1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/dlpi.h> 31 #include <sys/stropts.h> 32 #include <sys/sysmacros.h> 33 #include <sys/strsubr.h> 34 #include <sys/strlog.h> 35 #include <sys/strsun.h> 36 #include <sys/zone.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/xti_inet.h> 40 #include <sys/ddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/kobj.h> 44 #include <sys/modctl.h> 45 #include <sys/atomic.h> 46 #include <sys/policy.h> 47 #include <sys/priv.h> 48 #include <sys/taskq.h> 49 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/kmem.h> 53 #include <sys/sdt.h> 54 #include <sys/socket.h> 55 #include <sys/vtrace.h> 56 #include <sys/isa_defs.h> 57 #include <sys/mac.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/optcom.h> 72 #include <inet/kstatcom.h> 73 74 #include <netinet/igmp_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet/icmp6.h> 77 #include <netinet/sctp.h> 78 79 #include <inet/ip.h> 80 #include <inet/ip_impl.h> 81 #include <inet/ip6.h> 82 #include <inet/ip6_asp.h> 83 #include <inet/tcp.h> 84 #include <inet/tcp_impl.h> 85 #include <inet/ip_multi.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_ire.h> 88 #include <inet/ip_ftable.h> 89 #include <inet/ip_rts.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <rpc/pmap_prot.h> 127 #include <sys/squeue_impl.h> 128 129 /* 130 * Values for squeue switch: 131 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 132 * IP_SQUEUE_ENTER: SQ_PROCESS 133 * IP_SQUEUE_FILL: SQ_FILL 134 */ 135 int ip_squeue_enter = 2; /* Setable in /etc/system */ 136 137 int ip_squeue_flag; 138 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 139 140 /* 141 * Setable in /etc/system 142 */ 143 int ip_poll_normal_ms = 100; 144 int ip_poll_normal_ticks = 0; 145 int ip_modclose_ackwait_ms = 3000; 146 147 /* 148 * It would be nice to have these present only in DEBUG systems, but the 149 * current design of the global symbol checking logic requires them to be 150 * unconditionally present. 151 */ 152 uint_t ip_thread_data; /* TSD key for debug support */ 153 krwlock_t ip_thread_rwlock; 154 list_t ip_thread_list; 155 156 /* 157 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 158 */ 159 160 struct listptr_s { 161 mblk_t *lp_head; /* pointer to the head of the list */ 162 mblk_t *lp_tail; /* pointer to the tail of the list */ 163 }; 164 165 typedef struct listptr_s listptr_t; 166 167 /* 168 * This is used by ip_snmp_get_mib2_ip_route_media and 169 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 170 */ 171 typedef struct iproutedata_s { 172 uint_t ird_idx; 173 uint_t ird_flags; /* see below */ 174 listptr_t ird_route; /* ipRouteEntryTable */ 175 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 176 listptr_t ird_attrs; /* ipRouteAttributeTable */ 177 } iproutedata_t; 178 179 #define IRD_REPORT_TESTHIDDEN 0x01 /* include IRE_MARK_TESTHIDDEN routes */ 180 181 /* 182 * Cluster specific hooks. These should be NULL when booted as a non-cluster 183 */ 184 185 /* 186 * Hook functions to enable cluster networking 187 * On non-clustered systems these vectors must always be NULL. 188 * 189 * Hook function to Check ip specified ip address is a shared ip address 190 * in the cluster 191 * 192 */ 193 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 194 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 195 196 /* 197 * Hook function to generate cluster wide ip fragment identifier 198 */ 199 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 200 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 201 void *args) = NULL; 202 203 /* 204 * Hook function to generate cluster wide SPI. 205 */ 206 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 207 void *) = NULL; 208 209 /* 210 * Hook function to verify if the SPI is already utlized. 211 */ 212 213 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 214 215 /* 216 * Hook function to delete the SPI from the cluster wide repository. 217 */ 218 219 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 220 221 /* 222 * Hook function to inform the cluster when packet received on an IDLE SA 223 */ 224 225 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 226 in6_addr_t, in6_addr_t, void *) = NULL; 227 228 /* 229 * Synchronization notes: 230 * 231 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 232 * MT level protection given by STREAMS. IP uses a combination of its own 233 * internal serialization mechanism and standard Solaris locking techniques. 234 * The internal serialization is per phyint. This is used to serialize 235 * plumbing operations, certain multicast operations, most set ioctls, 236 * igmp/mld timers etc. 237 * 238 * Plumbing is a long sequence of operations involving message 239 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 240 * involved in plumbing operations. A natural model is to serialize these 241 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 242 * parallel without any interference. But various set ioctls on hme0 are best 243 * serialized, along with multicast join/leave operations, igmp/mld timer 244 * operations, and processing of DLPI control messages received from drivers 245 * on a per phyint basis. This serialization is provided by the ipsq_t and 246 * primitives operating on this. Details can be found in ip_if.c above the 247 * core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 253 * the ipif's address or netmask change as long as an ipif is refheld 254 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 255 * address of an ipif has to go through the ipsq_t. This ensures that only 256 * 1 such exclusive operation proceeds at any time on the ipif. It then 257 * deletes all ires associated with this ipif, and waits for all refcnts 258 * associated with this ipif to come down to zero. The address is changed 259 * only after the ipif has been quiesced. Then the ipif is brought up again. 260 * More details are described above the comment in ip_sioctl_flags. 261 * 262 * Packet processing is based mostly on IREs and are fully multi-threaded 263 * using standard Solaris MT techniques. 264 * 265 * There are explicit locks in IP to handle: 266 * - The ip_g_head list maintained by mi_open_link() and friends. 267 * 268 * - The reassembly data structures (one lock per hash bucket) 269 * 270 * - conn_lock is meant to protect conn_t fields. The fields actually 271 * protected by conn_lock are documented in the conn_t definition. 272 * 273 * - ire_lock to protect some of the fields of the ire, IRE tables 274 * (one lock per hash bucket). Refer to ip_ire.c for details. 275 * 276 * - ndp_g_lock and nce_lock for protecting NCEs. 277 * 278 * - ill_lock protects fields of the ill and ipif. Details in ip.h 279 * 280 * - ill_g_lock: This is a global reader/writer lock. Protects the following 281 * * The AVL tree based global multi list of all ills. 282 * * The linked list of all ipifs of an ill 283 * * The <ipsq-xop> mapping 284 * * <ill-phyint> association 285 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 286 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 287 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 288 * writer for the actual duration of the insertion/deletion/change. 289 * 290 * - ill_lock: This is a per ill mutex. 291 * It protects some members of the ill_t struct; see ip.h for details. 292 * It also protects the <ill-phyint> assoc. 293 * It also protects the list of ipifs hanging off the ill. 294 * 295 * - ipsq_lock: This is a per ipsq_t mutex lock. 296 * This protects some members of the ipsq_t struct; see ip.h for details. 297 * It also protects the <ipsq-ipxop> mapping 298 * 299 * - ipx_lock: This is a per ipxop_t mutex lock. 300 * This protects some members of the ipxop_t struct; see ip.h for details. 301 * 302 * - phyint_lock: This is a per phyint mutex lock. Protects just the 303 * phyint_flags 304 * 305 * - ip_g_nd_lock: This is a global reader/writer lock. 306 * Any call to nd_load to load a new parameter to the ND table must hold the 307 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 308 * as reader. 309 * 310 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 311 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 312 * uniqueness check also done atomically. 313 * 314 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 315 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 316 * as a writer when adding or deleting elements from these lists, and 317 * as a reader when walking these lists to send a SADB update to the 318 * IPsec capable ills. 319 * 320 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 321 * group list linked by ill_usesrc_grp_next. It also protects the 322 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 323 * group is being added or deleted. This lock is taken as a reader when 324 * walking the list/group(eg: to get the number of members in a usesrc group). 325 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 326 * field is changing state i.e from NULL to non-NULL or vice-versa. For 327 * example, it is not necessary to take this lock in the initial portion 328 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 329 * operations are executed exclusively and that ensures that the "usesrc 330 * group state" cannot change. The "usesrc group state" change can happen 331 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 332 * 333 * Changing <ill-phyint>, <ipsq-xop> assocications: 334 * 335 * To change the <ill-phyint> association, the ill_g_lock must be held 336 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 337 * must be held. 338 * 339 * To change the <ipsq-xop> association, the ill_g_lock must be held as 340 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 341 * This is only done when ills are added or removed from IPMP groups. 342 * 343 * To add or delete an ipif from the list of ipifs hanging off the ill, 344 * ill_g_lock (writer) and ill_lock must be held and the thread must be 345 * a writer on the associated ipsq. 346 * 347 * To add or delete an ill to the system, the ill_g_lock must be held as 348 * writer and the thread must be a writer on the associated ipsq. 349 * 350 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 351 * must be a writer on the associated ipsq. 352 * 353 * Lock hierarchy 354 * 355 * Some lock hierarchy scenarios are listed below. 356 * 357 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 358 * ill_g_lock -> ill_lock(s) -> phyint_lock 359 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 360 * ill_g_lock -> ip_addr_avail_lock 361 * conn_lock -> irb_lock -> ill_lock -> ire_lock 362 * ill_g_lock -> ip_g_nd_lock 363 * 364 * When more than 1 ill lock is needed to be held, all ill lock addresses 365 * are sorted on address and locked starting from highest addressed lock 366 * downward. 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 372 * ipsec_capab_ills_lock -> ipsa_lock 373 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 374 * 375 * Trusted Solaris scenarios 376 * 377 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 378 * igsa_lock -> gcdb_lock 379 * gcgrp_rwlock -> ire_lock 380 * gcgrp_rwlock -> gcdb_lock 381 * 382 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 383 * 384 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 385 * sq_lock -> conn_lock -> QLOCK(q) 386 * ill_lock -> ft_lock -> fe_lock 387 * 388 * Routing/forwarding table locking notes: 389 * 390 * Lock acquisition order: Radix tree lock, irb_lock. 391 * Requirements: 392 * i. Walker must not hold any locks during the walker callback. 393 * ii Walker must not see a truncated tree during the walk because of any node 394 * deletion. 395 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 396 * in many places in the code to walk the irb list. Thus even if all the 397 * ires in a bucket have been deleted, we still can't free the radix node 398 * until the ires have actually been inactive'd (freed). 399 * 400 * Tree traversal - Need to hold the global tree lock in read mode. 401 * Before dropping the global tree lock, need to either increment the ire_refcnt 402 * to ensure that the radix node can't be deleted. 403 * 404 * Tree add - Need to hold the global tree lock in write mode to add a 405 * radix node. To prevent the node from being deleted, increment the 406 * irb_refcnt, after the node is added to the tree. The ire itself is 407 * added later while holding the irb_lock, but not the tree lock. 408 * 409 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 410 * All associated ires must be inactive (i.e. freed), and irb_refcnt 411 * must be zero. 412 * 413 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 414 * global tree lock (read mode) for traversal. 415 * 416 * IPsec notes : 417 * 418 * IP interacts with the IPsec code (AH/ESP) by tagging a M_CTL message 419 * in front of the actual packet. For outbound datagrams, the M_CTL 420 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 421 * information used by the IPsec code for applying the right level of 422 * protection. The information initialized by IP in the ipsec_out_t 423 * is determined by the per-socket policy or global policy in the system. 424 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 425 * ipsec_info.h) which starts out with nothing in it. It gets filled 426 * with the right information if it goes through the AH/ESP code, which 427 * happens if the incoming packet is secure. The information initialized 428 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 429 * the policy requirements needed by per-socket policy or global policy 430 * is met or not. 431 * 432 * If there is both per-socket policy (set using setsockopt) and there 433 * is also global policy match for the 5 tuples of the socket, 434 * ipsec_override_policy() makes the decision of which one to use. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is used to hash into a 512 * idl_tx_list in ips_idl_tx_list[] array. Then conn_drain_insert() is 513 * called passing idl_tx_list. The connp gets inserted in a drain list 514 * pointed to by idl_tx_list. conn_drain_list() asserts flow control for 515 * the sockets (non stream based) and sets QFULL condition for conn_wq. 516 * connp->conn_direct_blocked will be set to indicate the blocked 517 * condition. 518 * 519 * GLDv3 mac layer calls ill_flow_enable() when flow control is relieved. 520 * A cookie is passed in the call to ill_flow_enable() that identifies the 521 * blocked Tx ring. This cookie is used to get to the idl_tx_list that 522 * contains the blocked connp's. conn_walk_drain() uses the idl_tx_list_t 523 * and goes through each of the drain list (q)enabling the conn_wq of the 524 * first conn in each of the drain list. This causes ip_wsrv to run for the 525 * conn. ip_wsrv drains the queued messages, and removes the conn from the 526 * drain list, if all messages were drained. It also qenables the next conn 527 * in the drain list to continue the drain process. 528 * 529 * In reality the drain list is not a single list, but a configurable number 530 * of lists. conn_drain_walk() in the IP module, qenables the first conn in 531 * each list. If the ip_wsrv of the next qenabled conn does not run, because 532 * the stream closes, ip_close takes responsibility to qenable the next conn 533 * in the drain list. conn_drain_insert and conn_drain_tail are the only 534 * functions that manipulate this drain list. conn_drain_insert is called in 535 * ip_wput context itself (as opposed to from ip_wsrv context for STREAMS 536 * case -- see below). The synchronization between drain insertion and flow 537 * control wakeup is handled by using idl_txl->txl_lock. 538 * 539 * Flow control using STREAMS: 540 * When ILL_DIRECT_CAPABLE() is not TRUE, STREAMS flow control mechanism 541 * is used. On the send side, if the packet cannot be sent down to the 542 * driver by IP, because of a canput failure, IP does a putq on the conn_wq. 543 * This will cause ip_wsrv to run on the conn_wq. ip_wsrv in turn, inserts 544 * the conn in a list of conn's that need to be drained when the flow 545 * control condition subsides. The blocked connps are put in first member 546 * of ips_idl_tx_list[] array. Ultimately STREAMS backenables the ip_wsrv 547 * on the IP module. It calls conn_walk_drain() passing ips_idl_tx_list[0]. 548 * ips_idl_tx_list[0] contains the drain lists of blocked conns. The 549 * conn_wq of the first conn in the drain lists is (q)enabled to run. 550 * ip_wsrv on this conn drains the queued messages, and removes the conn 551 * from the drain list, if all messages were drained. It also qenables the 552 * next conn in the drain list to continue the drain process. 553 * 554 * If the ip_wsrv of the next qenabled conn does not run, because the 555 * stream closes, ip_close takes responsibility to qenable the next conn in 556 * the drain list. The directly called ip_wput path always does a putq, if 557 * it cannot putnext. Thus synchronization problems are handled between 558 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 559 * functions that manipulate this drain list. Furthermore conn_drain_insert 560 * is called only from ip_wsrv for the STREAMS case, and there can be only 1 561 * instance of ip_wsrv running on a queue at any time. conn_drain_tail can 562 * be simultaneously called from both ip_wsrv and ip_close. 563 * 564 * IPQOS notes: 565 * 566 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 567 * and IPQoS modules. IPPF includes hooks in IP at different control points 568 * (callout positions) which direct packets to IPQoS modules for policy 569 * processing. Policies, if present, are global. 570 * 571 * The callout positions are located in the following paths: 572 * o local_in (packets destined for this host) 573 * o local_out (packets orginating from this host ) 574 * o fwd_in (packets forwarded by this m/c - inbound) 575 * o fwd_out (packets forwarded by this m/c - outbound) 576 * Hooks at these callout points can be enabled/disabled using the ndd variable 577 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 578 * By default all the callout positions are enabled. 579 * 580 * Outbound (local_out) 581 * Hooks are placed in ip_wput_ire and ipsec_out_process. 582 * 583 * Inbound (local_in) 584 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 585 * TCP and UDP fanout routines. 586 * 587 * Forwarding (in and out) 588 * Hooks are placed in ip_rput_forward. 589 * 590 * IP Policy Framework processing (IPPF processing) 591 * Policy processing for a packet is initiated by ip_process, which ascertains 592 * that the classifier (ipgpc) is loaded and configured, failing which the 593 * packet resumes normal processing in IP. If the clasifier is present, the 594 * packet is acted upon by one or more IPQoS modules (action instances), per 595 * filters configured in ipgpc and resumes normal IP processing thereafter. 596 * An action instance can drop a packet in course of its processing. 597 * 598 * A boolean variable, ip_policy, is used in all the fanout routines that can 599 * invoke ip_process for a packet. This variable indicates if the packet should 600 * to be sent for policy processing. The variable is set to B_TRUE by default, 601 * i.e. when the routines are invoked in the normal ip procesing path for a 602 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 603 * ip_policy is set to B_FALSE for all the routines called in these two 604 * functions because, in the former case, we don't process loopback traffic 605 * currently while in the latter, the packets have already been processed in 606 * icmp_inbound. 607 * 608 * Zones notes: 609 * 610 * The partitioning rules for networking are as follows: 611 * 1) Packets coming from a zone must have a source address belonging to that 612 * zone. 613 * 2) Packets coming from a zone can only be sent on a physical interface on 614 * which the zone has an IP address. 615 * 3) Between two zones on the same machine, packet delivery is only allowed if 616 * there's a matching route for the destination and zone in the forwarding 617 * table. 618 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 619 * different zones can bind to the same port with the wildcard address 620 * (INADDR_ANY). 621 * 622 * The granularity of interface partitioning is at the logical interface level. 623 * Therefore, every zone has its own IP addresses, and incoming packets can be 624 * attributed to a zone unambiguously. A logical interface is placed into a zone 625 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 626 * structure. Rule (1) is implemented by modifying the source address selection 627 * algorithm so that the list of eligible addresses is filtered based on the 628 * sending process zone. 629 * 630 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 631 * across all zones, depending on their type. Here is the break-up: 632 * 633 * IRE type Shared/exclusive 634 * -------- ---------------- 635 * IRE_BROADCAST Exclusive 636 * IRE_DEFAULT (default routes) Shared (*) 637 * IRE_LOCAL Exclusive (x) 638 * IRE_LOOPBACK Exclusive 639 * IRE_PREFIX (net routes) Shared (*) 640 * IRE_CACHE Exclusive 641 * IRE_IF_NORESOLVER (interface routes) Exclusive 642 * IRE_IF_RESOLVER (interface routes) Exclusive 643 * IRE_HOST (host routes) Shared (*) 644 * 645 * (*) A zone can only use a default or off-subnet route if the gateway is 646 * directly reachable from the zone, that is, if the gateway's address matches 647 * one of the zone's logical interfaces. 648 * 649 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 650 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 651 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 652 * address of the zone itself (the destination). Since IRE_LOCAL is used 653 * for communication between zones, ip_wput_ire has special logic to set 654 * the right source address when sending using an IRE_LOCAL. 655 * 656 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 657 * ire_cache_lookup restricts loopback using an IRE_LOCAL 658 * between zone to the case when L2 would have conceptually looped the packet 659 * back, i.e. the loopback which is required since neither Ethernet drivers 660 * nor Ethernet hardware loops them back. This is the case when the normal 661 * routes (ignoring IREs with different zoneids) would send out the packet on 662 * the same ill as the ill with which is IRE_LOCAL is associated. 663 * 664 * Multiple zones can share a common broadcast address; typically all zones 665 * share the 255.255.255.255 address. Incoming as well as locally originated 666 * broadcast packets must be dispatched to all the zones on the broadcast 667 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 668 * since some zones may not be on the 10.16.72/24 network. To handle this, each 669 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 670 * sent to every zone that has an IRE_BROADCAST entry for the destination 671 * address on the input ill, see conn_wantpacket(). 672 * 673 * Applications in different zones can join the same multicast group address. 674 * For IPv4, group memberships are per-logical interface, so they're already 675 * inherently part of a zone. For IPv6, group memberships are per-physical 676 * interface, so we distinguish IPv6 group memberships based on group address, 677 * interface and zoneid. In both cases, received multicast packets are sent to 678 * every zone for which a group membership entry exists. On IPv6 we need to 679 * check that the target zone still has an address on the receiving physical 680 * interface; it could have been removed since the application issued the 681 * IPV6_JOIN_GROUP. 682 */ 683 684 /* 685 * Squeue Fanout flags: 686 * 0: No fanout. 687 * 1: Fanout across all squeues 688 */ 689 boolean_t ip_squeue_fanout = 0; 690 691 /* 692 * Maximum dups allowed per packet. 693 */ 694 uint_t ip_max_frag_dups = 10; 695 696 #define IS_SIMPLE_IPH(ipha) \ 697 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 698 699 /* RFC 1122 Conformance */ 700 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 701 702 #define ILL_MAX_NAMELEN LIFNAMSIZ 703 704 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 705 706 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 707 cred_t *credp, boolean_t isv6); 708 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t, 709 ipha_t **); 710 711 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t, 712 ip_stack_t *); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int, ip_stack_t *); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t, 723 ip_stack_t *); 724 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 725 zoneid_t zoneid, ip_stack_t *); 726 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_stack_t *); 727 static void icmp_redirect(ill_t *, mblk_t *); 728 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t, 729 ip_stack_t *); 730 731 static void ip_arp_news(queue_t *, mblk_t *); 732 static boolean_t ip_bind_get_ire_v4(mblk_t **, ire_t *, iulp_t *, ip_stack_t *); 733 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 734 char *ip_dot_addr(ipaddr_t, char *); 735 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 736 int ip_close(queue_t *, int); 737 static char *ip_dot_saddr(uchar_t *, char *); 738 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, ill_t *, zoneid_t); 740 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 741 boolean_t, boolean_t, zoneid_t); 742 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 743 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 744 static void ip_lrput(queue_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, 747 ip_stack_t *); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t, ip_opt_info_t *); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(IDP *ndp, ipparam_t *, size_t, 755 ipndp_t *, size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *, 762 ip_stack_t *); 763 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 764 ire_t *, ip_stack_t *); 765 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 766 mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *); 767 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *, 768 ip_stack_t *); 769 static boolean_t ip_rput_fragment(ill_t *, ill_t *, mblk_t **, ipha_t *, 770 uint32_t *, uint16_t *); 771 int ip_snmp_get(queue_t *, mblk_t *, int); 772 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 773 mib2_ipIfStatsEntry_t *, ip_stack_t *); 774 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 775 ip_stack_t *); 776 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *); 777 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 778 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 779 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 780 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 781 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 782 ip_stack_t *ipst); 783 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 784 ip_stack_t *ipst); 785 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 786 ip_stack_t *ipst); 787 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 788 ip_stack_t *ipst); 789 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 790 ip_stack_t *ipst); 791 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 792 ip_stack_t *ipst); 793 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 794 ip_stack_t *ipst); 795 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 796 ip_stack_t *ipst); 797 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 798 ip_stack_t *ipst); 799 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 800 ip_stack_t *ipst); 801 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 802 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 803 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 804 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 805 static boolean_t ip_source_routed(ipha_t *, ip_stack_t *); 806 static boolean_t ip_source_route_included(ipha_t *); 807 static void ip_trash_ire_reclaim_stack(ip_stack_t *); 808 809 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 810 zoneid_t, ip_stack_t *, conn_t *); 811 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *, 812 mblk_t *); 813 static void ip_wput_local_options(ipha_t *, ip_stack_t *); 814 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 815 zoneid_t, ip_stack_t *); 816 817 static void conn_drain_init(ip_stack_t *); 818 static void conn_drain_fini(ip_stack_t *); 819 static void conn_drain_tail(conn_t *connp, boolean_t closing); 820 821 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 822 static void conn_setqfull(conn_t *); 823 static void conn_clrqfull(conn_t *); 824 825 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 826 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 827 static void ip_stack_fini(netstackid_t stackid, void *arg); 828 829 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 830 zoneid_t); 831 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 832 void *dummy_arg); 833 834 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 835 836 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 837 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 838 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 839 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 840 841 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 842 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 843 caddr_t, cred_t *); 844 extern int ip_helper_stream_setup(queue_t *, dev_t *, int, int, 845 cred_t *, boolean_t); 846 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 847 caddr_t cp, cred_t *cr); 848 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 849 cred_t *); 850 static int ip_squeue_switch(int); 851 852 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 853 static void ip_kstat_fini(netstackid_t, kstat_t *); 854 static int ip_kstat_update(kstat_t *kp, int rw); 855 static void *icmp_kstat_init(netstackid_t); 856 static void icmp_kstat_fini(netstackid_t, kstat_t *); 857 static int icmp_kstat_update(kstat_t *kp, int rw); 858 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 859 static void ip_kstat2_fini(netstackid_t, kstat_t *); 860 861 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 862 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 863 864 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 865 ipha_t *, ill_t *, boolean_t, boolean_t); 866 867 static void ipobs_init(ip_stack_t *); 868 static void ipobs_fini(ip_stack_t *); 869 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 870 871 /* How long, in seconds, we allow frags to hang around. */ 872 #define IP_FRAG_TIMEOUT 15 873 #define IPV6_FRAG_TIMEOUT 60 874 875 /* 876 * Threshold which determines whether MDT should be used when 877 * generating IP fragments; payload size must be greater than 878 * this threshold for MDT to take place. 879 */ 880 #define IP_WPUT_FRAG_MDT_MIN 32768 881 882 /* Setable in /etc/system only */ 883 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 884 885 static long ip_rput_pullups; 886 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 887 888 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 889 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 890 891 int ip_debug; 892 893 #ifdef DEBUG 894 uint32_t ipsechw_debug = 0; 895 #endif 896 897 /* 898 * Multirouting/CGTP stuff 899 */ 900 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 901 902 /* 903 * XXX following really should only be in a header. Would need more 904 * header and .c clean up first. 905 */ 906 extern optdb_obj_t ip_opt_obj; 907 908 ulong_t ip_squeue_enter_unbound = 0; 909 910 /* 911 * Named Dispatch Parameter Table. 