1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/kmem.h> 55 #include <sys/sdt.h> 56 #include <sys/socket.h> 57 #include <sys/vtrace.h> 58 #include <sys/isa_defs.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/route.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <net/if_dl.h> 65 66 #include <inet/common.h> 67 #include <inet/mi.h> 68 #include <inet/mib2.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/snmpcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/optcom.h> 91 #include <inet/ip_ndp.h> 92 #include <inet/ip_listutils.h> 93 #include <netinet/igmp.h> 94 #include <netinet/ip_mroute.h> 95 #include <inet/ipp_common.h> 96 97 #include <net/pfkeyv2.h> 98 #include <inet/ipsec_info.h> 99 #include <inet/sadb.h> 100 #include <inet/ipsec_impl.h> 101 #include <sys/iphada.h> 102 #include <inet/tun.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 106 #include <sys/ethernet.h> 107 #include <net/if_types.h> 108 #include <sys/cpuvar.h> 109 110 #include <ipp/ipp.h> 111 #include <ipp/ipp_impl.h> 112 #include <ipp/ipgpc/ipgpc.h> 113 114 #include <sys/multidata.h> 115 #include <sys/pattr.h> 116 117 #include <inet/ipclassifier.h> 118 #include <inet/sctp_ip.h> 119 #include <inet/sctp/sctp_impl.h> 120 #include <inet/udp_impl.h> 121 #include <sys/sunddi.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 128 /* 129 * Values for squeue switch: 130 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 131 * IP_SQUEUE_ENTER: squeue_enter 132 * IP_SQUEUE_FILL: squeue_fill 133 */ 134 int ip_squeue_enter = 2; /* Setable in /etc/system */ 135 136 squeue_func_t ip_input_proc; 137 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 138 139 #define TCP6 "tcp6" 140 #define TCP "tcp" 141 #define SCTP "sctp" 142 #define SCTP6 "sctp6" 143 144 major_t TCP6_MAJ; 145 major_t TCP_MAJ; 146 major_t SCTP_MAJ; 147 major_t SCTP6_MAJ; 148 149 /* 150 * Setable in /etc/system 151 */ 152 int ip_poll_normal_ms = 100; 153 int ip_poll_normal_ticks = 0; 154 int ip_modclose_ackwait_ms = 3000; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 listptr_t ird_route; /* ipRouteEntryTable */ 174 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 175 listptr_t ird_attrs; /* ipRouteAttributeTable */ 176 } iproutedata_t; 177 178 /* 179 * Cluster specific hooks. These should be NULL when booted as a non-cluster 180 */ 181 182 /* 183 * Hook functions to enable cluster networking 184 * On non-clustered systems these vectors must always be NULL. 185 * 186 * Hook function to Check ip specified ip address is a shared ip address 187 * in the cluster 188 * 189 */ 190 int (*cl_inet_isclusterwide)(uint8_t protocol, 191 sa_family_t addr_family, uint8_t *laddrp) = NULL; 192 193 /* 194 * Hook function to generate cluster wide ip fragment identifier 195 */ 196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 197 uint8_t *laddrp, uint8_t *faddrp) = NULL; 198 199 /* 200 * Synchronization notes: 201 * 202 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 203 * MT level protection given by STREAMS. IP uses a combination of its own 204 * internal serialization mechanism and standard Solaris locking techniques. 205 * The internal serialization is per phyint (no IPMP) or per IPMP group. 206 * This is used to serialize plumbing operations, IPMP operations, certain 207 * multicast operations, most set ioctls, igmp/mld timers etc. 208 * 209 * Plumbing is a long sequence of operations involving message 210 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 211 * involved in plumbing operations. A natural model is to serialize these 212 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 213 * parallel without any interference. But various set ioctls on hme0 are best 214 * serialized. However if the system uses IPMP, the operations are easier if 215 * they are serialized on a per IPMP group basis since IPMP operations 216 * happen across ill's of a group. Thus the lowest common denominator is to 217 * serialize most set ioctls, multicast join/leave operations, IPMP operations 218 * igmp/mld timer operations, and processing of DLPI control messages received 219 * from drivers on a per IPMP group basis. If the system does not employ 220 * IPMP the serialization is on a per phyint basis. This serialization is 221 * provided by the ipsq_t and primitives operating on this. Details can 222 * be found in ip_if.c above the core primitives operating on ipsq_t. 223 * 224 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 225 * Simiarly lookup of an ire by a thread also returns a refheld ire. 226 * In addition ipif's and ill's referenced by the ire are also indirectly 227 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 228 * the ipif's address or netmask change as long as an ipif is refheld 229 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 230 * address of an ipif has to go through the ipsq_t. This ensures that only 231 * 1 such exclusive operation proceeds at any time on the ipif. It then 232 * deletes all ires associated with this ipif, and waits for all refcnts 233 * associated with this ipif to come down to zero. The address is changed 234 * only after the ipif has been quiesced. Then the ipif is brought up again. 235 * More details are described above the comment in ip_sioctl_flags. 236 * 237 * Packet processing is based mostly on IREs and are fully multi-threaded 238 * using standard Solaris MT techniques. 239 * 240 * There are explicit locks in IP to handle: 241 * - The ip_g_head list maintained by mi_open_link() and friends. 242 * 243 * - The reassembly data structures (one lock per hash bucket) 244 * 245 * - conn_lock is meant to protect conn_t fields. The fields actually 246 * protected by conn_lock are documented in the conn_t definition. 247 * 248 * - ire_lock to protect some of the fields of the ire, IRE tables 249 * (one lock per hash bucket). Refer to ip_ire.c for details. 250 * 251 * - ndp_g_lock and nce_lock for protecting NCEs. 252 * 253 * - ill_lock protects fields of the ill and ipif. Details in ip.h 254 * 255 * - ill_g_lock: This is a global reader/writer lock. Protects the following 256 * * The AVL tree based global multi list of all ills. 257 * * The linked list of all ipifs of an ill 258 * * The <ill-ipsq> mapping 259 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 260 * * The illgroup list threaded by ill_group_next. 261 * * <ill-phyint> association 262 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 263 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 264 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 265 * will all have to hold the ill_g_lock as writer for the actual duration 266 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 267 * may be found in the IPMP section. 268 * 269 * - ill_lock: This is a per ill mutex. 270 * It protects some members of the ill and is documented below. 271 * It also protects the <ill-ipsq> mapping 272 * It also protects the illgroup list threaded by ill_group_next. 273 * It also protects the <ill-phyint> assoc. 274 * It also protects the list of ipifs hanging off the ill. 275 * 276 * - ipsq_lock: This is a per ipsq_t mutex lock. 277 * This protects all the other members of the ipsq struct except 278 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 279 * 280 * - illgrp_lock: This is a per ill_group mutex lock. 281 * The only thing it protects is the illgrp_ill_schednext member of ill_group 282 * which dictates which is the next ill in an ill_group that is to be chosen 283 * for sending outgoing packets, through creation of an IRE_CACHE that 284 * references this ill. 285 * 286 * - phyint_lock: This is a per phyint mutex lock. Protects just the 287 * phyint_flags 288 * 289 * - ip_g_nd_lock: This is a global reader/writer lock. 290 * Any call to nd_load to load a new parameter to the ND table must hold the 291 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 292 * as reader. 293 * 294 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 295 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 296 * uniqueness check also done atomically. 297 * 298 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 299 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 300 * as a writer when adding or deleting elements from these lists, and 301 * as a reader when walking these lists to send a SADB update to the 302 * IPsec capable ills. 303 * 304 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 305 * group list linked by ill_usesrc_grp_next. It also protects the 306 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 307 * group is being added or deleted. This lock is taken as a reader when 308 * walking the list/group(eg: to get the number of members in a usesrc group). 309 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 310 * field is changing state i.e from NULL to non-NULL or vice-versa. For 311 * example, it is not necessary to take this lock in the initial portion 312 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 313 * ip_sioctl_flags since the these operations are executed exclusively and 314 * that ensures that the "usesrc group state" cannot change. The "usesrc 315 * group state" change can happen only in the latter part of 316 * ip_sioctl_slifusesrc and in ill_delete. 317 * 318 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 319 * 320 * To change the <ill-phyint> association, the ill_g_lock must be held 321 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 322 * must be held. 323 * 324 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 325 * and the ill_lock of the ill in question must be held. 326 * 327 * To change the <ill-illgroup> association the ill_g_lock must be held as 328 * writer and the ill_lock of the ill in question must be held. 329 * 330 * To add or delete an ipif from the list of ipifs hanging off the ill, 331 * ill_g_lock (writer) and ill_lock must be held and the thread must be 332 * a writer on the associated ipsq,. 333 * 334 * To add or delete an ill to the system, the ill_g_lock must be held as 335 * writer and the thread must be a writer on the associated ipsq. 336 * 337 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 338 * must be a writer on the associated ipsq. 339 * 340 * Lock hierarchy 341 * 342 * Some lock hierarchy scenarios are listed below. 343 * 344 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 345 * ill_g_lock -> illgrp_lock -> ill_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * 352 * When more than 1 ill lock is needed to be held, all ill lock addresses 353 * are sorted on address and locked starting from highest addressed lock 354 * downward. 355 * 356 * IPsec scenarios 357 * 358 * ipsa_lock -> ill_g_lock -> ill_lock 359 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 360 * ipsec_capab_ills_lock -> ipsa_lock 361 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 362 * 363 * Trusted Solaris scenarios 364 * 365 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 366 * igsa_lock -> gcdb_lock 367 * gcgrp_rwlock -> ire_lock 368 * gcgrp_rwlock -> gcdb_lock 369 * 370 * 371 * Routing/forwarding table locking notes: 372 * 373 * Lock acquisition order: Radix tree lock, irb_lock. 374 * Requirements: 375 * i. Walker must not hold any locks during the walker callback. 376 * ii Walker must not see a truncated tree during the walk because of any node 377 * deletion. 378 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 379 * in many places in the code to walk the irb list. Thus even if all the 380 * ires in a bucket have been deleted, we still can't free the radix node 381 * until the ires have actually been inactive'd (freed). 382 * 383 * Tree traversal - Need to hold the global tree lock in read mode. 384 * Before dropping the global tree lock, need to either increment the ire_refcnt 385 * to ensure that the radix node can't be deleted. 386 * 387 * Tree add - Need to hold the global tree lock in write mode to add a 388 * radix node. To prevent the node from being deleted, increment the 389 * irb_refcnt, after the node is added to the tree. The ire itself is 390 * added later while holding the irb_lock, but not the tree lock. 391 * 392 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 393 * All associated ires must be inactive (i.e. freed), and irb_refcnt 394 * must be zero. 395 * 396 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 397 * global tree lock (read mode) for traversal. 398 * 399 * IPSEC notes : 400 * 401 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 402 * in front of the actual packet. For outbound datagrams, the M_CTL 403 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 404 * information used by the IPSEC code for applying the right level of 405 * protection. The information initialized by IP in the ipsec_out_t 406 * is determined by the per-socket policy or global policy in the system. 407 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 408 * ipsec_info.h) which starts out with nothing in it. It gets filled 409 * with the right information if it goes through the AH/ESP code, which 410 * happens if the incoming packet is secure. The information initialized 411 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 412 * the policy requirements needed by per-socket policy or global policy 413 * is met or not. 414 * 415 * If there is both per-socket policy (set using setsockopt) and there 416 * is also global policy match for the 5 tuples of the socket, 417 * ipsec_override_policy() makes the decision of which one to use. 418 * 419 * For fully connected sockets i.e dst, src [addr, port] is known, 420 * conn_policy_cached is set indicating that policy has been cached. 421 * conn_in_enforce_policy may or may not be set depending on whether 422 * there is a global policy match or per-socket policy match. 423 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 424 * Once the right policy is set on the conn_t, policy cannot change for 425 * this socket. This makes life simpler for TCP (UDP ?) where 426 * re-transmissions go out with the same policy. For symmetry, policy 427 * is cached for fully connected UDP sockets also. Thus if policy is cached, 428 * it also implies that policy is latched i.e policy cannot change 429 * on these sockets. As we have the right policy on the conn, we don't 430 * have to lookup global policy for every outbound and inbound datagram 431 * and thus serving as an optimization. Note that a global policy change 432 * does not affect fully connected sockets if they have policy. If fully 433 * connected sockets did not have any policy associated with it, global 434 * policy change may affect them. 435 * 436 * IP Flow control notes: 437 * 438 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 439 * cannot be sent down to the driver by IP, because of a canput failure, IP 440 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 441 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 442 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 443 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 444 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 445 * the queued messages, and removes the conn from the drain list, if all 446 * messages were drained. It also qenables the next conn in the drain list to 447 * continue the drain process. 448 * 449 * In reality the drain list is not a single list, but a configurable number 450 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 451 * list. If the ip_wsrv of the next qenabled conn does not run, because the 452 * stream closes, ip_close takes responsibility to qenable the next conn in 453 * the drain list. The directly called ip_wput path always does a putq, if 454 * it cannot putnext. Thus synchronization problems are handled between 455 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 456 * functions that manipulate this drain list. Furthermore conn_drain_insert 457 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 458 * running on a queue at any time. conn_drain_tail can be simultaneously called 459 * from both ip_wsrv and ip_close. 460 * 461 * IPQOS notes: 462 * 463 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 464 * and IPQoS modules. IPPF includes hooks in IP at different control points 465 * (callout positions) which direct packets to IPQoS modules for policy 466 * processing. Policies, if present, are global. 467 * 468 * The callout positions are located in the following paths: 469 * o local_in (packets destined for this host) 470 * o local_out (packets orginating from this host ) 471 * o fwd_in (packets forwarded by this m/c - inbound) 472 * o fwd_out (packets forwarded by this m/c - outbound) 473 * Hooks at these callout points can be enabled/disabled using the ndd variable 474 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 475 * By default all the callout positions are enabled. 476 * 477 * Outbound (local_out) 478 * Hooks are placed in ip_wput_ire and ipsec_out_process. 479 * 480 * Inbound (local_in) 481 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 482 * TCP and UDP fanout routines. 483 * 484 * Forwarding (in and out) 485 * Hooks are placed in ip_rput_forward. 486 * 487 * IP Policy Framework processing (IPPF processing) 488 * Policy processing for a packet is initiated by ip_process, which ascertains 489 * that the classifier (ipgpc) is loaded and configured, failing which the 490 * packet resumes normal processing in IP. If the clasifier is present, the 491 * packet is acted upon by one or more IPQoS modules (action instances), per 492 * filters configured in ipgpc and resumes normal IP processing thereafter. 493 * An action instance can drop a packet in course of its processing. 494 * 495 * A boolean variable, ip_policy, is used in all the fanout routines that can 496 * invoke ip_process for a packet. This variable indicates if the packet should 497 * to be sent for policy processing. The variable is set to B_TRUE by default, 498 * i.e. when the routines are invoked in the normal ip procesing path for a 499 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 500 * ip_policy is set to B_FALSE for all the routines called in these two 501 * functions because, in the former case, we don't process loopback traffic 502 * currently while in the latter, the packets have already been processed in 503 * icmp_inbound. 504 * 505 * Zones notes: 506 * 507 * The partitioning rules for networking are as follows: 508 * 1) Packets coming from a zone must have a source address belonging to that 509 * zone. 510 * 2) Packets coming from a zone can only be sent on a physical interface on 511 * which the zone has an IP address. 512 * 3) Between two zones on the same machine, packet delivery is only allowed if 513 * there's a matching route for the destination and zone in the forwarding 514 * table. 515 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 516 * different zones can bind to the same port with the wildcard address 517 * (INADDR_ANY). 518 * 519 * The granularity of interface partitioning is at the logical interface level. 520 * Therefore, every zone has its own IP addresses, and incoming packets can be 521 * attributed to a zone unambiguously. A logical interface is placed into a zone 522 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 523 * structure. Rule (1) is implemented by modifying the source address selection 524 * algorithm so that the list of eligible addresses is filtered based on the 525 * sending process zone. 526 * 527 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 528 * across all zones, depending on their type. Here is the break-up: 529 * 530 * IRE type Shared/exclusive 531 * -------- ---------------- 532 * IRE_BROADCAST Exclusive 533 * IRE_DEFAULT (default routes) Shared (*) 534 * IRE_LOCAL Exclusive (x) 535 * IRE_LOOPBACK Exclusive 536 * IRE_PREFIX (net routes) Shared (*) 537 * IRE_CACHE Exclusive 538 * IRE_IF_NORESOLVER (interface routes) Exclusive 539 * IRE_IF_RESOLVER (interface routes) Exclusive 540 * IRE_HOST (host routes) Shared (*) 541 * 542 * (*) A zone can only use a default or off-subnet route if the gateway is 543 * directly reachable from the zone, that is, if the gateway's address matches 544 * one of the zone's logical interfaces. 545 * 546 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 547 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 548 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 549 * address of the zone itself (the destination). Since IRE_LOCAL is used 550 * for communication between zones, ip_wput_ire has special logic to set 551 * the right source address when sending using an IRE_LOCAL. 552 * 553 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 554 * ire_cache_lookup restricts loopback using an IRE_LOCAL 555 * between zone to the case when L2 would have conceptually looped the packet 556 * back, i.e. the loopback which is required since neither Ethernet drivers 557 * nor Ethernet hardware loops them back. This is the case when the normal 558 * routes (ignoring IREs with different zoneids) would send out the packet on 559 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 560 * associated. 561 * 562 * Multiple zones can share a common broadcast address; typically all zones 563 * share the 255.255.255.255 address. Incoming as well as locally originated 564 * broadcast packets must be dispatched to all the zones on the broadcast 565 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 566 * since some zones may not be on the 10.16.72/24 network. To handle this, each 567 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 568 * sent to every zone that has an IRE_BROADCAST entry for the destination 569 * address on the input ill, see conn_wantpacket(). 570 * 571 * Applications in different zones can join the same multicast group address. 572 * For IPv4, group memberships are per-logical interface, so they're already 573 * inherently part of a zone. For IPv6, group memberships are per-physical 574 * interface, so we distinguish IPv6 group memberships based on group address, 575 * interface and zoneid. In both cases, received multicast packets are sent to 576 * every zone for which a group membership entry exists. On IPv6 we need to 577 * check that the target zone still has an address on the receiving physical 578 * interface; it could have been removed since the application issued the 579 * IPV6_JOIN_GROUP. 580 */ 581 582 /* 583 * Squeue Fanout flags: 584 * 0: No fanout. 585 * 1: Fanout across all squeues 586 */ 587 boolean_t ip_squeue_fanout = 0; 588 589 /* 590 * Maximum dups allowed per packet. 591 */ 592 uint_t ip_max_frag_dups = 10; 593 594 #define IS_SIMPLE_IPH(ipha) \ 595 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 596 597 /* RFC1122 Conformance */ 598 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 599 600 #define ILL_MAX_NAMELEN LIFNAMSIZ 601 602 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 603 604 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 605 606 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 607 ip_stack_t *); 608 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 609 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 610 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 611 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 612 mblk_t *, int, ip_stack_t *); 613 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 614 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 615 ill_t *, zoneid_t); 616 static void icmp_options_update(ipha_t *); 617 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 618 ip_stack_t *); 619 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 620 zoneid_t zoneid, ip_stack_t *); 621 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 622 static void icmp_redirect(ill_t *, mblk_t *); 623 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 624 ip_stack_t *); 625 626 static void ip_arp_news(queue_t *, mblk_t *); 627 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *, 628 ip_stack_t *); 629 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 630 char *ip_dot_addr(ipaddr_t, char *); 631 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 632 int ip_close(queue_t *, int); 633 static char *ip_dot_saddr(uchar_t *, char *); 634 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 635 boolean_t, boolean_t, ill_t *, zoneid_t); 636 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 637 boolean_t, boolean_t, zoneid_t); 638 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 639 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 640 static void ip_lrput(queue_t *, mblk_t *); 641 ipaddr_t ip_net_mask(ipaddr_t); 642 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 643 ip_stack_t *); 644 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 645 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 646 char *ip_nv_lookup(nv_t *, int); 647 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 648 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 649 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 650 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 651 ipndp_t *, size_t); 652 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 653 void ip_rput(queue_t *, mblk_t *); 654 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 655 void *dummy_arg); 656 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 657 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 658 ip_stack_t *); 659 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 660 ire_t *, ip_stack_t *); 661 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 662 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 663 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 664 ip_stack_t *); 665 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 666 uint16_t *); 667 int ip_snmp_get(queue_t *, mblk_t *); 668 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 669 mib2_ipIfStatsEntry_t *, ip_stack_t *); 670 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 671 ip_stack_t *); 672 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 673 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 674 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 675 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 676 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 677 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 678 ip_stack_t *ipst); 679 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 680 ip_stack_t *ipst); 681 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 682 ip_stack_t *ipst); 683 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 684 ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 686 ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 688 ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 690 ip_stack_t *ipst); 691 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 698 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 699 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 700 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 701 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 702 static boolean_t ip_source_route_included(ipha_t *); 703 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 704 705 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 706 zoneid_t, ip_stack_t *); 707 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *); 708 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 709 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 710 zoneid_t, ip_stack_t *); 711 712 static void conn_drain_init(ip_stack_t *); 713 static void conn_drain_fini(ip_stack_t *); 714 static void conn_drain_tail(conn_t *connp, boolean_t closing); 715 716 static void conn_walk_drain(ip_stack_t *); 717 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 718 zoneid_t); 719 720 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 721 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 722 static void ip_stack_fini(netstackid_t stackid, void *arg); 723 724 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 725 zoneid_t); 726 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 727 void *dummy_arg); 728 729 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 730 731 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 732 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 733 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 734 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 735 736 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 737 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 738 caddr_t, cred_t *); 739 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 740 caddr_t cp, cred_t *cr); 741 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 742 cred_t *); 743 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 744 caddr_t cp, cred_t *cr); 745 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 746 cred_t *); 747 static int ipmp_hook_emulation_set(queue_t *, mblk_t *, char *, caddr_t, 748 cred_t *); 749 static squeue_func_t ip_squeue_switch(int); 750 751 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 752 static void ip_kstat_fini(netstackid_t, kstat_t *); 753 static int ip_kstat_update(kstat_t *kp, int rw); 754 static void *icmp_kstat_init(netstackid_t); 755 static void icmp_kstat_fini(netstackid_t, kstat_t *); 756 static int icmp_kstat_update(kstat_t *kp, int rw); 757 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 758 static void ip_kstat2_fini(netstackid_t, kstat_t *); 759 760 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 761 762 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 763 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 764 765 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 766 ipha_t *, ill_t *, boolean_t); 767 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 768 769 /* How long, in seconds, we allow frags to hang around. */ 770 #define IP_FRAG_TIMEOUT 60 771 772 /* 773 * Threshold which determines whether MDT should be used when 774 * generating IP fragments; payload size must be greater than 775 * this threshold for MDT to take place. 776 */ 777 #define IP_WPUT_FRAG_MDT_MIN 32768 778 779 /* Setable in /etc/system only */ 780 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 781 782 static long ip_rput_pullups; 783 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 784 785 vmem_t *ip_minor_arena; 786 787 int ip_debug; 788 789 #ifdef DEBUG 790 uint32_t ipsechw_debug = 0; 791 #endif 792 793 /* 794 * Multirouting/CGTP stuff 795 */ 796 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 797 798 /* 799 * XXX following really should only be in a header. Would need more 800 * header and .c clean up first. 801 */ 802 extern optdb_obj_t ip_opt_obj; 803 804 ulong_t ip_squeue_enter_unbound = 0; 805 806 /* 807 * Named Dispatch Parameter Table. 808 * All of these are alterable, within the min/max values given, at run time. 809 */ 810 static ipparam_t lcl_param_arr[] = { 811 /* min max value name */ 812 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 813 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 814 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 815 { 0, 1, 0, "ip_respond_to_timestamp"}, 816 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 817 { 0, 1, 1, "ip_send_redirects"}, 818 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 819 { 0, 10, 0, "ip_debug"}, 820 { 0, 10, 0, "ip_mrtdebug"}, 821 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 822 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 823 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 824 { 1, 255, 255, "ip_def_ttl" }, 825 { 0, 1, 0, "ip_forward_src_routed"}, 826 { 0, 256, 32, "ip_wroff_extra" }, 827 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 828 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 829 { 0, 1, 1, "ip_path_mtu_discovery" }, 830 { 0, 240, 30, "ip_ignore_delete_time" }, 831 { 0, 1, 0, "ip_ignore_redirect" }, 832 { 0, 1, 1, "ip_output_queue" }, 833 { 1, 254, 1, "ip_broadcast_ttl" }, 834 { 0, 99999, 100, "ip_icmp_err_interval" }, 835 { 1, 99999, 10, "ip_icmp_err_burst" }, 836 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 837 { 0, 1, 0, "ip_strict_dst_multihoming" }, 838 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 839 { 0, 1, 0, "ipsec_override_persocket_policy" }, 840 { 0, 1, 1, "icmp_accept_clear_messages" }, 841 { 0, 1, 1, "igmp_accept_clear_messages" }, 842 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 843 "ip_ndp_delay_first_probe_time"}, 844 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 845 "ip_ndp_max_unicast_solicit"}, 846 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 847 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 848 { 0, 1, 0, "ip6_forward_src_routed"}, 849 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 850 { 0, 1, 1, "ip6_send_redirects"}, 851 { 0, 1, 0, "ip6_ignore_redirect" }, 852 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 853 854 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 855 856 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 857 858 { 0, 1, 1, "pim_accept_clear_messages" }, 859 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 860 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 861 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 862 { 0, 15, 0, "ip_policy_mask" }, 863 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 864 { 0, 255, 1, "ip_multirt_ttl" }, 865 { 0, 1, 1, "ip_multidata_outbound" }, 866 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 867 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 868 { 0, 1000, 1, "ip_max_temp_defend" }, 869 { 0, 1000, 3, "ip_max_defend" }, 870 { 0, 999999, 30, "ip_defend_interval" }, 871 { 0, 3600000, 300000, "ip_dup_recovery" }, 872 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 873 { 0, 1, 1, "ip_lso_outbound" }, 874 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 875 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 876 #ifdef DEBUG 877 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 878 #else 879 { 0, 0, 0, "" }, 880 #endif 881 }; 882 883 /* 884 * Extended NDP table 885 * The addresses for the first two are filled in to be ips_ip_g_forward 886 * and ips_ipv6_forward at init time. 887 */ 888 static ipndp_t lcl_ndp_arr[] = { 889 /* getf setf data name */ 890 #define IPNDP_IP_FORWARDING_OFFSET 0 891 { ip_param_generic_get, ip_forward_set, NULL, 892 "ip_forwarding" }, 893 #define IPNDP_IP6_FORWARDING_OFFSET 1 894 { ip_param_generic_get, ip_forward_set, NULL, 895 "ip6_forwarding" }, 896 { ip_ill_report, NULL, NULL, 897 "ip_ill_status" }, 898 { ip_ipif_report, NULL, NULL, 899 "ip_ipif_status" }, 900 { ip_ire_report, NULL, NULL, 901 "ipv4_ire_status" }, 902 { ip_ire_report_v6, NULL, NULL, 903 "ipv6_ire_status" }, 904 { ip_conn_report, NULL, NULL, 905 "ip_conn_status" }, 906 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 907 "ip_rput_pullups" }, 908 { ndp_report, NULL, NULL, 909 "ip_ndp_cache_report" }, 910 { ip_srcid_report, NULL, NULL, 911 "ip_srcid_status" }, 912 { ip_param_generic_get, ip_squeue_profile_set, 913 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 914 { ip_param_generic_get, ip_squeue_bind_set, 915 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 916 { ip_param_generic_get, ip_input_proc_set, 917 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 918 { ip_param_generic_get, ip_int_set, 919 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 920 #define IPNDP_CGTP_FILTER_OFFSET 14 921 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 922 "ip_cgtp_filter" }, 923 { ip_param_generic_get, ip_int_set, 924 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" }, 925 #define IPNDP_IPMP_HOOK_OFFSET 16 926 { ip_param_generic_get, ipmp_hook_emulation_set, NULL, 927 "ipmp_hook_emulation" }, 928 }; 929 930 /* 931 * Table of IP ioctls encoding the various properties of the ioctl and 932 * indexed based on the last byte of the ioctl command. Occasionally there 933 * is a clash, and there is more than 1 ioctl with the same last byte. 934 * In such a case 1 ioctl is encoded in the ndx table and the remaining 935 * ioctls are encoded in the misc table. An entry in the ndx table is 936 * retrieved by indexing on the last byte of the ioctl command and comparing 937 * the ioctl command with the value in the ndx table. In the event of a 938 * mismatch the misc table is then searched sequentially for the desired 939 * ioctl command. 940 * 941 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 942 */ 943 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 944 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 949 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 950 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 951 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 952 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 953 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 954 955 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 956 MISC_CMD, ip_siocaddrt, NULL }, 957 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 958 MISC_CMD, ip_siocdelrt, NULL }, 959 960 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 961 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 962 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 963 IF_CMD, ip_sioctl_get_addr, NULL }, 964 965 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 966 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 967 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 968 IPI_GET_CMD | IPI_REPL, 969 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 970 971 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 972 IPI_PRIV | IPI_WR | IPI_REPL, 973 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 974 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 975 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 976 IF_CMD, ip_sioctl_get_flags, NULL }, 977 978 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 979 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 980 981 /* copyin size cannot be coded for SIOCGIFCONF */ 982 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 983 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 984 985 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 986 IF_CMD, ip_sioctl_mtu, NULL }, 987 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 988 IF_CMD, ip_sioctl_get_mtu, NULL }, 989 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 990 IPI_GET_CMD | IPI_REPL, 991 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 992 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 993 IF_CMD, ip_sioctl_brdaddr, NULL }, 994 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 995 IPI_GET_CMD | IPI_REPL, 996 IF_CMD, ip_sioctl_get_netmask, NULL }, 997 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 998 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 999 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1000 IPI_GET_CMD | IPI_REPL, 1001 IF_CMD, ip_sioctl_get_metric, NULL }, 1002 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1003 IF_CMD, ip_sioctl_metric, NULL }, 1004 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1005 1006 /* See 166-168 below for extended SIOC*XARP ioctls */ 1007 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1008 ARP_CMD, ip_sioctl_arp, NULL }, 1009 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1010 ARP_CMD, ip_sioctl_arp, NULL }, 1011 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1012 ARP_CMD, ip_sioctl_arp, NULL }, 1013 1014 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1015 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1016 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1017 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1018 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1019 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1020 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1021 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1022 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1023 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1024 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1025 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1037 MISC_CMD, if_unitsel, if_unitsel_restart }, 1038 1039 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1041 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1043 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1044 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1045 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1046 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1047 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1048 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1049 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1050 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1051 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 1058 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1059 IPI_PRIV | IPI_WR | IPI_MODOK, 1060 IF_CMD, ip_sioctl_sifname, NULL }, 1061 1062 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1063 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1064 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1065 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1066 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1067 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1068 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1069 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1070 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1071 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1072 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 1076 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1077 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1078 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1079 IF_CMD, ip_sioctl_get_muxid, NULL }, 1080 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1081 IPI_PRIV | IPI_WR | IPI_REPL, 1082 IF_CMD, ip_sioctl_muxid, NULL }, 1083 1084 /* Both if and lif variants share same func */ 1085 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1086 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1087 /* Both if and lif variants share same func */ 1088 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1089 IPI_PRIV | IPI_WR | IPI_REPL, 1090 IF_CMD, ip_sioctl_slifindex, NULL }, 1091 1092 /* copyin size cannot be coded for SIOCGIFCONF */ 1093 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1094 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1095 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1114 IPI_PRIV | IPI_WR | IPI_REPL, 1115 LIF_CMD, ip_sioctl_removeif, 1116 ip_sioctl_removeif_restart }, 1117 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1118 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1119 LIF_CMD, ip_sioctl_addif, NULL }, 1120 #define SIOCLIFADDR_NDX 112 1121 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1122 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1123 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1124 IPI_GET_CMD | IPI_REPL, 1125 LIF_CMD, ip_sioctl_get_addr, NULL }, 1126 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1127 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1128 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1129 IPI_GET_CMD | IPI_REPL, 1130 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1131 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1132 IPI_PRIV | IPI_WR | IPI_REPL, 1133 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1134 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1135 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1136 LIF_CMD, ip_sioctl_get_flags, NULL }, 1137 1138 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1139 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 1141 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1142 ip_sioctl_get_lifconf, NULL }, 1143 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1144 LIF_CMD, ip_sioctl_mtu, NULL }, 1145 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1146 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1147 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1148 IPI_GET_CMD | IPI_REPL, 1149 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1150 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1151 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1152 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1153 IPI_GET_CMD | IPI_REPL, 1154 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1155 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1156 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1157 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1158 IPI_GET_CMD | IPI_REPL, 1159 LIF_CMD, ip_sioctl_get_metric, NULL }, 1160 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1161 LIF_CMD, ip_sioctl_metric, NULL }, 1162 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1163 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1164 LIF_CMD, ip_sioctl_slifname, 1165 ip_sioctl_slifname_restart }, 1166 1167 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1168 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1169 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1170 IPI_GET_CMD | IPI_REPL, 1171 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1172 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1173 IPI_PRIV | IPI_WR | IPI_REPL, 1174 LIF_CMD, ip_sioctl_muxid, NULL }, 1175 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1176 IPI_GET_CMD | IPI_REPL, 1177 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1178 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1179 IPI_PRIV | IPI_WR | IPI_REPL, 1180 LIF_CMD, ip_sioctl_slifindex, 0 }, 1181 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1182 LIF_CMD, ip_sioctl_token, NULL }, 1183 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1184 IPI_GET_CMD | IPI_REPL, 1185 LIF_CMD, ip_sioctl_get_token, NULL }, 1186 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1187 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1188 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1189 IPI_GET_CMD | IPI_REPL, 1190 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1191 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1192 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1193 1194 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1195 IPI_GET_CMD | IPI_REPL, 1196 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1197 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1198 LIF_CMD, ip_siocdelndp_v6, NULL }, 1199 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1200 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1201 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1202 LIF_CMD, ip_siocsetndp_v6, NULL }, 1203 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1204 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1205 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1206 MISC_CMD, ip_sioctl_tonlink, NULL }, 1207 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1208 MISC_CMD, ip_sioctl_tmysite, NULL }, 1209 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1210 TUN_CMD, ip_sioctl_tunparam, NULL }, 1211 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1212 IPI_PRIV | IPI_WR, 1213 TUN_CMD, ip_sioctl_tunparam, NULL }, 1214 1215 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1216 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1217 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1218 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1219 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1220 1221 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1222 IPI_PRIV | IPI_WR | IPI_REPL, 1223 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1224 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1225 IPI_PRIV | IPI_WR | IPI_REPL, 1226 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1227 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1228 IPI_PRIV | IPI_WR, 1229 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1230 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1231 IPI_GET_CMD | IPI_REPL, 1232 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1233 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1234 IPI_GET_CMD | IPI_REPL, 1235 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1236 1237 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1238 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1241 1242 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1243 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1244 1245 /* These are handled in ip_sioctl_copyin_setup itself */ 1246 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1247 MISC_CMD, NULL, NULL }, 1248 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1249 MISC_CMD, NULL, NULL }, 1250 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1251 1252 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1253 ip_sioctl_get_lifconf, NULL }, 1254 1255 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1256 XARP_CMD, ip_sioctl_arp, NULL }, 1257 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1258 XARP_CMD, ip_sioctl_arp, NULL }, 1259 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1260 XARP_CMD, ip_sioctl_arp, NULL }, 1261 1262 /* SIOCPOPSOCKFS is not handled by IP */ 1263 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1264 1265 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1266 IPI_GET_CMD | IPI_REPL, 1267 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1268 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1269 IPI_PRIV | IPI_WR | IPI_REPL, 1270 LIF_CMD, ip_sioctl_slifzone, 1271 ip_sioctl_slifzone_restart }, 1272 /* 172-174 are SCTP ioctls and not handled by IP */ 1273 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1274 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1275 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1276 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1277 IPI_GET_CMD, LIF_CMD, 1278 ip_sioctl_get_lifusesrc, 0 }, 1279 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1280 IPI_PRIV | IPI_WR, 1281 LIF_CMD, ip_sioctl_slifusesrc, 1282 NULL }, 1283 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1284 ip_sioctl_get_lifsrcof, NULL }, 1285 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1286 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1287 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1288 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1289 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1290 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1291 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1292 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1293 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1294 ip_sioctl_set_ipmpfailback, NULL } 1295 }; 1296 1297 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1298 1299 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1300 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1301 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1302 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1303 TUN_CMD, ip_sioctl_tunparam, NULL }, 1304 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1305 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1306 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1307 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1308 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1309 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1310 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1311 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1312 MISC_CMD, mrt_ioctl}, 1313 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1314 MISC_CMD, mrt_ioctl}, 1315 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1316 MISC_CMD, mrt_ioctl} 1317 }; 1318 1319 int ip_misc_ioctl_count = 1320 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1321 1322 int conn_drain_nthreads; /* Number of drainers reqd. */ 1323 /* Settable in /etc/system */ 1324 /* Defined in ip_ire.c */ 1325 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1326 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1327 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1328 1329 static nv_t ire_nv_arr[] = { 1330 { IRE_BROADCAST, "BROADCAST" }, 1331 { IRE_LOCAL, "LOCAL" }, 1332 { IRE_LOOPBACK, "LOOPBACK" }, 1333 { IRE_CACHE, "CACHE" }, 1334 { IRE_DEFAULT, "DEFAULT" }, 1335 { IRE_PREFIX, "PREFIX" }, 1336 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1337 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1338 { IRE_HOST, "HOST" }, 1339 { 0 } 1340 }; 1341 1342 nv_t *ire_nv_tbl = ire_nv_arr; 1343 1344 /* Defined in ip_netinfo.c */ 1345 extern ddi_taskq_t *eventq_queue_nic; 1346 1347 /* Simple ICMP IP Header Template */ 1348 static ipha_t icmp_ipha = { 1349 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1350 }; 1351 1352 struct module_info ip_mod_info = { 1353 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1354 }; 1355 1356 /* 1357 * Duplicate static symbols within a module confuses mdb; so we avoid the 1358 * problem by making the symbols here distinct from those in udp.c. 1359 */ 1360 1361 static struct qinit iprinit = { 1362 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1363 &ip_mod_info 1364 }; 1365 1366 static struct qinit ipwinit = { 1367 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1368 &ip_mod_info 1369 }; 1370 1371 static struct qinit iplrinit = { 1372 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1373 &ip_mod_info 1374 }; 1375 1376 static struct qinit iplwinit = { 1377 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1378 &ip_mod_info 1379 }; 1380 1381 struct streamtab ipinfo = { 1382 &iprinit, &ipwinit, &iplrinit, &iplwinit 1383 }; 1384 1385 #ifdef DEBUG 1386 static boolean_t skip_sctp_cksum = B_FALSE; 1387 #endif 1388 1389 /* 1390 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1391 * ip_rput_v6(), ip_output(), etc. If the message 1392 * block already has a M_CTL at the front of it, then simply set the zoneid 1393 * appropriately. 1394 */ 1395 mblk_t * 1396 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1397 { 1398 mblk_t *first_mp; 1399 ipsec_out_t *io; 1400 1401 ASSERT(zoneid != ALL_ZONES); 1402 if (mp->b_datap->db_type == M_CTL) { 1403 io = (ipsec_out_t *)mp->b_rptr; 1404 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1405 io->ipsec_out_zoneid = zoneid; 1406 return (mp); 1407 } 1408 1409 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1410 if (first_mp == NULL) 1411 return (NULL); 1412 io = (ipsec_out_t *)first_mp->b_rptr; 1413 /* This is not a secure packet */ 1414 io->ipsec_out_secure = B_FALSE; 1415 io->ipsec_out_zoneid = zoneid; 1416 first_mp->b_cont = mp; 1417 return (first_mp); 1418 } 1419 1420 /* 1421 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1422 */ 1423 mblk_t * 1424 ip_copymsg(mblk_t *mp) 1425 { 1426 mblk_t *nmp; 1427 ipsec_info_t *in; 1428 1429 if (mp->b_datap->db_type != M_CTL) 1430 return (copymsg(mp)); 1431 1432 in = (ipsec_info_t *)mp->b_rptr; 1433 1434 /* 1435 * Note that M_CTL is also used for delivering ICMP error messages 1436 * upstream to transport layers. 1437 */ 1438 if (in->ipsec_info_type != IPSEC_OUT && 1439 in->ipsec_info_type != IPSEC_IN) 1440 return (copymsg(mp)); 1441 1442 nmp = copymsg(mp->b_cont); 1443 1444 if (in->ipsec_info_type == IPSEC_OUT) { 1445 return (ipsec_out_tag(mp, nmp, 1446 ((ipsec_out_t *)in)->ipsec_out_ns)); 1447 } else { 1448 return (ipsec_in_tag(mp, nmp, 1449 ((ipsec_in_t *)in)->ipsec_in_ns)); 1450 } 1451 } 1452 1453 /* Generate an ICMP fragmentation needed message. */ 1454 static void 1455 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1456 ip_stack_t *ipst) 1457 { 1458 icmph_t icmph; 1459 mblk_t *first_mp; 1460 boolean_t mctl_present; 1461 1462 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1463 1464 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1465 if (mctl_present) 1466 freeb(first_mp); 1467 return; 1468 } 1469 1470 bzero(&icmph, sizeof (icmph_t)); 1471 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1472 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1473 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1474 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1475 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1476 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1477 ipst); 1478 } 1479 1480 /* 1481 * icmp_inbound deals with ICMP messages in the following ways. 1482 * 1483 * 1) It needs to send a reply back and possibly delivering it 1484 * to the "interested" upper clients. 1485 * 2) It needs to send it to the upper clients only. 1486 * 3) It needs to change some values in IP only. 1487 * 4) It needs to change some values in IP and upper layers e.g TCP. 1488 * 1489 * We need to accomodate icmp messages coming in clear until we get 1490 * everything secure from the wire. If icmp_accept_clear_messages 1491 * is zero we check with the global policy and act accordingly. If 1492 * it is non-zero, we accept the message without any checks. But 1493 * *this does not mean* that this will be delivered to the upper 1494 * clients. By accepting we might send replies back, change our MTU 1495 * value etc. but delivery to the ULP/clients depends on their policy 1496 * dispositions. 1497 * 1498 * We handle the above 4 cases in the context of IPSEC in the 1499 * following way : 1500 * 1501 * 1) Send the reply back in the same way as the request came in. 1502 * If it came in encrypted, it goes out encrypted. If it came in 1503 * clear, it goes out in clear. Thus, this will prevent chosen 1504 * plain text attack. 1505 * 2) The client may or may not expect things to come in secure. 1506 * If it comes in secure, the policy constraints are checked 1507 * before delivering it to the upper layers. If it comes in 1508 * clear, ipsec_inbound_accept_clear will decide whether to 1509 * accept this in clear or not. In both the cases, if the returned 1510 * message (IP header + 8 bytes) that caused the icmp message has 1511 * AH/ESP headers, it is sent up to AH/ESP for validation before 1512 * sending up. If there are only 8 bytes of returned message, then 1513 * upper client will not be notified. 1514 * 3) Check with global policy to see whether it matches the constaints. 1515 * But this will be done only if icmp_accept_messages_in_clear is 1516 * zero. 1517 * 4) If we need to change both in IP and ULP, then the decision taken 1518 * while affecting the values in IP and while delivering up to TCP 1519 * should be the same. 1520 * 1521 * There are two cases. 1522 * 1523 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1524 * failed), we will not deliver it to the ULP, even though they 1525 * are *willing* to accept in *clear*. This is fine as our global 1526 * disposition to icmp messages asks us reject the datagram. 1527 * 1528 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1529 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1530 * to deliver it to ULP (policy failed), it can lead to 1531 * consistency problems. The cases known at this time are 1532 * ICMP_DESTINATION_UNREACHABLE messages with following code 1533 * values : 1534 * 1535 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1536 * and Upper layer rejects. Then the communication will 1537 * come to a stop. This is solved by making similar decisions 1538 * at both levels. Currently, when we are unable to deliver 1539 * to the Upper Layer (due to policy failures) while IP has 1540 * adjusted ire_max_frag, the next outbound datagram would 1541 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1542 * will be with the right level of protection. Thus the right 1543 * value will be communicated even if we are not able to 1544 * communicate when we get from the wire initially. But this 1545 * assumes there would be at least one outbound datagram after 1546 * IP has adjusted its ire_max_frag value. To make things 1547 * simpler, we accept in clear after the validation of 1548 * AH/ESP headers. 1549 * 1550 * - Other ICMP ERRORS : We may not be able to deliver it to the 1551 * upper layer depending on the level of protection the upper 1552 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1553 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1554 * should be accepted in clear when the Upper layer expects secure. 1555 * Thus the communication may get aborted by some bad ICMP 1556 * packets. 1557 * 1558 * IPQoS Notes: 1559 * The only instance when a packet is sent for processing is when there 1560 * isn't an ICMP client and if we are interested in it. 1561 * If there is a client, IPPF processing will take place in the 1562 * ip_fanout_proto routine. 1563 * 1564 * Zones notes: 1565 * The packet is only processed in the context of the specified zone: typically 1566 * only this zone will reply to an echo request, and only interested clients in 1567 * this zone will receive a copy of the packet. This means that the caller must 1568 * call icmp_inbound() for each relevant zone. 1569 */ 1570 static void 1571 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1572 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1573 ill_t *recv_ill, zoneid_t zoneid) 1574 { 1575 icmph_t *icmph; 1576 ipha_t *ipha; 1577 int iph_hdr_length; 1578 int hdr_length; 1579 boolean_t interested; 1580 uint32_t ts; 1581 uchar_t *wptr; 1582 ipif_t *ipif; 1583 mblk_t *first_mp; 1584 ipsec_in_t *ii; 1585 ire_t *src_ire; 1586 boolean_t onlink; 1587 timestruc_t now; 1588 uint32_t ill_index; 1589 ip_stack_t *ipst; 1590 1591 ASSERT(ill != NULL); 1592 ipst = ill->ill_ipst; 1593 1594 first_mp = mp; 1595 if (mctl_present) { 1596 mp = first_mp->b_cont; 1597 ASSERT(mp != NULL); 1598 } 1599 1600 ipha = (ipha_t *)mp->b_rptr; 1601 if (ipst->ips_icmp_accept_clear_messages == 0) { 1602 first_mp = ipsec_check_global_policy(first_mp, NULL, 1603 ipha, NULL, mctl_present, ipst->ips_netstack); 1604 if (first_mp == NULL) 1605 return; 1606 } 1607 1608 /* 1609 * On a labeled system, we have to check whether the zone itself is 1610 * permitted to receive raw traffic. 1611 */ 1612 if (is_system_labeled()) { 1613 if (zoneid == ALL_ZONES) 1614 zoneid = tsol_packet_to_zoneid(mp); 1615 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1616 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1617 zoneid)); 1618 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1619 freemsg(first_mp); 1620 return; 1621 } 1622 } 1623 1624 /* 1625 * We have accepted the ICMP message. It means that we will 1626 * respond to the packet if needed. It may not be delivered 1627 * to the upper client depending on the policy constraints 1628 * and the disposition in ipsec_inbound_accept_clear. 1629 */ 1630 1631 ASSERT(ill != NULL); 1632 1633 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1634 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1635 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1636 /* Last chance to get real. */ 1637 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1638 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1639 freemsg(first_mp); 1640 return; 1641 } 1642 /* Refresh iph following the pullup. */ 1643 ipha = (ipha_t *)mp->b_rptr; 1644 } 1645 /* ICMP header checksum, including checksum field, should be zero. */ 1646 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1647 IP_CSUM(mp, iph_hdr_length, 0)) { 1648 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1649 freemsg(first_mp); 1650 return; 1651 } 1652 /* The IP header will always be a multiple of four bytes */ 1653 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1654 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1655 icmph->icmph_code)); 1656 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1657 /* We will set "interested" to "true" if we want a copy */ 1658 interested = B_FALSE; 1659 switch (icmph->icmph_type) { 1660 case ICMP_ECHO_REPLY: 1661 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1662 break; 1663 case ICMP_DEST_UNREACHABLE: 1664 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1665 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1666 interested = B_TRUE; /* Pass up to transport */ 1667 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1668 break; 1669 case ICMP_SOURCE_QUENCH: 1670 interested = B_TRUE; /* Pass up to transport */ 1671 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1672 break; 1673 case ICMP_REDIRECT: 1674 if (!ipst->ips_ip_ignore_redirect) 1675 interested = B_TRUE; 1676 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1677 break; 1678 case ICMP_ECHO_REQUEST: 1679 /* 1680 * Whether to respond to echo requests that come in as IP 1681 * broadcasts or as IP multicast is subject to debate 1682 * (what isn't?). We aim to please, you pick it. 1683 * Default is do it. 1684 */ 1685 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1686 /* unicast: always respond */ 1687 interested = B_TRUE; 1688 } else if (CLASSD(ipha->ipha_dst)) { 1689 /* multicast: respond based on tunable */ 1690 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1691 } else if (broadcast) { 1692 /* broadcast: respond based on tunable */ 1693 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1694 } 1695 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1696 break; 1697 case ICMP_ROUTER_ADVERTISEMENT: 1698 case ICMP_ROUTER_SOLICITATION: 1699 break; 1700 case ICMP_TIME_EXCEEDED: 1701 interested = B_TRUE; /* Pass up to transport */ 1702 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1703 break; 1704 case ICMP_PARAM_PROBLEM: 1705 interested = B_TRUE; /* Pass up to transport */ 1706 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1707 break; 1708 case ICMP_TIME_STAMP_REQUEST: 1709 /* Response to Time Stamp Requests is local policy. */ 1710 if (ipst->ips_ip_g_resp_to_timestamp && 1711 /* So is whether to respond if it was an IP broadcast. */ 1712 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1713 int tstamp_len = 3 * sizeof (uint32_t); 1714 1715 if (wptr + tstamp_len > mp->b_wptr) { 1716 if (!pullupmsg(mp, wptr + tstamp_len - 1717 mp->b_rptr)) { 1718 BUMP_MIB(ill->ill_ip_mib, 1719 ipIfStatsInDiscards); 1720 freemsg(first_mp); 1721 return; 1722 } 1723 /* Refresh ipha following the pullup. */ 1724 ipha = (ipha_t *)mp->b_rptr; 1725 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1726 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1727 } 1728 interested = B_TRUE; 1729 } 1730 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1731 break; 1732 case ICMP_TIME_STAMP_REPLY: 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1734 break; 1735 case ICMP_INFO_REQUEST: 1736 /* Per RFC 1122 3.2.2.7, ignore this. */ 1737 case ICMP_INFO_REPLY: 1738 break; 1739 case ICMP_ADDRESS_MASK_REQUEST: 1740 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1741 !broadcast) && 1742 /* TODO m_pullup of complete header? */ 1743 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1744 interested = B_TRUE; 1745 } 1746 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1747 break; 1748 case ICMP_ADDRESS_MASK_REPLY: 1749 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1750 break; 1751 default: 1752 interested = B_TRUE; /* Pass up to transport */ 1753 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1754 break; 1755 } 1756 /* See if there is an ICMP client. */ 1757 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1758 /* If there is an ICMP client and we want one too, copy it. */ 1759 mblk_t *first_mp1; 1760 1761 if (!interested) { 1762 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1763 ip_policy, recv_ill, zoneid); 1764 return; 1765 } 1766 first_mp1 = ip_copymsg(first_mp); 1767 if (first_mp1 != NULL) { 1768 ip_fanout_proto(q, first_mp1, ill, ipha, 1769 0, mctl_present, ip_policy, recv_ill, zoneid); 1770 } 1771 } else if (!interested) { 1772 freemsg(first_mp); 1773 return; 1774 } else { 1775 /* 1776 * Initiate policy processing for this packet if ip_policy 1777 * is true. 1778 */ 1779 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1780 ill_index = ill->ill_phyint->phyint_ifindex; 1781 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1782 if (mp == NULL) { 1783 if (mctl_present) { 1784 freeb(first_mp); 1785 } 1786 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1787 return; 1788 } 1789 } 1790 } 1791 /* We want to do something with it. */ 1792 /* Check db_ref to make sure we can modify the packet. */ 1793 if (mp->b_datap->db_ref > 1) { 1794 mblk_t *first_mp1; 1795 1796 first_mp1 = ip_copymsg(first_mp); 1797 freemsg(first_mp); 1798 if (!first_mp1) { 1799 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1800 return; 1801 } 1802 first_mp = first_mp1; 1803 if (mctl_present) { 1804 mp = first_mp->b_cont; 1805 ASSERT(mp != NULL); 1806 } else { 1807 mp = first_mp; 1808 } 1809 ipha = (ipha_t *)mp->b_rptr; 1810 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1811 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1812 } 1813 switch (icmph->icmph_type) { 1814 case ICMP_ADDRESS_MASK_REQUEST: 1815 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1816 if (ipif == NULL) { 1817 freemsg(first_mp); 1818 return; 1819 } 1820 /* 1821 * outging interface must be IPv4 1822 */ 1823 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1824 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1825 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1826 ipif_refrele(ipif); 1827 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1828 break; 1829 case ICMP_ECHO_REQUEST: 1830 icmph->icmph_type = ICMP_ECHO_REPLY; 1831 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1832 break; 1833 case ICMP_TIME_STAMP_REQUEST: { 1834 uint32_t *tsp; 1835 1836 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1837 tsp = (uint32_t *)wptr; 1838 tsp++; /* Skip past 'originate time' */ 1839 /* Compute # of milliseconds since midnight */ 1840 gethrestime(&now); 1841 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1842 now.tv_nsec / (NANOSEC / MILLISEC); 1843 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1844 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1845 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1846 break; 1847 } 1848 default: 1849 ipha = (ipha_t *)&icmph[1]; 1850 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1851 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1852 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1853 freemsg(first_mp); 1854 return; 1855 } 1856 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1857 ipha = (ipha_t *)&icmph[1]; 1858 } 1859 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1860 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1861 freemsg(first_mp); 1862 return; 1863 } 1864 hdr_length = IPH_HDR_LENGTH(ipha); 1865 if (hdr_length < sizeof (ipha_t)) { 1866 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1867 freemsg(first_mp); 1868 return; 1869 } 1870 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1871 if (!pullupmsg(mp, 1872 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1873 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1874 freemsg(first_mp); 1875 return; 1876 } 1877 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1878 ipha = (ipha_t *)&icmph[1]; 1879 } 1880 switch (icmph->icmph_type) { 1881 case ICMP_REDIRECT: 1882 /* 1883 * As there is no upper client to deliver, we don't 1884 * need the first_mp any more. 1885 */ 1886 if (mctl_present) { 1887 freeb(first_mp); 1888 } 1889 icmp_redirect(ill, mp); 1890 return; 1891 case ICMP_DEST_UNREACHABLE: 1892 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1893 if (!icmp_inbound_too_big(icmph, ipha, ill, 1894 zoneid, mp, iph_hdr_length, ipst)) { 1895 freemsg(first_mp); 1896 return; 1897 } 1898 /* 1899 * icmp_inbound_too_big() may alter mp. 1900 * Resynch ipha and icmph accordingly. 1901 */ 1902 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1903 ipha = (ipha_t *)&icmph[1]; 1904 } 1905 /* FALLTHRU */ 1906 default : 1907 /* 1908 * IPQoS notes: Since we have already done IPQoS 1909 * processing we don't want to do it again in 1910 * the fanout routines called by 1911 * icmp_inbound_error_fanout, hence the last 1912 * argument, ip_policy, is B_FALSE. 1913 */ 1914 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1915 ipha, iph_hdr_length, hdr_length, mctl_present, 1916 B_FALSE, recv_ill, zoneid); 1917 } 1918 return; 1919 } 1920 /* Send out an ICMP packet */ 1921 icmph->icmph_checksum = 0; 1922 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1923 if (broadcast || CLASSD(ipha->ipha_dst)) { 1924 ipif_t *ipif_chosen; 1925 /* 1926 * Make it look like it was directed to us, so we don't look 1927 * like a fool with a broadcast or multicast source address. 1928 */ 1929 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1930 /* 1931 * Make sure that we haven't grabbed an interface that's DOWN. 1932 */ 1933 if (ipif != NULL) { 1934 ipif_chosen = ipif_select_source(ipif->ipif_ill, 1935 ipha->ipha_src, zoneid); 1936 if (ipif_chosen != NULL) { 1937 ipif_refrele(ipif); 1938 ipif = ipif_chosen; 1939 } 1940 } 1941 if (ipif == NULL) { 1942 ip0dbg(("icmp_inbound: " 1943 "No source for broadcast/multicast:\n" 1944 "\tsrc 0x%x dst 0x%x ill %p " 1945 "ipif_lcl_addr 0x%x\n", 1946 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 1947 (void *)ill, 1948 ill->ill_ipif->ipif_lcl_addr)); 1949 freemsg(first_mp); 1950 return; 1951 } 1952 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1953 ipha->ipha_dst = ipif->ipif_src_addr; 1954 ipif_refrele(ipif); 1955 } 1956 /* Reset time to live. */ 1957 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1958 { 1959 /* Swap source and destination addresses */ 1960 ipaddr_t tmp; 1961 1962 tmp = ipha->ipha_src; 1963 ipha->ipha_src = ipha->ipha_dst; 1964 ipha->ipha_dst = tmp; 1965 } 1966 ipha->ipha_ident = 0; 1967 if (!IS_SIMPLE_IPH(ipha)) 1968 icmp_options_update(ipha); 1969 1970 /* 1971 * ICMP echo replies should go out on the same interface 1972 * the request came on as probes used by in.mpathd for detecting 1973 * NIC failures are ECHO packets. We turn-off load spreading 1974 * by setting ipsec_in_attach_if to B_TRUE, which is copied 1975 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 1976 * function. This is in turn handled by ip_wput and ip_newroute 1977 * to make sure that the packet goes out on the interface it came 1978 * in on. If we don't turnoff load spreading, the packets might get 1979 * dropped if there are no non-FAILED/INACTIVE interfaces for it 1980 * to go out and in.mpathd would wrongly detect a failure or 1981 * mis-detect a NIC failure for link failure. As load spreading 1982 * can happen only if ill_group is not NULL, we do only for 1983 * that case and this does not affect the normal case. 1984 * 1985 * We turn off load spreading only on echo packets that came from 1986 * on-link hosts. If the interface route has been deleted, this will 1987 * not be enforced as we can't do much. For off-link hosts, as the 1988 * default routes in IPv4 does not typically have an ire_ipif 1989 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 1990 * Moreover, expecting a default route through this interface may 1991 * not be correct. We use ipha_dst because of the swap above. 1992 */ 1993 onlink = B_FALSE; 1994 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 1995 /* 1996 * First, we need to make sure that it is not one of our 1997 * local addresses. If we set onlink when it is one of 1998 * our local addresses, we will end up creating IRE_CACHES 1999 * for one of our local addresses. Then, we will never 2000 * accept packets for them afterwards. 2001 */ 2002 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2003 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2004 if (src_ire == NULL) { 2005 ipif = ipif_get_next_ipif(NULL, ill); 2006 if (ipif == NULL) { 2007 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2008 freemsg(mp); 2009 return; 2010 } 2011 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2012 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2013 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst); 2014 ipif_refrele(ipif); 2015 if (src_ire != NULL) { 2016 onlink = B_TRUE; 2017 ire_refrele(src_ire); 2018 } 2019 } else { 2020 ire_refrele(src_ire); 2021 } 2022 } 2023 if (!mctl_present) { 2024 /* 2025 * This packet should go out the same way as it 2026 * came in i.e in clear. To make sure that global 2027 * policy will not be applied to this in ip_wput_ire, 2028 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2029 */ 2030 ASSERT(first_mp == mp); 2031 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2032 if (first_mp == NULL) { 2033 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2034 freemsg(mp); 2035 return; 2036 } 2037 ii = (ipsec_in_t *)first_mp->b_rptr; 2038 2039 /* This is not a secure packet */ 2040 ii->ipsec_in_secure = B_FALSE; 2041 if (onlink) { 2042 ii->ipsec_in_attach_if = B_TRUE; 2043 ii->ipsec_in_ill_index = 2044 ill->ill_phyint->phyint_ifindex; 2045 ii->ipsec_in_rill_index = 2046 recv_ill->ill_phyint->phyint_ifindex; 2047 } 2048 first_mp->b_cont = mp; 2049 } else if (onlink) { 2050 ii = (ipsec_in_t *)first_mp->b_rptr; 2051 ii->ipsec_in_attach_if = B_TRUE; 2052 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2053 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2054 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2055 } else { 2056 ii = (ipsec_in_t *)first_mp->b_rptr; 2057 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2058 } 2059 ii->ipsec_in_zoneid = zoneid; 2060 ASSERT(zoneid != ALL_ZONES); 2061 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2062 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2063 return; 2064 } 2065 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2066 put(WR(q), first_mp); 2067 } 2068 2069 static ipaddr_t 2070 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2071 { 2072 conn_t *connp; 2073 connf_t *connfp; 2074 ipaddr_t nexthop_addr = INADDR_ANY; 2075 int hdr_length = IPH_HDR_LENGTH(ipha); 2076 uint16_t *up; 2077 uint32_t ports; 2078 ip_stack_t *ipst = ill->ill_ipst; 2079 2080 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2081 switch (ipha->ipha_protocol) { 2082 case IPPROTO_TCP: 2083 { 2084 tcph_t *tcph; 2085 2086 /* do a reverse lookup */ 2087 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2088 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2089 TCPS_LISTEN, ipst); 2090 break; 2091 } 2092 case IPPROTO_UDP: 2093 { 2094 uint32_t dstport, srcport; 2095 2096 ((uint16_t *)&ports)[0] = up[1]; 2097 ((uint16_t *)&ports)[1] = up[0]; 2098 2099 /* Extract ports in net byte order */ 2100 dstport = htons(ntohl(ports) & 0xFFFF); 2101 srcport = htons(ntohl(ports) >> 16); 2102 2103 connfp = &ipst->ips_ipcl_udp_fanout[ 2104 IPCL_UDP_HASH(dstport, ipst)]; 2105 mutex_enter(&connfp->connf_lock); 2106 connp = connfp->connf_head; 2107 2108 /* do a reverse lookup */ 2109 while ((connp != NULL) && 2110 (!IPCL_UDP_MATCH(connp, dstport, 2111 ipha->ipha_src, srcport, ipha->ipha_dst) || 2112 !IPCL_ZONE_MATCH(connp, zoneid))) { 2113 connp = connp->conn_next; 2114 } 2115 if (connp != NULL) 2116 CONN_INC_REF(connp); 2117 mutex_exit(&connfp->connf_lock); 2118 break; 2119 } 2120 case IPPROTO_SCTP: 2121 { 2122 in6_addr_t map_src, map_dst; 2123 2124 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2125 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2126 ((uint16_t *)&ports)[0] = up[1]; 2127 ((uint16_t *)&ports)[1] = up[0]; 2128 2129 connp = sctp_find_conn(&map_src, &map_dst, ports, 2130 zoneid, ipst->ips_netstack->netstack_sctp); 2131 if (connp == NULL) { 2132 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2133 zoneid, ports, ipha, ipst); 2134 } else { 2135 CONN_INC_REF(connp); 2136 SCTP_REFRELE(CONN2SCTP(connp)); 2137 } 2138 break; 2139 } 2140 default: 2141 { 2142 ipha_t ripha; 2143 2144 ripha.ipha_src = ipha->ipha_dst; 2145 ripha.ipha_dst = ipha->ipha_src; 2146 ripha.ipha_protocol = ipha->ipha_protocol; 2147 2148 connfp = &ipst->ips_ipcl_proto_fanout[ 2149 ipha->ipha_protocol]; 2150 mutex_enter(&connfp->connf_lock); 2151 connp = connfp->connf_head; 2152 for (connp = connfp->connf_head; connp != NULL; 2153 connp = connp->conn_next) { 2154 if (IPCL_PROTO_MATCH(connp, 2155 ipha->ipha_protocol, &ripha, ill, 2156 0, zoneid)) { 2157 CONN_INC_REF(connp); 2158 break; 2159 } 2160 } 2161 mutex_exit(&connfp->connf_lock); 2162 } 2163 } 2164 if (connp != NULL) { 2165 if (connp->conn_nexthop_set) 2166 nexthop_addr = connp->conn_nexthop_v4; 2167 CONN_DEC_REF(connp); 2168 } 2169 return (nexthop_addr); 2170 } 2171 2172 /* Table from RFC 1191 */ 2173 static int icmp_frag_size_table[] = 2174 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2175 2176 /* 2177 * Process received ICMP Packet too big. 2178 * After updating any IRE it does the fanout to any matching transport streams. 2179 * Assumes the message has been pulled up till the IP header that caused 2180 * the error. 2181 * 2182 * Returns B_FALSE on failure and B_TRUE on success. 2183 */ 2184 static boolean_t 2185 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2186 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2187 ip_stack_t *ipst) 2188 { 2189 ire_t *ire, *first_ire; 2190 int mtu; 2191 int hdr_length; 2192 ipaddr_t nexthop_addr; 2193 2194 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2195 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2196 ASSERT(ill != NULL); 2197 2198 hdr_length = IPH_HDR_LENGTH(ipha); 2199 2200 /* Drop if the original packet contained a source route */ 2201 if (ip_source_route_included(ipha)) { 2202 return (B_FALSE); 2203 } 2204 /* 2205 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2206 * header. 2207 */ 2208 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2209 mp->b_wptr) { 2210 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2211 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2212 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2213 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2214 return (B_FALSE); 2215 } 2216 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2217 ipha = (ipha_t *)&icmph[1]; 2218 } 2219 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2220 if (nexthop_addr != INADDR_ANY) { 2221 /* nexthop set */ 2222 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2223 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2224 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2225 } else { 2226 /* nexthop not set */ 2227 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2228 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2229 } 2230 2231 if (!first_ire) { 2232 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2233 ntohl(ipha->ipha_dst))); 2234 return (B_FALSE); 2235 } 2236 /* Check for MTU discovery advice as described in RFC 1191 */ 2237 mtu = ntohs(icmph->icmph_du_mtu); 2238 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2239 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2240 ire = ire->ire_next) { 2241 /* 2242 * Look for the connection to which this ICMP message is 2243 * directed. If it has the IP_NEXTHOP option set, then the 2244 * search is limited to IREs with the MATCH_IRE_PRIVATE 2245 * option. Else the search is limited to regular IREs. 2246 */ 2247 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2248 (nexthop_addr != ire->ire_gateway_addr)) || 2249 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2250 (nexthop_addr != INADDR_ANY))) 2251 continue; 2252 2253 mutex_enter(&ire->ire_lock); 2254 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2255 /* Reduce the IRE max frag value as advised. */ 2256 ip1dbg(("Received mtu from router: %d (was %d)\n", 2257 mtu, ire->ire_max_frag)); 2258 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2259 } else { 2260 uint32_t length; 2261 int i; 2262 2263 /* 2264 * Use the table from RFC 1191 to figure out 2265 * the next "plateau" based on the length in 2266 * the original IP packet. 2267 */ 2268 length = ntohs(ipha->ipha_length); 2269 if (ire->ire_max_frag <= length && 2270 ire->ire_max_frag >= length - hdr_length) { 2271 /* 2272 * Handle broken BSD 4.2 systems that 2273 * return the wrong iph_length in ICMP 2274 * errors. 2275 */ 2276 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2277 length, ire->ire_max_frag)); 2278 length -= hdr_length; 2279 } 2280 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2281 if (length > icmp_frag_size_table[i]) 2282 break; 2283 } 2284 if (i == A_CNT(icmp_frag_size_table)) { 2285 /* Smaller than 68! */ 2286 ip1dbg(("Too big for packet size %d\n", 2287 length)); 2288 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2289 ire->ire_frag_flag = 0; 2290 } else { 2291 mtu = icmp_frag_size_table[i]; 2292 ip1dbg(("Calculated mtu %d, packet size %d, " 2293 "before %d", mtu, length, 2294 ire->ire_max_frag)); 2295 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2296 ip1dbg((", after %d\n", ire->ire_max_frag)); 2297 } 2298 /* Record the new max frag size for the ULP. */ 2299 icmph->icmph_du_zero = 0; 2300 icmph->icmph_du_mtu = 2301 htons((uint16_t)ire->ire_max_frag); 2302 } 2303 mutex_exit(&ire->ire_lock); 2304 } 2305 rw_exit(&first_ire->ire_bucket->irb_lock); 2306 ire_refrele(first_ire); 2307 return (B_TRUE); 2308 } 2309 2310 /* 2311 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2312 * calls this function. 2313 */ 2314 static mblk_t * 2315 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2316 { 2317 ipha_t *ipha; 2318 icmph_t *icmph; 2319 ipha_t *in_ipha; 2320 int length; 2321 2322 ASSERT(mp->b_datap->db_type == M_DATA); 2323 2324 /* 2325 * For Self-encapsulated packets, we added an extra IP header 2326 * without the options. Inner IP header is the one from which 2327 * the outer IP header was formed. Thus, we need to remove the 2328 * outer IP header. To do this, we pullup the whole message 2329 * and overlay whatever follows the outer IP header over the 2330 * outer IP header. 2331 */ 2332 2333 if (!pullupmsg(mp, -1)) 2334 return (NULL); 2335 2336 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2337 ipha = (ipha_t *)&icmph[1]; 2338 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2339 2340 /* 2341 * The length that we want to overlay is following the inner 2342 * IP header. Subtracting the IP header + icmp header + outer 2343 * IP header's length should give us the length that we want to 2344 * overlay. 2345 */ 2346 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2347 hdr_length; 2348 /* 2349 * Overlay whatever follows the inner header over the 2350 * outer header. 2351 */ 2352 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2353 2354 /* Set the wptr to account for the outer header */ 2355 mp->b_wptr -= hdr_length; 2356 return (mp); 2357 } 2358 2359 /* 2360 * Try to pass the ICMP message upstream in case the ULP cares. 2361 * 2362 * If the packet that caused the ICMP error is secure, we send 2363 * it to AH/ESP to make sure that the attached packet has a 2364 * valid association. ipha in the code below points to the 2365 * IP header of the packet that caused the error. 2366 * 2367 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2368 * in the context of IPSEC. Normally we tell the upper layer 2369 * whenever we send the ire (including ip_bind), the IPSEC header 2370 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2371 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2372 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2373 * same thing. As TCP has the IPSEC options size that needs to be 2374 * adjusted, we just pass the MTU unchanged. 2375 * 2376 * IFN could have been generated locally or by some router. 2377 * 2378 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2379 * This happens because IP adjusted its value of MTU on an 2380 * earlier IFN message and could not tell the upper layer, 2381 * the new adjusted value of MTU e.g. Packet was encrypted 2382 * or there was not enough information to fanout to upper 2383 * layers. Thus on the next outbound datagram, ip_wput_ire 2384 * generates the IFN, where IPSEC processing has *not* been 2385 * done. 2386 * 2387 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2388 * could have generated this. This happens because ire_max_frag 2389 * value in IP was set to a new value, while the IPSEC processing 2390 * was being done and after we made the fragmentation check in 2391 * ip_wput_ire. Thus on return from IPSEC processing, 2392 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2393 * and generates the IFN. As IPSEC processing is over, we fanout 2394 * to AH/ESP to remove the header. 2395 * 2396 * In both these cases, ipsec_in_loopback will be set indicating 2397 * that IFN was generated locally. 2398 * 2399 * ROUTER : IFN could be secure or non-secure. 2400 * 2401 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2402 * packet in error has AH/ESP headers to validate the AH/ESP 2403 * headers. AH/ESP will verify whether there is a valid SA or 2404 * not and send it back. We will fanout again if we have more 2405 * data in the packet. 2406 * 2407 * If the packet in error does not have AH/ESP, we handle it 2408 * like any other case. 2409 * 2410 * * NON_SECURE : If the packet in error has AH/ESP headers, 2411 * we attach a dummy ipsec_in and send it up to AH/ESP 2412 * for validation. AH/ESP will verify whether there is a 2413 * valid SA or not and send it back. We will fanout again if 2414 * we have more data in the packet. 2415 * 2416 * If the packet in error does not have AH/ESP, we handle it 2417 * like any other case. 2418 */ 2419 static void 2420 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2421 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2422 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2423 zoneid_t zoneid) 2424 { 2425 uint16_t *up; /* Pointer to ports in ULP header */ 2426 uint32_t ports; /* reversed ports for fanout */ 2427 ipha_t ripha; /* With reversed addresses */ 2428 mblk_t *first_mp; 2429 ipsec_in_t *ii; 2430 tcph_t *tcph; 2431 conn_t *connp; 2432 ip_stack_t *ipst; 2433 2434 ASSERT(ill != NULL); 2435 2436 ASSERT(recv_ill != NULL); 2437 ipst = recv_ill->ill_ipst; 2438 2439 first_mp = mp; 2440 if (mctl_present) { 2441 mp = first_mp->b_cont; 2442 ASSERT(mp != NULL); 2443 2444 ii = (ipsec_in_t *)first_mp->b_rptr; 2445 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2446 } else { 2447 ii = NULL; 2448 } 2449 2450 switch (ipha->ipha_protocol) { 2451 case IPPROTO_UDP: 2452 /* 2453 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2454 * transport header. 2455 */ 2456 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2457 mp->b_wptr) { 2458 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2459 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2460 goto discard_pkt; 2461 } 2462 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2463 ipha = (ipha_t *)&icmph[1]; 2464 } 2465 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2466 2467 /* 2468 * Attempt to find a client stream based on port. 2469 * Note that we do a reverse lookup since the header is 2470 * in the form we sent it out. 2471 * The ripha header is only used for the IP_UDP_MATCH and we 2472 * only set the src and dst addresses and protocol. 2473 */ 2474 ripha.ipha_src = ipha->ipha_dst; 2475 ripha.ipha_dst = ipha->ipha_src; 2476 ripha.ipha_protocol = ipha->ipha_protocol; 2477 ((uint16_t *)&ports)[0] = up[1]; 2478 ((uint16_t *)&ports)[1] = up[0]; 2479 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2480 ntohl(ipha->ipha_src), ntohs(up[0]), 2481 ntohl(ipha->ipha_dst), ntohs(up[1]), 2482 icmph->icmph_type, icmph->icmph_code)); 2483 2484 /* Have to change db_type after any pullupmsg */ 2485 DB_TYPE(mp) = M_CTL; 2486 2487 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2488 mctl_present, ip_policy, recv_ill, zoneid); 2489 return; 2490 2491 case IPPROTO_TCP: 2492 /* 2493 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2494 * transport header. 2495 */ 2496 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2497 mp->b_wptr) { 2498 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2499 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2500 goto discard_pkt; 2501 } 2502 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2503 ipha = (ipha_t *)&icmph[1]; 2504 } 2505 /* 2506 * Find a TCP client stream for this packet. 2507 * Note that we do a reverse lookup since the header is 2508 * in the form we sent it out. 2509 */ 2510 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2511 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2512 ipst); 2513 if (connp == NULL) 2514 goto discard_pkt; 2515 2516 /* Have to change db_type after any pullupmsg */ 2517 DB_TYPE(mp) = M_CTL; 2518 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2519 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2520 return; 2521 2522 case IPPROTO_SCTP: 2523 /* 2524 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2525 * transport header. 2526 */ 2527 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2528 mp->b_wptr) { 2529 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2530 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2531 goto discard_pkt; 2532 } 2533 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2534 ipha = (ipha_t *)&icmph[1]; 2535 } 2536 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2537 /* 2538 * Find a SCTP client stream for this packet. 2539 * Note that we do a reverse lookup since the header is 2540 * in the form we sent it out. 2541 * The ripha header is only used for the matching and we 2542 * only set the src and dst addresses, protocol, and version. 2543 */ 2544 ripha.ipha_src = ipha->ipha_dst; 2545 ripha.ipha_dst = ipha->ipha_src; 2546 ripha.ipha_protocol = ipha->ipha_protocol; 2547 ripha.ipha_version_and_hdr_length = 2548 ipha->ipha_version_and_hdr_length; 2549 ((uint16_t *)&ports)[0] = up[1]; 2550 ((uint16_t *)&ports)[1] = up[0]; 2551 2552 /* Have to change db_type after any pullupmsg */ 2553 DB_TYPE(mp) = M_CTL; 2554 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2555 mctl_present, ip_policy, zoneid); 2556 return; 2557 2558 case IPPROTO_ESP: 2559 case IPPROTO_AH: { 2560 int ipsec_rc; 2561 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2562 2563 /* 2564 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2565 * We will re-use the IPSEC_IN if it is already present as 2566 * AH/ESP will not affect any fields in the IPSEC_IN for 2567 * ICMP errors. If there is no IPSEC_IN, allocate a new 2568 * one and attach it in the front. 2569 */ 2570 if (ii != NULL) { 2571 /* 2572 * ip_fanout_proto_again converts the ICMP errors 2573 * that come back from AH/ESP to M_DATA so that 2574 * if it is non-AH/ESP and we do a pullupmsg in 2575 * this function, it would work. Convert it back 2576 * to M_CTL before we send up as this is a ICMP 2577 * error. This could have been generated locally or 2578 * by some router. Validate the inner IPSEC 2579 * headers. 2580 * 2581 * NOTE : ill_index is used by ip_fanout_proto_again 2582 * to locate the ill. 2583 */ 2584 ASSERT(ill != NULL); 2585 ii->ipsec_in_ill_index = 2586 ill->ill_phyint->phyint_ifindex; 2587 ii->ipsec_in_rill_index = 2588 recv_ill->ill_phyint->phyint_ifindex; 2589 DB_TYPE(first_mp->b_cont) = M_CTL; 2590 } else { 2591 /* 2592 * IPSEC_IN is not present. We attach a ipsec_in 2593 * message and send up to IPSEC for validating 2594 * and removing the IPSEC headers. Clear 2595 * ipsec_in_secure so that when we return 2596 * from IPSEC, we don't mistakenly think that this 2597 * is a secure packet came from the network. 2598 * 2599 * NOTE : ill_index is used by ip_fanout_proto_again 2600 * to locate the ill. 2601 */ 2602 ASSERT(first_mp == mp); 2603 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2604 if (first_mp == NULL) { 2605 freemsg(mp); 2606 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2607 return; 2608 } 2609 ii = (ipsec_in_t *)first_mp->b_rptr; 2610 2611 /* This is not a secure packet */ 2612 ii->ipsec_in_secure = B_FALSE; 2613 first_mp->b_cont = mp; 2614 DB_TYPE(mp) = M_CTL; 2615 ASSERT(ill != NULL); 2616 ii->ipsec_in_ill_index = 2617 ill->ill_phyint->phyint_ifindex; 2618 ii->ipsec_in_rill_index = 2619 recv_ill->ill_phyint->phyint_ifindex; 2620 } 2621 ip2dbg(("icmp_inbound_error: ipsec\n")); 2622 2623 if (!ipsec_loaded(ipss)) { 2624 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2625 return; 2626 } 2627 2628 if (ipha->ipha_protocol == IPPROTO_ESP) 2629 ipsec_rc = ipsecesp_icmp_error(first_mp); 2630 else 2631 ipsec_rc = ipsecah_icmp_error(first_mp); 2632 if (ipsec_rc == IPSEC_STATUS_FAILED) 2633 return; 2634 2635 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2636 return; 2637 } 2638 default: 2639 /* 2640 * The ripha header is only used for the lookup and we 2641 * only set the src and dst addresses and protocol. 2642 */ 2643 ripha.ipha_src = ipha->ipha_dst; 2644 ripha.ipha_dst = ipha->ipha_src; 2645 ripha.ipha_protocol = ipha->ipha_protocol; 2646 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2647 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2648 ntohl(ipha->ipha_dst), 2649 icmph->icmph_type, icmph->icmph_code)); 2650 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2651 ipha_t *in_ipha; 2652 2653 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2654 mp->b_wptr) { 2655 if (!pullupmsg(mp, (uchar_t *)ipha + 2656 hdr_length + sizeof (ipha_t) - 2657 mp->b_rptr)) { 2658 goto discard_pkt; 2659 } 2660 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2661 ipha = (ipha_t *)&icmph[1]; 2662 } 2663 /* 2664 * Caller has verified that length has to be 2665 * at least the size of IP header. 2666 */ 2667 ASSERT(hdr_length >= sizeof (ipha_t)); 2668 /* 2669 * Check the sanity of the inner IP header like 2670 * we did for the outer header. 2671 */ 2672 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2673 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2674 goto discard_pkt; 2675 } 2676 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2677 goto discard_pkt; 2678 } 2679 /* Check for Self-encapsulated tunnels */ 2680 if (in_ipha->ipha_src == ipha->ipha_src && 2681 in_ipha->ipha_dst == ipha->ipha_dst) { 2682 2683 mp = icmp_inbound_self_encap_error(mp, 2684 iph_hdr_length, hdr_length); 2685 if (mp == NULL) 2686 goto discard_pkt; 2687 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2688 ipha = (ipha_t *)&icmph[1]; 2689 hdr_length = IPH_HDR_LENGTH(ipha); 2690 /* 2691 * The packet in error is self-encapsualted. 2692 * And we are finding it further encapsulated 2693 * which we could not have possibly generated. 2694 */ 2695 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2696 goto discard_pkt; 2697 } 2698 icmp_inbound_error_fanout(q, ill, first_mp, 2699 icmph, ipha, iph_hdr_length, hdr_length, 2700 mctl_present, ip_policy, recv_ill, zoneid); 2701 return; 2702 } 2703 } 2704 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2705 ipha->ipha_protocol == IPPROTO_IPV6) && 2706 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2707 ii != NULL && 2708 ii->ipsec_in_loopback && 2709 ii->ipsec_in_secure) { 2710 /* 2711 * For IP tunnels that get a looped-back 2712 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2713 * reported new MTU to take into account the IPsec 2714 * headers protecting this configured tunnel. 2715 * 2716 * This allows the tunnel module (tun.c) to blindly 2717 * accept the MTU reported in an ICMP "too big" 2718 * message. 2719 * 2720 * Non-looped back ICMP messages will just be 2721 * handled by the security protocols (if needed), 2722 * and the first subsequent packet will hit this 2723 * path. 2724 */ 2725 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2726 ipsec_in_extra_length(first_mp)); 2727 } 2728 /* Have to change db_type after any pullupmsg */ 2729 DB_TYPE(mp) = M_CTL; 2730 2731 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2732 ip_policy, recv_ill, zoneid); 2733 return; 2734 } 2735 /* NOTREACHED */ 2736 discard_pkt: 2737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2738 drop_pkt:; 2739 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2740 freemsg(first_mp); 2741 } 2742 2743 /* 2744 * Common IP options parser. 2745 * 2746 * Setup routine: fill in *optp with options-parsing state, then 2747 * tail-call ipoptp_next to return the first option. 2748 */ 2749 uint8_t 2750 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2751 { 2752 uint32_t totallen; /* total length of all options */ 2753 2754 totallen = ipha->ipha_version_and_hdr_length - 2755 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2756 totallen <<= 2; 2757 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2758 optp->ipoptp_end = optp->ipoptp_next + totallen; 2759 optp->ipoptp_flags = 0; 2760 return (ipoptp_next(optp)); 2761 } 2762 2763 /* 2764 * Common IP options parser: extract next option. 2765 */ 2766 uint8_t 2767 ipoptp_next(ipoptp_t *optp) 2768 { 2769 uint8_t *end = optp->ipoptp_end; 2770 uint8_t *cur = optp->ipoptp_next; 2771 uint8_t opt, len, pointer; 2772 2773 /* 2774 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2775 * has been corrupted. 2776 */ 2777 ASSERT(cur <= end); 2778 2779 if (cur == end) 2780 return (IPOPT_EOL); 2781 2782 opt = cur[IPOPT_OPTVAL]; 2783 2784 /* 2785 * Skip any NOP options. 2786 */ 2787 while (opt == IPOPT_NOP) { 2788 cur++; 2789 if (cur == end) 2790 return (IPOPT_EOL); 2791 opt = cur[IPOPT_OPTVAL]; 2792 } 2793 2794 if (opt == IPOPT_EOL) 2795 return (IPOPT_EOL); 2796 2797 /* 2798 * Option requiring a length. 2799 */ 2800 if ((cur + 1) >= end) { 2801 optp->ipoptp_flags |= IPOPTP_ERROR; 2802 return (IPOPT_EOL); 2803 } 2804 len = cur[IPOPT_OLEN]; 2805 if (len < 2) { 2806 optp->ipoptp_flags |= IPOPTP_ERROR; 2807 return (IPOPT_EOL); 2808 } 2809 optp->ipoptp_cur = cur; 2810 optp->ipoptp_len = len; 2811 optp->ipoptp_next = cur + len; 2812 if (cur + len > end) { 2813 optp->ipoptp_flags |= IPOPTP_ERROR; 2814 return (IPOPT_EOL); 2815 } 2816 2817 /* 2818 * For the options which require a pointer field, make sure 2819 * its there, and make sure it points to either something 2820 * inside this option, or the end of the option. 2821 */ 2822 switch (opt) { 2823 case IPOPT_RR: 2824 case IPOPT_TS: 2825 case IPOPT_LSRR: 2826 case IPOPT_SSRR: 2827 if (len <= IPOPT_OFFSET) { 2828 optp->ipoptp_flags |= IPOPTP_ERROR; 2829 return (opt); 2830 } 2831 pointer = cur[IPOPT_OFFSET]; 2832 if (pointer - 1 > len) { 2833 optp->ipoptp_flags |= IPOPTP_ERROR; 2834 return (opt); 2835 } 2836 break; 2837 } 2838 2839 /* 2840 * Sanity check the pointer field based on the type of the 2841 * option. 2842 */ 2843 switch (opt) { 2844 case IPOPT_RR: 2845 case IPOPT_SSRR: 2846 case IPOPT_LSRR: 2847 if (pointer < IPOPT_MINOFF_SR) 2848 optp->ipoptp_flags |= IPOPTP_ERROR; 2849 break; 2850 case IPOPT_TS: 2851 if (pointer < IPOPT_MINOFF_IT) 2852 optp->ipoptp_flags |= IPOPTP_ERROR; 2853 /* 2854 * Note that the Internet Timestamp option also 2855 * contains two four bit fields (the Overflow field, 2856 * and the Flag field), which follow the pointer 2857 * field. We don't need to check that these fields 2858 * fall within the length of the option because this 2859 * was implicitely done above. We've checked that the 2860 * pointer value is at least IPOPT_MINOFF_IT, and that 2861 * it falls within the option. Since IPOPT_MINOFF_IT > 2862 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2863 */ 2864 ASSERT(len > IPOPT_POS_OV_FLG); 2865 break; 2866 } 2867 2868 return (opt); 2869 } 2870 2871 /* 2872 * Use the outgoing IP header to create an IP_OPTIONS option the way 2873 * it was passed down from the application. 2874 */ 2875 int 2876 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2877 { 2878 ipoptp_t opts; 2879 const uchar_t *opt; 2880 uint8_t optval; 2881 uint8_t optlen; 2882 uint32_t len = 0; 2883 uchar_t *buf1 = buf; 2884 2885 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2886 len += IP_ADDR_LEN; 2887 bzero(buf1, IP_ADDR_LEN); 2888 2889 /* 2890 * OK to cast away const here, as we don't store through the returned 2891 * opts.ipoptp_cur pointer. 2892 */ 2893 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2894 optval != IPOPT_EOL; 2895 optval = ipoptp_next(&opts)) { 2896 int off; 2897 2898 opt = opts.ipoptp_cur; 2899 optlen = opts.ipoptp_len; 2900 switch (optval) { 2901 case IPOPT_SSRR: 2902 case IPOPT_LSRR: 2903 2904 /* 2905 * Insert ipha_dst as the first entry in the source 2906 * route and move down the entries on step. 2907 * The last entry gets placed at buf1. 2908 */ 2909 buf[IPOPT_OPTVAL] = optval; 2910 buf[IPOPT_OLEN] = optlen; 2911 buf[IPOPT_OFFSET] = optlen; 2912 2913 off = optlen - IP_ADDR_LEN; 2914 if (off < 0) { 2915 /* No entries in source route */ 2916 break; 2917 } 2918 /* Last entry in source route */ 2919 bcopy(opt + off, buf1, IP_ADDR_LEN); 2920 off -= IP_ADDR_LEN; 2921 2922 while (off > 0) { 2923 bcopy(opt + off, 2924 buf + off + IP_ADDR_LEN, 2925 IP_ADDR_LEN); 2926 off -= IP_ADDR_LEN; 2927 } 2928 /* ipha_dst into first slot */ 2929 bcopy(&ipha->ipha_dst, 2930 buf + off + IP_ADDR_LEN, 2931 IP_ADDR_LEN); 2932 buf += optlen; 2933 len += optlen; 2934 break; 2935 2936 case IPOPT_COMSEC: 2937 case IPOPT_SECURITY: 2938 /* if passing up a label is not ok, then remove */ 2939 if (is_system_labeled()) 2940 break; 2941 /* FALLTHROUGH */ 2942 default: 2943 bcopy(opt, buf, optlen); 2944 buf += optlen; 2945 len += optlen; 2946 break; 2947 } 2948 } 2949 done: 2950 /* Pad the resulting options */ 2951 while (len & 0x3) { 2952 *buf++ = IPOPT_EOL; 2953 len++; 2954 } 2955 return (len); 2956 } 2957 2958 /* 2959 * Update any record route or timestamp options to include this host. 2960 * Reverse any source route option. 2961 * This routine assumes that the options are well formed i.e. that they 2962 * have already been checked. 2963 */ 2964 static void 2965 icmp_options_update(ipha_t *ipha) 2966 { 2967 ipoptp_t opts; 2968 uchar_t *opt; 2969 uint8_t optval; 2970 ipaddr_t src; /* Our local address */ 2971 ipaddr_t dst; 2972 2973 ip2dbg(("icmp_options_update\n")); 2974 src = ipha->ipha_src; 2975 dst = ipha->ipha_dst; 2976 2977 for (optval = ipoptp_first(&opts, ipha); 2978 optval != IPOPT_EOL; 2979 optval = ipoptp_next(&opts)) { 2980 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2981 opt = opts.ipoptp_cur; 2982 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2983 optval, opts.ipoptp_len)); 2984 switch (optval) { 2985 int off1, off2; 2986 case IPOPT_SSRR: 2987 case IPOPT_LSRR: 2988 /* 2989 * Reverse the source route. The first entry 2990 * should be the next to last one in the current 2991 * source route (the last entry is our address). 2992 * The last entry should be the final destination. 2993 */ 2994 off1 = IPOPT_MINOFF_SR - 1; 2995 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2996 if (off2 < 0) { 2997 /* No entries in source route */ 2998 ip1dbg(( 2999 "icmp_options_update: bad src route\n")); 3000 break; 3001 } 3002 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3003 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3004 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3005 off2 -= IP_ADDR_LEN; 3006 3007 while (off1 < off2) { 3008 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3009 bcopy((char *)opt + off2, (char *)opt + off1, 3010 IP_ADDR_LEN); 3011 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3012 off1 += IP_ADDR_LEN; 3013 off2 -= IP_ADDR_LEN; 3014 } 3015 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3016 break; 3017 } 3018 } 3019 } 3020 3021 /* 3022 * Process received ICMP Redirect messages. 3023 */ 3024 static void 3025 icmp_redirect(ill_t *ill, mblk_t *mp) 3026 { 3027 ipha_t *ipha; 3028 int iph_hdr_length; 3029 icmph_t *icmph; 3030 ipha_t *ipha_err; 3031 ire_t *ire; 3032 ire_t *prev_ire; 3033 ire_t *save_ire; 3034 ipaddr_t src, dst, gateway; 3035 iulp_t ulp_info = { 0 }; 3036 int error; 3037 ip_stack_t *ipst; 3038 3039 ASSERT(ill != NULL); 3040 ipst = ill->ill_ipst; 3041 3042 ipha = (ipha_t *)mp->b_rptr; 3043 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3044 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3045 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3046 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3047 freemsg(mp); 3048 return; 3049 } 3050 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3051 ipha_err = (ipha_t *)&icmph[1]; 3052 src = ipha->ipha_src; 3053 dst = ipha_err->ipha_dst; 3054 gateway = icmph->icmph_rd_gateway; 3055 /* Make sure the new gateway is reachable somehow. */ 3056 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3057 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3058 /* 3059 * Make sure we had a route for the dest in question and that 3060 * that route was pointing to the old gateway (the source of the 3061 * redirect packet.) 3062 */ 3063 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3064 NULL, MATCH_IRE_GW, ipst); 3065 /* 3066 * Check that 3067 * the redirect was not from ourselves 3068 * the new gateway and the old gateway are directly reachable 3069 */ 3070 if (!prev_ire || 3071 !ire || 3072 ire->ire_type == IRE_LOCAL) { 3073 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3074 freemsg(mp); 3075 if (ire != NULL) 3076 ire_refrele(ire); 3077 if (prev_ire != NULL) 3078 ire_refrele(prev_ire); 3079 return; 3080 } 3081 3082 /* 3083 * Should we use the old ULP info to create the new gateway? From 3084 * a user's perspective, we should inherit the info so that it 3085 * is a "smooth" transition. If we do not do that, then new 3086 * connections going thru the new gateway will have no route metrics, 3087 * which is counter-intuitive to user. From a network point of 3088 * view, this may or may not make sense even though the new gateway 3089 * is still directly connected to us so the route metrics should not 3090 * change much. 3091 * 3092 * But if the old ire_uinfo is not initialized, we do another 3093 * recursive lookup on the dest using the new gateway. There may 3094 * be a route to that. If so, use it to initialize the redirect 3095 * route. 3096 */ 3097 if (prev_ire->ire_uinfo.iulp_set) { 3098 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3099 } else { 3100 ire_t *tmp_ire; 3101 ire_t *sire; 3102 3103 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3104 ALL_ZONES, 0, NULL, 3105 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3106 ipst); 3107 if (sire != NULL) { 3108 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3109 /* 3110 * If sire != NULL, ire_ftable_lookup() should not 3111 * return a NULL value. 3112 */ 3113 ASSERT(tmp_ire != NULL); 3114 ire_refrele(tmp_ire); 3115 ire_refrele(sire); 3116 } else if (tmp_ire != NULL) { 3117 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3118 sizeof (iulp_t)); 3119 ire_refrele(tmp_ire); 3120 } 3121 } 3122 if (prev_ire->ire_type == IRE_CACHE) 3123 ire_delete(prev_ire); 3124 ire_refrele(prev_ire); 3125 /* 3126 * TODO: more precise handling for cases 0, 2, 3, the latter two 3127 * require TOS routing 3128 */ 3129 switch (icmph->icmph_code) { 3130 case 0: 3131 case 1: 3132 /* TODO: TOS specificity for cases 2 and 3 */ 3133 case 2: 3134 case 3: 3135 break; 3136 default: 3137 freemsg(mp); 3138 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3139 ire_refrele(ire); 3140 return; 3141 } 3142 /* 3143 * Create a Route Association. This will allow us to remember that 3144 * someone we believe told us to use the particular gateway. 3145 */ 3146 save_ire = ire; 3147 ire = ire_create( 3148 (uchar_t *)&dst, /* dest addr */ 3149 (uchar_t *)&ip_g_all_ones, /* mask */ 3150 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3151 (uchar_t *)&gateway, /* gateway addr */ 3152 &save_ire->ire_max_frag, /* max frag */ 3153 NULL, /* no src nce */ 3154 NULL, /* no rfq */ 3155 NULL, /* no stq */ 3156 IRE_HOST, 3157 NULL, /* ipif */ 3158 0, /* cmask */ 3159 0, /* phandle */ 3160 0, /* ihandle */ 3161 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3162 &ulp_info, 3163 NULL, /* tsol_gc_t */ 3164 NULL, /* gcgrp */ 3165 ipst); 3166 3167 if (ire == NULL) { 3168 freemsg(mp); 3169 ire_refrele(save_ire); 3170 return; 3171 } 3172 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3173 ire_refrele(save_ire); 3174 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3175 3176 if (error == 0) { 3177 ire_refrele(ire); /* Held in ire_add_v4 */ 3178 /* tell routing sockets that we received a redirect */ 3179 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3180 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3181 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3182 } 3183 3184 /* 3185 * Delete any existing IRE_HOST type redirect ires for this destination. 3186 * This together with the added IRE has the effect of 3187 * modifying an existing redirect. 3188 */ 3189 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3190 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3191 if (prev_ire != NULL) { 3192 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3193 ire_delete(prev_ire); 3194 ire_refrele(prev_ire); 3195 } 3196 3197 freemsg(mp); 3198 } 3199 3200 /* 3201 * Generate an ICMP parameter problem message. 3202 */ 3203 static void 3204 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3205 ip_stack_t *ipst) 3206 { 3207 icmph_t icmph; 3208 boolean_t mctl_present; 3209 mblk_t *first_mp; 3210 3211 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3212 3213 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3214 if (mctl_present) 3215 freeb(first_mp); 3216 return; 3217 } 3218 3219 bzero(&icmph, sizeof (icmph_t)); 3220 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3221 icmph.icmph_pp_ptr = ptr; 3222 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3223 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3224 ipst); 3225 } 3226 3227 /* 3228 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3229 * the ICMP header pointed to by "stuff". (May be called as writer.) 3230 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3231 * an icmp error packet can be sent. 3232 * Assigns an appropriate source address to the packet. If ipha_dst is 3233 * one of our addresses use it for source. Otherwise pick a source based 3234 * on a route lookup back to ipha_src. 3235 * Note that ipha_src must be set here since the 3236 * packet is likely to arrive on an ill queue in ip_wput() which will 3237 * not set a source address. 3238 */ 3239 static void 3240 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3241 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3242 { 3243 ipaddr_t dst; 3244 icmph_t *icmph; 3245 ipha_t *ipha; 3246 uint_t len_needed; 3247 size_t msg_len; 3248 mblk_t *mp1; 3249 ipaddr_t src; 3250 ire_t *ire; 3251 mblk_t *ipsec_mp; 3252 ipsec_out_t *io = NULL; 3253 3254 if (mctl_present) { 3255 /* 3256 * If it is : 3257 * 3258 * 1) a IPSEC_OUT, then this is caused by outbound 3259 * datagram originating on this host. IPSEC processing 3260 * may or may not have been done. Refer to comments above 3261 * icmp_inbound_error_fanout for details. 3262 * 3263 * 2) a IPSEC_IN if we are generating a icmp_message 3264 * for an incoming datagram destined for us i.e called 3265 * from ip_fanout_send_icmp. 3266 */ 3267 ipsec_info_t *in; 3268 ipsec_mp = mp; 3269 mp = ipsec_mp->b_cont; 3270 3271 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3272 ipha = (ipha_t *)mp->b_rptr; 3273 3274 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3275 in->ipsec_info_type == IPSEC_IN); 3276 3277 if (in->ipsec_info_type == IPSEC_IN) { 3278 /* 3279 * Convert the IPSEC_IN to IPSEC_OUT. 3280 */ 3281 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3282 BUMP_MIB(&ipst->ips_ip_mib, 3283 ipIfStatsOutDiscards); 3284 return; 3285 } 3286 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3287 } else { 3288 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3289 io = (ipsec_out_t *)in; 3290 /* 3291 * Clear out ipsec_out_proc_begin, so we do a fresh 3292 * ire lookup. 3293 */ 3294 io->ipsec_out_proc_begin = B_FALSE; 3295 } 3296 ASSERT(zoneid == io->ipsec_out_zoneid); 3297 ASSERT(zoneid != ALL_ZONES); 3298 } else { 3299 /* 3300 * This is in clear. The icmp message we are building 3301 * here should go out in clear. 3302 * 3303 * Pardon the convolution of it all, but it's easier to 3304 * allocate a "use cleartext" IPSEC_IN message and convert 3305 * it than it is to allocate a new one. 3306 */ 3307 ipsec_in_t *ii; 3308 ASSERT(DB_TYPE(mp) == M_DATA); 3309 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3310 if (ipsec_mp == NULL) { 3311 freemsg(mp); 3312 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3313 return; 3314 } 3315 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3316 3317 /* This is not a secure packet */ 3318 ii->ipsec_in_secure = B_FALSE; 3319 /* 3320 * For trusted extensions using a shared IP address we can 3321 * send using any zoneid. 3322 */ 3323 if (zoneid == ALL_ZONES) 3324 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3325 else 3326 ii->ipsec_in_zoneid = zoneid; 3327 ipsec_mp->b_cont = mp; 3328 ipha = (ipha_t *)mp->b_rptr; 3329 /* 3330 * Convert the IPSEC_IN to IPSEC_OUT. 3331 */ 3332 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3333 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3334 return; 3335 } 3336 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3337 } 3338 3339 /* Remember our eventual destination */ 3340 dst = ipha->ipha_src; 3341 3342 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3343 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3344 if (ire != NULL && 3345 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3346 src = ipha->ipha_dst; 3347 } else { 3348 if (ire != NULL) 3349 ire_refrele(ire); 3350 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3351 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3352 ipst); 3353 if (ire == NULL) { 3354 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3355 freemsg(ipsec_mp); 3356 return; 3357 } 3358 src = ire->ire_src_addr; 3359 } 3360 3361 if (ire != NULL) 3362 ire_refrele(ire); 3363 3364 /* 3365 * Check if we can send back more then 8 bytes in addition to 3366 * the IP header. We try to send 64 bytes of data and the internal 3367 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3368 */ 3369 len_needed = IPH_HDR_LENGTH(ipha); 3370 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3371 ipha->ipha_protocol == IPPROTO_IPV6) { 3372 3373 if (!pullupmsg(mp, -1)) { 3374 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3375 freemsg(ipsec_mp); 3376 return; 3377 } 3378 ipha = (ipha_t *)mp->b_rptr; 3379 3380 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3381 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3382 len_needed)); 3383 } else { 3384 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3385 3386 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3387 len_needed += ip_hdr_length_v6(mp, ip6h); 3388 } 3389 } 3390 len_needed += ipst->ips_ip_icmp_return; 3391 msg_len = msgdsize(mp); 3392 if (msg_len > len_needed) { 3393 (void) adjmsg(mp, len_needed - msg_len); 3394 msg_len = len_needed; 3395 } 3396 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3397 if (mp1 == NULL) { 3398 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3399 freemsg(ipsec_mp); 3400 return; 3401 } 3402 mp1->b_cont = mp; 3403 mp = mp1; 3404 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3405 ipsec_mp->b_rptr == (uint8_t *)io && 3406 io->ipsec_out_type == IPSEC_OUT); 3407 ipsec_mp->b_cont = mp; 3408 3409 /* 3410 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3411 * node generates be accepted in peace by all on-host destinations. 