xref: /illumos-gate/usr/src/uts/common/inet/ip/ip.c (revision 524e558aae3e99de2bdab73592f925ea489fbe07)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/sysmacros.h>
35 #include <sys/strsubr.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/zone.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/xti_inet.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/kobj.h>
47 #include <sys/modctl.h>
48 #include <sys/atomic.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 
52 #include <sys/systm.h>
53 #include <sys/param.h>
54 #include <sys/kmem.h>
55 #include <sys/socket.h>
56 #include <sys/vtrace.h>
57 #include <sys/isa_defs.h>
58 #include <net/if.h>
59 #include <net/if_arp.h>
60 #include <net/route.h>
61 #include <sys/sockio.h>
62 #include <netinet/in.h>
63 #include <net/if_dl.h>
64 
65 #include <inet/common.h>
66 #include <inet/mi.h>
67 #include <inet/mib2.h>
68 #include <inet/nd.h>
69 #include <inet/arp.h>
70 #include <inet/snmpcom.h>
71 #include <inet/kstatcom.h>
72 
73 #include <netinet/igmp_var.h>
74 #include <netinet/ip6.h>
75 #include <netinet/icmp6.h>
76 #include <netinet/sctp.h>
77 
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip6_asp.h>
82 #include <inet/tcp.h>
83 #include <inet/tcp_impl.h>
84 #include <inet/ip_multi.h>
85 #include <inet/ip_if.h>
86 #include <inet/ip_ire.h>
87 #include <inet/ip_rts.h>
88 #include <inet/optcom.h>
89 #include <inet/ip_ndp.h>
90 #include <inet/ip_listutils.h>
91 #include <netinet/igmp.h>
92 #include <netinet/ip_mroute.h>
93 #include <inet/ipp_common.h>
94 
95 #include <net/pfkeyv2.h>
96 #include <inet/ipsec_info.h>
97 #include <inet/sadb.h>
98 #include <inet/ipsec_impl.h>
99 #include <sys/iphada.h>
100 #include <inet/tun.h>
101 #include <inet/ipdrop.h>
102 
103 #include <sys/ethernet.h>
104 #include <net/if_types.h>
105 #include <sys/cpuvar.h>
106 
107 #include <ipp/ipp.h>
108 #include <ipp/ipp_impl.h>
109 #include <ipp/ipgpc/ipgpc.h>
110 
111 #include <sys/multidata.h>
112 #include <sys/pattr.h>
113 
114 #include <inet/ipclassifier.h>
115 #include <inet/sctp_ip.h>
116 #include <inet/udp_impl.h>
117 
118 #include <sys/tsol/label.h>
119 #include <sys/tsol/tnet.h>
120 
121 #include <rpc/pmap_prot.h>
122 
123 /*
124  * Values for squeue switch:
125  * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain
126  * IP_SQUEUE_ENTER: squeue_enter
127  * IP_SQUEUE_FILL: squeue_fill
128  */
129 int ip_squeue_enter = 2;
130 squeue_func_t ip_input_proc;
131 /*
132  * IP statistics.
133  */
134 #define	IP_STAT(x)		(ip_statistics.x.value.ui64++)
135 #define	IP_STAT_UPDATE(x, n)	(ip_statistics.x.value.ui64 += (n))
136 
137 typedef struct ip_stat {
138 	kstat_named_t	ipsec_fanout_proto;
139 	kstat_named_t	ip_udp_fannorm;
140 	kstat_named_t	ip_udp_fanmb;
141 	kstat_named_t	ip_udp_fanothers;
142 	kstat_named_t	ip_udp_fast_path;
143 	kstat_named_t	ip_udp_slow_path;
144 	kstat_named_t	ip_udp_input_err;
145 	kstat_named_t	ip_tcppullup;
146 	kstat_named_t	ip_tcpoptions;
147 	kstat_named_t	ip_multipkttcp;
148 	kstat_named_t	ip_tcp_fast_path;
149 	kstat_named_t	ip_tcp_slow_path;
150 	kstat_named_t	ip_tcp_input_error;
151 	kstat_named_t	ip_db_ref;
152 	kstat_named_t	ip_notaligned1;
153 	kstat_named_t	ip_notaligned2;
154 	kstat_named_t	ip_multimblk3;
155 	kstat_named_t	ip_multimblk4;
156 	kstat_named_t	ip_ipoptions;
157 	kstat_named_t	ip_classify_fail;
158 	kstat_named_t	ip_opt;
159 	kstat_named_t	ip_udp_rput_local;
160 	kstat_named_t	ipsec_proto_ahesp;
161 	kstat_named_t	ip_conn_flputbq;
162 	kstat_named_t	ip_conn_walk_drain;
163 	kstat_named_t   ip_out_sw_cksum;
164 	kstat_named_t   ip_in_sw_cksum;
165 	kstat_named_t   ip_trash_ire_reclaim_calls;
166 	kstat_named_t   ip_trash_ire_reclaim_success;
167 	kstat_named_t   ip_ire_arp_timer_expired;
168 	kstat_named_t   ip_ire_redirect_timer_expired;
169 	kstat_named_t	ip_ire_pmtu_timer_expired;
170 	kstat_named_t	ip_input_multi_squeue;
171 	kstat_named_t	ip_tcp_in_full_hw_cksum_err;
172 	kstat_named_t	ip_tcp_in_part_hw_cksum_err;
173 	kstat_named_t	ip_tcp_in_sw_cksum_err;
174 	kstat_named_t	ip_tcp_out_sw_cksum_bytes;
175 	kstat_named_t	ip_udp_in_full_hw_cksum_err;
176 	kstat_named_t	ip_udp_in_part_hw_cksum_err;
177 	kstat_named_t	ip_udp_in_sw_cksum_err;
178 	kstat_named_t	ip_udp_out_sw_cksum_bytes;
179 	kstat_named_t	ip_frag_mdt_pkt_out;
180 	kstat_named_t	ip_frag_mdt_discarded;
181 	kstat_named_t	ip_frag_mdt_allocfail;
182 	kstat_named_t	ip_frag_mdt_addpdescfail;
183 	kstat_named_t	ip_frag_mdt_allocd;
184 } ip_stat_t;
185 
186 static ip_stat_t ip_statistics = {
187 	{ "ipsec_fanout_proto",			KSTAT_DATA_UINT64 },
188 	{ "ip_udp_fannorm",			KSTAT_DATA_UINT64 },
189 	{ "ip_udp_fanmb",			KSTAT_DATA_UINT64 },
190 	{ "ip_udp_fanothers",			KSTAT_DATA_UINT64 },
191 	{ "ip_udp_fast_path",			KSTAT_DATA_UINT64 },
192 	{ "ip_udp_slow_path",			KSTAT_DATA_UINT64 },
193 	{ "ip_udp_input_err",			KSTAT_DATA_UINT64 },
194 	{ "ip_tcppullup",			KSTAT_DATA_UINT64 },
195 	{ "ip_tcpoptions",			KSTAT_DATA_UINT64 },
196 	{ "ip_multipkttcp",			KSTAT_DATA_UINT64 },
197 	{ "ip_tcp_fast_path",			KSTAT_DATA_UINT64 },
198 	{ "ip_tcp_slow_path",			KSTAT_DATA_UINT64 },
199 	{ "ip_tcp_input_error",			KSTAT_DATA_UINT64 },
200 	{ "ip_db_ref",				KSTAT_DATA_UINT64 },
201 	{ "ip_notaligned1",			KSTAT_DATA_UINT64 },
202 	{ "ip_notaligned2",			KSTAT_DATA_UINT64 },
203 	{ "ip_multimblk3",			KSTAT_DATA_UINT64 },
204 	{ "ip_multimblk4",			KSTAT_DATA_UINT64 },
205 	{ "ip_ipoptions",			KSTAT_DATA_UINT64 },
206 	{ "ip_classify_fail",			KSTAT_DATA_UINT64 },
207 	{ "ip_opt",				KSTAT_DATA_UINT64 },
208 	{ "ip_udp_rput_local",			KSTAT_DATA_UINT64 },
209 	{ "ipsec_proto_ahesp",			KSTAT_DATA_UINT64 },
210 	{ "ip_conn_flputbq",			KSTAT_DATA_UINT64 },
211 	{ "ip_conn_walk_drain",			KSTAT_DATA_UINT64 },
212 	{ "ip_out_sw_cksum",			KSTAT_DATA_UINT64 },
213 	{ "ip_in_sw_cksum",			KSTAT_DATA_UINT64 },
214 	{ "ip_trash_ire_reclaim_calls",		KSTAT_DATA_UINT64 },
215 	{ "ip_trash_ire_reclaim_success",	KSTAT_DATA_UINT64 },
216 	{ "ip_ire_arp_timer_expired",		KSTAT_DATA_UINT64 },
217 	{ "ip_ire_redirect_timer_expired",	KSTAT_DATA_UINT64 },
218 	{ "ip_ire_pmtu_timer_expired",		KSTAT_DATA_UINT64 },
219 	{ "ip_input_multi_squeue",		KSTAT_DATA_UINT64 },
220 	{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
221 	{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
222 	{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
223 	{ "ip_tcp_out_sw_cksum_bytes",		KSTAT_DATA_UINT64 },
224 	{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
225 	{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
226 	{ "ip_udp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
227 	{ "ip_udp_out_sw_cksum_bytes",		KSTAT_DATA_UINT64 },
228 	{ "ip_frag_mdt_pkt_out",		KSTAT_DATA_UINT64 },
229 	{ "ip_frag_mdt_discarded",		KSTAT_DATA_UINT64 },
230 	{ "ip_frag_mdt_allocfail",		KSTAT_DATA_UINT64 },
231 	{ "ip_frag_mdt_addpdescfail",		KSTAT_DATA_UINT64 },
232 	{ "ip_frag_mdt_allocd",			KSTAT_DATA_UINT64 },
233 };
234 
235 static kstat_t *ip_kstat;
236 
237 #define	TCP6 "tcp6"
238 #define	TCP "tcp"
239 #define	SCTP "sctp"
240 #define	SCTP6 "sctp6"
241 
242 major_t TCP6_MAJ;
243 major_t TCP_MAJ;
244 major_t SCTP_MAJ;
245 major_t SCTP6_MAJ;
246 
247 int ip_poll_normal_ms = 100;
248 int ip_poll_normal_ticks = 0;
249 
250 /*
251  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
252  */
253 
254 struct listptr_s {
255 	mblk_t	*lp_head;	/* pointer to the head of the list */
256 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
257 };
258 
259 typedef struct listptr_s listptr_t;
260 
261 /*
262  * This is used by ip_snmp_get_mib2_ip_route_media and
263  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
264  */
265 typedef struct iproutedata_s {
266 	uint_t		ird_idx;
267 	listptr_t	ird_route;	/* ipRouteEntryTable */
268 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
269 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
270 } iproutedata_t;
271 
272 /*
273  * Cluster specific hooks. These should be NULL when booted as a non-cluster
274  */
275 
276 /*
277  * Hook functions to enable cluster networking
278  * On non-clustered systems these vectors must always be NULL.
279  *
280  * Hook function to Check ip specified ip address is a shared ip address
281  * in the cluster
282  *
283  */
284 int (*cl_inet_isclusterwide)(uint8_t protocol,
285     sa_family_t addr_family, uint8_t *laddrp) = NULL;
286 
287 /*
288  * Hook function to generate cluster wide ip fragment identifier
289  */
290 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
291     uint8_t *laddrp, uint8_t *faddrp) = NULL;
292 
293 /*
294  * Synchronization notes:
295  *
296  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
297  * MT level protection given by STREAMS. IP uses a combination of its own
298  * internal serialization mechanism and standard Solaris locking techniques.
299  * The internal serialization is per phyint (no IPMP) or per IPMP group.
300  * This is used to serialize plumbing operations, IPMP operations, certain
301  * multicast operations, most set ioctls, igmp/mld timers etc.
302  *
303  * Plumbing is a long sequence of operations involving message
304  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
305  * involved in plumbing operations. A natural model is to serialize these
306  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
307  * parallel without any interference. But various set ioctls on hme0 are best
308  * serialized. However if the system uses IPMP, the operations are easier if
309  * they are serialized on a per IPMP group basis since IPMP operations
310  * happen across ill's of a group. Thus the lowest common denominator is to
311  * serialize most set ioctls, multicast join/leave operations, IPMP operations
312  * igmp/mld timer operations, and processing of DLPI control messages received
313  * from drivers on a per IPMP group basis. If the system does not employ
314  * IPMP the serialization is on a per phyint basis. This serialization is
315  * provided by the ipsq_t and primitives operating on this. Details can
316  * be found in ip_if.c above the core primitives operating on ipsq_t.
317  *
318  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
319  * Simiarly lookup of an ire by a thread also returns a refheld ire.
320  * In addition ipif's and ill's referenced by the ire are also indirectly
321  * refheld. Thus no ipif or ill can vanish nor can critical parameters like
322  * the ipif's address or netmask change as long as an ipif is refheld
323  * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the
324  * address of an ipif has to go through the ipsq_t. This ensures that only
325  * 1 such exclusive operation proceeds at any time on the ipif. It then
326  * deletes all ires associated with this ipif, and waits for all refcnts
327  * associated with this ipif to come down to zero. The address is changed
328  * only after the ipif has been quiesced. Then the ipif is brought up again.
329  * More details are described above the comment in ip_sioctl_flags.
330  *
331  * Packet processing is based mostly on IREs and are fully multi-threaded
332  * using standard Solaris MT techniques.
333  *
334  * There are explicit locks in IP to handle:
335  * - The ip_g_head list maintained by mi_open_link() and friends.
336  *
337  * - The reassembly data structures (one lock per hash bucket)
338  *
339  * - conn_lock is meant to protect conn_t fields. The fields actually
340  *   protected by conn_lock are documented in the conn_t definition.
341  *
342  * - ire_lock to protect some of the fields of the ire, IRE tables
343  *   (one lock per hash bucket). Refer to ip_ire.c for details.
344  *
345  * - ndp_g_lock and nce_lock for protecting NCEs.
346  *
347  * - ill_lock protects fields of the ill and ipif. Details in ip.h
348  *
349  * - ill_g_lock: This is a global reader/writer lock. Protects the following
350  *	* The AVL tree based global multi list of all ills.
351  *	* The linked list of all ipifs of an ill
352  *	* The <ill-ipsq> mapping
353  *	* The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next
354  *	* The illgroup list threaded by ill_group_next.
355  *	* <ill-phyint> association
356  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
357  *   into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion
358  *   of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill
359  *   will all have to hold the ill_g_lock as writer for the actual duration
360  *   of the insertion/deletion/change. More details about the <ill-ipsq> mapping
361  *   may be found in the IPMP section.
362  *
363  * - ill_lock:  This is a per ill mutex.
364  *   It protects some members of the ill and is documented below.
365  *   It also protects the <ill-ipsq> mapping
366  *   It also protects the illgroup list threaded by ill_group_next.
367  *   It also protects the <ill-phyint> assoc.
368  *   It also protects the list of ipifs hanging off the ill.
369  *
370  * - ipsq_lock: This is a per ipsq_t mutex lock.
371  *   This protects all the other members of the ipsq struct except
372  *   ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock
373  *
374  * - illgrp_lock: This is a per ill_group mutex lock.
375  *   The only thing it protects is the illgrp_ill_schednext member of ill_group
376  *   which dictates which is the next ill in an ill_group that is to be chosen
377  *   for sending outgoing packets, through creation of an IRE_CACHE that
378  *   references this ill.
379  *
380  * - phyint_lock: This is a per phyint mutex lock. Protects just the
381  *   phyint_flags
382  *
383  * - ip_g_nd_lock: This is a global reader/writer lock.
384  *   Any call to nd_load to load a new parameter to the ND table must hold the
385  *   lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock
386  *   as reader.
387  *
388  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
389  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
390  *   uniqueness check also done atomically.
391  *
392  * - ipsec_capab_ills_lock: This readers/writer lock protects the global
393  *   lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken
394  *   as a writer when adding or deleting elements from these lists, and
395  *   as a reader when walking these lists to send a SADB update to the
396  *   IPsec capable ills.
397  *
398  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
399  *   group list linked by ill_usesrc_grp_next. It also protects the
400  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
401  *   group is being added or deleted.  This lock is taken as a reader when
402  *   walking the list/group(eg: to get the number of members in a usesrc group).
403  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
404  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
405  *   example, it is not necessary to take this lock in the initial portion
406  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and
407  *   ip_sioctl_flags since the these operations are executed exclusively and
408  *   that ensures that the "usesrc group state" cannot change. The "usesrc
409  *   group state" change can happen only in the latter part of
410  *   ip_sioctl_slifusesrc and in ill_delete.
411  *
412  * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications.
413  *
414  * To change the <ill-phyint> association, the ill_g_lock must be held
415  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
416  * must be held.
417  *
418  * To change the <ill-ipsq> association the ill_g_lock must be held as writer
419  * and the ill_lock of the ill in question must be held.
420  *
421  * To change the <ill-illgroup> association the ill_g_lock must be held as
422  * writer and the ill_lock of the ill in question must be held.
423  *
424  * To add or delete an ipif from the list of ipifs hanging off the ill,
425  * ill_g_lock (writer) and ill_lock must be held and the thread must be
426  * a writer on the associated ipsq,.
427  *
428  * To add or delete an ill to the system, the ill_g_lock must be held as
429  * writer and the thread must be a writer on the associated ipsq.
430  *
431  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
432  * must be a writer on the associated ipsq.
433  *
434  * Lock hierarchy
435  *
436  * Some lock hierarchy scenarios are listed below.
437  *
438  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
439  * ill_g_lock -> illgrp_lock -> ill_lock
440  * ill_g_lock -> ill_lock(s) -> phyint_lock
441  * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock
442  * ill_g_lock -> ip_addr_avail_lock
443  * conn_lock -> irb_lock -> ill_lock -> ire_lock
444  * ill_g_lock -> ip_g_nd_lock
445  *
446  * When more than 1 ill lock is needed to be held, all ill lock addresses
447  * are sorted on address and locked starting from highest addressed lock
448  * downward.
449  *
450  * Mobile-IP scenarios
451  *
452  * irb_lock -> ill_lock -> ire_mrtun_lock
453  * irb_lock -> ill_lock -> ire_srcif_table_lock
454  *
455  * IPsec scenarios
456  *
457  * ipsa_lock -> ill_g_lock -> ill_lock
458  * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock
459  * ipsec_capab_ills_lock -> ipsa_lock
460  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
461  *
462  * Trusted Solaris scenarios
463  *
464  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
465  * igsa_lock -> gcdb_lock
466  * gcgrp_rwlock -> ire_lock
467  * gcgrp_rwlock -> gcdb_lock
468  *
469  * IPSEC notes :
470  *
471  * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message
472  * in front of the actual packet. For outbound datagrams, the M_CTL
473  * contains a ipsec_out_t (defined in ipsec_info.h), which has the
474  * information used by the IPSEC code for applying the right level of
475  * protection. The information initialized by IP in the ipsec_out_t
476  * is determined by the per-socket policy or global policy in the system.
477  * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in
478  * ipsec_info.h) which starts out with nothing in it. It gets filled
479  * with the right information if it goes through the AH/ESP code, which
480  * happens if the incoming packet is secure. The information initialized
481  * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether
482  * the policy requirements needed by per-socket policy or global policy
483  * is met or not.
484  *
485  * If there is both per-socket policy (set using setsockopt) and there
486  * is also global policy match for the 5 tuples of the socket,
487  * ipsec_override_policy() makes the decision of which one to use.
488  *
489  * For fully connected sockets i.e dst, src [addr, port] is known,
490  * conn_policy_cached is set indicating that policy has been cached.
491  * conn_in_enforce_policy may or may not be set depending on whether
492  * there is a global policy match or per-socket policy match.
493  * Policy inheriting happpens in ip_bind during the ipa_conn_t bind.
494  * Once the right policy is set on the conn_t, policy cannot change for
495  * this socket. This makes life simpler for TCP (UDP ?) where
496  * re-transmissions go out with the same policy. For symmetry, policy
497  * is cached for fully connected UDP sockets also. Thus if policy is cached,
498  * it also implies that policy is latched i.e policy cannot change
499  * on these sockets. As we have the right policy on the conn, we don't
500  * have to lookup global policy for every outbound and inbound datagram
501  * and thus serving as an optimization. Note that a global policy change
502  * does not affect fully connected sockets if they have policy. If fully
503  * connected sockets did not have any policy associated with it, global
504  * policy change may affect them.
505  *
506  * IP Flow control notes:
507  *
508  * Non-TCP streams are flow controlled by IP. On the send side, if the packet
509  * cannot be sent down to the driver by IP, because of a canput failure, IP
510  * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq.
511  * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained
512  * when the flowcontrol condition subsides. Ultimately STREAMS backenables the
513  * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the
514  * first conn in the list of conn's to be drained. ip_wsrv on this conn drains
515  * the queued messages, and removes the conn from the drain list, if all
516  * messages were drained. It also qenables the next conn in the drain list to
517  * continue the drain process.
518  *
519  * In reality the drain list is not a single list, but a configurable number
520  * of lists. The ip_wsrv on the IP module, qenables the first conn in each
521  * list. If the ip_wsrv of the next qenabled conn does not run, because the
522  * stream closes, ip_close takes responsibility to qenable the next conn in
523  * the drain list. The directly called ip_wput path always does a putq, if
524  * it cannot putnext. Thus synchronization problems are handled between
525  * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only
526  * functions that manipulate this drain list. Furthermore conn_drain_insert
527  * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv
528  * running on a queue at any time. conn_drain_tail can be simultaneously called
529  * from both ip_wsrv and ip_close.
530  *
531  * IPQOS notes:
532  *
533  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
534  * and IPQoS modules. IPPF includes hooks in IP at different control points
535  * (callout positions) which direct packets to IPQoS modules for policy
536  * processing. Policies, if present, are global.
537  *
538  * The callout positions are located in the following paths:
539  *		o local_in (packets destined for this host)
540  *		o local_out (packets orginating from this host )
541  *		o fwd_in  (packets forwarded by this m/c - inbound)
542  *		o fwd_out (packets forwarded by this m/c - outbound)
543  * Hooks at these callout points can be enabled/disabled using the ndd variable
544  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
545  * By default all the callout positions are enabled.
546  *
547  * Outbound (local_out)
548  * Hooks are placed in ip_wput_ire and ipsec_out_process.
549  *
550  * Inbound (local_in)
551  * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and
552  * TCP and UDP fanout routines.
553  *
554  * Forwarding (in and out)
555  * Hooks are placed in ip_rput_forward and ip_mrtun_forward.
556  *
557  * IP Policy Framework processing (IPPF processing)
558  * Policy processing for a packet is initiated by ip_process, which ascertains
559  * that the classifier (ipgpc) is loaded and configured, failing which the
560  * packet resumes normal processing in IP. If the clasifier is present, the
561  * packet is acted upon by one or more IPQoS modules (action instances), per
562  * filters configured in ipgpc and resumes normal IP processing thereafter.
563  * An action instance can drop a packet in course of its processing.
564  *
565  * A boolean variable, ip_policy, is used in all the fanout routines that can
566  * invoke ip_process for a packet. This variable indicates if the packet should
567  * to be sent for policy processing. The variable is set to B_TRUE by default,
568  * i.e. when the routines are invoked in the normal ip procesing path for a
569  * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout;
570  * ip_policy is set to B_FALSE for all the routines called in these two
571  * functions because, in the former case,  we don't process loopback traffic
572  * currently while in the latter, the packets have already been processed in
573  * icmp_inbound.
574  *
575  * Zones notes:
576  *
577  * The partitioning rules for networking are as follows:
578  * 1) Packets coming from a zone must have a source address belonging to that
579  * zone.
580  * 2) Packets coming from a zone can only be sent on a physical interface on
581  * which the zone has an IP address.
582  * 3) Between two zones on the same machine, packet delivery is only allowed if
583  * there's a matching route for the destination and zone in the forwarding
584  * table.
585  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
586  * different zones can bind to the same port with the wildcard address
587  * (INADDR_ANY).
588  *
589  * The granularity of interface partitioning is at the logical interface level.
590  * Therefore, every zone has its own IP addresses, and incoming packets can be
591  * attributed to a zone unambiguously. A logical interface is placed into a zone
592  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
593  * structure. Rule (1) is implemented by modifying the source address selection
594  * algorithm so that the list of eligible addresses is filtered based on the
595  * sending process zone.
596  *
597  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
598  * across all zones, depending on their type. Here is the break-up:
599  *
600  * IRE type				Shared/exclusive
601  * --------				----------------
602  * IRE_BROADCAST			Exclusive
603  * IRE_DEFAULT (default routes)		Shared (*)
604  * IRE_LOCAL				Exclusive
605  * IRE_LOOPBACK				Exclusive
606  * IRE_PREFIX (net routes)		Shared (*)
607  * IRE_CACHE				Exclusive
608  * IRE_IF_NORESOLVER (interface routes)	Exclusive
609  * IRE_IF_RESOLVER (interface routes)	Exclusive
610  * IRE_HOST (host routes)		Shared (*)
611  *
612  * (*) A zone can only use a default or off-subnet route if the gateway is
613  * directly reachable from the zone, that is, if the gateway's address matches
614  * one of the zone's logical interfaces.
615  *
616  * Multiple zones can share a common broadcast address; typically all zones
617  * share the 255.255.255.255 address. Incoming as well as locally originated
618  * broadcast packets must be dispatched to all the zones on the broadcast
619  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
620  * since some zones may not be on the 10.16.72/24 network. To handle this, each
621  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
622  * sent to every zone that has an IRE_BROADCAST entry for the destination
623  * address on the input ill, see conn_wantpacket().
624  *
625  * Applications in different zones can join the same multicast group address.
626  * For IPv4, group memberships are per-logical interface, so they're already
627  * inherently part of a zone. For IPv6, group memberships are per-physical
628  * interface, so we distinguish IPv6 group memberships based on group address,
629  * interface and zoneid. In both cases, received multicast packets are sent to
630  * every zone for which a group membership entry exists. On IPv6 we need to
631  * check that the target zone still has an address on the receiving physical
632  * interface; it could have been removed since the application issued the
633  * IPV6_JOIN_GROUP.
634  */
635 
636 /*
637  * Squeue Fanout flags:
638  *	0: No fanout.
639  *	1: Fanout across all squeues
640  */
641 boolean_t	ip_squeue_fanout = 0;
642 
643 /*
644  * Maximum dups allowed per packet.
645  */
646 uint_t ip_max_frag_dups = 10;
647 
648 #define	IS_SIMPLE_IPH(ipha)						\
649 	((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION)
650 
651 /* RFC1122 Conformance */
652 #define	IP_FORWARD_DEFAULT	IP_FORWARD_NEVER
653 
654 #define	ILL_MAX_NAMELEN			LIFNAMSIZ
655 
656 /* Leave room for ip_newroute to tack on the src and target addresses */
657 #define	OK_RESOLVER_MP(mp)						\
658 	((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN))
659 
660 static int	conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *);
661 
662 static mblk_t	*ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t);
663 static void	ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *);
664 
665 static void	icmp_frag_needed(queue_t *, mblk_t *, int);
666 static void	icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int,
667     uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t);
668 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *);
669 static void	icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *,
670 		    icmph_t *, ipha_t *, int, int, boolean_t, boolean_t,
671 		    ill_t *, zoneid_t);
672 static void	icmp_options_update(ipha_t *);
673 static void	icmp_param_problem(queue_t *, mblk_t *, uint8_t);
674 static void	icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t);
675 static mblk_t	*icmp_pkt_err_ok(mblk_t *);
676 static void	icmp_redirect(mblk_t *);
677 static void	icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t);
678 
679 static void	ip_arp_news(queue_t *, mblk_t *);
680 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *);
681 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
682 char		*ip_dot_addr(ipaddr_t, char *);
683 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
684 int		ip_close(queue_t *, int);
685 static char	*ip_dot_saddr(uchar_t *, char *);
686 static void	ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t,
687 		    boolean_t, boolean_t, ill_t *, zoneid_t);
688 static void	ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t,
689 		    boolean_t, boolean_t, zoneid_t);
690 static void	ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t,
691 		    boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t);
692 static void	ip_lrput(queue_t *, mblk_t *);
693 ipaddr_t	ip_massage_options(ipha_t *);
694 static void	ip_mrtun_forward(ire_t *, ill_t *, mblk_t *);
695 ipaddr_t	ip_net_mask(ipaddr_t);
696 void		ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *);
697 static void	ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t,
698 		    conn_t *, uint32_t);
699 static int	ip_hdr_complete(ipha_t *, zoneid_t);
700 char		*ip_nv_lookup(nv_t *, int);
701 static boolean_t	ip_check_for_ipsec_opt(queue_t *, mblk_t *);
702 static int	ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *);
703 static int	ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *);
704 static boolean_t	ip_param_register(ipparam_t *, size_t, ipndp_t *,
705 			    size_t);
706 static int	ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
707 void	ip_rput(queue_t *, mblk_t *);
708 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
709 		    void *dummy_arg);
710 void	ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *);
711 static int	ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *);
712 static boolean_t	ip_rput_local_options(queue_t *, mblk_t *, ipha_t *,
713 			    ire_t *);
714 static int	ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *);
715 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *,
716 		    uint16_t *);
717 int		ip_snmp_get(queue_t *, mblk_t *);
718 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *);
719 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *);
720 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *);
721 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *);
722 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *);
723 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *);
724 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *);
725 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *);
726 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *);
727 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *);
728 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *);
729 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *);
730 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *);
731 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *);
732 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *);
733 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *);
734 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
735 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
736 static int	ip_snmp_get2_v6_media(nce_t *, iproutedata_t *);
737 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
738 static boolean_t	ip_source_routed(ipha_t *);
739 static boolean_t	ip_source_route_included(ipha_t *);
740 
741 static void	ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t);
742 static mblk_t	*ip_wput_frag_copyhdr(uchar_t *, int, int);
743 static void	ip_wput_local_options(ipha_t *);
744 static int	ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t,
745     zoneid_t);
746 
747 static void	conn_drain_init(void);
748 static void	conn_drain_fini(void);
749 static void	conn_drain_tail(conn_t *connp, boolean_t closing);
750 
751 static void	conn_walk_drain(void);
752 static void	conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *,
753     zoneid_t);
754 
755 static boolean_t	conn_wantpacket(conn_t *, ill_t *, ipha_t *, int,
756     zoneid_t);
757 static void	ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
758     void *dummy_arg);
759 
760 static int	ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
761 
762 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
763     ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *,
764     conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *);
765 static void	ip_multirt_bad_mtu(ire_t *, uint32_t);
766 
767 static int	ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *);
768 static int	ip_cgtp_filter_set(queue_t *, mblk_t *, char *,
769     caddr_t, cred_t *);
770 extern int	ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value,
771     caddr_t cp, cred_t *cr);
772 extern int	ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t,
773     cred_t *);
774 static int	ip_input_proc_set(queue_t *q, mblk_t *mp, char *value,
775     caddr_t cp, cred_t *cr);
776 static int	ip_int_set(queue_t *, mblk_t *, char *, caddr_t,
777     cred_t *);
778 static squeue_func_t ip_squeue_switch(int);
779 
780 static void	ip_kstat_init(void);
781 static void	ip_kstat_fini(void);
782 static int	ip_kstat_update(kstat_t *kp, int rw);
783 static void	icmp_kstat_init(void);
784 static void	icmp_kstat_fini(void);
785 static int	icmp_kstat_update(kstat_t *kp, int rw);
786 
787 static int	ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *);
788 
789 static boolean_t	ip_no_forward(ipha_t *, ill_t *);
790 static boolean_t	ip_loopback_src_or_dst(ipha_t *, ill_t *);
791 
792 static mblk_t	*ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t,
793     ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *);
794 
795 void	ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t);
796 
797 timeout_id_t ip_ire_expire_id;	/* IRE expiration timer. */
798 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */
799 static clock_t ip_ire_rd_time_elapsed;	/* ... redirect IREs last flushed */
800 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */
801 
802 uint_t	ip_ire_default_count;	/* Number of IPv4 IRE_DEFAULT entries. */
803 uint_t	ip_ire_default_index;	/* Walking index used to mod in */
804 
805 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
806 clock_t icmp_pkt_err_last = 0;	/* Time since last icmp_pkt_err */
807 uint_t	icmp_pkt_err_sent = 0;	/* Number of packets sent in burst */
808 
809 /* How long, in seconds, we allow frags to hang around. */
810 #define	IP_FRAG_TIMEOUT	60
811 
812 time_t	ip_g_frag_timeout = IP_FRAG_TIMEOUT;
813 clock_t	ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000;
814 
815 /*
816  * Threshold which determines whether MDT should be used when
817  * generating IP fragments; payload size must be greater than
818  * this threshold for MDT to take place.
819  */
820 #define	IP_WPUT_FRAG_MDT_MIN	32768
821 
822 int	ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN;
823 
824 /* Protected by ip_mi_lock */
825 static void	*ip_g_head;		/* Instance Data List Head */
826 kmutex_t	ip_mi_lock;		/* Lock for list of instances */
827 
828 /* Only modified during _init and _fini thus no locking is needed. */
829 caddr_t		ip_g_nd;		/* Named Dispatch List Head */
830 
831 
832 static long ip_rput_pullups;
833 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
834 
835 vmem_t *ip_minor_arena;
836 
837 /*
838  * MIB-2 stuff for SNMP (both IP and ICMP)
839  */
840 mib2_ip_t	ip_mib;
841 mib2_icmp_t	icmp_mib;
842 
843 #ifdef DEBUG
844 uint32_t ipsechw_debug = 0;
845 #endif
846 
847 kstat_t		*ip_mibkp;	/* kstat exporting ip_mib data */
848 kstat_t		*icmp_mibkp;	/* kstat exporting icmp_mib data */
849 
850 uint_t	loopback_packets = 0;
851 
852 /*
853  * Multirouting/CGTP stuff
854  */
855 cgtp_filter_ops_t	*ip_cgtp_filter_ops;	/* CGTP hooks */
856 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
857 boolean_t	ip_cgtp_filter;		/* Enable/disable CGTP hooks */
858 /* Interval (in ms) between consecutive 'bad MTU' warnings */
859 hrtime_t ip_multirt_log_interval = 1000;
860 /* Time since last warning issued. */
861 static hrtime_t	multirt_bad_mtu_last_time = 0;
862 
863 kmutex_t ip_trash_timer_lock;
864 krwlock_t ip_g_nd_lock;
865 
866 /*
867  * XXX following really should only be in a header. Would need more
868  * header and .c clean up first.
869  */
870 extern optdb_obj_t	ip_opt_obj;
871 
872 ulong_t ip_squeue_enter_unbound = 0;
873 
874 /*
875  * Named Dispatch Parameter Table.
876  * All of these are alterable, within the min/max values given, at run time.
877  */
878 static ipparam_t	lcl_param_arr[] = {
879 	/* min	max	value	name */
880 	{  0,	1,	0,	"ip_respond_to_address_mask_broadcast"},
881 	{  0,	1,	1,	"ip_respond_to_echo_broadcast"},
882 	{  0,	1,	1,	"ip_respond_to_echo_multicast"},
883 	{  0,	1,	0,	"ip_respond_to_timestamp"},
884 	{  0,	1,	0,	"ip_respond_to_timestamp_broadcast"},
885 	{  0,	1,	1,	"ip_send_redirects"},
886 	{  0,	1,	0,	"ip_forward_directed_broadcasts"},
887 	{  0,	10,	0,	"ip_debug"},
888 	{  0,	10,	0,	"ip_mrtdebug"},
889 	{  5000, 999999999,	60000, "ip_ire_timer_interval" },
890 	{  60000, 999999999,	1200000, "ip_ire_arp_interval" },
891 	{  60000, 999999999,	60000, "ip_ire_redirect_interval" },
892 	{  1,	255,	255,	"ip_def_ttl" },
893 	{  0,	1,	0,	"ip_forward_src_routed"},
894 	{  0,	256,	32,	"ip_wroff_extra" },
895 	{  5000, 999999999, 600000, "ip_ire_pathmtu_interval" },
896 	{  8,	65536,  64,	"ip_icmp_return_data_bytes" },
897 	{  0,	1,	1,	"ip_path_mtu_discovery" },
898 	{  0,	240,	30,	"ip_ignore_delete_time" },
899 	{  0,	1,	0,	"ip_ignore_redirect" },
900 	{  0,	1,	1,	"ip_output_queue" },
901 	{  1,	254,	1,	"ip_broadcast_ttl" },
902 	{  0,	99999,	100,	"ip_icmp_err_interval" },
903 	{  1,	99999,	10,	"ip_icmp_err_burst" },
904 	{  0,	999999999,	1000000, "ip_reass_queue_bytes" },
905 	{  0,	1,	0,	"ip_strict_dst_multihoming" },
906 	{  1,	MAX_ADDRS_PER_IF,	256,	"ip_addrs_per_if"},
907 	{  0,	1,	0,	"ipsec_override_persocket_policy" },
908 	{  0,	1,	1,	"icmp_accept_clear_messages" },
909 	{  0,	1,	1,	"igmp_accept_clear_messages" },
910 	{  2,	999999999, ND_DELAY_FIRST_PROBE_TIME,
911 				"ip_ndp_delay_first_probe_time"},
912 	{  1,	999999999, ND_MAX_UNICAST_SOLICIT,
913 				"ip_ndp_max_unicast_solicit"},
914 	{  1,	255,	IPV6_MAX_HOPS,	"ip6_def_hops" },
915 	{  8,	IPV6_MIN_MTU,	IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" },
916 	{  0,	1,	0,	"ip6_forward_src_routed"},
917 	{  0,	1,	1,	"ip6_respond_to_echo_multicast"},
918 	{  0,	1,	1,	"ip6_send_redirects"},
919 	{  0,	1,	0,	"ip6_ignore_redirect" },
920 	{  0,	1,	0,	"ip6_strict_dst_multihoming" },
921 
922 	{  1,	8,	3,	"ip_ire_reclaim_fraction" },
923 
924 	{  0,	999999,	1000,	"ipsec_policy_log_interval" },
925 
926 	{  0,	1,	1,	"pim_accept_clear_messages" },
927 	{  1000, 20000,	2000,	"ip_ndp_unsolicit_interval" },
928 	{  1,	20,	3,	"ip_ndp_unsolicit_count" },
929 	{  0,	1,	1,	"ip6_ignore_home_address_opt" },
930 	{  0,	15,	0,	"ip_policy_mask" },
931 	{  1000, 60000, 1000,	"ip_multirt_resolution_interval" },
932 	{  0,	255,	1,	"ip_multirt_ttl" },
933 	{  0,	1,	1,	"ip_multidata_outbound" },
934 #ifdef DEBUG
935 	{  0,	1,	0,	"ip6_drop_inbound_icmpv6" },
936 #endif
937 };
938 
939 ipparam_t	*ip_param_arr = lcl_param_arr;
940 
941 /* Extended NDP table */
942 static ipndp_t	lcl_ndp_arr[] = {
943 	/* getf			setf		data			name */
944 	{  ip_param_generic_get,	ip_forward_set,	(caddr_t)&ip_g_forward,
945 	    "ip_forwarding" },
946 	{  ip_param_generic_get,	ip_forward_set,	(caddr_t)&ipv6_forward,
947 	    "ip6_forwarding" },
948 	{  ip_ill_report,	NULL,		NULL,
949 	    "ip_ill_status" },
950 	{  ip_ipif_report,	NULL,		NULL,
951 	    "ip_ipif_status" },
952 	{  ip_ire_report,	NULL,		NULL,
953 	    "ipv4_ire_status" },
954 	{  ip_ire_report_mrtun,	NULL,		NULL,
955 	    "ipv4_mrtun_ire_status" },
956 	{  ip_ire_report_srcif,	NULL,		NULL,
957 	    "ipv4_srcif_ire_status" },
958 	{  ip_ire_report_v6,	NULL,		NULL,
959 	    "ipv6_ire_status" },
960 	{  ip_conn_report,	NULL,		NULL,
961 	    "ip_conn_status" },
962 	{  nd_get_long,		nd_set_long,	(caddr_t)&ip_rput_pullups,
963 	    "ip_rput_pullups" },
964 	{  ndp_report,		NULL,		NULL,
965 	    "ip_ndp_cache_report" },
966 	{  ip_srcid_report,	NULL,		NULL,
967 	    "ip_srcid_status" },
968 	{ ip_param_generic_get, ip_squeue_profile_set,
969 	    (caddr_t)&ip_squeue_profile, "ip_squeue_profile" },
970 	{ ip_param_generic_get, ip_squeue_bind_set,
971 	    (caddr_t)&ip_squeue_bind, "ip_squeue_bind" },
972 	{ ip_param_generic_get, ip_input_proc_set,
973 	    (caddr_t)&ip_squeue_enter, "ip_squeue_enter" },
974 	{ ip_param_generic_get, ip_int_set,
975 	    (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" },
976 	{  ip_cgtp_filter_get,	ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter,
977 	    "ip_cgtp_filter" },
978 	{ ip_param_generic_get, ip_int_set,
979 	    (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }
980 };
981 
982 /*
983  * ip_g_forward controls IP forwarding.  It takes two values:
984  *	0: IP_FORWARD_NEVER	Don't forward packets ever.
985  *	1: IP_FORWARD_ALWAYS	Forward packets for elsewhere.
986  *
987  * RFC1122 says there must be a configuration switch to control forwarding,
988  * but that the default MUST be to not forward packets ever.  Implicit
989  * control based on configuration of multiple interfaces MUST NOT be
990  * implemented (Section 3.1).  SunOS 4.1 did provide the "automatic" capability
991  * and, in fact, it was the default.  That capability is now provided in the
992  * /etc/rc2.d/S69inet script.
993  */
994 int ip_g_forward = IP_FORWARD_DEFAULT;
995 
996 /* It also has an IPv6 counterpart. */
997 
998 int ipv6_forward = IP_FORWARD_DEFAULT;
999 
1000 /* Following line is external, and in ip.h.  Normally marked with * *. */
1001 #define	ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value
1002 #define	ip_g_resp_to_echo_bcast		ip_param_arr[1].ip_param_value
1003 #define	ip_g_resp_to_echo_mcast		ip_param_arr[2].ip_param_value
1004 #define	ip_g_resp_to_timestamp		ip_param_arr[3].ip_param_value
1005 #define	ip_g_resp_to_timestamp_bcast	ip_param_arr[4].ip_param_value
1006 #define	ip_g_send_redirects		ip_param_arr[5].ip_param_value
1007 #define	ip_g_forward_directed_bcast	ip_param_arr[6].ip_param_value
1008 #define	ip_debug			ip_param_arr[7].ip_param_value	/* */
1009 #define	ip_mrtdebug			ip_param_arr[8].ip_param_value	/* */
1010 #define	ip_timer_interval		ip_param_arr[9].ip_param_value	/* */
1011 #define	ip_ire_arp_interval		ip_param_arr[10].ip_param_value  /* */
1012 #define	ip_ire_redir_interval		ip_param_arr[11].ip_param_value
1013 #define	ip_def_ttl			ip_param_arr[12].ip_param_value
1014 #define	ip_forward_src_routed		ip_param_arr[13].ip_param_value
1015 #define	ip_wroff_extra			ip_param_arr[14].ip_param_value
1016 #define	ip_ire_pathmtu_interval		ip_param_arr[15].ip_param_value
1017 #define	ip_icmp_return			ip_param_arr[16].ip_param_value
1018 #define	ip_path_mtu_discovery		ip_param_arr[17].ip_param_value /* */
1019 #define	ip_ignore_delete_time		ip_param_arr[18].ip_param_value /* */
1020 #define	ip_ignore_redirect		ip_param_arr[19].ip_param_value
1021 #define	ip_output_queue			ip_param_arr[20].ip_param_value
1022 #define	ip_broadcast_ttl		ip_param_arr[21].ip_param_value
1023 #define	ip_icmp_err_interval		ip_param_arr[22].ip_param_value
1024 #define	ip_icmp_err_burst		ip_param_arr[23].ip_param_value
1025 #define	ip_reass_queue_bytes		ip_param_arr[24].ip_param_value
1026 #define	ip_strict_dst_multihoming	ip_param_arr[25].ip_param_value
1027 #define	ip_addrs_per_if			ip_param_arr[26].ip_param_value
1028 #define	ipsec_override_persocket_policy	ip_param_arr[27].ip_param_value /* */
1029 #define	icmp_accept_clear_messages	ip_param_arr[28].ip_param_value
1030 #define	igmp_accept_clear_messages	ip_param_arr[29].ip_param_value
1031 
1032 /* IPv6 configuration knobs */
1033 #define	delay_first_probe_time		ip_param_arr[30].ip_param_value
1034 #define	max_unicast_solicit		ip_param_arr[31].ip_param_value
1035 #define	ipv6_def_hops			ip_param_arr[32].ip_param_value
1036 #define	ipv6_icmp_return		ip_param_arr[33].ip_param_value
1037 #define	ipv6_forward_src_routed		ip_param_arr[34].ip_param_value
1038 #define	ipv6_resp_echo_mcast		ip_param_arr[35].ip_param_value
1039 #define	ipv6_send_redirects		ip_param_arr[36].ip_param_value
1040 #define	ipv6_ignore_redirect		ip_param_arr[37].ip_param_value
1041 #define	ipv6_strict_dst_multihoming	ip_param_arr[38].ip_param_value
1042 #define	ip_ire_reclaim_fraction		ip_param_arr[39].ip_param_value
1043 #define	ipsec_policy_log_interval	ip_param_arr[40].ip_param_value
1044 #define	pim_accept_clear_messages	ip_param_arr[41].ip_param_value
1045 #define	ip_ndp_unsolicit_interval	ip_param_arr[42].ip_param_value
1046 #define	ip_ndp_unsolicit_count		ip_param_arr[43].ip_param_value
1047 #define	ipv6_ignore_home_address_opt	ip_param_arr[44].ip_param_value
1048 #define	ip_policy_mask			ip_param_arr[45].ip_param_value
1049 #define	ip_multirt_resolution_interval  ip_param_arr[46].ip_param_value
1050 #define	ip_multirt_ttl  		ip_param_arr[47].ip_param_value
1051 #define	ip_multidata_outbound		ip_param_arr[48].ip_param_value
1052 #ifdef DEBUG
1053 #define	ipv6_drop_inbound_icmpv6	ip_param_arr[49].ip_param_value
1054 #else
1055 #define	ipv6_drop_inbound_icmpv6	0
1056 #endif
1057 
1058 
1059 /*
1060  * Table of IP ioctls encoding the various properties of the ioctl and
1061  * indexed based on the last byte of the ioctl command. Occasionally there
1062  * is a clash, and there is more than 1 ioctl with the same last byte.
1063  * In such a case 1 ioctl is encoded in the ndx table and the remaining
1064  * ioctls are encoded in the misc table. An entry in the ndx table is
1065  * retrieved by indexing on the last byte of the ioctl command and comparing
1066  * the ioctl command with the value in the ndx table. In the event of a
1067  * mismatch the misc table is then searched sequentially for the desired
1068  * ioctl command.
1069  *
1070  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
1071  */
1072 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
1073 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1074 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1075 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1076 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1077 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1078 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1079 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1080 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1081 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1082 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1083 
1084 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
1085 			MISC_CMD, ip_siocaddrt, NULL },
1086 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
1087 			MISC_CMD, ip_siocdelrt, NULL },
1088 
1089 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
1090 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
1091 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
1092 			IF_CMD, ip_sioctl_get_addr, NULL },
1093 
1094 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
1095 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
1096 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
1097 			IPI_GET_CMD | IPI_REPL,
1098 			IF_CMD, ip_sioctl_get_dstaddr, NULL },
1099 
1100 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
1101 			IPI_PRIV | IPI_WR | IPI_REPL,
1102 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
1103 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
1104 			IPI_MODOK | IPI_GET_CMD | IPI_REPL,
1105 			IF_CMD, ip_sioctl_get_flags, NULL },
1106 
1107 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1108 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1109 
1110 	/* copyin size cannot be coded for SIOCGIFCONF */
1111 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL,
1112 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
1113 
1114 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
1115 			IF_CMD, ip_sioctl_mtu, NULL },
1116 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
1117 			IF_CMD, ip_sioctl_get_mtu, NULL },
1118 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
1119 			IPI_GET_CMD | IPI_REPL,
1120 			IF_CMD, ip_sioctl_get_brdaddr, NULL },
1121 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
1122 			IF_CMD, ip_sioctl_brdaddr, NULL },
1123 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
1124 			IPI_GET_CMD | IPI_REPL,
1125 			IF_CMD, ip_sioctl_get_netmask, NULL },
1126 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
1127 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
1128 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
1129 			IPI_GET_CMD | IPI_REPL,
1130 			IF_CMD, ip_sioctl_get_metric, NULL },
1131 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
1132 			IF_CMD, ip_sioctl_metric, NULL },
1133 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1134 
1135 	/* See 166-168 below for extended SIOC*XARP ioctls */
1136 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV,
1137 			MISC_CMD, ip_sioctl_arp, NULL },
1138 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL,
1139 			MISC_CMD, ip_sioctl_arp, NULL },
1140 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV,
1141 			MISC_CMD, ip_sioctl_arp, NULL },
1142 
1143 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1144 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1145 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1146 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1147 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1148 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1149 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1150 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1151 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1152 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1153 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1154 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1155 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1156 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1157 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1158 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1159 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1160 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1161 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1162 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1163 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1164 
1165 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
1166 			MISC_CMD, if_unitsel, if_unitsel_restart },
1167 
1168 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1169 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1170 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1171 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1172 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1173 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1174 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1175 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1176 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1177 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1178 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1179 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1180 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1181 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1182 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1183 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1184 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1185 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1186 
1187 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
1188 			IPI_PRIV | IPI_WR | IPI_MODOK,
1189 			IF_CMD, ip_sioctl_sifname, NULL },
1190 
1191 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1192 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1193 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1194 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1195 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1196 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1197 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1198 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1199 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1200 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1201 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1202 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1203 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1204 
1205 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL,
1206 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
1207 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
1208 			IF_CMD, ip_sioctl_get_muxid, NULL },
1209 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
1210 			IPI_PRIV | IPI_WR | IPI_REPL,
1211 			IF_CMD, ip_sioctl_muxid, NULL },
1212 
1213 	/* Both if and lif variants share same func */
1214 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
1215 			IF_CMD, ip_sioctl_get_lifindex, NULL },
1216 	/* Both if and lif variants share same func */
1217 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
1218 			IPI_PRIV | IPI_WR | IPI_REPL,
1219 			IF_CMD, ip_sioctl_slifindex, NULL },
1220 
1221 	/* copyin size cannot be coded for SIOCGIFCONF */
1222 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL,
1223 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
1224 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1225 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1226 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1227 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1228 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1229 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1230 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1231 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1232 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1233 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1234 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1235 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1236 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1237 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1238 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1239 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1240 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1241 
1242 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
1243 			IPI_PRIV | IPI_WR | IPI_REPL,
1244 			LIF_CMD, ip_sioctl_removeif,
1245 			ip_sioctl_removeif_restart },
1246 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
1247 			IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL,
1248 			LIF_CMD, ip_sioctl_addif, NULL },
1249 #define	SIOCLIFADDR_NDX 112
1250 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1251 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
1252 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
1253 			IPI_GET_CMD | IPI_REPL,
1254 			LIF_CMD, ip_sioctl_get_addr, NULL },
1255 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1256 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
1257 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
1258 			IPI_GET_CMD | IPI_REPL,
1259 			LIF_CMD, ip_sioctl_get_dstaddr, NULL },
1260 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
1261 			IPI_PRIV | IPI_WR | IPI_REPL,
1262 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
1263 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
1264 			IPI_GET_CMD | IPI_MODOK | IPI_REPL,
1265 			LIF_CMD, ip_sioctl_get_flags, NULL },
1266 
1267 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1268 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1269 
1270 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL,
1271 			ip_sioctl_get_lifconf, NULL },
1272 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1273 			LIF_CMD, ip_sioctl_mtu, NULL },
1274 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL,
1275 			LIF_CMD, ip_sioctl_get_mtu, NULL },
1276 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
1277 			IPI_GET_CMD | IPI_REPL,
1278 			LIF_CMD, ip_sioctl_get_brdaddr, NULL },
1279 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1280 			LIF_CMD, ip_sioctl_brdaddr, NULL },
1281 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
1282 			IPI_GET_CMD | IPI_REPL,
1283 			LIF_CMD, ip_sioctl_get_netmask, NULL },
1284 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1285 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
1286 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
1287 			IPI_GET_CMD | IPI_REPL,
1288 			LIF_CMD, ip_sioctl_get_metric, NULL },
1289 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1290 			LIF_CMD, ip_sioctl_metric, NULL },
1291 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
1292 			IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL,
1293 			LIF_CMD, ip_sioctl_slifname,
1294 			ip_sioctl_slifname_restart },
1295 
1296 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL,
1297 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
1298 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
1299 			IPI_GET_CMD | IPI_REPL,
1300 			LIF_CMD, ip_sioctl_get_muxid, NULL },
1301 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1302 			IPI_PRIV | IPI_WR | IPI_REPL,
1303 			LIF_CMD, ip_sioctl_muxid, NULL },
1304 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1305 			IPI_GET_CMD | IPI_REPL,
1306 			LIF_CMD, ip_sioctl_get_lifindex, 0 },
1307 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1308 			IPI_PRIV | IPI_WR | IPI_REPL,
1309 			LIF_CMD, ip_sioctl_slifindex, 0 },
1310 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1311 			LIF_CMD, ip_sioctl_token, NULL },
1312 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1313 			IPI_GET_CMD | IPI_REPL,
1314 			LIF_CMD, ip_sioctl_get_token, NULL },
1315 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1316 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1317 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1318 			IPI_GET_CMD | IPI_REPL,
1319 			LIF_CMD, ip_sioctl_get_subnet, NULL },
1320 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1321 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1322 
1323 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1324 			IPI_GET_CMD | IPI_REPL,
1325 			LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1326 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1327 			LIF_CMD, ip_siocdelndp_v6, NULL },
1328 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1329 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1330 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1331 			LIF_CMD, ip_siocsetndp_v6, NULL },
1332 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1333 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1334 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1335 			MISC_CMD, ip_sioctl_tonlink, NULL },
1336 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1337 			MISC_CMD, ip_sioctl_tmysite, NULL },
1338 	/* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL,
1339 			TUN_CMD, ip_sioctl_tunparam, NULL },
1340 	/* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req),
1341 			IPI_PRIV | IPI_WR,
1342 			TUN_CMD, ip_sioctl_tunparam, NULL },
1343 
1344 	/* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1345 	/* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1346 	/* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1347 	/* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1348 	/* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1349 
1350 	/* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq),
1351 			IPI_PRIV | IPI_WR | IPI_REPL,
1352 			LIF_CMD, ip_sioctl_move, ip_sioctl_move },
1353 	/* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq),
1354 			IPI_PRIV | IPI_WR | IPI_REPL,
1355 			LIF_CMD, ip_sioctl_move, ip_sioctl_move },
1356 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1357 			IPI_PRIV | IPI_WR,
1358 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1359 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1360 			IPI_GET_CMD | IPI_REPL,
1361 			LIF_CMD, ip_sioctl_get_groupname, NULL },
1362 	/* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq),
1363 			IPI_GET_CMD | IPI_REPL,
1364 			LIF_CMD, ip_sioctl_get_oindex, NULL },
1365 
1366 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1367 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1368 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1369 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1370 
1371 	/* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1372 		    LIF_CMD, ip_sioctl_slifoindex, NULL },
1373 
1374 	/* These are handled in ip_sioctl_copyin_setup itself */
1375 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1376 			MISC_CMD, NULL, NULL },
1377 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1378 			MISC_CMD, NULL, NULL },
1379 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1380 
1381 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL,
1382 			ip_sioctl_get_lifconf, NULL },
1383 
1384 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV,
1385 			MISC_CMD, ip_sioctl_xarp, NULL },
1386 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL,
1387 			MISC_CMD, ip_sioctl_xarp, NULL },
1388 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV,
1389 			MISC_CMD, ip_sioctl_xarp, NULL },
1390 
1391 	/* SIOCPOPSOCKFS is not handled by IP */
1392 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1393 
1394 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1395 			IPI_GET_CMD | IPI_REPL,
1396 			LIF_CMD, ip_sioctl_get_lifzone, NULL },
1397 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1398 			IPI_PRIV | IPI_WR | IPI_REPL,
1399 			LIF_CMD, ip_sioctl_slifzone,
1400 			ip_sioctl_slifzone_restart },
1401 	/* 172-174 are SCTP ioctls and not handled by IP */
1402 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1403 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1404 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1405 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1406 			IPI_GET_CMD, LIF_CMD,
1407 			ip_sioctl_get_lifusesrc, 0 },
1408 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1409 			IPI_PRIV | IPI_WR,
1410 			LIF_CMD, ip_sioctl_slifusesrc,
1411 			NULL },
1412 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1413 			ip_sioctl_get_lifsrcof, NULL },
1414 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1415 			MISC_CMD, ip_sioctl_msfilter, NULL },
1416 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR,
1417 			MISC_CMD, ip_sioctl_msfilter, NULL },
1418 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1419 			MISC_CMD, ip_sioctl_msfilter, NULL },
1420 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR,
1421 			MISC_CMD, ip_sioctl_msfilter, NULL },
1422 	/* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD,
1423 			ip_sioctl_set_ipmpfailback, NULL }
1424 };
1425 
1426 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1427 
1428 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1429 	{ OSIOCGTUNPARAM, sizeof (struct old_iftun_req),
1430 		IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL },
1431 	{ OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR,
1432 		TUN_CMD, ip_sioctl_tunparam, NULL },
1433 	{ I_LINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1434 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1435 	{ I_PLINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1436 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1437 	{ ND_GET,	0, IPI_PASS_DOWN, 0, NULL, NULL },
1438 	{ ND_SET,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1439 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1440 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD,
1441 		MISC_CMD, mrt_ioctl},
1442 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD,
1443 		MISC_CMD, mrt_ioctl},
1444 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD,
1445 		MISC_CMD, mrt_ioctl}
1446 };
1447 
1448 int ip_misc_ioctl_count =
1449     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1450 
1451 static  idl_t *conn_drain_list;		/* The array of conn drain lists */
1452 static  uint_t conn_drain_list_cnt;	/* Total count of conn_drain_list */
1453 static  int    conn_drain_list_index;	/* Next drain_list to be used */
1454 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1455 					/* Settable in /etc/system */
1456 
1457 /* Defined in ip_ire.c */
1458 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1459 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1460 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1461 
1462 static nv_t	ire_nv_arr[] = {
1463 	{ IRE_BROADCAST, "BROADCAST" },
1464 	{ IRE_LOCAL, "LOCAL" },
1465 	{ IRE_LOOPBACK, "LOOPBACK" },
1466 	{ IRE_CACHE, "CACHE" },
1467 	{ IRE_DEFAULT, "DEFAULT" },
1468 	{ IRE_PREFIX, "PREFIX" },
1469 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1470 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1471 	{ IRE_HOST, "HOST" },
1472 	{ IRE_HOST_REDIRECT, "HOST_REDIRECT" },
1473 	{ 0 }
1474 };
1475 
1476 nv_t	*ire_nv_tbl = ire_nv_arr;
1477 
1478 /* Defined in ip_if.c, protect the list of IPsec capable ills */
1479 extern krwlock_t ipsec_capab_ills_lock;
1480 
1481 /* Packet dropper for IP IPsec processing failures */
1482 ipdropper_t ip_dropper;
1483 
1484 /* Simple ICMP IP Header Template */
1485 static ipha_t icmp_ipha = {
1486 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1487 };
1488 
1489 struct module_info ip_mod_info = {
1490 	IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024
1491 };
1492 
1493 static struct qinit rinit = {
1494 	(pfi_t)ip_rput, NULL, ip_open, ip_close, NULL,
1495 	&ip_mod_info
1496 };
1497 
1498 static struct qinit winit = {
1499 	(pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL,
1500 	&ip_mod_info
1501 };
1502 
1503 static struct qinit lrinit = {
1504 	(pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL,
1505 	&ip_mod_info
1506 };
1507 
1508 static struct qinit lwinit = {
1509 	(pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL,
1510 	&ip_mod_info
1511 };
1512 
1513 struct streamtab ipinfo = {
1514 	&rinit, &winit, &lrinit, &lwinit
1515 };
1516 
1517 #ifdef	DEBUG
1518 static boolean_t skip_sctp_cksum = B_FALSE;
1519 #endif
1520 /*
1521  * Copy an M_CTL-tagged message, preserving reference counts appropriately.
1522  */
1523 mblk_t *
1524 ip_copymsg(mblk_t *mp)
1525 {
1526 	mblk_t *nmp;
1527 	ipsec_info_t *in;
1528 
1529 	if (mp->b_datap->db_type != M_CTL)
1530 		return (copymsg(mp));
1531 
1532 	in = (ipsec_info_t *)mp->b_rptr;
1533 
1534 	/*
1535 	 * Note that M_CTL is also used for delivering ICMP error messages
1536 	 * upstream to transport layers.
1537 	 */
1538 	if (in->ipsec_info_type != IPSEC_OUT &&
1539 	    in->ipsec_info_type != IPSEC_IN)
1540 		return (copymsg(mp));
1541 
1542 	nmp = copymsg(mp->b_cont);
1543 
1544 	if (in->ipsec_info_type == IPSEC_OUT)
1545 		return (ipsec_out_tag(mp, nmp));
1546 	else
1547 		return (ipsec_in_tag(mp, nmp));
1548 }
1549 
1550 /* Generate an ICMP fragmentation needed message. */
1551 static void
1552 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu)
1553 {
1554 	icmph_t	icmph;
1555 	mblk_t *first_mp;
1556 	boolean_t mctl_present;
1557 
1558 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1559 
1560 	if (!(mp = icmp_pkt_err_ok(mp))) {
1561 		if (mctl_present)
1562 			freeb(first_mp);
1563 		return;
1564 	}
1565 
1566 	bzero(&icmph, sizeof (icmph_t));
1567 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1568 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1569 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1570 	BUMP_MIB(&icmp_mib, icmpOutFragNeeded);
1571 	BUMP_MIB(&icmp_mib, icmpOutDestUnreachs);
1572 	icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present);
1573 }
1574 
1575 /*
1576  * icmp_inbound deals with ICMP messages in the following ways.
1577  *
1578  * 1) It needs to send a reply back and possibly delivering it
1579  *    to the "interested" upper clients.
1580  * 2) It needs to send it to the upper clients only.
1581  * 3) It needs to change some values in IP only.
1582  * 4) It needs to change some values in IP and upper layers e.g TCP.
1583  *
1584  * We need to accomodate icmp messages coming in clear until we get
1585  * everything secure from the wire. If icmp_accept_clear_messages
1586  * is zero we check with the global policy and act accordingly. If
1587  * it is non-zero, we accept the message without any checks. But
1588  * *this does not mean* that this will be delivered to the upper
1589  * clients. By accepting we might send replies back, change our MTU
1590  * value etc. but delivery to the ULP/clients depends on their policy
1591  * dispositions.
1592  *
1593  * We handle the above 4 cases in the context of IPSEC in the
1594  * following way :
1595  *
1596  * 1) Send the reply back in the same way as the request came in.
1597  *    If it came in encrypted, it goes out encrypted. If it came in
1598  *    clear, it goes out in clear. Thus, this will prevent chosen
1599  *    plain text attack.
1600  * 2) The client may or may not expect things to come in secure.
1601  *    If it comes in secure, the policy constraints are checked
1602  *    before delivering it to the upper layers. If it comes in
1603  *    clear, ipsec_inbound_accept_clear will decide whether to
1604  *    accept this in clear or not. In both the cases, if the returned
1605  *    message (IP header + 8 bytes) that caused the icmp message has
1606  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1607  *    sending up. If there are only 8 bytes of returned message, then
1608  *    upper client will not be notified.
1609  * 3) Check with global policy to see whether it matches the constaints.
1610  *    But this will be done only if icmp_accept_messages_in_clear is
1611  *    zero.
1612  * 4) If we need to change both in IP and ULP, then the decision taken
1613  *    while affecting the values in IP and while delivering up to TCP
1614  *    should be the same.
1615  *
1616  * 	There are two cases.
1617  *
1618  * 	a) If we reject data at the IP layer (ipsec_check_global_policy()
1619  *	   failed), we will not deliver it to the ULP, even though they
1620  *	   are *willing* to accept in *clear*. This is fine as our global
1621  *	   disposition to icmp messages asks us reject the datagram.
1622  *
1623  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1624  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1625  *	   to deliver it to ULP (policy failed), it can lead to
1626  *	   consistency problems. The cases known at this time are
1627  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1628  *	   values :
1629  *
1630  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1631  *	     and Upper layer rejects. Then the communication will
1632  *	     come to a stop. This is solved by making similar decisions
1633  *	     at both levels. Currently, when we are unable to deliver
1634  *	     to the Upper Layer (due to policy failures) while IP has
1635  *	     adjusted ire_max_frag, the next outbound datagram would
1636  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1637  *	     will be with the right level of protection. Thus the right
1638  *	     value will be communicated even if we are not able to
1639  *	     communicate when we get from the wire initially. But this
1640  *	     assumes there would be at least one outbound datagram after
1641  *	     IP has adjusted its ire_max_frag value. To make things
1642  *	     simpler, we accept in clear after the validation of
1643  *	     AH/ESP headers.
1644  *
1645  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1646  *	     upper layer depending on the level of protection the upper
1647  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1648  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1649  *	     should be accepted in clear when the Upper layer expects secure.
1650  *	     Thus the communication may get aborted by some bad ICMP
1651  *	     packets.
1652  *
1653  * IPQoS Notes:
1654  * The only instance when a packet is sent for processing is when there
1655  * isn't an ICMP client and if we are interested in it.
1656  * If there is a client, IPPF processing will take place in the
1657  * ip_fanout_proto routine.
1658  *
1659  * Zones notes:
1660  * The packet is only processed in the context of the specified zone: typically
1661  * only this zone will reply to an echo request, and only interested clients in
1662  * this zone will receive a copy of the packet. This means that the caller must
1663  * call icmp_inbound() for each relevant zone.
1664  */
1665 static void
1666 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill,
1667     int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy,
1668     ill_t *recv_ill, zoneid_t zoneid)
1669 {
1670 	icmph_t	*icmph;
1671 	ipha_t	*ipha;
1672 	int	iph_hdr_length;
1673 	int	hdr_length;
1674 	boolean_t	interested;
1675 	uint32_t	ts;
1676 	uchar_t	*wptr;
1677 	ipif_t	*ipif;
1678 	mblk_t *first_mp;
1679 	ipsec_in_t *ii;
1680 	ire_t *src_ire;
1681 	boolean_t onlink;
1682 	timestruc_t now;
1683 	uint32_t ill_index;
1684 
1685 	ASSERT(ill != NULL);
1686 
1687 	first_mp = mp;
1688 	if (mctl_present) {
1689 		mp = first_mp->b_cont;
1690 		ASSERT(mp != NULL);
1691 	}
1692 
1693 	ipha = (ipha_t *)mp->b_rptr;
1694 	if (icmp_accept_clear_messages == 0) {
1695 		first_mp = ipsec_check_global_policy(first_mp, NULL,
1696 		    ipha, NULL, mctl_present);
1697 		if (first_mp == NULL)
1698 			return;
1699 	}
1700 
1701 	/*
1702 	 * On a labeled system, we have to check whether the zone itself is
1703 	 * permitted to receive raw traffic.
1704 	 */
1705 	if (is_system_labeled()) {
1706 		if (zoneid == ALL_ZONES)
1707 			zoneid = tsol_packet_to_zoneid(mp);
1708 		if (!tsol_can_accept_raw(mp, B_FALSE)) {
1709 			ip1dbg(("icmp_inbound: zone %d can't receive raw",
1710 			    zoneid));
1711 			BUMP_MIB(&icmp_mib, icmpInErrors);
1712 			freemsg(first_mp);
1713 			return;
1714 		}
1715 	}
1716 
1717 	/*
1718 	 * We have accepted the ICMP message. It means that we will
1719 	 * respond to the packet if needed. It may not be delivered
1720 	 * to the upper client depending on the policy constraints
1721 	 * and the disposition in ipsec_inbound_accept_clear.
1722 	 */
1723 
1724 	ASSERT(ill != NULL);
1725 
1726 	BUMP_MIB(&icmp_mib, icmpInMsgs);
1727 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1728 	if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) {
1729 		/* Last chance to get real. */
1730 		if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) {
1731 			BUMP_MIB(&icmp_mib, icmpInErrors);
1732 			freemsg(first_mp);
1733 			return;
1734 		}
1735 		/* Refresh iph following the pullup. */
1736 		ipha = (ipha_t *)mp->b_rptr;
1737 	}
1738 	/* ICMP header checksum, including checksum field, should be zero. */
1739 	if (sum_valid ? (sum != 0 && sum != 0xFFFF) :
1740 	    IP_CSUM(mp, iph_hdr_length, 0)) {
1741 		BUMP_MIB(&icmp_mib, icmpInCksumErrs);
1742 		freemsg(first_mp);
1743 		return;
1744 	}
1745 	/* The IP header will always be a multiple of four bytes */
1746 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1747 	ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type,
1748 	    icmph->icmph_code));
1749 	wptr = (uchar_t *)icmph + ICMPH_SIZE;
1750 	/* We will set "interested" to "true" if we want a copy */
1751 	interested = B_FALSE;
1752 	switch (icmph->icmph_type) {
1753 	case ICMP_ECHO_REPLY:
1754 		BUMP_MIB(&icmp_mib, icmpInEchoReps);
1755 		break;
1756 	case ICMP_DEST_UNREACHABLE:
1757 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1758 			BUMP_MIB(&icmp_mib, icmpInFragNeeded);
1759 		interested = B_TRUE;	/* Pass up to transport */
1760 		BUMP_MIB(&icmp_mib, icmpInDestUnreachs);
1761 		break;
1762 	case ICMP_SOURCE_QUENCH:
1763 		interested = B_TRUE;	/* Pass up to transport */
1764 		BUMP_MIB(&icmp_mib, icmpInSrcQuenchs);
1765 		break;
1766 	case ICMP_REDIRECT:
1767 		if (!ip_ignore_redirect)
1768 			interested = B_TRUE;
1769 		BUMP_MIB(&icmp_mib, icmpInRedirects);
1770 		break;
1771 	case ICMP_ECHO_REQUEST:
1772 		/*
1773 		 * Whether to respond to echo requests that come in as IP
1774 		 * broadcasts or as IP multicast is subject to debate
1775 		 * (what isn't?).  We aim to please, you pick it.
1776 		 * Default is do it.
1777 		 */
1778 		if (!broadcast && !CLASSD(ipha->ipha_dst)) {
1779 			/* unicast: always respond */
1780 			interested = B_TRUE;
1781 		} else if (CLASSD(ipha->ipha_dst)) {
1782 			/* multicast: respond based on tunable */
1783 			interested = ip_g_resp_to_echo_mcast;
1784 		} else if (broadcast) {
1785 			/* broadcast: respond based on tunable */
1786 			interested = ip_g_resp_to_echo_bcast;
1787 		}
1788 		BUMP_MIB(&icmp_mib, icmpInEchos);
1789 		break;
1790 	case ICMP_ROUTER_ADVERTISEMENT:
1791 	case ICMP_ROUTER_SOLICITATION:
1792 		break;
1793 	case ICMP_TIME_EXCEEDED:
1794 		interested = B_TRUE;	/* Pass up to transport */
1795 		BUMP_MIB(&icmp_mib, icmpInTimeExcds);
1796 		break;
1797 	case ICMP_PARAM_PROBLEM:
1798 		interested = B_TRUE;	/* Pass up to transport */
1799 		BUMP_MIB(&icmp_mib, icmpInParmProbs);
1800 		break;
1801 	case ICMP_TIME_STAMP_REQUEST:
1802 		/* Response to Time Stamp Requests is local policy. */
1803 		if (ip_g_resp_to_timestamp &&
1804 		    /* So is whether to respond if it was an IP broadcast. */
1805 		    (!broadcast || ip_g_resp_to_timestamp_bcast)) {
1806 			int tstamp_len = 3 * sizeof (uint32_t);
1807 
1808 			if (wptr +  tstamp_len > mp->b_wptr) {
1809 				if (!pullupmsg(mp, wptr + tstamp_len -
1810 				    mp->b_rptr)) {
1811 					BUMP_MIB(&ip_mib, ipInDiscards);
1812 					freemsg(first_mp);
1813 					return;
1814 				}
1815 				/* Refresh ipha following the pullup. */
1816 				ipha = (ipha_t *)mp->b_rptr;
1817 				icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1818 				wptr = (uchar_t *)icmph + ICMPH_SIZE;
1819 			}
1820 			interested = B_TRUE;
1821 		}
1822 		BUMP_MIB(&icmp_mib, icmpInTimestamps);
1823 		break;
1824 	case ICMP_TIME_STAMP_REPLY:
1825 		BUMP_MIB(&icmp_mib, icmpInTimestampReps);
1826 		break;
1827 	case ICMP_INFO_REQUEST:
1828 		/* Per RFC 1122 3.2.2.7, ignore this. */
1829 	case ICMP_INFO_REPLY:
1830 		break;
1831 	case ICMP_ADDRESS_MASK_REQUEST:
1832 		if ((ip_respond_to_address_mask_broadcast || !broadcast) &&
1833 		    /* TODO m_pullup of complete header? */
1834 		    (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN)
1835 			interested = B_TRUE;
1836 		BUMP_MIB(&icmp_mib, icmpInAddrMasks);
1837 		break;
1838 	case ICMP_ADDRESS_MASK_REPLY:
1839 		BUMP_MIB(&icmp_mib, icmpInAddrMaskReps);
1840 		break;
1841 	default:
1842 		interested = B_TRUE;	/* Pass up to transport */
1843 		BUMP_MIB(&icmp_mib, icmpInUnknowns);
1844 		break;
1845 	}
1846 	/* See if there is an ICMP client. */
1847 	if (ipcl_proto_search(IPPROTO_ICMP) != NULL) {
1848 		/* If there is an ICMP client and we want one too, copy it. */
1849 		mblk_t *first_mp1;
1850 
1851 		if (!interested) {
1852 			ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present,
1853 			    ip_policy, recv_ill, zoneid);
1854 			return;
1855 		}
1856 		first_mp1 = ip_copymsg(first_mp);
1857 		if (first_mp1 != NULL) {
1858 			ip_fanout_proto(q, first_mp1, ill, ipha,
1859 			    0, mctl_present, ip_policy, recv_ill, zoneid);
1860 		}
1861 	} else if (!interested) {
1862 		freemsg(first_mp);
1863 		return;
1864 	} else {
1865 		/*
1866 		 * Initiate policy processing for this packet if ip_policy
1867 		 * is true.
1868 		 */
1869 		if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) {
1870 			ill_index = ill->ill_phyint->phyint_ifindex;
1871 			ip_process(IPP_LOCAL_IN, &mp, ill_index);
1872 			if (mp == NULL) {
1873 				if (mctl_present) {
1874 					freeb(first_mp);
1875 				}
1876 				BUMP_MIB(&icmp_mib, icmpInErrors);
1877 				return;
1878 			}
1879 		}
1880 	}
1881 	/* We want to do something with it. */
1882 	/* Check db_ref to make sure we can modify the packet. */
1883 	if (mp->b_datap->db_ref > 1) {
1884 		mblk_t	*first_mp1;
1885 
1886 		first_mp1 = ip_copymsg(first_mp);
1887 		freemsg(first_mp);
1888 		if (!first_mp1) {
1889 			BUMP_MIB(&icmp_mib, icmpOutDrops);
1890 			return;
1891 		}
1892 		first_mp = first_mp1;
1893 		if (mctl_present) {
1894 			mp = first_mp->b_cont;
1895 			ASSERT(mp != NULL);
1896 		} else {
1897 			mp = first_mp;
1898 		}
1899 		ipha = (ipha_t *)mp->b_rptr;
1900 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1901 		wptr = (uchar_t *)icmph + ICMPH_SIZE;
1902 	}
1903 	switch (icmph->icmph_type) {
1904 	case ICMP_ADDRESS_MASK_REQUEST:
1905 		ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1906 		if (ipif == NULL) {
1907 			freemsg(first_mp);
1908 			return;
1909 		}
1910 		/*
1911 		 * outging interface must be IPv4
1912 		 */
1913 		ASSERT(ipif != NULL && !ipif->ipif_isv6);
1914 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1915 		bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN);
1916 		ipif_refrele(ipif);
1917 		BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps);
1918 		break;
1919 	case ICMP_ECHO_REQUEST:
1920 		icmph->icmph_type = ICMP_ECHO_REPLY;
1921 		BUMP_MIB(&icmp_mib, icmpOutEchoReps);
1922 		break;
1923 	case ICMP_TIME_STAMP_REQUEST: {
1924 		uint32_t *tsp;
1925 
1926 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1927 		tsp = (uint32_t *)wptr;
1928 		tsp++;		/* Skip past 'originate time' */
1929 		/* Compute # of milliseconds since midnight */
1930 		gethrestime(&now);
1931 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1932 		    now.tv_nsec / (NANOSEC / MILLISEC);
1933 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1934 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1935 		BUMP_MIB(&icmp_mib, icmpOutTimestampReps);
1936 		break;
1937 	}
1938 	default:
1939 		ipha = (ipha_t *)&icmph[1];
1940 		if ((uchar_t *)&ipha[1] > mp->b_wptr) {
1941 			if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) {
1942 				BUMP_MIB(&ip_mib, ipInDiscards);
1943 				freemsg(first_mp);
1944 				return;
1945 			}
1946 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1947 			ipha = (ipha_t *)&icmph[1];
1948 		}
1949 		if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) {
1950 			BUMP_MIB(&ip_mib, ipInDiscards);
1951 			freemsg(first_mp);
1952 			return;
1953 		}
1954 		hdr_length = IPH_HDR_LENGTH(ipha);
1955 		if (hdr_length < sizeof (ipha_t)) {
1956 			BUMP_MIB(&ip_mib, ipInDiscards);
1957 			freemsg(first_mp);
1958 			return;
1959 		}
1960 		if ((uchar_t *)ipha + hdr_length > mp->b_wptr) {
1961 			if (!pullupmsg(mp,
1962 			    (uchar_t *)ipha + hdr_length - mp->b_rptr)) {
1963 				BUMP_MIB(&ip_mib, ipInDiscards);
1964 				freemsg(first_mp);
1965 				return;
1966 			}
1967 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1968 			ipha = (ipha_t *)&icmph[1];
1969 		}
1970 		switch (icmph->icmph_type) {
1971 		case ICMP_REDIRECT:
1972 			/*
1973 			 * As there is no upper client to deliver, we don't
1974 			 * need the first_mp any more.
1975 			 */
1976 			if (mctl_present) {
1977 				freeb(first_mp);
1978 			}
1979 			icmp_redirect(mp);
1980 			return;
1981 		case ICMP_DEST_UNREACHABLE:
1982 			if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1983 				if (!icmp_inbound_too_big(icmph, ipha)) {
1984 					freemsg(first_mp);
1985 					return;
1986 				}
1987 			}
1988 			/* FALLTHRU */
1989 		default :
1990 			/*
1991 			 * IPQoS notes: Since we have already done IPQoS
1992 			 * processing we don't want to do it again in
1993 			 * the fanout routines called by
1994 			 * icmp_inbound_error_fanout, hence the last
1995 			 * argument, ip_policy, is B_FALSE.
1996 			 */
1997 			icmp_inbound_error_fanout(q, ill, first_mp, icmph,
1998 			    ipha, iph_hdr_length, hdr_length, mctl_present,
1999 			    B_FALSE, recv_ill, zoneid);
2000 		}
2001 		return;
2002 	}
2003 	/* Send out an ICMP packet */
2004 	icmph->icmph_checksum = 0;
2005 	icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0);
2006 	if (icmph->icmph_checksum == 0)
2007 		icmph->icmph_checksum = 0xFFFF;
2008 	if (broadcast || CLASSD(ipha->ipha_dst)) {
2009 		ipif_t	*ipif_chosen;
2010 		/*
2011 		 * Make it look like it was directed to us, so we don't look
2012 		 * like a fool with a broadcast or multicast source address.
2013 		 */
2014 		ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
2015 		/*
2016 		 * Make sure that we haven't grabbed an interface that's DOWN.
2017 		 */
2018 		if (ipif != NULL) {
2019 			ipif_chosen = ipif_select_source(ipif->ipif_ill,
2020 			    ipha->ipha_src, zoneid);
2021 			if (ipif_chosen != NULL) {
2022 				ipif_refrele(ipif);
2023 				ipif = ipif_chosen;
2024 			}
2025 		}
2026 		if (ipif == NULL) {
2027 			ip0dbg(("icmp_inbound: "
2028 			    "No source for broadcast/multicast:\n"
2029 			    "\tsrc 0x%x dst 0x%x ill %p "
2030 			    "ipif_lcl_addr 0x%x\n",
2031 			    ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst),
2032 			    (void *)ill,
2033 			    ill->ill_ipif->ipif_lcl_addr));
2034 			freemsg(first_mp);
2035 			return;
2036 		}
2037 		ASSERT(ipif != NULL && !ipif->ipif_isv6);
2038 		ipha->ipha_dst = ipif->ipif_src_addr;
2039 		ipif_refrele(ipif);
2040 	}
2041 	/* Reset time to live. */
2042 	ipha->ipha_ttl = ip_def_ttl;
2043 	{
2044 		/* Swap source and destination addresses */
2045 		ipaddr_t tmp;
2046 
2047 		tmp = ipha->ipha_src;
2048 		ipha->ipha_src = ipha->ipha_dst;
2049 		ipha->ipha_dst = tmp;
2050 	}
2051 	ipha->ipha_ident = 0;
2052 	if (!IS_SIMPLE_IPH(ipha))
2053 		icmp_options_update(ipha);
2054 
2055 	/*
2056 	 * ICMP echo replies should go out on the same interface
2057 	 * the request came on as probes used by in.mpathd for detecting
2058 	 * NIC failures are ECHO packets. We turn-off load spreading
2059 	 * by setting ipsec_in_attach_if to B_TRUE, which is copied
2060 	 * to ipsec_out_attach_if by ipsec_in_to_out called later in this
2061 	 * function. This is in turn handled by ip_wput and ip_newroute
2062 	 * to make sure that the packet goes out on the interface it came
2063 	 * in on. If we don't turnoff load spreading, the packets might get
2064 	 * dropped if there are no non-FAILED/INACTIVE interfaces for it
2065 	 * to go out and in.mpathd would wrongly detect a failure or
2066 	 * mis-detect a NIC failure for link failure. As load spreading
2067 	 * can happen only if ill_group is not NULL, we do only for
2068 	 * that case and this does not affect the normal case.
2069 	 *
2070 	 * We turn off load spreading only on echo packets that came from
2071 	 * on-link hosts. If the interface route has been deleted, this will
2072 	 * not be enforced as we can't do much. For off-link hosts, as the
2073 	 * default routes in IPv4 does not typically have an ire_ipif
2074 	 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute.
2075 	 * Moreover, expecting a default route through this interface may
2076 	 * not be correct. We use ipha_dst because of the swap above.
2077 	 */
2078 	onlink = B_FALSE;
2079 	if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) {
2080 		/*
2081 		 * First, we need to make sure that it is not one of our
2082 		 * local addresses. If we set onlink when it is one of
2083 		 * our local addresses, we will end up creating IRE_CACHES
2084 		 * for one of our local addresses. Then, we will never
2085 		 * accept packets for them afterwards.
2086 		 */
2087 		src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL,
2088 		    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
2089 		if (src_ire == NULL) {
2090 			ipif = ipif_get_next_ipif(NULL, ill);
2091 			if (ipif == NULL) {
2092 				BUMP_MIB(&ip_mib, ipInDiscards);
2093 				freemsg(mp);
2094 				return;
2095 			}
2096 			src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0,
2097 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
2098 			    NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE);
2099 			ipif_refrele(ipif);
2100 			if (src_ire != NULL) {
2101 				onlink = B_TRUE;
2102 				ire_refrele(src_ire);
2103 			}
2104 		} else {
2105 			ire_refrele(src_ire);
2106 		}
2107 	}
2108 	if (!mctl_present) {
2109 		/*
2110 		 * This packet should go out the same way as it
2111 		 * came in i.e in clear. To make sure that global
2112 		 * policy will not be applied to this in ip_wput_ire,
2113 		 * we attach a IPSEC_IN mp and clear ipsec_in_secure.
2114 		 */
2115 		ASSERT(first_mp == mp);
2116 		if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) {
2117 			BUMP_MIB(&ip_mib, ipInDiscards);
2118 			freemsg(mp);
2119 			return;
2120 		}
2121 		ii = (ipsec_in_t *)first_mp->b_rptr;
2122 
2123 		/* This is not a secure packet */
2124 		ii->ipsec_in_secure = B_FALSE;
2125 		if (onlink) {
2126 			ii->ipsec_in_attach_if = B_TRUE;
2127 			ii->ipsec_in_ill_index =
2128 			    ill->ill_phyint->phyint_ifindex;
2129 			ii->ipsec_in_rill_index =
2130 			    recv_ill->ill_phyint->phyint_ifindex;
2131 		}
2132 		first_mp->b_cont = mp;
2133 	} else if (onlink) {
2134 		ii = (ipsec_in_t *)first_mp->b_rptr;
2135 		ii->ipsec_in_attach_if = B_TRUE;
2136 		ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex;
2137 		ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex;
2138 	} else {
2139 		ii = (ipsec_in_t *)first_mp->b_rptr;
2140 	}
2141 	ii->ipsec_in_zoneid = zoneid;
2142 	ASSERT(zoneid != ALL_ZONES);
2143 	if (!ipsec_in_to_out(first_mp, ipha, NULL)) {
2144 		BUMP_MIB(&ip_mib, ipInDiscards);
2145 		return;
2146 	}
2147 	BUMP_MIB(&icmp_mib, icmpOutMsgs);
2148 	put(WR(q), first_mp);
2149 }
2150 
2151 /* Table from RFC 1191 */
2152 static int icmp_frag_size_table[] =
2153 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
2154 
2155 /*
2156  * Process received ICMP Packet too big.
2157  * After updating any IRE it does the fanout to any matching transport streams.
2158  * Assumes the message has been pulled up till the IP header that caused
2159  * the error.
2160  *
2161  * Returns B_FALSE on failure and B_TRUE on success.
2162  */
2163 static boolean_t
2164 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha)
2165 {
2166 	ire_t	*ire, *first_ire;
2167 	int	mtu;
2168 	int	hdr_length;
2169 
2170 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
2171 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
2172 
2173 	hdr_length = IPH_HDR_LENGTH(ipha);
2174 
2175 	first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, NULL,
2176 	    ALL_ZONES, NULL, MATCH_IRE_TYPE);
2177 
2178 	if (!first_ire) {
2179 		ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n",
2180 		    ntohl(ipha->ipha_dst)));
2181 		return (B_FALSE);
2182 	}
2183 	/* Drop if the original packet contained a source route */
2184 	if (ip_source_route_included(ipha)) {
2185 		ire_refrele(first_ire);
2186 		return (B_FALSE);
2187 	}
2188 	/* Check for MTU discovery advice as described in RFC 1191 */
2189 	mtu = ntohs(icmph->icmph_du_mtu);
2190 	rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER);
2191 	for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst;
2192 	    ire = ire->ire_next) {
2193 		mutex_enter(&ire->ire_lock);
2194 		if (icmph->icmph_du_zero == 0 && mtu > 68) {
2195 			/* Reduce the IRE max frag value as advised. */
2196 			ip1dbg(("Received mtu from router: %d (was %d)\n",
2197 			    mtu, ire->ire_max_frag));
2198 			ire->ire_max_frag = MIN(ire->ire_max_frag, mtu);
2199 		} else {
2200 			uint32_t length;
2201 			int	i;
2202 
2203 			/*
2204 			 * Use the table from RFC 1191 to figure out
2205 			 * the next "plateau" based on the length in
2206 			 * the original IP packet.
2207 			 */
2208 			length = ntohs(ipha->ipha_length);
2209 			if (ire->ire_max_frag <= length &&
2210 			    ire->ire_max_frag >= length - hdr_length) {
2211 				/*
2212 				 * Handle broken BSD 4.2 systems that
2213 				 * return the wrong iph_length in ICMP
2214 				 * errors.
2215 				 */
2216 				ip1dbg(("Wrong mtu: sent %d, ire %d\n",
2217 				    length, ire->ire_max_frag));
2218 				length -= hdr_length;
2219 			}
2220 			for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
2221 				if (length > icmp_frag_size_table[i])
2222 					break;
2223 			}
2224 			if (i == A_CNT(icmp_frag_size_table)) {
2225 				/* Smaller than 68! */
2226 				ip1dbg(("Too big for packet size %d\n",
2227 				    length));
2228 				ire->ire_max_frag = MIN(ire->ire_max_frag, 576);
2229 				ire->ire_frag_flag = 0;
2230 			} else {
2231 				mtu = icmp_frag_size_table[i];
2232 				ip1dbg(("Calculated mtu %d, packet size %d, "
2233 				    "before %d", mtu, length,
2234 				    ire->ire_max_frag));
2235 				ire->ire_max_frag = MIN(ire->ire_max_frag, mtu);
2236 				ip1dbg((", after %d\n", ire->ire_max_frag));
2237 			}
2238 			/* Record the new max frag size for the ULP. */
2239 			icmph->icmph_du_zero = 0;
2240 			icmph->icmph_du_mtu =
2241 			    htons((uint16_t)ire->ire_max_frag);
2242 		}
2243 		mutex_exit(&ire->ire_lock);
2244 	}
2245 	rw_exit(&first_ire->ire_bucket->irb_lock);
2246 	ire_refrele(first_ire);
2247 	return (B_TRUE);
2248 }
2249 
2250 /*
2251  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout
2252  * calls this function.
2253  */
2254 static mblk_t *
2255 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length)
2256 {
2257 	ipha_t *ipha;
2258 	icmph_t *icmph;
2259 	ipha_t *in_ipha;
2260 	int length;
2261 
2262 	ASSERT(mp->b_datap->db_type == M_DATA);
2263 
2264 	/*
2265 	 * For Self-encapsulated packets, we added an extra IP header
2266 	 * without the options. Inner IP header is the one from which
2267 	 * the outer IP header was formed. Thus, we need to remove the
2268 	 * outer IP header. To do this, we pullup the whole message
2269 	 * and overlay whatever follows the outer IP header over the
2270 	 * outer IP header.
2271 	 */
2272 
2273 	if (!pullupmsg(mp, -1)) {
2274 		BUMP_MIB(&ip_mib, ipInDiscards);
2275 		return (NULL);
2276 	}
2277 
2278 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2279 	ipha = (ipha_t *)&icmph[1];
2280 	in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2281 
2282 	/*
2283 	 * The length that we want to overlay is following the inner
2284 	 * IP header. Subtracting the IP header + icmp header + outer
2285 	 * IP header's length should give us the length that we want to
2286 	 * overlay.
2287 	 */
2288 	length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) -
2289 	    hdr_length;
2290 	/*
2291 	 * Overlay whatever follows the inner header over the
2292 	 * outer header.
2293 	 */
2294 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2295 
2296 	/* Set the wptr to account for the outer header */
2297 	mp->b_wptr -= hdr_length;
2298 	return (mp);
2299 }
2300 
2301 /*
2302  * Try to pass the ICMP message upstream in case the ULP cares.
2303  *
2304  * If the packet that caused the ICMP error is secure, we send
2305  * it to AH/ESP to make sure that the attached packet has a
2306  * valid association. ipha in the code below points to the
2307  * IP header of the packet that caused the error.
2308  *
2309  * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently
2310  * in the context of IPSEC. Normally we tell the upper layer
2311  * whenever we send the ire (including ip_bind), the IPSEC header
2312  * length in ire_ipsec_overhead. TCP can deduce the MSS as it
2313  * has both the MTU (ire_max_frag) and the ire_ipsec_overhead.
2314  * Similarly, we pass the new MTU icmph_du_mtu and TCP does the
2315  * same thing. As TCP has the IPSEC options size that needs to be
2316  * adjusted, we just pass the MTU unchanged.
2317  *
2318  * IFN could have been generated locally or by some router.
2319  *
2320  * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this.
2321  *	    This happens because IP adjusted its value of MTU on an
2322  *	    earlier IFN message and could not tell the upper layer,
2323  *	    the new adjusted value of MTU e.g. Packet was encrypted
2324  *	    or there was not enough information to fanout to upper
2325  *	    layers. Thus on the next outbound datagram, ip_wput_ire
2326  *	    generates the IFN, where IPSEC processing has *not* been
2327  *	    done.
2328  *
2329  *	   *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed
2330  *	    could have generated this. This happens because ire_max_frag
2331  *	    value in IP was set to a new value, while the IPSEC processing
2332  *	    was being done and after we made the fragmentation check in
2333  *	    ip_wput_ire. Thus on return from IPSEC processing,
2334  *	    ip_wput_ipsec_out finds that the new length is > ire_max_frag
2335  *	    and generates the IFN. As IPSEC processing is over, we fanout
2336  *	    to AH/ESP to remove the header.
2337  *
2338  *	    In both these cases, ipsec_in_loopback will be set indicating
2339  *	    that IFN was generated locally.
2340  *
2341  * ROUTER : IFN could be secure or non-secure.
2342  *
2343  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2344  *	      packet in error has AH/ESP headers to validate the AH/ESP
2345  *	      headers. AH/ESP will verify whether there is a valid SA or
2346  *	      not and send it back. We will fanout again if we have more
2347  *	      data in the packet.
2348  *
2349  *	      If the packet in error does not have AH/ESP, we handle it
2350  *	      like any other case.
2351  *
2352  *	    * NON_SECURE : If the packet in error has AH/ESP headers,
2353  *	      we attach a dummy ipsec_in and send it up to AH/ESP
2354  *	      for validation. AH/ESP will verify whether there is a
2355  *	      valid SA or not and send it back. We will fanout again if
2356  *	      we have more data in the packet.
2357  *
2358  *	      If the packet in error does not have AH/ESP, we handle it
2359  *	      like any other case.
2360  */
2361 static void
2362 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp,
2363     icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length,
2364     boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill,
2365     zoneid_t zoneid)
2366 {
2367 	uint16_t *up;	/* Pointer to ports in ULP header */
2368 	uint32_t ports;	/* reversed ports for fanout */
2369 	ipha_t ripha;	/* With reversed addresses */
2370 	mblk_t *first_mp;
2371 	ipsec_in_t *ii;
2372 	tcph_t	*tcph;
2373 	conn_t	*connp;
2374 
2375 	first_mp = mp;
2376 	if (mctl_present) {
2377 		mp = first_mp->b_cont;
2378 		ASSERT(mp != NULL);
2379 
2380 		ii = (ipsec_in_t *)first_mp->b_rptr;
2381 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
2382 	} else {
2383 		ii = NULL;
2384 	}
2385 
2386 	switch (ipha->ipha_protocol) {
2387 	case IPPROTO_UDP:
2388 		/*
2389 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
2390 		 * transport header.
2391 		 */
2392 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
2393 		    mp->b_wptr) {
2394 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
2395 			    ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
2396 				BUMP_MIB(&ip_mib, ipInDiscards);
2397 				goto drop_pkt;
2398 			}
2399 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2400 			ipha = (ipha_t *)&icmph[1];
2401 		}
2402 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2403 
2404 		/*
2405 		 * Attempt to find a client stream based on port.
2406 		 * Note that we do a reverse lookup since the header is
2407 		 * in the form we sent it out.
2408 		 * The ripha header is only used for the IP_UDP_MATCH and we
2409 		 * only set the src and dst addresses and protocol.
2410 		 */
2411 		ripha.ipha_src = ipha->ipha_dst;
2412 		ripha.ipha_dst = ipha->ipha_src;
2413 		ripha.ipha_protocol = ipha->ipha_protocol;
2414 		((uint16_t *)&ports)[0] = up[1];
2415 		((uint16_t *)&ports)[1] = up[0];
2416 		ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n",
2417 		    ntohl(ipha->ipha_src), ntohs(up[0]),
2418 		    ntohl(ipha->ipha_dst), ntohs(up[1]),
2419 		    icmph->icmph_type, icmph->icmph_code));
2420 
2421 		/* Have to change db_type after any pullupmsg */
2422 		DB_TYPE(mp) = M_CTL;
2423 
2424 		ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0,
2425 		    mctl_present, ip_policy, recv_ill, zoneid);
2426 		return;
2427 
2428 	case IPPROTO_TCP:
2429 		/*
2430 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
2431 		 * transport header.
2432 		 */
2433 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
2434 		    mp->b_wptr) {
2435 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
2436 			    ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
2437 				BUMP_MIB(&ip_mib, ipInDiscards);
2438 				goto drop_pkt;
2439 			}
2440 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2441 			ipha = (ipha_t *)&icmph[1];
2442 		}
2443 		/*
2444 		 * Find a TCP client stream for this packet.
2445 		 * Note that we do a reverse lookup since the header is
2446 		 * in the form we sent it out.
2447 		 */
2448 		tcph = (tcph_t *)((uchar_t *)ipha + hdr_length);
2449 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN);
2450 		if (connp == NULL) {
2451 			BUMP_MIB(&ip_mib, ipInDiscards);
2452 			goto drop_pkt;
2453 		}
2454 
2455 		/* Have to change db_type after any pullupmsg */
2456 		DB_TYPE(mp) = M_CTL;
2457 		squeue_fill(connp->conn_sqp, first_mp, tcp_input,
2458 		    connp, SQTAG_TCP_INPUT_ICMP_ERR);
2459 		return;
2460 
2461 	case IPPROTO_SCTP:
2462 		/*
2463 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
2464 		 * transport header.
2465 		 */
2466 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
2467 		    mp->b_wptr) {
2468 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
2469 			    ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
2470 				BUMP_MIB(&ip_mib, ipInDiscards);
2471 				goto drop_pkt;
2472 			}
2473 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2474 			ipha = (ipha_t *)&icmph[1];
2475 		}
2476 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2477 		/*
2478 		 * Find a SCTP client stream for this packet.
2479 		 * Note that we do a reverse lookup since the header is
2480 		 * in the form we sent it out.
2481 		 * The ripha header is only used for the matching and we
2482 		 * only set the src and dst addresses, protocol, and version.
2483 		 */
2484 		ripha.ipha_src = ipha->ipha_dst;
2485 		ripha.ipha_dst = ipha->ipha_src;
2486 		ripha.ipha_protocol = ipha->ipha_protocol;
2487 		ripha.ipha_version_and_hdr_length =
2488 		    ipha->ipha_version_and_hdr_length;
2489 		((uint16_t *)&ports)[0] = up[1];
2490 		((uint16_t *)&ports)[1] = up[0];
2491 
2492 		/* Have to change db_type after any pullupmsg */
2493 		DB_TYPE(mp) = M_CTL;
2494 		ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0,
2495 		    mctl_present, ip_policy, 0, zoneid);
2496 		return;
2497 
2498 	case IPPROTO_ESP:
2499 	case IPPROTO_AH: {
2500 		int ipsec_rc;
2501 
2502 		/*
2503 		 * We need a IPSEC_IN in the front to fanout to AH/ESP.
2504 		 * We will re-use the IPSEC_IN if it is already present as
2505 		 * AH/ESP will not affect any fields in the IPSEC_IN for
2506 		 * ICMP errors. If there is no IPSEC_IN, allocate a new
2507 		 * one and attach it in the front.
2508 		 */
2509 		if (ii != NULL) {
2510 			/*
2511 			 * ip_fanout_proto_again converts the ICMP errors
2512 			 * that come back from AH/ESP to M_DATA so that
2513 			 * if it is non-AH/ESP and we do a pullupmsg in
2514 			 * this function, it would work. Convert it back
2515 			 * to M_CTL before we send up as this is a ICMP
2516 			 * error. This could have been generated locally or
2517 			 * by some router. Validate the inner IPSEC
2518 			 * headers.
2519 			 *
2520 			 * NOTE : ill_index is used by ip_fanout_proto_again
2521 			 * to locate the ill.
2522 			 */
2523 			ASSERT(ill != NULL);
2524 			ii->ipsec_in_ill_index =
2525 			    ill->ill_phyint->phyint_ifindex;
2526 			ii->ipsec_in_rill_index =
2527 			    recv_ill->ill_phyint->phyint_ifindex;
2528 			DB_TYPE(first_mp->b_cont) = M_CTL;
2529 		} else {
2530 			/*
2531 			 * IPSEC_IN is not present. We attach a ipsec_in
2532 			 * message and send up to IPSEC for validating
2533 			 * and removing the IPSEC headers. Clear
2534 			 * ipsec_in_secure so that when we return
2535 			 * from IPSEC, we don't mistakenly think that this
2536 			 * is a secure packet came from the network.
2537 			 *
2538 			 * NOTE : ill_index is used by ip_fanout_proto_again
2539 			 * to locate the ill.
2540 			 */
2541 			ASSERT(first_mp == mp);
2542 			first_mp = ipsec_in_alloc(B_TRUE);
2543 			if (first_mp == NULL) {
2544 				freemsg(mp);
2545 				BUMP_MIB(&ip_mib, ipInDiscards);
2546 				return;
2547 			}
2548 			ii = (ipsec_in_t *)first_mp->b_rptr;
2549 
2550 			/* This is not a secure packet */
2551 			ii->ipsec_in_secure = B_FALSE;
2552 			first_mp->b_cont = mp;
2553 			DB_TYPE(mp) = M_CTL;
2554 			ASSERT(ill != NULL);
2555 			ii->ipsec_in_ill_index =
2556 			    ill->ill_phyint->phyint_ifindex;
2557 			ii->ipsec_in_rill_index =
2558 			    recv_ill->ill_phyint->phyint_ifindex;
2559 		}
2560 		ip2dbg(("icmp_inbound_error: ipsec\n"));
2561 
2562 		if (!ipsec_loaded()) {
2563 			ip_proto_not_sup(q, first_mp, 0, zoneid);
2564 			return;
2565 		}
2566 
2567 		if (ipha->ipha_protocol == IPPROTO_ESP)
2568 			ipsec_rc = ipsecesp_icmp_error(first_mp);
2569 		else
2570 			ipsec_rc = ipsecah_icmp_error(first_mp);
2571 		if (ipsec_rc == IPSEC_STATUS_FAILED)
2572 			return;
2573 
2574 		ip_fanout_proto_again(first_mp, ill, recv_ill, NULL);
2575 		return;
2576 	}
2577 	default:
2578 		/*
2579 		 * The ripha header is only used for the lookup and we
2580 		 * only set the src and dst addresses and protocol.
2581 		 */
2582 		ripha.ipha_src = ipha->ipha_dst;
2583 		ripha.ipha_dst = ipha->ipha_src;
2584 		ripha.ipha_protocol = ipha->ipha_protocol;
2585 		ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n",
2586 		    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2587 		    ntohl(ipha->ipha_dst),
2588 		    icmph->icmph_type, icmph->icmph_code));
2589 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2590 			ipha_t *in_ipha;
2591 
2592 			if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
2593 			    mp->b_wptr) {
2594 				if (!pullupmsg(mp, (uchar_t *)ipha +
2595 				    hdr_length + sizeof (ipha_t) -
2596 				    mp->b_rptr)) {
2597 
2598 					BUMP_MIB(&ip_mib, ipInDiscards);
2599 					goto drop_pkt;
2600 				}
2601 				icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2602 				ipha = (ipha_t *)&icmph[1];
2603 			}
2604 			/*
2605 			 * Caller has verified that length has to be
2606 			 * at least the size of IP header.
2607 			 */
2608 			ASSERT(hdr_length >= sizeof (ipha_t));
2609 			/*
2610 			 * Check the sanity of the inner IP header like
2611 			 * we did for the outer header.
2612 			 */
2613 			in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2614 			if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2615 				BUMP_MIB(&ip_mib, ipInDiscards);
2616 				goto drop_pkt;
2617 			}
2618 			if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2619 				BUMP_MIB(&ip_mib, ipInDiscards);
2620 				goto drop_pkt;
2621 			}
2622 			/* Check for Self-encapsulated tunnels */
2623 			if (in_ipha->ipha_src == ipha->ipha_src &&
2624 			    in_ipha->ipha_dst == ipha->ipha_dst) {
2625 
2626 				mp = icmp_inbound_self_encap_error(mp,
2627 				    iph_hdr_length, hdr_length);
2628 				if (mp == NULL)
2629 					goto drop_pkt;
2630 				icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2631 				ipha = (ipha_t *)&icmph[1];
2632 				hdr_length = IPH_HDR_LENGTH(ipha);
2633 				/*
2634 				 * The packet in error is self-encapsualted.
2635 				 * And we are finding it further encapsulated
2636 				 * which we could not have possibly generated.
2637 				 */
2638 				if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2639 					BUMP_MIB(&ip_mib, ipInDiscards);
2640 					goto drop_pkt;
2641 				}
2642 				icmp_inbound_error_fanout(q, ill, first_mp,
2643 				    icmph, ipha, iph_hdr_length, hdr_length,
2644 				    mctl_present, ip_policy, recv_ill, zoneid);
2645 				return;
2646 			}
2647 		}
2648 		if ((ipha->ipha_protocol == IPPROTO_ENCAP ||
2649 			ipha->ipha_protocol == IPPROTO_IPV6) &&
2650 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
2651 		    ii != NULL &&
2652 		    ii->ipsec_in_loopback &&
2653 		    ii->ipsec_in_secure) {
2654 			/*
2655 			 * For IP tunnels that get a looped-back
2656 			 * ICMP_FRAGMENTATION_NEEDED message, adjust the
2657 			 * reported new MTU to take into account the IPsec
2658 			 * headers protecting this configured tunnel.
2659 			 *
2660 			 * This allows the tunnel module (tun.c) to blindly
2661 			 * accept the MTU reported in an ICMP "too big"
2662 			 * message.
2663 			 *
2664 			 * Non-looped back ICMP messages will just be
2665 			 * handled by the security protocols (if needed),
2666 			 * and the first subsequent packet will hit this
2667 			 * path.
2668 			 */
2669 			icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) -
2670 			    ipsec_in_extra_length(first_mp));
2671 		}
2672 		/* Have to change db_type after any pullupmsg */
2673 		DB_TYPE(mp) = M_CTL;
2674 
2675 		ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present,
2676 		    ip_policy, recv_ill, zoneid);
2677 		return;
2678 	}
2679 	/* NOTREACHED */
2680 drop_pkt:;
2681 	ip1dbg(("icmp_inbound_error_fanout: drop pkt\n"));
2682 	freemsg(first_mp);
2683 }
2684 
2685 /*
2686  * Common IP options parser.
2687  *
2688  * Setup routine: fill in *optp with options-parsing state, then
2689  * tail-call ipoptp_next to return the first option.
2690  */
2691 uint8_t
2692 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2693 {
2694 	uint32_t totallen; /* total length of all options */
2695 
2696 	totallen = ipha->ipha_version_and_hdr_length -
2697 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2698 	totallen <<= 2;
2699 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2700 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2701 	optp->ipoptp_flags = 0;
2702 	return (ipoptp_next(optp));
2703 }
2704 
2705 /*
2706  * Common IP options parser: extract next option.
2707  */
2708 uint8_t
2709 ipoptp_next(ipoptp_t *optp)
2710 {
2711 	uint8_t *end = optp->ipoptp_end;
2712 	uint8_t *cur = optp->ipoptp_next;
2713 	uint8_t opt, len, pointer;
2714 
2715 	/*
2716 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2717 	 * has been corrupted.
2718 	 */
2719 	ASSERT(cur <= end);
2720 
2721 	if (cur == end)
2722 		return (IPOPT_EOL);
2723 
2724 	opt = cur[IPOPT_OPTVAL];
2725 
2726 	/*
2727 	 * Skip any NOP options.
2728 	 */
2729 	while (opt == IPOPT_NOP) {
2730 		cur++;
2731 		if (cur == end)
2732 			return (IPOPT_EOL);
2733 		opt = cur[IPOPT_OPTVAL];
2734 	}
2735 
2736 	if (opt == IPOPT_EOL)
2737 		return (IPOPT_EOL);
2738 
2739 	/*
2740 	 * Option requiring a length.
2741 	 */
2742 	if ((cur + 1) >= end) {
2743 		optp->ipoptp_flags |= IPOPTP_ERROR;
2744 		return (IPOPT_EOL);
2745 	}
2746 	len = cur[IPOPT_OLEN];
2747 	if (len < 2) {
2748 		optp->ipoptp_flags |= IPOPTP_ERROR;
2749 		return (IPOPT_EOL);
2750 	}
2751 	optp->ipoptp_cur = cur;
2752 	optp->ipoptp_len = len;
2753 	optp->ipoptp_next = cur + len;
2754 	if (cur + len > end) {
2755 		optp->ipoptp_flags |= IPOPTP_ERROR;
2756 		return (IPOPT_EOL);
2757 	}
2758 
2759 	/*
2760 	 * For the options which require a pointer field, make sure
2761 	 * its there, and make sure it points to either something
2762 	 * inside this option, or the end of the option.
2763 	 */
2764 	switch (opt) {
2765 	case IPOPT_RR:
2766 	case IPOPT_TS:
2767 	case IPOPT_LSRR:
2768 	case IPOPT_SSRR:
2769 		if (len <= IPOPT_OFFSET) {
2770 			optp->ipoptp_flags |= IPOPTP_ERROR;
2771 			return (opt);
2772 		}
2773 		pointer = cur[IPOPT_OFFSET];
2774 		if (pointer - 1 > len) {
2775 			optp->ipoptp_flags |= IPOPTP_ERROR;
2776 			return (opt);
2777 		}
2778 		break;
2779 	}
2780 
2781 	/*
2782 	 * Sanity check the pointer field based on the type of the
2783 	 * option.
2784 	 */
2785 	switch (opt) {
2786 	case IPOPT_RR:
2787 	case IPOPT_SSRR:
2788 	case IPOPT_LSRR:
2789 		if (pointer < IPOPT_MINOFF_SR)
2790 			optp->ipoptp_flags |= IPOPTP_ERROR;
2791 		break;
2792 	case IPOPT_TS:
2793 		if (pointer < IPOPT_MINOFF_IT)
2794 			optp->ipoptp_flags |= IPOPTP_ERROR;
2795 		/*
2796 		 * Note that the Internet Timestamp option also
2797 		 * contains two four bit fields (the Overflow field,
2798 		 * and the Flag field), which follow the pointer
2799 		 * field.  We don't need to check that these fields
2800 		 * fall within the length of the option because this
2801 		 * was implicitely done above.  We've checked that the
2802 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2803 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2804 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2805 		 */
2806 		ASSERT(len > IPOPT_POS_OV_FLG);
2807 		break;
2808 	}
2809 
2810 	return (opt);
2811 }
2812 
2813 /*
2814  * Use the outgoing IP header to create an IP_OPTIONS option the way
2815  * it was passed down from the application.
2816  */
2817 int
2818 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf)
2819 {
2820 	ipoptp_t	opts;
2821 	const uchar_t	*opt;
2822 	uint8_t		optval;
2823 	uint8_t		optlen;
2824 	uint32_t	len = 0;
2825 	uchar_t	*buf1 = buf;
2826 
2827 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2828 	len += IP_ADDR_LEN;
2829 	bzero(buf1, IP_ADDR_LEN);
2830 
2831 	/*
2832 	 * OK to cast away const here, as we don't store through the returned
2833 	 * opts.ipoptp_cur pointer.
2834 	 */
2835 	for (optval = ipoptp_first(&opts, (ipha_t *)ipha);
2836 	    optval != IPOPT_EOL;
2837 	    optval = ipoptp_next(&opts)) {
2838 		int	off;
2839 
2840 		opt = opts.ipoptp_cur;
2841 		optlen = opts.ipoptp_len;
2842 		switch (optval) {
2843 		case IPOPT_SSRR:
2844 		case IPOPT_LSRR:
2845 
2846 			/*
2847 			 * Insert ipha_dst as the first entry in the source
2848 			 * route and move down the entries on step.
2849 			 * The last entry gets placed at buf1.
2850 			 */
2851 			buf[IPOPT_OPTVAL] = optval;
2852 			buf[IPOPT_OLEN] = optlen;
2853 			buf[IPOPT_OFFSET] = optlen;
2854 
2855 			off = optlen - IP_ADDR_LEN;
2856 			if (off < 0) {
2857 				/* No entries in source route */
2858 				break;
2859 			}
2860 			/* Last entry in source route */
2861 			bcopy(opt + off, buf1, IP_ADDR_LEN);
2862 			off -= IP_ADDR_LEN;
2863 
2864 			while (off > 0) {
2865 				bcopy(opt + off,
2866 				    buf + off + IP_ADDR_LEN,
2867 				    IP_ADDR_LEN);
2868 				off -= IP_ADDR_LEN;
2869 			}
2870 			/* ipha_dst into first slot */
2871 			bcopy(&ipha->ipha_dst,
2872 			    buf + off + IP_ADDR_LEN,
2873 			    IP_ADDR_LEN);
2874 			buf += optlen;
2875 			len += optlen;
2876 			break;
2877 
2878 		case IPOPT_COMSEC:
2879 		case IPOPT_SECURITY:
2880 			/* if passing up a label is not ok, then remove */
2881 			if (is_system_labeled())
2882 				break;
2883 			/* FALLTHROUGH */
2884 		default:
2885 			bcopy(opt, buf, optlen);
2886 			buf += optlen;
2887 			len += optlen;
2888 			break;
2889 		}
2890 	}
2891 done:
2892 	/* Pad the resulting options */
2893 	while (len & 0x3) {
2894 		*buf++ = IPOPT_EOL;
2895 		len++;
2896 	}
2897 	return (len);
2898 }
2899 
2900 /*
2901  * Update any record route or timestamp options to include this host.
2902  * Reverse any source route option.
2903  * This routine assumes that the options are well formed i.e. that they
2904  * have already been checked.
2905  */
2906 static void
2907 icmp_options_update(ipha_t *ipha)
2908 {
2909 	ipoptp_t	opts;
2910 	uchar_t		*opt;
2911 	uint8_t		optval;
2912 	ipaddr_t	src;		/* Our local address */
2913 	ipaddr_t	dst;
2914 
2915 	ip2dbg(("icmp_options_update\n"));
2916 	src = ipha->ipha_src;
2917 	dst = ipha->ipha_dst;
2918 
2919 	for (optval = ipoptp_first(&opts, ipha);
2920 	    optval != IPOPT_EOL;
2921 	    optval = ipoptp_next(&opts)) {
2922 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2923 		opt = opts.ipoptp_cur;
2924 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
2925 		    optval, opts.ipoptp_len));
2926 		switch (optval) {
2927 			int off1, off2;
2928 		case IPOPT_SSRR:
2929 		case IPOPT_LSRR:
2930 			/*
2931 			 * Reverse the source route.  The first entry
2932 			 * should be the next to last one in the current
2933 			 * source route (the last entry is our address).
2934 			 * The last entry should be the final destination.
2935 			 */
2936 			off1 = IPOPT_MINOFF_SR - 1;
2937 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2938 			if (off2 < 0) {
2939 				/* No entries in source route */
2940 				ip1dbg((
2941 				    "icmp_options_update: bad src route\n"));
2942 				break;
2943 			}
2944 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2945 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2946 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2947 			off2 -= IP_ADDR_LEN;
2948 
2949 			while (off1 < off2) {
2950 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2951 				bcopy((char *)opt + off2, (char *)opt + off1,
2952 				    IP_ADDR_LEN);
2953 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2954 				off1 += IP_ADDR_LEN;
2955 				off2 -= IP_ADDR_LEN;
2956 			}
2957 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2958 			break;
2959 		}
2960 	}
2961 }
2962 
2963 /*
2964  * Process received ICMP Redirect messages.
2965  */
2966 /* ARGSUSED */
2967 static void
2968 icmp_redirect(mblk_t *mp)
2969 {
2970 	ipha_t	*ipha;
2971 	int	iph_hdr_length;
2972 	icmph_t	*icmph;
2973 	ipha_t	*ipha_err;
2974 	ire_t	*ire;
2975 	ire_t	*prev_ire;
2976 	ire_t	*save_ire;
2977 	ipaddr_t  src, dst, gateway;
2978 	iulp_t	ulp_info = { 0 };
2979 	int	error;
2980 
2981 	ipha = (ipha_t *)mp->b_rptr;
2982 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2983 	if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) <
2984 	    sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) {
2985 		BUMP_MIB(&icmp_mib, icmpInErrors);
2986 		freemsg(mp);
2987 		return;
2988 	}
2989 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2990 	ipha_err = (ipha_t *)&icmph[1];
2991 	src = ipha->ipha_src;
2992 	dst = ipha_err->ipha_dst;
2993 	gateway = icmph->icmph_rd_gateway;
2994 	/* Make sure the new gateway is reachable somehow. */
2995 	ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL,
2996 	    ALL_ZONES, NULL, MATCH_IRE_TYPE);
2997 	/*
2998 	 * Make sure we had a route for the dest in question and that
2999 	 * that route was pointing to the old gateway (the source of the
3000 	 * redirect packet.)
3001 	 */
3002 	prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES,
3003 	    NULL, MATCH_IRE_GW);
3004 	/*
3005 	 * Check that
3006 	 *	the redirect was not from ourselves
3007 	 *	the new gateway and the old gateway are directly reachable
3008 	 */
3009 	if (!prev_ire ||
3010 	    !ire ||
3011 	    ire->ire_type == IRE_LOCAL) {
3012 		BUMP_MIB(&icmp_mib, icmpInBadRedirects);
3013 		freemsg(mp);
3014 		if (ire != NULL)
3015 			ire_refrele(ire);
3016 		if (prev_ire != NULL)
3017 			ire_refrele(prev_ire);
3018 		return;
3019 	}
3020 
3021 	/*
3022 	 * Should we use the old ULP info to create the new gateway?  From
3023 	 * a user's perspective, we should inherit the info so that it
3024 	 * is a "smooth" transition.  If we do not do that, then new
3025 	 * connections going thru the new gateway will have no route metrics,
3026 	 * which is counter-intuitive to user.  From a network point of
3027 	 * view, this may or may not make sense even though the new gateway
3028 	 * is still directly connected to us so the route metrics should not
3029 	 * change much.
3030 	 *
3031 	 * But if the old ire_uinfo is not initialized, we do another
3032 	 * recursive lookup on the dest using the new gateway.  There may
3033 	 * be a route to that.  If so, use it to initialize the redirect
3034 	 * route.
3035 	 */
3036 	if (prev_ire->ire_uinfo.iulp_set) {
3037 		bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t));
3038 	} else {
3039 		ire_t *tmp_ire;
3040 		ire_t *sire;
3041 
3042 		tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire,
3043 		    ALL_ZONES, 0, NULL,
3044 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT));
3045 		if (sire != NULL) {
3046 			bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t));
3047 			/*
3048 			 * If sire != NULL, ire_ftable_lookup() should not
3049 			 * return a NULL value.
3050 			 */
3051 			ASSERT(tmp_ire != NULL);
3052 			ire_refrele(tmp_ire);
3053 			ire_refrele(sire);
3054 		} else if (tmp_ire != NULL) {
3055 			bcopy(&tmp_ire->ire_uinfo, &ulp_info,
3056 			    sizeof (iulp_t));
3057 			ire_refrele(tmp_ire);
3058 		}
3059 	}
3060 	if (prev_ire->ire_type == IRE_CACHE)
3061 		ire_delete(prev_ire);
3062 	ire_refrele(prev_ire);
3063 	/*
3064 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
3065 	 * require TOS routing
3066 	 */
3067 	switch (icmph->icmph_code) {
3068 	case 0:
3069 	case 1:
3070 		/* TODO: TOS specificity for cases 2 and 3 */
3071 	case 2:
3072 	case 3:
3073 		break;
3074 	default:
3075 		freemsg(mp);
3076 		BUMP_MIB(&icmp_mib, icmpInBadRedirects);
3077 		ire_refrele(ire);
3078 		return;
3079 	}
3080 	/*
3081 	 * Create a Route Association.  This will allow us to remember that
3082 	 * someone we believe told us to use the particular gateway.
3083 	 */
3084 	save_ire = ire;
3085 	ire = ire_create(
3086 		(uchar_t *)&dst,			/* dest addr */
3087 		(uchar_t *)&ip_g_all_ones,		/* mask */
3088 		(uchar_t *)&save_ire->ire_src_addr,	/* source addr */
3089 		(uchar_t *)&gateway,			/* gateway addr */
3090 		NULL,					/* no in_srcaddr */
3091 		&save_ire->ire_max_frag,		/* max frag */
3092 		NULL,					/* Fast Path header */
3093 		NULL,					/* no rfq */
3094 		NULL,					/* no stq */
3095 		IRE_HOST_REDIRECT,
3096 		NULL,
3097 		NULL,
3098 		NULL,
3099 		0,
3100 		0,
3101 		0,
3102 		(RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
3103 		&ulp_info,
3104 		NULL,
3105 		NULL);
3106 
3107 	if (ire == NULL) {
3108 		freemsg(mp);
3109 		ire_refrele(save_ire);
3110 		return;
3111 	}
3112 	error = ire_add(&ire, NULL, NULL, NULL);
3113 	ire_refrele(save_ire);
3114 	if (error == 0) {
3115 		ire_refrele(ire);		/* Held in ire_add_v4 */
3116 		/* tell routing sockets that we received a redirect */
3117 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
3118 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
3119 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR));
3120 	}
3121 
3122 	/*
3123 	 * Delete any existing IRE_HOST_REDIRECT for this destination.
3124 	 * This together with the added IRE has the effect of
3125 	 * modifying an existing redirect.
3126 	 */
3127 	prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST_REDIRECT, NULL, NULL,
3128 	    ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE));
3129 	if (prev_ire) {
3130 		ire_delete(prev_ire);
3131 		ire_refrele(prev_ire);
3132 	}
3133 
3134 	freemsg(mp);
3135 }
3136 
3137 /*
3138  * Generate an ICMP parameter problem message.
3139  */
3140 static void
3141 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr)
3142 {
3143 	icmph_t	icmph;
3144 	boolean_t mctl_present;
3145 	mblk_t *first_mp;
3146 
3147 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
3148 
3149 	if (!(mp = icmp_pkt_err_ok(mp))) {
3150 		if (mctl_present)
3151 			freeb(first_mp);
3152 		return;
3153 	}
3154 
3155 	bzero(&icmph, sizeof (icmph_t));
3156 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
3157 	icmph.icmph_pp_ptr = ptr;
3158 	BUMP_MIB(&icmp_mib, icmpOutParmProbs);
3159 	icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present);
3160 }
3161 
3162 /*
3163  * Build and ship an IPv4 ICMP message using the packet data in mp, and
3164  * the ICMP header pointed to by "stuff".  (May be called as writer.)
3165  * Note: assumes that icmp_pkt_err_ok has been called to verify that
3166  * an icmp error packet can be sent.
3167  * Assigns an appropriate source address to the packet. If ipha_dst is
3168  * one of our addresses use it for source. Otherwise pick a source based
3169  * on a route lookup back to ipha_src.
3170  * Note that ipha_src must be set here since the
3171  * packet is likely to arrive on an ill queue in ip_wput() which will
3172  * not set a source address.
3173  */
3174 static void
3175 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len,
3176     boolean_t mctl_present)
3177 {
3178 	ipaddr_t dst;
3179 	icmph_t	*icmph;
3180 	ipha_t	*ipha;
3181 	uint_t	len_needed;
3182 	size_t	msg_len;
3183 	mblk_t	*mp1;
3184 	ipaddr_t src;
3185 	ire_t	*ire;
3186 	mblk_t *ipsec_mp;
3187 	ipsec_out_t	*io = NULL;
3188 	boolean_t xmit_if_on = B_FALSE;
3189 	zoneid_t	zoneid;
3190 
3191 	if (mctl_present) {
3192 		/*
3193 		 * If it is :
3194 		 *
3195 		 * 1) a IPSEC_OUT, then this is caused by outbound
3196 		 *    datagram originating on this host. IPSEC processing
3197 		 *    may or may not have been done. Refer to comments above
3198 		 *    icmp_inbound_error_fanout for details.
3199 		 *
3200 		 * 2) a IPSEC_IN if we are generating a icmp_message
3201 		 *    for an incoming datagram destined for us i.e called
3202 		 *    from ip_fanout_send_icmp.
3203 		 */
3204 		ipsec_info_t *in;
3205 		ipsec_mp = mp;
3206 		mp = ipsec_mp->b_cont;
3207 
3208 		in = (ipsec_info_t *)ipsec_mp->b_rptr;
3209 		ipha = (ipha_t *)mp->b_rptr;
3210 
3211 		ASSERT(in->ipsec_info_type == IPSEC_OUT ||
3212 		    in->ipsec_info_type == IPSEC_IN);
3213 
3214 		if (in->ipsec_info_type == IPSEC_IN) {
3215 			/*
3216 			 * Convert the IPSEC_IN to IPSEC_OUT.
3217 			 */
3218 			if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) {
3219 				BUMP_MIB(&ip_mib, ipOutDiscards);
3220 				return;
3221 			}
3222 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
3223 		} else {
3224 			ASSERT(in->ipsec_info_type == IPSEC_OUT);
3225 			io = (ipsec_out_t *)in;
3226 			if (io->ipsec_out_xmit_if)
3227 				xmit_if_on = B_TRUE;
3228 			/*
3229 			 * Clear out ipsec_out_proc_begin, so we do a fresh
3230 			 * ire lookup.
3231 			 */
3232 			io->ipsec_out_proc_begin = B_FALSE;
3233 		}
3234 		zoneid = io->ipsec_out_zoneid;
3235 		ASSERT(zoneid != ALL_ZONES);
3236 	} else {
3237 		/*
3238 		 * This is in clear. The icmp message we are building
3239 		 * here should go out in clear.
3240 		 *
3241 		 * Pardon the convolution of it all, but it's easier to
3242 		 * allocate a "use cleartext" IPSEC_IN message and convert
3243 		 * it than it is to allocate a new one.
3244 		 */
3245 		ipsec_in_t *ii;
3246 		ASSERT(DB_TYPE(mp) == M_DATA);
3247 		if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) {
3248 			freemsg(mp);
3249 			BUMP_MIB(&ip_mib, ipOutDiscards);
3250 			return;
3251 		}
3252 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
3253 
3254 		/* This is not a secure packet */
3255 		ii->ipsec_in_secure = B_FALSE;
3256 		if (CONN_Q(q)) {
3257 			zoneid = Q_TO_CONN(q)->conn_zoneid;
3258 		} else {
3259 			zoneid = GLOBAL_ZONEID;
3260 		}
3261 		ii->ipsec_in_zoneid = zoneid;
3262 		ASSERT(zoneid != ALL_ZONES);
3263 		ipsec_mp->b_cont = mp;
3264 		ipha = (ipha_t *)mp->b_rptr;
3265 		/*
3266 		 * Convert the IPSEC_IN to IPSEC_OUT.
3267 		 */
3268 		if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) {
3269 			BUMP_MIB(&ip_mib, ipOutDiscards);
3270 			return;
3271 		}
3272 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
3273 	}
3274 
3275 	/* Remember our eventual destination */
3276 	dst = ipha->ipha_src;
3277 
3278 	ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK),
3279 	    NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE);
3280 	if (ire != NULL &&
3281 	    (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) {
3282 		src = ipha->ipha_dst;
3283 	} else if (!xmit_if_on) {
3284 		if (ire != NULL)
3285 			ire_refrele(ire);
3286 		ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL,
3287 		    (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY));
3288 		if (ire == NULL) {
3289 			BUMP_MIB(&ip_mib, ipOutNoRoutes);
3290 			freemsg(ipsec_mp);
3291 			return;
3292 		}
3293 		src = ire->ire_src_addr;
3294 	} else {
3295 		ipif_t	*ipif = NULL;
3296 		ill_t	*ill;
3297 		/*
3298 		 * This must be an ICMP error coming from
3299 		 * ip_mrtun_forward(). The src addr should
3300 		 * be equal to the IP-addr of the outgoing
3301 		 * interface.
3302 		 */
3303 		if (io == NULL) {
3304 			/* This is not a IPSEC_OUT type control msg */
3305 			BUMP_MIB(&ip_mib, ipOutNoRoutes);
3306 			freemsg(ipsec_mp);
3307 			return;
3308 		}
3309 		ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE,
3310 		    NULL, NULL, NULL, NULL);
3311 		if (ill != NULL) {
3312 			ipif = ipif_get_next_ipif(NULL, ill);
3313 			ill_refrele(ill);
3314 		}
3315 		if (ipif == NULL) {
3316 			BUMP_MIB(&ip_mib, ipOutNoRoutes);
3317 			freemsg(ipsec_mp);
3318 			return;
3319 		}
3320 		src = ipif->ipif_src_addr;
3321 		ipif_refrele(ipif);
3322 	}
3323 
3324 	if (ire != NULL)
3325 		ire_refrele(ire);
3326 
3327 	/*
3328 	 * Check if we can send back more then 8 bytes in addition
3329 	 * to the IP header. We will include as much as 64 bytes.
