex_enter(&ill->ill_lock); 8335 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8336 mutex_exit(&ill->ill_lock); 8337 /* 8338 * Something went wrong with the bind. We presumably 8339 * have an IOCTL hanging out waiting for completion. 8340 * Find it, take down the interface that was coming 8341 * up, and complete the IOCTL with the error noted. 8342 */ 8343 if (!ioctl_aborted) 8344 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8345 if (mp1 != NULL) { 8346 /* 8347 * This might be a result of a DL_NOTE_REPLUMB 8348 * notification. In that case, connp is NULL. 8349 */ 8350 if (connp != NULL) 8351 q = CONNP_TO_WQ(connp); 8352 8353 (void) ipif_down(ipif, NULL, NULL); 8354 /* error is set below the switch */ 8355 } 8356 break; 8357 case DL_ENABMULTI_REQ: 8358 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8359 8360 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8361 ill->ill_dlpi_multicast_state = IDS_FAILED; 8362 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8363 8364 printf("ip: joining multicasts failed (%d)" 8365 " on %s - will use link layer " 8366 "broadcasts for multicast\n", 8367 dlea->dl_errno, ill->ill_name); 8368 8369 /* 8370 * Set up for multi_bcast; We are the 8371 * writer, so ok to access ill->ill_ipif 8372 * without any lock. 8373 */ 8374 mutex_enter(&ill->ill_phyint->phyint_lock); 8375 ill->ill_phyint->phyint_flags |= 8376 PHYI_MULTI_BCAST; 8377 mutex_exit(&ill->ill_phyint->phyint_lock); 8378 8379 } 8380 freemsg(mp); /* Don't want to pass this up */ 8381 return; 8382 case DL_CAPABILITY_REQ: 8383 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8384 "DL_CAPABILITY REQ\n")); 8385 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8386 ill->ill_dlpi_capab_state = IDCS_FAILED; 8387 ill_capability_done(ill); 8388 freemsg(mp); 8389 return; 8390 } 8391 /* 8392 * Note the error for IOCTL completion (mp1 is set when 8393 * ready to complete ioctl). If ill_ifname_pending_err is 8394 * set, an error occured during plumbing (ill_ifname_pending), 8395 * so we want to report that error. 8396 * 8397 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8398 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8399 * expected to get errack'd if the driver doesn't support 8400 * these flags (e.g. ethernet). log will be set to B_FALSE 8401 * if these error conditions are encountered. 8402 */ 8403 if (mp1 != NULL) { 8404 if (ill->ill_ifname_pending_err != 0) { 8405 err = ill->ill_ifname_pending_err; 8406 ill->ill_ifname_pending_err = 0; 8407 } else { 8408 err = dlea->dl_unix_errno ? 8409 dlea->dl_unix_errno : ENXIO; 8410 } 8411 /* 8412 * If we're plumbing an interface and an error hasn't already 8413 * been saved, set ill_ifname_pending_err to the error passed 8414 * up. Ignore the error if log is B_FALSE (see comment above). 8415 */ 8416 } else if (log && ill->ill_ifname_pending && 8417 ill->ill_ifname_pending_err == 0) { 8418 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8419 dlea->dl_unix_errno : ENXIO; 8420 } 8421 8422 if (log) 8423 ip_dlpi_error(ill, dlea->dl_error_primitive, 8424 dlea->dl_errno, dlea->dl_unix_errno); 8425 break; 8426 case DL_CAPABILITY_ACK: 8427 ill_capability_ack(ill, mp); 8428 /* 8429 * The message has been handed off to ill_capability_ack 8430 * and must not be freed below 8431 */ 8432 mp = NULL; 8433 break; 8434 8435 case DL_INFO_ACK: 8436 /* Call a routine to handle this one. */ 8437 ill_dlpi_done(ill, DL_INFO_REQ); 8438 ip_ll_subnet_defaults(ill, mp); 8439 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8440 return; 8441 case DL_BIND_ACK: 8442 /* 8443 * We should have an IOCTL waiting on this unless 8444 * sent by ill_dl_phys, in which case just return 8445 */ 8446 ill_dlpi_done(ill, DL_BIND_REQ); 8447 8448 if (ill->ill_ifname_pending) { 8449 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8450 ill_t *, ill, mblk_t *, mp); 8451 break; 8452 } 8453 mutex_enter(&ill->ill_lock); 8454 ill->ill_dl_up = 1; 8455 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8456 mutex_exit(&ill->ill_lock); 8457 8458 if (!ioctl_aborted) 8459 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8460 if (mp1 == NULL) { 8461 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8462 break; 8463 } 8464 /* 8465 * mp1 was added by ill_dl_up(). if that is a result of 8466 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8467 */ 8468 if (connp != NULL) 8469 q = CONNP_TO_WQ(connp); 8470 /* 8471 * We are exclusive. So nothing can change even after 8472 * we get the pending mp. 8473 */ 8474 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8475 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8476 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8477 8478 /* 8479 * Now bring up the resolver; when that is complete, we'll 8480 * create IREs. Note that we intentionally mirror what 8481 * ipif_up() would have done, because we got here by way of 8482 * ill_dl_up(), which stopped ipif_up()'s processing. 8483 */ 8484 if (ill->ill_isv6) { 8485 /* 8486 * v6 interfaces. 8487 * Unlike ARP which has to do another bind 8488 * and attach, once we get here we are 8489 * done with NDP 8490 */ 8491 (void) ipif_resolver_up(ipif, Res_act_initial); 8492 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8493 err = ipif_up_done_v6(ipif); 8494 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8495 /* 8496 * ARP and other v4 external resolvers. 8497 * Leave the pending mblk intact so that 8498 * the ioctl completes in ip_rput(). 8499 */ 8500 if (connp != NULL) 8501 mutex_enter(&connp->conn_lock); 8502 mutex_enter(&ill->ill_lock); 8503 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8504 mutex_exit(&ill->ill_lock); 8505 if (connp != NULL) 8506 mutex_exit(&connp->conn_lock); 8507 if (success) { 8508 err = ipif_resolver_up(ipif, Res_act_initial); 8509 if (err == EINPROGRESS) { 8510 freemsg(mp); 8511 return; 8512 } 8513 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8514 } else { 8515 /* The conn has started closing */ 8516 err = EINTR; 8517 } 8518 } else { 8519 /* 8520 * This one is complete. Reply to pending ioctl. 8521 */ 8522 (void) ipif_resolver_up(ipif, Res_act_initial); 8523 err = ipif_up_done(ipif); 8524 } 8525 8526 if ((err == 0) && (ill->ill_up_ipifs)) { 8527 err = ill_up_ipifs(ill, q, mp1); 8528 if (err == EINPROGRESS) { 8529 freemsg(mp); 8530 return; 8531 } 8532 } 8533 8534 /* 8535 * If we have a moved ipif to bring up, and everything has 8536 * succeeded to this point, bring it up on the IPMP ill. 8537 * Otherwise, leave it down -- the admin can try to bring it 8538 * up by hand if need be. 8539 */ 8540 if (ill->ill_move_ipif != NULL) { 8541 if (err != 0) { 8542 ill->ill_move_ipif = NULL; 8543 } else { 8544 ipif = ill->ill_move_ipif; 8545 ill->ill_move_ipif = NULL; 8546 err = ipif_up(ipif, q, mp1); 8547 if (err == EINPROGRESS) { 8548 freemsg(mp); 8549 return; 8550 } 8551 } 8552 } 8553 break; 8554 8555 case DL_NOTIFY_IND: { 8556 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8557 uint_t orig_mtu, orig_mc_mtu; 8558 8559 switch (notify->dl_notification) { 8560 case DL_NOTE_PHYS_ADDR: 8561 err = ill_set_phys_addr(ill, mp); 8562 break; 8563 8564 case DL_NOTE_REPLUMB: 8565 /* 8566 * Directly return after calling ill_replumb(). 8567 * Note that we should not free mp as it is reused 8568 * in the ill_replumb() function. 8569 */ 8570 err = ill_replumb(ill, mp); 8571 return; 8572 8573 case DL_NOTE_FASTPATH_FLUSH: 8574 nce_flush(ill, B_FALSE); 8575 break; 8576 8577 case DL_NOTE_SDU_SIZE: 8578 case DL_NOTE_SDU_SIZE2: 8579 /* 8580 * The dce and fragmentation code can cope with 8581 * this changing while packets are being sent. 8582 * When packets are sent ip_output will discover 8583 * a change. 8584 * 8585 * Change the MTU size of the interface. 8586 */ 8587 mutex_enter(&ill->ill_lock); 8588 orig_mtu = ill->ill_mtu; 8589 orig_mc_mtu = ill->ill_mc_mtu; 8590 switch (notify->dl_notification) { 8591 case DL_NOTE_SDU_SIZE: 8592 ill->ill_current_frag = 8593 (uint_t)notify->dl_data; 8594 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8595 break; 8596 case DL_NOTE_SDU_SIZE2: 8597 ill->ill_current_frag = 8598 (uint_t)notify->dl_data1; 8599 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8600 break; 8601 } 8602 if (ill->ill_current_frag > ill->ill_max_frag) 8603 ill->ill_max_frag = ill->ill_current_frag; 8604 8605 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8606 ill->ill_mtu = ill->ill_current_frag; 8607 8608 /* 8609 * If ill_user_mtu was set (via 8610 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8611 */ 8612 if (ill->ill_user_mtu != 0 && 8613 ill->ill_user_mtu < ill->ill_mtu) 8614 ill->ill_mtu = ill->ill_user_mtu; 8615 8616 if (ill->ill_user_mtu != 0 && 8617 ill->ill_user_mtu < ill->ill_mc_mtu) 8618 ill->ill_mc_mtu = ill->ill_user_mtu; 8619 8620 if (ill->ill_isv6) { 8621 if (ill->ill_mtu < IPV6_MIN_MTU) 8622 ill->ill_mtu = IPV6_MIN_MTU; 8623 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8624 ill->ill_mc_mtu = IPV6_MIN_MTU; 8625 } else { 8626 if (ill->ill_mtu < IP_MIN_MTU) 8627 ill->ill_mtu = IP_MIN_MTU; 8628 if (ill->ill_mc_mtu < IP_MIN_MTU) 8629 ill->ill_mc_mtu = IP_MIN_MTU; 8630 } 8631 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8632 ill->ill_mc_mtu = ill->ill_mtu; 8633 } 8634 8635 mutex_exit(&ill->ill_lock); 8636 /* 8637 * Make sure all dce_generation checks find out 8638 * that ill_mtu/ill_mc_mtu has changed. 8639 */ 8640 if (orig_mtu != ill->ill_mtu || 8641 orig_mc_mtu != ill->ill_mc_mtu) { 8642 dce_increment_all_generations(ill->ill_isv6, 8643 ill->ill_ipst); 8644 } 8645 8646 /* 8647 * Refresh IPMP meta-interface MTU if necessary. 8648 */ 8649 if (IS_UNDER_IPMP(ill)) 8650 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8651 break; 8652 8653 case DL_NOTE_LINK_UP: 8654 case DL_NOTE_LINK_DOWN: { 8655 /* 8656 * We are writer. ill / phyint / ipsq assocs stable. 8657 * The RUNNING flag reflects the state of the link. 8658 */ 8659 phyint_t *phyint = ill->ill_phyint; 8660 uint64_t new_phyint_flags; 8661 boolean_t changed = B_FALSE; 8662 boolean_t went_up; 8663 8664 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8665 mutex_enter(&phyint->phyint_lock); 8666 8667 new_phyint_flags = went_up ? 8668 phyint->phyint_flags | PHYI_RUNNING : 8669 phyint->phyint_flags & ~PHYI_RUNNING; 8670 8671 if (IS_IPMP(ill)) { 8672 new_phyint_flags = went_up ? 8673 new_phyint_flags & ~PHYI_FAILED : 8674 new_phyint_flags | PHYI_FAILED; 8675 } 8676 8677 if (new_phyint_flags != phyint->phyint_flags) { 8678 phyint->phyint_flags = new_phyint_flags; 8679 changed = B_TRUE; 8680 } 8681 mutex_exit(&phyint->phyint_lock); 8682 /* 8683 * ill_restart_dad handles the DAD restart and routing 8684 * socket notification logic. 8685 */ 8686 if (changed) { 8687 ill_restart_dad(phyint->phyint_illv4, went_up); 8688 ill_restart_dad(phyint->phyint_illv6, went_up); 8689 } 8690 break; 8691 } 8692 case DL_NOTE_PROMISC_ON_PHYS: { 8693 phyint_t *phyint = ill->ill_phyint; 8694 8695 mutex_enter(&phyint->phyint_lock); 8696 phyint->phyint_flags |= PHYI_PROMISC; 8697 mutex_exit(&phyint->phyint_lock); 8698 break; 8699 } 8700 case DL_NOTE_PROMISC_OFF_PHYS: { 8701 phyint_t *phyint = ill->ill_phyint; 8702 8703 mutex_enter(&phyint->phyint_lock); 8704 phyint->phyint_flags &= ~PHYI_PROMISC; 8705 mutex_exit(&phyint->phyint_lock); 8706 break; 8707 } 8708 case DL_NOTE_CAPAB_RENEG: 8709 /* 8710 * Something changed on the driver side. 8711 * It wants us to renegotiate the capabilities 8712 * on this ill. One possible cause is the aggregation 8713 * interface under us where a port got added or 8714 * went away. 8715 * 8716 * If the capability negotiation is already done 8717 * or is in progress, reset the capabilities and 8718 * mark the ill's ill_capab_reneg to be B_TRUE, 8719 * so that when the ack comes back, we can start 8720 * the renegotiation process. 8721 * 8722 * Note that if ill_capab_reneg is already B_TRUE 8723 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8724 * the capability resetting request has been sent 8725 * and the renegotiation has not been started yet; 8726 * nothing needs to be done in this case. 8727 */ 8728 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8729 ill_capability_reset(ill, B_TRUE); 8730 ipsq_current_finish(ipsq); 8731 break; 8732 8733 case DL_NOTE_ALLOWED_IPS: 8734 ill_set_allowed_ips(ill, mp); 8735 break; 8736 default: 8737 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8738 "type 0x%x for DL_NOTIFY_IND\n", 8739 notify->dl_notification)); 8740 break; 8741 } 8742 8743 /* 8744 * As this is an asynchronous operation, we 8745 * should not call ill_dlpi_done 8746 */ 8747 break; 8748 } 8749 case DL_NOTIFY_ACK: { 8750 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8751 8752 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8753 ill->ill_note_link = 1; 8754 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8755 break; 8756 } 8757 case DL_PHYS_ADDR_ACK: { 8758 /* 8759 * As part of plumbing the interface via SIOCSLIFNAME, 8760 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8761 * whose answers we receive here. As each answer is received, 8762 * we call ill_dlpi_done() to dispatch the next request as 8763 * we're processing the current one. Once all answers have 8764 * been received, we use ipsq_pending_mp_get() to dequeue the 8765 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8766 * is invoked from an ill queue, conn_oper_pending_ill is not 8767 * available, but we know the ioctl is pending on ill_wq.) 8768 */ 8769 uint_t paddrlen, paddroff; 8770 uint8_t *addr; 8771 8772 paddrreq = ill->ill_phys_addr_pend; 8773 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8774 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8775 addr = mp->b_rptr + paddroff; 8776 8777 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8778 if (paddrreq == DL_IPV6_TOKEN) { 8779 /* 8780 * bcopy to low-order bits of ill_token 8781 * 8782 * XXX Temporary hack - currently, all known tokens 8783 * are 64 bits, so I'll cheat for the moment. 8784 */ 8785 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8786 ill->ill_token_length = paddrlen; 8787 break; 8788 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8789 ASSERT(ill->ill_nd_lla_mp == NULL); 8790 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8791 mp = NULL; 8792 break; 8793 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8794 ASSERT(ill->ill_dest_addr_mp == NULL); 8795 ill->ill_dest_addr_mp = mp; 8796 ill->ill_dest_addr = addr; 8797 mp = NULL; 8798 if (ill->ill_isv6) { 8799 ill_setdesttoken(ill); 8800 ipif_setdestlinklocal(ill->ill_ipif); 8801 } 8802 break; 8803 } 8804 8805 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8806 ASSERT(ill->ill_phys_addr_mp == NULL); 8807 if (!ill->ill_ifname_pending) 8808 break; 8809 ill->ill_ifname_pending = 0; 8810 if (!ioctl_aborted) 8811 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8812 if (mp1 != NULL) { 8813 ASSERT(connp == NULL); 8814 q = ill->ill_wq; 8815 } 8816 /* 8817 * If any error acks received during the plumbing sequence, 8818 * ill_ifname_pending_err will be set. Break out and send up 8819 * the error to the pending ioctl. 8820 */ 8821 if (ill->ill_ifname_pending_err != 0) { 8822 err = ill->ill_ifname_pending_err; 8823 ill->ill_ifname_pending_err = 0; 8824 break; 8825 } 8826 8827 ill->ill_phys_addr_mp = mp; 8828 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8829 mp = NULL; 8830 8831 /* 8832 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8833 * provider doesn't support physical addresses. We check both 8834 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8835 * not have physical addresses, but historically adversises a 8836 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8837 * its DL_PHYS_ADDR_ACK. 8838 */ 8839 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8840 ill->ill_phys_addr = NULL; 8841 } else if (paddrlen != ill->ill_phys_addr_length) { 8842 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8843 paddrlen, ill->ill_phys_addr_length)); 8844 err = EINVAL; 8845 break; 8846 } 8847 8848 if (ill->ill_nd_lla_mp == NULL) { 8849 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8850 err = ENOMEM; 8851 break; 8852 } 8853 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8854 } 8855 8856 if (ill->ill_isv6) { 8857 ill_setdefaulttoken(ill); 8858 ipif_setlinklocal(ill->ill_ipif); 8859 } 8860 break; 8861 } 8862 case DL_OK_ACK: 8863 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8864 dl_primstr((int)dloa->dl_correct_primitive), 8865 dloa->dl_correct_primitive)); 8866 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8867 char *, dl_primstr(dloa->dl_correct_primitive), 8868 ill_t *, ill); 8869 8870 switch (dloa->dl_correct_primitive) { 8871 case DL_ENABMULTI_REQ: 8872 case DL_DISABMULTI_REQ: 8873 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8874 break; 8875 case DL_PROMISCON_REQ: 8876 case DL_PROMISCOFF_REQ: 8877 case DL_UNBIND_REQ: 8878 case DL_ATTACH_REQ: 8879 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8880 break; 8881 } 8882 break; 8883 default: 8884 break; 8885 } 8886 8887 freemsg(mp); 8888 if (mp1 == NULL) 8889 return; 8890 8891 /* 8892 * The operation must complete without EINPROGRESS since 8893 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8894 * the operation will be stuck forever inside the IPSQ. 8895 */ 8896 ASSERT(err != EINPROGRESS); 8897 8898 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8899 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8900 ipif_t *, NULL); 8901 8902 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8903 case 0: 8904 ipsq_current_finish(ipsq); 8905 break; 8906 8907 case SIOCSLIFNAME: 8908 case IF_UNITSEL: { 8909 ill_t *ill_other = ILL_OTHER(ill); 8910 8911 /* 8912 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8913 * ill has a peer which is in an IPMP group, then place ill 8914 * into the same group. One catch: although ifconfig plumbs 8915 * the appropriate IPMP meta-interface prior to plumbing this 8916 * ill, it is possible for multiple ifconfig applications to 8917 * race (or for another application to adjust plumbing), in 8918 * which case the IPMP meta-interface we need will be missing. 8919 * If so, kick the phyint out of the group. 8920 */ 8921 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8922 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8923 ipmp_illgrp_t *illg; 8924 8925 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8926 if (illg == NULL) 8927 ipmp_phyint_leave_grp(ill->ill_phyint); 8928 else 8929 ipmp_ill_join_illgrp(ill, illg); 8930 } 8931 8932 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8933 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8934 else 8935 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8936 break; 8937 } 8938 case SIOCLIFADDIF: 8939 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8940 break; 8941 8942 default: 8943 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8944 break; 8945 } 8946 } 8947 8948 /* 8949 * ip_rput_other is called by ip_rput to handle messages modifying the global 8950 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8951 */ 8952 /* ARGSUSED */ 8953 void 8954 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8955 { 8956 ill_t *ill = q->q_ptr; 8957 struct iocblk *iocp; 8958 8959 ip1dbg(("ip_rput_other ")); 8960 if (ipsq != NULL) { 8961 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8962 ASSERT(ipsq->ipsq_xop == 8963 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8964 } 8965 8966 switch (mp->b_datap->db_type) { 8967 case M_ERROR: 8968 case M_HANGUP: 8969 /* 8970 * The device has a problem. We force the ILL down. It can 8971 * be brought up again manually using SIOCSIFFLAGS (via 8972 * ifconfig or equivalent). 8973 */ 8974 ASSERT(ipsq != NULL); 8975 if (mp->b_rptr < mp->b_wptr) 8976 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8977 if (ill->ill_error == 0) 8978 ill->ill_error = ENXIO; 8979 if (!ill_down_start(q, mp)) 8980 return; 8981 ipif_all_down_tail(ipsq, q, mp, NULL); 8982 break; 8983 case M_IOCNAK: { 8984 iocp = (struct iocblk *)mp->b_rptr; 8985 8986 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8987 /* 8988 * If this was the first attempt, turn off the fastpath 8989 * probing. 8990 */ 8991 mutex_enter(&ill->ill_lock); 8992 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8993 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8994 mutex_exit(&ill->ill_lock); 8995 /* 8996 * don't flush the nce_t entries: we use them 8997 * as an index to the ncec itself. 8998 */ 8999 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 9000 ill->ill_name)); 9001 } else { 9002 mutex_exit(&ill->ill_lock); 9003 } 9004 freemsg(mp); 9005 break; 9006 } 9007 default: 9008 ASSERT(0); 9009 break; 9010 } 9011 } 9012 9013 /* 9014 * Update any source route, record route or timestamp options 9015 * When it fails it has consumed the message and BUMPed the MIB. 9016 */ 9017 boolean_t 9018 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 9019 ip_recv_attr_t *ira) 9020 { 9021 ipoptp_t opts; 9022 uchar_t *opt; 9023 uint8_t optval; 9024 uint8_t optlen; 9025 ipaddr_t dst; 9026 ipaddr_t ifaddr; 9027 uint32_t ts; 9028 timestruc_t now; 9029 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9030 9031 ip2dbg(("ip_forward_options\n")); 9032 dst = ipha->ipha_dst; 9033 opt = NULL; 9034 9035 for (optval = ipoptp_first(&opts, ipha); 9036 optval != IPOPT_EOL; 9037 optval = ipoptp_next(&opts)) { 9038 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9039 opt = opts.ipoptp_cur; 9040 optlen = opts.ipoptp_len; 9041 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9042 optval, opts.ipoptp_len)); 9043 switch (optval) { 9044 uint32_t off; 9045 case IPOPT_SSRR: 9046 case IPOPT_LSRR: 9047 /* Check if adminstratively disabled */ 9048 if (!ipst->ips_ip_forward_src_routed) { 9049 BUMP_MIB(dst_ill->ill_ip_mib, 9050 ipIfStatsForwProhibits); 9051 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9052 mp, dst_ill); 9053 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9054 ira); 9055 return (B_FALSE); 9056 } 9057 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9058 /* 9059 * Must be partial since ip_input_options 9060 * checked for strict. 9061 */ 9062 break; 9063 } 9064 off = opt[IPOPT_OFFSET]; 9065 off--; 9066 redo_srr: 9067 if (optlen < IP_ADDR_LEN || 9068 off > optlen - IP_ADDR_LEN) { 9069 /* End of source route */ 9070 ip1dbg(( 9071 "ip_forward_options: end of SR\n")); 9072 break; 9073 } 9074 /* Pick a reasonable address on the outbound if */ 9075 ASSERT(dst_ill != NULL); 9076 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9077 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9078 NULL) != 0) { 9079 /* No source! Shouldn't happen */ 9080 ifaddr = INADDR_ANY; 9081 } 9082 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9083 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9084 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9085 ntohl(dst))); 9086 9087 /* 9088 * Check if our address is present more than 9089 * once as consecutive hops in source route. 9090 */ 9091 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9092 off += IP_ADDR_LEN; 9093 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9094 goto redo_srr; 9095 } 9096 ipha->ipha_dst = dst; 9097 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9098 break; 9099 case IPOPT_RR: 9100 off = opt[IPOPT_OFFSET]; 9101 off--; 9102 if (optlen < IP_ADDR_LEN || 9103 off > optlen - IP_ADDR_LEN) { 9104 /* No more room - ignore */ 9105 ip1dbg(( 9106 "ip_forward_options: end of RR\n")); 9107 break; 9108 } 9109 /* Pick a reasonable address on the outbound if */ 9110 ASSERT(dst_ill != NULL); 9111 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9112 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9113 NULL) != 0) { 9114 /* No source! Shouldn't happen */ 9115 ifaddr = INADDR_ANY; 9116 } 9117 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9118 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9119 break; 9120 case IPOPT_TS: 9121 off = 0; 9122 /* Insert timestamp if there is room */ 9123 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9124 case IPOPT_TS_TSONLY: 9125 off = IPOPT_TS_TIMELEN; 9126 break; 9127 case IPOPT_TS_PRESPEC: 9128 case IPOPT_TS_PRESPEC_RFC791: 9129 /* Verify that the address matched */ 9130 off = opt[IPOPT_OFFSET] - 1; 9131 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9132 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9133 /* Not for us */ 9134 break; 9135 } 9136 /* FALLTHROUGH */ 9137 case IPOPT_TS_TSANDADDR: 9138 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9139 break; 9140 default: 9141 /* 9142 * ip_*put_options should have already 9143 * dropped this packet. 9144 */ 9145 cmn_err(CE_PANIC, "ip_forward_options: " 9146 "unknown IT - bug in ip_input_options?\n"); 9147 } 9148 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9149 /* Increase overflow counter */ 9150 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9151 opt[IPOPT_POS_OV_FLG] = 9152 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9153 (off << 4)); 9154 break; 9155 } 9156 off = opt[IPOPT_OFFSET] - 1; 9157 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9158 case IPOPT_TS_PRESPEC: 9159 case IPOPT_TS_PRESPEC_RFC791: 9160 case IPOPT_TS_TSANDADDR: 9161 /* Pick a reasonable addr on the outbound if */ 9162 ASSERT(dst_ill != NULL); 9163 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9164 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9165 NULL, NULL) != 0) { 9166 /* No source! Shouldn't happen */ 9167 ifaddr = INADDR_ANY; 9168 } 9169 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9170 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9171 /* FALLTHROUGH */ 9172 case IPOPT_TS_TSONLY: 9173 off = opt[IPOPT_OFFSET] - 1; 9174 /* Compute # of milliseconds since midnight */ 9175 gethrestime(&now); 9176 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9177 NSEC2MSEC(now.tv_nsec); 9178 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9179 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9180 break; 9181 } 9182 break; 9183 } 9184 } 9185 return (B_TRUE); 9186 } 9187 9188 /* 9189 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9190 * returns 'true' if there are still fragments left on the queue, in 9191 * which case we restart the timer. 9192 */ 9193 void 9194 ill_frag_timer(void *arg) 9195 { 9196 ill_t *ill = (ill_t *)arg; 9197 boolean_t frag_pending; 9198 ip_stack_t *ipst = ill->ill_ipst; 9199 time_t timeout; 9200 9201 mutex_enter(&ill->ill_lock); 9202 ASSERT(!ill->ill_fragtimer_executing); 9203 if (ill->ill_state_flags & ILL_CONDEMNED) { 9204 ill->ill_frag_timer_id = 0; 9205 mutex_exit(&ill->ill_lock); 9206 return; 9207 } 9208 ill->ill_fragtimer_executing = 1; 9209 mutex_exit(&ill->ill_lock); 9210 9211 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9212 ipst->ips_ip_reassembly_timeout); 9213 9214 frag_pending = ill_frag_timeout(ill, timeout); 9215 9216 /* 9217 * Restart the timer, if we have fragments pending or if someone 9218 * wanted us to be scheduled again. 9219 */ 9220 mutex_enter(&ill->ill_lock); 9221 ill->ill_fragtimer_executing = 0; 9222 ill->ill_frag_timer_id = 0; 9223 if (frag_pending || ill->ill_fragtimer_needrestart) 9224 ill_frag_timer_start(ill); 9225 mutex_exit(&ill->ill_lock); 9226 } 9227 9228 void 9229 ill_frag_timer_start(ill_t *ill) 9230 { 9231 ip_stack_t *ipst = ill->ill_ipst; 9232 clock_t timeo_ms; 9233 9234 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9235 9236 /* If the ill is closing or opening don't proceed */ 9237 if (ill->ill_state_flags & ILL_CONDEMNED) 9238 return; 9239 9240 if (ill->ill_fragtimer_executing) { 9241 /* 9242 * ill_frag_timer is currently executing. Just record the 9243 * the fact that we want the timer to be restarted. 9244 * ill_frag_timer will post a timeout before it returns, 9245 * ensuring it will be called again. 9246 */ 9247 ill->ill_fragtimer_needrestart = 1; 9248 return; 9249 } 9250 9251 if (ill->ill_frag_timer_id == 0) { 9252 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9253 ipst->ips_ip_reassembly_timeout) * SECONDS; 9254 9255 /* 9256 * The timer is neither running nor is the timeout handler 9257 * executing. Post a timeout so that ill_frag_timer will be 9258 * called 9259 */ 9260 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9261 MSEC_TO_TICK(timeo_ms >> 1)); 9262 ill->ill_fragtimer_needrestart = 0; 9263 } 9264 } 9265 9266 /* 9267 * Update any source route, record route or timestamp options. 