xref: /illumos-gate/usr/src/uts/common/inet/ip/ip.c (revision 5243e3342f14ea9f300eadae1c8524571a933a1b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 1990 Mentat Inc.
25  * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved.
26  * Copyright (c) 2016 by Delphix. All rights reserved.
27  * Copyright (c) 2018 Joyent, Inc. All rights reserved.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/sysmacros.h>
35 #include <sys/strsubr.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/zone.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/xti_inet.h>
42 #include <sys/ddi.h>
43 #include <sys/suntpi.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/kobj.h>
47 #include <sys/modctl.h>
48 #include <sys/atomic.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 #include <sys/taskq.h>
52 
53 #include <sys/systm.h>
54 #include <sys/param.h>
55 #include <sys/kmem.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/vtrace.h>
59 #include <sys/isa_defs.h>
60 #include <sys/mac.h>
61 #include <net/if.h>
62 #include <net/if_arp.h>
63 #include <net/route.h>
64 #include <sys/sockio.h>
65 #include <netinet/in.h>
66 #include <net/if_dl.h>
67 
68 #include <inet/common.h>
69 #include <inet/mi.h>
70 #include <inet/mib2.h>
71 #include <inet/nd.h>
72 #include <inet/arp.h>
73 #include <inet/snmpcom.h>
74 #include <inet/optcom.h>
75 #include <inet/kstatcom.h>
76 
77 #include <netinet/igmp_var.h>
78 #include <netinet/ip6.h>
79 #include <netinet/icmp6.h>
80 #include <netinet/sctp.h>
81 
82 #include <inet/ip.h>
83 #include <inet/ip_impl.h>
84 #include <inet/ip6.h>
85 #include <inet/ip6_asp.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/ip_multi.h>
89 #include <inet/ip_if.h>
90 #include <inet/ip_ire.h>
91 #include <inet/ip_ftable.h>
92 #include <inet/ip_rts.h>
93 #include <inet/ip_ndp.h>
94 #include <inet/ip_listutils.h>
95 #include <netinet/igmp.h>
96 #include <netinet/ip_mroute.h>
97 #include <inet/ipp_common.h>
98 
99 #include <net/pfkeyv2.h>
100 #include <inet/sadb.h>
101 #include <inet/ipsec_impl.h>
102 #include <inet/iptun/iptun_impl.h>
103 #include <inet/ipdrop.h>
104 #include <inet/ip_netinfo.h>
105 #include <inet/ilb_ip.h>
106 
107 #include <sys/ethernet.h>
108 #include <net/if_types.h>
109 #include <sys/cpuvar.h>
110 
111 #include <ipp/ipp.h>
112 #include <ipp/ipp_impl.h>
113 #include <ipp/ipgpc/ipgpc.h>
114 
115 #include <sys/pattr.h>
116 #include <inet/ipclassifier.h>
117 #include <inet/sctp_ip.h>
118 #include <inet/sctp/sctp_impl.h>
119 #include <inet/udp_impl.h>
120 #include <inet/rawip_impl.h>
121 #include <inet/rts_impl.h>
122 
123 #include <sys/tsol/label.h>
124 #include <sys/tsol/tnet.h>
125 
126 #include <sys/squeue_impl.h>
127 #include <inet/ip_arp.h>
128 
129 #include <sys/clock_impl.h>	/* For LBOLT_FASTPATH{,64} */
130 
131 /*
132  * Values for squeue switch:
133  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
134  * IP_SQUEUE_ENTER: SQ_PROCESS
135  * IP_SQUEUE_FILL: SQ_FILL
136  */
137 int ip_squeue_enter = IP_SQUEUE_ENTER;	/* Setable in /etc/system */
138 
139 int ip_squeue_flag;
140 
141 /*
142  * Setable in /etc/system
143  */
144 int ip_poll_normal_ms = 100;
145 int ip_poll_normal_ticks = 0;
146 int ip_modclose_ackwait_ms = 3000;
147 
148 /*
149  * It would be nice to have these present only in DEBUG systems, but the
150  * current design of the global symbol checking logic requires them to be
151  * unconditionally present.
152  */
153 uint_t ip_thread_data;			/* TSD key for debug support */
154 krwlock_t ip_thread_rwlock;
155 list_t	ip_thread_list;
156 
157 /*
158  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
159  */
160 
161 struct listptr_s {
162 	mblk_t	*lp_head;	/* pointer to the head of the list */
163 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
164 };
165 
166 typedef struct listptr_s listptr_t;
167 
168 /*
169  * This is used by ip_snmp_get_mib2_ip_route_media and
170  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
171  */
172 typedef struct iproutedata_s {
173 	uint_t		ird_idx;
174 	uint_t		ird_flags;	/* see below */
175 	listptr_t	ird_route;	/* ipRouteEntryTable */
176 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
177 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
178 } iproutedata_t;
179 
180 /* Include ire_testhidden and IRE_IF_CLONE routes */
181 #define	IRD_REPORT_ALL	0x01
182 
183 /*
184  * Cluster specific hooks. These should be NULL when booted as a non-cluster
185  */
186 
187 /*
188  * Hook functions to enable cluster networking
189  * On non-clustered systems these vectors must always be NULL.
190  *
191  * Hook function to Check ip specified ip address is a shared ip address
192  * in the cluster
193  *
194  */
195 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
196     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
197 
198 /*
199  * Hook function to generate cluster wide ip fragment identifier
200  */
201 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
202     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
203     void *args) = NULL;
204 
205 /*
206  * Hook function to generate cluster wide SPI.
207  */
208 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
209     void *) = NULL;
210 
211 /*
212  * Hook function to verify if the SPI is already utlized.
213  */
214 
215 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
216 
217 /*
218  * Hook function to delete the SPI from the cluster wide repository.
219  */
220 
221 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
222 
223 /*
224  * Hook function to inform the cluster when packet received on an IDLE SA
225  */
226 
227 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
228     in6_addr_t, in6_addr_t, void *) = NULL;
229 
230 /*
231  * Synchronization notes:
232  *
233  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
234  * MT level protection given by STREAMS. IP uses a combination of its own
235  * internal serialization mechanism and standard Solaris locking techniques.
236  * The internal serialization is per phyint.  This is used to serialize
237  * plumbing operations, IPMP operations, most set ioctls, etc.
238  *
239  * Plumbing is a long sequence of operations involving message
240  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
241  * involved in plumbing operations. A natural model is to serialize these
242  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
243  * parallel without any interference. But various set ioctls on hme0 are best
244  * serialized, along with IPMP operations and processing of DLPI control
245  * messages received from drivers on a per phyint basis. This serialization is
246  * provided by the ipsq_t and primitives operating on this. Details can
247  * be found in ip_if.c above the core primitives operating on ipsq_t.
248  *
249  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
250  * Simiarly lookup of an ire by a thread also returns a refheld ire.
251  * In addition ipif's and ill's referenced by the ire are also indirectly
252  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
253  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
254  * address of an ipif has to go through the ipsq_t. This ensures that only
255  * one such exclusive operation proceeds at any time on the ipif. It then
256  * waits for all refcnts
257  * associated with this ipif to come down to zero. The address is changed
258  * only after the ipif has been quiesced. Then the ipif is brought up again.
259  * More details are described above the comment in ip_sioctl_flags.
260  *
261  * Packet processing is based mostly on IREs and are fully multi-threaded
262  * using standard Solaris MT techniques.
263  *
264  * There are explicit locks in IP to handle:
265  * - The ip_g_head list maintained by mi_open_link() and friends.
266  *
267  * - The reassembly data structures (one lock per hash bucket)
268  *
269  * - conn_lock is meant to protect conn_t fields. The fields actually
270  *   protected by conn_lock are documented in the conn_t definition.
271  *
272  * - ire_lock to protect some of the fields of the ire, IRE tables
273  *   (one lock per hash bucket). Refer to ip_ire.c for details.
274  *
275  * - ndp_g_lock and ncec_lock for protecting NCEs.
276  *
277  * - ill_lock protects fields of the ill and ipif. Details in ip.h
278  *
279  * - ill_g_lock: This is a global reader/writer lock. Protects the following
280  *	* The AVL tree based global multi list of all ills.
281  *	* The linked list of all ipifs of an ill
282  *	* The <ipsq-xop> mapping
283  *	* <ill-phyint> association
284  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
285  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
286  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
287  *   writer for the actual duration of the insertion/deletion/change.
288  *
289  * - ill_lock:  This is a per ill mutex.
290  *   It protects some members of the ill_t struct; see ip.h for details.
291  *   It also protects the <ill-phyint> assoc.
292  *   It also protects the list of ipifs hanging off the ill.
293  *
294  * - ipsq_lock: This is a per ipsq_t mutex lock.
295  *   This protects some members of the ipsq_t struct; see ip.h for details.
296  *   It also protects the <ipsq-ipxop> mapping
297  *
298  * - ipx_lock: This is a per ipxop_t mutex lock.
299  *   This protects some members of the ipxop_t struct; see ip.h for details.
300  *
301  * - phyint_lock: This is a per phyint mutex lock. Protects just the
302  *   phyint_flags
303  *
304  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
305  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
306  *   uniqueness check also done atomically.
307  *
308  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
309  *   group list linked by ill_usesrc_grp_next. It also protects the
310  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
311  *   group is being added or deleted.  This lock is taken as a reader when
312  *   walking the list/group(eg: to get the number of members in a usesrc group).
313  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
314  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
315  *   example, it is not necessary to take this lock in the initial portion
316  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
317  *   operations are executed exclusively and that ensures that the "usesrc
318  *   group state" cannot change. The "usesrc group state" change can happen
319  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
320  *
321  * Changing <ill-phyint>, <ipsq-xop> assocications:
322  *
323  * To change the <ill-phyint> association, the ill_g_lock must be held
324  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
325  * must be held.
326  *
327  * To change the <ipsq-xop> association, the ill_g_lock must be held as
328  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
329  * This is only done when ills are added or removed from IPMP groups.
330  *
331  * To add or delete an ipif from the list of ipifs hanging off the ill,
332  * ill_g_lock (writer) and ill_lock must be held and the thread must be
333  * a writer on the associated ipsq.
334  *
335  * To add or delete an ill to the system, the ill_g_lock must be held as
336  * writer and the thread must be a writer on the associated ipsq.
337  *
338  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
339  * must be a writer on the associated ipsq.
340  *
341  * Lock hierarchy
342  *
343  * Some lock hierarchy scenarios are listed below.
344  *
345  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
346  * ill_g_lock -> ill_lock(s) -> phyint_lock
347  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
348  * ill_g_lock -> ip_addr_avail_lock
349  * conn_lock -> irb_lock -> ill_lock -> ire_lock
350  * ill_g_lock -> ip_g_nd_lock
351  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
352  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
353  * arl_lock -> ill_lock
354  * ips_ire_dep_lock -> irb_lock
355  *
356  * When more than 1 ill lock is needed to be held, all ill lock addresses
357  * are sorted on address and locked starting from highest addressed lock
358  * downward.
359  *
360  * Multicast scenarios
361  * ips_ill_g_lock -> ill_mcast_lock
362  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
363  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
364  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
365  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
366  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
367  *
368  * IPsec scenarios
369  *
370  * ipsa_lock -> ill_g_lock -> ill_lock
371  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
372  *
373  * Trusted Solaris scenarios
374  *
375  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
376  * igsa_lock -> gcdb_lock
377  * gcgrp_rwlock -> ire_lock
378  * gcgrp_rwlock -> gcdb_lock
379  *
380  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
381  *
382  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
383  * sq_lock -> conn_lock -> QLOCK(q)
384  * ill_lock -> ft_lock -> fe_lock
385  *
386  * Routing/forwarding table locking notes:
387  *
388  * Lock acquisition order: Radix tree lock, irb_lock.
389  * Requirements:
390  * i.  Walker must not hold any locks during the walker callback.
391  * ii  Walker must not see a truncated tree during the walk because of any node
392  *     deletion.
393  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
394  *     in many places in the code to walk the irb list. Thus even if all the
395  *     ires in a bucket have been deleted, we still can't free the radix node
396  *     until the ires have actually been inactive'd (freed).
397  *
398  * Tree traversal - Need to hold the global tree lock in read mode.
399  * Before dropping the global tree lock, need to either increment the ire_refcnt
400  * to ensure that the radix node can't be deleted.
401  *
402  * Tree add - Need to hold the global tree lock in write mode to add a
403  * radix node. To prevent the node from being deleted, increment the
404  * irb_refcnt, after the node is added to the tree. The ire itself is
405  * added later while holding the irb_lock, but not the tree lock.
406  *
407  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
408  * All associated ires must be inactive (i.e. freed), and irb_refcnt
409  * must be zero.
410  *
411  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
412  * global tree lock (read mode) for traversal.
413  *
414  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
415  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
416  *
417  * IPsec notes :
418  *
419  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
420  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
421  * ip_xmit_attr_t has the
422  * information used by the IPsec code for applying the right level of
423  * protection. The information initialized by IP in the ip_xmit_attr_t
424  * is determined by the per-socket policy or global policy in the system.
425  * For inbound datagrams, the ip_recv_attr_t
426  * starts out with nothing in it. It gets filled
427  * with the right information if it goes through the AH/ESP code, which
428  * happens if the incoming packet is secure. The information initialized
429  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
430  * the policy requirements needed by per-socket policy or global policy
431  * is met or not.
432  *
433  * For fully connected sockets i.e dst, src [addr, port] is known,
434  * conn_policy_cached is set indicating that policy has been cached.
435  * conn_in_enforce_policy may or may not be set depending on whether
436  * there is a global policy match or per-socket policy match.
437  * Policy inheriting happpens in ip_policy_set once the destination is known.
438  * Once the right policy is set on the conn_t, policy cannot change for
439  * this socket. This makes life simpler for TCP (UDP ?) where
440  * re-transmissions go out with the same policy. For symmetry, policy
441  * is cached for fully connected UDP sockets also. Thus if policy is cached,
442  * it also implies that policy is latched i.e policy cannot change
443  * on these sockets. As we have the right policy on the conn, we don't
444  * have to lookup global policy for every outbound and inbound datagram
445  * and thus serving as an optimization. Note that a global policy change
446  * does not affect fully connected sockets if they have policy. If fully
447  * connected sockets did not have any policy associated with it, global
448  * policy change may affect them.
449  *
450  * IP Flow control notes:
451  * ---------------------
452  * Non-TCP streams are flow controlled by IP. The way this is accomplished
453  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
454  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
455  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
456  * functions.
457  *
458  * Per Tx ring udp flow control:
459  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
460  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
461  *
462  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
463  * To achieve best performance, outgoing traffic need to be fanned out among
464  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
465  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
466  * the address of connp as fanout hint to mac_tx(). Under flow controlled
467  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
468  * cookie points to a specific Tx ring that is blocked. The cookie is used to
469  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
470  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
471  * connp's. The drain list is not a single list but a configurable number of
472  * lists.
473  *
474  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
475  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
476  * which is equal to 128. This array in turn contains a pointer to idl_t[],
477  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
478  * list will point to the list of connp's that are flow controlled.
479  *
480  *                      ---------------   -------   -------   -------
481  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
482  *                   |  ---------------   -------   -------   -------
483  *                   |  ---------------   -------   -------   -------
484  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
485  * ----------------  |  ---------------   -------   -------   -------
486  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
487  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
488  *                   |  ---------------   -------   -------   -------
489  *                   .        .              .         .         .
490  *                   |  ---------------   -------   -------   -------
491  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
492  *                      ---------------   -------   -------   -------
493  *                      ---------------   -------   -------   -------
494  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
495  *                   |  ---------------   -------   -------   -------
496  *                   |  ---------------   -------   -------   -------
497  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
498  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
499  * ----------------  |        .              .         .         .
500  *                   |  ---------------   -------   -------   -------
501  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
502  *                      ---------------   -------   -------   -------
503  *     .....
504  * ----------------
505  * |idl_tx_list[n]|-> ...
506  * ----------------
507  *
508  * When mac_tx() returns a cookie, the cookie is hashed into an index into
509  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
510  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
511  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
512  * Further, conn_blocked is set to indicate that the conn is blocked.
513  *
514  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
515  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
516  * is again hashed to locate the appropriate idl_tx_list, which is then
517  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
518  * the drain list and calls conn_drain_remove() to clear flow control (via
519  * calling su_txq_full() or clearing QFULL), and remove the conn from the
520  * drain list.
521  *
522  * Note that the drain list is not a single list but a (configurable) array of
523  * lists (8 elements by default).  Synchronization between drain insertion and
524  * flow control wakeup is handled by using idl_txl->txl_lock, and only
525  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
526  *
527  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
528  * On the send side, if the packet cannot be sent down to the driver by IP
529  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
530  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
531  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
532  * control has been relieved, the blocked conns in the 0'th drain list are
533  * drained as in the non-STREAMS case.
534  *
535  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
536  * is done when the conn is inserted into the drain list (conn_drain_insert())
537  * and cleared when the conn is removed from the it (conn_drain_remove()).
538  *
539  * IPQOS notes:
540  *
541  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
542  * and IPQoS modules. IPPF includes hooks in IP at different control points
543  * (callout positions) which direct packets to IPQoS modules for policy
544  * processing. Policies, if present, are global.
545  *
546  * The callout positions are located in the following paths:
547  *		o local_in (packets destined for this host)
548  *		o local_out (packets orginating from this host )
549  *		o fwd_in  (packets forwarded by this m/c - inbound)
550  *		o fwd_out (packets forwarded by this m/c - outbound)
551  * Hooks at these callout points can be enabled/disabled using the ndd variable
552  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
553  * By default all the callout positions are enabled.
554  *
555  * Outbound (local_out)
556  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
557  *
558  * Inbound (local_in)
559  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
560  *
561  * Forwarding (in and out)
562  * Hooks are placed in ire_recv_forward_v4/v6.
563  *
564  * IP Policy Framework processing (IPPF processing)
565  * Policy processing for a packet is initiated by ip_process, which ascertains
566  * that the classifier (ipgpc) is loaded and configured, failing which the
567  * packet resumes normal processing in IP. If the clasifier is present, the
568  * packet is acted upon by one or more IPQoS modules (action instances), per
569  * filters configured in ipgpc and resumes normal IP processing thereafter.
570  * An action instance can drop a packet in course of its processing.
571  *
572  * Zones notes:
573  *
574  * The partitioning rules for networking are as follows:
575  * 1) Packets coming from a zone must have a source address belonging to that
576  * zone.
577  * 2) Packets coming from a zone can only be sent on a physical interface on
578  * which the zone has an IP address.
579  * 3) Between two zones on the same machine, packet delivery is only allowed if
580  * there's a matching route for the destination and zone in the forwarding
581  * table.
582  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
583  * different zones can bind to the same port with the wildcard address
584  * (INADDR_ANY).
585  *
586  * The granularity of interface partitioning is at the logical interface level.
587  * Therefore, every zone has its own IP addresses, and incoming packets can be
588  * attributed to a zone unambiguously. A logical interface is placed into a zone
589  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
590  * structure. Rule (1) is implemented by modifying the source address selection
591  * algorithm so that the list of eligible addresses is filtered based on the
592  * sending process zone.
593  *
594  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
595  * across all zones, depending on their type. Here is the break-up:
596  *
597  * IRE type				Shared/exclusive
598  * --------				----------------
599  * IRE_BROADCAST			Exclusive
600  * IRE_DEFAULT (default routes)		Shared (*)
601  * IRE_LOCAL				Exclusive (x)
602  * IRE_LOOPBACK				Exclusive
603  * IRE_PREFIX (net routes)		Shared (*)
604  * IRE_IF_NORESOLVER (interface routes)	Exclusive
605  * IRE_IF_RESOLVER (interface routes)	Exclusive
606  * IRE_IF_CLONE (interface routes)	Exclusive
607  * IRE_HOST (host routes)		Shared (*)
608  *
609  * (*) A zone can only use a default or off-subnet route if the gateway is
610  * directly reachable from the zone, that is, if the gateway's address matches
611  * one of the zone's logical interfaces.
612  *
613  * (x) IRE_LOCAL are handled a bit differently.
614  * When ip_restrict_interzone_loopback is set (the default),
615  * ire_route_recursive restricts loopback using an IRE_LOCAL
616  * between zone to the case when L2 would have conceptually looped the packet
617  * back, i.e. the loopback which is required since neither Ethernet drivers
618  * nor Ethernet hardware loops them back. This is the case when the normal
619  * routes (ignoring IREs with different zoneids) would send out the packet on
620  * the same ill as the ill with which is IRE_LOCAL is associated.
621  *
622  * Multiple zones can share a common broadcast address; typically all zones
623  * share the 255.255.255.255 address. Incoming as well as locally originated
624  * broadcast packets must be dispatched to all the zones on the broadcast
625  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
626  * since some zones may not be on the 10.16.72/24 network. To handle this, each
627  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
628  * sent to every zone that has an IRE_BROADCAST entry for the destination
629  * address on the input ill, see ip_input_broadcast().
630  *
631  * Applications in different zones can join the same multicast group address.
632  * The same logic applies for multicast as for broadcast. ip_input_multicast
633  * dispatches packets to all zones that have members on the physical interface.
634  */
635 
636 /*
637  * Squeue Fanout flags:
638  *	0: No fanout.
639  *	1: Fanout across all squeues
640  */
641 boolean_t	ip_squeue_fanout = 0;
642 
643 /*
644  * Maximum dups allowed per packet.
645  */
646 uint_t ip_max_frag_dups = 10;
647 
648 static int	ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
649 		    cred_t *credp, boolean_t isv6);
650 static mblk_t	*ip_xmit_attach_llhdr(mblk_t *, nce_t *);
651 
652 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
653 static void	icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
654 static void	icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
655     ip_recv_attr_t *);
656 static void	icmp_options_update(ipha_t *);
657 static void	icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
658 static void	icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
659 static mblk_t	*icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
660 static void	icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
661     ip_recv_attr_t *);
662 static void	icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
663 static void	icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
664     ip_recv_attr_t *);
665 
666 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
667 char		*ip_dot_addr(ipaddr_t, char *);
668 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
669 static char	*ip_dot_saddr(uchar_t *, char *);
670 static int	ip_lrput(queue_t *, mblk_t *);
671 ipaddr_t	ip_net_mask(ipaddr_t);
672 char		*ip_nv_lookup(nv_t *, int);
673 int		ip_rput(queue_t *, mblk_t *);
674 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
675 		    void *dummy_arg);
676 int		ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
677 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
678 		    mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
679 static mblk_t	*ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
680 		    ip_stack_t *, boolean_t);
681 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
682 		    boolean_t);
683 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
684 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
685 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
686 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
687 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
688 		    ip_stack_t *ipst, boolean_t);
689 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
690 		    ip_stack_t *ipst, boolean_t);
691 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
692 		    ip_stack_t *ipst);
693 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
694 		    ip_stack_t *ipst);
695 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
696 		    ip_stack_t *ipst);
697 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
698 		    ip_stack_t *ipst);
699 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
700 		    ip_stack_t *ipst);
701 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
702 		    ip_stack_t *ipst);
703 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
704 		    ip_stack_t *ipst);
705 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
706 		    ip_stack_t *ipst);
707 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
708 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
709 static void	ip_snmp_get2_v4_media(ncec_t *, void *);
710 static void	ip_snmp_get2_v6_media(ncec_t *, void *);
711 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
712 
713 static mblk_t	*ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
714 		    mblk_t *);
715 
716 static void	conn_drain_init(ip_stack_t *);
717 static void	conn_drain_fini(ip_stack_t *);
718 static void	conn_drain(conn_t *connp, boolean_t closing);
719 
720 static void	conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
721 static void	conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
722 
723 static void	*ip_stack_init(netstackid_t stackid, netstack_t *ns);
724 static void	ip_stack_shutdown(netstackid_t stackid, void *arg);
725 static void	ip_stack_fini(netstackid_t stackid, void *arg);
726 
727 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
728     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
729     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
730     const in6_addr_t *);
731 
732 static int	ip_squeue_switch(int);
733 
734 static void	*ip_kstat_init(netstackid_t, ip_stack_t *);
735 static void	ip_kstat_fini(netstackid_t, kstat_t *);
736 static int	ip_kstat_update(kstat_t *kp, int rw);
737 static void	*icmp_kstat_init(netstackid_t);
738 static void	icmp_kstat_fini(netstackid_t, kstat_t *);
739 static int	icmp_kstat_update(kstat_t *kp, int rw);
740 static void	*ip_kstat2_init(netstackid_t, ip_stat_t *);
741 static void	ip_kstat2_fini(netstackid_t, kstat_t *);
742 
743 static void	ipobs_init(ip_stack_t *);
744 static void	ipobs_fini(ip_stack_t *);
745 
746 static int	ip_tp_cpu_update(cpu_setup_t, int, void *);
747 
748 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
749 
750 static long ip_rput_pullups;
751 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
752 
753 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
754 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
755 
756 int	ip_debug;
757 
758 /*
759  * Multirouting/CGTP stuff
760  */
761 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
762 
763 /*
764  * IP tunables related declarations. Definitions are in ip_tunables.c
765  */
766 extern mod_prop_info_t ip_propinfo_tbl[];
767 extern int ip_propinfo_count;
768 
769 /*
770  * Table of IP ioctls encoding the various properties of the ioctl and
771  * indexed based on the last byte of the ioctl command. Occasionally there
772  * is a clash, and there is more than 1 ioctl with the same last byte.
773  * In such a case 1 ioctl is encoded in the ndx table and the remaining
774  * ioctls are encoded in the misc table. An entry in the ndx table is
775  * retrieved by indexing on the last byte of the ioctl command and comparing
776  * the ioctl command with the value in the ndx table. In the event of a
777  * mismatch the misc table is then searched sequentially for the desired
778  * ioctl command.
779  *
780  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
781  */
782 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
783 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
784 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
785 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
786 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
787 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
788 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
789 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
790 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
791 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
792 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
793 
794 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
795 			MISC_CMD, ip_siocaddrt, NULL },
796 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
797 			MISC_CMD, ip_siocdelrt, NULL },
798 
799 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
800 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
801 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
802 			IF_CMD, ip_sioctl_get_addr, NULL },
803 
804 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
805 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
806 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
807 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
808 
809 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
810 			IPI_PRIV | IPI_WR,
811 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
812 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
813 			IPI_MODOK | IPI_GET_CMD,
814 			IF_CMD, ip_sioctl_get_flags, NULL },
815 
816 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
817 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
818 
819 	/* copyin size cannot be coded for SIOCGIFCONF */
820 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
821 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
822 
823 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
824 			IF_CMD, ip_sioctl_mtu, NULL },
825 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD,
826 			IF_CMD, ip_sioctl_get_mtu, NULL },
827 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
828 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
829 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
830 			IF_CMD, ip_sioctl_brdaddr, NULL },
831 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
832 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
833 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
834 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
835 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
836 			IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
837 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
838 			IF_CMD, ip_sioctl_metric, NULL },
839 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
840 
841 	/* See 166-168 below for extended SIOC*XARP ioctls */
842 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
843 			ARP_CMD, ip_sioctl_arp, NULL },
844 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
845 			ARP_CMD, ip_sioctl_arp, NULL },
846 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
847 			ARP_CMD, ip_sioctl_arp, NULL },
848 
849 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
850 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
851 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
852 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
853 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
854 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
855 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
856 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
857 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
858 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
859 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
860 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
861 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
862 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
863 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
864 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
865 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
866 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
867 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
868 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
869 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
870 
871 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
872 			MISC_CMD, if_unitsel, if_unitsel_restart },
873 
874 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
875 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
876 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
877 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
878 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
879 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
880 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
881 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
882 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
883 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
884 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
885 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
886 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
887 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
888 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
889 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
890 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
891 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
892 
893 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
894 			IPI_PRIV | IPI_WR | IPI_MODOK,
895 			IF_CMD, ip_sioctl_sifname, NULL },
896 
897 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
898 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
899 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
900 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
901 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
902 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
903 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
904 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
905 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
906 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
907 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
908 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
909 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
910 
911 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
912 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
913 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
914 			IF_CMD, ip_sioctl_get_muxid, NULL },
915 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
916 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
917 
918 	/* Both if and lif variants share same func */
919 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
920 			IF_CMD, ip_sioctl_get_lifindex, NULL },
921 	/* Both if and lif variants share same func */
922 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
923 			IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
924 
925 	/* copyin size cannot be coded for SIOCGIFCONF */
926 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
927 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
928 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
929 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
930 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
931 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
932 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
933 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
934 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
935 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
936 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
937 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
938 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
939 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
940 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
941 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
942 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
943 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
944 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
945 
946 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
947 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
948 			ip_sioctl_removeif_restart },
949 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
950 			IPI_GET_CMD | IPI_PRIV | IPI_WR,
951 			LIF_CMD, ip_sioctl_addif, NULL },
952 #define	SIOCLIFADDR_NDX 112
953 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
954 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
955 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
956 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
957 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
958 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
959 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
960 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
961 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
962 			IPI_PRIV | IPI_WR,
963 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
964 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
965 			IPI_GET_CMD | IPI_MODOK,
966 			LIF_CMD, ip_sioctl_get_flags, NULL },
967 
968 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
969 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
970 
971 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
972 			ip_sioctl_get_lifconf, NULL },
973 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
974 			LIF_CMD, ip_sioctl_mtu, NULL },
975 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
976 			LIF_CMD, ip_sioctl_get_mtu, NULL },
977 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
978 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
979 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
980 			LIF_CMD, ip_sioctl_brdaddr, NULL },
981 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
982 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
983 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
984 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
985 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
986 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
987 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
988 			LIF_CMD, ip_sioctl_metric, NULL },
989 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
990 			IPI_PRIV | IPI_WR | IPI_MODOK,
991 			LIF_CMD, ip_sioctl_slifname,
992 			ip_sioctl_slifname_restart },
993 
994 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
995 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
996 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
997 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
998 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
999 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1000 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1001 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1002 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1003 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1004 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1005 			LIF_CMD, ip_sioctl_token, NULL },
1006 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1007 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1008 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1009 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1010 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1011 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1012 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1013 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1014 
1015 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1016 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1017 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1018 			LIF_CMD, ip_siocdelndp_v6, NULL },
1019 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1020 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1021 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1022 			LIF_CMD, ip_siocsetndp_v6, NULL },
1023 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1024 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1025 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1026 			MISC_CMD, ip_sioctl_tonlink, NULL },
1027 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1028 			MISC_CMD, ip_sioctl_tmysite, NULL },
1029 	/* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1030 	/* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031 
1032 	/* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1033 	/* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1034 	/* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035 	/* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 	/* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 
1038 	/* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1039 
1040 	/* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1041 			LIF_CMD, ip_sioctl_get_binding, NULL },
1042 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1043 			IPI_PRIV | IPI_WR,
1044 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1045 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1046 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1047 	/* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1048 			IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1049 
1050 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1051 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1052 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 
1055 	/* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1056 
1057 	/* These are handled in ip_sioctl_copyin_setup itself */
1058 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1059 			MISC_CMD, NULL, NULL },
1060 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1061 			MISC_CMD, NULL, NULL },
1062 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1063 
1064 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1065 			ip_sioctl_get_lifconf, NULL },
1066 
1067 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1068 			XARP_CMD, ip_sioctl_arp, NULL },
1069 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1070 			XARP_CMD, ip_sioctl_arp, NULL },
1071 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1072 			XARP_CMD, ip_sioctl_arp, NULL },
1073 
1074 	/* SIOCPOPSOCKFS is not handled by IP */
1075 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1076 
1077 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1078 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1079 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1080 			IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1081 			ip_sioctl_slifzone_restart },
1082 	/* 172-174 are SCTP ioctls and not handled by IP */
1083 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1084 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1087 			IPI_GET_CMD, LIF_CMD,
1088 			ip_sioctl_get_lifusesrc, 0 },
1089 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1090 			IPI_PRIV | IPI_WR,
1091 			LIF_CMD, ip_sioctl_slifusesrc,
1092 			NULL },
1093 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1094 			ip_sioctl_get_lifsrcof, NULL },
1095 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1096 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1097 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1098 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1099 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1100 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1101 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1102 			MSFILT_CMD, ip_sioctl_msfilter, NULL },
1103 	/* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1104 	/* SIOCSENABLESDP is handled by SDP */
1105 	/* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1106 	/* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1107 	/* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1108 			IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1109 	/* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1110 	/* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1111 			ip_sioctl_ilb_cmd, NULL },
1112 	/* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1113 	/* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1114 	/* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1115 			IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1116 	/* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1117 			LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1118 	/* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1119 			LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1120 };
1121 
1122 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1123 
1124 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1125 	{ I_LINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1126 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127 	{ I_PLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129 	{ ND_GET,	0, 0, 0, NULL, NULL },
1130 	{ ND_SET,	0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1131 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1132 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1133 		MISC_CMD, mrt_ioctl},
1134 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_GET_CMD,
1135 		MISC_CMD, mrt_ioctl},
1136 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1137 		MISC_CMD, mrt_ioctl}
1138 };
1139 
1140 int ip_misc_ioctl_count =
1141     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1142 
1143 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1144 					/* Settable in /etc/system */
1145 /* Defined in ip_ire.c */
1146 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1147 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1148 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1149 
1150 static nv_t	ire_nv_arr[] = {
1151 	{ IRE_BROADCAST, "BROADCAST" },
1152 	{ IRE_LOCAL, "LOCAL" },
1153 	{ IRE_LOOPBACK, "LOOPBACK" },
1154 	{ IRE_DEFAULT, "DEFAULT" },
1155 	{ IRE_PREFIX, "PREFIX" },
1156 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1157 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1158 	{ IRE_IF_CLONE, "IF_CLONE" },
1159 	{ IRE_HOST, "HOST" },
1160 	{ IRE_MULTICAST, "MULTICAST" },
1161 	{ IRE_NOROUTE, "NOROUTE" },
1162 	{ 0 }
1163 };
1164 
1165 nv_t	*ire_nv_tbl = ire_nv_arr;
1166 
1167 /* Simple ICMP IP Header Template */
1168 static ipha_t icmp_ipha = {
1169 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1170 };
1171 
1172 struct module_info ip_mod_info = {
1173 	IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1174 	IP_MOD_LOWAT
1175 };
1176 
1177 /*
1178  * Duplicate static symbols within a module confuses mdb; so we avoid the
1179  * problem by making the symbols here distinct from those in udp.c.
1180  */
1181 
1182 /*
1183  * Entry points for IP as a device and as a module.
1184  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1185  */
1186 static struct qinit iprinitv4 = {
1187 	ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1188 };
1189 
1190 struct qinit iprinitv6 = {
1191 	ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info
1192 };
1193 
1194 static struct qinit ipwinit = {
1195 	ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info
1196 };
1197 
1198 static struct qinit iplrinit = {
1199 	ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1200 };
1201 
1202 static struct qinit iplwinit = {
1203 	ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info
1204 };
1205 
1206 /* For AF_INET aka /dev/ip */
1207 struct streamtab ipinfov4 = {
1208 	&iprinitv4, &ipwinit, &iplrinit, &iplwinit
1209 };
1210 
1211 /* For AF_INET6 aka /dev/ip6 */
1212 struct streamtab ipinfov6 = {
1213 	&iprinitv6, &ipwinit, &iplrinit, &iplwinit
1214 };
1215 
1216 #ifdef	DEBUG
1217 boolean_t skip_sctp_cksum = B_FALSE;
1218 #endif
1219 
1220 /*
1221  * Generate an ICMP fragmentation needed message.
1222  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1223  * constructed by the caller.
1224  */
1225 void
1226 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1227 {
1228 	icmph_t	icmph;
1229 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1230 
1231 	mp = icmp_pkt_err_ok(mp, ira);
1232 	if (mp == NULL)
1233 		return;
1234 
1235 	bzero(&icmph, sizeof (icmph_t));
1236 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1237 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1238 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1239 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1240 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1241 
1242 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1243 }
1244 
1245 /*
1246  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1247  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1248  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1249  * Likewise, if the ICMP error is misformed (too short, etc), then it
1250  * returns NULL. The caller uses this to determine whether or not to send
1251  * to raw sockets.
1252  *
1253  * All error messages are passed to the matching transport stream.
1254  *
1255  * The following cases are handled by icmp_inbound:
1256  * 1) It needs to send a reply back and possibly delivering it
1257  *    to the "interested" upper clients.
1258  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1259  * 3) It needs to change some values in IP only.
1260  * 4) It needs to change some values in IP and upper layers e.g TCP
1261  *    by delivering an error to the upper layers.
1262  *
1263  * We handle the above three cases in the context of IPsec in the
1264  * following way :
1265  *
1266  * 1) Send the reply back in the same way as the request came in.
1267  *    If it came in encrypted, it goes out encrypted. If it came in
1268  *    clear, it goes out in clear. Thus, this will prevent chosen
1269  *    plain text attack.
1270  * 2) The client may or may not expect things to come in secure.
1271  *    If it comes in secure, the policy constraints are checked
1272  *    before delivering it to the upper layers. If it comes in
1273  *    clear, ipsec_inbound_accept_clear will decide whether to
1274  *    accept this in clear or not. In both the cases, if the returned
1275  *    message (IP header + 8 bytes) that caused the icmp message has
1276  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1277  *    sending up. If there are only 8 bytes of returned message, then
1278  *    upper client will not be notified.
1279  * 3) Check with global policy to see whether it matches the constaints.
1280  *    But this will be done only if icmp_accept_messages_in_clear is
1281  *    zero.
1282  * 4) If we need to change both in IP and ULP, then the decision taken
1283  *    while affecting the values in IP and while delivering up to TCP
1284  *    should be the same.
1285  *
1286  *	There are two cases.
1287  *
1288  *	a) If we reject data at the IP layer (ipsec_check_global_policy()
1289  *	   failed), we will not deliver it to the ULP, even though they
1290  *	   are *willing* to accept in *clear*. This is fine as our global
1291  *	   disposition to icmp messages asks us reject the datagram.
1292  *
1293  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1294  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1295  *	   to deliver it to ULP (policy failed), it can lead to
1296  *	   consistency problems. The cases known at this time are
1297  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1298  *	   values :
1299  *
1300  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1301  *	     and Upper layer rejects. Then the communication will
1302  *	     come to a stop. This is solved by making similar decisions
1303  *	     at both levels. Currently, when we are unable to deliver
1304  *	     to the Upper Layer (due to policy failures) while IP has
1305  *	     adjusted dce_pmtu, the next outbound datagram would
1306  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1307  *	     will be with the right level of protection. Thus the right
1308  *	     value will be communicated even if we are not able to
1309  *	     communicate when we get from the wire initially. But this
1310  *	     assumes there would be at least one outbound datagram after
1311  *	     IP has adjusted its dce_pmtu value. To make things
1312  *	     simpler, we accept in clear after the validation of
1313  *	     AH/ESP headers.
1314  *
1315  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1316  *	     upper layer depending on the level of protection the upper
1317  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1318  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1319  *	     should be accepted in clear when the Upper layer expects secure.
1320  *	     Thus the communication may get aborted by some bad ICMP
1321  *	     packets.
1322  */
1323 mblk_t *
1324 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1325 {
1326 	icmph_t		*icmph;
1327 	ipha_t		*ipha;		/* Outer header */
1328 	int		ip_hdr_length;	/* Outer header length */
1329 	boolean_t	interested;
1330 	ipif_t		*ipif;
1331 	uint32_t	ts;
1332 	uint32_t	*tsp;
1333 	timestruc_t	now;
1334 	ill_t		*ill = ira->ira_ill;
1335 	ip_stack_t	*ipst = ill->ill_ipst;
1336 	zoneid_t	zoneid = ira->ira_zoneid;
1337 	int		len_needed;
1338 	mblk_t		*mp_ret = NULL;
1339 
1340 	ipha = (ipha_t *)mp->b_rptr;
1341 
1342 	BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1343 
1344 	ip_hdr_length = ira->ira_ip_hdr_length;
1345 	if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1346 		if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1347 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1348 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1349 			freemsg(mp);
1350 			return (NULL);
1351 		}
1352 		/* Last chance to get real. */
1353 		ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1354 		if (ipha == NULL) {
1355 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1356 			freemsg(mp);
1357 			return (NULL);
1358 		}
1359 	}
1360 
1361 	/* The IP header will always be a multiple of four bytes */
1362 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1363 	ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1364 	    icmph->icmph_code));
1365 
1366 	/*
1367 	 * We will set "interested" to "true" if we should pass a copy to
1368 	 * the transport or if we handle the packet locally.
1369 	 */
1370 	interested = B_FALSE;
1371 	switch (icmph->icmph_type) {
1372 	case ICMP_ECHO_REPLY:
1373 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1374 		break;
1375 	case ICMP_DEST_UNREACHABLE:
1376 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1377 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1378 		interested = B_TRUE;	/* Pass up to transport */
1379 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1380 		break;
1381 	case ICMP_SOURCE_QUENCH:
1382 		interested = B_TRUE;	/* Pass up to transport */
1383 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1384 		break;
1385 	case ICMP_REDIRECT:
1386 		if (!ipst->ips_ip_ignore_redirect)
1387 			interested = B_TRUE;
1388 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1389 		break;
1390 	case ICMP_ECHO_REQUEST:
1391 		/*
1392 		 * Whether to respond to echo requests that come in as IP
1393 		 * broadcasts or as IP multicast is subject to debate
1394 		 * (what isn't?).  We aim to please, you pick it.
1395 		 * Default is do it.
1396 		 */
1397 		if (ira->ira_flags & IRAF_MULTICAST) {
1398 			/* multicast: respond based on tunable */
1399 			interested = ipst->ips_ip_g_resp_to_echo_mcast;
1400 		} else if (ira->ira_flags & IRAF_BROADCAST) {
1401 			/* broadcast: respond based on tunable */
1402 			interested = ipst->ips_ip_g_resp_to_echo_bcast;
1403 		} else {
1404 			/* unicast: always respond */
1405 			interested = B_TRUE;
1406 		}
1407 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1408 		if (!interested) {
1409 			/* We never pass these to RAW sockets */
1410 			freemsg(mp);
1411 			return (NULL);
1412 		}
1413 
1414 		/* Check db_ref to make sure we can modify the packet. */
1415 		if (mp->b_datap->db_ref > 1) {
1416 			mblk_t	*mp1;
1417 
1418 			mp1 = copymsg(mp);
1419 			freemsg(mp);
1420 			if (!mp1) {
1421 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1422 				return (NULL);
1423 			}
1424 			mp = mp1;
1425 			ipha = (ipha_t *)mp->b_rptr;
1426 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1427 		}
1428 		icmph->icmph_type = ICMP_ECHO_REPLY;
1429 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1430 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1431 		return (NULL);
1432 
1433 	case ICMP_ROUTER_ADVERTISEMENT:
1434 	case ICMP_ROUTER_SOLICITATION:
1435 		break;
1436 	case ICMP_TIME_EXCEEDED:
1437 		interested = B_TRUE;	/* Pass up to transport */
1438 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1439 		break;
1440 	case ICMP_PARAM_PROBLEM:
1441 		interested = B_TRUE;	/* Pass up to transport */
1442 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1443 		break;
1444 	case ICMP_TIME_STAMP_REQUEST:
1445 		/* Response to Time Stamp Requests is local policy. */
1446 		if (ipst->ips_ip_g_resp_to_timestamp) {
1447 			if (ira->ira_flags & IRAF_MULTIBROADCAST)
1448 				interested =
1449 				    ipst->ips_ip_g_resp_to_timestamp_bcast;
1450 			else
1451 				interested = B_TRUE;
1452 		}
1453 		if (!interested) {
1454 			/* We never pass these to RAW sockets */
1455 			freemsg(mp);
1456 			return (NULL);
1457 		}
1458 
1459 		/* Make sure we have enough of the packet */
1460 		len_needed = ip_hdr_length + ICMPH_SIZE +
1461 		    3 * sizeof (uint32_t);
1462 
1463 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1464 			ipha = ip_pullup(mp, len_needed, ira);
1465 			if (ipha == NULL) {
1466 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1467 				ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1468 				    mp, ill);
1469 				freemsg(mp);
1470 				return (NULL);
1471 			}
1472 			/* Refresh following the pullup. */
1473 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1474 		}
1475 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1476 		/* Check db_ref to make sure we can modify the packet. */
1477 		if (mp->b_datap->db_ref > 1) {
1478 			mblk_t	*mp1;
1479 
1480 			mp1 = copymsg(mp);
1481 			freemsg(mp);
1482 			if (!mp1) {
1483 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1484 				return (NULL);
1485 			}
1486 			mp = mp1;
1487 			ipha = (ipha_t *)mp->b_rptr;
1488 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1489 		}
1490 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1491 		tsp = (uint32_t *)&icmph[1];
1492 		tsp++;		/* Skip past 'originate time' */
1493 		/* Compute # of milliseconds since midnight */
1494 		gethrestime(&now);
1495 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1496 		    NSEC2MSEC(now.tv_nsec);
1497 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1498 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1499 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1500 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1501 		return (NULL);
1502 
1503 	case ICMP_TIME_STAMP_REPLY:
1504 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1505 		break;
1506 	case ICMP_INFO_REQUEST:
1507 		/* Per RFC 1122 3.2.2.7, ignore this. */
1508 	case ICMP_INFO_REPLY:
1509 		break;
1510 	case ICMP_ADDRESS_MASK_REQUEST:
1511 		if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1512 			interested =
1513 			    ipst->ips_ip_respond_to_address_mask_broadcast;
1514 		} else {
1515 			interested = B_TRUE;
1516 		}
1517 		if (!interested) {
1518 			/* We never pass these to RAW sockets */
1519 			freemsg(mp);
1520 			return (NULL);
1521 		}
1522 		len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1523 		if (mp->b_wptr - mp->b_rptr < len_needed) {
1524 			ipha = ip_pullup(mp, len_needed, ira);
1525 			if (ipha == NULL) {
1526 				BUMP_MIB(ill->ill_ip_mib,
1527 				    ipIfStatsInTruncatedPkts);
1528 				ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1529 				    ill);
1530 				freemsg(mp);
1531 				return (NULL);
1532 			}
1533 			/* Refresh following the pullup. */
1534 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1535 		}
1536 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1537 		/* Check db_ref to make sure we can modify the packet. */
1538 		if (mp->b_datap->db_ref > 1) {
1539 			mblk_t	*mp1;
1540 
1541 			mp1 = copymsg(mp);
1542 			freemsg(mp);
1543 			if (!mp1) {
1544 				BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1545 				return (NULL);
1546 			}
1547 			mp = mp1;
1548 			ipha = (ipha_t *)mp->b_rptr;
1549 			icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1550 		}
1551 		/*
1552 		 * Need the ipif with the mask be the same as the source
1553 		 * address of the mask reply. For unicast we have a specific
1554 		 * ipif. For multicast/broadcast we only handle onlink
1555 		 * senders, and use the source address to pick an ipif.
1556 		 */
1557 		ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1558 		if (ipif == NULL) {
1559 			/* Broadcast or multicast */
1560 			ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1561 			if (ipif == NULL) {
1562 				freemsg(mp);
1563 				return (NULL);
1564 			}
1565 		}
1566 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1567 		bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1568 		ipif_refrele(ipif);
1569 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1570 		icmp_send_reply_v4(mp, ipha, icmph, ira);
1571 		return (NULL);
1572 
1573 	case ICMP_ADDRESS_MASK_REPLY:
1574 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1575 		break;
1576 	default:
1577 		interested = B_TRUE;	/* Pass up to transport */
1578 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1579 		break;
1580 	}
1581 	/*
1582 	 * See if there is an ICMP client to avoid an extra copymsg/freemsg
1583 	 * if there isn't one.
1584 	 */
1585 	if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1586 		/* If there is an ICMP client and we want one too, copy it. */
1587 
1588 		if (!interested) {
1589 			/* Caller will deliver to RAW sockets */
1590 			return (mp);
1591 		}
1592 		mp_ret = copymsg(mp);
1593 		if (mp_ret == NULL) {
1594 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1595 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1596 		}
1597 	} else if (!interested) {
1598 		/* Neither we nor raw sockets are interested. Drop packet now */
1599 		freemsg(mp);
1600 		return (NULL);
1601 	}
1602 
1603 	/*
1604 	 * ICMP error or redirect packet. Make sure we have enough of
1605 	 * the header and that db_ref == 1 since we might end up modifying
1606 	 * the packet.
1607 	 */
1608 	if (mp->b_cont != NULL) {
1609 		if (ip_pullup(mp, -1, ira) == NULL) {
1610 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1611 			ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1612 			    mp, ill);
1613 			freemsg(mp);
1614 			return (mp_ret);
1615 		}
1616 	}
1617 
1618 	if (mp->b_datap->db_ref > 1) {
1619 		mblk_t	*mp1;
1620 
1621 		mp1 = copymsg(mp);
1622 		if (mp1 == NULL) {
1623 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1624 			ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1625 			freemsg(mp);
1626 			return (mp_ret);
1627 		}
1628 		freemsg(mp);
1629 		mp = mp1;
1630 	}
1631 
1632 	/*
1633 	 * In case mp has changed, verify the message before any further
1634 	 * processes.
1635 	 */
1636 	ipha = (ipha_t *)mp->b_rptr;
1637 	icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1638 	if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1639 		freemsg(mp);
1640 		return (mp_ret);
1641 	}
1642 
1643 	switch (icmph->icmph_type) {
1644 	case ICMP_REDIRECT:
1645 		icmp_redirect_v4(mp, ipha, icmph, ira);
1646 		break;
1647 	case ICMP_DEST_UNREACHABLE:
1648 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1649 			/* Update DCE and adjust MTU is icmp header if needed */
1650 			icmp_inbound_too_big_v4(icmph, ira);
1651 		}
1652 		/* FALLTHROUGH */
1653 	default:
1654 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
1655 		break;
1656 	}
1657 	return (mp_ret);
1658 }
1659 
1660 /*
1661  * Send an ICMP echo, timestamp or address mask reply.
1662  * The caller has already updated the payload part of the packet.
1663  * We handle the ICMP checksum, IP source address selection and feed
1664  * the packet into ip_output_simple.
1665  */
1666 static void
1667 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1668     ip_recv_attr_t *ira)
1669 {
1670 	uint_t		ip_hdr_length = ira->ira_ip_hdr_length;
1671 	ill_t		*ill = ira->ira_ill;
1672 	ip_stack_t	*ipst = ill->ill_ipst;
1673 	ip_xmit_attr_t	ixas;
1674 
1675 	/* Send out an ICMP packet */
1676 	icmph->icmph_checksum = 0;
1677 	icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1678 	/* Reset time to live. */
1679 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1680 	{
1681 		/* Swap source and destination addresses */
1682 		ipaddr_t tmp;
1683 
1684 		tmp = ipha->ipha_src;
1685 		ipha->ipha_src = ipha->ipha_dst;
1686 		ipha->ipha_dst = tmp;
1687 	}
1688 	ipha->ipha_ident = 0;
1689 	if (!IS_SIMPLE_IPH(ipha))
1690 		icmp_options_update(ipha);
1691 
1692 	bzero(&ixas, sizeof (ixas));
1693 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1694 	ixas.ixa_zoneid = ira->ira_zoneid;
1695 	ixas.ixa_cred = kcred;
1696 	ixas.ixa_cpid = NOPID;
1697 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
1698 	ixas.ixa_ifindex = 0;
1699 	ixas.ixa_ipst = ipst;
1700 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1701 
1702 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1703 		/*
1704 		 * This packet should go out the same way as it
1705 		 * came in i.e in clear, independent of the IPsec policy
1706 		 * for transmitting packets.
1707 		 */
1708 		ixas.ixa_flags |= IXAF_NO_IPSEC;
1709 	} else {
1710 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1711 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1712 			/* Note: mp already consumed and ip_drop_packet done */
1713 			return;
1714 		}
1715 	}
1716 	if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1717 		/*
1718 		 * Not one or our addresses (IRE_LOCALs), thus we let
1719 		 * ip_output_simple pick the source.
1720 		 */
1721 		ipha->ipha_src = INADDR_ANY;
1722 		ixas.ixa_flags |= IXAF_SET_SOURCE;
1723 	}
1724 	/* Should we send with DF and use dce_pmtu? */
1725 	if (ipst->ips_ipv4_icmp_return_pmtu) {
1726 		ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1727 		ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1728 	}
1729 
1730 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1731 
1732 	(void) ip_output_simple(mp, &ixas);
1733 	ixa_cleanup(&ixas);
1734 }
1735 
1736 /*
1737  * Verify the ICMP messages for either for ICMP error or redirect packet.
1738  * The caller should have fully pulled up the message. If it's a redirect
1739  * packet, only basic checks on IP header will be done; otherwise, verify
1740  * the packet by looking at the included ULP header.
1741  *
1742  * Called before icmp_inbound_error_fanout_v4 is called.
1743  */
1744 static boolean_t
1745 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1746 {
1747 	ill_t		*ill = ira->ira_ill;
1748 	int		hdr_length;
1749 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
1750 	conn_t		*connp;
1751 	ipha_t		*ipha;	/* Inner IP header */
1752 
1753 	ipha = (ipha_t *)&icmph[1];
1754 	if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1755 		goto truncated;
1756 
1757 	hdr_length = IPH_HDR_LENGTH(ipha);
1758 
1759 	if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1760 		goto discard_pkt;
1761 
1762 	if (hdr_length < sizeof (ipha_t))
1763 		goto truncated;
1764 
1765 	if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1766 		goto truncated;
1767 
1768 	/*
1769 	 * Stop here for ICMP_REDIRECT.
1770 	 */
1771 	if (icmph->icmph_type == ICMP_REDIRECT)
1772 		return (B_TRUE);
1773 
1774 	/*
1775 	 * ICMP errors only.
1776 	 */
1777 	switch (ipha->ipha_protocol) {
1778 	case IPPROTO_UDP:
1779 		/*
1780 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1781 		 * transport header.
1782 		 */
1783 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1784 		    mp->b_wptr)
1785 			goto truncated;
1786 		break;
1787 	case IPPROTO_TCP: {
1788 		tcpha_t		*tcpha;
1789 
1790 		/*
1791 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1792 		 * transport header.
1793 		 */
1794 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1795 		    mp->b_wptr)
1796 			goto truncated;
1797 
1798 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1799 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1800 		    ipst);
1801 		if (connp == NULL)
1802 			goto discard_pkt;
1803 
1804 		if ((connp->conn_verifyicmp != NULL) &&
1805 		    !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1806 			CONN_DEC_REF(connp);
1807 			goto discard_pkt;
1808 		}
1809 		CONN_DEC_REF(connp);
1810 		break;
1811 	}
1812 	case IPPROTO_SCTP:
1813 		/*
1814 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1815 		 * transport header.
1816 		 */
1817 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1818 		    mp->b_wptr)
1819 			goto truncated;
1820 		break;
1821 	case IPPROTO_ESP:
1822 	case IPPROTO_AH:
1823 		break;
1824 	case IPPROTO_ENCAP:
1825 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1826 		    mp->b_wptr)
1827 			goto truncated;
1828 		break;
1829 	default:
1830 		break;
1831 	}
1832 
1833 	return (B_TRUE);
1834 
1835 discard_pkt:
1836 	/* Bogus ICMP error. */
1837 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1838 	return (B_FALSE);
1839 
1840 truncated:
1841 	/* We pulled up everthing already. Must be truncated */
1842 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1843 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1844 	return (B_FALSE);
1845 }
1846 
1847 /* Table from RFC 1191 */
1848 static int icmp_frag_size_table[] =
1849 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1850 
1851 /*
1852  * Process received ICMP Packet too big.
1853  * Just handles the DCE create/update, including using the above table of
1854  * PMTU guesses. The caller is responsible for validating the packet before
1855  * passing it in and also to fanout the ICMP error to any matching transport
1856  * conns. Assumes the message has been fully pulled up and verified.
1857  *
1858  * Before getting here, the caller has called icmp_inbound_verify_v4()
1859  * that should have verified with ULP to prevent undoing the changes we're
1860  * going to make to DCE. For example, TCP might have verified that the packet
1861  * which generated error is in the send window.
1862  *
1863  * In some cases modified this MTU in the ICMP header packet; the caller
1864  * should pass to the matching ULP after this returns.
1865  */
1866 static void
1867 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1868 {
1869 	dce_t		*dce;
1870 	int		old_mtu;
1871 	int		mtu, orig_mtu;
1872 	ipaddr_t	dst;
1873 	boolean_t	disable_pmtud;
1874 	ill_t		*ill = ira->ira_ill;
1875 	ip_stack_t	*ipst = ill->ill_ipst;
1876 	uint_t		hdr_length;
1877 	ipha_t		*ipha;
1878 
1879 	/* Caller already pulled up everything. */
1880 	ipha = (ipha_t *)&icmph[1];
1881 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1882 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1883 	ASSERT(ill != NULL);
1884 
1885 	hdr_length = IPH_HDR_LENGTH(ipha);
1886 
1887 	/*
1888 	 * We handle path MTU for source routed packets since the DCE
1889 	 * is looked up using the final destination.
1890 	 */
1891 	dst = ip_get_dst(ipha);
1892 
1893 	dce = dce_lookup_and_add_v4(dst, ipst);
1894 	if (dce == NULL) {
1895 		/* Couldn't add a unique one - ENOMEM */
1896 		ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1897 		    ntohl(dst)));
1898 		return;
1899 	}
1900 
1901 	/* Check for MTU discovery advice as described in RFC 1191 */
1902 	mtu = ntohs(icmph->icmph_du_mtu);
1903 	orig_mtu = mtu;
1904 	disable_pmtud = B_FALSE;
1905 
1906 	mutex_enter(&dce->dce_lock);
1907 	if (dce->dce_flags & DCEF_PMTU)
1908 		old_mtu = dce->dce_pmtu;
1909 	else
1910 		old_mtu = ill->ill_mtu;
1911 
1912 	if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1913 		uint32_t length;
1914 		int	i;
1915 
1916 		/*
1917 		 * Use the table from RFC 1191 to figure out
1918 		 * the next "plateau" based on the length in
1919 		 * the original IP packet.
1920 		 */
1921 		length = ntohs(ipha->ipha_length);
1922 		DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1923 		    uint32_t, length);
1924 		if (old_mtu <= length &&
1925 		    old_mtu >= length - hdr_length) {
1926 			/*
1927 			 * Handle broken BSD 4.2 systems that
1928 			 * return the wrong ipha_length in ICMP
1929 			 * errors.
1930 			 */
1931 			ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1932 			    length, old_mtu));
1933 			length -= hdr_length;
1934 		}
1935 		for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1936 			if (length > icmp_frag_size_table[i])
1937 				break;
1938 		}
1939 		if (i == A_CNT(icmp_frag_size_table)) {
1940 			/* Smaller than IP_MIN_MTU! */
1941 			ip1dbg(("Too big for packet size %d\n",
1942 			    length));
1943 			disable_pmtud = B_TRUE;
1944 			mtu = ipst->ips_ip_pmtu_min;
1945 		} else {
1946 			mtu = icmp_frag_size_table[i];
1947 			ip1dbg(("Calculated mtu %d, packet size %d, "
1948 			    "before %d\n", mtu, length, old_mtu));
1949 			if (mtu < ipst->ips_ip_pmtu_min) {
1950 				mtu = ipst->ips_ip_pmtu_min;
1951 				disable_pmtud = B_TRUE;
1952 			}
1953 		}
1954 	}
1955 	if (disable_pmtud)
1956 		dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1957 	else
1958 		dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1959 
1960 	dce->dce_pmtu = MIN(old_mtu, mtu);
1961 	/* Prepare to send the new max frag size for the ULP. */
1962 	icmph->icmph_du_zero = 0;
1963 	icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1964 	DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1965 	    dce, int, orig_mtu, int, mtu);
1966 
1967 	/* We now have a PMTU for sure */
1968 	dce->dce_flags |= DCEF_PMTU;
1969 	dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1970 	mutex_exit(&dce->dce_lock);
1971 	/*
1972 	 * After dropping the lock the new value is visible to everyone.
1973 	 * Then we bump the generation number so any cached values reinspect
1974 	 * the dce_t.
1975 	 */
1976 	dce_increment_generation(dce);
1977 	dce_refrele(dce);
1978 }
1979 
1980 /*
1981  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1982  * calls this function.
1983  */
1984 static mblk_t *
1985 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1986 {
1987 	int length;
1988 
1989 	ASSERT(mp->b_datap->db_type == M_DATA);
1990 
1991 	/* icmp_inbound_v4 has already pulled up the whole error packet */
1992 	ASSERT(mp->b_cont == NULL);
1993 
1994 	/*
1995 	 * The length that we want to overlay is the inner header
1996 	 * and what follows it.
1997 	 */
1998 	length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
1999 
2000 	/*
2001 	 * Overlay the inner header and whatever follows it over the
2002 	 * outer header.
2003 	 */
2004 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2005 
2006 	/* Adjust for what we removed */
2007 	mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2008 	return (mp);
2009 }
2010 
2011 /*
2012  * Try to pass the ICMP message upstream in case the ULP cares.
2013  *
2014  * If the packet that caused the ICMP error is secure, we send
2015  * it to AH/ESP to make sure that the attached packet has a
2016  * valid association. ipha in the code below points to the
2017  * IP header of the packet that caused the error.
2018  *
2019  * For IPsec cases, we let the next-layer-up (which has access to
2020  * cached policy on the conn_t, or can query the SPD directly)
2021  * subtract out any IPsec overhead if they must.  We therefore make no
2022  * adjustments here for IPsec overhead.
2023  *
2024  * IFN could have been generated locally or by some router.
2025  *
2026  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2027  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2028  *	    This happens because IP adjusted its value of MTU on an
2029  *	    earlier IFN message and could not tell the upper layer,
2030  *	    the new adjusted value of MTU e.g. Packet was encrypted
2031  *	    or there was not enough information to fanout to upper
2032  *	    layers. Thus on the next outbound datagram, ire_send_wire
2033  *	    generates the IFN, where IPsec processing has *not* been
2034  *	    done.
2035  *
2036  *	    Note that we retain ixa_fragsize across IPsec thus once
2037  *	    we have picking ixa_fragsize and entered ipsec_out_process we do
2038  *	    no change the fragsize even if the path MTU changes before
2039  *	    we reach ip_output_post_ipsec.
2040  *
2041  *	    In the local case, IRAF_LOOPBACK will be set indicating
2042  *	    that IFN was generated locally.
2043  *
2044  * ROUTER : IFN could be secure or non-secure.
2045  *
2046  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2047  *	      packet in error has AH/ESP headers to validate the AH/ESP
2048  *	      headers. AH/ESP will verify whether there is a valid SA or
2049  *	      not and send it back. We will fanout again if we have more
2050  *	      data in the packet.
2051  *
2052  *	      If the packet in error does not have AH/ESP, we handle it
2053  *	      like any other case.
2054  *
2055  *	    * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2056  *	      up to AH/ESP for validation. AH/ESP will verify whether there is a
2057  *	      valid SA or not and send it back. We will fanout again if
2058  *	      we have more data in the packet.
2059  *
2060  *	      If the packet in error does not have AH/ESP, we handle it
2061  *	      like any other case.
2062  *
2063  * The caller must have called icmp_inbound_verify_v4.