3412 * If we do NOT assume that all on-host destinations trust 3413 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3414 * (Look for ipsec_out_icmp_loopback). 3415 */ 3416 io->ipsec_out_icmp_loopback = B_TRUE; 3417 3418 ipha = (ipha_t *)mp->b_rptr; 3419 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3420 *ipha = icmp_ipha; 3421 ipha->ipha_src = src; 3422 ipha->ipha_dst = dst; 3423 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3424 msg_len += sizeof (icmp_ipha) + len; 3425 if (msg_len > IP_MAXPACKET) { 3426 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3427 msg_len = IP_MAXPACKET; 3428 } 3429 ipha->ipha_length = htons((uint16_t)msg_len); 3430 icmph = (icmph_t *)&ipha[1]; 3431 bcopy(stuff, icmph, len); 3432 icmph->icmph_checksum = 0; 3433 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3434 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3435 put(q, ipsec_mp); 3436 } 3437 3438 /* 3439 * Determine if an ICMP error packet can be sent given the rate limit. 3440 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3441 * in milliseconds) and a burst size. Burst size number of packets can 3442 * be sent arbitrarely closely spaced. 3443 * The state is tracked using two variables to implement an approximate 3444 * token bucket filter: 3445 * icmp_pkt_err_last - lbolt value when the last burst started 3446 * icmp_pkt_err_sent - number of packets sent in current burst 3447 */ 3448 boolean_t 3449 icmp_err_rate_limit(ip_stack_t *ipst) 3450 { 3451 clock_t now = TICK_TO_MSEC(lbolt); 3452 uint_t refilled; /* Number of packets refilled in tbf since last */ 3453 /* Guard against changes by loading into local variable */ 3454 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3455 3456 if (err_interval == 0) 3457 return (B_FALSE); 3458 3459 if (ipst->ips_icmp_pkt_err_last > now) { 3460 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3461 ipst->ips_icmp_pkt_err_last = 0; 3462 ipst->ips_icmp_pkt_err_sent = 0; 3463 } 3464 /* 3465 * If we are in a burst update the token bucket filter. 3466 * Update the "last" time to be close to "now" but make sure 3467 * we don't loose precision. 3468 */ 3469 if (ipst->ips_icmp_pkt_err_sent != 0) { 3470 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3471 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3472 ipst->ips_icmp_pkt_err_sent = 0; 3473 } else { 3474 ipst->ips_icmp_pkt_err_sent -= refilled; 3475 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3476 } 3477 } 3478 if (ipst->ips_icmp_pkt_err_sent == 0) { 3479 /* Start of new burst */ 3480 ipst->ips_icmp_pkt_err_last = now; 3481 } 3482 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3483 ipst->ips_icmp_pkt_err_sent++; 3484 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3485 ipst->ips_icmp_pkt_err_sent)); 3486 return (B_FALSE); 3487 } 3488 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3489 return (B_TRUE); 3490 } 3491 3492 /* 3493 * Check if it is ok to send an IPv4 ICMP error packet in 3494 * response to the IPv4 packet in mp. 3495 * Free the message and return null if no 3496 * ICMP error packet should be sent. 3497 */ 3498 static mblk_t * 3499 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3500 { 3501 icmph_t *icmph; 3502 ipha_t *ipha; 3503 uint_t len_needed; 3504 ire_t *src_ire; 3505 ire_t *dst_ire; 3506 3507 if (!mp) 3508 return (NULL); 3509 ipha = (ipha_t *)mp->b_rptr; 3510 if (ip_csum_hdr(ipha)) { 3511 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3512 freemsg(mp); 3513 return (NULL); 3514 } 3515 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3516 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3517 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3518 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3519 if (src_ire != NULL || dst_ire != NULL || 3520 CLASSD(ipha->ipha_dst) || 3521 CLASSD(ipha->ipha_src) || 3522 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3523 /* Note: only errors to the fragment with offset 0 */ 3524 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3525 freemsg(mp); 3526 if (src_ire != NULL) 3527 ire_refrele(src_ire); 3528 if (dst_ire != NULL) 3529 ire_refrele(dst_ire); 3530 return (NULL); 3531 } 3532 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3533 /* 3534 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3535 * errors in response to any ICMP errors. 3536 */ 3537 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3538 if (mp->b_wptr - mp->b_rptr < len_needed) { 3539 if (!pullupmsg(mp, len_needed)) { 3540 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3541 freemsg(mp); 3542 return (NULL); 3543 } 3544 ipha = (ipha_t *)mp->b_rptr; 3545 } 3546 icmph = (icmph_t *) 3547 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3548 switch (icmph->icmph_type) { 3549 case ICMP_DEST_UNREACHABLE: 3550 case ICMP_SOURCE_QUENCH: 3551 case ICMP_TIME_EXCEEDED: 3552 case ICMP_PARAM_PROBLEM: 3553 case ICMP_REDIRECT: 3554 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3555 freemsg(mp); 3556 return (NULL); 3557 default: 3558 break; 3559 } 3560 } 3561 /* 3562 * If this is a labeled system, then check to see if we're allowed to 3563 * send a response to this particular sender. If not, then just drop. 3564 */ 3565 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3566 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3567 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3568 freemsg(mp); 3569 return (NULL); 3570 } 3571 if (icmp_err_rate_limit(ipst)) { 3572 /* 3573 * Only send ICMP error packets every so often. 3574 * This should be done on a per port/source basis, 3575 * but for now this will suffice. 3576 */ 3577 freemsg(mp); 3578 return (NULL); 3579 } 3580 return (mp); 3581 } 3582 3583 /* 3584 * Generate an ICMP redirect message. 3585 */ 3586 static void 3587 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3588 { 3589 icmph_t icmph; 3590 3591 /* 3592 * We are called from ip_rput where we could 3593 * not have attached an IPSEC_IN. 3594 */ 3595 ASSERT(mp->b_datap->db_type == M_DATA); 3596 3597 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3598 return; 3599 } 3600 3601 bzero(&icmph, sizeof (icmph_t)); 3602 icmph.icmph_type = ICMP_REDIRECT; 3603 icmph.icmph_code = 1; 3604 icmph.icmph_rd_gateway = gateway; 3605 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3606 /* Redirects sent by router, and router is global zone */ 3607 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3608 } 3609 3610 /* 3611 * Generate an ICMP time exceeded message. 3612 */ 3613 void 3614 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3615 ip_stack_t *ipst) 3616 { 3617 icmph_t icmph; 3618 boolean_t mctl_present; 3619 mblk_t *first_mp; 3620 3621 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3622 3623 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3624 if (mctl_present) 3625 freeb(first_mp); 3626 return; 3627 } 3628 3629 bzero(&icmph, sizeof (icmph_t)); 3630 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3631 icmph.icmph_code = code; 3632 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3633 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3634 ipst); 3635 } 3636 3637 /* 3638 * Generate an ICMP unreachable message. 3639 */ 3640 void 3641 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3642 ip_stack_t *ipst) 3643 { 3644 icmph_t icmph; 3645 mblk_t *first_mp; 3646 boolean_t mctl_present; 3647 3648 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3649 3650 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3651 if (mctl_present) 3652 freeb(first_mp); 3653 return; 3654 } 3655 3656 bzero(&icmph, sizeof (icmph_t)); 3657 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3658 icmph.icmph_code = code; 3659 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3660 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3661 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3662 zoneid, ipst); 3663 } 3664 3665 /* 3666 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3667 * duplicate. As long as someone else holds the address, the interface will 3668 * stay down. When that conflict goes away, the interface is brought back up. 3669 * This is done so that accidental shutdowns of addresses aren't made 3670 * permanent. Your server will recover from a failure. 3671 * 3672 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3673 * user space process (dhcpagent). 3674 * 3675 * Recovery completes if ARP reports that the address is now ours (via 3676 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3677 * 3678 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3679 */ 3680 static void 3681 ipif_dup_recovery(void *arg) 3682 { 3683 ipif_t *ipif = arg; 3684 ill_t *ill = ipif->ipif_ill; 3685 mblk_t *arp_add_mp; 3686 mblk_t *arp_del_mp; 3687 area_t *area; 3688 ip_stack_t *ipst = ill->ill_ipst; 3689 3690 ipif->ipif_recovery_id = 0; 3691 3692 /* 3693 * No lock needed for moving or condemned check, as this is just an 3694 * optimization. 3695 */ 3696 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3697 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3698 (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) { 3699 /* No reason to try to bring this address back. */ 3700 return; 3701 } 3702 3703 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3704 goto alloc_fail; 3705 3706 if (ipif->ipif_arp_del_mp == NULL) { 3707 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3708 goto alloc_fail; 3709 ipif->ipif_arp_del_mp = arp_del_mp; 3710 } 3711 3712 /* Setting the 'unverified' flag restarts DAD */ 3713 area = (area_t *)arp_add_mp->b_rptr; 3714 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3715 ACE_F_UNVERIFIED; 3716 putnext(ill->ill_rq, arp_add_mp); 3717 return; 3718 3719 alloc_fail: 3720 /* 3721 * On allocation failure, just restart the timer. Note that the ipif 3722 * is down here, so no other thread could be trying to start a recovery 3723 * timer. The ill_lock protects the condemned flag and the recovery 3724 * timer ID. 3725 */ 3726 freemsg(arp_add_mp); 3727 mutex_enter(&ill->ill_lock); 3728 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3729 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3730 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3731 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3732 } 3733 mutex_exit(&ill->ill_lock); 3734 } 3735 3736 /* 3737 * This is for exclusive changes due to ARP. Either tear down an interface due 3738 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3739 */ 3740 /* ARGSUSED */ 3741 static void 3742 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3743 { 3744 ill_t *ill = rq->q_ptr; 3745 arh_t *arh; 3746 ipaddr_t src; 3747 ipif_t *ipif; 3748 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3749 char hbuf[MAC_STR_LEN]; 3750 char sbuf[INET_ADDRSTRLEN]; 3751 const char *failtype; 3752 boolean_t bring_up; 3753 ip_stack_t *ipst = ill->ill_ipst; 3754 3755 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3756 case AR_CN_READY: 3757 failtype = NULL; 3758 bring_up = B_TRUE; 3759 break; 3760 case AR_CN_FAILED: 3761 failtype = "in use"; 3762 bring_up = B_FALSE; 3763 break; 3764 default: 3765 failtype = "claimed"; 3766 bring_up = B_FALSE; 3767 break; 3768 } 3769 3770 arh = (arh_t *)mp->b_cont->b_rptr; 3771 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3772 3773 /* Handle failures due to probes */ 3774 if (src == 0) { 3775 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3776 IP_ADDR_LEN); 3777 } 3778 3779 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3780 sizeof (hbuf)); 3781 (void) ip_dot_addr(src, sbuf); 3782 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3783 3784 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3785 ipif->ipif_lcl_addr != src) { 3786 continue; 3787 } 3788 3789 /* 3790 * If we failed on a recovery probe, then restart the timer to 3791 * try again later. 3792 */ 3793 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3794 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3795 ill->ill_net_type == IRE_IF_RESOLVER && 3796 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3797 ipst->ips_ip_dup_recovery > 0 && 3798 ipif->ipif_recovery_id == 0) { 3799 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3800 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3801 continue; 3802 } 3803 3804 /* 3805 * If what we're trying to do has already been done, then do 3806 * nothing. 3807 */ 3808 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3809 continue; 3810 3811 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3812 3813 if (failtype == NULL) { 3814 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3815 ibuf); 3816 } else { 3817 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3818 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3819 } 3820 3821 if (bring_up) { 3822 ASSERT(ill->ill_dl_up); 3823 /* 3824 * Free up the ARP delete message so we can allocate 3825 * a fresh one through the normal path. 3826 */ 3827 freemsg(ipif->ipif_arp_del_mp); 3828 ipif->ipif_arp_del_mp = NULL; 3829 if (ipif_resolver_up(ipif, Res_act_initial) != 3830 EINPROGRESS) { 3831 ipif->ipif_addr_ready = 1; 3832 (void) ipif_up_done(ipif); 3833 } 3834 continue; 3835 } 3836 3837 mutex_enter(&ill->ill_lock); 3838 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3839 ipif->ipif_flags |= IPIF_DUPLICATE; 3840 ill->ill_ipif_dup_count++; 3841 mutex_exit(&ill->ill_lock); 3842 /* 3843 * Already exclusive on the ill; no need to handle deferred 3844 * processing here. 3845 */ 3846 (void) ipif_down(ipif, NULL, NULL); 3847 ipif_down_tail(ipif); 3848 mutex_enter(&ill->ill_lock); 3849 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3850 ill->ill_net_type == IRE_IF_RESOLVER && 3851 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3852 ipst->ips_ip_dup_recovery > 0) { 3853 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3854 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3855 } 3856 mutex_exit(&ill->ill_lock); 3857 } 3858 freemsg(mp); 3859 } 3860 3861 /* ARGSUSED */ 3862 static void 3863 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3864 { 3865 ill_t *ill = rq->q_ptr; 3866 arh_t *arh; 3867 ipaddr_t src; 3868 ipif_t *ipif; 3869 3870 arh = (arh_t *)mp->b_cont->b_rptr; 3871 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3872 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3873 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3874 (void) ipif_resolver_up(ipif, Res_act_defend); 3875 } 3876 freemsg(mp); 3877 } 3878 3879 /* 3880 * News from ARP. ARP sends notification of interesting events down 3881 * to its clients using M_CTL messages with the interesting ARP packet 3882 * attached via b_cont. 3883 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3884 * queue as opposed to ARP sending the message to all the clients, i.e. all 3885 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3886 * table if a cache IRE is found to delete all the entries for the address in 3887 * the packet. 3888 */ 3889 static void 3890 ip_arp_news(queue_t *q, mblk_t *mp) 3891 { 3892 arcn_t *arcn; 3893 arh_t *arh; 3894 ire_t *ire = NULL; 3895 char hbuf[MAC_STR_LEN]; 3896 char sbuf[INET_ADDRSTRLEN]; 3897 ipaddr_t src; 3898 in6_addr_t v6src; 3899 boolean_t isv6 = B_FALSE; 3900 ipif_t *ipif; 3901 ill_t *ill; 3902 ip_stack_t *ipst; 3903 3904 if (CONN_Q(q)) { 3905 conn_t *connp = Q_TO_CONN(q); 3906 3907 ipst = connp->conn_netstack->netstack_ip; 3908 } else { 3909 ill_t *ill = (ill_t *)q->q_ptr; 3910 3911 ipst = ill->ill_ipst; 3912 } 3913 3914 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3915 if (q->q_next) { 3916 putnext(q, mp); 3917 } else 3918 freemsg(mp); 3919 return; 3920 } 3921 arh = (arh_t *)mp->b_cont->b_rptr; 3922 /* Is it one we are interested in? */ 3923 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3924 isv6 = B_TRUE; 3925 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3926 IPV6_ADDR_LEN); 3927 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3928 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3929 IP_ADDR_LEN); 3930 } else { 3931 freemsg(mp); 3932 return; 3933 } 3934 3935 ill = q->q_ptr; 3936 3937 arcn = (arcn_t *)mp->b_rptr; 3938 switch (arcn->arcn_code) { 3939 case AR_CN_BOGON: 3940 /* 3941 * Someone is sending ARP packets with a source protocol 3942 * address that we have published and for which we believe our 3943 * entry is authoritative and (when ill_arp_extend is set) 3944 * verified to be unique on the network. 3945 * 3946 * The ARP module internally handles the cases where the sender 3947 * is just probing (for DAD) and where the hardware address of 3948 * a non-authoritative entry has changed. Thus, these are the 3949 * real conflicts, and we have to do resolution. 3950 * 3951 * We back away quickly from the address if it's from DHCP or 3952 * otherwise temporary and hasn't been used recently (or at 3953 * all). We'd like to include "deprecated" addresses here as 3954 * well (as there's no real reason to defend something we're 3955 * discarding), but IPMP "reuses" this flag to mean something 3956 * other than the standard meaning. 3957 * 3958 * If the ARP module above is not extended (meaning that it 3959 * doesn't know how to defend the address), then we just log 3960 * the problem as we always did and continue on. It's not 3961 * right, but there's little else we can do, and those old ATM 3962 * users are going away anyway. 3963 */ 3964 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3965 hbuf, sizeof (hbuf)); 3966 (void) ip_dot_addr(src, sbuf); 3967 if (isv6) { 3968 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3969 ipst); 3970 } else { 3971 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3972 } 3973 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3974 uint32_t now; 3975 uint32_t maxage; 3976 clock_t lused; 3977 uint_t maxdefense; 3978 uint_t defs; 3979 3980 /* 3981 * First, figure out if this address hasn't been used 3982 * in a while. If it hasn't, then it's a better 3983 * candidate for abandoning. 3984 */ 3985 ipif = ire->ire_ipif; 3986 ASSERT(ipif != NULL); 3987 now = gethrestime_sec(); 3988 maxage = now - ire->ire_create_time; 3989 if (maxage > ipst->ips_ip_max_temp_idle) 3990 maxage = ipst->ips_ip_max_temp_idle; 3991 lused = drv_hztousec(ddi_get_lbolt() - 3992 ire->ire_last_used_time) / MICROSEC + 1; 3993 if (lused >= maxage && (ipif->ipif_flags & 3994 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 3995 maxdefense = ipst->ips_ip_max_temp_defend; 3996 else 3997 maxdefense = ipst->ips_ip_max_defend; 3998 3999 /* 4000 * Now figure out how many times we've defended 4001 * ourselves. Ignore defenses that happened long in 4002 * the past. 4003 */ 4004 mutex_enter(&ire->ire_lock); 4005 if ((defs = ire->ire_defense_count) > 0 && 4006 now - ire->ire_defense_time > 4007 ipst->ips_ip_defend_interval) { 4008 ire->ire_defense_count = defs = 0; 4009 } 4010 ire->ire_defense_count++; 4011 ire->ire_defense_time = now; 4012 mutex_exit(&ire->ire_lock); 4013 ill_refhold(ill); 4014 ire_refrele(ire); 4015 4016 /* 4017 * If we've defended ourselves too many times already, 4018 * then give up and tear down the interface(s) using 4019 * this address. Otherwise, defend by sending out a 4020 * gratuitous ARP. 4021 */ 4022 if (defs >= maxdefense && ill->ill_arp_extend) { 4023 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4024 B_FALSE); 4025 } else { 4026 cmn_err(CE_WARN, 4027 "node %s is using our IP address %s on %s", 4028 hbuf, sbuf, ill->ill_name); 4029 /* 4030 * If this is an old (ATM) ARP module, then 4031 * don't try to defend the address. Remain 4032 * compatible with the old behavior. Defend 4033 * only with new ARP. 4034 */ 4035 if (ill->ill_arp_extend) { 4036 qwriter_ip(ill, q, mp, ip_arp_defend, 4037 NEW_OP, B_FALSE); 4038 } else { 4039 ill_refrele(ill); 4040 } 4041 } 4042 return; 4043 } 4044 cmn_err(CE_WARN, 4045 "proxy ARP problem? Node '%s' is using %s on %s", 4046 hbuf, sbuf, ill->ill_name); 4047 if (ire != NULL) 4048 ire_refrele(ire); 4049 break; 4050 case AR_CN_ANNOUNCE: 4051 if (isv6) { 4052 /* 4053 * For XRESOLV interfaces. 4054 * Delete the IRE cache entry and NCE for this 4055 * v6 address 4056 */ 4057 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4058 /* 4059 * If v6src is a non-zero, it's a router address 4060 * as below. Do the same sort of thing to clean 4061 * out off-net IRE_CACHE entries that go through 4062 * the router. 4063 */ 4064 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4065 ire_walk_v6(ire_delete_cache_gw_v6, 4066 (char *)&v6src, ALL_ZONES, ipst); 4067 } 4068 } else { 4069 nce_hw_map_t hwm; 4070 4071 /* 4072 * ARP gives us a copy of any packet where it thinks 4073 * the address has changed, so that we can update our 4074 * caches. We're responsible for caching known answers 4075 * in the current design. We check whether the 4076 * hardware address really has changed in all of our 4077 * entries that have cached this mapping, and if so, we 4078 * blow them away. This way we will immediately pick 4079 * up the rare case of a host changing hardware 4080 * address. 4081 */ 4082 if (src == 0) 4083 break; 4084 hwm.hwm_addr = src; 4085 hwm.hwm_hwlen = arh->arh_hlen; 4086 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4087 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4088 ndp_walk_common(ipst->ips_ndp4, NULL, 4089 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4090 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4091 } 4092 break; 4093 case AR_CN_READY: 4094 /* No external v6 resolver has a contract to use this */ 4095 if (isv6) 4096 break; 4097 /* If the link is down, we'll retry this later */ 4098 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4099 break; 4100 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4101 NULL, NULL, ipst); 4102 if (ipif != NULL) { 4103 /* 4104 * If this is a duplicate recovery, then we now need to 4105 * go exclusive to bring this thing back up. 4106 */ 4107 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4108 IPIF_DUPLICATE) { 4109 ipif_refrele(ipif); 4110 ill_refhold(ill); 4111 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4112 B_FALSE); 4113 return; 4114 } 4115 /* 4116 * If this is the first notice that this address is 4117 * ready, then let the user know now. 4118 */ 4119 if ((ipif->ipif_flags & IPIF_UP) && 4120 !ipif->ipif_addr_ready) { 4121 ipif_mask_reply(ipif); 4122 ip_rts_ifmsg(ipif); 4123 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4124 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4125 } 4126 ipif->ipif_addr_ready = 1; 4127 ipif_refrele(ipif); 4128 } 4129 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst); 4130 if (ire != NULL) { 4131 ire->ire_defense_count = 0; 4132 ire_refrele(ire); 4133 } 4134 break; 4135 case AR_CN_FAILED: 4136 /* No external v6 resolver has a contract to use this */ 4137 if (isv6) 4138 break; 4139 ill_refhold(ill); 4140 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4141 return; 4142 } 4143 freemsg(mp); 4144 } 4145 4146 /* 4147 * Create a mblk suitable for carrying the interface index and/or source link 4148 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4149 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4150 * application. 4151 */ 4152 mblk_t * 4153 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4154 ip_stack_t *ipst) 4155 { 4156 mblk_t *mp; 4157 ip_pktinfo_t *pinfo; 4158 ipha_t *ipha; 4159 struct ether_header *pether; 4160 4161 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4162 if (mp == NULL) { 4163 ip1dbg(("ip_add_info: allocation failure.\n")); 4164 return (data_mp); 4165 } 4166 4167 ipha = (ipha_t *)data_mp->b_rptr; 4168 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4169 bzero(pinfo, sizeof (ip_pktinfo_t)); 4170 pinfo->ip_pkt_flags = (uchar_t)flags; 4171 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4172 4173 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4174 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4175 if (flags & IPF_RECVADDR) { 4176 ipif_t *ipif; 4177 ire_t *ire; 4178 4179 /* 4180 * Only valid for V4 4181 */ 4182 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4183 (IPV4_VERSION << 4)); 4184 4185 ipif = ipif_get_next_ipif(NULL, ill); 4186 if (ipif != NULL) { 4187 /* 4188 * Since a decision has already been made to deliver the 4189 * packet, there is no need to test for SECATTR and 4190 * ZONEONLY. 4191 * When a multicast packet is transmitted 4192 * a cache entry is created for the multicast address. 4193 * When delivering a copy of the packet or when new 4194 * packets are received we do not want to match on the 4195 * cached entry so explicitly match on 4196 * IRE_LOCAL and IRE_LOOPBACK 4197 */ 4198 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4199 IRE_LOCAL | IRE_LOOPBACK, 4200 ipif, zoneid, NULL, 4201 MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP, ipst); 4202 if (ire == NULL) { 4203 /* 4204 * packet must have come on a different 4205 * interface. 4206 * Since a decision has already been made to 4207 * deliver the packet, there is no need to test 4208 * for SECATTR and ZONEONLY. 4209 * Only match on local and broadcast ire's. 4210 * See detailed comment above. 4211 */ 4212 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4213 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4214 NULL, MATCH_IRE_TYPE, ipst); 4215 } 4216 4217 if (ire == NULL) { 4218 /* 4219 * This is either a multicast packet or 4220 * the address has been removed since 4221 * the packet was received. 4222 * Return INADDR_ANY so that normal source 4223 * selection occurs for the response. 4224 */ 4225 4226 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4227 } else { 4228 pinfo->ip_pkt_match_addr.s_addr = 4229 ire->ire_src_addr; 4230 ire_refrele(ire); 4231 } 4232 ipif_refrele(ipif); 4233 } else { 4234 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4235 } 4236 } 4237 4238 pether = (struct ether_header *)((char *)ipha 4239 - sizeof (struct ether_header)); 4240 /* 4241 * Make sure the interface is an ethernet type, since this option 4242 * is currently supported only on this type of interface. Also make 4243 * sure we are pointing correctly above db_base. 4244 */ 4245 4246 if ((flags & IPF_RECVSLLA) && 4247 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4248 (ill->ill_type == IFT_ETHER) && 4249 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4250 4251 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4252 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4253 (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4254 } else { 4255 /* 4256 * Clear the bit. Indicate to upper layer that IP is not 4257 * sending this ancillary info. 4258 */ 4259 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4260 } 4261 4262 mp->b_datap->db_type = M_CTL; 4263 mp->b_wptr += sizeof (ip_pktinfo_t); 4264 mp->b_cont = data_mp; 4265 4266 return (mp); 4267 } 4268 4269 /* 4270 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4271 * part of the bind request. 4272 */ 4273 4274 boolean_t 4275 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4276 { 4277 ipsec_in_t *ii; 4278 4279 ASSERT(policy_mp != NULL); 4280 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4281 4282 ii = (ipsec_in_t *)policy_mp->b_rptr; 4283 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4284 4285 connp->conn_policy = ii->ipsec_in_policy; 4286 ii->ipsec_in_policy = NULL; 4287 4288 if (ii->ipsec_in_action != NULL) { 4289 if (connp->conn_latch == NULL) { 4290 connp->conn_latch = iplatch_create(); 4291 if (connp->conn_latch == NULL) 4292 return (B_FALSE); 4293 } 4294 ipsec_latch_inbound(connp->conn_latch, ii); 4295 } 4296 return (B_TRUE); 4297 } 4298 4299 /* 4300 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4301 * and to arrange for power-fanout assist. The ULP is identified by 4302 * adding a single byte at the end of the original bind message. 4303 * A ULP other than UDP or TCP that wishes to be recognized passes 4304 * down a bind with a zero length address. 4305 * 4306 * The binding works as follows: 4307 * - A zero byte address means just bind to the protocol. 4308 * - A four byte address is treated as a request to validate 4309 * that the address is a valid local address, appropriate for 4310 * an application to bind to. This does not affect any fanout 4311 * information in IP. 4312 * - A sizeof sin_t byte address is used to bind to only the local address 4313 * and port. 4314 * - A sizeof ipa_conn_t byte address contains complete fanout information 4315 * consisting of local and remote addresses and ports. In 4316 * this case, the addresses are both validated as appropriate 4317 * for this operation, and, if so, the information is retained 4318 * for use in the inbound fanout. 4319 * 4320 * The ULP (except in the zero-length bind) can append an 4321 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4322 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4323 * a copy of the source or destination IRE (source for local bind; 4324 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4325 * policy information contained should be copied on to the conn. 4326 * 4327 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4328 */ 4329 mblk_t * 4330 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4331 { 4332 ssize_t len; 4333 struct T_bind_req *tbr; 4334 sin_t *sin; 4335 ipa_conn_t *ac; 4336 uchar_t *ucp; 4337 mblk_t *mp1; 4338 boolean_t ire_requested; 4339 boolean_t ipsec_policy_set = B_FALSE; 4340 int error = 0; 4341 int protocol; 4342 ipa_conn_x_t *acx; 4343 4344 ASSERT(!connp->conn_af_isv6); 4345 connp->conn_pkt_isv6 = B_FALSE; 4346 4347 len = MBLKL(mp); 4348 if (len < (sizeof (*tbr) + 1)) { 4349 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4350 "ip_bind: bogus msg, len %ld", len); 4351 /* XXX: Need to return something better */ 4352 goto bad_addr; 4353 } 4354 /* Back up and extract the protocol identifier. */ 4355 mp->b_wptr--; 4356 protocol = *mp->b_wptr & 0xFF; 4357 tbr = (struct T_bind_req *)mp->b_rptr; 4358 /* Reset the message type in preparation for shipping it back. */ 4359 DB_TYPE(mp) = M_PCPROTO; 4360 4361 connp->conn_ulp = (uint8_t)protocol; 4362 4363 /* 4364 * Check for a zero length address. This is from a protocol that 4365 * wants to register to receive all packets of its type. 4366 */ 4367 if (tbr->ADDR_length == 0) { 4368 /* 4369 * These protocols are now intercepted in ip_bind_v6(). 4370 * Reject protocol-level binds here for now. 4371 * 4372 * For SCTP raw socket, ICMP sends down a bind with sin_t 4373 * so that the protocol type cannot be SCTP. 4374 */ 4375 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4376 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4377 goto bad_addr; 4378 } 4379 4380 /* 4381 * 4382 * The udp module never sends down a zero-length address, 4383 * and allowing this on a labeled system will break MLP 4384 * functionality. 4385 */ 4386 if (is_system_labeled() && protocol == IPPROTO_UDP) 4387 goto bad_addr; 4388 4389 if (connp->conn_mac_exempt) 4390 goto bad_addr; 4391 4392 /* No hash here really. The table is big enough. */ 4393 connp->conn_srcv6 = ipv6_all_zeros; 4394 4395 ipcl_proto_insert(connp, protocol); 4396 4397 tbr->PRIM_type = T_BIND_ACK; 4398 return (mp); 4399 } 4400 4401 /* Extract the address pointer from the message. */ 4402 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4403 tbr->ADDR_length); 4404 if (ucp == NULL) { 4405 ip1dbg(("ip_bind: no address\n")); 4406 goto bad_addr; 4407 } 4408 if (!OK_32PTR(ucp)) { 4409 ip1dbg(("ip_bind: unaligned address\n")); 4410 goto bad_addr; 4411 } 4412 /* 4413 * Check for trailing mps. 4414 */ 4415 4416 mp1 = mp->b_cont; 4417 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4418 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4419 4420 switch (tbr->ADDR_length) { 4421 default: 4422 ip1dbg(("ip_bind: bad address length %d\n", 4423 (int)tbr->ADDR_length)); 4424 goto bad_addr; 4425 4426 case IP_ADDR_LEN: 4427 /* Verification of local address only */ 4428 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4429 ire_requested, ipsec_policy_set, B_FALSE); 4430 break; 4431 4432 case sizeof (sin_t): 4433 sin = (sin_t *)ucp; 4434 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4435 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4436 break; 4437 4438 case sizeof (ipa_conn_t): 4439 ac = (ipa_conn_t *)ucp; 4440 /* For raw socket, the local port is not set. */ 4441 if (ac->ac_lport == 0) 4442 ac->ac_lport = connp->conn_lport; 4443 /* Always verify destination reachability. */ 4444 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4445 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4446 ipsec_policy_set, B_TRUE, B_TRUE); 4447 break; 4448 4449 case sizeof (ipa_conn_x_t): 4450 acx = (ipa_conn_x_t *)ucp; 4451 /* 4452 * Whether or not to verify destination reachability depends 4453 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4454 */ 4455 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4456 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4457 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4458 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4459 break; 4460 } 4461 if (error == EINPROGRESS) 4462 return (NULL); 4463 else if (error != 0) 4464 goto bad_addr; 4465 /* 4466 * Pass the IPSEC headers size in ire_ipsec_overhead. 4467 * We can't do this in ip_bind_insert_ire because the policy 4468 * may not have been inherited at that point in time and hence 4469 * conn_out_enforce_policy may not be set. 4470 */ 4471 mp1 = mp->b_cont; 4472 if (ire_requested && connp->conn_out_enforce_policy && 4473 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4474 ire_t *ire = (ire_t *)mp1->b_rptr; 4475 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4476 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4477 } 4478 4479 /* Send it home. */ 4480 mp->b_datap->db_type = M_PCPROTO; 4481 tbr->PRIM_type = T_BIND_ACK; 4482 return (mp); 4483 4484 bad_addr: 4485 /* 4486 * If error = -1 then we generate a TBADADDR - otherwise error is 4487 * a unix errno. 4488 */ 4489 if (error > 0) 4490 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4491 else 4492 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4493 return (mp); 4494 } 4495 4496 /* 4497 * Here address is verified to be a valid local address. 4498 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4499 * address is also considered a valid local address. 4500 * In the case of a broadcast/multicast address, however, the 4501 * upper protocol is expected to reset the src address 4502 * to 0 if it sees a IRE_BROADCAST type returned so that 4503 * no packets are emitted with broadcast/multicast address as 4504 * source address (that violates hosts requirements RFC1122) 4505 * The addresses valid for bind are: 4506 * (1) - INADDR_ANY (0) 4507 * (2) - IP address of an UP interface 4508 * (3) - IP address of a DOWN interface 4509 * (4) - valid local IP broadcast addresses. In this case 4510 * the conn will only receive packets destined to 4511 * the specified broadcast address. 4512 * (5) - a multicast address. In this case 4513 * the conn will only receive packets destined to 4514 * the specified multicast address. Note: the 4515 * application still has to issue an 4516 * IP_ADD_MEMBERSHIP socket option. 4517 * 4518 * On error, return -1 for TBADADDR otherwise pass the 4519 * errno with TSYSERR reply. 4520 * 4521 * In all the above cases, the bound address must be valid in the current zone. 4522 * When the address is loopback, multicast or broadcast, there might be many 4523 * matching IREs so bind has to look up based on the zone. 4524 * 4525 * Note: lport is in network byte order. 4526 */ 4527 int 4528 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4529 boolean_t ire_requested, boolean_t ipsec_policy_set, 4530 boolean_t fanout_insert) 4531 { 4532 int error = 0; 4533 ire_t *src_ire; 4534 mblk_t *policy_mp; 4535 ipif_t *ipif; 4536 zoneid_t zoneid; 4537 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4538 4539 if (ipsec_policy_set) { 4540 policy_mp = mp->b_cont; 4541 } 4542 4543 /* 4544 * If it was previously connected, conn_fully_bound would have 4545 * been set. 4546 */ 4547 connp->conn_fully_bound = B_FALSE; 4548 4549 src_ire = NULL; 4550 ipif = NULL; 4551 4552 zoneid = IPCL_ZONEID(connp); 4553 4554 if (src_addr) { 4555 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4556 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4557 /* 4558 * If an address other than 0.0.0.0 is requested, 4559 * we verify that it is a valid address for bind 4560 * Note: Following code is in if-else-if form for 4561 * readability compared to a condition check. 4562 */ 4563 /* LINTED - statement has no consequent */ 4564 if (IRE_IS_LOCAL(src_ire)) { 4565 /* 4566 * (2) Bind to address of local UP interface 4567 */ 4568 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4569 /* 4570 * (4) Bind to broadcast address 4571 * Note: permitted only from transports that 4572 * request IRE 4573 */ 4574 if (!ire_requested) 4575 error = EADDRNOTAVAIL; 4576 } else { 4577 /* 4578 * (3) Bind to address of local DOWN interface 4579 * (ipif_lookup_addr() looks up all interfaces 4580 * but we do not get here for UP interfaces 4581 * - case (2) above) 4582 * We put the protocol byte back into the mblk 4583 * since we may come back via ip_wput_nondata() 4584 * later with this mblk if ipif_lookup_addr chooses 4585 * to defer processing. 4586 */ 4587 *mp->b_wptr++ = (char)connp->conn_ulp; 4588 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4589 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4590 &error, ipst)) != NULL) { 4591 ipif_refrele(ipif); 4592 } else if (error == EINPROGRESS) { 4593 if (src_ire != NULL) 4594 ire_refrele(src_ire); 4595 return (EINPROGRESS); 4596 } else if (CLASSD(src_addr)) { 4597 error = 0; 4598 if (src_ire != NULL) 4599 ire_refrele(src_ire); 4600 /* 4601 * (5) bind to multicast address. 4602 * Fake out the IRE returned to upper 4603 * layer to be a broadcast IRE. 4604 */ 4605 src_ire = ire_ctable_lookup( 4606 INADDR_BROADCAST, INADDR_ANY, 4607 IRE_BROADCAST, NULL, zoneid, NULL, 4608 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4609 ipst); 4610 if (src_ire == NULL || !ire_requested) 4611 error = EADDRNOTAVAIL; 4612 } else { 4613 /* 4614 * Not a valid address for bind 4615 */ 4616 error = EADDRNOTAVAIL; 4617 } 4618 /* 4619 * Just to keep it consistent with the processing in 4620 * ip_bind_v4() 4621 */ 4622 mp->b_wptr--; 4623 } 4624 if (error) { 4625 /* Red Alert! Attempting to be a bogon! */ 4626 ip1dbg(("ip_bind: bad src address 0x%x\n", 4627 ntohl(src_addr))); 4628 goto bad_addr; 4629 } 4630 } 4631 4632 /* 4633 * Allow setting new policies. For example, disconnects come 4634 * down as ipa_t bind. As we would have set conn_policy_cached 4635 * to B_TRUE before, we should set it to B_FALSE, so that policy 4636 * can change after the disconnect. 4637 */ 4638 connp->conn_policy_cached = B_FALSE; 4639 4640 /* 4641 * If not fanout_insert this was just an address verification 4642 */ 4643 if (fanout_insert) { 4644 /* 4645 * The addresses have been verified. Time to insert in 4646 * the correct fanout list. 4647 */ 4648 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4649 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4650 connp->conn_lport = lport; 4651 connp->conn_fport = 0; 4652 /* 4653 * Do we need to add a check to reject Multicast packets 4654 * 4655 * We need to make sure that the conn_recv is set to a non-null 4656 * value before we insert the conn into the classifier table. 4657 * This is to avoid a race with an incoming packet which does an 4658 * ipcl_classify(). 4659 */ 4660 if (*mp->b_wptr == IPPROTO_TCP) 4661 connp->conn_recv = tcp_conn_request; 4662 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4663 } 4664 4665 if (error == 0) { 4666 if (ire_requested) { 4667 if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) { 4668 error = -1; 4669 /* Falls through to bad_addr */ 4670 } 4671 } else if (ipsec_policy_set) { 4672 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4673 error = -1; 4674 /* Falls through to bad_addr */ 4675 } 4676 } 4677 } else if (connp->conn_ulp == IPPROTO_TCP) { 4678 connp->conn_recv = tcp_input; 4679 } 4680 bad_addr: 4681 if (error != 0) { 4682 if (connp->conn_anon_port) { 4683 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4684 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4685 B_FALSE); 4686 } 4687 connp->conn_mlp_type = mlptSingle; 4688 } 4689 if (src_ire != NULL) 4690 IRE_REFRELE(src_ire); 4691 if (ipsec_policy_set) { 4692 ASSERT(policy_mp == mp->b_cont); 4693 ASSERT(policy_mp != NULL); 4694 freeb(policy_mp); 4695 /* 4696 * As of now assume that nothing else accompanies 4697 * IPSEC_POLICY_SET. 4698 */ 4699 mp->b_cont = NULL; 4700 } 4701 return (error); 4702 } 4703 4704 /* 4705 * Verify that both the source and destination addresses 4706 * are valid. If verify_dst is false, then the destination address may be 4707 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4708 * destination reachability, while tunnels do not. 4709 * Note that we allow connect to broadcast and multicast 4710 * addresses when ire_requested is set. Thus the ULP 4711 * has to check for IRE_BROADCAST and multicast. 4712 * 4713 * Returns zero if ok. 4714 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4715 * (for use with TSYSERR reply). 4716 * 4717 * Note: lport and fport are in network byte order. 4718 */ 4719 int 4720 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4721 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4722 boolean_t ire_requested, boolean_t ipsec_policy_set, 4723 boolean_t fanout_insert, boolean_t verify_dst) 4724 { 4725 ire_t *src_ire; 4726 ire_t *dst_ire; 4727 int error = 0; 4728 int protocol; 4729 mblk_t *policy_mp; 4730 ire_t *sire = NULL; 4731 ire_t *md_dst_ire = NULL; 4732 ire_t *lso_dst_ire = NULL; 4733 ill_t *ill = NULL; 4734 zoneid_t zoneid; 4735 ipaddr_t src_addr = *src_addrp; 4736 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4737 4738 src_ire = dst_ire = NULL; 4739 protocol = *mp->b_wptr & 0xFF; 4740 4741 /* 4742 * If we never got a disconnect before, clear it now. 4743 */ 4744 connp->conn_fully_bound = B_FALSE; 4745 4746 if (ipsec_policy_set) { 4747 policy_mp = mp->b_cont; 4748 } 4749 4750 zoneid = IPCL_ZONEID(connp); 4751 4752 if (CLASSD(dst_addr)) { 4753 /* Pick up an IRE_BROADCAST */ 4754 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4755 NULL, zoneid, MBLK_GETLABEL(mp), 4756 (MATCH_IRE_RECURSIVE | 4757 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4758 MATCH_IRE_SECATTR), ipst); 4759 } else { 4760 /* 4761 * If conn_dontroute is set or if conn_nexthop_set is set, 4762 * and onlink ipif is not found set ENETUNREACH error. 4763 */ 4764 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4765 ipif_t *ipif; 4766 4767 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4768 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4769 if (ipif == NULL) { 4770 error = ENETUNREACH; 4771 goto bad_addr; 4772 } 4773 ipif_refrele(ipif); 4774 } 4775 4776 if (connp->conn_nexthop_set) { 4777 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4778 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4779 MATCH_IRE_SECATTR, ipst); 4780 } else { 4781 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4782 &sire, zoneid, MBLK_GETLABEL(mp), 4783 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4784 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4785 MATCH_IRE_SECATTR), ipst); 4786 } 4787 } 4788 /* 4789 * dst_ire can't be a broadcast when not ire_requested. 4790 * We also prevent ire's with src address INADDR_ANY to 4791 * be used, which are created temporarily for 4792 * sending out packets from endpoints that have 4793 * conn_unspec_src set. If verify_dst is true, the destination must be 4794 * reachable. If verify_dst is false, the destination needn't be 4795 * reachable. 4796 * 4797 * If we match on a reject or black hole, then we've got a 4798 * local failure. May as well fail out the connect() attempt, 4799 * since it's never going to succeed. 4800 */ 4801 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4802 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4803 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4804 /* 4805 * If we're verifying destination reachability, we always want 4806 * to complain here. 4807 * 4808 * If we're not verifying destination reachability but the 4809 * destination has a route, we still want to fail on the 4810 * temporary address and broadcast address tests. 4811 */ 4812 if (verify_dst || (dst_ire != NULL)) { 4813 if (ip_debug > 2) { 4814 pr_addr_dbg("ip_bind_connected: bad connected " 4815 "dst %s\n", AF_INET, &dst_addr); 4816 } 4817 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4818 error = ENETUNREACH; 4819 else 4820 error = EHOSTUNREACH; 4821 goto bad_addr; 4822 } 4823 } 4824 4825 /* 4826 * We now know that routing will allow us to reach the destination. 4827 * Check whether Trusted Solaris policy allows communication with this 4828 * host, and pretend that the destination is unreachable if not. 4829 * 4830 * This is never a problem for TCP, since that transport is known to 4831 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4832 * handling. If the remote is unreachable, it will be detected at that 4833 * point, so there's no reason to check it here. 4834 * 4835 * Note that for sendto (and other datagram-oriented friends), this 4836 * check is done as part of the data path label computation instead. 4837 * The check here is just to make non-TCP connect() report the right 4838 * error. 4839 */ 4840 if (dst_ire != NULL && is_system_labeled() && 4841 !IPCL_IS_TCP(connp) && 4842 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4843 connp->conn_mac_exempt, ipst) != 0) { 4844 error = EHOSTUNREACH; 4845 if (ip_debug > 2) { 4846 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4847 AF_INET, &dst_addr); 4848 } 4849 goto bad_addr; 4850 } 4851 4852 /* 4853 * If the app does a connect(), it means that it will most likely 4854 * send more than 1 packet to the destination. It makes sense 4855 * to clear the temporary flag. 4856 */ 4857 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4858 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4859 irb_t *irb = dst_ire->ire_bucket; 4860 4861 rw_enter(&irb->irb_lock, RW_WRITER); 4862 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4863 irb->irb_tmp_ire_cnt--; 4864 rw_exit(&irb->irb_lock); 4865 } 4866 4867 /* 4868 * See if we should notify ULP about LSO/MDT; we do this whether or not 4869 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4870 * eligibility tests for passive connects are handled separately 4871 * through tcp_adapt_ire(). We do this before the source address 4872 * selection, because dst_ire may change after a call to 4873 * ipif_select_source(). This is a best-effort check, as the 4874 * packet for this connection may not actually go through 4875 * dst_ire->ire_stq, and the exact IRE can only be known after 4876 * calling ip_newroute(). This is why we further check on the 4877 * IRE during LSO/Multidata packet transmission in 4878 * tcp_lsosend()/tcp_multisend(). 4879 */ 4880 if (!ipsec_policy_set && dst_ire != NULL && 4881 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4882 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4883 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4884 lso_dst_ire = dst_ire; 4885 IRE_REFHOLD(lso_dst_ire); 4886 } else if (ipst->ips_ip_multidata_outbound && 4887 ILL_MDT_CAPABLE(ill)) { 4888 md_dst_ire = dst_ire; 4889 IRE_REFHOLD(md_dst_ire); 4890 } 4891 } 4892 4893 if (dst_ire != NULL && 4894 dst_ire->ire_type == IRE_LOCAL && 4895 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4896 /* 4897 * If the IRE belongs to a different zone, look for a matching 4898 * route in the forwarding table and use the source address from 4899 * that route. 4900 */ 4901 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4902 zoneid, 0, NULL, 4903 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4904 MATCH_IRE_RJ_BHOLE, ipst); 4905 if (src_ire == NULL) { 4906 error = EHOSTUNREACH; 4907 goto bad_addr; 4908 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4909 if (!(src_ire->ire_type & IRE_HOST)) 4910 error = ENETUNREACH; 4911 else 4912 error = EHOSTUNREACH; 4913 goto bad_addr; 4914 } 4915 if (src_addr == INADDR_ANY) 4916 src_addr = src_ire->ire_src_addr; 4917 ire_refrele(src_ire); 4918 src_ire = NULL; 4919 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4920 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4921 src_addr = sire->ire_src_addr; 4922 ire_refrele(dst_ire); 4923 dst_ire = sire; 4924 sire = NULL; 4925 } else { 4926 /* 4927 * Pick a source address so that a proper inbound 4928 * load spreading would happen. 4929 */ 4930 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4931 ipif_t *src_ipif = NULL; 4932 ire_t *ipif_ire; 4933 4934 /* 4935 * Supply a local source address such that inbound 4936 * load spreading happens. 4937 * 4938 * Determine the best source address on this ill for 4939 * the destination. 4940 * 4941 * 1) For broadcast, we should return a broadcast ire 4942 * found above so that upper layers know that the 4943 * destination address is a broadcast address. 4944 * 4945 * 2) If this is part of a group, select a better 4946 * source address so that better inbound load 4947 * balancing happens. Do the same if the ipif 4948 * is DEPRECATED. 4949 * 4950 * 3) If the outgoing interface is part of a usesrc 4951 * group, then try selecting a source address from 4952 * the usesrc ILL. 4953 */ 4954 if ((dst_ire->ire_zoneid != zoneid && 4955 dst_ire->ire_zoneid != ALL_ZONES) || 4956 (!(dst_ire->ire_type & IRE_BROADCAST) && 4957 ((dst_ill->ill_group != NULL) || 4958 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4959 (dst_ill->ill_usesrc_ifindex != 0)))) { 4960 /* 4961 * If the destination is reachable via a 4962 * given gateway, the selected source address 4963 * should be in the same subnet as the gateway. 4964 * Otherwise, the destination is not reachable. 4965 * 4966 * If there are no interfaces on the same subnet 4967 * as the destination, ipif_select_source gives 4968 * first non-deprecated interface which might be 4969 * on a different subnet than the gateway. 4970 * This is not desirable. Hence pass the dst_ire 4971 * source address to ipif_select_source. 4972 * It is sure that the destination is reachable 4973 * with the dst_ire source address subnet. 4974 * So passing dst_ire source address to 4975 * ipif_select_source will make sure that the 4976 * selected source will be on the same subnet 4977 * as dst_ire source address. 4978 */ 4979 ipaddr_t saddr = 4980 dst_ire->ire_ipif->ipif_src_addr; 4981 src_ipif = ipif_select_source(dst_ill, 4982 saddr, zoneid); 4983 if (src_ipif != NULL) { 4984 if (IS_VNI(src_ipif->ipif_ill)) { 4985 /* 4986 * For VNI there is no 4987 * interface route 4988 */ 4989 src_addr = 4990 src_ipif->ipif_src_addr; 4991 } else { 4992 ipif_ire = 4993 ipif_to_ire(src_ipif); 4994 if (ipif_ire != NULL) { 4995 IRE_REFRELE(dst_ire); 4996 dst_ire = ipif_ire; 4997 } 4998 src_addr = 4999 dst_ire->ire_src_addr; 5000 } 5001 ipif_refrele(src_ipif); 5002 } else { 5003 src_addr = dst_ire->ire_src_addr; 5004 } 5005 } else { 5006 src_addr = dst_ire->ire_src_addr; 5007 } 5008 } 5009 } 5010 5011 /* 5012 * We do ire_route_lookup() here (and not 5013 * interface lookup as we assert that 5014 * src_addr should only come from an 5015 * UP interface for hard binding. 5016 */ 5017 ASSERT(src_ire == NULL); 5018 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5019 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5020 /* src_ire must be a local|loopback */ 5021 if (!IRE_IS_LOCAL(src_ire)) { 5022 if (ip_debug > 2) { 5023 pr_addr_dbg("ip_bind_connected: bad connected " 5024 "src %s\n", AF_INET, &src_addr); 5025 } 5026 error = EADDRNOTAVAIL; 5027 goto bad_addr; 5028 } 5029 5030 /* 5031 * If the source address is a loopback address, the 5032 * destination had best be local or multicast. 5033 * The transports that can't handle multicast will reject 5034 * those addresses. 5035 */ 5036 if (src_ire->ire_type == IRE_LOOPBACK && 5037 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5038 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5039 error = -1; 5040 goto bad_addr; 5041 } 5042 5043 /* 5044 * Allow setting new policies. For example, disconnects come 5045 * down as ipa_t bind. As we would have set conn_policy_cached 5046 * to B_TRUE before, we should set it to B_FALSE, so that policy 5047 * can change after the disconnect. 5048 */ 5049 connp->conn_policy_cached = B_FALSE; 5050 5051 /* 5052 * Set the conn addresses/ports immediately, so the IPsec policy calls 5053 * can handle their passed-in conn's. 5054 */ 5055 5056 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5057 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5058 connp->conn_lport = lport; 5059 connp->conn_fport = fport; 5060 *src_addrp = src_addr; 5061 5062 ASSERT(!(ipsec_policy_set && ire_requested)); 5063 if (ire_requested) { 5064 iulp_t *ulp_info = NULL; 5065 5066 /* 5067 * Note that sire will not be NULL if this is an off-link 5068 * connection and there is not cache for that dest yet. 5069 * 5070 * XXX Because of an existing bug, if there are multiple 5071 * default routes, the IRE returned now may not be the actual 5072 * default route used (default routes are chosen in a 5073 * round robin fashion). So if the metrics for different 5074 * default routes are different, we may return the wrong 5075 * metrics. This will not be a problem if the existing 5076 * bug is fixed. 5077 */ 5078 if (sire != NULL) { 5079 ulp_info = &(sire->ire_uinfo); 5080 } 5081 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) { 5082 error = -1; 5083 goto bad_addr; 5084 } 5085 } else if (ipsec_policy_set) { 5086 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5087 error = -1; 5088 goto bad_addr; 5089 } 5090 } 5091 5092 /* 5093 * Cache IPsec policy in this conn. If we have per-socket policy, 5094 * we'll cache that. If we don't, we'll inherit global policy. 5095 * 5096 * We can't insert until the conn reflects the policy. Note that 5097 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5098 * connections where we don't have a policy. This is to prevent 5099 * global policy lookups in the inbound path. 5100 * 5101 * If we insert before we set conn_policy_cached, 5102 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5103 * because global policy cound be non-empty. We normally call 5104 * ipsec_check_policy() for conn_policy_cached connections only if 5105 * ipc_in_enforce_policy is set. But in this case, 5106 * conn_policy_cached can get set anytime since we made the 5107 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5108 * called, which will make the above assumption false. Thus, we 5109 * need to insert after we set conn_policy_cached. 5110 */ 5111 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5112 goto bad_addr; 5113 5114 if (fanout_insert) { 5115 /* 5116 * The addresses have been verified. Time to insert in 5117 * the correct fanout list. 5118 * We need to make sure that the conn_recv is set to a non-null 5119 * value before we insert into the classifier table to avoid a 5120 * race with an incoming packet which does an ipcl_classify(). 5121 */ 5122 if (protocol == IPPROTO_TCP) 5123 connp->conn_recv = tcp_input; 5124 error = ipcl_conn_insert(connp, protocol, src_addr, 5125 dst_addr, connp->conn_ports); 5126 } 5127 5128 if (error == 0) { 5129 connp->conn_fully_bound = B_TRUE; 5130 /* 5131 * Our initial checks for LSO/MDT have passed; the IRE is not 5132 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5133 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5134 * ip_xxinfo_return(), which performs further checks 5135 * against them and upon success, returns the LSO/MDT info 5136 * mblk which we will attach to the bind acknowledgment. 5137 */ 5138 if (lso_dst_ire != NULL) { 5139 mblk_t *lsoinfo_mp; 5140 5141 ASSERT(ill->ill_lso_capab != NULL); 5142 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5143 ill->ill_name, ill->ill_lso_capab)) != NULL) 5144 linkb(mp, lsoinfo_mp); 5145 } else if (md_dst_ire != NULL) { 5146 mblk_t *mdinfo_mp; 5147 5148 ASSERT(ill->ill_mdt_capab != NULL); 5149 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5150 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5151 linkb(mp, mdinfo_mp); 5152 } 5153 } 5154 bad_addr: 5155 if (ipsec_policy_set) { 5156 ASSERT(policy_mp == mp->b_cont); 5157 ASSERT(policy_mp != NULL); 5158 freeb(policy_mp); 5159 /* 5160 * As of now assume that nothing else accompanies 5161 * IPSEC_POLICY_SET. 5162 */ 5163 mp->b_cont = NULL; 5164 } 5165 if (src_ire != NULL) 5166 IRE_REFRELE(src_ire); 5167 if (dst_ire != NULL) 5168 IRE_REFRELE(dst_ire); 5169 if (sire != NULL) 5170 IRE_REFRELE(sire); 5171 if (md_dst_ire != NULL) 5172 IRE_REFRELE(md_dst_ire); 5173 if (lso_dst_ire != NULL) 5174 IRE_REFRELE(lso_dst_ire); 5175 return (error); 5176 } 5177 5178 /* 5179 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5180 * Prefers dst_ire over src_ire. 5181 */ 5182 static boolean_t 5183 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5184 { 5185 mblk_t *mp1; 5186 ire_t *ret_ire = NULL; 5187 5188 mp1 = mp->b_cont; 5189 ASSERT(mp1 != NULL); 5190 5191 if (ire != NULL) { 5192 /* 5193 * mp1 initialized above to IRE_DB_REQ_TYPE 5194 * appended mblk. Its <upper protocol>'s 5195 * job to make sure there is room. 5196 */ 5197 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5198 return (0); 5199 5200 mp1->b_datap->db_type = IRE_DB_TYPE; 5201 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5202 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5203 ret_ire = (ire_t *)mp1->b_rptr; 5204 /* 5205 * Pass the latest setting of the ip_path_mtu_discovery and 5206 * copy the ulp info if any. 5207 */ 5208 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5209 IPH_DF : 0; 5210 if (ulp_info != NULL) { 5211 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5212 sizeof (iulp_t)); 5213 } 5214 ret_ire->ire_mp = mp1; 5215 } else { 5216 /* 5217 * No IRE was found. Remove IRE mblk. 5218 */ 5219 mp->b_cont = mp1->b_cont; 5220 freeb(mp1); 5221 } 5222 5223 return (1); 5224 } 5225 5226 /* 5227 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5228 * the final piece where we don't. Return a pointer to the first mblk in the 5229 * result, and update the pointer to the next mblk to chew on. If anything 5230 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5231 * NULL pointer. 5232 */ 5233 mblk_t * 5234 ip_carve_mp(mblk_t **mpp, ssize_t len) 5235 { 5236 mblk_t *mp0; 5237 mblk_t *mp1; 5238 mblk_t *mp2; 5239 5240 if (!len || !mpp || !(mp0 = *mpp)) 5241 return (NULL); 5242 /* If we aren't going to consume the first mblk, we need a dup. */ 5243 if (mp0->b_wptr - mp0->b_rptr > len) { 5244 mp1 = dupb(mp0); 5245 if (mp1) { 5246 /* Partition the data between the two mblks. */ 5247 mp1->b_wptr = mp1->b_rptr + len; 5248 mp0->b_rptr = mp1->b_wptr; 5249 /* 5250 * after adjustments if mblk not consumed is now 5251 * unaligned, try to align it. If this fails free 5252 * all messages and let upper layer recover. 5253 */ 5254 if (!OK_32PTR(mp0->b_rptr)) { 5255 if (!pullupmsg(mp0, -1)) { 5256 freemsg(mp0); 5257 freemsg(mp1); 5258 *mpp = NULL; 5259 return (NULL); 5260 } 5261 } 5262 } 5263 return (mp1); 5264 } 5265 /* Eat through as many mblks as we need to get len bytes. */ 5266 len -= mp0->b_wptr - mp0->b_rptr; 5267 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5268 if (mp2->b_wptr - mp2->b_rptr > len) { 5269 /* 5270 * We won't consume the entire last mblk. Like 5271 * above, dup and partition it. 5272 */ 5273 mp1->b_cont = dupb(mp2); 5274 mp1 = mp1->b_cont; 5275 if (!mp1) { 5276 /* 5277 * Trouble. Rather than go to a lot of 5278 * trouble to clean up, we free the messages. 5279 * This won't be any worse than losing it on 5280 * the wire. 5281 */ 5282 freemsg(mp0); 5283 freemsg(mp2); 5284 *mpp = NULL; 5285 return (NULL); 5286 } 5287 mp1->b_wptr = mp1->b_rptr + len; 5288 mp2->b_rptr = mp1->b_wptr; 5289 /* 5290 * after adjustments if mblk not consumed is now 5291 * unaligned, try to align it. If this fails free 5292 * all messages and let upper layer recover. 5293 */ 5294 if (!OK_32PTR(mp2->b_rptr)) { 5295 if (!pullupmsg(mp2, -1)) { 5296 freemsg(mp0); 5297 freemsg(mp2); 5298 *mpp = NULL; 5299 return (NULL); 5300 } 5301 } 5302 *mpp = mp2; 5303 return (mp0); 5304 } 5305 /* Decrement len by the amount we just got. */ 5306 len -= mp2->b_wptr - mp2->b_rptr; 5307 } 5308 /* 5309 * len should be reduced to zero now. If not our caller has 5310 * screwed up. 5311 */ 5312 if (len) { 5313 /* Shouldn't happen! */ 5314 freemsg(mp0); 5315 *mpp = NULL; 5316 return (NULL); 5317 } 5318 /* 5319 * We consumed up to exactly the end of an mblk. Detach the part 5320 * we are returning from the rest of the chain. 5321 */ 5322 mp1->b_cont = NULL; 5323 *mpp = mp2; 5324 return (mp0); 5325 } 5326 5327 /* The ill stream is being unplumbed. Called from ip_close */ 5328 int 5329 ip_modclose(ill_t *ill) 5330 { 5331 boolean_t success; 5332 ipsq_t *ipsq; 5333 ipif_t *ipif; 5334 queue_t *q = ill->ill_rq; 5335 ip_stack_t *ipst = ill->ill_ipst; 5336 clock_t timeout; 5337 5338 /* 5339 * Wait for the ACKs of all deferred control messages to be processed. 5340 * In particular, we wait for a potential capability reset initiated 5341 * in ip_sioctl_plink() to complete before proceeding. 5342 * 5343 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5344 * in case the driver never replies. 5345 */ 5346 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5347 mutex_enter(&ill->ill_lock); 5348 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5349 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5350 /* Timeout */ 5351 break; 5352 } 5353 } 5354 mutex_exit(&ill->ill_lock); 5355 5356 /* 5357 * Forcibly enter the ipsq after some delay. This is to take 5358 * care of the case when some ioctl does not complete because 5359 * we sent a control message to the driver and it did not 5360 * send us a reply. We want to be able to at least unplumb 5361 * and replumb rather than force the user to reboot the system. 5362 */ 5363 success = ipsq_enter(ill, B_FALSE); 5364 5365 /* 5366 * Open/close/push/pop is guaranteed to be single threaded 5367 * per stream by STREAMS. FS guarantees that all references 5368 * from top are gone before close is called. So there can't 5369 * be another close thread that has set CONDEMNED on this ill. 5370 * and cause ipsq_enter to return failure. 5371 */ 5372 ASSERT(success); 5373 ipsq = ill->ill_phyint->phyint_ipsq; 5374 5375 /* 5376 * Mark it condemned. No new reference will be made to this ill. 5377 * Lookup functions will return an error. Threads that try to 5378 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5379 * that the refcnt will drop down to zero. 5380 */ 5381 mutex_enter(&ill->ill_lock); 5382 ill->ill_state_flags |= ILL_CONDEMNED; 5383 for (ipif = ill->ill_ipif; ipif != NULL; 5384 ipif = ipif->ipif_next) { 5385 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5386 } 5387 /* 5388 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5389 * returns error if ILL_CONDEMNED is set 5390 */ 5391 cv_broadcast(&ill->ill_cv); 5392 mutex_exit(&ill->ill_lock); 5393 5394 /* 5395 * Send all the deferred DLPI messages downstream which came in 5396 * during the small window right before ipsq_enter(). We do this 5397 * without waiting for the ACKs because all the ACKs for M_PROTO 5398 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5399 */ 5400 ill_dlpi_send_deferred(ill); 5401 5402 /* 5403 * Shut down fragmentation reassembly. 5404 * ill_frag_timer won't start a timer again. 5405 * Now cancel any existing timer 5406 */ 5407 (void) untimeout(ill->ill_frag_timer_id); 5408 (void) ill_frag_timeout(ill, 0); 5409 5410 /* 5411 * If MOVE was in progress, clear the 5412 * move_in_progress fields also. 5413 */ 5414 if (ill->ill_move_in_progress) { 5415 ILL_CLEAR_MOVE(ill); 5416 } 5417 5418 /* 5419 * Call ill_delete to bring down the ipifs, ilms and ill on 5420 * this ill. Then wait for the refcnts to drop to zero. 5421 * ill_is_quiescent checks whether the ill is really quiescent. 5422 * Then make sure that threads that are waiting to enter the 5423 * ipsq have seen the error returned by ipsq_enter and have 5424 * gone away. Then we call ill_delete_tail which does the 5425 * DL_UNBIND_REQ with the driver and then qprocsoff. 5426 */ 5427 ill_delete(ill); 5428 mutex_enter(&ill->ill_lock); 5429 while (!ill_is_quiescent(ill)) 5430 cv_wait(&ill->ill_cv, &ill->ill_lock); 5431 while (ill->ill_waiters) 5432 cv_wait(&ill->ill_cv, &ill->ill_lock); 5433 5434 mutex_exit(&ill->ill_lock); 5435 5436 /* 5437 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5438 * it held until the end of the function since the cleanup 5439 * below needs to be able to use the ip_stack_t. 5440 */ 5441 netstack_hold(ipst->ips_netstack); 5442 5443 /* qprocsoff is called in ill_delete_tail */ 5444 ill_delete_tail(ill); 5445 ASSERT(ill->ill_ipst == NULL); 5446 5447 /* 5448 * Walk through all upper (conn) streams and qenable 5449 * those that have queued data. 5450 * close synchronization needs this to 5451 * be done to ensure that all upper layers blocked 5452 * due to flow control to the closing device 5453 * get unblocked. 5454 */ 5455 ip1dbg(("ip_wsrv: walking\n")); 5456 conn_walk_drain(ipst); 5457 5458 mutex_enter(&ipst->ips_ip_mi_lock); 5459 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5460 mutex_exit(&ipst->ips_ip_mi_lock); 5461 5462 /* 5463 * credp could be null if the open didn't succeed and ip_modopen 5464 * itself calls ip_close. 5465 */ 5466 if (ill->ill_credp != NULL) 5467 crfree(ill->ill_credp); 5468 5469 mutex_enter(&ill->ill_lock); 5470 ill_nic_info_dispatch(ill); 5471 mutex_exit(&ill->ill_lock); 5472 5473 /* 5474 * Now we are done with the module close pieces that 5475 * need the netstack_t. 5476 */ 5477 netstack_rele(ipst->ips_netstack); 5478 5479 mi_close_free((IDP)ill); 5480 q->q_ptr = WR(q)->q_ptr = NULL; 5481 5482 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5483 5484 return (0); 5485 } 5486 5487 /* 5488 * This is called as part of close() for both IP and UDP 5489 * in order to quiesce the conn. 5490 */ 5491 void 5492 ip_quiesce_conn(conn_t *connp) 5493 { 5494 boolean_t drain_cleanup_reqd = B_FALSE; 5495 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5496 boolean_t ilg_cleanup_reqd = B_FALSE; 5497 ip_stack_t *ipst; 5498 5499 ASSERT(!IPCL_IS_TCP(connp)); 5500 ipst = connp->conn_netstack->netstack_ip; 5501 5502 /* 5503 * Mark the conn as closing, and this conn must not be 5504 * inserted in future into any list. Eg. conn_drain_insert(), 5505 * won't insert this conn into the conn_drain_list. 5506 * Similarly ill_pending_mp_add() will not add any mp to 5507 * the pending mp list, after this conn has started closing. 5508 * 5509 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5510 * cannot get set henceforth. 5511 */ 5512 mutex_enter(&connp->conn_lock); 5513 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5514 connp->conn_state_flags |= CONN_CLOSING; 5515 if (connp->conn_idl != NULL) 5516 drain_cleanup_reqd = B_TRUE; 5517 if (connp->conn_oper_pending_ill != NULL) 5518 conn_ioctl_cleanup_reqd = B_TRUE; 5519 if (connp->conn_ilg_inuse != 0) 5520 ilg_cleanup_reqd = B_TRUE; 5521 mutex_exit(&connp->conn_lock); 5522 5523 if (IPCL_IS_UDP(connp)) 5524 udp_quiesce_conn(connp); 5525 5526 if (conn_ioctl_cleanup_reqd) 5527 conn_ioctl_cleanup(connp); 5528 5529 if (is_system_labeled() && connp->conn_anon_port) { 5530 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5531 connp->conn_mlp_type, connp->conn_ulp, 5532 ntohs(connp->conn_lport), B_FALSE); 5533 connp->conn_anon_port = 0; 5534 } 5535 connp->conn_mlp_type = mlptSingle; 5536 5537 /* 5538 * Remove this conn from any fanout list it is on. 5539 * and then wait for any threads currently operating 5540 * on this endpoint to finish 5541 */ 5542 ipcl_hash_remove(connp); 5543 5544 /* 5545 * Remove this conn from the drain list, and do 5546 * any other cleanup that may be required. 5547 * (Only non-tcp streams may have a non-null conn_idl. 5548 * TCP streams are never flow controlled, and 5549 * conn_idl will be null) 5550 */ 5551 if (drain_cleanup_reqd) 5552 conn_drain_tail(connp, B_TRUE); 5553 5554 if (connp->conn_rq == ipst->ips_ip_g_mrouter || 5555 connp->conn_wq == ipst->ips_ip_g_mrouter) 5556 (void) ip_mrouter_done(NULL, ipst); 5557 5558 if (ilg_cleanup_reqd) 5559 ilg_delete_all(connp); 5560 5561 conn_delete_ire(connp, NULL); 5562 5563 /* 5564 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5565 * callers from write side can't be there now because close 5566 * is in progress. The only other caller is ipcl_walk 5567 * which checks for the condemned flag. 5568 */ 5569 mutex_enter(&connp->conn_lock); 5570 connp->conn_state_flags |= CONN_CONDEMNED; 5571 while (connp->conn_ref != 1) 5572 cv_wait(&connp->conn_cv, &connp->conn_lock); 5573 connp->conn_state_flags |= CONN_QUIESCED; 5574 mutex_exit(&connp->conn_lock); 5575 } 5576 5577 /* ARGSUSED */ 5578 int 5579 ip_close(queue_t *q, int flags) 5580 { 5581 conn_t *connp; 5582 5583 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5584 5585 /* 5586 * Call the appropriate delete routine depending on whether this is 5587 * a module or device. 5588 */ 5589 if (WR(q)->q_next != NULL) { 5590 /* This is a module close */ 5591 return (ip_modclose((ill_t *)q->q_ptr)); 5592 } 5593 5594 connp = q->q_ptr; 5595 ip_quiesce_conn(connp); 5596 5597 qprocsoff(q); 5598 5599 /* 5600 * Now we are truly single threaded on this stream, and can 5601 * delete the things hanging off the connp, and finally the connp. 5602 * We removed this connp from the fanout list, it cannot be 5603 * accessed thru the fanouts, and we already waited for the 5604 * conn_ref to drop to 0. We are already in close, so 5605 * there cannot be any other thread from the top. qprocsoff 5606 * has completed, and service has completed or won't run in 5607 * future. 5608 */ 5609 ASSERT(connp->conn_ref == 1); 5610 5611 /* 5612 * A conn which was previously marked as IPCL_UDP cannot 5613 * retain the flag because it would have been cleared by 5614 * udp_close(). 5615 */ 5616 ASSERT(!IPCL_IS_UDP(connp)); 5617 5618 if (connp->conn_latch != NULL) { 5619 IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack); 5620 connp->conn_latch = NULL; 5621 } 5622 if (connp->conn_policy != NULL) { 5623 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 5624 connp->conn_policy = NULL; 5625 } 5626 if (connp->conn_ipsec_opt_mp != NULL) { 5627 freemsg(connp->conn_ipsec_opt_mp); 5628 connp->conn_ipsec_opt_mp = NULL; 5629 } 5630 5631 inet_minor_free(ip_minor_arena, connp->conn_dev); 5632 5633 connp->conn_ref--; 5634 ipcl_conn_destroy(connp); 5635 5636 q->q_ptr = WR(q)->q_ptr = NULL; 5637 return (0); 5638 } 5639 5640 int 5641 ip_snmpmod_close(queue_t *q) 5642 { 5643 conn_t *connp = Q_TO_CONN(q); 5644 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5645 5646 qprocsoff(q); 5647 5648 if (connp->conn_flags & IPCL_UDPMOD) 5649 udp_close_free(connp); 5650 5651 if (connp->conn_cred != NULL) { 5652 crfree(connp->conn_cred); 5653 connp->conn_cred = NULL; 5654 } 5655 CONN_DEC_REF(connp); 5656 q->q_ptr = WR(q)->q_ptr = NULL; 5657 return (0); 5658 } 5659 5660 /* 5661 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5662 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5663 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5664 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5665 * queues as we never enqueue messages there and we don't handle any ioctls. 5666 * Everything else is freed. 5667 */ 5668 void 5669 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5670 { 5671 conn_t *connp = q->q_ptr; 5672 pfi_t setfn; 5673 pfi_t getfn; 5674 5675 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5676 5677 switch (DB_TYPE(mp)) { 5678 case M_PROTO: 5679 case M_PCPROTO: 5680 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5681 ((((union T_primitives *)mp->b_rptr)->type == 5682 T_SVR4_OPTMGMT_REQ) || 5683 (((union T_primitives *)mp->b_rptr)->type == 5684 T_OPTMGMT_REQ))) { 5685 /* 5686 * This is the only TPI primitive supported. Its 5687 * handling does not require tcp_t, but it does require 5688 * conn_t to check permissions. 5689 */ 5690 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5691 5692 if (connp->conn_flags & IPCL_TCPMOD) { 5693 setfn = tcp_snmp_set; 5694 getfn = tcp_snmp_get; 5695 } else { 5696 setfn = udp_snmp_set; 5697 getfn = udp_snmp_get; 5698 } 5699 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5700 freemsg(mp); 5701 return; 5702 } 5703 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5704 != NULL) 5705 qreply(q, mp); 5706 break; 5707 case M_FLUSH: 5708 case M_IOCTL: 5709 putnext(q, mp); 5710 break; 5711 default: 5712 freemsg(mp); 5713 break; 5714 } 5715 } 5716 5717 /* Return the IP checksum for the IP header at "iph". */ 5718 uint16_t 5719 ip_csum_hdr(ipha_t *ipha) 5720 { 5721 uint16_t *uph; 5722 uint32_t sum; 5723 int opt_len; 5724 5725 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5726 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5727 uph = (uint16_t *)ipha; 5728 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5729 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5730 if (opt_len > 0) { 5731 do { 5732 sum += uph[10]; 5733 sum += uph[11]; 5734 uph += 2; 5735 } while (--opt_len); 5736 } 5737 sum = (sum & 0xFFFF) + (sum >> 16); 5738 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5739 if (sum == 0xffff) 5740 sum = 0; 5741 return ((uint16_t)sum); 5742 } 5743 5744 /* 5745 * Called when the module is about to be unloaded 5746 */ 5747 void 5748 ip_ddi_destroy(void) 5749 { 5750 tnet_fini(); 5751 5752 sctp_ddi_g_destroy(); 5753 tcp_ddi_g_destroy(); 5754 ipsec_policy_g_destroy(); 5755 ipcl_g_destroy(); 5756 ip_net_g_destroy(); 5757 ip_ire_g_fini(); 5758 inet_minor_destroy(ip_minor_arena); 5759 5760 netstack_unregister(NS_IP); 5761 } 5762 5763 /* 5764 * First step in cleanup. 5765 */ 5766 /* ARGSUSED */ 5767 static void 5768 ip_stack_shutdown(netstackid_t stackid, void *arg) 5769 { 5770 ip_stack_t *ipst = (ip_stack_t *)arg; 5771 5772 #ifdef NS_DEBUG 5773 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5774 #endif 5775 5776 /* Get rid of loopback interfaces and their IREs */ 5777 ip_loopback_cleanup(ipst); 5778 } 5779 5780 /* 5781 * Free the IP stack instance. 5782 */ 5783 static void 5784 ip_stack_fini(netstackid_t stackid, void *arg) 5785 { 5786 ip_stack_t *ipst = (ip_stack_t *)arg; 5787 int ret; 5788 5789 #ifdef NS_DEBUG 5790 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5791 #endif 5792 ipv4_hook_destroy(ipst); 5793 ipv6_hook_destroy(ipst); 5794 ip_net_destroy(ipst); 5795 5796 rw_destroy(&ipst->ips_srcid_lock); 5797 5798 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5799 ipst->ips_ip_mibkp = NULL; 5800 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5801 ipst->ips_icmp_mibkp = NULL; 5802 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5803 ipst->ips_ip_kstat = NULL; 5804 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5805 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5806 ipst->ips_ip6_kstat = NULL; 5807 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5808 5809 nd_free(&ipst->ips_ip_g_nd); 5810 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5811 ipst->ips_param_arr = NULL; 5812 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5813 ipst->ips_ndp_arr = NULL; 5814 5815 ip_mrouter_stack_destroy(ipst); 5816 5817 mutex_destroy(&ipst->ips_ip_mi_lock); 5818 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5819 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5820 rw_destroy(&ipst->ips_ip_g_nd_lock); 5821 5822 ret = untimeout(ipst->ips_igmp_timeout_id); 5823 if (ret == -1) { 5824 ASSERT(ipst->ips_igmp_timeout_id == 0); 5825 } else { 5826 ASSERT(ipst->ips_igmp_timeout_id != 0); 5827 ipst->ips_igmp_timeout_id = 0; 5828 } 5829 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5830 if (ret == -1) { 5831 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5832 } else { 5833 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5834 ipst->ips_igmp_slowtimeout_id = 0; 5835 } 5836 ret = untimeout(ipst->ips_mld_timeout_id); 5837 if (ret == -1) { 5838 ASSERT(ipst->ips_mld_timeout_id == 0); 5839 } else { 5840 ASSERT(ipst->ips_mld_timeout_id != 0); 5841 ipst->ips_mld_timeout_id = 0; 5842 } 5843 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5844 if (ret == -1) { 5845 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5846 } else { 5847 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5848 ipst->ips_mld_slowtimeout_id = 0; 5849 } 5850 ret = untimeout(ipst->ips_ip_ire_expire_id); 5851 if (ret == -1) { 5852 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5853 } else { 5854 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5855 ipst->ips_ip_ire_expire_id = 0; 5856 } 5857 5858 mutex_destroy(&ipst->ips_igmp_timer_lock); 5859 mutex_destroy(&ipst->ips_mld_timer_lock); 5860 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5861 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5862 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5863 rw_destroy(&ipst->ips_ill_g_lock); 5864 5865 ip_ire_fini(ipst); 5866 ip6_asp_free(ipst); 5867 conn_drain_fini(ipst); 5868 ipcl_destroy(ipst); 5869 5870 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5871 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5872 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5873 ipst->ips_ndp4 = NULL; 5874 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5875 ipst->ips_ndp6 = NULL; 5876 5877 if (ipst->ips_loopback_ksp != NULL) { 5878 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5879 ipst->ips_loopback_ksp = NULL; 5880 } 5881 5882 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5883 ipst->ips_phyint_g_list = NULL; 5884 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5885 ipst->ips_ill_g_heads = NULL; 5886 5887 kmem_free(ipst, sizeof (*ipst)); 5888 } 5889 5890 /* 5891 * Called when the IP kernel module is loaded into the kernel 5892 */ 5893 void 5894 ip_ddi_init(void) 5895 { 5896 TCP6_MAJ = ddi_name_to_major(TCP6); 5897 TCP_MAJ = ddi_name_to_major(TCP); 5898 SCTP_MAJ = ddi_name_to_major(SCTP); 5899 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5900 5901 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5902 5903 /* 5904 * For IP and TCP the minor numbers should start from 2 since we have 4 5905 * initial devices: ip, ip6, tcp, tcp6. 5906 */ 5907 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5908 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5909 cmn_err(CE_PANIC, 5910 "ip_ddi_init: ip_minor_arena creation failed\n"); 5911 } 5912 5913 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5914 5915 ipcl_g_init(); 5916 ip_ire_g_init(); 5917 ip_net_g_init(); 5918 5919 #ifdef ILL_DEBUG 5920 /* Default cleanup function */ 5921 ip_cleanup_func = ip_thread_exit; 5922 #endif 5923 5924 /* 5925 * We want to be informed each time a stack is created or 5926 * destroyed in the kernel, so we can maintain the 5927 * set of udp_stack_t's. 5928 */ 5929 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 5930 ip_stack_fini); 5931 5932 ipsec_policy_g_init(); 5933 tcp_ddi_g_init(); 5934 sctp_ddi_g_init(); 5935 5936 tnet_init(); 5937 } 5938 5939 /* 5940 * Initialize the IP stack instance. 5941 */ 5942 static void * 5943 ip_stack_init(netstackid_t stackid, netstack_t *ns) 5944 { 5945 ip_stack_t *ipst; 5946 ipparam_t *pa; 5947 ipndp_t *na; 5948 5949 #ifdef NS_DEBUG 5950 printf("ip_stack_init(stack %d)\n", stackid); 5951 #endif 5952 5953 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 5954 ipst->ips_netstack = ns; 5955 5956 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 5957 KM_SLEEP); 5958 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 5959 KM_SLEEP); 5960 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5961 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 5962 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5963 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 5964 5965 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5966 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5967 ipst->ips_igmp_deferred_next = INFINITY; 5968 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5969 ipst->ips_mld_deferred_next = INFINITY; 5970 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5971 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5972 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5973 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5974 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 5975 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5976 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5977 5978 ipcl_init(ipst); 5979 ip_ire_init(ipst); 5980 ip6_asp_init(ipst); 5981 ipif_init(ipst); 5982 conn_drain_init(ipst); 5983 ip_mrouter_stack_init(ipst); 5984 5985 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 5986 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 5987 5988 ipst->ips_ip_multirt_log_interval = 1000; 5989 5990 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 5991 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 5992 ipst->ips_ill_index = 1; 5993 5994 ipst->ips_saved_ip_g_forward = -1; 5995 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 5996 5997 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 5998 ipst->ips_param_arr = pa; 5999 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6000 6001 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6002 ipst->ips_ndp_arr = na; 6003 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6004 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6005 (caddr_t)&ipst->ips_ip_g_forward; 6006 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6007 (caddr_t)&ipst->ips_ipv6_forward; 6008 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6009 "ip_cgtp_filter") == 0); 6010 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6011 (caddr_t)&ipst->ips_ip_cgtp_filter; 6012 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_name, 6013 "ipmp_hook_emulation") == 0); 6014 ipst->ips_ndp_arr[IPNDP_IPMP_HOOK_OFFSET].ip_ndp_data = 6015 (caddr_t)&ipst->ips_ipmp_hook_emulation; 6016 6017 (void) ip_param_register(&ipst->ips_ip_g_nd, 6018 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6019 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6020 6021 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6022 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6023 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6024 ipst->ips_ip6_kstat = 6025 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6026 6027 ipst->ips_ipmp_enable_failback = B_TRUE; 6028 6029 ipst->ips_ip_src_id = 1; 6030 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6031 6032 ip_net_init(ipst, ns); 6033 ipv4_hook_init(ipst); 6034 ipv6_hook_init(ipst); 6035 6036 return (ipst); 6037 } 6038 6039 /* 6040 * Allocate and initialize a DLPI template of the specified length. (May be 6041 * called as writer.) 6042 */ 6043 mblk_t * 6044 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6045 { 6046 mblk_t *mp; 6047 6048 mp = allocb(len, BPRI_MED); 6049 if (!mp) 6050 return (NULL); 6051 6052 /* 6053 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6054 * of which we don't seem to use) are sent with M_PCPROTO, and 6055 * that other DLPI are M_PROTO. 6056 */ 6057 if (prim == DL_INFO_REQ) { 6058 mp->b_datap->db_type = M_PCPROTO; 6059 } else { 6060 mp->b_datap->db_type = M_PROTO; 6061 } 6062 6063 mp->b_wptr = mp->b_rptr + len; 6064 bzero(mp->b_rptr, len); 6065 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6066 return (mp); 6067 } 6068 6069 const char * 6070 dlpi_prim_str(int prim) 6071 { 6072 switch (prim) { 6073 case DL_INFO_REQ: return ("DL_INFO_REQ"); 6074 case DL_INFO_ACK: return ("DL_INFO_ACK"); 6075 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 6076 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 6077 case DL_BIND_REQ: return ("DL_BIND_REQ"); 6078 case DL_BIND_ACK: return ("DL_BIND_ACK"); 6079 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 6080 case DL_OK_ACK: return ("DL_OK_ACK"); 6081 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 6082 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 6083 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 6084 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 6085 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 6086 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 6087 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 6088 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 6089 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 6090 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 6091 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 6092 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 6093 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 6094 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 6095 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 6096 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 6097 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 6098 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 6099 default: return ("<unknown primitive>"); 6100 } 6101 } 6102 6103 const char * 6104 dlpi_err_str(int err) 6105 { 6106 switch (err) { 6107 case DL_ACCESS: return ("DL_ACCESS"); 6108 case DL_BADADDR: return ("DL_BADADDR"); 6109 case DL_BADCORR: return ("DL_BADCORR"); 6110 case DL_BADDATA: return ("DL_BADDATA"); 6111 case DL_BADPPA: return ("DL_BADPPA"); 6112 case DL_BADPRIM: return ("DL_BADPRIM"); 6113 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 6114 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 6115 case DL_BADSAP: return ("DL_BADSAP"); 6116 case DL_BADTOKEN: return ("DL_BADTOKEN"); 6117 case DL_BOUND: return ("DL_BOUND"); 6118 case DL_INITFAILED: return ("DL_INITFAILED"); 6119 case DL_NOADDR: return ("DL_NOADDR"); 6120 case DL_NOTINIT: return ("DL_NOTINIT"); 6121 case DL_OUTSTATE: return ("DL_OUTSTATE"); 6122 case DL_SYSERR: return ("DL_SYSERR"); 6123 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 6124 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 6125 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 6126 case DL_TOOMANY: return ("DL_TOOMANY"); 6127 case DL_NOTENAB: return ("DL_NOTENAB"); 6128 case DL_BUSY: return ("DL_BUSY"); 6129 case DL_NOAUTO: return ("DL_NOAUTO"); 6130 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 6131 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 6132 case DL_XIDAUTO: return ("DL_XIDAUTO"); 6133 case DL_TESTAUTO: return ("DL_TESTAUTO"); 6134 case DL_PENDING: return ("DL_PENDING"); 6135 default: return ("<unknown error>"); 6136 } 6137 } 6138 6139 /* 6140 * Debug formatting routine. Returns a character string representation of the 6141 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6142 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6143 * 6144 * Once the ndd table-printing interfaces are removed, this can be changed to 6145 * standard dotted-decimal form. 6146 */ 6147 char * 6148 ip_dot_addr(ipaddr_t addr, char *buf) 6149 { 6150 uint8_t *ap = (uint8_t *)&addr; 6151 6152 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6153 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6154 return (buf); 6155 } 6156 6157 /* 6158 * Write the given MAC address as a printable string in the usual colon- 6159 * separated format. 6160 */ 6161 const char * 6162 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6163 { 6164 char *bp; 6165 6166 if (alen == 0 || buflen < 4) 6167 return ("?"); 6168 bp = buf; 6169 for (;;) { 6170 /* 6171 * If there are more MAC address bytes available, but we won't 6172 * have any room to print them, then add "..." to the string 6173 * instead. See below for the 'magic number' explanation. 6174 */ 6175 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6176 (void) strcpy(bp, "..."); 6177 break; 6178 } 6179 (void) sprintf(bp, "%02x", *addr++); 6180 bp += 2; 6181 if (--alen == 0) 6182 break; 6183 *bp++ = ':'; 6184 buflen -= 3; 6185 /* 6186 * At this point, based on the first 'if' statement above, 6187 * either alen == 1 and buflen >= 3, or alen > 1 and 6188 * buflen >= 4. The first case leaves room for the final "xx" 6189 * number and trailing NUL byte. The second leaves room for at 6190 * least "...". Thus the apparently 'magic' numbers chosen for 6191 * that statement. 6192 */ 6193 } 6194 return (buf); 6195 } 6196 6197 /* 6198 * Send an ICMP error after patching up the packet appropriately. Returns 6199 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6200 */ 6201 static boolean_t 6202 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6203 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6204 zoneid_t zoneid, ip_stack_t *ipst) 6205 { 6206 ipha_t *ipha; 6207 mblk_t *first_mp; 6208 boolean_t secure; 6209 unsigned char db_type; 6210 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6211 6212 first_mp = mp; 6213 if (mctl_present) { 6214 mp = mp->b_cont; 6215 secure = ipsec_in_is_secure(first_mp); 6216 ASSERT(mp != NULL); 6217 } else { 6218 /* 6219 * If this is an ICMP error being reported - which goes 6220 * up as M_CTLs, we need to convert them to M_DATA till 6221 * we finish checking with global policy because 6222 * ipsec_check_global_policy() assumes M_DATA as clear 6223 * and M_CTL as secure. 6224 */ 6225 db_type = DB_TYPE(mp); 6226 DB_TYPE(mp) = M_DATA; 6227 secure = B_FALSE; 6228 } 6229 /* 6230 * We are generating an icmp error for some inbound packet. 6231 * Called from all ip_fanout_(udp, tcp, proto) functions. 6232 * Before we generate an error, check with global policy 6233 * to see whether this is allowed to enter the system. As 6234 * there is no "conn", we are checking with global policy. 6235 */ 6236 ipha = (ipha_t *)mp->b_rptr; 6237 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6238 first_mp = ipsec_check_global_policy(first_mp, NULL, 6239 ipha, NULL, mctl_present, ipst->ips_netstack); 6240 if (first_mp == NULL) 6241 return (B_FALSE); 6242 } 6243 6244 if (!mctl_present) 6245 DB_TYPE(mp) = db_type; 6246 6247 if (flags & IP_FF_SEND_ICMP) { 6248 if (flags & IP_FF_HDR_COMPLETE) { 6249 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6250 freemsg(first_mp); 6251 return (B_TRUE); 6252 } 6253 } 6254 if (flags & IP_FF_CKSUM) { 6255 /* 6256 * Have to correct checksum since 6257 * the packet might have been 6258 * fragmented and the reassembly code in ip_rput 6259 * does not restore the IP checksum. 6260 */ 6261 ipha->ipha_hdr_checksum = 0; 6262 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6263 } 6264 switch (icmp_type) { 6265 case ICMP_DEST_UNREACHABLE: 6266 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6267 ipst); 6268 break; 6269 default: 6270 freemsg(first_mp); 6271 break; 6272 } 6273 } else { 6274 freemsg(first_mp); 6275 return (B_FALSE); 6276 } 6277 6278 return (B_TRUE); 6279 } 6280 6281 /* 6282 * Used to send an ICMP error message when a packet is received for 6283 * a protocol that is not supported. The mblk passed as argument 6284 * is consumed by this function. 6285 */ 6286 void 6287 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6288 ip_stack_t *ipst) 6289 { 6290 mblk_t *mp; 6291 ipha_t *ipha; 6292 ill_t *ill; 6293 ipsec_in_t *ii; 6294 6295 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6296 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6297 6298 mp = ipsec_mp->b_cont; 6299 ipsec_mp->b_cont = NULL; 6300 ipha = (ipha_t *)mp->b_rptr; 6301 /* Get ill from index in ipsec_in_t. */ 6302 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6303 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6304 ipst); 6305 if (ill != NULL) { 6306 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6307 if (ip_fanout_send_icmp(q, mp, flags, 6308 ICMP_DEST_UNREACHABLE, 6309 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6310 BUMP_MIB(ill->ill_ip_mib, 6311 ipIfStatsInUnknownProtos); 6312 } 6313 } else { 6314 if (ip_fanout_send_icmp_v6(q, mp, flags, 6315 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6316 0, B_FALSE, zoneid, ipst)) { 6317 BUMP_MIB(ill->ill_ip_mib, 6318 ipIfStatsInUnknownProtos); 6319 } 6320 } 6321 ill_refrele(ill); 6322 } else { /* re-link for the freemsg() below. */ 6323 ipsec_mp->b_cont = mp; 6324 } 6325 6326 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6327 freemsg(ipsec_mp); 6328 } 6329 6330 /* 6331 * See if the inbound datagram has had IPsec processing applied to it. 6332 */ 6333 boolean_t 6334 ipsec_in_is_secure(mblk_t *ipsec_mp) 6335 { 6336 ipsec_in_t *ii; 6337 6338 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6339 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6340 6341 if (ii->ipsec_in_loopback) { 6342 return (ii->ipsec_in_secure); 6343 } else { 6344 return (ii->ipsec_in_ah_sa != NULL || 6345 ii->ipsec_in_esp_sa != NULL || 6346 ii->ipsec_in_decaps); 6347 } 6348 } 6349 6350 /* 6351 * Handle protocols with which IP is less intimate. There 6352 * can be more than one stream bound to a particular 6353 * protocol. When this is the case, normally each one gets a copy 6354 * of any incoming packets. 6355 * 6356 * IPSEC NOTE : 6357 * 6358 * Don't allow a secure packet going up a non-secure connection. 6359 * We don't allow this because 6360 * 6361 * 1) Reply might go out in clear which will be dropped at 6362 * the sending side. 6363 * 2) If the reply goes out in clear it will give the 6364 * adversary enough information for getting the key in 6365 * most of the cases. 6366 * 6367 * Moreover getting a secure packet when we expect clear 6368 * implies that SA's were added without checking for 6369 * policy on both ends. This should not happen once ISAKMP 6370 * is used to negotiate SAs as SAs will be added only after 6371 * verifying the policy. 6372 * 6373 * NOTE : If the packet was tunneled and not multicast we only send 6374 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6375 * back to delivering packets to AF_INET6 raw sockets. 6376 * 6377 * IPQoS Notes: 6378 * Once we have determined the client, invoke IPPF processing. 6379 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6380 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6381 * ip_policy will be false. 6382 * 6383 * Zones notes: 6384 * Currently only applications in the global zone can create raw sockets for 6385 * protocols other than ICMP. So unlike the broadcast / multicast case of 6386 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6387 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6388 */ 6389 static void 6390 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6391 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6392 zoneid_t zoneid) 6393 { 6394 queue_t *rq; 6395 mblk_t *mp1, *first_mp1; 6396 uint_t protocol = ipha->ipha_protocol; 6397 ipaddr_t dst; 6398 boolean_t one_only; 6399 mblk_t *first_mp = mp; 6400 boolean_t secure; 6401 uint32_t ill_index; 6402 conn_t *connp, *first_connp, *next_connp; 6403 connf_t *connfp; 6404 boolean_t shared_addr; 6405 mib2_ipIfStatsEntry_t *mibptr; 6406 ip_stack_t *ipst = recv_ill->ill_ipst; 6407 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6408 6409 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6410 if (mctl_present) { 6411 mp = first_mp->b_cont; 6412 secure = ipsec_in_is_secure(first_mp); 6413 ASSERT(mp != NULL); 6414 } else { 6415 secure = B_FALSE; 6416 } 6417 dst = ipha->ipha_dst; 6418 /* 6419 * If the packet was tunneled and not multicast we only send to it 6420 * the first match. 6421 */ 6422 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6423 !CLASSD(dst)); 6424 6425 shared_addr = (zoneid == ALL_ZONES); 6426 if (shared_addr) { 6427 /* 6428 * We don't allow multilevel ports for raw IP, so no need to 6429 * check for that here. 6430 */ 6431 zoneid = tsol_packet_to_zoneid(mp); 6432 } 6433 6434 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6435 mutex_enter(&connfp->connf_lock); 6436 connp = connfp->connf_head; 6437 for (connp = connfp->connf_head; connp != NULL; 6438 connp = connp->conn_next) { 6439 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6440 zoneid) && 6441 (!is_system_labeled() || 6442 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6443 connp))) { 6444 break; 6445 } 6446 } 6447 6448 if (connp == NULL || connp->conn_upq == NULL) { 6449 /* 6450 * No one bound to these addresses. Is 6451 * there a client that wants all 6452 * unclaimed datagrams? 6453 */ 6454 mutex_exit(&connfp->connf_lock); 6455 /* 6456 * Check for IPPROTO_ENCAP... 6457 */ 6458 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6459 /* 6460 * If an IPsec mblk is here on a multicast 6461 * tunnel (using ip_mroute stuff), check policy here, 6462 * THEN ship off to ip_mroute_decap(). 6463 * 6464 * BTW, If I match a configured IP-in-IP 6465 * tunnel, this path will not be reached, and 6466 * ip_mroute_decap will never be called. 6467 */ 6468 first_mp = ipsec_check_global_policy(first_mp, connp, 6469 ipha, NULL, mctl_present, ipst->ips_netstack); 6470 if (first_mp != NULL) { 6471 if (mctl_present) 6472 freeb(first_mp); 6473 ip_mroute_decap(q, mp, ill); 6474 } /* Else we already freed everything! */ 6475 } else { 6476 /* 6477 * Otherwise send an ICMP protocol unreachable. 6478 */ 6479 if (ip_fanout_send_icmp(q, first_mp, flags, 6480 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6481 mctl_present, zoneid, ipst)) { 6482 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6483 } 6484 } 6485 return; 6486 } 6487 CONN_INC_REF(connp); 6488 first_connp = connp; 6489 6490 /* 6491 * Only send message to one tunnel driver by immediately 6492 * terminating the loop. 6493 */ 6494 connp = one_only ? NULL : connp->conn_next; 6495 6496 for (;;) { 6497 while (connp != NULL) { 6498 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6499 flags, zoneid) && 6500 (!is_system_labeled() || 6501 tsol_receive_local(mp, &dst, IPV4_VERSION, 6502 shared_addr, connp))) 6503 break; 6504 connp = connp->conn_next; 6505 } 6506 6507 /* 6508 * Copy the packet. 6509 */ 6510 if (connp == NULL || connp->conn_upq == NULL || 6511 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6512 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6513 /* 6514 * No more interested clients or memory 6515 * allocation failed 6516 */ 6517 connp = first_connp; 6518 break; 6519 } 6520 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6521 CONN_INC_REF(connp); 6522 mutex_exit(&connfp->connf_lock); 6523 rq = connp->conn_rq; 6524 if (!canputnext(rq)) { 6525 if (flags & IP_FF_RAWIP) { 6526 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6527 } else { 6528 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6529 } 6530 6531 freemsg(first_mp1); 6532 } else { 6533 /* 6534 * Don't enforce here if we're an actual tunnel - 6535 * let "tun" do it instead. 6536 */ 6537 if (!IPCL_IS_IPTUN(connp) && 6538 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6539 secure)) { 6540 first_mp1 = ipsec_check_inbound_policy 6541 (first_mp1, connp, ipha, NULL, 6542 mctl_present); 6543 } 6544 if (first_mp1 != NULL) { 6545 int in_flags = 0; 6546 /* 6547 * ip_fanout_proto also gets called from 6548 * icmp_inbound_error_fanout, in which case 6549 * the msg type is M_CTL. Don't add info 6550 * in this case for the time being. In future 6551 * when there is a need for knowing the 6552 * inbound iface index for ICMP error msgs, 6553 * then this can be changed. 6554 */ 6555 if (connp->conn_recvif) 6556 in_flags = IPF_RECVIF; 6557 /* 6558 * The ULP may support IP_RECVPKTINFO for both 6559 * IP v4 and v6 so pass the appropriate argument 6560 * based on conn IP version. 6561 */ 6562 if (connp->conn_ip_recvpktinfo) { 6563 if (connp->conn_af_isv6) { 6564 /* 6565 * V6 only needs index 6566 */ 6567 in_flags |= IPF_RECVIF; 6568 } else { 6569 /* 6570 * V4 needs index + 6571 * matching address. 6572 */ 6573 in_flags |= IPF_RECVADDR; 6574 } 6575 } 6576 if ((in_flags != 0) && 6577 (mp->b_datap->db_type != M_CTL)) { 6578 /* 6579 * the actual data will be 6580 * contained in b_cont upon 6581 * successful return of the 6582 * following call else 6583 * original mblk is returned 6584 */ 6585 ASSERT(recv_ill != NULL); 6586 mp1 = ip_add_info(mp1, recv_ill, 6587 in_flags, IPCL_ZONEID(connp), ipst); 6588 } 6589 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6590 if (mctl_present) 6591 freeb(first_mp1); 6592 putnext(rq, mp1); 6593 } 6594 } 6595 mutex_enter(&connfp->connf_lock); 6596 /* Follow the next pointer before releasing the conn. */ 6597 next_connp = connp->conn_next; 6598 CONN_DEC_REF(connp); 6599 connp = next_connp; 6600 } 6601 6602 /* Last one. Send it upstream. */ 6603 mutex_exit(&connfp->connf_lock); 6604 6605 /* 6606 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6607 * will be set to false. 6608 */ 6609 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6610 ill_index = ill->ill_phyint->phyint_ifindex; 6611 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6612 if (mp == NULL) { 6613 CONN_DEC_REF(connp); 6614 if (mctl_present) { 6615 freeb(first_mp); 6616 } 6617 return; 6618 } 6619 } 6620 6621 rq = connp->conn_rq; 6622 if (!canputnext(rq)) { 6623 if (flags & IP_FF_RAWIP) { 6624 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6625 } else { 6626 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6627 } 6628 6629 freemsg(first_mp); 6630 } else { 6631 if (IPCL_IS_IPTUN(connp)) { 6632 /* 6633 * Tunneled packet. We enforce policy in the tunnel 6634 * module itself. 6635 * 6636 * Send the WHOLE packet up (incl. IPSEC_IN) without 6637 * a policy check. 6638 */ 6639 putnext(rq, first_mp); 6640 CONN_DEC_REF(connp); 6641 return; 6642 } 6643 6644 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6645 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6646 ipha, NULL, mctl_present); 6647 } 6648 6649 if (first_mp != NULL) { 6650 int in_flags = 0; 6651 6652 /* 6653 * ip_fanout_proto also gets called 6654 * from icmp_inbound_error_fanout, in 6655 * which case the msg type is M_CTL. 6656 * Don't add info in this case for time 6657 * being. In future when there is a 6658 * need for knowing the inbound iface 6659 * index for ICMP error msgs, then this 6660 * can be changed 6661 */ 6662 if (connp->conn_recvif) 6663 in_flags = IPF_RECVIF; 6664 if (connp->conn_ip_recvpktinfo) { 6665 if (connp->conn_af_isv6) { 6666 /* 6667 * V6 only needs index 6668 */ 6669 in_flags |= IPF_RECVIF; 6670 } else { 6671 /* 6672 * V4 needs index + 6673 * matching address. 6674 */ 6675 in_flags |= IPF_RECVADDR; 6676 } 6677 } 6678 if ((in_flags != 0) && 6679 (mp->b_datap->db_type != M_CTL)) { 6680 6681 /* 6682 * the actual data will be contained in 6683 * b_cont upon successful return 6684 * of the following call else original 6685 * mblk is returned 6686 */ 6687 ASSERT(recv_ill != NULL); 6688 mp = ip_add_info(mp, recv_ill, 6689 in_flags, IPCL_ZONEID(connp), ipst); 6690 } 6691 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6692 putnext(rq, mp); 6693 if (mctl_present) 6694 freeb(first_mp); 6695 } 6696 } 6697 CONN_DEC_REF(connp); 6698 } 6699 6700 /* 6701 * Fanout for TCP packets 6702 * The caller puts <fport, lport> in the ports parameter. 6703 * 6704 * IPQoS Notes 6705 * Before sending it to the client, invoke IPPF processing. 6706 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6707 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6708 * ip_policy is false. 6709 */ 6710 static void 6711 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6712 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6713 { 6714 mblk_t *first_mp; 6715 boolean_t secure; 6716 uint32_t ill_index; 6717 int ip_hdr_len; 6718 tcph_t *tcph; 6719 boolean_t syn_present = B_FALSE; 6720 conn_t *connp; 6721 ip_stack_t *ipst = recv_ill->ill_ipst; 6722 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6723 6724 ASSERT(recv_ill != NULL); 6725 6726 first_mp = mp; 6727 if (mctl_present) { 6728 ASSERT(first_mp->b_datap->db_type == M_CTL); 6729 mp = first_mp->b_cont; 6730 secure = ipsec_in_is_secure(first_mp); 6731 ASSERT(mp != NULL); 6732 } else { 6733 secure = B_FALSE; 6734 } 6735 6736 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6737 6738 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6739 zoneid, ipst)) == NULL) { 6740 /* 6741 * No connected connection or listener. Send a 6742 * TH_RST via tcp_xmit_listeners_reset. 6743 */ 6744 6745 /* Initiate IPPf processing, if needed. */ 6746 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6747 uint32_t ill_index; 6748 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6749 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6750 if (first_mp == NULL) 6751 return; 6752 } 6753 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6754 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6755 zoneid)); 6756 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6757 ipst->ips_netstack->netstack_tcp); 6758 return; 6759 } 6760 6761 /* 6762 * Allocate the SYN for the TCP connection here itself 6763 */ 6764 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6765 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6766 if (IPCL_IS_TCP(connp)) { 6767 squeue_t *sqp; 6768 6769 /* 6770 * For fused tcp loopback, assign the eager's 6771 * squeue to be that of the active connect's. 6772 * Note that we don't check for IP_FF_LOOPBACK 6773 * here since this routine gets called only 6774 * for loopback (unlike the IPv6 counterpart). 6775 */ 6776 ASSERT(Q_TO_CONN(q) != NULL); 6777 if (do_tcp_fusion && 6778 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6779 !secure && 6780 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy && 6781 IPCL_IS_TCP(Q_TO_CONN(q))) { 6782 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6783 sqp = Q_TO_CONN(q)->conn_sqp; 6784 } else { 6785 sqp = IP_SQUEUE_GET(lbolt); 6786 } 6787 6788 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6789 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6790 syn_present = B_TRUE; 6791 } 6792 } 6793 6794 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6795 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6796 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6797 if ((flags & TH_RST) || (flags & TH_URG)) { 6798 CONN_DEC_REF(connp); 6799 freemsg(first_mp); 6800 return; 6801 } 6802 if (flags & TH_ACK) { 6803 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6804 ipst->ips_netstack->netstack_tcp); 6805 CONN_DEC_REF(connp); 6806 return; 6807 } 6808 6809 CONN_DEC_REF(connp); 6810 freemsg(first_mp); 6811 return; 6812 } 6813 6814 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6815 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6816 NULL, mctl_present); 6817 if (first_mp == NULL) { 6818 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6819 CONN_DEC_REF(connp); 6820 return; 6821 } 6822 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6823 ASSERT(syn_present); 6824 if (mctl_present) { 6825 ASSERT(first_mp != mp); 6826 first_mp->b_datap->db_struioflag |= 6827 STRUIO_POLICY; 6828 } else { 6829 ASSERT(first_mp == mp); 6830 mp->b_datap->db_struioflag &= 6831 ~STRUIO_EAGER; 6832 mp->b_datap->db_struioflag |= 6833 STRUIO_POLICY; 6834 } 6835 } else { 6836 /* 6837 * Discard first_mp early since we're dealing with a 6838 * fully-connected conn_t and tcp doesn't do policy in 6839 * this case. 6840 */ 6841 if (mctl_present) { 6842 freeb(first_mp); 6843 mctl_present = B_FALSE; 6844 } 6845 first_mp = mp; 6846 } 6847 } 6848 6849 /* 6850 * Initiate policy processing here if needed. If we get here from 6851 * icmp_inbound_error_fanout, ip_policy is false. 6852 */ 6853 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6854 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6855 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6856 if (mp == NULL) { 6857 CONN_DEC_REF(connp); 6858 if (mctl_present) 6859 freeb(first_mp); 6860 return; 6861 } else if (mctl_present) { 6862 ASSERT(first_mp != mp); 6863 first_mp->b_cont = mp; 6864 } else { 6865 first_mp = mp; 6866 } 6867 } 6868 6869 6870 6871 /* Handle socket options. */ 6872 if (!syn_present && 6873 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6874 /* Add header */ 6875 ASSERT(recv_ill != NULL); 6876 /* 6877 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6878 * IPF_RECVIF. 6879 */ 6880 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6881 ipst); 6882 if (mp == NULL) { 6883 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6884 CONN_DEC_REF(connp); 6885 if (mctl_present) 6886 freeb(first_mp); 6887 return; 6888 } else if (mctl_present) { 6889 /* 6890 * ip_add_info might return a new mp. 6891 */ 6892 ASSERT(first_mp != mp); 6893 first_mp->b_cont = mp; 6894 } else { 6895 first_mp = mp; 6896 } 6897 } 6898 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6899 if (IPCL_IS_TCP(connp)) { 6900 /* do not drain, certain use cases can blow the stack */ 6901 squeue_enter_nodrain(connp->conn_sqp, first_mp, 6902 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6903 } else { 6904 putnext(connp->conn_rq, first_mp); 6905 CONN_DEC_REF(connp); 6906 } 6907 } 6908 6909 /* 6910 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6911 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6912 * Caller is responsible for dropping references to the conn, and freeing 6913 * first_mp. 6914 * 6915 * IPQoS Notes 6916 * Before sending it to the client, invoke IPPF processing. Policy processing 6917 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6918 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6919 * ip_wput_local, ip_policy is false. 6920 */ 6921 static void 6922 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6923 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6924 boolean_t ip_policy) 6925 { 6926 boolean_t mctl_present = (first_mp != NULL); 6927 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6928 uint32_t ill_index; 6929 ip_stack_t *ipst = recv_ill->ill_ipst; 6930 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6931 6932 ASSERT(ill != NULL); 6933 6934 if (mctl_present) 6935 first_mp->b_cont = mp; 6936 else 6937 first_mp = mp; 6938 6939 if (CONN_UDP_FLOWCTLD(connp)) { 6940 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6941 freemsg(first_mp); 6942 return; 6943 } 6944 6945 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6946 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6947 NULL, mctl_present); 6948 if (first_mp == NULL) { 6949 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6950 return; /* Freed by ipsec_check_inbound_policy(). */ 6951 } 6952 } 6953 if (mctl_present) 6954 freeb(first_mp); 6955 6956 /* Handle options. */ 6957 if (connp->conn_recvif) 6958 in_flags = IPF_RECVIF; 6959 /* 6960 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 6961 * passed to ip_add_info is based on IP version of connp. 6962 */ 6963 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6964 if (connp->conn_af_isv6) { 6965 /* 6966 * V6 only needs index 6967 */ 6968 in_flags |= IPF_RECVIF; 6969 } else { 6970 /* 6971 * V4 needs index + matching address. 6972 */ 6973 in_flags |= IPF_RECVADDR; 6974 } 6975 } 6976 6977 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6978 in_flags |= IPF_RECVSLLA; 6979 6980 /* 6981 * Initiate IPPF processing here, if needed. Note first_mp won't be 6982 * freed if the packet is dropped. The caller will do so. 6983 */ 6984 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6985 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6986 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6987 if (mp == NULL) { 6988 return; 6989 } 6990 } 6991 if ((in_flags != 0) && 6992 (mp->b_datap->db_type != M_CTL)) { 6993 /* 6994 * The actual data will be contained in b_cont 6995 * upon successful return of the following call 6996 * else original mblk is returned 6997 */ 6998 ASSERT(recv_ill != NULL); 6999 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7000 ipst); 7001 } 7002 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7003 /* Send it upstream */ 7004 CONN_UDP_RECV(connp, mp); 7005 } 7006 7007 /* 7008 * Fanout for UDP packets. 7009 * The caller puts <fport, lport> in the ports parameter. 7010 * 7011 * If SO_REUSEADDR is set all multicast and broadcast packets 7012 * will be delivered to all streams bound to the same port. 7013 * 7014 * Zones notes: 7015 * Multicast and broadcast packets will be distributed to streams in all zones. 7016 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7017 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7018 * packets. To maintain this behavior with multiple zones, the conns are grouped 7019 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7020 * each zone. If unset, all the following conns in the same zone are skipped. 7021 */ 7022 static void 7023 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7024 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7025 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7026 { 7027 uint32_t dstport, srcport; 7028 ipaddr_t dst; 7029 mblk_t *first_mp; 7030 boolean_t secure; 7031 in6_addr_t v6src; 7032 conn_t *connp; 7033 connf_t *connfp; 7034 conn_t *first_connp; 7035 conn_t *next_connp; 7036 mblk_t *mp1, *first_mp1; 7037 ipaddr_t src; 7038 zoneid_t last_zoneid; 7039 boolean_t reuseaddr; 7040 boolean_t shared_addr; 7041 ip_stack_t *ipst; 7042 7043 ASSERT(recv_ill != NULL); 7044 ipst = recv_ill->ill_ipst; 7045 7046 first_mp = mp; 7047 if (mctl_present) { 7048 mp = first_mp->b_cont; 7049 first_mp->b_cont = NULL; 7050 secure = ipsec_in_is_secure(first_mp); 7051 ASSERT(mp != NULL); 7052 } else { 7053 first_mp = NULL; 7054 secure = B_FALSE; 7055 } 7056 7057 /* Extract ports in net byte order */ 7058 dstport = htons(ntohl(ports) & 0xFFFF); 7059 srcport = htons(ntohl(ports) >> 16); 7060 dst = ipha->ipha_dst; 7061 src = ipha->ipha_src; 7062 7063 shared_addr = (zoneid == ALL_ZONES); 7064 if (shared_addr) { 7065 /* 7066 * No need to handle exclusive-stack zones since ALL_ZONES 7067 * only applies to the shared stack. 7068 */ 7069 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7070 if (zoneid == ALL_ZONES) 7071 zoneid = tsol_packet_to_zoneid(mp); 7072 } 7073 7074 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7075 mutex_enter(&connfp->connf_lock); 7076 connp = connfp->connf_head; 7077 if (!broadcast && !CLASSD(dst)) { 7078 /* 7079 * Not broadcast or multicast. Send to the one (first) 7080 * client we find. No need to check conn_wantpacket() 7081 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7082 * IPv4 unicast packets. 7083 */ 7084 while ((connp != NULL) && 7085 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7086 !IPCL_ZONE_MATCH(connp, zoneid))) { 7087 connp = connp->conn_next; 7088 } 7089 7090 if (connp == NULL || connp->conn_upq == NULL) 7091 goto notfound; 7092 7093 if (is_system_labeled() && 7094 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7095 connp)) 7096 goto notfound; 7097 7098 CONN_INC_REF(connp); 7099 mutex_exit(&connfp->connf_lock); 7100 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7101 flags, recv_ill, ip_policy); 7102 IP_STAT(ipst, ip_udp_fannorm); 7103 CONN_DEC_REF(connp); 7104 return; 7105 } 7106 7107 /* 7108 * Broadcast and multicast case 7109 * 7110 * Need to check conn_wantpacket(). 7111 * If SO_REUSEADDR has been set on the first we send the 7112 * packet to all clients that have joined the group and 7113 * match the port. 7114 */ 7115 7116 while (connp != NULL) { 7117 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7118 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7119 (!is_system_labeled() || 7120 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7121 connp))) 7122 break; 7123 connp = connp->conn_next; 7124 } 7125 7126 if (connp == NULL || connp->conn_upq == NULL) 7127 goto notfound; 7128 7129 first_connp = connp; 7130 /* 7131 * When SO_REUSEADDR is not set, send the packet only to the first 7132 * matching connection in its zone by keeping track of the zoneid. 7133 */ 7134 reuseaddr = first_connp->conn_reuseaddr; 7135 last_zoneid = first_connp->conn_zoneid; 7136 7137 CONN_INC_REF(connp); 7138 connp = connp->conn_next; 7139 for (;;) { 7140 while (connp != NULL) { 7141 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7142 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7143 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7144 (!is_system_labeled() || 7145 tsol_receive_local(mp, &dst, IPV4_VERSION, 7146 shared_addr, connp))) 7147 break; 7148 connp = connp->conn_next; 7149 } 7150 /* 7151 * Just copy the data part alone. The mctl part is 7152 * needed just for verifying policy and it is never 7153 * sent up. 7154 */ 7155 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7156 ((mp1 = copymsg(mp)) == NULL))) { 7157 /* 7158 * No more interested clients or memory 7159 * allocation failed 7160 */ 7161 connp = first_connp; 7162 break; 7163 } 7164 if (connp->conn_zoneid != last_zoneid) { 7165 /* 7166 * Update the zoneid so that the packet isn't sent to 7167 * any more conns in the same zone unless SO_REUSEADDR 7168 * is set. 7169 */ 7170 reuseaddr = connp->conn_reuseaddr; 7171 last_zoneid = connp->conn_zoneid; 7172 } 7173 if (first_mp != NULL) { 7174 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7175 ipsec_info_type == IPSEC_IN); 7176 first_mp1 = ipsec_in_tag(first_mp, NULL, 7177 ipst->ips_netstack); 7178 if (first_mp1 == NULL) { 7179 freemsg(mp1); 7180 connp = first_connp; 7181 break; 7182 } 7183 } else { 7184 first_mp1 = NULL; 7185 } 7186 CONN_INC_REF(connp); 7187 mutex_exit(&connfp->connf_lock); 7188 /* 7189 * IPQoS notes: We don't send the packet for policy 7190 * processing here, will do it for the last one (below). 7191 * i.e. we do it per-packet now, but if we do policy 7192 * processing per-conn, then we would need to do it 7193 * here too. 7194 */ 7195 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7196 ipha, flags, recv_ill, B_FALSE); 7197 mutex_enter(&connfp->connf_lock); 7198 /* Follow the next pointer before releasing the conn. */ 7199 next_connp = connp->conn_next; 7200 IP_STAT(ipst, ip_udp_fanmb); 7201 CONN_DEC_REF(connp); 7202 connp = next_connp; 7203 } 7204 7205 /* Last one. Send it upstream. */ 7206 mutex_exit(&connfp->connf_lock); 7207 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7208 recv_ill, ip_policy); 7209 IP_STAT(ipst, ip_udp_fanmb); 7210 CONN_DEC_REF(connp); 7211 return; 7212 7213 notfound: 7214 7215 mutex_exit(&connfp->connf_lock); 7216 IP_STAT(ipst, ip_udp_fanothers); 7217 /* 7218 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7219 * have already been matched above, since they live in the IPv4 7220 * fanout tables. This implies we only need to 7221 * check for IPv6 in6addr_any endpoints here. 7222 * Thus we compare using ipv6_all_zeros instead of the destination 7223 * address, except for the multicast group membership lookup which 7224 * uses the IPv4 destination. 