3330 	 */
3331 	len_needed = IPH_HDR_LENGTH(ipha);
3332 	if (ipha->ipha_protocol == IPPROTO_ENCAP &&
3333 	    (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) {
3334 		len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed));
3335 	}
3336 	len_needed += ip_icmp_return;
3337 	msg_len = msgdsize(mp);
3338 	if (msg_len > len_needed) {
3339 		(void) adjmsg(mp, len_needed - msg_len);
3340 		msg_len = len_needed;
3341 	}
3342 	mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI);
3343 	if (mp1 == NULL) {
3344 		BUMP_MIB(&icmp_mib, icmpOutErrors);
3345 		freemsg(ipsec_mp);
3346 		return;
3347 	}
3348 	/*
3349 	 * On an unlabeled system, dblks don't necessarily have creds.
3350 	 */
3351 	ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL);
3352 	if (DB_CRED(mp) != NULL)
3353 		mblk_setcred(mp1, DB_CRED(mp));
3354 	mp1->b_cont = mp;
3355 	mp = mp1;
3356 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL &&
3357 	    ipsec_mp->b_rptr == (uint8_t *)io &&
3358 	    io->ipsec_out_type == IPSEC_OUT);
3359 	ipsec_mp->b_cont = mp;
3360 
3361 	/*
3362 	 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this
3363 	 * node generates be accepted in peace by all on-host destinations.
3364 	 * If we do NOT assume that all on-host destinations trust
3365 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
3366 	 * (Look for ipsec_out_icmp_loopback).
3367 	 */
3368 	io->ipsec_out_icmp_loopback = B_TRUE;
3369 
3370 	ipha = (ipha_t *)mp->b_rptr;
3371 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
3372 	*ipha = icmp_ipha;
3373 	ipha->ipha_src = src;
3374 	ipha->ipha_dst = dst;
3375 	ipha->ipha_ttl = ip_def_ttl;
3376 	msg_len += sizeof (icmp_ipha) + len;
3377 	if (msg_len > IP_MAXPACKET) {
3378 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
3379 		msg_len = IP_MAXPACKET;
3380 	}
3381 	ipha->ipha_length = htons((uint16_t)msg_len);
3382 	icmph = (icmph_t *)&ipha[1];
3383 	bcopy(stuff, icmph, len);
3384 	icmph->icmph_checksum = 0;
3385 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
3386 	if (icmph->icmph_checksum == 0)
3387 		icmph->icmph_checksum = 0xFFFF;
3388 	BUMP_MIB(&icmp_mib, icmpOutMsgs);
3389 	put(q, ipsec_mp);
3390 }
3391 
3392 /*
3393  * Determine if an ICMP error packet can be sent given the rate limit.
3394  * The limit consists of an average frequency (icmp_pkt_err_interval measured
3395  * in milliseconds) and a burst size. Burst size number of packets can
3396  * be sent arbitrarely closely spaced.
3397  * The state is tracked using two variables to implement an approximate
3398  * token bucket filter:
3399  *	icmp_pkt_err_last - lbolt value when the last burst started
3400  *	icmp_pkt_err_sent - number of packets sent in current burst
3401  */
3402 boolean_t
3403 icmp_err_rate_limit(void)
3404 {
3405 	clock_t now = TICK_TO_MSEC(lbolt);
3406 	uint_t refilled; /* Number of packets refilled in tbf since last */
3407 	uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */
3408 
3409 	if (err_interval == 0)
3410 		return (B_FALSE);
3411 
3412 	if (icmp_pkt_err_last > now) {
3413 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
3414 		icmp_pkt_err_last = 0;
3415 		icmp_pkt_err_sent = 0;
3416 	}
3417 	/*
3418 	 * If we are in a burst update the token bucket filter.
3419 	 * Update the "last" time to be close to "now" but make sure
3420 	 * we don't loose precision.
3421 	 */
3422 	if (icmp_pkt_err_sent != 0) {
3423 		refilled = (now - icmp_pkt_err_last)/err_interval;
3424 		if (refilled > icmp_pkt_err_sent) {
3425 			icmp_pkt_err_sent = 0;
3426 		} else {
3427 			icmp_pkt_err_sent -= refilled;
3428 			icmp_pkt_err_last += refilled * err_interval;
3429 		}
3430 	}
3431 	if (icmp_pkt_err_sent == 0) {
3432 		/* Start of new burst */
3433 		icmp_pkt_err_last = now;
3434 	}
3435 	if (icmp_pkt_err_sent < ip_icmp_err_burst) {
3436 		icmp_pkt_err_sent++;
3437 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
3438 		    icmp_pkt_err_sent));
3439 		return (B_FALSE);
3440 	}
3441 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
3442 	return (B_TRUE);
3443 }
3444 
3445 /*
3446  * Check if it is ok to send an IPv4 ICMP error packet in
3447  * response to the IPv4 packet in mp.
3448  * Free the message and return null if no
3449  * ICMP error packet should be sent.
3450  */
3451 static mblk_t *
3452 icmp_pkt_err_ok(mblk_t *mp)
3453 {
3454 	icmph_t	*icmph;
3455 	ipha_t	*ipha;
3456 	uint_t	len_needed;
3457 	ire_t	*src_ire;
3458 	ire_t	*dst_ire;
3459 
3460 	if (!mp)
3461 		return (NULL);
3462 	ipha = (ipha_t *)mp->b_rptr;
3463 	if (ip_csum_hdr(ipha)) {
3464 		BUMP_MIB(&ip_mib, ipInCksumErrs);
3465 		freemsg(mp);
3466 		return (NULL);
3467 	}
3468 	src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST,
3469 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
3470 	dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST,
3471 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
3472 	if (src_ire != NULL || dst_ire != NULL ||
3473 	    CLASSD(ipha->ipha_dst) ||
3474 	    CLASSD(ipha->ipha_src) ||
3475 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
3476 		/* Note: only errors to the fragment with offset 0 */
3477 		BUMP_MIB(&icmp_mib, icmpOutDrops);
3478 		freemsg(mp);
3479 		if (src_ire != NULL)
3480 			ire_refrele(src_ire);
3481 		if (dst_ire != NULL)
3482 			ire_refrele(dst_ire);
3483 		return (NULL);
3484 	}
3485 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
3486 		/*
3487 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3488 		 * errors in response to any ICMP errors.
3489 		 */
3490 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3491 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3492 			if (!pullupmsg(mp, len_needed)) {
3493 				BUMP_MIB(&icmp_mib, icmpInErrors);
3494 				freemsg(mp);
3495 				return (NULL);
3496 			}
3497 			ipha = (ipha_t *)mp->b_rptr;
3498 		}
3499 		icmph = (icmph_t *)
3500 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3501 		switch (icmph->icmph_type) {
3502 		case ICMP_DEST_UNREACHABLE:
3503 		case ICMP_SOURCE_QUENCH:
3504 		case ICMP_TIME_EXCEEDED:
3505 		case ICMP_PARAM_PROBLEM:
3506 		case ICMP_REDIRECT:
3507 			BUMP_MIB(&icmp_mib, icmpOutDrops);
3508 			freemsg(mp);
3509 			return (NULL);
3510 		default:
3511 			break;
3512 		}
3513 	}
3514 	/*
3515 	 * If this is a labeled system, then check to see if we're allowed to
3516 	 * send a response to this particular sender.  If not, then just drop.
3517 	 */
3518 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
3519 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3520 		BUMP_MIB(&icmp_mib, icmpOutDrops);
3521 		freemsg(mp);
3522 		return (NULL);
3523 	}
3524 	if (icmp_err_rate_limit()) {
3525 		/*
3526 		 * Only send ICMP error packets every so often.
3527 		 * This should be done on a per port/source basis,
3528 		 * but for now this will suffice.
3529 		 */
3530 		freemsg(mp);
3531 		return (NULL);
3532 	}
3533 	return (mp);
3534 }
3535 
3536 /*
3537  * Generate an ICMP redirect message.
3538  */
3539 static void
3540 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway)
3541 {
3542 	icmph_t	icmph;
3543 
3544 	/*
3545 	 * We are called from ip_rput where we could
3546 	 * not have attached an IPSEC_IN.
3547 	 */
3548 	ASSERT(mp->b_datap->db_type == M_DATA);
3549 
3550 	if (!(mp = icmp_pkt_err_ok(mp))) {
3551 		return;
3552 	}
3553 
3554 	bzero(&icmph, sizeof (icmph_t));
3555 	icmph.icmph_type = ICMP_REDIRECT;
3556 	icmph.icmph_code = 1;
3557 	icmph.icmph_rd_gateway = gateway;
3558 	BUMP_MIB(&icmp_mib, icmpOutRedirects);
3559 	icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE);
3560 }
3561 
3562 /*
3563  * Generate an ICMP time exceeded message.
3564  */
3565 void
3566 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code)
3567 {
3568 	icmph_t	icmph;
3569 	boolean_t mctl_present;
3570 	mblk_t *first_mp;
3571 
3572 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
3573 
3574 	if (!(mp = icmp_pkt_err_ok(mp))) {
3575 		if (mctl_present)
3576 			freeb(first_mp);
3577 		return;
3578 	}
3579 
3580 	bzero(&icmph, sizeof (icmph_t));
3581 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3582 	icmph.icmph_code = code;
3583 	BUMP_MIB(&icmp_mib, icmpOutTimeExcds);
3584 	icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present);
3585 }
3586 
3587 /*
3588  * Generate an ICMP unreachable message.
3589  */
3590 void
3591 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code)
3592 {
3593 	icmph_t	icmph;
3594 	mblk_t *first_mp;
3595 	boolean_t mctl_present;
3596 
3597 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
3598 
3599 	if (!(mp = icmp_pkt_err_ok(mp))) {
3600 		if (mctl_present)
3601 			freeb(first_mp);
3602 		return;
3603 	}
3604 
3605 	bzero(&icmph, sizeof (icmph_t));
3606 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3607 	icmph.icmph_code = code;
3608 	BUMP_MIB(&icmp_mib, icmpOutDestUnreachs);
3609 	ip2dbg(("send icmp destination unreachable code %d\n", code));
3610 	icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present);
3611 }
3612 
3613 /*
3614  * News from ARP.  ARP sends notification of interesting events down
3615  * to its clients using M_CTL messages with the interesting ARP packet
3616  * attached via b_cont.
3617  * The interesting event from a device comes up the corresponding ARP-IP-DEV
3618  * queue as opposed to ARP sending the message to all the clients, i.e. all
3619  * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache
3620  * table if a cache IRE is found to delete all the entries for the address in
3621  * the packet.
3622  */
3623 static void
3624 ip_arp_news(queue_t *q, mblk_t *mp)
3625 {
3626 	arcn_t		*arcn;
3627 	arh_t		*arh;
3628 	char		*cp1;
3629 	uchar_t		*cp2;
3630 	ire_t		*ire = NULL;
3631 	int		i1;
3632 	char		hbuf[128];
3633 	char		sbuf[16];
3634 	ipaddr_t	src;
3635 	in6_addr_t	v6src;
3636 	boolean_t	isv6 = B_FALSE;
3637 
3638 	if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t)	|| !mp->b_cont) {
3639 		if (q->q_next) {
3640 			putnext(q, mp);
3641 		} else
3642 			freemsg(mp);
3643 		return;
3644 	}
3645 	arh = (arh_t *)mp->b_cont->b_rptr;
3646 	/* Is it one we are interested in? */
3647 	if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) {
3648 		isv6 = B_TRUE;
3649 		bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src,
3650 		    IPV6_ADDR_LEN);
3651 	} else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) {
3652 		bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src,
3653 		    IP_ADDR_LEN);
3654 	} else {
3655 		freemsg(mp);
3656 		return;
3657 	}
3658 
3659 	arcn = (arcn_t *)mp->b_rptr;
3660 	switch (arcn->arcn_code) {
3661 	case AR_CN_BOGON:
3662 		/*
3663 		 * Someone is sending ARP packets with a source protocol
3664 		 * address which we have published.  Either they are
3665 		 * pretending to be us, or we have been asked to proxy
3666 		 * for a machine that can do fine for itself, or two
3667 		 * different machines are providing proxy service for the
3668 		 * same protocol address, or something.  We try and do
3669 		 * something appropriate here.
3670 		 */
3671 		cp2 = (uchar_t *)&arh[1];
3672 		cp1 = hbuf;
3673 		*cp1 = '\0';
3674 		for (i1 = arh->arh_hlen; i1--; cp1 += 3)
3675 			(void) sprintf(cp1, "%02x:", *cp2++ & 0xff);
3676 		if (cp1 != hbuf)
3677 			cp1[-1] = '\0';
3678 		(void) ip_dot_addr(src, sbuf);
3679 		if (isv6)
3680 			ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL);
3681 		else
3682 			ire = ire_cache_lookup(src, ALL_ZONES, NULL);
3683 
3684 		if (ire != NULL	&& IRE_IS_LOCAL(ire)) {
3685 			cmn_err(CE_WARN,
3686 			    "IP: Hardware address '%s' trying"
3687 			    " to be our address %s!",
3688 			    hbuf, sbuf);
3689 		} else {
3690 			cmn_err(CE_WARN,
3691 			    "IP: Proxy ARP problem?  "
3692 			    "Hardware address '%s' thinks it is %s",
3693 			    hbuf, sbuf);
3694 		}
3695 		if (ire != NULL)
3696 			ire_refrele(ire);
3697 		break;
3698 	case AR_CN_ANNOUNCE:
3699 		if (isv6) {
3700 			/*
3701 			 * For XRESOLV interfaces.
3702 			 * Delete the IRE cache entry and NCE for this
3703 			 * v6 address
3704 			 */
3705 			ip_ire_clookup_and_delete_v6(&v6src);
3706 			/*
3707 			 * If v6src is a non-zero, it's a router address
3708 			 * as below. Do the same sort of thing to clean
3709 			 * out off-net IRE_CACHE entries that go through
3710 			 * the router.
3711 			 */
3712 			if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) {
3713 				ire_walk_v6(ire_delete_cache_gw_v6,
3714 				    (char *)&v6src, ALL_ZONES);
3715 			}
3716 			break;
3717 		}
3718 		/*
3719 		 * ARP gives us a copy of any broadcast packet with identical
3720 		 * sender and receiver protocol address, in
3721 		 * case we want to intuit something from it.  Such a packet
3722 		 * usually means that a machine has just come up on the net.
3723 		 * If we have an IRE_CACHE, we blow it away.  This way we will
3724 		 * immediately pick up the rare case of a host changing
3725 		 * hardware address. ip_ire_clookup_and_delete achieves this.
3726 		 *
3727 		 * The address in "src" may be an entry for a router.
3728 		 * (Default router, or non-default router.)  If
3729 		 * that's true, then any off-net IRE_CACHE entries
3730 		 * that go through the router with address "src"
3731 		 * must be clobbered.  Use ire_walk to achieve this
3732 		 * goal.
3733 		 *
3734 		 * It should be possible to determine if the address
3735 		 * in src is or is not for a router.  This way,
3736 		 * the ire_walk() isn't called all of the time here.
3737 		 * Do not pass 'src' value of 0 to ire_delete_cache_gw,
3738 		 * as it would remove all IRE_CACHE entries for onlink
3739 		 * destinations. All onlink destinations have
3740 		 * ire_gateway_addr == 0.
3741 		 */
3742 		if ((ip_ire_clookup_and_delete(src, NULL) ||
3743 		    (ire = ire_ftable_lookup(src, 0, 0, 0, NULL, NULL, NULL,
3744 		    0, NULL, MATCH_IRE_DSTONLY)) != NULL) && src != 0) {
3745 			ire_walk_v4(ire_delete_cache_gw, (char *)&src,
3746 			    ALL_ZONES);
3747 		}
3748 		/* From ire_ftable_lookup */
3749 		if (ire != NULL)
3750 			ire_refrele(ire);
3751 		break;
3752 	default:
3753 		if (ire != NULL)
3754 			ire_refrele(ire);
3755 		break;
3756 	}
3757 	freemsg(mp);
3758 }
3759 
3760 /*
3761  * Create a mblk suitable for carrying the interface index and/or source link
3762  * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used
3763  * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user
3764  * application.
3765  */
3766 mblk_t *
3767 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags)
3768 {
3769 	mblk_t		*mp;
3770 	in_pktinfo_t	*pinfo;
3771 	ipha_t *ipha;
3772 	struct ether_header *pether;
3773 
3774 	mp = allocb(sizeof (in_pktinfo_t), BPRI_MED);
3775 	if (mp == NULL) {
3776 		ip1dbg(("ip_add_info: allocation failure.\n"));
3777 		return (data_mp);
3778 	}
3779 
3780 	ipha	= (ipha_t *)data_mp->b_rptr;
3781 	pinfo = (in_pktinfo_t *)mp->b_rptr;
3782 	bzero(pinfo, sizeof (in_pktinfo_t));
3783 	pinfo->in_pkt_flags = (uchar_t)flags;
3784 	pinfo->in_pkt_ulp_type = IN_PKTINFO;	/* Tell ULP what type of info */
3785 
3786 	if (flags & IPF_RECVIF)
3787 		pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex;
3788 
3789 	pether = (struct ether_header *)((char *)ipha
3790 	    - sizeof (struct ether_header));
3791 	/*
3792 	 * Make sure the interface is an ethernet type, since this option
3793 	 * is currently supported only on this type of interface. Also make
3794 	 * sure we are pointing correctly above db_base.
3795 	 */
3796 
3797 	if ((flags & IPF_RECVSLLA) &&
3798 	    ((uchar_t *)pether >= data_mp->b_datap->db_base) &&
3799 	    (ill->ill_type == IFT_ETHER) &&
3800 	    (ill->ill_net_type == IRE_IF_RESOLVER)) {
3801 
3802 		pinfo->in_pkt_slla.sdl_type = IFT_ETHER;
3803 		bcopy((uchar_t *)pether->ether_shost.ether_addr_octet,
3804 		    (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL);
3805 	} else {
3806 		/*
3807 		 * Clear the bit. Indicate to upper layer that IP is not
3808 		 * sending this ancillary info.
3809 		 */
3810 		pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA;
3811 	}
3812 
3813 	mp->b_datap->db_type = M_CTL;
3814 	mp->b_wptr += sizeof (in_pktinfo_t);
3815 	mp->b_cont = data_mp;
3816 
3817 	return (mp);
3818 }
3819 
3820 /*
3821  * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as
3822  * part of the bind request.
3823  */
3824 
3825 boolean_t
3826 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp)
3827 {
3828 	ipsec_in_t *ii;
3829 
3830 	ASSERT(policy_mp != NULL);
3831 	ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET);
3832 
3833 	ii = (ipsec_in_t *)policy_mp->b_rptr;
3834 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
3835 
3836 	connp->conn_policy = ii->ipsec_in_policy;
3837 	ii->ipsec_in_policy = NULL;
3838 
3839 	if (ii->ipsec_in_action != NULL) {
3840 		if (connp->conn_latch == NULL) {
3841 			connp->conn_latch = iplatch_create();
3842 			if (connp->conn_latch == NULL)
3843 				return (B_FALSE);
3844 		}
3845 		ipsec_latch_inbound(connp->conn_latch, ii);
3846 	}
3847 	return (B_TRUE);
3848 }
3849 
3850 /*
3851  * Upper level protocols (ULP) pass through bind requests to IP for inspection
3852  * and to arrange for power-fanout assist.  The ULP is identified by
3853  * adding a single byte at the end of the original bind message.
3854  * A ULP other than UDP or TCP that wishes to be recognized passes
3855  * down a bind with a zero length address.
3856  *
3857  * The binding works as follows:
3858  * - A zero byte address means just bind to the protocol.
3859  * - A four byte address is treated as a request to validate
3860  *   that the address is a valid local address, appropriate for
3861  *   an application to bind to. This does not affect any fanout
3862  *   information in IP.
3863  * - A sizeof sin_t byte address is used to bind to only the local address
3864  *   and port.
3865  * - A sizeof ipa_conn_t byte address contains complete fanout information
3866  *   consisting of local and remote addresses and ports.  In
3867  *   this case, the addresses are both validated as appropriate
3868  *   for this operation, and, if so, the information is retained
3869  *   for use in the inbound fanout.
3870  *
3871  * The ULP (except in the zero-length bind) can append an
3872  * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the
3873  * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants
3874  * a copy of the source or destination IRE (source for local bind;
3875  * destination for complete bind). IPSEC_POLICY_SET indicates that the
3876  * policy information contained should be copied on to the conn.
3877  *
3878  * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present.
3879  */
3880 mblk_t *
3881 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp)
3882 {
3883 	ssize_t		len;
3884 	struct T_bind_req	*tbr;
3885 	sin_t		*sin;
3886 	ipa_conn_t	*ac;
3887 	uchar_t		*ucp;
3888 	mblk_t		*mp1;
3889 	boolean_t	ire_requested;
3890 	boolean_t	ipsec_policy_set = B_FALSE;
3891 	int		error = 0;
3892 	int		protocol;
3893 	ipa_conn_x_t	*acx;
3894 
3895 	ASSERT(!connp->conn_af_isv6);
3896 	connp->conn_pkt_isv6 = B_FALSE;
3897 
3898 	len = MBLKL(mp);
3899 	if (len < (sizeof (*tbr) + 1)) {
3900 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
3901 		    "ip_bind: bogus msg, len %ld", len);
3902 		/* XXX: Need to return something better */
3903 		goto bad_addr;
3904 	}
3905 	/* Back up and extract the protocol identifier. */
3906 	mp->b_wptr--;
3907 	protocol = *mp->b_wptr & 0xFF;
3908 	tbr = (struct T_bind_req *)mp->b_rptr;
3909 	/* Reset the message type in preparation for shipping it back. */
3910 	DB_TYPE(mp) = M_PCPROTO;
3911 
3912 	connp->conn_ulp = (uint8_t)protocol;
3913 
3914 	/*
3915 	 * Check for a zero length address.  This is from a protocol that
3916 	 * wants to register to receive all packets of its type.
3917 	 */
3918 	if (tbr->ADDR_length == 0) {
3919 		/*
3920 		 * These protocols are now intercepted in ip_bind_v6().
3921 		 * Reject protocol-level binds here for now.
3922 		 *
3923 		 * For SCTP raw socket, ICMP sends down a bind with sin_t
3924 		 * so that the protocol type cannot be SCTP.
3925 		 */
3926 		if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH ||
3927 		    protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) {
3928 			goto bad_addr;
3929 		}
3930 
3931 		/*
3932 		 *
3933 		 * The udp module never sends down a zero-length address,
3934 		 * and allowing this on a labeled system will break MLP
3935 		 * functionality.
3936 		 */
3937 		if (is_system_labeled() && protocol == IPPROTO_UDP)
3938 			goto bad_addr;
3939 
3940 		if (connp->conn_mac_exempt)
3941 			goto bad_addr;
3942 
3943 		/* No hash here really.  The table is big enough. */
3944 		connp->conn_srcv6 = ipv6_all_zeros;
3945 
3946 		ipcl_proto_insert(connp, protocol);
3947 
3948 		tbr->PRIM_type = T_BIND_ACK;
3949 		return (mp);
3950 	}
3951 
3952 	/* Extract the address pointer from the message. */
3953 	ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset,
3954 	    tbr->ADDR_length);
3955 	if (ucp == NULL) {
3956 		ip1dbg(("ip_bind: no address\n"));
3957 		goto bad_addr;
3958 	}
3959 	if (!OK_32PTR(ucp)) {
3960 		ip1dbg(("ip_bind: unaligned address\n"));
3961 		goto bad_addr;
3962 	}
3963 	/*
3964 	 * Check for trailing mps.
3965 	 */
3966 
3967 	mp1 = mp->b_cont;
3968 	ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE);
3969 	ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET);
3970 
3971 	switch (tbr->ADDR_length) {
3972 	default:
3973 		ip1dbg(("ip_bind: bad address length %d\n",
3974 		    (int)tbr->ADDR_length));
3975 		goto bad_addr;
3976 
3977 	case IP_ADDR_LEN:
3978 		/* Verification of local address only */
3979 		error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0,
3980 		    ire_requested, ipsec_policy_set, B_FALSE);
3981 		break;
3982 
3983 	case sizeof (sin_t):
3984 		sin = (sin_t *)ucp;
3985 		error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr,
3986 		    sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE);
3987 		if (protocol == IPPROTO_TCP)
3988 			connp->conn_recv = tcp_conn_request;
3989 		break;
3990 
3991 	case sizeof (ipa_conn_t):
3992 		ac = (ipa_conn_t *)ucp;
3993 		/* For raw socket, the local port is not set. */
3994 		if (ac->ac_lport == 0)
3995 			ac->ac_lport = connp->conn_lport;
3996 		/* Always verify destination reachability. */
3997 		error = ip_bind_connected(connp, mp, &ac->ac_laddr,
3998 		    ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested,
3999 		    ipsec_policy_set, B_TRUE, B_TRUE);
4000 		if (protocol == IPPROTO_TCP)
4001 			connp->conn_recv = tcp_input;
4002 		break;
4003 
4004 	case sizeof (ipa_conn_x_t):
4005 		acx = (ipa_conn_x_t *)ucp;
4006 		/*
4007 		 * Whether or not to verify destination reachability depends
4008 		 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags.
4009 		 */
4010 		error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr,
4011 		    acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr,
4012 		    acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set,
4013 		    B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0);
4014 		if (protocol == IPPROTO_TCP)
4015 			connp->conn_recv = tcp_input;
4016 		break;
4017 	}
4018 	if (error == EINPROGRESS)
4019 		return (NULL);
4020 	else if (error != 0)
4021 		goto bad_addr;
4022 	/*
4023 	 * Pass the IPSEC headers size in ire_ipsec_overhead.
4024 	 * We can't do this in ip_bind_insert_ire because the policy
4025 	 * may not have been inherited at that point in time and hence
4026 	 * conn_out_enforce_policy may not be set.
4027 	 */
4028 	mp1 = mp->b_cont;
4029 	if (ire_requested && connp->conn_out_enforce_policy &&
4030 	    mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) {
4031 		ire_t *ire = (ire_t *)mp1->b_rptr;
4032 		ASSERT(MBLKL(mp1) >= sizeof (ire_t));
4033 		ire->ire_ipsec_overhead = conn_ipsec_length(connp);
4034 	}
4035 
4036 	/* Send it home. */
4037 	mp->b_datap->db_type = M_PCPROTO;
4038 	tbr->PRIM_type = T_BIND_ACK;
4039 	return (mp);
4040 
4041 bad_addr:
4042 	/*
4043 	 * If error = -1 then we generate a TBADADDR - otherwise error is
4044 	 * a unix errno.
4045 	 */
4046 	if (error > 0)
4047 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
4048 	else
4049 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
4050 	return (mp);
4051 }
4052 
4053 /*
4054  * Here address is verified to be a valid local address.
4055  * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast
4056  * address is also considered a valid local address.
4057  * In the case of a broadcast/multicast address, however, the
4058  * upper protocol is expected to reset the src address
4059  * to 0 if it sees a IRE_BROADCAST type returned so that
4060  * no packets are emitted with broadcast/multicast address as
4061  * source address (that violates hosts requirements RFC1122)
4062  * The addresses valid for bind are:
4063  *	(1) - INADDR_ANY (0)
4064  *	(2) - IP address of an UP interface
4065  *	(3) - IP address of a DOWN interface
4066  *	(4) - valid local IP broadcast addresses. In this case
4067  *	the conn will only receive packets destined to
4068  *	the specified broadcast address.
4069  *	(5) - a multicast address. In this case
4070  *	the conn will only receive packets destined to
4071  *	the specified multicast address. Note: the
4072  *	application still has to issue an
4073  *	IP_ADD_MEMBERSHIP socket option.
4074  *
4075  * On error, return -1 for TBADADDR otherwise pass the
4076  * errno with TSYSERR reply.
4077  *
4078  * In all the above cases, the bound address must be valid in the current zone.
4079  * When the address is loopback, multicast or broadcast, there might be many
4080  * matching IREs so bind has to look up based on the zone.
4081  *
4082  * Note: lport is in network byte order.
4083  */
4084 int
4085 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport,
4086     boolean_t ire_requested, boolean_t ipsec_policy_set,
4087     boolean_t fanout_insert)
4088 {
4089 	int		error = 0;
4090 	ire_t		*src_ire;
4091 	mblk_t		*policy_mp;
4092 	ipif_t		*ipif;
4093 	zoneid_t	zoneid;
4094 
4095 	if (ipsec_policy_set) {
4096 		policy_mp = mp->b_cont;
4097 	}
4098 
4099 	/*
4100 	 * If it was previously connected, conn_fully_bound would have
4101 	 * been set.
4102 	 */
4103 	connp->conn_fully_bound = B_FALSE;
4104 
4105 	src_ire = NULL;
4106 	ipif = NULL;
4107 
4108 	zoneid = connp->conn_zoneid;
4109 
4110 	if (src_addr) {
4111 		src_ire = ire_route_lookup(src_addr, 0, 0, 0,
4112 		    NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY);
4113 		/*
4114 		 * If an address other than 0.0.0.0 is requested,
4115 		 * we verify that it is a valid address for bind
4116 		 * Note: Following code is in if-else-if form for
4117 		 * readability compared to a condition check.
4118 		 */
4119 		/* LINTED - statement has no consequent */
4120 		if (IRE_IS_LOCAL(src_ire)) {
4121 			/*
4122 			 * (2) Bind to address of local UP interface
4123 			 */
4124 		} else if (src_ire && src_ire->ire_type == IRE_BROADCAST) {
4125 			/*
4126 			 * (4) Bind to broadcast address
4127 			 * Note: permitted only from transports that
4128 			 * request IRE
4129 			 */
4130 			if (!ire_requested)
4131 				error = EADDRNOTAVAIL;
4132 		} else {
4133 			/*
4134 			 * (3) Bind to address of local DOWN interface
4135 			 * (ipif_lookup_addr() looks up all interfaces
4136 			 * but we do not get here for UP interfaces
4137 			 * - case (2) above)
4138 			 * We put the protocol byte back into the mblk
4139 			 * since we may come back via ip_wput_nondata()
4140 			 * later with this mblk if ipif_lookup_addr chooses
4141 			 * to defer processing.
4142 			 */
4143 			*mp->b_wptr++ = (char)connp->conn_ulp;
4144 			if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid,
4145 			    CONNP_TO_WQ(connp), mp, ip_wput_nondata,
4146 			    &error)) != NULL) {
4147 				ipif_refrele(ipif);
4148 			} else if (error == EINPROGRESS) {
4149 				if (src_ire != NULL)
4150 					ire_refrele(src_ire);
4151 				return (EINPROGRESS);
4152 			} else if (CLASSD(src_addr)) {
4153 				error = 0;
4154 				if (src_ire != NULL)
4155 					ire_refrele(src_ire);
4156 				/*
4157 				 * (5) bind to multicast address.
4158 				 * Fake out the IRE returned to upper
4159 				 * layer to be a broadcast IRE.
4160 				 */
4161 				src_ire = ire_ctable_lookup(
4162 				    INADDR_BROADCAST, INADDR_ANY,
4163 				    IRE_BROADCAST, NULL, zoneid, NULL,
4164 				    (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY));
4165 				if (src_ire == NULL || !ire_requested)
4166 					error = EADDRNOTAVAIL;
4167 			} else {
4168 				/*
4169 				 * Not a valid address for bind
4170 				 */
4171 				error = EADDRNOTAVAIL;
4172 			}
4173 			/*
4174 			 * Just to keep it consistent with the processing in
4175 			 * ip_bind_v4()
4176 			 */
4177 			mp->b_wptr--;
4178 		}
4179 		if (error) {
4180 			/* Red Alert!  Attempting to be a bogon! */
4181 			ip1dbg(("ip_bind: bad src address 0x%x\n",
4182 			    ntohl(src_addr)));
4183 			goto bad_addr;
4184 		}
4185 	}
4186 
4187 	/*
4188 	 * Allow setting new policies. For example, disconnects come
4189 	 * down as ipa_t bind. As we would have set conn_policy_cached
4190 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
4191 	 * can change after the disconnect.
4192 	 */
4193 	connp->conn_policy_cached = B_FALSE;
4194 
4195 	/*
4196 	 * If not fanout_insert this was just an address verification
4197 	 */
4198 	if (fanout_insert) {
4199 		/*
4200 		 * The addresses have been verified. Time to insert in
4201 		 * the correct fanout list.
4202 		 */
4203 		IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6);
4204 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6);
4205 		connp->conn_lport = lport;
4206 		connp->conn_fport = 0;
4207 		/*
4208 		 * Do we need to add a check to reject Multicast packets
4209 		 */
4210 		error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport);
4211 	}
4212 
4213 	if (error == 0) {
4214 		if (ire_requested) {
4215 			if (!ip_bind_insert_ire(mp, src_ire, NULL)) {
4216 				error = -1;
4217 				/* Falls through to bad_addr */
4218 			}
4219 		} else if (ipsec_policy_set) {
4220 			if (!ip_bind_ipsec_policy_set(connp, policy_mp)) {
4221 				error = -1;
4222 				/* Falls through to bad_addr */
4223 			}
4224 		}
4225 	}
4226 bad_addr:
4227 	if (error != 0) {
4228 		if (connp->conn_anon_port) {
4229 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4230 			    connp->conn_mlp_type, connp->conn_ulp, ntohs(lport),
4231 			    B_FALSE);
4232 		}
4233 		connp->conn_mlp_type = mlptSingle;
4234 	}
4235 	if (src_ire != NULL)
4236 		IRE_REFRELE(src_ire);
4237 	if (ipsec_policy_set) {
4238 		ASSERT(policy_mp == mp->b_cont);
4239 		ASSERT(policy_mp != NULL);
4240 		freeb(policy_mp);
4241 		/*
4242 		 * As of now assume that nothing else accompanies
4243 		 * IPSEC_POLICY_SET.
4244 		 */
4245 		mp->b_cont = NULL;
4246 	}
4247 	return (error);
4248 }
4249 
4250 /*
4251  * Verify that both the source and destination addresses
4252  * are valid.  If verify_dst is false, then the destination address may be
4253  * unreachable, i.e. have no route to it.  Protocols like TCP want to verify
4254  * destination reachability, while tunnels do not.
4255  * Note that we allow connect to broadcast and multicast
4256  * addresses when ire_requested is set. Thus the ULP
4257  * has to check for IRE_BROADCAST and multicast.
4258  *
4259  * Returns zero if ok.
4260  * On error: returns -1 to mean TBADADDR otherwise returns an errno
4261  * (for use with TSYSERR reply).
4262  *
4263  * Note: lport and fport are in network byte order.
4264  */
4265 int
4266 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp,
4267     uint16_t lport, ipaddr_t dst_addr, uint16_t fport,
4268     boolean_t ire_requested, boolean_t ipsec_policy_set,
4269     boolean_t fanout_insert, boolean_t verify_dst)
4270 {
4271 	ire_t		*src_ire;
4272 	ire_t		*dst_ire;
4273 	int		error = 0;
4274 	int 		protocol;
4275 	mblk_t		*policy_mp;
4276 	ire_t		*sire = NULL;
4277 	ire_t		*md_dst_ire = NULL;
4278 	ill_t		*md_ill = NULL;
4279 	zoneid_t	zoneid;
4280 	ipaddr_t	src_addr = *src_addrp;
4281 
4282 	src_ire = dst_ire = NULL;
4283 	protocol = *mp->b_wptr & 0xFF;
4284 
4285 	/*
4286 	 * If we never got a disconnect before, clear it now.
4287 	 */
4288 	connp->conn_fully_bound = B_FALSE;
4289 
4290 	if (ipsec_policy_set) {
4291 		policy_mp = mp->b_cont;
4292 	}
4293 
4294 	zoneid = connp->conn_zoneid;
4295 
4296 	if (CLASSD(dst_addr)) {
4297 		/* Pick up an IRE_BROADCAST */
4298 		dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL,
4299 		    NULL, zoneid, MBLK_GETLABEL(mp),
4300 		    (MATCH_IRE_RECURSIVE |
4301 		    MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE |
4302 		    MATCH_IRE_SECATTR));
4303 	} else {
4304 		/*
4305 		 * If conn_dontroute is set or if conn_nexthop_set is set,
4306 		 * and onlink ipif is not found set ENETUNREACH error.
4307 		 */
4308 		if (connp->conn_dontroute || connp->conn_nexthop_set) {
4309 			ipif_t *ipif;
4310 
4311 			ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ?
4312 			    dst_addr : connp->conn_nexthop_v4, zoneid);
4313 			if (ipif == NULL) {
4314 				error = ENETUNREACH;
4315 				goto bad_addr;
4316 			}
4317 			ipif_refrele(ipif);
4318 		}
4319 
4320 		if (connp->conn_nexthop_set) {
4321 			dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0,
4322 			    0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp),
4323 			    MATCH_IRE_SECATTR);
4324 		} else {
4325 			dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL,
4326 			    &sire, zoneid, MBLK_GETLABEL(mp),
4327 			    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4328 			    MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE |
4329 			    MATCH_IRE_SECATTR));
4330 		}
4331 	}
4332 	/*
4333 	 * dst_ire can't be a broadcast when not ire_requested.
4334 	 * We also prevent ire's with src address INADDR_ANY to
4335 	 * be used, which are created temporarily for
4336 	 * sending out packets from endpoints that have
4337 	 * conn_unspec_src set.  If verify_dst is true, the destination must be
4338 	 * reachable.  If verify_dst is false, the destination needn't be
4339 	 * reachable.
4340 	 *
4341 	 * If we match on a reject or black hole, then we've got a
4342 	 * local failure.  May as well fail out the connect() attempt,
4343 	 * since it's never going to succeed.
4344 	 */
4345 	if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY ||
4346 	    (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
4347 	    ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) {
4348 		/*
4349 		 * If we're verifying destination reachability, we always want
4350 		 * to complain here.
4351 		 *
4352 		 * If we're not verifying destination reachability but the
4353 		 * destination has a route, we still want to fail on the
4354 		 * temporary address and broadcast address tests.
4355 		 */
4356 		if (verify_dst || (dst_ire != NULL)) {
4357 			if (ip_debug > 2) {
4358 				pr_addr_dbg("ip_bind_connected: bad connected "
4359 				    "dst %s\n", AF_INET, &dst_addr);
4360 			}
4361 			if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST))
4362 				error = ENETUNREACH;
4363 			else
4364 				error = EHOSTUNREACH;
4365 			goto bad_addr;
4366 		}
4367 	}
4368 
4369 	/*
4370 	 * We now know that routing will allow us to reach the destination.
4371 	 * Check whether Trusted Solaris policy allows communication with this
4372 	 * host, and pretend that the destination is unreachable if not.
4373 	 *
4374 	 * This is never a problem for TCP, since that transport is known to
4375 	 * compute the label properly as part of the tcp_rput_other T_BIND_ACK
4376 	 * handling.  If the remote is unreachable, it will be detected at that
4377 	 * point, so there's no reason to check it here.
4378 	 *
4379 	 * Note that for sendto (and other datagram-oriented friends), this
4380 	 * check is done as part of the data path label computation instead.
4381 	 * The check here is just to make non-TCP connect() report the right
4382 	 * error.
4383 	 */
4384 	if (dst_ire != NULL && is_system_labeled() &&
4385 	    !IPCL_IS_TCP(connp) &&
4386 	    tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL,
4387 	    connp->conn_mac_exempt) != 0) {
4388 		error = EHOSTUNREACH;
4389 		if (ip_debug > 2) {
4390 			pr_addr_dbg("ip_bind_connected: no label for dst %s\n",
4391 			    AF_INET, &dst_addr);
4392 		}
4393 		goto bad_addr;
4394 	}
4395 
4396 	/*
4397 	 * If the app does a connect(), it means that it will most likely
4398 	 * send more than 1 packet to the destination.  It makes sense
4399 	 * to clear the temporary flag.
4400 	 */
4401 	if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE &&
4402 	    (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) {
4403 		irb_t *irb = dst_ire->ire_bucket;
4404 
4405 		rw_enter(&irb->irb_lock, RW_WRITER);
4406 		dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY;
4407 		irb->irb_tmp_ire_cnt--;
4408 		rw_exit(&irb->irb_lock);
4409 	}
4410 
4411 	/*
4412 	 * See if we should notify ULP about MDT; we do this whether or not
4413 	 * ire_requested is TRUE, in order to handle active connects; MDT
4414 	 * eligibility tests for passive connects are handled separately
4415 	 * through tcp_adapt_ire().  We do this before the source address
4416 	 * selection, because dst_ire may change after a call to
4417 	 * ipif_select_source().  This is a best-effort check, as the
4418 	 * packet for this connection may not actually go through
4419 	 * dst_ire->ire_stq, and the exact IRE can only be known after
4420 	 * calling ip_newroute().  This is why we further check on the
4421 	 * IRE during Multidata packet transmission in tcp_multisend().
4422 	 */
4423 	if (ip_multidata_outbound && !ipsec_policy_set && dst_ire != NULL &&
4424 	    !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) &&
4425 	    (md_ill = ire_to_ill(dst_ire), md_ill != NULL) &&
4426 	    ILL_MDT_CAPABLE(md_ill)) {
4427 		md_dst_ire = dst_ire;
4428 		IRE_REFHOLD(md_dst_ire);
4429 	}
4430 
4431 	if (dst_ire != NULL &&
4432 	    dst_ire->ire_type == IRE_LOCAL &&
4433 	    dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) {
4434 		/*
4435 		 * If the IRE belongs to a different zone, look for a matching
4436 		 * route in the forwarding table and use the source address from
4437 		 * that route.
4438 		 */
4439 		src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL,
4440 		    zoneid, 0, NULL,
4441 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4442 		    MATCH_IRE_RJ_BHOLE);
4443 		if (src_ire == NULL) {
4444 			error = EHOSTUNREACH;
4445 			goto bad_addr;
4446 		} else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
4447 			if (!(src_ire->ire_type & IRE_HOST))
4448 				error = ENETUNREACH;
4449 			else
4450 				error = EHOSTUNREACH;
4451 			goto bad_addr;
4452 		}
4453 		if (src_addr == INADDR_ANY)
4454 			src_addr = src_ire->ire_src_addr;
4455 		ire_refrele(src_ire);
4456 		src_ire = NULL;
4457 	} else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) {
4458 		if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) {
4459 			src_addr = sire->ire_src_addr;
4460 			ire_refrele(dst_ire);
4461 			dst_ire = sire;
4462 			sire = NULL;
4463 		} else {
4464 			/*
4465 			 * Pick a source address so that a proper inbound
4466 			 * load spreading would happen.
4467 			 */
4468 			ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill;
4469 			ipif_t *src_ipif = NULL;
4470 			ire_t *ipif_ire;
4471 
4472 			/*
4473 			 * Supply a local source address such that inbound
4474 			 * load spreading happens.
4475 			 *
4476 			 * Determine the best source address on this ill for
4477 			 * the destination.
4478 			 *
4479 			 * 1) For broadcast, we should return a broadcast ire
4480 			 *    found above so that upper layers know that the
4481 			 *    destination address is a broadcast address.
4482 			 *
4483 			 * 2) If this is part of a group, select a better
4484 			 *    source address so that better inbound load
4485 			 *    balancing happens. Do the same if the ipif
4486 			 *    is DEPRECATED.
4487 			 *
4488 			 * 3) If the outgoing interface is part of a usesrc
4489 			 *    group, then try selecting a source address from
4490 			 *    the usesrc ILL.
4491 			 */
4492 			if ((dst_ire->ire_zoneid != zoneid &&
4493 			    dst_ire->ire_zoneid != ALL_ZONES) ||
4494 			    (!(dst_ire->ire_type & IRE_BROADCAST) &&
4495 			    ((dst_ill->ill_group != NULL) ||
4496 			    (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) ||
4497 			    (dst_ill->ill_usesrc_ifindex != 0)))) {
4498 				/*
4499 				 * If the destination is reachable via a
4500 				 * given gateway, the selected source address
4501 				 * should be in the same subnet as the gateway.
4502 				 * Otherwise, the destination is not reachable.
4503 				 *
4504 				 * If there are no interfaces on the same subnet
4505 				 * as the destination, ipif_select_source gives
4506 				 * first non-deprecated interface which might be
4507 				 * on a different subnet than the gateway.
4508 				 * This is not desirable. Hence pass the dst_ire
4509 				 * source address to ipif_select_source.
4510 				 * It is sure that the destination is reachable
4511 				 * with the dst_ire source address subnet.
4512 				 * So passing dst_ire source address to
4513 				 * ipif_select_source will make sure that the
4514 				 * selected source will be on the same subnet
4515 				 * as dst_ire source address.
4516 				 */
4517 				ipaddr_t saddr =
4518 				    dst_ire->ire_ipif->ipif_src_addr;
4519 				src_ipif = ipif_select_source(dst_ill,
4520 				    saddr, zoneid);
4521 				if (src_ipif != NULL) {
4522 					if (IS_VNI(src_ipif->ipif_ill)) {
4523 						/*
4524 						 * For VNI there is no
4525 						 * interface route
4526 						 */
4527 						src_addr =
4528 						    src_ipif->ipif_src_addr;
4529 					} else {
4530 						ipif_ire =
4531 						    ipif_to_ire(src_ipif);
4532 						if (ipif_ire != NULL) {
4533 							IRE_REFRELE(dst_ire);
4534 							dst_ire = ipif_ire;
4535 						}
4536 						src_addr =
4537 						    dst_ire->ire_src_addr;
4538 					}
4539 					ipif_refrele(src_ipif);
4540 				} else {
4541 					src_addr = dst_ire->ire_src_addr;
4542 				}
4543 			} else {
4544 				src_addr = dst_ire->ire_src_addr;
4545 			}
4546 		}
4547 	}
4548 
4549 	/*
4550 	 * We do ire_route_lookup() here (and not
4551 	 * interface lookup as we assert that
4552 	 * src_addr should only come from an
4553 	 * UP interface for hard binding.
4554 	 */
4555 	ASSERT(src_ire == NULL);
4556 	src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL,
4557 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY);
4558 	/* src_ire must be a local|loopback */
4559 	if (!IRE_IS_LOCAL(src_ire)) {
4560 		if (ip_debug > 2) {
4561 			pr_addr_dbg("ip_bind_connected: bad connected "
4562 			    "src %s\n", AF_INET, &src_addr);
4563 		}
4564 		error = EADDRNOTAVAIL;
4565 		goto bad_addr;
4566 	}
4567 
4568 	/*
4569 	 * If the source address is a loopback address, the
4570 	 * destination had best be local or multicast.
4571 	 * The transports that can't handle multicast will reject
4572 	 * those addresses.
4573 	 */
4574 	if (src_ire->ire_type == IRE_LOOPBACK &&
4575 	    !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) {
4576 		ip1dbg(("ip_bind_connected: bad connected loopback\n"));
4577 		error = -1;
4578 		goto bad_addr;
4579 	}
4580 
4581 	/*
4582 	 * Allow setting new policies. For example, disconnects come
4583 	 * down as ipa_t bind. As we would have set conn_policy_cached
4584 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
4585 	 * can change after the disconnect.
4586 	 */
4587 	connp->conn_policy_cached = B_FALSE;
4588 
4589 	/*
4590 	 * Set the conn addresses/ports immediately, so the IPsec policy calls
4591 	 * can handle their passed-in conn's.
4592 	 */
4593 
4594 	IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6);
4595 	IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6);
4596 	connp->conn_lport = lport;
4597 	connp->conn_fport = fport;
4598 	*src_addrp = src_addr;
4599 
4600 	ASSERT(!(ipsec_policy_set && ire_requested));
4601 	if (ire_requested) {
4602 		iulp_t *ulp_info = NULL;
4603 
4604 		/*
4605 		 * Note that sire will not be NULL if this is an off-link
4606 		 * connection and there is not cache for that dest yet.
4607 		 *
4608 		 * XXX Because of an existing bug, if there are multiple
4609 		 * default routes, the IRE returned now may not be the actual
4610 		 * default route used (default routes are chosen in a
4611 		 * round robin fashion).  So if the metrics for different
4612 		 * default routes are different, we may return the wrong
4613 		 * metrics.  This will not be a problem if the existing
4614 		 * bug is fixed.
4615 		 */
4616 		if (sire != NULL) {
4617 			ulp_info = &(sire->ire_uinfo);
4618 		}
4619 		if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) {
4620 			error = -1;
4621 			goto bad_addr;
4622 		}
4623 	} else if (ipsec_policy_set) {
4624 		if (!ip_bind_ipsec_policy_set(connp, policy_mp)) {
4625 			error = -1;
4626 			goto bad_addr;
4627 		}
4628 	}
4629 
4630 	/*
4631 	 * Cache IPsec policy in this conn.  If we have per-socket policy,
4632 	 * we'll cache that.  If we don't, we'll inherit global policy.
4633 	 *
4634 	 * We can't insert until the conn reflects the policy. Note that
4635 	 * conn_policy_cached is set by ipsec_conn_cache_policy() even for
4636 	 * connections where we don't have a policy. This is to prevent
4637 	 * global policy lookups in the inbound path.
4638 	 *
4639 	 * If we insert before we set conn_policy_cached,
4640 	 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true
4641 	 * because global policy cound be non-empty. We normally call
4642 	 * ipsec_check_policy() for conn_policy_cached connections only if
4643 	 * ipc_in_enforce_policy is set. But in this case,
4644 	 * conn_policy_cached can get set anytime since we made the
4645 	 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is
4646 	 * called, which will make the above assumption false.  Thus, we
4647 	 * need to insert after we set conn_policy_cached.
4648 	 */
4649 	if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0)
4650 		goto bad_addr;
4651 
4652 	if (fanout_insert) {
4653 		/*
4654 		 * The addresses have been verified. Time to insert in
4655 		 * the correct fanout list.
4656 		 */
4657 		error = ipcl_conn_insert(connp, protocol, src_addr,
4658 		    dst_addr, connp->conn_ports);
4659 	}
4660 
4661 	if (error == 0) {
4662 		connp->conn_fully_bound = B_TRUE;
4663 		/*
4664 		 * Our initial checks for MDT have passed; the IRE is not
4665 		 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to
4666 		 * be supporting MDT.  Pass the IRE, IPC and ILL into
4667 		 * ip_mdinfo_return(), which performs further checks
4668 		 * against them and upon success, returns the MDT info
4669 		 * mblk which we will attach to the bind acknowledgment.
4670 		 */
4671 		if (md_dst_ire != NULL) {
4672 			mblk_t *mdinfo_mp;
4673 
4674 			ASSERT(md_ill != NULL);
4675 			ASSERT(md_ill->ill_mdt_capab != NULL);
4676 			if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp,
4677 			    md_ill->ill_name, md_ill->ill_mdt_capab)) != NULL)
4678 				linkb(mp, mdinfo_mp);
4679 		}
4680 	}
4681 bad_addr:
4682 	if (ipsec_policy_set) {
4683 		ASSERT(policy_mp == mp->b_cont);
4684 		ASSERT(policy_mp != NULL);
4685 		freeb(policy_mp);
4686 		/*
4687 		 * As of now assume that nothing else accompanies
4688 		 * IPSEC_POLICY_SET.
4689 		 */
4690 		mp->b_cont = NULL;
4691 	}
4692 	if (src_ire != NULL)
4693 		IRE_REFRELE(src_ire);
4694 	if (dst_ire != NULL)
4695 		IRE_REFRELE(dst_ire);
4696 	if (sire != NULL)
4697 		IRE_REFRELE(sire);
4698 	if (md_dst_ire != NULL)
4699 		IRE_REFRELE(md_dst_ire);
4700 	return (error);
4701 }
4702 
4703 /*
4704  * Insert the ire in b_cont. Returns false if it fails (due to lack of space).
4705  * Prefers dst_ire over src_ire.
4706  */
4707 static boolean_t
4708 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info)
4709 {
4710 	mblk_t	*mp1;
4711 	ire_t *ret_ire = NULL;
4712 
4713 	mp1 = mp->b_cont;
4714 	ASSERT(mp1 != NULL);
4715 
4716 	if (ire != NULL) {
4717 		/*
4718 		 * mp1 initialized above to IRE_DB_REQ_TYPE
4719 		 * appended mblk. Its <upper protocol>'s
4720 		 * job to make sure there is room.
4721 		 */
4722 		if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t))
4723 			return (0);
4724 
4725 		mp1->b_datap->db_type = IRE_DB_TYPE;
4726 		mp1->b_wptr = mp1->b_rptr + sizeof (ire_t);
4727 		bcopy(ire, mp1->b_rptr, sizeof (ire_t));
4728 		ret_ire = (ire_t *)mp1->b_rptr;
4729 		/*
4730 		 * Pass the latest setting of the ip_path_mtu_discovery and
4731 		 * copy the ulp info if any.
4732 		 */
4733 		ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ?
4734 		    IPH_DF : 0;
4735 		if (ulp_info != NULL) {
4736 			bcopy(ulp_info, &(ret_ire->ire_uinfo),
4737 			    sizeof (iulp_t));
4738 		}
4739 		ret_ire->ire_mp = mp1;
4740 	} else {
4741 		/*
4742 		 * No IRE was found. Remove IRE mblk.
4743 		 */
4744 		mp->b_cont = mp1->b_cont;
4745 		freeb(mp1);
4746 	}
4747 
4748 	return (1);
4749 }
4750 
4751 /*
4752  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
4753  * the final piece where we don't.  Return a pointer to the first mblk in the
4754  * result, and update the pointer to the next mblk to chew on.  If anything
4755  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
4756  * NULL pointer.
4757  */
4758 mblk_t *
4759 ip_carve_mp(mblk_t **mpp, ssize_t len)
4760 {
4761 	mblk_t	*mp0;
4762 	mblk_t	*mp1;
4763 	mblk_t	*mp2;
4764 
4765 	if (!len || !mpp || !(mp0 = *mpp))
4766 		return (NULL);
4767 	/* If we aren't going to consume the first mblk, we need a dup. */
4768 	if (mp0->b_wptr - mp0->b_rptr > len) {
4769 		mp1 = dupb(mp0);
4770 		if (mp1) {
4771 			/* Partition the data between the two mblks. */
4772 			mp1->b_wptr = mp1->b_rptr + len;
4773 			mp0->b_rptr = mp1->b_wptr;
4774 			/*
4775 			 * after adjustments if mblk not consumed is now
4776 			 * unaligned, try to align it. If this fails free
4777 			 * all messages and let upper layer recover.
4778 			 */
4779 			if (!OK_32PTR(mp0->b_rptr)) {
4780 				if (!pullupmsg(mp0, -1)) {
4781 					freemsg(mp0);
4782 					freemsg(mp1);
4783 					*mpp = NULL;
4784 					return (NULL);
4785 				}
4786 			}
4787 		}
4788 		return (mp1);
4789 	}
4790 	/* Eat through as many mblks as we need to get len bytes. */
4791 	len -= mp0->b_wptr - mp0->b_rptr;
4792 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
4793 		if (mp2->b_wptr - mp2->b_rptr > len) {
4794 			/*
4795 			 * We won't consume the entire last mblk.  Like
4796 			 * above, dup and partition it.
4797 			 */
4798 			mp1->b_cont = dupb(mp2);
4799 			mp1 = mp1->b_cont;
4800 			if (!mp1) {
4801 				/*
4802 				 * Trouble.  Rather than go to a lot of
4803 				 * trouble to clean up, we free the messages.
4804 				 * This won't be any worse than losing it on
4805 				 * the wire.
4806 				 */
4807 				freemsg(mp0);
4808 				freemsg(mp2);
4809 				*mpp = NULL;
4810 				return (NULL);
4811 			}
4812 			mp1->b_wptr = mp1->b_rptr + len;
4813 			mp2->b_rptr = mp1->b_wptr;
4814 			/*
4815 			 * after adjustments if mblk not consumed is now
4816 			 * unaligned, try to align it. If this fails free
4817 			 * all messages and let upper layer recover.
4818 			 */
4819 			if (!OK_32PTR(mp2->b_rptr)) {
4820 				if (!pullupmsg(mp2, -1)) {
4821 					freemsg(mp0);
4822 					freemsg(mp2);
4823 					*mpp = NULL;
4824 					return (NULL);
4825 				}
4826 			}
4827 			*mpp = mp2;
4828 			return (mp0);
4829 		}
4830 		/* Decrement len by the amount we just got. */
4831 		len -= mp2->b_wptr - mp2->b_rptr;
4832 	}
4833 	/*
4834 	 * len should be reduced to zero now.  If not our caller has
4835 	 * screwed up.
4836 	 */
4837 	if (len) {
4838 		/* Shouldn't happen! */
4839 		freemsg(mp0);
4840 		*mpp = NULL;
4841 		return (NULL);
4842 	}
4843 	/*
4844 	 * We consumed up to exactly the end of an mblk.  Detach the part
4845 	 * we are returning from the rest of the chain.
4846 	 */
4847 	mp1->b_cont = NULL;
4848 	*mpp = mp2;
4849 	return (mp0);
4850 }
4851 
4852 /* The ill stream is being unplumbed. Called from ip_close */
4853 int
4854 ip_modclose(ill_t *ill)
4855 {
4856 
4857 	boolean_t success;
4858 	ipsq_t	*ipsq;
4859 	ipif_t	*ipif;
4860 	queue_t	*q = ill->ill_rq;
4861 
4862 	/*
4863 	 * Forcibly enter the ipsq after some delay. This is to take
4864 	 * care of the case when some ioctl does not complete because
4865 	 * we sent a control message to the driver and it did not
4866 	 * send us a reply. We want to be able to at least unplumb
4867 	 * and replumb rather than force the user to reboot the system.
4868 	 */
4869 	success = ipsq_enter(ill, B_FALSE);
4870 
4871 	/*
4872 	 * Open/close/push/pop is guaranteed to be single threaded
4873 	 * per stream by STREAMS. FS guarantees that all references
4874 	 * from top are gone before close is called. So there can't
4875 	 * be another close thread that has set CONDEMNED on this ill.
4876 	 * and cause ipsq_enter to return failure.
4877 	 */
4878 	ASSERT(success);
4879 	ipsq = ill->ill_phyint->phyint_ipsq;
4880 
4881 	/*
4882 	 * Mark it condemned. No new reference will be made to this ill.
4883 	 * Lookup functions will return an error. Threads that try to
4884 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4885 	 * that the refcnt will drop down to zero.
4886 	 */
4887 	mutex_enter(&ill->ill_lock);
4888 	ill->ill_state_flags |= ILL_CONDEMNED;
4889 	for (ipif = ill->ill_ipif; ipif != NULL;
4890 	    ipif = ipif->ipif_next) {
4891 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
4892 	}
4893 	/*
4894 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4895 	 * returns  error if ILL_CONDEMNED is set
4896 	 */
4897 	cv_broadcast(&ill->ill_cv);
4898 	mutex_exit(&ill->ill_lock);
4899 
4900 	/*
4901 	 * Shut down fragmentation reassembly.
4902 	 * ill_frag_timer won't start a timer again.
4903 	 * Now cancel any existing timer
4904 	 */
4905 	(void) untimeout(ill->ill_frag_timer_id);
4906 	(void) ill_frag_timeout(ill, 0);
4907 
4908 	/*
4909 	 * If MOVE was in progress, clear the
4910 	 * move_in_progress fields also.
4911 	 */
4912 	if (ill->ill_move_in_progress) {
4913 		ILL_CLEAR_MOVE(ill);
4914 	}
4915 
4916 	/*
4917 	 * Call ill_delete to bring down the ipifs, ilms and ill on
4918 	 * this ill. Then wait for the refcnts to drop to zero.
4919 	 * ill_is_quiescent checks whether the ill is really quiescent.
4920 	 * Then make sure that threads that are waiting to enter the
4921 	 * ipsq have seen the error returned by ipsq_enter and have
4922 	 * gone away. Then we call ill_delete_tail which does the
4923 	 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff.
4924 	 */
4925 	ill_delete(ill);
4926 	mutex_enter(&ill->ill_lock);
4927 	while (!ill_is_quiescent(ill))
4928 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4929 	while (ill->ill_waiters)
4930 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4931 
4932 	mutex_exit(&ill->ill_lock);
4933 
4934 	/* qprocsoff is called in ill_delete_tail */
4935 	ill_delete_tail(ill);
4936 
4937 	/*
4938 	 * Walk through all upper (conn) streams and qenable
4939 	 * those that have queued data.
4940 	 * close synchronization needs this to
4941 	 * be done to ensure that all upper layers blocked
4942 	 * due to flow control to the closing device
4943 	 * get unblocked.
4944 	 */
4945 	ip1dbg(("ip_wsrv: walking\n"));
4946 	conn_walk_drain();
4947 
4948 	mutex_enter(&ip_mi_lock);
4949 	mi_close_unlink(&ip_g_head, (IDP)ill);
4950 	mutex_exit(&ip_mi_lock);
4951 
4952 	/*
4953 	 * credp could be null if the open didn't succeed and ip_modopen
4954 	 * itself calls ip_close.
4955 	 */
4956 	if (ill->ill_credp != NULL)
4957 		crfree(ill->ill_credp);
4958 
4959 	mi_close_free((IDP)ill);
4960 	q->q_ptr = WR(q)->q_ptr = NULL;
4961 
4962 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
4963 
4964 	return (0);
4965 }
4966 
4967 /*
4968  * This is called as part of close() for both IP and UDP
4969  * in order to quiesce the conn.
4970  */
4971 void
4972 ip_quiesce_conn(conn_t *connp)
4973 {
4974 	boolean_t	drain_cleanup_reqd = B_FALSE;
4975 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4976 	boolean_t	ilg_cleanup_reqd = B_FALSE;
4977 
4978 	ASSERT(!IPCL_IS_TCP(connp));
4979 
4980 	/*
4981 	 * Mark the conn as closing, and this conn must not be
4982 	 * inserted in future into any list. Eg. conn_drain_insert(),
4983 	 * won't insert this conn into the conn_drain_list.
4984 	 * Similarly ill_pending_mp_add() will not add any mp to
4985 	 * the pending mp list, after this conn has started closing.
4986 	 *
4987 	 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg
4988 	 * cannot get set henceforth.
4989 	 */
4990 	mutex_enter(&connp->conn_lock);
4991 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4992 	connp->conn_state_flags |= CONN_CLOSING;
4993 	if (connp->conn_idl != NULL)
4994 		drain_cleanup_reqd = B_TRUE;
4995 	if (connp->conn_oper_pending_ill != NULL)
4996 		conn_ioctl_cleanup_reqd = B_TRUE;
4997 	if (connp->conn_ilg_inuse != 0)
4998 		ilg_cleanup_reqd = B_TRUE;
4999 	mutex_exit(&connp->conn_lock);
5000 
5001 	if (IPCL_IS_UDP(connp))
5002 		udp_quiesce_conn(connp);
5003 
5004 	if (conn_ioctl_cleanup_reqd)
5005 		conn_ioctl_cleanup(connp);
5006 
5007 	if (is_system_labeled() && connp->conn_anon_port) {
5008 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
5009 		    connp->conn_mlp_type, connp->conn_ulp,
5010 		    ntohs(connp->conn_lport), B_FALSE);
5011 		connp->conn_anon_port = 0;
5012 	}
5013 	connp->conn_mlp_type = mlptSingle;
5014 
5015 	/*
5016 	 * Remove this conn from any fanout list it is on.
5017 	 * and then wait for any threads currently operating
5018 	 * on this endpoint to finish
5019 	 */
5020 	ipcl_hash_remove(connp);
5021 
5022 	/*
5023 	 * Remove this conn from the drain list, and do
5024 	 * any other cleanup that may be required.
5025 	 * (Only non-tcp streams may have a non-null conn_idl.
5026 	 * TCP streams are never flow controlled, and
5027 	 * conn_idl will be null)
5028 	 */
5029 	if (drain_cleanup_reqd)
5030 		conn_drain_tail(connp, B_TRUE);
5031 
5032 	if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter)
5033 		(void) ip_mrouter_done(NULL);
5034 
5035 	if (ilg_cleanup_reqd)
5036 		ilg_delete_all(connp);
5037 
5038 	conn_delete_ire(connp, NULL);
5039 
5040 	/*
5041 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
5042 	 * callers from write side can't be there now because close
5043 	 * is in progress. The only other caller is ipcl_walk
5044 	 * which checks for the condemned flag.
5045 	 */
5046 	mutex_enter(&connp->conn_lock);
5047 	connp->conn_state_flags |= CONN_CONDEMNED;
5048 	while (connp->conn_ref != 1)
5049 		cv_wait(&connp->conn_cv, &connp->conn_lock);
5050 	connp->conn_state_flags |= CONN_QUIESCED;
5051 	mutex_exit(&connp->conn_lock);
5052 }
5053 
5054 /* ARGSUSED */
5055 int
5056 ip_close(queue_t *q, int flags)
5057 {
5058 	conn_t		*connp;
5059 
5060 	TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q);
5061 
5062 	/*
5063 	 * Call the appropriate delete routine depending on whether this is
5064 	 * a module or device.
5065 	 */
5066 	if (WR(q)->q_next != NULL) {
5067 		/* This is a module close */
5068 		return (ip_modclose((ill_t *)q->q_ptr));
5069 	}
5070 
5071 	connp = q->q_ptr;
5072 	ip_quiesce_conn(connp);
5073 
5074 	qprocsoff(q);
5075 
5076 	/*
5077 	 * Now we are truly single threaded on this stream, and can
5078 	 * delete the things hanging off the connp, and finally the connp.
5079 	 * We removed this connp from the fanout list, it cannot be
5080 	 * accessed thru the fanouts, and we already waited for the
5081 	 * conn_ref to drop to 0. We are already in close, so
5082 	 * there cannot be any other thread from the top. qprocsoff
5083 	 * has completed, and service has completed or won't run in
5084 	 * future.
5085 	 */
5086 	ASSERT(connp->conn_ref == 1);
5087 
5088 	/*
5089 	 * A conn which was previously marked as IPCL_UDP cannot
5090 	 * retain the flag because it would have been cleared by
5091 	 * udp_close().
5092 	 */
5093 	ASSERT(!IPCL_IS_UDP(connp));
5094 
5095 	if (connp->conn_latch != NULL) {
5096 		IPLATCH_REFRELE(connp->conn_latch);
5097 		connp->conn_latch = NULL;
5098 	}
5099 	if (connp->conn_policy != NULL) {
5100 		IPPH_REFRELE(connp->conn_policy);
5101 		connp->conn_policy = NULL;
5102 	}
5103 	if (connp->conn_ipsec_opt_mp != NULL) {
5104 		freemsg(connp->conn_ipsec_opt_mp);
5105 		connp->conn_ipsec_opt_mp = NULL;
5106 	}
5107 
5108 	inet_minor_free(ip_minor_arena, connp->conn_dev);
5109 
5110 	connp->conn_ref--;
5111 	ipcl_conn_destroy(connp);
5112 
5113 	q->q_ptr = WR(q)->q_ptr = NULL;
5114 	return (0);
5115 }
5116 
5117 int
5118 ip_snmpmod_close(queue_t *q)
5119 {
5120 	conn_t *connp = Q_TO_CONN(q);
5121 	ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD));
5122 
5123 	qprocsoff(q);
5124 
5125 	if (connp->conn_flags & IPCL_UDPMOD)
5126 		udp_close_free(connp);
5127 
5128 	if (connp->conn_cred != NULL) {
5129 		crfree(connp->conn_cred);
5130 		connp->conn_cred = NULL;
5131 	}
5132 	CONN_DEC_REF(connp);
5133 	q->q_ptr = WR(q)->q_ptr = NULL;
5134 	return (0);
5135 }
5136 
5137 /*
5138  * Write side put procedure for TCP module or UDP module instance.  TCP/UDP
5139  * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP.
5140  * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ.
5141  * M_FLUSH messages and ioctls are only passed downstream; we don't flush our
5142  * queues as we never enqueue messages there and we don't handle any ioctls.
5143  * Everything else is freed.
5144  */
5145 void
5146 ip_snmpmod_wput(queue_t *q, mblk_t *mp)
5147 {
5148 	conn_t	*connp = q->q_ptr;
5149 	pfi_t	setfn;
5150 	pfi_t	getfn;
5151 
5152 	ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD));
5153 
5154 	switch (DB_TYPE(mp)) {
5155 	case M_PROTO:
5156 	case M_PCPROTO:
5157 		if ((MBLKL(mp) >= sizeof (t_scalar_t)) &&
5158 		    ((((union T_primitives *)mp->b_rptr)->type ==
5159 			T_SVR4_OPTMGMT_REQ) ||
5160 		    (((union T_primitives *)mp->b_rptr)->type ==
5161 			T_OPTMGMT_REQ))) {
5162 			/*
5163 			 * This is the only TPI primitive supported. Its
5164 			 * handling does not require tcp_t, but it does require
5165 			 * conn_t to check permissions.
5166 			 */
5167 			cred_t	*cr = DB_CREDDEF(mp, connp->conn_cred);
5168 
5169 			if (connp->conn_flags & IPCL_TCPMOD) {
5170 				setfn = tcp_snmp_set;
5171 				getfn = tcp_snmp_get;
5172 			} else {
5173 				setfn = udp_snmp_set;
5174 				getfn = udp_snmp_get;
5175 			}
5176 			if (!snmpcom_req(q, mp, setfn, getfn, cr)) {
5177 				freemsg(mp);
5178 				return;
5179 			}
5180 		} else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP))
5181 		    != NULL)
5182 			qreply(q, mp);
5183 		break;
5184 	case M_FLUSH:
5185 	case M_IOCTL:
5186 		putnext(q, mp);
5187 		break;
5188 	default:
5189 		freemsg(mp);
5190 		break;
5191 	}
5192 }
5193 
5194 /* Return the IP checksum for the IP header at "iph". */
5195 uint16_t
5196 ip_csum_hdr(ipha_t *ipha)
5197 {
5198 	uint16_t	*uph;
5199 	uint32_t	sum;
5200 	int		opt_len;
5201 
5202 	opt_len = (ipha->ipha_version_and_hdr_length & 0xF) -
5203 	    IP_SIMPLE_HDR_LENGTH_IN_WORDS;
5204 	uph = (uint16_t *)ipha;
5205 	sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
5206 		uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
5207 	if (opt_len > 0) {
5208 		do {
5209 			sum += uph[10];
5210 			sum += uph[11];
5211 			uph += 2;
5212 		} while (--opt_len);
5213 	}
5214 	sum = (sum & 0xFFFF) + (sum >> 16);
5215 	sum = ~(sum + (sum >> 16)) & 0xFFFF;
5216 	if (sum == 0xffff)
5217 		sum = 0;
5218 	return ((uint16_t)sum);
5219 }
5220 
5221 void
5222 ip_ddi_destroy(void)
5223 {
5224 	tnet_fini();
5225 	tcp_ddi_destroy();
5226 	sctp_ddi_destroy();
5227 	ipsec_loader_destroy();
5228 	ipsec_policy_destroy();
5229 	ipsec_kstat_destroy();
5230 	nd_free(&ip_g_nd);
5231 	mutex_destroy(&igmp_timer_lock);
5232 	mutex_destroy(&mld_timer_lock);
5233 	mutex_destroy(&igmp_slowtimeout_lock);
5234 	mutex_destroy(&mld_slowtimeout_lock);
5235 	mutex_destroy(&ip_mi_lock);
5236 	mutex_destroy(&rts_clients.connf_lock);
5237 	ip_ire_fini();
5238 	ip6_asp_free();
5239 	conn_drain_fini();
5240 	ipcl_destroy();
5241 	inet_minor_destroy(ip_minor_arena);
5242 	icmp_kstat_fini();
5243 	ip_kstat_fini();
5244 	rw_destroy(&ipsec_capab_ills_lock);
5245 	rw_destroy(&ill_g_usesrc_lock);
5246 	ip_drop_unregister(&ip_dropper);
5247 }
5248 
5249 
5250 void
5251 ip_ddi_init(void)
5252 {
5253 	TCP6_MAJ = ddi_name_to_major(TCP6);
5254 	TCP_MAJ	= ddi_name_to_major(TCP);
5255 	SCTP_MAJ = ddi_name_to_major(SCTP);
5256 	SCTP6_MAJ = ddi_name_to_major(SCTP6);
5257 
5258 	ip_input_proc = ip_squeue_switch(ip_squeue_enter);
5259 
5260 	/* IP's IPsec code calls the packet dropper */
5261 	ip_drop_register(&ip_dropper, "IP IPsec processing");
5262 
5263 	if (!ip_g_nd) {
5264 		if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr),
5265 		    lcl_ndp_arr, A_CNT(lcl_ndp_arr))) {
5266 			nd_free(&ip_g_nd);
5267 		}
5268 	}
5269 
5270 	ipsec_loader_init();
5271 	ipsec_policy_init();
5272 	ipsec_kstat_init();
5273 	rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL);
5274 	mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
5275 	mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
5276 	mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
5277 	mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
5278 	mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
5279 	mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
5280 	rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL);
5281 	rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL);
5282 	rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
5283 
5284 	/*
5285 	 * For IP and TCP the minor numbers should start from 2 since we have 4
5286 	 * initial devices: ip, ip6, tcp, tcp6.
5287 	 */
5288 	if ((ip_minor_arena = inet_minor_create("ip_minor_arena",
5289 	    INET_MIN_DEV + 2, KM_SLEEP)) == NULL) {
5290 		cmn_err(CE_PANIC,
5291 		    "ip_ddi_init: ip_minor_arena creation failed\n");
5292 	}
5293 
5294 	ipcl_init();
5295 	mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL);
5296 	ip_ire_init();
5297 	ip6_asp_init();
5298 	ipif_init();
5299 	conn_drain_init();
5300 	tcp_ddi_init();
5301 	sctp_ddi_init();
5302 
5303 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
5304 
5305 	if ((ip_kstat = kstat_create("ip", 0, "ipstat",
5306 		"net", KSTAT_TYPE_NAMED,
5307 		sizeof (ip_statistics) / sizeof (kstat_named_t),
5308 		KSTAT_FLAG_VIRTUAL)) != NULL) {
5309 		ip_kstat->ks_data = &ip_statistics;
5310 		kstat_install(ip_kstat);
5311 	}
5312 	ip_kstat_init();
5313 	ip6_kstat_init();
5314 	icmp_kstat_init();
5315 	ipsec_loader_start();
5316 	tnet_init();
5317 }
5318 
5319 /*
5320  * Allocate and initialize a DLPI template of the specified length.  (May be
5321  * called as writer.)
5322  */
5323 mblk_t *
5324 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
5325 {
5326 	mblk_t	*mp;
5327 
5328 	mp = allocb(len, BPRI_MED);
5329 	if (!mp)
5330 		return (NULL);
5331 
5332 	/*
5333 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
5334 	 * of which we don't seem to use) are sent with M_PCPROTO, and
5335 	 * that other DLPI are M_PROTO.
5336 	 */
5337 	if (prim == DL_INFO_REQ) {
5338 		mp->b_datap->db_type = M_PCPROTO;
5339 	} else {
5340 		mp->b_datap->db_type = M_PROTO;
5341 	}
5342 
5343 	mp->b_wptr = mp->b_rptr + len;
5344 	bzero(mp->b_rptr, len);
5345 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
5346 	return (mp);
5347 }
5348 
5349 const char *
5350 dlpi_prim_str(int prim)
5351 {
5352 	switch (prim) {
5353 	case DL_INFO_REQ:	return ("DL_INFO_REQ");
5354 	case DL_INFO_ACK:	return ("DL_INFO_ACK");
5355 	case DL_ATTACH_REQ:	return ("DL_ATTACH_REQ");
5356 	case DL_DETACH_REQ:	return ("DL_DETACH_REQ");
5357 	case DL_BIND_REQ:	return ("DL_BIND_REQ");
5358 	case DL_BIND_ACK:	return ("DL_BIND_ACK");
5359 	case DL_UNBIND_REQ:	return ("DL_UNBIND_REQ");
5360 	case DL_OK_ACK:		return ("DL_OK_ACK");
5361 	case DL_ERROR_ACK:	return ("DL_ERROR_ACK");
5362 	case DL_ENABMULTI_REQ:	return ("DL_ENABMULTI_REQ");
5363 	case DL_DISABMULTI_REQ:	return ("DL_DISABMULTI_REQ");
5364 	case DL_PROMISCON_REQ:	return ("DL_PROMISCON_REQ");
5365 	case DL_PROMISCOFF_REQ:	return ("DL_PROMISCOFF_REQ");
5366 	case DL_UNITDATA_REQ:	return ("DL_UNITDATA_REQ");
5367 	case DL_UNITDATA_IND:	return ("DL_UNITDATA_IND");
5368 	case DL_UDERROR_IND:	return ("DL_UDERROR_IND");
5369 	case DL_PHYS_ADDR_REQ:	return ("DL_PHYS_ADDR_REQ");
5370 	case DL_PHYS_ADDR_ACK:	return ("DL_PHYS_ADDR_ACK");
5371 	case DL_SET_PHYS_ADDR_REQ:	return ("DL_SET_PHYS_ADDR_REQ");
5372 	case DL_NOTIFY_REQ:	return ("DL_NOTIFY_REQ");
5373 	case DL_NOTIFY_ACK:	return ("DL_NOTIFY_ACK");
5374 	case DL_NOTIFY_IND:	return ("DL_NOTIFY_IND");
5375 	case DL_CAPABILITY_REQ:	return ("DL_CAPABILITY_REQ");
5376 	case DL_CAPABILITY_ACK:	return ("DL_CAPABILITY_ACK");
5377 	case DL_CONTROL_REQ:	return ("DL_CONTROL_REQ");
5378 	case DL_CONTROL_ACK:	return ("DL_CONTROL_ACK");
5379 	default:		return ("<unknown primitive>");
5380 	}
5381 }
5382 
5383 const char *
5384 dlpi_err_str(int err)
5385 {
5386 	switch (err) {
5387 	case DL_ACCESS:		return ("DL_ACCESS");
5388 	case DL_BADADDR:	return ("DL_BADADDR");
5389 	case DL_BADCORR:	return ("DL_BADCORR");
5390 	case DL_BADDATA:	return ("DL_BADDATA");
5391 	case DL_BADPPA:		return ("DL_BADPPA");
5392 	case DL_BADPRIM:	return ("DL_BADPRIM");
5393 	case DL_BADQOSPARAM:	return ("DL_BADQOSPARAM");
5394 	case DL_BADQOSTYPE:	return ("DL_BADQOSTYPE");
5395 	case DL_BADSAP:		return ("DL_BADSAP");
5396 	case DL_BADTOKEN:	return ("DL_BADTOKEN");
5397 	case DL_BOUND:		return ("DL_BOUND");
5398 	case DL_INITFAILED:	return ("DL_INITFAILED");
5399 	case DL_NOADDR:		return ("DL_NOADDR");
5400 	case DL_NOTINIT:	return ("DL_NOTINIT");
5401 	case DL_OUTSTATE:	return ("DL_OUTSTATE");
5402 	case DL_SYSERR:		return ("DL_SYSERR");
5403 	case DL_UNSUPPORTED:	return ("DL_UNSUPPORTED");
5404 	case DL_UNDELIVERABLE:	return ("DL_UNDELIVERABLE");
5405 	case DL_NOTSUPPORTED :	return ("DL_NOTSUPPORTED ");
5406 	case DL_TOOMANY:	return ("DL_TOOMANY");
5407 	case DL_NOTENAB:	return ("DL_NOTENAB");
5408 	case DL_BUSY:		return ("DL_BUSY");
5409 	case DL_NOAUTO:		return ("DL_NOAUTO");
5410 	case DL_NOXIDAUTO:	return ("DL_NOXIDAUTO");
5411 	case DL_NOTESTAUTO:	return ("DL_NOTESTAUTO");
5412 	case DL_XIDAUTO:	return ("DL_XIDAUTO");
5413 	case DL_TESTAUTO:	return ("DL_TESTAUTO");
5414 	case DL_PENDING:	return ("DL_PENDING");
5415 	default:		return ("<unknown error>");
5416 	}
5417 }
5418 
5419 /*
5420  * Debug formatting routine.  Returns a character string representation of the
5421  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
5422  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
5423  */
5424 char *
5425 ip_dot_addr(ipaddr_t addr, char *buf)
5426 {
5427 	return (ip_dot_saddr((uchar_t *)&addr, buf));
5428 }
5429 
5430 /*
5431  * Debug formatting routine.  Returns a character string representation of the
5432  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
5433  * as a pointer.  The "xxx" parts including left zero padding so the final
5434  * string will fit easily in tables.  It would be nice to take a padding
5435  * length argument instead.
5436  */
5437 static char *
5438 ip_dot_saddr(uchar_t *addr, char *buf)
5439 {
5440 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
5441 	    addr[0] & 0xFF, addr[1] & 0xFF, addr[2] & 0xFF, addr[3] & 0xFF);
5442 	return (buf);
5443 }
5444 
5445 /*
5446  * Send an ICMP error after patching up the packet appropriately.  Returns
5447  * non-zero if the appropriate MIB should be bumped; zero otherwise.
5448  */
5449 static boolean_t
5450 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags,
5451     uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid)
5452 {
5453 	ipha_t *ipha;
5454 	mblk_t *first_mp;
5455 	boolean_t secure;
5456 	unsigned char db_type;
5457 
5458 	first_mp = mp;
5459 	if (mctl_present) {
5460 		mp = mp->b_cont;
5461 		secure = ipsec_in_is_secure(first_mp);
5462 		ASSERT(mp != NULL);
5463 	} else {
5464 		/*
5465 		 * If this is an ICMP error being reported - which goes
5466 		 * up as M_CTLs, we need to convert them to M_DATA till
5467 		 * we finish checking with global policy because
5468 		 * ipsec_check_global_policy() assumes M_DATA as clear
5469 		 * and M_CTL as secure.
5470 		 */
5471 		db_type = DB_TYPE(mp);
5472 		DB_TYPE(mp) = M_DATA;
5473 		secure = B_FALSE;
5474 	}
5475 	/*
5476 	 * We are generating an icmp error for some inbound packet.
5477 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
5478 	 * Before we generate an error, check with global policy
5479 	 * to see whether this is allowed to enter the system. As
5480 	 * there is no "conn", we are checking with global policy.
5481 	 */
5482 	ipha = (ipha_t *)mp->b_rptr;
5483 	if (secure || ipsec_inbound_v4_policy_present) {
5484 		first_mp = ipsec_check_global_policy(first_mp, NULL,
5485 		    ipha, NULL, mctl_present);
5486 		if (first_mp == NULL)
5487 			return (B_FALSE);
5488 	}
5489 
5490 	if (!mctl_present)
5491 		DB_TYPE(mp) = db_type;
5492 
5493 	if (flags & IP_FF_SEND_ICMP) {
5494 		if (flags & IP_FF_HDR_COMPLETE) {
5495 			if (ip_hdr_complete(ipha, zoneid)) {
5496 				freemsg(first_mp);
5497 				return (B_TRUE);
5498 			}
5499 		}
5500 		if (flags & IP_FF_CKSUM) {
5501 			/*
5502 			 * Have to correct checksum since
5503 			 * the packet might have been
5504 			 * fragmented and the reassembly code in ip_rput
5505 			 * does not restore the IP checksum.
5506 			 */
5507 			ipha->ipha_hdr_checksum = 0;
5508 			ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
5509 		}
5510 		switch (icmp_type) {
5511 		case ICMP_DEST_UNREACHABLE:
5512 			icmp_unreachable(WR(q), first_mp, icmp_code);
5513 			break;
5514 		default:
5515 			freemsg(first_mp);
5516 			break;
5517 		}
5518 	} else {
5519 		freemsg(first_mp);
5520 		return (B_FALSE);
5521 	}
5522 
5523 	return (B_TRUE);
5524 }
5525 
5526 /*
5527  * Used to send an ICMP error message when a packet is received for
5528  * a protocol that is not supported. The mblk passed as argument
5529  * is consumed by this function.
5530  */
5531 void
5532 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid)
5533 {
5534 	mblk_t *mp;
5535 	ipha_t *ipha;
5536 	ill_t *ill;
5537 	ipsec_in_t *ii;
5538 
5539 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
5540 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
5541 
5542 	mp = ipsec_mp->b_cont;
5543 	ipsec_mp->b_cont = NULL;
5544 	ipha = (ipha_t *)mp->b_rptr;
5545 	if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
5546 		if (ip_fanout_send_icmp(q, mp, flags, ICMP_DEST_UNREACHABLE,
5547 		    ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) {
5548 			BUMP_MIB(&ip_mib, ipInUnknownProtos);
5549 		}
5550 	} else {
5551 		/* Get ill from index in ipsec_in_t. */
5552 		ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index,
5553 		    B_TRUE, NULL, NULL, NULL, NULL);
5554 		if (ill != NULL) {
5555 			if (ip_fanout_send_icmp_v6(q, mp, flags,
5556 			    ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER,
5557 			    0, B_FALSE, zoneid)) {
5558 				BUMP_MIB(ill->ill_ip6_mib, ipv6InUnknownProtos);
5559 			}
5560 
5561 			ill_refrele(ill);
5562 		} else { /* re-link for the freemsg() below. */
5563 			ipsec_mp->b_cont = mp;
5564 		}
5565 	}
5566 
5567 	/* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */
5568 	freemsg(ipsec_mp);
5569 }
5570 
5571 /*
5572  * See if the inbound datagram has had IPsec processing applied to it.
5573  */
5574 boolean_t
5575 ipsec_in_is_secure(mblk_t *ipsec_mp)
5576 {
5577 	ipsec_in_t *ii;
5578 
5579 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
5580 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
5581 
5582 	if (ii->ipsec_in_loopback) {
5583 		return (ii->ipsec_in_secure);
5584 	} else {
5585 		return (ii->ipsec_in_ah_sa != NULL ||
5586 		    ii->ipsec_in_esp_sa != NULL ||
5587 		    ii->ipsec_in_decaps);
5588 	}
5589 }
5590 
5591 /*
5592  * Handle protocols with which IP is less intimate.  There
5593  * can be more than one stream bound to a particular
5594  * protocol.  When this is the case, normally each one gets a copy
5595  * of any incoming packets.
5596  *
5597  * IPSEC NOTE :
5598  *
5599  * Don't allow a secure packet going up a non-secure connection.
5600  * We don't allow this because
5601  *
5602  * 1) Reply might go out in clear which will be dropped at
5603  *    the sending side.
5604  * 2) If the reply goes out in clear it will give the
5605  *    adversary enough information for getting the key in
5606  *    most of the cases.
5607  *
5608  * Moreover getting a secure packet when we expect clear
5609  * implies that SA's were added without checking for
5610  * policy on both ends. This should not happen once ISAKMP
5611  * is used to negotiate SAs as SAs will be added only after
5612  * verifying the policy.
5613  *
5614  * NOTE : If the packet was tunneled and not multicast we only send
5615  * to it the first match. Unlike TCP and UDP fanouts this doesn't fall
5616  * back to delivering packets to AF_INET6 raw sockets.
5617  *
5618  * IPQoS Notes:
5619  * Once we have determined the client, invoke IPPF processing.
5620  * Policy processing takes place only if the callout_position, IPP_LOCAL_IN,
5621  * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local
5622  * ip_policy will be false.
5623  *
5624  * Zones notes:
5625  * Currently only applications in the global zone can create raw sockets for
5626  * protocols other than ICMP. So unlike the broadcast / multicast case of
5627  * ip_fanout_udp(), we only send a copy of the packet to streams in the
5628  * specified zone. For ICMP, this is handled by the callers of icmp_inbound().
5629  */
5630 static void
5631 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags,
5632     boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill,
5633     zoneid_t zoneid)
5634 {
5635 	queue_t	*rq;
5636 	mblk_t	*mp1, *first_mp1;
5637 	uint_t	protocol = ipha->ipha_protocol;
5638 	ipaddr_t dst;
5639 	boolean_t one_only;
5640 	mblk_t *first_mp = mp;
5641 	boolean_t secure;
5642 	uint32_t ill_index;
5643 	conn_t	*connp, *first_connp, *next_connp;
5644 	connf_t	*connfp;
5645 	boolean_t shared_addr;
5646 
5647 	if (mctl_present) {
5648 		mp = first_mp->b_cont;
5649 		secure = ipsec_in_is_secure(first_mp);
5650 		ASSERT(mp != NULL);
5651 	} else {
5652 		secure = B_FALSE;
5653 	}
5654 	dst = ipha->ipha_dst;
5655 	/*
5656 	 * If the packet was tunneled and not multicast we only send to it
5657 	 * the first match.
5658 	 */
5659 	one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) &&
5660 	    !CLASSD(dst));
5661 
5662 	shared_addr = (zoneid == ALL_ZONES);
5663 	if (shared_addr) {
5664 		/*
5665 		 * We don't allow multilevel ports for raw IP, so no need to
5666 		 * check for that here.
5667 		 */
5668 		zoneid = tsol_packet_to_zoneid(mp);
5669 	}
5670 
5671 	connfp = &ipcl_proto_fanout[protocol];
5672 	mutex_enter(&connfp->connf_lock);
5673 	connp = connfp->connf_head;
5674 	for (connp = connfp->connf_head; connp != NULL;
5675 		connp = connp->conn_next) {
5676 		if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags,
5677 		    zoneid) &&
5678 		    (!is_system_labeled() ||
5679 		    tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
5680 		    connp)))
5681 			break;
5682 	}
5683 
5684 	if (connp == NULL || connp->conn_upq == NULL) {
5685 		/*
5686 		 * No one bound to these addresses.  Is
5687 		 * there a client that wants all
5688 		 * unclaimed datagrams?
5689 		 */
5690 		mutex_exit(&connfp->connf_lock);
5691 		/*
5692 		 * Check for IPPROTO_ENCAP...
5693 		 */
5694 		if (protocol == IPPROTO_ENCAP && ip_g_mrouter) {
5695 			/*
5696 			 * XXX If an IPsec mblk is here on a multicast
5697 			 * tunnel (using ip_mroute stuff), what should
5698 			 * I do?
5699 			 *
5700 			 * For now, just free the IPsec mblk before
5701 			 * passing it up to the multicast routing
5702 			 * stuff.
5703 			 *
5704 			 * BTW,  If I match a configured IP-in-IP
5705 			 * tunnel, ip_mroute_decap will never be
5706 			 * called.
5707 			 */
5708 			if (mp != first_mp)
5709 				freeb(first_mp);
5710 			ip_mroute_decap(q, mp);
5711 		} else {
5712 			/*
5713 			 * Otherwise send an ICMP protocol unreachable.
5714 			 */
5715 			if (ip_fanout_send_icmp(q, first_mp, flags,
5716 			    ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE,
5717 			    mctl_present, zoneid)) {
5718 				BUMP_MIB(&ip_mib, ipInUnknownProtos);
5719 			}
5720 		}
5721 		return;
5722 	}
5723 	CONN_INC_REF(connp);
5724 	first_connp = connp;
5725 
5726 	/*
5727 	 * Only send message to one tunnel driver by immediately
5728 	 * terminating the loop.
5729 	 */
5730 	connp = one_only ? NULL : connp->conn_next;
5731 
5732 	for (;;) {
5733 		while (connp != NULL) {
5734 			if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill,
5735 			    flags, zoneid) &&
5736 			    (!is_system_labeled() ||
5737 			    tsol_receive_local(mp, &dst, IPV4_VERSION,
5738 			    shared_addr, connp)))
5739 				break;
5740 			connp = connp->conn_next;
5741 		}
5742 
5743 		/*
5744 		 * Copy the packet.
5745 		 */
5746 		if (connp == NULL || connp->conn_upq == NULL ||
5747 		    (((first_mp1 = dupmsg(first_mp)) == NULL) &&
5748 			((first_mp1 = ip_copymsg(first_mp)) == NULL))) {
5749 			/*
5750 			 * No more interested clients or memory
5751 			 * allocation failed
5752 			 */
5753 			connp = first_connp;
5754 			break;
5755 		}
5756 		mp1 = mctl_present ? first_mp1->b_cont : first_mp1;
5757 		CONN_INC_REF(connp);
5758 		mutex_exit(&connfp->connf_lock);
5759 		rq = connp->conn_rq;
5760 		if (!canputnext(rq)) {
5761 			if (flags & IP_FF_RAWIP) {
5762 				BUMP_MIB(&ip_mib, rawipInOverflows);
5763 			} else {
5764 				BUMP_MIB(&icmp_mib, icmpInOverflows);
5765 			}
5766 
5767 			freemsg(first_mp1);
5768 		} else {
5769 			if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) {
5770 				first_mp1 = ipsec_check_inbound_policy
5771 				    (first_mp1, connp, ipha, NULL,
5772 				    mctl_present);
5773 			}
5774 			if (first_mp1 != NULL) {
5775 				/*
5776 				 * ip_fanout_proto also gets called from
5777 				 * icmp_inbound_error_fanout, in which case
5778 				 * the msg type is M_CTL.  Don't add info
5779 				 * in this case for the time being. In future
5780 				 * when there is a need for knowing the
5781 				 * inbound iface index for ICMP error msgs,
5782 				 * then this can be changed.
5783 				 */
5784 				if ((connp->conn_recvif != 0) &&
5785 				    (mp->b_datap->db_type != M_CTL)) {
5786 					/*
5787 					 * the actual data will be
5788 					 * contained in b_cont upon
5789 					 * successful return of the
5790 					 * following call else
5791 					 * original mblk is returned
5792 					 */
5793 					ASSERT(recv_ill != NULL);
5794 					mp1 = ip_add_info(mp1, recv_ill,
5795 						IPF_RECVIF);
5796 				}
5797 				BUMP_MIB(&ip_mib, ipInDelivers);
5798 				if (mctl_present)
5799 					freeb(first_mp1);
5800 				putnext(rq, mp1);
5801 			}
5802 		}
5803 		mutex_enter(&connfp->connf_lock);
5804 		/* Follow the next pointer before releasing the conn. */
5805 		next_connp = connp->conn_next;
5806 		CONN_DEC_REF(connp);
5807 		connp = next_connp;
5808 	}
5809 
5810 	/* Last one.  Send it upstream. */
5811 	mutex_exit(&connfp->connf_lock);
5812 
5813 	/*
5814 	 * If this packet is coming from icmp_inbound_error_fanout ip_policy
5815 	 * will be set to false.
5816 	 */
5817 	if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) {
5818 		ill_index = ill->ill_phyint->phyint_ifindex;
5819 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
5820 		if (mp == NULL) {
5821 			CONN_DEC_REF(connp);
5822 			if (mctl_present) {
5823 				freeb(first_mp);
5824 			}
5825 			return;
5826 		}
5827 	}
5828 
5829 	rq = connp->conn_rq;
5830 	if (!canputnext(rq)) {
5831 		if (flags & IP_FF_RAWIP) {
5832 			BUMP_MIB(&ip_mib, rawipInOverflows);
5833 		} else {
5834 			BUMP_MIB(&icmp_mib, icmpInOverflows);
5835 		}
5836 
5837 		freemsg(first_mp);
5838 	} else {
5839 		if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) {
5840 			first_mp = ipsec_check_inbound_policy(first_mp, connp,
5841 			    ipha, NULL, mctl_present);
5842 		}
5843 		if (first_mp != NULL) {
5844 			/*
5845 			 * ip_fanout_proto also gets called
5846 			 * from icmp_inbound_error_fanout, in
5847 			 * which case the msg type is M_CTL.
5848 			 * Don't add info in this case for time
5849 			 * being. In future when there is a
5850 			 * need for knowing the inbound iface
5851 			 * index for ICMP error msgs, then this
5852 			 * can be changed
5853 			 */
5854 			if ((connp->conn_recvif != 0) &&
5855 			    (mp->b_datap->db_type != M_CTL)) {
5856 				/*
5857 				 * the actual data will be contained in
5858 				 * b_cont upon successful return
5859 				 * of the following call else original
5860 				 * mblk is returned
5861 				 */
5862 				ASSERT(recv_ill != NULL);
5863 				mp = ip_add_info(mp, recv_ill, IPF_RECVIF);
5864 			}
5865 			BUMP_MIB(&ip_mib, ipInDelivers);
5866 			putnext(rq, mp);
5867 			if (mctl_present)
5868 				freeb(first_mp);
5869 		}
5870 	}
5871 	CONN_DEC_REF(connp);
5872 }
5873 
5874 /*
5875  * Fanout for TCP packets
5876  * The caller puts <fport, lport> in the ports parameter.
5877  *
5878  * IPQoS Notes
5879  * Before sending it to the client, invoke IPPF processing.
5880  * Policy processing takes place only if the callout_position, IPP_LOCAL_IN,
5881  * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local
5882  * ip_policy is false.
5883  */
5884 static void
5885 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha,
5886     uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid)
5887 {
5888 	mblk_t  *first_mp;
5889 	boolean_t secure;
5890 	uint32_t ill_index;
5891 	int	ip_hdr_len;
5892 	tcph_t	*tcph;
5893 	boolean_t syn_present = B_FALSE;
5894 	conn_t	*connp;
5895 
5896 	first_mp = mp;
5897 	if (mctl_present) {
5898 		ASSERT(first_mp->b_datap->db_type == M_CTL);
5899 		mp = first_mp->b_cont;
5900 		secure = ipsec_in_is_secure(first_mp);
5901 		ASSERT(mp != NULL);
5902 	} else {
5903 		secure = B_FALSE;
5904 	}
5905 
5906 	ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr);
5907 
5908 	if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) ==
5909 	    NULL) {
5910 		/*
5911 		 * No connected connection or listener. Send a
5912 		 * TH_RST via tcp_xmit_listeners_reset.
5913 		 */
5914 
5915 		/* Initiate IPPf processing, if needed. */
5916 		if (IPP_ENABLED(IPP_LOCAL_IN)) {
5917 			uint32_t ill_index;
5918 			ill_index = recv_ill->ill_phyint->phyint_ifindex;
5919 			ip_process(IPP_LOCAL_IN, &first_mp, ill_index);
5920 			if (first_mp == NULL)
5921 				return;
5922 		}
5923 		BUMP_MIB(&ip_mib, ipInDelivers);
5924 		ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n",
5925 		    zoneid));
5926 		tcp_xmit_listeners_reset(first_mp, ip_hdr_len);
5927 		return;
5928 	}
5929 
5930 	/*
5931 	 * Allocate the SYN for the TCP connection here itself
5932 	 */
5933 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5934 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
5935 		if (IPCL_IS_TCP(connp)) {
5936 			squeue_t *sqp;
5937 
5938 			/*
5939 			 * For fused tcp loopback, assign the eager's
5940 			 * squeue to be that of the active connect's.
5941 			 * Note that we don't check for IP_FF_LOOPBACK
5942 			 * here since this routine gets called only
5943 			 * for loopback (unlike the IPv6 counterpart).
5944 			 */
5945 			ASSERT(Q_TO_CONN(q) != NULL);
5946 			if (do_tcp_fusion &&
5947 			    !CONN_INBOUND_POLICY_PRESENT(connp) && !secure &&
5948 			    !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy &&
5949 			    IPCL_IS_TCP(Q_TO_CONN(q))) {
5950 				ASSERT(Q_TO_CONN(q)->conn_sqp != NULL);
5951 				sqp = Q_TO_CONN(q)->conn_sqp;
5952 			} else {
5953 				sqp = IP_SQUEUE_GET(lbolt);
5954 			}
5955 
5956 			mp->b_datap->db_struioflag |= STRUIO_EAGER;
5957 			DB_CKSUMSTART(mp) = (intptr_t)sqp;
5958 			syn_present = B_TRUE;
5959 		}
5960 	}
5961 
5962 	if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) {
5963 		uint_t	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
5964 		if ((flags & TH_RST) || (flags & TH_URG)) {
5965 			CONN_DEC_REF(connp);
5966 			freemsg(first_mp);
5967 			return;
5968 		}
5969 		if (flags & TH_ACK) {
5970 			tcp_xmit_listeners_reset(first_mp, ip_hdr_len);
5971 			CONN_DEC_REF(connp);
5972 			return;
5973 		}
5974 
5975 		CONN_DEC_REF(connp);
5976 		freemsg(first_mp);
5977 		return;
5978 	}
5979 
5980 	if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) {
5981 		first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha,
5982 		    NULL, mctl_present);
5983 		if (first_mp == NULL) {
5984 			CONN_DEC_REF(connp);
5985 			return;
5986 		}
5987 		if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) {
5988 			ASSERT(syn_present);
5989 			if (mctl_present) {
5990 				ASSERT(first_mp != mp);
5991 				first_mp->b_datap->db_struioflag |=
5992 				    STRUIO_POLICY;
5993 			} else {
5994 				ASSERT(first_mp == mp);
5995 				mp->b_datap->db_struioflag &=
5996 				    ~STRUIO_EAGER;
5997 				mp->b_datap->db_struioflag |=
5998 				    STRUIO_POLICY;
5999 			}
6000 		} else {
6001 			/*
6002 			 * Discard first_mp early since we're dealing with a
6003 			 * fully-connected conn_t and tcp doesn't do policy in
6004 			 * this case.
6005 			 */
6006 			if (mctl_present) {
6007 				freeb(first_mp);
6008 				mctl_present = B_FALSE;
6009 			}
6010 			first_mp = mp;
6011 		}
6012 	}
6013 
6014 	/*
6015 	 * Initiate policy processing here if needed. If we get here from
6016 	 * icmp_inbound_error_fanout, ip_policy is false.
6017 	 */
6018 	if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) {
6019 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
6020 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
6021 		if (mp == NULL) {
6022 			CONN_DEC_REF(connp);
6023 			if (mctl_present)
6024 				freeb(first_mp);
6025 			return;
6026 		} else if (mctl_present) {
6027 			ASSERT(first_mp != mp);
6028 			first_mp->b_cont = mp;
6029 		} else {
6030 			first_mp = mp;
6031 		}
6032 	}
6033 
6034 
6035 
6036 	/* Handle IPv6 socket options. */
6037 	if (!syn_present &&
6038 	    connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) {
6039 		/* Add header */
6040 		ASSERT(recv_ill != NULL);
6041 		mp = ip_add_info(mp, recv_ill, IPF_RECVIF);
6042 		if (mp == NULL) {
6043 			CONN_DEC_REF(connp);
6044 			if (mctl_present)
6045 				freeb(first_mp);
6046 			return;
6047 		} else if (mctl_present) {
6048 			/*
6049 			 * ip_add_info might return a new mp.
6050 			 */
6051 			ASSERT(first_mp != mp);
6052 			first_mp->b_cont = mp;
6053 		} else {
6054 			first_mp = mp;
6055 		}
6056 	}
6057 
6058 	BUMP_MIB(&ip_mib, ipInDelivers);
6059 	if (IPCL_IS_TCP(connp)) {
6060 		(*ip_input_proc)(connp->conn_sqp, first_mp,
6061 		    connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP);
6062 	} else {
6063 		putnext(connp->conn_rq, first_mp);
6064 		CONN_DEC_REF(connp);
6065 	}
6066 }
6067 
6068 /*
6069  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
6070  * We are responsible for disposing of mp, such as by freemsg() or putnext()
6071  * Caller is responsible for dropping references to the conn, and freeing
6072  * first_mp.
6073  *
6074  * IPQoS Notes
6075  * Before sending it to the client, invoke IPPF processing. Policy processing
6076  * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and
6077  * ip_policy is true. If we get here from icmp_inbound_error_fanout or
6078  * ip_wput_local, ip_policy is false.
6079  */
6080 static void
6081 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp,
6082     boolean_t secure, ipha_t *ipha, uint_t flags, ill_t *recv_ill,
6083     boolean_t ip_policy)
6084 {
6085 	boolean_t	mctl_present = (first_mp != NULL);
6086 	uint32_t	in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */
6087 	uint32_t	ill_index;
6088 
6089 	if (mctl_present)
6090 		first_mp->b_cont = mp;
6091 	else
6092 		first_mp = mp;
6093 
6094 	if (CONN_UDP_FLOWCTLD(connp)) {
6095 		BUMP_MIB(&ip_mib, udpInOverflows);
6096 		freemsg(first_mp);
6097 		return;
6098 	}
6099 
6100 	if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) {
6101 		first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha,
6102 		    NULL, mctl_present);
6103 		if (first_mp == NULL)
6104 			return;	/* Freed by ipsec_check_inbound_policy(). */
6105 	}
6106 	if (mctl_present)
6107 		freeb(first_mp);
6108 
6109 	if (connp->conn_recvif)
6110 		in_flags = IPF_RECVIF;
6111 	if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA))
6112 		in_flags |= IPF_RECVSLLA;
6113 
6114 	/* Handle IPv6 options. */
6115 	if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO))
6116 		in_flags |= IPF_RECVIF;
6117 
6118 	/*
6119 	 * Initiate IPPF processing here, if needed. Note first_mp won't be
6120 	 * freed if the packet is dropped. The caller will do so.
6121 	 */
6122 	if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) {
6123 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
6124 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
6125 		if (mp == NULL) {
6126 			return;
6127 		}
6128 	}
6129 	if ((in_flags != 0) &&
6130 	    (mp->b_datap->db_type != M_CTL)) {
6131 		/*
6132 		 * The actual data will be contained in b_cont
6133 		 * upon successful return of the following call
6134 		 * else original mblk is returned
6135 		 */
6136 		ASSERT(recv_ill != NULL);
6137 		mp = ip_add_info(mp, recv_ill, in_flags);
6138 	}
6139 	BUMP_MIB(&ip_mib, ipInDelivers);
6140 
6141 	/* Send it upstream */
6142 	CONN_UDP_RECV(connp, mp);
6143 }
6144 
6145 /*
6146  * Fanout for UDP packets.
6147  * The caller puts <fport, lport> in the ports parameter.
6148  *
6149  * If SO_REUSEADDR is set all multicast and broadcast packets
6150  * will be delivered to all streams bound to the same port.
6151  *
6152  * Zones notes:
6153  * Multicast and broadcast packets will be distributed to streams in all zones.
6154  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
6155  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
6156  * packets. To maintain this behavior with multiple zones, the conns are grouped
6157  * by zone and the SO_REUSEADDR flag is checked for the first matching conn in
6158  * each zone. If unset, all the following conns in the same zone are skipped.
6159  */
6160 static void
6161 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha,
6162     uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present,
6163     boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid)
6164 {
6165 	uint32_t	dstport, srcport;
6166 	ipaddr_t	dst;
6167 	mblk_t		*first_mp;
6168 	boolean_t	secure;
6169 	in6_addr_t	v6src;
6170 	conn_t		*connp;
6171 	connf_t		*connfp;
6172 	conn_t		*first_connp;
6173 	conn_t		*next_connp;
6174 	mblk_t		*mp1, *first_mp1;
6175 	ipaddr_t	src;
6176 	zoneid_t	last_zoneid;
6177 	boolean_t	reuseaddr;
6178 	boolean_t	shared_addr;
6179 
6180 	first_mp = mp;
6181 	if (mctl_present) {
6182 		mp = first_mp->b_cont;
6183 		first_mp->b_cont = NULL;
6184 		secure = ipsec_in_is_secure(first_mp);
6185 		ASSERT(mp != NULL);
6186 	} else {
6187 		first_mp = NULL;
6188 		secure = B_FALSE;
6189 	}
6190 
6191 	/* Extract ports in net byte order */
6192 	dstport = htons(ntohl(ports) & 0xFFFF);
6193 	srcport = htons(ntohl(ports) >> 16);
6194 	dst = ipha->ipha_dst;
6195 	src = ipha->ipha_src;
6196 
6197 	shared_addr = (zoneid == ALL_ZONES);
6198 	if (shared_addr) {
6199 		zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport);
6200 		if (zoneid == ALL_ZONES)
6201 			zoneid = tsol_packet_to_zoneid(mp);
6202 	}
6203 
6204 	connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)];
6205 	mutex_enter(&connfp->connf_lock);
6206 	connp = connfp->connf_head;
6207 	if (!broadcast && !CLASSD(dst)) {
6208 		/*
6209 		 * Not broadcast or multicast. Send to the one (first)
6210 		 * client we find. No need to check conn_wantpacket()
6211 		 * since IP_BOUND_IF/conn_incoming_ill does not apply to
6212 		 * IPv4 unicast packets.
6213 		 */
6214 		while ((connp != NULL) &&
6215 		    (!IPCL_UDP_MATCH(connp, dstport, dst,
6216 		    srcport, src) || connp->conn_zoneid != zoneid)) {
6217 			connp = connp->conn_next;
6218 		}
6219 
6220 		if (connp == NULL || connp->conn_upq == NULL)
6221 			goto notfound;
6222 
6223 		if (is_system_labeled() &&
6224 		    !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
6225 		    connp))
6226 			goto notfound;
6227 
6228 		CONN_INC_REF(connp);
6229 		mutex_exit(&connfp->connf_lock);
6230 		ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags,
6231 		    recv_ill, ip_policy);
6232 		IP_STAT(ip_udp_fannorm);
6233 		CONN_DEC_REF(connp);
6234 		return;
6235 	}
6236 
6237 	/*
6238 	 * Broadcast and multicast case
6239 	 *
6240 	 * Need to check conn_wantpacket().
6241 	 * If SO_REUSEADDR has been set on the first we send the
6242 	 * packet to all clients that have joined the group and
6243 	 * match the port.
6244 	 */
6245 
6246 	while (connp != NULL) {
6247 		if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) &&
6248 		    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
6249 		    (!is_system_labeled() ||
6250 		    tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
6251 		    connp)))
6252 			break;
6253 		connp = connp->conn_next;
6254 	}
6255 
6256 	if (connp == NULL || connp->conn_upq == NULL)
6257 		goto notfound;
6258 
6259 	first_connp = connp;
6260 	/*
6261 	 * When SO_REUSEADDR is not set, send the packet only to the first
6262 	 * matching connection in its zone by keeping track of the zoneid.
6263 	 */
6264 	reuseaddr = first_connp->conn_reuseaddr;
6265 	last_zoneid = first_connp->conn_zoneid;
6266 
6267 	CONN_INC_REF(connp);
6268 	connp = connp->conn_next;
6269 	for (;;) {
6270 		while (connp != NULL) {
6271 			if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) &&
6272 			    (reuseaddr || connp->conn_zoneid != last_zoneid) &&
6273 			    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
6274 			    (!is_system_labeled() ||
6275 			    tsol_receive_local(mp, &dst, IPV4_VERSION,
6276 			    shared_addr, connp)))
6277 				break;
6278 			connp = connp->conn_next;
6279 		}
6280 		/*
6281 		 * Just copy the data part alone. The mctl part is
6282 		 * needed just for verifying policy and it is never
6283 		 * sent up.
6284 		 */
6285 		if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) &&
6286 		    ((mp1 = copymsg(mp)) == NULL))) {
6287 			/*
6288 			 * No more interested clients or memory
6289 			 * allocation failed
6290 			 */
6291 			connp = first_connp;
6292 			break;
6293 		}
6294 		if (connp->conn_zoneid != last_zoneid) {
6295 			/*
6296 			 * Update the zoneid so that the packet isn't sent to
6297 			 * any more conns in the same zone unless SO_REUSEADDR
6298 			 * is set.
6299 			 */
6300 			reuseaddr = connp->conn_reuseaddr;
6301 			last_zoneid = connp->conn_zoneid;
6302 		}
6303 		if (first_mp != NULL) {
6304 			ASSERT(((ipsec_info_t *)first_mp->b_rptr)->
6305 			    ipsec_info_type == IPSEC_IN);
6306 			first_mp1 = ipsec_in_tag(first_mp, NULL);
6307 			if (first_mp1 == NULL) {
6308 				freemsg(mp1);
6309 				connp = first_connp;
6310 				break;
6311 			}
6312 		} else {
6313 			first_mp1 = NULL;
6314 		}
6315 		CONN_INC_REF(connp);
6316 		mutex_exit(&connfp->connf_lock);
6317 		/*
6318 		 * IPQoS notes: We don't send the packet for policy
6319 		 * processing here, will do it for the last one (below).
6320 		 * i.e. we do it per-packet now, but if we do policy
6321 		 * processing per-conn, then we would need to do it
6322 		 * here too.
6323 		 */
6324 		ip_fanout_udp_conn(connp, first_mp1, mp1, secure,
6325 		    ipha, flags, recv_ill, B_FALSE);
6326 		mutex_enter(&connfp->connf_lock);
6327 		/* Follow the next pointer before releasing the conn. */
6328 		next_connp = connp->conn_next;
6329 		IP_STAT(ip_udp_fanmb);
6330 		CONN_DEC_REF(connp);
6331 		connp = next_connp;
6332 	}
6333 
6334 	/* Last one.  Send it upstream. */
6335 	mutex_exit(&connfp->connf_lock);
6336 	ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill,
6337 	    ip_policy);
6338 	IP_STAT(ip_udp_fanmb);
6339 	CONN_DEC_REF(connp);
6340 	return;
6341 
6342 notfound:
6343 
6344 	mutex_exit(&connfp->connf_lock);
6345 	IP_STAT(ip_udp_fanothers);
6346 	/*
6347 	 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses
6348 	 * have already been matched above, since they live in the IPv4
6349 	 * fanout tables. This implies we only need to
6350 	 * check for IPv6 in6addr_any endpoints here.
6351 	 * Thus we compare using ipv6_all_zeros instead of the destination
6352 	 * address, except for the multicast group membership lookup which
6353 	 * uses the IPv4 destination.
6354 	 */
6355 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src);
6356 	connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)];
6357 	mutex_enter(&connfp->connf_lock);
6358 	connp = connfp->connf_head;
6359 	if (!broadcast && !CLASSD(dst)) {
6360 		while (connp != NULL) {
6361 			if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros,
6362 			    srcport, v6src) && connp->conn_zoneid == zoneid &&
6363 			    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
6364 			    !connp->conn_ipv6_v6only)
6365 				break;
6366 			connp = connp->conn_next;
6367 		}
6368 
6369 		if (connp != NULL && is_system_labeled() &&
6370 		    !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
6371 		    connp))
6372 			connp = NULL;
6373 
6374 		if (connp == NULL || connp->conn_upq == NULL) {
6375 			/*
6376 			 * No one bound to this port.  Is
6377 			 * there a client that wants all
6378 			 * unclaimed datagrams?
6379 			 */
6380 			mutex_exit(&connfp->connf_lock);
6381 
6382 			if (mctl_present)
6383 				first_mp->b_cont = mp;
6384 			else
6385 				first_mp = mp;
6386 			if (ipcl_proto_search(IPPROTO_UDP) != NULL) {
6387 				ip_fanout_proto(q, first_mp, ill, ipha,
6388 				    flags | IP_FF_RAWIP, mctl_present,
6389 				    ip_policy, recv_ill, zoneid);
6390 			} else {
6391 				if (ip_fanout_send_icmp(q, first_mp, flags,
6392 				    ICMP_DEST_UNREACHABLE,
6393 				    ICMP_PORT_UNREACHABLE,
6394 				    mctl_present, zoneid)) {
6395 					BUMP_MIB(&ip_mib, udpNoPorts);
6396 				}
6397 			}
6398 			return;
6399 		}
6400 
6401 		CONN_INC_REF(connp);
6402 		mutex_exit(&connfp->connf_lock);
6403 		ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags,
6404 		    recv_ill, ip_policy);
6405 		CONN_DEC_REF(connp);
6406 		return;
6407 	}
6408 	/*
6409 	 * IPv4 multicast packet being delivered to an AF_INET6
6410 	 * in6addr_any endpoint.
6411 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
6412 	 * and not conn_wantpacket_v6() since any multicast membership is
6413 	 * for an IPv4-mapped multicast address.
6414 	 * The packet is sent to all clients in all zones that have joined the
6415 	 * group and match the port.
6416 	 */
6417 	while (connp != NULL) {
6418 		if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros,
6419 		    srcport, v6src) &&
6420 		    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
6421 		    (!is_system_labeled() ||
6422 		    tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
6423 		    connp)))
6424 			break;
6425 		connp = connp->conn_next;
6426 	}
6427 
6428 	if (connp == NULL || connp->conn_upq == NULL) {
6429 		/*
6430 		 * No one bound to this port.  Is
6431 		 * there a client that wants all
6432 		 * unclaimed datagrams?
6433 		 */
6434 		mutex_exit(&connfp->connf_lock);
6435 
6436 		if (mctl_present)
6437 			first_mp->b_cont = mp;
6438 		else
6439 			first_mp = mp;
6440 		if (ipcl_proto_search(IPPROTO_UDP) != NULL) {
6441 			ip_fanout_proto(q, first_mp, ill, ipha,
6442 			    flags | IP_FF_RAWIP, mctl_present, ip_policy,
6443 			    recv_ill, zoneid);
6444 		} else {
6445 			/*
6446 			 * We used to attempt to send an icmp error here, but
6447 			 * since this is known to be a multicast packet
6448 			 * and we don't send icmp errors in response to
6449 			 * multicast, just drop the packet and give up sooner.
6450 			 */
6451 			BUMP_MIB(&ip_mib, udpNoPorts);
6452 			freemsg(first_mp);
6453 		}
6454 		return;
6455 	}
6456 
6457 	first_connp = connp;
6458 
6459 	CONN_INC_REF(connp);
6460 	connp = connp->conn_next;
6461 	for (;;) {
6462 		while (connp != NULL) {
6463 			if (IPCL_UDP_MATCH_V6(connp, dstport,
6464 			    ipv6_all_zeros, srcport, v6src) &&
6465 			    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
6466 			    (!is_system_labeled() ||
6467 			    tsol_receive_local(mp, &dst, IPV4_VERSION,
6468 			    shared_addr, connp)))
6469 				break;
6470 			connp = connp->conn_next;
6471 		}
6472 		/*
6473 		 * Just copy the data part alone. The mctl part is
6474 		 * needed just for verifying policy and it is never
6475 		 * sent up.
6476 		 */
6477 		if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) &&
6478 		    ((mp1 = copymsg(mp)) == NULL))) {
6479 			/*
6480 			 * No more intested clients or memory
6481 			 * allocation failed
6482 			 */
6483 			connp = first_connp;
6484 			break;
6485 		}
6486 		if (first_mp != NULL) {
6487 			ASSERT(((ipsec_info_t *)first_mp->b_rptr)->
6488 			    ipsec_info_type == IPSEC_IN);
6489 			first_mp1 = ipsec_in_tag(first_mp, NULL);
6490 			if (first_mp1 == NULL) {
6491 				freemsg(mp1);
6492 				connp = first_connp;
6493 				break;
6494 			}
6495 		} else {
6496 			first_mp1 = NULL;
6497 		}
6498 		CONN_INC_REF(connp);
6499 		mutex_exit(&connfp->connf_lock);
6500 		/*
6501 		 * IPQoS notes: We don't send the packet for policy
6502 		 * processing here, will do it for the last one (below).
6503 		 * i.e. we do it per-packet now, but if we do policy
6504 		 * processing per-conn, then we would need to do it
6505 		 * here too.
6506 		 */
6507 		ip_fanout_udp_conn(connp, first_mp1, mp1, secure,
6508 		    ipha, flags, recv_ill, B_FALSE);
6509 		mutex_enter(&connfp->connf_lock);
6510 		/* Follow the next pointer before releasing the conn. */
6511 		next_connp = connp->conn_next;
6512 		CONN_DEC_REF(connp);
6513 		connp = next_connp;
6514 	}
6515 
6516 	/* Last one.  Send it upstream. */
6517 	mutex_exit(&connfp->connf_lock);
6518 	ip_fanout_udp_conn(connp, first_mp, mp, secure, ipha, flags, recv_ill,
6519 	    ip_policy);
6520 	CONN_DEC_REF(connp);
6521 }
6522 
6523 /*
6524  * Complete the ip_wput header so that it
6525  * is possible to generate ICMP
6526  * errors.
6527  */
6528 static int
6529 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid)
6530 {
6531 	ire_t *ire;
6532 
6533 	if (ipha->ipha_src == INADDR_ANY) {
6534 		ire = ire_lookup_local(zoneid);
6535 		if (ire == NULL) {
6536 			ip1dbg(("ip_hdr_complete: no source IRE\n"));
6537 			return (1);
6538 		}
6539 		ipha->ipha_src = ire->ire_addr;
6540 		ire_refrele(ire);
6541 	}
6542 	ipha->ipha_ttl = ip_def_ttl;
6543 	ipha->ipha_hdr_checksum = 0;
6544 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
6545 	return (0);
6546 }
6547 
6548 /*
6549  * Nobody should be sending
6550  * packets up this stream
6551  */
6552 static void
6553 ip_lrput(queue_t *q, mblk_t *mp)
6554 {
6555 	mblk_t *mp1;
6556 
6557 	switch (mp->b_datap->db_type) {
6558 	case M_FLUSH:
6559 		/* Turn around */
6560 		if (*mp->b_rptr & FLUSHW) {
6561 			*mp->b_rptr &= ~FLUSHR;
6562 			qreply(q, mp);
6563 			return;
6564 		}
6565 		break;
6566 	}
6567 	/* Could receive messages that passed through ar_rput */
6568 	for (mp1 = mp; mp1; mp1 = mp1->b_cont)
6569 		mp1->b_prev = mp1->b_next = NULL;
6570 	freemsg(mp);
6571 }
6572 
6573 /* Nobody should be sending packets down this stream */
6574 /* ARGSUSED */
6575 void
6576 ip_lwput(queue_t *q, mblk_t *mp)
6577 {
6578 	freemsg(mp);
6579 }
6580 
6581 /*
6582  * Move the first hop in any source route to ipha_dst and remove that part of
6583  * the source route.  Called by other protocols.  Errors in option formatting
6584  * are ignored - will be handled by ip_wput_options Return the final
6585  * destination (either ipha_dst or the last entry in a source route.)
6586  */
6587 ipaddr_t
6588 ip_massage_options(ipha_t *ipha)
6589 {
6590 	ipoptp_t	opts;
6591 	uchar_t		*opt;
6592 	uint8_t		optval;
6593 	uint8_t		optlen;
6594 	ipaddr_t	dst;
6595 	int		i;
6596 	ire_t		*ire;
6597 
6598 	ip2dbg(("ip_massage_options\n"));
6599 	dst = ipha->ipha_dst;
6600 	for (optval = ipoptp_first(&opts, ipha);
6601 	    optval != IPOPT_EOL;
6602 	    optval = ipoptp_next(&opts)) {
6603 		opt = opts.ipoptp_cur;
6604 		switch (optval) {
6605 			uint8_t off;
6606 		case IPOPT_SSRR:
6607 		case IPOPT_LSRR:
6608 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
6609 				ip1dbg(("ip_massage_options: bad src route\n"));
6610 				break;
6611 			}
6612 			optlen = opts.ipoptp_len;
6613 			off = opt[IPOPT_OFFSET];
6614 			off--;
6615 		redo_srr:
6616 			if (optlen < IP_ADDR_LEN ||
6617 			    off > optlen - IP_ADDR_LEN) {
6618 				/* End of source route */
6619 				ip1dbg(("ip_massage_options: end of SR\n"));
6620 				break;
6621 			}
6622 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
6623 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
6624 			    ntohl(dst)));
6625 			/*
6626 			 * Check if our address is present more than
6627 			 * once as consecutive hops in source route.
6628 			 * XXX verify per-interface ip_forwarding
6629 			 * for source route?
6630 			 */
6631 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
6632 			    ALL_ZONES, NULL, MATCH_IRE_TYPE);
6633 			if (ire != NULL) {
6634 				ire_refrele(ire);
6635 				off += IP_ADDR_LEN;
6636 				goto redo_srr;
6637 			}
6638 			if (dst == htonl(INADDR_LOOPBACK)) {
6639 				ip1dbg(("ip_massage_options: loopback addr in "
6640 				    "source route!\n"));
6641 				break;
6642 			}
6643 			/*
6644 			 * Update ipha_dst to be the first hop and remove the
6645 			 * first hop from the source route (by overwriting
6646 			 * part of the option with NOP options).
6647 			 */
6648 			ipha->ipha_dst = dst;
6649 			/* Put the last entry in dst */
6650 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
6651 			    3;
6652 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
6653 
6654 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
6655 			    ntohl(dst)));
6656 			/* Move down and overwrite */
6657 			opt[IP_ADDR_LEN] = opt[0];
6658 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
6659 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
6660 			for (i = 0; i < IP_ADDR_LEN; i++)
6661 				opt[i] = IPOPT_NOP;
6662 			break;
6663 		}
6664 	}
6665 	return (dst);
6666 }
6667 
6668 /*
6669  * This function's job is to forward data to the reverse tunnel (FA->HA)
6670  * after doing a few checks. It is assumed that the incoming interface
6671  * of the packet is always different than the outgoing interface and the
6672  * ire_type of the found ire has to be a non-resolver type.
6673  *
6674  * IPQoS notes
6675  * IP policy is invoked twice for a forwarded packet, once on the read side
6676  * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are
6677  * enabled.
6678  */
6679 static void
6680 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp)
6681 {
6682 	ipha_t		*ipha;
6683 	queue_t		*q;
6684 	uint32_t 	pkt_len;
6685 #define	rptr    ((uchar_t *)ipha)
6686 	uint32_t 	sum;
6687 	uint32_t 	max_frag;
6688 	mblk_t		*first_mp;
6689 	uint32_t	ill_index;
6690 
6691 	ASSERT(ire != NULL);
6692 	ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER);
6693 	ASSERT(ire->ire_stq != NULL);
6694 
6695 	/* Initiate read side IPPF processing */
6696 	if (IPP_ENABLED(IPP_FWD_IN)) {
6697 		ill_index = in_ill->ill_phyint->phyint_ifindex;
6698 		ip_process(IPP_FWD_IN, &mp, ill_index);
6699 		if (mp == NULL) {
6700 			ip2dbg(("ip_mrtun_forward: inbound pkt "
6701 			    "dropped during IPPF processing\n"));
6702 			return;
6703 		}
6704 	}
6705 
6706 	if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags &
6707 		ILLF_ROUTER) == 0) ||
6708 	    (in_ill == (ill_t *)ire->ire_stq->q_ptr)) {
6709 		BUMP_MIB(&ip_mib, ipForwProhibits);
6710 		ip0dbg(("ip_mrtun_forward: Can't forward :"
6711 		    "forwarding is not turned on\n"));
6712 		goto drop_pkt;
6713 	}
6714 
6715 	/*
6716 	 * Don't forward if the interface is down
6717 	 */
6718 	if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) {
6719 		BUMP_MIB(&ip_mib, ipInDiscards);
6720 		goto drop_pkt;
6721 	}
6722 
6723 	ipha = (ipha_t *)mp->b_rptr;
6724 	pkt_len = ntohs(ipha->ipha_length);
6725 	/* Adjust the checksum to reflect the ttl decrement. */
6726 	sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
6727 	ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));
6728 	if (ipha->ipha_ttl-- <= 1) {
6729 		if (ip_csum_hdr(ipha)) {
6730 			BUMP_MIB(&ip_mib, ipInCksumErrs);
6731 			goto drop_pkt;
6732 		}
6733 		q = ire->ire_stq;
6734 		if ((first_mp = allocb(sizeof (ipsec_info_t),
6735 		    BPRI_HI)) == NULL) {
6736 			goto drop_pkt;
6737 		}
6738 		ip_ipsec_out_prepend(first_mp, mp, in_ill);
6739 		icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED);
6740 
6741 		return;
6742 	}
6743 
6744 	/* Get the ill_index of the ILL */
6745 	ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex;
6746 
6747 	/*
6748 	 * ip_mrtun_forward is only used by foreign agent to reverse
6749 	 * tunnel the incoming packet. So it does not do any option
6750 	 * processing for source routing.
6751 	 */
6752 	max_frag = ire->ire_max_frag;
6753 	if (pkt_len > max_frag) {
6754 		/*
6755 		 * It needs fragging on its way out.  We haven't
6756 		 * verified the header checksum yet.  Since we
6757 		 * are going to put a surely good checksum in the
6758 		 * outgoing header, we have to make sure that it
6759 		 * was good coming in.
6760 		 */
6761 		if (ip_csum_hdr(ipha)) {
6762 			BUMP_MIB(&ip_mib, ipInCksumErrs);
6763 			goto drop_pkt;
6764 		}
6765 
6766 		/* Initiate write side IPPF processing */
6767 		if (IPP_ENABLED(IPP_FWD_OUT)) {
6768 			ip_process(IPP_FWD_OUT, &mp, ill_index);
6769 			if (mp == NULL) {
6770 				ip2dbg(("ip_mrtun_forward: outbound pkt "\
6771 				    "dropped/deferred during ip policy "\
6772 				    "processing\n"));
6773 				return;
6774 			}
6775 		}
6776 		if ((first_mp = allocb(sizeof (ipsec_info_t),
6777 		    BPRI_HI)) == NULL) {
6778 			goto drop_pkt;
6779 		}
6780 		ip_ipsec_out_prepend(first_mp, mp, in_ill);
6781 		mp = first_mp;
6782 
6783 		ip_wput_frag(ire, mp, IB_PKT, max_frag, 0);
6784 		return;
6785 	}
6786 
6787 	ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type));
6788 
6789 	ASSERT(ire->ire_ipif != NULL);
6790 
6791 	mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index);
6792 	if (mp == NULL) {
6793 		BUMP_MIB(&ip_mib, ipInDiscards);
6794 		return;
6795 	}
6796 
6797 	/* Now send the packet to the tunnel interface */
6798 	q = ire->ire_stq;
6799 	UPDATE_IB_PKT_COUNT(ire);
6800 	ire->ire_last_used_time = lbolt;
6801 	BUMP_MIB(&ip_mib, ipForwDatagrams);
6802 	putnext(q, mp);
6803 	ip2dbg(("ip_mrtun_forward: sent packet to ill %p\n", q->q_ptr));
6804 	return;
6805 
6806 drop_pkt:;
6807 	ip2dbg(("ip_mrtun_forward: dropping pkt\n"));
6808 	freemsg(mp);
6809 #undef	rptr
6810 }
6811 
6812 /*
6813  * Fills the ipsec_out_t data structure with appropriate fields and
6814  * prepends it to mp which contains the IP hdr + data that was meant
6815  * to be forwarded. Please note that ipsec_out_info data structure
6816  * is used here to communicate the outgoing ill path at ip_wput()
6817  * for the ICMP error packet. This has nothing to do with ipsec IP
6818  * security. ipsec_out_t is really used to pass the info to the module
6819  * IP where this information cannot be extracted from conn.