912 * All of these are alterable, within the min/max values given, at run time. 913 */ 914 static ipparam_t lcl_param_arr[] = { 915 /* min max value name */ 916 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 917 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 918 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 919 { 0, 1, 0, "ip_respond_to_timestamp"}, 920 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 921 { 0, 1, 1, "ip_send_redirects"}, 922 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 923 { 0, 10, 0, "ip_mrtdebug"}, 924 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 925 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 926 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 927 { 1, 255, 255, "ip_def_ttl" }, 928 { 0, 1, 0, "ip_forward_src_routed"}, 929 { 0, 256, 32, "ip_wroff_extra" }, 930 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 931 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 932 { 0, 1, 1, "ip_path_mtu_discovery" }, 933 { 0, 240, 30, "ip_ignore_delete_time" }, 934 { 0, 1, 0, "ip_ignore_redirect" }, 935 { 0, 1, 1, "ip_output_queue" }, 936 { 1, 254, 1, "ip_broadcast_ttl" }, 937 { 0, 99999, 100, "ip_icmp_err_interval" }, 938 { 1, 99999, 10, "ip_icmp_err_burst" }, 939 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 940 { 0, 1, 0, "ip_strict_dst_multihoming" }, 941 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 942 { 0, 1, 0, "ipsec_override_persocket_policy" }, 943 { 0, 1, 1, "icmp_accept_clear_messages" }, 944 { 0, 1, 1, "igmp_accept_clear_messages" }, 945 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 946 "ip_ndp_delay_first_probe_time"}, 947 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 948 "ip_ndp_max_unicast_solicit"}, 949 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 950 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 951 { 0, 1, 0, "ip6_forward_src_routed"}, 952 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 953 { 0, 1, 1, "ip6_send_redirects"}, 954 { 0, 1, 0, "ip6_ignore_redirect" }, 955 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 956 957 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 958 959 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 960 961 { 0, 1, 1, "pim_accept_clear_messages" }, 962 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 963 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 964 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 965 { 0, 15, 0, "ip_policy_mask" }, 966 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 967 { 0, 255, 1, "ip_multirt_ttl" }, 968 { 0, 1, 1, "ip_multidata_outbound" }, 969 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 970 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 971 { 0, 1000, 1, "ip_max_temp_defend" }, 972 { 0, 1000, 3, "ip_max_defend" }, 973 { 0, 999999, 30, "ip_defend_interval" }, 974 { 0, 3600000, 300000, "ip_dup_recovery" }, 975 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 976 { 0, 1, 1, "ip_lso_outbound" }, 977 { IGMP_V1_ROUTER, IGMP_V3_ROUTER, IGMP_V3_ROUTER, "igmp_max_version" }, 978 { MLD_V1_ROUTER, MLD_V2_ROUTER, MLD_V2_ROUTER, "mld_max_version" }, 979 { 68, 65535, 576, "ip_pmtu_min" }, 980 #ifdef DEBUG 981 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 982 #else 983 { 0, 0, 0, "" }, 984 #endif 985 }; 986 987 /* 988 * Extended NDP table 989 * The addresses for the first two are filled in to be ips_ip_g_forward 990 * and ips_ipv6_forward at init time. 991 */ 992 static ipndp_t lcl_ndp_arr[] = { 993 /* getf setf data name */ 994 #define IPNDP_IP_FORWARDING_OFFSET 0 995 { ip_param_generic_get, ip_forward_set, NULL, 996 "ip_forwarding" }, 997 #define IPNDP_IP6_FORWARDING_OFFSET 1 998 { ip_param_generic_get, ip_forward_set, NULL, 999 "ip6_forwarding" }, 1000 { ip_param_generic_get, ip_input_proc_set, 1001 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1002 { ip_param_generic_get, ip_int_set, 1003 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1004 #define IPNDP_CGTP_FILTER_OFFSET 4 1005 { ip_cgtp_filter_get, ip_cgtp_filter_set, NULL, 1006 "ip_cgtp_filter" }, 1007 { ip_param_generic_get, ip_int_set, (caddr_t)&ip_debug, 1008 "ip_debug" }, 1009 }; 1010 1011 /* 1012 * Table of IP ioctls encoding the various properties of the ioctl and 1013 * indexed based on the last byte of the ioctl command. Occasionally there 1014 * is a clash, and there is more than 1 ioctl with the same last byte. 1015 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1016 * ioctls are encoded in the misc table. An entry in the ndx table is 1017 * retrieved by indexing on the last byte of the ioctl command and comparing 1018 * the ioctl command with the value in the ndx table. In the event of a 1019 * mismatch the misc table is then searched sequentially for the desired 1020 * ioctl command. 1021 * 1022 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1023 */ 1024 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1025 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1026 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1027 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1028 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1029 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1032 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 1036 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1037 MISC_CMD, ip_siocaddrt, NULL }, 1038 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1039 MISC_CMD, ip_siocdelrt, NULL }, 1040 1041 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1042 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1043 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 1044 IF_CMD, ip_sioctl_get_addr, NULL }, 1045 1046 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1047 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1048 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1049 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1050 1051 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1052 IPI_PRIV | IPI_WR, 1053 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1054 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1055 IPI_MODOK | IPI_GET_CMD, 1056 IF_CMD, ip_sioctl_get_flags, NULL }, 1057 1058 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1060 1061 /* copyin size cannot be coded for SIOCGIFCONF */ 1062 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 1063 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1064 1065 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1066 IF_CMD, ip_sioctl_mtu, NULL }, 1067 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 1068 IF_CMD, ip_sioctl_get_mtu, NULL }, 1069 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1070 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1071 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1072 IF_CMD, ip_sioctl_brdaddr, NULL }, 1073 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1074 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 1075 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1076 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1077 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1078 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 1079 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1080 IF_CMD, ip_sioctl_metric, NULL }, 1081 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* See 166-168 below for extended SIOC*XARP ioctls */ 1084 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1085 ARP_CMD, ip_sioctl_arp, NULL }, 1086 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 1087 ARP_CMD, ip_sioctl_arp, NULL }, 1088 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 1089 ARP_CMD, ip_sioctl_arp, NULL }, 1090 1091 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1092 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1093 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1094 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1095 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1096 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1097 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1098 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1099 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1100 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1101 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1102 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1103 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1105 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1106 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1109 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1110 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1111 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1112 1113 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1114 MISC_CMD, if_unitsel, if_unitsel_restart }, 1115 1116 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1117 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1118 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1119 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1120 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1121 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1122 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1123 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1124 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1125 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1126 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1127 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1128 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1129 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1130 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1131 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1132 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1134 1135 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1136 IPI_PRIV | IPI_WR | IPI_MODOK, 1137 IF_CMD, ip_sioctl_sifname, NULL }, 1138 1139 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1140 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1141 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1142 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 1153 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 1154 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1155 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 1156 IF_CMD, ip_sioctl_get_muxid, NULL }, 1157 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1158 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 1159 1160 /* Both if and lif variants share same func */ 1161 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 1162 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1163 /* Both if and lif variants share same func */ 1164 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1165 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 1166 1167 /* copyin size cannot be coded for SIOCGIFCONF */ 1168 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 1169 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1170 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1186 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1187 1188 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1189 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 1190 ip_sioctl_removeif_restart }, 1191 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1192 IPI_GET_CMD | IPI_PRIV | IPI_WR, 1193 LIF_CMD, ip_sioctl_addif, NULL }, 1194 #define SIOCLIFADDR_NDX 112 1195 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1196 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1197 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1198 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 1199 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1200 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1201 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1202 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1203 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1204 IPI_PRIV | IPI_WR, 1205 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1206 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1207 IPI_GET_CMD | IPI_MODOK, 1208 LIF_CMD, ip_sioctl_get_flags, NULL }, 1209 1210 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1211 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1212 1213 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1214 ip_sioctl_get_lifconf, NULL }, 1215 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1216 LIF_CMD, ip_sioctl_mtu, NULL }, 1217 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 1218 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1219 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1220 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1221 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1222 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1223 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1224 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 1225 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1226 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1227 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1228 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 1229 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1230 LIF_CMD, ip_sioctl_metric, NULL }, 1231 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1232 IPI_PRIV | IPI_WR | IPI_MODOK, 1233 LIF_CMD, ip_sioctl_slifname, 1234 ip_sioctl_slifname_restart }, 1235 1236 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 1237 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1238 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1239 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1240 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1241 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1242 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1243 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1244 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1245 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1246 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1247 LIF_CMD, ip_sioctl_token, NULL }, 1248 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1249 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1250 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1251 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1252 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1253 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1254 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1256 1257 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1258 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1259 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1260 LIF_CMD, ip_siocdelndp_v6, NULL }, 1261 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1262 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1263 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1264 LIF_CMD, ip_siocsetndp_v6, NULL }, 1265 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1266 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1267 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1268 MISC_CMD, ip_sioctl_tonlink, NULL }, 1269 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1270 MISC_CMD, ip_sioctl_tmysite, NULL }, 1271 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), 0, 1272 TUN_CMD, ip_sioctl_tunparam, NULL }, 1273 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1274 IPI_PRIV | IPI_WR, 1275 TUN_CMD, ip_sioctl_tunparam, NULL }, 1276 1277 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1278 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1279 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1280 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1281 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1282 1283 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1284 1285 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1286 LIF_CMD, ip_sioctl_get_binding, NULL }, 1287 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1288 IPI_PRIV | IPI_WR, 1289 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1290 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1291 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1292 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1293 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1294 1295 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1296 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1297 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1298 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1299 1300 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1301 1302 /* These are handled in ip_sioctl_copyin_setup itself */ 1303 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1304 MISC_CMD, NULL, NULL }, 1305 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1306 MISC_CMD, NULL, NULL }, 1307 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1308 1309 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1310 ip_sioctl_get_lifconf, NULL }, 1311 1312 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1313 XARP_CMD, ip_sioctl_arp, NULL }, 1314 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1315 XARP_CMD, ip_sioctl_arp, NULL }, 1316 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1317 XARP_CMD, ip_sioctl_arp, NULL }, 1318 1319 /* SIOCPOPSOCKFS is not handled by IP */ 1320 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1321 1322 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1323 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1324 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1325 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1326 ip_sioctl_slifzone_restart }, 1327 /* 172-174 are SCTP ioctls and not handled by IP */ 1328 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1329 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1330 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1331 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1332 IPI_GET_CMD, LIF_CMD, 1333 ip_sioctl_get_lifusesrc, 0 }, 1334 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1335 IPI_PRIV | IPI_WR, 1336 LIF_CMD, ip_sioctl_slifusesrc, 1337 NULL }, 1338 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1339 ip_sioctl_get_lifsrcof, NULL }, 1340 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1341 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1342 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1343 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1344 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1345 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1346 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1347 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1348 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1349 /* SIOCSENABLESDP is handled by SDP */ 1350 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1351 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1352 }; 1353 1354 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1355 1356 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1357 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1358 IPI_GET_CMD, TUN_CMD, ip_sioctl_tunparam, NULL }, 1359 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1360 TUN_CMD, ip_sioctl_tunparam, NULL }, 1361 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1362 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1363 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1364 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1365 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1366 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1367 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1368 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1369 MISC_CMD, mrt_ioctl}, 1370 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1371 MISC_CMD, mrt_ioctl}, 1372 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1373 MISC_CMD, mrt_ioctl} 1374 }; 1375 1376 int ip_misc_ioctl_count = 1377 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1378 1379 int conn_drain_nthreads; /* Number of drainers reqd. */ 1380 /* Settable in /etc/system */ 1381 /* Defined in ip_ire.c */ 1382 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1383 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1384 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1385 1386 static nv_t ire_nv_arr[] = { 1387 { IRE_BROADCAST, "BROADCAST" }, 1388 { IRE_LOCAL, "LOCAL" }, 1389 { IRE_LOOPBACK, "LOOPBACK" }, 1390 { IRE_CACHE, "CACHE" }, 1391 { IRE_DEFAULT, "DEFAULT" }, 1392 { IRE_PREFIX, "PREFIX" }, 1393 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1394 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1395 { IRE_HOST, "HOST" }, 1396 { 0 } 1397 }; 1398 1399 nv_t *ire_nv_tbl = ire_nv_arr; 1400 1401 /* Simple ICMP IP Header Template */ 1402 static ipha_t icmp_ipha = { 1403 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1404 }; 1405 1406 struct module_info ip_mod_info = { 1407 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1408 IP_MOD_LOWAT 1409 }; 1410 1411 /* 1412 * Duplicate static symbols within a module confuses mdb; so we avoid the 1413 * problem by making the symbols here distinct from those in udp.c. 1414 */ 1415 1416 /* 1417 * Entry points for IP as a device and as a module. 1418 * FIXME: down the road we might want a separate module and driver qinit. 1419 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1420 */ 1421 static struct qinit iprinitv4 = { 1422 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1423 &ip_mod_info 1424 }; 1425 1426 struct qinit iprinitv6 = { 1427 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1428 &ip_mod_info 1429 }; 1430 1431 static struct qinit ipwinitv4 = { 1432 (pfi_t)ip_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1433 &ip_mod_info 1434 }; 1435 1436 struct qinit ipwinitv6 = { 1437 (pfi_t)ip_wput_v6, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1438 &ip_mod_info 1439 }; 1440 1441 static struct qinit iplrinit = { 1442 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1443 &ip_mod_info 1444 }; 1445 1446 static struct qinit iplwinit = { 1447 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1448 &ip_mod_info 1449 }; 1450 1451 /* For AF_INET aka /dev/ip */ 1452 struct streamtab ipinfov4 = { 1453 &iprinitv4, &ipwinitv4, &iplrinit, &iplwinit 1454 }; 1455 1456 /* For AF_INET6 aka /dev/ip6 */ 1457 struct streamtab ipinfov6 = { 1458 &iprinitv6, &ipwinitv6, &iplrinit, &iplwinit 1459 }; 1460 1461 #ifdef DEBUG 1462 static boolean_t skip_sctp_cksum = B_FALSE; 1463 #endif 1464 1465 /* 1466 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1467 * ip_rput_v6(), ip_output(), etc. If the message 1468 * block already has a M_CTL at the front of it, then simply set the zoneid 1469 * appropriately. 1470 */ 1471 mblk_t * 1472 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst) 1473 { 1474 mblk_t *first_mp; 1475 ipsec_out_t *io; 1476 1477 ASSERT(zoneid != ALL_ZONES); 1478 if (mp->b_datap->db_type == M_CTL) { 1479 io = (ipsec_out_t *)mp->b_rptr; 1480 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1481 io->ipsec_out_zoneid = zoneid; 1482 return (mp); 1483 } 1484 1485 first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack); 1486 if (first_mp == NULL) 1487 return (NULL); 1488 io = (ipsec_out_t *)first_mp->b_rptr; 1489 /* This is not a secure packet */ 1490 io->ipsec_out_secure = B_FALSE; 1491 io->ipsec_out_zoneid = zoneid; 1492 first_mp->b_cont = mp; 1493 return (first_mp); 1494 } 1495 1496 /* 1497 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1498 */ 1499 mblk_t * 1500 ip_copymsg(mblk_t *mp) 1501 { 1502 mblk_t *nmp; 1503 ipsec_info_t *in; 1504 1505 if (mp->b_datap->db_type != M_CTL) 1506 return (copymsg(mp)); 1507 1508 in = (ipsec_info_t *)mp->b_rptr; 1509 1510 /* 1511 * Note that M_CTL is also used for delivering ICMP error messages 1512 * upstream to transport layers. 1513 */ 1514 if (in->ipsec_info_type != IPSEC_OUT && 1515 in->ipsec_info_type != IPSEC_IN) 1516 return (copymsg(mp)); 1517 1518 nmp = copymsg(mp->b_cont); 1519 1520 if (in->ipsec_info_type == IPSEC_OUT) { 1521 return (ipsec_out_tag(mp, nmp, 1522 ((ipsec_out_t *)in)->ipsec_out_ns)); 1523 } else { 1524 return (ipsec_in_tag(mp, nmp, 1525 ((ipsec_in_t *)in)->ipsec_in_ns)); 1526 } 1527 } 1528 1529 /* Generate an ICMP fragmentation needed message. */ 1530 static void 1531 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid, 1532 ip_stack_t *ipst) 1533 { 1534 icmph_t icmph; 1535 mblk_t *first_mp; 1536 boolean_t mctl_present; 1537 1538 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1539 1540 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 1541 if (mctl_present) 1542 freeb(first_mp); 1543 return; 1544 } 1545 1546 bzero(&icmph, sizeof (icmph_t)); 1547 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1548 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1549 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1550 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1551 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1552 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 1553 ipst); 1554 } 1555 1556 /* 1557 * icmp_inbound deals with ICMP messages in the following ways. 1558 * 1559 * 1) It needs to send a reply back and possibly delivering it 1560 * to the "interested" upper clients. 1561 * 2) It needs to send it to the upper clients only. 1562 * 3) It needs to change some values in IP only. 1563 * 4) It needs to change some values in IP and upper layers e.g TCP. 1564 * 1565 * We need to accomodate icmp messages coming in clear until we get 1566 * everything secure from the wire. If icmp_accept_clear_messages 1567 * is zero we check with the global policy and act accordingly. If 1568 * it is non-zero, we accept the message without any checks. But 1569 * *this does not mean* that this will be delivered to the upper 1570 * clients. By accepting we might send replies back, change our MTU 1571 * value etc. but delivery to the ULP/clients depends on their policy 1572 * dispositions. 1573 * 1574 * We handle the above 4 cases in the context of IPsec in the 1575 * following way : 1576 * 1577 * 1) Send the reply back in the same way as the request came in. 1578 * If it came in encrypted, it goes out encrypted. If it came in 1579 * clear, it goes out in clear. Thus, this will prevent chosen 1580 * plain text attack. 1581 * 2) The client may or may not expect things to come in secure. 1582 * If it comes in secure, the policy constraints are checked 1583 * before delivering it to the upper layers. If it comes in 1584 * clear, ipsec_inbound_accept_clear will decide whether to 1585 * accept this in clear or not. In both the cases, if the returned 1586 * message (IP header + 8 bytes) that caused the icmp message has 1587 * AH/ESP headers, it is sent up to AH/ESP for validation before 1588 * sending up. If there are only 8 bytes of returned message, then 1589 * upper client will not be notified. 1590 * 3) Check with global policy to see whether it matches the constaints. 1591 * But this will be done only if icmp_accept_messages_in_clear is 1592 * zero. 1593 * 4) If we need to change both in IP and ULP, then the decision taken 1594 * while affecting the values in IP and while delivering up to TCP 1595 * should be the same. 1596 * 1597 * There are two cases. 1598 * 1599 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1600 * failed), we will not deliver it to the ULP, even though they 1601 * are *willing* to accept in *clear*. This is fine as our global 1602 * disposition to icmp messages asks us reject the datagram. 1603 * 1604 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1605 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1606 * to deliver it to ULP (policy failed), it can lead to 1607 * consistency problems. The cases known at this time are 1608 * ICMP_DESTINATION_UNREACHABLE messages with following code 1609 * values : 1610 * 1611 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1612 * and Upper layer rejects. Then the communication will 1613 * come to a stop. This is solved by making similar decisions 1614 * at both levels. Currently, when we are unable to deliver 1615 * to the Upper Layer (due to policy failures) while IP has 1616 * adjusted ire_max_frag, the next outbound datagram would 1617 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1618 * will be with the right level of protection. Thus the right 1619 * value will be communicated even if we are not able to 1620 * communicate when we get from the wire initially. But this 1621 * assumes there would be at least one outbound datagram after 1622 * IP has adjusted its ire_max_frag value. To make things 1623 * simpler, we accept in clear after the validation of 1624 * AH/ESP headers. 1625 * 1626 * - Other ICMP ERRORS : We may not be able to deliver it to the 1627 * upper layer depending on the level of protection the upper 1628 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1629 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1630 * should be accepted in clear when the Upper layer expects secure. 1631 * Thus the communication may get aborted by some bad ICMP 1632 * packets. 1633 * 1634 * IPQoS Notes: 1635 * The only instance when a packet is sent for processing is when there 1636 * isn't an ICMP client and if we are interested in it. 1637 * If there is a client, IPPF processing will take place in the 1638 * ip_fanout_proto routine. 1639 * 1640 * Zones notes: 1641 * The packet is only processed in the context of the specified zone: typically 1642 * only this zone will reply to an echo request, and only interested clients in 1643 * this zone will receive a copy of the packet. This means that the caller must 1644 * call icmp_inbound() for each relevant zone. 1645 */ 1646 static void 1647 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1648 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1649 ill_t *recv_ill, zoneid_t zoneid) 1650 { 1651 icmph_t *icmph; 1652 ipha_t *ipha; 1653 int iph_hdr_length; 1654 int hdr_length; 1655 boolean_t interested; 1656 uint32_t ts; 1657 uchar_t *wptr; 1658 ipif_t *ipif; 1659 mblk_t *first_mp; 1660 ipsec_in_t *ii; 1661 timestruc_t now; 1662 uint32_t ill_index; 1663 ip_stack_t *ipst; 1664 1665 ASSERT(ill != NULL); 1666 ipst = ill->ill_ipst; 1667 1668 first_mp = mp; 1669 if (mctl_present) { 1670 mp = first_mp->b_cont; 1671 ASSERT(mp != NULL); 1672 } 1673 1674 ipha = (ipha_t *)mp->b_rptr; 1675 if (ipst->ips_icmp_accept_clear_messages == 0) { 1676 first_mp = ipsec_check_global_policy(first_mp, NULL, 1677 ipha, NULL, mctl_present, ipst->ips_netstack); 1678 if (first_mp == NULL) 1679 return; 1680 } 1681 1682 /* 1683 * On a labeled system, we have to check whether the zone itself is 1684 * permitted to receive raw traffic. 1685 */ 1686 if (is_system_labeled()) { 1687 if (zoneid == ALL_ZONES) 1688 zoneid = tsol_packet_to_zoneid(mp); 1689 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1690 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1691 zoneid)); 1692 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1693 freemsg(first_mp); 1694 return; 1695 } 1696 } 1697 1698 /* 1699 * We have accepted the ICMP message. It means that we will 1700 * respond to the packet if needed. It may not be delivered 1701 * to the upper client depending on the policy constraints 1702 * and the disposition in ipsec_inbound_accept_clear. 