9268 * Check that we are at end of strict source route. 9269 * The options have already been checked for sanity in ip_input_options(). 9270 */ 9271 boolean_t 9272 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9273 { 9274 ipoptp_t opts; 9275 uchar_t *opt; 9276 uint8_t optval; 9277 uint8_t optlen; 9278 ipaddr_t dst; 9279 ipaddr_t ifaddr; 9280 uint32_t ts; 9281 timestruc_t now; 9282 ill_t *ill = ira->ira_ill; 9283 ip_stack_t *ipst = ill->ill_ipst; 9284 9285 ip2dbg(("ip_input_local_options\n")); 9286 opt = NULL; 9287 9288 for (optval = ipoptp_first(&opts, ipha); 9289 optval != IPOPT_EOL; 9290 optval = ipoptp_next(&opts)) { 9291 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9292 opt = opts.ipoptp_cur; 9293 optlen = opts.ipoptp_len; 9294 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9295 optval, optlen)); 9296 switch (optval) { 9297 uint32_t off; 9298 case IPOPT_SSRR: 9299 case IPOPT_LSRR: 9300 off = opt[IPOPT_OFFSET]; 9301 off--; 9302 if (optlen < IP_ADDR_LEN || 9303 off > optlen - IP_ADDR_LEN) { 9304 /* End of source route */ 9305 ip1dbg(("ip_input_local_options: end of SR\n")); 9306 break; 9307 } 9308 /* 9309 * This will only happen if two consecutive entries 9310 * in the source route contains our address or if 9311 * it is a packet with a loose source route which 9312 * reaches us before consuming the whole source route 9313 */ 9314 ip1dbg(("ip_input_local_options: not end of SR\n")); 9315 if (optval == IPOPT_SSRR) { 9316 goto bad_src_route; 9317 } 9318 /* 9319 * Hack: instead of dropping the packet truncate the 9320 * source route to what has been used by filling the 9321 * rest with IPOPT_NOP. 9322 */ 9323 opt[IPOPT_OLEN] = (uint8_t)off; 9324 while (off < optlen) { 9325 opt[off++] = IPOPT_NOP; 9326 } 9327 break; 9328 case IPOPT_RR: 9329 off = opt[IPOPT_OFFSET]; 9330 off--; 9331 if (optlen < IP_ADDR_LEN || 9332 off > optlen - IP_ADDR_LEN) { 9333 /* No more room - ignore */ 9334 ip1dbg(( 9335 "ip_input_local_options: end of RR\n")); 9336 break; 9337 } 9338 /* Pick a reasonable address on the outbound if */ 9339 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9340 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9341 NULL) != 0) { 9342 /* No source! Shouldn't happen */ 9343 ifaddr = INADDR_ANY; 9344 } 9345 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9346 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9347 break; 9348 case IPOPT_TS: 9349 off = 0; 9350 /* Insert timestamp if there is romm */ 9351 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9352 case IPOPT_TS_TSONLY: 9353 off = IPOPT_TS_TIMELEN; 9354 break; 9355 case IPOPT_TS_PRESPEC: 9356 case IPOPT_TS_PRESPEC_RFC791: 9357 /* Verify that the address matched */ 9358 off = opt[IPOPT_OFFSET] - 1; 9359 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9360 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9361 /* Not for us */ 9362 break; 9363 } 9364 /* FALLTHROUGH */ 9365 case IPOPT_TS_TSANDADDR: 9366 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9367 break; 9368 default: 9369 /* 9370 * ip_*put_options should have already 9371 * dropped this packet. 9372 */ 9373 cmn_err(CE_PANIC, "ip_input_local_options: " 9374 "unknown IT - bug in ip_input_options?\n"); 9375 } 9376 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9377 /* Increase overflow counter */ 9378 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9379 opt[IPOPT_POS_OV_FLG] = 9380 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9381 (off << 4)); 9382 break; 9383 } 9384 off = opt[IPOPT_OFFSET] - 1; 9385 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9386 case IPOPT_TS_PRESPEC: 9387 case IPOPT_TS_PRESPEC_RFC791: 9388 case IPOPT_TS_TSANDADDR: 9389 /* Pick a reasonable addr on the outbound if */ 9390 if (ip_select_source_v4(ill, INADDR_ANY, 9391 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9392 &ifaddr, NULL, NULL) != 0) { 9393 /* No source! Shouldn't happen */ 9394 ifaddr = INADDR_ANY; 9395 } 9396 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9397 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9398 /* FALLTHROUGH */ 9399 case IPOPT_TS_TSONLY: 9400 off = opt[IPOPT_OFFSET] - 1; 9401 /* Compute # of milliseconds since midnight */ 9402 gethrestime(&now); 9403 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9404 NSEC2MSEC(now.tv_nsec); 9405 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9406 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9407 break; 9408 } 9409 break; 9410 } 9411 } 9412 return (B_TRUE); 9413 9414 bad_src_route: 9415 /* make sure we clear any indication of a hardware checksum */ 9416 DB_CKSUMFLAGS(mp) = 0; 9417 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9418 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9419 return (B_FALSE); 9420 9421 } 9422 9423 /* 9424 * Process IP options in an inbound packet. Always returns the nexthop. 9425 * Normally this is the passed in nexthop, but if there is an option 9426 * that effects the nexthop (such as a source route) that will be returned. 9427 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9428 * and mp freed. 9429 */ 9430 ipaddr_t 9431 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9432 ip_recv_attr_t *ira, int *errorp) 9433 { 9434 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9435 ipoptp_t opts; 9436 uchar_t *opt; 9437 uint8_t optval; 9438 uint8_t optlen; 9439 intptr_t code = 0; 9440 ire_t *ire; 9441 9442 ip2dbg(("ip_input_options\n")); 9443 opt = NULL; 9444 *errorp = 0; 9445 for (optval = ipoptp_first(&opts, ipha); 9446 optval != IPOPT_EOL; 9447 optval = ipoptp_next(&opts)) { 9448 opt = opts.ipoptp_cur; 9449 optlen = opts.ipoptp_len; 9450 ip2dbg(("ip_input_options: opt %d, len %d\n", 9451 optval, optlen)); 9452 /* 9453 * Note: we need to verify the checksum before we 9454 * modify anything thus this routine only extracts the next 9455 * hop dst from any source route. 9456 */ 9457 switch (optval) { 9458 uint32_t off; 9459 case IPOPT_SSRR: 9460 case IPOPT_LSRR: 9461 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9462 if (optval == IPOPT_SSRR) { 9463 ip1dbg(("ip_input_options: not next" 9464 " strict source route 0x%x\n", 9465 ntohl(dst))); 9466 code = (char *)&ipha->ipha_dst - 9467 (char *)ipha; 9468 goto param_prob; /* RouterReq's */ 9469 } 9470 ip2dbg(("ip_input_options: " 9471 "not next source route 0x%x\n", 9472 ntohl(dst))); 9473 break; 9474 } 9475 9476 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9477 ip1dbg(( 9478 "ip_input_options: bad option offset\n")); 9479 code = (char *)&opt[IPOPT_OLEN] - 9480 (char *)ipha; 9481 goto param_prob; 9482 } 9483 off = opt[IPOPT_OFFSET]; 9484 off--; 9485 redo_srr: 9486 if (optlen < IP_ADDR_LEN || 9487 off > optlen - IP_ADDR_LEN) { 9488 /* End of source route */ 9489 ip1dbg(("ip_input_options: end of SR\n")); 9490 break; 9491 } 9492 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9493 ip1dbg(("ip_input_options: next hop 0x%x\n", 9494 ntohl(dst))); 9495 9496 /* 9497 * Check if our address is present more than 9498 * once as consecutive hops in source route. 9499 * XXX verify per-interface ip_forwarding 9500 * for source route? 9501 */ 9502 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9503 off += IP_ADDR_LEN; 9504 goto redo_srr; 9505 } 9506 9507 if (dst == htonl(INADDR_LOOPBACK)) { 9508 ip1dbg(("ip_input_options: loopback addr in " 9509 "source route!\n")); 9510 goto bad_src_route; 9511 } 9512 /* 9513 * For strict: verify that dst is directly 9514 * reachable. 9515 */ 9516 if (optval == IPOPT_SSRR) { 9517 ire = ire_ftable_lookup_v4(dst, 0, 0, 9518 IRE_INTERFACE, NULL, ALL_ZONES, 9519 ira->ira_tsl, 9520 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9521 NULL); 9522 if (ire == NULL) { 9523 ip1dbg(("ip_input_options: SSRR not " 9524 "directly reachable: 0x%x\n", 9525 ntohl(dst))); 9526 goto bad_src_route; 9527 } 9528 ire_refrele(ire); 9529 } 9530 /* 9531 * Defer update of the offset and the record route 9532 * until the packet is forwarded. 9533 */ 9534 break; 9535 case IPOPT_RR: 9536 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9537 ip1dbg(( 9538 "ip_input_options: bad option offset\n")); 9539 code = (char *)&opt[IPOPT_OLEN] - 9540 (char *)ipha; 9541 goto param_prob; 9542 } 9543 break; 9544 case IPOPT_TS: 9545 /* 9546 * Verify that length >= 5 and that there is either 9547 * room for another timestamp or that the overflow 9548 * counter is not maxed out. 9549 */ 9550 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9551 if (optlen < IPOPT_MINLEN_IT) { 9552 goto param_prob; 9553 } 9554 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9555 ip1dbg(( 9556 "ip_input_options: bad option offset\n")); 9557 code = (char *)&opt[IPOPT_OFFSET] - 9558 (char *)ipha; 9559 goto param_prob; 9560 } 9561 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9562 case IPOPT_TS_TSONLY: 9563 off = IPOPT_TS_TIMELEN; 9564 break; 9565 case IPOPT_TS_TSANDADDR: 9566 case IPOPT_TS_PRESPEC: 9567 case IPOPT_TS_PRESPEC_RFC791: 9568 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9569 break; 9570 default: 9571 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9572 (char *)ipha; 9573 goto param_prob; 9574 } 9575 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9576 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9577 /* 9578 * No room and the overflow counter is 15 9579 * already. 9580 */ 9581 goto param_prob; 9582 } 9583 break; 9584 } 9585 } 9586 9587 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9588 return (dst); 9589 } 9590 9591 ip1dbg(("ip_input_options: error processing IP options.")); 9592 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9593 9594 param_prob: 9595 /* make sure we clear any indication of a hardware checksum */ 9596 DB_CKSUMFLAGS(mp) = 0; 9597 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9598 icmp_param_problem(mp, (uint8_t)code, ira); 9599 *errorp = -1; 9600 return (dst); 9601 9602 bad_src_route: 9603 /* make sure we clear any indication of a hardware checksum */ 9604 DB_CKSUMFLAGS(mp) = 0; 9605 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9606 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9607 *errorp = -1; 9608 return (dst); 9609 } 9610 9611 /* 9612 * IP & ICMP info in >=14 msg's ... 9613 * - ip fixed part (mib2_ip_t) 9614 * - icmp fixed part (mib2_icmp_t) 9615 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9616 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9617 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9618 * - ipRouteAttributeTable (ip 102) labeled routes 9619 * - ip multicast membership (ip_member_t) 9620 * - ip multicast source filtering (ip_grpsrc_t) 9621 * - igmp fixed part (struct igmpstat) 9622 * - multicast routing stats (struct mrtstat) 9623 * - multicast routing vifs (array of struct vifctl) 9624 * - multicast routing routes (array of struct mfcctl) 9625 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9626 * One per ill plus one generic 9627 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9628 * One per ill plus one generic 9629 * - ipv6RouteEntry all IPv6 IREs 9630 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9631 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9632 * - ipv6AddrEntry all IPv6 ipifs 9633 * - ipv6 multicast membership (ipv6_member_t) 9634 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9635 * 9636 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9637 * already filled in by the caller. 9638 * If legacy_req is true then MIB structures needs to be truncated to their 9639 * legacy sizes before being returned. 9640 * Return value of 0 indicates that no messages were sent and caller 9641 * should free mpctl. 9642 */ 9643 int 9644 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9645 { 9646 ip_stack_t *ipst; 9647 sctp_stack_t *sctps; 9648 9649 if (q->q_next != NULL) { 9650 ipst = ILLQ_TO_IPST(q); 9651 } else { 9652 ipst = CONNQ_TO_IPST(q); 9653 } 9654 ASSERT(ipst != NULL); 9655 sctps = ipst->ips_netstack->netstack_sctp; 9656 9657 if (mpctl == NULL || mpctl->b_cont == NULL) { 9658 return (0); 9659 } 9660 9661 /* 9662 * For the purposes of the (broken) packet shell use 9663 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9664 * to make TCP and UDP appear first in the list of mib items. 9665 * TBD: We could expand this and use it in netstat so that 9666 * the kernel doesn't have to produce large tables (connections, 9667 * routes, etc) when netstat only wants the statistics or a particular 9668 * table. 9669 */ 9670 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9671 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9672 return (1); 9673 } 9674 } 9675 9676 if (level != MIB2_TCP) { 9677 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9678 return (1); 9679 } 9680 if (level == MIB2_UDP) { 9681 goto done; 9682 } 9683 } 9684 9685 if (level != MIB2_UDP) { 9686 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9687 return (1); 9688 } 9689 if (level == MIB2_TCP) { 9690 goto done; 9691 } 9692 } 9693 9694 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9695 ipst, legacy_req)) == NULL) { 9696 return (1); 9697 } 9698 9699 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9700 legacy_req)) == NULL) { 9701 return (1); 9702 } 9703 9704 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9705 return (1); 9706 } 9707 9708 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9709 return (1); 9710 } 9711 9712 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9713 return (1); 9714 } 9715 9716 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9717 return (1); 9718 } 9719 9720 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9721 legacy_req)) == NULL) { 9722 return (1); 9723 } 9724 9725 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9726 legacy_req)) == NULL) { 9727 return (1); 9728 } 9729 9730 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9731 return (1); 9732 } 9733 9734 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9735 return (1); 9736 } 9737 9738 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9739 return (1); 9740 } 9741 9742 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9743 return (1); 9744 } 9745 9746 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9747 return (1); 9748 } 9749 9750 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9751 return (1); 9752 } 9753 9754 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9755 if (mpctl == NULL) 9756 return (1); 9757 9758 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9759 if (mpctl == NULL) 9760 return (1); 9761 9762 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9763 return (1); 9764 } 9765 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9766 return (1); 9767 } 9768 done: 9769 freemsg(mpctl); 9770 return (1); 9771 } 9772 9773 /* Get global (legacy) IPv4 statistics */ 9774 static mblk_t * 9775 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9776 ip_stack_t *ipst, boolean_t legacy_req) 9777 { 9778 mib2_ip_t old_ip_mib; 9779 struct opthdr *optp; 9780 mblk_t *mp2ctl; 9781 mib2_ipAddrEntry_t mae; 9782 9783 /* 9784 * make a copy of the original message 9785 */ 9786 mp2ctl = copymsg(mpctl); 9787 9788 /* fixed length IP structure... */ 9789 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9790 optp->level = MIB2_IP; 9791 optp->name = 0; 9792 SET_MIB(old_ip_mib.ipForwarding, 9793 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9794 SET_MIB(old_ip_mib.ipDefaultTTL, 9795 (uint32_t)ipst->ips_ip_def_ttl); 9796 SET_MIB(old_ip_mib.ipReasmTimeout, 9797 ipst->ips_ip_reassembly_timeout); 9798 SET_MIB(old_ip_mib.ipAddrEntrySize, 9799 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9800 sizeof (mib2_ipAddrEntry_t)); 9801 SET_MIB(old_ip_mib.ipRouteEntrySize, 9802 sizeof (mib2_ipRouteEntry_t)); 9803 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9804 sizeof (mib2_ipNetToMediaEntry_t)); 9805 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9806 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9807 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9808 sizeof (mib2_ipAttributeEntry_t)); 9809 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9810 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9811 9812 /* 9813 * Grab the statistics from the new IP MIB 9814 */ 9815 SET_MIB(old_ip_mib.ipInReceives, 9816 (uint32_t)ipmib->ipIfStatsHCInReceives); 9817 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9818 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9819 SET_MIB(old_ip_mib.ipForwDatagrams, 9820 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9821 SET_MIB(old_ip_mib.ipInUnknownProtos, 9822 ipmib->ipIfStatsInUnknownProtos); 9823 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9824 SET_MIB(old_ip_mib.ipInDelivers, 9825 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9826 SET_MIB(old_ip_mib.ipOutRequests, 9827 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9828 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9829 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9830 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9831 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9832 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9833 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9834 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9835 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9836 9837 /* ipRoutingDiscards is not being used */ 9838 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9839 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9840 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9841 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9842 SET_MIB(old_ip_mib.ipReasmDuplicates, 9843 ipmib->ipIfStatsReasmDuplicates); 9844 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9845 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9846 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9847 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9848 SET_MIB(old_ip_mib.rawipInOverflows, 9849 ipmib->rawipIfStatsInOverflows); 9850 9851 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9852 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9853 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9854 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9855 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9856 ipmib->ipIfStatsOutSwitchIPVersion); 9857 9858 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9859 (int)sizeof (old_ip_mib))) { 9860 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9861 (uint_t)sizeof (old_ip_mib))); 9862 } 9863 9864 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9865 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9866 (int)optp->level, (int)optp->name, (int)optp->len)); 9867 qreply(q, mpctl); 9868 return (mp2ctl); 9869 } 9870 9871 /* Per interface IPv4 statistics */ 9872 static mblk_t * 9873 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9874 boolean_t legacy_req) 9875 { 9876 struct opthdr *optp; 9877 mblk_t *mp2ctl; 9878 ill_t *ill; 9879 ill_walk_context_t ctx; 9880 mblk_t *mp_tail = NULL; 9881 mib2_ipIfStatsEntry_t global_ip_mib; 9882 mib2_ipAddrEntry_t mae; 9883 9884 /* 9885 * Make a copy of the original message 9886 */ 9887 mp2ctl = copymsg(mpctl); 9888 9889 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9890 optp->level = MIB2_IP; 9891 optp->name = MIB2_IP_TRAFFIC_STATS; 9892 /* Include "unknown interface" ip_mib */ 9893 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9894 ipst->ips_ip_mib.ipIfStatsIfIndex = 9895 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9896 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9897 (ipst->ips_ip_forwarding ? 1 : 2)); 9898 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9899 (uint32_t)ipst->ips_ip_def_ttl); 9900 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9901 sizeof (mib2_ipIfStatsEntry_t)); 9902 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9903 sizeof (mib2_ipAddrEntry_t)); 9904 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9905 sizeof (mib2_ipRouteEntry_t)); 9906 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9907 sizeof (mib2_ipNetToMediaEntry_t)); 9908 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9909 sizeof (ip_member_t)); 9910 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9911 sizeof (ip_grpsrc_t)); 9912 9913 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9914 9915 if (legacy_req) { 9916 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9917 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9918 } 9919 9920 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9921 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9922 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9923 "failed to allocate %u bytes\n", 9924 (uint_t)sizeof (global_ip_mib))); 9925 } 9926 9927 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9928 ill = ILL_START_WALK_V4(&ctx, ipst); 9929 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9930 ill->ill_ip_mib->ipIfStatsIfIndex = 9931 ill->ill_phyint->phyint_ifindex; 9932 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9933 (ipst->ips_ip_forwarding ? 1 : 2)); 9934 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9935 (uint32_t)ipst->ips_ip_def_ttl); 9936 9937 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9938 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9939 (char *)ill->ill_ip_mib, 9940 (int)sizeof (*ill->ill_ip_mib))) { 9941 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9942 "failed to allocate %u bytes\n", 9943 (uint_t)sizeof (*ill->ill_ip_mib))); 9944 } 9945 } 9946 rw_exit(&ipst->ips_ill_g_lock); 9947 9948 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9949 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9950 "level %d, name %d, len %d\n", 9951 (int)optp->level, (int)optp->name, (int)optp->len)); 9952 qreply(q, mpctl); 9953 9954 if (mp2ctl == NULL) 9955 return (NULL); 9956 9957 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9958 legacy_req)); 9959 } 9960 9961 /* Global IPv4 ICMP statistics */ 9962 static mblk_t * 9963 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9964 { 9965 struct opthdr *optp; 9966 mblk_t *mp2ctl; 9967 9968 /* 9969 * Make a copy of the original message 9970 */ 9971 mp2ctl = copymsg(mpctl); 9972 9973 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9974 optp->level = MIB2_ICMP; 9975 optp->name = 0; 9976 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9977 (int)sizeof (ipst->ips_icmp_mib))) { 9978 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9979 (uint_t)sizeof (ipst->ips_icmp_mib))); 9980 } 9981 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9982 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9983 (int)optp->level, (int)optp->name, (int)optp->len)); 9984 qreply(q, mpctl); 9985 return (mp2ctl); 9986 } 9987 9988 /* Global IPv4 IGMP statistics */ 9989 static mblk_t * 9990 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9991 { 9992 struct opthdr *optp; 9993 mblk_t *mp2ctl; 9994 9995 /* 9996 * make a copy of the original message 9997 */ 9998 mp2ctl = copymsg(mpctl); 9999 10000 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10001 optp->level = EXPER_IGMP; 10002 optp->name = 0; 10003 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 10004 (int)sizeof (ipst->ips_igmpstat))) { 10005 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 10006 (uint_t)sizeof (ipst->ips_igmpstat))); 10007 } 10008 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10009 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 10010 (int)optp->level, (int)optp->name, (int)optp->len)); 10011 qreply(q, mpctl); 10012 return (mp2ctl); 10013 } 10014 10015 /* Global IPv4 Multicast Routing statistics */ 10016 static mblk_t * 10017 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10018 { 10019 struct opthdr *optp; 10020 mblk_t *mp2ctl; 10021 10022 /* 10023 * make a copy of the original message 10024 */ 10025 mp2ctl = copymsg(mpctl); 10026 10027 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10028 optp->level = EXPER_DVMRP; 10029 optp->name = 0; 10030 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 10031 ip0dbg(("ip_mroute_stats: failed\n")); 10032 } 10033 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10034 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 10035 (int)optp->level, (int)optp->name, (int)optp->len)); 10036 qreply(q, mpctl); 10037 return (mp2ctl); 10038 } 10039 10040 /* IPv4 address information */ 10041 static mblk_t * 10042 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10043 boolean_t legacy_req) 10044 { 10045 struct opthdr *optp; 10046 mblk_t *mp2ctl; 10047 mblk_t *mp_tail = NULL; 10048 ill_t *ill; 10049 ipif_t *ipif; 10050 uint_t bitval; 10051 mib2_ipAddrEntry_t mae; 10052 size_t mae_size; 10053 zoneid_t zoneid; 10054 ill_walk_context_t ctx; 10055 10056 /* 10057 * make a copy of the original message 10058 */ 10059 mp2ctl = copymsg(mpctl); 10060 10061 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 10062 sizeof (mib2_ipAddrEntry_t); 10063 10064 /* ipAddrEntryTable */ 10065 10066 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10067 optp->level = MIB2_IP; 10068 optp->name = MIB2_IP_ADDR; 10069 zoneid = Q_TO_CONN(q)->conn_zoneid; 10070 10071 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10072 ill = ILL_START_WALK_V4(&ctx, ipst); 10073 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10074 for (ipif = ill->ill_ipif; ipif != NULL; 10075 ipif = ipif->ipif_next) { 10076 if (ipif->ipif_zoneid != zoneid && 10077 ipif->ipif_zoneid != ALL_ZONES) 10078 continue; 10079 /* Sum of count from dead IRE_LO* and our current */ 10080 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10081 if (ipif->ipif_ire_local != NULL) { 10082 mae.ipAdEntInfo.ae_ibcnt += 10083 ipif->ipif_ire_local->ire_ib_pkt_count; 10084 } 10085 mae.ipAdEntInfo.ae_obcnt = 0; 10086 mae.ipAdEntInfo.ae_focnt = 0; 10087 10088 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10089 OCTET_LENGTH); 10090 mae.ipAdEntIfIndex.o_length = 10091 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10092 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10093 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10094 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10095 mae.ipAdEntInfo.ae_subnet_len = 10096 ip_mask_to_plen(ipif->ipif_net_mask); 10097 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10098 for (bitval = 1; 10099 bitval && 10100 !(bitval & ipif->ipif_brd_addr); 10101 bitval <<= 1) 10102 noop; 10103 mae.ipAdEntBcastAddr = bitval; 10104 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10105 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10106 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10107 mae.ipAdEntInfo.ae_broadcast_addr = 10108 ipif->ipif_brd_addr; 10109 mae.ipAdEntInfo.ae_pp_dst_addr = 10110 ipif->ipif_pp_dst_addr; 10111 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10112 ill->ill_flags | ill->ill_phyint->phyint_flags; 10113 mae.ipAdEntRetransmitTime = 10114 ill->ill_reachable_retrans_time; 10115 10116 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10117 (char *)&mae, (int)mae_size)) { 10118 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10119 "allocate %u bytes\n", (uint_t)mae_size)); 10120 } 10121 } 10122 } 10123 rw_exit(&ipst->ips_ill_g_lock); 10124 10125 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10126 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10127 (int)optp->level, (int)optp->name, (int)optp->len)); 10128 qreply(q, mpctl); 10129 return (mp2ctl); 10130 } 10131 10132 /* IPv6 address information */ 10133 static mblk_t * 10134 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10135 boolean_t legacy_req) 10136 { 10137 struct opthdr *optp; 10138 mblk_t *mp2ctl; 10139 mblk_t *mp_tail = NULL; 10140 ill_t *ill; 10141 ipif_t *ipif; 10142 mib2_ipv6AddrEntry_t mae6; 10143 size_t mae6_size; 10144 zoneid_t zoneid; 10145 ill_walk_context_t ctx; 10146 10147 /* 10148 * make a copy of the original message 10149 */ 10150 mp2ctl = copymsg(mpctl); 10151 10152 mae6_size = (legacy_req) ? 