6820  * This functions is called by ip_mrtun_forward().
6821  */
6822 void
6823 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill)
6824 {
6825 	ipsec_out_t	*io;
6826 
6827 	ASSERT(xmit_ill != NULL);
6828 	first_mp->b_datap->db_type = M_CTL;
6829 	first_mp->b_wptr += sizeof (ipsec_info_t);
6830 	/*
6831 	 * This is to pass info to ip_wput in absence of conn.
6832 	 * ipsec_out_secure will be B_FALSE because of this.
6833 	 * Thus ipsec_out_secure being B_FALSE indicates that
6834 	 * this is not IPSEC security related information.
6835 	 */
6836 	bzero(first_mp->b_rptr, sizeof (ipsec_info_t));
6837 	io = (ipsec_out_t *)first_mp->b_rptr;
6838 	io->ipsec_out_type = IPSEC_OUT;
6839 	io->ipsec_out_len = sizeof (ipsec_out_t);
6840 	first_mp->b_cont = mp;
6841 	io->ipsec_out_ill_index =
6842 	    xmit_ill->ill_phyint->phyint_ifindex;
6843 	io->ipsec_out_xmit_if = B_TRUE;
6844 }
6845 
6846 /*
6847  * Return the network mask
6848  * associated with the specified address.
6849  */
6850 ipaddr_t
6851 ip_net_mask(ipaddr_t addr)
6852 {
6853 	uchar_t	*up = (uchar_t *)&addr;
6854 	ipaddr_t mask = 0;
6855 	uchar_t	*maskp = (uchar_t *)&mask;
6856 
6857 #if defined(__i386) || defined(__amd64)
6858 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
6859 #endif
6860 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
6861 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
6862 #endif
6863 	if (CLASSD(addr)) {
6864 		maskp[0] = 0xF0;
6865 		return (mask);
6866 	}
6867 	if (addr == 0)
6868 		return (0);
6869 	maskp[0] = 0xFF;
6870 	if ((up[0] & 0x80) == 0)
6871 		return (mask);
6872 
6873 	maskp[1] = 0xFF;
6874 	if ((up[0] & 0xC0) == 0x80)
6875 		return (mask);
6876 
6877 	maskp[2] = 0xFF;
6878 	if ((up[0] & 0xE0) == 0xC0)
6879 		return (mask);
6880 
6881 	/* Must be experimental or multicast, indicate as much */
6882 	return ((ipaddr_t)0);
6883 }
6884 
6885 /*
6886  * Select an ill for the packet by considering load spreading across
6887  * a different ill in the group if dst_ill is part of some group.
6888  */
6889 static ill_t *
6890 ip_newroute_get_dst_ill(ill_t *dst_ill)
6891 {
6892 	ill_t *ill;
6893 
6894 	/*
6895 	 * We schedule irrespective of whether the source address is
6896 	 * INADDR_ANY or not. illgrp_scheduler returns a held ill.
6897 	 */
6898 	ill = illgrp_scheduler(dst_ill);
6899 	if (ill == NULL)
6900 		return (NULL);
6901 
6902 	/*
6903 	 * For groups with names ip_sioctl_groupname ensures that all
6904 	 * ills are of same type. For groups without names, ifgrp_insert
6905 	 * ensures this.
6906 	 */
6907 	ASSERT(dst_ill->ill_type == ill->ill_type);
6908 
6909 	return (ill);
6910 }
6911 
6912 /*
6913  * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case.
6914  */
6915 ill_t *
6916 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6)
6917 {
6918 	ill_t *ret_ill;
6919 
6920 	ASSERT(ifindex != 0);
6921 	ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL);
6922 	if (ret_ill == NULL ||
6923 	    (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) {
6924 		if (isv6) {
6925 			if (ill != NULL) {
6926 				BUMP_MIB(ill->ill_ip6_mib, ipv6OutDiscards);
6927 			} else {
6928 				BUMP_MIB(&ip6_mib, ipv6OutDiscards);
6929 			}
6930 			ip1dbg(("ip_grab_attach_ill (IPv6): "
6931 			    "bad ifindex %d.\n", ifindex));
6932 		} else {
6933 			BUMP_MIB(&ip_mib, ipOutDiscards);
6934 			ip1dbg(("ip_grab_attach_ill (IPv4): "
6935 			    "bad ifindex %d.\n", ifindex));
6936 		}
6937 		if (ret_ill != NULL)
6938 			ill_refrele(ret_ill);
6939 		freemsg(first_mp);
6940 		return (NULL);
6941 	}
6942 
6943 	return (ret_ill);
6944 }
6945 
6946 /*
6947  * IPv4 -
6948  * ip_newroute is called by ip_rput or ip_wput whenever we need to send
6949  * out a packet to a destination address for which we do not have specific
6950  * (or sufficient) routing information.
6951  *
6952  * NOTE : These are the scopes of some of the variables that point at IRE,
6953  *	  which needs to be followed while making any future modifications
6954  *	  to avoid memory leaks.
6955  *
6956  *	- ire and sire are the entries looked up initially by
6957  *	  ire_ftable_lookup.
6958  *	- ipif_ire is used to hold the interface ire associated with
6959  *	  the new cache ire. But it's scope is limited, so we always REFRELE
6960  *	  it before branching out to error paths.
6961  *	- save_ire is initialized before ire_create, so that ire returned
6962  *	  by ire_create will not over-write the ire. We REFRELE save_ire
6963  *	  before breaking out of the switch.
6964  *
6965  *	Thus on failures, we have to REFRELE only ire and sire, if they
6966  *	are not NULL.
6967  */
6968 void
6969 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp)
6970 {
6971 	areq_t	*areq;
6972 	ipaddr_t gw = 0;
6973 	ire_t	*ire = NULL;
6974 	mblk_t	*res_mp;
6975 	ipaddr_t *addrp;
6976 	ipaddr_t nexthop_addr;
6977 	ipif_t  *src_ipif = NULL;
6978 	ill_t	*dst_ill = NULL;
6979 	ipha_t  *ipha;
6980 	ire_t	*sire = NULL;
6981 	mblk_t	*first_mp;
6982 	ire_t	*save_ire;
6983 	mblk_t	*dlureq_mp;
6984 	ill_t	*attach_ill = NULL;	/* Bind to IPIF_NOFAILOVER address */
6985 	ushort_t ire_marks = 0;
6986 	boolean_t mctl_present;
6987 	ipsec_out_t *io;
6988 	mblk_t	*saved_mp;
6989 	ire_t	*first_sire = NULL;
6990 	mblk_t	*copy_mp = NULL;
6991 	mblk_t	*xmit_mp = NULL;
6992 	ipaddr_t save_dst;
6993 	uint32_t multirt_flags =
6994 	    MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP;
6995 	boolean_t multirt_is_resolvable;
6996 	boolean_t multirt_resolve_next;
6997 	boolean_t do_attach_ill = B_FALSE;
6998 	boolean_t ip_nexthop = B_FALSE;
6999 	zoneid_t zoneid;
7000 	tsol_ire_gw_secattr_t *attrp = NULL;
7001 	tsol_gcgrp_t *gcgrp = NULL;
7002 	tsol_gcgrp_addr_t ga;
7003 
7004 	if (ip_debug > 2) {
7005 		/* ip1dbg */
7006 		pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst);
7007 	}
7008 
7009 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
7010 	if (mctl_present) {
7011 		io = (ipsec_out_t *)first_mp->b_rptr;
7012 		zoneid = io->ipsec_out_zoneid;
7013 		ASSERT(zoneid != ALL_ZONES);
7014 	} else if (connp != NULL) {
7015 		zoneid = connp->conn_zoneid;
7016 	} else {
7017 		zoneid = GLOBAL_ZONEID;
7018 	}
7019 
7020 	ipha = (ipha_t *)mp->b_rptr;
7021 
7022 	/* All multicast lookups come through ip_newroute_ipif() */
7023 	if (CLASSD(dst)) {
7024 		ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n",
7025 		    ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next));
7026 		freemsg(first_mp);
7027 		return;
7028 	}
7029 
7030 	if (ip_loopback_src_or_dst(ipha, NULL)) {
7031 		goto icmp_err_ret;
7032 	}
7033 
7034 	if (mctl_present && io->ipsec_out_attach_if) {
7035 		/* ip_grab_attach_ill returns a held ill */
7036 		attach_ill = ip_grab_attach_ill(NULL, first_mp,
7037 		    io->ipsec_out_ill_index, B_FALSE);
7038 
7039 		/* Failure case frees things for us. */
7040 		if (attach_ill == NULL)
7041 			return;
7042 
7043 		/*
7044 		 * Check if we need an ire that will not be
7045 		 * looked up by anybody else i.e. HIDDEN.
7046 		 */
7047 		if (ill_is_probeonly(attach_ill))
7048 			ire_marks = IRE_MARK_HIDDEN;
7049 	}
7050 	if (mctl_present && io->ipsec_out_ip_nexthop) {
7051 		ip_nexthop = B_TRUE;
7052 		nexthop_addr = io->ipsec_out_nexthop_addr;
7053 	}
7054 	/*
7055 	 * If this IRE is created for forwarding or it is not for
7056 	 * traffic for congestion controlled protocols, mark it as temporary.
7057 	 */
7058 	if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol))
7059 		ire_marks |= IRE_MARK_TEMPORARY;
7060 
7061 	/*
7062 	 * Get what we can from ire_ftable_lookup which will follow an IRE
7063 	 * chain until it gets the most specific information available.
7064 	 * For example, we know that there is no IRE_CACHE for this dest,
7065 	 * but there may be an IRE_OFFSUBNET which specifies a gateway.
7066 	 * ire_ftable_lookup will look up the gateway, etc.
7067 	 * Check if in_ill != NULL. If it is true, the packet must be
7068 	 * from an incoming interface where RTA_SRCIFP is set.
7069 	 * Otherwise, given ire_ftable_lookup algorithm, only one among routes
7070 	 * to the destination, of equal netmask length in the forward table,
7071 	 * will be recursively explored. If no information is available
7072 	 * for the final gateway of that route, we force the returned ire
7073 	 * to be equal to sire using MATCH_IRE_PARENT.
7074 	 * At least, in this case we have a starting point (in the buckets)
7075 	 * to look for other routes to the destination in the forward table.
7076 	 * This is actually used only for multirouting, where a list
7077 	 * of routes has to be processed in sequence.
7078 	 */
7079 	if (in_ill != NULL) {
7080 		ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL,
7081 		    in_ill, MATCH_IRE_TYPE);
7082 	} else if (ip_nexthop) {
7083 		/*
7084 		 * The first time we come here, we look for an IRE_INTERFACE
7085 		 * entry for the specified nexthop, set the dst to be the
7086 		 * nexthop address and create an IRE_CACHE entry for the
7087 		 * nexthop. The next time around, we are able to find an
7088 		 * IRE_CACHE entry for the nexthop, set the gateway to be the
7089 		 * nexthop address and create an IRE_CACHE entry for the
7090 		 * destination address via the specified nexthop.
7091 		 */
7092 		ire = ire_cache_lookup(nexthop_addr, zoneid,
7093 		    MBLK_GETLABEL(mp));
7094 		if (ire != NULL) {
7095 			gw = nexthop_addr;
7096 			ire_marks |= IRE_MARK_PRIVATE_ADDR;
7097 		} else {
7098 			ire = ire_ftable_lookup(nexthop_addr, 0, 0,
7099 			    IRE_INTERFACE, NULL, NULL, zoneid, 0,
7100 			    MBLK_GETLABEL(mp),
7101 			    MATCH_IRE_TYPE | MATCH_IRE_SECATTR);
7102 			if (ire != NULL) {
7103 				dst = nexthop_addr;
7104 			}
7105 		}
7106 	} else if (attach_ill == NULL) {
7107 		ire = ire_ftable_lookup(dst, 0, 0, 0,
7108 		    NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp),
7109 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
7110 		    MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT |
7111 		    MATCH_IRE_SECATTR);
7112 	} else {
7113 		/*
7114 		 * attach_ill is set only for communicating with
7115 		 * on-link hosts. So, don't look for DEFAULT.
7116 		 */
7117 		ipif_t	*attach_ipif;
7118 
7119 		attach_ipif = ipif_get_next_ipif(NULL, attach_ill);
7120 		if (attach_ipif == NULL) {
7121 			ill_refrele(attach_ill);
7122 			goto icmp_err_ret;
7123 		}
7124 		ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif,
7125 		    &sire, zoneid, 0, MBLK_GETLABEL(mp),
7126 		    MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL |
7127 		    MATCH_IRE_SECATTR);
7128 		ipif_refrele(attach_ipif);
7129 	}
7130 	ip3dbg(("ip_newroute: ire_ftable_lookup() "
7131 	    "returned ire %p, sire %p\n", (void *)ire, (void *)sire));
7132 
7133 	/*
7134 	 * This loop is run only once in most cases.
7135 	 * We loop to resolve further routes only when the destination
7136 	 * can be reached through multiple RTF_MULTIRT-flagged ires.
7137 	 */
7138 	do {
7139 		/* Clear the previous iteration's values */
7140 		if (src_ipif != NULL) {
7141 			ipif_refrele(src_ipif);
7142 			src_ipif = NULL;
7143 		}
7144 		if (dst_ill != NULL) {
7145 			ill_refrele(dst_ill);
7146 			dst_ill = NULL;
7147 		}
7148 
7149 		multirt_resolve_next = B_FALSE;
7150 		/*
7151 		 * We check if packets have to be multirouted.
7152 		 * In this case, given the current <ire, sire> couple,
7153 		 * we look for the next suitable <ire, sire>.
7154 		 * This check is done in ire_multirt_lookup(),
7155 		 * which applies various criteria to find the next route
7156 		 * to resolve. ire_multirt_lookup() leaves <ire, sire>
7157 		 * unchanged if it detects it has not been tried yet.
7158 		 */
7159 		if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
7160 			ip3dbg(("ip_newroute: starting next_resolution "
7161 			    "with first_mp %p, tag %d\n",
7162 			    (void *)first_mp,
7163 			    MULTIRT_DEBUG_TAGGED(first_mp)));
7164 
7165 			ASSERT(sire != NULL);
7166 			multirt_is_resolvable =
7167 			    ire_multirt_lookup(&ire, &sire, multirt_flags,
7168 				MBLK_GETLABEL(mp));
7169 
7170 			ip3dbg(("ip_newroute: multirt_is_resolvable %d, "
7171 			    "ire %p, sire %p\n",
7172 			    multirt_is_resolvable,
7173 			    (void *)ire, (void *)sire));
7174 
7175 			if (!multirt_is_resolvable) {
7176 				/*
7177 				 * No more multirt route to resolve; give up
7178 				 * (all routes resolved or no more
7179 				 * resolvable routes).
7180 				 */
7181 				if (ire != NULL) {
7182 					ire_refrele(ire);
7183 					ire = NULL;
7184 				}
7185 			} else {
7186 				ASSERT(sire != NULL);
7187 				ASSERT(ire != NULL);
7188 				/*
7189 				 * We simply use first_sire as a flag that
7190 				 * indicates if a resolvable multirt route
7191 				 * has already been found.
7192 				 * If it is not the case, we may have to send
7193 				 * an ICMP error to report that the
7194 				 * destination is unreachable.
7195 				 * We do not IRE_REFHOLD first_sire.
7196 				 */
7197 				if (first_sire == NULL) {
7198 					first_sire = sire;
7199 				}
7200 			}
7201 		}
7202 		if (ire == NULL) {
7203 			if (ip_debug > 3) {
7204 				/* ip2dbg */
7205 				pr_addr_dbg("ip_newroute: "
7206 				    "can't resolve %s\n", AF_INET, &dst);
7207 			}
7208 			ip3dbg(("ip_newroute: "
7209 			    "ire %p, sire %p, first_sire %p\n",
7210 			    (void *)ire, (void *)sire, (void *)first_sire));
7211 
7212 			if (sire != NULL) {
7213 				ire_refrele(sire);
7214 				sire = NULL;
7215 			}
7216 
7217 			if (first_sire != NULL) {
7218 				/*
7219 				 * At least one multirt route has been found
7220 				 * in the same call to ip_newroute();
7221 				 * there is no need to report an ICMP error.
7222 				 * first_sire was not IRE_REFHOLDed.
7223 				 */
7224 				MULTIRT_DEBUG_UNTAG(first_mp);
7225 				freemsg(first_mp);
7226 				return;
7227 			}
7228 			ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0,
7229 			    RTA_DST);
7230 			if (attach_ill != NULL)
7231 				ill_refrele(attach_ill);
7232 			goto icmp_err_ret;
7233 		}
7234 
7235 		/*
7236 		 * When RTA_SRCIFP is used to add a route, then an interface
7237 		 * route is added in the source interface's routing table.
7238 		 * If the outgoing interface of this route is of type
7239 		 * IRE_IF_RESOLVER, then upon creation of the ire,
7240 		 * ire_dlureq_mp is set to NULL. Later, when this route is
7241 		 * first used for forwarding packet, ip_newroute() is called
7242 		 * to resolve the hardware address of the outgoing ipif.
7243 		 * We do not come here for IRE_IF_NORESOLVER entries in the
7244 		 * source interface based table. We only come here if the
7245 		 * outgoing interface is a resolver interface and we don't
7246 		 * have the ire_dlureq_mp information yet.
7247 		 * If in_ill is not null that means it is called from
7248 		 * ip_rput.
7249 		 */
7250 
7251 		ASSERT(ire->ire_in_ill == NULL ||
7252 		    (ire->ire_type == IRE_IF_RESOLVER &&
7253 		    ire->ire_dlureq_mp == NULL));
7254 
7255 		/*
7256 		 * Verify that the returned IRE does not have either
7257 		 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is
7258 		 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER.
7259 		 */
7260 		if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) ||
7261 		    (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) {
7262 			if (attach_ill != NULL)
7263 				ill_refrele(attach_ill);
7264 			goto icmp_err_ret;
7265 		}
7266 		/*
7267 		 * Increment the ire_ob_pkt_count field for ire if it is an
7268 		 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and
7269 		 * increment the same for the parent IRE, sire, if it is some
7270 		 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST
7271 		 * and HOST_REDIRECT).
7272 		 */
7273 		if ((ire->ire_type & IRE_INTERFACE) != 0) {
7274 			UPDATE_OB_PKT_COUNT(ire);
7275 			ire->ire_last_used_time = lbolt;
7276 		}
7277 
7278 		if (sire != NULL) {
7279 			gw = sire->ire_gateway_addr;
7280 			ASSERT((sire->ire_type & (IRE_CACHETABLE |
7281 			    IRE_INTERFACE)) == 0);
7282 			UPDATE_OB_PKT_COUNT(sire);
7283 			sire->ire_last_used_time = lbolt;
7284 		}
7285 		/*
7286 		 * We have a route to reach the destination.
7287 		 *
7288 		 * 1) If the interface is part of ill group, try to get a new
7289 		 *    ill taking load spreading into account.
7290 		 *
7291 		 * 2) After selecting the ill, get a source address that
7292 		 *    might create good inbound load spreading.
7293 		 *    ipif_select_source does this for us.
7294 		 *
7295 		 * If the application specified the ill (ifindex), we still
7296 		 * load spread. Only if the packets needs to go out
7297 		 * specifically on a given ill e.g. binding to
7298 		 * IPIF_NOFAILOVER address, then we don't try to use a
7299 		 * different ill for load spreading.
7300 		 */
7301 		if (attach_ill == NULL) {
7302 			/*
7303 			 * Don't perform outbound load spreading in the
7304 			 * case of an RTF_MULTIRT route, as we actually
7305 			 * typically want to replicate outgoing packets
7306 			 * through particular interfaces.
7307 			 */
7308 			if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
7309 				dst_ill = ire->ire_ipif->ipif_ill;
7310 				/* for uniformity */
7311 				ill_refhold(dst_ill);
7312 			} else {
7313 				/*
7314 				 * If we are here trying to create an IRE_CACHE
7315 				 * for an offlink destination and have the
7316 				 * IRE_CACHE for the next hop and the latter is
7317 				 * using virtual IP source address selection i.e
7318 				 * it's ire->ire_ipif is pointing to a virtual
7319 				 * network interface (vni) then
7320 				 * ip_newroute_get_dst_ll() will return the vni
7321 				 * interface as the dst_ill. Since the vni is
7322 				 * virtual i.e not associated with any physical
7323 				 * interface, it cannot be the dst_ill, hence
7324 				 * in such a case call ip_newroute_get_dst_ll()
7325 				 * with the stq_ill instead of the ire_ipif ILL.
7326 				 * The function returns a refheld ill.
7327 				 */
7328 				if ((ire->ire_type == IRE_CACHE) &&
7329 				    IS_VNI(ire->ire_ipif->ipif_ill))
7330 					dst_ill = ip_newroute_get_dst_ill(
7331 						ire->ire_stq->q_ptr);
7332 				else
7333 					dst_ill = ip_newroute_get_dst_ill(
7334 						ire->ire_ipif->ipif_ill);
7335 			}
7336 			if (dst_ill == NULL) {
7337 				if (ip_debug > 2) {
7338 					pr_addr_dbg("ip_newroute: "
7339 					    "no dst ill for dst"
7340 					    " %s\n", AF_INET, &dst);
7341 				}
7342 				goto icmp_err_ret;
7343 			}
7344 		} else {
7345 			dst_ill = ire->ire_ipif->ipif_ill;
7346 			/* for uniformity */
7347 			ill_refhold(dst_ill);
7348 			/*
7349 			 * We should have found a route matching ill as we
7350 			 * called ire_ftable_lookup with MATCH_IRE_ILL.
7351 			 * Rather than asserting, when there is a mismatch,
7352 			 * we just drop the packet.
7353 			 */
7354 			if (dst_ill != attach_ill) {
7355 				ip0dbg(("ip_newroute: Packet dropped as "
7356 				    "IPIF_NOFAILOVER ill is %s, "
7357 				    "ire->ire_ipif->ipif_ill is %s\n",
7358 				    attach_ill->ill_name,
7359 				    dst_ill->ill_name));
7360 				ill_refrele(attach_ill);
7361 				goto icmp_err_ret;
7362 			}
7363 		}
7364 		/* attach_ill can't go in loop. IPMP and CGTP are disjoint */
7365 		if (attach_ill != NULL) {
7366 			ill_refrele(attach_ill);
7367 			attach_ill = NULL;
7368 			do_attach_ill = B_TRUE;
7369 		}
7370 		ASSERT(dst_ill != NULL);
7371 		ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name));
7372 
7373 		/*
7374 		 * Pick the best source address from dst_ill.
7375 		 *
7376 		 * 1) If it is part of a multipathing group, we would
7377 		 *    like to spread the inbound packets across different
7378 		 *    interfaces. ipif_select_source picks a random source
7379 		 *    across the different ills in the group.
7380 		 *
7381 		 * 2) If it is not part of a multipathing group, we try
7382 		 *    to pick the source address from the destination
7383 		 *    route. Clustering assumes that when we have multiple
7384 		 *    prefixes hosted on an interface, the prefix of the
7385 		 *    source address matches the prefix of the destination
7386 		 *    route. We do this only if the address is not
7387 		 *    DEPRECATED.
7388 		 *
7389 		 * 3) If the conn is in a different zone than the ire, we
7390 		 *    need to pick a source address from the right zone.
7391 		 *
7392 		 * NOTE : If we hit case (1) above, the prefix of the source
7393 		 *	  address picked may not match the prefix of the
7394 		 *	  destination routes prefix as ipif_select_source
7395 		 *	  does not look at "dst" while picking a source
7396 		 *	  address.
7397 		 *	  If we want the same behavior as (2), we will need
7398 		 *	  to change the behavior of ipif_select_source.
7399 		 */
7400 		ASSERT(src_ipif == NULL);
7401 		if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) {
7402 			/*
7403 			 * The RTF_SETSRC flag is set in the parent ire (sire).
7404 			 * Check that the ipif matching the requested source
7405 			 * address still exists.
7406 			 */
7407 			src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL,
7408 			    zoneid, NULL, NULL, NULL, NULL);
7409 		}
7410 		if (src_ipif == NULL) {
7411 			ire_marks |= IRE_MARK_USESRC_CHECK;
7412 			if ((dst_ill->ill_group != NULL) ||
7413 			    (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) ||
7414 			    (connp != NULL && ire->ire_zoneid != zoneid &&
7415 			    ire->ire_zoneid != ALL_ZONES) ||
7416 			    (dst_ill->ill_usesrc_ifindex != 0)) {
7417 				/*
7418 				 * If the destination is reachable via a
7419 				 * given gateway, the selected source address
7420 				 * should be in the same subnet as the gateway.
7421 				 * Otherwise, the destination is not reachable.
7422 				 *
7423 				 * If there are no interfaces on the same subnet
7424 				 * as the destination, ipif_select_source gives
7425 				 * first non-deprecated interface which might be
7426 				 * on a different subnet than the gateway.
7427 				 * This is not desirable. Hence pass the dst_ire
7428 				 * source address to ipif_select_source.
7429 				 * It is sure that the destination is reachable
7430 				 * with the dst_ire source address subnet.
7431 				 * So passing dst_ire source address to
7432 				 * ipif_select_source will make sure that the
7433 				 * selected source will be on the same subnet
7434 				 * as dst_ire source address.
7435 				 */
7436 				ipaddr_t saddr = ire->ire_ipif->ipif_src_addr;
7437 				src_ipif = ipif_select_source(dst_ill, saddr,
7438 				    zoneid);
7439 				if (src_ipif == NULL) {
7440 					if (ip_debug > 2) {
7441 						pr_addr_dbg("ip_newroute: "
7442 						    "no src for dst %s ",
7443 						    AF_INET, &dst);
7444 						printf("through interface %s\n",
7445 						    dst_ill->ill_name);
7446 					}
7447 					goto icmp_err_ret;
7448 				}
7449 			} else {
7450 				src_ipif = ire->ire_ipif;
7451 				ASSERT(src_ipif != NULL);
7452 				/* hold src_ipif for uniformity */
7453 				ipif_refhold(src_ipif);
7454 			}
7455 		}
7456 
7457 		/*
7458 		 * Assign a source address while we have the conn.
7459 		 * We can't have ip_wput_ire pick a source address when the
7460 		 * packet returns from arp since we need to look at
7461 		 * conn_unspec_src and conn_zoneid, and we lose the conn when
7462 		 * going through arp.
7463 		 *
7464 		 * NOTE : ip_newroute_v6 does not have this piece of code as
7465 		 *	  it uses ip6i to store this information.
7466 		 */
7467 		if (ipha->ipha_src == INADDR_ANY &&
7468 		    (connp == NULL || !connp->conn_unspec_src)) {
7469 			ipha->ipha_src = src_ipif->ipif_src_addr;
7470 		}
7471 		if (ip_debug > 3) {
7472 			/* ip2dbg */
7473 			pr_addr_dbg("ip_newroute: first hop %s\n",
7474 			    AF_INET, &gw);
7475 		}
7476 		ip2dbg(("\tire type %s (%d)\n",
7477 		    ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type));
7478 
7479 		/*
7480 		 * The TTL of multirouted packets is bounded by the
7481 		 * ip_multirt_ttl ndd variable.
7482 		 */
7483 		if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
7484 			/* Force TTL of multirouted packets */
7485 			if ((ip_multirt_ttl > 0) &&
7486 			    (ipha->ipha_ttl > ip_multirt_ttl)) {
7487 				ip2dbg(("ip_newroute: forcing multirt TTL "
7488 				    "to %d (was %d), dst 0x%08x\n",
7489 				    ip_multirt_ttl, ipha->ipha_ttl,
7490 				    ntohl(sire->ire_addr)));
7491 				ipha->ipha_ttl = ip_multirt_ttl;
7492 			}
7493 		}
7494 		/*
7495 		 * At this point in ip_newroute(), ire is either the
7496 		 * IRE_CACHE of the next-hop gateway for an off-subnet
7497 		 * destination or an IRE_INTERFACE type that should be used
7498 		 * to resolve an on-subnet destination or an on-subnet
7499 		 * next-hop gateway.
7500 		 *
7501 		 * In the IRE_CACHE case, we have the following :
7502 		 *
7503 		 * 1) src_ipif - used for getting a source address.
7504 		 *
7505 		 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This
7506 		 *    means packets using this IRE_CACHE will go out on
7507 		 *    dst_ill.
7508 		 *
7509 		 * 3) The IRE sire will point to the prefix that is the
7510 		 *    longest  matching route for the destination. These
7511 		 *    prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST,
7512 		 *    and IRE_HOST_REDIRECT.
7513 		 *
7514 		 *    The newly created IRE_CACHE entry for the off-subnet
7515 		 *    destination is tied to both the prefix route and the
7516 		 *    interface route used to resolve the next-hop gateway
7517 		 *    via the ire_phandle and ire_ihandle fields,
7518 		 *    respectively.
7519 		 *
7520 		 * In the IRE_INTERFACE case, we have the following :
7521 		 *
7522 		 * 1) src_ipif - used for getting a source address.
7523 		 *
7524 		 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This
7525 		 *    means packets using the IRE_CACHE that we will build
7526 		 *    here will go out on dst_ill.
7527 		 *
7528 		 * 3) sire may or may not be NULL. But, the IRE_CACHE that is
7529 		 *    to be created will only be tied to the IRE_INTERFACE
7530 		 *    that was derived from the ire_ihandle field.
7531 		 *
7532 		 *    If sire is non-NULL, it means the destination is
7533 		 *    off-link and we will first create the IRE_CACHE for the
7534 		 *    gateway. Next time through ip_newroute, we will create
7535 		 *    the IRE_CACHE for the final destination as described
7536 		 *    above.
7537 		 *
7538 		 * In both cases, after the current resolution has been
7539 		 * completed (or possibly initialised, in the IRE_INTERFACE
7540 		 * case), the loop may be re-entered to attempt the resolution
7541 		 * of another RTF_MULTIRT route.
7542 		 *
7543 		 * When an IRE_CACHE entry for the off-subnet destination is
7544 		 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire,
7545 		 * for further processing in emission loops.
7546 		 */
7547 		save_ire = ire;
7548 		switch (ire->ire_type) {
7549 		case IRE_CACHE: {
7550 			ire_t	*ipif_ire;
7551 			mblk_t	*ire_fp_mp;
7552 
7553 			if (gw == 0)
7554 				gw = ire->ire_gateway_addr;
7555 			/*
7556 			 * We need 3 ire's to create a new cache ire for an
7557 			 * off-link destination from the cache ire of the
7558 			 * gateway.
7559 			 *
7560 			 *	1. The prefix ire 'sire' (Note that this does
7561 			 *	   not apply to the conn_nexthop_set case)
7562 			 *	2. The cache ire of the gateway 'ire'
7563 			 *	3. The interface ire 'ipif_ire'
7564 			 *
7565 			 * We have (1) and (2). We lookup (3) below.
7566 			 *
7567 			 * If there is no interface route to the gateway,
7568 			 * it is a race condition, where we found the cache
7569 			 * but the interface route has been deleted.
7570 			 */
7571 			if (ip_nexthop) {
7572 				ipif_ire = ire_ihandle_lookup_onlink(ire);
7573 			} else {
7574 				ipif_ire =
7575 				    ire_ihandle_lookup_offlink(ire, sire);
7576 			}
7577 			if (ipif_ire == NULL) {
7578 				ip1dbg(("ip_newroute: "
7579 				    "ire_ihandle_lookup_offlink failed\n"));
7580 				goto icmp_err_ret;
7581 			}
7582 			/*
7583 			 * XXX We are using the same dlureq_mp
7584 			 * (DL_UNITDATA_REQ) though the save_ire is not
7585 			 * pointing at the same ill.
7586 			 * This is incorrect. We need to send it up to the
7587 			 * resolver to get the right dlureq_mp. For ethernets
7588 			 * this may be okay (ill_type == DL_ETHER).
7589 			 */
7590 			dlureq_mp = save_ire->ire_dlureq_mp;
7591 			ire_fp_mp = NULL;
7592 			/*
7593 			 * save_ire's ire_fp_mp can't change since it is
7594 			 * not an IRE_MIPRTUN or IRE_BROADCAST
7595 			 * LOCK_IRE_FP_MP does not do any useful work in
7596 			 * the case of IRE_CACHE. So we don't use it below.
7597 			 */
7598 			if (save_ire->ire_stq == dst_ill->ill_wq)
7599 				ire_fp_mp = save_ire->ire_fp_mp;
7600 
7601 			/*
7602 			 * Check cached gateway IRE for any security
7603 			 * attributes; if found, associate the gateway
7604 			 * credentials group to the destination IRE.
7605 			 */
7606 			if ((attrp = save_ire->ire_gw_secattr) != NULL) {
7607 				mutex_enter(&attrp->igsa_lock);
7608 				if ((gcgrp = attrp->igsa_gcgrp) != NULL)
7609 					GCGRP_REFHOLD(gcgrp);
7610 				mutex_exit(&attrp->igsa_lock);
7611 			}
7612 
7613 			ire = ire_create(
7614 			    (uchar_t *)&dst,		/* dest address */
7615 			    (uchar_t *)&ip_g_all_ones,	/* mask */
7616 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
7617 			    (uchar_t *)&gw,		/* gateway address */
7618 			    NULL,
7619 			    &save_ire->ire_max_frag,
7620 			    ire_fp_mp,			/* Fast Path header */
7621 			    dst_ill->ill_rq,		/* recv-from queue */
7622 			    dst_ill->ill_wq,		/* send-to queue */
7623 			    IRE_CACHE,			/* IRE type */
7624 			    save_ire->ire_dlureq_mp,
7625 			    src_ipif,
7626 			    in_ill,			/* incoming ill */
7627 			    (sire != NULL) ?
7628 				sire->ire_mask : 0, 	/* Parent mask */
7629 			    (sire != NULL) ?
7630 				sire->ire_phandle : 0,  /* Parent handle */
7631 			    ipif_ire->ire_ihandle,	/* Interface handle */
7632 			    (sire != NULL) ? (sire->ire_flags &
7633 				(RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */
7634 			    (sire != NULL) ?
7635 				&(sire->ire_uinfo) : &(save_ire->ire_uinfo),
7636 			    NULL,
7637 			    gcgrp);
7638 
7639 			if (ire == NULL) {
7640 				if (gcgrp != NULL) {
7641 					GCGRP_REFRELE(gcgrp);
7642 					gcgrp = NULL;
7643 				}
7644 				ire_refrele(ipif_ire);
7645 				ire_refrele(save_ire);
7646 				break;
7647 			}
7648 
7649 			/* reference now held by IRE */
7650 			gcgrp = NULL;
7651 
7652 			ire->ire_marks |= ire_marks;
7653 
7654 			/*
7655 			 * Prevent sire and ipif_ire from getting deleted.
7656 			 * The newly created ire is tied to both of them via
7657 			 * the phandle and ihandle respectively.
7658 			 */
7659 			if (sire != NULL) {
7660 				IRB_REFHOLD(sire->ire_bucket);
7661 				/* Has it been removed already ? */
7662 				if (sire->ire_marks & IRE_MARK_CONDEMNED) {
7663 					IRB_REFRELE(sire->ire_bucket);
7664 					ire_refrele(ipif_ire);
7665 					ire_refrele(save_ire);
7666 					break;
7667 				}
7668 			}
7669 
7670 			IRB_REFHOLD(ipif_ire->ire_bucket);
7671 			/* Has it been removed already ? */
7672 			if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) {
7673 				IRB_REFRELE(ipif_ire->ire_bucket);
7674 				if (sire != NULL)
7675 					IRB_REFRELE(sire->ire_bucket);
7676 				ire_refrele(ipif_ire);
7677 				ire_refrele(save_ire);
7678 				break;
7679 			}
7680 
7681 			xmit_mp = first_mp;
7682 			/*
7683 			 * In the case of multirouting, a copy
7684 			 * of the packet is done before its sending.
7685 			 * The copy is used to attempt another
7686 			 * route resolution, in a next loop.
7687 			 */
7688 			if (ire->ire_flags & RTF_MULTIRT) {
7689 				copy_mp = copymsg(first_mp);
7690 				if (copy_mp != NULL) {
7691 					xmit_mp = copy_mp;
7692 					MULTIRT_DEBUG_TAG(first_mp);
7693 				}
7694 			}
7695 			ire_add_then_send(q, ire, xmit_mp);
7696 			ire_refrele(save_ire);
7697 
7698 			/* Assert that sire is not deleted yet. */
7699 			if (sire != NULL) {
7700 				ASSERT(sire->ire_ptpn != NULL);
7701 				IRB_REFRELE(sire->ire_bucket);
7702 			}
7703 
7704 			/* Assert that ipif_ire is not deleted yet. */
7705 			ASSERT(ipif_ire->ire_ptpn != NULL);
7706 			IRB_REFRELE(ipif_ire->ire_bucket);
7707 			ire_refrele(ipif_ire);
7708 
7709 			/*
7710 			 * If copy_mp is not NULL, multirouting was
7711 			 * requested. We loop to initiate a next
7712 			 * route resolution attempt, starting from sire.
7713 			 */
7714 			if (copy_mp != NULL) {
7715 				/*
7716 				 * Search for the next unresolved
7717 				 * multirt route.
7718 				 */
7719 				copy_mp = NULL;
7720 				ipif_ire = NULL;
7721 				ire = NULL;
7722 				multirt_resolve_next = B_TRUE;
7723 				continue;
7724 			}
7725 			if (sire != NULL)
7726 				ire_refrele(sire);
7727 			ipif_refrele(src_ipif);
7728 			ill_refrele(dst_ill);
7729 			return;
7730 		}
7731 		case IRE_IF_NORESOLVER: {
7732 			/*
7733 			 * We have what we need to build an IRE_CACHE.
7734 			 *
7735 			 * Create a new dlureq_mp with the IP gateway address
7736 			 * in destination address in the DLPI hdr if the
7737 			 * physical length is exactly 4 bytes.
7738 			 */
7739 			if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) {
7740 				uchar_t *addr;
7741 
7742 				if (gw)
7743 					addr = (uchar_t *)&gw;
7744 				else
7745 					addr = (uchar_t *)&dst;
7746 
7747 				dlureq_mp = ill_dlur_gen(addr,
7748 				    dst_ill->ill_phys_addr_length,
7749 				    dst_ill->ill_sap,
7750 				    dst_ill->ill_sap_length);
7751 			} else {
7752 				dlureq_mp = ire->ire_dlureq_mp;
7753 			}
7754 
7755 			if (dlureq_mp == NULL) {
7756 				ip1dbg(("ip_newroute: dlureq_mp NULL\n"));
7757 				break;
7758 			}
7759 
7760 			/*
7761 			 * TSol note: We are creating the ire cache for the
7762 			 * destination 'dst'. If 'dst' is offlink, going
7763 			 * through the first hop 'gw', the security attributes
7764 			 * of 'dst' must be set to point to the gateway
7765 			 * credentials of gateway 'gw'. If 'dst' is onlink, it
7766 			 * is possible that 'dst' is a potential gateway that is
7767 			 * referenced by some route that has some security
7768 			 * attributes. Thus in the former case, we need to do a
7769 			 * gcgrp_lookup of 'gw' while in the latter case we
7770 			 * need to do gcgrp_lookup of 'dst' itself.
7771 			 */
7772 			ga.ga_af = AF_INET;
7773 			IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst,
7774 			    &ga.ga_addr);
7775 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
7776 
7777 			ire = ire_create(
7778 			    (uchar_t *)&dst,		/* dest address */
7779 			    (uchar_t *)&ip_g_all_ones,	/* mask */
7780 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
7781 			    (uchar_t *)&gw,		/* gateway address */
7782 			    NULL,
7783 			    &save_ire->ire_max_frag,
7784 			    NULL,			/* Fast Path header */
7785 			    dst_ill->ill_rq,		/* recv-from queue */
7786 			    dst_ill->ill_wq,		/* send-to queue */
7787 			    IRE_CACHE,
7788 			    dlureq_mp,
7789 			    src_ipif,
7790 			    in_ill,			/* Incoming ill */
7791 			    save_ire->ire_mask,		/* Parent mask */
7792 			    (sire != NULL) ?		/* Parent handle */
7793 				sire->ire_phandle : 0,
7794 			    save_ire->ire_ihandle,	/* Interface handle */
7795 			    (sire != NULL) ? sire->ire_flags &
7796 				(RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */
7797 			    &(save_ire->ire_uinfo),
7798 			    NULL,
7799 			    gcgrp);
7800 
7801 			if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN)
7802 				freeb(dlureq_mp);
7803 
7804 			if (ire == NULL) {
7805 				if (gcgrp != NULL) {
7806 					GCGRP_REFRELE(gcgrp);
7807 					gcgrp = NULL;
7808 				}
7809 				ire_refrele(save_ire);
7810 				break;
7811 			}
7812 
7813 			/* reference now held by IRE */
7814 			gcgrp = NULL;
7815 
7816 			ire->ire_marks |= ire_marks;
7817 
7818 			/* Prevent save_ire from getting deleted */
7819 			IRB_REFHOLD(save_ire->ire_bucket);
7820 			/* Has it been removed already ? */
7821 			if (save_ire->ire_marks & IRE_MARK_CONDEMNED) {
7822 				IRB_REFRELE(save_ire->ire_bucket);
7823 				ire_refrele(save_ire);
7824 				break;
7825 			}
7826 
7827 			/*
7828 			 * In the case of multirouting, a copy
7829 			 * of the packet is made before it is sent.
7830 			 * The copy is used in the next
7831 			 * loop to attempt another resolution.
7832 			 */
7833 			xmit_mp = first_mp;
7834 			if ((sire != NULL) &&
7835 			    (sire->ire_flags & RTF_MULTIRT)) {
7836 				copy_mp = copymsg(first_mp);
7837 				if (copy_mp != NULL) {
7838 					xmit_mp = copy_mp;
7839 					MULTIRT_DEBUG_TAG(first_mp);
7840 				}
7841 			}
7842 			ire_add_then_send(q, ire, xmit_mp);
7843 
7844 			/* Assert that it is not deleted yet. */
7845 			ASSERT(save_ire->ire_ptpn != NULL);
7846 			IRB_REFRELE(save_ire->ire_bucket);
7847 			ire_refrele(save_ire);
7848 
7849 			if (copy_mp != NULL) {
7850 				/*
7851 				 * If we found a (no)resolver, we ignore any
7852 				 * trailing top priority IRE_CACHE in further
7853 				 * loops. This ensures that we do not omit any
7854 				 * (no)resolver.
7855 				 * This IRE_CACHE, if any, will be processed
7856 				 * by another thread entering ip_newroute().
7857 				 * IRE_CACHE entries, if any, will be processed
7858 				 * by another thread entering ip_newroute(),
7859 				 * (upon resolver response, for instance).
7860 				 * This aims to force parallel multirt
7861 				 * resolutions as soon as a packet must be sent.
7862 				 * In the best case, after the tx of only one
7863 				 * packet, all reachable routes are resolved.
7864 				 * Otherwise, the resolution of all RTF_MULTIRT
7865 				 * routes would require several emissions.
7866 				 */
7867 				multirt_flags &= ~MULTIRT_CACHEGW;
7868 
7869 				/*
7870 				 * Search for the next unresolved multirt
7871 				 * route.
7872 				 */
7873 				copy_mp = NULL;
7874 				save_ire = NULL;
7875 				ire = NULL;
7876 				multirt_resolve_next = B_TRUE;
7877 				continue;
7878 			}
7879 
7880 			/*
7881 			 * Don't need sire anymore
7882 			 */
7883 			if (sire != NULL)
7884 				ire_refrele(sire);
7885 
7886 			ipif_refrele(src_ipif);
7887 			ill_refrele(dst_ill);
7888 			return;
7889 		}
7890 		case IRE_IF_RESOLVER:
7891 			/*
7892 			 * We can't build an IRE_CACHE yet, but at least we
7893 			 * found a resolver that can help.
7894 			 */
7895 			res_mp = dst_ill->ill_resolver_mp;
7896 			if (!OK_RESOLVER_MP(res_mp))
7897 				break;
7898 
7899 			/*
7900 			 * To be at this point in the code with a non-zero gw
7901 			 * means that dst is reachable through a gateway that
7902 			 * we have never resolved.  By changing dst to the gw
7903 			 * addr we resolve the gateway first.
7904 			 * When ire_add_then_send() tries to put the IP dg
7905 			 * to dst, it will reenter ip_newroute() at which
7906 			 * time we will find the IRE_CACHE for the gw and
7907 			 * create another IRE_CACHE in case IRE_CACHE above.
7908 			 */
7909 			if (gw != INADDR_ANY) {
7910 				/*
7911 				 * The source ipif that was determined above was
7912 				 * relative to the destination address, not the
7913 				 * gateway's. If src_ipif was not taken out of
7914 				 * the IRE_IF_RESOLVER entry, we'll need to call
7915 				 * ipif_select_source() again.
7916 				 */
7917 				if (src_ipif != ire->ire_ipif) {
7918 					ipif_refrele(src_ipif);
7919 					src_ipif = ipif_select_source(dst_ill,
7920 					    gw, zoneid);
7921 					if (src_ipif == NULL) {
7922 						if (ip_debug > 2) {
7923 							pr_addr_dbg(
7924 							    "ip_newroute: no "
7925 							    "src for gw %s ",
7926 							    AF_INET, &gw);
7927 							printf("through "
7928 							    "interface %s\n",
7929 							    dst_ill->ill_name);
7930 						}
7931 						goto icmp_err_ret;
7932 					}
7933 				}
7934 				save_dst = dst;
7935 				dst = gw;
7936 				gw = INADDR_ANY;
7937 			}
7938 
7939 			/*
7940 			 * TSol note: Please see the corresponding note
7941 			 * of the IRE_IF_NORESOLVER case
7942 			 */
7943 			ga.ga_af = AF_INET;
7944 			IN6_IPADDR_TO_V4MAPPED(dst, &ga.ga_addr);
7945 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
7946 
7947 			/*
7948 			 * We obtain a partial IRE_CACHE which we will pass
7949 			 * along with the resolver query.  When the response
7950 			 * comes back it will be there ready for us to add.
7951 			 * The ire_max_frag is atomically set under the
7952 			 * irebucket lock in ire_add_v[46].
7953 			 */
7954 			ire = ire_create_mp(
7955 			    (uchar_t *)&dst,		/* dest address */
7956 			    (uchar_t *)&ip_g_all_ones,	/* mask */
7957 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
7958 			    (uchar_t *)&gw,		/* gateway address */
7959 			    NULL,			/* no in_src_addr */
7960 			    NULL,			/* ire_max_frag */
7961 			    NULL,			/* Fast Path header */
7962 			    dst_ill->ill_rq,		/* recv-from queue */
7963 			    dst_ill->ill_wq,		/* send-to queue */
7964 			    IRE_CACHE,
7965 			    res_mp,
7966 			    src_ipif,			/* Interface ipif */
7967 			    in_ill,			/* Incoming ILL */
7968 			    save_ire->ire_mask,		/* Parent mask */
7969 			    0,
7970 			    save_ire->ire_ihandle,	/* Interface handle */
7971 			    0,				/* flags if any */
7972 			    &(save_ire->ire_uinfo),
7973 			    NULL,
7974 			    gcgrp);
7975 
7976 			if (ire == NULL) {
7977 				ire_refrele(save_ire);
7978 				if (gcgrp != NULL) {
7979 					GCGRP_REFRELE(gcgrp);
7980 					gcgrp = NULL;
7981 				}
7982 				break;
7983 			}
7984 
7985 			/* reference now held by IRE */
7986 			gcgrp = NULL;
7987 
7988 			if ((sire != NULL) &&
7989 			    (sire->ire_flags & RTF_MULTIRT)) {
7990 				copy_mp = copymsg(first_mp);
7991 				if (copy_mp != NULL)
7992 					MULTIRT_DEBUG_TAG(copy_mp);
7993 			}
7994 
7995 			ire->ire_marks |= ire_marks;
7996 
7997 			/*
7998 			 * Construct message chain for the resolver
7999 			 * of the form:
8000 			 * 	ARP_REQ_MBLK-->IRE_MBLK-->Packet
8001 			 * Packet could contain a IPSEC_OUT mp.
8002 			 *
8003 			 * NOTE : ire will be added later when the response
8004 			 * comes back from ARP. If the response does not
8005 			 * come back, ARP frees the packet. For this reason,
8006 			 * we can't REFHOLD the bucket of save_ire to prevent
8007 			 * deletions. We may not be able to REFRELE the bucket
8008 			 * if the response never comes back. Thus, before
8009 			 * adding the ire, ire_add_v4 will make sure that the
8010 			 * interface route does not get deleted. This is the
8011 			 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
8012 			 * where we can always prevent deletions because of
8013 			 * the synchronous nature of adding IRES i.e
8014 			 * ire_add_then_send is called after creating the IRE.
8015 			 */
8016 			ASSERT(ire->ire_mp != NULL);
8017 			ire->ire_mp->b_cont = first_mp;
8018 			/* Have saved_mp handy, for cleanup if canput fails */
8019 			saved_mp = mp;
8020 			mp = ire->ire_dlureq_mp;
8021 			ASSERT(mp != NULL);
8022 			ire->ire_dlureq_mp = NULL;
8023 			linkb(mp, ire->ire_mp);
8024 
8025 
8026 			/*
8027 			 * Fill in the source and dest addrs for the resolver.
8028 			 * NOTE: this depends on memory layouts imposed by
8029 			 * ill_init().
8030 			 */
8031 			areq = (areq_t *)mp->b_rptr;
8032 			addrp = (ipaddr_t *)((char *)areq +
8033 			    areq->areq_sender_addr_offset);
8034 			if (do_attach_ill) {
8035 				/*
8036 				 * This is bind to no failover case.
8037 				 * arp packet also must go out on attach_ill.
8038 				 */
8039 				ASSERT(ipha->ipha_src != NULL);
8040 				*addrp = ipha->ipha_src;
8041 			} else {
8042 				*addrp = save_ire->ire_src_addr;
8043 			}
8044 
8045 			ire_refrele(save_ire);
8046 			addrp = (ipaddr_t *)((char *)areq +
8047 			    areq->areq_target_addr_offset);
8048 			*addrp = dst;
8049 			/* Up to the resolver. */
8050 			if (canputnext(dst_ill->ill_rq)) {
8051 				putnext(dst_ill->ill_rq, mp);
8052 				ire = NULL;
8053 				if (copy_mp != NULL) {
8054 					/*
8055 					 * If we found a resolver, we ignore
8056 					 * any trailing top priority IRE_CACHE
8057 					 * in the further loops. This ensures
8058 					 * that we do not omit any resolver.
8059 					 * IRE_CACHE entries, if any, will be
8060 					 * processed next time we enter
8061 					 * ip_newroute().
8062 					 */
8063 					multirt_flags &= ~MULTIRT_CACHEGW;
8064 					/*
8065 					 * Search for the next unresolved
8066 					 * multirt route.
8067 					 */
8068 					first_mp = copy_mp;
8069 					copy_mp = NULL;
8070 					/* Prepare the next resolution loop. */
8071 					mp = first_mp;
8072 					EXTRACT_PKT_MP(mp, first_mp,
8073 					    mctl_present);
8074 					if (mctl_present)
8075 						io = (ipsec_out_t *)
8076 						    first_mp->b_rptr;
8077 					ipha = (ipha_t *)mp->b_rptr;
8078 
8079 					ASSERT(sire != NULL);
8080 
8081 					dst = save_dst;
8082 					multirt_resolve_next = B_TRUE;
8083 					continue;
8084 				}
8085 
8086 				if (sire != NULL)
8087 					ire_refrele(sire);
8088 
8089 				/*
8090 				 * The response will come back in ip_wput
8091 				 * with db_type IRE_DB_TYPE.
8092 				 */
8093 				ipif_refrele(src_ipif);
8094 				ill_refrele(dst_ill);
8095 				return;
8096 			} else {
8097 				/* Prepare for cleanup */
8098 				ire->ire_dlureq_mp = mp;
8099 				mp->b_cont = NULL;
8100 				ire_delete(ire);
8101 				mp = saved_mp;
8102 				ire = NULL;
8103 				if (copy_mp != NULL) {
8104 					MULTIRT_DEBUG_UNTAG(copy_mp);
8105 					freemsg(copy_mp);
8106 					copy_mp = NULL;
8107 				}
8108 				break;
8109 			}
8110 		default:
8111 			break;
8112 		}
8113 	} while (multirt_resolve_next);
8114 
8115 	ip1dbg(("ip_newroute: dropped\n"));
8116 	/* Did this packet originate externally? */
8117 	if (mp->b_prev) {
8118 		mp->b_next = NULL;
8119 		mp->b_prev = NULL;
8120 		BUMP_MIB(&ip_mib, ipInDiscards);
8121 	} else {
8122 		BUMP_MIB(&ip_mib, ipOutDiscards);
8123 	}
8124 	ASSERT(copy_mp == NULL);
8125 	MULTIRT_DEBUG_UNTAG(first_mp);
8126 	freemsg(first_mp);
8127 	if (ire != NULL)
8128 		ire_refrele(ire);
8129 	if (sire != NULL)
8130 		ire_refrele(sire);
8131 	if (src_ipif != NULL)
8132 		ipif_refrele(src_ipif);
8133 	if (dst_ill != NULL)
8134 		ill_refrele(dst_ill);
8135 	return;
8136 
8137 icmp_err_ret:
8138 	ip1dbg(("ip_newroute: no route\n"));
8139 	if (src_ipif != NULL)
8140 		ipif_refrele(src_ipif);
8141 	if (dst_ill != NULL)
8142 		ill_refrele(dst_ill);
8143 	if (sire != NULL)
8144 		ire_refrele(sire);
8145 	/* Did this packet originate externally? */
8146 	if (mp->b_prev) {
8147 		mp->b_next = NULL;
8148 		mp->b_prev = NULL;
8149 		/* XXX ipInNoRoutes */
8150 		q = WR(q);
8151 	} else {
8152 		/*
8153 		 * Since ip_wput() isn't close to finished, we fill
8154 		 * in enough of the header for credible error reporting.
8155 		 */
8156 		if (ip_hdr_complete(ipha, zoneid)) {
8157 			/* Failed */
8158 			MULTIRT_DEBUG_UNTAG(first_mp);
8159 			freemsg(first_mp);
8160 			if (ire != NULL)
8161 				ire_refrele(ire);
8162 			return;
8163 		}
8164 	}
8165 	BUMP_MIB(&ip_mib, ipOutNoRoutes);
8166 
8167 	/*
8168 	 * At this point we will have ire only if RTF_BLACKHOLE
8169 	 * or RTF_REJECT flags are set on the IRE. It will not
8170 	 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set.
8171 	 */
8172 	if (ire != NULL) {
8173 		if (ire->ire_flags & RTF_BLACKHOLE) {
8174 			ire_refrele(ire);
8175 			MULTIRT_DEBUG_UNTAG(first_mp);
8176 			freemsg(first_mp);
8177 			return;
8178 		}
8179 		ire_refrele(ire);
8180 	}
8181 	if (ip_source_routed(ipha)) {
8182 		icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED);
8183 		return;
8184 	}
8185 	icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE);
8186 }
8187 
8188 /*
8189  * IPv4 -
8190  * ip_newroute_ipif is called by ip_wput_multicast and
8191  * ip_rput_forward_multicast whenever we need to send
8192  * out a packet to a destination address for which we do not have specific
8193  * routing information. It is used when the packet will be sent out
8194  * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF
8195  * socket option is set or icmp error message wants to go out on a particular
8196  * interface for a unicast packet.
8197  *
8198  * In most cases, the destination address is resolved thanks to the ipif
8199  * intrinsic resolver. However, there are some cases where the call to
8200  * ip_newroute_ipif must take into account the potential presence of
8201  * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire
8202  * that uses the interface. This is specified through flags,
8203  * which can be a combination of:
8204  * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC
8205  *   flag, the resulting ire will inherit the IRE_OFFSUBNET source address
8206  *   and flags. Additionally, the packet source address has to be set to
8207  *   the specified address. The caller is thus expected to set this flag
8208  *   if the packet has no specific source address yet.
8209  * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT
8210  *   flag, the resulting ire will inherit the flag. All unresolved routes
8211  *   to the destination must be explored in the same call to
8212  *   ip_newroute_ipif().
8213  */
8214 static void
8215 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst,
8216     conn_t *connp, uint32_t flags)
8217 {
8218 	areq_t	*areq;
8219 	ire_t	*ire = NULL;
8220 	mblk_t	*res_mp;
8221 	ipaddr_t *addrp;
8222 	mblk_t *first_mp;
8223 	ire_t	*save_ire = NULL;
8224 	ill_t	*attach_ill = NULL;		/* Bind to IPIF_NOFAILOVER */
8225 	ipif_t	*src_ipif = NULL;
8226 	ushort_t ire_marks = 0;
8227 	ill_t	*dst_ill = NULL;
8228 	boolean_t mctl_present;
8229 	ipsec_out_t *io;
8230 	ipha_t *ipha;
8231 	int	ihandle = 0;
8232 	mblk_t	*saved_mp;
8233 	ire_t   *fire = NULL;
8234 	mblk_t  *copy_mp = NULL;
8235 	boolean_t multirt_resolve_next;
8236 	ipaddr_t ipha_dst;
8237 	zoneid_t zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES);
8238 
8239 	/*
8240 	 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold
8241 	 * here for uniformity
8242 	 */
8243 	ipif_refhold(ipif);
8244 
8245 	/*
8246 	 * This loop is run only once in most cases.
8247 	 * We loop to resolve further routes only when the destination
8248 	 * can be reached through multiple RTF_MULTIRT-flagged ires.
8249 	 */
8250 	do {
8251 		if (dst_ill != NULL) {
8252 			ill_refrele(dst_ill);
8253 			dst_ill = NULL;
8254 		}
8255 		if (src_ipif != NULL) {
8256 			ipif_refrele(src_ipif);
8257 			src_ipif = NULL;
8258 		}
8259 		multirt_resolve_next = B_FALSE;
8260 
8261 		ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst),
8262 		    ipif->ipif_ill->ill_name));
8263 
8264 		EXTRACT_PKT_MP(mp, first_mp, mctl_present);
8265 		if (mctl_present)
8266 			io = (ipsec_out_t *)first_mp->b_rptr;
8267 
8268 		ipha = (ipha_t *)mp->b_rptr;
8269 
8270 		/*
8271 		 * Save the packet destination address, we may need it after
8272 		 * the packet has been consumed.
8273 		 */
8274 		ipha_dst = ipha->ipha_dst;
8275 
8276 		/*
8277 		 * If the interface is a pt-pt interface we look for an
8278 		 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the
8279 		 * local_address and the pt-pt destination address. Otherwise
8280 		 * we just match the local address.
8281 		 * NOTE: dst could be different than ipha->ipha_dst in case
8282 		 * of sending igmp multicast packets over a point-to-point
8283 		 * connection.
8284 		 * Thus we must be careful enough to check ipha_dst to be a
8285 		 * multicast address, otherwise it will take xmit_if path for
8286 		 * multicast packets resulting into kernel stack overflow by
8287 		 * repeated calls to ip_newroute_ipif from ire_send().
8288 		 */
8289 		if (CLASSD(ipha_dst) &&
8290 		    !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) {
8291 			goto err_ret;
8292 		}
8293 
8294 		/*
8295 		 * We check if an IRE_OFFSUBNET for the addr that goes through
8296 		 * ipif exists. We need it to determine if the RTF_SETSRC and/or
8297 		 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may
8298 		 * propagate its flags to the new ire.
8299 		 */
8300 		if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) {
8301 			fire = ipif_lookup_multi_ire(ipif, ipha_dst);
8302 			ip2dbg(("ip_newroute_ipif: "
8303 			    "ipif_lookup_multi_ire("
8304 			    "ipif %p, dst %08x) = fire %p\n",
8305 			    (void *)ipif, ntohl(dst), (void *)fire));
8306 		}
8307 
8308 		if (mctl_present && io->ipsec_out_attach_if) {
8309 			attach_ill = ip_grab_attach_ill(NULL, first_mp,
8310 			    io->ipsec_out_ill_index, B_FALSE);
8311 
8312 			/* Failure case frees things for us. */
8313 			if (attach_ill == NULL) {
8314 				ipif_refrele(ipif);
8315 				if (fire != NULL)
8316 					ire_refrele(fire);
8317 				return;
8318 			}
8319 
8320 			/*
8321 			 * Check if we need an ire that will not be
8322 			 * looked up by anybody else i.e. HIDDEN.
8323 			 */
8324 			if (ill_is_probeonly(attach_ill)) {
8325 				ire_marks = IRE_MARK_HIDDEN;
8326 			}
8327 			/*
8328 			 * ip_wput passes the right ipif for IPIF_NOFAILOVER
8329 			 * case.
8330 			 */
8331 			dst_ill = ipif->ipif_ill;
8332 			/* attach_ill has been refheld by ip_grab_attach_ill */
8333 			ASSERT(dst_ill == attach_ill);
8334 		} else {
8335 			/*
8336 			 * If this is set by IP_XMIT_IF, then make sure that
8337 			 * ipif is pointing to the same ill as the IP_XMIT_IF
8338 			 * specified ill.
8339 			 */
8340 			ASSERT((connp == NULL) ||
8341 			    (connp->conn_xmit_if_ill == NULL) ||
8342 			    (connp->conn_xmit_if_ill == ipif->ipif_ill));
8343 			/*
8344 			 * If the interface belongs to an interface group,
8345 			 * make sure the next possible interface in the group
8346 			 * is used.  This encourages load spreading among
8347 			 * peers in an interface group.
8348 			 * Note: load spreading is disabled for RTF_MULTIRT
8349 			 * routes.
8350 			 */
8351 			if ((flags & RTF_MULTIRT) && (fire != NULL) &&
8352 			    (fire->ire_flags & RTF_MULTIRT)) {
8353 				/*
8354 				 * Don't perform outbound load spreading
8355 				 * in the case of an RTF_MULTIRT issued route,
8356 				 * we actually typically want to replicate
8357 				 * outgoing packets through particular
8358 				 * interfaces.
8359 				 */
8360 				dst_ill = ipif->ipif_ill;
8361 				ill_refhold(dst_ill);
8362 			} else {
8363 				dst_ill = ip_newroute_get_dst_ill(
8364 				    ipif->ipif_ill);
8365 			}
8366 			if (dst_ill == NULL) {
8367 				if (ip_debug > 2) {
8368 					pr_addr_dbg("ip_newroute_ipif: "
8369 					    "no dst ill for dst %s\n",
8370 					    AF_INET, &dst);
8371 				}
8372 				goto err_ret;
8373 			}
8374 		}
8375 
8376 		/*
8377 		 * Pick a source address preferring non-deprecated ones.
8378 		 * Unlike ip_newroute, we don't do any source address
8379 		 * selection here since for multicast it really does not help
8380 		 * in inbound load spreading as in the unicast case.
8381 		 */
8382 		if ((flags & RTF_SETSRC) && (fire != NULL) &&
8383 		    (fire->ire_flags & RTF_SETSRC)) {
8384 			/*
8385 			 * As requested by flags, an IRE_OFFSUBNET was looked up
8386 			 * on that interface. This ire has RTF_SETSRC flag, so
8387 			 * the source address of the packet must be changed.
8388 			 * Check that the ipif matching the requested source
8389 			 * address still exists.
8390 			 */
8391 			src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL,
8392 			    zoneid, NULL, NULL, NULL, NULL);
8393 		}
8394 		if (((ipif->ipif_flags & IPIF_DEPRECATED) ||
8395 		    (connp != NULL && ipif->ipif_zoneid != zoneid &&
8396 		    ipif->ipif_zoneid != ALL_ZONES)) &&
8397 		    (src_ipif == NULL)) {
8398 			src_ipif = ipif_select_source(dst_ill, dst, zoneid);
8399 			if (src_ipif == NULL) {
8400 				if (ip_debug > 2) {
8401 					/* ip1dbg */
8402 					pr_addr_dbg("ip_newroute_ipif: "
8403 					    "no src for dst %s",
8404 					    AF_INET, &dst);
8405 				}
8406 				ip1dbg((" through interface %s\n",
8407 				    dst_ill->ill_name));
8408 				goto err_ret;
8409 			}
8410 			ipif_refrele(ipif);
8411 			ipif = src_ipif;
8412 			ipif_refhold(ipif);
8413 		}
8414 		if (src_ipif == NULL) {
8415 			src_ipif = ipif;
8416 			ipif_refhold(src_ipif);
8417 		}
8418 
8419 		/*
8420 		 * Assign a source address while we have the conn.
8421 		 * We can't have ip_wput_ire pick a source address when the
8422 		 * packet returns from arp since conn_unspec_src might be set
8423 		 * and we loose the conn when going through arp.
8424 		 */
8425 		if (ipha->ipha_src == INADDR_ANY &&
8426 		    (connp == NULL || !connp->conn_unspec_src)) {
8427 			ipha->ipha_src = src_ipif->ipif_src_addr;
8428 		}
8429 
8430 		/*
8431 		 * In case of IP_XMIT_IF, it is possible that the outgoing
8432 		 * interface does not have an interface ire.
8433 		 * Example: Thousands of mobileip PPP interfaces to mobile
8434 		 * nodes. We don't want to create interface ires because
8435 		 * packets from other mobile nodes must not take the route
8436 		 * via interface ires to the visiting mobile node without
8437 		 * going through the home agent, in absence of mobileip
8438 		 * route optimization.
8439 		 */
8440 		if (CLASSD(ipha_dst) && (connp == NULL ||
8441 		    connp->conn_xmit_if_ill == NULL)) {
8442 			/* ipif_to_ire returns an held ire */
8443 			ire = ipif_to_ire(ipif);
8444 			if (ire == NULL)
8445 				goto err_ret;
8446 			if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
8447 				goto err_ret;
8448 			/*
8449 			 * ihandle is needed when the ire is added to
8450 			 * cache table.
8451 			 */
8452 			save_ire = ire;
8453 			ihandle = save_ire->ire_ihandle;
8454 
8455 			ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, "
8456 			    "flags %04x\n",
8457 			    (void *)ire, (void *)ipif, flags));
8458 			if ((flags & RTF_MULTIRT) && (fire != NULL) &&
8459 			    (fire->ire_flags & RTF_MULTIRT)) {
8460 				/*
8461 				 * As requested by flags, an IRE_OFFSUBNET was
8462 				 * looked up on that interface. This ire has
8463 				 * RTF_MULTIRT flag, so the resolution loop will
8464 				 * be re-entered to resolve additional routes on
8465 				 * other interfaces. For that purpose, a copy of
8466 				 * the packet is performed at this point.
8467 				 */
8468 				fire->ire_last_used_time = lbolt;
8469 				copy_mp = copymsg(first_mp);
8470 				if (copy_mp) {
8471 					MULTIRT_DEBUG_TAG(copy_mp);
8472 				}
8473 			}
8474 			if ((flags & RTF_SETSRC) && (fire != NULL) &&
8475 			    (fire->ire_flags & RTF_SETSRC)) {
8476 				/*
8477 				 * As requested by flags, an IRE_OFFSUBET was
8478 				 * looked up on that interface. This ire has
8479 				 * RTF_SETSRC flag, so the source address of the
8480 				 * packet must be changed.
8481 				 */
8482 				ipha->ipha_src = fire->ire_src_addr;
8483 			}
8484 		} else {
8485 			ASSERT((connp == NULL) ||
8486 			    (connp->conn_xmit_if_ill != NULL) ||
8487 			    (connp->conn_dontroute));
8488 			/*
8489 			 * The only ways we can come here are:
8490 			 * 1) IP_XMIT_IF socket option is set
8491 			 * 2) ICMP error message generated from
8492 			 *    ip_mrtun_forward() routine and it needs
8493 			 *    to go through the specified ill.
8494 			 * 3) SO_DONTROUTE socket option is set
8495 			 * In all cases, the new ire will not be added
8496 			 * into cache table.
8497 			 */
8498 			ire_marks |= IRE_MARK_NOADD;
8499 		}
8500 
8501 		switch (ipif->ipif_net_type) {
8502 		case IRE_IF_NORESOLVER: {
8503 			/* We have what we need to build an IRE_CACHE. */
8504 			mblk_t	*dlureq_mp;
8505 
8506 			/*
8507 			 * Create a new dlureq_mp with the
8508 			 * IP gateway address as destination address in the
8509 			 * DLPI hdr if the physical length is exactly 4 bytes.
8510 			 */
8511 			if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) {
8512 				dlureq_mp = ill_dlur_gen((uchar_t *)&dst,
8513 				    dst_ill->ill_phys_addr_length,
8514 				    dst_ill->ill_sap,
8515 				    dst_ill->ill_sap_length);
8516 			} else {
8517 				/* use the value set in ip_ll_subnet_defaults */
8518 				dlureq_mp = ill_dlur_gen(NULL,
8519 				    dst_ill->ill_phys_addr_length,
8520 				    dst_ill->ill_sap,
8521 				    dst_ill->ill_sap_length);
8522 			}
8523 
8524 			if (dlureq_mp == NULL)
8525 				break;
8526 			/*
8527 			 * The new ire inherits the IRE_OFFSUBNET flags
8528 			 * and source address, if this was requested.
8529 			 */
8530 			ire = ire_create(
8531 			    (uchar_t *)&dst,		/* dest address */
8532 			    (uchar_t *)&ip_g_all_ones,	/* mask */
8533 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
8534 			    NULL,			/* gateway address */
8535 			    NULL,
8536 			    &ipif->ipif_mtu,
8537 			    NULL,			/* Fast Path header */
8538 			    dst_ill->ill_rq,		/* recv-from queue */
8539 			    dst_ill->ill_wq,		/* send-to queue */
8540 			    IRE_CACHE,
8541 			    dlureq_mp,
8542 			    src_ipif,
8543 			    NULL,
8544 			    (save_ire != NULL ? save_ire->ire_mask : 0),
8545 			    (fire != NULL) ?		/* Parent handle */
8546 				fire->ire_phandle : 0,
8547 			    ihandle,			/* Interface handle */
8548 			    (fire != NULL) ?
8549 				(fire->ire_flags &
8550 				(RTF_SETSRC | RTF_MULTIRT)) : 0,
8551 			    (save_ire == NULL ? &ire_uinfo_null :
8552 				&save_ire->ire_uinfo),
8553 			    NULL,
8554 			    NULL);
8555 
8556 			freeb(dlureq_mp);
8557 
8558 			if (ire == NULL) {
8559 				if (save_ire != NULL)
8560 					ire_refrele(save_ire);
8561 				break;
8562 			}
8563 
8564 			ire->ire_marks |= ire_marks;
8565 
8566 			/*
8567 			 * If IRE_MARK_NOADD is set then we need to convert
8568 			 * the max_fragp to a useable value now. This is
8569 			 * normally done in ire_add_v[46].
8570 			 */
8571 			if (ire->ire_marks & IRE_MARK_NOADD) {
8572 				uint_t  max_frag;
8573 
8574 				max_frag = *ire->ire_max_fragp;
8575 				ire->ire_max_fragp = NULL;
8576 				ire->ire_max_frag = max_frag;
8577 			}
8578 
8579 			/* Prevent save_ire from getting deleted */
8580 			if (save_ire != NULL) {
8581 				IRB_REFHOLD(save_ire->ire_bucket);
8582 				/* Has it been removed already ? */
8583 				if (save_ire->ire_marks & IRE_MARK_CONDEMNED) {
8584 					IRB_REFRELE(save_ire->ire_bucket);
8585 					ire_refrele(save_ire);
8586 					break;
8587 				}
8588 			}
8589 
8590 			ire_add_then_send(q, ire, first_mp);
8591 
8592 			/* Assert that save_ire is not deleted yet. */
8593 			if (save_ire != NULL) {
8594 				ASSERT(save_ire->ire_ptpn != NULL);
8595 				IRB_REFRELE(save_ire->ire_bucket);
8596 				ire_refrele(save_ire);
8597 				save_ire = NULL;
8598 			}
8599 			if (fire != NULL) {
8600 				ire_refrele(fire);
8601 				fire = NULL;
8602 			}
8603 
8604 			/*
8605 			 * the resolution loop is re-entered if this
8606 			 * was requested through flags and if we
8607 			 * actually are in a multirouting case.
8608 			 */
8609 			if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) {
8610 				boolean_t need_resolve =
8611 				    ire_multirt_need_resolve(ipha_dst,
8612 					MBLK_GETLABEL(copy_mp));
8613 				if (!need_resolve) {
8614 					MULTIRT_DEBUG_UNTAG(copy_mp);
8615 					freemsg(copy_mp);
8616 					copy_mp = NULL;
8617 				} else {
8618 					/*
8619 					 * ipif_lookup_group() calls
8620 					 * ire_lookup_multi() that uses
8621 					 * ire_ftable_lookup() to find
8622 					 * an IRE_INTERFACE for the group.
8623 					 * In the multirt case,
8624 					 * ire_lookup_multi() then invokes
8625 					 * ire_multirt_lookup() to find
8626 					 * the next resolvable ire.
8627 					 * As a result, we obtain an new
8628 					 * interface, derived from the
8629 					 * next ire.
8630 					 */
8631 					ipif_refrele(ipif);
8632 					ipif = ipif_lookup_group(ipha_dst,
8633 					    zoneid);
8634 					ip2dbg(("ip_newroute_ipif: "
8635 					    "multirt dst %08x, ipif %p\n",
8636 					    htonl(dst), (void *)ipif));
8637 					if (ipif != NULL) {
8638 						mp = copy_mp;
8639 						copy_mp = NULL;
8640 						multirt_resolve_next = B_TRUE;
8641 						continue;
8642 					} else {
8643 						freemsg(copy_mp);
8644 					}
8645 				}
8646 			}
8647 			if (ipif != NULL)
8648 				ipif_refrele(ipif);
8649 			ill_refrele(dst_ill);
8650 			ipif_refrele(src_ipif);
8651 			return;
8652 		}
8653 		case IRE_IF_RESOLVER:
8654 			/*
8655 			 * We can't build an IRE_CACHE yet, but at least
8656 			 * we found a resolver that can help.
8657 			 */
8658 			res_mp = dst_ill->ill_resolver_mp;
8659 			if (!OK_RESOLVER_MP(res_mp))
8660 				break;
8661 
8662 			/*
8663 			 * We obtain a partial IRE_CACHE which we will pass
8664 			 * along with the resolver query.  When the response
8665 			 * comes back it will be there ready for us to add.
8666 			 * The new ire inherits the IRE_OFFSUBNET flags
8667 			 * and source address, if this was requested.
8668 			 * The ire_max_frag is atomically set under the
8669 			 * irebucket lock in ire_add_v[46]. Only in the
8670 			 * case of IRE_MARK_NOADD, we set it here itself.
8671 			 */
8672 			ire = ire_create_mp(
8673 			    (uchar_t *)&dst,		/* dest address */
8674 			    (uchar_t *)&ip_g_all_ones,	/* mask */
8675 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
8676 			    NULL,			/* gateway address */
8677 			    NULL,			/* no in_src_addr */
8678 			    (ire_marks & IRE_MARK_NOADD) ?
8679 				ipif->ipif_mtu : 0,	/* max_frag */
8680 			    NULL,			/* Fast path header */
8681 			    dst_ill->ill_rq,		/* recv-from queue */
8682 			    dst_ill->ill_wq,		/* send-to queue */
8683 			    IRE_CACHE,
8684 			    res_mp,
8685 			    src_ipif,
8686 			    NULL,
8687 			    (save_ire != NULL ? save_ire->ire_mask : 0),
8688 			    (fire != NULL) ?		/* Parent handle */
8689 				fire->ire_phandle : 0,
8690 			    ihandle,			/* Interface handle */
8691 			    (fire != NULL) ?		/* flags if any */
8692 				(fire->ire_flags &
8693 				(RTF_SETSRC | RTF_MULTIRT)) : 0,
8694 			    (save_ire == NULL ? &ire_uinfo_null :
8695 				&save_ire->ire_uinfo),
8696 			    NULL,
8697 			    NULL);
8698 
8699 			if (save_ire != NULL) {
8700 				ire_refrele(save_ire);
8701 				save_ire = NULL;
8702 			}
8703 			if (ire == NULL)
8704 				break;
8705 
8706 			ire->ire_marks |= ire_marks;
8707 			/*
8708 			 * Construct message chain for the resolver of the
8709 			 * form:
8710 			 *	ARP_REQ_MBLK-->IRE_MBLK-->Packet
8711 			 *
8712 			 * NOTE : ire will be added later when the response
8713 			 * comes back from ARP. If the response does not
8714 			 * come back, ARP frees the packet. For this reason,
8715 			 * we can't REFHOLD the bucket of save_ire to prevent
8716 			 * deletions. We may not be able to REFRELE the
8717 			 * bucket if the response never comes back.
8718 			 * Thus, before adding the ire, ire_add_v4 will make
8719 			 * sure that the interface route does not get deleted.
8720 			 * This is the only case unlike ip_newroute_v6,
8721 			 * ip_newroute_ipif_v6 where we can always prevent
8722 			 * deletions because ire_add_then_send is called after
8723 			 * creating the IRE.
8724 			 * If IRE_MARK_NOADD is set, then ire_add_then_send
8725 			 * does not add this IRE into the IRE CACHE.
8726 			 */
8727 			ASSERT(ire->ire_mp != NULL);
8728 			ire->ire_mp->b_cont = first_mp;
8729 			/* Have saved_mp handy, for cleanup if canput fails */
8730 			saved_mp = mp;
8731 			mp = ire->ire_dlureq_mp;
8732 			ASSERT(mp != NULL);
8733 			ire->ire_dlureq_mp = NULL;
8734 			linkb(mp, ire->ire_mp);
8735 
8736 			/*
8737 			 * Fill in the source and dest addrs for the resolver.
8738 			 * NOTE: this depends on memory layouts imposed by
8739 			 * ill_init().
8740 			 */
8741 			areq = (areq_t *)mp->b_rptr;
8742 			addrp = (ipaddr_t *)((char *)areq +
8743 			    areq->areq_sender_addr_offset);
8744 			*addrp = ire->ire_src_addr;
8745 			addrp = (ipaddr_t *)((char *)areq +
8746 			    areq->areq_target_addr_offset);
8747 			*addrp = dst;
8748 			/* Up to the resolver. */
8749 			if (canputnext(dst_ill->ill_rq)) {
8750 				putnext(dst_ill->ill_rq, mp);
8751 				/*
8752 				 * The response will come back in ip_wput
8753 				 * with db_type IRE_DB_TYPE.
8754 				 */
8755 			} else {
8756 				ire->ire_dlureq_mp = mp;
8757 				mp->b_cont = NULL;
8758 				ire_delete(ire);
8759 				saved_mp->b_next = NULL;
8760 				saved_mp->b_prev = NULL;
8761 				freemsg(first_mp);
8762 				ip2dbg(("ip_newroute_ipif: dropped\n"));
8763 			}
8764 
8765 			if (fire != NULL) {
8766 				ire_refrele(fire);
8767 				fire = NULL;
8768 			}
8769 
8770 
8771 			/*
8772 			 * The resolution loop is re-entered if this was
8773 			 * requested through flags and we actually are
8774 			 * in a multirouting case.
8775 			 */
8776 			if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) {
8777 				boolean_t need_resolve =
8778 				    ire_multirt_need_resolve(ipha_dst,
8779 					MBLK_GETLABEL(copy_mp));
8780 				if (!need_resolve) {
8781 					MULTIRT_DEBUG_UNTAG(copy_mp);
8782 					freemsg(copy_mp);
8783 					copy_mp = NULL;
8784 				} else {
8785 					/*
8786 					 * ipif_lookup_group() calls
8787 					 * ire_lookup_multi() that uses
8788 					 * ire_ftable_lookup() to find
8789 					 * an IRE_INTERFACE for the group.
8790 					 * In the multirt case,
8791 					 * ire_lookup_multi() then invokes
8792 					 * ire_multirt_lookup() to find
8793 					 * the next resolvable ire.
8794 					 * As a result, we obtain an new
8795 					 * interface, derived from the
8796 					 * next ire.
8797 					 */
8798 					ipif_refrele(ipif);
8799 					ipif = ipif_lookup_group(ipha_dst,
8800 					    zoneid);
8801 					if (ipif != NULL) {
8802 						mp = copy_mp;
8803 						copy_mp = NULL;
8804 						multirt_resolve_next = B_TRUE;
8805 						continue;
8806 					} else {
8807 						freemsg(copy_mp);
8808 					}
8809 				}
8810 			}
8811 			if (ipif != NULL)
8812 				ipif_refrele(ipif);
8813 			ill_refrele(dst_ill);
8814 			ipif_refrele(src_ipif);
8815 			return;
8816 		default:
8817 			break;
8818 		}
8819 	} while (multirt_resolve_next);
8820 
8821 err_ret:
8822 	ip2dbg(("ip_newroute_ipif: dropped\n"));
8823 	if (fire != NULL)
8824 		ire_refrele(fire);
8825 	ipif_refrele(ipif);
8826 	/* Did this packet originate externally? */
8827 	if (dst_ill != NULL)
8828 		ill_refrele(dst_ill);
8829 	if (src_ipif != NULL)
8830 		ipif_refrele(src_ipif);
8831 	if (mp->b_prev || mp->b_next) {
8832 		mp->b_next = NULL;
8833 		mp->b_prev = NULL;
8834 	} else {
8835 		/*
8836 		 * Since ip_wput() isn't close to finished, we fill
8837 		 * in enough of the header for credible error reporting.
8838 		 */
8839 		if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) {
8840 			/* Failed */
8841 			freemsg(first_mp);
8842 			if (ire != NULL)
8843 				ire_refrele(ire);
8844 			return;
8845 		}
8846 	}
8847 	/*
8848 	 * At this point we will have ire only if RTF_BLACKHOLE
8849 	 * or RTF_REJECT flags are set on the IRE. It will not
8850 	 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set.
8851 	 */
8852 	if (ire != NULL) {
8853 		if (ire->ire_flags & RTF_BLACKHOLE) {
8854 			ire_refrele(ire);
8855 			freemsg(first_mp);
8856 			return;
8857 		}
8858 		ire_refrele(ire);
8859 	}
8860 	icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE);
8861 }
8862 
8863 /* Name/Value Table Lookup Routine */
8864 char *
8865 ip_nv_lookup(nv_t *nv, int value)
8866 {
8867 	if (!nv)
8868 		return (NULL);
8869 	for (; nv->nv_name; nv++) {
8870 		if (nv->nv_value == value)
8871 			return (nv->nv_name);
8872 	}
8873 	return ("unknown");
8874 }
8875 
8876 /*
8877  * one day it can be patched to 1 from /etc/system for machines that have few
8878  * fast network interfaces feeding multiple cpus.
8879  */
8880 int ill_stream_putlocks = 0;
8881 
8882 /*
8883  * This is a module open, i.e. this is a control stream for access
8884  * to a DLPI device.  We allocate an ill_t as the instance data in
8885  * this case.
8886  */
8887 int
8888 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
8889 {
8890 	uint32_t mem_cnt;
8891 	uint32_t cpu_cnt;
8892 	uint32_t min_cnt;
8893 	pgcnt_t mem_avail;
8894 	extern uint32_t ip_cache_table_size, ip6_cache_table_size;
8895 	ill_t	*ill;
8896 	int	err;
8897 
8898 	/*
8899 	 * Prevent unprivileged processes from pushing IP so that
8900 	 * they can't send raw IP.
8901 	 */
8902 	if (secpolicy_net_rawaccess(credp) != 0)
8903 		return (EPERM);
8904 
8905 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
8906 	q->q_ptr = WR(q)->q_ptr = ill;
8907 
8908 	/*
8909 	 * ill_init initializes the ill fields and then sends down
8910 	 * down a DL_INFO_REQ after calling qprocson.
8911 	 */
8912 	err = ill_init(q, ill);
8913 	if (err != 0) {
8914 		mi_free(ill);
8915 		q->q_ptr = NULL;
8916 		WR(q)->q_ptr = NULL;
8917 		return (err);
8918 	}
8919 
8920 	/* ill_init initializes the ipsq marking this thread as writer */
8921 	ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE);
8922 	/* Wait for the DL_INFO_ACK */
8923 	mutex_enter(&ill->ill_lock);
8924 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
8925 		/*
8926 		 * Return value of 0 indicates a pending signal.
8927 		 */
8928 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
8929 		if (err == 0) {
8930 			mutex_exit(&ill->ill_lock);
8931 			(void) ip_close(q, 0);
8932 			return (EINTR);
8933 		}
8934 	}
8935 	mutex_exit(&ill->ill_lock);
8936 
8937 	/*
8938 	 * ip_rput_other could have set an error  in ill_error on
8939 	 * receipt of M_ERROR.
8940 	 */
8941 
8942 	err = ill->ill_error;
8943 	if (err != 0) {
8944 		(void) ip_close(q, 0);
8945 		return (err);
8946 	}
8947 
8948 	/*
8949 	 * ip_ire_max_bucket_cnt is sized below based on the memory
8950 	 * size and the cpu speed of the machine. This is upper
8951 	 * bounded by the compile time value of ip_ire_max_bucket_cnt
8952 	 * and is lower bounded by the compile time value of
8953 	 * ip_ire_min_bucket_cnt.  Similar logic applies to
8954 	 * ip6_ire_max_bucket_cnt.
8955 	 */
8956 	mem_avail = kmem_avail();
8957 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
8958 	    ip_cache_table_size / sizeof (ire_t);
8959 	cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio;
8960 
8961 	min_cnt = MIN(cpu_cnt, mem_cnt);
8962 	if (min_cnt < ip_ire_min_bucket_cnt)
8963 		min_cnt = ip_ire_min_bucket_cnt;
8964 	if (ip_ire_max_bucket_cnt > min_cnt) {
8965 		ip_ire_max_bucket_cnt = min_cnt;
8966 	}
8967 
8968 	mem_cnt = (mem_avail >> ip_ire_mem_ratio) /
8969 	    ip6_cache_table_size / sizeof (ire_t);
8970 	min_cnt = MIN(cpu_cnt, mem_cnt);
8971 	if (min_cnt < ip6_ire_min_bucket_cnt)
8972 		min_cnt = ip6_ire_min_bucket_cnt;
8973 	if (ip6_ire_max_bucket_cnt > min_cnt) {
8974 		ip6_ire_max_bucket_cnt = min_cnt;
8975 	}
8976 
8977 	ill->ill_credp = credp;
8978 	crhold(credp);
8979 
8980 	mutex_enter(&ip_mi_lock);
8981 	err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp);
8982 	mutex_exit(&ip_mi_lock);
8983 	if (err) {
8984 		(void) ip_close(q, 0);
8985 		return (err);
8986 	}
8987 	return (0);
8988 }
8989 
8990 /* IP open routine. */
8991 int
8992 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
8993 {
8994 	conn_t 		*connp;
8995 	major_t		maj;
8996 
8997 	TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q);
8998 
8999 	/* Allow reopen. */
9000 	if (q->q_ptr != NULL)
9001 		return (0);
9002 
9003 	if (sflag & MODOPEN) {
9004 		/* This is a module open */
9005 		return (ip_modopen(q, devp, flag, sflag, credp));
9006 	}
9007 
9008 	/*
9009 	 * We are opening as a device. This is an IP client stream, and we
9010 	 * allocate an conn_t as the instance data.
9011 	 */
9012 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP);
9013 	connp->conn_upq = q;
9014 	q->q_ptr = WR(q)->q_ptr = connp;
9015 
9016 	if (flag & SO_SOCKSTR)
9017 		connp->conn_flags |= IPCL_SOCKET;
9018 
9019 	/* Minor tells us which /dev entry was opened */
9020 	if (geteminor(*devp) == IPV6_MINOR) {
9021 		connp->conn_flags |= IPCL_ISV6;
9022 		connp->conn_af_isv6 = B_TRUE;
9023 		ip_setqinfo(q, geteminor(*devp), B_FALSE);
9024 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9025 	} else {
9026 		connp->conn_af_isv6 = B_FALSE;
9027 		connp->conn_pkt_isv6 = B_FALSE;
9028 	}
9029 
9030 	if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) {
9031 		q->q_ptr = WR(q)->q_ptr = NULL;
9032 		CONN_DEC_REF(connp);
9033 		return (EBUSY);
9034 	}
9035 
9036 	maj = getemajor(*devp);
9037 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
9038 
9039 	/*
9040 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
9041 	 */
9042 	connp->conn_cred = credp;
9043 	crhold(connp->conn_cred);
9044 
9045 	/*
9046 	 * If the caller has the process-wide flag set, then default to MAC
9047 	 * exempt mode.  This allows read-down to unlabeled hosts.
9048 	 */
9049 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9050 		connp->conn_mac_exempt = B_TRUE;
9051 
9052 	connp->conn_zoneid = getzoneid();
9053 
9054 	/*
9055 	 * This should only happen for ndd, netstat, raw socket or other SCTP
9056 	 * administrative ops.  In these cases, we just need a normal conn_t
9057 	 * with ulp set to IPPROTO_SCTP.  All other ops are trapped and
9058 	 * an error will be returned.
9059 	 */
9060 	if (maj != SCTP_MAJ && maj != SCTP6_MAJ) {
9061 		connp->conn_rq = q;
9062 		connp->conn_wq = WR(q);
9063 	} else {
9064 		connp->conn_ulp = IPPROTO_SCTP;
9065 		connp->conn_rq = connp->conn_wq = NULL;
9066 	}
9067 	/* Non-zero default values */
9068 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9069 
9070 	/*
9071 	 * Make the conn globally visible to walkers
9072 	 */
9073 	mutex_enter(&connp->conn_lock);
9074 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9075 	mutex_exit(&connp->conn_lock);
9076 	ASSERT(connp->conn_ref == 1);
9077 
9078 	qprocson(q);
9079 
9080 	return (0);
9081 }
9082 
9083 /*
9084  * Change q_qinfo based on the value of isv6.
9085  * This can not called on an ill queue.
9086  * Note that there is no race since either q_qinfo works for conn queues - it
9087  * is just an optimization to enter the best wput routine directly.
9088  */
9089 void
9090 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib)
9091 {
9092 	ASSERT(q->q_flag & QREADR);
9093 	ASSERT(WR(q)->q_next == NULL);
9094 	ASSERT(q->q_ptr != NULL);
9095 
9096 	if (minor == IPV6_MINOR)  {
9097 		if (bump_mib)
9098 			BUMP_MIB(&ip6_mib, ipv6OutSwitchIPv4);
9099 		q->q_qinfo = &rinit_ipv6;
9100 		WR(q)->q_qinfo = &winit_ipv6;
9101 		(Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE;
9102 	} else {
9103 		if (bump_mib)
9104 			BUMP_MIB(&ip_mib, ipOutSwitchIPv6);
9105 		q->q_qinfo = &rinit;
9106 		WR(q)->q_qinfo = &winit;
9107 		(Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE;
9108 	}
9109 
9110 }
9111 
9112 /*
9113  * See if IPsec needs loading because of the options in mp.
9114  */
9115 static boolean_t
9116 ipsec_opt_present(mblk_t *mp)
9117 {
9118 	uint8_t *optcp, *next_optcp, *opt_endcp;
9119 	struct opthdr *opt;
9120 	struct T_opthdr *topt;
9121 	int opthdr_len;
9122 	t_uscalar_t optname, optlevel;
9123 	struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr;
9124 	ipsec_req_t *ipsr;
9125 
9126 	/*
9127 	 * Walk through the mess, and find IP_SEC_OPT.  If it's there,
9128 	 * return TRUE.
9129 	 */
9130 
9131 	optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length);
9132 	opt_endcp = optcp + tor->OPT_length;
9133 	if (tor->PRIM_type == T_OPTMGMT_REQ) {
9134 		opthdr_len = sizeof (struct T_opthdr);
9135 	} else {		/* O_OPTMGMT_REQ */
9136 		ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ);
9137 		opthdr_len = sizeof (struct opthdr);
9138 	}
9139 	for (; optcp < opt_endcp; optcp = next_optcp) {
9140 		if (optcp + opthdr_len > opt_endcp)
9141 			return (B_FALSE);	/* Not enough option header. */
9142 		if (tor->PRIM_type == T_OPTMGMT_REQ) {
9143 			topt = (struct T_opthdr *)optcp;
9144 			optlevel = topt->level;
9145 			optname = topt->name;
9146 			next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len);
9147 		} else {
9148 			opt = (struct opthdr *)optcp;
9149 			optlevel = opt->level;
9150 			optname = opt->name;
9151 			next_optcp = optcp + opthdr_len +
9152 			    _TPI_ALIGN_OPT(opt->len);
9153 		}
9154 		if ((next_optcp < optcp) || /* wraparound pointer space */
9155 		    ((next_optcp >= opt_endcp) && /* last option bad len */
9156 		    ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE)))
9157 			return (B_FALSE); /* bad option buffer */
9158 		if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) ||
9159 		    (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) {
9160 			/*
9161 			 * Check to see if it's an all-bypass or all-zeroes
9162 			 * IPsec request.  Don't bother loading IPsec if
9163 			 * the socket doesn't want to use it.  (A good example
9164 			 * is a bypass request.)
9165 			 *
9166 			 * Basically, if any of the non-NEVER bits are set,
9167 			 * load IPsec.
9168 			 */
9169 			ipsr = (ipsec_req_t *)(optcp + opthdr_len);
9170 			if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 ||
9171 			    (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 ||
9172 			    (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER)
9173 			    != 0)
9174 				return (B_TRUE);
9175 		}
9176 	}
9177 	return (B_FALSE);
9178 }
9179 
9180 /*
9181  * If conn is is waiting for ipsec to finish loading, kick it.
9182  */
9183 /* ARGSUSED */
9184 static void
9185 conn_restart_ipsec_waiter(conn_t *connp, void *arg)
9186 {
9187 	t_scalar_t	optreq_prim;
9188 	mblk_t		*mp;
9189 	cred_t		*cr;
9190 	int		err = 0;
9191 
9192 	/*
9193 	 * This function is called, after ipsec loading is complete.
9194 	 * Since IP checks exclusively and atomically (i.e it prevents
9195 	 * ipsec load from completing until ip_optcom_req completes)
9196 	 * whether ipsec load is complete, there cannot be a race with IP
9197 	 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now.
9198 	 */
9199 	mutex_enter(&connp->conn_lock);
9200 	if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) {
9201 		ASSERT(connp->conn_ipsec_opt_mp != NULL);
9202 		mp = connp->conn_ipsec_opt_mp;
9203 		connp->conn_ipsec_opt_mp = NULL;
9204 		connp->conn_state_flags  &= ~CONN_IPSEC_LOAD_WAIT;
9205 		cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp)));
9206 		mutex_exit(&connp->conn_lock);
9207 
9208 		ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
9209 
9210 		optreq_prim = ((union T_primitives *)mp->b_rptr)->type;
9211 		if (optreq_prim == T_OPTMGMT_REQ) {
9212 			err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr,
9213 			    &ip_opt_obj);
9214 		} else {
9215 			ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ);
9216 			err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr,
9217 			    &ip_opt_obj);
9218 		}
9219 		if (err != EINPROGRESS)
9220 			CONN_OPER_PENDING_DONE(connp);
9221 		return;
9222 	}
9223 	mutex_exit(&connp->conn_lock);
9224 }
9225 
9226 /*
9227  * Called from the ipsec_loader thread, outside any perimeter, to tell
9228  * ip qenable any of the queues waiting for the ipsec loader to
9229  * complete.
9230  *
9231  * Use ip_mi_lock to be safe here: all modifications of the mi lists
9232  * are done with this lock held, so it's guaranteed that none of the
9233  * links will change along the way.
9234  */
9235 void
9236 ip_ipsec_load_complete()
9237 {
9238 	ipcl_walk(conn_restart_ipsec_waiter, NULL);
9239 }
9240 
9241 /*
9242  * Can't be used. Need to call svr4* -> optset directly. the leaf routine
9243  * determines the grp on which it has to become exclusive, queues the mp
9244  * and sq draining restarts the optmgmt
9245  */
9246 static boolean_t
9247 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp)
9248 {
9249 	conn_t *connp;
9250 
9251 	/*
9252 	 * Take IPsec requests and treat them special.
9253 	 */
9254 	if (ipsec_opt_present(mp)) {
9255 		/* First check if IPsec is loaded. */
9256 		mutex_enter(&ipsec_loader_lock);
9257 		if (ipsec_loader_state != IPSEC_LOADER_WAIT) {
9258 			mutex_exit(&ipsec_loader_lock);
9259 			return (B_FALSE);
9260 		}
9261 		connp = Q_TO_CONN(q);
9262 		mutex_enter(&connp->conn_lock);
9263 		connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT;
9264 
9265 		ASSERT(connp->conn_ipsec_opt_mp == NULL);
9266 		connp->conn_ipsec_opt_mp = mp;
9267 		mutex_exit(&connp->conn_lock);
9268 		mutex_exit(&ipsec_loader_lock);
9269 
9270 		ipsec_loader_loadnow();
9271 		return (B_TRUE);
9272 	}
9273 	return (B_FALSE);
9274 }
9275 
9276 /*
9277  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
9278  * all of them are copied to the conn_t. If the req is "zero", the policy is
9279  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
9280  * fields.
9281  * We keep only the latest setting of the policy and thus policy setting
9282  * is not incremental/cumulative.
9283  *
9284  * Requests to set policies with multiple alternative actions will
9285  * go through a different API.
9286  */
9287 int
9288 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
9289 {
9290 	uint_t ah_req = 0;
9291 	uint_t esp_req = 0;
9292 	uint_t se_req = 0;
9293 	ipsec_selkey_t sel;
9294 	ipsec_act_t *actp = NULL;
9295 	uint_t nact;
9296 	ipsec_policy_t *pin4 = NULL, *pout4 = NULL;
9297 	ipsec_policy_t *pin6 = NULL, *pout6 = NULL;
9298 	ipsec_policy_root_t *pr;
9299 	ipsec_policy_head_t *ph;
9300 	int fam;
9301 	boolean_t is_pol_reset;
9302 	int error = 0;
9303 
9304 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
9305 
9306 	/*
9307 	 * The IP_SEC_OPT option does not allow variable length parameters,
9308 	 * hence a request cannot be NULL.
9309 	 */
9310 	if (req == NULL)
9311 		return (EINVAL);
9312 
9313 	ah_req = req->ipsr_ah_req;
9314 	esp_req = req->ipsr_esp_req;
9315 	se_req = req->ipsr_self_encap_req;
9316 
9317 	/*
9318 	 * Are we dealing with a request to reset the policy (i.e.
9319 	 * zero requests).
9320 	 */
9321 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
9322 	    (esp_req & REQ_MASK) == 0 &&
9323 	    (se_req & REQ_MASK) == 0);
9324 
9325 	if (!is_pol_reset) {
9326 		/*
9327 		 * If we couldn't load IPsec, fail with "protocol
9328 		 * not supported".
9329 		 * IPsec may not have been loaded for a request with zero
9330 		 * policies, so we don't fail in this case.
9331 		 */
9332 		mutex_enter(&ipsec_loader_lock);
9333 		if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
9334 			mutex_exit(&ipsec_loader_lock);
9335 			return (EPROTONOSUPPORT);
9336 		}
9337 		mutex_exit(&ipsec_loader_lock);
9338 
9339 		/*
9340 		 * Test for valid requests. Invalid algorithms
9341 		 * need to be tested by IPSEC code because new
9342 		 * algorithms can be added dynamically.
9343 		 */
9344 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
9345 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
9346 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
9347 			return (EINVAL);
9348 		}
9349 
9350 		/*
9351 		 * Only privileged users can issue these
9352 		 * requests.
9353 		 */
9354 		if (((ah_req & IPSEC_PREF_NEVER) ||
9355 		    (esp_req & IPSEC_PREF_NEVER) ||
9356 		    (se_req & IPSEC_PREF_NEVER)) &&
9357 		    secpolicy_net_config(cr, B_FALSE) != 0) {
9358 			return (EPERM);
9359 		}
9360 
9361 		/*
9362 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
9363 		 * are mutually exclusive.
9364 		 */
9365 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
9366 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
9367 		    ((se_req & REQ_MASK) == REQ_MASK)) {
9368 			/* Both of them are set */
9369 			return (EINVAL);
9370 		}
9371 	}
9372 
9373 	mutex_enter(&connp->conn_lock);
9374 
9375 	/*
9376 	 * If we have already cached policies in ip_bind_connected*(), don't
9377 	 * let them change now. We cache policies for connections
9378 	 * whose src,dst [addr, port] is known.  The exception to this is
9379 	 * tunnels.  Tunnels are allowed to change policies after having
9380 	 * become fully bound.
9381 	 */
9382 	if (connp->conn_policy_cached && !IPCL_IS_IPTUN(connp)) {
9383 		mutex_exit(&connp->conn_lock);
9384 		return (EINVAL);
9385 	}
9386 
9387 	/*
9388 	 * We have a zero policies, reset the connection policy if already
9389 	 * set. This will cause the connection to inherit the
9390 	 * global policy, if any.
9391 	 */
9392 	if (is_pol_reset) {
9393 		if (connp->conn_policy != NULL) {
9394 			IPPH_REFRELE(connp->conn_policy);
9395 			connp->conn_policy = NULL;
9396 		}
9397 		connp->conn_flags &= ~IPCL_CHECK_POLICY;
9398 		connp->conn_in_enforce_policy = B_FALSE;
9399 		connp->conn_out_enforce_policy = B_FALSE;
9400 		mutex_exit(&connp->conn_lock);
9401 		return (0);
9402 	}
9403 
9404 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy);
9405 	if (ph == NULL)
9406 		goto enomem;
9407 
9408 	ipsec_actvec_from_req(req, &actp, &nact);
9409 	if (actp == NULL)
9410 		goto enomem;
9411 
9412 	/*
9413 	 * Always allocate IPv4 policy entries, since they can also
9414 	 * apply to ipv6 sockets being used in ipv4-compat mode.
9415 	 */
9416 	bzero(&sel, sizeof (sel));
9417 	sel.ipsl_valid = IPSL_IPV4;
9418 
9419 	pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET);
9420 	if (pin4 == NULL)
9421 		goto enomem;
9422 
9423 	pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET);
9424 	if (pout4 == NULL)
9425 		goto enomem;
9426 
9427 	if (connp->conn_pkt_isv6) {
9428 		/*
9429 		 * We're looking at a v6 socket, also allocate the
9430 		 * v6-specific entries...
9431 		 */
9432 		sel.ipsl_valid = IPSL_IPV6;
9433 		pin6 = ipsec_policy_create(&sel, actp, nact,
9434 		    IPSEC_PRIO_SOCKET);
9435 		if (pin6 == NULL)
9436 			goto enomem;
9437 
9438 		pout6 = ipsec_policy_create(&sel, actp, nact,
9439 		    IPSEC_PRIO_SOCKET);
9440 		if (pout6 == NULL)
9441 			goto enomem;
9442 
9443 		/*
9444 		 * .. and file them away in the right place.
9445 		 */
9446 		fam = IPSEC_AF_V6;
9447 		pr = &ph->iph_root[IPSEC_TYPE_INBOUND];
9448 		HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]);
9449 		ipsec_insert_always(&ph->iph_rulebyid, pin6);
9450 		pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND];
9451 		HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]);
9452 		ipsec_insert_always(&ph->iph_rulebyid, pout6);
9453 	}
9454 
9455 	ipsec_actvec_free(actp, nact);
9456 
9457 	/*
9458 	 * File the v4 policies.
9459 	 */
9460 	fam = IPSEC_AF_V4;
9461 	pr = &ph->iph_root[IPSEC_TYPE_INBOUND];
9462 	HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]);
9463 	ipsec_insert_always(&ph->iph_rulebyid, pin4);
9464 
9465 	pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND];
9466 	HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]);
9467 	ipsec_insert_always(&ph->iph_rulebyid, pout4);
9468 
9469 	/*
9470 	 * If the requests need security, set enforce_policy.
9471 	 * If the requests are IPSEC_PREF_NEVER, one should
9472 	 * still set conn_out_enforce_policy so that an ipsec_out
9473 	 * gets attached in ip_wput. This is needed so that
9474 	 * for connections that we don't cache policy in ip_bind,
9475 	 * if global policy matches in ip_wput_attach_policy, we
9476 	 * don't wrongly inherit global policy. Similarly, we need
9477 	 * to set conn_in_enforce_policy also so that we don't verify
9478 	 * policy wrongly.
9479 	 */
9480 	if ((ah_req & REQ_MASK) != 0 ||
9481 	    (esp_req & REQ_MASK) != 0 ||
9482 	    (se_req & REQ_MASK) != 0) {
9483 		connp->conn_in_enforce_policy = B_TRUE;
9484 		connp->conn_out_enforce_policy = B_TRUE;
9485 		connp->conn_flags |= IPCL_CHECK_POLICY;
9486 	}
9487 
9488 	/*
9489 	 * Tunnels are allowed to set policy after having been fully bound.
9490 	 * If that's the case, cache policy here.
9491 	 */
9492 	if (IPCL_IS_IPTUN(connp) && connp->conn_fully_bound)
9493 		error = ipsec_conn_cache_policy(connp, !connp->conn_af_isv6);
9494 
9495 	mutex_exit(&connp->conn_lock);
9496 	return (error);
9497 #undef REQ_MASK
9498 
9499 	/*
9500 	 * Common memory-allocation-failure exit path.
9501 	 */
9502 enomem:
9503 	mutex_exit(&connp->conn_lock);
9504 	if (actp != NULL)
9505 		ipsec_actvec_free(actp, nact);
9506 	if (pin4 != NULL)
9507 		IPPOL_REFRELE(pin4);
9508 	if (pout4 != NULL)
9509 		IPPOL_REFRELE(pout4);
9510 	if (pin6 != NULL)
9511 		IPPOL_REFRELE(pin6);
9512 	if (pout6 != NULL)
9513 		IPPOL_REFRELE(pout6);
9514 	return (ENOMEM);
9515 }
9516 
9517 /*
9518  * Only for options that pass in an IP addr. Currently only V4 options
9519  * pass in an ipif. V6 options always pass an ifindex specifying the ill.
9520  * So this function assumes level is IPPROTO_IP
9521  */
9522 int
9523 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option,
9524     mblk_t *first_mp)
9525 {
9526 	ipif_t *ipif = NULL;
9527 	int error;
9528 	ill_t *ill;
9529 
9530 	ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr));
9531 
9532 	if (addr != INADDR_ANY || checkonly) {
9533 		ASSERT(connp != NULL);
9534 		if (option == IP_NEXTHOP) {
9535 			ipif =
9536 			    ipif_lookup_onlink_addr(addr, connp->conn_zoneid);
9537 		} else {
9538 			ipif = ipif_lookup_addr(addr, NULL, connp->conn_zoneid,
9539 			    CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt,
9540 			    &error);
9541 		}
9542 		if (ipif == NULL) {
9543 			if (error == EINPROGRESS)
9544 				return (error);
9545 			else if ((option == IP_MULTICAST_IF) ||
9546 			    (option == IP_NEXTHOP))
9547 				return (EHOSTUNREACH);
9548 			else
9549 				return (EINVAL);
9550 		} else if (checkonly) {
9551 			if (option == IP_MULTICAST_IF) {
9552 				ill = ipif->ipif_ill;
9553 				/* not supported by the virtual network iface */
9554 				if (IS_VNI(ill)) {
9555 					ipif_refrele(ipif);
9556 					return (EINVAL);
9557 				}
9558 			}
9559 			ipif_refrele(ipif);
9560 			return (0);
9561 		}
9562 		ill = ipif->ipif_ill;
9563 		mutex_enter(&connp->conn_lock);
9564 		mutex_enter(&ill->ill_lock);
9565 		if ((ill->ill_state_flags & ILL_CONDEMNED) ||
9566 		    (ipif->ipif_state_flags & IPIF_CONDEMNED)) {
9567 			mutex_exit(&ill->ill_lock);
9568 			mutex_exit(&connp->conn_lock);
9569 			ipif_refrele(ipif);
9570 			return (option == IP_MULTICAST_IF ?
9571 			    EHOSTUNREACH : EINVAL);
9572 		}
9573 	} else {
9574 		mutex_enter(&connp->conn_lock);
9575 	}
9576 
9577 	/* None of the options below are supported on the VNI */
9578 	if (ipif != NULL && IS_VNI(ipif->ipif_ill)) {
9579 		mutex_exit(&ill->ill_lock);
9580 		mutex_exit(&connp->conn_lock);
9581 		ipif_refrele(ipif);
9582 		return (EINVAL);
9583 	}
9584 
9585 	switch (option) {
9586 	case IP_DONTFAILOVER_IF:
9587 		/*
9588 		 * This option is used by in.mpathd to ensure
9589 		 * that IPMP probe packets only go out on the
9590 		 * test interfaces. in.mpathd sets this option
9591 		 * on the non-failover interfaces.
9592 		 * For backward compatibility, this option
9593 		 * implicitly sets IP_MULTICAST_IF, as used
9594 		 * be done in bind(), so that ip_wput gets
9595 		 * this ipif to send mcast packets.
9596 		 */
9597 		if (ipif != NULL) {
9598 			ASSERT(addr != INADDR_ANY);
9599 			connp->conn_nofailover_ill = ipif->ipif_ill;
9600 			connp->conn_multicast_ipif = ipif;
9601 		} else {
9602 			ASSERT(addr == INADDR_ANY);
9603 			connp->conn_nofailover_ill = NULL;
9604 			connp->conn_multicast_ipif = NULL;
9605 		}
9606 		break;
9607 
9608 	case IP_MULTICAST_IF:
9609 		connp->conn_multicast_ipif = ipif;
9610 		break;
9611 	case IP_NEXTHOP:
9612 		connp->conn_nexthop_v4 = addr;
9613 		connp->conn_nexthop_set = B_TRUE;
9614 		break;
9615 	}
9616 
9617 	if (ipif != NULL) {
9618 		mutex_exit(&ill->ill_lock);
9619 		mutex_exit(&connp->conn_lock);
9620 		ipif_refrele(ipif);
9621 		return (0);
9622 	}
9623 	mutex_exit(&connp->conn_lock);
9624 	/* We succeded in cleared the option */
9625 	return (0);
9626 }
9627 
9628 /*
9629  * For options that pass in an ifindex specifying the ill. V6 options always
9630  * pass in an ill. Some v4 options also pass in ifindex specifying the ill.
9631  */
9632 int
9633 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly,
9634     int level, int option, mblk_t *first_mp)
9635 {
9636 	ill_t *ill = NULL;
9637 	int error = 0;
9638 
9639 	ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex));
9640 	if (ifindex != 0) {
9641 		ASSERT(connp != NULL);
9642 		ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp),
9643 		    first_mp, ip_restart_optmgmt, &error);
9644 		if (ill != NULL) {
9645 			if (checkonly) {
9646 				/* not supported by the virtual network iface */
9647 				if (IS_VNI(ill)) {
9648 					ill_refrele(ill);
9649 					return (EINVAL);
9650 				}
9651 				ill_refrele(ill);
9652 				return (0);
9653 			}
9654 			if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid,
9655 			    0, NULL)) {
9656 				ill_refrele(ill);
9657 				ill = NULL;
9658 				mutex_enter(&connp->conn_lock);
9659 				goto setit;
9660 			}
9661 			mutex_enter(&connp->conn_lock);
9662 			mutex_enter(&ill->ill_lock);
9663 			if (ill->ill_state_flags & ILL_CONDEMNED) {
9664 				mutex_exit(&ill->ill_lock);
9665 				mutex_exit(&connp->conn_lock);
9666 				ill_refrele(ill);
9667 				ill = NULL;
9668 				mutex_enter(&connp->conn_lock);
9669 			}
9670 			goto setit;
9671 		} else if (error == EINPROGRESS) {
9672 			return (error);
9673 		} else {
9674 			error = 0;
9675 		}
9676 	}
9677 	mutex_enter(&connp->conn_lock);
9678 setit:
9679 	ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6));
9680 
9681 	/*
9682 	 * The options below assume that the ILL (if any) transmits and/or
9683 	 * receives traffic. Neither of which is true for the virtual network
9684 	 * interface, so fail setting these on a VNI.
9685 	 */
9686 	if (IS_VNI(ill)) {
9687 		ASSERT(ill != NULL);
9688 		mutex_exit(&ill->ill_lock);
9689 		mutex_exit(&connp->conn_lock);
9690 		ill_refrele(ill);
9691 		return (EINVAL);
9692 	}
9693 
9694 	if (level == IPPROTO_IP) {
9695 		switch (option) {
9696 		case IP_BOUND_IF:
9697 			connp->conn_incoming_ill = ill;
9698 			connp->conn_outgoing_ill = ill;
9699 			connp->conn_orig_bound_ifindex = (ill == NULL) ?
9700 			    0 : ifindex;
9701 			break;
9702 
9703 		case IP_XMIT_IF:
9704 			/*
9705 			 * Similar to IP_BOUND_IF, but this only
9706 			 * determines the outgoing interface for
9707 			 * unicast packets. Also no IRE_CACHE entry
9708 			 * is added for the destination of the
9709 			 * outgoing packets. This feature is needed
9710 			 * for mobile IP.
9711 			 */
9712 			connp->conn_xmit_if_ill = ill;
9713 			connp->conn_orig_xmit_ifindex = (ill == NULL) ?
9714 			    0 : ifindex;
9715 			break;
9716 
9717 		case IP_MULTICAST_IF:
9718 			/*
9719 			 * This option is an internal special. The socket
9720 			 * level IP_MULTICAST_IF specifies an 'ipaddr' and
9721 			 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF
9722 			 * specifies an ifindex and we try first on V6 ill's.
9723 			 * If we don't find one, we they try using on v4 ill's
9724 			 * intenally and we come here.
9725 			 */
9726 			if (!checkonly && ill != NULL) {
9727 				ipif_t	*ipif;
9728 				ipif = ill->ill_ipif;
9729 
9730 				if (ipif->ipif_state_flags & IPIF_CONDEMNED) {
9731 					mutex_exit(&ill->ill_lock);
9732 					mutex_exit(&connp->conn_lock);
9733 					ill_refrele(ill);
9734 					ill = NULL;
9735 					mutex_enter(&connp->conn_lock);
9736 				} else {
9737 					connp->conn_multicast_ipif = ipif;
9738 				}
9739 			}
9740 			break;
9741 		}
9742 	} else {
9743 		switch (option) {
9744 		case IPV6_BOUND_IF:
9745 			connp->conn_incoming_ill = ill;
9746 			connp->conn_outgoing_ill = ill;
9747 			connp->conn_orig_bound_ifindex = (ill == NULL) ?
9748 			    0 : ifindex;
9749 			break;
9750 
9751 		case IPV6_BOUND_PIF:
9752 			/*
9753 			 * Limit all transmit to this ill.
9754 			 * Unlike IPV6_BOUND_IF, using this option
9755 			 * prevents load spreading and failover from
9756 			 * happening when the interface is part of the
9757 			 * group. That's why we don't need to remember
9758 			 * the ifindex in orig_bound_ifindex as in
9759 			 * IPV6_BOUND_IF.
9760 			 */
9761 			connp->conn_outgoing_pill = ill;
9762 			break;
9763 
9764 		case IPV6_DONTFAILOVER_IF:
9765 			/*
9766 			 * This option is used by in.mpathd to ensure
9767 			 * that IPMP probe packets only go out on the
9768 			 * test interfaces. in.mpathd sets this option
9769 			 * on the non-failover interfaces.
9770 			 */
9771 			connp->conn_nofailover_ill = ill;
9772 			/*
9773 			 * For backward compatibility, this option
9774 			 * implicitly sets ip_multicast_ill as used in
9775 			 * IP_MULTICAST_IF so that ip_wput gets
9776 			 * this ipif to send mcast packets.
9777 			 */
9778 			connp->conn_multicast_ill = ill;
9779 			connp->conn_orig_multicast_ifindex = (ill == NULL) ?
9780 			    0 : ifindex;
9781 			break;
9782 
9783 		case IPV6_MULTICAST_IF:
9784 			/*
9785 			 * Set conn_multicast_ill to be the IPv6 ill.
9786 			 * Set conn_multicast_ipif to be an IPv4 ipif
9787 			 * for ifindex to make IPv4 mapped addresses
9788 			 * on PF_INET6 sockets honor IPV6_MULTICAST_IF.
9789 			 * Even if no IPv6 ill exists for the ifindex
9790 			 * we need to check for an IPv4 ifindex in order
9791 			 * for this to work with mapped addresses. In that
9792 			 * case only set conn_multicast_ipif.
9793 			 */
9794 			if (!checkonly) {
9795 				if (ifindex == 0) {
9796 					connp->conn_multicast_ill = NULL;
9797 					connp->conn_orig_multicast_ifindex = 0;
9798 					connp->conn_multicast_ipif = NULL;
9799 				} else if (ill != NULL) {
9800 					connp->conn_multicast_ill = ill;
9801 					connp->conn_orig_multicast_ifindex =
9802 					    ifindex;
9803 				}
9804 			}
9805 			break;
9806 		}
9807 	}
9808 
9809 	if (ill != NULL) {
9810 		mutex_exit(&ill->ill_lock);
9811 		mutex_exit(&connp->conn_lock);
9812 		ill_refrele(ill);
9813 		return (0);
9814 	}
9815 	mutex_exit(&connp->conn_lock);
9816 	/*
9817 	 * We succeeded in clearing the option (ifindex == 0) or failed to
9818 	 * locate the ill and could not set the option (ifindex != 0)
9819 	 */
9820 	return (ifindex == 0 ? 0 : EINVAL);
9821 }
9822 
9823 /* This routine sets socket options. */
9824 /* ARGSUSED */
9825 int
9826 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name,
9827     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9828     void *dummy, cred_t *cr, mblk_t *first_mp)
9829 {
9830 	int		*i1 = (int *)invalp;
9831 	conn_t		*connp = Q_TO_CONN(q);
9832 	int		error = 0;
9833 	boolean_t	checkonly;
9834 	ire_t		*ire;
9835 	boolean_t	found;
9836 
9837 	switch (optset_context) {
9838 
9839 	case SETFN_OPTCOM_CHECKONLY:
9840 		checkonly = B_TRUE;
9841 		/*
9842 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9843 		 * inlen != 0 implies value supplied and
9844 		 * 	we have to "pretend" to set it.
9845 		 * inlen == 0 implies that there is no
9846 		 * 	value part in T_CHECK request and just validation
9847 		 * done elsewhere should be enough, we just return here.
9848 		 */
9849 		if (inlen == 0) {
9850 			*outlenp = 0;
9851 			return (0);
9852 		}
9853 		break;
9854 	case SETFN_OPTCOM_NEGOTIATE:
9855 	case SETFN_UD_NEGOTIATE:
9856 	case SETFN_CONN_NEGOTIATE:
9857 		checkonly = B_FALSE;
9858 		break;
9859 	default:
9860 		/*
9861 		 * We should never get here
9862 		 */
9863 		*outlenp = 0;
9864 		return (EINVAL);
9865 	}
9866 
9867 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9868 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9869 
9870 	/*
9871 	 * For fixed length options, no sanity check
9872 	 * of passed in length is done. It is assumed *_optcom_req()
9873 	 * routines do the right thing.
9874 	 */
9875 
9876 	switch (level) {
9877 	case SOL_SOCKET:
9878 		/*
9879 		 * conn_lock protects the bitfields, and is used to
9880 		 * set the fields atomically.
9881 		 */
9882 		switch (name) {
9883 		case SO_BROADCAST:
9884 			if (!checkonly) {
9885 				/* TODO: use value someplace? */
9886 				mutex_enter(&connp->conn_lock);
9887 				connp->conn_broadcast = *i1 ? 1 : 0;
9888 				mutex_exit(&connp->conn_lock);
9889 			}
9890 			break;	/* goto sizeof (int) option return */
9891 		case SO_USELOOPBACK:
9892 			if (!checkonly) {
9893 				/* TODO: use value someplace? */
9894 				mutex_enter(&connp->conn_lock);
9895 				connp->conn_loopback = *i1 ? 1 : 0;
9896 				mutex_exit(&connp->conn_lock);
9897 			}
9898 			break;	/* goto sizeof (int) option return */
9899 		case SO_DONTROUTE:
9900 			if (!checkonly) {
9901 				mutex_enter(&connp->conn_lock);
9902 				connp->conn_dontroute = *i1 ? 1 : 0;
9903 				mutex_exit(&connp->conn_lock);
9904 			}
9905 			break;	/* goto sizeof (int) option return */
9906 		case SO_REUSEADDR:
9907 			if (!checkonly) {
9908 				mutex_enter(&connp->conn_lock);
9909 				connp->conn_reuseaddr = *i1 ? 1 : 0;
9910 				mutex_exit(&connp->conn_lock);
9911 			}
9912 			break;	/* goto sizeof (int) option return */
9913 		case SO_PROTOTYPE:
9914 			if (!checkonly) {
9915 				mutex_enter(&connp->conn_lock);
9916 				connp->conn_proto = *i1;
9917 				mutex_exit(&connp->conn_lock);
9918 			}
9919 			break;	/* goto sizeof (int) option return */
9920 		case SO_ANON_MLP:
9921 			if (!checkonly) {
9922 				mutex_enter(&connp->conn_lock);
9923 				connp->conn_anon_mlp = *i1 != 0 ? 1 : 0;
9924 				mutex_exit(&connp->conn_lock);
9925 			}
9926 			break;	/* goto sizeof (int) option return */
9927 		case SO_MAC_EXEMPT:
9928 			if (secpolicy_net_mac_aware(cr) != 0 ||
9929 			    IPCL_IS_BOUND(connp))
9930 				return (EACCES);
9931 			if (!checkonly) {
9932 				mutex_enter(&connp->conn_lock);
9933 				connp->conn_mac_exempt = *i1 != 0 ? 1 : 0;
9934 				mutex_exit(&connp->conn_lock);
9935 			}
9936 			break;	/* goto sizeof (int) option return */
9937 		default:
9938 			/*
9939 			 * "soft" error (negative)
9940 			 * option not handled at this level
9941 			 * Note: Do not modify *outlenp
9942 			 */
9943 			return (-EINVAL);
9944 		}
9945 		break;
9946 	case IPPROTO_IP:
9947 		switch (name) {
9948 		case IP_NEXTHOP:
9949 		case IP_MULTICAST_IF:
9950 		case IP_DONTFAILOVER_IF: {
9951 			ipaddr_t addr = *i1;
9952 
9953 			error = ip_opt_set_ipif(connp, addr, checkonly, name,
9954 			    first_mp);
9955 			if (error != 0)
9956 				return (error);
9957 			break;	/* goto sizeof (int) option return */
9958 		}
9959 
9960 		case IP_MULTICAST_TTL:
9961 			/* Recorded in transport above IP */
9962 			*outvalp = *invalp;
9963 			*outlenp = sizeof (uchar_t);
9964 			return (0);
9965 		case IP_MULTICAST_LOOP:
9966 			if (!checkonly) {
9967 				mutex_enter(&connp->conn_lock);
9968 				connp->conn_multicast_loop = *invalp ? 1 : 0;
9969 				mutex_exit(&connp->conn_lock);
9970 			}
9971 			*outvalp = *invalp;
9972 			*outlenp = sizeof (uchar_t);
9973 			return (0);
9974 		case IP_ADD_MEMBERSHIP:
9975 		case MCAST_JOIN_GROUP:
9976 		case IP_DROP_MEMBERSHIP:
9977 		case MCAST_LEAVE_GROUP: {
9978 			struct ip_mreq *mreqp;
9979 			struct group_req *greqp;
9980 			ire_t *ire;
9981 			boolean_t done = B_FALSE;
9982 			ipaddr_t group, ifaddr;
9983 			struct sockaddr_in *sin;
9984 			uint32_t *ifindexp;
9985 			boolean_t mcast_opt = B_TRUE;
9986 			mcast_record_t fmode;
9987 			int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
9988 			    uint_t *, mcast_record_t, ipaddr_t, mblk_t *);
9989 
9990 			switch (name) {
9991 			case IP_ADD_MEMBERSHIP:
9992 				mcast_opt = B_FALSE;
9993 				/* FALLTHRU */
9994 			case MCAST_JOIN_GROUP:
9995 				fmode = MODE_IS_EXCLUDE;
9996 				optfn = ip_opt_add_group;
9997 				break;
9998 
9999 			case IP_DROP_MEMBERSHIP:
10000 				mcast_opt = B_FALSE;
10001 				/* FALLTHRU */
10002 			case MCAST_LEAVE_GROUP:
10003 				fmode = MODE_IS_INCLUDE;
10004 				optfn = ip_opt_delete_group;
10005 				break;
10006 			}
10007 
10008 			if (mcast_opt) {
10009 				greqp = (struct group_req *)i1;
10010 				sin = (struct sockaddr_in *)&greqp->gr_group;
10011 				if (sin->sin_family != AF_INET) {
10012 					*outlenp = 0;
10013 					return (ENOPROTOOPT);
10014 				}
10015 				group = (ipaddr_t)sin->sin_addr.s_addr;
10016 				ifaddr = INADDR_ANY;
10017 				ifindexp = &greqp->gr_interface;
10018 			} else {
10019 				mreqp = (struct ip_mreq *)i1;
10020 				group = (ipaddr_t)mreqp->imr_multiaddr.s_addr;
10021 				ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr;
10022 				ifindexp = NULL;
10023 			}
10024 
10025 			/*
10026 			 * In the multirouting case, we need to replicate
10027 			 * the request on all interfaces that will take part
10028 			 * in replication.  We do so because multirouting is
10029 			 * reflective, thus we will probably receive multi-
10030 			 * casts on those interfaces.
10031 			 * The ip_multirt_apply_membership() succeeds if the
10032 			 * operation succeeds on at least one interface.
10033 			 */
10034 			ire = ire_ftable_lookup(group, IP_HOST_MASK, 0,
10035 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
10036 			    MATCH_IRE_MASK | MATCH_IRE_TYPE);
10037 			if (ire != NULL) {
10038 				if (ire->ire_flags & RTF_MULTIRT) {
10039 					error = ip_multirt_apply_membership(
10040 					    optfn, ire, connp, checkonly, group,
10041 					    fmode, INADDR_ANY, first_mp);
10042 					done = B_TRUE;
10043 				}
10044 				ire_refrele(ire);
10045 			}
10046 			if (!done) {
10047 				error = optfn(connp, checkonly, group, ifaddr,
10048 				    ifindexp, fmode, INADDR_ANY, first_mp);
10049 			}
10050 			if (error) {
10051 				/*
10052 				 * EINPROGRESS is a soft error, needs retry
10053 				 * so don't make *outlenp zero.
10054 				 */
10055 				if (error != EINPROGRESS)
10056 					*outlenp = 0;
10057 				return (error);
10058 			}
10059 			/* OK return - copy input buffer into output buffer */
10060 			if (invalp != outvalp) {
10061 				/* don't trust bcopy for identical src/dst */
10062 				bcopy(invalp, outvalp, inlen);
10063 			}
10064 			*outlenp = inlen;
10065 			return (0);
10066 		}
10067 		case IP_BLOCK_SOURCE:
10068 		case IP_UNBLOCK_SOURCE:
10069 		case IP_ADD_SOURCE_MEMBERSHIP:
10070 		case IP_DROP_SOURCE_MEMBERSHIP:
10071 		case MCAST_BLOCK_SOURCE:
10072 		case MCAST_UNBLOCK_SOURCE:
10073 		case MCAST_JOIN_SOURCE_GROUP:
10074 		case MCAST_LEAVE_SOURCE_GROUP: {
10075 			struct ip_mreq_source *imreqp;
10076 			struct group_source_req *gsreqp;
10077 			in_addr_t grp, src, ifaddr = INADDR_ANY;
10078 			uint32_t ifindex = 0;
10079 			mcast_record_t fmode;
10080 			struct sockaddr_in *sin;
10081 			ire_t *ire;
10082 			boolean_t mcast_opt = B_TRUE, done = B_FALSE;
10083 			int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
10084 			    uint_t *, mcast_record_t, ipaddr_t, mblk_t *);
10085 
10086 			switch (name) {
10087 			case IP_BLOCK_SOURCE:
10088 				mcast_opt = B_FALSE;
10089 				/* FALLTHRU */
10090 			case MCAST_BLOCK_SOURCE:
10091 				fmode = MODE_IS_EXCLUDE;
10092 				optfn = ip_opt_add_group;
10093 				break;
10094 
10095 			case IP_UNBLOCK_SOURCE:
10096 				mcast_opt = B_FALSE;
10097 				/* FALLTHRU */
10098 			case MCAST_UNBLOCK_SOURCE:
10099 				fmode = MODE_IS_EXCLUDE;
10100 				optfn = ip_opt_delete_group;
10101 				break;
10102 
10103 			case IP_ADD_SOURCE_MEMBERSHIP:
10104 				mcast_opt = B_FALSE;
10105 				/* FALLTHRU */
10106 			case MCAST_JOIN_SOURCE_GROUP:
10107 				fmode = MODE_IS_INCLUDE;
10108 				optfn = ip_opt_add_group;
10109 				break;
10110 
10111 			case IP_DROP_SOURCE_MEMBERSHIP:
10112 				mcast_opt = B_FALSE;
10113 				/* FALLTHRU */
10114 			case MCAST_LEAVE_SOURCE_GROUP:
10115 				fmode = MODE_IS_INCLUDE;
10116 				optfn = ip_opt_delete_group;
10117 				break;
10118 			}
10119 
10120 			if (mcast_opt) {
10121 				gsreqp = (struct group_source_req *)i1;
10122 				if (gsreqp->gsr_group.ss_family != AF_INET) {
10123 					*outlenp = 0;
10124 					return (ENOPROTOOPT);
10125 				}
10126 				sin = (struct sockaddr_in *)&gsreqp->gsr_group;
10127 				grp = (ipaddr_t)sin->sin_addr.s_addr;
10128 				sin = (struct sockaddr_in *)&gsreqp->gsr_source;
10129 				src = (ipaddr_t)sin->sin_addr.s_addr;
10130 				ifindex = gsreqp->gsr_interface;
10131 			} else {
10132 				imreqp = (struct ip_mreq_source *)i1;
10133 				grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr;
10134 				src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr;
10135 				ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
10136 			}
10137 
10138 			/*
10139 			 * In the multirouting case, we need to replicate
10140 			 * the request as noted in the mcast cases above.