7225 */ 7226 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7227 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7228 mutex_enter(&connfp->connf_lock); 7229 connp = connfp->connf_head; 7230 if (!broadcast && !CLASSD(dst)) { 7231 while (connp != NULL) { 7232 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7233 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7234 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7235 !connp->conn_ipv6_v6only) 7236 break; 7237 connp = connp->conn_next; 7238 } 7239 7240 if (connp != NULL && is_system_labeled() && 7241 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7242 connp)) 7243 connp = NULL; 7244 7245 if (connp == NULL || connp->conn_upq == NULL) { 7246 /* 7247 * No one bound to this port. Is 7248 * there a client that wants all 7249 * unclaimed datagrams? 7250 */ 7251 mutex_exit(&connfp->connf_lock); 7252 7253 if (mctl_present) 7254 first_mp->b_cont = mp; 7255 else 7256 first_mp = mp; 7257 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7258 connf_head != NULL) { 7259 ip_fanout_proto(q, first_mp, ill, ipha, 7260 flags | IP_FF_RAWIP, mctl_present, 7261 ip_policy, recv_ill, zoneid); 7262 } else { 7263 if (ip_fanout_send_icmp(q, first_mp, flags, 7264 ICMP_DEST_UNREACHABLE, 7265 ICMP_PORT_UNREACHABLE, 7266 mctl_present, zoneid, ipst)) { 7267 BUMP_MIB(ill->ill_ip_mib, 7268 udpIfStatsNoPorts); 7269 } 7270 } 7271 return; 7272 } 7273 7274 CONN_INC_REF(connp); 7275 mutex_exit(&connfp->connf_lock); 7276 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7277 flags, recv_ill, ip_policy); 7278 CONN_DEC_REF(connp); 7279 return; 7280 } 7281 /* 7282 * IPv4 multicast packet being delivered to an AF_INET6 7283 * in6addr_any endpoint. 7284 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7285 * and not conn_wantpacket_v6() since any multicast membership is 7286 * for an IPv4-mapped multicast address. 7287 * The packet is sent to all clients in all zones that have joined the 7288 * group and match the port. 7289 */ 7290 while (connp != NULL) { 7291 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7292 srcport, v6src) && 7293 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7294 (!is_system_labeled() || 7295 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7296 connp))) 7297 break; 7298 connp = connp->conn_next; 7299 } 7300 7301 if (connp == NULL || connp->conn_upq == NULL) { 7302 /* 7303 * No one bound to this port. Is 7304 * there a client that wants all 7305 * unclaimed datagrams? 7306 */ 7307 mutex_exit(&connfp->connf_lock); 7308 7309 if (mctl_present) 7310 first_mp->b_cont = mp; 7311 else 7312 first_mp = mp; 7313 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7314 NULL) { 7315 ip_fanout_proto(q, first_mp, ill, ipha, 7316 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7317 recv_ill, zoneid); 7318 } else { 7319 /* 7320 * We used to attempt to send an icmp error here, but 7321 * since this is known to be a multicast packet 7322 * and we don't send icmp errors in response to 7323 * multicast, just drop the packet and give up sooner. 7324 */ 7325 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7326 freemsg(first_mp); 7327 } 7328 return; 7329 } 7330 7331 first_connp = connp; 7332 7333 CONN_INC_REF(connp); 7334 connp = connp->conn_next; 7335 for (;;) { 7336 while (connp != NULL) { 7337 if (IPCL_UDP_MATCH_V6(connp, dstport, 7338 ipv6_all_zeros, srcport, v6src) && 7339 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7340 (!is_system_labeled() || 7341 tsol_receive_local(mp, &dst, IPV4_VERSION, 7342 shared_addr, connp))) 7343 break; 7344 connp = connp->conn_next; 7345 } 7346 /* 7347 * Just copy the data part alone. The mctl part is 7348 * needed just for verifying policy and it is never 7349 * sent up. 7350 */ 7351 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7352 ((mp1 = copymsg(mp)) == NULL))) { 7353 /* 7354 * No more intested clients or memory 7355 * allocation failed 7356 */ 7357 connp = first_connp; 7358 break; 7359 } 7360 if (first_mp != NULL) { 7361 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7362 ipsec_info_type == IPSEC_IN); 7363 first_mp1 = ipsec_in_tag(first_mp, NULL, 7364 ipst->ips_netstack); 7365 if (first_mp1 == NULL) { 7366 freemsg(mp1); 7367 connp = first_connp; 7368 break; 7369 } 7370 } else { 7371 first_mp1 = NULL; 7372 } 7373 CONN_INC_REF(connp); 7374 mutex_exit(&connfp->connf_lock); 7375 /* 7376 * IPQoS notes: We don't send the packet for policy 7377 * processing here, will do it for the last one (below). 7378 * i.e. we do it per-packet now, but if we do policy 7379 * processing per-conn, then we would need to do it 7380 * here too. 7381 */ 7382 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7383 ipha, flags, recv_ill, B_FALSE); 7384 mutex_enter(&connfp->connf_lock); 7385 /* Follow the next pointer before releasing the conn. */ 7386 next_connp = connp->conn_next; 7387 CONN_DEC_REF(connp); 7388 connp = next_connp; 7389 } 7390 7391 /* Last one. Send it upstream. */ 7392 mutex_exit(&connfp->connf_lock); 7393 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7394 recv_ill, ip_policy); 7395 CONN_DEC_REF(connp); 7396 } 7397 7398 /* 7399 * Complete the ip_wput header so that it 7400 * is possible to generate ICMP 7401 * errors. 7402 */ 7403 int 7404 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7405 { 7406 ire_t *ire; 7407 7408 if (ipha->ipha_src == INADDR_ANY) { 7409 ire = ire_lookup_local(zoneid, ipst); 7410 if (ire == NULL) { 7411 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7412 return (1); 7413 } 7414 ipha->ipha_src = ire->ire_addr; 7415 ire_refrele(ire); 7416 } 7417 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7418 ipha->ipha_hdr_checksum = 0; 7419 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7420 return (0); 7421 } 7422 7423 /* 7424 * Nobody should be sending 7425 * packets up this stream 7426 */ 7427 static void 7428 ip_lrput(queue_t *q, mblk_t *mp) 7429 { 7430 mblk_t *mp1; 7431 7432 switch (mp->b_datap->db_type) { 7433 case M_FLUSH: 7434 /* Turn around */ 7435 if (*mp->b_rptr & FLUSHW) { 7436 *mp->b_rptr &= ~FLUSHR; 7437 qreply(q, mp); 7438 return; 7439 } 7440 break; 7441 } 7442 /* Could receive messages that passed through ar_rput */ 7443 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7444 mp1->b_prev = mp1->b_next = NULL; 7445 freemsg(mp); 7446 } 7447 7448 /* Nobody should be sending packets down this stream */ 7449 /* ARGSUSED */ 7450 void 7451 ip_lwput(queue_t *q, mblk_t *mp) 7452 { 7453 freemsg(mp); 7454 } 7455 7456 /* 7457 * Move the first hop in any source route to ipha_dst and remove that part of 7458 * the source route. Called by other protocols. Errors in option formatting 7459 * are ignored - will be handled by ip_wput_options Return the final 7460 * destination (either ipha_dst or the last entry in a source route.) 7461 */ 7462 ipaddr_t 7463 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7464 { 7465 ipoptp_t opts; 7466 uchar_t *opt; 7467 uint8_t optval; 7468 uint8_t optlen; 7469 ipaddr_t dst; 7470 int i; 7471 ire_t *ire; 7472 ip_stack_t *ipst = ns->netstack_ip; 7473 7474 ip2dbg(("ip_massage_options\n")); 7475 dst = ipha->ipha_dst; 7476 for (optval = ipoptp_first(&opts, ipha); 7477 optval != IPOPT_EOL; 7478 optval = ipoptp_next(&opts)) { 7479 opt = opts.ipoptp_cur; 7480 switch (optval) { 7481 uint8_t off; 7482 case IPOPT_SSRR: 7483 case IPOPT_LSRR: 7484 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7485 ip1dbg(("ip_massage_options: bad src route\n")); 7486 break; 7487 } 7488 optlen = opts.ipoptp_len; 7489 off = opt[IPOPT_OFFSET]; 7490 off--; 7491 redo_srr: 7492 if (optlen < IP_ADDR_LEN || 7493 off > optlen - IP_ADDR_LEN) { 7494 /* End of source route */ 7495 ip1dbg(("ip_massage_options: end of SR\n")); 7496 break; 7497 } 7498 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7499 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7500 ntohl(dst))); 7501 /* 7502 * Check if our address is present more than 7503 * once as consecutive hops in source route. 7504 * XXX verify per-interface ip_forwarding 7505 * for source route? 7506 */ 7507 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7508 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7509 if (ire != NULL) { 7510 ire_refrele(ire); 7511 off += IP_ADDR_LEN; 7512 goto redo_srr; 7513 } 7514 if (dst == htonl(INADDR_LOOPBACK)) { 7515 ip1dbg(("ip_massage_options: loopback addr in " 7516 "source route!\n")); 7517 break; 7518 } 7519 /* 7520 * Update ipha_dst to be the first hop and remove the 7521 * first hop from the source route (by overwriting 7522 * part of the option with NOP options). 7523 */ 7524 ipha->ipha_dst = dst; 7525 /* Put the last entry in dst */ 7526 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7527 3; 7528 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7529 7530 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7531 ntohl(dst))); 7532 /* Move down and overwrite */ 7533 opt[IP_ADDR_LEN] = opt[0]; 7534 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7535 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7536 for (i = 0; i < IP_ADDR_LEN; i++) 7537 opt[i] = IPOPT_NOP; 7538 break; 7539 } 7540 } 7541 return (dst); 7542 } 7543 7544 /* 7545 * Return the network mask 7546 * associated with the specified address. 7547 */ 7548 ipaddr_t 7549 ip_net_mask(ipaddr_t addr) 7550 { 7551 uchar_t *up = (uchar_t *)&addr; 7552 ipaddr_t mask = 0; 7553 uchar_t *maskp = (uchar_t *)&mask; 7554 7555 #if defined(__i386) || defined(__amd64) 7556 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7557 #endif 7558 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7559 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7560 #endif 7561 if (CLASSD(addr)) { 7562 maskp[0] = 0xF0; 7563 return (mask); 7564 } 7565 if (addr == 0) 7566 return (0); 7567 maskp[0] = 0xFF; 7568 if ((up[0] & 0x80) == 0) 7569 return (mask); 7570 7571 maskp[1] = 0xFF; 7572 if ((up[0] & 0xC0) == 0x80) 7573 return (mask); 7574 7575 maskp[2] = 0xFF; 7576 if ((up[0] & 0xE0) == 0xC0) 7577 return (mask); 7578 7579 /* Must be experimental or multicast, indicate as much */ 7580 return ((ipaddr_t)0); 7581 } 7582 7583 /* 7584 * Select an ill for the packet by considering load spreading across 7585 * a different ill in the group if dst_ill is part of some group. 7586 */ 7587 ill_t * 7588 ip_newroute_get_dst_ill(ill_t *dst_ill) 7589 { 7590 ill_t *ill; 7591 7592 /* 7593 * We schedule irrespective of whether the source address is 7594 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7595 */ 7596 ill = illgrp_scheduler(dst_ill); 7597 if (ill == NULL) 7598 return (NULL); 7599 7600 /* 7601 * For groups with names ip_sioctl_groupname ensures that all 7602 * ills are of same type. For groups without names, ifgrp_insert 7603 * ensures this. 7604 */ 7605 ASSERT(dst_ill->ill_type == ill->ill_type); 7606 7607 return (ill); 7608 } 7609 7610 /* 7611 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7612 */ 7613 ill_t * 7614 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6, 7615 ip_stack_t *ipst) 7616 { 7617 ill_t *ret_ill; 7618 7619 ASSERT(ifindex != 0); 7620 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7621 ipst); 7622 if (ret_ill == NULL || 7623 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7624 if (isv6) { 7625 if (ill != NULL) { 7626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7627 } else { 7628 BUMP_MIB(&ipst->ips_ip6_mib, 7629 ipIfStatsOutDiscards); 7630 } 7631 ip1dbg(("ip_grab_attach_ill (IPv6): " 7632 "bad ifindex %d.\n", ifindex)); 7633 } else { 7634 if (ill != NULL) { 7635 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7636 } else { 7637 BUMP_MIB(&ipst->ips_ip_mib, 7638 ipIfStatsOutDiscards); 7639 } 7640 ip1dbg(("ip_grab_attach_ill (IPv4): " 7641 "bad ifindex %d.\n", ifindex)); 7642 } 7643 if (ret_ill != NULL) 7644 ill_refrele(ret_ill); 7645 freemsg(first_mp); 7646 return (NULL); 7647 } 7648 7649 return (ret_ill); 7650 } 7651 7652 /* 7653 * IPv4 - 7654 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7655 * out a packet to a destination address for which we do not have specific 7656 * (or sufficient) routing information. 7657 * 7658 * NOTE : These are the scopes of some of the variables that point at IRE, 7659 * which needs to be followed while making any future modifications 7660 * to avoid memory leaks. 7661 * 7662 * - ire and sire are the entries looked up initially by 7663 * ire_ftable_lookup. 7664 * - ipif_ire is used to hold the interface ire associated with 7665 * the new cache ire. But it's scope is limited, so we always REFRELE 7666 * it before branching out to error paths. 7667 * - save_ire is initialized before ire_create, so that ire returned 7668 * by ire_create will not over-write the ire. We REFRELE save_ire 7669 * before breaking out of the switch. 7670 * 7671 * Thus on failures, we have to REFRELE only ire and sire, if they 7672 * are not NULL. 7673 */ 7674 void 7675 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7676 zoneid_t zoneid, ip_stack_t *ipst) 7677 { 7678 areq_t *areq; 7679 ipaddr_t gw = 0; 7680 ire_t *ire = NULL; 7681 mblk_t *res_mp; 7682 ipaddr_t *addrp; 7683 ipaddr_t nexthop_addr; 7684 ipif_t *src_ipif = NULL; 7685 ill_t *dst_ill = NULL; 7686 ipha_t *ipha; 7687 ire_t *sire = NULL; 7688 mblk_t *first_mp; 7689 ire_t *save_ire; 7690 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7691 ushort_t ire_marks = 0; 7692 boolean_t mctl_present; 7693 ipsec_out_t *io; 7694 mblk_t *saved_mp; 7695 ire_t *first_sire = NULL; 7696 mblk_t *copy_mp = NULL; 7697 mblk_t *xmit_mp = NULL; 7698 ipaddr_t save_dst; 7699 uint32_t multirt_flags = 7700 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7701 boolean_t multirt_is_resolvable; 7702 boolean_t multirt_resolve_next; 7703 boolean_t do_attach_ill = B_FALSE; 7704 boolean_t ip_nexthop = B_FALSE; 7705 tsol_ire_gw_secattr_t *attrp = NULL; 7706 tsol_gcgrp_t *gcgrp = NULL; 7707 tsol_gcgrp_addr_t ga; 7708 7709 if (ip_debug > 2) { 7710 /* ip1dbg */ 7711 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7712 } 7713 7714 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7715 if (mctl_present) { 7716 io = (ipsec_out_t *)first_mp->b_rptr; 7717 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7718 ASSERT(zoneid == io->ipsec_out_zoneid); 7719 ASSERT(zoneid != ALL_ZONES); 7720 } 7721 7722 ipha = (ipha_t *)mp->b_rptr; 7723 7724 /* All multicast lookups come through ip_newroute_ipif() */ 7725 if (CLASSD(dst)) { 7726 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7727 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7728 freemsg(first_mp); 7729 return; 7730 } 7731 7732 if (mctl_present && io->ipsec_out_attach_if) { 7733 /* ip_grab_attach_ill returns a held ill */ 7734 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7735 io->ipsec_out_ill_index, B_FALSE, ipst); 7736 7737 /* Failure case frees things for us. */ 7738 if (attach_ill == NULL) 7739 return; 7740 7741 /* 7742 * Check if we need an ire that will not be 7743 * looked up by anybody else i.e. HIDDEN. 7744 */ 7745 if (ill_is_probeonly(attach_ill)) 7746 ire_marks = IRE_MARK_HIDDEN; 7747 } 7748 if (mctl_present && io->ipsec_out_ip_nexthop) { 7749 ip_nexthop = B_TRUE; 7750 nexthop_addr = io->ipsec_out_nexthop_addr; 7751 } 7752 /* 7753 * If this IRE is created for forwarding or it is not for 7754 * traffic for congestion controlled protocols, mark it as temporary. 7755 */ 7756 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7757 ire_marks |= IRE_MARK_TEMPORARY; 7758 7759 /* 7760 * Get what we can from ire_ftable_lookup which will follow an IRE 7761 * chain until it gets the most specific information available. 7762 * For example, we know that there is no IRE_CACHE for this dest, 7763 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7764 * ire_ftable_lookup will look up the gateway, etc. 7765 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7766 * to the destination, of equal netmask length in the forward table, 7767 * will be recursively explored. If no information is available 7768 * for the final gateway of that route, we force the returned ire 7769 * to be equal to sire using MATCH_IRE_PARENT. 7770 * At least, in this case we have a starting point (in the buckets) 7771 * to look for other routes to the destination in the forward table. 7772 * This is actually used only for multirouting, where a list 7773 * of routes has to be processed in sequence. 7774 * 7775 * In the process of coming up with the most specific information, 7776 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7777 * for the gateway (i.e., one for which the ire_nce->nce_state is 7778 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7779 * Two caveats when handling incomplete ire's in ip_newroute: 7780 * - we should be careful when accessing its ire_nce (specifically 7781 * the nce_res_mp) ast it might change underneath our feet, and, 7782 * - not all legacy code path callers are prepared to handle 7783 * incomplete ire's, so we should not create/add incomplete 7784 * ire_cache entries here. (See discussion about temporary solution 7785 * further below). 7786 * 7787 * In order to minimize packet dropping, and to preserve existing 7788 * behavior, we treat this case as if there were no IRE_CACHE for the 7789 * gateway, and instead use the IF_RESOLVER ire to send out 7790 * another request to ARP (this is achieved by passing the 7791 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7792 * arp response comes back in ip_wput_nondata, we will create 7793 * a per-dst ire_cache that has an ND_COMPLETE ire. 7794 * 7795 * Note that this is a temporary solution; the correct solution is 7796 * to create an incomplete per-dst ire_cache entry, and send the 7797 * packet out when the gw's nce is resolved. In order to achieve this, 7798 * all packet processing must have been completed prior to calling 7799 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7800 * to be modified to accomodate this solution. 7801 */ 7802 if (ip_nexthop) { 7803 /* 7804 * The first time we come here, we look for an IRE_INTERFACE 7805 * entry for the specified nexthop, set the dst to be the 7806 * nexthop address and create an IRE_CACHE entry for the 7807 * nexthop. The next time around, we are able to find an 7808 * IRE_CACHE entry for the nexthop, set the gateway to be the 7809 * nexthop address and create an IRE_CACHE entry for the 7810 * destination address via the specified nexthop. 7811 */ 7812 ire = ire_cache_lookup(nexthop_addr, zoneid, 7813 MBLK_GETLABEL(mp), ipst); 7814 if (ire != NULL) { 7815 gw = nexthop_addr; 7816 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7817 } else { 7818 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7819 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7820 MBLK_GETLABEL(mp), 7821 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 7822 ipst); 7823 if (ire != NULL) { 7824 dst = nexthop_addr; 7825 } 7826 } 7827 } else if (attach_ill == NULL) { 7828 ire = ire_ftable_lookup(dst, 0, 0, 0, 7829 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7830 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7831 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7832 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 7833 ipst); 7834 } else { 7835 /* 7836 * attach_ill is set only for communicating with 7837 * on-link hosts. So, don't look for DEFAULT. 7838 */ 7839 ipif_t *attach_ipif; 7840 7841 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7842 if (attach_ipif == NULL) { 7843 ill_refrele(attach_ill); 7844 goto icmp_err_ret; 7845 } 7846 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7847 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7848 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7849 MATCH_IRE_SECATTR, ipst); 7850 ipif_refrele(attach_ipif); 7851 } 7852 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7853 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7854 7855 /* 7856 * This loop is run only once in most cases. 7857 * We loop to resolve further routes only when the destination 7858 * can be reached through multiple RTF_MULTIRT-flagged ires. 7859 */ 7860 do { 7861 /* Clear the previous iteration's values */ 7862 if (src_ipif != NULL) { 7863 ipif_refrele(src_ipif); 7864 src_ipif = NULL; 7865 } 7866 if (dst_ill != NULL) { 7867 ill_refrele(dst_ill); 7868 dst_ill = NULL; 7869 } 7870 7871 multirt_resolve_next = B_FALSE; 7872 /* 7873 * We check if packets have to be multirouted. 7874 * In this case, given the current <ire, sire> couple, 7875 * we look for the next suitable <ire, sire>. 7876 * This check is done in ire_multirt_lookup(), 7877 * which applies various criteria to find the next route 7878 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7879 * unchanged if it detects it has not been tried yet. 7880 */ 7881 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7882 ip3dbg(("ip_newroute: starting next_resolution " 7883 "with first_mp %p, tag %d\n", 7884 (void *)first_mp, 7885 MULTIRT_DEBUG_TAGGED(first_mp))); 7886 7887 ASSERT(sire != NULL); 7888 multirt_is_resolvable = 7889 ire_multirt_lookup(&ire, &sire, multirt_flags, 7890 MBLK_GETLABEL(mp), ipst); 7891 7892 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7893 "ire %p, sire %p\n", 7894 multirt_is_resolvable, 7895 (void *)ire, (void *)sire)); 7896 7897 if (!multirt_is_resolvable) { 7898 /* 7899 * No more multirt route to resolve; give up 7900 * (all routes resolved or no more 7901 * resolvable routes). 7902 */ 7903 if (ire != NULL) { 7904 ire_refrele(ire); 7905 ire = NULL; 7906 } 7907 } else { 7908 ASSERT(sire != NULL); 7909 ASSERT(ire != NULL); 7910 /* 7911 * We simply use first_sire as a flag that 7912 * indicates if a resolvable multirt route 7913 * has already been found. 7914 * If it is not the case, we may have to send 7915 * an ICMP error to report that the 7916 * destination is unreachable. 7917 * We do not IRE_REFHOLD first_sire. 7918 */ 7919 if (first_sire == NULL) { 7920 first_sire = sire; 7921 } 7922 } 7923 } 7924 if (ire == NULL) { 7925 if (ip_debug > 3) { 7926 /* ip2dbg */ 7927 pr_addr_dbg("ip_newroute: " 7928 "can't resolve %s\n", AF_INET, &dst); 7929 } 7930 ip3dbg(("ip_newroute: " 7931 "ire %p, sire %p, first_sire %p\n", 7932 (void *)ire, (void *)sire, (void *)first_sire)); 7933 7934 if (sire != NULL) { 7935 ire_refrele(sire); 7936 sire = NULL; 7937 } 7938 7939 if (first_sire != NULL) { 7940 /* 7941 * At least one multirt route has been found 7942 * in the same call to ip_newroute(); 7943 * there is no need to report an ICMP error. 7944 * first_sire was not IRE_REFHOLDed. 7945 */ 7946 MULTIRT_DEBUG_UNTAG(first_mp); 7947 freemsg(first_mp); 7948 return; 7949 } 7950 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7951 RTA_DST, ipst); 7952 if (attach_ill != NULL) 7953 ill_refrele(attach_ill); 7954 goto icmp_err_ret; 7955 } 7956 7957 /* 7958 * Verify that the returned IRE does not have either 7959 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7960 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7961 */ 7962 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7963 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7964 if (attach_ill != NULL) 7965 ill_refrele(attach_ill); 7966 goto icmp_err_ret; 7967 } 7968 /* 7969 * Increment the ire_ob_pkt_count field for ire if it is an 7970 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7971 * increment the same for the parent IRE, sire, if it is some 7972 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 7973 */ 7974 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7975 UPDATE_OB_PKT_COUNT(ire); 7976 ire->ire_last_used_time = lbolt; 7977 } 7978 7979 if (sire != NULL) { 7980 gw = sire->ire_gateway_addr; 7981 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7982 IRE_INTERFACE)) == 0); 7983 UPDATE_OB_PKT_COUNT(sire); 7984 sire->ire_last_used_time = lbolt; 7985 } 7986 /* 7987 * We have a route to reach the destination. 7988 * 7989 * 1) If the interface is part of ill group, try to get a new 7990 * ill taking load spreading into account. 7991 * 7992 * 2) After selecting the ill, get a source address that 7993 * might create good inbound load spreading. 7994 * ipif_select_source does this for us. 7995 * 7996 * If the application specified the ill (ifindex), we still 7997 * load spread. Only if the packets needs to go out 7998 * specifically on a given ill e.g. binding to 7999 * IPIF_NOFAILOVER address, then we don't try to use a 8000 * different ill for load spreading. 8001 */ 8002 if (attach_ill == NULL) { 8003 /* 8004 * Don't perform outbound load spreading in the 8005 * case of an RTF_MULTIRT route, as we actually 8006 * typically want to replicate outgoing packets 8007 * through particular interfaces. 8008 */ 8009 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8010 dst_ill = ire->ire_ipif->ipif_ill; 8011 /* for uniformity */ 8012 ill_refhold(dst_ill); 8013 } else { 8014 /* 8015 * If we are here trying to create an IRE_CACHE 8016 * for an offlink destination and have the 8017 * IRE_CACHE for the next hop and the latter is 8018 * using virtual IP source address selection i.e 8019 * it's ire->ire_ipif is pointing to a virtual 8020 * network interface (vni) then 8021 * ip_newroute_get_dst_ll() will return the vni 8022 * interface as the dst_ill. Since the vni is 8023 * virtual i.e not associated with any physical 8024 * interface, it cannot be the dst_ill, hence 8025 * in such a case call ip_newroute_get_dst_ll() 8026 * with the stq_ill instead of the ire_ipif ILL. 8027 * The function returns a refheld ill. 8028 */ 8029 if ((ire->ire_type == IRE_CACHE) && 8030 IS_VNI(ire->ire_ipif->ipif_ill)) 8031 dst_ill = ip_newroute_get_dst_ill( 8032 ire->ire_stq->q_ptr); 8033 else 8034 dst_ill = ip_newroute_get_dst_ill( 8035 ire->ire_ipif->ipif_ill); 8036 } 8037 if (dst_ill == NULL) { 8038 if (ip_debug > 2) { 8039 pr_addr_dbg("ip_newroute: " 8040 "no dst ill for dst" 8041 " %s\n", AF_INET, &dst); 8042 } 8043 goto icmp_err_ret; 8044 } 8045 } else { 8046 dst_ill = ire->ire_ipif->ipif_ill; 8047 /* for uniformity */ 8048 ill_refhold(dst_ill); 8049 /* 8050 * We should have found a route matching ill as we 8051 * called ire_ftable_lookup with MATCH_IRE_ILL. 8052 * Rather than asserting, when there is a mismatch, 8053 * we just drop the packet. 8054 */ 8055 if (dst_ill != attach_ill) { 8056 ip0dbg(("ip_newroute: Packet dropped as " 8057 "IPIF_NOFAILOVER ill is %s, " 8058 "ire->ire_ipif->ipif_ill is %s\n", 8059 attach_ill->ill_name, 8060 dst_ill->ill_name)); 8061 ill_refrele(attach_ill); 8062 goto icmp_err_ret; 8063 } 8064 } 8065 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8066 if (attach_ill != NULL) { 8067 ill_refrele(attach_ill); 8068 attach_ill = NULL; 8069 do_attach_ill = B_TRUE; 8070 } 8071 ASSERT(dst_ill != NULL); 8072 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8073 8074 /* 8075 * Pick the best source address from dst_ill. 8076 * 8077 * 1) If it is part of a multipathing group, we would 8078 * like to spread the inbound packets across different 8079 * interfaces. ipif_select_source picks a random source 8080 * across the different ills in the group. 8081 * 8082 * 2) If it is not part of a multipathing group, we try 8083 * to pick the source address from the destination 8084 * route. Clustering assumes that when we have multiple 8085 * prefixes hosted on an interface, the prefix of the 8086 * source address matches the prefix of the destination 8087 * route. We do this only if the address is not 8088 * DEPRECATED. 8089 * 8090 * 3) If the conn is in a different zone than the ire, we 8091 * need to pick a source address from the right zone. 8092 * 8093 * NOTE : If we hit case (1) above, the prefix of the source 8094 * address picked may not match the prefix of the 8095 * destination routes prefix as ipif_select_source 8096 * does not look at "dst" while picking a source 8097 * address. 8098 * If we want the same behavior as (2), we will need 8099 * to change the behavior of ipif_select_source. 8100 */ 8101 ASSERT(src_ipif == NULL); 8102 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8103 /* 8104 * The RTF_SETSRC flag is set in the parent ire (sire). 8105 * Check that the ipif matching the requested source 8106 * address still exists. 8107 */ 8108 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8109 zoneid, NULL, NULL, NULL, NULL, ipst); 8110 } 8111 if (src_ipif == NULL) { 8112 ire_marks |= IRE_MARK_USESRC_CHECK; 8113 if ((dst_ill->ill_group != NULL) || 8114 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8115 (connp != NULL && ire->ire_zoneid != zoneid && 8116 ire->ire_zoneid != ALL_ZONES) || 8117 (dst_ill->ill_usesrc_ifindex != 0)) { 8118 /* 8119 * If the destination is reachable via a 8120 * given gateway, the selected source address 8121 * should be in the same subnet as the gateway. 8122 * Otherwise, the destination is not reachable. 8123 * 8124 * If there are no interfaces on the same subnet 8125 * as the destination, ipif_select_source gives 8126 * first non-deprecated interface which might be 8127 * on a different subnet than the gateway. 8128 * This is not desirable. Hence pass the dst_ire 8129 * source address to ipif_select_source. 8130 * It is sure that the destination is reachable 8131 * with the dst_ire source address subnet. 8132 * So passing dst_ire source address to 8133 * ipif_select_source will make sure that the 8134 * selected source will be on the same subnet 8135 * as dst_ire source address. 8136 */ 8137 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8138 src_ipif = ipif_select_source(dst_ill, saddr, 8139 zoneid); 8140 if (src_ipif == NULL) { 8141 if (ip_debug > 2) { 8142 pr_addr_dbg("ip_newroute: " 8143 "no src for dst %s ", 8144 AF_INET, &dst); 8145 printf("through interface %s\n", 8146 dst_ill->ill_name); 8147 } 8148 goto icmp_err_ret; 8149 } 8150 } else { 8151 src_ipif = ire->ire_ipif; 8152 ASSERT(src_ipif != NULL); 8153 /* hold src_ipif for uniformity */ 8154 ipif_refhold(src_ipif); 8155 } 8156 } 8157 8158 /* 8159 * Assign a source address while we have the conn. 8160 * We can't have ip_wput_ire pick a source address when the 8161 * packet returns from arp since we need to look at 8162 * conn_unspec_src and conn_zoneid, and we lose the conn when 8163 * going through arp. 8164 * 8165 * NOTE : ip_newroute_v6 does not have this piece of code as 8166 * it uses ip6i to store this information. 8167 */ 8168 if (ipha->ipha_src == INADDR_ANY && 8169 (connp == NULL || !connp->conn_unspec_src)) { 8170 ipha->ipha_src = src_ipif->ipif_src_addr; 8171 } 8172 if (ip_debug > 3) { 8173 /* ip2dbg */ 8174 pr_addr_dbg("ip_newroute: first hop %s\n", 8175 AF_INET, &gw); 8176 } 8177 ip2dbg(("\tire type %s (%d)\n", 8178 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8179 8180 /* 8181 * The TTL of multirouted packets is bounded by the 8182 * ip_multirt_ttl ndd variable. 8183 */ 8184 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8185 /* Force TTL of multirouted packets */ 8186 if ((ipst->ips_ip_multirt_ttl > 0) && 8187 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8188 ip2dbg(("ip_newroute: forcing multirt TTL " 8189 "to %d (was %d), dst 0x%08x\n", 8190 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8191 ntohl(sire->ire_addr))); 8192 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8193 } 8194 } 8195 /* 8196 * At this point in ip_newroute(), ire is either the 8197 * IRE_CACHE of the next-hop gateway for an off-subnet 8198 * destination or an IRE_INTERFACE type that should be used 8199 * to resolve an on-subnet destination or an on-subnet 8200 * next-hop gateway. 8201 * 8202 * In the IRE_CACHE case, we have the following : 8203 * 8204 * 1) src_ipif - used for getting a source address. 8205 * 8206 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8207 * means packets using this IRE_CACHE will go out on 8208 * dst_ill. 8209 * 8210 * 3) The IRE sire will point to the prefix that is the 8211 * longest matching route for the destination. These 8212 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8213 * 8214 * The newly created IRE_CACHE entry for the off-subnet 8215 * destination is tied to both the prefix route and the 8216 * interface route used to resolve the next-hop gateway 8217 * via the ire_phandle and ire_ihandle fields, 8218 * respectively. 8219 * 8220 * In the IRE_INTERFACE case, we have the following : 8221 * 8222 * 1) src_ipif - used for getting a source address. 8223 * 8224 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8225 * means packets using the IRE_CACHE that we will build 8226 * here will go out on dst_ill. 8227 * 8228 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8229 * to be created will only be tied to the IRE_INTERFACE 8230 * that was derived from the ire_ihandle field. 8231 * 8232 * If sire is non-NULL, it means the destination is 8233 * off-link and we will first create the IRE_CACHE for the 8234 * gateway. Next time through ip_newroute, we will create 8235 * the IRE_CACHE for the final destination as described 8236 * above. 8237 * 8238 * In both cases, after the current resolution has been 8239 * completed (or possibly initialised, in the IRE_INTERFACE 8240 * case), the loop may be re-entered to attempt the resolution 8241 * of another RTF_MULTIRT route. 8242 * 8243 * When an IRE_CACHE entry for the off-subnet destination is 8244 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8245 * for further processing in emission loops. 8246 */ 8247 save_ire = ire; 8248 switch (ire->ire_type) { 8249 case IRE_CACHE: { 8250 ire_t *ipif_ire; 8251 8252 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8253 if (gw == 0) 8254 gw = ire->ire_gateway_addr; 8255 /* 8256 * We need 3 ire's to create a new cache ire for an 8257 * off-link destination from the cache ire of the 8258 * gateway. 8259 * 8260 * 1. The prefix ire 'sire' (Note that this does 8261 * not apply to the conn_nexthop_set case) 8262 * 2. The cache ire of the gateway 'ire' 8263 * 3. The interface ire 'ipif_ire' 8264 * 8265 * We have (1) and (2). We lookup (3) below. 8266 * 8267 * If there is no interface route to the gateway, 8268 * it is a race condition, where we found the cache 8269 * but the interface route has been deleted. 8270 */ 8271 if (ip_nexthop) { 8272 ipif_ire = ire_ihandle_lookup_onlink(ire); 8273 } else { 8274 ipif_ire = 8275 ire_ihandle_lookup_offlink(ire, sire); 8276 } 8277 if (ipif_ire == NULL) { 8278 ip1dbg(("ip_newroute: " 8279 "ire_ihandle_lookup_offlink failed\n")); 8280 goto icmp_err_ret; 8281 } 8282 8283 /* 8284 * Check cached gateway IRE for any security 8285 * attributes; if found, associate the gateway 8286 * credentials group to the destination IRE. 8287 */ 8288 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8289 mutex_enter(&attrp->igsa_lock); 8290 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8291 GCGRP_REFHOLD(gcgrp); 8292 mutex_exit(&attrp->igsa_lock); 8293 } 8294 8295 /* 8296 * XXX For the source of the resolver mp, 8297 * we are using the same DL_UNITDATA_REQ 8298 * (from save_ire->ire_nce->nce_res_mp) 8299 * though the save_ire is not pointing at the same ill. 8300 * This is incorrect. We need to send it up to the 8301 * resolver to get the right res_mp. For ethernets 8302 * this may be okay (ill_type == DL_ETHER). 8303 */ 8304 8305 ire = ire_create( 8306 (uchar_t *)&dst, /* dest address */ 8307 (uchar_t *)&ip_g_all_ones, /* mask */ 8308 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8309 (uchar_t *)&gw, /* gateway address */ 8310 &save_ire->ire_max_frag, 8311 save_ire->ire_nce, /* src nce */ 8312 dst_ill->ill_rq, /* recv-from queue */ 8313 dst_ill->ill_wq, /* send-to queue */ 8314 IRE_CACHE, /* IRE type */ 8315 src_ipif, 8316 (sire != NULL) ? 8317 sire->ire_mask : 0, /* Parent mask */ 8318 (sire != NULL) ? 8319 sire->ire_phandle : 0, /* Parent handle */ 8320 ipif_ire->ire_ihandle, /* Interface handle */ 8321 (sire != NULL) ? (sire->ire_flags & 8322 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8323 (sire != NULL) ? 8324 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8325 NULL, 8326 gcgrp, 8327 ipst); 8328 8329 if (ire == NULL) { 8330 if (gcgrp != NULL) { 8331 GCGRP_REFRELE(gcgrp); 8332 gcgrp = NULL; 8333 } 8334 ire_refrele(ipif_ire); 8335 ire_refrele(save_ire); 8336 break; 8337 } 8338 8339 /* reference now held by IRE */ 8340 gcgrp = NULL; 8341 8342 ire->ire_marks |= ire_marks; 8343 8344 /* 8345 * Prevent sire and ipif_ire from getting deleted. 8346 * The newly created ire is tied to both of them via 8347 * the phandle and ihandle respectively. 8348 */ 8349 if (sire != NULL) { 8350 IRB_REFHOLD(sire->ire_bucket); 8351 /* Has it been removed already ? */ 8352 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8353 IRB_REFRELE(sire->ire_bucket); 8354 ire_refrele(ipif_ire); 8355 ire_refrele(save_ire); 8356 break; 8357 } 8358 } 8359 8360 IRB_REFHOLD(ipif_ire->ire_bucket); 8361 /* Has it been removed already ? */ 8362 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8363 IRB_REFRELE(ipif_ire->ire_bucket); 8364 if (sire != NULL) 8365 IRB_REFRELE(sire->ire_bucket); 8366 ire_refrele(ipif_ire); 8367 ire_refrele(save_ire); 8368 break; 8369 } 8370 8371 xmit_mp = first_mp; 8372 /* 8373 * In the case of multirouting, a copy 8374 * of the packet is done before its sending. 8375 * The copy is used to attempt another 8376 * route resolution, in a next loop. 8377 */ 8378 if (ire->ire_flags & RTF_MULTIRT) { 8379 copy_mp = copymsg(first_mp); 8380 if (copy_mp != NULL) { 8381 xmit_mp = copy_mp; 8382 MULTIRT_DEBUG_TAG(first_mp); 8383 } 8384 } 8385 ire_add_then_send(q, ire, xmit_mp); 8386 ire_refrele(save_ire); 8387 8388 /* Assert that sire is not deleted yet. */ 8389 if (sire != NULL) { 8390 ASSERT(sire->ire_ptpn != NULL); 8391 IRB_REFRELE(sire->ire_bucket); 8392 } 8393 8394 /* Assert that ipif_ire is not deleted yet. */ 8395 ASSERT(ipif_ire->ire_ptpn != NULL); 8396 IRB_REFRELE(ipif_ire->ire_bucket); 8397 ire_refrele(ipif_ire); 8398 8399 /* 8400 * If copy_mp is not NULL, multirouting was 8401 * requested. We loop to initiate a next 8402 * route resolution attempt, starting from sire. 8403 */ 8404 if (copy_mp != NULL) { 8405 /* 8406 * Search for the next unresolved 8407 * multirt route. 8408 */ 8409 copy_mp = NULL; 8410 ipif_ire = NULL; 8411 ire = NULL; 8412 multirt_resolve_next = B_TRUE; 8413 continue; 8414 } 8415 if (sire != NULL) 8416 ire_refrele(sire); 8417 ipif_refrele(src_ipif); 8418 ill_refrele(dst_ill); 8419 return; 8420 } 8421 case IRE_IF_NORESOLVER: { 8422 8423 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8424 dst_ill->ill_resolver_mp == NULL) { 8425 ip1dbg(("ip_newroute: dst_ill %p " 8426 "for IRE_IF_NORESOLVER ire %p has " 8427 "no ill_resolver_mp\n", 8428 (void *)dst_ill, (void *)ire)); 8429 break; 8430 } 8431 8432 /* 8433 * TSol note: We are creating the ire cache for the 8434 * destination 'dst'. If 'dst' is offlink, going 8435 * through the first hop 'gw', the security attributes 8436 * of 'dst' must be set to point to the gateway 8437 * credentials of gateway 'gw'. If 'dst' is onlink, it 8438 * is possible that 'dst' is a potential gateway that is 8439 * referenced by some route that has some security 8440 * attributes. Thus in the former case, we need to do a 8441 * gcgrp_lookup of 'gw' while in the latter case we 8442 * need to do gcgrp_lookup of 'dst' itself. 8443 */ 8444 ga.ga_af = AF_INET; 8445 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8446 &ga.ga_addr); 8447 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8448 8449 ire = ire_create( 8450 (uchar_t *)&dst, /* dest address */ 8451 (uchar_t *)&ip_g_all_ones, /* mask */ 8452 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8453 (uchar_t *)&gw, /* gateway address */ 8454 &save_ire->ire_max_frag, 8455 NULL, /* no src nce */ 8456 dst_ill->ill_rq, /* recv-from queue */ 8457 dst_ill->ill_wq, /* send-to queue */ 8458 IRE_CACHE, 8459 src_ipif, 8460 save_ire->ire_mask, /* Parent mask */ 8461 (sire != NULL) ? /* Parent handle */ 8462 sire->ire_phandle : 0, 8463 save_ire->ire_ihandle, /* Interface handle */ 8464 (sire != NULL) ? sire->ire_flags & 8465 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8466 &(save_ire->ire_uinfo), 8467 NULL, 8468 gcgrp, 8469 ipst); 8470 8471 if (ire == NULL) { 8472 if (gcgrp != NULL) { 8473 GCGRP_REFRELE(gcgrp); 8474 gcgrp = NULL; 8475 } 8476 ire_refrele(save_ire); 8477 break; 8478 } 8479 8480 /* reference now held by IRE */ 8481 gcgrp = NULL; 8482 8483 ire->ire_marks |= ire_marks; 8484 8485 /* Prevent save_ire from getting deleted */ 8486 IRB_REFHOLD(save_ire->ire_bucket); 8487 /* Has it been removed already ? */ 8488 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8489 IRB_REFRELE(save_ire->ire_bucket); 8490 ire_refrele(save_ire); 8491 break; 8492 } 8493 8494 /* 8495 * In the case of multirouting, a copy 8496 * of the packet is made before it is sent. 8497 * The copy is used in the next 8498 * loop to attempt another resolution. 8499 */ 8500 xmit_mp = first_mp; 8501 if ((sire != NULL) && 8502 (sire->ire_flags & RTF_MULTIRT)) { 8503 copy_mp = copymsg(first_mp); 8504 if (copy_mp != NULL) { 8505 xmit_mp = copy_mp; 8506 MULTIRT_DEBUG_TAG(first_mp); 8507 } 8508 } 8509 ire_add_then_send(q, ire, xmit_mp); 8510 8511 /* Assert that it is not deleted yet. */ 8512 ASSERT(save_ire->ire_ptpn != NULL); 8513 IRB_REFRELE(save_ire->ire_bucket); 8514 ire_refrele(save_ire); 8515 8516 if (copy_mp != NULL) { 8517 /* 8518 * If we found a (no)resolver, we ignore any 8519 * trailing top priority IRE_CACHE in further 8520 * loops. This ensures that we do not omit any 8521 * (no)resolver. 8522 * This IRE_CACHE, if any, will be processed 8523 * by another thread entering ip_newroute(). 8524 * IRE_CACHE entries, if any, will be processed 8525 * by another thread entering ip_newroute(), 8526 * (upon resolver response, for instance). 8527 * This aims to force parallel multirt 8528 * resolutions as soon as a packet must be sent. 8529 * In the best case, after the tx of only one 8530 * packet, all reachable routes are resolved. 8531 * Otherwise, the resolution of all RTF_MULTIRT 8532 * routes would require several emissions. 8533 */ 8534 multirt_flags &= ~MULTIRT_CACHEGW; 8535 8536 /* 8537 * Search for the next unresolved multirt 8538 * route. 8539 */ 8540 copy_mp = NULL; 8541 save_ire = NULL; 8542 ire = NULL; 8543 multirt_resolve_next = B_TRUE; 8544 continue; 8545 } 8546 8547 /* 8548 * Don't need sire anymore 8549 */ 8550 if (sire != NULL) 8551 ire_refrele(sire); 8552 8553 ipif_refrele(src_ipif); 8554 ill_refrele(dst_ill); 8555 return; 8556 } 8557 case IRE_IF_RESOLVER: 8558 /* 8559 * We can't build an IRE_CACHE yet, but at least we 8560 * found a resolver that can help. 8561 */ 8562 res_mp = dst_ill->ill_resolver_mp; 8563 if (!OK_RESOLVER_MP(res_mp)) 8564 break; 8565 8566 /* 8567 * To be at this point in the code with a non-zero gw 8568 * means that dst is reachable through a gateway that 8569 * we have never resolved. By changing dst to the gw 8570 * addr we resolve the gateway first. 8571 * When ire_add_then_send() tries to put the IP dg 8572 * to dst, it will reenter ip_newroute() at which 8573 * time we will find the IRE_CACHE for the gw and 8574 * create another IRE_CACHE in case IRE_CACHE above. 8575 */ 8576 if (gw != INADDR_ANY) { 8577 /* 8578 * The source ipif that was determined above was 8579 * relative to the destination address, not the 8580 * gateway's. If src_ipif was not taken out of 8581 * the IRE_IF_RESOLVER entry, we'll need to call 8582 * ipif_select_source() again. 8583 */ 8584 if (src_ipif != ire->ire_ipif) { 8585 ipif_refrele(src_ipif); 8586 src_ipif = ipif_select_source(dst_ill, 8587 gw, zoneid); 8588 if (src_ipif == NULL) { 8589 if (ip_debug > 2) { 8590 pr_addr_dbg( 8591 "ip_newroute: no " 8592 "src for gw %s ", 8593 AF_INET, &gw); 8594 printf("through " 8595 "interface %s\n", 8596 dst_ill->ill_name); 8597 } 8598 goto icmp_err_ret; 8599 } 8600 } 8601 save_dst = dst; 8602 dst = gw; 8603 gw = INADDR_ANY; 8604 } 8605 8606 /* 8607 * We obtain a partial IRE_CACHE which we will pass 8608 * along with the resolver query. When the response 8609 * comes back it will be there ready for us to add. 8610 * The ire_max_frag is atomically set under the 8611 * irebucket lock in ire_add_v[46]. 8612 */ 8613 8614 ire = ire_create_mp( 8615 (uchar_t *)&dst, /* dest address */ 8616 (uchar_t *)&ip_g_all_ones, /* mask */ 8617 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8618 (uchar_t *)&gw, /* gateway address */ 8619 NULL, /* ire_max_frag */ 8620 NULL, /* no src nce */ 8621 dst_ill->ill_rq, /* recv-from queue */ 8622 dst_ill->ill_wq, /* send-to queue */ 8623 IRE_CACHE, 8624 src_ipif, /* Interface ipif */ 8625 save_ire->ire_mask, /* Parent mask */ 8626 0, 8627 save_ire->ire_ihandle, /* Interface handle */ 8628 0, /* flags if any */ 8629 &(save_ire->ire_uinfo), 8630 NULL, 8631 NULL, 8632 ipst); 8633 8634 if (ire == NULL) { 8635 ire_refrele(save_ire); 8636 break; 8637 } 8638 8639 if ((sire != NULL) && 8640 (sire->ire_flags & RTF_MULTIRT)) { 8641 copy_mp = copymsg(first_mp); 8642 if (copy_mp != NULL) 8643 MULTIRT_DEBUG_TAG(copy_mp); 8644 } 8645 8646 ire->ire_marks |= ire_marks; 8647 8648 /* 8649 * Construct message chain for the resolver 8650 * of the form: 8651 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8652 * Packet could contain a IPSEC_OUT mp. 8653 * 8654 * NOTE : ire will be added later when the response 8655 * comes back from ARP. If the response does not 8656 * come back, ARP frees the packet. For this reason, 8657 * we can't REFHOLD the bucket of save_ire to prevent 8658 * deletions. We may not be able to REFRELE the bucket 8659 * if the response never comes back. Thus, before 8660 * adding the ire, ire_add_v4 will make sure that the 8661 * interface route does not get deleted. This is the 8662 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8663 * where we can always prevent deletions because of 8664 * the synchronous nature of adding IRES i.e 8665 * ire_add_then_send is called after creating the IRE. 8666 */ 8667 ASSERT(ire->ire_mp != NULL); 8668 ire->ire_mp->b_cont = first_mp; 8669 /* Have saved_mp handy, for cleanup if canput fails */ 8670 saved_mp = mp; 8671 mp = copyb(res_mp); 8672 if (mp == NULL) { 8673 /* Prepare for cleanup */ 8674 mp = saved_mp; /* pkt */ 8675 ire_delete(ire); /* ire_mp */ 8676 ire = NULL; 8677 ire_refrele(save_ire); 8678 if (copy_mp != NULL) { 8679 MULTIRT_DEBUG_UNTAG(copy_mp); 8680 freemsg(copy_mp); 8681 copy_mp = NULL; 8682 } 8683 break; 8684 } 8685 linkb(mp, ire->ire_mp); 8686 8687 /* 8688 * Fill in the source and dest addrs for the resolver. 8689 * NOTE: this depends on memory layouts imposed by 8690 * ill_init(). 8691 */ 8692 areq = (areq_t *)mp->b_rptr; 8693 addrp = (ipaddr_t *)((char *)areq + 8694 areq->areq_sender_addr_offset); 8695 if (do_attach_ill) { 8696 /* 8697 * This is bind to no failover case. 8698 * arp packet also must go out on attach_ill. 8699 */ 8700 ASSERT(ipha->ipha_src != NULL); 8701 *addrp = ipha->ipha_src; 8702 } else { 8703 *addrp = save_ire->ire_src_addr; 8704 } 8705 8706 ire_refrele(save_ire); 8707 addrp = (ipaddr_t *)((char *)areq + 8708 areq->areq_target_addr_offset); 8709 *addrp = dst; 8710 /* Up to the resolver. */ 8711 if (canputnext(dst_ill->ill_rq) && 8712 !(dst_ill->ill_arp_closing)) { 8713 putnext(dst_ill->ill_rq, mp); 8714 ire = NULL; 8715 if (copy_mp != NULL) { 8716 /* 8717 * If we found a resolver, we ignore 8718 * any trailing top priority IRE_CACHE 8719 * in the further loops. This ensures 8720 * that we do not omit any resolver. 8721 * IRE_CACHE entries, if any, will be 8722 * processed next time we enter 8723 * ip_newroute(). 8724 */ 8725 multirt_flags &= ~MULTIRT_CACHEGW; 8726 /* 8727 * Search for the next unresolved 8728 * multirt route. 8729 */ 8730 first_mp = copy_mp; 8731 copy_mp = NULL; 8732 /* Prepare the next resolution loop. */ 8733 mp = first_mp; 8734 EXTRACT_PKT_MP(mp, first_mp, 8735 mctl_present); 8736 if (mctl_present) 8737 io = (ipsec_out_t *) 8738 first_mp->b_rptr; 8739 ipha = (ipha_t *)mp->b_rptr; 8740 8741 ASSERT(sire != NULL); 8742 8743 dst = save_dst; 8744 multirt_resolve_next = B_TRUE; 8745 continue; 8746 } 8747 8748 if (sire != NULL) 8749 ire_refrele(sire); 8750 8751 /* 8752 * The response will come back in ip_wput 8753 * with db_type IRE_DB_TYPE. 8754 */ 8755 ipif_refrele(src_ipif); 8756 ill_refrele(dst_ill); 8757 return; 8758 } else { 8759 /* Prepare for cleanup */ 8760 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8761 mp); 8762 mp->b_cont = NULL; 8763 freeb(mp); /* areq */ 8764 /* 8765 * this is an ire that is not added to the 8766 * cache. ire_freemblk will handle the release 8767 * of any resources associated with the ire. 8768 */ 8769 ire_delete(ire); /* ire_mp */ 8770 mp = saved_mp; /* pkt */ 8771 ire = NULL; 8772 if (copy_mp != NULL) { 8773 MULTIRT_DEBUG_UNTAG(copy_mp); 8774 freemsg(copy_mp); 8775 copy_mp = NULL; 8776 } 8777 break; 8778 } 8779 default: 8780 break; 8781 } 8782 } while (multirt_resolve_next); 8783 8784 ip1dbg(("ip_newroute: dropped\n")); 8785 /* Did this packet originate externally? */ 8786 if (mp->b_prev) { 8787 mp->b_next = NULL; 8788 mp->b_prev = NULL; 8789 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8790 } else { 8791 if (dst_ill != NULL) { 8792 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8793 } else { 8794 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8795 } 8796 } 8797 ASSERT(copy_mp == NULL); 8798 MULTIRT_DEBUG_UNTAG(first_mp); 8799 freemsg(first_mp); 8800 if (ire != NULL) 8801 ire_refrele(ire); 8802 if (sire != NULL) 8803 ire_refrele(sire); 8804 if (src_ipif != NULL) 8805 ipif_refrele(src_ipif); 8806 if (dst_ill != NULL) 8807 ill_refrele(dst_ill); 8808 return; 8809 8810 icmp_err_ret: 8811 ip1dbg(("ip_newroute: no route\n")); 8812 if (src_ipif != NULL) 8813 ipif_refrele(src_ipif); 8814 if (dst_ill != NULL) 8815 ill_refrele(dst_ill); 8816 if (sire != NULL) 8817 ire_refrele(sire); 8818 /* Did this packet originate externally? */ 8819 if (mp->b_prev) { 8820 mp->b_next = NULL; 8821 mp->b_prev = NULL; 8822 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 8823 q = WR(q); 8824 } else { 8825 /* 8826 * There is no outgoing ill, so just increment the 8827 * system MIB. 8828 */ 8829 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 8830 /* 8831 * Since ip_wput() isn't close to finished, we fill 8832 * in enough of the header for credible error reporting. 8833 */ 8834 if (ip_hdr_complete(ipha, zoneid, ipst)) { 8835 /* Failed */ 8836 MULTIRT_DEBUG_UNTAG(first_mp); 8837 freemsg(first_mp); 8838 if (ire != NULL) 8839 ire_refrele(ire); 8840 return; 8841 } 8842 } 8843 8844 /* 8845 * At this point we will have ire only if RTF_BLACKHOLE 8846 * or RTF_REJECT flags are set on the IRE. It will not 8847 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8848 */ 8849 if (ire != NULL) { 8850 if (ire->ire_flags & RTF_BLACKHOLE) { 8851 ire_refrele(ire); 8852 MULTIRT_DEBUG_UNTAG(first_mp); 8853 freemsg(first_mp); 8854 return; 8855 } 8856 ire_refrele(ire); 8857 } 8858 if (ip_source_routed(ipha, ipst)) { 8859 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8860 zoneid, ipst); 8861 return; 8862 } 8863 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 8864 } 8865 8866 ip_opt_info_t zero_info; 8867 8868 /* 8869 * IPv4 - 8870 * ip_newroute_ipif is called by ip_wput_multicast and 8871 * ip_rput_forward_multicast whenever we need to send 8872 * out a packet to a destination address for which we do not have specific 8873 * routing information. It is used when the packet will be sent out 8874 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8875 * socket option is set or icmp error message wants to go out on a particular 8876 * interface for a unicast packet. 8877 * 8878 * In most cases, the destination address is resolved thanks to the ipif 8879 * intrinsic resolver. However, there are some cases where the call to 8880 * ip_newroute_ipif must take into account the potential presence of 8881 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8882 * that uses the interface. This is specified through flags, 8883 * which can be a combination of: 8884 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8885 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8886 * and flags. Additionally, the packet source address has to be set to 8887 * the specified address. The caller is thus expected to set this flag 8888 * if the packet has no specific source address yet. 8889 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8890 * flag, the resulting ire will inherit the flag. All unresolved routes 8891 * to the destination must be explored in the same call to 8892 * ip_newroute_ipif(). 8893 */ 8894 static void 8895 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8896 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 8897 { 8898 areq_t *areq; 8899 ire_t *ire = NULL; 8900 mblk_t *res_mp; 8901 ipaddr_t *addrp; 8902 mblk_t *first_mp; 8903 ire_t *save_ire = NULL; 8904 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8905 ipif_t *src_ipif = NULL; 8906 ushort_t ire_marks = 0; 8907 ill_t *dst_ill = NULL; 8908 boolean_t mctl_present; 8909 ipsec_out_t *io; 8910 ipha_t *ipha; 8911 int ihandle = 0; 8912 mblk_t *saved_mp; 8913 ire_t *fire = NULL; 8914 mblk_t *copy_mp = NULL; 8915 boolean_t multirt_resolve_next; 8916 ipaddr_t ipha_dst; 8917 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 8918 8919 /* 8920 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8921 * here for uniformity 8922 */ 8923 ipif_refhold(ipif); 8924 8925 /* 8926 * This loop is run only once in most cases. 8927 * We loop to resolve further routes only when the destination 8928 * can be reached through multiple RTF_MULTIRT-flagged ires. 8929 */ 8930 do { 8931 if (dst_ill != NULL) { 8932 ill_refrele(dst_ill); 8933 dst_ill = NULL; 8934 } 8935 if (src_ipif != NULL) { 8936 ipif_refrele(src_ipif); 8937 src_ipif = NULL; 8938 } 8939 multirt_resolve_next = B_FALSE; 8940 8941 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8942 ipif->ipif_ill->ill_name)); 8943 8944 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8945 if (mctl_present) 8946 io = (ipsec_out_t *)first_mp->b_rptr; 8947 8948 ipha = (ipha_t *)mp->b_rptr; 8949 8950 /* 8951 * Save the packet destination address, we may need it after 8952 * the packet has been consumed. 8953 */ 8954 ipha_dst = ipha->ipha_dst; 8955 8956 /* 8957 * If the interface is a pt-pt interface we look for an 8958 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8959 * local_address and the pt-pt destination address. Otherwise 8960 * we just match the local address. 8961 * NOTE: dst could be different than ipha->ipha_dst in case 8962 * of sending igmp multicast packets over a point-to-point 8963 * connection. 8964 * Thus we must be careful enough to check ipha_dst to be a 8965 * multicast address, otherwise it will take xmit_if path for 8966 * multicast packets resulting into kernel stack overflow by 8967 * repeated calls to ip_newroute_ipif from ire_send(). 8968 */ 8969 if (CLASSD(ipha_dst) && 8970 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8971 goto err_ret; 8972 } 8973 8974 /* 8975 * We check if an IRE_OFFSUBNET for the addr that goes through 8976 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8977 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 8978 * propagate its flags to the new ire. 8979 */ 8980 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 8981 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 8982 ip2dbg(("ip_newroute_ipif: " 8983 "ipif_lookup_multi_ire(" 8984 "ipif %p, dst %08x) = fire %p\n", 8985 (void *)ipif, ntohl(dst), (void *)fire)); 8986 } 8987 8988 if (mctl_present && io->ipsec_out_attach_if) { 8989 attach_ill = ip_grab_attach_ill(NULL, first_mp, 8990 io->ipsec_out_ill_index, B_FALSE, ipst); 8991 8992 /* Failure case frees things for us. */ 8993 if (attach_ill == NULL) { 8994 ipif_refrele(ipif); 8995 if (fire != NULL) 8996 ire_refrele(fire); 8997 return; 8998 } 8999 9000 /* 9001 * Check if we need an ire that will not be 9002 * looked up by anybody else i.e. HIDDEN. 9003 */ 9004 if (ill_is_probeonly(attach_ill)) { 9005 ire_marks = IRE_MARK_HIDDEN; 9006 } 9007 /* 9008 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9009 * case. 9010 */ 9011 dst_ill = ipif->ipif_ill; 9012 /* attach_ill has been refheld by ip_grab_attach_ill */ 9013 ASSERT(dst_ill == attach_ill); 9014 } else { 9015 /* 9016 * If this is set by IP_XMIT_IF, then make sure that 9017 * ipif is pointing to the same ill as the IP_XMIT_IF 9018 * specified ill. 9019 */ 9020 ASSERT((connp == NULL) || 9021 (connp->conn_xmit_if_ill == NULL) || 9022 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9023 /* 9024 * If the interface belongs to an interface group, 9025 * make sure the next possible interface in the group 9026 * is used. This encourages load spreading among 9027 * peers in an interface group. 9028 * Note: load spreading is disabled for RTF_MULTIRT 9029 * routes. 9030 */ 9031 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9032 (fire->ire_flags & RTF_MULTIRT)) { 9033 /* 9034 * Don't perform outbound load spreading 9035 * in the case of an RTF_MULTIRT issued route, 9036 * we actually typically want to replicate 9037 * outgoing packets through particular 9038 * interfaces. 9039 */ 9040 dst_ill = ipif->ipif_ill; 9041 ill_refhold(dst_ill); 9042 } else { 9043 dst_ill = ip_newroute_get_dst_ill( 9044 ipif->ipif_ill); 9045 } 9046 if (dst_ill == NULL) { 9047 if (ip_debug > 2) { 9048 pr_addr_dbg("ip_newroute_ipif: " 9049 "no dst ill for dst %s\n", 9050 AF_INET, &dst); 9051 } 9052 goto err_ret; 9053 } 9054 } 9055 9056 /* 9057 * Pick a source address preferring non-deprecated ones. 9058 * Unlike ip_newroute, we don't do any source address 9059 * selection here since for multicast it really does not help 9060 * in inbound load spreading as in the unicast case. 9061 */ 9062 if ((flags & RTF_SETSRC) && (fire != NULL) && 9063 (fire->ire_flags & RTF_SETSRC)) { 9064 /* 9065 * As requested by flags, an IRE_OFFSUBNET was looked up 9066 * on that interface. This ire has RTF_SETSRC flag, so 9067 * the source address of the packet must be changed. 9068 * Check that the ipif matching the requested source 9069 * address still exists. 9070 */ 9071 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9072 zoneid, NULL, NULL, NULL, NULL, ipst); 9073 } 9074 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9075 (connp != NULL && ipif->ipif_zoneid != zoneid && 9076 ipif->ipif_zoneid != ALL_ZONES)) && 9077 (src_ipif == NULL)) { 9078 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9079 if (src_ipif == NULL) { 9080 if (ip_debug > 2) { 9081 /* ip1dbg */ 9082 pr_addr_dbg("ip_newroute_ipif: " 9083 "no src for dst %s", 9084 AF_INET, &dst); 9085 } 9086 ip1dbg((" through interface %s\n", 9087 dst_ill->ill_name)); 9088 goto err_ret; 9089 } 9090 ipif_refrele(ipif); 9091 ipif = src_ipif; 9092 ipif_refhold(ipif); 9093 } 9094 if (src_ipif == NULL) { 9095 src_ipif = ipif; 9096 ipif_refhold(src_ipif); 9097 } 9098 9099 /* 9100 * Assign a source address while we have the conn. 9101 * We can't have ip_wput_ire pick a source address when the 9102 * packet returns from arp since conn_unspec_src might be set 9103 * and we loose the conn when going through arp. 9104 */ 9105 if (ipha->ipha_src == INADDR_ANY && 9106 (connp == NULL || !connp->conn_unspec_src)) { 9107 ipha->ipha_src = src_ipif->ipif_src_addr; 9108 } 9109 9110 /* 9111 * In the case of IP_XMIT_IF, it is possible that the 9112 * outgoing interface does not have an interface ire. 9113 */ 9114 if (CLASSD(ipha_dst) && (connp == NULL || 9115 connp->conn_xmit_if_ill == NULL) && 9116 infop->ip_opt_ill_index == 0) { 9117 /* ipif_to_ire returns an held ire */ 9118 ire = ipif_to_ire(ipif); 9119 if (ire == NULL) 9120 goto err_ret; 9121 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9122 goto err_ret; 9123 /* 9124 * ihandle is needed when the ire is added to 9125 * cache table. 9126 */ 9127 save_ire = ire; 9128 ihandle = save_ire->ire_ihandle; 9129 9130 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9131 "flags %04x\n", 9132 (void *)ire, (void *)ipif, flags)); 9133 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9134 (fire->ire_flags & RTF_MULTIRT)) { 9135 /* 9136 * As requested by flags, an IRE_OFFSUBNET was 9137 * looked up on that interface. This ire has 9138 * RTF_MULTIRT flag, so the resolution loop will 9139 * be re-entered to resolve additional routes on 9140 * other interfaces. For that purpose, a copy of 9141 * the packet is performed at this point. 9142 */ 9143 fire->ire_last_used_time = lbolt; 9144 copy_mp = copymsg(first_mp); 9145 if (copy_mp) { 9146 MULTIRT_DEBUG_TAG(copy_mp); 9147 } 9148 } 9149 if ((flags & RTF_SETSRC) && (fire != NULL) && 9150 (fire->ire_flags & RTF_SETSRC)) { 9151 /* 9152 * As requested by flags, an IRE_OFFSUBET was 9153 * looked up on that interface. This ire has 9154 * RTF_SETSRC flag, so the source address of the 9155 * packet must be changed. 9156 */ 9157 ipha->ipha_src = fire->ire_src_addr; 9158 } 9159 } else { 9160 ASSERT((connp == NULL) || 9161 (connp->conn_xmit_if_ill != NULL) || 9162 (connp->conn_dontroute) || 9163 infop->ip_opt_ill_index != 0); 9164 /* 9165 * The only ways we can come here are: 9166 * 1) IP_XMIT_IF socket option is set 9167 * 2) SO_DONTROUTE socket option is set 9168 * 3) IP_PKTINFO option is passed in as ancillary data. 9169 * In all cases, the new ire will not be added 9170 * into cache table. 9171 */ 9172 ire_marks |= IRE_MARK_NOADD; 9173 } 9174 9175 switch (ipif->ipif_net_type) { 9176 case IRE_IF_NORESOLVER: { 9177 /* We have what we need to build an IRE_CACHE. */ 9178 9179 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9180 (dst_ill->ill_resolver_mp == NULL)) { 9181 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9182 "for IRE_IF_NORESOLVER ire %p has " 9183 "no ill_resolver_mp\n", 9184 (void *)dst_ill, (void *)ire)); 9185 break; 9186 } 9187 9188 /* 9189 * The new ire inherits the IRE_OFFSUBNET flags 9190 * and source address, if this was requested. 9191 */ 9192 ire = ire_create( 9193 (uchar_t *)&dst, /* dest address */ 9194 (uchar_t *)&ip_g_all_ones, /* mask */ 9195 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9196 NULL, /* gateway address */ 9197 &ipif->ipif_mtu, 9198 NULL, /* no src nce */ 9199 dst_ill->ill_rq, /* recv-from queue */ 9200 dst_ill->ill_wq, /* send-to queue */ 9201 IRE_CACHE, 9202 src_ipif, 9203 (save_ire != NULL ? save_ire->ire_mask : 0), 9204 (fire != NULL) ? /* Parent handle */ 9205 fire->ire_phandle : 0, 9206 ihandle, /* Interface handle */ 9207 (fire != NULL) ? 9208 (fire->ire_flags & 9209 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9210 (save_ire == NULL ? &ire_uinfo_null : 9211 &save_ire->ire_uinfo), 9212 NULL, 9213 NULL, 9214 ipst); 9215 9216 if (ire == NULL) { 9217 if (save_ire != NULL) 9218 ire_refrele(save_ire); 9219 break; 9220 } 9221 9222 ire->ire_marks |= ire_marks; 9223 9224 /* 9225 * If IRE_MARK_NOADD is set then we need to convert 9226 * the max_fragp to a useable value now. This is 9227 * normally done in ire_add_v[46]. We also need to 9228 * associate the ire with an nce (normally would be 9229 * done in ip_wput_nondata()). 9230 * 9231 * Note that IRE_MARK_NOADD packets created here 9232 * do not have a non-null ire_mp pointer. The null 9233 * value of ire_bucket indicates that they were 9234 * never added. 9235 */ 9236 if (ire->ire_marks & IRE_MARK_NOADD) { 9237 uint_t max_frag; 9238 9239 max_frag = *ire->ire_max_fragp; 9240 ire->ire_max_fragp = NULL; 9241 ire->ire_max_frag = max_frag; 9242 9243 if ((ire->ire_nce = ndp_lookup_v4( 9244 ire_to_ill(ire), 9245 (ire->ire_gateway_addr != INADDR_ANY ? 9246 &ire->ire_gateway_addr : &ire->ire_addr), 9247 B_FALSE)) == NULL) { 9248 if (save_ire != NULL) 9249 ire_refrele(save_ire); 9250 break; 9251 } 9252 ASSERT(ire->ire_nce->nce_state == 9253 ND_REACHABLE); 9254 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9255 } 9256 9257 /* Prevent save_ire from getting deleted */ 9258 if (save_ire != NULL) { 9259 IRB_REFHOLD(save_ire->ire_bucket); 9260 /* Has it been removed already ? */ 9261 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9262 IRB_REFRELE(save_ire->ire_bucket); 9263 ire_refrele(save_ire); 9264 break; 9265 } 9266 } 9267 9268 ire_add_then_send(q, ire, first_mp); 9269 9270 /* Assert that save_ire is not deleted yet. */ 9271 if (save_ire != NULL) { 9272 ASSERT(save_ire->ire_ptpn != NULL); 9273 IRB_REFRELE(save_ire->ire_bucket); 9274 ire_refrele(save_ire); 9275 save_ire = NULL; 9276 } 9277 if (fire != NULL) { 9278 ire_refrele(fire); 9279 fire = NULL; 9280 } 9281 9282 /* 9283 * the resolution loop is re-entered if this 9284 * was requested through flags and if we 9285 * actually are in a multirouting case. 9286 */ 9287 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9288 boolean_t need_resolve = 9289 ire_multirt_need_resolve(ipha_dst, 9290 MBLK_GETLABEL(copy_mp), ipst); 9291 if (!need_resolve) { 9292 MULTIRT_DEBUG_UNTAG(copy_mp); 9293 freemsg(copy_mp); 9294 copy_mp = NULL; 9295 } else { 9296 /* 9297 * ipif_lookup_group() calls 9298 * ire_lookup_multi() that uses 9299 * ire_ftable_lookup() to find 9300 * an IRE_INTERFACE for the group. 9301 * In the multirt case, 9302 * ire_lookup_multi() then invokes 9303 * ire_multirt_lookup() to find 9304 * the next resolvable ire. 9305 * As a result, we obtain an new 9306 * interface, derived from the 9307 * next ire. 9308 */ 9309 ipif_refrele(ipif); 9310 ipif = ipif_lookup_group(ipha_dst, 9311 zoneid, ipst); 9312 ip2dbg(("ip_newroute_ipif: " 9313 "multirt dst %08x, ipif %p\n", 9314 htonl(dst), (void *)ipif)); 9315 if (ipif != NULL) { 9316 mp = copy_mp; 9317 copy_mp = NULL; 9318 multirt_resolve_next = B_TRUE; 9319 continue; 9320 } else { 9321 freemsg(copy_mp); 9322 } 9323 } 9324 } 9325 if (ipif != NULL) 9326 ipif_refrele(ipif); 9327 ill_refrele(dst_ill); 9328 ipif_refrele(src_ipif); 9329 return; 9330 } 9331 case IRE_IF_RESOLVER: 9332 /* 9333 * We can't build an IRE_CACHE yet, but at least 9334 * we found a resolver that can help. 9335 */ 9336 res_mp = dst_ill->ill_resolver_mp; 9337 if (!OK_RESOLVER_MP(res_mp)) 9338 break; 9339 9340 /* 9341 * We obtain a partial IRE_CACHE which we will pass 9342 * along with the resolver query. When the response 9343 * comes back it will be there ready for us to add. 9344 * The new ire inherits the IRE_OFFSUBNET flags 9345 * and source address, if this was requested. 9346 * The ire_max_frag is atomically set under the 9347 * irebucket lock in ire_add_v[46]. Only in the 9348 * case of IRE_MARK_NOADD, we set it here itself. 9349 */ 9350 ire = ire_create_mp( 9351 (uchar_t *)&dst, /* dest address */ 9352 (uchar_t *)&ip_g_all_ones, /* mask */ 9353 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9354 NULL, /* gateway address */ 9355 (ire_marks & IRE_MARK_NOADD) ? 9356 ipif->ipif_mtu : 0, /* max_frag */ 9357 NULL, /* no src nce */ 9358 dst_ill->ill_rq, /* recv-from queue */ 9359 dst_ill->ill_wq, /* send-to queue */ 9360 IRE_CACHE, 9361 src_ipif, 9362 (save_ire != NULL ? save_ire->ire_mask : 0), 9363 (fire != NULL) ? /* Parent handle */ 9364 fire->ire_phandle : 0, 9365 ihandle, /* Interface handle */ 9366 (fire != NULL) ? /* flags if any */ 9367 (fire->ire_flags & 9368 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9369 (save_ire == NULL ? &ire_uinfo_null : 9370 &save_ire->ire_uinfo), 9371 NULL, 9372 NULL, 9373 ipst); 9374 9375 if (save_ire != NULL) { 9376 ire_refrele(save_ire); 9377 save_ire = NULL; 9378 } 9379 if (ire == NULL) 9380 break; 9381 9382 ire->ire_marks |= ire_marks; 9383 /* 9384 * Construct message chain for the resolver of the 9385 * form: 9386 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9387 * 9388 * NOTE : ire will be added later when the response 9389 * comes back from ARP. If the response does not 9390 * come back, ARP frees the packet. For this reason, 9391 * we can't REFHOLD the bucket of save_ire to prevent 9392 * deletions. We may not be able to REFRELE the 9393 * bucket if the response never comes back. 9394 * Thus, before adding the ire, ire_add_v4 will make 9395 * sure that the interface route does not get deleted. 9396 * This is the only case unlike ip_newroute_v6, 9397 * ip_newroute_ipif_v6 where we can always prevent 9398 * deletions because ire_add_then_send is called after 9399 * creating the IRE. 9400 * If IRE_MARK_NOADD is set, then ire_add_then_send 9401 * does not add this IRE into the IRE CACHE. 9402 */ 9403 ASSERT(ire->ire_mp != NULL); 9404 ire->ire_mp->b_cont = first_mp; 9405 /* Have saved_mp handy, for cleanup if canput fails */ 9406 saved_mp = mp; 9407 mp = copyb(res_mp); 9408 if (mp == NULL) { 9409 /* Prepare for cleanup */ 9410 mp = saved_mp; /* pkt */ 9411 ire_delete(ire); /* ire_mp */ 9412 ire = NULL; 9413 if (copy_mp != NULL) { 9414 MULTIRT_DEBUG_UNTAG(copy_mp); 9415 freemsg(copy_mp); 9416 copy_mp = NULL; 9417 } 9418 break; 9419 } 9420 linkb(mp, ire->ire_mp); 9421 9422 /* 9423 * Fill in the source and dest addrs for the resolver. 9424 * NOTE: this depends on memory layouts imposed by 9425 * ill_init(). 9426 */ 9427 areq = (areq_t *)mp->b_rptr; 9428 addrp = (ipaddr_t *)((char *)areq + 9429 areq->areq_sender_addr_offset); 9430 *addrp = ire->ire_src_addr; 9431 addrp = (ipaddr_t *)((char *)areq + 9432 areq->areq_target_addr_offset); 9433 *addrp = dst; 9434 /* Up to the resolver. */ 9435 if (canputnext(dst_ill->ill_rq) && 9436 !(dst_ill->ill_arp_closing)) { 9437 putnext(dst_ill->ill_rq, mp); 9438 /* 9439 * The response will come back in ip_wput 9440 * with db_type IRE_DB_TYPE. 9441 */ 9442 } else { 9443 mp->b_cont = NULL; 9444 freeb(mp); /* areq */ 9445 ire_delete(ire); /* ire_mp */ 9446 saved_mp->b_next = NULL; 9447 saved_mp->b_prev = NULL; 9448 freemsg(first_mp); /* pkt */ 9449 ip2dbg(("ip_newroute_ipif: dropped\n")); 9450 } 9451 9452 if (fire != NULL) { 9453 ire_refrele(fire); 9454 fire = NULL; 9455 } 9456 9457 9458 /* 9459 * The resolution loop is re-entered if this was 9460 * requested through flags and we actually are 9461 * in a multirouting case. 9462 */ 9463 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9464 boolean_t need_resolve = 9465 ire_multirt_need_resolve(ipha_dst, 9466 MBLK_GETLABEL(copy_mp), ipst); 9467 if (!need_resolve) { 9468 MULTIRT_DEBUG_UNTAG(copy_mp); 9469 freemsg(copy_mp); 9470 copy_mp = NULL; 9471 } else { 9472 /* 9473 * ipif_lookup_group() calls 9474 * ire_lookup_multi() that uses 9475 * ire_ftable_lookup() to find 9476 * an IRE_INTERFACE for the group. 9477 * In the multirt case, 9478 * ire_lookup_multi() then invokes 9479 * ire_multirt_lookup() to find 9480 * the next resolvable ire. 9481 * As a result, we obtain an new 9482 * interface, derived from the 9483 * next ire. 9484 */ 9485 ipif_refrele(ipif); 9486 ipif = ipif_lookup_group(ipha_dst, 9487 zoneid, ipst); 9488 if (ipif != NULL) { 9489 mp = copy_mp; 9490 copy_mp = NULL; 9491 multirt_resolve_next = B_TRUE; 9492 continue; 9493 } else { 9494 freemsg(copy_mp); 9495 } 9496 } 9497 } 9498 if (ipif != NULL) 9499 ipif_refrele(ipif); 9500 ill_refrele(dst_ill); 9501 ipif_refrele(src_ipif); 9502 return; 9503 default: 9504 break; 9505 } 9506 } while (multirt_resolve_next); 9507 9508 err_ret: 9509 ip2dbg(("ip_newroute_ipif: dropped\n")); 9510 if (fire != NULL) 9511 ire_refrele(fire); 9512 ipif_refrele(ipif); 9513 /* Did this packet originate externally? */ 9514 if (dst_ill != NULL) 9515 ill_refrele(dst_ill); 9516 if (src_ipif != NULL) 9517 ipif_refrele(src_ipif); 9518 if (mp->b_prev || mp->b_next) { 9519 mp->b_next = NULL; 9520 mp->b_prev = NULL; 9521 } else { 9522 /* 9523 * Since ip_wput() isn't close to finished, we fill 9524 * in enough of the header for credible error reporting. 9525 */ 9526 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9527 /* Failed */ 9528 freemsg(first_mp); 9529 if (ire != NULL) 9530 ire_refrele(ire); 9531 return; 9532 } 9533 } 9534 /* 9535 * At this point we will have ire only if RTF_BLACKHOLE 9536 * or RTF_REJECT flags are set on the IRE. It will not 9537 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9538 */ 9539 if (ire != NULL) { 9540 if (ire->ire_flags & RTF_BLACKHOLE) { 9541 ire_refrele(ire); 9542 freemsg(first_mp); 9543 return; 9544 } 9545 ire_refrele(ire); 9546 } 9547 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9548 } 9549 9550 /* Name/Value Table Lookup Routine */ 9551 char * 9552 ip_nv_lookup(nv_t *nv, int value) 9553 { 9554 if (!nv) 9555 return (NULL); 9556 for (; nv->nv_name; nv++) { 9557 if (nv->nv_value == value) 9558 return (nv->nv_name); 9559 } 9560 return ("unknown"); 9561 } 9562 9563 /* 9564 * This is a module open, i.e. this is a control stream for access 9565 * to a DLPI device. We allocate an ill_t as the instance data in 9566 * this case. 9567 */ 9568 int 9569 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9570 { 9571 ill_t *ill; 9572 int err; 9573 zoneid_t zoneid; 9574 netstack_t *ns; 9575 ip_stack_t *ipst; 9576 9577 /* 9578 * Prevent unprivileged processes from pushing IP so that 9579 * they can't send raw IP. 9580 */ 9581 if (secpolicy_net_rawaccess(credp) != 0) 9582 return (EPERM); 9583 9584 ns = netstack_find_by_cred(credp); 9585 ASSERT(ns != NULL); 9586 ipst = ns->netstack_ip; 9587 ASSERT(ipst != NULL); 9588 9589 /* 9590 * For exclusive stacks we set the zoneid to zero 9591 * to make IP operate as if in the global zone. 9592 */ 9593 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9594 zoneid = GLOBAL_ZONEID; 9595 else 9596 zoneid = crgetzoneid(credp); 9597 9598 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9599 q->q_ptr = WR(q)->q_ptr = ill; 9600 ill->ill_ipst = ipst; 9601 ill->ill_zoneid = zoneid; 9602 9603 /* 9604 * ill_init initializes the ill fields and then sends down 9605 * down a DL_INFO_REQ after calling qprocson. 9606 */ 9607 err = ill_init(q, ill); 9608 if (err != 0) { 9609 mi_free(ill); 9610 netstack_rele(ipst->ips_netstack); 9611 q->q_ptr = NULL; 9612 WR(q)->q_ptr = NULL; 9613 return (err); 9614 } 9615 9616 /* ill_init initializes the ipsq marking this thread as writer */ 9617 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9618 /* Wait for the DL_INFO_ACK */ 9619 mutex_enter(&ill->ill_lock); 9620 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9621 /* 9622 * Return value of 0 indicates a pending signal. 9623 */ 9624 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9625 if (err == 0) { 9626 mutex_exit(&ill->ill_lock); 9627 (void) ip_close(q, 0); 9628 return (EINTR); 9629 } 9630 } 9631 mutex_exit(&ill->ill_lock); 9632 9633 /* 9634 * ip_rput_other could have set an error in ill_error on 9635 * receipt of M_ERROR. 9636 */ 9637 9638 err = ill->ill_error; 9639 if (err != 0) { 9640 (void) ip_close(q, 0); 9641 return (err); 9642 } 9643 9644 ill->ill_credp = credp; 9645 crhold(credp); 9646 9647 mutex_enter(&ipst->ips_ip_mi_lock); 9648 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9649 credp); 9650 mutex_exit(&ipst->ips_ip_mi_lock); 9651 if (err) { 9652 (void) ip_close(q, 0); 9653 return (err); 9654 } 9655 return (0); 9656 } 9657 9658 /* IP open routine. */ 9659 int 9660 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9661 { 9662 conn_t *connp; 9663 major_t maj; 9664 zoneid_t zoneid; 9665 netstack_t *ns; 9666 ip_stack_t *ipst; 9667 9668 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9669 9670 /* Allow reopen. */ 9671 if (q->q_ptr != NULL) 9672 return (0); 9673 9674 if (sflag & MODOPEN) { 9675 /* This is a module open */ 9676 return (ip_modopen(q, devp, flag, sflag, credp)); 9677 } 9678 9679 ns = netstack_find_by_cred(credp); 9680 ASSERT(ns != NULL); 9681 ipst = ns->netstack_ip; 9682 ASSERT(ipst != NULL); 9683 9684 /* 9685 * For exclusive stacks we set the zoneid to zero 9686 * to make IP operate as if in the global zone. 9687 */ 9688 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9689 zoneid = GLOBAL_ZONEID; 9690 else 9691 zoneid = crgetzoneid(credp); 9692 9693 /* 9694 * We are opening as a device. This is an IP client stream, and we 9695 * allocate an conn_t as the instance data. 9696 */ 9697 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9698 9699 /* 9700 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9701 * done by netstack_find_by_cred() 9702 */ 9703 netstack_rele(ipst->ips_netstack); 9704 9705 connp->conn_zoneid = zoneid; 9706 9707 connp->conn_upq = q; 9708 q->q_ptr = WR(q)->q_ptr = connp; 9709 9710 if (flag & SO_SOCKSTR) 9711 connp->conn_flags |= IPCL_SOCKET; 9712 9713 /* Minor tells us which /dev entry was opened */ 9714 if (geteminor(*devp) == IPV6_MINOR) { 9715 connp->conn_flags |= IPCL_ISV6; 9716 connp->conn_af_isv6 = B_TRUE; 9717 ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst); 9718 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9719 } else { 9720 connp->conn_af_isv6 = B_FALSE; 9721 connp->conn_pkt_isv6 = B_FALSE; 9722 } 9723 9724 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9725 /* CONN_DEC_REF takes care of netstack_rele() */ 9726 q->q_ptr = WR(q)->q_ptr = NULL; 9727 CONN_DEC_REF(connp); 9728 return (EBUSY); 9729 } 9730 9731 maj = getemajor(*devp); 9732 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9733 9734 /* 9735 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9736 */ 9737 connp->conn_cred = credp; 9738 crhold(connp->conn_cred); 9739 9740 /* 9741 * If the caller has the process-wide flag set, then default to MAC 9742 * exempt mode. This allows read-down to unlabeled hosts. 9743 */ 9744 if (getpflags(NET_MAC_AWARE, credp) != 0) 9745 connp->conn_mac_exempt = B_TRUE; 9746 9747 /* 9748 * This should only happen for ndd, netstat, raw socket or other SCTP 9749 * administrative ops. In these cases, we just need a normal conn_t 9750 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9751 * an error will be returned. 9752 */ 9753 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9754 connp->conn_rq = q; 9755 connp->conn_wq = WR(q); 9756 } else { 9757 connp->conn_ulp = IPPROTO_SCTP; 9758 connp->conn_rq = connp->conn_wq = NULL; 9759 } 9760 /* Non-zero default values */ 9761 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9762 9763 /* 9764 * Make the conn globally visible to walkers 9765 */ 9766 ASSERT(connp->conn_ref == 1); 9767 mutex_enter(&connp->conn_lock); 9768 connp->conn_state_flags &= ~CONN_INCIPIENT; 9769 mutex_exit(&connp->conn_lock); 9770 9771 qprocson(q); 9772 9773 return (0); 9774 } 9775 9776 /* 9777 * Change q_qinfo based on the value of isv6. 9778 * This can not called on an ill queue. 9779 * Note that there is no race since either q_qinfo works for conn queues - it 9780 * is just an optimization to enter the best wput routine directly. 9781 */ 9782 void 9783 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst) 9784 { 9785 ASSERT(q->q_flag & QREADR); 9786 ASSERT(WR(q)->q_next == NULL); 9787 ASSERT(q->q_ptr != NULL); 9788 9789 if (minor == IPV6_MINOR) { 9790 if (bump_mib) { 9791 BUMP_MIB(&ipst->ips_ip6_mib, 9792 ipIfStatsOutSwitchIPVersion); 9793 } 9794 q->q_qinfo = &rinit_ipv6; 9795 WR(q)->q_qinfo = &winit_ipv6; 9796 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9797 } else { 9798 if (bump_mib) { 9799 BUMP_MIB(&ipst->ips_ip_mib, 9800 ipIfStatsOutSwitchIPVersion); 9801 } 9802 q->q_qinfo = &iprinit; 9803 WR(q)->q_qinfo = &ipwinit; 9804 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9805 } 9806 9807 } 9808 9809 /* 9810 * See if IPsec needs loading because of the options in mp. 9811 */ 9812 static boolean_t 9813 ipsec_opt_present(mblk_t *mp) 9814 { 9815 uint8_t *optcp, *next_optcp, *opt_endcp; 9816 struct opthdr *opt; 9817 struct T_opthdr *topt; 9818 int opthdr_len; 9819 t_uscalar_t optname, optlevel; 9820 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9821 ipsec_req_t *ipsr; 9822 9823 /* 9824 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9825 * return TRUE. 9826 */ 9827 9828 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9829 opt_endcp = optcp + tor->OPT_length; 9830 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9831 opthdr_len = sizeof (struct T_opthdr); 9832 } else { /* O_OPTMGMT_REQ */ 9833 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9834 opthdr_len = sizeof (struct opthdr); 9835 } 9836 for (; optcp < opt_endcp; optcp = next_optcp) { 9837 if (optcp + opthdr_len > opt_endcp) 9838 return (B_FALSE); /* Not enough option header. */ 9839 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9840 topt = (struct T_opthdr *)optcp; 9841 optlevel = topt->level; 9842 optname = topt->name; 9843 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9844 } else { 9845 opt = (struct opthdr *)optcp; 9846 optlevel = opt->level; 9847 optname = opt->name; 9848 next_optcp = optcp + opthdr_len + 9849 _TPI_ALIGN_OPT(opt->len); 9850 } 9851 if ((next_optcp < optcp) || /* wraparound pointer space */ 9852 ((next_optcp >= opt_endcp) && /* last option bad len */ 9853 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9854 return (B_FALSE); /* bad option buffer */ 9855 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9856 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9857 /* 9858 * Check to see if it's an all-bypass or all-zeroes 9859 * IPsec request. Don't bother loading IPsec if 9860 * the socket doesn't want to use it. (A good example 9861 * is a bypass request.) 9862 * 9863 * Basically, if any of the non-NEVER bits are set, 9864 * load IPsec. 9865 */ 9866 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9867 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9868 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9869 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9870 != 0) 9871 return (B_TRUE); 9872 } 9873 } 9874 return (B_FALSE); 9875 } 9876 9877 /* 9878 * If conn is is waiting for ipsec to finish loading, kick it. 9879 */ 9880 /* ARGSUSED */ 9881 static void 9882 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9883 { 9884 t_scalar_t optreq_prim; 9885 mblk_t *mp; 9886 cred_t *cr; 9887 int err = 0; 9888 9889 /* 9890 * This function is called, after ipsec loading is complete. 9891 * Since IP checks exclusively and atomically (i.e it prevents 9892 * ipsec load from completing until ip_optcom_req completes) 9893 * whether ipsec load is complete, there cannot be a race with IP 9894 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9895 */ 9896 mutex_enter(&connp->conn_lock); 9897 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9898 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9899 mp = connp->conn_ipsec_opt_mp; 9900 connp->conn_ipsec_opt_mp = NULL; 9901 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9902 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9903 mutex_exit(&connp->conn_lock); 9904 9905 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9906 9907 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9908 if (optreq_prim == T_OPTMGMT_REQ) { 9909 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9910 &ip_opt_obj); 9911 } else { 9912 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9913 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9914 &ip_opt_obj); 9915 } 9916 if (err != EINPROGRESS) 9917 CONN_OPER_PENDING_DONE(connp); 9918 return; 9919 } 9920 mutex_exit(&connp->conn_lock); 9921 } 9922 9923 /* 9924 * Called from the ipsec_loader thread, outside any perimeter, to tell 9925 * ip qenable any of the queues waiting for the ipsec loader to 9926 * complete. 9927 */ 9928 void 9929 ip_ipsec_load_complete(ipsec_stack_t *ipss) 9930 { 9931 netstack_t *ns = ipss->ipsec_netstack; 9932 9933 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 9934 } 9935 9936 /* 9937 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9938 * determines the grp on which it has to become exclusive, queues the mp 9939 * and sq draining restarts the optmgmt 9940 */ 9941 static boolean_t 9942 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9943 { 9944 conn_t *connp = Q_TO_CONN(q); 9945 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 9946 9947 /* 9948 * Take IPsec requests and treat them special. 9949 */ 9950 if (ipsec_opt_present(mp)) { 9951 /* First check if IPsec is loaded. */ 9952 mutex_enter(&ipss->ipsec_loader_lock); 9953 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 9954 mutex_exit(&ipss->ipsec_loader_lock); 9955 return (B_FALSE); 9956 } 9957 mutex_enter(&connp->conn_lock); 9958 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 9959 9960 ASSERT(connp->conn_ipsec_opt_mp == NULL); 9961 connp->conn_ipsec_opt_mp = mp; 9962 mutex_exit(&connp->conn_lock); 9963 mutex_exit(&ipss->ipsec_loader_lock); 9964 9965 ipsec_loader_loadnow(ipss); 9966 return (B_TRUE); 9967 } 9968 return (B_FALSE); 9969 } 9970 9971 /* 9972 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 9973 * all of them are copied to the conn_t. If the req is "zero", the policy is 9974 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 9975 * fields. 9976 * We keep only the latest setting of the policy and thus policy setting 9977 * is not incremental/cumulative. 9978 * 9979 * Requests to set policies with multiple alternative actions will 9980 * go through a different API. 9981 */ 9982 int 9983 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 9984 { 9985 uint_t ah_req = 0; 9986 uint_t esp_req = 0; 9987 uint_t se_req = 0; 9988 ipsec_selkey_t sel; 9989 ipsec_act_t *actp = NULL; 9990 uint_t nact; 9991 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 9992 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 9993 ipsec_policy_root_t *pr; 9994 ipsec_policy_head_t *ph; 9995 int fam; 9996 boolean_t is_pol_reset; 9997 int error = 0; 9998 netstack_t *ns = connp->conn_netstack; 9999 ip_stack_t *ipst = ns->netstack_ip; 10000 ipsec_stack_t *ipss = ns->netstack_ipsec; 10001 10002 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10003 10004 /* 10005 * The IP_SEC_OPT option does not allow variable length parameters, 10006 * hence a request cannot be NULL. 10007 */ 10008 if (req == NULL) 10009 return (EINVAL); 10010 10011 ah_req = req->ipsr_ah_req; 10012 esp_req = req->ipsr_esp_req; 10013 se_req = req->ipsr_self_encap_req; 10014 10015 /* 10016 * Are we dealing with a request to reset the policy (i.e. 10017 * zero requests). 10018 */ 10019 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10020 (esp_req & REQ_MASK) == 0 && 10021 (se_req & REQ_MASK) == 0); 10022 10023 if (!is_pol_reset) { 10024 /* 10025 * If we couldn't load IPsec, fail with "protocol 10026 * not supported". 10027 * IPsec may not have been loaded for a request with zero 10028 * policies, so we don't fail in this case. 10029 */ 10030 mutex_enter(&ipss->ipsec_loader_lock); 10031 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10032 mutex_exit(&ipss->ipsec_loader_lock); 10033 return (EPROTONOSUPPORT); 10034 } 10035 mutex_exit(&ipss->ipsec_loader_lock); 10036 10037 /* 10038 * Test for valid requests. Invalid algorithms 10039 * need to be tested by IPSEC code because new 10040 * algorithms can be added dynamically. 10041 */ 10042 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10043 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10044 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10045 return (EINVAL); 10046 } 10047 10048 /* 10049 * Only privileged users can issue these 10050 * requests. 10051 */ 10052 if (((ah_req & IPSEC_PREF_NEVER) || 10053 (esp_req & IPSEC_PREF_NEVER) || 10054 (se_req & IPSEC_PREF_NEVER)) && 10055 secpolicy_ip_config(cr, B_FALSE) != 0) { 10056 return (EPERM); 10057 } 10058 10059 /* 10060 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10061 * are mutually exclusive. 10062 */ 10063 if (((ah_req & REQ_MASK) == REQ_MASK) || 10064 ((esp_req & REQ_MASK) == REQ_MASK) || 10065 ((se_req & REQ_MASK) == REQ_MASK)) { 10066 /* Both of them are set */ 10067 return (EINVAL); 10068 } 10069 } 10070 10071 mutex_enter(&connp->conn_lock); 10072 10073 /* 10074 * If we have already cached policies in ip_bind_connected*(), don't 10075 * let them change now. We cache policies for connections 10076 * whose src,dst [addr, port] is known. 10077 */ 10078 if (connp->conn_policy_cached) { 10079 mutex_exit(&connp->conn_lock); 10080 return (EINVAL); 10081 } 10082 10083 /* 10084 * We have a zero policies, reset the connection policy if already 10085 * set. This will cause the connection to inherit the 10086 * global policy, if any. 10087 */ 10088 if (is_pol_reset) { 10089 if (connp->conn_policy != NULL) { 10090 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10091 connp->conn_policy = NULL; 10092 } 10093 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10094 connp->conn_in_enforce_policy = B_FALSE; 10095 connp->conn_out_enforce_policy = B_FALSE; 10096 mutex_exit(&connp->conn_lock); 10097 return (0); 10098 } 10099 10100 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10101 ipst->ips_netstack); 10102 if (ph == NULL) 10103 goto enomem; 10104 10105 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10106 if (actp == NULL) 10107 goto enomem; 10108 10109 /* 10110 * Always allocate IPv4 policy entries, since they can also 10111 * apply to ipv6 sockets being used in ipv4-compat mode. 10112 */ 10113 bzero(&sel, sizeof (sel)); 10114 sel.ipsl_valid = IPSL_IPV4; 10115 10116 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10117 ipst->ips_netstack); 10118 if (pin4 == NULL) 10119 goto enomem; 10120 10121 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10122 ipst->ips_netstack); 10123 if (pout4 == NULL) 10124 goto enomem; 10125 10126 if (connp->conn_pkt_isv6) { 10127 /* 10128 * We're looking at a v6 socket, also allocate the 10129 * v6-specific entries... 10130 */ 10131 sel.ipsl_valid = IPSL_IPV6; 10132 pin6 = ipsec_policy_create(&sel, actp, nact, 10133 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10134 if (pin6 == NULL) 10135 goto enomem; 10136 10137 pout6 = ipsec_policy_create(&sel, actp, nact, 10138 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10139 if (pout6 == NULL) 10140 goto enomem; 10141 10142 /* 10143 * .. and file them away in the right place. 10144 */ 10145 fam = IPSEC_AF_V6; 10146 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10147 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10148 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10149 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10150 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10151 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10152 } 10153 10154 ipsec_actvec_free(actp, nact); 10155 10156 /* 10157 * File the v4 policies. 10158 */ 10159 fam = IPSEC_AF_V4; 10160 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10161 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10162 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10163 10164 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10165 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10166 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10167 10168 /* 10169 * If the requests need security, set enforce_policy. 10170 * If the requests are IPSEC_PREF_NEVER, one should 10171 * still set conn_out_enforce_policy so that an ipsec_out 10172 * gets attached in ip_wput. This is needed so that 10173 * for connections that we don't cache policy in ip_bind, 10174 * if global policy matches in ip_wput_attach_policy, we 10175 * don't wrongly inherit global policy. Similarly, we need 10176 * to set conn_in_enforce_policy also so that we don't verify 10177 * policy wrongly. 10178 */ 10179 if ((ah_req & REQ_MASK) != 0 || 10180 (esp_req & REQ_MASK) != 0 || 10181 (se_req & REQ_MASK) != 0) { 10182 connp->conn_in_enforce_policy = B_TRUE; 10183 connp->conn_out_enforce_policy = B_TRUE; 10184 connp->conn_flags |= IPCL_CHECK_POLICY; 10185 } 10186 10187 mutex_exit(&connp->conn_lock); 10188 return (error); 10189 #undef REQ_MASK 10190 10191 /* 10192 * Common memory-allocation-failure exit path. 10193 */ 10194 enomem: 10195 mutex_exit(&connp->conn_lock); 10196 if (actp != NULL) 10197 ipsec_actvec_free(actp, nact); 10198 if (pin4 != NULL) 10199 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10200 if (pout4 != NULL) 10201 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10202 if (pin6 != NULL) 10203 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10204 if (pout6 != NULL) 10205 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10206 return (ENOMEM); 10207 } 10208 10209 /* 10210 * Only for options that pass in an IP addr. Currently only V4 options 10211 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10212 * So this function assumes level is IPPROTO_IP 10213 */ 10214 int 10215 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10216 mblk_t *first_mp) 10217 { 10218 ipif_t *ipif = NULL; 10219 int error; 10220 ill_t *ill; 10221 int zoneid; 10222 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10223 10224 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10225 10226 if (addr != INADDR_ANY || checkonly) { 10227 ASSERT(connp != NULL); 10228 zoneid = IPCL_ZONEID(connp); 10229 if (option == IP_NEXTHOP) { 10230 ipif = ipif_lookup_onlink_addr(addr, 10231 connp->conn_zoneid, ipst); 10232 } else { 10233 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10234 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10235 &error, ipst); 10236 } 10237 if (ipif == NULL) { 10238 if (error == EINPROGRESS) 10239 return (error); 10240 else if ((option == IP_MULTICAST_IF) || 10241 (option == IP_NEXTHOP)) 10242 return (EHOSTUNREACH); 10243 else 10244 return (EINVAL); 10245 } else if (checkonly) { 10246 if (option == IP_MULTICAST_IF) { 10247 ill = ipif->ipif_ill; 10248 /* not supported by the virtual network iface */ 10249 if (IS_VNI(ill)) { 10250 ipif_refrele(ipif); 10251 return (EINVAL); 10252 } 10253 } 10254 ipif_refrele(ipif); 10255 return (0); 10256 } 10257 ill = ipif->ipif_ill; 10258 mutex_enter(&connp->conn_lock); 10259 mutex_enter(&ill->ill_lock); 10260 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10261 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10262 mutex_exit(&ill->ill_lock); 10263 mutex_exit(&connp->conn_lock); 10264 ipif_refrele(ipif); 10265 return (option == IP_MULTICAST_IF ? 10266 EHOSTUNREACH : EINVAL); 10267 } 10268 } else { 10269 mutex_enter(&connp->conn_lock); 10270 } 10271 10272 /* None of the options below are supported on the VNI */ 10273 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10274 mutex_exit(&ill->ill_lock); 10275 mutex_exit(&connp->conn_lock); 10276 ipif_refrele(ipif); 10277 return (EINVAL); 10278 } 10279 10280 switch (option) { 10281 case IP_DONTFAILOVER_IF: 10282 /* 10283 * This option is used by in.mpathd to ensure 10284 * that IPMP probe packets only go out on the 10285 * test interfaces. in.mpathd sets this option 10286 * on the non-failover interfaces. 10287 * For backward compatibility, this option 10288 * implicitly sets IP_MULTICAST_IF, as used 10289 * be done in bind(), so that ip_wput gets 10290 * this ipif to send mcast packets. 10291 */ 10292 if (ipif != NULL) { 10293 ASSERT(addr != INADDR_ANY); 10294 connp->conn_nofailover_ill = ipif->ipif_ill; 10295 connp->conn_multicast_ipif = ipif; 10296 } else { 10297 ASSERT(addr == INADDR_ANY); 10298 connp->conn_nofailover_ill = NULL; 10299 connp->conn_multicast_ipif = NULL; 10300 } 10301 break; 10302 10303 case IP_MULTICAST_IF: 10304 connp->conn_multicast_ipif = ipif; 10305 break; 10306 case IP_NEXTHOP: 10307 connp->conn_nexthop_v4 = addr; 10308 connp->conn_nexthop_set = B_TRUE; 10309 break; 10310 } 10311 10312 if (ipif != NULL) { 10313 mutex_exit(&ill->ill_lock); 10314 mutex_exit(&connp->conn_lock); 10315 ipif_refrele(ipif); 10316 return (0); 10317 } 10318 mutex_exit(&connp->conn_lock); 10319 /* We succeded in cleared the option */ 10320 return (0); 10321 } 10322 10323 /* 10324 * For options that pass in an ifindex specifying the ill. V6 options always 10325 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10326 */ 10327 int 10328 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10329 int level, int option, mblk_t *first_mp) 10330 { 10331 ill_t *ill = NULL; 10332 int error = 0; 10333 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10334 10335 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10336 if (ifindex != 0) { 10337 ASSERT(connp != NULL); 10338 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10339 first_mp, ip_restart_optmgmt, &error, ipst); 10340 if (ill != NULL) { 10341 if (checkonly) { 10342 /* not supported by the virtual network iface */ 10343 if (IS_VNI(ill)) { 10344 ill_refrele(ill); 10345 return (EINVAL); 10346 } 10347 ill_refrele(ill); 10348 return (0); 10349 } 10350 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10351 0, NULL)) { 10352 ill_refrele(ill); 10353 ill = NULL; 10354 mutex_enter(&connp->conn_lock); 10355 goto setit; 10356 } 10357 mutex_enter(&connp->conn_lock); 10358 mutex_enter(&ill->ill_lock); 10359 if (ill->ill_state_flags & ILL_CONDEMNED) { 10360 mutex_exit(&ill->ill_lock); 10361 mutex_exit(&connp->conn_lock); 10362 ill_refrele(ill); 10363 ill = NULL; 10364 mutex_enter(&connp->conn_lock); 10365 } 10366 goto setit; 10367 } else if (error == EINPROGRESS) { 10368 return (error); 10369 } else { 10370 error = 0; 10371 } 10372 } 10373 mutex_enter(&connp->conn_lock); 10374 setit: 10375 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10376 10377 /* 10378 * The options below assume that the ILL (if any) transmits and/or 10379 * receives traffic. Neither of which is true for the virtual network 10380 * interface, so fail setting these on a VNI. 10381 */ 10382 if (IS_VNI(ill)) { 10383 ASSERT(ill != NULL); 10384 mutex_exit(&ill->ill_lock); 10385 mutex_exit(&connp->conn_lock); 10386 ill_refrele(ill); 10387 return (EINVAL); 10388 } 10389 10390 if (level == IPPROTO_IP) { 10391 switch (option) { 10392 case IP_BOUND_IF: 10393 connp->conn_incoming_ill = ill; 10394 connp->conn_outgoing_ill = ill; 10395 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10396 0 : ifindex; 10397 break; 10398 10399 case IP_XMIT_IF: 10400 /* 10401 * Similar to IP_BOUND_IF, but this only 10402 * determines the outgoing interface for 10403 * unicast packets. Also no IRE_CACHE entry 10404 * is added for the destination of the 10405 * outgoing packets. 10406 */ 10407 connp->conn_xmit_if_ill = ill; 10408 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10409 0 : ifindex; 10410 break; 10411 10412 case IP_MULTICAST_IF: 10413 /* 10414 * This option is an internal special. The socket 10415 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10416 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10417 * specifies an ifindex and we try first on V6 ill's. 10418 * If we don't find one, we they try using on v4 ill's 10419 * intenally and we come here. 10420 */ 10421 if (!checkonly && ill != NULL) { 10422 ipif_t *ipif; 10423 ipif = ill->ill_ipif; 10424 10425 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10426 mutex_exit(&ill->ill_lock); 10427 mutex_exit(&connp->conn_lock); 10428 ill_refrele(ill); 10429 ill = NULL; 10430 mutex_enter(&connp->conn_lock); 10431 } else { 10432 connp->conn_multicast_ipif = ipif; 10433 } 10434 } 10435 break; 10436 } 10437 } else { 10438 switch (option) { 10439 case IPV6_BOUND_IF: 10440 connp->conn_incoming_ill = ill; 10441 connp->conn_outgoing_ill = ill; 10442 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10443 0 : ifindex; 10444 break; 10445 10446 case IPV6_BOUND_PIF: 10447 /* 10448 * Limit all transmit to this ill. 10449 * Unlike IPV6_BOUND_IF, using this option 10450 * prevents load spreading and failover from 10451 * happening when the interface is part of the 10452 * group. That's why we don't need to remember 10453 * the ifindex in orig_bound_ifindex as in 10454 * IPV6_BOUND_IF. 10455 */ 10456 connp->conn_outgoing_pill = ill; 10457 break; 10458 10459 case IPV6_DONTFAILOVER_IF: 10460 /* 10461 * This option is used by in.mpathd to ensure 10462 * that IPMP probe packets only go out on the 10463 * test interfaces. in.mpathd sets this option 10464 * on the non-failover interfaces. 10465 */ 10466 connp->conn_nofailover_ill = ill; 10467 /* 10468 * For backward compatibility, this option 10469 * implicitly sets ip_multicast_ill as used in 10470 * IP_MULTICAST_IF so that ip_wput gets 10471 * this ipif to send mcast packets. 10472 */ 10473 connp->conn_multicast_ill = ill; 10474 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10475 0 : ifindex; 10476 break; 10477 10478 case IPV6_MULTICAST_IF: 10479 /* 10480 * Set conn_multicast_ill to be the IPv6 ill. 10481 * Set conn_multicast_ipif to be an IPv4 ipif 10482 * for ifindex to make IPv4 mapped addresses 10483 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10484 * Even if no IPv6 ill exists for the ifindex 10485 * we need to check for an IPv4 ifindex in order 10486 * for this to work with mapped addresses. In that 10487 * case only set conn_multicast_ipif. 10488 */ 10489 if (!checkonly) { 10490 if (ifindex == 0) { 10491 connp->conn_multicast_ill = NULL; 10492 connp->conn_orig_multicast_ifindex = 0; 10493 connp->conn_multicast_ipif = NULL; 10494 } else if (ill != NULL) { 10495 connp->conn_multicast_ill = ill; 10496 connp->conn_orig_multicast_ifindex = 10497 ifindex; 10498 } 10499 } 10500 break; 10501 } 10502 } 10503 10504 if (ill != NULL) { 10505 mutex_exit(&ill->ill_lock); 10506 mutex_exit(&connp->conn_lock); 10507 ill_refrele(ill); 10508 return (0); 10509 } 10510 mutex_exit(&connp->conn_lock); 10511 /* 10512 * We succeeded in clearing the option (ifindex == 0) or failed to 10513 * locate the ill and could not set the option (ifindex != 0) 10514 */ 10515 return (ifindex == 0 ? 0 : EINVAL); 10516 } 10517 10518 /* This routine sets socket options. */ 10519 /* ARGSUSED */ 10520 int 10521 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10522 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10523 void *dummy, cred_t *cr, mblk_t *first_mp) 10524 { 10525 int *i1 = (int *)invalp; 10526 conn_t *connp = Q_TO_CONN(q); 10527 int error = 0; 10528 boolean_t checkonly; 10529 ire_t *ire; 10530 boolean_t found; 10531 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10532 10533 switch (optset_context) { 10534 10535 case SETFN_OPTCOM_CHECKONLY: 10536 checkonly = B_TRUE; 10537 /* 10538 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10539 * inlen != 0 implies value supplied and 10540 * we have to "pretend" to set it. 10541 * inlen == 0 implies that there is no 10542 * value part in T_CHECK request and just validation 10543 * done elsewhere should be enough, we just return here. 10544 */ 10545 if (inlen == 0) { 10546 *outlenp = 0; 10547 return (0); 10548 } 10549 break; 10550 case SETFN_OPTCOM_NEGOTIATE: 10551 case SETFN_UD_NEGOTIATE: 10552 case SETFN_CONN_NEGOTIATE: 10553 checkonly = B_FALSE; 10554 break; 10555 default: 10556 /* 10557 * We should never get here 10558 */ 10559 *outlenp = 0; 10560 return (EINVAL); 10561 } 10562 10563 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10564 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10565 10566 /* 10567 * For fixed length options, no sanity check 10568 * of passed in length is done. It is assumed *_optcom_req() 10569 * routines do the right thing. 10570 */ 10571 10572 switch (level) { 10573 case SOL_SOCKET: 10574 /* 10575 * conn_lock protects the bitfields, and is used to 10576 * set the fields atomically. 10577 */ 10578 switch (name) { 10579 case SO_BROADCAST: 10580 if (!checkonly) { 10581 /* TODO: use value someplace? */ 10582 mutex_enter(&connp->conn_lock); 10583 connp->conn_broadcast = *i1 ? 1 : 0; 10584 mutex_exit(&connp->conn_lock); 10585 } 10586 break; /* goto sizeof (int) option return */ 10587 case SO_USELOOPBACK: 10588 if (!checkonly) { 10589 /* TODO: use value someplace? */ 10590 mutex_enter(&connp->conn_lock); 10591 connp->conn_loopback = *i1 ? 1 : 0; 10592 mutex_exit(&connp->conn_lock); 10593 } 10594 break; /* goto sizeof (int) option return */ 10595 case SO_DONTROUTE: 10596 if (!checkonly) { 10597 mutex_enter(&connp->conn_lock); 10598 connp->conn_dontroute = *i1 ? 1 : 0; 10599 mutex_exit(&connp->conn_lock); 10600 } 10601 break; /* goto sizeof (int) option return */ 10602 case SO_REUSEADDR: 10603 if (!checkonly) { 10604 mutex_enter(&connp->conn_lock); 10605 connp->conn_reuseaddr = *i1 ? 1 : 0; 10606 mutex_exit(&connp->conn_lock); 10607 } 10608 break; /* goto sizeof (int) option return */ 10609 case SO_PROTOTYPE: 10610 if (!checkonly) { 10611 mutex_enter(&connp->conn_lock); 10612 connp->conn_proto = *i1; 10613 mutex_exit(&connp->conn_lock); 10614 } 10615 break; /* goto sizeof (int) option return */ 10616 case SO_ALLZONES: 10617 if (!checkonly) { 10618 mutex_enter(&connp->conn_lock); 10619 if (IPCL_IS_BOUND(connp)) { 10620 mutex_exit(&connp->conn_lock); 10621 return (EINVAL); 10622 } 10623 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10624 mutex_exit(&connp->conn_lock); 10625 } 10626 break; /* goto sizeof (int) option return */ 10627 case SO_ANON_MLP: 10628 if (!checkonly) { 10629 mutex_enter(&connp->conn_lock); 10630 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10631 mutex_exit(&connp->conn_lock); 10632 } 10633 break; /* goto sizeof (int) option return */ 10634 case SO_MAC_EXEMPT: 10635 if (secpolicy_net_mac_aware(cr) != 0 || 10636 IPCL_IS_BOUND(connp)) 10637 return (EACCES); 10638 if (!checkonly) { 10639 mutex_enter(&connp->conn_lock); 10640 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10641 mutex_exit(&connp->conn_lock); 10642 } 10643 break; /* goto sizeof (int) option return */ 10644 default: 10645 /* 10646 * "soft" error (negative) 10647 * option not handled at this level 10648 * Note: Do not modify *outlenp 10649 */ 10650 return (-EINVAL); 10651 } 10652 break; 10653 case IPPROTO_IP: 10654 switch (name) { 10655 case IP_NEXTHOP: 10656 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10657 return (EPERM); 10658 /* FALLTHRU */ 10659 case IP_MULTICAST_IF: 10660 case IP_DONTFAILOVER_IF: { 10661 ipaddr_t addr = *i1; 10662 10663 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10664 first_mp); 10665 if (error != 0) 10666 return (error); 10667 break; /* goto sizeof (int) option return */ 10668 } 10669 10670 case IP_MULTICAST_TTL: 10671 /* Recorded in transport above IP */ 10672 *outvalp = *invalp; 10673 *outlenp = sizeof (uchar_t); 10674 return (0); 10675 case IP_MULTICAST_LOOP: 10676 if (!checkonly) { 10677 mutex_enter(&connp->conn_lock); 10678 connp->conn_multicast_loop = *invalp ? 1 : 0; 10679 mutex_exit(&connp->conn_lock); 10680 } 10681 *outvalp = *invalp; 10682 *outlenp = sizeof (uchar_t); 10683 return (0); 10684 case IP_ADD_MEMBERSHIP: 10685 case MCAST_JOIN_GROUP: 10686 case IP_DROP_MEMBERSHIP: 10687 case MCAST_LEAVE_GROUP: { 10688 struct ip_mreq *mreqp; 10689 struct group_req *greqp; 10690 ire_t *ire; 10691 boolean_t done = B_FALSE; 10692 ipaddr_t group, ifaddr; 10693 struct sockaddr_in *sin; 10694 uint32_t *ifindexp; 10695 boolean_t mcast_opt = B_TRUE; 10696 mcast_record_t fmode; 10697 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10698 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10699 10700 switch (name) { 10701 case IP_ADD_MEMBERSHIP: 10702 mcast_opt = B_FALSE; 10703 /* FALLTHRU */ 10704 case MCAST_JOIN_GROUP: 10705 fmode = MODE_IS_EXCLUDE; 10706 optfn = ip_opt_add_group; 10707 break; 10708 10709 case IP_DROP_MEMBERSHIP: 10710 mcast_opt = B_FALSE; 10711 /* FALLTHRU */ 10712 case MCAST_LEAVE_GROUP: 10713 fmode = MODE_IS_INCLUDE; 10714 optfn = ip_opt_delete_group; 10715 break; 10716 } 10717 10718 if (mcast_opt) { 10719 greqp = (struct group_req *)i1; 10720 sin = (struct sockaddr_in *)&greqp->gr_group; 10721 if (sin->sin_family != AF_INET) { 10722 *outlenp = 0; 10723 return (ENOPROTOOPT); 10724 } 10725 group = (ipaddr_t)sin->sin_addr.s_addr; 10726 ifaddr = INADDR_ANY; 10727 ifindexp = &greqp->gr_interface; 10728 } else { 10729 mreqp = (struct ip_mreq *)i1; 10730 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10731 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10732 ifindexp = NULL; 10733 } 10734 10735 /* 10736 * In the multirouting case, we need to replicate 10737 * the request on all interfaces that will take part 10738 * in replication. We do so because multirouting is 10739 * reflective, thus we will probably receive multi- 10740 * casts on those interfaces. 10741 * The ip_multirt_apply_membership() succeeds if the 10742 * operation succeeds on at least one interface. 10743 */ 10744 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10745 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10746 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10747 if (ire != NULL) { 10748 if (ire->ire_flags & RTF_MULTIRT) { 10749 error = ip_multirt_apply_membership( 10750 optfn, ire, connp, checkonly, group, 10751 fmode, INADDR_ANY, first_mp); 10752 done = B_TRUE; 10753 } 10754 ire_refrele(ire); 10755 } 10756 if (!done) { 10757 error = optfn(connp, checkonly, group, ifaddr, 10758 ifindexp, fmode, INADDR_ANY, first_mp); 10759 } 10760 if (error) { 10761 /* 10762 * EINPROGRESS is a soft error, needs retry 10763 * so don't make *outlenp zero. 10764 */ 10765 if (error != EINPROGRESS) 10766 *outlenp = 0; 10767 return (error); 10768 } 10769 /* OK return - copy input buffer into output buffer */ 10770 if (invalp != outvalp) { 10771 /* don't trust bcopy for identical src/dst */ 10772 bcopy(invalp, outvalp, inlen); 10773 } 10774 *outlenp = inlen; 10775 return (0); 10776 } 10777 case IP_BLOCK_SOURCE: 10778 case IP_UNBLOCK_SOURCE: 10779 case IP_ADD_SOURCE_MEMBERSHIP: 10780 case IP_DROP_SOURCE_MEMBERSHIP: 10781 case MCAST_BLOCK_SOURCE: 10782 case MCAST_UNBLOCK_SOURCE: 10783 case MCAST_JOIN_SOURCE_GROUP: 10784 case MCAST_LEAVE_SOURCE_GROUP: { 10785 struct ip_mreq_source *imreqp; 10786 struct group_source_req *gsreqp; 10787 in_addr_t grp, src, ifaddr = INADDR_ANY; 10788 uint32_t ifindex = 0; 10789 mcast_record_t fmode; 10790 struct sockaddr_in *sin; 10791 ire_t *ire; 10792 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10793 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10794 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10795 10796 switch (name) { 10797 case IP_BLOCK_SOURCE: 10798 mcast_opt = B_FALSE; 10799 /* FALLTHRU */ 10800 case MCAST_BLOCK_SOURCE: 10801 fmode = MODE_IS_EXCLUDE; 10802 optfn = ip_opt_add_group; 10803 break; 10804 10805 case IP_UNBLOCK_SOURCE: 10806 mcast_opt = B_FALSE; 10807 /* FALLTHRU */ 10808 case MCAST_UNBLOCK_SOURCE: 10809 fmode = MODE_IS_EXCLUDE; 10810 optfn = ip_opt_delete_group; 10811 break; 10812 10813 case IP_ADD_SOURCE_MEMBERSHIP: 10814 mcast_opt = B_FALSE; 10815 /* FALLTHRU */ 10816 case MCAST_JOIN_SOURCE_GROUP: 10817 fmode = MODE_IS_INCLUDE; 10818 optfn = ip_opt_add_group; 10819 break; 10820 10821 case IP_DROP_SOURCE_MEMBERSHIP: 10822 mcast_opt = B_FALSE; 10823 /* FALLTHRU */ 10824 case MCAST_LEAVE_SOURCE_GROUP: 10825 fmode = MODE_IS_INCLUDE; 10826 optfn = ip_opt_delete_group; 10827 break; 10828 } 10829 10830 if (mcast_opt) { 10831 gsreqp = (struct group_source_req *)i1; 10832 if (gsreqp->gsr_group.ss_family != AF_INET) { 10833 *outlenp = 0; 10834 return (ENOPROTOOPT); 10835 } 10836 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10837 grp = (ipaddr_t)sin->sin_addr.s_addr; 10838 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10839 src = (ipaddr_t)sin->sin_addr.s_addr; 10840 ifindex = gsreqp->gsr_interface; 10841 } else { 10842 imreqp = (struct ip_mreq_source *)i1; 10843 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10844 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10845 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10846 } 10847 10848 /* 10849 * In the multirouting case, we need to replicate 10850 * the request as noted in the mcast cases above. 10851 */ 10852 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10853 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10854 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10855 if (ire != NULL) { 10856 if (ire->ire_flags & RTF_MULTIRT) { 10857 error = ip_multirt_apply_membership( 10858 optfn, ire, connp, checkonly, grp, 10859 fmode, src, first_mp); 10860 done = B_TRUE; 10861 } 10862 ire_refrele(ire); 10863 } 10864 if (!done) { 10865 error = optfn(connp, checkonly, grp, ifaddr, 10866 &ifindex, fmode, src, first_mp); 10867 } 10868 if (error != 0) { 10869 /* 10870 * EINPROGRESS is a soft error, needs retry 10871 * so don't make *outlenp zero. 10872 */ 10873 if (error != EINPROGRESS) 10874 *outlenp = 0; 10875 return (error); 10876 } 10877 /* OK return - copy input buffer into output buffer */ 10878 if (invalp != outvalp) { 10879 bcopy(invalp, outvalp, inlen); 10880 } 10881 *outlenp = inlen; 10882 return (0); 10883 } 10884 case IP_SEC_OPT: 10885 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10886 if (error != 0) { 10887 *outlenp = 0; 10888 return (error); 10889 } 10890 break; 10891 case IP_HDRINCL: 10892 case IP_OPTIONS: 10893 case T_IP_OPTIONS: 10894 case IP_TOS: 10895 case T_IP_TOS: 10896 case IP_TTL: 10897 case IP_RECVDSTADDR: 10898 case IP_RECVOPTS: 10899 /* OK return - copy input buffer into output buffer */ 10900 if (invalp != outvalp) { 10901 /* don't trust bcopy for identical src/dst */ 10902 bcopy(invalp, outvalp, inlen); 10903 } 10904 *outlenp = inlen; 10905 return (0); 10906 case IP_RECVIF: 10907 /* Retrieve the inbound interface index */ 10908 if (!checkonly) { 10909 mutex_enter(&connp->conn_lock); 10910 connp->conn_recvif = *i1 ? 1 : 0; 10911 mutex_exit(&connp->conn_lock); 10912 } 10913 break; /* goto sizeof (int) option return */ 10914 case IP_RECVPKTINFO: 10915 if (!checkonly) { 10916 mutex_enter(&connp->conn_lock); 10917 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 10918 mutex_exit(&connp->conn_lock); 10919 } 10920 break; /* goto sizeof (int) option return */ 10921 case IP_RECVSLLA: 10922 /* Retrieve the source link layer address */ 10923 if (!checkonly) { 10924 mutex_enter(&connp->conn_lock); 10925 connp->conn_recvslla = *i1 ? 1 : 0; 10926 mutex_exit(&connp->conn_lock); 10927 } 10928 break; /* goto sizeof (int) option return */ 10929 case MRT_INIT: 10930 case MRT_DONE: 10931 case MRT_ADD_VIF: 10932 case MRT_DEL_VIF: 10933 case MRT_ADD_MFC: 10934 case MRT_DEL_MFC: 10935 case MRT_ASSERT: 10936 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 10937 *outlenp = 0; 10938 return (error); 10939 } 10940 error = ip_mrouter_set((int)name, q, checkonly, 10941 (uchar_t *)invalp, inlen, first_mp); 10942 if (error) { 10943 *outlenp = 0; 10944 return (error); 10945 } 10946 /* OK return - copy input buffer into output buffer */ 10947 if (invalp != outvalp) { 10948 /* don't trust bcopy for identical src/dst */ 10949 bcopy(invalp, outvalp, inlen); 10950 } 10951 *outlenp = inlen; 10952 return (0); 10953 case IP_BOUND_IF: 10954 case IP_XMIT_IF: 10955 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10956 level, name, first_mp); 10957 if (error != 0) 10958 return (error); 10959 break; /* goto sizeof (int) option return */ 10960 10961 case IP_UNSPEC_SRC: 10962 /* Allow sending with a zero source address */ 10963 if (!checkonly) { 10964 mutex_enter(&connp->conn_lock); 10965 connp->conn_unspec_src = *i1 ? 1 : 0; 10966 mutex_exit(&connp->conn_lock); 10967 } 10968 break; /* goto sizeof (int) option return */ 10969 default: 10970 /* 10971 * "soft" error (negative) 10972 * option not handled at this level 10973 * Note: Do not modify *outlenp 10974 */ 10975 return (-EINVAL); 10976 } 10977 break; 10978 case IPPROTO_IPV6: 10979 switch (name) { 10980 case IPV6_BOUND_IF: 10981 case IPV6_BOUND_PIF: 10982 case IPV6_DONTFAILOVER_IF: 10983 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 10984 level, name, first_mp); 10985 if (error != 0) 10986 return (error); 10987 break; /* goto sizeof (int) option return */ 10988 10989 case IPV6_MULTICAST_IF: 10990 /* 10991 * The only possible errors are EINPROGRESS and 10992 * EINVAL. EINPROGRESS will be restarted and is not 10993 * a hard error. We call this option on both V4 and V6 10994 * If both return EINVAL, then this call returns 10995 * EINVAL. If at least one of them succeeds we 10996 * return success. 10997 */ 10998 found = B_FALSE; 10999 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11000 level, name, first_mp); 11001 if (error == EINPROGRESS) 11002 return (error); 11003 if (error == 0) 11004 found = B_TRUE; 11005 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11006 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11007 if (error == 0) 11008 found = B_TRUE; 11009 if (!found) 11010 return (error); 11011 break; /* goto sizeof (int) option return */ 11012 11013 case IPV6_MULTICAST_HOPS: 11014 /* Recorded in transport above IP */ 11015 break; /* goto sizeof (int) option return */ 11016 case IPV6_MULTICAST_LOOP: 11017 if (!checkonly) { 11018 mutex_enter(&connp->conn_lock); 11019 connp->conn_multicast_loop = *i1; 11020 mutex_exit(&connp->conn_lock); 11021 } 11022 break; /* goto sizeof (int) option return */ 11023 case IPV6_JOIN_GROUP: 11024 case MCAST_JOIN_GROUP: 11025 case IPV6_LEAVE_GROUP: 11026 case MCAST_LEAVE_GROUP: { 11027 struct ipv6_mreq *ip_mreqp; 11028 struct group_req *greqp; 11029 ire_t *ire; 11030 boolean_t done = B_FALSE; 11031 in6_addr_t groupv6; 11032 uint32_t ifindex; 11033 boolean_t mcast_opt = B_TRUE; 11034 mcast_record_t fmode; 11035 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11036 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11037 11038 switch (name) { 11039 case IPV6_JOIN_GROUP: 11040 mcast_opt = B_FALSE; 11041 /* FALLTHRU */ 11042 case MCAST_JOIN_GROUP: 11043 fmode = MODE_IS_EXCLUDE; 11044 optfn = ip_opt_add_group_v6; 11045 break; 11046 11047 case IPV6_LEAVE_GROUP: 11048 mcast_opt = B_FALSE; 11049 /* FALLTHRU */ 11050 case MCAST_LEAVE_GROUP: 11051 fmode = MODE_IS_INCLUDE; 11052 optfn = ip_opt_delete_group_v6; 11053 break; 11054 } 11055 11056 if (mcast_opt) { 11057 struct sockaddr_in *sin; 11058 struct sockaddr_in6 *sin6; 11059 greqp = (struct group_req *)i1; 11060 if (greqp->gr_group.ss_family == AF_INET) { 11061 sin = (struct sockaddr_in *) 11062 &(greqp->gr_group); 11063 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11064 &groupv6); 11065 } else { 11066 sin6 = (struct sockaddr_in6 *) 11067 &(greqp->gr_group); 11068 groupv6 = sin6->sin6_addr; 11069 } 11070 ifindex = greqp->gr_interface; 11071 } else { 11072 ip_mreqp = (struct ipv6_mreq *)i1; 11073 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11074 ifindex = ip_mreqp->ipv6mr_interface; 11075 } 11076 /* 11077 * In the multirouting case, we need to replicate 11078 * the request on all interfaces that will take part 11079 * in replication. We do so because multirouting is 11080 * reflective, thus we will probably receive multi- 11081 * casts on those interfaces. 11082 * The ip_multirt_apply_membership_v6() succeeds if 11083 * the operation succeeds on at least one interface. 