10153 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10154 sizeof (mib2_ipv6AddrEntry_t); 10155 10156 /* ipv6AddrEntryTable */ 10157 10158 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10159 optp->level = MIB2_IP6; 10160 optp->name = MIB2_IP6_ADDR; 10161 zoneid = Q_TO_CONN(q)->conn_zoneid; 10162 10163 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10164 ill = ILL_START_WALK_V6(&ctx, ipst); 10165 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10166 for (ipif = ill->ill_ipif; ipif != NULL; 10167 ipif = ipif->ipif_next) { 10168 if (ipif->ipif_zoneid != zoneid && 10169 ipif->ipif_zoneid != ALL_ZONES) 10170 continue; 10171 /* Sum of count from dead IRE_LO* and our current */ 10172 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10173 if (ipif->ipif_ire_local != NULL) { 10174 mae6.ipv6AddrInfo.ae_ibcnt += 10175 ipif->ipif_ire_local->ire_ib_pkt_count; 10176 } 10177 mae6.ipv6AddrInfo.ae_obcnt = 0; 10178 mae6.ipv6AddrInfo.ae_focnt = 0; 10179 10180 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10181 OCTET_LENGTH); 10182 mae6.ipv6AddrIfIndex.o_length = 10183 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10184 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10185 mae6.ipv6AddrPfxLength = 10186 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10187 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10188 mae6.ipv6AddrInfo.ae_subnet_len = 10189 mae6.ipv6AddrPfxLength; 10190 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10191 10192 /* Type: stateless(1), stateful(2), unknown(3) */ 10193 if (ipif->ipif_flags & IPIF_ADDRCONF) 10194 mae6.ipv6AddrType = 1; 10195 else 10196 mae6.ipv6AddrType = 2; 10197 /* Anycast: true(1), false(2) */ 10198 if (ipif->ipif_flags & IPIF_ANYCAST) 10199 mae6.ipv6AddrAnycastFlag = 1; 10200 else 10201 mae6.ipv6AddrAnycastFlag = 2; 10202 10203 /* 10204 * Address status: preferred(1), deprecated(2), 10205 * invalid(3), inaccessible(4), unknown(5) 10206 */ 10207 if (ipif->ipif_flags & IPIF_NOLOCAL) 10208 mae6.ipv6AddrStatus = 3; 10209 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10210 mae6.ipv6AddrStatus = 2; 10211 else 10212 mae6.ipv6AddrStatus = 1; 10213 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10214 mae6.ipv6AddrInfo.ae_metric = 10215 ipif->ipif_ill->ill_metric; 10216 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10217 ipif->ipif_v6pp_dst_addr; 10218 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10219 ill->ill_flags | ill->ill_phyint->phyint_flags; 10220 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10221 mae6.ipv6AddrIdentifier = ill->ill_token; 10222 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10223 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10224 mae6.ipv6AddrRetransmitTime = 10225 ill->ill_reachable_retrans_time; 10226 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10227 (char *)&mae6, (int)mae6_size)) { 10228 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10229 "allocate %u bytes\n", 10230 (uint_t)mae6_size)); 10231 } 10232 } 10233 } 10234 rw_exit(&ipst->ips_ill_g_lock); 10235 10236 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10237 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10238 (int)optp->level, (int)optp->name, (int)optp->len)); 10239 qreply(q, mpctl); 10240 return (mp2ctl); 10241 } 10242 10243 /* IPv4 multicast group membership. */ 10244 static mblk_t * 10245 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10246 { 10247 struct opthdr *optp; 10248 mblk_t *mp2ctl; 10249 ill_t *ill; 10250 ipif_t *ipif; 10251 ilm_t *ilm; 10252 ip_member_t ipm; 10253 mblk_t *mp_tail = NULL; 10254 ill_walk_context_t ctx; 10255 zoneid_t zoneid; 10256 10257 /* 10258 * make a copy of the original message 10259 */ 10260 mp2ctl = copymsg(mpctl); 10261 zoneid = Q_TO_CONN(q)->conn_zoneid; 10262 10263 /* ipGroupMember table */ 10264 optp = (struct opthdr *)&mpctl->b_rptr[ 10265 sizeof (struct T_optmgmt_ack)]; 10266 optp->level = MIB2_IP; 10267 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10268 10269 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10270 ill = ILL_START_WALK_V4(&ctx, ipst); 10271 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10272 /* Make sure the ill isn't going away. */ 10273 if (!ill_check_and_refhold(ill)) 10274 continue; 10275 rw_exit(&ipst->ips_ill_g_lock); 10276 rw_enter(&ill->ill_mcast_lock, RW_READER); 10277 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10278 if (ilm->ilm_zoneid != zoneid && 10279 ilm->ilm_zoneid != ALL_ZONES) 10280 continue; 10281 10282 /* Is there an ipif for ilm_ifaddr? */ 10283 for (ipif = ill->ill_ipif; ipif != NULL; 10284 ipif = ipif->ipif_next) { 10285 if (!IPIF_IS_CONDEMNED(ipif) && 10286 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10287 ilm->ilm_ifaddr != INADDR_ANY) 10288 break; 10289 } 10290 if (ipif != NULL) { 10291 ipif_get_name(ipif, 10292 ipm.ipGroupMemberIfIndex.o_bytes, 10293 OCTET_LENGTH); 10294 } else { 10295 ill_get_name(ill, 10296 ipm.ipGroupMemberIfIndex.o_bytes, 10297 OCTET_LENGTH); 10298 } 10299 ipm.ipGroupMemberIfIndex.o_length = 10300 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10301 10302 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10303 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10304 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10305 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10306 (char *)&ipm, (int)sizeof (ipm))) { 10307 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10308 "failed to allocate %u bytes\n", 10309 (uint_t)sizeof (ipm))); 10310 } 10311 } 10312 rw_exit(&ill->ill_mcast_lock); 10313 ill_refrele(ill); 10314 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10315 } 10316 rw_exit(&ipst->ips_ill_g_lock); 10317 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10318 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10319 (int)optp->level, (int)optp->name, (int)optp->len)); 10320 qreply(q, mpctl); 10321 return (mp2ctl); 10322 } 10323 10324 /* IPv6 multicast group membership. */ 10325 static mblk_t * 10326 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10327 { 10328 struct opthdr *optp; 10329 mblk_t *mp2ctl; 10330 ill_t *ill; 10331 ilm_t *ilm; 10332 ipv6_member_t ipm6; 10333 mblk_t *mp_tail = NULL; 10334 ill_walk_context_t ctx; 10335 zoneid_t zoneid; 10336 10337 /* 10338 * make a copy of the original message 10339 */ 10340 mp2ctl = copymsg(mpctl); 10341 zoneid = Q_TO_CONN(q)->conn_zoneid; 10342 10343 /* ip6GroupMember table */ 10344 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10345 optp->level = MIB2_IP6; 10346 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10347 10348 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10349 ill = ILL_START_WALK_V6(&ctx, ipst); 10350 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10351 /* Make sure the ill isn't going away. */ 10352 if (!ill_check_and_refhold(ill)) 10353 continue; 10354 rw_exit(&ipst->ips_ill_g_lock); 10355 /* 10356 * Normally we don't have any members on under IPMP interfaces. 10357 * We report them as a debugging aid. 10358 */ 10359 rw_enter(&ill->ill_mcast_lock, RW_READER); 10360 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10361 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10362 if (ilm->ilm_zoneid != zoneid && 10363 ilm->ilm_zoneid != ALL_ZONES) 10364 continue; /* not this zone */ 10365 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10366 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10367 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10368 if (!snmp_append_data2(mpctl->b_cont, 10369 &mp_tail, 10370 (char *)&ipm6, (int)sizeof (ipm6))) { 10371 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10372 "failed to allocate %u bytes\n", 10373 (uint_t)sizeof (ipm6))); 10374 } 10375 } 10376 rw_exit(&ill->ill_mcast_lock); 10377 ill_refrele(ill); 10378 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10379 } 10380 rw_exit(&ipst->ips_ill_g_lock); 10381 10382 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10383 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10384 (int)optp->level, (int)optp->name, (int)optp->len)); 10385 qreply(q, mpctl); 10386 return (mp2ctl); 10387 } 10388 10389 /* IP multicast filtered sources */ 10390 static mblk_t * 10391 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10392 { 10393 struct opthdr *optp; 10394 mblk_t *mp2ctl; 10395 ill_t *ill; 10396 ipif_t *ipif; 10397 ilm_t *ilm; 10398 ip_grpsrc_t ips; 10399 mblk_t *mp_tail = NULL; 10400 ill_walk_context_t ctx; 10401 zoneid_t zoneid; 10402 int i; 10403 slist_t *sl; 10404 10405 /* 10406 * make a copy of the original message 10407 */ 10408 mp2ctl = copymsg(mpctl); 10409 zoneid = Q_TO_CONN(q)->conn_zoneid; 10410 10411 /* ipGroupSource table */ 10412 optp = (struct opthdr *)&mpctl->b_rptr[ 10413 sizeof (struct T_optmgmt_ack)]; 10414 optp->level = MIB2_IP; 10415 optp->name = EXPER_IP_GROUP_SOURCES; 10416 10417 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10418 ill = ILL_START_WALK_V4(&ctx, ipst); 10419 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10420 /* Make sure the ill isn't going away. */ 10421 if (!ill_check_and_refhold(ill)) 10422 continue; 10423 rw_exit(&ipst->ips_ill_g_lock); 10424 rw_enter(&ill->ill_mcast_lock, RW_READER); 10425 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10426 sl = ilm->ilm_filter; 10427 if (ilm->ilm_zoneid != zoneid && 10428 ilm->ilm_zoneid != ALL_ZONES) 10429 continue; 10430 if (SLIST_IS_EMPTY(sl)) 10431 continue; 10432 10433 /* Is there an ipif for ilm_ifaddr? */ 10434 for (ipif = ill->ill_ipif; ipif != NULL; 10435 ipif = ipif->ipif_next) { 10436 if (!IPIF_IS_CONDEMNED(ipif) && 10437 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10438 ilm->ilm_ifaddr != INADDR_ANY) 10439 break; 10440 } 10441 if (ipif != NULL) { 10442 ipif_get_name(ipif, 10443 ips.ipGroupSourceIfIndex.o_bytes, 10444 OCTET_LENGTH); 10445 } else { 10446 ill_get_name(ill, 10447 ips.ipGroupSourceIfIndex.o_bytes, 10448 OCTET_LENGTH); 10449 } 10450 ips.ipGroupSourceIfIndex.o_length = 10451 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10452 10453 ips.ipGroupSourceGroup = ilm->ilm_addr; 10454 for (i = 0; i < sl->sl_numsrc; i++) { 10455 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10456 continue; 10457 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10458 ips.ipGroupSourceAddress); 10459 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10460 (char *)&ips, (int)sizeof (ips)) == 0) { 10461 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10462 " failed to allocate %u bytes\n", 10463 (uint_t)sizeof (ips))); 10464 } 10465 } 10466 } 10467 rw_exit(&ill->ill_mcast_lock); 10468 ill_refrele(ill); 10469 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10470 } 10471 rw_exit(&ipst->ips_ill_g_lock); 10472 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10473 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10474 (int)optp->level, (int)optp->name, (int)optp->len)); 10475 qreply(q, mpctl); 10476 return (mp2ctl); 10477 } 10478 10479 /* IPv6 multicast filtered sources. */ 10480 static mblk_t * 10481 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10482 { 10483 struct opthdr *optp; 10484 mblk_t *mp2ctl; 10485 ill_t *ill; 10486 ilm_t *ilm; 10487 ipv6_grpsrc_t ips6; 10488 mblk_t *mp_tail = NULL; 10489 ill_walk_context_t ctx; 10490 zoneid_t zoneid; 10491 int i; 10492 slist_t *sl; 10493 10494 /* 10495 * make a copy of the original message 10496 */ 10497 mp2ctl = copymsg(mpctl); 10498 zoneid = Q_TO_CONN(q)->conn_zoneid; 10499 10500 /* ip6GroupMember table */ 10501 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10502 optp->level = MIB2_IP6; 10503 optp->name = EXPER_IP6_GROUP_SOURCES; 10504 10505 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10506 ill = ILL_START_WALK_V6(&ctx, ipst); 10507 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10508 /* Make sure the ill isn't going away. */ 10509 if (!ill_check_and_refhold(ill)) 10510 continue; 10511 rw_exit(&ipst->ips_ill_g_lock); 10512 /* 10513 * Normally we don't have any members on under IPMP interfaces. 10514 * We report them as a debugging aid. 10515 */ 10516 rw_enter(&ill->ill_mcast_lock, RW_READER); 10517 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10518 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10519 sl = ilm->ilm_filter; 10520 if (ilm->ilm_zoneid != zoneid && 10521 ilm->ilm_zoneid != ALL_ZONES) 10522 continue; 10523 if (SLIST_IS_EMPTY(sl)) 10524 continue; 10525 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10526 for (i = 0; i < sl->sl_numsrc; i++) { 10527 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10528 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10529 (char *)&ips6, (int)sizeof (ips6))) { 10530 ip1dbg(("ip_snmp_get_mib2_ip6_" 10531 "group_src: failed to allocate " 10532 "%u bytes\n", 10533 (uint_t)sizeof (ips6))); 10534 } 10535 } 10536 } 10537 rw_exit(&ill->ill_mcast_lock); 10538 ill_refrele(ill); 10539 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10540 } 10541 rw_exit(&ipst->ips_ill_g_lock); 10542 10543 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10544 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10545 (int)optp->level, (int)optp->name, (int)optp->len)); 10546 qreply(q, mpctl); 10547 return (mp2ctl); 10548 } 10549 10550 /* Multicast routing virtual interface table. */ 10551 static mblk_t * 10552 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10553 { 10554 struct opthdr *optp; 10555 mblk_t *mp2ctl; 10556 10557 /* 10558 * make a copy of the original message 10559 */ 10560 mp2ctl = copymsg(mpctl); 10561 10562 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10563 optp->level = EXPER_DVMRP; 10564 optp->name = EXPER_DVMRP_VIF; 10565 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10566 ip0dbg(("ip_mroute_vif: failed\n")); 10567 } 10568 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10569 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10570 (int)optp->level, (int)optp->name, (int)optp->len)); 10571 qreply(q, mpctl); 10572 return (mp2ctl); 10573 } 10574 10575 /* Multicast routing table. */ 10576 static mblk_t * 10577 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10578 { 10579 struct opthdr *optp; 10580 mblk_t *mp2ctl; 10581 10582 /* 10583 * make a copy of the original message 10584 */ 10585 mp2ctl = copymsg(mpctl); 10586 10587 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10588 optp->level = EXPER_DVMRP; 10589 optp->name = EXPER_DVMRP_MRT; 10590 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10591 ip0dbg(("ip_mroute_mrt: failed\n")); 10592 } 10593 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10594 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10595 (int)optp->level, (int)optp->name, (int)optp->len)); 10596 qreply(q, mpctl); 10597 return (mp2ctl); 10598 } 10599 10600 /* 10601 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10602 * in one IRE walk. 10603 */ 10604 static mblk_t * 10605 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10606 ip_stack_t *ipst) 10607 { 10608 struct opthdr *optp; 10609 mblk_t *mp2ctl; /* Returned */ 10610 mblk_t *mp3ctl; /* nettomedia */ 10611 mblk_t *mp4ctl; /* routeattrs */ 10612 iproutedata_t ird; 10613 zoneid_t zoneid; 10614 10615 /* 10616 * make copies of the original message 10617 * - mp2ctl is returned unchanged to the caller for its use 10618 * - mpctl is sent upstream as ipRouteEntryTable 10619 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10620 * - mp4ctl is sent upstream as ipRouteAttributeTable 10621 */ 10622 mp2ctl = copymsg(mpctl); 10623 mp3ctl = copymsg(mpctl); 10624 mp4ctl = copymsg(mpctl); 10625 if (mp3ctl == NULL || mp4ctl == NULL) { 10626 freemsg(mp4ctl); 10627 freemsg(mp3ctl); 10628 freemsg(mp2ctl); 10629 freemsg(mpctl); 10630 return (NULL); 10631 } 10632 10633 bzero(&ird, sizeof (ird)); 10634 10635 ird.ird_route.lp_head = mpctl->b_cont; 10636 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10637 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10638 /* 10639 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10640 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10641 * intended a temporary solution until a proper MIB API is provided 10642 * that provides complete filtering/caller-opt-in. 10643 */ 10644 if (level == EXPER_IP_AND_ALL_IRES) 10645 ird.ird_flags |= IRD_REPORT_ALL; 10646 10647 zoneid = Q_TO_CONN(q)->conn_zoneid; 10648 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10649 10650 /* ipRouteEntryTable in mpctl */ 10651 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10652 optp->level = MIB2_IP; 10653 optp->name = MIB2_IP_ROUTE; 10654 optp->len = msgdsize(ird.ird_route.lp_head); 10655 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10656 (int)optp->level, (int)optp->name, (int)optp->len)); 10657 qreply(q, mpctl); 10658 10659 /* ipNetToMediaEntryTable in mp3ctl */ 10660 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10661 10662 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10663 optp->level = MIB2_IP; 10664 optp->name = MIB2_IP_MEDIA; 10665 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10666 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10667 (int)optp->level, (int)optp->name, (int)optp->len)); 10668 qreply(q, mp3ctl); 10669 10670 /* ipRouteAttributeTable in mp4ctl */ 10671 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10672 optp->level = MIB2_IP; 10673 optp->name = EXPER_IP_RTATTR; 10674 optp->len = msgdsize(ird.ird_attrs.lp_head); 10675 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10676 (int)optp->level, (int)optp->name, (int)optp->len)); 10677 if (optp->len == 0) 10678 freemsg(mp4ctl); 10679 else 10680 qreply(q, mp4ctl); 10681 10682 return (mp2ctl); 10683 } 10684 10685 /* 10686 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10687 * ipv6NetToMediaEntryTable in an NDP walk. 10688 */ 10689 static mblk_t * 10690 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10691 ip_stack_t *ipst) 10692 { 10693 struct opthdr *optp; 10694 mblk_t *mp2ctl; /* Returned */ 10695 mblk_t *mp3ctl; /* nettomedia */ 10696 mblk_t *mp4ctl; /* routeattrs */ 10697 iproutedata_t ird; 10698 zoneid_t zoneid; 10699 10700 /* 10701 * make copies of the original message 10702 * - mp2ctl is returned unchanged to the caller for its use 10703 * - mpctl is sent upstream as ipv6RouteEntryTable 10704 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10705 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10706 */ 10707 mp2ctl = copymsg(mpctl); 10708 mp3ctl = copymsg(mpctl); 10709 mp4ctl = copymsg(mpctl); 10710 if (mp3ctl == NULL || mp4ctl == NULL) { 10711 freemsg(mp4ctl); 10712 freemsg(mp3ctl); 10713 freemsg(mp2ctl); 10714 freemsg(mpctl); 10715 return (NULL); 10716 } 10717 10718 bzero(&ird, sizeof (ird)); 10719 10720 ird.ird_route.lp_head = mpctl->b_cont; 10721 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10722 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10723 /* 10724 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10725 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10726 * intended a temporary solution until a proper MIB API is provided 10727 * that provides complete filtering/caller-opt-in. 10728 */ 10729 if (level == EXPER_IP_AND_ALL_IRES) 10730 ird.ird_flags |= IRD_REPORT_ALL; 10731 10732 zoneid = Q_TO_CONN(q)->conn_zoneid; 10733 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10734 10735 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10736 optp->level = MIB2_IP6; 10737 optp->name = MIB2_IP6_ROUTE; 10738 optp->len = msgdsize(ird.ird_route.lp_head); 10739 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10740 (int)optp->level, (int)optp->name, (int)optp->len)); 10741 qreply(q, mpctl); 10742 10743 /* ipv6NetToMediaEntryTable in mp3ctl */ 10744 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10745 10746 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10747 optp->level = MIB2_IP6; 10748 optp->name = MIB2_IP6_MEDIA; 10749 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10750 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10751 (int)optp->level, (int)optp->name, (int)optp->len)); 10752 qreply(q, mp3ctl); 10753 10754 /* ipv6RouteAttributeTable in mp4ctl */ 10755 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10756 optp->level = MIB2_IP6; 10757 optp->name = EXPER_IP_RTATTR; 10758 optp->len = msgdsize(ird.ird_attrs.lp_head); 10759 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10760 (int)optp->level, (int)optp->name, (int)optp->len)); 10761 if (optp->len == 0) 10762 freemsg(mp4ctl); 10763 else 10764 qreply(q, mp4ctl); 10765 10766 return (mp2ctl); 10767 } 10768 10769 /* 10770 * IPv6 mib: One per ill 10771 */ 10772 static mblk_t * 10773 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10774 boolean_t legacy_req) 10775 { 10776 struct opthdr *optp; 10777 mblk_t *mp2ctl; 10778 ill_t *ill; 10779 ill_walk_context_t ctx; 10780 mblk_t *mp_tail = NULL; 10781 mib2_ipv6AddrEntry_t mae6; 10782 mib2_ipIfStatsEntry_t *ise; 10783 size_t ise_size, iae_size; 10784 10785 /* 10786 * Make a copy of the original message 10787 */ 10788 mp2ctl = copymsg(mpctl); 10789 10790 /* fixed length IPv6 structure ... */ 10791 10792 if (legacy_req) { 10793 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10794 mib2_ipIfStatsEntry_t); 10795 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10796 } else { 10797 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10798 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10799 } 10800 10801 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10802 optp->level = MIB2_IP6; 10803 optp->name = 0; 10804 /* Include "unknown interface" ip6_mib */ 10805 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10806 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10807 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10808 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10809 ipst->ips_ipv6_forwarding ? 1 : 2); 10810 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10811 ipst->ips_ipv6_def_hops); 10812 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10813 sizeof (mib2_ipIfStatsEntry_t)); 10814 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10815 sizeof (mib2_ipv6AddrEntry_t)); 10816 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10817 sizeof (mib2_ipv6RouteEntry_t)); 10818 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10819 sizeof (mib2_ipv6NetToMediaEntry_t)); 10820 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10821 sizeof (ipv6_member_t)); 10822 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10823 sizeof (ipv6_grpsrc_t)); 10824 10825 /* 10826 * Synchronize 64- and 32-bit counters 10827 */ 10828 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10829 ipIfStatsHCInReceives); 10830 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10831 ipIfStatsHCInDelivers); 10832 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10833 ipIfStatsHCOutRequests); 10834 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10835 ipIfStatsHCOutForwDatagrams); 10836 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10837 ipIfStatsHCOutMcastPkts); 10838 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10839 ipIfStatsHCInMcastPkts); 10840 10841 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10842 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10843 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10844 (uint_t)ise_size)); 10845 } else if (legacy_req) { 10846 /* Adjust the EntrySize fields for legacy requests. */ 10847 ise = 10848 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10849 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10850 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10851 } 10852 10853 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10854 ill = ILL_START_WALK_V6(&ctx, ipst); 10855 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10856 ill->ill_ip_mib->ipIfStatsIfIndex = 10857 ill->ill_phyint->phyint_ifindex; 10858 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10859 ipst->ips_ipv6_forwarding ? 