10141 			 */
10142 			ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0,
10143 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
10144 			    MATCH_IRE_MASK | MATCH_IRE_TYPE);
10145 			if (ire != NULL) {
10146 				if (ire->ire_flags & RTF_MULTIRT) {
10147 					error = ip_multirt_apply_membership(
10148 					    optfn, ire, connp, checkonly, grp,
10149 					    fmode, src, first_mp);
10150 					done = B_TRUE;
10151 				}
10152 				ire_refrele(ire);
10153 			}
10154 			if (!done) {
10155 				error = optfn(connp, checkonly, grp, ifaddr,
10156 				    &ifindex, fmode, src, first_mp);
10157 			}
10158 			if (error != 0) {
10159 				/*
10160 				 * EINPROGRESS is a soft error, needs retry
10161 				 * so don't make *outlenp zero.
10162 				 */
10163 				if (error != EINPROGRESS)
10164 					*outlenp = 0;
10165 				return (error);
10166 			}
10167 			/* OK return - copy input buffer into output buffer */
10168 			if (invalp != outvalp) {
10169 				bcopy(invalp, outvalp, inlen);
10170 			}
10171 			*outlenp = inlen;
10172 			return (0);
10173 		}
10174 		case IP_SEC_OPT:
10175 			error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp);
10176 			if (error != 0) {
10177 				*outlenp = 0;
10178 				return (error);
10179 			}
10180 			break;
10181 		case IP_HDRINCL:
10182 		case IP_OPTIONS:
10183 		case T_IP_OPTIONS:
10184 		case IP_TOS:
10185 		case T_IP_TOS:
10186 		case IP_TTL:
10187 		case IP_RECVDSTADDR:
10188 		case IP_RECVOPTS:
10189 			/* OK return - copy input buffer into output buffer */
10190 			if (invalp != outvalp) {
10191 				/* don't trust bcopy for identical src/dst */
10192 				bcopy(invalp, outvalp, inlen);
10193 			}
10194 			*outlenp = inlen;
10195 			return (0);
10196 		case IP_RECVIF:
10197 			/* Retrieve the inbound interface index */
10198 			if (!checkonly) {
10199 				mutex_enter(&connp->conn_lock);
10200 				connp->conn_recvif = *i1 ? 1 : 0;
10201 				mutex_exit(&connp->conn_lock);
10202 			}
10203 			break;	/* goto sizeof (int) option return */
10204 		case IP_RECVSLLA:
10205 			/* Retrieve the source link layer address */
10206 			if (!checkonly) {
10207 				mutex_enter(&connp->conn_lock);
10208 				connp->conn_recvslla = *i1 ? 1 : 0;
10209 				mutex_exit(&connp->conn_lock);
10210 			}
10211 			break;	/* goto sizeof (int) option return */
10212 		case MRT_INIT:
10213 		case MRT_DONE:
10214 		case MRT_ADD_VIF:
10215 		case MRT_DEL_VIF:
10216 		case MRT_ADD_MFC:
10217 		case MRT_DEL_MFC:
10218 		case MRT_ASSERT:
10219 			if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) {
10220 				*outlenp = 0;
10221 				return (error);
10222 			}
10223 			error = ip_mrouter_set((int)name, q, checkonly,
10224 			    (uchar_t *)invalp, inlen, first_mp);
10225 			if (error) {
10226 				*outlenp = 0;
10227 				return (error);
10228 			}
10229 			/* OK return - copy input buffer into output buffer */
10230 			if (invalp != outvalp) {
10231 				/* don't trust bcopy for identical src/dst */
10232 				bcopy(invalp, outvalp, inlen);
10233 			}
10234 			*outlenp = inlen;
10235 			return (0);
10236 		case IP_BOUND_IF:
10237 		case IP_XMIT_IF:
10238 			error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly,
10239 			    level, name, first_mp);
10240 			if (error != 0)
10241 				return (error);
10242 			break; 		/* goto sizeof (int) option return */
10243 
10244 		case IP_UNSPEC_SRC:
10245 			/* Allow sending with a zero source address */
10246 			if (!checkonly) {
10247 				mutex_enter(&connp->conn_lock);
10248 				connp->conn_unspec_src = *i1 ? 1 : 0;
10249 				mutex_exit(&connp->conn_lock);
10250 			}
10251 			break;	/* goto sizeof (int) option return */
10252 		default:
10253 			/*
10254 			 * "soft" error (negative)
10255 			 * option not handled at this level
10256 			 * Note: Do not modify *outlenp
10257 			 */
10258 			return (-EINVAL);
10259 		}
10260 		break;
10261 	case IPPROTO_IPV6:
10262 		switch (name) {
10263 		case IPV6_BOUND_IF:
10264 		case IPV6_BOUND_PIF:
10265 		case IPV6_DONTFAILOVER_IF:
10266 			error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly,
10267 			    level, name, first_mp);
10268 			if (error != 0)
10269 				return (error);
10270 			break; 		/* goto sizeof (int) option return */
10271 
10272 		case IPV6_MULTICAST_IF:
10273 			/*
10274 			 * The only possible errors are EINPROGRESS and
10275 			 * EINVAL. EINPROGRESS will be restarted and is not
10276 			 * a hard error. We call this option on both V4 and V6
10277 			 * If both return EINVAL, then this call returns
10278 			 * EINVAL. If at least one of them succeeds we
10279 			 * return success.
10280 			 */
10281 			found = B_FALSE;
10282 			error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly,
10283 			    level, name, first_mp);
10284 			if (error == EINPROGRESS)
10285 				return (error);
10286 			if (error == 0)
10287 				found = B_TRUE;
10288 			error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly,
10289 			    IPPROTO_IP, IP_MULTICAST_IF, first_mp);
10290 			if (error == 0)
10291 				found = B_TRUE;
10292 			if (!found)
10293 				return (error);
10294 			break; 		/* goto sizeof (int) option return */
10295 
10296 		case IPV6_MULTICAST_HOPS:
10297 			/* Recorded in transport above IP */
10298 			break;	/* goto sizeof (int) option return */
10299 		case IPV6_MULTICAST_LOOP:
10300 			if (!checkonly) {
10301 				mutex_enter(&connp->conn_lock);
10302 				connp->conn_multicast_loop = *i1;
10303 				mutex_exit(&connp->conn_lock);
10304 			}
10305 			break;	/* goto sizeof (int) option return */
10306 		case IPV6_JOIN_GROUP:
10307 		case MCAST_JOIN_GROUP:
10308 		case IPV6_LEAVE_GROUP:
10309 		case MCAST_LEAVE_GROUP: {
10310 			struct ipv6_mreq *ip_mreqp;
10311 			struct group_req *greqp;
10312 			ire_t *ire;
10313 			boolean_t done = B_FALSE;
10314 			in6_addr_t groupv6;
10315 			uint32_t ifindex;
10316 			boolean_t mcast_opt = B_TRUE;
10317 			mcast_record_t fmode;
10318 			int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
10319 			    int, mcast_record_t, const in6_addr_t *, mblk_t *);
10320 
10321 			switch (name) {
10322 			case IPV6_JOIN_GROUP:
10323 				mcast_opt = B_FALSE;
10324 				/* FALLTHRU */
10325 			case MCAST_JOIN_GROUP:
10326 				fmode = MODE_IS_EXCLUDE;
10327 				optfn = ip_opt_add_group_v6;
10328 				break;
10329 
10330 			case IPV6_LEAVE_GROUP:
10331 				mcast_opt = B_FALSE;
10332 				/* FALLTHRU */
10333 			case MCAST_LEAVE_GROUP:
10334 				fmode = MODE_IS_INCLUDE;
10335 				optfn = ip_opt_delete_group_v6;
10336 				break;
10337 			}
10338 
10339 			if (mcast_opt) {
10340 				struct sockaddr_in *sin;
10341 				struct sockaddr_in6 *sin6;
10342 				greqp = (struct group_req *)i1;
10343 				if (greqp->gr_group.ss_family == AF_INET) {
10344 					sin = (struct sockaddr_in *)
10345 					    &(greqp->gr_group);
10346 					IN6_INADDR_TO_V4MAPPED(&sin->sin_addr,
10347 					    &groupv6);
10348 				} else {
10349 					sin6 = (struct sockaddr_in6 *)
10350 					    &(greqp->gr_group);
10351 					groupv6 = sin6->sin6_addr;
10352 				}
10353 				ifindex = greqp->gr_interface;
10354 			} else {
10355 				ip_mreqp = (struct ipv6_mreq *)i1;
10356 				groupv6 = ip_mreqp->ipv6mr_multiaddr;
10357 				ifindex = ip_mreqp->ipv6mr_interface;
10358 			}
10359 			/*
10360 			 * In the multirouting case, we need to replicate
10361 			 * the request on all interfaces that will take part
10362 			 * in replication.  We do so because multirouting is
10363 			 * reflective, thus we will probably receive multi-
10364 			 * casts on those interfaces.
10365 			 * The ip_multirt_apply_membership_v6() succeeds if
10366 			 * the operation succeeds on at least one interface.
10367 			 */
10368 			ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0,
10369 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
10370 			    MATCH_IRE_MASK | MATCH_IRE_TYPE);
10371 			if (ire != NULL) {
10372 				if (ire->ire_flags & RTF_MULTIRT) {
10373 					error = ip_multirt_apply_membership_v6(
10374 					    optfn, ire, connp, checkonly,
10375 					    &groupv6, fmode, &ipv6_all_zeros,
10376 					    first_mp);
10377 					done = B_TRUE;
10378 				}
10379 				ire_refrele(ire);
10380 			}
10381 			if (!done) {
10382 				error = optfn(connp, checkonly, &groupv6,
10383 				    ifindex, fmode, &ipv6_all_zeros, first_mp);
10384 			}
10385 			if (error) {
10386 				/*
10387 				 * EINPROGRESS is a soft error, needs retry
10388 				 * so don't make *outlenp zero.
10389 				 */
10390 				if (error != EINPROGRESS)
10391 					*outlenp = 0;
10392 				return (error);
10393 			}
10394 			/* OK return - copy input buffer into output buffer */
10395 			if (invalp != outvalp) {
10396 				/* don't trust bcopy for identical src/dst */
10397 				bcopy(invalp, outvalp, inlen);
10398 			}
10399 			*outlenp = inlen;
10400 			return (0);
10401 		}
10402 		case MCAST_BLOCK_SOURCE:
10403 		case MCAST_UNBLOCK_SOURCE:
10404 		case MCAST_JOIN_SOURCE_GROUP:
10405 		case MCAST_LEAVE_SOURCE_GROUP: {
10406 			struct group_source_req *gsreqp;
10407 			in6_addr_t v6grp, v6src;
10408 			uint32_t ifindex;
10409 			mcast_record_t fmode;
10410 			ire_t *ire;
10411 			boolean_t done = B_FALSE;
10412 			int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
10413 			    int, mcast_record_t, const in6_addr_t *, mblk_t *);
10414 
10415 			switch (name) {
10416 			case MCAST_BLOCK_SOURCE:
10417 				fmode = MODE_IS_EXCLUDE;
10418 				optfn = ip_opt_add_group_v6;
10419 				break;
10420 			case MCAST_UNBLOCK_SOURCE:
10421 				fmode = MODE_IS_EXCLUDE;
10422 				optfn = ip_opt_delete_group_v6;
10423 				break;
10424 			case MCAST_JOIN_SOURCE_GROUP:
10425 				fmode = MODE_IS_INCLUDE;
10426 				optfn = ip_opt_add_group_v6;
10427 				break;
10428 			case MCAST_LEAVE_SOURCE_GROUP:
10429 				fmode = MODE_IS_INCLUDE;
10430 				optfn = ip_opt_delete_group_v6;
10431 				break;
10432 			}
10433 
10434 			gsreqp = (struct group_source_req *)i1;
10435 			ifindex = gsreqp->gsr_interface;
10436 			if (gsreqp->gsr_group.ss_family == AF_INET) {
10437 				struct sockaddr_in *s;
10438 				s = (struct sockaddr_in *)&gsreqp->gsr_group;
10439 				IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp);
10440 				s = (struct sockaddr_in *)&gsreqp->gsr_source;
10441 				IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
10442 			} else {
10443 				struct sockaddr_in6 *s6;
10444 				s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
10445 				v6grp = s6->sin6_addr;
10446 				s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
10447 				v6src = s6->sin6_addr;
10448 			}
10449 
10450 			/*
10451 			 * In the multirouting case, we need to replicate
10452 			 * the request as noted in the mcast cases above.
10453 			 */
10454 			ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0,
10455 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
10456 			    MATCH_IRE_MASK | MATCH_IRE_TYPE);
10457 			if (ire != NULL) {
10458 				if (ire->ire_flags & RTF_MULTIRT) {
10459 					error = ip_multirt_apply_membership_v6(
10460 					    optfn, ire, connp, checkonly,
10461 					    &v6grp, fmode, &v6src, first_mp);
10462 					done = B_TRUE;
10463 				}
10464 				ire_refrele(ire);
10465 			}
10466 			if (!done) {
10467 				error = optfn(connp, checkonly, &v6grp,
10468 				    ifindex, fmode, &v6src, first_mp);
10469 			}
10470 			if (error != 0) {
10471 				/*
10472 				 * EINPROGRESS is a soft error, needs retry
10473 				 * so don't make *outlenp zero.
10474 				 */
10475 				if (error != EINPROGRESS)
10476 					*outlenp = 0;
10477 				return (error);
10478 			}
10479 			/* OK return - copy input buffer into output buffer */
10480 			if (invalp != outvalp) {
10481 				bcopy(invalp, outvalp, inlen);
10482 			}
10483 			*outlenp = inlen;
10484 			return (0);
10485 		}
10486 		case IPV6_UNICAST_HOPS:
10487 			/* Recorded in transport above IP */
10488 			break;	/* goto sizeof (int) option return */
10489 		case IPV6_UNSPEC_SRC:
10490 			/* Allow sending with a zero source address */
10491 			if (!checkonly) {
10492 				mutex_enter(&connp->conn_lock);
10493 				connp->conn_unspec_src = *i1 ? 1 : 0;
10494 				mutex_exit(&connp->conn_lock);
10495 			}
10496 			break;	/* goto sizeof (int) option return */
10497 		case IPV6_RECVPKTINFO:
10498 			if (!checkonly) {
10499 				mutex_enter(&connp->conn_lock);
10500 				connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0;
10501 				mutex_exit(&connp->conn_lock);
10502 			}
10503 			break;	/* goto sizeof (int) option return */
10504 		case IPV6_RECVTCLASS:
10505 			if (!checkonly) {
10506 				if (*i1 < 0 || *i1 > 1) {
10507 					return (EINVAL);
10508 				}
10509 				mutex_enter(&connp->conn_lock);
10510 				connp->conn_ipv6_recvtclass = *i1;
10511 				mutex_exit(&connp->conn_lock);
10512 			}
10513 			break;
10514 		case IPV6_RECVPATHMTU:
10515 			if (!checkonly) {
10516 				if (*i1 < 0 || *i1 > 1) {
10517 					return (EINVAL);
10518 				}
10519 				mutex_enter(&connp->conn_lock);
10520 				connp->conn_ipv6_recvpathmtu = *i1;
10521 				mutex_exit(&connp->conn_lock);
10522 			}
10523 			break;
10524 		case IPV6_RECVHOPLIMIT:
10525 			if (!checkonly) {
10526 				mutex_enter(&connp->conn_lock);
10527 				connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0;
10528 				mutex_exit(&connp->conn_lock);
10529 			}
10530 			break;	/* goto sizeof (int) option return */
10531 		case IPV6_RECVHOPOPTS:
10532 			if (!checkonly) {
10533 				mutex_enter(&connp->conn_lock);
10534 				connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0;
10535 				mutex_exit(&connp->conn_lock);
10536 			}
10537 			break;	/* goto sizeof (int) option return */
10538 		case IPV6_RECVDSTOPTS:
10539 			if (!checkonly) {
10540 				mutex_enter(&connp->conn_lock);
10541 				connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0;
10542 				mutex_exit(&connp->conn_lock);
10543 			}
10544 			break;	/* goto sizeof (int) option return */
10545 		case IPV6_RECVRTHDR:
10546 			if (!checkonly) {
10547 				mutex_enter(&connp->conn_lock);
10548 				connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0;
10549 				mutex_exit(&connp->conn_lock);
10550 			}
10551 			break;	/* goto sizeof (int) option return */
10552 		case IPV6_RECVRTHDRDSTOPTS:
10553 			if (!checkonly) {
10554 				mutex_enter(&connp->conn_lock);
10555 				connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0;
10556 				mutex_exit(&connp->conn_lock);
10557 			}
10558 			break;	/* goto sizeof (int) option return */
10559 		case IPV6_PKTINFO:
10560 			if (inlen == 0)
10561 				return (-EINVAL);	/* clearing option */
10562 			error = ip6_set_pktinfo(cr, connp,
10563 			    (struct in6_pktinfo *)invalp, first_mp);
10564 			if (error != 0)
10565 				*outlenp = 0;
10566 			else
10567 				*outlenp = inlen;
10568 			return (error);
10569 		case IPV6_NEXTHOP: {
10570 			struct sockaddr_in6 *sin6;
10571 
10572 			/* Verify that the nexthop is reachable */
10573 			if (inlen == 0)
10574 				return (-EINVAL);	/* clearing option */
10575 
10576 			sin6 = (struct sockaddr_in6 *)invalp;
10577 			ire = ire_route_lookup_v6(&sin6->sin6_addr,
10578 			    0, 0, 0, NULL, NULL, connp->conn_zoneid,
10579 			    NULL, MATCH_IRE_DEFAULT);
10580 
10581 			if (ire == NULL) {
10582 				*outlenp = 0;
10583 				return (EHOSTUNREACH);
10584 			}
10585 			ire_refrele(ire);
10586 			return (-EINVAL);
10587 		}
10588 		case IPV6_SEC_OPT:
10589 			error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp);
10590 			if (error != 0) {
10591 				*outlenp = 0;
10592 				return (error);
10593 			}
10594 			break;
10595 		case IPV6_SRC_PREFERENCES: {
10596 			/*
10597 			 * This is implemented strictly in the ip module
10598 			 * (here and in tcp_opt_*() to accomodate tcp
10599 			 * sockets).  Modules above ip pass this option
10600 			 * down here since ip is the only one that needs to
10601 			 * be aware of source address preferences.
10602 			 *
10603 			 * This socket option only affects connected
10604 			 * sockets that haven't already bound to a specific
10605 			 * IPv6 address.  In other words, sockets that
10606 			 * don't call bind() with an address other than the
10607 			 * unspecified address and that call connect().
10608 			 * ip_bind_connected_v6() passes these preferences
10609 			 * to the ipif_select_source_v6() function.
10610 			 */
10611 			if (inlen != sizeof (uint32_t))
10612 				return (EINVAL);
10613 			error = ip6_set_src_preferences(connp,
10614 			    *(uint32_t *)invalp);
10615 			if (error != 0) {
10616 				*outlenp = 0;
10617 				return (error);
10618 			} else {
10619 				*outlenp = sizeof (uint32_t);
10620 			}
10621 			break;
10622 		}
10623 		case IPV6_V6ONLY:
10624 			if (*i1 < 0 || *i1 > 1) {
10625 				return (EINVAL);
10626 			}
10627 			mutex_enter(&connp->conn_lock);
10628 			connp->conn_ipv6_v6only = *i1;
10629 			mutex_exit(&connp->conn_lock);
10630 			break;
10631 		default:
10632 			return (-EINVAL);
10633 		}
10634 		break;
10635 	default:
10636 		/*
10637 		 * "soft" error (negative)
10638 		 * option not handled at this level
10639 		 * Note: Do not modify *outlenp
10640 		 */
10641 		return (-EINVAL);
10642 	}
10643 	/*
10644 	 * Common case of return from an option that is sizeof (int)
10645 	 */
10646 	*(int *)outvalp = *i1;
10647 	*outlenp = sizeof (int);
10648 	return (0);
10649 }
10650 
10651 /*
10652  * This routine gets default values of certain options whose default
10653  * values are maintained by protocol specific code
10654  */
10655 /* ARGSUSED */
10656 int
10657 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
10658 {
10659 	int *i1 = (int *)ptr;
10660 
10661 	switch (level) {
10662 	case IPPROTO_IP:
10663 		switch (name) {
10664 		case IP_MULTICAST_TTL:
10665 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
10666 			return (sizeof (uchar_t));
10667 		case IP_MULTICAST_LOOP:
10668 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
10669 			return (sizeof (uchar_t));
10670 		default:
10671 			return (-1);
10672 		}
10673 	case IPPROTO_IPV6:
10674 		switch (name) {
10675 		case IPV6_UNICAST_HOPS:
10676 			*i1 = ipv6_def_hops;
10677 			return (sizeof (int));
10678 		case IPV6_MULTICAST_HOPS:
10679 			*i1 = IP_DEFAULT_MULTICAST_TTL;
10680 			return (sizeof (int));
10681 		case IPV6_MULTICAST_LOOP:
10682 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
10683 			return (sizeof (int));
10684 		case IPV6_V6ONLY:
10685 			*i1 = 1;
10686 			return (sizeof (int));
10687 		default:
10688 			return (-1);
10689 		}
10690 	default:
10691 		return (-1);
10692 	}
10693 	/* NOTREACHED */
10694 }
10695 
10696 /*
10697  * Given a destination address and a pointer to where to put the information
10698  * this routine fills in the mtuinfo.
10699  */
10700 int
10701 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port,
10702     struct ip6_mtuinfo *mtuinfo)
10703 {
10704 	ire_t *ire;
10705 
10706 	if (IN6_IS_ADDR_UNSPECIFIED(in6))
10707 		return (-1);
10708 
10709 	bzero(mtuinfo, sizeof (*mtuinfo));
10710 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
10711 	mtuinfo->ip6m_addr.sin6_port = port;
10712 	mtuinfo->ip6m_addr.sin6_addr = *in6;
10713 
10714 	ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL);
10715 	if (ire != NULL) {
10716 		mtuinfo->ip6m_mtu = ire->ire_max_frag;
10717 		ire_refrele(ire);
10718 	} else {
10719 		mtuinfo->ip6m_mtu = IPV6_MIN_MTU;
10720 	}
10721 	return (sizeof (struct ip6_mtuinfo));
10722 }
10723 
10724 /*
10725  * This routine gets socket options.  For MRT_VERSION and MRT_ASSERT, error
10726  * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and
10727  * isn't.  This doesn't matter as the error checking is done properly for the
10728  * other MRT options coming in through ip_opt_set.
10729  */
10730 int
10731 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
10732 {
10733 	conn_t		*connp = Q_TO_CONN(q);
10734 	ipsec_req_t	*req = (ipsec_req_t *)ptr;
10735 
10736 	switch (level) {
10737 	case IPPROTO_IP:
10738 		switch (name) {
10739 		case MRT_VERSION:
10740 		case MRT_ASSERT:
10741 			(void) ip_mrouter_get(name, q, ptr);
10742 			return (sizeof (int));
10743 		case IP_SEC_OPT:
10744 			return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4));
10745 		case IP_NEXTHOP:
10746 			if (connp->conn_nexthop_set) {
10747 				*(ipaddr_t *)ptr = connp->conn_nexthop_v4;
10748 				return (sizeof (ipaddr_t));
10749 			} else
10750 				return (0);
10751 		default:
10752 			break;
10753 		}
10754 		break;
10755 	case IPPROTO_IPV6:
10756 		switch (name) {
10757 		case IPV6_SEC_OPT:
10758 			return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6));
10759 		case IPV6_SRC_PREFERENCES: {
10760 			return (ip6_get_src_preferences(connp,
10761 			    (uint32_t *)ptr));
10762 		}
10763 		case IPV6_V6ONLY:
10764 			*(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0;
10765 			return (sizeof (int));
10766 		case IPV6_PATHMTU:
10767 			return (ip_fill_mtuinfo(&connp->conn_remv6, 0,
10768 				(struct ip6_mtuinfo *)ptr));
10769 		default:
10770 			break;
10771 		}
10772 		break;
10773 	default:
10774 		break;
10775 	}
10776 	return (-1);
10777 }
10778 
10779 /* Named Dispatch routine to get a current value out of our parameter table. */
10780 /* ARGSUSED */
10781 static int
10782 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
10783 {
10784 	ipparam_t *ippa = (ipparam_t *)cp;
10785 
10786 	(void) mi_mpprintf(mp, "%d", ippa->ip_param_value);
10787 	return (0);
10788 }
10789 
10790 /* ARGSUSED */
10791 static int
10792 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
10793 {
10794 
10795 	(void) mi_mpprintf(mp, "%d", *(int *)cp);
10796 	return (0);
10797 }
10798 
10799 /*
10800  * Set ip{,6}_forwarding values.  This means walking through all of the
10801  * ill's and toggling their forwarding values.
10802  */
10803 /* ARGSUSED */
10804 static int
10805 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr)
10806 {
10807 	long new_value;
10808 	int *forwarding_value = (int *)cp;
10809 	ill_t *walker;
10810 	boolean_t isv6 = (forwarding_value == &ipv6_forward);
10811 	ill_walk_context_t ctx;
10812 
10813 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
10814 	    new_value < 0 || new_value > 1) {
10815 		return (EINVAL);
10816 	}
10817 
10818 	*forwarding_value = new_value;
10819 
10820 	/*
10821 	 * Regardless of the current value of ip_forwarding, set all per-ill
10822 	 * values of ip_forwarding to the value being set.
10823 	 *
10824 	 * Bring all the ill's up to date with the new global value.
10825 	 */
10826 	rw_enter(&ill_g_lock, RW_READER);
10827 
10828 	if (isv6)
10829 		walker = ILL_START_WALK_V6(&ctx);
10830 	else
10831 		walker = ILL_START_WALK_V4(&ctx);
10832 	for (; walker != NULL; walker = ill_next(&ctx, walker)) {
10833 		(void) ill_forward_set(q, mp, (new_value != 0),
10834 		    (caddr_t)walker);
10835 	}
10836 	rw_exit(&ill_g_lock);
10837 
10838 	return (0);
10839 }
10840 
10841 /*
10842  * Walk through the param array specified registering each element with the
10843  * Named Dispatch handler. This is called only during init. So it is ok
10844  * not to acquire any locks
10845  */
10846 static boolean_t
10847 ip_param_register(ipparam_t *ippa, size_t ippa_cnt,
10848     ipndp_t *ipnd, size_t ipnd_cnt)
10849 {
10850 	for (; ippa_cnt-- > 0; ippa++) {
10851 		if (ippa->ip_param_name && ippa->ip_param_name[0]) {
10852 			if (!nd_load(&ip_g_nd, ippa->ip_param_name,
10853 			    ip_param_get, ip_param_set, (caddr_t)ippa)) {
10854 				nd_free(&ip_g_nd);
10855 				return (B_FALSE);
10856 			}
10857 		}
10858 	}
10859 
10860 	for (; ipnd_cnt-- > 0; ipnd++) {
10861 		if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) {
10862 			if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name,
10863 			    ipnd->ip_ndp_getf, ipnd->ip_ndp_setf,
10864 			    ipnd->ip_ndp_data)) {
10865 				nd_free(&ip_g_nd);
10866 				return (B_FALSE);
10867 			}
10868 		}
10869 	}
10870 
10871 	return (B_TRUE);
10872 }
10873 
10874 /* Named Dispatch routine to negotiate a new value for one of our parameters. */
10875 /* ARGSUSED */
10876 static int
10877 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr)
10878 {
10879 	long		new_value;
10880 	ipparam_t	*ippa = (ipparam_t *)cp;
10881 
10882 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
10883 	    new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) {
10884 		return (EINVAL);
10885 	}
10886 	ippa->ip_param_value = new_value;
10887 	return (0);
10888 }
10889 
10890 /*
10891  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
10892  * When an ipf is passed here for the first time, if
10893  * we already have in-order fragments on the queue, we convert from the fast-
10894  * path reassembly scheme to the hard-case scheme.  From then on, additional
10895  * fragments are reassembled here.  We keep track of the start and end offsets
10896  * of each piece, and the number of holes in the chain.  When the hole count
10897  * goes to zero, we are done!
10898  *
10899  * The ipf_count will be updated to account for any mblk(s) added (pointed to
10900  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
10901  * ipfb_count and ill_frag_count by the difference of ipf_count before and
10902  * after the call to ip_reassemble().
10903  */
10904 int
10905 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
10906     size_t msg_len)
10907 {
10908 	uint_t	end;
10909 	mblk_t	*next_mp;
10910 	mblk_t	*mp1;
10911 	uint_t	offset;
10912 	boolean_t incr_dups = B_TRUE;
10913 	boolean_t offset_zero_seen = B_FALSE;
10914 	boolean_t pkt_boundary_checked = B_FALSE;
10915 
10916 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
10917 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
10918 
10919 	/* Add in byte count */
10920 	ipf->ipf_count += msg_len;
10921 	if (ipf->ipf_end) {
10922 		/*
10923 		 * We were part way through in-order reassembly, but now there
10924 		 * is a hole.  We walk through messages already queued, and
10925 		 * mark them for hard case reassembly.  We know that up till
10926 		 * now they were in order starting from offset zero.
10927 		 */
10928 		offset = 0;
10929 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
10930 			IP_REASS_SET_START(mp1, offset);
10931 			if (offset == 0) {
10932 				ASSERT(ipf->ipf_nf_hdr_len != 0);
10933 				offset = -ipf->ipf_nf_hdr_len;
10934 			}
10935 			offset += mp1->b_wptr - mp1->b_rptr;
10936 			IP_REASS_SET_END(mp1, offset);
10937 		}
10938 		/* One hole at the end. */
10939 		ipf->ipf_hole_cnt = 1;
10940 		/* Brand it as a hard case, forever. */
10941 		ipf->ipf_end = 0;
10942 	}
10943 	/* Walk through all the new pieces. */
10944 	do {
10945 		end = start + (mp->b_wptr - mp->b_rptr);
10946 		/*
10947 		 * If start is 0, decrease 'end' only for the first mblk of
10948 		 * the fragment. Otherwise 'end' can get wrong value in the
10949 		 * second pass of the loop if first mblk is exactly the
10950 		 * size of ipf_nf_hdr_len.
10951 		 */
10952 		if (start == 0 && !offset_zero_seen) {
10953 			/* First segment */
10954 			ASSERT(ipf->ipf_nf_hdr_len != 0);
10955 			end -= ipf->ipf_nf_hdr_len;
10956 			offset_zero_seen = B_TRUE;
10957 		}
10958 		next_mp = mp->b_cont;
10959 		/*
10960 		 * We are checking to see if there is any interesing data
10961 		 * to process.  If there isn't and the mblk isn't the
10962 		 * one which carries the unfragmentable header then we
10963 		 * drop it.  It's possible to have just the unfragmentable
10964 		 * header come through without any data.  That needs to be
10965 		 * saved.
10966 		 *
10967 		 * If the assert at the top of this function holds then the
10968 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
10969 		 * is infrequently traveled enough that the test is left in
10970 		 * to protect against future code changes which break that
10971 		 * invariant.
10972 		 */
10973 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
10974 			/* Empty.  Blast it. */
10975 			IP_REASS_SET_START(mp, 0);
10976 			IP_REASS_SET_END(mp, 0);
10977 			/*
10978 			 * If the ipf points to the mblk we are about to free,
10979 			 * update ipf to point to the next mblk (or NULL
10980 			 * if none).
10981 			 */
10982 			if (ipf->ipf_mp->b_cont == mp)
10983 				ipf->ipf_mp->b_cont = next_mp;
10984 			freeb(mp);
10985 			continue;
10986 		}
10987 		mp->b_cont = NULL;
10988 		IP_REASS_SET_START(mp, start);
10989 		IP_REASS_SET_END(mp, end);
10990 		if (!ipf->ipf_tail_mp) {
10991 			ipf->ipf_tail_mp = mp;
10992 			ipf->ipf_mp->b_cont = mp;
10993 			if (start == 0 || !more) {
10994 				ipf->ipf_hole_cnt = 1;
10995 				/*
10996 				 * if the first fragment comes in more than one
10997 				 * mblk, this loop will be executed for each
10998 				 * mblk. Need to adjust hole count so exiting
10999 				 * this routine will leave hole count at 1.
11000 				 */
11001 				if (next_mp)
11002 					ipf->ipf_hole_cnt++;
11003 			} else
11004 				ipf->ipf_hole_cnt = 2;
11005 			continue;
11006 		} else if (ipf->ipf_last_frag_seen && !more &&
11007 			    !pkt_boundary_checked) {
11008 			/*
11009 			 * We check datagram boundary only if this fragment
11010 			 * claims to be the last fragment and we have seen a
11011 			 * last fragment in the past too. We do this only
11012 			 * once for a given fragment.
11013 			 *
11014 			 * start cannot be 0 here as fragments with start=0
11015 			 * and MF=0 gets handled as a complete packet. These
11016 			 * fragments should not reach here.
11017 			 */
11018 
11019 			if (start + msgdsize(mp) !=
11020 			    IP_REASS_END(ipf->ipf_tail_mp)) {
11021 				/*
11022 				 * We have two fragments both of which claim
11023 				 * to be the last fragment but gives conflicting
11024 				 * information about the whole datagram size.
11025 				 * Something fishy is going on. Drop the
11026 				 * fragment and free up the reassembly list.
11027 				 */
11028 				return (IP_REASS_FAILED);
11029 			}
11030 
11031 			/*
11032 			 * We shouldn't come to this code block again for this
11033 			 * particular fragment.
11034 			 */
11035 			pkt_boundary_checked = B_TRUE;
11036 		}
11037 
11038 		/* New stuff at or beyond tail? */
11039 		offset = IP_REASS_END(ipf->ipf_tail_mp);
11040 		if (start >= offset) {
11041 			if (ipf->ipf_last_frag_seen) {
11042 				/* current fragment is beyond last fragment */
11043 				return (IP_REASS_FAILED);
11044 			}
11045 			/* Link it on end. */
11046 			ipf->ipf_tail_mp->b_cont = mp;
11047 			ipf->ipf_tail_mp = mp;
11048 			if (more) {
11049 				if (start != offset)
11050 					ipf->ipf_hole_cnt++;
11051 			} else if (start == offset && next_mp == NULL)
11052 					ipf->ipf_hole_cnt--;
11053 			continue;
11054 		}
11055 		mp1 = ipf->ipf_mp->b_cont;
11056 		offset = IP_REASS_START(mp1);
11057 		/* New stuff at the front? */
11058 		if (start < offset) {
11059 			if (start == 0) {
11060 				if (end >= offset) {
11061 					/* Nailed the hole at the begining. */
11062 					ipf->ipf_hole_cnt--;
11063 				}
11064 			} else if (end < offset) {
11065 				/*
11066 				 * A hole, stuff, and a hole where there used
11067 				 * to be just a hole.
11068 				 */
11069 				ipf->ipf_hole_cnt++;
11070 			}
11071 			mp->b_cont = mp1;
11072 			/* Check for overlap. */
11073 			while (end > offset) {
11074 				if (end < IP_REASS_END(mp1)) {
11075 					mp->b_wptr -= end - offset;
11076 					IP_REASS_SET_END(mp, offset);
11077 					if (ill->ill_isv6) {
11078 						BUMP_MIB(ill->ill_ip6_mib,
11079 						    ipv6ReasmPartDups);
11080 					} else {
11081 						BUMP_MIB(&ip_mib,
11082 						    ipReasmPartDups);
11083 					}
11084 					break;
11085 				}
11086 				/* Did we cover another hole? */
11087 				if ((mp1->b_cont &&
11088 				    IP_REASS_END(mp1) !=
11089 				    IP_REASS_START(mp1->b_cont) &&
11090 				    end >= IP_REASS_START(mp1->b_cont)) ||
11091 				    (!ipf->ipf_last_frag_seen && !more)) {
11092 					ipf->ipf_hole_cnt--;
11093 				}
11094 				/* Clip out mp1. */
11095 				if ((mp->b_cont = mp1->b_cont) == NULL) {
11096 					/*
11097 					 * After clipping out mp1, this guy
11098 					 * is now hanging off the end.
11099 					 */
11100 					ipf->ipf_tail_mp = mp;
11101 				}
11102 				IP_REASS_SET_START(mp1, 0);
11103 				IP_REASS_SET_END(mp1, 0);
11104 				/* Subtract byte count */
11105 				ipf->ipf_count -= mp1->b_datap->db_lim -
11106 				    mp1->b_datap->db_base;
11107 				freeb(mp1);
11108 				if (ill->ill_isv6) {
11109 					BUMP_MIB(ill->ill_ip6_mib,
11110 					    ipv6ReasmPartDups);
11111 				} else {
11112 					BUMP_MIB(&ip_mib, ipReasmPartDups);
11113 				}
11114 				mp1 = mp->b_cont;
11115 				if (!mp1)
11116 					break;
11117 				offset = IP_REASS_START(mp1);
11118 			}
11119 			ipf->ipf_mp->b_cont = mp;
11120 			continue;
11121 		}
11122 		/*
11123 		 * The new piece starts somewhere between the start of the head
11124 		 * and before the end of the tail.
11125 		 */
11126 		for (; mp1; mp1 = mp1->b_cont) {
11127 			offset = IP_REASS_END(mp1);
11128 			if (start < offset) {
11129 				if (end <= offset) {
11130 					/* Nothing new. */
11131 					IP_REASS_SET_START(mp, 0);
11132 					IP_REASS_SET_END(mp, 0);
11133 					/* Subtract byte count */
11134 					ipf->ipf_count -= mp->b_datap->db_lim -
11135 					    mp->b_datap->db_base;
11136 					if (incr_dups) {
11137 						ipf->ipf_num_dups++;
11138 						incr_dups = B_FALSE;
11139 					}
11140 					freeb(mp);
11141 					if (ill->ill_isv6) {
11142 						BUMP_MIB(ill->ill_ip6_mib,
11143 						    ipv6ReasmDuplicates);
11144 					} else {
11145 						BUMP_MIB(&ip_mib,
11146 						    ipReasmDuplicates);
11147 					}
11148 					break;
11149 				}
11150 				/*
11151 				 * Trim redundant stuff off beginning of new
11152 				 * piece.
11153 				 */
11154 				IP_REASS_SET_START(mp, offset);
11155 				mp->b_rptr += offset - start;
11156 				if (ill->ill_isv6) {
11157 					BUMP_MIB(ill->ill_ip6_mib,
11158 					    ipv6ReasmPartDups);
11159 				} else {
11160 					BUMP_MIB(&ip_mib, ipReasmPartDups);
11161 				}
11162 				start = offset;
11163 				if (!mp1->b_cont) {
11164 					/*
11165 					 * After trimming, this guy is now
11166 					 * hanging off the end.
11167 					 */
11168 					mp1->b_cont = mp;
11169 					ipf->ipf_tail_mp = mp;
11170 					if (!more) {
11171 						ipf->ipf_hole_cnt--;
11172 					}
11173 					break;
11174 				}
11175 			}
11176 			if (start >= IP_REASS_START(mp1->b_cont))
11177 				continue;
11178 			/* Fill a hole */
11179 			if (start > offset)
11180 				ipf->ipf_hole_cnt++;
11181 			mp->b_cont = mp1->b_cont;
11182 			mp1->b_cont = mp;
11183 			mp1 = mp->b_cont;
11184 			offset = IP_REASS_START(mp1);
11185 			if (end >= offset) {
11186 				ipf->ipf_hole_cnt--;
11187 				/* Check for overlap. */
11188 				while (end > offset) {
11189 					if (end < IP_REASS_END(mp1)) {
11190 						mp->b_wptr -= end - offset;
11191 						IP_REASS_SET_END(mp, offset);
11192 						/*
11193 						 * TODO we might bump
11194 						 * this up twice if there is
11195 						 * overlap at both ends.
11196 						 */
11197 						if (ill->ill_isv6) {
11198 							BUMP_MIB(
11199 							    ill->ill_ip6_mib,
11200 							    ipv6ReasmPartDups);
11201 						} else {
11202 							BUMP_MIB(&ip_mib,
11203 							    ipReasmPartDups);
11204 						}
11205 						break;
11206 					}
11207 					/* Did we cover another hole? */
11208 					if ((mp1->b_cont &&
11209 					    IP_REASS_END(mp1)
11210 					    != IP_REASS_START(mp1->b_cont) &&
11211 					    end >=
11212 					    IP_REASS_START(mp1->b_cont)) ||
11213 					    (!ipf->ipf_last_frag_seen &&
11214 					    !more)) {
11215 						ipf->ipf_hole_cnt--;
11216 					}
11217 					/* Clip out mp1. */
11218 					if ((mp->b_cont = mp1->b_cont) ==
11219 					    NULL) {
11220 						/*
11221 						 * After clipping out mp1,
11222 						 * this guy is now hanging
11223 						 * off the end.
11224 						 */
11225 						ipf->ipf_tail_mp = mp;
11226 					}
11227 					IP_REASS_SET_START(mp1, 0);
11228 					IP_REASS_SET_END(mp1, 0);
11229 					/* Subtract byte count */
11230 					ipf->ipf_count -=
11231 					    mp1->b_datap->db_lim -
11232 					    mp1->b_datap->db_base;
11233 					freeb(mp1);
11234 					if (ill->ill_isv6) {
11235 						BUMP_MIB(ill->ill_ip6_mib,
11236 						    ipv6ReasmPartDups);
11237 					} else {
11238 						BUMP_MIB(&ip_mib,
11239 						    ipReasmPartDups);
11240 					}
11241 					mp1 = mp->b_cont;
11242 					if (!mp1)
11243 						break;
11244 					offset = IP_REASS_START(mp1);
11245 				}
11246 			}
11247 			break;
11248 		}
11249 	} while (start = end, mp = next_mp);
11250 
11251 	/* Fragment just processed could be the last one. Remember this fact */
11252 	if (!more)
11253 		ipf->ipf_last_frag_seen = B_TRUE;
11254 
11255 	/* Still got holes? */
11256 	if (ipf->ipf_hole_cnt)
11257 		return (IP_REASS_PARTIAL);
11258 	/* Clean up overloaded fields to avoid upstream disasters. */
11259 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
11260 		IP_REASS_SET_START(mp1, 0);
11261 		IP_REASS_SET_END(mp1, 0);
11262 	}
11263 	return (IP_REASS_COMPLETE);
11264 }
11265 
11266 /*
11267  * ipsec processing for the fast path, used for input UDP Packets
11268  */
11269 static boolean_t
11270 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha,
11271     mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present)
11272 {
11273 	uint32_t	ill_index;
11274 	uint_t		in_flags;	/* IPF_RECVSLLA and/or IPF_RECVIF */
11275 
11276 	ASSERT(ipha->ipha_protocol == IPPROTO_UDP);
11277 	/* The ill_index of the incoming ILL */
11278 	ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex;
11279 
11280 	/* pass packet up to the transport */
11281 	if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) {
11282 		*first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha,
11283 		    NULL, mctl_present);
11284 		if (*first_mpp == NULL) {
11285 			return (B_FALSE);
11286 		}
11287 	}
11288 
11289 	/* Initiate IPPF processing for fastpath UDP */
11290 	if (IPP_ENABLED(IPP_LOCAL_IN)) {
11291 		ip_process(IPP_LOCAL_IN, mpp, ill_index);
11292 		if (*mpp == NULL) {
11293 			ip2dbg(("ip_input_ipsec_process: UDP pkt "
11294 			    "deferred/dropped during IPPF processing\n"));
11295 			return (B_FALSE);
11296 		}
11297 	}
11298 	/*
11299 	 * We make the checks as below since we are in the fast path
11300 	 * and want to minimize the number of checks if the IP_RECVIF and/or
11301 	 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set
11302 	 */
11303 	if (connp->conn_recvif || connp->conn_recvslla ||
11304 	    connp->conn_ipv6_recvpktinfo) {
11305 		if (connp->conn_recvif ||
11306 		    connp->conn_ipv6_recvpktinfo) {
11307 			in_flags = IPF_RECVIF;
11308 		}
11309 		if (connp->conn_recvslla) {
11310 			in_flags |= IPF_RECVSLLA;
11311 		}
11312 		/*
11313 		 * since in_flags are being set ill will be
11314 		 * referenced in ip_add_info, so it better not
11315 		 * be NULL.
11316 		 */
11317 		/*
11318 		 * the actual data will be contained in b_cont
11319 		 * upon successful return of the following call.
11320 		 * If the call fails then the original mblk is
11321 		 * returned.
11322 		 */
11323 		*mpp = ip_add_info(*mpp, ill, in_flags);
11324 	}
11325 
11326 	return (B_TRUE);
11327 }
11328 
11329 /*
11330  * Fragmentation reassembly.  Each ILL has a hash table for
11331  * queuing packets undergoing reassembly for all IPIFs
11332  * associated with the ILL.  The hash is based on the packet
11333  * IP ident field.  The ILL frag hash table was allocated
11334  * as a timer block at the time the ILL was created.  Whenever
11335  * there is anything on the reassembly queue, the timer will
11336  * be running.  Returns B_TRUE if successful else B_FALSE;
11337  * frees mp on failure.
11338  */
11339 static boolean_t
11340 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha,
11341     uint32_t *cksum_val, uint16_t *cksum_flags)
11342 {
11343 	uint32_t	frag_offset_flags;
11344 	ill_t		*ill = (ill_t *)q->q_ptr;
11345 	mblk_t		*mp = *mpp;
11346 	mblk_t		*t_mp;
11347 	ipaddr_t	dst;
11348 	uint8_t		proto = ipha->ipha_protocol;
11349 	uint32_t	sum_val;
11350 	uint16_t	sum_flags;
11351 	ipf_t		*ipf;
11352 	ipf_t		**ipfp;
11353 	ipfb_t		*ipfb;
11354 	uint16_t	ident;
11355 	uint32_t	offset;
11356 	ipaddr_t	src;
11357 	uint_t		hdr_length;
11358 	uint32_t	end;
11359 	mblk_t		*mp1;
11360 	mblk_t		*tail_mp;
11361 	size_t		count;
11362 	size_t		msg_len;
11363 	uint8_t		ecn_info = 0;
11364 	uint32_t	packet_size;
11365 	boolean_t	pruned = B_FALSE;
11366 
11367 	if (cksum_val != NULL)
11368 		*cksum_val = 0;
11369 	if (cksum_flags != NULL)
11370 		*cksum_flags = 0;
11371 
11372 	/*
11373 	 * Drop the fragmented as early as possible, if
11374 	 * we don't have resource(s) to re-assemble.
11375 	 */
11376 	if (ip_reass_queue_bytes == 0) {
11377 		freemsg(mp);
11378 		return (B_FALSE);
11379 	}
11380 
11381 	/* Check for fragmentation offset; return if there's none */
11382 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
11383 	    (IPH_MF | IPH_OFFSET)) == 0)
11384 		return (B_TRUE);
11385 
11386 	/*
11387 	 * We utilize hardware computed checksum info only for UDP since
11388 	 * IP fragmentation is a normal occurence for the protocol.  In
11389 	 * addition, checksum offload support for IP fragments carrying
11390 	 * UDP payload is commonly implemented across network adapters.
11391 	 */
11392 	ASSERT(ill != NULL);
11393 	if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) &&
11394 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
11395 		mblk_t *mp1 = mp->b_cont;
11396 		int32_t len;
11397 
11398 		/* Record checksum information from the packet */
11399 		sum_val = (uint32_t)DB_CKSUM16(mp);
11400 		sum_flags = DB_CKSUMFLAGS(mp);
11401 
11402 		/* IP payload offset from beginning of mblk */
11403 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
11404 
11405 		if ((sum_flags & HCK_PARTIALCKSUM) &&
11406 		    (mp1 == NULL || mp1->b_cont == NULL) &&
11407 		    offset >= DB_CKSUMSTART(mp) &&
11408 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
11409 			uint32_t adj;
11410 			/*
11411 			 * Partial checksum has been calculated by hardware
11412 			 * and attached to the packet; in addition, any
11413 			 * prepended extraneous data is even byte aligned.
11414 			 * If any such data exists, we adjust the checksum;
11415 			 * this would also handle any postpended data.
11416 			 */
11417 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
11418 			    mp, mp1, len, adj);
11419 
11420 			/* One's complement subtract extraneous checksum */
11421 			if (adj >= sum_val)
11422 				sum_val = ~(adj - sum_val) & 0xFFFF;
11423 			else
11424 				sum_val -= adj;
11425 		}
11426 	} else {
11427 		sum_val = 0;
11428 		sum_flags = 0;
11429 	}
11430 
11431 	/* Clear hardware checksumming flag */
11432 	DB_CKSUMFLAGS(mp) = 0;
11433 
11434 	ident = ipha->ipha_ident;
11435 	offset = (frag_offset_flags << 3) & 0xFFFF;
11436 	src = ipha->ipha_src;
11437 	dst = ipha->ipha_dst;
11438 	hdr_length = IPH_HDR_LENGTH(ipha);
11439 	end = ntohs(ipha->ipha_length) - hdr_length;
11440 
11441 	/* If end == 0 then we have a packet with no data, so just free it */
11442 	if (end == 0) {
11443 		freemsg(mp);
11444 		return (B_FALSE);
11445 	}
11446 
11447 	/* Record the ECN field info. */
11448 	ecn_info = (ipha->ipha_type_of_service & 0x3);
11449 	if (offset != 0) {
11450 		/*
11451 		 * If this isn't the first piece, strip the header, and
11452 		 * add the offset to the end value.
11453 		 */
11454 		mp->b_rptr += hdr_length;
11455 		end += offset;
11456 	}
11457 
11458 	msg_len = MBLKSIZE(mp);
11459 	tail_mp = mp;
11460 	while (tail_mp->b_cont != NULL) {
11461 		tail_mp = tail_mp->b_cont;
11462 		msg_len += MBLKSIZE(tail_mp);
11463 	}
11464 
11465 	/* If the reassembly list for this ILL will get too big, prune it */
11466 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
11467 	    ip_reass_queue_bytes) {
11468 		ill_frag_prune(ill,
11469 		    (ip_reass_queue_bytes < msg_len) ? 0 :
11470 		    (ip_reass_queue_bytes - msg_len));
11471 		pruned = B_TRUE;
11472 	}
11473 
11474 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
11475 	mutex_enter(&ipfb->ipfb_lock);
11476 
11477 	ipfp = &ipfb->ipfb_ipf;
11478 	/* Try to find an existing fragment queue for this packet. */
11479 	for (;;) {
11480 		ipf = ipfp[0];
11481 		if (ipf != NULL) {
11482 			/*
11483 			 * It has to match on ident and src/dst address.
11484 			 */
11485 			if (ipf->ipf_ident == ident &&
11486 			    ipf->ipf_src == src &&
11487 			    ipf->ipf_dst == dst &&
11488 			    ipf->ipf_protocol == proto) {
11489 				/*
11490 				 * If we have received too many
11491 				 * duplicate fragments for this packet
11492 				 * free it.
11493 				 */
11494 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
11495 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
11496 					freemsg(mp);
11497 					mutex_exit(&ipfb->ipfb_lock);
11498 					return (B_FALSE);
11499 				}
11500 				/* Found it. */
11501 				break;
11502 			}
11503 			ipfp = &ipf->ipf_hash_next;
11504 			continue;
11505 		}
11506 
11507 		/*
11508 		 * If we pruned the list, do we want to store this new
11509 		 * fragment?. We apply an optimization here based on the
11510 		 * fact that most fragments will be received in order.
11511 		 * So if the offset of this incoming fragment is zero,
11512 		 * it is the first fragment of a new packet. We will
11513 		 * keep it.  Otherwise drop the fragment, as we have
11514 		 * probably pruned the packet already (since the
11515 		 * packet cannot be found).
11516 		 */
11517 		if (pruned && offset != 0) {
11518 			mutex_exit(&ipfb->ipfb_lock);
11519 			freemsg(mp);
11520 			return (B_FALSE);
11521 		}
11522 
11523 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS)  {
11524 			/*
11525 			 * Too many fragmented packets in this hash
11526 			 * bucket. Free the oldest.
11527 			 */
11528 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
11529 		}
11530 
11531 		/* New guy.  Allocate a frag message. */
11532 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
11533 		if (mp1 == NULL) {
11534 			BUMP_MIB(&ip_mib, ipInDiscards);
11535 			freemsg(mp);
11536 reass_done:
11537 			mutex_exit(&ipfb->ipfb_lock);
11538 			return (B_FALSE);
11539 		}
11540 
11541 
11542 		BUMP_MIB(&ip_mib, ipReasmReqds);
11543 		mp1->b_cont = mp;
11544 
11545 		/* Initialize the fragment header. */
11546 		ipf = (ipf_t *)mp1->b_rptr;
11547 		ipf->ipf_mp = mp1;
11548 		ipf->ipf_ptphn = ipfp;
11549 		ipfp[0] = ipf;
11550 		ipf->ipf_hash_next = NULL;
11551 		ipf->ipf_ident = ident;
11552 		ipf->ipf_protocol = proto;
11553 		ipf->ipf_src = src;
11554 		ipf->ipf_dst = dst;
11555 		ipf->ipf_nf_hdr_len = 0;
11556 		/* Record reassembly start time. */
11557 		ipf->ipf_timestamp = gethrestime_sec();
11558 		/* Record ipf generation and account for frag header */
11559 		ipf->ipf_gen = ill->ill_ipf_gen++;
11560 		ipf->ipf_count = MBLKSIZE(mp1);
11561 		ipf->ipf_last_frag_seen = B_FALSE;
11562 		ipf->ipf_ecn = ecn_info;
11563 		ipf->ipf_num_dups = 0;
11564 		ipfb->ipfb_frag_pkts++;
11565 		ipf->ipf_checksum = 0;
11566 		ipf->ipf_checksum_flags = 0;
11567 
11568 		/* Store checksum value in fragment header */
11569 		if (sum_flags != 0) {
11570 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
11571 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
11572 			ipf->ipf_checksum = sum_val;
11573 			ipf->ipf_checksum_flags = sum_flags;
11574 		}
11575 
11576 		/*
11577 		 * We handle reassembly two ways.  In the easy case,
11578 		 * where all the fragments show up in order, we do
11579 		 * minimal bookkeeping, and just clip new pieces on
11580 		 * the end.  If we ever see a hole, then we go off
11581 		 * to ip_reassemble which has to mark the pieces and
11582 		 * keep track of the number of holes, etc.  Obviously,
11583 		 * the point of having both mechanisms is so we can
11584 		 * handle the easy case as efficiently as possible.
11585 		 */
11586 		if (offset == 0) {
11587 			/* Easy case, in-order reassembly so far. */
11588 			ipf->ipf_count += msg_len;
11589 			ipf->ipf_tail_mp = tail_mp;
11590 			/*
11591 			 * Keep track of next expected offset in
11592 			 * ipf_end.
11593 			 */
11594 			ipf->ipf_end = end;
11595 			ipf->ipf_nf_hdr_len = hdr_length;
11596 		} else {
11597 			/* Hard case, hole at the beginning. */
11598 			ipf->ipf_tail_mp = NULL;
11599 			/*
11600 			 * ipf_end == 0 means that we have given up
11601 			 * on easy reassembly.
11602 			 */
11603 			ipf->ipf_end = 0;
11604 
11605 			/* Forget checksum offload from now on */
11606 			ipf->ipf_checksum_flags = 0;
11607 
11608 			/*
11609 			 * ipf_hole_cnt is set by ip_reassemble.
11610 			 * ipf_count is updated by ip_reassemble.
11611 			 * No need to check for return value here
11612 			 * as we don't expect reassembly to complete
11613 			 * or fail for the first fragment itself.
11614 			 */
11615 			(void) ip_reassemble(mp, ipf,
11616 			    (frag_offset_flags & IPH_OFFSET) << 3,
11617 			    (frag_offset_flags & IPH_MF), ill, msg_len);
11618 		}
11619 		/* Update per ipfb and ill byte counts */
11620 		ipfb->ipfb_count += ipf->ipf_count;
11621 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
11622 		ill->ill_frag_count += ipf->ipf_count;
11623 		ASSERT(ill->ill_frag_count > 0); /* Wraparound */
11624 		/* If the frag timer wasn't already going, start it. */
11625 		mutex_enter(&ill->ill_lock);
11626 		ill_frag_timer_start(ill);
11627 		mutex_exit(&ill->ill_lock);
11628 		goto reass_done;
11629 	}
11630 
11631 	/*
11632 	 * If the packet's flag has changed (it could be coming up
11633 	 * from an interface different than the previous, therefore
11634 	 * possibly different checksum capability), then forget about
11635 	 * any stored checksum states.  Otherwise add the value to
11636 	 * the existing one stored in the fragment header.
11637 	 */
11638 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
11639 		sum_val += ipf->ipf_checksum;
11640 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
11641 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
11642 		ipf->ipf_checksum = sum_val;
11643 	} else if (ipf->ipf_checksum_flags != 0) {
11644 		/* Forget checksum offload from now on */
11645 		ipf->ipf_checksum_flags = 0;
11646 	}
11647 
11648 	/*
11649 	 * We have a new piece of a datagram which is already being
11650 	 * reassembled.  Update the ECN info if all IP fragments
11651 	 * are ECN capable.  If there is one which is not, clear
11652 	 * all the info.  If there is at least one which has CE
11653 	 * code point, IP needs to report that up to transport.
11654 	 */
11655 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
11656 		if (ecn_info == IPH_ECN_CE)
11657 			ipf->ipf_ecn = IPH_ECN_CE;
11658 	} else {
11659 		ipf->ipf_ecn = IPH_ECN_NECT;
11660 	}
11661 	if (offset && ipf->ipf_end == offset) {
11662 		/* The new fragment fits at the end */
11663 		ipf->ipf_tail_mp->b_cont = mp;
11664 		/* Update the byte count */
11665 		ipf->ipf_count += msg_len;
11666 		/* Update per ipfb and ill byte counts */
11667 		ipfb->ipfb_count += msg_len;
11668 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
11669 		ill->ill_frag_count += msg_len;
11670 		ASSERT(ill->ill_frag_count > 0); /* Wraparound */
11671 		if (frag_offset_flags & IPH_MF) {
11672 			/* More to come. */
11673 			ipf->ipf_end = end;
11674 			ipf->ipf_tail_mp = tail_mp;
11675 			goto reass_done;
11676 		}
11677 	} else {
11678 		/* Go do the hard cases. */
11679 		int ret;
11680 
11681 		if (offset == 0)
11682 			ipf->ipf_nf_hdr_len = hdr_length;
11683 
11684 		/* Save current byte count */
11685 		count = ipf->ipf_count;
11686 		ret = ip_reassemble(mp, ipf,
11687 		    (frag_offset_flags & IPH_OFFSET) << 3,
11688 		    (frag_offset_flags & IPH_MF), ill, msg_len);
11689 		/* Count of bytes added and subtracted (freeb()ed) */
11690 		count = ipf->ipf_count - count;
11691 		if (count) {
11692 			/* Update per ipfb and ill byte counts */
11693 			ipfb->ipfb_count += count;
11694 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
11695 			ill->ill_frag_count += count;
11696 			ASSERT(ill->ill_frag_count > 0);
11697 		}
11698 		if (ret == IP_REASS_PARTIAL) {
11699 			goto reass_done;
11700 		} else if (ret == IP_REASS_FAILED) {
11701 			/* Reassembly failed. Free up all resources */
11702 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
11703 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
11704 				IP_REASS_SET_START(t_mp, 0);
11705 				IP_REASS_SET_END(t_mp, 0);
11706 			}
11707 			freemsg(mp);
11708 			goto reass_done;
11709 		}
11710 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
11711 	}
11712 	/*
11713 	 * We have completed reassembly.  Unhook the frag header from
11714 	 * the reassembly list.
11715 	 *
11716 	 * Before we free the frag header, record the ECN info
11717 	 * to report back to the transport.
11718 	 */
11719 	ecn_info = ipf->ipf_ecn;
11720 	BUMP_MIB(&ip_mib, ipReasmOKs);
11721 	ipfp = ipf->ipf_ptphn;
11722 
11723 	/* We need to supply these to caller */
11724 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
11725 		sum_val = ipf->ipf_checksum;
11726 	else
11727 		sum_val = 0;
11728 
11729 	mp1 = ipf->ipf_mp;
11730 	count = ipf->ipf_count;
11731 	ipf = ipf->ipf_hash_next;
11732 	if (ipf != NULL)
11733 		ipf->ipf_ptphn = ipfp;
11734 	ipfp[0] = ipf;
11735 	ill->ill_frag_count -= count;
11736 	ASSERT(ipfb->ipfb_count >= count);
11737 	ipfb->ipfb_count -= count;
11738 	ipfb->ipfb_frag_pkts--;
11739 	mutex_exit(&ipfb->ipfb_lock);
11740 	/* Ditch the frag header. */
11741 	mp = mp1->b_cont;
11742 
11743 	freeb(mp1);
11744 
11745 	/* Restore original IP length in header. */
11746 	packet_size = (uint32_t)msgdsize(mp);
11747 	if (packet_size > IP_MAXPACKET) {
11748 		freemsg(mp);
11749 		BUMP_MIB(&ip_mib, ipInHdrErrors);
11750 		return (B_FALSE);
11751 	}
11752 
11753 	if (DB_REF(mp) > 1) {
11754 		mblk_t *mp2 = copymsg(mp);
11755 
11756 		freemsg(mp);
11757 		if (mp2 == NULL) {
11758 			BUMP_MIB(&ip_mib, ipInDiscards);
11759 			return (B_FALSE);
11760 		}
11761 		mp = mp2;
11762 	}
11763 	ipha = (ipha_t *)mp->b_rptr;
11764 
11765 	ipha->ipha_length = htons((uint16_t)packet_size);
11766 	/* We're now complete, zip the frag state */
11767 	ipha->ipha_fragment_offset_and_flags = 0;
11768 	/* Record the ECN info. */
11769 	ipha->ipha_type_of_service &= 0xFC;
11770 	ipha->ipha_type_of_service |= ecn_info;
11771 	*mpp = mp;
11772 
11773 	/* Reassembly is successful; return checksum information if needed */
11774 	if (cksum_val != NULL)
11775 		*cksum_val = sum_val;
11776 	if (cksum_flags != NULL)
11777 		*cksum_flags = sum_flags;
11778 
11779 	return (B_TRUE);
11780 }
11781 
11782 /*
11783  * Perform ip header check sum update local options.
11784  * return B_TRUE if all is well, else return B_FALSE and release
11785  * the mp. caller is responsible for decrementing ire ref cnt.
11786  */
11787 static boolean_t
11788 ip_options_cksum(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire)
11789 {
11790 	mblk_t		*first_mp;
11791 	boolean_t	mctl_present;
11792 	uint16_t	sum;
11793 
11794 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
11795 	/*
11796 	 * Don't do the checksum if it has gone through AH/ESP
11797 	 * processing.
11798 	 */
11799 	if (!mctl_present) {
11800 		sum = ip_csum_hdr(ipha);
11801 		if (sum != 0) {
11802 			BUMP_MIB(&ip_mib, ipInCksumErrs);
11803 			freemsg(first_mp);
11804 			return (B_FALSE);
11805 		}
11806 	}
11807 
11808 	if (!ip_rput_local_options(q, mp, ipha, ire)) {
11809 		if (mctl_present)
11810 			freeb(first_mp);
11811 		return (B_FALSE);
11812 	}
11813 
11814 	return (B_TRUE);
11815 }
11816 
11817 /*
11818  * All udp packet are delivered to the local host via this routine.
11819  */
11820 void
11821 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire,
11822     ill_t *recv_ill)
11823 {
11824 	uint32_t	sum;
11825 	uint32_t	u1;
11826 	boolean_t	mctl_present;
11827 	conn_t		*connp;
11828 	mblk_t		*first_mp;
11829 	uint16_t	*up;
11830 	ill_t		*ill = (ill_t *)q->q_ptr;
11831 	uint16_t	reass_hck_flags = 0;
11832 
11833 #define	rptr    ((uchar_t *)ipha)
11834 
11835 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
11836 	ASSERT(!mctl_present || ipsec_in_is_secure(first_mp));
11837 	ASSERT(ipha->ipha_protocol == IPPROTO_UDP);
11838 
11839 	/*
11840 	 * FAST PATH for udp packets
11841 	 */
11842 
11843 	/* u1 is # words of IP options */
11844 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) +
11845 	    IP_SIMPLE_HDR_LENGTH_IN_WORDS);
11846 
11847 	/* IP options present */
11848 	if (u1 != 0)
11849 		goto ipoptions;
11850 
11851 	/* Check the IP header checksum.  */
11852 	if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) {
11853 		/* Clear the IP header h/w cksum flag */
11854 		DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
11855 	} else {
11856 #define	uph	((uint16_t *)ipha)
11857 		sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] +
11858 		    uph[6] + uph[7] + uph[8] + uph[9];
11859 #undef	uph
11860 		/* finish doing IP checksum */
11861 		sum = (sum & 0xFFFF) + (sum >> 16);
11862 		sum = ~(sum + (sum >> 16)) & 0xFFFF;
11863 		/*
11864 		 * Don't verify header checksum if this packet is coming
11865 		 * back from AH/ESP as we already did it.
11866 		 */
11867 		if (!mctl_present && sum != 0 && sum != 0xFFFF) {
11868 			BUMP_MIB(&ip_mib, ipInCksumErrs);
11869 			freemsg(first_mp);
11870 			return;
11871 		}
11872 	}
11873 
11874 	/*
11875 	 * Count for SNMP of inbound packets for ire.
11876 	 * if mctl is present this might be a secure packet and
11877 	 * has already been counted for in ip_proto_input().
11878 	 */
11879 	if (!mctl_present) {
11880 		UPDATE_IB_PKT_COUNT(ire);
11881 		ire->ire_last_used_time = lbolt;
11882 	}
11883 
11884 	/* packet part of fragmented IP packet? */
11885 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
11886 	if (u1 & (IPH_MF | IPH_OFFSET)) {
11887 		goto fragmented;
11888 	}
11889 
11890 	/* u1 = IP header length (20 bytes) */
11891 	u1 = IP_SIMPLE_HDR_LENGTH;
11892 
11893 	/* packet does not contain complete IP & UDP headers */
11894 	if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE))
11895 		goto udppullup;
11896 
11897 	/* up points to UDP header */
11898 	up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH);
11899 #define	iphs    ((uint16_t *)ipha)
11900 
11901 	/* if udp hdr cksum != 0, then need to checksum udp packet */
11902 	if (up[3] != 0) {
11903 		mblk_t *mp1 = mp->b_cont;
11904 		boolean_t cksum_err;
11905 		uint16_t hck_flags = 0;
11906 
11907 		/* Pseudo-header checksum */
11908 		u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] +
11909 		    iphs[9] + up[2];
11910 
11911 		/*
11912 		 * Revert to software checksum calculation if the interface
11913 		 * isn't capable of checksum offload or if IPsec is present.
11914 		 */
11915 		if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum)
11916 			hck_flags = DB_CKSUMFLAGS(mp);
11917 
11918 		if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
11919 			IP_STAT(ip_in_sw_cksum);
11920 
11921 		IP_CKSUM_RECV(hck_flags, u1,
11922 		    (uchar_t *)(rptr + DB_CKSUMSTART(mp)),
11923 		    (int32_t)((uchar_t *)up - rptr),
11924 		    mp, mp1, cksum_err);
11925 
11926 		if (cksum_err) {
11927 			BUMP_MIB(&ip_mib, udpInCksumErrs);
11928 
11929 			if (hck_flags & HCK_FULLCKSUM)
11930 				IP_STAT(ip_udp_in_full_hw_cksum_err);
11931 			else if (hck_flags & HCK_PARTIALCKSUM)
11932 				IP_STAT(ip_udp_in_part_hw_cksum_err);
11933 			else
11934 				IP_STAT(ip_udp_in_sw_cksum_err);
11935 
11936 			freemsg(first_mp);
11937 			return;
11938 		}
11939 	}
11940 
11941 	/* Non-fragmented broadcast or multicast packet? */
11942 	if (ire->ire_type == IRE_BROADCAST)
11943 		goto udpslowpath;
11944 
11945 	if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
11946 	    ire->ire_zoneid)) != NULL) {
11947 		ASSERT(connp->conn_upq != NULL);
11948 		IP_STAT(ip_udp_fast_path);
11949 
11950 		if (CONN_UDP_FLOWCTLD(connp)) {
11951 			freemsg(mp);
11952 			BUMP_MIB(&ip_mib, udpInOverflows);
11953 		} else {
11954 			if (!mctl_present) {
11955 				BUMP_MIB(&ip_mib, ipInDelivers);
11956 			}
11957 			/*
11958 			 * mp and first_mp can change.
11959 			 */
11960 			if (ip_udp_check(q, connp, recv_ill,
11961 			    ipha, &mp, &first_mp, mctl_present)) {
11962 				/* Send it upstream */
11963 				CONN_UDP_RECV(connp, mp);
11964 			}
11965 		}
11966 		/*
11967 		 * freeb() cannot deal with null mblk being passed
11968 		 * in and first_mp can be set to null in the call
11969 		 * ipsec_input_fast_proc()->ipsec_check_inbound_policy.
11970 		 */
11971 		if (mctl_present && first_mp != NULL) {
11972 			freeb(first_mp);
11973 		}
11974 		CONN_DEC_REF(connp);
11975 		return;
11976 	}
11977 
11978 	/*
11979 	 * if we got here we know the packet is not fragmented and
11980 	 * has no options. The classifier could not find a conn_t and
11981 	 * most likely its an icmp packet so send it through slow path.
11982 	 */
11983 
11984 	goto udpslowpath;
11985 
11986 ipoptions:
11987 	if (!ip_options_cksum(q, mp, ipha, ire)) {
11988 		goto slow_done;
11989 	}
11990 
11991 	UPDATE_IB_PKT_COUNT(ire);
11992 	ire->ire_last_used_time = lbolt;
11993 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
11994 	if (u1 & (IPH_MF | IPH_OFFSET)) {
11995 fragmented:
11996 		/*
11997 		 * "sum" and "reass_hck_flags" are non-zero if the
11998 		 * reassembled packet has a valid hardware computed
11999 		 * checksum information associated with it.
12000 		 */
12001 		if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags))
12002 			goto slow_done;
12003 		/*
12004 		 * Make sure that first_mp points back to mp as
12005 		 * the mp we came in with could have changed in
12006 		 * ip_rput_fragment().
12007 		 */
12008 		ASSERT(!mctl_present);
12009 		ipha = (ipha_t *)mp->b_rptr;
12010 		first_mp = mp;
12011 	}
12012 
12013 	/* Now we have a complete datagram, destined for this machine. */
12014 	u1 = IPH_HDR_LENGTH(ipha);
12015 	/* Pull up the UDP header, if necessary. */
12016 	if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) {
12017 udppullup:
12018 		if (!pullupmsg(mp, u1 + UDPH_SIZE)) {
12019 			BUMP_MIB(&ip_mib, ipInDiscards);
12020 			freemsg(first_mp);
12021 			goto slow_done;
12022 		}
12023 		ipha = (ipha_t *)mp->b_rptr;
12024 	}
12025 
12026 	/*
12027 	 * Validate the checksum for the reassembled packet; for the
12028 	 * pullup case we calculate the payload checksum in software.
12029 	 */
12030 	up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET);
12031 	if (up[3] != 0) {
12032 		boolean_t cksum_err;
12033 
12034 		if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
12035 			IP_STAT(ip_in_sw_cksum);
12036 
12037 		IP_CKSUM_RECV_REASS(reass_hck_flags,
12038 		    (int32_t)((uchar_t *)up - (uchar_t *)ipha),
12039 		    IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] +
12040 		    iphs[9] + up[2], sum, cksum_err);
12041 
12042 		if (cksum_err) {
12043 			BUMP_MIB(&ip_mib, udpInCksumErrs);
12044 
12045 			if (reass_hck_flags & HCK_FULLCKSUM)
12046 				IP_STAT(ip_udp_in_full_hw_cksum_err);
12047 			else if (reass_hck_flags & HCK_PARTIALCKSUM)
12048 				IP_STAT(ip_udp_in_part_hw_cksum_err);
12049 			else
12050 				IP_STAT(ip_udp_in_sw_cksum_err);
12051 
12052 			freemsg(first_mp);
12053 			goto slow_done;
12054 		}
12055 	}
12056 udpslowpath:
12057 
12058 	/* Clear hardware checksum flag to be safe */
12059 	DB_CKSUMFLAGS(mp) = 0;
12060 
12061 	ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up,
12062 	    (ire->ire_type == IRE_BROADCAST),
12063 	    IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO,
12064 	    mctl_present, B_TRUE, recv_ill, ire->ire_zoneid);
12065 
12066 slow_done:
12067 	IP_STAT(ip_udp_slow_path);
12068 	return;
12069 
12070 #undef  iphs
12071 #undef  rptr
12072 }
12073 
12074 /* ARGSUSED */
12075 static mblk_t *
12076 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present,
12077     ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q,
12078     ill_rx_ring_t *ill_ring)
12079 {
12080 	conn_t		*connp;
12081 	uint32_t	sum;
12082 	uint32_t	u1;
12083 	uint16_t	*up;
12084 	int		offset;
12085 	ssize_t		len;
12086 	mblk_t		*mp1;
12087 	boolean_t	syn_present = B_FALSE;
12088 	tcph_t		*tcph;
12089 	uint_t		ip_hdr_len;
12090 	ill_t		*ill = (ill_t *)q->q_ptr;
12091 	zoneid_t	zoneid = ire->ire_zoneid;
12092 	boolean_t	cksum_err;
12093 	uint16_t	hck_flags = 0;
12094 
12095 #define	rptr	((uchar_t *)ipha)
12096 
12097 	ASSERT(ipha->ipha_protocol == IPPROTO_TCP);
12098 
12099 	/*
12100 	 * FAST PATH for tcp packets
12101 	 */
12102 
12103 	/* u1 is # words of IP options */
12104 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4)
12105 	    + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
12106 
12107 	/* IP options present */
12108 	if (u1) {
12109 		goto ipoptions;
12110 	} else {
12111 		/* Check the IP header checksum.  */
12112 		if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) {
12113 			/* Clear the IP header h/w cksum flag */
12114 			DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
12115 		} else {
12116 #define	uph	((uint16_t *)ipha)
12117 			sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
12118 			    uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
12119 #undef	uph
12120 			/* finish doing IP checksum */
12121 			sum = (sum & 0xFFFF) + (sum >> 16);
12122 			sum = ~(sum + (sum >> 16)) & 0xFFFF;
12123 			/*
12124 			 * Don't verify header checksum if this packet
12125 			 * is coming back from AH/ESP as we already did it.
12126 			 */
12127 			if (!mctl_present && (sum != 0) && sum != 0xFFFF) {
12128 				BUMP_MIB(&ip_mib, ipInCksumErrs);
12129 				goto error;
12130 			}
12131 		}
12132 	}
12133 
12134 	if (!mctl_present) {
12135 		UPDATE_IB_PKT_COUNT(ire);
12136 		ire->ire_last_used_time = lbolt;
12137 	}
12138 
12139 	/* packet part of fragmented IP packet? */
12140 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
12141 	if (u1 & (IPH_MF | IPH_OFFSET)) {
12142 		goto fragmented;
12143 	}
12144 
12145 	/* u1 = IP header length (20 bytes) */
12146 	u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH;
12147 
12148 	/* does packet contain IP+TCP headers? */
12149 	len = mp->b_wptr - rptr;
12150 	if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) {
12151 		IP_STAT(ip_tcppullup);
12152 		goto tcppullup;
12153 	}
12154 
12155 	/* TCP options present? */
12156 	offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4;
12157 
12158 	/*
12159 	 * If options need to be pulled up, then goto tcpoptions.
12160 	 * otherwise we are still in the fast path
12161 	 */
12162 	if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) {
12163 		IP_STAT(ip_tcpoptions);
12164 		goto tcpoptions;
12165 	}
12166 
12167 	/* multiple mblks of tcp data? */
12168 	if ((mp1 = mp->b_cont) != NULL) {
12169 		/* more then two? */
12170 		if (mp1->b_cont != NULL) {
12171 			IP_STAT(ip_multipkttcp);
12172 			goto multipkttcp;
12173 		}
12174 		len += mp1->b_wptr - mp1->b_rptr;
12175 	}
12176 
12177 	up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET);
12178 
12179 	/* part of pseudo checksum */
12180 
12181 	/* TCP datagram length */
12182 	u1 = len - IP_SIMPLE_HDR_LENGTH;
12183 
12184 #define	iphs    ((uint16_t *)ipha)
12185 
12186 #ifdef	_BIG_ENDIAN
12187 	u1 += IPPROTO_TCP;
12188 #else
12189 	u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8);
12190 #endif
12191 	u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9];
12192 
12193 	/*
12194 	 * Revert to software checksum calculation if the interface
12195 	 * isn't capable of checksum offload or if IPsec is present.
12196 	 */
12197 	if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum)
12198 		hck_flags = DB_CKSUMFLAGS(mp);
12199 
12200 	if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
12201 		IP_STAT(ip_in_sw_cksum);
12202 
12203 	IP_CKSUM_RECV(hck_flags, u1,
12204 	    (uchar_t *)(rptr + DB_CKSUMSTART(mp)),
12205 	    (int32_t)((uchar_t *)up - rptr),
12206 	    mp, mp1, cksum_err);
12207 
12208 	if (cksum_err) {
12209 		BUMP_MIB(&ip_mib, tcpInErrs);
12210 
12211 		if (hck_flags & HCK_FULLCKSUM)
12212 			IP_STAT(ip_tcp_in_full_hw_cksum_err);
12213 		else if (hck_flags & HCK_PARTIALCKSUM)
12214 			IP_STAT(ip_tcp_in_part_hw_cksum_err);
12215 		else
12216 			IP_STAT(ip_tcp_in_sw_cksum_err);
12217 
12218 		goto error;
12219 	}
12220 
12221 try_again:
12222 
12223 	if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) ==
12224 	    NULL) {
12225 		/* Send the TH_RST */
12226 		goto no_conn;
12227 	}
12228 
12229 	/*
12230 	 * TCP FAST PATH for AF_INET socket.
12231 	 *
12232 	 * TCP fast path to avoid extra work. An AF_INET socket type
12233 	 * does not have facility to receive extra information via
12234 	 * ip_process or ip_add_info. Also, when the connection was
12235 	 * established, we made a check if this connection is impacted
12236 	 * by any global IPSec policy or per connection policy (a
12237 	 * policy that comes in effect later will not apply to this
12238 	 * connection). Since all this can be determined at the
12239 	 * connection establishment time, a quick check of flags
12240 	 * can avoid extra work.
12241 	 */
12242 	if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present &&
12243 	    !IPP_ENABLED(IPP_LOCAL_IN)) {
12244 		ASSERT(first_mp == mp);
12245 		SET_SQUEUE(mp, tcp_rput_data, connp);
12246 		return (mp);
12247 	}
12248 
12249 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
12250 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
12251 		if (IPCL_IS_TCP(connp)) {
12252 			mp->b_datap->db_struioflag |= STRUIO_EAGER;
12253 			DB_CKSUMSTART(mp) =
12254 			    (intptr_t)ip_squeue_get(ill_ring);
12255 			if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present &&
12256 			    !CONN_INBOUND_POLICY_PRESENT(connp)) {
12257 				SET_SQUEUE(mp, connp->conn_recv, connp);
12258 				return (mp);
12259 			} else if (IPCL_IS_BOUND(connp) && !mctl_present &&
12260 			    !CONN_INBOUND_POLICY_PRESENT(connp)) {
12261 				ip_squeue_enter_unbound++;
12262 				SET_SQUEUE(mp, tcp_conn_request_unbound,
12263 				    connp);
12264 				return (mp);
12265 			}
12266 			syn_present = B_TRUE;
12267 		}
12268 
12269 	}
12270 
12271 	if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) {
12272 		uint_t	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12273 
12274 		/* No need to send this packet to TCP */
12275 		if ((flags & TH_RST) || (flags & TH_URG)) {
12276 			CONN_DEC_REF(connp);
12277 			freemsg(first_mp);
12278 			return (NULL);
12279 		}
12280 		if (flags & TH_ACK) {
12281 			tcp_xmit_listeners_reset(first_mp, ip_hdr_len);
12282 			CONN_DEC_REF(connp);
12283 			return (NULL);
12284 		}
12285 
12286 		CONN_DEC_REF(connp);
12287 		freemsg(first_mp);
12288 		return (NULL);
12289 	}
12290 
12291 	if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) {
12292 		first_mp = ipsec_check_inbound_policy(first_mp, connp,
12293 		    ipha, NULL, mctl_present);
12294 		if (first_mp == NULL) {
12295 			CONN_DEC_REF(connp);
12296 			return (NULL);
12297 		}
12298 		if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) {
12299 			ASSERT(syn_present);
12300 			if (mctl_present) {
12301 				ASSERT(first_mp != mp);
12302 				first_mp->b_datap->db_struioflag |=
12303 				    STRUIO_POLICY;
12304 			} else {
12305 				ASSERT(first_mp == mp);
12306 				mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
12307 				mp->b_datap->db_struioflag |= STRUIO_POLICY;
12308 			}
12309 		} else {
12310 			/*
12311 			 * Discard first_mp early since we're dealing with a
12312 			 * fully-connected conn_t and tcp doesn't do policy in
12313 			 * this case.
12314 			 */
12315 			if (mctl_present) {
12316 				freeb(first_mp);
12317 				mctl_present = B_FALSE;
12318 			}
12319 			first_mp = mp;
12320 		}
12321 	}
12322 
12323 	/* Initiate IPPF processing for fastpath */
12324 	if (IPP_ENABLED(IPP_LOCAL_IN)) {
12325 		uint32_t	ill_index;
12326 
12327 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
12328 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
12329 		if (mp == NULL) {
12330 			ip2dbg(("ip_input_ipsec_process: TCP pkt "
12331 			    "deferred/dropped during IPPF processing\n"));
12332 			CONN_DEC_REF(connp);
12333 			if (mctl_present)
12334 				freeb(first_mp);
12335 			return (NULL);
12336 		} else if (mctl_present) {
12337 			/*
12338 			 * ip_process might return a new mp.
12339 			 */
12340 			ASSERT(first_mp != mp);
12341 			first_mp->b_cont = mp;
12342 		} else {
12343 			first_mp = mp;
12344 		}
12345 
12346 	}
12347 
12348 	if (!syn_present && connp->conn_ipv6_recvpktinfo) {
12349 		mp = ip_add_info(mp, recv_ill, flags);
12350 		if (mp == NULL) {
12351 			CONN_DEC_REF(connp);
12352 			if (mctl_present)
12353 				freeb(first_mp);
12354 			return (NULL);
12355 		} else if (mctl_present) {
12356 			/*
12357 			 * ip_add_info might return a new mp.
12358 			 */
12359 			ASSERT(first_mp != mp);
12360 			first_mp->b_cont = mp;
12361 		} else {
12362 			first_mp = mp;
12363 		}
12364 	}
12365 
12366 	if (IPCL_IS_TCP(connp)) {
12367 		SET_SQUEUE(first_mp, connp->conn_recv, connp);
12368 		return (first_mp);
12369 	} else {
12370 		putnext(connp->conn_rq, first_mp);
12371 		CONN_DEC_REF(connp);
12372 		return (NULL);
12373 	}
12374 
12375 no_conn:
12376 	/* Initiate IPPf processing, if needed. */
12377 	if (IPP_ENABLED(IPP_LOCAL_IN)) {
12378 		uint32_t ill_index;
12379 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
12380 		ip_process(IPP_LOCAL_IN, &first_mp, ill_index);
12381 		if (first_mp == NULL) {
12382 			return (NULL);
12383 		}
12384 	}
12385 	BUMP_MIB(&ip_mib, ipInDelivers);
12386 	tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr));
12387 	return (NULL);
12388 ipoptions:
12389 	if (!ip_options_cksum(q, first_mp, ipha, ire)) {
12390 		goto slow_done;
12391 	}
12392 
12393 	UPDATE_IB_PKT_COUNT(ire);
12394 	ire->ire_last_used_time = lbolt;
12395 
12396 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
12397 	if (u1 & (IPH_MF | IPH_OFFSET)) {
12398 fragmented:
12399 		if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) {
12400 			if (mctl_present)
12401 				freeb(first_mp);
12402 			goto slow_done;
12403 		}
12404 		/*
12405 		 * Make sure that first_mp points back to mp as
12406 		 * the mp we came in with could have changed in
12407 		 * ip_rput_fragment().
12408 		 */
12409 		ASSERT(!mctl_present);
12410 		ipha = (ipha_t *)mp->b_rptr;
12411 		first_mp = mp;
12412 	}
12413 
12414 	/* Now we have a complete datagram, destined for this machine. */
12415 	u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha);
12416 
12417 	len = mp->b_wptr - mp->b_rptr;
12418 	/* Pull up a minimal TCP header, if necessary. */
12419 	if (len < (u1 + 20)) {
12420 tcppullup:
12421 		if (!pullupmsg(mp, u1 + 20)) {
12422 			BUMP_MIB(&ip_mib, ipInDiscards);
12423 			goto error;
12424 		}
12425 		ipha = (ipha_t *)mp->b_rptr;
12426 		len = mp->b_wptr - mp->b_rptr;
12427 	}
12428 
12429 	/*
12430 	 * Extract the offset field from the TCP header.  As usual, we
12431 	 * try to help the compiler more than the reader.
12432 	 */
12433 	offset = ((uchar_t *)ipha)[u1 + 12] >> 4;
12434 	if (offset != 5) {
12435 tcpoptions:
12436 		if (offset < 5) {
12437 			BUMP_MIB(&ip_mib, ipInDiscards);
12438 			goto error;
12439 		}
12440 		/*
12441 		 * There must be TCP options.
12442 		 * Make sure we can grab them.
12443 		 */
12444 		offset <<= 2;
12445 		offset += u1;
12446 		if (len < offset) {
12447 			if (!pullupmsg(mp, offset)) {
12448 				BUMP_MIB(&ip_mib, ipInDiscards);
12449 				goto error;
12450 			}
12451 			ipha = (ipha_t *)mp->b_rptr;
12452 			len = mp->b_wptr - rptr;
12453 		}
12454 	}
12455 
12456 	/* Get the total packet length in len, including headers. */
12457 	if (mp->b_cont) {
12458 multipkttcp:
12459 		len = msgdsize(mp);
12460 	}
12461 
12462 	/*
12463 	 * Check the TCP checksum by pulling together the pseudo-
12464 	 * header checksum, and passing it to ip_csum to be added in
12465 	 * with the TCP datagram.
12466 	 *
12467 	 * Since we are not using the hwcksum if available we must
12468 	 * clear the flag. We may come here via tcppullup or tcpoptions.
12469 	 * If either of these fails along the way the mblk is freed.
12470 	 * If this logic ever changes and mblk is reused to say send
12471 	 * ICMP's back, then this flag may need to be cleared in
12472 	 * other places as well.
12473 	 */
12474 	DB_CKSUMFLAGS(mp) = 0;
12475 
12476 	up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET);
12477 
12478 	u1 = (uint32_t)(len - u1);	/* TCP datagram length. */
12479 #ifdef	_BIG_ENDIAN
12480 	u1 += IPPROTO_TCP;
12481 #else
12482 	u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8);
12483 #endif
12484 	u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9];
12485 	/*
12486 	 * Not M_DATA mblk or its a dup, so do the checksum now.
12487 	 */
12488 	IP_STAT(ip_in_sw_cksum);
12489 	if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) {
12490 		BUMP_MIB(&ip_mib, tcpInErrs);
12491 		goto error;
12492 	}
12493 
12494 	IP_STAT(ip_tcp_slow_path);
12495 	goto try_again;
12496 #undef  iphs
12497 #undef  rptr
12498 
12499 error:
12500 	freemsg(first_mp);
12501 slow_done:
12502 	return (NULL);
12503 }
12504 
12505 /* ARGSUSED */
12506 static void
12507 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present,
12508     ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst)
12509 {
12510 	conn_t		*connp;
12511 	uint32_t	sum;
12512 	uint32_t	u1;
12513 	ssize_t		len;
12514 	sctp_hdr_t	*sctph;
12515 	zoneid_t	zoneid = ire->ire_zoneid;
12516 	uint32_t	pktsum;
12517 	uint32_t	calcsum;
12518 	uint32_t	ports;
12519 	uint_t		ipif_seqid;
12520 	in6_addr_t	map_src, map_dst;
12521 	ill_t		*ill = (ill_t *)q->q_ptr;
12522 
12523 #define	rptr	((uchar_t *)ipha)
12524 
12525 	ASSERT(ipha->ipha_protocol == IPPROTO_SCTP);
12526 
12527 	/* u1 is # words of IP options */
12528 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4)
12529 	    + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
12530 
12531 	/* IP options present */
12532 	if (u1 > 0) {
12533 		goto ipoptions;
12534 	} else {
12535 		/* Check the IP header checksum.  */
12536 		if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) {
12537 #define	uph	((uint16_t *)ipha)
12538 			sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
12539 			    uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
12540 #undef	uph
12541 			/* finish doing IP checksum */
12542 			sum = (sum & 0xFFFF) + (sum >> 16);
12543 			sum = ~(sum + (sum >> 16)) & 0xFFFF;
12544 			/*
12545 			 * Don't verify header checksum if this packet
12546 			 * is coming back from AH/ESP as we already did it.
12547 			 */
12548 			if (!mctl_present && (sum != 0) && sum != 0xFFFF) {
12549 				BUMP_MIB(&ip_mib, ipInCksumErrs);
12550 				goto error;
12551 			}
12552 		}
12553 		/*
12554 		 * Since there is no SCTP h/w cksum support yet, just
12555 		 * clear the flag.
12556 		 */
12557 		DB_CKSUMFLAGS(mp) = 0;
12558 	}
12559 
12560 	/*
12561 	 * Don't verify header checksum if this packet is coming
12562 	 * back from AH/ESP as we already did it.
12563 	 */
12564 	if (!mctl_present) {
12565 		UPDATE_IB_PKT_COUNT(ire);
12566 		ire->ire_last_used_time = lbolt;
12567 	}
12568 
12569 	/* packet part of fragmented IP packet? */
12570 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
12571 	if (u1 & (IPH_MF | IPH_OFFSET))
12572 		goto fragmented;
12573 
12574 	/* u1 = IP header length (20 bytes) */
12575 	u1 = IP_SIMPLE_HDR_LENGTH;
12576 
12577 find_sctp_client:
12578 	/* Pullup if we don't have the sctp common header. */
12579 	len = MBLKL(mp);
12580 	if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) {
12581 		if (mp->b_cont == NULL ||
12582 		    !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) {
12583 			BUMP_MIB(&ip_mib, ipInDiscards);
12584 			goto error;
12585 		}
12586 		ipha = (ipha_t *)mp->b_rptr;
12587 		len = MBLKL(mp);
12588 	}
12589 
12590 	sctph = (sctp_hdr_t *)(rptr + u1);
12591 #ifdef	DEBUG
12592 	if (!skip_sctp_cksum) {
12593 #endif
12594 		pktsum = sctph->sh_chksum;
12595 		sctph->sh_chksum = 0;
12596 		calcsum = sctp_cksum(mp, u1);
12597 		if (calcsum != pktsum) {
12598 			BUMP_MIB(&sctp_mib, sctpChecksumError);
12599 			goto error;
12600 		}
12601 		sctph->sh_chksum = pktsum;
12602 #ifdef	DEBUG	/* skip_sctp_cksum */
12603 	}
12604 #endif
12605 	/* get the ports */
12606 	ports = *(uint32_t *)&sctph->sh_sport;
12607 
12608 	ipif_seqid = ire->ire_ipif->ipif_seqid;
12609 	IRE_REFRELE(ire);
12610 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst);
12611 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src);
12612 	if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid,
12613 	    mp)) == NULL) {
12614 		/* Check for raw socket or OOTB handling */
12615 		goto no_conn;
12616 	}
12617 
12618 	/* Found a client; up it goes */
12619 	BUMP_MIB(&ip_mib, ipInDelivers);
12620 	sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present);
12621 	return;
12622 
12623 no_conn:
12624 	ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE,
12625 	    ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid);
12626 	return;
12627 
12628 ipoptions:
12629 	DB_CKSUMFLAGS(mp) = 0;
12630 	if (!ip_options_cksum(q, first_mp, ipha, ire))
12631 		goto slow_done;
12632 
12633 	UPDATE_IB_PKT_COUNT(ire);
12634 	ire->ire_last_used_time = lbolt;
12635 
12636 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
12637 	if (u1 & (IPH_MF | IPH_OFFSET)) {
12638 fragmented:
12639 		if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL))
12640 			goto slow_done;
12641 		/*
12642 		 * Make sure that first_mp points back to mp as
12643 		 * the mp we came in with could have changed in
12644 		 * ip_rput_fragment().
12645 		 */
12646 		ASSERT(!mctl_present);
12647 		ipha = (ipha_t *)mp->b_rptr;
12648 		first_mp = mp;
12649 	}
12650 
12651 	/* Now we have a complete datagram, destined for this machine. */
12652 	u1 = IPH_HDR_LENGTH(ipha);
12653 	goto find_sctp_client;
12654 #undef  iphs
12655 #undef  rptr
12656 
12657 error:
12658 	freemsg(first_mp);
12659 slow_done:
12660 	IRE_REFRELE(ire);
12661 }
12662 
12663 #define	VER_BITS	0xF0
12664 #define	VERSION_6	0x60
12665 
12666 static boolean_t
12667 ip_rput_multimblk_ipoptions(queue_t *q, mblk_t *mp, ipha_t **iphapp,
12668     ipaddr_t *dstp)
12669 {
12670 	uint_t	opt_len;
12671 	ipha_t *ipha;
12672 	ssize_t len;
12673 	uint_t	pkt_len;
12674 
12675 	IP_STAT(ip_ipoptions);
12676 	ipha = *iphapp;
12677 
12678 #define	rptr    ((uchar_t *)ipha)
12679 	/* Assume no IPv6 packets arrive over the IPv4 queue */
12680 	if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) {
12681 		BUMP_MIB(&ip_mib, ipInIPv6);
12682 		freemsg(mp);
12683 		return (B_FALSE);
12684 	}
12685 
12686 	/* multiple mblk or too short */
12687 	pkt_len = ntohs(ipha->ipha_length);
12688 
12689 	/* Get the number of words of IP options in the IP header. */
12690 	opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION;
12691 	if (opt_len) {
12692 		/* IP Options present!  Validate and process. */
12693 		if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
12694 			BUMP_MIB(&ip_mib, ipInHdrErrors);
12695 			goto done;
12696 		}
12697 		/*
12698 		 * Recompute complete header length and make sure we
12699 		 * have access to all of it.
12700 		 */
12701 		len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
12702 		if (len > (mp->b_wptr - rptr)) {
12703 			if (len > pkt_len) {
12704 				BUMP_MIB(&ip_mib, ipInHdrErrors);
12705 				goto done;
12706 			}
12707 			if (!pullupmsg(mp, len)) {
12708 				BUMP_MIB(&ip_mib, ipInDiscards);
12709 				goto done;
12710 			}
12711 			ipha = (ipha_t *)mp->b_rptr;
12712 		}
12713 		/*
12714 		 * Go off to ip_rput_options which returns the next hop
12715 		 * destination address, which may have been affected
12716 		 * by source routing.
12717 		 */
12718 		IP_STAT(ip_opt);
12719 		if (ip_rput_options(q, mp, ipha, dstp) == -1) {
12720 			return (B_FALSE);
12721 		}
12722 	}
12723 	*iphapp = ipha;
12724 	return (B_TRUE);
12725 done:
12726 	/* clear b_prev - used by ip_mroute_decap */
12727 	mp->b_prev = NULL;
12728 	freemsg(mp);
12729 	return (B_FALSE);
12730 #undef  rptr
12731 }
12732 
12733 /*
12734  * Deal with the fact that there is no ire for the destination.
12735  * The incoming ill (in_ill) is passed in to ip_newroute only
12736  * in the case of packets coming from mobile ip forward tunnel.
12737  * It must be null otherwise.
12738  */
12739 static void
12740 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast,
12741     ipaddr_t dst)
12742 {
12743 	ipha_t	*ipha;
12744 	ill_t	*ill;
12745 
12746 	ipha = (ipha_t *)mp->b_rptr;
12747 	ill = (ill_t *)q->q_ptr;
12748 
12749 	ASSERT(ill != NULL);
12750 	/*
12751 	 * No IRE for this destination, so it can't be for us.
12752 	 * Unless we are forwarding, drop the packet.
12753 	 * We have to let source routed packets through
12754 	 * since we don't yet know if they are 'ping -l'
12755 	 * packets i.e. if they will go out over the
12756 	 * same interface as they came in on.
12757 	 */
12758 	if (ll_multicast) {
12759 		freemsg(mp);
12760 		return;
12761 	}
12762 	if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) {
12763 		BUMP_MIB(&ip_mib, ipForwProhibits);
12764 		freemsg(mp);
12765 		return;
12766 	}
12767 
12768 	/* Check for Martian addresses */
12769 	if ((in_ill == NULL) && (ip_no_forward(ipha, ill))) {
12770 		freemsg(mp);
12771 		return;
12772 	}
12773 
12774 	/* Mark this packet as having originated externally */
12775 	mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex;
12776 
12777 	/*
12778 	 * Clear the indication that this may have a hardware checksum
12779 	 * as we are not using it
12780 	 */
12781 	DB_CKSUMFLAGS(mp) = 0;
12782 
12783 	/*
12784 	 * Now hand the packet to ip_newroute.
12785 	 */
12786 	ip_newroute(q, mp, dst, in_ill, NULL);
12787 }
12788 
12789 /*
12790  * check ip header length and align it.
12791  */
12792 static boolean_t
12793 ip_check_and_align_header(queue_t *q, mblk_t *mp)
12794 {
12795 	ssize_t len;
12796 	ill_t *ill;
12797 	ipha_t	*ipha;
12798 
12799 	len = MBLKL(mp);
12800 
12801 	if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) {
12802 		if (!OK_32PTR(mp->b_rptr))
12803 			IP_STAT(ip_notaligned1);
12804 		else
12805 			IP_STAT(ip_notaligned2);
12806 		/* Guard against bogus device drivers */
12807 		if (len < 0) {
12808 			/* clear b_prev - used by ip_mroute_decap */
12809 			mp->b_prev = NULL;
12810 			BUMP_MIB(&ip_mib, ipInHdrErrors);
12811 			freemsg(mp);
12812 			return (B_FALSE);
12813 		}
12814 
12815 		if (ip_rput_pullups++ == 0) {
12816 			ill = (ill_t *)q->q_ptr;
12817 			ipha = (ipha_t *)mp->b_rptr;
12818 			(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12819 			    "ip_check_and_align_header: %s forced us to "
12820 			    " pullup pkt, hdr len %ld, hdr addr %p",
12821 			    ill->ill_name, len, ipha);
12822 		}
12823 		if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) {
12824 			/* clear b_prev - used by ip_mroute_decap */
12825 			mp->b_prev = NULL;
12826 			BUMP_MIB(&ip_mib, ipInDiscards);
12827 			freemsg(mp);
12828 			return (B_FALSE);
12829 		}
12830 	}
12831 	return (B_TRUE);
12832 }
12833 
12834 static boolean_t
12835 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill)
12836 {
12837 	ill_group_t	*ill_group;
12838 	ill_group_t	*ire_group;
12839 	queue_t 	*q;
12840 	ill_t		*ire_ill;
12841 	uint_t		ill_ifindex;
12842 
12843 	q = *qp;
12844 	/*
12845 	 * We need to check to make sure the packet came in
12846 	 * on the queue associated with the destination IRE.
12847 	 * Note that for multicast packets and broadcast packets sent to
12848 	 * a broadcast address which is shared between multiple interfaces
12849 	 * we should not do this since we just got a random broadcast ire.
12850 	 */
12851 	if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) {
12852 		boolean_t check_multi = B_TRUE;
12853 
12854 		/*
12855 		 * This packet came in on an interface other than the
12856 		 * one associated with the destination address.
12857 		 * "Gateway" it to the appropriate interface here.
12858 		 * As long as the ills belong to the same group,
12859 		 * we don't consider them to arriving on the wrong
12860 		 * interface. Thus, when the switch is doing inbound
12861 		 * load spreading, we won't drop packets when we
12862 		 * are doing strict multihoming checks. Note, the
12863 		 * same holds true for 'usesrc groups' where the
12864 		 * destination address may belong to another interface
12865 		 * to allow multipathing to happen
12866 		 */
12867 		ill_group = ill->ill_group;
12868 		ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr;
12869 		ill_ifindex = ill->ill_usesrc_ifindex;
12870 		ire_group = ire_ill->ill_group;
12871 
12872 		/*
12873 		 * If it's part of the same IPMP group, or if it's a legal
12874 		 * address on the 'usesrc' interface, then bypass strict
12875 		 * checks.
12876 		 */
12877 		if (ill_group != NULL && ill_group == ire_group) {
12878 			check_multi = B_FALSE;
12879 		} else if (ill_ifindex != 0 &&
12880 		    ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) {
12881 			check_multi = B_FALSE;
12882 		}
12883 
12884 		if (check_multi &&
12885 		    ip_strict_dst_multihoming &&
12886 		    ((ill->ill_flags &
12887 		    ire->ire_ipif->ipif_ill->ill_flags &
12888 		    ILLF_ROUTER) == 0)) {
12889 			/* Drop packet */
12890 			BUMP_MIB(&ip_mib, ipForwProhibits);
12891 			freemsg(mp);
12892 			ire_refrele(ire);
12893 			return (B_TRUE);
12894 		}
12895 
12896 		/*
12897 		 * Change the queue (for non-virtual destination network
12898 		 * interfaces) and ip_rput_local will be called with the right
12899 		 * queue
12900 		 */
12901 		q = ire->ire_rfq;
12902 	}
12903 	/* Must be broadcast.  We'll take it. */
12904 	*qp = q;
12905 	return (B_FALSE);
12906 }
12907 
12908 static void
12909 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha,
12910     ill_t *ill, int ll_multicast)
12911 {
12912 	ill_group_t	*ill_group;
12913 	ill_group_t	*ire_group;
12914 	queue_t	*dev_q;
12915 
12916 	ASSERT(ire->ire_stq != NULL);
12917 	if (ll_multicast != 0)
12918 		goto drop_pkt;
12919 
12920 	if (ip_no_forward(ipha, ill))
12921 		goto drop_pkt;
12922 
12923 	ill_group = ill->ill_group;
12924 	ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group;
12925 	/*
12926 	 * Check if we want to forward this one at this time.
12927 	 * We allow source routed packets on a host provided that
12928 	 * they go out the same interface or same interface group
12929 	 * as they came in on.
12930 	 *
12931 	 * XXX To be quicker, we may wish to not chase pointers to
12932 	 * get the ILLF_ROUTER flag and instead store the
12933 	 * forwarding policy in the ire.  An unfortunate
12934 	 * side-effect of that would be requiring an ire flush
12935 	 * whenever the ILLF_ROUTER flag changes.
12936 	 */
12937 	if (((ill->ill_flags &
12938 	    ((ill_t *)ire->ire_stq->q_ptr)->ill_flags &
12939 	    ILLF_ROUTER) == 0) &&
12940 	    !(ip_source_routed(ipha) && (ire->ire_rfq == q ||
12941 	    (ill_group != NULL && ill_group == ire_group)))) {
12942 		BUMP_MIB(&ip_mib, ipForwProhibits);
12943 		if (ip_source_routed(ipha)) {
12944 			q = WR(q);
12945 			/*
12946 			 * Clear the indication that this may have
12947 			 * hardware checksum as we are not using it.
12948 			 */
12949 			DB_CKSUMFLAGS(mp) = 0;
12950 			icmp_unreachable(q, mp,
12951 			    ICMP_SOURCE_ROUTE_FAILED);
12952 			ire_refrele(ire);
12953 			return;
12954 		}
12955 		goto drop_pkt;
12956 	}
12957 
12958 	/* Packet is being forwarded. Turning off hwcksum flag. */
12959 	DB_CKSUMFLAGS(mp) = 0;
12960 	if (ip_g_send_redirects) {
12961 		/*
12962 		 * Check whether the incoming interface and outgoing
12963 		 * interface is part of the same group. If so,
12964 		 * send redirects.
12965 		 *
12966 		 * Check the source address to see if it originated
12967 		 * on the same logical subnet it is going back out on.
12968 		 * If so, we should be able to send it a redirect.
12969 		 * Avoid sending a redirect if the destination
12970 		 * is directly connected (gw_addr == 0),
12971 		 * or if the packet was source routed out this
12972 		 * interface.
12973 		 */
12974 		ipaddr_t src;
12975 		mblk_t	*mp1;
12976 		ire_t	*src_ire = NULL;
12977 
12978 		/*
12979 		 * Check whether ire_rfq and q are from the same ill
12980 		 * or if they are not same, they at least belong
12981 		 * to the same group. If so, send redirects.
12982 		 */
12983 		if ((ire->ire_rfq == q ||
12984 		    (ill_group != NULL && ill_group == ire_group)) &&
12985 		    (ire->ire_gateway_addr != 0) &&
12986 		    !ip_source_routed(ipha)) {
12987 
12988 			src = ipha->ipha_src;
12989 			src_ire = ire_ftable_lookup(src, 0, 0,
12990 			    IRE_INTERFACE, ire->ire_ipif, NULL, ALL_ZONES,
12991 			    0, NULL, MATCH_IRE_IPIF | MATCH_IRE_TYPE);
12992 
12993 			if (src_ire != NULL) {
12994 				/*
12995 				 * The source is directly connected.
12996 				 * Just copy the ip header (which is
12997 				 * in the first mblk)
12998 				 */
12999 				mp1 = copyb(mp);
13000 				if (mp1 != NULL) {
13001 					icmp_send_redirect(WR(q), mp1,
13002 					    ire->ire_gateway_addr);
13003 				}
13004 				ire_refrele(src_ire);
13005 			}
13006 		}
13007 	}
13008 
13009 	dev_q = ire->ire_stq->q_next;
13010 	if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) {
13011 		BUMP_MIB(&ip_mib, ipInDiscards);
13012 		freemsg(mp);
13013 		ire_refrele(ire);
13014 		return;
13015 	}
13016 
13017 	ip_rput_forward(ire, ipha, mp, ill);
13018 	IRE_REFRELE(ire);
13019 	return;
13020 
13021 drop_pkt:
13022 	ire_refrele(ire);
13023 	ip2dbg(("ip_rput_forward: drop pkt\n"));
13024 	freemsg(mp);
13025 }
13026 
13027 static boolean_t
13028 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t **irep, ipha_t *ipha,
13029     ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast)
13030 {
13031 	queue_t		*q;
13032 	ire_t		*ire;
13033 	uint16_t	hcksumflags;
13034 
13035 	q = *qp;
13036 	ire = *irep;
13037 
13038 	/*
13039 	 * Clear the indication that this may have hardware
13040 	 * checksum as we are not using it for forwarding.
13041 	 */
13042 	hcksumflags = DB_CKSUMFLAGS(mp);
13043 	DB_CKSUMFLAGS(mp) = 0;
13044 
13045 	/*
13046 	 * Directed broadcast forwarding: if the packet came in over a
13047 	 * different interface then it is routed out over we can forward it.
13048 	 */
13049 	if (ipha->ipha_protocol == IPPROTO_TCP) {
13050 		ire_refrele(ire);
13051 		freemsg(mp);
13052 		BUMP_MIB(&ip_mib, ipInDiscards);
13053 		return (B_TRUE);
13054 	}
13055 	/*
13056 	 * For multicast we have set dst to be INADDR_BROADCAST
13057 	 * for delivering to all STREAMS. IRE_MARK_NORECV is really
13058 	 * only for broadcast packets.
13059 	 */
13060 	if (!CLASSD(ipha->ipha_dst)) {
13061 		ire_t *new_ire;
13062 		ipif_t *ipif;
13063 		/*
13064 		 * For ill groups, as the switch duplicates broadcasts
13065 		 * across all the ports, we need to filter out and
13066 		 * send up only one copy. There is one copy for every
13067 		 * broadcast address on each ill. Thus, we look for a
13068 		 * specific IRE on this ill and look at IRE_MARK_NORECV
13069 		 * later to see whether this ill is eligible to receive
13070 		 * them or not. ill_nominate_bcast_rcv() nominates only
13071 		 * one set of IREs for receiving.
13072 		 */
13073 
13074 		ipif = ipif_get_next_ipif(NULL, ill);
13075 		if (ipif == NULL) {
13076 			ire_refrele(ire);
13077 			freemsg(mp);
13078 			BUMP_MIB(&ip_mib, ipInDiscards);
13079 			return (B_TRUE);
13080 		}
13081 		new_ire = ire_ctable_lookup(dst, 0, 0,
13082 		    ipif, ALL_ZONES, NULL, MATCH_IRE_ILL);
13083 		ipif_refrele(ipif);
13084 
13085 		if (new_ire != NULL) {
13086 			if (new_ire->ire_marks & IRE_MARK_NORECV) {
13087 				ire_refrele(ire);
13088 				ire_refrele(new_ire);
13089 				freemsg(mp);
13090 				BUMP_MIB(&ip_mib, ipInDiscards);
13091 				return (B_TRUE);
13092 			}
13093 			/*
13094 			 * In the special case of multirouted broadcast
13095 			 * packets, we unconditionally need to "gateway"
13096 			 * them to the appropriate interface here.
13097 			 * In the normal case, this cannot happen, because
13098 			 * there is no broadcast IRE tagged with the
13099 			 * RTF_MULTIRT flag.
13100 			 */
13101 			if (new_ire->ire_flags & RTF_MULTIRT) {
13102 				ire_refrele(new_ire);
13103 				if (ire->ire_rfq != NULL) {
13104 					q = ire->ire_rfq;
13105 					*qp = q;
13106 				}
13107 			} else {
13108 				ire_refrele(ire);
13109 				ire = new_ire;
13110 			}
13111 		} else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) {
13112 			if (!ip_g_forward_directed_bcast) {
13113 				/*
13114 				 * Free the message if
13115 				 * ip_g_forward_directed_bcast is turned
13116 				 * off for non-local broadcast.
13117 				 */
13118 				ire_refrele(ire);
13119 				freemsg(mp);
13120 				BUMP_MIB(&ip_mib, ipInDiscards);
13121 				return (B_TRUE);
13122 			}
13123 		} else {
13124 			/*
13125 			 * This CGTP packet successfully passed the
13126 			 * CGTP filter, but the related CGTP
13127 			 * broadcast IRE has not been found,
13128 			 * meaning that the redundant ipif is
13129 			 * probably down. However, if we discarded
13130 			 * this packet, its duplicate would be
13131 			 * filtered out by the CGTP filter so none
13132 			 * of them would get through. So we keep
13133 			 * going with this one.
13134 			 */
13135 			ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM);
13136 			if (ire->ire_rfq != NULL) {
13137 				q = ire->ire_rfq;
13138 				*qp = q;
13139 			}
13140 		}
13141 	}
13142 	if (ip_g_forward_directed_bcast && ll_multicast == 0) {
13143 		/*
13144 		 * Verify that there are not more then one
13145 		 * IRE_BROADCAST with this broadcast address which
13146 		 * has ire_stq set.
13147 		 * TODO: simplify, loop over all IRE's
13148 		 */
13149 		ire_t	*ire1;
13150 		int	num_stq = 0;
13151 		mblk_t	*mp1;
13152 
13153 		/* Find the first one with ire_stq set */
13154 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
13155 		for (ire1 = ire; ire1 &&
13156 		    !ire1->ire_stq && ire1->ire_addr == ire->ire_addr;
13157 		    ire1 = ire1->ire_next)
13158 			;
13159 		if (ire1) {
13160 			ire_refrele(ire);
13161 			ire = ire1;
13162 			IRE_REFHOLD(ire);
13163 		}
13164 
13165 		/* Check if there are additional ones with stq set */
13166 		for (ire1 = ire; ire1; ire1 = ire1->ire_next) {
13167 			if (ire->ire_addr != ire1->ire_addr)
13168 				break;
13169 			if (ire1->ire_stq) {
13170 				num_stq++;
13171 				break;
13172 			}
13173 		}
13174 		rw_exit(&ire->ire_bucket->irb_lock);
13175 		if (num_stq == 1 && ire->ire_stq != NULL) {
13176 			ip1dbg(("ip_rput_process_broadcast: directed "
13177 			    "broadcast to 0x%x\n",
13178 			    ntohl(ire->ire_addr)));
13179 			mp1 = copymsg(mp);
13180 			if (mp1) {
13181 				switch (ipha->ipha_protocol) {
13182 				case IPPROTO_UDP:
13183 					ip_udp_input(q, mp1, ipha, ire, ill);
13184 					break;
13185 				default:
13186 					ip_proto_input(q, mp1, ipha, ire, ill);
13187 					break;
13188 				}
13189 			}
13190 			/*
13191 			 * Adjust ttl to 2 (1+1 - the forward engine
13192 			 * will decrement it by one.
13193 			 */
13194 			if (ip_csum_hdr(ipha)) {
13195 				BUMP_MIB(&ip_mib, ipInCksumErrs);
13196 				ip2dbg(("ip_rput_broadcast:drop pkt\n"));
13197 				freemsg(mp);
13198 				ire_refrele(ire);
13199 				return (B_TRUE);
13200 			}
13201 			ipha->ipha_ttl = ip_broadcast_ttl + 1;
13202 			ipha->ipha_hdr_checksum = 0;
13203 			ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
13204 			ip_rput_process_forward(q, mp, ire, ipha,
13205 			    ill, ll_multicast);
13206 			return (B_TRUE);
13207 		}
13208 		ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n",
13209 		    ntohl(ire->ire_addr)));
13210 	}
13211 
13212 	*irep = ire;
13213 
13214 	/* Restore any hardware checksum flags */
13215 	DB_CKSUMFLAGS(mp) = hcksumflags;
13216 	return (B_FALSE);
13217 }
13218 
13219 /* ARGSUSED */
13220 static boolean_t
13221 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha,
13222     int *ll_multicast, ipaddr_t *dstp)
13223 {
13224 	/*
13225 	 * Forward packets only if we have joined the allmulti
13226 	 * group on this interface.
13227 	 */
13228 	if (ip_g_mrouter && ill->ill_join_allmulti) {
13229 		int retval;
13230 
13231 		/*
13232 		 * Clear the indication that this may have hardware
13233 		 * checksum as we are not using it.
13234 		 */
13235 		DB_CKSUMFLAGS(mp) = 0;
13236 		retval = ip_mforward(ill, ipha, mp);
13237 		/* ip_mforward updates mib variables if needed */
13238 		/* clear b_prev - used by ip_mroute_decap */
13239 		mp->b_prev = NULL;
13240 
13241 		switch (retval) {
13242 		case 0:
13243 			/*
13244 			 * pkt is okay and arrived on phyint.
13245 			 *
13246 			 * If we are running as a multicast router
13247 			 * we need to see all IGMP and/or PIM packets.
13248 			 */
13249 			if ((ipha->ipha_protocol == IPPROTO_IGMP) ||
13250 			    (ipha->ipha_protocol == IPPROTO_PIM)) {
13251 				goto done;
13252 			}
13253 			break;
13254 		case -1:
13255 			/* pkt is mal-formed, toss it */
13256 			goto drop_pkt;
13257 		case 1:
13258 			/* pkt is okay and arrived on a tunnel */
13259 			/*
13260 			 * If we are running a multicast router
13261 			 *  we need to see all igmp packets.
13262 			 */
13263 			if (ipha->ipha_protocol == IPPROTO_IGMP) {
13264 				*dstp = INADDR_BROADCAST;
13265 				*ll_multicast = 1;
13266 				return (B_FALSE);
13267 			}
13268 
13269 			goto drop_pkt;
13270 		}
13271 	}
13272 
13273 	ILM_WALKER_HOLD(ill);
13274 	if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) {
13275 		/*
13276 		 * This might just be caused by the fact that
13277 		 * multiple IP Multicast addresses map to the same
13278 		 * link layer multicast - no need to increment counter!
13279 		 */
13280 		ILM_WALKER_RELE(ill);
13281 		freemsg(mp);
13282 		return (B_TRUE);
13283 	}
13284 	ILM_WALKER_RELE(ill);
13285 done:
13286 	ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp)));
13287 	/*
13288 	 * This assumes the we deliver to all streams for multicast
13289 	 * and broadcast packets.
13290 	 */
13291 	*dstp = INADDR_BROADCAST;
13292 	*ll_multicast = 1;
13293 	return (B_FALSE);
13294 drop_pkt:
13295 	ip2dbg(("ip_rput: drop pkt\n"));
13296 	freemsg(mp);
13297 	return (B_TRUE);
13298 }
13299 
13300 static boolean_t
13301 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill,
13302     int *ll_multicast, mblk_t **mpp)
13303 {
13304 	mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp;
13305 	boolean_t must_copy = B_FALSE;
13306 	struct iocblk   *iocp;
13307 	ipha_t		*ipha;
13308 
13309 #define	rptr    ((uchar_t *)ipha)
13310 
13311 	first_mp = *first_mpp;
13312 	mp = *mpp;
13313 
13314 	ASSERT(first_mp == mp);
13315 
13316 	/*
13317 	 * if db_ref > 1 then copymsg and free original. Packet may be
13318 	 * changed and do not want other entity who has a reference to this
13319 	 * message to trip over the changes. This is a blind change because
13320 	 * trying to catch all places that might change packet is too
13321 	 * difficult (since it may be a module above this one)
13322 	 *
13323 	 * This corresponds to the non-fast path case. We walk down the full
13324 	 * chain in this case, and check the db_ref count of all the dblks,
13325 	 * and do a copymsg if required. It is possible that the db_ref counts
13326 	 * of the data blocks in the mblk chain can be different.
13327 	 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref
13328 	 * count of 1, followed by a M_DATA block with a ref count of 2, if
13329 	 * 'snoop' is running.
13330 	 */
13331 	for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
13332 		if (mp1->b_datap->db_ref > 1) {
13333 			must_copy = B_TRUE;
13334 			break;
13335 		}
13336 	}
13337 
13338 	if (must_copy) {
13339 		mp1 = copymsg(mp);
13340 		if (mp1 == NULL) {
13341 			for (mp1 = mp; mp1 != NULL;
13342 			    mp1 = mp1->b_cont) {
13343 				mp1->b_next = NULL;
13344 				mp1->b_prev = NULL;
13345 			}
13346 			freemsg(mp);
13347 			BUMP_MIB(&ip_mib, ipInDiscards);
13348 			return (B_TRUE);
13349 		}
13350 		for (from_mp = mp, to_mp = mp1; from_mp != NULL;
13351 		    from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) {
13352 			/* Copy b_next - used in M_BREAK messages */
13353 			to_mp->b_next = from_mp->b_next;
13354 			from_mp->b_next = NULL;
13355 			/* Copy b_prev - used by ip_mroute_decap */
13356 			to_mp->b_prev = from_mp->b_prev;
13357 			from_mp->b_prev = NULL;
13358 		}
13359 		*first_mpp = first_mp = mp1;
13360 		freemsg(mp);
13361 		mp = mp1;
13362 		*mpp = mp1;
13363 	}
13364 
13365 	ipha = (ipha_t *)mp->b_rptr;
13366 
13367 	/*
13368 	 * previous code has a case for M_DATA.
13369 	 * We want to check how that happens.
13370 	 */
13371 	ASSERT(first_mp->b_datap->db_type != M_DATA);
13372 	switch (first_mp->b_datap->db_type) {
13373 	case M_PROTO:
13374 	case M_PCPROTO:
13375 		if (((dl_unitdata_ind_t *)rptr)->dl_primitive !=
13376 		    DL_UNITDATA_IND) {
13377 			/* Go handle anything other than data elsewhere. */
13378 			ip_rput_dlpi(q, mp);
13379 			return (B_TRUE);
13380 		}
13381 		*ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address;
13382 		/* Ditch the DLPI header. */
13383 		mp1 = mp->b_cont;
13384 		ASSERT(first_mp == mp);
13385 		*first_mpp = mp1;
13386 		freeb(mp);
13387 		*mpp = mp1;
13388 		return (B_FALSE);
13389 	case M_BREAK:
13390 		/*
13391 		 * A packet arrives as M_BREAK following a cycle through
13392 		 * ip_rput, ip_newroute, ... and finally ire_add_then_send.
13393 		 * This is an IP datagram sans lower level header.
13394 		 * M_BREAK are also used to pass back in multicast packets
13395 		 * that are encapsulated with a source route.
13396 		 */
13397 		/* Ditch the M_BREAK mblk */
13398 		mp1 = mp->b_cont;
13399 		ASSERT(first_mp == mp);
13400 		*first_mpp = mp1;
13401 		freeb(mp);
13402 		mp = mp1;
13403 		mp->b_next = NULL;
13404 		*mpp = mp;
13405 		*ll_multicast = 0;
13406 		return (B_FALSE);
13407 	case M_IOCACK:
13408 		ip1dbg(("got iocack "));
13409 		iocp = (struct iocblk *)mp->b_rptr;
13410 		switch (iocp->ioc_cmd) {
13411 		case DL_IOC_HDR_INFO:
13412 			ill = (ill_t *)q->q_ptr;
13413 			ill_fastpath_ack(ill, mp);
13414 			return (B_TRUE);
13415 		case SIOCSTUNPARAM:
13416 		case OSIOCSTUNPARAM:
13417 			/* Go through qwriter_ip */
13418 			break;
13419 		case SIOCGTUNPARAM:
13420 		case OSIOCGTUNPARAM:
13421 			ip_rput_other(NULL, q, mp, NULL);
13422 			return (B_TRUE);
13423 		default:
13424 			putnext(q, mp);
13425 			return (B_TRUE);
13426 		}
13427 		/* FALLTHRU */
13428 	case M_ERROR:
13429 	case M_HANGUP:
13430 		/*
13431 		 * Since this is on the ill stream we unconditionally
13432 		 * bump up the refcount
13433 		 */
13434 		ill_refhold(ill);
13435 		(void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP,
13436 		    B_FALSE);
13437 		return (B_TRUE);
13438 	case M_CTL:
13439 		if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) &&
13440 		    (((da_ipsec_t *)first_mp->b_rptr)->da_type ==
13441 			IPHADA_M_CTL)) {
13442 			/*
13443 			 * It's an IPsec accelerated packet.
13444 			 * Make sure that the ill from which we received the
13445 			 * packet has enabled IPsec hardware acceleration.
13446 			 */
13447 			if (!(ill->ill_capabilities &
13448 			    (ILL_CAPAB_AH|ILL_CAPAB_ESP))) {
13449 				/* IPsec kstats: bean counter */
13450 				freemsg(mp);
13451 				return (B_TRUE);
13452 			}
13453 
13454 			/*
13455 			 * Make mp point to the mblk following the M_CTL,
13456 			 * then process according to type of mp.
13457 			 * After this processing, first_mp will point to
13458 			 * the data-attributes and mp to the pkt following
13459 			 * the M_CTL.
13460 			 */
13461 			mp = first_mp->b_cont;
13462 			if (mp == NULL) {
13463 				freemsg(first_mp);
13464 				return (B_TRUE);
13465 			}
13466 			/*
13467 			 * A Hardware Accelerated packet can only be M_DATA
13468 			 * ESP or AH packet.
13469 			 */
13470 			if (mp->b_datap->db_type != M_DATA) {
13471 				/* non-M_DATA IPsec accelerated packet */
13472 				IPSECHW_DEBUG(IPSECHW_PKT,
13473 				    ("non-M_DATA IPsec accelerated pkt\n"));
13474 				freemsg(first_mp);
13475 				return (B_TRUE);
13476 			}
13477 			ipha = (ipha_t *)mp->b_rptr;
13478 			if (ipha->ipha_protocol != IPPROTO_AH &&
13479 			    ipha->ipha_protocol != IPPROTO_ESP) {
13480 				IPSECHW_DEBUG(IPSECHW_PKT,
13481 				    ("non-M_DATA IPsec accelerated pkt\n"));
13482 				freemsg(first_mp);
13483 				return (B_TRUE);
13484 			}
13485 			*mpp = mp;
13486 			return (B_FALSE);
13487 		}
13488 		putnext(q, mp);
13489 		return (B_TRUE);
13490 	case M_FLUSH:
13491 		if (*mp->b_rptr & FLUSHW) {
13492 			*mp->b_rptr &= ~FLUSHR;
13493 			qreply(q, mp);
13494 			return (B_TRUE);
13495 		}
13496 		freemsg(mp);
13497 		return (B_TRUE);
13498 	case M_IOCNAK:
13499 		ip1dbg(("got iocnak "));
13500 		iocp = (struct iocblk *)mp->b_rptr;
13501 		switch (iocp->ioc_cmd) {
13502 		case DL_IOC_HDR_INFO:
13503 		case SIOCSTUNPARAM:
13504 		case OSIOCSTUNPARAM:
13505 			/*
13506 			 * Since this is on the ill stream we unconditionally
13507 			 * bump up the refcount
13508 			 */
13509 			ill_refhold(ill);
13510 			(void) qwriter_ip(NULL, ill, q, mp, ip_rput_other,
13511 			    CUR_OP, B_FALSE);
13512 			return (B_TRUE);
13513 		case SIOCGTUNPARAM:
13514 		case OSIOCGTUNPARAM:
13515 			ip_rput_other(NULL, q, mp, NULL);
13516 			return (B_TRUE);
13517 		default:
13518 			break;
13519 		}
13520 		/* FALLTHRU */
13521 	default:
13522 		putnext(q, mp);
13523 		return (B_TRUE);
13524 	}
13525 }
13526 
13527 /* Read side put procedure.  Packets coming from the wire arrive here. */
13528 void
13529 ip_rput(queue_t *q, mblk_t *mp)
13530 {
13531 	ill_t		*ill;
13532 
13533 	TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q);
13534 
13535 	ill = (ill_t *)q->q_ptr;
13536 
13537 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
13538 		union DL_primitives *dl;
13539 
13540 		/*
13541 		 * Things are opening or closing. Only accept DLPI control
13542 		 * messages. In the open case, the ill->ill_ipif has not yet
13543 		 * been created. In the close case, things hanging off the
13544 		 * ill could have been freed already. In either case it
13545 		 * may not be safe to proceed further.
13546 		 */
13547 
13548 		dl = (union DL_primitives *)mp->b_rptr;
13549 		if ((mp->b_datap->db_type != M_PCPROTO) ||
13550 		    (dl->dl_primitive == DL_UNITDATA_IND)) {
13551 			/*
13552 			 * Also SIOC[GS]TUN* ioctls can come here.
13553 			 */
13554 			inet_freemsg(mp);
13555 			TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
13556 			    "ip_input_end: q %p (%S)", q, "uninit");
13557 			return;
13558 		}
13559 	}
13560 
13561 	/*
13562 	 * if db_ref > 1 then copymsg and free original. Packet may be
13563 	 * changed and we do not want the other entity who has a reference to
13564 	 * this message to trip over the changes. This is a blind change because
13565 	 * trying to catch all places that might change the packet is too
13566 	 * difficult.
13567 	 *
13568 	 * This corresponds to the fast path case, where we have a chain of
13569 	 * M_DATA mblks.  We check the db_ref count of only the 1st data block
13570 	 * in the mblk chain. There doesn't seem to be a reason why a device
13571 	 * driver would send up data with varying db_ref counts in the mblk
13572 	 * chain. In any case the Fast path is a private interface, and our
13573 	 * drivers don't do such a thing. Given the above assumption, there is
13574 	 * no need to walk down the entire mblk chain (which could have a
13575 	 * potential performance problem)
13576 	 */
13577 	if (mp->b_datap->db_ref > 1) {
13578 		mblk_t  *mp1;
13579 		boolean_t adjusted = B_FALSE;
13580 		IP_STAT(ip_db_ref);
13581 
13582 		/*
13583 		 * The IP_RECVSLLA option depends on having the link layer
13584 		 * header. First check that:
13585 		 * a> the underlying device is of type ether, since this
13586 		 * option is currently supported only over ethernet.