11084 */ 11085 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11086 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11087 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11088 if (ire != NULL) { 11089 if (ire->ire_flags & RTF_MULTIRT) { 11090 error = ip_multirt_apply_membership_v6( 11091 optfn, ire, connp, checkonly, 11092 &groupv6, fmode, &ipv6_all_zeros, 11093 first_mp); 11094 done = B_TRUE; 11095 } 11096 ire_refrele(ire); 11097 } 11098 if (!done) { 11099 error = optfn(connp, checkonly, &groupv6, 11100 ifindex, fmode, &ipv6_all_zeros, first_mp); 11101 } 11102 if (error) { 11103 /* 11104 * EINPROGRESS is a soft error, needs retry 11105 * so don't make *outlenp zero. 11106 */ 11107 if (error != EINPROGRESS) 11108 *outlenp = 0; 11109 return (error); 11110 } 11111 /* OK return - copy input buffer into output buffer */ 11112 if (invalp != outvalp) { 11113 /* don't trust bcopy for identical src/dst */ 11114 bcopy(invalp, outvalp, inlen); 11115 } 11116 *outlenp = inlen; 11117 return (0); 11118 } 11119 case MCAST_BLOCK_SOURCE: 11120 case MCAST_UNBLOCK_SOURCE: 11121 case MCAST_JOIN_SOURCE_GROUP: 11122 case MCAST_LEAVE_SOURCE_GROUP: { 11123 struct group_source_req *gsreqp; 11124 in6_addr_t v6grp, v6src; 11125 uint32_t ifindex; 11126 mcast_record_t fmode; 11127 ire_t *ire; 11128 boolean_t done = B_FALSE; 11129 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11130 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11131 11132 switch (name) { 11133 case MCAST_BLOCK_SOURCE: 11134 fmode = MODE_IS_EXCLUDE; 11135 optfn = ip_opt_add_group_v6; 11136 break; 11137 case MCAST_UNBLOCK_SOURCE: 11138 fmode = MODE_IS_EXCLUDE; 11139 optfn = ip_opt_delete_group_v6; 11140 break; 11141 case MCAST_JOIN_SOURCE_GROUP: 11142 fmode = MODE_IS_INCLUDE; 11143 optfn = ip_opt_add_group_v6; 11144 break; 11145 case MCAST_LEAVE_SOURCE_GROUP: 11146 fmode = MODE_IS_INCLUDE; 11147 optfn = ip_opt_delete_group_v6; 11148 break; 11149 } 11150 11151 gsreqp = (struct group_source_req *)i1; 11152 ifindex = gsreqp->gsr_interface; 11153 if (gsreqp->gsr_group.ss_family == AF_INET) { 11154 struct sockaddr_in *s; 11155 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11156 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11157 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11158 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11159 } else { 11160 struct sockaddr_in6 *s6; 11161 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11162 v6grp = s6->sin6_addr; 11163 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11164 v6src = s6->sin6_addr; 11165 } 11166 11167 /* 11168 * In the multirouting case, we need to replicate 11169 * the request as noted in the mcast cases above. 11170 */ 11171 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11172 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11173 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11174 if (ire != NULL) { 11175 if (ire->ire_flags & RTF_MULTIRT) { 11176 error = ip_multirt_apply_membership_v6( 11177 optfn, ire, connp, checkonly, 11178 &v6grp, fmode, &v6src, first_mp); 11179 done = B_TRUE; 11180 } 11181 ire_refrele(ire); 11182 } 11183 if (!done) { 11184 error = optfn(connp, checkonly, &v6grp, 11185 ifindex, fmode, &v6src, first_mp); 11186 } 11187 if (error != 0) { 11188 /* 11189 * EINPROGRESS is a soft error, needs retry 11190 * so don't make *outlenp zero. 11191 */ 11192 if (error != EINPROGRESS) 11193 *outlenp = 0; 11194 return (error); 11195 } 11196 /* OK return - copy input buffer into output buffer */ 11197 if (invalp != outvalp) { 11198 bcopy(invalp, outvalp, inlen); 11199 } 11200 *outlenp = inlen; 11201 return (0); 11202 } 11203 case IPV6_UNICAST_HOPS: 11204 /* Recorded in transport above IP */ 11205 break; /* goto sizeof (int) option return */ 11206 case IPV6_UNSPEC_SRC: 11207 /* Allow sending with a zero source address */ 11208 if (!checkonly) { 11209 mutex_enter(&connp->conn_lock); 11210 connp->conn_unspec_src = *i1 ? 1 : 0; 11211 mutex_exit(&connp->conn_lock); 11212 } 11213 break; /* goto sizeof (int) option return */ 11214 case IPV6_RECVPKTINFO: 11215 if (!checkonly) { 11216 mutex_enter(&connp->conn_lock); 11217 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11218 mutex_exit(&connp->conn_lock); 11219 } 11220 break; /* goto sizeof (int) option return */ 11221 case IPV6_RECVTCLASS: 11222 if (!checkonly) { 11223 if (*i1 < 0 || *i1 > 1) { 11224 return (EINVAL); 11225 } 11226 mutex_enter(&connp->conn_lock); 11227 connp->conn_ipv6_recvtclass = *i1; 11228 mutex_exit(&connp->conn_lock); 11229 } 11230 break; 11231 case IPV6_RECVPATHMTU: 11232 if (!checkonly) { 11233 if (*i1 < 0 || *i1 > 1) { 11234 return (EINVAL); 11235 } 11236 mutex_enter(&connp->conn_lock); 11237 connp->conn_ipv6_recvpathmtu = *i1; 11238 mutex_exit(&connp->conn_lock); 11239 } 11240 break; 11241 case IPV6_RECVHOPLIMIT: 11242 if (!checkonly) { 11243 mutex_enter(&connp->conn_lock); 11244 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11245 mutex_exit(&connp->conn_lock); 11246 } 11247 break; /* goto sizeof (int) option return */ 11248 case IPV6_RECVHOPOPTS: 11249 if (!checkonly) { 11250 mutex_enter(&connp->conn_lock); 11251 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11252 mutex_exit(&connp->conn_lock); 11253 } 11254 break; /* goto sizeof (int) option return */ 11255 case IPV6_RECVDSTOPTS: 11256 if (!checkonly) { 11257 mutex_enter(&connp->conn_lock); 11258 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11259 mutex_exit(&connp->conn_lock); 11260 } 11261 break; /* goto sizeof (int) option return */ 11262 case IPV6_RECVRTHDR: 11263 if (!checkonly) { 11264 mutex_enter(&connp->conn_lock); 11265 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11266 mutex_exit(&connp->conn_lock); 11267 } 11268 break; /* goto sizeof (int) option return */ 11269 case IPV6_RECVRTHDRDSTOPTS: 11270 if (!checkonly) { 11271 mutex_enter(&connp->conn_lock); 11272 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11273 mutex_exit(&connp->conn_lock); 11274 } 11275 break; /* goto sizeof (int) option return */ 11276 case IPV6_PKTINFO: 11277 if (inlen == 0) 11278 return (-EINVAL); /* clearing option */ 11279 error = ip6_set_pktinfo(cr, connp, 11280 (struct in6_pktinfo *)invalp, first_mp); 11281 if (error != 0) 11282 *outlenp = 0; 11283 else 11284 *outlenp = inlen; 11285 return (error); 11286 case IPV6_NEXTHOP: { 11287 struct sockaddr_in6 *sin6; 11288 11289 /* Verify that the nexthop is reachable */ 11290 if (inlen == 0) 11291 return (-EINVAL); /* clearing option */ 11292 11293 sin6 = (struct sockaddr_in6 *)invalp; 11294 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11295 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11296 NULL, MATCH_IRE_DEFAULT, ipst); 11297 11298 if (ire == NULL) { 11299 *outlenp = 0; 11300 return (EHOSTUNREACH); 11301 } 11302 ire_refrele(ire); 11303 return (-EINVAL); 11304 } 11305 case IPV6_SEC_OPT: 11306 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11307 if (error != 0) { 11308 *outlenp = 0; 11309 return (error); 11310 } 11311 break; 11312 case IPV6_SRC_PREFERENCES: { 11313 /* 11314 * This is implemented strictly in the ip module 11315 * (here and in tcp_opt_*() to accomodate tcp 11316 * sockets). Modules above ip pass this option 11317 * down here since ip is the only one that needs to 11318 * be aware of source address preferences. 11319 * 11320 * This socket option only affects connected 11321 * sockets that haven't already bound to a specific 11322 * IPv6 address. In other words, sockets that 11323 * don't call bind() with an address other than the 11324 * unspecified address and that call connect(). 11325 * ip_bind_connected_v6() passes these preferences 11326 * to the ipif_select_source_v6() function. 11327 */ 11328 if (inlen != sizeof (uint32_t)) 11329 return (EINVAL); 11330 error = ip6_set_src_preferences(connp, 11331 *(uint32_t *)invalp); 11332 if (error != 0) { 11333 *outlenp = 0; 11334 return (error); 11335 } else { 11336 *outlenp = sizeof (uint32_t); 11337 } 11338 break; 11339 } 11340 case IPV6_V6ONLY: 11341 if (*i1 < 0 || *i1 > 1) { 11342 return (EINVAL); 11343 } 11344 mutex_enter(&connp->conn_lock); 11345 connp->conn_ipv6_v6only = *i1; 11346 mutex_exit(&connp->conn_lock); 11347 break; 11348 default: 11349 return (-EINVAL); 11350 } 11351 break; 11352 default: 11353 /* 11354 * "soft" error (negative) 11355 * option not handled at this level 11356 * Note: Do not modify *outlenp 11357 */ 11358 return (-EINVAL); 11359 } 11360 /* 11361 * Common case of return from an option that is sizeof (int) 11362 */ 11363 *(int *)outvalp = *i1; 11364 *outlenp = sizeof (int); 11365 return (0); 11366 } 11367 11368 /* 11369 * This routine gets default values of certain options whose default 11370 * values are maintained by protocol specific code 11371 */ 11372 /* ARGSUSED */ 11373 int 11374 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11375 { 11376 int *i1 = (int *)ptr; 11377 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11378 11379 switch (level) { 11380 case IPPROTO_IP: 11381 switch (name) { 11382 case IP_MULTICAST_TTL: 11383 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11384 return (sizeof (uchar_t)); 11385 case IP_MULTICAST_LOOP: 11386 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11387 return (sizeof (uchar_t)); 11388 default: 11389 return (-1); 11390 } 11391 case IPPROTO_IPV6: 11392 switch (name) { 11393 case IPV6_UNICAST_HOPS: 11394 *i1 = ipst->ips_ipv6_def_hops; 11395 return (sizeof (int)); 11396 case IPV6_MULTICAST_HOPS: 11397 *i1 = IP_DEFAULT_MULTICAST_TTL; 11398 return (sizeof (int)); 11399 case IPV6_MULTICAST_LOOP: 11400 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11401 return (sizeof (int)); 11402 case IPV6_V6ONLY: 11403 *i1 = 1; 11404 return (sizeof (int)); 11405 default: 11406 return (-1); 11407 } 11408 default: 11409 return (-1); 11410 } 11411 /* NOTREACHED */ 11412 } 11413 11414 /* 11415 * Given a destination address and a pointer to where to put the information 11416 * this routine fills in the mtuinfo. 11417 */ 11418 int 11419 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11420 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11421 { 11422 ire_t *ire; 11423 ip_stack_t *ipst = ns->netstack_ip; 11424 11425 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11426 return (-1); 11427 11428 bzero(mtuinfo, sizeof (*mtuinfo)); 11429 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11430 mtuinfo->ip6m_addr.sin6_port = port; 11431 mtuinfo->ip6m_addr.sin6_addr = *in6; 11432 11433 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11434 if (ire != NULL) { 11435 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11436 ire_refrele(ire); 11437 } else { 11438 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11439 } 11440 return (sizeof (struct ip6_mtuinfo)); 11441 } 11442 11443 /* 11444 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11445 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11446 * isn't. This doesn't matter as the error checking is done properly for the 11447 * other MRT options coming in through ip_opt_set. 11448 */ 11449 int 11450 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11451 { 11452 conn_t *connp = Q_TO_CONN(q); 11453 ipsec_req_t *req = (ipsec_req_t *)ptr; 11454 11455 switch (level) { 11456 case IPPROTO_IP: 11457 switch (name) { 11458 case MRT_VERSION: 11459 case MRT_ASSERT: 11460 (void) ip_mrouter_get(name, q, ptr); 11461 return (sizeof (int)); 11462 case IP_SEC_OPT: 11463 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11464 case IP_NEXTHOP: 11465 if (connp->conn_nexthop_set) { 11466 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11467 return (sizeof (ipaddr_t)); 11468 } else 11469 return (0); 11470 case IP_RECVPKTINFO: 11471 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11472 return (sizeof (int)); 11473 default: 11474 break; 11475 } 11476 break; 11477 case IPPROTO_IPV6: 11478 switch (name) { 11479 case IPV6_SEC_OPT: 11480 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11481 case IPV6_SRC_PREFERENCES: { 11482 return (ip6_get_src_preferences(connp, 11483 (uint32_t *)ptr)); 11484 } 11485 case IPV6_V6ONLY: 11486 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11487 return (sizeof (int)); 11488 case IPV6_PATHMTU: 11489 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11490 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11491 default: 11492 break; 11493 } 11494 break; 11495 default: 11496 break; 11497 } 11498 return (-1); 11499 } 11500 11501 /* Named Dispatch routine to get a current value out of our parameter table. */ 11502 /* ARGSUSED */ 11503 static int 11504 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11505 { 11506 ipparam_t *ippa = (ipparam_t *)cp; 11507 11508 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11509 return (0); 11510 } 11511 11512 /* ARGSUSED */ 11513 static int 11514 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11515 { 11516 11517 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11518 return (0); 11519 } 11520 11521 /* 11522 * Set ip{,6}_forwarding values. This means walking through all of the 11523 * ill's and toggling their forwarding values. 11524 */ 11525 /* ARGSUSED */ 11526 static int 11527 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11528 { 11529 long new_value; 11530 int *forwarding_value = (int *)cp; 11531 ill_t *ill; 11532 boolean_t isv6; 11533 ill_walk_context_t ctx; 11534 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11535 11536 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11537 11538 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11539 new_value < 0 || new_value > 1) { 11540 return (EINVAL); 11541 } 11542 11543 *forwarding_value = new_value; 11544 11545 /* 11546 * Regardless of the current value of ip_forwarding, set all per-ill 11547 * values of ip_forwarding to the value being set. 11548 * 11549 * Bring all the ill's up to date with the new global value. 11550 */ 11551 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11552 11553 if (isv6) 11554 ill = ILL_START_WALK_V6(&ctx, ipst); 11555 else 11556 ill = ILL_START_WALK_V4(&ctx, ipst); 11557 11558 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11559 (void) ill_forward_set(ill, new_value != 0); 11560 11561 rw_exit(&ipst->ips_ill_g_lock); 11562 return (0); 11563 } 11564 11565 /* 11566 * Walk through the param array specified registering each element with the 11567 * Named Dispatch handler. This is called only during init. So it is ok 11568 * not to acquire any locks 11569 */ 11570 static boolean_t 11571 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11572 ipndp_t *ipnd, size_t ipnd_cnt) 11573 { 11574 for (; ippa_cnt-- > 0; ippa++) { 11575 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11576 if (!nd_load(ndp, ippa->ip_param_name, 11577 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11578 nd_free(ndp); 11579 return (B_FALSE); 11580 } 11581 } 11582 } 11583 11584 for (; ipnd_cnt-- > 0; ipnd++) { 11585 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11586 if (!nd_load(ndp, ipnd->ip_ndp_name, 11587 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11588 ipnd->ip_ndp_data)) { 11589 nd_free(ndp); 11590 return (B_FALSE); 11591 } 11592 } 11593 } 11594 11595 return (B_TRUE); 11596 } 11597 11598 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11599 /* ARGSUSED */ 11600 static int 11601 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11602 { 11603 long new_value; 11604 ipparam_t *ippa = (ipparam_t *)cp; 11605 11606 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11607 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11608 return (EINVAL); 11609 } 11610 ippa->ip_param_value = new_value; 11611 return (0); 11612 } 11613 11614 /* 11615 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11616 * When an ipf is passed here for the first time, if 11617 * we already have in-order fragments on the queue, we convert from the fast- 11618 * path reassembly scheme to the hard-case scheme. From then on, additional 11619 * fragments are reassembled here. We keep track of the start and end offsets 11620 * of each piece, and the number of holes in the chain. When the hole count 11621 * goes to zero, we are done! 11622 * 11623 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11624 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11625 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11626 * after the call to ip_reassemble(). 11627 */ 11628 int 11629 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11630 size_t msg_len) 11631 { 11632 uint_t end; 11633 mblk_t *next_mp; 11634 mblk_t *mp1; 11635 uint_t offset; 11636 boolean_t incr_dups = B_TRUE; 11637 boolean_t offset_zero_seen = B_FALSE; 11638 boolean_t pkt_boundary_checked = B_FALSE; 11639 11640 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11641 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11642 11643 /* Add in byte count */ 11644 ipf->ipf_count += msg_len; 11645 if (ipf->ipf_end) { 11646 /* 11647 * We were part way through in-order reassembly, but now there 11648 * is a hole. We walk through messages already queued, and 11649 * mark them for hard case reassembly. We know that up till 11650 * now they were in order starting from offset zero. 11651 */ 11652 offset = 0; 11653 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11654 IP_REASS_SET_START(mp1, offset); 11655 if (offset == 0) { 11656 ASSERT(ipf->ipf_nf_hdr_len != 0); 11657 offset = -ipf->ipf_nf_hdr_len; 11658 } 11659 offset += mp1->b_wptr - mp1->b_rptr; 11660 IP_REASS_SET_END(mp1, offset); 11661 } 11662 /* One hole at the end. */ 11663 ipf->ipf_hole_cnt = 1; 11664 /* Brand it as a hard case, forever. */ 11665 ipf->ipf_end = 0; 11666 } 11667 /* Walk through all the new pieces. */ 11668 do { 11669 end = start + (mp->b_wptr - mp->b_rptr); 11670 /* 11671 * If start is 0, decrease 'end' only for the first mblk of 11672 * the fragment. Otherwise 'end' can get wrong value in the 11673 * second pass of the loop if first mblk is exactly the 11674 * size of ipf_nf_hdr_len. 11675 */ 11676 if (start == 0 && !offset_zero_seen) { 11677 /* First segment */ 11678 ASSERT(ipf->ipf_nf_hdr_len != 0); 11679 end -= ipf->ipf_nf_hdr_len; 11680 offset_zero_seen = B_TRUE; 11681 } 11682 next_mp = mp->b_cont; 11683 /* 11684 * We are checking to see if there is any interesing data 11685 * to process. If there isn't and the mblk isn't the 11686 * one which carries the unfragmentable header then we 11687 * drop it. It's possible to have just the unfragmentable 11688 * header come through without any data. That needs to be 11689 * saved. 11690 * 11691 * If the assert at the top of this function holds then the 11692 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11693 * is infrequently traveled enough that the test is left in 11694 * to protect against future code changes which break that 11695 * invariant. 11696 */ 11697 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11698 /* Empty. Blast it. */ 11699 IP_REASS_SET_START(mp, 0); 11700 IP_REASS_SET_END(mp, 0); 11701 /* 11702 * If the ipf points to the mblk we are about to free, 11703 * update ipf to point to the next mblk (or NULL 11704 * if none). 11705 */ 11706 if (ipf->ipf_mp->b_cont == mp) 11707 ipf->ipf_mp->b_cont = next_mp; 11708 freeb(mp); 11709 continue; 11710 } 11711 mp->b_cont = NULL; 11712 IP_REASS_SET_START(mp, start); 11713 IP_REASS_SET_END(mp, end); 11714 if (!ipf->ipf_tail_mp) { 11715 ipf->ipf_tail_mp = mp; 11716 ipf->ipf_mp->b_cont = mp; 11717 if (start == 0 || !more) { 11718 ipf->ipf_hole_cnt = 1; 11719 /* 11720 * if the first fragment comes in more than one 11721 * mblk, this loop will be executed for each 11722 * mblk. Need to adjust hole count so exiting 11723 * this routine will leave hole count at 1. 11724 */ 11725 if (next_mp) 11726 ipf->ipf_hole_cnt++; 11727 } else 11728 ipf->ipf_hole_cnt = 2; 11729 continue; 11730 } else if (ipf->ipf_last_frag_seen && !more && 11731 !pkt_boundary_checked) { 11732 /* 11733 * We check datagram boundary only if this fragment 11734 * claims to be the last fragment and we have seen a 11735 * last fragment in the past too. We do this only 11736 * once for a given fragment. 11737 * 11738 * start cannot be 0 here as fragments with start=0 11739 * and MF=0 gets handled as a complete packet. These 11740 * fragments should not reach here. 11741 */ 11742 11743 if (start + msgdsize(mp) != 11744 IP_REASS_END(ipf->ipf_tail_mp)) { 11745 /* 11746 * We have two fragments both of which claim 11747 * to be the last fragment but gives conflicting 11748 * information about the whole datagram size. 11749 * Something fishy is going on. Drop the 11750 * fragment and free up the reassembly list. 11751 */ 11752 return (IP_REASS_FAILED); 11753 } 11754 11755 /* 11756 * We shouldn't come to this code block again for this 11757 * particular fragment. 11758 */ 11759 pkt_boundary_checked = B_TRUE; 11760 } 11761 11762 /* New stuff at or beyond tail? */ 11763 offset = IP_REASS_END(ipf->ipf_tail_mp); 11764 if (start >= offset) { 11765 if (ipf->ipf_last_frag_seen) { 11766 /* current fragment is beyond last fragment */ 11767 return (IP_REASS_FAILED); 11768 } 11769 /* Link it on end. */ 11770 ipf->ipf_tail_mp->b_cont = mp; 11771 ipf->ipf_tail_mp = mp; 11772 if (more) { 11773 if (start != offset) 11774 ipf->ipf_hole_cnt++; 11775 } else if (start == offset && next_mp == NULL) 11776 ipf->ipf_hole_cnt--; 11777 continue; 11778 } 11779 mp1 = ipf->ipf_mp->b_cont; 11780 offset = IP_REASS_START(mp1); 11781 /* New stuff at the front? */ 11782 if (start < offset) { 11783 if (start == 0) { 11784 if (end >= offset) { 11785 /* Nailed the hole at the begining. */ 11786 ipf->ipf_hole_cnt--; 11787 } 11788 } else if (end < offset) { 11789 /* 11790 * A hole, stuff, and a hole where there used 11791 * to be just a hole. 11792 */ 11793 ipf->ipf_hole_cnt++; 11794 } 11795 mp->b_cont = mp1; 11796 /* Check for overlap. */ 11797 while (end > offset) { 11798 if (end < IP_REASS_END(mp1)) { 11799 mp->b_wptr -= end - offset; 11800 IP_REASS_SET_END(mp, offset); 11801 BUMP_MIB(ill->ill_ip_mib, 11802 ipIfStatsReasmPartDups); 11803 break; 11804 } 11805 /* Did we cover another hole? */ 11806 if ((mp1->b_cont && 11807 IP_REASS_END(mp1) != 11808 IP_REASS_START(mp1->b_cont) && 11809 end >= IP_REASS_START(mp1->b_cont)) || 11810 (!ipf->ipf_last_frag_seen && !more)) { 11811 ipf->ipf_hole_cnt--; 11812 } 11813 /* Clip out mp1. */ 11814 if ((mp->b_cont = mp1->b_cont) == NULL) { 11815 /* 11816 * After clipping out mp1, this guy 11817 * is now hanging off the end. 11818 */ 11819 ipf->ipf_tail_mp = mp; 11820 } 11821 IP_REASS_SET_START(mp1, 0); 11822 IP_REASS_SET_END(mp1, 0); 11823 /* Subtract byte count */ 11824 ipf->ipf_count -= mp1->b_datap->db_lim - 11825 mp1->b_datap->db_base; 11826 freeb(mp1); 11827 BUMP_MIB(ill->ill_ip_mib, 11828 ipIfStatsReasmPartDups); 11829 mp1 = mp->b_cont; 11830 if (!mp1) 11831 break; 11832 offset = IP_REASS_START(mp1); 11833 } 11834 ipf->ipf_mp->b_cont = mp; 11835 continue; 11836 } 11837 /* 11838 * The new piece starts somewhere between the start of the head 11839 * and before the end of the tail. 11840 */ 11841 for (; mp1; mp1 = mp1->b_cont) { 11842 offset = IP_REASS_END(mp1); 11843 if (start < offset) { 11844 if (end <= offset) { 11845 /* Nothing new. */ 11846 IP_REASS_SET_START(mp, 0); 11847 IP_REASS_SET_END(mp, 0); 11848 /* Subtract byte count */ 11849 ipf->ipf_count -= mp->b_datap->db_lim - 11850 mp->b_datap->db_base; 11851 if (incr_dups) { 11852 ipf->ipf_num_dups++; 11853 incr_dups = B_FALSE; 11854 } 11855 freeb(mp); 11856 BUMP_MIB(ill->ill_ip_mib, 11857 ipIfStatsReasmDuplicates); 11858 break; 11859 } 11860 /* 11861 * Trim redundant stuff off beginning of new 11862 * piece. 11863 */ 11864 IP_REASS_SET_START(mp, offset); 11865 mp->b_rptr += offset - start; 11866 BUMP_MIB(ill->ill_ip_mib, 11867 ipIfStatsReasmPartDups); 11868 start = offset; 11869 if (!mp1->b_cont) { 11870 /* 11871 * After trimming, this guy is now 11872 * hanging off the end. 11873 */ 11874 mp1->b_cont = mp; 11875 ipf->ipf_tail_mp = mp; 11876 if (!more) { 11877 ipf->ipf_hole_cnt--; 11878 } 11879 break; 11880 } 11881 } 11882 if (start >= IP_REASS_START(mp1->b_cont)) 11883 continue; 11884 /* Fill a hole */ 11885 if (start > offset) 11886 ipf->ipf_hole_cnt++; 11887 mp->b_cont = mp1->b_cont; 11888 mp1->b_cont = mp; 11889 mp1 = mp->b_cont; 11890 offset = IP_REASS_START(mp1); 11891 if (end >= offset) { 11892 ipf->ipf_hole_cnt--; 11893 /* Check for overlap. */ 11894 while (end > offset) { 11895 if (end < IP_REASS_END(mp1)) { 11896 mp->b_wptr -= end - offset; 11897 IP_REASS_SET_END(mp, offset); 11898 /* 11899 * TODO we might bump 11900 * this up twice if there is 11901 * overlap at both ends. 11902 */ 11903 BUMP_MIB(ill->ill_ip_mib, 11904 ipIfStatsReasmPartDups); 11905 break; 11906 } 11907 /* Did we cover another hole? */ 11908 if ((mp1->b_cont && 11909 IP_REASS_END(mp1) 11910 != IP_REASS_START(mp1->b_cont) && 11911 end >= 11912 IP_REASS_START(mp1->b_cont)) || 11913 (!ipf->ipf_last_frag_seen && 11914 !more)) { 11915 ipf->ipf_hole_cnt--; 11916 } 11917 /* Clip out mp1. */ 11918 if ((mp->b_cont = mp1->b_cont) == 11919 NULL) { 11920 /* 11921 * After clipping out mp1, 11922 * this guy is now hanging 11923 * off the end. 11924 */ 11925 ipf->ipf_tail_mp = mp; 11926 } 11927 IP_REASS_SET_START(mp1, 0); 11928 IP_REASS_SET_END(mp1, 0); 11929 /* Subtract byte count */ 11930 ipf->ipf_count -= 11931 mp1->b_datap->db_lim - 11932 mp1->b_datap->db_base; 11933 freeb(mp1); 11934 BUMP_MIB(ill->ill_ip_mib, 11935 ipIfStatsReasmPartDups); 11936 mp1 = mp->b_cont; 11937 if (!mp1) 11938 break; 11939 offset = IP_REASS_START(mp1); 11940 } 11941 } 11942 break; 11943 } 11944 } while (start = end, mp = next_mp); 11945 11946 /* Fragment just processed could be the last one. Remember this fact */ 11947 if (!more) 11948 ipf->ipf_last_frag_seen = B_TRUE; 11949 11950 /* Still got holes? */ 11951 if (ipf->ipf_hole_cnt) 11952 return (IP_REASS_PARTIAL); 11953 /* Clean up overloaded fields to avoid upstream disasters. */ 11954 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11955 IP_REASS_SET_START(mp1, 0); 11956 IP_REASS_SET_END(mp1, 0); 11957 } 11958 return (IP_REASS_COMPLETE); 11959 } 11960 11961 /* 11962 * ipsec processing for the fast path, used for input UDP Packets 11963 */ 11964 static boolean_t 11965 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11966 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11967 { 11968 uint32_t ill_index; 11969 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11970 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 11971 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 11972 11973 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11974 /* The ill_index of the incoming ILL */ 11975 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11976 11977 /* pass packet up to the transport */ 11978 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 11979 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11980 NULL, mctl_present); 11981 if (*first_mpp == NULL) { 11982 return (B_FALSE); 11983 } 11984 } 11985 11986 /* Initiate IPPF processing for fastpath UDP */ 11987 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 11988 ip_process(IPP_LOCAL_IN, mpp, ill_index); 11989 if (*mpp == NULL) { 11990 ip2dbg(("ip_input_ipsec_process: UDP pkt " 11991 "deferred/dropped during IPPF processing\n")); 11992 return (B_FALSE); 11993 } 11994 } 11995 /* 11996 * We make the checks as below since we are in the fast path 11997 * and want to minimize the number of checks if the IP_RECVIF and/or 11998 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 11999 */ 12000 if (connp->conn_recvif || connp->conn_recvslla || 12001 connp->conn_ip_recvpktinfo) { 12002 if (connp->conn_recvif) { 12003 in_flags = IPF_RECVIF; 12004 } 12005 /* 12006 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12007 * so the flag passed to ip_add_info is based on IP version 12008 * of connp. 12009 */ 12010 if (connp->conn_ip_recvpktinfo) { 12011 if (connp->conn_af_isv6) { 12012 /* 12013 * V6 only needs index 12014 */ 12015 in_flags |= IPF_RECVIF; 12016 } else { 12017 /* 12018 * V4 needs index + matching address. 12019 */ 12020 in_flags |= IPF_RECVADDR; 12021 } 12022 } 12023 if (connp->conn_recvslla) { 12024 in_flags |= IPF_RECVSLLA; 12025 } 12026 /* 12027 * since in_flags are being set ill will be 12028 * referenced in ip_add_info, so it better not 12029 * be NULL. 12030 */ 12031 /* 12032 * the actual data will be contained in b_cont 12033 * upon successful return of the following call. 12034 * If the call fails then the original mblk is 12035 * returned. 12036 */ 12037 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12038 ipst); 12039 } 12040 12041 return (B_TRUE); 12042 } 12043 12044 /* 12045 * Fragmentation reassembly. Each ILL has a hash table for 12046 * queuing packets undergoing reassembly for all IPIFs 12047 * associated with the ILL. The hash is based on the packet 12048 * IP ident field. The ILL frag hash table was allocated 12049 * as a timer block at the time the ILL was created. Whenever 12050 * there is anything on the reassembly queue, the timer will 12051 * be running. Returns B_TRUE if successful else B_FALSE; 12052 * frees mp on failure. 12053 */ 12054 static boolean_t 12055 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12056 uint32_t *cksum_val, uint16_t *cksum_flags) 12057 { 12058 uint32_t frag_offset_flags; 12059 ill_t *ill = (ill_t *)q->q_ptr; 12060 mblk_t *mp = *mpp; 12061 mblk_t *t_mp; 12062 ipaddr_t dst; 12063 uint8_t proto = ipha->ipha_protocol; 12064 uint32_t sum_val; 12065 uint16_t sum_flags; 12066 ipf_t *ipf; 12067 ipf_t **ipfp; 12068 ipfb_t *ipfb; 12069 uint16_t ident; 12070 uint32_t offset; 12071 ipaddr_t src; 12072 uint_t hdr_length; 12073 uint32_t end; 12074 mblk_t *mp1; 12075 mblk_t *tail_mp; 12076 size_t count; 12077 size_t msg_len; 12078 uint8_t ecn_info = 0; 12079 uint32_t packet_size; 12080 boolean_t pruned = B_FALSE; 12081 ip_stack_t *ipst = ill->ill_ipst; 12082 12083 if (cksum_val != NULL) 12084 *cksum_val = 0; 12085 if (cksum_flags != NULL) 12086 *cksum_flags = 0; 12087 12088 /* 12089 * Drop the fragmented as early as possible, if 12090 * we don't have resource(s) to re-assemble. 12091 */ 12092 if (ipst->ips_ip_reass_queue_bytes == 0) { 12093 freemsg(mp); 12094 return (B_FALSE); 12095 } 12096 12097 /* Check for fragmentation offset; return if there's none */ 12098 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12099 (IPH_MF | IPH_OFFSET)) == 0) 12100 return (B_TRUE); 12101 12102 /* 12103 * We utilize hardware computed checksum info only for UDP since 12104 * IP fragmentation is a normal occurence for the protocol. In 12105 * addition, checksum offload support for IP fragments carrying 12106 * UDP payload is commonly implemented across network adapters. 12107 */ 12108 ASSERT(ill != NULL); 12109 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12110 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12111 mblk_t *mp1 = mp->b_cont; 12112 int32_t len; 12113 12114 /* Record checksum information from the packet */ 12115 sum_val = (uint32_t)DB_CKSUM16(mp); 12116 sum_flags = DB_CKSUMFLAGS(mp); 12117 12118 /* IP payload offset from beginning of mblk */ 12119 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12120 12121 if ((sum_flags & HCK_PARTIALCKSUM) && 12122 (mp1 == NULL || mp1->b_cont == NULL) && 12123 offset >= DB_CKSUMSTART(mp) && 12124 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12125 uint32_t adj; 12126 /* 12127 * Partial checksum has been calculated by hardware 12128 * and attached to the packet; in addition, any 12129 * prepended extraneous data is even byte aligned. 12130 * If any such data exists, we adjust the checksum; 12131 * this would also handle any postpended data. 12132 */ 12133 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12134 mp, mp1, len, adj); 12135 12136 /* One's complement subtract extraneous checksum */ 12137 if (adj >= sum_val) 12138 sum_val = ~(adj - sum_val) & 0xFFFF; 12139 else 12140 sum_val -= adj; 12141 } 12142 } else { 12143 sum_val = 0; 12144 sum_flags = 0; 12145 } 12146 12147 /* Clear hardware checksumming flag */ 12148 DB_CKSUMFLAGS(mp) = 0; 12149 12150 ident = ipha->ipha_ident; 12151 offset = (frag_offset_flags << 3) & 0xFFFF; 12152 src = ipha->ipha_src; 12153 dst = ipha->ipha_dst; 12154 hdr_length = IPH_HDR_LENGTH(ipha); 12155 end = ntohs(ipha->ipha_length) - hdr_length; 12156 12157 /* If end == 0 then we have a packet with no data, so just free it */ 12158 if (end == 0) { 12159 freemsg(mp); 12160 return (B_FALSE); 12161 } 12162 12163 /* Record the ECN field info. */ 12164 ecn_info = (ipha->ipha_type_of_service & 0x3); 12165 if (offset != 0) { 12166 /* 12167 * If this isn't the first piece, strip the header, and 12168 * add the offset to the end value. 12169 */ 12170 mp->b_rptr += hdr_length; 12171 end += offset; 12172 } 12173 12174 msg_len = MBLKSIZE(mp); 12175 tail_mp = mp; 12176 while (tail_mp->b_cont != NULL) { 12177 tail_mp = tail_mp->b_cont; 12178 msg_len += MBLKSIZE(tail_mp); 12179 } 12180 12181 /* If the reassembly list for this ILL will get too big, prune it */ 12182 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12183 ipst->ips_ip_reass_queue_bytes) { 12184 ill_frag_prune(ill, 12185 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12186 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12187 pruned = B_TRUE; 12188 } 12189 12190 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12191 mutex_enter(&ipfb->ipfb_lock); 12192 12193 ipfp = &ipfb->ipfb_ipf; 12194 /* Try to find an existing fragment queue for this packet. */ 12195 for (;;) { 12196 ipf = ipfp[0]; 12197 if (ipf != NULL) { 12198 /* 12199 * It has to match on ident and src/dst address. 12200 */ 12201 if (ipf->ipf_ident == ident && 12202 ipf->ipf_src == src && 12203 ipf->ipf_dst == dst && 12204 ipf->ipf_protocol == proto) { 12205 /* 12206 * If we have received too many 12207 * duplicate fragments for this packet 12208 * free it. 12209 */ 12210 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12211 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12212 freemsg(mp); 12213 mutex_exit(&ipfb->ipfb_lock); 12214 return (B_FALSE); 12215 } 12216 /* Found it. */ 12217 break; 12218 } 12219 ipfp = &ipf->ipf_hash_next; 12220 continue; 12221 } 12222 12223 /* 12224 * If we pruned the list, do we want to store this new 12225 * fragment?. We apply an optimization here based on the 12226 * fact that most fragments will be received in order. 12227 * So if the offset of this incoming fragment is zero, 12228 * it is the first fragment of a new packet. We will 12229 * keep it. Otherwise drop the fragment, as we have 12230 * probably pruned the packet already (since the 12231 * packet cannot be found). 12232 */ 12233 if (pruned && offset != 0) { 12234 mutex_exit(&ipfb->ipfb_lock); 12235 freemsg(mp); 12236 return (B_FALSE); 12237 } 12238 12239 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12240 /* 12241 * Too many fragmented packets in this hash 12242 * bucket. Free the oldest. 12243 */ 12244 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12245 } 12246 12247 /* New guy. Allocate a frag message. */ 12248 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12249 if (mp1 == NULL) { 12250 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12251 freemsg(mp); 12252 reass_done: 12253 mutex_exit(&ipfb->ipfb_lock); 12254 return (B_FALSE); 12255 } 12256 12257 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12258 mp1->b_cont = mp; 12259 12260 /* Initialize the fragment header. */ 12261 ipf = (ipf_t *)mp1->b_rptr; 12262 ipf->ipf_mp = mp1; 12263 ipf->ipf_ptphn = ipfp; 12264 ipfp[0] = ipf; 12265 ipf->ipf_hash_next = NULL; 12266 ipf->ipf_ident = ident; 12267 ipf->ipf_protocol = proto; 12268 ipf->ipf_src = src; 12269 ipf->ipf_dst = dst; 12270 ipf->ipf_nf_hdr_len = 0; 12271 /* Record reassembly start time. */ 12272 ipf->ipf_timestamp = gethrestime_sec(); 12273 /* Record ipf generation and account for frag header */ 12274 ipf->ipf_gen = ill->ill_ipf_gen++; 12275 ipf->ipf_count = MBLKSIZE(mp1); 12276 ipf->ipf_last_frag_seen = B_FALSE; 12277 ipf->ipf_ecn = ecn_info; 12278 ipf->ipf_num_dups = 0; 12279 ipfb->ipfb_frag_pkts++; 12280 ipf->ipf_checksum = 0; 12281 ipf->ipf_checksum_flags = 0; 12282 12283 /* Store checksum value in fragment header */ 12284 if (sum_flags != 0) { 12285 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12286 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12287 ipf->ipf_checksum = sum_val; 12288 ipf->ipf_checksum_flags = sum_flags; 12289 } 12290 12291 /* 12292 * We handle reassembly two ways. In the easy case, 12293 * where all the fragments show up in order, we do 12294 * minimal bookkeeping, and just clip new pieces on 12295 * the end. If we ever see a hole, then we go off 12296 * to ip_reassemble which has to mark the pieces and 12297 * keep track of the number of holes, etc. Obviously, 12298 * the point of having both mechanisms is so we can 12299 * handle the easy case as efficiently as possible. 12300 */ 12301 if (offset == 0) { 12302 /* Easy case, in-order reassembly so far. */ 12303 ipf->ipf_count += msg_len; 12304 ipf->ipf_tail_mp = tail_mp; 12305 /* 12306 * Keep track of next expected offset in 12307 * ipf_end. 12308 */ 12309 ipf->ipf_end = end; 12310 ipf->ipf_nf_hdr_len = hdr_length; 12311 } else { 12312 /* Hard case, hole at the beginning. */ 12313 ipf->ipf_tail_mp = NULL; 12314 /* 12315 * ipf_end == 0 means that we have given up 12316 * on easy reassembly. 12317 */ 12318 ipf->ipf_end = 0; 12319 12320 /* Forget checksum offload from now on */ 12321 ipf->ipf_checksum_flags = 0; 12322 12323 /* 12324 * ipf_hole_cnt is set by ip_reassemble. 12325 * ipf_count is updated by ip_reassemble. 12326 * No need to check for return value here 12327 * as we don't expect reassembly to complete 12328 * or fail for the first fragment itself. 12329 */ 12330 (void) ip_reassemble(mp, ipf, 12331 (frag_offset_flags & IPH_OFFSET) << 3, 12332 (frag_offset_flags & IPH_MF), ill, msg_len); 12333 } 12334 /* Update per ipfb and ill byte counts */ 12335 ipfb->ipfb_count += ipf->ipf_count; 12336 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12337 ill->ill_frag_count += ipf->ipf_count; 12338 /* If the frag timer wasn't already going, start it. */ 12339 mutex_enter(&ill->ill_lock); 12340 ill_frag_timer_start(ill); 12341 mutex_exit(&ill->ill_lock); 12342 goto reass_done; 12343 } 12344 12345 /* 12346 * If the packet's flag has changed (it could be coming up 12347 * from an interface different than the previous, therefore 12348 * possibly different checksum capability), then forget about 12349 * any stored checksum states. Otherwise add the value to 12350 * the existing one stored in the fragment header. 12351 */ 12352 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12353 sum_val += ipf->ipf_checksum; 12354 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12355 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12356 ipf->ipf_checksum = sum_val; 12357 } else if (ipf->ipf_checksum_flags != 0) { 12358 /* Forget checksum offload from now on */ 12359 ipf->ipf_checksum_flags = 0; 12360 } 12361 12362 /* 12363 * We have a new piece of a datagram which is already being 12364 * reassembled. Update the ECN info if all IP fragments 12365 * are ECN capable. If there is one which is not, clear 12366 * all the info. If there is at least one which has CE 12367 * code point, IP needs to report that up to transport. 12368 */ 12369 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12370 if (ecn_info == IPH_ECN_CE) 12371 ipf->ipf_ecn = IPH_ECN_CE; 12372 } else { 12373 ipf->ipf_ecn = IPH_ECN_NECT; 12374 } 12375 if (offset && ipf->ipf_end == offset) { 12376 /* The new fragment fits at the end */ 12377 ipf->ipf_tail_mp->b_cont = mp; 12378 /* Update the byte count */ 12379 ipf->ipf_count += msg_len; 12380 /* Update per ipfb and ill byte counts */ 12381 ipfb->ipfb_count += msg_len; 12382 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12383 ill->ill_frag_count += msg_len; 12384 if (frag_offset_flags & IPH_MF) { 12385 /* More to come. */ 12386 ipf->ipf_end = end; 12387 ipf->ipf_tail_mp = tail_mp; 12388 goto reass_done; 12389 } 12390 } else { 12391 /* Go do the hard cases. */ 12392 int ret; 12393 12394 if (offset == 0) 12395 ipf->ipf_nf_hdr_len = hdr_length; 12396 12397 /* Save current byte count */ 12398 count = ipf->ipf_count; 12399 ret = ip_reassemble(mp, ipf, 12400 (frag_offset_flags & IPH_OFFSET) << 3, 12401 (frag_offset_flags & IPH_MF), ill, msg_len); 12402 /* Count of bytes added and subtracted (freeb()ed) */ 12403 count = ipf->ipf_count - count; 12404 if (count) { 12405 /* Update per ipfb and ill byte counts */ 12406 ipfb->ipfb_count += count; 12407 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12408 ill->ill_frag_count += count; 12409 } 12410 if (ret == IP_REASS_PARTIAL) { 12411 goto reass_done; 12412 } else if (ret == IP_REASS_FAILED) { 12413 /* Reassembly failed. Free up all resources */ 12414 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12415 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12416 IP_REASS_SET_START(t_mp, 0); 12417 IP_REASS_SET_END(t_mp, 0); 12418 } 12419 freemsg(mp); 12420 goto reass_done; 12421 } 12422 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12423 } 12424 /* 12425 * We have completed reassembly. Unhook the frag header from 12426 * the reassembly list. 12427 * 12428 * Before we free the frag header, record the ECN info 12429 * to report back to the transport. 12430 */ 12431 ecn_info = ipf->ipf_ecn; 12432 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12433 ipfp = ipf->ipf_ptphn; 12434 12435 /* We need to supply these to caller */ 12436 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12437 sum_val = ipf->ipf_checksum; 12438 else 12439 sum_val = 0; 12440 12441 mp1 = ipf->ipf_mp; 12442 count = ipf->ipf_count; 12443 ipf = ipf->ipf_hash_next; 12444 if (ipf != NULL) 12445 ipf->ipf_ptphn = ipfp; 12446 ipfp[0] = ipf; 12447 ill->ill_frag_count -= count; 12448 ASSERT(ipfb->ipfb_count >= count); 12449 ipfb->ipfb_count -= count; 12450 ipfb->ipfb_frag_pkts--; 12451 mutex_exit(&ipfb->ipfb_lock); 12452 /* Ditch the frag header. */ 12453 mp = mp1->b_cont; 12454 12455 freeb(mp1); 12456 12457 /* Restore original IP length in header. */ 12458 packet_size = (uint32_t)msgdsize(mp); 12459 if (packet_size > IP_MAXPACKET) { 12460 freemsg(mp); 12461 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12462 return (B_FALSE); 12463 } 12464 12465 if (DB_REF(mp) > 1) { 12466 mblk_t *mp2 = copymsg(mp); 12467 12468 freemsg(mp); 12469 if (mp2 == NULL) { 12470 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12471 return (B_FALSE); 12472 } 12473 mp = mp2; 12474 } 12475 ipha = (ipha_t *)mp->b_rptr; 12476 12477 ipha->ipha_length = htons((uint16_t)packet_size); 12478 /* We're now complete, zip the frag state */ 12479 ipha->ipha_fragment_offset_and_flags = 0; 12480 /* Record the ECN info. */ 12481 ipha->ipha_type_of_service &= 0xFC; 12482 ipha->ipha_type_of_service |= ecn_info; 12483 *mpp = mp; 12484 12485 /* Reassembly is successful; return checksum information if needed */ 12486 if (cksum_val != NULL) 12487 *cksum_val = sum_val; 12488 if (cksum_flags != NULL) 12489 *cksum_flags = sum_flags; 12490 12491 return (B_TRUE); 12492 } 12493 12494 /* 12495 * Perform ip header check sum update local options. 12496 * return B_TRUE if all is well, else return B_FALSE and release 12497 * the mp. caller is responsible for decrementing ire ref cnt. 12498 */ 12499 static boolean_t 12500 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12501 ip_stack_t *ipst) 12502 { 12503 mblk_t *first_mp; 12504 boolean_t mctl_present; 12505 uint16_t sum; 12506 12507 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12508 /* 12509 * Don't do the checksum if it has gone through AH/ESP 12510 * processing. 12511 */ 12512 if (!mctl_present) { 12513 sum = ip_csum_hdr(ipha); 12514 if (sum != 0) { 12515 if (ill != NULL) { 12516 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12517 } else { 12518 BUMP_MIB(&ipst->ips_ip_mib, 12519 ipIfStatsInCksumErrs); 12520 } 12521 freemsg(first_mp); 12522 return (B_FALSE); 12523 } 12524 } 12525 12526 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12527 if (mctl_present) 12528 freeb(first_mp); 12529 return (B_FALSE); 12530 } 12531 12532 return (B_TRUE); 12533 } 12534 12535 /* 12536 * All udp packet are delivered to the local host via this routine. 12537 */ 12538 void 12539 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12540 ill_t *recv_ill) 12541 { 12542 uint32_t sum; 12543 uint32_t u1; 12544 boolean_t mctl_present; 12545 conn_t *connp; 12546 mblk_t *first_mp; 12547 uint16_t *up; 12548 ill_t *ill = (ill_t *)q->q_ptr; 12549 uint16_t reass_hck_flags = 0; 12550 ip_stack_t *ipst; 12551 12552 ASSERT(recv_ill != NULL); 12553 ipst = recv_ill->ill_ipst; 12554 12555 #define rptr ((uchar_t *)ipha) 12556 12557 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12558 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12559 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12560 ASSERT(ill != NULL); 12561 12562 /* 12563 * FAST PATH for udp packets 12564 */ 12565 12566 /* u1 is # words of IP options */ 12567 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12568 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12569 12570 /* IP options present */ 12571 if (u1 != 0) 12572 goto ipoptions; 12573 12574 /* Check the IP header checksum. */ 12575 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12576 /* Clear the IP header h/w cksum flag */ 12577 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12578 } else { 12579 #define uph ((uint16_t *)ipha) 12580 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12581 uph[6] + uph[7] + uph[8] + uph[9]; 12582 #undef uph 12583 /* finish doing IP checksum */ 12584 sum = (sum & 0xFFFF) + (sum >> 16); 12585 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12586 /* 12587 * Don't verify header checksum if this packet is coming 12588 * back from AH/ESP as we already did it. 12589 */ 12590 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12592 freemsg(first_mp); 12593 return; 12594 } 12595 } 12596 12597 /* 12598 * Count for SNMP of inbound packets for ire. 12599 * if mctl is present this might be a secure packet and 12600 * has already been counted for in ip_proto_input(). 12601 */ 12602 if (!mctl_present) { 12603 UPDATE_IB_PKT_COUNT(ire); 12604 ire->ire_last_used_time = lbolt; 12605 } 12606 12607 /* packet part of fragmented IP packet? */ 12608 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12609 if (u1 & (IPH_MF | IPH_OFFSET)) { 12610 goto fragmented; 12611 } 12612 12613 /* u1 = IP header length (20 bytes) */ 12614 u1 = IP_SIMPLE_HDR_LENGTH; 12615 12616 /* packet does not contain complete IP & UDP headers */ 12617 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12618 goto udppullup; 12619 12620 /* up points to UDP header */ 12621 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12622 #define iphs ((uint16_t *)ipha) 12623 12624 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12625 if (up[3] != 0) { 12626 mblk_t *mp1 = mp->b_cont; 12627 boolean_t cksum_err; 12628 uint16_t hck_flags = 0; 12629 12630 /* Pseudo-header checksum */ 12631 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12632 iphs[9] + up[2]; 12633 12634 /* 12635 * Revert to software checksum calculation if the interface 12636 * isn't capable of checksum offload or if IPsec is present. 12637 */ 12638 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12639 hck_flags = DB_CKSUMFLAGS(mp); 12640 12641 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12642 IP_STAT(ipst, ip_in_sw_cksum); 12643 12644 IP_CKSUM_RECV(hck_flags, u1, 12645 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12646 (int32_t)((uchar_t *)up - rptr), 12647 mp, mp1, cksum_err); 12648 12649 if (cksum_err) { 12650 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12651 if (hck_flags & HCK_FULLCKSUM) 12652 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12653 else if (hck_flags & HCK_PARTIALCKSUM) 12654 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12655 else 12656 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12657 12658 freemsg(first_mp); 12659 return; 12660 } 12661 } 12662 12663 /* Non-fragmented broadcast or multicast packet? */ 12664 if (ire->ire_type == IRE_BROADCAST) 12665 goto udpslowpath; 12666 12667 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12668 ire->ire_zoneid, ipst)) != NULL) { 12669 ASSERT(connp->conn_upq != NULL); 12670 IP_STAT(ipst, ip_udp_fast_path); 12671 12672 if (CONN_UDP_FLOWCTLD(connp)) { 12673 freemsg(mp); 12674 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12675 } else { 12676 if (!mctl_present) { 12677 BUMP_MIB(ill->ill_ip_mib, 12678 ipIfStatsHCInDelivers); 12679 } 12680 /* 12681 * mp and first_mp can change. 12682 */ 12683 if (ip_udp_check(q, connp, recv_ill, 12684 ipha, &mp, &first_mp, mctl_present)) { 12685 /* Send it upstream */ 12686 CONN_UDP_RECV(connp, mp); 12687 } 12688 } 12689 /* 12690 * freeb() cannot deal with null mblk being passed 12691 * in and first_mp can be set to null in the call 12692 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12693 */ 12694 if (mctl_present && first_mp != NULL) { 12695 freeb(first_mp); 12696 } 12697 CONN_DEC_REF(connp); 12698 return; 12699 } 12700 12701 /* 12702 * if we got here we know the packet is not fragmented and 12703 * has no options. The classifier could not find a conn_t and 12704 * most likely its an icmp packet so send it through slow path. 12705 */ 12706 12707 goto udpslowpath; 12708 12709 ipoptions: 12710 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12711 goto slow_done; 12712 } 12713 12714 UPDATE_IB_PKT_COUNT(ire); 12715 ire->ire_last_used_time = lbolt; 12716 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12717 if (u1 & (IPH_MF | IPH_OFFSET)) { 12718 fragmented: 12719 /* 12720 * "sum" and "reass_hck_flags" are non-zero if the 12721 * reassembled packet has a valid hardware computed 12722 * checksum information associated with it. 12723 */ 12724 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12725 goto slow_done; 12726 /* 12727 * Make sure that first_mp points back to mp as 12728 * the mp we came in with could have changed in 12729 * ip_rput_fragment(). 12730 */ 12731 ASSERT(!mctl_present); 12732 ipha = (ipha_t *)mp->b_rptr; 12733 first_mp = mp; 12734 } 12735 12736 /* Now we have a complete datagram, destined for this machine. */ 12737 u1 = IPH_HDR_LENGTH(ipha); 12738 /* Pull up the UDP header, if necessary. */ 12739 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12740 udppullup: 12741 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12742 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12743 freemsg(first_mp); 12744 goto slow_done; 12745 } 12746 ipha = (ipha_t *)mp->b_rptr; 12747 } 12748 12749 /* 12750 * Validate the checksum for the reassembled packet; for the 12751 * pullup case we calculate the payload checksum in software. 12752 */ 12753 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12754 if (up[3] != 0) { 12755 boolean_t cksum_err; 12756 12757 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12758 IP_STAT(ipst, ip_in_sw_cksum); 12759 12760 IP_CKSUM_RECV_REASS(reass_hck_flags, 12761 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12762 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12763 iphs[9] + up[2], sum, cksum_err); 12764 12765 if (cksum_err) { 12766 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12767 12768 if (reass_hck_flags & HCK_FULLCKSUM) 12769 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12770 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12771 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12772 else 12773 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12774 12775 freemsg(first_mp); 12776 goto slow_done; 12777 } 12778 } 12779 udpslowpath: 12780 12781 /* Clear hardware checksum flag to be safe */ 12782 DB_CKSUMFLAGS(mp) = 0; 12783 12784 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12785 (ire->ire_type == IRE_BROADCAST), 12786 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12787 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12788 12789 slow_done: 12790 IP_STAT(ipst, ip_udp_slow_path); 12791 return; 12792 12793 #undef iphs 12794 #undef rptr 12795 } 12796 12797 /* ARGSUSED */ 12798 static mblk_t * 12799 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12800 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12801 ill_rx_ring_t *ill_ring) 12802 { 12803 conn_t *connp; 12804 uint32_t sum; 12805 uint32_t u1; 12806 uint16_t *up; 12807 int offset; 12808 ssize_t len; 12809 mblk_t *mp1; 12810 boolean_t syn_present = B_FALSE; 12811 tcph_t *tcph; 12812 uint_t ip_hdr_len; 12813 ill_t *ill = (ill_t *)q->q_ptr; 12814 zoneid_t zoneid = ire->ire_zoneid; 12815 boolean_t cksum_err; 12816 uint16_t hck_flags = 0; 12817 ip_stack_t *ipst = recv_ill->ill_ipst; 12818 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12819 12820 #define rptr ((uchar_t *)ipha) 12821 12822 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12823 ASSERT(ill != NULL); 12824 12825 /* 12826 * FAST PATH for tcp packets 12827 */ 12828 12829 /* u1 is # words of IP options */ 12830 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12831 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12832 12833 /* IP options present */ 12834 if (u1) { 12835 goto ipoptions; 12836 } else { 12837 /* Check the IP header checksum. */ 12838 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12839 /* Clear the IP header h/w cksum flag */ 12840 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12841 } else { 12842 #define uph ((uint16_t *)ipha) 12843 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12844 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12845 #undef uph 12846 /* finish doing IP checksum */ 12847 sum = (sum & 0xFFFF) + (sum >> 16); 12848 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12849 /* 12850 * Don't verify header checksum if this packet 12851 * is coming back from AH/ESP as we already did it. 12852 */ 12853 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12854 BUMP_MIB(ill->ill_ip_mib, 12855 ipIfStatsInCksumErrs); 12856 goto error; 12857 } 12858 } 12859 } 12860 12861 if (!mctl_present) { 12862 UPDATE_IB_PKT_COUNT(ire); 12863 ire->ire_last_used_time = lbolt; 12864 } 12865 12866 /* packet part of fragmented IP packet? */ 12867 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12868 if (u1 & (IPH_MF | IPH_OFFSET)) { 12869 goto fragmented; 12870 } 12871 12872 /* u1 = IP header length (20 bytes) */ 12873 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12874 12875 /* does packet contain IP+TCP headers? */ 12876 len = mp->b_wptr - rptr; 12877 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12878 IP_STAT(ipst, ip_tcppullup); 12879 goto tcppullup; 12880 } 12881 12882 /* TCP options present? */ 12883 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12884 12885 /* 12886 * If options need to be pulled up, then goto tcpoptions. 12887 * otherwise we are still in the fast path 12888 */ 12889 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12890 IP_STAT(ipst, ip_tcpoptions); 12891 goto tcpoptions; 12892 } 12893 12894 /* multiple mblks of tcp data? */ 12895 if ((mp1 = mp->b_cont) != NULL) { 12896 /* more then two? */ 12897 if (mp1->b_cont != NULL) { 12898 IP_STAT(ipst, ip_multipkttcp); 12899 goto multipkttcp; 12900 } 12901 len += mp1->b_wptr - mp1->b_rptr; 12902 } 12903 12904 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12905 12906 /* part of pseudo checksum */ 12907 12908 /* TCP datagram length */ 12909 u1 = len - IP_SIMPLE_HDR_LENGTH; 12910 12911 #define iphs ((uint16_t *)ipha) 12912 12913 #ifdef _BIG_ENDIAN 12914 u1 += IPPROTO_TCP; 12915 #else 12916 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12917 #endif 12918 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12919 12920 /* 12921 * Revert to software checksum calculation if the interface 12922 * isn't capable of checksum offload or if IPsec is present. 12923 */ 12924 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12925 hck_flags = DB_CKSUMFLAGS(mp); 12926 12927 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12928 IP_STAT(ipst, ip_in_sw_cksum); 12929 12930 IP_CKSUM_RECV(hck_flags, u1, 12931 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12932 (int32_t)((uchar_t *)up - rptr), 12933 mp, mp1, cksum_err); 12934 12935 if (cksum_err) { 12936 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 12937 12938 if (hck_flags & HCK_FULLCKSUM) 12939 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 12940 else if (hck_flags & HCK_PARTIALCKSUM) 12941 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 12942 else 12943 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 12944 12945 goto error; 12946 } 12947 12948 try_again: 12949 12950 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 12951 zoneid, ipst)) == NULL) { 12952 /* Send the TH_RST */ 12953 goto no_conn; 12954 } 12955 12956 /* 12957 * TCP FAST PATH for AF_INET socket. 12958 * 12959 * TCP fast path to avoid extra work. An AF_INET socket type 12960 * does not have facility to receive extra information via 12961 * ip_process or ip_add_info. Also, when the connection was 12962 * established, we made a check if this connection is impacted 12963 * by any global IPSec policy or per connection policy (a 12964 * policy that comes in effect later will not apply to this 12965 * connection). Since all this can be determined at the 12966 * connection establishment time, a quick check of flags 12967 * can avoid extra work. 12968 */ 12969 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12970 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12971 ASSERT(first_mp == mp); 12972 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12973 SET_SQUEUE(mp, tcp_rput_data, connp); 12974 return (mp); 12975 } 12976 12977 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12978 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12979 if (IPCL_IS_TCP(connp)) { 12980 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12981 DB_CKSUMSTART(mp) = 12982 (intptr_t)ip_squeue_get(ill_ring); 12983 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12984 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 12985 BUMP_MIB(ill->ill_ip_mib, 12986 ipIfStatsHCInDelivers); 12987 SET_SQUEUE(mp, connp->conn_recv, connp); 12988 return (mp); 12989 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12990 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 12991 BUMP_MIB(ill->ill_ip_mib, 12992 ipIfStatsHCInDelivers); 12993 ip_squeue_enter_unbound++; 12994 SET_SQUEUE(mp, tcp_conn_request_unbound, 12995 connp); 12996 return (mp); 12997 } 12998 syn_present = B_TRUE; 12999 } 13000 13001 } 13002 13003 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13004 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13005 13006 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13007 /* No need to send this packet to TCP */ 13008 if ((flags & TH_RST) || (flags & TH_URG)) { 13009 CONN_DEC_REF(connp); 13010 freemsg(first_mp); 13011 return (NULL); 13012 } 13013 if (flags & TH_ACK) { 13014 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 13015 ipst->ips_netstack->netstack_tcp); 13016 CONN_DEC_REF(connp); 13017 return (NULL); 13018 } 13019 13020 CONN_DEC_REF(connp); 13021 freemsg(first_mp); 13022 return (NULL); 13023 } 13024 13025 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13026 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13027 ipha, NULL, mctl_present); 13028 if (first_mp == NULL) { 13029 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13030 CONN_DEC_REF(connp); 13031 return (NULL); 13032 } 13033 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13034 ASSERT(syn_present); 13035 if (mctl_present) { 13036 ASSERT(first_mp != mp); 13037 first_mp->b_datap->db_struioflag |= 13038 STRUIO_POLICY; 13039 } else { 13040 ASSERT(first_mp == mp); 13041 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13042 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13043 } 13044 } else { 13045 /* 13046 * Discard first_mp early since we're dealing with a 13047 * fully-connected conn_t and tcp doesn't do policy in 13048 * this case. 13049 */ 13050 if (mctl_present) { 13051 freeb(first_mp); 13052 mctl_present = B_FALSE; 13053 } 13054 first_mp = mp; 13055 } 13056 } 13057 13058 /* Initiate IPPF processing for fastpath */ 13059 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13060 uint32_t ill_index; 13061 13062 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13063 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13064 if (mp == NULL) { 13065 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13066 "deferred/dropped during IPPF processing\n")); 13067 CONN_DEC_REF(connp); 13068 if (mctl_present) 13069 freeb(first_mp); 13070 return (NULL); 13071 } else if (mctl_present) { 13072 /* 13073 * ip_process might return a new mp. 13074 */ 13075 ASSERT(first_mp != mp); 13076 first_mp->b_cont = mp; 13077 } else { 13078 first_mp = mp; 13079 } 13080 13081 } 13082 13083 if (!syn_present && connp->conn_ip_recvpktinfo) { 13084 /* 13085 * TCP does not support IP_RECVPKTINFO for v4 so lets 13086 * make sure IPF_RECVIF is passed to ip_add_info. 13087 */ 13088 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13089 IPCL_ZONEID(connp), ipst); 13090 if (mp == NULL) { 13091 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13092 CONN_DEC_REF(connp); 13093 if (mctl_present) 13094 freeb(first_mp); 13095 return (NULL); 13096 } else if (mctl_present) { 13097 /* 13098 * ip_add_info might return a new mp. 13099 */ 13100 ASSERT(first_mp != mp); 13101 first_mp->b_cont = mp; 13102 } else { 13103 first_mp = mp; 13104 } 13105 } 13106 13107 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13108 if (IPCL_IS_TCP(connp)) { 13109 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13110 return (first_mp); 13111 } else { 13112 putnext(connp->conn_rq, first_mp); 13113 CONN_DEC_REF(connp); 13114 return (NULL); 13115 } 13116 13117 no_conn: 13118 /* Initiate IPPf processing, if needed. */ 13119 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13120 uint32_t ill_index; 13121 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13122 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13123 if (first_mp == NULL) { 13124 return (NULL); 13125 } 13126 } 13127 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13128 13129 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13130 ipst->ips_netstack->netstack_tcp); 13131 return (NULL); 13132 ipoptions: 13133 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13134 goto slow_done; 13135 } 13136 13137 UPDATE_IB_PKT_COUNT(ire); 13138 ire->ire_last_used_time = lbolt; 13139 13140 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13141 if (u1 & (IPH_MF | IPH_OFFSET)) { 13142 fragmented: 13143 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13144 if (mctl_present) 13145 freeb(first_mp); 13146 goto slow_done; 13147 } 13148 /* 13149 * Make sure that first_mp points back to mp as 13150 * the mp we came in with could have changed in 13151 * ip_rput_fragment(). 13152 */ 13153 ASSERT(!mctl_present); 13154 ipha = (ipha_t *)mp->b_rptr; 13155 first_mp = mp; 13156 } 13157 13158 /* Now we have a complete datagram, destined for this machine. */ 13159 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13160 13161 len = mp->b_wptr - mp->b_rptr; 13162 /* Pull up a minimal TCP header, if necessary. */ 13163 if (len < (u1 + 20)) { 13164 tcppullup: 13165 if (!pullupmsg(mp, u1 + 20)) { 13166 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13167 goto error; 13168 } 13169 ipha = (ipha_t *)mp->b_rptr; 13170 len = mp->b_wptr - mp->b_rptr; 13171 } 13172 13173 /* 13174 * Extract the offset field from the TCP header. As usual, we 13175 * try to help the compiler more than the reader. 13176 */ 13177 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13178 if (offset != 5) { 13179 tcpoptions: 13180 if (offset < 5) { 13181 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13182 goto error; 13183 } 13184 /* 13185 * There must be TCP options. 13186 * Make sure we can grab them. 13187 */ 13188 offset <<= 2; 13189 offset += u1; 13190 if (len < offset) { 13191 if (!pullupmsg(mp, offset)) { 13192 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13193 goto error; 13194 } 13195 ipha = (ipha_t *)mp->b_rptr; 13196 len = mp->b_wptr - rptr; 13197 } 13198 } 13199 13200 /* Get the total packet length in len, including headers. */ 13201 if (mp->b_cont) { 13202 multipkttcp: 13203 len = msgdsize(mp); 13204 } 13205 13206 /* 13207 * Check the TCP checksum by pulling together the pseudo- 13208 * header checksum, and passing it to ip_csum to be added in 13209 * with the TCP datagram. 13210 * 13211 * Since we are not using the hwcksum if available we must 13212 * clear the flag. We may come here via tcppullup or tcpoptions. 13213 * If either of these fails along the way the mblk is freed. 13214 * If this logic ever changes and mblk is reused to say send 13215 * ICMP's back, then this flag may need to be cleared in 13216 * other places as well. 13217 */ 13218 DB_CKSUMFLAGS(mp) = 0; 13219 13220 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13221 13222 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13223 #ifdef _BIG_ENDIAN 13224 u1 += IPPROTO_TCP; 13225 #else 13226 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13227 #endif 13228 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13229 /* 13230 * Not M_DATA mblk or its a dup, so do the checksum now. 13231 */ 13232 IP_STAT(ipst, ip_in_sw_cksum); 13233 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13234 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13235 goto error; 13236 } 13237 13238 IP_STAT(ipst, ip_tcp_slow_path); 13239 goto try_again; 13240 #undef iphs 13241 #undef rptr 13242 13243 error: 13244 freemsg(first_mp); 13245 slow_done: 13246 return (NULL); 13247 } 13248 13249 /* ARGSUSED */ 13250 static void 13251 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13252 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13253 { 13254 conn_t *connp; 13255 uint32_t sum; 13256 uint32_t u1; 13257 ssize_t len; 13258 sctp_hdr_t *sctph; 13259 zoneid_t zoneid = ire->ire_zoneid; 13260 uint32_t pktsum; 13261 uint32_t calcsum; 13262 uint32_t ports; 13263 in6_addr_t map_src, map_dst; 13264 ill_t *ill = (ill_t *)q->q_ptr; 13265 ip_stack_t *ipst; 13266 sctp_stack_t *sctps; 13267 13268 ASSERT(recv_ill != NULL); 13269 ipst = recv_ill->ill_ipst; 13270 sctps = ipst->ips_netstack->netstack_sctp; 13271 13272 #define rptr ((uchar_t *)ipha) 13273 13274 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13275 ASSERT(ill != NULL); 13276 13277 /* u1 is # words of IP options */ 13278 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13279 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13280 13281 /* IP options present */ 13282 if (u1 > 0) { 13283 goto ipoptions; 13284 } else { 13285 /* Check the IP header checksum. */ 13286 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13287 #define uph ((uint16_t *)ipha) 13288 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13289 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13290 #undef uph 13291 /* finish doing IP checksum */ 13292 sum = (sum & 0xFFFF) + (sum >> 16); 13293 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13294 /* 13295 * Don't verify header checksum if this packet 13296 * is coming back from AH/ESP as we already did it. 13297 */ 13298 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13299 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13300 goto error; 13301 } 13302 } 13303 /* 13304 * Since there is no SCTP h/w cksum support yet, just 13305 * clear the flag. 13306 */ 13307 DB_CKSUMFLAGS(mp) = 0; 13308 } 13309 13310 /* 13311 * Don't verify header checksum if this packet is coming 13312 * back from AH/ESP as we already did it. 13313 */ 13314 if (!mctl_present) { 13315 UPDATE_IB_PKT_COUNT(ire); 13316 ire->ire_last_used_time = lbolt; 13317 } 13318 13319 /* packet part of fragmented IP packet? */ 13320 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13321 if (u1 & (IPH_MF | IPH_OFFSET)) 13322 goto fragmented; 13323 13324 /* u1 = IP header length (20 bytes) */ 13325 u1 = IP_SIMPLE_HDR_LENGTH; 13326 13327 find_sctp_client: 13328 /* Pullup if we don't have the sctp common header. */ 13329 len = MBLKL(mp); 13330 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13331 if (mp->b_cont == NULL || 13332 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13333 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13334 goto error; 13335 } 13336 ipha = (ipha_t *)mp->b_rptr; 13337 len = MBLKL(mp); 13338 } 13339 13340 sctph = (sctp_hdr_t *)(rptr + u1); 13341 #ifdef DEBUG 13342 if (!skip_sctp_cksum) { 13343 #endif 13344 pktsum = sctph->sh_chksum; 13345 sctph->sh_chksum = 0; 13346 calcsum = sctp_cksum(mp, u1); 13347 if (calcsum != pktsum) { 13348 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 13349 goto error; 13350 } 13351 sctph->sh_chksum = pktsum; 13352 #ifdef DEBUG /* skip_sctp_cksum */ 13353 } 13354 #endif 13355 /* get the ports */ 13356 ports = *(uint32_t *)&sctph->sh_sport; 13357 13358 IRE_REFRELE(ire); 13359 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13360 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13361 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13362 sctps)) == NULL) { 13363 /* Check for raw socket or OOTB handling */ 13364 goto no_conn; 13365 } 13366 13367 /* Found a client; up it goes */ 13368 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13369 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13370 return; 13371 13372 no_conn: 13373 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13374 ports, mctl_present, flags, B_TRUE, zoneid); 13375 return; 13376 13377 ipoptions: 13378 DB_CKSUMFLAGS(mp) = 0; 13379 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13380 goto slow_done; 13381 13382 UPDATE_IB_PKT_COUNT(ire); 13383 ire->ire_last_used_time = lbolt; 13384 13385 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13386 if (u1 & (IPH_MF | IPH_OFFSET)) { 13387 fragmented: 13388 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13389 goto slow_done; 13390 /* 13391 * Make sure that first_mp points back to mp as 13392 * the mp we came in with could have changed in 13393 * ip_rput_fragment(). 13394 */ 13395 ASSERT(!mctl_present); 13396 ipha = (ipha_t *)mp->b_rptr; 13397 first_mp = mp; 13398 } 13399 13400 /* Now we have a complete datagram, destined for this machine. */ 13401 u1 = IPH_HDR_LENGTH(ipha); 13402 goto find_sctp_client; 13403 #undef iphs 13404 #undef rptr 13405 13406 error: 13407 freemsg(first_mp); 13408 slow_done: 13409 IRE_REFRELE(ire); 13410 } 13411 13412 #define VER_BITS 0xF0 13413 #define VERSION_6 0x60 13414 13415 static boolean_t 13416 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13417 ipaddr_t *dstp, ip_stack_t *ipst) 13418 { 13419 uint_t opt_len; 13420 ipha_t *ipha; 13421 ssize_t len; 13422 uint_t pkt_len; 13423 13424 ASSERT(ill != NULL); 13425 IP_STAT(ipst, ip_ipoptions); 13426 ipha = *iphapp; 13427 13428 #define rptr ((uchar_t *)ipha) 13429 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13430 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13431 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13432 freemsg(mp); 13433 return (B_FALSE); 13434 } 13435 13436 /* multiple mblk or too short */ 13437 pkt_len = ntohs(ipha->ipha_length); 13438 13439 /* Get the number of words of IP options in the IP header. */ 13440 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13441 if (opt_len) { 13442 /* IP Options present! Validate and process. */ 13443 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13444 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13445 goto done; 13446 } 13447 /* 13448 * Recompute complete header length and make sure we 13449 * have access to all of it. 13450 */ 13451 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13452 if (len > (mp->b_wptr - rptr)) { 13453 if (len > pkt_len) { 13454 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13455 goto done; 13456 } 13457 if (!pullupmsg(mp, len)) { 13458 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13459 goto done; 13460 } 13461 ipha = (ipha_t *)mp->b_rptr; 13462 } 13463 /* 13464 * Go off to ip_rput_options which returns the next hop 13465 * destination address, which may have been affected 13466 * by source routing. 13467 */ 13468 IP_STAT(ipst, ip_opt); 13469 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13470 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13471 return (B_FALSE); 13472 } 13473 } 13474 *iphapp = ipha; 13475 return (B_TRUE); 13476 done: 13477 /* clear b_prev - used by ip_mroute_decap */ 13478 mp->b_prev = NULL; 13479 freemsg(mp); 13480 return (B_FALSE); 13481 #undef rptr 13482 } 13483 13484 /* 13485 * Deal with the fact that there is no ire for the destination. 13486 */ 13487 static ire_t * 13488 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13489 { 13490 ipha_t *ipha; 13491 ill_t *ill; 13492 ire_t *ire; 13493 boolean_t check_multirt = B_FALSE; 13494 ip_stack_t *ipst; 13495 13496 ipha = (ipha_t *)mp->b_rptr; 13497 ill = (ill_t *)q->q_ptr; 13498 13499 ASSERT(ill != NULL); 13500 ipst = ill->ill_ipst; 13501 13502 /* 13503 * No IRE for this destination, so it can't be for us. 13504 * Unless we are forwarding, drop the packet. 13505 * We have to let source routed packets through 13506 * since we don't yet know if they are 'ping -l' 13507 * packets i.e. if they will go out over the 13508 * same interface as they came in on. 13509 */ 13510 if (ll_multicast) { 13511 freemsg(mp); 13512 return (NULL); 13513 } 13514 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13515 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13516 freemsg(mp); 13517 return (NULL); 13518 } 13519 13520 /* 13521 * Mark this packet as having originated externally. 13522 * 13523 * For non-forwarding code path, ire_send later double 13524 * checks this interface to see if it is still exists 13525 * post-ARP resolution. 13526 * 13527 * Also, IPQOS uses this to differentiate between 13528 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13529 * QOS packet processing in ip_wput_attach_llhdr(). 13530 * The QoS module can mark the b_band for a fastpath message 13531 * or the dl_priority field in a unitdata_req header for 13532 * CoS marking. This info can only be found in 13533 * ip_wput_attach_llhdr(). 13534 */ 13535 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13536 /* 13537 * Clear the indication that this may have a hardware checksum 13538 * as we are not using it 13539 */ 13540 DB_CKSUMFLAGS(mp) = 0; 13541 13542 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13543 MBLK_GETLABEL(mp), ipst); 13544 13545 if (ire == NULL && check_multirt) { 13546 /* Let ip_newroute handle CGTP */ 13547 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13548 return (NULL); 13549 } 13550 13551 if (ire != NULL) 13552 return (ire); 13553 13554 mp->b_prev = mp->b_next = 0; 13555 /* send icmp unreachable */ 13556 q = WR(q); 13557 /* Sent by forwarding path, and router is global zone */ 13558 if (ip_source_routed(ipha, ipst)) { 13559 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13560 GLOBAL_ZONEID, ipst); 13561 } else { 13562 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13563 ipst); 13564 } 13565 13566 return (NULL); 13567 13568 } 13569 13570 /* 13571 * check ip header length and align it. 13572 */ 13573 static boolean_t 13574 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13575 { 13576 ssize_t len; 13577 ill_t *ill; 13578 ipha_t *ipha; 13579 13580 len = MBLKL(mp); 13581 13582 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13583 ill = (ill_t *)q->q_ptr; 13584 13585 if (!OK_32PTR(mp->b_rptr)) 13586 IP_STAT(ipst, ip_notaligned1); 13587 else 13588 IP_STAT(ipst, ip_notaligned2); 13589 /* Guard against bogus device drivers */ 13590 if (len < 0) { 13591 /* clear b_prev - used by ip_mroute_decap */ 13592 mp->b_prev = NULL; 13593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13594 freemsg(mp); 13595 return (B_FALSE); 13596 } 13597 13598 if (ip_rput_pullups++ == 0) { 13599 ipha = (ipha_t *)mp->b_rptr; 13600 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13601 "ip_check_and_align_header: %s forced us to " 13602 " pullup pkt, hdr len %ld, hdr addr %p", 13603 ill->ill_name, len, ipha); 13604 } 13605 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13606 /* clear b_prev - used by ip_mroute_decap */ 13607 mp->b_prev = NULL; 13608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13609 freemsg(mp); 13610 return (B_FALSE); 13611 } 13612 } 13613 return (B_TRUE); 13614 } 13615 13616 ire_t * 13617 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13618 { 13619 ire_t *new_ire; 13620 ill_t *ire_ill; 13621 uint_t ifindex; 13622 ip_stack_t *ipst = ill->ill_ipst; 13623 boolean_t strict_check = B_FALSE; 13624 13625 /* 13626 * This packet came in on an interface other than the one associated 13627 * with the first ire we found for the destination address. We do 13628 * another ire lookup here, using the ingress ill, to see if the 13629 * interface is in an interface group. 13630 * As long as the ills belong to the same group, we don't consider 13631 * them to be arriving on the wrong interface. Thus, if the switch 13632 * is doing inbound load spreading, we won't drop packets when the 13633 * ip*_strict_dst_multihoming switch is on. Note, the same holds true 13634 * for 'usesrc groups' where the destination address may belong to 13635 * another interface to allow multipathing to happen. 13636 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13637 * where the local address may not be unique. In this case we were 13638 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13639 * actually returned. The new lookup, which is more specific, should 13640 * only find the IRE_LOCAL associated with the ingress ill if one 13641 * exists. 13642 */ 13643 13644 if (ire->ire_ipversion == IPV4_VERSION) { 13645 if (ipst->ips_ip_strict_dst_multihoming) 13646 strict_check = B_TRUE; 13647 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13648 ill->ill_ipif, ALL_ZONES, NULL, 13649 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13650 } else { 13651 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13652 if (ipst->ips_ipv6_strict_dst_multihoming) 13653 strict_check = B_TRUE; 13654 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13655 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13656 (MATCH_IRE_TYPE|MATCH_IRE_ILL_GROUP), ipst); 13657 } 13658 /* 13659 * If the same ire that was returned in ip_input() is found then this 13660 * is an indication that interface groups are in use. The packet 13661 * arrived on a different ill in the group than the one associated with 13662 * the destination address. If a different ire was found then the same 13663 * IP address must be hosted on multiple ills. This is possible with 13664 * unnumbered point2point interfaces. We switch to use this new ire in 13665 * order to have accurate interface statistics. 13666 */ 13667 if (new_ire != NULL) { 13668 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13669 ire_refrele(ire); 13670 ire = new_ire; 13671 } else { 13672 ire_refrele(new_ire); 13673 } 13674 return (ire); 13675 } else if ((ire->ire_rfq == NULL) && 13676 (ire->ire_ipversion == IPV4_VERSION)) { 13677 /* 13678 * The best match could have been the original ire which 13679 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13680 * the strict multihoming checks are irrelevant as we consider 13681 * local addresses hosted on lo0 to be interface agnostic. We 13682 * only expect a null ire_rfq on IREs which are associated with 13683 * lo0 hence we can return now. 13684 */ 13685 return (ire); 13686 } 13687 13688 /* 13689 * Chase pointers once and store locally. 13690 */ 13691 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13692 (ill_t *)(ire->ire_rfq->q_ptr); 13693 ifindex = ill->ill_usesrc_ifindex; 13694 13695 /* 13696 * Check if it's a legal address on the 'usesrc' interface. 13697 */ 13698 if ((ifindex != 0) && (ire_ill != NULL) && 13699 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13700 return (ire); 13701 } 13702 13703 /* 13704 * If the ip*_strict_dst_multihoming switch is on then we can 13705 * only accept this packet if the interface is marked as routing. 13706 */ 13707 if (!(strict_check)) 13708 return (ire); 13709 13710 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13711 ILLF_ROUTER) != 0) { 13712 return (ire); 13713 } 13714 13715 ire_refrele(ire); 13716 return (NULL); 13717 } 13718 13719 ire_t * 13720 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13721 { 13722 ipha_t *ipha; 13723 ipaddr_t ip_dst, ip_src; 13724 ire_t *src_ire = NULL; 13725 ill_t *stq_ill; 13726 uint_t hlen; 13727 uint_t pkt_len; 13728 uint32_t sum; 13729 queue_t *dev_q; 13730 boolean_t check_multirt = B_FALSE; 13731 ip_stack_t *ipst = ill->ill_ipst; 13732 13733 ipha = (ipha_t *)mp->b_rptr; 13734 13735 /* 13736 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13737 * The loopback address check for both src and dst has already 13738 * been checked in ip_input 13739 */ 13740 ip_dst = ntohl(dst); 13741 ip_src = ntohl(ipha->ipha_src); 13742 13743 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13744 IN_CLASSD(ip_src)) { 13745 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13746 goto drop; 13747 } 13748 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13749 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13750 13751 if (src_ire != NULL) { 13752 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13753 goto drop; 13754 } 13755 13756 13757 /* No ire cache of nexthop. So first create one */ 13758 if (ire == NULL) { 13759 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst); 13760 /* 13761 * We only come to ip_fast_forward if ip_cgtp_filter is 13762 * is not set. So upon return from ire_forward 13763 * check_multirt should remain as false. 13764 */ 13765 ASSERT(!check_multirt); 13766 if (ire == NULL) { 13767 /* An attempt was made to forward the packet */ 13768 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13769 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13770 mp->b_prev = mp->b_next = 0; 13771 /* send icmp unreachable */ 13772 /* Sent by forwarding path, and router is global zone */ 13773 if (ip_source_routed(ipha, ipst)) { 13774 icmp_unreachable(ill->ill_wq, mp, 13775 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, 13776 ipst); 13777 } else { 13778 icmp_unreachable(ill->ill_wq, mp, 13779 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13780 ipst); 13781 } 13782 return (ire); 13783 } 13784 } 13785 13786 /* 13787 * Forwarding fastpath exception case: 13788 * If either of the follwoing case is true, we take 13789 * the slowpath 13790 * o forwarding is not enabled 13791 * o incoming and outgoing interface are the same, or the same 13792 * IPMP group 13793 * o corresponding ire is in incomplete state 13794 * o packet needs fragmentation 13795 * 13796 * The codeflow from here on is thus: 13797 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13798 */ 13799 pkt_len = ntohs(ipha->ipha_length); 13800 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13801 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13802 !(ill->ill_flags & ILLF_ROUTER) || 13803 (ill == stq_ill) || 13804 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13805 (ire->ire_nce == NULL) || 13806 (ire->ire_nce->nce_state != ND_REACHABLE) || 13807 (pkt_len > ire->ire_max_frag) || 13808 ipha->ipha_ttl <= 1) { 13809 ip_rput_process_forward(ill->ill_rq, mp, ire, 13810 ipha, ill, B_FALSE); 13811 return (ire); 13812 } 13813 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13814 13815 DTRACE_PROBE4(ip4__forwarding__start, 13816 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13817 13818 FW_HOOKS(ipst->ips_ip4_forwarding_event, 13819 ipst->ips_ipv4firewall_forwarding, 13820 ill, stq_ill, ipha, mp, mp, ipst); 13821 13822 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13823 13824 if (mp == NULL) 13825 goto drop; 13826 13827 mp->b_datap->db_struioun.cksum.flags = 0; 13828 /* Adjust the checksum to reflect the ttl decrement. */ 13829 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13830 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13831 ipha->ipha_ttl--; 13832 13833 dev_q = ire->ire_stq->q_next; 13834 if ((dev_q->q_next != NULL || 13835 dev_q->q_first != NULL) && !canput(dev_q)) { 13836 goto indiscard; 13837 } 13838 13839 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13840 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13841 13842 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13843 mblk_t *mpip = mp; 13844 13845 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13846 if (mp != NULL) { 13847 DTRACE_PROBE4(ip4__physical__out__start, 13848 ill_t *, NULL, ill_t *, stq_ill, 13849 ipha_t *, ipha, mblk_t *, mp); 13850 FW_HOOKS(ipst->ips_ip4_physical_out_event, 13851 ipst->ips_ipv4firewall_physical_out, 13852 NULL, stq_ill, ipha, mp, mpip, ipst); 13853 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13854 mp); 13855 if (mp == NULL) 13856 goto drop; 13857 13858 UPDATE_IB_PKT_COUNT(ire); 13859 ire->ire_last_used_time = lbolt; 13860 BUMP_MIB(stq_ill->ill_ip_mib, 13861 ipIfStatsHCOutForwDatagrams); 13862 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13863 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 13864 pkt_len); 13865 putnext(ire->ire_stq, mp); 13866 return (ire); 13867 } 13868 } 13869 13870 indiscard: 13871 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13872 drop: 13873 if (mp != NULL) 13874 freemsg(mp); 13875 if (src_ire != NULL) 13876 ire_refrele(src_ire); 13877 return (ire); 13878 13879 } 13880 13881 /* 13882 * This function is called in the forwarding slowpath, when 13883 * either the ire lacks the link-layer address, or the packet needs 13884 * further processing(eg. fragmentation), before transmission. 13885 */ 13886 13887 static void 13888 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13889 ill_t *ill, boolean_t ll_multicast) 13890 { 13891 ill_group_t *ill_group; 13892 ill_group_t *ire_group; 13893 queue_t *dev_q; 13894 ire_t *src_ire; 13895 ip_stack_t *ipst = ill->ill_ipst; 13896 13897 ASSERT(ire->ire_stq != NULL); 13898 13899 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13900 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13901 13902 if (ll_multicast != 0) { 13903 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13904 goto drop_pkt; 13905 } 13906 13907 /* 13908 * check if ipha_src is a broadcast address. Note that this 13909 * check is redundant when we get here from ip_fast_forward() 13910 * which has already done this check. However, since we can 13911 * also get here from ip_rput_process_broadcast() or, for 13912 * for the slow path through ip_fast_forward(), we perform 13913 * the check again for code-reusability 13914 */ 13915 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13916 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13917 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13918 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13919 if (src_ire != NULL) 13920 ire_refrele(src_ire); 13921 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13922 ip2dbg(("ip_rput_process_forward: Received packet with" 13923 " bad src/dst address on %s\n", ill->ill_name)); 13924 goto drop_pkt; 13925 } 13926 13927 ill_group = ill->ill_group; 13928 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13929 /* 13930 * Check if we want to forward this one at this time. 13931 * We allow source routed packets on a host provided that 13932 * they go out the same interface or same interface group 13933 * as they came in on. 13934 * 13935 * XXX To be quicker, we may wish to not chase pointers to 13936 * get the ILLF_ROUTER flag and instead store the 13937 * forwarding policy in the ire. An unfortunate 13938 * side-effect of that would be requiring an ire flush 13939 * whenever the ILLF_ROUTER flag changes. 13940 */ 13941 if (((ill->ill_flags & 13942 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13943 ILLF_ROUTER) == 0) && 13944 !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q || 13945 (ill_group != NULL && ill_group == ire_group)))) { 13946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13947 if (ip_source_routed(ipha, ipst)) { 13948 q = WR(q); 13949 /* 13950 * Clear the indication that this may have 13951 * hardware checksum as we are not using it. 13952 */ 13953 DB_CKSUMFLAGS(mp) = 0; 13954 /* Sent by forwarding path, and router is global zone */ 13955 icmp_unreachable(q, mp, 13956 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 13957 return; 13958 } 13959 goto drop_pkt; 13960 } 13961 13962 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13963 13964 /* Packet is being forwarded. Turning off hwcksum flag. */ 13965 DB_CKSUMFLAGS(mp) = 0; 13966 if (ipst->ips_ip_g_send_redirects) { 13967 /* 13968 * Check whether the incoming interface and outgoing 13969 * interface is part of the same group. If so, 13970 * send redirects. 13971 * 13972 * Check the source address to see if it originated 13973 * on the same logical subnet it is going back out on. 13974 * If so, we should be able to send it a redirect. 13975 * Avoid sending a redirect if the destination 13976 * is directly connected (i.e., ipha_dst is the same 13977 * as ire_gateway_addr or the ire_addr of the 13978 * nexthop IRE_CACHE ), or if the packet was source 13979 * routed out this interface. 13980 */ 13981 ipaddr_t src, nhop; 13982 mblk_t *mp1; 13983 ire_t *nhop_ire = NULL; 13984 13985 /* 13986 * Check whether ire_rfq and q are from the same ill 13987 * or if they are not same, they at least belong 13988 * to the same group. If so, send redirects. 13989 */ 13990 if ((ire->ire_rfq == q || 13991 (ill_group != NULL && ill_group == ire_group)) && 13992 !ip_source_routed(ipha, ipst)) { 13993 13994 nhop = (ire->ire_gateway_addr != 0 ? 13995 ire->ire_gateway_addr : ire->ire_addr); 13996 13997 if (ipha->ipha_dst == nhop) { 13998 /* 13999 * We avoid sending a redirect if the 14000 * destination is directly connected 14001 * because it is possible that multiple 14002 * IP subnets may have been configured on 14003 * the link, and the source may not 14004 * be on the same subnet as ip destination, 14005 * even though they are on the same 14006 * physical link. 14007 */ 14008 goto sendit; 14009 } 14010 14011 src = ipha->ipha_src; 14012 14013 /* 14014 * We look up the interface ire for the nexthop, 14015 * to see if ipha_src is in the same subnet 14016 * as the nexthop. 14017 * 14018 * Note that, if, in the future, IRE_CACHE entries 14019 * are obsoleted, this lookup will not be needed, 14020 * as the ire passed to this function will be the 14021 * same as the nhop_ire computed below. 14022 */ 14023 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14024 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14025 0, NULL, MATCH_IRE_TYPE, ipst); 14026 14027 if (nhop_ire != NULL) { 14028 if ((src & nhop_ire->ire_mask) == 14029 (nhop & nhop_ire->ire_mask)) { 14030 /* 14031 * The source is directly connected. 14032 * Just copy the ip header (which is 14033 * in the first mblk) 14034 */ 14035 mp1 = copyb(mp); 14036 if (mp1 != NULL) { 14037 icmp_send_redirect(WR(q), mp1, 14038 nhop, ipst); 14039 } 14040 } 14041 ire_refrele(nhop_ire); 14042 } 14043 } 14044 } 14045 sendit: 14046 dev_q = ire->ire_stq->q_next; 14047 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14048 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14049 freemsg(mp); 14050 return; 14051 } 14052 14053 ip_rput_forward(ire, ipha, mp, ill); 14054 return; 14055 14056 drop_pkt: 14057 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14058 freemsg(mp); 14059 } 14060 14061 ire_t * 14062 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14063 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14064 { 14065 queue_t *q; 14066 uint16_t hcksumflags; 14067 ip_stack_t *ipst = ill->ill_ipst; 14068 14069 q = *qp; 14070 14071 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14072 14073 /* 14074 * Clear the indication that this may have hardware 14075 * checksum as we are not using it for forwarding. 14076 */ 14077 hcksumflags = DB_CKSUMFLAGS(mp); 14078 DB_CKSUMFLAGS(mp) = 0; 14079 14080 /* 14081 * Directed broadcast forwarding: if the packet came in over a 14082 * different interface then it is routed out over we can forward it. 14083 */ 14084 if (ipha->ipha_protocol == IPPROTO_TCP) { 14085 ire_refrele(ire); 14086 freemsg(mp); 14087 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14088 return (NULL); 14089 } 14090 /* 14091 * For multicast we have set dst to be INADDR_BROADCAST 14092 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14093 * only for broadcast packets. 14094 */ 14095 if (!CLASSD(ipha->ipha_dst)) { 14096 ire_t *new_ire; 14097 ipif_t *ipif; 14098 /* 14099 * For ill groups, as the switch duplicates broadcasts 14100 * across all the ports, we need to filter out and 14101 * send up only one copy. There is one copy for every 14102 * broadcast address on each ill. Thus, we look for a 14103 * specific IRE on this ill and look at IRE_MARK_NORECV 14104 * later to see whether this ill is eligible to receive 14105 * them or not. ill_nominate_bcast_rcv() nominates only 14106 * one set of IREs for receiving. 14107 */ 14108 14109 ipif = ipif_get_next_ipif(NULL, ill); 14110 if (ipif == NULL) { 14111 ire_refrele(ire); 14112 freemsg(mp); 14113 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14114 return (NULL); 14115 } 14116 new_ire = ire_ctable_lookup(dst, 0, 0, 14117 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14118 ipif_refrele(ipif); 14119 14120 if (new_ire != NULL) { 14121 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14122 ire_refrele(ire); 14123 ire_refrele(new_ire); 14124 freemsg(mp); 14125 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14126 return (NULL); 14127 } 14128 /* 14129 * In the special case of multirouted broadcast 14130 * packets, we unconditionally need to "gateway" 14131 * them to the appropriate interface here. 14132 * In the normal case, this cannot happen, because 14133 * there is no broadcast IRE tagged with the 14134 * RTF_MULTIRT flag. 14135 */ 14136 if (new_ire->ire_flags & RTF_MULTIRT) { 14137 ire_refrele(new_ire); 14138 if (ire->ire_rfq != NULL) { 14139 q = ire->ire_rfq; 14140 *qp = q; 14141 } 14142 } else { 14143 ire_refrele(ire); 14144 ire = new_ire; 14145 } 14146 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14147 if (!ipst->ips_ip_g_forward_directed_bcast) { 14148 /* 14149 * Free the message if 14150 * ip_g_forward_directed_bcast is turned 14151 * off for non-local broadcast. 14152 */ 14153 ire_refrele(ire); 14154 freemsg(mp); 14155 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14156 return (NULL); 14157 } 14158 } else { 14159 /* 14160 * This CGTP packet successfully passed the 14161 * CGTP filter, but the related CGTP 14162 * broadcast IRE has not been found, 14163 * meaning that the redundant ipif is 14164 * probably down. However, if we discarded 14165 * this packet, its duplicate would be 14166 * filtered out by the CGTP filter so none 14167 * of them would get through. So we keep 14168 * going with this one. 14169 */ 14170 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14171 if (ire->ire_rfq != NULL) { 14172 q = ire->ire_rfq; 14173 *qp = q; 14174 } 14175 } 14176 } 14177 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14178 /* 14179 * Verify that there are not more then one 14180 * IRE_BROADCAST with this broadcast address which 14181 * has ire_stq set. 14182 * TODO: simplify, loop over all IRE's 14183 */ 14184 ire_t *ire1; 14185 int num_stq = 0; 14186 mblk_t *mp1; 14187 14188 /* Find the first one with ire_stq set */ 14189 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14190 for (ire1 = ire; ire1 && 14191 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14192 ire1 = ire1->ire_next) 14193 ; 14194 if (ire1) { 14195 ire_refrele(ire); 14196 ire = ire1; 14197 IRE_REFHOLD(ire); 14198 } 14199 14200 /* Check if there are additional ones with stq set */ 14201 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14202 if (ire->ire_addr != ire1->ire_addr) 14203 break; 14204 if (ire1->ire_stq) { 14205 num_stq++; 14206 break; 14207 } 14208 } 14209 rw_exit(&ire->ire_bucket->irb_lock); 14210 if (num_stq == 1 && ire->ire_stq != NULL) { 14211 ip1dbg(("ip_rput_process_broadcast: directed " 14212 "broadcast to 0x%x\n", 14213 ntohl(ire->ire_addr))); 14214 mp1 = copymsg(mp); 14215 if (mp1) { 14216 switch (ipha->ipha_protocol) { 14217 case IPPROTO_UDP: 14218 ip_udp_input(q, mp1, ipha, ire, ill); 14219 break; 14220 default: 14221 ip_proto_input(q, mp1, ipha, ire, ill); 14222 break; 14223 } 14224 } 14225 /* 14226 * Adjust ttl to 2 (1+1 - the forward engine 14227 * will decrement it by one. 14228 */ 14229 if (ip_csum_hdr(ipha)) { 14230 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14231 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14232 freemsg(mp); 14233 ire_refrele(ire); 14234 return (NULL); 14235 } 14236 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14237 ipha->ipha_hdr_checksum = 0; 14238 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14239 ip_rput_process_forward(q, mp, ire, ipha, 14240 ill, ll_multicast); 14241 ire_refrele(ire); 14242 return (NULL); 14243 } 14244 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14245 ntohl(ire->ire_addr))); 14246 } 14247 14248 14249 /* Restore any hardware checksum flags */ 14250 DB_CKSUMFLAGS(mp) = hcksumflags; 14251 return (ire); 14252 } 14253 14254 /* ARGSUSED */ 14255 static boolean_t 14256 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14257 int *ll_multicast, ipaddr_t *dstp) 14258 { 14259 ip_stack_t *ipst = ill->ill_ipst; 14260 14261 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14262 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14263 ntohs(ipha->ipha_length)); 14264 14265 /* 14266 * Forward packets only if we have joined the allmulti 14267 * group on this interface. 14268 */ 14269 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14270 int retval; 14271 14272 /* 14273 * Clear the indication that this may have hardware 14274 * checksum as we are not using it. 14275 */ 14276 DB_CKSUMFLAGS(mp) = 0; 14277 retval = ip_mforward(ill, ipha, mp); 14278 /* ip_mforward updates mib variables if needed */ 14279 /* clear b_prev - used by ip_mroute_decap */ 14280 mp->b_prev = NULL; 14281 14282 switch (retval) { 14283 case 0: 14284 /* 14285 * pkt is okay and arrived on phyint. 14286 * 14287 * If we are running as a multicast router 14288 * we need to see all IGMP and/or PIM packets. 14289 */ 14290 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14291 (ipha->ipha_protocol == IPPROTO_PIM)) { 14292 goto done; 14293 } 14294 break; 14295 case -1: 14296 /* pkt is mal-formed, toss it */ 14297 goto drop_pkt; 14298 case 1: 14299 /* pkt is okay and arrived on a tunnel */ 14300 /* 14301 * If we are running a multicast router 14302 * we need to see all igmp packets. 14303 */ 14304 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14305 *dstp = INADDR_BROADCAST; 14306 *ll_multicast = 1; 14307 return (B_FALSE); 14308 } 14309 14310 goto drop_pkt; 14311 } 14312 } 14313 14314 ILM_WALKER_HOLD(ill); 14315 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14316 /* 14317 * This might just be caused by the fact that 14318 * multiple IP Multicast addresses map to the same 14319 * link layer multicast - no need to increment counter! 14320 */ 14321 ILM_WALKER_RELE(ill); 14322 freemsg(mp); 14323 return (B_TRUE); 14324 } 14325 ILM_WALKER_RELE(ill); 14326 done: 14327 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14328 /* 14329 * This assumes the we deliver to all streams for multicast 14330 * and broadcast packets. 14331 */ 14332 *dstp = INADDR_BROADCAST; 14333 *ll_multicast = 1; 14334 return (B_FALSE); 14335 drop_pkt: 14336 ip2dbg(("ip_rput: drop pkt\n")); 14337 freemsg(mp); 14338 return (B_TRUE); 14339 } 14340 14341 static boolean_t 14342 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14343 int *ll_multicast, mblk_t **mpp) 14344 { 14345 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14346 boolean_t must_copy = B_FALSE; 14347 struct iocblk *iocp; 14348 ipha_t *ipha; 14349 ip_stack_t *ipst = ill->ill_ipst; 14350 14351 #define rptr ((uchar_t *)ipha) 14352 14353 first_mp = *first_mpp; 14354 mp = *mpp; 14355 14356 ASSERT(first_mp == mp); 14357 14358 /* 14359 * if db_ref > 1 then copymsg and free original. Packet may be 14360 * changed and do not want other entity who has a reference to this 14361 * message to trip over the changes. This is a blind change because 14362 * trying to catch all places that might change packet is too 14363 * difficult (since it may be a module above this one) 14364 * 14365 * This corresponds to the non-fast path case. We walk down the full 14366 * chain in this case, and check the db_ref count of all the dblks, 14367 * and do a copymsg if required. It is possible that the db_ref counts 14368 * of the data blocks in the mblk chain can be different. 14369 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14370 * count of 1, followed by a M_DATA block with a ref count of 2, if 14371 * 'snoop' is running. 14372 */ 14373 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14374 if (mp1->b_datap->db_ref > 1) { 14375 must_copy = B_TRUE; 14376 break; 14377 } 14378 } 14379 14380 if (must_copy) { 14381 mp1 = copymsg(mp); 14382 if (mp1 == NULL) { 14383 for (mp1 = mp; mp1 != NULL; 14384 mp1 = mp1->b_cont) { 14385 mp1->b_next = NULL; 14386 mp1->b_prev = NULL; 14387 } 14388 freemsg(mp); 14389 if (ill != NULL) { 14390 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14391 } else { 14392 BUMP_MIB(&ipst->ips_ip_mib, 14393 ipIfStatsInDiscards); 14394 } 14395 return (B_TRUE); 14396 } 14397 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14398 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14399 /* Copy b_prev - used by ip_mroute_decap */ 14400 to_mp->b_prev = from_mp->b_prev; 14401 from_mp->b_prev = NULL; 14402 } 14403 *first_mpp = first_mp = mp1; 14404 freemsg(mp); 14405 mp = mp1; 14406 *mpp = mp1; 14407 } 14408 14409 ipha = (ipha_t *)mp->b_rptr; 14410 14411 /* 14412 * previous code has a case for M_DATA. 14413 * We want to check how that happens. 14414 */ 14415 ASSERT(first_mp->b_datap->db_type != M_DATA); 14416 switch (first_mp->b_datap->db_type) { 14417 case M_PROTO: 14418 case M_PCPROTO: 14419 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14420 DL_UNITDATA_IND) { 14421 /* Go handle anything other than data elsewhere. */ 14422 ip_rput_dlpi(q, mp); 14423 return (B_TRUE); 14424 } 14425 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14426 /* Ditch the DLPI header. */ 14427 mp1 = mp->b_cont; 14428 ASSERT(first_mp == mp); 14429 *first_mpp = mp1; 14430 freeb(mp); 14431 *mpp = mp1; 14432 return (B_FALSE); 14433 case M_IOCACK: 14434 ip1dbg(("got iocack ")); 14435 iocp = (struct iocblk *)mp->b_rptr; 14436 switch (iocp->ioc_cmd) { 14437 case DL_IOC_HDR_INFO: 14438 ill = (ill_t *)q->q_ptr; 14439 ill_fastpath_ack(ill, mp); 14440 return (B_TRUE); 14441 case SIOCSTUNPARAM: 14442 case OSIOCSTUNPARAM: 14443 /* Go through qwriter_ip */ 14444 break; 14445 case SIOCGTUNPARAM: 14446 case OSIOCGTUNPARAM: 14447 ip_rput_other(NULL, q, mp, NULL); 14448 return (B_TRUE); 14449 default: 14450 putnext(q, mp); 14451 return (B_TRUE); 14452 } 14453 /* FALLTHRU */ 14454 case M_ERROR: 14455 case M_HANGUP: 14456 /* 14457 * Since this is on the ill stream we unconditionally 14458 * bump up the refcount 14459 */ 14460 ill_refhold(ill); 14461 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14462 return (B_TRUE); 14463 case M_CTL: 14464 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14465 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14466 IPHADA_M_CTL)) { 14467 /* 14468 * It's an IPsec accelerated packet. 14469 * Make sure that the ill from which we received the 14470 * packet has enabled IPsec hardware acceleration. 14471 */ 14472 if (!(ill->ill_capabilities & 14473 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14474 /* IPsec kstats: bean counter */ 14475 freemsg(mp); 14476 return (B_TRUE); 14477 } 14478 14479 /* 14480 * Make mp point to the mblk following the M_CTL, 14481 * then process according to type of mp. 14482 * After this processing, first_mp will point to 14483 * the data-attributes and mp to the pkt following 14484 * the M_CTL. 14485 */ 14486 mp = first_mp->b_cont; 14487 if (mp == NULL) { 14488 freemsg(first_mp); 14489 return (B_TRUE); 14490 } 14491 /* 14492 * A Hardware Accelerated packet can only be M_DATA 14493 * ESP or AH packet. 14494 */ 14495 if (mp->b_datap->db_type != M_DATA) { 14496 /* non-M_DATA IPsec accelerated packet */ 14497 IPSECHW_DEBUG(IPSECHW_PKT, 14498 ("non-M_DATA IPsec accelerated pkt\n")); 14499 freemsg(first_mp); 14500 return (B_TRUE); 14501 } 14502 ipha = (ipha_t *)mp->b_rptr; 14503 if (ipha->ipha_protocol != IPPROTO_AH && 14504 ipha->ipha_protocol != IPPROTO_ESP) { 14505 IPSECHW_DEBUG(IPSECHW_PKT, 14506 ("non-M_DATA IPsec accelerated pkt\n")); 14507 freemsg(first_mp); 14508 return (B_TRUE); 14509 } 14510 *mpp = mp; 14511 return (B_FALSE); 14512 } 14513 putnext(q, mp); 14514 return (B_TRUE); 14515 case M_IOCNAK: 14516 ip1dbg(("got iocnak ")); 14517 iocp = (struct iocblk *)mp->b_rptr; 14518 switch (iocp->ioc_cmd) { 14519 case SIOCSTUNPARAM: 14520 case OSIOCSTUNPARAM: 14521 /* 14522 * Since this is on the ill stream we unconditionally 14523 * bump up the refcount 14524 */ 14525 ill_refhold(ill); 14526 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14527 return (B_TRUE); 14528 case DL_IOC_HDR_INFO: 14529 case SIOCGTUNPARAM: 14530 case OSIOCGTUNPARAM: 14531 ip_rput_other(NULL, q, mp, NULL); 14532 return (B_TRUE); 14533 default: 14534 break; 14535 } 14536 /* FALLTHRU */ 14537 default: 14538 putnext(q, mp); 14539 return (B_TRUE); 14540 } 14541 } 14542 14543 /* Read side put procedure. Packets coming from the wire arrive here. */ 14544 void 14545 ip_rput(queue_t *q, mblk_t *mp) 14546 { 14547 ill_t *ill = (ill_t *)q->q_ptr; 14548 ip_stack_t *ipst = ill->ill_ipst; 14549 union DL_primitives *dl; 14550 14551 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14552 14553 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14554 /* 14555 * If things are opening or closing, only accept high-priority 14556 * DLPI messages. (On open ill->ill_ipif has not yet been 14557 * created; on close, things hanging off the ill may have been 14558 * freed already.) 14559 */ 14560 dl = (union DL_primitives *)mp->b_rptr; 14561 if (DB_TYPE(mp) != M_PCPROTO || 14562 dl->dl_primitive == DL_UNITDATA_IND) { 14563 /* 14564 * SIOC[GS]TUNPARAM ioctls can come here. 14565 */ 14566 inet_freemsg(mp); 14567 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14568 "ip_rput_end: q %p (%S)", q, "uninit"); 14569 return; 14570 } 14571 } 14572 14573 /* 14574 * if db_ref > 1 then copymsg and free original. Packet may be 14575 * changed and we do not want the other entity who has a reference to 14576 * this message to trip over the changes. This is a blind change because 14577 * trying to catch all places that might change the packet is too 14578 * difficult. 14579 * 14580 * This corresponds to the fast path case, where we have a chain of 14581 * M_DATA mblks. We check the db_ref count of only the 1st data block 14582 * in the mblk chain. There doesn't seem to be a reason why a device 14583 * driver would send up data with varying db_ref counts in the mblk 14584 * chain. In any case the Fast path is a private interface, and our 14585 * drivers don't do such a thing. Given the above assumption, there is 14586 * no need to walk down the entire mblk chain (which could have a 14587 * potential performance problem) 14588 */ 14589 if (mp->b_datap->db_ref > 1) { 14590 mblk_t *mp1; 14591 boolean_t adjusted = B_FALSE; 14592 IP_STAT(ipst, ip_db_ref); 14593 14594 /* 14595 * The IP_RECVSLLA option depends on having the link layer 14596 * header. First check that: 14597 * a> the underlying device is of type ether, since this 14598 * option is currently supported only over ethernet. 14599 * b> there is enough room to copy over the link layer header. 14600 * 14601 * Once the checks are done, adjust rptr so that the link layer 14602 * header will be copied via copymsg. Note that, IFT_ETHER may 14603 * be returned by some non-ethernet drivers but in this case the 14604 * second check will fail. 14605 */ 14606 if (ill->ill_type == IFT_ETHER && 14607 (mp->b_rptr - mp->b_datap->db_base) >= 14608 sizeof (struct ether_header)) { 14609 mp->b_rptr -= sizeof (struct ether_header); 14610 adjusted = B_TRUE; 14611 } 14612 mp1 = copymsg(mp); 14613 if (mp1 == NULL) { 14614 mp->b_next = NULL; 14615 /* clear b_prev - used by ip_mroute_decap */ 14616 mp->b_prev = NULL; 14617 freemsg(mp); 14618 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14619 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14620 "ip_rput_end: q %p (%S)", q, "copymsg"); 14621 return; 14622 } 14623 if (adjusted) { 14624 /* 14625 * Copy is done. Restore the pointer in the _new_ mblk 14626 */ 14627 mp1->b_rptr += sizeof (struct ether_header); 14628 } 14629 /* Copy b_prev - used by ip_mroute_decap */ 14630 mp1->b_prev = mp->b_prev; 14631 mp->b_prev = NULL; 14632 freemsg(mp); 14633 mp = mp1; 14634 } 14635 14636 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14637 "ip_rput_end: q %p (%S)", q, "end"); 14638 14639 ip_input(ill, NULL, mp, NULL); 14640 } 14641 14642 /* 14643 * Direct read side procedure capable of dealing with chains. GLDv3 based 14644 * drivers call this function directly with mblk chains while STREAMS 14645 * read side procedure ip_rput() calls this for single packet with ip_ring 14646 * set to NULL to process one packet at a time. 14647 * 14648 * The ill will always be valid if this function is called directly from 14649 * the driver. 14650 * 14651 * If ip_input() is called from GLDv3: 14652 * 14653 * - This must be a non-VLAN IP stream. 14654 * - 'mp' is either an untagged or a special priority-tagged packet. 14655 * - Any VLAN tag that was in the MAC header has been stripped. 14656 * 14657 * If the IP header in packet is not 32-bit aligned, every message in the 14658 * chain will be aligned before further operations. This is required on SPARC 14659 * platform. 14660 */ 14661 /* ARGSUSED */ 14662 void 14663 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14664 struct mac_header_info_s *mhip) 14665 { 14666 ipaddr_t dst = NULL; 14667 ipaddr_t prev_dst; 14668 ire_t *ire = NULL; 14669 ipha_t *ipha; 14670 uint_t pkt_len; 14671 ssize_t len; 14672 uint_t opt_len; 14673 int ll_multicast; 14674 int cgtp_flt_pkt; 14675 queue_t *q = ill->ill_rq; 14676 squeue_t *curr_sqp = NULL; 14677 mblk_t *head = NULL; 14678 mblk_t *tail = NULL; 14679 mblk_t *first_mp; 14680 mblk_t *mp; 14681 mblk_t *dmp; 14682 int cnt = 0; 14683 ip_stack_t *ipst = ill->ill_ipst; 14684 14685 ASSERT(mp_chain != NULL); 14686 ASSERT(ill != NULL); 14687 14688 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14689 14690 #define rptr ((uchar_t *)ipha) 14691 14692 while (mp_chain != NULL) { 14693 first_mp = mp = mp_chain; 14694 mp_chain = mp_chain->b_next; 14695 mp->b_next = NULL; 14696 ll_multicast = 0; 14697 14698 /* 14699 * We do ire caching from one iteration to 14700 * another. In the event the packet chain contains 14701 * all packets from the same dst, this caching saves 14702 * an ire_cache_lookup for each of the succeeding 14703 * packets in a packet chain. 14704 */ 14705 prev_dst = dst; 14706 14707 /* 14708 * Check and align the IP header. 14709 */ 14710 if (DB_TYPE(mp) == M_DATA) { 14711 dmp = mp; 14712 } else if (DB_TYPE(mp) == M_PROTO && 14713 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14714 dmp = mp->b_cont; 14715 } else { 14716 dmp = NULL; 14717 } 14718 if (dmp != NULL) { 14719 /* 14720 * IP header ptr not aligned? 14721 * OR IP header not complete in first mblk 14722 */ 14723 if (!OK_32PTR(dmp->b_rptr) || 14724 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 14725 if (!ip_check_and_align_header(q, dmp, ipst)) 14726 continue; 14727 } 14728 } 14729 14730 /* 14731 * ip_input fast path 14732 */ 14733 14734 /* mblk type is not M_DATA */ 14735 if (DB_TYPE(mp) != M_DATA) { 14736 if (ip_rput_process_notdata(q, &first_mp, ill, 14737 &ll_multicast, &mp)) 14738 continue; 14739 } 14740 14741 /* Make sure its an M_DATA and that its aligned */ 14742 ASSERT(DB_TYPE(mp) == M_DATA); 14743 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 14744 14745 ipha = (ipha_t *)mp->b_rptr; 14746 len = mp->b_wptr - rptr; 14747 pkt_len = ntohs(ipha->ipha_length); 14748 14749 /* 14750 * We must count all incoming packets, even if they end 14751 * up being dropped later on. 14752 */ 14753 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14754 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14755 14756 /* multiple mblk or too short */ 14757 len -= pkt_len; 14758 if (len != 0) { 14759 /* 14760 * Make sure we have data length consistent 14761 * with the IP header. 14762 */ 14763 if (mp->b_cont == NULL) { 14764 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14765 BUMP_MIB(ill->ill_ip_mib, 14766 ipIfStatsInHdrErrors); 14767 ip2dbg(("ip_input: drop pkt\n")); 14768 freemsg(mp); 14769 continue; 14770 } 14771 mp->b_wptr = rptr + pkt_len; 14772 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14773 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14774 BUMP_MIB(ill->ill_ip_mib, 14775 ipIfStatsInHdrErrors); 14776 ip2dbg(("ip_input: drop pkt\n")); 14777 freemsg(mp); 14778 continue; 14779 } 14780 (void) adjmsg(mp, -len); 14781 IP_STAT(ipst, ip_multimblk3); 14782 } 14783 } 14784 14785 /* Obtain the dst of the current packet */ 14786 dst = ipha->ipha_dst; 14787 14788 if (IP_LOOPBACK_ADDR(dst) || 14789 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14790 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14791 cmn_err(CE_CONT, "dst %X src %X\n", 14792 dst, ipha->ipha_src); 14793 freemsg(mp); 14794 continue; 14795 } 14796 14797 /* 14798 * The event for packets being received from a 'physical' 14799 * interface is placed after validation of the source and/or 14800 * destination address as being local so that packets can be 14801 * redirected to loopback addresses using ipnat. 14802 */ 14803 DTRACE_PROBE4(ip4__physical__in__start, 14804 ill_t *, ill, ill_t *, NULL, 14805 ipha_t *, ipha, mblk_t *, first_mp); 14806 14807 FW_HOOKS(ipst->ips_ip4_physical_in_event, 14808 ipst->ips_ipv4firewall_physical_in, 14809 ill, NULL, ipha, first_mp, mp, ipst); 14810 14811 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14812 14813 if (first_mp == NULL) { 14814 continue; 14815 } 14816 dst = ipha->ipha_dst; 14817 14818 /* 14819 * Attach any necessary label information to 14820 * this packet 14821 */ 14822 if (is_system_labeled() && 14823 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14824 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14825 freemsg(mp); 14826 continue; 14827 } 14828 14829 /* 14830 * Reuse the cached ire only if the ipha_dst of the previous 14831 * packet is the same as the current packet AND it is not 14832 * INADDR_ANY. 14833 */ 14834 if (!(dst == prev_dst && dst != INADDR_ANY) && 14835 (ire != NULL)) { 14836 ire_refrele(ire); 14837 ire = NULL; 14838 } 14839 opt_len = ipha->ipha_version_and_hdr_length - 14840 IP_SIMPLE_HDR_VERSION; 14841 14842 /* 14843 * Check to see if we can take the fastpath. 14844 * That is possible if the following conditions are met 14845 * o Tsol disabled 14846 * o CGTP disabled 14847 * o ipp_action_count is 0 14848 * o no options in the packet 14849 * o not a RSVP packet 14850 * o not a multicast packet 14851 */ 14852 if (!is_system_labeled() && 14853 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 14854 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14855 !ll_multicast && !CLASSD(dst)) { 14856 if (ire == NULL) 14857 ire = ire_cache_lookup(dst, ALL_ZONES, NULL, 14858 ipst); 14859 14860 /* incoming packet is for forwarding */ 14861 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14862 ire = ip_fast_forward(ire, dst, ill, mp); 14863 continue; 14864 } 14865 /* incoming packet is for local consumption */ 14866 if (ire->ire_type & IRE_LOCAL) 14867 goto local; 14868 } 14869 14870 /* 14871 * Disable ire caching for anything more complex 14872 * than the simple fast path case we checked for above. 14873 */ 14874 if (ire != NULL) { 14875 ire_refrele(ire); 14876 ire = NULL; 14877 } 14878 14879 /* Full-blown slow path */ 14880 if (opt_len != 0) { 14881 if (len != 0) 14882 IP_STAT(ipst, ip_multimblk4); 14883 else 14884 IP_STAT(ipst, ip_ipoptions); 14885 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 14886 &dst, ipst)) 14887 continue; 14888 } 14889 14890 /* 14891 * Invoke the CGTP (multirouting) filtering module to process 14892 * the incoming packet. Packets identified as duplicates 14893 * must be discarded. Filtering is active only if the 14894 * the ip_cgtp_filter ndd variable is non-zero. 14895 */ 14896 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14897 if (ipst->ips_ip_cgtp_filter && 14898 ipst->ips_ip_cgtp_filter_ops != NULL) { 14899 netstackid_t stackid; 14900 14901 stackid = ipst->ips_netstack->netstack_stackid; 14902 cgtp_flt_pkt = 14903 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 14904 ill->ill_phyint->phyint_ifindex, mp); 14905 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14906 freemsg(first_mp); 14907 continue; 14908 } 14909 } 14910 14911 /* 14912 * If rsvpd is running, let RSVP daemon handle its processing 14913 * and forwarding of RSVP multicast/unicast packets. 14914 * If rsvpd is not running but mrouted is running, RSVP 14915 * multicast packets are forwarded as multicast traffic 14916 * and RSVP unicast packets are forwarded by unicast router. 14917 * If neither rsvpd nor mrouted is running, RSVP multicast 14918 * packets are not forwarded, but the unicast packets are 14919 * forwarded like unicast traffic. 14920 */ 14921 if (ipha->ipha_protocol == IPPROTO_RSVP && 14922 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 14923 NULL) { 14924 /* RSVP packet and rsvpd running. Treat as ours */ 14925 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14926 /* 14927 * This assumes that we deliver to all streams for 14928 * multicast and broadcast packets. 14929 * We have to force ll_multicast to 1 to handle the 14930 * M_DATA messages passed in from ip_mroute_decap. 14931 */ 14932 dst = INADDR_BROADCAST; 14933 ll_multicast = 1; 14934 } else if (CLASSD(dst)) { 14935 /* packet is multicast */ 14936 mp->b_next = NULL; 14937 if (ip_rput_process_multicast(q, mp, ill, ipha, 14938 &ll_multicast, &dst)) 14939 continue; 14940 } 14941 14942 if (ire == NULL) { 14943 ire = ire_cache_lookup(dst, ALL_ZONES, 14944 MBLK_GETLABEL(mp), ipst); 14945 } 14946 14947 if (ire == NULL) { 14948 /* 14949 * No IRE for this destination, so it can't be for us. 14950 * Unless we are forwarding, drop the packet. 14951 * We have to let source routed packets through 14952 * since we don't yet know if they are 'ping -l' 14953 * packets i.e. if they will go out over the 14954 * same interface as they came in on. 14955 */ 14956 ire = ip_rput_noire(q, mp, ll_multicast, dst); 14957 if (ire == NULL) 14958 continue; 14959 } 14960 14961 /* 14962 * Broadcast IRE may indicate either broadcast or 14963 * multicast packet 14964 */ 14965 if (ire->ire_type == IRE_BROADCAST) { 14966 /* 14967 * Skip broadcast checks if packet is UDP multicast; 14968 * we'd rather not enter ip_rput_process_broadcast() 14969 * unless the packet is broadcast for real, since 14970 * that routine is a no-op for multicast. 