1 : 2); 10860 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10861 ill->ill_max_hops); 10862 10863 /* 10864 * Synchronize 64- and 32-bit counters 10865 */ 10866 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10867 ipIfStatsHCInReceives); 10868 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10869 ipIfStatsHCInDelivers); 10870 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10871 ipIfStatsHCOutRequests); 10872 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10873 ipIfStatsHCOutForwDatagrams); 10874 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10875 ipIfStatsHCOutMcastPkts); 10876 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10877 ipIfStatsHCInMcastPkts); 10878 10879 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10880 (char *)ill->ill_ip_mib, (int)ise_size)) { 10881 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10882 "%u bytes\n", (uint_t)ise_size)); 10883 } else if (legacy_req) { 10884 /* Adjust the EntrySize fields for legacy requests. */ 10885 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10886 (int)ise_size); 10887 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10888 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10889 } 10890 } 10891 rw_exit(&ipst->ips_ill_g_lock); 10892 10893 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10894 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10895 (int)optp->level, (int)optp->name, (int)optp->len)); 10896 qreply(q, mpctl); 10897 return (mp2ctl); 10898 } 10899 10900 /* 10901 * ICMPv6 mib: One per ill 10902 */ 10903 static mblk_t * 10904 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10905 { 10906 struct opthdr *optp; 10907 mblk_t *mp2ctl; 10908 ill_t *ill; 10909 ill_walk_context_t ctx; 10910 mblk_t *mp_tail = NULL; 10911 /* 10912 * Make a copy of the original message 10913 */ 10914 mp2ctl = copymsg(mpctl); 10915 10916 /* fixed length ICMPv6 structure ... */ 10917 10918 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10919 optp->level = MIB2_ICMP6; 10920 optp->name = 0; 10921 /* Include "unknown interface" icmp6_mib */ 10922 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10923 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10924 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10925 sizeof (mib2_ipv6IfIcmpEntry_t); 10926 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10927 (char *)&ipst->ips_icmp6_mib, 10928 (int)sizeof (ipst->ips_icmp6_mib))) { 10929 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10930 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10931 } 10932 10933 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10934 ill = ILL_START_WALK_V6(&ctx, ipst); 10935 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10936 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10937 ill->ill_phyint->phyint_ifindex; 10938 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10939 (char *)ill->ill_icmp6_mib, 10940 (int)sizeof (*ill->ill_icmp6_mib))) { 10941 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10942 "%u bytes\n", 10943 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10944 } 10945 } 10946 rw_exit(&ipst->ips_ill_g_lock); 10947 10948 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10949 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10950 (int)optp->level, (int)optp->name, (int)optp->len)); 10951 qreply(q, mpctl); 10952 return (mp2ctl); 10953 } 10954 10955 /* 10956 * ire_walk routine to create both ipRouteEntryTable and 10957 * ipRouteAttributeTable in one IRE walk 10958 */ 10959 static void 10960 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10961 { 10962 ill_t *ill; 10963 mib2_ipRouteEntry_t *re; 10964 mib2_ipAttributeEntry_t iaes; 10965 tsol_ire_gw_secattr_t *attrp; 10966 tsol_gc_t *gc = NULL; 10967 tsol_gcgrp_t *gcgrp = NULL; 10968 ip_stack_t *ipst = ire->ire_ipst; 10969 10970 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10971 10972 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10973 if (ire->ire_testhidden) 10974 return; 10975 if (ire->ire_type & IRE_IF_CLONE) 10976 return; 10977 } 10978 10979 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10980 return; 10981 10982 if ((attrp = ire->ire_gw_secattr) != NULL) { 10983 mutex_enter(&attrp->igsa_lock); 10984 if ((gc = attrp->igsa_gc) != NULL) { 10985 gcgrp = gc->gc_grp; 10986 ASSERT(gcgrp != NULL); 10987 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10988 } 10989 mutex_exit(&attrp->igsa_lock); 10990 } 10991 /* 10992 * Return all IRE types for route table... let caller pick and choose 10993 */ 10994 re->ipRouteDest = ire->ire_addr; 10995 ill = ire->ire_ill; 10996 re->ipRouteIfIndex.o_length = 0; 10997 if (ill != NULL) { 10998 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10999 re->ipRouteIfIndex.o_length = 11000 mi_strlen(re->ipRouteIfIndex.o_bytes); 11001 } 11002 re->ipRouteMetric1 = -1; 11003 re->ipRouteMetric2 = -1; 11004 re->ipRouteMetric3 = -1; 11005 re->ipRouteMetric4 = -1; 11006 11007 re->ipRouteNextHop = ire->ire_gateway_addr; 11008 /* indirect(4), direct(3), or invalid(2) */ 11009 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11010 re->ipRouteType = 2; 11011 else if (ire->ire_type & IRE_ONLINK) 11012 re->ipRouteType = 3; 11013 else 11014 re->ipRouteType = 4; 11015 11016 re->ipRouteProto = -1; 11017 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 11018 re->ipRouteMask = ire->ire_mask; 11019 re->ipRouteMetric5 = -1; 11020 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11021 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 11022 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11023 11024 re->ipRouteInfo.re_frag_flag = 0; 11025 re->ipRouteInfo.re_rtt = 0; 11026 re->ipRouteInfo.re_src_addr = 0; 11027 re->ipRouteInfo.re_ref = ire->ire_refcnt; 11028 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11029 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11030 re->ipRouteInfo.re_flags = ire->ire_flags; 11031 11032 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11033 if (ire->ire_type & IRE_INTERFACE) { 11034 ire_t *child; 11035 11036 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11037 child = ire->ire_dep_children; 11038 while (child != NULL) { 11039 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 11040 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11041 child = child->ire_dep_sib_next; 11042 } 11043 rw_exit(&ipst->ips_ire_dep_lock); 11044 } 11045 11046 if (ire->ire_flags & RTF_DYNAMIC) { 11047 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11048 } else { 11049 re->ipRouteInfo.re_ire_type = ire->ire_type; 11050 } 11051 11052 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11053 (char *)re, (int)sizeof (*re))) { 11054 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11055 (uint_t)sizeof (*re))); 11056 } 11057 11058 if (gc != NULL) { 11059 iaes.iae_routeidx = ird->ird_idx; 11060 iaes.iae_doi = gc->gc_db->gcdb_doi; 11061 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11062 11063 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11064 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11065 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11066 "bytes\n", (uint_t)sizeof (iaes))); 11067 } 11068 } 11069 11070 /* bump route index for next pass */ 11071 ird->ird_idx++; 11072 11073 kmem_free(re, sizeof (*re)); 11074 if (gcgrp != NULL) 11075 rw_exit(&gcgrp->gcgrp_rwlock); 11076 } 11077 11078 /* 11079 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11080 */ 11081 static void 11082 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11083 { 11084 ill_t *ill; 11085 mib2_ipv6RouteEntry_t *re; 11086 mib2_ipAttributeEntry_t iaes; 11087 tsol_ire_gw_secattr_t *attrp; 11088 tsol_gc_t *gc = NULL; 11089 tsol_gcgrp_t *gcgrp = NULL; 11090 ip_stack_t *ipst = ire->ire_ipst; 11091 11092 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11093 11094 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11095 if (ire->ire_testhidden) 11096 return; 11097 if (ire->ire_type & IRE_IF_CLONE) 11098 return; 11099 } 11100 11101 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11102 return; 11103 11104 if ((attrp = ire->ire_gw_secattr) != NULL) { 11105 mutex_enter(&attrp->igsa_lock); 11106 if ((gc = attrp->igsa_gc) != NULL) { 11107 gcgrp = gc->gc_grp; 11108 ASSERT(gcgrp != NULL); 11109 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11110 } 11111 mutex_exit(&attrp->igsa_lock); 11112 } 11113 /* 11114 * Return all IRE types for route table... let caller pick and choose 11115 */ 11116 re->ipv6RouteDest = ire->ire_addr_v6; 11117 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11118 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11119 re->ipv6RouteIfIndex.o_length = 0; 11120 ill = ire->ire_ill; 11121 if (ill != NULL) { 11122 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11123 re->ipv6RouteIfIndex.o_length = 11124 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11125 } 11126 11127 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11128 11129 mutex_enter(&ire->ire_lock); 11130 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11131 mutex_exit(&ire->ire_lock); 11132 11133 /* remote(4), local(3), or discard(2) */ 11134 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11135 re->ipv6RouteType = 2; 11136 else if (ire->ire_type & IRE_ONLINK) 11137 re->ipv6RouteType = 3; 11138 else 11139 re->ipv6RouteType = 4; 11140 11141 re->ipv6RouteProtocol = -1; 11142 re->ipv6RoutePolicy = 0; 11143 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11144 re->ipv6RouteNextHopRDI = 0; 11145 re->ipv6RouteWeight = 0; 11146 re->ipv6RouteMetric = 0; 11147 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11148 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11149 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11150 11151 re->ipv6RouteInfo.re_frag_flag = 0; 11152 re->ipv6RouteInfo.re_rtt = 0; 11153 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11154 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11155 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11156 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11157 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11158 11159 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11160 if (ire->ire_type & IRE_INTERFACE) { 11161 ire_t *child; 11162 11163 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11164 child = ire->ire_dep_children; 11165 while (child != NULL) { 11166 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11167 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11168 child = child->ire_dep_sib_next; 11169 } 11170 rw_exit(&ipst->ips_ire_dep_lock); 11171 } 11172 if (ire->ire_flags & RTF_DYNAMIC) { 11173 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11174 } else { 11175 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11176 } 11177 11178 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11179 (char *)re, (int)sizeof (*re))) { 11180 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11181 (uint_t)sizeof (*re))); 11182 } 11183 11184 if (gc != NULL) { 11185 iaes.iae_routeidx = ird->ird_idx; 11186 iaes.iae_doi = gc->gc_db->gcdb_doi; 11187 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11188 11189 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11190 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11191 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11192 "bytes\n", (uint_t)sizeof (iaes))); 11193 } 11194 } 11195 11196 /* bump route index for next pass */ 11197 ird->ird_idx++; 11198 11199 kmem_free(re, sizeof (*re)); 11200 if (gcgrp != NULL) 11201 rw_exit(&gcgrp->gcgrp_rwlock); 11202 } 11203 11204 /* 11205 * ncec_walk routine to create ipv6NetToMediaEntryTable 11206 */ 11207 static void 11208 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr) 11209 { 11210 iproutedata_t *ird = ptr; 11211 ill_t *ill; 11212 mib2_ipv6NetToMediaEntry_t ntme; 11213 11214 ill = ncec->ncec_ill; 11215 /* skip arpce entries, and loopback ncec entries */ 11216 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11217 return; 11218 /* 11219 * Neighbor cache entry attached to IRE with on-link 11220 * destination. 11221 * We report all IPMP groups on ncec_ill which is normally the upper. 11222 */ 11223 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11224 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11225 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11226 if (ncec->ncec_lladdr != NULL) { 11227 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11228 ntme.ipv6NetToMediaPhysAddress.o_length); 11229 } 11230 /* 11231 * Note: Returns ND_* states. Should be: 11232 * reachable(1), stale(2), delay(3), probe(4), 11233 * invalid(5), unknown(6) 11234 */ 11235 ntme.ipv6NetToMediaState = ncec->ncec_state; 11236 ntme.ipv6NetToMediaLastUpdated = 0; 11237 11238 /* other(1), dynamic(2), static(3), local(4) */ 11239 if (NCE_MYADDR(ncec)) { 11240 ntme.ipv6NetToMediaType = 4; 11241 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11242 ntme.ipv6NetToMediaType = 1; /* proxy */ 11243 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11244 ntme.ipv6NetToMediaType = 3; 11245 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11246 ntme.ipv6NetToMediaType = 1; 11247 } else { 11248 ntme.ipv6NetToMediaType = 2; 11249 } 11250 11251 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11252 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11253 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11254 (uint_t)sizeof (ntme))); 11255 } 11256 } 11257 11258 int 11259 nce2ace(ncec_t *ncec) 11260 { 11261 int flags = 0; 11262 11263 if (NCE_ISREACHABLE(ncec)) 11264 flags |= ACE_F_RESOLVED; 11265 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11266 flags |= ACE_F_AUTHORITY; 11267 if (ncec->ncec_flags & NCE_F_PUBLISH) 11268 flags |= ACE_F_PUBLISH; 11269 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11270 flags |= ACE_F_PERMANENT; 11271 if (NCE_MYADDR(ncec)) 11272 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11273 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11274 flags |= ACE_F_UNVERIFIED; 11275 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11276 flags |= ACE_F_AUTHORITY; 11277 if (ncec->ncec_flags & NCE_F_DELAYED) 11278 flags |= ACE_F_DELAYED; 11279 return (flags); 11280 } 11281 11282 /* 11283 * ncec_walk routine to create ipNetToMediaEntryTable 11284 */ 11285 static void 11286 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr) 11287 { 11288 iproutedata_t *ird = ptr; 11289 ill_t *ill; 11290 mib2_ipNetToMediaEntry_t ntme; 11291 const char *name = "unknown"; 11292 ipaddr_t ncec_addr; 11293 11294 ill = ncec->ncec_ill; 11295 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11296 ill->ill_net_type == IRE_LOOPBACK) 11297 return; 11298 11299 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11300 name = ill->ill_name; 11301 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11302 if (NCE_MYADDR(ncec)) { 11303 ntme.ipNetToMediaType = 4; 11304 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11305 ntme.ipNetToMediaType = 1; 11306 } else { 11307 ntme.ipNetToMediaType = 3; 11308 } 11309 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11310 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11311 ntme.ipNetToMediaIfIndex.o_length); 11312 11313 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11314 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11315 11316 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11317 ncec_addr = INADDR_BROADCAST; 11318 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11319 sizeof (ncec_addr)); 11320 /* 11321 * map all the flags to the ACE counterpart. 11322 */ 11323 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11324 11325 ntme.ipNetToMediaPhysAddress.o_length = 11326 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11327 11328 if (!NCE_ISREACHABLE(ncec)) 11329 ntme.ipNetToMediaPhysAddress.o_length = 0; 11330 else { 11331 if (ncec->ncec_lladdr != NULL) { 11332 bcopy(ncec->ncec_lladdr, 11333 ntme.ipNetToMediaPhysAddress.o_bytes, 11334 ntme.ipNetToMediaPhysAddress.o_length); 11335 } 11336 } 11337 11338 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11339 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11340 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11341 (uint_t)sizeof (ntme))); 11342 } 11343 } 11344 11345 /* 11346 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11347 */ 11348 /* ARGSUSED */ 11349 int 11350 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11351 { 11352 switch (level) { 11353 case MIB2_IP: 11354 case MIB2_ICMP: 11355 switch (name) { 11356 default: 11357 break; 11358 } 11359 return (1); 11360 default: 11361 return (1); 11362 } 11363 } 11364 11365 /* 11366 * When there exists both a 64- and 32-bit counter of a particular type 11367 * (i.e., InReceives), only the 64-bit counters are added. 11368 */ 11369 void 11370 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11371 { 11372 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11373 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11374 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11375 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11376 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11377 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11378 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11379 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11380 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11381 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11382 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11383 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11384 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11385 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11386 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11387 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11388 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11389 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11390 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11391 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11392 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11393 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11394 o2->ipIfStatsInWrongIPVersion); 11395 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11396 o2->ipIfStatsInWrongIPVersion); 11397 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11398 o2->ipIfStatsOutSwitchIPVersion); 11399 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11400 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11401 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11402 o2->ipIfStatsHCInForwDatagrams); 11403 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11404 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11405 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11406 o2->ipIfStatsHCOutForwDatagrams); 11407 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11408 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11409 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11410 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11411 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11412 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11413 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11414 o2->ipIfStatsHCOutMcastOctets); 11415 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11416 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11417 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11418 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11419 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11420 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11421 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11422 } 11423 11424 void 11425 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11426 { 11427 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11428 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11429 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11430 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11431 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11432 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11433 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11434 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11435 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11436 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11437 o2->ipv6IfIcmpInRouterSolicits); 11438 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11439 o2->ipv6IfIcmpInRouterAdvertisements); 11440 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11441 o2->ipv6IfIcmpInNeighborSolicits); 11442 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11443 o2->ipv6IfIcmpInNeighborAdvertisements); 11444 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11445 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11446 o2->ipv6IfIcmpInGroupMembQueries); 11447 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11448 o2->ipv6IfIcmpInGroupMembResponses); 11449 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11450 o2->ipv6IfIcmpInGroupMembReductions); 11451 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11452 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11453 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11454 o2->ipv6IfIcmpOutDestUnreachs); 11455 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11456 o2->ipv6IfIcmpOutAdminProhibs); 11457 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11458 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11459 o2->ipv6IfIcmpOutParmProblems); 11460 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11461 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11462 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11463 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11464 o2->ipv6IfIcmpOutRouterSolicits); 11465 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11466 o2->ipv6IfIcmpOutRouterAdvertisements); 11467 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11468 o2->ipv6IfIcmpOutNeighborSolicits); 11469 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11470 o2->ipv6IfIcmpOutNeighborAdvertisements); 11471 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11472 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11473 o2->ipv6IfIcmpOutGroupMembQueries); 11474 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11475 o2->ipv6IfIcmpOutGroupMembResponses); 11476 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11477 o2->ipv6IfIcmpOutGroupMembReductions); 11478 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11479 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11480 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11481 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11482 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11483 o2->ipv6IfIcmpInBadNeighborSolicitations); 11484 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11485 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11486 o2->ipv6IfIcmpInGroupMembTotal); 11487 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11488 o2->ipv6IfIcmpInGroupMembBadQueries); 11489 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11490 o2->ipv6IfIcmpInGroupMembBadReports); 11491 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11492 o2->ipv6IfIcmpInGroupMembOurReports); 11493 } 11494 11495 /* 11496 * Called before the options are updated to check if this packet will 11497 * be source routed from here. 11498 * This routine assumes that the options are well formed i.e. that they 11499 * have already been checked. 11500 */ 11501 boolean_t 11502 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11503 { 11504 ipoptp_t opts; 11505 uchar_t *opt; 11506 uint8_t optval; 11507 uint8_t optlen; 11508 ipaddr_t dst; 11509 11510 if (IS_SIMPLE_IPH(ipha)) { 11511 ip2dbg(("not source routed\n")); 11512 return (B_FALSE); 11513 } 11514 dst = ipha->ipha_dst; 11515 for (optval = ipoptp_first(&opts, ipha); 11516 optval != IPOPT_EOL; 11517 optval = ipoptp_next(&opts)) { 11518 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11519 opt = opts.ipoptp_cur; 11520 optlen = opts.ipoptp_len; 11521 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11522 optval, optlen)); 11523 switch (optval) { 11524 uint32_t off; 11525 case IPOPT_SSRR: 11526 case IPOPT_LSRR: 11527 /* 11528 * If dst is one of our addresses and there are some 11529 * entries left in the source route return (true). 11530 */ 11531 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11532 ip2dbg(("ip_source_routed: not next" 11533 " source route 0x%x\n", 11534 ntohl(dst))); 11535 return (B_FALSE); 11536 } 11537 off = opt[IPOPT_OFFSET]; 11538 off--; 11539 if (optlen < IP_ADDR_LEN || 11540 off > optlen - IP_ADDR_LEN) { 11541 /* End of source route */ 11542 ip1dbg(("ip_source_routed: end of SR\n")); 11543 return (B_FALSE); 11544 } 11545 return (B_TRUE); 11546 } 11547 } 11548 ip2dbg(("not source routed\n")); 11549 return (B_FALSE); 11550 } 11551 11552 /* 11553 * ip_unbind is called by the transports to remove a conn from 11554 * the fanout table. 11555 */ 11556 void 11557 ip_unbind(conn_t *connp) 11558 { 11559 11560 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11561 11562 if (is_system_labeled() && connp->conn_anon_port) { 11563 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11564 connp->conn_mlp_type, connp->conn_proto, 11565 ntohs(connp->conn_lport), B_FALSE); 11566 connp->conn_anon_port = 0; 11567 } 11568 connp->conn_mlp_type = mlptSingle; 11569 11570 ipcl_hash_remove(connp); 11571 } 11572 11573 /* 11574 * Used for deciding the MSS size for the upper layer. Thus 11575 * we need to check the outbound policy values in the conn. 11576 */ 11577 int 11578 conn_ipsec_length(conn_t *connp) 11579 { 11580 ipsec_latch_t *ipl; 11581 11582 ipl = connp->conn_latch; 11583 if (ipl == NULL) 11584 return (0); 11585 11586 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11587 return (0); 11588 11589 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11590 } 11591 11592 /* 11593 * Returns an estimate of the IPsec headers size. This is used if 11594 * we don't want to call into IPsec to get the exact size. 11595 */ 11596 int 11597 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11598 { 11599 ipsec_action_t *a; 11600 11601 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11602 return (0); 11603 11604 a = ixa->ixa_ipsec_action; 11605 if (a == NULL) { 11606 ASSERT(ixa->ixa_ipsec_policy != NULL); 11607 a = ixa->ixa_ipsec_policy->ipsp_act; 11608 } 11609 ASSERT(a != NULL); 11610 11611 return (a->ipa_ovhd); 11612 } 11613 11614 /* 11615 * If there are any source route options, return the true final 11616 * destination. Otherwise, return the destination. 11617 */ 11618 ipaddr_t 11619 ip_get_dst(ipha_t *ipha) 11620 { 11621 ipoptp_t opts; 11622 uchar_t *opt; 11623 uint8_t optval; 11624 uint8_t optlen; 11625 ipaddr_t dst; 11626 uint32_t off; 11627 11628 dst = ipha->ipha_dst; 11629 11630 if (IS_SIMPLE_IPH(ipha)) 11631 return (dst); 11632 11633 for (optval = ipoptp_first(&opts, ipha); 11634 optval != IPOPT_EOL; 11635 optval = ipoptp_next(&opts)) { 11636 opt = opts.ipoptp_cur; 11637 optlen = opts.ipoptp_len; 11638 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11639 switch (optval) { 11640 case IPOPT_SSRR: 11641 case IPOPT_LSRR: 11642 off = opt[IPOPT_OFFSET]; 11643 /* 11644 * If one of the conditions is true, it means 11645 * end of options and dst already has the right 11646 * value. 11647 */ 11648 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11649 off = optlen - IP_ADDR_LEN; 11650 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11651 } 11652 return (dst); 11653 default: 11654 break; 11655 } 11656 } 11657 11658 return (dst); 11659 } 11660 11661 /* 11662 * Outbound IP fragmentation routine. 11663 * Assumes the caller has checked whether or not fragmentation should 11664 * be allowed. Here we copy the DF bit from the header to all the generated 11665 * fragments. 11666 */ 11667 int 11668 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11669 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11670 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11671 { 11672 int i1; 11673 int hdr_len; 11674 mblk_t *hdr_mp; 11675 ipha_t *ipha; 11676 int ip_data_end; 11677 int len; 11678 mblk_t *mp = mp_orig; 11679 int offset; 11680 ill_t *ill = nce->nce_ill; 11681 ip_stack_t *ipst = ill->ill_ipst; 11682 mblk_t *carve_mp; 11683 uint32_t frag_flag; 11684 uint_t priority = mp->b_band; 11685 int error = 0; 11686 11687 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11688 11689 if (pkt_len != msgdsize(mp)) { 11690 ip0dbg(("Packet length mismatch: %d, %ld\n", 11691 pkt_len, msgdsize(mp))); 11692 freemsg(mp); 11693 return (EINVAL); 11694 } 11695 11696 if (max_frag == 0) { 11697 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11698 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11699 ip_drop_output("FragFails: zero max_frag", mp, ill); 11700 freemsg(mp); 11701 return (EINVAL); 11702 } 11703 11704 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11705 ipha = (ipha_t *)mp->b_rptr; 11706 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11707 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11708 11709 /* 11710 * Establish the starting offset. May not be zero if we are fragging 11711 * a fragment that is being forwarded. 11712 */ 11713 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11714 11715 /* TODO why is this test needed? */ 11716 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11717 /* TODO: notify ulp somehow */ 11718 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11719 ip_drop_output("FragFails: bad starting offset", mp, ill); 11720 freemsg(mp); 11721 return (EINVAL); 11722 } 11723 11724 hdr_len = IPH_HDR_LENGTH(ipha); 11725 ipha->ipha_hdr_checksum = 0; 11726 11727 /* 11728 * Establish the number of bytes maximum per frag, after putting 11729 * in the header. 11730 */ 11731 len = (max_frag - hdr_len) & ~7; 11732 11733 /* Get a copy of the header for the trailing frags */ 11734 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11735 mp); 11736 if (hdr_mp == NULL) { 11737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11738 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11739 freemsg(mp); 11740 return (ENOBUFS); 11741 } 11742 11743 /* Store the starting offset, with the MoreFrags flag. */ 11744 i1 = offset | IPH_MF | frag_flag; 11745 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11746 11747 /* Establish the ending byte offset, based on the starting offset. */ 11748 offset <<= 3; 11749 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11750 11751 /* Store the length of the first fragment in the IP header. */ 11752 i1 = len + hdr_len; 11753 ASSERT(i1 <= IP_MAXPACKET); 11754 ipha->ipha_length = htons((uint16_t)i1); 11755 11756 /* 11757 * Compute the IP header checksum for the first frag. We have to 11758 * watch out that we stop at the end of the header. 11759 */ 11760 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11761 11762 /* 11763 * Now carve off the first frag. Note that this will include the 11764 * original IP header. 11765 */ 11766 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11767 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11768 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11769 freeb(hdr_mp); 11770 freemsg(mp_orig); 11771 return (ENOBUFS); 11772 } 11773 11774 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11775 11776 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11777 ixa_cookie); 11778 if (error != 0 && error != EWOULDBLOCK) { 11779 /* No point in sending the other fragments */ 11780 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11781 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11782 freeb(hdr_mp); 11783 freemsg(mp_orig); 11784 return (error); 11785 } 11786 11787 /* No need to redo state machine in loop */ 11788 ixaflags &= ~IXAF_REACH_CONF; 11789 11790 /* Advance the offset to the second frag starting point. */ 11791 offset += len; 11792 /* 11793 * Update hdr_len from the copied header - there might be less options 11794 * in the later fragments. 