13587 		 * b> there is enough room to copy over the link layer header.
13588 		 *
13589 		 * Once the checks are done, adjust rptr so that the link layer
13590 		 * header will be copied via copymsg. Note that, IFT_ETHER may
13591 		 * be returned by some non-ethernet drivers but in this case the
13592 		 * second check will fail.
13593 		 */
13594 		if (ill->ill_type == IFT_ETHER &&
13595 		    (mp->b_rptr - mp->b_datap->db_base) >=
13596 		    sizeof (struct ether_header)) {
13597 			mp->b_rptr -= sizeof (struct ether_header);
13598 			adjusted = B_TRUE;
13599 		}
13600 		mp1 = copymsg(mp);
13601 		if (mp1 == NULL) {
13602 			/* Clear b_next - used in M_BREAK messages */
13603 			mp->b_next = NULL;
13604 			/* clear b_prev - used by ip_mroute_decap */
13605 			mp->b_prev = NULL;
13606 			freemsg(mp);
13607 			BUMP_MIB(&ip_mib, ipInDiscards);
13608 			TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
13609 			    "ip_rput_end: q %p (%S)", q, "copymsg");
13610 			return;
13611 		}
13612 		if (adjusted) {
13613 			/*
13614 			 * Copy is done. Restore the pointer in the _new_ mblk
13615 			 */
13616 			mp1->b_rptr += sizeof (struct ether_header);
13617 		}
13618 		/* Copy b_next - used in M_BREAK messages */
13619 		mp1->b_next = mp->b_next;
13620 		mp->b_next = NULL;
13621 		/* Copy b_prev - used by ip_mroute_decap */
13622 		mp1->b_prev = mp->b_prev;
13623 		mp->b_prev = NULL;
13624 		freemsg(mp);
13625 		mp = mp1;
13626 	}
13627 
13628 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
13629 	    "ip_rput_end: q %p (%S)", q, "end");
13630 
13631 	ip_input(ill, NULL, mp, 0);
13632 }
13633 
13634 /*
13635  * Direct read side procedure capable of dealing with chains. GLDv3 based
13636  * drivers call this function directly with mblk chains while STREAMS
13637  * read side procedure ip_rput() calls this for single packet with ip_ring
13638  * set to NULL to process one packet at a time.
13639  *
13640  * The ill will always be valid if this function is called directly from
13641  * the driver.
13642  */
13643 /*ARGSUSED*/
13644 void
13645 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, size_t hdrlen)
13646 {
13647 	ipaddr_t		dst;
13648 	ire_t			*ire;
13649 	ipha_t			*ipha;
13650 	uint_t			pkt_len;
13651 	ssize_t			len;
13652 	uint_t			opt_len;
13653 	int			ll_multicast;
13654 	int			cgtp_flt_pkt;
13655 	queue_t			*q = ill->ill_rq;
13656 	squeue_t		*curr_sqp = NULL;
13657 	mblk_t 			*head = NULL;
13658 	mblk_t			*tail = NULL;
13659 	mblk_t			*first_mp;
13660 	mblk_t 			*mp;
13661 	int			cnt = 0;
13662 
13663 	ASSERT(mp_chain != NULL);
13664 	ASSERT(ill != NULL);
13665 
13666 	TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q);
13667 
13668 #define	rptr	((uchar_t *)ipha)
13669 
13670 	while (mp_chain != NULL) {
13671 		first_mp = mp = mp_chain;
13672 		mp_chain = mp_chain->b_next;
13673 		mp->b_next = NULL;
13674 		ll_multicast = 0;
13675 		ire = NULL;
13676 
13677 		/*
13678 		 * ip_input fast path
13679 		 */
13680 
13681 		/* mblk type is not M_DATA */
13682 		if (mp->b_datap->db_type != M_DATA) {
13683 			if (ip_rput_process_notdata(q, &first_mp, ill,
13684 			    &ll_multicast, &mp))
13685 				continue;
13686 		}
13687 
13688 		ASSERT(mp->b_datap->db_type == M_DATA);
13689 		ASSERT(mp->b_datap->db_ref == 1);
13690 
13691 
13692 		ipha = (ipha_t *)mp->b_rptr;
13693 		len = mp->b_wptr - rptr;
13694 
13695 		BUMP_MIB(&ip_mib, ipInReceives);
13696 
13697 		/*
13698 		 * IP header ptr not aligned?
13699 		 * OR IP header not complete in first mblk
13700 		 */
13701 		if (!OK_32PTR(rptr) || len < IP_SIMPLE_HDR_LENGTH) {
13702 			if (!ip_check_and_align_header(q, mp))
13703 				continue;
13704 			ipha = (ipha_t *)mp->b_rptr;
13705 			len = mp->b_wptr - rptr;
13706 		}
13707 
13708 		/* multiple mblk or too short */
13709 		pkt_len = ntohs(ipha->ipha_length);
13710 		len -= pkt_len;
13711 		if (len != 0) {
13712 			/*
13713 			 * Make sure we have data length consistent
13714 			 * with the IP header.
13715 			 */
13716 			if (mp->b_cont == NULL) {
13717 				if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) {
13718 					BUMP_MIB(&ip_mib, ipInHdrErrors);
13719 					ip2dbg(("ip_input: drop pkt\n"));
13720 					freemsg(mp);
13721 					continue;
13722 				}
13723 				mp->b_wptr = rptr + pkt_len;
13724 			} else if (len += msgdsize(mp->b_cont)) {
13725 				if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) {
13726 					BUMP_MIB(&ip_mib, ipInHdrErrors);
13727 					ip2dbg(("ip_input: drop pkt\n"));
13728 					freemsg(mp);
13729 					continue;
13730 				}
13731 				(void) adjmsg(mp, -len);
13732 				IP_STAT(ip_multimblk3);
13733 			}
13734 		}
13735 
13736 		if (ip_loopback_src_or_dst(ipha, ill)) {
13737 			ip2dbg(("ip_input: drop pkt\n"));
13738 			freemsg(mp);
13739 			continue;
13740 		}
13741 
13742 		/*
13743 		 * Attach any necessary label information to this packet.
13744 		 */
13745 		if (is_system_labeled() &&
13746 		    !tsol_get_pkt_label(mp, IPV4_VERSION)) {
13747 			BUMP_MIB(&ip_mib, ipInDiscards);
13748 			freemsg(mp);
13749 			continue;
13750 		}
13751 
13752 		opt_len = ipha->ipha_version_and_hdr_length -
13753 		    IP_SIMPLE_HDR_VERSION;
13754 		/* IP version bad or there are IP options */
13755 		if (opt_len) {
13756 			if (len != 0)
13757 				IP_STAT(ip_multimblk4);
13758 			else
13759 				IP_STAT(ip_ipoptions);
13760 			if (!ip_rput_multimblk_ipoptions(q, mp, &ipha, &dst))
13761 				continue;
13762 		} else {
13763 			dst = ipha->ipha_dst;
13764 		}
13765 
13766 		/*
13767 		 * Invoke the CGTP (multirouting) filtering module to process
13768 		 * the incoming packet. Packets identified as duplicates
13769 		 * must be discarded. Filtering is active only if the
13770 		 * the ip_cgtp_filter ndd variable is non-zero.
13771 		 */
13772 		cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP;
13773 		if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) {
13774 			cgtp_flt_pkt =
13775 			    ip_cgtp_filter_ops->cfo_filter(q, mp);
13776 			if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) {
13777 				freemsg(first_mp);
13778 				continue;
13779 			}
13780 		}
13781 
13782 		/*
13783 		 * If rsvpd is running, let RSVP daemon handle its processing
13784 		 * and forwarding of RSVP multicast/unicast packets.
13785 		 * If rsvpd is not running but mrouted is running, RSVP
13786 		 * multicast packets are forwarded as multicast traffic
13787 		 * and RSVP unicast packets are forwarded by unicast router.
13788 		 * If neither rsvpd nor mrouted is running, RSVP multicast
13789 		 * packets are not forwarded, but the unicast packets are
13790 		 * forwarded like unicast traffic.
13791 		 */
13792 		if (ipha->ipha_protocol == IPPROTO_RSVP &&
13793 		    ipcl_proto_search(IPPROTO_RSVP) != NULL) {
13794 			/* RSVP packet and rsvpd running. Treat as ours */
13795 			ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst)));
13796 			/*
13797 			 * This assumes that we deliver to all streams for
13798 			 * multicast and broadcast packets.
13799 			 * We have to force ll_multicast to 1 to handle the
13800 			 * M_DATA messages passed in from ip_mroute_decap.
13801 			 */
13802 			dst = INADDR_BROADCAST;
13803 			ll_multicast = 1;
13804 		} else if (CLASSD(dst)) {
13805 			/* packet is multicast */
13806 			mp->b_next = NULL;
13807 			if (ip_rput_process_multicast(q, mp, ill, ipha,
13808 			    &ll_multicast, &dst))
13809 				continue;
13810 		}
13811 
13812 
13813 		/*
13814 		 * Check if the packet is coming from the Mobile IP
13815 		 * forward tunnel interface
13816 		 */
13817 		if (ill->ill_srcif_refcnt > 0) {
13818 			ire = ire_srcif_table_lookup(dst, IRE_INTERFACE,
13819 			    NULL, ill, MATCH_IRE_TYPE);
13820 			if (ire != NULL && ire->ire_dlureq_mp == NULL &&
13821 			    ire->ire_ipif->ipif_net_type ==
13822 			    IRE_IF_RESOLVER) {
13823 				/* We need to resolve the link layer info */
13824 				ire_refrele(ire);
13825 				ip_rput_noire(q, (ill_t *)q->q_ptr, mp,
13826 				    ll_multicast, dst);
13827 				continue;
13828 			}
13829 		}
13830 
13831 		if (ire == NULL) {
13832 			ire = ire_cache_lookup(dst, ALL_ZONES,
13833 			    MBLK_GETLABEL(mp));
13834 		}
13835 
13836 		/*
13837 		 * If mipagent is running and reverse tunnel is created as per
13838 		 * mobile node request, then any packet coming through the
13839 		 * incoming interface from the mobile-node, should be reverse
13840 		 * tunneled to it's home agent except those that are destined
13841 		 * to foreign agent only.
13842 		 * This needs source address based ire lookup. The routing
13843 		 * entries for source address based lookup are only created by
13844 		 * mipagent program only when a reverse tunnel is created.
13845 		 * Reference : RFC2002, RFC2344
13846 		 */
13847 		if (ill->ill_mrtun_refcnt > 0) {
13848 			ipaddr_t	srcaddr;
13849 			ire_t		*tmp_ire;
13850 
13851 			tmp_ire = ire;	/* Save, we might need it later */
13852 			if (ire == NULL || (ire->ire_type != IRE_LOCAL &&
13853 			    ire->ire_type != IRE_BROADCAST)) {
13854 				srcaddr = ipha->ipha_src;
13855 				ire = ire_mrtun_lookup(srcaddr, ill);
13856 				if (ire != NULL) {
13857 					/*
13858 					 * Should not be getting iphada packet
13859 					 * here. we should only get those for
13860 					 * IRE_LOCAL traffic, excluded above.
13861 					 * Fail-safe (drop packet) in the event
13862 					 * hardware is misbehaving.
13863 					 */
13864 					if (first_mp != mp) {
13865 						/* IPsec KSTATS: beancount me */
13866 						freemsg(first_mp);
13867 					} else {
13868 						/*
13869 						 * This packet must be forwarded
13870 						 * to Reverse Tunnel
13871 						 */
13872 						ip_mrtun_forward(ire, ill, mp);
13873 					}
13874 					ire_refrele(ire);
13875 					if (tmp_ire != NULL)
13876 						ire_refrele(tmp_ire);
13877 					TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
13878 					    "ip_input_end: q %p (%S)",
13879 					    q, "uninit");
13880 					continue;
13881 				}
13882 			}
13883 			/*
13884 			 * If this packet is from a non-mobilenode  or a
13885 			 * mobile-node which does not request reverse
13886 			 * tunnel service
13887 			 */
13888 			ire = tmp_ire;
13889 		}
13890 
13891 
13892 		/*
13893 		 * If we reach here that means the incoming packet satisfies
13894 		 * one of the following conditions:
13895 		 *   - packet is from a mobile node which does not request
13896 		 *	reverse tunnel
13897 		 *   - packet is from a non-mobile node, which is the most
13898 		 *	common case
13899 		 *   - packet is from a reverse tunnel enabled mobile node
13900 		 *	and destined to foreign agent only
13901 		 */
13902 
13903 		if (ire == NULL) {
13904 			/*
13905 			 * No IRE for this destination, so it can't be for us.
13906 			 * Unless we are forwarding, drop the packet.
13907 			 * We have to let source routed packets through
13908 			 * since we don't yet know if they are 'ping -l'
13909 			 * packets i.e. if they will go out over the
13910 			 * same interface as they came in on.
13911 			 */
13912 			ip_rput_noire(q, NULL, mp, ll_multicast, dst);
13913 			continue;
13914 		}
13915 
13916 		/*
13917 		 * Broadcast IRE may indicate either broadcast or
13918 		 * multicast packet
13919 		 */
13920 		if (ire->ire_type == IRE_BROADCAST) {
13921 			/*
13922 			 * Skip broadcast checks if packet is UDP multicast;
13923 			 * we'd rather not enter ip_rput_process_broadcast()
13924 			 * unless the packet is broadcast for real, since
13925 			 * that routine is a no-op for multicast.
13926 			 */
13927 			if ((ipha->ipha_protocol != IPPROTO_UDP ||
13928 			    !CLASSD(ipha->ipha_dst)) &&
13929 			    ip_rput_process_broadcast(&q, mp, &ire, ipha, ill,
13930 			    dst, cgtp_flt_pkt, ll_multicast)) {
13931 				continue;
13932 			}
13933 		} else if (ire->ire_stq != NULL) {
13934 			/* fowarding? */
13935 			ip_rput_process_forward(q, mp, ire, ipha, ill,
13936 			    ll_multicast);
13937 			continue;
13938 		}
13939 
13940 		/* packet not for us */
13941 		if (ire->ire_rfq != q) {
13942 			if (ip_rput_notforus(&q, mp, ire, ill)) {
13943 				continue;
13944 			}
13945 		}
13946 
13947 		switch (ipha->ipha_protocol) {
13948 		case IPPROTO_TCP:
13949 			ASSERT(first_mp == mp);
13950 			if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire,
13951 				mp, 0, q, ip_ring)) != NULL) {
13952 				if (curr_sqp == NULL) {
13953 					curr_sqp = GET_SQUEUE(mp);
13954 					ASSERT(cnt == 0);
13955 					cnt++;
13956 					head = tail = mp;
13957 				} else if (curr_sqp == GET_SQUEUE(mp)) {
13958 					ASSERT(tail != NULL);
13959 					cnt++;
13960 					tail->b_next = mp;
13961 					tail = mp;
13962 				} else {
13963 					/*
13964 					 * A different squeue. Send the
13965 					 * chain for the previous squeue on
13966 					 * its way. This shouldn't happen
13967 					 * often unless interrupt binding
13968 					 * changes.
13969 					 */
13970 					IP_STAT(ip_input_multi_squeue);
13971 					squeue_enter_chain(curr_sqp, head,
13972 					    tail, cnt, SQTAG_IP_INPUT);
13973 					curr_sqp = GET_SQUEUE(mp);
13974 					head = mp;
13975 					tail = mp;
13976 					cnt = 1;
13977 				}
13978 			}
13979 			IRE_REFRELE(ire);
13980 			continue;
13981 		case IPPROTO_UDP:
13982 			ASSERT(first_mp == mp);
13983 			ip_udp_input(q, mp, ipha, ire, ill);
13984 			IRE_REFRELE(ire);
13985 			continue;
13986 		case IPPROTO_SCTP:
13987 			ASSERT(first_mp == mp);
13988 			ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0,
13989 			    q, dst);
13990 			continue;
13991 		default:
13992 			ip_proto_input(q, first_mp, ipha, ire, ill);
13993 			IRE_REFRELE(ire);
13994 			continue;
13995 		}
13996 	}
13997 
13998 	if (head != NULL)
13999 		squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT);
14000 
14001 	/*
14002 	 * This code is there just to make netperf/ttcp look good.
14003 	 *
14004 	 * Its possible that after being in polling mode (and having cleared
14005 	 * the backlog), squeues have turned the interrupt frequency higher
14006 	 * to improve latency at the expense of more CPU utilization (less
14007 	 * packets per interrupts or more number of interrupts). Workloads
14008 	 * like ttcp/netperf do manage to tickle polling once in a while
14009 	 * but for the remaining time, stay in higher interrupt mode since
14010 	 * their packet arrival rate is pretty uniform and this shows up
14011 	 * as higher CPU utilization. Since people care about CPU utilization
14012 	 * while running netperf/ttcp, turn the interrupt frequency back to
14013 	 * normal/default if polling has not been used in ip_poll_normal_ticks.
14014 	 */
14015 	if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) {
14016 		if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) {
14017 			ip_ring->rr_poll_state &= ~ILL_POLLING;
14018 			ip_ring->rr_blank(ip_ring->rr_handle,
14019 			    ip_ring->rr_normal_blank_time,
14020 			    ip_ring->rr_normal_pkt_cnt);
14021 		}
14022 	}
14023 
14024 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
14025 	    "ip_input_end: q %p (%S)", q, "end");
14026 #undef	rptr
14027 }
14028 
14029 static void
14030 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
14031     t_uscalar_t err)
14032 {
14033 	if (dl_err == DL_SYSERR) {
14034 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
14035 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
14036 		    ill->ill_name, dlpi_prim_str(prim), err);
14037 		return;
14038 	}
14039 
14040 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
14041 	    "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim),
14042 	    dlpi_err_str(dl_err));
14043 }
14044 
14045 /*
14046  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
14047  * than DL_UNITDATA_IND messages. If we need to process this message
14048  * exclusively, we call qwriter_ip, in which case we also need to call
14049  * ill_refhold before that, since qwriter_ip does an ill_refrele.
14050  */
14051 void
14052 ip_rput_dlpi(queue_t *q, mblk_t *mp)
14053 {
14054 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
14055 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
14056 	ill_t		*ill;
14057 
14058 	ip1dbg(("ip_rput_dlpi"));
14059 	ill = (ill_t *)q->q_ptr;
14060 	switch (dloa->dl_primitive) {
14061 	case DL_ERROR_ACK:
14062 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): "
14063 		    "%s (0x%x), unix %u\n", ill->ill_name,
14064 		    dlpi_prim_str(dlea->dl_error_primitive),
14065 		    dlea->dl_error_primitive,
14066 		    dlpi_err_str(dlea->dl_errno),
14067 		    dlea->dl_errno,
14068 		    dlea->dl_unix_errno));
14069 		switch (dlea->dl_error_primitive) {
14070 		case DL_UNBIND_REQ:
14071 			mutex_enter(&ill->ill_lock);
14072 			ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
14073 			cv_signal(&ill->ill_cv);
14074 			mutex_exit(&ill->ill_lock);
14075 			/* FALLTHRU */
14076 		case DL_NOTIFY_REQ:
14077 		case DL_ATTACH_REQ:
14078 		case DL_DETACH_REQ:
14079 		case DL_INFO_REQ:
14080 		case DL_BIND_REQ:
14081 		case DL_ENABMULTI_REQ:
14082 		case DL_PHYS_ADDR_REQ:
14083 		case DL_CAPABILITY_REQ:
14084 		case DL_CONTROL_REQ:
14085 			/*
14086 			 * Refhold the ill to match qwriter_ip which does a
14087 			 * refrele. Since this is on the ill stream we
14088 			 * unconditionally bump up the refcount without
14089 			 * checking for ILL_CAN_LOOKUP
14090 			 */
14091 			ill_refhold(ill);
14092 			(void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
14093 			    CUR_OP, B_FALSE);
14094 			return;
14095 		case DL_DISABMULTI_REQ:
14096 			freemsg(mp);	/* Don't want to pass this up */
14097 			return;
14098 		default:
14099 			break;
14100 		}
14101 		ip_dlpi_error(ill, dlea->dl_error_primitive,
14102 		    dlea->dl_errno, dlea->dl_unix_errno);
14103 		freemsg(mp);
14104 		return;
14105 	case DL_INFO_ACK:
14106 	case DL_BIND_ACK:
14107 	case DL_PHYS_ADDR_ACK:
14108 	case DL_NOTIFY_ACK:
14109 	case DL_CAPABILITY_ACK:
14110 	case DL_CONTROL_ACK:
14111 		/*
14112 		 * Refhold the ill to match qwriter_ip which does a refrele
14113 		 * Since this is on the ill stream we unconditionally
14114 		 * bump up the refcount without doing ILL_CAN_LOOKUP.
14115 		 */
14116 		ill_refhold(ill);
14117 		(void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
14118 		    CUR_OP, B_FALSE);
14119 		return;
14120 	case DL_NOTIFY_IND:
14121 		ill_refhold(ill);
14122 		/*
14123 		 * The DL_NOTIFY_IND is an asynchronous message that has no
14124 		 * relation to the current ioctl in progress (if any). Hence we
14125 		 * pass in NEW_OP in this case.
14126 		 */
14127 		(void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
14128 		    NEW_OP, B_FALSE);
14129 		return;
14130 	case DL_OK_ACK:
14131 		ip1dbg(("ip_rput: DL_OK_ACK for %s\n",
14132 		    dlpi_prim_str((int)dloa->dl_correct_primitive)));
14133 		switch (dloa->dl_correct_primitive) {
14134 		case DL_UNBIND_REQ:
14135 			mutex_enter(&ill->ill_lock);
14136 			ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
14137 			cv_signal(&ill->ill_cv);
14138 			mutex_exit(&ill->ill_lock);
14139 			/* FALLTHRU */
14140 		case DL_ATTACH_REQ:
14141 		case DL_DETACH_REQ:
14142 			/*
14143 			 * Refhold the ill to match qwriter_ip which does a
14144 			 * refrele. Since this is on the ill stream we
14145 			 * unconditionally bump up the refcount
14146 			 */
14147 			ill_refhold(ill);
14148 			qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
14149 			    CUR_OP, B_FALSE);
14150 			return;
14151 		case DL_ENABMULTI_REQ:
14152 			if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS)
14153 				ill->ill_dlpi_multicast_state = IDMS_OK;
14154 			break;
14155 
14156 		}
14157 		break;
14158 	default:
14159 		break;
14160 	}
14161 	freemsg(mp);
14162 }
14163 
14164 /*
14165  * Handling of DLPI messages that require exclusive access to the ipsq.
14166  *
14167  * Need to do ill_pending_mp_release on ioctl completion, which could
14168  * happen here. (along with mi_copy_done)
14169  */
14170 /* ARGSUSED */
14171 static void
14172 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
14173 {
14174 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
14175 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
14176 	int		err = 0;
14177 	ill_t		*ill;
14178 	ipif_t		*ipif = NULL;
14179 	mblk_t		*mp1 = NULL;
14180 	conn_t		*connp = NULL;
14181 	t_uscalar_t	physaddr_req;
14182 	mblk_t		*mp_hw;
14183 	union DL_primitives *dlp;
14184 	boolean_t	success;
14185 	boolean_t	ioctl_aborted = B_FALSE;
14186 	boolean_t	log = B_TRUE;
14187 
14188 	ip1dbg(("ip_rput_dlpi_writer .."));
14189 	ill = (ill_t *)q->q_ptr;
14190 	ASSERT(ipsq == ill->ill_phyint->phyint_ipsq);
14191 
14192 	ASSERT(IAM_WRITER_ILL(ill));
14193 
14194 	/*
14195 	 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e.
14196 	 * both are null or non-null. However we can assert that only
14197 	 * after grabbing the ipsq_lock. So we don't make any assertion
14198 	 * here and in other places in the code.
14199 	 */
14200 	ipif = ipsq->ipsq_pending_ipif;
14201 	/*
14202 	 * The current ioctl could have been aborted by the user and a new
14203 	 * ioctl to bring up another ill could have started. We could still
14204 	 * get a response from the driver later.
14205 	 */
14206 	if (ipif != NULL && ipif->ipif_ill != ill)
14207 		ioctl_aborted = B_TRUE;
14208 
14209 	switch (dloa->dl_primitive) {
14210 	case DL_ERROR_ACK:
14211 		switch (dlea->dl_error_primitive) {
14212 		case DL_UNBIND_REQ:
14213 		case DL_ATTACH_REQ:
14214 		case DL_DETACH_REQ:
14215 		case DL_INFO_REQ:
14216 			ill_dlpi_done(ill, dlea->dl_error_primitive);
14217 			break;
14218 		case DL_NOTIFY_REQ:
14219 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
14220 			log = B_FALSE;
14221 			break;
14222 		case DL_PHYS_ADDR_REQ:
14223 			/*
14224 			 * For IPv6 only, there are two additional
14225 			 * phys_addr_req's sent to the driver to get the
14226 			 * IPv6 token and lla. This allows IP to acquire
14227 			 * the hardware address format for a given interface
14228 			 * without having built in knowledge of the hardware
14229 			 * address. ill_phys_addr_pend keeps track of the last
14230 			 * DL_PAR sent so we know which response we are
14231 			 * dealing with. ill_dlpi_done will update
14232 			 * ill_phys_addr_pend when it sends the next req.
14233 			 * We don't complete the IOCTL until all three DL_PARs
14234 			 * have been attempted, so set *_len to 0 and break.
14235 			 */
14236 			physaddr_req = ill->ill_phys_addr_pend;
14237 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
14238 			if (physaddr_req == DL_IPV6_TOKEN) {
14239 				ill->ill_token_length = 0;
14240 				log = B_FALSE;
14241 				break;
14242 			} else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) {
14243 				ill->ill_nd_lla_len = 0;
14244 				log = B_FALSE;
14245 				break;
14246 			}
14247 			/*
14248 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
14249 			 * We presumably have an IOCTL hanging out waiting
14250 			 * for completion. Find it and complete the IOCTL
14251 			 * with the error noted.
14252 			 * However, ill_dl_phys was called on an ill queue
14253 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
14254 			 * set. But the ioctl is known to be pending on ill_wq.
14255 			 */
14256 			if (!ill->ill_ifname_pending)
14257 				break;
14258 			ill->ill_ifname_pending = 0;
14259 			if (!ioctl_aborted)
14260 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
14261 			if (mp1 != NULL) {
14262 				/*
14263 				 * This operation (SIOCSLIFNAME) must have
14264 				 * happened on the ill. Assert there is no conn
14265 				 */
14266 				ASSERT(connp == NULL);
14267 				q = ill->ill_wq;
14268 			}
14269 			break;
14270 		case DL_BIND_REQ:
14271 			ill_dlpi_done(ill, DL_BIND_REQ);
14272 			if (ill->ill_ifname_pending)
14273 				break;
14274 			/*
14275 			 * Something went wrong with the bind.  We presumably
14276 			 * have an IOCTL hanging out waiting for completion.
14277 			 * Find it, take down the interface that was coming
14278 			 * up, and complete the IOCTL with the error noted.
14279 			 */
14280 			if (!ioctl_aborted)
14281 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
14282 			if (mp1 != NULL) {
14283 				/*
14284 				 * This operation (SIOCSLIFFLAGS) must have
14285 				 * happened from a conn.
14286 				 */
14287 				ASSERT(connp != NULL);
14288 				q = CONNP_TO_WQ(connp);
14289 				if (ill->ill_move_in_progress) {
14290 					ILL_CLEAR_MOVE(ill);
14291 				}
14292 				(void) ipif_down(ipif, NULL, NULL);
14293 				/* error is set below the switch */
14294 			}
14295 			break;
14296 		case DL_ENABMULTI_REQ:
14297 			ip1dbg(("DL_ERROR_ACK to enabmulti\n"));
14298 
14299 			if (ill->ill_dlpi_multicast_state == IDMS_INPROGRESS)
14300 				ill->ill_dlpi_multicast_state = IDMS_FAILED;
14301 			if (ill->ill_dlpi_multicast_state == IDMS_FAILED) {
14302 				ipif_t *ipif;
14303 
14304 				log = B_FALSE;
14305 				printf("ip: joining multicasts failed (%d)"
14306 				    " on %s - will use link layer "
14307 				    "broadcasts for multicast\n",
14308 				    dlea->dl_errno, ill->ill_name);
14309 
14310 				/*
14311 				 * Set up the multicast mapping alone.
14312 				 * writer, so ok to access ill->ill_ipif
14313 				 * without any lock.
14314 				 */
14315 				ipif = ill->ill_ipif;
14316 				mutex_enter(&ill->ill_phyint->phyint_lock);
14317 				ill->ill_phyint->phyint_flags |=
14318 				    PHYI_MULTI_BCAST;
14319 				mutex_exit(&ill->ill_phyint->phyint_lock);
14320 
14321 				if (!ill->ill_isv6) {
14322 					(void) ipif_arp_setup_multicast(ipif,
14323 					    NULL);
14324 				} else {
14325 					(void) ipif_ndp_setup_multicast(ipif,
14326 					    NULL);
14327 				}
14328 			}
14329 			freemsg(mp);	/* Don't want to pass this up */
14330 			return;
14331 		case DL_CAPABILITY_REQ:
14332 		case DL_CONTROL_REQ:
14333 			ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
14334 			    "DL_CAPABILITY/CONTROL REQ\n"));
14335 			ill_dlpi_done(ill, dlea->dl_error_primitive);
14336 			ill->ill_capab_state = IDMS_FAILED;
14337 			freemsg(mp);
14338 			return;
14339 		}
14340 		/*
14341 		 * Note the error for IOCTL completion (mp1 is set when
14342 		 * ready to complete ioctl). If ill_ifname_pending_err is
14343 		 * set, an error occured during plumbing (ill_ifname_pending),
14344 		 * so we want to report that error.
14345 		 *
14346 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
14347 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
14348 		 * expected to get errack'd if the driver doesn't support
14349 		 * these flags (e.g. ethernet). log will be set to B_FALSE
14350 		 * if these error conditions are encountered.
14351 		 */
14352 		if (mp1 != NULL) {
14353 			if (ill->ill_ifname_pending_err != 0)  {
14354 				err = ill->ill_ifname_pending_err;
14355 				ill->ill_ifname_pending_err = 0;
14356 			} else {
14357 				err = dlea->dl_unix_errno ?
14358 				    dlea->dl_unix_errno : ENXIO;
14359 			}
14360 		/*
14361 		 * If we're plumbing an interface and an error hasn't already
14362 		 * been saved, set ill_ifname_pending_err to the error passed
14363 		 * up. Ignore the error if log is B_FALSE (see comment above).
14364 		 */
14365 		} else if (log && ill->ill_ifname_pending &&
14366 		    ill->ill_ifname_pending_err == 0) {
14367 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
14368 			dlea->dl_unix_errno : ENXIO;
14369 		}
14370 
14371 		if (log)
14372 			ip_dlpi_error(ill, dlea->dl_error_primitive,
14373 			    dlea->dl_errno, dlea->dl_unix_errno);
14374 		break;
14375 	case DL_CAPABILITY_ACK: {
14376 		boolean_t reneg_flag = B_FALSE;
14377 		/* Call a routine to handle this one. */
14378 		ill_dlpi_done(ill, DL_CAPABILITY_REQ);
14379 		/*
14380 		 * Check if the ACK is due to renegotiation case since we
14381 		 * will need to send a new CAPABILITY_REQ later.
14382 		 */
14383 		if (ill->ill_capab_state == IDMS_RENEG) {
14384 			/* This is the ack for a renogiation case */
14385 			reneg_flag = B_TRUE;
14386 			ill->ill_capab_state = IDMS_UNKNOWN;
14387 		}
14388 		ill_capability_ack(ill, mp);
14389 		if (reneg_flag)
14390 			ill_capability_probe(ill);
14391 		break;
14392 	}
14393 	case DL_CONTROL_ACK:
14394 		/* We treat all of these as "fire and forget" */
14395 		ill_dlpi_done(ill, DL_CONTROL_REQ);
14396 		break;
14397 	case DL_INFO_ACK:
14398 		/* Call a routine to handle this one. */
14399 		ill_dlpi_done(ill, DL_INFO_REQ);
14400 		ip_ll_subnet_defaults(ill, mp);
14401 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
14402 		return;
14403 	case DL_BIND_ACK:
14404 		/*
14405 		 * We should have an IOCTL waiting on this unless
14406 		 * sent by ill_dl_phys, in which case just return
14407 		 */
14408 		ill_dlpi_done(ill, DL_BIND_REQ);
14409 		if (ill->ill_ifname_pending)
14410 			break;
14411 
14412 		if (!ioctl_aborted)
14413 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
14414 		if (mp1 == NULL)
14415 			break;
14416 		ASSERT(connp != NULL);
14417 		q = CONNP_TO_WQ(connp);
14418 
14419 		/*
14420 		 * We are exclusive. So nothing can change even after
14421 		 * we get the pending mp. If need be we can put it back
14422 		 * and restart, as in calling ipif_arp_up()  below.
14423 		 */
14424 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
14425 
14426 		mutex_enter(&ill->ill_lock);
14427 		ill->ill_dl_up = 1;
14428 		mutex_exit(&ill->ill_lock);
14429 
14430 		/*
14431 		 * Now bring up the resolver, when that is
14432 		 * done we'll create IREs and we are done.
14433 		 */
14434 		if (ill->ill_isv6) {
14435 			/*
14436 			 * v6 interfaces.
14437 			 * Unlike ARP which has to do another bind
14438 			 * and attach, once we get here we are
14439 			 * done withh NDP. Except in the case of
14440 			 * ILLF_XRESOLV, in which case we send an
14441 			 * AR_INTERFACE_UP to the external resolver.
14442 			 * If all goes well, the ioctl will complete
14443 			 * in ip_rput(). If there's an error, we
14444 			 * complete it here.
14445 			 */
14446 			err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr,
14447 			    B_FALSE);
14448 			if (err == 0) {
14449 				if (ill->ill_flags & ILLF_XRESOLV) {
14450 					mutex_enter(&connp->conn_lock);
14451 					mutex_enter(&ill->ill_lock);
14452 					success = ipsq_pending_mp_add(
14453 					    connp, ipif, q, mp1, 0);
14454 					mutex_exit(&ill->ill_lock);
14455 					mutex_exit(&connp->conn_lock);
14456 					if (success) {
14457 						err = ipif_resolver_up(ipif,
14458 						    B_FALSE);
14459 						if (err == EINPROGRESS) {
14460 							freemsg(mp);
14461 							return;
14462 						}
14463 						ASSERT(err != 0);
14464 						mp1 = ipsq_pending_mp_get(ipsq,
14465 						    &connp);
14466 						ASSERT(mp1 != NULL);
14467 					} else {
14468 						/* conn has started closing */
14469 						err = EINTR;
14470 					}
14471 				} else { /* Non XRESOLV interface */
14472 					err = ipif_up_done_v6(ipif);
14473 				}
14474 			}
14475 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
14476 			/*
14477 			 * ARP and other v4 external resolvers.
14478 			 * Leave the pending mblk intact so that
14479 			 * the ioctl completes in ip_rput().
14480 			 */
14481 			mutex_enter(&connp->conn_lock);
14482 			mutex_enter(&ill->ill_lock);
14483 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
14484 			mutex_exit(&ill->ill_lock);
14485 			mutex_exit(&connp->conn_lock);
14486 			if (success) {
14487 				err = ipif_resolver_up(ipif, B_FALSE);
14488 				if (err == EINPROGRESS) {
14489 					freemsg(mp);
14490 					return;
14491 				}
14492 				ASSERT(err != 0);
14493 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
14494 			} else {
14495 				/* The conn has started closing */
14496 				err = EINTR;
14497 			}
14498 		} else {
14499 			/*
14500 			 * This one is complete. Reply to pending ioctl.
14501 			 */
14502 			err = ipif_up_done(ipif);
14503 		}
14504 
14505 		if ((err == 0) && (ill->ill_up_ipifs)) {
14506 			err = ill_up_ipifs(ill, q, mp1);
14507 			if (err == EINPROGRESS) {
14508 				freemsg(mp);
14509 				return;
14510 			}
14511 		}
14512 
14513 		if (ill->ill_up_ipifs) {
14514 			ill_group_cleanup(ill);
14515 		}
14516 
14517 		break;
14518 	case DL_NOTIFY_IND: {
14519 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
14520 		ire_t *ire;
14521 		boolean_t need_ire_walk_v4 = B_FALSE;
14522 		boolean_t need_ire_walk_v6 = B_FALSE;
14523 
14524 		/*
14525 		 * Change the address everywhere we need to.
14526 		 * What we're getting here is a link-level addr or phys addr.
14527 		 * The new addr is at notify + notify->dl_addr_offset
14528 		 * The address length is notify->dl_addr_length;
14529 		 */
14530 		switch (notify->dl_notification) {
14531 		case DL_NOTE_PHYS_ADDR:
14532 			mp_hw = copyb(mp);
14533 			if (mp_hw == NULL) {
14534 				err = ENOMEM;
14535 				break;
14536 			}
14537 			dlp = (union DL_primitives *)mp_hw->b_rptr;
14538 			/*
14539 			 * We currently don't support changing
14540 			 * the token via DL_NOTIFY_IND.
14541 			 * When we do support it, we have to consider
14542 			 * what the implications are with respect to
14543 			 * the token and the link local address.
14544 			 */
14545 			mutex_enter(&ill->ill_lock);
14546 			if (dlp->notify_ind.dl_data ==
14547 			    DL_IPV6_LINK_LAYER_ADDR) {
14548 				if (ill->ill_nd_lla_mp != NULL)
14549 					freemsg(ill->ill_nd_lla_mp);
14550 				ill->ill_nd_lla_mp = mp_hw;
14551 				ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr +
14552 				    dlp->notify_ind.dl_addr_offset;
14553 				ill->ill_nd_lla_len =
14554 				    dlp->notify_ind.dl_addr_length -
14555 				    ABS(ill->ill_sap_length);
14556 				mutex_exit(&ill->ill_lock);
14557 				break;
14558 			} else if (dlp->notify_ind.dl_data ==
14559 			    DL_CURR_PHYS_ADDR) {
14560 				if (ill->ill_phys_addr_mp != NULL)
14561 					freemsg(ill->ill_phys_addr_mp);
14562 				ill->ill_phys_addr_mp = mp_hw;
14563 				ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr +
14564 				    dlp->notify_ind.dl_addr_offset;
14565 				ill->ill_phys_addr_length =
14566 				    dlp->notify_ind.dl_addr_length -
14567 				    ABS(ill->ill_sap_length);
14568 				if (ill->ill_isv6 &&
14569 				    !(ill->ill_flags & ILLF_XRESOLV)) {
14570 					if (ill->ill_nd_lla_mp != NULL)
14571 						freemsg(ill->ill_nd_lla_mp);
14572 					ill->ill_nd_lla_mp = copyb(mp_hw);
14573 					ill->ill_nd_lla = (uchar_t *)
14574 					    ill->ill_nd_lla_mp->b_rptr +
14575 					    dlp->notify_ind.dl_addr_offset;
14576 					ill->ill_nd_lla_len =
14577 					    ill->ill_phys_addr_length;
14578 				}
14579 			}
14580 			mutex_exit(&ill->ill_lock);
14581 			/*
14582 			 * Send out gratuitous arp request for our new
14583 			 * hardware address.
14584 			 */
14585 			for (ipif = ill->ill_ipif; ipif != NULL;
14586 			    ipif = ipif->ipif_next) {
14587 				if (!(ipif->ipif_flags & IPIF_UP))
14588 					continue;
14589 				if (ill->ill_isv6) {
14590 					ipif_ndp_down(ipif);
14591 					/*
14592 					 * Set B_TRUE to enable
14593 					 * ipif_ndp_up() to send out
14594 					 * unsolicited advertisements.
14595 					 */
14596 					err = ipif_ndp_up(ipif,
14597 					    &ipif->ipif_v6lcl_addr,
14598 					    B_TRUE);
14599 					if (err) {
14600 						ip1dbg((
14601 						    "ip_rput_dlpi_writer: "
14602 						    "Failed to update ndp "
14603 						    "err %d\n", err));
14604 					}
14605 				} else {
14606 					/*
14607 					 * IPv4 ARP case
14608 					 *
14609 					 * Set B_TRUE, as we only want
14610 					 * ipif_resolver_up to send an
14611 					 * AR_ENTRY_ADD request up to
14612 					 * ARP.
14613 					 */
14614 					err = ipif_resolver_up(ipif,
14615 					    B_TRUE);
14616 					if (err) {
14617 						ip1dbg((
14618 						    "ip_rput_dlpi_writer: "
14619 						    "Failed to update arp "
14620 						    "err %d\n", err));
14621 					}
14622 				}
14623 			}
14624 			/*
14625 			 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH
14626 			 * case so that all old fastpath information can be
14627 			 * purged from IRE caches.
14628 			 */
14629 		/* FALLTHRU */
14630 		case DL_NOTE_FASTPATH_FLUSH:
14631 			/*
14632 			 * Any fastpath probe sent henceforth will get the
14633 			 * new fp mp. So we first delete any ires that are
14634 			 * waiting for the fastpath. Then walk all ires and
14635 			 * delete the ire or delete the fp mp. In the case of
14636 			 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to
14637 			 * recreate the ire's without going through a complex
14638 			 * ipif up/down dance. So we don't delete the ire
14639 			 * itself, but just the ire_fp_mp for these 2 ire's
14640 			 * In the case of the other ire's we delete the ire's
14641 			 * themselves. Access to ire_fp_mp is completely
14642 			 * protected by ire_lock for IRE_MIPRTUN and
14643 			 * IRE_BROADCAST. Deleting the ire is preferable in the
14644 			 * other cases for performance.
14645 			 */
14646 			if (ill->ill_isv6) {
14647 				nce_fastpath_list_dispatch(ill, NULL, NULL);
14648 				ndp_walk(ill, (pfi_t)ndp_fastpath_flush,
14649 				    NULL);
14650 			} else {
14651 				ire_fastpath_list_dispatch(ill, NULL, NULL);
14652 				ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE,
14653 				    IRE_CACHE | IRE_BROADCAST,
14654 				    ire_fastpath_flush, NULL, ill);
14655 				mutex_enter(&ire_mrtun_lock);
14656 				if (ire_mrtun_count != 0) {
14657 					mutex_exit(&ire_mrtun_lock);
14658 					ire_walk_ill_mrtun(MATCH_IRE_WQ,
14659 					    IRE_MIPRTUN, ire_fastpath_flush,
14660 					    NULL, ill);
14661 				} else {
14662 					mutex_exit(&ire_mrtun_lock);
14663 				}
14664 			}
14665 			break;
14666 		case DL_NOTE_SDU_SIZE:
14667 			/*
14668 			 * Change the MTU size of the interface, of all
14669 			 * attached ipif's, and of all relevant ire's.  The
14670 			 * new value's a uint32_t at notify->dl_data.
14671 			 * Mtu change Vs. new ire creation - protocol below.
14672 			 *
14673 			 * a Mark the ipif as IPIF_CHANGING.
14674 			 * b Set the new mtu in the ipif.
14675 			 * c Change the ire_max_frag on all affected ires
14676 			 * d Unmark the IPIF_CHANGING
14677 			 *
14678 			 * To see how the protocol works, assume an interface
14679 			 * route is also being added simultaneously by
14680 			 * ip_rt_add and let 'ipif' be the ipif referenced by
14681 			 * the ire. If the ire is created before step a,
14682 			 * it will be cleaned up by step c. If the ire is
14683 			 * created after step d, it will see the new value of
14684 			 * ipif_mtu. Any attempt to create the ire between
14685 			 * steps a to d will fail because of the IPIF_CHANGING
14686 			 * flag. Note that ire_create() is passed a pointer to
14687 			 * the ipif_mtu, and not the value. During ire_add
14688 			 * under the bucket lock, the ire_max_frag of the
14689 			 * new ire being created is set from the ipif/ire from
14690 			 * which it is being derived.
14691 			 */
14692 			mutex_enter(&ill->ill_lock);
14693 			ill->ill_max_frag = (uint_t)notify->dl_data;
14694 
14695 			/*
14696 			 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu
14697 			 * leave it alone
14698 			 */
14699 			if (ill->ill_mtu_userspecified) {
14700 				mutex_exit(&ill->ill_lock);
14701 				break;
14702 			}
14703 			ill->ill_max_mtu = ill->ill_max_frag;
14704 			if (ill->ill_isv6) {
14705 				if (ill->ill_max_mtu < IPV6_MIN_MTU)
14706 					ill->ill_max_mtu = IPV6_MIN_MTU;
14707 			} else {
14708 				if (ill->ill_max_mtu < IP_MIN_MTU)
14709 					ill->ill_max_mtu = IP_MIN_MTU;
14710 			}
14711 			for (ipif = ill->ill_ipif; ipif != NULL;
14712 			    ipif = ipif->ipif_next) {
14713 				/*
14714 				 * Don't override the mtu if the user
14715 				 * has explicitly set it.
14716 				 */
14717 				if (ipif->ipif_flags & IPIF_FIXEDMTU)
14718 					continue;
14719 				ipif->ipif_mtu = (uint_t)notify->dl_data;
14720 				if (ipif->ipif_isv6)
14721 					ire = ipif_to_ire_v6(ipif);
14722 				else
14723 					ire = ipif_to_ire(ipif);
14724 				if (ire != NULL) {
14725 					ire->ire_max_frag = ipif->ipif_mtu;
14726 					ire_refrele(ire);
14727 				}
14728 				if (ipif->ipif_flags & IPIF_UP) {
14729 					if (ill->ill_isv6)
14730 						need_ire_walk_v6 = B_TRUE;
14731 					else
14732 						need_ire_walk_v4 = B_TRUE;
14733 				}
14734 			}
14735 			mutex_exit(&ill->ill_lock);
14736 			if (need_ire_walk_v4)
14737 				ire_walk_v4(ill_mtu_change, (char *)ill,
14738 				    ALL_ZONES);
14739 			if (need_ire_walk_v6)
14740 				ire_walk_v6(ill_mtu_change, (char *)ill,
14741 				    ALL_ZONES);
14742 			break;
14743 		case DL_NOTE_LINK_UP:
14744 		case DL_NOTE_LINK_DOWN: {
14745 			/*
14746 			 * We are writer. ill / phyint / ipsq assocs stable.
14747 			 * The RUNNING flag reflects the state of the link.
14748 			 */
14749 			phyint_t *phyint = ill->ill_phyint;
14750 			uint64_t new_phyint_flags;
14751 			boolean_t changed = B_FALSE;
14752 
14753 			mutex_enter(&phyint->phyint_lock);
14754 			new_phyint_flags =
14755 			    (notify->dl_notification == DL_NOTE_LINK_UP) ?
14756 			    phyint->phyint_flags | PHYI_RUNNING :
14757 			    phyint->phyint_flags & ~PHYI_RUNNING;
14758 			if (new_phyint_flags != phyint->phyint_flags) {
14759 				phyint->phyint_flags = new_phyint_flags;
14760 				changed = B_TRUE;
14761 			}
14762 			mutex_exit(&phyint->phyint_lock);
14763 			/*
14764 			 * If the flags have changed, send a message to
14765 			 * the routing socket.
14766 			 */
14767 			if (changed) {
14768 				if (phyint->phyint_illv4 != NULL) {
14769 					ip_rts_ifmsg(
14770 					    phyint->phyint_illv4->ill_ipif);
14771 				}
14772 				if (phyint->phyint_illv6 != NULL) {
14773 					ip_rts_ifmsg(
14774 					    phyint->phyint_illv6->ill_ipif);
14775 				}
14776 			}
14777 			break;
14778 		}
14779 		case DL_NOTE_PROMISC_ON_PHYS:
14780 			IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: "
14781 			    "got a DL_NOTE_PROMISC_ON_PHYS\n"));
14782 			mutex_enter(&ill->ill_lock);
14783 			ill->ill_promisc_on_phys = B_TRUE;
14784 			mutex_exit(&ill->ill_lock);
14785 			break;
14786 		case DL_NOTE_PROMISC_OFF_PHYS:
14787 			IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: "
14788 			    "got a DL_NOTE_PROMISC_OFF_PHYS\n"));
14789 			mutex_enter(&ill->ill_lock);
14790 			ill->ill_promisc_on_phys = B_FALSE;
14791 			mutex_exit(&ill->ill_lock);
14792 			break;
14793 		case DL_NOTE_CAPAB_RENEG:
14794 			/*
14795 			 * Something changed on the driver side.
14796 			 * It wants us to renegotiate the capabilities
14797 			 * on this ill. The most likely cause is the
14798 			 * aggregation interface under us where a
14799 			 * port got added or went away.
14800 			 *
14801 			 * We reset the capabilities and set the
14802 			 * state to IDMS_RENG so that when the ack
14803 			 * comes back, we can start the
14804 			 * renegotiation process.
14805 			 */
14806 			ill_capability_reset(ill);
14807 			ill->ill_capab_state = IDMS_RENEG;
14808 			break;
14809 		default:
14810 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
14811 			    "type 0x%x for DL_NOTIFY_IND\n",
14812 			    notify->dl_notification));
14813 			break;
14814 		}
14815 
14816 		/*
14817 		 * As this is an asynchronous operation, we
14818 		 * should not call ill_dlpi_done
14819 		 */
14820 		break;
14821 	}
14822 	case DL_NOTIFY_ACK:
14823 		/*
14824 		 * Don't really need to check for what notifications
14825 		 * are supported; we'll process what gets sent upstream,
14826 		 * and we know it'll be something we support changing
14827 		 * based on our DL_NOTIFY_REQ.
14828 		 */
14829 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
14830 		break;
14831 	case DL_PHYS_ADDR_ACK: {
14832 		/*
14833 		 * We should have an IOCTL waiting on this when request
14834 		 * sent by ill_dl_phys.
14835 		 * However, ill_dl_phys was called on an ill queue (from
14836 		 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the
14837 		 * ioctl is known to be pending on ill_wq.
14838 		 * There are two additional phys_addr_req's sent to the
14839 		 * driver to get the token and lla. ill_phys_addr_pend
14840 		 * keeps track of the last one sent so we know which
14841 		 * response we are dealing with. ill_dlpi_done will
14842 		 * update ill_phys_addr_pend when it sends the next req.
14843 		 * We don't complete the IOCTL until all three DL_PARs
14844 		 * have been attempted.
14845 		 *
14846 		 * We don't need any lock to update ill_nd_lla* fields,
14847 		 * since the ill is not yet up, We grab the lock just
14848 		 * for uniformity with other code that accesses ill_nd_lla.
14849 		 */
14850 		physaddr_req = ill->ill_phys_addr_pend;
14851 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
14852 		if (physaddr_req == DL_IPV6_TOKEN ||
14853 		    physaddr_req == DL_IPV6_LINK_LAYER_ADDR) {
14854 			if (physaddr_req == DL_IPV6_TOKEN) {
14855 				/*
14856 				 * bcopy to low-order bits of ill_token
14857 				 *
14858 				 * XXX Temporary hack - currently,
14859 				 * all known tokens are 64 bits,
14860 				 * so I'll cheat for the moment.
14861 				 */
14862 				dlp = (union DL_primitives *)mp->b_rptr;
14863 
14864 				mutex_enter(&ill->ill_lock);
14865 				bcopy((uchar_t *)(mp->b_rptr +
14866 				dlp->physaddr_ack.dl_addr_offset),
14867 				(void *)&ill->ill_token.s6_addr32[2],
14868 				dlp->physaddr_ack.dl_addr_length);
14869 				ill->ill_token_length =
14870 					dlp->physaddr_ack.dl_addr_length;
14871 				mutex_exit(&ill->ill_lock);
14872 			} else {
14873 				ASSERT(ill->ill_nd_lla_mp == NULL);
14874 				mp_hw = copyb(mp);
14875 				if (mp_hw == NULL) {
14876 					err = ENOMEM;
14877 					break;
14878 				}
14879 				dlp = (union DL_primitives *)mp_hw->b_rptr;
14880 				mutex_enter(&ill->ill_lock);
14881 				ill->ill_nd_lla_mp = mp_hw;
14882 				ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr +
14883 				dlp->physaddr_ack.dl_addr_offset;
14884 				ill->ill_nd_lla_len =
14885 					dlp->physaddr_ack.dl_addr_length;
14886 				mutex_exit(&ill->ill_lock);
14887 			}
14888 			break;
14889 		}
14890 		ASSERT(physaddr_req == DL_CURR_PHYS_ADDR);
14891 		ASSERT(ill->ill_phys_addr_mp == NULL);
14892 		if (!ill->ill_ifname_pending)
14893 			break;
14894 		ill->ill_ifname_pending = 0;
14895 		if (!ioctl_aborted)
14896 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
14897 		if (mp1 != NULL) {
14898 			ASSERT(connp == NULL);
14899 			q = ill->ill_wq;
14900 		}
14901 		/*
14902 		 * If any error acks received during the plumbing sequence,
14903 		 * ill_ifname_pending_err will be set. Break out and send up
14904 		 * the error to the pending ioctl.
14905 		 */
14906 		if (ill->ill_ifname_pending_err != 0) {
14907 			err = ill->ill_ifname_pending_err;
14908 			ill->ill_ifname_pending_err = 0;
14909 			break;
14910 		}
14911 		/*
14912 		 * Get the interface token.  If the zeroth interface
14913 		 * address is zero then set the address to the link local
14914 		 * address
14915 		 */
14916 		mp_hw = copyb(mp);
14917 		if (mp_hw == NULL) {
14918 			err = ENOMEM;
14919 			break;
14920 		}
14921 		dlp = (union DL_primitives *)mp_hw->b_rptr;
14922 		ill->ill_phys_addr_mp = mp_hw;
14923 		ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr +
14924 				dlp->physaddr_ack.dl_addr_offset;
14925 		if (dlp->physaddr_ack.dl_addr_length == 0 ||
14926 		    ill->ill_phys_addr_length == 0 ||
14927 		    ill->ill_phys_addr_length == IP_ADDR_LEN) {
14928 			/*
14929 			 * Compatibility: atun driver returns a length of 0.
14930 			 * ipdptp has an ill_phys_addr_length of zero(from
14931 			 * DL_BIND_ACK) but a non-zero length here.
14932 			 * ipd has an ill_phys_addr_length of 4(from
14933 			 * DL_BIND_ACK) but a non-zero length here.
14934 			 */
14935 			ill->ill_phys_addr = NULL;
14936 		} else if (dlp->physaddr_ack.dl_addr_length !=
14937 		    ill->ill_phys_addr_length) {
14938 			ip0dbg(("DL_PHYS_ADDR_ACK: "
14939 			    "Address length mismatch %d %d\n",
14940 			    dlp->physaddr_ack.dl_addr_length,
14941 			    ill->ill_phys_addr_length));
14942 			err = EINVAL;
14943 			break;
14944 		}
14945 		mutex_enter(&ill->ill_lock);
14946 		if (ill->ill_nd_lla_mp == NULL) {
14947 			ill->ill_nd_lla_mp = copyb(mp_hw);
14948 			if (ill->ill_nd_lla_mp == NULL) {
14949 				err = ENOMEM;
14950 				mutex_exit(&ill->ill_lock);
14951 				break;
14952 			}
14953 			ill->ill_nd_lla =
14954 			    (uchar_t *)ill->ill_nd_lla_mp->b_rptr +
14955 			    dlp->physaddr_ack.dl_addr_offset;
14956 			ill->ill_nd_lla_len = ill->ill_phys_addr_length;
14957 		}
14958 		mutex_exit(&ill->ill_lock);
14959 		if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
14960 			(void) ill_setdefaulttoken(ill);
14961 
14962 		/*
14963 		 * If the ill zero interface has a zero address assign
14964 		 * it the proper link local address.
14965 		 */
14966 		ASSERT(ill->ill_ipif->ipif_id == 0);
14967 		if (ipif != NULL &&
14968 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
14969 			(void) ipif_setlinklocal(ipif);
14970 		break;
14971 	}
14972 	case DL_OK_ACK:
14973 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
14974 		    dlpi_prim_str((int)dloa->dl_correct_primitive),
14975 		    dloa->dl_correct_primitive));
14976 		switch (dloa->dl_correct_primitive) {
14977 		case DL_UNBIND_REQ:
14978 		case DL_ATTACH_REQ:
14979 		case DL_DETACH_REQ:
14980 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
14981 			break;
14982 		}
14983 		break;
14984 	default:
14985 		break;
14986 	}
14987 
14988 	freemsg(mp);
14989 	if (mp1) {
14990 		struct iocblk *iocp;
14991 		int mode;
14992 
14993 		/*
14994 		 * Complete the waiting IOCTL. For SIOCLIFADDIF or
14995 		 * SIOCSLIFNAME do a copyout.
14996 		 */
14997 		iocp = (struct iocblk *)mp1->b_rptr;
14998 
14999 		if (iocp->ioc_cmd == SIOCLIFADDIF ||
15000 		    iocp->ioc_cmd == SIOCSLIFNAME)
15001 			mode = COPYOUT;
15002 		else
15003 			mode = NO_COPYOUT;
15004 		/*
15005 		 * The ioctl must complete now without EINPROGRESS
15006 		 * since ipsq_pending_mp_get has removed the ioctl mblk
15007 		 * from ipsq_pending_mp. Otherwise the ioctl will be
15008 		 * stuck for ever in the ipsq.
15009 		 */
15010 		ASSERT(err != EINPROGRESS);
15011 		ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq);
15012 
15013 	}
15014 }
15015 
15016 /*
15017  * ip_rput_other is called by ip_rput to handle messages modifying the global
15018  * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared)
15019  */
15020 /* ARGSUSED */
15021 void
15022 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
15023 {
15024 	ill_t		*ill;
15025 	struct iocblk	*iocp;
15026 	mblk_t		*mp1;
15027 	conn_t		*connp = NULL;
15028 
15029 	ip1dbg(("ip_rput_other "));
15030 	ill = (ill_t *)q->q_ptr;
15031 	/*
15032 	 * This routine is not a writer in the case of SIOCGTUNPARAM
15033 	 * in which case ipsq is NULL.
15034 	 */
15035 	if (ipsq != NULL) {
15036 		ASSERT(IAM_WRITER_IPSQ(ipsq));
15037 		ASSERT(ipsq == ill->ill_phyint->phyint_ipsq);
15038 	}
15039 
15040 	switch (mp->b_datap->db_type) {
15041 	case M_ERROR:
15042 	case M_HANGUP:
15043 		/*
15044 		 * The device has a problem.  We force the ILL down.  It can
15045 		 * be brought up again manually using SIOCSIFFLAGS (via
15046 		 * ifconfig or equivalent).
15047 		 */
15048 		ASSERT(ipsq != NULL);
15049 		if (mp->b_rptr < mp->b_wptr)
15050 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
15051 		if (ill->ill_error == 0)
15052 			ill->ill_error = ENXIO;
15053 		if (!ill_down_start(q, mp))
15054 			return;
15055 		ipif_all_down_tail(ipsq, q, mp, NULL);
15056 		break;
15057 	case M_IOCACK:
15058 		iocp = (struct iocblk *)mp->b_rptr;
15059 		ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO);
15060 		switch (iocp->ioc_cmd) {
15061 		case SIOCSTUNPARAM:
15062 		case OSIOCSTUNPARAM:
15063 			ASSERT(ipsq != NULL);
15064 			/*
15065 			 * Finish socket ioctl passed through to tun.
15066 			 * We should have an IOCTL waiting on this.
15067 			 */
15068 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
15069 			if (ill->ill_isv6) {
15070 				struct iftun_req *ta;
15071 
15072 				/*
15073 				 * if a source or destination is
15074 				 * being set, try and set the link
15075 				 * local address for the tunnel
15076 				 */
15077 				ta = (struct iftun_req *)mp->b_cont->
15078 				    b_cont->b_rptr;
15079 				if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) {
15080 					ipif_set_tun_llink(ill, ta);
15081 				}
15082 
15083 			}
15084 			if (mp1 != NULL) {
15085 				/*
15086 				 * Now copy back the b_next/b_prev used by
15087 				 * mi code for the mi_copy* functions.
15088 				 * See ip_sioctl_tunparam() for the reason.
15089 				 * Also protect against missing b_cont.
15090 				 */
15091 				if (mp->b_cont != NULL) {
15092 					mp->b_cont->b_next =
15093 					    mp1->b_cont->b_next;
15094 					mp->b_cont->b_prev =
15095 					    mp1->b_cont->b_prev;
15096 				}
15097 				inet_freemsg(mp1);
15098 				ASSERT(ipsq->ipsq_current_ipif != NULL);
15099 				ASSERT(connp != NULL);
15100 				ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
15101 				    iocp->ioc_error, NO_COPYOUT,
15102 				    ipsq->ipsq_current_ipif, ipsq);
15103 			} else {
15104 				ASSERT(connp == NULL);
15105 				putnext(q, mp);
15106 			}
15107 			break;
15108 		case SIOCGTUNPARAM:
15109 		case OSIOCGTUNPARAM:
15110 			/*
15111 			 * This is really M_IOCDATA from the tunnel driver.
15112 			 * convert back and complete the ioctl.
15113 			 * We should have an IOCTL waiting on this.
15114 			 */
15115 			mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id);
15116 			if (mp1) {
15117 				/*
15118 				 * Now copy back the b_next/b_prev used by
15119 				 * mi code for the mi_copy* functions.
15120 				 * See ip_sioctl_tunparam() for the reason.
15121 				 * Also protect against missing b_cont.
15122 				 */
15123 				if (mp->b_cont != NULL) {
15124 					mp->b_cont->b_next =
15125 					    mp1->b_cont->b_next;
15126 					mp->b_cont->b_prev =
15127 					    mp1->b_cont->b_prev;
15128 				}
15129 				inet_freemsg(mp1);
15130 				if (iocp->ioc_error == 0)
15131 					mp->b_datap->db_type = M_IOCDATA;
15132 				ASSERT(connp != NULL);
15133 				ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
15134 				    iocp->ioc_error, COPYOUT, NULL, NULL);
15135 			} else {
15136 				ASSERT(connp == NULL);
15137 				putnext(q, mp);
15138 			}
15139 			break;
15140 		default:
15141 			break;
15142 		}
15143 		break;
15144 	case M_IOCNAK:
15145 		iocp = (struct iocblk *)mp->b_rptr;
15146 
15147 		switch (iocp->ioc_cmd) {
15148 		int mode;
15149 		ipif_t	*ipif;
15150 
15151 		case DL_IOC_HDR_INFO:
15152 			/*
15153 			 * If this was the first attempt turn of the
15154 			 * fastpath probing.
15155 			 */
15156 			mutex_enter(&ill->ill_lock);
15157 			if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) {
15158 				ill->ill_dlpi_fastpath_state = IDMS_FAILED;
15159 				mutex_exit(&ill->ill_lock);
15160 				ill_fastpath_nack(ill);
15161 				ip1dbg(("ip_rput: DLPI fastpath off on "
15162 				    "interface %s\n",
15163 				    ill->ill_name));
15164 			} else {
15165 				mutex_exit(&ill->ill_lock);
15166 			}
15167 			freemsg(mp);
15168 			break;
15169 		case SIOCSTUNPARAM:
15170 		case OSIOCSTUNPARAM:
15171 			ASSERT(ipsq != NULL);
15172 			/*
15173 			 * Finish socket ioctl passed through to tun
15174 			 * We should have an IOCTL waiting on this.
15175 			 */
15176 			/* FALLTHRU */
15177 		case SIOCGTUNPARAM:
15178 		case OSIOCGTUNPARAM:
15179 			/*
15180 			 * This is really M_IOCDATA from the tunnel driver.
15181 			 * convert back and complete the ioctl.
15182 			 * We should have an IOCTL waiting on this.
15183 			 */
15184 			if (iocp->ioc_cmd == SIOCGTUNPARAM ||
15185 			    iocp->ioc_cmd == OSIOCGTUNPARAM) {
15186 				mp1 = ill_pending_mp_get(ill, &connp,
15187 				    iocp->ioc_id);
15188 				mode = COPYOUT;
15189 				ipsq = NULL;
15190 				ipif = NULL;
15191 			} else {
15192 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
15193 				mode = NO_COPYOUT;
15194 				ASSERT(ipsq->ipsq_current_ipif != NULL);
15195 				ipif = ipsq->ipsq_current_ipif;
15196 			}
15197 			if (mp1 != NULL) {
15198 				/*
15199 				 * Now copy back the b_next/b_prev used by
15200 				 * mi code for the mi_copy* functions.
15201 				 * See ip_sioctl_tunparam() for the reason.
15202 				 * Also protect against missing b_cont.
15203 				 */
15204 				if (mp->b_cont != NULL) {
15205 					mp->b_cont->b_next =
15206 					    mp1->b_cont->b_next;
15207 					mp->b_cont->b_prev =
15208 					    mp1->b_cont->b_prev;
15209 				}
15210 				inet_freemsg(mp1);
15211 				if (iocp->ioc_error == 0)
15212 					iocp->ioc_error = EINVAL;
15213 				ASSERT(connp != NULL);
15214 				ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
15215 				    iocp->ioc_error, mode, ipif, ipsq);
15216 			} else {
15217 				ASSERT(connp == NULL);
15218 				putnext(q, mp);
15219 			}
15220 			break;
15221 		default:
15222 			break;
15223 		}
15224 	default:
15225 		break;
15226 	}
15227 }
15228 
15229 /*
15230  * NOTE : This function does not ire_refrele the ire argument passed in.
15231  *
15232  * IPQoS notes
15233  * IP policy is invoked twice for a forwarded packet, once on the read side
15234  * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are
15235  * enabled. An additional parameter, in_ill, has been added for this purpose.
15236  * Note that in_ill could be NULL when called from ip_rput_forward_multicast
15237  * because ip_mroute drops this information.
15238  *
15239  */
15240 void
15241 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill)
15242 {
15243 	uint32_t	pkt_len;
15244 	queue_t	*q;
15245 	uint32_t	sum;
15246 #define	rptr	((uchar_t *)ipha)
15247 	uint32_t	max_frag;
15248 	uint32_t	ill_index;
15249 
15250 	/* Get the ill_index of the incoming ILL */
15251 	ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0;
15252 
15253 	/* Initiate Read side IPPF processing */
15254 	if (IPP_ENABLED(IPP_FWD_IN)) {
15255 		ip_process(IPP_FWD_IN, &mp, ill_index);
15256 		if (mp == NULL) {
15257 			ip2dbg(("ip_rput_forward: pkt dropped/deferred "\
15258 			    "during IPPF processing\n"));
15259 			return;
15260 		}
15261 	}
15262 	pkt_len = ntohs(ipha->ipha_length);
15263 
15264 	/* Adjust the checksum to reflect the ttl decrement. */
15265 	sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
15266 	ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));
15267 
15268 	if (ipha->ipha_ttl-- <= 1) {
15269 		if (ip_csum_hdr(ipha)) {
15270 			BUMP_MIB(&ip_mib, ipInCksumErrs);
15271 			goto drop_pkt;
15272 		}
15273 		/*
15274 		 * Note: ire_stq this will be NULL for multicast
15275 		 * datagrams using the long path through arp (the IRE
15276 		 * is not an IRE_CACHE). This should not cause
15277 		 * problems since we don't generate ICMP errors for
15278 		 * multicast packets.
15279 		 */
15280 		q = ire->ire_stq;
15281 		if (q)
15282 			icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED);
15283 		else
15284 			freemsg(mp);
15285 		return;
15286 	}
15287 
15288 	/*
15289 	 * Don't forward if the interface is down
15290 	 */
15291 	if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) {
15292 		BUMP_MIB(&ip_mib, ipInDiscards);
15293 		goto drop_pkt;
15294 	}
15295 
15296 	/* Get the ill_index of the outgoing ILL */
15297 	ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex;
15298 
15299 	if (is_system_labeled()) {
15300 		mblk_t *mp1;
15301 
15302 		if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) {
15303 			BUMP_MIB(&ip_mib, ipForwProhibits);
15304 			goto drop_pkt;
15305 		}
15306 		/* Size may have changed */
15307 		mp = mp1;
15308 		ipha = (ipha_t *)mp->b_rptr;
15309 		pkt_len = ntohs(ipha->ipha_length);
15310 	}
15311 
15312 	/* Check if there are options to update */
15313 	if (!IS_SIMPLE_IPH(ipha)) {
15314 		if (ip_csum_hdr(ipha)) {
15315 			BUMP_MIB(&ip_mib, ipInCksumErrs);
15316 			goto drop_pkt;
15317 		}
15318 		if (ip_rput_forward_options(mp, ipha, ire)) {
15319 			return;
15320 		}
15321 
15322 		ipha->ipha_hdr_checksum = 0;
15323 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
15324 	}
15325 	max_frag = ire->ire_max_frag;
15326 	if (pkt_len > max_frag) {
15327 		/*
15328 		 * It needs fragging on its way out.  We haven't
15329 		 * verified the header checksum yet.  Since we
15330 		 * are going to put a surely good checksum in the
15331 		 * outgoing header, we have to make sure that it
15332 		 * was good coming in.
15333 		 */
15334 		if (ip_csum_hdr(ipha)) {
15335 			BUMP_MIB(&ip_mib, ipInCksumErrs);
15336 			goto drop_pkt;
15337 		}
15338 		/* Initiate Write side IPPF processing */
15339 		if (IPP_ENABLED(IPP_FWD_OUT)) {
15340 			ip_process(IPP_FWD_OUT, &mp, ill_index);
15341 			if (mp == NULL) {
15342 				ip2dbg(("ip_rput_forward: pkt dropped/deferred"\
15343 				    " during IPPF processing\n"));
15344 				return;
15345 			}
15346 		}
15347 		ip_wput_frag(ire, mp, IB_PKT, max_frag, 0);
15348 		return;
15349 	}
15350 
15351 	mp = ip_wput_attach_llhdr(mp, ire, IPP_FWD_OUT, ill_index);
15352 	if (mp == NULL) {
15353 		BUMP_MIB(&ip_mib, ipInDiscards);
15354 		return;
15355 	}
15356 
15357 	q = ire->ire_stq;
15358 	UPDATE_IB_PKT_COUNT(ire);
15359 	ire->ire_last_used_time = lbolt;
15360 	BUMP_MIB(&ip_mib, ipForwDatagrams);
15361 	putnext(q, mp);
15362 	return;
15363 
15364 drop_pkt:;
15365 	ip1dbg(("ip_rput_forward: drop pkt\n"));
15366 	freemsg(mp);
15367 #undef	rptr
15368 }
15369 
15370 void
15371 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif)
15372 {
15373 	ire_t	*ire;
15374 
15375 	ASSERT(!ipif->ipif_isv6);
15376 	/*
15377 	 * Find an IRE which matches the destination and the outgoing
15378 	 * queue in the cache table. All we need is an IRE_CACHE which
15379 	 * is pointing at ipif->ipif_ill. If it is part of some ill group,
15380 	 * then it is enough to have some IRE_CACHE in the group.
15381 	 */
15382 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
15383 		dst = ipif->ipif_pp_dst_addr;
15384 	ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp),
15385 	    MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR);
15386 	if (ire == NULL) {
15387 		/*
15388 		 * Mark this packet to make it be delivered to
15389 		 * ip_rput_forward after the new ire has been
15390 		 * created.
15391 		 */
15392 		mp->b_prev = NULL;
15393 		mp->b_next = mp;
15394 		ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst,
15395 		    NULL, 0);
15396 	} else {
15397 		ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL);
15398 		IRE_REFRELE(ire);
15399 	}
15400 }
15401 
15402 /* Update any source route, record route or timestamp options */
15403 static int
15404 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire)
15405 {
15406 	ipoptp_t	opts;
15407 	uchar_t		*opt;
15408 	uint8_t		optval;
15409 	uint8_t		optlen;
15410 	ipaddr_t	dst;
15411 	uint32_t	ts;
15412 	ire_t		*dst_ire = NULL;
15413 	ire_t		*tmp_ire = NULL;
15414 	timestruc_t	now;
15415 
15416 	ip2dbg(("ip_rput_forward_options\n"));
15417 	dst = ipha->ipha_dst;
15418 	for (optval = ipoptp_first(&opts, ipha);
15419 	    optval != IPOPT_EOL;
15420 	    optval = ipoptp_next(&opts)) {
15421 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
15422 		opt = opts.ipoptp_cur;
15423 		optlen = opts.ipoptp_len;
15424 		ip2dbg(("ip_rput_forward_options: opt %d, len %d\n",
15425 		    optval, opts.ipoptp_len));
15426 		switch (optval) {
15427 			uint32_t off;
15428 		case IPOPT_SSRR:
15429 		case IPOPT_LSRR:
15430 			/* Check if adminstratively disabled */
15431 			if (!ip_forward_src_routed) {
15432 				BUMP_MIB(&ip_mib, ipForwProhibits);
15433 				if (ire->ire_stq)
15434 					icmp_unreachable(ire->ire_stq, mp,
15435 					    ICMP_SOURCE_ROUTE_FAILED);
15436 				else {
15437 					ip0dbg(("ip_rput_forward_options: "
15438 					    "unable to send unreach\n"));
15439 					freemsg(mp);
15440 				}
15441 				return (-1);
15442 			}
15443 
15444 			dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
15445 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
15446 			if (dst_ire == NULL) {
15447 				/*
15448 				 * Must be partial since ip_rput_options
15449 				 * checked for strict.
15450 				 */
15451 				break;
15452 			}
15453 			off = opt[IPOPT_OFFSET];
15454 			off--;
15455 		redo_srr:
15456 			if (optlen < IP_ADDR_LEN ||
15457 			    off > optlen - IP_ADDR_LEN) {
15458 				/* End of source route */
15459 				ip1dbg((
15460 				    "ip_rput_forward_options: end of SR\n"));
15461 				ire_refrele(dst_ire);
15462 				break;
15463 			}
15464 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
15465 			bcopy(&ire->ire_src_addr, (char *)opt + off,
15466 			    IP_ADDR_LEN);
15467 			ip1dbg(("ip_rput_forward_options: next hop 0x%x\n",
15468 			    ntohl(dst)));
15469 
15470 			/*
15471 			 * Check if our address is present more than
15472 			 * once as consecutive hops in source route.
15473 			 */
15474 			tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
15475 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
15476 			if (tmp_ire != NULL) {
15477 				ire_refrele(tmp_ire);
15478 				off += IP_ADDR_LEN;
15479 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
15480 				goto redo_srr;
15481 			}
15482 			ipha->ipha_dst = dst;
15483 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
15484 			ire_refrele(dst_ire);
15485 			break;
15486 		case IPOPT_RR:
15487 			off = opt[IPOPT_OFFSET];
15488 			off--;
15489 			if (optlen < IP_ADDR_LEN ||
15490 			    off > optlen - IP_ADDR_LEN) {
15491 				/* No more room - ignore */
15492 				ip1dbg((
15493 				    "ip_rput_forward_options: end of RR\n"));
15494 				break;
15495 			}
15496 			bcopy(&ire->ire_src_addr, (char *)opt + off,
15497 			    IP_ADDR_LEN);
15498 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
15499 			break;
15500 		case IPOPT_TS:
15501 			/* Insert timestamp if there is room */
15502 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
15503 			case IPOPT_TS_TSONLY:
15504 				off = IPOPT_TS_TIMELEN;
15505 				break;
15506 			case IPOPT_TS_PRESPEC:
15507 			case IPOPT_TS_PRESPEC_RFC791:
15508 				/* Verify that the address matched */
15509 				off = opt[IPOPT_OFFSET] - 1;
15510 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
15511 				dst_ire = ire_ctable_lookup(dst, 0,
15512 				    IRE_LOCAL, NULL, ALL_ZONES, NULL,
15513 				    MATCH_IRE_TYPE);
15514 
15515 				if (dst_ire == NULL) {
15516 					/* Not for us */
15517 					break;
15518 				}
15519 				ire_refrele(dst_ire);
15520 				/* FALLTHRU */
15521 			case IPOPT_TS_TSANDADDR:
15522 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
15523 				break;
15524 			default:
15525 				/*
15526 				 * ip_*put_options should have already
15527 				 * dropped this packet.
15528 				 */
15529 				cmn_err(CE_PANIC, "ip_rput_forward_options: "
15530 				    "unknown IT - bug in ip_rput_options?\n");
15531 				return (0);	/* Keep "lint" happy */
15532 			}
15533 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
15534 				/* Increase overflow counter */
15535 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
15536 				opt[IPOPT_POS_OV_FLG] =
15537 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
15538 				    (off << 4));
15539 				break;
15540 			}
15541 			off = opt[IPOPT_OFFSET] - 1;
15542 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
15543 			case IPOPT_TS_PRESPEC:
15544 			case IPOPT_TS_PRESPEC_RFC791:
15545 			case IPOPT_TS_TSANDADDR:
15546 				bcopy(&ire->ire_src_addr,
15547 				    (char *)opt + off, IP_ADDR_LEN);
15548 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
15549 				/* FALLTHRU */
15550 			case IPOPT_TS_TSONLY:
15551 				off = opt[IPOPT_OFFSET] - 1;
15552 				/* Compute # of milliseconds since midnight */
15553 				gethrestime(&now);
15554 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
15555 				    now.tv_nsec / (NANOSEC / MILLISEC);
15556 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
15557 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
15558 				break;
15559 			}
15560 			break;
15561 		}
15562 	}
15563 	return (0);
15564 }
15565 
15566 /*
15567  * This is called after processing at least one of AH/ESP headers.
15568  *
15569  * NOTE: the ill corresponding to ipsec_in_ill_index may not be
15570  * the actual, physical interface on which the packet was received,
15571  * but, when ip_strict_dst_multihoming is set to 1, could be the
15572  * interface which had the ipha_dst configured when the packet went
15573  * through ip_rput. The ill_index corresponding to the recv_ill
15574  * is saved in ipsec_in_rill_index
15575  */
15576 void
15577 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire)
15578 {
15579 	mblk_t *mp;
15580 	ipaddr_t dst;
15581 	in6_addr_t *v6dstp;
15582 	ipha_t *ipha;
15583 	ip6_t *ip6h;
15584 	ipsec_in_t *ii;
15585 	boolean_t ill_need_rele = B_FALSE;
15586 	boolean_t rill_need_rele = B_FALSE;
15587 	boolean_t ire_need_rele = B_FALSE;
15588 
15589 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
15590 	ASSERT(ii->ipsec_in_ill_index != 0);
15591 
15592 	mp = ipsec_mp->b_cont;
15593 	ASSERT(mp != NULL);
15594 
15595 
15596 	if (ill == NULL) {
15597 		ASSERT(recv_ill == NULL);
15598 		/*
15599 		 * We need to get the original queue on which ip_rput_local
15600 		 * or ip_rput_data_v6 was called.
15601 		 */
15602 		ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index,
15603 		    !ii->ipsec_in_v4, NULL, NULL, NULL, NULL);
15604 		ill_need_rele = B_TRUE;
15605 
15606 		if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) {
15607 			recv_ill = ill_lookup_on_ifindex(
15608 			    ii->ipsec_in_rill_index, !ii->ipsec_in_v4,
15609 			    NULL, NULL, NULL, NULL);
15610 			rill_need_rele = B_TRUE;
15611 		} else {
15612 			recv_ill = ill;
15613 		}
15614 
15615 		if ((ill == NULL) || (recv_ill == NULL)) {
15616 			ip0dbg(("ip_fanout_proto_again: interface "
15617 			    "disappeared\n"));
15618 			if (ill != NULL)
15619 				ill_refrele(ill);
15620 			if (recv_ill != NULL)
15621 				ill_refrele(recv_ill);
15622 			freemsg(ipsec_mp);
15623 			return;
15624 		}
15625 	}
15626 
15627 	ASSERT(ill != NULL && recv_ill != NULL);
15628 
15629 	if (mp->b_datap->db_type == M_CTL) {
15630 		/*
15631 		 * AH/ESP is returning the ICMP message after
15632 		 * removing their headers. Fanout again till
15633 		 * it gets to the right protocol.
15634 		 */
15635 		if (ii->ipsec_in_v4) {
15636 			icmph_t *icmph;
15637 			int iph_hdr_length;
15638 			int hdr_length;
15639 
15640 			ipha = (ipha_t *)mp->b_rptr;
15641 			iph_hdr_length = IPH_HDR_LENGTH(ipha);
15642 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
15643 			ipha = (ipha_t *)&icmph[1];
15644 			hdr_length = IPH_HDR_LENGTH(ipha);
15645 			/*
15646 			 * icmp_inbound_error_fanout may need to do pullupmsg.
15647 			 * Reset the type to M_DATA.
15648 			 */
15649 			mp->b_datap->db_type = M_DATA;
15650 			icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp,
15651 			    icmph, ipha, iph_hdr_length, hdr_length, B_TRUE,
15652 			    B_FALSE, ill, ii->ipsec_in_zoneid);
15653 		} else {
15654 			icmp6_t *icmp6;
15655 			int hdr_length;
15656 
15657 			ip6h = (ip6_t *)mp->b_rptr;
15658 			/* Don't call hdr_length_v6() unless you have to. */
15659 			if (ip6h->ip6_nxt != IPPROTO_ICMPV6)
15660 				hdr_length = ip_hdr_length_v6(mp, ip6h);
15661 			else
15662 				hdr_length = IPV6_HDR_LEN;
15663 
15664 			icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]);
15665 			/*
15666 			 * icmp_inbound_error_fanout_v6 may need to do
15667 			 * pullupmsg.  Reset the type to M_DATA.
15668 			 */
15669 			mp->b_datap->db_type = M_DATA;
15670 			icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp,
15671 			    ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid);
15672 		}
15673 		if (ill_need_rele)
15674 			ill_refrele(ill);
15675 		if (rill_need_rele)
15676 			ill_refrele(recv_ill);
15677 		return;
15678 	}
15679 
15680 	if (ii->ipsec_in_v4) {
15681 		ipha = (ipha_t *)mp->b_rptr;
15682 		dst = ipha->ipha_dst;
15683 		if (CLASSD(dst)) {
15684 			/*
15685 			 * Multicast has to be delivered to all streams.
15686 			 */
15687 			dst = INADDR_BROADCAST;
15688 		}
15689 
15690 		if (ire == NULL) {
15691 			ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid,
15692 			    MBLK_GETLABEL(mp));
15693 			if (ire == NULL) {
15694 				if (ill_need_rele)
15695 					ill_refrele(ill);
15696 				if (rill_need_rele)
15697 					ill_refrele(recv_ill);
15698 				ip1dbg(("ip_fanout_proto_again: "
15699 				    "IRE not found"));
15700 				freemsg(ipsec_mp);
15701 				return;
15702 			}
15703 			ire_need_rele = B_TRUE;
15704 		}
15705 
15706 		switch (ipha->ipha_protocol) {
15707 			case IPPROTO_UDP:
15708 				ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire,
15709 				    recv_ill);
15710 				if (ire_need_rele)
15711 					ire_refrele(ire);
15712 				break;
15713 			case IPPROTO_TCP:
15714 				if (!ire_need_rele)
15715 					IRE_REFHOLD(ire);
15716 				mp = ip_tcp_input(mp, ipha, ill, B_TRUE,
15717 				    ire, ipsec_mp, 0, ill->ill_rq, NULL);
15718 				IRE_REFRELE(ire);
15719 				if (mp != NULL)
15720 					squeue_enter_chain(GET_SQUEUE(mp), mp,
15721 					    mp, 1, SQTAG_IP_PROTO_AGAIN);
15722 				break;
15723 			case IPPROTO_SCTP:
15724 				if (!ire_need_rele)
15725 					IRE_REFHOLD(ire);
15726 				ip_sctp_input(mp, ipha, ill, B_TRUE, ire,
15727 				    ipsec_mp, 0, ill->ill_rq, dst);
15728 				break;
15729 			default:
15730 				ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire,
15731 				    recv_ill);
15732 				if (ire_need_rele)
15733 					ire_refrele(ire);
15734 				break;
15735 		}
15736 	} else {
15737 		uint32_t rput_flags = 0;
15738 
15739 		ip6h = (ip6_t *)mp->b_rptr;
15740 		v6dstp = &ip6h->ip6_dst;
15741 		/*
15742 		 * XXX Assumes ip_rput_v6 sets ll_multicast  only for multicast
15743 		 * address.
15744 		 *
15745 		 * Currently, we don't store that state in the IPSEC_IN
15746 		 * message, and we may need to.
15747 		 */
15748 		rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ?
15749 		    IP6_IN_LLMCAST : 0);
15750 		ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags,
15751 		    NULL);
15752 	}
15753 	if (ill_need_rele)
15754 		ill_refrele(ill);
15755 	if (rill_need_rele)
15756 		ill_refrele(recv_ill);
15757 }
15758 
15759 /*
15760  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
15761  * returns 'true' if there are still fragments left on the queue, in
15762  * which case we restart the timer.
15763  */
15764 void
15765 ill_frag_timer(void *arg)
15766 {
15767 	ill_t	*ill = (ill_t *)arg;
15768 	boolean_t frag_pending;
15769 
15770 	mutex_enter(&ill->ill_lock);
15771 	ASSERT(!ill->ill_fragtimer_executing);
15772 	if (ill->ill_state_flags & ILL_CONDEMNED) {
15773 		ill->ill_frag_timer_id = 0;
15774 		mutex_exit(&ill->ill_lock);
15775 		return;
15776 	}
15777 	ill->ill_fragtimer_executing = 1;
15778 	mutex_exit(&ill->ill_lock);
15779 
15780 	frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout);
15781 
15782 	/*
15783 	 * Restart the timer, if we have fragments pending or if someone
15784 	 * wanted us to be scheduled again.
15785 	 */
15786 	mutex_enter(&ill->ill_lock);
15787 	ill->ill_fragtimer_executing = 0;
15788 	ill->ill_frag_timer_id = 0;
15789 	if (frag_pending || ill->ill_fragtimer_needrestart)
15790 		ill_frag_timer_start(ill);
15791 	mutex_exit(&ill->ill_lock);
15792 }
15793 
15794 void
15795 ill_frag_timer_start(ill_t *ill)
15796 {
15797 	ASSERT(MUTEX_HELD(&ill->ill_lock));
15798 
15799 	/* If the ill is closing or opening don't proceed */
15800 	if (ill->ill_state_flags & ILL_CONDEMNED)
15801 		return;
15802 
15803 	if (ill->ill_fragtimer_executing) {
15804 		/*
15805 		 * ill_frag_timer is currently executing. Just record the
15806 		 * the fact that we want the timer to be restarted.
15807 		 * ill_frag_timer will post a timeout before it returns,
15808 		 * ensuring it will be called again.
15809 		 */
15810 		ill->ill_fragtimer_needrestart = 1;
15811 		return;
15812 	}
15813 
15814 	if (ill->ill_frag_timer_id == 0) {
15815 		/*
15816 		 * The timer is neither running nor is the timeout handler
15817 		 * executing. Post a timeout so that ill_frag_timer will be
15818 		 * called
15819 		 */
15820 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
15821 		    MSEC_TO_TICK(ip_g_frag_timo_ms >> 1));
15822 		ill->ill_fragtimer_needrestart = 0;
15823 	}
15824 }
15825 
15826 /*
15827  * This routine is needed for loopback when forwarding multicasts.
15828  *
15829  * IPQoS Notes:
15830  * IPPF processing is done in fanout routines.
15831  * Policy processing is done only if IPP_lOCAL_IN is enabled. Further,
15832  * processing for IPSec packets is done when it comes back in clear.
15833  * NOTE : The callers of this function need to do the ire_refrele for the
15834  *	  ire that is being passed in.
15835  */
15836 void
15837 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire,
15838     ill_t *recv_ill)
15839 {
15840 	ill_t	*ill = (ill_t *)q->q_ptr;
15841 	uint32_t	sum;
15842 	uint32_t	u1;
15843 	uint32_t	u2;
15844 	int		hdr_length;
15845 	boolean_t	mctl_present;
15846 	mblk_t		*first_mp = mp;
15847 	mblk_t		*hada_mp = NULL;
15848 	ipha_t		*inner_ipha;
15849 
15850 	TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START,
15851 	    "ip_rput_locl_start: q %p", q);
15852 
15853 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
15854 
15855 
15856 #define	rptr	((uchar_t *)ipha)
15857 #define	iphs	((uint16_t *)ipha)
15858 
15859 	/*
15860 	 * no UDP or TCP packet should come here anymore.
15861 	 */
15862 	ASSERT((ipha->ipha_protocol != IPPROTO_TCP) &&
15863 	    (ipha->ipha_protocol != IPPROTO_UDP));
15864 
15865 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
15866 	if (mctl_present &&
15867 	    ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) {
15868 		ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t));
15869 
15870 		/*
15871 		 * It's an IPsec accelerated packet.
15872 		 * Keep a pointer to the data attributes around until
15873 		 * we allocate the ipsec_info_t.
15874 		 */
15875 		IPSECHW_DEBUG(IPSECHW_PKT,
15876 		    ("ip_rput_local: inbound HW accelerated IPsec pkt\n"));
15877 		hada_mp = first_mp;
15878 		hada_mp->b_cont = NULL;
15879 		/*
15880 		 * Since it is accelerated, it comes directly from
15881 		 * the ill and the data attributes is followed by
15882 		 * the packet data.
15883 		 */
15884 		ASSERT(mp->b_datap->db_type != M_CTL);
15885 		first_mp = mp;
15886 		mctl_present = B_FALSE;
15887 	}
15888 
15889 	/*
15890 	 * IF M_CTL is not present, then ipsec_in_is_secure
15891 	 * should return B_TRUE. There is a case where loopback
15892 	 * packets has an M_CTL in the front with all the
15893 	 * IPSEC options set to IPSEC_PREF_NEVER - which means
15894 	 * ipsec_in_is_secure will return B_FALSE. As loopback
15895 	 * packets never comes here, it is safe to ASSERT the
15896 	 * following.
15897 	 */
15898 	ASSERT(!mctl_present || ipsec_in_is_secure(first_mp));
15899 
15900 
15901 	/* u1 is # words of IP options */
15902 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4)
15903 	    + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
15904 
15905 	if (u1) {
15906 		if (!ip_options_cksum(q, mp, ipha, ire)) {
15907 			if (hada_mp != NULL)
15908 				freemsg(hada_mp);
15909 			return;
15910 		}
15911 	} else {
15912 		/* Check the IP header checksum.  */
15913 #define	uph	((uint16_t *)ipha)
15914 		sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] +
15915 		    uph[6] + uph[7] + uph[8] + uph[9];
15916 #undef  uph
15917 		/* finish doing IP checksum */
15918 		sum = (sum & 0xFFFF) + (sum >> 16);
15919 		sum = ~(sum + (sum >> 16)) & 0xFFFF;
15920 		/*
15921 		 * Don't verify header checksum if this packet is coming
15922 		 * back from AH/ESP as we already did it.
15923 		 */
15924 		if (!mctl_present && (sum && sum != 0xFFFF)) {
15925 			BUMP_MIB(&ip_mib, ipInCksumErrs);
15926 			goto drop_pkt;
15927 		}
15928 	}
15929 
15930 	/*
15931 	 * Count for SNMP of inbound packets for ire. As ip_proto_input
15932 	 * might be called more than once for secure packets, count only
15933 	 * the first time.
15934 	 */
15935 	if (!mctl_present) {
15936 		UPDATE_IB_PKT_COUNT(ire);
15937 		ire->ire_last_used_time = lbolt;
15938 	}
15939 
15940 	/* Check for fragmentation offset. */
15941 	u2 = ntohs(ipha->ipha_fragment_offset_and_flags);
15942 	u1 = u2 & (IPH_MF | IPH_OFFSET);
15943 	if (u1) {
15944 		/*
15945 		 * We re-assemble fragments before we do the AH/ESP
15946 		 * processing. Thus, M_CTL should not be present
15947 		 * while we are re-assembling.
15948 		 */
15949 		ASSERT(!mctl_present);
15950 		ASSERT(first_mp == mp);
15951 		if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) {
15952 			return;
15953 		}
15954 		/*
15955 		 * Make sure that first_mp points back to mp as
15956 		 * the mp we came in with could have changed in
15957 		 * ip_rput_fragment().
15958 		 */
15959 		ipha = (ipha_t *)mp->b_rptr;
15960 		first_mp = mp;
15961 	}
15962 
15963 	/*
15964 	 * Clear hardware checksumming flag as it is currently only
15965 	 * used by TCP and UDP.
15966 	 */
15967 	DB_CKSUMFLAGS(mp) = 0;
15968 
15969 	/* Now we have a complete datagram, destined for this machine. */
15970 	u1 = IPH_HDR_LENGTH(ipha);
15971 	switch (ipha->ipha_protocol) {
15972 	case IPPROTO_ICMP: {
15973 		ire_t		*ire_zone;
15974 		ilm_t		*ilm;
15975 		mblk_t		*mp1;
15976 		zoneid_t	last_zoneid;
15977 
15978 		if (CLASSD(ipha->ipha_dst) &&
15979 		    !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) {
15980 			ASSERT(ire->ire_type == IRE_BROADCAST);
15981 			/*
15982 			 * In the multicast case, applications may have joined
15983 			 * the group from different zones, so we need to deliver
15984 			 * the packet to each of them. Loop through the
15985 			 * multicast memberships structures (ilm) on the receive
15986 			 * ill and send a copy of the packet up each matching
15987 			 * one. However, we don't do this for multicasts sent on
15988 			 * the loopback interface (PHYI_LOOPBACK flag set) as
15989 			 * they must stay in the sender's zone.
15990 			 *
15991 			 * ilm_add_v6() ensures that ilms in the same zone are
15992 			 * contiguous in the ill_ilm list. We use this property
15993 			 * to avoid sending duplicates needed when two
15994 			 * applications in the same zone join the same group on
15995 			 * different logical interfaces: we ignore the ilm if
15996 			 * its zoneid is the same as the last matching one.
15997 			 * In addition, the sending of the packet for
15998 			 * ire_zoneid is delayed until all of the other ilms
15999 			 * have been exhausted.
16000 			 */
16001 			last_zoneid = -1;
16002 			ILM_WALKER_HOLD(recv_ill);
16003 			for (ilm = recv_ill->ill_ilm; ilm != NULL;
16004 			    ilm = ilm->ilm_next) {
16005 				if ((ilm->ilm_flags & ILM_DELETED) ||
16006 				    ipha->ipha_dst != ilm->ilm_addr ||
16007 				    ilm->ilm_zoneid == last_zoneid ||
16008 				    ilm->ilm_zoneid == ire->ire_zoneid ||
16009 				    ilm->ilm_zoneid == ALL_ZONES ||
16010 				    !(ilm->ilm_ipif->ipif_flags & IPIF_UP))
16011 					continue;
16012 				mp1 = ip_copymsg(first_mp);
16013 				if (mp1 == NULL)
16014 					continue;
16015 				icmp_inbound(q, mp1, B_TRUE, ill,
16016 				    0, sum, mctl_present, B_TRUE,
16017 				    recv_ill, ilm->ilm_zoneid);
16018 				last_zoneid = ilm->ilm_zoneid;
16019 			}
16020 			ILM_WALKER_RELE(recv_ill);
16021 		} else if (ire->ire_type == IRE_BROADCAST) {
16022 			/*
16023 			 * In the broadcast case, there may be many zones
16024 			 * which need a copy of the packet delivered to them.
16025 			 * There is one IRE_BROADCAST per broadcast address
16026 			 * and per zone; we walk those using a helper function.
16027 			 * In addition, the sending of the packet for ire is
16028 			 * delayed until all of the other ires have been
16029 			 * processed.
16030 			 */
16031 			IRB_REFHOLD(ire->ire_bucket);
16032 			ire_zone = NULL;
16033 			while ((ire_zone = ire_get_next_bcast_ire(ire_zone,
16034 			    ire)) != NULL) {
16035 				mp1 = ip_copymsg(first_mp);
16036 				if (mp1 == NULL)
16037 					continue;
16038 
16039 				UPDATE_IB_PKT_COUNT(ire_zone);
16040 				ire_zone->ire_last_used_time = lbolt;
16041 				icmp_inbound(q, mp1, B_TRUE, ill,
16042 				    0, sum, mctl_present, B_TRUE,
16043 				    recv_ill, ire_zone->ire_zoneid);
16044 			}
16045 			IRB_REFRELE(ire->ire_bucket);
16046 		}
16047 		icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST),
16048 		    ill, 0, sum, mctl_present, B_TRUE, recv_ill,
16049 		    ire->ire_zoneid);
16050 		TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
16051 		    "ip_rput_locl_end: q %p (%S)", q, "icmp");
16052 		return;
16053 	}
16054 	case IPPROTO_IGMP:
16055 		/*
16056 		 * If we are not willing to accept IGMP packets in clear,
16057 		 * then check with global policy.
16058 		 */
16059 		if (igmp_accept_clear_messages == 0) {
16060 			first_mp = ipsec_check_global_policy(first_mp, NULL,
16061 			    ipha, NULL, mctl_present);
16062 			if (first_mp == NULL)
16063 				return;
16064 		}
16065 		if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) {
16066 			freemsg(first_mp);
16067 			ip1dbg(("ip_proto_input: zone all cannot accept raw"));
16068 			BUMP_MIB(&ip_mib, ipInDiscards);
16069 			return;
16070 		}
16071 		if (igmp_input(q, mp, ill)) {
16072 			/* Bad packet - discarded by igmp_input */
16073 			TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
16074 			    "ip_rput_locl_end: q %p (%S)", q, "igmp");
16075 			if (mctl_present)
16076 				freeb(first_mp);
16077 			return;
16078 		}
16079 		/*
16080 		 * igmp_input() may have pulled up the message so ipha needs to
16081 		 * be reinitialized.
16082 		 */
16083 		ipha = (ipha_t *)mp->b_rptr;
16084 		if (ipcl_proto_search(ipha->ipha_protocol) == NULL) {
16085 			/* No user-level listener for IGMP packets */
16086 			goto drop_pkt;
16087 		}
16088 		/* deliver to local raw users */
16089 		break;
16090 	case IPPROTO_PIM:
16091 		/*
16092 		 * If we are not willing to accept PIM packets in clear,
16093 		 * then check with global policy.
16094 		 */
16095 		if (pim_accept_clear_messages == 0) {
16096 			first_mp = ipsec_check_global_policy(first_mp, NULL,
16097 			    ipha, NULL, mctl_present);
16098 			if (first_mp == NULL)
16099 				return;
16100 		}
16101 		if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) {
16102 			freemsg(first_mp);
16103 			ip1dbg(("ip_proto_input: zone all cannot accept PIM"));
16104 			BUMP_MIB(&ip_mib, ipInDiscards);
16105 			return;
16106 		}
16107 		if (pim_input(q, mp) != 0) {
16108 			/* Bad packet - discarded by pim_input */
16109 			TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
16110 			    "ip_rput_locl_end: q %p (%S)", q, "pim");
16111 			if (mctl_present)
16112 				freeb(first_mp);
16113 			return;
16114 		}
16115 
16116 		/*
16117 		 * pim_input() may have pulled up the message so ipha needs to
16118 		 * be reinitialized.
16119 		 */
16120 		ipha = (ipha_t *)mp->b_rptr;
16121 		if (ipcl_proto_search(ipha->ipha_protocol) == NULL) {
16122 			/* No user-level listener for PIM packets */
16123 			goto drop_pkt;
16124 		}
16125 		/* deliver to local raw users */
16126 		break;
16127 	case IPPROTO_ENCAP:
16128 		/*
16129 		 * Handle self-encapsulated packets (IP-in-IP where
16130 		 * the inner addresses == the outer addresses).
16131 		 */
16132 		hdr_length = IPH_HDR_LENGTH(ipha);
16133 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
16134 		    mp->b_wptr) {
16135 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
16136 			    sizeof (ipha_t) - mp->b_rptr)) {
16137 				BUMP_MIB(&ip_mib, ipInDiscards);
16138 				freemsg(first_mp);
16139 				return;
16140 			}
16141 			ipha = (ipha_t *)mp->b_rptr;
16142 		}
16143 		inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
16144 		/*
16145 		 * Check the sanity of the inner IP header.
16146 		 */
16147 		if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) {
16148 			BUMP_MIB(&ip_mib, ipInDiscards);
16149 			freemsg(first_mp);
16150 			return;
16151 		}
16152 		if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) {
16153 			BUMP_MIB(&ip_mib, ipInDiscards);
16154 			freemsg(first_mp);
16155 			return;
16156 		}
16157 		if (inner_ipha->ipha_src == ipha->ipha_src &&
16158 		    inner_ipha->ipha_dst == ipha->ipha_dst) {
16159 			ipsec_in_t *ii;
16160 
16161 			/*
16162 			 * Self-encapsulated tunnel packet. Remove
16163 			 * the outer IP header and fanout again.
16164 			 * We also need to make sure that the inner
16165 			 * header is pulled up until options.
16166 			 */
16167 			mp->b_rptr = (uchar_t *)inner_ipha;
16168 			ipha = inner_ipha;
16169 			hdr_length = IPH_HDR_LENGTH(ipha);
16170 			if ((uchar_t *)ipha + hdr_length > mp->b_wptr) {
16171 				if (!pullupmsg(mp, (uchar_t *)ipha +
16172 				    + hdr_length - mp->b_rptr)) {
16173 					freemsg(first_mp);
16174 					return;
16175 				}
16176 				ipha = (ipha_t *)mp->b_rptr;
16177 			}
16178 			if (!mctl_present) {
16179 				ASSERT(first_mp == mp);
16180 				/*
16181 				 * This means that somebody is sending
16182 				 * Self-encapsualted packets without AH/ESP.
16183 				 * If AH/ESP was present, we would have already
16184 				 * allocated the first_mp.
16185 				 */
16186 				if ((first_mp = ipsec_in_alloc(B_TRUE)) ==
16187 				    NULL) {
16188 					ip1dbg(("ip_proto_input: IPSEC_IN "
16189 					    "allocation failure.\n"));
16190 					BUMP_MIB(&ip_mib, ipInDiscards);
16191 					freemsg(mp);
16192 					return;
16193 				}
16194 				first_mp->b_cont = mp;
16195 			}
16196 			/*
16197 			 * We generally store the ill_index if we need to
16198 			 * do IPSEC processing as we lose the ill queue when
16199 			 * we come back. But in this case, we never should
16200 			 * have to store the ill_index here as it should have
16201 			 * been stored previously when we processed the
16202 			 * AH/ESP header in this routine or for non-ipsec
16203 			 * cases, we still have the queue. But for some bad
16204 			 * packets from the wire, we can get to IPSEC after
16205 			 * this and we better store the index for that case.
16206 			 */
16207 			ill = (ill_t *)q->q_ptr;
16208 			ii = (ipsec_in_t *)first_mp->b_rptr;
16209 			ii->ipsec_in_ill_index =
16210 			    ill->ill_phyint->phyint_ifindex;
16211 			ii->ipsec_in_rill_index =
16212 			    recv_ill->ill_phyint->phyint_ifindex;
16213 			if (ii->ipsec_in_decaps) {
16214 				/*
16215 				 * This packet is self-encapsulated multiple
16216 				 * times. We don't want to recurse infinitely.
16217 				 * To keep it simple, drop the packet.
16218 				 */
16219 				BUMP_MIB(&ip_mib, ipInDiscards);
16220 				freemsg(first_mp);
16221 				return;
16222 			}
16223 			ii->ipsec_in_decaps = B_TRUE;
16224 			ip_proto_input(q, first_mp, ipha, ire, recv_ill);
16225 			return;
16226 		}
16227 		break;
16228 	case IPPROTO_AH:
16229 	case IPPROTO_ESP: {
16230 		/*
16231 		 * Fast path for AH/ESP. If this is the first time
16232 		 * we are sending a datagram to AH/ESP, allocate
16233 		 * a IPSEC_IN message and prepend it. Otherwise,
16234 		 * just fanout.
16235 		 */
16236 
16237 		int ipsec_rc;
16238 		ipsec_in_t *ii;
16239 
16240 		IP_STAT(ipsec_proto_ahesp);
16241 		if (!mctl_present) {
16242 			ASSERT(first_mp == mp);
16243 			if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) {
16244 				ip1dbg(("ip_proto_input: IPSEC_IN "
16245 				    "allocation failure.\n"));
16246 				freemsg(hada_mp); /* okay ifnull */
16247 				BUMP_MIB(&ip_mib, ipInDiscards);
16248 				freemsg(mp);
16249 				return;
16250 			}
16251 			/*
16252 			 * Store the ill_index so that when we come back
16253 			 * from IPSEC we ride on the same queue.
16254 			 */
16255 			ill = (ill_t *)q->q_ptr;
16256 			ii = (ipsec_in_t *)first_mp->b_rptr;
16257 			ii->ipsec_in_ill_index =
16258 			    ill->ill_phyint->phyint_ifindex;
16259 			ii->ipsec_in_rill_index =
16260 			    recv_ill->ill_phyint->phyint_ifindex;
16261 			first_mp->b_cont = mp;
16262 			/*
16263 			 * Cache hardware acceleration info.
16264 			 */
16265 			if (hada_mp != NULL) {
16266 				IPSECHW_DEBUG(IPSECHW_PKT,
16267 				    ("ip_rput_local: caching data attr.\n"));
16268 				ii->ipsec_in_accelerated = B_TRUE;
16269 				ii->ipsec_in_da = hada_mp;
16270 				hada_mp = NULL;
16271 			}
16272 		} else {
16273 			ii = (ipsec_in_t *)first_mp->b_rptr;
16274 		}
16275 
16276 		if (!ipsec_loaded()) {
16277 			ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP,
16278 			    ire->ire_zoneid);
16279 			return;
16280 		}
16281 
16282 		/* select inbound SA and have IPsec process the pkt */
16283 		if (ipha->ipha_protocol == IPPROTO_ESP) {
16284 			esph_t *esph = ipsec_inbound_esp_sa(first_mp);
16285 			if (esph == NULL)
16286 				return;
16287 			ASSERT(ii->ipsec_in_esp_sa != NULL);
16288 			ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL);
16289 			ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func(
16290 			    first_mp, esph);
16291 		} else {
16292 			ah_t *ah = ipsec_inbound_ah_sa(first_mp);
16293 			if (ah == NULL)
16294 				return;
16295 			ASSERT(ii->ipsec_in_ah_sa != NULL);
16296 			ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL);
16297 			ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func(
16298 			    first_mp, ah);
16299 		}
16300 
16301 		switch (ipsec_rc) {
16302 		case IPSEC_STATUS_SUCCESS:
16303 			break;
16304 		case IPSEC_STATUS_FAILED:
16305 			BUMP_MIB(&ip_mib, ipInDiscards);
16306 			/* FALLTHRU */
16307 		case IPSEC_STATUS_PENDING:
16308 			return;
16309 		}
16310 		/* we're done with IPsec processing, send it up */
16311 		ip_fanout_proto_again(first_mp, ill, recv_ill, ire);
16312 		return;
16313 	}
16314 	default:
16315 		break;
16316 	}
16317 	if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) {
16318 		ip1dbg(("ip_proto_input: zone %d cannot accept raw IP",
16319 		    ire->ire_zoneid));
16320 		goto drop_pkt;
16321 	}
16322 	/*
16323 	 * Handle protocols with which IP is less intimate.  There
16324 	 * can be more than one stream bound to a particular
16325 	 * protocol.  When this is the case, each one gets a copy
16326 	 * of any incoming packets.
16327 	 */
16328 	ip_fanout_proto(q, first_mp, ill, ipha,
16329 	    IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present,
16330 	    B_TRUE, recv_ill, ire->ire_zoneid);
16331 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
16332 	    "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto");
16333 	return;
16334 
16335 drop_pkt:
16336 	freemsg(first_mp);
16337 	if (hada_mp != NULL)
16338 		freeb(hada_mp);
16339 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
16340 	    "ip_rput_locl_end: q %p (%S)", q, "droppkt");
16341 #undef	rptr
16342 #undef  iphs
16343 
16344 }
16345 
16346 /*
16347  * Update any source route, record route or timestamp options.
16348  * Check that we are at end of strict source route.
16349  * The options have already been checked for sanity in ip_rput_options().
16350  */
16351 static boolean_t
16352 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire)
16353 {
16354 	ipoptp_t	opts;
16355 	uchar_t		*opt;
16356 	uint8_t		optval;
16357 	uint8_t		optlen;
16358 	ipaddr_t	dst;
16359 	uint32_t	ts;
16360 	ire_t		*dst_ire;
16361 	timestruc_t	now;
16362 
16363 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
16364 
16365 	ip2dbg(("ip_rput_local_options\n"));
16366 
16367 	for (optval = ipoptp_first(&opts, ipha);
16368 	    optval != IPOPT_EOL;
16369 	    optval = ipoptp_next(&opts)) {
16370 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
16371 		opt = opts.ipoptp_cur;
16372 		optlen = opts.ipoptp_len;
16373 		ip2dbg(("ip_rput_local_options: opt %d, len %d\n",
16374 		    optval, optlen));
16375 		switch (optval) {
16376 			uint32_t off;
16377 		case IPOPT_SSRR:
16378 		case IPOPT_LSRR:
16379 			off = opt[IPOPT_OFFSET];
16380 			off--;
16381 			if (optlen < IP_ADDR_LEN ||
16382 			    off > optlen - IP_ADDR_LEN) {
16383 				/* End of source route */
16384 				ip1dbg(("ip_rput_local_options: end of SR\n"));
16385 				break;
16386 			}
16387 			/*
16388 			 * This will only happen if two consecutive entries
16389 			 * in the source route contains our address or if
16390 			 * it is a packet with a loose source route which
16391 			 * reaches us before consuming the whole source route
16392 			 */
16393 			ip1dbg(("ip_rput_local_options: not end of SR\n"));
16394 			if (optval == IPOPT_SSRR) {
16395 				goto bad_src_route;
16396 			}
16397 			/*
16398 			 * Hack: instead of dropping the packet truncate the
16399 			 * source route to what has been used by filling the
16400 			 * rest with IPOPT_NOP.
16401 			 */
16402 			opt[IPOPT_OLEN] = (uint8_t)off;
16403 			while (off < optlen) {
16404 				opt[off++] = IPOPT_NOP;
16405 			}
16406 			break;
16407 		case IPOPT_RR:
16408 			off = opt[IPOPT_OFFSET];
16409 			off--;
16410 			if (optlen < IP_ADDR_LEN ||
16411 			    off > optlen - IP_ADDR_LEN) {
16412 				/* No more room - ignore */
16413 				ip1dbg((
16414 				    "ip_rput_local_options: end of RR\n"));
16415 				break;
16416 			}
16417 			bcopy(&ire->ire_src_addr, (char *)opt + off,
16418 			    IP_ADDR_LEN);
16419 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
16420 			break;
16421 		case IPOPT_TS:
16422 			/* Insert timestamp if there is romm */
16423 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
16424 			case IPOPT_TS_TSONLY:
16425 				off = IPOPT_TS_TIMELEN;
16426 				break;
16427 			case IPOPT_TS_PRESPEC:
16428 			case IPOPT_TS_PRESPEC_RFC791:
16429 				/* Verify that the address matched */
16430 				off = opt[IPOPT_OFFSET] - 1;
16431 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
16432 				dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
16433 				    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
16434 				if (dst_ire == NULL) {
16435 					/* Not for us */
16436 					break;
16437 				}
16438 				ire_refrele(dst_ire);
16439 				/* FALLTHRU */
16440 			case IPOPT_TS_TSANDADDR:
16441 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
16442 				break;
16443 			default:
16444 				/*
16445 				 * ip_*put_options should have already
16446 				 * dropped this packet.
16447 				 */
16448 				cmn_err(CE_PANIC, "ip_rput_local_options: "
16449 				    "unknown IT - bug in ip_rput_options?\n");
16450 				return (B_TRUE);	/* Keep "lint" happy */
16451 			}
16452 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
16453 				/* Increase overflow counter */
16454 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
16455 				opt[IPOPT_POS_OV_FLG] =
16456 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
16457 				    (off << 4));
16458 				break;
16459 			}
16460 			off = opt[IPOPT_OFFSET] - 1;
16461 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
16462 			case IPOPT_TS_PRESPEC:
16463 			case IPOPT_TS_PRESPEC_RFC791:
16464 			case IPOPT_TS_TSANDADDR:
16465 				bcopy(&ire->ire_src_addr, (char *)opt + off,
16466 				    IP_ADDR_LEN);
16467 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
16468 				/* FALLTHRU */
16469 			case IPOPT_TS_TSONLY:
16470 				off = opt[IPOPT_OFFSET] - 1;
16471 				/* Compute # of milliseconds since midnight */
16472 				gethrestime(&now);
16473 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
16474 				    now.tv_nsec / (NANOSEC / MILLISEC);
16475 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
16476 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
16477 				break;
16478 			}
16479 			break;
16480 		}
16481 	}
16482 	return (B_TRUE);
16483 
16484 bad_src_route:
16485 	q = WR(q);
16486 	/* make sure we clear any indication of a hardware checksum */
16487 	DB_CKSUMFLAGS(mp) = 0;
16488 	icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED);
16489 	return (B_FALSE);
16490 
16491 }
16492 
16493 /*
16494  * Process IP options in an inbound packet.  If an option affects the
16495  * effective destination address, return the next hop address via dstp.
16496  * Returns -1 if something fails in which case an ICMP error has been sent
16497  * and mp freed.
16498  */
16499 static int
16500 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp)
16501 {
16502 	ipoptp_t	opts;
16503 	uchar_t		*opt;
16504 	uint8_t		optval;
16505 	uint8_t		optlen;
16506 	ipaddr_t	dst;
16507 	intptr_t	code = 0;
16508 	ire_t		*ire = NULL;
16509 
16510 	ip2dbg(("ip_rput_options\n"));
16511 	dst = ipha->ipha_dst;
16512 	for (optval = ipoptp_first(&opts, ipha);
16513 	    optval != IPOPT_EOL;
16514 	    optval = ipoptp_next(&opts)) {
16515 		opt = opts.ipoptp_cur;
16516 		optlen = opts.ipoptp_len;
16517 		ip2dbg(("ip_rput_options: opt %d, len %d\n",
16518 		    optval, optlen));
16519 		/*
16520 		 * Note: we need to verify the checksum before we
16521 		 * modify anything thus this routine only extracts the next
16522 		 * hop dst from any source route.
16523 		 */
16524 		switch (optval) {
16525 			uint32_t off;
16526 		case IPOPT_SSRR:
16527 		case IPOPT_LSRR:
16528 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
16529 			    ALL_ZONES, NULL, MATCH_IRE_TYPE);
16530 			if (ire == NULL) {
16531 				if (optval == IPOPT_SSRR) {
16532 					ip1dbg(("ip_rput_options: not next"
16533 					    " strict source route 0x%x\n",
16534 					    ntohl(dst)));
16535 					code = (char *)&ipha->ipha_dst -
16536 					    (char *)ipha;
16537 					goto param_prob; /* RouterReq's */
16538 				}
16539 				ip2dbg(("ip_rput_options: "
16540 				    "not next source route 0x%x\n",
16541 				    ntohl(dst)));
16542 				break;
16543 			}
16544 			ire_refrele(ire);
16545 
16546 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
16547 				ip1dbg((
16548 				    "ip_rput_options: bad option offset\n"));
16549 				code = (char *)&opt[IPOPT_OLEN] -
16550 				    (char *)ipha;
16551 				goto param_prob;
16552 			}
16553 			off = opt[IPOPT_OFFSET];
16554 			off--;
16555 		redo_srr:
16556 			if (optlen < IP_ADDR_LEN ||
16557 			    off > optlen - IP_ADDR_LEN) {
16558 				/* End of source route */
16559 				ip1dbg(("ip_rput_options: end of SR\n"));
16560 				break;
16561 			}
16562 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
16563 			ip1dbg(("ip_rput_options: next hop 0x%x\n",
16564 			    ntohl(dst)));
16565 
16566 			/*
16567 			 * Check if our address is present more than
16568 			 * once as consecutive hops in source route.
16569 			 * XXX verify per-interface ip_forwarding
16570 			 * for source route?
16571 			 */
16572 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
16573 			    ALL_ZONES, NULL, MATCH_IRE_TYPE);
16574 
16575 			if (ire != NULL) {
16576 				ire_refrele(ire);
16577 				off += IP_ADDR_LEN;
16578 				goto redo_srr;
16579 			}
16580 
16581 			if (dst == htonl(INADDR_LOOPBACK)) {
16582 				ip1dbg(("ip_rput_options: loopback addr in "
16583 				    "source route!\n"));
16584 				goto bad_src_route;
16585 			}
16586 			/*
16587 			 * For strict: verify that dst is directly
16588 			 * reachable.
16589 			 */
16590 			if (optval == IPOPT_SSRR) {
16591 				ire = ire_ftable_lookup(dst, 0, 0,
16592 				    IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0,
16593 				    MBLK_GETLABEL(mp),
16594 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR);
16595 				if (ire == NULL) {
16596 					ip1dbg(("ip_rput_options: SSRR not "
16597 					    "directly reachable: 0x%x\n",
16598 					    ntohl(dst)));
16599 					goto bad_src_route;
16600 				}
16601 				ire_refrele(ire);
16602 			}
16603 			/*
16604 			 * Defer update of the offset and the record route
16605 			 * until the packet is forwarded.
16606 			 */
16607 			break;
16608 		case IPOPT_RR:
16609 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
16610 				ip1dbg((
16611 				    "ip_rput_options: bad option offset\n"));
16612 				code = (char *)&opt[IPOPT_OLEN] -
16613 				    (char *)ipha;
16614 				goto param_prob;
16615 			}
16616 			break;
16617 		case IPOPT_TS:
16618 			/*
16619 			 * Verify that length >= 5 and that there is either
16620 			 * room for another timestamp or that the overflow
16621 			 * counter is not maxed out.
16622 			 */
16623 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
16624 			if (optlen < IPOPT_MINLEN_IT) {
16625 				goto param_prob;
16626 			}
16627 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
16628 				ip1dbg((
16629 				    "ip_rput_options: bad option offset\n"));
16630 				code = (char *)&opt[IPOPT_OFFSET] -
16631 				    (char *)ipha;
16632 				goto param_prob;
16633 			}
16634 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
16635 			case IPOPT_TS_TSONLY:
16636 				off = IPOPT_TS_TIMELEN;
16637 				break;
16638 			case IPOPT_TS_TSANDADDR:
16639 			case IPOPT_TS_PRESPEC:
16640 			case IPOPT_TS_PRESPEC_RFC791:
16641 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
16642 				break;
16643 			default:
16644 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
16645 				    (char *)ipha;
16646 				goto param_prob;
16647 			}
16648 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
16649 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
16650 				/*
16651 				 * No room and the overflow counter is 15
16652 				 * already.
16653 				 */
16654 				goto param_prob;
16655 			}
16656 			break;
16657 		}
16658 	}
16659 
16660 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
16661 		*dstp = dst;
16662 		return (0);
16663 	}
16664 
16665 	ip1dbg(("ip_rput_options: error processing IP options."));
16666 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
16667 
16668 param_prob:
16669 	q = WR(q);
16670 	/* make sure we clear any indication of a hardware checksum */
16671 	DB_CKSUMFLAGS(mp) = 0;
16672 	icmp_param_problem(q, mp, (uint8_t)code);
16673 	return (-1);
16674 
16675 bad_src_route:
16676 	q = WR(q);
16677 	/* make sure we clear any indication of a hardware checksum */
16678 	DB_CKSUMFLAGS(mp) = 0;
16679 	icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED);
16680 	return (-1);
16681 }
16682 
16683 /*
16684  * IP & ICMP info in >=14 msg's ...
16685  *  - ip fixed part (mib2_ip_t)
16686  *  - icmp fixed part (mib2_icmp_t)
16687  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
16688  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
16689  *  - ipNetToMediaEntryTable (ip 22)	IPv4 IREs for on-link destinations
16690  *  - ipRouteAttributeTable (ip 102)	labeled routes
16691  *  - ip multicast membership (ip_member_t)
16692  *  - ip multicast source filtering (ip_grpsrc_t)
16693  *  - igmp fixed part (struct igmpstat)
16694  *  - multicast routing stats (struct mrtstat)
16695  *  - multicast routing vifs (array of struct vifctl)
16696  *  - multicast routing routes (array of struct mfcctl)
16697  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
16698  *					One per ill plus one generic
16699  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
16700  *					One per ill plus one generic
16701  *  - ipv6RouteEntry			all IPv6 IREs
16702  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
16703  *  - ipv6NetToMediaEntry		all Neighbor Cache entries
16704  *  - ipv6AddrEntry			all IPv6 ipifs
16705  *  - ipv6 multicast membership (ipv6_member_t)
16706  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
16707  *
16708  * IP_ROUTE and IP_MEDIA are augmented in arp to include arp cache entries not
16709  * already present.
16710  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
16711  * already filled in by the caller.
16712  * Return value of 0 indicates that no messages were sent and caller
16713  * should free mpctl.