1703 */ 1704 1705 ASSERT(ill != NULL); 1706 1707 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1708 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1709 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1710 /* Last chance to get real. */ 1711 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1712 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1713 freemsg(first_mp); 1714 return; 1715 } 1716 /* Refresh iph following the pullup. */ 1717 ipha = (ipha_t *)mp->b_rptr; 1718 } 1719 /* ICMP header checksum, including checksum field, should be zero. */ 1720 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1721 IP_CSUM(mp, iph_hdr_length, 0)) { 1722 BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs); 1723 freemsg(first_mp); 1724 return; 1725 } 1726 /* The IP header will always be a multiple of four bytes */ 1727 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1728 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1729 icmph->icmph_code)); 1730 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1731 /* We will set "interested" to "true" if we want a copy */ 1732 interested = B_FALSE; 1733 switch (icmph->icmph_type) { 1734 case ICMP_ECHO_REPLY: 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1736 break; 1737 case ICMP_DEST_UNREACHABLE: 1738 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1739 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1740 interested = B_TRUE; /* Pass up to transport */ 1741 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1742 break; 1743 case ICMP_SOURCE_QUENCH: 1744 interested = B_TRUE; /* Pass up to transport */ 1745 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1746 break; 1747 case ICMP_REDIRECT: 1748 if (!ipst->ips_ip_ignore_redirect) 1749 interested = B_TRUE; 1750 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1751 break; 1752 case ICMP_ECHO_REQUEST: 1753 /* 1754 * Whether to respond to echo requests that come in as IP 1755 * broadcasts or as IP multicast is subject to debate 1756 * (what isn't?). We aim to please, you pick it. 1757 * Default is do it. 1758 */ 1759 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1760 /* unicast: always respond */ 1761 interested = B_TRUE; 1762 } else if (CLASSD(ipha->ipha_dst)) { 1763 /* multicast: respond based on tunable */ 1764 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1765 } else if (broadcast) { 1766 /* broadcast: respond based on tunable */ 1767 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1768 } 1769 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1770 break; 1771 case ICMP_ROUTER_ADVERTISEMENT: 1772 case ICMP_ROUTER_SOLICITATION: 1773 break; 1774 case ICMP_TIME_EXCEEDED: 1775 interested = B_TRUE; /* Pass up to transport */ 1776 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1777 break; 1778 case ICMP_PARAM_PROBLEM: 1779 interested = B_TRUE; /* Pass up to transport */ 1780 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1781 break; 1782 case ICMP_TIME_STAMP_REQUEST: 1783 /* Response to Time Stamp Requests is local policy. */ 1784 if (ipst->ips_ip_g_resp_to_timestamp && 1785 /* So is whether to respond if it was an IP broadcast. */ 1786 (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) { 1787 int tstamp_len = 3 * sizeof (uint32_t); 1788 1789 if (wptr + tstamp_len > mp->b_wptr) { 1790 if (!pullupmsg(mp, wptr + tstamp_len - 1791 mp->b_rptr)) { 1792 BUMP_MIB(ill->ill_ip_mib, 1793 ipIfStatsInDiscards); 1794 freemsg(first_mp); 1795 return; 1796 } 1797 /* Refresh ipha following the pullup. */ 1798 ipha = (ipha_t *)mp->b_rptr; 1799 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1800 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1801 } 1802 interested = B_TRUE; 1803 } 1804 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1805 break; 1806 case ICMP_TIME_STAMP_REPLY: 1807 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1808 break; 1809 case ICMP_INFO_REQUEST: 1810 /* Per RFC 1122 3.2.2.7, ignore this. */ 1811 case ICMP_INFO_REPLY: 1812 break; 1813 case ICMP_ADDRESS_MASK_REQUEST: 1814 if ((ipst->ips_ip_respond_to_address_mask_broadcast || 1815 !broadcast) && 1816 /* TODO m_pullup of complete header? */ 1817 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) { 1818 interested = B_TRUE; 1819 } 1820 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1821 break; 1822 case ICMP_ADDRESS_MASK_REPLY: 1823 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1824 break; 1825 default: 1826 interested = B_TRUE; /* Pass up to transport */ 1827 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1828 break; 1829 } 1830 /* See if there is an ICMP client. */ 1831 if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) { 1832 /* If there is an ICMP client and we want one too, copy it. */ 1833 mblk_t *first_mp1; 1834 1835 if (!interested) { 1836 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1837 ip_policy, recv_ill, zoneid); 1838 return; 1839 } 1840 first_mp1 = ip_copymsg(first_mp); 1841 if (first_mp1 != NULL) { 1842 ip_fanout_proto(q, first_mp1, ill, ipha, 1843 0, mctl_present, ip_policy, recv_ill, zoneid); 1844 } 1845 } else if (!interested) { 1846 freemsg(first_mp); 1847 return; 1848 } else { 1849 /* 1850 * Initiate policy processing for this packet if ip_policy 1851 * is true. 1852 */ 1853 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 1854 ill_index = ill->ill_phyint->phyint_ifindex; 1855 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1856 if (mp == NULL) { 1857 if (mctl_present) { 1858 freeb(first_mp); 1859 } 1860 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1861 return; 1862 } 1863 } 1864 } 1865 /* We want to do something with it. */ 1866 /* Check db_ref to make sure we can modify the packet. */ 1867 if (mp->b_datap->db_ref > 1) { 1868 mblk_t *first_mp1; 1869 1870 first_mp1 = ip_copymsg(first_mp); 1871 freemsg(first_mp); 1872 if (!first_mp1) { 1873 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1874 return; 1875 } 1876 first_mp = first_mp1; 1877 if (mctl_present) { 1878 mp = first_mp->b_cont; 1879 ASSERT(mp != NULL); 1880 } else { 1881 mp = first_mp; 1882 } 1883 ipha = (ipha_t *)mp->b_rptr; 1884 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1885 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1886 } 1887 switch (icmph->icmph_type) { 1888 case ICMP_ADDRESS_MASK_REQUEST: 1889 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1890 if (ipif == NULL) { 1891 freemsg(first_mp); 1892 return; 1893 } 1894 /* 1895 * outging interface must be IPv4 1896 */ 1897 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1898 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1899 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1900 ipif_refrele(ipif); 1901 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1902 break; 1903 case ICMP_ECHO_REQUEST: 1904 icmph->icmph_type = ICMP_ECHO_REPLY; 1905 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1906 break; 1907 case ICMP_TIME_STAMP_REQUEST: { 1908 uint32_t *tsp; 1909 1910 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1911 tsp = (uint32_t *)wptr; 1912 tsp++; /* Skip past 'originate time' */ 1913 /* Compute # of milliseconds since midnight */ 1914 gethrestime(&now); 1915 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1916 now.tv_nsec / (NANOSEC / MILLISEC); 1917 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1918 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1919 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1920 break; 1921 } 1922 default: 1923 ipha = (ipha_t *)&icmph[1]; 1924 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1925 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1926 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1927 freemsg(first_mp); 1928 return; 1929 } 1930 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1931 ipha = (ipha_t *)&icmph[1]; 1932 } 1933 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1934 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1935 freemsg(first_mp); 1936 return; 1937 } 1938 hdr_length = IPH_HDR_LENGTH(ipha); 1939 if (hdr_length < sizeof (ipha_t)) { 1940 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1941 freemsg(first_mp); 1942 return; 1943 } 1944 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 1945 if (!pullupmsg(mp, 1946 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 1947 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1948 freemsg(first_mp); 1949 return; 1950 } 1951 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1952 ipha = (ipha_t *)&icmph[1]; 1953 } 1954 switch (icmph->icmph_type) { 1955 case ICMP_REDIRECT: 1956 /* 1957 * As there is no upper client to deliver, we don't 1958 * need the first_mp any more. 1959 */ 1960 if (mctl_present) { 1961 freeb(first_mp); 1962 } 1963 icmp_redirect(ill, mp); 1964 return; 1965 case ICMP_DEST_UNREACHABLE: 1966 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1967 if (!icmp_inbound_too_big(icmph, ipha, ill, 1968 zoneid, mp, iph_hdr_length, ipst)) { 1969 freemsg(first_mp); 1970 return; 1971 } 1972 /* 1973 * icmp_inbound_too_big() may alter mp. 1974 * Resynch ipha and icmph accordingly. 1975 */ 1976 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1977 ipha = (ipha_t *)&icmph[1]; 1978 } 1979 /* FALLTHRU */ 1980 default : 1981 /* 1982 * IPQoS notes: Since we have already done IPQoS 1983 * processing we don't want to do it again in 1984 * the fanout routines called by 1985 * icmp_inbound_error_fanout, hence the last 1986 * argument, ip_policy, is B_FALSE. 1987 */ 1988 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 1989 ipha, iph_hdr_length, hdr_length, mctl_present, 1990 B_FALSE, recv_ill, zoneid); 1991 } 1992 return; 1993 } 1994 /* Send out an ICMP packet */ 1995 icmph->icmph_checksum = 0; 1996 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 1997 if (broadcast || CLASSD(ipha->ipha_dst)) { 1998 ipif_t *ipif_chosen; 1999 /* 2000 * Make it look like it was directed to us, so we don't look 2001 * like a fool with a broadcast or multicast source address. 2002 */ 2003 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2004 /* 2005 * Make sure that we haven't grabbed an interface that's DOWN. 2006 */ 2007 if (ipif != NULL) { 2008 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2009 ipha->ipha_src, zoneid); 2010 if (ipif_chosen != NULL) { 2011 ipif_refrele(ipif); 2012 ipif = ipif_chosen; 2013 } 2014 } 2015 if (ipif == NULL) { 2016 ip0dbg(("icmp_inbound: " 2017 "No source for broadcast/multicast:\n" 2018 "\tsrc 0x%x dst 0x%x ill %p " 2019 "ipif_lcl_addr 0x%x\n", 2020 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2021 (void *)ill, 2022 ill->ill_ipif->ipif_lcl_addr)); 2023 freemsg(first_mp); 2024 return; 2025 } 2026 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2027 ipha->ipha_dst = ipif->ipif_src_addr; 2028 ipif_refrele(ipif); 2029 } 2030 /* Reset time to live. */ 2031 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2032 { 2033 /* Swap source and destination addresses */ 2034 ipaddr_t tmp; 2035 2036 tmp = ipha->ipha_src; 2037 ipha->ipha_src = ipha->ipha_dst; 2038 ipha->ipha_dst = tmp; 2039 } 2040 ipha->ipha_ident = 0; 2041 if (!IS_SIMPLE_IPH(ipha)) 2042 icmp_options_update(ipha); 2043 2044 if (!mctl_present) { 2045 /* 2046 * This packet should go out the same way as it 2047 * came in i.e in clear. To make sure that global 2048 * policy will not be applied to this in ip_wput_ire, 2049 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2050 */ 2051 ASSERT(first_mp == mp); 2052 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2053 if (first_mp == NULL) { 2054 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2055 freemsg(mp); 2056 return; 2057 } 2058 ii = (ipsec_in_t *)first_mp->b_rptr; 2059 2060 /* This is not a secure packet */ 2061 ii->ipsec_in_secure = B_FALSE; 2062 first_mp->b_cont = mp; 2063 } else { 2064 ii = (ipsec_in_t *)first_mp->b_rptr; 2065 ii->ipsec_in_ns = ipst->ips_netstack; /* No netstack_hold */ 2066 } 2067 ii->ipsec_in_zoneid = zoneid; 2068 ASSERT(zoneid != ALL_ZONES); 2069 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2070 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2071 return; 2072 } 2073 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2074 put(WR(q), first_mp); 2075 } 2076 2077 static ipaddr_t 2078 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2079 { 2080 conn_t *connp; 2081 connf_t *connfp; 2082 ipaddr_t nexthop_addr = INADDR_ANY; 2083 int hdr_length = IPH_HDR_LENGTH(ipha); 2084 uint16_t *up; 2085 uint32_t ports; 2086 ip_stack_t *ipst = ill->ill_ipst; 2087 2088 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2089 switch (ipha->ipha_protocol) { 2090 case IPPROTO_TCP: 2091 { 2092 tcph_t *tcph; 2093 2094 /* do a reverse lookup */ 2095 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2096 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2097 TCPS_LISTEN, ipst); 2098 break; 2099 } 2100 case IPPROTO_UDP: 2101 { 2102 uint32_t dstport, srcport; 2103 2104 ((uint16_t *)&ports)[0] = up[1]; 2105 ((uint16_t *)&ports)[1] = up[0]; 2106 2107 /* Extract ports in net byte order */ 2108 dstport = htons(ntohl(ports) & 0xFFFF); 2109 srcport = htons(ntohl(ports) >> 16); 2110 2111 connfp = &ipst->ips_ipcl_udp_fanout[ 2112 IPCL_UDP_HASH(dstport, ipst)]; 2113 mutex_enter(&connfp->connf_lock); 2114 connp = connfp->connf_head; 2115 2116 /* do a reverse lookup */ 2117 while ((connp != NULL) && 2118 (!IPCL_UDP_MATCH(connp, dstport, 2119 ipha->ipha_src, srcport, ipha->ipha_dst) || 2120 !IPCL_ZONE_MATCH(connp, zoneid))) { 2121 connp = connp->conn_next; 2122 } 2123 if (connp != NULL) 2124 CONN_INC_REF(connp); 2125 mutex_exit(&connfp->connf_lock); 2126 break; 2127 } 2128 case IPPROTO_SCTP: 2129 { 2130 in6_addr_t map_src, map_dst; 2131 2132 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2133 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2134 ((uint16_t *)&ports)[0] = up[1]; 2135 ((uint16_t *)&ports)[1] = up[0]; 2136 2137 connp = sctp_find_conn(&map_src, &map_dst, ports, 2138 zoneid, ipst->ips_netstack->netstack_sctp); 2139 if (connp == NULL) { 2140 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2141 zoneid, ports, ipha, ipst); 2142 } else { 2143 CONN_INC_REF(connp); 2144 SCTP_REFRELE(CONN2SCTP(connp)); 2145 } 2146 break; 2147 } 2148 default: 2149 { 2150 ipha_t ripha; 2151 2152 ripha.ipha_src = ipha->ipha_dst; 2153 ripha.ipha_dst = ipha->ipha_src; 2154 ripha.ipha_protocol = ipha->ipha_protocol; 2155 2156 connfp = &ipst->ips_ipcl_proto_fanout[ 2157 ipha->ipha_protocol]; 2158 mutex_enter(&connfp->connf_lock); 2159 connp = connfp->connf_head; 2160 for (connp = connfp->connf_head; connp != NULL; 2161 connp = connp->conn_next) { 2162 if (IPCL_PROTO_MATCH(connp, 2163 ipha->ipha_protocol, &ripha, ill, 2164 0, zoneid)) { 2165 CONN_INC_REF(connp); 2166 break; 2167 } 2168 } 2169 mutex_exit(&connfp->connf_lock); 2170 } 2171 } 2172 if (connp != NULL) { 2173 if (connp->conn_nexthop_set) 2174 nexthop_addr = connp->conn_nexthop_v4; 2175 CONN_DEC_REF(connp); 2176 } 2177 return (nexthop_addr); 2178 } 2179 2180 /* Table from RFC 1191 */ 2181 static int icmp_frag_size_table[] = 2182 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2183 2184 /* 2185 * Process received ICMP Packet too big. 2186 * After updating any IRE it does the fanout to any matching transport streams. 2187 * Assumes the message has been pulled up till the IP header that caused 2188 * the error. 2189 * 2190 * Returns B_FALSE on failure and B_TRUE on success. 2191 */ 2192 static boolean_t 2193 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2194 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length, 2195 ip_stack_t *ipst) 2196 { 2197 ire_t *ire, *first_ire; 2198 int mtu, orig_mtu; 2199 int hdr_length; 2200 ipaddr_t nexthop_addr; 2201 boolean_t disable_pmtud; 2202 2203 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2204 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2205 ASSERT(ill != NULL); 2206 2207 hdr_length = IPH_HDR_LENGTH(ipha); 2208 2209 /* Drop if the original packet contained a source route */ 2210 if (ip_source_route_included(ipha)) { 2211 return (B_FALSE); 2212 } 2213 /* 2214 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2215 * header. 2216 */ 2217 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2218 mp->b_wptr) { 2219 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2220 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2221 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2222 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2223 return (B_FALSE); 2224 } 2225 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2226 ipha = (ipha_t *)&icmph[1]; 2227 } 2228 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2229 if (nexthop_addr != INADDR_ANY) { 2230 /* nexthop set */ 2231 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2232 nexthop_addr, 0, NULL, ALL_ZONES, msg_getlabel(mp), 2233 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst); 2234 } else { 2235 /* nexthop not set */ 2236 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2237 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 2238 } 2239 2240 if (!first_ire) { 2241 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2242 ntohl(ipha->ipha_dst))); 2243 return (B_FALSE); 2244 } 2245 2246 /* Check for MTU discovery advice as described in RFC 1191 */ 2247 mtu = ntohs(icmph->icmph_du_mtu); 2248 orig_mtu = mtu; 2249 disable_pmtud = B_FALSE; 2250 2251 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2252 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2253 ire = ire->ire_next) { 2254 /* 2255 * Look for the connection to which this ICMP message is 2256 * directed. If it has the IP_NEXTHOP option set, then the 2257 * search is limited to IREs with the MATCH_IRE_PRIVATE 2258 * option. Else the search is limited to regular IREs. 2259 */ 2260 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2261 (nexthop_addr != ire->ire_gateway_addr)) || 2262 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2263 (nexthop_addr != INADDR_ANY))) 2264 continue; 2265 2266 mutex_enter(&ire->ire_lock); 2267 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 2268 uint32_t length; 2269 int i; 2270 2271 /* 2272 * Use the table from RFC 1191 to figure out 2273 * the next "plateau" based on the length in 2274 * the original IP packet. 2275 */ 2276 length = ntohs(ipha->ipha_length); 2277 DTRACE_PROBE2(ip4__pmtu__guess, ire_t *, ire, 2278 uint32_t, length); 2279 if (ire->ire_max_frag <= length && 2280 ire->ire_max_frag >= length - hdr_length) { 2281 /* 2282 * Handle broken BSD 4.2 systems that 2283 * return the wrong iph_length in ICMP 2284 * errors. 2285 */ 2286 length -= hdr_length; 2287 } 2288 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2289 if (length > icmp_frag_size_table[i]) 2290 break; 2291 } 2292 if (i == A_CNT(icmp_frag_size_table)) { 2293 /* Smaller than 68! */ 2294 disable_pmtud = B_TRUE; 2295 mtu = ipst->ips_ip_pmtu_min; 2296 } else { 2297 mtu = icmp_frag_size_table[i]; 2298 if (mtu < ipst->ips_ip_pmtu_min) { 2299 mtu = ipst->ips_ip_pmtu_min; 2300 disable_pmtud = B_TRUE; 2301 } 2302 } 2303 /* Fool the ULP into believing our guessed PMTU. */ 2304 icmph->icmph_du_zero = 0; 2305 icmph->icmph_du_mtu = htons(mtu); 2306 } 2307 if (disable_pmtud) 2308 ire->ire_frag_flag = 0; 2309 /* Reduce the IRE max frag value as advised. */ 2310 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2311 if (ire->ire_max_frag == mtu) { 2312 /* Decreased it */ 2313 ire->ire_marks |= IRE_MARK_PMTU; 2314 } 2315 mutex_exit(&ire->ire_lock); 2316 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, ire_t *, 2317 ire, int, orig_mtu, int, mtu); 2318 } 2319 rw_exit(&first_ire->ire_bucket->irb_lock); 2320 ire_refrele(first_ire); 2321 return (B_TRUE); 2322 } 2323 2324 /* 2325 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2326 * calls this function. 2327 */ 2328 static mblk_t * 2329 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2330 { 2331 ipha_t *ipha; 2332 icmph_t *icmph; 2333 ipha_t *in_ipha; 2334 int length; 2335 2336 ASSERT(mp->b_datap->db_type == M_DATA); 2337 2338 /* 2339 * For Self-encapsulated packets, we added an extra IP header 2340 * without the options. Inner IP header is the one from which 2341 * the outer IP header was formed. Thus, we need to remove the 2342 * outer IP header. To do this, we pullup the whole message 2343 * and overlay whatever follows the outer IP header over the 2344 * outer IP header. 2345 */ 2346 2347 if (!pullupmsg(mp, -1)) 2348 return (NULL); 2349 2350 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2351 ipha = (ipha_t *)&icmph[1]; 2352 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2353 2354 /* 2355 * The length that we want to overlay is following the inner 2356 * IP header. Subtracting the IP header + icmp header + outer 2357 * IP header's length should give us the length that we want to 2358 * overlay. 2359 */ 2360 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2361 hdr_length; 2362 /* 2363 * Overlay whatever follows the inner header over the 2364 * outer header. 2365 */ 2366 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2367 2368 /* Set the wptr to account for the outer header */ 2369 mp->b_wptr -= hdr_length; 2370 return (mp); 2371 } 2372 2373 /* 2374 * Try to pass the ICMP message upstream in case the ULP cares. 2375 * 2376 * If the packet that caused the ICMP error is secure, we send 2377 * it to AH/ESP to make sure that the attached packet has a 2378 * valid association. ipha in the code below points to the 2379 * IP header of the packet that caused the error. 2380 * 2381 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2382 * in the context of IPsec. Normally we tell the upper layer 2383 * whenever we send the ire (including ip_bind), the IPsec header 2384 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2385 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2386 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2387 * same thing. As TCP has the IPsec options size that needs to be 2388 * adjusted, we just pass the MTU unchanged. 2389 * 2390 * IFN could have been generated locally or by some router. 2391 * 2392 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2393 * This happens because IP adjusted its value of MTU on an 2394 * earlier IFN message and could not tell the upper layer, 2395 * the new adjusted value of MTU e.g. Packet was encrypted 2396 * or there was not enough information to fanout to upper 2397 * layers. Thus on the next outbound datagram, ip_wput_ire 2398 * generates the IFN, where IPsec processing has *not* been 2399 * done. 2400 * 2401 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2402 * could have generated this. This happens because ire_max_frag 2403 * value in IP was set to a new value, while the IPsec processing 2404 * was being done and after we made the fragmentation check in 2405 * ip_wput_ire. Thus on return from IPsec processing, 2406 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2407 * and generates the IFN. As IPsec processing is over, we fanout 2408 * to AH/ESP to remove the header. 2409 * 2410 * In both these cases, ipsec_in_loopback will be set indicating 2411 * that IFN was generated locally. 2412 * 2413 * ROUTER : IFN could be secure or non-secure. 2414 * 2415 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2416 * packet in error has AH/ESP headers to validate the AH/ESP 2417 * headers. AH/ESP will verify whether there is a valid SA or 2418 * not and send it back. We will fanout again if we have more 2419 * data in the packet. 2420 * 2421 * If the packet in error does not have AH/ESP, we handle it 2422 * like any other case. 2423 * 2424 * * NON_SECURE : If the packet in error has AH/ESP headers, 2425 * we attach a dummy ipsec_in and send it up to AH/ESP 2426 * for validation. AH/ESP will verify whether there is a 2427 * valid SA or not and send it back. We will fanout again if 2428 * we have more data in the packet. 2429 * 2430 * If the packet in error does not have AH/ESP, we handle it 2431 * like any other case. 2432 */ 2433 static void 2434 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2435 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2436 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2437 zoneid_t zoneid) 2438 { 2439 uint16_t *up; /* Pointer to ports in ULP header */ 2440 uint32_t ports; /* reversed ports for fanout */ 2441 ipha_t ripha; /* With reversed addresses */ 2442 mblk_t *first_mp; 2443 ipsec_in_t *ii; 2444 tcph_t *tcph; 2445 conn_t *connp; 2446 ip_stack_t *ipst; 2447 2448 ASSERT(ill != NULL); 2449 2450 ASSERT(recv_ill != NULL); 2451 ipst = recv_ill->ill_ipst; 2452 2453 first_mp = mp; 2454 if (mctl_present) { 2455 mp = first_mp->b_cont; 2456 ASSERT(mp != NULL); 2457 2458 ii = (ipsec_in_t *)first_mp->b_rptr; 2459 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2460 } else { 2461 ii = NULL; 2462 } 2463 2464 switch (ipha->ipha_protocol) { 2465 case IPPROTO_UDP: 2466 /* 2467 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2468 * transport header. 2469 */ 2470 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2471 mp->b_wptr) { 2472 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2473 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2474 goto discard_pkt; 2475 } 2476 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2477 ipha = (ipha_t *)&icmph[1]; 2478 } 2479 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2480 2481 /* 2482 * Attempt to find a client stream based on port. 2483 * Note that we do a reverse lookup since the header is 2484 * in the form we sent it out. 2485 * The ripha header is only used for the IP_UDP_MATCH and we 2486 * only set the src and dst addresses and protocol. 2487 */ 2488 ripha.ipha_src = ipha->ipha_dst; 2489 ripha.ipha_dst = ipha->ipha_src; 2490 ripha.ipha_protocol = ipha->ipha_protocol; 2491 ((uint16_t *)&ports)[0] = up[1]; 2492 ((uint16_t *)&ports)[1] = up[0]; 2493 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2494 ntohl(ipha->ipha_src), ntohs(up[0]), 2495 ntohl(ipha->ipha_dst), ntohs(up[1]), 2496 icmph->icmph_type, icmph->icmph_code)); 2497 2498 /* Have to change db_type after any pullupmsg */ 2499 DB_TYPE(mp) = M_CTL; 2500 2501 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2502 mctl_present, ip_policy, recv_ill, zoneid); 2503 return; 2504 2505 case IPPROTO_TCP: 2506 /* 2507 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2508 * transport header. 2509 */ 2510 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2511 mp->b_wptr) { 2512 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2513 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2514 goto discard_pkt; 2515 } 2516 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2517 ipha = (ipha_t *)&icmph[1]; 2518 } 2519 /* 2520 * Find a TCP client stream for this packet. 2521 * Note that we do a reverse lookup since the header is 2522 * in the form we sent it out. 2523 */ 2524 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2525 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN, 2526 ipst); 2527 if (connp == NULL) 2528 goto discard_pkt; 2529 2530 /* Have to change db_type after any pullupmsg */ 2531 DB_TYPE(mp) = M_CTL; 2532 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, tcp_input, connp, 2533 SQ_FILL, SQTAG_TCP_INPUT_ICMP_ERR); 2534 return; 2535 2536 case IPPROTO_SCTP: 2537 /* 2538 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2539 * transport header. 2540 */ 2541 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2542 mp->b_wptr) { 2543 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2544 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2545 goto discard_pkt; 2546 } 2547 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2548 ipha = (ipha_t *)&icmph[1]; 2549 } 2550 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2551 /* 2552 * Find a SCTP client stream for this packet. 2553 * Note that we do a reverse lookup since the header is 2554 * in the form we sent it out. 2555 * The ripha header is only used for the matching and we 2556 * only set the src and dst addresses, protocol, and version. 2557 */ 2558 ripha.ipha_src = ipha->ipha_dst; 2559 ripha.ipha_dst = ipha->ipha_src; 2560 ripha.ipha_protocol = ipha->ipha_protocol; 2561 ripha.ipha_version_and_hdr_length = 2562 ipha->ipha_version_and_hdr_length; 2563 ((uint16_t *)&ports)[0] = up[1]; 2564 ((uint16_t *)&ports)[1] = up[0]; 2565 2566 /* Have to change db_type after any pullupmsg */ 2567 DB_TYPE(mp) = M_CTL; 2568 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2569 mctl_present, ip_policy, zoneid); 2570 return; 2571 2572 case IPPROTO_ESP: 2573 case IPPROTO_AH: { 2574 int ipsec_rc; 2575 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2576 2577 /* 2578 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2579 * We will re-use the IPSEC_IN if it is already present as 2580 * AH/ESP will not affect any fields in the IPSEC_IN for 2581 * ICMP errors. If there is no IPSEC_IN, allocate a new 2582 * one and attach it in the front. 2583 */ 2584 if (ii != NULL) { 2585 /* 2586 * ip_fanout_proto_again converts the ICMP errors 2587 * that come back from AH/ESP to M_DATA so that 2588 * if it is non-AH/ESP and we do a pullupmsg in 2589 * this function, it would work. Convert it back 2590 * to M_CTL before we send up as this is a ICMP 2591 * error. This could have been generated locally or 2592 * by some router. Validate the inner IPsec 2593 * headers. 2594 * 2595 * NOTE : ill_index is used by ip_fanout_proto_again 2596 * to locate the ill. 2597 */ 2598 ASSERT(ill != NULL); 2599 ii->ipsec_in_ill_index = 2600 ill->ill_phyint->phyint_ifindex; 2601 ii->ipsec_in_rill_index = 2602 recv_ill->ill_phyint->phyint_ifindex; 2603 DB_TYPE(first_mp->b_cont) = M_CTL; 2604 } else { 2605 /* 2606 * IPSEC_IN is not present. We attach a ipsec_in 2607 * message and send up to IPsec for validating 2608 * and removing the IPsec headers. Clear 2609 * ipsec_in_secure so that when we return 2610 * from IPsec, we don't mistakenly think that this 2611 * is a secure packet came from the network. 2612 * 2613 * NOTE : ill_index is used by ip_fanout_proto_again 2614 * to locate the ill. 2615 */ 2616 ASSERT(first_mp == mp); 2617 first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 2618 if (first_mp == NULL) { 2619 freemsg(mp); 2620 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2621 return; 2622 } 2623 ii = (ipsec_in_t *)first_mp->b_rptr; 2624 2625 /* This is not a secure packet */ 2626 ii->ipsec_in_secure = B_FALSE; 2627 first_mp->b_cont = mp; 2628 DB_TYPE(mp) = M_CTL; 2629 ASSERT(ill != NULL); 2630 ii->ipsec_in_ill_index = 2631 ill->ill_phyint->phyint_ifindex; 2632 ii->ipsec_in_rill_index = 2633 recv_ill->ill_phyint->phyint_ifindex; 2634 } 2635 ip2dbg(("icmp_inbound_error: ipsec\n")); 2636 2637 if (!ipsec_loaded(ipss)) { 2638 ip_proto_not_sup(q, first_mp, 0, zoneid, ipst); 2639 return; 2640 } 2641 2642 if (ipha->ipha_protocol == IPPROTO_ESP) 2643 ipsec_rc = ipsecesp_icmp_error(first_mp); 2644 else 2645 ipsec_rc = ipsecah_icmp_error(first_mp); 2646 if (ipsec_rc == IPSEC_STATUS_FAILED) 2647 return; 2648 2649 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2650 return; 2651 } 2652 default: 2653 /* 2654 * The ripha header is only used for the lookup and we 2655 * only set the src and dst addresses and protocol. 2656 */ 2657 ripha.ipha_src = ipha->ipha_dst; 2658 ripha.ipha_dst = ipha->ipha_src; 2659 ripha.ipha_protocol = ipha->ipha_protocol; 2660 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2661 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2662 ntohl(ipha->ipha_dst), 2663 icmph->icmph_type, icmph->icmph_code)); 2664 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2665 ipha_t *in_ipha; 2666 2667 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2668 mp->b_wptr) { 2669 if (!pullupmsg(mp, (uchar_t *)ipha + 2670 hdr_length + sizeof (ipha_t) - 2671 mp->b_rptr)) { 2672 goto discard_pkt; 2673 } 2674 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2675 ipha = (ipha_t *)&icmph[1]; 2676 } 2677 /* 2678 * Caller has verified that length has to be 2679 * at least the size of IP header. 