11795 */ 11796 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11797 /* Loop until done. */ 11798 for (;;) { 11799 uint16_t offset_and_flags; 11800 uint16_t ip_len; 11801 11802 if (ip_data_end - offset > len) { 11803 /* 11804 * Carve off the appropriate amount from the original 11805 * datagram. 11806 */ 11807 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11808 mp = NULL; 11809 break; 11810 } 11811 /* 11812 * More frags after this one. Get another copy 11813 * of the header. 11814 */ 11815 if (carve_mp->b_datap->db_ref == 1 && 11816 hdr_mp->b_wptr - hdr_mp->b_rptr < 11817 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11818 /* Inline IP header */ 11819 carve_mp->b_rptr -= hdr_mp->b_wptr - 11820 hdr_mp->b_rptr; 11821 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11822 hdr_mp->b_wptr - hdr_mp->b_rptr); 11823 mp = carve_mp; 11824 } else { 11825 if (!(mp = copyb(hdr_mp))) { 11826 freemsg(carve_mp); 11827 break; 11828 } 11829 /* Get priority marking, if any. */ 11830 mp->b_band = priority; 11831 mp->b_cont = carve_mp; 11832 } 11833 ipha = (ipha_t *)mp->b_rptr; 11834 offset_and_flags = IPH_MF; 11835 } else { 11836 /* 11837 * Last frag. Consume the header. Set len to 11838 * the length of this last piece. 11839 */ 11840 len = ip_data_end - offset; 11841 11842 /* 11843 * Carve off the appropriate amount from the original 11844 * datagram. 11845 */ 11846 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11847 mp = NULL; 11848 break; 11849 } 11850 if (carve_mp->b_datap->db_ref == 1 && 11851 hdr_mp->b_wptr - hdr_mp->b_rptr < 11852 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11853 /* Inline IP header */ 11854 carve_mp->b_rptr -= hdr_mp->b_wptr - 11855 hdr_mp->b_rptr; 11856 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11857 hdr_mp->b_wptr - hdr_mp->b_rptr); 11858 mp = carve_mp; 11859 freeb(hdr_mp); 11860 hdr_mp = mp; 11861 } else { 11862 mp = hdr_mp; 11863 /* Get priority marking, if any. */ 11864 mp->b_band = priority; 11865 mp->b_cont = carve_mp; 11866 } 11867 ipha = (ipha_t *)mp->b_rptr; 11868 /* A frag of a frag might have IPH_MF non-zero */ 11869 offset_and_flags = 11870 ntohs(ipha->ipha_fragment_offset_and_flags) & 11871 IPH_MF; 11872 } 11873 offset_and_flags |= (uint16_t)(offset >> 3); 11874 offset_and_flags |= (uint16_t)frag_flag; 11875 /* Store the offset and flags in the IP header. */ 11876 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11877 11878 /* Store the length in the IP header. */ 11879 ip_len = (uint16_t)(len + hdr_len); 11880 ipha->ipha_length = htons(ip_len); 11881 11882 /* 11883 * Set the IP header checksum. Note that mp is just 11884 * the header, so this is easy to pass to ip_csum. 11885 */ 11886 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11887 11888 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11889 11890 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11891 nolzid, ixa_cookie); 11892 /* All done if we just consumed the hdr_mp. */ 11893 if (mp == hdr_mp) { 11894 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11895 return (error); 11896 } 11897 if (error != 0 && error != EWOULDBLOCK) { 11898 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11899 mblk_t *, hdr_mp); 11900 /* No point in sending the other fragments */ 11901 break; 11902 } 11903 11904 /* Otherwise, advance and loop. */ 11905 offset += len; 11906 } 11907 /* Clean up following allocation failure. */ 11908 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11909 ip_drop_output("FragFails: loop ended", NULL, ill); 11910 if (mp != hdr_mp) 11911 freeb(hdr_mp); 11912 if (mp != mp_orig) 11913 freemsg(mp_orig); 11914 return (error); 11915 } 11916 11917 /* 11918 * Copy the header plus those options which have the copy bit set 11919 */ 11920 static mblk_t * 11921 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11922 mblk_t *src) 11923 { 11924 mblk_t *mp; 11925 uchar_t *up; 11926 11927 /* 11928 * Quick check if we need to look for options without the copy bit 11929 * set 11930 */ 11931 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11932 if (!mp) 11933 return (mp); 11934 mp->b_rptr += ipst->ips_ip_wroff_extra; 11935 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11936 bcopy(rptr, mp->b_rptr, hdr_len); 11937 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11938 return (mp); 11939 } 11940 up = mp->b_rptr; 11941 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11942 up += IP_SIMPLE_HDR_LENGTH; 11943 rptr += IP_SIMPLE_HDR_LENGTH; 11944 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11945 while (hdr_len > 0) { 11946 uint32_t optval; 11947 uint32_t optlen; 11948 11949 optval = *rptr; 11950 if (optval == IPOPT_EOL) 11951 break; 11952 if (optval == IPOPT_NOP) 11953 optlen = 1; 11954 else 11955 optlen = rptr[1]; 11956 if (optval & IPOPT_COPY) { 11957 bcopy(rptr, up, optlen); 11958 up += optlen; 11959 } 11960 rptr += optlen; 11961 hdr_len -= optlen; 11962 } 11963 /* 11964 * Make sure that we drop an even number of words by filling 11965 * with EOL to the next word boundary. 11966 */ 11967 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11968 hdr_len & 0x3; hdr_len++) 11969 *up++ = IPOPT_EOL; 11970 mp->b_wptr = up; 11971 /* Update header length */ 11972 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11973 return (mp); 11974 } 11975 11976 /* 11977 * Update any source route, record route, or timestamp options when 11978 * sending a packet back to ourselves. 11979 * Check that we are at end of strict source route. 11980 * The options have been sanity checked by ip_output_options(). 11981 */ 11982 void 11983 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11984 { 11985 ipoptp_t opts; 11986 uchar_t *opt; 11987 uint8_t optval; 11988 uint8_t optlen; 11989 ipaddr_t dst; 11990 uint32_t ts; 11991 timestruc_t now; 11992 uint32_t off = 0; 11993 11994 for (optval = ipoptp_first(&opts, ipha); 11995 optval != IPOPT_EOL; 11996 optval = ipoptp_next(&opts)) { 11997 opt = opts.ipoptp_cur; 11998 optlen = opts.ipoptp_len; 11999 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 12000 switch (optval) { 12001 case IPOPT_SSRR: 12002 case IPOPT_LSRR: 12003 off = opt[IPOPT_OFFSET]; 12004 off--; 12005 if (optlen < IP_ADDR_LEN || 12006 off > optlen - IP_ADDR_LEN) { 12007 /* End of source route */ 12008 break; 12009 } 12010 /* 12011 * This will only happen if two consecutive entries 12012 * in the source route contains our address or if 12013 * it is a packet with a loose source route which 12014 * reaches us before consuming the whole source route 12015 */ 12016 12017 if (optval == IPOPT_SSRR) { 12018 return; 12019 } 12020 /* 12021 * Hack: instead of dropping the packet truncate the 12022 * source route to what has been used by filling the 12023 * rest with IPOPT_NOP. 12024 */ 12025 opt[IPOPT_OLEN] = (uint8_t)off; 12026 while (off < optlen) { 12027 opt[off++] = IPOPT_NOP; 12028 } 12029 break; 12030 case IPOPT_RR: 12031 off = opt[IPOPT_OFFSET]; 12032 off--; 12033 if (optlen < IP_ADDR_LEN || 12034 off > optlen - IP_ADDR_LEN) { 12035 /* No more room - ignore */ 12036 ip1dbg(( 12037 "ip_output_local_options: end of RR\n")); 12038 break; 12039 } 12040 dst = htonl(INADDR_LOOPBACK); 12041 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12042 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12043 break; 12044 case IPOPT_TS: 12045 /* Insert timestamp if there is romm */ 12046 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12047 case IPOPT_TS_TSONLY: 12048 off = IPOPT_TS_TIMELEN; 12049 break; 12050 case IPOPT_TS_PRESPEC: 12051 case IPOPT_TS_PRESPEC_RFC791: 12052 /* Verify that the address matched */ 12053 off = opt[IPOPT_OFFSET] - 1; 12054 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12055 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12056 /* Not for us */ 12057 break; 12058 } 12059 /* FALLTHROUGH */ 12060 case IPOPT_TS_TSANDADDR: 12061 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12062 break; 12063 default: 12064 /* 12065 * ip_*put_options should have already 12066 * dropped this packet. 12067 */ 12068 cmn_err(CE_PANIC, "ip_output_local_options: " 12069 "unknown IT - bug in ip_output_options?\n"); 12070 } 12071 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12072 /* Increase overflow counter */ 12073 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12074 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12075 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12076 (off << 4); 12077 break; 12078 } 12079 off = opt[IPOPT_OFFSET] - 1; 12080 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12081 case IPOPT_TS_PRESPEC: 12082 case IPOPT_TS_PRESPEC_RFC791: 12083 case IPOPT_TS_TSANDADDR: 12084 dst = htonl(INADDR_LOOPBACK); 12085 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12086 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12087 /* FALLTHROUGH */ 12088 case IPOPT_TS_TSONLY: 12089 off = opt[IPOPT_OFFSET] - 1; 12090 /* Compute # of milliseconds since midnight */ 12091 gethrestime(&now); 12092 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12093 NSEC2MSEC(now.tv_nsec); 12094 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12095 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12096 break; 12097 } 12098 break; 12099 } 12100 } 12101 } 12102 12103 /* 12104 * Prepend an M_DATA fastpath header, and if none present prepend a 12105 * DL_UNITDATA_REQ. Frees the mblk on failure. 12106 * 12107 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12108 * If there is a change to them, the nce will be deleted (condemned) and 12109 * a new nce_t will be created when packets are sent. Thus we need no locks 12110 * to access those fields. 12111 * 12112 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12113 * we place b_band in dl_priority.dl_max. 12114 */ 12115 static mblk_t * 12116 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12117 { 12118 uint_t hlen; 12119 mblk_t *mp1; 12120 uint_t priority; 12121 uchar_t *rptr; 12122 12123 rptr = mp->b_rptr; 12124 12125 ASSERT(DB_TYPE(mp) == M_DATA); 12126 priority = mp->b_band; 12127 12128 ASSERT(nce != NULL); 12129 if ((mp1 = nce->nce_fp_mp) != NULL) { 12130 hlen = MBLKL(mp1); 12131 /* 12132 * Check if we have enough room to prepend fastpath 12133 * header 12134 */ 12135 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12136 rptr -= hlen; 12137 bcopy(mp1->b_rptr, rptr, hlen); 12138 /* 12139 * Set the b_rptr to the start of the link layer 12140 * header 12141 */ 12142 mp->b_rptr = rptr; 12143 return (mp); 12144 } 12145 mp1 = copyb(mp1); 12146 if (mp1 == NULL) { 12147 ill_t *ill = nce->nce_ill; 12148 12149 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12150 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12151 freemsg(mp); 12152 return (NULL); 12153 } 12154 mp1->b_band = priority; 12155 mp1->b_cont = mp; 12156 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12157 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12158 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12159 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12160 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12161 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12162 /* 12163 * XXX disable ICK_VALID and compute checksum 12164 * here; can happen if nce_fp_mp changes and 12165 * it can't be copied now due to insufficient 12166 * space. (unlikely, fp mp can change, but it 12167 * does not increase in length) 12168 */ 12169 return (mp1); 12170 } 12171 mp1 = copyb(nce->nce_dlur_mp); 12172 12173 if (mp1 == NULL) { 12174 ill_t *ill = nce->nce_ill; 12175 12176 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12177 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12178 freemsg(mp); 12179 return (NULL); 12180 } 12181 mp1->b_cont = mp; 12182 if (priority != 0) { 12183 mp1->b_band = priority; 12184 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12185 priority; 12186 } 12187 return (mp1); 12188 } 12189 12190 /* 12191 * Finish the outbound IPsec processing. This function is called from 12192 * ipsec_out_process() if the IPsec packet was processed 12193 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12194 * asynchronously. 12195 * 12196 * This is common to IPv4 and IPv6. 12197 */ 12198 int 12199 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12200 { 12201 iaflags_t ixaflags = ixa->ixa_flags; 12202 uint_t pktlen; 12203 12204 12205 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12206 if (ixaflags & IXAF_IS_IPV4) { 12207 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12208 12209 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12210 pktlen = ntohs(ipha->ipha_length); 12211 } else { 12212 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12213 12214 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12215 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12216 } 12217 12218 /* 12219 * We release any hard reference on the SAs here to make 12220 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12221 * on the SAs. 12222 * If in the future we want the hard latching of the SAs in the 12223 * ip_xmit_attr_t then we should remove this. 12224 */ 12225 if (ixa->ixa_ipsec_esp_sa != NULL) { 12226 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12227 ixa->ixa_ipsec_esp_sa = NULL; 12228 } 12229 if (ixa->ixa_ipsec_ah_sa != NULL) { 12230 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12231 ixa->ixa_ipsec_ah_sa = NULL; 12232 } 12233 12234 /* Do we need to fragment? */ 12235 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12236 pktlen > ixa->ixa_fragsize) { 12237 if (ixaflags & IXAF_IS_IPV4) { 12238 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12239 /* 12240 * We check for the DF case in ipsec_out_process 12241 * hence this only handles the non-DF case. 12242 */ 12243 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12244 pktlen, ixa->ixa_fragsize, 12245 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12246 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12247 &ixa->ixa_cookie)); 12248 } else { 12249 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12250 if (mp == NULL) { 12251 /* MIB and ip_drop_output already done */ 12252 return (ENOMEM); 12253 } 12254 pktlen += sizeof (ip6_frag_t); 12255 if (pktlen > ixa->ixa_fragsize) { 12256 return (ip_fragment_v6(mp, ixa->ixa_nce, 12257 ixa->ixa_flags, pktlen, 12258 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12259 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12260 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12261 } 12262 } 12263 } 12264 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12265 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12266 ixa->ixa_no_loop_zoneid, NULL)); 12267 } 12268 12269 /* 12270 * Finish the inbound IPsec processing. This function is called from 12271 * ipsec_out_process() if the IPsec packet was processed 12272 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12273 * asynchronously. 12274 * 12275 * This is common to IPv4 and IPv6. 12276 */ 12277 void 12278 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12279 { 12280 iaflags_t iraflags = ira->ira_flags; 12281 12282 /* Length might have changed */ 12283 if (iraflags & IRAF_IS_IPV4) { 12284 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12285 12286 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12287 ira->ira_pktlen = ntohs(ipha->ipha_length); 12288 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12289 ira->ira_protocol = ipha->ipha_protocol; 12290 12291 ip_fanout_v4(mp, ipha, ira); 12292 } else { 12293 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12294 uint8_t *nexthdrp; 12295 12296 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12297 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12298 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12299 &nexthdrp)) { 12300 /* Malformed packet */ 12301 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12302 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12303 freemsg(mp); 12304 return; 12305 } 12306 ira->ira_protocol = *nexthdrp; 12307 ip_fanout_v6(mp, ip6h, ira); 12308 } 12309 } 12310 12311 /* 12312 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12313 * 12314 * If this function returns B_TRUE, the requested SA's have been filled 12315 * into the ixa_ipsec_*_sa pointers. 12316 * 12317 * If the function returns B_FALSE, the packet has been "consumed", most 12318 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12319 * 12320 * The SA references created by the protocol-specific "select" 12321 * function will be released in ip_output_post_ipsec. 12322 */ 12323 static boolean_t 12324 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12325 { 12326 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12327 ipsec_policy_t *pp; 12328 ipsec_action_t *ap; 12329 12330 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12331 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12332 (ixa->ixa_ipsec_action != NULL)); 12333 12334 ap = ixa->ixa_ipsec_action; 12335 if (ap == NULL) { 12336 pp = ixa->ixa_ipsec_policy; 12337 ASSERT(pp != NULL); 12338 ap = pp->ipsp_act; 12339 ASSERT(ap != NULL); 12340 } 12341 12342 /* 12343 * We have an action. now, let's select SA's. 12344 * A side effect of setting ixa_ipsec_*_sa is that it will 12345 * be cached in the conn_t. 12346 */ 12347 if (ap->ipa_want_esp) { 12348 if (ixa->ixa_ipsec_esp_sa == NULL) { 12349 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12350 IPPROTO_ESP); 12351 } 12352 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12353 } 12354 12355 if (ap->ipa_want_ah) { 12356 if (ixa->ixa_ipsec_ah_sa == NULL) { 12357 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12358 IPPROTO_AH); 12359 } 12360 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12361 /* 12362 * The ESP and AH processing order needs to be preserved 12363 * when both protocols are required (ESP should be applied 12364 * before AH for an outbound packet). Force an ESP ACQUIRE 12365 * when both ESP and AH are required, and an AH ACQUIRE 12366 * is needed. 12367 */ 12368 if (ap->ipa_want_esp && need_ah_acquire) 12369 need_esp_acquire = B_TRUE; 12370 } 12371 12372 /* 12373 * Send an ACQUIRE (extended, regular, or both) if we need one. 12374 * Release SAs that got referenced, but will not be used until we 12375 * acquire _all_ of the SAs we need. 12376 */ 12377 if (need_ah_acquire || need_esp_acquire) { 12378 if (ixa->ixa_ipsec_ah_sa != NULL) { 12379 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12380 ixa->ixa_ipsec_ah_sa = NULL; 12381 } 12382 if (ixa->ixa_ipsec_esp_sa != NULL) { 12383 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12384 ixa->ixa_ipsec_esp_sa = NULL; 12385 } 12386 12387 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12388 return (B_FALSE); 12389 } 12390 12391 return (B_TRUE); 12392 } 12393 12394 /* 12395 * Handle IPsec output processing. 12396 * This function is only entered once for a given packet. 12397 * We try to do things synchronously, but if we need to have user-level 12398 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12399 * will be completed 12400 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12401 * - when asynchronous ESP is done it will do AH 12402 * 12403 * In all cases we come back in ip_output_post_ipsec() to fragment and 12404 * send out the packet. 12405 */ 12406 int 12407 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12408 { 12409 ill_t *ill = ixa->ixa_nce->nce_ill; 12410 ip_stack_t *ipst = ixa->ixa_ipst; 12411 ipsec_stack_t *ipss; 12412 ipsec_policy_t *pp; 12413 ipsec_action_t *ap; 12414 12415 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12416 12417 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12418 (ixa->ixa_ipsec_action != NULL)); 12419 12420 ipss = ipst->ips_netstack->netstack_ipsec; 12421 if (!ipsec_loaded(ipss)) { 12422 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12423 ip_drop_packet(mp, B_TRUE, ill, 12424 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12425 &ipss->ipsec_dropper); 12426 return (ENOTSUP); 12427 } 12428 12429 ap = ixa->ixa_ipsec_action; 12430 if (ap == NULL) { 12431 pp = ixa->ixa_ipsec_policy; 12432 ASSERT(pp != NULL); 12433 ap = pp->ipsp_act; 12434 ASSERT(ap != NULL); 12435 } 12436 12437 /* Handle explicit drop action and bypass. */ 12438 switch (ap->ipa_act.ipa_type) { 12439 case IPSEC_ACT_DISCARD: 12440 case IPSEC_ACT_REJECT: 12441 ip_drop_packet(mp, B_FALSE, ill, 12442 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12443 return (EHOSTUNREACH); /* IPsec policy failure */ 12444 case IPSEC_ACT_BYPASS: 12445 return (ip_output_post_ipsec(mp, ixa)); 12446 } 12447 12448 /* 12449 * The order of processing is first insert a IP header if needed. 12450 * Then insert the ESP header and then the AH header. 12451 */ 12452 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12453 /* 12454 * First get the outer IP header before sending 12455 * it to ESP. 12456 */ 12457 ipha_t *oipha, *iipha; 12458 mblk_t *outer_mp, *inner_mp; 12459 12460 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12461 (void) mi_strlog(ill->ill_rq, 0, 12462 SL_ERROR|SL_TRACE|SL_CONSOLE, 12463 "ipsec_out_process: " 12464 "Self-Encapsulation failed: Out of memory\n"); 12465 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12466 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12467 freemsg(mp); 12468 return (ENOBUFS); 12469 } 12470 inner_mp = mp; 12471 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12472 oipha = (ipha_t *)outer_mp->b_rptr; 12473 iipha = (ipha_t *)inner_mp->b_rptr; 12474 *oipha = *iipha; 12475 outer_mp->b_wptr += sizeof (ipha_t); 12476 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12477 sizeof (ipha_t)); 12478 oipha->ipha_protocol = IPPROTO_ENCAP; 12479 oipha->ipha_version_and_hdr_length = 12480 IP_SIMPLE_HDR_VERSION; 12481 oipha->ipha_hdr_checksum = 0; 12482 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12483 outer_mp->b_cont = inner_mp; 12484 mp = outer_mp; 12485 12486 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12487 } 12488 12489 /* If we need to wait for a SA then we can't return any errno */ 12490 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12491 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12492 !ipsec_out_select_sa(mp, ixa)) 12493 return (0); 12494 12495 /* 12496 * By now, we know what SA's to use. Toss over to ESP & AH 12497 * to do the heavy lifting. 12498 */ 12499 if (ap->ipa_want_esp) { 12500 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12501 12502 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12503 if (mp == NULL) { 12504 /* 12505 * Either it failed or is pending. In the former case 12506 * ipIfStatsInDiscards was increased. 12507 */ 12508 return (0); 12509 } 12510 } 12511 12512 if (ap->ipa_want_ah) { 12513 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12514 12515 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12516 if (mp == NULL) { 12517 /* 12518 * Either it failed or is pending. In the former case 12519 * ipIfStatsInDiscards was increased. 12520 */ 12521 return (0); 12522 } 12523 } 12524 /* 12525 * We are done with IPsec processing. Send it over 12526 * the wire. 12527 */ 12528 return (ip_output_post_ipsec(mp, ixa)); 12529 } 12530 12531 /* 12532 * ioctls that go through a down/up sequence may need to wait for the down 12533 * to complete. This involves waiting for the ire and ipif refcnts to go down 12534 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12535 */ 12536 /* ARGSUSED */ 12537 void 12538 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12539 { 12540 struct iocblk *iocp; 12541 mblk_t *mp1; 12542 ip_ioctl_cmd_t *ipip; 12543 int err; 12544 sin_t *sin; 12545 struct lifreq *lifr; 12546 struct ifreq *ifr; 12547 12548 iocp = (struct iocblk *)mp->b_rptr; 12549 ASSERT(ipsq != NULL); 12550 /* Existence of mp1 verified in ip_wput_nondata */ 12551 mp1 = mp->b_cont->b_cont; 12552 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12553 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12554 /* 12555 * Special case where ipx_current_ipif is not set: 12556 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12557 * We are here as were not able to complete the operation in 12558 * ipif_set_values because we could not become exclusive on 12559 * the new ipsq. 12560 */ 12561 ill_t *ill = q->q_ptr; 12562 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12563 } 12564 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12565 12566 if (ipip->ipi_cmd_type == IF_CMD) { 12567 /* This a old style SIOC[GS]IF* command */ 12568 ifr = (struct ifreq *)mp1->b_rptr; 12569 sin = (sin_t *)&ifr->ifr_addr; 12570 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12571 /* This a new style SIOC[GS]LIF* command */ 12572 lifr = (struct lifreq *)mp1->b_rptr; 12573 sin = (sin_t *)&lifr->lifr_addr; 12574 } else { 12575 sin = NULL; 12576 } 12577 12578 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12579 q, mp, ipip, mp1->b_rptr); 12580 12581 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12582 int, ipip->ipi_cmd, 12583 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12584 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12585 12586 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12587 } 12588 12589 /* 12590 * ioctl processing 12591 * 12592 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12593 * the ioctl command in the ioctl tables, determines the copyin data size 12594 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12595 * 12596 * ioctl processing then continues when the M_IOCDATA makes its way down to 12597 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12598 * associated 'conn' is refheld till the end of the ioctl and the general 12599 * ioctl processing function ip_process_ioctl() is called to extract the 12600 * arguments and process the ioctl. To simplify extraction, ioctl commands 12601 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12602 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12603 * is used to extract the ioctl's arguments. 12604 * 12605 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12606 * so goes thru the serialization primitive ipsq_try_enter. Then the 12607 * appropriate function to handle the ioctl is called based on the entry in 12608 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12609 * which also refreleases the 'conn' that was refheld at the start of the 12610 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12611 * 12612 * Many exclusive ioctls go thru an internal down up sequence as part of 12613 * the operation. For example an attempt to change the IP address of an 12614 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12615 * does all the cleanup such as deleting all ires that use this address. 12616 * Then we need to wait till all references to the interface go away. 12617 */ 12618 void 12619 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12620 { 12621 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12622 ip_ioctl_cmd_t *ipip = arg; 12623 ip_extract_func_t *extract_funcp; 12624 cmd_info_t ci; 12625 int err; 12626 boolean_t entered_ipsq = B_FALSE; 12627 12628 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12629 12630 if (ipip == NULL) 12631 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12632 12633 /* 12634 * SIOCLIFADDIF needs to go thru a special path since the 12635 * ill may not exist yet. This happens in the case of lo0 12636 * which is created using this ioctl. 12637 */ 12638 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12639 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12640 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12641 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12642 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12643 return; 12644 } 12645 12646 ci.ci_ipif = NULL; 12647 extract_funcp = NULL; 12648 switch (ipip->ipi_cmd_type) { 12649 case MISC_CMD: 12650 case MSFILT_CMD: 12651 /* 12652 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12653 */ 12654 if (ipip->ipi_cmd == IF_UNITSEL) { 12655 /* ioctl comes down the ill */ 12656 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12657 ipif_refhold(ci.ci_ipif); 12658 } 12659 err = 0; 12660 ci.ci_sin = NULL; 12661 ci.ci_sin6 = NULL; 12662 ci.ci_lifr = NULL; 12663 extract_funcp = NULL; 12664 break; 12665 12666 case IF_CMD: 12667 case LIF_CMD: 12668 extract_funcp = ip_extract_lifreq; 12669 break; 12670 12671 case ARP_CMD: 12672 case XARP_CMD: 12673 extract_funcp = ip_extract_arpreq; 12674 break; 12675 12676 default: 12677 ASSERT(0); 12678 } 12679 12680 if (extract_funcp != NULL) { 12681 err = (*extract_funcp)(q, mp, ipip, &ci); 12682 if (err != 0) { 12683 DTRACE_PROBE4(ipif__ioctl, 12684 char *, "ip_process_ioctl finish err", 12685 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12686 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12687 return; 12688 } 12689 12690 /* 12691 * All of the extraction functions return a refheld ipif. 12692 */ 12693 ASSERT(ci.ci_ipif != NULL); 12694 } 12695 12696 if (!