16714  */
16715 int
16716 ip_snmp_get(queue_t *q, mblk_t *mpctl)
16717 {
16718 
16719 	if (mpctl == NULL || mpctl->b_cont == NULL) {
16720 		return (0);
16721 	}
16722 
16723 	if ((mpctl = ip_snmp_get_mib2_ip(q, mpctl)) == NULL) {
16724 		return (1);
16725 	}
16726 
16727 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) {
16728 		return (1);
16729 	}
16730 
16731 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) {
16732 		return (1);
16733 	}
16734 
16735 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) {
16736 		return (1);
16737 	}
16738 
16739 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) {
16740 		return (1);
16741 	}
16742 
16743 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) {
16744 		return (1);
16745 	}
16746 
16747 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) {
16748 		return (1);
16749 	}
16750 
16751 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) {
16752 		return (1);
16753 	}
16754 
16755 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) {
16756 		return (1);
16757 	}
16758 
16759 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) {
16760 		return (1);
16761 	}
16762 
16763 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) {
16764 		return (1);
16765 	}
16766 
16767 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) {
16768 		return (1);
16769 	}
16770 
16771 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) {
16772 		return (1);
16773 	}
16774 
16775 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) {
16776 		return (1);
16777 	}
16778 
16779 	if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) {
16780 		return (1);
16781 	}
16782 
16783 	if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) {
16784 		return (1);
16785 	}
16786 
16787 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) {
16788 		return (1);
16789 	}
16790 	freemsg(mpctl);
16791 	return (1);
16792 }
16793 
16794 
16795 /* Get global IPv4 statistics */
16796 static mblk_t *
16797 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl)
16798 {
16799 	struct opthdr		*optp;
16800 	mblk_t			*mp2ctl;
16801 
16802 	/*
16803 	 * make a copy of the original message
16804 	 */
16805 	mp2ctl = copymsg(mpctl);
16806 
16807 	/* fixed length IP structure... */
16808 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16809 	optp->level = MIB2_IP;
16810 	optp->name = 0;
16811 	SET_MIB(ip_mib.ipForwarding,
16812 	    (WE_ARE_FORWARDING ? 1 : 2));
16813 	SET_MIB(ip_mib.ipDefaultTTL,
16814 	    (uint32_t)ip_def_ttl);
16815 	SET_MIB(ip_mib.ipReasmTimeout,
16816 	    ip_g_frag_timeout);
16817 	SET_MIB(ip_mib.ipAddrEntrySize,
16818 	    sizeof (mib2_ipAddrEntry_t));
16819 	SET_MIB(ip_mib.ipRouteEntrySize,
16820 	    sizeof (mib2_ipRouteEntry_t));
16821 	SET_MIB(ip_mib.ipNetToMediaEntrySize,
16822 	    sizeof (mib2_ipNetToMediaEntry_t));
16823 	SET_MIB(ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
16824 	SET_MIB(ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
16825 	SET_MIB(ip_mib.ipRouteAttributeSize, sizeof (mib2_ipAttributeEntry_t));
16826 	SET_MIB(ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
16827 	if (!snmp_append_data(mpctl->b_cont, (char *)&ip_mib,
16828 	    (int)sizeof (ip_mib))) {
16829 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
16830 		    (uint_t)sizeof (ip_mib)));
16831 	}
16832 
16833 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
16834 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
16835 	    (int)optp->level, (int)optp->name, (int)optp->len));
16836 	qreply(q, mpctl);
16837 	return (mp2ctl);
16838 }
16839 
16840 /* Global IPv4 ICMP statistics */
16841 static mblk_t *
16842 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl)
16843 {
16844 	struct opthdr		*optp;
16845 	mblk_t			*mp2ctl;
16846 
16847 	/*
16848 	 * Make a copy of the original message
16849 	 */
16850 	mp2ctl = copymsg(mpctl);
16851 
16852 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16853 	optp->level = MIB2_ICMP;
16854 	optp->name = 0;
16855 	if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib,
16856 	    (int)sizeof (icmp_mib))) {
16857 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
16858 		    (uint_t)sizeof (icmp_mib)));
16859 	}
16860 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
16861 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
16862 	    (int)optp->level, (int)optp->name, (int)optp->len));
16863 	qreply(q, mpctl);
16864 	return (mp2ctl);
16865 }
16866 
16867 /* Global IPv4 IGMP statistics */
16868 static mblk_t *
16869 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl)
16870 {
16871 	struct opthdr		*optp;
16872 	mblk_t			*mp2ctl;
16873 
16874 	/*
16875 	 * make a copy of the original message
16876 	 */
16877 	mp2ctl = copymsg(mpctl);
16878 
16879 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16880 	optp->level = EXPER_IGMP;
16881 	optp->name = 0;
16882 	if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat,
16883 	    (int)sizeof (igmpstat))) {
16884 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
16885 		    (uint_t)sizeof (igmpstat)));
16886 	}
16887 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
16888 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
16889 	    (int)optp->level, (int)optp->name, (int)optp->len));
16890 	qreply(q, mpctl);
16891 	return (mp2ctl);
16892 }
16893 
16894 /* Global IPv4 Multicast Routing statistics */
16895 static mblk_t *
16896 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl)
16897 {
16898 	struct opthdr		*optp;
16899 	mblk_t			*mp2ctl;
16900 
16901 	/*
16902 	 * make a copy of the original message
16903 	 */
16904 	mp2ctl = copymsg(mpctl);
16905 
16906 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16907 	optp->level = EXPER_DVMRP;
16908 	optp->name = 0;
16909 	if (!ip_mroute_stats(mpctl->b_cont)) {
16910 		ip0dbg(("ip_mroute_stats: failed\n"));
16911 	}
16912 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
16913 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
16914 	    (int)optp->level, (int)optp->name, (int)optp->len));
16915 	qreply(q, mpctl);
16916 	return (mp2ctl);
16917 }
16918 
16919 /* IPv4 address information */
16920 static mblk_t *
16921 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl)
16922 {
16923 	struct opthdr		*optp;
16924 	mblk_t			*mp2ctl;
16925 	mblk_t			*mp_tail = NULL;
16926 	ill_t			*ill;
16927 	ipif_t			*ipif;
16928 	uint_t			bitval;
16929 	mib2_ipAddrEntry_t	mae;
16930 	zoneid_t		zoneid;
16931 	ill_walk_context_t ctx;
16932 
16933 	/*
16934 	 * make a copy of the original message
16935 	 */
16936 	mp2ctl = copymsg(mpctl);
16937 
16938 	/* ipAddrEntryTable */
16939 
16940 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16941 	optp->level = MIB2_IP;
16942 	optp->name = MIB2_IP_ADDR;
16943 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16944 
16945 	rw_enter(&ill_g_lock, RW_READER);
16946 	ill = ILL_START_WALK_V4(&ctx);
16947 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
16948 		for (ipif = ill->ill_ipif; ipif != NULL;
16949 		    ipif = ipif->ipif_next) {
16950 			if (ipif->ipif_zoneid != zoneid &&
16951 			    ipif->ipif_zoneid != ALL_ZONES)
16952 				continue;
16953 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
16954 			mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count;
16955 			mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count;
16956 
16957 			(void) ipif_get_name(ipif,
16958 			    mae.ipAdEntIfIndex.o_bytes,
16959 			    OCTET_LENGTH);
16960 			mae.ipAdEntIfIndex.o_length =
16961 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
16962 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
16963 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
16964 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
16965 			mae.ipAdEntInfo.ae_subnet_len =
16966 			    ip_mask_to_plen(ipif->ipif_net_mask);
16967 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr;
16968 			for (bitval = 1;
16969 			    bitval &&
16970 			    !(bitval & ipif->ipif_brd_addr);
16971 			    bitval <<= 1)
16972 				noop;
16973 			mae.ipAdEntBcastAddr = bitval;
16974 			mae.ipAdEntReasmMaxSize = 65535;
16975 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu;
16976 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_metric;
16977 			mae.ipAdEntInfo.ae_broadcast_addr =
16978 			    ipif->ipif_brd_addr;
16979 			mae.ipAdEntInfo.ae_pp_dst_addr =
16980 			    ipif->ipif_pp_dst_addr;
16981 			    mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
16982 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
16983 
16984 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
16985 			    (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) {
16986 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
16987 				    "allocate %u bytes\n",
16988 				    (uint_t)sizeof (mib2_ipAddrEntry_t)));
16989 			}
16990 		}
16991 	}
16992 	rw_exit(&ill_g_lock);
16993 
16994 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
16995 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
16996 	    (int)optp->level, (int)optp->name, (int)optp->len));
16997 	qreply(q, mpctl);
16998 	return (mp2ctl);
16999 }
17000 
17001 /* IPv6 address information */
17002 static mblk_t *
17003 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl)
17004 {
17005 	struct opthdr		*optp;
17006 	mblk_t			*mp2ctl;
17007 	mblk_t			*mp_tail = NULL;
17008 	ill_t			*ill;
17009 	ipif_t			*ipif;
17010 	mib2_ipv6AddrEntry_t	mae6;
17011 	zoneid_t		zoneid;
17012 	ill_walk_context_t	ctx;
17013 
17014 	/*
17015 	 * make a copy of the original message
17016 	 */
17017 	mp2ctl = copymsg(mpctl);
17018 
17019 	/* ipv6AddrEntryTable */
17020 
17021 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17022 	optp->level = MIB2_IP6;
17023 	optp->name = MIB2_IP6_ADDR;
17024 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17025 
17026 	rw_enter(&ill_g_lock, RW_READER);
17027 	ill = ILL_START_WALK_V6(&ctx);
17028 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
17029 		for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) {
17030 			if (ipif->ipif_zoneid != zoneid &&
17031 			    ipif->ipif_zoneid != ALL_ZONES)
17032 				continue;
17033 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
17034 			mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count;
17035 			mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count;
17036 
17037 			(void) ipif_get_name(ipif,
17038 			    mae6.ipv6AddrIfIndex.o_bytes,
17039 			    OCTET_LENGTH);
17040 			mae6.ipv6AddrIfIndex.o_length =
17041 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
17042 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
17043 			mae6.ipv6AddrPfxLength =
17044 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
17045 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
17046 			mae6.ipv6AddrInfo.ae_subnet_len =
17047 			    mae6.ipv6AddrPfxLength;
17048 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr;
17049 
17050 			/* Type: stateless(1), stateful(2), unknown(3) */
17051 			if (ipif->ipif_flags & IPIF_ADDRCONF)
17052 				mae6.ipv6AddrType = 1;
17053 			else
17054 				mae6.ipv6AddrType = 2;
17055 			/* Anycast: true(1), false(2) */
17056 			if (ipif->ipif_flags & IPIF_ANYCAST)
17057 				mae6.ipv6AddrAnycastFlag = 1;
17058 			else
17059 				mae6.ipv6AddrAnycastFlag = 2;
17060 
17061 			/*
17062 			 * Address status: preferred(1), deprecated(2),
17063 			 * invalid(3), inaccessible(4), unknown(5)
17064 			 */
17065 			if (ipif->ipif_flags & IPIF_NOLOCAL)
17066 				mae6.ipv6AddrStatus = 3;
17067 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
17068 				mae6.ipv6AddrStatus = 2;
17069 			else
17070 				mae6.ipv6AddrStatus = 1;
17071 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu;
17072 			mae6.ipv6AddrInfo.ae_metric  = ipif->ipif_metric;
17073 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
17074 						ipif->ipif_v6pp_dst_addr;
17075 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
17076 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
17077 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
17078 				(char *)&mae6,
17079 				(int)sizeof (mib2_ipv6AddrEntry_t))) {
17080 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
17081 				    "allocate %u bytes\n",
17082 				    (uint_t)sizeof (mib2_ipv6AddrEntry_t)));
17083 			}
17084 		}
17085 	}
17086 	rw_exit(&ill_g_lock);
17087 
17088 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
17089 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
17090 	    (int)optp->level, (int)optp->name, (int)optp->len));
17091 	qreply(q, mpctl);
17092 	return (mp2ctl);
17093 }
17094 
17095 /* IPv4 multicast group membership. */
17096 static mblk_t *
17097 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl)
17098 {
17099 	struct opthdr		*optp;
17100 	mblk_t			*mp2ctl;
17101 	ill_t			*ill;
17102 	ipif_t			*ipif;
17103 	ilm_t			*ilm;
17104 	ip_member_t		ipm;
17105 	mblk_t			*mp_tail = NULL;
17106 	ill_walk_context_t	ctx;
17107 	zoneid_t		zoneid;
17108 
17109 	/*
17110 	 * make a copy of the original message
17111 	 */
17112 	mp2ctl = copymsg(mpctl);
17113 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17114 
17115 	/* ipGroupMember table */
17116 	optp = (struct opthdr *)&mpctl->b_rptr[
17117 	    sizeof (struct T_optmgmt_ack)];
17118 	optp->level = MIB2_IP;
17119 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
17120 
17121 	rw_enter(&ill_g_lock, RW_READER);
17122 	ill = ILL_START_WALK_V4(&ctx);
17123 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
17124 		ILM_WALKER_HOLD(ill);
17125 		for (ipif = ill->ill_ipif; ipif != NULL;
17126 		    ipif = ipif->ipif_next) {
17127 			if (ipif->ipif_zoneid != zoneid &&
17128 			    ipif->ipif_zoneid != ALL_ZONES)
17129 				continue;	/* not this zone */
17130 			(void) ipif_get_name(ipif,
17131 			    ipm.ipGroupMemberIfIndex.o_bytes,
17132 			    OCTET_LENGTH);
17133 			ipm.ipGroupMemberIfIndex.o_length =
17134 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
17135 			for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
17136 				ASSERT(ilm->ilm_ipif != NULL);
17137 				ASSERT(ilm->ilm_ill == NULL);
17138 				if (ilm->ilm_ipif != ipif)
17139 					continue;
17140 				ipm.ipGroupMemberAddress = ilm->ilm_addr;
17141 				ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
17142 				ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
17143 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
17144 				    (char *)&ipm, (int)sizeof (ipm))) {
17145 					ip1dbg(("ip_snmp_get_mib2_ip_group: "
17146 					    "failed to allocate %u bytes\n",
17147 						(uint_t)sizeof (ipm)));
17148 				}
17149 			}
17150 		}
17151 		ILM_WALKER_RELE(ill);
17152 	}
17153 	rw_exit(&ill_g_lock);
17154 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
17155 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
17156 	    (int)optp->level, (int)optp->name, (int)optp->len));
17157 	qreply(q, mpctl);
17158 	return (mp2ctl);
17159 }
17160 
17161 /* IPv6 multicast group membership. */
17162 static mblk_t *
17163 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl)
17164 {
17165 	struct opthdr		*optp;
17166 	mblk_t			*mp2ctl;
17167 	ill_t			*ill;
17168 	ilm_t			*ilm;
17169 	ipv6_member_t		ipm6;
17170 	mblk_t			*mp_tail = NULL;
17171 	ill_walk_context_t	ctx;
17172 	zoneid_t		zoneid;
17173 
17174 	/*
17175 	 * make a copy of the original message
17176 	 */
17177 	mp2ctl = copymsg(mpctl);
17178 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17179 
17180 	/* ip6GroupMember table */
17181 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17182 	optp->level = MIB2_IP6;
17183 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
17184 
17185 	rw_enter(&ill_g_lock, RW_READER);
17186 	ill = ILL_START_WALK_V6(&ctx);
17187 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
17188 		ILM_WALKER_HOLD(ill);
17189 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
17190 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
17191 			ASSERT(ilm->ilm_ipif == NULL);
17192 			ASSERT(ilm->ilm_ill != NULL);
17193 			if (ilm->ilm_zoneid != zoneid)
17194 				continue;	/* not this zone */
17195 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
17196 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
17197 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
17198 			if (!snmp_append_data2(mpctl->b_cont,
17199 			    &mp_tail,
17200 			    (char *)&ipm6, (int)sizeof (ipm6))) {
17201 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
17202 				    "failed to allocate %u bytes\n",
17203 				    (uint_t)sizeof (ipm6)));
17204 			}
17205 		}
17206 		ILM_WALKER_RELE(ill);
17207 	}
17208 	rw_exit(&ill_g_lock);
17209 
17210 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
17211 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
17212 	    (int)optp->level, (int)optp->name, (int)optp->len));
17213 	qreply(q, mpctl);
17214 	return (mp2ctl);
17215 }
17216 
17217 /* IP multicast filtered sources */
17218 static mblk_t *
17219 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl)
17220 {
17221 	struct opthdr		*optp;
17222 	mblk_t			*mp2ctl;
17223 	ill_t			*ill;
17224 	ipif_t			*ipif;
17225 	ilm_t			*ilm;
17226 	ip_grpsrc_t		ips;
17227 	mblk_t			*mp_tail = NULL;
17228 	ill_walk_context_t	ctx;
17229 	zoneid_t		zoneid;
17230 	int			i;
17231 	slist_t			*sl;
17232 
17233 	/*
17234 	 * make a copy of the original message
17235 	 */
17236 	mp2ctl = copymsg(mpctl);
17237 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17238 
17239 	/* ipGroupSource table */
17240 	optp = (struct opthdr *)&mpctl->b_rptr[
17241 	    sizeof (struct T_optmgmt_ack)];
17242 	optp->level = MIB2_IP;
17243 	optp->name = EXPER_IP_GROUP_SOURCES;
17244 
17245 	rw_enter(&ill_g_lock, RW_READER);
17246 	ill = ILL_START_WALK_V4(&ctx);
17247 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
17248 		ILM_WALKER_HOLD(ill);
17249 		for (ipif = ill->ill_ipif; ipif != NULL;
17250 		    ipif = ipif->ipif_next) {
17251 			if (ipif->ipif_zoneid != zoneid)
17252 				continue;	/* not this zone */
17253 			(void) ipif_get_name(ipif,
17254 			    ips.ipGroupSourceIfIndex.o_bytes,
17255 			    OCTET_LENGTH);
17256 			ips.ipGroupSourceIfIndex.o_length =
17257 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
17258 			for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
17259 				ASSERT(ilm->ilm_ipif != NULL);
17260 				ASSERT(ilm->ilm_ill == NULL);
17261 				sl = ilm->ilm_filter;
17262 				if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl))
17263 					continue;
17264 				ips.ipGroupSourceGroup = ilm->ilm_addr;
17265 				for (i = 0; i < sl->sl_numsrc; i++) {
17266 					if (!IN6_IS_ADDR_V4MAPPED(
17267 					    &sl->sl_addr[i]))
17268 						continue;
17269 					IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
17270 					    ips.ipGroupSourceAddress);
17271 					if (snmp_append_data2(mpctl->b_cont,
17272 					    &mp_tail, (char *)&ips,
17273 					    (int)sizeof (ips)) == 0) {
17274 						ip1dbg(("ip_snmp_get_mib2_"
17275 						    "ip_group_src: failed to "
17276 						    "allocate %u bytes\n",
17277 						    (uint_t)sizeof (ips)));
17278 					}
17279 				}
17280 			}
17281 		}
17282 		ILM_WALKER_RELE(ill);
17283 	}
17284 	rw_exit(&ill_g_lock);
17285 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
17286 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
17287 	    (int)optp->level, (int)optp->name, (int)optp->len));
17288 	qreply(q, mpctl);
17289 	return (mp2ctl);
17290 }
17291 
17292 /* IPv6 multicast filtered sources. */
17293 static mblk_t *
17294 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl)
17295 {
17296 	struct opthdr		*optp;
17297 	mblk_t			*mp2ctl;
17298 	ill_t			*ill;
17299 	ilm_t			*ilm;
17300 	ipv6_grpsrc_t		ips6;
17301 	mblk_t			*mp_tail = NULL;
17302 	ill_walk_context_t	ctx;
17303 	zoneid_t		zoneid;
17304 	int			i;
17305 	slist_t			*sl;
17306 
17307 	/*
17308 	 * make a copy of the original message
17309 	 */
17310 	mp2ctl = copymsg(mpctl);
17311 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17312 
17313 	/* ip6GroupMember table */
17314 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17315 	optp->level = MIB2_IP6;
17316 	optp->name = EXPER_IP6_GROUP_SOURCES;
17317 
17318 	rw_enter(&ill_g_lock, RW_READER);
17319 	ill = ILL_START_WALK_V6(&ctx);
17320 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
17321 		ILM_WALKER_HOLD(ill);
17322 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
17323 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
17324 			ASSERT(ilm->ilm_ipif == NULL);
17325 			ASSERT(ilm->ilm_ill != NULL);
17326 			sl = ilm->ilm_filter;
17327 			if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl))
17328 				continue;
17329 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
17330 			for (i = 0; i < sl->sl_numsrc; i++) {
17331 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
17332 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
17333 				    (char *)&ips6, (int)sizeof (ips6))) {
17334 					ip1dbg(("ip_snmp_get_mib2_ip6_"
17335 					    "group_src: failed to allocate "
17336 					    "%u bytes\n",
17337 					    (uint_t)sizeof (ips6)));
17338 				}
17339 			}
17340 		}
17341 		ILM_WALKER_RELE(ill);
17342 	}
17343 	rw_exit(&ill_g_lock);
17344 
17345 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
17346 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
17347 	    (int)optp->level, (int)optp->name, (int)optp->len));
17348 	qreply(q, mpctl);
17349 	return (mp2ctl);
17350 }
17351 
17352 /* Multicast routing virtual interface table. */
17353 static mblk_t *
17354 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl)
17355 {
17356 	struct opthdr		*optp;
17357 	mblk_t			*mp2ctl;
17358 
17359 	/*
17360 	 * make a copy of the original message
17361 	 */
17362 	mp2ctl = copymsg(mpctl);
17363 
17364 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17365 	optp->level = EXPER_DVMRP;
17366 	optp->name = EXPER_DVMRP_VIF;
17367 	if (!ip_mroute_vif(mpctl->b_cont)) {
17368 		ip0dbg(("ip_mroute_vif: failed\n"));
17369 	}
17370 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
17371 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
17372 	    (int)optp->level, (int)optp->name, (int)optp->len));
17373 	qreply(q, mpctl);
17374 	return (mp2ctl);
17375 }
17376 
17377 /* Multicast routing table. */
17378 static mblk_t *
17379 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl)
17380 {
17381 	struct opthdr		*optp;
17382 	mblk_t			*mp2ctl;
17383 
17384 	/*
17385 	 * make a copy of the original message
17386 	 */
17387 	mp2ctl = copymsg(mpctl);
17388 
17389 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17390 	optp->level = EXPER_DVMRP;
17391 	optp->name = EXPER_DVMRP_MRT;
17392 	if (!ip_mroute_mrt(mpctl->b_cont)) {
17393 		ip0dbg(("ip_mroute_mrt: failed\n"));
17394 	}
17395 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
17396 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
17397 	    (int)optp->level, (int)optp->name, (int)optp->len));
17398 	qreply(q, mpctl);
17399 	return (mp2ctl);
17400 }
17401 
17402 /*
17403  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
17404  * in one IRE walk.
17405  */
17406 static mblk_t *
17407 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl)
17408 {
17409 	struct opthdr	*optp;
17410 	mblk_t		*mp2ctl;	/* Returned */
17411 	mblk_t		*mp3ctl;	/* nettomedia */
17412 	mblk_t		*mp4ctl;	/* routeattrs */
17413 	iproutedata_t	ird;
17414 	zoneid_t	zoneid;
17415 
17416 	/*
17417 	 * make copies of the original message
17418 	 *	- mp2ctl is returned unchanged to the caller for his use
17419 	 *	- mpctl is sent upstream as ipRouteEntryTable
17420 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
17421 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
17422 	 */
17423 	mp2ctl = copymsg(mpctl);
17424 	mp3ctl = copymsg(mpctl);
17425 	mp4ctl = copymsg(mpctl);
17426 	if (mp3ctl == NULL || mp4ctl == NULL) {
17427 		freemsg(mp4ctl);
17428 		freemsg(mp3ctl);
17429 		freemsg(mp2ctl);
17430 		freemsg(mpctl);
17431 		return (NULL);
17432 	}
17433 
17434 	bzero(&ird, sizeof (ird));
17435 
17436 	ird.ird_route.lp_head = mpctl->b_cont;
17437 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
17438 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
17439 
17440 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17441 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid);
17442 	if (zoneid == GLOBAL_ZONEID) {
17443 		/*
17444 		 * Those IREs are used by Mobile-IP; since mipagent(1M) requires
17445 		 * the sys_net_config privilege, it can only run in the global
17446 		 * zone, so we don't display these IREs in the other zones.
17447 		 */
17448 		ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird);
17449 		ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL);
17450 	}
17451 
17452 	/* ipRouteEntryTable in mpctl */
17453 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17454 	optp->level = MIB2_IP;
17455 	optp->name = MIB2_IP_ROUTE;
17456 	optp->len = msgdsize(ird.ird_route.lp_head);
17457 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
17458 	    (int)optp->level, (int)optp->name, (int)optp->len));
17459 	qreply(q, mpctl);
17460 
17461 	/* ipNetToMediaEntryTable in mp3ctl */
17462 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17463 	optp->level = MIB2_IP;
17464 	optp->name = MIB2_IP_MEDIA;
17465 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
17466 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
17467 	    (int)optp->level, (int)optp->name, (int)optp->len));
17468 	qreply(q, mp3ctl);
17469 
17470 	/* ipRouteAttributeTable in mp4ctl */
17471 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17472 	optp->level = MIB2_IP;
17473 	optp->name = EXPER_IP_RTATTR;
17474 	optp->len = msgdsize(ird.ird_attrs.lp_head);
17475 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
17476 	    (int)optp->level, (int)optp->name, (int)optp->len));
17477 	if (optp->len == 0)
17478 		freemsg(mp4ctl);
17479 	else
17480 		qreply(q, mp4ctl);
17481 
17482 	return (mp2ctl);
17483 }
17484 
17485 /*
17486  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
17487  * ipv6NetToMediaEntryTable in an NDP walk.
17488  */
17489 static mblk_t *
17490 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl)
17491 {
17492 	struct opthdr	*optp;
17493 	mblk_t		*mp2ctl;	/* Returned */
17494 	mblk_t		*mp3ctl;	/* nettomedia */
17495 	mblk_t		*mp4ctl;	/* routeattrs */
17496 	iproutedata_t	ird;
17497 	zoneid_t	zoneid;
17498 
17499 	/*
17500 	 * make copies of the original message
17501 	 *	- mp2ctl is returned unchanged to the caller for his use
17502 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
17503 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
17504 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
17505 	 */
17506 	mp2ctl = copymsg(mpctl);
17507 	mp3ctl = copymsg(mpctl);
17508 	mp4ctl = copymsg(mpctl);
17509 	if (mp3ctl == NULL || mp4ctl == NULL) {
17510 		freemsg(mp4ctl);
17511 		freemsg(mp3ctl);
17512 		freemsg(mp2ctl);
17513 		freemsg(mpctl);
17514 		return (NULL);
17515 	}
17516 
17517 	bzero(&ird, sizeof (ird));
17518 
17519 	ird.ird_route.lp_head = mpctl->b_cont;
17520 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
17521 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
17522 
17523 	zoneid = Q_TO_CONN(q)->conn_zoneid;
17524 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid);
17525 
17526 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17527 	optp->level = MIB2_IP6;
17528 	optp->name = MIB2_IP6_ROUTE;
17529 	optp->len = msgdsize(ird.ird_route.lp_head);
17530 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
17531 	    (int)optp->level, (int)optp->name, (int)optp->len));
17532 	qreply(q, mpctl);
17533 
17534 	/* ipv6NetToMediaEntryTable in mp3ctl */
17535 	ndp_walk(NULL, ip_snmp_get2_v6_media, &ird);
17536 
17537 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17538 	optp->level = MIB2_IP6;
17539 	optp->name = MIB2_IP6_MEDIA;
17540 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
17541 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
17542 	    (int)optp->level, (int)optp->name, (int)optp->len));
17543 	qreply(q, mp3ctl);
17544 
17545 	/* ipv6RouteAttributeTable in mp4ctl */
17546 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17547 	optp->level = MIB2_IP6;
17548 	optp->name = EXPER_IP_RTATTR;
17549 	optp->len = msgdsize(ird.ird_attrs.lp_head);
17550 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
17551 	    (int)optp->level, (int)optp->name, (int)optp->len));
17552 	if (optp->len == 0)
17553 		freemsg(mp4ctl);
17554 	else
17555 		qreply(q, mp4ctl);
17556 
17557 	return (mp2ctl);
17558 }
17559 
17560 /*
17561  * ICMPv6 mib: One per ill
17562  */
17563 static mblk_t *
17564 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl)
17565 {
17566 	struct opthdr		*optp;
17567 	mblk_t			*mp2ctl;
17568 	ill_t			*ill;
17569 	ill_walk_context_t	ctx;
17570 	mblk_t			*mp_tail = NULL;
17571 
17572 	/*
17573 	 * Make a copy of the original message
17574 	 */
17575 	mp2ctl = copymsg(mpctl);
17576 
17577 	/* fixed length IPv6 structure ... */
17578 
17579 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17580 	optp->level = MIB2_IP6;
17581 	optp->name = 0;
17582 	/* Include "unknown interface" ip6_mib */
17583 	ip6_mib.ipv6IfIndex = 0;	/* Flag to netstat */
17584 	SET_MIB(ip6_mib.ipv6Forwarding, ipv6_forward ? 1 : 2);
17585 	SET_MIB(ip6_mib.ipv6DefaultHopLimit, ipv6_def_hops);
17586 	SET_MIB(ip6_mib.ipv6IfStatsEntrySize,
17587 	    sizeof (mib2_ipv6IfStatsEntry_t));
17588 	SET_MIB(ip6_mib.ipv6AddrEntrySize, sizeof (mib2_ipv6AddrEntry_t));
17589 	SET_MIB(ip6_mib.ipv6RouteEntrySize, sizeof (mib2_ipv6RouteEntry_t));
17590 	SET_MIB(ip6_mib.ipv6NetToMediaEntrySize,
17591 	    sizeof (mib2_ipv6NetToMediaEntry_t));
17592 	SET_MIB(ip6_mib.ipv6MemberEntrySize, sizeof (ipv6_member_t));
17593 	SET_MIB(ip6_mib.ipv6GroupSourceEntrySize, sizeof (ipv6_grpsrc_t));
17594 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib,
17595 	    (int)sizeof (ip6_mib))) {
17596 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
17597 		    (uint_t)sizeof (ip6_mib)));
17598 	}
17599 
17600 	rw_enter(&ill_g_lock, RW_READER);
17601 	ill = ILL_START_WALK_V6(&ctx);
17602 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
17603 		ill->ill_ip6_mib->ipv6IfIndex =
17604 		    ill->ill_phyint->phyint_ifindex;
17605 		SET_MIB(ill->ill_ip6_mib->ipv6Forwarding,
17606 		    ipv6_forward ? 1 : 2);
17607 		SET_MIB(ill->ill_ip6_mib->ipv6DefaultHopLimit,
17608 		    ill->ill_max_hops);
17609 		SET_MIB(ill->ill_ip6_mib->ipv6IfStatsEntrySize,
17610 		    sizeof (mib2_ipv6IfStatsEntry_t));
17611 		SET_MIB(ill->ill_ip6_mib->ipv6AddrEntrySize,
17612 		    sizeof (mib2_ipv6AddrEntry_t));
17613 		SET_MIB(ill->ill_ip6_mib->ipv6RouteEntrySize,
17614 		    sizeof (mib2_ipv6RouteEntry_t));
17615 		SET_MIB(ill->ill_ip6_mib->ipv6NetToMediaEntrySize,
17616 		    sizeof (mib2_ipv6NetToMediaEntry_t));
17617 		SET_MIB(ill->ill_ip6_mib->ipv6MemberEntrySize,
17618 		    sizeof (ipv6_member_t));
17619 
17620 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
17621 		    (char *)ill->ill_ip6_mib,
17622 		    (int)sizeof (*ill->ill_ip6_mib))) {
17623 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
17624 				"%u bytes\n",
17625 				(uint_t)sizeof (*ill->ill_ip6_mib)));
17626 		}
17627 	}
17628 	rw_exit(&ill_g_lock);
17629 
17630 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
17631 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
17632 	    (int)optp->level, (int)optp->name, (int)optp->len));
17633 	qreply(q, mpctl);
17634 	return (mp2ctl);
17635 }
17636 
17637 /*
17638  * ICMPv6 mib: One per ill
17639  */
17640 static mblk_t *
17641 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl)
17642 {
17643 	struct opthdr		*optp;
17644 	mblk_t			*mp2ctl;
17645 	ill_t			*ill;
17646 	ill_walk_context_t	ctx;
17647 	mblk_t			*mp_tail = NULL;
17648 	/*
17649 	 * Make a copy of the original message
17650 	 */
17651 	mp2ctl = copymsg(mpctl);
17652 
17653 	/* fixed length ICMPv6 structure ... */
17654 
17655 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
17656 	optp->level = MIB2_ICMP6;
17657 	optp->name = 0;
17658 	/* Include "unknown interface" icmp6_mib */
17659 	icmp6_mib.ipv6IfIcmpIfIndex = 0;	/* Flag to netstat */
17660 	icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t);
17661 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib,
17662 	    (int)sizeof (icmp6_mib))) {
17663 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
17664 		    (uint_t)sizeof (icmp6_mib)));
17665 	}
17666 
17667 	rw_enter(&ill_g_lock, RW_READER);
17668 	ill = ILL_START_WALK_V6(&ctx);
17669 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
17670 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
17671 		    ill->ill_phyint->phyint_ifindex;
17672 		ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
17673 		    sizeof (mib2_ipv6IfIcmpEntry_t);
17674 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
17675 		    (char *)ill->ill_icmp6_mib,
17676 		    (int)sizeof (*ill->ill_icmp6_mib))) {
17677 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
17678 			    "%u bytes\n",
17679 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
17680 		}
17681 	}
17682 	rw_exit(&ill_g_lock);
17683 
17684 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
17685 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
17686 	    (int)optp->level, (int)optp->name, (int)optp->len));
17687 	qreply(q, mpctl);
17688 	return (mp2ctl);
17689 }
17690 
17691 /*
17692  * ire_walk routine to create both ipRouteEntryTable and
17693  * ipNetToMediaEntryTable in one IRE walk
17694  */
17695 static void
17696 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
17697 {
17698 	ill_t				*ill;
17699 	ipif_t				*ipif;
17700 	mblk_t				*llmp;
17701 	dl_unitdata_req_t		*dlup;
17702 	mib2_ipRouteEntry_t		*re;
17703 	mib2_ipNetToMediaEntry_t	ntme;
17704 	mib2_ipAttributeEntry_t		*iae, *iaeptr;
17705 	ipaddr_t			gw_addr;
17706 	tsol_ire_gw_secattr_t		*attrp;
17707 	tsol_gc_t			*gc = NULL;
17708 	tsol_gcgrp_t			*gcgrp = NULL;
17709 	uint_t				sacnt = 0;
17710 	int				i;
17711 
17712 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
17713 
17714 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
17715 		return;
17716 
17717 	if ((attrp = ire->ire_gw_secattr) != NULL) {
17718 		mutex_enter(&attrp->igsa_lock);
17719 		if ((gc = attrp->igsa_gc) != NULL) {
17720 			gcgrp = gc->gc_grp;
17721 			ASSERT(gcgrp != NULL);
17722 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
17723 			sacnt = 1;
17724 		} else if ((gcgrp = attrp->igsa_gcgrp) != NULL) {
17725 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
17726 			gc = gcgrp->gcgrp_head;
17727 			sacnt = gcgrp->gcgrp_count;
17728 		}
17729 		mutex_exit(&attrp->igsa_lock);
17730 
17731 		/* do nothing if there's no gc to report */
17732 		if (gc == NULL) {
17733 			ASSERT(sacnt == 0);
17734 			if (gcgrp != NULL) {
17735 				/* we might as well drop the lock now */
17736 				rw_exit(&gcgrp->gcgrp_rwlock);
17737 				gcgrp = NULL;
17738 			}
17739 			attrp = NULL;
17740 		}
17741 
17742 		ASSERT(gc == NULL || (gcgrp != NULL &&
17743 		    RW_LOCK_HELD(&gcgrp->gcgrp_rwlock)));
17744 	}
17745 	ASSERT(sacnt == 0 || gc != NULL);
17746 
17747 	if (sacnt != 0 &&
17748 	    (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) {
17749 		kmem_free(re, sizeof (*re));
17750 		rw_exit(&gcgrp->gcgrp_rwlock);
17751 		return;
17752 	}
17753 
17754 	/*
17755 	 * Return all IRE types for route table... let caller pick and choose
17756 	 */
17757 	re->ipRouteDest = ire->ire_addr;
17758 	ipif = ire->ire_ipif;
17759 	re->ipRouteIfIndex.o_length = 0;
17760 	if (ire->ire_type == IRE_CACHE) {
17761 		ill = (ill_t *)ire->ire_stq->q_ptr;
17762 		re->ipRouteIfIndex.o_length =
17763 		    ill->ill_name_length == 0 ? 0 :
17764 		    MIN(OCTET_LENGTH, ill->ill_name_length - 1);
17765 		bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes,
17766 		    re->ipRouteIfIndex.o_length);
17767 	} else if (ipif != NULL) {
17768 		(void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes,
17769 		    OCTET_LENGTH);
17770 		re->ipRouteIfIndex.o_length =
17771 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
17772 	}
17773 	re->ipRouteMetric1 = -1;
17774 	re->ipRouteMetric2 = -1;
17775 	re->ipRouteMetric3 = -1;
17776 	re->ipRouteMetric4 = -1;
17777 
17778 	gw_addr = ire->ire_gateway_addr;
17779 
17780 	if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST))
17781 		re->ipRouteNextHop = ire->ire_src_addr;
17782 	else
17783 		re->ipRouteNextHop = gw_addr;
17784 	/* indirect(4), direct(3), or invalid(2) */
17785 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
17786 		re->ipRouteType = 2;
17787 	else
17788 		re->ipRouteType = (gw_addr != 0) ? 4 : 3;
17789 	re->ipRouteProto = -1;
17790 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
17791 	re->ipRouteMask = ire->ire_mask;
17792 	re->ipRouteMetric5 = -1;
17793 	re->ipRouteInfo.re_max_frag	= ire->ire_max_frag;
17794 	re->ipRouteInfo.re_frag_flag	= ire->ire_frag_flag;
17795 	re->ipRouteInfo.re_rtt		= ire->ire_uinfo.iulp_rtt;
17796 	llmp = ire->ire_dlureq_mp;
17797 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
17798 	re->ipRouteInfo.re_src_addr	= ire->ire_src_addr;
17799 	re->ipRouteInfo.re_ire_type	= ire->ire_type;
17800 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
17801 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
17802 	re->ipRouteInfo.re_flags	= ire->ire_flags;
17803 	re->ipRouteInfo.re_in_ill.o_length = 0;
17804 	if (ire->ire_in_ill != NULL) {
17805 		re->ipRouteInfo.re_in_ill.o_length =
17806 		    ire->ire_in_ill->ill_name_length == 0 ? 0 :
17807 		    MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1);
17808 		bcopy(ire->ire_in_ill->ill_name,
17809 		    re->ipRouteInfo.re_in_ill.o_bytes,
17810 		    re->ipRouteInfo.re_in_ill.o_length);
17811 	}
17812 	re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr;
17813 
17814 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
17815 	    (char *)re, (int)sizeof (*re))) {
17816 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
17817 		    (uint_t)sizeof (*re)));
17818 	}
17819 
17820 	for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) {
17821 		iaeptr->iae_routeidx = ird->ird_idx;
17822 		iaeptr->iae_doi = gc->gc_db->gcdb_doi;
17823 		iaeptr->iae_slrange = gc->gc_db->gcdb_slrange;
17824 	}
17825 
17826 	if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail,
17827 	    (char *)iae, sacnt * sizeof (*iae))) {
17828 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
17829 		    (unsigned)(sacnt * sizeof (*iae))));
17830 	}
17831 
17832 	if (ire->ire_type != IRE_CACHE || gw_addr != 0)
17833 		goto done;
17834 	/*
17835 	 * only IRE_CACHE entries that are for a directly connected subnet
17836 	 * get appended to net -> phys addr table
17837 	 * (others in arp)
17838 	 */
17839 	ntme.ipNetToMediaIfIndex.o_length = 0;
17840 	ill = ire_to_ill(ire);
17841 	ASSERT(ill != NULL);
17842 	ntme.ipNetToMediaIfIndex.o_length =
17843 	    ill->ill_name_length == 0 ? 0 :
17844 	    MIN(OCTET_LENGTH, ill->ill_name_length - 1);
17845 	bcopy(ill->ill_name, ntme.ipNetToMediaIfIndex.o_bytes,
17846 		    ntme.ipNetToMediaIfIndex.o_length);
17847 
17848 	ntme.ipNetToMediaPhysAddress.o_length = 0;
17849 	if (llmp) {
17850 		uchar_t *addr;
17851 
17852 		dlup = (dl_unitdata_req_t *)llmp->b_rptr;
17853 		/* Remove sap from  address */
17854 		if (ill->ill_sap_length < 0)
17855 			addr = llmp->b_rptr + dlup->dl_dest_addr_offset;
17856 		else
17857 			addr = llmp->b_rptr + dlup->dl_dest_addr_offset +
17858 			    ill->ill_sap_length;
17859 
17860 		ntme.ipNetToMediaPhysAddress.o_length =
17861 		    MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
17862 		bcopy(addr, ntme.ipNetToMediaPhysAddress.o_bytes,
17863 		    ntme.ipNetToMediaPhysAddress.o_length);
17864 	}
17865 	ntme.ipNetToMediaNetAddress = ire->ire_addr;
17866 	/* assume dynamic (may be changed in arp) */
17867 	ntme.ipNetToMediaType = 3;
17868 	ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (uint32_t);
17869 	bcopy(&ire->ire_mask, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
17870 	    ntme.ipNetToMediaInfo.ntm_mask.o_length);
17871 	ntme.ipNetToMediaInfo.ntm_flags = ACE_F_RESOLVED;
17872 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
17873 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
17874 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
17875 		    (uint_t)sizeof (ntme)));
17876 	}
17877 done:
17878 	/* bump route index for next pass */
17879 	ird->ird_idx++;
17880 
17881 	kmem_free(re, sizeof (*re));
17882 	if (sacnt != 0)
17883 		kmem_free(iae, sacnt * sizeof (*iae));
17884 
17885 	if (gcgrp != NULL)
17886 		rw_exit(&gcgrp->gcgrp_rwlock);
17887 }
17888 
17889 /*
17890  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
17891  */
17892 static void
17893 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
17894 {
17895 	ill_t				*ill;
17896 	ipif_t				*ipif;
17897 	mib2_ipv6RouteEntry_t		*re;
17898 	mib2_ipAttributeEntry_t		*iae, *iaeptr;
17899 	in6_addr_t			gw_addr_v6;
17900 	tsol_ire_gw_secattr_t		*attrp;
17901 	tsol_gc_t			*gc = NULL;
17902 	tsol_gcgrp_t			*gcgrp = NULL;
17903 	uint_t				sacnt = 0;
17904 	int				i;
17905 
17906 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
17907 
17908 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
17909 		return;
17910 
17911 	if ((attrp = ire->ire_gw_secattr) != NULL) {
17912 		mutex_enter(&attrp->igsa_lock);
17913 		if ((gc = attrp->igsa_gc) != NULL) {
17914 			gcgrp = gc->gc_grp;
17915 			ASSERT(gcgrp != NULL);
17916 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
17917 			sacnt = 1;
17918 		} else if ((gcgrp = attrp->igsa_gcgrp) != NULL) {
17919 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
17920 			gc = gcgrp->gcgrp_head;
17921 			sacnt = gcgrp->gcgrp_count;
17922 		}
17923 		mutex_exit(&attrp->igsa_lock);
17924 
17925 		/* do nothing if there's no gc to report */
17926 		if (gc == NULL) {
17927 			ASSERT(sacnt == 0);
17928 			if (gcgrp != NULL) {
17929 				/* we might as well drop the lock now */
17930 				rw_exit(&gcgrp->gcgrp_rwlock);
17931 				gcgrp = NULL;
17932 			}
17933 			attrp = NULL;
17934 		}
17935 
17936 		ASSERT(gc == NULL || (gcgrp != NULL &&
17937 		    RW_LOCK_HELD(&gcgrp->gcgrp_rwlock)));
17938 	}
17939 	ASSERT(sacnt == 0 || gc != NULL);
17940 
17941 	if (sacnt != 0 &&
17942 	    (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) {
17943 		kmem_free(re, sizeof (*re));
17944 		rw_exit(&gcgrp->gcgrp_rwlock);
17945 		return;
17946 	}
17947 
17948 	/*
17949 	 * Return all IRE types for route table... let caller pick and choose
17950 	 */
17951 	re->ipv6RouteDest = ire->ire_addr_v6;
17952 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
17953 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
17954 	re->ipv6RouteIfIndex.o_length = 0;
17955 	ipif = ire->ire_ipif;
17956 	if (ire->ire_type == IRE_CACHE) {
17957 		ill = (ill_t *)ire->ire_stq->q_ptr;
17958 		re->ipv6RouteIfIndex.o_length =
17959 		    ill->ill_name_length == 0 ? 0 :
17960 		    MIN(OCTET_LENGTH, ill->ill_name_length - 1);
17961 		bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes,
17962 		    re->ipv6RouteIfIndex.o_length);
17963 	} else if (ipif != NULL) {
17964 		(void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes,
17965 		    OCTET_LENGTH);
17966 		re->ipv6RouteIfIndex.o_length =
17967 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
17968 	}
17969 
17970 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
17971 
17972 	mutex_enter(&ire->ire_lock);
17973 	gw_addr_v6 = ire->ire_gateway_addr_v6;
17974 	mutex_exit(&ire->ire_lock);
17975 
17976 	if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK))
17977 		re->ipv6RouteNextHop = ire->ire_src_addr_v6;
17978 	else
17979 		re->ipv6RouteNextHop = gw_addr_v6;
17980 
17981 	/* remote(4), local(3), or discard(2) */
17982 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
17983 		re->ipv6RouteType = 2;
17984 	else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6))
17985 		re->ipv6RouteType = 3;
17986 	else
17987 		re->ipv6RouteType = 4;
17988 
17989 	re->ipv6RouteProtocol	= -1;
17990 	re->ipv6RoutePolicy	= 0;
17991 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
17992 	re->ipv6RouteNextHopRDI	= 0;
17993 	re->ipv6RouteWeight	= 0;
17994 	re->ipv6RouteMetric	= 0;
17995 	re->ipv6RouteInfo.re_max_frag	= ire->ire_max_frag;
17996 	re->ipv6RouteInfo.re_frag_flag	= ire->ire_frag_flag;
17997 	re->ipv6RouteInfo.re_rtt	= ire->ire_uinfo.iulp_rtt;
17998 	re->ipv6RouteInfo.re_src_addr	= ire->ire_src_addr_v6;
17999 	re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
18000 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
18001 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
18002 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
18003 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
18004 
18005 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
18006 	    (char *)re, (int)sizeof (*re))) {
18007 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
18008 		    (uint_t)sizeof (*re)));
18009 	}
18010 
18011 	for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) {
18012 		iaeptr->iae_routeidx = ird->ird_idx;
18013 		iaeptr->iae_doi = gc->gc_db->gcdb_doi;
18014 		iaeptr->iae_slrange = gc->gc_db->gcdb_slrange;
18015 	}
18016 
18017 	if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail,
18018 	    (char *)iae, sacnt * sizeof (*iae))) {
18019 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
18020 		    (unsigned)(sacnt * sizeof (*iae))));
18021 	}
18022 
18023 	/* bump route index for next pass */
18024 	ird->ird_idx++;
18025 
18026 	kmem_free(re, sizeof (*re));
18027 	if (sacnt != 0)
18028 		kmem_free(iae, sacnt * sizeof (*iae));
18029 
18030 	if (gcgrp != NULL)
18031 		rw_exit(&gcgrp->gcgrp_rwlock);
18032 }
18033 
18034 /*
18035  * ndp_walk routine to create ipv6NetToMediaEntryTable
18036  */
18037 static int
18038 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird)
18039 {
18040 	ill_t				*ill;
18041 	mib2_ipv6NetToMediaEntry_t	ntme;
18042 	dl_unitdata_req_t		*dl;
18043 
18044 	ill = nce->nce_ill;
18045 	ASSERT(ill->ill_isv6);
18046 
18047 	/*
18048 	 * Neighbor cache entry attached to IRE with on-link
18049 	 * destination.
18050 	 */
18051 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
18052 	ntme.ipv6NetToMediaNetAddress = nce->nce_addr;
18053 	if ((ill->ill_flags & ILLF_XRESOLV) &&
18054 	    (nce->nce_res_mp != NULL)) {
18055 		dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr);
18056 		ntme.ipv6NetToMediaPhysAddress.o_length =
18057 		    dl->dl_dest_addr_length;
18058 	} else {
18059 		ntme.ipv6NetToMediaPhysAddress.o_length =
18060 		    ill->ill_phys_addr_length;
18061 	}
18062 	if (nce->nce_res_mp != NULL) {
18063 		bcopy((char *)nce->nce_res_mp->b_rptr +
18064 		    NCE_LL_ADDR_OFFSET(ill),
18065 		    ntme.ipv6NetToMediaPhysAddress.o_bytes,
18066 		    ntme.ipv6NetToMediaPhysAddress.o_length);
18067 	} else {
18068 		bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes,
18069 		    ill->ill_phys_addr_length);
18070 	}
18071 	/*
18072 	 * Note: Returns ND_* states. Should be:
18073 	 * reachable(1), stale(2), delay(3), probe(4),
18074 	 * invalid(5), unknown(6)
18075 	 */
18076 	ntme.ipv6NetToMediaState = nce->nce_state;
18077 	ntme.ipv6NetToMediaLastUpdated = 0;
18078 
18079 	/* other(1), dynamic(2), static(3), local(4) */
18080 	if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) {
18081 		ntme.ipv6NetToMediaType = 4;
18082 	} else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) {
18083 		ntme.ipv6NetToMediaType = 1;
18084 	} else {
18085 		ntme.ipv6NetToMediaType = 2;
18086 	}
18087 
18088 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
18089 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
18090 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
18091 		    (uint_t)sizeof (ntme)));
18092 	}
18093 	return (0);
18094 }
18095 
18096 /*
18097  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
18098  */
18099 /* ARGSUSED */
18100 int
18101 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
18102 {
18103 	switch (level) {
18104 	case MIB2_IP:
18105 	case MIB2_ICMP:
18106 		switch (name) {
18107 		default:
18108 			break;
18109 		}
18110 		return (1);
18111 	default:
18112 		return (1);
18113 	}
18114 }
18115 
18116 /*
18117  * Called before the options are updated to check if this packet will
18118  * be source routed from here.
18119  * This routine assumes that the options are well formed i.e. that they
18120  * have already been checked.
18121  */
18122 static boolean_t
18123 ip_source_routed(ipha_t *ipha)
18124 {
18125 	ipoptp_t	opts;
18126 	uchar_t		*opt;
18127 	uint8_t		optval;
18128 	uint8_t		optlen;
18129 	ipaddr_t	dst;
18130 	ire_t		*ire;
18131 
18132 	if (IS_SIMPLE_IPH(ipha)) {
18133 		ip2dbg(("not source routed\n"));
18134 		return (B_FALSE);
18135 	}
18136 	dst = ipha->ipha_dst;
18137 	for (optval = ipoptp_first(&opts, ipha);
18138 	    optval != IPOPT_EOL;
18139 	    optval = ipoptp_next(&opts)) {
18140 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
18141 		opt = opts.ipoptp_cur;
18142 		optlen = opts.ipoptp_len;
18143 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
18144 		    optval, optlen));
18145 		switch (optval) {
18146 			uint32_t off;
18147 		case IPOPT_SSRR:
18148 		case IPOPT_LSRR:
18149 			/*
18150 			 * If dst is one of our addresses and there are some
18151 			 * entries left in the source route return (true).
18152 			 */
18153 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
18154 			    ALL_ZONES, NULL, MATCH_IRE_TYPE);
18155 			if (ire == NULL) {
18156 				ip2dbg(("ip_source_routed: not next"
18157 				    " source route 0x%x\n",
18158 				    ntohl(dst)));
18159 				return (B_FALSE);
18160 			}
18161 			ire_refrele(ire);
18162 			off = opt[IPOPT_OFFSET];
18163 			off--;
18164 			if (optlen < IP_ADDR_LEN ||
18165 			    off > optlen - IP_ADDR_LEN) {
18166 				/* End of source route */
18167 				ip1dbg(("ip_source_routed: end of SR\n"));
18168 				return (B_FALSE);
18169 			}
18170 			return (B_TRUE);
18171 		}
18172 	}
18173 	ip2dbg(("not source routed\n"));
18174 	return (B_FALSE);
18175 }
18176 
18177 /*
18178  * Check if the packet contains any source route.
18179  */
18180 static boolean_t
18181 ip_source_route_included(ipha_t *ipha)
18182 {
18183 	ipoptp_t	opts;
18184 	uint8_t		optval;
18185 
18186 	if (IS_SIMPLE_IPH(ipha))
18187 		return (B_FALSE);
18188 	for (optval = ipoptp_first(&opts, ipha);
18189 	    optval != IPOPT_EOL;
18190 	    optval = ipoptp_next(&opts)) {
18191 		switch (optval) {
18192 		case IPOPT_SSRR:
18193 		case IPOPT_LSRR:
18194 			return (B_TRUE);
18195 		}
18196 	}
18197 	return (B_FALSE);
18198 }
18199 
18200 /*
18201  * Called when the IRE expiration timer fires.
18202  */
18203 /* ARGSUSED */
18204 void
18205 ip_trash_timer_expire(void *args)
18206 {
18207 	int	flush_flag = 0;
18208 
18209 	/*
18210 	 * ip_ire_expire_id is protected by ip_trash_timer_lock.
18211 	 * This lock makes sure that a new invocation of this function
18212 	 * that occurs due to an almost immediate timer firing will not
18213 	 * progress beyond this point until the current invocation is done
18214 	 */
18215 	mutex_enter(&ip_trash_timer_lock);
18216 	ip_ire_expire_id = 0;
18217 	mutex_exit(&ip_trash_timer_lock);
18218 
18219 	/* Periodic timer */
18220 	if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) {
18221 		/*
18222 		 * Remove all IRE_CACHE entries since they might
18223 		 * contain arp information.
18224 		 */
18225 		flush_flag |= FLUSH_ARP_TIME;
18226 		ip_ire_arp_time_elapsed = 0;
18227 		IP_STAT(ip_ire_arp_timer_expired);
18228 	}
18229 	if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) {
18230 		/* Remove all redirects */
18231 		flush_flag |= FLUSH_REDIRECT_TIME;
18232 		ip_ire_rd_time_elapsed = 0;
18233 		IP_STAT(ip_ire_redirect_timer_expired);
18234 	}
18235 	if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) {
18236 		/* Increase path mtu */
18237 		flush_flag |= FLUSH_MTU_TIME;
18238 		ip_ire_pmtu_time_elapsed = 0;
18239 		IP_STAT(ip_ire_pmtu_timer_expired);
18240 	}
18241 	if (flush_flag != 0) {
18242 		/* Walk all IPv4 IRE's and update them */
18243 		ire_walk_v4(ire_expire, (char *)(uintptr_t)flush_flag,
18244 		    ALL_ZONES);
18245 	}
18246 	if (flush_flag & FLUSH_MTU_TIME) {
18247 		/*
18248 		 * Walk all IPv6 IRE's and update them
18249 		 * Note that ARP and redirect timers are not
18250 		 * needed since NUD handles stale entries.
18251 		 */
18252 		flush_flag = FLUSH_MTU_TIME;
18253 		ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag,
18254 		    ALL_ZONES);
18255 	}
18256 
18257 	ip_ire_arp_time_elapsed += ip_timer_interval;
18258 	ip_ire_rd_time_elapsed += ip_timer_interval;
18259 	ip_ire_pmtu_time_elapsed += ip_timer_interval;
18260 
18261 	/*
18262 	 * Hold the lock to serialize timeout calls and prevent
18263 	 * stale values in ip_ire_expire_id. Otherwise it is possible
18264 	 * for the timer to fire and a new invocation of this function
18265 	 * to start before the return value of timeout has been stored
18266 	 * in ip_ire_expire_id by the current invocation.
18267 	 */
18268 	mutex_enter(&ip_trash_timer_lock);
18269 	ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL,
18270 	    MSEC_TO_TICK(ip_timer_interval));
18271 	mutex_exit(&ip_trash_timer_lock);
18272 }
18273 
18274 /*
18275  * Called by the memory allocator subsystem directly, when the system
18276  * is running low on memory.
18277  */
18278 /* ARGSUSED */
18279 void
18280 ip_trash_ire_reclaim(void *args)
18281 {
18282 	ire_cache_count_t icc;
18283 	ire_cache_reclaim_t icr;
18284 	ncc_cache_count_t ncc;
18285 	nce_cache_reclaim_t ncr;
18286 	uint_t delete_cnt;
18287 	/*
18288 	 * Memory reclaim call back.
18289 	 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries.
18290 	 * Then, with a target of freeing 1/Nth of IRE_CACHE
18291 	 * entries, determine what fraction to free for
18292 	 * each category of IRE_CACHE entries giving absolute priority
18293 	 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu
18294 	 * entry will be freed unless all offlink entries are freed).
18295 	 */
18296 	icc.icc_total = 0;
18297 	icc.icc_unused = 0;
18298 	icc.icc_offlink = 0;
18299 	icc.icc_pmtu = 0;
18300 	icc.icc_onlink = 0;
18301 	ire_walk(ire_cache_count, (char *)&icc);
18302 
18303 	/*
18304 	 * Free NCEs for IPv6 like the onlink ires.
18305 	 */
18306 	ncc.ncc_total = 0;
18307 	ncc.ncc_host = 0;
18308 	ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc);
18309 
18310 	ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink +
18311 	    icc.icc_pmtu + icc.icc_onlink);
18312 	delete_cnt = icc.icc_total/ip_ire_reclaim_fraction;
18313 	IP_STAT(ip_trash_ire_reclaim_calls);
18314 	if (delete_cnt == 0)
18315 		return;
18316 	IP_STAT(ip_trash_ire_reclaim_success);
18317 	/* Always delete all unused offlink entries */
18318 	icr.icr_unused = 1;
18319 	if (delete_cnt <= icc.icc_unused) {
18320 		/*
18321 		 * Only need to free unused entries.  In other words,
18322 		 * there are enough unused entries to free to meet our
18323 		 * target number of freed ire cache entries.
18324 		 */
18325 		icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0;
18326 		ncr.ncr_host = 0;
18327 	} else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) {
18328 		/*
18329 		 * Only need to free unused entries, plus a fraction of offlink
18330 		 * entries.  It follows from the first if statement that
18331 		 * icc_offlink is non-zero, and that delete_cnt != icc_unused.
18332 		 */
18333 		delete_cnt -= icc.icc_unused;
18334 		/* Round up # deleted by truncating fraction */
18335 		icr.icr_offlink = icc.icc_offlink / delete_cnt;
18336 		icr.icr_pmtu = icr.icr_onlink = 0;
18337 		ncr.ncr_host = 0;
18338 	} else if (delete_cnt <=
18339 	    icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) {
18340 		/*
18341 		 * Free all unused and offlink entries, plus a fraction of
18342 		 * pmtu entries.  It follows from the previous if statement
18343 		 * that icc_pmtu is non-zero, and that
18344 		 * delete_cnt != icc_unused + icc_offlink.
18345 		 */
18346 		icr.icr_offlink = 1;
18347 		delete_cnt -= icc.icc_unused + icc.icc_offlink;
18348 		/* Round up # deleted by truncating fraction */
18349 		icr.icr_pmtu = icc.icc_pmtu / delete_cnt;
18350 		icr.icr_onlink = 0;
18351 		ncr.ncr_host = 0;
18352 	} else {
18353 		/*
18354 		 * Free all unused, offlink, and pmtu entries, plus a fraction
18355 		 * of onlink entries.  If we're here, then we know that
18356 		 * icc_onlink is non-zero, and that
18357 		 * delete_cnt != icc_unused + icc_offlink + icc_pmtu.
18358 		 */
18359 		icr.icr_offlink = icr.icr_pmtu = 1;
18360 		delete_cnt -= icc.icc_unused + icc.icc_offlink +
18361 		    icc.icc_pmtu;
18362 		/* Round up # deleted by truncating fraction */
18363 		icr.icr_onlink = icc.icc_onlink / delete_cnt;
18364 		/* Using the same delete fraction as for onlink IREs */
18365 		ncr.ncr_host = ncc.ncc_host / delete_cnt;
18366 	}
18367 #ifdef DEBUG
18368 	ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d "
18369 	    "fractions %d/%d/%d/%d\n",
18370 	    icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total,
18371 	    icc.icc_unused, icc.icc_offlink,
18372 	    icc.icc_pmtu, icc.icc_onlink,
18373 	    icr.icr_unused, icr.icr_offlink,
18374 	    icr.icr_pmtu, icr.icr_onlink));
18375 #endif
18376 	ire_walk(ire_cache_reclaim, (char *)&icr);
18377 	if (ncr.ncr_host != 0)
18378 		ndp_walk(NULL, (pfi_t)ndp_cache_reclaim,
18379 		    (uchar_t *)&ncr);
18380 #ifdef DEBUG
18381 	icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0;
18382 	icc.icc_pmtu = 0; icc.icc_onlink = 0;
18383 	ire_walk(ire_cache_count, (char *)&icc);
18384 	ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n",
18385 	    icc.icc_total, icc.icc_unused, icc.icc_offlink,
18386 	    icc.icc_pmtu, icc.icc_onlink));
18387 #endif
18388 }
18389 
18390 /*
18391  * ip_unbind is called when a copy of an unbind request is received from the
18392  * upper level protocol.  We remove this conn from any fanout hash list it is
18393  * on, and zero out the bind information.  No reply is expected up above.
18394  */
18395 mblk_t *
18396 ip_unbind(queue_t *q, mblk_t *mp)
18397 {
18398 	conn_t	*connp = Q_TO_CONN(q);
18399 
18400 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
18401 
18402 	if (is_system_labeled() && connp->conn_anon_port) {
18403 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
18404 		    connp->conn_mlp_type, connp->conn_ulp,
18405 		    ntohs(connp->conn_lport), B_FALSE);
18406 		connp->conn_anon_port = 0;
18407 	}
18408 	connp->conn_mlp_type = mlptSingle;
18409 
18410 	ipcl_hash_remove(connp);
18411 
18412 	ASSERT(mp->b_cont == NULL);
18413 	/*
18414 	 * Convert mp into a T_OK_ACK
18415 	 */
18416 	mp = mi_tpi_ok_ack_alloc(mp);
18417 
18418 	/*
18419 	 * should not happen in practice... T_OK_ACK is smaller than the
18420 	 * original message.
18421 	 */
18422 	if (mp == NULL)
18423 		return (NULL);
18424 
18425 	/*
18426 	 * Don't bzero the ports if its TCP since TCP still needs the
18427 	 * lport to remove it from its own bind hash. TCP will do the
18428 	 * cleanup.
18429 	 */
18430 	if (!IPCL_IS_TCP(connp))
18431 		bzero(&connp->u_port, sizeof (connp->u_port));
18432 
18433 	return (mp);
18434 }
18435 
18436 /*
18437  * Write side put procedure.  Outbound data, IOCTLs, responses from
18438  * resolvers, etc, come down through here.
18439  */
18440 void
18441 ip_output(void *arg, mblk_t *mp, void *arg2, int caller)
18442 {
18443 	conn_t		*connp = NULL;
18444 	queue_t		*q = (queue_t *)arg2;
18445 	ipha_t		*ipha;
18446 #define	rptr	((uchar_t *)ipha)
18447 	ire_t		*ire = NULL;
18448 	ire_t		*sctp_ire = NULL;
18449 	uint32_t	v_hlen_tos_len;
18450 	ipaddr_t	dst;
18451 	mblk_t		*first_mp = NULL;
18452 	boolean_t	mctl_present;
18453 	ipsec_out_t	*io;
18454 	int		match_flags;
18455 	ill_t		*attach_ill = NULL;
18456 					/* Bind to IPIF_NOFAILOVER ill etc. */
18457 	ill_t		*xmit_ill = NULL;	/* IP_XMIT_IF etc. */
18458 	ipif_t		*dst_ipif;
18459 	boolean_t	multirt_need_resolve = B_FALSE;
18460 	mblk_t		*copy_mp = NULL;
18461 	int		err;
18462 	zoneid_t	zoneid;
18463 	int	adjust;
18464 	uint16_t iplen;
18465 	boolean_t	need_decref = B_FALSE;
18466 	boolean_t	ignore_dontroute = B_FALSE;
18467 	boolean_t	ignore_nexthop = B_FALSE;
18468 	boolean_t	ip_nexthop = B_FALSE;
18469 	ipaddr_t	nexthop_addr;
18470 
18471 #ifdef	_BIG_ENDIAN
18472 #define	V_HLEN	(v_hlen_tos_len >> 24)
18473 #else
18474 #define	V_HLEN	(v_hlen_tos_len & 0xFF)
18475 #endif
18476 
18477 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_START,
18478 	    "ip_wput_start: q %p", q);
18479 
18480 	/*
18481 	 * ip_wput fast path
18482 	 */
18483 
18484 	/* is packet from ARP ? */
18485 	if (q->q_next != NULL)
18486 		goto qnext;
18487 
18488 	connp = (conn_t *)arg;
18489 	zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES);
18490 
18491 	/* is queue flow controlled? */
18492 	if ((q->q_first != NULL || connp->conn_draining) &&
18493 	    (caller == IP_WPUT)) {
18494 		ASSERT(!need_decref);
18495 		(void) putq(q, mp);
18496 		return;
18497 	}
18498 
18499 	/* Multidata transmit? */
18500 	if (DB_TYPE(mp) == M_MULTIDATA) {
18501 		/*
18502 		 * We should never get here, since all Multidata messages
18503 		 * originating from tcp should have been directed over to
18504 		 * tcp_multisend() in the first place.
18505 		 */
18506 		BUMP_MIB(&ip_mib, ipOutDiscards);
18507 		freemsg(mp);
18508 		return;
18509 	} else if (DB_TYPE(mp) != M_DATA)
18510 		goto notdata;
18511 
18512 	if (mp->b_flag & MSGHASREF) {
18513 		ASSERT(connp->conn_ulp == IPPROTO_SCTP);
18514 		mp->b_flag &= ~MSGHASREF;
18515 		SCTP_EXTRACT_IPINFO(mp, sctp_ire);
18516 		need_decref = B_TRUE;
18517 	}
18518 	ipha = (ipha_t *)mp->b_rptr;
18519 
18520 	/* is IP header non-aligned or mblk smaller than basic IP header */
18521 #ifndef SAFETY_BEFORE_SPEED
18522 	if (!OK_32PTR(rptr) ||
18523 	    (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH)
18524 		goto hdrtoosmall;
18525 #endif
18526 
18527 	ASSERT(OK_32PTR(ipha));
18528 
18529 	/*
18530 	 * This function assumes that mp points to an IPv4 packet.  If it's the
18531 	 * wrong version, we'll catch it again in ip_output_v6.
18532 	 *
18533 	 * Note that this is *only* locally-generated output here, and never
18534 	 * forwarded data, and that we need to deal only with transports that
18535 	 * don't know how to label.  (TCP, UDP, and ICMP/raw-IP all know how to
18536 	 * label.)
18537 	 */
18538 	if (is_system_labeled() &&
18539 	    (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) &&
18540 	    !connp->conn_ulp_labeled) {
18541 		err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust,
18542 		    connp->conn_mac_exempt);
18543 		ipha = (ipha_t *)mp->b_rptr;
18544 		if (err != 0) {
18545 			first_mp = mp;
18546 			if (err == EINVAL)
18547 				goto icmp_parameter_problem;
18548 			ip2dbg(("ip_wput: label check failed (%d)\n", err));
18549 			goto drop_pkt;
18550 		}
18551 		iplen = ntohs(ipha->ipha_length) + adjust;
18552 		ipha->ipha_length = htons(iplen);
18553 	}
18554 
18555 	/*
18556 	 * If there is a policy, try to attach an ipsec_out in
18557 	 * the front. At the end, first_mp either points to a
18558 	 * M_DATA message or IPSEC_OUT message linked to a
18559 	 * M_DATA message. We have to do it now as we might
18560 	 * lose the "conn" if we go through ip_newroute.
18561 	 */
18562 	if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) {
18563 		if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL,
18564 		    ipha->ipha_protocol)) == NULL)) {
18565 			if (need_decref)
18566 				CONN_DEC_REF(connp);
18567 			return;
18568 		} else {
18569 			ASSERT(mp->b_datap->db_type == M_CTL);
18570 			first_mp = mp;
18571 			mp = mp->b_cont;
18572 			mctl_present = B_TRUE;
18573 		}
18574 	} else {
18575 		first_mp = mp;
18576 		mctl_present = B_FALSE;
18577 	}
18578 
18579 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
18580 
18581 	/* is wrong version or IP options present */
18582 	if (V_HLEN != IP_SIMPLE_HDR_VERSION)
18583 		goto version_hdrlen_check;
18584 	dst = ipha->ipha_dst;
18585 
18586 	if (connp->conn_nofailover_ill != NULL) {
18587 		attach_ill = conn_get_held_ill(connp,
18588 		    &connp->conn_nofailover_ill, &err);
18589 		if (err == ILL_LOOKUP_FAILED) {
18590 			if (need_decref)
18591 				CONN_DEC_REF(connp);
18592 			freemsg(first_mp);
18593 			return;
18594 		}
18595 	}
18596 
18597 	/* is packet multicast? */
18598 	if (CLASSD(dst))
18599 		goto multicast;
18600 
18601 	if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) ||
18602 	    (connp->conn_nexthop_set)) {
18603 		/*
18604 		 * If the destination is a broadcast or a loopback
18605 		 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go
18606 		 * through the standard path. But in the case of local
18607 		 * destination only SO_DONTROUTE and IP_NEXTHOP go through
18608 		 * the standard path not IP_XMIT_IF.
18609 		 */
18610 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp));
18611 		if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) &&
18612 		    (ire->ire_type != IRE_LOOPBACK))) {
18613 			if ((connp->conn_dontroute ||
18614 			    connp->conn_nexthop_set) && (ire != NULL) &&
18615 			    (ire->ire_type == IRE_LOCAL))
18616 				goto standard_path;
18617 
18618 			if (ire != NULL) {
18619 				ire_refrele(ire);
18620 				/* No more access to ire */
18621 				ire = NULL;
18622 			}
18623 			/*
18624 			 * bypass routing checks and go directly to
18625 			 * interface.
18626 			 */
18627 			if (connp->conn_dontroute) {
18628 				goto dontroute;
18629 			} else if (connp->conn_nexthop_set) {
18630 				ip_nexthop = B_TRUE;
18631 				nexthop_addr = connp->conn_nexthop_v4;
18632 				goto send_from_ill;
18633 			}
18634 
18635 			/*
18636 			 * If IP_XMIT_IF socket option is set,
18637 			 * then we allow unicast and multicast
18638 			 * packets to go through the ill. It is
18639 			 * quite possible that the destination
18640 			 * is not in the ire cache table and we
18641 			 * do not want to go to ip_newroute()
18642 			 * instead we call ip_newroute_ipif.
18643 			 */
18644 			xmit_ill = conn_get_held_ill(connp,
18645 			    &connp->conn_xmit_if_ill, &err);
18646 			if (err == ILL_LOOKUP_FAILED) {
18647 				if (attach_ill != NULL)
18648 					ill_refrele(attach_ill);
18649 				if (need_decref)
18650 					CONN_DEC_REF(connp);
18651 				freemsg(first_mp);
18652 				return;
18653 			}
18654 			goto send_from_ill;
18655 		}
18656 standard_path:
18657 		/* Must be a broadcast, a loopback or a local ire */
18658 		if (ire != NULL) {
18659 			ire_refrele(ire);
18660 			/* No more access to ire */
18661 			ire = NULL;
18662 		}
18663 	}
18664 
18665 	if (attach_ill != NULL)
18666 		goto send_from_ill;
18667 
18668 	/*
18669 	 * We cache IRE_CACHEs to avoid lookups. We don't do
18670 	 * this for the tcp global queue and listen end point
18671 	 * as it does not really have a real destination to
18672 	 * talk to.  This is also true for SCTP.
18673 	 */
18674 	if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) &&
18675 	    !connp->conn_fully_bound) {
18676 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp));
18677 		if (ire == NULL)
18678 			goto noirefound;
18679 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
18680 		    "ip_wput_end: q %p (%S)", q, "end");
18681 
18682 		/*
18683 		 * Check if the ire has the RTF_MULTIRT flag, inherited
18684 		 * from an IRE_OFFSUBNET ire entry in ip_newroute().
18685 		 */
18686 		if (ire->ire_flags & RTF_MULTIRT) {
18687 
18688 			/*
18689 			 * Force the TTL of multirouted packets if required.
18690 			 * The TTL of such packets is bounded by the
18691 			 * ip_multirt_ttl ndd variable.
18692 			 */
18693 			if ((ip_multirt_ttl > 0) &&
18694 			    (ipha->ipha_ttl > ip_multirt_ttl)) {
18695 				ip2dbg(("ip_wput: forcing multirt TTL to %d "
18696 				    "(was %d), dst 0x%08x\n",
18697 				    ip_multirt_ttl, ipha->ipha_ttl,
18698 				    ntohl(ire->ire_addr)));
18699 				ipha->ipha_ttl = ip_multirt_ttl;
18700 			}
18701 			/*
18702 			 * We look at this point if there are pending
18703 			 * unresolved routes. ire_multirt_resolvable()
18704 			 * checks in O(n) that all IRE_OFFSUBNET ire
18705 			 * entries for the packet's destination and
18706 			 * flagged RTF_MULTIRT are currently resolved.
18707 			 * If some remain unresolved, we make a copy
18708 			 * of the current message. It will be used
18709 			 * to initiate additional route resolutions.
18710 			 */
18711 			multirt_need_resolve =
18712 			    ire_multirt_need_resolve(ire->ire_addr,
18713 			    MBLK_GETLABEL(first_mp));
18714 			ip2dbg(("ip_wput[TCP]: ire %p, "
18715 			    "multirt_need_resolve %d, first_mp %p\n",
18716 			    (void *)ire, multirt_need_resolve,
18717 			    (void *)first_mp));
18718 			if (multirt_need_resolve) {
18719 				copy_mp = copymsg(first_mp);
18720 				if (copy_mp != NULL) {
18721 					MULTIRT_DEBUG_TAG(copy_mp);
18722 				}
18723 			}
18724 		}
18725 
18726 		ip_wput_ire(q, first_mp, ire, connp, caller);
18727 
18728 		/*
18729 		 * Try to resolve another multiroute if
18730 		 * ire_multirt_need_resolve() deemed it necessary.
18731 		 */
18732 		if (copy_mp != NULL) {
18733 			ip_newroute(q, copy_mp, dst, NULL, connp);
18734 		}
18735 		if (need_decref)
18736 			CONN_DEC_REF(connp);
18737 		return;
18738 	}
18739 
18740 	/*
18741 	 * Access to conn_ire_cache. (protected by conn_lock)
18742 	 *
18743 	 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab
18744 	 * the ire bucket lock here to check for CONDEMNED as it is okay to
18745 	 * send a packet or two with the IRE_CACHE that is going away.
18746 	 * Access to the ire requires an ire refhold on the ire prior to
18747 	 * its use since an interface unplumb thread may delete the cached
18748 	 * ire and release the refhold at any time.
18749 	 *
18750 	 * Caching an ire in the conn_ire_cache
18751 	 *
18752 	 * o Caching an ire pointer in the conn requires a strict check for
18753 	 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant
18754 	 * ires  before cleaning up the conns. So the caching of an ire pointer
18755 	 * in the conn is done after making sure under the bucket lock that the
18756 	 * ire has not yet been marked CONDEMNED. Otherwise we will end up
18757 	 * caching an ire after the unplumb thread has cleaned up the conn.
18758 	 * If the conn does not send a packet subsequently the unplumb thread
18759 	 * will be hanging waiting for the ire count to drop to zero.
18760 	 *
18761 	 * o We also need to atomically test for a null conn_ire_cache and
18762 	 * set the conn_ire_cache under the the protection of the conn_lock
18763 	 * to avoid races among concurrent threads trying to simultaneously
18764 	 * cache an ire in the conn_ire_cache.
18765 	 */
18766 	mutex_enter(&connp->conn_lock);
18767 	ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache;
18768 
18769 	if (ire != NULL && ire->ire_addr == dst &&
18770 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18771 
18772 		IRE_REFHOLD(ire);
18773 		mutex_exit(&connp->conn_lock);
18774 
18775 	} else {
18776 		boolean_t cached = B_FALSE;
18777 		connp->conn_ire_cache = NULL;
18778 		mutex_exit(&connp->conn_lock);
18779 		/* Release the old ire */
18780 		if (ire != NULL && sctp_ire == NULL)
18781 			IRE_REFRELE_NOTR(ire);
18782 
18783 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp));
18784 		if (ire == NULL)
18785 			goto noirefound;
18786 		IRE_REFHOLD_NOTR(ire);
18787 
18788 		mutex_enter(&connp->conn_lock);
18789 		if (!(connp->conn_state_flags & CONN_CLOSING) &&
18790 		    connp->conn_ire_cache == NULL) {
18791 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18792 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18793 				connp->conn_ire_cache = ire;
18794 				cached = B_TRUE;
18795 			}
18796 			rw_exit(&ire->ire_bucket->irb_lock);
18797 		}
18798 		mutex_exit(&connp->conn_lock);
18799 
18800 		/*
18801 		 * We can continue to use the ire but since it was
18802 		 * not cached, we should drop the extra reference.
18803 		 */
18804 		if (!cached)
18805 			IRE_REFRELE_NOTR(ire);
18806 	}
18807 
18808 
18809 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
18810 	    "ip_wput_end: q %p (%S)", q, "end");
18811 
18812 	/*
18813 	 * Check if the ire has the RTF_MULTIRT flag, inherited
18814 	 * from an IRE_OFFSUBNET ire entry in ip_newroute().
18815 	 */
18816 	if (ire->ire_flags & RTF_MULTIRT) {
18817 
18818 		/*
18819 		 * Force the TTL of multirouted packets if required.
18820 		 * The TTL of such packets is bounded by the
18821 		 * ip_multirt_ttl ndd variable.
18822 		 */
18823 		if ((ip_multirt_ttl > 0) &&
18824 		    (ipha->ipha_ttl > ip_multirt_ttl)) {
18825 			ip2dbg(("ip_wput: forcing multirt TTL to %d "
18826 			    "(was %d), dst 0x%08x\n",
18827 			    ip_multirt_ttl, ipha->ipha_ttl,
18828 			    ntohl(ire->ire_addr)));
18829 			ipha->ipha_ttl = ip_multirt_ttl;
18830 		}
18831 
18832 		/*
18833 		 * At this point, we check to see if there are any pending
18834 		 * unresolved routes. ire_multirt_resolvable()
18835 		 * checks in O(n) that all IRE_OFFSUBNET ire
18836 		 * entries for the packet's destination and
18837 		 * flagged RTF_MULTIRT are currently resolved.
18838 		 * If some remain unresolved, we make a copy
18839 		 * of the current message. It will be used
18840 		 * to initiate additional route resolutions.
18841 		 */
18842 		multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr,
18843 		    MBLK_GETLABEL(first_mp));
18844 		ip2dbg(("ip_wput[not TCP]: ire %p, "
18845 		    "multirt_need_resolve %d, first_mp %p\n",
18846 		    (void *)ire, multirt_need_resolve, (void *)first_mp));
18847 		if (multirt_need_resolve) {
18848 			copy_mp = copymsg(first_mp);
18849 			if (copy_mp != NULL) {
18850 				MULTIRT_DEBUG_TAG(copy_mp);
18851 			}
18852 		}
18853 	}
18854 
18855 	ip_wput_ire(q, first_mp, ire, connp, caller);
18856 
18857 	/*
18858 	 * Try to resolve another multiroute if
18859 	 * ire_multirt_resolvable() deemed it necessary
18860 	 */
18861 	if (copy_mp != NULL) {
18862 		ip_newroute(q, copy_mp, dst, NULL, connp);
18863 	}
18864 	if (need_decref)
18865 		CONN_DEC_REF(connp);
18866 	return;
18867 
18868 qnext:
18869 	/*
18870 	 * Upper Level Protocols pass down complete IP datagrams
18871 	 * as M_DATA messages.	Everything else is a sideshow.
18872 	 *
18873 	 * 1) We could be re-entering ip_wput because of ip_neworute
18874 	 *    in which case we could have a IPSEC_OUT message. We
18875 	 *    need to pass through ip_wput like other datagrams and
18876 	 *    hence cannot branch to ip_wput_nondata.
18877 	 *
18878 	 * 2) ARP, AH, ESP, and other clients who are on the module
18879 	 *    instance of IP stream, give us something to deal with.
18880 	 *    We will handle AH and ESP here and rest in ip_wput_nondata.
18881 	 *
18882 	 * 3) ICMP replies also could come here.
18883 	 */
18884 	if (DB_TYPE(mp) != M_DATA) {
18885 	    notdata:
18886 		if (DB_TYPE(mp) == M_CTL) {
18887 			/*
18888 			 * M_CTL messages are used by ARP, AH and ESP to
18889 			 * communicate with IP. We deal with IPSEC_IN and
18890 			 * IPSEC_OUT here. ip_wput_nondata handles other
18891 			 * cases.
18892 			 */
18893 			ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr;
18894 			if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) {
18895 				first_mp = mp->b_cont;
18896 				first_mp->b_flag &= ~MSGHASREF;
18897 				ASSERT(connp->conn_ulp == IPPROTO_SCTP);
18898 				SCTP_EXTRACT_IPINFO(first_mp, sctp_ire);
18899 				CONN_DEC_REF(connp);
18900 				connp = NULL;
18901 			}
18902 			if (ii->ipsec_info_type == IPSEC_IN) {
18903 				/*
18904 				 * Either this message goes back to
18905 				 * IPSEC for further processing or to
18906 				 * ULP after policy checks.
18907 				 */
18908 				ip_fanout_proto_again(mp, NULL, NULL, NULL);
18909 				return;
18910 			} else if (ii->ipsec_info_type == IPSEC_OUT) {
18911 				io = (ipsec_out_t *)ii;
18912 				if (io->ipsec_out_proc_begin) {
18913 					/*
18914 					 * IPSEC processing has already started.
18915 					 * Complete it.
18916 					 * IPQoS notes: We don't care what is
18917 					 * in ipsec_out_ill_index since this
18918 					 * won't be processed for IPQoS policies
18919 					 * in ipsec_out_process.
18920 					 */
18921 					ipsec_out_process(q, mp, NULL,
18922 					    io->ipsec_out_ill_index);
18923 					return;
18924 				} else {
18925 					connp = (q->q_next != NULL) ?
18926 					    NULL : Q_TO_CONN(q);
18927 					first_mp = mp;
18928 					mp = mp->b_cont;
18929 					mctl_present = B_TRUE;
18930 				}
18931 				zoneid = io->ipsec_out_zoneid;
18932 				ASSERT(zoneid != ALL_ZONES);
18933 			} else if (ii->ipsec_info_type == IPSEC_CTL) {
18934 				/*
18935 				 * It's an IPsec control message requesting
18936 				 * an SADB update to be sent to the IPsec
18937 				 * hardware acceleration capable ills.
18938 				 */
18939 				ipsec_ctl_t *ipsec_ctl =
18940 				    (ipsec_ctl_t *)mp->b_rptr;
18941 				ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa;
18942 				uint_t satype = ipsec_ctl->ipsec_ctl_sa_type;
18943 				mblk_t *cmp = mp->b_cont;
18944 
18945 				ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t));
18946 				ASSERT(cmp != NULL);
18947 
18948 				freeb(mp);
18949 				ill_ipsec_capab_send_all(satype, cmp, sa);
18950 				return;
18951 			} else {
18952 				/*
18953 				 * This must be ARP or special TSOL signaling.
18954 				 */
18955 				ip_wput_nondata(NULL, q, mp, NULL);
18956 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
18957 				    "ip_wput_end: q %p (%S)", q, "nondata");
18958 				return;
18959 			}
18960 		} else {
18961 			/*
18962 			 * This must be non-(ARP/AH/ESP) messages.
18963 			 */
18964 			ASSERT(!need_decref);
18965 			ip_wput_nondata(NULL, q, mp, NULL);
18966 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
18967 			    "ip_wput_end: q %p (%S)", q, "nondata");
18968 			return;
18969 		}
18970 	} else {
18971 		first_mp = mp;
18972 		mctl_present = B_FALSE;
18973 	}
18974 
18975 	ASSERT(first_mp != NULL);
18976 	/*
18977 	 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if
18978 	 * to make sure that this packet goes out on the same interface it
18979 	 * came in. We handle that here.
18980 	 */
18981 	if (mctl_present) {
18982 		uint_t ifindex;
18983 
18984 		io = (ipsec_out_t *)first_mp->b_rptr;
18985 		if (io->ipsec_out_attach_if ||
18986 		    io->ipsec_out_xmit_if ||
18987 		    io->ipsec_out_ip_nexthop) {
18988 			ill_t	*ill;
18989 
18990 			/*
18991 			 * We may have lost the conn context if we are
18992 			 * coming here from ip_newroute(). Copy the
18993 			 * nexthop information.
18994 			 */
18995 			if (io->ipsec_out_ip_nexthop) {
18996 				ip_nexthop = B_TRUE;
18997 				nexthop_addr = io->ipsec_out_nexthop_addr;
18998 
18999 				ipha = (ipha_t *)mp->b_rptr;
19000 				dst = ipha->ipha_dst;
19001 				goto send_from_ill;
19002 			} else {
19003 				ASSERT(io->ipsec_out_ill_index != 0);
19004 				ifindex = io->ipsec_out_ill_index;
19005 				ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
19006 				    NULL, NULL, NULL, NULL);
19007 				/*
19008 				 * ipsec_out_xmit_if bit is used to tell
19009 				 * ip_wput to use the ill to send outgoing data
19010 				 * as we have no conn when data comes from ICMP
19011 				 * error msg routines. Currently this feature is
19012 				 * only used by ip_mrtun_forward routine.
19013 				 */
19014 				if (io->ipsec_out_xmit_if) {
19015 					xmit_ill = ill;
19016 					if (xmit_ill == NULL) {
19017 						ip1dbg(("ip_output:bad ifindex "
19018 						    "for xmit_ill %d\n",
19019 						    ifindex));
19020 						freemsg(first_mp);
19021 						BUMP_MIB(&ip_mib,
19022 						    ipOutDiscards);
19023 						ASSERT(!need_decref);
19024 						return;
19025 					}
19026 					/* Free up the ipsec_out_t mblk */
19027 					ASSERT(first_mp->b_cont == mp);
19028 					first_mp->b_cont = NULL;
19029 					freeb(first_mp);
19030 					/* Just send the IP header+ICMP+data */
19031 					first_mp = mp;
19032 					ipha = (ipha_t *)mp->b_rptr;
19033 					dst = ipha->ipha_dst;
19034 					goto send_from_ill;
19035 				} else {
19036 					attach_ill = ill;
19037 				}
19038 
19039 				if (attach_ill == NULL) {
19040 					ASSERT(xmit_ill == NULL);
19041 					ip1dbg(("ip_output: bad ifindex for "
19042 					    "(BIND TO IPIF_NOFAILOVER) %d\n",
19043 					    ifindex));
19044 					freemsg(first_mp);
19045 					BUMP_MIB(&ip_mib, ipOutDiscards);
19046 					ASSERT(!need_decref);
19047 					return;
19048 				}
19049 			}
19050 		}
19051 	}
19052 
19053 	ASSERT(xmit_ill == NULL);
19054 
19055 	/* We have a complete IP datagram heading outbound. */
19056 	ipha = (ipha_t *)mp->b_rptr;
19057 
19058 #ifndef SPEED_BEFORE_SAFETY
19059 	/*
19060 	 * Make sure we have a full-word aligned message and that at least
19061 	 * a simple IP header is accessible in the first message.  If not,
19062 	 * try a pullup.
19063 	 */
19064 	if (!OK_32PTR(rptr) ||
19065 	    (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) {
19066 	    hdrtoosmall:
19067 		if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) {
19068 			BUMP_MIB(&ip_mib, ipOutDiscards);
19069 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
19070 			    "ip_wput_end: q %p (%S)", q, "pullupfailed");
19071 			if (first_mp == NULL)
19072 				first_mp = mp;
19073 			goto drop_pkt;
19074 		}
19075 
19076 		/* This function assumes that mp points to an IPv4 packet. */
19077 		if (is_system_labeled() && q->q_next == NULL &&
19078 		    (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) &&
19079 		    !connp->conn_ulp_labeled) {
19080 			err = tsol_check_label(BEST_CRED(mp, connp), &mp,
19081 			    &adjust, connp->conn_mac_exempt);
19082 			ipha = (ipha_t *)mp->b_rptr;
19083 			if (first_mp != NULL)
19084 				first_mp->b_cont = mp;
19085 			if (err != 0) {
19086 				if (first_mp == NULL)
19087 					first_mp = mp;
19088 				if (err == EINVAL)
19089 					goto icmp_parameter_problem;
19090 				ip2dbg(("ip_wput: label check failed (%d)\n",
19091 				    err));
19092 				goto drop_pkt;
19093 			}
19094 			iplen = ntohs(ipha->ipha_length) + adjust;
19095 			ipha->ipha_length = htons(iplen);
19096 		}
19097 
19098 		ipha = (ipha_t *)mp->b_rptr;
19099 		if (first_mp == NULL) {
19100 			ASSERT(attach_ill == NULL && xmit_ill == NULL);
19101 			/*
19102 			 * If we got here because of "goto hdrtoosmall"
19103 			 * We need to attach a IPSEC_OUT.
19104 			 */
19105 			if (connp->conn_out_enforce_policy) {
19106 				if (((mp = ipsec_attach_ipsec_out(mp, connp,
19107 				    NULL, ipha->ipha_protocol)) == NULL)) {
19108 					if (need_decref)
19109 						CONN_DEC_REF(connp);
19110 					return;
19111 				} else {
19112 					ASSERT(mp->b_datap->db_type == M_CTL);
19113 					first_mp = mp;
19114 					mp = mp->b_cont;
19115 					mctl_present = B_TRUE;
19116 				}
19117 			} else {
19118 				first_mp = mp;
19119 				mctl_present = B_FALSE;
19120 			}
19121 		}
19122 	}
19123 #endif
19124 
19125 	/* Most of the code below is written for speed, not readability */
19126 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
19127 
19128 	/*
19129 	 * If ip_newroute() fails, we're going to need a full
19130 	 * header for the icmp wraparound.
19131 	 */
19132 	if (V_HLEN != IP_SIMPLE_HDR_VERSION) {
19133 		uint_t	v_hlen;
19134 	    version_hdrlen_check:
19135 		ASSERT(first_mp != NULL);
19136 		v_hlen = V_HLEN;
19137 		/*
19138 		 * siphon off IPv6 packets coming down from transport
19139 		 * layer modules here.
19140 		 * Note: high-order bit carries NUD reachability confirmation
19141 		 */
19142 		if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) {
19143 			/*
19144 			 * XXX implement a IPv4 and IPv6 packet counter per
19145 			 * conn and switch when ratio exceeds e.g. 10:1
19146 			 */
19147 #ifdef notyet
19148 			if (q->q_next == NULL) /* Avoid ill queue */
19149 				ip_setqinfo(RD(q), B_TRUE, B_TRUE);
19150 #endif
19151 			BUMP_MIB(&ip_mib, ipOutIPv6);
19152 			ASSERT(xmit_ill == NULL);
19153 			if (attach_ill != NULL)
19154 				ill_refrele(attach_ill);
19155 			if (need_decref)
19156 				mp->b_flag |= MSGHASREF;
19157 			(void) ip_output_v6(connp, first_mp, q, caller);
19158 			return;
19159 		}
19160 
19161 		if ((v_hlen >> 4) != IP_VERSION) {
19162 			BUMP_MIB(&ip_mib, ipOutDiscards);
19163 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
19164 			    "ip_wput_end: q %p (%S)", q, "badvers");
19165 			goto drop_pkt;
19166 		}
19167 		/*
19168 		 * Is the header length at least 20 bytes?
19169 		 *
19170 		 * Are there enough bytes accessible in the header?  If
19171 		 * not, try a pullup.
19172 		 */
19173 		v_hlen &= 0xF;
19174 		v_hlen <<= 2;
19175 		if (v_hlen < IP_SIMPLE_HDR_LENGTH) {
19176 			BUMP_MIB(&ip_mib, ipOutDiscards);
19177 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
19178 			    "ip_wput_end: q %p (%S)", q, "badlen");
19179 			goto drop_pkt;
19180 		}
19181 		if (v_hlen > (mp->b_wptr - rptr)) {
19182 			if (!pullupmsg(mp, v_hlen)) {
19183 				BUMP_MIB(&ip_mib, ipOutDiscards);
19184 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
19185 				    "ip_wput_end: q %p (%S)", q, "badpullup2");
19186 				goto drop_pkt;
19187 			}
19188 			ipha = (ipha_t *)mp->b_rptr;
19189 		}
19190 		/*
19191 		 * Move first entry from any source route into ipha_dst and
19192 		 * verify the options
19193 		 */
19194 		if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) {
19195 			ASSERT(xmit_ill == NULL);
19196 			if (attach_ill != NULL)
19197 				ill_refrele(attach_ill);
19198 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
19199 			    "ip_wput_end: q %p (%S)", q, "badopts");
19200 			if (need_decref)
19201 				CONN_DEC_REF(connp);
19202 			return;
19203 		}
19204 	}
19205 	dst = ipha->ipha_dst;
19206 
19207 	/*
19208 	 * Try to get an IRE_CACHE for the destination address.	 If we can't,
19209 	 * we have to run the packet through ip_newroute which will take
19210 	 * the appropriate action to arrange for an IRE_CACHE, such as querying
19211 	 * a resolver, or assigning a default gateway, etc.
19212 	 */
19213 	if (CLASSD(dst)) {
19214 		ipif_t	*ipif;
19215 		uint32_t setsrc = 0;
19216 
19217 	    multicast:
19218 		ASSERT(first_mp != NULL);
19219 		ASSERT(xmit_ill == NULL);
19220 		ip2dbg(("ip_wput: CLASSD\n"));
19221 		if (connp == NULL) {
19222 			/*
19223 			 * Use the first good ipif on the ill.
19224 			 * XXX Should this ever happen? (Appears
19225 			 * to show up with just ppp and no ethernet due
19226 			 * to in.rdisc.)
19227 			 * However, ire_send should be able to
19228 			 * call ip_wput_ire directly.
19229 			 *
19230 			 * XXX Also, this can happen for ICMP and other packets
19231 			 * with multicast source addresses.  Perhaps we should
19232 			 * fix things so that we drop the packet in question,
19233 			 * but for now, just run with it.
19234 			 */
19235 			ill_t *ill = (ill_t *)q->q_ptr;
19236 
19237 			/*
19238 			 * Don't honor attach_if for this case. If ill
19239 			 * is part of the group, ipif could belong to
19240 			 * any ill and we cannot maintain attach_ill
19241 			 * and ipif_ill same anymore and the assert
19242 			 * below would fail.
19243 			 */
19244 			if (mctl_present) {
19245 				io->ipsec_out_ill_index = 0;
19246 				io->ipsec_out_attach_if = B_FALSE;
19247 				ASSERT(attach_ill != NULL);
19248 				ill_refrele(attach_ill);
19249 				attach_ill = NULL;
19250 			}
19251 
19252 			ASSERT(attach_ill == NULL);
19253 			ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID);
19254 			if (ipif == NULL) {
19255 				if (need_decref)
19256 					CONN_DEC_REF(connp);
19257 				freemsg(first_mp);
19258 				return;
19259 			}
19260 			ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n",
19261 			    ntohl(dst), ill->ill_name));
19262 		} else {
19263 			/*
19264 			 * If both IP_MULTICAST_IF and IP_XMIT_IF are set,
19265 			 * IP_XMIT_IF is honoured.
19266 			 * Block comment above this function explains the
19267 			 * locking mechanism used here
19268 			 */
19269 			xmit_ill = conn_get_held_ill(connp,
19270 			    &connp->conn_xmit_if_ill, &err);
19271 			if (err == ILL_LOOKUP_FAILED) {
19272 				ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n"));
19273 				goto drop_pkt;
19274 			}
19275 			if (xmit_ill == NULL) {
19276 				ipif = conn_get_held_ipif(connp,
19277 				    &connp->conn_multicast_ipif, &err);
19278 				if (err == IPIF_LOOKUP_FAILED) {
19279 					ip1dbg(("ip_wput: No ipif for "
19280 					    "multicast\n"));
19281 					BUMP_MIB(&ip_mib, ipOutNoRoutes);
19282 					goto drop_pkt;
19283 				}
19284 			}
19285 			if (xmit_ill != NULL) {
19286 				ipif = ipif_get_next_ipif(NULL, xmit_ill);
19287 				if (ipif == NULL) {
19288 					ip1dbg(("ip_wput: No ipif for "
19289 					    "IP_XMIT_IF\n"));
19290 					BUMP_MIB(&ip_mib, ipOutNoRoutes);
19291 					goto drop_pkt;
19292 				}
19293 			} else if (ipif == NULL || ipif->ipif_isv6) {
19294 				/*
19295 				 * We must do this ipif determination here
19296 				 * else we could pass through ip_newroute
19297 				 * and come back here without the conn context.
19298 				 *
19299 				 * Note: we do late binding i.e. we bind to
19300 				 * the interface when the first packet is sent.
19301 				 * For performance reasons we do not rebind on
19302 				 * each packet but keep the binding until the
19303 				 * next IP_MULTICAST_IF option.
19304 				 *
19305 				 * conn_multicast_{ipif,ill} are shared between
19306 				 * IPv4 and IPv6 and AF_INET6 sockets can
19307 				 * send both IPv4 and IPv6 packets. Hence
19308 				 * we have to check that "isv6" matches above.
19309 				 */
19310 				if (ipif != NULL)
19311 					ipif_refrele(ipif);
19312 				ipif = ipif_lookup_group(dst, zoneid);
19313 				if (ipif == NULL) {
19314 					ip1dbg(("ip_wput: No ipif for "
19315 					    "multicast\n"));
19316 					BUMP_MIB(&ip_mib, ipOutNoRoutes);
19317 					goto drop_pkt;
19318 				}
19319 				err = conn_set_held_ipif(connp,
19320 				    &connp->conn_multicast_ipif, ipif);
19321 				if (err == IPIF_LOOKUP_FAILED) {
19322 					ipif_refrele(ipif);
19323 					ip1dbg(("ip_wput: No ipif for "
19324 					    "multicast\n"));
19325 					BUMP_MIB(&ip_mib, ipOutNoRoutes);
19326 					goto drop_pkt;
19327 				}
19328 			}
19329 		}
19330 		ASSERT(!ipif->ipif_isv6);
19331 		/*
19332 		 * As we may lose the conn by the time we reach ip_wput_ire,
19333 		 * we copy conn_multicast_loop and conn_dontroute on to an
19334 		 * ipsec_out. In case if this datagram goes out secure,
19335 		 * we need the ill_index also. Copy that also into the
19336 		 * ipsec_out.
19337 		 */
19338 		if (mctl_present) {
19339 			io = (ipsec_out_t *)first_mp->b_rptr;
19340 			ASSERT(first_mp->b_datap->db_type == M_CTL);
19341 			ASSERT(io->ipsec_out_type == IPSEC_OUT);
19342 		} else {
19343 			ASSERT(mp == first_mp);
19344 			if ((first_mp = allocb(sizeof (ipsec_info_t),
19345 			    BPRI_HI)) == NULL) {
19346 				ipif_refrele(ipif);
19347 				first_mp = mp;
19348 				goto drop_pkt;
19349 			}
19350 			first_mp->b_datap->db_type = M_CTL;
19351 			first_mp->b_wptr += sizeof (ipsec_info_t);
19352 			/* ipsec_out_secure is B_FALSE now */
19353 			bzero(first_mp->b_rptr, sizeof (ipsec_info_t));
19354 			io = (ipsec_out_t *)first_mp->b_rptr;
19355 			io->ipsec_out_type = IPSEC_OUT;
19356 			io->ipsec_out_len = sizeof (ipsec_out_t);
19357 			io->ipsec_out_use_global_policy = B_TRUE;
19358 			first_mp->b_cont = mp;
19359 			mctl_present = B_TRUE;
19360 		}
19361 		if (attach_ill != NULL) {
19362 			ASSERT(attach_ill == ipif->ipif_ill);
19363 			match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
19364 
19365 			/*
19366 			 * Check if we need an ire that will not be
19367 			 * looked up by anybody else i.e. HIDDEN.
19368 			 */
19369 			if (ill_is_probeonly(attach_ill)) {
19370 				match_flags |= MATCH_IRE_MARK_HIDDEN;
19371 			}
19372 			io->ipsec_out_ill_index =
19373 			    attach_ill->ill_phyint->phyint_ifindex;
19374 			io->ipsec_out_attach_if = B_TRUE;
19375 		} else {
19376 			match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
19377 			io->ipsec_out_ill_index =
19378 			    ipif->ipif_ill->ill_phyint->phyint_ifindex;
19379 		}
19380 		if (connp != NULL) {
19381 			io->ipsec_out_multicast_loop =
19382 			    connp->conn_multicast_loop;
19383 			io->ipsec_out_dontroute = connp->conn_dontroute;
19384 			io->ipsec_out_zoneid = connp->conn_zoneid;
19385 		}
19386 		/*
19387 		 * If the application uses IP_MULTICAST_IF with
19388 		 * different logical addresses of the same ILL, we
19389 		 * need to make sure that the soruce address of
19390 		 * the packet matches the logical IP address used
19391 		 * in the option. We do it by initializing ipha_src
19392 		 * here. This should keep IPSEC also happy as
19393 		 * when we return from IPSEC processing, we don't
19394 		 * have to worry about getting the right address on
19395 		 * the packet. Thus it is sufficient to look for
19396 		 * IRE_CACHE using MATCH_IRE_ILL rathen than
19397 		 * MATCH_IRE_IPIF.
19398 		 *
19399 		 * NOTE : We need to do it for non-secure case also as
19400 		 * this might go out secure if there is a global policy
19401 		 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER
19402 		 * address, the source should be initialized already and
19403 		 * hence we won't be initializing here.
19404 		 *
19405 		 * As we do not have the ire yet, it is possible that
19406 		 * we set the source address here and then later discover
19407 		 * that the ire implies the source address to be assigned
19408 		 * through the RTF_SETSRC flag.
19409 		 * In that case, the setsrc variable will remind us
19410 		 * that overwritting the source address by the one
19411 		 * of the RTF_SETSRC-flagged ire is allowed.
19412 		 */
19413 		if (ipha->ipha_src == INADDR_ANY &&
19414 		    (connp == NULL || !connp->conn_unspec_src)) {
19415 			ipha->ipha_src = ipif->ipif_src_addr;
19416 			setsrc = RTF_SETSRC;
19417 		}
19418 		/*
19419 		 * Find an IRE which matches the destination and the outgoing
19420 		 * queue (i.e. the outgoing interface.)
19421 		 * For loopback use a unicast IP address for
19422 		 * the ire lookup.
19423 		 */
19424 		if (ipif->ipif_ill->ill_phyint->phyint_flags &
19425 		    PHYI_LOOPBACK) {
19426 			dst = ipif->ipif_lcl_addr;
19427 		}
19428 		/*
19429 		 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif.
19430 		 * We don't need to lookup ire in ctable as the packet
19431 		 * needs to be sent to the destination through the specified
19432 		 * ill irrespective of ires in the cache table.
19433 		 */
19434 		ire = NULL;
19435 		if (xmit_ill == NULL) {
19436 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
19437 			    zoneid, MBLK_GETLABEL(mp), match_flags);
19438 		}
19439 
19440 		/*
19441 		 * refrele attach_ill as its not needed anymore.
19442 		 */
19443 		if (attach_ill != NULL) {
19444 			ill_refrele(attach_ill);
19445 			attach_ill = NULL;
19446 		}
19447 
19448 		if (ire == NULL) {
19449 			/*
19450 			 * Multicast loopback and multicast forwarding is
19451 			 * done in ip_wput_ire.
19452 			 *
19453 			 * Mark this packet to make it be delivered to
19454 			 * ip_wput_ire after the new ire has been
19455 			 * created.
19456 			 *
19457 			 * The call to ip_newroute_ipif takes into account
19458 			 * the setsrc reminder. In any case, we take care
19459 			 * of the RTF_MULTIRT flag.
19460 			 */
19461 			mp->b_prev = mp->b_next = NULL;
19462 			if (xmit_ill == NULL ||
19463 			    xmit_ill->ill_ipif_up_count > 0) {
19464 				ip_newroute_ipif(q, first_mp, ipif, dst, connp,
19465 				    setsrc | RTF_MULTIRT);
19466 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
19467 				    "ip_wput_end: q %p (%S)", q, "noire");
19468 			} else {
19469 				freemsg(first_mp);
19470 			}
19471 			ipif_refrele(ipif);
19472 			if (xmit_ill != NULL)
19473 				ill_refrele(xmit_ill);
19474 			if (need_decref)
19475 				CONN_DEC_REF(connp);
19476 			return;
19477 		}
19478 
19479 		ipif_refrele(ipif);
19480 		ipif = NULL;
19481 		ASSERT(xmit_ill == NULL);
19482 
19483 		/*
19484 		 * Honor the RTF_SETSRC flag for multicast packets,
19485 		 * if allowed by the setsrc reminder.
19486 		 */
19487 		if ((ire->ire_flags & RTF_SETSRC) && setsrc) {
19488 			ipha->ipha_src = ire->ire_src_addr;
19489 		}
19490 
19491 		/*
19492 		 * Unconditionally force the TTL to 1 for
19493 		 * multirouted multicast packets:
19494 		 * multirouted multicast should not cross
19495 		 * multicast routers.
19496 		 */
19497 		if (ire->ire_flags & RTF_MULTIRT) {
19498 			if (ipha->ipha_ttl > 1) {
19499 				ip2dbg(("ip_wput: forcing multicast "
19500 				    "multirt TTL to 1 (was %d), dst 0x%08x\n",
19501 				    ipha->ipha_ttl, ntohl(ire->ire_addr)));
19502 				ipha->ipha_ttl = 1;
19503 			}
19504 		}
19505 	} else {
19506 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp));
19507 		if ((ire != NULL) && (ire->ire_type &
19508 		    (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) {
19509 			ignore_dontroute = B_TRUE;
19510 			ignore_nexthop = B_TRUE;
19511 		}
19512 		if (ire != NULL) {
19513 			ire_refrele(ire);
19514 			ire = NULL;
19515 		}
19516 		/*
19517 		 * Guard against coming in from arp in which case conn is NULL.
19518 		 * Also guard against non M_DATA with dontroute set but
19519 		 * destined to local, loopback or broadcast addresses.
19520 		 */
19521 		if (connp != NULL && connp->conn_dontroute &&
19522 		    !ignore_dontroute) {
19523 dontroute:
19524 			/*
19525 			 * Set TTL to 1 if SO_DONTROUTE is set to prevent
19526 			 * routing protocols from seeing false direct
19527 			 * connectivity.
19528 			 */
19529 			ipha->ipha_ttl = 1;
19530 			/*
19531 			 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL)
19532 			 * along with SO_DONTROUTE, higher precedence is
19533 			 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used.
19534 			 */
19535 			if (connp->conn_xmit_if_ill == NULL) {
19536 				/* If suitable ipif not found, drop packet */
19537 				dst_ipif = ipif_lookup_onlink_addr(dst, zoneid);
19538 				if (dst_ipif == NULL) {
19539 					ip1dbg(("ip_wput: no route for "
19540 					    "dst using SO_DONTROUTE\n"));
19541 					BUMP_MIB(&ip_mib, ipOutNoRoutes);
19542 					mp->b_prev = mp->b_next = NULL;
19543 					if (first_mp == NULL)
19544 						first_mp = mp;
19545 					goto drop_pkt;
19546 				} else {
19547 					/*
19548 					 * If suitable ipif has been found, set
19549 					 * xmit_ill to the corresponding
19550 					 * ipif_ill because we'll be following
19551 					 * the IP_XMIT_IF logic.
19552 					 */
19553 					ASSERT(xmit_ill == NULL);
19554 					xmit_ill = dst_ipif->ipif_ill;
19555 					mutex_enter(&xmit_ill->ill_lock);
19556 					if (!ILL_CAN_LOOKUP(xmit_ill)) {
19557 						mutex_exit(&xmit_ill->ill_lock);
19558 						xmit_ill = NULL;
19559 						ipif_refrele(dst_ipif);
19560 						ip1dbg(("ip_wput: no route for"
19561 						    " dst using"
19562 						    " SO_DONTROUTE\n"));
19563 						BUMP_MIB(&ip_mib,
19564 						    ipOutNoRoutes);
19565 						mp->b_prev = mp->b_next = NULL;
19566 						if (first_mp == NULL)
19567 							first_mp = mp;
19568 						goto drop_pkt;
19569 					}
19570 					ill_refhold_locked(xmit_ill);
19571 					mutex_exit(&xmit_ill->ill_lock);
19572 					ipif_refrele(dst_ipif);
19573 				}
19574 			}
19575 
19576 		}
19577 		/*
19578 		 * If we are bound to IPIF_NOFAILOVER address, look for
19579 		 * an IRE_CACHE matching the ill.
19580 		 */
19581 send_from_ill:
19582 		if (attach_ill != NULL) {
19583 			ipif_t	*attach_ipif;
19584 
19585 			match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
19586 
19587 			/*
19588 			 * Check if we need an ire that will not be
19589 			 * looked up by anybody else i.e. HIDDEN.
19590 			 */
19591 			if (ill_is_probeonly(attach_ill)) {
19592 				match_flags |= MATCH_IRE_MARK_HIDDEN;
19593 			}
19594 
19595 			attach_ipif = ipif_get_next_ipif(NULL, attach_ill);
19596 			if (attach_ipif == NULL) {
19597 				ip1dbg(("ip_wput: No ipif for attach_ill\n"));
19598 				goto drop_pkt;
19599 			}
19600 			ire = ire_ctable_lookup(dst, 0, 0, attach_ipif,
19601 			    zoneid, MBLK_GETLABEL(mp), match_flags);
19602 			ipif_refrele(attach_ipif);
19603 		} else if (xmit_ill != NULL || (connp != NULL &&
19604 			    connp->conn_xmit_if_ill != NULL)) {
19605 			/*
19606 			 * Mark this packet as originated locally
19607 			 */
19608 			mp->b_prev = mp->b_next = NULL;
19609 			/*
19610 			 * xmit_ill could be NULL if SO_DONTROUTE
19611 			 * is also set.
19612 			 */
19613 			if (xmit_ill == NULL) {
19614 				xmit_ill = conn_get_held_ill(connp,
19615 				    &connp->conn_xmit_if_ill, &err);
19616 				if (err == ILL_LOOKUP_FAILED) {
19617 					if (need_decref)
19618 						CONN_DEC_REF(connp);
19619 					freemsg(first_mp);
19620 					return;
19621 				}
19622 				if (xmit_ill == NULL) {
19623 					if (connp->conn_dontroute)
19624 						goto dontroute;
19625 					goto send_from_ill;
19626 				}
19627 			}
19628 			/*
19629 			 * could be SO_DONTROUTE case also.
19630 			 * check at least one interface is UP as
19631 			 * spcified by this ILL, and then call
19632 			 * ip_newroute_ipif()
19633 			 */
19634 			if (xmit_ill->ill_ipif_up_count > 0) {
19635 				ipif_t *ipif;
19636 
19637 				ipif = ipif_get_next_ipif(NULL, xmit_ill);
19638 				if (ipif != NULL) {
19639 					ip_newroute_ipif(q, first_mp, ipif,
19640 					    dst, connp, 0);
19641 					ipif_refrele(ipif);
19642 					ip1dbg(("ip_wput: ip_unicast_if\n"));
19643 				}
19644 			} else {
19645 				freemsg(first_mp);
19646 			}
19647 			ill_refrele(xmit_ill);
19648 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
19649 			    "ip_wput_end: q %p (%S)", q, "unicast_if");
19650 			if (need_decref)
19651 				CONN_DEC_REF(connp);
19652 			return;
19653 		} else if (ip_nexthop || (connp != NULL &&
19654 		    (connp->conn_nexthop_set)) && !ignore_nexthop) {
19655 			if (!ip_nexthop) {
19656 				ip_nexthop = B_TRUE;
19657 				nexthop_addr = connp->conn_nexthop_v4;
19658 			}
19659 			match_flags = MATCH_IRE_MARK_PRIVATE_ADDR |
19660 			    MATCH_IRE_GW;
19661 			ire = ire_ctable_lookup(dst, nexthop_addr, 0,
19662 			    NULL, zoneid, MBLK_GETLABEL(mp), match_flags);
19663 		} else {
19664 			ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp));
19665 		}
19666 		if (!ire) {
19667 			/*
19668 			 * Make sure we don't load spread if this
19669 			 * is IPIF_NOFAILOVER case.
19670 			 */
19671 			if ((attach_ill != NULL) ||
19672 			    (ip_nexthop && !ignore_nexthop)) {
19673 				if (mctl_present) {
19674 					io = (ipsec_out_t *)first_mp->b_rptr;
19675 					ASSERT(first_mp->b_datap->db_type ==
19676 					    M_CTL);
19677 					ASSERT(io->ipsec_out_type == IPSEC_OUT);
19678 				} else {
19679 					ASSERT(mp == first_mp);
19680 					first_mp = allocb(
19681 					    sizeof (ipsec_info_t), BPRI_HI);
19682 					if (first_mp == NULL) {
19683 						first_mp = mp;
19684 						goto drop_pkt;
19685 					}
19686 					first_mp->b_datap->db_type = M_CTL;
19687 					first_mp->b_wptr +=
19688 					    sizeof (ipsec_info_t);
19689 					/* ipsec_out_secure is B_FALSE now */
19690 					bzero(first_mp->b_rptr,
19691 					    sizeof (ipsec_info_t));
19692 					io = (ipsec_out_t *)first_mp->b_rptr;
19693 					io->ipsec_out_type = IPSEC_OUT;
19694 					io->ipsec_out_len =
19695 					    sizeof (ipsec_out_t);
19696 					io->ipsec_out_use_global_policy =
19697 					    B_TRUE;
19698 					first_mp->b_cont = mp;
19699 					mctl_present = B_TRUE;
19700 				}
19701 				if (attach_ill != NULL) {
19702 					io->ipsec_out_ill_index = attach_ill->
19703 					    ill_phyint->phyint_ifindex;
19704 					io->ipsec_out_attach_if = B_TRUE;
19705 				} else {
19706 					io->ipsec_out_ip_nexthop = ip_nexthop;
19707 					io->ipsec_out_nexthop_addr =
19708 					    nexthop_addr;
19709 				}
19710 			}
19711 noirefound:
19712 			/*
19713 			 * Mark this packet as having originated on
19714 			 * this machine.  This will be noted in
19715 			 * ire_add_then_send, which needs to know
19716 			 * whether to run it back through ip_wput or
19717 			 * ip_rput following successful resolution.
19718 			 */
19719 			mp->b_prev = NULL;
19720 			mp->b_next = NULL;
19721 			ip_newroute(q, first_mp, dst, NULL, connp);
19722 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
19723 			    "ip_wput_end: q %p (%S)", q, "newroute");
19724 			if (attach_ill != NULL)
19725 				ill_refrele(attach_ill);
19726 			if (xmit_ill != NULL)
19727 				ill_refrele(xmit_ill);
19728 			if (need_decref)
19729 				CONN_DEC_REF(connp);
19730 			return;
19731 		}
19732 	}
19733 
19734 	/* We now know where we are going with it. */
19735 
19736 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
19737 	    "ip_wput_end: q %p (%S)", q, "end");
19738 
19739 	/*
19740 	 * Check if the ire has the RTF_MULTIRT flag, inherited
19741 	 * from an IRE_OFFSUBNET ire entry in ip_newroute.
19742 	 */
19743 	if (ire->ire_flags & RTF_MULTIRT) {
19744 		/*
19745 		 * Force the TTL of multirouted packets if required.
19746 		 * The TTL of such packets is bounded by the
19747 		 * ip_multirt_ttl ndd variable.
19748 		 */
19749 		if ((ip_multirt_ttl > 0) &&
19750 		    (ipha->ipha_ttl > ip_multirt_ttl)) {
19751 			ip2dbg(("ip_wput: forcing multirt TTL to %d "
19752 			    "(was %d), dst 0x%08x\n",
19753 			    ip_multirt_ttl, ipha->ipha_ttl,
19754 			    ntohl(ire->ire_addr)));
19755 			ipha->ipha_ttl = ip_multirt_ttl;
19756 		}
19757 		/*
19758 		 * At this point, we check to see if there are any pending
19759 		 * unresolved routes. ire_multirt_resolvable()
19760 		 * checks in O(n) that all IRE_OFFSUBNET ire
19761 		 * entries for the packet's destination and
19762 		 * flagged RTF_MULTIRT are currently resolved.
19763 		 * If some remain unresolved, we make a copy
19764 		 * of the current message. It will be used
19765 		 * to initiate additional route resolutions.
19766 		 */
19767 		multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr,
19768 		    MBLK_GETLABEL(first_mp));
19769 		ip2dbg(("ip_wput[noirefound]: ire %p, "
19770 		    "multirt_need_resolve %d, first_mp %p\n",
19771 		    (void *)ire, multirt_need_resolve, (void *)first_mp));
19772 		if (multirt_need_resolve) {
19773 			copy_mp = copymsg(first_mp);
19774 			if (copy_mp != NULL) {
19775 				MULTIRT_DEBUG_TAG(copy_mp);
19776 			}
19777 		}
19778 	}
19779 
19780 	ip_wput_ire(q, first_mp, ire, connp, caller);
19781 	/*
19782 	 * Try to resolve another multiroute if
19783 	 * ire_multirt_resolvable() deemed it necessary.
19784 	 * At this point, we need to distinguish
19785 	 * multicasts from other packets. For multicasts,
19786 	 * we call ip_newroute_ipif() and request that both
19787 	 * multirouting and setsrc flags are checked.
19788 	 */
19789 	if (copy_mp != NULL) {
19790 		if (CLASSD(dst)) {
19791 			ipif_t *ipif = ipif_lookup_group(dst, zoneid);
19792 			if (ipif) {
19793 				ip_newroute_ipif(q, copy_mp, ipif, dst, connp,
19794 				    RTF_SETSRC | RTF_MULTIRT);
19795 				ipif_refrele(ipif);
19796 			} else {
19797 				MULTIRT_DEBUG_UNTAG(copy_mp);
19798 				freemsg(copy_mp);
19799 				copy_mp = NULL;
19800 			}
19801 		} else {
19802 			ip_newroute(q, copy_mp, dst, NULL, connp);
19803 		}
19804 	}
19805 	if (attach_ill != NULL)
19806 		ill_refrele(attach_ill);
19807 	if (xmit_ill != NULL)
19808 		ill_refrele(xmit_ill);
19809 	if (need_decref)
19810 		CONN_DEC_REF(connp);
19811 	return;
19812 
19813 icmp_parameter_problem:
19814 	/* could not have originated externally */
19815 	ASSERT(mp->b_prev == NULL);
19816 	if (ip_hdr_complete(ipha, zoneid) == 0) {
19817 		BUMP_MIB(&ip_mib, ipOutNoRoutes);
19818 		/* it's the IP header length that's in trouble */
19819 		icmp_param_problem(q, first_mp, 0);
19820 		first_mp = NULL;
19821 	}
19822 
19823 drop_pkt:
19824 	ip1dbg(("ip_wput: dropped packet\n"));
19825 	if (ire != NULL)
19826 		ire_refrele(ire);
19827 	if (need_decref)
19828 		CONN_DEC_REF(connp);
19829 	freemsg(first_mp);
19830 	if (attach_ill != NULL)
19831 		ill_refrele(attach_ill);
19832 	if (xmit_ill != NULL)
19833 		ill_refrele(xmit_ill);
19834 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
19835 	    "ip_wput_end: q %p (%S)", q, "droppkt");
19836 }
19837 
19838 void
19839 ip_wput(queue_t *q, mblk_t *mp)
19840 {
19841 	ip_output(Q_TO_CONN(q), mp, q, IP_WPUT);
19842 }
19843 
19844 /*
19845  *
19846  * The following rules must be observed when accessing any ipif or ill
19847  * that has been cached in the conn. Typically conn_nofailover_ill,
19848  * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill.
19849  *
19850  * Access: The ipif or ill pointed to from the conn can be accessed under
19851  * the protection of the conn_lock or after it has been refheld under the
19852  * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or
19853  * ILL_CAN_LOOKUP macros must be used before actually doing the refhold.
19854  * The reason for this is that a concurrent unplumb could actually be
19855  * cleaning up these cached pointers by walking the conns and might have
19856  * finished cleaning up the conn in question. The macros check that an
19857  * unplumb has not yet started on the ipif or ill.
19858  *
19859  * Caching: An ipif or ill pointer may be cached in the conn only after
19860  * making sure that an unplumb has not started. So the caching is done
19861  * while holding both the conn_lock and the ill_lock and after using the
19862  * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED
19863  * flag before starting the cleanup of conns.
19864  *
19865  * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock
19866  * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock
19867  * or a reference to the ipif or a reference to an ire that references the
19868  * ipif. An ipif does not change its ill except for failover/failback. Since
19869  * failover/failback happens only after bringing down the ipif and making sure
19870  * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock
19871  * the above holds.
19872  */
19873 ipif_t *
19874 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err)
19875 {
19876 	ipif_t	*ipif;
19877 	ill_t	*ill;
19878 
19879 	*err = 0;
19880 	rw_enter(&ill_g_lock, RW_READER);
19881 	mutex_enter(&connp->conn_lock);
19882 	ipif = *ipifp;
19883 	if (ipif != NULL) {
19884 		ill = ipif->ipif_ill;
19885 		mutex_enter(&ill->ill_lock);
19886 		if (IPIF_CAN_LOOKUP(ipif)) {
19887 			ipif_refhold_locked(ipif);
19888 			mutex_exit(&ill->ill_lock);
19889 			mutex_exit(&connp->conn_lock);
19890 			rw_exit(&ill_g_lock);
19891 			return (ipif);
19892 		} else {
19893 			*err = IPIF_LOOKUP_FAILED;
19894 		}
19895 		mutex_exit(&ill->ill_lock);
19896 	}
19897 	mutex_exit(&connp->conn_lock);
19898 	rw_exit(&ill_g_lock);
19899 	return (NULL);
19900 }
19901 
19902 ill_t *
19903 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err)
19904 {
19905 	ill_t	*ill;
19906 
19907 	*err = 0;
19908 	mutex_enter(&connp->conn_lock);
19909 	ill = *illp;
19910 	if (ill != NULL) {
19911 		mutex_enter(&ill->ill_lock);
19912 		if (ILL_CAN_LOOKUP(ill)) {
19913 			ill_refhold_locked(ill);
19914 			mutex_exit(&ill->ill_lock);
19915 			mutex_exit(&connp->conn_lock);
19916 			return (ill);
19917 		} else {
19918 			*err = ILL_LOOKUP_FAILED;
19919 		}
19920 		mutex_exit(&ill->ill_lock);
19921 	}
19922 	mutex_exit(&connp->conn_lock);
19923 	return (NULL);
19924 }
19925 
19926 static int
19927 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif)
19928 {
19929 	ill_t	*ill;
19930 
19931 	ill = ipif->ipif_ill;
19932 	mutex_enter(&connp->conn_lock);
19933 	mutex_enter(&ill->ill_lock);
19934 	if (IPIF_CAN_LOOKUP(ipif)) {
19935 		*ipifp = ipif;
19936 		mutex_exit(&ill->ill_lock);
19937 		mutex_exit(&connp->conn_lock);
19938 		return (0);
19939 	}
19940 	mutex_exit(&ill->ill_lock);
19941 	mutex_exit(&connp->conn_lock);
19942 	return (IPIF_LOOKUP_FAILED);
19943 }
19944 
19945 /*
19946  * This is called if the outbound datagram needs fragmentation.
19947  *
19948  * NOTE : This function does not ire_refrele the ire argument passed in.
19949  */
19950 static void
19951 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire)
19952 {
19953 	ipha_t		*ipha;
19954 	mblk_t		*mp;
19955 	uint32_t	v_hlen_tos_len;
19956 	uint32_t	max_frag;
19957 	uint32_t	frag_flag;
19958 	boolean_t	dont_use;
19959 
19960 	if (ipsec_mp->b_datap->db_type == M_CTL) {
19961 		mp = ipsec_mp->b_cont;
19962 	} else {
19963 		mp = ipsec_mp;
19964 	}
19965 
19966 	ipha = (ipha_t *)mp->b_rptr;
19967 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
19968 
19969 #ifdef	_BIG_ENDIAN
19970 #define	V_HLEN	(v_hlen_tos_len >> 24)
19971 #define	LENGTH	(v_hlen_tos_len & 0xFFFF)
19972 #else
19973 #define	V_HLEN	(v_hlen_tos_len & 0xFF)
19974 #define	LENGTH	((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
19975 #endif
19976 
19977 #ifndef SPEED_BEFORE_SAFETY
19978 	/*
19979 	 * Check that ipha_length is consistent with
19980 	 * the mblk length
19981 	 */
19982 	if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) {
19983 		ip0dbg(("Packet length mismatch: %d, %ld\n",
19984 		    LENGTH, msgdsize(mp)));
19985 		freemsg(ipsec_mp);
19986 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
19987 		    "ip_wput_ire_fragmentit: mp %p (%S)", mp,
19988 		    "packet length mismatch");
19989 		return;
19990 	}
19991 #endif
19992 	/*
19993 	 * Don't use frag_flag if pre-built packet or source
19994 	 * routed or if multicast (since multicast packets do not solicit
19995 	 * ICMP "packet too big" messages). Get the values of
19996 	 * max_frag and frag_flag atomically by acquiring the
19997 	 * ire_lock.
19998 	 */
19999 	mutex_enter(&ire->ire_lock);
20000 	max_frag = ire->ire_max_frag;
20001 	frag_flag = ire->ire_frag_flag;
20002 	mutex_exit(&ire->ire_lock);
20003 
20004 	dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) ||
20005 	    (V_HLEN != IP_SIMPLE_HDR_VERSION &&
20006 	    ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst));
20007 
20008 	ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag,
20009 	    (dont_use ? 0 : frag_flag));
20010 }
20011 
20012 /*
20013  * Used for deciding the MSS size for the upper layer. Thus
20014  * we need to check the outbound policy values in the conn.
20015  */
20016 int
20017 conn_ipsec_length(conn_t *connp)
20018 {
20019 	ipsec_latch_t *ipl;
20020 
20021 	ipl = connp->conn_latch;
20022 	if (ipl == NULL)
20023 		return (0);
20024 
20025 	if (ipl->ipl_out_policy == NULL)
20026 		return (0);
20027 
20028 	return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd);
20029 }
20030 
20031 /*
20032  * Returns an estimate of the IPSEC headers size. This is used if
20033  * we don't want to call into IPSEC to get the exact size.
20034  */
20035 int
20036 ipsec_out_extra_length(mblk_t *ipsec_mp)
20037 {
20038 	ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr;
20039 	ipsec_action_t *a;
20040 
20041 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
20042 	if (!io->ipsec_out_secure)
20043 		return (0);
20044 
20045 	a = io->ipsec_out_act;
20046 
20047 	if (a == NULL) {
20048 		ASSERT(io->ipsec_out_policy != NULL);
20049 		a = io->ipsec_out_policy->ipsp_act;
20050 	}
20051 	ASSERT(a != NULL);
20052 
20053 	return (a->ipa_ovhd);
20054 }
20055 
20056 /*
20057  * Returns an estimate of the IPSEC headers size. This is used if
20058  * we don't want to call into IPSEC to get the exact size.
20059  */
20060 int
20061 ipsec_in_extra_length(mblk_t *ipsec_mp)
20062 {
20063 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
20064 	ipsec_action_t *a;
20065 
20066 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
20067 
20068 	a = ii->ipsec_in_action;
20069 	return (a == NULL ? 0 : a->ipa_ovhd);
20070 }
20071 
20072 /*
20073  * If there are any source route options, return the true final
20074  * destination. Otherwise, return the destination.
20075  */
20076 ipaddr_t
20077 ip_get_dst(ipha_t *ipha)
20078 {
20079 	ipoptp_t	opts;
20080 	uchar_t		*opt;
20081 	uint8_t		optval;
20082 	uint8_t		optlen;
20083 	ipaddr_t	dst;
20084 	uint32_t off;
20085 
20086 	dst = ipha->ipha_dst;
20087 
20088 	if (IS_SIMPLE_IPH(ipha))
20089 		return (dst);
20090 
20091 	for (optval = ipoptp_first(&opts, ipha);
20092 	    optval != IPOPT_EOL;
20093 	    optval = ipoptp_next(&opts)) {
20094 		opt = opts.ipoptp_cur;
20095 		optlen = opts.ipoptp_len;
20096 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
20097 		switch (optval) {
20098 		case IPOPT_SSRR:
20099 		case IPOPT_LSRR:
20100 			off = opt[IPOPT_OFFSET];
20101 			/*
20102 			 * If one of the conditions is true, it means
20103 			 * end of options and dst already has the right
20104 			 * value.
20105 			 */
20106 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
20107 				off = optlen - IP_ADDR_LEN;
20108 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
20109 			}
20110 			return (dst);
20111 		default:
20112 			break;
20113 		}
20114 	}
20115 
20116 	return (dst);
20117 }
20118 
20119 mblk_t *
20120 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
20121     conn_t *connp, boolean_t unspec_src)
20122 {
20123 	ipsec_out_t	*io;
20124 	mblk_t		*first_mp;
20125 	boolean_t policy_present;
20126 
20127 	first_mp = mp;
20128 	if (mp->b_datap->db_type == M_CTL) {
20129 		io = (ipsec_out_t *)first_mp->b_rptr;
20130 		/*
20131 		 * ip_wput[_v6] attaches an IPSEC_OUT in two cases.
20132 		 *
20133 		 * 1) There is per-socket policy (including cached global
20134 		 *    policy).
20135 		 * 2) There is no per-socket policy, but it is
20136 		 *    a multicast packet that needs to go out
20137 		 *    on a specific interface. This is the case
20138 		 *    where (ip_wput and ip_wput_multicast) attaches
20139 		 *    an IPSEC_OUT and sets ipsec_out_secure B_FALSE.
20140 		 *
20141 		 * In case (2) we check with global policy to
20142 		 * see if there is a match and set the ill_index
20143 		 * appropriately so that we can lookup the ire
20144 		 * properly in ip_wput_ipsec_out.
20145 		 */
20146 
20147 		/*
20148 		 * ipsec_out_use_global_policy is set to B_FALSE
20149 		 * in ipsec_in_to_out(). Refer to that function for
20150 		 * details.
20151 		 */
20152 		if ((io->ipsec_out_latch == NULL) &&
20153 		    (io->ipsec_out_use_global_policy)) {
20154 			return (ip_wput_attach_policy(first_mp, ipha, ip6h,
20155 			    ire, connp, unspec_src));
20156 		}
20157 		if (!io->ipsec_out_secure) {
20158 			/*
20159 			 * If this is not a secure packet, drop
20160 			 * the IPSEC_OUT mp and treat it as a clear
20161 			 * packet. This happens when we are sending
20162 			 * a ICMP reply back to a clear packet. See
20163 			 * ipsec_in_to_out() for details.
20164 			 */
20165 			mp = first_mp->b_cont;
20166 			freeb(first_mp);
20167 		}
20168 		return (mp);
20169 	}
20170 	/*
20171 	 * See whether we need to attach a global policy here. We
20172 	 * don't depend on the conn (as it could be null) for deciding
20173 	 * what policy this datagram should go through because it
20174 	 * should have happened in ip_wput if there was some
20175 	 * policy. This normally happens for connections which are not
20176 	 * fully bound preventing us from caching policies in
20177 	 * ip_bind. Packets coming from the TCP listener/global queue
20178 	 * - which are non-hard_bound - could also be affected by
20179 	 * applying policy here.
20180 	 *
20181 	 * If this packet is coming from tcp global queue or listener,
20182 	 * we will be applying policy here.  This may not be *right*
20183 	 * if these packets are coming from the detached connection as
20184 	 * it could have gone in clear before. This happens only if a
20185 	 * TCP connection started when there is no policy and somebody
20186 	 * added policy before it became detached. Thus packets of the
20187 	 * detached connection could go out secure and the other end
20188 	 * would drop it because it will be expecting in clear. The
20189 	 * converse is not true i.e if somebody starts a TCP
20190 	 * connection and deletes the policy, all the packets will
20191 	 * still go out with the policy that existed before deleting
20192 	 * because ip_unbind sends up policy information which is used
20193 	 * by TCP on subsequent ip_wputs. The right solution is to fix
20194 	 * TCP to attach a dummy IPSEC_OUT and set
20195 	 * ipsec_out_use_global_policy to B_FALSE. As this might
20196 	 * affect performance for normal cases, we are not doing it.
20197 	 * Thus, set policy before starting any TCP connections.
20198 	 *
20199 	 * NOTE - We might apply policy even for a hard bound connection
20200 	 * - for which we cached policy in ip_bind - if somebody added
20201 	 * global policy after we inherited the policy in ip_bind.
20202 	 * This means that the packets that were going out in clear
20203 	 * previously would start going secure and hence get dropped
20204 	 * on the other side. To fix this, TCP attaches a dummy
20205 	 * ipsec_out and make sure that we don't apply global policy.
20206 	 */
20207 	if (ipha != NULL)
20208 		policy_present = ipsec_outbound_v4_policy_present;
20209 	else
20210 		policy_present = ipsec_outbound_v6_policy_present;
20211 	if (!policy_present)
20212 		return (mp);
20213 
20214 	return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src));
20215 }
20216 
20217 ire_t *
20218 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill)
20219 {
20220 	ipaddr_t addr;
20221 	ire_t *save_ire;
20222 	irb_t *irb;
20223 	ill_group_t *illgrp;
20224 	int	err;
20225 
20226 	save_ire = ire;
20227 	addr = ire->ire_addr;
20228 
20229 	ASSERT(ire->ire_type == IRE_BROADCAST);
20230 
20231 	illgrp = connp->conn_outgoing_ill->ill_group;
20232 	if (illgrp == NULL) {
20233 		*conn_outgoing_ill = conn_get_held_ill(connp,
20234 		    &connp->conn_outgoing_ill, &err);
20235 		if (err == ILL_LOOKUP_FAILED) {
20236 			ire_refrele(save_ire);
20237 			return (NULL);
20238 		}
20239 		return (save_ire);
20240 	}
20241 	/*
20242 	 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set.
20243 	 * If it is part of the group, we need to send on the ire
20244 	 * that has been cleared of IRE_MARK_NORECV and that belongs
20245 	 * to this group. This is okay as IP_BOUND_IF really means
20246 	 * any ill in the group. We depend on the fact that the
20247 	 * first ire in the group is always cleared of IRE_MARK_NORECV
20248 	 * if such an ire exists. This is possible only if you have
20249 	 * at least one ill in the group that has not failed.
20250 	 *
20251 	 * First get to the ire that matches the address and group.
20252 	 *
20253 	 * We don't look for an ire with a matching zoneid because a given zone
20254 	 * won't always have broadcast ires on all ills in the group.
20255 	 */
20256 	irb = ire->ire_bucket;
20257 	rw_enter(&irb->irb_lock, RW_READER);
20258 	if (ire->ire_marks & IRE_MARK_NORECV) {
20259 		/*
20260 		 * If the current zone only has an ire broadcast for this
20261 		 * address marked NORECV, the ire we want is ahead in the
20262 		 * bucket, so we look it up deliberately ignoring the zoneid.
20263 		 */
20264 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
20265 			if (ire->ire_addr != addr)
20266 				continue;
20267 			/* skip over deleted ires */
20268 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
20269 				continue;
20270 		}
20271 	}
20272 	while (ire != NULL) {
20273 		/*
20274 		 * If a new interface is coming up, we could end up
20275 		 * seeing the loopback ire and the non-loopback ire
20276 		 * may not have been added yet. So check for ire_stq
20277 		 */
20278 		if (ire->ire_stq != NULL && (ire->ire_addr != addr ||
20279 		    ire->ire_ipif->ipif_ill->ill_group == illgrp)) {
20280 			break;
20281 		}
20282 		ire = ire->ire_next;
20283 	}
20284 	if (ire != NULL && ire->ire_addr == addr &&
20285 	    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
20286 		IRE_REFHOLD(ire);
20287 		rw_exit(&irb->irb_lock);
20288 		ire_refrele(save_ire);
20289 		*conn_outgoing_ill = ire_to_ill(ire);
20290 		/*
20291 		 * Refhold the ill to make the conn_outgoing_ill
20292 		 * independent of the ire. ip_wput_ire goes in a loop
20293 		 * and may refrele the ire. Since we have an ire at this
20294 		 * point we don't need to use ILL_CAN_LOOKUP on the ill.
20295 		 */
20296 		ill_refhold(*conn_outgoing_ill);
20297 		return (ire);
20298 	}
20299 	rw_exit(&irb->irb_lock);
20300 	ip1dbg(("conn_set_outgoing_ill: No matching ire\n"));
20301 	/*
20302 	 * If we can't find a suitable ire, return the original ire.
20303 	 */
20304 	return (save_ire);
20305 }
20306 
20307 /*
20308  * This function does the ire_refrele of the ire passed in as the
20309  * argument. As this function looks up more ires i.e broadcast ires,
20310  * it needs to REFRELE them. Currently, for simplicity we don't
20311  * differentiate the one passed in and looked up here. We always
20312  * REFRELE.