2680 */ 2681 ASSERT(hdr_length >= sizeof (ipha_t)); 2682 /* 2683 * Check the sanity of the inner IP header like 2684 * we did for the outer header. 2685 */ 2686 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2687 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2688 goto discard_pkt; 2689 } 2690 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2691 goto discard_pkt; 2692 } 2693 /* Check for Self-encapsulated tunnels */ 2694 if (in_ipha->ipha_src == ipha->ipha_src && 2695 in_ipha->ipha_dst == ipha->ipha_dst) { 2696 2697 mp = icmp_inbound_self_encap_error(mp, 2698 iph_hdr_length, hdr_length); 2699 if (mp == NULL) 2700 goto discard_pkt; 2701 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2702 ipha = (ipha_t *)&icmph[1]; 2703 hdr_length = IPH_HDR_LENGTH(ipha); 2704 /* 2705 * The packet in error is self-encapsualted. 2706 * And we are finding it further encapsulated 2707 * which we could not have possibly generated. 2708 */ 2709 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2710 goto discard_pkt; 2711 } 2712 icmp_inbound_error_fanout(q, ill, first_mp, 2713 icmph, ipha, iph_hdr_length, hdr_length, 2714 mctl_present, ip_policy, recv_ill, zoneid); 2715 return; 2716 } 2717 } 2718 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2719 ipha->ipha_protocol == IPPROTO_IPV6) && 2720 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2721 ii != NULL && 2722 ii->ipsec_in_loopback && 2723 ii->ipsec_in_secure) { 2724 /* 2725 * For IP tunnels that get a looped-back 2726 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2727 * reported new MTU to take into account the IPsec 2728 * headers protecting this configured tunnel. 2729 * 2730 * This allows the tunnel module (tun.c) to blindly 2731 * accept the MTU reported in an ICMP "too big" 2732 * message. 2733 * 2734 * Non-looped back ICMP messages will just be 2735 * handled by the security protocols (if needed), 2736 * and the first subsequent packet will hit this 2737 * path. 2738 */ 2739 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2740 ipsec_in_extra_length(first_mp)); 2741 } 2742 /* Have to change db_type after any pullupmsg */ 2743 DB_TYPE(mp) = M_CTL; 2744 2745 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2746 ip_policy, recv_ill, zoneid); 2747 return; 2748 } 2749 /* NOTREACHED */ 2750 discard_pkt: 2751 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2752 drop_pkt:; 2753 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2754 freemsg(first_mp); 2755 } 2756 2757 /* 2758 * Common IP options parser. 2759 * 2760 * Setup routine: fill in *optp with options-parsing state, then 2761 * tail-call ipoptp_next to return the first option. 2762 */ 2763 uint8_t 2764 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2765 { 2766 uint32_t totallen; /* total length of all options */ 2767 2768 totallen = ipha->ipha_version_and_hdr_length - 2769 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2770 totallen <<= 2; 2771 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2772 optp->ipoptp_end = optp->ipoptp_next + totallen; 2773 optp->ipoptp_flags = 0; 2774 return (ipoptp_next(optp)); 2775 } 2776 2777 /* 2778 * Common IP options parser: extract next option. 2779 */ 2780 uint8_t 2781 ipoptp_next(ipoptp_t *optp) 2782 { 2783 uint8_t *end = optp->ipoptp_end; 2784 uint8_t *cur = optp->ipoptp_next; 2785 uint8_t opt, len, pointer; 2786 2787 /* 2788 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2789 * has been corrupted. 2790 */ 2791 ASSERT(cur <= end); 2792 2793 if (cur == end) 2794 return (IPOPT_EOL); 2795 2796 opt = cur[IPOPT_OPTVAL]; 2797 2798 /* 2799 * Skip any NOP options. 2800 */ 2801 while (opt == IPOPT_NOP) { 2802 cur++; 2803 if (cur == end) 2804 return (IPOPT_EOL); 2805 opt = cur[IPOPT_OPTVAL]; 2806 } 2807 2808 if (opt == IPOPT_EOL) 2809 return (IPOPT_EOL); 2810 2811 /* 2812 * Option requiring a length. 2813 */ 2814 if ((cur + 1) >= end) { 2815 optp->ipoptp_flags |= IPOPTP_ERROR; 2816 return (IPOPT_EOL); 2817 } 2818 len = cur[IPOPT_OLEN]; 2819 if (len < 2) { 2820 optp->ipoptp_flags |= IPOPTP_ERROR; 2821 return (IPOPT_EOL); 2822 } 2823 optp->ipoptp_cur = cur; 2824 optp->ipoptp_len = len; 2825 optp->ipoptp_next = cur + len; 2826 if (cur + len > end) { 2827 optp->ipoptp_flags |= IPOPTP_ERROR; 2828 return (IPOPT_EOL); 2829 } 2830 2831 /* 2832 * For the options which require a pointer field, make sure 2833 * its there, and make sure it points to either something 2834 * inside this option, or the end of the option. 2835 */ 2836 switch (opt) { 2837 case IPOPT_RR: 2838 case IPOPT_TS: 2839 case IPOPT_LSRR: 2840 case IPOPT_SSRR: 2841 if (len <= IPOPT_OFFSET) { 2842 optp->ipoptp_flags |= IPOPTP_ERROR; 2843 return (opt); 2844 } 2845 pointer = cur[IPOPT_OFFSET]; 2846 if (pointer - 1 > len) { 2847 optp->ipoptp_flags |= IPOPTP_ERROR; 2848 return (opt); 2849 } 2850 break; 2851 } 2852 2853 /* 2854 * Sanity check the pointer field based on the type of the 2855 * option. 2856 */ 2857 switch (opt) { 2858 case IPOPT_RR: 2859 case IPOPT_SSRR: 2860 case IPOPT_LSRR: 2861 if (pointer < IPOPT_MINOFF_SR) 2862 optp->ipoptp_flags |= IPOPTP_ERROR; 2863 break; 2864 case IPOPT_TS: 2865 if (pointer < IPOPT_MINOFF_IT) 2866 optp->ipoptp_flags |= IPOPTP_ERROR; 2867 /* 2868 * Note that the Internet Timestamp option also 2869 * contains two four bit fields (the Overflow field, 2870 * and the Flag field), which follow the pointer 2871 * field. We don't need to check that these fields 2872 * fall within the length of the option because this 2873 * was implicitely done above. We've checked that the 2874 * pointer value is at least IPOPT_MINOFF_IT, and that 2875 * it falls within the option. Since IPOPT_MINOFF_IT > 2876 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2877 */ 2878 ASSERT(len > IPOPT_POS_OV_FLG); 2879 break; 2880 } 2881 2882 return (opt); 2883 } 2884 2885 /* 2886 * Use the outgoing IP header to create an IP_OPTIONS option the way 2887 * it was passed down from the application. 2888 */ 2889 int 2890 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2891 { 2892 ipoptp_t opts; 2893 const uchar_t *opt; 2894 uint8_t optval; 2895 uint8_t optlen; 2896 uint32_t len = 0; 2897 uchar_t *buf1 = buf; 2898 2899 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2900 len += IP_ADDR_LEN; 2901 bzero(buf1, IP_ADDR_LEN); 2902 2903 /* 2904 * OK to cast away const here, as we don't store through the returned 2905 * opts.ipoptp_cur pointer. 2906 */ 2907 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 2908 optval != IPOPT_EOL; 2909 optval = ipoptp_next(&opts)) { 2910 int off; 2911 2912 opt = opts.ipoptp_cur; 2913 optlen = opts.ipoptp_len; 2914 switch (optval) { 2915 case IPOPT_SSRR: 2916 case IPOPT_LSRR: 2917 2918 /* 2919 * Insert ipha_dst as the first entry in the source 2920 * route and move down the entries on step. 2921 * The last entry gets placed at buf1. 2922 */ 2923 buf[IPOPT_OPTVAL] = optval; 2924 buf[IPOPT_OLEN] = optlen; 2925 buf[IPOPT_OFFSET] = optlen; 2926 2927 off = optlen - IP_ADDR_LEN; 2928 if (off < 0) { 2929 /* No entries in source route */ 2930 break; 2931 } 2932 /* Last entry in source route */ 2933 bcopy(opt + off, buf1, IP_ADDR_LEN); 2934 off -= IP_ADDR_LEN; 2935 2936 while (off > 0) { 2937 bcopy(opt + off, 2938 buf + off + IP_ADDR_LEN, 2939 IP_ADDR_LEN); 2940 off -= IP_ADDR_LEN; 2941 } 2942 /* ipha_dst into first slot */ 2943 bcopy(&ipha->ipha_dst, 2944 buf + off + IP_ADDR_LEN, 2945 IP_ADDR_LEN); 2946 buf += optlen; 2947 len += optlen; 2948 break; 2949 2950 case IPOPT_COMSEC: 2951 case IPOPT_SECURITY: 2952 /* if passing up a label is not ok, then remove */ 2953 if (is_system_labeled()) 2954 break; 2955 /* FALLTHROUGH */ 2956 default: 2957 bcopy(opt, buf, optlen); 2958 buf += optlen; 2959 len += optlen; 2960 break; 2961 } 2962 } 2963 done: 2964 /* Pad the resulting options */ 2965 while (len & 0x3) { 2966 *buf++ = IPOPT_EOL; 2967 len++; 2968 } 2969 return (len); 2970 } 2971 2972 /* 2973 * Update any record route or timestamp options to include this host. 2974 * Reverse any source route option. 2975 * This routine assumes that the options are well formed i.e. that they 2976 * have already been checked. 2977 */ 2978 static void 2979 icmp_options_update(ipha_t *ipha) 2980 { 2981 ipoptp_t opts; 2982 uchar_t *opt; 2983 uint8_t optval; 2984 ipaddr_t src; /* Our local address */ 2985 ipaddr_t dst; 2986 2987 ip2dbg(("icmp_options_update\n")); 2988 src = ipha->ipha_src; 2989 dst = ipha->ipha_dst; 2990 2991 for (optval = ipoptp_first(&opts, ipha); 2992 optval != IPOPT_EOL; 2993 optval = ipoptp_next(&opts)) { 2994 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2995 opt = opts.ipoptp_cur; 2996 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2997 optval, opts.ipoptp_len)); 2998 switch (optval) { 2999 int off1, off2; 3000 case IPOPT_SSRR: 3001 case IPOPT_LSRR: 3002 /* 3003 * Reverse the source route. The first entry 3004 * should be the next to last one in the current 3005 * source route (the last entry is our address). 3006 * The last entry should be the final destination. 3007 */ 3008 off1 = IPOPT_MINOFF_SR - 1; 3009 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3010 if (off2 < 0) { 3011 /* No entries in source route */ 3012 ip1dbg(( 3013 "icmp_options_update: bad src route\n")); 3014 break; 3015 } 3016 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3017 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3018 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3019 off2 -= IP_ADDR_LEN; 3020 3021 while (off1 < off2) { 3022 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3023 bcopy((char *)opt + off2, (char *)opt + off1, 3024 IP_ADDR_LEN); 3025 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3026 off1 += IP_ADDR_LEN; 3027 off2 -= IP_ADDR_LEN; 3028 } 3029 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3030 break; 3031 } 3032 } 3033 } 3034 3035 /* 3036 * Process received ICMP Redirect messages. 3037 */ 3038 static void 3039 icmp_redirect(ill_t *ill, mblk_t *mp) 3040 { 3041 ipha_t *ipha; 3042 int iph_hdr_length; 3043 icmph_t *icmph; 3044 ipha_t *ipha_err; 3045 ire_t *ire; 3046 ire_t *prev_ire; 3047 ire_t *save_ire; 3048 ipaddr_t src, dst, gateway; 3049 iulp_t ulp_info = { 0 }; 3050 int error; 3051 ip_stack_t *ipst; 3052 3053 ASSERT(ill != NULL); 3054 ipst = ill->ill_ipst; 3055 3056 ipha = (ipha_t *)mp->b_rptr; 3057 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3058 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3059 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3060 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3061 freemsg(mp); 3062 return; 3063 } 3064 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3065 ipha_err = (ipha_t *)&icmph[1]; 3066 src = ipha->ipha_src; 3067 dst = ipha_err->ipha_dst; 3068 gateway = icmph->icmph_rd_gateway; 3069 /* Make sure the new gateway is reachable somehow. */ 3070 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3071 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3072 /* 3073 * Make sure we had a route for the dest in question and that 3074 * that route was pointing to the old gateway (the source of the 3075 * redirect packet.) 3076 */ 3077 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3078 NULL, MATCH_IRE_GW, ipst); 3079 /* 3080 * Check that 3081 * the redirect was not from ourselves 3082 * the new gateway and the old gateway are directly reachable 3083 */ 3084 if (!prev_ire || 3085 !ire || 3086 ire->ire_type == IRE_LOCAL) { 3087 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3088 freemsg(mp); 3089 if (ire != NULL) 3090 ire_refrele(ire); 3091 if (prev_ire != NULL) 3092 ire_refrele(prev_ire); 3093 return; 3094 } 3095 3096 /* 3097 * Should we use the old ULP info to create the new gateway? From 3098 * a user's perspective, we should inherit the info so that it 3099 * is a "smooth" transition. If we do not do that, then new 3100 * connections going thru the new gateway will have no route metrics, 3101 * which is counter-intuitive to user. From a network point of 3102 * view, this may or may not make sense even though the new gateway 3103 * is still directly connected to us so the route metrics should not 3104 * change much. 3105 * 3106 * But if the old ire_uinfo is not initialized, we do another 3107 * recursive lookup on the dest using the new gateway. There may 3108 * be a route to that. If so, use it to initialize the redirect 3109 * route. 3110 */ 3111 if (prev_ire->ire_uinfo.iulp_set) { 3112 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3113 } else { 3114 ire_t *tmp_ire; 3115 ire_t *sire; 3116 3117 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3118 ALL_ZONES, 0, NULL, 3119 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT), 3120 ipst); 3121 if (sire != NULL) { 3122 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3123 /* 3124 * If sire != NULL, ire_ftable_lookup() should not 3125 * return a NULL value. 3126 */ 3127 ASSERT(tmp_ire != NULL); 3128 ire_refrele(tmp_ire); 3129 ire_refrele(sire); 3130 } else if (tmp_ire != NULL) { 3131 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3132 sizeof (iulp_t)); 3133 ire_refrele(tmp_ire); 3134 } 3135 } 3136 if (prev_ire->ire_type == IRE_CACHE) 3137 ire_delete(prev_ire); 3138 ire_refrele(prev_ire); 3139 /* 3140 * TODO: more precise handling for cases 0, 2, 3, the latter two 3141 * require TOS routing 3142 */ 3143 switch (icmph->icmph_code) { 3144 case 0: 3145 case 1: 3146 /* TODO: TOS specificity for cases 2 and 3 */ 3147 case 2: 3148 case 3: 3149 break; 3150 default: 3151 freemsg(mp); 3152 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 3153 ire_refrele(ire); 3154 return; 3155 } 3156 /* 3157 * Create a Route Association. This will allow us to remember that 3158 * someone we believe told us to use the particular gateway. 3159 */ 3160 save_ire = ire; 3161 ire = ire_create( 3162 (uchar_t *)&dst, /* dest addr */ 3163 (uchar_t *)&ip_g_all_ones, /* mask */ 3164 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3165 (uchar_t *)&gateway, /* gateway addr */ 3166 &save_ire->ire_max_frag, /* max frag */ 3167 NULL, /* no src nce */ 3168 NULL, /* no rfq */ 3169 NULL, /* no stq */ 3170 IRE_HOST, 3171 NULL, /* ipif */ 3172 0, /* cmask */ 3173 0, /* phandle */ 3174 0, /* ihandle */ 3175 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3176 &ulp_info, 3177 NULL, /* tsol_gc_t */ 3178 NULL, /* gcgrp */ 3179 ipst); 3180 3181 if (ire == NULL) { 3182 freemsg(mp); 3183 ire_refrele(save_ire); 3184 return; 3185 } 3186 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3187 ire_refrele(save_ire); 3188 atomic_inc_32(&ipst->ips_ip_redirect_cnt); 3189 3190 if (error == 0) { 3191 ire_refrele(ire); /* Held in ire_add_v4 */ 3192 /* tell routing sockets that we received a redirect */ 3193 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3194 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3195 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 3196 } 3197 3198 /* 3199 * Delete any existing IRE_HOST type redirect ires for this destination. 3200 * This together with the added IRE has the effect of 3201 * modifying an existing redirect. 3202 */ 3203 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3204 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst); 3205 if (prev_ire != NULL) { 3206 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3207 ire_delete(prev_ire); 3208 ire_refrele(prev_ire); 3209 } 3210 3211 freemsg(mp); 3212 } 3213 3214 /* 3215 * Generate an ICMP parameter problem message. 3216 */ 3217 static void 3218 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid, 3219 ip_stack_t *ipst) 3220 { 3221 icmph_t icmph; 3222 boolean_t mctl_present; 3223 mblk_t *first_mp; 3224 3225 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3226 3227 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3228 if (mctl_present) 3229 freeb(first_mp); 3230 return; 3231 } 3232 3233 bzero(&icmph, sizeof (icmph_t)); 3234 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3235 icmph.icmph_pp_ptr = ptr; 3236 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 3237 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3238 ipst); 3239 } 3240 3241 /* 3242 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3243 * the ICMP header pointed to by "stuff". (May be called as writer.) 3244 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3245 * an icmp error packet can be sent. 3246 * Assigns an appropriate source address to the packet. If ipha_dst is 3247 * one of our addresses use it for source. Otherwise pick a source based 3248 * on a route lookup back to ipha_src. 3249 * Note that ipha_src must be set here since the 3250 * packet is likely to arrive on an ill queue in ip_wput() which will 3251 * not set a source address. 3252 */ 3253 static void 3254 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3255 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 3256 { 3257 ipaddr_t dst; 3258 icmph_t *icmph; 3259 ipha_t *ipha; 3260 uint_t len_needed; 3261 size_t msg_len; 3262 mblk_t *mp1; 3263 ipaddr_t src; 3264 ire_t *ire; 3265 mblk_t *ipsec_mp; 3266 ipsec_out_t *io = NULL; 3267 3268 if (mctl_present) { 3269 /* 3270 * If it is : 3271 * 3272 * 1) a IPSEC_OUT, then this is caused by outbound 3273 * datagram originating on this host. IPsec processing 3274 * may or may not have been done. Refer to comments above 3275 * icmp_inbound_error_fanout for details. 3276 * 3277 * 2) a IPSEC_IN if we are generating a icmp_message 3278 * for an incoming datagram destined for us i.e called 3279 * from ip_fanout_send_icmp. 3280 */ 3281 ipsec_info_t *in; 3282 ipsec_mp = mp; 3283 mp = ipsec_mp->b_cont; 3284 3285 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3286 ipha = (ipha_t *)mp->b_rptr; 3287 3288 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3289 in->ipsec_info_type == IPSEC_IN); 3290 3291 if (in->ipsec_info_type == IPSEC_IN) { 3292 /* 3293 * Convert the IPSEC_IN to IPSEC_OUT. 3294 */ 3295 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3296 BUMP_MIB(&ipst->ips_ip_mib, 3297 ipIfStatsOutDiscards); 3298 return; 3299 } 3300 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3301 } else { 3302 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3303 io = (ipsec_out_t *)in; 3304 /* 3305 * Clear out ipsec_out_proc_begin, so we do a fresh 3306 * ire lookup. 3307 */ 3308 io->ipsec_out_proc_begin = B_FALSE; 3309 } 3310 ASSERT(zoneid != ALL_ZONES); 3311 /* 3312 * The IPSEC_IN (now an IPSEC_OUT) didn't have its zoneid 3313 * initialized. We need to do that now. 3314 */ 3315 io->ipsec_out_zoneid = zoneid; 3316 } else { 3317 /* 3318 * This is in clear. The icmp message we are building 3319 * here should go out in clear. 3320 * 3321 * Pardon the convolution of it all, but it's easier to 3322 * allocate a "use cleartext" IPSEC_IN message and convert 3323 * it than it is to allocate a new one. 3324 */ 3325 ipsec_in_t *ii; 3326 ASSERT(DB_TYPE(mp) == M_DATA); 3327 ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack); 3328 if (ipsec_mp == NULL) { 3329 freemsg(mp); 3330 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3331 return; 3332 } 3333 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3334 3335 /* This is not a secure packet */ 3336 ii->ipsec_in_secure = B_FALSE; 3337 /* 3338 * For trusted extensions using a shared IP address we can 3339 * send using any zoneid. 3340 */ 3341 if (zoneid == ALL_ZONES) 3342 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3343 else 3344 ii->ipsec_in_zoneid = zoneid; 3345 ipsec_mp->b_cont = mp; 3346 ipha = (ipha_t *)mp->b_rptr; 3347 /* 3348 * Convert the IPSEC_IN to IPSEC_OUT. 3349 */ 3350 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3351 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3352 return; 3353 } 3354 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3355 } 3356 3357 /* Remember our eventual destination */ 3358 dst = ipha->ipha_src; 3359 3360 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3361 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst); 3362 if (ire != NULL && 3363 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3364 src = ipha->ipha_dst; 3365 } else { 3366 if (ire != NULL) 3367 ire_refrele(ire); 3368 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3369 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY), 3370 ipst); 3371 if (ire == NULL) { 3372 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 3373 freemsg(ipsec_mp); 3374 return; 3375 } 3376 src = ire->ire_src_addr; 3377 } 3378 3379 if (ire != NULL) 3380 ire_refrele(ire); 3381 3382 /* 3383 * Check if we can send back more then 8 bytes in addition to 3384 * the IP header. We try to send 64 bytes of data and the internal 3385 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 3386 */ 3387 len_needed = IPH_HDR_LENGTH(ipha); 3388 if (ipha->ipha_protocol == IPPROTO_ENCAP || 3389 ipha->ipha_protocol == IPPROTO_IPV6) { 3390 3391 if (!pullupmsg(mp, -1)) { 3392 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 3393 freemsg(ipsec_mp); 3394 return; 3395 } 3396 ipha = (ipha_t *)mp->b_rptr; 3397 3398 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 3399 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 3400 len_needed)); 3401 } else { 3402 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 3403 3404 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 3405 len_needed += ip_hdr_length_v6(mp, ip6h); 3406 } 3407 } 3408 len_needed += ipst->ips_ip_icmp_return; 3409 msg_len = msgdsize(mp); 3410 if (msg_len > len_needed) { 3411 (void) adjmsg(mp, len_needed - msg_len); 3412 msg_len = len_needed; 3413 } 3414 /* Make sure we propagate the cred/label for TX */ 3415 mp1 = allocb_tmpl(sizeof (icmp_ipha) + len, mp); 3416 if (mp1 == NULL) { 3417 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 3418 freemsg(ipsec_mp); 3419 return; 3420 } 3421 mp1->b_cont = mp; 3422 mp = mp1; 3423 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3424 ipsec_mp->b_rptr == (uint8_t *)io && 3425 io->ipsec_out_type == IPSEC_OUT); 3426 ipsec_mp->b_cont = mp; 3427 3428 /* 3429 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3430 * node generates be accepted in peace by all on-host destinations. 3431 * If we do NOT assume that all on-host destinations trust 3432 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3433 * (Look for ipsec_out_icmp_loopback). 3434 */ 3435 io->ipsec_out_icmp_loopback = B_TRUE; 3436 3437 ipha = (ipha_t *)mp->b_rptr; 3438 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3439 *ipha = icmp_ipha; 3440 ipha->ipha_src = src; 3441 ipha->ipha_dst = dst; 3442 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 3443 msg_len += sizeof (icmp_ipha) + len; 3444 if (msg_len > IP_MAXPACKET) { 3445 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3446 msg_len = IP_MAXPACKET; 3447 } 3448 ipha->ipha_length = htons((uint16_t)msg_len); 3449 icmph = (icmph_t *)&ipha[1]; 3450 bcopy(stuff, icmph, len); 3451 icmph->icmph_checksum = 0; 3452 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3453 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 3454 put(q, ipsec_mp); 3455 } 3456 3457 /* 3458 * Determine if an ICMP error packet can be sent given the rate limit. 3459 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3460 * in milliseconds) and a burst size. Burst size number of packets can 3461 * be sent arbitrarely closely spaced. 3462 * The state is tracked using two variables to implement an approximate 3463 * token bucket filter: 3464 * icmp_pkt_err_last - lbolt value when the last burst started 3465 * icmp_pkt_err_sent - number of packets sent in current burst 3466 */ 3467 boolean_t 3468 icmp_err_rate_limit(ip_stack_t *ipst) 3469 { 3470 clock_t now = TICK_TO_MSEC(lbolt); 3471 uint_t refilled; /* Number of packets refilled in tbf since last */ 3472 /* Guard against changes by loading into local variable */ 3473 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 3474 3475 if (err_interval == 0) 3476 return (B_FALSE); 3477 3478 if (ipst->ips_icmp_pkt_err_last > now) { 3479 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3480 ipst->ips_icmp_pkt_err_last = 0; 3481 ipst->ips_icmp_pkt_err_sent = 0; 3482 } 3483 /* 3484 * If we are in a burst update the token bucket filter. 3485 * Update the "last" time to be close to "now" but make sure 3486 * we don't loose precision. 3487 */ 3488 if (ipst->ips_icmp_pkt_err_sent != 0) { 3489 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 3490 if (refilled > ipst->ips_icmp_pkt_err_sent) { 3491 ipst->ips_icmp_pkt_err_sent = 0; 3492 } else { 3493 ipst->ips_icmp_pkt_err_sent -= refilled; 3494 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 3495 } 3496 } 3497 if (ipst->ips_icmp_pkt_err_sent == 0) { 3498 /* Start of new burst */ 3499 ipst->ips_icmp_pkt_err_last = now; 3500 } 3501 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 3502 ipst->ips_icmp_pkt_err_sent++; 3503 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3504 ipst->ips_icmp_pkt_err_sent)); 3505 return (B_FALSE); 3506 } 3507 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3508 return (B_TRUE); 3509 } 3510 3511 /* 3512 * Check if it is ok to send an IPv4 ICMP error packet in 3513 * response to the IPv4 packet in mp. 3514 * Free the message and return null if no 3515 * ICMP error packet should be sent. 3516 */ 3517 static mblk_t * 3518 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst) 3519 { 3520 icmph_t *icmph; 3521 ipha_t *ipha; 3522 uint_t len_needed; 3523 ire_t *src_ire; 3524 ire_t *dst_ire; 3525 3526 if (!mp) 3527 return (NULL); 3528 ipha = (ipha_t *)mp->b_rptr; 3529 if (ip_csum_hdr(ipha)) { 3530 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3531 freemsg(mp); 3532 return (NULL); 3533 } 3534 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3535 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3536 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3537 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 3538 if (src_ire != NULL || dst_ire != NULL || 3539 CLASSD(ipha->ipha_dst) || 3540 CLASSD(ipha->ipha_src) || 3541 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3542 /* Note: only errors to the fragment with offset 0 */ 3543 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3544 freemsg(mp); 3545 if (src_ire != NULL) 3546 ire_refrele(src_ire); 3547 if (dst_ire != NULL) 3548 ire_refrele(dst_ire); 3549 return (NULL); 3550 } 3551 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3552 /* 3553 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3554 * errors in response to any ICMP errors. 3555 */ 3556 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3557 if (mp->b_wptr - mp->b_rptr < len_needed) { 3558 if (!pullupmsg(mp, len_needed)) { 3559 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3560 freemsg(mp); 3561 return (NULL); 3562 } 3563 ipha = (ipha_t *)mp->b_rptr; 3564 } 3565 icmph = (icmph_t *) 3566 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3567 switch (icmph->icmph_type) { 3568 case ICMP_DEST_UNREACHABLE: 3569 case ICMP_SOURCE_QUENCH: 3570 case ICMP_TIME_EXCEEDED: 3571 case ICMP_PARAM_PROBLEM: 3572 case ICMP_REDIRECT: 3573 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3574 freemsg(mp); 3575 return (NULL); 3576 default: 3577 break; 3578 } 3579 } 3580 /* 3581 * If this is a labeled system, then check to see if we're allowed to 3582 * send a response to this particular sender. If not, then just drop. 3583 */ 3584 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3585 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3586 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3587 freemsg(mp); 3588 return (NULL); 3589 } 3590 if (icmp_err_rate_limit(ipst)) { 3591 /* 3592 * Only send ICMP error packets every so often. 3593 * This should be done on a per port/source basis, 3594 * but for now this will suffice. 3595 */ 3596 freemsg(mp); 3597 return (NULL); 3598 } 3599 return (mp); 3600 } 3601 3602 /* 3603 * Generate an ICMP redirect message. 3604 */ 3605 static void 3606 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst) 3607 { 3608 icmph_t icmph; 3609 3610 /* 3611 * We are called from ip_rput where we could 3612 * not have attached an IPSEC_IN. 3613 */ 3614 ASSERT(mp->b_datap->db_type == M_DATA); 3615 3616 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3617 return; 3618 } 3619 3620 bzero(&icmph, sizeof (icmph_t)); 3621 icmph.icmph_type = ICMP_REDIRECT; 3622 icmph.icmph_code = 1; 3623 icmph.icmph_rd_gateway = gateway; 3624 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3625 /* Redirects sent by router, and router is global zone */ 3626 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst); 3627 } 3628 3629 /* 3630 * Generate an ICMP time exceeded message. 3631 */ 3632 void 3633 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3634 ip_stack_t *ipst) 3635 { 3636 icmph_t icmph; 3637 boolean_t mctl_present; 3638 mblk_t *first_mp; 3639 3640 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3641 3642 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3643 if (mctl_present) 3644 freeb(first_mp); 3645 return; 3646 } 3647 3648 bzero(&icmph, sizeof (icmph_t)); 3649 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3650 icmph.icmph_code = code; 3651 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3652 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid, 3653 ipst); 3654 } 3655 3656 /* 3657 * Generate an ICMP unreachable message. 3658 */ 3659 void 3660 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid, 3661 ip_stack_t *ipst) 3662 { 3663 icmph_t icmph; 3664 mblk_t *first_mp; 3665 boolean_t mctl_present; 3666 3667 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3668 3669 if (!(mp = icmp_pkt_err_ok(mp, ipst))) { 3670 if (mctl_present) 3671 freeb(first_mp); 3672 return; 3673 } 3674 3675 bzero(&icmph, sizeof (icmph_t)); 3676 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3677 icmph.icmph_code = code; 3678 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3679 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3680 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3681 zoneid, ipst); 3682 } 3683 3684 /* 3685 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3686 * duplicate. As long as someone else holds the address, the interface will 3687 * stay down. When that conflict goes away, the interface is brought back up. 3688 * This is done so that accidental shutdowns of addresses aren't made 3689 * permanent. Your server will recover from a failure. 3690 * 3691 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3692 * user space process (dhcpagent). 3693 * 3694 * Recovery completes if ARP reports that the address is now ours (via 3695 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3696 * 3697 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3698 */ 3699 static void 3700 ipif_dup_recovery(void *arg) 3701 { 3702 ipif_t *ipif = arg; 3703 ill_t *ill = ipif->ipif_ill; 3704 mblk_t *arp_add_mp; 3705 mblk_t *arp_del_mp; 3706 ip_stack_t *ipst = ill->ill_ipst; 3707 3708 ipif->ipif_recovery_id = 0; 3709 3710 /* 3711 * No lock needed for moving or condemned check, as this is just an 3712 * optimization. 