(ipip->ipi_flags & IPI_WR)) { 12697 /* 12698 * A return value of EINPROGRESS means the ioctl is 12699 * either queued and waiting for some reason or has 12700 * already completed. 12701 */ 12702 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12703 ci.ci_lifr); 12704 if (ci.ci_ipif != NULL) { 12705 DTRACE_PROBE4(ipif__ioctl, 12706 char *, "ip_process_ioctl finish RD", 12707 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12708 ipif_t *, ci.ci_ipif); 12709 ipif_refrele(ci.ci_ipif); 12710 } else { 12711 DTRACE_PROBE4(ipif__ioctl, 12712 char *, "ip_process_ioctl finish RD", 12713 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12714 } 12715 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12716 return; 12717 } 12718 12719 ASSERT(ci.ci_ipif != NULL); 12720 12721 /* 12722 * If ipsq is non-NULL, we are already being called exclusively 12723 */ 12724 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12725 if (ipsq == NULL) { 12726 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12727 NEW_OP, B_TRUE); 12728 if (ipsq == NULL) { 12729 ipif_refrele(ci.ci_ipif); 12730 return; 12731 } 12732 entered_ipsq = B_TRUE; 12733 } 12734 /* 12735 * Release the ipif so that ipif_down and friends that wait for 12736 * references to go away are not misled about the current ipif_refcnt 12737 * values. We are writer so we can access the ipif even after releasing 12738 * the ipif. 12739 */ 12740 ipif_refrele(ci.ci_ipif); 12741 12742 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12743 12744 /* 12745 * A return value of EINPROGRESS means the ioctl is 12746 * either queued and waiting for some reason or has 12747 * already completed. 12748 */ 12749 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12750 12751 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12752 int, ipip->ipi_cmd, 12753 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12754 ipif_t *, ci.ci_ipif); 12755 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12756 12757 if (entered_ipsq) 12758 ipsq_exit(ipsq); 12759 } 12760 12761 /* 12762 * Complete the ioctl. Typically ioctls use the mi package and need to 12763 * do mi_copyout/mi_copy_done. 12764 */ 12765 void 12766 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12767 { 12768 conn_t *connp = NULL; 12769 12770 if (err == EINPROGRESS) 12771 return; 12772 12773 if (CONN_Q(q)) { 12774 connp = Q_TO_CONN(q); 12775 ASSERT(connp->conn_ref >= 2); 12776 } 12777 12778 switch (mode) { 12779 case COPYOUT: 12780 if (err == 0) 12781 mi_copyout(q, mp); 12782 else 12783 mi_copy_done(q, mp, err); 12784 break; 12785 12786 case NO_COPYOUT: 12787 mi_copy_done(q, mp, err); 12788 break; 12789 12790 default: 12791 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12792 break; 12793 } 12794 12795 /* 12796 * The conn refhold and ioctlref placed on the conn at the start of the 12797 * ioctl are released here. 12798 */ 12799 if (connp != NULL) { 12800 CONN_DEC_IOCTLREF(connp); 12801 CONN_OPER_PENDING_DONE(connp); 12802 } 12803 12804 if (ipsq != NULL) 12805 ipsq_current_finish(ipsq); 12806 } 12807 12808 /* Handles all non data messages */ 12809 int 12810 ip_wput_nondata(queue_t *q, mblk_t *mp) 12811 { 12812 mblk_t *mp1; 12813 struct iocblk *iocp; 12814 ip_ioctl_cmd_t *ipip; 12815 conn_t *connp; 12816 cred_t *cr; 12817 char *proto_str; 12818 12819 if (CONN_Q(q)) 12820 connp = Q_TO_CONN(q); 12821 else 12822 connp = NULL; 12823 12824 iocp = NULL; 12825 switch (DB_TYPE(mp)) { 12826 case M_IOCTL: 12827 /* 12828 * IOCTL processing begins in ip_sioctl_copyin_setup which 12829 * will arrange to copy in associated control structures. 12830 */ 12831 ip_sioctl_copyin_setup(q, mp); 12832 return (0); 12833 case M_IOCDATA: 12834 /* 12835 * Ensure that this is associated with one of our trans- 12836 * parent ioctls. If it's not ours, discard it if we're 12837 * running as a driver, or pass it on if we're a module. 12838 */ 12839 iocp = (struct iocblk *)mp->b_rptr; 12840 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12841 if (ipip == NULL) { 12842 if (q->q_next == NULL) { 12843 goto nak; 12844 } else { 12845 putnext(q, mp); 12846 } 12847 return (0); 12848 } 12849 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12850 /* 12851 * The ioctl is one we recognise, but is not consumed 12852 * by IP as a module and we are a module, so we drop 12853 */ 12854 goto nak; 12855 } 12856 12857 /* IOCTL continuation following copyin or copyout. */ 12858 if (mi_copy_state(q, mp, NULL) == -1) { 12859 /* 12860 * The copy operation failed. mi_copy_state already 12861 * cleaned up, so we're out of here. 12862 */ 12863 return (0); 12864 } 12865 /* 12866 * If we just completed a copy in, we become writer and 12867 * continue processing in ip_sioctl_copyin_done. If it 12868 * was a copy out, we call mi_copyout again. If there is 12869 * nothing more to copy out, it will complete the IOCTL. 12870 */ 12871 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12872 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12873 mi_copy_done(q, mp, EPROTO); 12874 return (0); 12875 } 12876 /* 12877 * Check for cases that need more copying. A return 12878 * value of 0 means a second copyin has been started, 12879 * so we return; a return value of 1 means no more 12880 * copying is needed, so we continue. 12881 */ 12882 if (ipip->ipi_cmd_type == MSFILT_CMD && 12883 MI_COPY_COUNT(mp) == 1) { 12884 if (ip_copyin_msfilter(q, mp) == 0) 12885 return (0); 12886 } 12887 /* 12888 * Refhold the conn, till the ioctl completes. This is 12889 * needed in case the ioctl ends up in the pending mp 12890 * list. Every mp in the ipx_pending_mp list must have 12891 * a refhold on the conn to resume processing. The 12892 * refhold is released when the ioctl completes 12893 * (whether normally or abnormally). An ioctlref is also 12894 * placed on the conn to prevent TCP from removing the 12895 * queue needed to send the ioctl reply back. 12896 * In all cases ip_ioctl_finish is called to finish 12897 * the ioctl and release the refholds. 12898 */ 12899 if (connp != NULL) { 12900 /* This is not a reentry */ 12901 CONN_INC_REF(connp); 12902 CONN_INC_IOCTLREF(connp); 12903 } else { 12904 if (!(ipip->ipi_flags & IPI_MODOK)) { 12905 mi_copy_done(q, mp, EINVAL); 12906 return (0); 12907 } 12908 } 12909 12910 ip_process_ioctl(NULL, q, mp, ipip); 12911 12912 } else { 12913 mi_copyout(q, mp); 12914 } 12915 return (0); 12916 12917 case M_IOCNAK: 12918 /* 12919 * The only way we could get here is if a resolver didn't like 12920 * an IOCTL we sent it. This shouldn't happen. 12921 */ 12922 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12923 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12924 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12925 freemsg(mp); 12926 return (0); 12927 case M_IOCACK: 12928 /* /dev/ip shouldn't see this */ 12929 goto nak; 12930 case M_FLUSH: 12931 if (*mp->b_rptr & FLUSHW) 12932 flushq(q, FLUSHALL); 12933 if (q->q_next) { 12934 putnext(q, mp); 12935 return (0); 12936 } 12937 if (*mp->b_rptr & FLUSHR) { 12938 *mp->b_rptr &= ~FLUSHW; 12939 qreply(q, mp); 12940 return (0); 12941 } 12942 freemsg(mp); 12943 return (0); 12944 case M_CTL: 12945 break; 12946 case M_PROTO: 12947 case M_PCPROTO: 12948 /* 12949 * The only PROTO messages we expect are SNMP-related. 12950 */ 12951 switch (((union T_primitives *)mp->b_rptr)->type) { 12952 case T_SVR4_OPTMGMT_REQ: 12953 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12954 "flags %x\n", 12955 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12956 12957 if (connp == NULL) { 12958 proto_str = "T_SVR4_OPTMGMT_REQ"; 12959 goto protonak; 12960 } 12961 12962 /* 12963 * All Solaris components should pass a db_credp 12964 * for this TPI message, hence we ASSERT. 12965 * But in case there is some other M_PROTO that looks 12966 * like a TPI message sent by some other kernel 12967 * component, we check and return an error. 12968 */ 12969 cr = msg_getcred(mp, NULL); 12970 ASSERT(cr != NULL); 12971 if (cr == NULL) { 12972 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12973 if (mp != NULL) 12974 qreply(q, mp); 12975 return (0); 12976 } 12977 12978 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12979 proto_str = "Bad SNMPCOM request?"; 12980 goto protonak; 12981 } 12982 return (0); 12983 default: 12984 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12985 (int)*(uint_t *)mp->b_rptr)); 12986 freemsg(mp); 12987 return (0); 12988 } 12989 default: 12990 break; 12991 } 12992 if (q->q_next) { 12993 putnext(q, mp); 12994 } else 12995 freemsg(mp); 12996 return (0); 12997 12998 nak: 12999 iocp->ioc_error = EINVAL; 13000 mp->b_datap->db_type = M_IOCNAK; 13001 iocp->ioc_count = 0; 13002 qreply(q, mp); 13003 return (0); 13004 13005 protonak: 13006 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 13007 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 13008 qreply(q, mp); 13009 return (0); 13010 } 13011 13012 /* 13013 * Process IP options in an outbound packet. Verify that the nexthop in a 13014 * strict source route is onlink. 13015 * Returns non-zero if something fails in which case an ICMP error has been 13016 * sent and mp freed. 13017 * 13018 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 13019 */ 13020 int 13021 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 13022 { 13023 ipoptp_t opts; 13024 uchar_t *opt; 13025 uint8_t optval; 13026 uint8_t optlen; 13027 ipaddr_t dst; 13028 intptr_t code = 0; 13029 ire_t *ire; 13030 ip_stack_t *ipst = ixa->ixa_ipst; 13031 ip_recv_attr_t iras; 13032 13033 ip2dbg(("ip_output_options\n")); 13034 13035 opt = NULL; 13036 dst = ipha->ipha_dst; 13037 for (optval = ipoptp_first(&opts, ipha); 13038 optval != IPOPT_EOL; 13039 optval = ipoptp_next(&opts)) { 13040 opt = opts.ipoptp_cur; 13041 optlen = opts.ipoptp_len; 13042 ip2dbg(("ip_output_options: opt %d, len %d\n", 13043 optval, optlen)); 13044 switch (optval) { 13045 uint32_t off; 13046 case IPOPT_SSRR: 13047 case IPOPT_LSRR: 13048 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13049 ip1dbg(( 13050 "ip_output_options: bad option offset\n")); 13051 code = (char *)&opt[IPOPT_OLEN] - 13052 (char *)ipha; 13053 goto param_prob; 13054 } 13055 off = opt[IPOPT_OFFSET]; 13056 ip1dbg(("ip_output_options: next hop 0x%x\n", 13057 ntohl(dst))); 13058 /* 13059 * For strict: verify that dst is directly 13060 * reachable. 13061 */ 13062 if (optval == IPOPT_SSRR) { 13063 ire = ire_ftable_lookup_v4(dst, 0, 0, 13064 IRE_INTERFACE, NULL, ALL_ZONES, 13065 ixa->ixa_tsl, 13066 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13067 NULL); 13068 if (ire == NULL) { 13069 ip1dbg(("ip_output_options: SSRR not" 13070 " directly reachable: 0x%x\n", 13071 ntohl(dst))); 13072 goto bad_src_route; 13073 } 13074 ire_refrele(ire); 13075 } 13076 break; 13077 case IPOPT_RR: 13078 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13079 ip1dbg(( 13080 "ip_output_options: bad option offset\n")); 13081 code = (char *)&opt[IPOPT_OLEN] - 13082 (char *)ipha; 13083 goto param_prob; 13084 } 13085 break; 13086 case IPOPT_TS: 13087 /* 13088 * Verify that length >=5 and that there is either 13089 * room for another timestamp or that the overflow 13090 * counter is not maxed out. 13091 */ 13092 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13093 if (optlen < IPOPT_MINLEN_IT) { 13094 goto param_prob; 13095 } 13096 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13097 ip1dbg(( 13098 "ip_output_options: bad option offset\n")); 13099 code = (char *)&opt[IPOPT_OFFSET] - 13100 (char *)ipha; 13101 goto param_prob; 13102 } 13103 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13104 case IPOPT_TS_TSONLY: 13105 off = IPOPT_TS_TIMELEN; 13106 break; 13107 case IPOPT_TS_TSANDADDR: 13108 case IPOPT_TS_PRESPEC: 13109 case IPOPT_TS_PRESPEC_RFC791: 13110 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13111 break; 13112 default: 13113 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13114 (char *)ipha; 13115 goto param_prob; 13116 } 13117 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13118 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13119 /* 13120 * No room and the overflow counter is 15 13121 * already. 13122 */ 13123 goto param_prob; 13124 } 13125 break; 13126 } 13127 } 13128 13129 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13130 return (0); 13131 13132 ip1dbg(("ip_output_options: error processing IP options.")); 13133 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13134 13135 param_prob: 13136 bzero(&iras, sizeof (iras)); 13137 iras.ira_ill = iras.ira_rill = ill; 13138 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13139 iras.ira_rifindex = iras.ira_ruifindex; 13140 iras.ira_flags = IRAF_IS_IPV4; 13141 13142 ip_drop_output("ip_output_options", mp, ill); 13143 icmp_param_problem(mp, (uint8_t)code, &iras); 13144 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13145 return (-1); 13146 13147 bad_src_route: 13148 bzero(&iras, sizeof (iras)); 13149 iras.ira_ill = iras.ira_rill = ill; 13150 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13151 iras.ira_rifindex = iras.ira_ruifindex; 13152 iras.ira_flags = IRAF_IS_IPV4; 13153 13154 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13155 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13156 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13157 return (-1); 13158 } 13159 13160 /* 13161 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13162 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13163 * thru /etc/system. 13164 */ 13165 #define CONN_MAXDRAINCNT 64 13166 13167 static void 13168 conn_drain_init(ip_stack_t *ipst) 13169 { 13170 int i, j; 13171 idl_tx_list_t *itl_tx; 13172 13173 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13174 13175 if ((ipst->ips_conn_drain_list_cnt == 0) || 13176 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13177 /* 13178 * Default value of the number of drainers is the 13179 * number of cpus, subject to maximum of 8 drainers. 13180 */ 13181 if (boot_max_ncpus != -1) 13182 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13183 else 13184 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13185 } 13186 13187 ipst->ips_idl_tx_list = 13188 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13189 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13190 itl_tx = &ipst->ips_idl_tx_list[i]; 13191 itl_tx->txl_drain_list = 13192 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13193 sizeof (idl_t), KM_SLEEP); 13194 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13195 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13196 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13197 MUTEX_DEFAULT, NULL); 13198 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13199 } 13200 } 13201 } 13202 13203 static void 13204 conn_drain_fini(ip_stack_t *ipst) 13205 { 13206 int i; 13207 idl_tx_list_t *itl_tx; 13208 13209 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13210 itl_tx = &ipst->ips_idl_tx_list[i]; 13211 kmem_free(itl_tx->txl_drain_list, 13212 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13213 } 13214 kmem_free(ipst->ips_idl_tx_list, 13215 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13216 ipst->ips_idl_tx_list = NULL; 13217 } 13218 13219 /* 13220 * Flow control has blocked us from proceeding. Insert the given conn in one 13221 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13222 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13223 * will call conn_walk_drain(). See the flow control notes at the top of this 13224 * file for more details. 13225 */ 13226 void 13227 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13228 { 13229 idl_t *idl = tx_list->txl_drain_list; 13230 uint_t index; 13231 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13232 13233 mutex_enter(&connp->conn_lock); 13234 if (connp->conn_state_flags & CONN_CLOSING) { 13235 /* 13236 * The conn is closing as a result of which CONN_CLOSING 13237 * is set. Return. 13238 */ 13239 mutex_exit(&connp->conn_lock); 13240 return; 13241 } else if (connp->conn_idl == NULL) { 13242 /* 13243 * Assign the next drain list round robin. We dont' use 13244 * a lock, and thus it may not be strictly round robin. 13245 * Atomicity of load/stores is enough to make sure that 13246 * conn_drain_list_index is always within bounds. 13247 */ 13248 index = tx_list->txl_drain_index; 13249 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13250 connp->conn_idl = &tx_list->txl_drain_list[index]; 13251 index++; 13252 if (index == ipst->ips_conn_drain_list_cnt) 13253 index = 0; 13254 tx_list->txl_drain_index = index; 13255 } else { 13256 ASSERT(connp->conn_idl->idl_itl == tx_list); 13257 } 13258 mutex_exit(&connp->conn_lock); 13259 13260 idl = connp->conn_idl; 13261 mutex_enter(&idl->idl_lock); 13262 if ((connp->conn_drain_prev != NULL) || 13263 (connp->conn_state_flags & CONN_CLOSING)) { 13264 /* 13265 * The conn is either already in the drain list or closing. 13266 * (We needed to check for CONN_CLOSING again since close can 13267 * sneak in between dropping conn_lock and acquiring idl_lock.) 13268 */ 13269 mutex_exit(&idl->idl_lock); 13270 return; 13271 } 13272 13273 /* 13274 * The conn is not in the drain list. Insert it at the 13275 * tail of the drain list. The drain list is circular 13276 * and doubly linked. idl_conn points to the 1st element 13277 * in the list. 13278 */ 13279 if (idl->idl_conn == NULL) { 13280 idl->idl_conn = connp; 13281 connp->conn_drain_next = connp; 13282 connp->conn_drain_prev = connp; 13283 } else { 13284 conn_t *head = idl->idl_conn; 13285 13286 connp->conn_drain_next = head; 13287 connp->conn_drain_prev = head->conn_drain_prev; 13288 head->conn_drain_prev->conn_drain_next = connp; 13289 head->conn_drain_prev = connp; 13290 } 13291 /* 13292 * For non streams based sockets assert flow control. 13293 */ 13294 conn_setqfull(connp, NULL); 13295 mutex_exit(&idl->idl_lock); 13296 } 13297 13298 static void 13299 conn_drain_remove(conn_t *connp) 13300 { 13301 idl_t *idl = connp->conn_idl; 13302 13303 if (idl != NULL) { 13304 /* 13305 * Remove ourself from the drain list. 13306 */ 13307 if (connp->conn_drain_next == connp) { 13308 /* Singleton in the list */ 13309 ASSERT(connp->conn_drain_prev == connp); 13310 idl->idl_conn = NULL; 13311 } else { 13312 connp->conn_drain_prev->conn_drain_next = 13313 connp->conn_drain_next; 13314 connp->conn_drain_next->conn_drain_prev = 13315 connp->conn_drain_prev; 13316 if (idl->idl_conn == connp) 13317 idl->idl_conn = connp->conn_drain_next; 13318 } 13319 13320 /* 13321 * NOTE: because conn_idl is associated with a specific drain 13322 * list which in turn is tied to the index the TX ring 13323 * (txl_cookie) hashes to, and because the TX ring can change 13324 * over the lifetime of the conn_t, we must clear conn_idl so 13325 * a subsequent conn_drain_insert() will set conn_idl again 13326 * based on the latest txl_cookie. 13327 */ 13328 connp->conn_idl = NULL; 13329 } 13330 connp->conn_drain_next = NULL; 13331 connp->conn_drain_prev = NULL; 13332 13333 conn_clrqfull(connp, NULL); 13334 /* 13335 * For streams based sockets open up flow control. 13336 */ 13337 if (!IPCL_IS_NONSTR(connp)) 13338 enableok(connp->conn_wq); 13339 } 13340 13341 /* 13342 * This conn is closing, and we are called from ip_close. OR 13343 * this conn is draining because flow-control on the ill has been relieved. 13344 * 13345 * We must also need to remove conn's on this idl from the list, and also 13346 * inform the sockfs upcalls about the change in flow-control. 13347 */ 13348 static void 13349 conn_drain(conn_t *connp, boolean_t closing) 13350 { 13351 idl_t *idl; 13352 conn_t *next_connp; 13353 13354 /* 13355 * connp->conn_idl is stable at this point, and no lock is needed 13356 * to check it. If we are called from ip_close, close has already 13357 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13358 * called us only because conn_idl is non-null. If we are called thru 13359 * service, conn_idl could be null, but it cannot change because 13360 * service is single-threaded per queue, and there cannot be another 13361 * instance of service trying to call conn_drain_insert on this conn 13362 * now. 13363 */ 13364 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13365 13366 /* 13367 * If the conn doesn't exist or is not on a drain list, bail. 13368 */ 13369 if (connp == NULL || connp->conn_idl == NULL || 13370 connp->conn_drain_prev == NULL) { 13371 return; 13372 } 13373 13374 idl = connp->conn_idl; 13375 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13376 13377 if (!closing) { 13378 next_connp = connp->conn_drain_next; 13379 while (next_connp != connp) { 13380 conn_t *delconnp = next_connp; 13381 13382 next_connp = next_connp->conn_drain_next; 13383 conn_drain_remove(delconnp); 13384 } 13385 ASSERT(connp->conn_drain_next == idl->idl_conn); 13386 } 13387 conn_drain_remove(connp); 13388 } 13389 13390 /* 13391 * Write service routine. Shared perimeter entry point. 13392 * The device queue's messages has fallen below the low water mark and STREAMS 13393 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13394 * each waiting conn. 13395 */ 13396 int 13397 ip_wsrv(queue_t *q) 13398 { 13399 ill_t *ill; 13400 13401 ill = (ill_t *)q->q_ptr; 13402 if (ill->ill_state_flags == 0) { 13403 ip_stack_t *ipst = ill->ill_ipst; 13404 13405 /* 13406 * The device flow control has opened up. 13407 * Walk through conn drain lists and qenable the 13408 * first conn in each list. This makes sense only 13409 * if the stream is fully plumbed and setup. 13410 * Hence the ill_state_flags check above. 13411 */ 13412 ip1dbg(("ip_wsrv: walking\n")); 13413 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13414 enableok(ill->ill_wq); 13415 } 13416 return (0); 13417 } 13418 13419 /* 13420 * Callback to disable flow control in IP. 13421 * 13422 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13423 * is enabled. 13424 * 13425 * When MAC_TX() is not able to send any more packets, dld sets its queue 13426 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13427 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13428 * function and wakes up corresponding mac worker threads, which in turn 13429 * calls this callback function, and disables flow control. 13430 */ 13431 void 13432 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13433 { 13434 ill_t *ill = (ill_t *)arg; 13435 ip_stack_t *ipst = ill->ill_ipst; 13436 idl_tx_list_t *idl_txl; 13437 13438 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13439 mutex_enter(&idl_txl->txl_lock); 13440 /* add code to to set a flag to indicate idl_txl is enabled */ 13441 conn_walk_drain(ipst, idl_txl); 13442 mutex_exit(&idl_txl->txl_lock); 13443 } 13444 13445 /* 13446 * Flow control has been relieved and STREAMS has backenabled us; drain 13447 * all the conn lists on `tx_list'. 13448 */ 13449 static void 13450 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13451 { 13452 int i; 13453 idl_t *idl; 13454 13455 IP_STAT(ipst, ip_conn_walk_drain); 13456 13457 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13458 idl = &tx_list->txl_drain_list[i]; 13459 mutex_enter(&idl->idl_lock); 13460 conn_drain(idl->idl_conn, B_FALSE); 13461 mutex_exit(&idl->idl_lock); 13462 } 13463 } 13464 13465 /* 13466 * Determine if the ill and multicast aspects of that packets 13467 * "matches" the conn. 13468 */ 13469 boolean_t 13470 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13471 { 13472 ill_t *ill = ira->ira_rill; 13473 zoneid_t zoneid = ira->ira_zoneid; 13474 uint_t in_ifindex; 13475 ipaddr_t dst, src; 13476 13477 dst = ipha->ipha_dst; 13478 src = ipha->ipha_src; 13479 13480 /* 13481 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13482 * unicast, broadcast and multicast reception to 13483 * conn_incoming_ifindex. 13484 * conn_wantpacket is called for unicast, broadcast and 13485 * multicast packets. 13486 */ 13487 in_ifindex = connp->conn_incoming_ifindex; 13488 13489 /* mpathd can bind to the under IPMP interface, which we allow */ 13490 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13491 if (!IS_UNDER_IPMP(ill)) 13492 return (B_FALSE); 13493 13494 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13495 return (B_FALSE); 13496 } 13497 13498 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13499 return (B_FALSE); 13500 13501 if (!(ira->ira_flags & IRAF_MULTICAST)) 13502 return (B_TRUE); 13503 13504 if (connp->conn_multi_router) { 13505 /* multicast packet and multicast router socket: send up */ 13506 return (B_TRUE); 13507 } 13508 13509 if (ipha->ipha_protocol == IPPROTO_PIM || 13510 ipha->ipha_protocol == IPPROTO_RSVP) 13511 return (B_TRUE); 13512 13513 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13514 } 13515 13516 void 13517 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13518 { 13519 if (IPCL_IS_NONSTR(connp)) { 13520 (*connp->conn_upcalls->su_txq_full) 13521 (connp->conn_upper_handle, B_TRUE); 13522 if (flow_stopped != NULL) 13523 *flow_stopped = B_TRUE; 13524 } else { 13525 queue_t *q = connp->conn_wq; 13526 13527 ASSERT(q != NULL); 13528 if (!(q->q_flag & QFULL)) { 13529 mutex_enter(QLOCK(q)); 13530 if (!(q->q_flag & QFULL)) { 13531 /* still need to set QFULL */ 13532 q->q_flag |= QFULL; 13533 /* set flow_stopped to true under QLOCK */ 13534 if (flow_stopped != NULL) 13535 *flow_stopped = B_TRUE; 13536 mutex_exit(QLOCK(q)); 13537 } else { 13538 /* flow_stopped is left unchanged */ 13539 mutex_exit(QLOCK(q)); 13540 } 13541 } 13542 } 13543 } 13544 13545 void 13546 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13547 { 13548 if (IPCL_IS_NONSTR(connp)) { 13549 (*connp->conn_upcalls->su_txq_full) 13550 (connp->conn_upper_handle, B_FALSE); 13551 if (flow_stopped != NULL) 13552 *flow_stopped = B_FALSE; 13553 } else { 13554 queue_t *q = connp->conn_wq; 13555 13556 ASSERT(q != NULL); 13557 if (q->q_flag & QFULL) { 13558 mutex_enter(QLOCK(q)); 13559 if (q->q_flag & QFULL) { 13560 q->q_flag &= ~QFULL; 13561 /* set flow_stopped to false under QLOCK */ 13562 if (flow_stopped != NULL) 13563 *flow_stopped = B_FALSE; 13564 mutex_exit(QLOCK(q)); 13565 if (q->q_flag & QWANTW) 13566 qbackenable(q, 0); 13567 } else { 13568 /* flow_stopped is left unchanged */ 13569 mutex_exit(QLOCK(q)); 13570 } 13571 } 13572 } 13573 13574 mutex_enter(&connp->conn_lock); 13575 connp->conn_blocked = B_FALSE; 13576 mutex_exit(&connp->conn_lock); 13577 } 13578 13579 /* 13580 * Return the length in bytes of the IPv4 headers (base header, label, and 13581 * other IP options) that will be needed based on the 13582 * ip_pkt_t structure passed by the caller. 13583 * 13584 * The returned length does not include the length of the upper level 13585 * protocol (ULP) header. 13586 * The caller needs to check that the length doesn't exceed the max for IPv4. 13587 */ 13588 int 13589 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13590 { 13591 int len; 13592 13593 len = IP_SIMPLE_HDR_LENGTH; 13594 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13595 ASSERT(ipp->ipp_label_len_v4 != 0); 13596 /* We need to round up here */ 13597 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13598 } 13599 13600 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13601 ASSERT(ipp->ipp_ipv4_options_len != 0); 13602 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13603 len += ipp->ipp_ipv4_options_len; 13604 } 13605 return (len); 13606 } 13607 13608 /* 13609 * All-purpose routine to build an IPv4 header with options based 13610 * on the abstract ip_pkt_t. 13611 * 13612 * The caller has to set the source and destination address as well as 13613 * ipha_length. The caller has to massage any source route and compensate 13614 * for the ULP pseudo-header checksum due to the source route. 