20313  * IPQoS Notes:
20314  * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for
20315  * IPSec packets are done in ipsec_out_process.
20316  *
20317  */
20318 void
20319 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller)
20320 {
20321 	ipha_t		*ipha;
20322 #define	rptr	((uchar_t *)ipha)
20323 	mblk_t		*mp1;
20324 	queue_t		*stq;
20325 #define	Q_TO_INDEX(stq)	(((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex)
20326 	uint32_t	v_hlen_tos_len;
20327 	uint32_t	ttl_protocol;
20328 	ipaddr_t	src;
20329 	ipaddr_t	dst;
20330 	uint32_t	cksum;
20331 	ipaddr_t	orig_src;
20332 	ire_t		*ire1;
20333 	mblk_t		*next_mp;
20334 	uint_t		hlen;
20335 	uint16_t	*up;
20336 	uint32_t	max_frag = ire->ire_max_frag;
20337 	ill_t		*ill = ire_to_ill(ire);
20338 	int		clusterwide;
20339 	uint16_t	ip_hdr_included; /* IP header included by ULP? */
20340 	int		ipsec_len;
20341 	mblk_t		*first_mp;
20342 	ipsec_out_t	*io;
20343 	boolean_t	conn_dontroute;		/* conn value for multicast */
20344 	boolean_t	conn_multicast_loop;	/* conn value for multicast */
20345 	boolean_t	multicast_forward;	/* Should we forward ? */
20346 	boolean_t	unspec_src;
20347 	ill_t		*conn_outgoing_ill = NULL;
20348 	ill_t		*ire_ill;
20349 	ill_t		*ire1_ill;
20350 	uint32_t 	ill_index = 0;
20351 	boolean_t	multirt_send = B_FALSE;
20352 	int		err;
20353 	zoneid_t	zoneid;
20354 
20355 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START,
20356 	    "ip_wput_ire_start: q %p", q);
20357 
20358 	multicast_forward = B_FALSE;
20359 	unspec_src = (connp != NULL && connp->conn_unspec_src);
20360 
20361 	if (ire->ire_flags & RTF_MULTIRT) {
20362 		/*
20363 		 * Multirouting case. The bucket where ire is stored
20364 		 * probably holds other RTF_MULTIRT flagged ire
20365 		 * to the destination. In this call to ip_wput_ire,
20366 		 * we attempt to send the packet through all
20367 		 * those ires. Thus, we first ensure that ire is the
20368 		 * first RTF_MULTIRT ire in the bucket,
20369 		 * before walking the ire list.
20370 		 */
20371 		ire_t *first_ire;
20372 		irb_t *irb = ire->ire_bucket;
20373 		ASSERT(irb != NULL);
20374 
20375 		/* Make sure we do not omit any multiroute ire. */
20376 		IRB_REFHOLD(irb);
20377 		for (first_ire = irb->irb_ire;
20378 		    first_ire != NULL;
20379 		    first_ire = first_ire->ire_next) {
20380 			if ((first_ire->ire_flags & RTF_MULTIRT) &&
20381 			    (first_ire->ire_addr == ire->ire_addr) &&
20382 			    !(first_ire->ire_marks &
20383 				(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)))
20384 				break;
20385 		}
20386 
20387 		if ((first_ire != NULL) && (first_ire != ire)) {
20388 			IRE_REFHOLD(first_ire);
20389 			ire_refrele(ire);
20390 			ire = first_ire;
20391 			ill = ire_to_ill(ire);
20392 		}
20393 		IRB_REFRELE(irb);
20394 	}
20395 
20396 	/*
20397 	 * conn_outgoing_ill is used only in the broadcast loop.
20398 	 * for performance we don't grab the mutexs in the fastpath
20399 	 */
20400 	if ((connp != NULL) &&
20401 	    (connp->conn_xmit_if_ill == NULL) &&
20402 	    (ire->ire_type == IRE_BROADCAST) &&
20403 	    ((connp->conn_nofailover_ill != NULL) ||
20404 	    (connp->conn_outgoing_ill != NULL))) {
20405 		/*
20406 		 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF
20407 		 * option. So, see if this endpoint is bound to a
20408 		 * IPIF_NOFAILOVER address. If so, honor it. This implies
20409 		 * that if the interface is failed, we will still send
20410 		 * the packet on the same ill which is what we want.
20411 		 */
20412 		conn_outgoing_ill = conn_get_held_ill(connp,
20413 		    &connp->conn_nofailover_ill, &err);
20414 		if (err == ILL_LOOKUP_FAILED) {
20415 			ire_refrele(ire);
20416 			freemsg(mp);
20417 			return;
20418 		}
20419 		if (conn_outgoing_ill == NULL) {
20420 			/*
20421 			 * Choose a good ill in the group to send the
20422 			 * packets on.
20423 			 */
20424 			ire = conn_set_outgoing_ill(connp, ire,
20425 			    &conn_outgoing_ill);
20426 			if (ire == NULL) {
20427 				freemsg(mp);
20428 				return;
20429 			}
20430 		}
20431 	}
20432 
20433 	if (mp->b_datap->db_type != M_CTL) {
20434 		ipha = (ipha_t *)mp->b_rptr;
20435 		zoneid = (connp != NULL ? connp->conn_zoneid : ALL_ZONES);
20436 	} else {
20437 		io = (ipsec_out_t *)mp->b_rptr;
20438 		ASSERT(io->ipsec_out_type == IPSEC_OUT);
20439 		zoneid = io->ipsec_out_zoneid;
20440 		ASSERT(zoneid != ALL_ZONES);
20441 		ipha = (ipha_t *)mp->b_cont->b_rptr;
20442 		dst = ipha->ipha_dst;
20443 		/*
20444 		 * For the multicast case, ipsec_out carries conn_dontroute and
20445 		 * conn_multicast_loop as conn may not be available here. We
20446 		 * need this for multicast loopback and forwarding which is done
20447 		 * later in the code.
20448 		 */
20449 		if (CLASSD(dst)) {
20450 			conn_dontroute = io->ipsec_out_dontroute;
20451 			conn_multicast_loop = io->ipsec_out_multicast_loop;
20452 			/*
20453 			 * If conn_dontroute is not set or conn_multicast_loop
20454 			 * is set, we need to do forwarding/loopback. For
20455 			 * datagrams from ip_wput_multicast, conn_dontroute is
20456 			 * set to B_TRUE and conn_multicast_loop is set to
20457 			 * B_FALSE so that we neither do forwarding nor
20458 			 * loopback.
20459 			 */
20460 			if (!conn_dontroute || conn_multicast_loop)
20461 				multicast_forward = B_TRUE;
20462 		}
20463 	}
20464 
20465 	if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid &&
20466 	    ire->ire_zoneid != ALL_ZONES) {
20467 		/*
20468 		 * When a zone sends a packet to another zone, we try to deliver
20469 		 * the packet under the same conditions as if the destination
20470 		 * was a real node on the network. To do so, we look for a
20471 		 * matching route in the forwarding table.
20472 		 * RTF_REJECT and RTF_BLACKHOLE are handled just like
20473 		 * ip_newroute() does.
20474 		 */
20475 		ire_t *src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0,
20476 		    NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE |
20477 		    MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE));
20478 		if (src_ire != NULL &&
20479 		    !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) {
20480 			if (ipha->ipha_src == INADDR_ANY && !unspec_src)
20481 				ipha->ipha_src = src_ire->ire_src_addr;
20482 			ire_refrele(src_ire);
20483 		} else {
20484 			ire_refrele(ire);
20485 			if (conn_outgoing_ill != NULL)
20486 				ill_refrele(conn_outgoing_ill);
20487 			BUMP_MIB(&ip_mib, ipOutNoRoutes);
20488 			if (src_ire != NULL) {
20489 				if (src_ire->ire_flags & RTF_BLACKHOLE) {
20490 					ire_refrele(src_ire);
20491 					freemsg(mp);
20492 					return;
20493 				}
20494 				ire_refrele(src_ire);
20495 			}
20496 			if (ip_hdr_complete(ipha, zoneid)) {
20497 				/* Failed */
20498 				freemsg(mp);
20499 				return;
20500 			}
20501 			icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE);
20502 			return;
20503 		}
20504 	}
20505 
20506 	if (mp->b_datap->db_type == M_CTL ||
20507 	    ipsec_outbound_v4_policy_present) {
20508 		mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp,
20509 		    unspec_src);
20510 		if (mp == NULL) {
20511 			ire_refrele(ire);
20512 			if (conn_outgoing_ill != NULL)
20513 				ill_refrele(conn_outgoing_ill);
20514 			return;
20515 		}
20516 	}
20517 
20518 	first_mp = mp;
20519 	ipsec_len = 0;
20520 
20521 	if (first_mp->b_datap->db_type == M_CTL) {
20522 		io = (ipsec_out_t *)first_mp->b_rptr;
20523 		ASSERT(io->ipsec_out_type == IPSEC_OUT);
20524 		mp = first_mp->b_cont;
20525 		ipsec_len = ipsec_out_extra_length(first_mp);
20526 		ASSERT(ipsec_len >= 0);
20527 		zoneid = io->ipsec_out_zoneid;
20528 		ASSERT(zoneid != ALL_ZONES);
20529 
20530 		/*
20531 		 * Drop M_CTL here if IPsec processing is not needed.
20532 		 * (Non-IPsec use of M_CTL extracted any information it
20533 		 * needed above).
20534 		 */
20535 		if (ipsec_len == 0) {
20536 			freeb(first_mp);
20537 			first_mp = mp;
20538 		}
20539 	}
20540 
20541 	/*
20542 	 * Fast path for ip_wput_ire
20543 	 */
20544 
20545 	ipha = (ipha_t *)mp->b_rptr;
20546 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
20547 	dst = ipha->ipha_dst;
20548 
20549 	/*
20550 	 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED
20551 	 * if the socket is a SOCK_RAW type. The transport checksum should
20552 	 * be provided in the pre-built packet, so we don't need to compute it.
20553 	 * Also, other application set flags, like DF, should not be altered.
20554 	 * Other transport MUST pass down zero.
20555 	 */
20556 	ip_hdr_included = ipha->ipha_ident;
20557 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20558 
20559 	if (CLASSD(dst)) {
20560 		ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n",
20561 		    ntohl(dst),
20562 		    ip_nv_lookup(ire_nv_tbl, ire->ire_type),
20563 		    ntohl(ire->ire_addr)));
20564 	}
20565 
20566 /* Macros to extract header fields from data already in registers */
20567 #ifdef	_BIG_ENDIAN
20568 #define	V_HLEN	(v_hlen_tos_len >> 24)
20569 #define	LENGTH	(v_hlen_tos_len & 0xFFFF)
20570 #define	PROTO	(ttl_protocol & 0xFF)
20571 #else
20572 #define	V_HLEN	(v_hlen_tos_len & 0xFF)
20573 #define	LENGTH	((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
20574 #define	PROTO	(ttl_protocol >> 8)
20575 #endif
20576 
20577 
20578 	orig_src = src = ipha->ipha_src;
20579 	/* (The loop back to "another" is explained down below.) */
20580 another:;
20581 	/*
20582 	 * Assign an ident value for this packet.  We assign idents on
20583 	 * a per destination basis out of the IRE.  There could be
20584 	 * other threads targeting the same destination, so we have to
20585 	 * arrange for a atomic increment.  Note that we use a 32-bit
20586 	 * atomic add because it has better performance than its
20587 	 * 16-bit sibling.
20588 	 *
20589 	 * If running in cluster mode and if the source address
20590 	 * belongs to a replicated service then vector through
20591 	 * cl_inet_ipident vector to allocate ip identifier
20592 	 * NOTE: This is a contract private interface with the
20593 	 * clustering group.
20594 	 */
20595 	clusterwide = 0;
20596 	if (cl_inet_ipident) {
20597 		ASSERT(cl_inet_isclusterwide);
20598 		if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20599 		    AF_INET, (uint8_t *)(uintptr_t)src)) {
20600 			ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP,
20601 			    AF_INET, (uint8_t *)(uintptr_t)src,
20602 			    (uint8_t *)(uintptr_t)dst);
20603 			clusterwide = 1;
20604 		}
20605 	}
20606 	if (!clusterwide) {
20607 		ipha->ipha_ident =
20608 		    (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
20609 	}
20610 
20611 #ifndef _BIG_ENDIAN
20612 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20613 #endif
20614 
20615 	/*
20616 	 * Set source address unless sent on an ill or conn_unspec_src is set.
20617 	 * This is needed to obey conn_unspec_src when packets go through
20618 	 * ip_newroute + arp.
20619 	 * Assumes ip_newroute{,_multi} sets the source address as well.
20620 	 */
20621 	if (src == INADDR_ANY && !unspec_src) {
20622 		/*
20623 		 * Assign the appropriate source address from the IRE if none
20624 		 * was specified.
20625 		 */
20626 		ASSERT(ire->ire_ipversion == IPV4_VERSION);
20627 
20628 		/*
20629 		 * With IP multipathing, broadcast packets are sent on the ire
20630 		 * that has been cleared of IRE_MARK_NORECV and that belongs to
20631 		 * the group. However, this ire might not be in the same zone so
20632 		 * we can't always use its source address. We look for a
20633 		 * broadcast ire in the same group and in the right zone.
20634 		 */
20635 		if (ire->ire_type == IRE_BROADCAST &&
20636 		    ire->ire_zoneid != zoneid) {
20637 			ire_t *src_ire = ire_ctable_lookup(dst, 0,
20638 			    IRE_BROADCAST, ire->ire_ipif, zoneid, NULL,
20639 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP));
20640 			if (src_ire != NULL) {
20641 				src = src_ire->ire_src_addr;
20642 				ire_refrele(src_ire);
20643 			} else {
20644 				ire_refrele(ire);
20645 				if (conn_outgoing_ill != NULL)
20646 					ill_refrele(conn_outgoing_ill);
20647 				freemsg(first_mp);
20648 				BUMP_MIB(&ip_mib, ipOutDiscards);
20649 				return;
20650 			}
20651 		} else {
20652 			src = ire->ire_src_addr;
20653 		}
20654 
20655 		if (connp == NULL) {
20656 			ip1dbg(("ip_wput_ire: no connp and no src "
20657 			    "address for dst 0x%x, using src 0x%x\n",
20658 			    ntohl(dst),
20659 			    ntohl(src)));
20660 		}
20661 		ipha->ipha_src = src;
20662 	}
20663 	stq = ire->ire_stq;
20664 
20665 	/*
20666 	 * We only allow ire chains for broadcasts since there will
20667 	 * be multiple IRE_CACHE entries for the same multicast
20668 	 * address (one per ipif).
20669 	 */
20670 	next_mp = NULL;
20671 
20672 	/* broadcast packet */
20673 	if (ire->ire_type == IRE_BROADCAST)
20674 		goto broadcast;
20675 
20676 	/* loopback ? */
20677 	if (stq == NULL)
20678 		goto nullstq;
20679 
20680 	/* The ill_index for outbound ILL */
20681 	ill_index = Q_TO_INDEX(stq);
20682 
20683 	BUMP_MIB(&ip_mib, ipOutRequests);
20684 	ttl_protocol = ((uint16_t *)ipha)[4];
20685 
20686 	/* pseudo checksum (do it in parts for IP header checksum) */
20687 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20688 
20689 	if (!IP_FLOW_CONTROLLED_ULP(PROTO)) {
20690 		queue_t *dev_q = stq->q_next;
20691 
20692 		/* flow controlled */
20693 		if ((dev_q->q_next || dev_q->q_first) &&
20694 		    !canput(dev_q))
20695 			goto blocked;
20696 		if ((PROTO == IPPROTO_UDP) &&
20697 		    (ip_hdr_included != IP_HDR_INCLUDED)) {
20698 			hlen = (V_HLEN & 0xF) << 2;
20699 			up = IPH_UDPH_CHECKSUMP(ipha, hlen);
20700 			if (*up != 0) {
20701 				IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO,
20702 				    hlen, LENGTH, max_frag, ipsec_len, cksum);
20703 				/* Software checksum? */
20704 				if (DB_CKSUMFLAGS(mp) == 0) {
20705 					IP_STAT(ip_out_sw_cksum);
20706 					IP_STAT_UPDATE(
20707 					    ip_udp_out_sw_cksum_bytes,
20708 					    LENGTH - hlen);
20709 				}
20710 			}
20711 		}
20712 	} else if (ip_hdr_included != IP_HDR_INCLUDED) {
20713 		hlen = (V_HLEN & 0xF) << 2;
20714 		if (PROTO == IPPROTO_TCP) {
20715 			up = IPH_TCPH_CHECKSUMP(ipha, hlen);
20716 			/*
20717 			 * The packet header is processed once and for all, even
20718 			 * in the multirouting case. We disable hardware
20719 			 * checksum if the packet is multirouted, as it will be
20720 			 * replicated via several interfaces, and not all of
20721 			 * them may have this capability.
20722 			 */
20723 			IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen,
20724 			    LENGTH, max_frag, ipsec_len, cksum);
20725 			/* Software checksum? */
20726 			if (DB_CKSUMFLAGS(mp) == 0) {
20727 				IP_STAT(ip_out_sw_cksum);
20728 				IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes,
20729 				    LENGTH - hlen);
20730 			}
20731 		} else {
20732 			sctp_hdr_t	*sctph;
20733 
20734 			ASSERT(PROTO == IPPROTO_SCTP);
20735 			ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph)));
20736 			sctph = (sctp_hdr_t *)(mp->b_rptr + hlen);
20737 			/*
20738 			 * Zero out the checksum field to ensure proper
20739 			 * checksum calculation.
20740 			 */
20741 			sctph->sh_chksum = 0;
20742 #ifdef	DEBUG
20743 			if (!skip_sctp_cksum)
20744 #endif
20745 				sctph->sh_chksum = sctp_cksum(mp, hlen);
20746 		}
20747 	}
20748 
20749 	/*
20750 	 * If this is a multicast packet and originated from ip_wput
20751 	 * we need to do loopback and forwarding checks. If it comes
20752 	 * from ip_wput_multicast, we SHOULD not do this.
20753 	 */
20754 	if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback;
20755 
20756 	/* checksum */
20757 	cksum += ttl_protocol;
20758 
20759 	/* fragment the packet */
20760 	if (max_frag < (uint_t)(LENGTH + ipsec_len))
20761 		goto fragmentit;
20762 	/*
20763 	 * Don't use frag_flag if packet is pre-built or source
20764 	 * routed or if multicast (since multicast packets do
20765 	 * not solicit ICMP "packet too big" messages).
20766 	 */
20767 	if ((ip_hdr_included != IP_HDR_INCLUDED) &&
20768 	    (V_HLEN == IP_SIMPLE_HDR_VERSION ||
20769 	    !ip_source_route_included(ipha)) &&
20770 	    !CLASSD(ipha->ipha_dst))
20771 		ipha->ipha_fragment_offset_and_flags |=
20772 		    htons(ire->ire_frag_flag);
20773 
20774 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
20775 		/* calculate IP header checksum */
20776 		cksum += ipha->ipha_ident;
20777 		cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF);
20778 		cksum += ipha->ipha_fragment_offset_and_flags;
20779 
20780 		/* IP options present */
20781 		hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS;
20782 		if (hlen)
20783 			goto checksumoptions;
20784 
20785 		/* calculate hdr checksum */
20786 		cksum = ((cksum & 0xFFFF) + (cksum >> 16));
20787 		cksum = ~(cksum + (cksum >> 16));
20788 		ipha->ipha_hdr_checksum = (uint16_t)cksum;
20789 	}
20790 	if (ipsec_len != 0) {
20791 		/*
20792 		 * We will do the rest of the processing after
20793 		 * we come back from IPSEC in ip_wput_ipsec_out().
20794 		 */
20795 		ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t));
20796 
20797 		io = (ipsec_out_t *)first_mp->b_rptr;
20798 		io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)->
20799 				ill_phyint->phyint_ifindex;
20800 
20801 		ipsec_out_process(q, first_mp, ire, ill_index);
20802 		ire_refrele(ire);
20803 		if (conn_outgoing_ill != NULL)
20804 			ill_refrele(conn_outgoing_ill);
20805 		return;
20806 	}
20807 
20808 	/*
20809 	 * In most cases, the emission loop below is entered only
20810 	 * once. Only in the case where the ire holds the
20811 	 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT
20812 	 * flagged ires in the bucket, and send the packet
20813 	 * through all crossed RTF_MULTIRT routes.
20814 	 */
20815 	if (ire->ire_flags & RTF_MULTIRT) {
20816 		multirt_send = B_TRUE;
20817 	}
20818 	do {
20819 		if (multirt_send) {
20820 			irb_t *irb;
20821 			/*
20822 			 * We are in a multiple send case, need to get
20823 			 * the next ire and make a duplicate of the packet.
20824 			 * ire1 holds here the next ire to process in the
20825 			 * bucket. If multirouting is expected,
20826 			 * any non-RTF_MULTIRT ire that has the
20827 			 * right destination address is ignored.
20828 			 */
20829 			irb = ire->ire_bucket;
20830 			ASSERT(irb != NULL);
20831 
20832 			IRB_REFHOLD(irb);
20833 			for (ire1 = ire->ire_next;
20834 			    ire1 != NULL;
20835 			    ire1 = ire1->ire_next) {
20836 				if ((ire1->ire_flags & RTF_MULTIRT) == 0)
20837 					continue;
20838 				if (ire1->ire_addr != ire->ire_addr)
20839 					continue;
20840 				if (ire1->ire_marks &
20841 				    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
20842 					continue;
20843 
20844 				/* Got one */
20845 				IRE_REFHOLD(ire1);
20846 				break;
20847 			}
20848 			IRB_REFRELE(irb);
20849 
20850 			if (ire1 != NULL) {
20851 				next_mp = copyb(mp);
20852 				if ((next_mp == NULL) ||
20853 				    ((mp->b_cont != NULL) &&
20854 				    ((next_mp->b_cont =
20855 				    dupmsg(mp->b_cont)) == NULL))) {
20856 					freemsg(next_mp);
20857 					next_mp = NULL;
20858 					ire_refrele(ire1);
20859 					ire1 = NULL;
20860 				}
20861 			}
20862 
20863 			/* Last multiroute ire; don't loop anymore. */
20864 			if (ire1 == NULL) {
20865 				multirt_send = B_FALSE;
20866 			}
20867 		}
20868 		mp = ip_wput_attach_llhdr(mp, ire, IPP_LOCAL_OUT, ill_index);
20869 		if (mp == NULL) {
20870 			BUMP_MIB(&ip_mib, ipOutDiscards);
20871 			ip2dbg(("ip_wput_ire: fastpath wput pkt dropped "\
20872 			    "during IPPF processing\n"));
20873 			ire_refrele(ire);
20874 			if (next_mp != NULL) {
20875 				freemsg(next_mp);
20876 				ire_refrele(ire1);
20877 			}
20878 			if (conn_outgoing_ill != NULL)
20879 				ill_refrele(conn_outgoing_ill);
20880 			return;
20881 		}
20882 		UPDATE_OB_PKT_COUNT(ire);
20883 		ire->ire_last_used_time = lbolt;
20884 
20885 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
20886 		    "ip_wput_ire_end: q %p (%S)",
20887 		    q, "last copy out");
20888 		putnext(stq, mp);
20889 		IRE_REFRELE(ire);
20890 
20891 		if (multirt_send) {
20892 			ASSERT(ire1);
20893 			/*
20894 			 * Proceed with the next RTF_MULTIRT ire,
20895 			 * Also set up the send-to queue accordingly.
20896 			 */
20897 			ire = ire1;
20898 			ire1 = NULL;
20899 			stq = ire->ire_stq;
20900 			mp = next_mp;
20901 			next_mp = NULL;
20902 			ipha = (ipha_t *)mp->b_rptr;
20903 			ill_index = Q_TO_INDEX(stq);
20904 		}
20905 	} while (multirt_send);
20906 	if (conn_outgoing_ill != NULL)
20907 		ill_refrele(conn_outgoing_ill);
20908 	return;
20909 
20910 	/*
20911 	 * ire->ire_type == IRE_BROADCAST (minimize diffs)
20912 	 */
20913 broadcast:
20914 	{
20915 		/*
20916 		 * Avoid broadcast storms by setting the ttl to 1
20917 		 * for broadcasts. This parameter can be set
20918 		 * via ndd, so make sure that for the SO_DONTROUTE
20919 		 * case that ipha_ttl is always set to 1.
20920 		 * In the event that we are replying to incoming
20921 		 * ICMP packets, conn could be NULL.
20922 		 */
20923 		if ((connp != NULL) && connp->conn_dontroute)
20924 			ipha->ipha_ttl = 1;
20925 		else
20926 			ipha->ipha_ttl = ip_broadcast_ttl;
20927 
20928 		/*
20929 		 * Note that we are not doing a IRB_REFHOLD here.
20930 		 * Actually we don't care if the list changes i.e
20931 		 * if somebody deletes an IRE from the list while
20932 		 * we drop the lock, the next time we come around
20933 		 * ire_next will be NULL and hence we won't send
20934 		 * out multiple copies which is fine.
20935 		 */
20936 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
20937 		ire1 = ire->ire_next;
20938 		if (conn_outgoing_ill != NULL) {
20939 			while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) {
20940 				ASSERT(ire1 == ire->ire_next);
20941 				if (ire1 != NULL && ire1->ire_addr == dst) {
20942 					ire_refrele(ire);
20943 					ire = ire1;
20944 					IRE_REFHOLD(ire);
20945 					ire1 = ire->ire_next;
20946 					continue;
20947 				}
20948 				rw_exit(&ire->ire_bucket->irb_lock);
20949 				/* Did not find a matching ill */
20950 				ip1dbg(("ip_wput_ire: broadcast with no "
20951 				    "matching IP_BOUND_IF ill %s\n",
20952 				    conn_outgoing_ill->ill_name));
20953 				freemsg(first_mp);
20954 				if (ire != NULL)
20955 					ire_refrele(ire);
20956 				ill_refrele(conn_outgoing_ill);
20957 				return;
20958 			}
20959 		} else if (ire1 != NULL && ire1->ire_addr == dst) {
20960 			/*
20961 			 * If the next IRE has the same address and is not one
20962 			 * of the two copies that we need to send, try to see
20963 			 * whether this copy should be sent at all. This
20964 			 * assumes that we insert loopbacks first and then
20965 			 * non-loopbacks. This is acheived by inserting the
20966 			 * loopback always before non-loopback.
20967 			 * This is used to send a single copy of a broadcast
20968 			 * packet out all physical interfaces that have an
20969 			 * matching IRE_BROADCAST while also looping
20970 			 * back one copy (to ip_wput_local) for each
20971 			 * matching physical interface. However, we avoid
20972 			 * sending packets out different logical that match by
20973 			 * having ipif_up/ipif_down supress duplicate
20974 			 * IRE_BROADCASTS.
20975 			 *
20976 			 * This feature is currently used to get broadcasts
20977 			 * sent to multiple interfaces, when the broadcast
20978 			 * address being used applies to multiple interfaces.
20979 			 * For example, a whole net broadcast will be
20980 			 * replicated on every connected subnet of
20981 			 * the target net.
20982 			 *
20983 			 * Each zone has its own set of IRE_BROADCASTs, so that
20984 			 * we're able to distribute inbound packets to multiple
20985 			 * zones who share a broadcast address. We avoid looping
20986 			 * back outbound packets in different zones but on the
20987 			 * same ill, as the application would see duplicates.
20988 			 *
20989 			 * If the interfaces are part of the same group,
20990 			 * we would want to send only one copy out for
20991 			 * whole group.
20992 			 *
20993 			 * This logic assumes that ire_add_v4() groups the
20994 			 * IRE_BROADCAST entries so that those with the same
20995 			 * ire_addr and ill_group are kept together.
20996 			 */
20997 			ire_ill = ire->ire_ipif->ipif_ill;
20998 			if (ire->ire_stq == NULL && ire1->ire_stq != NULL) {
20999 				if (ire_ill->ill_group != NULL &&
21000 				    (ire->ire_marks & IRE_MARK_NORECV)) {
21001 					/*
21002 					 * If the current zone only has an ire
21003 					 * broadcast for this address marked
21004 					 * NORECV, the ire we want is ahead in
21005 					 * the bucket, so we look it up
21006 					 * deliberately ignoring the zoneid.
21007 					 */
21008 					for (ire1 = ire->ire_bucket->irb_ire;
21009 					    ire1 != NULL;
21010 					    ire1 = ire1->ire_next) {
21011 						ire1_ill =
21012 						    ire1->ire_ipif->ipif_ill;
21013 						if (ire1->ire_addr != dst)
21014 							continue;
21015 						/* skip over the current ire */
21016 						if (ire1 == ire)
21017 							continue;
21018 						/* skip over deleted ires */
21019 						if (ire1->ire_marks &
21020 						    IRE_MARK_CONDEMNED)
21021 							continue;
21022 						/*
21023 						 * non-loopback ire in our
21024 						 * group: use it for the next
21025 						 * pass in the loop
21026 						 */
21027 						if (ire1->ire_stq != NULL &&
21028 						    ire1_ill->ill_group ==
21029 						    ire_ill->ill_group)
21030 							break;
21031 					}
21032 				}
21033 			} else {
21034 				while (ire1 != NULL && ire1->ire_addr == dst) {
21035 					ire1_ill = ire1->ire_ipif->ipif_ill;
21036 					/*
21037 					 * We can have two broadcast ires on the
21038 					 * same ill in different zones; here
21039 					 * we'll send a copy of the packet on
21040 					 * each ill and the fanout code will
21041 					 * call conn_wantpacket() to check that
21042 					 * the zone has the broadcast address
21043 					 * configured on the ill. If the two
21044 					 * ires are in the same group we only
21045 					 * send one copy up.
21046 					 */
21047 					if (ire1_ill != ire_ill &&
21048 					    (ire1_ill->ill_group == NULL ||
21049 					    ire_ill->ill_group == NULL ||
21050 					    ire1_ill->ill_group !=
21051 					    ire_ill->ill_group)) {
21052 						break;
21053 					}
21054 					ire1 = ire1->ire_next;
21055 				}
21056 			}
21057 		}
21058 		ASSERT(multirt_send == B_FALSE);
21059 		if (ire1 != NULL && ire1->ire_addr == dst) {
21060 			if ((ire->ire_flags & RTF_MULTIRT) &&
21061 			    (ire1->ire_flags & RTF_MULTIRT)) {
21062 				/*
21063 				 * We are in the multirouting case.
21064 				 * The message must be sent at least
21065 				 * on both ires. These ires have been
21066 				 * inserted AFTER the standard ones
21067 				 * in ip_rt_add(). There are thus no
21068 				 * other ire entries for the destination
21069 				 * address in the rest of the bucket
21070 				 * that do not have the RTF_MULTIRT
21071 				 * flag. We don't process a copy
21072 				 * of the message here. This will be
21073 				 * done in the final sending loop.
21074 				 */
21075 				multirt_send = B_TRUE;
21076 			} else {
21077 				next_mp = ip_copymsg(first_mp);
21078 				if (next_mp != NULL)
21079 					IRE_REFHOLD(ire1);
21080 			}
21081 		}
21082 		rw_exit(&ire->ire_bucket->irb_lock);
21083 	}
21084 
21085 	if (stq) {
21086 		/*
21087 		 * A non-NULL send-to queue means this packet is going
21088 		 * out of this machine.
21089 		 */
21090 
21091 		BUMP_MIB(&ip_mib, ipOutRequests);
21092 		ttl_protocol = ((uint16_t *)ipha)[4];
21093 		/*
21094 		 * We accumulate the pseudo header checksum in cksum.
21095 		 * This is pretty hairy code, so watch close.  One
21096 		 * thing to keep in mind is that UDP and TCP have
21097 		 * stored their respective datagram lengths in their
21098 		 * checksum fields.  This lines things up real nice.
21099 		 */
21100 		cksum = (dst >> 16) + (dst & 0xFFFF) +
21101 		    (src >> 16) + (src & 0xFFFF);
21102 		/*
21103 		 * We assume the udp checksum field contains the
21104 		 * length, so to compute the pseudo header checksum,
21105 		 * all we need is the protocol number and src/dst.
21106 		 */
21107 		/* Provide the checksums for UDP and TCP. */
21108 		if ((PROTO == IPPROTO_TCP) &&
21109 		    (ip_hdr_included != IP_HDR_INCLUDED)) {
21110 			/* hlen gets the number of uchar_ts in the IP header */
21111 			hlen = (V_HLEN & 0xF) << 2;
21112 			up = IPH_TCPH_CHECKSUMP(ipha, hlen);
21113 			IP_STAT(ip_out_sw_cksum);
21114 			IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes,
21115 			    LENGTH - hlen);
21116 			*up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP);
21117 			if (*up == 0)
21118 				*up = 0xFFFF;
21119 		} else if (PROTO == IPPROTO_SCTP &&
21120 		    (ip_hdr_included != IP_HDR_INCLUDED)) {
21121 			sctp_hdr_t	*sctph;
21122 
21123 			hlen = (V_HLEN & 0xF) << 2;
21124 			ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph)));
21125 			sctph = (sctp_hdr_t *)(mp->b_rptr + hlen);
21126 			sctph->sh_chksum = 0;
21127 #ifdef	DEBUG
21128 			if (!skip_sctp_cksum)
21129 #endif
21130 				sctph->sh_chksum = sctp_cksum(mp, hlen);
21131 		} else {
21132 			queue_t *dev_q = stq->q_next;
21133 
21134 			if ((dev_q->q_next || dev_q->q_first) &&
21135 			    !canput(dev_q)) {
21136 			    blocked:
21137 				ipha->ipha_ident = ip_hdr_included;
21138 				/*
21139 				 * If we don't have a conn to apply
21140 				 * backpressure, free the message.
21141 				 * In the ire_send path, we don't know
21142 				 * the position to requeue the packet. Rather
21143 				 * than reorder packets, we just drop this
21144 				 * packet.
21145 				 */
21146 				if (ip_output_queue && connp != NULL &&
21147 				    caller != IRE_SEND) {
21148 					if (caller == IP_WSRV) {
21149 						connp->conn_did_putbq = 1;
21150 						(void) putbq(connp->conn_wq,
21151 						    first_mp);
21152 						conn_drain_insert(connp);
21153 						/*
21154 						 * This is the service thread,
21155 						 * and the queue is already
21156 						 * noenabled. The check for
21157 						 * canput and the putbq is not
21158 						 * atomic. So we need to check
21159 						 * again.
21160 						 */
21161 						if (canput(stq->q_next))
21162 							connp->conn_did_putbq
21163 							    = 0;
21164 						IP_STAT(ip_conn_flputbq);
21165 					} else {
21166 						/*
21167 						 * We are not the service proc.
21168 						 * ip_wsrv will be scheduled or
21169 						 * is already running.
21170 						 */
21171 						(void) putq(connp->conn_wq,
21172 						    first_mp);
21173 					}
21174 				} else {
21175 					BUMP_MIB(&ip_mib, ipOutDiscards);
21176 					freemsg(first_mp);
21177 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
21178 					    "ip_wput_ire_end: q %p (%S)",
21179 					    q, "discard");
21180 				}
21181 				ire_refrele(ire);
21182 				if (next_mp) {
21183 					ire_refrele(ire1);
21184 					freemsg(next_mp);
21185 				}
21186 				if (conn_outgoing_ill != NULL)
21187 					ill_refrele(conn_outgoing_ill);
21188 				return;
21189 			}
21190 			if ((PROTO == IPPROTO_UDP) &&
21191 			    (ip_hdr_included != IP_HDR_INCLUDED)) {
21192 				/*
21193 				 * hlen gets the number of uchar_ts in the
21194 				 * IP header
21195 				 */
21196 				hlen = (V_HLEN & 0xF) << 2;
21197 				up = IPH_UDPH_CHECKSUMP(ipha, hlen);
21198 				max_frag = ire->ire_max_frag;
21199 				if (*up != 0) {
21200 					IP_CKSUM_XMIT(ire_ill, ire, mp, ipha,
21201 					    up, PROTO, hlen, LENGTH, max_frag,
21202 					    ipsec_len, cksum);
21203 					/* Software checksum? */
21204 					if (DB_CKSUMFLAGS(mp) == 0) {
21205 						IP_STAT(ip_out_sw_cksum);
21206 						IP_STAT_UPDATE(
21207 						    ip_udp_out_sw_cksum_bytes,
21208 						    LENGTH - hlen);
21209 					}
21210 				}
21211 			}
21212 		}
21213 		/*
21214 		 * Need to do this even when fragmenting. The local
21215 		 * loopback can be done without computing checksums
21216 		 * but forwarding out other interface must be done
21217 		 * after the IP checksum (and ULP checksums) have been
21218 		 * computed.
21219 		 *
21220 		 * NOTE : multicast_forward is set only if this packet
21221 		 * originated from ip_wput. For packets originating from
21222 		 * ip_wput_multicast, it is not set.
21223 		 */
21224 		if (CLASSD(ipha->ipha_dst) && multicast_forward) {
21225 		    multi_loopback:
21226 			ip2dbg(("ip_wput: multicast, loop %d\n",
21227 			    conn_multicast_loop));
21228 
21229 			/*  Forget header checksum offload */
21230 			DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
21231 
21232 			/*
21233 			 * Local loopback of multicasts?  Check the
21234 			 * ill.
21235 			 *
21236 			 * Note that the loopback function will not come
21237 			 * in through ip_rput - it will only do the
21238 			 * client fanout thus we need to do an mforward
21239 			 * as well.  The is different from the BSD
21240 			 * logic.
21241 			 */
21242 			if (ill != NULL) {
21243 				ilm_t	*ilm;
21244 
21245 				ILM_WALKER_HOLD(ill);
21246 				ilm = ilm_lookup_ill(ill, ipha->ipha_dst,
21247 				    ALL_ZONES);
21248 				ILM_WALKER_RELE(ill);
21249 				if (ilm != NULL) {
21250 					/*
21251 					 * Pass along the virtual output q.
21252 					 * ip_wput_local() will distribute the
21253 					 * packet to all the matching zones,
21254 					 * except the sending zone when
21255 					 * IP_MULTICAST_LOOP is false.
21256 					 */
21257 					ip_multicast_loopback(q, ill, first_mp,
21258 					    conn_multicast_loop ? 0 :
21259 					    IP_FF_NO_MCAST_LOOP, zoneid);
21260 				}
21261 			}
21262 			if (ipha->ipha_ttl == 0) {
21263 				/*
21264 				 * 0 => only to this host i.e. we are
21265 				 * done. We are also done if this was the
21266 				 * loopback interface since it is sufficient
21267 				 * to loopback one copy of a multicast packet.
21268 				 */
21269 				freemsg(first_mp);
21270 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
21271 				    "ip_wput_ire_end: q %p (%S)",
21272 				    q, "loopback");
21273 				ire_refrele(ire);
21274 				if (conn_outgoing_ill != NULL)
21275 					ill_refrele(conn_outgoing_ill);
21276 				return;
21277 			}
21278 			/*
21279 			 * ILLF_MULTICAST is checked in ip_newroute
21280 			 * i.e. we don't need to check it here since
21281 			 * all IRE_CACHEs come from ip_newroute.
21282 			 * For multicast traffic, SO_DONTROUTE is interpreted
21283 			 * to mean only send the packet out the interface
21284 			 * (optionally specified with IP_MULTICAST_IF)
21285 			 * and do not forward it out additional interfaces.
21286 			 * RSVP and the rsvp daemon is an example of a
21287 			 * protocol and user level process that
21288 			 * handles it's own routing. Hence, it uses the
21289 			 * SO_DONTROUTE option to accomplish this.
21290 			 */
21291 
21292 			if (ip_g_mrouter && !conn_dontroute && ill != NULL) {
21293 				/* Unconditionally redo the checksum */
21294 				ipha->ipha_hdr_checksum = 0;
21295 				ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
21296 
21297 				/*
21298 				 * If this needs to go out secure, we need
21299 				 * to wait till we finish the IPSEC
21300 				 * processing.
21301 				 */
21302 				if (ipsec_len == 0 &&
21303 				    ip_mforward(ill, ipha, mp)) {
21304 					freemsg(first_mp);
21305 					ip1dbg(("ip_wput: mforward failed\n"));
21306 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
21307 					    "ip_wput_ire_end: q %p (%S)",
21308 					    q, "mforward failed");
21309 					ire_refrele(ire);
21310 					if (conn_outgoing_ill != NULL)
21311 						ill_refrele(conn_outgoing_ill);
21312 					return;
21313 				}
21314 			}
21315 		}
21316 		max_frag = ire->ire_max_frag;
21317 		cksum += ttl_protocol;
21318 		if (max_frag >= (uint_t)(LENGTH + ipsec_len)) {
21319 			/* No fragmentation required for this one. */
21320 			/*
21321 			 * Don't use frag_flag if packet is pre-built or source
21322 			 * routed or if multicast (since multicast packets do
21323 			 * not solicit ICMP "packet too big" messages).
21324 			 */
21325 			if ((ip_hdr_included != IP_HDR_INCLUDED) &&
21326 			    (V_HLEN == IP_SIMPLE_HDR_VERSION ||
21327 			    !ip_source_route_included(ipha)) &&
21328 			    !CLASSD(ipha->ipha_dst))
21329 				ipha->ipha_fragment_offset_and_flags |=
21330 				    htons(ire->ire_frag_flag);
21331 
21332 			if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
21333 				/* Complete the IP header checksum. */
21334 				cksum += ipha->ipha_ident;
21335 				cksum += (v_hlen_tos_len >> 16)+
21336 				    (v_hlen_tos_len & 0xFFFF);
21337 				cksum += ipha->ipha_fragment_offset_and_flags;
21338 				hlen = (V_HLEN & 0xF) -
21339 				    IP_SIMPLE_HDR_LENGTH_IN_WORDS;
21340 				if (hlen) {
21341 				    checksumoptions:
21342 					/*
21343 					 * Account for the IP Options in the IP
21344 					 * header checksum.
21345 					 */
21346 					up = (uint16_t *)(rptr+
21347 					    IP_SIMPLE_HDR_LENGTH);
21348 					do {
21349 						cksum += up[0];
21350 						cksum += up[1];
21351 						up += 2;
21352 					} while (--hlen);
21353 				}
21354 				cksum = ((cksum & 0xFFFF) + (cksum >> 16));
21355 				cksum = ~(cksum + (cksum >> 16));
21356 				ipha->ipha_hdr_checksum = (uint16_t)cksum;
21357 			}
21358 			if (ipsec_len != 0) {
21359 				ipsec_out_process(q, first_mp, ire, ill_index);
21360 				if (!next_mp) {
21361 					ire_refrele(ire);
21362 					if (conn_outgoing_ill != NULL)
21363 						ill_refrele(conn_outgoing_ill);
21364 					return;
21365 				}
21366 				goto next;
21367 			}
21368 
21369 			/*
21370 			 * multirt_send has already been handled
21371 			 * for broadcast, but not yet for multicast
21372 			 * or IP options.
21373 			 */
21374 			if (next_mp == NULL) {
21375 				if (ire->ire_flags & RTF_MULTIRT) {
21376 					multirt_send = B_TRUE;
21377 				}
21378 			}
21379 
21380 			/*
21381 			 * In most cases, the emission loop below is
21382 			 * entered only once. Only in the case where
21383 			 * the ire holds the RTF_MULTIRT flag, do we loop
21384 			 * to process all RTF_MULTIRT ires in the bucket,
21385 			 * and send the packet through all crossed
21386 			 * RTF_MULTIRT routes.
21387 			 */
21388 			do {
21389 				if (multirt_send) {
21390 					irb_t *irb;
21391 
21392 					irb = ire->ire_bucket;
21393 					ASSERT(irb != NULL);
21394 					/*
21395 					 * We are in a multiple send case,
21396 					 * need to get the next IRE and make
21397 					 * a duplicate of the packet.
21398 					 */
21399 					IRB_REFHOLD(irb);
21400 					for (ire1 = ire->ire_next;
21401 					    ire1 != NULL;
21402 					    ire1 = ire1->ire_next) {
21403 						if (!(ire1->ire_flags &
21404 						    RTF_MULTIRT))
21405 							continue;
21406 						if (ire1->ire_addr !=
21407 						    ire->ire_addr)
21408 							continue;
21409 						if (ire1->ire_marks &
21410 						    (IRE_MARK_CONDEMNED|
21411 							IRE_MARK_HIDDEN))
21412 							continue;
21413 
21414 						/* Got one */
21415 						IRE_REFHOLD(ire1);
21416 						break;
21417 					}
21418 					IRB_REFRELE(irb);
21419 
21420 					if (ire1 != NULL) {
21421 						next_mp = copyb(mp);
21422 						if ((next_mp == NULL) ||
21423 						    ((mp->b_cont != NULL) &&
21424 						    ((next_mp->b_cont =
21425 						    dupmsg(mp->b_cont))
21426 						    == NULL))) {
21427 							freemsg(next_mp);
21428 							next_mp = NULL;
21429 							ire_refrele(ire1);
21430 							ire1 = NULL;
21431 						}
21432 					}
21433 
21434 					/*
21435 					 * Last multiroute ire; don't loop
21436 					 * anymore. The emission is over
21437 					 * and next_mp is NULL.
21438 					 */
21439 					if (ire1 == NULL) {
21440 						multirt_send = B_FALSE;
21441 					}
21442 				}
21443 
21444 				ASSERT(ipsec_len == 0);
21445 				mp1 = ip_wput_attach_llhdr(mp, ire,
21446 				    IPP_LOCAL_OUT, ill_index);
21447 				if (mp1 == NULL) {
21448 					BUMP_MIB(&ip_mib, ipOutDiscards);
21449 					if (next_mp) {
21450 						freemsg(next_mp);
21451 						ire_refrele(ire1);
21452 					}
21453 					ire_refrele(ire);
21454 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
21455 					    "ip_wput_ire_end: q %p (%S)",
21456 					    q, "discard MDATA");
21457 					if (conn_outgoing_ill != NULL)
21458 						ill_refrele(conn_outgoing_ill);
21459 					return;
21460 				}
21461 				UPDATE_OB_PKT_COUNT(ire);
21462 				ire->ire_last_used_time = lbolt;
21463 
21464 				if (multirt_send) {
21465 					/*
21466 					 * We are in a multiple send case,
21467 					 * need to re-enter the sending loop
21468 					 * using the next ire.
21469 					 */
21470 					putnext(stq, mp1);
21471 					ire_refrele(ire);
21472 					ire = ire1;
21473 					stq = ire->ire_stq;
21474 					mp = next_mp;
21475 					next_mp = NULL;
21476 					ipha = (ipha_t *)mp->b_rptr;
21477 					ill_index = Q_TO_INDEX(stq);
21478 				}
21479 			} while (multirt_send);
21480 
21481 			if (!next_mp) {
21482 				/*
21483 				 * Last copy going out (the ultra-common
21484 				 * case).  Note that we intentionally replicate
21485 				 * the putnext rather than calling it before
21486 				 * the next_mp check in hopes of a little
21487 				 * tail-call action out of the compiler.
21488 				 */
21489 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
21490 				    "ip_wput_ire_end: q %p (%S)",
21491 				    q, "last copy out(1)");
21492 				putnext(stq, mp1);
21493 				ire_refrele(ire);
21494 				if (conn_outgoing_ill != NULL)
21495 					ill_refrele(conn_outgoing_ill);
21496 				return;
21497 			}
21498 			/* More copies going out below. */
21499 			putnext(stq, mp1);
21500 		} else {
21501 			int offset;
21502 		    fragmentit:
21503 			offset = ntohs(ipha->ipha_fragment_offset_and_flags);
21504 			/*
21505 			 * If this would generate a icmp_frag_needed message,
21506 			 * we need to handle it before we do the IPSEC
21507 			 * processing. Otherwise, we need to strip the IPSEC
21508 			 * headers before we send up the message to the ULPs
21509 			 * which becomes messy and difficult.
21510 			 */
21511 			if (ipsec_len != 0) {
21512 				if ((max_frag < (unsigned int)(LENGTH +
21513 				    ipsec_len)) && (offset & IPH_DF)) {
21514 
21515 					BUMP_MIB(&ip_mib, ipFragFails);
21516 					ipha->ipha_hdr_checksum = 0;
21517 					ipha->ipha_hdr_checksum =
21518 					    (uint16_t)ip_csum_hdr(ipha);
21519 					icmp_frag_needed(ire->ire_stq, first_mp,
21520 					    max_frag);
21521 					if (!next_mp) {
21522 						ire_refrele(ire);
21523 						if (conn_outgoing_ill != NULL) {
21524 							ill_refrele(
21525 							    conn_outgoing_ill);
21526 						}
21527 						return;
21528 					}
21529 				} else {
21530 					/*
21531 					 * This won't cause a icmp_frag_needed
21532 					 * message. to be gnerated. Send it on
21533 					 * the wire. Note that this could still
21534 					 * cause fragmentation and all we
21535 					 * do is the generation of the message
21536 					 * to the ULP if needed before IPSEC.
21537 					 */
21538 					if (!next_mp) {
21539 						ipsec_out_process(q, first_mp,
21540 						    ire, ill_index);
21541 						TRACE_2(TR_FAC_IP,
21542 						    TR_IP_WPUT_IRE_END,
21543 						    "ip_wput_ire_end: q %p "
21544 						    "(%S)", q,
21545 						    "last ipsec_out_process");
21546 						ire_refrele(ire);
21547 						if (conn_outgoing_ill != NULL) {
21548 							ill_refrele(
21549 							    conn_outgoing_ill);
21550 						}
21551 						return;
21552 					}
21553 					ipsec_out_process(q, first_mp,
21554 					    ire, ill_index);
21555 				}
21556 			} else {
21557 				/* Initiate IPPF processing */
21558 				if (IPP_ENABLED(IPP_LOCAL_OUT)) {
21559 					ip_process(IPP_LOCAL_OUT, &mp,
21560 					    ill_index);
21561 					if (mp == NULL) {
21562 						BUMP_MIB(&ip_mib,
21563 						    ipOutDiscards);
21564 						if (next_mp != NULL) {
21565 							freemsg(next_mp);
21566 							ire_refrele(ire1);
21567 						}
21568 						ire_refrele(ire);
21569 						TRACE_2(TR_FAC_IP,
21570 						    TR_IP_WPUT_IRE_END,
21571 						    "ip_wput_ire: q %p (%S)",
21572 						    q, "discard MDATA");
21573 						if (conn_outgoing_ill != NULL) {
21574 							ill_refrele(
21575 							    conn_outgoing_ill);
21576 						}
21577 						return;
21578 					}
21579 				}
21580 				if (!next_mp) {
21581 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
21582 					    "ip_wput_ire_end: q %p (%S)",
21583 					    q, "last fragmentation");
21584 					ip_wput_ire_fragmentit(mp, ire);
21585 					ire_refrele(ire);
21586 					if (conn_outgoing_ill != NULL)
21587 						ill_refrele(conn_outgoing_ill);
21588 					return;
21589 				}
21590 				ip_wput_ire_fragmentit(mp, ire);
21591 			}
21592 		}
21593 	} else {
21594 	    nullstq:
21595 		/* A NULL stq means the destination address is local. */
21596 		UPDATE_OB_PKT_COUNT(ire);
21597 		ire->ire_last_used_time = lbolt;
21598 		ASSERT(ire->ire_ipif != NULL);
21599 		if (!next_mp) {
21600 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
21601 			    "ip_wput_ire_end: q %p (%S)",
21602 			    q, "local address");
21603 			ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha,
21604 			    first_mp, ire, 0, ire->ire_zoneid);
21605 			ire_refrele(ire);
21606 			if (conn_outgoing_ill != NULL)
21607 				ill_refrele(conn_outgoing_ill);
21608 			return;
21609 		}
21610 		ip_wput_local(q, ire->ire_ipif->ipif_ill, ipha, first_mp,
21611 		    ire, 0, ire->ire_zoneid);
21612 	}
21613 next:
21614 	/*
21615 	 * More copies going out to additional interfaces.
21616 	 * ire1 has already been held. We don't need the
21617 	 * "ire" anymore.
21618 	 */
21619 	ire_refrele(ire);
21620 	ire = ire1;
21621 	ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL);
21622 	mp = next_mp;
21623 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
21624 	ill = ire_to_ill(ire);
21625 	first_mp = mp;
21626 	if (ipsec_len != 0) {
21627 		ASSERT(first_mp->b_datap->db_type == M_CTL);
21628 		mp = mp->b_cont;
21629 	}
21630 	dst = ire->ire_addr;
21631 	ipha = (ipha_t *)mp->b_rptr;
21632 	/*
21633 	 * Restore src so that we will pick up ire->ire_src_addr if src was 0.
21634 	 * Restore ipha_ident "no checksum" flag.
21635 	 */
21636 	src = orig_src;
21637 	ipha->ipha_ident = ip_hdr_included;
21638 	goto another;
21639 
21640 #undef	rptr
21641 #undef	Q_TO_INDEX
21642 }
21643 
21644 /*
21645  * Routine to allocate a message that is used to notify the ULP about MDT.
21646  * The caller may provide a pointer to the link-layer MDT capabilities,
21647  * or NULL if MDT is to be disabled on the stream.
21648  */
21649 mblk_t *
21650 ip_mdinfo_alloc(ill_mdt_capab_t *isrc)
21651 {
21652 	mblk_t *mp;
21653 	ip_mdt_info_t *mdti;
21654 	ill_mdt_capab_t *idst;
21655 
21656 	if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) {
21657 		DB_TYPE(mp) = M_CTL;
21658 		mp->b_wptr = mp->b_rptr + sizeof (*mdti);
21659 		mdti = (ip_mdt_info_t *)mp->b_rptr;
21660 		mdti->mdt_info_id = MDT_IOC_INFO_UPDATE;
21661 		idst = &(mdti->mdt_capab);
21662 
21663 		/*
21664 		 * If the caller provides us with the capability, copy
21665 		 * it over into our notification message; otherwise
21666 		 * we zero out the capability portion.
21667 		 */
21668 		if (isrc != NULL)
21669 			bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst));
21670 		else
21671 			bzero((caddr_t)idst, sizeof (*idst));
21672 	}
21673 	return (mp);
21674 }
21675 
21676 /*
21677  * Routine which determines whether MDT can be enabled on the destination
21678  * IRE and IPC combination, and if so, allocates and returns the MDT
21679  * notification mblk that may be used by ULP.  We also check if we need to
21680  * turn MDT back to 'on' when certain restrictions prohibiting us to allow
21681  * MDT usage in the past have been lifted.  This gets called during IP
21682  * and ULP binding.
21683  */
21684 mblk_t *
21685 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name,
21686     ill_mdt_capab_t *mdt_cap)
21687 {
21688 	mblk_t *mp;
21689 	boolean_t rc = B_FALSE;
21690 
21691 	ASSERT(dst_ire != NULL);
21692 	ASSERT(connp != NULL);
21693 	ASSERT(mdt_cap != NULL);
21694 
21695 	/*
21696 	 * Currently, we only support simple TCP/{IPv4,IPv6} with
21697 	 * Multidata, which is handled in tcp_multisend().  This
21698 	 * is the reason why we do all these checks here, to ensure
21699 	 * that we don't enable Multidata for the cases which we
21700 	 * can't handle at the moment.
21701 	 */
21702 	do {
21703 		/* Only do TCP at the moment */
21704 		if (connp->conn_ulp != IPPROTO_TCP)
21705 			break;
21706 
21707 		/*
21708 		 * IPSEC outbound policy present?  Note that we get here
21709 		 * after calling ipsec_conn_cache_policy() where the global
21710 		 * policy checking is performed.  conn_latch will be
21711 		 * non-NULL as long as there's a policy defined,
21712 		 * i.e. conn_out_enforce_policy may be NULL in such case
21713 		 * when the connection is non-secure, and hence we check
21714 		 * further if the latch refers to an outbound policy.
21715 		 */
21716 		if (CONN_IPSEC_OUT_ENCAPSULATED(connp))
21717 			break;
21718 
21719 		/* CGTP (multiroute) is enabled? */
21720 		if (dst_ire->ire_flags & RTF_MULTIRT)
21721 			break;
21722 
21723 		/* Outbound IPQoS enabled? */
21724 		if (IPP_ENABLED(IPP_LOCAL_OUT)) {
21725 			/*
21726 			 * In this case, we disable MDT for this and all
21727 			 * future connections going over the interface.
21728 			 */
21729 			mdt_cap->ill_mdt_on = 0;
21730 			break;
21731 		}
21732 
21733 		/* socket option(s) present? */
21734 		if (!CONN_IS_MD_FASTPATH(connp))
21735 			break;
21736 
21737 		rc = B_TRUE;
21738 	/* CONSTCOND */
21739 	} while (0);
21740 
21741 	/* Remember the result */
21742 	connp->conn_mdt_ok = rc;
21743 
21744 	if (!rc)
21745 		return (NULL);
21746 	else if (!mdt_cap->ill_mdt_on) {
21747 		/*
21748 		 * If MDT has been previously turned off in the past, and we
21749 		 * currently can do MDT (due to IPQoS policy removal, etc.)
21750 		 * then enable it for this interface.
21751 		 */
21752 		mdt_cap->ill_mdt_on = 1;
21753 		ip1dbg(("ip_mdinfo_return: reenabling MDT for "
21754 		    "interface %s\n", ill_name));
21755 	}
21756 
21757 	/* Allocate the MDT info mblk */
21758 	if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) {
21759 		ip0dbg(("ip_mdinfo_return: can't enable Multidata for "
21760 		    "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name));
21761 		return (NULL);
21762 	}
21763 	return (mp);
21764 }
21765 
21766 /*
21767  * Create destination address attribute, and fill it with the physical
21768  * destination address and SAP taken from the template DL_UNITDATA_REQ
21769  * message block.
21770  */
21771 boolean_t
21772 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp)
21773 {
21774 	dl_unitdata_req_t *dlurp;
21775 	pattr_t *pa;
21776 	pattrinfo_t pa_info;
21777 	pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf;
21778 	uint_t das_len, das_off;
21779 
21780 	ASSERT(dlmp != NULL);
21781 
21782 	dlurp = (dl_unitdata_req_t *)dlmp->b_rptr;
21783 	das_len = dlurp->dl_dest_addr_length;
21784 	das_off = dlurp->dl_dest_addr_offset;
21785 
21786 	pa_info.type = PATTR_DSTADDRSAP;
21787 	pa_info.len = sizeof (**das) + das_len - 1;
21788 
21789 	/* create and associate the attribute */
21790 	pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
21791 	if (pa != NULL) {
21792 		ASSERT(*das != NULL);
21793 		(*das)->addr_is_group = 0;
21794 		(*das)->addr_len = (uint8_t)das_len;
21795 		bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len);
21796 	}
21797 
21798 	return (pa != NULL);
21799 }
21800 
21801 /*
21802  * Create hardware checksum attribute and fill it with the values passed.
21803  */
21804 boolean_t
21805 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset,
21806     uint32_t stuff_offset, uint32_t end_offset, uint32_t flags)
21807 {
21808 	pattr_t *pa;
21809 	pattrinfo_t pa_info;
21810 
21811 	ASSERT(mmd != NULL);
21812 
21813 	pa_info.type = PATTR_HCKSUM;
21814 	pa_info.len = sizeof (pattr_hcksum_t);
21815 
21816 	/* create and associate the attribute */
21817 	pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
21818 	if (pa != NULL) {
21819 		pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
21820 
21821 		hck->hcksum_start_offset = start_offset;
21822 		hck->hcksum_stuff_offset = stuff_offset;
21823 		hck->hcksum_end_offset = end_offset;
21824 		hck->hcksum_flags = flags;
21825 	}
21826 	return (pa != NULL);
21827 }
21828 
21829 /*
21830  * Create zerocopy attribute and fill it with the specified flags
21831  */
21832 boolean_t
21833 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags)
21834 {
21835 	pattr_t *pa;
21836 	pattrinfo_t pa_info;
21837 
21838 	ASSERT(mmd != NULL);
21839 	pa_info.type = PATTR_ZCOPY;
21840 	pa_info.len = sizeof (pattr_zcopy_t);
21841 
21842 	/* create and associate the attribute */
21843 	pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
21844 	if (pa != NULL) {
21845 		pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf;
21846 
21847 		zcopy->zcopy_flags = flags;
21848 	}
21849 	return (pa != NULL);
21850 }
21851 
21852 /*
21853  * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message
21854  * block chain. We could rewrite to handle arbitrary message block chains but
21855  * that would make the code complicated and slow. Right now there three
21856  * restrictions:
21857  *
21858  *   1. The first message block must contain the complete IP header and
21859  *	at least 1 byte of payload data.
21860  *   2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed
21861  *	so that we can use a single Multidata message.
21862  *   3. No frag must be distributed over two or more message blocks so
21863  *	that we don't need more than two packet descriptors per frag.
21864  *
21865  * The above restrictions allow us to support userland applications (which
21866  * will send down a single message block) and NFS over UDP (which will
21867  * send down a chain of at most three message blocks).
21868  *
21869  * We also don't use MDT for payloads with less than or equal to
21870  * ip_wput_frag_mdt_min bytes because it would cause too much overhead.
21871  */
21872 boolean_t
21873 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len)
21874 {
21875 	int	blocks;
21876 	ssize_t	total, missing, size;
21877 
21878 	ASSERT(mp != NULL);
21879 	ASSERT(hdr_len > 0);
21880 
21881 	size = MBLKL(mp) - hdr_len;
21882 	if (size <= 0)
21883 		return (B_FALSE);
21884 
21885 	/* The first mblk contains the header and some payload. */
21886 	blocks = 1;
21887 	total = size;
21888 	size %= len;
21889 	missing = (size == 0) ? 0 : (len - size);
21890 	mp = mp->b_cont;
21891 
21892 	while (mp != NULL) {
21893 		/*
21894 		 * Give up if we encounter a zero length message block.
21895 		 * In practice, this should rarely happen and therefore
21896 		 * not worth the trouble of freeing and re-linking the
21897 		 * mblk from the chain to handle such case.
21898 		 */
21899 		if ((size = MBLKL(mp)) == 0)
21900 			return (B_FALSE);
21901 
21902 		/* Too many payload buffers for a single Multidata message? */
21903 		if (++blocks > MULTIDATA_MAX_PBUFS)
21904 			return (B_FALSE);
21905 
21906 		total += size;
21907 		/* Is a frag distributed over two or more message blocks? */
21908 		if (missing > size)
21909 			return (B_FALSE);
21910 		size -= missing;
21911 
21912 		size %= len;
21913 		missing = (size == 0) ? 0 : (len - size);
21914 
21915 		mp = mp->b_cont;
21916 	}
21917 
21918 	return (total > ip_wput_frag_mdt_min);
21919 }
21920 
21921 /*
21922  * Outbound IPv4 fragmentation routine using MDT.
21923  */
21924 static void
21925 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len,
21926     uint32_t frag_flag, int offset)
21927 {
21928 	ipha_t		*ipha_orig;
21929 	int		i1, ip_data_end;
21930 	uint_t		pkts, wroff, hdr_chunk_len, pbuf_idx;
21931 	mblk_t		*hdr_mp, *md_mp = NULL;
21932 	unsigned char	*hdr_ptr, *pld_ptr;
21933 	multidata_t	*mmd;
21934 	ip_pdescinfo_t	pdi;
21935 
21936 	ASSERT(DB_TYPE(mp) == M_DATA);
21937 	ASSERT(MBLKL(mp) > sizeof (ipha_t));
21938 
21939 	ipha_orig = (ipha_t *)mp->b_rptr;
21940 	mp->b_rptr += sizeof (ipha_t);
21941 
21942 	/* Calculate how many packets we will send out */
21943 	i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp);
21944 	pkts = (i1 + len - 1) / len;
21945 	ASSERT(pkts > 1);
21946 
21947 	/* Allocate a message block which will hold all the IP Headers. */
21948 	wroff = ip_wroff_extra;
21949 	hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH;
21950 
21951 	i1 = pkts * hdr_chunk_len;
21952 	/*
21953 	 * Create the header buffer, Multidata and destination address
21954 	 * and SAP attribute that should be associated with it.
21955 	 */
21956 	if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL ||
21957 	    ((hdr_mp->b_wptr += i1),
21958 	    (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) ||
21959 	    !ip_md_addr_attr(mmd, NULL, ire->ire_dlureq_mp)) {
21960 		freemsg(mp);
21961 		if (md_mp == NULL) {
21962 			freemsg(hdr_mp);
21963 		} else {
21964 free_mmd:		IP_STAT(ip_frag_mdt_discarded);
21965 			freemsg(md_mp);
21966 		}
21967 		IP_STAT(ip_frag_mdt_allocfail);
21968 		UPDATE_MIB(&ip_mib, ipOutDiscards, pkts);
21969 		return;
21970 	}
21971 	IP_STAT(ip_frag_mdt_allocd);
21972 
21973 	/*
21974 	 * Add a payload buffer to the Multidata; this operation must not
21975 	 * fail, or otherwise our logic in this routine is broken.  There
21976 	 * is no memory allocation done by the routine, so any returned
21977 	 * failure simply tells us that we've done something wrong.
21978 	 *
21979 	 * A failure tells us that either we're adding the same payload
21980 	 * buffer more than once, or we're trying to add more buffers than
21981 	 * allowed.  None of the above cases should happen, and we panic
21982 	 * because either there's horrible heap corruption, and/or
21983 	 * programming mistake.
21984 	 */
21985 	if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
21986 		goto pbuf_panic;
21987 
21988 	hdr_ptr = hdr_mp->b_rptr;
21989 	pld_ptr = mp->b_rptr;
21990 
21991 	/* Establish the ending byte offset, based on the starting offset. */
21992 	offset <<= 3;
21993 	ip_data_end = offset + ntohs(ipha_orig->ipha_length) -
21994 	    IP_SIMPLE_HDR_LENGTH;
21995 
21996 	pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF;
21997 
21998 	while (pld_ptr < mp->b_wptr) {
21999 		ipha_t		*ipha;
22000 		uint16_t	offset_and_flags;
22001 		uint16_t	ip_len;
22002 		int		error;
22003 
22004 		ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr);
22005 		ipha = (ipha_t *)(hdr_ptr + wroff);
22006 		ASSERT(OK_32PTR(ipha));
22007 		*ipha = *ipha_orig;
22008 
22009 		if (ip_data_end - offset > len) {
22010 			offset_and_flags = IPH_MF;
22011 		} else {
22012 			/*
22013 			 * Last frag. Set len to the length of this last piece.
22014 			 */
22015 			len = ip_data_end - offset;
22016 			/* A frag of a frag might have IPH_MF non-zero */
22017 			offset_and_flags =
22018 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
22019 			    IPH_MF;
22020 		}
22021 		offset_and_flags |= (uint16_t)(offset >> 3);
22022 		offset_and_flags |= (uint16_t)frag_flag;
22023 		/* Store the offset and flags in the IP header. */
22024 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
22025 
22026 		/* Store the length in the IP header. */
22027 		ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH);
22028 		ipha->ipha_length = htons(ip_len);
22029 
22030 		/*
22031 		 * Set the IP header checksum.  Note that mp is just
22032 		 * the header, so this is easy to pass to ip_csum.
22033 		 */
22034 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
22035 
22036 		/*
22037 		 * Record offset and size of header and data of the next packet
22038 		 * in the multidata message.
22039 		 */
22040 		PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0);
22041 		PDESC_PLD_INIT(&pdi);
22042 		i1 = MIN(mp->b_wptr - pld_ptr, len);
22043 		ASSERT(i1 > 0);
22044 		PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1);
22045 		if (i1 == len) {
22046 			pld_ptr += len;
22047 		} else {
22048 			i1 = len - i1;
22049 			mp = mp->b_cont;
22050 			ASSERT(mp != NULL);
22051 			ASSERT(MBLKL(mp) >= i1);
22052 			/*
22053 			 * Attach the next payload message block to the
22054 			 * multidata message.
22055 			 */
22056 			if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
22057 				goto pbuf_panic;
22058 			PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1);
22059 			pld_ptr = mp->b_rptr + i1;
22060 		}
22061 
22062 		if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error,
22063 		    KM_NOSLEEP)) == NULL) {
22064 			/*
22065 			 * Any failure other than ENOMEM indicates that we
22066 			 * have passed in invalid pdesc info or parameters
22067 			 * to mmd_addpdesc, which must not happen.
22068 			 *
22069 			 * EINVAL is a result of failure on boundary checks
22070 			 * against the pdesc info contents.  It should not
22071 			 * happen, and we panic because either there's
22072 			 * horrible heap corruption, and/or programming
22073 			 * mistake.
22074 			 */
22075 			if (error != ENOMEM) {
22076 				cmn_err(CE_PANIC, "ip_wput_frag_mdt: "
22077 				    "pdesc logic error detected for "
22078 				    "mmd %p pinfo %p (%d)\n",
22079 				    (void *)mmd, (void *)&pdi, error);
22080 				/* NOTREACHED */
22081 			}
22082 			IP_STAT(ip_frag_mdt_addpdescfail);
22083 			/* Free unattached payload message blocks as well */
22084 			md_mp->b_cont = mp->b_cont;
22085 			goto free_mmd;
22086 		}
22087 
22088 		/* Advance fragment offset. */
22089 		offset += len;
22090 
22091 		/* Advance to location for next header in the buffer. */
22092 		hdr_ptr += hdr_chunk_len;
22093 
22094 		/* Did we reach the next payload message block? */
22095 		if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) {
22096 			mp = mp->b_cont;
22097 			/*
22098 			 * Attach the next message block with payload
22099 			 * data to the multidata message.
22100 			 */
22101 			if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
22102 				goto pbuf_panic;
22103 			pld_ptr = mp->b_rptr;
22104 		}
22105 	}
22106 
22107 	ASSERT(hdr_mp->b_wptr == hdr_ptr);
22108 	ASSERT(mp->b_wptr == pld_ptr);
22109 
22110 	/* Update IP statistics */
22111 	UPDATE_MIB(&ip_mib, ipFragCreates, pkts);
22112 	BUMP_MIB(&ip_mib, ipFragOKs);
22113 	IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts);
22114 
22115 	if (pkt_type == OB_PKT) {
22116 		ire->ire_ob_pkt_count += pkts;
22117 		if (ire->ire_ipif != NULL)
22118 			atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts);
22119 	} else {
22120 		/*
22121 		 * The type is IB_PKT in the forwarding path and in
22122 		 * the mobile IP case when the packet is being reverse-
22123 		 * tunneled to the home agent.
22124 		 */
22125 		ire->ire_ib_pkt_count += pkts;
22126 		ASSERT(!IRE_IS_LOCAL(ire));
22127 		if (ire->ire_type & IRE_BROADCAST)
22128 			atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts);
22129 		else
22130 			atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts);
22131 	}
22132 	ire->ire_last_used_time = lbolt;
22133 	/* Send it down */
22134 	putnext(ire->ire_stq, md_mp);
22135 	return;
22136 
22137 pbuf_panic:
22138 	cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic "
22139 	    "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp,
22140 	    pbuf_idx);
22141 	/* NOTREACHED */
22142 }
22143 
22144 /*
22145  * Outbound IP fragmentation routine.
22146  *
22147  * NOTE : This routine does not ire_refrele the ire that is passed in
22148  * as the argument.
22149  */
22150 static void
22151 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag,
22152     uint32_t frag_flag)
22153 {
22154 	int		i1;
22155 	mblk_t		*ll_hdr_mp;
22156 	int 		ll_hdr_len;
22157 	int		hdr_len;
22158 	mblk_t		*hdr_mp;
22159 	ipha_t		*ipha;
22160 	int		ip_data_end;
22161 	int		len;
22162 	mblk_t		*mp = mp_orig;
22163 	int		offset;
22164 	queue_t		*q;
22165 	uint32_t	v_hlen_tos_len;
22166 	mblk_t		*first_mp;
22167 	boolean_t	mctl_present;
22168 	ill_t		*ill;
22169 	mblk_t		*xmit_mp;
22170 	mblk_t		*carve_mp;
22171 	ire_t		*ire1 = NULL;
22172 	ire_t		*save_ire = NULL;
22173 	mblk_t  	*next_mp = NULL;
22174 	boolean_t	last_frag = B_FALSE;
22175 	boolean_t	multirt_send = B_FALSE;
22176 	ire_t		*first_ire = NULL;
22177 	irb_t		*irb = NULL;
22178 
22179 	TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START,
22180 	    "ip_wput_frag_start:");
22181 
22182 	if (mp->b_datap->db_type == M_CTL) {
22183 		first_mp = mp;
22184 		mp_orig = mp = mp->b_cont;
22185 		mctl_present = B_TRUE;
22186 	} else {
22187 		first_mp = mp;
22188 		mctl_present = B_FALSE;
22189 	}
22190 
22191 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
22192 	ipha = (ipha_t *)mp->b_rptr;
22193 
22194 	/*
22195 	 * If the Don't Fragment flag is on, generate an ICMP destination
22196 	 * unreachable, fragmentation needed.
22197 	 */
22198 	offset = ntohs(ipha->ipha_fragment_offset_and_flags);
22199 	if (offset & IPH_DF) {
22200 		BUMP_MIB(&ip_mib, ipFragFails);
22201 		/*
22202 		 * Need to compute hdr checksum if called from ip_wput_ire.
22203 		 * Note that ip_rput_forward verifies the checksum before
22204 		 * calling this routine so in that case this is a noop.
22205 		 */
22206 		ipha->ipha_hdr_checksum = 0;
22207 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
22208 		icmp_frag_needed(ire->ire_stq, first_mp, max_frag);
22209 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
22210 		    "ip_wput_frag_end:(%S)",
22211 		    "don't fragment");
22212 		return;
22213 	}
22214 	if (mctl_present)
22215 		freeb(first_mp);
22216 	/*
22217 	 * Establish the starting offset.  May not be zero if we are fragging
22218 	 * a fragment that is being forwarded.
22219 	 */
22220 	offset = offset & IPH_OFFSET;
22221 
22222 	/* TODO why is this test needed? */
22223 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
22224 	if (((max_frag - LENGTH) & ~7) < 8) {
22225 		/* TODO: notify ulp somehow */
22226 		BUMP_MIB(&ip_mib, ipFragFails);
22227 		freemsg(mp);
22228 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
22229 		    "ip_wput_frag_end:(%S)",
22230 		    "len < 8");
22231 		return;
22232 	}
22233 
22234 	hdr_len = (V_HLEN & 0xF) << 2;
22235 
22236 	ipha->ipha_hdr_checksum = 0;
22237 
22238 	/*
22239 	 * Establish the number of bytes maximum per frag, after putting
22240 	 * in the header.
22241 	 */
22242 	len = (max_frag - hdr_len) & ~7;
22243 
22244 	/* Check if we can use MDT to send out the frags. */
22245 	ASSERT(!IRE_IS_LOCAL(ire));
22246 	if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound &&
22247 	    !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) &&
22248 	    (ill = ire_to_ill(ire)) != NULL && ILL_MDT_CAPABLE(ill) &&
22249 	    IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) {
22250 		ASSERT(ill->ill_mdt_capab != NULL);
22251 		if (!ill->ill_mdt_capab->ill_mdt_on) {
22252 			/*
22253 			 * If MDT has been previously turned off in the past,
22254 			 * and we currently can do MDT (due to IPQoS policy
22255 			 * removal, etc.) then enable it for this interface.
22256 			 */
22257 			ill->ill_mdt_capab->ill_mdt_on = 1;
22258 			ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n",
22259 			    ill->ill_name));
22260 		}
22261 		ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag,
22262 		    offset);
22263 		return;
22264 	}
22265 
22266 	/* Get a copy of the header for the trailing frags */
22267 	hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset);
22268 	if (!hdr_mp) {
22269 		BUMP_MIB(&ip_mib, ipOutDiscards);
22270 		freemsg(mp);
22271 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
22272 		    "ip_wput_frag_end:(%S)",
22273 		    "couldn't copy hdr");
22274 		return;
22275 	}
22276 	if (DB_CRED(mp) != NULL)
22277 		mblk_setcred(hdr_mp, DB_CRED(mp));
22278 
22279 	/* Store the starting offset, with the MoreFrags flag. */
22280 	i1 = offset | IPH_MF | frag_flag;
22281 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
22282 
22283 	/* Establish the ending byte offset, based on the starting offset. */
22284 	offset <<= 3;
22285 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
22286 
22287 	/* Store the length of the first fragment in the IP header. */
22288 	i1 = len + hdr_len;
22289 	ASSERT(i1 <= IP_MAXPACKET);
22290 	ipha->ipha_length = htons((uint16_t)i1);
22291 
22292 	/*
22293 	 * Compute the IP header checksum for the first frag.  We have to
22294 	 * watch out that we stop at the end of the header.
22295 	 */
22296 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
22297 
22298 	/*
22299 	 * Now carve off the first frag.  Note that this will include the
22300 	 * original IP header.
22301 	 */
22302 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
22303 		BUMP_MIB(&ip_mib, ipOutDiscards);
22304 		freeb(hdr_mp);
22305 		freemsg(mp_orig);
22306 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
22307 		    "ip_wput_frag_end:(%S)",
22308 		    "couldn't carve first");
22309 		return;
22310 	}
22311 
22312 	/*
22313 	 * Multirouting case. Each fragment is replicated
22314 	 * via all non-condemned RTF_MULTIRT routes
22315 	 * currently resolved.
22316 	 * We ensure that first_ire is the first RTF_MULTIRT
22317 	 * ire in the bucket.
22318 	 */
22319 	if (ire->ire_flags & RTF_MULTIRT) {
22320 		irb = ire->ire_bucket;
22321 		ASSERT(irb != NULL);
22322 
22323 		multirt_send = B_TRUE;
22324 
22325 		/* Make sure we do not omit any multiroute ire. */
22326 		IRB_REFHOLD(irb);
22327 		for (first_ire = irb->irb_ire;
22328 		    first_ire != NULL;
22329 		    first_ire = first_ire->ire_next) {
22330 			if ((first_ire->ire_flags & RTF_MULTIRT) &&
22331 			    (first_ire->ire_addr == ire->ire_addr) &&
22332 			    !(first_ire->ire_marks &
22333 				(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)))
22334 				break;
22335 		}
22336 
22337 		if (first_ire != NULL) {
22338 			if (first_ire != ire) {
22339 				IRE_REFHOLD(first_ire);
22340 				/*
22341 				 * Do not release the ire passed in
22342 				 * as the argument.
22343 				 */
22344 				ire = first_ire;
22345 			} else {
22346 				first_ire = NULL;
22347 			}
22348 		}
22349 		IRB_REFRELE(irb);
22350 
22351 		/*
22352 		 * Save the first ire; we will need to restore it
22353 		 * for the trailing frags.
22354 		 * We REFHOLD save_ire, as each iterated ire will be
22355 		 * REFRELEd.
22356 		 */
22357 		save_ire = ire;
22358 		IRE_REFHOLD(save_ire);
22359 	}
22360 
22361 	/*
22362 	 * First fragment emission loop.
22363 	 * In most cases, the emission loop below is entered only
22364 	 * once. Only in the case where the ire holds the RTF_MULTIRT
22365 	 * flag, do we loop to process all RTF_MULTIRT ires in the
22366 	 * bucket, and send the fragment through all crossed
22367 	 * RTF_MULTIRT routes.
22368 	 */
22369 	do {
22370 		if (ire->ire_flags & RTF_MULTIRT) {
22371 			/*
22372 			 * We are in a multiple send case, need to get
22373 			 * the next ire and make a copy of the packet.
22374 			 * ire1 holds here the next ire to process in the
22375 			 * bucket. If multirouting is expected,
22376 			 * any non-RTF_MULTIRT ire that has the
22377 			 * right destination address is ignored.
22378 			 *
22379 			 * We have to take into account the MTU of
22380 			 * each walked ire. max_frag is set by the
22381 			 * the caller and generally refers to
22382 			 * the primary ire entry. Here we ensure that
22383 			 * no route with a lower MTU will be used, as
22384 			 * fragments are carved once for all ires,
22385 			 * then replicated.
22386 			 */
22387 			ASSERT(irb != NULL);
22388 			IRB_REFHOLD(irb);
22389 			for (ire1 = ire->ire_next;
22390 			    ire1 != NULL;
22391 			    ire1 = ire1->ire_next) {
22392 				if ((ire1->ire_flags & RTF_MULTIRT) == 0)
22393 					continue;
22394 				if (ire1->ire_addr != ire->ire_addr)
22395 					continue;
22396 				if (ire1->ire_marks &
22397 				    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
22398 					continue;
22399 				/*
22400 				 * Ensure we do not exceed the MTU
22401 				 * of the next route.
22402 				 */
22403 				if (ire1->ire_max_frag < max_frag) {
22404 					ip_multirt_bad_mtu(ire1, max_frag);
22405 					continue;
22406 				}
22407 
22408 				/* Got one. */
22409 				IRE_REFHOLD(ire1);
22410 				break;
22411 			}
22412 			IRB_REFRELE(irb);
22413 
22414 			if (ire1 != NULL) {
22415 				next_mp = copyb(mp);
22416 				if ((next_mp == NULL) ||
22417 				    ((mp->b_cont != NULL) &&
22418 				    ((next_mp->b_cont =
22419 				    dupmsg(mp->b_cont)) == NULL))) {
22420 					freemsg(next_mp);
22421 					next_mp = NULL;
22422 					ire_refrele(ire1);
22423 					ire1 = NULL;
22424 				}
22425 			}
22426 
22427 			/* Last multiroute ire; don't loop anymore. */
22428 			if (ire1 == NULL) {
22429 				multirt_send = B_FALSE;
22430 			}
22431 		}
22432 
22433 		ll_hdr_len = 0;
22434 		LOCK_IRE_FP_MP(ire);
22435 		ll_hdr_mp = ire->ire_fp_mp;
22436 		if (ll_hdr_mp != NULL) {
22437 			ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA);
22438 			ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr;
22439 		} else {
22440 			ll_hdr_mp = ire->ire_dlureq_mp;
22441 		}
22442 
22443 		/* If there is a transmit header, get a copy for this frag. */
22444 		/*
22445 		 * TODO: should check db_ref before calling ip_carve_mp since
22446 		 * it might give us a dup.
22447 		 */
22448 		if (!ll_hdr_mp) {
22449 			/* No xmit header. */
22450 			xmit_mp = mp;
22451 		} else if (mp->b_datap->db_ref == 1 &&
22452 		    ll_hdr_len != 0 &&
22453 		    ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) {
22454 			/* M_DATA fastpath */
22455 			mp->b_rptr -= ll_hdr_len;
22456 			bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len);
22457 			xmit_mp = mp;
22458 		} else if (!(xmit_mp = copyb(ll_hdr_mp))) {
22459 			UNLOCK_IRE_FP_MP(ire);
22460 			BUMP_MIB(&ip_mib, ipOutDiscards);
22461 			freeb(hdr_mp);
22462 			freemsg(mp);
22463 			freemsg(mp_orig);
22464 			TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
22465 			    "ip_wput_frag_end:(%S)",
22466 			    "discard");
22467 
22468 			if (multirt_send) {
22469 				ASSERT(ire1);
22470 				ASSERT(next_mp);
22471 
22472 				freemsg(next_mp);
22473 				ire_refrele(ire1);
22474 			}
22475 			if (save_ire != NULL)
22476 				IRE_REFRELE(save_ire);
22477 
22478 			if (first_ire != NULL)
22479 				ire_refrele(first_ire);
22480 			return;
22481 		} else {
22482 			xmit_mp->b_cont = mp;
22483 			if (DB_CRED(mp) != NULL)
22484 				mblk_setcred(xmit_mp, DB_CRED(mp));
22485 			/* Get priority marking, if any. */
22486 			if (DB_TYPE(xmit_mp) == M_DATA)
22487 				xmit_mp->b_band = mp->b_band;
22488 		}
22489 		UNLOCK_IRE_FP_MP(ire);
22490 		q = ire->ire_stq;
22491 		BUMP_MIB(&ip_mib, ipFragCreates);
22492 		putnext(q, xmit_mp);
22493 		if (pkt_type != OB_PKT) {
22494 			/*
22495 			 * Update the packet count of trailing
22496 			 * RTF_MULTIRT ires.
22497 			 */
22498 			UPDATE_OB_PKT_COUNT(ire);
22499 		}
22500 
22501 		if (multirt_send) {
22502 			/*
22503 			 * We are in a multiple send case; look for
22504 			 * the next ire and re-enter the loop.
22505 			 */
22506 			ASSERT(ire1);
22507 			ASSERT(next_mp);
22508 			/* REFRELE the current ire before looping */
22509 			ire_refrele(ire);
22510 			ire = ire1;
22511 			ire1 = NULL;
22512 			mp = next_mp;
22513 			next_mp = NULL;
22514 		}
22515 	} while (multirt_send);
22516 
22517 	ASSERT(ire1 == NULL);
22518 
22519 	/* Restore the original ire; we need it for the trailing frags */
22520 	if (save_ire != NULL) {
22521 		/* REFRELE the last iterated ire */
22522 		ire_refrele(ire);
22523 		/* save_ire has been REFHOLDed */
22524 		ire = save_ire;
22525 		save_ire = NULL;
22526 		q = ire->ire_stq;
22527 	}
22528 
22529 	if (pkt_type == OB_PKT) {
22530 		UPDATE_OB_PKT_COUNT(ire);
22531 	} else {
22532 		UPDATE_IB_PKT_COUNT(ire);
22533 	}
22534 
22535 	/* Advance the offset to the second frag starting point. */
22536 	offset += len;
22537 	/*
22538 	 * Update hdr_len from the copied header - there might be less options
22539 	 * in the later fragments.
22540 	 */
22541 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
22542 	/* Loop until done. */
22543 	for (;;) {
22544 		uint16_t	offset_and_flags;
22545 		uint16_t	ip_len;
22546 
22547 		if (ip_data_end - offset > len) {
22548 			/*
22549 			 * Carve off the appropriate amount from the original
22550 			 * datagram.
22551 			 */
22552 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
22553 				mp = NULL;
22554 				break;
22555 			}
22556 			/*
22557 			 * More frags after this one.  Get another copy
22558 			 * of the header.
22559 			 */
22560 			if (carve_mp->b_datap->db_ref == 1 &&
22561 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
22562 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
22563 				/* Inline IP header */
22564 				carve_mp->b_rptr -= hdr_mp->b_wptr -
22565 				    hdr_mp->b_rptr;
22566 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
22567 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
22568 				mp = carve_mp;
22569 			} else {
22570 				if (!(mp = copyb(hdr_mp))) {
22571 					freemsg(carve_mp);
22572 					break;
22573 				}
22574 				/* Get priority marking, if any. */
22575 				mp->b_band = carve_mp->b_band;
22576 				mp->b_cont = carve_mp;
22577 			}
22578 			ipha = (ipha_t *)mp->b_rptr;
22579 			offset_and_flags = IPH_MF;
22580 		} else {
22581 			/*
22582 			 * Last frag.  Consume the header. Set len to
22583 			 * the length of this last piece.
22584 			 */
22585 			len = ip_data_end - offset;
22586 
22587 			/*
22588 			 * Carve off the appropriate amount from the original
22589 			 * datagram.
22590 			 */
22591 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
22592 				mp = NULL;
22593 				break;
22594 			}
22595 			if (carve_mp->b_datap->db_ref == 1 &&
22596 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
22597 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
22598 				/* Inline IP header */
22599 				carve_mp->b_rptr -= hdr_mp->b_wptr -
22600 				    hdr_mp->b_rptr;
22601 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
22602 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
22603 				mp = carve_mp;
22604 				freeb(hdr_mp);
22605 				hdr_mp = mp;
22606 			} else {
22607 				mp = hdr_mp;
22608 				/* Get priority marking, if any. */
22609 				mp->b_band = carve_mp->b_band;
22610 				mp->b_cont = carve_mp;
22611 			}
22612 			ipha = (ipha_t *)mp->b_rptr;
22613 			/* A frag of a frag might have IPH_MF non-zero */
22614 			offset_and_flags =
22615 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
22616 			    IPH_MF;
22617 		}
22618 		offset_and_flags |= (uint16_t)(offset >> 3);
22619 		offset_and_flags |= (uint16_t)frag_flag;
22620 		/* Store the offset and flags in the IP header. */
22621 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
22622 
22623 		/* Store the length in the IP header. */
22624 		ip_len = (uint16_t)(len + hdr_len);
22625 		ipha->ipha_length = htons(ip_len);
22626 
22627 		/*
22628 		 * Set the IP header checksum.	Note that mp is just
22629 		 * the header, so this is easy to pass to ip_csum.
22630 		 */
22631 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
22632 
22633 		/* Attach a transmit header, if any, and ship it. */
22634 		if (pkt_type == OB_PKT) {
22635 			UPDATE_OB_PKT_COUNT(ire);
22636 		} else {
22637 			UPDATE_IB_PKT_COUNT(ire);
22638 		}
22639 
22640 		if (ire->ire_flags & RTF_MULTIRT) {
22641 			irb = ire->ire_bucket;
22642 			ASSERT(irb != NULL);
22643 
22644 			multirt_send = B_TRUE;
22645 
22646 			/*
22647 			 * Save the original ire; we will need to restore it
22648 			 * for the tailing frags.
22649 			 */
22650 			save_ire = ire;
22651 			IRE_REFHOLD(save_ire);
22652 		}
22653 		/*
22654 		 * Emission loop for this fragment, similar
22655 		 * to what is done for the first fragment.
22656 		 */
22657 		do {
22658 			if (multirt_send) {
22659 				/*
22660 				 * We are in a multiple send case, need to get
22661 				 * the next ire and make a copy of the packet.
22662 				 */
22663 				ASSERT(irb != NULL);
22664 				IRB_REFHOLD(irb);
22665 				for (ire1 = ire->ire_next;
22666 				    ire1 != NULL;
22667 				    ire1 = ire1->ire_next) {
22668 					if (!(ire1->ire_flags & RTF_MULTIRT))
22669 						continue;
22670 					if (ire1->ire_addr != ire->ire_addr)
22671 						continue;
22672 					if (ire1->ire_marks &
22673 					    (IRE_MARK_CONDEMNED|
22674 						IRE_MARK_HIDDEN))
22675 						continue;
22676 					/*
22677 					 * Ensure we do not exceed the MTU
22678 					 * of the next route.
22679 					 */
22680 					if (ire1->ire_max_frag < max_frag) {
22681 						ip_multirt_bad_mtu(ire1,
22682 						    max_frag);
22683 						continue;
22684 					}
22685 
22686 					/* Got one. */
22687 					IRE_REFHOLD(ire1);
22688 					break;
22689 				}
22690 				IRB_REFRELE(irb);
22691 
22692 				if (ire1 != NULL) {
22693 					next_mp = copyb(mp);
22694 					if ((next_mp == NULL) ||
22695 					    ((mp->b_cont != NULL) &&
22696 					    ((next_mp->b_cont =
22697 					    dupmsg(mp->b_cont)) == NULL))) {
22698 						freemsg(next_mp);
22699 						next_mp = NULL;
22700 						ire_refrele(ire1);
22701 						ire1 = NULL;
22702 					}
22703 				}
22704 
22705 				/* Last multiroute ire; don't loop anymore. */
22706 				if (ire1 == NULL) {
22707 					multirt_send = B_FALSE;
22708 				}
22709 			}
22710 
22711 			/* Update transmit header */
22712 			ll_hdr_len = 0;
22713 			LOCK_IRE_FP_MP(ire);
22714 			ll_hdr_mp = ire->ire_fp_mp;
22715 			if (ll_hdr_mp != NULL) {
22716 				ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA);
22717 				ll_hdr_len = MBLKL(ll_hdr_mp);
22718 			} else {
22719 				ll_hdr_mp = ire->ire_dlureq_mp;
22720 			}
22721 
22722 			if (!ll_hdr_mp) {
22723 				xmit_mp = mp;
22724 			} else if (mp->b_datap->db_ref == 1 &&
22725 			    ll_hdr_len != 0 &&
22726 			    ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) {
22727 				/* M_DATA fastpath */
22728 				mp->b_rptr -= ll_hdr_len;
22729 				bcopy(ll_hdr_mp->b_rptr, mp->b_rptr,
22730 				    ll_hdr_len);
22731 				xmit_mp = mp;
22732 			} else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) {
22733 				xmit_mp->b_cont = mp;
22734 				if (DB_CRED(mp) != NULL)
22735 					mblk_setcred(xmit_mp, DB_CRED(mp));
22736 				/* Get priority marking, if any. */
22737 				if (DB_TYPE(xmit_mp) == M_DATA)
22738 					xmit_mp->b_band = mp->b_band;
22739 			} else {
22740 				/*
22741 				 * Exit both the replication and
22742 				 * fragmentation loops.
22743 				 */
22744 				UNLOCK_IRE_FP_MP(ire);
22745 				goto drop_pkt;
22746 			}
22747 			UNLOCK_IRE_FP_MP(ire);
22748 			BUMP_MIB(&ip_mib, ipFragCreates);
22749 			putnext(q, xmit_mp);
22750 
22751 			if (pkt_type != OB_PKT) {
22752 				/*
22753 				 * Update the packet count of trailing
22754 				 * RTF_MULTIRT ires.
22755 				 */
22756 				UPDATE_OB_PKT_COUNT(ire);
22757 			}
22758 
22759 			/* All done if we just consumed the hdr_mp. */
22760 			if (mp == hdr_mp) {
22761 				last_frag = B_TRUE;
22762 			}
22763 
22764 			if (multirt_send) {
22765 				/*
22766 				 * We are in a multiple send case; look for
22767 				 * the next ire and re-enter the loop.
22768 				 */
22769 				ASSERT(ire1);
22770 				ASSERT(next_mp);
22771 				/* REFRELE the current ire before looping */
22772 				ire_refrele(ire);
22773 				ire = ire1;
22774 				ire1 = NULL;
22775 				q = ire->ire_stq;
22776 				mp = next_mp;
22777 				next_mp = NULL;
22778 			}
22779 		} while (multirt_send);
22780 		/*
22781 		 * Restore the original ire; we need it for the
22782 		 * trailing frags
22783 		 */
22784 		if (save_ire != NULL) {
22785 			ASSERT(ire1 == NULL);
22786 			/* REFRELE the last iterated ire */
22787 			ire_refrele(ire);
22788 			/* save_ire has been REFHOLDed */
22789 			ire = save_ire;
22790 			q = ire->ire_stq;
22791 			save_ire = NULL;
22792 		}
22793 
22794 		if (last_frag) {
22795 			BUMP_MIB(&ip_mib, ipFragOKs);
22796 			TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
22797 			    "ip_wput_frag_end:(%S)",
22798 			    "consumed hdr_mp");
22799 
22800 			if (first_ire != NULL)
22801 				ire_refrele(first_ire);
22802 			return;
22803 		}
22804 		/* Otherwise, advance and loop. */
22805 		offset += len;
22806 	}
22807 
22808 drop_pkt:
22809 	/* Clean up following allocation failure. */
22810 	BUMP_MIB(&ip_mib, ipOutDiscards);
22811 	freemsg(mp);
22812 	if (mp != hdr_mp)
22813 		freeb(hdr_mp);
22814 	if (mp != mp_orig)
22815 		freemsg(mp_orig);
22816 
22817 	if (save_ire != NULL)
22818 		IRE_REFRELE(save_ire);
22819 	if (first_ire != NULL)
22820 		ire_refrele(first_ire);
22821 
22822 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
22823 	    "ip_wput_frag_end:(%S)",
22824 	    "end--alloc failure");
22825 }
22826 
22827 /*
22828  * Copy the header plus those options which have the copy bit set
22829  */
22830 static mblk_t *
22831 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset)
22832 {
22833 	mblk_t	*mp;
22834 	uchar_t	*up;
22835 
22836 	/*
22837 	 * Quick check if we need to look for options without the copy bit
22838 	 * set
22839 	 */
22840 	mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI);
22841 	if (!mp)
22842 		return (mp);
22843 	mp->b_rptr += ip_wroff_extra;
22844 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
22845 		bcopy(rptr, mp->b_rptr, hdr_len);
22846 		mp->b_wptr += hdr_len + ip_wroff_extra;
22847 		return (mp);
22848 	}
22849 	up  = mp->b_rptr;
22850 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
22851 	up += IP_SIMPLE_HDR_LENGTH;
22852 	rptr += IP_SIMPLE_HDR_LENGTH;
22853 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
22854 	while (hdr_len > 0) {
22855 		uint32_t optval;
22856 		uint32_t optlen;
22857 
22858 		optval = *rptr;
22859 		if (optval == IPOPT_EOL)
22860 			break;
22861 		if (optval == IPOPT_NOP)
22862 			optlen = 1;
22863 		else
22864 			optlen = rptr[1];
22865 		if (optval & IPOPT_COPY) {
22866 			bcopy(rptr, up, optlen);
22867 			up += optlen;
22868 		}
22869 		rptr += optlen;
22870 		hdr_len -= optlen;
22871 	}
22872 	/*
22873 	 * Make sure that we drop an even number of words by filling
22874 	 * with EOL to the next word boundary.
22875 	 */
22876 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
22877 	    hdr_len & 0x3; hdr_len++)
22878 		*up++ = IPOPT_EOL;
22879 	mp->b_wptr = up;
22880 	/* Update header length */
22881 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
22882 	return (mp);
22883 }
22884 
22885 /*
22886  * Delivery to local recipients including fanout to multiple recipients.
22887  * Does not do checksumming of UDP/TCP.
22888  * Note: q should be the read side queue for either the ill or conn.
22889  * Note: rq should be the read side q for the lower (ill) stream.
22890  * We don't send packets to IPPF processing, thus the last argument
22891  * to all the fanout calls are B_FALSE.
22892  */
22893 void
22894 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire,
22895     int fanout_flags, zoneid_t zoneid)
22896 {
22897 	uint32_t	protocol;
22898 	mblk_t		*first_mp;
22899 	boolean_t	mctl_present;
22900 	int		ire_type;
22901 #define	rptr	((uchar_t *)ipha)
22902 
22903 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START,
22904 	    "ip_wput_local_start: q %p", q);
22905 
22906 	if (ire != NULL) {
22907 		ire_type = ire->ire_type;
22908 	} else {
22909 		/*
22910 		 * Only ip_multicast_loopback() calls us with a NULL ire. If the
22911 		 * packet is not multicast, we can't tell the ire type.
22912 		 */
22913 		ASSERT(CLASSD(ipha->ipha_dst));
22914 		ire_type = IRE_BROADCAST;
22915 	}
22916 
22917 	first_mp = mp;
22918 	if (first_mp->b_datap->db_type == M_CTL) {
22919 		ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr;
22920 		if (!io->ipsec_out_secure) {
22921 			/*
22922 			 * This ipsec_out_t was allocated in ip_wput
22923 			 * for multicast packets to store the ill_index.
22924 			 * As this is being delivered locally, we don't
22925 			 * need this anymore.
22926 			 */
22927 			mp = first_mp->b_cont;
22928 			freeb(first_mp);
22929 			first_mp = mp;
22930 			mctl_present = B_FALSE;
22931 		} else {
22932 			mctl_present = B_TRUE;
22933 			mp = first_mp->b_cont;
22934 			ASSERT(mp != NULL);
22935 			ipsec_out_to_in(first_mp);
22936 		}
22937 	} else {
22938 		mctl_present = B_FALSE;
22939 	}
22940 
22941 	loopback_packets++;
22942 
22943 	ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n",
22944 	    ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid));
22945 	if (!IS_SIMPLE_IPH(ipha)) {
22946 		ip_wput_local_options(ipha);
22947 	}
22948 
22949 	protocol = ipha->ipha_protocol;
22950 	switch (protocol) {
22951 	case IPPROTO_ICMP: {
22952 		ire_t		*ire_zone;
22953 		ilm_t		*ilm;
22954 		mblk_t		*mp1;
22955 		zoneid_t	last_zoneid;
22956 
22957 		if (CLASSD(ipha->ipha_dst) &&
22958 		    !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) {
22959 			ASSERT(ire_type == IRE_BROADCAST);
22960 			/*
22961 			 * In the multicast case, applications may have joined
22962 			 * the group from different zones, so we need to deliver
22963 			 * the packet to each of them. Loop through the
22964 			 * multicast memberships structures (ilm) on the receive
22965 			 * ill and send a copy of the packet up each matching
22966 			 * one. However, we don't do this for multicasts sent on
22967 			 * the loopback interface (PHYI_LOOPBACK flag set) as
22968 			 * they must stay in the sender's zone.
22969 			 *
22970 			 * ilm_add_v6() ensures that ilms in the same zone are
22971 			 * contiguous in the ill_ilm list. We use this property
22972 			 * to avoid sending duplicates needed when two
22973 			 * applications in the same zone join the same group on
22974 			 * different logical interfaces: we ignore the ilm if
22975 			 * its zoneid is the same as the last matching one.
22976 			 * In addition, the sending of the packet for
22977 			 * ire_zoneid is delayed until all of the other ilms
22978 			 * have been exhausted.
22979 			 */
22980 			last_zoneid = -1;
22981 			ILM_WALKER_HOLD(ill);
22982 			for (ilm = ill->ill_ilm; ilm != NULL;
22983 			    ilm = ilm->ilm_next) {
22984 				if ((ilm->ilm_flags & ILM_DELETED) ||
22985 				    ipha->ipha_dst != ilm->ilm_addr ||
22986 				    ilm->ilm_zoneid == last_zoneid ||
22987 				    ilm->ilm_zoneid == zoneid ||
22988 				    !(ilm->ilm_ipif->ipif_flags & IPIF_UP))
22989 					continue;
22990 				mp1 = ip_copymsg(first_mp);
22991 				if (mp1 == NULL)
22992 					continue;
22993 				icmp_inbound(q, mp1, B_TRUE, ill, 0, 0,
22994 				    mctl_present, B_FALSE, ill,
22995 				    ilm->ilm_zoneid);
22996 				last_zoneid = ilm->ilm_zoneid;
22997 			}
22998 			ILM_WALKER_RELE(ill);
22999 			/*
23000 			 * Loopback case: the sending endpoint has
23001 			 * IP_MULTICAST_LOOP disabled, therefore we don't
23002 			 * dispatch the multicast packet to the sending zone.
23003 			 */
23004 			if (fanout_flags & IP_FF_NO_MCAST_LOOP) {
23005 				freemsg(first_mp);
23006 				return;
23007 			}
23008 		} else if (ire_type == IRE_BROADCAST) {
23009 			/*
23010 			 * In the broadcast case, there may be many zones
23011 			 * which need a copy of the packet delivered to them.
23012 			 * There is one IRE_BROADCAST per broadcast address
23013 			 * and per zone; we walk those using a helper function.
23014 			 * In addition, the sending of the packet for zoneid is
23015 			 * delayed until all of the other ires have been
23016 			 * processed.
23017 			 */
23018 			IRB_REFHOLD(ire->ire_bucket);
23019 			ire_zone = NULL;
23020 			while ((ire_zone = ire_get_next_bcast_ire(ire_zone,
23021 			    ire)) != NULL) {
23022 				mp1 = ip_copymsg(first_mp);
23023 				if (mp1 == NULL)
23024 					continue;
23025 
23026 				UPDATE_IB_PKT_COUNT(ire_zone);
23027 				ire_zone->ire_last_used_time = lbolt;
23028 				icmp_inbound(q, mp1, B_TRUE, ill, 0, 0,
23029 				    mctl_present, B_FALSE, ill,
23030 				    ire_zone->ire_zoneid);
23031 			}
23032 			IRB_REFRELE(ire->ire_bucket);
23033 		}
23034 		icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0,
23035 		    0, mctl_present, B_FALSE, ill, zoneid);
23036 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
23037 		    "ip_wput_local_end: q %p (%S)",
23038 		    q, "icmp");
23039 		return;
23040 	}
23041 	case IPPROTO_IGMP:
23042 		if (igmp_input(q, mp, ill)) {
23043 			/* Bad packet - discarded by igmp_input */
23044 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
23045 			    "ip_wput_local_end: q %p (%S)",
23046 			    q, "igmp_input--bad packet");
23047 			if (mctl_present)
23048 				freeb(first_mp);
23049 			return;
23050 		}
23051 		/*
23052 		 * igmp_input() may have pulled up the message so ipha needs to
23053 		 * be reinitialized.
23054 		 */
23055 		ipha = (ipha_t *)mp->b_rptr;
23056 		/* deliver to local raw users */
23057 		break;
23058 	case IPPROTO_ENCAP:
23059 		/*
23060 		 * This case is covered by either ip_fanout_proto, or by
23061 		 * the above security processing for self-tunneled packets.
23062 		 */
23063 		break;
23064 	case IPPROTO_UDP: {
23065 		uint16_t	*up;
23066 		uint32_t	ports;
23067 
23068 		up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) +
23069 		    UDP_PORTS_OFFSET);
23070 		/* Force a 'valid' checksum. */
23071 		up[3] = 0;
23072 
23073 		ports = *(uint32_t *)up;
23074 		ip_fanout_udp(q, first_mp, ill, ipha, ports,
23075 		    (ire_type == IRE_BROADCAST),
23076 		    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
23077 		    IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE,
23078 		    ill, zoneid);
23079 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
23080 		    "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp");
23081 		return;
23082 	}
23083 	case IPPROTO_TCP: {
23084 
23085 		/*
23086 		 * For TCP, discard broadcast packets.
23087 		 */
23088 		if ((ushort_t)ire_type == IRE_BROADCAST) {
23089 			freemsg(first_mp);
23090 			BUMP_MIB(&ip_mib, ipInDiscards);
23091 			ip2dbg(("ip_wput_local: discard broadcast\n"));
23092 			return;
23093 		}
23094 
23095 		if (mp->b_datap->db_type == M_DATA) {
23096 			/*
23097 			 * M_DATA mblk, so init mblk (chain) for no struio().
23098 			 */
23099 			mblk_t	*mp1 = mp;
23100 
23101 			do
23102 				mp1->b_datap->db_struioflag = 0;
23103 			while ((mp1 = mp1->b_cont) != NULL);
23104 		}
23105 		ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4)
23106 		    <= mp->b_wptr);
23107 		ip_fanout_tcp(q, first_mp, ill, ipha,
23108 		    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
23109 		    IP_FF_SYN_ADDIRE | IP_FF_IP6INFO,
23110 		    mctl_present, B_FALSE, zoneid);
23111 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
23112 		    "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp");
23113 		return;
23114 	}
23115 	case IPPROTO_SCTP:
23116 	{
23117 		uint32_t	ports;
23118 
23119 		bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports));
23120 		ip_fanout_sctp(first_mp, ill, ipha, ports,
23121 		    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
23122 		    IP_FF_IP6INFO,
23123 		    mctl_present, B_FALSE, 0, zoneid);
23124 		return;
23125 	}
23126 
23127 	default:
23128 		break;
23129 	}
23130 	/*
23131 	 * Find a client for some other protocol.  We give
23132 	 * copies to multiple clients, if more than one is
23133 	 * bound.
23134 	 */
23135 	ip_fanout_proto(q, first_mp, ill, ipha,
23136 	    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP,
23137 	    mctl_present, B_FALSE, ill, zoneid);
23138 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
23139 	    "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto");
23140 #undef	rptr
23141 }
23142 
23143 /*
23144  * Update any source route, record route, or timestamp options.
23145  * Check that we are at end of strict source route.
23146  * The options have been sanity checked by ip_wput_options().
23147  */
23148 static void
23149 ip_wput_local_options(ipha_t *ipha)
23150 {
23151 	ipoptp_t	opts;
23152 	uchar_t		*opt;
23153 	uint8_t		optval;
23154 	uint8_t		optlen;
23155 	ipaddr_t	dst;
23156 	uint32_t	ts;
23157 	ire_t		*ire;
23158 	timestruc_t	now;
23159 
23160 	ip2dbg(("ip_wput_local_options\n"));
23161 	for (optval = ipoptp_first(&opts, ipha);
23162 	    optval != IPOPT_EOL;
23163 	    optval = ipoptp_next(&opts)) {
23164 		opt = opts.ipoptp_cur;
23165 		optlen = opts.ipoptp_len;
23166 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
23167 		switch (optval) {
23168 			uint32_t off;
23169 		case IPOPT_SSRR:
23170 		case IPOPT_LSRR:
23171 			off = opt[IPOPT_OFFSET];
23172 			off--;
23173 			if (optlen < IP_ADDR_LEN ||
23174 			    off > optlen - IP_ADDR_LEN) {
23175 				/* End of source route */
23176 				break;
23177 			}
23178 			/*
23179 			 * This will only happen if two consecutive entries
23180 			 * in the source route contains our address or if
23181 			 * it is a packet with a loose source route which
23182 			 * reaches us before consuming the whole source route
23183 			 */
23184 			ip1dbg(("ip_wput_local_options: not end of SR\n"));
23185 			if (optval == IPOPT_SSRR) {
23186 				return;
23187 			}
23188 			/*
23189 			 * Hack: instead of dropping the packet truncate the
23190 			 * source route to what has been used by filling the
23191 			 * rest with IPOPT_NOP.
23192 			 */
23193 			opt[IPOPT_OLEN] = (uint8_t)off;
23194 			while (off < optlen) {
23195 				opt[off++] = IPOPT_NOP;
23196 			}
23197 			break;
23198 		case IPOPT_RR:
23199 			off = opt[IPOPT_OFFSET];
23200 			off--;
23201 			if (optlen < IP_ADDR_LEN ||
23202 			    off > optlen - IP_ADDR_LEN) {
23203 				/* No more room - ignore */
23204 				ip1dbg((
23205 				    "ip_wput_forward_options: end of RR\n"));
23206 				break;
23207 			}
23208 			dst = htonl(INADDR_LOOPBACK);
23209 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
23210 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
23211 			break;
23212 		case IPOPT_TS:
23213 			/* Insert timestamp if there is romm */
23214 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
23215 			case IPOPT_TS_TSONLY:
23216 				off = IPOPT_TS_TIMELEN;
23217 				break;
23218 			case IPOPT_TS_PRESPEC:
23219 			case IPOPT_TS_PRESPEC_RFC791:
23220 				/* Verify that the address matched */
23221 				off = opt[IPOPT_OFFSET] - 1;
23222 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
23223 				ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
23224 				    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE);
23225 				if (ire == NULL) {
23226 					/* Not for us */
23227 					break;
23228 				}
23229 				ire_refrele(ire);
23230 				/* FALLTHRU */
23231 			case IPOPT_TS_TSANDADDR:
23232 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
23233 				break;
23234 			default:
23235 				/*
23236 				 * ip_*put_options should have already
23237 				 * dropped this packet.
23238 				 */
23239 				cmn_err(CE_PANIC, "ip_wput_local_options: "
23240 				    "unknown IT - bug in ip_wput_options?\n");
23241 				return;	/* Keep "lint" happy */
23242 			}
23243 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
23244 				/* Increase overflow counter */
23245 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
23246 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
23247 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
23248 				    (off << 4);
23249 				break;
23250 			}
23251 			off = opt[IPOPT_OFFSET] - 1;
23252 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
23253 			case IPOPT_TS_PRESPEC:
23254 			case IPOPT_TS_PRESPEC_RFC791:
23255 			case IPOPT_TS_TSANDADDR:
23256 				dst = htonl(INADDR_LOOPBACK);
23257 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
23258 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
23259 				/* FALLTHRU */
23260 			case IPOPT_TS_TSONLY:
23261 				off = opt[IPOPT_OFFSET] - 1;
23262 				/* Compute # of milliseconds since midnight */
23263 				gethrestime(&now);
23264 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
23265 				    now.tv_nsec / (NANOSEC / MILLISEC);
23266 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
23267 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
23268 				break;
23269 			}
23270 			break;
23271 		}
23272 	}
23273 }
23274 
23275 /*
23276  * Send out a multicast packet on interface ipif.
23277  * The sender does not have an conn.
23278  * Caller verifies that this isn't a PHYI_LOOPBACK.
23279  */
23280 void
23281 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif)
23282 {
23283 	ipha_t	*ipha;
23284 	ire_t	*ire;
23285 	ipaddr_t	dst;
23286 	mblk_t		*first_mp;
23287 
23288 	/* igmp_sendpkt always allocates a ipsec_out_t */
23289 	ASSERT(mp->b_datap->db_type == M_CTL);
23290 	ASSERT(!ipif->ipif_isv6);
23291 	ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK));
23292 
23293 	first_mp = mp;
23294 	mp = first_mp->b_cont;
23295 	ASSERT(mp->b_datap->db_type == M_DATA);
23296 	ipha = (ipha_t *)mp->b_rptr;
23297 
23298 	/*
23299 	 * Find an IRE which matches the destination and the outgoing
23300 	 * queue (i.e. the outgoing interface.)
23301 	 */
23302 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
23303 		dst = ipif->ipif_pp_dst_addr;
23304 	else
23305 		dst = ipha->ipha_dst;
23306 	/*
23307 	 * The source address has already been initialized by the
23308 	 * caller and hence matching on ILL (MATCH_IRE_ILL) would
23309 	 * be sufficient rather than MATCH_IRE_IPIF.
23310 	 *
23311 	 * This function is used for sending IGMP packets. We need
23312 	 * to make sure that we send the packet out of the interface
23313 	 * (ipif->ipif_ill) where we joined the group. This is to
23314 	 * prevent from switches doing IGMP snooping to send us multicast
23315 	 * packets for a given group on the interface we have joined.
23316 	 * If we can't find an ire, igmp_sendpkt has already initialized
23317 	 * ipsec_out_attach_if so that this will not be load spread in
23318 	 * ip_newroute_ipif.
23319 	 */
23320 	ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, NULL,
23321 	    MATCH_IRE_ILL);
23322 	if (!ire) {
23323 		/*
23324 		 * Mark this packet to make it be delivered to
23325 		 * ip_wput_ire after the new ire has been
23326 		 * created.
23327 		 */
23328 		mp->b_prev = NULL;
23329 		mp->b_next = NULL;
23330 		ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC);
23331 		return;
23332 	}
23333 
23334 	/*
23335 	 * Honor the RTF_SETSRC flag; this is the only case
23336 	 * where we force this addr whatever the current src addr is,
23337 	 * because this address is set by igmp_sendpkt(), and
23338 	 * cannot be specified by any user.
23339 	 */
23340 	if (ire->ire_flags & RTF_SETSRC) {
23341 		ipha->ipha_src = ire->ire_src_addr;
23342 	}
23343 
23344 	ip_wput_ire(q, first_mp, ire, NULL, B_FALSE);
23345 }
23346 
23347 /*
23348  * NOTE : This function does not ire_refrele the ire argument passed in.
23349  *
23350  * Copy the link layer header and do IPQoS if needed. Frees the mblk on
23351  * failure. The ire_fp_mp can vanish any time in the case of IRE_MIPRTUN
23352  * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold
23353  * the ire_lock to access the ire_fp_mp in this case.
23354  * IPQoS assumes that the first M_DATA contains the IP header. So, if we are
23355  * prepending a fastpath message IPQoS processing must precede it, we also set
23356  * the b_band of the fastpath message to that of the  mblk returned by IPQoS
23357  * (IPQoS might have set the b_band for CoS marking).
23358  * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing
23359  * must follow it so that IPQoS can mark the dl_priority field for CoS
23360  * marking, if needed.
23361  */
23362 static mblk_t *
23363 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index)
23364 {
23365 	uint_t	hlen;
23366 	ipha_t *ipha;
23367 	mblk_t *mp1;
23368 	boolean_t qos_done = B_FALSE;
23369 	uchar_t	*ll_hdr;
23370 
23371 #define	rptr	((uchar_t *)ipha)
23372 
23373 	ipha = (ipha_t *)mp->b_rptr;
23374 	hlen = 0;
23375 	LOCK_IRE_FP_MP(ire);
23376 	if ((mp1 = ire->ire_fp_mp) != NULL) {
23377 		ASSERT(DB_TYPE(mp1) == M_DATA);
23378 		/* Initiate IPPF processing */
23379 		if ((proc != 0) && IPP_ENABLED(proc)) {
23380 			UNLOCK_IRE_FP_MP(ire);
23381 			ip_process(proc, &mp, ill_index);
23382 			if (mp == NULL)
23383 				return (NULL);
23384 
23385 			ipha = (ipha_t *)mp->b_rptr;
23386 			LOCK_IRE_FP_MP(ire);
23387 			if ((mp1 = ire->ire_fp_mp) == NULL) {
23388 				qos_done = B_TRUE;
23389 				goto no_fp_mp;
23390 			}
23391 			ASSERT(DB_TYPE(mp1) == M_DATA);
23392 		}
23393 		hlen = MBLKL(mp1);
23394 		/*
23395 		 * Check if we have enough room to prepend fastpath
23396 		 * header
23397 		 */
23398 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
23399 			ll_hdr = rptr - hlen;
23400 			bcopy(mp1->b_rptr, ll_hdr, hlen);
23401 			/* XXX ipha is not aligned here */
23402 			ipha = (ipha_t *)(rptr - hlen);
23403 			/*
23404 			 * Set the b_rptr to the start of the link layer
23405 			 * header
23406 			 */
23407 			mp->b_rptr = rptr;
23408 			mp1 = mp;
23409 		} else {
23410 			mp1 = copyb(mp1);
23411 			if (mp1 == NULL)
23412 				goto unlock_err;
23413 			mp1->b_band = mp->b_band;
23414 			mp1->b_cont = mp;
23415 			/*
23416 			 * certain system generated traffic may not
23417 			 * have cred/label in ip header block. This
23418 			 * is true even for a labeled system. But for
23419 			 * labeled traffic, inherit the label in the
23420 			 * new header.
23421 			 */
23422 			if (DB_CRED(mp) != NULL)
23423 				mblk_setcred(mp1, DB_CRED(mp));
23424 			/*
23425 			 * XXX disable ICK_VALID and compute checksum
23426 			 * here; can happen if ire_fp_mp changes and
23427 			 * it can't be copied now due to insufficient
23428 			 * space. (unlikely, fp mp can change, but it
23429 			 * does not increase in length)
23430 			 */
23431 		}
23432 		UNLOCK_IRE_FP_MP(ire);
23433 	} else {
23434 no_fp_mp:
23435 		mp1 = copyb(ire->ire_dlureq_mp);
23436 		if (mp1 == NULL) {
23437 unlock_err:
23438 			UNLOCK_IRE_FP_MP(ire);
23439 			freemsg(mp);
23440 			return (NULL);
23441 		}
23442 		UNLOCK_IRE_FP_MP(ire);
23443 		mp1->b_cont = mp;
23444 		/*
23445 		 * certain system generated traffic may not
23446 		 * have cred/label in ip header block. This
23447 		 * is true even for a labeled system. But for
23448 		 * labeled traffic, inherit the label in the
23449 		 * new header.
23450 		 */
23451 		if (DB_CRED(mp) != NULL)
23452 			mblk_setcred(mp1, DB_CRED(mp));
23453 		if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) {
23454 			ip_process(proc, &mp1, ill_index);
23455 			if (mp1 == NULL)
23456 				return (NULL);
23457 		}
23458 	}
23459 	return (mp1);
23460 #undef rptr
23461 }
23462 
23463 /*
23464  * Finish the outbound IPsec processing for an IPv6 packet. This function
23465  * is called from ipsec_out_process() if the IPsec packet was processed
23466  * synchronously, or from {ah,esp}_kcf_callback() if it was processed
23467  * asynchronously.
23468  */
23469 void
23470 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill,
23471     ire_t *ire_arg)
23472 {
23473 	in6_addr_t *v6dstp;
23474 	ire_t *ire;
23475 	mblk_t *mp;
23476 	uint_t	ill_index;
23477 	ipsec_out_t *io;
23478 	boolean_t attach_if, hwaccel;
23479 	uint32_t flags = IP6_NO_IPPOLICY;
23480 	int match_flags;
23481 	zoneid_t zoneid;
23482 	boolean_t ill_need_rele = B_FALSE;
23483 	boolean_t ire_need_rele = B_FALSE;
23484 
23485 	mp = ipsec_mp->b_cont;
23486 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
23487 	ill_index = io->ipsec_out_ill_index;
23488 	if (io->ipsec_out_reachable) {
23489 		flags |= IPV6_REACHABILITY_CONFIRMATION;
23490 	}
23491 	attach_if = io->ipsec_out_attach_if;
23492 	hwaccel = io->ipsec_out_accelerated;
23493 	zoneid = io->ipsec_out_zoneid;
23494 	ASSERT(zoneid != ALL_ZONES);
23495 	match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
23496 	/* Multicast addresses should have non-zero ill_index. */
23497 	v6dstp = &ip6h->ip6_dst;
23498 	ASSERT(ip6h->ip6_nxt != IPPROTO_RAW);
23499 	ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0);
23500 	ASSERT(!attach_if || ill_index != 0);
23501 	if (ill_index != 0) {
23502 		if (ill == NULL) {
23503 			ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index,
23504 			    B_TRUE);
23505 
23506 			/* Failure case frees things for us. */
23507 			if (ill == NULL)
23508 				return;
23509 
23510 			ill_need_rele = B_TRUE;
23511 		}
23512 		/*
23513 		 * If this packet needs to go out on a particular interface
23514 		 * honor it.
23515 		 */
23516 		if (attach_if) {
23517 			match_flags = MATCH_IRE_ILL;
23518 
23519 			/*
23520 			 * Check if we need an ire that will not be
23521 			 * looked up by anybody else i.e. HIDDEN.
23522 			 */
23523 			if (ill_is_probeonly(ill)) {
23524 				match_flags |= MATCH_IRE_MARK_HIDDEN;
23525 			}
23526 		}
23527 	}
23528 	ASSERT(mp != NULL);
23529 
23530 	if (IN6_IS_ADDR_MULTICAST(v6dstp)) {
23531 		boolean_t unspec_src;
23532 		ipif_t	*ipif;
23533 
23534 		/*
23535 		 * Use the ill_index to get the right ill.
23536 		 */
23537 		unspec_src = io->ipsec_out_unspec_src;
23538 		(void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif);
23539 		if (ipif == NULL) {
23540 			if (ill_need_rele)
23541 				ill_refrele(ill);
23542 			freemsg(ipsec_mp);
23543 			return;
23544 		}
23545 
23546 		if (ire_arg != NULL) {
23547 			ire = ire_arg;
23548 		} else {
23549 			ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif,
23550 			    zoneid, MBLK_GETLABEL(mp), match_flags);
23551 			ire_need_rele = B_TRUE;
23552 		}
23553 		if (ire != NULL) {
23554 			ipif_refrele(ipif);
23555 			/*
23556 			 * XXX Do the multicast forwarding now, as the IPSEC
23557 			 * processing has been done.
23558 			 */
23559 			goto send;
23560 		}
23561 
23562 		ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n"));
23563 		mp->b_prev = NULL;
23564 		mp->b_next = NULL;
23565 
23566 		/*
23567 		 * If the IPsec packet was processed asynchronously,
23568 		 * drop it now.
23569 		 */
23570 		if (q == NULL) {
23571 			if (ill_need_rele)
23572 				ill_refrele(ill);
23573 			freemsg(ipsec_mp);
23574 			return;
23575 		}
23576 
23577 		ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp,
23578 		    unspec_src, zoneid);
23579 		ipif_refrele(ipif);
23580 	} else {
23581 		if (attach_if) {
23582 			ipif_t	*ipif;
23583 
23584 			ipif = ipif_get_next_ipif(NULL, ill);
23585 			if (ipif == NULL) {
23586 				if (ill_need_rele)
23587 					ill_refrele(ill);
23588 				freemsg(ipsec_mp);
23589 				return;
23590 			}
23591 			ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif,
23592 			    zoneid, MBLK_GETLABEL(mp), match_flags);
23593 			ire_need_rele = B_TRUE;
23594 			ipif_refrele(ipif);
23595 		} else {
23596 			if (ire_arg != NULL) {
23597 				ire = ire_arg;
23598 			} else {
23599 				ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL);
23600 				ire_need_rele = B_TRUE;
23601 			}
23602 		}
23603 		if (ire != NULL)
23604 			goto send;
23605 		/*
23606 		 * ire disappeared underneath.
23607 		 *
23608 		 * What we need to do here is the ip_newroute
23609 		 * logic to get the ire without doing the IPSEC
23610 		 * processing. Follow the same old path. But this
23611 		 * time, ip_wput or ire_add_then_send will call us
23612 		 * directly as all the IPSEC operations are done.
23613 		 */
23614 		ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n"));
23615 		mp->b_prev = NULL;
23616 		mp->b_next = NULL;
23617 
23618 		/*
23619 		 * If the IPsec packet was processed asynchronously,
23620 		 * drop it now.
23621 		 */
23622 		if (q == NULL) {
23623 			if (ill_need_rele)
23624 				ill_refrele(ill);
23625 			freemsg(ipsec_mp);
23626 			return;
23627 		}
23628 
23629 		ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill,
23630 		    zoneid);
23631 	}
23632 	if (ill != NULL && ill_need_rele)
23633 		ill_refrele(ill);
23634 	return;
23635 send:
23636 	if (ill != NULL && ill_need_rele)
23637 		ill_refrele(ill);
23638 
23639 	/* Local delivery */
23640 	if (ire->ire_stq == NULL) {
23641 		ASSERT(q != NULL);
23642 		ip_wput_local_v6(RD(q), ire->ire_ipif->ipif_ill, ip6h, ipsec_mp,
23643 		    ire, 0);
23644 		if (ire_need_rele)
23645 			ire_refrele(ire);
23646 		return;
23647 	}
23648 	/*
23649 	 * Everything is done. Send it out on the wire.
23650 	 * We force the insertion of a fragment header using the
23651 	 * IPH_FRAG_HDR flag in two cases:
23652 	 * - after reception of an ICMPv6 "packet too big" message
23653 	 *   with a MTU < 1280 (cf. RFC 2460 section 5)
23654 	 * - for multirouted IPv6 packets, so that the receiver can
23655 	 *   discard duplicates according to their fragment identifier
23656 	 */
23657 	/* XXX fix flow control problems. */
23658 	if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag ||
23659 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
23660 		if (hwaccel) {
23661 			/*
23662 			 * hardware acceleration does not handle these
23663 			 * "slow path" cases.
23664 			 */
23665 			/* IPsec KSTATS: should bump bean counter here. */
23666 			if (ire_need_rele)
23667 				ire_refrele(ire);
23668 			freemsg(ipsec_mp);
23669 			return;
23670 		}
23671 		if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN !=
23672 		    (mp->b_cont ? msgdsize(mp) :
23673 		    mp->b_wptr - (uchar_t *)ip6h)) {
23674 			/* IPsec KSTATS: should bump bean counter here. */
23675 			ip0dbg(("Packet length mismatch: %d, %ld\n",
23676 			    ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN,
23677 			    msgdsize(mp)));
23678 			if (ire_need_rele)
23679 				ire_refrele(ire);
23680 			freemsg(ipsec_mp);
23681 			return;
23682 		}
23683 		ASSERT(mp->b_prev == NULL);
23684 		ip2dbg(("Fragmenting Size = %d, mtu = %d\n",
23685 		    ntohs(ip6h->ip6_plen) +
23686 		    IPV6_HDR_LEN, ire->ire_max_frag));
23687 		ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE,
23688 		    ire->ire_max_frag);
23689 	} else {
23690 		UPDATE_OB_PKT_COUNT(ire);
23691 		ire->ire_last_used_time = lbolt;
23692 		ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL);
23693 	}
23694 	if (ire_need_rele)
23695 		ire_refrele(ire);
23696 	freeb(ipsec_mp);
23697 }
23698 
23699 void
23700 ipsec_hw_putnext(queue_t *q, mblk_t *mp)
23701 {
23702 	mblk_t *hada_mp;	/* attributes M_CTL mblk */
23703 	da_ipsec_t *hada;	/* data attributes */
23704 	ill_t *ill = (ill_t *)q->q_ptr;
23705 
23706 	IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n"));
23707 
23708 	if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) {
23709 		/* IPsec KSTATS: Bump lose counter here! */
23710 		freemsg(mp);
23711 		return;
23712 	}
23713 
23714 	/*
23715 	 * It's an IPsec packet that must be
23716 	 * accelerated by the Provider, and the
23717 	 * outbound ill is IPsec acceleration capable.
23718 	 * Prepends the mblk with an IPHADA_M_CTL, and ship it
23719 	 * to the ill.
23720 	 * IPsec KSTATS: should bump packet counter here.
23721 	 */
23722 
23723 	hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI);
23724 	if (hada_mp == NULL) {
23725 		/* IPsec KSTATS: should bump packet counter here. */
23726 		freemsg(mp);
23727 		return;
23728 	}
23729 
23730 	hada_mp->b_datap->db_type = M_CTL;
23731 	hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada);
23732 	hada_mp->b_cont = mp;
23733 
23734 	hada = (da_ipsec_t *)hada_mp->b_rptr;
23735 	bzero(hada, sizeof (da_ipsec_t));
23736 	hada->da_type = IPHADA_M_CTL;
23737 
23738 	putnext(q, hada_mp);
23739 }
23740 
23741 /*
23742  * Finish the outbound IPsec processing. This function is called from
23743  * ipsec_out_process() if the IPsec packet was processed
23744  * synchronously, or from {ah,esp}_kcf_callback() if it was processed
23745  * asynchronously.