3713 */ 3714 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3715 (ipif->ipif_flags & IPIF_POINTOPOINT) || 3716 (ipif->ipif_state_flags & (IPIF_CONDEMNED))) { 3717 /* No reason to try to bring this address back. */ 3718 return; 3719 } 3720 3721 /* ACE_F_UNVERIFIED restarts DAD */ 3722 if ((arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) 3723 goto alloc_fail; 3724 3725 if (ipif->ipif_arp_del_mp == NULL) { 3726 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3727 goto alloc_fail; 3728 ipif->ipif_arp_del_mp = arp_del_mp; 3729 } 3730 3731 putnext(ill->ill_rq, arp_add_mp); 3732 return; 3733 3734 alloc_fail: 3735 /* 3736 * On allocation failure, just restart the timer. Note that the ipif 3737 * is down here, so no other thread could be trying to start a recovery 3738 * timer. The ill_lock protects the condemned flag and the recovery 3739 * timer ID. 3740 */ 3741 freemsg(arp_add_mp); 3742 mutex_enter(&ill->ill_lock); 3743 if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 && 3744 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 3745 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3746 MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3747 } 3748 mutex_exit(&ill->ill_lock); 3749 } 3750 3751 /* 3752 * This is for exclusive changes due to ARP. Either tear down an interface due 3753 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3754 */ 3755 /* ARGSUSED */ 3756 static void 3757 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3758 { 3759 ill_t *ill = rq->q_ptr; 3760 arh_t *arh; 3761 ipaddr_t src; 3762 ipif_t *ipif; 3763 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3764 char hbuf[MAC_STR_LEN]; 3765 char sbuf[INET_ADDRSTRLEN]; 3766 const char *failtype; 3767 boolean_t bring_up; 3768 ip_stack_t *ipst = ill->ill_ipst; 3769 3770 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3771 case AR_CN_READY: 3772 failtype = NULL; 3773 bring_up = B_TRUE; 3774 break; 3775 case AR_CN_FAILED: 3776 failtype = "in use"; 3777 bring_up = B_FALSE; 3778 break; 3779 default: 3780 failtype = "claimed"; 3781 bring_up = B_FALSE; 3782 break; 3783 } 3784 3785 arh = (arh_t *)mp->b_cont->b_rptr; 3786 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3787 3788 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3789 sizeof (hbuf)); 3790 (void) ip_dot_addr(src, sbuf); 3791 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3792 3793 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3794 ipif->ipif_lcl_addr != src) { 3795 continue; 3796 } 3797 3798 /* 3799 * If we failed on a recovery probe, then restart the timer to 3800 * try again later. 3801 */ 3802 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3803 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3804 ill->ill_net_type == IRE_IF_RESOLVER && 3805 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3806 ipst->ips_ip_dup_recovery > 0 && 3807 ipif->ipif_recovery_id == 0) { 3808 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3809 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3810 continue; 3811 } 3812 3813 /* 3814 * If what we're trying to do has already been done, then do 3815 * nothing. 3816 */ 3817 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3818 continue; 3819 3820 ipif_get_name(ipif, ibuf, sizeof (ibuf)); 3821 3822 if (failtype == NULL) { 3823 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3824 ibuf); 3825 } else { 3826 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3827 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3828 } 3829 3830 if (bring_up) { 3831 ASSERT(ill->ill_dl_up); 3832 /* 3833 * Free up the ARP delete message so we can allocate 3834 * a fresh one through the normal path. 3835 */ 3836 freemsg(ipif->ipif_arp_del_mp); 3837 ipif->ipif_arp_del_mp = NULL; 3838 if (ipif_resolver_up(ipif, Res_act_initial) != 3839 EINPROGRESS) { 3840 ipif->ipif_addr_ready = 1; 3841 (void) ipif_up_done(ipif); 3842 ASSERT(ill->ill_move_ipif == NULL); 3843 } 3844 continue; 3845 } 3846 3847 mutex_enter(&ill->ill_lock); 3848 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3849 ipif->ipif_flags |= IPIF_DUPLICATE; 3850 ill->ill_ipif_dup_count++; 3851 mutex_exit(&ill->ill_lock); 3852 /* 3853 * Already exclusive on the ill; no need to handle deferred 3854 * processing here. 3855 */ 3856 (void) ipif_down(ipif, NULL, NULL); 3857 ipif_down_tail(ipif); 3858 mutex_enter(&ill->ill_lock); 3859 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3860 ill->ill_net_type == IRE_IF_RESOLVER && 3861 !(ipif->ipif_state_flags & IPIF_CONDEMNED) && 3862 ipst->ips_ip_dup_recovery > 0) { 3863 ASSERT(ipif->ipif_recovery_id == 0); 3864 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3865 ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery)); 3866 } 3867 mutex_exit(&ill->ill_lock); 3868 } 3869 freemsg(mp); 3870 } 3871 3872 /* ARGSUSED */ 3873 static void 3874 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3875 { 3876 ill_t *ill = rq->q_ptr; 3877 arh_t *arh; 3878 ipaddr_t src; 3879 ipif_t *ipif; 3880 3881 arh = (arh_t *)mp->b_cont->b_rptr; 3882 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3883 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3884 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3885 (void) ipif_resolver_up(ipif, Res_act_defend); 3886 } 3887 freemsg(mp); 3888 } 3889 3890 /* 3891 * News from ARP. ARP sends notification of interesting events down 3892 * to its clients using M_CTL messages with the interesting ARP packet 3893 * attached via b_cont. 3894 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3895 * queue as opposed to ARP sending the message to all the clients, i.e. all 3896 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3897 * table if a cache IRE is found to delete all the entries for the address in 3898 * the packet. 3899 */ 3900 static void 3901 ip_arp_news(queue_t *q, mblk_t *mp) 3902 { 3903 arcn_t *arcn; 3904 arh_t *arh; 3905 ire_t *ire = NULL; 3906 char hbuf[MAC_STR_LEN]; 3907 char sbuf[INET_ADDRSTRLEN]; 3908 ipaddr_t src; 3909 in6_addr_t v6src; 3910 boolean_t isv6 = B_FALSE; 3911 ipif_t *ipif; 3912 ill_t *ill; 3913 ip_stack_t *ipst; 3914 3915 if (CONN_Q(q)) { 3916 conn_t *connp = Q_TO_CONN(q); 3917 3918 ipst = connp->conn_netstack->netstack_ip; 3919 } else { 3920 ill_t *ill = (ill_t *)q->q_ptr; 3921 3922 ipst = ill->ill_ipst; 3923 } 3924 3925 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 3926 if (q->q_next) { 3927 putnext(q, mp); 3928 } else 3929 freemsg(mp); 3930 return; 3931 } 3932 arh = (arh_t *)mp->b_cont->b_rptr; 3933 /* Is it one we are interested in? */ 3934 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 3935 isv6 = B_TRUE; 3936 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 3937 IPV6_ADDR_LEN); 3938 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 3939 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 3940 IP_ADDR_LEN); 3941 } else { 3942 freemsg(mp); 3943 return; 3944 } 3945 3946 ill = q->q_ptr; 3947 3948 arcn = (arcn_t *)mp->b_rptr; 3949 switch (arcn->arcn_code) { 3950 case AR_CN_BOGON: 3951 /* 3952 * Someone is sending ARP packets with a source protocol 3953 * address that we have published and for which we believe our 3954 * entry is authoritative and (when ill_arp_extend is set) 3955 * verified to be unique on the network. 3956 * 3957 * The ARP module internally handles the cases where the sender 3958 * is just probing (for DAD) and where the hardware address of 3959 * a non-authoritative entry has changed. Thus, these are the 3960 * real conflicts, and we have to do resolution. 3961 * 3962 * We back away quickly from the address if it's from DHCP or 3963 * otherwise temporary and hasn't been used recently (or at 3964 * all). We'd like to include "deprecated" addresses here as 3965 * well (as there's no real reason to defend something we're 3966 * discarding), but IPMP "reuses" this flag to mean something 3967 * other than the standard meaning. 3968 * 3969 * If the ARP module above is not extended (meaning that it 3970 * doesn't know how to defend the address), then we just log 3971 * the problem as we always did and continue on. It's not 3972 * right, but there's little else we can do, and those old ATM 3973 * users are going away anyway. 3974 */ 3975 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 3976 hbuf, sizeof (hbuf)); 3977 (void) ip_dot_addr(src, sbuf); 3978 if (isv6) { 3979 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL, 3980 ipst); 3981 } else { 3982 ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst); 3983 } 3984 if (ire != NULL && IRE_IS_LOCAL(ire)) { 3985 uint32_t now; 3986 uint32_t maxage; 3987 clock_t lused; 3988 uint_t maxdefense; 3989 uint_t defs; 3990 3991 /* 3992 * First, figure out if this address hasn't been used 3993 * in a while. If it hasn't, then it's a better 3994 * candidate for abandoning. 3995 */ 3996 ipif = ire->ire_ipif; 3997 ASSERT(ipif != NULL); 3998 now = gethrestime_sec(); 3999 maxage = now - ire->ire_create_time; 4000 if (maxage > ipst->ips_ip_max_temp_idle) 4001 maxage = ipst->ips_ip_max_temp_idle; 4002 lused = drv_hztousec(ddi_get_lbolt() - 4003 ire->ire_last_used_time) / MICROSEC + 1; 4004 if (lused >= maxage && (ipif->ipif_flags & 4005 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4006 maxdefense = ipst->ips_ip_max_temp_defend; 4007 else 4008 maxdefense = ipst->ips_ip_max_defend; 4009 4010 /* 4011 * Now figure out how many times we've defended 4012 * ourselves. Ignore defenses that happened long in 4013 * the past. 4014 */ 4015 mutex_enter(&ire->ire_lock); 4016 if ((defs = ire->ire_defense_count) > 0 && 4017 now - ire->ire_defense_time > 4018 ipst->ips_ip_defend_interval) { 4019 ire->ire_defense_count = defs = 0; 4020 } 4021 ire->ire_defense_count++; 4022 ire->ire_defense_time = now; 4023 mutex_exit(&ire->ire_lock); 4024 ill_refhold(ill); 4025 ire_refrele(ire); 4026 4027 /* 4028 * If we've defended ourselves too many times already, 4029 * then give up and tear down the interface(s) using 4030 * this address. Otherwise, defend by sending out a 4031 * gratuitous ARP. 4032 */ 4033 if (defs >= maxdefense && ill->ill_arp_extend) { 4034 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4035 B_FALSE); 4036 } else { 4037 cmn_err(CE_WARN, 4038 "node %s is using our IP address %s on %s", 4039 hbuf, sbuf, ill->ill_name); 4040 /* 4041 * If this is an old (ATM) ARP module, then 4042 * don't try to defend the address. Remain 4043 * compatible with the old behavior. Defend 4044 * only with new ARP. 4045 */ 4046 if (ill->ill_arp_extend) { 4047 qwriter_ip(ill, q, mp, ip_arp_defend, 4048 NEW_OP, B_FALSE); 4049 } else { 4050 ill_refrele(ill); 4051 } 4052 } 4053 return; 4054 } 4055 cmn_err(CE_WARN, 4056 "proxy ARP problem? Node '%s' is using %s on %s", 4057 hbuf, sbuf, ill->ill_name); 4058 if (ire != NULL) 4059 ire_refrele(ire); 4060 break; 4061 case AR_CN_ANNOUNCE: 4062 if (isv6) { 4063 /* 4064 * For XRESOLV interfaces. 4065 * Delete the IRE cache entry and NCE for this 4066 * v6 address 4067 */ 4068 ip_ire_clookup_and_delete_v6(&v6src, ipst); 4069 /* 4070 * If v6src is a non-zero, it's a router address 4071 * as below. Do the same sort of thing to clean 4072 * out off-net IRE_CACHE entries that go through 4073 * the router. 4074 */ 4075 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4076 ire_walk_v6(ire_delete_cache_gw_v6, 4077 (char *)&v6src, ALL_ZONES, ipst); 4078 } 4079 } else { 4080 nce_hw_map_t hwm; 4081 4082 /* 4083 * ARP gives us a copy of any packet where it thinks 4084 * the address has changed, so that we can update our 4085 * caches. We're responsible for caching known answers 4086 * in the current design. We check whether the 4087 * hardware address really has changed in all of our 4088 * entries that have cached this mapping, and if so, we 4089 * blow them away. This way we will immediately pick 4090 * up the rare case of a host changing hardware 4091 * address. 4092 */ 4093 if (src == 0) 4094 break; 4095 hwm.hwm_addr = src; 4096 hwm.hwm_hwlen = arh->arh_hlen; 4097 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4098 NDP_HW_CHANGE_INCR(ipst->ips_ndp4); 4099 ndp_walk_common(ipst->ips_ndp4, NULL, 4100 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4101 NDP_HW_CHANGE_DECR(ipst->ips_ndp4); 4102 } 4103 break; 4104 case AR_CN_READY: 4105 /* No external v6 resolver has a contract to use this */ 4106 if (isv6) 4107 break; 4108 /* If the link is down, we'll retry this later */ 4109 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4110 break; 4111 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4112 NULL, NULL, ipst); 4113 if (ipif != NULL) { 4114 /* 4115 * If this is a duplicate recovery, then we now need to 4116 * go exclusive to bring this thing back up. 4117 */ 4118 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4119 IPIF_DUPLICATE) { 4120 ipif_refrele(ipif); 4121 ill_refhold(ill); 4122 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, 4123 B_FALSE); 4124 return; 4125 } 4126 /* 4127 * If this is the first notice that this address is 4128 * ready, then let the user know now. 4129 */ 4130 if ((ipif->ipif_flags & IPIF_UP) && 4131 !ipif->ipif_addr_ready) { 4132 ipif_mask_reply(ipif); 4133 ipif_up_notify(ipif); 4134 } 4135 ipif->ipif_addr_ready = 1; 4136 ipif_refrele(ipif); 4137 } 4138 ire = ire_cache_lookup(src, ALL_ZONES, msg_getlabel(mp), ipst); 4139 if (ire != NULL) { 4140 ire->ire_defense_count = 0; 4141 ire_refrele(ire); 4142 } 4143 break; 4144 case AR_CN_FAILED: 4145 /* No external v6 resolver has a contract to use this */ 4146 if (isv6) 4147 break; 4148 if (!ill->ill_arp_extend) { 4149 (void) mac_colon_addr((uint8_t *)(arh + 1), 4150 arh->arh_hlen, hbuf, sizeof (hbuf)); 4151 (void) ip_dot_addr(src, sbuf); 4152 4153 cmn_err(CE_WARN, 4154 "node %s is using our IP address %s on %s", 4155 hbuf, sbuf, ill->ill_name); 4156 break; 4157 } 4158 ill_refhold(ill); 4159 qwriter_ip(ill, q, mp, ip_arp_excl, NEW_OP, B_FALSE); 4160 return; 4161 } 4162 freemsg(mp); 4163 } 4164 4165 /* 4166 * Create a mblk suitable for carrying the interface index and/or source link 4167 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4168 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4169 * application. 4170 */ 4171 mblk_t * 4172 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid, 4173 ip_stack_t *ipst) 4174 { 4175 mblk_t *mp; 4176 ip_pktinfo_t *pinfo; 4177 ipha_t *ipha; 4178 struct ether_header *pether; 4179 boolean_t ipmp_ill_held = B_FALSE; 4180 4181 mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED); 4182 if (mp == NULL) { 4183 ip1dbg(("ip_add_info: allocation failure.\n")); 4184 return (data_mp); 4185 } 4186 4187 ipha = (ipha_t *)data_mp->b_rptr; 4188 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4189 bzero(pinfo, sizeof (ip_pktinfo_t)); 4190 pinfo->ip_pkt_flags = (uchar_t)flags; 4191 pinfo->ip_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4192 4193 pether = (struct ether_header *)((char *)ipha 4194 - sizeof (struct ether_header)); 4195 4196 /* 4197 * Make sure the interface is an ethernet type, since this option 4198 * is currently supported only on this type of interface. Also make 4199 * sure we are pointing correctly above db_base. 4200 */ 4201 if ((flags & IPF_RECVSLLA) && 4202 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4203 (ill->ill_type == IFT_ETHER) && 4204 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4205 pinfo->ip_pkt_slla.sdl_type = IFT_ETHER; 4206 bcopy(pether->ether_shost.ether_addr_octet, 4207 pinfo->ip_pkt_slla.sdl_data, ETHERADDRL); 4208 } else { 4209 /* 4210 * Clear the bit. Indicate to upper layer that IP is not 4211 * sending this ancillary info. 4212 */ 4213 pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA; 4214 } 4215 4216 /* 4217 * If `ill' is in an IPMP group, use the IPMP ill to determine 4218 * IPF_RECVIF and IPF_RECVADDR. (This currently assumes that 4219 * IPF_RECVADDR support on test addresses is not needed.) 4220 * 4221 * Note that `ill' may already be an IPMP ill if e.g. we're 4222 * processing a packet looped back to an IPMP data address 4223 * (since those IRE_LOCALs are tied to IPMP ills). 4224 */ 4225 if (IS_UNDER_IPMP(ill)) { 4226 if ((ill = ipmp_ill_hold_ipmp_ill(ill)) == NULL) { 4227 ip1dbg(("ip_add_info: cannot hold IPMP ill.\n")); 4228 freemsg(mp); 4229 return (data_mp); 4230 } 4231 ipmp_ill_held = B_TRUE; 4232 } 4233 4234 if (flags & (IPF_RECVIF | IPF_RECVADDR)) 4235 pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4236 if (flags & IPF_RECVADDR) { 4237 ipif_t *ipif; 4238 ire_t *ire; 4239 4240 /* 4241 * Only valid for V4 4242 */ 4243 ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) == 4244 (IPV4_VERSION << 4)); 4245 4246 ipif = ipif_get_next_ipif(NULL, ill); 4247 if (ipif != NULL) { 4248 /* 4249 * Since a decision has already been made to deliver the 4250 * packet, there is no need to test for SECATTR and 4251 * ZONEONLY. 4252 * When a multicast packet is transmitted 4253 * a cache entry is created for the multicast address. 4254 * When delivering a copy of the packet or when new 4255 * packets are received we do not want to match on the 4256 * cached entry so explicitly match on 4257 * IRE_LOCAL and IRE_LOOPBACK 4258 */ 4259 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4260 IRE_LOCAL | IRE_LOOPBACK, 4261 ipif, zoneid, NULL, 4262 MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 4263 if (ire == NULL) { 4264 /* 4265 * packet must have come on a different 4266 * interface. 4267 * Since a decision has already been made to 4268 * deliver the packet, there is no need to test 4269 * for SECATTR and ZONEONLY. 4270 * Only match on local and broadcast ire's. 4271 * See detailed comment above. 4272 */ 4273 ire = ire_ctable_lookup(ipha->ipha_dst, 0, 4274 IRE_LOCAL | IRE_LOOPBACK, ipif, zoneid, 4275 NULL, MATCH_IRE_TYPE, ipst); 4276 } 4277 4278 if (ire == NULL) { 4279 /* 4280 * This is either a multicast packet or 4281 * the address has been removed since 4282 * the packet was received. 4283 * Return INADDR_ANY so that normal source 4284 * selection occurs for the response. 4285 */ 4286 4287 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4288 } else { 4289 pinfo->ip_pkt_match_addr.s_addr = 4290 ire->ire_src_addr; 4291 ire_refrele(ire); 4292 } 4293 ipif_refrele(ipif); 4294 } else { 4295 pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY; 4296 } 4297 } 4298 4299 if (ipmp_ill_held) 4300 ill_refrele(ill); 4301 4302 mp->b_datap->db_type = M_CTL; 4303 mp->b_wptr += sizeof (ip_pktinfo_t); 4304 mp->b_cont = data_mp; 4305 4306 return (mp); 4307 } 4308 4309 /* 4310 * Used to determine the most accurate cred_t to use for TX. 4311 * First priority is SCM_UCRED having set the label in the message, 4312 * which is used for MLP on UDP. Second priority is the open credentials 4313 * with the peer's label (aka conn_effective_cred), which is needed for 4314 * MLP on TCP/SCTP and for MAC-Exempt. Last priority is the open credentials. 4315 */ 4316 cred_t * 4317 ip_best_cred(mblk_t *mp, conn_t *connp, pid_t *pidp) 4318 { 4319 cred_t *cr; 4320 4321 cr = msg_getcred(mp, pidp); 4322 if (cr != NULL && crgetlabel(cr) != NULL) 4323 return (cr); 4324 *pidp = NOPID; 4325 return (CONN_CRED(connp)); 4326 } 4327 4328 /* 4329 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4330 * part of the bind request. 4331 */ 4332 4333 boolean_t 4334 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4335 { 4336 ipsec_in_t *ii; 4337 4338 ASSERT(policy_mp != NULL); 4339 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4340 4341 ii = (ipsec_in_t *)policy_mp->b_rptr; 4342 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4343 4344 connp->conn_policy = ii->ipsec_in_policy; 4345 ii->ipsec_in_policy = NULL; 4346 4347 if (ii->ipsec_in_action != NULL) { 4348 if (connp->conn_latch == NULL) { 4349 connp->conn_latch = iplatch_create(); 4350 if (connp->conn_latch == NULL) 4351 return (B_FALSE); 4352 } 4353 ipsec_latch_inbound(connp->conn_latch, ii); 4354 } 4355 return (B_TRUE); 4356 } 4357 4358 static void 4359 ip_bind_post_handling(conn_t *connp, mblk_t *mp, boolean_t ire_requested) 4360 { 4361 /* 4362 * Pass the IPsec headers size in ire_ipsec_overhead. 4363 * We can't do this in ip_bind_get_ire because the policy 4364 * may not have been inherited at that point in time and hence 4365 * conn_out_enforce_policy may not be set. 4366 */ 4367 if (ire_requested && connp->conn_out_enforce_policy && 4368 mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE) { 4369 ire_t *ire = (ire_t *)mp->b_rptr; 4370 ASSERT(MBLKL(mp) >= sizeof (ire_t)); 4371 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4372 } 4373 } 4374 4375 /* 4376 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4377 * and to arrange for power-fanout assist. The ULP is identified by 4378 * adding a single byte at the end of the original bind message. 4379 * A ULP other than UDP or TCP that wishes to be recognized passes 4380 * down a bind with a zero length address. 4381 * 4382 * The binding works as follows: 4383 * - A zero byte address means just bind to the protocol. 4384 * - A four byte address is treated as a request to validate 4385 * that the address is a valid local address, appropriate for 4386 * an application to bind to. This does not affect any fanout 4387 * information in IP. 4388 * - A sizeof sin_t byte address is used to bind to only the local address 4389 * and port. 4390 * - A sizeof ipa_conn_t byte address contains complete fanout information 4391 * consisting of local and remote addresses and ports. In 4392 * this case, the addresses are both validated as appropriate 4393 * for this operation, and, if so, the information is retained 4394 * for use in the inbound fanout. 4395 * 4396 * The ULP (except in the zero-length bind) can append an 4397 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4398 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4399 * a copy of the source or destination IRE (source for local bind; 4400 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4401 * policy information contained should be copied on to the conn. 4402 * 4403 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4404 */ 4405 mblk_t * 4406 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4407 { 4408 ssize_t len; 4409 struct T_bind_req *tbr; 4410 sin_t *sin; 4411 ipa_conn_t *ac; 4412 uchar_t *ucp; 4413 mblk_t *mp1; 4414 boolean_t ire_requested; 4415 int error = 0; 4416 int protocol; 4417 ipa_conn_x_t *acx; 4418 cred_t *cr; 4419 4420 /* 4421 * All Solaris components should pass a db_credp 4422 * for this TPI message, hence we ASSERT. 4423 * But in case there is some other M_PROTO that looks 4424 * like a TPI message sent by some other kernel 4425 * component, we check and return an error. 4426 */ 4427 cr = msg_getcred(mp, NULL); 4428 ASSERT(cr != NULL); 4429 if (cr == NULL) { 4430 error = EINVAL; 4431 goto bad_addr; 4432 } 4433 4434 ASSERT(!connp->conn_af_isv6); 4435 connp->conn_pkt_isv6 = B_FALSE; 4436 4437 len = MBLKL(mp); 4438 if (len < (sizeof (*tbr) + 1)) { 4439 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4440 "ip_bind: bogus msg, len %ld", len); 4441 /* XXX: Need to return something better */ 4442 goto bad_addr; 4443 } 4444 /* Back up and extract the protocol identifier. */ 4445 mp->b_wptr--; 4446 protocol = *mp->b_wptr & 0xFF; 4447 tbr = (struct T_bind_req *)mp->b_rptr; 4448 /* Reset the message type in preparation for shipping it back. */ 4449 DB_TYPE(mp) = M_PCPROTO; 4450 4451 connp->conn_ulp = (uint8_t)protocol; 4452 4453 /* 4454 * Check for a zero length address. This is from a protocol that 4455 * wants to register to receive all packets of its type. 4456 */ 4457 if (tbr->ADDR_length == 0) { 4458 /* 4459 * These protocols are now intercepted in ip_bind_v6(). 4460 * Reject protocol-level binds here for now. 4461 * 4462 * For SCTP raw socket, ICMP sends down a bind with sin_t 4463 * so that the protocol type cannot be SCTP. 4464 */ 4465 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4466 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4467 goto bad_addr; 4468 } 4469 4470 /* 4471 * 4472 * The udp module never sends down a zero-length address, 4473 * and allowing this on a labeled system will break MLP 4474 * functionality. 4475 */ 4476 if (is_system_labeled() && protocol == IPPROTO_UDP) 4477 goto bad_addr; 4478 4479 if (connp->conn_mac_exempt) 4480 goto bad_addr; 4481 4482 /* No hash here really. The table is big enough. */ 4483 connp->conn_srcv6 = ipv6_all_zeros; 4484 4485 ipcl_proto_insert(connp, protocol); 4486 4487 tbr->PRIM_type = T_BIND_ACK; 4488 return (mp); 4489 } 4490 4491 /* Extract the address pointer from the message. */ 4492 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4493 tbr->ADDR_length); 4494 if (ucp == NULL) { 4495 ip1dbg(("ip_bind: no address\n")); 4496 goto bad_addr; 4497 } 4498 if (!OK_32PTR(ucp)) { 4499 ip1dbg(("ip_bind: unaligned address\n")); 4500 goto bad_addr; 4501 } 4502 /* 4503 * Check for trailing mps. 4504 */ 4505 4506 mp1 = mp->b_cont; 4507 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4508 4509 switch (tbr->ADDR_length) { 4510 default: 4511 ip1dbg(("ip_bind: bad address length %d\n", 4512 (int)tbr->ADDR_length)); 4513 goto bad_addr; 4514 4515 case IP_ADDR_LEN: 4516 /* Verification of local address only */ 4517 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4518 *(ipaddr_t *)ucp, 0, B_FALSE); 4519 break; 4520 4521 case sizeof (sin_t): 4522 sin = (sin_t *)ucp; 4523 error = ip_bind_laddr_v4(connp, &mp1, protocol, 4524 sin->sin_addr.s_addr, sin->sin_port, B_TRUE); 4525 break; 4526 4527 case sizeof (ipa_conn_t): 4528 ac = (ipa_conn_t *)ucp; 4529 /* For raw socket, the local port is not set. */ 4530 if (ac->ac_lport == 0) 4531 ac->ac_lport = connp->conn_lport; 4532 /* Always verify destination reachability. */ 4533 error = ip_bind_connected_v4(connp, &mp1, protocol, 4534 &ac->ac_laddr, ac->ac_lport, ac->ac_faddr, ac->ac_fport, 4535 B_TRUE, B_TRUE, cr); 4536 break; 4537 4538 case sizeof (ipa_conn_x_t): 4539 acx = (ipa_conn_x_t *)ucp; 4540 /* 4541 * Whether or not to verify destination reachability depends 4542 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4543 */ 4544 error = ip_bind_connected_v4(connp, &mp1, protocol, 4545 &acx->acx_conn.ac_laddr, acx->acx_conn.ac_lport, 4546 acx->acx_conn.ac_faddr, acx->acx_conn.ac_fport, 4547 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0, cr); 4548 break; 4549 } 4550 ASSERT(error != EINPROGRESS); 4551 if (error != 0) 4552 goto bad_addr; 4553 4554 ip_bind_post_handling(connp, mp->b_cont, ire_requested); 4555 4556 /* Send it home. */ 4557 mp->b_datap->db_type = M_PCPROTO; 4558 tbr->PRIM_type = T_BIND_ACK; 4559 return (mp); 4560 4561 bad_addr: 4562 /* 4563 * If error = -1 then we generate a TBADADDR - otherwise error is 4564 * a unix errno. 4565 */ 4566 if (error > 0) 4567 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4568 else 4569 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4570 return (mp); 4571 } 4572 4573 /* 4574 * Here address is verified to be a valid local address. 4575 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4576 * address is also considered a valid local address. 4577 * In the case of a broadcast/multicast address, however, the 4578 * upper protocol is expected to reset the src address 4579 * to 0 if it sees a IRE_BROADCAST type returned so that 4580 * no packets are emitted with broadcast/multicast address as 4581 * source address (that violates hosts requirements RFC 1122) 4582 * The addresses valid for bind are: 4583 * (1) - INADDR_ANY (0) 4584 * (2) - IP address of an UP interface 4585 * (3) - IP address of a DOWN interface 4586 * (4) - valid local IP broadcast addresses. In this case 4587 * the conn will only receive packets destined to 4588 * the specified broadcast address. 4589 * (5) - a multicast address. In this case 4590 * the conn will only receive packets destined to 4591 * the specified multicast address. Note: the 4592 * application still has to issue an 4593 * IP_ADD_MEMBERSHIP socket option. 4594 * 4595 * On error, return -1 for TBADADDR otherwise pass the 4596 * errno with TSYSERR reply. 4597 * 4598 * In all the above cases, the bound address must be valid in the current zone. 4599 * When the address is loopback, multicast or broadcast, there might be many 4600 * matching IREs so bind has to look up based on the zone. 4601 * 4602 * Note: lport is in network byte order. 4603 * 4604 */ 4605 int 4606 ip_bind_laddr_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4607 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4608 { 4609 int error = 0; 4610 ire_t *src_ire; 4611 zoneid_t zoneid; 4612 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4613 mblk_t *mp = NULL; 4614 boolean_t ire_requested = B_FALSE; 4615 boolean_t ipsec_policy_set = B_FALSE; 4616 4617 if (mpp) 4618 mp = *mpp; 4619 4620 if (mp != NULL) { 4621 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4622 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4623 } 4624 4625 /* 4626 * If it was previously connected, conn_fully_bound would have 4627 * been set. 4628 */ 4629 connp->conn_fully_bound = B_FALSE; 4630 4631 src_ire = NULL; 4632 4633 zoneid = IPCL_ZONEID(connp); 4634 4635 if (src_addr) { 4636 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4637 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 4638 /* 4639 * If an address other than 0.0.0.0 is requested, 4640 * we verify that it is a valid address for bind 4641 * Note: Following code is in if-else-if form for 4642 * readability compared to a condition check. 4643 */ 4644 /* LINTED - statement has no consequence */ 4645 if (IRE_IS_LOCAL(src_ire)) { 4646 /* 4647 * (2) Bind to address of local UP interface 4648 */ 4649 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4650 /* 4651 * (4) Bind to broadcast address 4652 * Note: permitted only from transports that 4653 * request IRE 4654 */ 4655 if (!ire_requested) 4656 error = EADDRNOTAVAIL; 4657 } else { 4658 /* 4659 * (3) Bind to address of local DOWN interface 4660 * (ipif_lookup_addr() looks up all interfaces 4661 * but we do not get here for UP interfaces 4662 * - case (2) above) 4663 */ 4664 /* LINTED - statement has no consequent */ 4665 if (ip_addr_exists(src_addr, zoneid, ipst)) { 4666 /* The address exists */ 4667 } else if (CLASSD(src_addr)) { 4668 error = 0; 4669 if (src_ire != NULL) 4670 ire_refrele(src_ire); 4671 /* 4672 * (5) bind to multicast address. 4673 * Fake out the IRE returned to upper 4674 * layer to be a broadcast IRE. 4675 */ 4676 src_ire = ire_ctable_lookup( 4677 INADDR_BROADCAST, INADDR_ANY, 4678 IRE_BROADCAST, NULL, zoneid, NULL, 4679 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY), 4680 ipst); 4681 if (src_ire == NULL || !ire_requested) 4682 error = EADDRNOTAVAIL; 4683 } else { 4684 /* 4685 * Not a valid address for bind 4686 */ 4687 error = EADDRNOTAVAIL; 4688 } 4689 } 4690 if (error) { 4691 /* Red Alert! Attempting to be a bogon! */ 4692 ip1dbg(("ip_bind_laddr_v4: bad src address 0x%x\n", 4693 ntohl(src_addr))); 4694 goto bad_addr; 4695 } 4696 } 4697 4698 /* 4699 * Allow setting new policies. For example, disconnects come 4700 * down as ipa_t bind. As we would have set conn_policy_cached 4701 * to B_TRUE before, we should set it to B_FALSE, so that policy 4702 * can change after the disconnect. 4703 */ 4704 connp->conn_policy_cached = B_FALSE; 4705 4706 /* 4707 * If not fanout_insert this was just an address verification 4708 */ 4709 if (fanout_insert) { 4710 /* 4711 * The addresses have been verified. Time to insert in 4712 * the correct fanout list. 4713 */ 4714 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4715 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4716 connp->conn_lport = lport; 4717 connp->conn_fport = 0; 4718 /* 4719 * Do we need to add a check to reject Multicast packets 4720 */ 4721 error = ipcl_bind_insert(connp, protocol, src_addr, lport); 4722 } 4723 4724 if (error == 0) { 4725 if (ire_requested) { 4726 if (!ip_bind_get_ire_v4(mpp, src_ire, NULL, ipst)) { 4727 error = -1; 4728 /* Falls through to bad_addr */ 4729 } 4730 } else if (ipsec_policy_set) { 4731 if (!ip_bind_ipsec_policy_set(connp, mp)) { 4732 error = -1; 4733 /* Falls through to bad_addr */ 4734 } 4735 } 4736 } 4737 bad_addr: 4738 if (error != 0) { 4739 if (connp->conn_anon_port) { 4740 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4741 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4742 B_FALSE); 4743 } 4744 connp->conn_mlp_type = mlptSingle; 4745 } 4746 if (src_ire != NULL) 4747 IRE_REFRELE(src_ire); 4748 return (error); 4749 } 4750 4751 int 4752 ip_proto_bind_laddr_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 4753 ipaddr_t src_addr, uint16_t lport, boolean_t fanout_insert) 4754 { 4755 int error; 4756 mblk_t *mp = NULL; 4757 boolean_t ire_requested; 4758 4759 if (ire_mpp) 4760 mp = *ire_mpp; 4761 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4762 4763 ASSERT(!connp->conn_af_isv6); 4764 connp->conn_pkt_isv6 = B_FALSE; 4765 connp->conn_ulp = protocol; 4766 4767 error = ip_bind_laddr_v4(connp, ire_mpp, protocol, src_addr, lport, 4768 fanout_insert); 4769 if (error == 0) { 4770 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 4771 ire_requested); 4772 } else if (error < 0) { 4773 error = -TBADADDR; 4774 } 4775 return (error); 4776 } 4777 4778 /* 4779 * Verify that both the source and destination addresses 4780 * are valid. If verify_dst is false, then the destination address may be 4781 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4782 * destination reachability, while tunnels do not. 4783 * Note that we allow connect to broadcast and multicast 4784 * addresses when ire_requested is set. Thus the ULP 4785 * has to check for IRE_BROADCAST and multicast. 