13615 */ 13616 void 13617 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13618 uint8_t protocol) 13619 { 13620 ipha_t *ipha = (ipha_t *)buf; 13621 uint8_t *cp; 13622 13623 /* Initialize IPv4 header */ 13624 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13625 ipha->ipha_length = 0; /* Caller will set later */ 13626 ipha->ipha_ident = 0; 13627 ipha->ipha_fragment_offset_and_flags = 0; 13628 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13629 ipha->ipha_protocol = protocol; 13630 ipha->ipha_hdr_checksum = 0; 13631 13632 if ((ipp->ipp_fields & IPPF_ADDR) && 13633 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13634 ipha->ipha_src = ipp->ipp_addr_v4; 13635 13636 cp = (uint8_t *)&ipha[1]; 13637 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13638 ASSERT(ipp->ipp_label_len_v4 != 0); 13639 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13640 cp += ipp->ipp_label_len_v4; 13641 /* We need to round up here */ 13642 while ((uintptr_t)cp & 0x3) { 13643 *cp++ = IPOPT_NOP; 13644 } 13645 } 13646 13647 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13648 ASSERT(ipp->ipp_ipv4_options_len != 0); 13649 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13650 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13651 cp += ipp->ipp_ipv4_options_len; 13652 } 13653 ipha->ipha_version_and_hdr_length = 13654 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13655 13656 ASSERT((int)(cp - buf) == buf_len); 13657 } 13658 13659 /* Allocate the private structure */ 13660 static int 13661 ip_priv_alloc(void **bufp) 13662 { 13663 void *buf; 13664 13665 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13666 return (ENOMEM); 13667 13668 *bufp = buf; 13669 return (0); 13670 } 13671 13672 /* Function to delete the private structure */ 13673 void 13674 ip_priv_free(void *buf) 13675 { 13676 ASSERT(buf != NULL); 13677 kmem_free(buf, sizeof (ip_priv_t)); 13678 } 13679 13680 /* 13681 * The entry point for IPPF processing. 13682 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13683 * routine just returns. 13684 * 13685 * When called, ip_process generates an ipp_packet_t structure 13686 * which holds the state information for this packet and invokes the 13687 * the classifier (via ipp_packet_process). The classification, depending on 13688 * configured filters, results in a list of actions for this packet. Invoking 13689 * an action may cause the packet to be dropped, in which case we return NULL. 13690 * proc indicates the callout position for 13691 * this packet and ill is the interface this packet arrived on or will leave 13692 * on (inbound and outbound resp.). 13693 * 13694 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13695 * on the ill corrsponding to the destination IP address. 13696 */ 13697 mblk_t * 13698 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13699 { 13700 ip_priv_t *priv; 13701 ipp_action_id_t aid; 13702 int rc = 0; 13703 ipp_packet_t *pp; 13704 13705 /* If the classifier is not loaded, return */ 13706 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13707 return (mp); 13708 } 13709 13710 ASSERT(mp != NULL); 13711 13712 /* Allocate the packet structure */ 13713 rc = ipp_packet_alloc(&pp, "ip", aid); 13714 if (rc != 0) 13715 goto drop; 13716 13717 /* Allocate the private structure */ 13718 rc = ip_priv_alloc((void **)&priv); 13719 if (rc != 0) { 13720 ipp_packet_free(pp); 13721 goto drop; 13722 } 13723 priv->proc = proc; 13724 priv->ill_index = ill_get_upper_ifindex(rill); 13725 13726 ipp_packet_set_private(pp, priv, ip_priv_free); 13727 ipp_packet_set_data(pp, mp); 13728 13729 /* Invoke the classifier */ 13730 rc = ipp_packet_process(&pp); 13731 if (pp != NULL) { 13732 mp = ipp_packet_get_data(pp); 13733 ipp_packet_free(pp); 13734 if (rc != 0) 13735 goto drop; 13736 return (mp); 13737 } else { 13738 /* No mp to trace in ip_drop_input/ip_drop_output */ 13739 mp = NULL; 13740 } 13741 drop: 13742 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13743 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13744 ip_drop_input("ip_process", mp, ill); 13745 } else { 13746 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13747 ip_drop_output("ip_process", mp, ill); 13748 } 13749 freemsg(mp); 13750 return (NULL); 13751 } 13752 13753 /* 13754 * Propagate a multicast group membership operation (add/drop) on 13755 * all the interfaces crossed by the related multirt routes. 13756 * The call is considered successful if the operation succeeds 13757 * on at least one interface. 13758 * 13759 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13760 * multicast addresses with the ire argument being the first one. 13761 * We walk the bucket to find all the of those. 13762 * 13763 * Common to IPv4 and IPv6. 13764 */ 13765 static int 13766 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13767 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13768 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13769 mcast_record_t fmode, const in6_addr_t *v6src) 13770 { 13771 ire_t *ire_gw; 13772 irb_t *irb; 13773 int ifindex; 13774 int error = 0; 13775 int result; 13776 ip_stack_t *ipst = ire->ire_ipst; 13777 ipaddr_t group; 13778 boolean_t isv6; 13779 int match_flags; 13780 13781 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13782 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13783 isv6 = B_FALSE; 13784 } else { 13785 isv6 = B_TRUE; 13786 } 13787 13788 irb = ire->ire_bucket; 13789 ASSERT(irb != NULL); 13790 13791 result = 0; 13792 irb_refhold(irb); 13793 for (; ire != NULL; ire = ire->ire_next) { 13794 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13795 continue; 13796 13797 /* We handle -ifp routes by matching on the ill if set */ 13798 match_flags = MATCH_IRE_TYPE; 13799 if (ire->ire_ill != NULL) 13800 match_flags |= MATCH_IRE_ILL; 13801 13802 if (isv6) { 13803 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13804 continue; 13805 13806 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13807 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13808 match_flags, 0, ipst, NULL); 13809 } else { 13810 if (ire->ire_addr != group) 13811 continue; 13812 13813 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13814 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13815 match_flags, 0, ipst, NULL); 13816 } 13817 /* No interface route exists for the gateway; skip this ire. */ 13818 if (ire_gw == NULL) 13819 continue; 13820 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13821 ire_refrele(ire_gw); 13822 continue; 13823 } 13824 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13825 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13826 13827 /* 13828 * The operation is considered a success if 13829 * it succeeds at least once on any one interface. 13830 */ 13831 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13832 fmode, v6src); 13833 if (error == 0) 13834 result = CGTP_MCAST_SUCCESS; 13835 13836 ire_refrele(ire_gw); 13837 } 13838 irb_refrele(irb); 13839 /* 13840 * Consider the call as successful if we succeeded on at least 13841 * one interface. Otherwise, return the last encountered error. 13842 */ 13843 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13844 } 13845 13846 /* 13847 * Return the expected CGTP hooks version number. 13848 */ 13849 int 13850 ip_cgtp_filter_supported(void) 13851 { 13852 return (ip_cgtp_filter_rev); 13853 } 13854 13855 /* 13856 * CGTP hooks can be registered by invoking this function. 13857 * Checks that the version number matches. 13858 */ 13859 int 13860 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13861 { 13862 netstack_t *ns; 13863 ip_stack_t *ipst; 13864 13865 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13866 return (ENOTSUP); 13867 13868 ns = netstack_find_by_stackid(stackid); 13869 if (ns == NULL) 13870 return (EINVAL); 13871 ipst = ns->netstack_ip; 13872 ASSERT(ipst != NULL); 13873 13874 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13875 netstack_rele(ns); 13876 return (EALREADY); 13877 } 13878 13879 ipst->ips_ip_cgtp_filter_ops = ops; 13880 13881 ill_set_inputfn_all(ipst); 13882 13883 netstack_rele(ns); 13884 return (0); 13885 } 13886 13887 /* 13888 * CGTP hooks can be unregistered by invoking this function. 13889 * Returns ENXIO if there was no registration. 13890 * Returns EBUSY if the ndd variable has not been turned off. 13891 */ 13892 int 13893 ip_cgtp_filter_unregister(netstackid_t stackid) 13894 { 13895 netstack_t *ns; 13896 ip_stack_t *ipst; 13897 13898 ns = netstack_find_by_stackid(stackid); 13899 if (ns == NULL) 13900 return (EINVAL); 13901 ipst = ns->netstack_ip; 13902 ASSERT(ipst != NULL); 13903 13904 if (ipst->ips_ip_cgtp_filter) { 13905 netstack_rele(ns); 13906 return (EBUSY); 13907 } 13908 13909 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13910 netstack_rele(ns); 13911 return (ENXIO); 13912 } 13913 ipst->ips_ip_cgtp_filter_ops = NULL; 13914 13915 ill_set_inputfn_all(ipst); 13916 13917 netstack_rele(ns); 13918 return (0); 13919 } 13920 13921 /* 13922 * Check whether there is a CGTP filter registration. 13923 * Returns non-zero if there is a registration, otherwise returns zero. 13924 * Note: returns zero if bad stackid. 13925 */ 13926 int 13927 ip_cgtp_filter_is_registered(netstackid_t stackid) 13928 { 13929 netstack_t *ns; 13930 ip_stack_t *ipst; 13931 int ret; 13932 13933 ns = netstack_find_by_stackid(stackid); 13934 if (ns == NULL) 13935 return (0); 13936 ipst = ns->netstack_ip; 13937 ASSERT(ipst != NULL); 13938 13939 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13940 ret = 1; 13941 else 13942 ret = 0; 13943 13944 netstack_rele(ns); 13945 return (ret); 13946 } 13947 13948 static int 13949 ip_squeue_switch(int val) 13950 { 13951 int rval; 13952 13953 switch (val) { 13954 case IP_SQUEUE_ENTER_NODRAIN: 13955 rval = SQ_NODRAIN; 13956 break; 13957 case IP_SQUEUE_ENTER: 13958 rval = SQ_PROCESS; 13959 break; 13960 case IP_SQUEUE_FILL: 13961 default: 13962 rval = SQ_FILL; 13963 break; 13964 } 13965 return (rval); 13966 } 13967 13968 static void * 13969 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13970 { 13971 kstat_t *ksp; 13972 13973 ip_stat_t template = { 13974 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13975 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13976 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13977 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13978 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13979 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13980 { "ip_opt", KSTAT_DATA_UINT64 }, 13981 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13982 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13983 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13984 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13985 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13986 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13987 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13988 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13989 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13990 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13991 { "ip_nce_mcast_reclaim_calls", KSTAT_DATA_UINT64 }, 13992 { "ip_nce_mcast_reclaim_deleted", KSTAT_DATA_UINT64 }, 13993 { "ip_nce_mcast_reclaim_tqfail", KSTAT_DATA_UINT64 }, 13994 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13995 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13996 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13997 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13998 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13999 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 14000 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 14001 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 14002 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 14003 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 14004 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 14005 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 14006 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 14007 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 14008 { "conn_in_recvtos", KSTAT_DATA_UINT64 }, 14009 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 14010 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 14011 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 14012 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 14013 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 14014 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 14015 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 14016 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 14017 }; 14018 14019 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 14020 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 14021 KSTAT_FLAG_VIRTUAL, stackid); 14022 14023 if (ksp == NULL) 14024 return (NULL); 14025 14026 bcopy(&template, ip_statisticsp, sizeof (template)); 14027 ksp->ks_data = (void *)ip_statisticsp; 14028 ksp->ks_private = (void *)(uintptr_t)stackid; 14029 14030 kstat_install(ksp); 14031 return (ksp); 14032 } 14033 14034 static void 14035 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 14036 { 14037 if (ksp != NULL) { 14038 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14039 kstat_delete_netstack(ksp, stackid); 14040 } 14041 } 14042 14043 static void * 14044 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 14045 { 14046 kstat_t *ksp; 14047 14048 ip_named_kstat_t template = { 14049 { "forwarding", KSTAT_DATA_UINT32, 0 }, 14050 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 14051 { "inReceives", KSTAT_DATA_UINT64, 0 }, 14052 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 14053 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 14054 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14055 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14056 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14057 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14058 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14059 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14060 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14061 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14062 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14063 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14064 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14065 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14066 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14067 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14068 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14069 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14070 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14071 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14072 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14073 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14074 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14075 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14076 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14077 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14078 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14079 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14080 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14081 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14082 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14083 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14084 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14085 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14086 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14087 }; 14088 14089 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14090 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14091 if (ksp == NULL || ksp->ks_data == NULL) 14092 return (NULL); 14093 14094 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14095 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14096 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14097 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14098 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14099 14100 template.netToMediaEntrySize.value.i32 = 14101 sizeof (mib2_ipNetToMediaEntry_t); 14102 14103 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14104 14105 bcopy(&template, ksp->ks_data, sizeof (template)); 14106 ksp->ks_update = ip_kstat_update; 14107 ksp->ks_private = (void *)(uintptr_t)stackid; 14108 14109 kstat_install(ksp); 14110 return (ksp); 14111 } 14112 14113 static void 14114 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14115 { 14116 if (ksp != NULL) { 14117 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14118 kstat_delete_netstack(ksp, stackid); 14119 } 14120 } 14121 14122 static int 14123 ip_kstat_update(kstat_t *kp, int rw) 14124 { 14125 ip_named_kstat_t *ipkp; 14126 mib2_ipIfStatsEntry_t ipmib; 14127 ill_walk_context_t ctx; 14128 ill_t *ill; 14129 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14130 netstack_t *ns; 14131 ip_stack_t *ipst; 14132 14133 if (kp->ks_data == NULL) 14134 return (EIO); 14135 14136 if (rw == KSTAT_WRITE) 14137 return (EACCES); 14138 14139 ns = netstack_find_by_stackid(stackid); 14140 if (ns == NULL) 14141 return (-1); 14142 ipst = ns->netstack_ip; 14143 if (ipst == NULL) { 14144 netstack_rele(ns); 14145 return (-1); 14146 } 14147 ipkp = (ip_named_kstat_t *)kp->ks_data; 14148 14149 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14150 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14151 ill = ILL_START_WALK_V4(&ctx, ipst); 14152 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14153 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14154 rw_exit(&ipst->ips_ill_g_lock); 14155 14156 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14157 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14158 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14159 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14160 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14161 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14162 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14163 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14164 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14165 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14166 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14167 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14168 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14169 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14170 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14171 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14172 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14173 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14174 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14175 14176 ipkp->routingDiscards.value.ui32 = 0; 14177 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14178 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14179 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14180 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14181 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14182 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14183 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14184 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14185 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14186 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14187 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14188 14189 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14190 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14191 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14192 14193 netstack_rele(ns); 14194 14195 return (0); 14196 } 14197 14198 static void * 14199 icmp_kstat_init(netstackid_t stackid) 14200 { 14201 kstat_t *ksp; 14202 14203 icmp_named_kstat_t template = { 14204 { "inMsgs", KSTAT_DATA_UINT32 }, 14205 { "inErrors", KSTAT_DATA_UINT32 }, 14206 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14207 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14208 { "inParmProbs", KSTAT_DATA_UINT32 }, 14209 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14210 { "inRedirects", KSTAT_DATA_UINT32 }, 14211 { "inEchos", KSTAT_DATA_UINT32 }, 14212 { "inEchoReps", KSTAT_DATA_UINT32 }, 14213 { "inTimestamps", KSTAT_DATA_UINT32 }, 14214 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14215 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14216 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14217 { "outMsgs", KSTAT_DATA_UINT32 }, 14218 { "outErrors", KSTAT_DATA_UINT32 }, 14219 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14220 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14221 { "outParmProbs", KSTAT_DATA_UINT32 }, 14222 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14223 { "outRedirects", KSTAT_DATA_UINT32 }, 14224 { "outEchos", KSTAT_DATA_UINT32 }, 14225 { "outEchoReps", KSTAT_DATA_UINT32 }, 14226 { "outTimestamps", KSTAT_DATA_UINT32 }, 14227 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14228 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14229 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14230 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14231 { "inUnknowns", KSTAT_DATA_UINT32 }, 14232 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14233 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14234 { "outDrops", KSTAT_DATA_UINT32 }, 14235 { "inOverFlows", KSTAT_DATA_UINT32 }, 14236 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14237 }; 14238 14239 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14240 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14241 if (ksp == NULL || ksp->ks_data == NULL) 14242 return (NULL); 14243 14244 bcopy(&template, ksp->ks_data, sizeof (template)); 14245 14246 ksp->ks_update = icmp_kstat_update; 14247 ksp->ks_private = (void *)(uintptr_t)stackid; 14248 14249 kstat_install(ksp); 14250 return (ksp); 14251 } 14252 14253 static void 14254 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14255 { 14256 if (ksp != NULL) { 14257 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14258 kstat_delete_netstack(ksp, stackid); 14259 } 14260 } 14261 14262 static int 14263 icmp_kstat_update(kstat_t *kp, int rw) 14264 { 14265 icmp_named_kstat_t *icmpkp; 14266 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14267 netstack_t *ns; 14268 ip_stack_t *ipst; 14269 14270 if (kp->ks_data == NULL) 14271 return (EIO); 14272 14273 if (rw == KSTAT_WRITE) 14274 return (EACCES); 14275 14276 ns = netstack_find_by_stackid(stackid); 14277 if (ns == NULL) 14278 return (-1); 14279 ipst = ns->netstack_ip; 14280 if (ipst == NULL) { 14281 netstack_rele(ns); 14282 return (-1); 14283 } 14284 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14285 14286 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14287 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14288 icmpkp->inDestUnreachs.value.ui32 = 14289 ipst->ips_icmp_mib.icmpInDestUnreachs; 14290 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14291 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14292 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14293 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14294 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14295 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14296 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14297 icmpkp->inTimestampReps.value.ui32 = 14298 ipst->ips_icmp_mib.icmpInTimestampReps; 14299 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14300 icmpkp->inAddrMaskReps.value.ui32 = 14301 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14302 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14303 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14304 icmpkp->outDestUnreachs.value.ui32 = 14305 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14306 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14307 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14308 icmpkp->outSrcQuenchs.value.ui32 = 14309 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14310 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14311 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14312 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14313 icmpkp->outTimestamps.value.ui32 = 14314 ipst->ips_icmp_mib.icmpOutTimestamps; 14315 icmpkp->outTimestampReps.value.ui32 = 14316 ipst->ips_icmp_mib.icmpOutTimestampReps; 14317 icmpkp->outAddrMasks.value.ui32 = 14318 ipst->ips_icmp_mib.icmpOutAddrMasks; 14319 icmpkp->outAddrMaskReps.value.ui32 = 14320 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14321 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14322 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14323 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14324 icmpkp->outFragNeeded.value.ui32 = 14325 ipst->ips_icmp_mib.icmpOutFragNeeded; 14326 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14327 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14328 icmpkp->inBadRedirects.value.ui32 = 14329 ipst->ips_icmp_mib.icmpInBadRedirects; 14330 14331 netstack_rele(ns); 14332 return (0); 14333 } 14334 14335 /* 14336 * This is the fanout function for raw socket opened for SCTP. Note 14337 * that it is called after SCTP checks that there is no socket which 14338 * wants a packet. Then before SCTP handles this out of the blue packet, 14339 * this function is called to see if there is any raw socket for SCTP. 14340 * If there is and it is bound to the correct address, the packet will 14341 * be sent to that socket. Note that only one raw socket can be bound to 14342 * a port. This is assured in ipcl_sctp_hash_insert(); 14343 */ 14344 void 14345 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14346 ip_recv_attr_t *ira) 14347 { 14348 conn_t *connp; 14349 queue_t *rq; 14350 boolean_t secure; 14351 ill_t *ill = ira->ira_ill; 14352 ip_stack_t *ipst = ill->ill_ipst; 14353 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14354 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14355 iaflags_t iraflags = ira->ira_flags; 14356 ill_t *rill = ira->ira_rill; 14357 14358 secure = iraflags & IRAF_IPSEC_SECURE; 14359 14360 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14361 ira, ipst); 14362 if (connp == NULL) { 14363 /* 14364 * Although raw sctp is not summed, OOB chunks must be. 14365 * Drop the packet here if the sctp checksum failed. 14366 */ 14367 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14368 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14369 freemsg(mp); 14370 return; 14371 } 14372 ira->ira_ill = ira->ira_rill = NULL; 14373 sctp_ootb_input(mp, ira, ipst); 14374 ira->ira_ill = ill; 14375 ira->ira_rill = rill; 14376 return; 14377 } 14378 rq = connp->conn_rq; 14379 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14380 CONN_DEC_REF(connp); 14381 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14382 freemsg(mp); 14383 return; 14384 } 14385 if (((iraflags & IRAF_IS_IPV4) ? 14386 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14387 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14388 secure) { 14389 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14390 ip6h, ira); 14391 if (mp == NULL) { 14392 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14393 /* Note that mp is NULL */ 14394 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14395 CONN_DEC_REF(connp); 14396 return; 14397 } 14398 } 14399 14400 if (iraflags & IRAF_ICMP_ERROR) { 14401 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14402 } else { 14403 ill_t *rill = ira->ira_rill; 14404 14405 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14406 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14407 ira->ira_ill = ira->ira_rill = NULL; 14408 (connp->conn_recv)(connp, mp, NULL, ira); 14409 ira->ira_ill = ill; 14410 ira->ira_rill = rill; 14411 } 14412 CONN_DEC_REF(connp); 14413 } 14414 14415 /* 14416 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14417 * header before the ip payload. 