2064  */
2065 static void
2066 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2067 {
2068 	uint16_t	*up;	/* Pointer to ports in ULP header */
2069 	uint32_t	ports;	/* reversed ports for fanout */
2070 	ipha_t		ripha;	/* With reversed addresses */
2071 	ipha_t		*ipha;  /* Inner IP header */
2072 	uint_t		hdr_length; /* Inner IP header length */
2073 	tcpha_t		*tcpha;
2074 	conn_t		*connp;
2075 	ill_t		*ill = ira->ira_ill;
2076 	ip_stack_t	*ipst = ill->ill_ipst;
2077 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
2078 	ill_t		*rill = ira->ira_rill;
2079 
2080 	/* Caller already pulled up everything. */
2081 	ipha = (ipha_t *)&icmph[1];
2082 	ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2083 	ASSERT(mp->b_cont == NULL);
2084 
2085 	hdr_length = IPH_HDR_LENGTH(ipha);
2086 	ira->ira_protocol = ipha->ipha_protocol;
2087 
2088 	/*
2089 	 * We need a separate IP header with the source and destination
2090 	 * addresses reversed to do fanout/classification because the ipha in
2091 	 * the ICMP error is in the form we sent it out.
2092 	 */
2093 	ripha.ipha_src = ipha->ipha_dst;
2094 	ripha.ipha_dst = ipha->ipha_src;
2095 	ripha.ipha_protocol = ipha->ipha_protocol;
2096 	ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2097 
2098 	ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2099 	    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2100 	    ntohl(ipha->ipha_dst),
2101 	    icmph->icmph_type, icmph->icmph_code));
2102 
2103 	switch (ipha->ipha_protocol) {
2104 	case IPPROTO_UDP:
2105 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2106 
2107 		/* Attempt to find a client stream based on port. */
2108 		ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2109 		    ntohs(up[0]), ntohs(up[1])));
2110 
2111 		/* Note that we send error to all matches. */
2112 		ira->ira_flags |= IRAF_ICMP_ERROR;
2113 		ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2114 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2115 		return;
2116 
2117 	case IPPROTO_TCP:
2118 		/*
2119 		 * Find a TCP client stream for this packet.
2120 		 * Note that we do a reverse lookup since the header is
2121 		 * in the form we sent it out.
2122 		 */
2123 		tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2124 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2125 		    ipst);
2126 		if (connp == NULL)
2127 			goto discard_pkt;
2128 
2129 		if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2130 		    (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2131 			mp = ipsec_check_inbound_policy(mp, connp,
2132 			    ipha, NULL, ira);
2133 			if (mp == NULL) {
2134 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2135 				/* Note that mp is NULL */
2136 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
2137 				CONN_DEC_REF(connp);
2138 				return;
2139 			}
2140 		}
2141 
2142 		ira->ira_flags |= IRAF_ICMP_ERROR;
2143 		ira->ira_ill = ira->ira_rill = NULL;
2144 		if (IPCL_IS_TCP(connp)) {
2145 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2146 			    connp->conn_recvicmp, connp, ira, SQ_FILL,
2147 			    SQTAG_TCP_INPUT_ICMP_ERR);
2148 		} else {
2149 			/* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2150 			(connp->conn_recv)(connp, mp, NULL, ira);
2151 			CONN_DEC_REF(connp);
2152 		}
2153 		ira->ira_ill = ill;
2154 		ira->ira_rill = rill;
2155 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2156 		return;
2157 
2158 	case IPPROTO_SCTP:
2159 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2160 		/* Find a SCTP client stream for this packet. */
2161 		((uint16_t *)&ports)[0] = up[1];
2162 		((uint16_t *)&ports)[1] = up[0];
2163 
2164 		ira->ira_flags |= IRAF_ICMP_ERROR;
2165 		ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2166 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2167 		return;
2168 
2169 	case IPPROTO_ESP:
2170 	case IPPROTO_AH:
2171 		if (!ipsec_loaded(ipss)) {
2172 			ip_proto_not_sup(mp, ira);
2173 			return;
2174 		}
2175 
2176 		if (ipha->ipha_protocol == IPPROTO_ESP)
2177 			mp = ipsecesp_icmp_error(mp, ira);
2178 		else
2179 			mp = ipsecah_icmp_error(mp, ira);
2180 		if (mp == NULL)
2181 			return;
2182 
2183 		/* Just in case ipsec didn't preserve the NULL b_cont */
2184 		if (mp->b_cont != NULL) {
2185 			if (!pullupmsg(mp, -1))
2186 				goto discard_pkt;
2187 		}
2188 
2189 		/*
2190 		 * Note that ira_pktlen and ira_ip_hdr_length are no longer
2191 		 * correct, but we don't use them any more here.
2192 		 *
2193 		 * If succesful, the mp has been modified to not include
2194 		 * the ESP/AH header so we can fanout to the ULP's icmp
2195 		 * error handler.
2196 		 */
2197 		if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2198 			goto truncated;
2199 
2200 		/* Verify the modified message before any further processes. */
2201 		ipha = (ipha_t *)mp->b_rptr;
2202 		hdr_length = IPH_HDR_LENGTH(ipha);
2203 		icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2204 		if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2205 			freemsg(mp);
2206 			return;
2207 		}
2208 
2209 		icmp_inbound_error_fanout_v4(mp, icmph, ira);
2210 		return;
2211 
2212 	case IPPROTO_ENCAP: {
2213 		/* Look for self-encapsulated packets that caused an error */
2214 		ipha_t *in_ipha;
2215 
2216 		/*
2217 		 * Caller has verified that length has to be
2218 		 * at least the size of IP header.
2219 		 */
2220 		ASSERT(hdr_length >= sizeof (ipha_t));
2221 		/*
2222 		 * Check the sanity of the inner IP header like
2223 		 * we did for the outer header.
2224 		 */
2225 		in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2226 		if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2227 			goto discard_pkt;
2228 		}
2229 		if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2230 			goto discard_pkt;
2231 		}
2232 		/* Check for Self-encapsulated tunnels */
2233 		if (in_ipha->ipha_src == ipha->ipha_src &&
2234 		    in_ipha->ipha_dst == ipha->ipha_dst) {
2235 
2236 			mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2237 			    in_ipha);
2238 			if (mp == NULL)
2239 				goto discard_pkt;
2240 
2241 			/*
2242 			 * Just in case self_encap didn't preserve the NULL
2243 			 * b_cont
2244 			 */
2245 			if (mp->b_cont != NULL) {
2246 				if (!pullupmsg(mp, -1))
2247 					goto discard_pkt;
2248 			}
2249 			/*
2250 			 * Note that ira_pktlen and ira_ip_hdr_length are no
2251 			 * longer correct, but we don't use them any more here.
2252 			 */
2253 			if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2254 				goto truncated;
2255 
2256 			/*
2257 			 * Verify the modified message before any further
2258 			 * processes.
2259 			 */
2260 			ipha = (ipha_t *)mp->b_rptr;
2261 			hdr_length = IPH_HDR_LENGTH(ipha);
2262 			icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2263 			if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2264 				freemsg(mp);
2265 				return;
2266 			}
2267 
2268 			/*
2269 			 * The packet in error is self-encapsualted.
2270 			 * And we are finding it further encapsulated
2271 			 * which we could not have possibly generated.
2272 			 */
2273 			if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2274 				goto discard_pkt;
2275 			}
2276 			icmp_inbound_error_fanout_v4(mp, icmph, ira);
2277 			return;
2278 		}
2279 		/* No self-encapsulated */
2280 	}
2281 	/* FALLTHROUGH */
2282 	case IPPROTO_IPV6:
2283 		if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2284 		    &ripha.ipha_dst, ipst)) != NULL) {
2285 			ira->ira_flags |= IRAF_ICMP_ERROR;
2286 			connp->conn_recvicmp(connp, mp, NULL, ira);
2287 			CONN_DEC_REF(connp);
2288 			ira->ira_flags &= ~IRAF_ICMP_ERROR;
2289 			return;
2290 		}
2291 		/*
2292 		 * No IP tunnel is interested, fallthrough and see
2293 		 * if a raw socket will want it.
2294 		 */
2295 		/* FALLTHROUGH */
2296 	default:
2297 		ira->ira_flags |= IRAF_ICMP_ERROR;
2298 		ip_fanout_proto_v4(mp, &ripha, ira);
2299 		ira->ira_flags &= ~IRAF_ICMP_ERROR;
2300 		return;
2301 	}
2302 	/* NOTREACHED */
2303 discard_pkt:
2304 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2305 	ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2306 	ip_drop_input("ipIfStatsInDiscards", mp, ill);
2307 	freemsg(mp);
2308 	return;
2309 
2310 truncated:
2311 	/* We pulled up everthing already. Must be truncated */
2312 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2313 	ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2314 	freemsg(mp);
2315 }
2316 
2317 /*
2318  * Common IP options parser.
2319  *
2320  * Setup routine: fill in *optp with options-parsing state, then
2321  * tail-call ipoptp_next to return the first option.
2322  */
2323 uint8_t
2324 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2325 {
2326 	uint32_t totallen; /* total length of all options */
2327 
2328 	totallen = ipha->ipha_version_and_hdr_length -
2329 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2330 	totallen <<= 2;
2331 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2332 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2333 	optp->ipoptp_flags = 0;
2334 	return (ipoptp_next(optp));
2335 }
2336 
2337 /* Like above but without an ipha_t */
2338 uint8_t
2339 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2340 {
2341 	optp->ipoptp_next = opt;
2342 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2343 	optp->ipoptp_flags = 0;
2344 	return (ipoptp_next(optp));
2345 }
2346 
2347 /*
2348  * Common IP options parser: extract next option.
2349  */
2350 uint8_t
2351 ipoptp_next(ipoptp_t *optp)
2352 {
2353 	uint8_t *end = optp->ipoptp_end;
2354 	uint8_t *cur = optp->ipoptp_next;
2355 	uint8_t opt, len, pointer;
2356 
2357 	/*
2358 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2359 	 * has been corrupted.
2360 	 */
2361 	ASSERT(cur <= end);
2362 
2363 	if (cur == end)
2364 		return (IPOPT_EOL);
2365 
2366 	opt = cur[IPOPT_OPTVAL];
2367 
2368 	/*
2369 	 * Skip any NOP options.
2370 	 */
2371 	while (opt == IPOPT_NOP) {
2372 		cur++;
2373 		if (cur == end)
2374 			return (IPOPT_EOL);
2375 		opt = cur[IPOPT_OPTVAL];
2376 	}
2377 
2378 	if (opt == IPOPT_EOL)
2379 		return (IPOPT_EOL);
2380 
2381 	/*
2382 	 * Option requiring a length.
2383 	 */
2384 	if ((cur + 1) >= end) {
2385 		optp->ipoptp_flags |= IPOPTP_ERROR;
2386 		return (IPOPT_EOL);
2387 	}
2388 	len = cur[IPOPT_OLEN];
2389 	if (len < 2) {
2390 		optp->ipoptp_flags |= IPOPTP_ERROR;
2391 		return (IPOPT_EOL);
2392 	}
2393 	optp->ipoptp_cur = cur;
2394 	optp->ipoptp_len = len;
2395 	optp->ipoptp_next = cur + len;
2396 	if (cur + len > end) {
2397 		optp->ipoptp_flags |= IPOPTP_ERROR;
2398 		return (IPOPT_EOL);
2399 	}
2400 
2401 	/*
2402 	 * For the options which require a pointer field, make sure
2403 	 * its there, and make sure it points to either something
2404 	 * inside this option, or the end of the option.
2405 	 */
2406 	switch (opt) {
2407 	case IPOPT_RR:
2408 	case IPOPT_TS:
2409 	case IPOPT_LSRR:
2410 	case IPOPT_SSRR:
2411 		if (len <= IPOPT_OFFSET) {
2412 			optp->ipoptp_flags |= IPOPTP_ERROR;
2413 			return (opt);
2414 		}
2415 		pointer = cur[IPOPT_OFFSET];
2416 		if (pointer - 1 > len) {
2417 			optp->ipoptp_flags |= IPOPTP_ERROR;
2418 			return (opt);
2419 		}
2420 		break;
2421 	}
2422 
2423 	/*
2424 	 * Sanity check the pointer field based on the type of the
2425 	 * option.
2426 	 */
2427 	switch (opt) {
2428 	case IPOPT_RR:
2429 	case IPOPT_SSRR:
2430 	case IPOPT_LSRR:
2431 		if (pointer < IPOPT_MINOFF_SR)
2432 			optp->ipoptp_flags |= IPOPTP_ERROR;
2433 		break;
2434 	case IPOPT_TS:
2435 		if (pointer < IPOPT_MINOFF_IT)
2436 			optp->ipoptp_flags |= IPOPTP_ERROR;
2437 		/*
2438 		 * Note that the Internet Timestamp option also
2439 		 * contains two four bit fields (the Overflow field,
2440 		 * and the Flag field), which follow the pointer
2441 		 * field.  We don't need to check that these fields
2442 		 * fall within the length of the option because this
2443 		 * was implicitely done above.  We've checked that the
2444 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2445 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2446 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2447 		 */
2448 		ASSERT(len > IPOPT_POS_OV_FLG);
2449 		break;
2450 	}
2451 
2452 	return (opt);
2453 }
2454 
2455 /*
2456  * Use the outgoing IP header to create an IP_OPTIONS option the way
2457  * it was passed down from the application.
2458  *
2459  * This is compatible with BSD in that it returns
2460  * the reverse source route with the final destination
2461  * as the last entry. The first 4 bytes of the option
2462  * will contain the final destination.
2463  */
2464 int
2465 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2466 {
2467 	ipoptp_t	opts;
2468 	uchar_t		*opt;
2469 	uint8_t		optval;
2470 	uint8_t		optlen;
2471 	uint32_t	len = 0;
2472 	uchar_t		*buf1 = buf;
2473 	uint32_t	totallen;
2474 	ipaddr_t	dst;
2475 	ip_pkt_t	*ipp = &connp->conn_xmit_ipp;
2476 
2477 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2478 		return (0);
2479 
2480 	totallen = ipp->ipp_ipv4_options_len;
2481 	if (totallen & 0x3)
2482 		return (0);
2483 
2484 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2485 	len += IP_ADDR_LEN;
2486 	bzero(buf1, IP_ADDR_LEN);
2487 
2488 	dst = connp->conn_faddr_v4;
2489 
2490 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2491 	    optval != IPOPT_EOL;
2492 	    optval = ipoptp_next(&opts)) {
2493 		int	off;
2494 
2495 		opt = opts.ipoptp_cur;
2496 		if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2497 			break;
2498 		}
2499 		optlen = opts.ipoptp_len;
2500 
2501 		switch (optval) {
2502 		case IPOPT_SSRR:
2503 		case IPOPT_LSRR:
2504 
2505 			/*
2506 			 * Insert destination as the first entry in the source
2507 			 * route and move down the entries on step.
2508 			 * The last entry gets placed at buf1.
2509 			 */
2510 			buf[IPOPT_OPTVAL] = optval;
2511 			buf[IPOPT_OLEN] = optlen;
2512 			buf[IPOPT_OFFSET] = optlen;
2513 
2514 			off = optlen - IP_ADDR_LEN;
2515 			if (off < 0) {
2516 				/* No entries in source route */
2517 				break;
2518 			}
2519 			/* Last entry in source route if not already set */
2520 			if (dst == INADDR_ANY)
2521 				bcopy(opt + off, buf1, IP_ADDR_LEN);
2522 			off -= IP_ADDR_LEN;
2523 
2524 			while (off > 0) {
2525 				bcopy(opt + off,
2526 				    buf + off + IP_ADDR_LEN,
2527 				    IP_ADDR_LEN);
2528 				off -= IP_ADDR_LEN;
2529 			}
2530 			/* ipha_dst into first slot */
2531 			bcopy(&dst, buf + off + IP_ADDR_LEN,
2532 			    IP_ADDR_LEN);
2533 			buf += optlen;
2534 			len += optlen;
2535 			break;
2536 
2537 		default:
2538 			bcopy(opt, buf, optlen);
2539 			buf += optlen;
2540 			len += optlen;
2541 			break;
2542 		}
2543 	}
2544 done:
2545 	/* Pad the resulting options */
2546 	while (len & 0x3) {
2547 		*buf++ = IPOPT_EOL;
2548 		len++;
2549 	}
2550 	return (len);
2551 }
2552 
2553 /*
2554  * Update any record route or timestamp options to include this host.
2555  * Reverse any source route option.
2556  * This routine assumes that the options are well formed i.e. that they
2557  * have already been checked.
2558  */
2559 static void
2560 icmp_options_update(ipha_t *ipha)
2561 {
2562 	ipoptp_t	opts;
2563 	uchar_t		*opt;
2564 	uint8_t		optval;
2565 	ipaddr_t	src;		/* Our local address */
2566 	ipaddr_t	dst;
2567 
2568 	ip2dbg(("icmp_options_update\n"));
2569 	src = ipha->ipha_src;
2570 	dst = ipha->ipha_dst;
2571 
2572 	for (optval = ipoptp_first(&opts, ipha);
2573 	    optval != IPOPT_EOL;
2574 	    optval = ipoptp_next(&opts)) {
2575 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2576 		opt = opts.ipoptp_cur;
2577 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
2578 		    optval, opts.ipoptp_len));
2579 		switch (optval) {
2580 			int off1, off2;
2581 		case IPOPT_SSRR:
2582 		case IPOPT_LSRR:
2583 			/*
2584 			 * Reverse the source route.  The first entry
2585 			 * should be the next to last one in the current
2586 			 * source route (the last entry is our address).
2587 			 * The last entry should be the final destination.
2588 			 */
2589 			off1 = IPOPT_MINOFF_SR - 1;
2590 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2591 			if (off2 < 0) {
2592 				/* No entries in source route */
2593 				ip1dbg((
2594 				    "icmp_options_update: bad src route\n"));
2595 				break;
2596 			}
2597 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2598 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2599 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2600 			off2 -= IP_ADDR_LEN;
2601 
2602 			while (off1 < off2) {
2603 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2604 				bcopy((char *)opt + off2, (char *)opt + off1,
2605 				    IP_ADDR_LEN);
2606 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2607 				off1 += IP_ADDR_LEN;
2608 				off2 -= IP_ADDR_LEN;
2609 			}
2610 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2611 			break;
2612 		}
2613 	}
2614 }
2615 
2616 /*
2617  * Process received ICMP Redirect messages.
2618  * Assumes the caller has verified that the headers are in the pulled up mblk.
2619  * Consumes mp.
2620  */
2621 static void
2622 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2623 {
2624 	ire_t		*ire, *nire;
2625 	ire_t		*prev_ire;
2626 	ipaddr_t	src, dst, gateway;
2627 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2628 	ipha_t		*inner_ipha;	/* Inner IP header */
2629 
2630 	/* Caller already pulled up everything. */
2631 	inner_ipha = (ipha_t *)&icmph[1];
2632 	src = ipha->ipha_src;
2633 	dst = inner_ipha->ipha_dst;
2634 	gateway = icmph->icmph_rd_gateway;
2635 	/* Make sure the new gateway is reachable somehow. */
2636 	ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2637 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2638 	/*
2639 	 * Make sure we had a route for the dest in question and that
2640 	 * that route was pointing to the old gateway (the source of the
2641 	 * redirect packet.)
2642 	 * We do longest match and then compare ire_gateway_addr below.
2643 	 */
2644 	prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2645 	    NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2646 	/*
2647 	 * Check that
2648 	 *	the redirect was not from ourselves
2649 	 *	the new gateway and the old gateway are directly reachable
2650 	 */
2651 	if (prev_ire == NULL || ire == NULL ||
2652 	    (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2653 	    (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2654 	    !(ire->ire_type & IRE_IF_ALL) ||
2655 	    prev_ire->ire_gateway_addr != src) {
2656 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2657 		ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2658 		freemsg(mp);
2659 		if (ire != NULL)
2660 			ire_refrele(ire);
2661 		if (prev_ire != NULL)
2662 			ire_refrele(prev_ire);
2663 		return;
2664 	}
2665 
2666 	ire_refrele(prev_ire);
2667 	ire_refrele(ire);
2668 
2669 	/*
2670 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
2671 	 * require TOS routing
2672 	 */
2673 	switch (icmph->icmph_code) {
2674 	case 0:
2675 	case 1:
2676 		/* TODO: TOS specificity for cases 2 and 3 */
2677 	case 2:
2678 	case 3:
2679 		break;
2680 	default:
2681 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2682 		ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2683 		freemsg(mp);
2684 		return;
2685 	}
2686 	/*
2687 	 * Create a Route Association.  This will allow us to remember that
2688 	 * someone we believe told us to use the particular gateway.
2689 	 */
2690 	ire = ire_create(
2691 	    (uchar_t *)&dst,			/* dest addr */
2692 	    (uchar_t *)&ip_g_all_ones,		/* mask */
2693 	    (uchar_t *)&gateway,		/* gateway addr */
2694 	    IRE_HOST,
2695 	    NULL,				/* ill */
2696 	    ALL_ZONES,
2697 	    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2698 	    NULL,				/* tsol_gc_t */
2699 	    ipst);
2700 
2701 	if (ire == NULL) {
2702 		freemsg(mp);
2703 		return;
2704 	}
2705 	nire = ire_add(ire);
2706 	/* Check if it was a duplicate entry */
2707 	if (nire != NULL && nire != ire) {
2708 		ASSERT(nire->ire_identical_ref > 1);
2709 		ire_delete(nire);
2710 		ire_refrele(nire);
2711 		nire = NULL;
2712 	}
2713 	ire = nire;
2714 	if (ire != NULL) {
2715 		ire_refrele(ire);		/* Held in ire_add */
2716 
2717 		/* tell routing sockets that we received a redirect */
2718 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2719 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2720 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2721 	}
2722 
2723 	/*
2724 	 * Delete any existing IRE_HOST type redirect ires for this destination.
2725 	 * This together with the added IRE has the effect of
2726 	 * modifying an existing redirect.
2727 	 */
2728 	prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2729 	    ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2730 	if (prev_ire != NULL) {
2731 		if (prev_ire ->ire_flags & RTF_DYNAMIC)
2732 			ire_delete(prev_ire);
2733 		ire_refrele(prev_ire);
2734 	}
2735 
2736 	freemsg(mp);
2737 }
2738 
2739 /*
2740  * Generate an ICMP parameter problem message.
2741  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2742  * constructed by the caller.
2743  */
2744 static void
2745 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2746 {
2747 	icmph_t	icmph;
2748 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2749 
2750 	mp = icmp_pkt_err_ok(mp, ira);
2751 	if (mp == NULL)
2752 		return;
2753 
2754 	bzero(&icmph, sizeof (icmph_t));
2755 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
2756 	icmph.icmph_pp_ptr = ptr;
2757 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2758 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2759 }
2760 
2761 /*
2762  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2763  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2764  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2765  * an icmp error packet can be sent.
2766  * Assigns an appropriate source address to the packet. If ipha_dst is
2767  * one of our addresses use it for source. Otherwise let ip_output_simple
2768  * pick the source address.
2769  */
2770 static void
2771 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2772 {
2773 	ipaddr_t dst;
2774 	icmph_t	*icmph;
2775 	ipha_t	*ipha;
2776 	uint_t	len_needed;
2777 	size_t	msg_len;
2778 	mblk_t	*mp1;
2779 	ipaddr_t src;
2780 	ire_t	*ire;
2781 	ip_xmit_attr_t ixas;
2782 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2783 
2784 	ipha = (ipha_t *)mp->b_rptr;
2785 
2786 	bzero(&ixas, sizeof (ixas));
2787 	ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2788 	ixas.ixa_zoneid = ira->ira_zoneid;
2789 	ixas.ixa_ifindex = 0;
2790 	ixas.ixa_ipst = ipst;
2791 	ixas.ixa_cred = kcred;
2792 	ixas.ixa_cpid = NOPID;
2793 	ixas.ixa_tsl = ira->ira_tsl;	/* Behave as a multi-level responder */
2794 	ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2795 
2796 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2797 		/*
2798 		 * Apply IPsec based on how IPsec was applied to
2799 		 * the packet that had the error.
2800 		 *
2801 		 * If it was an outbound packet that caused the ICMP
2802 		 * error, then the caller will have setup the IRA
2803 		 * appropriately.
2804 		 */
2805 		if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2806 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2807 			/* Note: mp already consumed and ip_drop_packet done */
2808 			return;
2809 		}
2810 	} else {
2811 		/*
2812 		 * This is in clear. The icmp message we are building
2813 		 * here should go out in clear, independent of our policy.
2814 		 */
2815 		ixas.ixa_flags |= IXAF_NO_IPSEC;
2816 	}
2817 
2818 	/* Remember our eventual destination */
2819 	dst = ipha->ipha_src;
2820 
2821 	/*
2822 	 * If the packet was for one of our unicast addresses, make
2823 	 * sure we respond with that as the source. Otherwise
2824 	 * have ip_output_simple pick the source address.
2825 	 */
2826 	ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2827 	    (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2828 	    MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2829 	if (ire != NULL) {
2830 		ire_refrele(ire);
2831 		src = ipha->ipha_dst;
2832 	} else {
2833 		src = INADDR_ANY;
2834 		ixas.ixa_flags |= IXAF_SET_SOURCE;
2835 	}
2836 
2837 	/*
2838 	 * Check if we can send back more then 8 bytes in addition to
2839 	 * the IP header.  We try to send 64 bytes of data and the internal
2840 	 * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2841 	 */
2842 	len_needed = IPH_HDR_LENGTH(ipha);
2843 	if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2844 	    ipha->ipha_protocol == IPPROTO_IPV6) {
2845 		if (!pullupmsg(mp, -1)) {
2846 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2847 			ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2848 			freemsg(mp);
2849 			return;
2850 		}
2851 		ipha = (ipha_t *)mp->b_rptr;
2852 
2853 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2854 			len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2855 			    len_needed));
2856 		} else {
2857 			ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2858 
2859 			ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2860 			len_needed += ip_hdr_length_v6(mp, ip6h);
2861 		}
2862 	}
2863 	len_needed += ipst->ips_ip_icmp_return;
2864 	msg_len = msgdsize(mp);
2865 	if (msg_len > len_needed) {
2866 		(void) adjmsg(mp, len_needed - msg_len);
2867 		msg_len = len_needed;
2868 	}
2869 	mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2870 	if (mp1 == NULL) {
2871 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2872 		freemsg(mp);
2873 		return;
2874 	}
2875 	mp1->b_cont = mp;
2876 	mp = mp1;
2877 
2878 	/*
2879 	 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2880 	 * node generates be accepted in peace by all on-host destinations.
2881 	 * If we do NOT assume that all on-host destinations trust
2882 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2883 	 * (Look for IXAF_TRUSTED_ICMP).
2884 	 */
2885 	ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2886 
2887 	ipha = (ipha_t *)mp->b_rptr;
2888 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2889 	*ipha = icmp_ipha;
2890 	ipha->ipha_src = src;
2891 	ipha->ipha_dst = dst;
2892 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2893 	msg_len += sizeof (icmp_ipha) + len;
2894 	if (msg_len > IP_MAXPACKET) {
2895 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
2896 		msg_len = IP_MAXPACKET;
2897 	}
2898 	ipha->ipha_length = htons((uint16_t)msg_len);
2899 	icmph = (icmph_t *)&ipha[1];
2900 	bcopy(stuff, icmph, len);
2901 	icmph->icmph_checksum = 0;
2902 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2903 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2904 
2905 	(void) ip_output_simple(mp, &ixas);
2906 	ixa_cleanup(&ixas);
2907 }
2908 
2909 /*
2910  * Determine if an ICMP error packet can be sent given the rate limit.
2911  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2912  * in milliseconds) and a burst size. Burst size number of packets can
2913  * be sent arbitrarely closely spaced.
2914  * The state is tracked using two variables to implement an approximate
2915  * token bucket filter:
2916  *	icmp_pkt_err_last - lbolt value when the last burst started
2917  *	icmp_pkt_err_sent - number of packets sent in current burst
2918  */
2919 boolean_t
2920 icmp_err_rate_limit(ip_stack_t *ipst)
2921 {
2922 	clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2923 	uint_t refilled; /* Number of packets refilled in tbf since last */
2924 	/* Guard against changes by loading into local variable */
2925 	uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2926 
2927 	if (err_interval == 0)
2928 		return (B_FALSE);
2929 
2930 	if (ipst->ips_icmp_pkt_err_last > now) {
2931 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2932 		ipst->ips_icmp_pkt_err_last = 0;
2933 		ipst->ips_icmp_pkt_err_sent = 0;
2934 	}
2935 	/*
2936 	 * If we are in a burst update the token bucket filter.
2937 	 * Update the "last" time to be close to "now" but make sure
2938 	 * we don't loose precision.
2939 	 */
2940 	if (ipst->ips_icmp_pkt_err_sent != 0) {
2941 		refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2942 		if (refilled > ipst->ips_icmp_pkt_err_sent) {
2943 			ipst->ips_icmp_pkt_err_sent = 0;
2944 		} else {
2945 			ipst->ips_icmp_pkt_err_sent -= refilled;
2946 			ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2947 		}
2948 	}
2949 	if (ipst->ips_icmp_pkt_err_sent == 0) {
2950 		/* Start of new burst */
2951 		ipst->ips_icmp_pkt_err_last = now;
2952 	}
2953 	if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2954 		ipst->ips_icmp_pkt_err_sent++;
2955 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2956 		    ipst->ips_icmp_pkt_err_sent));
2957 		return (B_FALSE);
2958 	}
2959 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
2960 	return (B_TRUE);
2961 }
2962 
2963 /*
2964  * Check if it is ok to send an IPv4 ICMP error packet in
2965  * response to the IPv4 packet in mp.
2966  * Free the message and return null if no
2967  * ICMP error packet should be sent.
2968  */
2969 static mblk_t *
2970 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2971 {
2972 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
2973 	icmph_t	*icmph;
2974 	ipha_t	*ipha;
2975 	uint_t	len_needed;
2976 
2977 	if (!mp)
2978 		return (NULL);
2979 	ipha = (ipha_t *)mp->b_rptr;
2980 	if (ip_csum_hdr(ipha)) {
2981 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2982 		ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2983 		freemsg(mp);
2984 		return (NULL);
2985 	}
2986 	if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2987 	    ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2988 	    CLASSD(ipha->ipha_dst) ||
2989 	    CLASSD(ipha->ipha_src) ||
2990 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2991 		/* Note: only errors to the fragment with offset 0 */
2992 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2993 		freemsg(mp);
2994 		return (NULL);
2995 	}
2996 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
2997 		/*
2998 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
2999 		 * errors in response to any ICMP errors.
3000 		 */
3001 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3002 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3003 			if (!pullupmsg(mp, len_needed)) {
3004 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3005 				freemsg(mp);
3006 				return (NULL);
3007 			}
3008 			ipha = (ipha_t *)mp->b_rptr;
3009 		}
3010 		icmph = (icmph_t *)
3011 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3012 		switch (icmph->icmph_type) {
3013 		case ICMP_DEST_UNREACHABLE:
3014 		case ICMP_SOURCE_QUENCH:
3015 		case ICMP_TIME_EXCEEDED:
3016 		case ICMP_PARAM_PROBLEM:
3017 		case ICMP_REDIRECT:
3018 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3019 			freemsg(mp);
3020 			return (NULL);
3021 		default:
3022 			break;
3023 		}
3024 	}
3025 	/*
3026 	 * If this is a labeled system, then check to see if we're allowed to
3027 	 * send a response to this particular sender.  If not, then just drop.
3028 	 */
3029 	if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3030 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3031 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3032 		freemsg(mp);
3033 		return (NULL);
3034 	}
3035 	if (icmp_err_rate_limit(ipst)) {
3036 		/*
3037 		 * Only send ICMP error packets every so often.
3038 		 * This should be done on a per port/source basis,
3039 		 * but for now this will suffice.
3040 		 */
3041 		freemsg(mp);
3042 		return (NULL);
3043 	}
3044 	return (mp);
3045 }
3046 
3047 /*
3048  * Called when a packet was sent out the same link that it arrived on.
3049  * Check if it is ok to send a redirect and then send it.
3050  */
3051 void
3052 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3053     ip_recv_attr_t *ira)
3054 {
3055 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
3056 	ipaddr_t	src, nhop;
3057 	mblk_t		*mp1;
3058 	ire_t		*nhop_ire;
3059 
3060 	/*
3061 	 * Check the source address to see if it originated
3062 	 * on the same logical subnet it is going back out on.
3063 	 * If so, we should be able to send it a redirect.
3064 	 * Avoid sending a redirect if the destination
3065 	 * is directly connected (i.e., we matched an IRE_ONLINK),
3066 	 * or if the packet was source routed out this interface.
3067 	 *
3068 	 * We avoid sending a redirect if the
3069 	 * destination is directly connected
3070 	 * because it is possible that multiple
3071 	 * IP subnets may have been configured on
3072 	 * the link, and the source may not
3073 	 * be on the same subnet as ip destination,
3074 	 * even though they are on the same
3075 	 * physical link.
3076 	 */
3077 	if ((ire->ire_type & IRE_ONLINK) ||
3078 	    ip_source_routed(ipha, ipst))
3079 		return;
3080 
3081 	nhop_ire = ire_nexthop(ire);
3082 	if (nhop_ire == NULL)
3083 		return;
3084 
3085 	nhop = nhop_ire->ire_addr;
3086 
3087 	if (nhop_ire->ire_type & IRE_IF_CLONE) {
3088 		ire_t	*ire2;
3089 
3090 		/* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3091 		mutex_enter(&nhop_ire->ire_lock);
3092 		ire2 = nhop_ire->ire_dep_parent;
3093 		if (ire2 != NULL)
3094 			ire_refhold(ire2);
3095 		mutex_exit(&nhop_ire->ire_lock);
3096 		ire_refrele(nhop_ire);
3097 		nhop_ire = ire2;
3098 	}
3099 	if (nhop_ire == NULL)
3100 		return;
3101 
3102 	ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3103 
3104 	src = ipha->ipha_src;
3105 
3106 	/*
3107 	 * We look at the interface ire for the nexthop,
3108 	 * to see if ipha_src is in the same subnet
3109 	 * as the nexthop.
3110 	 */
3111 	if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3112 		/*
3113 		 * The source is directly connected.
3114 		 */
3115 		mp1 = copymsg(mp);
3116 		if (mp1 != NULL) {
3117 			icmp_send_redirect(mp1, nhop, ira);
3118 		}
3119 	}
3120 	ire_refrele(nhop_ire);
3121 }
3122 
3123 /*
3124  * Generate an ICMP redirect message.
3125  */
3126 static void
3127 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3128 {
3129 	icmph_t	icmph;
3130 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3131 
3132 	mp = icmp_pkt_err_ok(mp, ira);
3133 	if (mp == NULL)
3134 		return;
3135 
3136 	bzero(&icmph, sizeof (icmph_t));
3137 	icmph.icmph_type = ICMP_REDIRECT;
3138 	icmph.icmph_code = 1;
3139 	icmph.icmph_rd_gateway = gateway;
3140 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3141 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3142 }
3143 
3144 /*
3145  * Generate an ICMP time exceeded message.
3146  */
3147 void
3148 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3149 {
3150 	icmph_t	icmph;
3151 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3152 
3153 	mp = icmp_pkt_err_ok(mp, ira);
3154 	if (mp == NULL)
3155 		return;
3156 
3157 	bzero(&icmph, sizeof (icmph_t));
3158 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3159 	icmph.icmph_code = code;
3160 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3161 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3162 }
3163 
3164 /*
3165  * Generate an ICMP unreachable message.
3166  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3167  * constructed by the caller.
3168  */
3169 void
3170 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3171 {
3172 	icmph_t	icmph;
3173 	ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3174 
3175 	mp = icmp_pkt_err_ok(mp, ira);
3176 	if (mp == NULL)
3177 		return;
3178 
3179 	bzero(&icmph, sizeof (icmph_t));
3180 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3181 	icmph.icmph_code = code;
3182 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3183 	icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3184 }
3185 
3186 /*
3187  * Latch in the IPsec state for a stream based the policy in the listener
3188  * and the actions in the ip_recv_attr_t.
3189  * Called directly from TCP and SCTP.
3190  */
3191 boolean_t
3192 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3193 {
3194 	ASSERT(lconnp->conn_policy != NULL);
3195 	ASSERT(connp->conn_policy == NULL);
3196 
3197 	IPPH_REFHOLD(lconnp->conn_policy);
3198 	connp->conn_policy = lconnp->conn_policy;
3199 
3200 	if (ira->ira_ipsec_action != NULL) {
3201 		if (connp->conn_latch == NULL) {
3202 			connp->conn_latch = iplatch_create();
3203 			if (connp->conn_latch == NULL)
3204 				return (B_FALSE);
3205 		}
3206 		ipsec_latch_inbound(connp, ira);
3207 	}
3208 	return (B_TRUE);
3209 }
3210 
3211 /*
3212  * Verify whether or not the IP address is a valid local address.
3213  * Could be a unicast, including one for a down interface.
3214  * If allow_mcbc then a multicast or broadcast address is also
3215  * acceptable.
3216  *
3217  * In the case of a broadcast/multicast address, however, the
3218  * upper protocol is expected to reset the src address
3219  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3220  * no packets are emitted with broadcast/multicast address as
3221  * source address (that violates hosts requirements RFC 1122)
3222  * The addresses valid for bind are:
3223  *	(1) - INADDR_ANY (0)
3224  *	(2) - IP address of an UP interface
3225  *	(3) - IP address of a DOWN interface
3226  *	(4) - valid local IP broadcast addresses. In this case
3227  *	the conn will only receive packets destined to
3228  *	the specified broadcast address.
3229  *	(5) - a multicast address. In this case
3230  *	the conn will only receive packets destined to
3231  *	the specified multicast address. Note: the
3232  *	application still has to issue an
3233  *	IP_ADD_MEMBERSHIP socket option.
3234  *
3235  * In all the above cases, the bound address must be valid in the current zone.
3236  * When the address is loopback, multicast or broadcast, there might be many
3237  * matching IREs so bind has to look up based on the zone.
3238  */
3239 ip_laddr_t
3240 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3241     ip_stack_t *ipst, boolean_t allow_mcbc)
3242 {
3243 	ire_t *src_ire;
3244 
3245 	ASSERT(src_addr != INADDR_ANY);
3246 
3247 	src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3248 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3249 
3250 	/*
3251 	 * If an address other than in6addr_any is requested,
3252 	 * we verify that it is a valid address for bind
3253 	 * Note: Following code is in if-else-if form for
3254 	 * readability compared to a condition check.
3255 	 */
3256 	if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3257 		/*
3258 		 * (2) Bind to address of local UP interface
3259 		 */
3260 		ire_refrele(src_ire);
3261 		return (IPVL_UNICAST_UP);
3262 	} else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3263 		/*
3264 		 * (4) Bind to broadcast address
3265 		 */
3266 		ire_refrele(src_ire);
3267 		if (allow_mcbc)
3268 			return (IPVL_BCAST);
3269 		else
3270 			return (IPVL_BAD);
3271 	} else if (CLASSD(src_addr)) {
3272 		/* (5) bind to multicast address. */
3273 		if (src_ire != NULL)
3274 			ire_refrele(src_ire);
3275 
3276 		if (allow_mcbc)
3277 			return (IPVL_MCAST);
3278 		else
3279 			return (IPVL_BAD);
3280 	} else {
3281 		ipif_t *ipif;
3282 
3283 		/*
3284 		 * (3) Bind to address of local DOWN interface?
3285 		 * (ipif_lookup_addr() looks up all interfaces
3286 		 * but we do not get here for UP interfaces
3287 		 * - case (2) above)
3288 		 */
3289 		if (src_ire != NULL)
3290 			ire_refrele(src_ire);
3291 
3292 		ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3293 		if (ipif == NULL)
3294 			return (IPVL_BAD);
3295 
3296 		/* Not a useful source? */
3297 		if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3298 			ipif_refrele(ipif);
3299 			return (IPVL_BAD);
3300 		}
3301 		ipif_refrele(ipif);
3302 		return (IPVL_UNICAST_DOWN);
3303 	}
3304 }
3305 
3306 /*
3307  * Insert in the bind fanout for IPv4 and IPv6.
3308  * The caller should already have used ip_laddr_verify_v*() before calling
3309  * this.
3310  */
3311 int
3312 ip_laddr_fanout_insert(conn_t *connp)
3313 {
3314 	int		error;
3315 
3316 	/*
3317 	 * Allow setting new policies. For example, disconnects result
3318 	 * in us being called. As we would have set conn_policy_cached
3319 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
3320 	 * can change after the disconnect.
3321 	 */
3322 	connp->conn_policy_cached = B_FALSE;
3323 
3324 	error = ipcl_bind_insert(connp);
3325 	if (error != 0) {
3326 		if (connp->conn_anon_port) {
3327 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3328 			    connp->conn_mlp_type, connp->conn_proto,
3329 			    ntohs(connp->conn_lport), B_FALSE);
3330 		}
3331 		connp->conn_mlp_type = mlptSingle;
3332 	}
3333 	return (error);
3334 }
3335 
3336 /*
3337  * Verify that both the source and destination addresses are valid. If
3338  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3339  * i.e. have no route to it.  Protocols like TCP want to verify destination
3340  * reachability, while tunnels do not.
3341  *
3342  * Determine the route, the interface, and (optionally) the source address
3343  * to use to reach a given destination.
3344  * Note that we allow connect to broadcast and multicast addresses when
3345  * IPDF_ALLOW_MCBC is set.
3346  * first_hop and dst_addr are normally the same, but if source routing
3347  * they will differ; in that case the first_hop is what we'll use for the
3348  * routing lookup but the dce and label checks will be done on dst_addr,
3349  *
3350  * If uinfo is set, then we fill in the best available information
3351  * we have for the destination. This is based on (in priority order) any
3352  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3353  * ill_mtu/ill_mc_mtu.
3354  *
3355  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3356  * always do the label check on dst_addr.
3357  */
3358 int
3359 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3360     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3361 {
3362 	ire_t		*ire = NULL;
3363 	int		error = 0;
3364 	ipaddr_t	setsrc;				/* RTF_SETSRC */
3365 	zoneid_t	zoneid = ixa->ixa_zoneid;	/* Honors SO_ALLZONES */
3366 	ip_stack_t	*ipst = ixa->ixa_ipst;
3367 	dce_t		*dce;
3368 	uint_t		pmtu;
3369 	uint_t		generation;
3370 	nce_t		*nce;
3371 	ill_t		*ill = NULL;
3372 	boolean_t	multirt = B_FALSE;
3373 
3374 	ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3375 
3376 	/*
3377 	 * We never send to zero; the ULPs map it to the loopback address.
3378 	 * We can't allow it since we use zero to mean unitialized in some
3379 	 * places.
3380 	 */
3381 	ASSERT(dst_addr != INADDR_ANY);
3382 
3383 	if (is_system_labeled()) {
3384 		ts_label_t *tsl = NULL;
3385 
3386 		error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3387 		    mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3388 		if (error != 0)
3389 			return (error);
3390 		if (tsl != NULL) {
3391 			/* Update the label */
3392 			ip_xmit_attr_replace_tsl(ixa, tsl);
3393 		}
3394 	}
3395 
3396 	setsrc = INADDR_ANY;
3397 	/*
3398 	 * Select a route; For IPMP interfaces, we would only select
3399 	 * a "hidden" route (i.e., going through a specific under_ill)
3400 	 * if ixa_ifindex has been specified.
3401 	 */
3402 	ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3403 	    &generation, &setsrc, &error, &multirt);
3404 	ASSERT(ire != NULL);	/* IRE_NOROUTE if none found */
3405 	if (error != 0)
3406 		goto bad_addr;
3407 
3408 	/*
3409 	 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3410 	 * If IPDF_VERIFY_DST is set, the destination must be reachable;
3411 	 * Otherwise the destination needn't be reachable.
3412 	 *
3413 	 * If we match on a reject or black hole, then we've got a
3414 	 * local failure.  May as well fail out the connect() attempt,
3415 	 * since it's never going to succeed.
3416 	 */
3417 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3418 		/*
3419 		 * If we're verifying destination reachability, we always want
3420 		 * to complain here.
3421 		 *
3422 		 * If we're not verifying destination reachability but the
3423 		 * destination has a route, we still want to fail on the
3424 		 * temporary address and broadcast address tests.
3425 		 *
3426 		 * In both cases do we let the code continue so some reasonable
3427 		 * information is returned to the caller. That enables the
3428 		 * caller to use (and even cache) the IRE. conn_ip_ouput will
3429 		 * use the generation mismatch path to check for the unreachable
3430 		 * case thereby avoiding any specific check in the main path.
3431 		 */
3432 		ASSERT(generation == IRE_GENERATION_VERIFY);
3433 		if (flags & IPDF_VERIFY_DST) {
3434 			/*
3435 			 * Set errno but continue to set up ixa_ire to be
3436 			 * the RTF_REJECT|RTF_BLACKHOLE IRE.
3437 			 * That allows callers to use ip_output to get an
3438 			 * ICMP error back.
3439 			 */
3440 			if (!(ire->ire_type & IRE_HOST))
3441 				error = ENETUNREACH;
3442 			else
3443 				error = EHOSTUNREACH;
3444 		}
3445 	}
3446 
3447 	if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3448 	    !(flags & IPDF_ALLOW_MCBC)) {
3449 		ire_refrele(ire);
3450 		ire = ire_reject(ipst, B_FALSE);
3451 		generation = IRE_GENERATION_VERIFY;
3452 		error = ENETUNREACH;
3453 	}
3454 
3455 	/* Cache things */
3456 	if (ixa->ixa_ire != NULL)
3457 		ire_refrele_notr(ixa->ixa_ire);
3458 #ifdef DEBUG
3459 	ire_refhold_notr(ire);
3460 	ire_refrele(ire);
3461 #endif
3462 	ixa->ixa_ire = ire;
3463 	ixa->ixa_ire_generation = generation;
3464 
3465 	/*
3466 	 * Ensure that ixa_dce is always set any time that ixa_ire is set,
3467 	 * since some callers will send a packet to conn_ip_output() even if
3468 	 * there's an error.
3469 	 */
3470 	if (flags & IPDF_UNIQUE_DCE) {
3471 		/* Fallback to the default dce if allocation fails */
3472 		dce = dce_lookup_and_add_v4(dst_addr, ipst);
3473 		if (dce != NULL)
3474 			generation = dce->dce_generation;
3475 		else
3476 			dce = dce_lookup_v4(dst_addr, ipst, &generation);
3477 	} else {
3478 		dce = dce_lookup_v4(dst_addr, ipst, &generation);
3479 	}
3480 	ASSERT(dce != NULL);
3481 	if (ixa->ixa_dce != NULL)
3482 		dce_refrele_notr(ixa->ixa_dce);
3483 #ifdef DEBUG
3484 	dce_refhold_notr(dce);
3485 	dce_refrele(dce);
3486 #endif
3487 	ixa->ixa_dce = dce;
3488 	ixa->ixa_dce_generation = generation;
3489 
3490 	/*
3491 	 * For multicast with multirt we have a flag passed back from
3492 	 * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3493 	 * possible multicast address.
3494 	 * We also need a flag for multicast since we can't check
3495 	 * whether RTF_MULTIRT is set in ixa_ire for multicast.
3496 	 */
3497 	if (multirt) {
3498 		ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3499 		ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3500 	} else {
3501 		ixa->ixa_postfragfn = ire->ire_postfragfn;
3502 		ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3503 	}
3504 	if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3505 		/* Get an nce to cache. */
3506 		nce = ire_to_nce(ire, firsthop, NULL);
3507 		if (nce == NULL) {
3508 			/* Allocation failure? */
3509 			ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3510 		} else {
3511 			if (ixa->ixa_nce != NULL)
3512 				nce_refrele(ixa->ixa_nce);
3513 			ixa->ixa_nce = nce;
3514 		}
3515 	}
3516 
3517 	/*
3518 	 * If the source address is a loopback address, the
3519 	 * destination had best be local or multicast.
3520 	 * If we are sending to an IRE_LOCAL using a loopback source then
3521 	 * it had better be the same zoneid.
3522 	 */
3523 	if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3524 		if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3525 			ire = NULL;	/* Stored in ixa_ire */
3526 			error = EADDRNOTAVAIL;
3527 			goto bad_addr;
3528 		}
3529 		if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3530 			ire = NULL;	/* Stored in ixa_ire */
3531 			error = EADDRNOTAVAIL;
3532 			goto bad_addr;
3533 		}
3534 	}
3535 	if (ire->ire_type & IRE_BROADCAST) {
3536 		/*
3537 		 * If the ULP didn't have a specified source, then we
3538 		 * make sure we reselect the source when sending
3539 		 * broadcasts out different interfaces.
3540 		 */
3541 		if (flags & IPDF_SELECT_SRC)
3542 			ixa->ixa_flags |= IXAF_SET_SOURCE;
3543 		else
3544 			ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3545 	}
3546 
3547 	/*
3548 	 * Does the caller want us to pick a source address?
3549 	 */
3550 	if (flags & IPDF_SELECT_SRC) {
3551 		ipaddr_t	src_addr;
3552 
3553 		/*
3554 		 * We use use ire_nexthop_ill to avoid the under ipmp
3555 		 * interface for source address selection. Note that for ipmp
3556 		 * probe packets, ixa_ifindex would have been specified, and
3557 		 * the ip_select_route() invocation would have picked an ire
3558 		 * will ire_ill pointing at an under interface.
3559 		 */
3560 		ill = ire_nexthop_ill(ire);
3561 
3562 		/* If unreachable we have no ill but need some source */
3563 		if (ill == NULL) {
3564 			src_addr = htonl(INADDR_LOOPBACK);
3565 			/* Make sure we look for a better source address */
3566 			generation = SRC_GENERATION_VERIFY;
3567 		} else {
3568 			error = ip_select_source_v4(ill, setsrc, dst_addr,
3569 			    ixa->ixa_multicast_ifaddr, zoneid,
3570 			    ipst, &src_addr, &generation, NULL);
3571 			if (error != 0) {
3572 				ire = NULL;	/* Stored in ixa_ire */
3573 				goto bad_addr;
3574 			}
3575 		}
3576 
3577 		/*
3578 		 * We allow the source address to to down.
3579 		 * However, we check that we don't use the loopback address
3580 		 * as a source when sending out on the wire.
3581 		 */
3582 		if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3583 		    !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3584 		    !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3585 			ire = NULL;	/* Stored in ixa_ire */
3586 			error = EADDRNOTAVAIL;
3587 			goto bad_addr;
3588 		}
3589 
3590 		*src_addrp = src_addr;
3591 		ixa->ixa_src_generation = generation;
3592 	}
3593 
3594 	/*
3595 	 * Make sure we don't leave an unreachable ixa_nce in place
3596 	 * since ip_select_route is used when we unplumb i.e., remove
3597 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3598 	 */
3599 	nce = ixa->ixa_nce;
3600 	if (nce != NULL && nce->nce_is_condemned) {
3601 		nce_refrele(nce);
3602 		ixa->ixa_nce = NULL;
3603 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3604 	}
3605 
3606 	/*
3607 	 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3608 	 * However, we can't do it for IPv4 multicast or broadcast.
3609 	 */
3610 	if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3611 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3612 
3613 	/*
3614 	 * Set initial value for fragmentation limit. Either conn_ip_output
3615 	 * or ULP might updates it when there are routing changes.
3616 	 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3617 	 */
3618 	pmtu = ip_get_pmtu(ixa);
3619 	ixa->ixa_fragsize = pmtu;
3620 	/* Make sure ixa_fragsize and ixa_pmtu remain identical */
3621 	if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3622 		ixa->ixa_pmtu = pmtu;
3623 
3624 	/*
3625 	 * Extract information useful for some transports.
3626 	 * First we look for DCE metrics. Then we take what we have in
3627 	 * the metrics in the route, where the offlink is used if we have
3628 	 * one.
3629 	 */
3630 	if (uinfo != NULL) {
3631 		bzero(uinfo, sizeof (*uinfo));
3632 
3633 		if (dce->dce_flags & DCEF_UINFO)
3634 			*uinfo = dce->dce_uinfo;
3635 
3636 		rts_merge_metrics(uinfo, &ire->ire_metrics);
3637 
3638 		/* Allow ire_metrics to decrease the path MTU from above */
3639 		if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3640 			uinfo->iulp_mtu = pmtu;
3641 
3642 		uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3643 		uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3644 		uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3645 	}
3646 
3647 	if (ill != NULL)
3648 		ill_refrele(ill);
3649 
3650 	return (error);
3651 
3652 bad_addr:
3653 	if (ire != NULL)
3654 		ire_refrele(ire);
3655 
3656 	if (ill != NULL)
3657 		ill_refrele(ill);
3658 
3659 	/*
3660 	 * Make sure we don't leave an unreachable ixa_nce in place
3661 	 * since ip_select_route is used when we unplumb i.e., remove
3662 	 * references on ixa_ire, ixa_nce, and ixa_dce.
3663 	 */
3664 	nce = ixa->ixa_nce;
3665 	if (nce != NULL && nce->nce_is_condemned) {
3666 		nce_refrele(nce);
3667 		ixa->ixa_nce = NULL;
3668 		ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3669 	}
3670 
3671 	return (error);
3672 }
3673 
3674 
3675 /*
3676  * Get the base MTU for the case when path MTU discovery is not used.
3677  * Takes the MTU of the IRE into account.
3678  */
3679 uint_t
3680 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3681 {
3682 	uint_t mtu;
3683 	uint_t iremtu = ire->ire_metrics.iulp_mtu;
3684 
3685 	if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3686 		mtu = ill->ill_mc_mtu;
3687 	else
3688 		mtu = ill->ill_mtu;
3689 
3690 	if (iremtu != 0 && iremtu < mtu)
3691 		mtu = iremtu;
3692 
3693 	return (mtu);
3694 }
3695 
3696 /*
3697  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3698  * Assumes that ixa_ire, dce, and nce have already been set up.
3699  *
3700  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3701  * We avoid path MTU discovery if it is disabled with ndd.
3702  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3703  *
3704  * NOTE: We also used to turn it off for source routed packets. That
3705  * is no longer required since the dce is per final destination.
3706  */
3707 uint_t
3708 ip_get_pmtu(ip_xmit_attr_t *ixa)
3709 {
3710 	ip_stack_t	*ipst = ixa->ixa_ipst;
3711 	dce_t		*dce;
3712 	nce_t		*nce;
3713 	ire_t		*ire;
3714 	uint_t		pmtu;
3715 
3716 	ire = ixa->ixa_ire;
3717 	dce = ixa->ixa_dce;
3718 	nce = ixa->ixa_nce;
3719 
3720 	/*
3721 	 * If path MTU discovery has been turned off by ndd, then we ignore
3722 	 * any dce_pmtu and for IPv4 we will not set DF.
3723 	 */
3724 	if (!ipst->ips_ip_path_mtu_discovery)
3725 		ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3726 
3727 	pmtu = IP_MAXPACKET;
3728 	/*
3729 	 * Decide whether whether IPv4 sets DF
3730 	 * For IPv6 "no DF" means to use the 1280 mtu
3731 	 */
3732 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3733 		ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3734 	} else {
3735 		ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3736 		if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3737 			pmtu = IPV6_MIN_MTU;
3738 	}
3739 
3740 	/* Check if the PMTU is to old before we use it */
3741 	if ((dce->dce_flags & DCEF_PMTU) &&
3742 	    TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3743 	    ipst->ips_ip_pathmtu_interval) {
3744 		/*
3745 		 * Older than 20 minutes. Drop the path MTU information.
3746 		 */
3747 		mutex_enter(&dce->dce_lock);
3748 		dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3749 		dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3750 		mutex_exit(&dce->dce_lock);
3751 		dce_increment_generation(dce);
3752 	}
3753 
3754 	/* The metrics on the route can lower the path MTU */
3755 	if (ire->ire_metrics.iulp_mtu != 0 &&
3756 	    ire->ire_metrics.iulp_mtu < pmtu)
3757 		pmtu = ire->ire_metrics.iulp_mtu;
3758 
3759 	/*
3760 	 * If the path MTU is smaller than some minimum, we still use dce_pmtu
3761 	 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3762 	 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3763 	 */
3764 	if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3765 		if (dce->dce_flags & DCEF_PMTU) {
3766 			if (dce->dce_pmtu < pmtu)
3767 				pmtu = dce->dce_pmtu;
3768 
3769 			if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3770 				ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3771 				ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3772 			} else {
3773 				ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3774 				ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3775 			}
3776 		} else {
3777 			ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3778 			ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3779 		}
3780 	}
3781 
3782 	/*
3783 	 * If we have an IRE_LOCAL we use the loopback mtu instead of
3784 	 * the ill for going out the wire i.e., IRE_LOCAL gets the same
3785 	 * mtu as IRE_LOOPBACK.
3786 	 */
3787 	if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3788 		uint_t loopback_mtu;
3789 
3790 		loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3791 		    ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3792 
3793 		if (loopback_mtu < pmtu)
3794 			pmtu = loopback_mtu;
3795 	} else if (nce != NULL) {
3796 		/*
3797 		 * Make sure we don't exceed the interface MTU.
3798 		 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3799 		 * an ill. We'd use the above IP_MAXPACKET in that case just
3800 		 * to tell the transport something larger than zero.
3801 		 */
3802 		if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3803 			if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3804 				pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3805 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3806 			    nce->nce_ill->ill_mc_mtu < pmtu) {
3807 				/*
3808 				 * for interfaces in an IPMP group, the mtu of
3809 				 * the nce_ill (under_ill) could be different
3810 				 * from the mtu of the ncec_ill, so we take the
3811 				 * min of the two.
3812 				 */
3813 				pmtu = nce->nce_ill->ill_mc_mtu;
3814 			}
3815 		} else {
3816 			if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3817 				pmtu = nce->nce_common->ncec_ill->ill_mtu;
3818 			if (nce->nce_common->ncec_ill != nce->nce_ill &&
3819 			    nce->nce_ill->ill_mtu < pmtu) {
3820 				/*
3821 				 * for interfaces in an IPMP group, the mtu of
3822 				 * the nce_ill (under_ill) could be different
3823 				 * from the mtu of the ncec_ill, so we take the
3824 				 * min of the two.
3825 				 */
3826 				pmtu = nce->nce_ill->ill_mtu;
3827 			}
3828 		}
3829 	}
3830 
3831 	/*
3832 	 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3833 	 * Only applies to IPv6.
3834 	 */
3835 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3836 		if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3837 			switch (ixa->ixa_use_min_mtu) {
3838 			case IPV6_USE_MIN_MTU_MULTICAST:
3839 				if (ire->ire_type & IRE_MULTICAST)
3840 					pmtu = IPV6_MIN_MTU;
3841 				break;
3842 			case IPV6_USE_MIN_MTU_ALWAYS:
3843 				pmtu = IPV6_MIN_MTU;
3844 				break;
3845 			case IPV6_USE_MIN_MTU_NEVER:
3846 				break;
3847 			}
3848 		} else {
3849 			/* Default is IPV6_USE_MIN_MTU_MULTICAST */
3850 			if (ire->ire_type & IRE_MULTICAST)
3851 				pmtu = IPV6_MIN_MTU;
3852 		}
3853 	}
3854 
3855 	/*
3856 	 * For multirouted IPv6 packets, the IP layer will insert a 8-byte
3857 	 * fragment header in every packet. We compensate for those cases by
3858 	 * returning a smaller path MTU to the ULP.
3859 	 *
3860 	 * In the case of CGTP then ip_output will add a fragment header.
3861 	 * Make sure there is room for it by telling a smaller number
3862 	 * to the transport.
3863 	 *
3864 	 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3865 	 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3866 	 * which is the size of the packets it can send.
3867 	 */
3868 	if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3869 		if ((ire->ire_flags & RTF_MULTIRT) ||
3870 		    (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3871 			pmtu -= sizeof (ip6_frag_t);
3872 			ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3873 		}
3874 	}
3875 
3876 	return (pmtu);
3877 }
3878 
3879 /*
3880  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3881  * the final piece where we don't.  Return a pointer to the first mblk in the
3882  * result, and update the pointer to the next mblk to chew on.  If anything
3883  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3884  * NULL pointer.
3885  */
3886 mblk_t *
3887 ip_carve_mp(mblk_t **mpp, ssize_t len)
3888 {
3889 	mblk_t	*mp0;
3890 	mblk_t	*mp1;
3891 	mblk_t	*mp2;
3892 
3893 	if (!len || !mpp || !(mp0 = *mpp))
3894 		return (NULL);
3895 	/* If we aren't going to consume the first mblk, we need a dup. */
3896 	if (mp0->b_wptr - mp0->b_rptr > len) {
3897 		mp1 = dupb(mp0);
3898 		if (mp1) {
3899 			/* Partition the data between the two mblks. */
3900 			mp1->b_wptr = mp1->b_rptr + len;
3901 			mp0->b_rptr = mp1->b_wptr;
3902 			/*
3903 			 * after adjustments if mblk not consumed is now
3904 			 * unaligned, try to align it. If this fails free
3905 			 * all messages and let upper layer recover.
3906 			 */
3907 			if (!OK_32PTR(mp0->b_rptr)) {
3908 				if (!pullupmsg(mp0, -1)) {
3909 					freemsg(mp0);
3910 					freemsg(mp1);
3911 					*mpp = NULL;
3912 					return (NULL);
3913 				}
3914 			}
3915 		}
3916 		return (mp1);
3917 	}
3918 	/* Eat through as many mblks as we need to get len bytes. */
3919 	len -= mp0->b_wptr - mp0->b_rptr;
3920 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3921 		if (mp2->b_wptr - mp2->b_rptr > len) {
3922 			/*
3923 			 * We won't consume the entire last mblk.  Like
3924 			 * above, dup and partition it.
3925 			 */
3926 			mp1->b_cont = dupb(mp2);
3927 			mp1 = mp1->b_cont;
3928 			if (!mp1) {
3929 				/*
3930 				 * Trouble.  Rather than go to a lot of
3931 				 * trouble to clean up, we free the messages.
3932 				 * This won't be any worse than losing it on
3933 				 * the wire.
3934 				 */
3935 				freemsg(mp0);
3936 				freemsg(mp2);
3937 				*mpp = NULL;
3938 				return (NULL);
3939 			}
3940 			mp1->b_wptr = mp1->b_rptr + len;
3941 			mp2->b_rptr = mp1->b_wptr;
3942 			/*
3943 			 * after adjustments if mblk not consumed is now
3944 			 * unaligned, try to align it. If this fails free
3945 			 * all messages and let upper layer recover.
3946 			 */
3947 			if (!OK_32PTR(mp2->b_rptr)) {
3948 				if (!pullupmsg(mp2, -1)) {
3949 					freemsg(mp0);
3950 					freemsg(mp2);
3951 					*mpp = NULL;
3952 					return (NULL);
3953 				}
3954 			}
3955 			*mpp = mp2;
3956 			return (mp0);
3957 		}
3958 		/* Decrement len by the amount we just got. */
3959 		len -= mp2->b_wptr - mp2->b_rptr;
3960 	}
3961 	/*
3962 	 * len should be reduced to zero now.  If not our caller has
3963 	 * screwed up.