4786 * 4787 * Returns zero if ok. 4788 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4789 * (for use with TSYSERR reply). 4790 * 4791 * Note: lport and fport are in network byte order. 4792 */ 4793 int 4794 ip_bind_connected_v4(conn_t *connp, mblk_t **mpp, uint8_t protocol, 4795 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4796 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 4797 { 4798 4799 ire_t *src_ire; 4800 ire_t *dst_ire; 4801 int error = 0; 4802 ire_t *sire = NULL; 4803 ire_t *md_dst_ire = NULL; 4804 ire_t *lso_dst_ire = NULL; 4805 ill_t *ill = NULL; 4806 zoneid_t zoneid; 4807 ipaddr_t src_addr = *src_addrp; 4808 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 4809 mblk_t *mp = NULL; 4810 boolean_t ire_requested = B_FALSE; 4811 boolean_t ipsec_policy_set = B_FALSE; 4812 ts_label_t *tsl = NULL; 4813 cred_t *effective_cred = NULL; 4814 4815 if (mpp) 4816 mp = *mpp; 4817 4818 if (mp != NULL) { 4819 ire_requested = (DB_TYPE(mp) == IRE_DB_REQ_TYPE); 4820 ipsec_policy_set = (DB_TYPE(mp) == IPSEC_POLICY_SET); 4821 } 4822 4823 src_ire = dst_ire = NULL; 4824 4825 /* 4826 * If we never got a disconnect before, clear it now. 4827 */ 4828 connp->conn_fully_bound = B_FALSE; 4829 4830 zoneid = IPCL_ZONEID(connp); 4831 4832 /* 4833 * Check whether Trusted Solaris policy allows communication with this 4834 * host, and pretend that the destination is unreachable if not. 4835 * 4836 * This is never a problem for TCP, since that transport is known to 4837 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4838 * handling. If the remote is unreachable, it will be detected at that 4839 * point, so there's no reason to check it here. 4840 * 4841 * Note that for sendto (and other datagram-oriented friends), this 4842 * check is done as part of the data path label computation instead. 4843 * The check here is just to make non-TCP connect() report the right 4844 * error. 4845 */ 4846 if (is_system_labeled() && !IPCL_IS_TCP(connp)) { 4847 if ((error = tsol_check_dest(cr, &dst_addr, IPV4_VERSION, 4848 connp->conn_mac_exempt, &effective_cred)) != 0) { 4849 if (ip_debug > 2) { 4850 pr_addr_dbg( 4851 "ip_bind_connected_v4:" 4852 " no label for dst %s\n", 4853 AF_INET, &dst_addr); 4854 } 4855 goto bad_addr; 4856 } 4857 4858 /* 4859 * tsol_check_dest() may have created a new cred with 4860 * a modified security label. Use that cred if it exists 4861 * for ire lookups. 4862 */ 4863 if (effective_cred == NULL) { 4864 tsl = crgetlabel(cr); 4865 } else { 4866 tsl = crgetlabel(effective_cred); 4867 } 4868 } 4869 4870 if (CLASSD(dst_addr)) { 4871 /* Pick up an IRE_BROADCAST */ 4872 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4873 NULL, zoneid, tsl, 4874 (MATCH_IRE_RECURSIVE | 4875 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4876 MATCH_IRE_SECATTR), ipst); 4877 } else { 4878 /* 4879 * If conn_dontroute is set or if conn_nexthop_set is set, 4880 * and onlink ipif is not found set ENETUNREACH error. 4881 */ 4882 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4883 ipif_t *ipif; 4884 4885 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4886 dst_addr : connp->conn_nexthop_v4, zoneid, ipst); 4887 if (ipif == NULL) { 4888 error = ENETUNREACH; 4889 goto bad_addr; 4890 } 4891 ipif_refrele(ipif); 4892 } 4893 4894 if (connp->conn_nexthop_set) { 4895 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4896 0, 0, NULL, NULL, zoneid, tsl, 4897 MATCH_IRE_SECATTR, ipst); 4898 } else { 4899 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4900 &sire, zoneid, tsl, 4901 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4902 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4903 MATCH_IRE_SECATTR), ipst); 4904 } 4905 } 4906 /* 4907 * dst_ire can't be a broadcast when not ire_requested. 4908 * We also prevent ire's with src address INADDR_ANY to 4909 * be used, which are created temporarily for 4910 * sending out packets from endpoints that have 4911 * conn_unspec_src set. If verify_dst is true, the destination must be 4912 * reachable. If verify_dst is false, the destination needn't be 4913 * reachable. 4914 * 4915 * If we match on a reject or black hole, then we've got a 4916 * local failure. May as well fail out the connect() attempt, 4917 * since it's never going to succeed. 4918 */ 4919 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4920 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4921 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4922 /* 4923 * If we're verifying destination reachability, we always want 4924 * to complain here. 4925 * 4926 * If we're not verifying destination reachability but the 4927 * destination has a route, we still want to fail on the 4928 * temporary address and broadcast address tests. 4929 */ 4930 if (verify_dst || (dst_ire != NULL)) { 4931 if (ip_debug > 2) { 4932 pr_addr_dbg("ip_bind_connected_v4:" 4933 "bad connected dst %s\n", 4934 AF_INET, &dst_addr); 4935 } 4936 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4937 error = ENETUNREACH; 4938 else 4939 error = EHOSTUNREACH; 4940 goto bad_addr; 4941 } 4942 } 4943 4944 /* 4945 * If the app does a connect(), it means that it will most likely 4946 * send more than 1 packet to the destination. It makes sense 4947 * to clear the temporary flag. 4948 */ 4949 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4950 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4951 irb_t *irb = dst_ire->ire_bucket; 4952 4953 rw_enter(&irb->irb_lock, RW_WRITER); 4954 /* 4955 * We need to recheck for IRE_MARK_TEMPORARY after acquiring 4956 * the lock to guarantee irb_tmp_ire_cnt. 4957 */ 4958 if (dst_ire->ire_marks & IRE_MARK_TEMPORARY) { 4959 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4960 irb->irb_tmp_ire_cnt--; 4961 } 4962 rw_exit(&irb->irb_lock); 4963 } 4964 4965 /* 4966 * See if we should notify ULP about LSO/MDT; we do this whether or not 4967 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4968 * eligibility tests for passive connects are handled separately 4969 * through tcp_adapt_ire(). We do this before the source address 4970 * selection, because dst_ire may change after a call to 4971 * ipif_select_source(). This is a best-effort check, as the 4972 * packet for this connection may not actually go through 4973 * dst_ire->ire_stq, and the exact IRE can only be known after 4974 * calling ip_newroute(). This is why we further check on the 4975 * IRE during LSO/Multidata packet transmission in 4976 * tcp_lsosend()/tcp_multisend(). 4977 */ 4978 if (!ipsec_policy_set && dst_ire != NULL && 4979 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4980 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4981 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4982 lso_dst_ire = dst_ire; 4983 IRE_REFHOLD(lso_dst_ire); 4984 } else if (ipst->ips_ip_multidata_outbound && 4985 ILL_MDT_CAPABLE(ill)) { 4986 md_dst_ire = dst_ire; 4987 IRE_REFHOLD(md_dst_ire); 4988 } 4989 } 4990 4991 if (dst_ire != NULL && dst_ire->ire_type == IRE_LOCAL && 4992 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4993 /* 4994 * If the IRE belongs to a different zone, look for a matching 4995 * route in the forwarding table and use the source address from 4996 * that route. 4997 */ 4998 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4999 zoneid, 0, NULL, 5000 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 5001 MATCH_IRE_RJ_BHOLE, ipst); 5002 if (src_ire == NULL) { 5003 error = EHOSTUNREACH; 5004 goto bad_addr; 5005 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 5006 if (!(src_ire->ire_type & IRE_HOST)) 5007 error = ENETUNREACH; 5008 else 5009 error = EHOSTUNREACH; 5010 goto bad_addr; 5011 } 5012 if (src_addr == INADDR_ANY) 5013 src_addr = src_ire->ire_src_addr; 5014 ire_refrele(src_ire); 5015 src_ire = NULL; 5016 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 5017 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 5018 src_addr = sire->ire_src_addr; 5019 ire_refrele(dst_ire); 5020 dst_ire = sire; 5021 sire = NULL; 5022 } else { 5023 /* 5024 * Pick a source address so that a proper inbound 5025 * load spreading would happen. 5026 */ 5027 ill_t *ire_ill = dst_ire->ire_ipif->ipif_ill; 5028 ipif_t *src_ipif = NULL; 5029 ire_t *ipif_ire; 5030 5031 /* 5032 * Supply a local source address such that inbound 5033 * load spreading happens. 5034 * 5035 * Determine the best source address on this ill for 5036 * the destination. 5037 * 5038 * 1) For broadcast, we should return a broadcast ire 5039 * found above so that upper layers know that the 5040 * destination address is a broadcast address. 5041 * 5042 * 2) If the ipif is DEPRECATED, select a better 5043 * source address. Similarly, if the ipif is on 5044 * the IPMP meta-interface, pick a source address 5045 * at random to improve inbound load spreading. 5046 * 5047 * 3) If the outgoing interface is part of a usesrc 5048 * group, then try selecting a source address from 5049 * the usesrc ILL. 5050 */ 5051 if ((dst_ire->ire_zoneid != zoneid && 5052 dst_ire->ire_zoneid != ALL_ZONES) || 5053 (!(dst_ire->ire_flags & RTF_SETSRC)) && 5054 (!(dst_ire->ire_type & IRE_BROADCAST) && 5055 (IS_IPMP(ire_ill) || 5056 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 5057 (ire_ill->ill_usesrc_ifindex != 0)))) { 5058 /* 5059 * If the destination is reachable via a 5060 * given gateway, the selected source address 5061 * should be in the same subnet as the gateway. 5062 * Otherwise, the destination is not reachable. 5063 * 5064 * If there are no interfaces on the same subnet 5065 * as the destination, ipif_select_source gives 5066 * first non-deprecated interface which might be 5067 * on a different subnet than the gateway. 5068 * This is not desirable. Hence pass the dst_ire 5069 * source address to ipif_select_source. 5070 * It is sure that the destination is reachable 5071 * with the dst_ire source address subnet. 5072 * So passing dst_ire source address to 5073 * ipif_select_source will make sure that the 5074 * selected source will be on the same subnet 5075 * as dst_ire source address. 5076 */ 5077 ipaddr_t saddr = 5078 dst_ire->ire_ipif->ipif_src_addr; 5079 src_ipif = ipif_select_source(ire_ill, 5080 saddr, zoneid); 5081 if (src_ipif != NULL) { 5082 if (IS_VNI(src_ipif->ipif_ill)) { 5083 /* 5084 * For VNI there is no 5085 * interface route 5086 */ 5087 src_addr = 5088 src_ipif->ipif_src_addr; 5089 } else { 5090 ipif_ire = 5091 ipif_to_ire(src_ipif); 5092 if (ipif_ire != NULL) { 5093 IRE_REFRELE(dst_ire); 5094 dst_ire = ipif_ire; 5095 } 5096 src_addr = 5097 dst_ire->ire_src_addr; 5098 } 5099 ipif_refrele(src_ipif); 5100 } else { 5101 src_addr = dst_ire->ire_src_addr; 5102 } 5103 } else { 5104 src_addr = dst_ire->ire_src_addr; 5105 } 5106 } 5107 } 5108 5109 /* 5110 * We do ire_route_lookup() here (and not 5111 * interface lookup as we assert that 5112 * src_addr should only come from an 5113 * UP interface for hard binding. 5114 */ 5115 ASSERT(src_ire == NULL); 5116 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5117 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst); 5118 /* src_ire must be a local|loopback */ 5119 if (!IRE_IS_LOCAL(src_ire)) { 5120 if (ip_debug > 2) { 5121 pr_addr_dbg("ip_bind_connected_v4: bad connected " 5122 "src %s\n", AF_INET, &src_addr); 5123 } 5124 error = EADDRNOTAVAIL; 5125 goto bad_addr; 5126 } 5127 5128 /* 5129 * If the source address is a loopback address, the 5130 * destination had best be local or multicast. 5131 * The transports that can't handle multicast will reject 5132 * those addresses. 5133 */ 5134 if (src_ire->ire_type == IRE_LOOPBACK && 5135 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5136 ip1dbg(("ip_bind_connected_v4: bad connected loopback\n")); 5137 error = -1; 5138 goto bad_addr; 5139 } 5140 5141 /* 5142 * Allow setting new policies. For example, disconnects come 5143 * down as ipa_t bind. As we would have set conn_policy_cached 5144 * to B_TRUE before, we should set it to B_FALSE, so that policy 5145 * can change after the disconnect. 5146 */ 5147 connp->conn_policy_cached = B_FALSE; 5148 5149 /* 5150 * Set the conn addresses/ports immediately, so the IPsec policy calls 5151 * can handle their passed-in conn's. 5152 */ 5153 5154 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5155 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5156 connp->conn_lport = lport; 5157 connp->conn_fport = fport; 5158 *src_addrp = src_addr; 5159 5160 ASSERT(!(ipsec_policy_set && ire_requested)); 5161 if (ire_requested) { 5162 iulp_t *ulp_info = NULL; 5163 5164 /* 5165 * Note that sire will not be NULL if this is an off-link 5166 * connection and there is not cache for that dest yet. 5167 * 5168 * XXX Because of an existing bug, if there are multiple 5169 * default routes, the IRE returned now may not be the actual 5170 * default route used (default routes are chosen in a 5171 * round robin fashion). So if the metrics for different 5172 * default routes are different, we may return the wrong 5173 * metrics. This will not be a problem if the existing 5174 * bug is fixed. 5175 */ 5176 if (sire != NULL) { 5177 ulp_info = &(sire->ire_uinfo); 5178 } 5179 if (!ip_bind_get_ire_v4(mpp, dst_ire, ulp_info, ipst)) { 5180 error = -1; 5181 goto bad_addr; 5182 } 5183 mp = *mpp; 5184 } else if (ipsec_policy_set) { 5185 if (!ip_bind_ipsec_policy_set(connp, mp)) { 5186 error = -1; 5187 goto bad_addr; 5188 } 5189 } 5190 5191 /* 5192 * Cache IPsec policy in this conn. If we have per-socket policy, 5193 * we'll cache that. If we don't, we'll inherit global policy. 5194 * 5195 * We can't insert until the conn reflects the policy. Note that 5196 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5197 * connections where we don't have a policy. This is to prevent 5198 * global policy lookups in the inbound path. 5199 * 5200 * If we insert before we set conn_policy_cached, 5201 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5202 * because global policy cound be non-empty. We normally call 5203 * ipsec_check_policy() for conn_policy_cached connections only if 5204 * ipc_in_enforce_policy is set. But in this case, 5205 * conn_policy_cached can get set anytime since we made the 5206 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5207 * called, which will make the above assumption false. Thus, we 5208 * need to insert after we set conn_policy_cached. 5209 */ 5210 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5211 goto bad_addr; 5212 5213 if (fanout_insert) { 5214 /* 5215 * The addresses have been verified. Time to insert in 5216 * the correct fanout list. 5217 */ 5218 error = ipcl_conn_insert(connp, protocol, src_addr, 5219 dst_addr, connp->conn_ports); 5220 } 5221 5222 if (error == 0) { 5223 connp->conn_fully_bound = B_TRUE; 5224 /* 5225 * Our initial checks for LSO/MDT have passed; the IRE is not 5226 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5227 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5228 * ip_xxinfo_return(), which performs further checks 5229 * against them and upon success, returns the LSO/MDT info 5230 * mblk which we will attach to the bind acknowledgment. 5231 */ 5232 if (lso_dst_ire != NULL) { 5233 mblk_t *lsoinfo_mp; 5234 5235 ASSERT(ill->ill_lso_capab != NULL); 5236 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5237 ill->ill_name, ill->ill_lso_capab)) != NULL) { 5238 if (mp == NULL) { 5239 *mpp = lsoinfo_mp; 5240 } else { 5241 linkb(mp, lsoinfo_mp); 5242 } 5243 } 5244 } else if (md_dst_ire != NULL) { 5245 mblk_t *mdinfo_mp; 5246 5247 ASSERT(ill->ill_mdt_capab != NULL); 5248 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5249 ill->ill_name, ill->ill_mdt_capab)) != NULL) { 5250 if (mp == NULL) { 5251 *mpp = mdinfo_mp; 5252 } else { 5253 linkb(mp, mdinfo_mp); 5254 } 5255 } 5256 } 5257 } 5258 bad_addr: 5259 if (ipsec_policy_set) { 5260 ASSERT(mp != NULL); 5261 freeb(mp); 5262 /* 5263 * As of now assume that nothing else accompanies 5264 * IPSEC_POLICY_SET. 5265 */ 5266 *mpp = NULL; 5267 } 5268 if (src_ire != NULL) 5269 IRE_REFRELE(src_ire); 5270 if (dst_ire != NULL) 5271 IRE_REFRELE(dst_ire); 5272 if (sire != NULL) 5273 IRE_REFRELE(sire); 5274 if (md_dst_ire != NULL) 5275 IRE_REFRELE(md_dst_ire); 5276 if (lso_dst_ire != NULL) 5277 IRE_REFRELE(lso_dst_ire); 5278 if (effective_cred != NULL) 5279 crfree(effective_cred); 5280 return (error); 5281 } 5282 5283 int 5284 ip_proto_bind_connected_v4(conn_t *connp, mblk_t **ire_mpp, uint8_t protocol, 5285 ipaddr_t *src_addrp, uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 5286 boolean_t fanout_insert, boolean_t verify_dst, cred_t *cr) 5287 { 5288 int error; 5289 mblk_t *mp = NULL; 5290 boolean_t ire_requested; 5291 5292 if (ire_mpp) 5293 mp = *ire_mpp; 5294 ire_requested = (mp != NULL && DB_TYPE(mp) == IRE_DB_REQ_TYPE); 5295 5296 ASSERT(!connp->conn_af_isv6); 5297 connp->conn_pkt_isv6 = B_FALSE; 5298 connp->conn_ulp = protocol; 5299 5300 /* For raw socket, the local port is not set. */ 5301 if (lport == 0) 5302 lport = connp->conn_lport; 5303 error = ip_bind_connected_v4(connp, ire_mpp, protocol, 5304 src_addrp, lport, dst_addr, fport, fanout_insert, verify_dst, cr); 5305 if (error == 0) { 5306 ip_bind_post_handling(connp, ire_mpp ? *ire_mpp : NULL, 5307 ire_requested); 5308 } else if (error < 0) { 5309 error = -TBADADDR; 5310 } 5311 return (error); 5312 } 5313 5314 /* 5315 * Get the ire in *mpp. Returns false if it fails (due to lack of space). 5316 * Prefers dst_ire over src_ire. 5317 */ 5318 static boolean_t 5319 ip_bind_get_ire_v4(mblk_t **mpp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst) 5320 { 5321 mblk_t *mp = *mpp; 5322 ire_t *ret_ire; 5323 5324 ASSERT(mp != NULL); 5325 5326 if (ire != NULL) { 5327 /* 5328 * mp initialized above to IRE_DB_REQ_TYPE 5329 * appended mblk. Its <upper protocol>'s 5330 * job to make sure there is room. 5331 */ 5332 if ((mp->b_datap->db_lim - mp->b_rptr) < sizeof (ire_t)) 5333 return (B_FALSE); 5334 5335 mp->b_datap->db_type = IRE_DB_TYPE; 5336 mp->b_wptr = mp->b_rptr + sizeof (ire_t); 5337 bcopy(ire, mp->b_rptr, sizeof (ire_t)); 5338 ret_ire = (ire_t *)mp->b_rptr; 5339 /* 5340 * Pass the latest setting of the ip_path_mtu_discovery and 5341 * copy the ulp info if any. 5342 */ 5343 ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ? 5344 IPH_DF : 0; 5345 if (ulp_info != NULL) { 5346 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5347 sizeof (iulp_t)); 5348 } 5349 ret_ire->ire_mp = mp; 5350 } else { 5351 /* 5352 * No IRE was found. Remove IRE mblk. 5353 */ 5354 *mpp = mp->b_cont; 5355 freeb(mp); 5356 } 5357 return (B_TRUE); 5358 } 5359 5360 /* 5361 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5362 * the final piece where we don't. Return a pointer to the first mblk in the 5363 * result, and update the pointer to the next mblk to chew on. If anything 5364 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5365 * NULL pointer. 5366 */ 5367 mblk_t * 5368 ip_carve_mp(mblk_t **mpp, ssize_t len) 5369 { 5370 mblk_t *mp0; 5371 mblk_t *mp1; 5372 mblk_t *mp2; 5373 5374 if (!len || !mpp || !(mp0 = *mpp)) 5375 return (NULL); 5376 /* If we aren't going to consume the first mblk, we need a dup. */ 5377 if (mp0->b_wptr - mp0->b_rptr > len) { 5378 mp1 = dupb(mp0); 5379 if (mp1) { 5380 /* Partition the data between the two mblks. */ 5381 mp1->b_wptr = mp1->b_rptr + len; 5382 mp0->b_rptr = mp1->b_wptr; 5383 /* 5384 * after adjustments if mblk not consumed is now 5385 * unaligned, try to align it. If this fails free 5386 * all messages and let upper layer recover. 5387 */ 5388 if (!OK_32PTR(mp0->b_rptr)) { 5389 if (!pullupmsg(mp0, -1)) { 5390 freemsg(mp0); 5391 freemsg(mp1); 5392 *mpp = NULL; 5393 return (NULL); 5394 } 5395 } 5396 } 5397 return (mp1); 5398 } 5399 /* Eat through as many mblks as we need to get len bytes. */ 5400 len -= mp0->b_wptr - mp0->b_rptr; 5401 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5402 if (mp2->b_wptr - mp2->b_rptr > len) { 5403 /* 5404 * We won't consume the entire last mblk. Like 5405 * above, dup and partition it. 5406 */ 5407 mp1->b_cont = dupb(mp2); 5408 mp1 = mp1->b_cont; 5409 if (!mp1) { 5410 /* 5411 * Trouble. Rather than go to a lot of 5412 * trouble to clean up, we free the messages. 5413 * This won't be any worse than losing it on 5414 * the wire. 5415 */ 5416 freemsg(mp0); 5417 freemsg(mp2); 5418 *mpp = NULL; 5419 return (NULL); 5420 } 5421 mp1->b_wptr = mp1->b_rptr + len; 5422 mp2->b_rptr = mp1->b_wptr; 5423 /* 5424 * after adjustments if mblk not consumed is now 5425 * unaligned, try to align it. If this fails free 5426 * all messages and let upper layer recover. 5427 */ 5428 if (!OK_32PTR(mp2->b_rptr)) { 5429 if (!pullupmsg(mp2, -1)) { 5430 freemsg(mp0); 5431 freemsg(mp2); 5432 *mpp = NULL; 5433 return (NULL); 5434 } 5435 } 5436 *mpp = mp2; 5437 return (mp0); 5438 } 5439 /* Decrement len by the amount we just got. */ 5440 len -= mp2->b_wptr - mp2->b_rptr; 5441 } 5442 /* 5443 * len should be reduced to zero now. If not our caller has 5444 * screwed up. 5445 */ 5446 if (len) { 5447 /* Shouldn't happen! */ 5448 freemsg(mp0); 5449 *mpp = NULL; 5450 return (NULL); 5451 } 5452 /* 5453 * We consumed up to exactly the end of an mblk. Detach the part 5454 * we are returning from the rest of the chain. 5455 */ 5456 mp1->b_cont = NULL; 5457 *mpp = mp2; 5458 return (mp0); 5459 } 5460 5461 /* The ill stream is being unplumbed. Called from ip_close */ 5462 int 5463 ip_modclose(ill_t *ill) 5464 { 5465 boolean_t success; 5466 ipsq_t *ipsq; 5467 ipif_t *ipif; 5468 queue_t *q = ill->ill_rq; 5469 ip_stack_t *ipst = ill->ill_ipst; 5470 int i; 5471 5472 /* 5473 * The punlink prior to this may have initiated a capability 5474 * negotiation. But ipsq_enter will block until that finishes or 5475 * times out. 5476 */ 5477 success = ipsq_enter(ill, B_FALSE, NEW_OP); 5478 5479 /* 5480 * Open/close/push/pop is guaranteed to be single threaded 5481 * per stream by STREAMS. FS guarantees that all references 5482 * from top are gone before close is called. So there can't 5483 * be another close thread that has set CONDEMNED on this ill. 5484 * and cause ipsq_enter to return failure. 5485 */ 5486 ASSERT(success); 5487 ipsq = ill->ill_phyint->phyint_ipsq; 5488 5489 /* 5490 * Mark it condemned. No new reference will be made to this ill. 5491 * Lookup functions will return an error. Threads that try to 5492 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5493 * that the refcnt will drop down to zero. 5494 */ 5495 mutex_enter(&ill->ill_lock); 5496 ill->ill_state_flags |= ILL_CONDEMNED; 5497 for (ipif = ill->ill_ipif; ipif != NULL; 5498 ipif = ipif->ipif_next) { 5499 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5500 } 5501 /* 5502 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5503 * returns error if ILL_CONDEMNED is set 5504 */ 5505 cv_broadcast(&ill->ill_cv); 5506 mutex_exit(&ill->ill_lock); 5507 5508 /* 5509 * Send all the deferred DLPI messages downstream which came in 5510 * during the small window right before ipsq_enter(). We do this 5511 * without waiting for the ACKs because all the ACKs for M_PROTO 5512 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5513 */ 5514 ill_dlpi_send_deferred(ill); 5515 5516 /* 5517 * Shut down fragmentation reassembly. 5518 * ill_frag_timer won't start a timer again. 5519 * Now cancel any existing timer 5520 */ 5521 (void) untimeout(ill->ill_frag_timer_id); 5522 (void) ill_frag_timeout(ill, 0); 5523 5524 /* 5525 * Call ill_delete to bring down the ipifs, ilms and ill on 5526 * this ill. Then wait for the refcnts to drop to zero. 5527 * ill_is_freeable checks whether the ill is really quiescent. 5528 * Then make sure that threads that are waiting to enter the 5529 * ipsq have seen the error returned by ipsq_enter and have 5530 * gone away. Then we call ill_delete_tail which does the 5531 * DL_UNBIND_REQ with the driver and then qprocsoff. 5532 */ 5533 ill_delete(ill); 5534 mutex_enter(&ill->ill_lock); 5535 while (!ill_is_freeable(ill)) 5536 cv_wait(&ill->ill_cv, &ill->ill_lock); 5537 while (ill->ill_waiters) 5538 cv_wait(&ill->ill_cv, &ill->ill_lock); 5539 5540 mutex_exit(&ill->ill_lock); 5541 5542 /* 5543 * ill_delete_tail drops reference on ill_ipst, but we need to keep 5544 * it held until the end of the function since the cleanup 5545 * below needs to be able to use the ip_stack_t. 5546 */ 5547 netstack_hold(ipst->ips_netstack); 5548 5549 /* qprocsoff is done via ill_delete_tail */ 5550 ill_delete_tail(ill); 5551 ASSERT(ill->ill_ipst == NULL); 5552 5553 /* 5554 * Walk through all upper (conn) streams and qenable 5555 * those that have queued data. 5556 * close synchronization needs this to 5557 * be done to ensure that all upper layers blocked 5558 * due to flow control to the closing device 5559 * get unblocked. 5560 */ 5561 ip1dbg(("ip_wsrv: walking\n")); 5562 for (i = 0; i < TX_FANOUT_SIZE; i++) { 5563 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 5564 } 5565 5566 mutex_enter(&ipst->ips_ip_mi_lock); 5567 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 5568 mutex_exit(&ipst->ips_ip_mi_lock); 5569 5570 /* 5571 * credp could be null if the open didn't succeed and ip_modopen 5572 * itself calls ip_close. 5573 */ 5574 if (ill->ill_credp != NULL) 5575 crfree(ill->ill_credp); 5576 5577 /* 5578 * Now we are done with the module close pieces that 5579 * need the netstack_t. 5580 */ 5581 netstack_rele(ipst->ips_netstack); 5582 5583 mi_close_free((IDP)ill); 5584 q->q_ptr = WR(q)->q_ptr = NULL; 5585 5586 ipsq_exit(ipsq); 5587 5588 return (0); 5589 } 5590 5591 /* 5592 * This is called as part of close() for IP, UDP, ICMP, and RTS 5593 * in order to quiesce the conn. 5594 */ 5595 void 5596 ip_quiesce_conn(conn_t *connp) 5597 { 5598 boolean_t drain_cleanup_reqd = B_FALSE; 5599 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5600 boolean_t ilg_cleanup_reqd = B_FALSE; 5601 ip_stack_t *ipst; 5602 5603 ASSERT(!IPCL_IS_TCP(connp)); 5604 ipst = connp->conn_netstack->netstack_ip; 5605 5606 /* 5607 * Mark the conn as closing, and this conn must not be 5608 * inserted in future into any list. Eg. conn_drain_insert(), 5609 * won't insert this conn into the conn_drain_list. 5610 * Similarly ill_pending_mp_add() will not add any mp to 5611 * the pending mp list, after this conn has started closing. 5612 * 5613 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5614 * cannot get set henceforth. 5615 */ 5616 mutex_enter(&connp->conn_lock); 5617 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5618 connp->conn_state_flags |= CONN_CLOSING; 5619 if (connp->conn_idl != NULL) 5620 drain_cleanup_reqd = B_TRUE; 5621 if (connp->conn_oper_pending_ill != NULL) 5622 conn_ioctl_cleanup_reqd = B_TRUE; 5623 if (connp->conn_dhcpinit_ill != NULL) { 5624 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 5625 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 5626 connp->conn_dhcpinit_ill = NULL; 5627 } 5628 if (connp->conn_ilg_inuse != 0) 5629 ilg_cleanup_reqd = B_TRUE; 5630 mutex_exit(&connp->conn_lock); 5631 5632 if (conn_ioctl_cleanup_reqd) 5633 conn_ioctl_cleanup(connp); 5634 5635 if (is_system_labeled() && connp->conn_anon_port) { 5636 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5637 connp->conn_mlp_type, connp->conn_ulp, 5638 ntohs(connp->conn_lport), B_FALSE); 5639 connp->conn_anon_port = 0; 5640 } 5641 connp->conn_mlp_type = mlptSingle; 5642 5643 /* 5644 * Remove this conn from any fanout list it is on. 5645 * and then wait for any threads currently operating 5646 * on this endpoint to finish 5647 */ 5648 ipcl_hash_remove(connp); 5649 5650 /* 5651 * Remove this conn from the drain list, and do 5652 * any other cleanup that may be required. 5653 * (Only non-tcp streams may have a non-null conn_idl. 5654 * TCP streams are never flow controlled, and 5655 * conn_idl will be null) 5656 */ 5657 if (drain_cleanup_reqd) 5658 conn_drain_tail(connp, B_TRUE); 5659 5660 if (connp == ipst->ips_ip_g_mrouter) 5661 (void) ip_mrouter_done(NULL, ipst); 5662 5663 if (ilg_cleanup_reqd) 5664 ilg_delete_all(connp); 5665 5666 conn_delete_ire(connp, NULL); 5667 5668 /* 5669 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5670 * callers from write side can't be there now because close 5671 * is in progress. The only other caller is ipcl_walk 5672 * which checks for the condemned flag. 5673 */ 5674 mutex_enter(&connp->conn_lock); 5675 connp->conn_state_flags |= CONN_CONDEMNED; 5676 while (connp->conn_ref != 1) 5677 cv_wait(&connp->conn_cv, &connp->conn_lock); 5678 connp->conn_state_flags |= CONN_QUIESCED; 5679 mutex_exit(&connp->conn_lock); 5680 } 5681 5682 /* ARGSUSED */ 5683 int 5684 ip_close(queue_t *q, int flags) 5685 { 5686 conn_t *connp; 5687 5688 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5689 5690 /* 5691 * Call the appropriate delete routine depending on whether this is 5692 * a module or device. 5693 */ 5694 if (WR(q)->q_next != NULL) { 5695 /* This is a module close */ 5696 return (ip_modclose((ill_t *)q->q_ptr)); 5697 } 5698 5699 connp = q->q_ptr; 5700 ip_quiesce_conn(connp); 5701 5702 qprocsoff(q); 5703 5704 /* 5705 * Now we are truly single threaded on this stream, and can 5706 * delete the things hanging off the connp, and finally the connp. 5707 * We removed this connp from the fanout list, it cannot be 5708 * accessed thru the fanouts, and we already waited for the 5709 * conn_ref to drop to 0. We are already in close, so 5710 * there cannot be any other thread from the top. qprocsoff 5711 * has completed, and service has completed or won't run in 5712 * future. 5713 */ 5714 ASSERT(connp->conn_ref == 1); 5715 5716 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 5717 5718 connp->conn_ref--; 5719 ipcl_conn_destroy(connp); 5720 5721 q->q_ptr = WR(q)->q_ptr = NULL; 5722 return (0); 5723 } 5724 5725 /* 5726 * Wapper around putnext() so that ip_rts_request can merely use 5727 * conn_recv. 5728 */ 5729 /*ARGSUSED2*/ 5730 static void 5731 ip_conn_input(void *arg1, mblk_t *mp, void *arg2) 5732 { 5733 conn_t *connp = (conn_t *)arg1; 5734 5735 putnext(connp->conn_rq, mp); 5736 } 5737 5738 /* 5739 * Called when the module is about to be unloaded 5740 */ 5741 void 5742 ip_ddi_destroy(void) 5743 { 5744 tnet_fini(); 5745 5746 icmp_ddi_g_destroy(); 5747 rts_ddi_g_destroy(); 5748 udp_ddi_g_destroy(); 5749 sctp_ddi_g_destroy(); 5750 tcp_ddi_g_destroy(); 5751 ipsec_policy_g_destroy(); 5752 ipcl_g_destroy(); 5753 ip_net_g_destroy(); 5754 ip_ire_g_fini(); 5755 inet_minor_destroy(ip_minor_arena_sa); 5756 #if defined(_LP64) 5757 inet_minor_destroy(ip_minor_arena_la); 5758 #endif 5759 5760 #ifdef DEBUG 5761 list_destroy(&ip_thread_list); 5762 rw_destroy(&ip_thread_rwlock); 5763 tsd_destroy(&ip_thread_data); 5764 #endif 5765 5766 netstack_unregister(NS_IP); 5767 } 5768 5769 /* 5770 * First step in cleanup. 