14971 */ 14972 if (ipha->ipha_protocol != IPPROTO_UDP || 14973 !CLASSD(ipha->ipha_dst)) { 14974 ire = ip_rput_process_broadcast(&q, mp, 14975 ire, ipha, ill, dst, cgtp_flt_pkt, 14976 ll_multicast); 14977 if (ire == NULL) 14978 continue; 14979 } 14980 } else if (ire->ire_stq != NULL) { 14981 /* fowarding? */ 14982 ip_rput_process_forward(q, mp, ire, ipha, ill, 14983 ll_multicast); 14984 /* ip_rput_process_forward consumed the packet */ 14985 continue; 14986 } 14987 14988 local: 14989 /* 14990 * If the queue in the ire is different to the ingress queue 14991 * then we need to check to see if we can accept the packet. 14992 * Note that for multicast packets and broadcast packets sent 14993 * to a broadcast address which is shared between multiple 14994 * interfaces we should not do this since we just got a random 14995 * broadcast ire. 14996 */ 14997 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 14998 if ((ire = ip_check_multihome(&ipha->ipha_dst, ire, 14999 ill)) == NULL) { 15000 /* Drop packet */ 15001 BUMP_MIB(ill->ill_ip_mib, 15002 ipIfStatsForwProhibits); 15003 freemsg(mp); 15004 continue; 15005 } 15006 if (ire->ire_rfq != NULL) 15007 q = ire->ire_rfq; 15008 } 15009 15010 switch (ipha->ipha_protocol) { 15011 case IPPROTO_TCP: 15012 ASSERT(first_mp == mp); 15013 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15014 mp, 0, q, ip_ring)) != NULL) { 15015 if (curr_sqp == NULL) { 15016 curr_sqp = GET_SQUEUE(mp); 15017 ASSERT(cnt == 0); 15018 cnt++; 15019 head = tail = mp; 15020 } else if (curr_sqp == GET_SQUEUE(mp)) { 15021 ASSERT(tail != NULL); 15022 cnt++; 15023 tail->b_next = mp; 15024 tail = mp; 15025 } else { 15026 /* 15027 * A different squeue. Send the 15028 * chain for the previous squeue on 15029 * its way. This shouldn't happen 15030 * often unless interrupt binding 15031 * changes. 15032 */ 15033 IP_STAT(ipst, ip_input_multi_squeue); 15034 squeue_enter_chain(curr_sqp, head, 15035 tail, cnt, SQTAG_IP_INPUT); 15036 curr_sqp = GET_SQUEUE(mp); 15037 head = mp; 15038 tail = mp; 15039 cnt = 1; 15040 } 15041 } 15042 continue; 15043 case IPPROTO_UDP: 15044 ASSERT(first_mp == mp); 15045 ip_udp_input(q, mp, ipha, ire, ill); 15046 continue; 15047 case IPPROTO_SCTP: 15048 ASSERT(first_mp == mp); 15049 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15050 q, dst); 15051 /* ire has been released by ip_sctp_input */ 15052 ire = NULL; 15053 continue; 15054 default: 15055 ip_proto_input(q, first_mp, ipha, ire, ill); 15056 continue; 15057 } 15058 } 15059 15060 if (ire != NULL) 15061 ire_refrele(ire); 15062 15063 if (head != NULL) 15064 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15065 15066 /* 15067 * This code is there just to make netperf/ttcp look good. 15068 * 15069 * Its possible that after being in polling mode (and having cleared 15070 * the backlog), squeues have turned the interrupt frequency higher 15071 * to improve latency at the expense of more CPU utilization (less 15072 * packets per interrupts or more number of interrupts). Workloads 15073 * like ttcp/netperf do manage to tickle polling once in a while 15074 * but for the remaining time, stay in higher interrupt mode since 15075 * their packet arrival rate is pretty uniform and this shows up 15076 * as higher CPU utilization. Since people care about CPU utilization 15077 * while running netperf/ttcp, turn the interrupt frequency back to 15078 * normal/default if polling has not been used in ip_poll_normal_ticks. 15079 */ 15080 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15081 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15082 ip_ring->rr_poll_state &= ~ILL_POLLING; 15083 ip_ring->rr_blank(ip_ring->rr_handle, 15084 ip_ring->rr_normal_blank_time, 15085 ip_ring->rr_normal_pkt_cnt); 15086 } 15087 } 15088 15089 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15090 "ip_input_end: q %p (%S)", q, "end"); 15091 #undef rptr 15092 } 15093 15094 static void 15095 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15096 t_uscalar_t err) 15097 { 15098 if (dl_err == DL_SYSERR) { 15099 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15100 "%s: %s failed: DL_SYSERR (errno %u)\n", 15101 ill->ill_name, dlpi_prim_str(prim), err); 15102 return; 15103 } 15104 15105 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15106 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15107 dlpi_err_str(dl_err)); 15108 } 15109 15110 /* 15111 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15112 * than DL_UNITDATA_IND messages. If we need to process this message 15113 * exclusively, we call qwriter_ip, in which case we also need to call 15114 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15115 */ 15116 void 15117 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15118 { 15119 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15120 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15121 ill_t *ill = (ill_t *)q->q_ptr; 15122 boolean_t pending; 15123 15124 ip1dbg(("ip_rput_dlpi")); 15125 if (dloa->dl_primitive == DL_ERROR_ACK) { 15126 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15127 "%s (0x%x), unix %u\n", ill->ill_name, 15128 dlpi_prim_str(dlea->dl_error_primitive), 15129 dlea->dl_error_primitive, 15130 dlpi_err_str(dlea->dl_errno), 15131 dlea->dl_errno, 15132 dlea->dl_unix_errno)); 15133 } 15134 15135 /* 15136 * If we received an ACK but didn't send a request for it, then it 15137 * can't be part of any pending operation; discard up-front. 15138 */ 15139 switch (dloa->dl_primitive) { 15140 case DL_NOTIFY_IND: 15141 pending = B_TRUE; 15142 break; 15143 case DL_ERROR_ACK: 15144 pending = ill_dlpi_pending(ill, dlea->dl_error_primitive); 15145 break; 15146 case DL_OK_ACK: 15147 pending = ill_dlpi_pending(ill, dloa->dl_correct_primitive); 15148 break; 15149 case DL_INFO_ACK: 15150 pending = ill_dlpi_pending(ill, DL_INFO_REQ); 15151 break; 15152 case DL_BIND_ACK: 15153 pending = ill_dlpi_pending(ill, DL_BIND_REQ); 15154 break; 15155 case DL_PHYS_ADDR_ACK: 15156 pending = ill_dlpi_pending(ill, DL_PHYS_ADDR_REQ); 15157 break; 15158 case DL_NOTIFY_ACK: 15159 pending = ill_dlpi_pending(ill, DL_NOTIFY_REQ); 15160 break; 15161 case DL_CONTROL_ACK: 15162 pending = ill_dlpi_pending(ill, DL_CONTROL_REQ); 15163 break; 15164 case DL_CAPABILITY_ACK: 15165 pending = ill_dlpi_pending(ill, DL_CAPABILITY_REQ); 15166 break; 15167 default: 15168 /* Not a DLPI message we support or were expecting */ 15169 freemsg(mp); 15170 return; 15171 } 15172 15173 if (!pending) { 15174 freemsg(mp); 15175 return; 15176 } 15177 15178 switch (dloa->dl_primitive) { 15179 case DL_ERROR_ACK: 15180 if (dlea->dl_error_primitive == DL_UNBIND_REQ) { 15181 mutex_enter(&ill->ill_lock); 15182 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15183 cv_signal(&ill->ill_cv); 15184 mutex_exit(&ill->ill_lock); 15185 } 15186 break; 15187 15188 case DL_OK_ACK: 15189 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15190 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15191 switch (dloa->dl_correct_primitive) { 15192 case DL_UNBIND_REQ: 15193 mutex_enter(&ill->ill_lock); 15194 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15195 cv_signal(&ill->ill_cv); 15196 mutex_exit(&ill->ill_lock); 15197 break; 15198 15199 case DL_ENABMULTI_REQ: 15200 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15201 ill->ill_dlpi_multicast_state = IDS_OK; 15202 break; 15203 } 15204 break; 15205 default: 15206 break; 15207 } 15208 15209 /* 15210 * We know the message is one we're waiting for (or DL_NOTIFY_IND), 15211 * and we need to become writer to continue to process it. If it's not 15212 * a DL_NOTIFY_IND, we assume we're in the middle of an exclusive 15213 * operation and pass CUR_OP. If this isn't true, we'll end up doing 15214 * some work as part of the current exclusive operation that actually 15215 * is not part of it -- which is wrong, but better than the 15216 * alternative of deadlock (if NEW_OP is always used). Someday, we 15217 * should track which DLPI requests have ACKs that we wait on 15218 * synchronously so we can know whether to use CUR_OP or NEW_OP. 15219 * 15220 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15221 * Since this is on the ill stream we unconditionally bump up the 15222 * refcount without doing ILL_CAN_LOOKUP(). 15223 */ 15224 ill_refhold(ill); 15225 if (dloa->dl_primitive == DL_NOTIFY_IND) 15226 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15227 else 15228 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15229 } 15230 15231 /* 15232 * Handling of DLPI messages that require exclusive access to the ipsq. 15233 * 15234 * Need to do ill_pending_mp_release on ioctl completion, which could 15235 * happen here. (along with mi_copy_done) 15236 */ 15237 /* ARGSUSED */ 15238 static void 15239 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15240 { 15241 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15242 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15243 int err = 0; 15244 ill_t *ill; 15245 ipif_t *ipif = NULL; 15246 mblk_t *mp1 = NULL; 15247 conn_t *connp = NULL; 15248 t_uscalar_t paddrreq; 15249 mblk_t *mp_hw; 15250 boolean_t success; 15251 boolean_t ioctl_aborted = B_FALSE; 15252 boolean_t log = B_TRUE; 15253 hook_nic_event_t *info; 15254 ip_stack_t *ipst; 15255 15256 ip1dbg(("ip_rput_dlpi_writer ..")); 15257 ill = (ill_t *)q->q_ptr; 15258 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15259 15260 ASSERT(IAM_WRITER_ILL(ill)); 15261 15262 ipst = ill->ill_ipst; 15263 15264 /* 15265 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15266 * both are null or non-null. However we can assert that only 15267 * after grabbing the ipsq_lock. So we don't make any assertion 15268 * here and in other places in the code. 15269 */ 15270 ipif = ipsq->ipsq_pending_ipif; 15271 /* 15272 * The current ioctl could have been aborted by the user and a new 15273 * ioctl to bring up another ill could have started. We could still 15274 * get a response from the driver later. 15275 */ 15276 if (ipif != NULL && ipif->ipif_ill != ill) 15277 ioctl_aborted = B_TRUE; 15278 15279 switch (dloa->dl_primitive) { 15280 case DL_ERROR_ACK: 15281 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15282 dlpi_prim_str(dlea->dl_error_primitive))); 15283 15284 switch (dlea->dl_error_primitive) { 15285 case DL_PROMISCON_REQ: 15286 case DL_PROMISCOFF_REQ: 15287 case DL_DISABMULTI_REQ: 15288 case DL_UNBIND_REQ: 15289 case DL_ATTACH_REQ: 15290 case DL_INFO_REQ: 15291 ill_dlpi_done(ill, dlea->dl_error_primitive); 15292 break; 15293 case DL_NOTIFY_REQ: 15294 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15295 log = B_FALSE; 15296 break; 15297 case DL_PHYS_ADDR_REQ: 15298 /* 15299 * For IPv6 only, there are two additional 15300 * phys_addr_req's sent to the driver to get the 15301 * IPv6 token and lla. This allows IP to acquire 15302 * the hardware address format for a given interface 15303 * without having built in knowledge of the hardware 15304 * address. ill_phys_addr_pend keeps track of the last 15305 * DL_PAR sent so we know which response we are 15306 * dealing with. ill_dlpi_done will update 15307 * ill_phys_addr_pend when it sends the next req. 15308 * We don't complete the IOCTL until all three DL_PARs 15309 * have been attempted, so set *_len to 0 and break. 15310 */ 15311 paddrreq = ill->ill_phys_addr_pend; 15312 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15313 if (paddrreq == DL_IPV6_TOKEN) { 15314 ill->ill_token_length = 0; 15315 log = B_FALSE; 15316 break; 15317 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15318 ill->ill_nd_lla_len = 0; 15319 log = B_FALSE; 15320 break; 15321 } 15322 /* 15323 * Something went wrong with the DL_PHYS_ADDR_REQ. 15324 * We presumably have an IOCTL hanging out waiting 15325 * for completion. Find it and complete the IOCTL 15326 * with the error noted. 15327 * However, ill_dl_phys was called on an ill queue 15328 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15329 * set. But the ioctl is known to be pending on ill_wq. 15330 */ 15331 if (!ill->ill_ifname_pending) 15332 break; 15333 ill->ill_ifname_pending = 0; 15334 if (!ioctl_aborted) 15335 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15336 if (mp1 != NULL) { 15337 /* 15338 * This operation (SIOCSLIFNAME) must have 15339 * happened on the ill. Assert there is no conn 15340 */ 15341 ASSERT(connp == NULL); 15342 q = ill->ill_wq; 15343 } 15344 break; 15345 case DL_BIND_REQ: 15346 ill_dlpi_done(ill, DL_BIND_REQ); 15347 if (ill->ill_ifname_pending) 15348 break; 15349 /* 15350 * Something went wrong with the bind. We presumably 15351 * have an IOCTL hanging out waiting for completion. 15352 * Find it, take down the interface that was coming 15353 * up, and complete the IOCTL with the error noted. 15354 */ 15355 if (!ioctl_aborted) 15356 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15357 if (mp1 != NULL) { 15358 /* 15359 * This operation (SIOCSLIFFLAGS) must have 15360 * happened from a conn. 15361 */ 15362 ASSERT(connp != NULL); 15363 q = CONNP_TO_WQ(connp); 15364 if (ill->ill_move_in_progress) { 15365 ILL_CLEAR_MOVE(ill); 15366 } 15367 (void) ipif_down(ipif, NULL, NULL); 15368 /* error is set below the switch */ 15369 } 15370 break; 15371 case DL_ENABMULTI_REQ: 15372 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15373 15374 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15375 ill->ill_dlpi_multicast_state = IDS_FAILED; 15376 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15377 ipif_t *ipif; 15378 15379 printf("ip: joining multicasts failed (%d)" 15380 " on %s - will use link layer " 15381 "broadcasts for multicast\n", 15382 dlea->dl_errno, ill->ill_name); 15383 15384 /* 15385 * Set up the multicast mapping alone. 15386 * writer, so ok to access ill->ill_ipif 15387 * without any lock. 15388 */ 15389 ipif = ill->ill_ipif; 15390 mutex_enter(&ill->ill_phyint->phyint_lock); 15391 ill->ill_phyint->phyint_flags |= 15392 PHYI_MULTI_BCAST; 15393 mutex_exit(&ill->ill_phyint->phyint_lock); 15394 15395 if (!ill->ill_isv6) { 15396 (void) ipif_arp_setup_multicast(ipif, 15397 NULL); 15398 } else { 15399 (void) ipif_ndp_setup_multicast(ipif, 15400 NULL); 15401 } 15402 } 15403 freemsg(mp); /* Don't want to pass this up */ 15404 return; 15405 15406 case DL_CAPABILITY_REQ: 15407 case DL_CONTROL_REQ: 15408 ill_dlpi_done(ill, dlea->dl_error_primitive); 15409 ill->ill_dlpi_capab_state = IDS_FAILED; 15410 freemsg(mp); 15411 return; 15412 } 15413 /* 15414 * Note the error for IOCTL completion (mp1 is set when 15415 * ready to complete ioctl). If ill_ifname_pending_err is 15416 * set, an error occured during plumbing (ill_ifname_pending), 15417 * so we want to report that error. 15418 * 15419 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15420 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15421 * expected to get errack'd if the driver doesn't support 15422 * these flags (e.g. ethernet). log will be set to B_FALSE 15423 * if these error conditions are encountered. 15424 */ 15425 if (mp1 != NULL) { 15426 if (ill->ill_ifname_pending_err != 0) { 15427 err = ill->ill_ifname_pending_err; 15428 ill->ill_ifname_pending_err = 0; 15429 } else { 15430 err = dlea->dl_unix_errno ? 15431 dlea->dl_unix_errno : ENXIO; 15432 } 15433 /* 15434 * If we're plumbing an interface and an error hasn't already 15435 * been saved, set ill_ifname_pending_err to the error passed 15436 * up. Ignore the error if log is B_FALSE (see comment above). 15437 */ 15438 } else if (log && ill->ill_ifname_pending && 15439 ill->ill_ifname_pending_err == 0) { 15440 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15441 dlea->dl_unix_errno : ENXIO; 15442 } 15443 15444 if (log) 15445 ip_dlpi_error(ill, dlea->dl_error_primitive, 15446 dlea->dl_errno, dlea->dl_unix_errno); 15447 break; 15448 case DL_CAPABILITY_ACK: { 15449 boolean_t reneg_flag = B_FALSE; 15450 /* Call a routine to handle this one. */ 15451 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15452 /* 15453 * Check if the ACK is due to renegotiation case since we 15454 * will need to send a new CAPABILITY_REQ later. 15455 */ 15456 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15457 /* This is the ack for a renogiation case */ 15458 reneg_flag = B_TRUE; 15459 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15460 } 15461 ill_capability_ack(ill, mp); 15462 if (reneg_flag) 15463 ill_capability_probe(ill); 15464 break; 15465 } 15466 case DL_CONTROL_ACK: 15467 /* We treat all of these as "fire and forget" */ 15468 ill_dlpi_done(ill, DL_CONTROL_REQ); 15469 break; 15470 case DL_INFO_ACK: 15471 /* Call a routine to handle this one. */ 15472 ill_dlpi_done(ill, DL_INFO_REQ); 15473 ip_ll_subnet_defaults(ill, mp); 15474 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15475 return; 15476 case DL_BIND_ACK: 15477 /* 15478 * We should have an IOCTL waiting on this unless 15479 * sent by ill_dl_phys, in which case just return 15480 */ 15481 ill_dlpi_done(ill, DL_BIND_REQ); 15482 if (ill->ill_ifname_pending) 15483 break; 15484 15485 if (!ioctl_aborted) 15486 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15487 if (mp1 == NULL) 15488 break; 15489 /* 15490 * Because mp1 was added by ill_dl_up(), and it always 15491 * passes a valid connp, connp must be valid here. 15492 */ 15493 ASSERT(connp != NULL); 15494 q = CONNP_TO_WQ(connp); 15495 15496 /* 15497 * We are exclusive. So nothing can change even after 15498 * we get the pending mp. If need be we can put it back 15499 * and restart, as in calling ipif_arp_up() below. 15500 */ 15501 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15502 15503 mutex_enter(&ill->ill_lock); 15504 15505 ill->ill_dl_up = 1; 15506 15507 if ((info = ill->ill_nic_event_info) != NULL) { 15508 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15509 "attached for %s\n", info->hne_event, 15510 ill->ill_name)); 15511 if (info->hne_data != NULL) 15512 kmem_free(info->hne_data, info->hne_datalen); 15513 kmem_free(info, sizeof (hook_nic_event_t)); 15514 } 15515 15516 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15517 if (info != NULL) { 15518 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 15519 info->hne_lif = 0; 15520 info->hne_event = NE_UP; 15521 info->hne_data = NULL; 15522 info->hne_datalen = 0; 15523 info->hne_family = ill->ill_isv6 ? 15524 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 15525 } else 15526 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15527 "event information for %s (ENOMEM)\n", 15528 ill->ill_name)); 15529 15530 ill->ill_nic_event_info = info; 15531 15532 mutex_exit(&ill->ill_lock); 15533 15534 /* 15535 * Now bring up the resolver; when that is complete, we'll 15536 * create IREs. Note that we intentionally mirror what 15537 * ipif_up() would have done, because we got here by way of 15538 * ill_dl_up(), which stopped ipif_up()'s processing. 15539 */ 15540 if (ill->ill_isv6) { 15541 /* 15542 * v6 interfaces. 15543 * Unlike ARP which has to do another bind 15544 * and attach, once we get here we are 15545 * done with NDP. Except in the case of 15546 * ILLF_XRESOLV, in which case we send an 15547 * AR_INTERFACE_UP to the external resolver. 15548 * If all goes well, the ioctl will complete 15549 * in ip_rput(). If there's an error, we 15550 * complete it here. 15551 */ 15552 if ((err = ipif_ndp_up(ipif)) == 0) { 15553 if (ill->ill_flags & ILLF_XRESOLV) { 15554 mutex_enter(&connp->conn_lock); 15555 mutex_enter(&ill->ill_lock); 15556 success = ipsq_pending_mp_add( 15557 connp, ipif, q, mp1, 0); 15558 mutex_exit(&ill->ill_lock); 15559 mutex_exit(&connp->conn_lock); 15560 if (success) { 15561 err = ipif_resolver_up(ipif, 15562 Res_act_initial); 15563 if (err == EINPROGRESS) { 15564 freemsg(mp); 15565 return; 15566 } 15567 ASSERT(err != 0); 15568 mp1 = ipsq_pending_mp_get(ipsq, 15569 &connp); 15570 ASSERT(mp1 != NULL); 15571 } else { 15572 /* conn has started closing */ 15573 err = EINTR; 15574 } 15575 } else { /* Non XRESOLV interface */ 15576 (void) ipif_resolver_up(ipif, 15577 Res_act_initial); 15578 err = ipif_up_done_v6(ipif); 15579 } 15580 } 15581 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15582 /* 15583 * ARP and other v4 external resolvers. 15584 * Leave the pending mblk intact so that 15585 * the ioctl completes in ip_rput(). 15586 */ 15587 mutex_enter(&connp->conn_lock); 15588 mutex_enter(&ill->ill_lock); 15589 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15590 mutex_exit(&ill->ill_lock); 15591 mutex_exit(&connp->conn_lock); 15592 if (success) { 15593 err = ipif_resolver_up(ipif, Res_act_initial); 15594 if (err == EINPROGRESS) { 15595 freemsg(mp); 15596 return; 15597 } 15598 ASSERT(err != 0); 15599 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15600 } else { 15601 /* The conn has started closing */ 15602 err = EINTR; 15603 } 15604 } else { 15605 /* 15606 * This one is complete. Reply to pending ioctl. 15607 */ 15608 (void) ipif_resolver_up(ipif, Res_act_initial); 15609 err = ipif_up_done(ipif); 15610 } 15611 15612 if ((err == 0) && (ill->ill_up_ipifs)) { 15613 err = ill_up_ipifs(ill, q, mp1); 15614 if (err == EINPROGRESS) { 15615 freemsg(mp); 15616 return; 15617 } 15618 } 15619 15620 if (ill->ill_up_ipifs) { 15621 ill_group_cleanup(ill); 15622 } 15623 15624 break; 15625 case DL_NOTIFY_IND: { 15626 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15627 ire_t *ire; 15628 boolean_t need_ire_walk_v4 = B_FALSE; 15629 boolean_t need_ire_walk_v6 = B_FALSE; 15630 15631 switch (notify->dl_notification) { 15632 case DL_NOTE_PHYS_ADDR: 15633 err = ill_set_phys_addr(ill, mp); 15634 break; 15635 15636 case DL_NOTE_FASTPATH_FLUSH: 15637 ill_fastpath_flush(ill); 15638 break; 15639 15640 case DL_NOTE_SDU_SIZE: 15641 /* 15642 * Change the MTU size of the interface, of all 15643 * attached ipif's, and of all relevant ire's. The 15644 * new value's a uint32_t at notify->dl_data. 15645 * Mtu change Vs. new ire creation - protocol below. 15646 * 15647 * a Mark the ipif as IPIF_CHANGING. 15648 * b Set the new mtu in the ipif. 15649 * c Change the ire_max_frag on all affected ires 15650 * d Unmark the IPIF_CHANGING 15651 * 15652 * To see how the protocol works, assume an interface 15653 * route is also being added simultaneously by 15654 * ip_rt_add and let 'ipif' be the ipif referenced by 15655 * the ire. If the ire is created before step a, 15656 * it will be cleaned up by step c. If the ire is 15657 * created after step d, it will see the new value of 15658 * ipif_mtu. Any attempt to create the ire between 15659 * steps a to d will fail because of the IPIF_CHANGING 15660 * flag. Note that ire_create() is passed a pointer to 15661 * the ipif_mtu, and not the value. During ire_add 15662 * under the bucket lock, the ire_max_frag of the 15663 * new ire being created is set from the ipif/ire from 15664 * which it is being derived. 15665 */ 15666 mutex_enter(&ill->ill_lock); 15667 ill->ill_max_frag = (uint_t)notify->dl_data; 15668 15669 /* 15670 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15671 * leave it alone 15672 */ 15673 if (ill->ill_mtu_userspecified) { 15674 mutex_exit(&ill->ill_lock); 15675 break; 15676 } 15677 ill->ill_max_mtu = ill->ill_max_frag; 15678 if (ill->ill_isv6) { 15679 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15680 ill->ill_max_mtu = IPV6_MIN_MTU; 15681 } else { 15682 if (ill->ill_max_mtu < IP_MIN_MTU) 15683 ill->ill_max_mtu = IP_MIN_MTU; 15684 } 15685 for (ipif = ill->ill_ipif; ipif != NULL; 15686 ipif = ipif->ipif_next) { 15687 /* 15688 * Don't override the mtu if the user 15689 * has explicitly set it. 15690 */ 15691 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15692 continue; 15693 ipif->ipif_mtu = (uint_t)notify->dl_data; 15694 if (ipif->ipif_isv6) 15695 ire = ipif_to_ire_v6(ipif); 15696 else 15697 ire = ipif_to_ire(ipif); 15698 if (ire != NULL) { 15699 ire->ire_max_frag = ipif->ipif_mtu; 15700 ire_refrele(ire); 15701 } 15702 if (ipif->ipif_flags & IPIF_UP) { 15703 if (ill->ill_isv6) 15704 need_ire_walk_v6 = B_TRUE; 15705 else 15706 need_ire_walk_v4 = B_TRUE; 15707 } 15708 } 15709 mutex_exit(&ill->ill_lock); 15710 if (need_ire_walk_v4) 15711 ire_walk_v4(ill_mtu_change, (char *)ill, 15712 ALL_ZONES, ipst); 15713 if (need_ire_walk_v6) 15714 ire_walk_v6(ill_mtu_change, (char *)ill, 15715 ALL_ZONES, ipst); 15716 break; 15717 case DL_NOTE_LINK_UP: 15718 case DL_NOTE_LINK_DOWN: { 15719 /* 15720 * We are writer. ill / phyint / ipsq assocs stable. 15721 * The RUNNING flag reflects the state of the link. 15722 */ 15723 phyint_t *phyint = ill->ill_phyint; 15724 uint64_t new_phyint_flags; 15725 boolean_t changed = B_FALSE; 15726 boolean_t went_up; 15727 15728 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15729 mutex_enter(&phyint->phyint_lock); 15730 new_phyint_flags = went_up ? 15731 phyint->phyint_flags | PHYI_RUNNING : 15732 phyint->phyint_flags & ~PHYI_RUNNING; 15733 if (new_phyint_flags != phyint->phyint_flags) { 15734 phyint->phyint_flags = new_phyint_flags; 15735 changed = B_TRUE; 15736 } 15737 mutex_exit(&phyint->phyint_lock); 15738 /* 15739 * ill_restart_dad handles the DAD restart and routing 15740 * socket notification logic. 15741 */ 15742 if (changed) { 15743 ill_restart_dad(phyint->phyint_illv4, went_up); 15744 ill_restart_dad(phyint->phyint_illv6, went_up); 15745 } 15746 break; 15747 } 15748 case DL_NOTE_PROMISC_ON_PHYS: 15749 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15750 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15751 mutex_enter(&ill->ill_lock); 15752 ill->ill_promisc_on_phys = B_TRUE; 15753 mutex_exit(&ill->ill_lock); 15754 break; 15755 case DL_NOTE_PROMISC_OFF_PHYS: 15756 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15757 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15758 mutex_enter(&ill->ill_lock); 15759 ill->ill_promisc_on_phys = B_FALSE; 15760 mutex_exit(&ill->ill_lock); 15761 break; 15762 case DL_NOTE_CAPAB_RENEG: 15763 /* 15764 * Something changed on the driver side. 15765 * It wants us to renegotiate the capabilities 15766 * on this ill. The most likely cause is the 15767 * aggregation interface under us where a 15768 * port got added or went away. 15769 * 15770 * We reset the capabilities and set the 15771 * state to IDS_RENG so that when the ack 15772 * comes back, we can start the 15773 * renegotiation process. 15774 */ 15775 ill_capability_reset(ill); 15776 ill->ill_dlpi_capab_state = IDS_RENEG; 15777 break; 15778 default: 15779 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15780 "type 0x%x for DL_NOTIFY_IND\n", 15781 notify->dl_notification)); 15782 break; 15783 } 15784 15785 /* 15786 * As this is an asynchronous operation, we 15787 * should not call ill_dlpi_done 15788 */ 15789 break; 15790 } 15791 case DL_NOTIFY_ACK: { 15792 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15793 15794 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15795 ill->ill_note_link = 1; 15796 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15797 break; 15798 } 15799 case DL_PHYS_ADDR_ACK: { 15800 /* 15801 * As part of plumbing the interface via SIOCSLIFNAME, 15802 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 15803 * whose answers we receive here. As each answer is received, 15804 * we call ill_dlpi_done() to dispatch the next request as 15805 * we're processing the current one. Once all answers have 15806 * been received, we use ipsq_pending_mp_get() to dequeue the 15807 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 15808 * is invoked from an ill queue, conn_oper_pending_ill is not 15809 * available, but we know the ioctl is pending on ill_wq.) 15810 */ 15811 uint_t paddrlen, paddroff; 15812 15813 paddrreq = ill->ill_phys_addr_pend; 15814 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 15815 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 15816 15817 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15818 if (paddrreq == DL_IPV6_TOKEN) { 15819 /* 15820 * bcopy to low-order bits of ill_token 15821 * 15822 * XXX Temporary hack - currently, all known tokens 15823 * are 64 bits, so I'll cheat for the moment. 15824 */ 15825 bcopy(mp->b_rptr + paddroff, 15826 &ill->ill_token.s6_addr32[2], paddrlen); 15827 ill->ill_token_length = paddrlen; 15828 break; 15829 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15830 ASSERT(ill->ill_nd_lla_mp == NULL); 15831 ill_set_ndmp(ill, mp, paddroff, paddrlen); 15832 mp = NULL; 15833 break; 15834 } 15835 15836 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 15837 ASSERT(ill->ill_phys_addr_mp == NULL); 15838 if (!ill->ill_ifname_pending) 15839 break; 15840 ill->ill_ifname_pending = 0; 15841 if (!ioctl_aborted) 15842 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15843 if (mp1 != NULL) { 15844 ASSERT(connp == NULL); 15845 q = ill->ill_wq; 15846 } 15847 /* 15848 * If any error acks received during the plumbing sequence, 15849 * ill_ifname_pending_err will be set. Break out and send up 15850 * the error to the pending ioctl. 15851 */ 15852 if (ill->ill_ifname_pending_err != 0) { 15853 err = ill->ill_ifname_pending_err; 15854 ill->ill_ifname_pending_err = 0; 15855 break; 15856 } 15857 15858 ill->ill_phys_addr_mp = mp; 15859 ill->ill_phys_addr = mp->b_rptr + paddroff; 15860 mp = NULL; 15861 15862 /* 15863 * If paddrlen is zero, the DLPI provider doesn't support 15864 * physical addresses. The other two tests were historical 15865 * workarounds for bugs in our former PPP implementation, but 15866 * now other things have grown dependencies on them -- e.g., 15867 * the tun module specifies a dl_addr_length of zero in its 15868 * DL_BIND_ACK, but then specifies an incorrect value in its 15869 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 15870 * but only after careful testing ensures that all dependent 15871 * broken DLPI providers have been fixed. 15872 */ 15873 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 15874 ill->ill_phys_addr_length == IP_ADDR_LEN) { 15875 ill->ill_phys_addr = NULL; 15876 } else if (paddrlen != ill->ill_phys_addr_length) { 15877 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 15878 paddrlen, ill->ill_phys_addr_length)); 15879 err = EINVAL; 15880 break; 15881 } 15882 15883 if (ill->ill_nd_lla_mp == NULL) { 15884 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 15885 err = ENOMEM; 15886 break; 15887 } 15888 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 15889 } 15890 15891 /* 15892 * Set the interface token. If the zeroth interface address 15893 * is unspecified, then set it to the link local address. 15894 */ 15895 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 15896 (void) ill_setdefaulttoken(ill); 15897 15898 ASSERT(ill->ill_ipif->ipif_id == 0); 15899 if (ipif != NULL && 15900 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 15901 (void) ipif_setlinklocal(ipif); 15902 } 15903 break; 15904 } 15905 case DL_OK_ACK: 15906 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 15907 dlpi_prim_str((int)dloa->dl_correct_primitive), 15908 dloa->dl_correct_primitive)); 15909 switch (dloa->dl_correct_primitive) { 15910 case DL_PROMISCON_REQ: 15911 case DL_PROMISCOFF_REQ: 15912 case DL_ENABMULTI_REQ: 15913 case DL_DISABMULTI_REQ: 15914 case DL_UNBIND_REQ: 15915 case DL_ATTACH_REQ: 15916 ill_dlpi_done(ill, dloa->dl_correct_primitive); 15917 break; 15918 } 15919 break; 15920 default: 15921 break; 15922 } 15923 15924 freemsg(mp); 15925 if (mp1 != NULL) { 15926 /* 15927 * The operation must complete without EINPROGRESS 15928 * since ipsq_pending_mp_get() has removed the mblk 15929 * from ipsq_pending_mp. Otherwise, the operation 15930 * will be stuck forever in the ipsq. 15931 */ 15932 ASSERT(err != EINPROGRESS); 15933 15934 switch (ipsq->ipsq_current_ioctl) { 15935 case 0: 15936 ipsq_current_finish(ipsq); 15937 break; 15938 15939 case SIOCLIFADDIF: 15940 case SIOCSLIFNAME: 15941 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 15942 break; 15943 15944 default: 15945 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 15946 break; 15947 } 15948 } 15949 } 15950 15951 /* 15952 * ip_rput_other is called by ip_rput to handle messages modifying the global 15953 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 15954 */ 15955 /* ARGSUSED */ 15956 void 15957 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15958 { 15959 ill_t *ill; 15960 struct iocblk *iocp; 15961 mblk_t *mp1; 15962 conn_t *connp = NULL; 15963 15964 ip1dbg(("ip_rput_other ")); 15965 ill = (ill_t *)q->q_ptr; 15966 /* 15967 * This routine is not a writer in the case of SIOCGTUNPARAM 15968 * in which case ipsq is NULL. 15969 */ 15970 if (ipsq != NULL) { 15971 ASSERT(IAM_WRITER_IPSQ(ipsq)); 15972 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15973 } 15974 15975 switch (mp->b_datap->db_type) { 15976 case M_ERROR: 15977 case M_HANGUP: 15978 /* 15979 * The device has a problem. We force the ILL down. It can 15980 * be brought up again manually using SIOCSIFFLAGS (via 15981 * ifconfig or equivalent). 15982 */ 15983 ASSERT(ipsq != NULL); 15984 if (mp->b_rptr < mp->b_wptr) 15985 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 15986 if (ill->ill_error == 0) 15987 ill->ill_error = ENXIO; 15988 if (!ill_down_start(q, mp)) 15989 return; 15990 ipif_all_down_tail(ipsq, q, mp, NULL); 15991 break; 15992 case M_IOCACK: 15993 iocp = (struct iocblk *)mp->b_rptr; 15994 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 15995 switch (iocp->ioc_cmd) { 15996 case SIOCSTUNPARAM: 15997 case OSIOCSTUNPARAM: 15998 ASSERT(ipsq != NULL); 15999 /* 16000 * Finish socket ioctl passed through to tun. 16001 * We should have an IOCTL waiting on this. 16002 */ 16003 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16004 if (ill->ill_isv6) { 16005 struct iftun_req *ta; 16006 16007 /* 16008 * if a source or destination is 16009 * being set, try and set the link 16010 * local address for the tunnel 16011 */ 16012 ta = (struct iftun_req *)mp->b_cont-> 16013 b_cont->b_rptr; 16014 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16015 ipif_set_tun_llink(ill, ta); 16016 } 16017 16018 } 16019 if (mp1 != NULL) { 16020 /* 16021 * Now copy back the b_next/b_prev used by 16022 * mi code for the mi_copy* functions. 16023 * See ip_sioctl_tunparam() for the reason. 16024 * Also protect against missing b_cont. 16025 */ 16026 if (mp->b_cont != NULL) { 16027 mp->b_cont->b_next = 16028 mp1->b_cont->b_next; 16029 mp->b_cont->b_prev = 16030 mp1->b_cont->b_prev; 16031 } 16032 inet_freemsg(mp1); 16033 ASSERT(connp != NULL); 16034 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16035 iocp->ioc_error, NO_COPYOUT, ipsq); 16036 } else { 16037 ASSERT(connp == NULL); 16038 putnext(q, mp); 16039 } 16040 break; 16041 case SIOCGTUNPARAM: 16042 case OSIOCGTUNPARAM: 16043 /* 16044 * This is really M_IOCDATA from the tunnel driver. 16045 * convert back and complete the ioctl. 16046 * We should have an IOCTL waiting on this. 16047 */ 16048 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16049 if (mp1) { 16050 /* 16051 * Now copy back the b_next/b_prev used by 16052 * mi code for the mi_copy* functions. 16053 * See ip_sioctl_tunparam() for the reason. 16054 * Also protect against missing b_cont. 16055 */ 16056 if (mp->b_cont != NULL) { 16057 mp->b_cont->b_next = 16058 mp1->b_cont->b_next; 16059 mp->b_cont->b_prev = 16060 mp1->b_cont->b_prev; 16061 } 16062 inet_freemsg(mp1); 16063 if (iocp->ioc_error == 0) 16064 mp->b_datap->db_type = M_IOCDATA; 16065 ASSERT(connp != NULL); 16066 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16067 iocp->ioc_error, COPYOUT, NULL); 16068 } else { 16069 ASSERT(connp == NULL); 16070 putnext(q, mp); 16071 } 16072 break; 16073 default: 16074 break; 16075 } 16076 break; 16077 case M_IOCNAK: 16078 iocp = (struct iocblk *)mp->b_rptr; 16079 16080 switch (iocp->ioc_cmd) { 16081 int mode; 16082 16083 case DL_IOC_HDR_INFO: 16084 /* 16085 * If this was the first attempt turn of the 16086 * fastpath probing. 16087 */ 16088 mutex_enter(&ill->ill_lock); 16089 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16090 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16091 mutex_exit(&ill->ill_lock); 16092 ill_fastpath_nack(ill); 16093 ip1dbg(("ip_rput: DLPI fastpath off on " 16094 "interface %s\n", 16095 ill->ill_name)); 16096 } else { 16097 mutex_exit(&ill->ill_lock); 16098 } 16099 freemsg(mp); 16100 break; 16101 case SIOCSTUNPARAM: 16102 case OSIOCSTUNPARAM: 16103 ASSERT(ipsq != NULL); 16104 /* 16105 * Finish socket ioctl passed through to tun 16106 * We should have an IOCTL waiting on this. 16107 */ 16108 /* FALLTHRU */ 16109 case SIOCGTUNPARAM: 16110 case OSIOCGTUNPARAM: 16111 /* 16112 * This is really M_IOCDATA from the tunnel driver. 16113 * convert back and complete the ioctl. 16114 * We should have an IOCTL waiting on this. 16115 */ 16116 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16117 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16118 mp1 = ill_pending_mp_get(ill, &connp, 16119 iocp->ioc_id); 16120 mode = COPYOUT; 16121 ipsq = NULL; 16122 } else { 16123 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16124 mode = NO_COPYOUT; 16125 } 16126 if (mp1 != NULL) { 16127 /* 16128 * Now copy back the b_next/b_prev used by 16129 * mi code for the mi_copy* functions. 16130 * See ip_sioctl_tunparam() for the reason. 16131 * Also protect against missing b_cont. 16132 */ 16133 if (mp->b_cont != NULL) { 16134 mp->b_cont->b_next = 16135 mp1->b_cont->b_next; 16136 mp->b_cont->b_prev = 16137 mp1->b_cont->b_prev; 16138 } 16139 inet_freemsg(mp1); 16140 if (iocp->ioc_error == 0) 16141 iocp->ioc_error = EINVAL; 16142 ASSERT(connp != NULL); 16143 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16144 iocp->ioc_error, mode, ipsq); 16145 } else { 16146 ASSERT(connp == NULL); 16147 putnext(q, mp); 16148 } 16149 break; 16150 default: 16151 break; 16152 } 16153 default: 16154 break; 16155 } 16156 } 16157 16158 /* 16159 * NOTE : This function does not ire_refrele the ire argument passed in. 16160 * 16161 * IPQoS notes 16162 * IP policy is invoked twice for a forwarded packet, once on the read side 16163 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16164 * enabled. An additional parameter, in_ill, has been added for this purpose. 16165 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16166 * because ip_mroute drops this information. 16167 * 16168 */ 16169 void 16170 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16171 { 16172 uint32_t old_pkt_len; 16173 uint32_t pkt_len; 16174 queue_t *q; 16175 uint32_t sum; 16176 #define rptr ((uchar_t *)ipha) 16177 uint32_t max_frag; 16178 uint32_t ill_index; 16179 ill_t *out_ill; 16180 mib2_ipIfStatsEntry_t *mibptr; 16181 ip_stack_t *ipst = in_ill->ill_ipst; 16182 16183 /* Get the ill_index of the incoming ILL */ 16184 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16185 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16186 16187 /* Initiate Read side IPPF processing */ 16188 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16189 ip_process(IPP_FWD_IN, &mp, ill_index); 16190 if (mp == NULL) { 16191 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16192 "during IPPF processing\n")); 16193 return; 16194 } 16195 } 16196 16197 /* Adjust the checksum to reflect the ttl decrement. */ 16198 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16199 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16200 16201 if (ipha->ipha_ttl-- <= 1) { 16202 if (ip_csum_hdr(ipha)) { 16203 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16204 goto drop_pkt; 16205 } 16206 /* 16207 * Note: ire_stq this will be NULL for multicast 16208 * datagrams using the long path through arp (the IRE 16209 * is not an IRE_CACHE). This should not cause 16210 * problems since we don't generate ICMP errors for 16211 * multicast packets. 16212 */ 16213 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16214 q = ire->ire_stq; 16215 if (q != NULL) { 16216 /* Sent by forwarding path, and router is global zone */ 16217 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16218 GLOBAL_ZONEID, ipst); 16219 } else 16220 freemsg(mp); 16221 return; 16222 } 16223 16224 /* 16225 * Don't forward if the interface is down 16226 */ 16227 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16228 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16229 ip2dbg(("ip_rput_forward:interface is down\n")); 16230 goto drop_pkt; 16231 } 16232 16233 /* Get the ill_index of the outgoing ILL */ 16234 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16235 16236 out_ill = ire->ire_ipif->ipif_ill; 16237 16238 DTRACE_PROBE4(ip4__forwarding__start, 16239 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16240 16241 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16242 ipst->ips_ipv4firewall_forwarding, 16243 in_ill, out_ill, ipha, mp, mp, ipst); 16244 16245 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16246 16247 if (mp == NULL) 16248 return; 16249 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16250 16251 if (is_system_labeled()) { 16252 mblk_t *mp1; 16253 16254 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16255 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16256 goto drop_pkt; 16257 } 16258 /* Size may have changed */ 16259 mp = mp1; 16260 ipha = (ipha_t *)mp->b_rptr; 16261 pkt_len = ntohs(ipha->ipha_length); 16262 } 16263 16264 /* Check if there are options to update */ 16265 if (!IS_SIMPLE_IPH(ipha)) { 16266 if (ip_csum_hdr(ipha)) { 16267 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16268 goto drop_pkt; 16269 } 16270 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16271 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16272 return; 16273 } 16274 16275 ipha->ipha_hdr_checksum = 0; 16276 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16277 } 16278 max_frag = ire->ire_max_frag; 16279 if (pkt_len > max_frag) { 16280 /* 16281 * It needs fragging on its way out. We haven't 16282 * verified the header checksum yet. Since we 16283 * are going to put a surely good checksum in the 16284 * outgoing header, we have to make sure that it 16285 * was good coming in. 16286 */ 16287 if (ip_csum_hdr(ipha)) { 16288 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16289 goto drop_pkt; 16290 } 16291 /* Initiate Write side IPPF processing */ 16292 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16293 ip_process(IPP_FWD_OUT, &mp, ill_index); 16294 if (mp == NULL) { 16295 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16296 " during IPPF processing\n")); 16297 return; 16298 } 16299 } 16300 /* 16301 * Handle labeled packet resizing. 16302 * 16303 * If we have added a label, inform ip_wput_frag() of its 16304 * effect on the MTU for ICMP messages. 16305 */ 16306 if (pkt_len > old_pkt_len) { 16307 uint32_t secopt_size; 16308 16309 secopt_size = pkt_len - old_pkt_len; 16310 if (secopt_size < max_frag) 16311 max_frag -= secopt_size; 16312 } 16313 16314 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst); 16315 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16316 return; 16317 } 16318 16319 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16320 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16321 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16322 ipst->ips_ipv4firewall_physical_out, 16323 NULL, out_ill, ipha, mp, mp, ipst); 16324 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16325 if (mp == NULL) 16326 return; 16327 16328 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16329 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16330 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16331 /* ip_xmit_v4 always consumes the packet */ 16332 return; 16333 16334 drop_pkt:; 16335 ip1dbg(("ip_rput_forward: drop pkt\n")); 16336 freemsg(mp); 16337 #undef rptr 16338 } 16339 16340 void 16341 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16342 { 16343 ire_t *ire; 16344 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16345 16346 ASSERT(!ipif->ipif_isv6); 16347 /* 16348 * Find an IRE which matches the destination and the outgoing 16349 * queue in the cache table. All we need is an IRE_CACHE which 16350 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16351 * then it is enough to have some IRE_CACHE in the group. 16352 */ 16353 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16354 dst = ipif->ipif_pp_dst_addr; 16355 16356 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16357 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst); 16358 if (ire == NULL) { 16359 /* 16360 * Mark this packet to make it be delivered to 16361 * ip_rput_forward after the new ire has been 16362 * created. 16363 */ 16364 mp->b_prev = NULL; 16365 mp->b_next = mp; 16366 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16367 NULL, 0, GLOBAL_ZONEID, &zero_info); 16368 } else { 16369 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16370 IRE_REFRELE(ire); 16371 } 16372 } 16373 16374 /* Update any source route, record route or timestamp options */ 16375 static int 16376 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 16377 { 16378 ipoptp_t opts; 16379 uchar_t *opt; 16380 uint8_t optval; 16381 uint8_t optlen; 16382 ipaddr_t dst; 16383 uint32_t ts; 16384 ire_t *dst_ire = NULL; 16385 ire_t *tmp_ire = NULL; 16386 timestruc_t now; 16387 16388 ip2dbg(("ip_rput_forward_options\n")); 16389 dst = ipha->ipha_dst; 16390 for (optval = ipoptp_first(&opts, ipha); 16391 optval != IPOPT_EOL; 16392 optval = ipoptp_next(&opts)) { 16393 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16394 opt = opts.ipoptp_cur; 16395 optlen = opts.ipoptp_len; 16396 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16397 optval, opts.ipoptp_len)); 16398 switch (optval) { 16399 uint32_t off; 16400 case IPOPT_SSRR: 16401 case IPOPT_LSRR: 16402 /* Check if adminstratively disabled */ 16403 if (!ipst->ips_ip_forward_src_routed) { 16404 if (ire->ire_stq != NULL) { 16405 /* 16406 * Sent by forwarding path, and router 16407 * is global zone 16408 */ 16409 icmp_unreachable(ire->ire_stq, mp, 16410 ICMP_SOURCE_ROUTE_FAILED, 16411 GLOBAL_ZONEID, ipst); 16412 } else { 16413 ip0dbg(("ip_rput_forward_options: " 16414 "unable to send unreach\n")); 16415 freemsg(mp); 16416 } 16417 return (-1); 16418 } 16419 16420 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16421 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16422 if (dst_ire == NULL) { 16423 /* 16424 * Must be partial since ip_rput_options 16425 * checked for strict. 16426 */ 16427 break; 16428 } 16429 off = opt[IPOPT_OFFSET]; 16430 off--; 16431 redo_srr: 16432 if (optlen < IP_ADDR_LEN || 16433 off > optlen - IP_ADDR_LEN) { 16434 /* End of source route */ 16435 ip1dbg(( 16436 "ip_rput_forward_options: end of SR\n")); 16437 ire_refrele(dst_ire); 16438 break; 16439 } 16440 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16441 bcopy(&ire->ire_src_addr, (char *)opt + off, 16442 IP_ADDR_LEN); 16443 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16444 ntohl(dst))); 16445 16446 /* 16447 * Check if our address is present more than 16448 * once as consecutive hops in source route. 16449 */ 16450 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16451 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 16452 if (tmp_ire != NULL) { 16453 ire_refrele(tmp_ire); 16454 off += IP_ADDR_LEN; 16455 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16456 goto redo_srr; 16457 } 16458 ipha->ipha_dst = dst; 16459 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16460 ire_refrele(dst_ire); 16461 break; 16462 case IPOPT_RR: 16463 off = opt[IPOPT_OFFSET]; 16464 off--; 16465 if (optlen < IP_ADDR_LEN || 16466 off > optlen - IP_ADDR_LEN) { 16467 /* No more room - ignore */ 16468 ip1dbg(( 16469 "ip_rput_forward_options: end of RR\n")); 16470 break; 16471 } 16472 bcopy(&ire->ire_src_addr, (char *)opt + off, 16473 IP_ADDR_LEN); 16474 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16475 break; 16476 case IPOPT_TS: 16477 /* Insert timestamp if there is room */ 16478 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16479 case IPOPT_TS_TSONLY: 16480 off = IPOPT_TS_TIMELEN; 16481 break; 16482 case IPOPT_TS_PRESPEC: 16483 case IPOPT_TS_PRESPEC_RFC791: 16484 /* Verify that the address matched */ 16485 off = opt[IPOPT_OFFSET] - 1; 16486 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16487 dst_ire = ire_ctable_lookup(dst, 0, 16488 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16489 MATCH_IRE_TYPE, ipst); 16490 if (dst_ire == NULL) { 16491 /* Not for us */ 16492 break; 16493 } 16494 ire_refrele(dst_ire); 16495 /* FALLTHRU */ 16496 case IPOPT_TS_TSANDADDR: 16497 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16498 break; 16499 default: 16500 /* 16501 * ip_*put_options should have already 16502 * dropped this packet. 16503 */ 16504 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16505 "unknown IT - bug in ip_rput_options?\n"); 16506 return (0); /* Keep "lint" happy */ 16507 } 16508 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16509 /* Increase overflow counter */ 16510 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16511 opt[IPOPT_POS_OV_FLG] = 16512 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16513 (off << 4)); 16514 break; 16515 } 16516 off = opt[IPOPT_OFFSET] - 1; 16517 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16518 case IPOPT_TS_PRESPEC: 16519 case IPOPT_TS_PRESPEC_RFC791: 16520 case IPOPT_TS_TSANDADDR: 16521 bcopy(&ire->ire_src_addr, 16522 (char *)opt + off, IP_ADDR_LEN); 16523 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16524 /* FALLTHRU */ 16525 case IPOPT_TS_TSONLY: 16526 off = opt[IPOPT_OFFSET] - 1; 16527 /* Compute # of milliseconds since midnight */ 16528 gethrestime(&now); 16529 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16530 now.tv_nsec / (NANOSEC / MILLISEC); 16531 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16532 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16533 break; 16534 } 16535 break; 16536 } 16537 } 16538 return (0); 16539 } 16540 16541 /* 16542 * This is called after processing at least one of AH/ESP headers. 16543 * 16544 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16545 * the actual, physical interface on which the packet was received, 16546 * but, when ip_strict_dst_multihoming is set to 1, could be the 16547 * interface which had the ipha_dst configured when the packet went 16548 * through ip_rput. The ill_index corresponding to the recv_ill 16549 * is saved in ipsec_in_rill_index 16550 * 16551 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 16552 * cannot assume "ire" points to valid data for any IPv6 cases. 16553 */ 16554 void 16555 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16556 { 16557 mblk_t *mp; 16558 ipaddr_t dst; 16559 in6_addr_t *v6dstp; 16560 ipha_t *ipha; 16561 ip6_t *ip6h; 16562 ipsec_in_t *ii; 16563 boolean_t ill_need_rele = B_FALSE; 16564 boolean_t rill_need_rele = B_FALSE; 16565 boolean_t ire_need_rele = B_FALSE; 16566 netstack_t *ns; 16567 ip_stack_t *ipst; 16568 16569 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16570 ASSERT(ii->ipsec_in_ill_index != 0); 16571 ns = ii->ipsec_in_ns; 16572 ASSERT(ii->ipsec_in_ns != NULL); 16573 ipst = ns->netstack_ip; 16574 16575 mp = ipsec_mp->b_cont; 16576 ASSERT(mp != NULL); 16577 16578 16579 if (ill == NULL) { 16580 ASSERT(recv_ill == NULL); 16581 /* 16582 * We need to get the original queue on which ip_rput_local 16583 * or ip_rput_data_v6 was called. 16584 */ 16585 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16586 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 16587 ill_need_rele = B_TRUE; 16588 16589 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16590 recv_ill = ill_lookup_on_ifindex( 16591 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16592 NULL, NULL, NULL, NULL, ipst); 16593 rill_need_rele = B_TRUE; 16594 } else { 16595 recv_ill = ill; 16596 } 16597 16598 if ((ill == NULL) || (recv_ill == NULL)) { 16599 ip0dbg(("ip_fanout_proto_again: interface " 16600 "disappeared\n")); 16601 if (ill != NULL) 16602 ill_refrele(ill); 16603 if (recv_ill != NULL) 16604 ill_refrele(recv_ill); 16605 freemsg(ipsec_mp); 16606 return; 16607 } 16608 } 16609 16610 ASSERT(ill != NULL && recv_ill != NULL); 16611 16612 if (mp->b_datap->db_type == M_CTL) { 16613 /* 16614 * AH/ESP is returning the ICMP message after 16615 * removing their headers. Fanout again till 16616 * it gets to the right protocol. 16617 */ 16618 if (ii->ipsec_in_v4) { 16619 icmph_t *icmph; 16620 int iph_hdr_length; 16621 int hdr_length; 16622 16623 ipha = (ipha_t *)mp->b_rptr; 16624 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16625 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16626 ipha = (ipha_t *)&icmph[1]; 16627 hdr_length = IPH_HDR_LENGTH(ipha); 16628 /* 16629 * icmp_inbound_error_fanout may need to do pullupmsg. 16630 * Reset the type to M_DATA. 16631 */ 16632 mp->b_datap->db_type = M_DATA; 16633 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16634 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16635 B_FALSE, ill, ii->ipsec_in_zoneid); 16636 } else { 16637 icmp6_t *icmp6; 16638 int hdr_length; 16639 16640 ip6h = (ip6_t *)mp->b_rptr; 16641 /* Don't call hdr_length_v6() unless you have to. */ 16642 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16643 hdr_length = ip_hdr_length_v6(mp, ip6h); 16644 else 16645 hdr_length = IPV6_HDR_LEN; 16646 16647 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16648 /* 16649 * icmp_inbound_error_fanout_v6 may need to do 16650 * pullupmsg. Reset the type to M_DATA. 16651 */ 16652 mp->b_datap->db_type = M_DATA; 16653 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16654 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16655 } 16656 if (ill_need_rele) 16657 ill_refrele(ill); 16658 if (rill_need_rele) 16659 ill_refrele(recv_ill); 16660 return; 16661 } 16662 16663 if (ii->ipsec_in_v4) { 16664 ipha = (ipha_t *)mp->b_rptr; 16665 dst = ipha->ipha_dst; 16666 if (CLASSD(dst)) { 16667 /* 16668 * Multicast has to be delivered to all streams. 16669 */ 16670 dst = INADDR_BROADCAST; 16671 } 16672 16673 if (ire == NULL) { 16674 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16675 MBLK_GETLABEL(mp), ipst); 16676 if (ire == NULL) { 16677 if (ill_need_rele) 16678 ill_refrele(ill); 16679 if (rill_need_rele) 16680 ill_refrele(recv_ill); 16681 ip1dbg(("ip_fanout_proto_again: " 16682 "IRE not found")); 16683 freemsg(ipsec_mp); 16684 return; 16685 } 16686 ire_need_rele = B_TRUE; 16687 } 16688 16689 switch (ipha->ipha_protocol) { 16690 case IPPROTO_UDP: 16691 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16692 recv_ill); 16693 if (ire_need_rele) 16694 ire_refrele(ire); 16695 break; 16696 case IPPROTO_TCP: 16697 if (!ire_need_rele) 16698 IRE_REFHOLD(ire); 16699 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16700 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16701 IRE_REFRELE(ire); 16702 if (mp != NULL) 16703 squeue_enter_chain(GET_SQUEUE(mp), mp, 16704 mp, 1, SQTAG_IP_PROTO_AGAIN); 16705 break; 16706 case IPPROTO_SCTP: 16707 if (!ire_need_rele) 16708 IRE_REFHOLD(ire); 16709 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16710 ipsec_mp, 0, ill->ill_rq, dst); 16711 break; 16712 default: 16713 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16714 recv_ill); 16715 if (ire_need_rele) 16716 ire_refrele(ire); 16717 break; 16718 } 16719 } else { 16720 uint32_t rput_flags = 0; 16721 16722 ip6h = (ip6_t *)mp->b_rptr; 16723 v6dstp = &ip6h->ip6_dst; 16724 /* 16725 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16726 * address. 16727 * 16728 * Currently, we don't store that state in the IPSEC_IN 16729 * message, and we may need to. 16730 */ 16731 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16732 IP6_IN_LLMCAST : 0); 16733 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16734 NULL, NULL); 16735 } 16736 if (ill_need_rele) 16737 ill_refrele(ill); 16738 if (rill_need_rele) 16739 ill_refrele(recv_ill); 16740 } 16741 16742 /* 16743 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16744 * returns 'true' if there are still fragments left on the queue, in 16745 * which case we restart the timer. 16746 */ 16747 void 16748 ill_frag_timer(void *arg) 16749 { 16750 ill_t *ill = (ill_t *)arg; 16751 boolean_t frag_pending; 16752 ip_stack_t *ipst = ill->ill_ipst; 16753 16754 mutex_enter(&ill->ill_lock); 16755 ASSERT(!ill->ill_fragtimer_executing); 16756 if (ill->ill_state_flags & ILL_CONDEMNED) { 16757 ill->ill_frag_timer_id = 0; 16758 mutex_exit(&ill->ill_lock); 16759 return; 16760 } 16761 ill->ill_fragtimer_executing = 1; 16762 mutex_exit(&ill->ill_lock); 16763 16764 frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout); 16765 16766 /* 16767 * Restart the timer, if we have fragments pending or if someone 16768 * wanted us to be scheduled again. 16769 */ 16770 mutex_enter(&ill->ill_lock); 16771 ill->ill_fragtimer_executing = 0; 16772 ill->ill_frag_timer_id = 0; 16773 if (frag_pending || ill->ill_fragtimer_needrestart) 16774 ill_frag_timer_start(ill); 16775 mutex_exit(&ill->ill_lock); 16776 } 16777 16778 void 16779 ill_frag_timer_start(ill_t *ill) 16780 { 16781 ip_stack_t *ipst = ill->ill_ipst; 16782 16783 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16784 16785 /* If the ill is closing or opening don't proceed */ 16786 if (ill->ill_state_flags & ILL_CONDEMNED) 16787 return; 16788 16789 if (ill->ill_fragtimer_executing) { 16790 /* 16791 * ill_frag_timer is currently executing. Just record the 16792 * the fact that we want the timer to be restarted. 16793 * ill_frag_timer will post a timeout before it returns, 16794 * ensuring it will be called again. 16795 */ 16796 ill->ill_fragtimer_needrestart = 1; 16797 return; 16798 } 16799 16800 if (ill->ill_frag_timer_id == 0) { 16801 /* 16802 * The timer is neither running nor is the timeout handler 16803 * executing. Post a timeout so that ill_frag_timer will be 16804 * called 16805 */ 16806 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16807 MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1)); 16808 ill->ill_fragtimer_needrestart = 0; 16809 } 16810 } 16811 16812 /* 16813 * This routine is needed for loopback when forwarding multicasts. 16814 * 16815 * IPQoS Notes: 16816 * IPPF processing is done in fanout routines. 16817 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16818 * processing for IPSec packets is done when it comes back in clear. 16819 * NOTE : The callers of this function need to do the ire_refrele for the 16820 * ire that is being passed in. 16821 */ 16822 void 16823 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16824 ill_t *recv_ill) 16825 { 16826 ill_t *ill = (ill_t *)q->q_ptr; 16827 uint32_t sum; 16828 uint32_t u1; 16829 uint32_t u2; 16830 int hdr_length; 16831 boolean_t mctl_present; 16832 mblk_t *first_mp = mp; 16833 mblk_t *hada_mp = NULL; 16834 ipha_t *inner_ipha; 16835 ip_stack_t *ipst; 16836 16837 ASSERT(recv_ill != NULL); 16838 ipst = recv_ill->ill_ipst; 16839 16840 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16841 "ip_rput_locl_start: q %p", q); 16842 16843 ASSERT(ire->ire_ipversion == IPV4_VERSION); 16844 ASSERT(ill != NULL); 16845 16846 16847 #define rptr ((uchar_t *)ipha) 16848 #define iphs ((uint16_t *)ipha) 16849 16850 /* 16851 * no UDP or TCP packet should come here anymore. 16852 */ 16853 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 16854 (ipha->ipha_protocol != IPPROTO_UDP)); 16855 16856 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 16857 if (mctl_present && 16858 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 16859 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 16860 16861 /* 16862 * It's an IPsec accelerated packet. 16863 * Keep a pointer to the data attributes around until 16864 * we allocate the ipsec_info_t. 16865 */ 16866 IPSECHW_DEBUG(IPSECHW_PKT, 16867 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 16868 hada_mp = first_mp; 16869 hada_mp->b_cont = NULL; 16870 /* 16871 * Since it is accelerated, it comes directly from 16872 * the ill and the data attributes is followed by 16873 * the packet data. 16874 */ 16875 ASSERT(mp->b_datap->db_type != M_CTL); 16876 first_mp = mp; 16877 mctl_present = B_FALSE; 16878 } 16879 16880 /* 16881 * IF M_CTL is not present, then ipsec_in_is_secure 16882 * should return B_TRUE. There is a case where loopback 16883 * packets has an M_CTL in the front with all the 16884 * IPSEC options set to IPSEC_PREF_NEVER - which means 16885 * ipsec_in_is_secure will return B_FALSE. As loopback 16886 * packets never comes here, it is safe to ASSERT the 16887 * following. 16888 */ 16889 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 16890 16891 16892 /* u1 is # words of IP options */ 16893 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 16894 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 16895 16896 if (u1) { 16897 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 16898 if (hada_mp != NULL) 16899 freemsg(hada_mp); 16900 return; 16901 } 16902 } else { 16903 /* Check the IP header checksum. */ 16904 #define uph ((uint16_t *)ipha) 16905 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 16906 uph[6] + uph[7] + uph[8] + uph[9]; 16907 #undef uph 16908 /* finish doing IP checksum */ 16909 sum = (sum & 0xFFFF) + (sum >> 16); 16910 sum = ~(sum + (sum >> 16)) & 0xFFFF; 16911 /* 16912 * Don't verify header checksum if this packet is coming 16913 * back from AH/ESP as we already did it. 16914 */ 16915 if (!mctl_present && (sum && sum != 0xFFFF)) { 16916 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 16917 goto drop_pkt; 16918 } 16919 } 16920 16921 /* 16922 * Count for SNMP of inbound packets for ire. As ip_proto_input 16923 * might be called more than once for secure packets, count only 16924 * the first time. 16925 */ 16926 if (!mctl_present) { 16927 UPDATE_IB_PKT_COUNT(ire); 16928 ire->ire_last_used_time = lbolt; 16929 } 16930 16931 /* Check for fragmentation offset. */ 16932 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 16933 u1 = u2 & (IPH_MF | IPH_OFFSET); 16934 if (u1) { 16935 /* 16936 * We re-assemble fragments before we do the AH/ESP 16937 * processing. Thus, M_CTL should not be present 16938 * while we are re-assembling. 16939 */ 16940 ASSERT(!mctl_present); 16941 ASSERT(first_mp == mp); 16942 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 16943 return; 16944 } 16945 /* 16946 * Make sure that first_mp points back to mp as 16947 * the mp we came in with could have changed in 16948 * ip_rput_fragment(). 16949 */ 16950 ipha = (ipha_t *)mp->b_rptr; 16951 first_mp = mp; 16952 } 16953 16954 /* 16955 * Clear hardware checksumming flag as it is currently only 16956 * used by TCP and UDP. 16957 */ 16958 DB_CKSUMFLAGS(mp) = 0; 16959 16960 /* Now we have a complete datagram, destined for this machine. */ 16961 u1 = IPH_HDR_LENGTH(ipha); 16962 switch (ipha->ipha_protocol) { 16963 case IPPROTO_ICMP: { 16964 ire_t *ire_zone; 16965 ilm_t *ilm; 16966 mblk_t *mp1; 16967 zoneid_t last_zoneid; 16968 16969 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 16970 ASSERT(ire->ire_type == IRE_BROADCAST); 16971 /* 16972 * In the multicast case, applications may have joined 16973 * the group from different zones, so we need to deliver 16974 * the packet to each of them. Loop through the 16975 * multicast memberships structures (ilm) on the receive 16976 * ill and send a copy of the packet up each matching 16977 * one. However, we don't do this for multicasts sent on 16978 * the loopback interface (PHYI_LOOPBACK flag set) as 16979 * they must stay in the sender's zone. 16980 * 16981 * ilm_add_v6() ensures that ilms in the same zone are 16982 * contiguous in the ill_ilm list. We use this property 16983 * to avoid sending duplicates needed when two 16984 * applications in the same zone join the same group on 16985 * different logical interfaces: we ignore the ilm if 16986 * its zoneid is the same as the last matching one. 16987 * In addition, the sending of the packet for 16988 * ire_zoneid is delayed until all of the other ilms 16989 * have been exhausted. 16990 */ 16991 last_zoneid = -1; 16992 ILM_WALKER_HOLD(recv_ill); 16993 for (ilm = recv_ill->ill_ilm; ilm != NULL; 16994 ilm = ilm->ilm_next) { 16995 if ((ilm->ilm_flags & ILM_DELETED) || 16996 ipha->ipha_dst != ilm->ilm_addr || 16997 ilm->ilm_zoneid == last_zoneid || 16998 ilm->ilm_zoneid == ire->ire_zoneid || 16999 ilm->ilm_zoneid == ALL_ZONES || 17000 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17001 continue; 17002 mp1 = ip_copymsg(first_mp); 17003 if (mp1 == NULL) 17004 continue; 17005 icmp_inbound(q, mp1, B_TRUE, ill, 17006 0, sum, mctl_present, B_TRUE, 17007 recv_ill, ilm->ilm_zoneid); 17008 last_zoneid = ilm->ilm_zoneid; 17009 } 17010 ILM_WALKER_RELE(recv_ill); 17011 } else if (ire->ire_type == IRE_BROADCAST) { 17012 /* 17013 * In the broadcast case, there may be many zones 17014 * which need a copy of the packet delivered to them. 17015 * There is one IRE_BROADCAST per broadcast address 17016 * and per zone; we walk those using a helper function. 17017 * In addition, the sending of the packet for ire is 17018 * delayed until all of the other ires have been 17019 * processed. 17020 */ 17021 IRB_REFHOLD(ire->ire_bucket); 17022 ire_zone = NULL; 17023 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17024 ire)) != NULL) { 17025 mp1 = ip_copymsg(first_mp); 17026 if (mp1 == NULL) 17027 continue; 17028 17029 UPDATE_IB_PKT_COUNT(ire_zone); 17030 ire_zone->ire_last_used_time = lbolt; 17031 icmp_inbound(q, mp1, B_TRUE, ill, 17032 0, sum, mctl_present, B_TRUE, 17033 recv_ill, ire_zone->ire_zoneid); 17034 } 17035 IRB_REFRELE(ire->ire_bucket); 17036 } 17037 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17038 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17039 ire->ire_zoneid); 17040 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17041 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17042 return; 17043 } 17044 case IPPROTO_IGMP: 17045 /* 17046 * If we are not willing to accept IGMP packets in clear, 17047 * then check with global policy. 17048 */ 17049 if (ipst->ips_igmp_accept_clear_messages == 0) { 17050 first_mp = ipsec_check_global_policy(first_mp, NULL, 17051 ipha, NULL, mctl_present, ipst->ips_netstack); 17052 if (first_mp == NULL) 17053 return; 17054 } 17055 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17056 freemsg(first_mp); 17057 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17058 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17059 return; 17060 } 17061 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17062 /* Bad packet - discarded by igmp_input */ 17063 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17064 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17065 if (mctl_present) 17066 freeb(first_mp); 17067 return; 17068 } 17069 /* 17070 * igmp_input() may have returned the pulled up message. 17071 * So first_mp and ipha need to be reinitialized. 17072 */ 17073 ipha = (ipha_t *)mp->b_rptr; 17074 if (mctl_present) 17075 first_mp->b_cont = mp; 17076 else 17077 first_mp = mp; 17078 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17079 connf_head != NULL) { 17080 /* No user-level listener for IGMP packets */ 17081 goto drop_pkt; 17082 } 17083 /* deliver to local raw users */ 17084 break; 17085 case IPPROTO_PIM: 17086 /* 17087 * If we are not willing to accept PIM packets in clear, 17088 * then check with global policy. 17089 */ 17090 if (ipst->ips_pim_accept_clear_messages == 0) { 17091 first_mp = ipsec_check_global_policy(first_mp, NULL, 17092 ipha, NULL, mctl_present, ipst->ips_netstack); 17093 if (first_mp == NULL) 17094 return; 17095 } 17096 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17097 freemsg(first_mp); 17098 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17099 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17100 return; 17101 } 17102 if (pim_input(q, mp, ill) != 0) { 17103 /* Bad packet - discarded by pim_input */ 17104 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17105 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17106 if (mctl_present) 17107 freeb(first_mp); 17108 return; 17109 } 17110 17111 /* 17112 * pim_input() may have pulled up the message so ipha needs to 17113 * be reinitialized. 17114 */ 17115 ipha = (ipha_t *)mp->b_rptr; 17116 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17117 connf_head != NULL) { 17118 /* No user-level listener for PIM packets */ 17119 goto drop_pkt; 17120 } 17121 /* deliver to local raw users */ 17122 break; 17123 case IPPROTO_ENCAP: 17124 /* 17125 * Handle self-encapsulated packets (IP-in-IP where 17126 * the inner addresses == the outer addresses). 17127 */ 17128 hdr_length = IPH_HDR_LENGTH(ipha); 17129 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17130 mp->b_wptr) { 17131 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17132 sizeof (ipha_t) - mp->b_rptr)) { 17133 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17134 freemsg(first_mp); 17135 return; 17136 } 17137 ipha = (ipha_t *)mp->b_rptr; 17138 } 17139 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17140 /* 17141 * Check the sanity of the inner IP header. 17142 */ 17143 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17144 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17145 freemsg(first_mp); 17146 return; 17147 } 17148 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17149 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17150 freemsg(first_mp); 17151 return; 17152 } 17153 if (inner_ipha->ipha_src == ipha->ipha_src && 17154 inner_ipha->ipha_dst == ipha->ipha_dst) { 17155 ipsec_in_t *ii; 17156 17157 /* 17158 * Self-encapsulated tunnel packet. Remove 17159 * the outer IP header and fanout again. 17160 * We also need to make sure that the inner 17161 * header is pulled up until options. 17162 */ 17163 mp->b_rptr = (uchar_t *)inner_ipha; 17164 ipha = inner_ipha; 17165 hdr_length = IPH_HDR_LENGTH(ipha); 17166 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17167 if (!pullupmsg(mp, (uchar_t *)ipha + 17168 + hdr_length - mp->b_rptr)) { 17169 freemsg(first_mp); 17170 return; 17171 } 17172 ipha = (ipha_t *)mp->b_rptr; 17173 } 17174 if (!mctl_present) { 17175 ASSERT(first_mp == mp); 17176 /* 17177 * This means that somebody is sending 17178 * Self-encapsualted packets without AH/ESP. 17179 * If AH/ESP was present, we would have already 17180 * allocated the first_mp. 17181 */ 17182 first_mp = ipsec_in_alloc(B_TRUE, 17183 ipst->ips_netstack); 17184 if (first_mp == NULL) { 17185 ip1dbg(("ip_proto_input: IPSEC_IN " 17186 "allocation failure.\n")); 17187 BUMP_MIB(ill->ill_ip_mib, 17188 ipIfStatsInDiscards); 17189 freemsg(mp); 17190 return; 17191 } 17192 first_mp->b_cont = mp; 17193 } 17194 /* 17195 * We generally store the ill_index if we need to 17196 * do IPSEC processing as we lose the ill queue when 17197 * we come back. But in this case, we never should 17198 * have to store the ill_index here as it should have 17199 * been stored previously when we processed the 17200 * AH/ESP header in this routine or for non-ipsec 17201 * cases, we still have the queue. But for some bad 17202 * packets from the wire, we can get to IPSEC after 17203 * this and we better store the index for that case. 17204 */ 17205 ill = (ill_t *)q->q_ptr; 17206 ii = (ipsec_in_t *)first_mp->b_rptr; 17207 ii->ipsec_in_ill_index = 17208 ill->ill_phyint->phyint_ifindex; 17209 ii->ipsec_in_rill_index = 17210 recv_ill->ill_phyint->phyint_ifindex; 17211 if (ii->ipsec_in_decaps) { 17212 /* 17213 * This packet is self-encapsulated multiple 17214 * times. We don't want to recurse infinitely. 17215 * To keep it simple, drop the packet. 17216 */ 17217 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17218 freemsg(first_mp); 17219 return; 17220 } 17221 ii->ipsec_in_decaps = B_TRUE; 17222 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17223 ire); 17224 return; 17225 } 17226 break; 17227 case IPPROTO_AH: 17228 case IPPROTO_ESP: { 17229 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17230 17231 /* 17232 * Fast path for AH/ESP. If this is the first time 17233 * we are sending a datagram to AH/ESP, allocate 17234 * a IPSEC_IN message and prepend it. Otherwise, 17235 * just fanout. 17236 */ 17237 17238 int ipsec_rc; 17239 ipsec_in_t *ii; 17240 netstack_t *ns = ipst->ips_netstack; 17241 17242 IP_STAT(ipst, ipsec_proto_ahesp); 17243 if (!mctl_present) { 17244 ASSERT(first_mp == mp); 17245 first_mp = ipsec_in_alloc(B_TRUE, ns); 17246 if (first_mp == NULL) { 17247 ip1dbg(("ip_proto_input: IPSEC_IN " 17248 "allocation failure.\n")); 17249 freemsg(hada_mp); /* okay ifnull */ 17250 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17251 freemsg(mp); 17252 return; 17253 } 17254 /* 17255 * Store the ill_index so that when we come back 17256 * from IPSEC we ride on the same queue. 17257 */ 17258 ill = (ill_t *)q->q_ptr; 17259 ii = (ipsec_in_t *)first_mp->b_rptr; 17260 ii->ipsec_in_ill_index = 17261 ill->ill_phyint->phyint_ifindex; 17262 ii->ipsec_in_rill_index = 17263 recv_ill->ill_phyint->phyint_ifindex; 17264 first_mp->b_cont = mp; 17265 /* 17266 * Cache hardware acceleration info. 17267 */ 17268 if (hada_mp != NULL) { 17269 IPSECHW_DEBUG(IPSECHW_PKT, 17270 ("ip_rput_local: caching data attr.\n")); 17271 ii->ipsec_in_accelerated = B_TRUE; 17272 ii->ipsec_in_da = hada_mp; 17273 hada_mp = NULL; 17274 } 17275 } else { 17276 ii = (ipsec_in_t *)first_mp->b_rptr; 17277 } 17278 17279 if (!ipsec_loaded(ipss)) { 17280 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17281 ire->ire_zoneid, ipst); 17282 return; 17283 } 17284 17285 ns = ipst->ips_netstack; 17286 /* select inbound SA and have IPsec process the pkt */ 17287 if (ipha->ipha_protocol == IPPROTO_ESP) { 17288 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17289 if (esph == NULL) 17290 return; 17291 ASSERT(ii->ipsec_in_esp_sa != NULL); 17292 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17293 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17294 first_mp, esph); 17295 } else { 17296 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 17297 if (ah == NULL) 17298 return; 17299 ASSERT(ii->ipsec_in_ah_sa != NULL); 17300 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17301 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17302 first_mp, ah); 17303 } 17304 17305 switch (ipsec_rc) { 17306 case IPSEC_STATUS_SUCCESS: 17307 break; 17308 case IPSEC_STATUS_FAILED: 17309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17310 /* FALLTHRU */ 17311 case IPSEC_STATUS_PENDING: 17312 return; 17313 } 17314 /* we're done with IPsec processing, send it up */ 17315 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17316 return; 17317 } 17318 default: 17319 break; 17320 } 17321 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17322 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17323 ire->ire_zoneid)); 17324 goto drop_pkt; 17325 } 17326 /* 17327 * Handle protocols with which IP is less intimate. There 17328 * can be more than one stream bound to a particular 17329 * protocol. When this is the case, each one gets a copy 17330 * of any incoming packets. 17331 */ 17332 ip_fanout_proto(q, first_mp, ill, ipha, 17333 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17334 B_TRUE, recv_ill, ire->ire_zoneid); 17335 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17336 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17337 return; 17338 17339 drop_pkt: 17340 freemsg(first_mp); 17341 if (hada_mp != NULL) 17342 freeb(hada_mp); 17343 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17344 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17345 #undef rptr 17346 #undef iphs 17347 17348 } 17349 17350 /* 17351 * Update any source route, record route or timestamp options. 17352 * Check that we are at end of strict source route. 17353 * The options have already been checked for sanity in ip_rput_options(). 17354 */ 17355 static boolean_t 17356 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17357 ip_stack_t *ipst) 17358 { 17359 ipoptp_t opts; 17360 uchar_t *opt; 17361 uint8_t optval; 17362 uint8_t optlen; 17363 ipaddr_t dst; 17364 uint32_t ts; 17365 ire_t *dst_ire; 17366 timestruc_t now; 17367 zoneid_t zoneid; 17368 ill_t *ill; 17369 17370 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17371 17372 ip2dbg(("ip_rput_local_options\n")); 17373 17374 for (optval = ipoptp_first(&opts, ipha); 17375 optval != IPOPT_EOL; 17376 optval = ipoptp_next(&opts)) { 17377 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17378 opt = opts.ipoptp_cur; 17379 optlen = opts.ipoptp_len; 17380 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17381 optval, optlen)); 17382 switch (optval) { 17383 uint32_t off; 17384 case IPOPT_SSRR: 17385 case IPOPT_LSRR: 17386 off = opt[IPOPT_OFFSET]; 17387 off--; 17388 if (optlen < IP_ADDR_LEN || 17389 off > optlen - IP_ADDR_LEN) { 17390 /* End of source route */ 17391 ip1dbg(("ip_rput_local_options: end of SR\n")); 17392 break; 17393 } 17394 /* 17395 * This will only happen if two consecutive entries 17396 * in the source route contains our address or if 17397 * it is a packet with a loose source route which 17398 * reaches us before consuming the whole source route 17399 */ 17400 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17401 if (optval == IPOPT_SSRR) { 17402 goto bad_src_route; 17403 } 17404 /* 17405 * Hack: instead of dropping the packet truncate the 17406 * source route to what has been used by filling the 17407 * rest with IPOPT_NOP. 17408 */ 17409 opt[IPOPT_OLEN] = (uint8_t)off; 17410 while (off < optlen) { 17411 opt[off++] = IPOPT_NOP; 17412 } 17413 break; 17414 case IPOPT_RR: 17415 off = opt[IPOPT_OFFSET]; 17416 off--; 17417 if (optlen < IP_ADDR_LEN || 17418 off > optlen - IP_ADDR_LEN) { 17419 /* No more room - ignore */ 17420 ip1dbg(( 17421 "ip_rput_local_options: end of RR\n")); 17422 break; 17423 } 17424 bcopy(&ire->ire_src_addr, (char *)opt + off, 17425 IP_ADDR_LEN); 17426 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17427 break; 17428 case IPOPT_TS: 17429 /* Insert timestamp if there is romm */ 17430 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17431 case IPOPT_TS_TSONLY: 17432 off = IPOPT_TS_TIMELEN; 17433 break; 17434 case IPOPT_TS_PRESPEC: 17435 case IPOPT_TS_PRESPEC_RFC791: 17436 /* Verify that the address matched */ 17437 off = opt[IPOPT_OFFSET] - 1; 17438 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17439 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17440 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 17441 ipst); 17442 if (dst_ire == NULL) { 17443 /* Not for us */ 17444 break; 17445 } 17446 ire_refrele(dst_ire); 17447 /* FALLTHRU */ 17448 case IPOPT_TS_TSANDADDR: 17449 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17450 break; 17451 default: 17452 /* 17453 * ip_*put_options should have already 17454 * dropped this packet. 17455 */ 17456 cmn_err(CE_PANIC, "ip_rput_local_options: " 17457 "unknown IT - bug in ip_rput_options?\n"); 17458 return (B_TRUE); /* Keep "lint" happy */ 17459 } 17460 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17461 /* Increase overflow counter */ 17462 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17463 opt[IPOPT_POS_OV_FLG] = 17464 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17465 (off << 4)); 17466 break; 17467 } 17468 off = opt[IPOPT_OFFSET] - 1; 17469 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17470 case IPOPT_TS_PRESPEC: 17471 case IPOPT_TS_PRESPEC_RFC791: 17472 case IPOPT_TS_TSANDADDR: 17473 bcopy(&ire->ire_src_addr, (char *)opt + off, 17474 IP_ADDR_LEN); 17475 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17476 /* FALLTHRU */ 17477 case IPOPT_TS_TSONLY: 17478 off = opt[IPOPT_OFFSET] - 1; 17479 /* Compute # of milliseconds since midnight */ 17480 gethrestime(&now); 17481 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17482 now.tv_nsec / (NANOSEC / MILLISEC); 17483 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17484 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17485 break; 17486 } 17487 break; 17488 } 17489 } 17490 return (B_TRUE); 17491 17492 bad_src_route: 17493 q = WR(q); 17494 if (q->q_next != NULL) 17495 ill = q->q_ptr; 17496 else 17497 ill = NULL; 17498 17499 /* make sure we clear any indication of a hardware checksum */ 17500 DB_CKSUMFLAGS(mp) = 0; 17501 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 17502 if (zoneid == ALL_ZONES) 17503 freemsg(mp); 17504 else 17505 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17506 return (B_FALSE); 17507 17508 } 17509 17510 /* 17511 * Process IP options in an inbound packet. If an option affects the 17512 * effective destination address, return the next hop address via dstp. 17513 * Returns -1 if something fails in which case an ICMP error has been sent 17514 * and mp freed. 17515 */ 17516 static int 17517 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 17518 ip_stack_t *ipst) 17519 { 17520 ipoptp_t opts; 17521 uchar_t *opt; 17522 uint8_t optval; 17523 uint8_t optlen; 17524 ipaddr_t dst; 17525 intptr_t code = 0; 17526 ire_t *ire = NULL; 17527 zoneid_t zoneid; 17528 ill_t *ill; 17529 17530 ip2dbg(("ip_rput_options\n")); 17531 dst = ipha->ipha_dst; 17532 for (optval = ipoptp_first(&opts, ipha); 17533 optval != IPOPT_EOL; 17534 optval = ipoptp_next(&opts)) { 17535 opt = opts.ipoptp_cur; 17536 optlen = opts.ipoptp_len; 17537 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17538 optval, optlen)); 17539 /* 17540 * Note: we need to verify the checksum before we 17541 * modify anything thus this routine only extracts the next 17542 * hop dst from any source route. 17543 */ 17544 switch (optval) { 17545 uint32_t off; 17546 case IPOPT_SSRR: 17547 case IPOPT_LSRR: 17548 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17549 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17550 if (ire == NULL) { 17551 if (optval == IPOPT_SSRR) { 17552 ip1dbg(("ip_rput_options: not next" 17553 " strict source route 0x%x\n", 17554 ntohl(dst))); 17555 code = (char *)&ipha->ipha_dst - 17556 (char *)ipha; 17557 goto param_prob; /* RouterReq's */ 17558 } 17559 ip2dbg(("ip_rput_options: " 17560 "not next source route 0x%x\n", 17561 ntohl(dst))); 17562 break; 17563 } 17564 ire_refrele(ire); 17565 17566 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17567 ip1dbg(( 17568 "ip_rput_options: bad option offset\n")); 17569 code = (char *)&opt[IPOPT_OLEN] - 17570 (char *)ipha; 17571 goto param_prob; 17572 } 17573 off = opt[IPOPT_OFFSET]; 17574 off--; 17575 redo_srr: 17576 if (optlen < IP_ADDR_LEN || 17577 off > optlen - IP_ADDR_LEN) { 17578 /* End of source route */ 17579 ip1dbg(("ip_rput_options: end of SR\n")); 17580 break; 17581 } 17582 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17583 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17584 ntohl(dst))); 17585 17586 /* 17587 * Check if our address is present more than 17588 * once as consecutive hops in source route. 17589 * XXX verify per-interface ip_forwarding 17590 * for source route? 17591 */ 17592 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17593 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17594 17595 if (ire != NULL) { 17596 ire_refrele(ire); 17597 off += IP_ADDR_LEN; 17598 goto redo_srr; 17599 } 17600 17601 if (dst == htonl(INADDR_LOOPBACK)) { 17602 ip1dbg(("ip_rput_options: loopback addr in " 17603 "source route!\n")); 17604 goto bad_src_route; 17605 } 17606 /* 17607 * For strict: verify that dst is directly 17608 * reachable. 17609 */ 17610 if (optval == IPOPT_SSRR) { 17611 ire = ire_ftable_lookup(dst, 0, 0, 17612 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17613 MBLK_GETLABEL(mp), 17614 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 17615 if (ire == NULL) { 17616 ip1dbg(("ip_rput_options: SSRR not " 17617 "directly reachable: 0x%x\n", 17618 ntohl(dst))); 17619 goto bad_src_route; 17620 } 17621 ire_refrele(ire); 17622 } 17623 /* 17624 * Defer update of the offset and the record route 17625 * until the packet is forwarded. 17626 */ 17627 break; 17628 case IPOPT_RR: 17629 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17630 ip1dbg(( 17631 "ip_rput_options: bad option offset\n")); 17632 code = (char *)&opt[IPOPT_OLEN] - 17633 (char *)ipha; 17634 goto param_prob; 17635 } 17636 break; 17637 case IPOPT_TS: 17638 /* 17639 * Verify that length >= 5 and that there is either 17640 * room for another timestamp or that the overflow 17641 * counter is not maxed out. 17642 */ 17643 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17644 if (optlen < IPOPT_MINLEN_IT) { 17645 goto param_prob; 17646 } 17647 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17648 ip1dbg(( 17649 "ip_rput_options: bad option offset\n")); 17650 code = (char *)&opt[IPOPT_OFFSET] - 17651 (char *)ipha; 17652 goto param_prob; 17653 } 17654 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17655 case IPOPT_TS_TSONLY: 17656 off = IPOPT_TS_TIMELEN; 17657 break; 17658 case IPOPT_TS_TSANDADDR: 17659 case IPOPT_TS_PRESPEC: 17660 case IPOPT_TS_PRESPEC_RFC791: 17661 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17662 break; 17663 default: 17664 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17665 (char *)ipha; 17666 goto param_prob; 17667 } 17668 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17669 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17670 /* 17671 * No room and the overflow counter is 15 17672 * already. 17673 */ 17674 goto param_prob; 17675 } 17676 break; 17677 } 17678 } 17679 17680 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17681 *dstp = dst; 17682 return (0); 17683 } 17684 17685 ip1dbg(("ip_rput_options: error processing IP options.")); 17686 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17687 17688 param_prob: 17689 q = WR(q); 17690 if (q->q_next != NULL) 17691 ill = q->q_ptr; 17692 else 17693 ill = NULL; 17694 17695 /* make sure we clear any indication of a hardware checksum */ 17696 DB_CKSUMFLAGS(mp) = 0; 17697 /* Don't know whether this is for non-global or global/forwarding */ 17698 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17699 if (zoneid == ALL_ZONES) 17700 freemsg(mp); 17701 else 17702 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 17703 return (-1); 17704 17705 bad_src_route: 17706 q = WR(q); 17707 if (q->q_next != NULL) 17708 ill = q->q_ptr; 17709 else 17710 ill = NULL; 17711 17712 /* make sure we clear any indication of a hardware checksum */ 17713 DB_CKSUMFLAGS(mp) = 0; 17714 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 17715 if (zoneid == ALL_ZONES) 17716 freemsg(mp); 17717 else 17718 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 17719 return (-1); 17720 } 17721 17722 /* 17723 * IP & ICMP info in >=14 msg's ... 17724 * - ip fixed part (mib2_ip_t) 17725 * - icmp fixed part (mib2_icmp_t) 17726 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17727 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17728 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17729 * - ipRouteAttributeTable (ip 102) labeled routes 17730 * - ip multicast membership (ip_member_t) 17731 * - ip multicast source filtering (ip_grpsrc_t) 17732 * - igmp fixed part (struct igmpstat) 17733 * - multicast routing stats (struct mrtstat) 17734 * - multicast routing vifs (array of struct vifctl) 17735 * - multicast routing routes (array of struct mfcctl) 17736 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17737 * One per ill plus one generic 17738 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17739 * One per ill plus one generic 17740 * - ipv6RouteEntry all IPv6 IREs 17741 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17742 * - ipv6NetToMediaEntry all Neighbor Cache entries 17743 * - ipv6AddrEntry all IPv6 ipifs 17744 * - ipv6 multicast membership (ipv6_member_t) 17745 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17746 * 17747 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17748 * 17749 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17750 * already filled in by the caller. 17751 * Return value of 0 indicates that no messages were sent and caller 17752 * should free mpctl. 17753 */ 17754 int 17755 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17756 { 17757 ip_stack_t *ipst; 17758 sctp_stack_t *sctps; 17759 17760 17761 if (q->q_next != NULL) { 17762 ipst = ILLQ_TO_IPST(q); 17763 } else { 17764 ipst = CONNQ_TO_IPST(q); 17765 } 17766 ASSERT(ipst != NULL); 17767 sctps = ipst->ips_netstack->netstack_sctp; 17768 17769 if (mpctl == NULL || mpctl->b_cont == NULL) { 17770 return (0); 17771 } 17772 17773 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 17774 ipst)) == NULL) { 17775 return (1); 17776 } 17777 17778 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 17779 return (1); 17780 } 17781 17782 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 17783 return (1); 17784 } 17785 17786 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 17787 return (1); 17788 } 17789 17790 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 17791 return (1); 17792 } 17793 17794 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 17795 return (1); 17796 } 17797 17798 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 17799 return (1); 17800 } 17801 17802 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 17803 return (1); 17804 } 17805 17806 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 17807 return (1); 17808 } 17809 17810 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 17811 return (1); 17812 } 17813 17814 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 17815 return (1); 17816 } 17817 17818 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 17819 return (1); 17820 } 17821 17822 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 17823 return (1); 17824 } 17825 17826 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 17827 return (1); 17828 } 17829 17830 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) { 17831 return (1); 17832 } 17833 17834 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst); 17835 if (mpctl == NULL) { 17836 return (1); 17837 } 17838 17839 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 17840 return (1); 17841 } 17842 freemsg(mpctl); 17843 return (1); 17844 } 17845 17846 17847 /* Get global (legacy) IPv4 statistics */ 17848 static mblk_t * 17849 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 17850 ip_stack_t *ipst) 17851 { 17852 mib2_ip_t old_ip_mib; 17853 struct opthdr *optp; 17854 mblk_t *mp2ctl; 17855 17856 /* 17857 * make a copy of the original message 17858 */ 17859 mp2ctl = copymsg(mpctl); 17860 17861 /* fixed length IP structure... */ 17862 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17863 optp->level = MIB2_IP; 17864 optp->name = 0; 17865 SET_MIB(old_ip_mib.ipForwarding, 17866 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 17867 SET_MIB(old_ip_mib.ipDefaultTTL, 17868 (uint32_t)ipst->ips_ip_def_ttl); 17869 SET_MIB(old_ip_mib.ipReasmTimeout, 17870 ipst->ips_ip_g_frag_timeout); 17871 SET_MIB(old_ip_mib.ipAddrEntrySize, 17872 sizeof (mib2_ipAddrEntry_t)); 17873 SET_MIB(old_ip_mib.ipRouteEntrySize, 17874 sizeof (mib2_ipRouteEntry_t)); 17875 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 17876 sizeof (mib2_ipNetToMediaEntry_t)); 17877 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 17878 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 17879 SET_MIB(old_ip_mib.ipRouteAttributeSize, 17880 sizeof (mib2_ipAttributeEntry_t)); 17881 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 17882 17883 /* 17884 * Grab the statistics from the new IP MIB 17885 */ 17886 SET_MIB(old_ip_mib.ipInReceives, 17887 (uint32_t)ipmib->ipIfStatsHCInReceives); 17888 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 17889 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 17890 SET_MIB(old_ip_mib.ipForwDatagrams, 17891 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 17892 SET_MIB(old_ip_mib.ipInUnknownProtos, 17893 ipmib->ipIfStatsInUnknownProtos); 17894 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 17895 SET_MIB(old_ip_mib.ipInDelivers, 17896 (uint32_t)ipmib->ipIfStatsHCInDelivers); 17897 SET_MIB(old_ip_mib.ipOutRequests, 17898 (uint32_t)ipmib->ipIfStatsHCOutRequests); 17899 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 17900 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 17901 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 17902 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 17903 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 17904 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 17905 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 17906 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 17907 17908 /* ipRoutingDiscards is not being used */ 17909 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 17910 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 17911 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 17912 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 17913 SET_MIB(old_ip_mib.ipReasmDuplicates, 17914 ipmib->ipIfStatsReasmDuplicates); 17915 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 17916 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 17917 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 17918 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 17919 SET_MIB(old_ip_mib.rawipInOverflows, 17920 ipmib->rawipIfStatsInOverflows); 17921 17922 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 17923 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 17924 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 17925 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 17926 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 17927 ipmib->ipIfStatsOutSwitchIPVersion); 17928 17929 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 17930 (int)sizeof (old_ip_mib))) { 17931 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 17932 (uint_t)sizeof (old_ip_mib))); 17933 } 17934 17935 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 17936 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 17937 (int)optp->level, (int)optp->name, (int)optp->len)); 17938 qreply(q, mpctl); 17939 return (mp2ctl); 17940 } 17941 17942 /* Per interface IPv4 statistics */ 17943 static mblk_t * 17944 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 17945 { 17946 struct opthdr *optp; 17947 mblk_t *mp2ctl; 17948 ill_t *ill; 17949 ill_walk_context_t ctx; 17950 mblk_t *mp_tail = NULL; 17951 mib2_ipIfStatsEntry_t global_ip_mib; 17952 17953 /* 17954 * Make a copy of the original message 17955 */ 17956 mp2ctl = copymsg(mpctl); 17957 17958 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17959 optp->level = MIB2_IP; 17960 optp->name = MIB2_IP_TRAFFIC_STATS; 17961 /* Include "unknown interface" ip_mib */ 17962 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 17963 ipst->ips_ip_mib.ipIfStatsIfIndex = 17964 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 17965 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 17966 (ipst->ips_ip_g_forward ? 1 : 2)); 17967 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 17968 (uint32_t)ipst->ips_ip_def_ttl); 17969 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 17970 sizeof (mib2_ipIfStatsEntry_t)); 17971 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 17972 sizeof (mib2_ipAddrEntry_t)); 17973 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 17974 sizeof (mib2_ipRouteEntry_t)); 17975 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 17976 sizeof (mib2_ipNetToMediaEntry_t)); 17977 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 17978 sizeof (ip_member_t)); 17979 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 17980 sizeof (ip_grpsrc_t)); 17981 17982 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 17983 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 17984 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 17985 "failed to allocate %u bytes\n", 17986 (uint_t)sizeof (ipst->ips_ip_mib))); 17987 } 17988 17989 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 17990 17991 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17992 ill = ILL_START_WALK_V4(&ctx, ipst); 17993 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 17994 ill->ill_ip_mib->ipIfStatsIfIndex = 17995 ill->ill_phyint->phyint_ifindex; 17996 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 17997 (ipst->ips_ip_g_forward ? 1 : 2)); 17998 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 17999 (uint32_t)ipst->ips_ip_def_ttl); 18000 18001 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18002 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18003 (char *)ill->ill_ip_mib, 18004 (int)sizeof (*ill->ill_ip_mib))) { 18005 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18006 "failed to allocate %u bytes\n", 18007 (uint_t)sizeof (*ill->ill_ip_mib))); 18008 } 18009 } 18010 rw_exit(&ipst->ips_ill_g_lock); 18011 18012 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18013 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18014 "level %d, name %d, len %d\n", 18015 (int)optp->level, (int)optp->name, (int)optp->len)); 18016 qreply(q, mpctl); 18017 18018 if (mp2ctl == NULL) 18019 return (NULL); 18020 18021 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18022 } 18023 18024 /* Global IPv4 ICMP statistics */ 18025 static mblk_t * 18026 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18027 { 18028 struct opthdr *optp; 18029 mblk_t *mp2ctl; 18030 18031 /* 18032 * Make a copy of the original message 18033 */ 18034 mp2ctl = copymsg(mpctl); 18035 18036 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18037 optp->level = MIB2_ICMP; 18038 optp->name = 0; 18039 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18040 (int)sizeof (ipst->ips_icmp_mib))) { 18041 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18042 (uint_t)sizeof (ipst->ips_icmp_mib))); 18043 } 18044 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18045 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18046 (int)optp->level, (int)optp->name, (int)optp->len)); 18047 qreply(q, mpctl); 18048 return (mp2ctl); 18049 } 18050 18051 /* Global IPv4 IGMP statistics */ 18052 static mblk_t * 18053 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18054 { 18055 struct opthdr *optp; 18056 mblk_t *mp2ctl; 18057 18058 /* 18059 * make a copy of the original message 18060 */ 18061 mp2ctl = copymsg(mpctl); 18062 18063 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18064 optp->level = EXPER_IGMP; 18065 optp->name = 0; 18066 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18067 (int)sizeof (ipst->ips_igmpstat))) { 18068 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18069 (uint_t)sizeof (ipst->ips_igmpstat))); 18070 } 18071 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18072 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18073 (int)optp->level, (int)optp->name, (int)optp->len)); 18074 qreply(q, mpctl); 18075 return (mp2ctl); 18076 } 18077 18078 /* Global IPv4 Multicast Routing statistics */ 18079 static mblk_t * 18080 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18081 { 18082 struct opthdr *optp; 18083 mblk_t *mp2ctl; 18084 18085 /* 18086 * make a copy of the original message 18087 */ 18088 mp2ctl = copymsg(mpctl); 18089 18090 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18091 optp->level = EXPER_DVMRP; 18092 optp->name = 0; 18093 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18094 ip0dbg(("ip_mroute_stats: failed\n")); 18095 } 18096 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18097 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18098 (int)optp->level, (int)optp->name, (int)optp->len)); 18099 qreply(q, mpctl); 18100 return (mp2ctl); 18101 } 18102 18103 /* IPv4 address information */ 18104 static mblk_t * 18105 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18106 { 18107 struct opthdr *optp; 18108 mblk_t *mp2ctl; 18109 mblk_t *mp_tail = NULL; 18110 ill_t *ill; 18111 ipif_t *ipif; 18112 uint_t bitval; 18113 mib2_ipAddrEntry_t mae; 18114 zoneid_t zoneid; 18115 ill_walk_context_t ctx; 18116 18117 /* 18118 * make a copy of the original message 18119 */ 18120 mp2ctl = copymsg(mpctl); 18121 18122 /* ipAddrEntryTable */ 18123 18124 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18125 optp->level = MIB2_IP; 18126 optp->name = MIB2_IP_ADDR; 18127 zoneid = Q_TO_CONN(q)->conn_zoneid; 18128 18129 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18130 ill = ILL_START_WALK_V4(&ctx, ipst); 18131 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18132 for (ipif = ill->ill_ipif; ipif != NULL; 18133 ipif = ipif->ipif_next) { 18134 if (ipif->ipif_zoneid != zoneid && 18135 ipif->ipif_zoneid != ALL_ZONES) 18136 continue; 18137 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18138 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18139 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18140 18141 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18142 OCTET_LENGTH); 18143 mae.ipAdEntIfIndex.o_length = 18144 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18145 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18146 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18147 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18148 mae.ipAdEntInfo.ae_subnet_len = 18149 ip_mask_to_plen(ipif->ipif_net_mask); 18150 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18151 for (bitval = 1; 18152 bitval && 18153 !(bitval & ipif->ipif_brd_addr); 18154 bitval <<= 1) 18155 noop; 18156 mae.ipAdEntBcastAddr = bitval; 18157 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18158 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18159 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18160 mae.ipAdEntInfo.ae_broadcast_addr = 18161 ipif->ipif_brd_addr; 18162 mae.ipAdEntInfo.ae_pp_dst_addr = 18163 ipif->ipif_pp_dst_addr; 18164 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18165 ill->ill_flags | ill->ill_phyint->phyint_flags; 18166 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18167 18168 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18169 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18170 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18171 "allocate %u bytes\n", 18172 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18173 } 18174 } 18175 } 18176 rw_exit(&ipst->ips_ill_g_lock); 18177 18178 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18179 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18180 (int)optp->level, (int)optp->name, (int)optp->len)); 18181 qreply(q, mpctl); 18182 return (mp2ctl); 18183 } 18184 18185 /* IPv6 address information */ 18186 static mblk_t * 18187 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18188 { 18189 struct opthdr *optp; 18190 mblk_t *mp2ctl; 18191 mblk_t *mp_tail = NULL; 18192 ill_t *ill; 18193 ipif_t *ipif; 18194 mib2_ipv6AddrEntry_t mae6; 18195 zoneid_t zoneid; 18196 ill_walk_context_t ctx; 18197 18198 /* 18199 * make a copy of the original message 18200 */ 18201 mp2ctl = copymsg(mpctl); 18202 18203 /* ipv6AddrEntryTable */ 18204 18205 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18206 optp->level = MIB2_IP6; 18207 optp->name = MIB2_IP6_ADDR; 18208 zoneid = Q_TO_CONN(q)->conn_zoneid; 18209 18210 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18211 ill = ILL_START_WALK_V6(&ctx, ipst); 18212 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18213 for (ipif = ill->ill_ipif; ipif != NULL; 18214 ipif = ipif->ipif_next) { 18215 if (ipif->ipif_zoneid != zoneid && 18216 ipif->ipif_zoneid != ALL_ZONES) 18217 continue; 18218 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18219 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18220 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18221 18222 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18223 OCTET_LENGTH); 18224 mae6.ipv6AddrIfIndex.o_length = 18225 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18226 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18227 mae6.ipv6AddrPfxLength = 18228 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18229 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18230 mae6.ipv6AddrInfo.ae_subnet_len = 18231 mae6.ipv6AddrPfxLength; 18232 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18233 18234 /* Type: stateless(1), stateful(2), unknown(3) */ 18235 if (ipif->ipif_flags & IPIF_ADDRCONF) 18236 mae6.ipv6AddrType = 1; 18237 else 18238 mae6.ipv6AddrType = 2; 18239 /* Anycast: true(1), false(2) */ 18240 if (ipif->ipif_flags & IPIF_ANYCAST) 18241 mae6.ipv6AddrAnycastFlag = 1; 18242 else 18243 mae6.ipv6AddrAnycastFlag = 2; 18244 18245 /* 18246 * Address status: preferred(1), deprecated(2), 18247 * invalid(3), inaccessible(4), unknown(5) 18248 */ 18249 if (ipif->ipif_flags & IPIF_NOLOCAL) 18250 mae6.ipv6AddrStatus = 3; 18251 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18252 mae6.ipv6AddrStatus = 2; 18253 else 18254 mae6.ipv6AddrStatus = 1; 18255 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18256 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18257 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18258 ipif->ipif_v6pp_dst_addr; 18259 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18260 ill->ill_flags | ill->ill_phyint->phyint_flags; 18261 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18262 mae6.ipv6AddrIdentifier = ill->ill_token; 18263 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18264 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18265 mae6.ipv6AddrRetransmitTime = 18266 ill->ill_reachable_retrans_time; 18267 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18268 (char *)&mae6, 18269 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18270 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18271 "allocate %u bytes\n", 18272 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18273 } 18274 } 18275 } 18276 rw_exit(&ipst->ips_ill_g_lock); 18277 18278 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18279 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18280 (int)optp->level, (int)optp->name, (int)optp->len)); 18281 qreply(q, mpctl); 18282 return (mp2ctl); 18283 } 18284 18285 /* IPv4 multicast group membership. */ 18286 static mblk_t * 18287 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18288 { 18289 struct opthdr *optp; 18290 mblk_t *mp2ctl; 18291 ill_t *ill; 18292 ipif_t *ipif; 18293 ilm_t *ilm; 18294 ip_member_t ipm; 18295 mblk_t *mp_tail = NULL; 18296 ill_walk_context_t ctx; 18297 zoneid_t zoneid; 18298 18299 /* 18300 * make a copy of the original message 18301 */ 18302 mp2ctl = copymsg(mpctl); 18303 zoneid = Q_TO_CONN(q)->conn_zoneid; 18304 18305 /* ipGroupMember table */ 18306 optp = (struct opthdr *)&mpctl->b_rptr[ 18307 sizeof (struct T_optmgmt_ack)]; 18308 optp->level = MIB2_IP; 18309 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18310 18311 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18312 ill = ILL_START_WALK_V4(&ctx, ipst); 18313 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18314 ILM_WALKER_HOLD(ill); 18315 for (ipif = ill->ill_ipif; ipif != NULL; 18316 ipif = ipif->ipif_next) { 18317 if (ipif->ipif_zoneid != zoneid && 18318 ipif->ipif_zoneid != ALL_ZONES) 18319 continue; /* not this zone */ 18320 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 18321 OCTET_LENGTH); 18322 ipm.ipGroupMemberIfIndex.o_length = 18323 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18324 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18325 ASSERT(ilm->ilm_ipif != NULL); 18326 ASSERT(ilm->ilm_ill == NULL); 18327 if (ilm->ilm_ipif != ipif) 18328 continue; 18329 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18330 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18331 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18332 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18333 (char *)&ipm, (int)sizeof (ipm))) { 18334 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18335 "failed to allocate %u bytes\n", 18336 (uint_t)sizeof (ipm))); 18337 } 18338 } 18339 } 18340 ILM_WALKER_RELE(ill); 18341 } 18342 rw_exit(&ipst->ips_ill_g_lock); 18343 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18344 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18345 (int)optp->level, (int)optp->name, (int)optp->len)); 18346 qreply(q, mpctl); 18347 return (mp2ctl); 18348 } 18349 18350 /* IPv6 multicast group membership. */ 18351 static mblk_t * 18352 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18353 { 18354 struct opthdr *optp; 18355 mblk_t *mp2ctl; 18356 ill_t *ill; 18357 ilm_t *ilm; 18358 ipv6_member_t ipm6; 18359 mblk_t *mp_tail = NULL; 18360 ill_walk_context_t ctx; 18361 zoneid_t zoneid; 18362 18363 /* 18364 * make a copy of the original message 18365 */ 18366 mp2ctl = copymsg(mpctl); 18367 zoneid = Q_TO_CONN(q)->conn_zoneid; 18368 18369 /* ip6GroupMember table */ 18370 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18371 optp->level = MIB2_IP6; 18372 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18373 18374 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18375 ill = ILL_START_WALK_V6(&ctx, ipst); 18376 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18377 ILM_WALKER_HOLD(ill); 18378 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18379 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18380 ASSERT(ilm->ilm_ipif == NULL); 18381 ASSERT(ilm->ilm_ill != NULL); 18382 if (ilm->ilm_zoneid != zoneid) 18383 continue; /* not this zone */ 18384 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18385 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18386 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18387 if (!snmp_append_data2(mpctl->b_cont, 18388 &mp_tail, 18389 (char *)&ipm6, (int)sizeof (ipm6))) { 18390 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18391 "failed to allocate %u bytes\n", 18392 (uint_t)sizeof (ipm6))); 18393 } 18394 } 18395 ILM_WALKER_RELE(ill); 18396 } 18397 rw_exit(&ipst->ips_ill_g_lock); 18398 18399 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18400 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18401 (int)optp->level, (int)optp->name, (int)optp->len)); 18402 qreply(q, mpctl); 18403 return (mp2ctl); 18404 } 18405 18406 /* IP multicast filtered sources */ 18407 static mblk_t * 18408 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18409 { 18410 struct opthdr *optp; 18411 mblk_t *mp2ctl; 18412 ill_t *ill; 18413 ipif_t *ipif; 18414 ilm_t *ilm; 18415 ip_grpsrc_t ips; 18416 mblk_t *mp_tail = NULL; 18417 ill_walk_context_t ctx; 18418 zoneid_t zoneid; 18419 int i; 18420 slist_t *sl; 18421 18422 /* 18423 * make a copy of the original message 18424 */ 18425 mp2ctl = copymsg(mpctl); 18426 zoneid = Q_TO_CONN(q)->conn_zoneid; 18427 18428 /* ipGroupSource table */ 18429 optp = (struct opthdr *)&mpctl->b_rptr[ 18430 sizeof (struct T_optmgmt_ack)]; 18431 optp->level = MIB2_IP; 18432 optp->name = EXPER_IP_GROUP_SOURCES; 18433 18434 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18435 ill = ILL_START_WALK_V4(&ctx, ipst); 18436 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18437 ILM_WALKER_HOLD(ill); 18438 for (ipif = ill->ill_ipif; ipif != NULL; 18439 ipif = ipif->ipif_next) { 18440 if (ipif->ipif_zoneid != zoneid) 18441 continue; /* not this zone */ 18442 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 18443 OCTET_LENGTH); 18444 ips.ipGroupSourceIfIndex.o_length = 18445 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18446 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18447 ASSERT(ilm->ilm_ipif != NULL); 18448 ASSERT(ilm->ilm_ill == NULL); 18449 sl = ilm->ilm_filter; 18450 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18451 continue; 18452 ips.ipGroupSourceGroup = ilm->ilm_addr; 18453 for (i = 0; i < sl->sl_numsrc; i++) { 18454 if (!IN6_IS_ADDR_V4MAPPED( 18455 &sl->sl_addr[i])) 18456 continue; 18457 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18458 ips.ipGroupSourceAddress); 18459 if (snmp_append_data2(mpctl->b_cont, 18460 &mp_tail, (char *)&ips, 18461 (int)sizeof (ips)) == 0) { 18462 ip1dbg(("ip_snmp_get_mib2_" 18463 "ip_group_src: failed to " 18464 "allocate %u bytes\n", 18465 (uint_t)sizeof (ips))); 18466 } 18467 } 18468 } 18469 } 18470 ILM_WALKER_RELE(ill); 18471 } 18472 rw_exit(&ipst->ips_ill_g_lock); 18473 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18474 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18475 (int)optp->level, (int)optp->name, (int)optp->len)); 18476 qreply(q, mpctl); 18477 return (mp2ctl); 18478 } 18479 18480 /* IPv6 multicast filtered sources. */ 18481 static mblk_t * 18482 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18483 { 18484 struct opthdr *optp; 18485 mblk_t *mp2ctl; 18486 ill_t *ill; 18487 ilm_t *ilm; 18488 ipv6_grpsrc_t ips6; 18489 mblk_t *mp_tail = NULL; 18490 ill_walk_context_t ctx; 18491 zoneid_t zoneid; 18492 int i; 18493 slist_t *sl; 18494 18495 /* 18496 * make a copy of the original message 18497 */ 18498 mp2ctl = copymsg(mpctl); 18499 zoneid = Q_TO_CONN(q)->conn_zoneid; 18500 18501 /* ip6GroupMember table */ 18502 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18503 optp->level = MIB2_IP6; 18504 optp->name = EXPER_IP6_GROUP_SOURCES; 18505 18506 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18507 ill = ILL_START_WALK_V6(&ctx, ipst); 18508 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18509 ILM_WALKER_HOLD(ill); 18510 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18511 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18512 ASSERT(ilm->ilm_ipif == NULL); 18513 ASSERT(ilm->ilm_ill != NULL); 18514 sl = ilm->ilm_filter; 18515 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18516 continue; 18517 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18518 for (i = 0; i < sl->sl_numsrc; i++) { 18519 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18520 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18521 (char *)&ips6, (int)sizeof (ips6))) { 18522 ip1dbg(("ip_snmp_get_mib2_ip6_" 18523 "group_src: failed to allocate " 18524 "%u bytes\n", 18525 (uint_t)sizeof (ips6))); 18526 } 18527 } 18528 } 18529 ILM_WALKER_RELE(ill); 18530 } 18531 rw_exit(&ipst->ips_ill_g_lock); 18532 18533 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18534 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18535 (int)optp->level, (int)optp->name, (int)optp->len)); 18536 qreply(q, mpctl); 18537 return (mp2ctl); 18538 } 18539 18540 /* Multicast routing virtual interface table. */ 18541 static mblk_t * 18542 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18543 { 18544 struct opthdr *optp; 18545 mblk_t *mp2ctl; 18546 18547 /* 18548 * make a copy of the original message 18549 */ 18550 mp2ctl = copymsg(mpctl); 18551 18552 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18553 optp->level = EXPER_DVMRP; 18554 optp->name = EXPER_DVMRP_VIF; 18555 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 18556 ip0dbg(("ip_mroute_vif: failed\n")); 18557 } 18558 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18559 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18560 (int)optp->level, (int)optp->name, (int)optp->len)); 18561 qreply(q, mpctl); 18562 return (mp2ctl); 18563 } 18564 18565 /* Multicast routing table. */ 18566 static mblk_t * 18567 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18568 { 18569 struct opthdr *optp; 18570 mblk_t *mp2ctl; 18571 18572 /* 18573 * make a copy of the original message 18574 */ 18575 mp2ctl = copymsg(mpctl); 18576 18577 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18578 optp->level = EXPER_DVMRP; 18579 optp->name = EXPER_DVMRP_MRT; 18580 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 18581 ip0dbg(("ip_mroute_mrt: failed\n")); 18582 } 18583 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18584 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18585 (int)optp->level, (int)optp->name, (int)optp->len)); 18586 qreply(q, mpctl); 18587 return (mp2ctl); 18588 } 18589 18590 /* 18591 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18592 * in one IRE walk. 18593 */ 18594 static mblk_t * 18595 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18596 { 18597 struct opthdr *optp; 18598 mblk_t *mp2ctl; /* Returned */ 18599 mblk_t *mp3ctl; /* nettomedia */ 18600 mblk_t *mp4ctl; /* routeattrs */ 18601 iproutedata_t ird; 18602 zoneid_t zoneid; 18603 18604 /* 18605 * make copies of the original message 18606 * - mp2ctl is returned unchanged to the caller for his use 18607 * - mpctl is sent upstream as ipRouteEntryTable 18608 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18609 * - mp4ctl is sent upstream as ipRouteAttributeTable 18610 */ 18611 mp2ctl = copymsg(mpctl); 18612 mp3ctl = copymsg(mpctl); 18613 mp4ctl = copymsg(mpctl); 18614 if (mp3ctl == NULL || mp4ctl == NULL) { 18615 freemsg(mp4ctl); 18616 freemsg(mp3ctl); 18617 freemsg(mp2ctl); 18618 freemsg(mpctl); 18619 return (NULL); 18620 } 18621 18622 bzero(&ird, sizeof (ird)); 18623 18624 ird.ird_route.lp_head = mpctl->b_cont; 18625 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18626 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18627 18628 zoneid = Q_TO_CONN(q)->conn_zoneid; 18629 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 18630 18631 /* ipRouteEntryTable in mpctl */ 18632 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18633 optp->level = MIB2_IP; 18634 optp->name = MIB2_IP_ROUTE; 18635 optp->len = msgdsize(ird.ird_route.lp_head); 18636 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18637 (int)optp->level, (int)optp->name, (int)optp->len)); 18638 qreply(q, mpctl); 18639 18640 /* ipNetToMediaEntryTable in mp3ctl */ 18641 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18642 optp->level = MIB2_IP; 18643 optp->name = MIB2_IP_MEDIA; 18644 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18645 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18646 (int)optp->level, (int)optp->name, (int)optp->len)); 18647 qreply(q, mp3ctl); 18648 18649 /* ipRouteAttributeTable in mp4ctl */ 18650 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18651 optp->level = MIB2_IP; 18652 optp->name = EXPER_IP_RTATTR; 18653 optp->len = msgdsize(ird.ird_attrs.lp_head); 18654 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18655 (int)optp->level, (int)optp->name, (int)optp->len)); 18656 if (optp->len == 0) 18657 freemsg(mp4ctl); 18658 else 18659 qreply(q, mp4ctl); 18660 18661 return (mp2ctl); 18662 } 18663 18664 /* 18665 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18666 * ipv6NetToMediaEntryTable in an NDP walk. 18667 */ 18668 static mblk_t * 18669 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18670 { 18671 struct opthdr *optp; 18672 mblk_t *mp2ctl; /* Returned */ 18673 mblk_t *mp3ctl; /* nettomedia */ 18674 mblk_t *mp4ctl; /* routeattrs */ 18675 iproutedata_t ird; 18676 zoneid_t zoneid; 18677 18678 /* 18679 * make copies of the original message 18680 * - mp2ctl is returned unchanged to the caller for his use 18681 * - mpctl is sent upstream as ipv6RouteEntryTable 18682 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18683 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18684 */ 18685 mp2ctl = copymsg(mpctl); 18686 mp3ctl = copymsg(mpctl); 18687 mp4ctl = copymsg(mpctl); 18688 if (mp3ctl == NULL || mp4ctl == NULL) { 18689 freemsg(mp4ctl); 18690 freemsg(mp3ctl); 18691 freemsg(mp2ctl); 18692 freemsg(mpctl); 18693 return (NULL); 18694 } 18695 18696 bzero(&ird, sizeof (ird)); 18697 18698 ird.ird_route.lp_head = mpctl->b_cont; 18699 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18700 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18701 18702 zoneid = Q_TO_CONN(q)->conn_zoneid; 18703 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 18704 18705 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18706 optp->level = MIB2_IP6; 18707 optp->name = MIB2_IP6_ROUTE; 18708 optp->len = msgdsize(ird.ird_route.lp_head); 18709 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18710 (int)optp->level, (int)optp->name, (int)optp->len)); 18711 qreply(q, mpctl); 18712 18713 /* ipv6NetToMediaEntryTable in mp3ctl */ 18714 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 18715 18716 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18717 optp->level = MIB2_IP6; 18718 optp->name = MIB2_IP6_MEDIA; 18719 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18720 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18721 (int)optp->level, (int)optp->name, (int)optp->len)); 18722 qreply(q, mp3ctl); 18723 18724 /* ipv6RouteAttributeTable in mp4ctl */ 18725 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18726 optp->level = MIB2_IP6; 18727 optp->name = EXPER_IP_RTATTR; 18728 optp->len = msgdsize(ird.ird_attrs.lp_head); 18729 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18730 (int)optp->level, (int)optp->name, (int)optp->len)); 18731 if (optp->len == 0) 18732 freemsg(mp4ctl); 18733 else 18734 qreply(q, mp4ctl); 18735 18736 return (mp2ctl); 18737 } 18738 18739 /* 18740 * IPv6 mib: One per ill 18741 */ 18742 static mblk_t * 18743 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18744 { 18745 struct opthdr *optp; 18746 mblk_t *mp2ctl; 18747 ill_t *ill; 18748 ill_walk_context_t ctx; 18749 mblk_t *mp_tail = NULL; 18750 18751 /* 18752 * Make a copy of the original message 18753 */ 18754 mp2ctl = copymsg(mpctl); 18755 18756 /* fixed length IPv6 structure ... */ 18757 18758 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18759 optp->level = MIB2_IP6; 18760 optp->name = 0; 18761 /* Include "unknown interface" ip6_mib */ 18762 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 18763 ipst->ips_ip6_mib.ipIfStatsIfIndex = 18764 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18765 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 18766 ipst->ips_ipv6_forward ? 