3964 	 */
3965 	if (len) {
3966 		/* Shouldn't happen! */
3967 		freemsg(mp0);
3968 		*mpp = NULL;
3969 		return (NULL);
3970 	}
3971 	/*
3972 	 * We consumed up to exactly the end of an mblk.  Detach the part
3973 	 * we are returning from the rest of the chain.
3974 	 */
3975 	mp1->b_cont = NULL;
3976 	*mpp = mp2;
3977 	return (mp0);
3978 }
3979 
3980 /* The ill stream is being unplumbed. Called from ip_close */
3981 int
3982 ip_modclose(ill_t *ill)
3983 {
3984 	boolean_t success;
3985 	ipsq_t	*ipsq;
3986 	ipif_t	*ipif;
3987 	queue_t	*q = ill->ill_rq;
3988 	ip_stack_t	*ipst = ill->ill_ipst;
3989 	int	i;
3990 	arl_ill_common_t *ai = ill->ill_common;
3991 
3992 	/*
3993 	 * The punlink prior to this may have initiated a capability
3994 	 * negotiation. But ipsq_enter will block until that finishes or
3995 	 * times out.
3996 	 */
3997 	success = ipsq_enter(ill, B_FALSE, NEW_OP);
3998 
3999 	/*
4000 	 * Open/close/push/pop is guaranteed to be single threaded
4001 	 * per stream by STREAMS. FS guarantees that all references
4002 	 * from top are gone before close is called. So there can't
4003 	 * be another close thread that has set CONDEMNED on this ill.
4004 	 * and cause ipsq_enter to return failure.
4005 	 */
4006 	ASSERT(success);
4007 	ipsq = ill->ill_phyint->phyint_ipsq;
4008 
4009 	/*
4010 	 * Mark it condemned. No new reference will be made to this ill.
4011 	 * Lookup functions will return an error. Threads that try to
4012 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4013 	 * that the refcnt will drop down to zero.
4014 	 */
4015 	mutex_enter(&ill->ill_lock);
4016 	ill->ill_state_flags |= ILL_CONDEMNED;
4017 	for (ipif = ill->ill_ipif; ipif != NULL;
4018 	    ipif = ipif->ipif_next) {
4019 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
4020 	}
4021 	/*
4022 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
4023 	 * returns  error if ILL_CONDEMNED is set
4024 	 */
4025 	cv_broadcast(&ill->ill_cv);
4026 	mutex_exit(&ill->ill_lock);
4027 
4028 	/*
4029 	 * Send all the deferred DLPI messages downstream which came in
4030 	 * during the small window right before ipsq_enter(). We do this
4031 	 * without waiting for the ACKs because all the ACKs for M_PROTO
4032 	 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4033 	 */
4034 	ill_dlpi_send_deferred(ill);
4035 
4036 	/*
4037 	 * Shut down fragmentation reassembly.
4038 	 * ill_frag_timer won't start a timer again.
4039 	 * Now cancel any existing timer
4040 	 */
4041 	(void) untimeout(ill->ill_frag_timer_id);
4042 	(void) ill_frag_timeout(ill, 0);
4043 
4044 	/*
4045 	 * Call ill_delete to bring down the ipifs, ilms and ill on
4046 	 * this ill. Then wait for the refcnts to drop to zero.
4047 	 * ill_is_freeable checks whether the ill is really quiescent.
4048 	 * Then make sure that threads that are waiting to enter the
4049 	 * ipsq have seen the error returned by ipsq_enter and have
4050 	 * gone away. Then we call ill_delete_tail which does the
4051 	 * DL_UNBIND_REQ with the driver and then qprocsoff.
4052 	 */
4053 	ill_delete(ill);
4054 	mutex_enter(&ill->ill_lock);
4055 	while (!ill_is_freeable(ill))
4056 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4057 
4058 	while (ill->ill_waiters)
4059 		cv_wait(&ill->ill_cv, &ill->ill_lock);
4060 
4061 	mutex_exit(&ill->ill_lock);
4062 
4063 	/*
4064 	 * ill_delete_tail drops reference on ill_ipst, but we need to keep
4065 	 * it held until the end of the function since the cleanup
4066 	 * below needs to be able to use the ip_stack_t.
4067 	 */
4068 	netstack_hold(ipst->ips_netstack);
4069 
4070 	/* qprocsoff is done via ill_delete_tail */
4071 	ill_delete_tail(ill);
4072 	/*
4073 	 * synchronously wait for arp stream to unbind. After this, we
4074 	 * cannot get any data packets up from the driver.
4075 	 */
4076 	arp_unbind_complete(ill);
4077 	ASSERT(ill->ill_ipst == NULL);
4078 
4079 	/*
4080 	 * Walk through all conns and qenable those that have queued data.
4081 	 * Close synchronization needs this to
4082 	 * be done to ensure that all upper layers blocked
4083 	 * due to flow control to the closing device
4084 	 * get unblocked.
4085 	 */
4086 	ip1dbg(("ip_wsrv: walking\n"));
4087 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
4088 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4089 	}
4090 
4091 	/*
4092 	 * ai can be null if this is an IPv6 ill, or if the IPv4
4093 	 * stream is being torn down before ARP was plumbed (e.g.,
4094 	 * /sbin/ifconfig plumbing a stream twice, and encountering
4095 	 * an error
4096 	 */
4097 	if (ai != NULL) {
4098 		ASSERT(!ill->ill_isv6);
4099 		mutex_enter(&ai->ai_lock);
4100 		ai->ai_ill = NULL;
4101 		if (ai->ai_arl == NULL) {
4102 			mutex_destroy(&ai->ai_lock);
4103 			kmem_free(ai, sizeof (*ai));
4104 		} else {
4105 			cv_signal(&ai->ai_ill_unplumb_done);
4106 			mutex_exit(&ai->ai_lock);
4107 		}
4108 	}
4109 
4110 	mutex_enter(&ipst->ips_ip_mi_lock);
4111 	mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4112 	mutex_exit(&ipst->ips_ip_mi_lock);
4113 
4114 	/*
4115 	 * credp could be null if the open didn't succeed and ip_modopen
4116 	 * itself calls ip_close.
4117 	 */
4118 	if (ill->ill_credp != NULL)
4119 		crfree(ill->ill_credp);
4120 
4121 	mutex_destroy(&ill->ill_saved_ire_lock);
4122 	mutex_destroy(&ill->ill_lock);
4123 	rw_destroy(&ill->ill_mcast_lock);
4124 	mutex_destroy(&ill->ill_mcast_serializer);
4125 	list_destroy(&ill->ill_nce);
4126 
4127 	/*
4128 	 * Now we are done with the module close pieces that
4129 	 * need the netstack_t.
4130 	 */
4131 	netstack_rele(ipst->ips_netstack);
4132 
4133 	mi_close_free((IDP)ill);
4134 	q->q_ptr = WR(q)->q_ptr = NULL;
4135 
4136 	ipsq_exit(ipsq);
4137 
4138 	return (0);
4139 }
4140 
4141 /*
4142  * This is called as part of close() for IP, UDP, ICMP, and RTS
4143  * in order to quiesce the conn.
4144  */
4145 void
4146 ip_quiesce_conn(conn_t *connp)
4147 {
4148 	boolean_t	drain_cleanup_reqd = B_FALSE;
4149 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4150 	boolean_t	ilg_cleanup_reqd = B_FALSE;
4151 	ip_stack_t	*ipst;
4152 
4153 	ASSERT(!IPCL_IS_TCP(connp));
4154 	ipst = connp->conn_netstack->netstack_ip;
4155 
4156 	/*
4157 	 * Mark the conn as closing, and this conn must not be
4158 	 * inserted in future into any list. Eg. conn_drain_insert(),
4159 	 * won't insert this conn into the conn_drain_list.
4160 	 *
4161 	 * conn_idl, and conn_ilg cannot get set henceforth.
4162 	 */
4163 	mutex_enter(&connp->conn_lock);
4164 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4165 	connp->conn_state_flags |= CONN_CLOSING;
4166 	if (connp->conn_idl != NULL)
4167 		drain_cleanup_reqd = B_TRUE;
4168 	if (connp->conn_oper_pending_ill != NULL)
4169 		conn_ioctl_cleanup_reqd = B_TRUE;
4170 	if (connp->conn_dhcpinit_ill != NULL) {
4171 		ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4172 		atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4173 		ill_set_inputfn(connp->conn_dhcpinit_ill);
4174 		connp->conn_dhcpinit_ill = NULL;
4175 	}
4176 	if (connp->conn_ilg != NULL)
4177 		ilg_cleanup_reqd = B_TRUE;
4178 	mutex_exit(&connp->conn_lock);
4179 
4180 	if (conn_ioctl_cleanup_reqd)
4181 		conn_ioctl_cleanup(connp);
4182 
4183 	if (is_system_labeled() && connp->conn_anon_port) {
4184 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4185 		    connp->conn_mlp_type, connp->conn_proto,
4186 		    ntohs(connp->conn_lport), B_FALSE);
4187 		connp->conn_anon_port = 0;
4188 	}
4189 	connp->conn_mlp_type = mlptSingle;
4190 
4191 	/*
4192 	 * Remove this conn from any fanout list it is on.
4193 	 * and then wait for any threads currently operating
4194 	 * on this endpoint to finish
4195 	 */
4196 	ipcl_hash_remove(connp);
4197 
4198 	/*
4199 	 * Remove this conn from the drain list, and do any other cleanup that
4200 	 * may be required.  (TCP conns are never flow controlled, and
4201 	 * conn_idl will be NULL.)
4202 	 */
4203 	if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4204 		idl_t *idl = connp->conn_idl;
4205 
4206 		mutex_enter(&idl->idl_lock);
4207 		conn_drain(connp, B_TRUE);
4208 		mutex_exit(&idl->idl_lock);
4209 	}
4210 
4211 	if (connp == ipst->ips_ip_g_mrouter)
4212 		(void) ip_mrouter_done(ipst);
4213 
4214 	if (ilg_cleanup_reqd)
4215 		ilg_delete_all(connp);
4216 
4217 	/*
4218 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4219 	 * callers from write side can't be there now because close
4220 	 * is in progress. The only other caller is ipcl_walk
4221 	 * which checks for the condemned flag.
4222 	 */
4223 	mutex_enter(&connp->conn_lock);
4224 	connp->conn_state_flags |= CONN_CONDEMNED;
4225 	while (connp->conn_ref != 1)
4226 		cv_wait(&connp->conn_cv, &connp->conn_lock);
4227 	connp->conn_state_flags |= CONN_QUIESCED;
4228 	mutex_exit(&connp->conn_lock);
4229 }
4230 
4231 /* ARGSUSED */
4232 int
4233 ip_close(queue_t *q, int flags, cred_t *credp __unused)
4234 {
4235 	conn_t		*connp;
4236 
4237 	/*
4238 	 * Call the appropriate delete routine depending on whether this is
4239 	 * a module or device.
4240 	 */
4241 	if (WR(q)->q_next != NULL) {
4242 		/* This is a module close */
4243 		return (ip_modclose((ill_t *)q->q_ptr));
4244 	}
4245 
4246 	connp = q->q_ptr;
4247 	ip_quiesce_conn(connp);
4248 
4249 	qprocsoff(q);
4250 
4251 	/*
4252 	 * Now we are truly single threaded on this stream, and can
4253 	 * delete the things hanging off the connp, and finally the connp.
4254 	 * We removed this connp from the fanout list, it cannot be
4255 	 * accessed thru the fanouts, and we already waited for the
4256 	 * conn_ref to drop to 0. We are already in close, so
4257 	 * there cannot be any other thread from the top. qprocsoff
4258 	 * has completed, and service has completed or won't run in
4259 	 * future.
4260 	 */
4261 	ASSERT(connp->conn_ref == 1);
4262 
4263 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4264 
4265 	connp->conn_ref--;
4266 	ipcl_conn_destroy(connp);
4267 
4268 	q->q_ptr = WR(q)->q_ptr = NULL;
4269 	return (0);
4270 }
4271 
4272 /*
4273  * Wapper around putnext() so that ip_rts_request can merely use
4274  * conn_recv.
4275  */
4276 /*ARGSUSED2*/
4277 static void
4278 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4279 {
4280 	conn_t *connp = (conn_t *)arg1;
4281 
4282 	putnext(connp->conn_rq, mp);
4283 }
4284 
4285 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4286 /* ARGSUSED */
4287 static void
4288 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4289 {
4290 	freemsg(mp);
4291 }
4292 
4293 /*
4294  * Called when the module is about to be unloaded
4295  */
4296 void
4297 ip_ddi_destroy(void)
4298 {
4299 	/* This needs to be called before destroying any transports. */
4300 	mutex_enter(&cpu_lock);
4301 	unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4302 	mutex_exit(&cpu_lock);
4303 
4304 	tnet_fini();
4305 
4306 	icmp_ddi_g_destroy();
4307 	rts_ddi_g_destroy();
4308 	udp_ddi_g_destroy();
4309 	sctp_ddi_g_destroy();
4310 	tcp_ddi_g_destroy();
4311 	ilb_ddi_g_destroy();
4312 	dce_g_destroy();
4313 	ipsec_policy_g_destroy();
4314 	ipcl_g_destroy();
4315 	ip_net_g_destroy();
4316 	ip_ire_g_fini();
4317 	inet_minor_destroy(ip_minor_arena_sa);
4318 #if defined(_LP64)
4319 	inet_minor_destroy(ip_minor_arena_la);
4320 #endif
4321 
4322 #ifdef DEBUG
4323 	list_destroy(&ip_thread_list);
4324 	rw_destroy(&ip_thread_rwlock);
4325 	tsd_destroy(&ip_thread_data);
4326 #endif
4327 
4328 	netstack_unregister(NS_IP);
4329 }
4330 
4331 /*
4332  * First step in cleanup.
4333  */
4334 /* ARGSUSED */
4335 static void
4336 ip_stack_shutdown(netstackid_t stackid, void *arg)
4337 {
4338 	ip_stack_t *ipst = (ip_stack_t *)arg;
4339 	kt_did_t ktid;
4340 
4341 #ifdef NS_DEBUG
4342 	printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4343 #endif
4344 
4345 	/*
4346 	 * Perform cleanup for special interfaces (loopback and IPMP).
4347 	 */
4348 	ip_interface_cleanup(ipst);
4349 
4350 	/*
4351 	 * The *_hook_shutdown()s start the process of notifying any
4352 	 * consumers that things are going away.... nothing is destroyed.
4353 	 */
4354 	ipv4_hook_shutdown(ipst);
4355 	ipv6_hook_shutdown(ipst);
4356 	arp_hook_shutdown(ipst);
4357 
4358 	mutex_enter(&ipst->ips_capab_taskq_lock);
4359 	ktid = ipst->ips_capab_taskq_thread->t_did;
4360 	ipst->ips_capab_taskq_quit = B_TRUE;
4361 	cv_signal(&ipst->ips_capab_taskq_cv);
4362 	mutex_exit(&ipst->ips_capab_taskq_lock);
4363 
4364 	/*
4365 	 * In rare occurrences, particularly on virtual hardware where CPUs can
4366 	 * be de-scheduled, the thread that we just signaled will not run until
4367 	 * after we have gotten through parts of ip_stack_fini. If that happens
4368 	 * then we'll try to grab the ips_capab_taskq_lock as part of returning
4369 	 * from cv_wait which no longer exists.
4370 	 */
4371 	thread_join(ktid);
4372 }
4373 
4374 /*
4375  * Free the IP stack instance.
4376  */
4377 static void
4378 ip_stack_fini(netstackid_t stackid, void *arg)
4379 {
4380 	ip_stack_t *ipst = (ip_stack_t *)arg;
4381 	int ret;
4382 
4383 #ifdef NS_DEBUG
4384 	printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4385 #endif
4386 	/*
4387 	 * At this point, all of the notifications that the events and
4388 	 * protocols are going away have been run, meaning that we can
4389 	 * now set about starting to clean things up.
4390 	 */
4391 	ipobs_fini(ipst);
4392 	ipv4_hook_destroy(ipst);
4393 	ipv6_hook_destroy(ipst);
4394 	arp_hook_destroy(ipst);
4395 	ip_net_destroy(ipst);
4396 
4397 	ipmp_destroy(ipst);
4398 
4399 	ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4400 	ipst->ips_ip_mibkp = NULL;
4401 	icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4402 	ipst->ips_icmp_mibkp = NULL;
4403 	ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4404 	ipst->ips_ip_kstat = NULL;
4405 	bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4406 	ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4407 	ipst->ips_ip6_kstat = NULL;
4408 	bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4409 
4410 	kmem_free(ipst->ips_propinfo_tbl,
4411 	    ip_propinfo_count * sizeof (mod_prop_info_t));
4412 	ipst->ips_propinfo_tbl = NULL;
4413 
4414 	dce_stack_destroy(ipst);
4415 	ip_mrouter_stack_destroy(ipst);
4416 
4417 	/*
4418 	 * Quiesce all of our timers. Note we set the quiesce flags before we
4419 	 * call untimeout. The slowtimers may actually kick off another instance
4420 	 * of the non-slow timers.
4421 	 */
4422 	mutex_enter(&ipst->ips_igmp_timer_lock);
4423 	ipst->ips_igmp_timer_quiesce = B_TRUE;
4424 	mutex_exit(&ipst->ips_igmp_timer_lock);
4425 
4426 	mutex_enter(&ipst->ips_mld_timer_lock);
4427 	ipst->ips_mld_timer_quiesce = B_TRUE;
4428 	mutex_exit(&ipst->ips_mld_timer_lock);
4429 
4430 	mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
4431 	ipst->ips_igmp_slowtimeout_quiesce = B_TRUE;
4432 	mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
4433 
4434 	mutex_enter(&ipst->ips_mld_slowtimeout_lock);
4435 	ipst->ips_mld_slowtimeout_quiesce = B_TRUE;
4436 	mutex_exit(&ipst->ips_mld_slowtimeout_lock);
4437 
4438 	ret = untimeout(ipst->ips_igmp_timeout_id);
4439 	if (ret == -1) {
4440 		ASSERT(ipst->ips_igmp_timeout_id == 0);
4441 	} else {
4442 		ASSERT(ipst->ips_igmp_timeout_id != 0);
4443 		ipst->ips_igmp_timeout_id = 0;
4444 	}
4445 	ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4446 	if (ret == -1) {
4447 		ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4448 	} else {
4449 		ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4450 		ipst->ips_igmp_slowtimeout_id = 0;
4451 	}
4452 	ret = untimeout(ipst->ips_mld_timeout_id);
4453 	if (ret == -1) {
4454 		ASSERT(ipst->ips_mld_timeout_id == 0);
4455 	} else {
4456 		ASSERT(ipst->ips_mld_timeout_id != 0);
4457 		ipst->ips_mld_timeout_id = 0;
4458 	}
4459 	ret = untimeout(ipst->ips_mld_slowtimeout_id);
4460 	if (ret == -1) {
4461 		ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4462 	} else {
4463 		ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4464 		ipst->ips_mld_slowtimeout_id = 0;
4465 	}
4466 
4467 	ip_ire_fini(ipst);
4468 	ip6_asp_free(ipst);
4469 	conn_drain_fini(ipst);
4470 	ipcl_destroy(ipst);
4471 
4472 	mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4473 	mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4474 	kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4475 	ipst->ips_ndp4 = NULL;
4476 	kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4477 	ipst->ips_ndp6 = NULL;
4478 
4479 	if (ipst->ips_loopback_ksp != NULL) {
4480 		kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4481 		ipst->ips_loopback_ksp = NULL;
4482 	}
4483 
4484 	mutex_destroy(&ipst->ips_capab_taskq_lock);
4485 	cv_destroy(&ipst->ips_capab_taskq_cv);
4486 
4487 	rw_destroy(&ipst->ips_srcid_lock);
4488 
4489 	mutex_destroy(&ipst->ips_ip_mi_lock);
4490 	rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4491 
4492 	mutex_destroy(&ipst->ips_igmp_timer_lock);
4493 	mutex_destroy(&ipst->ips_mld_timer_lock);
4494 	mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4495 	mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4496 	mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4497 	rw_destroy(&ipst->ips_ill_g_lock);
4498 
4499 	kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4500 	ipst->ips_phyint_g_list = NULL;
4501 	kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4502 	ipst->ips_ill_g_heads = NULL;
4503 
4504 	ldi_ident_release(ipst->ips_ldi_ident);
4505 	kmem_free(ipst, sizeof (*ipst));
4506 }
4507 
4508 /*
4509  * This function is called from the TSD destructor, and is used to debug
4510  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4511  * details.
4512  */
4513 static void
4514 ip_thread_exit(void *phash)
4515 {
4516 	th_hash_t *thh = phash;
4517 
4518 	rw_enter(&ip_thread_rwlock, RW_WRITER);
4519 	list_remove(&ip_thread_list, thh);
4520 	rw_exit(&ip_thread_rwlock);
4521 	mod_hash_destroy_hash(thh->thh_hash);
4522 	kmem_free(thh, sizeof (*thh));
4523 }
4524 
4525 /*
4526  * Called when the IP kernel module is loaded into the kernel
4527  */
4528 void
4529 ip_ddi_init(void)
4530 {
4531 	ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4532 
4533 	/*
4534 	 * For IP and TCP the minor numbers should start from 2 since we have 4
4535 	 * initial devices: ip, ip6, tcp, tcp6.
4536 	 */
4537 	/*
4538 	 * If this is a 64-bit kernel, then create two separate arenas -
4539 	 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4540 	 * other for socket apps in the range 2^^18 through 2^^32-1.
4541 	 */
4542 	ip_minor_arena_la = NULL;
4543 	ip_minor_arena_sa = NULL;
4544 #if defined(_LP64)
4545 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4546 	    INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4547 		cmn_err(CE_PANIC,
4548 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4549 	}
4550 	if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4551 	    MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4552 		cmn_err(CE_PANIC,
4553 		    "ip_ddi_init: ip_minor_arena_la creation failed\n");
4554 	}
4555 #else
4556 	if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4557 	    INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4558 		cmn_err(CE_PANIC,
4559 		    "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4560 	}
4561 #endif
4562 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4563 
4564 	ipcl_g_init();
4565 	ip_ire_g_init();
4566 	ip_net_g_init();
4567 
4568 #ifdef DEBUG
4569 	tsd_create(&ip_thread_data, ip_thread_exit);
4570 	rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4571 	list_create(&ip_thread_list, sizeof (th_hash_t),
4572 	    offsetof(th_hash_t, thh_link));
4573 #endif
4574 	ipsec_policy_g_init();
4575 	tcp_ddi_g_init();
4576 	sctp_ddi_g_init();
4577 	dce_g_init();
4578 
4579 	/*
4580 	 * We want to be informed each time a stack is created or
4581 	 * destroyed in the kernel, so we can maintain the
4582 	 * set of udp_stack_t's.
4583 	 */
4584 	netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4585 	    ip_stack_fini);
4586 
4587 	tnet_init();
4588 
4589 	udp_ddi_g_init();
4590 	rts_ddi_g_init();
4591 	icmp_ddi_g_init();
4592 	ilb_ddi_g_init();
4593 
4594 	/* This needs to be called after all transports are initialized. */
4595 	mutex_enter(&cpu_lock);
4596 	register_cpu_setup_func(ip_tp_cpu_update, NULL);
4597 	mutex_exit(&cpu_lock);
4598 }
4599 
4600 /*
4601  * Initialize the IP stack instance.
4602  */
4603 static void *
4604 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4605 {
4606 	ip_stack_t	*ipst;
4607 	size_t		arrsz;
4608 	major_t		major;
4609 
4610 #ifdef NS_DEBUG
4611 	printf("ip_stack_init(stack %d)\n", stackid);
4612 #endif
4613 
4614 	ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4615 	ipst->ips_netstack = ns;
4616 
4617 	ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4618 	    KM_SLEEP);
4619 	ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4620 	    KM_SLEEP);
4621 	ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4622 	ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4623 	mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4624 	mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4625 
4626 	mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4627 	ipst->ips_igmp_deferred_next = INFINITY;
4628 	mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4629 	ipst->ips_mld_deferred_next = INFINITY;
4630 	mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4631 	mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4632 	mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4633 	mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4634 	rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4635 	rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4636 
4637 	ipcl_init(ipst);
4638 	ip_ire_init(ipst);
4639 	ip6_asp_init(ipst);
4640 	ipif_init(ipst);
4641 	conn_drain_init(ipst);
4642 	ip_mrouter_stack_init(ipst);
4643 	dce_stack_init(ipst);
4644 
4645 	ipst->ips_ip_multirt_log_interval = 1000;
4646 
4647 	ipst->ips_ill_index = 1;
4648 
4649 	ipst->ips_saved_ip_forwarding = -1;
4650 	ipst->ips_reg_vif_num = ALL_VIFS;	/* Index to Register vif */
4651 
4652 	arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4653 	ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4654 	bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4655 
4656 	ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4657 	ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4658 	ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4659 	ipst->ips_ip6_kstat =
4660 	    ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4661 
4662 	ipst->ips_ip_src_id = 1;
4663 	rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4664 
4665 	ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4666 
4667 	ip_net_init(ipst, ns);
4668 	ipv4_hook_init(ipst);
4669 	ipv6_hook_init(ipst);
4670 	arp_hook_init(ipst);
4671 	ipmp_init(ipst);
4672 	ipobs_init(ipst);
4673 
4674 	/*
4675 	 * Create the taskq dispatcher thread and initialize related stuff.
4676 	 */
4677 	mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4678 	cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4679 	ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4680 	    ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4681 
4682 	major = mod_name_to_major(INET_NAME);
4683 	(void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4684 	return (ipst);
4685 }
4686 
4687 /*
4688  * Allocate and initialize a DLPI template of the specified length.  (May be
4689  * called as writer.)
4690  */
4691 mblk_t *
4692 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4693 {
4694 	mblk_t	*mp;
4695 
4696 	mp = allocb(len, BPRI_MED);
4697 	if (!mp)
4698 		return (NULL);
4699 
4700 	/*
4701 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4702 	 * of which we don't seem to use) are sent with M_PCPROTO, and
4703 	 * that other DLPI are M_PROTO.
4704 	 */
4705 	if (prim == DL_INFO_REQ) {
4706 		mp->b_datap->db_type = M_PCPROTO;
4707 	} else {
4708 		mp->b_datap->db_type = M_PROTO;
4709 	}
4710 
4711 	mp->b_wptr = mp->b_rptr + len;
4712 	bzero(mp->b_rptr, len);
4713 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4714 	return (mp);
4715 }
4716 
4717 /*
4718  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4719  */
4720 mblk_t *
4721 ip_dlnotify_alloc(uint_t notification, uint_t data)
4722 {
4723 	dl_notify_ind_t	*notifyp;
4724 	mblk_t		*mp;
4725 
4726 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4727 		return (NULL);
4728 
4729 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4730 	notifyp->dl_notification = notification;
4731 	notifyp->dl_data = data;
4732 	return (mp);
4733 }
4734 
4735 mblk_t *
4736 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4737 {
4738 	dl_notify_ind_t	*notifyp;
4739 	mblk_t		*mp;
4740 
4741 	if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4742 		return (NULL);
4743 
4744 	notifyp = (dl_notify_ind_t *)mp->b_rptr;
4745 	notifyp->dl_notification = notification;
4746 	notifyp->dl_data1 = data1;
4747 	notifyp->dl_data2 = data2;
4748 	return (mp);
4749 }
4750 
4751 /*
4752  * Debug formatting routine.  Returns a character string representation of the
4753  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4754  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4755  *
4756  * Once the ndd table-printing interfaces are removed, this can be changed to
4757  * standard dotted-decimal form.
4758  */
4759 char *
4760 ip_dot_addr(ipaddr_t addr, char *buf)
4761 {
4762 	uint8_t *ap = (uint8_t *)&addr;
4763 
4764 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4765 	    ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4766 	return (buf);
4767 }
4768 
4769 /*
4770  * Write the given MAC address as a printable string in the usual colon-
4771  * separated format.
4772  */
4773 const char *
4774 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4775 {
4776 	char *bp;
4777 
4778 	if (alen == 0 || buflen < 4)
4779 		return ("?");
4780 	bp = buf;
4781 	for (;;) {
4782 		/*
4783 		 * If there are more MAC address bytes available, but we won't
4784 		 * have any room to print them, then add "..." to the string
4785 		 * instead.  See below for the 'magic number' explanation.
4786 		 */
4787 		if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4788 			(void) strcpy(bp, "...");
4789 			break;
4790 		}
4791 		(void) sprintf(bp, "%02x", *addr++);
4792 		bp += 2;
4793 		if (--alen == 0)
4794 			break;
4795 		*bp++ = ':';
4796 		buflen -= 3;
4797 		/*
4798 		 * At this point, based on the first 'if' statement above,
4799 		 * either alen == 1 and buflen >= 3, or alen > 1 and
4800 		 * buflen >= 4.  The first case leaves room for the final "xx"
4801 		 * number and trailing NUL byte.  The second leaves room for at
4802 		 * least "...".  Thus the apparently 'magic' numbers chosen for
4803 		 * that statement.
4804 		 */
4805 	}
4806 	return (buf);
4807 }
4808 
4809 /*
4810  * Called when it is conceptually a ULP that would sent the packet
4811  * e.g., port unreachable and protocol unreachable. Check that the packet
4812  * would have passed the IPsec global policy before sending the error.
4813  *
4814  * Send an ICMP error after patching up the packet appropriately.
4815  * Uses ip_drop_input and bumps the appropriate MIB.
4816  */
4817 void
4818 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4819     ip_recv_attr_t *ira)
4820 {
4821 	ipha_t		*ipha;
4822 	boolean_t	secure;
4823 	ill_t		*ill = ira->ira_ill;
4824 	ip_stack_t	*ipst = ill->ill_ipst;
4825 	netstack_t	*ns = ipst->ips_netstack;
4826 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4827 
4828 	secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4829 
4830 	/*
4831 	 * We are generating an icmp error for some inbound packet.
4832 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
4833 	 * Before we generate an error, check with global policy
4834 	 * to see whether this is allowed to enter the system. As
4835 	 * there is no "conn", we are checking with global policy.
4836 	 */
4837 	ipha = (ipha_t *)mp->b_rptr;
4838 	if (secure || ipss->ipsec_inbound_v4_policy_present) {
4839 		mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4840 		if (mp == NULL)
4841 			return;
4842 	}
4843 
4844 	/* We never send errors for protocols that we do implement */
4845 	if (ira->ira_protocol == IPPROTO_ICMP ||
4846 	    ira->ira_protocol == IPPROTO_IGMP) {
4847 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4848 		ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4849 		freemsg(mp);
4850 		return;
4851 	}
4852 	/*
4853 	 * Have to correct checksum since
4854 	 * the packet might have been
4855 	 * fragmented and the reassembly code in ip_rput
4856 	 * does not restore the IP checksum.
4857 	 */
4858 	ipha->ipha_hdr_checksum = 0;
4859 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4860 
4861 	switch (icmp_type) {
4862 	case ICMP_DEST_UNREACHABLE:
4863 		switch (icmp_code) {
4864 		case ICMP_PROTOCOL_UNREACHABLE:
4865 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4866 			ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4867 			break;
4868 		case ICMP_PORT_UNREACHABLE:
4869 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4870 			ip_drop_input("ipIfStatsNoPorts", mp, ill);
4871 			break;
4872 		}
4873 
4874 		icmp_unreachable(mp, icmp_code, ira);
4875 		break;
4876 	default:
4877 #ifdef DEBUG
4878 		panic("ip_fanout_send_icmp_v4: wrong type");
4879 		/*NOTREACHED*/
4880 #else
4881 		freemsg(mp);
4882 		break;
4883 #endif
4884 	}
4885 }
4886 
4887 /*
4888  * Used to send an ICMP error message when a packet is received for
4889  * a protocol that is not supported. The mblk passed as argument
4890  * is consumed by this function.
4891  */
4892 void
4893 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4894 {
4895 	ipha_t		*ipha;
4896 
4897 	ipha = (ipha_t *)mp->b_rptr;
4898 	if (ira->ira_flags & IRAF_IS_IPV4) {
4899 		ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4900 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4901 		    ICMP_PROTOCOL_UNREACHABLE, ira);
4902 	} else {
4903 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4904 		ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4905 		    ICMP6_PARAMPROB_NEXTHEADER, ira);
4906 	}
4907 }
4908 
4909 /*
4910  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4911  * Handles IPv4 and IPv6.
4912  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4913  * Caller is responsible for dropping references to the conn.
4914  */
4915 void
4916 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4917     ip_recv_attr_t *ira)
4918 {
4919 	ill_t		*ill = ira->ira_ill;
4920 	ip_stack_t	*ipst = ill->ill_ipst;
4921 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
4922 	boolean_t	secure;
4923 	uint_t		protocol = ira->ira_protocol;
4924 	iaflags_t	iraflags = ira->ira_flags;
4925 	queue_t		*rq;
4926 
4927 	secure = iraflags & IRAF_IPSEC_SECURE;
4928 
4929 	rq = connp->conn_rq;
4930 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4931 		switch (protocol) {
4932 		case IPPROTO_ICMPV6:
4933 			BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4934 			break;
4935 		case IPPROTO_ICMP:
4936 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4937 			break;
4938 		default:
4939 			BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4940 			break;
4941 		}
4942 		freemsg(mp);
4943 		return;
4944 	}
4945 
4946 	ASSERT(!(IPCL_IS_IPTUN(connp)));
4947 
4948 	if (((iraflags & IRAF_IS_IPV4) ?
4949 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4950 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4951 	    secure) {
4952 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
4953 		    ip6h, ira);
4954 		if (mp == NULL) {
4955 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4956 			/* Note that mp is NULL */
4957 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
4958 			return;
4959 		}
4960 	}
4961 
4962 	if (iraflags & IRAF_ICMP_ERROR) {
4963 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
4964 	} else {
4965 		ill_t *rill = ira->ira_rill;
4966 
4967 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4968 		ira->ira_ill = ira->ira_rill = NULL;
4969 		/* Send it upstream */
4970 		(connp->conn_recv)(connp, mp, NULL, ira);
4971 		ira->ira_ill = ill;
4972 		ira->ira_rill = rill;
4973 	}
4974 }
4975 
4976 /*
4977  * Handle protocols with which IP is less intimate.  There
4978  * can be more than one stream bound to a particular
4979  * protocol.  When this is the case, normally each one gets a copy
4980  * of any incoming packets.
4981  *
4982  * IPsec NOTE :
4983  *
4984  * Don't allow a secure packet going up a non-secure connection.
4985  * We don't allow this because
4986  *
4987  * 1) Reply might go out in clear which will be dropped at
4988  *    the sending side.
4989  * 2) If the reply goes out in clear it will give the
4990  *    adversary enough information for getting the key in
4991  *    most of the cases.
4992  *
4993  * Moreover getting a secure packet when we expect clear
4994  * implies that SA's were added without checking for
4995  * policy on both ends. This should not happen once ISAKMP
4996  * is used to negotiate SAs as SAs will be added only after
4997  * verifying the policy.
4998  *
4999  * Zones notes:
5000  * Earlier in ip_input on a system with multiple shared-IP zones we
5001  * duplicate the multicast and broadcast packets and send them up
5002  * with each explicit zoneid that exists on that ill.
5003  * This means that here we can match the zoneid with SO_ALLZONES being special.
5004  */
5005 void
5006 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5007 {
5008 	mblk_t		*mp1;
5009 	ipaddr_t	laddr;
5010 	conn_t		*connp, *first_connp, *next_connp;
5011 	connf_t		*connfp;
5012 	ill_t		*ill = ira->ira_ill;
5013 	ip_stack_t	*ipst = ill->ill_ipst;
5014 
5015 	laddr = ipha->ipha_dst;
5016 
5017 	connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5018 	mutex_enter(&connfp->connf_lock);
5019 	connp = connfp->connf_head;
5020 	for (connp = connfp->connf_head; connp != NULL;
5021 	    connp = connp->conn_next) {
5022 		/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5023 		if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5024 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5025 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5026 			break;
5027 		}
5028 	}
5029 
5030 	if (connp == NULL) {
5031 		/*
5032 		 * No one bound to these addresses.  Is
5033 		 * there a client that wants all
5034 		 * unclaimed datagrams?
5035 		 */
5036 		mutex_exit(&connfp->connf_lock);
5037 		ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5038 		    ICMP_PROTOCOL_UNREACHABLE, ira);
5039 		return;
5040 	}
5041 
5042 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5043 
5044 	CONN_INC_REF(connp);
5045 	first_connp = connp;
5046 	connp = connp->conn_next;
5047 
5048 	for (;;) {
5049 		while (connp != NULL) {
5050 			/* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5051 			if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5052 			    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5053 			    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5054 			    ira, connp)))
5055 				break;
5056 			connp = connp->conn_next;
5057 		}
5058 
5059 		if (connp == NULL) {
5060 			/* No more interested clients */
5061 			connp = first_connp;
5062 			break;
5063 		}
5064 		if (((mp1 = dupmsg(mp)) == NULL) &&
5065 		    ((mp1 = copymsg(mp)) == NULL)) {
5066 			/* Memory allocation failed */
5067 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5068 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5069 			connp = first_connp;
5070 			break;
5071 		}
5072 
5073 		CONN_INC_REF(connp);
5074 		mutex_exit(&connfp->connf_lock);
5075 
5076 		ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5077 		    ira);
5078 
5079 		mutex_enter(&connfp->connf_lock);
5080 		/* Follow the next pointer before releasing the conn. */
5081 		next_connp = connp->conn_next;
5082 		CONN_DEC_REF(connp);
5083 		connp = next_connp;
5084 	}
5085 
5086 	/* Last one.  Send it upstream. */
5087 	mutex_exit(&connfp->connf_lock);
5088 
5089 	ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5090 
5091 	CONN_DEC_REF(connp);
5092 }
5093 
5094 /*
5095  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5096  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5097  * is not consumed.
5098  *
5099  * One of three things can happen, all of which affect the passed-in mblk:
5100  *
5101  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5102  *
5103  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5104  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5105  *
5106  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5107  */
5108 mblk_t *
5109 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5110 {
5111 	int shift, plen, iph_len;
5112 	ipha_t *ipha;
5113 	udpha_t *udpha;
5114 	uint32_t *spi;
5115 	uint32_t esp_ports;
5116 	uint8_t *orptr;
5117 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
5118 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5119 
5120 	ipha = (ipha_t *)mp->b_rptr;
5121 	iph_len = ira->ira_ip_hdr_length;
5122 	plen = ira->ira_pktlen;
5123 
5124 	if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5125 		/*
5126 		 * Most likely a keepalive for the benefit of an intervening
5127 		 * NAT.  These aren't for us, per se, so drop it.
5128 		 *
5129 		 * RFC 3947/8 doesn't say for sure what to do for 2-3
5130 		 * byte packets (keepalives are 1-byte), but we'll drop them
5131 		 * also.
5132 		 */
5133 		ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5134 		    DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5135 		return (NULL);
5136 	}
5137 
5138 	if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5139 		/* might as well pull it all up - it might be ESP. */
5140 		if (!pullupmsg(mp, -1)) {
5141 			ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5142 			    DROPPER(ipss, ipds_esp_nomem),
5143 			    &ipss->ipsec_dropper);
5144 			return (NULL);
5145 		}
5146 
5147 		ipha = (ipha_t *)mp->b_rptr;
5148 	}
5149 	spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5150 	if (*spi == 0) {
5151 		/* UDP packet - remove 0-spi. */
5152 		shift = sizeof (uint32_t);
5153 	} else {
5154 		/* ESP-in-UDP packet - reduce to ESP. */
5155 		ipha->ipha_protocol = IPPROTO_ESP;
5156 		shift = sizeof (udpha_t);
5157 	}
5158 
5159 	/* Fix IP header */
5160 	ira->ira_pktlen = (plen - shift);
5161 	ipha->ipha_length = htons(ira->ira_pktlen);
5162 	ipha->ipha_hdr_checksum = 0;
5163 
5164 	orptr = mp->b_rptr;
5165 	mp->b_rptr += shift;
5166 
5167 	udpha = (udpha_t *)(orptr + iph_len);
5168 	if (*spi == 0) {
5169 		ASSERT((uint8_t *)ipha == orptr);
5170 		udpha->uha_length = htons(plen - shift - iph_len);
5171 		iph_len += sizeof (udpha_t);	/* For the call to ovbcopy(). */
5172 		esp_ports = 0;
5173 	} else {
5174 		esp_ports = *((uint32_t *)udpha);
5175 		ASSERT(esp_ports != 0);
5176 	}
5177 	ovbcopy(orptr, orptr + shift, iph_len);
5178 	if (esp_ports != 0) /* Punt up for ESP processing. */ {
5179 		ipha = (ipha_t *)(orptr + shift);
5180 
5181 		ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5182 		ira->ira_esp_udp_ports = esp_ports;
5183 		ip_fanout_v4(mp, ipha, ira);
5184 		return (NULL);
5185 	}
5186 	return (mp);
5187 }
5188 
5189 /*
5190  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5191  * Handles IPv4 and IPv6.
5192  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5193  * Caller is responsible for dropping references to the conn.
5194  */
5195 void
5196 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5197     ip_recv_attr_t *ira)
5198 {
5199 	ill_t		*ill = ira->ira_ill;
5200 	ip_stack_t	*ipst = ill->ill_ipst;
5201 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5202 	boolean_t	secure;
5203 	iaflags_t	iraflags = ira->ira_flags;
5204 
5205 	secure = iraflags & IRAF_IPSEC_SECURE;
5206 
5207 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5208 	    !canputnext(connp->conn_rq)) {
5209 		BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5210 		freemsg(mp);
5211 		return;
5212 	}
5213 
5214 	if (((iraflags & IRAF_IS_IPV4) ?
5215 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5216 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5217 	    secure) {
5218 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
5219 		    ip6h, ira);
5220 		if (mp == NULL) {
5221 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5222 			/* Note that mp is NULL */
5223 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
5224 			return;
5225 		}
5226 	}
5227 
5228 	/*
5229 	 * Since this code is not used for UDP unicast we don't need a NAT_T
5230 	 * check. Only ip_fanout_v4 has that check.
5231 	 */
5232 	if (ira->ira_flags & IRAF_ICMP_ERROR) {
5233 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
5234 	} else {
5235 		ill_t *rill = ira->ira_rill;
5236 
5237 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5238 		ira->ira_ill = ira->ira_rill = NULL;
5239 		/* Send it upstream */
5240 		(connp->conn_recv)(connp, mp, NULL, ira);
5241 		ira->ira_ill = ill;
5242 		ira->ira_rill = rill;
5243 	}
5244 }
5245 
5246 /*
5247  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5248  * (Unicast fanout is handled in ip_input_v4.)
5249  *
5250  * If SO_REUSEADDR is set all multicast and broadcast packets
5251  * will be delivered to all conns bound to the same port.
5252  *
5253  * If there is at least one matching AF_INET receiver, then we will
5254  * ignore any AF_INET6 receivers.
5255  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5256  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5257  * packets.
5258  *
5259  * Zones notes:
5260  * Earlier in ip_input on a system with multiple shared-IP zones we
5261  * duplicate the multicast and broadcast packets and send them up
5262  * with each explicit zoneid that exists on that ill.
5263  * This means that here we can match the zoneid with SO_ALLZONES being special.
5264  */
5265 void
5266 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5267     ip_recv_attr_t *ira)
5268 {
5269 	ipaddr_t	laddr;
5270 	in6_addr_t	v6faddr;
5271 	conn_t		*connp;
5272 	connf_t		*connfp;
5273 	ipaddr_t	faddr;
5274 	ill_t		*ill = ira->ira_ill;
5275 	ip_stack_t	*ipst = ill->ill_ipst;
5276 
5277 	ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5278 
5279 	laddr = ipha->ipha_dst;
5280 	faddr = ipha->ipha_src;
5281 
5282 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5283 	mutex_enter(&connfp->connf_lock);
5284 	connp = connfp->connf_head;
5285 
5286 	/*
5287 	 * If SO_REUSEADDR has been set on the first we send the
5288 	 * packet to all clients that have joined the group and
5289 	 * match the port.
5290 	 */
5291 	while (connp != NULL) {
5292 		if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5293 		    conn_wantpacket(connp, ira, ipha) &&
5294 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5295 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5296 			break;
5297 		connp = connp->conn_next;
5298 	}
5299 
5300 	if (connp == NULL)
5301 		goto notfound;
5302 
5303 	CONN_INC_REF(connp);
5304 
5305 	if (connp->conn_reuseaddr) {
5306 		conn_t		*first_connp = connp;
5307 		conn_t		*next_connp;
5308 		mblk_t		*mp1;
5309 
5310 		connp = connp->conn_next;
5311 		for (;;) {
5312 			while (connp != NULL) {
5313 				if (IPCL_UDP_MATCH(connp, lport, laddr,
5314 				    fport, faddr) &&
5315 				    conn_wantpacket(connp, ira, ipha) &&
5316 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5317 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5318 				    ira, connp)))
5319 					break;
5320 				connp = connp->conn_next;
5321 			}
5322 			if (connp == NULL) {
5323 				/* No more interested clients */
5324 				connp = first_connp;
5325 				break;
5326 			}
5327 			if (((mp1 = dupmsg(mp)) == NULL) &&
5328 			    ((mp1 = copymsg(mp)) == NULL)) {
5329 				/* Memory allocation failed */
5330 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5331 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5332 				connp = first_connp;
5333 				break;
5334 			}
5335 			CONN_INC_REF(connp);
5336 			mutex_exit(&connfp->connf_lock);
5337 
5338 			IP_STAT(ipst, ip_udp_fanmb);
5339 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5340 			    NULL, ira);
5341 			mutex_enter(&connfp->connf_lock);
5342 			/* Follow the next pointer before releasing the conn */
5343 			next_connp = connp->conn_next;
5344 			CONN_DEC_REF(connp);
5345 			connp = next_connp;
5346 		}
5347 	}
5348 
5349 	/* Last one.  Send it upstream. */
5350 	mutex_exit(&connfp->connf_lock);
5351 	IP_STAT(ipst, ip_udp_fanmb);
5352 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5353 	CONN_DEC_REF(connp);
5354 	return;
5355 
5356 notfound:
5357 	mutex_exit(&connfp->connf_lock);
5358 	/*
5359 	 * IPv6 endpoints bound to multicast IPv4-mapped addresses
5360 	 * have already been matched above, since they live in the IPv4
5361 	 * fanout tables. This implies we only need to
5362 	 * check for IPv6 in6addr_any endpoints here.
5363 	 * Thus we compare using ipv6_all_zeros instead of the destination
5364 	 * address, except for the multicast group membership lookup which
5365 	 * uses the IPv4 destination.
5366 	 */
5367 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5368 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5369 	mutex_enter(&connfp->connf_lock);
5370 	connp = connfp->connf_head;
5371 	/*
5372 	 * IPv4 multicast packet being delivered to an AF_INET6
5373 	 * in6addr_any endpoint.
5374 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5375 	 * and not conn_wantpacket_v6() since any multicast membership is
5376 	 * for an IPv4-mapped multicast address.
5377 	 */
5378 	while (connp != NULL) {
5379 		if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5380 		    fport, v6faddr) &&
5381 		    conn_wantpacket(connp, ira, ipha) &&
5382 		    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5383 		    tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5384 			break;
5385 		connp = connp->conn_next;
5386 	}
5387 
5388 	if (connp == NULL) {
5389 		/*
5390 		 * No one bound to this port.  Is
5391 		 * there a client that wants all
5392 		 * unclaimed datagrams?
5393 		 */
5394 		mutex_exit(&connfp->connf_lock);
5395 
5396 		if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5397 		    NULL) {
5398 			ASSERT(ira->ira_protocol == IPPROTO_UDP);
5399 			ip_fanout_proto_v4(mp, ipha, ira);
5400 		} else {
5401 			/*
5402 			 * We used to attempt to send an icmp error here, but
5403 			 * since this is known to be a multicast packet
5404 			 * and we don't send icmp errors in response to
5405 			 * multicast, just drop the packet and give up sooner.
5406 			 */
5407 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5408 			freemsg(mp);
5409 		}
5410 		return;
5411 	}
5412 	CONN_INC_REF(connp);
5413 	ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5414 
5415 	/*
5416 	 * If SO_REUSEADDR has been set on the first we send the
5417 	 * packet to all clients that have joined the group and
5418 	 * match the port.
5419 	 */
5420 	if (connp->conn_reuseaddr) {
5421 		conn_t		*first_connp = connp;
5422 		conn_t		*next_connp;
5423 		mblk_t		*mp1;
5424 
5425 		connp = connp->conn_next;
5426 		for (;;) {
5427 			while (connp != NULL) {
5428 				if (IPCL_UDP_MATCH_V6(connp, lport,
5429 				    ipv6_all_zeros, fport, v6faddr) &&
5430 				    conn_wantpacket(connp, ira, ipha) &&
5431 				    (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5432 				    tsol_receive_local(mp, &laddr, IPV4_VERSION,
5433 				    ira, connp)))
5434 					break;
5435 				connp = connp->conn_next;
5436 			}
5437 			if (connp == NULL) {
5438 				/* No more interested clients */
5439 				connp = first_connp;
5440 				break;
5441 			}
5442 			if (((mp1 = dupmsg(mp)) == NULL) &&
5443 			    ((mp1 = copymsg(mp)) == NULL)) {
5444 				/* Memory allocation failed */
5445 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5446 				ip_drop_input("ipIfStatsInDiscards", mp, ill);
5447 				connp = first_connp;
5448 				break;
5449 			}
5450 			CONN_INC_REF(connp);
5451 			mutex_exit(&connfp->connf_lock);
5452 
5453 			IP_STAT(ipst, ip_udp_fanmb);
5454 			ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5455 			    NULL, ira);
5456 			mutex_enter(&connfp->connf_lock);
5457 			/* Follow the next pointer before releasing the conn */
5458 			next_connp = connp->conn_next;
5459 			CONN_DEC_REF(connp);
5460 			connp = next_connp;
5461 		}
5462 	}
5463 
5464 	/* Last one.  Send it upstream. */
5465 	mutex_exit(&connfp->connf_lock);
5466 	IP_STAT(ipst, ip_udp_fanmb);
5467 	ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5468 	CONN_DEC_REF(connp);
5469 }
5470 
5471 /*
5472  * Split an incoming packet's IPv4 options into the label and the other options.
5473  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5474  * clearing out any leftover label or options.
5475  * Otherwise it just makes ipp point into the packet.
5476  *
5477  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5478  */
5479 int
5480 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5481 {
5482 	uchar_t		*opt;
5483 	uint32_t	totallen;
5484 	uint32_t	optval;
5485 	uint32_t	optlen;
5486 
5487 	ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5488 	ipp->ipp_hoplimit = ipha->ipha_ttl;
5489 	ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5490 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5491 
5492 	/*
5493 	 * Get length (in 4 byte octets) of IP header options.
5494 	 */
5495 	totallen = ipha->ipha_version_and_hdr_length -
5496 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5497 
5498 	if (totallen == 0) {
5499 		if (!allocate)
5500 			return (0);
5501 
5502 		/* Clear out anything from a previous packet */
5503 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5504 			kmem_free(ipp->ipp_ipv4_options,
5505 			    ipp->ipp_ipv4_options_len);
5506 			ipp->ipp_ipv4_options = NULL;
5507 			ipp->ipp_ipv4_options_len = 0;
5508 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5509 		}
5510 		if (ipp->ipp_fields & IPPF_LABEL_V4) {
5511 			kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5512 			ipp->ipp_label_v4 = NULL;
5513 			ipp->ipp_label_len_v4 = 0;
5514 			ipp->ipp_fields &= ~IPPF_LABEL_V4;
5515 		}
5516 		return (0);
5517 	}
5518 
5519 	totallen <<= 2;
5520 	opt = (uchar_t *)&ipha[1];
5521 	if (!is_system_labeled()) {
5522 
5523 	copyall:
5524 		if (!allocate) {
5525 			if (totallen != 0) {
5526 				ipp->ipp_ipv4_options = opt;
5527 				ipp->ipp_ipv4_options_len = totallen;
5528 				ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5529 			}
5530 			return (0);
5531 		}
5532 		/* Just copy all of options */
5533 		if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5534 			if (totallen == ipp->ipp_ipv4_options_len) {
5535 				bcopy(opt, ipp->ipp_ipv4_options, totallen);
5536 				return (0);
5537 			}
5538 			kmem_free(ipp->ipp_ipv4_options,
5539 			    ipp->ipp_ipv4_options_len);
5540 			ipp->ipp_ipv4_options = NULL;
5541 			ipp->ipp_ipv4_options_len = 0;
5542 			ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5543 		}
5544 		if (totallen == 0)
5545 			return (0);
5546 
5547 		ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5548 		if (ipp->ipp_ipv4_options == NULL)
5549 			return (ENOMEM);
5550 		ipp->ipp_ipv4_options_len = totallen;
5551 		ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5552 		bcopy(opt, ipp->ipp_ipv4_options, totallen);
5553 		return (0);
5554 	}
5555 
5556 	if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5557 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5558 		ipp->ipp_label_v4 = NULL;
5559 		ipp->ipp_label_len_v4 = 0;
5560 		ipp->ipp_fields &= ~IPPF_LABEL_V4;
5561 	}
5562 
5563 	/*
5564 	 * Search for CIPSO option.
5565 	 * We assume CIPSO is first in options if it is present.
5566 	 * If it isn't, then ipp_opt_ipv4_options will not include the options
5567 	 * prior to the CIPSO option.
5568 	 */
5569 	while (totallen != 0) {
5570 		switch (optval = opt[IPOPT_OPTVAL]) {
5571 		case IPOPT_EOL:
5572 			return (0);
5573 		case IPOPT_NOP:
5574 			optlen = 1;
5575 			break;
5576 		default:
5577 			if (totallen <= IPOPT_OLEN)
5578 				return (EINVAL);
5579 			optlen = opt[IPOPT_OLEN];
5580 			if (optlen < 2)
5581 				return (EINVAL);
5582 		}
5583 		if (optlen > totallen)
5584 			return (EINVAL);
5585 
5586 		switch (optval) {
5587 		case IPOPT_COMSEC:
5588 			if (!allocate) {
5589 				ipp->ipp_label_v4 = opt;
5590 				ipp->ipp_label_len_v4 = optlen;
5591 				ipp->ipp_fields |= IPPF_LABEL_V4;
5592 			} else {
5593 				ipp->ipp_label_v4 = kmem_alloc(optlen,
5594 				    KM_NOSLEEP);
5595 				if (ipp->ipp_label_v4 == NULL)
5596 					return (ENOMEM);
5597 				ipp->ipp_label_len_v4 = optlen;
5598 				ipp->ipp_fields |= IPPF_LABEL_V4;
5599 				bcopy(opt, ipp->ipp_label_v4, optlen);
5600 			}
5601 			totallen -= optlen;
5602 			opt += optlen;
5603 
5604 			/* Skip padding bytes until we get to a multiple of 4 */
5605 			while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5606 				totallen--;
5607 				opt++;
5608 			}
5609 			/* Remaining as ipp_ipv4_options */
5610 			goto copyall;
5611 		}
5612 		totallen -= optlen;
5613 		opt += optlen;
5614 	}
5615 	/* No CIPSO found; return everything as ipp_ipv4_options */
5616 	totallen = ipha->ipha_version_and_hdr_length -
5617 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5618 	totallen <<= 2;
5619 	opt = (uchar_t *)&ipha[1];
5620 	goto copyall;
5621 }
5622 
5623 /*
5624  * Efficient versions of lookup for an IRE when we only
5625  * match the address.
5626  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5627  * Does not handle multicast addresses.
5628  */
5629 uint_t
5630 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5631 {
5632 	ire_t *ire;
5633 	uint_t result;
5634 
5635 	ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5636 	ASSERT(ire != NULL);
5637 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5638 		result = IRE_NOROUTE;
5639 	else
5640 		result = ire->ire_type;
5641 	ire_refrele(ire);
5642 	return (result);
5643 }
5644 
5645 /*
5646  * Efficient versions of lookup for an IRE when we only
5647  * match the address.
5648  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5649  * Does not handle multicast addresses.
5650  */
5651 uint_t
5652 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5653 {
5654 	ire_t *ire;
5655 	uint_t result;
5656 
5657 	ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5658 	ASSERT(ire != NULL);
5659 	if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5660 		result = IRE_NOROUTE;
5661 	else
5662 		result = ire->ire_type;
5663 	ire_refrele(ire);
5664 	return (result);
5665 }
5666 
5667 /*
5668  * Nobody should be sending
5669  * packets up this stream
5670  */
5671 static int
5672 ip_lrput(queue_t *q, mblk_t *mp)
5673 {
5674 	switch (mp->b_datap->db_type) {
5675 	case M_FLUSH:
5676 		/* Turn around */
5677 		if (*mp->b_rptr & FLUSHW) {
5678 			*mp->b_rptr &= ~FLUSHR;
5679 			qreply(q, mp);
5680 			return (0);
5681 		}
5682 		break;
5683 	}
5684 	freemsg(mp);
5685 	return (0);
5686 }
5687 
5688 /* Nobody should be sending packets down this stream */
5689 /* ARGSUSED */
5690 int
5691 ip_lwput(queue_t *q, mblk_t *mp)
5692 {
5693 	freemsg(mp);
5694 	return (0);
5695 }
5696 
5697 /*
5698  * Move the first hop in any source route to ipha_dst and remove that part of
5699  * the source route.  Called by other protocols.  Errors in option formatting
5700  * are ignored - will be handled by ip_output_options. Return the final
5701  * destination (either ipha_dst or the last entry in a source route.)
5702  */
5703 ipaddr_t
5704 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5705 {
5706 	ipoptp_t	opts;
5707 	uchar_t		*opt;
5708 	uint8_t		optval;
5709 	uint8_t		optlen;
5710 	ipaddr_t	dst;
5711 	int		i;
5712 	ip_stack_t	*ipst = ns->netstack_ip;
5713 
5714 	ip2dbg(("ip_massage_options\n"));
5715 	dst = ipha->ipha_dst;
5716 	for (optval = ipoptp_first(&opts, ipha);
5717 	    optval != IPOPT_EOL;
5718 	    optval = ipoptp_next(&opts)) {
5719 		opt = opts.ipoptp_cur;
5720 		switch (optval) {
5721 			uint8_t off;
5722 		case IPOPT_SSRR:
5723 		case IPOPT_LSRR:
5724 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5725 				ip1dbg(("ip_massage_options: bad src route\n"));
5726 				break;
5727 			}
5728 			optlen = opts.ipoptp_len;
5729 			off = opt[IPOPT_OFFSET];
5730 			off--;
5731 		redo_srr:
5732 			if (optlen < IP_ADDR_LEN ||
5733 			    off > optlen - IP_ADDR_LEN) {
5734 				/* End of source route */
5735 				ip1dbg(("ip_massage_options: end of SR\n"));
5736 				break;
5737 			}
5738 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5739 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
5740 			    ntohl(dst)));
5741 			/*
5742 			 * Check if our address is present more than
5743 			 * once as consecutive hops in source route.
5744 			 * XXX verify per-interface ip_forwarding
5745 			 * for source route?
5746 			 */
5747 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5748 				off += IP_ADDR_LEN;
5749 				goto redo_srr;
5750 			}
5751 			if (dst == htonl(INADDR_LOOPBACK)) {
5752 				ip1dbg(("ip_massage_options: loopback addr in "
5753 				    "source route!\n"));
5754 				break;
5755 			}
5756 			/*
5757 			 * Update ipha_dst to be the first hop and remove the
5758 			 * first hop from the source route (by overwriting
5759 			 * part of the option with NOP options).
5760 			 */
5761 			ipha->ipha_dst = dst;
5762 			/* Put the last entry in dst */
5763 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5764 			    3;
5765 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
5766 
5767 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
5768 			    ntohl(dst)));
5769 			/* Move down and overwrite */
5770 			opt[IP_ADDR_LEN] = opt[0];
5771 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5772 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5773 			for (i = 0; i < IP_ADDR_LEN; i++)
5774 				opt[i] = IPOPT_NOP;
5775 			break;
5776 		}
5777 	}
5778 	return (dst);
5779 }
5780 
5781 /*
5782  * Return the network mask
5783  * associated with the specified address.
5784  */
5785 ipaddr_t
5786 ip_net_mask(ipaddr_t addr)
5787 {
5788 	uchar_t	*up = (uchar_t *)&addr;
5789 	ipaddr_t mask = 0;
5790 	uchar_t	*maskp = (uchar_t *)&mask;
5791 
5792 #if defined(__i386) || defined(__amd64)
5793 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
5794 #endif
5795 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5796 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5797 #endif
5798 	if (CLASSD(addr)) {
5799 		maskp[0] = 0xF0;
5800 		return (mask);
5801 	}
5802 
5803 	/* We assume Class E default netmask to be 32 */
5804 	if (CLASSE(addr))
5805 		return (0xffffffffU);
5806 
5807 	if (addr == 0)
5808 		return (0);
5809 	maskp[0] = 0xFF;
5810 	if ((up[0] & 0x80) == 0)
5811 		return (mask);
5812 
5813 	maskp[1] = 0xFF;
5814 	if ((up[0] & 0xC0) == 0x80)
5815 		return (mask);
5816 
5817 	maskp[2] = 0xFF;
5818 	if ((up[0] & 0xE0) == 0xC0)
5819 		return (mask);
5820 
5821 	/* Otherwise return no mask */
5822 	return ((ipaddr_t)0);
5823 }
5824 
5825 /* Name/Value Table Lookup Routine */
5826 char *
5827 ip_nv_lookup(nv_t *nv, int value)
5828 {
5829 	if (!nv)
5830 		return (NULL);
5831 	for (; nv->nv_name; nv++) {
5832 		if (nv->nv_value == value)
5833 			return (nv->nv_name);
5834 	}
5835 	return ("unknown");
5836 }
5837 
5838 static int
5839 ip_wait_for_info_ack(ill_t *ill)
5840 {
5841 	int err;
5842 
5843 	mutex_enter(&ill->ill_lock);
5844 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5845 		/*
5846 		 * Return value of 0 indicates a pending signal.
5847 		 */
5848 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5849 		if (err == 0) {
5850 			mutex_exit(&ill->ill_lock);
5851 			return (EINTR);
5852 		}
5853 	}
5854 	mutex_exit(&ill->ill_lock);
5855 	/*
5856 	 * ip_rput_other could have set an error  in ill_error on
5857 	 * receipt of M_ERROR.
5858 	 */
5859 	return (ill->ill_error);
5860 }
5861 
5862 /*
5863  * This is a module open, i.e. this is a control stream for access
5864  * to a DLPI device.  We allocate an ill_t as the instance data in
5865  * this case.
5866  */
5867 static int
5868 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5869 {
5870 	ill_t	*ill;
5871 	int	err;
5872 	zoneid_t zoneid;
5873 	netstack_t *ns;
5874 	ip_stack_t *ipst;
5875 
5876 	/*
5877 	 * Prevent unprivileged processes from pushing IP so that
5878 	 * they can't send raw IP.