5771 */ 5772 /* ARGSUSED */ 5773 static void 5774 ip_stack_shutdown(netstackid_t stackid, void *arg) 5775 { 5776 ip_stack_t *ipst = (ip_stack_t *)arg; 5777 5778 #ifdef NS_DEBUG 5779 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 5780 #endif 5781 5782 /* Get rid of loopback interfaces and their IREs */ 5783 ip_loopback_cleanup(ipst); 5784 5785 /* 5786 * The *_hook_shutdown()s start the process of notifying any 5787 * consumers that things are going away.... nothing is destroyed. 5788 */ 5789 ipv4_hook_shutdown(ipst); 5790 ipv6_hook_shutdown(ipst); 5791 5792 mutex_enter(&ipst->ips_capab_taskq_lock); 5793 ipst->ips_capab_taskq_quit = B_TRUE; 5794 cv_signal(&ipst->ips_capab_taskq_cv); 5795 mutex_exit(&ipst->ips_capab_taskq_lock); 5796 5797 mutex_enter(&ipst->ips_mrt_lock); 5798 ipst->ips_mrt_flags |= IP_MRT_STOP; 5799 cv_signal(&ipst->ips_mrt_cv); 5800 mutex_exit(&ipst->ips_mrt_lock); 5801 } 5802 5803 /* 5804 * Free the IP stack instance. 5805 */ 5806 static void 5807 ip_stack_fini(netstackid_t stackid, void *arg) 5808 { 5809 ip_stack_t *ipst = (ip_stack_t *)arg; 5810 int ret; 5811 5812 #ifdef NS_DEBUG 5813 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 5814 #endif 5815 /* 5816 * At this point, all of the notifications that the events and 5817 * protocols are going away have been run, meaning that we can 5818 * now set about starting to clean things up. 5819 */ 5820 ipv4_hook_destroy(ipst); 5821 ipv6_hook_destroy(ipst); 5822 ip_net_destroy(ipst); 5823 5824 mutex_destroy(&ipst->ips_capab_taskq_lock); 5825 cv_destroy(&ipst->ips_capab_taskq_cv); 5826 list_destroy(&ipst->ips_capab_taskq_list); 5827 5828 mutex_enter(&ipst->ips_mrt_lock); 5829 while (!(ipst->ips_mrt_flags & IP_MRT_DONE)) 5830 cv_wait(&ipst->ips_mrt_done_cv, &ipst->ips_mrt_lock); 5831 mutex_destroy(&ipst->ips_mrt_lock); 5832 cv_destroy(&ipst->ips_mrt_cv); 5833 cv_destroy(&ipst->ips_mrt_done_cv); 5834 5835 ipmp_destroy(ipst); 5836 rw_destroy(&ipst->ips_srcid_lock); 5837 5838 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 5839 ipst->ips_ip_mibkp = NULL; 5840 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 5841 ipst->ips_icmp_mibkp = NULL; 5842 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 5843 ipst->ips_ip_kstat = NULL; 5844 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 5845 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 5846 ipst->ips_ip6_kstat = NULL; 5847 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 5848 5849 nd_free(&ipst->ips_ip_g_nd); 5850 kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr)); 5851 ipst->ips_param_arr = NULL; 5852 kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 5853 ipst->ips_ndp_arr = NULL; 5854 5855 ip_mrouter_stack_destroy(ipst); 5856 5857 mutex_destroy(&ipst->ips_ip_mi_lock); 5858 rw_destroy(&ipst->ips_ipsec_capab_ills_lock); 5859 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 5860 rw_destroy(&ipst->ips_ip_g_nd_lock); 5861 5862 ret = untimeout(ipst->ips_igmp_timeout_id); 5863 if (ret == -1) { 5864 ASSERT(ipst->ips_igmp_timeout_id == 0); 5865 } else { 5866 ASSERT(ipst->ips_igmp_timeout_id != 0); 5867 ipst->ips_igmp_timeout_id = 0; 5868 } 5869 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 5870 if (ret == -1) { 5871 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 5872 } else { 5873 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 5874 ipst->ips_igmp_slowtimeout_id = 0; 5875 } 5876 ret = untimeout(ipst->ips_mld_timeout_id); 5877 if (ret == -1) { 5878 ASSERT(ipst->ips_mld_timeout_id == 0); 5879 } else { 5880 ASSERT(ipst->ips_mld_timeout_id != 0); 5881 ipst->ips_mld_timeout_id = 0; 5882 } 5883 ret = untimeout(ipst->ips_mld_slowtimeout_id); 5884 if (ret == -1) { 5885 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 5886 } else { 5887 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 5888 ipst->ips_mld_slowtimeout_id = 0; 5889 } 5890 ret = untimeout(ipst->ips_ip_ire_expire_id); 5891 if (ret == -1) { 5892 ASSERT(ipst->ips_ip_ire_expire_id == 0); 5893 } else { 5894 ASSERT(ipst->ips_ip_ire_expire_id != 0); 5895 ipst->ips_ip_ire_expire_id = 0; 5896 } 5897 5898 mutex_destroy(&ipst->ips_igmp_timer_lock); 5899 mutex_destroy(&ipst->ips_mld_timer_lock); 5900 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 5901 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 5902 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 5903 rw_destroy(&ipst->ips_ill_g_lock); 5904 5905 ipobs_fini(ipst); 5906 ip_ire_fini(ipst); 5907 ip6_asp_free(ipst); 5908 conn_drain_fini(ipst); 5909 ipcl_destroy(ipst); 5910 5911 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 5912 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 5913 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 5914 ipst->ips_ndp4 = NULL; 5915 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 5916 ipst->ips_ndp6 = NULL; 5917 5918 if (ipst->ips_loopback_ksp != NULL) { 5919 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 5920 ipst->ips_loopback_ksp = NULL; 5921 } 5922 5923 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 5924 ipst->ips_phyint_g_list = NULL; 5925 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 5926 ipst->ips_ill_g_heads = NULL; 5927 5928 ldi_ident_release(ipst->ips_ldi_ident); 5929 kmem_free(ipst, sizeof (*ipst)); 5930 } 5931 5932 /* 5933 * This function is called from the TSD destructor, and is used to debug 5934 * reference count issues in IP. See block comment in <inet/ip_if.h> for 5935 * details. 5936 */ 5937 static void 5938 ip_thread_exit(void *phash) 5939 { 5940 th_hash_t *thh = phash; 5941 5942 rw_enter(&ip_thread_rwlock, RW_WRITER); 5943 list_remove(&ip_thread_list, thh); 5944 rw_exit(&ip_thread_rwlock); 5945 mod_hash_destroy_hash(thh->thh_hash); 5946 kmem_free(thh, sizeof (*thh)); 5947 } 5948 5949 /* 5950 * Called when the IP kernel module is loaded into the kernel 5951 */ 5952 void 5953 ip_ddi_init(void) 5954 { 5955 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 5956 5957 /* 5958 * For IP and TCP the minor numbers should start from 2 since we have 4 5959 * initial devices: ip, ip6, tcp, tcp6. 5960 */ 5961 /* 5962 * If this is a 64-bit kernel, then create two separate arenas - 5963 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 5964 * other for socket apps in the range 2^^18 through 2^^32-1. 5965 */ 5966 ip_minor_arena_la = NULL; 5967 ip_minor_arena_sa = NULL; 5968 #if defined(_LP64) 5969 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5970 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 5971 cmn_err(CE_PANIC, 5972 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5973 } 5974 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 5975 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 5976 cmn_err(CE_PANIC, 5977 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 5978 } 5979 #else 5980 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 5981 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 5982 cmn_err(CE_PANIC, 5983 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 5984 } 5985 #endif 5986 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5987 5988 ipcl_g_init(); 5989 ip_ire_g_init(); 5990 ip_net_g_init(); 5991 5992 #ifdef DEBUG 5993 tsd_create(&ip_thread_data, ip_thread_exit); 5994 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 5995 list_create(&ip_thread_list, sizeof (th_hash_t), 5996 offsetof(th_hash_t, thh_link)); 5997 #endif 5998 5999 /* 6000 * We want to be informed each time a stack is created or 6001 * destroyed in the kernel, so we can maintain the 6002 * set of udp_stack_t's. 6003 */ 6004 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 6005 ip_stack_fini); 6006 6007 ipsec_policy_g_init(); 6008 tcp_ddi_g_init(); 6009 sctp_ddi_g_init(); 6010 6011 tnet_init(); 6012 6013 udp_ddi_g_init(); 6014 rts_ddi_g_init(); 6015 icmp_ddi_g_init(); 6016 } 6017 6018 /* 6019 * Initialize the IP stack instance. 6020 */ 6021 static void * 6022 ip_stack_init(netstackid_t stackid, netstack_t *ns) 6023 { 6024 ip_stack_t *ipst; 6025 ipparam_t *pa; 6026 ipndp_t *na; 6027 major_t major; 6028 6029 #ifdef NS_DEBUG 6030 printf("ip_stack_init(stack %d)\n", stackid); 6031 #endif 6032 6033 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 6034 ipst->ips_netstack = ns; 6035 6036 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 6037 KM_SLEEP); 6038 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 6039 KM_SLEEP); 6040 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6041 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 6042 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6043 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 6044 6045 rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 6046 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6047 ipst->ips_igmp_deferred_next = INFINITY; 6048 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 6049 ipst->ips_mld_deferred_next = INFINITY; 6050 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6051 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 6052 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 6053 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 6054 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 6055 rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 6056 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 6057 6058 ipcl_init(ipst); 6059 ip_ire_init(ipst); 6060 ip6_asp_init(ipst); 6061 ipif_init(ipst); 6062 conn_drain_init(ipst); 6063 ip_mrouter_stack_init(ipst); 6064 6065 ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT; 6066 ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 6067 ipst->ips_ipv6_frag_timeout = IPV6_FRAG_TIMEOUT; 6068 ipst->ips_ipv6_frag_timo_ms = IPV6_FRAG_TIMEOUT * 1000; 6069 6070 ipst->ips_ip_multirt_log_interval = 1000; 6071 6072 ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT; 6073 ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT; 6074 ipst->ips_ill_index = 1; 6075 6076 ipst->ips_saved_ip_g_forward = -1; 6077 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 6078 6079 pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP); 6080 ipst->ips_param_arr = pa; 6081 bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr)); 6082 6083 na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP); 6084 ipst->ips_ndp_arr = na; 6085 bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr)); 6086 ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data = 6087 (caddr_t)&ipst->ips_ip_g_forward; 6088 ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data = 6089 (caddr_t)&ipst->ips_ipv6_forward; 6090 ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name, 6091 "ip_cgtp_filter") == 0); 6092 ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data = 6093 (caddr_t)&ipst->ips_ip_cgtp_filter; 6094 6095 (void) ip_param_register(&ipst->ips_ip_g_nd, 6096 ipst->ips_param_arr, A_CNT(lcl_param_arr), 6097 ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr)); 6098 6099 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 6100 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 6101 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 6102 ipst->ips_ip6_kstat = 6103 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 6104 6105 ipst->ips_ip_src_id = 1; 6106 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 6107 6108 ipobs_init(ipst); 6109 ip_net_init(ipst, ns); 6110 ipv4_hook_init(ipst); 6111 ipv6_hook_init(ipst); 6112 ipmp_init(ipst); 6113 6114 /* 6115 * Create the taskq dispatcher thread and initialize related stuff. 6116 */ 6117 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 6118 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 6119 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 6120 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 6121 list_create(&ipst->ips_capab_taskq_list, sizeof (mblk_t), 6122 offsetof(mblk_t, b_next)); 6123 6124 /* 6125 * Create the mcast_restart_timers_thread() worker thread. 6126 */ 6127 mutex_init(&ipst->ips_mrt_lock, NULL, MUTEX_DEFAULT, NULL); 6128 cv_init(&ipst->ips_mrt_cv, NULL, CV_DEFAULT, NULL); 6129 cv_init(&ipst->ips_mrt_done_cv, NULL, CV_DEFAULT, NULL); 6130 ipst->ips_mrt_thread = thread_create(NULL, 0, 6131 mcast_restart_timers_thread, ipst, 0, &p0, TS_RUN, minclsyspri); 6132 6133 major = mod_name_to_major(INET_NAME); 6134 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 6135 return (ipst); 6136 } 6137 6138 /* 6139 * Allocate and initialize a DLPI template of the specified length. (May be 6140 * called as writer.) 6141 */ 6142 mblk_t * 6143 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 6144 { 6145 mblk_t *mp; 6146 6147 mp = allocb(len, BPRI_MED); 6148 if (!mp) 6149 return (NULL); 6150 6151 /* 6152 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 6153 * of which we don't seem to use) are sent with M_PCPROTO, and 6154 * that other DLPI are M_PROTO. 6155 */ 6156 if (prim == DL_INFO_REQ) { 6157 mp->b_datap->db_type = M_PCPROTO; 6158 } else { 6159 mp->b_datap->db_type = M_PROTO; 6160 } 6161 6162 mp->b_wptr = mp->b_rptr + len; 6163 bzero(mp->b_rptr, len); 6164 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 6165 return (mp); 6166 } 6167 6168 /* 6169 * Allocate and initialize a DLPI notification. (May be called as writer.) 6170 */ 6171 mblk_t * 6172 ip_dlnotify_alloc(uint_t notification, uint_t data) 6173 { 6174 dl_notify_ind_t *notifyp; 6175 mblk_t *mp; 6176 6177 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 6178 return (NULL); 6179 6180 notifyp = (dl_notify_ind_t *)mp->b_rptr; 6181 notifyp->dl_notification = notification; 6182 notifyp->dl_data = data; 6183 return (mp); 6184 } 6185 6186 /* 6187 * Debug formatting routine. Returns a character string representation of the 6188 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 6189 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 6190 * 6191 * Once the ndd table-printing interfaces are removed, this can be changed to 6192 * standard dotted-decimal form. 6193 */ 6194 char * 6195 ip_dot_addr(ipaddr_t addr, char *buf) 6196 { 6197 uint8_t *ap = (uint8_t *)&addr; 6198 6199 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 6200 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 6201 return (buf); 6202 } 6203 6204 /* 6205 * Write the given MAC address as a printable string in the usual colon- 6206 * separated format. 6207 */ 6208 const char * 6209 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6210 { 6211 char *bp; 6212 6213 if (alen == 0 || buflen < 4) 6214 return ("?"); 6215 bp = buf; 6216 for (;;) { 6217 /* 6218 * If there are more MAC address bytes available, but we won't 6219 * have any room to print them, then add "..." to the string 6220 * instead. See below for the 'magic number' explanation. 6221 */ 6222 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6223 (void) strcpy(bp, "..."); 6224 break; 6225 } 6226 (void) sprintf(bp, "%02x", *addr++); 6227 bp += 2; 6228 if (--alen == 0) 6229 break; 6230 *bp++ = ':'; 6231 buflen -= 3; 6232 /* 6233 * At this point, based on the first 'if' statement above, 6234 * either alen == 1 and buflen >= 3, or alen > 1 and 6235 * buflen >= 4. The first case leaves room for the final "xx" 6236 * number and trailing NUL byte. The second leaves room for at 6237 * least "...". Thus the apparently 'magic' numbers chosen for 6238 * that statement. 6239 */ 6240 } 6241 return (buf); 6242 } 6243 6244 /* 6245 * Send an ICMP error after patching up the packet appropriately. Returns 6246 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6247 */ 6248 static boolean_t 6249 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6250 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, 6251 zoneid_t zoneid, ip_stack_t *ipst) 6252 { 6253 ipha_t *ipha; 6254 mblk_t *first_mp; 6255 boolean_t secure; 6256 unsigned char db_type; 6257 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6258 6259 first_mp = mp; 6260 if (mctl_present) { 6261 mp = mp->b_cont; 6262 secure = ipsec_in_is_secure(first_mp); 6263 ASSERT(mp != NULL); 6264 } else { 6265 /* 6266 * If this is an ICMP error being reported - which goes 6267 * up as M_CTLs, we need to convert them to M_DATA till 6268 * we finish checking with global policy because 6269 * ipsec_check_global_policy() assumes M_DATA as clear 6270 * and M_CTL as secure. 6271 */ 6272 db_type = DB_TYPE(mp); 6273 DB_TYPE(mp) = M_DATA; 6274 secure = B_FALSE; 6275 } 6276 /* 6277 * We are generating an icmp error for some inbound packet. 6278 * Called from all ip_fanout_(udp, tcp, proto) functions. 6279 * Before we generate an error, check with global policy 6280 * to see whether this is allowed to enter the system. As 6281 * there is no "conn", we are checking with global policy. 6282 */ 6283 ipha = (ipha_t *)mp->b_rptr; 6284 if (secure || ipss->ipsec_inbound_v4_policy_present) { 6285 first_mp = ipsec_check_global_policy(first_mp, NULL, 6286 ipha, NULL, mctl_present, ipst->ips_netstack); 6287 if (first_mp == NULL) 6288 return (B_FALSE); 6289 } 6290 6291 if (!mctl_present) 6292 DB_TYPE(mp) = db_type; 6293 6294 if (flags & IP_FF_SEND_ICMP) { 6295 if (flags & IP_FF_HDR_COMPLETE) { 6296 if (ip_hdr_complete(ipha, zoneid, ipst)) { 6297 freemsg(first_mp); 6298 return (B_TRUE); 6299 } 6300 } 6301 if (flags & IP_FF_CKSUM) { 6302 /* 6303 * Have to correct checksum since 6304 * the packet might have been 6305 * fragmented and the reassembly code in ip_rput 6306 * does not restore the IP checksum. 6307 */ 6308 ipha->ipha_hdr_checksum = 0; 6309 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6310 } 6311 switch (icmp_type) { 6312 case ICMP_DEST_UNREACHABLE: 6313 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid, 6314 ipst); 6315 break; 6316 default: 6317 freemsg(first_mp); 6318 break; 6319 } 6320 } else { 6321 freemsg(first_mp); 6322 return (B_FALSE); 6323 } 6324 6325 return (B_TRUE); 6326 } 6327 6328 /* 6329 * Used to send an ICMP error message when a packet is received for 6330 * a protocol that is not supported. The mblk passed as argument 6331 * is consumed by this function. 6332 */ 6333 void 6334 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid, 6335 ip_stack_t *ipst) 6336 { 6337 mblk_t *mp; 6338 ipha_t *ipha; 6339 ill_t *ill; 6340 ipsec_in_t *ii; 6341 6342 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6343 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6344 6345 mp = ipsec_mp->b_cont; 6346 ipsec_mp->b_cont = NULL; 6347 ipha = (ipha_t *)mp->b_rptr; 6348 /* Get ill from index in ipsec_in_t. */ 6349 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6350 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL, 6351 ipst); 6352 if (ill != NULL) { 6353 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6354 if (ip_fanout_send_icmp(q, mp, flags, 6355 ICMP_DEST_UNREACHABLE, 6356 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) { 6357 BUMP_MIB(ill->ill_ip_mib, 6358 ipIfStatsInUnknownProtos); 6359 } 6360 } else { 6361 if (ip_fanout_send_icmp_v6(q, mp, flags, 6362 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6363 0, B_FALSE, zoneid, ipst)) { 6364 BUMP_MIB(ill->ill_ip_mib, 6365 ipIfStatsInUnknownProtos); 6366 } 6367 } 6368 ill_refrele(ill); 6369 } else { /* re-link for the freemsg() below. */ 6370 ipsec_mp->b_cont = mp; 6371 } 6372 6373 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6374 freemsg(ipsec_mp); 6375 } 6376 6377 /* 6378 * See if the inbound datagram has had IPsec processing applied to it. 6379 */ 6380 boolean_t 6381 ipsec_in_is_secure(mblk_t *ipsec_mp) 6382 { 6383 ipsec_in_t *ii; 6384 6385 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6386 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6387 6388 if (ii->ipsec_in_loopback) { 6389 return (ii->ipsec_in_secure); 6390 } else { 6391 return (ii->ipsec_in_ah_sa != NULL || 6392 ii->ipsec_in_esp_sa != NULL || 6393 ii->ipsec_in_decaps); 6394 } 6395 } 6396 6397 /* 6398 * Handle protocols with which IP is less intimate. There 6399 * can be more than one stream bound to a particular 6400 * protocol. When this is the case, normally each one gets a copy 6401 * of any incoming packets. 6402 * 6403 * IPsec NOTE : 6404 * 6405 * Don't allow a secure packet going up a non-secure connection. 6406 * We don't allow this because 6407 * 6408 * 1) Reply might go out in clear which will be dropped at 6409 * the sending side. 6410 * 2) If the reply goes out in clear it will give the 6411 * adversary enough information for getting the key in 6412 * most of the cases. 6413 * 6414 * Moreover getting a secure packet when we expect clear 6415 * implies that SA's were added without checking for 6416 * policy on both ends. This should not happen once ISAKMP 6417 * is used to negotiate SAs as SAs will be added only after 6418 * verifying the policy. 6419 * 6420 * NOTE : If the packet was tunneled and not multicast we only send 6421 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6422 * back to delivering packets to AF_INET6 raw sockets. 6423 * 6424 * IPQoS Notes: 6425 * Once we have determined the client, invoke IPPF processing. 6426 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6427 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6428 * ip_policy will be false. 6429 * 6430 * Zones notes: 6431 * Currently only applications in the global zone can create raw sockets for 6432 * protocols other than ICMP. So unlike the broadcast / multicast case of 6433 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6434 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6435 */ 6436 static void 6437 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6438 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6439 zoneid_t zoneid) 6440 { 6441 queue_t *rq; 6442 mblk_t *mp1, *first_mp1; 6443 uint_t protocol = ipha->ipha_protocol; 6444 ipaddr_t dst; 6445 boolean_t one_only; 6446 mblk_t *first_mp = mp; 6447 boolean_t secure; 6448 uint32_t ill_index; 6449 conn_t *connp, *first_connp, *next_connp; 6450 connf_t *connfp; 6451 boolean_t shared_addr; 6452 mib2_ipIfStatsEntry_t *mibptr; 6453 ip_stack_t *ipst = recv_ill->ill_ipst; 6454 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6455 6456 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 6457 if (mctl_present) { 6458 mp = first_mp->b_cont; 6459 secure = ipsec_in_is_secure(first_mp); 6460 ASSERT(mp != NULL); 6461 } else { 6462 secure = B_FALSE; 6463 } 6464 dst = ipha->ipha_dst; 6465 /* 6466 * If the packet was tunneled and not multicast we only send to it 6467 * the first match. 6468 */ 6469 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6470 !CLASSD(dst)); 6471 6472 shared_addr = (zoneid == ALL_ZONES); 6473 if (shared_addr) { 6474 /* 6475 * We don't allow multilevel ports for raw IP, so no need to 6476 * check for that here. 6477 */ 6478 zoneid = tsol_packet_to_zoneid(mp); 6479 } 6480 6481 connfp = &ipst->ips_ipcl_proto_fanout[protocol]; 6482 mutex_enter(&connfp->connf_lock); 6483 connp = connfp->connf_head; 6484 for (connp = connfp->connf_head; connp != NULL; 6485 connp = connp->conn_next) { 6486 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6487 zoneid) && 6488 (!is_system_labeled() || 6489 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6490 connp))) { 6491 break; 6492 } 6493 } 6494 6495 if (connp == NULL) { 6496 /* 6497 * No one bound to these addresses. Is 6498 * there a client that wants all 6499 * unclaimed datagrams? 6500 */ 6501 mutex_exit(&connfp->connf_lock); 6502 /* 6503 * Check for IPPROTO_ENCAP... 6504 */ 6505 if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) { 6506 /* 6507 * If an IPsec mblk is here on a multicast 6508 * tunnel (using ip_mroute stuff), check policy here, 6509 * THEN ship off to ip_mroute_decap(). 6510 * 6511 * BTW, If I match a configured IP-in-IP 6512 * tunnel, this path will not be reached, and 6513 * ip_mroute_decap will never be called. 6514 */ 6515 first_mp = ipsec_check_global_policy(first_mp, connp, 6516 ipha, NULL, mctl_present, ipst->ips_netstack); 6517 if (first_mp != NULL) { 6518 if (mctl_present) 6519 freeb(first_mp); 6520 ip_mroute_decap(q, mp, ill); 6521 } /* Else we already freed everything! */ 6522 } else { 6523 /* 6524 * Otherwise send an ICMP protocol unreachable. 6525 */ 6526 if (ip_fanout_send_icmp(q, first_mp, flags, 6527 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6528 mctl_present, zoneid, ipst)) { 6529 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6530 } 6531 } 6532 return; 6533 } 6534 6535 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 6536 6537 CONN_INC_REF(connp); 6538 first_connp = connp; 6539 6540 /* 6541 * Only send message to one tunnel driver by immediately 6542 * terminating the loop. 6543 */ 6544 connp = one_only ? NULL : connp->conn_next; 6545 6546 for (;;) { 6547 while (connp != NULL) { 6548 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6549 flags, zoneid) && 6550 (!is_system_labeled() || 6551 tsol_receive_local(mp, &dst, IPV4_VERSION, 6552 shared_addr, connp))) 6553 break; 6554 connp = connp->conn_next; 6555 } 6556 6557 /* 6558 * Copy the packet. 6559 */ 6560 if (connp == NULL || 6561 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6562 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6563 /* 6564 * No more interested clients or memory 6565 * allocation failed 6566 */ 6567 connp = first_connp; 6568 break; 6569 } 6570 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 6571 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6572 CONN_INC_REF(connp); 6573 mutex_exit(&connfp->connf_lock); 6574 rq = connp->conn_rq; 6575 6576 /* 6577 * Check flow control 6578 */ 6579 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6580 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6581 if (flags & IP_FF_RAWIP) { 6582 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6583 } else { 6584 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6585 } 6586 6587 freemsg(first_mp1); 6588 } else { 6589 /* 6590 * Don't enforce here if we're an actual tunnel - 6591 * let "tun" do it instead. 6592 */ 6593 if (!IPCL_IS_IPTUN(connp) && 6594 (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 6595 secure)) { 6596 first_mp1 = ipsec_check_inbound_policy 6597 (first_mp1, connp, ipha, NULL, 6598 mctl_present); 6599 } 6600 if (first_mp1 != NULL) { 6601 int in_flags = 0; 6602 /* 6603 * ip_fanout_proto also gets called from 6604 * icmp_inbound_error_fanout, in which case 6605 * the msg type is M_CTL. Don't add info 6606 * in this case for the time being. In future 6607 * when there is a need for knowing the 6608 * inbound iface index for ICMP error msgs, 6609 * then this can be changed. 6610 */ 6611 if (connp->conn_recvif) 6612 in_flags = IPF_RECVIF; 6613 /* 6614 * The ULP may support IP_RECVPKTINFO for both 6615 * IP v4 and v6 so pass the appropriate argument 6616 * based on conn IP version. 6617 */ 6618 if (connp->conn_ip_recvpktinfo) { 6619 if (connp->conn_af_isv6) { 6620 /* 6621 * V6 only needs index 6622 */ 6623 in_flags |= IPF_RECVIF; 6624 } else { 6625 /* 6626 * V4 needs index + 6627 * matching address. 6628 */ 6629 in_flags |= IPF_RECVADDR; 6630 } 6631 } 6632 if ((in_flags != 0) && 6633 (mp->b_datap->db_type != M_CTL)) { 6634 /* 6635 * the actual data will be 6636 * contained in b_cont upon 6637 * successful return of the 6638 * following call else 6639 * original mblk is returned 6640 */ 6641 ASSERT(recv_ill != NULL); 6642 mp1 = ip_add_info(mp1, recv_ill, 6643 in_flags, IPCL_ZONEID(connp), ipst); 6644 } 6645 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6646 if (mctl_present) 6647 freeb(first_mp1); 6648 (connp->conn_recv)(connp, mp1, NULL); 6649 } 6650 } 6651 mutex_enter(&connfp->connf_lock); 6652 /* Follow the next pointer before releasing the conn. */ 6653 next_connp = connp->conn_next; 6654 CONN_DEC_REF(connp); 6655 connp = next_connp; 6656 } 6657 6658 /* Last one. Send it upstream. */ 6659 mutex_exit(&connfp->connf_lock); 6660 6661 /* 6662 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6663 * will be set to false. 6664 */ 6665 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6666 ill_index = ill->ill_phyint->phyint_ifindex; 6667 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6668 if (mp == NULL) { 6669 CONN_DEC_REF(connp); 6670 if (mctl_present) { 6671 freeb(first_mp); 6672 } 6673 return; 6674 } 6675 } 6676 6677 rq = connp->conn_rq; 6678 /* 6679 * Check flow control 6680 */ 6681 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 6682 (!IPCL_IS_NONSTR(connp) && !canputnext(rq))) { 6683 if (flags & IP_FF_RAWIP) { 6684 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6685 } else { 6686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 6687 } 6688 6689 freemsg(first_mp); 6690 } else { 6691 if (IPCL_IS_IPTUN(connp)) { 6692 /* 6693 * Tunneled packet. We enforce policy in the tunnel 6694 * module itself. 6695 * 6696 * Send the WHOLE packet up (incl. IPSEC_IN) without 6697 * a policy check. 6698 * FIXME to use conn_recv for tun later. 6699 */ 6700 putnext(rq, first_mp); 6701 CONN_DEC_REF(connp); 6702 return; 6703 } 6704 6705 if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) { 6706 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6707 ipha, NULL, mctl_present); 6708 } 6709 6710 if (first_mp != NULL) { 6711 int in_flags = 0; 6712 6713 /* 6714 * ip_fanout_proto also gets called 6715 * from icmp_inbound_error_fanout, in 6716 * which case the msg type is M_CTL. 6717 * Don't add info in this case for time 6718 * being. In future when there is a 6719 * need for knowing the inbound iface 6720 * index for ICMP error msgs, then this 6721 * can be changed 6722 */ 6723 if (connp->conn_recvif) 6724 in_flags = IPF_RECVIF; 6725 if (connp->conn_ip_recvpktinfo) { 6726 if (connp->conn_af_isv6) { 6727 /* 6728 * V6 only needs index 6729 */ 6730 in_flags |= IPF_RECVIF; 6731 } else { 6732 /* 6733 * V4 needs index + 6734 * matching address. 6735 */ 6736 in_flags |= IPF_RECVADDR; 6737 } 6738 } 6739 if ((in_flags != 0) && 6740 (mp->b_datap->db_type != M_CTL)) { 6741 6742 /* 6743 * the actual data will be contained in 6744 * b_cont upon successful return 6745 * of the following call else original 6746 * mblk is returned 6747 */ 6748 ASSERT(recv_ill != NULL); 6749 mp = ip_add_info(mp, recv_ill, 6750 in_flags, IPCL_ZONEID(connp), ipst); 6751 } 6752 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6753 (connp->conn_recv)(connp, mp, NULL); 6754 if (mctl_present) 6755 freeb(first_mp); 6756 } 6757 } 6758 CONN_DEC_REF(connp); 6759 } 6760 6761 /* 6762 * Serialize tcp resets by calling tcp_xmit_reset_serialize through 6763 * SQUEUE_ENTER_ONE(SQ_FILL). We do this to ensure the reset is handled on 6764 * the correct squeue, in this case the same squeue as a valid listener with 6765 * no current connection state for the packet we are processing. The function 6766 * is called for synchronizing both IPv4 and IPv6. 6767 */ 6768 void 6769 ip_xmit_reset_serialize(mblk_t *mp, int hdrlen, zoneid_t zoneid, 6770 tcp_stack_t *tcps, conn_t *connp) 6771 { 6772 mblk_t *rst_mp; 6773 tcp_xmit_reset_event_t *eventp; 6774 6775 rst_mp = allocb(sizeof (tcp_xmit_reset_event_t), BPRI_HI); 6776 6777 if (rst_mp == NULL) { 6778 freemsg(mp); 6779 return; 6780 } 6781 6782 rst_mp->b_datap->db_type = M_PROTO; 6783 rst_mp->b_wptr += sizeof (tcp_xmit_reset_event_t); 6784 6785 eventp = (tcp_xmit_reset_event_t *)rst_mp->b_rptr; 6786 eventp->tcp_xre_event = TCP_XRE_EVENT_IP_FANOUT_TCP; 6787 eventp->tcp_xre_iphdrlen = hdrlen; 6788 eventp->tcp_xre_zoneid = zoneid; 6789 eventp->tcp_xre_tcps = tcps; 6790 6791 rst_mp->b_cont = mp; 6792 mp = rst_mp; 6793 6794 /* 6795 * Increment the connref, this ref will be released by the squeue 6796 * framework. 