1 : 2); 18767 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 18768 ipst->ips_ipv6_def_hops); 18769 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 18770 sizeof (mib2_ipIfStatsEntry_t)); 18771 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 18772 sizeof (mib2_ipv6AddrEntry_t)); 18773 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 18774 sizeof (mib2_ipv6RouteEntry_t)); 18775 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 18776 sizeof (mib2_ipv6NetToMediaEntry_t)); 18777 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 18778 sizeof (ipv6_member_t)); 18779 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 18780 sizeof (ipv6_grpsrc_t)); 18781 18782 /* 18783 * Synchronize 64- and 32-bit counters 18784 */ 18785 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 18786 ipIfStatsHCInReceives); 18787 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 18788 ipIfStatsHCInDelivers); 18789 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 18790 ipIfStatsHCOutRequests); 18791 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 18792 ipIfStatsHCOutForwDatagrams); 18793 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 18794 ipIfStatsHCOutMcastPkts); 18795 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 18796 ipIfStatsHCInMcastPkts); 18797 18798 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18799 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 18800 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18801 (uint_t)sizeof (ipst->ips_ip6_mib))); 18802 } 18803 18804 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18805 ill = ILL_START_WALK_V6(&ctx, ipst); 18806 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18807 ill->ill_ip_mib->ipIfStatsIfIndex = 18808 ill->ill_phyint->phyint_ifindex; 18809 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18810 ipst->ips_ipv6_forward ? 1 : 2); 18811 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 18812 ill->ill_max_hops); 18813 18814 /* 18815 * Synchronize 64- and 32-bit counters 18816 */ 18817 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 18818 ipIfStatsHCInReceives); 18819 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 18820 ipIfStatsHCInDelivers); 18821 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 18822 ipIfStatsHCOutRequests); 18823 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 18824 ipIfStatsHCOutForwDatagrams); 18825 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 18826 ipIfStatsHCOutMcastPkts); 18827 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 18828 ipIfStatsHCInMcastPkts); 18829 18830 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18831 (char *)ill->ill_ip_mib, 18832 (int)sizeof (*ill->ill_ip_mib))) { 18833 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18834 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 18835 } 18836 } 18837 rw_exit(&ipst->ips_ill_g_lock); 18838 18839 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18840 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18841 (int)optp->level, (int)optp->name, (int)optp->len)); 18842 qreply(q, mpctl); 18843 return (mp2ctl); 18844 } 18845 18846 /* 18847 * ICMPv6 mib: One per ill 18848 */ 18849 static mblk_t * 18850 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18851 { 18852 struct opthdr *optp; 18853 mblk_t *mp2ctl; 18854 ill_t *ill; 18855 ill_walk_context_t ctx; 18856 mblk_t *mp_tail = NULL; 18857 /* 18858 * Make a copy of the original message 18859 */ 18860 mp2ctl = copymsg(mpctl); 18861 18862 /* fixed length ICMPv6 structure ... */ 18863 18864 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18865 optp->level = MIB2_ICMP6; 18866 optp->name = 0; 18867 /* Include "unknown interface" icmp6_mib */ 18868 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 18869 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 18870 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 18871 sizeof (mib2_ipv6IfIcmpEntry_t); 18872 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18873 (char *)&ipst->ips_icmp6_mib, 18874 (int)sizeof (ipst->ips_icmp6_mib))) { 18875 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18876 (uint_t)sizeof (ipst->ips_icmp6_mib))); 18877 } 18878 18879 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18880 ill = ILL_START_WALK_V6(&ctx, ipst); 18881 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18882 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18883 ill->ill_phyint->phyint_ifindex; 18884 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18885 (char *)ill->ill_icmp6_mib, 18886 (int)sizeof (*ill->ill_icmp6_mib))) { 18887 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 18888 "%u bytes\n", 18889 (uint_t)sizeof (*ill->ill_icmp6_mib))); 18890 } 18891 } 18892 rw_exit(&ipst->ips_ill_g_lock); 18893 18894 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18895 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 18896 (int)optp->level, (int)optp->name, (int)optp->len)); 18897 qreply(q, mpctl); 18898 return (mp2ctl); 18899 } 18900 18901 /* 18902 * ire_walk routine to create both ipRouteEntryTable and 18903 * ipRouteAttributeTable in one IRE walk 18904 */ 18905 static void 18906 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 18907 { 18908 ill_t *ill; 18909 ipif_t *ipif; 18910 mib2_ipRouteEntry_t *re; 18911 mib2_ipAttributeEntry_t *iae, *iaeptr; 18912 ipaddr_t gw_addr; 18913 tsol_ire_gw_secattr_t *attrp; 18914 tsol_gc_t *gc = NULL; 18915 tsol_gcgrp_t *gcgrp = NULL; 18916 uint_t sacnt = 0; 18917 int i; 18918 18919 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18920 18921 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 18922 return; 18923 18924 if ((attrp = ire->ire_gw_secattr) != NULL) { 18925 mutex_enter(&attrp->igsa_lock); 18926 if ((gc = attrp->igsa_gc) != NULL) { 18927 gcgrp = gc->gc_grp; 18928 ASSERT(gcgrp != NULL); 18929 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18930 sacnt = 1; 18931 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 18932 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 18933 gc = gcgrp->gcgrp_head; 18934 sacnt = gcgrp->gcgrp_count; 18935 } 18936 mutex_exit(&attrp->igsa_lock); 18937 18938 /* do nothing if there's no gc to report */ 18939 if (gc == NULL) { 18940 ASSERT(sacnt == 0); 18941 if (gcgrp != NULL) { 18942 /* we might as well drop the lock now */ 18943 rw_exit(&gcgrp->gcgrp_rwlock); 18944 gcgrp = NULL; 18945 } 18946 attrp = NULL; 18947 } 18948 18949 ASSERT(gc == NULL || (gcgrp != NULL && 18950 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 18951 } 18952 ASSERT(sacnt == 0 || gc != NULL); 18953 18954 if (sacnt != 0 && 18955 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 18956 kmem_free(re, sizeof (*re)); 18957 rw_exit(&gcgrp->gcgrp_rwlock); 18958 return; 18959 } 18960 18961 /* 18962 * Return all IRE types for route table... let caller pick and choose 18963 */ 18964 re->ipRouteDest = ire->ire_addr; 18965 ipif = ire->ire_ipif; 18966 re->ipRouteIfIndex.o_length = 0; 18967 if (ire->ire_type == IRE_CACHE) { 18968 ill = (ill_t *)ire->ire_stq->q_ptr; 18969 re->ipRouteIfIndex.o_length = 18970 ill->ill_name_length == 0 ? 0 : 18971 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 18972 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 18973 re->ipRouteIfIndex.o_length); 18974 } else if (ipif != NULL) { 18975 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 18976 re->ipRouteIfIndex.o_length = 18977 mi_strlen(re->ipRouteIfIndex.o_bytes); 18978 } 18979 re->ipRouteMetric1 = -1; 18980 re->ipRouteMetric2 = -1; 18981 re->ipRouteMetric3 = -1; 18982 re->ipRouteMetric4 = -1; 18983 18984 gw_addr = ire->ire_gateway_addr; 18985 18986 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 18987 re->ipRouteNextHop = ire->ire_src_addr; 18988 else 18989 re->ipRouteNextHop = gw_addr; 18990 /* indirect(4), direct(3), or invalid(2) */ 18991 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 18992 re->ipRouteType = 2; 18993 else 18994 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 18995 re->ipRouteProto = -1; 18996 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 18997 re->ipRouteMask = ire->ire_mask; 18998 re->ipRouteMetric5 = -1; 18999 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19000 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19001 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19002 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19003 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19004 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19005 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19006 re->ipRouteInfo.re_flags = ire->ire_flags; 19007 19008 if (ire->ire_flags & RTF_DYNAMIC) { 19009 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19010 } else { 19011 re->ipRouteInfo.re_ire_type = ire->ire_type; 19012 } 19013 19014 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19015 (char *)re, (int)sizeof (*re))) { 19016 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19017 (uint_t)sizeof (*re))); 19018 } 19019 19020 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19021 iaeptr->iae_routeidx = ird->ird_idx; 19022 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19023 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19024 } 19025 19026 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19027 (char *)iae, sacnt * sizeof (*iae))) { 19028 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19029 (unsigned)(sacnt * sizeof (*iae)))); 19030 } 19031 19032 /* bump route index for next pass */ 19033 ird->ird_idx++; 19034 19035 kmem_free(re, sizeof (*re)); 19036 if (sacnt != 0) 19037 kmem_free(iae, sacnt * sizeof (*iae)); 19038 19039 if (gcgrp != NULL) 19040 rw_exit(&gcgrp->gcgrp_rwlock); 19041 } 19042 19043 /* 19044 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19045 */ 19046 static void 19047 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19048 { 19049 ill_t *ill; 19050 ipif_t *ipif; 19051 mib2_ipv6RouteEntry_t *re; 19052 mib2_ipAttributeEntry_t *iae, *iaeptr; 19053 in6_addr_t gw_addr_v6; 19054 tsol_ire_gw_secattr_t *attrp; 19055 tsol_gc_t *gc = NULL; 19056 tsol_gcgrp_t *gcgrp = NULL; 19057 uint_t sacnt = 0; 19058 int i; 19059 19060 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19061 19062 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19063 return; 19064 19065 if ((attrp = ire->ire_gw_secattr) != NULL) { 19066 mutex_enter(&attrp->igsa_lock); 19067 if ((gc = attrp->igsa_gc) != NULL) { 19068 gcgrp = gc->gc_grp; 19069 ASSERT(gcgrp != NULL); 19070 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19071 sacnt = 1; 19072 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19073 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19074 gc = gcgrp->gcgrp_head; 19075 sacnt = gcgrp->gcgrp_count; 19076 } 19077 mutex_exit(&attrp->igsa_lock); 19078 19079 /* do nothing if there's no gc to report */ 19080 if (gc == NULL) { 19081 ASSERT(sacnt == 0); 19082 if (gcgrp != NULL) { 19083 /* we might as well drop the lock now */ 19084 rw_exit(&gcgrp->gcgrp_rwlock); 19085 gcgrp = NULL; 19086 } 19087 attrp = NULL; 19088 } 19089 19090 ASSERT(gc == NULL || (gcgrp != NULL && 19091 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19092 } 19093 ASSERT(sacnt == 0 || gc != NULL); 19094 19095 if (sacnt != 0 && 19096 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19097 kmem_free(re, sizeof (*re)); 19098 rw_exit(&gcgrp->gcgrp_rwlock); 19099 return; 19100 } 19101 19102 /* 19103 * Return all IRE types for route table... let caller pick and choose 19104 */ 19105 re->ipv6RouteDest = ire->ire_addr_v6; 19106 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19107 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19108 re->ipv6RouteIfIndex.o_length = 0; 19109 ipif = ire->ire_ipif; 19110 if (ire->ire_type == IRE_CACHE) { 19111 ill = (ill_t *)ire->ire_stq->q_ptr; 19112 re->ipv6RouteIfIndex.o_length = 19113 ill->ill_name_length == 0 ? 0 : 19114 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19115 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19116 re->ipv6RouteIfIndex.o_length); 19117 } else if (ipif != NULL) { 19118 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19119 re->ipv6RouteIfIndex.o_length = 19120 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19121 } 19122 19123 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19124 19125 mutex_enter(&ire->ire_lock); 19126 gw_addr_v6 = ire->ire_gateway_addr_v6; 19127 mutex_exit(&ire->ire_lock); 19128 19129 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19130 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19131 else 19132 re->ipv6RouteNextHop = gw_addr_v6; 19133 19134 /* remote(4), local(3), or discard(2) */ 19135 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19136 re->ipv6RouteType = 2; 19137 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19138 re->ipv6RouteType = 3; 19139 else 19140 re->ipv6RouteType = 4; 19141 19142 re->ipv6RouteProtocol = -1; 19143 re->ipv6RoutePolicy = 0; 19144 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19145 re->ipv6RouteNextHopRDI = 0; 19146 re->ipv6RouteWeight = 0; 19147 re->ipv6RouteMetric = 0; 19148 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19149 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19150 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19151 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19152 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19153 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19154 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19155 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19156 19157 if (ire->ire_flags & RTF_DYNAMIC) { 19158 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19159 } else { 19160 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19161 } 19162 19163 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19164 (char *)re, (int)sizeof (*re))) { 19165 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19166 (uint_t)sizeof (*re))); 19167 } 19168 19169 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19170 iaeptr->iae_routeidx = ird->ird_idx; 19171 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19172 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19173 } 19174 19175 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19176 (char *)iae, sacnt * sizeof (*iae))) { 19177 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19178 (unsigned)(sacnt * sizeof (*iae)))); 19179 } 19180 19181 /* bump route index for next pass */ 19182 ird->ird_idx++; 19183 19184 kmem_free(re, sizeof (*re)); 19185 if (sacnt != 0) 19186 kmem_free(iae, sacnt * sizeof (*iae)); 19187 19188 if (gcgrp != NULL) 19189 rw_exit(&gcgrp->gcgrp_rwlock); 19190 } 19191 19192 /* 19193 * ndp_walk routine to create ipv6NetToMediaEntryTable 19194 */ 19195 static int 19196 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19197 { 19198 ill_t *ill; 19199 mib2_ipv6NetToMediaEntry_t ntme; 19200 dl_unitdata_req_t *dl; 19201 19202 ill = nce->nce_ill; 19203 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19204 return (0); 19205 19206 /* 19207 * Neighbor cache entry attached to IRE with on-link 19208 * destination. 19209 */ 19210 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19211 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19212 if ((ill->ill_flags & ILLF_XRESOLV) && 19213 (nce->nce_res_mp != NULL)) { 19214 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19215 ntme.ipv6NetToMediaPhysAddress.o_length = 19216 dl->dl_dest_addr_length; 19217 } else { 19218 ntme.ipv6NetToMediaPhysAddress.o_length = 19219 ill->ill_phys_addr_length; 19220 } 19221 if (nce->nce_res_mp != NULL) { 19222 bcopy((char *)nce->nce_res_mp->b_rptr + 19223 NCE_LL_ADDR_OFFSET(ill), 19224 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19225 ntme.ipv6NetToMediaPhysAddress.o_length); 19226 } else { 19227 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19228 ill->ill_phys_addr_length); 19229 } 19230 /* 19231 * Note: Returns ND_* states. Should be: 19232 * reachable(1), stale(2), delay(3), probe(4), 19233 * invalid(5), unknown(6) 19234 */ 19235 ntme.ipv6NetToMediaState = nce->nce_state; 19236 ntme.ipv6NetToMediaLastUpdated = 0; 19237 19238 /* other(1), dynamic(2), static(3), local(4) */ 19239 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19240 ntme.ipv6NetToMediaType = 4; 19241 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19242 ntme.ipv6NetToMediaType = 1; 19243 } else { 19244 ntme.ipv6NetToMediaType = 2; 19245 } 19246 19247 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19248 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19249 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19250 (uint_t)sizeof (ntme))); 19251 } 19252 return (0); 19253 } 19254 19255 /* 19256 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19257 */ 19258 /* ARGSUSED */ 19259 int 19260 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19261 { 19262 switch (level) { 19263 case MIB2_IP: 19264 case MIB2_ICMP: 19265 switch (name) { 19266 default: 19267 break; 19268 } 19269 return (1); 19270 default: 19271 return (1); 19272 } 19273 } 19274 19275 /* 19276 * When there exists both a 64- and 32-bit counter of a particular type 19277 * (i.e., InReceives), only the 64-bit counters are added. 19278 */ 19279 void 19280 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19281 { 19282 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19283 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19284 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19285 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19286 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19287 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19288 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19289 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19290 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19291 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19292 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19293 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19294 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19295 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19296 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19297 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19298 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19299 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19300 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19301 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19302 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19303 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19304 o2->ipIfStatsInWrongIPVersion); 19305 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19306 o2->ipIfStatsInWrongIPVersion); 19307 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19308 o2->ipIfStatsOutSwitchIPVersion); 19309 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19310 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19311 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19312 o2->ipIfStatsHCInForwDatagrams); 19313 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19314 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19315 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19316 o2->ipIfStatsHCOutForwDatagrams); 19317 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19318 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19319 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19320 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19321 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19322 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19323 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19324 o2->ipIfStatsHCOutMcastOctets); 19325 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19326 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19327 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19328 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19329 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19330 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19331 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19332 } 19333 19334 void 19335 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19336 { 19337 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19338 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19339 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19340 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19341 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19342 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19343 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19344 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19345 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19346 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19347 o2->ipv6IfIcmpInRouterSolicits); 19348 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19349 o2->ipv6IfIcmpInRouterAdvertisements); 19350 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19351 o2->ipv6IfIcmpInNeighborSolicits); 19352 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19353 o2->ipv6IfIcmpInNeighborAdvertisements); 19354 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19355 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19356 o2->ipv6IfIcmpInGroupMembQueries); 19357 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19358 o2->ipv6IfIcmpInGroupMembResponses); 19359 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19360 o2->ipv6IfIcmpInGroupMembReductions); 19361 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19362 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19363 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19364 o2->ipv6IfIcmpOutDestUnreachs); 19365 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19366 o2->ipv6IfIcmpOutAdminProhibs); 19367 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19368 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19369 o2->ipv6IfIcmpOutParmProblems); 19370 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19371 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19372 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19373 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19374 o2->ipv6IfIcmpOutRouterSolicits); 19375 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19376 o2->ipv6IfIcmpOutRouterAdvertisements); 19377 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19378 o2->ipv6IfIcmpOutNeighborSolicits); 19379 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19380 o2->ipv6IfIcmpOutNeighborAdvertisements); 19381 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19382 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19383 o2->ipv6IfIcmpOutGroupMembQueries); 19384 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19385 o2->ipv6IfIcmpOutGroupMembResponses); 19386 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19387 o2->ipv6IfIcmpOutGroupMembReductions); 19388 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19389 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19390 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19391 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19392 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19393 o2->ipv6IfIcmpInBadNeighborSolicitations); 19394 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19395 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19396 o2->ipv6IfIcmpInGroupMembTotal); 19397 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19398 o2->ipv6IfIcmpInGroupMembBadQueries); 19399 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19400 o2->ipv6IfIcmpInGroupMembBadReports); 19401 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19402 o2->ipv6IfIcmpInGroupMembOurReports); 19403 } 19404 19405 /* 19406 * Called before the options are updated to check if this packet will 19407 * be source routed from here. 19408 * This routine assumes that the options are well formed i.e. that they 19409 * have already been checked. 19410 */ 19411 static boolean_t 19412 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 19413 { 19414 ipoptp_t opts; 19415 uchar_t *opt; 19416 uint8_t optval; 19417 uint8_t optlen; 19418 ipaddr_t dst; 19419 ire_t *ire; 19420 19421 if (IS_SIMPLE_IPH(ipha)) { 19422 ip2dbg(("not source routed\n")); 19423 return (B_FALSE); 19424 } 19425 dst = ipha->ipha_dst; 19426 for (optval = ipoptp_first(&opts, ipha); 19427 optval != IPOPT_EOL; 19428 optval = ipoptp_next(&opts)) { 19429 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19430 opt = opts.ipoptp_cur; 19431 optlen = opts.ipoptp_len; 19432 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19433 optval, optlen)); 19434 switch (optval) { 19435 uint32_t off; 19436 case IPOPT_SSRR: 19437 case IPOPT_LSRR: 19438 /* 19439 * If dst is one of our addresses and there are some 19440 * entries left in the source route return (true). 19441 */ 19442 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19443 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19444 if (ire == NULL) { 19445 ip2dbg(("ip_source_routed: not next" 19446 " source route 0x%x\n", 19447 ntohl(dst))); 19448 return (B_FALSE); 19449 } 19450 ire_refrele(ire); 19451 off = opt[IPOPT_OFFSET]; 19452 off--; 19453 if (optlen < IP_ADDR_LEN || 19454 off > optlen - IP_ADDR_LEN) { 19455 /* End of source route */ 19456 ip1dbg(("ip_source_routed: end of SR\n")); 19457 return (B_FALSE); 19458 } 19459 return (B_TRUE); 19460 } 19461 } 19462 ip2dbg(("not source routed\n")); 19463 return (B_FALSE); 19464 } 19465 19466 /* 19467 * Check if the packet contains any source route. 19468 */ 19469 static boolean_t 19470 ip_source_route_included(ipha_t *ipha) 19471 { 19472 ipoptp_t opts; 19473 uint8_t optval; 19474 19475 if (IS_SIMPLE_IPH(ipha)) 19476 return (B_FALSE); 19477 for (optval = ipoptp_first(&opts, ipha); 19478 optval != IPOPT_EOL; 19479 optval = ipoptp_next(&opts)) { 19480 switch (optval) { 19481 case IPOPT_SSRR: 19482 case IPOPT_LSRR: 19483 return (B_TRUE); 19484 } 19485 } 19486 return (B_FALSE); 19487 } 19488 19489 /* 19490 * Called when the IRE expiration timer fires. 19491 */ 19492 void 19493 ip_trash_timer_expire(void *args) 19494 { 19495 int flush_flag = 0; 19496 ire_expire_arg_t iea; 19497 ip_stack_t *ipst = (ip_stack_t *)args; 19498 19499 iea.iea_ipst = ipst; /* No netstack_hold */ 19500 19501 /* 19502 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19503 * This lock makes sure that a new invocation of this function 19504 * that occurs due to an almost immediate timer firing will not 19505 * progress beyond this point until the current invocation is done 19506 */ 19507 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19508 ipst->ips_ip_ire_expire_id = 0; 19509 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19510 19511 /* Periodic timer */ 19512 if (ipst->ips_ip_ire_arp_time_elapsed >= 19513 ipst->ips_ip_ire_arp_interval) { 19514 /* 19515 * Remove all IRE_CACHE entries since they might 19516 * contain arp information. 19517 */ 19518 flush_flag |= FLUSH_ARP_TIME; 19519 ipst->ips_ip_ire_arp_time_elapsed = 0; 19520 IP_STAT(ipst, ip_ire_arp_timer_expired); 19521 } 19522 if (ipst->ips_ip_ire_rd_time_elapsed >= 19523 ipst->ips_ip_ire_redir_interval) { 19524 /* Remove all redirects */ 19525 flush_flag |= FLUSH_REDIRECT_TIME; 19526 ipst->ips_ip_ire_rd_time_elapsed = 0; 19527 IP_STAT(ipst, ip_ire_redirect_timer_expired); 19528 } 19529 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 19530 ipst->ips_ip_ire_pathmtu_interval) { 19531 /* Increase path mtu */ 19532 flush_flag |= FLUSH_MTU_TIME; 19533 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 19534 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 19535 } 19536 19537 /* 19538 * Optimize for the case when there are no redirects in the 19539 * ftable, that is, no need to walk the ftable in that case. 19540 */ 19541 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19542 iea.iea_flush_flag = flush_flag; 19543 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19544 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 19545 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 19546 NULL, ALL_ZONES, ipst); 19547 } 19548 if ((flush_flag & FLUSH_REDIRECT_TIME) && 19549 ipst->ips_ip_redirect_cnt > 0) { 19550 iea.iea_flush_flag = flush_flag; 19551 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19552 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 19553 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 19554 } 19555 if (flush_flag & FLUSH_MTU_TIME) { 19556 /* 19557 * Walk all IPv6 IRE's and update them 19558 * Note that ARP and redirect timers are not 19559 * needed since NUD handles stale entries. 19560 */ 19561 flush_flag = FLUSH_MTU_TIME; 19562 iea.iea_flush_flag = flush_flag; 19563 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 19564 ALL_ZONES, ipst); 19565 } 19566 19567 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 19568 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 19569 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 19570 19571 /* 19572 * Hold the lock to serialize timeout calls and prevent 19573 * stale values in ip_ire_expire_id. Otherwise it is possible 19574 * for the timer to fire and a new invocation of this function 19575 * to start before the return value of timeout has been stored 19576 * in ip_ire_expire_id by the current invocation. 19577 */ 19578 mutex_enter(&ipst->ips_ip_trash_timer_lock); 19579 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 19580 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 19581 mutex_exit(&ipst->ips_ip_trash_timer_lock); 19582 } 19583 19584 /* 19585 * Called by the memory allocator subsystem directly, when the system 19586 * is running low on memory. 19587 */ 19588 /* ARGSUSED */ 19589 void 19590 ip_trash_ire_reclaim(void *args) 19591 { 19592 netstack_handle_t nh; 19593 netstack_t *ns; 19594 19595 netstack_next_init(&nh); 19596 while ((ns = netstack_next(&nh)) != NULL) { 19597 ip_trash_ire_reclaim_stack(ns->netstack_ip); 19598 netstack_rele(ns); 19599 } 19600 netstack_next_fini(&nh); 19601 } 19602 19603 static void 19604 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 19605 { 19606 ire_cache_count_t icc; 19607 ire_cache_reclaim_t icr; 19608 ncc_cache_count_t ncc; 19609 nce_cache_reclaim_t ncr; 19610 uint_t delete_cnt; 19611 /* 19612 * Memory reclaim call back. 19613 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19614 * Then, with a target of freeing 1/Nth of IRE_CACHE 19615 * entries, determine what fraction to free for 19616 * each category of IRE_CACHE entries giving absolute priority 19617 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19618 * entry will be freed unless all offlink entries are freed). 19619 */ 19620 icc.icc_total = 0; 19621 icc.icc_unused = 0; 19622 icc.icc_offlink = 0; 19623 icc.icc_pmtu = 0; 19624 icc.icc_onlink = 0; 19625 ire_walk(ire_cache_count, (char *)&icc, ipst); 19626 19627 /* 19628 * Free NCEs for IPv6 like the onlink ires. 19629 */ 19630 ncc.ncc_total = 0; 19631 ncc.ncc_host = 0; 19632 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 19633 19634 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19635 icc.icc_pmtu + icc.icc_onlink); 19636 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 19637 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 19638 if (delete_cnt == 0) 19639 return; 19640 IP_STAT(ipst, ip_trash_ire_reclaim_success); 19641 /* Always delete all unused offlink entries */ 19642 icr.icr_ipst = ipst; 19643 icr.icr_unused = 1; 19644 if (delete_cnt <= icc.icc_unused) { 19645 /* 19646 * Only need to free unused entries. In other words, 19647 * there are enough unused entries to free to meet our 19648 * target number of freed ire cache entries. 19649 */ 19650 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19651 ncr.ncr_host = 0; 19652 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19653 /* 19654 * Only need to free unused entries, plus a fraction of offlink 19655 * entries. It follows from the first if statement that 19656 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19657 */ 19658 delete_cnt -= icc.icc_unused; 19659 /* Round up # deleted by truncating fraction */ 19660 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19661 icr.icr_pmtu = icr.icr_onlink = 0; 19662 ncr.ncr_host = 0; 19663 } else if (delete_cnt <= 19664 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19665 /* 19666 * Free all unused and offlink entries, plus a fraction of 19667 * pmtu entries. It follows from the previous if statement 19668 * that icc_pmtu is non-zero, and that 19669 * delete_cnt != icc_unused + icc_offlink. 19670 */ 19671 icr.icr_offlink = 1; 19672 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19673 /* Round up # deleted by truncating fraction */ 19674 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19675 icr.icr_onlink = 0; 19676 ncr.ncr_host = 0; 19677 } else { 19678 /* 19679 * Free all unused, offlink, and pmtu entries, plus a fraction 19680 * of onlink entries. If we're here, then we know that 19681 * icc_onlink is non-zero, and that 19682 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19683 */ 19684 icr.icr_offlink = icr.icr_pmtu = 1; 19685 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19686 icc.icc_pmtu; 19687 /* Round up # deleted by truncating fraction */ 19688 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19689 /* Using the same delete fraction as for onlink IREs */ 19690 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19691 } 19692 #ifdef DEBUG 19693 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19694 "fractions %d/%d/%d/%d\n", 19695 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 19696 icc.icc_unused, icc.icc_offlink, 19697 icc.icc_pmtu, icc.icc_onlink, 19698 icr.icr_unused, icr.icr_offlink, 19699 icr.icr_pmtu, icr.icr_onlink)); 19700 #endif 19701 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 19702 if (ncr.ncr_host != 0) 19703 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19704 (uchar_t *)&ncr, ipst); 19705 #ifdef DEBUG 19706 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19707 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19708 ire_walk(ire_cache_count, (char *)&icc, ipst); 19709 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19710 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19711 icc.icc_pmtu, icc.icc_onlink)); 19712 #endif 19713 } 19714 19715 /* 19716 * ip_unbind is called when a copy of an unbind request is received from the 19717 * upper level protocol. We remove this conn from any fanout hash list it is 19718 * on, and zero out the bind information. No reply is expected up above. 19719 */ 19720 mblk_t * 19721 ip_unbind(queue_t *q, mblk_t *mp) 19722 { 19723 conn_t *connp = Q_TO_CONN(q); 19724 19725 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19726 19727 if (is_system_labeled() && connp->conn_anon_port) { 19728 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19729 connp->conn_mlp_type, connp->conn_ulp, 19730 ntohs(connp->conn_lport), B_FALSE); 19731 connp->conn_anon_port = 0; 19732 } 19733 connp->conn_mlp_type = mlptSingle; 19734 19735 ipcl_hash_remove(connp); 19736 19737 ASSERT(mp->b_cont == NULL); 19738 /* 19739 * Convert mp into a T_OK_ACK 19740 */ 19741 mp = mi_tpi_ok_ack_alloc(mp); 19742 19743 /* 19744 * should not happen in practice... T_OK_ACK is smaller than the 19745 * original message. 19746 */ 19747 if (mp == NULL) 19748 return (NULL); 19749 19750 /* 19751 * Don't bzero the ports if its TCP since TCP still needs the 19752 * lport to remove it from its own bind hash. TCP will do the 19753 * cleanup. 19754 */ 19755 if (!IPCL_IS_TCP(connp)) 19756 bzero(&connp->u_port, sizeof (connp->u_port)); 19757 19758 return (mp); 19759 } 19760 19761 /* 19762 * Write side put procedure. Outbound data, IOCTLs, responses from 19763 * resolvers, etc, come down through here. 19764 * 19765 * arg2 is always a queue_t *. 19766 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19767 * the zoneid. 19768 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19769 */ 19770 void 19771 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19772 { 19773 ip_output_options(arg, mp, arg2, caller, &zero_info); 19774 } 19775 19776 void 19777 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 19778 ip_opt_info_t *infop) 19779 { 19780 conn_t *connp = NULL; 19781 queue_t *q = (queue_t *)arg2; 19782 ipha_t *ipha; 19783 #define rptr ((uchar_t *)ipha) 19784 ire_t *ire = NULL; 19785 ire_t *sctp_ire = NULL; 19786 uint32_t v_hlen_tos_len; 19787 ipaddr_t dst; 19788 mblk_t *first_mp = NULL; 19789 boolean_t mctl_present; 19790 ipsec_out_t *io; 19791 int match_flags; 19792 ill_t *attach_ill = NULL; 19793 /* Bind to IPIF_NOFAILOVER ill etc. */ 19794 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19795 ipif_t *dst_ipif; 19796 boolean_t multirt_need_resolve = B_FALSE; 19797 mblk_t *copy_mp = NULL; 19798 int err; 19799 zoneid_t zoneid; 19800 int adjust; 19801 uint16_t iplen; 19802 boolean_t need_decref = B_FALSE; 19803 boolean_t ignore_dontroute = B_FALSE; 19804 boolean_t ignore_nexthop = B_FALSE; 19805 boolean_t ip_nexthop = B_FALSE; 19806 ipaddr_t nexthop_addr; 19807 ip_stack_t *ipst; 19808 19809 #ifdef _BIG_ENDIAN 19810 #define V_HLEN (v_hlen_tos_len >> 24) 19811 #else 19812 #define V_HLEN (v_hlen_tos_len & 0xFF) 19813 #endif 19814 19815 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19816 "ip_wput_start: q %p", q); 19817 19818 /* 19819 * ip_wput fast path 19820 */ 19821 19822 /* is packet from ARP ? */ 19823 if (q->q_next != NULL) { 19824 zoneid = (zoneid_t)(uintptr_t)arg; 19825 goto qnext; 19826 } 19827 19828 connp = (conn_t *)arg; 19829 ASSERT(connp != NULL); 19830 zoneid = connp->conn_zoneid; 19831 ipst = connp->conn_netstack->netstack_ip; 19832 19833 /* is queue flow controlled? */ 19834 if ((q->q_first != NULL || connp->conn_draining) && 19835 (caller == IP_WPUT)) { 19836 ASSERT(!need_decref); 19837 (void) putq(q, mp); 19838 return; 19839 } 19840 19841 /* Multidata transmit? */ 19842 if (DB_TYPE(mp) == M_MULTIDATA) { 19843 /* 19844 * We should never get here, since all Multidata messages 19845 * originating from tcp should have been directed over to 19846 * tcp_multisend() in the first place. 19847 */ 19848 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 19849 freemsg(mp); 19850 return; 19851 } else if (DB_TYPE(mp) != M_DATA) 19852 goto notdata; 19853 19854 if (mp->b_flag & MSGHASREF) { 19855 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19856 mp->b_flag &= ~MSGHASREF; 19857 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19858 need_decref = B_TRUE; 19859 } 19860 ipha = (ipha_t *)mp->b_rptr; 19861 19862 /* is IP header non-aligned or mblk smaller than basic IP header */ 19863 #ifndef SAFETY_BEFORE_SPEED 19864 if (!OK_32PTR(rptr) || 19865 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19866 goto hdrtoosmall; 19867 #endif 19868 19869 ASSERT(OK_32PTR(ipha)); 19870 19871 /* 19872 * This function assumes that mp points to an IPv4 packet. If it's the 19873 * wrong version, we'll catch it again in ip_output_v6. 19874 * 19875 * Note that this is *only* locally-generated output here, and never 19876 * forwarded data, and that we need to deal only with transports that 19877 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19878 * label.) 19879 */ 19880 if (is_system_labeled() && 19881 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19882 !connp->conn_ulp_labeled) { 19883 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19884 connp->conn_mac_exempt, ipst); 19885 ipha = (ipha_t *)mp->b_rptr; 19886 if (err != 0) { 19887 first_mp = mp; 19888 if (err == EINVAL) 19889 goto icmp_parameter_problem; 19890 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19891 goto discard_pkt; 19892 } 19893 iplen = ntohs(ipha->ipha_length) + adjust; 19894 ipha->ipha_length = htons(iplen); 19895 } 19896 19897 ASSERT(infop != NULL); 19898 19899 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 19900 /* 19901 * IP_PKTINFO ancillary option is present. 19902 * IPCL_ZONEID is used to honor IP_ALLZONES option which 19903 * allows using address of any zone as the source address. 19904 */ 19905 ire = ire_ctable_lookup(ipha->ipha_src, 0, 19906 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 19907 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 19908 if (ire == NULL) 19909 goto drop_pkt; 19910 ire_refrele(ire); 19911 ire = NULL; 19912 } 19913 19914 /* 19915 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over 19916 * ill index passed in IP_PKTINFO. 19917 */ 19918 if (infop->ip_opt_ill_index != 0 && 19919 connp->conn_xmit_if_ill == NULL && 19920 connp->conn_nofailover_ill == NULL) { 19921 19922 xmit_ill = ill_lookup_on_ifindex( 19923 infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL, 19924 ipst); 19925 19926 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 19927 goto drop_pkt; 19928 /* 19929 * check that there is an ipif belonging 19930 * to our zone. IPCL_ZONEID is not used because 19931 * IP_ALLZONES option is valid only when the ill is 19932 * accessible from all zones i.e has a valid ipif in 19933 * all zones. 19934 */ 19935 if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) { 19936 goto drop_pkt; 19937 } 19938 } 19939 19940 /* 19941 * If there is a policy, try to attach an ipsec_out in 19942 * the front. At the end, first_mp either points to a 19943 * M_DATA message or IPSEC_OUT message linked to a 19944 * M_DATA message. We have to do it now as we might 19945 * lose the "conn" if we go through ip_newroute. 19946 */ 19947 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 19948 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 19949 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 19950 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 19951 if (need_decref) 19952 CONN_DEC_REF(connp); 19953 return; 19954 } else { 19955 ASSERT(mp->b_datap->db_type == M_CTL); 19956 first_mp = mp; 19957 mp = mp->b_cont; 19958 mctl_present = B_TRUE; 19959 } 19960 } else { 19961 first_mp = mp; 19962 mctl_present = B_FALSE; 19963 } 19964 19965 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 19966 19967 /* is wrong version or IP options present */ 19968 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 19969 goto version_hdrlen_check; 19970 dst = ipha->ipha_dst; 19971 19972 if (connp->conn_nofailover_ill != NULL) { 19973 attach_ill = conn_get_held_ill(connp, 19974 &connp->conn_nofailover_ill, &err); 19975 if (err == ILL_LOOKUP_FAILED) { 19976 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 19977 if (need_decref) 19978 CONN_DEC_REF(connp); 19979 freemsg(first_mp); 19980 return; 19981 } 19982 } 19983 19984 19985 /* is packet multicast? */ 19986 if (CLASSD(dst)) 19987 goto multicast; 19988 19989 /* 19990 * If xmit_ill is set above due to index passed in ip_pkt_info. It 19991 * takes precedence over conn_dontroute and conn_nexthop_set 19992 */ 19993 if (xmit_ill != NULL) { 19994 goto send_from_ill; 19995 } 19996 19997 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 19998 (connp->conn_nexthop_set)) { 19999 /* 20000 * If the destination is a broadcast or a loopback 20001 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20002 * through the standard path. But in the case of local 20003 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20004 * the standard path not IP_XMIT_IF. 20005 */ 20006 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20007 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20008 (ire->ire_type != IRE_LOOPBACK))) { 20009 if ((connp->conn_dontroute || 20010 connp->conn_nexthop_set) && (ire != NULL) && 20011 (ire->ire_type == IRE_LOCAL)) 20012 goto standard_path; 20013 20014 if (ire != NULL) { 20015 ire_refrele(ire); 20016 /* No more access to ire */ 20017 ire = NULL; 20018 } 20019 /* 20020 * bypass routing checks and go directly to 20021 * interface. 20022 */ 20023 if (connp->conn_dontroute) { 20024 goto dontroute; 20025 } else if (connp->conn_nexthop_set) { 20026 ip_nexthop = B_TRUE; 20027 nexthop_addr = connp->conn_nexthop_v4; 20028 goto send_from_ill; 20029 } 20030 20031 /* 20032 * If IP_XMIT_IF socket option is set, 20033 * then we allow unicast and multicast 20034 * packets to go through the ill. It is 20035 * quite possible that the destination 20036 * is not in the ire cache table and we 20037 * do not want to go to ip_newroute() 20038 * instead we call ip_newroute_ipif. 20039 */ 20040 xmit_ill = conn_get_held_ill(connp, 20041 &connp->conn_xmit_if_ill, &err); 20042 if (err == ILL_LOOKUP_FAILED) { 20043 BUMP_MIB(&ipst->ips_ip_mib, 20044 ipIfStatsOutDiscards); 20045 if (attach_ill != NULL) 20046 ill_refrele(attach_ill); 20047 if (need_decref) 20048 CONN_DEC_REF(connp); 20049 freemsg(first_mp); 20050 return; 20051 } 20052 goto send_from_ill; 20053 } 20054 standard_path: 20055 /* Must be a broadcast, a loopback or a local ire */ 20056 if (ire != NULL) { 20057 ire_refrele(ire); 20058 /* No more access to ire */ 20059 ire = NULL; 20060 } 20061 } 20062 20063 if (attach_ill != NULL) 20064 goto send_from_ill; 20065 20066 /* 20067 * We cache IRE_CACHEs to avoid lookups. We don't do 20068 * this for the tcp global queue and listen end point 20069 * as it does not really have a real destination to 20070 * talk to. This is also true for SCTP. 20071 */ 20072 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20073 !connp->conn_fully_bound) { 20074 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20075 if (ire == NULL) 20076 goto noirefound; 20077 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20078 "ip_wput_end: q %p (%S)", q, "end"); 20079 20080 /* 20081 * Check if the ire has the RTF_MULTIRT flag, inherited 20082 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20083 */ 20084 if (ire->ire_flags & RTF_MULTIRT) { 20085 20086 /* 20087 * Force the TTL of multirouted packets if required. 20088 * The TTL of such packets is bounded by the 20089 * ip_multirt_ttl ndd variable. 20090 */ 20091 if ((ipst->ips_ip_multirt_ttl > 0) && 20092 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20093 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20094 "(was %d), dst 0x%08x\n", 20095 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20096 ntohl(ire->ire_addr))); 20097 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20098 } 20099 /* 20100 * We look at this point if there are pending 20101 * unresolved routes. ire_multirt_resolvable() 20102 * checks in O(n) that all IRE_OFFSUBNET ire 20103 * entries for the packet's destination and 20104 * flagged RTF_MULTIRT are currently resolved. 20105 * If some remain unresolved, we make a copy 20106 * of the current message. It will be used 20107 * to initiate additional route resolutions. 20108 */ 20109 multirt_need_resolve = 20110 ire_multirt_need_resolve(ire->ire_addr, 20111 MBLK_GETLABEL(first_mp), ipst); 20112 ip2dbg(("ip_wput[TCP]: ire %p, " 20113 "multirt_need_resolve %d, first_mp %p\n", 20114 (void *)ire, multirt_need_resolve, 20115 (void *)first_mp)); 20116 if (multirt_need_resolve) { 20117 copy_mp = copymsg(first_mp); 20118 if (copy_mp != NULL) { 20119 MULTIRT_DEBUG_TAG(copy_mp); 20120 } 20121 } 20122 } 20123 20124 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20125 20126 /* 20127 * Try to resolve another multiroute if 20128 * ire_multirt_need_resolve() deemed it necessary. 20129 */ 20130 if (copy_mp != NULL) 20131 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20132 if (need_decref) 20133 CONN_DEC_REF(connp); 20134 return; 20135 } 20136 20137 /* 20138 * Access to conn_ire_cache. (protected by conn_lock) 20139 * 20140 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20141 * the ire bucket lock here to check for CONDEMNED as it is okay to 20142 * send a packet or two with the IRE_CACHE that is going away. 20143 * Access to the ire requires an ire refhold on the ire prior to 20144 * its use since an interface unplumb thread may delete the cached 20145 * ire and release the refhold at any time. 20146 * 20147 * Caching an ire in the conn_ire_cache 20148 * 20149 * o Caching an ire pointer in the conn requires a strict check for 20150 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20151 * ires before cleaning up the conns. So the caching of an ire pointer 20152 * in the conn is done after making sure under the bucket lock that the 20153 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20154 * caching an ire after the unplumb thread has cleaned up the conn. 20155 * If the conn does not send a packet subsequently the unplumb thread 20156 * will be hanging waiting for the ire count to drop to zero. 20157 * 20158 * o We also need to atomically test for a null conn_ire_cache and 20159 * set the conn_ire_cache under the the protection of the conn_lock 20160 * to avoid races among concurrent threads trying to simultaneously 20161 * cache an ire in the conn_ire_cache. 20162 */ 20163 mutex_enter(&connp->conn_lock); 20164 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20165 20166 if (ire != NULL && ire->ire_addr == dst && 20167 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20168 20169 IRE_REFHOLD(ire); 20170 mutex_exit(&connp->conn_lock); 20171 20172 } else { 20173 boolean_t cached = B_FALSE; 20174 connp->conn_ire_cache = NULL; 20175 mutex_exit(&connp->conn_lock); 20176 /* Release the old ire */ 20177 if (ire != NULL && sctp_ire == NULL) 20178 IRE_REFRELE_NOTR(ire); 20179 20180 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20181 if (ire == NULL) 20182 goto noirefound; 20183 IRE_REFHOLD_NOTR(ire); 20184 20185 mutex_enter(&connp->conn_lock); 20186 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20187 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20188 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20189 if (connp->conn_ulp == IPPROTO_TCP) 20190 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20191 connp->conn_ire_cache = ire; 20192 cached = B_TRUE; 20193 } 20194 rw_exit(&ire->ire_bucket->irb_lock); 20195 } 20196 mutex_exit(&connp->conn_lock); 20197 20198 /* 20199 * We can continue to use the ire but since it was 20200 * not cached, we should drop the extra reference. 20201 */ 20202 if (!cached) 20203 IRE_REFRELE_NOTR(ire); 20204 } 20205 20206 20207 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20208 "ip_wput_end: q %p (%S)", q, "end"); 20209 20210 /* 20211 * Check if the ire has the RTF_MULTIRT flag, inherited 20212 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20213 */ 20214 if (ire->ire_flags & RTF_MULTIRT) { 20215 20216 /* 20217 * Force the TTL of multirouted packets if required. 20218 * The TTL of such packets is bounded by the 20219 * ip_multirt_ttl ndd variable. 20220 */ 20221 if ((ipst->ips_ip_multirt_ttl > 0) && 20222 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20223 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20224 "(was %d), dst 0x%08x\n", 20225 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20226 ntohl(ire->ire_addr))); 20227 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20228 } 20229 20230 /* 20231 * At this point, we check to see if there are any pending 20232 * unresolved routes. ire_multirt_resolvable() 20233 * checks in O(n) that all IRE_OFFSUBNET ire 20234 * entries for the packet's destination and 20235 * flagged RTF_MULTIRT are currently resolved. 20236 * If some remain unresolved, we make a copy 20237 * of the current message. It will be used 20238 * to initiate additional route resolutions. 20239 */ 20240 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20241 MBLK_GETLABEL(first_mp), ipst); 20242 ip2dbg(("ip_wput[not TCP]: ire %p, " 20243 "multirt_need_resolve %d, first_mp %p\n", 20244 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20245 if (multirt_need_resolve) { 20246 copy_mp = copymsg(first_mp); 20247 if (copy_mp != NULL) { 20248 MULTIRT_DEBUG_TAG(copy_mp); 20249 } 20250 } 20251 } 20252 20253 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20254 20255 /* 20256 * Try to resolve another multiroute if 20257 * ire_multirt_resolvable() deemed it necessary 20258 */ 20259 if (copy_mp != NULL) 20260 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20261 if (need_decref) 20262 CONN_DEC_REF(connp); 20263 return; 20264 20265 qnext: 20266 /* 20267 * Upper Level Protocols pass down complete IP datagrams 20268 * as M_DATA messages. Everything else is a sideshow. 20269 * 20270 * 1) We could be re-entering ip_wput because of ip_neworute 20271 * in which case we could have a IPSEC_OUT message. We 20272 * need to pass through ip_wput like other datagrams and 20273 * hence cannot branch to ip_wput_nondata. 20274 * 20275 * 2) ARP, AH, ESP, and other clients who are on the module 20276 * instance of IP stream, give us something to deal with. 20277 * We will handle AH and ESP here and rest in ip_wput_nondata. 20278 * 20279 * 3) ICMP replies also could come here. 20280 */ 20281 ipst = ILLQ_TO_IPST(q); 20282 20283 if (DB_TYPE(mp) != M_DATA) { 20284 notdata: 20285 if (DB_TYPE(mp) == M_CTL) { 20286 /* 20287 * M_CTL messages are used by ARP, AH and ESP to 20288 * communicate with IP. We deal with IPSEC_IN and 20289 * IPSEC_OUT here. ip_wput_nondata handles other 20290 * cases. 20291 */ 20292 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20293 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20294 first_mp = mp->b_cont; 20295 first_mp->b_flag &= ~MSGHASREF; 20296 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20297 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20298 CONN_DEC_REF(connp); 20299 connp = NULL; 20300 } 20301 if (ii->ipsec_info_type == IPSEC_IN) { 20302 /* 20303 * Either this message goes back to 20304 * IPSEC for further processing or to 20305 * ULP after policy checks. 20306 */ 20307 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20308 return; 20309 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20310 io = (ipsec_out_t *)ii; 20311 if (io->ipsec_out_proc_begin) { 20312 /* 20313 * IPSEC processing has already started. 20314 * Complete it. 20315 * IPQoS notes: We don't care what is 20316 * in ipsec_out_ill_index since this 20317 * won't be processed for IPQoS policies 20318 * in ipsec_out_process. 20319 */ 20320 ipsec_out_process(q, mp, NULL, 20321 io->ipsec_out_ill_index); 20322 return; 20323 } else { 20324 connp = (q->q_next != NULL) ? 20325 NULL : Q_TO_CONN(q); 20326 first_mp = mp; 20327 mp = mp->b_cont; 20328 mctl_present = B_TRUE; 20329 } 20330 zoneid = io->ipsec_out_zoneid; 20331 ASSERT(zoneid != ALL_ZONES); 20332 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20333 /* 20334 * It's an IPsec control message requesting 20335 * an SADB update to be sent to the IPsec 20336 * hardware acceleration capable ills. 20337 */ 20338 ipsec_ctl_t *ipsec_ctl = 20339 (ipsec_ctl_t *)mp->b_rptr; 20340 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20341 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20342 mblk_t *cmp = mp->b_cont; 20343 20344 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20345 ASSERT(cmp != NULL); 20346 20347 freeb(mp); 20348 ill_ipsec_capab_send_all(satype, cmp, sa, 20349 ipst->ips_netstack); 20350 return; 20351 } else { 20352 /* 20353 * This must be ARP or special TSOL signaling. 20354 */ 20355 ip_wput_nondata(NULL, q, mp, NULL); 20356 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20357 "ip_wput_end: q %p (%S)", q, "nondata"); 20358 return; 20359 } 20360 } else { 20361 /* 20362 * This must be non-(ARP/AH/ESP) messages. 20363 */ 20364 ASSERT(!need_decref); 20365 ip_wput_nondata(NULL, q, mp, NULL); 20366 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20367 "ip_wput_end: q %p (%S)", q, "nondata"); 20368 return; 20369 } 20370 } else { 20371 first_mp = mp; 20372 mctl_present = B_FALSE; 20373 } 20374 20375 ASSERT(first_mp != NULL); 20376 /* 20377 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20378 * to make sure that this packet goes out on the same interface it 20379 * came in. We handle that here. 20380 */ 20381 if (mctl_present) { 20382 uint_t ifindex; 20383 20384 io = (ipsec_out_t *)first_mp->b_rptr; 20385 if (io->ipsec_out_attach_if || io->ipsec_out_ip_nexthop) { 20386 /* 20387 * We may have lost the conn context if we are 20388 * coming here from ip_newroute(). Copy the 20389 * nexthop information. 20390 */ 20391 if (io->ipsec_out_ip_nexthop) { 20392 ip_nexthop = B_TRUE; 20393 nexthop_addr = io->ipsec_out_nexthop_addr; 20394 20395 ipha = (ipha_t *)mp->b_rptr; 20396 dst = ipha->ipha_dst; 20397 goto send_from_ill; 20398 } else { 20399 ASSERT(io->ipsec_out_ill_index != 0); 20400 ifindex = io->ipsec_out_ill_index; 20401 attach_ill = ill_lookup_on_ifindex(ifindex, 20402 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20403 if (attach_ill == NULL) { 20404 ASSERT(xmit_ill == NULL); 20405 ip1dbg(("ip_output: bad ifindex for " 20406 "(BIND TO IPIF_NOFAILOVER) %d\n", 20407 ifindex)); 20408 freemsg(first_mp); 20409 BUMP_MIB(&ipst->ips_ip_mib, 20410 ipIfStatsOutDiscards); 20411 ASSERT(!need_decref); 20412 return; 20413 } 20414 } 20415 } 20416 } 20417 20418 ASSERT(xmit_ill == NULL); 20419 20420 /* We have a complete IP datagram heading outbound. */ 20421 ipha = (ipha_t *)mp->b_rptr; 20422 20423 #ifndef SPEED_BEFORE_SAFETY 20424 /* 20425 * Make sure we have a full-word aligned message and that at least 20426 * a simple IP header is accessible in the first message. If not, 20427 * try a pullup. 20428 */ 20429 if (!OK_32PTR(rptr) || 20430 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20431 hdrtoosmall: 20432 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20433 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20434 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20435 if (first_mp == NULL) 20436 first_mp = mp; 20437 goto discard_pkt; 20438 } 20439 20440 /* This function assumes that mp points to an IPv4 packet. */ 20441 if (is_system_labeled() && q->q_next == NULL && 20442 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20443 !connp->conn_ulp_labeled) { 20444 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20445 &adjust, connp->conn_mac_exempt, ipst); 20446 ipha = (ipha_t *)mp->b_rptr; 20447 if (first_mp != NULL) 20448 first_mp->b_cont = mp; 20449 if (err != 0) { 20450 if (first_mp == NULL) 20451 first_mp = mp; 20452 if (err == EINVAL) 20453 goto icmp_parameter_problem; 20454 ip2dbg(("ip_wput: label check failed (%d)\n", 20455 err)); 20456 goto discard_pkt; 20457 } 20458 iplen = ntohs(ipha->ipha_length) + adjust; 20459 ipha->ipha_length = htons(iplen); 20460 } 20461 20462 ipha = (ipha_t *)mp->b_rptr; 20463 if (first_mp == NULL) { 20464 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20465 /* 20466 * If we got here because of "goto hdrtoosmall" 20467 * We need to attach a IPSEC_OUT. 20468 */ 20469 if (connp->conn_out_enforce_policy) { 20470 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 20471 NULL, ipha->ipha_protocol, 20472 ipst->ips_netstack)) == NULL)) { 20473 BUMP_MIB(&ipst->ips_ip_mib, 20474 ipIfStatsOutDiscards); 20475 if (need_decref) 20476 CONN_DEC_REF(connp); 20477 return; 20478 } else { 20479 ASSERT(mp->b_datap->db_type == M_CTL); 20480 first_mp = mp; 20481 mp = mp->b_cont; 20482 mctl_present = B_TRUE; 20483 } 20484 } else { 20485 first_mp = mp; 20486 mctl_present = B_FALSE; 20487 } 20488 } 20489 } 20490 #endif 20491 20492 /* Most of the code below is written for speed, not readability */ 20493 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20494 20495 /* 20496 * If ip_newroute() fails, we're going to need a full 20497 * header for the icmp wraparound. 20498 */ 20499 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20500 uint_t v_hlen; 20501 version_hdrlen_check: 20502 ASSERT(first_mp != NULL); 20503 v_hlen = V_HLEN; 20504 /* 20505 * siphon off IPv6 packets coming down from transport 20506 * layer modules here. 20507 * Note: high-order bit carries NUD reachability confirmation 20508 */ 20509 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20510 /* 20511 * XXX implement a IPv4 and IPv6 packet counter per 20512 * conn and switch when ratio exceeds e.g. 10:1 20513 */ 20514 #ifdef notyet 20515 if (q->q_next == NULL) /* Avoid ill queue */ 20516 ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst); 20517 #endif 20518 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 20519 ASSERT(xmit_ill == NULL); 20520 if (attach_ill != NULL) 20521 ill_refrele(attach_ill); 20522 if (need_decref) 20523 mp->b_flag |= MSGHASREF; 20524 (void) ip_output_v6(arg, first_mp, arg2, caller); 20525 return; 20526 } 20527 20528 if ((v_hlen >> 4) != IP_VERSION) { 20529 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20530 "ip_wput_end: q %p (%S)", q, "badvers"); 20531 goto discard_pkt; 20532 } 20533 /* 20534 * Is the header length at least 20 bytes? 20535 * 20536 * Are there enough bytes accessible in the header? If 20537 * not, try a pullup. 20538 */ 20539 v_hlen &= 0xF; 20540 v_hlen <<= 2; 20541 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20542 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20543 "ip_wput_end: q %p (%S)", q, "badlen"); 20544 goto discard_pkt; 20545 } 20546 if (v_hlen > (mp->b_wptr - rptr)) { 20547 if (!pullupmsg(mp, v_hlen)) { 20548 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20549 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20550 goto discard_pkt; 20551 } 20552 ipha = (ipha_t *)mp->b_rptr; 20553 } 20554 /* 20555 * Move first entry from any source route into ipha_dst and 20556 * verify the options 20557 */ 20558 if (ip_wput_options(q, first_mp, ipha, mctl_present, 20559 zoneid, ipst)) { 20560 ASSERT(xmit_ill == NULL); 20561 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20562 if (attach_ill != NULL) 20563 ill_refrele(attach_ill); 20564 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20565 "ip_wput_end: q %p (%S)", q, "badopts"); 20566 if (need_decref) 20567 CONN_DEC_REF(connp); 20568 return; 20569 } 20570 } 20571 dst = ipha->ipha_dst; 20572 20573 /* 20574 * Try to get an IRE_CACHE for the destination address. If we can't, 20575 * we have to run the packet through ip_newroute which will take 20576 * the appropriate action to arrange for an IRE_CACHE, such as querying 20577 * a resolver, or assigning a default gateway, etc. 20578 */ 20579 if (CLASSD(dst)) { 20580 ipif_t *ipif; 20581 uint32_t setsrc = 0; 20582 20583 multicast: 20584 ASSERT(first_mp != NULL); 20585 ip2dbg(("ip_wput: CLASSD\n")); 20586 if (connp == NULL) { 20587 /* 20588 * Use the first good ipif on the ill. 20589 * XXX Should this ever happen? (Appears 20590 * to show up with just ppp and no ethernet due 20591 * to in.rdisc.) 20592 * However, ire_send should be able to 20593 * call ip_wput_ire directly. 20594 * 20595 * XXX Also, this can happen for ICMP and other packets 20596 * with multicast source addresses. Perhaps we should 20597 * fix things so that we drop the packet in question, 20598 * but for now, just run with it. 20599 */ 20600 ill_t *ill = (ill_t *)q->q_ptr; 20601 20602 /* 20603 * Don't honor attach_if for this case. If ill 20604 * is part of the group, ipif could belong to 20605 * any ill and we cannot maintain attach_ill 20606 * and ipif_ill same anymore and the assert 20607 * below would fail. 20608 */ 20609 if (mctl_present && io->ipsec_out_attach_if) { 20610 io->ipsec_out_ill_index = 0; 20611 io->ipsec_out_attach_if = B_FALSE; 20612 ASSERT(attach_ill != NULL); 20613 ill_refrele(attach_ill); 20614 attach_ill = NULL; 20615 } 20616 20617 ASSERT(attach_ill == NULL); 20618 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20619 if (ipif == NULL) { 20620 if (need_decref) 20621 CONN_DEC_REF(connp); 20622 freemsg(first_mp); 20623 return; 20624 } 20625 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20626 ntohl(dst), ill->ill_name)); 20627 } else { 20628 /* 20629 * The order of precedence is IP_XMIT_IF, IP_PKTINFO 20630 * and IP_MULTICAST_IF. 20631 * Block comment above this function explains the 20632 * locking mechanism used here 20633 */ 20634 if (xmit_ill == NULL) { 20635 xmit_ill = conn_get_held_ill(connp, 20636 &connp->conn_xmit_if_ill, &err); 20637 if (err == ILL_LOOKUP_FAILED) { 20638 ip1dbg(("ip_wput: No ill for " 20639 "IP_XMIT_IF\n")); 20640 BUMP_MIB(&ipst->ips_ip_mib, 20641 ipIfStatsOutNoRoutes); 20642 goto drop_pkt; 20643 } 20644 } 20645 20646 if (xmit_ill == NULL) { 20647 ipif = conn_get_held_ipif(connp, 20648 &connp->conn_multicast_ipif, &err); 20649 if (err == IPIF_LOOKUP_FAILED) { 20650 ip1dbg(("ip_wput: No ipif for " 20651 "multicast\n")); 20652 BUMP_MIB(&ipst->ips_ip_mib, 20653 ipIfStatsOutNoRoutes); 20654 goto drop_pkt; 20655 } 20656 } 20657 if (xmit_ill != NULL) { 20658 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20659 if (ipif == NULL) { 20660 ip1dbg(("ip_wput: No ipif for " 20661 "IP_XMIT_IF\n")); 20662 BUMP_MIB(&ipst->ips_ip_mib, 20663 ipIfStatsOutNoRoutes); 20664 goto drop_pkt; 20665 } 20666 } else if (ipif == NULL || ipif->ipif_isv6) { 20667 /* 20668 * We must do this ipif determination here 20669 * else we could pass through ip_newroute 20670 * and come back here without the conn context. 20671 * 20672 * Note: we do late binding i.e. we bind to 20673 * the interface when the first packet is sent. 20674 * For performance reasons we do not rebind on 20675 * each packet but keep the binding until the 20676 * next IP_MULTICAST_IF option. 20677 * 20678 * conn_multicast_{ipif,ill} are shared between 20679 * IPv4 and IPv6 and AF_INET6 sockets can 20680 * send both IPv4 and IPv6 packets. Hence 20681 * we have to check that "isv6" matches above. 20682 */ 20683 if (ipif != NULL) 20684 ipif_refrele(ipif); 20685 ipif = ipif_lookup_group(dst, zoneid, ipst); 20686 if (ipif == NULL) { 20687 ip1dbg(("ip_wput: No ipif for " 20688 "multicast\n")); 20689 BUMP_MIB(&ipst->ips_ip_mib, 20690 ipIfStatsOutNoRoutes); 20691 goto drop_pkt; 20692 } 20693 err = conn_set_held_ipif(connp, 20694 &connp->conn_multicast_ipif, ipif); 20695 if (err == IPIF_LOOKUP_FAILED) { 20696 ipif_refrele(ipif); 20697 ip1dbg(("ip_wput: No ipif for " 20698 "multicast\n")); 20699 BUMP_MIB(&ipst->ips_ip_mib, 20700 ipIfStatsOutNoRoutes); 20701 goto drop_pkt; 20702 } 20703 } 20704 } 20705 ASSERT(!ipif->ipif_isv6); 20706 /* 20707 * As we may lose the conn by the time we reach ip_wput_ire, 20708 * we copy conn_multicast_loop and conn_dontroute on to an 20709 * ipsec_out. In case if this datagram goes out secure, 20710 * we need the ill_index also. Copy that also into the 20711 * ipsec_out. 20712 */ 20713 if (mctl_present) { 20714 io = (ipsec_out_t *)first_mp->b_rptr; 20715 ASSERT(first_mp->b_datap->db_type == M_CTL); 20716 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20717 } else { 20718 ASSERT(mp == first_mp); 20719 if ((first_mp = allocb(sizeof (ipsec_info_t), 20720 BPRI_HI)) == NULL) { 20721 ipif_refrele(ipif); 20722 first_mp = mp; 20723 goto discard_pkt; 20724 } 20725 first_mp->b_datap->db_type = M_CTL; 20726 first_mp->b_wptr += sizeof (ipsec_info_t); 20727 /* ipsec_out_secure is B_FALSE now */ 20728 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20729 io = (ipsec_out_t *)first_mp->b_rptr; 20730 io->ipsec_out_type = IPSEC_OUT; 20731 io->ipsec_out_len = sizeof (ipsec_out_t); 20732 io->ipsec_out_use_global_policy = B_TRUE; 20733 io->ipsec_out_ns = ipst->ips_netstack; 20734 first_mp->b_cont = mp; 20735 mctl_present = B_TRUE; 20736 } 20737 if (attach_ill != NULL) { 20738 ASSERT(attach_ill == ipif->ipif_ill); 20739 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20740 20741 /* 20742 * Check if we need an ire that will not be 20743 * looked up by anybody else i.e. HIDDEN. 20744 */ 20745 if (ill_is_probeonly(attach_ill)) { 20746 match_flags |= MATCH_IRE_MARK_HIDDEN; 20747 } 20748 io->ipsec_out_ill_index = 20749 attach_ill->ill_phyint->phyint_ifindex; 20750 io->ipsec_out_attach_if = B_TRUE; 20751 } else { 20752 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20753 io->ipsec_out_ill_index = 20754 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20755 } 20756 if (connp != NULL) { 20757 io->ipsec_out_multicast_loop = 20758 connp->conn_multicast_loop; 20759 io->ipsec_out_dontroute = connp->conn_dontroute; 20760 io->ipsec_out_zoneid = connp->conn_zoneid; 20761 } 20762 /* 20763 * If the application uses IP_MULTICAST_IF with 20764 * different logical addresses of the same ILL, we 20765 * need to make sure that the soruce address of 20766 * the packet matches the logical IP address used 20767 * in the option. We do it by initializing ipha_src 20768 * here. This should keep IPSEC also happy as 20769 * when we return from IPSEC processing, we don't 20770 * have to worry about getting the right address on 20771 * the packet. Thus it is sufficient to look for 20772 * IRE_CACHE using MATCH_IRE_ILL rathen than 20773 * MATCH_IRE_IPIF. 20774 * 20775 * NOTE : We need to do it for non-secure case also as 20776 * this might go out secure if there is a global policy 20777 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20778 * address, the source should be initialized already and 20779 * hence we won't be initializing here. 20780 * 20781 * As we do not have the ire yet, it is possible that 20782 * we set the source address here and then later discover 20783 * that the ire implies the source address to be assigned 20784 * through the RTF_SETSRC flag. 20785 * In that case, the setsrc variable will remind us 20786 * that overwritting the source address by the one 20787 * of the RTF_SETSRC-flagged ire is allowed. 20788 */ 20789 if (ipha->ipha_src == INADDR_ANY && 20790 (connp == NULL || !connp->conn_unspec_src)) { 20791 ipha->ipha_src = ipif->ipif_src_addr; 20792 setsrc = RTF_SETSRC; 20793 } 20794 /* 20795 * Find an IRE which matches the destination and the outgoing 20796 * queue (i.e. the outgoing interface.) 20797 * For loopback use a unicast IP address for 20798 * the ire lookup. 20799 */ 20800 if (IS_LOOPBACK(ipif->ipif_ill)) 20801 dst = ipif->ipif_lcl_addr; 20802 20803 /* 20804 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20805 * We don't need to lookup ire in ctable as the packet 20806 * needs to be sent to the destination through the specified 20807 * ill irrespective of ires in the cache table. 20808 */ 20809 ire = NULL; 20810 if (xmit_ill == NULL) { 20811 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20812 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 20813 } 20814 20815 /* 20816 * refrele attach_ill as its not needed anymore. 20817 */ 20818 if (attach_ill != NULL) { 20819 ill_refrele(attach_ill); 20820 attach_ill = NULL; 20821 } 20822 20823 if (ire == NULL) { 20824 /* 20825 * Multicast loopback and multicast forwarding is 20826 * done in ip_wput_ire. 20827 * 20828 * Mark this packet to make it be delivered to 20829 * ip_wput_ire after the new ire has been 20830 * created. 20831 * 20832 * The call to ip_newroute_ipif takes into account 20833 * the setsrc reminder. In any case, we take care 20834 * of the RTF_MULTIRT flag. 20835 */ 20836 mp->b_prev = mp->b_next = NULL; 20837 if (xmit_ill == NULL || 20838 xmit_ill->ill_ipif_up_count > 0) { 20839 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20840 setsrc | RTF_MULTIRT, zoneid, infop); 20841 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20842 "ip_wput_end: q %p (%S)", q, "noire"); 20843 } else { 20844 freemsg(first_mp); 20845 } 20846 ipif_refrele(ipif); 20847 if (xmit_ill != NULL) 20848 ill_refrele(xmit_ill); 20849 if (need_decref) 20850 CONN_DEC_REF(connp); 20851 return; 20852 } 20853 20854 ipif_refrele(ipif); 20855 ipif = NULL; 20856 ASSERT(xmit_ill == NULL); 20857 20858 /* 20859 * Honor the RTF_SETSRC flag for multicast packets, 20860 * if allowed by the setsrc reminder. 20861 */ 20862 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20863 ipha->ipha_src = ire->ire_src_addr; 20864 } 20865 20866 /* 20867 * Unconditionally force the TTL to 1 for 20868 * multirouted multicast packets: 20869 * multirouted multicast should not cross 20870 * multicast routers. 20871 */ 20872 if (ire->ire_flags & RTF_MULTIRT) { 20873 if (ipha->ipha_ttl > 1) { 20874 ip2dbg(("ip_wput: forcing multicast " 20875 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20876 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20877 ipha->ipha_ttl = 1; 20878 } 20879 } 20880 } else { 20881 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst); 20882 if ((ire != NULL) && (ire->ire_type & 20883 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20884 ignore_dontroute = B_TRUE; 20885 ignore_nexthop = B_TRUE; 20886 } 20887 if (ire != NULL) { 20888 ire_refrele(ire); 20889 ire = NULL; 20890 } 20891 /* 20892 * Guard against coming in from arp in which case conn is NULL. 20893 * Also guard against non M_DATA with dontroute set but 20894 * destined to local, loopback or broadcast addresses. 20895 */ 20896 if (connp != NULL && connp->conn_dontroute && 20897 !ignore_dontroute) { 20898 dontroute: 20899 /* 20900 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20901 * routing protocols from seeing false direct 20902 * connectivity. 20903 */ 20904 ipha->ipha_ttl = 1; 20905 /* 20906 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20907 * along with SO_DONTROUTE, higher precedence is 20908 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20909 */ 20910 if (connp->conn_xmit_if_ill == NULL) { 20911 /* If suitable ipif not found, drop packet */ 20912 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, 20913 ipst); 20914 if (dst_ipif == NULL) { 20915 ip1dbg(("ip_wput: no route for " 20916 "dst using SO_DONTROUTE\n")); 20917 BUMP_MIB(&ipst->ips_ip_mib, 20918 ipIfStatsOutNoRoutes); 20919 mp->b_prev = mp->b_next = NULL; 20920 if (first_mp == NULL) 20921 first_mp = mp; 20922 goto drop_pkt; 20923 } else { 20924 /* 20925 * If suitable ipif has been found, set 20926 * xmit_ill to the corresponding 20927 * ipif_ill because we'll be following 20928 * the IP_XMIT_IF logic. 20929 */ 20930 ASSERT(xmit_ill == NULL); 20931 xmit_ill = dst_ipif->ipif_ill; 20932 mutex_enter(&xmit_ill->ill_lock); 20933 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20934 mutex_exit(&xmit_ill->ill_lock); 20935 xmit_ill = NULL; 20936 ipif_refrele(dst_ipif); 20937 ip1dbg(("ip_wput: no route for" 20938 " dst using" 20939 " SO_DONTROUTE\n")); 20940 BUMP_MIB(&ipst->ips_ip_mib, 20941 ipIfStatsOutNoRoutes); 20942 mp->b_prev = mp->b_next = NULL; 20943 if (first_mp == NULL) 20944 first_mp = mp; 20945 goto drop_pkt; 20946 } 20947 ill_refhold_locked(xmit_ill); 20948 mutex_exit(&xmit_ill->ill_lock); 20949 ipif_refrele(dst_ipif); 20950 } 20951 } 20952 20953 } 20954 /* 20955 * If we are bound to IPIF_NOFAILOVER address, look for 20956 * an IRE_CACHE matching the ill. 20957 */ 20958 send_from_ill: 20959 if (attach_ill != NULL) { 20960 ipif_t *attach_ipif; 20961 20962 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20963 20964 /* 20965 * Check if we need an ire that will not be 20966 * looked up by anybody else i.e. HIDDEN. 20967 */ 20968 if (ill_is_probeonly(attach_ill)) { 20969 match_flags |= MATCH_IRE_MARK_HIDDEN; 20970 } 20971 20972 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 20973 if (attach_ipif == NULL) { 20974 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 20975 goto discard_pkt; 20976 } 20977 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 20978 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 20979 ipif_refrele(attach_ipif); 20980 } else if (xmit_ill != NULL || (connp != NULL && 20981 connp->conn_xmit_if_ill != NULL)) { 20982 /* 20983 * Mark this packet as originated locally 20984 */ 20985 mp->b_prev = mp->b_next = NULL; 20986 /* 20987 * xmit_ill could be NULL if SO_DONTROUTE 20988 * is also set. 20989 */ 20990 if (xmit_ill == NULL) { 20991 xmit_ill = conn_get_held_ill(connp, 20992 &connp->conn_xmit_if_ill, &err); 20993 if (err == ILL_LOOKUP_FAILED) { 20994 BUMP_MIB(&ipst->ips_ip_mib, 20995 ipIfStatsOutDiscards); 20996 if (need_decref) 20997 CONN_DEC_REF(connp); 20998 freemsg(first_mp); 20999 return; 21000 } 21001 if (xmit_ill == NULL) { 21002 if (connp->conn_dontroute) 21003 goto dontroute; 21004 goto send_from_ill; 21005 } 21006 } 21007 /* 21008 * Could be SO_DONTROUTE case also. 21009 * check at least one interface is UP as 21010 * specified by this ILL 21011 */ 21012 if (xmit_ill->ill_ipif_up_count > 0) { 21013 ipif_t *ipif; 21014 21015 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21016 if (ipif == NULL) { 21017 ip1dbg(("ip_output: " 21018 "xmit_ill NULL ipif\n")); 21019 goto drop_pkt; 21020 } 21021 /* 21022 * Look for a ire that is part of the group, 21023 * if found use it else call ip_newroute_ipif. 21024 * IPCL_ZONEID is not used for matching because 21025 * IP_ALLZONES option is valid only when the 21026 * ill is accessible from all zones i.e has a 21027 * valid ipif in all zones. 21028 */ 21029 match_flags = MATCH_IRE_ILL_GROUP | 21030 MATCH_IRE_SECATTR; 21031 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21032 MBLK_GETLABEL(mp), match_flags, ipst); 21033 /* 21034 * If an ire exists use it or else create 21035 * an ire but don't add it to the cache. 21036 * Adding an ire may cause issues with 21037 * asymmetric routing. 21038 * In case of multiroute always act as if 21039 * ire does not exist. 21040 */ 21041 if (ire == NULL || 21042 ire->ire_flags & RTF_MULTIRT) { 21043 if (ire != NULL) 21044 ire_refrele(ire); 21045 ip_newroute_ipif(q, first_mp, ipif, 21046 dst, connp, 0, zoneid, infop); 21047 ipif_refrele(ipif); 21048 ip1dbg(("ip_wput: ip_unicast_if\n")); 21049 ill_refrele(xmit_ill); 21050 if (need_decref) 21051 CONN_DEC_REF(connp); 21052 return; 21053 } 21054 ipif_refrele(ipif); 21055 } else { 21056 goto drop_pkt; 21057 } 21058 } else if (ip_nexthop || (connp != NULL && 21059 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21060 if (!ip_nexthop) { 21061 ip_nexthop = B_TRUE; 21062 nexthop_addr = connp->conn_nexthop_v4; 21063 } 21064 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21065 MATCH_IRE_GW; 21066 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21067 NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 21068 } else { 21069 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), 21070 ipst); 21071 } 21072 if (!ire) { 21073 /* 21074 * Make sure we don't load spread if this 21075 * is IPIF_NOFAILOVER case. 21076 */ 21077 if ((attach_ill != NULL) || 21078 (ip_nexthop && !ignore_nexthop)) { 21079 if (mctl_present) { 21080 io = (ipsec_out_t *)first_mp->b_rptr; 21081 ASSERT(first_mp->b_datap->db_type == 21082 M_CTL); 21083 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21084 } else { 21085 ASSERT(mp == first_mp); 21086 first_mp = allocb( 21087 sizeof (ipsec_info_t), BPRI_HI); 21088 if (first_mp == NULL) { 21089 first_mp = mp; 21090 goto discard_pkt; 21091 } 21092 first_mp->b_datap->db_type = M_CTL; 21093 first_mp->b_wptr += 21094 sizeof (ipsec_info_t); 21095 /* ipsec_out_secure is B_FALSE now */ 21096 bzero(first_mp->b_rptr, 21097 sizeof (ipsec_info_t)); 21098 io = (ipsec_out_t *)first_mp->b_rptr; 21099 io->ipsec_out_type = IPSEC_OUT; 21100 io->ipsec_out_len = 21101 sizeof (ipsec_out_t); 21102 io->ipsec_out_use_global_policy = 21103 B_TRUE; 21104 io->ipsec_out_ns = ipst->ips_netstack; 21105 first_mp->b_cont = mp; 21106 mctl_present = B_TRUE; 21107 } 21108 if (attach_ill != NULL) { 21109 io->ipsec_out_ill_index = attach_ill-> 21110 ill_phyint->phyint_ifindex; 21111 io->ipsec_out_attach_if = B_TRUE; 21112 } else { 21113 io->ipsec_out_ip_nexthop = ip_nexthop; 21114 io->ipsec_out_nexthop_addr = 21115 nexthop_addr; 21116 } 21117 } 21118 noirefound: 21119 /* 21120 * Mark this packet as having originated on 21121 * this machine. This will be noted in 21122 * ire_add_then_send, which needs to know 21123 * whether to run it back through ip_wput or 21124 * ip_rput following successful resolution. 21125 */ 21126 mp->b_prev = NULL; 21127 mp->b_next = NULL; 21128 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21129 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21130 "ip_wput_end: q %p (%S)", q, "newroute"); 21131 if (attach_ill != NULL) 21132 ill_refrele(attach_ill); 21133 if (xmit_ill != NULL) 21134 ill_refrele(xmit_ill); 21135 if (need_decref) 21136 CONN_DEC_REF(connp); 21137 return; 21138 } 21139 } 21140 21141 /* We now know where we are going with it. */ 21142 21143 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21144 "ip_wput_end: q %p (%S)", q, "end"); 21145 21146 /* 21147 * Check if the ire has the RTF_MULTIRT flag, inherited 21148 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21149 */ 21150 if (ire->ire_flags & RTF_MULTIRT) { 21151 /* 21152 * Force the TTL of multirouted packets if required. 21153 * The TTL of such packets is bounded by the 21154 * ip_multirt_ttl ndd variable. 21155 */ 21156 if ((ipst->ips_ip_multirt_ttl > 0) && 21157 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21158 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21159 "(was %d), dst 0x%08x\n", 21160 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21161 ntohl(ire->ire_addr))); 21162 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21163 } 21164 /* 21165 * At this point, we check to see if there are any pending 21166 * unresolved routes. ire_multirt_resolvable() 21167 * checks in O(n) that all IRE_OFFSUBNET ire 21168 * entries for the packet's destination and 21169 * flagged RTF_MULTIRT are currently resolved. 21170 * If some remain unresolved, we make a copy 21171 * of the current message. It will be used 21172 * to initiate additional route resolutions. 21173 */ 21174 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21175 MBLK_GETLABEL(first_mp), ipst); 21176 ip2dbg(("ip_wput[noirefound]: ire %p, " 21177 "multirt_need_resolve %d, first_mp %p\n", 21178 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21179 if (multirt_need_resolve) { 21180 copy_mp = copymsg(first_mp); 21181 if (copy_mp != NULL) { 21182 MULTIRT_DEBUG_TAG(copy_mp); 21183 } 21184 } 21185 } 21186 21187 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21188 /* 21189 * Try to resolve another multiroute if 21190 * ire_multirt_resolvable() deemed it necessary. 21191 * At this point, we need to distinguish 21192 * multicasts from other packets. For multicasts, 21193 * we call ip_newroute_ipif() and request that both 21194 * multirouting and setsrc flags are checked. 21195 */ 21196 if (copy_mp != NULL) { 21197 if (CLASSD(dst)) { 21198 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21199 if (ipif) { 21200 ASSERT(infop->ip_opt_ill_index == 0); 21201 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21202 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21203 ipif_refrele(ipif); 21204 } else { 21205 MULTIRT_DEBUG_UNTAG(copy_mp); 21206 freemsg(copy_mp); 21207 copy_mp = NULL; 21208 } 21209 } else { 21210 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21211 } 21212 } 21213 if (attach_ill != NULL) 21214 ill_refrele(attach_ill); 21215 if (xmit_ill != NULL) 21216 ill_refrele(xmit_ill); 21217 if (need_decref) 21218 CONN_DEC_REF(connp); 21219 return; 21220 21221 icmp_parameter_problem: 21222 /* could not have originated externally */ 21223 ASSERT(mp->b_prev == NULL); 21224 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21225 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21226 /* it's the IP header length that's in trouble */ 21227 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21228 first_mp = NULL; 21229 } 21230 21231 discard_pkt: 21232 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21233 drop_pkt: 21234 ip1dbg(("ip_wput: dropped packet\n")); 21235 if (ire != NULL) 21236 ire_refrele(ire); 21237 if (need_decref) 21238 CONN_DEC_REF(connp); 21239 freemsg(first_mp); 21240 if (attach_ill != NULL) 21241 ill_refrele(attach_ill); 21242 if (xmit_ill != NULL) 21243 ill_refrele(xmit_ill); 21244 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21245 "ip_wput_end: q %p (%S)", q, "droppkt"); 21246 } 21247 21248 /* 21249 * If this is a conn_t queue, then we pass in the conn. This includes the 21250 * zoneid. 21251 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21252 * in which case we use the global zoneid since those are all part of 21253 * the global zone. 21254 */ 21255 void 21256 ip_wput(queue_t *q, mblk_t *mp) 21257 { 21258 if (CONN_Q(q)) 21259 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21260 else 21261 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21262 } 21263 21264 /* 21265 * 21266 * The following rules must be observed when accessing any ipif or ill 21267 * that has been cached in the conn. Typically conn_nofailover_ill, 21268 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21269 * 21270 * Access: The ipif or ill pointed to from the conn can be accessed under 21271 * the protection of the conn_lock or after it has been refheld under the 21272 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21273 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21274 * The reason for this is that a concurrent unplumb could actually be 21275 * cleaning up these cached pointers by walking the conns and might have 21276 * finished cleaning up the conn in question. The macros check that an 21277 * unplumb has not yet started on the ipif or ill. 21278 * 21279 * Caching: An ipif or ill pointer may be cached in the conn only after 21280 * making sure that an unplumb has not started. So the caching is done 21281 * while holding both the conn_lock and the ill_lock and after using the 21282 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21283 * flag before starting the cleanup of conns. 21284 * 21285 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21286 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21287 * or a reference to the ipif or a reference to an ire that references the 21288 * ipif. An ipif does not change its ill except for failover/failback. Since 21289 * failover/failback happens only after bringing down the ipif and making sure 21290 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21291 * the above holds. 21292 */ 21293 ipif_t * 21294 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21295 { 21296 ipif_t *ipif; 21297 ill_t *ill; 21298 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21299 21300 *err = 0; 21301 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21302 mutex_enter(&connp->conn_lock); 21303 ipif = *ipifp; 21304 if (ipif != NULL) { 21305 ill = ipif->ipif_ill; 21306 mutex_enter(&ill->ill_lock); 21307 if (IPIF_CAN_LOOKUP(ipif)) { 21308 ipif_refhold_locked(ipif); 21309 mutex_exit(&ill->ill_lock); 21310 mutex_exit(&connp->conn_lock); 21311 rw_exit(&ipst->ips_ill_g_lock); 21312 return (ipif); 21313 } else { 21314 *err = IPIF_LOOKUP_FAILED; 21315 } 21316 mutex_exit(&ill->ill_lock); 21317 } 21318 mutex_exit(&connp->conn_lock); 21319 rw_exit(&ipst->ips_ill_g_lock); 21320 return (NULL); 21321 } 21322 21323 ill_t * 21324 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21325 { 21326 ill_t *ill; 21327 21328 *err = 0; 21329 mutex_enter(&connp->conn_lock); 21330 ill = *illp; 21331 if (ill != NULL) { 21332 mutex_enter(&ill->ill_lock); 21333 if (ILL_CAN_LOOKUP(ill)) { 21334 ill_refhold_locked(ill); 21335 mutex_exit(&ill->ill_lock); 21336 mutex_exit(&connp->conn_lock); 21337 return (ill); 21338 } else { 21339 *err = ILL_LOOKUP_FAILED; 21340 } 21341 mutex_exit(&ill->ill_lock); 21342 } 21343 mutex_exit(&connp->conn_lock); 21344 return (NULL); 21345 } 21346 21347 static int 21348 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21349 { 21350 ill_t *ill; 21351 21352 ill = ipif->ipif_ill; 21353 mutex_enter(&connp->conn_lock); 21354 mutex_enter(&ill->ill_lock); 21355 if (IPIF_CAN_LOOKUP(ipif)) { 21356 *ipifp = ipif; 21357 mutex_exit(&ill->ill_lock); 21358 mutex_exit(&connp->conn_lock); 21359 return (0); 21360 } 21361 mutex_exit(&ill->ill_lock); 21362 mutex_exit(&connp->conn_lock); 21363 return (IPIF_LOOKUP_FAILED); 21364 } 21365 21366 /* 21367 * This is called if the outbound datagram needs fragmentation. 21368 * 21369 * NOTE : This function does not ire_refrele the ire argument passed in. 21370 */ 21371 static void 21372 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21373 ip_stack_t *ipst) 21374 { 21375 ipha_t *ipha; 21376 mblk_t *mp; 21377 uint32_t v_hlen_tos_len; 21378 uint32_t max_frag; 21379 uint32_t frag_flag; 21380 boolean_t dont_use; 21381 21382 if (ipsec_mp->b_datap->db_type == M_CTL) { 21383 mp = ipsec_mp->b_cont; 21384 } else { 21385 mp = ipsec_mp; 21386 } 21387 21388 ipha = (ipha_t *)mp->b_rptr; 21389 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21390 21391 #ifdef _BIG_ENDIAN 21392 #define V_HLEN (v_hlen_tos_len >> 24) 21393 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21394 #else 21395 #define V_HLEN (v_hlen_tos_len & 0xFF) 21396 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21397 #endif 21398 21399 #ifndef SPEED_BEFORE_SAFETY 21400 /* 21401 * Check that ipha_length is consistent with 21402 * the mblk length 21403 */ 21404 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21405 ip0dbg(("Packet length mismatch: %d, %ld\n", 21406 LENGTH, msgdsize(mp))); 21407 freemsg(ipsec_mp); 21408 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21409 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21410 "packet length mismatch"); 21411 return; 21412 } 21413 #endif 21414 /* 21415 * Don't use frag_flag if pre-built packet or source 21416 * routed or if multicast (since multicast packets do not solicit 21417 * ICMP "packet too big" messages). Get the values of 21418 * max_frag and frag_flag atomically by acquiring the 21419 * ire_lock. 21420 */ 21421 mutex_enter(&ire->ire_lock); 21422 max_frag = ire->ire_max_frag; 21423 frag_flag = ire->ire_frag_flag; 21424 mutex_exit(&ire->ire_lock); 21425 21426 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21427 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21428 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21429 21430 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21431 (dont_use ? 0 : frag_flag), zoneid, ipst); 21432 } 21433 21434 /* 21435 * Used for deciding the MSS size for the upper layer. Thus 21436 * we need to check the outbound policy values in the conn. 21437 */ 21438 int 21439 conn_ipsec_length(conn_t *connp) 21440 { 21441 ipsec_latch_t *ipl; 21442 21443 ipl = connp->conn_latch; 21444 if (ipl == NULL) 21445 return (0); 21446 21447 if (ipl->ipl_out_policy == NULL) 21448 return (0); 21449 21450 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21451 } 21452 21453 /* 21454 * Returns an estimate of the IPSEC headers size. This is used if 21455 * we don't want to call into IPSEC to get the exact size. 21456 */ 21457 int 21458 ipsec_out_extra_length(mblk_t *ipsec_mp) 21459 { 21460 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21461 ipsec_action_t *a; 21462 21463 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21464 if (!io->ipsec_out_secure) 21465 return (0); 21466 21467 a = io->ipsec_out_act; 21468 21469 if (a == NULL) { 21470 ASSERT(io->ipsec_out_policy != NULL); 21471 a = io->ipsec_out_policy->ipsp_act; 21472 } 21473 ASSERT(a != NULL); 21474 21475 return (a->ipa_ovhd); 21476 } 21477 21478 /* 21479 * Returns an estimate of the IPSEC headers size. This is used if 21480 * we don't want to call into IPSEC to get the exact size. 21481 */ 21482 int 21483 ipsec_in_extra_length(mblk_t *ipsec_mp) 21484 { 21485 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21486 ipsec_action_t *a; 21487 21488 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21489 21490 a = ii->ipsec_in_action; 21491 return (a == NULL ? 0 : a->ipa_ovhd); 21492 } 21493 21494 /* 21495 * If there are any source route options, return the true final 21496 * destination. Otherwise, return the destination. 21497 */ 21498 ipaddr_t 21499 ip_get_dst(ipha_t *ipha) 21500 { 21501 ipoptp_t opts; 21502 uchar_t *opt; 21503 uint8_t optval; 21504 uint8_t optlen; 21505 ipaddr_t dst; 21506 uint32_t off; 21507 21508 dst = ipha->ipha_dst; 21509 21510 if (IS_SIMPLE_IPH(ipha)) 21511 return (dst); 21512 21513 for (optval = ipoptp_first(&opts, ipha); 21514 optval != IPOPT_EOL; 21515 optval = ipoptp_next(&opts)) { 21516 opt = opts.ipoptp_cur; 21517 optlen = opts.ipoptp_len; 21518 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21519 switch (optval) { 21520 case IPOPT_SSRR: 21521 case IPOPT_LSRR: 21522 off = opt[IPOPT_OFFSET]; 21523 /* 21524 * If one of the conditions is true, it means 21525 * end of options and dst already has the right 21526 * value. 21527 */ 21528 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21529 off = optlen - IP_ADDR_LEN; 21530 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21531 } 21532 return (dst); 21533 default: 21534 break; 21535 } 21536 } 21537 21538 return (dst); 21539 } 21540 21541 mblk_t * 21542 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21543 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21544 { 21545 ipsec_out_t *io; 21546 mblk_t *first_mp; 21547 boolean_t policy_present; 21548 ip_stack_t *ipst; 21549 ipsec_stack_t *ipss; 21550 21551 ASSERT(ire != NULL); 21552 ipst = ire->ire_ipst; 21553 ipss = ipst->ips_netstack->netstack_ipsec; 21554 21555 first_mp = mp; 21556 if (mp->b_datap->db_type == M_CTL) { 21557 io = (ipsec_out_t *)first_mp->b_rptr; 21558 /* 21559 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21560 * 21561 * 1) There is per-socket policy (including cached global 21562 * policy) or a policy on the IP-in-IP tunnel. 21563 * 2) There is no per-socket policy, but it is 21564 * a multicast packet that needs to go out 21565 * on a specific interface. This is the case 21566 * where (ip_wput and ip_wput_multicast) attaches 21567 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21568 * 21569 * In case (2) we check with global policy to 21570 * see if there is a match and set the ill_index 21571 * appropriately so that we can lookup the ire 21572 * properly in ip_wput_ipsec_out. 21573 */ 21574 21575 /* 21576 * ipsec_out_use_global_policy is set to B_FALSE 21577 * in ipsec_in_to_out(). Refer to that function for 21578 * details. 21579 */ 21580 if ((io->ipsec_out_latch == NULL) && 21581 (io->ipsec_out_use_global_policy)) { 21582 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21583 ire, connp, unspec_src, zoneid)); 21584 } 21585 if (!io->ipsec_out_secure) { 21586 /* 21587 * If this is not a secure packet, drop 21588 * the IPSEC_OUT mp and treat it as a clear 21589 * packet. This happens when we are sending 21590 * a ICMP reply back to a clear packet. See 21591 * ipsec_in_to_out() for details. 21592 */ 21593 mp = first_mp->b_cont; 21594 freeb(first_mp); 21595 } 21596 return (mp); 21597 } 21598 /* 21599 * See whether we need to attach a global policy here. We 21600 * don't depend on the conn (as it could be null) for deciding 21601 * what policy this datagram should go through because it 21602 * should have happened in ip_wput if there was some 21603 * policy. This normally happens for connections which are not 21604 * fully bound preventing us from caching policies in 21605 * ip_bind. Packets coming from the TCP listener/global queue 21606 * - which are non-hard_bound - could also be affected by 21607 * applying policy here. 21608 * 21609 * If this packet is coming from tcp global queue or listener, 21610 * we will be applying policy here. This may not be *right* 21611 * if these packets are coming from the detached connection as 21612 * it could have gone in clear before. This happens only if a 21613 * TCP connection started when there is no policy and somebody 21614 * added policy before it became detached. Thus packets of the 21615 * detached connection could go out secure and the other end 21616 * would drop it because it will be expecting in clear. The 21617 * converse is not true i.e if somebody starts a TCP 21618 * connection and deletes the policy, all the packets will 21619 * still go out with the policy that existed before deleting 21620 * because ip_unbind sends up policy information which is used 21621 * by TCP on subsequent ip_wputs. The right solution is to fix 21622 * TCP to attach a dummy IPSEC_OUT and set 21623 * ipsec_out_use_global_policy to B_FALSE. As this might 21624 * affect performance for normal cases, we are not doing it. 21625 * Thus, set policy before starting any TCP connections. 21626 * 21627 * NOTE - We might apply policy even for a hard bound connection 21628 * - for which we cached policy in ip_bind - if somebody added 21629 * global policy after we inherited the policy in ip_bind. 21630 * This means that the packets that were going out in clear 21631 * previously would start going secure and hence get dropped 21632 * on the other side. To fix this, TCP attaches a dummy 21633 * ipsec_out and make sure that we don't apply global policy. 21634 */ 21635 if (ipha != NULL) 21636 policy_present = ipss->ipsec_outbound_v4_policy_present; 21637 else 21638 policy_present = ipss->ipsec_outbound_v6_policy_present; 21639 if (!policy_present) 21640 return (mp); 21641 21642 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21643 zoneid)); 21644 } 21645 21646 ire_t * 21647 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21648 { 21649 ipaddr_t addr; 21650 ire_t *save_ire; 21651 irb_t *irb; 21652 ill_group_t *illgrp; 21653 int err; 21654 21655 save_ire = ire; 21656 addr = ire->ire_addr; 21657 21658 ASSERT(ire->ire_type == IRE_BROADCAST); 21659 21660 illgrp = connp->conn_outgoing_ill->ill_group; 21661 if (illgrp == NULL) { 21662 *conn_outgoing_ill = conn_get_held_ill(connp, 21663 &connp->conn_outgoing_ill, &err); 21664 if (err == ILL_LOOKUP_FAILED) { 21665 ire_refrele(save_ire); 21666 return (NULL); 21667 } 21668 return (save_ire); 21669 } 21670 /* 21671 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21672 * If it is part of the group, we need to send on the ire 21673 * that has been cleared of IRE_MARK_NORECV and that belongs 21674 * to this group. This is okay as IP_BOUND_IF really means 21675 * any ill in the group. We depend on the fact that the 21676 * first ire in the group is always cleared of IRE_MARK_NORECV 21677 * if such an ire exists. This is possible only if you have 21678 * at least one ill in the group that has not failed. 21679 * 21680 * First get to the ire that matches the address and group. 21681 * 21682 * We don't look for an ire with a matching zoneid because a given zone 21683 * won't always have broadcast ires on all ills in the group. 21684 */ 21685 irb = ire->ire_bucket; 21686 rw_enter(&irb->irb_lock, RW_READER); 21687 if (ire->ire_marks & IRE_MARK_NORECV) { 21688 /* 21689 * If the current zone only has an ire broadcast for this 21690 * address marked NORECV, the ire we want is ahead in the 21691 * bucket, so we look it up deliberately ignoring the zoneid. 21692 */ 21693 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21694 if (ire->ire_addr != addr) 21695 continue; 21696 /* skip over deleted ires */ 21697 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21698 continue; 21699 } 21700 } 21701 while (ire != NULL) { 21702 /* 21703 * If a new interface is coming up, we could end up 21704 * seeing the loopback ire and the non-loopback ire 21705 * may not have been added yet. So check for ire_stq 21706 */ 21707 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21708 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21709 break; 21710 } 21711 ire = ire->ire_next; 21712 } 21713 if (ire != NULL && ire->ire_addr == addr && 21714 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21715 IRE_REFHOLD(ire); 21716 rw_exit(&irb->irb_lock); 21717 ire_refrele(save_ire); 21718 *conn_outgoing_ill = ire_to_ill(ire); 21719 /* 21720 * Refhold the ill to make the conn_outgoing_ill 21721 * independent of the ire. ip_wput_ire goes in a loop 21722 * and may refrele the ire. Since we have an ire at this 21723 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21724 */ 21725 ill_refhold(*conn_outgoing_ill); 21726 return (ire); 21727 } 21728 rw_exit(&irb->irb_lock); 21729 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21730 /* 21731 * If we can't find a suitable ire, return the original ire. 21732 */ 21733 return (save_ire); 21734 } 21735 21736 /* 21737 * This function does the ire_refrele of the ire passed in as the 21738 * argument. As this function looks up more ires i.e broadcast ires, 21739 * it needs to REFRELE them. Currently, for simplicity we don't 21740 * differentiate the one passed in and looked up here. We always 21741 * REFRELE. 21742 * IPQoS Notes: 21743 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21744 * IPSec packets are done in ipsec_out_process. 21745 * 21746 */ 21747 void 21748 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21749 zoneid_t zoneid) 21750 { 21751 ipha_t *ipha; 21752 #define rptr ((uchar_t *)ipha) 21753 queue_t *stq; 21754 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21755 uint32_t v_hlen_tos_len; 21756 uint32_t ttl_protocol; 21757 ipaddr_t src; 21758 ipaddr_t dst; 21759 uint32_t cksum; 21760 ipaddr_t orig_src; 21761 ire_t *ire1; 21762 mblk_t *next_mp; 21763 uint_t hlen; 21764 uint16_t *up; 21765 uint32_t max_frag = ire->ire_max_frag; 21766 ill_t *ill = ire_to_ill(ire); 21767 int clusterwide; 21768 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21769 int ipsec_len; 21770 mblk_t *first_mp; 21771 ipsec_out_t *io; 21772 boolean_t conn_dontroute; /* conn value for multicast */ 21773 boolean_t conn_multicast_loop; /* conn value for multicast */ 21774 boolean_t multicast_forward; /* Should we forward ? */ 21775 boolean_t unspec_src; 21776 ill_t *conn_outgoing_ill = NULL; 21777 ill_t *ire_ill; 21778 ill_t *ire1_ill; 21779 ill_t *out_ill; 21780 uint32_t ill_index = 0; 21781 boolean_t multirt_send = B_FALSE; 21782 int err; 21783 ipxmit_state_t pktxmit_state; 21784 ip_stack_t *ipst = ire->ire_ipst; 21785 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 21786 21787 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21788 "ip_wput_ire_start: q %p", q); 21789 21790 multicast_forward = B_FALSE; 21791 unspec_src = (connp != NULL && connp->conn_unspec_src); 21792 21793 if (ire->ire_flags & RTF_MULTIRT) { 21794 /* 21795 * Multirouting case. The bucket where ire is stored 21796 * probably holds other RTF_MULTIRT flagged ire 21797 * to the destination. In this call to ip_wput_ire, 21798 * we attempt to send the packet through all 21799 * those ires. Thus, we first ensure that ire is the 21800 * first RTF_MULTIRT ire in the bucket, 21801 * before walking the ire list. 21802 */ 21803 ire_t *first_ire; 21804 irb_t *irb = ire->ire_bucket; 21805 ASSERT(irb != NULL); 21806 21807 /* Make sure we do not omit any multiroute ire. */ 21808 IRB_REFHOLD(irb); 21809 for (first_ire = irb->irb_ire; 21810 first_ire != NULL; 21811 first_ire = first_ire->ire_next) { 21812 if ((first_ire->ire_flags & RTF_MULTIRT) && 21813 (first_ire->ire_addr == ire->ire_addr) && 21814 !(first_ire->ire_marks & 21815 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 21816 break; 21817 } 21818 } 21819 21820 if ((first_ire != NULL) && (first_ire != ire)) { 21821 IRE_REFHOLD(first_ire); 21822 ire_refrele(ire); 21823 ire = first_ire; 21824 ill = ire_to_ill(ire); 21825 } 21826 IRB_REFRELE(irb); 21827 } 21828 21829 /* 21830 * conn_outgoing_ill is used only in the broadcast loop. 21831 * for performance we don't grab the mutexs in the fastpath 21832 */ 21833 if ((connp != NULL) && 21834 (connp->conn_xmit_if_ill == NULL) && 21835 (ire->ire_type == IRE_BROADCAST) && 21836 ((connp->conn_nofailover_ill != NULL) || 21837 (connp->conn_outgoing_ill != NULL))) { 21838 /* 21839 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21840 * option. So, see if this endpoint is bound to a 21841 * IPIF_NOFAILOVER address. If so, honor it. This implies 21842 * that if the interface is failed, we will still send 21843 * the packet on the same ill which is what we want. 21844 */ 21845 conn_outgoing_ill = conn_get_held_ill(connp, 21846 &connp->conn_nofailover_ill, &err); 21847 if (err == ILL_LOOKUP_FAILED) { 21848 ire_refrele(ire); 21849 freemsg(mp); 21850 return; 21851 } 21852 if (conn_outgoing_ill == NULL) { 21853 /* 21854 * Choose a good ill in the group to send the 21855 * packets on. 21856 */ 21857 ire = conn_set_outgoing_ill(connp, ire, 21858 &conn_outgoing_ill); 21859 if (ire == NULL) { 21860 freemsg(mp); 21861 return; 21862 } 21863 } 21864 } 21865 21866 if (mp->b_datap->db_type != M_CTL) { 21867 ipha = (ipha_t *)mp->b_rptr; 21868 } else { 21869 io = (ipsec_out_t *)mp->b_rptr; 21870 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21871 ASSERT(zoneid == io->ipsec_out_zoneid); 21872 ASSERT(zoneid != ALL_ZONES); 21873 ipha = (ipha_t *)mp->b_cont->b_rptr; 21874 dst = ipha->ipha_dst; 21875 /* 21876 * For the multicast case, ipsec_out carries conn_dontroute and 21877 * conn_multicast_loop as conn may not be available here. We 21878 * need this for multicast loopback and forwarding which is done 21879 * later in the code. 21880 */ 21881 if (CLASSD(dst)) { 21882 conn_dontroute = io->ipsec_out_dontroute; 21883 conn_multicast_loop = io->ipsec_out_multicast_loop; 21884 /* 21885 * If conn_dontroute is not set or conn_multicast_loop 21886 * is set, we need to do forwarding/loopback. For 21887 * datagrams from ip_wput_multicast, conn_dontroute is 21888 * set to B_TRUE and conn_multicast_loop is set to 21889 * B_FALSE so that we neither do forwarding nor 21890 * loopback. 21891 */ 21892 if (!conn_dontroute || conn_multicast_loop) 21893 multicast_forward = B_TRUE; 21894 } 21895 } 21896 21897 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21898 ire->ire_zoneid != ALL_ZONES) { 21899 /* 21900 * When a zone sends a packet to another zone, we try to deliver 21901 * the packet under the same conditions as if the destination 21902 * was a real node on the network. To do so, we look for a 21903 * matching route in the forwarding table. 21904 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21905 * ip_newroute() does. 21906 * Note that IRE_LOCAL are special, since they are used 21907 * when the zoneid doesn't match in some cases. This means that 21908 * we need to handle ipha_src differently since ire_src_addr 21909 * belongs to the receiving zone instead of the sending zone. 21910 * When ip_restrict_interzone_loopback is set, then 21911 * ire_cache_lookup() ensures that IRE_LOCAL are only used 21912 * for loopback between zones when the logical "Ethernet" would 21913 * have looped them back. 21914 */ 21915 ire_t *src_ire; 21916 21917 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21918 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21919 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 21920 if (src_ire != NULL && 21921 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 21922 (!ipst->ips_ip_restrict_interzone_loopback || 21923 ire_local_same_ill_group(ire, src_ire))) { 21924 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21925 ipha->ipha_src = src_ire->ire_src_addr; 21926 ire_refrele(src_ire); 21927 } else { 21928 ire_refrele(ire); 21929 if (conn_outgoing_ill != NULL) 21930 ill_refrele(conn_outgoing_ill); 21931 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21932 if (src_ire != NULL) { 21933 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21934 ire_refrele(src_ire); 21935 freemsg(mp); 21936 return; 21937 } 21938 ire_refrele(src_ire); 21939 } 21940 if (ip_hdr_complete(ipha, zoneid, ipst)) { 21941 /* Failed */ 21942 freemsg(mp); 21943 return; 21944 } 21945 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 21946 ipst); 21947 return; 21948 } 21949 } 21950 21951 if (mp->b_datap->db_type == M_CTL || 21952 ipss->ipsec_outbound_v4_policy_present) { 21953 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21954 unspec_src, zoneid); 21955 if (mp == NULL) { 21956 ire_refrele(ire); 21957 if (conn_outgoing_ill != NULL) 21958 ill_refrele(conn_outgoing_ill); 21959 return; 21960 } 21961 } 21962 21963 first_mp = mp; 21964 ipsec_len = 0; 21965 21966 if (first_mp->b_datap->db_type == M_CTL) { 21967 io = (ipsec_out_t *)first_mp->b_rptr; 21968 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21969 mp = first_mp->b_cont; 21970 ipsec_len = ipsec_out_extra_length(first_mp); 21971 ASSERT(ipsec_len >= 0); 21972 /* We already picked up the zoneid from the M_CTL above */ 21973 ASSERT(zoneid == io->ipsec_out_zoneid); 21974 ASSERT(zoneid != ALL_ZONES); 21975 21976 /* 21977 * Drop M_CTL here if IPsec processing is not needed. 21978 * (Non-IPsec use of M_CTL extracted any information it 21979 * needed above). 21980 */ 21981 if (ipsec_len == 0) { 21982 freeb(first_mp); 21983 first_mp = mp; 21984 } 21985 } 21986 21987 /* 21988 * Fast path for ip_wput_ire 21989 */ 21990 21991 ipha = (ipha_t *)mp->b_rptr; 21992 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21993 dst = ipha->ipha_dst; 21994 21995 /* 21996 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 21997 * if the socket is a SOCK_RAW type. The transport checksum should 21998 * be provided in the pre-built packet, so we don't need to compute it. 21999 * Also, other application set flags, like DF, should not be altered. 22000 * Other transport MUST pass down zero. 22001 */ 22002 ip_hdr_included = ipha->ipha_ident; 22003 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22004 22005 if (CLASSD(dst)) { 22006 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22007 ntohl(dst), 22008 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22009 ntohl(ire->ire_addr))); 22010 } 22011 22012 /* Macros to extract header fields from data already in registers */ 22013 #ifdef _BIG_ENDIAN 22014 #define V_HLEN (v_hlen_tos_len >> 24) 22015 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22016 #define PROTO (ttl_protocol & 0xFF) 22017 #else 22018 #define V_HLEN (v_hlen_tos_len & 0xFF) 22019 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22020 #define PROTO (ttl_protocol >> 8) 22021 #endif 22022 22023 22024 orig_src = src = ipha->ipha_src; 22025 /* (The loop back to "another" is explained down below.) */ 22026 another:; 22027 /* 22028 * Assign an ident value for this packet. We assign idents on 22029 * a per destination basis out of the IRE. There could be 22030 * other threads targeting the same destination, so we have to 22031 * arrange for a atomic increment. Note that we use a 32-bit 22032 * atomic add because it has better performance than its 22033 * 16-bit sibling. 22034 * 22035 * If running in cluster mode and if the source address 22036 * belongs to a replicated service then vector through 22037 * cl_inet_ipident vector to allocate ip identifier 22038 * NOTE: This is a contract private interface with the 22039 * clustering group. 22040 */ 22041 clusterwide = 0; 22042 if (cl_inet_ipident) { 22043 ASSERT(cl_inet_isclusterwide); 22044 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22045 AF_INET, (uint8_t *)(uintptr_t)src)) { 22046 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22047 AF_INET, (uint8_t *)(uintptr_t)src, 22048 (uint8_t *)(uintptr_t)dst); 22049 clusterwide = 1; 22050 } 22051 } 22052 if (!clusterwide) { 22053 ipha->ipha_ident = 22054 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22055 } 22056 22057 #ifndef _BIG_ENDIAN 22058 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22059 #endif 22060 22061 /* 22062 * Set source address unless sent on an ill or conn_unspec_src is set. 22063 * This is needed to obey conn_unspec_src when packets go through 22064 * ip_newroute + arp. 22065 * Assumes ip_newroute{,_multi} sets the source address as well. 22066 */ 22067 if (src == INADDR_ANY && !unspec_src) { 22068 /* 22069 * Assign the appropriate source address from the IRE if none 22070 * was specified. 22071 */ 22072 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22073 22074 /* 22075 * With IP multipathing, broadcast packets are sent on the ire 22076 * that has been cleared of IRE_MARK_NORECV and that belongs to 22077 * the group. However, this ire might not be in the same zone so 22078 * we can't always use its source address. We look for a 22079 * broadcast ire in the same group and in the right zone. 22080 */ 22081 if (ire->ire_type == IRE_BROADCAST && 22082 ire->ire_zoneid != zoneid) { 22083 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22084 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22085 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 22086 if (src_ire != NULL) { 22087 src = src_ire->ire_src_addr; 22088 ire_refrele(src_ire); 22089 } else { 22090 ire_refrele(ire); 22091 if (conn_outgoing_ill != NULL) 22092 ill_refrele(conn_outgoing_ill); 22093 freemsg(first_mp); 22094 if (ill != NULL) { 22095 BUMP_MIB(ill->ill_ip_mib, 22096 ipIfStatsOutDiscards); 22097 } else { 22098 BUMP_MIB(&ipst->ips_ip_mib, 22099 ipIfStatsOutDiscards); 22100 } 22101 return; 22102 } 22103 } else { 22104 src = ire->ire_src_addr; 22105 } 22106 22107 if (connp == NULL) { 22108 ip1dbg(("ip_wput_ire: no connp and no src " 22109 "address for dst 0x%x, using src 0x%x\n", 22110 ntohl(dst), 22111 ntohl(src))); 22112 } 22113 ipha->ipha_src = src; 22114 } 22115 stq = ire->ire_stq; 22116 22117 /* 22118 * We only allow ire chains for broadcasts since there will 22119 * be multiple IRE_CACHE entries for the same multicast 22120 * address (one per ipif). 22121 */ 22122 next_mp = NULL; 22123 22124 /* broadcast packet */ 22125 if (ire->ire_type == IRE_BROADCAST) 22126 goto broadcast; 22127 22128 /* loopback ? */ 22129 if (stq == NULL) 22130 goto nullstq; 22131 22132 /* The ill_index for outbound ILL */ 22133 ill_index = Q_TO_INDEX(stq); 22134 22135 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22136 ttl_protocol = ((uint16_t *)ipha)[4]; 22137 22138 /* pseudo checksum (do it in parts for IP header checksum) */ 22139 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22140 22141 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22142 queue_t *dev_q = stq->q_next; 22143 22144 /* flow controlled */ 22145 if ((dev_q->q_next || dev_q->q_first) && 22146 !canput(dev_q)) 22147 goto blocked; 22148 if ((PROTO == IPPROTO_UDP) && 22149 (ip_hdr_included != IP_HDR_INCLUDED)) { 22150 hlen = (V_HLEN & 0xF) << 2; 22151 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22152 if (*up != 0) { 22153 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22154 hlen, LENGTH, max_frag, ipsec_len, cksum); 22155 /* Software checksum? */ 22156 if (DB_CKSUMFLAGS(mp) == 0) { 22157 IP_STAT(ipst, ip_out_sw_cksum); 22158 IP_STAT_UPDATE(ipst, 22159 ip_udp_out_sw_cksum_bytes, 22160 LENGTH - hlen); 22161 } 22162 } 22163 } 22164 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22165 hlen = (V_HLEN & 0xF) << 2; 22166 if (PROTO == IPPROTO_TCP) { 22167 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22168 /* 22169 * The packet header is processed once and for all, even 22170 * in the multirouting case. We disable hardware 22171 * checksum if the packet is multirouted, as it will be 22172 * replicated via several interfaces, and not all of 22173 * them may have this capability. 22174 */ 22175 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22176 LENGTH, max_frag, ipsec_len, cksum); 22177 /* Software checksum? */ 22178 if (DB_CKSUMFLAGS(mp) == 0) { 22179 IP_STAT(ipst, ip_out_sw_cksum); 22180 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22181 LENGTH - hlen); 22182 } 22183 } else { 22184 sctp_hdr_t *sctph; 22185 22186 ASSERT(PROTO == IPPROTO_SCTP); 22187 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22188 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22189 /* 22190 * Zero out the checksum field to ensure proper 22191 * checksum calculation. 22192 */ 22193 sctph->sh_chksum = 0; 22194 #ifdef DEBUG 22195 if (!skip_sctp_cksum) 22196 #endif 22197 sctph->sh_chksum = sctp_cksum(mp, hlen); 22198 } 22199 } 22200 22201 /* 22202 * If this is a multicast packet and originated from ip_wput 22203 * we need to do loopback and forwarding checks. If it comes 22204 * from ip_wput_multicast, we SHOULD not do this. 22205 */ 22206 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22207 22208 /* checksum */ 22209 cksum += ttl_protocol; 22210 22211 /* fragment the packet */ 22212 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22213 goto fragmentit; 22214 /* 22215 * Don't use frag_flag if packet is pre-built or source 22216 * routed or if multicast (since multicast packets do 22217 * not solicit ICMP "packet too big" messages). 22218 */ 22219 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22220 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22221 !ip_source_route_included(ipha)) && 22222 !CLASSD(ipha->ipha_dst)) 22223 ipha->ipha_fragment_offset_and_flags |= 22224 htons(ire->ire_frag_flag); 22225 22226 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22227 /* calculate IP header checksum */ 22228 cksum += ipha->ipha_ident; 22229 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22230 cksum += ipha->ipha_fragment_offset_and_flags; 22231 22232 /* IP options present */ 22233 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22234 if (hlen) 22235 goto checksumoptions; 22236 22237 /* calculate hdr checksum */ 22238 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22239 cksum = ~(cksum + (cksum >> 16)); 22240 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22241 } 22242 if (ipsec_len != 0) { 22243 /* 22244 * We will do the rest of the processing after 22245 * we come back from IPSEC in ip_wput_ipsec_out(). 