14418 */ 14419 static void 14420 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14421 { 14422 int len = (mp->b_wptr - mp->b_rptr); 14423 mblk_t *ip_mp; 14424 14425 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14426 if (is_fp_mp || len != fp_mp_len) { 14427 if (len > fp_mp_len) { 14428 /* 14429 * fastpath header and ip header in the first mblk 14430 */ 14431 mp->b_rptr += fp_mp_len; 14432 } else { 14433 /* 14434 * ip_xmit_attach_llhdr had to prepend an mblk to 14435 * attach the fastpath header before ip header. 14436 */ 14437 ip_mp = mp->b_cont; 14438 freeb(mp); 14439 mp = ip_mp; 14440 mp->b_rptr += (fp_mp_len - len); 14441 } 14442 } else { 14443 ip_mp = mp->b_cont; 14444 freeb(mp); 14445 mp = ip_mp; 14446 } 14447 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14448 freemsg(mp); 14449 } 14450 14451 /* 14452 * Normal post fragmentation function. 14453 * 14454 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14455 * using the same state machine. 14456 * 14457 * We return an error on failure. In particular we return EWOULDBLOCK 14458 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14459 * (currently by canputnext failure resulting in backenabling from GLD.) 14460 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14461 * indication that they can flow control until ip_wsrv() tells then to restart. 14462 * 14463 * If the nce passed by caller is incomplete, this function 14464 * queues the packet and if necessary, sends ARP request and bails. 14465 * If the Neighbor Cache passed is fully resolved, we simply prepend 14466 * the link-layer header to the packet, do ipsec hw acceleration 14467 * work if necessary, and send the packet out on the wire. 14468 */ 14469 /* ARGSUSED6 */ 14470 int 14471 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14472 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14473 { 14474 queue_t *wq; 14475 ill_t *ill = nce->nce_ill; 14476 ip_stack_t *ipst = ill->ill_ipst; 14477 uint64_t delta; 14478 boolean_t isv6 = ill->ill_isv6; 14479 boolean_t fp_mp; 14480 ncec_t *ncec = nce->nce_common; 14481 int64_t now = LBOLT_FASTPATH64; 14482 boolean_t is_probe; 14483 14484 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14485 14486 ASSERT(mp != NULL); 14487 ASSERT(mp->b_datap->db_type == M_DATA); 14488 ASSERT(pkt_len == msgdsize(mp)); 14489 14490 /* 14491 * If we have already been here and are coming back after ARP/ND. 14492 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14493 * in that case since they have seen the packet when it came here 14494 * the first time. 14495 */ 14496 if (ixaflags & IXAF_NO_TRACE) 14497 goto sendit; 14498 14499 if (ixaflags & IXAF_IS_IPV4) { 14500 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14501 14502 ASSERT(!isv6); 14503 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14504 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14505 !(ixaflags & IXAF_NO_PFHOOK)) { 14506 int error; 14507 14508 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14509 ipst->ips_ipv4firewall_physical_out, 14510 NULL, ill, ipha, mp, mp, 0, ipst, error); 14511 DTRACE_PROBE1(ip4__physical__out__end, 14512 mblk_t *, mp); 14513 if (mp == NULL) 14514 return (error); 14515 14516 /* The length could have changed */ 14517 pkt_len = msgdsize(mp); 14518 } 14519 if (ipst->ips_ip4_observe.he_interested) { 14520 /* 14521 * Note that for TX the zoneid is the sending 14522 * zone, whether or not MLP is in play. 14523 * Since the szone argument is the IP zoneid (i.e., 14524 * zero for exclusive-IP zones) and ipobs wants 14525 * the system zoneid, we map it here. 14526 */ 14527 szone = IP_REAL_ZONEID(szone, ipst); 14528 14529 /* 14530 * On the outbound path the destination zone will be 14531 * unknown as we're sending this packet out on the 14532 * wire. 14533 */ 14534 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14535 ill, ipst); 14536 } 14537 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14538 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14539 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14540 } else { 14541 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14542 14543 ASSERT(isv6); 14544 ASSERT(pkt_len == 14545 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14546 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14547 !(ixaflags & IXAF_NO_PFHOOK)) { 14548 int error; 14549 14550 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14551 ipst->ips_ipv6firewall_physical_out, 14552 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14553 DTRACE_PROBE1(ip6__physical__out__end, 14554 mblk_t *, mp); 14555 if (mp == NULL) 14556 return (error); 14557 14558 /* The length could have changed */ 14559 pkt_len = msgdsize(mp); 14560 } 14561 if (ipst->ips_ip6_observe.he_interested) { 14562 /* See above */ 14563 szone = IP_REAL_ZONEID(szone, ipst); 14564 14565 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14566 ill, ipst); 14567 } 14568 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14569 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14570 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14571 } 14572 14573 sendit: 14574 /* 14575 * We check the state without a lock because the state can never 14576 * move "backwards" to initial or incomplete. 14577 */ 14578 switch (ncec->ncec_state) { 14579 case ND_REACHABLE: 14580 case ND_STALE: 14581 case ND_DELAY: 14582 case ND_PROBE: 14583 mp = ip_xmit_attach_llhdr(mp, nce); 14584 if (mp == NULL) { 14585 /* 14586 * ip_xmit_attach_llhdr has increased 14587 * ipIfStatsOutDiscards and called ip_drop_output() 14588 */ 14589 return (ENOBUFS); 14590 } 14591 /* 14592 * check if nce_fastpath completed and we tagged on a 14593 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14594 */ 14595 fp_mp = (mp->b_datap->db_type == M_DATA); 14596 14597 if (fp_mp && 14598 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14599 ill_dld_direct_t *idd; 14600 14601 idd = &ill->ill_dld_capab->idc_direct; 14602 /* 14603 * Send the packet directly to DLD, where it 14604 * may be queued depending on the availability 14605 * of transmit resources at the media layer. 14606 * Return value should be taken into 14607 * account and flow control the TCP. 14608 */ 14609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14610 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14611 pkt_len); 14612 14613 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14614 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14615 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14616 } else { 14617 uintptr_t cookie; 14618 14619 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14620 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14621 if (ixacookie != NULL) 14622 *ixacookie = cookie; 14623 return (EWOULDBLOCK); 14624 } 14625 } 14626 } else { 14627 wq = ill->ill_wq; 14628 14629 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14630 !canputnext(wq)) { 14631 if (ixacookie != NULL) 14632 *ixacookie = 0; 14633 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14634 nce->nce_fp_mp != NULL ? 14635 MBLKL(nce->nce_fp_mp) : 0); 14636 return (EWOULDBLOCK); 14637 } 14638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14639 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14640 pkt_len); 14641 putnext(wq, mp); 14642 } 14643 14644 /* 14645 * The rest of this function implements Neighbor Unreachability 14646 * detection. Determine if the ncec is eligible for NUD. 14647 */ 14648 if (ncec->ncec_flags & NCE_F_NONUD) 14649 return (0); 14650 14651 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14652 14653 /* 14654 * Check for upper layer advice 14655 */ 14656 if (ixaflags & IXAF_REACH_CONF) { 14657 timeout_id_t tid; 14658 14659 /* 14660 * It should be o.k. to check the state without 14661 * a lock here, at most we lose an advice. 14662 */ 14663 ncec->ncec_last = TICK_TO_MSEC(now); 14664 if (ncec->ncec_state != ND_REACHABLE) { 14665 mutex_enter(&ncec->ncec_lock); 14666 ncec->ncec_state = ND_REACHABLE; 14667 tid = ncec->ncec_timeout_id; 14668 ncec->ncec_timeout_id = 0; 14669 mutex_exit(&ncec->ncec_lock); 14670 (void) untimeout(tid); 14671 if (ip_debug > 2) { 14672 /* ip1dbg */ 14673 pr_addr_dbg("ip_xmit: state" 14674 " for %s changed to" 14675 " REACHABLE\n", AF_INET6, 14676 &ncec->ncec_addr); 14677 } 14678 } 14679 return (0); 14680 } 14681 14682 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14683 ip1dbg(("ip_xmit: delta = %" PRId64 14684 " ill_reachable_time = %d \n", delta, 14685 ill->ill_reachable_time)); 14686 if (delta > (uint64_t)ill->ill_reachable_time) { 14687 mutex_enter(&ncec->ncec_lock); 14688 switch (ncec->ncec_state) { 14689 case ND_REACHABLE: 14690 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14691 /* FALLTHROUGH */ 14692 case ND_STALE: 14693 /* 14694 * ND_REACHABLE is identical to 14695 * ND_STALE in this specific case. If 14696 * reachable time has expired for this 14697 * neighbor (delta is greater than 14698 * reachable time), conceptually, the 14699 * neighbor cache is no longer in 14700 * REACHABLE state, but already in 14701 * STALE state. So the correct 14702 * transition here is to ND_DELAY. 14703 */ 14704 ncec->ncec_state = ND_DELAY; 14705 mutex_exit(&ncec->ncec_lock); 14706 nce_restart_timer(ncec, 14707 ipst->ips_delay_first_probe_time); 14708 if (ip_debug > 3) { 14709 /* ip2dbg */ 14710 pr_addr_dbg("ip_xmit: state" 14711 " for %s changed to" 14712 " DELAY\n", AF_INET6, 14713 &ncec->ncec_addr); 14714 } 14715 break; 14716 case ND_DELAY: 14717 case ND_PROBE: 14718 mutex_exit(&ncec->ncec_lock); 14719 /* Timers have already started */ 14720 break; 14721 case ND_UNREACHABLE: 14722 /* 14723 * nce_timer has detected that this ncec 14724 * is unreachable and initiated deleting 14725 * this ncec. 14726 * This is a harmless race where we found the 14727 * ncec before it was deleted and have 14728 * just sent out a packet using this 14729 * unreachable ncec. 14730 */ 14731 mutex_exit(&ncec->ncec_lock); 14732 break; 14733 default: 14734 ASSERT(0); 14735 mutex_exit(&ncec->ncec_lock); 14736 } 14737 } 14738 return (0); 14739 14740 case ND_INCOMPLETE: 14741 /* 14742 * the state could have changed since we didn't hold the lock. 14743 * Re-verify state under lock. 14744 */ 14745 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14746 mutex_enter(&ncec->ncec_lock); 14747 if (NCE_ISREACHABLE(ncec)) { 14748 mutex_exit(&ncec->ncec_lock); 14749 goto sendit; 14750 } 14751 /* queue the packet */ 14752 nce_queue_mp(ncec, mp, is_probe); 14753 mutex_exit(&ncec->ncec_lock); 14754 DTRACE_PROBE2(ip__xmit__incomplete, 14755 (ncec_t *), ncec, (mblk_t *), mp); 14756 return (0); 14757 14758 case ND_INITIAL: 14759 /* 14760 * State could have changed since we didn't hold the lock, so 14761 * re-verify state. 14762 */ 14763 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14764 mutex_enter(&ncec->ncec_lock); 14765 if (NCE_ISREACHABLE(ncec)) { 14766 mutex_exit(&ncec->ncec_lock); 14767 goto sendit; 14768 } 14769 nce_queue_mp(ncec, mp, is_probe); 14770 if (ncec->ncec_state == ND_INITIAL) { 14771 ncec->ncec_state = ND_INCOMPLETE; 14772 mutex_exit(&ncec->ncec_lock); 14773 /* 14774 * figure out the source we want to use 14775 * and resolve it. 14776 */ 14777 ip_ndp_resolve(ncec); 14778 } else { 14779 mutex_exit(&ncec->ncec_lock); 14780 } 14781 return (0); 14782 14783 case ND_UNREACHABLE: 14784 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14785 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14786 mp, ill); 14787 freemsg(mp); 14788 return (0); 14789 14790 default: 14791 ASSERT(0); 14792 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14793 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14794 mp, ill); 14795 freemsg(mp); 14796 return (ENETUNREACH); 14797 } 14798 } 14799 14800 /* 14801 * Return B_TRUE if the buffers differ in length or content. 14802 * This is used for comparing extension header buffers. 14803 * Note that an extension header would be declared different 14804 * even if all that changed was the next header value in that header i.e. 14805 * what really changed is the next extension header. 14806 */ 14807 boolean_t 14808 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14809 uint_t blen) 14810 { 14811 if (!b_valid) 14812 blen = 0; 14813 14814 if (alen != blen) 14815 return (B_TRUE); 14816 if (alen == 0) 14817 return (B_FALSE); /* Both zero length */ 14818 return (bcmp(abuf, bbuf, alen)); 14819 } 14820 14821 /* 14822 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14823 * Return B_FALSE if memory allocation fails - don't change any state! 14824 */ 14825 boolean_t 14826 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14827 const void *src, uint_t srclen) 14828 { 14829 void *dst; 14830 14831 if (!src_valid) 14832 srclen = 0; 14833 14834 ASSERT(*dstlenp == 0); 14835 if (src != NULL && srclen != 0) { 14836 dst = mi_alloc(srclen, BPRI_MED); 14837 if (dst == NULL) 14838 return (B_FALSE); 14839 } else { 14840 dst = NULL; 14841 } 14842 if (*dstp != NULL) 14843 mi_free(*dstp); 14844 *dstp = dst; 14845 *dstlenp = dst == NULL ? 0 : srclen; 14846 return (B_TRUE); 14847 } 14848 14849 /* 14850 * Replace what is in *dst, *dstlen with the source. 14851 * Assumes ip_allocbuf has already been called. 14852 */ 14853 void 14854 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14855 const void *src, uint_t srclen) 14856 { 14857 if (!src_valid) 14858 srclen = 0; 14859 14860 ASSERT(*dstlenp == srclen); 14861 if (src != NULL && srclen != 0) 14862 bcopy(src, *dstp, srclen); 14863 } 14864 14865 /* 14866 * Free the storage pointed to by the members of an ip_pkt_t. 14867 */ 14868 void 14869 ip_pkt_free(ip_pkt_t *ipp) 14870 { 14871 uint_t fields = ipp->ipp_fields; 14872 14873 if (fields & IPPF_HOPOPTS) { 14874 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14875 ipp->ipp_hopopts = NULL; 14876 ipp->ipp_hopoptslen = 0; 14877 } 14878 if (fields & IPPF_RTHDRDSTOPTS) { 14879 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14880 ipp->ipp_rthdrdstopts = NULL; 14881 ipp->ipp_rthdrdstoptslen = 0; 14882 } 14883 if (fields & IPPF_DSTOPTS) { 14884 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14885 ipp->ipp_dstopts = NULL; 14886 ipp->ipp_dstoptslen = 0; 14887 } 14888 if (fields & IPPF_RTHDR) { 14889 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14890 ipp->ipp_rthdr = NULL; 14891 ipp->ipp_rthdrlen = 0; 14892 } 14893 if (fields & IPPF_IPV4_OPTIONS) { 14894 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14895 ipp->ipp_ipv4_options = NULL; 14896 ipp->ipp_ipv4_options_len = 0; 14897 } 14898 if (fields & IPPF_LABEL_V4) { 14899 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14900 ipp->ipp_label_v4 = NULL; 14901 ipp->ipp_label_len_v4 = 0; 14902 } 14903 if (fields & IPPF_LABEL_V6) { 14904 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14905 ipp->ipp_label_v6 = NULL; 14906 ipp->ipp_label_len_v6 = 0; 14907 } 14908 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14909 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14910 } 14911 14912 /* 14913 * Copy from src to dst and allocate as needed. 14914 * Returns zero or ENOMEM. 14915 * 14916 * The caller must initialize dst to zero. 14917 */ 14918 int 14919 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14920 { 14921 uint_t fields = src->ipp_fields; 14922 14923 /* Start with fields that don't require memory allocation */ 14924 dst->ipp_fields = fields & 14925 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14926 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14927 14928 dst->ipp_addr = src->ipp_addr; 14929 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14930 dst->ipp_hoplimit = src->ipp_hoplimit; 14931 dst->ipp_tclass = src->ipp_tclass; 14932 dst->ipp_type_of_service = src->ipp_type_of_service; 14933 14934 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14935 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14936 return (0); 14937 14938 if (fields & IPPF_HOPOPTS) { 14939 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14940 if (dst->ipp_hopopts == NULL) { 14941 ip_pkt_free(dst); 14942 return (ENOMEM); 14943 } 14944 dst->ipp_fields |= IPPF_HOPOPTS; 14945 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14946 src->ipp_hopoptslen); 14947 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14948 } 14949 if (fields & IPPF_RTHDRDSTOPTS) { 14950 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14951 kmflag); 14952 if (dst->ipp_rthdrdstopts == NULL) { 14953 ip_pkt_free(dst); 14954 return (ENOMEM); 14955 } 14956 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14957 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14958 src->ipp_rthdrdstoptslen); 14959 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14960 } 14961 if (fields & IPPF_DSTOPTS) { 14962 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14963 if (dst->ipp_dstopts == NULL) { 14964 ip_pkt_free(dst); 14965 return (ENOMEM); 14966 } 14967 dst->ipp_fields |= IPPF_DSTOPTS; 14968 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14969 src->ipp_dstoptslen); 14970 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14971 } 14972 if (fields & IPPF_RTHDR) { 14973 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14974 if (dst->ipp_rthdr == NULL) { 14975 ip_pkt_free(dst); 14976 return (ENOMEM); 14977 } 14978 dst->ipp_fields |= IPPF_RTHDR; 14979 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14980 src->ipp_rthdrlen); 14981 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14982 } 14983 if (fields & IPPF_IPV4_OPTIONS) { 14984 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14985 kmflag); 14986 if (dst->ipp_ipv4_options == NULL) { 14987 ip_pkt_free(dst); 14988 return (ENOMEM); 14989 } 14990 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14991 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14992 src->ipp_ipv4_options_len); 14993 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14994 } 14995 if (fields & IPPF_LABEL_V4) { 14996 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14997 if (dst->ipp_label_v4 == NULL) { 14998 ip_pkt_free(dst); 14999 return (ENOMEM); 15000 } 15001 dst->ipp_fields |= IPPF_LABEL_V4; 15002 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 15003 src->ipp_label_len_v4); 15004 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 15005 } 15006 if (fields & IPPF_LABEL_V6) { 15007 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 15008 if (dst->ipp_label_v6 == NULL) { 15009 ip_pkt_free(dst); 15010 return (ENOMEM); 15011 } 15012 dst->ipp_fields |= IPPF_LABEL_V6; 15013 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 15014 src->ipp_label_len_v6); 15015 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 15016 } 15017 if (fields & IPPF_FRAGHDR) { 15018 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 15019 if (dst->ipp_fraghdr == NULL) { 15020 ip_pkt_free(dst); 15021 return (ENOMEM); 15022 } 15023 dst->ipp_fields |= IPPF_FRAGHDR; 15024 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 15025 src->ipp_fraghdrlen); 15026 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 15027 } 15028 return (0); 15029 } 15030 15031 /* 15032 * Returns INADDR_ANY if no source route 15033 */ 15034 ipaddr_t 15035 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 15036 { 15037 ipaddr_t nexthop = INADDR_ANY; 15038 ipoptp_t opts; 15039 uchar_t *opt; 15040 uint8_t optval; 15041 uint8_t optlen; 15042 uint32_t totallen; 15043 15044 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15045 return (INADDR_ANY); 15046 15047 totallen = ipp->ipp_ipv4_options_len; 15048 if (totallen & 0x3) 15049 return (INADDR_ANY); 15050 15051 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15052 optval != IPOPT_EOL; 15053 optval = ipoptp_next(&opts)) { 15054 opt = opts.ipoptp_cur; 15055 switch (optval) { 15056 uint8_t off; 15057 case IPOPT_SSRR: 15058 case IPOPT_LSRR: 15059 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15060 break; 15061 } 15062 optlen = opts.ipoptp_len; 15063 off = opt[IPOPT_OFFSET]; 15064 off--; 15065 if (optlen < IP_ADDR_LEN || 15066 off > optlen - IP_ADDR_LEN) { 15067 /* End of source route */ 15068 break; 15069 } 15070 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15071 if (nexthop == htonl(INADDR_LOOPBACK)) { 15072 /* Ignore */ 15073 nexthop = INADDR_ANY; 15074 break; 15075 } 15076 break; 15077 } 15078 } 15079 return (nexthop); 15080 } 15081 15082 /* 15083 * Reverse a source route. 15084 */ 15085 void 15086 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15087 { 15088 ipaddr_t tmp; 15089 ipoptp_t opts; 15090 uchar_t *opt; 15091 uint8_t optval; 15092 uint32_t totallen; 15093 15094 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15095 return; 15096 15097 totallen = ipp->ipp_ipv4_options_len; 15098 if (totallen & 0x3) 15099 return; 15100 15101 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15102 optval != IPOPT_EOL; 15103 optval = ipoptp_next(&opts)) { 15104 uint8_t off1, off2; 15105 15106 opt = opts.ipoptp_cur; 15107 switch (optval) { 15108 case IPOPT_SSRR: 15109 case IPOPT_LSRR: 15110 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15111 break; 15112 } 15113 off1 = IPOPT_MINOFF_SR - 1; 15114 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15115 while (off2 > off1) { 15116 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15117 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15118 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15119 off2 -= IP_ADDR_LEN; 15120 off1 += IP_ADDR_LEN; 15121 } 15122 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15123 break; 15124 } 15125 } 15126 } 15127 15128 /* 15129 * Returns NULL if no routing header 15130 */ 15131 in6_addr_t * 15132 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15133 { 15134 in6_addr_t *nexthop = NULL; 15135 ip6_rthdr0_t *rthdr; 15136 15137 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15138 return (NULL); 15139 15140 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15141 if (rthdr->ip6r0_segleft == 0) 15142 return (NULL); 15143 15144 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15145 return (nexthop); 15146 } 15147 15148 zoneid_t 15149 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15150 zoneid_t lookup_zoneid) 15151 { 15152 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15153 ire_t *ire; 15154 int ire_flags = MATCH_IRE_TYPE; 15155 zoneid_t zoneid = ALL_ZONES; 15156 15157 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15158 return (ALL_ZONES); 15159 15160 if (lookup_zoneid != ALL_ZONES) 15161 ire_flags |= MATCH_IRE_ZONEONLY; 15162 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK, 15163 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15164 if (ire != NULL) { 15165 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15166 ire_refrele(ire); 15167 } 15168 return (zoneid); 15169 } 15170 15171 zoneid_t 15172 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15173 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15174 { 15175 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15176 ire_t *ire; 15177 int ire_flags = MATCH_IRE_TYPE; 15178 zoneid_t zoneid = ALL_ZONES; 15179 15180 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15181 return (ALL_ZONES); 15182 15183 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15184 ire_flags |= MATCH_IRE_ILL; 15185 15186 if (lookup_zoneid != ALL_ZONES) 15187 ire_flags |= MATCH_IRE_ZONEONLY; 15188 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15189 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15190 if (ire != NULL) { 15191 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15192 ire_refrele(ire); 15193 } 15194 return (zoneid); 15195 } 15196 15197 /* 15198 * IP obserability hook support functions. 15199 */ 15200 static void 15201 ipobs_init(ip_stack_t *ipst) 15202 { 15203 netid_t id; 15204 15205 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15206 15207 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15208 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15209 15210 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15211 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15212 } 15213 15214 static void 15215 ipobs_fini(ip_stack_t *ipst) 15216 { 15217 15218 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15219 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15220 } 15221 15222 /* 15223 * hook_pkt_observe_t is composed in network byte order so that the 15224 * entire mblk_t chain handed into hook_run can be used as-is. 15225 * The caveat is that use of the fields, such as the zone fields, 15226 * requires conversion into host byte order first. 15227 */ 15228 void 15229 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15230 const ill_t *ill, ip_stack_t *ipst) 15231 { 15232 hook_pkt_observe_t *hdr; 15233 uint64_t grifindex; 15234 mblk_t *imp; 15235 15236 imp = allocb(sizeof (*hdr), BPRI_HI); 15237 if (imp == NULL) 15238 return; 15239 15240 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15241 /* 15242 * b_wptr is set to make the apparent size of the data in the mblk_t 15243 * to exclude the pointers at the end of hook_pkt_observer_t. 15244 */ 15245 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15246 imp->b_cont = mp; 15247 15248 ASSERT(DB_TYPE(mp) == M_DATA); 15249 15250 if (IS_UNDER_IPMP(ill)) 15251 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15252 else 15253 grifindex = 0; 15254 15255 hdr->hpo_version = 1; 15256 hdr->hpo_htype = htons(htype); 15257 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15258 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15259 hdr->hpo_grifindex = htonl(grifindex); 15260 hdr->hpo_zsrc = htonl(zsrc); 15261 hdr->hpo_zdst = htonl(zdst); 15262 hdr->hpo_pkt = imp; 15263 hdr->hpo_ctx = ipst->ips_netstack; 15264 15265 if (ill->ill_isv6) { 15266 hdr->hpo_family = AF_INET6; 15267 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15268 ipst->ips_ipv6observing, (hook_data_t)hdr); 15269 } else { 15270 hdr->hpo_family = AF_INET; 15271 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15272 ipst->ips_ipv4observing, (hook_data_t)hdr); 15273 } 15274 15275 imp->b_cont = NULL; 15276 freemsg(imp); 15277 } 15278 15279 /* 15280 * Utility routine that checks if `v4srcp' is a valid address on underlying 15281 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15282 * associated with `v4srcp' on success. NOTE: if this is not called from 15283 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15284 * group during or after this lookup. 15285 */ 15286 boolean_t 15287 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15288 { 15289 ipif_t *ipif; 15290 15291 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15292 if (ipif != NULL) { 15293 if (ipifp != NULL) 15294 *ipifp = ipif; 15295 else 15296 ipif_refrele(ipif); 15297 return (B_TRUE); 15298 } 15299 15300 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15301 *v4srcp)); 15302 return (B_FALSE); 15303 } 15304 15305 /* 15306 * Transport protocol call back function for CPU state change. 15307 */ 15308 /* ARGSUSED */ 15309 static int 15310 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15311 { 15312 processorid_t cpu_seqid; 15313 netstack_handle_t nh; 15314 netstack_t *ns; 15315 15316 ASSERT(MUTEX_HELD(&cpu_lock)); 15317 15318 switch (what) { 15319 case CPU_CONFIG: 15320 case CPU_ON: 15321 case CPU_INIT: 15322 case CPU_CPUPART_IN: 15323 cpu_seqid = cpu[id]->cpu_seqid; 15324 netstack_next_init(&nh); 15325 while ((ns = netstack_next(&nh)) != NULL) { 15326 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15327 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15328 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15329 netstack_rele(ns); 15330 } 15331 netstack_next_fini(&nh); 15332 break; 15333 case CPU_UNCONFIG: 15334 case CPU_OFF: 15335 case CPU_CPUPART_OUT: 15336 /* 15337 * Nothing to do. We don't remove the per CPU stats from 15338 * the IP stack even when the CPU goes offline. 15339 */ 15340 break; 15341 default: 15342 break; 15343 } 15344 return (0); 15345 } 15346