5879 	 */
5880 	if (secpolicy_net_rawaccess(credp) != 0)
5881 		return (EPERM);
5882 
5883 	ns = netstack_find_by_cred(credp);
5884 	ASSERT(ns != NULL);
5885 	ipst = ns->netstack_ip;
5886 	ASSERT(ipst != NULL);
5887 
5888 	/*
5889 	 * For exclusive stacks we set the zoneid to zero
5890 	 * to make IP operate as if in the global zone.
5891 	 */
5892 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5893 		zoneid = GLOBAL_ZONEID;
5894 	else
5895 		zoneid = crgetzoneid(credp);
5896 
5897 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5898 	q->q_ptr = WR(q)->q_ptr = ill;
5899 	ill->ill_ipst = ipst;
5900 	ill->ill_zoneid = zoneid;
5901 
5902 	/*
5903 	 * ill_init initializes the ill fields and then sends down
5904 	 * down a DL_INFO_REQ after calling qprocson.
5905 	 */
5906 	err = ill_init(q, ill);
5907 
5908 	if (err != 0) {
5909 		mi_free(ill);
5910 		netstack_rele(ipst->ips_netstack);
5911 		q->q_ptr = NULL;
5912 		WR(q)->q_ptr = NULL;
5913 		return (err);
5914 	}
5915 
5916 	/*
5917 	 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5918 	 *
5919 	 * ill_init initializes the ipsq marking this thread as
5920 	 * writer
5921 	 */
5922 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
5923 	err = ip_wait_for_info_ack(ill);
5924 	if (err == 0)
5925 		ill->ill_credp = credp;
5926 	else
5927 		goto fail;
5928 
5929 	crhold(credp);
5930 
5931 	mutex_enter(&ipst->ips_ip_mi_lock);
5932 	err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5933 	    sflag, credp);
5934 	mutex_exit(&ipst->ips_ip_mi_lock);
5935 fail:
5936 	if (err) {
5937 		(void) ip_close(q, 0, credp);
5938 		return (err);
5939 	}
5940 	return (0);
5941 }
5942 
5943 /* For /dev/ip aka AF_INET open */
5944 int
5945 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5946 {
5947 	return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5948 }
5949 
5950 /* For /dev/ip6 aka AF_INET6 open */
5951 int
5952 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5953 {
5954 	return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5955 }
5956 
5957 /* IP open routine. */
5958 int
5959 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5960     boolean_t isv6)
5961 {
5962 	conn_t		*connp;
5963 	major_t		maj;
5964 	zoneid_t	zoneid;
5965 	netstack_t	*ns;
5966 	ip_stack_t	*ipst;
5967 
5968 	/* Allow reopen. */
5969 	if (q->q_ptr != NULL)
5970 		return (0);
5971 
5972 	if (sflag & MODOPEN) {
5973 		/* This is a module open */
5974 		return (ip_modopen(q, devp, flag, sflag, credp));
5975 	}
5976 
5977 	if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5978 		/*
5979 		 * Non streams based socket looking for a stream
5980 		 * to access IP
5981 		 */
5982 		return (ip_helper_stream_setup(q, devp, flag, sflag,
5983 		    credp, isv6));
5984 	}
5985 
5986 	ns = netstack_find_by_cred(credp);
5987 	ASSERT(ns != NULL);
5988 	ipst = ns->netstack_ip;
5989 	ASSERT(ipst != NULL);
5990 
5991 	/*
5992 	 * For exclusive stacks we set the zoneid to zero
5993 	 * to make IP operate as if in the global zone.
5994 	 */
5995 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5996 		zoneid = GLOBAL_ZONEID;
5997 	else
5998 		zoneid = crgetzoneid(credp);
5999 
6000 	/*
6001 	 * We are opening as a device. This is an IP client stream, and we
6002 	 * allocate an conn_t as the instance data.
6003 	 */
6004 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
6005 
6006 	/*
6007 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
6008 	 * done by netstack_find_by_cred()
6009 	 */
6010 	netstack_rele(ipst->ips_netstack);
6011 
6012 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6013 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6014 	connp->conn_ixa->ixa_zoneid = zoneid;
6015 	connp->conn_zoneid = zoneid;
6016 
6017 	connp->conn_rq = q;
6018 	q->q_ptr = WR(q)->q_ptr = connp;
6019 
6020 	/* Minor tells us which /dev entry was opened */
6021 	if (isv6) {
6022 		connp->conn_family = AF_INET6;
6023 		connp->conn_ipversion = IPV6_VERSION;
6024 		connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6025 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6026 	} else {
6027 		connp->conn_family = AF_INET;
6028 		connp->conn_ipversion = IPV4_VERSION;
6029 		connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6030 	}
6031 
6032 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6033 	    ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6034 		connp->conn_minor_arena = ip_minor_arena_la;
6035 	} else {
6036 		/*
6037 		 * Either minor numbers in the large arena were exhausted
6038 		 * or a non socket application is doing the open.
6039 		 * Try to allocate from the small arena.
6040 		 */
6041 		if ((connp->conn_dev =
6042 		    inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6043 			/* CONN_DEC_REF takes care of netstack_rele() */
6044 			q->q_ptr = WR(q)->q_ptr = NULL;
6045 			CONN_DEC_REF(connp);
6046 			return (EBUSY);
6047 		}
6048 		connp->conn_minor_arena = ip_minor_arena_sa;
6049 	}
6050 
6051 	maj = getemajor(*devp);
6052 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
6053 
6054 	/*
6055 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6056 	 */
6057 	connp->conn_cred = credp;
6058 	connp->conn_cpid = curproc->p_pid;
6059 	/* Cache things in ixa without an extra refhold */
6060 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6061 	connp->conn_ixa->ixa_cred = connp->conn_cred;
6062 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6063 	if (is_system_labeled())
6064 		connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6065 
6066 	/*
6067 	 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6068 	 */
6069 	connp->conn_recv = ip_conn_input;
6070 	connp->conn_recvicmp = ip_conn_input_icmp;
6071 
6072 	crhold(connp->conn_cred);
6073 
6074 	/*
6075 	 * If the caller has the process-wide flag set, then default to MAC
6076 	 * exempt mode.  This allows read-down to unlabeled hosts.
6077 	 */
6078 	if (getpflags(NET_MAC_AWARE, credp) != 0)
6079 		connp->conn_mac_mode = CONN_MAC_AWARE;
6080 
6081 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6082 
6083 	connp->conn_rq = q;
6084 	connp->conn_wq = WR(q);
6085 
6086 	/* Non-zero default values */
6087 	connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6088 
6089 	/*
6090 	 * Make the conn globally visible to walkers
6091 	 */
6092 	ASSERT(connp->conn_ref == 1);
6093 	mutex_enter(&connp->conn_lock);
6094 	connp->conn_state_flags &= ~CONN_INCIPIENT;
6095 	mutex_exit(&connp->conn_lock);
6096 
6097 	qprocson(q);
6098 
6099 	return (0);
6100 }
6101 
6102 /*
6103  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6104  * all of them are copied to the conn_t. If the req is "zero", the policy is
6105  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6106  * fields.
6107  * We keep only the latest setting of the policy and thus policy setting
6108  * is not incremental/cumulative.
6109  *
6110  * Requests to set policies with multiple alternative actions will
6111  * go through a different API.
6112  */
6113 int
6114 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6115 {
6116 	uint_t ah_req = 0;
6117 	uint_t esp_req = 0;
6118 	uint_t se_req = 0;
6119 	ipsec_act_t *actp = NULL;
6120 	uint_t nact;
6121 	ipsec_policy_head_t *ph;
6122 	boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6123 	int error = 0;
6124 	netstack_t	*ns = connp->conn_netstack;
6125 	ip_stack_t	*ipst = ns->netstack_ip;
6126 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
6127 
6128 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6129 
6130 	/*
6131 	 * The IP_SEC_OPT option does not allow variable length parameters,
6132 	 * hence a request cannot be NULL.
6133 	 */
6134 	if (req == NULL)
6135 		return (EINVAL);
6136 
6137 	ah_req = req->ipsr_ah_req;
6138 	esp_req = req->ipsr_esp_req;
6139 	se_req = req->ipsr_self_encap_req;
6140 
6141 	/* Don't allow setting self-encap without one or more of AH/ESP. */
6142 	if (se_req != 0 && esp_req == 0 && ah_req == 0)
6143 		return (EINVAL);
6144 
6145 	/*
6146 	 * Are we dealing with a request to reset the policy (i.e.
6147 	 * zero requests).
6148 	 */
6149 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6150 	    (esp_req & REQ_MASK) == 0 &&
6151 	    (se_req & REQ_MASK) == 0);
6152 
6153 	if (!is_pol_reset) {
6154 		/*
6155 		 * If we couldn't load IPsec, fail with "protocol
6156 		 * not supported".
6157 		 * IPsec may not have been loaded for a request with zero
6158 		 * policies, so we don't fail in this case.
6159 		 */
6160 		mutex_enter(&ipss->ipsec_loader_lock);
6161 		if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6162 			mutex_exit(&ipss->ipsec_loader_lock);
6163 			return (EPROTONOSUPPORT);
6164 		}
6165 		mutex_exit(&ipss->ipsec_loader_lock);
6166 
6167 		/*
6168 		 * Test for valid requests. Invalid algorithms
6169 		 * need to be tested by IPsec code because new
6170 		 * algorithms can be added dynamically.
6171 		 */
6172 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6173 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6174 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6175 			return (EINVAL);
6176 		}
6177 
6178 		/*
6179 		 * Only privileged users can issue these
6180 		 * requests.
6181 		 */
6182 		if (((ah_req & IPSEC_PREF_NEVER) ||
6183 		    (esp_req & IPSEC_PREF_NEVER) ||
6184 		    (se_req & IPSEC_PREF_NEVER)) &&
6185 		    secpolicy_ip_config(cr, B_FALSE) != 0) {
6186 			return (EPERM);
6187 		}
6188 
6189 		/*
6190 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6191 		 * are mutually exclusive.
6192 		 */
6193 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
6194 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
6195 		    ((se_req & REQ_MASK) == REQ_MASK)) {
6196 			/* Both of them are set */
6197 			return (EINVAL);
6198 		}
6199 	}
6200 
6201 	ASSERT(MUTEX_HELD(&connp->conn_lock));
6202 
6203 	/*
6204 	 * If we have already cached policies in conn_connect(), don't
6205 	 * let them change now. We cache policies for connections
6206 	 * whose src,dst [addr, port] is known.
6207 	 */
6208 	if (connp->conn_policy_cached) {
6209 		return (EINVAL);
6210 	}
6211 
6212 	/*
6213 	 * We have a zero policies, reset the connection policy if already
6214 	 * set. This will cause the connection to inherit the
6215 	 * global policy, if any.
6216 	 */
6217 	if (is_pol_reset) {
6218 		if (connp->conn_policy != NULL) {
6219 			IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6220 			connp->conn_policy = NULL;
6221 		}
6222 		connp->conn_in_enforce_policy = B_FALSE;
6223 		connp->conn_out_enforce_policy = B_FALSE;
6224 		return (0);
6225 	}
6226 
6227 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6228 	    ipst->ips_netstack);
6229 	if (ph == NULL)
6230 		goto enomem;
6231 
6232 	ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6233 	if (actp == NULL)
6234 		goto enomem;
6235 
6236 	/*
6237 	 * Always insert IPv4 policy entries, since they can also apply to
6238 	 * ipv6 sockets being used in ipv4-compat mode.
6239 	 */
6240 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6241 	    IPSEC_TYPE_INBOUND, ns))
6242 		goto enomem;
6243 	is_pol_inserted = B_TRUE;
6244 	if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6245 	    IPSEC_TYPE_OUTBOUND, ns))
6246 		goto enomem;
6247 
6248 	/*
6249 	 * We're looking at a v6 socket, also insert the v6-specific
6250 	 * entries.
6251 	 */
6252 	if (connp->conn_family == AF_INET6) {
6253 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6254 		    IPSEC_TYPE_INBOUND, ns))
6255 			goto enomem;
6256 		if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6257 		    IPSEC_TYPE_OUTBOUND, ns))
6258 			goto enomem;
6259 	}
6260 
6261 	ipsec_actvec_free(actp, nact);
6262 
6263 	/*
6264 	 * If the requests need security, set enforce_policy.
6265 	 * If the requests are IPSEC_PREF_NEVER, one should
6266 	 * still set conn_out_enforce_policy so that ip_set_destination
6267 	 * marks the ip_xmit_attr_t appropriatly. This is needed so that
6268 	 * for connections that we don't cache policy in at connect time,
6269 	 * if global policy matches in ip_output_attach_policy, we
6270 	 * don't wrongly inherit global policy. Similarly, we need
6271 	 * to set conn_in_enforce_policy also so that we don't verify
6272 	 * policy wrongly.
6273 	 */
6274 	if ((ah_req & REQ_MASK) != 0 ||
6275 	    (esp_req & REQ_MASK) != 0 ||
6276 	    (se_req & REQ_MASK) != 0) {
6277 		connp->conn_in_enforce_policy = B_TRUE;
6278 		connp->conn_out_enforce_policy = B_TRUE;
6279 	}
6280 
6281 	return (error);
6282 #undef REQ_MASK
6283 
6284 	/*
6285 	 * Common memory-allocation-failure exit path.
6286 	 */
6287 enomem:
6288 	if (actp != NULL)
6289 		ipsec_actvec_free(actp, nact);
6290 	if (is_pol_inserted)
6291 		ipsec_polhead_flush(ph, ns);
6292 	return (ENOMEM);
6293 }
6294 
6295 /*
6296  * Set socket options for joining and leaving multicast groups.
6297  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6298  * The caller has already check that the option name is consistent with
6299  * the address family of the socket.
6300  */
6301 int
6302 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6303     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6304 {
6305 	int		*i1 = (int *)invalp;
6306 	int		error = 0;
6307 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6308 	struct ip_mreq	*v4_mreqp;
6309 	struct ipv6_mreq *v6_mreqp;
6310 	struct group_req *greqp;
6311 	ire_t *ire;
6312 	boolean_t done = B_FALSE;
6313 	ipaddr_t ifaddr;
6314 	in6_addr_t v6group;
6315 	uint_t ifindex;
6316 	boolean_t mcast_opt = B_TRUE;
6317 	mcast_record_t fmode;
6318 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6319 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6320 
6321 	switch (name) {
6322 	case IP_ADD_MEMBERSHIP:
6323 	case IPV6_JOIN_GROUP:
6324 		mcast_opt = B_FALSE;
6325 		/* FALLTHROUGH */
6326 	case MCAST_JOIN_GROUP:
6327 		fmode = MODE_IS_EXCLUDE;
6328 		optfn = ip_opt_add_group;
6329 		break;
6330 
6331 	case IP_DROP_MEMBERSHIP:
6332 	case IPV6_LEAVE_GROUP:
6333 		mcast_opt = B_FALSE;
6334 		/* FALLTHROUGH */
6335 	case MCAST_LEAVE_GROUP:
6336 		fmode = MODE_IS_INCLUDE;
6337 		optfn = ip_opt_delete_group;
6338 		break;
6339 	default:
6340 		ASSERT(0);
6341 	}
6342 
6343 	if (mcast_opt) {
6344 		struct sockaddr_in *sin;
6345 		struct sockaddr_in6 *sin6;
6346 
6347 		greqp = (struct group_req *)i1;
6348 		if (greqp->gr_group.ss_family == AF_INET) {
6349 			sin = (struct sockaddr_in *)&(greqp->gr_group);
6350 			IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6351 		} else {
6352 			if (!inet6)
6353 				return (EINVAL);	/* Not on INET socket */
6354 
6355 			sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6356 			v6group = sin6->sin6_addr;
6357 		}
6358 		ifaddr = INADDR_ANY;
6359 		ifindex = greqp->gr_interface;
6360 	} else if (inet6) {
6361 		v6_mreqp = (struct ipv6_mreq *)i1;
6362 		v6group = v6_mreqp->ipv6mr_multiaddr;
6363 		ifaddr = INADDR_ANY;
6364 		ifindex = v6_mreqp->ipv6mr_interface;
6365 	} else {
6366 		v4_mreqp = (struct ip_mreq *)i1;
6367 		IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6368 		ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6369 		ifindex = 0;
6370 	}
6371 
6372 	/*
6373 	 * In the multirouting case, we need to replicate
6374 	 * the request on all interfaces that will take part
6375 	 * in replication.  We do so because multirouting is
6376 	 * reflective, thus we will probably receive multi-
6377 	 * casts on those interfaces.
6378 	 * The ip_multirt_apply_membership() succeeds if
6379 	 * the operation succeeds on at least one interface.
6380 	 */
6381 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6382 		ipaddr_t group;
6383 
6384 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6385 
6386 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6387 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6388 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6389 	} else {
6390 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6391 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6392 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6393 	}
6394 	if (ire != NULL) {
6395 		if (ire->ire_flags & RTF_MULTIRT) {
6396 			error = ip_multirt_apply_membership(optfn, ire, connp,
6397 			    checkonly, &v6group, fmode, &ipv6_all_zeros);
6398 			done = B_TRUE;
6399 		}
6400 		ire_refrele(ire);
6401 	}
6402 
6403 	if (!done) {
6404 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6405 		    fmode, &ipv6_all_zeros);
6406 	}
6407 	return (error);
6408 }
6409 
6410 /*
6411  * Set socket options for joining and leaving multicast groups
6412  * for specific sources.
6413  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6414  * The caller has already check that the option name is consistent with
6415  * the address family of the socket.
6416  */
6417 int
6418 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6419     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6420 {
6421 	int		*i1 = (int *)invalp;
6422 	int		error = 0;
6423 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6424 	struct ip_mreq_source *imreqp;
6425 	struct group_source_req *gsreqp;
6426 	in6_addr_t v6group, v6src;
6427 	uint32_t ifindex;
6428 	ipaddr_t ifaddr;
6429 	boolean_t mcast_opt = B_TRUE;
6430 	mcast_record_t fmode;
6431 	ire_t *ire;
6432 	boolean_t done = B_FALSE;
6433 	int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6434 	    ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6435 
6436 	switch (name) {
6437 	case IP_BLOCK_SOURCE:
6438 		mcast_opt = B_FALSE;
6439 		/* FALLTHROUGH */
6440 	case MCAST_BLOCK_SOURCE:
6441 		fmode = MODE_IS_EXCLUDE;
6442 		optfn = ip_opt_add_group;
6443 		break;
6444 
6445 	case IP_UNBLOCK_SOURCE:
6446 		mcast_opt = B_FALSE;
6447 		/* FALLTHROUGH */
6448 	case MCAST_UNBLOCK_SOURCE:
6449 		fmode = MODE_IS_EXCLUDE;
6450 		optfn = ip_opt_delete_group;
6451 		break;
6452 
6453 	case IP_ADD_SOURCE_MEMBERSHIP:
6454 		mcast_opt = B_FALSE;
6455 		/* FALLTHROUGH */
6456 	case MCAST_JOIN_SOURCE_GROUP:
6457 		fmode = MODE_IS_INCLUDE;
6458 		optfn = ip_opt_add_group;
6459 		break;
6460 
6461 	case IP_DROP_SOURCE_MEMBERSHIP:
6462 		mcast_opt = B_FALSE;
6463 		/* FALLTHROUGH */
6464 	case MCAST_LEAVE_SOURCE_GROUP:
6465 		fmode = MODE_IS_INCLUDE;
6466 		optfn = ip_opt_delete_group;
6467 		break;
6468 	default:
6469 		ASSERT(0);
6470 	}
6471 
6472 	if (mcast_opt) {
6473 		gsreqp = (struct group_source_req *)i1;
6474 		ifindex = gsreqp->gsr_interface;
6475 		if (gsreqp->gsr_group.ss_family == AF_INET) {
6476 			struct sockaddr_in *s;
6477 			s = (struct sockaddr_in *)&gsreqp->gsr_group;
6478 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6479 			s = (struct sockaddr_in *)&gsreqp->gsr_source;
6480 			IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6481 		} else {
6482 			struct sockaddr_in6 *s6;
6483 
6484 			if (!inet6)
6485 				return (EINVAL);	/* Not on INET socket */
6486 
6487 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6488 			v6group = s6->sin6_addr;
6489 			s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6490 			v6src = s6->sin6_addr;
6491 		}
6492 		ifaddr = INADDR_ANY;
6493 	} else {
6494 		imreqp = (struct ip_mreq_source *)i1;
6495 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6496 		IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6497 		ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6498 		ifindex = 0;
6499 	}
6500 
6501 	/*
6502 	 * Handle src being mapped INADDR_ANY by changing it to unspecified.
6503 	 */
6504 	if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6505 		v6src = ipv6_all_zeros;
6506 
6507 	/*
6508 	 * In the multirouting case, we need to replicate
6509 	 * the request as noted in the mcast cases above.
6510 	 */
6511 	if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6512 		ipaddr_t group;
6513 
6514 		IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6515 
6516 		ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6517 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6518 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6519 	} else {
6520 		ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6521 		    IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6522 		    MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6523 	}
6524 	if (ire != NULL) {
6525 		if (ire->ire_flags & RTF_MULTIRT) {
6526 			error = ip_multirt_apply_membership(optfn, ire, connp,
6527 			    checkonly, &v6group, fmode, &v6src);
6528 			done = B_TRUE;
6529 		}
6530 		ire_refrele(ire);
6531 	}
6532 	if (!done) {
6533 		error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6534 		    fmode, &v6src);
6535 	}
6536 	return (error);
6537 }
6538 
6539 /*
6540  * Given a destination address and a pointer to where to put the information
6541  * this routine fills in the mtuinfo.
6542  * The socket must be connected.
6543  * For sctp conn_faddr is the primary address.
6544  */
6545 int
6546 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6547 {
6548 	uint32_t	pmtu = IP_MAXPACKET;
6549 	uint_t		scopeid;
6550 
6551 	if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6552 		return (-1);
6553 
6554 	/* In case we never sent or called ip_set_destination_v4/v6 */
6555 	if (ixa->ixa_ire != NULL)
6556 		pmtu = ip_get_pmtu(ixa);
6557 
6558 	if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6559 		scopeid = ixa->ixa_scopeid;
6560 	else
6561 		scopeid = 0;
6562 
6563 	bzero(mtuinfo, sizeof (*mtuinfo));
6564 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6565 	mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6566 	mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6567 	mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6568 	mtuinfo->ip6m_mtu = pmtu;
6569 
6570 	return (sizeof (struct ip6_mtuinfo));
6571 }
6572 
6573 /*
6574  * When the src multihoming is changed from weak to [strong, preferred]
6575  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6576  * and identify routes that were created by user-applications in the
6577  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6578  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6579  * is selected by finding an interface route for the gateway.
6580  */
6581 /* ARGSUSED */
6582 void
6583 ip_ire_rebind_walker(ire_t *ire, void *notused)
6584 {
6585 	if (!ire->ire_unbound || ire->ire_ill != NULL)
6586 		return;
6587 	ire_rebind(ire);
6588 	ire_delete(ire);
6589 }
6590 
6591 /*
6592  * When the src multihoming is changed from  [strong, preferred] to weak,
6593  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6594  * set any entries that were created by user-applications in the unbound state
6595  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6596  */
6597 /* ARGSUSED */
6598 void
6599 ip_ire_unbind_walker(ire_t *ire, void *notused)
6600 {
6601 	ire_t *new_ire;
6602 
6603 	if (!ire->ire_unbound || ire->ire_ill == NULL)
6604 		return;
6605 	if (ire->ire_ipversion == IPV6_VERSION) {
6606 		new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6607 		    &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6608 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6609 	} else {
6610 		new_ire = ire_create((uchar_t *)&ire->ire_addr,
6611 		    (uchar_t *)&ire->ire_mask,
6612 		    (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6613 		    ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6614 	}
6615 	if (new_ire == NULL)
6616 		return;
6617 	new_ire->ire_unbound = B_TRUE;
6618 	/*
6619 	 * The bound ire must first be deleted so that we don't return
6620 	 * the existing one on the attempt to add the unbound new_ire.
6621 	 */
6622 	ire_delete(ire);
6623 	new_ire = ire_add(new_ire);
6624 	if (new_ire != NULL)
6625 		ire_refrele(new_ire);
6626 }
6627 
6628 /*
6629  * When the settings of ip*_strict_src_multihoming tunables are changed,
6630  * all cached routes need to be recomputed. This recomputation needs to be
6631  * done when going from weaker to stronger modes so that the cached ire
6632  * for the connection does not violate the current ip*_strict_src_multihoming
6633  * setting. It also needs to be done when going from stronger to weaker modes,
6634  * so that we fall back to matching on the longest-matching-route (as opposed
6635  * to a shorter match that may have been selected in the strong mode
6636  * to satisfy src_multihoming settings).
6637  *
6638  * The cached ixa_ire entires for all conn_t entries are marked as
6639  * "verify" so that they will be recomputed for the next packet.
6640  */
6641 void
6642 conn_ire_revalidate(conn_t *connp, void *arg)
6643 {
6644 	boolean_t isv6 = (boolean_t)arg;
6645 
6646 	if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6647 	    (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6648 		return;
6649 	connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6650 }
6651 
6652 /*
6653  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6654  * When an ipf is passed here for the first time, if
6655  * we already have in-order fragments on the queue, we convert from the fast-
6656  * path reassembly scheme to the hard-case scheme.  From then on, additional
6657  * fragments are reassembled here.  We keep track of the start and end offsets
6658  * of each piece, and the number of holes in the chain.  When the hole count
6659  * goes to zero, we are done!
6660  *
6661  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6662  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6663  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6664  * after the call to ip_reassemble().
6665  */
6666 int
6667 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6668     size_t msg_len)
6669 {
6670 	uint_t	end;
6671 	mblk_t	*next_mp;
6672 	mblk_t	*mp1;
6673 	uint_t	offset;
6674 	boolean_t incr_dups = B_TRUE;
6675 	boolean_t offset_zero_seen = B_FALSE;
6676 	boolean_t pkt_boundary_checked = B_FALSE;
6677 
6678 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
6679 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6680 
6681 	/* Add in byte count */
6682 	ipf->ipf_count += msg_len;
6683 	if (ipf->ipf_end) {
6684 		/*
6685 		 * We were part way through in-order reassembly, but now there
6686 		 * is a hole.  We walk through messages already queued, and
6687 		 * mark them for hard case reassembly.  We know that up till
6688 		 * now they were in order starting from offset zero.
6689 		 */
6690 		offset = 0;
6691 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6692 			IP_REASS_SET_START(mp1, offset);
6693 			if (offset == 0) {
6694 				ASSERT(ipf->ipf_nf_hdr_len != 0);
6695 				offset = -ipf->ipf_nf_hdr_len;
6696 			}
6697 			offset += mp1->b_wptr - mp1->b_rptr;
6698 			IP_REASS_SET_END(mp1, offset);
6699 		}
6700 		/* One hole at the end. */
6701 		ipf->ipf_hole_cnt = 1;
6702 		/* Brand it as a hard case, forever. */
6703 		ipf->ipf_end = 0;
6704 	}
6705 	/* Walk through all the new pieces. */
6706 	do {
6707 		end = start + (mp->b_wptr - mp->b_rptr);
6708 		/*
6709 		 * If start is 0, decrease 'end' only for the first mblk of
6710 		 * the fragment. Otherwise 'end' can get wrong value in the
6711 		 * second pass of the loop if first mblk is exactly the
6712 		 * size of ipf_nf_hdr_len.
6713 		 */
6714 		if (start == 0 && !offset_zero_seen) {
6715 			/* First segment */
6716 			ASSERT(ipf->ipf_nf_hdr_len != 0);
6717 			end -= ipf->ipf_nf_hdr_len;
6718 			offset_zero_seen = B_TRUE;
6719 		}
6720 		next_mp = mp->b_cont;
6721 		/*
6722 		 * We are checking to see if there is any interesing data
6723 		 * to process.  If there isn't and the mblk isn't the
6724 		 * one which carries the unfragmentable header then we
6725 		 * drop it.  It's possible to have just the unfragmentable
6726 		 * header come through without any data.  That needs to be
6727 		 * saved.
6728 		 *
6729 		 * If the assert at the top of this function holds then the
6730 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6731 		 * is infrequently traveled enough that the test is left in
6732 		 * to protect against future code changes which break that
6733 		 * invariant.
6734 		 */
6735 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6736 			/* Empty.  Blast it. */
6737 			IP_REASS_SET_START(mp, 0);
6738 			IP_REASS_SET_END(mp, 0);
6739 			/*
6740 			 * If the ipf points to the mblk we are about to free,
6741 			 * update ipf to point to the next mblk (or NULL
6742 			 * if none).
6743 			 */
6744 			if (ipf->ipf_mp->b_cont == mp)
6745 				ipf->ipf_mp->b_cont = next_mp;
6746 			freeb(mp);
6747 			continue;
6748 		}
6749 		mp->b_cont = NULL;
6750 		IP_REASS_SET_START(mp, start);
6751 		IP_REASS_SET_END(mp, end);
6752 		if (!ipf->ipf_tail_mp) {
6753 			ipf->ipf_tail_mp = mp;
6754 			ipf->ipf_mp->b_cont = mp;
6755 			if (start == 0 || !more) {
6756 				ipf->ipf_hole_cnt = 1;
6757 				/*
6758 				 * if the first fragment comes in more than one
6759 				 * mblk, this loop will be executed for each
6760 				 * mblk. Need to adjust hole count so exiting
6761 				 * this routine will leave hole count at 1.
6762 				 */
6763 				if (next_mp)
6764 					ipf->ipf_hole_cnt++;
6765 			} else
6766 				ipf->ipf_hole_cnt = 2;
6767 			continue;
6768 		} else if (ipf->ipf_last_frag_seen && !more &&
6769 		    !pkt_boundary_checked) {
6770 			/*
6771 			 * We check datagram boundary only if this fragment
6772 			 * claims to be the last fragment and we have seen a
6773 			 * last fragment in the past too. We do this only
6774 			 * once for a given fragment.
6775 			 *
6776 			 * start cannot be 0 here as fragments with start=0
6777 			 * and MF=0 gets handled as a complete packet. These
6778 			 * fragments should not reach here.
6779 			 */
6780 
6781 			if (start + msgdsize(mp) !=
6782 			    IP_REASS_END(ipf->ipf_tail_mp)) {
6783 				/*
6784 				 * We have two fragments both of which claim
6785 				 * to be the last fragment but gives conflicting
6786 				 * information about the whole datagram size.
6787 				 * Something fishy is going on. Drop the
6788 				 * fragment and free up the reassembly list.
6789 				 */
6790 				return (IP_REASS_FAILED);
6791 			}
6792 
6793 			/*
6794 			 * We shouldn't come to this code block again for this
6795 			 * particular fragment.
6796 			 */
6797 			pkt_boundary_checked = B_TRUE;
6798 		}
6799 
6800 		/* New stuff at or beyond tail? */
6801 		offset = IP_REASS_END(ipf->ipf_tail_mp);
6802 		if (start >= offset) {
6803 			if (ipf->ipf_last_frag_seen) {
6804 				/* current fragment is beyond last fragment */
6805 				return (IP_REASS_FAILED);
6806 			}
6807 			/* Link it on end. */
6808 			ipf->ipf_tail_mp->b_cont = mp;
6809 			ipf->ipf_tail_mp = mp;
6810 			if (more) {
6811 				if (start != offset)
6812 					ipf->ipf_hole_cnt++;
6813 			} else if (start == offset && next_mp == NULL)
6814 					ipf->ipf_hole_cnt--;
6815 			continue;
6816 		}
6817 		mp1 = ipf->ipf_mp->b_cont;
6818 		offset = IP_REASS_START(mp1);
6819 		/* New stuff at the front? */
6820 		if (start < offset) {
6821 			if (start == 0) {
6822 				if (end >= offset) {
6823 					/* Nailed the hole at the begining. */
6824 					ipf->ipf_hole_cnt--;
6825 				}
6826 			} else if (end < offset) {
6827 				/*
6828 				 * A hole, stuff, and a hole where there used
6829 				 * to be just a hole.
6830 				 */
6831 				ipf->ipf_hole_cnt++;
6832 			}
6833 			mp->b_cont = mp1;
6834 			/* Check for overlap. */
6835 			while (end > offset) {
6836 				if (end < IP_REASS_END(mp1)) {
6837 					mp->b_wptr -= end - offset;
6838 					IP_REASS_SET_END(mp, offset);
6839 					BUMP_MIB(ill->ill_ip_mib,
6840 					    ipIfStatsReasmPartDups);
6841 					break;
6842 				}
6843 				/* Did we cover another hole? */
6844 				if ((mp1->b_cont &&
6845 				    IP_REASS_END(mp1) !=
6846 				    IP_REASS_START(mp1->b_cont) &&
6847 				    end >= IP_REASS_START(mp1->b_cont)) ||
6848 				    (!ipf->ipf_last_frag_seen && !more)) {
6849 					ipf->ipf_hole_cnt--;
6850 				}
6851 				/* Clip out mp1. */
6852 				if ((mp->b_cont = mp1->b_cont) == NULL) {
6853 					/*
6854 					 * After clipping out mp1, this guy
6855 					 * is now hanging off the end.
6856 					 */
6857 					ipf->ipf_tail_mp = mp;
6858 				}
6859 				IP_REASS_SET_START(mp1, 0);
6860 				IP_REASS_SET_END(mp1, 0);
6861 				/* Subtract byte count */
6862 				ipf->ipf_count -= mp1->b_datap->db_lim -
6863 				    mp1->b_datap->db_base;
6864 				freeb(mp1);
6865 				BUMP_MIB(ill->ill_ip_mib,
6866 				    ipIfStatsReasmPartDups);
6867 				mp1 = mp->b_cont;
6868 				if (!mp1)
6869 					break;
6870 				offset = IP_REASS_START(mp1);
6871 			}
6872 			ipf->ipf_mp->b_cont = mp;
6873 			continue;
6874 		}
6875 		/*
6876 		 * The new piece starts somewhere between the start of the head
6877 		 * and before the end of the tail.
6878 		 */
6879 		for (; mp1; mp1 = mp1->b_cont) {
6880 			offset = IP_REASS_END(mp1);
6881 			if (start < offset) {
6882 				if (end <= offset) {
6883 					/* Nothing new. */
6884 					IP_REASS_SET_START(mp, 0);
6885 					IP_REASS_SET_END(mp, 0);
6886 					/* Subtract byte count */
6887 					ipf->ipf_count -= mp->b_datap->db_lim -
6888 					    mp->b_datap->db_base;
6889 					if (incr_dups) {
6890 						ipf->ipf_num_dups++;
6891 						incr_dups = B_FALSE;
6892 					}
6893 					freeb(mp);
6894 					BUMP_MIB(ill->ill_ip_mib,
6895 					    ipIfStatsReasmDuplicates);
6896 					break;
6897 				}
6898 				/*
6899 				 * Trim redundant stuff off beginning of new
6900 				 * piece.
6901 				 */
6902 				IP_REASS_SET_START(mp, offset);
6903 				mp->b_rptr += offset - start;
6904 				BUMP_MIB(ill->ill_ip_mib,
6905 				    ipIfStatsReasmPartDups);
6906 				start = offset;
6907 				if (!mp1->b_cont) {
6908 					/*
6909 					 * After trimming, this guy is now
6910 					 * hanging off the end.
6911 					 */
6912 					mp1->b_cont = mp;
6913 					ipf->ipf_tail_mp = mp;
6914 					if (!more) {
6915 						ipf->ipf_hole_cnt--;
6916 					}
6917 					break;
6918 				}
6919 			}
6920 			if (start >= IP_REASS_START(mp1->b_cont))
6921 				continue;
6922 			/* Fill a hole */
6923 			if (start > offset)
6924 				ipf->ipf_hole_cnt++;
6925 			mp->b_cont = mp1->b_cont;
6926 			mp1->b_cont = mp;
6927 			mp1 = mp->b_cont;
6928 			offset = IP_REASS_START(mp1);
6929 			if (end >= offset) {
6930 				ipf->ipf_hole_cnt--;
6931 				/* Check for overlap. */
6932 				while (end > offset) {
6933 					if (end < IP_REASS_END(mp1)) {
6934 						mp->b_wptr -= end - offset;
6935 						IP_REASS_SET_END(mp, offset);
6936 						/*
6937 						 * TODO we might bump
6938 						 * this up twice if there is
6939 						 * overlap at both ends.
6940 						 */
6941 						BUMP_MIB(ill->ill_ip_mib,
6942 						    ipIfStatsReasmPartDups);
6943 						break;
6944 					}
6945 					/* Did we cover another hole? */
6946 					if ((mp1->b_cont &&
6947 					    IP_REASS_END(mp1)
6948 					    != IP_REASS_START(mp1->b_cont) &&
6949 					    end >=
6950 					    IP_REASS_START(mp1->b_cont)) ||
6951 					    (!ipf->ipf_last_frag_seen &&
6952 					    !more)) {
6953 						ipf->ipf_hole_cnt--;
6954 					}
6955 					/* Clip out mp1. */
6956 					if ((mp->b_cont = mp1->b_cont) ==
6957 					    NULL) {
6958 						/*
6959 						 * After clipping out mp1,
6960 						 * this guy is now hanging
6961 						 * off the end.
6962 						 */
6963 						ipf->ipf_tail_mp = mp;
6964 					}
6965 					IP_REASS_SET_START(mp1, 0);
6966 					IP_REASS_SET_END(mp1, 0);
6967 					/* Subtract byte count */
6968 					ipf->ipf_count -=
6969 					    mp1->b_datap->db_lim -
6970 					    mp1->b_datap->db_base;
6971 					freeb(mp1);
6972 					BUMP_MIB(ill->ill_ip_mib,
6973 					    ipIfStatsReasmPartDups);
6974 					mp1 = mp->b_cont;
6975 					if (!mp1)
6976 						break;
6977 					offset = IP_REASS_START(mp1);
6978 				}
6979 			}
6980 			break;
6981 		}
6982 	} while (start = end, mp = next_mp);
6983 
6984 	/* Fragment just processed could be the last one. Remember this fact */
6985 	if (!more)
6986 		ipf->ipf_last_frag_seen = B_TRUE;
6987 
6988 	/* Still got holes? */
6989 	if (ipf->ipf_hole_cnt)
6990 		return (IP_REASS_PARTIAL);
6991 	/* Clean up overloaded fields to avoid upstream disasters. */
6992 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6993 		IP_REASS_SET_START(mp1, 0);
6994 		IP_REASS_SET_END(mp1, 0);
6995 	}
6996 	return (IP_REASS_COMPLETE);
6997 }
6998 
6999 /*
7000  * Fragmentation reassembly.  Each ILL has a hash table for
7001  * queuing packets undergoing reassembly for all IPIFs
7002  * associated with the ILL.  The hash is based on the packet
7003  * IP ident field.  The ILL frag hash table was allocated
7004  * as a timer block at the time the ILL was created.  Whenever
7005  * there is anything on the reassembly queue, the timer will
7006  * be running.  Returns the reassembled packet if reassembly completes.
7007  */
7008 mblk_t *
7009 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7010 {
7011 	uint32_t	frag_offset_flags;
7012 	mblk_t		*t_mp;
7013 	ipaddr_t	dst;
7014 	uint8_t		proto = ipha->ipha_protocol;
7015 	uint32_t	sum_val;
7016 	uint16_t	sum_flags;
7017 	ipf_t		*ipf;
7018 	ipf_t		**ipfp;
7019 	ipfb_t		*ipfb;
7020 	uint16_t	ident;
7021 	uint32_t	offset;
7022 	ipaddr_t	src;
7023 	uint_t		hdr_length;
7024 	uint32_t	end;
7025 	mblk_t		*mp1;
7026 	mblk_t		*tail_mp;
7027 	size_t		count;
7028 	size_t		msg_len;
7029 	uint8_t		ecn_info = 0;
7030 	uint32_t	packet_size;
7031 	boolean_t	pruned = B_FALSE;
7032 	ill_t		*ill = ira->ira_ill;
7033 	ip_stack_t	*ipst = ill->ill_ipst;
7034 
7035 	/*
7036 	 * Drop the fragmented as early as possible, if
7037 	 * we don't have resource(s) to re-assemble.
7038 	 */
7039 	if (ipst->ips_ip_reass_queue_bytes == 0) {
7040 		freemsg(mp);
7041 		return (NULL);
7042 	}
7043 
7044 	/* Check for fragmentation offset; return if there's none */
7045 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7046 	    (IPH_MF | IPH_OFFSET)) == 0)
7047 		return (mp);
7048 
7049 	/*
7050 	 * We utilize hardware computed checksum info only for UDP since
7051 	 * IP fragmentation is a normal occurrence for the protocol.  In
7052 	 * addition, checksum offload support for IP fragments carrying
7053 	 * UDP payload is commonly implemented across network adapters.
7054 	 */
7055 	ASSERT(ira->ira_rill != NULL);
7056 	if (proto == IPPROTO_UDP && dohwcksum &&
7057 	    ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7058 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7059 		mblk_t *mp1 = mp->b_cont;
7060 		int32_t len;
7061 
7062 		/* Record checksum information from the packet */
7063 		sum_val = (uint32_t)DB_CKSUM16(mp);
7064 		sum_flags = DB_CKSUMFLAGS(mp);
7065 
7066 		/* IP payload offset from beginning of mblk */
7067 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7068 
7069 		if ((sum_flags & HCK_PARTIALCKSUM) &&
7070 		    (mp1 == NULL || mp1->b_cont == NULL) &&
7071 		    offset >= DB_CKSUMSTART(mp) &&
7072 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7073 			uint32_t adj;
7074 			/*
7075 			 * Partial checksum has been calculated by hardware
7076 			 * and attached to the packet; in addition, any
7077 			 * prepended extraneous data is even byte aligned.
7078 			 * If any such data exists, we adjust the checksum;
7079 			 * this would also handle any postpended data.
7080 			 */
7081 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7082 			    mp, mp1, len, adj);
7083 
7084 			/* One's complement subtract extraneous checksum */
7085 			if (adj >= sum_val)
7086 				sum_val = ~(adj - sum_val) & 0xFFFF;
7087 			else
7088 				sum_val -= adj;
7089 		}
7090 	} else {
7091 		sum_val = 0;
7092 		sum_flags = 0;
7093 	}
7094 
7095 	/* Clear hardware checksumming flag */
7096 	DB_CKSUMFLAGS(mp) = 0;
7097 
7098 	ident = ipha->ipha_ident;
7099 	offset = (frag_offset_flags << 3) & 0xFFFF;
7100 	src = ipha->ipha_src;
7101 	dst = ipha->ipha_dst;
7102 	hdr_length = IPH_HDR_LENGTH(ipha);
7103 	end = ntohs(ipha->ipha_length) - hdr_length;
7104 
7105 	/* If end == 0 then we have a packet with no data, so just free it */
7106 	if (end == 0) {
7107 		freemsg(mp);
7108 		return (NULL);
7109 	}
7110 
7111 	/* Record the ECN field info. */
7112 	ecn_info = (ipha->ipha_type_of_service & 0x3);
7113 	if (offset != 0) {
7114 		/*
7115 		 * If this isn't the first piece, strip the header, and
7116 		 * add the offset to the end value.
7117 		 */
7118 		mp->b_rptr += hdr_length;
7119 		end += offset;
7120 	}
7121 
7122 	/* Handle vnic loopback of fragments */
7123 	if (mp->b_datap->db_ref > 2)
7124 		msg_len = 0;
7125 	else
7126 		msg_len = MBLKSIZE(mp);
7127 
7128 	tail_mp = mp;
7129 	while (tail_mp->b_cont != NULL) {
7130 		tail_mp = tail_mp->b_cont;
7131 		if (tail_mp->b_datap->db_ref <= 2)
7132 			msg_len += MBLKSIZE(tail_mp);
7133 	}
7134 
7135 	/* If the reassembly list for this ILL will get too big, prune it */
7136 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7137 	    ipst->ips_ip_reass_queue_bytes) {
7138 		DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7139 		    uint_t, ill->ill_frag_count,
7140 		    uint_t, ipst->ips_ip_reass_queue_bytes);
7141 		ill_frag_prune(ill,
7142 		    (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7143 		    (ipst->ips_ip_reass_queue_bytes - msg_len));
7144 		pruned = B_TRUE;
7145 	}
7146 
7147 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7148 	mutex_enter(&ipfb->ipfb_lock);
7149 
7150 	ipfp = &ipfb->ipfb_ipf;
7151 	/* Try to find an existing fragment queue for this packet. */
7152 	for (;;) {
7153 		ipf = ipfp[0];
7154 		if (ipf != NULL) {
7155 			/*
7156 			 * It has to match on ident and src/dst address.
7157 			 */
7158 			if (ipf->ipf_ident == ident &&
7159 			    ipf->ipf_src == src &&
7160 			    ipf->ipf_dst == dst &&
7161 			    ipf->ipf_protocol == proto) {
7162 				/*
7163 				 * If we have received too many
7164 				 * duplicate fragments for this packet
7165 				 * free it.
7166 				 */
7167 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
7168 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
7169 					freemsg(mp);
7170 					mutex_exit(&ipfb->ipfb_lock);
7171 					return (NULL);
7172 				}
7173 				/* Found it. */
7174 				break;
7175 			}
7176 			ipfp = &ipf->ipf_hash_next;
7177 			continue;
7178 		}
7179 
7180 		/*
7181 		 * If we pruned the list, do we want to store this new
7182 		 * fragment?. We apply an optimization here based on the
7183 		 * fact that most fragments will be received in order.
7184 		 * So if the offset of this incoming fragment is zero,
7185 		 * it is the first fragment of a new packet. We will
7186 		 * keep it.  Otherwise drop the fragment, as we have
7187 		 * probably pruned the packet already (since the
7188 		 * packet cannot be found).
7189 		 */
7190 		if (pruned && offset != 0) {
7191 			mutex_exit(&ipfb->ipfb_lock);
7192 			freemsg(mp);
7193 			return (NULL);
7194 		}
7195 
7196 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7197 			/*
7198 			 * Too many fragmented packets in this hash
7199 			 * bucket. Free the oldest.
7200 			 */
7201 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7202 		}
7203 
7204 		/* New guy.  Allocate a frag message. */
7205 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
7206 		if (mp1 == NULL) {
7207 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7208 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7209 			freemsg(mp);
7210 reass_done:
7211 			mutex_exit(&ipfb->ipfb_lock);
7212 			return (NULL);
7213 		}
7214 
7215 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7216 		mp1->b_cont = mp;
7217 
7218 		/* Initialize the fragment header. */
7219 		ipf = (ipf_t *)mp1->b_rptr;
7220 		ipf->ipf_mp = mp1;
7221 		ipf->ipf_ptphn = ipfp;
7222 		ipfp[0] = ipf;
7223 		ipf->ipf_hash_next = NULL;
7224 		ipf->ipf_ident = ident;
7225 		ipf->ipf_protocol = proto;
7226 		ipf->ipf_src = src;
7227 		ipf->ipf_dst = dst;
7228 		ipf->ipf_nf_hdr_len = 0;
7229 		/* Record reassembly start time. */
7230 		ipf->ipf_timestamp = gethrestime_sec();
7231 		/* Record ipf generation and account for frag header */
7232 		ipf->ipf_gen = ill->ill_ipf_gen++;
7233 		ipf->ipf_count = MBLKSIZE(mp1);
7234 		ipf->ipf_last_frag_seen = B_FALSE;
7235 		ipf->ipf_ecn = ecn_info;
7236 		ipf->ipf_num_dups = 0;
7237 		ipfb->ipfb_frag_pkts++;
7238 		ipf->ipf_checksum = 0;
7239 		ipf->ipf_checksum_flags = 0;
7240 
7241 		/* Store checksum value in fragment header */
7242 		if (sum_flags != 0) {
7243 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7244 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7245 			ipf->ipf_checksum = sum_val;
7246 			ipf->ipf_checksum_flags = sum_flags;
7247 		}
7248 
7249 		/*
7250 		 * We handle reassembly two ways.  In the easy case,
7251 		 * where all the fragments show up in order, we do
7252 		 * minimal bookkeeping, and just clip new pieces on
7253 		 * the end.  If we ever see a hole, then we go off
7254 		 * to ip_reassemble which has to mark the pieces and
7255 		 * keep track of the number of holes, etc.  Obviously,
7256 		 * the point of having both mechanisms is so we can
7257 		 * handle the easy case as efficiently as possible.
7258 		 */
7259 		if (offset == 0) {
7260 			/* Easy case, in-order reassembly so far. */
7261 			ipf->ipf_count += msg_len;
7262 			ipf->ipf_tail_mp = tail_mp;
7263 			/*
7264 			 * Keep track of next expected offset in
7265 			 * ipf_end.
7266 			 */
7267 			ipf->ipf_end = end;
7268 			ipf->ipf_nf_hdr_len = hdr_length;
7269 		} else {
7270 			/* Hard case, hole at the beginning. */
7271 			ipf->ipf_tail_mp = NULL;
7272 			/*
7273 			 * ipf_end == 0 means that we have given up
7274 			 * on easy reassembly.
7275 			 */
7276 			ipf->ipf_end = 0;
7277 
7278 			/* Forget checksum offload from now on */
7279 			ipf->ipf_checksum_flags = 0;
7280 
7281 			/*
7282 			 * ipf_hole_cnt is set by ip_reassemble.
7283 			 * ipf_count is updated by ip_reassemble.
7284 			 * No need to check for return value here
7285 			 * as we don't expect reassembly to complete
7286 			 * or fail for the first fragment itself.
7287 			 */
7288 			(void) ip_reassemble(mp, ipf,
7289 			    (frag_offset_flags & IPH_OFFSET) << 3,
7290 			    (frag_offset_flags & IPH_MF), ill, msg_len);
7291 		}
7292 		/* Update per ipfb and ill byte counts */
7293 		ipfb->ipfb_count += ipf->ipf_count;
7294 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7295 		atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7296 		/* If the frag timer wasn't already going, start it. */
7297 		mutex_enter(&ill->ill_lock);
7298 		ill_frag_timer_start(ill);
7299 		mutex_exit(&ill->ill_lock);
7300 		goto reass_done;
7301 	}
7302 
7303 	/*
7304 	 * If the packet's flag has changed (it could be coming up
7305 	 * from an interface different than the previous, therefore
7306 	 * possibly different checksum capability), then forget about
7307 	 * any stored checksum states.  Otherwise add the value to
7308 	 * the existing one stored in the fragment header.
7309 	 */
7310 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7311 		sum_val += ipf->ipf_checksum;
7312 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7313 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7314 		ipf->ipf_checksum = sum_val;
7315 	} else if (ipf->ipf_checksum_flags != 0) {
7316 		/* Forget checksum offload from now on */
7317 		ipf->ipf_checksum_flags = 0;
7318 	}
7319 
7320 	/*
7321 	 * We have a new piece of a datagram which is already being
7322 	 * reassembled.  Update the ECN info if all IP fragments
7323 	 * are ECN capable.  If there is one which is not, clear
7324 	 * all the info.  If there is at least one which has CE
7325 	 * code point, IP needs to report that up to transport.
7326 	 */
7327 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7328 		if (ecn_info == IPH_ECN_CE)
7329 			ipf->ipf_ecn = IPH_ECN_CE;
7330 	} else {
7331 		ipf->ipf_ecn = IPH_ECN_NECT;
7332 	}
7333 	if (offset && ipf->ipf_end == offset) {
7334 		/* The new fragment fits at the end */
7335 		ipf->ipf_tail_mp->b_cont = mp;
7336 		/* Update the byte count */
7337 		ipf->ipf_count += msg_len;
7338 		/* Update per ipfb and ill byte counts */
7339 		ipfb->ipfb_count += msg_len;
7340 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
7341 		atomic_add_32(&ill->ill_frag_count, msg_len);
7342 		if (frag_offset_flags & IPH_MF) {
7343 			/* More to come. */
7344 			ipf->ipf_end = end;
7345 			ipf->ipf_tail_mp = tail_mp;
7346 			goto reass_done;
7347 		}
7348 	} else {
7349 		/* Go do the hard cases. */
7350 		int ret;
7351 
7352 		if (offset == 0)
7353 			ipf->ipf_nf_hdr_len = hdr_length;
7354 
7355 		/* Save current byte count */
7356 		count = ipf->ipf_count;
7357 		ret = ip_reassemble(mp, ipf,
7358 		    (frag_offset_flags & IPH_OFFSET) << 3,
7359 		    (frag_offset_flags & IPH_MF), ill, msg_len);
7360 		/* Count of bytes added and subtracted (freeb()ed) */
7361 		count = ipf->ipf_count - count;
7362 		if (count) {
7363 			/* Update per ipfb and ill byte counts */
7364 			ipfb->ipfb_count += count;
7365 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7366 			atomic_add_32(&ill->ill_frag_count, count);
7367 		}
7368 		if (ret == IP_REASS_PARTIAL) {
7369 			goto reass_done;
7370 		} else if (ret == IP_REASS_FAILED) {
7371 			/* Reassembly failed. Free up all resources */
7372 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
7373 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7374 				IP_REASS_SET_START(t_mp, 0);
7375 				IP_REASS_SET_END(t_mp, 0);
7376 			}
7377 			freemsg(mp);
7378 			goto reass_done;
7379 		}
7380 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7381 	}
7382 	/*
7383 	 * We have completed reassembly.  Unhook the frag header from
7384 	 * the reassembly list.
7385 	 *
7386 	 * Before we free the frag header, record the ECN info
7387 	 * to report back to the transport.
7388 	 */
7389 	ecn_info = ipf->ipf_ecn;
7390 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7391 	ipfp = ipf->ipf_ptphn;
7392 
7393 	/* We need to supply these to caller */
7394 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7395 		sum_val = ipf->ipf_checksum;
7396 	else
7397 		sum_val = 0;
7398 
7399 	mp1 = ipf->ipf_mp;
7400 	count = ipf->ipf_count;
7401 	ipf = ipf->ipf_hash_next;
7402 	if (ipf != NULL)
7403 		ipf->ipf_ptphn = ipfp;
7404 	ipfp[0] = ipf;
7405 	atomic_add_32(&ill->ill_frag_count, -count);
7406 	ASSERT(ipfb->ipfb_count >= count);
7407 	ipfb->ipfb_count -= count;
7408 	ipfb->ipfb_frag_pkts--;
7409 	mutex_exit(&ipfb->ipfb_lock);
7410 	/* Ditch the frag header. */
7411 	mp = mp1->b_cont;
7412 
7413 	freeb(mp1);
7414 
7415 	/* Restore original IP length in header. */
7416 	packet_size = (uint32_t)msgdsize(mp);
7417 	if (packet_size > IP_MAXPACKET) {
7418 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7419 		ip_drop_input("Reassembled packet too large", mp, ill);
7420 		freemsg(mp);
7421 		return (NULL);
7422 	}
7423 
7424 	if (DB_REF(mp) > 1) {
7425 		mblk_t *mp2 = copymsg(mp);
7426 
7427 		if (mp2 == NULL) {
7428 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7429 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7430 			freemsg(mp);
7431 			return (NULL);
7432 		}
7433 		freemsg(mp);
7434 		mp = mp2;
7435 	}
7436 	ipha = (ipha_t *)mp->b_rptr;
7437 
7438 	ipha->ipha_length = htons((uint16_t)packet_size);
7439 	/* We're now complete, zip the frag state */
7440 	ipha->ipha_fragment_offset_and_flags = 0;
7441 	/* Record the ECN info. */
7442 	ipha->ipha_type_of_service &= 0xFC;
7443 	ipha->ipha_type_of_service |= ecn_info;
7444 
7445 	/* Update the receive attributes */
7446 	ira->ira_pktlen = packet_size;
7447 	ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7448 
7449 	/* Reassembly is successful; set checksum information in packet */
7450 	DB_CKSUM16(mp) = (uint16_t)sum_val;
7451 	DB_CKSUMFLAGS(mp) = sum_flags;
7452 	DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7453 
7454 	return (mp);
7455 }
7456 
7457 /*
7458  * Pullup function that should be used for IP input in order to
7459  * ensure we do not loose the L2 source address; we need the l2 source
7460  * address for IP_RECVSLLA and for ndp_input.
7461  *
7462  * We return either NULL or b_rptr.
7463  */
7464 void *
7465 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7466 {
7467 	ill_t		*ill = ira->ira_ill;
7468 
7469 	if (ip_rput_pullups++ == 0) {
7470 		(void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7471 		    "ip_pullup: %s forced us to "
7472 		    " pullup pkt, hdr len %ld, hdr addr %p",
7473 		    ill->ill_name, len, (void *)mp->b_rptr);
7474 	}
7475 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
7476 		ip_setl2src(mp, ira, ira->ira_rill);
7477 	ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7478 	if (!pullupmsg(mp, len))
7479 		return (NULL);
7480 	else
7481 		return (mp->b_rptr);
7482 }
7483 
7484 /*
7485  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7486  * When called from the ULP ira_rill will be NULL hence the caller has to
7487  * pass in the ill.
7488  */
7489 /* ARGSUSED */
7490 void
7491 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7492 {
7493 	const uchar_t *addr;
7494 	int alen;
7495 
7496 	if (ira->ira_flags & IRAF_L2SRC_SET)
7497 		return;
7498 
7499 	ASSERT(ill != NULL);
7500 	alen = ill->ill_phys_addr_length;
7501 	ASSERT(alen <= sizeof (ira->ira_l2src));
7502 	if (ira->ira_mhip != NULL &&
7503 	    (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7504 		bcopy(addr, ira->ira_l2src, alen);
7505 	} else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7506 	    (addr = ill->ill_phys_addr) != NULL) {
7507 		bcopy(addr, ira->ira_l2src, alen);
7508 	} else {
7509 		bzero(ira->ira_l2src, alen);
7510 	}
7511 	ira->ira_flags |= IRAF_L2SRC_SET;
7512 }
7513 
7514 /*
7515  * check ip header length and align it.
7516  */
7517 mblk_t *
7518 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7519 {
7520 	ill_t	*ill = ira->ira_ill;
7521 	ssize_t len;
7522 
7523 	len = MBLKL(mp);
7524 
7525 	if (!OK_32PTR(mp->b_rptr))
7526 		IP_STAT(ill->ill_ipst, ip_notaligned);
7527 	else
7528 		IP_STAT(ill->ill_ipst, ip_recv_pullup);
7529 
7530 	/* Guard against bogus device drivers */
7531 	if (len < 0) {
7532 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7533 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7534 		freemsg(mp);
7535 		return (NULL);
7536 	}
7537 
7538 	if (len == 0) {
7539 		/* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7540 		mblk_t *mp1 = mp->b_cont;
7541 
7542 		if (!(ira->ira_flags & IRAF_L2SRC_SET))
7543 			ip_setl2src(mp, ira, ira->ira_rill);
7544 		ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7545 
7546 		freeb(mp);
7547 		mp = mp1;
7548 		if (mp == NULL)
7549 			return (NULL);
7550 
7551 		if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7552 			return (mp);
7553 	}
7554 	if (ip_pullup(mp, min_size, ira) == NULL) {
7555 		if (msgdsize(mp) < min_size) {
7556 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7557 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7558 		} else {
7559 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7560 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7561 		}
7562 		freemsg(mp);
7563 		return (NULL);
7564 	}
7565 	return (mp);
7566 }
7567 
7568 /*
7569  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7570  */
7571 mblk_t *
7572 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len,	uint_t pkt_len,
7573     uint_t min_size, ip_recv_attr_t *ira)
7574 {
7575 	ill_t	*ill = ira->ira_ill;
7576 
7577 	/*
7578 	 * Make sure we have data length consistent
7579 	 * with the IP header.
7580 	 */
7581 	if (mp->b_cont == NULL) {
7582 		/* pkt_len is based on ipha_len, not the mblk length */
7583 		if (pkt_len < min_size) {
7584 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7585 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7586 			freemsg(mp);
7587 			return (NULL);
7588 		}
7589 		if (len < 0) {
7590 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7591 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7592 			freemsg(mp);
7593 			return (NULL);
7594 		}
7595 		/* Drop any pad */
7596 		mp->b_wptr = rptr + pkt_len;
7597 	} else if ((len += msgdsize(mp->b_cont)) != 0) {
7598 		ASSERT(pkt_len >= min_size);
7599 		if (pkt_len < min_size) {
7600 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7601 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7602 			freemsg(mp);
7603 			return (NULL);
7604 		}
7605 		if (len < 0) {
7606 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7607 			ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7608 			freemsg(mp);
7609 			return (NULL);
7610 		}
7611 		/* Drop any pad */
7612 		(void) adjmsg(mp, -len);
7613 		/*
7614 		 * adjmsg may have freed an mblk from the chain, hence
7615 		 * invalidate any hw checksum here. This will force IP to
7616 		 * calculate the checksum in sw, but only for this packet.
7617 		 */
7618 		DB_CKSUMFLAGS(mp) = 0;
7619 		IP_STAT(ill->ill_ipst, ip_multimblk);
7620 	}
7621 	return (mp);
7622 }
7623 
7624 /*
7625  * Check that the IPv4 opt_len is consistent with the packet and pullup
7626  * the options.
7627  */
7628 mblk_t *
7629 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7630     ip_recv_attr_t *ira)
7631 {
7632 	ill_t	*ill = ira->ira_ill;
7633 	ssize_t len;
7634 
7635 	/* Assume no IPv6 packets arrive over the IPv4 queue */
7636 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7637 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7638 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7639 		ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7640 		freemsg(mp);
7641 		return (NULL);
7642 	}
7643 
7644 	if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7645 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7646 		ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7647 		freemsg(mp);
7648 		return (NULL);
7649 	}
7650 	/*
7651 	 * Recompute complete header length and make sure we
7652 	 * have access to all of it.
7653 	 */
7654 	len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7655 	if (len > (mp->b_wptr - mp->b_rptr)) {
7656 		if (len > pkt_len) {
7657 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7658 			ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7659 			freemsg(mp);
7660 			return (NULL);
7661 		}
7662 		if (ip_pullup(mp, len, ira) == NULL) {
7663 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7664 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
7665 			freemsg(mp);
7666 			return (NULL);
7667 		}
7668 	}
7669 	return (mp);
7670 }
7671 
7672 /*
7673  * Returns a new ire, or the same ire, or NULL.
7674  * If a different IRE is returned, then it is held; the caller
7675  * needs to release it.
7676  * In no case is there any hold/release on the ire argument.
7677  */
7678 ire_t *
7679 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7680 {
7681 	ire_t		*new_ire;
7682 	ill_t		*ire_ill;
7683 	uint_t		ifindex;
7684 	ip_stack_t	*ipst = ill->ill_ipst;
7685 	boolean_t	strict_check = B_FALSE;
7686 
7687 	/*
7688 	 * IPMP common case: if IRE and ILL are in the same group, there's no
7689 	 * issue (e.g. packet received on an underlying interface matched an
7690 	 * IRE_LOCAL on its associated group interface).
7691 	 */
7692 	ASSERT(ire->ire_ill != NULL);
7693 	if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7694 		return (ire);
7695 
7696 	/*
7697 	 * Do another ire lookup here, using the ingress ill, to see if the
7698 	 * interface is in a usesrc group.
7699 	 * As long as the ills belong to the same group, we don't consider
7700 	 * them to be arriving on the wrong interface. Thus, if the switch
7701 	 * is doing inbound load spreading, we won't drop packets when the
7702 	 * ip*_strict_dst_multihoming switch is on.