22246 */ 22247 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22248 22249 io = (ipsec_out_t *)first_mp->b_rptr; 22250 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22251 ill_phyint->phyint_ifindex; 22252 22253 ipsec_out_process(q, first_mp, ire, ill_index); 22254 ire_refrele(ire); 22255 if (conn_outgoing_ill != NULL) 22256 ill_refrele(conn_outgoing_ill); 22257 return; 22258 } 22259 22260 /* 22261 * In most cases, the emission loop below is entered only 22262 * once. Only in the case where the ire holds the 22263 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22264 * flagged ires in the bucket, and send the packet 22265 * through all crossed RTF_MULTIRT routes. 22266 */ 22267 if (ire->ire_flags & RTF_MULTIRT) { 22268 multirt_send = B_TRUE; 22269 } 22270 do { 22271 if (multirt_send) { 22272 irb_t *irb; 22273 /* 22274 * We are in a multiple send case, need to get 22275 * the next ire and make a duplicate of the packet. 22276 * ire1 holds here the next ire to process in the 22277 * bucket. If multirouting is expected, 22278 * any non-RTF_MULTIRT ire that has the 22279 * right destination address is ignored. 22280 */ 22281 irb = ire->ire_bucket; 22282 ASSERT(irb != NULL); 22283 22284 IRB_REFHOLD(irb); 22285 for (ire1 = ire->ire_next; 22286 ire1 != NULL; 22287 ire1 = ire1->ire_next) { 22288 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22289 continue; 22290 if (ire1->ire_addr != ire->ire_addr) 22291 continue; 22292 if (ire1->ire_marks & 22293 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22294 continue; 22295 22296 /* Got one */ 22297 IRE_REFHOLD(ire1); 22298 break; 22299 } 22300 IRB_REFRELE(irb); 22301 22302 if (ire1 != NULL) { 22303 next_mp = copyb(mp); 22304 if ((next_mp == NULL) || 22305 ((mp->b_cont != NULL) && 22306 ((next_mp->b_cont = 22307 dupmsg(mp->b_cont)) == NULL))) { 22308 freemsg(next_mp); 22309 next_mp = NULL; 22310 ire_refrele(ire1); 22311 ire1 = NULL; 22312 } 22313 } 22314 22315 /* Last multiroute ire; don't loop anymore. */ 22316 if (ire1 == NULL) { 22317 multirt_send = B_FALSE; 22318 } 22319 } 22320 22321 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22322 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22323 mblk_t *, mp); 22324 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22325 ipst->ips_ipv4firewall_physical_out, 22326 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst); 22327 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22328 if (mp == NULL) 22329 goto release_ire_and_ill; 22330 22331 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22332 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22333 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22334 if ((pktxmit_state == SEND_FAILED) || 22335 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22336 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22337 "- packet dropped\n")); 22338 release_ire_and_ill: 22339 ire_refrele(ire); 22340 if (next_mp != NULL) { 22341 freemsg(next_mp); 22342 ire_refrele(ire1); 22343 } 22344 if (conn_outgoing_ill != NULL) 22345 ill_refrele(conn_outgoing_ill); 22346 return; 22347 } 22348 22349 if (CLASSD(dst)) { 22350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22351 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22352 LENGTH); 22353 } 22354 22355 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22356 "ip_wput_ire_end: q %p (%S)", 22357 q, "last copy out"); 22358 IRE_REFRELE(ire); 22359 22360 if (multirt_send) { 22361 ASSERT(ire1); 22362 /* 22363 * Proceed with the next RTF_MULTIRT ire, 22364 * Also set up the send-to queue accordingly. 22365 */ 22366 ire = ire1; 22367 ire1 = NULL; 22368 stq = ire->ire_stq; 22369 mp = next_mp; 22370 next_mp = NULL; 22371 ipha = (ipha_t *)mp->b_rptr; 22372 ill_index = Q_TO_INDEX(stq); 22373 ill = (ill_t *)stq->q_ptr; 22374 } 22375 } while (multirt_send); 22376 if (conn_outgoing_ill != NULL) 22377 ill_refrele(conn_outgoing_ill); 22378 return; 22379 22380 /* 22381 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22382 */ 22383 broadcast: 22384 { 22385 /* 22386 * Avoid broadcast storms by setting the ttl to 1 22387 * for broadcasts. This parameter can be set 22388 * via ndd, so make sure that for the SO_DONTROUTE 22389 * case that ipha_ttl is always set to 1. 22390 * In the event that we are replying to incoming 22391 * ICMP packets, conn could be NULL. 22392 */ 22393 if ((connp != NULL) && connp->conn_dontroute) 22394 ipha->ipha_ttl = 1; 22395 else 22396 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22397 22398 /* 22399 * Note that we are not doing a IRB_REFHOLD here. 22400 * Actually we don't care if the list changes i.e 22401 * if somebody deletes an IRE from the list while 22402 * we drop the lock, the next time we come around 22403 * ire_next will be NULL and hence we won't send 22404 * out multiple copies which is fine. 22405 */ 22406 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22407 ire1 = ire->ire_next; 22408 if (conn_outgoing_ill != NULL) { 22409 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22410 ASSERT(ire1 == ire->ire_next); 22411 if (ire1 != NULL && ire1->ire_addr == dst) { 22412 ire_refrele(ire); 22413 ire = ire1; 22414 IRE_REFHOLD(ire); 22415 ire1 = ire->ire_next; 22416 continue; 22417 } 22418 rw_exit(&ire->ire_bucket->irb_lock); 22419 /* Did not find a matching ill */ 22420 ip1dbg(("ip_wput_ire: broadcast with no " 22421 "matching IP_BOUND_IF ill %s\n", 22422 conn_outgoing_ill->ill_name)); 22423 freemsg(first_mp); 22424 if (ire != NULL) 22425 ire_refrele(ire); 22426 ill_refrele(conn_outgoing_ill); 22427 return; 22428 } 22429 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22430 /* 22431 * If the next IRE has the same address and is not one 22432 * of the two copies that we need to send, try to see 22433 * whether this copy should be sent at all. This 22434 * assumes that we insert loopbacks first and then 22435 * non-loopbacks. This is acheived by inserting the 22436 * loopback always before non-loopback. 22437 * This is used to send a single copy of a broadcast 22438 * packet out all physical interfaces that have an 22439 * matching IRE_BROADCAST while also looping 22440 * back one copy (to ip_wput_local) for each 22441 * matching physical interface. However, we avoid 22442 * sending packets out different logical that match by 22443 * having ipif_up/ipif_down supress duplicate 22444 * IRE_BROADCASTS. 22445 * 22446 * This feature is currently used to get broadcasts 22447 * sent to multiple interfaces, when the broadcast 22448 * address being used applies to multiple interfaces. 22449 * For example, a whole net broadcast will be 22450 * replicated on every connected subnet of 22451 * the target net. 22452 * 22453 * Each zone has its own set of IRE_BROADCASTs, so that 22454 * we're able to distribute inbound packets to multiple 22455 * zones who share a broadcast address. We avoid looping 22456 * back outbound packets in different zones but on the 22457 * same ill, as the application would see duplicates. 22458 * 22459 * If the interfaces are part of the same group, 22460 * we would want to send only one copy out for 22461 * whole group. 22462 * 22463 * This logic assumes that ire_add_v4() groups the 22464 * IRE_BROADCAST entries so that those with the same 22465 * ire_addr and ill_group are kept together. 22466 */ 22467 ire_ill = ire->ire_ipif->ipif_ill; 22468 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22469 if (ire_ill->ill_group != NULL && 22470 (ire->ire_marks & IRE_MARK_NORECV)) { 22471 /* 22472 * If the current zone only has an ire 22473 * broadcast for this address marked 22474 * NORECV, the ire we want is ahead in 22475 * the bucket, so we look it up 22476 * deliberately ignoring the zoneid. 22477 */ 22478 for (ire1 = ire->ire_bucket->irb_ire; 22479 ire1 != NULL; 22480 ire1 = ire1->ire_next) { 22481 ire1_ill = 22482 ire1->ire_ipif->ipif_ill; 22483 if (ire1->ire_addr != dst) 22484 continue; 22485 /* skip over the current ire */ 22486 if (ire1 == ire) 22487 continue; 22488 /* skip over deleted ires */ 22489 if (ire1->ire_marks & 22490 IRE_MARK_CONDEMNED) 22491 continue; 22492 /* 22493 * non-loopback ire in our 22494 * group: use it for the next 22495 * pass in the loop 22496 */ 22497 if (ire1->ire_stq != NULL && 22498 ire1_ill->ill_group == 22499 ire_ill->ill_group) 22500 break; 22501 } 22502 } 22503 } else { 22504 while (ire1 != NULL && ire1->ire_addr == dst) { 22505 ire1_ill = ire1->ire_ipif->ipif_ill; 22506 /* 22507 * We can have two broadcast ires on the 22508 * same ill in different zones; here 22509 * we'll send a copy of the packet on 22510 * each ill and the fanout code will 22511 * call conn_wantpacket() to check that 22512 * the zone has the broadcast address 22513 * configured on the ill. If the two 22514 * ires are in the same group we only 22515 * send one copy up. 22516 */ 22517 if (ire1_ill != ire_ill && 22518 (ire1_ill->ill_group == NULL || 22519 ire_ill->ill_group == NULL || 22520 ire1_ill->ill_group != 22521 ire_ill->ill_group)) { 22522 break; 22523 } 22524 ire1 = ire1->ire_next; 22525 } 22526 } 22527 } 22528 ASSERT(multirt_send == B_FALSE); 22529 if (ire1 != NULL && ire1->ire_addr == dst) { 22530 if ((ire->ire_flags & RTF_MULTIRT) && 22531 (ire1->ire_flags & RTF_MULTIRT)) { 22532 /* 22533 * We are in the multirouting case. 22534 * The message must be sent at least 22535 * on both ires. These ires have been 22536 * inserted AFTER the standard ones 22537 * in ip_rt_add(). There are thus no 22538 * other ire entries for the destination 22539 * address in the rest of the bucket 22540 * that do not have the RTF_MULTIRT 22541 * flag. We don't process a copy 22542 * of the message here. This will be 22543 * done in the final sending loop. 22544 */ 22545 multirt_send = B_TRUE; 22546 } else { 22547 next_mp = ip_copymsg(first_mp); 22548 if (next_mp != NULL) 22549 IRE_REFHOLD(ire1); 22550 } 22551 } 22552 rw_exit(&ire->ire_bucket->irb_lock); 22553 } 22554 22555 if (stq) { 22556 /* 22557 * A non-NULL send-to queue means this packet is going 22558 * out of this machine. 22559 */ 22560 out_ill = (ill_t *)stq->q_ptr; 22561 22562 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22563 ttl_protocol = ((uint16_t *)ipha)[4]; 22564 /* 22565 * We accumulate the pseudo header checksum in cksum. 22566 * This is pretty hairy code, so watch close. One 22567 * thing to keep in mind is that UDP and TCP have 22568 * stored their respective datagram lengths in their 22569 * checksum fields. This lines things up real nice. 22570 */ 22571 cksum = (dst >> 16) + (dst & 0xFFFF) + 22572 (src >> 16) + (src & 0xFFFF); 22573 /* 22574 * We assume the udp checksum field contains the 22575 * length, so to compute the pseudo header checksum, 22576 * all we need is the protocol number and src/dst. 22577 */ 22578 /* Provide the checksums for UDP and TCP. */ 22579 if ((PROTO == IPPROTO_TCP) && 22580 (ip_hdr_included != IP_HDR_INCLUDED)) { 22581 /* hlen gets the number of uchar_ts in the IP header */ 22582 hlen = (V_HLEN & 0xF) << 2; 22583 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22584 IP_STAT(ipst, ip_out_sw_cksum); 22585 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22586 LENGTH - hlen); 22587 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22588 } else if (PROTO == IPPROTO_SCTP && 22589 (ip_hdr_included != IP_HDR_INCLUDED)) { 22590 sctp_hdr_t *sctph; 22591 22592 hlen = (V_HLEN & 0xF) << 2; 22593 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22594 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22595 sctph->sh_chksum = 0; 22596 #ifdef DEBUG 22597 if (!skip_sctp_cksum) 22598 #endif 22599 sctph->sh_chksum = sctp_cksum(mp, hlen); 22600 } else { 22601 queue_t *dev_q = stq->q_next; 22602 22603 if ((dev_q->q_next || dev_q->q_first) && 22604 !canput(dev_q)) { 22605 blocked: 22606 ipha->ipha_ident = ip_hdr_included; 22607 /* 22608 * If we don't have a conn to apply 22609 * backpressure, free the message. 22610 * In the ire_send path, we don't know 22611 * the position to requeue the packet. Rather 22612 * than reorder packets, we just drop this 22613 * packet. 22614 */ 22615 if (ipst->ips_ip_output_queue && 22616 connp != NULL && 22617 caller != IRE_SEND) { 22618 if (caller == IP_WSRV) { 22619 connp->conn_did_putbq = 1; 22620 (void) putbq(connp->conn_wq, 22621 first_mp); 22622 conn_drain_insert(connp); 22623 /* 22624 * This is the service thread, 22625 * and the queue is already 22626 * noenabled. The check for 22627 * canput and the putbq is not 22628 * atomic. So we need to check 22629 * again. 22630 */ 22631 if (canput(stq->q_next)) 22632 connp->conn_did_putbq 22633 = 0; 22634 IP_STAT(ipst, ip_conn_flputbq); 22635 } else { 22636 /* 22637 * We are not the service proc. 22638 * ip_wsrv will be scheduled or 22639 * is already running. 22640 */ 22641 (void) putq(connp->conn_wq, 22642 first_mp); 22643 } 22644 } else { 22645 out_ill = (ill_t *)stq->q_ptr; 22646 BUMP_MIB(out_ill->ill_ip_mib, 22647 ipIfStatsOutDiscards); 22648 freemsg(first_mp); 22649 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22650 "ip_wput_ire_end: q %p (%S)", 22651 q, "discard"); 22652 } 22653 ire_refrele(ire); 22654 if (next_mp) { 22655 ire_refrele(ire1); 22656 freemsg(next_mp); 22657 } 22658 if (conn_outgoing_ill != NULL) 22659 ill_refrele(conn_outgoing_ill); 22660 return; 22661 } 22662 if ((PROTO == IPPROTO_UDP) && 22663 (ip_hdr_included != IP_HDR_INCLUDED)) { 22664 /* 22665 * hlen gets the number of uchar_ts in the 22666 * IP header 22667 */ 22668 hlen = (V_HLEN & 0xF) << 2; 22669 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22670 max_frag = ire->ire_max_frag; 22671 if (*up != 0) { 22672 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22673 up, PROTO, hlen, LENGTH, max_frag, 22674 ipsec_len, cksum); 22675 /* Software checksum? */ 22676 if (DB_CKSUMFLAGS(mp) == 0) { 22677 IP_STAT(ipst, ip_out_sw_cksum); 22678 IP_STAT_UPDATE(ipst, 22679 ip_udp_out_sw_cksum_bytes, 22680 LENGTH - hlen); 22681 } 22682 } 22683 } 22684 } 22685 /* 22686 * Need to do this even when fragmenting. The local 22687 * loopback can be done without computing checksums 22688 * but forwarding out other interface must be done 22689 * after the IP checksum (and ULP checksums) have been 22690 * computed. 22691 * 22692 * NOTE : multicast_forward is set only if this packet 22693 * originated from ip_wput. For packets originating from 22694 * ip_wput_multicast, it is not set. 22695 */ 22696 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22697 multi_loopback: 22698 ip2dbg(("ip_wput: multicast, loop %d\n", 22699 conn_multicast_loop)); 22700 22701 /* Forget header checksum offload */ 22702 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22703 22704 /* 22705 * Local loopback of multicasts? Check the 22706 * ill. 22707 * 22708 * Note that the loopback function will not come 22709 * in through ip_rput - it will only do the 22710 * client fanout thus we need to do an mforward 22711 * as well. The is different from the BSD 22712 * logic. 22713 */ 22714 if (ill != NULL) { 22715 ilm_t *ilm; 22716 22717 ILM_WALKER_HOLD(ill); 22718 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22719 ALL_ZONES); 22720 ILM_WALKER_RELE(ill); 22721 if (ilm != NULL) { 22722 /* 22723 * Pass along the virtual output q. 22724 * ip_wput_local() will distribute the 22725 * packet to all the matching zones, 22726 * except the sending zone when 22727 * IP_MULTICAST_LOOP is false. 22728 */ 22729 ip_multicast_loopback(q, ill, first_mp, 22730 conn_multicast_loop ? 0 : 22731 IP_FF_NO_MCAST_LOOP, zoneid); 22732 } 22733 } 22734 if (ipha->ipha_ttl == 0) { 22735 /* 22736 * 0 => only to this host i.e. we are 22737 * done. We are also done if this was the 22738 * loopback interface since it is sufficient 22739 * to loopback one copy of a multicast packet. 22740 */ 22741 freemsg(first_mp); 22742 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22743 "ip_wput_ire_end: q %p (%S)", 22744 q, "loopback"); 22745 ire_refrele(ire); 22746 if (conn_outgoing_ill != NULL) 22747 ill_refrele(conn_outgoing_ill); 22748 return; 22749 } 22750 /* 22751 * ILLF_MULTICAST is checked in ip_newroute 22752 * i.e. we don't need to check it here since 22753 * all IRE_CACHEs come from ip_newroute. 22754 * For multicast traffic, SO_DONTROUTE is interpreted 22755 * to mean only send the packet out the interface 22756 * (optionally specified with IP_MULTICAST_IF) 22757 * and do not forward it out additional interfaces. 22758 * RSVP and the rsvp daemon is an example of a 22759 * protocol and user level process that 22760 * handles it's own routing. Hence, it uses the 22761 * SO_DONTROUTE option to accomplish this. 22762 */ 22763 22764 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 22765 ill != NULL) { 22766 /* Unconditionally redo the checksum */ 22767 ipha->ipha_hdr_checksum = 0; 22768 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22769 22770 /* 22771 * If this needs to go out secure, we need 22772 * to wait till we finish the IPSEC 22773 * processing. 22774 */ 22775 if (ipsec_len == 0 && 22776 ip_mforward(ill, ipha, mp)) { 22777 freemsg(first_mp); 22778 ip1dbg(("ip_wput: mforward failed\n")); 22779 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22780 "ip_wput_ire_end: q %p (%S)", 22781 q, "mforward failed"); 22782 ire_refrele(ire); 22783 if (conn_outgoing_ill != NULL) 22784 ill_refrele(conn_outgoing_ill); 22785 return; 22786 } 22787 } 22788 } 22789 max_frag = ire->ire_max_frag; 22790 cksum += ttl_protocol; 22791 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22792 /* No fragmentation required for this one. */ 22793 /* 22794 * Don't use frag_flag if packet is pre-built or source 22795 * routed or if multicast (since multicast packets do 22796 * not solicit ICMP "packet too big" messages). 22797 */ 22798 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22799 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22800 !ip_source_route_included(ipha)) && 22801 !CLASSD(ipha->ipha_dst)) 22802 ipha->ipha_fragment_offset_and_flags |= 22803 htons(ire->ire_frag_flag); 22804 22805 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22806 /* Complete the IP header checksum. */ 22807 cksum += ipha->ipha_ident; 22808 cksum += (v_hlen_tos_len >> 16)+ 22809 (v_hlen_tos_len & 0xFFFF); 22810 cksum += ipha->ipha_fragment_offset_and_flags; 22811 hlen = (V_HLEN & 0xF) - 22812 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22813 if (hlen) { 22814 checksumoptions: 22815 /* 22816 * Account for the IP Options in the IP 22817 * header checksum. 22818 */ 22819 up = (uint16_t *)(rptr+ 22820 IP_SIMPLE_HDR_LENGTH); 22821 do { 22822 cksum += up[0]; 22823 cksum += up[1]; 22824 up += 2; 22825 } while (--hlen); 22826 } 22827 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22828 cksum = ~(cksum + (cksum >> 16)); 22829 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22830 } 22831 if (ipsec_len != 0) { 22832 ipsec_out_process(q, first_mp, ire, ill_index); 22833 if (!next_mp) { 22834 ire_refrele(ire); 22835 if (conn_outgoing_ill != NULL) 22836 ill_refrele(conn_outgoing_ill); 22837 return; 22838 } 22839 goto next; 22840 } 22841 22842 /* 22843 * multirt_send has already been handled 22844 * for broadcast, but not yet for multicast 22845 * or IP options. 22846 */ 22847 if (next_mp == NULL) { 22848 if (ire->ire_flags & RTF_MULTIRT) { 22849 multirt_send = B_TRUE; 22850 } 22851 } 22852 22853 /* 22854 * In most cases, the emission loop below is 22855 * entered only once. Only in the case where 22856 * the ire holds the RTF_MULTIRT flag, do we loop 22857 * to process all RTF_MULTIRT ires in the bucket, 22858 * and send the packet through all crossed 22859 * RTF_MULTIRT routes. 22860 */ 22861 do { 22862 if (multirt_send) { 22863 irb_t *irb; 22864 22865 irb = ire->ire_bucket; 22866 ASSERT(irb != NULL); 22867 /* 22868 * We are in a multiple send case, 22869 * need to get the next IRE and make 22870 * a duplicate of the packet. 22871 */ 22872 IRB_REFHOLD(irb); 22873 for (ire1 = ire->ire_next; 22874 ire1 != NULL; 22875 ire1 = ire1->ire_next) { 22876 if (!(ire1->ire_flags & 22877 RTF_MULTIRT)) { 22878 continue; 22879 } 22880 if (ire1->ire_addr != 22881 ire->ire_addr) { 22882 continue; 22883 } 22884 if (ire1->ire_marks & 22885 (IRE_MARK_CONDEMNED| 22886 IRE_MARK_HIDDEN)) { 22887 continue; 22888 } 22889 22890 /* Got one */ 22891 IRE_REFHOLD(ire1); 22892 break; 22893 } 22894 IRB_REFRELE(irb); 22895 22896 if (ire1 != NULL) { 22897 next_mp = copyb(mp); 22898 if ((next_mp == NULL) || 22899 ((mp->b_cont != NULL) && 22900 ((next_mp->b_cont = 22901 dupmsg(mp->b_cont)) 22902 == NULL))) { 22903 freemsg(next_mp); 22904 next_mp = NULL; 22905 ire_refrele(ire1); 22906 ire1 = NULL; 22907 } 22908 } 22909 22910 /* 22911 * Last multiroute ire; don't loop 22912 * anymore. The emission is over 22913 * and next_mp is NULL. 22914 */ 22915 if (ire1 == NULL) { 22916 multirt_send = B_FALSE; 22917 } 22918 } 22919 22920 out_ill = ire->ire_ipif->ipif_ill; 22921 DTRACE_PROBE4(ip4__physical__out__start, 22922 ill_t *, NULL, 22923 ill_t *, out_ill, 22924 ipha_t *, ipha, mblk_t *, mp); 22925 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22926 ipst->ips_ipv4firewall_physical_out, 22927 NULL, out_ill, ipha, mp, mp, ipst); 22928 DTRACE_PROBE1(ip4__physical__out__end, 22929 mblk_t *, mp); 22930 if (mp == NULL) 22931 goto release_ire_and_ill_2; 22932 22933 ASSERT(ipsec_len == 0); 22934 mp->b_prev = 22935 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22936 DTRACE_PROBE2(ip__xmit__2, 22937 mblk_t *, mp, ire_t *, ire); 22938 pktxmit_state = ip_xmit_v4(mp, ire, 22939 NULL, B_TRUE); 22940 if ((pktxmit_state == SEND_FAILED) || 22941 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22942 release_ire_and_ill_2: 22943 if (next_mp) { 22944 freemsg(next_mp); 22945 ire_refrele(ire1); 22946 } 22947 ire_refrele(ire); 22948 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22949 "ip_wput_ire_end: q %p (%S)", 22950 q, "discard MDATA"); 22951 if (conn_outgoing_ill != NULL) 22952 ill_refrele(conn_outgoing_ill); 22953 return; 22954 } 22955 22956 if (CLASSD(dst)) { 22957 BUMP_MIB(out_ill->ill_ip_mib, 22958 ipIfStatsHCOutMcastPkts); 22959 UPDATE_MIB(out_ill->ill_ip_mib, 22960 ipIfStatsHCOutMcastOctets, 22961 LENGTH); 22962 } else if (ire->ire_type == IRE_BROADCAST) { 22963 BUMP_MIB(out_ill->ill_ip_mib, 22964 ipIfStatsHCOutBcastPkts); 22965 } 22966 22967 if (multirt_send) { 22968 /* 22969 * We are in a multiple send case, 22970 * need to re-enter the sending loop 22971 * using the next ire. 22972 */ 22973 ire_refrele(ire); 22974 ire = ire1; 22975 stq = ire->ire_stq; 22976 mp = next_mp; 22977 next_mp = NULL; 22978 ipha = (ipha_t *)mp->b_rptr; 22979 ill_index = Q_TO_INDEX(stq); 22980 } 22981 } while (multirt_send); 22982 22983 if (!next_mp) { 22984 /* 22985 * Last copy going out (the ultra-common 22986 * case). Note that we intentionally replicate 22987 * the putnext rather than calling it before 22988 * the next_mp check in hopes of a little 22989 * tail-call action out of the compiler. 22990 */ 22991 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22992 "ip_wput_ire_end: q %p (%S)", 22993 q, "last copy out(1)"); 22994 ire_refrele(ire); 22995 if (conn_outgoing_ill != NULL) 22996 ill_refrele(conn_outgoing_ill); 22997 return; 22998 } 22999 /* More copies going out below. */ 23000 } else { 23001 int offset; 23002 fragmentit: 23003 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23004 /* 23005 * If this would generate a icmp_frag_needed message, 23006 * we need to handle it before we do the IPSEC 23007 * processing. Otherwise, we need to strip the IPSEC 23008 * headers before we send up the message to the ULPs 23009 * which becomes messy and difficult. 23010 */ 23011 if (ipsec_len != 0) { 23012 if ((max_frag < (unsigned int)(LENGTH + 23013 ipsec_len)) && (offset & IPH_DF)) { 23014 out_ill = (ill_t *)stq->q_ptr; 23015 BUMP_MIB(out_ill->ill_ip_mib, 23016 ipIfStatsOutFragFails); 23017 BUMP_MIB(out_ill->ill_ip_mib, 23018 ipIfStatsOutFragReqds); 23019 ipha->ipha_hdr_checksum = 0; 23020 ipha->ipha_hdr_checksum = 23021 (uint16_t)ip_csum_hdr(ipha); 23022 icmp_frag_needed(ire->ire_stq, first_mp, 23023 max_frag, zoneid, ipst); 23024 if (!next_mp) { 23025 ire_refrele(ire); 23026 if (conn_outgoing_ill != NULL) { 23027 ill_refrele( 23028 conn_outgoing_ill); 23029 } 23030 return; 23031 } 23032 } else { 23033 /* 23034 * This won't cause a icmp_frag_needed 23035 * message. to be generated. Send it on 23036 * the wire. Note that this could still 23037 * cause fragmentation and all we 23038 * do is the generation of the message 23039 * to the ULP if needed before IPSEC. 23040 */ 23041 if (!next_mp) { 23042 ipsec_out_process(q, first_mp, 23043 ire, ill_index); 23044 TRACE_2(TR_FAC_IP, 23045 TR_IP_WPUT_IRE_END, 23046 "ip_wput_ire_end: q %p " 23047 "(%S)", q, 23048 "last ipsec_out_process"); 23049 ire_refrele(ire); 23050 if (conn_outgoing_ill != NULL) { 23051 ill_refrele( 23052 conn_outgoing_ill); 23053 } 23054 return; 23055 } 23056 ipsec_out_process(q, first_mp, 23057 ire, ill_index); 23058 } 23059 } else { 23060 /* 23061 * Initiate IPPF processing. For 23062 * fragmentable packets we finish 23063 * all QOS packet processing before 23064 * calling: 23065 * ip_wput_ire_fragmentit->ip_wput_frag 23066 */ 23067 23068 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23069 ip_process(IPP_LOCAL_OUT, &mp, 23070 ill_index); 23071 if (mp == NULL) { 23072 out_ill = (ill_t *)stq->q_ptr; 23073 BUMP_MIB(out_ill->ill_ip_mib, 23074 ipIfStatsOutDiscards); 23075 if (next_mp != NULL) { 23076 freemsg(next_mp); 23077 ire_refrele(ire1); 23078 } 23079 ire_refrele(ire); 23080 TRACE_2(TR_FAC_IP, 23081 TR_IP_WPUT_IRE_END, 23082 "ip_wput_ire: q %p (%S)", 23083 q, "discard MDATA"); 23084 if (conn_outgoing_ill != NULL) { 23085 ill_refrele( 23086 conn_outgoing_ill); 23087 } 23088 return; 23089 } 23090 } 23091 if (!next_mp) { 23092 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23093 "ip_wput_ire_end: q %p (%S)", 23094 q, "last fragmentation"); 23095 ip_wput_ire_fragmentit(mp, ire, 23096 zoneid, ipst); 23097 ire_refrele(ire); 23098 if (conn_outgoing_ill != NULL) 23099 ill_refrele(conn_outgoing_ill); 23100 return; 23101 } 23102 ip_wput_ire_fragmentit(mp, ire, zoneid, ipst); 23103 } 23104 } 23105 } else { 23106 nullstq: 23107 /* A NULL stq means the destination address is local. */ 23108 UPDATE_OB_PKT_COUNT(ire); 23109 ire->ire_last_used_time = lbolt; 23110 ASSERT(ire->ire_ipif != NULL); 23111 if (!next_mp) { 23112 /* 23113 * Is there an "in" and "out" for traffic local 23114 * to a host (loopback)? The code in Solaris doesn't 23115 * explicitly draw a line in its code for in vs out, 23116 * so we've had to draw a line in the sand: ip_wput_ire 23117 * is considered to be the "output" side and 23118 * ip_wput_local to be the "input" side. 23119 */ 23120 out_ill = ire->ire_ipif->ipif_ill; 23121 23122 DTRACE_PROBE4(ip4__loopback__out__start, 23123 ill_t *, NULL, ill_t *, out_ill, 23124 ipha_t *, ipha, mblk_t *, first_mp); 23125 23126 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23127 ipst->ips_ipv4firewall_loopback_out, 23128 NULL, out_ill, ipha, first_mp, mp, ipst); 23129 23130 DTRACE_PROBE1(ip4__loopback__out_end, 23131 mblk_t *, first_mp); 23132 23133 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23134 "ip_wput_ire_end: q %p (%S)", 23135 q, "local address"); 23136 23137 if (first_mp != NULL) 23138 ip_wput_local(q, out_ill, ipha, 23139 first_mp, ire, 0, ire->ire_zoneid); 23140 ire_refrele(ire); 23141 if (conn_outgoing_ill != NULL) 23142 ill_refrele(conn_outgoing_ill); 23143 return; 23144 } 23145 23146 out_ill = ire->ire_ipif->ipif_ill; 23147 23148 DTRACE_PROBE4(ip4__loopback__out__start, 23149 ill_t *, NULL, ill_t *, out_ill, 23150 ipha_t *, ipha, mblk_t *, first_mp); 23151 23152 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23153 ipst->ips_ipv4firewall_loopback_out, 23154 NULL, out_ill, ipha, first_mp, mp, ipst); 23155 23156 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23157 23158 if (first_mp != NULL) 23159 ip_wput_local(q, out_ill, ipha, 23160 first_mp, ire, 0, ire->ire_zoneid); 23161 } 23162 next: 23163 /* 23164 * More copies going out to additional interfaces. 23165 * ire1 has already been held. We don't need the 23166 * "ire" anymore. 23167 */ 23168 ire_refrele(ire); 23169 ire = ire1; 23170 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23171 mp = next_mp; 23172 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23173 ill = ire_to_ill(ire); 23174 first_mp = mp; 23175 if (ipsec_len != 0) { 23176 ASSERT(first_mp->b_datap->db_type == M_CTL); 23177 mp = mp->b_cont; 23178 } 23179 dst = ire->ire_addr; 23180 ipha = (ipha_t *)mp->b_rptr; 23181 /* 23182 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23183 * Restore ipha_ident "no checksum" flag. 23184 */ 23185 src = orig_src; 23186 ipha->ipha_ident = ip_hdr_included; 23187 goto another; 23188 23189 #undef rptr 23190 #undef Q_TO_INDEX 23191 } 23192 23193 /* 23194 * Routine to allocate a message that is used to notify the ULP about MDT. 23195 * The caller may provide a pointer to the link-layer MDT capabilities, 23196 * or NULL if MDT is to be disabled on the stream. 23197 */ 23198 mblk_t * 23199 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23200 { 23201 mblk_t *mp; 23202 ip_mdt_info_t *mdti; 23203 ill_mdt_capab_t *idst; 23204 23205 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23206 DB_TYPE(mp) = M_CTL; 23207 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23208 mdti = (ip_mdt_info_t *)mp->b_rptr; 23209 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23210 idst = &(mdti->mdt_capab); 23211 23212 /* 23213 * If the caller provides us with the capability, copy 23214 * it over into our notification message; otherwise 23215 * we zero out the capability portion. 23216 */ 23217 if (isrc != NULL) 23218 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23219 else 23220 bzero((caddr_t)idst, sizeof (*idst)); 23221 } 23222 return (mp); 23223 } 23224 23225 /* 23226 * Routine which determines whether MDT can be enabled on the destination 23227 * IRE and IPC combination, and if so, allocates and returns the MDT 23228 * notification mblk that may be used by ULP. We also check if we need to 23229 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23230 * MDT usage in the past have been lifted. This gets called during IP 23231 * and ULP binding. 23232 */ 23233 mblk_t * 23234 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23235 ill_mdt_capab_t *mdt_cap) 23236 { 23237 mblk_t *mp; 23238 boolean_t rc = B_FALSE; 23239 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23240 23241 ASSERT(dst_ire != NULL); 23242 ASSERT(connp != NULL); 23243 ASSERT(mdt_cap != NULL); 23244 23245 /* 23246 * Currently, we only support simple TCP/{IPv4,IPv6} with 23247 * Multidata, which is handled in tcp_multisend(). This 23248 * is the reason why we do all these checks here, to ensure 23249 * that we don't enable Multidata for the cases which we 23250 * can't handle at the moment. 23251 */ 23252 do { 23253 /* Only do TCP at the moment */ 23254 if (connp->conn_ulp != IPPROTO_TCP) 23255 break; 23256 23257 /* 23258 * IPSEC outbound policy present? Note that we get here 23259 * after calling ipsec_conn_cache_policy() where the global 23260 * policy checking is performed. conn_latch will be 23261 * non-NULL as long as there's a policy defined, 23262 * i.e. conn_out_enforce_policy may be NULL in such case 23263 * when the connection is non-secure, and hence we check 23264 * further if the latch refers to an outbound policy. 23265 */ 23266 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23267 break; 23268 23269 /* CGTP (multiroute) is enabled? */ 23270 if (dst_ire->ire_flags & RTF_MULTIRT) 23271 break; 23272 23273 /* Outbound IPQoS enabled? */ 23274 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23275 /* 23276 * In this case, we disable MDT for this and all 23277 * future connections going over the interface. 23278 */ 23279 mdt_cap->ill_mdt_on = 0; 23280 break; 23281 } 23282 23283 /* socket option(s) present? */ 23284 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23285 break; 23286 23287 rc = B_TRUE; 23288 /* CONSTCOND */ 23289 } while (0); 23290 23291 /* Remember the result */ 23292 connp->conn_mdt_ok = rc; 23293 23294 if (!rc) 23295 return (NULL); 23296 else if (!mdt_cap->ill_mdt_on) { 23297 /* 23298 * If MDT has been previously turned off in the past, and we 23299 * currently can do MDT (due to IPQoS policy removal, etc.) 23300 * then enable it for this interface. 23301 */ 23302 mdt_cap->ill_mdt_on = 1; 23303 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23304 "interface %s\n", ill_name)); 23305 } 23306 23307 /* Allocate the MDT info mblk */ 23308 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23309 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23310 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23311 return (NULL); 23312 } 23313 return (mp); 23314 } 23315 23316 /* 23317 * Routine to allocate a message that is used to notify the ULP about LSO. 23318 * The caller may provide a pointer to the link-layer LSO capabilities, 23319 * or NULL if LSO is to be disabled on the stream. 23320 */ 23321 mblk_t * 23322 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23323 { 23324 mblk_t *mp; 23325 ip_lso_info_t *lsoi; 23326 ill_lso_capab_t *idst; 23327 23328 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23329 DB_TYPE(mp) = M_CTL; 23330 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23331 lsoi = (ip_lso_info_t *)mp->b_rptr; 23332 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23333 idst = &(lsoi->lso_capab); 23334 23335 /* 23336 * If the caller provides us with the capability, copy 23337 * it over into our notification message; otherwise 23338 * we zero out the capability portion. 23339 */ 23340 if (isrc != NULL) 23341 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23342 else 23343 bzero((caddr_t)idst, sizeof (*idst)); 23344 } 23345 return (mp); 23346 } 23347 23348 /* 23349 * Routine which determines whether LSO can be enabled on the destination 23350 * IRE and IPC combination, and if so, allocates and returns the LSO 23351 * notification mblk that may be used by ULP. We also check if we need to 23352 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23353 * LSO usage in the past have been lifted. This gets called during IP 23354 * and ULP binding. 23355 */ 23356 mblk_t * 23357 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23358 ill_lso_capab_t *lso_cap) 23359 { 23360 mblk_t *mp; 23361 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23362 23363 ASSERT(dst_ire != NULL); 23364 ASSERT(connp != NULL); 23365 ASSERT(lso_cap != NULL); 23366 23367 connp->conn_lso_ok = B_TRUE; 23368 23369 if ((connp->conn_ulp != IPPROTO_TCP) || 23370 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23371 (dst_ire->ire_flags & RTF_MULTIRT) || 23372 !CONN_IS_LSO_MD_FASTPATH(connp) || 23373 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23374 connp->conn_lso_ok = B_FALSE; 23375 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23376 /* 23377 * Disable LSO for this and all future connections going 23378 * over the interface. 23379 */ 23380 lso_cap->ill_lso_on = 0; 23381 } 23382 } 23383 23384 if (!connp->conn_lso_ok) 23385 return (NULL); 23386 else if (!lso_cap->ill_lso_on) { 23387 /* 23388 * If LSO has been previously turned off in the past, and we 23389 * currently can do LSO (due to IPQoS policy removal, etc.) 23390 * then enable it for this interface. 23391 */ 23392 lso_cap->ill_lso_on = 1; 23393 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23394 ill_name)); 23395 } 23396 23397 /* Allocate the LSO info mblk */ 23398 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23399 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23400 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23401 23402 return (mp); 23403 } 23404 23405 /* 23406 * Create destination address attribute, and fill it with the physical 23407 * destination address and SAP taken from the template DL_UNITDATA_REQ 23408 * message block. 23409 */ 23410 boolean_t 23411 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23412 { 23413 dl_unitdata_req_t *dlurp; 23414 pattr_t *pa; 23415 pattrinfo_t pa_info; 23416 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23417 uint_t das_len, das_off; 23418 23419 ASSERT(dlmp != NULL); 23420 23421 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23422 das_len = dlurp->dl_dest_addr_length; 23423 das_off = dlurp->dl_dest_addr_offset; 23424 23425 pa_info.type = PATTR_DSTADDRSAP; 23426 pa_info.len = sizeof (**das) + das_len - 1; 23427 23428 /* create and associate the attribute */ 23429 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23430 if (pa != NULL) { 23431 ASSERT(*das != NULL); 23432 (*das)->addr_is_group = 0; 23433 (*das)->addr_len = (uint8_t)das_len; 23434 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23435 } 23436 23437 return (pa != NULL); 23438 } 23439 23440 /* 23441 * Create hardware checksum attribute and fill it with the values passed. 23442 */ 23443 boolean_t 23444 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23445 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23446 { 23447 pattr_t *pa; 23448 pattrinfo_t pa_info; 23449 23450 ASSERT(mmd != NULL); 23451 23452 pa_info.type = PATTR_HCKSUM; 23453 pa_info.len = sizeof (pattr_hcksum_t); 23454 23455 /* create and associate the attribute */ 23456 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23457 if (pa != NULL) { 23458 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23459 23460 hck->hcksum_start_offset = start_offset; 23461 hck->hcksum_stuff_offset = stuff_offset; 23462 hck->hcksum_end_offset = end_offset; 23463 hck->hcksum_flags = flags; 23464 } 23465 return (pa != NULL); 23466 } 23467 23468 /* 23469 * Create zerocopy attribute and fill it with the specified flags 23470 */ 23471 boolean_t 23472 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23473 { 23474 pattr_t *pa; 23475 pattrinfo_t pa_info; 23476 23477 ASSERT(mmd != NULL); 23478 pa_info.type = PATTR_ZCOPY; 23479 pa_info.len = sizeof (pattr_zcopy_t); 23480 23481 /* create and associate the attribute */ 23482 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23483 if (pa != NULL) { 23484 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23485 23486 zcopy->zcopy_flags = flags; 23487 } 23488 return (pa != NULL); 23489 } 23490 23491 /* 23492 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23493 * block chain. We could rewrite to handle arbitrary message block chains but 23494 * that would make the code complicated and slow. Right now there three 23495 * restrictions: 23496 * 23497 * 1. The first message block must contain the complete IP header and 23498 * at least 1 byte of payload data. 23499 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23500 * so that we can use a single Multidata message. 23501 * 3. No frag must be distributed over two or more message blocks so 23502 * that we don't need more than two packet descriptors per frag. 23503 * 23504 * The above restrictions allow us to support userland applications (which 23505 * will send down a single message block) and NFS over UDP (which will 23506 * send down a chain of at most three message blocks). 23507 * 23508 * We also don't use MDT for payloads with less than or equal to 23509 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23510 */ 23511 boolean_t 23512 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23513 { 23514 int blocks; 23515 ssize_t total, missing, size; 23516 23517 ASSERT(mp != NULL); 23518 ASSERT(hdr_len > 0); 23519 23520 size = MBLKL(mp) - hdr_len; 23521 if (size <= 0) 23522 return (B_FALSE); 23523 23524 /* The first mblk contains the header and some payload. */ 23525 blocks = 1; 23526 total = size; 23527 size %= len; 23528 missing = (size == 0) ? 0 : (len - size); 23529 mp = mp->b_cont; 23530 23531 while (mp != NULL) { 23532 /* 23533 * Give up if we encounter a zero length message block. 23534 * In practice, this should rarely happen and therefore 23535 * not worth the trouble of freeing and re-linking the 23536 * mblk from the chain to handle such case. 23537 */ 23538 if ((size = MBLKL(mp)) == 0) 23539 return (B_FALSE); 23540 23541 /* Too many payload buffers for a single Multidata message? */ 23542 if (++blocks > MULTIDATA_MAX_PBUFS) 23543 return (B_FALSE); 23544 23545 total += size; 23546 /* Is a frag distributed over two or more message blocks? */ 23547 if (missing > size) 23548 return (B_FALSE); 23549 size -= missing; 23550 23551 size %= len; 23552 missing = (size == 0) ? 0 : (len - size); 23553 23554 mp = mp->b_cont; 23555 } 23556 23557 return (total > ip_wput_frag_mdt_min); 23558 } 23559 23560 /* 23561 * Outbound IPv4 fragmentation routine using MDT. 23562 */ 23563 static void 23564 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23565 uint32_t frag_flag, int offset) 23566 { 23567 ipha_t *ipha_orig; 23568 int i1, ip_data_end; 23569 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23570 mblk_t *hdr_mp, *md_mp = NULL; 23571 unsigned char *hdr_ptr, *pld_ptr; 23572 multidata_t *mmd; 23573 ip_pdescinfo_t pdi; 23574 ill_t *ill; 23575 ip_stack_t *ipst = ire->ire_ipst; 23576 23577 ASSERT(DB_TYPE(mp) == M_DATA); 23578 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23579 23580 ill = ire_to_ill(ire); 23581 ASSERT(ill != NULL); 23582 23583 ipha_orig = (ipha_t *)mp->b_rptr; 23584 mp->b_rptr += sizeof (ipha_t); 23585 23586 /* Calculate how many packets we will send out */ 23587 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23588 pkts = (i1 + len - 1) / len; 23589 ASSERT(pkts > 1); 23590 23591 /* Allocate a message block which will hold all the IP Headers. */ 23592 wroff = ipst->ips_ip_wroff_extra; 23593 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23594 23595 i1 = pkts * hdr_chunk_len; 23596 /* 23597 * Create the header buffer, Multidata and destination address 23598 * and SAP attribute that should be associated with it. 23599 */ 23600 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23601 ((hdr_mp->b_wptr += i1), 23602 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23603 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23604 freemsg(mp); 23605 if (md_mp == NULL) { 23606 freemsg(hdr_mp); 23607 } else { 23608 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 23609 freemsg(md_mp); 23610 } 23611 IP_STAT(ipst, ip_frag_mdt_allocfail); 23612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23613 return; 23614 } 23615 IP_STAT(ipst, ip_frag_mdt_allocd); 23616 23617 /* 23618 * Add a payload buffer to the Multidata; this operation must not 23619 * fail, or otherwise our logic in this routine is broken. There 23620 * is no memory allocation done by the routine, so any returned 23621 * failure simply tells us that we've done something wrong. 23622 * 23623 * A failure tells us that either we're adding the same payload 23624 * buffer more than once, or we're trying to add more buffers than 23625 * allowed. None of the above cases should happen, and we panic 23626 * because either there's horrible heap corruption, and/or 23627 * programming mistake. 23628 */ 23629 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23630 goto pbuf_panic; 23631 23632 hdr_ptr = hdr_mp->b_rptr; 23633 pld_ptr = mp->b_rptr; 23634 23635 /* Establish the ending byte offset, based on the starting offset. */ 23636 offset <<= 3; 23637 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23638 IP_SIMPLE_HDR_LENGTH; 23639 23640 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23641 23642 while (pld_ptr < mp->b_wptr) { 23643 ipha_t *ipha; 23644 uint16_t offset_and_flags; 23645 uint16_t ip_len; 23646 int error; 23647 23648 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23649 ipha = (ipha_t *)(hdr_ptr + wroff); 23650 ASSERT(OK_32PTR(ipha)); 23651 *ipha = *ipha_orig; 23652 23653 if (ip_data_end - offset > len) { 23654 offset_and_flags = IPH_MF; 23655 } else { 23656 /* 23657 * Last frag. Set len to the length of this last piece. 23658 */ 23659 len = ip_data_end - offset; 23660 /* A frag of a frag might have IPH_MF non-zero */ 23661 offset_and_flags = 23662 ntohs(ipha->ipha_fragment_offset_and_flags) & 23663 IPH_MF; 23664 } 23665 offset_and_flags |= (uint16_t)(offset >> 3); 23666 offset_and_flags |= (uint16_t)frag_flag; 23667 /* Store the offset and flags in the IP header. */ 23668 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23669 23670 /* Store the length in the IP header. */ 23671 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23672 ipha->ipha_length = htons(ip_len); 23673 23674 /* 23675 * Set the IP header checksum. Note that mp is just 23676 * the header, so this is easy to pass to ip_csum. 23677 */ 23678 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23679 23680 /* 23681 * Record offset and size of header and data of the next packet 23682 * in the multidata message. 23683 */ 23684 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23685 PDESC_PLD_INIT(&pdi); 23686 i1 = MIN(mp->b_wptr - pld_ptr, len); 23687 ASSERT(i1 > 0); 23688 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23689 if (i1 == len) { 23690 pld_ptr += len; 23691 } else { 23692 i1 = len - i1; 23693 mp = mp->b_cont; 23694 ASSERT(mp != NULL); 23695 ASSERT(MBLKL(mp) >= i1); 23696 /* 23697 * Attach the next payload message block to the 23698 * multidata message. 23699 */ 23700 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23701 goto pbuf_panic; 23702 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23703 pld_ptr = mp->b_rptr + i1; 23704 } 23705 23706 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23707 KM_NOSLEEP)) == NULL) { 23708 /* 23709 * Any failure other than ENOMEM indicates that we 23710 * have passed in invalid pdesc info or parameters 23711 * to mmd_addpdesc, which must not happen. 23712 * 23713 * EINVAL is a result of failure on boundary checks 23714 * against the pdesc info contents. It should not 23715 * happen, and we panic because either there's 23716 * horrible heap corruption, and/or programming 23717 * mistake. 23718 */ 23719 if (error != ENOMEM) { 23720 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23721 "pdesc logic error detected for " 23722 "mmd %p pinfo %p (%d)\n", 23723 (void *)mmd, (void *)&pdi, error); 23724 /* NOTREACHED */ 23725 } 23726 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 23727 /* Free unattached payload message blocks as well */ 23728 md_mp->b_cont = mp->b_cont; 23729 goto free_mmd; 23730 } 23731 23732 /* Advance fragment offset. */ 23733 offset += len; 23734 23735 /* Advance to location for next header in the buffer. */ 23736 hdr_ptr += hdr_chunk_len; 23737 23738 /* Did we reach the next payload message block? */ 23739 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23740 mp = mp->b_cont; 23741 /* 23742 * Attach the next message block with payload 23743 * data to the multidata message. 23744 */ 23745 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23746 goto pbuf_panic; 23747 pld_ptr = mp->b_rptr; 23748 } 23749 } 23750 23751 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23752 ASSERT(mp->b_wptr == pld_ptr); 23753 23754 /* Update IP statistics */ 23755 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 23756 23757 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23758 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23759 23760 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23761 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23762 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23763 23764 if (pkt_type == OB_PKT) { 23765 ire->ire_ob_pkt_count += pkts; 23766 if (ire->ire_ipif != NULL) 23767 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23768 } else { 23769 /* The type is IB_PKT in the forwarding path. */ 23770 ire->ire_ib_pkt_count += pkts; 23771 ASSERT(!IRE_IS_LOCAL(ire)); 23772 if (ire->ire_type & IRE_BROADCAST) { 23773 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23774 } else { 23775 UPDATE_MIB(ill->ill_ip_mib, 23776 ipIfStatsHCOutForwDatagrams, pkts); 23777 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23778 } 23779 } 23780 ire->ire_last_used_time = lbolt; 23781 /* Send it down */ 23782 putnext(ire->ire_stq, md_mp); 23783 return; 23784 23785 pbuf_panic: 23786 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23787 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23788 pbuf_idx); 23789 /* NOTREACHED */ 23790 } 23791 23792 /* 23793 * Outbound IP fragmentation routine. 23794 * 23795 * NOTE : This routine does not ire_refrele the ire that is passed in 23796 * as the argument. 23797 */ 23798 static void 23799 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23800 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst) 23801 { 23802 int i1; 23803 mblk_t *ll_hdr_mp; 23804 int ll_hdr_len; 23805 int hdr_len; 23806 mblk_t *hdr_mp; 23807 ipha_t *ipha; 23808 int ip_data_end; 23809 int len; 23810 mblk_t *mp = mp_orig, *mp1; 23811 int offset; 23812 queue_t *q; 23813 uint32_t v_hlen_tos_len; 23814 mblk_t *first_mp; 23815 boolean_t mctl_present; 23816 ill_t *ill; 23817 ill_t *out_ill; 23818 mblk_t *xmit_mp; 23819 mblk_t *carve_mp; 23820 ire_t *ire1 = NULL; 23821 ire_t *save_ire = NULL; 23822 mblk_t *next_mp = NULL; 23823 boolean_t last_frag = B_FALSE; 23824 boolean_t multirt_send = B_FALSE; 23825 ire_t *first_ire = NULL; 23826 irb_t *irb = NULL; 23827 mib2_ipIfStatsEntry_t *mibptr = NULL; 23828 23829 ill = ire_to_ill(ire); 23830 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 23831 23832 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 23833 23834 if (max_frag == 0) { 23835 ip1dbg(("ip_wput_frag: ire frag size is 0" 23836 " - dropping packet\n")); 23837 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23838 freemsg(mp); 23839 return; 23840 } 23841 23842 /* 23843 * IPSEC does not allow hw accelerated packets to be fragmented 23844 * This check is made in ip_wput_ipsec_out prior to coming here 23845 * via ip_wput_ire_fragmentit. 23846 * 23847 * If at this point we have an ire whose ARP request has not 23848 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23849 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23850 * This packet and all fragmentable packets for this ire will 23851 * continue to get dropped while ire_nce->nce_state remains in 23852 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23853 * ND_REACHABLE, all subsquent large packets for this ire will 23854 * get fragemented and sent out by this function. 23855 */ 23856 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23857 /* If nce_state is ND_INITIAL, trigger ARP query */ 23858 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23859 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23860 " - dropping packet\n")); 23861 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23862 freemsg(mp); 23863 return; 23864 } 23865 23866 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23867 "ip_wput_frag_start:"); 23868 23869 if (mp->b_datap->db_type == M_CTL) { 23870 first_mp = mp; 23871 mp_orig = mp = mp->b_cont; 23872 mctl_present = B_TRUE; 23873 } else { 23874 first_mp = mp; 23875 mctl_present = B_FALSE; 23876 } 23877 23878 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23879 ipha = (ipha_t *)mp->b_rptr; 23880 23881 /* 23882 * If the Don't Fragment flag is on, generate an ICMP destination 23883 * unreachable, fragmentation needed. 23884 */ 23885 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23886 if (offset & IPH_DF) { 23887 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23888 if (is_system_labeled()) { 23889 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 23890 ire->ire_max_frag - max_frag, AF_INET); 23891 } 23892 /* 23893 * Need to compute hdr checksum if called from ip_wput_ire. 23894 * Note that ip_rput_forward verifies the checksum before 23895 * calling this routine so in that case this is a noop. 23896 */ 23897 ipha->ipha_hdr_checksum = 0; 23898 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23899 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 23900 ipst); 23901 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23902 "ip_wput_frag_end:(%S)", 23903 "don't fragment"); 23904 return; 23905 } 23906 /* 23907 * Labeled systems adjust max_frag if they add a label 23908 * to send the correct path mtu. We need the real mtu since we 23909 * are fragmenting the packet after label adjustment. 23910 */ 23911 if (is_system_labeled()) 23912 max_frag = ire->ire_max_frag; 23913 if (mctl_present) 23914 freeb(first_mp); 23915 /* 23916 * Establish the starting offset. May not be zero if we are fragging 23917 * a fragment that is being forwarded. 23918 */ 23919 offset = offset & IPH_OFFSET; 23920 23921 /* TODO why is this test needed? */ 23922 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23923 if (((max_frag - LENGTH) & ~7) < 8) { 23924 /* TODO: notify ulp somehow */ 23925 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23926 freemsg(mp); 23927 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23928 "ip_wput_frag_end:(%S)", 23929 "len < 8"); 23930 return; 23931 } 23932 23933 hdr_len = (V_HLEN & 0xF) << 2; 23934 23935 ipha->ipha_hdr_checksum = 0; 23936 23937 /* 23938 * Establish the number of bytes maximum per frag, after putting 23939 * in the header. 23940 */ 23941 len = (max_frag - hdr_len) & ~7; 23942 23943 /* Check if we can use MDT to send out the frags. */ 23944 ASSERT(!IRE_IS_LOCAL(ire)); 23945 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 23946 ipst->ips_ip_multidata_outbound && 23947 !(ire->ire_flags & RTF_MULTIRT) && 23948 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 23949 ill != NULL && ILL_MDT_CAPABLE(ill) && 23950 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23951 ASSERT(ill->ill_mdt_capab != NULL); 23952 if (!ill->ill_mdt_capab->ill_mdt_on) { 23953 /* 23954 * If MDT has been previously turned off in the past, 23955 * and we currently can do MDT (due to IPQoS policy 23956 * removal, etc.) then enable it for this interface. 23957 */ 23958 ill->ill_mdt_capab->ill_mdt_on = 1; 23959 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23960 ill->ill_name)); 23961 } 23962 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23963 offset); 23964 return; 23965 } 23966 23967 /* Get a copy of the header for the trailing frags */ 23968 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst); 23969 if (!hdr_mp) { 23970 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23971 freemsg(mp); 23972 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23973 "ip_wput_frag_end:(%S)", 23974 "couldn't copy hdr"); 23975 return; 23976 } 23977 if (DB_CRED(mp) != NULL) 23978 mblk_setcred(hdr_mp, DB_CRED(mp)); 23979 23980 /* Store the starting offset, with the MoreFrags flag. */ 23981 i1 = offset | IPH_MF | frag_flag; 23982 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23983 23984 /* Establish the ending byte offset, based on the starting offset. */ 23985 offset <<= 3; 23986 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23987 23988 /* Store the length of the first fragment in the IP header. */ 23989 i1 = len + hdr_len; 23990 ASSERT(i1 <= IP_MAXPACKET); 23991 ipha->ipha_length = htons((uint16_t)i1); 23992 23993 /* 23994 * Compute the IP header checksum for the first frag. We have to 23995 * watch out that we stop at the end of the header. 23996 */ 23997 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23998 23999 /* 24000 * Now carve off the first frag. Note that this will include the 24001 * original IP header. 24002 */ 24003 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24004 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24005 freeb(hdr_mp); 24006 freemsg(mp_orig); 24007 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24008 "ip_wput_frag_end:(%S)", 24009 "couldn't carve first"); 24010 return; 24011 } 24012 24013 /* 24014 * Multirouting case. Each fragment is replicated 24015 * via all non-condemned RTF_MULTIRT routes 24016 * currently resolved. 24017 * We ensure that first_ire is the first RTF_MULTIRT 24018 * ire in the bucket. 24019 */ 24020 if (ire->ire_flags & RTF_MULTIRT) { 24021 irb = ire->ire_bucket; 24022 ASSERT(irb != NULL); 24023 24024 multirt_send = B_TRUE; 24025 24026 /* Make sure we do not omit any multiroute ire. */ 24027 IRB_REFHOLD(irb); 24028 for (first_ire = irb->irb_ire; 24029 first_ire != NULL; 24030 first_ire = first_ire->ire_next) { 24031 if ((first_ire->ire_flags & RTF_MULTIRT) && 24032 (first_ire->ire_addr == ire->ire_addr) && 24033 !(first_ire->ire_marks & 24034 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 24035 break; 24036 } 24037 } 24038 24039 if (first_ire != NULL) { 24040 if (first_ire != ire) { 24041 IRE_REFHOLD(first_ire); 24042 /* 24043 * Do not release the ire passed in 24044 * as the argument. 24045 */ 24046 ire = first_ire; 24047 } else { 24048 first_ire = NULL; 24049 } 24050 } 24051 IRB_REFRELE(irb); 24052 24053 /* 24054 * Save the first ire; we will need to restore it 24055 * for the trailing frags. 24056 * We REFHOLD save_ire, as each iterated ire will be 24057 * REFRELEd. 24058 */ 24059 save_ire = ire; 24060 IRE_REFHOLD(save_ire); 24061 } 24062 24063 /* 24064 * First fragment emission loop. 24065 * In most cases, the emission loop below is entered only 24066 * once. Only in the case where the ire holds the RTF_MULTIRT 24067 * flag, do we loop to process all RTF_MULTIRT ires in the 24068 * bucket, and send the fragment through all crossed 24069 * RTF_MULTIRT routes. 24070 */ 24071 do { 24072 if (ire->ire_flags & RTF_MULTIRT) { 24073 /* 24074 * We are in a multiple send case, need to get 24075 * the next ire and make a copy of the packet. 24076 * ire1 holds here the next ire to process in the 24077 * bucket. If multirouting is expected, 24078 * any non-RTF_MULTIRT ire that has the 24079 * right destination address is ignored. 24080 * 24081 * We have to take into account the MTU of 24082 * each walked ire. max_frag is set by the 24083 * the caller and generally refers to 24084 * the primary ire entry. Here we ensure that 24085 * no route with a lower MTU will be used, as 24086 * fragments are carved once for all ires, 24087 * then replicated. 24088 */ 24089 ASSERT(irb != NULL); 24090 IRB_REFHOLD(irb); 24091 for (ire1 = ire->ire_next; 24092 ire1 != NULL; 24093 ire1 = ire1->ire_next) { 24094 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24095 continue; 24096 if (ire1->ire_addr != ire->ire_addr) 24097 continue; 24098 if (ire1->ire_marks & 24099 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24100 continue; 24101 /* 24102 * Ensure we do not exceed the MTU 24103 * of the next route. 24104 */ 24105 if (ire1->ire_max_frag < max_frag) { 24106 ip_multirt_bad_mtu(ire1, max_frag); 24107 continue; 24108 } 24109 24110 /* Got one. */ 24111 IRE_REFHOLD(ire1); 24112 break; 24113 } 24114 IRB_REFRELE(irb); 24115 24116 if (ire1 != NULL) { 24117 next_mp = copyb(mp); 24118 if ((next_mp == NULL) || 24119 ((mp->b_cont != NULL) && 24120 ((next_mp->b_cont = 24121 dupmsg(mp->b_cont)) == NULL))) { 24122 freemsg(next_mp); 24123 next_mp = NULL; 24124 ire_refrele(ire1); 24125 ire1 = NULL; 24126 } 24127 } 24128 24129 /* Last multiroute ire; don't loop anymore. */ 24130 if (ire1 == NULL) { 24131 multirt_send = B_FALSE; 24132 } 24133 } 24134 24135 ll_hdr_len = 0; 24136 LOCK_IRE_FP_MP(ire); 24137 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24138 if (ll_hdr_mp != NULL) { 24139 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24140 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24141 } else { 24142 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24143 } 24144 24145 /* If there is a transmit header, get a copy for this frag. */ 24146 /* 24147 * TODO: should check db_ref before calling ip_carve_mp since 24148 * it might give us a dup. 24149 */ 24150 if (!ll_hdr_mp) { 24151 /* No xmit header. */ 24152 xmit_mp = mp; 24153 24154 /* We have a link-layer header that can fit in our mblk. */ 24155 } else if (mp->b_datap->db_ref == 1 && 24156 ll_hdr_len != 0 && 24157 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24158 /* M_DATA fastpath */ 24159 mp->b_rptr -= ll_hdr_len; 24160 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24161 xmit_mp = mp; 24162 24163 /* Corner case if copyb has failed */ 24164 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24165 UNLOCK_IRE_FP_MP(ire); 24166 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24167 freeb(hdr_mp); 24168 freemsg(mp); 24169 freemsg(mp_orig); 24170 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24171 "ip_wput_frag_end:(%S)", 24172 "discard"); 24173 24174 if (multirt_send) { 24175 ASSERT(ire1); 24176 ASSERT(next_mp); 24177 24178 freemsg(next_mp); 24179 ire_refrele(ire1); 24180 } 24181 if (save_ire != NULL) 24182 IRE_REFRELE(save_ire); 24183 24184 if (first_ire != NULL) 24185 ire_refrele(first_ire); 24186 return; 24187 24188 /* 24189 * Case of res_mp OR the fastpath mp can't fit 24190 * in the mblk 24191 */ 24192 } else { 24193 xmit_mp->b_cont = mp; 24194 if (DB_CRED(mp) != NULL) 24195 mblk_setcred(xmit_mp, DB_CRED(mp)); 24196 /* 24197 * Get priority marking, if any. 24198 * We propagate the CoS marking from the 24199 * original packet that went to QoS processing 24200 * in ip_wput_ire to the newly carved mp. 24201 */ 24202 if (DB_TYPE(xmit_mp) == M_DATA) 24203 xmit_mp->b_band = mp->b_band; 24204 } 24205 UNLOCK_IRE_FP_MP(ire); 24206 24207 q = ire->ire_stq; 24208 out_ill = (ill_t *)q->q_ptr; 24209 24210 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24211 24212 DTRACE_PROBE4(ip4__physical__out__start, 24213 ill_t *, NULL, ill_t *, out_ill, 24214 ipha_t *, ipha, mblk_t *, xmit_mp); 24215 24216 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24217 ipst->ips_ipv4firewall_physical_out, 24218 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24219 24220 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24221 24222 if (xmit_mp != NULL) { 24223 putnext(q, xmit_mp); 24224 24225 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24226 UPDATE_MIB(out_ill->ill_ip_mib, 24227 ipIfStatsHCOutOctets, i1); 24228 24229 if (pkt_type != OB_PKT) { 24230 /* 24231 * Update the packet count and MIB stats 24232 * of trailing RTF_MULTIRT ires. 24233 */ 24234 UPDATE_OB_PKT_COUNT(ire); 24235 BUMP_MIB(out_ill->ill_ip_mib, 24236 ipIfStatsOutFragReqds); 24237 } 24238 } 24239 24240 if (multirt_send) { 24241 /* 24242 * We are in a multiple send case; look for 24243 * the next ire and re-enter the loop. 24244 */ 24245 ASSERT(ire1); 24246 ASSERT(next_mp); 24247 /* REFRELE the current ire before looping */ 24248 ire_refrele(ire); 24249 ire = ire1; 24250 ire1 = NULL; 24251 mp = next_mp; 24252 next_mp = NULL; 24253 } 24254 } while (multirt_send); 24255 24256 ASSERT(ire1 == NULL); 24257 24258 /* Restore the original ire; we need it for the trailing frags */ 24259 if (save_ire != NULL) { 24260 /* REFRELE the last iterated ire */ 24261 ire_refrele(ire); 24262 /* save_ire has been REFHOLDed */ 24263 ire = save_ire; 24264 save_ire = NULL; 24265 q = ire->ire_stq; 24266 } 24267 24268 if (pkt_type == OB_PKT) { 24269 UPDATE_OB_PKT_COUNT(ire); 24270 } else { 24271 out_ill = (ill_t *)q->q_ptr; 24272 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24273 UPDATE_IB_PKT_COUNT(ire); 24274 } 24275 24276 /* Advance the offset to the second frag starting point. */ 24277 offset += len; 24278 /* 24279 * Update hdr_len from the copied header - there might be less options 24280 * in the later fragments. 24281 */ 24282 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24283 /* Loop until done. */ 24284 for (;;) { 24285 uint16_t offset_and_flags; 24286 uint16_t ip_len; 24287 24288 if (ip_data_end - offset > len) { 24289 /* 24290 * Carve off the appropriate amount from the original 24291 * datagram. 24292 */ 24293 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24294 mp = NULL; 24295 break; 24296 } 24297 /* 24298 * More frags after this one. Get another copy 24299 * of the header. 24300 */ 24301 if (carve_mp->b_datap->db_ref == 1 && 24302 hdr_mp->b_wptr - hdr_mp->b_rptr < 24303 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24304 /* Inline IP header */ 24305 carve_mp->b_rptr -= hdr_mp->b_wptr - 24306 hdr_mp->b_rptr; 24307 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24308 hdr_mp->b_wptr - hdr_mp->b_rptr); 24309 mp = carve_mp; 24310 } else { 24311 if (!(mp = copyb(hdr_mp))) { 24312 freemsg(carve_mp); 24313 break; 24314 } 24315 /* Get priority marking, if any. */ 24316 mp->b_band = carve_mp->b_band; 24317 mp->b_cont = carve_mp; 24318 } 24319 ipha = (ipha_t *)mp->b_rptr; 24320 offset_and_flags = IPH_MF; 24321 } else { 24322 /* 24323 * Last frag. Consume the header. Set len to 24324 * the length of this last piece. 24325 */ 24326 len = ip_data_end - offset; 24327 24328 /* 24329 * Carve off the appropriate amount from the original 24330 * datagram. 24331 */ 24332 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24333 mp = NULL; 24334 break; 24335 } 24336 if (carve_mp->b_datap->db_ref == 1 && 24337 hdr_mp->b_wptr - hdr_mp->b_rptr < 24338 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24339 /* Inline IP header */ 24340 carve_mp->b_rptr -= hdr_mp->b_wptr - 24341 hdr_mp->b_rptr; 24342 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24343 hdr_mp->b_wptr - hdr_mp->b_rptr); 24344 mp = carve_mp; 24345 freeb(hdr_mp); 24346 hdr_mp = mp; 24347 } else { 24348 mp = hdr_mp; 24349 /* Get priority marking, if any. */ 24350 mp->b_band = carve_mp->b_band; 24351 mp->b_cont = carve_mp; 24352 } 24353 ipha = (ipha_t *)mp->b_rptr; 24354 /* A frag of a frag might have IPH_MF non-zero */ 24355 offset_and_flags = 24356 ntohs(ipha->ipha_fragment_offset_and_flags) & 24357 IPH_MF; 24358 } 24359 offset_and_flags |= (uint16_t)(offset >> 3); 24360 offset_and_flags |= (uint16_t)frag_flag; 24361 /* Store the offset and flags in the IP header. */ 24362 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24363 24364 /* Store the length in the IP header. */ 24365 ip_len = (uint16_t)(len + hdr_len); 24366 ipha->ipha_length = htons(ip_len); 24367 24368 /* 24369 * Set the IP header checksum. Note that mp is just 24370 * the header, so this is easy to pass to ip_csum. 24371 */ 24372 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24373 24374 /* Attach a transmit header, if any, and ship it. */ 24375 if (pkt_type == OB_PKT) { 24376 UPDATE_OB_PKT_COUNT(ire); 24377 } else { 24378 out_ill = (ill_t *)q->q_ptr; 24379 BUMP_MIB(out_ill->ill_ip_mib, 24380 ipIfStatsHCOutForwDatagrams); 24381 UPDATE_IB_PKT_COUNT(ire); 24382 } 24383 24384 if (ire->ire_flags & RTF_MULTIRT) { 24385 irb = ire->ire_bucket; 24386 ASSERT(irb != NULL); 24387 24388 multirt_send = B_TRUE; 24389 24390 /* 24391 * Save the original ire; we will need to restore it 24392 * for the tailing frags. 24393 */ 24394 save_ire = ire; 24395 IRE_REFHOLD(save_ire); 24396 } 24397 /* 24398 * Emission loop for this fragment, similar 24399 * to what is done for the first fragment. 24400 */ 24401 do { 24402 if (multirt_send) { 24403 /* 24404 * We are in a multiple send case, need to get 24405 * the next ire and make a copy of the packet. 24406 */ 24407 ASSERT(irb != NULL); 24408 IRB_REFHOLD(irb); 24409 for (ire1 = ire->ire_next; 24410 ire1 != NULL; 24411 ire1 = ire1->ire_next) { 24412 if (!(ire1->ire_flags & RTF_MULTIRT)) 24413 continue; 24414 if (ire1->ire_addr != ire->ire_addr) 24415 continue; 24416 if (ire1->ire_marks & 24417 (IRE_MARK_CONDEMNED| 24418 IRE_MARK_HIDDEN)) { 24419 continue; 24420 } 24421 /* 24422 * Ensure we do not exceed the MTU 24423 * of the next route. 24424 */ 24425 if (ire1->ire_max_frag < max_frag) { 24426 ip_multirt_bad_mtu(ire1, 24427 max_frag); 24428 continue; 24429 } 24430 24431 /* Got one. */ 24432 IRE_REFHOLD(ire1); 24433 break; 24434 } 24435 IRB_REFRELE(irb); 24436 24437 if (ire1 != NULL) { 24438 next_mp = copyb(mp); 24439 if ((next_mp == NULL) || 24440 ((mp->b_cont != NULL) && 24441 ((next_mp->b_cont = 24442 dupmsg(mp->b_cont)) == NULL))) { 24443 freemsg(next_mp); 24444 next_mp = NULL; 24445 ire_refrele(ire1); 24446 ire1 = NULL; 24447 } 24448 } 24449 24450 /* Last multiroute ire; don't loop anymore. */ 24451 if (ire1 == NULL) { 24452 multirt_send = B_FALSE; 24453 } 24454 } 24455 24456 /* Update transmit header */ 24457 ll_hdr_len = 0; 24458 LOCK_IRE_FP_MP(ire); 24459 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24460 if (ll_hdr_mp != NULL) { 24461 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24462 ll_hdr_len = MBLKL(ll_hdr_mp); 24463 } else { 24464 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24465 } 24466 24467 if (!ll_hdr_mp) { 24468 xmit_mp = mp; 24469 24470 /* 24471 * We have link-layer header that can fit in 24472 * our mblk. 24473 */ 24474 } else if (mp->b_datap->db_ref == 1 && 24475 ll_hdr_len != 0 && 24476 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24477 /* M_DATA fastpath */ 24478 mp->b_rptr -= ll_hdr_len; 24479 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24480 ll_hdr_len); 24481 xmit_mp = mp; 24482 24483 /* 24484 * Case of res_mp OR the fastpath mp can't fit 24485 * in the mblk 24486 */ 24487 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24488 xmit_mp->b_cont = mp; 24489 if (DB_CRED(mp) != NULL) 24490 mblk_setcred(xmit_mp, DB_CRED(mp)); 24491 /* Get priority marking, if any. */ 24492 if (DB_TYPE(xmit_mp) == M_DATA) 24493 xmit_mp->b_band = mp->b_band; 24494 24495 /* Corner case if copyb failed */ 24496 } else { 24497 /* 24498 * Exit both the replication and 24499 * fragmentation loops. 24500 */ 24501 UNLOCK_IRE_FP_MP(ire); 24502 goto drop_pkt; 24503 } 24504 UNLOCK_IRE_FP_MP(ire); 24505 24506 mp1 = mp; 24507 out_ill = (ill_t *)q->q_ptr; 24508 24509 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24510 24511 DTRACE_PROBE4(ip4__physical__out__start, 24512 ill_t *, NULL, ill_t *, out_ill, 24513 ipha_t *, ipha, mblk_t *, xmit_mp); 24514 24515 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24516 ipst->ips_ipv4firewall_physical_out, 24517 NULL, out_ill, ipha, xmit_mp, mp, ipst); 24518 24519 DTRACE_PROBE1(ip4__physical__out__end, 24520 mblk_t *, xmit_mp); 24521 24522 if (mp != mp1 && hdr_mp == mp1) 24523 hdr_mp = mp; 24524 if (mp != mp1 && mp_orig == mp1) 24525 mp_orig = mp; 24526 24527 if (xmit_mp != NULL) { 24528 putnext(q, xmit_mp); 24529 24530 BUMP_MIB(out_ill->ill_ip_mib, 24531 ipIfStatsHCOutTransmits); 24532 UPDATE_MIB(out_ill->ill_ip_mib, 24533 ipIfStatsHCOutOctets, ip_len); 24534 24535 if (pkt_type != OB_PKT) { 24536 /* 24537 * Update the packet count of trailing 24538 * RTF_MULTIRT ires. 24539 */ 24540 UPDATE_OB_PKT_COUNT(ire); 24541 } 24542 } 24543 24544 /* All done if we just consumed the hdr_mp. */ 24545 if (mp == hdr_mp) { 24546 last_frag = B_TRUE; 24547 BUMP_MIB(out_ill->ill_ip_mib, 24548 ipIfStatsOutFragOKs); 24549 } 24550 24551 if (multirt_send) { 24552 /* 24553 * We are in a multiple send case; look for 24554 * the next ire and re-enter the loop. 24555 */ 24556 ASSERT(ire1); 24557 ASSERT(next_mp); 24558 /* REFRELE the current ire before looping */ 24559 ire_refrele(ire); 24560 ire = ire1; 24561 ire1 = NULL; 24562 q = ire->ire_stq; 24563 mp = next_mp; 24564 next_mp = NULL; 24565 } 24566 } while (multirt_send); 24567 /* 24568 * Restore the original ire; we need it for the 24569 * trailing frags 24570 */ 24571 if (save_ire != NULL) { 24572 ASSERT(ire1 == NULL); 24573 /* REFRELE the last iterated ire */ 24574 ire_refrele(ire); 24575 /* save_ire has been REFHOLDed */ 24576 ire = save_ire; 24577 q = ire->ire_stq; 24578 save_ire = NULL; 24579 } 24580 24581 if (last_frag) { 24582 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24583 "ip_wput_frag_end:(%S)", 24584 "consumed hdr_mp"); 24585 24586 if (first_ire != NULL) 24587 ire_refrele(first_ire); 24588 return; 24589 } 24590 /* Otherwise, advance and loop. */ 24591 offset += len; 24592 } 24593 24594 drop_pkt: 24595 /* Clean up following allocation failure. */ 24596 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24597 freemsg(mp); 24598 if (mp != hdr_mp) 24599 freeb(hdr_mp); 24600 if (mp != mp_orig) 24601 freemsg(mp_orig); 24602 24603 if (save_ire != NULL) 24604 IRE_REFRELE(save_ire); 24605 if (first_ire != NULL) 24606 ire_refrele(first_ire); 24607 24608 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24609 "ip_wput_frag_end:(%S)", 24610 "end--alloc failure"); 24611 } 24612 24613 /* 24614 * Copy the header plus those options which have the copy bit set 24615 */ 24616 static mblk_t * 24617 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst) 24618 { 24619 mblk_t *mp; 24620 uchar_t *up; 24621 24622 /* 24623 * Quick check if we need to look for options without the copy bit 24624 * set 24625 */ 24626 mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI); 24627 if (!mp) 24628 return (mp); 24629 mp->b_rptr += ipst->ips_ip_wroff_extra; 24630 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24631 bcopy(rptr, mp->b_rptr, hdr_len); 24632 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 24633 return (mp); 24634 } 24635 up = mp->b_rptr; 24636 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24637 up += IP_SIMPLE_HDR_LENGTH; 24638 rptr += IP_SIMPLE_HDR_LENGTH; 24639 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24640 while (hdr_len > 0) { 24641 uint32_t optval; 24642 uint32_t optlen; 24643 24644 optval = *rptr; 24645 if (optval == IPOPT_EOL) 24646 break; 24647 if (optval == IPOPT_NOP) 24648 optlen = 1; 24649 else 24650 optlen = rptr[1]; 24651 if (optval & IPOPT_COPY) { 24652 bcopy(rptr, up, optlen); 24653 up += optlen; 24654 } 24655 rptr += optlen; 24656 hdr_len -= optlen; 24657 } 24658 /* 24659 * Make sure that we drop an even number of words by filling 24660 * with EOL to the next word boundary. 24661 */ 24662 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24663 hdr_len & 0x3; hdr_len++) 24664 *up++ = IPOPT_EOL; 24665 mp->b_wptr = up; 24666 /* Update header length */ 24667 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24668 return (mp); 24669 } 24670 24671 /* 24672 * Delivery to local recipients including fanout to multiple recipients. 24673 * Does not do checksumming of UDP/TCP. 24674 * Note: q should be the read side queue for either the ill or conn. 24675 * Note: rq should be the read side q for the lower (ill) stream. 24676 * We don't send packets to IPPF processing, thus the last argument 24677 * to all the fanout calls are B_FALSE. 24678 */ 24679 void 24680 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24681 int fanout_flags, zoneid_t zoneid) 24682 { 24683 uint32_t protocol; 24684 mblk_t *first_mp; 24685 boolean_t mctl_present; 24686 int ire_type; 24687 #define rptr ((uchar_t *)ipha) 24688 ip_stack_t *ipst = ill->ill_ipst; 24689 24690 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24691 "ip_wput_local_start: q %p", q); 24692 24693 if (ire != NULL) { 24694 ire_type = ire->ire_type; 24695 } else { 24696 /* 24697 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24698 * packet is not multicast, we can't tell the ire type. 24699 */ 24700 ASSERT(CLASSD(ipha->ipha_dst)); 24701 ire_type = IRE_BROADCAST; 24702 } 24703 24704 first_mp = mp; 24705 if (first_mp->b_datap->db_type == M_CTL) { 24706 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24707 if (!io->ipsec_out_secure) { 24708 /* 24709 * This ipsec_out_t was allocated in ip_wput 24710 * for multicast packets to store the ill_index. 24711 * As this is being delivered locally, we don't 24712 * need this anymore. 24713 */ 24714 mp = first_mp->b_cont; 24715 freeb(first_mp); 24716 first_mp = mp; 24717 mctl_present = B_FALSE; 24718 } else { 24719 /* 24720 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24721 * security properties for the looped-back packet. 24722 */ 24723 mctl_present = B_TRUE; 24724 mp = first_mp->b_cont; 24725 ASSERT(mp != NULL); 24726 ipsec_out_to_in(first_mp); 24727 } 24728 } else { 24729 mctl_present = B_FALSE; 24730 } 24731 24732 DTRACE_PROBE4(ip4__loopback__in__start, 24733 ill_t *, ill, ill_t *, NULL, 24734 ipha_t *, ipha, mblk_t *, first_mp); 24735 24736 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 24737 ipst->ips_ipv4firewall_loopback_in, 24738 ill, NULL, ipha, first_mp, mp, ipst); 24739 24740 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24741 24742 if (first_mp == NULL) 24743 return; 24744 24745 ipst->ips_loopback_packets++; 24746 24747 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24748 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24749 if (!IS_SIMPLE_IPH(ipha)) { 24750 ip_wput_local_options(ipha, ipst); 24751 } 24752 24753 protocol = ipha->ipha_protocol; 24754 switch (protocol) { 24755 case IPPROTO_ICMP: { 24756 ire_t *ire_zone; 24757 ilm_t *ilm; 24758 mblk_t *mp1; 24759 zoneid_t last_zoneid; 24760 24761 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 24762 ASSERT(ire_type == IRE_BROADCAST); 24763 /* 24764 * In the multicast case, applications may have joined 24765 * the group from different zones, so we need to deliver 24766 * the packet to each of them. Loop through the 24767 * multicast memberships structures (ilm) on the receive 24768 * ill and send a copy of the packet up each matching 24769 * one. However, we don't do this for multicasts sent on 24770 * the loopback interface (PHYI_LOOPBACK flag set) as 24771 * they must stay in the sender's zone. 24772 * 24773 * ilm_add_v6() ensures that ilms in the same zone are 24774 * contiguous in the ill_ilm list. We use this property 24775 * to avoid sending duplicates needed when two 24776 * applications in the same zone join the same group on 24777 * different logical interfaces: we ignore the ilm if 24778 * it's zoneid is the same as the last matching one. 24779 * In addition, the sending of the packet for 24780 * ire_zoneid is delayed until all of the other ilms 24781 * have been exhausted. 24782 */ 24783 last_zoneid = -1; 24784 ILM_WALKER_HOLD(ill); 24785 for (ilm = ill->ill_ilm; ilm != NULL; 24786 ilm = ilm->ilm_next) { 24787 if ((ilm->ilm_flags & ILM_DELETED) || 24788 ipha->ipha_dst != ilm->ilm_addr || 24789 ilm->ilm_zoneid == last_zoneid || 24790 ilm->ilm_zoneid == zoneid || 24791 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24792 continue; 24793 mp1 = ip_copymsg(first_mp); 24794 if (mp1 == NULL) 24795 continue; 24796 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24797 mctl_present, B_FALSE, ill, 24798 ilm->ilm_zoneid); 24799 last_zoneid = ilm->ilm_zoneid; 24800 } 24801 ILM_WALKER_RELE(ill); 24802 /* 24803 * Loopback case: the sending endpoint has 24804 * IP_MULTICAST_LOOP disabled, therefore we don't 24805 * dispatch the multicast packet to the sending zone. 24806 */ 24807 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24808 freemsg(first_mp); 24809 return; 24810 } 24811 } else if (ire_type == IRE_BROADCAST) { 24812 /* 24813 * In the broadcast case, there may be many zones 24814 * which need a copy of the packet delivered to them. 24815 * There is one IRE_BROADCAST per broadcast address 24816 * and per zone; we walk those using a helper function. 24817 * In addition, the sending of the packet for zoneid is 24818 * delayed until all of the other ires have been 24819 * processed. 24820 */ 24821 IRB_REFHOLD(ire->ire_bucket); 24822 ire_zone = NULL; 24823 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24824 ire)) != NULL) { 24825 mp1 = ip_copymsg(first_mp); 24826 if (mp1 == NULL) 24827 continue; 24828 24829 UPDATE_IB_PKT_COUNT(ire_zone); 24830 ire_zone->ire_last_used_time = lbolt; 24831 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24832 mctl_present, B_FALSE, ill, 24833 ire_zone->ire_zoneid); 24834 } 24835 IRB_REFRELE(ire->ire_bucket); 24836 } 24837 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 24838 0, mctl_present, B_FALSE, ill, zoneid); 24839 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24840 "ip_wput_local_end: q %p (%S)", 24841 q, "icmp"); 24842 return; 24843 } 24844 case IPPROTO_IGMP: 24845 if ((mp = igmp_input(q, mp, ill)) == NULL) { 24846 /* Bad packet - discarded by igmp_input */ 24847 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24848 "ip_wput_local_end: q %p (%S)", 24849 q, "igmp_input--bad packet"); 24850 if (mctl_present) 24851 freeb(first_mp); 24852 return; 24853 } 24854 /* 24855 * igmp_input() may have returned the pulled up message. 24856 * So first_mp and ipha need to be reinitialized. 24857 */ 24858 ipha = (ipha_t *)mp->b_rptr; 24859 if (mctl_present) 24860 first_mp->b_cont = mp; 24861 else 24862 first_mp = mp; 24863 /* deliver to local raw users */ 24864 break; 24865 case IPPROTO_ENCAP: 24866 /* 24867 * This case is covered by either ip_fanout_proto, or by 24868 * the above security processing for self-tunneled packets. 24869 */ 24870 break; 24871 case IPPROTO_UDP: { 24872 uint16_t *up; 24873 uint32_t ports; 24874 24875 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 24876 UDP_PORTS_OFFSET); 24877 /* Force a 'valid' checksum. */ 24878 up[3] = 0; 24879 24880 ports = *(uint32_t *)up; 24881 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24882 (ire_type == IRE_BROADCAST), 24883 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24884 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 24885 ill, zoneid); 24886 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24887 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24888 return; 24889 } 24890 case IPPROTO_TCP: { 24891 24892 /* 24893 * For TCP, discard broadcast packets. 24894 */ 24895 if ((ushort_t)ire_type == IRE_BROADCAST) { 24896 freemsg(first_mp); 24897 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 24898 ip2dbg(("ip_wput_local: discard broadcast\n")); 24899 return; 24900 } 24901 24902 if (mp->b_datap->db_type == M_DATA) { 24903 /* 24904 * M_DATA mblk, so init mblk (chain) for no struio(). 24905 */ 24906 mblk_t *mp1 = mp; 24907 24908 do { 24909 mp1->b_datap->db_struioflag = 0; 24910 } while ((mp1 = mp1->b_cont) != NULL); 24911 } 24912 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24913 <= mp->b_wptr); 24914 ip_fanout_tcp(q, first_mp, ill, ipha, 24915 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24916 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 24917 mctl_present, B_FALSE, zoneid); 24918 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24919 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24920 return; 24921 } 24922 case IPPROTO_SCTP: 24923 { 24924 uint32_t ports; 24925 24926 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24927 ip_fanout_sctp(first_mp, ill, ipha, ports, 24928 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24929 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 24930 return; 24931 } 24932 24933 default: 24934 break; 24935 } 24936 /* 24937 * Find a client for some other protocol. We give 24938 * copies to multiple clients, if more than one is 24939 * bound. 24940 */ 24941 ip_fanout_proto(q, first_mp, ill, ipha, 24942 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 24943 mctl_present, B_FALSE, ill, zoneid); 24944 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24945 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 24946 #undef rptr 24947 } 24948 24949 /* 24950 * Update any source route, record route, or timestamp options. 24951 * Check that we are at end of strict source route. 24952 * The options have been sanity checked by ip_wput_options(). 24953 */ 24954 static void 24955 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 24956 { 24957 ipoptp_t opts; 24958 uchar_t *opt; 24959 uint8_t optval; 24960 uint8_t optlen; 24961 ipaddr_t dst; 24962 uint32_t ts; 24963 ire_t *ire; 24964 timestruc_t now; 24965 24966 ip2dbg(("ip_wput_local_options\n")); 24967 for (optval = ipoptp_first(&opts, ipha); 24968 optval != IPOPT_EOL; 24969 optval = ipoptp_next(&opts)) { 24970 opt = opts.ipoptp_cur; 24971 optlen = opts.ipoptp_len; 24972 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 24973 switch (optval) { 24974 uint32_t off; 24975 case IPOPT_SSRR: 24976 case IPOPT_LSRR: 24977 off = opt[IPOPT_OFFSET]; 24978 off--; 24979 if (optlen < IP_ADDR_LEN || 24980 off > optlen - IP_ADDR_LEN) { 24981 /* End of source route */ 24982 break; 24983 } 24984 /* 24985 * This will only happen if two consecutive entries 24986 * in the source route contains our address or if 24987 * it is a packet with a loose source route which 24988 * reaches us before consuming the whole source route 24989 */ 24990 ip1dbg(("ip_wput_local_options: not end of SR\n")); 24991 if (optval == IPOPT_SSRR) { 24992 return; 24993 } 24994 /* 24995 * Hack: instead of dropping the packet truncate the 24996 * source route to what has been used by filling the 24997 * rest with IPOPT_NOP. 24998 */ 24999 opt[IPOPT_OLEN] = (uint8_t)off; 25000 while (off < optlen) { 25001 opt[off++] = IPOPT_NOP; 25002 } 25003 break; 25004 case IPOPT_RR: 25005 off = opt[IPOPT_OFFSET]; 25006 off--; 25007 if (optlen < IP_ADDR_LEN || 25008 off > optlen - IP_ADDR_LEN) { 25009 /* No more room - ignore */ 25010 ip1dbg(( 25011 "ip_wput_forward_options: end of RR\n")); 25012 break; 25013 } 25014 dst = htonl(INADDR_LOOPBACK); 25015 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25016 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25017 break; 25018 case IPOPT_TS: 25019 /* Insert timestamp if there is romm */ 25020 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25021 case IPOPT_TS_TSONLY: 25022 off = IPOPT_TS_TIMELEN; 25023 break; 25024 case IPOPT_TS_PRESPEC: 25025 case IPOPT_TS_PRESPEC_RFC791: 25026 /* Verify that the address matched */ 25027 off = opt[IPOPT_OFFSET] - 1; 25028 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25029 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25030 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25031 ipst); 25032 if (ire == NULL) { 25033 /* Not for us */ 25034 break; 25035 } 25036 ire_refrele(ire); 25037 /* FALLTHRU */ 25038 case IPOPT_TS_TSANDADDR: 25039 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25040 break; 25041 default: 25042 /* 25043 * ip_*put_options should have already 25044 * dropped this packet. 25045 */ 25046 cmn_err(CE_PANIC, "ip_wput_local_options: " 25047 "unknown IT - bug in ip_wput_options?\n"); 25048 return; /* Keep "lint" happy */ 25049 } 25050 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25051 /* Increase overflow counter */ 25052 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25053 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25054 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25055 (off << 4); 25056 break; 25057 } 25058 off = opt[IPOPT_OFFSET] - 1; 25059 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25060 case IPOPT_TS_PRESPEC: 25061 case IPOPT_TS_PRESPEC_RFC791: 25062 case IPOPT_TS_TSANDADDR: 25063 dst = htonl(INADDR_LOOPBACK); 25064 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25065 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25066 /* FALLTHRU */ 25067 case IPOPT_TS_TSONLY: 25068 off = opt[IPOPT_OFFSET] - 1; 25069 /* Compute # of milliseconds since midnight */ 25070 gethrestime(&now); 25071 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25072 now.tv_nsec / (NANOSEC / MILLISEC); 25073 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25074 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25075 break; 25076 } 25077 break; 25078 } 25079 } 25080 } 25081 25082 /* 25083 * Send out a multicast packet on interface ipif. 25084 * The sender does not have an conn. 25085 * Caller verifies that this isn't a PHYI_LOOPBACK. 25086 */ 25087 void 25088 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25089 { 25090 ipha_t *ipha; 25091 ire_t *ire; 25092 ipaddr_t dst; 25093 mblk_t *first_mp; 25094 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25095 25096 /* igmp_sendpkt always allocates a ipsec_out_t */ 25097 ASSERT(mp->b_datap->db_type == M_CTL); 25098 ASSERT(!ipif->ipif_isv6); 25099 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25100 25101 first_mp = mp; 25102 mp = first_mp->b_cont; 25103 ASSERT(mp->b_datap->db_type == M_DATA); 25104 ipha = (ipha_t *)mp->b_rptr; 25105 25106 /* 25107 * Find an IRE which matches the destination and the outgoing 25108 * queue (i.e. the outgoing interface.) 25109 */ 25110 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25111 dst = ipif->ipif_pp_dst_addr; 25112 else 25113 dst = ipha->ipha_dst; 25114 /* 25115 * The source address has already been initialized by the 25116 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25117 * be sufficient rather than MATCH_IRE_IPIF. 25118 * 25119 * This function is used for sending IGMP packets. We need 25120 * to make sure that we send the packet out of the interface 25121 * (ipif->ipif_ill) where we joined the group. This is to 25122 * prevent from switches doing IGMP snooping to send us multicast 25123 * packets for a given group on the interface we have joined. 25124 * If we can't find an ire, igmp_sendpkt has already initialized 25125 * ipsec_out_attach_if so that this will not be load spread in 25126 * ip_newroute_ipif. 25127 */ 25128 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25129 MATCH_IRE_ILL, ipst); 25130 if (!ire) { 25131 /* 25132 * Mark this packet to make it be delivered to 25133 * ip_wput_ire after the new ire has been 25134 * created. 25135 */ 25136 mp->b_prev = NULL; 25137 mp->b_next = NULL; 25138 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25139 zoneid, &zero_info); 25140 return; 25141 } 25142 25143 /* 25144 * Honor the RTF_SETSRC flag; this is the only case 25145 * where we force this addr whatever the current src addr is, 25146 * because this address is set by igmp_sendpkt(), and 25147 * cannot be specified by any user. 25148 */ 25149 if (ire->ire_flags & RTF_SETSRC) { 25150 ipha->ipha_src = ire->ire_src_addr; 25151 } 25152 25153 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25154 } 25155 25156 /* 25157 * NOTE : This function does not ire_refrele the ire argument passed in. 25158 * 25159 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25160 * failure. The nce_fp_mp can vanish any time in the case of 25161 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25162 * the ire_lock to access the nce_fp_mp in this case. 25163 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25164 * prepending a fastpath message IPQoS processing must precede it, we also set 25165 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25166 * (IPQoS might have set the b_band for CoS marking). 25167 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25168 * must follow it so that IPQoS can mark the dl_priority field for CoS 25169 * marking, if needed. 25170 */ 25171 static mblk_t * 25172 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25173 { 25174 uint_t hlen; 25175 ipha_t *ipha; 25176 mblk_t *mp1; 25177 boolean_t qos_done = B_FALSE; 25178 uchar_t *ll_hdr; 25179 ip_stack_t *ipst = ire->ire_ipst; 25180 25181 #define rptr ((uchar_t *)ipha) 25182 25183 ipha = (ipha_t *)mp->b_rptr; 25184 hlen = 0; 25185 LOCK_IRE_FP_MP(ire); 25186 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25187 ASSERT(DB_TYPE(mp1) == M_DATA); 25188 /* Initiate IPPF processing */ 25189 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25190 UNLOCK_IRE_FP_MP(ire); 25191 ip_process(proc, &mp, ill_index); 25192 if (mp == NULL) 25193 return (NULL); 25194 25195 ipha = (ipha_t *)mp->b_rptr; 25196 LOCK_IRE_FP_MP(ire); 25197 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25198 qos_done = B_TRUE; 25199 goto no_fp_mp; 25200 } 25201 ASSERT(DB_TYPE(mp1) == M_DATA); 25202 } 25203 hlen = MBLKL(mp1); 25204 /* 25205 * Check if we have enough room to prepend fastpath 25206 * header 25207 */ 25208 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25209 ll_hdr = rptr - hlen; 25210 bcopy(mp1->b_rptr, ll_hdr, hlen); 25211 /* 25212 * Set the b_rptr to the start of the link layer 25213 * header 25214 */ 25215 mp->b_rptr = ll_hdr; 25216 mp1 = mp; 25217 } else { 25218 mp1 = copyb(mp1); 25219 if (mp1 == NULL) 25220 goto unlock_err; 25221 mp1->b_band = mp->b_band; 25222 mp1->b_cont = mp; 25223 /* 25224 * certain system generated traffic may not 25225 * have cred/label in ip header block. This 25226 * is true even for a labeled system. But for 25227 * labeled traffic, inherit the label in the 25228 * new header. 25229 */ 25230 if (DB_CRED(mp) != NULL) 25231 mblk_setcred(mp1, DB_CRED(mp)); 25232 /* 25233 * XXX disable ICK_VALID and compute checksum 25234 * here; can happen if nce_fp_mp changes and 25235 * it can't be copied now due to insufficient 25236 * space. (unlikely, fp mp can change, but it 25237 * does not increase in length) 25238 */ 25239 } 25240 UNLOCK_IRE_FP_MP(ire); 25241 } else { 25242 no_fp_mp: 25243 mp1 = copyb(ire->ire_nce->nce_res_mp); 25244 if (mp1 == NULL) { 25245 unlock_err: 25246 UNLOCK_IRE_FP_MP(ire); 25247 freemsg(mp); 25248 return (NULL); 25249 } 25250 UNLOCK_IRE_FP_MP(ire); 25251 mp1->b_cont = mp; 25252 /* 25253 * certain system generated traffic may not 25254 * have cred/label in ip header block. This 25255 * is true even for a labeled system. But for 25256 * labeled traffic, inherit the label in the 25257 * new header. 25258 */ 25259 if (DB_CRED(mp) != NULL) 25260 mblk_setcred(mp1, DB_CRED(mp)); 25261 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25262 ip_process(proc, &mp1, ill_index); 25263 if (mp1 == NULL) 25264 return (NULL); 25265 } 25266 } 25267 return (mp1); 25268 #undef rptr 25269 } 25270 25271 /* 25272 * Finish the outbound IPsec processing for an IPv6 packet. This function 25273 * is called from ipsec_out_process() if the IPsec packet was processed 25274 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25275 * asynchronously. 25276 */ 25277 void 25278 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25279 ire_t *ire_arg) 25280 { 25281 in6_addr_t *v6dstp; 25282 ire_t *ire; 25283 mblk_t *mp; 25284 ip6_t *ip6h1; 25285 uint_t ill_index; 25286 ipsec_out_t *io; 25287 boolean_t attach_if, hwaccel; 25288 uint32_t flags = IP6_NO_IPPOLICY; 25289 int match_flags; 25290 zoneid_t zoneid; 25291 boolean_t ill_need_rele = B_FALSE; 25292 boolean_t ire_need_rele = B_FALSE; 25293 ip_stack_t *ipst; 25294 25295 mp = ipsec_mp->b_cont; 25296 ip6h1 = (ip6_t *)mp->b_rptr; 25297 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25298 ASSERT(io->ipsec_out_ns != NULL); 25299 ipst = io->ipsec_out_ns->netstack_ip; 25300 ill_index = io->ipsec_out_ill_index; 25301 if (io->ipsec_out_reachable) { 25302 flags |= IPV6_REACHABILITY_CONFIRMATION; 25303 } 25304 attach_if = io->ipsec_out_attach_if; 25305 hwaccel = io->ipsec_out_accelerated; 25306 zoneid = io->ipsec_out_zoneid; 25307 ASSERT(zoneid != ALL_ZONES); 25308 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25309 /* Multicast addresses should have non-zero ill_index. */ 25310 v6dstp = &ip6h->ip6_dst; 25311 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25312 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25313 ASSERT(!attach_if || ill_index != 0); 25314 if (ill_index != 0) { 25315 if (ill == NULL) { 25316 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25317 B_TRUE, ipst); 25318 25319 /* Failure case frees things for us. */ 25320 if (ill == NULL) 25321 return; 25322 25323 ill_need_rele = B_TRUE; 25324 } 25325 /* 25326 * If this packet needs to go out on a particular interface 25327 * honor it. 25328 */ 25329 if (attach_if) { 25330 match_flags = MATCH_IRE_ILL; 25331 25332 /* 25333 * Check if we need an ire that will not be 25334 * looked up by anybody else i.e. HIDDEN. 25335 */ 25336 if (ill_is_probeonly(ill)) { 25337 match_flags |= MATCH_IRE_MARK_HIDDEN; 25338 } 25339 } 25340 } 25341 ASSERT(mp != NULL); 25342 25343 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25344 boolean_t unspec_src; 25345 ipif_t *ipif; 25346 25347 /* 25348 * Use the ill_index to get the right ill. 25349 */ 25350 unspec_src = io->ipsec_out_unspec_src; 25351 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25352 if (ipif == NULL) { 25353 if (ill_need_rele) 25354 ill_refrele(ill); 25355 freemsg(ipsec_mp); 25356 return; 25357 } 25358 25359 if (ire_arg != NULL) { 25360 ire = ire_arg; 25361 } else { 25362 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25363 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25364 ire_need_rele = B_TRUE; 25365 } 25366 if (ire != NULL) { 25367 ipif_refrele(ipif); 25368 /* 25369 * XXX Do the multicast forwarding now, as the IPSEC 25370 * processing has been done. 25371 */ 25372 goto send; 25373 } 25374 25375 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25376 mp->b_prev = NULL; 25377 mp->b_next = NULL; 25378 25379 /* 25380 * If the IPsec packet was processed asynchronously, 25381 * drop it now. 25382 */ 25383 if (q == NULL) { 25384 if (ill_need_rele) 25385 ill_refrele(ill); 25386 freemsg(ipsec_mp); 25387 return; 25388 } 25389 25390 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25391 unspec_src, zoneid); 25392 ipif_refrele(ipif); 25393 } else { 25394 if (attach_if) { 25395 ipif_t *ipif; 25396 25397 ipif = ipif_get_next_ipif(NULL, ill); 25398 if (ipif == NULL) { 25399 if (ill_need_rele) 25400 ill_refrele(ill); 25401 freemsg(ipsec_mp); 25402 return; 25403 } 25404 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25405 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25406 ire_need_rele = B_TRUE; 25407 ipif_refrele(ipif); 25408 } else { 25409 if (ire_arg != NULL) { 25410 ire = ire_arg; 25411 } else { 25412 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, 25413 ipst); 25414 ire_need_rele = B_TRUE; 25415 } 25416 } 25417 if (ire != NULL) 25418 goto send; 25419 /* 25420 * ire disappeared underneath. 25421 * 25422 * What we need to do here is the ip_newroute 25423 * logic to get the ire without doing the IPSEC 25424 * processing. Follow the same old path. But this 25425 * time, ip_wput or ire_add_then_send will call us 25426 * directly as all the IPSEC operations are done. 25427 */ 25428 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25429 mp->b_prev = NULL; 25430 mp->b_next = NULL; 25431 25432 /* 25433 * If the IPsec packet was processed asynchronously, 25434 * drop it now. 25435 */ 25436 if (q == NULL) { 25437 if (ill_need_rele) 25438 ill_refrele(ill); 25439 freemsg(ipsec_mp); 25440 return; 25441 } 25442 25443 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25444 zoneid, ipst); 25445 } 25446 if (ill != NULL && ill_need_rele) 25447 ill_refrele(ill); 25448 return; 25449 send: 25450 if (ill != NULL && ill_need_rele) 25451 ill_refrele(ill); 25452 25453 /* Local delivery */ 25454 if (ire->ire_stq == NULL) { 25455 ill_t *out_ill; 25456 ASSERT(q != NULL); 25457 25458 /* PFHooks: LOOPBACK_OUT */ 25459 out_ill = ire->ire_ipif->ipif_ill; 25460 25461 DTRACE_PROBE4(ip6__loopback__out__start, 25462 ill_t *, NULL, ill_t *, out_ill, 25463 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25464 25465 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25466 ipst->ips_ipv6firewall_loopback_out, 25467 NULL, out_ill, ip6h1, ipsec_mp, mp, ipst); 25468 25469 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25470 25471 if (ipsec_mp != NULL) 25472 ip_wput_local_v6(RD(q), out_ill, 25473 ip6h, ipsec_mp, ire, 0); 25474 if (ire_need_rele) 25475 ire_refrele(ire); 25476 return; 25477 } 25478 /* 25479 * Everything is done. Send it out on the wire. 25480 * We force the insertion of a fragment header using the 25481 * IPH_FRAG_HDR flag in two cases: 25482 * - after reception of an ICMPv6 "packet too big" message 25483 * with a MTU < 1280 (cf. RFC 2460 section 5) 25484 * - for multirouted IPv6 packets, so that the receiver can 25485 * discard duplicates according to their fragment identifier 25486 */ 25487 /* XXX fix flow control problems. */ 25488 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25489 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25490 if (hwaccel) { 25491 /* 25492 * hardware acceleration does not handle these 25493 * "slow path" cases. 25494 */ 25495 /* IPsec KSTATS: should bump bean counter here. */ 25496 if (ire_need_rele) 25497 ire_refrele(ire); 25498 freemsg(ipsec_mp); 25499 return; 25500 } 25501 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25502 (mp->b_cont ? msgdsize(mp) : 25503 mp->b_wptr - (uchar_t *)ip6h)) { 25504 /* IPsec KSTATS: should bump bean counter here. */ 25505 ip0dbg(("Packet length mismatch: %d, %ld\n", 25506 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25507 msgdsize(mp))); 25508 if (ire_need_rele) 25509 ire_refrele(ire); 25510 freemsg(ipsec_mp); 25511 return; 25512 } 25513 ASSERT(mp->b_prev == NULL); 25514 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25515 ntohs(ip6h->ip6_plen) + 25516 IPV6_HDR_LEN, ire->ire_max_frag)); 25517 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25518 ire->ire_max_frag); 25519 } else { 25520 UPDATE_OB_PKT_COUNT(ire); 25521 ire->ire_last_used_time = lbolt; 25522 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25523 } 25524 if (ire_need_rele) 25525 ire_refrele(ire); 25526 freeb(ipsec_mp); 25527 } 25528 25529 void 25530 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25531 { 25532 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25533 da_ipsec_t *hada; /* data attributes */ 25534 ill_t *ill = (ill_t *)q->q_ptr; 25535 25536 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25537 25538 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25539 /* IPsec KSTATS: Bump lose counter here! */ 25540 freemsg(mp); 25541 return; 25542 } 25543 25544 /* 25545 * It's an IPsec packet that must be 25546 * accelerated by the Provider, and the 25547 * outbound ill is IPsec acceleration capable. 25548 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25549 * to the ill. 25550 * IPsec KSTATS: should bump packet counter here. 25551 */ 25552 25553 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25554 if (hada_mp == NULL) { 25555 /* IPsec KSTATS: should bump packet counter here. */ 25556 freemsg(mp); 25557 return; 25558 } 25559 25560 hada_mp->b_datap->db_type = M_CTL; 25561 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25562 hada_mp->b_cont = mp; 25563 25564 hada = (da_ipsec_t *)hada_mp->b_rptr; 25565 bzero(hada, sizeof (da_ipsec_t)); 25566 hada->da_type = IPHADA_M_CTL; 25567 25568 putnext(q, hada_mp); 25569 } 25570 25571 /* 25572 * Finish the outbound IPsec processing. This function is called from 25573 * ipsec_out_process() if the IPsec packet was processed 25574 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25575 * asynchronously. 25576 */ 25577 void 25578 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25579 ire_t *ire_arg) 25580 { 25581 uint32_t v_hlen_tos_len; 25582 ipaddr_t dst; 25583 ipif_t *ipif = NULL; 25584 ire_t *ire; 25585 ire_t *ire1 = NULL; 25586 mblk_t *next_mp = NULL; 25587 uint32_t max_frag; 25588 boolean_t multirt_send = B_FALSE; 25589 mblk_t *mp; 25590 mblk_t *mp1; 25591 ipha_t *ipha1; 25592 uint_t ill_index; 25593 ipsec_out_t *io; 25594 boolean_t attach_if; 25595 int match_flags, offset; 25596 irb_t *irb = NULL; 25597 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25598 zoneid_t zoneid; 25599 uint32_t cksum; 25600 uint16_t *up; 25601 ipxmit_state_t pktxmit_state; 25602 ip_stack_t *ipst; 25603 25604 #ifdef _BIG_ENDIAN 25605 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25606 #else 25607 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25608 #endif 25609 25610 mp = ipsec_mp->b_cont; 25611 ipha1 = (ipha_t *)mp->b_rptr; 25612 ASSERT(mp != NULL); 25613 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25614 dst = ipha->ipha_dst; 25615 25616 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25617 ill_index = io->ipsec_out_ill_index; 25618 attach_if = io->ipsec_out_attach_if; 25619 zoneid = io->ipsec_out_zoneid; 25620 ASSERT(zoneid != ALL_ZONES); 25621 ipst = io->ipsec_out_ns->netstack_ip; 25622 ASSERT(io->ipsec_out_ns != NULL); 25623 25624 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25625 if (ill_index != 0) { 25626 if (ill == NULL) { 25627 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25628 ill_index, B_FALSE, ipst); 25629 25630 /* Failure case frees things for us. */ 25631 if (ill == NULL) 25632 return; 25633 25634 ill_need_rele = B_TRUE; 25635 } 25636 /* 25637 * If this packet needs to go out on a particular interface 25638 * honor it. 25639 */ 25640 if (attach_if) { 25641 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25642 25643 /* 25644 * Check if we need an ire that will not be 25645 * looked up by anybody else i.e. HIDDEN. 25646 */ 25647 if (ill_is_probeonly(ill)) { 25648 match_flags |= MATCH_IRE_MARK_HIDDEN; 25649 } 25650 } 25651 } 25652 25653 if (CLASSD(dst)) { 25654 boolean_t conn_dontroute; 25655 /* 25656 * Use the ill_index to get the right ipif. 25657 */ 25658 conn_dontroute = io->ipsec_out_dontroute; 25659 if (ill_index == 0) 25660 ipif = ipif_lookup_group(dst, zoneid, ipst); 25661 else 25662 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25663 if (ipif == NULL) { 25664 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25665 " multicast\n")); 25666 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 25667 freemsg(ipsec_mp); 25668 goto done; 25669 } 25670 /* 25671 * ipha_src has already been intialized with the 25672 * value of the ipif in ip_wput. All we need now is 25673 * an ire to send this downstream. 25674 */ 25675 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25676 MBLK_GETLABEL(mp), match_flags, ipst); 25677 if (ire != NULL) { 25678 ill_t *ill1; 25679 /* 25680 * Do the multicast forwarding now, as the IPSEC 25681 * processing has been done. 25682 */ 25683 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 25684 (ill1 = ire_to_ill(ire))) { 25685 if (ip_mforward(ill1, ipha, mp)) { 25686 freemsg(ipsec_mp); 25687 ip1dbg(("ip_wput_ipsec_out: mforward " 25688 "failed\n")); 25689 ire_refrele(ire); 25690 goto done; 25691 } 25692 } 25693 goto send; 25694 } 25695 25696 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25697 mp->b_prev = NULL; 25698 mp->b_next = NULL; 25699 25700 /* 25701 * If the IPsec packet was processed asynchronously, 25702 * drop it now. 25703 */ 25704 if (q == NULL) { 25705 freemsg(ipsec_mp); 25706 goto done; 25707 } 25708 25709 /* 25710 * We may be using a wrong ipif to create the ire. 25711 * But it is okay as the source address is assigned 25712 * for the packet already. Next outbound packet would 25713 * create the IRE with the right IPIF in ip_wput. 25714 * 25715 * Also handle RTF_MULTIRT routes. 25716 */ 25717 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25718 zoneid, &zero_info); 25719 } else { 25720 if (attach_if) { 25721 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25722 zoneid, MBLK_GETLABEL(mp), match_flags, ipst); 25723 } else { 25724 if (ire_arg != NULL) { 25725 ire = ire_arg; 25726 ire_need_rele = B_FALSE; 25727 } else { 25728 ire = ire_cache_lookup(dst, zoneid, 25729 MBLK_GETLABEL(mp), ipst); 25730 } 25731 } 25732 if (ire != NULL) { 25733 goto send; 25734 } 25735 25736 /* 25737 * ire disappeared underneath. 25738 * 25739 * What we need to do here is the ip_newroute 25740 * logic to get the ire without doing the IPSEC 25741 * processing. Follow the same old path. But this 25742 * time, ip_wput or ire_add_then_put will call us 25743 * directly as all the IPSEC operations are done. 25744 */ 25745 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25746 mp->b_prev = NULL; 25747 mp->b_next = NULL; 25748 25749 /* 25750 * If the IPsec packet was processed asynchronously, 25751 * drop it now. 25752 */ 25753 if (q == NULL) { 25754 freemsg(ipsec_mp); 25755 goto done; 25756 } 25757 25758 /* 25759 * Since we're going through ip_newroute() again, we 25760 * need to make sure we don't: 25761 * 25762 * 1.) Trigger the ASSERT() with the ipha_ident 25763 * overloading. 25764 * 2.) Redo transport-layer checksumming, since we've 25765 * already done all that to get this far. 25766 * 25767 * The easiest way not do either of the above is to set 25768 * the ipha_ident field to IP_HDR_INCLUDED. 25769 */ 25770 ipha->ipha_ident = IP_HDR_INCLUDED; 25771 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 25772 zoneid, ipst); 25773 } 25774 goto done; 25775 send: 25776 if (ipha->ipha_protocol == IPPROTO_UDP && 25777 udp_compute_checksum(ipst->ips_netstack)) { 25778 /* 25779 * ESP NAT-Traversal packet. 25780 * 25781 * Just do software checksum for now. 25782 */ 25783 25784 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 25785 IP_STAT(ipst, ip_out_sw_cksum); 25786 IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes, 25787 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 25788 #define iphs ((uint16_t *)ipha) 25789 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 25790 iphs[9] + ntohs(htons(ipha->ipha_length) - 25791 IP_SIMPLE_HDR_LENGTH); 25792 #undef iphs 25793 cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum); 25794 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 25795 if (mp1->b_wptr - mp1->b_rptr >= 25796 offset + sizeof (uint16_t)) { 25797 up = (uint16_t *)(mp1->b_rptr + offset); 25798 *up = cksum; 25799 break; /* out of for loop */ 25800 } else { 25801 offset -= (mp->b_wptr - mp->b_rptr); 25802 } 25803 } /* Otherwise, just keep the all-zero checksum. */ 25804 25805 if (ire->ire_stq == NULL) { 25806 ill_t *out_ill; 25807 /* 25808 * Loopbacks go through ip_wput_local except for one case. 25809 * We come here if we generate a icmp_frag_needed message 25810 * after IPSEC processing is over. When this function calls 25811 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25812 * icmp_frag_needed. The message generated comes back here 25813 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25814 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25815 * source address as it is usually set in ip_wput_ire. As 25816 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25817 * and we end up here. We can't enter ip_wput_ire once the 25818 * IPSEC processing is over and hence we need to do it here. 25819 */ 25820 ASSERT(q != NULL); 25821 UPDATE_OB_PKT_COUNT(ire); 25822 ire->ire_last_used_time = lbolt; 25823 if (ipha->ipha_src == 0) 25824 ipha->ipha_src = ire->ire_src_addr; 25825 25826 /* PFHooks: LOOPBACK_OUT */ 25827 out_ill = ire->ire_ipif->ipif_ill; 25828 25829 DTRACE_PROBE4(ip4__loopback__out__start, 25830 ill_t *, NULL, ill_t *, out_ill, 25831 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25832 25833 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 25834 ipst->ips_ipv4firewall_loopback_out, 25835 NULL, out_ill, ipha1, ipsec_mp, mp, ipst); 25836 25837 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25838 25839 if (ipsec_mp != NULL) 25840 ip_wput_local(RD(q), out_ill, 25841 ipha, ipsec_mp, ire, 0, zoneid); 25842 if (ire_need_rele) 25843 ire_refrele(ire); 25844 goto done; 25845 } 25846 25847 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25848 /* 25849 * We are through with IPSEC processing. 25850 * Fragment this and send it on the wire. 25851 */ 25852 if (io->ipsec_out_accelerated) { 25853 /* 25854 * The packet has been accelerated but must 25855 * be fragmented. This should not happen 25856 * since AH and ESP must not accelerate 25857 * packets that need fragmentation, however 25858 * the configuration could have changed 25859 * since the AH or ESP processing. 25860 * Drop packet. 25861 * IPsec KSTATS: bump bean counter here. 25862 */ 25863 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25864 "fragmented accelerated packet!\n")); 25865 freemsg(ipsec_mp); 25866 } else { 25867 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst); 25868 } 25869 if (ire_need_rele) 25870 ire_refrele(ire); 25871 goto done; 25872 } 25873 25874 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25875 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25876 (void *)ire->ire_ipif, (void *)ipif)); 25877 25878 /* 25879 * Multiroute the secured packet, unless IPsec really 25880 * requires the packet to go out only through a particular 25881 * interface. 25882 */ 25883 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 25884 ire_t *first_ire; 25885 irb = ire->ire_bucket; 25886 ASSERT(irb != NULL); 25887 /* 25888 * This ire has been looked up as the one that 25889 * goes through the given ipif; 25890 * make sure we do not omit any other multiroute ire 25891 * that may be present in the bucket before this one. 25892 */ 25893 IRB_REFHOLD(irb); 25894 for (first_ire = irb->irb_ire; 25895 first_ire != NULL; 25896 first_ire = first_ire->ire_next) { 25897 if ((first_ire->ire_flags & RTF_MULTIRT) && 25898 (first_ire->ire_addr == ire->ire_addr) && 25899 !(first_ire->ire_marks & 25900 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) { 25901 break; 25902 } 25903 } 25904 25905 if ((first_ire != NULL) && (first_ire != ire)) { 25906 /* 25907 * Don't change the ire if the packet must 25908 * be fragmented if sent via this new one. 25909 */ 25910 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25911 IRE_REFHOLD(first_ire); 25912 if (ire_need_rele) 25913 ire_refrele(ire); 25914 else 25915 ire_need_rele = B_TRUE; 25916 ire = first_ire; 25917 } 25918 } 25919 IRB_REFRELE(irb); 25920 25921 multirt_send = B_TRUE; 25922 max_frag = ire->ire_max_frag; 25923 } else { 25924 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 25925 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25926 "flag, attach_if %d\n", attach_if)); 25927 } 25928 } 25929 25930 /* 25931 * In most cases, the emission loop below is entered only once. 25932 * Only in the case where the ire holds the RTF_MULTIRT 25933 * flag, we loop to process all RTF_MULTIRT ires in the 25934 * bucket, and send the packet through all crossed 25935 * RTF_MULTIRT routes. 25936 */ 25937 do { 25938 if (multirt_send) { 25939 /* 25940 * ire1 holds here the next ire to process in the 25941 * bucket. If multirouting is expected, 25942 * any non-RTF_MULTIRT ire that has the 25943 * right destination address is ignored. 25944 */ 25945 ASSERT(irb != NULL); 25946 IRB_REFHOLD(irb); 25947 for (ire1 = ire->ire_next; 25948 ire1 != NULL; 25949 ire1 = ire1->ire_next) { 25950 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 25951 continue; 25952 if (ire1->ire_addr != ire->ire_addr) 25953 continue; 25954 if (ire1->ire_marks & 25955 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 25956 continue; 25957 /* No loopback here */ 25958 if (ire1->ire_stq == NULL) 25959 continue; 25960 /* 25961 * Ensure we do not exceed the MTU 25962 * of the next route. 25963 */ 25964 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 25965 ip_multirt_bad_mtu(ire1, max_frag); 25966 continue; 25967 } 25968 25969 IRE_REFHOLD(ire1); 25970 break; 25971 } 25972 IRB_REFRELE(irb); 25973 if (ire1 != NULL) { 25974 /* 25975 * We are in a multiple send case, need to 25976 * make a copy of the packet. 25977 */ 25978 next_mp = copymsg(ipsec_mp); 25979 if (next_mp == NULL) { 25980 ire_refrele(ire1); 25981 ire1 = NULL; 25982 } 25983 } 25984 } 25985 /* 25986 * Everything is done. Send it out on the wire 25987 * 25988 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 25989 * either send it on the wire or, in the case of 25990 * HW acceleration, call ipsec_hw_putnext. 25991 */ 25992 if (ire->ire_nce && 25993 ire->ire_nce->nce_state != ND_REACHABLE) { 25994 DTRACE_PROBE2(ip__wput__ipsec__bail, 25995 (ire_t *), ire, (mblk_t *), ipsec_mp); 25996 /* 25997 * If ire's link-layer is unresolved (this 25998 * would only happen if the incomplete ire 25999 * was added to cachetable via forwarding path) 26000 * don't bother going to ip_xmit_v4. Just drop the 26001 * packet. 26002 * There is a slight risk here, in that, if we 26003 * have the forwarding path create an incomplete 26004 * IRE, then until the IRE is completed, any 26005 * transmitted IPSEC packets will be dropped 26006 * instead of being queued waiting for resolution. 26007 * 26008 * But the likelihood of a forwarding packet and a wput 26009 * packet sending to the same dst at the same time 26010 * and there not yet be an ARP entry for it is small. 26011 * Furthermore, if this actually happens, it might 26012 * be likely that wput would generate multiple 26013 * packets (and forwarding would also have a train 26014 * of packets) for that destination. If this is 26015 * the case, some of them would have been dropped 26016 * anyway, since ARP only queues a few packets while 26017 * waiting for resolution 26018 * 26019 * NOTE: We should really call ip_xmit_v4, 26020 * and let it queue the packet and send the 26021 * ARP query and have ARP come back thus: 26022 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26023 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26024 * hw accel work. But it's too complex to get 26025 * the IPsec hw acceleration approach to fit 26026 * well with ip_xmit_v4 doing ARP without 26027 * doing IPSEC simplification. For now, we just 26028 * poke ip_xmit_v4 to trigger the arp resolve, so 26029 * that we can continue with the send on the next 26030 * attempt. 26031 * 26032 * XXX THis should be revisited, when 26033 * the IPsec/IP interaction is cleaned up 26034 */ 26035 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26036 " - dropping packet\n")); 26037 freemsg(ipsec_mp); 26038 /* 26039 * Call ip_xmit_v4() to trigger ARP query 26040 * in case the nce_state is ND_INITIAL 26041 */ 26042 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26043 goto drop_pkt; 26044 } 26045 26046 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26047 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26048 mblk_t *, ipsec_mp); 26049 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26050 ipst->ips_ipv4firewall_physical_out, 26051 NULL, ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, ipst); 26052 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26053 if (ipsec_mp == NULL) 26054 goto drop_pkt; 26055 26056 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26057 pktxmit_state = ip_xmit_v4(mp, ire, 26058 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26059 26060 if ((pktxmit_state == SEND_FAILED) || 26061 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26062 26063 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26064 drop_pkt: 26065 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26066 ipIfStatsOutDiscards); 26067 if (ire_need_rele) 26068 ire_refrele(ire); 26069 if (ire1 != NULL) { 26070 ire_refrele(ire1); 26071 freemsg(next_mp); 26072 } 26073 goto done; 26074 } 26075 26076 freeb(ipsec_mp); 26077 if (ire_need_rele) 26078 ire_refrele(ire); 26079 26080 if (ire1 != NULL) { 26081 ire = ire1; 26082 ire_need_rele = B_TRUE; 26083 ASSERT(next_mp); 26084 ipsec_mp = next_mp; 26085 mp = ipsec_mp->b_cont; 26086 ire1 = NULL; 26087 next_mp = NULL; 26088 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26089 } else { 26090 multirt_send = B_FALSE; 26091 } 26092 } while (multirt_send); 26093 done: 26094 if (ill != NULL && ill_need_rele) 26095 ill_refrele(ill); 26096 if (ipif != NULL) 26097 ipif_refrele(ipif); 26098 } 26099 26100 /* 26101 * Get the ill corresponding to the specified ire, and compare its 26102 * capabilities with the protocol and algorithms specified by the 26103 * the SA obtained from ipsec_out. If they match, annotate the 26104 * ipsec_out structure to indicate that the packet needs acceleration. 