23746  */
23747 void
23748 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill,
23749     ire_t *ire_arg)
23750 {
23751 	uint32_t v_hlen_tos_len;
23752 	ipaddr_t	dst;
23753 	ipif_t	*ipif = NULL;
23754 	ire_t *ire;
23755 	ire_t *ire1 = NULL;
23756 	mblk_t *next_mp = NULL;
23757 	uint32_t max_frag;
23758 	boolean_t multirt_send = B_FALSE;
23759 	mblk_t *mp;
23760 	mblk_t *mp1;
23761 	uint_t	ill_index;
23762 	ipsec_out_t *io;
23763 	boolean_t attach_if;
23764 	int match_flags, offset;
23765 	irb_t *irb = NULL;
23766 	boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE;
23767 	zoneid_t zoneid;
23768 	uint32_t cksum;
23769 	uint16_t *up;
23770 #ifdef	_BIG_ENDIAN
23771 #define	LENGTH	(v_hlen_tos_len & 0xFFFF)
23772 #else
23773 #define	LENGTH	((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
23774 #endif
23775 
23776 	mp = ipsec_mp->b_cont;
23777 	ASSERT(mp != NULL);
23778 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
23779 	dst = ipha->ipha_dst;
23780 
23781 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
23782 	ill_index = io->ipsec_out_ill_index;
23783 	attach_if = io->ipsec_out_attach_if;
23784 	zoneid = io->ipsec_out_zoneid;
23785 	ASSERT(zoneid != ALL_ZONES);
23786 	match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
23787 	if (ill_index != 0) {
23788 		if (ill == NULL) {
23789 			ill = ip_grab_attach_ill(NULL, ipsec_mp,
23790 			    ill_index, B_FALSE);
23791 
23792 			/* Failure case frees things for us. */
23793 			if (ill == NULL)
23794 				return;
23795 
23796 			ill_need_rele = B_TRUE;
23797 		}
23798 		/*
23799 		 * If this packet needs to go out on a particular interface
23800 		 * honor it.
23801 		 */
23802 		if (attach_if) {
23803 			match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
23804 
23805 			/*
23806 			 * Check if we need an ire that will not be
23807 			 * looked up by anybody else i.e. HIDDEN.
23808 			 */
23809 			if (ill_is_probeonly(ill)) {
23810 				match_flags |= MATCH_IRE_MARK_HIDDEN;
23811 			}
23812 		}
23813 	}
23814 
23815 	if (CLASSD(dst)) {
23816 		boolean_t conn_dontroute;
23817 		/*
23818 		 * Use the ill_index to get the right ipif.
23819 		 */
23820 		conn_dontroute = io->ipsec_out_dontroute;
23821 		if (ill_index == 0)
23822 			ipif = ipif_lookup_group(dst, zoneid);
23823 		else
23824 			(void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif);
23825 		if (ipif == NULL) {
23826 			ip1dbg(("ip_wput_ipsec_out: No ipif for"
23827 			    " multicast\n"));
23828 			BUMP_MIB(&ip_mib, ipOutNoRoutes);
23829 			freemsg(ipsec_mp);
23830 			goto done;
23831 		}
23832 		/*
23833 		 * ipha_src has already been intialized with the
23834 		 * value of the ipif in ip_wput. All we need now is
23835 		 * an ire to send this downstream.
23836 		 */
23837 		ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid,
23838 		    MBLK_GETLABEL(mp), match_flags);
23839 		if (ire != NULL) {
23840 			ill_t *ill1;
23841 			/*
23842 			 * Do the multicast forwarding now, as the IPSEC
23843 			 * processing has been done.
23844 			 */
23845 			if (ip_g_mrouter && !conn_dontroute &&
23846 			    (ill1 = ire_to_ill(ire))) {
23847 				if (ip_mforward(ill1, ipha, mp)) {
23848 					freemsg(ipsec_mp);
23849 					ip1dbg(("ip_wput_ipsec_out: mforward "
23850 					    "failed\n"));
23851 					ire_refrele(ire);
23852 					goto done;
23853 				}
23854 			}
23855 			goto send;
23856 		}
23857 
23858 		ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n"));
23859 		mp->b_prev = NULL;
23860 		mp->b_next = NULL;
23861 
23862 		/*
23863 		 * If the IPsec packet was processed asynchronously,
23864 		 * drop it now.
23865 		 */
23866 		if (q == NULL) {
23867 			freemsg(ipsec_mp);
23868 			goto done;
23869 		}
23870 
23871 		/*
23872 		 * We may be using a wrong ipif to create the ire.
23873 		 * But it is okay as the source address is assigned
23874 		 * for the packet already. Next outbound packet would
23875 		 * create the IRE with the right IPIF in ip_wput.
23876 		 *
23877 		 * Also handle RTF_MULTIRT routes.
23878 		 */
23879 		ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT);
23880 	} else {
23881 		if (attach_if) {
23882 			ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif,
23883 			    zoneid, MBLK_GETLABEL(mp), match_flags);
23884 		} else {
23885 			if (ire_arg != NULL) {
23886 				ire = ire_arg;
23887 				ire_need_rele = B_FALSE;
23888 			} else {
23889 				ire = ire_cache_lookup(dst, zoneid,
23890 				    MBLK_GETLABEL(mp));
23891 			}
23892 		}
23893 		if (ire != NULL) {
23894 			goto send;
23895 		}
23896 
23897 		/*
23898 		 * ire disappeared underneath.
23899 		 *
23900 		 * What we need to do here is the ip_newroute
23901 		 * logic to get the ire without doing the IPSEC
23902 		 * processing. Follow the same old path. But this
23903 		 * time, ip_wput or ire_add_then_put will call us
23904 		 * directly as all the IPSEC operations are done.
23905 		 */
23906 		ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n"));
23907 		mp->b_prev = NULL;
23908 		mp->b_next = NULL;
23909 
23910 		/*
23911 		 * If the IPsec packet was processed asynchronously,
23912 		 * drop it now.
23913 		 */
23914 		if (q == NULL) {
23915 			freemsg(ipsec_mp);
23916 			goto done;
23917 		}
23918 
23919 		/*
23920 		 * Since we're going through ip_newroute() again, we
23921 		 * need to make sure we don't:
23922 		 *
23923 		 *	1.) Trigger the ASSERT() with the ipha_ident
23924 		 *	    overloading.
23925 		 *	2.) Redo transport-layer checksumming, since we've
23926 		 *	    already done all that to get this far.
23927 		 *
23928 		 * The easiest way not do either of the above is to set
23929 		 * the ipha_ident field to IP_HDR_INCLUDED.
23930 		 */
23931 		ipha->ipha_ident = IP_HDR_INCLUDED;
23932 		ip_newroute(q, ipsec_mp, dst, NULL,
23933 		    (CONN_Q(q) ? Q_TO_CONN(q) : NULL));
23934 	}
23935 	goto done;
23936 send:
23937 	if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) {
23938 		/*
23939 		 * ESP NAT-Traversal packet.
23940 		 *
23941 		 * Just do software checksum for now.
23942 		 */
23943 
23944 		offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET;
23945 		IP_STAT(ip_out_sw_cksum);
23946 		IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes,
23947 		    ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH));
23948 #define	iphs	((uint16_t *)ipha)
23949 		cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] +
23950 		    iphs[9] + ntohs(htons(ipha->ipha_length) -
23951 		    IP_SIMPLE_HDR_LENGTH);
23952 #undef iphs
23953 		if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0)
23954 			cksum = 0xFFFF;
23955 		for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont)
23956 			if (mp1->b_wptr - mp1->b_rptr >=
23957 			    offset + sizeof (uint16_t)) {
23958 				up = (uint16_t *)(mp1->b_rptr + offset);
23959 				*up = cksum;
23960 				break;	/* out of for loop */
23961 			} else {
23962 				offset -= (mp->b_wptr - mp->b_rptr);
23963 			}
23964 	} /* Otherwise, just keep the all-zero checksum. */
23965 
23966 	if (ire->ire_stq == NULL) {
23967 		/*
23968 		 * Loopbacks go through ip_wput_local except for one case.
23969 		 * We come here if we generate a icmp_frag_needed message
23970 		 * after IPSEC processing is over. When this function calls
23971 		 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling
23972 		 * icmp_frag_needed. The message generated comes back here
23973 		 * through icmp_frag_needed -> icmp_pkt -> ip_wput ->
23974 		 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the
23975 		 * source address as it is usually set in ip_wput_ire. As
23976 		 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process
23977 		 * and we end up here. We can't enter ip_wput_ire once the
23978 		 * IPSEC processing is over and hence we need to do it here.
23979 		 */
23980 		ASSERT(q != NULL);
23981 		UPDATE_OB_PKT_COUNT(ire);
23982 		ire->ire_last_used_time = lbolt;
23983 		if (ipha->ipha_src == 0)
23984 			ipha->ipha_src = ire->ire_src_addr;
23985 		ip_wput_local(RD(q), ire->ire_ipif->ipif_ill, ipha, ipsec_mp,
23986 		    ire, 0, zoneid);
23987 		if (ire_need_rele)
23988 			ire_refrele(ire);
23989 		goto done;
23990 	}
23991 
23992 	if (ire->ire_max_frag < (unsigned int)LENGTH) {
23993 		/*
23994 		 * We are through with IPSEC processing.
23995 		 * Fragment this and send it on the wire.
23996 		 */
23997 		if (io->ipsec_out_accelerated) {
23998 			/*
23999 			 * The packet has been accelerated but must
24000 			 * be fragmented. This should not happen
24001 			 * since AH and ESP must not accelerate
24002 			 * packets that need fragmentation, however
24003 			 * the configuration could have changed
24004 			 * since the AH or ESP processing.
24005 			 * Drop packet.
24006 			 * IPsec KSTATS: bump bean counter here.
24007 			 */
24008 			IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: "
24009 			    "fragmented accelerated packet!\n"));
24010 			freemsg(ipsec_mp);
24011 		} else {
24012 			ip_wput_ire_fragmentit(ipsec_mp, ire);
24013 		}
24014 		if (ire_need_rele)
24015 			ire_refrele(ire);
24016 		goto done;
24017 	}
24018 
24019 	ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, "
24020 	    "ipif %p\n", (void *)ipsec_mp, (void *)ire,
24021 	    (void *)ire->ire_ipif, (void *)ipif));
24022 
24023 	/*
24024 	 * Multiroute the secured packet, unless IPsec really
24025 	 * requires the packet to go out only through a particular
24026 	 * interface.
24027 	 */
24028 	if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) {
24029 		ire_t *first_ire;
24030 		irb = ire->ire_bucket;
24031 		ASSERT(irb != NULL);
24032 		/*
24033 		 * This ire has been looked up as the one that
24034 		 * goes through the given ipif;
24035 		 * make sure we do not omit any other multiroute ire
24036 		 * that may be present in the bucket before this one.
24037 		 */
24038 		IRB_REFHOLD(irb);
24039 		for (first_ire = irb->irb_ire;
24040 		    first_ire != NULL;
24041 		    first_ire = first_ire->ire_next) {
24042 			if ((first_ire->ire_flags & RTF_MULTIRT) &&
24043 			    (first_ire->ire_addr == ire->ire_addr) &&
24044 			    !(first_ire->ire_marks &
24045 				(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)))
24046 				break;
24047 		}
24048 
24049 		if ((first_ire != NULL) && (first_ire != ire)) {
24050 			/*
24051 			 * Don't change the ire if the packet must
24052 			 * be fragmented if sent via this new one.
24053 			 */
24054 			if (first_ire->ire_max_frag >= (unsigned int)LENGTH) {
24055 				IRE_REFHOLD(first_ire);
24056 				if (ire_need_rele)
24057 					ire_refrele(ire);
24058 				else
24059 					ire_need_rele = B_TRUE;
24060 				ire = first_ire;
24061 			}
24062 		}
24063 		IRB_REFRELE(irb);
24064 
24065 		multirt_send = B_TRUE;
24066 		max_frag = ire->ire_max_frag;
24067 	} else {
24068 		if ((ire->ire_flags & RTF_MULTIRT) && attach_if) {
24069 			ip1dbg(("ip_wput_ipsec_out: ignoring multirouting "
24070 			    "flag, attach_if %d\n", attach_if));
24071 		}
24072 	}
24073 
24074 	/*
24075 	 * In most cases, the emission loop below is entered only once.
24076 	 * Only in the case where the ire holds the RTF_MULTIRT
24077 	 * flag, we loop to process all RTF_MULTIRT ires in the
24078 	 * bucket, and send the packet through all crossed
24079 	 * RTF_MULTIRT routes.
24080 	 */
24081 	do {
24082 		if (multirt_send) {
24083 			/*
24084 			 * ire1 holds here the next ire to process in the
24085 			 * bucket. If multirouting is expected,
24086 			 * any non-RTF_MULTIRT ire that has the
24087 			 * right destination address is ignored.
24088 			 */
24089 			ASSERT(irb != NULL);
24090 			IRB_REFHOLD(irb);
24091 			for (ire1 = ire->ire_next;
24092 			    ire1 != NULL;
24093 			    ire1 = ire1->ire_next) {
24094 				if ((ire1->ire_flags & RTF_MULTIRT) == 0)
24095 					continue;
24096 				if (ire1->ire_addr != ire->ire_addr)
24097 					continue;
24098 				if (ire1->ire_marks &
24099 				    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
24100 					continue;
24101 				/* No loopback here */
24102 				if (ire1->ire_stq == NULL)
24103 					continue;
24104 				/*
24105 				 * Ensure we do not exceed the MTU
24106 				 * of the next route.
24107 				 */
24108 				if (ire1->ire_max_frag < (unsigned int)LENGTH) {
24109 					ip_multirt_bad_mtu(ire1, max_frag);
24110 					continue;
24111 				}
24112 
24113 				IRE_REFHOLD(ire1);
24114 				break;
24115 			}
24116 			IRB_REFRELE(irb);
24117 			if (ire1 != NULL) {
24118 				/*
24119 				 * We are in a multiple send case, need to
24120 				 * make a copy of the packet.
24121 				 */
24122 				next_mp = copymsg(ipsec_mp);
24123 				if (next_mp == NULL) {
24124 					ire_refrele(ire1);
24125 					ire1 = NULL;
24126 				}
24127 			}
24128 		}
24129 
24130 		/* Everything is done. Send it out on the wire */
24131 		mp1 = ip_wput_attach_llhdr(mp, ire, 0, 0);
24132 		if (mp1 == NULL) {
24133 			BUMP_MIB(&ip_mib, ipOutDiscards);
24134 			freemsg(ipsec_mp);
24135 			if (ire_need_rele)
24136 				ire_refrele(ire);
24137 			if (ire1 != NULL) {
24138 				ire_refrele(ire1);
24139 				freemsg(next_mp);
24140 			}
24141 			goto done;
24142 		}
24143 		UPDATE_OB_PKT_COUNT(ire);
24144 		ire->ire_last_used_time = lbolt;
24145 		if (!io->ipsec_out_accelerated) {
24146 			putnext(ire->ire_stq, mp1);
24147 		} else {
24148 			/*
24149 			 * Safety Pup says: make sure this is going to
24150 			 * the right interface!
24151 			 */
24152 			ill_t *ill1 = (ill_t *)ire->ire_stq->q_ptr;
24153 			int ifindex = ill1->ill_phyint->phyint_ifindex;
24154 
24155 			if (ifindex != io->ipsec_out_capab_ill_index) {
24156 				/* IPsec kstats: bump lose counter */
24157 				freemsg(mp1);
24158 			} else {
24159 				ipsec_hw_putnext(ire->ire_stq, mp1);
24160 			}
24161 		}
24162 
24163 		freeb(ipsec_mp);
24164 		if (ire_need_rele)
24165 			ire_refrele(ire);
24166 
24167 		if (ire1 != NULL) {
24168 			ire = ire1;
24169 			ire_need_rele = B_TRUE;
24170 			ASSERT(next_mp);
24171 			ipsec_mp = next_mp;
24172 			mp = ipsec_mp->b_cont;
24173 			ire1 = NULL;
24174 			next_mp = NULL;
24175 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
24176 		} else {
24177 			multirt_send = B_FALSE;
24178 		}
24179 	} while (multirt_send);
24180 done:
24181 	if (ill != NULL && ill_need_rele)
24182 		ill_refrele(ill);
24183 	if (ipif != NULL)
24184 		ipif_refrele(ipif);
24185 }
24186 
24187 /*
24188  * Get the ill corresponding to the specified ire, and compare its
24189  * capabilities with the protocol and algorithms specified by the
24190  * the SA obtained from ipsec_out. If they match, annotate the
24191  * ipsec_out structure to indicate that the packet needs acceleration.
24192  *
24193  *
24194  * A packet is eligible for outbound hardware acceleration if the
24195  * following conditions are satisfied:
24196  *
24197  * 1. the packet will not be fragmented
24198  * 2. the provider supports the algorithm
24199  * 3. there is no pending control message being exchanged
24200  * 4. snoop is not attached
24201  * 5. the destination address is not a broadcast or multicast address.
24202  *
24203  * Rationale:
24204  *	- Hardware drivers do not support fragmentation with
24205  *	  the current interface.
24206  *	- snoop, multicast, and broadcast may result in exposure of
24207  *	  a cleartext datagram.
24208  * We check all five of these conditions here.
24209  *
24210  * XXX would like to nuke "ire_t *" parameter here; problem is that
24211  * IRE is only way to figure out if a v4 address is a broadcast and
24212  * thus ineligible for acceleration...
24213  */
24214 static void
24215 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire)
24216 {
24217 	ipsec_out_t *io;
24218 	mblk_t *data_mp;
24219 	uint_t plen, overhead;
24220 
24221 	if ((sa->ipsa_flags & IPSA_F_HW) == 0)
24222 		return;
24223 
24224 	if (ill == NULL)
24225 		return;
24226 
24227 	/*
24228 	 * Destination address is a broadcast or multicast.  Punt.
24229 	 */
24230 	if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK|
24231 	    IRE_LOCAL)))
24232 		return;
24233 
24234 	data_mp = ipsec_mp->b_cont;
24235 
24236 	if (ill->ill_isv6) {
24237 		ip6_t *ip6h = (ip6_t *)data_mp->b_rptr;
24238 
24239 		if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst))
24240 			return;
24241 
24242 		plen = ip6h->ip6_plen;
24243 	} else {
24244 		ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
24245 
24246 		if (CLASSD(ipha->ipha_dst))
24247 			return;
24248 
24249 		plen = ipha->ipha_length;
24250 	}
24251 	/*
24252 	 * Is there a pending DLPI control message being exchanged
24253 	 * between IP/IPsec and the DLS Provider? If there is, it
24254 	 * could be a SADB update, and the state of the DLS Provider
24255 	 * SADB might not be in sync with the SADB maintained by
24256 	 * IPsec. To avoid dropping packets or using the wrong keying
24257 	 * material, we do not accelerate this packet.
24258 	 */
24259 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
24260 		IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: "
24261 		    "ill_dlpi_pending! don't accelerate packet\n"));
24262 		return;
24263 	}
24264 
24265 	/*
24266 	 * Is the Provider in promiscous mode? If it does, we don't
24267 	 * accelerate the packet since it will bounce back up to the
24268 	 * listeners in the clear.
24269 	 */
24270 	if (ill->ill_promisc_on_phys) {
24271 		IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: "
24272 		    "ill in promiscous mode, don't accelerate packet\n"));
24273 		return;
24274 	}
24275 
24276 	/*
24277 	 * Will the packet require fragmentation?
24278 	 */
24279 
24280 	/*
24281 	 * IPsec ESP note: this is a pessimistic estimate, but the same
24282 	 * as is used elsewhere.
24283 	 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1)
24284 	 *	+ 2-byte trailer
24285 	 */
24286 	overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE :
24287 	    IPSEC_BASE_ESP_HDR_SIZE(sa);
24288 
24289 	if ((plen + overhead) > ill->ill_max_mtu)
24290 		return;
24291 
24292 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
24293 
24294 	/*
24295 	 * Can the ill accelerate this IPsec protocol and algorithm
24296 	 * specified by the SA?
24297 	 */
24298 	if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index,
24299 	    ill->ill_isv6, sa)) {
24300 		return;
24301 	}
24302 
24303 	/*
24304 	 * Tell AH or ESP that the outbound ill is capable of
24305 	 * accelerating this packet.
24306 	 */
24307 	io->ipsec_out_is_capab_ill = B_TRUE;
24308 }
24309 
24310 /*
24311  * Select which AH & ESP SA's to use (if any) for the outbound packet.
24312  *
24313  * If this function returns B_TRUE, the requested SA's have been filled
24314  * into the ipsec_out_*_sa pointers.
24315  *
24316  * If the function returns B_FALSE, the packet has been "consumed", most
24317  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
24318  *
24319  * The SA references created by the protocol-specific "select"
24320  * function will be released when the ipsec_mp is freed, thanks to the
24321  * ipsec_out_free destructor -- see spd.c.
24322  */
24323 static boolean_t
24324 ipsec_out_select_sa(mblk_t *ipsec_mp)
24325 {
24326 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
24327 	ipsec_out_t *io;
24328 	ipsec_policy_t *pp;
24329 	ipsec_action_t *ap;
24330 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
24331 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
24332 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
24333 
24334 	if (!io->ipsec_out_secure) {
24335 		/*
24336 		 * We came here by mistake.
24337 		 * Don't bother with ipsec processing
24338 		 * We should "discourage" this path in the future.
24339 		 */
24340 		ASSERT(io->ipsec_out_proc_begin == B_FALSE);
24341 		return (B_FALSE);
24342 	}
24343 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
24344 	ASSERT((io->ipsec_out_policy != NULL) ||
24345 	    (io->ipsec_out_act != NULL));
24346 
24347 	ASSERT(io->ipsec_out_failed == B_FALSE);
24348 
24349 	/*
24350 	 * IPSEC processing has started.
24351 	 */
24352 	io->ipsec_out_proc_begin = B_TRUE;
24353 	ap = io->ipsec_out_act;
24354 	if (ap == NULL) {
24355 		pp = io->ipsec_out_policy;
24356 		ASSERT(pp != NULL);
24357 		ap = pp->ipsp_act;
24358 		ASSERT(ap != NULL);
24359 	}
24360 
24361 	/*
24362 	 * We have an action.  now, let's select SA's.
24363 	 * (In the future, we can cache this in the conn_t..)
24364 	 */
24365 	if (ap->ipa_want_esp) {
24366 		if (io->ipsec_out_esp_sa == NULL) {
24367 			need_esp_acquire = !ipsec_outbound_sa(ipsec_mp,
24368 			    IPPROTO_ESP);
24369 		}
24370 		ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL);
24371 	}
24372 
24373 	if (ap->ipa_want_ah) {
24374 		if (io->ipsec_out_ah_sa == NULL) {
24375 			need_ah_acquire = !ipsec_outbound_sa(ipsec_mp,
24376 			    IPPROTO_AH);
24377 		}
24378 		ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL);
24379 		/*
24380 		 * The ESP and AH processing order needs to be preserved
24381 		 * when both protocols are required (ESP should be applied
24382 		 * before AH for an outbound packet). Force an ESP ACQUIRE
24383 		 * when both ESP and AH are required, and an AH ACQUIRE
24384 		 * is needed.
24385 		 */
24386 		if (ap->ipa_want_esp && need_ah_acquire)
24387 			need_esp_acquire = B_TRUE;
24388 	}
24389 
24390 	/*
24391 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
24392 	 * Release SAs that got referenced, but will not be used until we
24393 	 * acquire _all_ of the SAs we need.
24394 	 */
24395 	if (need_ah_acquire || need_esp_acquire) {
24396 		if (io->ipsec_out_ah_sa != NULL) {
24397 			IPSA_REFRELE(io->ipsec_out_ah_sa);
24398 			io->ipsec_out_ah_sa = NULL;
24399 		}
24400 		if (io->ipsec_out_esp_sa != NULL) {
24401 			IPSA_REFRELE(io->ipsec_out_esp_sa);
24402 			io->ipsec_out_esp_sa = NULL;
24403 		}
24404 
24405 		sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire);
24406 		return (B_FALSE);
24407 	}
24408 
24409 	return (B_TRUE);
24410 }
24411 
24412 /*
24413  * Process an IPSEC_OUT message and see what you can
24414  * do with it.
24415  * IPQoS Notes:
24416  * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for
24417  * IPSec.
24418  * XXX would like to nuke ire_t.
24419  * XXX ill_index better be "real"
24420  */
24421 void
24422 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index)
24423 {
24424 	ipsec_out_t *io;
24425 	ipsec_policy_t *pp;
24426 	ipsec_action_t *ap;
24427 	ipha_t *ipha;
24428 	ip6_t *ip6h;
24429 	mblk_t *mp;
24430 	ill_t *ill;
24431 	zoneid_t zoneid;
24432 	ipsec_status_t ipsec_rc;
24433 	boolean_t ill_need_rele = B_FALSE;
24434 
24435 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
24436 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
24437 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
24438 	mp = ipsec_mp->b_cont;
24439 
24440 	/*
24441 	 * Initiate IPPF processing. We do it here to account for packets
24442 	 * coming here that don't have any policy (i.e. !io->ipsec_out_secure).
24443 	 * We can check for ipsec_out_proc_begin even for such packets, as
24444 	 * they will always be false (asserted below).
24445 	 */
24446 	if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) {
24447 		ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ?
24448 		    io->ipsec_out_ill_index : ill_index);
24449 		if (mp == NULL) {
24450 			ip2dbg(("ipsec_out_process: packet dropped "\
24451 			    "during IPPF processing\n"));
24452 			freeb(ipsec_mp);
24453 			BUMP_MIB(&ip_mib, ipOutDiscards);
24454 			return;
24455 		}
24456 	}
24457 
24458 	if (!io->ipsec_out_secure) {
24459 		/*
24460 		 * We came here by mistake.
24461 		 * Don't bother with ipsec processing
24462 		 * Should "discourage" this path in the future.
24463 		 */
24464 		ASSERT(io->ipsec_out_proc_begin == B_FALSE);
24465 		goto done;
24466 	}
24467 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
24468 	ASSERT((io->ipsec_out_policy != NULL) ||
24469 	    (io->ipsec_out_act != NULL));
24470 	ASSERT(io->ipsec_out_failed == B_FALSE);
24471 
24472 	if (!ipsec_loaded()) {
24473 		ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
24474 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
24475 			BUMP_MIB(&ip_mib, ipOutDiscards);
24476 		} else {
24477 			BUMP_MIB(&ip6_mib, ipv6OutDiscards);
24478 		}
24479 		ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire,
24480 		    &ipdrops_ip_ipsec_not_loaded, &ip_dropper);
24481 		return;
24482 	}
24483 
24484 	/*
24485 	 * IPSEC processing has started.
24486 	 */
24487 	io->ipsec_out_proc_begin = B_TRUE;
24488 	ap = io->ipsec_out_act;
24489 	if (ap == NULL) {
24490 		pp = io->ipsec_out_policy;
24491 		ASSERT(pp != NULL);
24492 		ap = pp->ipsp_act;
24493 		ASSERT(ap != NULL);
24494 	}
24495 
24496 	/*
24497 	 * Save the outbound ill index. When the packet comes back
24498 	 * from IPsec, we make sure the ill hasn't changed or disappeared
24499 	 * before sending it the accelerated packet.
24500 	 */
24501 	if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) {
24502 		int ifindex;
24503 		ill = ire_to_ill(ire);
24504 		ifindex = ill->ill_phyint->phyint_ifindex;
24505 		io->ipsec_out_capab_ill_index = ifindex;
24506 	}
24507 
24508 	/*
24509 	 * The order of processing is first insert a IP header if needed.
24510 	 * Then insert the ESP header and then the AH header.
24511 	 */
24512 	if ((io->ipsec_out_se_done == B_FALSE) &&
24513 	    (ap->ipa_want_se)) {
24514 		/*
24515 		 * First get the outer IP header before sending
24516 		 * it to ESP.
24517 		 */
24518 		ipha_t *oipha, *iipha;
24519 		mblk_t *outer_mp, *inner_mp;
24520 
24521 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
24522 			(void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE,
24523 			    "ipsec_out_process: "
24524 			    "Self-Encapsulation failed: Out of memory\n");
24525 			freemsg(ipsec_mp);
24526 			BUMP_MIB(&ip_mib, ipOutDiscards);
24527 			return;
24528 		}
24529 		inner_mp = ipsec_mp->b_cont;
24530 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
24531 		oipha = (ipha_t *)outer_mp->b_rptr;
24532 		iipha = (ipha_t *)inner_mp->b_rptr;
24533 		*oipha = *iipha;
24534 		outer_mp->b_wptr += sizeof (ipha_t);
24535 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
24536 		    sizeof (ipha_t));
24537 		oipha->ipha_protocol = IPPROTO_ENCAP;
24538 		oipha->ipha_version_and_hdr_length =
24539 		    IP_SIMPLE_HDR_VERSION;
24540 		oipha->ipha_hdr_checksum = 0;
24541 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
24542 		outer_mp->b_cont = inner_mp;
24543 		ipsec_mp->b_cont = outer_mp;
24544 
24545 		io->ipsec_out_se_done = B_TRUE;
24546 		io->ipsec_out_encaps = B_TRUE;
24547 	}
24548 
24549 	if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) ||
24550 	    (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) &&
24551 	    !ipsec_out_select_sa(ipsec_mp))
24552 		return;
24553 
24554 	/*
24555 	 * By now, we know what SA's to use.  Toss over to ESP & AH
24556 	 * to do the heavy lifting.
24557 	 */
24558 	zoneid = io->ipsec_out_zoneid;
24559 	ASSERT(zoneid != ALL_ZONES);
24560 	if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) {
24561 		ASSERT(io->ipsec_out_esp_sa != NULL);
24562 		io->ipsec_out_esp_done = B_TRUE;
24563 		/*
24564 		 * Note that since hw accel can only apply one transform,
24565 		 * not two, we skip hw accel for ESP if we also have AH
24566 		 * This is an design limitation of the interface
24567 		 * which should be revisited.
24568 		 */
24569 		ASSERT(ire != NULL);
24570 		if (io->ipsec_out_ah_sa == NULL) {
24571 			ill = (ill_t *)ire->ire_stq->q_ptr;
24572 			ipsec_out_is_accelerated(ipsec_mp,
24573 			    io->ipsec_out_esp_sa, ill, ire);
24574 		}
24575 
24576 		ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp);
24577 		switch (ipsec_rc) {
24578 		case IPSEC_STATUS_SUCCESS:
24579 			break;
24580 		case IPSEC_STATUS_FAILED:
24581 			BUMP_MIB(&ip_mib, ipOutDiscards);
24582 			/* FALLTHRU */
24583 		case IPSEC_STATUS_PENDING:
24584 			return;
24585 		}
24586 	}
24587 
24588 	if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) {
24589 		ASSERT(io->ipsec_out_ah_sa != NULL);
24590 		io->ipsec_out_ah_done = B_TRUE;
24591 		if (ire == NULL) {
24592 			int idx = io->ipsec_out_capab_ill_index;
24593 			ill = ill_lookup_on_ifindex(idx, B_FALSE,
24594 			    NULL, NULL, NULL, NULL);
24595 			ill_need_rele = B_TRUE;
24596 		} else {
24597 			ill = (ill_t *)ire->ire_stq->q_ptr;
24598 		}
24599 		ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill,
24600 		    ire);
24601 
24602 		ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp);
24603 		switch (ipsec_rc) {
24604 		case IPSEC_STATUS_SUCCESS:
24605 			break;
24606 		case IPSEC_STATUS_FAILED:
24607 			BUMP_MIB(&ip_mib, ipOutDiscards);
24608 			/* FALLTHRU */
24609 		case IPSEC_STATUS_PENDING:
24610 			if (ill != NULL && ill_need_rele)
24611 				ill_refrele(ill);
24612 			return;
24613 		}
24614 	}
24615 	/*
24616 	 * We are done with IPSEC processing. Send it over
24617 	 * the wire.
24618 	 */
24619 done:
24620 	mp = ipsec_mp->b_cont;
24621 	ipha = (ipha_t *)mp->b_rptr;
24622 	if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
24623 		ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire);
24624 	} else {
24625 		ip6h = (ip6_t *)ipha;
24626 		ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire);
24627 	}
24628 	if (ill != NULL && ill_need_rele)
24629 		ill_refrele(ill);
24630 }
24631 
24632 /* ARGSUSED */
24633 void
24634 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy)
24635 {
24636 	opt_restart_t	*or;
24637 	int	err;
24638 	conn_t	*connp;
24639 
24640 	ASSERT(CONN_Q(q));
24641 	connp = Q_TO_CONN(q);
24642 
24643 	ASSERT(first_mp->b_datap->db_type == M_CTL);
24644 	or = (opt_restart_t *)first_mp->b_rptr;
24645 	/*
24646 	 * We don't need to pass any credentials here since this is just
24647 	 * a restart. The credentials are passed in when svr4_optcom_req
24648 	 * is called the first time (from ip_wput_nondata).
24649 	 */
24650 	if (or->or_type == T_SVR4_OPTMGMT_REQ) {
24651 		err = svr4_optcom_req(q, first_mp, NULL,
24652 		    &ip_opt_obj);
24653 	} else {
24654 		ASSERT(or->or_type == T_OPTMGMT_REQ);
24655 		err = tpi_optcom_req(q, first_mp, NULL,
24656 		    &ip_opt_obj);
24657 	}
24658 	if (err != EINPROGRESS) {
24659 		/* operation is done */
24660 		CONN_OPER_PENDING_DONE(connp);
24661 	}
24662 }
24663 
24664 /*
24665  * ioctls that go through a down/up sequence may need to wait for the down
24666  * to complete. This involves waiting for the ire and ipif refcnts to go down
24667  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
24668  */
24669 /* ARGSUSED */
24670 void
24671 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
24672 {
24673 	struct iocblk *iocp;
24674 	mblk_t *mp1;
24675 	ipif_t	*ipif;
24676 	ip_ioctl_cmd_t *ipip;
24677 	int err;
24678 	sin_t	*sin;
24679 	struct lifreq *lifr;
24680 	struct ifreq *ifr;
24681 
24682 	iocp = (struct iocblk *)mp->b_rptr;
24683 	ASSERT(ipsq != NULL);
24684 	/* Existence of mp1 verified in ip_wput_nondata */
24685 	mp1 = mp->b_cont->b_cont;
24686 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
24687 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
24688 		ill_t *ill;
24689 		/*
24690 		 * Special case where ipsq_current_ipif may not be set.
24691 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
24692 		 * ill could also have become part of a ipmp group in the
24693 		 * process, we are here as were not able to complete the
24694 		 * operation in ipif_set_values because we could not become
24695 		 * exclusive on the new ipsq, In such a case ipsq_current_ipif
24696 		 * will not be set so we need to set it.
24697 		 */
24698 		ill = (ill_t *)q->q_ptr;
24699 		ipsq->ipsq_current_ipif = ill->ill_ipif;
24700 		ipsq->ipsq_last_cmd = ipip->ipi_cmd;
24701 	}
24702 
24703 	ipif = ipsq->ipsq_current_ipif;
24704 	ASSERT(ipif != NULL);
24705 	if (ipip->ipi_cmd_type == IF_CMD) {
24706 		/* This a old style SIOC[GS]IF* command */
24707 		ifr = (struct ifreq *)mp1->b_rptr;
24708 		sin = (sin_t *)&ifr->ifr_addr;
24709 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
24710 		/* This a new style SIOC[GS]LIF* command */
24711 		lifr = (struct lifreq *)mp1->b_rptr;
24712 		sin = (sin_t *)&lifr->lifr_addr;
24713 	} else {
24714 		sin = NULL;
24715 	}
24716 
24717 	err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip,
24718 	    (void *)mp1->b_rptr);
24719 
24720 	/* SIOCLIFREMOVEIF could have removed the ipif */
24721 	ip_ioctl_finish(q, mp, err,
24722 	    ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT,
24723 	    ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq);
24724 }
24725 
24726 /*
24727  * ioctl processing
24728  *
24729  * ioctl processing starts with ip_sioctl_copyin_setup which looks up
24730  * the ioctl command in the ioctl tables and determines the copyin data size
24731  * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that
24732  * size.
24733  *
24734  * ioctl processing then continues when the M_IOCDATA makes its way down.
24735  * Now the ioctl is looked up again in the ioctl table, and its properties are
24736  * extracted. The associated 'conn' is then refheld till the end of the ioctl
24737  * and the general ioctl processing function ip_process_ioctl is called.
24738  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
24739  * so goes thru the serialization primitive ipsq_try_enter. Then the
24740  * appropriate function to handle the ioctl is called based on the entry in
24741  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
24742  * which also refreleases the 'conn' that was refheld at the start of the
24743  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
24744  * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq
24745  * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel.
24746  *
24747  * Many exclusive ioctls go thru an internal down up sequence as part of
24748  * the operation. For example an attempt to change the IP address of an
24749  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
24750  * does all the cleanup such as deleting all ires that use this address.
24751  * Then we need to wait till all references to the interface go away.
24752  */
24753 void
24754 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
24755 {
24756 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
24757 	ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg;
24758 	cmd_info_t ci;
24759 	int err;
24760 	boolean_t entered_ipsq = B_FALSE;
24761 
24762 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
24763 
24764 	if (ipip == NULL)
24765 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
24766 
24767 	/*
24768 	 * SIOCLIFADDIF needs to go thru a special path since the
24769 	 * ill may not exist yet. This happens in the case of lo0
24770 	 * which is created using this ioctl.
24771 	 */
24772 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
24773 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
24774 		ip_ioctl_finish(q, mp, err,
24775 		    ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT,
24776 		    NULL, NULL);
24777 		return;
24778 	}
24779 
24780 	ci.ci_ipif = NULL;
24781 	switch (ipip->ipi_cmd_type) {
24782 	case IF_CMD:
24783 	case LIF_CMD:
24784 		/*
24785 		 * ioctls that pass in a [l]ifreq appear here.
24786 		 * ip_extract_lifreq_cmn returns a refheld ipif in
24787 		 * ci.ci_ipif
24788 		 */
24789 		err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type,
24790 		    ipip->ipi_flags, &ci, ip_process_ioctl);
24791 		if (err != 0) {
24792 			ip_ioctl_finish(q, mp, err,
24793 			    ipip->ipi_flags & IPI_GET_CMD ?
24794 			    COPYOUT : NO_COPYOUT, NULL, NULL);
24795 			return;
24796 		}
24797 		ASSERT(ci.ci_ipif != NULL);
24798 		break;
24799 
24800 	case TUN_CMD:
24801 		/*
24802 		 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns
24803 		 * a refheld ipif in ci.ci_ipif
24804 		 */
24805 		err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl);
24806 		if (err != 0) {
24807 			ip_ioctl_finish(q, mp, err,
24808 			    ipip->ipi_flags & IPI_GET_CMD ?
24809 			    COPYOUT : NO_COPYOUT, NULL, NULL);
24810 			return;
24811 		}
24812 		ASSERT(ci.ci_ipif != NULL);
24813 		break;
24814 
24815 	case MISC_CMD:
24816 		/*
24817 		 * ioctls that neither pass in [l]ifreq or iftun_req come here
24818 		 * For eg. SIOCGLIFCONF will appear here.
24819 		 */
24820 		switch (ipip->ipi_cmd) {
24821 		case IF_UNITSEL:
24822 			/* ioctl comes down the ill */
24823 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
24824 			ipif_refhold(ci.ci_ipif);
24825 			break;
24826 		case SIOCGMSFILTER:
24827 		case SIOCSMSFILTER:
24828 		case SIOCGIPMSFILTER:
24829 		case SIOCSIPMSFILTER:
24830 			err = ip_extract_msfilter(q, mp, &ci.ci_ipif,
24831 			    ip_process_ioctl);
24832 			if (err != 0) {
24833 				ip_ioctl_finish(q, mp, err,
24834 				    ipip->ipi_flags & IPI_GET_CMD ?
24835 				    COPYOUT : NO_COPYOUT, NULL, NULL);
24836 				return;
24837 			}
24838 			break;
24839 		}
24840 		err = 0;
24841 		ci.ci_sin = NULL;
24842 		ci.ci_sin6 = NULL;
24843 		ci.ci_lifr = NULL;
24844 		break;
24845 	}
24846 
24847 	/*
24848 	 * If ipsq is non-null, we are already being called exclusively
24849 	 */
24850 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
24851 	if (!(ipip->ipi_flags & IPI_WR)) {
24852 		/*
24853 		 * A return value of EINPROGRESS means the ioctl is
24854 		 * either queued and waiting for some reason or has
24855 		 * already completed.
24856 		 */
24857 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
24858 		    ci.ci_lifr);
24859 		if (ci.ci_ipif != NULL)
24860 			ipif_refrele(ci.ci_ipif);
24861 		ip_ioctl_finish(q, mp, err,
24862 		    ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT,
24863 		    NULL, NULL);
24864 		return;
24865 	}
24866 
24867 	ASSERT(ci.ci_ipif != NULL);
24868 
24869 	if (ipsq == NULL) {
24870 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp,
24871 		    ip_process_ioctl, NEW_OP, B_TRUE);
24872 		entered_ipsq = B_TRUE;
24873 	}
24874 	/*
24875 	 * Release the ipif so that ipif_down and friends that wait for
24876 	 * references to go away are not misled about the current ipif_refcnt
24877 	 * values. We are writer so we can access the ipif even after releasing
24878 	 * the ipif.
24879 	 */
24880 	ipif_refrele(ci.ci_ipif);
24881 	if (ipsq == NULL)
24882 		return;
24883 
24884 	mutex_enter(&ipsq->ipsq_lock);
24885 	ASSERT(ipsq->ipsq_current_ipif == NULL);
24886 	ipsq->ipsq_current_ipif = ci.ci_ipif;
24887 	ipsq->ipsq_last_cmd = ipip->ipi_cmd;
24888 	mutex_exit(&ipsq->ipsq_lock);
24889 	mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock);
24890 	/*
24891 	 * For most set ioctls that come here, this serves as a single point
24892 	 * where we set the IPIF_CHANGING flag. This ensures that there won't
24893 	 * be any new references to the ipif. This helps functions that go
24894 	 * through this path and end up trying to wait for the refcnts
24895 	 * associated with the ipif to go down to zero. Some exceptions are
24896 	 * Failover, Failback, and Groupname commands that operate on more than
24897 	 * just the ci.ci_ipif. These commands internally determine the
24898 	 * set of ipif's they operate on and set and clear the IPIF_CHANGING
24899 	 * flags on that set. Another exception is the Removeif command that
24900 	 * sets the IPIF_CONDEMNED flag internally after identifying the right
24901 	 * ipif to operate on.
24902 	 */
24903 	if (ipip->ipi_cmd != SIOCLIFREMOVEIF &&
24904 	    ipip->ipi_cmd != SIOCLIFFAILOVER &&
24905 	    ipip->ipi_cmd != SIOCLIFFAILBACK &&
24906 	    ipip->ipi_cmd != SIOCSLIFGROUPNAME)
24907 		(ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING;
24908 	mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock);
24909 
24910 	/*
24911 	 * A return value of EINPROGRESS means the ioctl is
24912 	 * either queued and waiting for some reason or has
24913 	 * already completed.
24914 	 */
24915 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
24916 	    ci.ci_lifr);
24917 
24918 	/* SIOCLIFREMOVEIF could have removed the ipif */
24919 	ip_ioctl_finish(q, mp, err,
24920 	    ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT,
24921 	    ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq);
24922 
24923 	if (entered_ipsq)
24924 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
24925 }
24926 
24927 /*
24928  * Complete the ioctl. Typically ioctls use the mi package and need to
24929  * do mi_copyout/mi_copy_done.
24930  */
24931 void
24932 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode,
24933     ipif_t *ipif, ipsq_t *ipsq)
24934 {
24935 	conn_t	*connp = NULL;
24936 
24937 	if (err == EINPROGRESS)
24938 		return;
24939 
24940 	if (CONN_Q(q)) {
24941 		connp = Q_TO_CONN(q);
24942 		ASSERT(connp->conn_ref >= 2);
24943 	}
24944 
24945 	switch (mode) {
24946 	case COPYOUT:
24947 		if (err == 0)
24948 			mi_copyout(q, mp);
24949 		else
24950 			mi_copy_done(q, mp, err);
24951 		break;
24952 
24953 	case NO_COPYOUT:
24954 		mi_copy_done(q, mp, err);
24955 		break;
24956 
24957 	default:
24958 		/* An ioctl aborted through a conn close would take this path */
24959 		break;
24960 	}
24961 
24962 	/*
24963 	 * The refhold placed at the start of the ioctl is released here.
24964 	 */
24965 	if (connp != NULL)
24966 		CONN_OPER_PENDING_DONE(connp);
24967 
24968 	/*
24969 	 * If the ioctl were an exclusive ioctl it would have set
24970 	 * IPIF_CHANGING at the start of the ioctl which is undone here.
24971 	 */
24972 	if (ipif != NULL) {
24973 		mutex_enter(&(ipif)->ipif_ill->ill_lock);
24974 		ipif->ipif_state_flags &= ~IPIF_CHANGING;
24975 		mutex_exit(&(ipif)->ipif_ill->ill_lock);
24976 	}
24977 
24978 	/*
24979 	 * Clear the current ipif in the ipsq at the completion of the ioctl.
24980 	 * Note that a non-null ipsq_current_ipif prevents new ioctls from
24981 	 * entering the ipsq
24982 	 */
24983 	if (ipsq != NULL) {
24984 		mutex_enter(&ipsq->ipsq_lock);
24985 		ipsq->ipsq_current_ipif = NULL;
24986 		mutex_exit(&ipsq->ipsq_lock);
24987 	}
24988 }
24989 
24990 /*
24991  * This is called from ip_wput_nondata to resume a deferred TCP bind.
24992  */
24993 /* ARGSUSED */
24994 void
24995 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2)
24996 {
24997 	conn_t *connp = arg;
24998 	tcp_t	*tcp;
24999 
25000 	ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL);
25001 	tcp = connp->conn_tcp;
25002 
25003 	if (connp->conn_tcp->tcp_state == TCPS_CLOSED)
25004 		freemsg(mp);
25005 	else
25006 		tcp_rput_other(tcp, mp);
25007 	CONN_OPER_PENDING_DONE(connp);
25008 }
25009 
25010 /* Called from ip_wput for all non data messages */
25011 /* ARGSUSED */
25012 void
25013 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
25014 {
25015 	mblk_t		*mp1;
25016 	ire_t		*ire;
25017 	ill_t		*ill;
25018 	struct iocblk	*iocp;
25019 	ip_ioctl_cmd_t	*ipip;
25020 	cred_t		*cr;
25021 	conn_t		*connp = NULL;
25022 	int		cmd, err;
25023 
25024 	if (CONN_Q(q))
25025 		connp = Q_TO_CONN(q);
25026 
25027 	cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q));
25028 
25029 	/* Check if it is a queue to /dev/sctp. */
25030 	if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP &&
25031 	    connp->conn_rq == NULL) {
25032 		sctp_wput(q, mp);
25033 		return;
25034 	}
25035 
25036 	switch (DB_TYPE(mp)) {
25037 	case M_IOCTL:
25038 		/*
25039 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
25040 		 * will arrange to copy in associated control structures.
25041 		 */
25042 		ip_sioctl_copyin_setup(q, mp);
25043 		return;
25044 	case M_IOCDATA:
25045 		/*
25046 		 * Ensure that this is associated with one of our trans-
25047 		 * parent ioctls.  If it's not ours, discard it if we're
25048 		 * running as a driver, or pass it on if we're a module.
25049 		 */
25050 		iocp = (struct iocblk *)mp->b_rptr;
25051 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
25052 		if (ipip == NULL) {
25053 			if (q->q_next == NULL) {
25054 				goto nak;
25055 			} else {
25056 				putnext(q, mp);
25057 			}
25058 			return;
25059 		} else if ((q->q_next != NULL) &&
25060 		    !(ipip->ipi_flags & IPI_MODOK)) {
25061 			/*
25062 			 * the ioctl is one we recognise, but is not
25063 			 * consumed by IP as a module, pass M_IOCDATA
25064 			 * for processing downstream, but only for
25065 			 * common Streams ioctls.
25066 			 */
25067 			if (ipip->ipi_flags & IPI_PASS_DOWN) {
25068 				putnext(q, mp);
25069 				return;
25070 			} else {
25071 				goto nak;
25072 			}
25073 		}
25074 
25075 		/* IOCTL continuation following copyin or copyout. */
25076 		if (mi_copy_state(q, mp, NULL) == -1) {
25077 			/*
25078 			 * The copy operation failed.  mi_copy_state already
25079 			 * cleaned up, so we're out of here.
25080 			 */
25081 			return;
25082 		}
25083 		/*
25084 		 * If we just completed a copy in, we become writer and
25085 		 * continue processing in ip_sioctl_copyin_done.  If it
25086 		 * was a copy out, we call mi_copyout again.  If there is
25087 		 * nothing more to copy out, it will complete the IOCTL.
25088 		 */
25089 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
25090 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
25091 				mi_copy_done(q, mp, EPROTO);
25092 				return;
25093 			}
25094 			/*
25095 			 * Check for cases that need more copying.  A return
25096 			 * value of 0 means a second copyin has been started,
25097 			 * so we return; a return value of 1 means no more
25098 			 * copying is needed, so we continue.
25099 			 */
25100 			cmd = iocp->ioc_cmd;
25101 			if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER ||
25102 			    cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) &&
25103 			    MI_COPY_COUNT(mp) == 1) {
25104 				if (ip_copyin_msfilter(q, mp) == 0)
25105 					return;
25106 			}
25107 			/*
25108 			 * Refhold the conn, till the ioctl completes. This is
25109 			 * needed in case the ioctl ends up in the pending mp
25110 			 * list. Every mp in the ill_pending_mp list and
25111 			 * the ipsq_pending_mp must have a refhold on the conn
25112 			 * to resume processing. The refhold is released when
25113 			 * the ioctl completes. (normally or abnormally)
25114 			 * In all cases ip_ioctl_finish is called to finish
25115 			 * the ioctl.
25116 			 */
25117 			if (connp != NULL) {
25118 				/* This is not a reentry */
25119 				ASSERT(ipsq == NULL);
25120 				CONN_INC_REF(connp);
25121 			} else {
25122 				if (!(ipip->ipi_flags & IPI_MODOK)) {
25123 					mi_copy_done(q, mp, EINVAL);
25124 					return;
25125 				}
25126 			}
25127 
25128 			ip_process_ioctl(ipsq, q, mp, ipip);
25129 
25130 		} else {
25131 			mi_copyout(q, mp);
25132 		}
25133 		return;
25134 nak:
25135 		iocp->ioc_error = EINVAL;
25136 		mp->b_datap->db_type = M_IOCNAK;
25137 		iocp->ioc_count = 0;
25138 		qreply(q, mp);
25139 		return;
25140 
25141 	case M_IOCNAK:
25142 		/*
25143 		 * The only way we could get here is if a resolver didn't like
25144 		 * an IOCTL we sent it.	 This shouldn't happen.
25145 		 */
25146 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
25147 		    "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x",
25148 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
25149 		freemsg(mp);
25150 		return;
25151 	case M_IOCACK:
25152 		/* Finish socket ioctls passed through to ARP. */
25153 		ip_sioctl_iocack(q, mp);
25154 		return;
25155 	case M_FLUSH:
25156 		if (*mp->b_rptr & FLUSHW)
25157 			flushq(q, FLUSHALL);
25158 		if (q->q_next) {
25159 			/*
25160 			 * M_FLUSH is sent up to IP by some drivers during
25161 			 * unbind. ip_rput has already replied to it. We are
25162 			 * here for the M_FLUSH that we originated in IP
25163 			 * before sending the unbind request to the driver.
25164 			 * Just free it as we don't queue packets in IP
25165 			 * on the write side of the device instance.
25166 			 */
25167 			freemsg(mp);
25168 			return;
25169 		}
25170 		if (*mp->b_rptr & FLUSHR) {
25171 			*mp->b_rptr &= ~FLUSHW;
25172 			qreply(q, mp);
25173 			return;
25174 		}
25175 		freemsg(mp);
25176 		return;
25177 	case IRE_DB_REQ_TYPE:
25178 		/* An Upper Level Protocol wants a copy of an IRE. */
25179 		ip_ire_req(q, mp);
25180 		return;
25181 	case M_CTL:
25182 		if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t))
25183 			break;
25184 
25185 		if (connp != NULL && *(uint32_t *)mp->b_rptr ==
25186 		    IP_ULP_OUT_LABELED) {
25187 			out_labeled_t *olp;
25188 
25189 			if (mp->b_wptr - mp->b_rptr != sizeof (*olp))
25190 				break;
25191 			olp = (out_labeled_t *)mp->b_rptr;
25192 			connp->conn_ulp_labeled = olp->out_qnext == q;
25193 			freemsg(mp);
25194 			return;
25195 		}
25196 
25197 		/* M_CTL messages are used by ARP to tell us things. */
25198 		if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t))
25199 			break;
25200 		switch (((arc_t *)mp->b_rptr)->arc_cmd) {
25201 		case AR_ENTRY_SQUERY:
25202 			ip_wput_ctl(q, mp);
25203 			return;
25204 		case AR_CLIENT_NOTIFY:
25205 			ip_arp_news(q, mp);
25206 			return;
25207 		case AR_DLPIOP_DONE:
25208 			ASSERT(q->q_next != NULL);
25209 			ill = (ill_t *)q->q_ptr;
25210 			/* qwriter_ip releases the refhold */
25211 			/* refhold on ill stream is ok without ILL_CAN_LOOKUP */
25212 			ill_refhold(ill);
25213 			(void) qwriter_ip(NULL, ill, q, mp, ip_arp_done,
25214 			    CUR_OP, B_FALSE);
25215 			return;
25216 		case AR_ARP_CLOSING:
25217 			/*
25218 			 * ARP (above us) is closing. If no ARP bringup is
25219 			 * currently pending, ack the message so that ARP
25220 			 * can complete its close. Also mark ill_arp_closing
25221 			 * so that new ARP bringups will fail. If any
25222 			 * ARP bringup is currently in progress, we will
25223 			 * ack this when the current ARP bringup completes.
25224 			 */
25225 			ASSERT(q->q_next != NULL);
25226 			ill = (ill_t *)q->q_ptr;
25227 			mutex_enter(&ill->ill_lock);
25228 			ill->ill_arp_closing = 1;
25229 			if (!ill->ill_arp_bringup_pending) {
25230 				mutex_exit(&ill->ill_lock);
25231 				qreply(q, mp);
25232 			} else {
25233 				mutex_exit(&ill->ill_lock);
25234 				freemsg(mp);
25235 			}
25236 			return;
25237 		default:
25238 			break;
25239 		}
25240 		break;
25241 	case M_PROTO:
25242 	case M_PCPROTO:
25243 		/*
25244 		 * The only PROTO messages we expect are ULP binds and
25245 		 * copies of option negotiation acknowledgements.
25246 		 */
25247 		switch (((union T_primitives *)mp->b_rptr)->type) {
25248 		case O_T_BIND_REQ:
25249 		case T_BIND_REQ: {
25250 			/* Request can get queued in bind */
25251 			ASSERT(connp != NULL);
25252 			/*
25253 			 * Both TCP and UDP call ip_bind_{v4,v6}() directly
25254 			 * instead of going through this path.  We only get
25255 			 * here in the following cases:
25256 			 *
25257 			 * a. Bind retries, where ipsq is non-NULL.
25258 			 * b. T_BIND_REQ is issued from non TCP/UDP
25259 			 *    transport, e.g. icmp for raw socket,
25260 			 *    in which case ipsq will be NULL.
25261 			 */
25262 			ASSERT(ipsq != NULL ||
25263 			    (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp)));
25264 
25265 			/* Don't increment refcnt if this is a re-entry */
25266 			if (ipsq == NULL)
25267 				CONN_INC_REF(connp);
25268 			mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp,
25269 			    connp, NULL) : ip_bind_v4(q, mp, connp);
25270 			if (mp == NULL)
25271 				return;
25272 			if (IPCL_IS_TCP(connp)) {
25273 				/*
25274 				 * In the case of TCP endpoint we
25275 				 * come here only for bind retries
25276 				 */
25277 				ASSERT(ipsq != NULL);
25278 				CONN_INC_REF(connp);
25279 				squeue_fill(connp->conn_sqp, mp,
25280 				    ip_resume_tcp_bind, connp,
25281 				    SQTAG_BIND_RETRY);
25282 				return;
25283 			} else if (IPCL_IS_UDP(connp)) {
25284 				/*
25285 				 * In the case of UDP endpoint we
25286 				 * come here only for bind retries
25287 				 */
25288 				ASSERT(ipsq != NULL);
25289 				udp_resume_bind(connp, mp);
25290 				return;
25291 			}
25292 			qreply(q, mp);
25293 			CONN_OPER_PENDING_DONE(connp);
25294 			return;
25295 		}
25296 		case T_SVR4_OPTMGMT_REQ:
25297 			ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n",
25298 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
25299 
25300 			ASSERT(connp != NULL);
25301 			if (!snmpcom_req(q, mp, ip_snmp_set,
25302 			    ip_snmp_get, cr)) {
25303 				/*
25304 				 * Call svr4_optcom_req so that it can
25305 				 * generate the ack. We don't come here
25306 				 * if this operation is being restarted.
25307 				 * ip_restart_optmgmt will drop the conn ref.
25308 				 * In the case of ipsec option after the ipsec
25309 				 * load is complete conn_restart_ipsec_waiter
25310 				 * drops the conn ref.
25311 				 */
25312 				ASSERT(ipsq == NULL);
25313 				CONN_INC_REF(connp);
25314 				if (ip_check_for_ipsec_opt(q, mp))
25315 					return;
25316 				err = svr4_optcom_req(q, mp, cr, &ip_opt_obj);
25317 				if (err != EINPROGRESS) {
25318 					/* Operation is done */
25319 					CONN_OPER_PENDING_DONE(connp);
25320 				}
25321 			}
25322 			return;
25323 		case T_OPTMGMT_REQ:
25324 			ip2dbg(("ip_wput: T_OPTMGMT_REQ\n"));
25325 			/*
25326 			 * Note: No snmpcom_req support through new
25327 			 * T_OPTMGMT_REQ.
25328 			 * Call tpi_optcom_req so that it can
25329 			 * generate the ack.
25330 			 */
25331 			ASSERT(connp != NULL);
25332 			ASSERT(ipsq == NULL);
25333 			/*
25334 			 * We don't come here for restart. ip_restart_optmgmt
25335 			 * will drop the conn ref. In the case of ipsec option
25336 			 * after the ipsec load is complete
25337 			 * conn_restart_ipsec_waiter drops the conn ref.
25338 			 */
25339 			CONN_INC_REF(connp);
25340 			if (ip_check_for_ipsec_opt(q, mp))
25341 				return;
25342 			err = tpi_optcom_req(q, mp, cr, &ip_opt_obj);
25343 			if (err != EINPROGRESS) {
25344 				/* Operation is done */
25345 				CONN_OPER_PENDING_DONE(connp);
25346 			}
25347 			return;
25348 		case T_UNBIND_REQ:
25349 			mp = ip_unbind(q, mp);
25350 			qreply(q, mp);
25351 			return;
25352 		default:
25353 			/*
25354 			 * Have to drop any DLPI messages coming down from
25355 			 * arp (such as an info_req which would cause ip
25356 			 * to receive an extra info_ack if it was passed
25357 			 * through.
25358 			 */
25359 			ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n",
25360 			    (int)*(uint_t *)mp->b_rptr));
25361 			freemsg(mp);
25362 			return;
25363 		}
25364 		/* NOTREACHED */
25365 	case IRE_DB_TYPE: {
25366 		nce_t		*nce;
25367 		ill_t		*ill;
25368 		in6_addr_t	gw_addr_v6;
25369 
25370 
25371 		/*
25372 		 * This is a response back from a resolver.  It
25373 		 * consists of a message chain containing:
25374 		 *	IRE_MBLK-->LL_HDR_MBLK->pkt
25375 		 * The IRE_MBLK is the one we allocated in ip_newroute.
25376 		 * The LL_HDR_MBLK is the DLPI header to use to get
25377 		 * the attached packet, and subsequent ones for the
25378 		 * same destination, transmitted.
25379 		 */
25380 		if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t))    /* ire */
25381 			break;
25382 		/*
25383 		 * First, check to make sure the resolution succeeded.
25384 		 * If it failed, the second mblk will be empty.
25385 		 * If it is, free the chain, dropping the packet.
25386 		 * (We must ire_delete the ire; that frees the ire mblk)
25387 		 * We're doing this now to support PVCs for ATM; it's
25388 		 * a partial xresolv implementation. When we fully implement
25389 		 * xresolv interfaces, instead of freeing everything here
25390 		 * we'll initiate neighbor discovery.
25391 		 *
25392 		 * For v4 (ARP and other external resolvers) the resolver
25393 		 * frees the message, so no check is needed. This check
25394 		 * is required, though, for a full xresolve implementation.
25395 		 * Including this code here now both shows how external
25396 		 * resolvers can NACK a resolution request using an
25397 		 * existing design that has no specific provisions for NACKs,
25398 		 * and also takes into account that the current non-ARP
25399 		 * external resolver has been coded to use this method of
25400 		 * NACKing for all IPv6 (xresolv) cases,
25401 		 * whether our xresolv implementation is complete or not.
25402 		 *
25403 		 */
25404 		ire = (ire_t *)mp->b_rptr;
25405 		ill = ire_to_ill(ire);
25406 		mp1 = mp->b_cont;		/* dl_unitdata_req */
25407 		if (mp1->b_rptr == mp1->b_wptr) {
25408 			if (ire->ire_ipversion == IPV6_VERSION) {
25409 				/*
25410 				 * XRESOLV interface.
25411 				 */
25412 				ASSERT(ill->ill_flags & ILLF_XRESOLV);
25413 				mutex_enter(&ire->ire_lock);
25414 				gw_addr_v6 = ire->ire_gateway_addr_v6;
25415 				mutex_exit(&ire->ire_lock);
25416 				if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) {
25417 					nce = ndp_lookup(ill,
25418 					    &ire->ire_addr_v6, B_FALSE);
25419 				} else {
25420 					nce = ndp_lookup(ill, &gw_addr_v6,
25421 					    B_FALSE);
25422 				}
25423 				if (nce != NULL) {
25424 					nce_resolv_failed(nce);
25425 					ndp_delete(nce);
25426 					NCE_REFRELE(nce);
25427 				}
25428 			}
25429 			mp->b_cont = NULL;
25430 			freemsg(mp1);		/* frees the pkt as well */
25431 			ire_delete((ire_t *)mp->b_rptr);
25432 			return;
25433 		}
25434 		/*
25435 		 * Split them into IRE_MBLK and pkt and feed it into
25436 		 * ire_add_then_send. Then in ire_add_then_send
25437 		 * the IRE will be added, and then the packet will be
25438 		 * run back through ip_wput. This time it will make
25439 		 * it to the wire.
25440 		 */
25441 		mp->b_cont = NULL;
25442 		mp = mp1->b_cont;		/* now, mp points to pkt */
25443 		mp1->b_cont = NULL;
25444 		ip1dbg(("ip_wput_nondata: reply from external resolver \n"));
25445 		if (ire->ire_ipversion == IPV6_VERSION) {
25446 			/*
25447 			 * XRESOLV interface. Find the nce and put a copy
25448 			 * of the dl_unitdata_req in nce_res_mp
25449 			 */
25450 			ASSERT(ill->ill_flags & ILLF_XRESOLV);
25451 			mutex_enter(&ire->ire_lock);
25452 			gw_addr_v6 = ire->ire_gateway_addr_v6;
25453 			mutex_exit(&ire->ire_lock);
25454 			if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) {
25455 				nce = ndp_lookup(ill, &ire->ire_addr_v6,
25456 				    B_FALSE);
25457 			} else {
25458 				nce = ndp_lookup(ill, &gw_addr_v6, B_FALSE);
25459 			}
25460 			if (nce != NULL) {
25461 				/*
25462 				 * We have to protect nce_res_mp here
25463 				 * from being accessed by other threads
25464 				 * while we change the mblk pointer.
25465 				 * Other functions will also lock the nce when
25466 				 * accessing nce_res_mp.
25467 				 *
25468 				 * The reason we change the mblk pointer
25469 				 * here rather than copying the resolved address
25470 				 * into the template is that, unlike with
25471 				 * ethernet, we have no guarantee that the
25472 				 * resolved address length will be
25473 				 * smaller than or equal to the lla length
25474 				 * with which the template was allocated,
25475 				 * (for ethernet, they're equal)
25476 				 * so we have to use the actual resolved
25477 				 * address mblk - which holds the real
25478 				 * dl_unitdata_req with the resolved address.
25479 				 *
25480 				 * Doing this is the same behavior as was
25481 				 * previously used in the v4 ARP case.
25482 				 */
25483 				mutex_enter(&nce->nce_lock);
25484 				if (nce->nce_res_mp != NULL)
25485 					freemsg(nce->nce_res_mp);
25486 				nce->nce_res_mp = mp1;
25487 				mutex_exit(&nce->nce_lock);
25488 				/*
25489 				 * We do a fastpath probe here because
25490 				 * we have resolved the address without
25491 				 * using Neighbor Discovery.
25492 				 * In the non-XRESOLV v6 case, the fastpath
25493 				 * probe is done right after neighbor
25494 				 * discovery completes.
25495 				 */
25496 				if (nce->nce_res_mp != NULL) {
25497 					int res;
25498 					nce_fastpath_list_add(nce);
25499 					res = ill_fastpath_probe(ill,
25500 					    nce->nce_res_mp);
25501 					if (res != 0 && res != EAGAIN)
25502 						nce_fastpath_list_delete(nce);
25503 				}
25504 
25505 				ire_add_then_send(q, ire, mp);
25506 				/*
25507 				 * Now we have to clean out any packets
25508 				 * that may have been queued on the nce
25509 				 * while it was waiting for address resolution
25510 				 * to complete.
25511 				 */
25512 				mutex_enter(&nce->nce_lock);
25513 				mp1 = nce->nce_qd_mp;
25514 				nce->nce_qd_mp = NULL;
25515 				mutex_exit(&nce->nce_lock);
25516 				while (mp1 != NULL) {
25517 					mblk_t *nxt_mp;
25518 					queue_t *fwdq = NULL;
25519 					ill_t   *inbound_ill;
25520 					uint_t ifindex;
25521 
25522 					nxt_mp = mp1->b_next;
25523 					mp1->b_next = NULL;
25524 					/*
25525 					 * Retrieve ifindex stored in
25526 					 * ip_rput_data_v6()
25527 					 */
25528 					ifindex =
25529 					    (uint_t)(uintptr_t)mp1->b_prev;
25530 					inbound_ill =
25531 						ill_lookup_on_ifindex(ifindex,
25532 						    B_TRUE, NULL, NULL, NULL,
25533 						    NULL);
25534 					mp1->b_prev = NULL;
25535 					if (inbound_ill != NULL)
25536 						fwdq = inbound_ill->ill_rq;
25537 
25538 					if (fwdq != NULL) {
25539 						put(fwdq, mp1);
25540 						ill_refrele(inbound_ill);
25541 					} else
25542 						put(WR(ill->ill_rq), mp1);
25543 					mp1 = nxt_mp;
25544 				}
25545 				NCE_REFRELE(nce);
25546 			} else {	/* nce is NULL; clean up */
25547 				ire_delete(ire);
25548 				freemsg(mp);
25549 				freemsg(mp1);
25550 				return;
25551 			}
25552 		} else {
25553 			ire->ire_dlureq_mp = mp1;
25554 			ire_add_then_send(q, ire, mp);
25555 		}
25556 		return;	/* All is well, the packet has been sent. */
25557 	}
25558 	default:
25559 		break;
25560 	}
25561 	if (q->q_next) {
25562 		putnext(q, mp);
25563 	} else
25564 		freemsg(mp);
25565 }
25566 
25567 /*
25568  * Process IP options in an outbound packet.  Modify the destination if there
25569  * is a source route option.
25570  * Returns non-zero if something fails in which case an ICMP error has been
25571  * sent and mp freed.
25572  */
25573 static int
25574 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha,
25575     boolean_t mctl_present, zoneid_t zoneid)
25576 {
25577 	ipoptp_t	opts;
25578 	uchar_t		*opt;
25579 	uint8_t		optval;
25580 	uint8_t		optlen;
25581 	ipaddr_t	dst;
25582 	intptr_t	code = 0;
25583 	mblk_t		*mp;
25584 	ire_t		*ire = NULL;
25585 
25586 	ip2dbg(("ip_wput_options\n"));
25587 	mp = ipsec_mp;
25588 	if (mctl_present) {
25589 		mp = ipsec_mp->b_cont;
25590 	}
25591 
25592 	dst = ipha->ipha_dst;
25593 	for (optval = ipoptp_first(&opts, ipha);
25594 	    optval != IPOPT_EOL;
25595 	    optval = ipoptp_next(&opts)) {
25596 		opt = opts.ipoptp_cur;
25597 		optlen = opts.ipoptp_len;
25598 		ip2dbg(("ip_wput_options: opt %d, len %d\n",
25599 		    optval, optlen));
25600 		switch (optval) {
25601 			uint32_t off;
25602 		case IPOPT_SSRR:
25603 		case IPOPT_LSRR:
25604 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
25605 				ip1dbg((
25606 				    "ip_wput_options: bad option offset\n"));
25607 				code = (char *)&opt[IPOPT_OLEN] -
25608 				    (char *)ipha;
25609 				goto param_prob;
25610 			}
25611 			off = opt[IPOPT_OFFSET];
25612 			ip1dbg(("ip_wput_options: next hop 0x%x\n",
25613 			    ntohl(dst)));
25614 			/*
25615 			 * For strict: verify that dst is directly
25616 			 * reachable.
25617 			 */
25618 			if (optval == IPOPT_SSRR) {
25619 				ire = ire_ftable_lookup(dst, 0, 0,
25620 				    IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0,
25621 				    MBLK_GETLABEL(mp),
25622 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR);
25623 				if (ire == NULL) {
25624 					ip1dbg(("ip_wput_options: SSRR not"
25625 					    " directly reachable: 0x%x\n",
25626 					    ntohl(dst)));
25627 					goto bad_src_route;
25628 				}
25629 				ire_refrele(ire);
25630 			}
25631 			break;
25632 		case IPOPT_RR:
25633 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
25634 				ip1dbg((
25635 				    "ip_wput_options: bad option offset\n"));
25636 				code = (char *)&opt[IPOPT_OLEN] -
25637 				    (char *)ipha;
25638 				goto param_prob;
25639 			}
25640 			break;
25641 		case IPOPT_TS:
25642 			/*
25643 			 * Verify that length >=5 and that there is either
25644 			 * room for another timestamp or that the overflow
25645 			 * counter is not maxed out.
25646 			 */
25647 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
25648 			if (optlen < IPOPT_MINLEN_IT) {
25649 				goto param_prob;
25650 			}
25651 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
25652 				ip1dbg((
25653 				    "ip_wput_options: bad option offset\n"));
25654 				code = (char *)&opt[IPOPT_OFFSET] -
25655 				    (char *)ipha;
25656 				goto param_prob;
25657 			}
25658 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
25659 			case IPOPT_TS_TSONLY:
25660 				off = IPOPT_TS_TIMELEN;
25661 				break;
25662 			case IPOPT_TS_TSANDADDR:
25663 			case IPOPT_TS_PRESPEC:
25664 			case IPOPT_TS_PRESPEC_RFC791:
25665 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
25666 				break;
25667 			default:
25668 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
25669 				    (char *)ipha;
25670 				goto param_prob;
25671 			}
25672 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
25673 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
25674 				/*
25675 				 * No room and the overflow counter is 15
25676 				 * already.
25677 				 */
25678 				goto param_prob;
25679 			}
25680 			break;
25681 		}
25682 	}
25683 
25684 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
25685 		return (0);
25686 
25687 	ip1dbg(("ip_wput_options: error processing IP options."));
25688 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
25689 
25690 param_prob:
25691 	/*
25692 	 * Since ip_wput() isn't close to finished, we fill
25693 	 * in enough of the header for credible error reporting.
25694 	 */
25695 	if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) {
25696 		/* Failed */
25697 		freemsg(ipsec_mp);
25698 		return (-1);
25699 	}
25700 	icmp_param_problem(q, ipsec_mp, (uint8_t)code);
25701 	return (-1);
25702 
25703 bad_src_route:
25704 	/*
25705 	 * Since ip_wput() isn't close to finished, we fill
25706 	 * in enough of the header for credible error reporting.
25707 	 */
25708 	if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) {
25709 		/* Failed */
25710 		freemsg(ipsec_mp);
25711 		return (-1);
25712 	}
25713 	icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED);
25714 	return (-1);
25715 }
25716 
25717 /*
25718  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
25719  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
25720  * thru /etc/system.
25721  */
25722 #define	CONN_MAXDRAINCNT	64
25723 
25724 static void
25725 conn_drain_init(void)
25726 {
25727 	int i;
25728 
25729 	conn_drain_list_cnt = conn_drain_nthreads;
25730 
25731 	if ((conn_drain_list_cnt == 0) ||
25732 	    (conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
25733 		/*
25734 		 * Default value of the number of drainers is the
25735 		 * number of cpus, subject to maximum of 8 drainers.
25736 		 */
25737 		if (boot_max_ncpus != -1)
25738 			conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
25739 		else
25740 			conn_drain_list_cnt = MIN(max_ncpus, 8);
25741 	}
25742 
25743 	conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t),
25744 	    KM_SLEEP);
25745 
25746 	for (i = 0; i < conn_drain_list_cnt; i++) {
25747 		mutex_init(&conn_drain_list[i].idl_lock, NULL,
25748 		    MUTEX_DEFAULT, NULL);
25749 	}
25750 }
25751 
25752 static void
25753 conn_drain_fini(void)
25754 {
25755 	int i;
25756 
25757 	for (i = 0; i < conn_drain_list_cnt; i++)
25758 		mutex_destroy(&conn_drain_list[i].idl_lock);
25759 	kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t));
25760 	conn_drain_list = NULL;
25761 }
25762 
25763 /*
25764  * Note: For an overview of how flowcontrol is handled in IP please see the
25765  * IP Flowcontrol notes at the top of this file.
25766  *
25767  * Flow control has blocked us from proceeding. Insert the given conn in one
25768  * of the conn drain lists. These conn wq's will be qenabled later on when
25769  * STREAMS flow control does a backenable. conn_walk_drain will enable
25770  * the first conn in each of these drain lists. Each of these qenabled conns
25771  * in turn enables the next in the list, after it runs, or when it closes,
25772  * thus sustaining the drain process.
25773  *
25774  * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput ->
25775  * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert
25776  * running at any time, on a given conn, since there can be only 1 service proc
25777  * running on a queue at any time.
25778  */
25779 void
25780 conn_drain_insert(conn_t *connp)
25781 {
25782 	idl_t	*idl;
25783 	uint_t	index;
25784 
25785 	mutex_enter(&connp->conn_lock);
25786 	if (connp->conn_state_flags & CONN_CLOSING) {
25787 		/*
25788 		 * The conn is closing as a result of which CONN_CLOSING
25789 		 * is set. Return.
25790 		 */
25791 		mutex_exit(&connp->conn_lock);
25792 		return;
25793 	} else if (connp->conn_idl == NULL) {
25794 		/*
25795 		 * Assign the next drain list round robin. We dont' use
25796 		 * a lock, and thus it may not be strictly round robin.
25797 		 * Atomicity of load/stores is enough to make sure that
25798 		 * conn_drain_list_index is always within bounds.
25799 		 */
25800 		index = conn_drain_list_index;
25801 		ASSERT(index < conn_drain_list_cnt);
25802 		connp->conn_idl = &conn_drain_list[index];
25803 		index++;
25804 		if (index == conn_drain_list_cnt)
25805 			index = 0;
25806 		conn_drain_list_index = index;
25807 	}
25808 	mutex_exit(&connp->conn_lock);
25809 
25810 	mutex_enter(CONN_DRAIN_LIST_LOCK(connp));
25811 	if ((connp->conn_drain_prev != NULL) ||
25812 	    (connp->conn_state_flags & CONN_CLOSING)) {
25813 		/*
25814 		 * The conn is already in the drain list, OR
25815 		 * the conn is closing. We need to check again for
25816 		 * the closing case again since close can happen
25817 		 * after we drop the conn_lock, and before we
25818 		 * acquire the CONN_DRAIN_LIST_LOCK.
25819 		 */
25820 		mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
25821 		return;
25822 	} else {
25823 		idl = connp->conn_idl;
25824 	}
25825 
25826 	/*
25827 	 * The conn is not in the drain list. Insert it at the
25828 	 * tail of the drain list. The drain list is circular
25829 	 * and doubly linked. idl_conn points to the 1st element
25830 	 * in the list.
25831 	 */
25832 	if (idl->idl_conn == NULL) {
25833 		idl->idl_conn = connp;
25834 		connp->conn_drain_next = connp;
25835 		connp->conn_drain_prev = connp;
25836 	} else {
25837 		conn_t *head = idl->idl_conn;
25838 
25839 		connp->conn_drain_next = head;
25840 		connp->conn_drain_prev = head->conn_drain_prev;
25841 		head->conn_drain_prev->conn_drain_next = connp;
25842 		head->conn_drain_prev = connp;
25843 	}
25844 	mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
25845 }
25846 
25847 /*
25848  * This conn is closing, and we are called from ip_close. OR
25849  * This conn has been serviced by ip_wsrv, and we need to do the tail
25850  * processing.
25851  * If this conn is part of the drain list, we may need to sustain the drain
25852  * process by qenabling the next conn in the drain list. We may also need to
25853  * remove this conn from the list, if it is done.
25854  */
25855 static void
25856 conn_drain_tail(conn_t *connp, boolean_t closing)
25857 {
25858 	idl_t *idl;
25859 
25860 	/*
25861 	 * connp->conn_idl is stable at this point, and no lock is needed
25862 	 * to check it. If we are called from ip_close, close has already
25863 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
25864 	 * called us only because conn_idl is non-null. If we are called thru
25865 	 * service, conn_idl could be null, but it cannot change because
25866 	 * service is single-threaded per queue, and there cannot be another
25867 	 * instance of service trying to call conn_drain_insert on this conn
25868 	 * now.
25869 	 */
25870 	ASSERT(!closing || (connp->conn_idl != NULL));
25871 
25872 	/*
25873 	 * If connp->conn_idl is null, the conn has not been inserted into any
25874 	 * drain list even once since creation of the conn. Just return.
25875 	 */
25876 	if (connp->conn_idl == NULL)
25877 		return;
25878 
25879 	mutex_enter(CONN_DRAIN_LIST_LOCK(connp));
25880 
25881 	if (connp->conn_drain_prev == NULL) {
25882 		/* This conn is currently not in the drain list.  */
25883 		mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
25884 		return;
25885 	}
25886 	idl = connp->conn_idl;
25887 	if (idl->idl_conn_draining == connp) {
25888 		/*
25889 		 * This conn is the current drainer. If this is the last conn
25890 		 * in the drain list, we need to do more checks, in the 'if'
25891 		 * below. Otherwwise we need to just qenable the next conn,
25892 		 * to sustain the draining, and is handled in the 'else'
25893 		 * below.
25894 		 */
25895 		if (connp->conn_drain_next == idl->idl_conn) {
25896 			/*
25897 			 * This conn is the last in this list. This round
25898 			 * of draining is complete. If idl_repeat is set,
25899 			 * it means another flow enabling has happened from
25900 			 * the driver/streams and we need to another round
25901 			 * of draining.
25902 			 * If there are more than 2 conns in the drain list,
25903 			 * do a left rotate by 1, so that all conns except the
25904 			 * conn at the head move towards the head by 1, and the
25905 			 * the conn at the head goes to the tail. This attempts
25906 			 * a more even share for all queues that are being
25907 			 * drained.
25908 			 */
25909 			if ((connp->conn_drain_next != connp) &&
25910 			    (idl->idl_conn->conn_drain_next != connp)) {
25911 				idl->idl_conn = idl->idl_conn->conn_drain_next;
25912 			}
25913 			if (idl->idl_repeat) {
25914 				qenable(idl->idl_conn->conn_wq);
25915 				idl->idl_conn_draining = idl->idl_conn;
25916 				idl->idl_repeat = 0;
25917 			} else {
25918 				idl->idl_conn_draining = NULL;
25919 			}
25920 		} else {
25921 			/*
25922 			 * If the next queue that we are now qenable'ing,
25923 			 * is closing, it will remove itself from this list
25924 			 * and qenable the subsequent queue in ip_close().
25925 			 * Serialization is acheived thru idl_lock.
25926 			 */
25927 			qenable(connp->conn_drain_next->conn_wq);
25928 			idl->idl_conn_draining = connp->conn_drain_next;
25929 		}
25930 	}
25931 	if (!connp->conn_did_putbq || closing) {
25932 		/*
25933 		 * Remove ourself from the drain list, if we did not do
25934 		 * a putbq, or if the conn is closing.
25935 		 * Note: It is possible that q->q_first is non-null. It means
25936 		 * that these messages landed after we did a enableok() in
25937 		 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to
25938 		 * service them.
25939 		 */
25940 		if (connp->conn_drain_next == connp) {
25941 			/* Singleton in the list */
25942 			ASSERT(connp->conn_drain_prev == connp);
25943 			idl->idl_conn = NULL;
25944 			idl->idl_conn_draining = NULL;
25945 		} else {
25946 			connp->conn_drain_prev->conn_drain_next =
25947 			    connp->conn_drain_next;
25948 			connp->conn_drain_next->conn_drain_prev =
25949 			    connp->conn_drain_prev;
25950 			if (idl->idl_conn == connp)
25951 				idl->idl_conn = connp->conn_drain_next;
25952 			ASSERT(idl->idl_conn_draining != connp);
25953 
25954 		}
25955 		connp->conn_drain_next = NULL;
25956 		connp->conn_drain_prev = NULL;
25957 	}
25958 	mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
25959 }
25960 
25961 /*
25962  * Write service routine. Shared perimeter entry point.
25963  * ip_wsrv can be called in any of the following ways.
25964  * 1. The device queue's messages has fallen below the low water mark
25965  *    and STREAMS has backenabled the ill_wq. We walk thru all the
25966  *    the drain lists and backenable the first conn in each list.
25967  * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the
25968  *    qenabled non-tcp upper layers. We start dequeing messages and call
25969  *    ip_wput for each message.
25970  */
25971 
25972 void
25973 ip_wsrv(queue_t *q)
25974 {
25975 	conn_t	*connp;
25976 	ill_t	*ill;
25977 	mblk_t	*mp;
25978 
25979 	if (q->q_next) {
25980 		ill = (ill_t *)q->q_ptr;
25981 		if (ill->ill_state_flags == 0) {
25982 			/*
25983 			 * The device flow control has opened up.
25984 			 * Walk through conn drain lists and qenable the
25985 			 * first conn in each list. This makes sense only
25986 			 * if the stream is fully plumbed and setup.
25987 			 * Hence the if check above.
25988 			 */
25989 			ip1dbg(("ip_wsrv: walking\n"));
25990 			conn_walk_drain();
25991 		}
25992 		return;
25993 	}
25994 
25995 	connp = Q_TO_CONN(q);
25996 	ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp));
25997 
25998 	/*
25999 	 * 1. Set conn_draining flag to signal that service is active.
26000 	 *
26001 	 * 2. ip_output determines whether it has been called from service,
26002 	 *    based on the last parameter. If it is IP_WSRV it concludes it
26003 	 *    has been called from service.
26004 	 *
26005 	 * 3. Message ordering is preserved by the following logic.
26006 	 *    i. A directly called ip_output (i.e. not thru service) will queue
26007 	 *    the message at the tail, if conn_draining is set (i.e. service
26008 	 *    is running) or if q->q_first is non-null.
26009 	 *
26010 	 *    ii. If ip_output is called from service, and if ip_output cannot
26011 	 *    putnext due to flow control, it does a putbq.
26012 	 *
26013 	 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable
26014 	 *    (causing an infinite loop).
26015 	 */
26016 	ASSERT(!connp->conn_did_putbq);
26017 	while ((q->q_first != NULL) && !connp->conn_did_putbq) {
26018 		connp->conn_draining = 1;
26019 		noenable(q);
26020 		while ((mp = getq(q)) != NULL) {
26021 			ip_output(Q_TO_CONN(q), mp, q, IP_WSRV);
26022 			if (connp->conn_did_putbq) {
26023 				/* ip_wput did a putbq */
26024 				break;
26025 			}
26026 		}
26027 		/*
26028 		 * At this point, a thread coming down from top, calling
26029 		 * ip_wput, may end up queueing the message. We have not yet
26030 		 * enabled the queue, so ip_wsrv won't be called again.
26031 		 * To avoid this race, check q->q_first again (in the loop)
26032 		 * If the other thread queued the message before we call
26033 		 * enableok(), we will catch it in the q->q_first check.
26034 		 * If the other thread queues the message after we call
26035 		 * enableok(), ip_wsrv will be called again by STREAMS.
26036 		 */
26037 		connp->conn_draining = 0;
26038 		enableok(q);
26039 	}
26040 
26041 	/* Enable the next conn for draining */
26042 	conn_drain_tail(connp, B_FALSE);
26043 
26044 	connp->conn_did_putbq = 0;
26045 }
26046 
26047 /*
26048  * Walk the list of all conn's calling the function provided with the
26049  * specified argument for each.	 Note that this only walks conn's that
26050  * have been bound.
26051  * Applies to both IPv4 and IPv6.
26052  */
26053 static void
26054 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid)
26055 {
26056 	conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size,
26057 	    func, arg, zoneid);
26058 	conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size,
26059 	    func, arg, zoneid);
26060 	conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size,
26061 	    func, arg, zoneid);
26062 	conn_walk_fanout_table(ipcl_proto_fanout,
26063 	    A_CNT(ipcl_proto_fanout), func, arg, zoneid);
26064 	conn_walk_fanout_table(ipcl_proto_fanout_v6,
26065 	    A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid);
26066 }
26067 
26068 /*
26069  * Flowcontrol has relieved, and STREAMS has backenabled us. For each list
26070  * of conns that need to be drained, check if drain is already in progress.
26071  * If so set the idl_repeat bit, indicating that the last conn in the list
26072  * needs to reinitiate the drain once again, for the list. If drain is not
26073  * in progress for the list, initiate the draining, by qenabling the 1st
26074  * conn in the list. The drain is self-sustaining, each qenabled conn will
26075  * in turn qenable the next conn, when it is done/blocked/closing.
26076  */
26077 static void
26078 conn_walk_drain(void)
26079 {
26080 	int i;
26081 	idl_t *idl;
26082 
26083 	IP_STAT(ip_conn_walk_drain);
26084 
26085 	for (i = 0; i < conn_drain_list_cnt; i++) {
26086 		idl = &conn_drain_list[i];
26087 		mutex_enter(&idl->idl_lock);
26088 		if (idl->idl_conn == NULL) {
26089 			mutex_exit(&idl->idl_lock);
26090 			continue;
26091 		}
26092 		/*
26093 		 * If this list is not being drained currently by
26094 		 * an ip_wsrv thread, start the process.
26095 		 */
26096 		if (idl->idl_conn_draining == NULL) {
26097 			ASSERT(idl->idl_repeat == 0);
26098 			qenable(idl->idl_conn->conn_wq);
26099 			idl->idl_conn_draining = idl->idl_conn;
26100 		} else {
26101 			idl->idl_repeat = 1;
26102 		}
26103 		mutex_exit(&idl->idl_lock);
26104 	}
26105 }
26106 
26107 /*
26108  * Walk an conn hash table of `count' buckets, calling func for each entry.
26109  */
26110 static void
26111 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg,
26112     zoneid_t zoneid)
26113 {
26114 	conn_t	*connp;
26115 
26116 	while (count-- > 0) {
26117 		mutex_enter(&connfp->connf_lock);
26118 		for (connp = connfp->connf_head; connp != NULL;
26119 		    connp = connp->conn_next) {
26120 			if (zoneid == GLOBAL_ZONEID ||
26121 			    zoneid == connp->conn_zoneid) {
26122 				CONN_INC_REF(connp);
26123 				mutex_exit(&connfp->connf_lock);
26124 				(*func)(connp, arg);
26125 				mutex_enter(&connfp->connf_lock);
26126 				CONN_DEC_REF(connp);
26127 			}
26128 		}
26129 		mutex_exit(&connfp->connf_lock);
26130 		connfp++;
26131 	}
26132 }
26133 
26134 /* ipcl_walk routine invoked for ip_conn_report for each conn. */
26135 static void
26136 conn_report1(conn_t *connp, void *mp)
26137 {
26138 	char	buf1[INET6_ADDRSTRLEN];
26139 	char	buf2[INET6_ADDRSTRLEN];
26140 	uint_t	print_len, buf_len;
26141 
26142 	ASSERT(connp != NULL);
26143 
26144 	buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
26145 	if (buf_len <= 0)
26146 		return;
26147 	(void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)),
26148 	(void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)),
26149 	print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
26150 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
26151 	    "%5d %s/%05d %s/%05d\n",
26152 	    (void *)connp, (void *)CONNP_TO_RQ(connp),
26153 	    (void *)CONNP_TO_WQ(connp), connp->conn_zoneid,
26154 	    buf1, connp->conn_lport,
26155 	    buf2, connp->conn_fport);
26156 	if (print_len < buf_len) {
26157 		((mblk_t *)mp)->b_wptr += print_len;
26158 	} else {
26159 		((mblk_t *)mp)->b_wptr += buf_len;
26160 	}
26161 }
26162 
26163 /*
26164  * Named Dispatch routine to produce a formatted report on all conns
26165  * that are listed in one of the fanout tables.
26166  * This report is accessed by using the ndd utility to "get" ND variable
26167  * "ip_conn_status".
26168  */
26169 /* ARGSUSED */
26170 static int
26171 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
26172 {
26173 	(void) mi_mpprintf(mp,
26174 	    "CONN      " MI_COL_HDRPAD_STR
26175 	    "rfq      " MI_COL_HDRPAD_STR
26176 	    "stq      " MI_COL_HDRPAD_STR
26177 	    " zone local                 remote");
26178 
26179 	/*
26180 	 * Because of the ndd constraint, at most we can have 64K buffer
26181 	 * to put in all conn info.  So to be more efficient, just
26182 	 * allocate a 64K buffer here, assuming we need that large buffer.
26183 	 * This should be OK as only privileged processes can do ndd /dev/ip.
26184 	 */
26185 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
26186 		/* The following may work even if we cannot get a large buf. */
26187 		(void) mi_mpprintf(mp, "<< Out of buffer >>\n");
26188 		return (0);
26189 	}
26190 
26191 	conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid);
26192 	return (0);
26193 }
26194 
26195 /*
26196  * Determine if the ill and multicast aspects of that packets
26197  * "matches" the conn.
26198  */
26199 boolean_t
26200 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags,
26201     zoneid_t zoneid)
26202 {
26203 	ill_t *in_ill;
26204 	boolean_t found;
26205 	ipif_t *ipif;
26206 	ire_t *ire;
26207 	ipaddr_t dst, src;
26208 
26209 	dst = ipha->ipha_dst;
26210 	src = ipha->ipha_src;
26211 
26212 	/*
26213 	 * conn_incoming_ill is set by IP_BOUND_IF which limits
26214 	 * unicast, broadcast and multicast reception to
26215 	 * conn_incoming_ill. conn_wantpacket itself is called
26216 	 * only for BROADCAST and multicast.
26217 	 *
26218 	 * 1) ip_rput supresses duplicate broadcasts if the ill
26219 	 *    is part of a group. Hence, we should be receiving
26220 	 *    just one copy of broadcast for the whole group.
26221 	 *    Thus, if it is part of the group the packet could
26222 	 *    come on any ill of the group and hence we need a
26223 	 *    match on the group. Otherwise, match on ill should
26224 	 *    be sufficient.
26225 	 *
26226 	 * 2) ip_rput does not suppress duplicate multicast packets.
26227 	 *    If there are two interfaces in a ill group and we have
26228 	 *    2 applications (conns) joined a multicast group G on
26229 	 *    both the interfaces, ilm_lookup_ill filter in ip_rput
26230 	 *    will give us two packets because we join G on both the
26231 	 *    interfaces rather than nominating just one interface
26232 	 *    for receiving multicast like broadcast above. So,
26233 	 *    we have to call ilg_lookup_ill to filter out duplicate
26234 	 *    copies, if ill is part of a group.
26235 	 */
26236 	in_ill = connp->conn_incoming_ill;
26237 	if (in_ill != NULL) {
26238 		if (in_ill->ill_group == NULL) {
26239 			if (in_ill != ill)
26240 				return (B_FALSE);
26241 		} else if (in_ill->ill_group != ill->ill_group) {
26242 			return (B_FALSE);
26243 		}
26244 	}
26245 
26246 	if (!CLASSD(dst)) {
26247 		if (connp->conn_zoneid == zoneid)
26248 			return (B_TRUE);
26249 		/*
26250 		 * The conn is in a different zone; we need to check that this
26251 		 * broadcast address is configured in the application's zone and
26252 		 * on one ill in the group.
26253 		 */
26254 		ipif = ipif_get_next_ipif(NULL, ill);
26255 		if (ipif == NULL)
26256 			return (B_FALSE);
26257 		ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif,
26258 		    connp->conn_zoneid, NULL,
26259 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP));
26260 		ipif_refrele(ipif);
26261 		if (ire != NULL) {
26262 			ire_refrele(ire);
26263 			return (B_TRUE);
26264 		} else {
26265 			return (B_FALSE);
26266 		}
26267 	}
26268 
26269 	if ((fanout_flags & IP_FF_NO_MCAST_LOOP) &&
26270 	    connp->conn_zoneid == zoneid) {
26271 		/*
26272 		 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP
26273 		 * disabled, therefore we don't dispatch the multicast packet to
26274 		 * the sending zone.
26275 		 */
26276 		return (B_FALSE);
26277 	}
26278 
26279 	if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) &&
26280 	    connp->conn_zoneid != zoneid) {
26281 		/*
26282 		 * Multicast packet on the loopback interface: we only match
26283 		 * conns who joined the group in the specified zone.
26284 		 */
26285 		return (B_FALSE);
26286 	}
26287 
26288 	if (connp->conn_multi_router) {
26289 		/* multicast packet and multicast router socket: send up */
26290 		return (B_TRUE);
26291 	}
26292 
26293 	mutex_enter(&connp->conn_lock);
26294 	found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL);
26295 	mutex_exit(&connp->conn_lock);
26296 	return (found);
26297 }
26298 
26299 /*
26300  * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp.
26301  */
26302 /* ARGSUSED */
26303 static void
26304 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg)
26305 {
26306 	ill_t *ill = (ill_t *)q->q_ptr;
26307 	mblk_t	*mp1, *mp2;
26308 	ipif_t  *ipif;
26309 	int err = 0;
26310 	conn_t *connp = NULL;
26311 	ipsq_t	*ipsq;
26312 	arc_t	*arc;
26313 
26314 	ip1dbg(("ip_arp_done(%s)\n", ill->ill_name));
26315 
26316 	ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t));
26317 	ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE);
26318 
26319 	ASSERT(IAM_WRITER_ILL(ill));
26320 	mp2 = mp->b_cont;
26321 	mp->b_cont = NULL;
26322 
26323 	/*
26324 	 * We have now received the arp bringup completion message
26325 	 * from ARP. Mark the arp bringup as done. Also if the arp
26326 	 * stream has already started closing, send up the AR_ARP_CLOSING
26327 	 * ack now since ARP is waiting in close for this ack.
26328 	 */
26329 	mutex_enter(&ill->ill_lock);
26330 	ill->ill_arp_bringup_pending = 0;
26331 	if (ill->ill_arp_closing) {
26332 		mutex_exit(&ill->ill_lock);
26333 		/* Let's reuse the mp for sending the ack */
26334 		arc = (arc_t *)mp->b_rptr;
26335 		mp->b_wptr = mp->b_rptr + sizeof (arc_t);
26336 		arc->arc_cmd = AR_ARP_CLOSING;
26337 		qreply(q, mp);
26338 	} else {
26339 		mutex_exit(&ill->ill_lock);
26340 		freeb(mp);
26341 	}
26342 
26343 	/* We should have an IOCTL waiting on this. */
26344 	ipsq = ill->ill_phyint->phyint_ipsq;
26345 	ipif = ipsq->ipsq_pending_ipif;
26346 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
26347 	ASSERT(!((mp1 != NULL)  ^ (ipif != NULL)));
26348 	if (mp1 == NULL) {
26349 		/* bringup was aborted by the user */
26350 		freemsg(mp2);
26351 		return;
26352 	}
26353 	ASSERT(connp != NULL);
26354 	q = CONNP_TO_WQ(connp);
26355 	/*
26356 	 * If the DL_BIND_REQ fails, it is noted
26357 	 * in arc_name_offset.
26358 	 */
26359 	err = *((int *)mp2->b_rptr);
26360 	if (err == 0) {
26361 		if (ipif->ipif_isv6) {
26362 			if ((err = ipif_up_done_v6(ipif)) != 0)
26363 				ip0dbg(("ip_arp_done: init failed\n"));
26364 		} else {
26365 			if ((err = ipif_up_done(ipif)) != 0)
26366 				ip0dbg(("ip_arp_done: init failed\n"));
26367 		}
26368 	} else {
26369 		ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n"));
26370 	}
26371 
26372 	freemsg(mp2);
26373 
26374 	if ((err == 0) && (ill->ill_up_ipifs)) {
26375 		err = ill_up_ipifs(ill, q, mp1);
26376 		if (err == EINPROGRESS)
26377 			return;
26378 	}
26379 
26380 	if (ill->ill_up_ipifs) {
26381 		ill_group_cleanup(ill);
26382 	}
26383 
26384 	/*
26385 	 * The ioctl must complete now without EINPROGRESS
26386 	 * since ipsq_pending_mp_get has removed the ioctl mblk
26387 	 * from ipsq_pending_mp. Otherwise the ioctl will be
26388 	 * stuck for ever in the ipsq.
26389 	 */
26390 	ASSERT(err != EINPROGRESS);
26391 	ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq);
26392 }
26393 
26394 /* Allocate the private structure */
26395 static int
26396 ip_priv_alloc(void **bufp)
26397 {
26398 	void	*buf;
26399 
26400 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
26401 		return (ENOMEM);
26402 
26403 	*bufp = buf;
26404 	return (0);
26405 }
26406 
26407 /* Function to delete the private structure */
26408 void
26409 ip_priv_free(void *buf)
26410 {
26411 	ASSERT(buf != NULL);
26412 	kmem_free(buf, sizeof (ip_priv_t));
26413 }
26414 
26415 /*
26416  * The entry point for IPPF processing.
26417  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
26418  * routine just returns.
26419  *
26420  * When called, ip_process generates an ipp_packet_t structure
26421  * which holds the state information for this packet and invokes the
26422  * the classifier (via ipp_packet_process). The classification, depending on
26423  * configured filters, results in a list of actions for this packet. Invoking
26424  * an action may cause the packet to be dropped, in which case the resulting
26425  * mblk (*mpp) is NULL. proc indicates the callout position for
26426  * this packet and ill_index is the interface this packet on or will leave
26427  * on (inbound and outbound resp.).
26428  */
26429 void
26430 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index)
26431 {
26432 	mblk_t		*mp;
26433 	ip_priv_t	*priv;
26434 	ipp_action_id_t	aid;
26435 	int		rc = 0;
26436 	ipp_packet_t	*pp;
26437 #define	IP_CLASS	"ip"
26438 
26439 	/* If the classifier is not loaded, return  */
26440 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
26441 		return;
26442 	}
26443 
26444 	mp = *mpp;
26445 	ASSERT(mp != NULL);
26446 
26447 	/* Allocate the packet structure */
26448 	rc = ipp_packet_alloc(&pp, IP_CLASS, aid);
26449 	if (rc != 0) {
26450 		*mpp = NULL;
26451 		freemsg(mp);
26452 		return;
26453 	}
26454 
26455 	/* Allocate the private structure */
26456 	rc = ip_priv_alloc((void **)&priv);
26457 	if (rc != 0) {
26458 		*mpp = NULL;
26459 		freemsg(mp);
26460 		ipp_packet_free(pp);
26461 		return;
26462 	}
26463 	priv->proc = proc;
26464 	priv->ill_index = ill_index;
26465 	ipp_packet_set_private(pp, priv, ip_priv_free);
26466 	ipp_packet_set_data(pp, mp);
26467 
26468 	/* Invoke the classifier */
26469 	rc = ipp_packet_process(&pp);
26470 	if (pp != NULL) {
26471 		mp = ipp_packet_get_data(pp);
26472 		ipp_packet_free(pp);
26473 		if (rc != 0) {
26474 			freemsg(mp);
26475 			*mpp = NULL;
26476 		}
26477 	} else {
26478 		*mpp = NULL;
26479 	}
26480 #undef	IP_CLASS
26481 }
26482 
26483 /*
26484  * Propagate a multicast group membership operation (add/drop) on
26485  * all the interfaces crossed by the related multirt routes.
26486  * The call is considered successful if the operation succeeds
26487  * on at least one interface.
26488  */
26489 static int
26490 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
26491     uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp,
26492     boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src,
26493     mblk_t *first_mp)
26494 {
26495 	ire_t		*ire_gw;
26496 	irb_t		*irb;
26497 	int		error = 0;
26498 	opt_restart_t	*or;
26499 
26500 	irb = ire->ire_bucket;
26501 	ASSERT(irb != NULL);
26502 
26503 	ASSERT(DB_TYPE(first_mp) == M_CTL);
26504 
26505 	or = (opt_restart_t *)first_mp->b_rptr;
26506 	IRB_REFHOLD(irb);
26507 	for (; ire != NULL; ire = ire->ire_next) {
26508 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
26509 			continue;
26510 		if (ire->ire_addr != group)
26511 			continue;
26512 
26513 		ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0,
26514 		    IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL,
26515 		    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE);
26516 		/* No resolver exists for the gateway; skip this ire. */
26517 		if (ire_gw == NULL)
26518 			continue;
26519 
26520 		/*
26521 		 * This function can return EINPROGRESS. If so the operation
26522 		 * will be restarted from ip_restart_optmgmt which will
26523 		 * call ip_opt_set and option processing will restart for
26524 		 * this option. So we may end up calling 'fn' more than once.
26525 		 * This requires that 'fn' is idempotent except for the
26526 		 * return value. The operation is considered a success if
26527 		 * it succeeds at least once on any one interface.
26528 		 */
26529 		error = fn(connp, checkonly, group, ire_gw->ire_src_addr,
26530 		    NULL, fmode, src, first_mp);
26531 		if (error == 0)
26532 			or->or_private = CGTP_MCAST_SUCCESS;
26533 
26534 		if (ip_debug > 0) {
26535 			ulong_t	off;
26536 			char	*ksym;
26537 			ksym = kobj_getsymname((uintptr_t)fn, &off);
26538 			ip2dbg(("ip_multirt_apply_membership: "
26539 			    "called %s, multirt group 0x%08x via itf 0x%08x, "
26540 			    "error %d [success %u]\n",
26541 			    ksym ? ksym : "?",
26542 			    ntohl(group), ntohl(ire_gw->ire_src_addr),
26543 			    error, or->or_private));
26544 		}
26545 
26546 		ire_refrele(ire_gw);
26547 		if (error == EINPROGRESS) {
26548 			IRB_REFRELE(irb);
26549 			return (error);
26550 		}
26551 	}
26552 	IRB_REFRELE(irb);
26553 	/*
26554 	 * Consider the call as successful if we succeeded on at least
26555 	 * one interface. Otherwise, return the last encountered error.
26556 	 */
26557 	return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error);
26558 }
26559 
26560 
26561 /*
26562  * Issue a warning regarding a route crossing an interface with an
26563  * incorrect MTU. Only one message every 'ip_multirt_log_interval'
26564  * amount of time is logged.
26565  */
26566 static void
26567 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag)
26568 {
26569 	hrtime_t	current = gethrtime();
26570 	char		buf[16];
26571 
26572 	/* Convert interval in ms to hrtime in ns */
26573 	if (multirt_bad_mtu_last_time +
26574 	    ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <=
26575 	    current) {
26576 		cmn_err(CE_WARN, "ip: ignoring multiroute "
26577 		    "to %s, incorrect MTU %u (expected %u)\n",
26578 		    ip_dot_addr(ire->ire_addr, buf),
26579 		    ire->ire_max_frag, max_frag);
26580 
26581 		multirt_bad_mtu_last_time = current;
26582 	}
26583 }
26584 
26585 
26586 /*
26587  * Get the CGTP (multirouting) filtering status.
26588  * If 0, the CGTP hooks are transparent.
26589  */
26590 /* ARGSUSED */
26591 static int
26592 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
26593 {
26594 	boolean_t	*ip_cgtp_filter_value = (boolean_t *)cp;
26595 
26596 	(void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value);
26597 	return (0);
26598 }
26599 
26600 
26601 /*
26602  * Set the CGTP (multirouting) filtering status.
26603  * If the status is changed from active to transparent
26604  * or from transparent to active, forward the new status
26605  * to the filtering module (if loaded).
26606  */
26607 /* ARGSUSED */
26608 static int
26609 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
26610     cred_t *ioc_cr)
26611 {
26612 	long		new_value;
26613 	boolean_t	*ip_cgtp_filter_value = (boolean_t *)cp;
26614 
26615 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
26616 	    new_value < 0 || new_value > 1) {
26617 		return (EINVAL);
26618 	}
26619 
26620 	/*
26621 	 * Do not enable CGTP filtering - thus preventing the hooks
26622 	 * from being invoked - if the version number of the
26623 	 * filtering module hooks does not match.
26624 	 */
26625 	if ((ip_cgtp_filter_ops != NULL) &&
26626 	    (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) {
26627 		cmn_err(CE_WARN, "IP: CGTP filtering version mismatch "
26628 		    "(module hooks version %d, expecting %d)\n",
26629 		    ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV);
26630 		return (ENOTSUP);
26631 	}
26632 
26633 	if ((!*ip_cgtp_filter_value) && new_value) {
26634 		cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s",
26635 		    ip_cgtp_filter_ops == NULL ?
26636 		    " (module not loaded)" : "");
26637 	}
26638 	if (*ip_cgtp_filter_value && (!new_value)) {
26639 		cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s",
26640 		    ip_cgtp_filter_ops == NULL ?
26641 		    " (module not loaded)" : "");
26642 	}
26643 
26644 	if (ip_cgtp_filter_ops != NULL) {
26645 		int	res;
26646 		if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) {
26647 			return (res);
26648 		}
26649 	}
26650 
26651 	*ip_cgtp_filter_value = (boolean_t)new_value;
26652 
26653 	return (0);
26654 }
26655 
26656 
26657 /*
26658  * Return the expected CGTP hooks version number.
26659  */
26660 int
26661 ip_cgtp_filter_supported(void)
26662 {
26663 	return (ip_cgtp_filter_rev);
26664 }
26665 
26666 
26667 /*
26668  * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops
26669  * or by invoking this function. In the first case, the version number
26670  * of the registered structure is checked at hooks activation time
26671  * in ip_cgtp_filter_set().
26672  */
26673 int
26674 ip_cgtp_filter_register(cgtp_filter_ops_t *ops)
26675 {
26676 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
26677 		return (ENOTSUP);
26678 
26679 	ip_cgtp_filter_ops = ops;
26680 	return (0);
26681 }
26682 
26683 static squeue_func_t
26684 ip_squeue_switch(int val)
26685 {
26686 	squeue_func_t rval = squeue_fill;
26687 
26688 	switch (val) {
26689 	case IP_SQUEUE_ENTER_NODRAIN:
26690 		rval = squeue_enter_nodrain;
26691 		break;
26692 	case IP_SQUEUE_ENTER:
26693 		rval = squeue_enter;
26694 		break;
26695 	default:
26696 		break;
26697 	}
26698 	return (rval);
26699 }
26700 
26701 /* ARGSUSED */
26702 static int
26703 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value,
26704     caddr_t addr, cred_t *cr)
26705 {
26706 	int *v = (int *)addr;
26707 	long new_value;
26708 
26709 	if (ddi_strtol(value, NULL, 10, &new_value) != 0)
26710 		return (EINVAL);
26711 
26712 	ip_input_proc = ip_squeue_switch(new_value);
26713 	*v = new_value;
26714 	return (0);
26715 }
26716 
26717 /* ARGSUSED */
26718 static int
26719 ip_int_set(queue_t *q, mblk_t *mp, char *value,
26720     caddr_t addr, cred_t *cr)
26721 {
26722 	int *v = (int *)addr;
26723 	long new_value;
26724 
26725 	if (ddi_strtol(value, NULL, 10, &new_value) != 0)
26726 		return (EINVAL);
26727 
26728 	*v = new_value;
26729 	return (0);
26730 }
26731 
26732 static void
26733 ip_kstat_init(void)
26734 {
26735 	ip_named_kstat_t template = {
26736 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
26737 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
26738 		{ "inReceives",		KSTAT_DATA_UINT32, 0 },
26739 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
26740 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
26741 		{ "forwDatagrams",	KSTAT_DATA_UINT32, 0 },
26742 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
26743 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
26744 		{ "inDelivers",		KSTAT_DATA_UINT32, 0 },
26745 		{ "outRequests",	KSTAT_DATA_UINT32, 0 },
26746 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
26747 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
26748 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
26749 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
26750 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
26751 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
26752 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
26753 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
26754 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
26755 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
26756 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
26757 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
26758 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
26759 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
26760 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
26761 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
26762 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
26763 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
26764 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
26765 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
26766 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
26767 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
26768 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
26769 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
26770 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
26771 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
26772 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
26773 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
26774 	};
26775 
26776 	ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
26777 					NUM_OF_FIELDS(ip_named_kstat_t),
26778 					0);
26779 	if (!ip_mibkp)
26780 		return;
26781 
26782 	template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2;
26783 	template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl;
26784 	template.reasmTimeout.value.ui32 = ip_g_frag_timeout;
26785 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
26786 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
26787 
26788 	template.netToMediaEntrySize.value.i32 =
26789 		sizeof (mib2_ipNetToMediaEntry_t);
26790 
26791 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
26792 
26793 	bcopy(&template, ip_mibkp->ks_data, sizeof (template));
26794 
26795 	ip_mibkp->ks_update = ip_kstat_update;
26796 
26797 	kstat_install(ip_mibkp);
26798 }
26799 
26800 static void
26801 ip_kstat_fini(void)
26802 {
26803 
26804 	if (ip_mibkp != NULL) {
26805 		kstat_delete(ip_mibkp);
26806 		ip_mibkp = NULL;
26807 	}
26808 }
26809 
26810 static int
26811 ip_kstat_update(kstat_t *kp, int rw)
26812 {
26813 	ip_named_kstat_t *ipkp;
26814 
26815 	if (!kp || !kp->ks_data)
26816 		return (EIO);
26817 
26818 	if (rw == KSTAT_WRITE)
26819 		return (EACCES);
26820 
26821 	ipkp = (ip_named_kstat_t *)kp->ks_data;
26822 
26823 	ipkp->forwarding.value.ui32 =		ip_mib.ipForwarding;
26824 	ipkp->defaultTTL.value.ui32 =		ip_mib.ipDefaultTTL;
26825 	ipkp->inReceives.value.ui32 =		ip_mib.ipInReceives;
26826 	ipkp->inHdrErrors.value.ui32 =		ip_mib.ipInHdrErrors;
26827 	ipkp->inAddrErrors.value.ui32 =		ip_mib.ipInAddrErrors;
26828 	ipkp->forwDatagrams.value.ui32 =	ip_mib.ipForwDatagrams;
26829 	ipkp->inUnknownProtos.value.ui32 =	ip_mib.ipInUnknownProtos;
26830 	ipkp->inDiscards.value.ui32 =		ip_mib.ipInDiscards;
26831 	ipkp->inDelivers.value.ui32 =		ip_mib.ipInDelivers;
26832 	ipkp->outRequests.value.ui32 =		ip_mib.ipOutRequests;
26833 	ipkp->outDiscards.value.ui32 =		ip_mib.ipOutDiscards;
26834 	ipkp->outNoRoutes.value.ui32 =		ip_mib.ipOutNoRoutes;
26835 	ipkp->reasmTimeout.value.ui32 =		ip_mib.ipReasmTimeout;
26836 	ipkp->reasmReqds.value.ui32 =		ip_mib.ipReasmReqds;
26837 	ipkp->reasmOKs.value.ui32 =		ip_mib.ipReasmOKs;
26838 	ipkp->reasmFails.value.ui32 =		ip_mib.ipReasmFails;
26839 	ipkp->fragOKs.value.ui32 =		ip_mib.ipFragOKs;
26840 	ipkp->fragFails.value.ui32 =		ip_mib.ipFragFails;
26841 	ipkp->fragCreates.value.ui32 =		ip_mib.ipFragCreates;
26842 
26843 	ipkp->routingDiscards.value.ui32 =	ip_mib.ipRoutingDiscards;
26844 	ipkp->inErrs.value.ui32 =		ip_mib.tcpInErrs;
26845 	ipkp->noPorts.value.ui32 =		ip_mib.udpNoPorts;
26846 	ipkp->inCksumErrs.value.ui32 =		ip_mib.ipInCksumErrs;
26847 	ipkp->reasmDuplicates.value.ui32 =	ip_mib.ipReasmDuplicates;
26848 	ipkp->reasmPartDups.value.ui32 =	ip_mib.ipReasmPartDups;
26849 	ipkp->forwProhibits.value.ui32 =	ip_mib.ipForwProhibits;
26850 	ipkp->udpInCksumErrs.value.ui32 =	ip_mib.udpInCksumErrs;
26851 	ipkp->udpInOverflows.value.ui32 =	ip_mib.udpInOverflows;
26852 	ipkp->rawipInOverflows.value.ui32 =	ip_mib.rawipInOverflows;
26853 	ipkp->ipsecInSucceeded.value.ui32 =	ip_mib.ipsecInSucceeded;
26854 	ipkp->ipsecInFailed.value.i32 =		ip_mib.ipsecInFailed;
26855 
26856 	ipkp->inIPv6.value.ui32 =		ip_mib.ipInIPv6;
26857 	ipkp->outIPv6.value.ui32 =		ip_mib.ipOutIPv6;
26858 	ipkp->outSwitchIPv6.value.ui32 =	ip_mib.ipOutSwitchIPv6;
26859 
26860 	return (0);
26861 }
26862 
26863 static void
26864 icmp_kstat_init(void)
26865 {
26866 	icmp_named_kstat_t template = {
26867 		{ "inMsgs",		KSTAT_DATA_UINT32 },
26868 		{ "inErrors",		KSTAT_DATA_UINT32 },
26869 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
26870 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
26871 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
26872 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
26873 		{ "inRedirects",	KSTAT_DATA_UINT32 },
26874 		{ "inEchos",		KSTAT_DATA_UINT32 },
26875 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
26876 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
26877 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
26878 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
26879 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
26880 		{ "outMsgs",		KSTAT_DATA_UINT32 },
26881 		{ "outErrors",		KSTAT_DATA_UINT32 },
26882 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
26883 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
26884 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
26885 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
26886 		{ "outRedirects",	KSTAT_DATA_UINT32 },
26887 		{ "outEchos",		KSTAT_DATA_UINT32 },
26888 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
26889 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
26890 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
26891 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
26892 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
26893 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
26894 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
26895 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
26896 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
26897 		{ "outDrops",		KSTAT_DATA_UINT32 },
26898 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
26899 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
26900 	};
26901 
26902 	icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
26903 					NUM_OF_FIELDS(icmp_named_kstat_t),
26904 					0);
26905 	if (icmp_mibkp == NULL)
26906 		return;
26907 
26908 	bcopy(&template, icmp_mibkp->ks_data, sizeof (template));
26909 
26910 	icmp_mibkp->ks_update = icmp_kstat_update;
26911 
26912 	kstat_install(icmp_mibkp);
26913 }
26914 
26915 static void
26916 icmp_kstat_fini(void)
26917 {
26918 
26919 	if (icmp_mibkp != NULL) {
26920 		kstat_delete(icmp_mibkp);
26921 		icmp_mibkp = NULL;
26922 	}
26923 }
26924 
26925 static int
26926 icmp_kstat_update(kstat_t *kp, int rw)
26927 {
26928 	icmp_named_kstat_t *icmpkp;
26929 
26930 	if ((kp == NULL) || (kp->ks_data == NULL))
26931 		return (EIO);
26932 
26933 	if (rw == KSTAT_WRITE)
26934 		return (EACCES);
26935 
26936 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
26937 
26938 	icmpkp->inMsgs.value.ui32 =		icmp_mib.icmpInMsgs;
26939 	icmpkp->inErrors.value.ui32 =		icmp_mib.icmpInErrors;
26940 	icmpkp->inDestUnreachs.value.ui32 =	icmp_mib.icmpInDestUnreachs;
26941 	icmpkp->inTimeExcds.value.ui32 =	icmp_mib.icmpInTimeExcds;
26942 	icmpkp->inParmProbs.value.ui32 =	icmp_mib.icmpInParmProbs;
26943 	icmpkp->inSrcQuenchs.value.ui32 =	icmp_mib.icmpInSrcQuenchs;
26944 	icmpkp->inRedirects.value.ui32 =	icmp_mib.icmpInRedirects;
26945 	icmpkp->inEchos.value.ui32 =		icmp_mib.icmpInEchos;
26946 	icmpkp->inEchoReps.value.ui32 =		icmp_mib.icmpInEchoReps;
26947 	icmpkp->inTimestamps.value.ui32 =	icmp_mib.icmpInTimestamps;
26948 	icmpkp->inTimestampReps.value.ui32 =	icmp_mib.icmpInTimestampReps;
26949 	icmpkp->inAddrMasks.value.ui32 =	icmp_mib.icmpInAddrMasks;
26950 	icmpkp->inAddrMaskReps.value.ui32 =	icmp_mib.icmpInAddrMaskReps;
26951 	icmpkp->outMsgs.value.ui32 =		icmp_mib.icmpOutMsgs;
26952 	icmpkp->outErrors.value.ui32 =		icmp_mib.icmpOutErrors;
26953 	icmpkp->outDestUnreachs.value.ui32 =	icmp_mib.icmpOutDestUnreachs;
26954 	icmpkp->outTimeExcds.value.ui32 =	icmp_mib.icmpOutTimeExcds;
26955 	icmpkp->outParmProbs.value.ui32 =	icmp_mib.icmpOutParmProbs;
26956 	icmpkp->outSrcQuenchs.value.ui32 =	icmp_mib.icmpOutSrcQuenchs;
26957 	icmpkp->outRedirects.value.ui32 =	icmp_mib.icmpOutRedirects;
26958 	icmpkp->outEchos.value.ui32 =		icmp_mib.icmpOutEchos;
26959 	icmpkp->outEchoReps.value.ui32 =	icmp_mib.icmpOutEchoReps;
26960 	icmpkp->outTimestamps.value.ui32 =	icmp_mib.icmpOutTimestamps;
26961 	icmpkp->outTimestampReps.value.ui32 =	icmp_mib.icmpOutTimestampReps;
26962 	icmpkp->outAddrMasks.value.ui32 =	icmp_mib.icmpOutAddrMasks;
26963 	icmpkp->outAddrMaskReps.value.ui32 =	icmp_mib.icmpOutAddrMaskReps;
26964 	icmpkp->inCksumErrs.value.ui32 =	icmp_mib.icmpInCksumErrs;
26965 	icmpkp->inUnknowns.value.ui32 =		icmp_mib.icmpInUnknowns;
26966 	icmpkp->inFragNeeded.value.ui32 =	icmp_mib.icmpInFragNeeded;
26967 	icmpkp->outFragNeeded.value.ui32 =	icmp_mib.icmpOutFragNeeded;
26968 	icmpkp->outDrops.value.ui32 =		icmp_mib.icmpOutDrops;
26969 	icmpkp->inOverflows.value.ui32 =	icmp_mib.icmpInOverflows;
26970 	icmpkp->inBadRedirects.value.ui32 =	icmp_mib.icmpInBadRedirects;
26971 
26972 	return (0);
26973 }
26974 
26975 /*
26976  * This is the fanout function for raw socket opened for SCTP.  Note
26977  * that it is called after SCTP checks that there is no socket which
26978  * wants a packet.  Then before SCTP handles this out of the blue packet,
26979  * this function is called to see if there is any raw socket for SCTP.
26980  * If there is and it is bound to the correct address, the packet will
26981  * be sent to that socket.  Note that only one raw socket can be bound to
26982  * a port.  This is assured in ipcl_sctp_hash_insert();
26983  */
26984 void
26985 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4,
26986     uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy,
26987     uint_t ipif_seqid, zoneid_t zoneid)
26988 {
26989 	conn_t		*connp;
26990 	queue_t		*rq;
26991 	mblk_t		*first_mp;
26992 	boolean_t	secure;
26993 	ip6_t		*ip6h;
26994 
26995 	first_mp = mp;
26996 	if (mctl_present) {
26997 		mp = first_mp->b_cont;
26998 		secure = ipsec_in_is_secure(first_mp);
26999 		ASSERT(mp != NULL);
27000 	} else {
27001 		secure = B_FALSE;
27002 	}
27003 	ip6h = (isv4) ? NULL : (ip6_t *)ipha;
27004 
27005 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha);
27006 	if (connp == NULL) {
27007 		sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid,
27008 		    mctl_present);
27009 		return;
27010 	}
27011 	rq = connp->conn_rq;
27012 	if (!canputnext(rq)) {
27013 		CONN_DEC_REF(connp);
27014 		BUMP_MIB(&ip_mib, rawipInOverflows);
27015 		freemsg(first_mp);
27016 		return;
27017 	}
27018 	if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) :
27019 	    CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) {
27020 		first_mp = ipsec_check_inbound_policy(first_mp, connp,
27021 		    (isv4 ? ipha : NULL), ip6h, mctl_present);
27022 		if (first_mp == NULL) {
27023 			CONN_DEC_REF(connp);
27024 			return;
27025 		}
27026 	}
27027 	/*
27028 	 * We probably should not send M_CTL message up to
27029 	 * raw socket.
27030 	 */
27031 	if (mctl_present)
27032 		freeb(first_mp);
27033 
27034 	/* Initiate IPPF processing here if needed. */
27035 	if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) ||
27036 	    (!isv4 && IP6_IN_IPP(flags))) {
27037 		ip_process(IPP_LOCAL_IN, &mp,
27038 		    recv_ill->ill_phyint->phyint_ifindex);
27039 		if (mp == NULL) {
27040 			CONN_DEC_REF(connp);
27041 			return;
27042 		}
27043 	}
27044 
27045 	if (connp->conn_recvif || connp->conn_recvslla ||
27046 	    ((connp->conn_ipv6_recvpktinfo ||
27047 	    (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) &&
27048 	    (flags & IP_FF_IP6INFO))) {
27049 		int in_flags = 0;
27050 
27051 		if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) {
27052 			in_flags = IPF_RECVIF;
27053 		}
27054 		if (connp->conn_recvslla) {
27055 			in_flags |= IPF_RECVSLLA;
27056 		}
27057 		if (isv4) {
27058 			mp = ip_add_info(mp, recv_ill, in_flags);
27059 		} else {
27060 			mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst);
27061 			if (mp == NULL) {
27062 				CONN_DEC_REF(connp);
27063 				return;
27064 			}
27065 		}
27066 	}
27067 
27068 	BUMP_MIB(&ip_mib, ipInDelivers);
27069 	/*
27070 	 * We are sending the IPSEC_IN message also up. Refer
27071 	 * to comments above this function.
27072 	 */
27073 	putnext(rq, mp);
27074 	CONN_DEC_REF(connp);
27075 }
27076 
27077 /*
27078  * Martian Address Filtering [RFC 1812, Section 5.3.7]
27079  */
27080 static boolean_t
27081 ip_no_forward(ipha_t *ipha, ill_t *ill)
27082 {
27083 	ipaddr_t ip_src, ip_dst;
27084 	ire_t *src_ire = NULL;
27085 
27086 	ip_src = ntohl(ipha->ipha_src);
27087 	ip_dst = ntohl(ipha->ipha_dst);
27088 
27089 	if (ip_dst == INADDR_ANY)
27090 		goto dont_forward;
27091 
27092 	if (IN_CLASSD(ip_src))
27093 		goto dont_forward;
27094 
27095 	if ((ip_src >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
27096 		goto dont_forward;
27097 
27098 	if (IN_BADCLASS(ip_dst))
27099 		goto dont_forward;
27100 
27101 	src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL,
27102 	    ALL_ZONES, NULL, MATCH_IRE_TYPE);
27103 	if (src_ire != NULL) {
27104 		ire_refrele(src_ire);
27105 		goto dont_forward;
27106 	}
27107 
27108 	return (B_FALSE);
27109 
27110 dont_forward:
27111 	if (ip_debug > 2) {
27112 		printf("ip_no_forward: dropping packet received on %s\n",
27113 		    ill->ill_name);
27114 		pr_addr_dbg("ip_no_forward: from src %s\n",
27115 		    AF_INET, &ipha->ipha_src);
27116 		pr_addr_dbg("ip_no_forward: to dst %s\n",
27117 		    AF_INET, &ipha->ipha_dst);
27118 	}
27119 	BUMP_MIB(&ip_mib, ipForwProhibits);
27120 	return (B_TRUE);
27121 }
27122 
27123 static boolean_t
27124 ip_loopback_src_or_dst(ipha_t *ipha, ill_t *ill)
27125 {
27126 	if (((ntohl(ipha->ipha_src) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) ||
27127 	    ((ntohl(ipha->ipha_dst) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) {
27128 		if (ip_debug > 2) {
27129 			if (ill != NULL) {
27130 				printf("ip_loopback_src_or_dst: "
27131 				    "dropping packet received on %s\n",
27132 				    ill->ill_name);
27133 			} else {
27134 				printf("ip_loopback_src_or_dst: "
27135 				    "dropping packet\n");
27136 			}
27137 
27138 			pr_addr_dbg(
27139 			    "ip_loopback_src_or_dst: from src %s\n",
27140 			    AF_INET, &ipha->ipha_src);
27141 			pr_addr_dbg(
27142 			    "ip_loopback_src_or_dst: to dst %s\n",
27143 			    AF_INET, &ipha->ipha_dst);
27144 		}
27145 
27146 		BUMP_MIB(&ip_mib, ipInAddrErrors);
27147 		return (B_TRUE);
27148 	}
27149 	return (B_FALSE);
27150 }
27151 
27152 /*
27153  * Return B_TRUE if the buffers differ in length or content.
27154  * This is used for comparing extension header buffers.
27155  * Note that an extension header would be declared different
27156  * even if all that changed was the next header value in that header i.e.
27157  * what really changed is the next extension header.
27158  */
27159 boolean_t
27160 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
27161     uint_t blen)
27162 {
27163 	if (!b_valid)
27164 		blen = 0;
27165 
27166 	if (alen != blen)
27167 		return (B_TRUE);
27168 	if (alen == 0)
27169 		return (B_FALSE);	/* Both zero length */
27170 	return (bcmp(abuf, bbuf, alen));
27171 }
27172 
27173 /*
27174  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
27175  * Return B_FALSE if memory allocation fails - don't change any state!
27176  */
27177 boolean_t
27178 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
27179     const void *src, uint_t srclen)
27180 {
27181 	void *dst;
27182 
27183 	if (!src_valid)
27184 		srclen = 0;
27185 
27186 	ASSERT(*dstlenp == 0);
27187 	if (src != NULL && srclen != 0) {
27188 		dst = mi_alloc(srclen, BPRI_MED);
27189 		if (dst == NULL)
27190 			return (B_FALSE);
27191 	} else {
27192 		dst = NULL;
27193 	}
27194 	if (*dstp != NULL)
27195 		mi_free(*dstp);
27196 	*dstp = dst;
27197 	*dstlenp = dst == NULL ? 0 : srclen;
27198 	return (B_TRUE);
27199 }
27200 
27201 /*
27202  * Replace what is in *dst, *dstlen with the source.
27203  * Assumes ip_allocbuf has already been called.
27204  */
27205 void
27206 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
27207     const void *src, uint_t srclen)
27208 {
27209 	if (!src_valid)
27210 		srclen = 0;
27211 
27212 	ASSERT(*dstlenp == srclen);
27213 	if (src != NULL && srclen != 0)
27214 		bcopy(src, *dstp, srclen);
27215 }
27216 
27217 /*
27218  * Free the storage pointed to by the members of an ip6_pkt_t.
27219  */
27220 void
27221 ip6_pkt_free(ip6_pkt_t *ipp)
27222 {
27223 	ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU));
27224 
27225 	if (ipp->ipp_fields & IPPF_HOPOPTS) {
27226 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
27227 		ipp->ipp_hopopts = NULL;
27228 		ipp->ipp_hopoptslen = 0;
27229 	}
27230 	if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
27231 		kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
27232 		ipp->ipp_rtdstopts = NULL;
27233 		ipp->ipp_rtdstoptslen = 0;
27234 	}
27235 	if (ipp->ipp_fields & IPPF_DSTOPTS) {
27236 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
27237 		ipp->ipp_dstopts = NULL;
27238 		ipp->ipp_dstoptslen = 0;
27239 	}
27240 	if (ipp->ipp_fields & IPPF_RTHDR) {
27241 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
27242 		ipp->ipp_rthdr = NULL;
27243 		ipp->ipp_rthdrlen = 0;
27244 	}
27245 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
27246 	    IPPF_RTHDR);
27247 }
27248