7703 	 * We also need to check for IPIF_UNNUMBERED point2point interfaces
7704 	 * where the local address may not be unique. In this case we were
7705 	 * at the mercy of the initial ire lookup and the IRE_LOCAL it
7706 	 * actually returned. The new lookup, which is more specific, should
7707 	 * only find the IRE_LOCAL associated with the ingress ill if one
7708 	 * exists.
7709 	 */
7710 	if (ire->ire_ipversion == IPV4_VERSION) {
7711 		if (ipst->ips_ip_strict_dst_multihoming)
7712 			strict_check = B_TRUE;
7713 		new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7714 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7715 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7716 	} else {
7717 		ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7718 		if (ipst->ips_ipv6_strict_dst_multihoming)
7719 			strict_check = B_TRUE;
7720 		new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7721 		    IRE_LOCAL, ill, ALL_ZONES, NULL,
7722 		    (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7723 	}
7724 	/*
7725 	 * If the same ire that was returned in ip_input() is found then this
7726 	 * is an indication that usesrc groups are in use. The packet
7727 	 * arrived on a different ill in the group than the one associated with
7728 	 * the destination address.  If a different ire was found then the same
7729 	 * IP address must be hosted on multiple ills. This is possible with
7730 	 * unnumbered point2point interfaces. We switch to use this new ire in
7731 	 * order to have accurate interface statistics.
7732 	 */
7733 	if (new_ire != NULL) {
7734 		/* Note: held in one case but not the other? Caller handles */
7735 		if (new_ire != ire)
7736 			return (new_ire);
7737 		/* Unchanged */
7738 		ire_refrele(new_ire);
7739 		return (ire);
7740 	}
7741 
7742 	/*
7743 	 * Chase pointers once and store locally.
7744 	 */
7745 	ASSERT(ire->ire_ill != NULL);
7746 	ire_ill = ire->ire_ill;
7747 	ifindex = ill->ill_usesrc_ifindex;
7748 
7749 	/*
7750 	 * Check if it's a legal address on the 'usesrc' interface.
7751 	 * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7752 	 * can just check phyint_ifindex.
7753 	 */
7754 	if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7755 		return (ire);
7756 	}
7757 
7758 	/*
7759 	 * If the ip*_strict_dst_multihoming switch is on then we can
7760 	 * only accept this packet if the interface is marked as routing.
7761 	 */
7762 	if (!(strict_check))
7763 		return (ire);
7764 
7765 	if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7766 		return (ire);
7767 	}
7768 	return (NULL);
7769 }
7770 
7771 /*
7772  * This function is used to construct a mac_header_info_s from a
7773  * DL_UNITDATA_IND message.
7774  * The address fields in the mhi structure points into the message,
7775  * thus the caller can't use those fields after freeing the message.
7776  *
7777  * We determine whether the packet received is a non-unicast packet
7778  * and in doing so, determine whether or not it is broadcast vs multicast.
7779  * For it to be a broadcast packet, we must have the appropriate mblk_t
7780  * hanging off the ill_t.  If this is either not present or doesn't match
7781  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7782  * to be multicast.  Thus NICs that have no broadcast address (or no
7783  * capability for one, such as point to point links) cannot return as
7784  * the packet being broadcast.
7785  */
7786 void
7787 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7788 {
7789 	dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7790 	mblk_t *bmp;
7791 	uint_t extra_offset;
7792 
7793 	bzero(mhip, sizeof (struct mac_header_info_s));
7794 
7795 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7796 
7797 	if (ill->ill_sap_length < 0)
7798 		extra_offset = 0;
7799 	else
7800 		extra_offset = ill->ill_sap_length;
7801 
7802 	mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7803 	    extra_offset;
7804 	mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7805 	    extra_offset;
7806 
7807 	if (!ind->dl_group_address)
7808 		return;
7809 
7810 	/* Multicast or broadcast */
7811 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7812 
7813 	if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7814 	    ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7815 	    (bmp = ill->ill_bcast_mp) != NULL) {
7816 		dl_unitdata_req_t *dlur;
7817 		uint8_t *bphys_addr;
7818 
7819 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7820 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7821 		    extra_offset;
7822 
7823 		if (bcmp(mhip->mhi_daddr, bphys_addr,
7824 		    ind->dl_dest_addr_length) == 0)
7825 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7826 	}
7827 }
7828 
7829 /*
7830  * This function is used to construct a mac_header_info_s from a
7831  * M_DATA fastpath message from a DLPI driver.
7832  * The address fields in the mhi structure points into the message,
7833  * thus the caller can't use those fields after freeing the message.
7834  *
7835  * We determine whether the packet received is a non-unicast packet
7836  * and in doing so, determine whether or not it is broadcast vs multicast.
7837  * For it to be a broadcast packet, we must have the appropriate mblk_t
7838  * hanging off the ill_t.  If this is either not present or doesn't match
7839  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7840  * to be multicast.  Thus NICs that have no broadcast address (or no
7841  * capability for one, such as point to point links) cannot return as
7842  * the packet being broadcast.
7843  */
7844 void
7845 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7846 {
7847 	mblk_t *bmp;
7848 	struct ether_header *pether;
7849 
7850 	bzero(mhip, sizeof (struct mac_header_info_s));
7851 
7852 	mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7853 
7854 	pether = (struct ether_header *)((char *)mp->b_rptr
7855 	    - sizeof (struct ether_header));
7856 
7857 	/*
7858 	 * Make sure the interface is an ethernet type, since we don't
7859 	 * know the header format for anything but Ethernet. Also make
7860 	 * sure we are pointing correctly above db_base.
7861 	 */
7862 	if (ill->ill_type != IFT_ETHER)
7863 		return;
7864 
7865 retry:
7866 	if ((uchar_t *)pether < mp->b_datap->db_base)
7867 		return;
7868 
7869 	/* Is there a VLAN tag? */
7870 	if (ill->ill_isv6) {
7871 		if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7872 			pether = (struct ether_header *)((char *)pether - 4);
7873 			goto retry;
7874 		}
7875 	} else {
7876 		if (pether->ether_type != htons(ETHERTYPE_IP)) {
7877 			pether = (struct ether_header *)((char *)pether - 4);
7878 			goto retry;
7879 		}
7880 	}
7881 	mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7882 	mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7883 
7884 	if (!(mhip->mhi_daddr[0] & 0x01))
7885 		return;
7886 
7887 	/* Multicast or broadcast */
7888 	mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7889 
7890 	if ((bmp = ill->ill_bcast_mp) != NULL) {
7891 		dl_unitdata_req_t *dlur;
7892 		uint8_t *bphys_addr;
7893 		uint_t	addrlen;
7894 
7895 		dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7896 		addrlen = dlur->dl_dest_addr_length;
7897 		if (ill->ill_sap_length < 0) {
7898 			bphys_addr = (uchar_t *)dlur +
7899 			    dlur->dl_dest_addr_offset;
7900 			addrlen += ill->ill_sap_length;
7901 		} else {
7902 			bphys_addr = (uchar_t *)dlur +
7903 			    dlur->dl_dest_addr_offset +
7904 			    ill->ill_sap_length;
7905 			addrlen -= ill->ill_sap_length;
7906 		}
7907 		if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7908 			mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7909 	}
7910 }
7911 
7912 /*
7913  * Handle anything but M_DATA messages
7914  * We see the DL_UNITDATA_IND which are part
7915  * of the data path, and also the other messages from the driver.
7916  */
7917 void
7918 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7919 {
7920 	mblk_t		*first_mp;
7921 	struct iocblk   *iocp;
7922 	struct mac_header_info_s mhi;
7923 
7924 	switch (DB_TYPE(mp)) {
7925 	case M_PROTO:
7926 	case M_PCPROTO: {
7927 		if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7928 		    DL_UNITDATA_IND) {
7929 			/* Go handle anything other than data elsewhere. */
7930 			ip_rput_dlpi(ill, mp);
7931 			return;
7932 		}
7933 
7934 		first_mp = mp;
7935 		mp = first_mp->b_cont;
7936 		first_mp->b_cont = NULL;
7937 
7938 		if (mp == NULL) {
7939 			freeb(first_mp);
7940 			return;
7941 		}
7942 		ip_dlur_to_mhi(ill, first_mp, &mhi);
7943 		if (ill->ill_isv6)
7944 			ip_input_v6(ill, NULL, mp, &mhi);
7945 		else
7946 			ip_input(ill, NULL, mp, &mhi);
7947 
7948 		/* Ditch the DLPI header. */
7949 		freeb(first_mp);
7950 		return;
7951 	}
7952 	case M_IOCACK:
7953 		iocp = (struct iocblk *)mp->b_rptr;
7954 		switch (iocp->ioc_cmd) {
7955 		case DL_IOC_HDR_INFO:
7956 			ill_fastpath_ack(ill, mp);
7957 			return;
7958 		default:
7959 			putnext(ill->ill_rq, mp);
7960 			return;
7961 		}
7962 		/* FALLTHROUGH */
7963 	case M_ERROR:
7964 	case M_HANGUP:
7965 		mutex_enter(&ill->ill_lock);
7966 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7967 			mutex_exit(&ill->ill_lock);
7968 			freemsg(mp);
7969 			return;
7970 		}
7971 		ill_refhold_locked(ill);
7972 		mutex_exit(&ill->ill_lock);
7973 		qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7974 		    B_FALSE);
7975 		return;
7976 	case M_CTL:
7977 		putnext(ill->ill_rq, mp);
7978 		return;
7979 	case M_IOCNAK:
7980 		ip1dbg(("got iocnak "));
7981 		iocp = (struct iocblk *)mp->b_rptr;
7982 		switch (iocp->ioc_cmd) {
7983 		case DL_IOC_HDR_INFO:
7984 			ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7985 			return;
7986 		default:
7987 			break;
7988 		}
7989 		/* FALLTHROUGH */
7990 	default:
7991 		putnext(ill->ill_rq, mp);
7992 		return;
7993 	}
7994 }
7995 
7996 /* Read side put procedure.  Packets coming from the wire arrive here. */
7997 int
7998 ip_rput(queue_t *q, mblk_t *mp)
7999 {
8000 	ill_t	*ill;
8001 	union DL_primitives *dl;
8002 
8003 	ill = (ill_t *)q->q_ptr;
8004 
8005 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8006 		/*
8007 		 * If things are opening or closing, only accept high-priority
8008 		 * DLPI messages.  (On open ill->ill_ipif has not yet been
8009 		 * created; on close, things hanging off the ill may have been
8010 		 * freed already.)
8011 		 */
8012 		dl = (union DL_primitives *)mp->b_rptr;
8013 		if (DB_TYPE(mp) != M_PCPROTO ||
8014 		    dl->dl_primitive == DL_UNITDATA_IND) {
8015 			inet_freemsg(mp);
8016 			return (0);
8017 		}
8018 	}
8019 	if (DB_TYPE(mp) == M_DATA) {
8020 		struct mac_header_info_s mhi;
8021 
8022 		ip_mdata_to_mhi(ill, mp, &mhi);
8023 		ip_input(ill, NULL, mp, &mhi);
8024 	} else {
8025 		ip_rput_notdata(ill, mp);
8026 	}
8027 	return (0);
8028 }
8029 
8030 /*
8031  * Move the information to a copy.
8032  */
8033 mblk_t *
8034 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8035 {
8036 	mblk_t		*mp1;
8037 	ill_t		*ill = ira->ira_ill;
8038 	ip_stack_t	*ipst = ill->ill_ipst;
8039 
8040 	IP_STAT(ipst, ip_db_ref);
8041 
8042 	/* Make sure we have ira_l2src before we loose the original mblk */
8043 	if (!(ira->ira_flags & IRAF_L2SRC_SET))
8044 		ip_setl2src(mp, ira, ira->ira_rill);
8045 
8046 	mp1 = copymsg(mp);
8047 	if (mp1 == NULL) {
8048 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8049 		ip_drop_input("ipIfStatsInDiscards", mp, ill);
8050 		freemsg(mp);
8051 		return (NULL);
8052 	}
8053 	/* preserve the hardware checksum flags and data, if present */
8054 	if (DB_CKSUMFLAGS(mp) != 0) {
8055 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8056 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8057 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8058 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8059 		DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8060 	}
8061 	freemsg(mp);
8062 	return (mp1);
8063 }
8064 
8065 static void
8066 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8067     t_uscalar_t err)
8068 {
8069 	if (dl_err == DL_SYSERR) {
8070 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8071 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
8072 		    ill->ill_name, dl_primstr(prim), err);
8073 		return;
8074 	}
8075 
8076 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8077 	    "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8078 	    dl_errstr(dl_err));
8079 }
8080 
8081 /*
8082  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8083  * than DL_UNITDATA_IND messages. If we need to process this message
8084  * exclusively, we call qwriter_ip, in which case we also need to call
8085  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8086  */
8087 void
8088 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8089 {
8090 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8091 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8092 	queue_t		*q = ill->ill_rq;
8093 	t_uscalar_t	prim = dloa->dl_primitive;
8094 	t_uscalar_t	reqprim = DL_PRIM_INVAL;
8095 
8096 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8097 	    char *, dl_primstr(prim), ill_t *, ill);
8098 	ip1dbg(("ip_rput_dlpi"));
8099 
8100 	/*
8101 	 * If we received an ACK but didn't send a request for it, then it
8102 	 * can't be part of any pending operation; discard up-front.
8103 	 */
8104 	switch (prim) {
8105 	case DL_ERROR_ACK:
8106 		reqprim = dlea->dl_error_primitive;
8107 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8108 		    "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8109 		    reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8110 		    dlea->dl_unix_errno));
8111 		break;
8112 	case DL_OK_ACK:
8113 		reqprim = dloa->dl_correct_primitive;
8114 		break;
8115 	case DL_INFO_ACK:
8116 		reqprim = DL_INFO_REQ;
8117 		break;
8118 	case DL_BIND_ACK:
8119 		reqprim = DL_BIND_REQ;
8120 		break;
8121 	case DL_PHYS_ADDR_ACK:
8122 		reqprim = DL_PHYS_ADDR_REQ;
8123 		break;
8124 	case DL_NOTIFY_ACK:
8125 		reqprim = DL_NOTIFY_REQ;
8126 		break;
8127 	case DL_CAPABILITY_ACK:
8128 		reqprim = DL_CAPABILITY_REQ;
8129 		break;
8130 	}
8131 
8132 	if (prim != DL_NOTIFY_IND) {
8133 		if (reqprim == DL_PRIM_INVAL ||
8134 		    !ill_dlpi_pending(ill, reqprim)) {
8135 			/* Not a DLPI message we support or expected */
8136 			freemsg(mp);
8137 			return;
8138 		}
8139 		ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8140 		    dl_primstr(reqprim)));
8141 	}
8142 
8143 	switch (reqprim) {
8144 	case DL_UNBIND_REQ:
8145 		/*
8146 		 * NOTE: we mark the unbind as complete even if we got a
8147 		 * DL_ERROR_ACK, since there's not much else we can do.
8148 		 */
8149 		mutex_enter(&ill->ill_lock);
8150 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8151 		cv_signal(&ill->ill_cv);
8152 		mutex_exit(&ill->ill_lock);
8153 		break;
8154 
8155 	case DL_ENABMULTI_REQ:
8156 		if (prim == DL_OK_ACK) {
8157 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8158 				ill->ill_dlpi_multicast_state = IDS_OK;
8159 		}
8160 		break;
8161 	}
8162 
8163 	/*
8164 	 * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8165 	 * need to become writer to continue to process it.  Because an
8166 	 * exclusive operation doesn't complete until replies to all queued
8167 	 * DLPI messages have been received, we know we're in the middle of an
8168 	 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8169 	 *
8170 	 * As required by qwriter_ip(), we refhold the ill; it will refrele.
8171 	 * Since this is on the ill stream we unconditionally bump up the
8172 	 * refcount without doing ILL_CAN_LOOKUP().
8173 	 */
8174 	ill_refhold(ill);
8175 	if (prim == DL_NOTIFY_IND)
8176 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8177 	else
8178 		qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8179 }
8180 
8181 /*
8182  * Handling of DLPI messages that require exclusive access to the ipsq.
8183  *
8184  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8185  * happen here. (along with mi_copy_done)
8186  */
8187 /* ARGSUSED */
8188 static void
8189 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8190 {
8191 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
8192 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
8193 	int		err = 0;
8194 	ill_t		*ill = (ill_t *)q->q_ptr;
8195 	ipif_t		*ipif = NULL;
8196 	mblk_t		*mp1 = NULL;
8197 	conn_t		*connp = NULL;
8198 	t_uscalar_t	paddrreq;
8199 	mblk_t		*mp_hw;
8200 	boolean_t	success;
8201 	boolean_t	ioctl_aborted = B_FALSE;
8202 	boolean_t	log = B_TRUE;
8203 
8204 	DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8205 	    char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8206 
8207 	ip1dbg(("ip_rput_dlpi_writer .."));
8208 	ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8209 	ASSERT(IAM_WRITER_ILL(ill));
8210 
8211 	ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8212 	/*
8213 	 * The current ioctl could have been aborted by the user and a new
8214 	 * ioctl to bring up another ill could have started. We could still
8215 	 * get a response from the driver later.
8216 	 */
8217 	if (ipif != NULL && ipif->ipif_ill != ill)
8218 		ioctl_aborted = B_TRUE;
8219 
8220 	switch (dloa->dl_primitive) {
8221 	case DL_ERROR_ACK:
8222 		ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8223 		    dl_primstr(dlea->dl_error_primitive)));
8224 
8225 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8226 		    char *, dl_primstr(dlea->dl_error_primitive),
8227 		    ill_t *, ill);
8228 
8229 		switch (dlea->dl_error_primitive) {
8230 		case DL_DISABMULTI_REQ:
8231 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8232 			break;
8233 		case DL_PROMISCON_REQ:
8234 		case DL_PROMISCOFF_REQ:
8235 		case DL_UNBIND_REQ:
8236 		case DL_ATTACH_REQ:
8237 		case DL_INFO_REQ:
8238 			ill_dlpi_done(ill, dlea->dl_error_primitive);
8239 			break;
8240 		case DL_NOTIFY_REQ:
8241 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
8242 			log = B_FALSE;
8243 			break;
8244 		case DL_PHYS_ADDR_REQ:
8245 			/*
8246 			 * For IPv6 only, there are two additional
8247 			 * phys_addr_req's sent to the driver to get the
8248 			 * IPv6 token and lla. This allows IP to acquire
8249 			 * the hardware address format for a given interface
8250 			 * without having built in knowledge of the hardware
8251 			 * address. ill_phys_addr_pend keeps track of the last
8252 			 * DL_PAR sent so we know which response we are
8253 			 * dealing with. ill_dlpi_done will update
8254 			 * ill_phys_addr_pend when it sends the next req.
8255 			 * We don't complete the IOCTL until all three DL_PARs
8256 			 * have been attempted, so set *_len to 0 and break.
8257 			 */
8258 			paddrreq = ill->ill_phys_addr_pend;
8259 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8260 			if (paddrreq == DL_IPV6_TOKEN) {
8261 				ill->ill_token_length = 0;
8262 				log = B_FALSE;
8263 				break;
8264 			} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8265 				ill->ill_nd_lla_len = 0;
8266 				log = B_FALSE;
8267 				break;
8268 			}
8269 			/*
8270 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
8271 			 * We presumably have an IOCTL hanging out waiting
8272 			 * for completion. Find it and complete the IOCTL
8273 			 * with the error noted.
8274 			 * However, ill_dl_phys was called on an ill queue
8275 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
8276 			 * set. But the ioctl is known to be pending on ill_wq.
8277 			 */
8278 			if (!ill->ill_ifname_pending)
8279 				break;
8280 			ill->ill_ifname_pending = 0;
8281 			if (!ioctl_aborted)
8282 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8283 			if (mp1 != NULL) {
8284 				/*
8285 				 * This operation (SIOCSLIFNAME) must have
8286 				 * happened on the ill. Assert there is no conn
8287 				 */
8288 				ASSERT(connp == NULL);
8289 				q = ill->ill_wq;
8290 			}
8291 			break;
8292 		case DL_BIND_REQ:
8293 			ill_dlpi_done(ill, DL_BIND_REQ);
8294 			if (ill->ill_ifname_pending)
8295 				break;
8296 			mutex_enter(&ill->ill_lock);
8297 			ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8298 			mutex_exit(&ill->ill_lock);
8299 			/*
8300 			 * Something went wrong with the bind.  We presumably
8301 			 * have an IOCTL hanging out waiting for completion.
8302 			 * Find it, take down the interface that was coming
8303 			 * up, and complete the IOCTL with the error noted.
8304 			 */
8305 			if (!ioctl_aborted)
8306 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8307 			if (mp1 != NULL) {
8308 				/*
8309 				 * This might be a result of a DL_NOTE_REPLUMB
8310 				 * notification. In that case, connp is NULL.
8311 				 */
8312 				if (connp != NULL)
8313 					q = CONNP_TO_WQ(connp);
8314 
8315 				(void) ipif_down(ipif, NULL, NULL);
8316 				/* error is set below the switch */
8317 			}
8318 			break;
8319 		case DL_ENABMULTI_REQ:
8320 			ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8321 
8322 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8323 				ill->ill_dlpi_multicast_state = IDS_FAILED;
8324 			if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8325 
8326 				printf("ip: joining multicasts failed (%d)"
8327 				    " on %s - will use link layer "
8328 				    "broadcasts for multicast\n",
8329 				    dlea->dl_errno, ill->ill_name);
8330 
8331 				/*
8332 				 * Set up for multi_bcast; We are the
8333 				 * writer, so ok to access ill->ill_ipif
8334 				 * without any lock.
8335 				 */
8336 				mutex_enter(&ill->ill_phyint->phyint_lock);
8337 				ill->ill_phyint->phyint_flags |=
8338 				    PHYI_MULTI_BCAST;
8339 				mutex_exit(&ill->ill_phyint->phyint_lock);
8340 
8341 			}
8342 			freemsg(mp);	/* Don't want to pass this up */
8343 			return;
8344 		case DL_CAPABILITY_REQ:
8345 			ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8346 			    "DL_CAPABILITY REQ\n"));
8347 			if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8348 				ill->ill_dlpi_capab_state = IDCS_FAILED;
8349 			ill_capability_done(ill);
8350 			freemsg(mp);
8351 			return;
8352 		}
8353 		/*
8354 		 * Note the error for IOCTL completion (mp1 is set when
8355 		 * ready to complete ioctl). If ill_ifname_pending_err is
8356 		 * set, an error occured during plumbing (ill_ifname_pending),
8357 		 * so we want to report that error.
8358 		 *
8359 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8360 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8361 		 * expected to get errack'd if the driver doesn't support
8362 		 * these flags (e.g. ethernet). log will be set to B_FALSE
8363 		 * if these error conditions are encountered.
8364 		 */
8365 		if (mp1 != NULL) {
8366 			if (ill->ill_ifname_pending_err != 0)  {
8367 				err = ill->ill_ifname_pending_err;
8368 				ill->ill_ifname_pending_err = 0;
8369 			} else {
8370 				err = dlea->dl_unix_errno ?
8371 				    dlea->dl_unix_errno : ENXIO;
8372 			}
8373 		/*
8374 		 * If we're plumbing an interface and an error hasn't already
8375 		 * been saved, set ill_ifname_pending_err to the error passed
8376 		 * up. Ignore the error if log is B_FALSE (see comment above).
8377 		 */
8378 		} else if (log && ill->ill_ifname_pending &&
8379 		    ill->ill_ifname_pending_err == 0) {
8380 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8381 			    dlea->dl_unix_errno : ENXIO;
8382 		}
8383 
8384 		if (log)
8385 			ip_dlpi_error(ill, dlea->dl_error_primitive,
8386 			    dlea->dl_errno, dlea->dl_unix_errno);
8387 		break;
8388 	case DL_CAPABILITY_ACK:
8389 		ill_capability_ack(ill, mp);
8390 		/*
8391 		 * The message has been handed off to ill_capability_ack
8392 		 * and must not be freed below
8393 		 */
8394 		mp = NULL;
8395 		break;
8396 
8397 	case DL_INFO_ACK:
8398 		/* Call a routine to handle this one. */
8399 		ill_dlpi_done(ill, DL_INFO_REQ);
8400 		ip_ll_subnet_defaults(ill, mp);
8401 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8402 		return;
8403 	case DL_BIND_ACK:
8404 		/*
8405 		 * We should have an IOCTL waiting on this unless
8406 		 * sent by ill_dl_phys, in which case just return
8407 		 */
8408 		ill_dlpi_done(ill, DL_BIND_REQ);
8409 
8410 		if (ill->ill_ifname_pending) {
8411 			DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8412 			    ill_t *, ill, mblk_t *, mp);
8413 			break;
8414 		}
8415 		mutex_enter(&ill->ill_lock);
8416 		ill->ill_dl_up = 1;
8417 		ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8418 		mutex_exit(&ill->ill_lock);
8419 
8420 		if (!ioctl_aborted)
8421 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8422 		if (mp1 == NULL) {
8423 			DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8424 			break;
8425 		}
8426 		/*
8427 		 * mp1 was added by ill_dl_up(). if that is a result of
8428 		 * a DL_NOTE_REPLUMB notification, connp could be NULL.
8429 		 */
8430 		if (connp != NULL)
8431 			q = CONNP_TO_WQ(connp);
8432 		/*
8433 		 * We are exclusive. So nothing can change even after
8434 		 * we get the pending mp.
8435 		 */
8436 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8437 		DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8438 		ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8439 
8440 		/*
8441 		 * Now bring up the resolver; when that is complete, we'll
8442 		 * create IREs.  Note that we intentionally mirror what
8443 		 * ipif_up() would have done, because we got here by way of
8444 		 * ill_dl_up(), which stopped ipif_up()'s processing.
8445 		 */
8446 		if (ill->ill_isv6) {
8447 			/*
8448 			 * v6 interfaces.
8449 			 * Unlike ARP which has to do another bind
8450 			 * and attach, once we get here we are
8451 			 * done with NDP
8452 			 */
8453 			(void) ipif_resolver_up(ipif, Res_act_initial);
8454 			if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8455 				err = ipif_up_done_v6(ipif);
8456 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8457 			/*
8458 			 * ARP and other v4 external resolvers.
8459 			 * Leave the pending mblk intact so that
8460 			 * the ioctl completes in ip_rput().
8461 			 */
8462 			if (connp != NULL)
8463 				mutex_enter(&connp->conn_lock);
8464 			mutex_enter(&ill->ill_lock);
8465 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8466 			mutex_exit(&ill->ill_lock);
8467 			if (connp != NULL)
8468 				mutex_exit(&connp->conn_lock);
8469 			if (success) {
8470 				err = ipif_resolver_up(ipif, Res_act_initial);
8471 				if (err == EINPROGRESS) {
8472 					freemsg(mp);
8473 					return;
8474 				}
8475 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
8476 			} else {
8477 				/* The conn has started closing */
8478 				err = EINTR;
8479 			}
8480 		} else {
8481 			/*
8482 			 * This one is complete. Reply to pending ioctl.
8483 			 */
8484 			(void) ipif_resolver_up(ipif, Res_act_initial);
8485 			err = ipif_up_done(ipif);
8486 		}
8487 
8488 		if ((err == 0) && (ill->ill_up_ipifs)) {
8489 			err = ill_up_ipifs(ill, q, mp1);
8490 			if (err == EINPROGRESS) {
8491 				freemsg(mp);
8492 				return;
8493 			}
8494 		}
8495 
8496 		/*
8497 		 * If we have a moved ipif to bring up, and everything has
8498 		 * succeeded to this point, bring it up on the IPMP ill.
8499 		 * Otherwise, leave it down -- the admin can try to bring it
8500 		 * up by hand if need be.
8501 		 */
8502 		if (ill->ill_move_ipif != NULL) {
8503 			if (err != 0) {
8504 				ill->ill_move_ipif = NULL;
8505 			} else {
8506 				ipif = ill->ill_move_ipif;
8507 				ill->ill_move_ipif = NULL;
8508 				err = ipif_up(ipif, q, mp1);
8509 				if (err == EINPROGRESS) {
8510 					freemsg(mp);
8511 					return;
8512 				}
8513 			}
8514 		}
8515 		break;
8516 
8517 	case DL_NOTIFY_IND: {
8518 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8519 		uint_t orig_mtu, orig_mc_mtu;
8520 
8521 		switch (notify->dl_notification) {
8522 		case DL_NOTE_PHYS_ADDR:
8523 			err = ill_set_phys_addr(ill, mp);
8524 			break;
8525 
8526 		case DL_NOTE_REPLUMB:
8527 			/*
8528 			 * Directly return after calling ill_replumb().
8529 			 * Note that we should not free mp as it is reused
8530 			 * in the ill_replumb() function.
8531 			 */
8532 			err = ill_replumb(ill, mp);
8533 			return;
8534 
8535 		case DL_NOTE_FASTPATH_FLUSH:
8536 			nce_flush(ill, B_FALSE);
8537 			break;
8538 
8539 		case DL_NOTE_SDU_SIZE:
8540 		case DL_NOTE_SDU_SIZE2:
8541 			/*
8542 			 * The dce and fragmentation code can cope with
8543 			 * this changing while packets are being sent.
8544 			 * When packets are sent ip_output will discover
8545 			 * a change.
8546 			 *
8547 			 * Change the MTU size of the interface.
8548 			 */
8549 			mutex_enter(&ill->ill_lock);
8550 			orig_mtu = ill->ill_mtu;
8551 			orig_mc_mtu = ill->ill_mc_mtu;
8552 			switch (notify->dl_notification) {
8553 			case DL_NOTE_SDU_SIZE:
8554 				ill->ill_current_frag =
8555 				    (uint_t)notify->dl_data;
8556 				ill->ill_mc_mtu = (uint_t)notify->dl_data;
8557 				break;
8558 			case DL_NOTE_SDU_SIZE2:
8559 				ill->ill_current_frag =
8560 				    (uint_t)notify->dl_data1;
8561 				ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8562 				break;
8563 			}
8564 			if (ill->ill_current_frag > ill->ill_max_frag)
8565 				ill->ill_max_frag = ill->ill_current_frag;
8566 
8567 			if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8568 				ill->ill_mtu = ill->ill_current_frag;
8569 
8570 				/*
8571 				 * If ill_user_mtu was set (via
8572 				 * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8573 				 */
8574 				if (ill->ill_user_mtu != 0 &&
8575 				    ill->ill_user_mtu < ill->ill_mtu)
8576 					ill->ill_mtu = ill->ill_user_mtu;
8577 
8578 				if (ill->ill_user_mtu != 0 &&
8579 				    ill->ill_user_mtu < ill->ill_mc_mtu)
8580 					ill->ill_mc_mtu = ill->ill_user_mtu;
8581 
8582 				if (ill->ill_isv6) {
8583 					if (ill->ill_mtu < IPV6_MIN_MTU)
8584 						ill->ill_mtu = IPV6_MIN_MTU;
8585 					if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8586 						ill->ill_mc_mtu = IPV6_MIN_MTU;
8587 				} else {
8588 					if (ill->ill_mtu < IP_MIN_MTU)
8589 						ill->ill_mtu = IP_MIN_MTU;
8590 					if (ill->ill_mc_mtu < IP_MIN_MTU)
8591 						ill->ill_mc_mtu = IP_MIN_MTU;
8592 				}
8593 			} else if (ill->ill_mc_mtu > ill->ill_mtu) {
8594 				ill->ill_mc_mtu = ill->ill_mtu;
8595 			}
8596 
8597 			mutex_exit(&ill->ill_lock);
8598 			/*
8599 			 * Make sure all dce_generation checks find out
8600 			 * that ill_mtu/ill_mc_mtu has changed.
8601 			 */
8602 			if (orig_mtu != ill->ill_mtu ||
8603 			    orig_mc_mtu != ill->ill_mc_mtu) {
8604 				dce_increment_all_generations(ill->ill_isv6,
8605 				    ill->ill_ipst);
8606 			}
8607 
8608 			/*
8609 			 * Refresh IPMP meta-interface MTU if necessary.
8610 			 */
8611 			if (IS_UNDER_IPMP(ill))
8612 				ipmp_illgrp_refresh_mtu(ill->ill_grp);
8613 			break;
8614 
8615 		case DL_NOTE_LINK_UP:
8616 		case DL_NOTE_LINK_DOWN: {
8617 			/*
8618 			 * We are writer. ill / phyint / ipsq assocs stable.
8619 			 * The RUNNING flag reflects the state of the link.
8620 			 */
8621 			phyint_t *phyint = ill->ill_phyint;
8622 			uint64_t new_phyint_flags;
8623 			boolean_t changed = B_FALSE;
8624 			boolean_t went_up;
8625 
8626 			went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8627 			mutex_enter(&phyint->phyint_lock);
8628 
8629 			new_phyint_flags = went_up ?
8630 			    phyint->phyint_flags | PHYI_RUNNING :
8631 			    phyint->phyint_flags & ~PHYI_RUNNING;
8632 
8633 			if (IS_IPMP(ill)) {
8634 				new_phyint_flags = went_up ?
8635 				    new_phyint_flags & ~PHYI_FAILED :
8636 				    new_phyint_flags | PHYI_FAILED;
8637 			}
8638 
8639 			if (new_phyint_flags != phyint->phyint_flags) {
8640 				phyint->phyint_flags = new_phyint_flags;
8641 				changed = B_TRUE;
8642 			}
8643 			mutex_exit(&phyint->phyint_lock);
8644 			/*
8645 			 * ill_restart_dad handles the DAD restart and routing
8646 			 * socket notification logic.
8647 			 */
8648 			if (changed) {
8649 				ill_restart_dad(phyint->phyint_illv4, went_up);
8650 				ill_restart_dad(phyint->phyint_illv6, went_up);
8651 			}
8652 			break;
8653 		}
8654 		case DL_NOTE_PROMISC_ON_PHYS: {
8655 			phyint_t *phyint = ill->ill_phyint;
8656 
8657 			mutex_enter(&phyint->phyint_lock);
8658 			phyint->phyint_flags |= PHYI_PROMISC;
8659 			mutex_exit(&phyint->phyint_lock);
8660 			break;
8661 		}
8662 		case DL_NOTE_PROMISC_OFF_PHYS: {
8663 			phyint_t *phyint = ill->ill_phyint;
8664 
8665 			mutex_enter(&phyint->phyint_lock);
8666 			phyint->phyint_flags &= ~PHYI_PROMISC;
8667 			mutex_exit(&phyint->phyint_lock);
8668 			break;
8669 		}
8670 		case DL_NOTE_CAPAB_RENEG:
8671 			/*
8672 			 * Something changed on the driver side.
8673 			 * It wants us to renegotiate the capabilities
8674 			 * on this ill. One possible cause is the aggregation
8675 			 * interface under us where a port got added or
8676 			 * went away.
8677 			 *
8678 			 * If the capability negotiation is already done
8679 			 * or is in progress, reset the capabilities and
8680 			 * mark the ill's ill_capab_reneg to be B_TRUE,
8681 			 * so that when the ack comes back, we can start
8682 			 * the renegotiation process.
8683 			 *
8684 			 * Note that if ill_capab_reneg is already B_TRUE
8685 			 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8686 			 * the capability resetting request has been sent
8687 			 * and the renegotiation has not been started yet;
8688 			 * nothing needs to be done in this case.
8689 			 */
8690 			ipsq_current_start(ipsq, ill->ill_ipif, 0);
8691 			ill_capability_reset(ill, B_TRUE);
8692 			ipsq_current_finish(ipsq);
8693 			break;
8694 
8695 		case DL_NOTE_ALLOWED_IPS:
8696 			ill_set_allowed_ips(ill, mp);
8697 			break;
8698 		default:
8699 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8700 			    "type 0x%x for DL_NOTIFY_IND\n",
8701 			    notify->dl_notification));
8702 			break;
8703 		}
8704 
8705 		/*
8706 		 * As this is an asynchronous operation, we
8707 		 * should not call ill_dlpi_done
8708 		 */
8709 		break;
8710 	}
8711 	case DL_NOTIFY_ACK: {
8712 		dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8713 
8714 		if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8715 			ill->ill_note_link = 1;
8716 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
8717 		break;
8718 	}
8719 	case DL_PHYS_ADDR_ACK: {
8720 		/*
8721 		 * As part of plumbing the interface via SIOCSLIFNAME,
8722 		 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8723 		 * whose answers we receive here.  As each answer is received,
8724 		 * we call ill_dlpi_done() to dispatch the next request as
8725 		 * we're processing the current one.  Once all answers have
8726 		 * been received, we use ipsq_pending_mp_get() to dequeue the
8727 		 * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8728 		 * is invoked from an ill queue, conn_oper_pending_ill is not
8729 		 * available, but we know the ioctl is pending on ill_wq.)
8730 		 */
8731 		uint_t	paddrlen, paddroff;
8732 		uint8_t	*addr;
8733 
8734 		paddrreq = ill->ill_phys_addr_pend;
8735 		paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8736 		paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8737 		addr = mp->b_rptr + paddroff;
8738 
8739 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8740 		if (paddrreq == DL_IPV6_TOKEN) {
8741 			/*
8742 			 * bcopy to low-order bits of ill_token
8743 			 *
8744 			 * XXX Temporary hack - currently, all known tokens
8745 			 * are 64 bits, so I'll cheat for the moment.
8746 			 */
8747 			bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8748 			ill->ill_token_length = paddrlen;
8749 			break;
8750 		} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8751 			ASSERT(ill->ill_nd_lla_mp == NULL);
8752 			ill_set_ndmp(ill, mp, paddroff, paddrlen);
8753 			mp = NULL;
8754 			break;
8755 		} else if (paddrreq == DL_CURR_DEST_ADDR) {
8756 			ASSERT(ill->ill_dest_addr_mp == NULL);
8757 			ill->ill_dest_addr_mp = mp;
8758 			ill->ill_dest_addr = addr;
8759 			mp = NULL;
8760 			if (ill->ill_isv6) {
8761 				ill_setdesttoken(ill);
8762 				ipif_setdestlinklocal(ill->ill_ipif);
8763 			}
8764 			break;
8765 		}
8766 
8767 		ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8768 		ASSERT(ill->ill_phys_addr_mp == NULL);
8769 		if (!ill->ill_ifname_pending)
8770 			break;
8771 		ill->ill_ifname_pending = 0;
8772 		if (!ioctl_aborted)
8773 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
8774 		if (mp1 != NULL) {
8775 			ASSERT(connp == NULL);
8776 			q = ill->ill_wq;
8777 		}
8778 		/*
8779 		 * If any error acks received during the plumbing sequence,
8780 		 * ill_ifname_pending_err will be set. Break out and send up
8781 		 * the error to the pending ioctl.
8782 		 */
8783 		if (ill->ill_ifname_pending_err != 0) {
8784 			err = ill->ill_ifname_pending_err;
8785 			ill->ill_ifname_pending_err = 0;
8786 			break;
8787 		}
8788 
8789 		ill->ill_phys_addr_mp = mp;
8790 		ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8791 		mp = NULL;
8792 
8793 		/*
8794 		 * If paddrlen or ill_phys_addr_length is zero, the DLPI
8795 		 * provider doesn't support physical addresses.  We check both
8796 		 * paddrlen and ill_phys_addr_length because sppp (PPP) does
8797 		 * not have physical addresses, but historically adversises a
8798 		 * physical address length of 0 in its DL_INFO_ACK, but 6 in
8799 		 * its DL_PHYS_ADDR_ACK.
8800 		 */
8801 		if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8802 			ill->ill_phys_addr = NULL;
8803 		} else if (paddrlen != ill->ill_phys_addr_length) {
8804 			ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8805 			    paddrlen, ill->ill_phys_addr_length));
8806 			err = EINVAL;
8807 			break;
8808 		}
8809 
8810 		if (ill->ill_nd_lla_mp == NULL) {
8811 			if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8812 				err = ENOMEM;
8813 				break;
8814 			}
8815 			ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8816 		}
8817 
8818 		if (ill->ill_isv6) {
8819 			ill_setdefaulttoken(ill);
8820 			ipif_setlinklocal(ill->ill_ipif);
8821 		}
8822 		break;
8823 	}
8824 	case DL_OK_ACK:
8825 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8826 		    dl_primstr((int)dloa->dl_correct_primitive),
8827 		    dloa->dl_correct_primitive));
8828 		DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8829 		    char *, dl_primstr(dloa->dl_correct_primitive),
8830 		    ill_t *, ill);
8831 
8832 		switch (dloa->dl_correct_primitive) {
8833 		case DL_ENABMULTI_REQ:
8834 		case DL_DISABMULTI_REQ:
8835 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8836 			break;
8837 		case DL_PROMISCON_REQ:
8838 		case DL_PROMISCOFF_REQ:
8839 		case DL_UNBIND_REQ:
8840 		case DL_ATTACH_REQ:
8841 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
8842 			break;
8843 		}
8844 		break;
8845 	default:
8846 		break;
8847 	}
8848 
8849 	freemsg(mp);
8850 	if (mp1 == NULL)
8851 		return;
8852 
8853 	/*
8854 	 * The operation must complete without EINPROGRESS since
8855 	 * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8856 	 * the operation will be stuck forever inside the IPSQ.
8857 	 */
8858 	ASSERT(err != EINPROGRESS);
8859 
8860 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8861 	    int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8862 	    ipif_t *, NULL);
8863 
8864 	switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8865 	case 0:
8866 		ipsq_current_finish(ipsq);
8867 		break;
8868 
8869 	case SIOCSLIFNAME:
8870 	case IF_UNITSEL: {
8871 		ill_t *ill_other = ILL_OTHER(ill);
8872 
8873 		/*
8874 		 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8875 		 * ill has a peer which is in an IPMP group, then place ill
8876 		 * into the same group.  One catch: although ifconfig plumbs
8877 		 * the appropriate IPMP meta-interface prior to plumbing this
8878 		 * ill, it is possible for multiple ifconfig applications to
8879 		 * race (or for another application to adjust plumbing), in
8880 		 * which case the IPMP meta-interface we need will be missing.
8881 		 * If so, kick the phyint out of the group.
8882 		 */
8883 		if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8884 			ipmp_grp_t	*grp = ill->ill_phyint->phyint_grp;
8885 			ipmp_illgrp_t	*illg;
8886 
8887 			illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8888 			if (illg == NULL)
8889 				ipmp_phyint_leave_grp(ill->ill_phyint);
8890 			else
8891 				ipmp_ill_join_illgrp(ill, illg);
8892 		}
8893 
8894 		if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8895 			ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8896 		else
8897 			ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8898 		break;
8899 	}
8900 	case SIOCLIFADDIF:
8901 		ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8902 		break;
8903 
8904 	default:
8905 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8906 		break;
8907 	}
8908 }
8909 
8910 /*
8911  * ip_rput_other is called by ip_rput to handle messages modifying the global
8912  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8913  */
8914 /* ARGSUSED */
8915 void
8916 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8917 {
8918 	ill_t		*ill = q->q_ptr;
8919 	struct iocblk	*iocp;
8920 
8921 	ip1dbg(("ip_rput_other "));
8922 	if (ipsq != NULL) {
8923 		ASSERT(IAM_WRITER_IPSQ(ipsq));
8924 		ASSERT(ipsq->ipsq_xop ==
8925 		    ill->ill_phyint->phyint_ipsq->ipsq_xop);
8926 	}
8927 
8928 	switch (mp->b_datap->db_type) {
8929 	case M_ERROR:
8930 	case M_HANGUP:
8931 		/*
8932 		 * The device has a problem.  We force the ILL down.  It can
8933 		 * be brought up again manually using SIOCSIFFLAGS (via
8934 		 * ifconfig or equivalent).
8935 		 */
8936 		ASSERT(ipsq != NULL);
8937 		if (mp->b_rptr < mp->b_wptr)
8938 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8939 		if (ill->ill_error == 0)
8940 			ill->ill_error = ENXIO;
8941 		if (!ill_down_start(q, mp))
8942 			return;
8943 		ipif_all_down_tail(ipsq, q, mp, NULL);
8944 		break;
8945 	case M_IOCNAK: {
8946 		iocp = (struct iocblk *)mp->b_rptr;
8947 
8948 		ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8949 		/*
8950 		 * If this was the first attempt, turn off the fastpath
8951 		 * probing.
8952 		 */
8953 		mutex_enter(&ill->ill_lock);
8954 		if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8955 			ill->ill_dlpi_fastpath_state = IDS_FAILED;
8956 			mutex_exit(&ill->ill_lock);
8957 			/*
8958 			 * don't flush the nce_t entries: we use them
8959 			 * as an index to the ncec itself.
8960 			 */
8961 			ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8962 			    ill->ill_name));
8963 		} else {
8964 			mutex_exit(&ill->ill_lock);
8965 		}
8966 		freemsg(mp);
8967 		break;
8968 	}
8969 	default:
8970 		ASSERT(0);
8971 		break;
8972 	}
8973 }
8974 
8975 /*
8976  * Update any source route, record route or timestamp options
8977  * When it fails it has consumed the message and BUMPed the MIB.
8978  */
8979 boolean_t
8980 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8981     ip_recv_attr_t *ira)
8982 {
8983 	ipoptp_t	opts;
8984 	uchar_t		*opt;
8985 	uint8_t		optval;
8986 	uint8_t		optlen;
8987 	ipaddr_t	dst;
8988 	ipaddr_t	ifaddr;
8989 	uint32_t	ts;
8990 	timestruc_t	now;
8991 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
8992 
8993 	ip2dbg(("ip_forward_options\n"));
8994 	dst = ipha->ipha_dst;
8995 	for (optval = ipoptp_first(&opts, ipha);
8996 	    optval != IPOPT_EOL;
8997 	    optval = ipoptp_next(&opts)) {
8998 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
8999 		opt = opts.ipoptp_cur;
9000 		optlen = opts.ipoptp_len;
9001 		ip2dbg(("ip_forward_options: opt %d, len %d\n",
9002 		    optval, opts.ipoptp_len));
9003 		switch (optval) {
9004 			uint32_t off;
9005 		case IPOPT_SSRR:
9006 		case IPOPT_LSRR:
9007 			/* Check if adminstratively disabled */
9008 			if (!ipst->ips_ip_forward_src_routed) {
9009 				BUMP_MIB(dst_ill->ill_ip_mib,
9010 				    ipIfStatsForwProhibits);
9011 				ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
9012 				    mp, dst_ill);
9013 				icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
9014 				    ira);
9015 				return (B_FALSE);
9016 			}
9017 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9018 				/*
9019 				 * Must be partial since ip_input_options
9020 				 * checked for strict.
9021 				 */
9022 				break;
9023 			}
9024 			off = opt[IPOPT_OFFSET];
9025 			off--;
9026 		redo_srr:
9027 			if (optlen < IP_ADDR_LEN ||
9028 			    off > optlen - IP_ADDR_LEN) {
9029 				/* End of source route */
9030 				ip1dbg((
9031 				    "ip_forward_options: end of SR\n"));
9032 				break;
9033 			}
9034 			/* Pick a reasonable address on the outbound if */
9035 			ASSERT(dst_ill != NULL);
9036 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9037 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9038 			    NULL) != 0) {
9039 				/* No source! Shouldn't happen */
9040 				ifaddr = INADDR_ANY;
9041 			}
9042 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9043 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9044 			ip1dbg(("ip_forward_options: next hop 0x%x\n",
9045 			    ntohl(dst)));
9046 
9047 			/*
9048 			 * Check if our address is present more than
9049 			 * once as consecutive hops in source route.
9050 			 */
9051 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9052 				off += IP_ADDR_LEN;
9053 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9054 				goto redo_srr;
9055 			}
9056 			ipha->ipha_dst = dst;
9057 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9058 			break;
9059 		case IPOPT_RR:
9060 			off = opt[IPOPT_OFFSET];
9061 			off--;
9062 			if (optlen < IP_ADDR_LEN ||
9063 			    off > optlen - IP_ADDR_LEN) {
9064 				/* No more room - ignore */
9065 				ip1dbg((
9066 				    "ip_forward_options: end of RR\n"));
9067 				break;
9068 			}
9069 			/* Pick a reasonable address on the outbound if */
9070 			ASSERT(dst_ill != NULL);
9071 			if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9072 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9073 			    NULL) != 0) {
9074 				/* No source! Shouldn't happen */
9075 				ifaddr = INADDR_ANY;
9076 			}
9077 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9078 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9079 			break;
9080 		case IPOPT_TS:
9081 			/* Insert timestamp if there is room */
9082 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9083 			case IPOPT_TS_TSONLY:
9084 				off = IPOPT_TS_TIMELEN;
9085 				break;
9086 			case IPOPT_TS_PRESPEC:
9087 			case IPOPT_TS_PRESPEC_RFC791:
9088 				/* Verify that the address matched */
9089 				off = opt[IPOPT_OFFSET] - 1;
9090 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9091 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9092 					/* Not for us */
9093 					break;
9094 				}
9095 				/* FALLTHROUGH */
9096 			case IPOPT_TS_TSANDADDR:
9097 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9098 				break;
9099 			default:
9100 				/*
9101 				 * ip_*put_options should have already
9102 				 * dropped this packet.
9103 				 */
9104 				cmn_err(CE_PANIC, "ip_forward_options: "
9105 				    "unknown IT - bug in ip_input_options?\n");
9106 				return (B_TRUE);	/* Keep "lint" happy */
9107 			}
9108 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9109 				/* Increase overflow counter */
9110 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9111 				opt[IPOPT_POS_OV_FLG] =
9112 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9113 				    (off << 4));
9114 				break;
9115 			}
9116 			off = opt[IPOPT_OFFSET] - 1;
9117 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9118 			case IPOPT_TS_PRESPEC:
9119 			case IPOPT_TS_PRESPEC_RFC791:
9120 			case IPOPT_TS_TSANDADDR:
9121 				/* Pick a reasonable addr on the outbound if */
9122 				ASSERT(dst_ill != NULL);
9123 				if (ip_select_source_v4(dst_ill, INADDR_ANY,
9124 				    dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9125 				    NULL, NULL) != 0) {
9126 					/* No source! Shouldn't happen */
9127 					ifaddr = INADDR_ANY;
9128 				}
9129 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9130 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9131 				/* FALLTHROUGH */
9132 			case IPOPT_TS_TSONLY:
9133 				off = opt[IPOPT_OFFSET] - 1;
9134 				/* Compute # of milliseconds since midnight */
9135 				gethrestime(&now);
9136 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9137 				    NSEC2MSEC(now.tv_nsec);
9138 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9139 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9140 				break;
9141 			}
9142 			break;
9143 		}
9144 	}
9145 	return (B_TRUE);
9146 }
9147 
9148 /*
9149  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9150  * returns 'true' if there are still fragments left on the queue, in
9151  * which case we restart the timer.
9152  */
9153 void
9154 ill_frag_timer(void *arg)
9155 {
9156 	ill_t	*ill = (ill_t *)arg;
9157 	boolean_t frag_pending;
9158 	ip_stack_t *ipst = ill->ill_ipst;
9159 	time_t	timeout;
9160 
9161 	mutex_enter(&ill->ill_lock);
9162 	ASSERT(!ill->ill_fragtimer_executing);
9163 	if (ill->ill_state_flags & ILL_CONDEMNED) {
9164 		ill->ill_frag_timer_id = 0;
9165 		mutex_exit(&ill->ill_lock);
9166 		return;
9167 	}
9168 	ill->ill_fragtimer_executing = 1;
9169 	mutex_exit(&ill->ill_lock);
9170 
9171 	timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9172 	    ipst->ips_ip_reassembly_timeout);
9173 
9174 	frag_pending = ill_frag_timeout(ill, timeout);
9175 
9176 	/*
9177 	 * Restart the timer, if we have fragments pending or if someone
9178 	 * wanted us to be scheduled again.
9179 	 */
9180 	mutex_enter(&ill->ill_lock);
9181 	ill->ill_fragtimer_executing = 0;
9182 	ill->ill_frag_timer_id = 0;
9183 	if (frag_pending || ill->ill_fragtimer_needrestart)
9184 		ill_frag_timer_start(ill);
9185 	mutex_exit(&ill->ill_lock);
9186 }
9187 
9188 void
9189 ill_frag_timer_start(ill_t *ill)
9190 {
9191 	ip_stack_t *ipst = ill->ill_ipst;
9192 	clock_t	timeo_ms;
9193 
9194 	ASSERT(MUTEX_HELD(&ill->ill_lock));
9195 
9196 	/* If the ill is closing or opening don't proceed */
9197 	if (ill->ill_state_flags & ILL_CONDEMNED)
9198 		return;
9199 
9200 	if (ill->ill_fragtimer_executing) {
9201 		/*
9202 		 * ill_frag_timer is currently executing. Just record the
9203 		 * the fact that we want the timer to be restarted.
9204 		 * ill_frag_timer will post a timeout before it returns,
9205 		 * ensuring it will be called again.
9206 		 */
9207 		ill->ill_fragtimer_needrestart = 1;
9208 		return;
9209 	}
9210 
9211 	if (ill->ill_frag_timer_id == 0) {
9212 		timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9213 		    ipst->ips_ip_reassembly_timeout) * SECONDS;
9214 
9215 		/*
9216 		 * The timer is neither running nor is the timeout handler
9217 		 * executing. Post a timeout so that ill_frag_timer will be
9218 		 * called
9219 		 */
9220 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9221 		    MSEC_TO_TICK(timeo_ms >> 1));
9222 		ill->ill_fragtimer_needrestart = 0;
9223 	}
9224 }
9225 
9226 /*
9227  * Update any source route, record route or timestamp options.
9228  * Check that we are at end of strict source route.
9229  * The options have already been checked for sanity in ip_input_options().
9230  */
9231 boolean_t
9232 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9233 {
9234 	ipoptp_t	opts;
9235 	uchar_t		*opt;
9236 	uint8_t		optval;
9237 	uint8_t		optlen;
9238 	ipaddr_t	dst;
9239 	ipaddr_t	ifaddr;
9240 	uint32_t	ts;
9241 	timestruc_t	now;
9242 	ill_t		*ill = ira->ira_ill;
9243 	ip_stack_t	*ipst = ill->ill_ipst;
9244 
9245 	ip2dbg(("ip_input_local_options\n"));
9246 
9247 	for (optval = ipoptp_first(&opts, ipha);
9248 	    optval != IPOPT_EOL;
9249 	    optval = ipoptp_next(&opts)) {
9250 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9251 		opt = opts.ipoptp_cur;
9252 		optlen = opts.ipoptp_len;
9253 		ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9254 		    optval, optlen));
9255 		switch (optval) {
9256 			uint32_t off;
9257 		case IPOPT_SSRR:
9258 		case IPOPT_LSRR:
9259 			off = opt[IPOPT_OFFSET];
9260 			off--;
9261 			if (optlen < IP_ADDR_LEN ||
9262 			    off > optlen - IP_ADDR_LEN) {
9263 				/* End of source route */
9264 				ip1dbg(("ip_input_local_options: end of SR\n"));
9265 				break;
9266 			}
9267 			/*
9268 			 * This will only happen if two consecutive entries
9269 			 * in the source route contains our address or if
9270 			 * it is a packet with a loose source route which
9271 			 * reaches us before consuming the whole source route
9272 			 */
9273 			ip1dbg(("ip_input_local_options: not end of SR\n"));
9274 			if (optval == IPOPT_SSRR) {
9275 				goto bad_src_route;
9276 			}
9277 			/*
9278 			 * Hack: instead of dropping the packet truncate the
9279 			 * source route to what has been used by filling the
9280 			 * rest with IPOPT_NOP.
9281 			 */
9282 			opt[IPOPT_OLEN] = (uint8_t)off;
9283 			while (off < optlen) {
9284 				opt[off++] = IPOPT_NOP;
9285 			}
9286 			break;
9287 		case IPOPT_RR:
9288 			off = opt[IPOPT_OFFSET];
9289 			off--;
9290 			if (optlen < IP_ADDR_LEN ||
9291 			    off > optlen - IP_ADDR_LEN) {
9292 				/* No more room - ignore */
9293 				ip1dbg((
9294 				    "ip_input_local_options: end of RR\n"));
9295 				break;
9296 			}
9297 			/* Pick a reasonable address on the outbound if */
9298 			if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9299 			    INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9300 			    NULL) != 0) {
9301 				/* No source! Shouldn't happen */
9302 				ifaddr = INADDR_ANY;
9303 			}
9304 			bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9305 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9306 			break;
9307 		case IPOPT_TS:
9308 			/* Insert timestamp if there is romm */
9309 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9310 			case IPOPT_TS_TSONLY:
9311 				off = IPOPT_TS_TIMELEN;
9312 				break;
9313 			case IPOPT_TS_PRESPEC:
9314 			case IPOPT_TS_PRESPEC_RFC791:
9315 				/* Verify that the address matched */
9316 				off = opt[IPOPT_OFFSET] - 1;
9317 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9318 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9319 					/* Not for us */
9320 					break;
9321 				}
9322 				/* FALLTHROUGH */
9323 			case IPOPT_TS_TSANDADDR:
9324 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9325 				break;
9326 			default:
9327 				/*
9328 				 * ip_*put_options should have already
9329 				 * dropped this packet.
9330 				 */
9331 				cmn_err(CE_PANIC, "ip_input_local_options: "
9332 				    "unknown IT - bug in ip_input_options?\n");
9333 				return (B_TRUE);	/* Keep "lint" happy */
9334 			}
9335 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9336 				/* Increase overflow counter */
9337 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9338 				opt[IPOPT_POS_OV_FLG] =
9339 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9340 				    (off << 4));
9341 				break;
9342 			}
9343 			off = opt[IPOPT_OFFSET] - 1;
9344 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9345 			case IPOPT_TS_PRESPEC:
9346 			case IPOPT_TS_PRESPEC_RFC791:
9347 			case IPOPT_TS_TSANDADDR:
9348 				/* Pick a reasonable addr on the outbound if */
9349 				if (ip_select_source_v4(ill, INADDR_ANY,
9350 				    ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9351 				    &ifaddr, NULL, NULL) != 0) {
9352 					/* No source! Shouldn't happen */
9353 					ifaddr = INADDR_ANY;
9354 				}
9355 				bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9356 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9357 				/* FALLTHROUGH */
9358 			case IPOPT_TS_TSONLY:
9359 				off = opt[IPOPT_OFFSET] - 1;
9360 				/* Compute # of milliseconds since midnight */
9361 				gethrestime(&now);
9362 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9363 				    NSEC2MSEC(now.tv_nsec);
9364 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9365 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9366 				break;
9367 			}
9368 			break;
9369 		}
9370 	}
9371 	return (B_TRUE);
9372 
9373 bad_src_route:
9374 	/* make sure we clear any indication of a hardware checksum */
9375 	DB_CKSUMFLAGS(mp) = 0;
9376 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9377 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9378 	return (B_FALSE);
9379 
9380 }
9381 
9382 /*
9383  * Process IP options in an inbound packet.  Always returns the nexthop.
9384  * Normally this is the passed in nexthop, but if there is an option
9385  * that effects the nexthop (such as a source route) that will be returned.
9386  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9387  * and mp freed.
9388  */
9389 ipaddr_t
9390 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9391     ip_recv_attr_t *ira, int *errorp)
9392 {
9393 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
9394 	ipoptp_t	opts;
9395 	uchar_t		*opt;
9396 	uint8_t		optval;
9397 	uint8_t		optlen;
9398 	intptr_t	code = 0;
9399 	ire_t		*ire;
9400 
9401 	ip2dbg(("ip_input_options\n"));
9402 	*errorp = 0;
9403 	for (optval = ipoptp_first(&opts, ipha);
9404 	    optval != IPOPT_EOL;
9405 	    optval = ipoptp_next(&opts)) {
9406 		opt = opts.ipoptp_cur;
9407 		optlen = opts.ipoptp_len;
9408 		ip2dbg(("ip_input_options: opt %d, len %d\n",
9409 		    optval, optlen));
9410 		/*
9411 		 * Note: we need to verify the checksum before we
9412 		 * modify anything thus this routine only extracts the next
9413 		 * hop dst from any source route.
9414 		 */
9415 		switch (optval) {
9416 			uint32_t off;
9417 		case IPOPT_SSRR:
9418 		case IPOPT_LSRR:
9419 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9420 				if (optval == IPOPT_SSRR) {
9421 					ip1dbg(("ip_input_options: not next"
9422 					    " strict source route 0x%x\n",
9423 					    ntohl(dst)));
9424 					code = (char *)&ipha->ipha_dst -
9425 					    (char *)ipha;
9426 					goto param_prob; /* RouterReq's */
9427 				}
9428 				ip2dbg(("ip_input_options: "
9429 				    "not next source route 0x%x\n",
9430 				    ntohl(dst)));
9431 				break;
9432 			}
9433 
9434 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9435 				ip1dbg((
9436 				    "ip_input_options: bad option offset\n"));
9437 				code = (char *)&opt[IPOPT_OLEN] -
9438 				    (char *)ipha;
9439 				goto param_prob;
9440 			}
9441 			off = opt[IPOPT_OFFSET];
9442 			off--;
9443 		redo_srr:
9444 			if (optlen < IP_ADDR_LEN ||
9445 			    off > optlen - IP_ADDR_LEN) {
9446 				/* End of source route */
9447 				ip1dbg(("ip_input_options: end of SR\n"));
9448 				break;
9449 			}
9450 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9451 			ip1dbg(("ip_input_options: next hop 0x%x\n",
9452 			    ntohl(dst)));
9453 
9454 			/*
9455 			 * Check if our address is present more than
9456 			 * once as consecutive hops in source route.
9457 			 * XXX verify per-interface ip_forwarding
9458 			 * for source route?
9459 			 */
9460 			if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9461 				off += IP_ADDR_LEN;
9462 				goto redo_srr;
9463 			}
9464 
9465 			if (dst == htonl(INADDR_LOOPBACK)) {
9466 				ip1dbg(("ip_input_options: loopback addr in "
9467 				    "source route!\n"));
9468 				goto bad_src_route;
9469 			}
9470 			/*
9471 			 * For strict: verify that dst is directly
9472 			 * reachable.
9473 			 */
9474 			if (optval == IPOPT_SSRR) {
9475 				ire = ire_ftable_lookup_v4(dst, 0, 0,
9476 				    IRE_INTERFACE, NULL, ALL_ZONES,
9477 				    ira->ira_tsl,
9478 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9479 				    NULL);
9480 				if (ire == NULL) {
9481 					ip1dbg(("ip_input_options: SSRR not "
9482 					    "directly reachable: 0x%x\n",
9483 					    ntohl(dst)));
9484 					goto bad_src_route;
9485 				}
9486 				ire_refrele(ire);
9487 			}
9488 			/*
9489 			 * Defer update of the offset and the record route
9490 			 * until the packet is forwarded.
9491 			 */
9492 			break;
9493 		case IPOPT_RR:
9494 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9495 				ip1dbg((
9496 				    "ip_input_options: bad option offset\n"));
9497 				code = (char *)&opt[IPOPT_OLEN] -
9498 				    (char *)ipha;
9499 				goto param_prob;
9500 			}
9501 			break;
9502 		case IPOPT_TS:
9503 			/*
9504 			 * Verify that length >= 5 and that there is either
9505 			 * room for another timestamp or that the overflow
9506 			 * counter is not maxed out.