26105 * 26106 * 26107 * A packet is eligible for outbound hardware acceleration if the 26108 * following conditions are satisfied: 26109 * 26110 * 1. the packet will not be fragmented 26111 * 2. the provider supports the algorithm 26112 * 3. there is no pending control message being exchanged 26113 * 4. snoop is not attached 26114 * 5. the destination address is not a broadcast or multicast address. 26115 * 26116 * Rationale: 26117 * - Hardware drivers do not support fragmentation with 26118 * the current interface. 26119 * - snoop, multicast, and broadcast may result in exposure of 26120 * a cleartext datagram. 26121 * We check all five of these conditions here. 26122 * 26123 * XXX would like to nuke "ire_t *" parameter here; problem is that 26124 * IRE is only way to figure out if a v4 address is a broadcast and 26125 * thus ineligible for acceleration... 26126 */ 26127 static void 26128 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26129 { 26130 ipsec_out_t *io; 26131 mblk_t *data_mp; 26132 uint_t plen, overhead; 26133 ip_stack_t *ipst; 26134 26135 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26136 return; 26137 26138 if (ill == NULL) 26139 return; 26140 ipst = ill->ill_ipst; 26141 /* 26142 * Destination address is a broadcast or multicast. Punt. 26143 */ 26144 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26145 IRE_LOCAL))) 26146 return; 26147 26148 data_mp = ipsec_mp->b_cont; 26149 26150 if (ill->ill_isv6) { 26151 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26152 26153 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26154 return; 26155 26156 plen = ip6h->ip6_plen; 26157 } else { 26158 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26159 26160 if (CLASSD(ipha->ipha_dst)) 26161 return; 26162 26163 plen = ipha->ipha_length; 26164 } 26165 /* 26166 * Is there a pending DLPI control message being exchanged 26167 * between IP/IPsec and the DLS Provider? If there is, it 26168 * could be a SADB update, and the state of the DLS Provider 26169 * SADB might not be in sync with the SADB maintained by 26170 * IPsec. To avoid dropping packets or using the wrong keying 26171 * material, we do not accelerate this packet. 26172 */ 26173 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26174 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26175 "ill_dlpi_pending! don't accelerate packet\n")); 26176 return; 26177 } 26178 26179 /* 26180 * Is the Provider in promiscous mode? If it does, we don't 26181 * accelerate the packet since it will bounce back up to the 26182 * listeners in the clear. 26183 */ 26184 if (ill->ill_promisc_on_phys) { 26185 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26186 "ill in promiscous mode, don't accelerate packet\n")); 26187 return; 26188 } 26189 26190 /* 26191 * Will the packet require fragmentation? 26192 */ 26193 26194 /* 26195 * IPsec ESP note: this is a pessimistic estimate, but the same 26196 * as is used elsewhere. 26197 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26198 * + 2-byte trailer 26199 */ 26200 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26201 IPSEC_BASE_ESP_HDR_SIZE(sa); 26202 26203 if ((plen + overhead) > ill->ill_max_mtu) 26204 return; 26205 26206 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26207 26208 /* 26209 * Can the ill accelerate this IPsec protocol and algorithm 26210 * specified by the SA? 26211 */ 26212 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26213 ill->ill_isv6, sa, ipst->ips_netstack)) { 26214 return; 26215 } 26216 26217 /* 26218 * Tell AH or ESP that the outbound ill is capable of 26219 * accelerating this packet. 26220 */ 26221 io->ipsec_out_is_capab_ill = B_TRUE; 26222 } 26223 26224 /* 26225 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26226 * 26227 * If this function returns B_TRUE, the requested SA's have been filled 26228 * into the ipsec_out_*_sa pointers. 26229 * 26230 * If the function returns B_FALSE, the packet has been "consumed", most 26231 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26232 * 26233 * The SA references created by the protocol-specific "select" 26234 * function will be released when the ipsec_mp is freed, thanks to the 26235 * ipsec_out_free destructor -- see spd.c. 26236 */ 26237 static boolean_t 26238 ipsec_out_select_sa(mblk_t *ipsec_mp) 26239 { 26240 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26241 ipsec_out_t *io; 26242 ipsec_policy_t *pp; 26243 ipsec_action_t *ap; 26244 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26245 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26246 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26247 26248 if (!io->ipsec_out_secure) { 26249 /* 26250 * We came here by mistake. 26251 * Don't bother with ipsec processing 26252 * We should "discourage" this path in the future. 26253 */ 26254 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26255 return (B_FALSE); 26256 } 26257 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26258 ASSERT((io->ipsec_out_policy != NULL) || 26259 (io->ipsec_out_act != NULL)); 26260 26261 ASSERT(io->ipsec_out_failed == B_FALSE); 26262 26263 /* 26264 * IPSEC processing has started. 26265 */ 26266 io->ipsec_out_proc_begin = B_TRUE; 26267 ap = io->ipsec_out_act; 26268 if (ap == NULL) { 26269 pp = io->ipsec_out_policy; 26270 ASSERT(pp != NULL); 26271 ap = pp->ipsp_act; 26272 ASSERT(ap != NULL); 26273 } 26274 26275 /* 26276 * We have an action. now, let's select SA's. 26277 * (In the future, we can cache this in the conn_t..) 26278 */ 26279 if (ap->ipa_want_esp) { 26280 if (io->ipsec_out_esp_sa == NULL) { 26281 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26282 IPPROTO_ESP); 26283 } 26284 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26285 } 26286 26287 if (ap->ipa_want_ah) { 26288 if (io->ipsec_out_ah_sa == NULL) { 26289 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26290 IPPROTO_AH); 26291 } 26292 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26293 /* 26294 * The ESP and AH processing order needs to be preserved 26295 * when both protocols are required (ESP should be applied 26296 * before AH for an outbound packet). Force an ESP ACQUIRE 26297 * when both ESP and AH are required, and an AH ACQUIRE 26298 * is needed. 26299 */ 26300 if (ap->ipa_want_esp && need_ah_acquire) 26301 need_esp_acquire = B_TRUE; 26302 } 26303 26304 /* 26305 * Send an ACQUIRE (extended, regular, or both) if we need one. 26306 * Release SAs that got referenced, but will not be used until we 26307 * acquire _all_ of the SAs we need. 26308 */ 26309 if (need_ah_acquire || need_esp_acquire) { 26310 if (io->ipsec_out_ah_sa != NULL) { 26311 IPSA_REFRELE(io->ipsec_out_ah_sa); 26312 io->ipsec_out_ah_sa = NULL; 26313 } 26314 if (io->ipsec_out_esp_sa != NULL) { 26315 IPSA_REFRELE(io->ipsec_out_esp_sa); 26316 io->ipsec_out_esp_sa = NULL; 26317 } 26318 26319 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26320 return (B_FALSE); 26321 } 26322 26323 return (B_TRUE); 26324 } 26325 26326 /* 26327 * Process an IPSEC_OUT message and see what you can 26328 * do with it. 26329 * IPQoS Notes: 26330 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26331 * IPSec. 26332 * XXX would like to nuke ire_t. 26333 * XXX ill_index better be "real" 26334 */ 26335 void 26336 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26337 { 26338 ipsec_out_t *io; 26339 ipsec_policy_t *pp; 26340 ipsec_action_t *ap; 26341 ipha_t *ipha; 26342 ip6_t *ip6h; 26343 mblk_t *mp; 26344 ill_t *ill; 26345 zoneid_t zoneid; 26346 ipsec_status_t ipsec_rc; 26347 boolean_t ill_need_rele = B_FALSE; 26348 ip_stack_t *ipst; 26349 ipsec_stack_t *ipss; 26350 26351 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26352 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26353 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26354 ipst = io->ipsec_out_ns->netstack_ip; 26355 mp = ipsec_mp->b_cont; 26356 26357 /* 26358 * Initiate IPPF processing. We do it here to account for packets 26359 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26360 * We can check for ipsec_out_proc_begin even for such packets, as 26361 * they will always be false (asserted below). 26362 */ 26363 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26364 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26365 io->ipsec_out_ill_index : ill_index); 26366 if (mp == NULL) { 26367 ip2dbg(("ipsec_out_process: packet dropped "\ 26368 "during IPPF processing\n")); 26369 freeb(ipsec_mp); 26370 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26371 return; 26372 } 26373 } 26374 26375 if (!io->ipsec_out_secure) { 26376 /* 26377 * We came here by mistake. 26378 * Don't bother with ipsec processing 26379 * Should "discourage" this path in the future. 26380 */ 26381 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26382 goto done; 26383 } 26384 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26385 ASSERT((io->ipsec_out_policy != NULL) || 26386 (io->ipsec_out_act != NULL)); 26387 ASSERT(io->ipsec_out_failed == B_FALSE); 26388 26389 ipss = ipst->ips_netstack->netstack_ipsec; 26390 if (!ipsec_loaded(ipss)) { 26391 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26392 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26393 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26394 } else { 26395 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26396 } 26397 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26398 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26399 &ipss->ipsec_dropper); 26400 return; 26401 } 26402 26403 /* 26404 * IPSEC processing has started. 26405 */ 26406 io->ipsec_out_proc_begin = B_TRUE; 26407 ap = io->ipsec_out_act; 26408 if (ap == NULL) { 26409 pp = io->ipsec_out_policy; 26410 ASSERT(pp != NULL); 26411 ap = pp->ipsp_act; 26412 ASSERT(ap != NULL); 26413 } 26414 26415 /* 26416 * Save the outbound ill index. When the packet comes back 26417 * from IPsec, we make sure the ill hasn't changed or disappeared 26418 * before sending it the accelerated packet. 26419 */ 26420 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26421 int ifindex; 26422 ill = ire_to_ill(ire); 26423 ifindex = ill->ill_phyint->phyint_ifindex; 26424 io->ipsec_out_capab_ill_index = ifindex; 26425 } 26426 26427 /* 26428 * The order of processing is first insert a IP header if needed. 26429 * Then insert the ESP header and then the AH header. 26430 */ 26431 if ((io->ipsec_out_se_done == B_FALSE) && 26432 (ap->ipa_want_se)) { 26433 /* 26434 * First get the outer IP header before sending 26435 * it to ESP. 26436 */ 26437 ipha_t *oipha, *iipha; 26438 mblk_t *outer_mp, *inner_mp; 26439 26440 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26441 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26442 "ipsec_out_process: " 26443 "Self-Encapsulation failed: Out of memory\n"); 26444 freemsg(ipsec_mp); 26445 if (ill != NULL) { 26446 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26447 } else { 26448 BUMP_MIB(&ipst->ips_ip_mib, 26449 ipIfStatsOutDiscards); 26450 } 26451 return; 26452 } 26453 inner_mp = ipsec_mp->b_cont; 26454 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26455 oipha = (ipha_t *)outer_mp->b_rptr; 26456 iipha = (ipha_t *)inner_mp->b_rptr; 26457 *oipha = *iipha; 26458 outer_mp->b_wptr += sizeof (ipha_t); 26459 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26460 sizeof (ipha_t)); 26461 oipha->ipha_protocol = IPPROTO_ENCAP; 26462 oipha->ipha_version_and_hdr_length = 26463 IP_SIMPLE_HDR_VERSION; 26464 oipha->ipha_hdr_checksum = 0; 26465 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26466 outer_mp->b_cont = inner_mp; 26467 ipsec_mp->b_cont = outer_mp; 26468 26469 io->ipsec_out_se_done = B_TRUE; 26470 io->ipsec_out_tunnel = B_TRUE; 26471 } 26472 26473 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26474 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26475 !ipsec_out_select_sa(ipsec_mp)) 26476 return; 26477 26478 /* 26479 * By now, we know what SA's to use. Toss over to ESP & AH 26480 * to do the heavy lifting. 26481 */ 26482 zoneid = io->ipsec_out_zoneid; 26483 ASSERT(zoneid != ALL_ZONES); 26484 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26485 ASSERT(io->ipsec_out_esp_sa != NULL); 26486 io->ipsec_out_esp_done = B_TRUE; 26487 /* 26488 * Note that since hw accel can only apply one transform, 26489 * not two, we skip hw accel for ESP if we also have AH 26490 * This is an design limitation of the interface 26491 * which should be revisited. 26492 */ 26493 ASSERT(ire != NULL); 26494 if (io->ipsec_out_ah_sa == NULL) { 26495 ill = (ill_t *)ire->ire_stq->q_ptr; 26496 ipsec_out_is_accelerated(ipsec_mp, 26497 io->ipsec_out_esp_sa, ill, ire); 26498 } 26499 26500 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26501 switch (ipsec_rc) { 26502 case IPSEC_STATUS_SUCCESS: 26503 break; 26504 case IPSEC_STATUS_FAILED: 26505 if (ill != NULL) { 26506 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26507 } else { 26508 BUMP_MIB(&ipst->ips_ip_mib, 26509 ipIfStatsOutDiscards); 26510 } 26511 /* FALLTHRU */ 26512 case IPSEC_STATUS_PENDING: 26513 return; 26514 } 26515 } 26516 26517 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26518 ASSERT(io->ipsec_out_ah_sa != NULL); 26519 io->ipsec_out_ah_done = B_TRUE; 26520 if (ire == NULL) { 26521 int idx = io->ipsec_out_capab_ill_index; 26522 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26523 NULL, NULL, NULL, NULL, ipst); 26524 ill_need_rele = B_TRUE; 26525 } else { 26526 ill = (ill_t *)ire->ire_stq->q_ptr; 26527 } 26528 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26529 ire); 26530 26531 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26532 switch (ipsec_rc) { 26533 case IPSEC_STATUS_SUCCESS: 26534 break; 26535 case IPSEC_STATUS_FAILED: 26536 if (ill != NULL) { 26537 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26538 } else { 26539 BUMP_MIB(&ipst->ips_ip_mib, 26540 ipIfStatsOutDiscards); 26541 } 26542 /* FALLTHRU */ 26543 case IPSEC_STATUS_PENDING: 26544 if (ill != NULL && ill_need_rele) 26545 ill_refrele(ill); 26546 return; 26547 } 26548 } 26549 /* 26550 * We are done with IPSEC processing. Send it over 26551 * the wire. 26552 */ 26553 done: 26554 mp = ipsec_mp->b_cont; 26555 ipha = (ipha_t *)mp->b_rptr; 26556 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26557 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26558 } else { 26559 ip6h = (ip6_t *)ipha; 26560 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26561 } 26562 if (ill != NULL && ill_need_rele) 26563 ill_refrele(ill); 26564 } 26565 26566 /* ARGSUSED */ 26567 void 26568 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26569 { 26570 opt_restart_t *or; 26571 int err; 26572 conn_t *connp; 26573 26574 ASSERT(CONN_Q(q)); 26575 connp = Q_TO_CONN(q); 26576 26577 ASSERT(first_mp->b_datap->db_type == M_CTL); 26578 or = (opt_restart_t *)first_mp->b_rptr; 26579 /* 26580 * We don't need to pass any credentials here since this is just 26581 * a restart. The credentials are passed in when svr4_optcom_req 26582 * is called the first time (from ip_wput_nondata). 26583 */ 26584 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26585 err = svr4_optcom_req(q, first_mp, NULL, 26586 &ip_opt_obj); 26587 } else { 26588 ASSERT(or->or_type == T_OPTMGMT_REQ); 26589 err = tpi_optcom_req(q, first_mp, NULL, 26590 &ip_opt_obj); 26591 } 26592 if (err != EINPROGRESS) { 26593 /* operation is done */ 26594 CONN_OPER_PENDING_DONE(connp); 26595 } 26596 } 26597 26598 /* 26599 * ioctls that go through a down/up sequence may need to wait for the down 26600 * to complete. This involves waiting for the ire and ipif refcnts to go down 26601 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26602 */ 26603 /* ARGSUSED */ 26604 void 26605 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26606 { 26607 struct iocblk *iocp; 26608 mblk_t *mp1; 26609 ip_ioctl_cmd_t *ipip; 26610 int err; 26611 sin_t *sin; 26612 struct lifreq *lifr; 26613 struct ifreq *ifr; 26614 26615 iocp = (struct iocblk *)mp->b_rptr; 26616 ASSERT(ipsq != NULL); 26617 /* Existence of mp1 verified in ip_wput_nondata */ 26618 mp1 = mp->b_cont->b_cont; 26619 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26620 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26621 /* 26622 * Special case where ipsq_current_ipif is not set: 26623 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26624 * ill could also have become part of a ipmp group in the 26625 * process, we are here as were not able to complete the 26626 * operation in ipif_set_values because we could not become 26627 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26628 * will not be set so we need to set it. 26629 */ 26630 ill_t *ill = q->q_ptr; 26631 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26632 } 26633 ASSERT(ipsq->ipsq_current_ipif != NULL); 26634 26635 if (ipip->ipi_cmd_type == IF_CMD) { 26636 /* This a old style SIOC[GS]IF* command */ 26637 ifr = (struct ifreq *)mp1->b_rptr; 26638 sin = (sin_t *)&ifr->ifr_addr; 26639 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26640 /* This a new style SIOC[GS]LIF* command */ 26641 lifr = (struct lifreq *)mp1->b_rptr; 26642 sin = (sin_t *)&lifr->lifr_addr; 26643 } else { 26644 sin = NULL; 26645 } 26646 26647 err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp, 26648 ipip, mp1->b_rptr); 26649 26650 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26651 } 26652 26653 /* 26654 * ioctl processing 26655 * 26656 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 26657 * the ioctl command in the ioctl tables, determines the copyin data size 26658 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 26659 * 26660 * ioctl processing then continues when the M_IOCDATA makes its way down to 26661 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 26662 * associated 'conn' is refheld till the end of the ioctl and the general 26663 * ioctl processing function ip_process_ioctl() is called to extract the 26664 * arguments and process the ioctl. To simplify extraction, ioctl commands 26665 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 26666 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 26667 * is used to extract the ioctl's arguments. 26668 * 26669 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26670 * so goes thru the serialization primitive ipsq_try_enter. Then the 26671 * appropriate function to handle the ioctl is called based on the entry in 26672 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26673 * which also refreleases the 'conn' that was refheld at the start of the 26674 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26675 * 26676 * Many exclusive ioctls go thru an internal down up sequence as part of 26677 * the operation. For example an attempt to change the IP address of an 26678 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26679 * does all the cleanup such as deleting all ires that use this address. 26680 * Then we need to wait till all references to the interface go away. 26681 */ 26682 void 26683 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26684 { 26685 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26686 ip_ioctl_cmd_t *ipip = arg; 26687 ip_extract_func_t *extract_funcp; 26688 cmd_info_t ci; 26689 int err; 26690 boolean_t entered_ipsq = B_FALSE; 26691 26692 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26693 26694 if (ipip == NULL) 26695 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26696 26697 /* 26698 * SIOCLIFADDIF needs to go thru a special path since the 26699 * ill may not exist yet. This happens in the case of lo0 26700 * which is created using this ioctl. 26701 */ 26702 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26703 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26704 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26705 return; 26706 } 26707 26708 ci.ci_ipif = NULL; 26709 if (ipip->ipi_cmd_type == MISC_CMD) { 26710 /* 26711 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 26712 */ 26713 if (ipip->ipi_cmd == IF_UNITSEL) { 26714 /* ioctl comes down the ill */ 26715 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26716 ipif_refhold(ci.ci_ipif); 26717 } 26718 err = 0; 26719 ci.ci_sin = NULL; 26720 ci.ci_sin6 = NULL; 26721 ci.ci_lifr = NULL; 26722 } else { 26723 switch (ipip->ipi_cmd_type) { 26724 case IF_CMD: 26725 case LIF_CMD: 26726 extract_funcp = ip_extract_lifreq; 26727 break; 26728 26729 case ARP_CMD: 26730 case XARP_CMD: 26731 extract_funcp = ip_extract_arpreq; 26732 break; 26733 26734 case TUN_CMD: 26735 extract_funcp = ip_extract_tunreq; 26736 break; 26737 26738 case MSFILT_CMD: 26739 extract_funcp = ip_extract_msfilter; 26740 break; 26741 26742 default: 26743 ASSERT(0); 26744 } 26745 26746 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 26747 if (err != 0) { 26748 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26749 return; 26750 } 26751 26752 /* 26753 * All of the extraction functions return a refheld ipif. 26754 */ 26755 ASSERT(ci.ci_ipif != NULL); 26756 } 26757 26758 /* 26759 * If ipsq is non-null, we are already being called exclusively 26760 */ 26761 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26762 if (!(ipip->ipi_flags & IPI_WR)) { 26763 /* 26764 * A return value of EINPROGRESS means the ioctl is 26765 * either queued and waiting for some reason or has 26766 * already completed. 26767 */ 26768 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26769 ci.ci_lifr); 26770 if (ci.ci_ipif != NULL) 26771 ipif_refrele(ci.ci_ipif); 26772 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 26773 return; 26774 } 26775 26776 ASSERT(ci.ci_ipif != NULL); 26777 26778 if (ipsq == NULL) { 26779 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26780 ip_process_ioctl, NEW_OP, B_TRUE); 26781 entered_ipsq = B_TRUE; 26782 } 26783 /* 26784 * Release the ipif so that ipif_down and friends that wait for 26785 * references to go away are not misled about the current ipif_refcnt 26786 * values. We are writer so we can access the ipif even after releasing 26787 * the ipif. 26788 */ 26789 ipif_refrele(ci.ci_ipif); 26790 if (ipsq == NULL) 26791 return; 26792 26793 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 26794 26795 /* 26796 * For most set ioctls that come here, this serves as a single point 26797 * where we set the IPIF_CHANGING flag. This ensures that there won't 26798 * be any new references to the ipif. This helps functions that go 26799 * through this path and end up trying to wait for the refcnts 26800 * associated with the ipif to go down to zero. Some exceptions are 26801 * Failover, Failback, and Groupname commands that operate on more than 26802 * just the ci.ci_ipif. These commands internally determine the 26803 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26804 * flags on that set. Another exception is the Removeif command that 26805 * sets the IPIF_CONDEMNED flag internally after identifying the right 26806 * ipif to operate on. 26807 */ 26808 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26809 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26810 ipip->ipi_cmd != SIOCLIFFAILOVER && 26811 ipip->ipi_cmd != SIOCLIFFAILBACK && 26812 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26813 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26814 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26815 26816 /* 26817 * A return value of EINPROGRESS means the ioctl is 26818 * either queued and waiting for some reason or has 26819 * already completed. 26820 */ 26821 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 26822 26823 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26824 26825 if (entered_ipsq) 26826 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26827 } 26828 26829 /* 26830 * Complete the ioctl. Typically ioctls use the mi package and need to 26831 * do mi_copyout/mi_copy_done. 26832 */ 26833 void 26834 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 26835 { 26836 conn_t *connp = NULL; 26837 26838 if (err == EINPROGRESS) 26839 return; 26840 26841 if (CONN_Q(q)) { 26842 connp = Q_TO_CONN(q); 26843 ASSERT(connp->conn_ref >= 2); 26844 } 26845 26846 switch (mode) { 26847 case COPYOUT: 26848 if (err == 0) 26849 mi_copyout(q, mp); 26850 else 26851 mi_copy_done(q, mp, err); 26852 break; 26853 26854 case NO_COPYOUT: 26855 mi_copy_done(q, mp, err); 26856 break; 26857 26858 default: 26859 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 26860 break; 26861 } 26862 26863 /* 26864 * The refhold placed at the start of the ioctl is released here. 26865 */ 26866 if (connp != NULL) 26867 CONN_OPER_PENDING_DONE(connp); 26868 26869 if (ipsq != NULL) 26870 ipsq_current_finish(ipsq); 26871 } 26872 26873 /* 26874 * This is called from ip_wput_nondata to resume a deferred TCP bind. 26875 */ 26876 /* ARGSUSED */ 26877 void 26878 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 26879 { 26880 conn_t *connp = arg; 26881 tcp_t *tcp; 26882 26883 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 26884 tcp = connp->conn_tcp; 26885 26886 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 26887 freemsg(mp); 26888 else 26889 tcp_rput_other(tcp, mp); 26890 CONN_OPER_PENDING_DONE(connp); 26891 } 26892 26893 /* Called from ip_wput for all non data messages */ 26894 /* ARGSUSED */ 26895 void 26896 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26897 { 26898 mblk_t *mp1; 26899 ire_t *ire, *fake_ire; 26900 ill_t *ill; 26901 struct iocblk *iocp; 26902 ip_ioctl_cmd_t *ipip; 26903 cred_t *cr; 26904 conn_t *connp; 26905 int err; 26906 nce_t *nce; 26907 ipif_t *ipif; 26908 ip_stack_t *ipst; 26909 char *proto_str; 26910 26911 if (CONN_Q(q)) { 26912 connp = Q_TO_CONN(q); 26913 ipst = connp->conn_netstack->netstack_ip; 26914 } else { 26915 connp = NULL; 26916 ipst = ILLQ_TO_IPST(q); 26917 } 26918 26919 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26920 26921 /* Check if it is a queue to /dev/sctp. */ 26922 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26923 connp->conn_rq == NULL) { 26924 sctp_wput(q, mp); 26925 return; 26926 } 26927 26928 switch (DB_TYPE(mp)) { 26929 case M_IOCTL: 26930 /* 26931 * IOCTL processing begins in ip_sioctl_copyin_setup which 26932 * will arrange to copy in associated control structures. 26933 */ 26934 ip_sioctl_copyin_setup(q, mp); 26935 return; 26936 case M_IOCDATA: 26937 /* 26938 * Ensure that this is associated with one of our trans- 26939 * parent ioctls. If it's not ours, discard it if we're 26940 * running as a driver, or pass it on if we're a module. 26941 */ 26942 iocp = (struct iocblk *)mp->b_rptr; 26943 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26944 if (ipip == NULL) { 26945 if (q->q_next == NULL) { 26946 goto nak; 26947 } else { 26948 putnext(q, mp); 26949 } 26950 return; 26951 } 26952 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 26953 /* 26954 * the ioctl is one we recognise, but is not 26955 * consumed by IP as a module, pass M_IOCDATA 26956 * for processing downstream, but only for 26957 * common Streams ioctls. 26958 */ 26959 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26960 putnext(q, mp); 26961 return; 26962 } else { 26963 goto nak; 26964 } 26965 } 26966 26967 /* IOCTL continuation following copyin or copyout. */ 26968 if (mi_copy_state(q, mp, NULL) == -1) { 26969 /* 26970 * The copy operation failed. mi_copy_state already 26971 * cleaned up, so we're out of here. 26972 */ 26973 return; 26974 } 26975 /* 26976 * If we just completed a copy in, we become writer and 26977 * continue processing in ip_sioctl_copyin_done. If it 26978 * was a copy out, we call mi_copyout again. If there is 26979 * nothing more to copy out, it will complete the IOCTL. 26980 */ 26981 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 26982 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 26983 mi_copy_done(q, mp, EPROTO); 26984 return; 26985 } 26986 /* 26987 * Check for cases that need more copying. A return 26988 * value of 0 means a second copyin has been started, 26989 * so we return; a return value of 1 means no more 26990 * copying is needed, so we continue. 26991 */ 26992 if (ipip->ipi_cmd_type == MSFILT_CMD && 26993 MI_COPY_COUNT(mp) == 1) { 26994 if (ip_copyin_msfilter(q, mp) == 0) 26995 return; 26996 } 26997 /* 26998 * Refhold the conn, till the ioctl completes. This is 26999 * needed in case the ioctl ends up in the pending mp 27000 * list. Every mp in the ill_pending_mp list and 27001 * the ipsq_pending_mp must have a refhold on the conn 27002 * to resume processing. The refhold is released when 27003 * the ioctl completes. (normally or abnormally) 27004 * In all cases ip_ioctl_finish is called to finish 27005 * the ioctl. 27006 */ 27007 if (connp != NULL) { 27008 /* This is not a reentry */ 27009 ASSERT(ipsq == NULL); 27010 CONN_INC_REF(connp); 27011 } else { 27012 if (!(ipip->ipi_flags & IPI_MODOK)) { 27013 mi_copy_done(q, mp, EINVAL); 27014 return; 27015 } 27016 } 27017 27018 ip_process_ioctl(ipsq, q, mp, ipip); 27019 27020 } else { 27021 mi_copyout(q, mp); 27022 } 27023 return; 27024 nak: 27025 iocp->ioc_error = EINVAL; 27026 mp->b_datap->db_type = M_IOCNAK; 27027 iocp->ioc_count = 0; 27028 qreply(q, mp); 27029 return; 27030 27031 case M_IOCNAK: 27032 /* 27033 * The only way we could get here is if a resolver didn't like 27034 * an IOCTL we sent it. This shouldn't happen. 27035 */ 27036 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27037 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27038 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27039 freemsg(mp); 27040 return; 27041 case M_IOCACK: 27042 /* /dev/ip shouldn't see this */ 27043 if (CONN_Q(q)) 27044 goto nak; 27045 27046 /* Finish socket ioctls passed through to ARP. */ 27047 ip_sioctl_iocack(q, mp); 27048 return; 27049 case M_FLUSH: 27050 if (*mp->b_rptr & FLUSHW) 27051 flushq(q, FLUSHALL); 27052 if (q->q_next) { 27053 putnext(q, mp); 27054 return; 27055 } 27056 if (*mp->b_rptr & FLUSHR) { 27057 *mp->b_rptr &= ~FLUSHW; 27058 qreply(q, mp); 27059 return; 27060 } 27061 freemsg(mp); 27062 return; 27063 case IRE_DB_REQ_TYPE: 27064 if (connp == NULL) { 27065 proto_str = "IRE_DB_REQ_TYPE"; 27066 goto protonak; 27067 } 27068 /* An Upper Level Protocol wants a copy of an IRE. */ 27069 ip_ire_req(q, mp); 27070 return; 27071 case M_CTL: 27072 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27073 break; 27074 27075 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27076 TUN_HELLO) { 27077 ASSERT(connp != NULL); 27078 connp->conn_flags |= IPCL_IPTUN; 27079 freeb(mp); 27080 return; 27081 } 27082 27083 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27084 IP_ULP_OUT_LABELED) { 27085 out_labeled_t *olp; 27086 27087 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27088 break; 27089 olp = (out_labeled_t *)mp->b_rptr; 27090 connp->conn_ulp_labeled = olp->out_qnext == q; 27091 freemsg(mp); 27092 return; 27093 } 27094 27095 /* M_CTL messages are used by ARP to tell us things. */ 27096 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27097 break; 27098 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27099 case AR_ENTRY_SQUERY: 27100 ip_wput_ctl(q, mp); 27101 return; 27102 case AR_CLIENT_NOTIFY: 27103 ip_arp_news(q, mp); 27104 return; 27105 case AR_DLPIOP_DONE: 27106 ASSERT(q->q_next != NULL); 27107 ill = (ill_t *)q->q_ptr; 27108 /* qwriter_ip releases the refhold */ 27109 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27110 ill_refhold(ill); 27111 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27112 return; 27113 case AR_ARP_CLOSING: 27114 /* 27115 * ARP (above us) is closing. If no ARP bringup is 27116 * currently pending, ack the message so that ARP 27117 * can complete its close. Also mark ill_arp_closing 27118 * so that new ARP bringups will fail. If any 27119 * ARP bringup is currently in progress, we will 27120 * ack this when the current ARP bringup completes. 27121 */ 27122 ASSERT(q->q_next != NULL); 27123 ill = (ill_t *)q->q_ptr; 27124 mutex_enter(&ill->ill_lock); 27125 ill->ill_arp_closing = 1; 27126 if (!ill->ill_arp_bringup_pending) { 27127 mutex_exit(&ill->ill_lock); 27128 qreply(q, mp); 27129 } else { 27130 mutex_exit(&ill->ill_lock); 27131 freemsg(mp); 27132 } 27133 return; 27134 case AR_ARP_EXTEND: 27135 /* 27136 * The ARP module above us is capable of duplicate 27137 * address detection. Old ATM drivers will not send 27138 * this message. 27139 */ 27140 ASSERT(q->q_next != NULL); 27141 ill = (ill_t *)q->q_ptr; 27142 ill->ill_arp_extend = B_TRUE; 27143 freemsg(mp); 27144 return; 27145 default: 27146 break; 27147 } 27148 break; 27149 case M_PROTO: 27150 case M_PCPROTO: 27151 /* 27152 * The only PROTO messages we expect are ULP binds and 27153 * copies of option negotiation acknowledgements. 27154 */ 27155 switch (((union T_primitives *)mp->b_rptr)->type) { 27156 case O_T_BIND_REQ: 27157 case T_BIND_REQ: { 27158 /* Request can get queued in bind */ 27159 if (connp == NULL) { 27160 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27161 goto protonak; 27162 } 27163 /* 27164 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27165 * instead of going through this path. We only get 27166 * here in the following cases: 27167 * 27168 * a. Bind retries, where ipsq is non-NULL. 27169 * b. T_BIND_REQ is issued from non TCP/UDP 27170 * transport, e.g. icmp for raw socket, 27171 * in which case ipsq will be NULL. 27172 */ 27173 ASSERT(ipsq != NULL || 27174 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27175 27176 /* Don't increment refcnt if this is a re-entry */ 27177 if (ipsq == NULL) 27178 CONN_INC_REF(connp); 27179 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27180 connp, NULL) : ip_bind_v4(q, mp, connp); 27181 if (mp == NULL) 27182 return; 27183 if (IPCL_IS_TCP(connp)) { 27184 /* 27185 * In the case of TCP endpoint we 27186 * come here only for bind retries 27187 */ 27188 ASSERT(ipsq != NULL); 27189 CONN_INC_REF(connp); 27190 squeue_fill(connp->conn_sqp, mp, 27191 ip_resume_tcp_bind, connp, 27192 SQTAG_BIND_RETRY); 27193 return; 27194 } else if (IPCL_IS_UDP(connp)) { 27195 /* 27196 * In the case of UDP endpoint we 27197 * come here only for bind retries 27198 */ 27199 ASSERT(ipsq != NULL); 27200 udp_resume_bind(connp, mp); 27201 return; 27202 } 27203 qreply(q, mp); 27204 CONN_OPER_PENDING_DONE(connp); 27205 return; 27206 } 27207 case T_SVR4_OPTMGMT_REQ: 27208 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27209 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27210 27211 if (connp == NULL) { 27212 proto_str = "T_SVR4_OPTMGMT_REQ"; 27213 goto protonak; 27214 } 27215 27216 if (!snmpcom_req(q, mp, ip_snmp_set, 27217 ip_snmp_get, cr)) { 27218 /* 27219 * Call svr4_optcom_req so that it can 27220 * generate the ack. We don't come here 27221 * if this operation is being restarted. 27222 * ip_restart_optmgmt will drop the conn ref. 27223 * In the case of ipsec option after the ipsec 27224 * load is complete conn_restart_ipsec_waiter 27225 * drops the conn ref. 27226 */ 27227 ASSERT(ipsq == NULL); 27228 CONN_INC_REF(connp); 27229 if (ip_check_for_ipsec_opt(q, mp)) 27230 return; 27231 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27232 if (err != EINPROGRESS) { 27233 /* Operation is done */ 27234 CONN_OPER_PENDING_DONE(connp); 27235 } 27236 } 27237 return; 27238 case T_OPTMGMT_REQ: 27239 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27240 /* 27241 * Note: No snmpcom_req support through new 27242 * T_OPTMGMT_REQ. 27243 * Call tpi_optcom_req so that it can 27244 * generate the ack. 27245 */ 27246 if (connp == NULL) { 27247 proto_str = "T_OPTMGMT_REQ"; 27248 goto protonak; 27249 } 27250 27251 ASSERT(ipsq == NULL); 27252 /* 27253 * We don't come here for restart. ip_restart_optmgmt 27254 * will drop the conn ref. In the case of ipsec option 27255 * after the ipsec load is complete 27256 * conn_restart_ipsec_waiter drops the conn ref. 27257 */ 27258 CONN_INC_REF(connp); 27259 if (ip_check_for_ipsec_opt(q, mp)) 27260 return; 27261 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27262 if (err != EINPROGRESS) { 27263 /* Operation is done */ 27264 CONN_OPER_PENDING_DONE(connp); 27265 } 27266 return; 27267 case T_UNBIND_REQ: 27268 if (connp == NULL) { 27269 proto_str = "T_UNBIND_REQ"; 27270 goto protonak; 27271 } 27272 mp = ip_unbind(q, mp); 27273 qreply(q, mp); 27274 return; 27275 default: 27276 /* 27277 * Have to drop any DLPI messages coming down from 27278 * arp (such as an info_req which would cause ip 27279 * to receive an extra info_ack if it was passed 27280 * through. 27281 */ 27282 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27283 (int)*(uint_t *)mp->b_rptr)); 27284 freemsg(mp); 27285 return; 27286 } 27287 /* NOTREACHED */ 27288 case IRE_DB_TYPE: { 27289 nce_t *nce; 27290 ill_t *ill; 27291 in6_addr_t gw_addr_v6; 27292 27293 27294 /* 27295 * This is a response back from a resolver. It 27296 * consists of a message chain containing: 27297 * IRE_MBLK-->LL_HDR_MBLK->pkt 27298 * The IRE_MBLK is the one we allocated in ip_newroute. 27299 * The LL_HDR_MBLK is the DLPI header to use to get 27300 * the attached packet, and subsequent ones for the 27301 * same destination, transmitted. 27302 */ 27303 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27304 break; 27305 /* 27306 * First, check to make sure the resolution succeeded. 27307 * If it failed, the second mblk will be empty. 27308 * If it is, free the chain, dropping the packet. 27309 * (We must ire_delete the ire; that frees the ire mblk) 27310 * We're doing this now to support PVCs for ATM; it's 27311 * a partial xresolv implementation. When we fully implement 27312 * xresolv interfaces, instead of freeing everything here 27313 * we'll initiate neighbor discovery. 27314 * 27315 * For v4 (ARP and other external resolvers) the resolver 27316 * frees the message, so no check is needed. This check 27317 * is required, though, for a full xresolve implementation. 27318 * Including this code here now both shows how external 27319 * resolvers can NACK a resolution request using an 27320 * existing design that has no specific provisions for NACKs, 27321 * and also takes into account that the current non-ARP 27322 * external resolver has been coded to use this method of 27323 * NACKing for all IPv6 (xresolv) cases, 27324 * whether our xresolv implementation is complete or not. 27325 * 27326 */ 27327 ire = (ire_t *)mp->b_rptr; 27328 ill = ire_to_ill(ire); 27329 mp1 = mp->b_cont; /* dl_unitdata_req */ 27330 if (mp1->b_rptr == mp1->b_wptr) { 27331 if (ire->ire_ipversion == IPV6_VERSION) { 27332 /* 27333 * XRESOLV interface. 27334 */ 27335 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27336 mutex_enter(&ire->ire_lock); 27337 gw_addr_v6 = ire->ire_gateway_addr_v6; 27338 mutex_exit(&ire->ire_lock); 27339 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27340 nce = ndp_lookup_v6(ill, 27341 &ire->ire_addr_v6, B_FALSE); 27342 } else { 27343 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27344 B_FALSE); 27345 } 27346 if (nce != NULL) { 27347 nce_resolv_failed(nce); 27348 ndp_delete(nce); 27349 NCE_REFRELE(nce); 27350 } 27351 } 27352 mp->b_cont = NULL; 27353 freemsg(mp1); /* frees the pkt as well */ 27354 ASSERT(ire->ire_nce == NULL); 27355 ire_delete((ire_t *)mp->b_rptr); 27356 return; 27357 } 27358 27359 /* 27360 * Split them into IRE_MBLK and pkt and feed it into 27361 * ire_add_then_send. Then in ire_add_then_send 27362 * the IRE will be added, and then the packet will be 27363 * run back through ip_wput. This time it will make 27364 * it to the wire. 27365 */ 27366 mp->b_cont = NULL; 27367 mp = mp1->b_cont; /* now, mp points to pkt */ 27368 mp1->b_cont = NULL; 27369 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27370 if (ire->ire_ipversion == IPV6_VERSION) { 27371 /* 27372 * XRESOLV interface. Find the nce and put a copy 27373 * of the dl_unitdata_req in nce_res_mp 27374 */ 27375 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27376 mutex_enter(&ire->ire_lock); 27377 gw_addr_v6 = ire->ire_gateway_addr_v6; 27378 mutex_exit(&ire->ire_lock); 27379 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27380 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27381 B_FALSE); 27382 } else { 27383 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27384 } 27385 if (nce != NULL) { 27386 /* 27387 * We have to protect nce_res_mp here 27388 * from being accessed by other threads 27389 * while we change the mblk pointer. 27390 * Other functions will also lock the nce when 27391 * accessing nce_res_mp. 27392 * 27393 * The reason we change the mblk pointer 27394 * here rather than copying the resolved address 27395 * into the template is that, unlike with 27396 * ethernet, we have no guarantee that the 27397 * resolved address length will be 27398 * smaller than or equal to the lla length 27399 * with which the template was allocated, 27400 * (for ethernet, they're equal) 27401 * so we have to use the actual resolved 27402 * address mblk - which holds the real 27403 * dl_unitdata_req with the resolved address. 27404 * 27405 * Doing this is the same behavior as was 27406 * previously used in the v4 ARP case. 27407 */ 27408 mutex_enter(&nce->nce_lock); 27409 if (nce->nce_res_mp != NULL) 27410 freemsg(nce->nce_res_mp); 27411 nce->nce_res_mp = mp1; 27412 mutex_exit(&nce->nce_lock); 27413 /* 27414 * We do a fastpath probe here because 27415 * we have resolved the address without 27416 * using Neighbor Discovery. 27417 * In the non-XRESOLV v6 case, the fastpath 27418 * probe is done right after neighbor 27419 * discovery completes. 27420 */ 27421 if (nce->nce_res_mp != NULL) { 27422 int res; 27423 nce_fastpath_list_add(nce); 27424 res = ill_fastpath_probe(ill, 27425 nce->nce_res_mp); 27426 if (res != 0 && res != EAGAIN) 27427 nce_fastpath_list_delete(nce); 27428 } 27429 27430 ire_add_then_send(q, ire, mp); 27431 /* 27432 * Now we have to clean out any packets 27433 * that may have been queued on the nce 27434 * while it was waiting for address resolution 27435 * to complete. 27436 */ 27437 mutex_enter(&nce->nce_lock); 27438 mp1 = nce->nce_qd_mp; 27439 nce->nce_qd_mp = NULL; 27440 mutex_exit(&nce->nce_lock); 27441 while (mp1 != NULL) { 27442 mblk_t *nxt_mp; 27443 queue_t *fwdq = NULL; 27444 ill_t *inbound_ill; 27445 uint_t ifindex; 27446 27447 nxt_mp = mp1->b_next; 27448 mp1->b_next = NULL; 27449 /* 27450 * Retrieve ifindex stored in 27451 * ip_rput_data_v6() 27452 */ 27453 ifindex = 27454 (uint_t)(uintptr_t)mp1->b_prev; 27455 inbound_ill = 27456 ill_lookup_on_ifindex(ifindex, 27457 B_TRUE, NULL, NULL, NULL, 27458 NULL, ipst); 27459 mp1->b_prev = NULL; 27460 if (inbound_ill != NULL) 27461 fwdq = inbound_ill->ill_rq; 27462 27463 if (fwdq != NULL) { 27464 put(fwdq, mp1); 27465 ill_refrele(inbound_ill); 27466 } else 27467 put(WR(ill->ill_rq), mp1); 27468 mp1 = nxt_mp; 27469 } 27470 NCE_REFRELE(nce); 27471 } else { /* nce is NULL; clean up */ 27472 ire_delete(ire); 27473 freemsg(mp); 27474 freemsg(mp1); 27475 return; 27476 } 27477 } else { 27478 nce_t *arpce; 27479 /* 27480 * Link layer resolution succeeded. Recompute the 27481 * ire_nce. 27482 */ 27483 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27484 if ((arpce = ndp_lookup_v4(ill, 27485 (ire->ire_gateway_addr != INADDR_ANY ? 27486 &ire->ire_gateway_addr : &ire->ire_addr), 27487 B_FALSE)) == NULL) { 27488 freeb(ire->ire_mp); 27489 freeb(mp1); 27490 freemsg(mp); 27491 return; 27492 } 27493 mutex_enter(&arpce->nce_lock); 27494 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27495 if (arpce->nce_state == ND_REACHABLE) { 27496 /* 27497 * Someone resolved this before us; 27498 * cleanup the res_mp. Since ire has 27499 * not been added yet, the call to ire_add_v4 27500 * from ire_add_then_send (when a dup is 27501 * detected) will clean up the ire. 27502 */ 27503 freeb(mp1); 27504 } else { 27505 ASSERT(arpce->nce_res_mp == NULL); 27506 arpce->nce_res_mp = mp1; 27507 arpce->nce_state = ND_REACHABLE; 27508 } 27509 mutex_exit(&arpce->nce_lock); 27510 if (ire->ire_marks & IRE_MARK_NOADD) { 27511 /* 27512 * this ire will not be added to the ire 27513 * cache table, so we can set the ire_nce 27514 * here, as there are no atomicity constraints. 27515 */ 27516 ire->ire_nce = arpce; 27517 /* 27518 * We are associating this nce with the ire 27519 * so change the nce ref taken in 27520 * ndp_lookup_v4() from 27521 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27522 */ 27523 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27524 } else { 27525 NCE_REFRELE(arpce); 27526 } 27527 ire_add_then_send(q, ire, mp); 27528 } 27529 return; /* All is well, the packet has been sent. */ 27530 } 27531 case IRE_ARPRESOLVE_TYPE: { 27532 27533 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27534 break; 27535 mp1 = mp->b_cont; /* dl_unitdata_req */ 27536 mp->b_cont = NULL; 27537 /* 27538 * First, check to make sure the resolution succeeded. 27539 * If it failed, the second mblk will be empty. 27540 */ 27541 if (mp1->b_rptr == mp1->b_wptr) { 27542 /* cleanup the incomplete ire, free queued packets */ 27543 freemsg(mp); /* fake ire */ 27544 freeb(mp1); /* dl_unitdata response */ 27545 return; 27546 } 27547 27548 /* 27549 * update any incomplete nce_t found. we lookup the ctable 27550 * and find the nce from the ire->ire_nce because we need 27551 * to pass the ire to ip_xmit_v4 later, and can find both 27552 * ire and nce in one lookup from the ctable. 27553 */ 27554 fake_ire = (ire_t *)mp->b_rptr; 27555 /* 27556 * By the time we come back here from ARP 27557 * the logical outgoing interface of the incomplete ire 27558 * we added in ire_forward could have disappeared, 27559 * causing the incomplete ire to also have 27560 * dissapeared. So we need to retreive the 27561 * proper ipif for the ire before looking 27562 * in ctable; do the ctablelookup based on ire_ipif_seqid 27563 */ 27564 ill = q->q_ptr; 27565 27566 /* Get the outgoing ipif */ 27567 mutex_enter(&ill->ill_lock); 27568 if (ill->ill_state_flags & ILL_CONDEMNED) { 27569 mutex_exit(&ill->ill_lock); 27570 freemsg(mp); /* fake ire */ 27571 freeb(mp1); /* dl_unitdata response */ 27572 return; 27573 } 27574 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27575 27576 if (ipif == NULL) { 27577 mutex_exit(&ill->ill_lock); 27578 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27579 freemsg(mp); 27580 freeb(mp1); 27581 return; 27582 } 27583 ipif_refhold_locked(ipif); 27584 mutex_exit(&ill->ill_lock); 27585 ire = ire_ctable_lookup(fake_ire->ire_addr, 27586 fake_ire->ire_gateway_addr, IRE_CACHE, 27587 ipif, fake_ire->ire_zoneid, NULL, 27588 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst); 27589 ipif_refrele(ipif); 27590 if (ire == NULL) { 27591 /* 27592 * no ire was found; check if there is an nce 27593 * for this lookup; if it has no ire's pointing at it 27594 * cleanup. 27595 */ 27596 if ((nce = ndp_lookup_v4(ill, 27597 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27598 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27599 B_FALSE)) != NULL) { 27600 /* 27601 * cleanup: 27602 * We check for refcnt 2 (one for the nce 27603 * hash list + 1 for the ref taken by 27604 * ndp_lookup_v4) to check that there are 27605 * no ire's pointing at the nce. 27606 */ 27607 if (nce->nce_refcnt == 2) 27608 ndp_delete(nce); 27609 NCE_REFRELE(nce); 27610 } 27611 freeb(mp1); /* dl_unitdata response */ 27612 freemsg(mp); /* fake ire */ 27613 return; 27614 } 27615 nce = ire->ire_nce; 27616 DTRACE_PROBE2(ire__arpresolve__type, 27617 ire_t *, ire, nce_t *, nce); 27618 ASSERT(nce->nce_state != ND_INITIAL); 27619 mutex_enter(&nce->nce_lock); 27620 nce->nce_last = TICK_TO_MSEC(lbolt64); 27621 if (nce->nce_state == ND_REACHABLE) { 27622 /* 27623 * Someone resolved this before us; 27624 * our response is not needed any more. 27625 */ 27626 mutex_exit(&nce->nce_lock); 27627 freeb(mp1); /* dl_unitdata response */ 27628 } else { 27629 ASSERT(nce->nce_res_mp == NULL); 27630 nce->nce_res_mp = mp1; 27631 nce->nce_state = ND_REACHABLE; 27632 mutex_exit(&nce->nce_lock); 27633 nce_fastpath(nce); 27634 } 27635 /* 27636 * The cached nce_t has been updated to be reachable; 27637 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27638 */ 27639 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27640 freemsg(mp); 27641 /* 27642 * send out queued packets. 27643 */ 27644 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27645 27646 IRE_REFRELE(ire); 27647 return; 27648 } 27649 default: 27650 break; 27651 } 27652 if (q->q_next) { 27653 putnext(q, mp); 27654 } else 27655 freemsg(mp); 27656 return; 27657 27658 protonak: 27659 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27660 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27661 qreply(q, mp); 27662 } 27663 27664 /* 27665 * Process IP options in an outbound packet. Modify the destination if there 27666 * is a source route option. 27667 * Returns non-zero if something fails in which case an ICMP error has been 27668 * sent and mp freed. 27669 */ 27670 static int 27671 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27672 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27673 { 27674 ipoptp_t opts; 27675 uchar_t *opt; 27676 uint8_t optval; 27677 uint8_t optlen; 27678 ipaddr_t dst; 27679 intptr_t code = 0; 27680 mblk_t *mp; 27681 ire_t *ire = NULL; 27682 27683 ip2dbg(("ip_wput_options\n")); 27684 mp = ipsec_mp; 27685 if (mctl_present) { 27686 mp = ipsec_mp->b_cont; 27687 } 27688 27689 dst = ipha->ipha_dst; 27690 for (optval = ipoptp_first(&opts, ipha); 27691 optval != IPOPT_EOL; 27692 optval = ipoptp_next(&opts)) { 27693 opt = opts.ipoptp_cur; 27694 optlen = opts.ipoptp_len; 27695 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27696 optval, optlen)); 27697 switch (optval) { 27698 uint32_t off; 27699 case IPOPT_SSRR: 27700 case IPOPT_LSRR: 27701 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27702 ip1dbg(( 27703 "ip_wput_options: bad option offset\n")); 27704 code = (char *)&opt[IPOPT_OLEN] - 27705 (char *)ipha; 27706 goto param_prob; 27707 } 27708 off = opt[IPOPT_OFFSET]; 27709 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27710 ntohl(dst))); 27711 /* 27712 * For strict: verify that dst is directly 27713 * reachable. 27714 */ 27715 if (optval == IPOPT_SSRR) { 27716 ire = ire_ftable_lookup(dst, 0, 0, 27717 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27718 MBLK_GETLABEL(mp), 27719 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 27720 if (ire == NULL) { 27721 ip1dbg(("ip_wput_options: SSRR not" 27722 " directly reachable: 0x%x\n", 27723 ntohl(dst))); 27724 goto bad_src_route; 27725 } 27726 ire_refrele(ire); 27727 } 27728 break; 27729 case IPOPT_RR: 27730 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27731 ip1dbg(( 27732 "ip_wput_options: bad option offset\n")); 27733 code = (char *)&opt[IPOPT_OLEN] - 27734 (char *)ipha; 27735 goto param_prob; 27736 } 27737 break; 27738 case IPOPT_TS: 27739 /* 27740 * Verify that length >=5 and that there is either 27741 * room for another timestamp or that the overflow 27742 * counter is not maxed out. 27743 */ 27744 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27745 if (optlen < IPOPT_MINLEN_IT) { 27746 goto param_prob; 27747 } 27748 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27749 ip1dbg(( 27750 "ip_wput_options: bad option offset\n")); 27751 code = (char *)&opt[IPOPT_OFFSET] - 27752 (char *)ipha; 27753 goto param_prob; 27754 } 27755 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27756 case IPOPT_TS_TSONLY: 27757 off = IPOPT_TS_TIMELEN; 27758 break; 27759 case IPOPT_TS_TSANDADDR: 27760 case IPOPT_TS_PRESPEC: 27761 case IPOPT_TS_PRESPEC_RFC791: 27762 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27763 break; 27764 default: 27765 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27766 (char *)ipha; 27767 goto param_prob; 27768 } 27769 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27770 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27771 /* 27772 * No room and the overflow counter is 15 27773 * already. 27774 */ 27775 goto param_prob; 27776 } 27777 break; 27778 } 27779 } 27780 27781 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27782 return (0); 27783 27784 ip1dbg(("ip_wput_options: error processing IP options.")); 27785 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27786 27787 param_prob: 27788 /* 27789 * Since ip_wput() isn't close to finished, we fill 27790 * in enough of the header for credible error reporting. 27791 */ 27792 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27793 /* Failed */ 27794 freemsg(ipsec_mp); 27795 return (-1); 27796 } 27797 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 27798 return (-1); 27799 27800 bad_src_route: 27801 /* 27802 * Since ip_wput() isn't close to finished, we fill 27803 * in enough of the header for credible error reporting. 27804 */ 27805 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 27806 /* Failed */ 27807 freemsg(ipsec_mp); 27808 return (-1); 27809 } 27810 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 27811 return (-1); 27812 } 27813 27814 /* 27815 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27816 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27817 * thru /etc/system. 27818 */ 27819 #define CONN_MAXDRAINCNT 64 27820 27821 static void 27822 conn_drain_init(ip_stack_t *ipst) 27823 { 27824 int i; 27825 27826 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 27827 27828 if ((ipst->ips_conn_drain_list_cnt == 0) || 27829 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27830 /* 27831 * Default value of the number of drainers is the 27832 * number of cpus, subject to maximum of 8 drainers. 27833 */ 27834 if (boot_max_ncpus != -1) 27835 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27836 else 27837 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 27838 } 27839 27840 ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt * 27841 sizeof (idl_t), KM_SLEEP); 27842 27843 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 27844 mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL, 27845 MUTEX_DEFAULT, NULL); 27846 } 27847 } 27848 27849 static void 27850 conn_drain_fini(ip_stack_t *ipst) 27851 { 27852 int i; 27853 27854 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) 27855 mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock); 27856 kmem_free(ipst->ips_conn_drain_list, 27857 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 27858 ipst->ips_conn_drain_list = NULL; 27859 } 27860 27861 /* 27862 * Note: For an overview of how flowcontrol is handled in IP please see the 27863 * IP Flowcontrol notes at the top of this file. 27864 * 27865 * Flow control has blocked us from proceeding. Insert the given conn in one 27866 * of the conn drain lists. These conn wq's will be qenabled later on when 27867 * STREAMS flow control does a backenable. conn_walk_drain will enable 27868 * the first conn in each of these drain lists. Each of these qenabled conns 27869 * in turn enables the next in the list, after it runs, or when it closes, 27870 * thus sustaining the drain process. 27871 * 27872 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27873 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27874 * running at any time, on a given conn, since there can be only 1 service proc 27875 * running on a queue at any time. 27876 */ 27877 void 27878 conn_drain_insert(conn_t *connp) 27879 { 27880 idl_t *idl; 27881 uint_t index; 27882 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 27883 27884 mutex_enter(&connp->conn_lock); 27885 if (connp->conn_state_flags & CONN_CLOSING) { 27886 /* 27887 * The conn is closing as a result of which CONN_CLOSING 27888 * is set. Return. 27889 */ 27890 mutex_exit(&connp->conn_lock); 27891 return; 27892 } else if (connp->conn_idl == NULL) { 27893 /* 27894 * Assign the next drain list round robin. We dont' use 27895 * a lock, and thus it may not be strictly round robin. 27896 * Atomicity of load/stores is enough to make sure that 27897 * conn_drain_list_index is always within bounds. 27898 */ 27899 index = ipst->ips_conn_drain_list_index; 27900 ASSERT(index < ipst->ips_conn_drain_list_cnt); 27901 connp->conn_idl = &ipst->ips_conn_drain_list[index]; 27902 index++; 27903 if (index == ipst->ips_conn_drain_list_cnt) 27904 index = 0; 27905 ipst->ips_conn_drain_list_index = index; 27906 } 27907 mutex_exit(&connp->conn_lock); 27908 27909 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27910 if ((connp->conn_drain_prev != NULL) || 27911 (connp->conn_state_flags & CONN_CLOSING)) { 27912 /* 27913 * The conn is already in the drain list, OR 27914 * the conn is closing. We need to check again for 27915 * the closing case again since close can happen 27916 * after we drop the conn_lock, and before we 27917 * acquire the CONN_DRAIN_LIST_LOCK. 27918 */ 27919 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27920 return; 27921 } else { 27922 idl = connp->conn_idl; 27923 } 27924 27925 /* 27926 * The conn is not in the drain list. Insert it at the 27927 * tail of the drain list. The drain list is circular 27928 * and doubly linked. idl_conn points to the 1st element 27929 * in the list. 27930 */ 27931 if (idl->idl_conn == NULL) { 27932 idl->idl_conn = connp; 27933 connp->conn_drain_next = connp; 27934 connp->conn_drain_prev = connp; 27935 } else { 27936 conn_t *head = idl->idl_conn; 27937 27938 connp->conn_drain_next = head; 27939 connp->conn_drain_prev = head->conn_drain_prev; 27940 head->conn_drain_prev->conn_drain_next = connp; 27941 head->conn_drain_prev = connp; 27942 } 27943 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27944 } 27945 27946 /* 27947 * This conn is closing, and we are called from ip_close. OR 27948 * This conn has been serviced by ip_wsrv, and we need to do the tail 27949 * processing. 27950 * If this conn is part of the drain list, we may need to sustain the drain 27951 * process by qenabling the next conn in the drain list. We may also need to 27952 * remove this conn from the list, if it is done. 27953 */ 27954 static void 27955 conn_drain_tail(conn_t *connp, boolean_t closing) 27956 { 27957 idl_t *idl; 27958 27959 /* 27960 * connp->conn_idl is stable at this point, and no lock is needed 27961 * to check it. If we are called from ip_close, close has already 27962 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27963 * called us only because conn_idl is non-null. If we are called thru 27964 * service, conn_idl could be null, but it cannot change because 27965 * service is single-threaded per queue, and there cannot be another 27966 * instance of service trying to call conn_drain_insert on this conn 27967 * now. 27968 */ 27969 ASSERT(!closing || (connp->conn_idl != NULL)); 27970 27971 /* 27972 * If connp->conn_idl is null, the conn has not been inserted into any 27973 * drain list even once since creation of the conn. Just return. 27974 */ 27975 if (connp->conn_idl == NULL) 27976 return; 27977 27978 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27979 27980 if (connp->conn_drain_prev == NULL) { 27981 /* This conn is currently not in the drain list. */ 27982 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27983 return; 27984 } 27985 idl = connp->conn_idl; 27986 if (idl->idl_conn_draining == connp) { 27987 /* 27988 * This conn is the current drainer. If this is the last conn 27989 * in the drain list, we need to do more checks, in the 'if' 27990 * below. Otherwwise we need to just qenable the next conn, 27991 * to sustain the draining, and is handled in the 'else' 27992 * below. 27993 */ 27994 if (connp->conn_drain_next == idl->idl_conn) { 27995 /* 27996 * This conn is the last in this list. This round 27997 * of draining is complete. If idl_repeat is set, 27998 * it means another flow enabling has happened from 27999 * the driver/streams and we need to another round 28000 * of draining. 28001 * If there are more than 2 conns in the drain list, 28002 * do a left rotate by 1, so that all conns except the 28003 * conn at the head move towards the head by 1, and the 28004 * the conn at the head goes to the tail. This attempts 28005 * a more even share for all queues that are being 28006 * drained. 28007 */ 28008 if ((connp->conn_drain_next != connp) && 28009 (idl->idl_conn->conn_drain_next != connp)) { 28010 idl->idl_conn = idl->idl_conn->conn_drain_next; 28011 } 28012 if (idl->idl_repeat) { 28013 qenable(idl->idl_conn->conn_wq); 28014 idl->idl_conn_draining = idl->idl_conn; 28015 idl->idl_repeat = 0; 28016 } else { 28017 idl->idl_conn_draining = NULL; 28018 } 28019 } else { 28020 /* 28021 * If the next queue that we are now qenable'ing, 28022 * is closing, it will remove itself from this list 28023 * and qenable the subsequent queue in ip_close(). 28024 * Serialization is acheived thru idl_lock. 28025 */ 28026 qenable(connp->conn_drain_next->conn_wq); 28027 idl->idl_conn_draining = connp->conn_drain_next; 28028 } 28029 } 28030 if (!connp->conn_did_putbq || closing) { 28031 /* 28032 * Remove ourself from the drain list, if we did not do 28033 * a putbq, or if the conn is closing. 28034 * Note: It is possible that q->q_first is non-null. It means 28035 * that these messages landed after we did a enableok() in 28036 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28037 * service them. 28038 */ 28039 if (connp->conn_drain_next == connp) { 28040 /* Singleton in the list */ 28041 ASSERT(connp->conn_drain_prev == connp); 28042 idl->idl_conn = NULL; 28043 idl->idl_conn_draining = NULL; 28044 } else { 28045 connp->conn_drain_prev->conn_drain_next = 28046 connp->conn_drain_next; 28047 connp->conn_drain_next->conn_drain_prev = 28048 connp->conn_drain_prev; 28049 if (idl->idl_conn == connp) 28050 idl->idl_conn = connp->conn_drain_next; 28051 ASSERT(idl->idl_conn_draining != connp); 28052 28053 } 28054 connp->conn_drain_next = NULL; 28055 connp->conn_drain_prev = NULL; 28056 } 28057 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28058 } 28059 28060 /* 28061 * Write service routine. Shared perimeter entry point. 28062 * ip_wsrv can be called in any of the following ways. 28063 * 1. The device queue's messages has fallen below the low water mark 28064 * and STREAMS has backenabled the ill_wq. We walk thru all the 28065 * the drain lists and backenable the first conn in each list. 28066 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28067 * qenabled non-tcp upper layers. We start dequeing messages and call 28068 * ip_wput for each message. 28069 */ 28070 28071 void 28072 ip_wsrv(queue_t *q) 28073 { 28074 conn_t *connp; 28075 ill_t *ill; 28076 mblk_t *mp; 28077 28078 if (q->q_next) { 28079 ill = (ill_t *)q->q_ptr; 28080 if (ill->ill_state_flags == 0) { 28081 /* 28082 * The device flow control has opened up. 28083 * Walk through conn drain lists and qenable the 28084 * first conn in each list. This makes sense only 28085 * if the stream is fully plumbed and setup. 28086 * Hence the if check above. 28087 */ 28088 ip1dbg(("ip_wsrv: walking\n")); 28089 conn_walk_drain(ill->ill_ipst); 28090 } 28091 return; 28092 } 28093 28094 connp = Q_TO_CONN(q); 28095 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28096 28097 /* 28098 * 1. Set conn_draining flag to signal that service is active. 28099 * 28100 * 2. ip_output determines whether it has been called from service, 28101 * based on the last parameter. If it is IP_WSRV it concludes it 28102 * has been called from service. 28103 * 28104 * 3. Message ordering is preserved by the following logic. 28105 * i. A directly called ip_output (i.e. not thru service) will queue 28106 * the message at the tail, if conn_draining is set (i.e. service 28107 * is running) or if q->q_first is non-null. 28108 * 28109 * ii. If ip_output is called from service, and if ip_output cannot 28110 * putnext due to flow control, it does a putbq. 28111 * 28112 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28113 * (causing an infinite loop). 28114 */ 28115 ASSERT(!connp->conn_did_putbq); 28116 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28117 connp->conn_draining = 1; 28118 noenable(q); 28119 while ((mp = getq(q)) != NULL) { 28120 ASSERT(CONN_Q(q)); 28121 28122 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28123 if (connp->conn_did_putbq) { 28124 /* ip_wput did a putbq */ 28125 break; 28126 } 28127 } 28128 /* 28129 * At this point, a thread coming down from top, calling 28130 * ip_wput, may end up queueing the message. We have not yet 28131 * enabled the queue, so ip_wsrv won't be called again. 28132 * To avoid this race, check q->q_first again (in the loop) 28133 * If the other thread queued the message before we call 28134 * enableok(), we will catch it in the q->q_first check. 28135 * If the other thread queues the message after we call 28136 * enableok(), ip_wsrv will be called again by STREAMS. 28137 */ 28138 connp->conn_draining = 0; 28139 enableok(q); 28140 } 28141 28142 /* Enable the next conn for draining */ 28143 conn_drain_tail(connp, B_FALSE); 28144 28145 connp->conn_did_putbq = 0; 28146 } 28147 28148 /* 28149 * Walk the list of all conn's calling the function provided with the 28150 * specified argument for each. Note that this only walks conn's that 28151 * have been bound. 28152 * Applies to both IPv4 and IPv6. 28153 */ 28154 static void 28155 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst) 28156 { 28157 conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout, 28158 ipst->ips_ipcl_udp_fanout_size, 28159 func, arg, zoneid); 28160 conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout, 28161 ipst->ips_ipcl_conn_fanout_size, 28162 func, arg, zoneid); 28163 conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout, 28164 ipst->ips_ipcl_bind_fanout_size, 28165 func, arg, zoneid); 28166 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout, 28167 IPPROTO_MAX, func, arg, zoneid); 28168 conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6, 28169 IPPROTO_MAX, func, arg, zoneid); 28170 } 28171 28172 /* 28173 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28174 * of conns that need to be drained, check if drain is already in progress. 28175 * If so set the idl_repeat bit, indicating that the last conn in the list 28176 * needs to reinitiate the drain once again, for the list. If drain is not 28177 * in progress for the list, initiate the draining, by qenabling the 1st 28178 * conn in the list. The drain is self-sustaining, each qenabled conn will 28179 * in turn qenable the next conn, when it is done/blocked/closing. 28180 */ 28181 static void 28182 conn_walk_drain(ip_stack_t *ipst) 28183 { 28184 int i; 28185 idl_t *idl; 28186 28187 IP_STAT(ipst, ip_conn_walk_drain); 28188 28189 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28190 idl = &ipst->ips_conn_drain_list[i]; 28191 mutex_enter(&idl->idl_lock); 28192 if (idl->idl_conn == NULL) { 28193 mutex_exit(&idl->idl_lock); 28194 continue; 28195 } 28196 /* 28197 * If this list is not being drained currently by 28198 * an ip_wsrv thread, start the process. 28199 */ 28200 if (idl->idl_conn_draining == NULL) { 28201 ASSERT(idl->idl_repeat == 0); 28202 qenable(idl->idl_conn->conn_wq); 28203 idl->idl_conn_draining = idl->idl_conn; 28204 } else { 28205 idl->idl_repeat = 1; 28206 } 28207 mutex_exit(&idl->idl_lock); 28208 } 28209 } 28210 28211 /* 28212 * Walk an conn hash table of `count' buckets, calling func for each entry. 28213 */ 28214 static void 28215 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28216 zoneid_t zoneid) 28217 { 28218 conn_t *connp; 28219 28220 while (count-- > 0) { 28221 mutex_enter(&connfp->connf_lock); 28222 for (connp = connfp->connf_head; connp != NULL; 28223 connp = connp->conn_next) { 28224 if (zoneid == GLOBAL_ZONEID || 28225 zoneid == connp->conn_zoneid) { 28226 CONN_INC_REF(connp); 28227 mutex_exit(&connfp->connf_lock); 28228 (*func)(connp, arg); 28229 mutex_enter(&connfp->connf_lock); 28230 CONN_DEC_REF(connp); 28231 } 28232 } 28233 mutex_exit(&connfp->connf_lock); 28234 connfp++; 28235 } 28236 } 28237 28238 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28239 static void 28240 conn_report1(conn_t *connp, void *mp) 28241 { 28242 char buf1[INET6_ADDRSTRLEN]; 28243 char buf2[INET6_ADDRSTRLEN]; 28244 uint_t print_len, buf_len; 28245 28246 ASSERT(connp != NULL); 28247 28248 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28249 if (buf_len <= 0) 28250 return; 28251 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)); 28252 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)); 28253 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28254 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28255 "%5d %s/%05d %s/%05d\n", 28256 (void *)connp, (void *)CONNP_TO_RQ(connp), 28257 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28258 buf1, connp->conn_lport, 28259 buf2, connp->conn_fport); 28260 if (print_len < buf_len) { 28261 ((mblk_t *)mp)->b_wptr += print_len; 28262 } else { 28263 ((mblk_t *)mp)->b_wptr += buf_len; 28264 } 28265 } 28266 28267 /* 28268 * Named Dispatch routine to produce a formatted report on all conns 28269 * that are listed in one of the fanout tables. 28270 * This report is accessed by using the ndd utility to "get" ND variable 28271 * "ip_conn_status". 28272 */ 28273 /* ARGSUSED */ 28274 static int 28275 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28276 { 28277 conn_t *connp = Q_TO_CONN(q); 28278 28279 (void) mi_mpprintf(mp, 28280 "CONN " MI_COL_HDRPAD_STR 28281 "rfq " MI_COL_HDRPAD_STR 28282 "stq " MI_COL_HDRPAD_STR 28283 " zone local remote"); 28284 28285 /* 28286 * Because of the ndd constraint, at most we can have 64K buffer 28287 * to put in all conn info. So to be more efficient, just 28288 * allocate a 64K buffer here, assuming we need that large buffer. 28289 * This should be OK as only privileged processes can do ndd /dev/ip. 28290 */ 28291 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28292 /* The following may work even if we cannot get a large buf. */ 28293 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28294 return (0); 28295 } 28296 28297 conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid, 28298 connp->conn_netstack->netstack_ip); 28299 return (0); 28300 } 28301 28302 /* 28303 * Determine if the ill and multicast aspects of that packets 28304 * "matches" the conn. 28305 */ 28306 boolean_t 28307 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28308 zoneid_t zoneid) 28309 { 28310 ill_t *in_ill; 28311 boolean_t found; 28312 ipif_t *ipif; 28313 ire_t *ire; 28314 ipaddr_t dst, src; 28315 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28316 28317 dst = ipha->ipha_dst; 28318 src = ipha->ipha_src; 28319 28320 /* 28321 * conn_incoming_ill is set by IP_BOUND_IF which limits 28322 * unicast, broadcast and multicast reception to 28323 * conn_incoming_ill. conn_wantpacket itself is called 28324 * only for BROADCAST and multicast. 28325 * 28326 * 1) ip_rput supresses duplicate broadcasts if the ill 28327 * is part of a group. Hence, we should be receiving 28328 * just one copy of broadcast for the whole group. 28329 * Thus, if it is part of the group the packet could 28330 * come on any ill of the group and hence we need a 28331 * match on the group. Otherwise, match on ill should 28332 * be sufficient. 28333 * 28334 * 2) ip_rput does not suppress duplicate multicast packets. 28335 * If there are two interfaces in a ill group and we have 28336 * 2 applications (conns) joined a multicast group G on 28337 * both the interfaces, ilm_lookup_ill filter in ip_rput 28338 * will give us two packets because we join G on both the 28339 * interfaces rather than nominating just one interface 28340 * for receiving multicast like broadcast above. So, 28341 * we have to call ilg_lookup_ill to filter out duplicate 28342 * copies, if ill is part of a group. 28343 */ 28344 in_ill = connp->conn_incoming_ill; 28345 if (in_ill != NULL) { 28346 if (in_ill->ill_group == NULL) { 28347 if (in_ill != ill) 28348 return (B_FALSE); 28349 } else if (in_ill->ill_group != ill->ill_group) { 28350 return (B_FALSE); 28351 } 28352 } 28353 28354 if (!CLASSD(dst)) { 28355 if (IPCL_ZONE_MATCH(connp, zoneid)) 28356 return (B_TRUE); 28357 /* 28358 * The conn is in a different zone; we need to check that this 28359 * broadcast address is configured in the application's zone and 28360 * on one ill in the group. 28361 */ 28362 ipif = ipif_get_next_ipif(NULL, ill); 28363 if (ipif == NULL) 28364 return (B_FALSE); 28365 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28366 connp->conn_zoneid, NULL, 28367 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst); 28368 ipif_refrele(ipif); 28369 if (ire != NULL) { 28370 ire_refrele(ire); 28371 return (B_TRUE); 28372 } else { 28373 return (B_FALSE); 28374 } 28375 } 28376 28377 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28378 connp->conn_zoneid == zoneid) { 28379 /* 28380 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28381 * disabled, therefore we don't dispatch the multicast packet to 28382 * the sending zone. 28383 */ 28384 return (B_FALSE); 28385 } 28386 28387 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28388 /* 28389 * Multicast packet on the loopback interface: we only match 28390 * conns who joined the group in the specified zone. 28391 */ 28392 return (B_FALSE); 28393 } 28394 28395 if (connp->conn_multi_router) { 28396 /* multicast packet and multicast router socket: send up */ 28397 return (B_TRUE); 28398 } 28399 28400 mutex_enter(&connp->conn_lock); 28401 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28402 mutex_exit(&connp->conn_lock); 28403 return (found); 28404 } 28405 28406 /* 28407 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28408 */ 28409 /* ARGSUSED */ 28410 static void 28411 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28412 { 28413 ill_t *ill = (ill_t *)q->q_ptr; 28414 mblk_t *mp1, *mp2; 28415 ipif_t *ipif; 28416 int err = 0; 28417 conn_t *connp = NULL; 28418 ipsq_t *ipsq; 28419 arc_t *arc; 28420 28421 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28422 28423 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28424 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28425 28426 ASSERT(IAM_WRITER_ILL(ill)); 28427 mp2 = mp->b_cont; 28428 mp->b_cont = NULL; 28429 28430 /* 28431 * We have now received the arp bringup completion message 28432 * from ARP. Mark the arp bringup as done. Also if the arp 28433 * stream has already started closing, send up the AR_ARP_CLOSING 28434 * ack now since ARP is waiting in close for this ack. 28435 */ 28436 mutex_enter(&ill->ill_lock); 28437 ill->ill_arp_bringup_pending = 0; 28438 if (ill->ill_arp_closing) { 28439 mutex_exit(&ill->ill_lock); 28440 /* Let's reuse the mp for sending the ack */ 28441 arc = (arc_t *)mp->b_rptr; 28442 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28443 arc->arc_cmd = AR_ARP_CLOSING; 28444 qreply(q, mp); 28445 } else { 28446 mutex_exit(&ill->ill_lock); 28447 freeb(mp); 28448 } 28449 28450 ipsq = ill->ill_phyint->phyint_ipsq; 28451 ipif = ipsq->ipsq_pending_ipif; 28452 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28453 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28454 if (mp1 == NULL) { 28455 /* bringup was aborted by the user */ 28456 freemsg(mp2); 28457 return; 28458 } 28459 28460 /* 28461 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 28462 * must have an associated conn_t. Otherwise, we're bringing this 28463 * interface back up as part of handling an asynchronous event (e.g., 28464 * physical address change). 28465 */ 28466 if (ipsq->ipsq_current_ioctl != 0) { 28467 ASSERT(connp != NULL); 28468 q = CONNP_TO_WQ(connp); 28469 } else { 28470 ASSERT(connp == NULL); 28471 q = ill->ill_rq; 28472 } 28473 28474 /* 28475 * If the DL_BIND_REQ fails, it is noted 28476 * in arc_name_offset. 28477 */ 28478 err = *((int *)mp2->b_rptr); 28479 if (err == 0) { 28480 if (ipif->ipif_isv6) { 28481 if ((err = ipif_up_done_v6(ipif)) != 0) 28482 ip0dbg(("ip_arp_done: init failed\n")); 28483 } else { 28484 if ((err = ipif_up_done(ipif)) != 0) 28485 ip0dbg(("ip_arp_done: init failed\n")); 28486 } 28487 } else { 28488 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28489 } 28490 28491 freemsg(mp2); 28492 28493 if ((err == 0) && (ill->ill_up_ipifs)) { 28494 err = ill_up_ipifs(ill, q, mp1); 28495 if (err == EINPROGRESS) 28496 return; 28497 } 28498 28499 if (ill->ill_up_ipifs) 28500 ill_group_cleanup(ill); 28501 28502 /* 28503 * The operation must complete without EINPROGRESS since 28504 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 28505 * Otherwise, the operation will be stuck forever in the ipsq. 28506 */ 28507 ASSERT(err != EINPROGRESS); 28508 if (ipsq->ipsq_current_ioctl != 0) 28509 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28510 else 28511 ipsq_current_finish(ipsq); 28512 } 28513 28514 /* Allocate the private structure */ 28515 static int 28516 ip_priv_alloc(void **bufp) 28517 { 28518 void *buf; 28519 28520 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28521 return (ENOMEM); 28522 28523 *bufp = buf; 28524 return (0); 28525 } 28526 28527 /* Function to delete the private structure */ 28528 void 28529 ip_priv_free(void *buf) 28530 { 28531 ASSERT(buf != NULL); 28532 kmem_free(buf, sizeof (ip_priv_t)); 28533 } 28534 28535 /* 28536 * The entry point for IPPF processing. 28537 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28538 * routine just returns. 28539 * 28540 * When called, ip_process generates an ipp_packet_t structure 28541 * which holds the state information for this packet and invokes the 28542 * the classifier (via ipp_packet_process). The classification, depending on 28543 * configured filters, results in a list of actions for this packet. Invoking 28544 * an action may cause the packet to be dropped, in which case the resulting 28545 * mblk (*mpp) is NULL. proc indicates the callout position for 28546 * this packet and ill_index is the interface this packet on or will leave 28547 * on (inbound and outbound resp.). 28548 */ 28549 void 28550 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28551 { 28552 mblk_t *mp; 28553 ip_priv_t *priv; 28554 ipp_action_id_t aid; 28555 int rc = 0; 28556 ipp_packet_t *pp; 28557 #define IP_CLASS "ip" 28558 28559 /* If the classifier is not loaded, return */ 28560 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28561 return; 28562 } 28563 28564 mp = *mpp; 28565 ASSERT(mp != NULL); 28566 28567 /* Allocate the packet structure */ 28568 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28569 if (rc != 0) { 28570 *mpp = NULL; 28571 freemsg(mp); 28572 return; 28573 } 28574 28575 /* Allocate the private structure */ 28576 rc = ip_priv_alloc((void **)&priv); 28577 if (rc != 0) { 28578 *mpp = NULL; 28579 freemsg(mp); 28580 ipp_packet_free(pp); 28581 return; 28582 } 28583 priv->proc = proc; 28584 priv->ill_index = ill_index; 28585 ipp_packet_set_private(pp, priv, ip_priv_free); 28586 ipp_packet_set_data(pp, mp); 28587 28588 /* Invoke the classifier */ 28589 rc = ipp_packet_process(&pp); 28590 if (pp != NULL) { 28591 mp = ipp_packet_get_data(pp); 28592 ipp_packet_free(pp); 28593 if (rc != 0) { 28594 freemsg(mp); 28595 *mpp = NULL; 28596 } 28597 } else { 28598 *mpp = NULL; 28599 } 28600 #undef IP_CLASS 28601 } 28602 28603 /* 28604 * Propagate a multicast group membership operation (add/drop) on 28605 * all the interfaces crossed by the related multirt routes. 28606 * The call is considered successful if the operation succeeds 28607 * on at least one interface. 28608 */ 28609 static int 28610 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28611 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28612 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28613 mblk_t *first_mp) 28614 { 28615 ire_t *ire_gw; 28616 irb_t *irb; 28617 int error = 0; 28618 opt_restart_t *or; 28619 ip_stack_t *ipst = ire->ire_ipst; 28620 28621 irb = ire->ire_bucket; 28622 ASSERT(irb != NULL); 28623 28624 ASSERT(DB_TYPE(first_mp) == M_CTL); 28625 28626 or = (opt_restart_t *)first_mp->b_rptr; 28627 IRB_REFHOLD(irb); 28628 for (; ire != NULL; ire = ire->ire_next) { 28629 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28630 continue; 28631 if (ire->ire_addr != group) 28632 continue; 28633 28634 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28635 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28636 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28637 /* No resolver exists for the gateway; skip this ire. */ 28638 if (ire_gw == NULL) 28639 continue; 28640 28641 /* 28642 * This function can return EINPROGRESS. If so the operation 28643 * will be restarted from ip_restart_optmgmt which will 28644 * call ip_opt_set and option processing will restart for 28645 * this option. So we may end up calling 'fn' more than once. 28646 * This requires that 'fn' is idempotent except for the 28647 * return value. The operation is considered a success if 28648 * it succeeds at least once on any one interface. 28649 */ 28650 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28651 NULL, fmode, src, first_mp); 28652 if (error == 0) 28653 or->or_private = CGTP_MCAST_SUCCESS; 28654 28655 if (ip_debug > 0) { 28656 ulong_t off; 28657 char *ksym; 28658 ksym = kobj_getsymname((uintptr_t)fn, &off); 28659 ip2dbg(("ip_multirt_apply_membership: " 28660 "called %s, multirt group 0x%08x via itf 0x%08x, " 28661 "error %d [success %u]\n", 28662 ksym ? ksym : "?", 28663 ntohl(group), ntohl(ire_gw->ire_src_addr), 28664 error, or->or_private)); 28665 } 28666 28667 ire_refrele(ire_gw); 28668 if (error == EINPROGRESS) { 28669 IRB_REFRELE(irb); 28670 return (error); 28671 } 28672 } 28673 IRB_REFRELE(irb); 28674 /* 28675 * Consider the call as successful if we succeeded on at least 28676 * one interface. Otherwise, return the last encountered error. 28677 */ 28678 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28679 } 28680 28681 28682 /* 28683 * Issue a warning regarding a route crossing an interface with an 28684 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28685 * amount of time is logged. 28686 */ 28687 static void 28688 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28689 { 28690 hrtime_t current = gethrtime(); 28691 char buf[INET_ADDRSTRLEN]; 28692 ip_stack_t *ipst = ire->ire_ipst; 28693 28694 /* Convert interval in ms to hrtime in ns */ 28695 if (ipst->ips_multirt_bad_mtu_last_time + 28696 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 28697 current) { 28698 cmn_err(CE_WARN, "ip: ignoring multiroute " 28699 "to %s, incorrect MTU %u (expected %u)\n", 28700 ip_dot_addr(ire->ire_addr, buf), 28701 ire->ire_max_frag, max_frag); 28702 28703 ipst->ips_multirt_bad_mtu_last_time = current; 28704 } 28705 } 28706 28707 28708 /* 28709 * Get the CGTP (multirouting) filtering status. 28710 * If 0, the CGTP hooks are transparent. 28711 */ 28712 /* ARGSUSED */ 28713 static int 28714 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28715 { 28716 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28717 28718 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28719 return (0); 28720 } 28721 28722 28723 /* 28724 * Set the CGTP (multirouting) filtering status. 28725 * If the status is changed from active to transparent 28726 * or from transparent to active, forward the new status 28727 * to the filtering module (if loaded). 28728 */ 28729 /* ARGSUSED */ 28730 static int 28731 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28732 cred_t *ioc_cr) 28733 { 28734 long new_value; 28735 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28736 ip_stack_t *ipst = CONNQ_TO_IPST(q); 28737 28738 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 28739 return (EPERM); 28740 28741 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28742 new_value < 0 || new_value > 1) { 28743 return (EINVAL); 28744 } 28745 28746 if ((!*ip_cgtp_filter_value) && new_value) { 28747 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28748 ipst->ips_ip_cgtp_filter_ops == NULL ? 28749 " (module not loaded)" : ""); 28750 } 28751 if (*ip_cgtp_filter_value && (!new_value)) { 28752 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28753 ipst->ips_ip_cgtp_filter_ops == NULL ? 28754 " (module not loaded)" : ""); 28755 } 28756 28757 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28758 int res; 28759 netstackid_t stackid; 28760 28761 stackid = ipst->ips_netstack->netstack_stackid; 28762 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 28763 new_value); 28764 if (res) 28765 return (res); 28766 } 28767 28768 *ip_cgtp_filter_value = (boolean_t)new_value; 28769 28770 return (0); 28771 } 28772 28773 28774 /* 28775 * Return the expected CGTP hooks version number. 28776 */ 28777 int 28778 ip_cgtp_filter_supported(void) 28779 { 28780 return (ip_cgtp_filter_rev); 28781 } 28782 28783 28784 /* 28785 * CGTP hooks can be registered by invoking this function. 28786 * Checks that the version number matches. 28787 */ 28788 int 28789 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 28790 { 28791 netstack_t *ns; 28792 ip_stack_t *ipst; 28793 28794 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28795 return (ENOTSUP); 28796 28797 ns = netstack_find_by_stackid(stackid); 28798 if (ns == NULL) 28799 return (EINVAL); 28800 ipst = ns->netstack_ip; 28801 ASSERT(ipst != NULL); 28802 28803 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 28804 netstack_rele(ns); 28805 return (EALREADY); 28806 } 28807 28808 ipst->ips_ip_cgtp_filter_ops = ops; 28809 netstack_rele(ns); 28810 return (0); 28811 } 28812 28813 /* 28814 * CGTP hooks can be unregistered by invoking this function. 28815 * Returns ENXIO if there was no registration. 28816 * Returns EBUSY if the ndd variable has not been turned off. 28817 */ 28818 int 28819 ip_cgtp_filter_unregister(netstackid_t stackid) 28820 { 28821 netstack_t *ns; 28822 ip_stack_t *ipst; 28823 28824 ns = netstack_find_by_stackid(stackid); 28825 if (ns == NULL) 28826 return (EINVAL); 28827 ipst = ns->netstack_ip; 28828 ASSERT(ipst != NULL); 28829 28830 if (ipst->ips_ip_cgtp_filter) { 28831 netstack_rele(ns); 28832 return (EBUSY); 28833 } 28834 28835 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 28836 netstack_rele(ns); 28837 return (ENXIO); 28838 } 28839 ipst->ips_ip_cgtp_filter_ops = NULL; 28840 netstack_rele(ns); 28841 return (0); 28842 } 28843 28844 /* 28845 * Check whether there is a CGTP filter registration. 28846 * Returns non-zero if there is a registration, otherwise returns zero. 28847 * Note: returns zero if bad stackid. 28848 */ 28849 int 28850 ip_cgtp_filter_is_registered(netstackid_t stackid) 28851 { 28852 netstack_t *ns; 28853 ip_stack_t *ipst; 28854 int ret; 28855 28856 ns = netstack_find_by_stackid(stackid); 28857 if (ns == NULL) 28858 return (0); 28859 ipst = ns->netstack_ip; 28860 ASSERT(ipst != NULL); 28861 28862 if (ipst->ips_ip_cgtp_filter_ops != NULL) 28863 ret = 1; 28864 else 28865 ret = 0; 28866 28867 netstack_rele(ns); 28868 return (ret); 28869 } 28870 28871 static squeue_func_t 28872 ip_squeue_switch(int val) 28873 { 28874 squeue_func_t rval = squeue_fill; 28875 28876 switch (val) { 28877 case IP_SQUEUE_ENTER_NODRAIN: 28878 rval = squeue_enter_nodrain; 28879 break; 28880 case IP_SQUEUE_ENTER: 28881 rval = squeue_enter; 28882 break; 28883 default: 28884 break; 28885 } 28886 return (rval); 28887 } 28888 28889 /* ARGSUSED */ 28890 static int 28891 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28892 caddr_t addr, cred_t *cr) 28893 { 28894 int *v = (int *)addr; 28895 long new_value; 28896 28897 if (secpolicy_net_config(cr, B_FALSE) != 0) 28898 return (EPERM); 28899 28900 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28901 return (EINVAL); 28902 28903 ip_input_proc = ip_squeue_switch(new_value); 28904 *v = new_value; 28905 return (0); 28906 } 28907 28908 /* ARGSUSED */ 28909 static int 28910 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28911 caddr_t addr, cred_t *cr) 28912 { 28913 int *v = (int *)addr; 28914 long new_value; 28915 28916 if (secpolicy_net_config(cr, B_FALSE) != 0) 28917 return (EPERM); 28918 28919 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28920 return (EINVAL); 28921 28922 *v = new_value; 28923 return (0); 28924 } 28925 28926 /* 28927 * Handle changes to ipmp_hook_emulation ndd variable. 28928 * Need to update phyint_hook_ifindex. 28929 * Also generate a nic plumb event should a new ifidex be assigned to a group. 28930 */ 28931 static void 28932 ipmp_hook_emulation_changed(ip_stack_t *ipst) 28933 { 28934 phyint_t *phyi; 28935 phyint_t *phyi_tmp; 28936 char *groupname; 28937 int namelen; 28938 ill_t *ill; 28939 boolean_t new_group; 28940 28941 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 28942 /* 28943 * Group indicies are stored in the phyint - a common structure 28944 * to both IPv4 and IPv6. 28945 */ 28946 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 28947 for (; phyi != NULL; 28948 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 28949 phyi, AVL_AFTER)) { 28950 /* Ignore the ones that do not have a group */ 28951 if (phyi->phyint_groupname_len == 0) 28952 continue; 28953 28954 /* 28955 * Look for other phyint in group. 28956 * Clear name/namelen so the lookup doesn't find ourselves. 28957 */ 28958 namelen = phyi->phyint_groupname_len; 28959 groupname = phyi->phyint_groupname; 28960 phyi->phyint_groupname_len = 0; 28961 phyi->phyint_groupname = NULL; 28962 28963 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 28964 /* Restore */ 28965 phyi->phyint_groupname_len = namelen; 28966 phyi->phyint_groupname = groupname; 28967 28968 new_group = B_FALSE; 28969 if (ipst->ips_ipmp_hook_emulation) { 28970 /* 28971 * If the group already exists and has already 28972 * been assigned a group ifindex, we use the existing 28973 * group_ifindex, otherwise we pick a new group_ifindex 28974 * here. 28975 */ 28976 if (phyi_tmp != NULL && 28977 phyi_tmp->phyint_group_ifindex != 0) { 28978 phyi->phyint_group_ifindex = 28979 phyi_tmp->phyint_group_ifindex; 28980 } else { 28981 /* XXX We need a recovery strategy here. */ 28982 if (!ip_assign_ifindex( 28983 &phyi->phyint_group_ifindex, ipst)) 28984 cmn_err(CE_PANIC, 28985 "ip_assign_ifindex() failed"); 28986 new_group = B_TRUE; 28987 } 28988 } else { 28989 phyi->phyint_group_ifindex = 0; 28990 } 28991 if (ipst->ips_ipmp_hook_emulation) 28992 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 28993 else 28994 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 28995 28996 /* 28997 * For IP Filter to find out the relationship between 28998 * names and interface indicies, we need to generate 28999 * a NE_PLUMB event when a new group can appear. 29000 * We always generate events when a new interface appears 29001 * (even when ipmp_hook_emulation is set) so there 29002 * is no need to generate NE_PLUMB events when 29003 * ipmp_hook_emulation is turned off. 29004 * And since it isn't critical for IP Filter to get 29005 * the NE_UNPLUMB events we skip those here. 29006 */ 29007 if (new_group) { 29008 /* 29009 * First phyint in group - generate group PLUMB event. 29010 * Since we are not running inside the ipsq we do 29011 * the dispatch immediately. 29012 */ 29013 if (phyi->phyint_illv4 != NULL) 29014 ill = phyi->phyint_illv4; 29015 else 29016 ill = phyi->phyint_illv6; 29017 29018 if (ill != NULL) { 29019 mutex_enter(&ill->ill_lock); 29020 ill_nic_info_plumb(ill, B_TRUE); 29021 ill_nic_info_dispatch(ill); 29022 mutex_exit(&ill->ill_lock); 29023 } 29024 } 29025 } 29026 rw_exit(&ipst->ips_ill_g_lock); 29027 } 29028 29029 /* ARGSUSED */ 29030 static int 29031 ipmp_hook_emulation_set(queue_t *q, mblk_t *mp, char *value, 29032 caddr_t addr, cred_t *cr) 29033 { 29034 int *v = (int *)addr; 29035 long new_value; 29036 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29037 29038 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29039 return (EINVAL); 29040 29041 if (*v != new_value) { 29042 *v = new_value; 29043 ipmp_hook_emulation_changed(ipst); 29044 } 29045 return (0); 29046 } 29047 29048 static void * 29049 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29050 { 29051 kstat_t *ksp; 29052 29053 ip_stat_t template = { 29054 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29055 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29056 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29057 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29058 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29059 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29060 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29061 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29062 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29063 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29064 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29065 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29066 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29067 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29068 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29069 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29070 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29071 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29072 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29073 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29074 { "ip_opt", KSTAT_DATA_UINT64 }, 29075 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29076 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29077 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29078 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29079 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29080 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29081 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29082 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29083 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29084 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29085 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29086 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29087 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29088 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29089 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29090 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29091 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29092 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29093 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29094 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29095 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29096 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29097 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29098 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29099 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29100 }; 29101 29102 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29103 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29104 KSTAT_FLAG_VIRTUAL, stackid); 29105 29106 if (ksp == NULL) 29107 return (NULL); 29108 29109 bcopy(&template, ip_statisticsp, sizeof (template)); 29110 ksp->ks_data = (void *)ip_statisticsp; 29111 ksp->ks_private = (void *)(uintptr_t)stackid; 29112 29113 kstat_install(ksp); 29114 return (ksp); 29115 } 29116 29117 static void 29118 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29119 { 29120 if (ksp != NULL) { 29121 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29122 kstat_delete_netstack(ksp, stackid); 29123 } 29124 } 29125 29126 static void * 29127 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29128 { 29129 kstat_t *ksp; 29130 29131 ip_named_kstat_t template = { 29132 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29133 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29134 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29135 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29136 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29137 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29138 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29139 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29140 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29141 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29142 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29143 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29144 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29145 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29146 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29147 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29148 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29149 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29150 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29151 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29152 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29153 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29154 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29155 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29156 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29157 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29158 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29159 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29160 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29161 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29162 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29163 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29164 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29165 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29166 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29167 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29168 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29169 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29170 }; 29171 29172 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29173 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29174 if (ksp == NULL || ksp->ks_data == NULL) 29175 return (NULL); 29176 29177 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29178 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29179 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29180 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29181 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29182 29183 template.netToMediaEntrySize.value.i32 = 29184 sizeof (mib2_ipNetToMediaEntry_t); 29185 29186 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29187 29188 bcopy(&template, ksp->ks_data, sizeof (template)); 29189 ksp->ks_update = ip_kstat_update; 29190 ksp->ks_private = (void *)(uintptr_t)stackid; 29191 29192 kstat_install(ksp); 29193 return (ksp); 29194 } 29195 29196 static void 29197 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29198 { 29199 if (ksp != NULL) { 29200 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29201 kstat_delete_netstack(ksp, stackid); 29202 } 29203 } 29204 29205 static int 29206 ip_kstat_update(kstat_t *kp, int rw) 29207 { 29208 ip_named_kstat_t *ipkp; 29209 mib2_ipIfStatsEntry_t ipmib; 29210 ill_walk_context_t ctx; 29211 ill_t *ill; 29212 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29213 netstack_t *ns; 29214 ip_stack_t *ipst; 29215 29216 if (kp == NULL || kp->ks_data == NULL) 29217 return (EIO); 29218 29219 if (rw == KSTAT_WRITE) 29220 return (EACCES); 29221 29222 ns = netstack_find_by_stackid(stackid); 29223 if (ns == NULL) 29224 return (-1); 29225 ipst = ns->netstack_ip; 29226 if (ipst == NULL) { 29227 netstack_rele(ns); 29228 return (-1); 29229 } 29230 ipkp = (ip_named_kstat_t *)kp->ks_data; 29231 29232 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29233 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29234 ill = ILL_START_WALK_V4(&ctx, ipst); 29235 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29236 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29237 rw_exit(&ipst->ips_ill_g_lock); 29238 29239 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29240 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29241 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29242 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29243 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29244 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29245 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29246 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29247 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29248 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29249 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29250 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29251 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29252 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29253 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29254 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29255 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29256 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29257 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29258 29259 ipkp->routingDiscards.value.ui32 = 0; 29260 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29261 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29262 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29263 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29264 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29265 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29266 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29267 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29268 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29269 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29270 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29271 29272 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29273 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29274 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29275 29276 netstack_rele(ns); 29277 29278 return (0); 29279 } 29280 29281 static void * 29282 icmp_kstat_init(netstackid_t stackid) 29283 { 29284 kstat_t *ksp; 29285 29286 icmp_named_kstat_t template = { 29287 { "inMsgs", KSTAT_DATA_UINT32 }, 29288 { "inErrors", KSTAT_DATA_UINT32 }, 29289 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29290 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29291 { "inParmProbs", KSTAT_DATA_UINT32 }, 29292 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29293 { "inRedirects", KSTAT_DATA_UINT32 }, 29294 { "inEchos", KSTAT_DATA_UINT32 }, 29295 { "inEchoReps", KSTAT_DATA_UINT32 }, 29296 { "inTimestamps", KSTAT_DATA_UINT32 }, 29297 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29298 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29299 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29300 { "outMsgs", KSTAT_DATA_UINT32 }, 29301 { "outErrors", KSTAT_DATA_UINT32 }, 29302 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29303 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29304 { "outParmProbs", KSTAT_DATA_UINT32 }, 29305 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29306 { "outRedirects", KSTAT_DATA_UINT32 }, 29307 { "outEchos", KSTAT_DATA_UINT32 }, 29308 { "outEchoReps", KSTAT_DATA_UINT32 }, 29309 { "outTimestamps", KSTAT_DATA_UINT32 }, 29310 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29311 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29312 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29313 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29314 { "inUnknowns", KSTAT_DATA_UINT32 }, 29315 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29316 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29317 { "outDrops", KSTAT_DATA_UINT32 }, 29318 { "inOverFlows", KSTAT_DATA_UINT32 }, 29319 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29320 }; 29321 29322 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29323 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29324 if (ksp == NULL || ksp->ks_data == NULL) 29325 return (NULL); 29326 29327 bcopy(&template, ksp->ks_data, sizeof (template)); 29328 29329 ksp->ks_update = icmp_kstat_update; 29330 ksp->ks_private = (void *)(uintptr_t)stackid; 29331 29332 kstat_install(ksp); 29333 return (ksp); 29334 } 29335 29336 static void 29337 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29338 { 29339 if (ksp != NULL) { 29340 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29341 kstat_delete_netstack(ksp, stackid); 29342 } 29343 } 29344 29345 static int 29346 icmp_kstat_update(kstat_t *kp, int rw) 29347 { 29348 icmp_named_kstat_t *icmpkp; 29349 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29350 netstack_t *ns; 29351 ip_stack_t *ipst; 29352 29353 if ((kp == NULL) || (kp->ks_data == NULL)) 29354 return (EIO); 29355 29356 if (rw == KSTAT_WRITE) 29357 return (EACCES); 29358 29359 ns = netstack_find_by_stackid(stackid); 29360 if (ns == NULL) 29361 return (-1); 29362 ipst = ns->netstack_ip; 29363 if (ipst == NULL) { 29364 netstack_rele(ns); 29365 return (-1); 29366 } 29367 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29368 29369 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29370 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29371 icmpkp->inDestUnreachs.value.ui32 = 29372 ipst->ips_icmp_mib.icmpInDestUnreachs; 29373 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29374 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29375 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29376 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29377 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29378 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29379 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29380 icmpkp->inTimestampReps.value.ui32 = 29381 ipst->ips_icmp_mib.icmpInTimestampReps; 29382 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29383 icmpkp->inAddrMaskReps.value.ui32 = 29384 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29385 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29386 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29387 icmpkp->outDestUnreachs.value.ui32 = 29388 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29389 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29390 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29391 icmpkp->outSrcQuenchs.value.ui32 = 29392 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29393 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29394 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29395 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29396 icmpkp->outTimestamps.value.ui32 = 29397 ipst->ips_icmp_mib.icmpOutTimestamps; 29398 icmpkp->outTimestampReps.value.ui32 = 29399 ipst->ips_icmp_mib.icmpOutTimestampReps; 29400 icmpkp->outAddrMasks.value.ui32 = 29401 ipst->ips_icmp_mib.icmpOutAddrMasks; 29402 icmpkp->outAddrMaskReps.value.ui32 = 29403 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29404 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29405 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29406 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29407 icmpkp->outFragNeeded.value.ui32 = 29408 ipst->ips_icmp_mib.icmpOutFragNeeded; 29409 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29410 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29411 icmpkp->inBadRedirects.value.ui32 = 29412 ipst->ips_icmp_mib.icmpInBadRedirects; 29413 29414 netstack_rele(ns); 29415 return (0); 29416 } 29417 29418 /* 29419 * This is the fanout function for raw socket opened for SCTP. Note 29420 * that it is called after SCTP checks that there is no socket which 29421 * wants a packet. Then before SCTP handles this out of the blue packet, 29422 * this function is called to see if there is any raw socket for SCTP. 29423 * If there is and it is bound to the correct address, the packet will 29424 * be sent to that socket. Note that only one raw socket can be bound to 29425 * a port. This is assured in ipcl_sctp_hash_insert(); 29426 */ 29427 void 29428 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29429 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29430 zoneid_t zoneid) 29431 { 29432 conn_t *connp; 29433 queue_t *rq; 29434 mblk_t *first_mp; 29435 boolean_t secure; 29436 ip6_t *ip6h; 29437 ip_stack_t *ipst = recv_ill->ill_ipst; 29438 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29439 29440 first_mp = mp; 29441 if (mctl_present) { 29442 mp = first_mp->b_cont; 29443 secure = ipsec_in_is_secure(first_mp); 29444 ASSERT(mp != NULL); 29445 } else { 29446 secure = B_FALSE; 29447 } 29448 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29449 29450 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29451 if (connp == NULL) { 29452 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29453 return; 29454 } 29455 rq = connp->conn_rq; 29456 if (!canputnext(rq)) { 29457 CONN_DEC_REF(connp); 29458 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29459 freemsg(first_mp); 29460 return; 29461 } 29462 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29463 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29464 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29465 (isv4 ? ipha : NULL), ip6h, mctl_present); 29466 if (first_mp == NULL) { 29467 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29468 CONN_DEC_REF(connp); 29469 return; 29470 } 29471 } 29472 /* 29473 * We probably should not send M_CTL message up to 29474 * raw socket. 29475 */ 29476 if (mctl_present) 29477 freeb(first_mp); 29478 29479 /* Initiate IPPF processing here if needed. */ 29480 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29481 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29482 ip_process(IPP_LOCAL_IN, &mp, 29483 recv_ill->ill_phyint->phyint_ifindex); 29484 if (mp == NULL) { 29485 CONN_DEC_REF(connp); 29486 return; 29487 } 29488 } 29489 29490 if (connp->conn_recvif || connp->conn_recvslla || 29491 ((connp->conn_ip_recvpktinfo || 29492 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29493 (flags & IP_FF_IPINFO))) { 29494 int in_flags = 0; 29495 29496 /* 29497 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29498 * IPF_RECVIF. 29499 */ 29500 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29501 in_flags = IPF_RECVIF; 29502 } 29503 if (connp->conn_recvslla) { 29504 in_flags |= IPF_RECVSLLA; 29505 } 29506 if (isv4) { 29507 mp = ip_add_info(mp, recv_ill, in_flags, 29508 IPCL_ZONEID(connp), ipst); 29509 } else { 29510 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29511 if (mp == NULL) { 29512 BUMP_MIB(recv_ill->ill_ip_mib, 29513 ipIfStatsInDiscards); 29514 CONN_DEC_REF(connp); 29515 return; 29516 } 29517 } 29518 } 29519 29520 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29521 /* 29522 * We are sending the IPSEC_IN message also up. Refer 29523 * to comments above this function. 29524 */ 29525 putnext(rq, mp); 29526 CONN_DEC_REF(connp); 29527 } 29528 29529 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29530 { \ 29531 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29532 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29533 } 29534 /* 29535 * This function should be called only if all packet processing 29536 * including fragmentation is complete. Callers of this function 29537 * must set mp->b_prev to one of these values: 29538 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29539 * prior to handing over the mp as first argument to this function. 29540 * 29541 * If the ire passed by caller is incomplete, this function 29542 * queues the packet and if necessary, sends ARP request and bails. 29543 * If the ire passed is fully resolved, we simply prepend 29544 * the link-layer header to the packet, do ipsec hw acceleration 29545 * work if necessary, and send the packet out on the wire. 29546 * 29547 * NOTE: IPSEC will only call this function with fully resolved 29548 * ires if hw acceleration is involved. 29549 * TODO list : 29550 * a Handle M_MULTIDATA so that 29551 * tcp_multisend->tcp_multisend_data can 29552 * call ip_xmit_v4 directly 29553 * b Handle post-ARP work for fragments so that 29554 * ip_wput_frag can call this function. 29555 */ 29556 ipxmit_state_t 29557 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29558 { 29559 nce_t *arpce; 29560 queue_t *q; 29561 int ill_index; 29562 mblk_t *nxt_mp, *first_mp; 29563 boolean_t xmit_drop = B_FALSE; 29564 ip_proc_t proc; 29565 ill_t *out_ill; 29566 int pkt_len; 29567 29568 arpce = ire->ire_nce; 29569 ASSERT(arpce != NULL); 29570 29571 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29572 29573 mutex_enter(&arpce->nce_lock); 29574 switch (arpce->nce_state) { 29575 case ND_REACHABLE: 29576 /* If there are other queued packets, queue this packet */ 29577 if (arpce->nce_qd_mp != NULL) { 29578 if (mp != NULL) 29579 nce_queue_mp_common(arpce, mp, B_FALSE); 29580 mp = arpce->nce_qd_mp; 29581 } 29582 arpce->nce_qd_mp = NULL; 29583 mutex_exit(&arpce->nce_lock); 29584 29585 /* 29586 * Flush the queue. In the common case, where the 29587 * ARP is already resolved, it will go through the 29588 * while loop only once. 29589 */ 29590 while (mp != NULL) { 29591 29592 nxt_mp = mp->b_next; 29593 mp->b_next = NULL; 29594 ASSERT(mp->b_datap->db_type != M_CTL); 29595 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29596 /* 29597 * This info is needed for IPQOS to do COS marking 29598 * in ip_wput_attach_llhdr->ip_process. 29599 */ 29600 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29601 mp->b_prev = NULL; 29602 29603 /* set up ill index for outbound qos processing */ 29604 out_ill = ire->ire_ipif->ipif_ill; 29605 ill_index = out_ill->ill_phyint->phyint_ifindex; 29606 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29607 ill_index); 29608 if (first_mp == NULL) { 29609 xmit_drop = B_TRUE; 29610 BUMP_MIB(out_ill->ill_ip_mib, 29611 ipIfStatsOutDiscards); 29612 goto next_mp; 29613 } 29614 /* non-ipsec hw accel case */ 29615 if (io == NULL || !io->ipsec_out_accelerated) { 29616 /* send it */ 29617 q = ire->ire_stq; 29618 if (proc == IPP_FWD_OUT) { 29619 UPDATE_IB_PKT_COUNT(ire); 29620 } else { 29621 UPDATE_OB_PKT_COUNT(ire); 29622 } 29623 ire->ire_last_used_time = lbolt; 29624 29625 if (flow_ctl_enabled || canputnext(q)) { 29626 if (proc == IPP_FWD_OUT) { 29627 29628 BUMP_MIB(out_ill->ill_ip_mib, 29629 ipIfStatsHCOutForwDatagrams); 29630 29631 } 29632 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29633 pkt_len); 29634 29635 putnext(q, first_mp); 29636 } else { 29637 BUMP_MIB(out_ill->ill_ip_mib, 29638 ipIfStatsOutDiscards); 29639 xmit_drop = B_TRUE; 29640 freemsg(first_mp); 29641 } 29642 } else { 29643 /* 29644 * Safety Pup says: make sure this 29645 * is going to the right interface! 29646 */ 29647 ill_t *ill1 = 29648 (ill_t *)ire->ire_stq->q_ptr; 29649 int ifindex = 29650 ill1->ill_phyint->phyint_ifindex; 29651 if (ifindex != 29652 io->ipsec_out_capab_ill_index) { 29653 xmit_drop = B_TRUE; 29654 freemsg(mp); 29655 } else { 29656 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29657 pkt_len); 29658 ipsec_hw_putnext(ire->ire_stq, mp); 29659 } 29660 } 29661 next_mp: 29662 mp = nxt_mp; 29663 } /* while (mp != NULL) */ 29664 if (xmit_drop) 29665 return (SEND_FAILED); 29666 else 29667 return (SEND_PASSED); 29668 29669 case ND_INITIAL: 29670 case ND_INCOMPLETE: 29671 29672 /* 29673 * While we do send off packets to dests that 29674 * use fully-resolved CGTP routes, we do not 29675 * handle unresolved CGTP routes. 29676 */ 29677 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29678 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29679 29680 if (mp != NULL) { 29681 /* queue the packet */ 29682 nce_queue_mp_common(arpce, mp, B_FALSE); 29683 } 29684 29685 if (arpce->nce_state == ND_INCOMPLETE) { 29686 mutex_exit(&arpce->nce_lock); 29687 DTRACE_PROBE3(ip__xmit__incomplete, 29688 (ire_t *), ire, (mblk_t *), mp, 29689 (ipsec_out_t *), io); 29690 return (LOOKUP_IN_PROGRESS); 29691 } 29692 29693 arpce->nce_state = ND_INCOMPLETE; 29694 mutex_exit(&arpce->nce_lock); 29695 /* 29696 * Note that ire_add() (called from ire_forward()) 29697 * holds a ref on the ire until ARP is completed. 29698 */ 29699 29700 ire_arpresolve(ire, ire_to_ill(ire)); 29701 return (LOOKUP_IN_PROGRESS); 29702 default: 29703 ASSERT(0); 29704 mutex_exit(&arpce->nce_lock); 29705 return (LLHDR_RESLV_FAILED); 29706 } 29707 } 29708 29709 #undef UPDATE_IP_MIB_OB_COUNTERS 29710 29711 /* 29712 * Return B_TRUE if the buffers differ in length or content. 29713 * This is used for comparing extension header buffers. 29714 * Note that an extension header would be declared different 29715 * even if all that changed was the next header value in that header i.e. 29716 * what really changed is the next extension header. 29717 */ 29718 boolean_t 29719 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29720 uint_t blen) 29721 { 29722 if (!b_valid) 29723 blen = 0; 29724 29725 if (alen != blen) 29726 return (B_TRUE); 29727 if (alen == 0) 29728 return (B_FALSE); /* Both zero length */ 29729 return (bcmp(abuf, bbuf, alen)); 29730 } 29731 29732 /* 29733 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29734 * Return B_FALSE if memory allocation fails - don't change any state! 29735 */ 29736 boolean_t 29737 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29738 const void *src, uint_t srclen) 29739 { 29740 void *dst; 29741 29742 if (!src_valid) 29743 srclen = 0; 29744 29745 ASSERT(*dstlenp == 0); 29746 if (src != NULL && srclen != 0) { 29747 dst = mi_alloc(srclen, BPRI_MED); 29748 if (dst == NULL) 29749 return (B_FALSE); 29750 } else { 29751 dst = NULL; 29752 } 29753 if (*dstp != NULL) 29754 mi_free(*dstp); 29755 *dstp = dst; 29756 *dstlenp = dst == NULL ? 0 : srclen; 29757 return (B_TRUE); 29758 } 29759 29760 /* 29761 * Replace what is in *dst, *dstlen with the source. 29762 * Assumes ip_allocbuf has already been called. 29763 */ 29764 void 29765 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29766 const void *src, uint_t srclen) 29767 { 29768 if (!src_valid) 29769 srclen = 0; 29770 29771 ASSERT(*dstlenp == srclen); 29772 if (src != NULL && srclen != 0) 29773 bcopy(src, *dstp, srclen); 29774 } 29775 29776 /* 29777 * Free the storage pointed to by the members of an ip6_pkt_t. 29778 */ 29779 void 29780 ip6_pkt_free(ip6_pkt_t *ipp) 29781 { 29782 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29783 29784 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29785 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29786 ipp->ipp_hopopts = NULL; 29787 ipp->ipp_hopoptslen = 0; 29788 } 29789 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29790 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29791 ipp->ipp_rtdstopts = NULL; 29792 ipp->ipp_rtdstoptslen = 0; 29793 } 29794 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29795 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29796 ipp->ipp_dstopts = NULL; 29797 ipp->ipp_dstoptslen = 0; 29798 } 29799 if (ipp->ipp_fields & IPPF_RTHDR) { 29800 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29801 ipp->ipp_rthdr = NULL; 29802 ipp->ipp_rthdrlen = 0; 29803 } 29804 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29805 IPPF_RTHDR); 29806 } 29807