9507 			 */
9508 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9509 			if (optlen < IPOPT_MINLEN_IT) {
9510 				goto param_prob;
9511 			}
9512 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9513 				ip1dbg((
9514 				    "ip_input_options: bad option offset\n"));
9515 				code = (char *)&opt[IPOPT_OFFSET] -
9516 				    (char *)ipha;
9517 				goto param_prob;
9518 			}
9519 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9520 			case IPOPT_TS_TSONLY:
9521 				off = IPOPT_TS_TIMELEN;
9522 				break;
9523 			case IPOPT_TS_TSANDADDR:
9524 			case IPOPT_TS_PRESPEC:
9525 			case IPOPT_TS_PRESPEC_RFC791:
9526 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9527 				break;
9528 			default:
9529 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
9530 				    (char *)ipha;
9531 				goto param_prob;
9532 			}
9533 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9534 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9535 				/*
9536 				 * No room and the overflow counter is 15
9537 				 * already.
9538 				 */
9539 				goto param_prob;
9540 			}
9541 			break;
9542 		}
9543 	}
9544 
9545 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9546 		return (dst);
9547 	}
9548 
9549 	ip1dbg(("ip_input_options: error processing IP options."));
9550 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9551 
9552 param_prob:
9553 	/* make sure we clear any indication of a hardware checksum */
9554 	DB_CKSUMFLAGS(mp) = 0;
9555 	ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9556 	icmp_param_problem(mp, (uint8_t)code, ira);
9557 	*errorp = -1;
9558 	return (dst);
9559 
9560 bad_src_route:
9561 	/* make sure we clear any indication of a hardware checksum */
9562 	DB_CKSUMFLAGS(mp) = 0;
9563 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9564 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9565 	*errorp = -1;
9566 	return (dst);
9567 }
9568 
9569 /*
9570  * IP & ICMP info in >=14 msg's ...
9571  *  - ip fixed part (mib2_ip_t)
9572  *  - icmp fixed part (mib2_icmp_t)
9573  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
9574  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
9575  *  - ipNetToMediaEntryTable (ip 22)	all IPv4 Neighbor Cache entries
9576  *  - ipRouteAttributeTable (ip 102)	labeled routes
9577  *  - ip multicast membership (ip_member_t)
9578  *  - ip multicast source filtering (ip_grpsrc_t)
9579  *  - igmp fixed part (struct igmpstat)
9580  *  - multicast routing stats (struct mrtstat)
9581  *  - multicast routing vifs (array of struct vifctl)
9582  *  - multicast routing routes (array of struct mfcctl)
9583  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9584  *					One per ill plus one generic
9585  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9586  *					One per ill plus one generic
9587  *  - ipv6RouteEntry			all IPv6 IREs
9588  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
9589  *  - ipv6NetToMediaEntry		all IPv6 Neighbor Cache entries
9590  *  - ipv6AddrEntry			all IPv6 ipifs
9591  *  - ipv6 multicast membership (ipv6_member_t)
9592  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9593  *
9594  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9595  * already filled in by the caller.
9596  * If legacy_req is true then MIB structures needs to be truncated to their
9597  * legacy sizes before being returned.
9598  * Return value of 0 indicates that no messages were sent and caller
9599  * should free mpctl.
9600  */
9601 int
9602 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9603 {
9604 	ip_stack_t *ipst;
9605 	sctp_stack_t *sctps;
9606 
9607 	if (q->q_next != NULL) {
9608 		ipst = ILLQ_TO_IPST(q);
9609 	} else {
9610 		ipst = CONNQ_TO_IPST(q);
9611 	}
9612 	ASSERT(ipst != NULL);
9613 	sctps = ipst->ips_netstack->netstack_sctp;
9614 
9615 	if (mpctl == NULL || mpctl->b_cont == NULL) {
9616 		return (0);
9617 	}
9618 
9619 	/*
9620 	 * For the purposes of the (broken) packet shell use
9621 	 * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9622 	 * to make TCP and UDP appear first in the list of mib items.
9623 	 * TBD: We could expand this and use it in netstat so that
9624 	 * the kernel doesn't have to produce large tables (connections,
9625 	 * routes, etc) when netstat only wants the statistics or a particular
9626 	 * table.
9627 	 */
9628 	if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9629 		if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9630 			return (1);
9631 		}
9632 	}
9633 
9634 	if (level != MIB2_TCP) {
9635 		if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9636 			return (1);
9637 		}
9638 	}
9639 
9640 	if (level != MIB2_UDP) {
9641 		if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9642 			return (1);
9643 		}
9644 	}
9645 
9646 	if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9647 	    ipst, legacy_req)) == NULL) {
9648 		return (1);
9649 	}
9650 
9651 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9652 	    legacy_req)) == NULL) {
9653 		return (1);
9654 	}
9655 
9656 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9657 		return (1);
9658 	}
9659 
9660 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9661 		return (1);
9662 	}
9663 
9664 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9665 		return (1);
9666 	}
9667 
9668 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9669 		return (1);
9670 	}
9671 
9672 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9673 	    legacy_req)) == NULL) {
9674 		return (1);
9675 	}
9676 
9677 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9678 	    legacy_req)) == NULL) {
9679 		return (1);
9680 	}
9681 
9682 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9683 		return (1);
9684 	}
9685 
9686 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9687 		return (1);
9688 	}
9689 
9690 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9691 		return (1);
9692 	}
9693 
9694 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9695 		return (1);
9696 	}
9697 
9698 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9699 		return (1);
9700 	}
9701 
9702 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9703 		return (1);
9704 	}
9705 
9706 	mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9707 	if (mpctl == NULL)
9708 		return (1);
9709 
9710 	mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9711 	if (mpctl == NULL)
9712 		return (1);
9713 
9714 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9715 		return (1);
9716 	}
9717 	if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9718 		return (1);
9719 	}
9720 	freemsg(mpctl);
9721 	return (1);
9722 }
9723 
9724 /* Get global (legacy) IPv4 statistics */
9725 static mblk_t *
9726 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9727     ip_stack_t *ipst, boolean_t legacy_req)
9728 {
9729 	mib2_ip_t		old_ip_mib;
9730 	struct opthdr		*optp;
9731 	mblk_t			*mp2ctl;
9732 	mib2_ipAddrEntry_t	mae;
9733 
9734 	/*
9735 	 * make a copy of the original message
9736 	 */
9737 	mp2ctl = copymsg(mpctl);
9738 
9739 	/* fixed length IP structure... */
9740 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9741 	optp->level = MIB2_IP;
9742 	optp->name = 0;
9743 	SET_MIB(old_ip_mib.ipForwarding,
9744 	    (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9745 	SET_MIB(old_ip_mib.ipDefaultTTL,
9746 	    (uint32_t)ipst->ips_ip_def_ttl);
9747 	SET_MIB(old_ip_mib.ipReasmTimeout,
9748 	    ipst->ips_ip_reassembly_timeout);
9749 	SET_MIB(old_ip_mib.ipAddrEntrySize,
9750 	    (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9751 	    sizeof (mib2_ipAddrEntry_t));
9752 	SET_MIB(old_ip_mib.ipRouteEntrySize,
9753 	    sizeof (mib2_ipRouteEntry_t));
9754 	SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9755 	    sizeof (mib2_ipNetToMediaEntry_t));
9756 	SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9757 	SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9758 	SET_MIB(old_ip_mib.ipRouteAttributeSize,
9759 	    sizeof (mib2_ipAttributeEntry_t));
9760 	SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9761 	SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9762 
9763 	/*
9764 	 * Grab the statistics from the new IP MIB
9765 	 */
9766 	SET_MIB(old_ip_mib.ipInReceives,
9767 	    (uint32_t)ipmib->ipIfStatsHCInReceives);
9768 	SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9769 	SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9770 	SET_MIB(old_ip_mib.ipForwDatagrams,
9771 	    (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9772 	SET_MIB(old_ip_mib.ipInUnknownProtos,
9773 	    ipmib->ipIfStatsInUnknownProtos);
9774 	SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9775 	SET_MIB(old_ip_mib.ipInDelivers,
9776 	    (uint32_t)ipmib->ipIfStatsHCInDelivers);
9777 	SET_MIB(old_ip_mib.ipOutRequests,
9778 	    (uint32_t)ipmib->ipIfStatsHCOutRequests);
9779 	SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9780 	SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9781 	SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9782 	SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9783 	SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9784 	SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9785 	SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9786 	SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9787 
9788 	/* ipRoutingDiscards is not being used */
9789 	SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9790 	SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9791 	SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9792 	SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9793 	SET_MIB(old_ip_mib.ipReasmDuplicates,
9794 	    ipmib->ipIfStatsReasmDuplicates);
9795 	SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9796 	SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9797 	SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9798 	SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9799 	SET_MIB(old_ip_mib.rawipInOverflows,
9800 	    ipmib->rawipIfStatsInOverflows);
9801 
9802 	SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9803 	SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9804 	SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9805 	SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9806 	SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9807 	    ipmib->ipIfStatsOutSwitchIPVersion);
9808 
9809 	if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9810 	    (int)sizeof (old_ip_mib))) {
9811 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9812 		    (uint_t)sizeof (old_ip_mib)));
9813 	}
9814 
9815 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9816 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9817 	    (int)optp->level, (int)optp->name, (int)optp->len));
9818 	qreply(q, mpctl);
9819 	return (mp2ctl);
9820 }
9821 
9822 /* Per interface IPv4 statistics */
9823 static mblk_t *
9824 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9825     boolean_t legacy_req)
9826 {
9827 	struct opthdr		*optp;
9828 	mblk_t			*mp2ctl;
9829 	ill_t			*ill;
9830 	ill_walk_context_t	ctx;
9831 	mblk_t			*mp_tail = NULL;
9832 	mib2_ipIfStatsEntry_t	global_ip_mib;
9833 	mib2_ipAddrEntry_t	mae;
9834 
9835 	/*
9836 	 * Make a copy of the original message
9837 	 */
9838 	mp2ctl = copymsg(mpctl);
9839 
9840 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9841 	optp->level = MIB2_IP;
9842 	optp->name = MIB2_IP_TRAFFIC_STATS;
9843 	/* Include "unknown interface" ip_mib */
9844 	ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9845 	ipst->ips_ip_mib.ipIfStatsIfIndex =
9846 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9847 	SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9848 	    (ipst->ips_ip_forwarding ? 1 : 2));
9849 	SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9850 	    (uint32_t)ipst->ips_ip_def_ttl);
9851 	SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9852 	    sizeof (mib2_ipIfStatsEntry_t));
9853 	SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9854 	    sizeof (mib2_ipAddrEntry_t));
9855 	SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9856 	    sizeof (mib2_ipRouteEntry_t));
9857 	SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9858 	    sizeof (mib2_ipNetToMediaEntry_t));
9859 	SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9860 	    sizeof (ip_member_t));
9861 	SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9862 	    sizeof (ip_grpsrc_t));
9863 
9864 	bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9865 
9866 	if (legacy_req) {
9867 		SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9868 		    LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9869 	}
9870 
9871 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9872 	    (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9873 		ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9874 		    "failed to allocate %u bytes\n",
9875 		    (uint_t)sizeof (global_ip_mib)));
9876 	}
9877 
9878 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9879 	ill = ILL_START_WALK_V4(&ctx, ipst);
9880 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9881 		ill->ill_ip_mib->ipIfStatsIfIndex =
9882 		    ill->ill_phyint->phyint_ifindex;
9883 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9884 		    (ipst->ips_ip_forwarding ? 1 : 2));
9885 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9886 		    (uint32_t)ipst->ips_ip_def_ttl);
9887 
9888 		ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9889 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9890 		    (char *)ill->ill_ip_mib,
9891 		    (int)sizeof (*ill->ill_ip_mib))) {
9892 			ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9893 			    "failed to allocate %u bytes\n",
9894 			    (uint_t)sizeof (*ill->ill_ip_mib)));
9895 		}
9896 	}
9897 	rw_exit(&ipst->ips_ill_g_lock);
9898 
9899 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9900 	ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9901 	    "level %d, name %d, len %d\n",
9902 	    (int)optp->level, (int)optp->name, (int)optp->len));
9903 	qreply(q, mpctl);
9904 
9905 	if (mp2ctl == NULL)
9906 		return (NULL);
9907 
9908 	return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9909 	    legacy_req));
9910 }
9911 
9912 /* Global IPv4 ICMP statistics */
9913 static mblk_t *
9914 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9915 {
9916 	struct opthdr		*optp;
9917 	mblk_t			*mp2ctl;
9918 
9919 	/*
9920 	 * Make a copy of the original message
9921 	 */
9922 	mp2ctl = copymsg(mpctl);
9923 
9924 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9925 	optp->level = MIB2_ICMP;
9926 	optp->name = 0;
9927 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9928 	    (int)sizeof (ipst->ips_icmp_mib))) {
9929 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9930 		    (uint_t)sizeof (ipst->ips_icmp_mib)));
9931 	}
9932 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9933 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9934 	    (int)optp->level, (int)optp->name, (int)optp->len));
9935 	qreply(q, mpctl);
9936 	return (mp2ctl);
9937 }
9938 
9939 /* Global IPv4 IGMP statistics */
9940 static mblk_t *
9941 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9942 {
9943 	struct opthdr		*optp;
9944 	mblk_t			*mp2ctl;
9945 
9946 	/*
9947 	 * make a copy of the original message
9948 	 */
9949 	mp2ctl = copymsg(mpctl);
9950 
9951 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9952 	optp->level = EXPER_IGMP;
9953 	optp->name = 0;
9954 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9955 	    (int)sizeof (ipst->ips_igmpstat))) {
9956 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9957 		    (uint_t)sizeof (ipst->ips_igmpstat)));
9958 	}
9959 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9960 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9961 	    (int)optp->level, (int)optp->name, (int)optp->len));
9962 	qreply(q, mpctl);
9963 	return (mp2ctl);
9964 }
9965 
9966 /* Global IPv4 Multicast Routing statistics */
9967 static mblk_t *
9968 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9969 {
9970 	struct opthdr		*optp;
9971 	mblk_t			*mp2ctl;
9972 
9973 	/*
9974 	 * make a copy of the original message
9975 	 */
9976 	mp2ctl = copymsg(mpctl);
9977 
9978 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9979 	optp->level = EXPER_DVMRP;
9980 	optp->name = 0;
9981 	if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9982 		ip0dbg(("ip_mroute_stats: failed\n"));
9983 	}
9984 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9985 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9986 	    (int)optp->level, (int)optp->name, (int)optp->len));
9987 	qreply(q, mpctl);
9988 	return (mp2ctl);
9989 }
9990 
9991 /* IPv4 address information */
9992 static mblk_t *
9993 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9994     boolean_t legacy_req)
9995 {
9996 	struct opthdr		*optp;
9997 	mblk_t			*mp2ctl;
9998 	mblk_t			*mp_tail = NULL;
9999 	ill_t			*ill;
10000 	ipif_t			*ipif;
10001 	uint_t			bitval;
10002 	mib2_ipAddrEntry_t	mae;
10003 	size_t			mae_size;
10004 	zoneid_t		zoneid;
10005 	ill_walk_context_t	ctx;
10006 
10007 	/*
10008 	 * make a copy of the original message
10009 	 */
10010 	mp2ctl = copymsg(mpctl);
10011 
10012 	mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
10013 	    sizeof (mib2_ipAddrEntry_t);
10014 
10015 	/* ipAddrEntryTable */
10016 
10017 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10018 	optp->level = MIB2_IP;
10019 	optp->name = MIB2_IP_ADDR;
10020 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10021 
10022 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10023 	ill = ILL_START_WALK_V4(&ctx, ipst);
10024 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10025 		for (ipif = ill->ill_ipif; ipif != NULL;
10026 		    ipif = ipif->ipif_next) {
10027 			if (ipif->ipif_zoneid != zoneid &&
10028 			    ipif->ipif_zoneid != ALL_ZONES)
10029 				continue;
10030 			/* Sum of count from dead IRE_LO* and our current */
10031 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10032 			if (ipif->ipif_ire_local != NULL) {
10033 				mae.ipAdEntInfo.ae_ibcnt +=
10034 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10035 			}
10036 			mae.ipAdEntInfo.ae_obcnt = 0;
10037 			mae.ipAdEntInfo.ae_focnt = 0;
10038 
10039 			ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10040 			    OCTET_LENGTH);
10041 			mae.ipAdEntIfIndex.o_length =
10042 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10043 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10044 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
10045 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10046 			mae.ipAdEntInfo.ae_subnet_len =
10047 			    ip_mask_to_plen(ipif->ipif_net_mask);
10048 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10049 			for (bitval = 1;
10050 			    bitval &&
10051 			    !(bitval & ipif->ipif_brd_addr);
10052 			    bitval <<= 1)
10053 				noop;
10054 			mae.ipAdEntBcastAddr = bitval;
10055 			mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10056 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10057 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10058 			mae.ipAdEntInfo.ae_broadcast_addr =
10059 			    ipif->ipif_brd_addr;
10060 			mae.ipAdEntInfo.ae_pp_dst_addr =
10061 			    ipif->ipif_pp_dst_addr;
10062 			mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10063 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10064 			mae.ipAdEntRetransmitTime =
10065 			    ill->ill_reachable_retrans_time;
10066 
10067 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10068 			    (char *)&mae, (int)mae_size)) {
10069 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10070 				    "allocate %u bytes\n", (uint_t)mae_size));
10071 			}
10072 		}
10073 	}
10074 	rw_exit(&ipst->ips_ill_g_lock);
10075 
10076 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10077 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10078 	    (int)optp->level, (int)optp->name, (int)optp->len));
10079 	qreply(q, mpctl);
10080 	return (mp2ctl);
10081 }
10082 
10083 /* IPv6 address information */
10084 static mblk_t *
10085 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10086     boolean_t legacy_req)
10087 {
10088 	struct opthdr		*optp;
10089 	mblk_t			*mp2ctl;
10090 	mblk_t			*mp_tail = NULL;
10091 	ill_t			*ill;
10092 	ipif_t			*ipif;
10093 	mib2_ipv6AddrEntry_t	mae6;
10094 	size_t			mae6_size;
10095 	zoneid_t		zoneid;
10096 	ill_walk_context_t	ctx;
10097 
10098 	/*
10099 	 * make a copy of the original message
10100 	 */
10101 	mp2ctl = copymsg(mpctl);
10102 
10103 	mae6_size = (legacy_req) ?
10104 	    LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10105 	    sizeof (mib2_ipv6AddrEntry_t);
10106 
10107 	/* ipv6AddrEntryTable */
10108 
10109 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10110 	optp->level = MIB2_IP6;
10111 	optp->name = MIB2_IP6_ADDR;
10112 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10113 
10114 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10115 	ill = ILL_START_WALK_V6(&ctx, ipst);
10116 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10117 		for (ipif = ill->ill_ipif; ipif != NULL;
10118 		    ipif = ipif->ipif_next) {
10119 			if (ipif->ipif_zoneid != zoneid &&
10120 			    ipif->ipif_zoneid != ALL_ZONES)
10121 				continue;
10122 			/* Sum of count from dead IRE_LO* and our current */
10123 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10124 			if (ipif->ipif_ire_local != NULL) {
10125 				mae6.ipv6AddrInfo.ae_ibcnt +=
10126 				    ipif->ipif_ire_local->ire_ib_pkt_count;
10127 			}
10128 			mae6.ipv6AddrInfo.ae_obcnt = 0;
10129 			mae6.ipv6AddrInfo.ae_focnt = 0;
10130 
10131 			ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10132 			    OCTET_LENGTH);
10133 			mae6.ipv6AddrIfIndex.o_length =
10134 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10135 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10136 			mae6.ipv6AddrPfxLength =
10137 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10138 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10139 			mae6.ipv6AddrInfo.ae_subnet_len =
10140 			    mae6.ipv6AddrPfxLength;
10141 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10142 
10143 			/* Type: stateless(1), stateful(2), unknown(3) */
10144 			if (ipif->ipif_flags & IPIF_ADDRCONF)
10145 				mae6.ipv6AddrType = 1;
10146 			else
10147 				mae6.ipv6AddrType = 2;
10148 			/* Anycast: true(1), false(2) */
10149 			if (ipif->ipif_flags & IPIF_ANYCAST)
10150 				mae6.ipv6AddrAnycastFlag = 1;
10151 			else
10152 				mae6.ipv6AddrAnycastFlag = 2;
10153 
10154 			/*
10155 			 * Address status: preferred(1), deprecated(2),
10156 			 * invalid(3), inaccessible(4), unknown(5)
10157 			 */
10158 			if (ipif->ipif_flags & IPIF_NOLOCAL)
10159 				mae6.ipv6AddrStatus = 3;
10160 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
10161 				mae6.ipv6AddrStatus = 2;
10162 			else
10163 				mae6.ipv6AddrStatus = 1;
10164 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10165 			mae6.ipv6AddrInfo.ae_metric  =
10166 			    ipif->ipif_ill->ill_metric;
10167 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
10168 			    ipif->ipif_v6pp_dst_addr;
10169 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10170 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
10171 			mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10172 			mae6.ipv6AddrIdentifier = ill->ill_token;
10173 			mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10174 			mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10175 			mae6.ipv6AddrRetransmitTime =
10176 			    ill->ill_reachable_retrans_time;
10177 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10178 			    (char *)&mae6, (int)mae6_size)) {
10179 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10180 				    "allocate %u bytes\n",
10181 				    (uint_t)mae6_size));
10182 			}
10183 		}
10184 	}
10185 	rw_exit(&ipst->ips_ill_g_lock);
10186 
10187 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10188 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10189 	    (int)optp->level, (int)optp->name, (int)optp->len));
10190 	qreply(q, mpctl);
10191 	return (mp2ctl);
10192 }
10193 
10194 /* IPv4 multicast group membership. */
10195 static mblk_t *
10196 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10197 {
10198 	struct opthdr		*optp;
10199 	mblk_t			*mp2ctl;
10200 	ill_t			*ill;
10201 	ipif_t			*ipif;
10202 	ilm_t			*ilm;
10203 	ip_member_t		ipm;
10204 	mblk_t			*mp_tail = NULL;
10205 	ill_walk_context_t	ctx;
10206 	zoneid_t		zoneid;
10207 
10208 	/*
10209 	 * make a copy of the original message
10210 	 */
10211 	mp2ctl = copymsg(mpctl);
10212 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10213 
10214 	/* ipGroupMember table */
10215 	optp = (struct opthdr *)&mpctl->b_rptr[
10216 	    sizeof (struct T_optmgmt_ack)];
10217 	optp->level = MIB2_IP;
10218 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10219 
10220 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10221 	ill = ILL_START_WALK_V4(&ctx, ipst);
10222 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10223 		/* Make sure the ill isn't going away. */
10224 		if (!ill_check_and_refhold(ill))
10225 			continue;
10226 		rw_exit(&ipst->ips_ill_g_lock);
10227 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10228 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10229 			if (ilm->ilm_zoneid != zoneid &&
10230 			    ilm->ilm_zoneid != ALL_ZONES)
10231 				continue;
10232 
10233 			/* Is there an ipif for ilm_ifaddr? */
10234 			for (ipif = ill->ill_ipif; ipif != NULL;
10235 			    ipif = ipif->ipif_next) {
10236 				if (!IPIF_IS_CONDEMNED(ipif) &&
10237 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10238 				    ilm->ilm_ifaddr != INADDR_ANY)
10239 					break;
10240 			}
10241 			if (ipif != NULL) {
10242 				ipif_get_name(ipif,
10243 				    ipm.ipGroupMemberIfIndex.o_bytes,
10244 				    OCTET_LENGTH);
10245 			} else {
10246 				ill_get_name(ill,
10247 				    ipm.ipGroupMemberIfIndex.o_bytes,
10248 				    OCTET_LENGTH);
10249 			}
10250 			ipm.ipGroupMemberIfIndex.o_length =
10251 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10252 
10253 			ipm.ipGroupMemberAddress = ilm->ilm_addr;
10254 			ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10255 			ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10256 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10257 			    (char *)&ipm, (int)sizeof (ipm))) {
10258 				ip1dbg(("ip_snmp_get_mib2_ip_group: "
10259 				    "failed to allocate %u bytes\n",
10260 				    (uint_t)sizeof (ipm)));
10261 			}
10262 		}
10263 		rw_exit(&ill->ill_mcast_lock);
10264 		ill_refrele(ill);
10265 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10266 	}
10267 	rw_exit(&ipst->ips_ill_g_lock);
10268 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10269 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10270 	    (int)optp->level, (int)optp->name, (int)optp->len));
10271 	qreply(q, mpctl);
10272 	return (mp2ctl);
10273 }
10274 
10275 /* IPv6 multicast group membership. */
10276 static mblk_t *
10277 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10278 {
10279 	struct opthdr		*optp;
10280 	mblk_t			*mp2ctl;
10281 	ill_t			*ill;
10282 	ilm_t			*ilm;
10283 	ipv6_member_t		ipm6;
10284 	mblk_t			*mp_tail = NULL;
10285 	ill_walk_context_t	ctx;
10286 	zoneid_t		zoneid;
10287 
10288 	/*
10289 	 * make a copy of the original message
10290 	 */
10291 	mp2ctl = copymsg(mpctl);
10292 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10293 
10294 	/* ip6GroupMember table */
10295 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10296 	optp->level = MIB2_IP6;
10297 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10298 
10299 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10300 	ill = ILL_START_WALK_V6(&ctx, ipst);
10301 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10302 		/* Make sure the ill isn't going away. */
10303 		if (!ill_check_and_refhold(ill))
10304 			continue;
10305 		rw_exit(&ipst->ips_ill_g_lock);
10306 		/*
10307 		 * Normally we don't have any members on under IPMP interfaces.
10308 		 * We report them as a debugging aid.
10309 		 */
10310 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10311 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10312 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10313 			if (ilm->ilm_zoneid != zoneid &&
10314 			    ilm->ilm_zoneid != ALL_ZONES)
10315 				continue;	/* not this zone */
10316 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10317 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10318 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10319 			if (!snmp_append_data2(mpctl->b_cont,
10320 			    &mp_tail,
10321 			    (char *)&ipm6, (int)sizeof (ipm6))) {
10322 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10323 				    "failed to allocate %u bytes\n",
10324 				    (uint_t)sizeof (ipm6)));
10325 			}
10326 		}
10327 		rw_exit(&ill->ill_mcast_lock);
10328 		ill_refrele(ill);
10329 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10330 	}
10331 	rw_exit(&ipst->ips_ill_g_lock);
10332 
10333 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10334 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10335 	    (int)optp->level, (int)optp->name, (int)optp->len));
10336 	qreply(q, mpctl);
10337 	return (mp2ctl);
10338 }
10339 
10340 /* IP multicast filtered sources */
10341 static mblk_t *
10342 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10343 {
10344 	struct opthdr		*optp;
10345 	mblk_t			*mp2ctl;
10346 	ill_t			*ill;
10347 	ipif_t			*ipif;
10348 	ilm_t			*ilm;
10349 	ip_grpsrc_t		ips;
10350 	mblk_t			*mp_tail = NULL;
10351 	ill_walk_context_t	ctx;
10352 	zoneid_t		zoneid;
10353 	int			i;
10354 	slist_t			*sl;
10355 
10356 	/*
10357 	 * make a copy of the original message
10358 	 */
10359 	mp2ctl = copymsg(mpctl);
10360 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10361 
10362 	/* ipGroupSource table */
10363 	optp = (struct opthdr *)&mpctl->b_rptr[
10364 	    sizeof (struct T_optmgmt_ack)];
10365 	optp->level = MIB2_IP;
10366 	optp->name = EXPER_IP_GROUP_SOURCES;
10367 
10368 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10369 	ill = ILL_START_WALK_V4(&ctx, ipst);
10370 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10371 		/* Make sure the ill isn't going away. */
10372 		if (!ill_check_and_refhold(ill))
10373 			continue;
10374 		rw_exit(&ipst->ips_ill_g_lock);
10375 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10376 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10377 			sl = ilm->ilm_filter;
10378 			if (ilm->ilm_zoneid != zoneid &&
10379 			    ilm->ilm_zoneid != ALL_ZONES)
10380 				continue;
10381 			if (SLIST_IS_EMPTY(sl))
10382 				continue;
10383 
10384 			/* Is there an ipif for ilm_ifaddr? */
10385 			for (ipif = ill->ill_ipif; ipif != NULL;
10386 			    ipif = ipif->ipif_next) {
10387 				if (!IPIF_IS_CONDEMNED(ipif) &&
10388 				    ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10389 				    ilm->ilm_ifaddr != INADDR_ANY)
10390 					break;
10391 			}
10392 			if (ipif != NULL) {
10393 				ipif_get_name(ipif,
10394 				    ips.ipGroupSourceIfIndex.o_bytes,
10395 				    OCTET_LENGTH);
10396 			} else {
10397 				ill_get_name(ill,
10398 				    ips.ipGroupSourceIfIndex.o_bytes,
10399 				    OCTET_LENGTH);
10400 			}
10401 			ips.ipGroupSourceIfIndex.o_length =
10402 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10403 
10404 			ips.ipGroupSourceGroup = ilm->ilm_addr;
10405 			for (i = 0; i < sl->sl_numsrc; i++) {
10406 				if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10407 					continue;
10408 				IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10409 				    ips.ipGroupSourceAddress);
10410 				if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10411 				    (char *)&ips, (int)sizeof (ips)) == 0) {
10412 					ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10413 					    " failed to allocate %u bytes\n",
10414 					    (uint_t)sizeof (ips)));
10415 				}
10416 			}
10417 		}
10418 		rw_exit(&ill->ill_mcast_lock);
10419 		ill_refrele(ill);
10420 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10421 	}
10422 	rw_exit(&ipst->ips_ill_g_lock);
10423 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10424 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10425 	    (int)optp->level, (int)optp->name, (int)optp->len));
10426 	qreply(q, mpctl);
10427 	return (mp2ctl);
10428 }
10429 
10430 /* IPv6 multicast filtered sources. */
10431 static mblk_t *
10432 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10433 {
10434 	struct opthdr		*optp;
10435 	mblk_t			*mp2ctl;
10436 	ill_t			*ill;
10437 	ilm_t			*ilm;
10438 	ipv6_grpsrc_t		ips6;
10439 	mblk_t			*mp_tail = NULL;
10440 	ill_walk_context_t	ctx;
10441 	zoneid_t		zoneid;
10442 	int			i;
10443 	slist_t			*sl;
10444 
10445 	/*
10446 	 * make a copy of the original message
10447 	 */
10448 	mp2ctl = copymsg(mpctl);
10449 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10450 
10451 	/* ip6GroupMember table */
10452 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10453 	optp->level = MIB2_IP6;
10454 	optp->name = EXPER_IP6_GROUP_SOURCES;
10455 
10456 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10457 	ill = ILL_START_WALK_V6(&ctx, ipst);
10458 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10459 		/* Make sure the ill isn't going away. */
10460 		if (!ill_check_and_refhold(ill))
10461 			continue;
10462 		rw_exit(&ipst->ips_ill_g_lock);
10463 		/*
10464 		 * Normally we don't have any members on under IPMP interfaces.
10465 		 * We report them as a debugging aid.
10466 		 */
10467 		rw_enter(&ill->ill_mcast_lock, RW_READER);
10468 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10469 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10470 			sl = ilm->ilm_filter;
10471 			if (ilm->ilm_zoneid != zoneid &&
10472 			    ilm->ilm_zoneid != ALL_ZONES)
10473 				continue;
10474 			if (SLIST_IS_EMPTY(sl))
10475 				continue;
10476 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10477 			for (i = 0; i < sl->sl_numsrc; i++) {
10478 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10479 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10480 				    (char *)&ips6, (int)sizeof (ips6))) {
10481 					ip1dbg(("ip_snmp_get_mib2_ip6_"
10482 					    "group_src: failed to allocate "
10483 					    "%u bytes\n",
10484 					    (uint_t)sizeof (ips6)));
10485 				}
10486 			}
10487 		}
10488 		rw_exit(&ill->ill_mcast_lock);
10489 		ill_refrele(ill);
10490 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10491 	}
10492 	rw_exit(&ipst->ips_ill_g_lock);
10493 
10494 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10495 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10496 	    (int)optp->level, (int)optp->name, (int)optp->len));
10497 	qreply(q, mpctl);
10498 	return (mp2ctl);
10499 }
10500 
10501 /* Multicast routing virtual interface table. */
10502 static mblk_t *
10503 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10504 {
10505 	struct opthdr		*optp;
10506 	mblk_t			*mp2ctl;
10507 
10508 	/*
10509 	 * make a copy of the original message
10510 	 */
10511 	mp2ctl = copymsg(mpctl);
10512 
10513 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10514 	optp->level = EXPER_DVMRP;
10515 	optp->name = EXPER_DVMRP_VIF;
10516 	if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10517 		ip0dbg(("ip_mroute_vif: failed\n"));
10518 	}
10519 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10520 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10521 	    (int)optp->level, (int)optp->name, (int)optp->len));
10522 	qreply(q, mpctl);
10523 	return (mp2ctl);
10524 }
10525 
10526 /* Multicast routing table. */
10527 static mblk_t *
10528 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10529 {
10530 	struct opthdr		*optp;
10531 	mblk_t			*mp2ctl;
10532 
10533 	/*
10534 	 * make a copy of the original message
10535 	 */
10536 	mp2ctl = copymsg(mpctl);
10537 
10538 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10539 	optp->level = EXPER_DVMRP;
10540 	optp->name = EXPER_DVMRP_MRT;
10541 	if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10542 		ip0dbg(("ip_mroute_mrt: failed\n"));
10543 	}
10544 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10545 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10546 	    (int)optp->level, (int)optp->name, (int)optp->len));
10547 	qreply(q, mpctl);
10548 	return (mp2ctl);
10549 }
10550 
10551 /*
10552  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10553  * in one IRE walk.
10554  */
10555 static mblk_t *
10556 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10557     ip_stack_t *ipst)
10558 {
10559 	struct opthdr	*optp;
10560 	mblk_t		*mp2ctl;	/* Returned */
10561 	mblk_t		*mp3ctl;	/* nettomedia */
10562 	mblk_t		*mp4ctl;	/* routeattrs */
10563 	iproutedata_t	ird;
10564 	zoneid_t	zoneid;
10565 
10566 	/*
10567 	 * make copies of the original message
10568 	 *	- mp2ctl is returned unchanged to the caller for its use
10569 	 *	- mpctl is sent upstream as ipRouteEntryTable
10570 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
10571 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
10572 	 */
10573 	mp2ctl = copymsg(mpctl);
10574 	mp3ctl = copymsg(mpctl);
10575 	mp4ctl = copymsg(mpctl);
10576 	if (mp3ctl == NULL || mp4ctl == NULL) {
10577 		freemsg(mp4ctl);
10578 		freemsg(mp3ctl);
10579 		freemsg(mp2ctl);
10580 		freemsg(mpctl);
10581 		return (NULL);
10582 	}
10583 
10584 	bzero(&ird, sizeof (ird));
10585 
10586 	ird.ird_route.lp_head = mpctl->b_cont;
10587 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10588 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10589 	/*
10590 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10591 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10592 	 * intended a temporary solution until a proper MIB API is provided
10593 	 * that provides complete filtering/caller-opt-in.
10594 	 */
10595 	if (level == EXPER_IP_AND_ALL_IRES)
10596 		ird.ird_flags |= IRD_REPORT_ALL;
10597 
10598 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10599 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10600 
10601 	/* ipRouteEntryTable in mpctl */
10602 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10603 	optp->level = MIB2_IP;
10604 	optp->name = MIB2_IP_ROUTE;
10605 	optp->len = msgdsize(ird.ird_route.lp_head);
10606 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10607 	    (int)optp->level, (int)optp->name, (int)optp->len));
10608 	qreply(q, mpctl);
10609 
10610 	/* ipNetToMediaEntryTable in mp3ctl */
10611 	ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10612 
10613 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10614 	optp->level = MIB2_IP;
10615 	optp->name = MIB2_IP_MEDIA;
10616 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10617 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10618 	    (int)optp->level, (int)optp->name, (int)optp->len));
10619 	qreply(q, mp3ctl);
10620 
10621 	/* ipRouteAttributeTable in mp4ctl */
10622 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10623 	optp->level = MIB2_IP;
10624 	optp->name = EXPER_IP_RTATTR;
10625 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10626 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10627 	    (int)optp->level, (int)optp->name, (int)optp->len));
10628 	if (optp->len == 0)
10629 		freemsg(mp4ctl);
10630 	else
10631 		qreply(q, mp4ctl);
10632 
10633 	return (mp2ctl);
10634 }
10635 
10636 /*
10637  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10638  * ipv6NetToMediaEntryTable in an NDP walk.
10639  */
10640 static mblk_t *
10641 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10642     ip_stack_t *ipst)
10643 {
10644 	struct opthdr	*optp;
10645 	mblk_t		*mp2ctl;	/* Returned */
10646 	mblk_t		*mp3ctl;	/* nettomedia */
10647 	mblk_t		*mp4ctl;	/* routeattrs */
10648 	iproutedata_t	ird;
10649 	zoneid_t	zoneid;
10650 
10651 	/*
10652 	 * make copies of the original message
10653 	 *	- mp2ctl is returned unchanged to the caller for its use
10654 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
10655 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10656 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
10657 	 */
10658 	mp2ctl = copymsg(mpctl);
10659 	mp3ctl = copymsg(mpctl);
10660 	mp4ctl = copymsg(mpctl);
10661 	if (mp3ctl == NULL || mp4ctl == NULL) {
10662 		freemsg(mp4ctl);
10663 		freemsg(mp3ctl);
10664 		freemsg(mp2ctl);
10665 		freemsg(mpctl);
10666 		return (NULL);
10667 	}
10668 
10669 	bzero(&ird, sizeof (ird));
10670 
10671 	ird.ird_route.lp_head = mpctl->b_cont;
10672 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10673 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
10674 	/*
10675 	 * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10676 	 * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10677 	 * intended a temporary solution until a proper MIB API is provided
10678 	 * that provides complete filtering/caller-opt-in.
10679 	 */
10680 	if (level == EXPER_IP_AND_ALL_IRES)
10681 		ird.ird_flags |= IRD_REPORT_ALL;
10682 
10683 	zoneid = Q_TO_CONN(q)->conn_zoneid;
10684 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10685 
10686 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10687 	optp->level = MIB2_IP6;
10688 	optp->name = MIB2_IP6_ROUTE;
10689 	optp->len = msgdsize(ird.ird_route.lp_head);
10690 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10691 	    (int)optp->level, (int)optp->name, (int)optp->len));
10692 	qreply(q, mpctl);
10693 
10694 	/* ipv6NetToMediaEntryTable in mp3ctl */
10695 	ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10696 
10697 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10698 	optp->level = MIB2_IP6;
10699 	optp->name = MIB2_IP6_MEDIA;
10700 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
10701 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10702 	    (int)optp->level, (int)optp->name, (int)optp->len));
10703 	qreply(q, mp3ctl);
10704 
10705 	/* ipv6RouteAttributeTable in mp4ctl */
10706 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10707 	optp->level = MIB2_IP6;
10708 	optp->name = EXPER_IP_RTATTR;
10709 	optp->len = msgdsize(ird.ird_attrs.lp_head);
10710 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10711 	    (int)optp->level, (int)optp->name, (int)optp->len));
10712 	if (optp->len == 0)
10713 		freemsg(mp4ctl);
10714 	else
10715 		qreply(q, mp4ctl);
10716 
10717 	return (mp2ctl);
10718 }
10719 
10720 /*
10721  * IPv6 mib: One per ill
10722  */
10723 static mblk_t *
10724 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10725     boolean_t legacy_req)
10726 {
10727 	struct opthdr		*optp;
10728 	mblk_t			*mp2ctl;
10729 	ill_t			*ill;
10730 	ill_walk_context_t	ctx;
10731 	mblk_t			*mp_tail = NULL;
10732 	mib2_ipv6AddrEntry_t	mae6;
10733 	mib2_ipIfStatsEntry_t	*ise;
10734 	size_t			ise_size, iae_size;
10735 
10736 	/*
10737 	 * Make a copy of the original message
10738 	 */
10739 	mp2ctl = copymsg(mpctl);
10740 
10741 	/* fixed length IPv6 structure ... */
10742 
10743 	if (legacy_req) {
10744 		ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10745 		    mib2_ipIfStatsEntry_t);
10746 		iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10747 	} else {
10748 		ise_size = sizeof (mib2_ipIfStatsEntry_t);
10749 		iae_size = sizeof (mib2_ipv6AddrEntry_t);
10750 	}
10751 
10752 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10753 	optp->level = MIB2_IP6;
10754 	optp->name = 0;
10755 	/* Include "unknown interface" ip6_mib */
10756 	ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10757 	ipst->ips_ip6_mib.ipIfStatsIfIndex =
10758 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10759 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10760 	    ipst->ips_ipv6_forwarding ? 1 : 2);
10761 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10762 	    ipst->ips_ipv6_def_hops);
10763 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10764 	    sizeof (mib2_ipIfStatsEntry_t));
10765 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10766 	    sizeof (mib2_ipv6AddrEntry_t));
10767 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10768 	    sizeof (mib2_ipv6RouteEntry_t));
10769 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10770 	    sizeof (mib2_ipv6NetToMediaEntry_t));
10771 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10772 	    sizeof (ipv6_member_t));
10773 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10774 	    sizeof (ipv6_grpsrc_t));
10775 
10776 	/*
10777 	 * Synchronize 64- and 32-bit counters
10778 	 */
10779 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10780 	    ipIfStatsHCInReceives);
10781 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10782 	    ipIfStatsHCInDelivers);
10783 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10784 	    ipIfStatsHCOutRequests);
10785 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10786 	    ipIfStatsHCOutForwDatagrams);
10787 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10788 	    ipIfStatsHCOutMcastPkts);
10789 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10790 	    ipIfStatsHCInMcastPkts);
10791 
10792 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10793 	    (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10794 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10795 		    (uint_t)ise_size));
10796 	} else if (legacy_req) {
10797 		/* Adjust the EntrySize fields for legacy requests. */
10798 		ise =
10799 		    (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10800 		SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10801 		SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10802 	}
10803 
10804 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10805 	ill = ILL_START_WALK_V6(&ctx, ipst);
10806 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10807 		ill->ill_ip_mib->ipIfStatsIfIndex =
10808 		    ill->ill_phyint->phyint_ifindex;
10809 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10810 		    ipst->ips_ipv6_forwarding ? 1 : 2);
10811 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10812 		    ill->ill_max_hops);
10813 
10814 		/*
10815 		 * Synchronize 64- and 32-bit counters
10816 		 */
10817 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10818 		    ipIfStatsHCInReceives);
10819 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10820 		    ipIfStatsHCInDelivers);
10821 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10822 		    ipIfStatsHCOutRequests);
10823 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10824 		    ipIfStatsHCOutForwDatagrams);
10825 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10826 		    ipIfStatsHCOutMcastPkts);
10827 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10828 		    ipIfStatsHCInMcastPkts);
10829 
10830 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10831 		    (char *)ill->ill_ip_mib, (int)ise_size)) {
10832 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10833 			"%u bytes\n", (uint_t)ise_size));
10834 		} else if (legacy_req) {
10835 			/* Adjust the EntrySize fields for legacy requests. */
10836 			ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10837 			    (int)ise_size);
10838 			SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10839 			SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10840 		}
10841 	}
10842 	rw_exit(&ipst->ips_ill_g_lock);
10843 
10844 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10845 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10846 	    (int)optp->level, (int)optp->name, (int)optp->len));
10847 	qreply(q, mpctl);
10848 	return (mp2ctl);
10849 }
10850 
10851 /*
10852  * ICMPv6 mib: One per ill
10853  */
10854 static mblk_t *
10855 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10856 {
10857 	struct opthdr		*optp;
10858 	mblk_t			*mp2ctl;
10859 	ill_t			*ill;
10860 	ill_walk_context_t	ctx;
10861 	mblk_t			*mp_tail = NULL;
10862 	/*
10863 	 * Make a copy of the original message
10864 	 */
10865 	mp2ctl = copymsg(mpctl);
10866 
10867 	/* fixed length ICMPv6 structure ... */
10868 
10869 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10870 	optp->level = MIB2_ICMP6;
10871 	optp->name = 0;
10872 	/* Include "unknown interface" icmp6_mib */
10873 	ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10874 	    MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10875 	ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10876 	    sizeof (mib2_ipv6IfIcmpEntry_t);
10877 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10878 	    (char *)&ipst->ips_icmp6_mib,
10879 	    (int)sizeof (ipst->ips_icmp6_mib))) {
10880 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10881 		    (uint_t)sizeof (ipst->ips_icmp6_mib)));
10882 	}
10883 
10884 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10885 	ill = ILL_START_WALK_V6(&ctx, ipst);
10886 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10887 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10888 		    ill->ill_phyint->phyint_ifindex;
10889 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10890 		    (char *)ill->ill_icmp6_mib,
10891 		    (int)sizeof (*ill->ill_icmp6_mib))) {
10892 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10893 			    "%u bytes\n",
10894 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
10895 		}
10896 	}
10897 	rw_exit(&ipst->ips_ill_g_lock);
10898 
10899 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10900 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10901 	    (int)optp->level, (int)optp->name, (int)optp->len));
10902 	qreply(q, mpctl);
10903 	return (mp2ctl);
10904 }
10905 
10906 /*
10907  * ire_walk routine to create both ipRouteEntryTable and
10908  * ipRouteAttributeTable in one IRE walk
10909  */
10910 static void
10911 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10912 {
10913 	ill_t				*ill;
10914 	mib2_ipRouteEntry_t		*re;
10915 	mib2_ipAttributeEntry_t		iaes;
10916 	tsol_ire_gw_secattr_t		*attrp;
10917 	tsol_gc_t			*gc = NULL;
10918 	tsol_gcgrp_t			*gcgrp = NULL;
10919 	ip_stack_t			*ipst = ire->ire_ipst;
10920 
10921 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
10922 
10923 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10924 		if (ire->ire_testhidden)
10925 			return;
10926 		if (ire->ire_type & IRE_IF_CLONE)
10927 			return;
10928 	}
10929 
10930 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10931 		return;
10932 
10933 	if ((attrp = ire->ire_gw_secattr) != NULL) {
10934 		mutex_enter(&attrp->igsa_lock);
10935 		if ((gc = attrp->igsa_gc) != NULL) {
10936 			gcgrp = gc->gc_grp;
10937 			ASSERT(gcgrp != NULL);
10938 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10939 		}
10940 		mutex_exit(&attrp->igsa_lock);
10941 	}
10942 	/*
10943 	 * Return all IRE types for route table... let caller pick and choose
10944 	 */
10945 	re->ipRouteDest = ire->ire_addr;
10946 	ill = ire->ire_ill;
10947 	re->ipRouteIfIndex.o_length = 0;
10948 	if (ill != NULL) {
10949 		ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10950 		re->ipRouteIfIndex.o_length =
10951 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
10952 	}
10953 	re->ipRouteMetric1 = -1;
10954 	re->ipRouteMetric2 = -1;
10955 	re->ipRouteMetric3 = -1;
10956 	re->ipRouteMetric4 = -1;
10957 
10958 	re->ipRouteNextHop = ire->ire_gateway_addr;
10959 	/* indirect(4), direct(3), or invalid(2) */
10960 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10961 		re->ipRouteType = 2;
10962 	else if (ire->ire_type & IRE_ONLINK)
10963 		re->ipRouteType = 3;
10964 	else
10965 		re->ipRouteType = 4;
10966 
10967 	re->ipRouteProto = -1;
10968 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10969 	re->ipRouteMask = ire->ire_mask;
10970 	re->ipRouteMetric5 = -1;
10971 	re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10972 	if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10973 		re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10974 
10975 	re->ipRouteInfo.re_frag_flag	= 0;
10976 	re->ipRouteInfo.re_rtt		= 0;
10977 	re->ipRouteInfo.re_src_addr	= 0;
10978 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
10979 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
10980 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
10981 	re->ipRouteInfo.re_flags	= ire->ire_flags;
10982 
10983 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10984 	if (ire->ire_type & IRE_INTERFACE) {
10985 		ire_t *child;
10986 
10987 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10988 		child = ire->ire_dep_children;
10989 		while (child != NULL) {
10990 			re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10991 			re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
10992 			child = child->ire_dep_sib_next;
10993 		}
10994 		rw_exit(&ipst->ips_ire_dep_lock);
10995 	}
10996 
10997 	if (ire->ire_flags & RTF_DYNAMIC) {
10998 		re->ipRouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
10999 	} else {
11000 		re->ipRouteInfo.re_ire_type	= ire->ire_type;
11001 	}
11002 
11003 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11004 	    (char *)re, (int)sizeof (*re))) {
11005 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
11006 		    (uint_t)sizeof (*re)));
11007 	}
11008 
11009 	if (gc != NULL) {
11010 		iaes.iae_routeidx = ird->ird_idx;
11011 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11012 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11013 
11014 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11015 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11016 			ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11017 			    "bytes\n", (uint_t)sizeof (iaes)));
11018 		}
11019 	}
11020 
11021 	/* bump route index for next pass */
11022 	ird->ird_idx++;
11023 
11024 	kmem_free(re, sizeof (*re));
11025 	if (gcgrp != NULL)
11026 		rw_exit(&gcgrp->gcgrp_rwlock);
11027 }
11028 
11029 /*
11030  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11031  */
11032 static void
11033 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11034 {
11035 	ill_t				*ill;
11036 	mib2_ipv6RouteEntry_t		*re;
11037 	mib2_ipAttributeEntry_t		iaes;
11038 	tsol_ire_gw_secattr_t		*attrp;
11039 	tsol_gc_t			*gc = NULL;
11040 	tsol_gcgrp_t			*gcgrp = NULL;
11041 	ip_stack_t			*ipst = ire->ire_ipst;
11042 
11043 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
11044 
11045 	if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11046 		if (ire->ire_testhidden)
11047 			return;
11048 		if (ire->ire_type & IRE_IF_CLONE)
11049 			return;
11050 	}
11051 
11052 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11053 		return;
11054 
11055 	if ((attrp = ire->ire_gw_secattr) != NULL) {
11056 		mutex_enter(&attrp->igsa_lock);
11057 		if ((gc = attrp->igsa_gc) != NULL) {
11058 			gcgrp = gc->gc_grp;
11059 			ASSERT(gcgrp != NULL);
11060 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11061 		}
11062 		mutex_exit(&attrp->igsa_lock);
11063 	}
11064 	/*
11065 	 * Return all IRE types for route table... let caller pick and choose
11066 	 */
11067 	re->ipv6RouteDest = ire->ire_addr_v6;
11068 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11069 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
11070 	re->ipv6RouteIfIndex.o_length = 0;
11071 	ill = ire->ire_ill;
11072 	if (ill != NULL) {
11073 		ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11074 		re->ipv6RouteIfIndex.o_length =
11075 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11076 	}
11077 
11078 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
11079 
11080 	mutex_enter(&ire->ire_lock);
11081 	re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11082 	mutex_exit(&ire->ire_lock);
11083 
11084 	/* remote(4), local(3), or discard(2) */
11085 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11086 		re->ipv6RouteType = 2;
11087 	else if (ire->ire_type & IRE_ONLINK)
11088 		re->ipv6RouteType = 3;
11089 	else
11090 		re->ipv6RouteType = 4;
11091 
11092 	re->ipv6RouteProtocol	= -1;
11093 	re->ipv6RoutePolicy	= 0;
11094 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
11095 	re->ipv6RouteNextHopRDI	= 0;
11096 	re->ipv6RouteWeight	= 0;
11097 	re->ipv6RouteMetric	= 0;
11098 	re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11099 	if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11100 		re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11101 
11102 	re->ipv6RouteInfo.re_frag_flag	= 0;
11103 	re->ipv6RouteInfo.re_rtt	= 0;
11104 	re->ipv6RouteInfo.re_src_addr	= ipv6_all_zeros;
11105 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
11106 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
11107 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
11108 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
11109 
11110 	/* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11111 	if (ire->ire_type & IRE_INTERFACE) {
11112 		ire_t *child;
11113 
11114 		rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11115 		child = ire->ire_dep_children;
11116 		while (child != NULL) {
11117 			re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11118 			re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11119 			child = child->ire_dep_sib_next;
11120 		}
11121 		rw_exit(&ipst->ips_ire_dep_lock);
11122 	}
11123 	if (ire->ire_flags & RTF_DYNAMIC) {
11124 		re->ipv6RouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
11125 	} else {
11126 		re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
11127 	}
11128 
11129 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11130 	    (char *)re, (int)sizeof (*re))) {
11131 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11132 		    (uint_t)sizeof (*re)));
11133 	}
11134 
11135 	if (gc != NULL) {
11136 		iaes.iae_routeidx = ird->ird_idx;
11137 		iaes.iae_doi = gc->gc_db->gcdb_doi;
11138 		iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11139 
11140 		if (!snmp_append_data2(ird->ird_attrs.lp_head,
11141 		    &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11142 			ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11143 			    "bytes\n", (uint_t)sizeof (iaes)));
11144 		}
11145 	}
11146 
11147 	/* bump route index for next pass */
11148 	ird->ird_idx++;
11149 
11150 	kmem_free(re, sizeof (*re));
11151 	if (gcgrp != NULL)
11152 		rw_exit(&gcgrp->gcgrp_rwlock);
11153 }
11154 
11155 /*
11156  * ncec_walk routine to create ipv6NetToMediaEntryTable
11157  */
11158 static void
11159 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr)
11160 {
11161 	iproutedata_t *ird		= ptr;
11162 	ill_t				*ill;
11163 	mib2_ipv6NetToMediaEntry_t	ntme;
11164 
11165 	ill = ncec->ncec_ill;
11166 	/* skip arpce entries, and loopback ncec entries */
11167 	if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11168 		return;
11169 	/*
11170 	 * Neighbor cache entry attached to IRE with on-link
11171 	 * destination.
11172 	 * We report all IPMP groups on ncec_ill which is normally the upper.
11173 	 */
11174 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11175 	ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11176 	ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11177 	if (ncec->ncec_lladdr != NULL) {
11178 		bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11179 		    ntme.ipv6NetToMediaPhysAddress.o_length);
11180 	}
11181 	/*
11182 	 * Note: Returns ND_* states. Should be:
11183 	 * reachable(1), stale(2), delay(3), probe(4),
11184 	 * invalid(5), unknown(6)
11185 	 */
11186 	ntme.ipv6NetToMediaState = ncec->ncec_state;
11187 	ntme.ipv6NetToMediaLastUpdated = 0;
11188 
11189 	/* other(1), dynamic(2), static(3), local(4) */
11190 	if (NCE_MYADDR(ncec)) {
11191 		ntme.ipv6NetToMediaType = 4;
11192 	} else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11193 		ntme.ipv6NetToMediaType = 1; /* proxy */
11194 	} else if (ncec->ncec_flags & NCE_F_STATIC) {
11195 		ntme.ipv6NetToMediaType = 3;
11196 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11197 		ntme.ipv6NetToMediaType = 1;
11198 	} else {
11199 		ntme.ipv6NetToMediaType = 2;
11200 	}
11201 
11202 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11203 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11204 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11205 		    (uint_t)sizeof (ntme)));
11206 	}
11207 }
11208 
11209 int
11210 nce2ace(ncec_t *ncec)
11211 {
11212 	int flags = 0;
11213 
11214 	if (NCE_ISREACHABLE(ncec))
11215 		flags |= ACE_F_RESOLVED;
11216 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11217 		flags |= ACE_F_AUTHORITY;
11218 	if (ncec->ncec_flags & NCE_F_PUBLISH)
11219 		flags |= ACE_F_PUBLISH;
11220 	if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11221 		flags |= ACE_F_PERMANENT;
11222 	if (NCE_MYADDR(ncec))
11223 		flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11224 	if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11225 		flags |= ACE_F_UNVERIFIED;
11226 	if (ncec->ncec_flags & NCE_F_AUTHORITY)
11227 		flags |= ACE_F_AUTHORITY;
11228 	if (ncec->ncec_flags & NCE_F_DELAYED)
11229 		flags |= ACE_F_DELAYED;
11230 	return (flags);
11231 }
11232 
11233 /*
11234  * ncec_walk routine to create ipNetToMediaEntryTable
11235  */
11236 static void
11237 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr)
11238 {
11239 	iproutedata_t *ird		= ptr;
11240 	ill_t				*ill;
11241 	mib2_ipNetToMediaEntry_t	ntme;
11242 	const char			*name = "unknown";
11243 	ipaddr_t			ncec_addr;
11244 
11245 	ill = ncec->ncec_ill;
11246 	if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11247 	    ill->ill_net_type == IRE_LOOPBACK)
11248 		return;
11249 
11250 	/* We report all IPMP groups on ncec_ill which is normally the upper. */
11251 	name = ill->ill_name;
11252 	/* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11253 	if (NCE_MYADDR(ncec)) {
11254 		ntme.ipNetToMediaType = 4;
11255 	} else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11256 		ntme.ipNetToMediaType = 1;
11257 	} else {
11258 		ntme.ipNetToMediaType = 3;
11259 	}
11260 	ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11261 	bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11262 	    ntme.ipNetToMediaIfIndex.o_length);
11263 
11264 	IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11265 	bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11266 
11267 	ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11268 	ncec_addr = INADDR_BROADCAST;
11269 	bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11270 	    sizeof (ncec_addr));
11271 	/*
11272 	 * map all the flags to the ACE counterpart.
11273 	 */
11274 	ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11275 
11276 	ntme.ipNetToMediaPhysAddress.o_length =
11277 	    MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11278 
11279 	if (!NCE_ISREACHABLE(ncec))
11280 		ntme.ipNetToMediaPhysAddress.o_length = 0;
11281 	else {
11282 		if (ncec->ncec_lladdr != NULL) {
11283 			bcopy(ncec->ncec_lladdr,
11284 			    ntme.ipNetToMediaPhysAddress.o_bytes,
11285 			    ntme.ipNetToMediaPhysAddress.o_length);
11286 		}
11287 	}
11288 
11289 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11290 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11291 		ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11292 		    (uint_t)sizeof (ntme)));
11293 	}
11294 }
11295 
11296 /*
11297  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11298  */
11299 /* ARGSUSED */
11300 int
11301 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11302 {
11303 	switch (level) {
11304 	case MIB2_IP:
11305 	case MIB2_ICMP:
11306 		switch (name) {
11307 		default:
11308 			break;
11309 		}
11310 		return (1);
11311 	default:
11312 		return (1);
11313 	}
11314 }
11315 
11316 /*
11317  * When there exists both a 64- and 32-bit counter of a particular type
11318  * (i.e., InReceives), only the 64-bit counters are added.
11319  */
11320 void
11321 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11322 {
11323 	UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11324 	UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11325 	UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11326 	UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11327 	UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11328 	UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11329 	UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11330 	UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11331 	UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11332 	UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11333 	UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11334 	UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11335 	UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11336 	UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11337 	UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11338 	UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11339 	UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11340 	UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11341 	UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11342 	UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11343 	UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11344 	UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11345 	    o2->ipIfStatsInWrongIPVersion);
11346 	UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11347 	    o2->ipIfStatsInWrongIPVersion);
11348 	UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11349 	    o2->ipIfStatsOutSwitchIPVersion);
11350 	UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11351 	UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11352 	UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11353 	    o2->ipIfStatsHCInForwDatagrams);
11354 	UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11355 	UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11356 	UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11357 	    o2->ipIfStatsHCOutForwDatagrams);
11358 	UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11359 	UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11360 	UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11361 	UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11362 	UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11363 	UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11364 	UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11365 	    o2->ipIfStatsHCOutMcastOctets);
11366 	UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11367 	UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11368 	UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11369 	UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11370 	UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11371 	UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11372 	UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11373 }
11374 
11375 void
11376 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11377 {
11378 	UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11379 	UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11380 	UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11381 	UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11382 	UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11383 	UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11384 	UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11385 	UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11386 	UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11387 	UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11388 	    o2->ipv6IfIcmpInRouterSolicits);
11389 	UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11390 	    o2->ipv6IfIcmpInRouterAdvertisements);
11391 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11392 	    o2->ipv6IfIcmpInNeighborSolicits);
11393 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11394 	    o2->ipv6IfIcmpInNeighborAdvertisements);
11395 	UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11396 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11397 	    o2->ipv6IfIcmpInGroupMembQueries);
11398 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11399 	    o2->ipv6IfIcmpInGroupMembResponses);
11400 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11401 	    o2->ipv6IfIcmpInGroupMembReductions);
11402 	UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11403 	UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11404 	UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11405 	    o2->ipv6IfIcmpOutDestUnreachs);
11406 	UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11407 	    o2->ipv6IfIcmpOutAdminProhibs);
11408 	UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11409 	UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11410 	    o2->ipv6IfIcmpOutParmProblems);
11411 	UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11412 	UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11413 	UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11414 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11415 	    o2->ipv6IfIcmpOutRouterSolicits);
11416 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11417 	    o2->ipv6IfIcmpOutRouterAdvertisements);
11418 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11419 	    o2->ipv6IfIcmpOutNeighborSolicits);
11420 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11421 	    o2->ipv6IfIcmpOutNeighborAdvertisements);
11422 	UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11423 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11424 	    o2->ipv6IfIcmpOutGroupMembQueries);
11425 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11426 	    o2->ipv6IfIcmpOutGroupMembResponses);
11427 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11428 	    o2->ipv6IfIcmpOutGroupMembReductions);
11429 	UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11430 	UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11431 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11432 	    o2->ipv6IfIcmpInBadNeighborAdvertisements);
11433 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11434 	    o2->ipv6IfIcmpInBadNeighborSolicitations);
11435 	UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11436 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11437 	    o2->ipv6IfIcmpInGroupMembTotal);
11438 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11439 	    o2->ipv6IfIcmpInGroupMembBadQueries);
11440 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11441 	    o2->ipv6IfIcmpInGroupMembBadReports);
11442 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11443 	    o2->ipv6IfIcmpInGroupMembOurReports);
11444 }
11445 
11446 /*
11447  * Called before the options are updated to check if this packet will
11448  * be source routed from here.
11449  * This routine assumes that the options are well formed i.e. that they
11450  * have already been checked.
11451  */
11452 boolean_t
11453 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11454 {
11455 	ipoptp_t	opts;
11456 	uchar_t		*opt;
11457 	uint8_t		optval;
11458 	uint8_t		optlen;
11459 	ipaddr_t	dst;
11460 
11461 	if (IS_SIMPLE_IPH(ipha)) {
11462 		ip2dbg(("not source routed\n"));
11463 		return (B_FALSE);
11464 	}
11465 	dst = ipha->ipha_dst;
11466 	for (optval = ipoptp_first(&opts, ipha);
11467 	    optval != IPOPT_EOL;
11468 	    optval = ipoptp_next(&opts)) {
11469 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11470 		opt = opts.ipoptp_cur;
11471 		optlen = opts.ipoptp_len;
11472 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
11473 		    optval, optlen));
11474 		switch (optval) {
11475 			uint32_t off;
11476 		case IPOPT_SSRR:
11477 		case IPOPT_LSRR:
11478 			/*
11479 			 * If dst is one of our addresses and there are some
11480 			 * entries left in the source route return (true).
11481 			 */
11482 			if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11483 				ip2dbg(("ip_source_routed: not next"
11484 				    " source route 0x%x\n",
11485 				    ntohl(dst)));
11486 				return (B_FALSE);
11487 			}
11488 			off = opt[IPOPT_OFFSET];
11489 			off--;
11490 			if (optlen < IP_ADDR_LEN ||
11491 			    off > optlen - IP_ADDR_LEN) {
11492 				/* End of source route */
11493 				ip1dbg(("ip_source_routed: end of SR\n"));
11494 				return (B_FALSE);
11495 			}
11496 			return (B_TRUE);
11497 		}
11498 	}
11499 	ip2dbg(("not source routed\n"));
11500 	return (B_FALSE);
11501 }
11502 
11503 /*
11504  * ip_unbind is called by the transports to remove a conn from
11505  * the fanout table.
11506  */
11507 void
11508 ip_unbind(conn_t *connp)
11509 {
11510 
11511 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
11512 
11513 	if (is_system_labeled() && connp->conn_anon_port) {
11514 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11515 		    connp->conn_mlp_type, connp->conn_proto,
11516 		    ntohs(connp->conn_lport), B_FALSE);
11517 		connp->conn_anon_port = 0;
11518 	}
11519 	connp->conn_mlp_type = mlptSingle;
11520 
11521 	ipcl_hash_remove(connp);
11522 }
11523 
11524 /*
11525  * Used for deciding the MSS size for the upper layer. Thus
11526  * we need to check the outbound policy values in the conn.
11527  */
11528 int
11529 conn_ipsec_length(conn_t *connp)
11530 {
11531 	ipsec_latch_t *ipl;
11532 
11533 	ipl = connp->conn_latch;
11534 	if (ipl == NULL)
11535 		return (0);
11536 
11537 	if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11538 		return (0);
11539 
11540 	return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11541 }
11542 
11543 /*
11544  * Returns an estimate of the IPsec headers size. This is used if
11545  * we don't want to call into IPsec to get the exact size.
11546  */
11547 int
11548 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11549 {
11550 	ipsec_action_t *a;
11551 
11552 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11553 		return (0);
11554 
11555 	a = ixa->ixa_ipsec_action;
11556 	if (a == NULL) {
11557 		ASSERT(ixa->ixa_ipsec_policy != NULL);
11558 		a = ixa->ixa_ipsec_policy->ipsp_act;
11559 	}
11560 	ASSERT(a != NULL);
11561 
11562 	return (a->ipa_ovhd);
11563 }
11564 
11565 /*
11566  * If there are any source route options, return the true final
11567  * destination. Otherwise, return the destination.
11568  */
11569 ipaddr_t
11570 ip_get_dst(ipha_t *ipha)
11571 {
11572 	ipoptp_t	opts;
11573 	uchar_t		*opt;
11574 	uint8_t		optval;
11575 	uint8_t		optlen;
11576 	ipaddr_t	dst;
11577 	uint32_t off;
11578 
11579 	dst = ipha->ipha_dst;
11580 
11581 	if (IS_SIMPLE_IPH(ipha))
11582 		return (dst);
11583 
11584 	for (optval = ipoptp_first(&opts, ipha);
11585 	    optval != IPOPT_EOL;
11586 	    optval = ipoptp_next(&opts)) {
11587 		opt = opts.ipoptp_cur;
11588 		optlen = opts.ipoptp_len;
11589 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11590 		switch (optval) {
11591 		case IPOPT_SSRR:
11592 		case IPOPT_LSRR:
11593 			off = opt[IPOPT_OFFSET];
11594 			/*
11595 			 * If one of the conditions is true, it means
11596 			 * end of options and dst already has the right
11597 			 * value.
11598 			 */
11599 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11600 				off = optlen - IP_ADDR_LEN;
11601 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
11602 			}
11603 			return (dst);
11604 		default:
11605 			break;
11606 		}
11607 	}
11608 
11609 	return (dst);
11610 }
11611 
11612 /*
11613  * Outbound IP fragmentation routine.
11614  * Assumes the caller has checked whether or not fragmentation should
11615  * be allowed. Here we copy the DF bit from the header to all the generated
11616  * fragments.
11617  */
11618 int
11619 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11620     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11621     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11622 {
11623 	int		i1;
11624 	int		hdr_len;
11625 	mblk_t		*hdr_mp;
11626 	ipha_t		*ipha;
11627 	int		ip_data_end;
11628 	int		len;
11629 	mblk_t		*mp = mp_orig;
11630 	int		offset;
11631 	ill_t		*ill = nce->nce_ill;
11632 	ip_stack_t	*ipst = ill->ill_ipst;
11633 	mblk_t		*carve_mp;
11634 	uint32_t	frag_flag;
11635 	uint_t		priority = mp->b_band;
11636 	int		error = 0;
11637 
11638 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11639 
11640 	if (pkt_len != msgdsize(mp)) {
11641 		ip0dbg(("Packet length mismatch: %d, %ld\n",
11642 		    pkt_len, msgdsize(mp)));
11643 		freemsg(mp);
11644 		return (EINVAL);
11645 	}
11646 
11647 	if (max_frag == 0) {
11648 		ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11649 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11650 		ip_drop_output("FragFails: zero max_frag", mp, ill);
11651 		freemsg(mp);
11652 		return (EINVAL);
11653 	}
11654 
11655 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11656 	ipha = (ipha_t *)mp->b_rptr;
11657 	ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11658 	frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11659 
11660 	/*
11661 	 * Establish the starting offset.  May not be zero if we are fragging
11662 	 * a fragment that is being forwarded.
11663 	 */
11664 	offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11665 
11666 	/* TODO why is this test needed? */
11667 	if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11668 		/* TODO: notify ulp somehow */
11669 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11670 		ip_drop_output("FragFails: bad starting offset", mp, ill);
11671 		freemsg(mp);
11672 		return (EINVAL);
11673 	}
11674 
11675 	hdr_len = IPH_HDR_LENGTH(ipha);
11676 	ipha->ipha_hdr_checksum = 0;
11677 
11678 	/*
11679 	 * Establish the number of bytes maximum per frag, after putting
11680 	 * in the header.
11681 	 */
11682 	len = (max_frag - hdr_len) & ~7;
11683 
11684 	/* Get a copy of the header for the trailing frags */
11685 	hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11686 	    mp);
11687 	if (hdr_mp == NULL) {
11688 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11689 		ip_drop_output("FragFails: no hdr_mp", mp, ill);
11690 		freemsg(mp);
11691 		return (ENOBUFS);
11692 	}
11693 
11694 	/* Store the starting offset, with the MoreFrags flag. */
11695 	i1 = offset | IPH_MF | frag_flag;
11696 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11697 
11698 	/* Establish the ending byte offset, based on the starting offset. */
11699 	offset <<= 3;
11700 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11701 
11702 	/* Store the length of the first fragment in the IP header. */
11703 	i1 = len + hdr_len;
11704 	ASSERT(i1 <= IP_MAXPACKET);
11705 	ipha->ipha_length = htons((uint16_t)i1);
11706 
11707 	/*
11708 	 * Compute the IP header checksum for the first frag.  We have to
11709 	 * watch out that we stop at the end of the header.
11710 	 */
11711 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11712 
11713 	/*
11714 	 * Now carve off the first frag.  Note that this will include the
11715 	 * original IP header.
11716 	 */
11717 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11718 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11719 		ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11720 		freeb(hdr_mp);
11721 		freemsg(mp_orig);
11722 		return (ENOBUFS);
11723 	}
11724 
11725 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11726 
11727 	error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11728 	    ixa_cookie);
11729 	if (error != 0 && error != EWOULDBLOCK) {
11730 		/* No point in sending the other fragments */
11731 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11732 		ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11733 		freeb(hdr_mp);
11734 		freemsg(mp_orig);
11735 		return (error);
11736 	}
11737 
11738 	/* No need to redo state machine in loop */
11739 	ixaflags &= ~IXAF_REACH_CONF;
11740 
11741 	/* Advance the offset to the second frag starting point. */
11742 	offset += len;
11743 	/*
11744 	 * Update hdr_len from the copied header - there might be less options
11745 	 * in the later fragments.
11746 	 */
11747 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11748 	/* Loop until done. */
11749 	for (;;) {
11750 		uint16_t	offset_and_flags;
11751 		uint16_t	ip_len;
11752 
11753 		if (ip_data_end - offset > len) {
11754 			/*
11755 			 * Carve off the appropriate amount from the original
11756 			 * datagram.
11757 			 */
11758 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11759 				mp = NULL;
11760 				break;
11761 			}
11762 			/*
11763 			 * More frags after this one.  Get another copy
11764 			 * of the header.
11765 			 */
11766 			if (carve_mp->b_datap->db_ref == 1 &&
11767 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11768 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11769 				/* Inline IP header */
11770 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11771 				    hdr_mp->b_rptr;
11772 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11773 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11774 				mp = carve_mp;
11775 			} else {
11776 				if (!(mp = copyb(hdr_mp))) {
11777 					freemsg(carve_mp);
11778 					break;
11779 				}
11780 				/* Get priority marking, if any. */
11781 				mp->b_band = priority;
11782 				mp->b_cont = carve_mp;
11783 			}
11784 			ipha = (ipha_t *)mp->b_rptr;
11785 			offset_and_flags = IPH_MF;
11786 		} else {
11787 			/*
11788 			 * Last frag.  Consume the header. Set len to
11789 			 * the length of this last piece.
11790 			 */
11791 			len = ip_data_end - offset;
11792 
11793 			/*
11794 			 * Carve off the appropriate amount from the original
11795 			 * datagram.
11796 			 */
11797 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11798 				mp = NULL;
11799 				break;
11800 			}
11801 			if (carve_mp->b_datap->db_ref == 1 &&
11802 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
11803 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11804 				/* Inline IP header */
11805 				carve_mp->b_rptr -= hdr_mp->b_wptr -
11806 				    hdr_mp->b_rptr;
11807 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11808 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
11809 				mp = carve_mp;
11810 				freeb(hdr_mp);
11811 				hdr_mp = mp;
11812 			} else {
11813 				mp = hdr_mp;
11814 				/* Get priority marking, if any. */
11815 				mp->b_band = priority;
11816 				mp->b_cont = carve_mp;
11817 			}
11818 			ipha = (ipha_t *)mp->b_rptr;
11819 			/* A frag of a frag might have IPH_MF non-zero */
11820 			offset_and_flags =
11821 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
11822 			    IPH_MF;
11823 		}
11824 		offset_and_flags |= (uint16_t)(offset >> 3);
11825 		offset_and_flags |= (uint16_t)frag_flag;
11826 		/* Store the offset and flags in the IP header. */
11827 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11828 
11829 		/* Store the length in the IP header. */
11830 		ip_len = (uint16_t)(len + hdr_len);
11831 		ipha->ipha_length = htons(ip_len);
11832 
11833 		/*
11834 		 * Set the IP header checksum.	Note that mp is just
11835 		 * the header, so this is easy to pass to ip_csum.
11836 		 */
11837 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11838 
11839 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11840 
11841 		error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11842 		    nolzid, ixa_cookie);
11843 		/* All done if we just consumed the hdr_mp. */
11844 		if (mp == hdr_mp) {
11845 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11846 			return (error);
11847 		}
11848 		if (error != 0 && error != EWOULDBLOCK) {
11849 			DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11850 			    mblk_t *, hdr_mp);
11851 			/* No point in sending the other fragments */
11852 			break;
11853 		}
11854 
11855 		/* Otherwise, advance and loop. */
11856 		offset += len;
11857 	}
11858 	/* Clean up following allocation failure. */
11859 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11860 	ip_drop_output("FragFails: loop ended", NULL, ill);
11861 	if (mp != hdr_mp)
11862 		freeb(hdr_mp);
11863 	if (mp != mp_orig)
11864 		freemsg(mp_orig);
11865 	return (error);
11866 }
11867 
11868 /*
11869  * Copy the header plus those options which have the copy bit set
11870  */
11871 static mblk_t *
11872 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11873     mblk_t *src)
11874 {
11875 	mblk_t	*mp;
11876 	uchar_t	*up;
11877 
11878 	/*
11879 	 * Quick check if we need to look for options without the copy bit
11880 	 * set
11881 	 */
11882 	mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11883 	if (!mp)
11884 		return (mp);
11885 	mp->b_rptr += ipst->ips_ip_wroff_extra;
11886 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11887 		bcopy(rptr, mp->b_rptr, hdr_len);
11888 		mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11889 		return (mp);
11890 	}
11891 	up  = mp->b_rptr;
11892 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11893 	up += IP_SIMPLE_HDR_LENGTH;
11894 	rptr += IP_SIMPLE_HDR_LENGTH;
11895 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
11896 	while (hdr_len > 0) {
11897 		uint32_t optval;
11898 		uint32_t optlen;
11899 
11900 		optval = *rptr;
11901 		if (optval == IPOPT_EOL)
11902 			break;
11903 		if (optval == IPOPT_NOP)
11904 			optlen = 1;
11905 		else
11906 			optlen = rptr[1];
11907 		if (optval & IPOPT_COPY) {
11908 			bcopy(rptr, up, optlen);
11909 			up += optlen;
11910 		}
11911 		rptr += optlen;
11912 		hdr_len -= optlen;
11913 	}
11914 	/*
11915 	 * Make sure that we drop an even number of words by filling
11916 	 * with EOL to the next word boundary.
11917 	 */
11918 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11919 	    hdr_len & 0x3; hdr_len++)
11920 		*up++ = IPOPT_EOL;
11921 	mp->b_wptr = up;
11922 	/* Update header length */
11923 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11924 	return (mp);
11925 }
11926 
11927 /*
11928  * Update any source route, record route, or timestamp options when
11929  * sending a packet back to ourselves.
11930  * Check that we are at end of strict source route.
11931  * The options have been sanity checked by ip_output_options().
11932  */
11933 void
11934 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11935 {
11936 	ipoptp_t	opts;
11937 	uchar_t		*opt;
11938 	uint8_t		optval;
11939 	uint8_t		optlen;
11940 	ipaddr_t	dst;
11941 	uint32_t	ts;
11942 	timestruc_t	now;
11943 
11944 	for (optval = ipoptp_first(&opts, ipha);
11945 	    optval != IPOPT_EOL;
11946 	    optval = ipoptp_next(&opts)) {
11947 		opt = opts.ipoptp_cur;
11948 		optlen = opts.ipoptp_len;
11949 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11950 		switch (optval) {
11951 			uint32_t off;
11952 		case IPOPT_SSRR:
11953 		case IPOPT_LSRR:
11954 			off = opt[IPOPT_OFFSET];
11955 			off--;
11956 			if (optlen < IP_ADDR_LEN ||
11957 			    off > optlen - IP_ADDR_LEN) {
11958 				/* End of source route */
11959 				break;
11960 			}
11961 			/*
11962 			 * This will only happen if two consecutive entries
11963 			 * in the source route contains our address or if
11964 			 * it is a packet with a loose source route which
11965 			 * reaches us before consuming the whole source route
11966 			 */
11967 
11968 			if (optval == IPOPT_SSRR) {
11969 				return;
11970 			}
11971 			/*
11972 			 * Hack: instead of dropping the packet truncate the
11973 			 * source route to what has been used by filling the
11974 			 * rest with IPOPT_NOP.
11975 			 */
11976 			opt[IPOPT_OLEN] = (uint8_t)off;
11977 			while (off < optlen) {
11978 				opt[off++] = IPOPT_NOP;
11979 			}
11980 			break;
11981 		case IPOPT_RR:
11982 			off = opt[IPOPT_OFFSET];
11983 			off--;
11984 			if (optlen < IP_ADDR_LEN ||
11985 			    off > optlen - IP_ADDR_LEN) {
11986 				/* No more room - ignore */
11987 				ip1dbg((
11988 				    "ip_output_local_options: end of RR\n"));
11989 				break;
11990 			}
11991 			dst = htonl(INADDR_LOOPBACK);
11992 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
11993 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
11994 			break;
11995 		case IPOPT_TS:
11996 			/* Insert timestamp if there is romm */
11997 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
11998 			case IPOPT_TS_TSONLY:
11999 				off = IPOPT_TS_TIMELEN;
12000 				break;
12001 			case IPOPT_TS_PRESPEC:
12002 			case IPOPT_TS_PRESPEC_RFC791:
12003 				/* Verify that the address matched */
12004 				off = opt[IPOPT_OFFSET] - 1;
12005 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
12006 				if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
12007 					/* Not for us */
12008 					break;
12009 				}
12010 				/* FALLTHROUGH */
12011 			case IPOPT_TS_TSANDADDR:
12012 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12013 				break;
12014 			default:
12015 				/*
12016 				 * ip_*put_options should have already
12017 				 * dropped this packet.
12018 				 */
12019 				cmn_err(CE_PANIC, "ip_output_local_options: "
12020 				    "unknown IT - bug in ip_output_options?\n");
12021 				return;	/* Keep "lint" happy */
12022 			}
12023 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12024 				/* Increase overflow counter */
12025 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12026 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
12027 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12028 				    (off << 4);
12029 				break;
12030 			}
12031 			off = opt[IPOPT_OFFSET] - 1;
12032 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12033 			case IPOPT_TS_PRESPEC:
12034 			case IPOPT_TS_PRESPEC_RFC791:
12035 			case IPOPT_TS_TSANDADDR:
12036 				dst = htonl(INADDR_LOOPBACK);
12037 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12038 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12039 				/* FALLTHROUGH */
12040 			case IPOPT_TS_TSONLY:
12041 				off = opt[IPOPT_OFFSET] - 1;
12042 				/* Compute # of milliseconds since midnight */
12043 				gethrestime(&now);
12044 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12045 				    NSEC2MSEC(now.tv_nsec);
12046 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12047 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12048 				break;
12049 			}
12050 			break;
12051 		}
12052 	}
12053 }
12054 
12055 /*
12056  * Prepend an M_DATA fastpath header, and if none present prepend a
12057  * DL_UNITDATA_REQ. Frees the mblk on failure.
12058  *
12059  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12060  * If there is a change to them, the nce will be deleted (condemned) and
12061  * a new nce_t will be created when packets are sent. Thus we need no locks
12062  * to access those fields.
12063  *
12064  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12065  * we place b_band in dl_priority.dl_max.
12066  */
12067 static mblk_t *
12068 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12069 {
12070 	uint_t	hlen;
12071 	mblk_t *mp1;
12072 	uint_t	priority;
12073 	uchar_t *rptr;
12074 
12075 	rptr = mp->b_rptr;
12076 
12077 	ASSERT(DB_TYPE(mp) == M_DATA);
12078 	priority = mp->b_band;
12079 
12080 	ASSERT(nce != NULL);
12081 	if ((mp1 = nce->nce_fp_mp) != NULL) {
12082 		hlen = MBLKL(mp1);
12083 		/*
12084 		 * Check if we have enough room to prepend fastpath
12085 		 * header
12086 		 */
12087 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12088 			rptr -= hlen;
12089 			bcopy(mp1->b_rptr, rptr, hlen);
12090 			/*
12091 			 * Set the b_rptr to the start of the link layer
12092 			 * header
12093 			 */
12094 			mp->b_rptr = rptr;
12095 			return (mp);
12096 		}
12097 		mp1 = copyb(mp1);
12098 		if (mp1 == NULL) {
12099 			ill_t *ill = nce->nce_ill;
12100 
12101 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12102 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12103 			freemsg(mp);
12104 			return (NULL);
12105 		}
12106 		mp1->b_band = priority;
12107 		mp1->b_cont = mp;
12108 		DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12109 		DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12110 		DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12111 		DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12112 		DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12113 		DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12114 		/*
12115 		 * XXX disable ICK_VALID and compute checksum
12116 		 * here; can happen if nce_fp_mp changes and
12117 		 * it can't be copied now due to insufficient
12118 		 * space. (unlikely, fp mp can change, but it
12119 		 * does not increase in length)
12120 		 */
12121 		return (mp1);
12122 	}
12123 	mp1 = copyb(nce->nce_dlur_mp);
12124 
12125 	if (mp1 == NULL) {
12126 		ill_t *ill = nce->nce_ill;
12127 
12128 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12129 		ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12130 		freemsg(mp);
12131 		return (NULL);
12132 	}
12133 	mp1->b_cont = mp;
12134 	if (priority != 0) {
12135 		mp1->b_band = priority;
12136 		((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12137 		    priority;
12138 	}
12139 	return (mp1);
12140 }
12141 
12142 /*
12143  * Finish the outbound IPsec processing. This function is called from
12144  * ipsec_out_process() if the IPsec packet was processed
12145  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12146  * asynchronously.
12147  *
12148  * This is common to IPv4 and IPv6.
12149  */
12150 int
12151 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12152 {
12153 	iaflags_t	ixaflags = ixa->ixa_flags;
12154 	uint_t		pktlen;
12155 
12156 
12157 	/* AH/ESP don't update ixa_pktlen when they modify the packet */
12158 	if (ixaflags & IXAF_IS_IPV4) {
12159 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12160 
12161 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12162 		pktlen = ntohs(ipha->ipha_length);
12163 	} else {
12164 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12165 
12166 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12167 		pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12168 	}
12169 
12170 	/*
12171 	 * We release any hard reference on the SAs here to make
12172 	 * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12173 	 * on the SAs.
12174 	 * If in the future we want the hard latching of the SAs in the
12175 	 * ip_xmit_attr_t then we should remove this.
12176 	 */
12177 	if (ixa->ixa_ipsec_esp_sa != NULL) {
12178 		IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12179 		ixa->ixa_ipsec_esp_sa = NULL;
12180 	}
12181 	if (ixa->ixa_ipsec_ah_sa != NULL) {
12182 		IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12183 		ixa->ixa_ipsec_ah_sa = NULL;
12184 	}
12185 
12186 	/* Do we need to fragment? */
12187 	if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12188 	    pktlen > ixa->ixa_fragsize) {
12189 		if (ixaflags & IXAF_IS_IPV4) {
12190 			ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12191 			/*
12192 			 * We check for the DF case in ipsec_out_process
12193 			 * hence this only handles the non-DF case.
12194 			 */
12195 			return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12196 			    pktlen, ixa->ixa_fragsize,
12197 			    ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12198 			    ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12199 			    &ixa->ixa_cookie));
12200 		} else {
12201 			mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12202 			if (mp == NULL) {
12203 				/* MIB and ip_drop_output already done */
12204 				return (ENOMEM);
12205 			}
12206 			pktlen += sizeof (ip6_frag_t);
12207 			if (pktlen > ixa->ixa_fragsize) {
12208 				return (ip_fragment_v6(mp, ixa->ixa_nce,
12209 				    ixa->ixa_flags, pktlen,
12210 				    ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12211 				    ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12212 				    ixa->ixa_postfragfn, &ixa->ixa_cookie));
12213 			}
12214 		}
12215 	}
12216 	return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12217 	    pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12218 	    ixa->ixa_no_loop_zoneid, NULL));
12219 }
12220 
12221 /*
12222  * Finish the inbound IPsec processing. This function is called from
12223  * ipsec_out_process() if the IPsec packet was processed
12224  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12225  * asynchronously.
12226  *
12227  * This is common to IPv4 and IPv6.
12228  */
12229 void
12230 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12231 {
12232 	iaflags_t	iraflags = ira->ira_flags;
12233 
12234 	/* Length might have changed */
12235 	if (iraflags & IRAF_IS_IPV4) {
12236 		ipha_t		*ipha = (ipha_t *)mp->b_rptr;
12237 
12238 		ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12239 		ira->ira_pktlen = ntohs(ipha->ipha_length);
12240 		ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12241 		ira->ira_protocol = ipha->ipha_protocol;
12242 
12243 		ip_fanout_v4(mp, ipha, ira);
12244 	} else {
12245 		ip6_t		*ip6h = (ip6_t *)mp->b_rptr;
12246 		uint8_t		*nexthdrp;
12247 
12248 		ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12249 		ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12250 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12251 		    &nexthdrp)) {
12252 			/* Malformed packet */
12253 			BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12254 			ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12255 			freemsg(mp);
12256 			return;
12257 		}
12258 		ira->ira_protocol = *nexthdrp;
12259 		ip_fanout_v6(mp, ip6h, ira);
12260 	}
12261 }
12262 
12263 /*
12264  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12265  *
12266  * If this function returns B_TRUE, the requested SA's have been filled
12267  * into the ixa_ipsec_*_sa pointers.
12268  *
12269  * If the function returns B_FALSE, the packet has been "consumed", most
12270  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12271  *
12272  * The SA references created by the protocol-specific "select"
12273  * function will be released in ip_output_post_ipsec.
12274  */
12275 static boolean_t
12276 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12277 {
12278 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12279 	ipsec_policy_t *pp;
12280 	ipsec_action_t *ap;
12281 
12282 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12283 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12284 	    (ixa->ixa_ipsec_action != NULL));
12285 
12286 	ap = ixa->ixa_ipsec_action;
12287 	if (ap == NULL) {
12288 		pp = ixa->ixa_ipsec_policy;
12289 		ASSERT(pp != NULL);
12290 		ap = pp->ipsp_act;
12291 		ASSERT(ap != NULL);
12292 	}
12293 
12294 	/*
12295 	 * We have an action.  now, let's select SA's.
12296 	 * A side effect of setting ixa_ipsec_*_sa is that it will
12297 	 * be cached in the conn_t.
12298 	 */
12299 	if (ap->ipa_want_esp) {
12300 		if (ixa->ixa_ipsec_esp_sa == NULL) {
12301 			need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12302 			    IPPROTO_ESP);
12303 		}
12304 		ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12305 	}
12306 
12307 	if (ap->ipa_want_ah) {
12308 		if (ixa->ixa_ipsec_ah_sa == NULL) {
12309 			need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12310 			    IPPROTO_AH);
12311 		}
12312 		ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12313 		/*
12314 		 * The ESP and AH processing order needs to be preserved
12315 		 * when both protocols are required (ESP should be applied
12316 		 * before AH for an outbound packet). Force an ESP ACQUIRE
12317 		 * when both ESP and AH are required, and an AH ACQUIRE
12318 		 * is needed.
12319 		 */
12320 		if (ap->ipa_want_esp && need_ah_acquire)
12321 			need_esp_acquire = B_TRUE;
12322 	}
12323 
12324 	/*
12325 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
12326 	 * Release SAs that got referenced, but will not be used until we
12327 	 * acquire _all_ of the SAs we need.
12328 	 */
12329 	if (need_ah_acquire || need_esp_acquire) {
12330 		if (ixa->ixa_ipsec_ah_sa != NULL) {
12331 			IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12332 			ixa->ixa_ipsec_ah_sa = NULL;
12333 		}
12334 		if (ixa->ixa_ipsec_esp_sa != NULL) {
12335 			IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12336 			ixa->ixa_ipsec_esp_sa = NULL;
12337 		}
12338 
12339 		sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12340 		return (B_FALSE);
12341 	}
12342 
12343 	return (B_TRUE);
12344 }
12345 
12346 /*
12347  * Handle IPsec output processing.
12348  * This function is only entered once for a given packet.
12349  * We try to do things synchronously, but if we need to have user-level
12350  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12351  * will be completed
12352  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12353  *  - when asynchronous ESP is done it will do AH
12354  *
12355  * In all cases we come back in ip_output_post_ipsec() to fragment and
12356  * send out the packet.
12357  */
12358 int
12359 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12360 {
12361 	ill_t		*ill = ixa->ixa_nce->nce_ill;
12362 	ip_stack_t	*ipst = ixa->ixa_ipst;
12363 	ipsec_stack_t	*ipss;
12364 	ipsec_policy_t	*pp;
12365 	ipsec_action_t	*ap;
12366 
12367 	ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12368 
12369 	ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12370 	    (ixa->ixa_ipsec_action != NULL));
12371 
12372 	ipss = ipst->ips_netstack->netstack_ipsec;
12373 	if (!ipsec_loaded(ipss)) {
12374 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12375 		ip_drop_packet(mp, B_TRUE, ill,
12376 		    DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12377 		    &ipss->ipsec_dropper);
12378 		return (ENOTSUP);
12379 	}
12380 
12381 	ap = ixa->ixa_ipsec_action;
12382 	if (ap == NULL) {
12383 		pp = ixa->ixa_ipsec_policy;
12384 		ASSERT(pp != NULL);
12385 		ap = pp->ipsp_act;
12386 		ASSERT(ap != NULL);
12387 	}
12388 
12389 	/* Handle explicit drop action and bypass. */
12390 	switch (ap->ipa_act.ipa_type) {
12391 	case IPSEC_ACT_DISCARD:
12392 	case IPSEC_ACT_REJECT:
12393 		ip_drop_packet(mp, B_FALSE, ill,
12394 		    DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12395 		return (EHOSTUNREACH);	/* IPsec policy failure */
12396 	case IPSEC_ACT_BYPASS:
12397 		return (ip_output_post_ipsec(mp, ixa));
12398 	}
12399 
12400 	/*
12401 	 * The order of processing is first insert a IP header if needed.
12402 	 * Then insert the ESP header and then the AH header.
12403 	 */
12404 	if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12405 		/*
12406 		 * First get the outer IP header before sending
12407 		 * it to ESP.
12408 		 */
12409 		ipha_t *oipha, *iipha;
12410 		mblk_t *outer_mp, *inner_mp;
12411 
12412 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12413 			(void) mi_strlog(ill->ill_rq, 0,
12414 			    SL_ERROR|SL_TRACE|SL_CONSOLE,
12415 			    "ipsec_out_process: "
12416 			    "Self-Encapsulation failed: Out of memory\n");
12417 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12418 			ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12419 			freemsg(mp);
12420 			return (ENOBUFS);
12421 		}
12422 		inner_mp = mp;
12423 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
12424 		oipha = (ipha_t *)outer_mp->b_rptr;
12425 		iipha = (ipha_t *)inner_mp->b_rptr;
12426 		*oipha = *iipha;
12427 		outer_mp->b_wptr += sizeof (ipha_t);
12428 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12429 		    sizeof (ipha_t));
12430 		oipha->ipha_protocol = IPPROTO_ENCAP;
12431 		oipha->ipha_version_and_hdr_length =
12432 		    IP_SIMPLE_HDR_VERSION;
12433 		oipha->ipha_hdr_checksum = 0;
12434 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12435 		outer_mp->b_cont = inner_mp;
12436 		mp = outer_mp;
12437 
12438 		ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12439 	}
12440 
12441 	/* If we need to wait for a SA then we can't return any errno */
12442 	if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12443 	    (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12444 	    !ipsec_out_select_sa(mp, ixa))
12445 		return (0);
12446 
12447 	/*
12448 	 * By now, we know what SA's to use.  Toss over to ESP & AH
12449 	 * to do the heavy lifting.
12450 	 */
12451 	if (ap->ipa_want_esp) {
12452 		ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12453 
12454 		mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12455 		if (mp == NULL) {
12456 			/*
12457 			 * Either it failed or is pending. In the former case
12458 			 * ipIfStatsInDiscards was increased.
12459 			 */
12460 			return (0);
12461 		}
12462 	}
12463 
12464 	if (ap->ipa_want_ah) {
12465 		ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12466 
12467 		mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12468 		if (mp == NULL) {
12469 			/*
12470 			 * Either it failed or is pending. In the former case
12471 			 * ipIfStatsInDiscards was increased.
12472 			 */
12473 			return (0);
12474 		}
12475 	}
12476 	/*
12477 	 * We are done with IPsec processing. Send it over
12478 	 * the wire.
12479 	 */
12480 	return (ip_output_post_ipsec(mp, ixa));
12481 }
12482 
12483 /*
12484  * ioctls that go through a down/up sequence may need to wait for the down
12485  * to complete. This involves waiting for the ire and ipif refcnts to go down
12486  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12487  */
12488 /* ARGSUSED */
12489 void
12490 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12491 {
12492 	struct iocblk *iocp;
12493 	mblk_t *mp1;
12494 	ip_ioctl_cmd_t *ipip;
12495 	int err;
12496 	sin_t	*sin;
12497 	struct lifreq *lifr;
12498 	struct ifreq *ifr;
12499 
12500 	iocp = (struct iocblk *)mp->b_rptr;
12501 	ASSERT(ipsq != NULL);
12502 	/* Existence of mp1 verified in ip_wput_nondata */
12503 	mp1 = mp->b_cont->b_cont;
12504 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12505 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12506 		/*
12507 		 * Special case where ipx_current_ipif is not set:
12508 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12509 		 * We are here as were not able to complete the operation in
12510 		 * ipif_set_values because we could not become exclusive on
12511 		 * the new ipsq.
12512 		 */
12513 		ill_t *ill = q->q_ptr;
12514 		ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12515 	}
12516 	ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12517 
12518 	if (ipip->ipi_cmd_type == IF_CMD) {
12519 		/* This a old style SIOC[GS]IF* command */
12520 		ifr = (struct ifreq *)mp1->b_rptr;
12521 		sin = (sin_t *)&ifr->ifr_addr;
12522 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
12523 		/* This a new style SIOC[GS]LIF* command */
12524 		lifr = (struct lifreq *)mp1->b_rptr;
12525 		sin = (sin_t *)&lifr->lifr_addr;
12526 	} else {
12527 		sin = NULL;
12528 	}
12529 
12530 	err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12531 	    q, mp, ipip, mp1->b_rptr);
12532 
12533 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12534 	    int, ipip->ipi_cmd,
12535 	    ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12536 	    ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12537 
12538 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12539 }
12540 
12541 /*
12542  * ioctl processing
12543  *
12544  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12545  * the ioctl command in the ioctl tables, determines the copyin data size
12546  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12547  *
12548  * ioctl processing then continues when the M_IOCDATA makes its way down to
12549  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12550  * associated 'conn' is refheld till the end of the ioctl and the general
12551  * ioctl processing function ip_process_ioctl() is called to extract the
12552  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12553  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12554  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12555  * is used to extract the ioctl's arguments.
12556  *
12557  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12558  * so goes thru the serialization primitive ipsq_try_enter. Then the
12559  * appropriate function to handle the ioctl is called based on the entry in
12560  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12561  * which also refreleases the 'conn' that was refheld at the start of the
12562  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12563  *
12564  * Many exclusive ioctls go thru an internal down up sequence as part of
12565  * the operation. For example an attempt to change the IP address of an
12566  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12567  * does all the cleanup such as deleting all ires that use this address.
12568  * Then we need to wait till all references to the interface go away.
12569  */
12570 void
12571 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12572 {
12573 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12574 	ip_ioctl_cmd_t *ipip = arg;
12575 	ip_extract_func_t *extract_funcp;
12576 	cmd_info_t ci;
12577 	int err;
12578 	boolean_t entered_ipsq = B_FALSE;
12579 
12580 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12581 
12582 	if (ipip == NULL)
12583 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12584 
12585 	/*
12586 	 * SIOCLIFADDIF needs to go thru a special path since the
12587 	 * ill may not exist yet. This happens in the case of lo0
12588 	 * which is created using this ioctl.
12589 	 */
12590 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
12591 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12592 		DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12593 		    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12594 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12595 		return;
12596 	}
12597 
12598 	ci.ci_ipif = NULL;
12599 	switch (ipip->ipi_cmd_type) {
12600 	case MISC_CMD:
12601 	case MSFILT_CMD:
12602 		/*
12603 		 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12604 		 */
12605 		if (ipip->ipi_cmd == IF_UNITSEL) {
12606 			/* ioctl comes down the ill */
12607 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12608 			ipif_refhold(ci.ci_ipif);
12609 		}
12610 		err = 0;
12611 		ci.ci_sin = NULL;
12612 		ci.ci_sin6 = NULL;
12613 		ci.ci_lifr = NULL;
12614 		extract_funcp = NULL;
12615 		break;
12616 
12617 	case IF_CMD:
12618 	case LIF_CMD:
12619 		extract_funcp = ip_extract_lifreq;
12620 		break;
12621 
12622 	case ARP_CMD:
12623 	case XARP_CMD:
12624 		extract_funcp = ip_extract_arpreq;
12625 		break;
12626 
12627 	default:
12628 		ASSERT(0);
12629 	}
12630 
12631 	if (extract_funcp != NULL) {
12632 		err = (*extract_funcp)(q, mp, ipip, &ci);
12633 		if (err != 0) {
12634 			DTRACE_PROBE4(ipif__ioctl,
12635 			    char *, "ip_process_ioctl finish err",
12636 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12637 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12638 			return;
12639 		}
12640 
12641 		/*
12642 		 * All of the extraction functions return a refheld ipif.
12643 		 */
12644 		ASSERT(ci.ci_ipif != NULL);
12645 	}
12646 
12647 	if (!(ipip->ipi_flags & IPI_WR)) {
12648 		/*
12649 		 * A return value of EINPROGRESS means the ioctl is
12650 		 * either queued and waiting for some reason or has
12651 		 * already completed.
12652 		 */
12653 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12654 		    ci.ci_lifr);
12655 		if (ci.ci_ipif != NULL) {
12656 			DTRACE_PROBE4(ipif__ioctl,
12657 			    char *, "ip_process_ioctl finish RD",
12658 			    int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12659 			    ipif_t *, ci.ci_ipif);
12660 			ipif_refrele(ci.ci_ipif);
12661 		} else {
12662 			DTRACE_PROBE4(ipif__ioctl,
12663 			    char *, "ip_process_ioctl finish RD",
12664 			    int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12665 		}
12666 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12667 		return;
12668 	}
12669 
12670 	ASSERT(ci.ci_ipif != NULL);
12671 
12672 	/*
12673 	 * If ipsq is non-NULL, we are already being called exclusively
12674 	 */
12675 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12676 	if (ipsq == NULL) {
12677 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12678 		    NEW_OP, B_TRUE);
12679 		if (ipsq == NULL) {
12680 			ipif_refrele(ci.ci_ipif);
12681 			return;
12682 		}
12683 		entered_ipsq = B_TRUE;
12684 	}
12685 	/*
12686 	 * Release the ipif so that ipif_down and friends that wait for
12687 	 * references to go away are not misled about the current ipif_refcnt
12688 	 * values. We are writer so we can access the ipif even after releasing
12689 	 * the ipif.
12690 	 */
12691 	ipif_refrele(ci.ci_ipif);
12692 
12693 	ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12694 
12695 	/*
12696 	 * A return value of EINPROGRESS means the ioctl is
12697 	 * either queued and waiting for some reason or has
12698 	 * already completed.
12699 	 */
12700 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12701 
12702 	DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12703 	    int, ipip->ipi_cmd,
12704 	    ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12705 	    ipif_t *, ci.ci_ipif);
12706 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12707 
12708 	if (entered_ipsq)
12709 		ipsq_exit(ipsq);
12710 }
12711 
12712 /*
12713  * Complete the ioctl. Typically ioctls use the mi package and need to
12714  * do mi_copyout/mi_copy_done.
12715  */
12716 void
12717 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12718 {
12719 	conn_t	*connp = NULL;
12720 
12721 	if (err == EINPROGRESS)
12722 		return;
12723 
12724 	if (CONN_Q(q)) {
12725 		connp = Q_TO_CONN(q);
12726 		ASSERT(connp->conn_ref >= 2);
12727 	}
12728 
12729 	switch (mode) {
12730 	case COPYOUT:
12731 		if (err == 0)
12732 			mi_copyout(q, mp);
12733 		else
12734 			mi_copy_done(q, mp, err);
12735 		break;
12736 
12737 	case NO_COPYOUT:
12738 		mi_copy_done(q, mp, err);
12739 		break;
12740 
12741 	default:
12742 		ASSERT(mode == CONN_CLOSE);	/* aborted through CONN_CLOSE */
12743 		break;
12744 	}
12745 
12746 	/*
12747 	 * The conn refhold and ioctlref placed on the conn at the start of the
12748 	 * ioctl are released here.
12749 	 */
12750 	if (connp != NULL) {
12751 		CONN_DEC_IOCTLREF(connp);
12752 		CONN_OPER_PENDING_DONE(connp);
12753 	}
12754 
12755 	if (ipsq != NULL)
12756 		ipsq_current_finish(ipsq);
12757 }
12758 
12759 /* Handles all non data messages */
12760 int
12761 ip_wput_nondata(queue_t *q, mblk_t *mp)
12762 {
12763 	mblk_t		*mp1;
12764 	struct iocblk	*iocp;
12765 	ip_ioctl_cmd_t	*ipip;
12766 	conn_t		*connp;
12767 	cred_t		*cr;
12768 	char		*proto_str;
12769 
12770 	if (CONN_Q(q))
12771 		connp = Q_TO_CONN(q);
12772 	else
12773 		connp = NULL;
12774 
12775 	switch (DB_TYPE(mp)) {
12776 	case M_IOCTL:
12777 		/*
12778 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
12779 		 * will arrange to copy in associated control structures.
12780 		 */
12781 		ip_sioctl_copyin_setup(q, mp);
12782 		return (0);
12783 	case M_IOCDATA:
12784 		/*
12785 		 * Ensure that this is associated with one of our trans-
12786 		 * parent ioctls.  If it's not ours, discard it if we're
12787 		 * running as a driver, or pass it on if we're a module.
12788 		 */
12789 		iocp = (struct iocblk *)mp->b_rptr;
12790 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12791 		if (ipip == NULL) {
12792 			if (q->q_next == NULL) {
12793 				goto nak;
12794 			} else {
12795 				putnext(q, mp);
12796 			}
12797 			return (0);
12798 		}
12799 		if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12800 			/*
12801 			 * The ioctl is one we recognise, but is not consumed
12802 			 * by IP as a module and we are a module, so we drop
12803 			 */
12804 			goto nak;
12805 		}
12806 
12807 		/* IOCTL continuation following copyin or copyout. */
12808 		if (mi_copy_state(q, mp, NULL) == -1) {
12809 			/*
12810 			 * The copy operation failed.  mi_copy_state already
12811 			 * cleaned up, so we're out of here.
12812 			 */
12813 			return (0);
12814 		}
12815 		/*
12816 		 * If we just completed a copy in, we become writer and
12817 		 * continue processing in ip_sioctl_copyin_done.  If it
12818 		 * was a copy out, we call mi_copyout again.  If there is
12819 		 * nothing more to copy out, it will complete the IOCTL.
12820 		 */
12821 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12822 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12823 				mi_copy_done(q, mp, EPROTO);
12824 				return (0);
12825 			}
12826 			/*
12827 			 * Check for cases that need more copying.  A return
12828 			 * value of 0 means a second copyin has been started,
12829 			 * so we return; a return value of 1 means no more
12830 			 * copying is needed, so we continue.
12831 			 */
12832 			if (ipip->ipi_cmd_type == MSFILT_CMD &&
12833 			    MI_COPY_COUNT(mp) == 1) {
12834 				if (ip_copyin_msfilter(q, mp) == 0)
12835 					return (0);
12836 			}
12837 			/*
12838 			 * Refhold the conn, till the ioctl completes. This is
12839 			 * needed in case the ioctl ends up in the pending mp
12840 			 * list. Every mp in the ipx_pending_mp list must have
12841 			 * a refhold on the conn to resume processing. The
12842 			 * refhold is released when the ioctl completes
12843 			 * (whether normally or abnormally). An ioctlref is also
12844 			 * placed on the conn to prevent TCP from removing the
12845 			 * queue needed to send the ioctl reply back.
12846 			 * In all cases ip_ioctl_finish is called to finish
12847 			 * the ioctl and release the refholds.
12848 			 */
12849 			if (connp != NULL) {
12850 				/* This is not a reentry */
12851 				CONN_INC_REF(connp);
12852 				CONN_INC_IOCTLREF(connp);
12853 			} else {
12854 				if (!(ipip->ipi_flags & IPI_MODOK)) {
12855 					mi_copy_done(q, mp, EINVAL);
12856 					return (0);
12857 				}
12858 			}
12859 
12860 			ip_process_ioctl(NULL, q, mp, ipip);
12861 
12862 		} else {
12863 			mi_copyout(q, mp);
12864 		}
12865 		return (0);
12866 
12867 	case M_IOCNAK:
12868 		/*
12869 		 * The only way we could get here is if a resolver didn't like
12870 		 * an IOCTL we sent it.	 This shouldn't happen.
12871 		 */
12872 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12873 		    "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12874 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12875 		freemsg(mp);
12876 		return (0);
12877 	case M_IOCACK:
12878 		/* /dev/ip shouldn't see this */
12879 		goto nak;
12880 	case M_FLUSH:
12881 		if (*mp->b_rptr & FLUSHW)
12882 			flushq(q, FLUSHALL);
12883 		if (q->q_next) {
12884 			putnext(q, mp);
12885 			return (0);
12886 		}
12887 		if (*mp->b_rptr & FLUSHR) {
12888 			*mp->b_rptr &= ~FLUSHW;
12889 			qreply(q, mp);
12890 			return (0);
12891 		}
12892 		freemsg(mp);
12893 		return (0);
12894 	case M_CTL:
12895 		break;
12896 	case M_PROTO:
12897 	case M_PCPROTO:
12898 		/*
12899 		 * The only PROTO messages we expect are SNMP-related.
12900 		 */
12901 		switch (((union T_primitives *)mp->b_rptr)->type) {
12902 		case T_SVR4_OPTMGMT_REQ:
12903 			ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12904 			    "flags %x\n",
12905 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12906 
12907 			if (connp == NULL) {
12908 				proto_str = "T_SVR4_OPTMGMT_REQ";
12909 				goto protonak;
12910 			}
12911 
12912 			/*
12913 			 * All Solaris components should pass a db_credp
12914 			 * for this TPI message, hence we ASSERT.
12915 			 * But in case there is some other M_PROTO that looks
12916 			 * like a TPI message sent by some other kernel
12917 			 * component, we check and return an error.
12918 			 */
12919 			cr = msg_getcred(mp, NULL);
12920 			ASSERT(cr != NULL);
12921 			if (cr == NULL) {
12922 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12923 				if (mp != NULL)
12924 					qreply(q, mp);
12925 				return (0);
12926 			}
12927 
12928 			if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12929 				proto_str = "Bad SNMPCOM request?";
12930 				goto protonak;
12931 			}
12932 			return (0);
12933 		default:
12934 			ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12935 			    (int)*(uint_t *)mp->b_rptr));
12936 			freemsg(mp);
12937 			return (0);
12938 		}
12939 	default:
12940 		break;
12941 	}
12942 	if (q->q_next) {
12943 		putnext(q, mp);
12944 	} else
12945 		freemsg(mp);
12946 	return (0);
12947 
12948 nak:
12949 	iocp->ioc_error = EINVAL;
12950 	mp->b_datap->db_type = M_IOCNAK;
12951 	iocp->ioc_count = 0;
12952 	qreply(q, mp);
12953 	return (0);
12954 
12955 protonak:
12956 	cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12957 	if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12958 		qreply(q, mp);
12959 	return (0);
12960 }
12961 
12962 /*
12963  * Process IP options in an outbound packet.  Verify that the nexthop in a
12964  * strict source route is onlink.
12965  * Returns non-zero if something fails in which case an ICMP error has been
12966  * sent and mp freed.
12967  *
12968  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12969  */
12970 int
12971 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12972 {
12973 	ipoptp_t	opts;
12974 	uchar_t		*opt;
12975 	uint8_t		optval;
12976 	uint8_t		optlen;
12977 	ipaddr_t	dst;
12978 	intptr_t	code = 0;
12979 	ire_t		*ire;
12980 	ip_stack_t	*ipst = ixa->ixa_ipst;
12981 	ip_recv_attr_t	iras;
12982 
12983 	ip2dbg(("ip_output_options\n"));
12984 
12985 	dst = ipha->ipha_dst;
12986 	for (optval = ipoptp_first(&opts, ipha);
12987 	    optval != IPOPT_EOL;
12988 	    optval = ipoptp_next(&opts)) {
12989 		opt = opts.ipoptp_cur;
12990 		optlen = opts.ipoptp_len;
12991 		ip2dbg(("ip_output_options: opt %d, len %d\n",
12992 		    optval, optlen));
12993 		switch (optval) {
12994 			uint32_t off;
12995 		case IPOPT_SSRR:
12996 		case IPOPT_LSRR:
12997 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
12998 				ip1dbg((
12999 				    "ip_output_options: bad option offset\n"));
13000 				code = (char *)&opt[IPOPT_OLEN] -
13001 				    (char *)ipha;
13002 				goto param_prob;
13003 			}
13004 			off = opt[IPOPT_OFFSET];
13005 			ip1dbg(("ip_output_options: next hop 0x%x\n",
13006 			    ntohl(dst)));
13007 			/*
13008 			 * For strict: verify that dst is directly
13009 			 * reachable.
13010 			 */
13011 			if (optval == IPOPT_SSRR) {
13012 				ire = ire_ftable_lookup_v4(dst, 0, 0,
13013 				    IRE_INTERFACE, NULL, ALL_ZONES,
13014 				    ixa->ixa_tsl,
13015 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
13016 				    NULL);
13017 				if (ire == NULL) {
13018 					ip1dbg(("ip_output_options: SSRR not"
13019 					    " directly reachable: 0x%x\n",
13020 					    ntohl(dst)));
13021 					goto bad_src_route;
13022 				}
13023 				ire_refrele(ire);
13024 			}
13025 			break;
13026 		case IPOPT_RR:
13027 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13028 				ip1dbg((
13029 				    "ip_output_options: bad option offset\n"));
13030 				code = (char *)&opt[IPOPT_OLEN] -
13031 				    (char *)ipha;
13032 				goto param_prob;
13033 			}
13034 			break;
13035 		case IPOPT_TS:
13036 			/*
13037 			 * Verify that length >=5 and that there is either
13038 			 * room for another timestamp or that the overflow
13039 			 * counter is not maxed out.
13040 			 */
13041 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13042 			if (optlen < IPOPT_MINLEN_IT) {
13043 				goto param_prob;
13044 			}
13045 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13046 				ip1dbg((
13047 				    "ip_output_options: bad option offset\n"));
13048 				code = (char *)&opt[IPOPT_OFFSET] -
13049 				    (char *)ipha;
13050 				goto param_prob;
13051 			}
13052 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13053 			case IPOPT_TS_TSONLY:
13054 				off = IPOPT_TS_TIMELEN;
13055 				break;
13056 			case IPOPT_TS_TSANDADDR:
13057 			case IPOPT_TS_PRESPEC:
13058 			case IPOPT_TS_PRESPEC_RFC791:
13059 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13060 				break;
13061 			default:
13062 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
13063 				    (char *)ipha;
13064 				goto param_prob;
13065 			}
13066 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13067 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13068 				/*
13069 				 * No room and the overflow counter is 15
13070 				 * already.
13071 				 */
13072 				goto param_prob;
13073 			}
13074 			break;
13075 		}
13076 	}
13077 
13078 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13079 		return (0);
13080 
13081 	ip1dbg(("ip_output_options: error processing IP options."));
13082 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13083 
13084 param_prob:
13085 	bzero(&iras, sizeof (iras));
13086 	iras.ira_ill = iras.ira_rill = ill;
13087 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13088 	iras.ira_rifindex = iras.ira_ruifindex;
13089 	iras.ira_flags = IRAF_IS_IPV4;
13090 
13091 	ip_drop_output("ip_output_options", mp, ill);
13092 	icmp_param_problem(mp, (uint8_t)code, &iras);
13093 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13094 	return (-1);
13095 
13096 bad_src_route:
13097 	bzero(&iras, sizeof (iras));
13098 	iras.ira_ill = iras.ira_rill = ill;
13099 	iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13100 	iras.ira_rifindex = iras.ira_ruifindex;
13101 	iras.ira_flags = IRAF_IS_IPV4;
13102 
13103 	ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13104 	icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13105 	ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13106 	return (-1);
13107 }
13108 
13109 /*
13110  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13111  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13112  * thru /etc/system.
13113  */
13114 #define	CONN_MAXDRAINCNT	64
13115 
13116 static void
13117 conn_drain_init(ip_stack_t *ipst)
13118 {
13119 	int i, j;
13120 	idl_tx_list_t *itl_tx;
13121 
13122 	ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13123 
13124 	if ((ipst->ips_conn_drain_list_cnt == 0) ||
13125 	    (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13126 		/*
13127 		 * Default value of the number of drainers is the
13128 		 * number of cpus, subject to maximum of 8 drainers.
13129 		 */
13130 		if (boot_max_ncpus != -1)
13131 			ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13132 		else
13133 			ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13134 	}
13135 
13136 	ipst->ips_idl_tx_list =
13137 	    kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13138 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13139 		itl_tx =  &ipst->ips_idl_tx_list[i];
13140 		itl_tx->txl_drain_list =
13141 		    kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13142 		    sizeof (idl_t), KM_SLEEP);
13143 		mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13144 		for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13145 			mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13146 			    MUTEX_DEFAULT, NULL);
13147 			itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13148 		}
13149 	}
13150 }
13151 
13152 static void
13153 conn_drain_fini(ip_stack_t *ipst)
13154 {
13155 	int i;
13156 	idl_tx_list_t *itl_tx;
13157 
13158 	for (i = 0; i < TX_FANOUT_SIZE; i++) {
13159 		itl_tx =  &ipst->ips_idl_tx_list[i];
13160 		kmem_free(itl_tx->txl_drain_list,
13161 		    ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13162 	}
13163 	kmem_free(ipst->ips_idl_tx_list,
13164 	    TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13165 	ipst->ips_idl_tx_list = NULL;
13166 }
13167 
13168 /*
13169  * Flow control has blocked us from proceeding.  Insert the given conn in one
13170  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13171  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13172  * will call conn_walk_drain().  See the flow control notes at the top of this
13173  * file for more details.
13174  */
13175 void
13176 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13177 {
13178 	idl_t	*idl = tx_list->txl_drain_list;
13179 	uint_t	index;
13180 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
13181 
13182 	mutex_enter(&connp->conn_lock);
13183 	if (connp->conn_state_flags & CONN_CLOSING) {
13184 		/*
13185 		 * The conn is closing as a result of which CONN_CLOSING
13186 		 * is set. Return.
13187 		 */
13188 		mutex_exit(&connp->conn_lock);
13189 		return;
13190 	} else if (connp->conn_idl == NULL) {
13191 		/*
13192 		 * Assign the next drain list round robin. We dont' use
13193 		 * a lock, and thus it may not be strictly round robin.
13194 		 * Atomicity of load/stores is enough to make sure that
13195 		 * conn_drain_list_index is always within bounds.
13196 		 */
13197 		index = tx_list->txl_drain_index;
13198 		ASSERT(index < ipst->ips_conn_drain_list_cnt);
13199 		connp->conn_idl = &tx_list->txl_drain_list[index];
13200 		index++;
13201 		if (index == ipst->ips_conn_drain_list_cnt)
13202 			index = 0;
13203 		tx_list->txl_drain_index = index;
13204 	} else {
13205 		ASSERT(connp->conn_idl->idl_itl == tx_list);
13206 	}
13207 	mutex_exit(&connp->conn_lock);
13208 
13209 	idl = connp->conn_idl;
13210 	mutex_enter(&idl->idl_lock);
13211 	if ((connp->conn_drain_prev != NULL) ||
13212 	    (connp->conn_state_flags & CONN_CLOSING)) {
13213 		/*
13214 		 * The conn is either already in the drain list or closing.
13215 		 * (We needed to check for CONN_CLOSING again since close can
13216 		 * sneak in between dropping conn_lock and acquiring idl_lock.)
13217 		 */
13218 		mutex_exit(&idl->idl_lock);
13219 		return;
13220 	}
13221 
13222 	/*
13223 	 * The conn is not in the drain list. Insert it at the
13224 	 * tail of the drain list. The drain list is circular
13225 	 * and doubly linked. idl_conn points to the 1st element
13226 	 * in the list.
13227 	 */
13228 	if (idl->idl_conn == NULL) {
13229 		idl->idl_conn = connp;
13230 		connp->conn_drain_next = connp;
13231 		connp->conn_drain_prev = connp;
13232 	} else {
13233 		conn_t *head = idl->idl_conn;
13234 
13235 		connp->conn_drain_next = head;
13236 		connp->conn_drain_prev = head->conn_drain_prev;
13237 		head->conn_drain_prev->conn_drain_next = connp;
13238 		head->conn_drain_prev = connp;
13239 	}
13240 	/*
13241 	 * For non streams based sockets assert flow control.
13242 	 */
13243 	conn_setqfull(connp, NULL);
13244 	mutex_exit(&idl->idl_lock);
13245 }
13246 
13247 static void
13248 conn_drain_remove(conn_t *connp)
13249 {
13250 	idl_t *idl = connp->conn_idl;
13251 
13252 	if (idl != NULL) {
13253 		/*
13254 		 * Remove ourself from the drain list.
13255 		 */
13256 		if (connp->conn_drain_next == connp) {
13257 			/* Singleton in the list */
13258 			ASSERT(connp->conn_drain_prev == connp);
13259 			idl->idl_conn = NULL;
13260 		} else {
13261 			connp->conn_drain_prev->conn_drain_next =
13262 			    connp->conn_drain_next;
13263 			connp->conn_drain_next->conn_drain_prev =
13264 			    connp->conn_drain_prev;
13265 			if (idl->idl_conn == connp)
13266 				idl->idl_conn = connp->conn_drain_next;
13267 		}
13268 
13269 		/*
13270 		 * NOTE: because conn_idl is associated with a specific drain
13271 		 * list which in turn is tied to the index the TX ring
13272 		 * (txl_cookie) hashes to, and because the TX ring can change
13273 		 * over the lifetime of the conn_t, we must clear conn_idl so
13274 		 * a subsequent conn_drain_insert() will set conn_idl again
13275 		 * based on the latest txl_cookie.
13276 		 */
13277 		connp->conn_idl = NULL;
13278 	}
13279 	connp->conn_drain_next = NULL;
13280 	connp->conn_drain_prev = NULL;
13281 
13282 	conn_clrqfull(connp, NULL);
13283 	/*
13284 	 * For streams based sockets open up flow control.
13285 	 */
13286 	if (!IPCL_IS_NONSTR(connp))
13287 		enableok(connp->conn_wq);
13288 }
13289 
13290 /*
13291  * This conn is closing, and we are called from ip_close. OR
13292  * this conn is draining because flow-control on the ill has been relieved.
13293  *
13294  * We must also need to remove conn's on this idl from the list, and also
13295  * inform the sockfs upcalls about the change in flow-control.
13296  */
13297 static void
13298 conn_drain(conn_t *connp, boolean_t closing)
13299 {
13300 	idl_t *idl;
13301 	conn_t *next_connp;
13302 
13303 	/*
13304 	 * connp->conn_idl is stable at this point, and no lock is needed
13305 	 * to check it. If we are called from ip_close, close has already
13306 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
13307 	 * called us only because conn_idl is non-null. If we are called thru
13308 	 * service, conn_idl could be null, but it cannot change because
13309 	 * service is single-threaded per queue, and there cannot be another
13310 	 * instance of service trying to call conn_drain_insert on this conn
13311 	 * now.
13312 	 */
13313 	ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13314 
13315 	/*
13316 	 * If the conn doesn't exist or is not on a drain list, bail.
13317 	 */
13318 	if (connp == NULL || connp->conn_idl == NULL ||
13319 	    connp->conn_drain_prev == NULL) {
13320 		return;
13321 	}
13322 
13323 	idl = connp->conn_idl;
13324 	ASSERT(MUTEX_HELD(&idl->idl_lock));
13325 
13326 	if (!closing) {
13327 		next_connp = connp->conn_drain_next;
13328 		while (next_connp != connp) {
13329 			conn_t *delconnp = next_connp;
13330 
13331 			next_connp = next_connp->conn_drain_next;
13332 			conn_drain_remove(delconnp);
13333 		}
13334 		ASSERT(connp->conn_drain_next == idl->idl_conn);
13335 	}
13336 	conn_drain_remove(connp);
13337 }
13338 
13339 /*
13340  * Write service routine. Shared perimeter entry point.
13341  * The device queue's messages has fallen below the low water mark and STREAMS
13342  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13343  * each waiting conn.
13344  */
13345 int
13346 ip_wsrv(queue_t *q)
13347 {
13348 	ill_t	*ill;
13349 
13350 	ill = (ill_t *)q->q_ptr;
13351 	if (ill->ill_state_flags == 0) {
13352 		ip_stack_t *ipst = ill->ill_ipst;
13353 
13354 		/*
13355 		 * The device flow control has opened up.
13356 		 * Walk through conn drain lists and qenable the
13357 		 * first conn in each list. This makes sense only
13358 		 * if the stream is fully plumbed and setup.
13359 		 * Hence the ill_state_flags check above.
13360 		 */
13361 		ip1dbg(("ip_wsrv: walking\n"));
13362 		conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13363 		enableok(ill->ill_wq);
13364 	}
13365 	return (0);
13366 }
13367 
13368 /*
13369  * Callback to disable flow control in IP.
13370  *
13371  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13372  * is enabled.
13373  *
13374  * When MAC_TX() is not able to send any more packets, dld sets its queue
13375  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13376  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13377  * function and wakes up corresponding mac worker threads, which in turn
13378  * calls this callback function, and disables flow control.
13379  */
13380 void
13381 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13382 {
13383 	ill_t *ill = (ill_t *)arg;
13384 	ip_stack_t *ipst = ill->ill_ipst;
13385 	idl_tx_list_t *idl_txl;
13386 
13387 	idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13388 	mutex_enter(&idl_txl->txl_lock);
13389 	/* add code to to set a flag to indicate idl_txl is enabled */
13390 	conn_walk_drain(ipst, idl_txl);
13391 	mutex_exit(&idl_txl->txl_lock);
13392 }
13393 
13394 /*
13395  * Flow control has been relieved and STREAMS has backenabled us; drain
13396  * all the conn lists on `tx_list'.
13397  */
13398 static void
13399 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13400 {
13401 	int i;
13402 	idl_t *idl;
13403 
13404 	IP_STAT(ipst, ip_conn_walk_drain);
13405 
13406 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13407 		idl = &tx_list->txl_drain_list[i];
13408 		mutex_enter(&idl->idl_lock);
13409 		conn_drain(idl->idl_conn, B_FALSE);
13410 		mutex_exit(&idl->idl_lock);
13411 	}
13412 }
13413 
13414 /*
13415  * Determine if the ill and multicast aspects of that packets
13416  * "matches" the conn.
13417  */
13418 boolean_t
13419 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13420 {
13421 	ill_t		*ill = ira->ira_rill;
13422 	zoneid_t	zoneid = ira->ira_zoneid;
13423 	uint_t		in_ifindex;
13424 	ipaddr_t	dst, src;
13425 
13426 	dst = ipha->ipha_dst;
13427 	src = ipha->ipha_src;
13428 
13429 	/*
13430 	 * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13431 	 * unicast, broadcast and multicast reception to
13432 	 * conn_incoming_ifindex.
13433 	 * conn_wantpacket is called for unicast, broadcast and
13434 	 * multicast packets.
13435 	 */
13436 	in_ifindex = connp->conn_incoming_ifindex;
13437 
13438 	/* mpathd can bind to the under IPMP interface, which we allow */
13439 	if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13440 		if (!IS_UNDER_IPMP(ill))
13441 			return (B_FALSE);
13442 
13443 		if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13444 			return (B_FALSE);
13445 	}
13446 
13447 	if (!IPCL_ZONE_MATCH(connp, zoneid))
13448 		return (B_FALSE);
13449 
13450 	if (!(ira->ira_flags & IRAF_MULTICAST))
13451 		return (B_TRUE);
13452 
13453 	if (connp->conn_multi_router) {
13454 		/* multicast packet and multicast router socket: send up */
13455 		return (B_TRUE);
13456 	}
13457 
13458 	if (ipha->ipha_protocol == IPPROTO_PIM ||
13459 	    ipha->ipha_protocol == IPPROTO_RSVP)
13460 		return (B_TRUE);
13461 
13462 	return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13463 }
13464 
13465 void
13466 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13467 {
13468 	if (IPCL_IS_NONSTR(connp)) {
13469 		(*connp->conn_upcalls->su_txq_full)
13470 		    (connp->conn_upper_handle, B_TRUE);
13471 		if (flow_stopped != NULL)
13472 			*flow_stopped = B_TRUE;
13473 	} else {
13474 		queue_t *q = connp->conn_wq;
13475 
13476 		ASSERT(q != NULL);
13477 		if (!(q->q_flag & QFULL)) {
13478 			mutex_enter(QLOCK(q));
13479 			if (!(q->q_flag & QFULL)) {
13480 				/* still need to set QFULL */
13481 				q->q_flag |= QFULL;
13482 				/* set flow_stopped to true under QLOCK */
13483 				if (flow_stopped != NULL)
13484 					*flow_stopped = B_TRUE;
13485 				mutex_exit(QLOCK(q));
13486 			} else {
13487 				/* flow_stopped is left unchanged */
13488 				mutex_exit(QLOCK(q));
13489 			}
13490 		}
13491 	}
13492 }
13493 
13494 void
13495 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13496 {
13497 	if (IPCL_IS_NONSTR(connp)) {
13498 		(*connp->conn_upcalls->su_txq_full)
13499 		    (connp->conn_upper_handle, B_FALSE);
13500 		if (flow_stopped != NULL)
13501 			*flow_stopped = B_FALSE;
13502 	} else {
13503 		queue_t *q = connp->conn_wq;
13504 
13505 		ASSERT(q != NULL);
13506 		if (q->q_flag & QFULL) {
13507 			mutex_enter(QLOCK(q));
13508 			if (q->q_flag & QFULL) {
13509 				q->q_flag &= ~QFULL;
13510 				/* set flow_stopped to false under QLOCK */
13511 				if (flow_stopped != NULL)
13512 					*flow_stopped = B_FALSE;
13513 				mutex_exit(QLOCK(q));
13514 				if (q->q_flag & QWANTW)
13515 					qbackenable(q, 0);
13516 			} else {
13517 				/* flow_stopped is left unchanged */
13518 				mutex_exit(QLOCK(q));
13519 			}
13520 		}
13521 	}
13522 
13523 	mutex_enter(&connp->conn_lock);
13524 	connp->conn_blocked = B_FALSE;
13525 	mutex_exit(&connp->conn_lock);
13526 }
13527 
13528 /*
13529  * Return the length in bytes of the IPv4 headers (base header, label, and
13530  * other IP options) that will be needed based on the
13531  * ip_pkt_t structure passed by the caller.
13532  *
13533  * The returned length does not include the length of the upper level
13534  * protocol (ULP) header.
13535  * The caller needs to check that the length doesn't exceed the max for IPv4.
13536  */
13537 int
13538 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13539 {
13540 	int len;
13541 
13542 	len = IP_SIMPLE_HDR_LENGTH;
13543 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13544 		ASSERT(ipp->ipp_label_len_v4 != 0);
13545 		/* We need to round up here */
13546 		len += (ipp->ipp_label_len_v4 + 3) & ~3;
13547 	}
13548 
13549 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13550 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13551 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13552 		len += ipp->ipp_ipv4_options_len;
13553 	}
13554 	return (len);
13555 }
13556 
13557 /*
13558  * All-purpose routine to build an IPv4 header with options based
13559  * on the abstract ip_pkt_t.
13560  *
13561  * The caller has to set the source and destination address as well as
13562  * ipha_length. The caller has to massage any source route and compensate
13563  * for the ULP pseudo-header checksum due to the source route.
13564  */
13565 void
13566 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13567     uint8_t protocol)
13568 {
13569 	ipha_t	*ipha = (ipha_t *)buf;
13570 	uint8_t *cp;
13571 
13572 	/* Initialize IPv4 header */
13573 	ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13574 	ipha->ipha_length = 0;	/* Caller will set later */
13575 	ipha->ipha_ident = 0;
13576 	ipha->ipha_fragment_offset_and_flags = 0;
13577 	ipha->ipha_ttl = ipp->ipp_unicast_hops;
13578 	ipha->ipha_protocol = protocol;
13579 	ipha->ipha_hdr_checksum = 0;
13580 
13581 	if ((ipp->ipp_fields & IPPF_ADDR) &&
13582 	    IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13583 		ipha->ipha_src = ipp->ipp_addr_v4;
13584 
13585 	cp = (uint8_t *)&ipha[1];
13586 	if (ipp->ipp_fields & IPPF_LABEL_V4) {
13587 		ASSERT(ipp->ipp_label_len_v4 != 0);
13588 		bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13589 		cp += ipp->ipp_label_len_v4;
13590 		/* We need to round up here */
13591 		while ((uintptr_t)cp & 0x3) {
13592 			*cp++ = IPOPT_NOP;
13593 		}
13594 	}
13595 
13596 	if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13597 		ASSERT(ipp->ipp_ipv4_options_len != 0);
13598 		ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13599 		bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13600 		cp += ipp->ipp_ipv4_options_len;
13601 	}
13602 	ipha->ipha_version_and_hdr_length =
13603 	    (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13604 
13605 	ASSERT((int)(cp - buf) == buf_len);
13606 }
13607 
13608 /* Allocate the private structure */
13609 static int
13610 ip_priv_alloc(void **bufp)
13611 {
13612 	void	*buf;
13613 
13614 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13615 		return (ENOMEM);
13616 
13617 	*bufp = buf;
13618 	return (0);
13619 }
13620 
13621 /* Function to delete the private structure */
13622 void
13623 ip_priv_free(void *buf)
13624 {
13625 	ASSERT(buf != NULL);
13626 	kmem_free(buf, sizeof (ip_priv_t));
13627 }
13628 
13629 /*
13630  * The entry point for IPPF processing.
13631  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13632  * routine just returns.
13633  *
13634  * When called, ip_process generates an ipp_packet_t structure
13635  * which holds the state information for this packet and invokes the
13636  * the classifier (via ipp_packet_process). The classification, depending on
13637  * configured filters, results in a list of actions for this packet. Invoking
13638  * an action may cause the packet to be dropped, in which case we return NULL.
13639  * proc indicates the callout position for
13640  * this packet and ill is the interface this packet arrived on or will leave
13641  * on (inbound and outbound resp.).
13642  *
13643  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13644  * on the ill corrsponding to the destination IP address.
13645  */
13646 mblk_t *
13647 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13648 {
13649 	ip_priv_t	*priv;
13650 	ipp_action_id_t	aid;
13651 	int		rc = 0;
13652 	ipp_packet_t	*pp;
13653 
13654 	/* If the classifier is not loaded, return  */
13655 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13656 		return (mp);
13657 	}
13658 
13659 	ASSERT(mp != NULL);
13660 
13661 	/* Allocate the packet structure */
13662 	rc = ipp_packet_alloc(&pp, "ip", aid);
13663 	if (rc != 0)
13664 		goto drop;
13665 
13666 	/* Allocate the private structure */
13667 	rc = ip_priv_alloc((void **)&priv);
13668 	if (rc != 0) {
13669 		ipp_packet_free(pp);
13670 		goto drop;
13671 	}
13672 	priv->proc = proc;
13673 	priv->ill_index = ill_get_upper_ifindex(rill);
13674 
13675 	ipp_packet_set_private(pp, priv, ip_priv_free);
13676 	ipp_packet_set_data(pp, mp);
13677 
13678 	/* Invoke the classifier */
13679 	rc = ipp_packet_process(&pp);
13680 	if (pp != NULL) {
13681 		mp = ipp_packet_get_data(pp);
13682 		ipp_packet_free(pp);
13683 		if (rc != 0)
13684 			goto drop;
13685 		return (mp);
13686 	} else {
13687 		/* No mp to trace in ip_drop_input/ip_drop_output  */
13688 		mp = NULL;
13689 	}
13690 drop:
13691 	if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13692 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13693 		ip_drop_input("ip_process", mp, ill);
13694 	} else {
13695 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13696 		ip_drop_output("ip_process", mp, ill);
13697 	}
13698 	freemsg(mp);
13699 	return (NULL);
13700 }
13701 
13702 /*
13703  * Propagate a multicast group membership operation (add/drop) on
13704  * all the interfaces crossed by the related multirt routes.
13705  * The call is considered successful if the operation succeeds
13706  * on at least one interface.
13707  *
13708  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13709  * multicast addresses with the ire argument being the first one.
13710  * We walk the bucket to find all the of those.
13711  *
13712  * Common to IPv4 and IPv6.
13713  */
13714 static int
13715 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13716     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13717     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13718     mcast_record_t fmode, const in6_addr_t *v6src)
13719 {
13720 	ire_t		*ire_gw;
13721 	irb_t		*irb;
13722 	int		ifindex;
13723 	int		error = 0;
13724 	int		result;
13725 	ip_stack_t	*ipst = ire->ire_ipst;
13726 	ipaddr_t	group;
13727 	boolean_t	isv6;
13728 	int		match_flags;
13729 
13730 	if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13731 		IN6_V4MAPPED_TO_IPADDR(v6group, group);
13732 		isv6 = B_FALSE;
13733 	} else {
13734 		isv6 = B_TRUE;
13735 	}
13736 
13737 	irb = ire->ire_bucket;
13738 	ASSERT(irb != NULL);
13739 
13740 	result = 0;
13741 	irb_refhold(irb);
13742 	for (; ire != NULL; ire = ire->ire_next) {
13743 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
13744 			continue;
13745 
13746 		/* We handle -ifp routes by matching on the ill if set */
13747 		match_flags = MATCH_IRE_TYPE;
13748 		if (ire->ire_ill != NULL)
13749 			match_flags |= MATCH_IRE_ILL;
13750 
13751 		if (isv6) {
13752 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13753 				continue;
13754 
13755 			ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13756 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13757 			    match_flags, 0, ipst, NULL);
13758 		} else {
13759 			if (ire->ire_addr != group)
13760 				continue;
13761 
13762 			ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13763 			    0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13764 			    match_flags, 0, ipst, NULL);
13765 		}
13766 		/* No interface route exists for the gateway; skip this ire. */
13767 		if (ire_gw == NULL)
13768 			continue;
13769 		if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13770 			ire_refrele(ire_gw);
13771 			continue;
13772 		}
13773 		ASSERT(ire_gw->ire_ill != NULL);	/* IRE_INTERFACE */
13774 		ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13775 
13776 		/*
13777 		 * The operation is considered a success if
13778 		 * it succeeds at least once on any one interface.
13779 		 */
13780 		error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13781 		    fmode, v6src);
13782 		if (error == 0)
13783 			result = CGTP_MCAST_SUCCESS;
13784 
13785 		ire_refrele(ire_gw);
13786 	}
13787 	irb_refrele(irb);
13788 	/*
13789 	 * Consider the call as successful if we succeeded on at least
13790 	 * one interface. Otherwise, return the last encountered error.
13791 	 */
13792 	return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13793 }
13794 
13795 /*
13796  * Return the expected CGTP hooks version number.
13797  */
13798 int
13799 ip_cgtp_filter_supported(void)
13800 {
13801 	return (ip_cgtp_filter_rev);
13802 }
13803 
13804 /*
13805  * CGTP hooks can be registered by invoking this function.
13806  * Checks that the version number matches.
13807  */
13808 int
13809 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13810 {
13811 	netstack_t *ns;
13812 	ip_stack_t *ipst;
13813 
13814 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13815 		return (ENOTSUP);
13816 
13817 	ns = netstack_find_by_stackid(stackid);
13818 	if (ns == NULL)
13819 		return (EINVAL);
13820 	ipst = ns->netstack_ip;
13821 	ASSERT(ipst != NULL);
13822 
13823 	if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13824 		netstack_rele(ns);
13825 		return (EALREADY);
13826 	}
13827 
13828 	ipst->ips_ip_cgtp_filter_ops = ops;
13829 
13830 	ill_set_inputfn_all(ipst);
13831 
13832 	netstack_rele(ns);
13833 	return (0);
13834 }
13835 
13836 /*
13837  * CGTP hooks can be unregistered by invoking this function.
13838  * Returns ENXIO if there was no registration.
13839  * Returns EBUSY if the ndd variable has not been turned off.
13840  */
13841 int
13842 ip_cgtp_filter_unregister(netstackid_t stackid)
13843 {
13844 	netstack_t *ns;
13845 	ip_stack_t *ipst;
13846 
13847 	ns = netstack_find_by_stackid(stackid);
13848 	if (ns == NULL)
13849 		return (EINVAL);
13850 	ipst = ns->netstack_ip;
13851 	ASSERT(ipst != NULL);
13852 
13853 	if (ipst->ips_ip_cgtp_filter) {
13854 		netstack_rele(ns);
13855 		return (EBUSY);
13856 	}
13857 
13858 	if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13859 		netstack_rele(ns);
13860 		return (ENXIO);
13861 	}
13862 	ipst->ips_ip_cgtp_filter_ops = NULL;
13863 
13864 	ill_set_inputfn_all(ipst);
13865 
13866 	netstack_rele(ns);
13867 	return (0);
13868 }
13869 
13870 /*
13871  * Check whether there is a CGTP filter registration.
13872  * Returns non-zero if there is a registration, otherwise returns zero.
13873  * Note: returns zero if bad stackid.
13874  */
13875 int
13876 ip_cgtp_filter_is_registered(netstackid_t stackid)
13877 {
13878 	netstack_t *ns;
13879 	ip_stack_t *ipst;
13880 	int ret;
13881 
13882 	ns = netstack_find_by_stackid(stackid);
13883 	if (ns == NULL)
13884 		return (0);
13885 	ipst = ns->netstack_ip;
13886 	ASSERT(ipst != NULL);
13887 
13888 	if (ipst->ips_ip_cgtp_filter_ops != NULL)
13889 		ret = 1;
13890 	else
13891 		ret = 0;
13892 
13893 	netstack_rele(ns);
13894 	return (ret);
13895 }
13896 
13897 static int
13898 ip_squeue_switch(int val)
13899 {
13900 	int rval;
13901 
13902 	switch (val) {
13903 	case IP_SQUEUE_ENTER_NODRAIN:
13904 		rval = SQ_NODRAIN;
13905 		break;
13906 	case IP_SQUEUE_ENTER:
13907 		rval = SQ_PROCESS;
13908 		break;
13909 	case IP_SQUEUE_FILL:
13910 	default:
13911 		rval = SQ_FILL;
13912 		break;
13913 	}
13914 	return (rval);
13915 }
13916 
13917 static void *
13918 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13919 {
13920 	kstat_t *ksp;
13921 
13922 	ip_stat_t template = {
13923 		{ "ip_udp_fannorm",		KSTAT_DATA_UINT64 },
13924 		{ "ip_udp_fanmb",		KSTAT_DATA_UINT64 },
13925 		{ "ip_recv_pullup",		KSTAT_DATA_UINT64 },
13926 		{ "ip_db_ref",			KSTAT_DATA_UINT64 },
13927 		{ "ip_notaligned",		KSTAT_DATA_UINT64 },
13928 		{ "ip_multimblk",		KSTAT_DATA_UINT64 },
13929 		{ "ip_opt",			KSTAT_DATA_UINT64 },
13930 		{ "ipsec_proto_ahesp",		KSTAT_DATA_UINT64 },
13931 		{ "ip_conn_flputbq",		KSTAT_DATA_UINT64 },
13932 		{ "ip_conn_walk_drain",		KSTAT_DATA_UINT64 },
13933 		{ "ip_out_sw_cksum",		KSTAT_DATA_UINT64 },
13934 		{ "ip_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
13935 		{ "ip_in_sw_cksum",		KSTAT_DATA_UINT64 },
13936 		{ "ip_ire_reclaim_calls",	KSTAT_DATA_UINT64 },
13937 		{ "ip_ire_reclaim_deleted",	KSTAT_DATA_UINT64 },
13938 		{ "ip_nce_reclaim_calls",	KSTAT_DATA_UINT64 },
13939 		{ "ip_nce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13940 		{ "ip_dce_reclaim_calls",	KSTAT_DATA_UINT64 },
13941 		{ "ip_dce_reclaim_deleted",	KSTAT_DATA_UINT64 },
13942 		{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13943 		{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13944 		{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
13945 		{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
13946 		{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
13947 		{ "ip_udp_in_sw_cksum_err",	KSTAT_DATA_UINT64 },
13948 		{ "conn_in_recvdstaddr",	KSTAT_DATA_UINT64 },
13949 		{ "conn_in_recvopts",		KSTAT_DATA_UINT64 },
13950 		{ "conn_in_recvif",		KSTAT_DATA_UINT64 },
13951 		{ "conn_in_recvslla",		KSTAT_DATA_UINT64 },
13952 		{ "conn_in_recvucred",		KSTAT_DATA_UINT64 },
13953 		{ "conn_in_recvttl",		KSTAT_DATA_UINT64 },
13954 		{ "conn_in_recvhopopts",	KSTAT_DATA_UINT64 },
13955 		{ "conn_in_recvhoplimit",	KSTAT_DATA_UINT64 },
13956 		{ "conn_in_recvdstopts",	KSTAT_DATA_UINT64 },
13957 		{ "conn_in_recvrthdrdstopts",	KSTAT_DATA_UINT64 },
13958 		{ "conn_in_recvrthdr",		KSTAT_DATA_UINT64 },
13959 		{ "conn_in_recvpktinfo",	KSTAT_DATA_UINT64 },
13960 		{ "conn_in_recvtclass",		KSTAT_DATA_UINT64 },
13961 		{ "conn_in_timestamp",		KSTAT_DATA_UINT64 },
13962 	};
13963 
13964 	ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13965 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13966 	    KSTAT_FLAG_VIRTUAL, stackid);
13967 
13968 	if (ksp == NULL)
13969 		return (NULL);
13970 
13971 	bcopy(&template, ip_statisticsp, sizeof (template));
13972 	ksp->ks_data = (void *)ip_statisticsp;
13973 	ksp->ks_private = (void *)(uintptr_t)stackid;
13974 
13975 	kstat_install(ksp);
13976 	return (ksp);
13977 }
13978 
13979 static void
13980 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13981 {
13982 	if (ksp != NULL) {
13983 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13984 		kstat_delete_netstack(ksp, stackid);
13985 	}
13986 }
13987 
13988 static void *
13989 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
13990 {
13991 	kstat_t	*ksp;
13992 
13993 	ip_named_kstat_t template = {
13994 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
13995 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
13996 		{ "inReceives",		KSTAT_DATA_UINT64, 0 },
13997 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
13998 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
13999 		{ "forwDatagrams",	KSTAT_DATA_UINT64, 0 },
14000 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
14001 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
14002 		{ "inDelivers",		KSTAT_DATA_UINT64, 0 },
14003 		{ "outRequests",	KSTAT_DATA_UINT64, 0 },
14004 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
14005 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
14006 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
14007 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
14008 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
14009 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
14010 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
14011 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
14012 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
14013 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
14014 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
14015 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
14016 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
14017 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
14018 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
14019 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
14020 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
14021 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
14022 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
14023 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
14024 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
14025 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
14026 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
14027 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
14028 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
14029 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
14030 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
14031 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
14032 	};
14033 
14034 	ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14035 	    NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14036 	if (ksp == NULL || ksp->ks_data == NULL)
14037 		return (NULL);
14038 
14039 	template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14040 	template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14041 	template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14042 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14043 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14044 
14045 	template.netToMediaEntrySize.value.i32 =
14046 	    sizeof (mib2_ipNetToMediaEntry_t);
14047 
14048 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14049 
14050 	bcopy(&template, ksp->ks_data, sizeof (template));
14051 	ksp->ks_update = ip_kstat_update;
14052 	ksp->ks_private = (void *)(uintptr_t)stackid;
14053 
14054 	kstat_install(ksp);
14055 	return (ksp);
14056 }
14057 
14058 static void
14059 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14060 {
14061 	if (ksp != NULL) {
14062 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14063 		kstat_delete_netstack(ksp, stackid);
14064 	}
14065 }
14066 
14067 static int
14068 ip_kstat_update(kstat_t *kp, int rw)
14069 {
14070 	ip_named_kstat_t *ipkp;
14071 	mib2_ipIfStatsEntry_t ipmib;
14072 	ill_walk_context_t ctx;
14073 	ill_t *ill;
14074 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14075 	netstack_t	*ns;
14076 	ip_stack_t	*ipst;
14077 
14078 	if (kp->ks_data == NULL)
14079 		return (EIO);
14080 
14081 	if (rw == KSTAT_WRITE)
14082 		return (EACCES);
14083 
14084 	ns = netstack_find_by_stackid(stackid);
14085 	if (ns == NULL)
14086 		return (-1);
14087 	ipst = ns->netstack_ip;
14088 	if (ipst == NULL) {
14089 		netstack_rele(ns);
14090 		return (-1);
14091 	}
14092 	ipkp = (ip_named_kstat_t *)kp->ks_data;
14093 
14094 	bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14095 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14096 	ill = ILL_START_WALK_V4(&ctx, ipst);
14097 	for (; ill != NULL; ill = ill_next(&ctx, ill))
14098 		ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14099 	rw_exit(&ipst->ips_ill_g_lock);
14100 
14101 	ipkp->forwarding.value.ui32 =		ipmib.ipIfStatsForwarding;
14102 	ipkp->defaultTTL.value.ui32 =		ipmib.ipIfStatsDefaultTTL;
14103 	ipkp->inReceives.value.ui64 =		ipmib.ipIfStatsHCInReceives;
14104 	ipkp->inHdrErrors.value.ui32 =		ipmib.ipIfStatsInHdrErrors;
14105 	ipkp->inAddrErrors.value.ui32 =		ipmib.ipIfStatsInAddrErrors;
14106 	ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14107 	ipkp->inUnknownProtos.value.ui32 =	ipmib.ipIfStatsInUnknownProtos;
14108 	ipkp->inDiscards.value.ui32 =		ipmib.ipIfStatsInDiscards;
14109 	ipkp->inDelivers.value.ui64 =		ipmib.ipIfStatsHCInDelivers;
14110 	ipkp->outRequests.value.ui64 =		ipmib.ipIfStatsHCOutRequests;
14111 	ipkp->outDiscards.value.ui32 =		ipmib.ipIfStatsOutDiscards;
14112 	ipkp->outNoRoutes.value.ui32 =		ipmib.ipIfStatsOutNoRoutes;
14113 	ipkp->reasmTimeout.value.ui32 =		ipst->ips_ip_reassembly_timeout;
14114 	ipkp->reasmReqds.value.ui32 =		ipmib.ipIfStatsReasmReqds;
14115 	ipkp->reasmOKs.value.ui32 =		ipmib.ipIfStatsReasmOKs;
14116 	ipkp->reasmFails.value.ui32 =		ipmib.ipIfStatsReasmFails;
14117 	ipkp->fragOKs.value.ui32 =		ipmib.ipIfStatsOutFragOKs;
14118 	ipkp->fragFails.value.ui32 =		ipmib.ipIfStatsOutFragFails;
14119 	ipkp->fragCreates.value.ui32 =		ipmib.ipIfStatsOutFragCreates;
14120 
14121 	ipkp->routingDiscards.value.ui32 =	0;
14122 	ipkp->inErrs.value.ui32 =		ipmib.tcpIfStatsInErrs;
14123 	ipkp->noPorts.value.ui32 =		ipmib.udpIfStatsNoPorts;
14124 	ipkp->inCksumErrs.value.ui32 =		ipmib.ipIfStatsInCksumErrs;
14125 	ipkp->reasmDuplicates.value.ui32 =	ipmib.ipIfStatsReasmDuplicates;
14126 	ipkp->reasmPartDups.value.ui32 =	ipmib.ipIfStatsReasmPartDups;
14127 	ipkp->forwProhibits.value.ui32 =	ipmib.ipIfStatsForwProhibits;
14128 	ipkp->udpInCksumErrs.value.ui32 =	ipmib.udpIfStatsInCksumErrs;
14129 	ipkp->udpInOverflows.value.ui32 =	ipmib.udpIfStatsInOverflows;
14130 	ipkp->rawipInOverflows.value.ui32 =	ipmib.rawipIfStatsInOverflows;
14131 	ipkp->ipsecInSucceeded.value.ui32 =	ipmib.ipsecIfStatsInSucceeded;
14132 	ipkp->ipsecInFailed.value.i32 =		ipmib.ipsecIfStatsInFailed;
14133 
14134 	ipkp->inIPv6.value.ui32 =	ipmib.ipIfStatsInWrongIPVersion;
14135 	ipkp->outIPv6.value.ui32 =	ipmib.ipIfStatsOutWrongIPVersion;
14136 	ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14137 
14138 	netstack_rele(ns);
14139 
14140 	return (0);
14141 }
14142 
14143 static void *
14144 icmp_kstat_init(netstackid_t stackid)
14145 {
14146 	kstat_t	*ksp;
14147 
14148 	icmp_named_kstat_t template = {
14149 		{ "inMsgs",		KSTAT_DATA_UINT32 },
14150 		{ "inErrors",		KSTAT_DATA_UINT32 },
14151 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
14152 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
14153 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
14154 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
14155 		{ "inRedirects",	KSTAT_DATA_UINT32 },
14156 		{ "inEchos",		KSTAT_DATA_UINT32 },
14157 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
14158 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
14159 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
14160 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
14161 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
14162 		{ "outMsgs",		KSTAT_DATA_UINT32 },
14163 		{ "outErrors",		KSTAT_DATA_UINT32 },
14164 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
14165 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
14166 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
14167 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
14168 		{ "outRedirects",	KSTAT_DATA_UINT32 },
14169 		{ "outEchos",		KSTAT_DATA_UINT32 },
14170 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
14171 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
14172 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
14173 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
14174 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
14175 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
14176 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
14177 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
14178 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
14179 		{ "outDrops",		KSTAT_DATA_UINT32 },
14180 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
14181 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
14182 	};
14183 
14184 	ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14185 	    NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14186 	if (ksp == NULL || ksp->ks_data == NULL)
14187 		return (NULL);
14188 
14189 	bcopy(&template, ksp->ks_data, sizeof (template));
14190 
14191 	ksp->ks_update = icmp_kstat_update;
14192 	ksp->ks_private = (void *)(uintptr_t)stackid;
14193 
14194 	kstat_install(ksp);
14195 	return (ksp);
14196 }
14197 
14198 static void
14199 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14200 {
14201 	if (ksp != NULL) {
14202 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14203 		kstat_delete_netstack(ksp, stackid);
14204 	}
14205 }
14206 
14207 static int
14208 icmp_kstat_update(kstat_t *kp, int rw)
14209 {
14210 	icmp_named_kstat_t *icmpkp;
14211 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14212 	netstack_t	*ns;
14213 	ip_stack_t	*ipst;
14214 
14215 	if (kp->ks_data == NULL)
14216 		return (EIO);
14217 
14218 	if (rw == KSTAT_WRITE)
14219 		return (EACCES);
14220 
14221 	ns = netstack_find_by_stackid(stackid);
14222 	if (ns == NULL)
14223 		return (-1);
14224 	ipst = ns->netstack_ip;
14225 	if (ipst == NULL) {
14226 		netstack_rele(ns);
14227 		return (-1);
14228 	}
14229 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14230 
14231 	icmpkp->inMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpInMsgs;
14232 	icmpkp->inErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpInErrors;
14233 	icmpkp->inDestUnreachs.value.ui32 =
14234 	    ipst->ips_icmp_mib.icmpInDestUnreachs;
14235 	icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14236 	icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14237 	icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14238 	icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14239 	icmpkp->inEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchos;
14240 	icmpkp->inEchoReps.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchoReps;
14241 	icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14242 	icmpkp->inTimestampReps.value.ui32 =
14243 	    ipst->ips_icmp_mib.icmpInTimestampReps;
14244 	icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14245 	icmpkp->inAddrMaskReps.value.ui32 =
14246 	    ipst->ips_icmp_mib.icmpInAddrMaskReps;
14247 	icmpkp->outMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpOutMsgs;
14248 	icmpkp->outErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpOutErrors;
14249 	icmpkp->outDestUnreachs.value.ui32 =
14250 	    ipst->ips_icmp_mib.icmpOutDestUnreachs;
14251 	icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14252 	icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14253 	icmpkp->outSrcQuenchs.value.ui32 =
14254 	    ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14255 	icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14256 	icmpkp->outEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpOutEchos;
14257 	icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14258 	icmpkp->outTimestamps.value.ui32 =
14259 	    ipst->ips_icmp_mib.icmpOutTimestamps;
14260 	icmpkp->outTimestampReps.value.ui32 =
14261 	    ipst->ips_icmp_mib.icmpOutTimestampReps;
14262 	icmpkp->outAddrMasks.value.ui32 =
14263 	    ipst->ips_icmp_mib.icmpOutAddrMasks;
14264 	icmpkp->outAddrMaskReps.value.ui32 =
14265 	    ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14266 	icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14267 	icmpkp->inUnknowns.value.ui32 =	    ipst->ips_icmp_mib.icmpInUnknowns;
14268 	icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14269 	icmpkp->outFragNeeded.value.ui32 =
14270 	    ipst->ips_icmp_mib.icmpOutFragNeeded;
14271 	icmpkp->outDrops.value.ui32 =	    ipst->ips_icmp_mib.icmpOutDrops;
14272 	icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14273 	icmpkp->inBadRedirects.value.ui32 =
14274 	    ipst->ips_icmp_mib.icmpInBadRedirects;
14275 
14276 	netstack_rele(ns);
14277 	return (0);
14278 }
14279 
14280 /*
14281  * This is the fanout function for raw socket opened for SCTP.  Note
14282  * that it is called after SCTP checks that there is no socket which
14283  * wants a packet.  Then before SCTP handles this out of the blue packet,
14284  * this function is called to see if there is any raw socket for SCTP.
14285  * If there is and it is bound to the correct address, the packet will
14286  * be sent to that socket.  Note that only one raw socket can be bound to
14287  * a port.  This is assured in ipcl_sctp_hash_insert();
14288  */
14289 void
14290 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14291     ip_recv_attr_t *ira)
14292 {
14293 	conn_t		*connp;
14294 	queue_t		*rq;
14295 	boolean_t	secure;
14296 	ill_t		*ill = ira->ira_ill;
14297 	ip_stack_t	*ipst = ill->ill_ipst;
14298 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
14299 	sctp_stack_t	*sctps = ipst->ips_netstack->netstack_sctp;
14300 	iaflags_t	iraflags = ira->ira_flags;
14301 	ill_t		*rill = ira->ira_rill;
14302 
14303 	secure = iraflags & IRAF_IPSEC_SECURE;
14304 
14305 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14306 	    ira, ipst);
14307 	if (connp == NULL) {
14308 		/*
14309 		 * Although raw sctp is not summed, OOB chunks must be.
14310 		 * Drop the packet here if the sctp checksum failed.
14311 		 */
14312 		if (iraflags & IRAF_SCTP_CSUM_ERR) {
14313 			SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14314 			freemsg(mp);
14315 			return;
14316 		}
14317 		ira->ira_ill = ira->ira_rill = NULL;
14318 		sctp_ootb_input(mp, ira, ipst);
14319 		ira->ira_ill = ill;
14320 		ira->ira_rill = rill;
14321 		return;
14322 	}
14323 	rq = connp->conn_rq;
14324 	if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14325 		CONN_DEC_REF(connp);
14326 		BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14327 		freemsg(mp);
14328 		return;
14329 	}
14330 	if (((iraflags & IRAF_IS_IPV4) ?
14331 	    CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14332 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14333 	    secure) {
14334 		mp = ipsec_check_inbound_policy(mp, connp, ipha,
14335 		    ip6h, ira);
14336 		if (mp == NULL) {
14337 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14338 			/* Note that mp is NULL */
14339 			ip_drop_input("ipIfStatsInDiscards", mp, ill);
14340 			CONN_DEC_REF(connp);
14341 			return;
14342 		}
14343 	}
14344 
14345 	if (iraflags & IRAF_ICMP_ERROR) {
14346 		(connp->conn_recvicmp)(connp, mp, NULL, ira);
14347 	} else {
14348 		ill_t *rill = ira->ira_rill;
14349 
14350 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14351 		/* This is the SOCK_RAW, IPPROTO_SCTP case. */
14352 		ira->ira_ill = ira->ira_rill = NULL;
14353 		(connp->conn_recv)(connp, mp, NULL, ira);
14354 		ira->ira_ill = ill;
14355 		ira->ira_rill = rill;
14356 	}
14357 	CONN_DEC_REF(connp);
14358 }
14359 
14360 /*
14361  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14362  * header before the ip payload.
14363  */
14364 static void
14365 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14366 {
14367 	int len = (mp->b_wptr - mp->b_rptr);
14368 	mblk_t *ip_mp;
14369 
14370 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14371 	if (is_fp_mp || len != fp_mp_len) {
14372 		if (len > fp_mp_len) {
14373 			/*
14374 			 * fastpath header and ip header in the first mblk
14375 			 */
14376 			mp->b_rptr += fp_mp_len;
14377 		} else {
14378 			/*
14379 			 * ip_xmit_attach_llhdr had to prepend an mblk to
14380 			 * attach the fastpath header before ip header.
14381 			 */
14382 			ip_mp = mp->b_cont;
14383 			freeb(mp);
14384 			mp = ip_mp;
14385 			mp->b_rptr += (fp_mp_len - len);
14386 		}
14387 	} else {
14388 		ip_mp = mp->b_cont;
14389 		freeb(mp);
14390 		mp = ip_mp;
14391 	}
14392 	ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14393 	freemsg(mp);
14394 }
14395 
14396 /*
14397  * Normal post fragmentation function.
14398  *
14399  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14400  * using the same state machine.
14401  *
14402  * We return an error on failure. In particular we return EWOULDBLOCK
14403  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14404  * (currently by canputnext failure resulting in backenabling from GLD.)
14405  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14406  * indication that they can flow control until ip_wsrv() tells then to restart.
14407  *
14408  * If the nce passed by caller is incomplete, this function
14409  * queues the packet and if necessary, sends ARP request and bails.
14410  * If the Neighbor Cache passed is fully resolved, we simply prepend
14411  * the link-layer header to the packet, do ipsec hw acceleration
14412  * work if necessary, and send the packet out on the wire.
14413  */
14414 /* ARGSUSED6 */
14415 int
14416 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14417     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14418 {
14419 	queue_t		*wq;
14420 	ill_t		*ill = nce->nce_ill;
14421 	ip_stack_t	*ipst = ill->ill_ipst;
14422 	uint64_t	delta;
14423 	boolean_t	isv6 = ill->ill_isv6;
14424 	boolean_t	fp_mp;
14425 	ncec_t		*ncec = nce->nce_common;
14426 	int64_t		now = LBOLT_FASTPATH64;
14427 	boolean_t	is_probe;
14428 
14429 	DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14430 
14431 	ASSERT(mp != NULL);
14432 	ASSERT(mp->b_datap->db_type == M_DATA);
14433 	ASSERT(pkt_len == msgdsize(mp));
14434 
14435 	/*
14436 	 * If we have already been here and are coming back after ARP/ND.
14437 	 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14438 	 * in that case since they have seen the packet when it came here
14439 	 * the first time.
14440 	 */
14441 	if (ixaflags & IXAF_NO_TRACE)
14442 		goto sendit;
14443 
14444 	if (ixaflags & IXAF_IS_IPV4) {
14445 		ipha_t *ipha = (ipha_t *)mp->b_rptr;
14446 
14447 		ASSERT(!isv6);
14448 		ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14449 		if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14450 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14451 			int	error;
14452 
14453 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
14454 			    ipst->ips_ipv4firewall_physical_out,
14455 			    NULL, ill, ipha, mp, mp, 0, ipst, error);
14456 			DTRACE_PROBE1(ip4__physical__out__end,
14457 			    mblk_t *, mp);
14458 			if (mp == NULL)
14459 				return (error);
14460 
14461 			/* The length could have changed */
14462 			pkt_len = msgdsize(mp);
14463 		}
14464 		if (ipst->ips_ip4_observe.he_interested) {
14465 			/*
14466 			 * Note that for TX the zoneid is the sending
14467 			 * zone, whether or not MLP is in play.
14468 			 * Since the szone argument is the IP zoneid (i.e.,
14469 			 * zero for exclusive-IP zones) and ipobs wants
14470 			 * the system zoneid, we map it here.
14471 			 */
14472 			szone = IP_REAL_ZONEID(szone, ipst);
14473 
14474 			/*
14475 			 * On the outbound path the destination zone will be
14476 			 * unknown as we're sending this packet out on the
14477 			 * wire.
14478 			 */
14479 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14480 			    ill, ipst);
14481 		}
14482 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14483 		    void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14484 		    ipha_t *, ipha, ip6_t *, NULL, int, 0);
14485 	} else {
14486 		ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14487 
14488 		ASSERT(isv6);
14489 		ASSERT(pkt_len ==
14490 		    ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14491 		if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14492 		    !(ixaflags & IXAF_NO_PFHOOK)) {
14493 			int	error;
14494 
14495 			FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14496 			    ipst->ips_ipv6firewall_physical_out,
14497 			    NULL, ill, ip6h, mp, mp, 0, ipst, error);
14498 			DTRACE_PROBE1(ip6__physical__out__end,
14499 			    mblk_t *, mp);
14500 			if (mp == NULL)
14501 				return (error);
14502 
14503 			/* The length could have changed */
14504 			pkt_len = msgdsize(mp);
14505 		}
14506 		if (ipst->ips_ip6_observe.he_interested) {
14507 			/* See above */
14508 			szone = IP_REAL_ZONEID(szone, ipst);
14509 
14510 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14511 			    ill, ipst);
14512 		}
14513 		DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14514 		    void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14515 		    ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14516 	}
14517 
14518 sendit:
14519 	/*
14520 	 * We check the state without a lock because the state can never
14521 	 * move "backwards" to initial or incomplete.
14522 	 */
14523 	switch (ncec->ncec_state) {
14524 	case ND_REACHABLE:
14525 	case ND_STALE:
14526 	case ND_DELAY:
14527 	case ND_PROBE:
14528 		mp = ip_xmit_attach_llhdr(mp, nce);
14529 		if (mp == NULL) {
14530 			/*
14531 			 * ip_xmit_attach_llhdr has increased
14532 			 * ipIfStatsOutDiscards and called ip_drop_output()
14533 			 */
14534 			return (ENOBUFS);
14535 		}
14536 		/*
14537 		 * check if nce_fastpath completed and we tagged on a
14538 		 * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14539 		 */
14540 		fp_mp = (mp->b_datap->db_type == M_DATA);
14541 
14542 		if (fp_mp &&
14543 		    (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14544 			ill_dld_direct_t *idd;
14545 
14546 			idd = &ill->ill_dld_capab->idc_direct;
14547 			/*
14548 			 * Send the packet directly to DLD, where it
14549 			 * may be queued depending on the availability
14550 			 * of transmit resources at the media layer.
14551 			 * Return value should be taken into
14552 			 * account and flow control the TCP.
14553 			 */
14554 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14555 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14556 			    pkt_len);
14557 
14558 			if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14559 				(void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14560 				    (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14561 			} else {
14562 				uintptr_t cookie;
14563 
14564 				if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14565 				    mp, (uintptr_t)xmit_hint, 0)) != 0) {
14566 					if (ixacookie != NULL)
14567 						*ixacookie = cookie;
14568 					return (EWOULDBLOCK);
14569 				}
14570 			}
14571 		} else {
14572 			wq = ill->ill_wq;
14573 
14574 			if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14575 			    !canputnext(wq)) {
14576 				if (ixacookie != NULL)
14577 					*ixacookie = 0;
14578 				ip_xmit_flowctl_drop(ill, mp, fp_mp,
14579 				    nce->nce_fp_mp != NULL ?
14580 				    MBLKL(nce->nce_fp_mp) : 0);
14581 				return (EWOULDBLOCK);
14582 			}
14583 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14584 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14585 			    pkt_len);
14586 			putnext(wq, mp);
14587 		}
14588 
14589 		/*
14590 		 * The rest of this function implements Neighbor Unreachability
14591 		 * detection. Determine if the ncec is eligible for NUD.
14592 		 */
14593 		if (ncec->ncec_flags & NCE_F_NONUD)
14594 			return (0);
14595 
14596 		ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14597 
14598 		/*
14599 		 * Check for upper layer advice
14600 		 */
14601 		if (ixaflags & IXAF_REACH_CONF) {
14602 			timeout_id_t tid;
14603 
14604 			/*
14605 			 * It should be o.k. to check the state without
14606 			 * a lock here, at most we lose an advice.
14607 			 */
14608 			ncec->ncec_last = TICK_TO_MSEC(now);
14609 			if (ncec->ncec_state != ND_REACHABLE) {
14610 				mutex_enter(&ncec->ncec_lock);
14611 				ncec->ncec_state = ND_REACHABLE;
14612 				tid = ncec->ncec_timeout_id;
14613 				ncec->ncec_timeout_id = 0;
14614 				mutex_exit(&ncec->ncec_lock);
14615 				(void) untimeout(tid);
14616 				if (ip_debug > 2) {
14617 					/* ip1dbg */
14618 					pr_addr_dbg("ip_xmit: state"
14619 					    " for %s changed to"
14620 					    " REACHABLE\n", AF_INET6,
14621 					    &ncec->ncec_addr);
14622 				}
14623 			}
14624 			return (0);
14625 		}
14626 
14627 		delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14628 		ip1dbg(("ip_xmit: delta = %" PRId64
14629 		    " ill_reachable_time = %d \n", delta,
14630 		    ill->ill_reachable_time));
14631 		if (delta > (uint64_t)ill->ill_reachable_time) {
14632 			mutex_enter(&ncec->ncec_lock);
14633 			switch (ncec->ncec_state) {
14634 			case ND_REACHABLE:
14635 				ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14636 				/* FALLTHROUGH */
14637 			case ND_STALE:
14638 				/*
14639 				 * ND_REACHABLE is identical to
14640 				 * ND_STALE in this specific case. If
14641 				 * reachable time has expired for this
14642 				 * neighbor (delta is greater than
14643 				 * reachable time), conceptually, the
14644 				 * neighbor cache is no longer in
14645 				 * REACHABLE state, but already in
14646 				 * STALE state.  So the correct
14647 				 * transition here is to ND_DELAY.
14648 				 */
14649 				ncec->ncec_state = ND_DELAY;
14650 				mutex_exit(&ncec->ncec_lock);
14651 				nce_restart_timer(ncec,
14652 				    ipst->ips_delay_first_probe_time);
14653 				if (ip_debug > 3) {
14654 					/* ip2dbg */
14655 					pr_addr_dbg("ip_xmit: state"
14656 					    " for %s changed to"
14657 					    " DELAY\n", AF_INET6,
14658 					    &ncec->ncec_addr);
14659 				}
14660 				break;
14661 			case ND_DELAY:
14662 			case ND_PROBE:
14663 				mutex_exit(&ncec->ncec_lock);
14664 				/* Timers have already started */
14665 				break;
14666 			case ND_UNREACHABLE:
14667 				/*
14668 				 * nce_timer has detected that this ncec
14669 				 * is unreachable and initiated deleting
14670 				 * this ncec.
14671 				 * This is a harmless race where we found the
14672 				 * ncec before it was deleted and have
14673 				 * just sent out a packet using this
14674 				 * unreachable ncec.
14675 				 */
14676 				mutex_exit(&ncec->ncec_lock);
14677 				break;
14678 			default:
14679 				ASSERT(0);
14680 				mutex_exit(&ncec->ncec_lock);
14681 			}
14682 		}
14683 		return (0);
14684 
14685 	case ND_INCOMPLETE:
14686 		/*
14687 		 * the state could have changed since we didn't hold the lock.
14688 		 * Re-verify state under lock.
14689 		 */
14690 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14691 		mutex_enter(&ncec->ncec_lock);
14692 		if (NCE_ISREACHABLE(ncec)) {
14693 			mutex_exit(&ncec->ncec_lock);
14694 			goto sendit;
14695 		}
14696 		/* queue the packet */
14697 		nce_queue_mp(ncec, mp, is_probe);
14698 		mutex_exit(&ncec->ncec_lock);
14699 		DTRACE_PROBE2(ip__xmit__incomplete,
14700 		    (ncec_t *), ncec, (mblk_t *), mp);
14701 		return (0);
14702 
14703 	case ND_INITIAL:
14704 		/*
14705 		 * State could have changed since we didn't hold the lock, so
14706 		 * re-verify state.
14707 		 */
14708 		is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14709 		mutex_enter(&ncec->ncec_lock);
14710 		if (NCE_ISREACHABLE(ncec))  {
14711 			mutex_exit(&ncec->ncec_lock);
14712 			goto sendit;
14713 		}
14714 		nce_queue_mp(ncec, mp, is_probe);
14715 		if (ncec->ncec_state == ND_INITIAL) {
14716 			ncec->ncec_state = ND_INCOMPLETE;
14717 			mutex_exit(&ncec->ncec_lock);
14718 			/*
14719 			 * figure out the source we want to use
14720 			 * and resolve it.
14721 			 */
14722 			ip_ndp_resolve(ncec);
14723 		} else  {
14724 			mutex_exit(&ncec->ncec_lock);
14725 		}
14726 		return (0);
14727 
14728 	case ND_UNREACHABLE:
14729 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14730 		ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14731 		    mp, ill);
14732 		freemsg(mp);
14733 		return (0);
14734 
14735 	default:
14736 		ASSERT(0);
14737 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14738 		ip_drop_output("ipIfStatsOutDiscards - ND_other",
14739 		    mp, ill);
14740 		freemsg(mp);
14741 		return (ENETUNREACH);
14742 	}
14743 }
14744 
14745 /*
14746  * Return B_TRUE if the buffers differ in length or content.
14747  * This is used for comparing extension header buffers.
14748  * Note that an extension header would be declared different
14749  * even if all that changed was the next header value in that header i.e.
14750  * what really changed is the next extension header.
14751  */
14752 boolean_t
14753 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14754     uint_t blen)
14755 {
14756 	if (!b_valid)
14757 		blen = 0;
14758 
14759 	if (alen != blen)
14760 		return (B_TRUE);
14761 	if (alen == 0)
14762 		return (B_FALSE);	/* Both zero length */
14763 	return (bcmp(abuf, bbuf, alen));
14764 }
14765 
14766 /*
14767  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14768  * Return B_FALSE if memory allocation fails - don't change any state!
14769  */
14770 boolean_t
14771 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14772     const void *src, uint_t srclen)
14773 {
14774 	void *dst;
14775 
14776 	if (!src_valid)
14777 		srclen = 0;
14778 
14779 	ASSERT(*dstlenp == 0);
14780 	if (src != NULL && srclen != 0) {
14781 		dst = mi_alloc(srclen, BPRI_MED);
14782 		if (dst == NULL)
14783 			return (B_FALSE);
14784 	} else {
14785 		dst = NULL;
14786 	}
14787 	if (*dstp != NULL)
14788 		mi_free(*dstp);
14789 	*dstp = dst;
14790 	*dstlenp = dst == NULL ? 0 : srclen;
14791 	return (B_TRUE);
14792 }
14793 
14794 /*
14795  * Replace what is in *dst, *dstlen with the source.
14796  * Assumes ip_allocbuf has already been called.
14797  */
14798 void
14799 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14800     const void *src, uint_t srclen)
14801 {
14802 	if (!src_valid)
14803 		srclen = 0;
14804 
14805 	ASSERT(*dstlenp == srclen);
14806 	if (src != NULL && srclen != 0)
14807 		bcopy(src, *dstp, srclen);
14808 }
14809 
14810 /*
14811  * Free the storage pointed to by the members of an ip_pkt_t.
14812  */
14813 void
14814 ip_pkt_free(ip_pkt_t *ipp)
14815 {
14816 	uint_t	fields = ipp->ipp_fields;
14817 
14818 	if (fields & IPPF_HOPOPTS) {
14819 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14820 		ipp->ipp_hopopts = NULL;
14821 		ipp->ipp_hopoptslen = 0;
14822 	}
14823 	if (fields & IPPF_RTHDRDSTOPTS) {
14824 		kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14825 		ipp->ipp_rthdrdstopts = NULL;
14826 		ipp->ipp_rthdrdstoptslen = 0;
14827 	}
14828 	if (fields & IPPF_DSTOPTS) {
14829 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14830 		ipp->ipp_dstopts = NULL;
14831 		ipp->ipp_dstoptslen = 0;
14832 	}
14833 	if (fields & IPPF_RTHDR) {
14834 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14835 		ipp->ipp_rthdr = NULL;
14836 		ipp->ipp_rthdrlen = 0;
14837 	}
14838 	if (fields & IPPF_IPV4_OPTIONS) {
14839 		kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14840 		ipp->ipp_ipv4_options = NULL;
14841 		ipp->ipp_ipv4_options_len = 0;
14842 	}
14843 	if (fields & IPPF_LABEL_V4) {
14844 		kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14845 		ipp->ipp_label_v4 = NULL;
14846 		ipp->ipp_label_len_v4 = 0;
14847 	}
14848 	if (fields & IPPF_LABEL_V6) {
14849 		kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14850 		ipp->ipp_label_v6 = NULL;
14851 		ipp->ipp_label_len_v6 = 0;
14852 	}
14853 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14854 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14855 }
14856 
14857 /*
14858  * Copy from src to dst and allocate as needed.
14859  * Returns zero or ENOMEM.
14860  *
14861  * The caller must initialize dst to zero.
14862  */
14863 int
14864 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14865 {
14866 	uint_t	fields = src->ipp_fields;
14867 
14868 	/* Start with fields that don't require memory allocation */
14869 	dst->ipp_fields = fields &
14870 	    ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14871 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14872 
14873 	dst->ipp_addr = src->ipp_addr;
14874 	dst->ipp_unicast_hops = src->ipp_unicast_hops;
14875 	dst->ipp_hoplimit = src->ipp_hoplimit;
14876 	dst->ipp_tclass = src->ipp_tclass;
14877 	dst->ipp_type_of_service = src->ipp_type_of_service;
14878 
14879 	if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14880 	    IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14881 		return (0);
14882 
14883 	if (fields & IPPF_HOPOPTS) {
14884 		dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14885 		if (dst->ipp_hopopts == NULL) {
14886 			ip_pkt_free(dst);
14887 			return (ENOMEM);
14888 		}
14889 		dst->ipp_fields |= IPPF_HOPOPTS;
14890 		bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14891 		    src->ipp_hopoptslen);
14892 		dst->ipp_hopoptslen = src->ipp_hopoptslen;
14893 	}
14894 	if (fields & IPPF_RTHDRDSTOPTS) {
14895 		dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14896 		    kmflag);
14897 		if (dst->ipp_rthdrdstopts == NULL) {
14898 			ip_pkt_free(dst);
14899 			return (ENOMEM);
14900 		}
14901 		dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14902 		bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14903 		    src->ipp_rthdrdstoptslen);
14904 		dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14905 	}
14906 	if (fields & IPPF_DSTOPTS) {
14907 		dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14908 		if (dst->ipp_dstopts == NULL) {
14909 			ip_pkt_free(dst);
14910 			return (ENOMEM);
14911 		}
14912 		dst->ipp_fields |= IPPF_DSTOPTS;
14913 		bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14914 		    src->ipp_dstoptslen);
14915 		dst->ipp_dstoptslen = src->ipp_dstoptslen;
14916 	}
14917 	if (fields & IPPF_RTHDR) {
14918 		dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14919 		if (dst->ipp_rthdr == NULL) {
14920 			ip_pkt_free(dst);
14921 			return (ENOMEM);
14922 		}
14923 		dst->ipp_fields |= IPPF_RTHDR;
14924 		bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14925 		    src->ipp_rthdrlen);
14926 		dst->ipp_rthdrlen = src->ipp_rthdrlen;
14927 	}
14928 	if (fields & IPPF_IPV4_OPTIONS) {
14929 		dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14930 		    kmflag);
14931 		if (dst->ipp_ipv4_options == NULL) {
14932 			ip_pkt_free(dst);
14933 			return (ENOMEM);
14934 		}
14935 		dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14936 		bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14937 		    src->ipp_ipv4_options_len);
14938 		dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14939 	}
14940 	if (fields & IPPF_LABEL_V4) {
14941 		dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14942 		if (dst->ipp_label_v4 == NULL) {
14943 			ip_pkt_free(dst);
14944 			return (ENOMEM);
14945 		}
14946 		dst->ipp_fields |= IPPF_LABEL_V4;
14947 		bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14948 		    src->ipp_label_len_v4);
14949 		dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14950 	}
14951 	if (fields & IPPF_LABEL_V6) {
14952 		dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14953 		if (dst->ipp_label_v6 == NULL) {
14954 			ip_pkt_free(dst);
14955 			return (ENOMEM);
14956 		}
14957 		dst->ipp_fields |= IPPF_LABEL_V6;
14958 		bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14959 		    src->ipp_label_len_v6);
14960 		dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14961 	}
14962 	if (fields & IPPF_FRAGHDR) {
14963 		dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14964 		if (dst->ipp_fraghdr == NULL) {
14965 			ip_pkt_free(dst);
14966 			return (ENOMEM);
14967 		}
14968 		dst->ipp_fields |= IPPF_FRAGHDR;
14969 		bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14970 		    src->ipp_fraghdrlen);
14971 		dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14972 	}
14973 	return (0);
14974 }
14975 
14976 /*
14977  * Returns INADDR_ANY if no source route
14978  */
14979 ipaddr_t
14980 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14981 {
14982 	ipaddr_t	nexthop = INADDR_ANY;
14983 	ipoptp_t	opts;
14984 	uchar_t		*opt;
14985 	uint8_t		optval;
14986 	uint8_t		optlen;
14987 	uint32_t	totallen;
14988 
14989 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
14990 		return (INADDR_ANY);
14991 
14992 	totallen = ipp->ipp_ipv4_options_len;
14993 	if (totallen & 0x3)
14994 		return (INADDR_ANY);
14995 
14996 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
14997 	    optval != IPOPT_EOL;
14998 	    optval = ipoptp_next(&opts)) {
14999 		opt = opts.ipoptp_cur;
15000 		switch (optval) {
15001 			uint8_t off;
15002 		case IPOPT_SSRR:
15003 		case IPOPT_LSRR:
15004 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15005 				break;
15006 			}
15007 			optlen = opts.ipoptp_len;
15008 			off = opt[IPOPT_OFFSET];
15009 			off--;
15010 			if (optlen < IP_ADDR_LEN ||
15011 			    off > optlen - IP_ADDR_LEN) {
15012 				/* End of source route */
15013 				break;
15014 			}
15015 			bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
15016 			if (nexthop == htonl(INADDR_LOOPBACK)) {
15017 				/* Ignore */
15018 				nexthop = INADDR_ANY;
15019 				break;
15020 			}
15021 			break;
15022 		}
15023 	}
15024 	return (nexthop);
15025 }
15026 
15027 /*
15028  * Reverse a source route.
15029  */
15030 void
15031 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15032 {
15033 	ipaddr_t	tmp;
15034 	ipoptp_t	opts;
15035 	uchar_t		*opt;
15036 	uint8_t		optval;
15037 	uint32_t	totallen;
15038 
15039 	if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15040 		return;
15041 
15042 	totallen = ipp->ipp_ipv4_options_len;
15043 	if (totallen & 0x3)
15044 		return;
15045 
15046 	for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15047 	    optval != IPOPT_EOL;
15048 	    optval = ipoptp_next(&opts)) {
15049 		uint8_t off1, off2;
15050 
15051 		opt = opts.ipoptp_cur;
15052 		switch (optval) {
15053 		case IPOPT_SSRR:
15054 		case IPOPT_LSRR:
15055 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15056 				break;
15057 			}
15058 			off1 = IPOPT_MINOFF_SR - 1;
15059 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15060 			while (off2 > off1) {
15061 				bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15062 				bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15063 				bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15064 				off2 -= IP_ADDR_LEN;
15065 				off1 += IP_ADDR_LEN;
15066 			}
15067 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15068 			break;
15069 		}
15070 	}
15071 }
15072 
15073 /*
15074  * Returns NULL if no routing header
15075  */
15076 in6_addr_t *
15077 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15078 {
15079 	in6_addr_t	*nexthop = NULL;
15080 	ip6_rthdr0_t	*rthdr;
15081 
15082 	if (!(ipp->ipp_fields & IPPF_RTHDR))
15083 		return (NULL);
15084 
15085 	rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15086 	if (rthdr->ip6r0_segleft == 0)
15087 		return (NULL);
15088 
15089 	nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15090 	return (nexthop);
15091 }
15092 
15093 zoneid_t
15094 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15095     zoneid_t lookup_zoneid)
15096 {
15097 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15098 	ire_t		*ire;
15099 	int		ire_flags = MATCH_IRE_TYPE;
15100 	zoneid_t	zoneid = ALL_ZONES;
15101 
15102 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15103 		return (ALL_ZONES);
15104 
15105 	if (lookup_zoneid != ALL_ZONES)
15106 		ire_flags |= MATCH_IRE_ZONEONLY;
15107 	ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15108 	    NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15109 	if (ire != NULL) {
15110 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15111 		ire_refrele(ire);
15112 	}
15113 	return (zoneid);
15114 }
15115 
15116 zoneid_t
15117 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15118     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15119 {
15120 	ip_stack_t	*ipst = ira->ira_ill->ill_ipst;
15121 	ire_t		*ire;
15122 	int		ire_flags = MATCH_IRE_TYPE;
15123 	zoneid_t	zoneid = ALL_ZONES;
15124 
15125 	if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15126 		return (ALL_ZONES);
15127 
15128 	if (IN6_IS_ADDR_LINKLOCAL(addr))
15129 		ire_flags |= MATCH_IRE_ILL;
15130 
15131 	if (lookup_zoneid != ALL_ZONES)
15132 		ire_flags |= MATCH_IRE_ZONEONLY;
15133 	ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15134 	    ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15135 	if (ire != NULL) {
15136 		zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15137 		ire_refrele(ire);
15138 	}
15139 	return (zoneid);
15140 }
15141 
15142 /*
15143  * IP obserability hook support functions.
15144  */
15145 static void
15146 ipobs_init(ip_stack_t *ipst)
15147 {
15148 	netid_t id;
15149 
15150 	id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15151 
15152 	ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15153 	VERIFY(ipst->ips_ip4_observe_pr != NULL);
15154 
15155 	ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15156 	VERIFY(ipst->ips_ip6_observe_pr != NULL);
15157 }
15158 
15159 static void
15160 ipobs_fini(ip_stack_t *ipst)
15161 {
15162 
15163 	VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15164 	VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15165 }
15166 
15167 /*
15168  * hook_pkt_observe_t is composed in network byte order so that the
15169  * entire mblk_t chain handed into hook_run can be used as-is.
15170  * The caveat is that use of the fields, such as the zone fields,
15171  * requires conversion into host byte order first.
15172  */
15173 void
15174 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15175     const ill_t *ill, ip_stack_t *ipst)
15176 {
15177 	hook_pkt_observe_t *hdr;
15178 	uint64_t grifindex;
15179 	mblk_t *imp;
15180 
15181 	imp = allocb(sizeof (*hdr), BPRI_HI);
15182 	if (imp == NULL)
15183 		return;
15184 
15185 	hdr = (hook_pkt_observe_t *)imp->b_rptr;
15186 	/*
15187 	 * b_wptr is set to make the apparent size of the data in the mblk_t
15188 	 * to exclude the pointers at the end of hook_pkt_observer_t.
15189 	 */
15190 	imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15191 	imp->b_cont = mp;
15192 
15193 	ASSERT(DB_TYPE(mp) == M_DATA);
15194 
15195 	if (IS_UNDER_IPMP(ill))
15196 		grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15197 	else
15198 		grifindex = 0;
15199 
15200 	hdr->hpo_version = 1;
15201 	hdr->hpo_htype = htons(htype);
15202 	hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15203 	hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15204 	hdr->hpo_grifindex = htonl(grifindex);
15205 	hdr->hpo_zsrc = htonl(zsrc);
15206 	hdr->hpo_zdst = htonl(zdst);
15207 	hdr->hpo_pkt = imp;
15208 	hdr->hpo_ctx = ipst->ips_netstack;
15209 
15210 	if (ill->ill_isv6) {
15211 		hdr->hpo_family = AF_INET6;
15212 		(void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15213 		    ipst->ips_ipv6observing, (hook_data_t)hdr);
15214 	} else {
15215 		hdr->hpo_family = AF_INET;
15216 		(void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15217 		    ipst->ips_ipv4observing, (hook_data_t)hdr);
15218 	}
15219 
15220 	imp->b_cont = NULL;
15221 	freemsg(imp);
15222 }
15223 
15224 /*
15225  * Utility routine that checks if `v4srcp' is a valid address on underlying
15226  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15227  * associated with `v4srcp' on success.  NOTE: if this is not called from
15228  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15229  * group during or after this lookup.
15230  */
15231 boolean_t
15232 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15233 {
15234 	ipif_t *ipif;
15235 
15236 	ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15237 	if (ipif != NULL) {
15238 		if (ipifp != NULL)
15239 			*ipifp = ipif;
15240 		else
15241 			ipif_refrele(ipif);
15242 		return (B_TRUE);
15243 	}
15244 
15245 	ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15246 	    *v4srcp));
15247 	return (B_FALSE);
15248 }
15249 
15250 /*
15251  * Transport protocol call back function for CPU state change.
15252  */
15253 /* ARGSUSED */
15254 static int
15255 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15256 {
15257 	processorid_t cpu_seqid;
15258 	netstack_handle_t nh;
15259 	netstack_t *ns;
15260 
15261 	ASSERT(MUTEX_HELD(&cpu_lock));
15262 
15263 	switch (what) {
15264 	case CPU_CONFIG:
15265 	case CPU_ON:
15266 	case CPU_INIT:
15267 	case CPU_CPUPART_IN:
15268 		cpu_seqid = cpu[id]->cpu_seqid;
15269 		netstack_next_init(&nh);
15270 		while ((ns = netstack_next(&nh)) != NULL) {
15271 			tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15272 			sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15273 			udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15274 			netstack_rele(ns);
15275 		}
15276 		netstack_next_fini(&nh);
15277 		break;
15278 	case CPU_UNCONFIG:
15279 	case CPU_OFF:
15280 	case CPU_CPUPART_OUT:
15281 		/*
15282 		 * Nothing to do.  We don't remove the per CPU stats from
15283 		 * the IP stack even when the CPU goes offline.
15284 		 */
15285 		break;
15286 	default:
15287 		break;
15288 	}
15289 	return (0);
15290 }
15291