6797 */ 6798 CONN_INC_REF(connp); 6799 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_xmit_reset, connp, 6800 SQ_FILL, SQTAG_XMIT_EARLY_RESET); 6801 } 6802 6803 /* 6804 * Fanout for TCP packets 6805 * The caller puts <fport, lport> in the ports parameter. 6806 * 6807 * IPQoS Notes 6808 * Before sending it to the client, invoke IPPF processing. 6809 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6810 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6811 * ip_policy is false. 6812 */ 6813 static void 6814 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6815 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6816 { 6817 mblk_t *first_mp; 6818 boolean_t secure; 6819 uint32_t ill_index; 6820 int ip_hdr_len; 6821 tcph_t *tcph; 6822 boolean_t syn_present = B_FALSE; 6823 conn_t *connp; 6824 ip_stack_t *ipst = recv_ill->ill_ipst; 6825 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 6826 6827 ASSERT(recv_ill != NULL); 6828 6829 first_mp = mp; 6830 if (mctl_present) { 6831 ASSERT(first_mp->b_datap->db_type == M_CTL); 6832 mp = first_mp->b_cont; 6833 secure = ipsec_in_is_secure(first_mp); 6834 ASSERT(mp != NULL); 6835 } else { 6836 secure = B_FALSE; 6837 } 6838 6839 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6840 6841 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 6842 zoneid, ipst)) == NULL) { 6843 /* 6844 * No connected connection or listener. Send a 6845 * TH_RST via tcp_xmit_listeners_reset. 6846 */ 6847 6848 /* Initiate IPPf processing, if needed. */ 6849 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 6850 uint32_t ill_index; 6851 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6852 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6853 if (first_mp == NULL) 6854 return; 6855 } 6856 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6857 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6858 zoneid)); 6859 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid, 6860 ipst->ips_netstack->netstack_tcp, NULL); 6861 return; 6862 } 6863 6864 /* 6865 * Allocate the SYN for the TCP connection here itself 6866 */ 6867 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6868 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6869 if (IPCL_IS_TCP(connp)) { 6870 squeue_t *sqp; 6871 6872 /* 6873 * If the queue belongs to a conn, and fused tcp 6874 * loopback is enabled, assign the eager's squeue 6875 * to be that of the active connect's. Note that 6876 * we don't check for IP_FF_LOOPBACK here since this 6877 * routine gets called only for loopback (unlike the 6878 * IPv6 counterpart). 6879 */ 6880 if (do_tcp_fusion && 6881 CONN_Q(q) && IPCL_IS_TCP(Q_TO_CONN(q)) && 6882 !CONN_INBOUND_POLICY_PRESENT(connp, ipss) && 6883 !secure && 6884 !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy) { 6885 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6886 sqp = Q_TO_CONN(q)->conn_sqp; 6887 } else { 6888 sqp = IP_SQUEUE_GET(lbolt); 6889 } 6890 6891 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6892 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6893 syn_present = B_TRUE; 6894 } 6895 } 6896 6897 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6898 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6899 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6900 if ((flags & TH_RST) || (flags & TH_URG)) { 6901 CONN_DEC_REF(connp); 6902 freemsg(first_mp); 6903 return; 6904 } 6905 if (flags & TH_ACK) { 6906 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 6907 ipst->ips_netstack->netstack_tcp, connp); 6908 CONN_DEC_REF(connp); 6909 return; 6910 } 6911 6912 CONN_DEC_REF(connp); 6913 freemsg(first_mp); 6914 return; 6915 } 6916 6917 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 6918 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6919 NULL, mctl_present); 6920 if (first_mp == NULL) { 6921 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6922 CONN_DEC_REF(connp); 6923 return; 6924 } 6925 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6926 ASSERT(syn_present); 6927 if (mctl_present) { 6928 ASSERT(first_mp != mp); 6929 first_mp->b_datap->db_struioflag |= 6930 STRUIO_POLICY; 6931 } else { 6932 ASSERT(first_mp == mp); 6933 mp->b_datap->db_struioflag &= 6934 ~STRUIO_EAGER; 6935 mp->b_datap->db_struioflag |= 6936 STRUIO_POLICY; 6937 } 6938 } else { 6939 /* 6940 * Discard first_mp early since we're dealing with a 6941 * fully-connected conn_t and tcp doesn't do policy in 6942 * this case. 6943 */ 6944 if (mctl_present) { 6945 freeb(first_mp); 6946 mctl_present = B_FALSE; 6947 } 6948 first_mp = mp; 6949 } 6950 } 6951 6952 /* 6953 * Initiate policy processing here if needed. If we get here from 6954 * icmp_inbound_error_fanout, ip_policy is false. 6955 */ 6956 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 6957 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6958 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6959 if (mp == NULL) { 6960 CONN_DEC_REF(connp); 6961 if (mctl_present) 6962 freeb(first_mp); 6963 return; 6964 } else if (mctl_present) { 6965 ASSERT(first_mp != mp); 6966 first_mp->b_cont = mp; 6967 } else { 6968 first_mp = mp; 6969 } 6970 } 6971 6972 /* Handle socket options. */ 6973 if (!syn_present && 6974 connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 6975 /* Add header */ 6976 ASSERT(recv_ill != NULL); 6977 /* 6978 * Since tcp does not support IP_RECVPKTINFO for V4, only pass 6979 * IPF_RECVIF. 6980 */ 6981 mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp), 6982 ipst); 6983 if (mp == NULL) { 6984 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6985 CONN_DEC_REF(connp); 6986 if (mctl_present) 6987 freeb(first_mp); 6988 return; 6989 } else if (mctl_present) { 6990 /* 6991 * ip_add_info might return a new mp. 6992 */ 6993 ASSERT(first_mp != mp); 6994 first_mp->b_cont = mp; 6995 } else { 6996 first_mp = mp; 6997 } 6998 } 6999 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 7000 if (IPCL_IS_TCP(connp)) { 7001 /* do not drain, certain use cases can blow the stack */ 7002 SQUEUE_ENTER_ONE(connp->conn_sqp, first_mp, connp->conn_recv, 7003 connp, SQ_NODRAIN, SQTAG_IP_FANOUT_TCP); 7004 } else { 7005 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 7006 (connp->conn_recv)(connp, first_mp, NULL); 7007 CONN_DEC_REF(connp); 7008 } 7009 } 7010 7011 /* 7012 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 7013 * pass it along to ESP if the SPI is non-zero. Returns TRUE if the mblk 7014 * is not consumed. 7015 * 7016 * One of four things can happen, all of which affect the passed-in mblk: 7017 * 7018 * 1.) ICMP messages that go through here just get returned TRUE. 7019 * 7020 * 2.) The packet is stock UDP and gets its zero-SPI stripped. Return TRUE. 7021 * 7022 * 3.) The packet is ESP-in-UDP, gets transformed into an equivalent 7023 * ESP packet, and is passed along to ESP for consumption. Return FALSE. 7024 * 7025 * 4.) The packet is an ESP-in-UDP Keepalive. Drop it and return FALSE. 7026 */ 7027 static boolean_t 7028 zero_spi_check(queue_t *q, mblk_t *mp, ire_t *ire, ill_t *recv_ill, 7029 ipsec_stack_t *ipss) 7030 { 7031 int shift, plen, iph_len; 7032 ipha_t *ipha; 7033 udpha_t *udpha; 7034 uint32_t *spi; 7035 uint32_t esp_ports; 7036 uint8_t *orptr; 7037 boolean_t free_ire; 7038 7039 if (DB_TYPE(mp) == M_CTL) { 7040 /* 7041 * ICMP message with UDP inside. Don't bother stripping, just 7042 * send it up. 7043 * 7044 * NOTE: Any app with UDP_NAT_T_ENDPOINT set is probably going 7045 * to ignore errors set by ICMP anyway ('cause they might be 7046 * forged), but that's the app's decision, not ours. 7047 */ 7048 7049 /* Bunch of reality checks for DEBUG kernels... */ 7050 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION); 7051 ASSERT(((ipha_t *)mp->b_rptr)->ipha_protocol == IPPROTO_ICMP); 7052 7053 return (B_TRUE); 7054 } 7055 7056 ipha = (ipha_t *)mp->b_rptr; 7057 iph_len = IPH_HDR_LENGTH(ipha); 7058 plen = ntohs(ipha->ipha_length); 7059 7060 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 7061 /* 7062 * Most likely a keepalive for the benefit of an intervening 7063 * NAT. These aren't for us, per se, so drop it. 7064 * 7065 * RFC 3947/8 doesn't say for sure what to do for 2-3 7066 * byte packets (keepalives are 1-byte), but we'll drop them 7067 * also. 7068 */ 7069 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7070 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 7071 return (B_FALSE); 7072 } 7073 7074 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 7075 /* might as well pull it all up - it might be ESP. */ 7076 if (!pullupmsg(mp, -1)) { 7077 ip_drop_packet(mp, B_TRUE, recv_ill, NULL, 7078 DROPPER(ipss, ipds_esp_nomem), 7079 &ipss->ipsec_dropper); 7080 return (B_FALSE); 7081 } 7082 7083 ipha = (ipha_t *)mp->b_rptr; 7084 } 7085 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 7086 if (*spi == 0) { 7087 /* UDP packet - remove 0-spi. */ 7088 shift = sizeof (uint32_t); 7089 } else { 7090 /* ESP-in-UDP packet - reduce to ESP. */ 7091 ipha->ipha_protocol = IPPROTO_ESP; 7092 shift = sizeof (udpha_t); 7093 } 7094 7095 /* Fix IP header */ 7096 ipha->ipha_length = htons(plen - shift); 7097 ipha->ipha_hdr_checksum = 0; 7098 7099 orptr = mp->b_rptr; 7100 mp->b_rptr += shift; 7101 7102 udpha = (udpha_t *)(orptr + iph_len); 7103 if (*spi == 0) { 7104 ASSERT((uint8_t *)ipha == orptr); 7105 udpha->uha_length = htons(plen - shift - iph_len); 7106 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 7107 esp_ports = 0; 7108 } else { 7109 esp_ports = *((uint32_t *)udpha); 7110 ASSERT(esp_ports != 0); 7111 } 7112 ovbcopy(orptr, orptr + shift, iph_len); 7113 if (esp_ports != 0) /* Punt up for ESP processing. */ { 7114 ipha = (ipha_t *)(orptr + shift); 7115 7116 free_ire = (ire == NULL); 7117 if (free_ire) { 7118 /* Re-acquire ire. */ 7119 ire = ire_cache_lookup(ipha->ipha_dst, ALL_ZONES, NULL, 7120 ipss->ipsec_netstack->netstack_ip); 7121 if (ire == NULL || !(ire->ire_type & IRE_LOCAL)) { 7122 if (ire != NULL) 7123 ire_refrele(ire); 7124 /* 7125 * Do a regular freemsg(), as this is an IP 7126 * error (no local route) not an IPsec one. 7127 */ 7128 freemsg(mp); 7129 } 7130 } 7131 7132 ip_proto_input(q, mp, ipha, ire, recv_ill, esp_ports); 7133 if (free_ire) 7134 ire_refrele(ire); 7135 } 7136 7137 return (esp_ports == 0); 7138 } 7139 7140 /* 7141 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 7142 * We are responsible for disposing of mp, such as by freemsg() or putnext() 7143 * Caller is responsible for dropping references to the conn, and freeing 7144 * first_mp. 7145 * 7146 * IPQoS Notes 7147 * Before sending it to the client, invoke IPPF processing. Policy processing 7148 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 7149 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 7150 * ip_wput_local, ip_policy is false. 7151 */ 7152 static void 7153 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 7154 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 7155 boolean_t ip_policy) 7156 { 7157 boolean_t mctl_present = (first_mp != NULL); 7158 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 7159 uint32_t ill_index; 7160 ip_stack_t *ipst = recv_ill->ill_ipst; 7161 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 7162 7163 ASSERT(ill != NULL); 7164 7165 if (mctl_present) 7166 first_mp->b_cont = mp; 7167 else 7168 first_mp = mp; 7169 7170 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 7171 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 7172 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 7173 freemsg(first_mp); 7174 return; 7175 } 7176 7177 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) { 7178 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 7179 NULL, mctl_present); 7180 /* Freed by ipsec_check_inbound_policy(). */ 7181 if (first_mp == NULL) { 7182 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7183 return; 7184 } 7185 } 7186 if (mctl_present) 7187 freeb(first_mp); 7188 7189 /* Let's hope the compilers utter "branch, predict-not-taken..." ;) */ 7190 if (connp->conn_udp->udp_nat_t_endpoint) { 7191 if (mctl_present) { 7192 /* mctl_present *shouldn't* happen. */ 7193 ip_drop_packet(mp, B_TRUE, NULL, NULL, 7194 DROPPER(ipss, ipds_esp_nat_t_ipsec), 7195 &ipss->ipsec_dropper); 7196 return; 7197 } 7198 7199 if (!zero_spi_check(ill->ill_rq, mp, NULL, recv_ill, ipss)) 7200 return; 7201 } 7202 7203 /* Handle options. */ 7204 if (connp->conn_recvif) 7205 in_flags = IPF_RECVIF; 7206 /* 7207 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag 7208 * passed to ip_add_info is based on IP version of connp. 7209 */ 7210 if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) { 7211 if (connp->conn_af_isv6) { 7212 /* 7213 * V6 only needs index 7214 */ 7215 in_flags |= IPF_RECVIF; 7216 } else { 7217 /* 7218 * V4 needs index + matching address. 7219 */ 7220 in_flags |= IPF_RECVADDR; 7221 } 7222 } 7223 7224 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 7225 in_flags |= IPF_RECVSLLA; 7226 7227 /* 7228 * Initiate IPPF processing here, if needed. Note first_mp won't be 7229 * freed if the packet is dropped. The caller will do so. 7230 */ 7231 if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) { 7232 ill_index = recv_ill->ill_phyint->phyint_ifindex; 7233 ip_process(IPP_LOCAL_IN, &mp, ill_index); 7234 if (mp == NULL) { 7235 return; 7236 } 7237 } 7238 if ((in_flags != 0) && 7239 (mp->b_datap->db_type != M_CTL)) { 7240 /* 7241 * The actual data will be contained in b_cont 7242 * upon successful return of the following call 7243 * else original mblk is returned 7244 */ 7245 ASSERT(recv_ill != NULL); 7246 mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), 7247 ipst); 7248 } 7249 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 7250 /* Send it upstream */ 7251 (connp->conn_recv)(connp, mp, NULL); 7252 } 7253 7254 /* 7255 * Fanout for UDP packets. 7256 * The caller puts <fport, lport> in the ports parameter. 7257 * 7258 * If SO_REUSEADDR is set all multicast and broadcast packets 7259 * will be delivered to all streams bound to the same port. 7260 * 7261 * Zones notes: 7262 * Multicast and broadcast packets will be distributed to streams in all zones. 7263 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 7264 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 7265 * packets. To maintain this behavior with multiple zones, the conns are grouped 7266 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 7267 * each zone. If unset, all the following conns in the same zone are skipped. 7268 */ 7269 static void 7270 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 7271 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 7272 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 7273 { 7274 uint32_t dstport, srcport; 7275 ipaddr_t dst; 7276 mblk_t *first_mp; 7277 boolean_t secure; 7278 in6_addr_t v6src; 7279 conn_t *connp; 7280 connf_t *connfp; 7281 conn_t *first_connp; 7282 conn_t *next_connp; 7283 mblk_t *mp1, *first_mp1; 7284 ipaddr_t src; 7285 zoneid_t last_zoneid; 7286 boolean_t reuseaddr; 7287 boolean_t shared_addr; 7288 boolean_t unlabeled; 7289 ip_stack_t *ipst; 7290 7291 ASSERT(recv_ill != NULL); 7292 ipst = recv_ill->ill_ipst; 7293 7294 first_mp = mp; 7295 if (mctl_present) { 7296 mp = first_mp->b_cont; 7297 first_mp->b_cont = NULL; 7298 secure = ipsec_in_is_secure(first_mp); 7299 ASSERT(mp != NULL); 7300 } else { 7301 first_mp = NULL; 7302 secure = B_FALSE; 7303 } 7304 7305 /* Extract ports in net byte order */ 7306 dstport = htons(ntohl(ports) & 0xFFFF); 7307 srcport = htons(ntohl(ports) >> 16); 7308 dst = ipha->ipha_dst; 7309 src = ipha->ipha_src; 7310 7311 unlabeled = B_FALSE; 7312 if (is_system_labeled()) 7313 /* Cred cannot be null on IPv4 */ 7314 unlabeled = (msg_getlabel(mp)->tsl_flags & 7315 TSLF_UNLABELED) != 0; 7316 shared_addr = (zoneid == ALL_ZONES); 7317 if (shared_addr) { 7318 /* 7319 * No need to handle exclusive-stack zones since ALL_ZONES 7320 * only applies to the shared stack. 7321 */ 7322 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 7323 /* 7324 * If no shared MLP is found, tsol_mlp_findzone returns 7325 * ALL_ZONES. In that case, we assume it's SLP, and 7326 * search for the zone based on the packet label. 7327 * 7328 * If there is such a zone, we prefer to find a 7329 * connection in it. Otherwise, we look for a 7330 * MAC-exempt connection in any zone whose label 7331 * dominates the default label on the packet. 7332 */ 7333 if (zoneid == ALL_ZONES) 7334 zoneid = tsol_packet_to_zoneid(mp); 7335 else 7336 unlabeled = B_FALSE; 7337 } 7338 7339 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7340 mutex_enter(&connfp->connf_lock); 7341 connp = connfp->connf_head; 7342 if (!broadcast && !CLASSD(dst)) { 7343 /* 7344 * Not broadcast or multicast. Send to the one (first) 7345 * client we find. No need to check conn_wantpacket() 7346 * since IP_BOUND_IF/conn_incoming_ill does not apply to 7347 * IPv4 unicast packets. 7348 */ 7349 while ((connp != NULL) && 7350 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 7351 (!IPCL_ZONE_MATCH(connp, zoneid) && 7352 !(unlabeled && connp->conn_mac_exempt && shared_addr)))) { 7353 /* 7354 * We keep searching since the conn did not match, 7355 * or its zone did not match and it is not either 7356 * an allzones conn or a mac exempt conn (if the 7357 * sender is unlabeled.) 7358 */ 7359 connp = connp->conn_next; 7360 } 7361 7362 if (connp == NULL || 7363 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7364 goto notfound; 7365 7366 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7367 7368 if (is_system_labeled() && 7369 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7370 connp)) 7371 goto notfound; 7372 7373 CONN_INC_REF(connp); 7374 mutex_exit(&connfp->connf_lock); 7375 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7376 flags, recv_ill, ip_policy); 7377 IP_STAT(ipst, ip_udp_fannorm); 7378 CONN_DEC_REF(connp); 7379 return; 7380 } 7381 7382 /* 7383 * Broadcast and multicast case 7384 * 7385 * Need to check conn_wantpacket(). 7386 * If SO_REUSEADDR has been set on the first we send the 7387 * packet to all clients that have joined the group and 7388 * match the port. 7389 */ 7390 7391 while (connp != NULL) { 7392 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 7393 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7394 (!is_system_labeled() || 7395 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7396 connp))) 7397 break; 7398 connp = connp->conn_next; 7399 } 7400 7401 if (connp == NULL || 7402 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) 7403 goto notfound; 7404 7405 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7406 7407 first_connp = connp; 7408 /* 7409 * When SO_REUSEADDR is not set, send the packet only to the first 7410 * matching connection in its zone by keeping track of the zoneid. 7411 */ 7412 reuseaddr = first_connp->conn_reuseaddr; 7413 last_zoneid = first_connp->conn_zoneid; 7414 7415 CONN_INC_REF(connp); 7416 connp = connp->conn_next; 7417 for (;;) { 7418 while (connp != NULL) { 7419 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 7420 (reuseaddr || connp->conn_zoneid != last_zoneid) && 7421 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7422 (!is_system_labeled() || 7423 tsol_receive_local(mp, &dst, IPV4_VERSION, 7424 shared_addr, connp))) 7425 break; 7426 connp = connp->conn_next; 7427 } 7428 /* 7429 * Just copy the data part alone. The mctl part is 7430 * needed just for verifying policy and it is never 7431 * sent up. 7432 */ 7433 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7434 ((mp1 = copymsg(mp)) == NULL))) { 7435 /* 7436 * No more interested clients or memory 7437 * allocation failed 7438 */ 7439 connp = first_connp; 7440 break; 7441 } 7442 if (connp->conn_zoneid != last_zoneid) { 7443 /* 7444 * Update the zoneid so that the packet isn't sent to 7445 * any more conns in the same zone unless SO_REUSEADDR 7446 * is set. 7447 */ 7448 reuseaddr = connp->conn_reuseaddr; 7449 last_zoneid = connp->conn_zoneid; 7450 } 7451 if (first_mp != NULL) { 7452 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7453 ipsec_info_type == IPSEC_IN); 7454 first_mp1 = ipsec_in_tag(first_mp, NULL, 7455 ipst->ips_netstack); 7456 if (first_mp1 == NULL) { 7457 freemsg(mp1); 7458 connp = first_connp; 7459 break; 7460 } 7461 } else { 7462 first_mp1 = NULL; 7463 } 7464 CONN_INC_REF(connp); 7465 mutex_exit(&connfp->connf_lock); 7466 /* 7467 * IPQoS notes: We don't send the packet for policy 7468 * processing here, will do it for the last one (below). 7469 * i.e. we do it per-packet now, but if we do policy 7470 * processing per-conn, then we would need to do it 7471 * here too. 7472 */ 7473 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7474 ipha, flags, recv_ill, B_FALSE); 7475 mutex_enter(&connfp->connf_lock); 7476 /* Follow the next pointer before releasing the conn. */ 7477 next_connp = connp->conn_next; 7478 IP_STAT(ipst, ip_udp_fanmb); 7479 CONN_DEC_REF(connp); 7480 connp = next_connp; 7481 } 7482 7483 /* Last one. Send it upstream. */ 7484 mutex_exit(&connfp->connf_lock); 7485 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7486 recv_ill, ip_policy); 7487 IP_STAT(ipst, ip_udp_fanmb); 7488 CONN_DEC_REF(connp); 7489 return; 7490 7491 notfound: 7492 7493 mutex_exit(&connfp->connf_lock); 7494 IP_STAT(ipst, ip_udp_fanothers); 7495 /* 7496 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 7497 * have already been matched above, since they live in the IPv4 7498 * fanout tables. This implies we only need to 7499 * check for IPv6 in6addr_any endpoints here. 7500 * Thus we compare using ipv6_all_zeros instead of the destination 7501 * address, except for the multicast group membership lookup which 7502 * uses the IPv4 destination. 7503 */ 7504 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 7505 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)]; 7506 mutex_enter(&connfp->connf_lock); 7507 connp = connfp->connf_head; 7508 if (!broadcast && !CLASSD(dst)) { 7509 while (connp != NULL) { 7510 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7511 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 7512 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7513 !connp->conn_ipv6_v6only) 7514 break; 7515 connp = connp->conn_next; 7516 } 7517 7518 if (connp != NULL && is_system_labeled() && 7519 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7520 connp)) 7521 connp = NULL; 7522 7523 if (connp == NULL || 7524 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7525 /* 7526 * No one bound to this port. Is 7527 * there a client that wants all 7528 * unclaimed datagrams? 7529 */ 7530 mutex_exit(&connfp->connf_lock); 7531 7532 if (mctl_present) 7533 first_mp->b_cont = mp; 7534 else 7535 first_mp = mp; 7536 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP]. 7537 connf_head != NULL) { 7538 ip_fanout_proto(q, first_mp, ill, ipha, 7539 flags | IP_FF_RAWIP, mctl_present, 7540 ip_policy, recv_ill, zoneid); 7541 } else { 7542 if (ip_fanout_send_icmp(q, first_mp, flags, 7543 ICMP_DEST_UNREACHABLE, 7544 ICMP_PORT_UNREACHABLE, 7545 mctl_present, zoneid, ipst)) { 7546 BUMP_MIB(ill->ill_ip_mib, 7547 udpIfStatsNoPorts); 7548 } 7549 } 7550 return; 7551 } 7552 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7553 7554 CONN_INC_REF(connp); 7555 mutex_exit(&connfp->connf_lock); 7556 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7557 flags, recv_ill, ip_policy); 7558 CONN_DEC_REF(connp); 7559 return; 7560 } 7561 /* 7562 * IPv4 multicast packet being delivered to an AF_INET6 7563 * in6addr_any endpoint. 7564 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7565 * and not conn_wantpacket_v6() since any multicast membership is 7566 * for an IPv4-mapped multicast address. 7567 * The packet is sent to all clients in all zones that have joined the 7568 * group and match the port. 7569 */ 7570 while (connp != NULL) { 7571 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7572 srcport, v6src) && 7573 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7574 (!is_system_labeled() || 7575 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7576 connp))) 7577 break; 7578 connp = connp->conn_next; 7579 } 7580 7581 if (connp == NULL || 7582 !IPCL_IS_NONSTR(connp) && connp->conn_upq == NULL) { 7583 /* 7584 * No one bound to this port. Is 7585 * there a client that wants all 7586 * unclaimed datagrams? 7587 */ 7588 mutex_exit(&connfp->connf_lock); 7589 7590 if (mctl_present) 7591 first_mp->b_cont = mp; 7592 else 7593 first_mp = mp; 7594 if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head != 7595 NULL) { 7596 ip_fanout_proto(q, first_mp, ill, ipha, 7597 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7598 recv_ill, zoneid); 7599 } else { 7600 /* 7601 * We used to attempt to send an icmp error here, but 7602 * since this is known to be a multicast packet 7603 * and we don't send icmp errors in response to 7604 * multicast, just drop the packet and give up sooner. 7605 */ 7606 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7607 freemsg(first_mp); 7608 } 7609 return; 7610 } 7611 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 7612 7613 first_connp = connp; 7614 7615 CONN_INC_REF(connp); 7616 connp = connp->conn_next; 7617 for (;;) { 7618 while (connp != NULL) { 7619 if (IPCL_UDP_MATCH_V6(connp, dstport, 7620 ipv6_all_zeros, srcport, v6src) && 7621 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7622 (!is_system_labeled() || 7623 tsol_receive_local(mp, &dst, IPV4_VERSION, 7624 shared_addr, connp))) 7625 break; 7626 connp = connp->conn_next; 7627 } 7628 /* 7629 * Just copy the data part alone. The mctl part is 7630 * needed just for verifying policy and it is never 7631 * sent up. 7632 */ 7633 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7634 ((mp1 = copymsg(mp)) == NULL))) { 7635 /* 7636 * No more intested clients or memory 7637 * allocation failed 7638 */ 7639 connp = first_connp; 7640 break; 7641 } 7642 if (first_mp != NULL) { 7643 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7644 ipsec_info_type == IPSEC_IN); 7645 first_mp1 = ipsec_in_tag(first_mp, NULL, 7646 ipst->ips_netstack); 7647 if (first_mp1 == NULL) { 7648 freemsg(mp1); 7649 connp = first_connp; 7650 break; 7651 } 7652 } else { 7653 first_mp1 = NULL; 7654 } 7655 CONN_INC_REF(connp); 7656 mutex_exit(&connfp->connf_lock); 7657 /* 7658 * IPQoS notes: We don't send the packet for policy 7659 * processing here, will do it for the last one (below). 7660 * i.e. we do it per-packet now, but if we do policy 7661 * processing per-conn, then we would need to do it 7662 * here too. 7663 */ 7664 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7665 ipha, flags, recv_ill, B_FALSE); 7666 mutex_enter(&connfp->connf_lock); 7667 /* Follow the next pointer before releasing the conn. */ 7668 next_connp = connp->conn_next; 7669 CONN_DEC_REF(connp); 7670 connp = next_connp; 7671 } 7672 7673 /* Last one. Send it upstream. */ 7674 mutex_exit(&connfp->connf_lock); 7675 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7676 recv_ill, ip_policy); 7677 CONN_DEC_REF(connp); 7678 } 7679 7680 /* 7681 * Complete the ip_wput header so that it 7682 * is possible to generate ICMP 7683 * errors. 7684 */ 7685 int 7686 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst) 7687 { 7688 ire_t *ire; 7689 7690 if (ipha->ipha_src == INADDR_ANY) { 7691 ire = ire_lookup_local(zoneid, ipst); 7692 if (ire == NULL) { 7693 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7694 return (1); 7695 } 7696 ipha->ipha_src = ire->ire_addr; 7697 ire_refrele(ire); 7698 } 7699 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 7700 ipha->ipha_hdr_checksum = 0; 7701 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7702 return (0); 7703 } 7704 7705 /* 7706 * Nobody should be sending 7707 * packets up this stream 7708 */ 7709 static void 7710 ip_lrput(queue_t *q, mblk_t *mp) 7711 { 7712 mblk_t *mp1; 7713 7714 switch (mp->b_datap->db_type) { 7715 case M_FLUSH: 7716 /* Turn around */ 7717 if (*mp->b_rptr & FLUSHW) { 7718 *mp->b_rptr &= ~FLUSHR; 7719 qreply(q, mp); 7720 return; 7721 } 7722 break; 7723 } 7724 /* Could receive messages that passed through ar_rput */ 7725 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7726 mp1->b_prev = mp1->b_next = NULL; 7727 freemsg(mp); 7728 } 7729 7730 /* Nobody should be sending packets down this stream */ 7731 /* ARGSUSED */ 7732 void 7733 ip_lwput(queue_t *q, mblk_t *mp) 7734 { 7735 freemsg(mp); 7736 } 7737 7738 /* 7739 * Move the first hop in any source route to ipha_dst and remove that part of 7740 * the source route. Called by other protocols. Errors in option formatting 7741 * are ignored - will be handled by ip_wput_options Return the final 7742 * destination (either ipha_dst or the last entry in a source route.) 7743 */ 7744 ipaddr_t 7745 ip_massage_options(ipha_t *ipha, netstack_t *ns) 7746 { 7747 ipoptp_t opts; 7748 uchar_t *opt; 7749 uint8_t optval; 7750 uint8_t optlen; 7751 ipaddr_t dst; 7752 int i; 7753 ire_t *ire; 7754 ip_stack_t *ipst = ns->netstack_ip; 7755 7756 ip2dbg(("ip_massage_options\n")); 7757 dst = ipha->ipha_dst; 7758 for (optval = ipoptp_first(&opts, ipha); 7759 optval != IPOPT_EOL; 7760 optval = ipoptp_next(&opts)) { 7761 opt = opts.ipoptp_cur; 7762 switch (optval) { 7763 uint8_t off; 7764 case IPOPT_SSRR: 7765 case IPOPT_LSRR: 7766 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7767 ip1dbg(("ip_massage_options: bad src route\n")); 7768 break; 7769 } 7770 optlen = opts.ipoptp_len; 7771 off = opt[IPOPT_OFFSET]; 7772 off--; 7773 redo_srr: 7774 if (optlen < IP_ADDR_LEN || 7775 off > optlen - IP_ADDR_LEN) { 7776 /* End of source route */ 7777 ip1dbg(("ip_massage_options: end of SR\n")); 7778 break; 7779 } 7780 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7781 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7782 ntohl(dst))); 7783 /* 7784 * Check if our address is present more than 7785 * once as consecutive hops in source route. 7786 * XXX verify per-interface ip_forwarding 7787 * for source route? 7788 */ 7789 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7790 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7791 if (ire != NULL) { 7792 ire_refrele(ire); 7793 off += IP_ADDR_LEN; 7794 goto redo_srr; 7795 } 7796 if (dst == htonl(INADDR_LOOPBACK)) { 7797 ip1dbg(("ip_massage_options: loopback addr in " 7798 "source route!\n")); 7799 break; 7800 } 7801 /* 7802 * Update ipha_dst to be the first hop and remove the 7803 * first hop from the source route (by overwriting 7804 * part of the option with NOP options). 7805 */ 7806 ipha->ipha_dst = dst; 7807 /* Put the last entry in dst */ 7808 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7809 3; 7810 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7811 7812 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7813 ntohl(dst))); 7814 /* Move down and overwrite */ 7815 opt[IP_ADDR_LEN] = opt[0]; 7816 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7817 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7818 for (i = 0; i < IP_ADDR_LEN; i++) 7819 opt[i] = IPOPT_NOP; 7820 break; 7821 } 7822 } 7823 return (dst); 7824 } 7825 7826 /* 7827 * Return the network mask 7828 * associated with the specified address. 7829 */ 7830 ipaddr_t 7831 ip_net_mask(ipaddr_t addr) 7832 { 7833 uchar_t *up = (uchar_t *)&addr; 7834 ipaddr_t mask = 0; 7835 uchar_t *maskp = (uchar_t *)&mask; 7836 7837 #if defined(__i386) || defined(__amd64) 7838 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7839 #endif 7840 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7841 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7842 #endif 7843 if (CLASSD(addr)) { 7844 maskp[0] = 0xF0; 7845 return (mask); 7846 } 7847 7848 /* We assume Class E default netmask to be 32 */ 7849 if (CLASSE(addr)) 7850 return (0xffffffffU); 7851 7852 if (addr == 0) 7853 return (0); 7854 maskp[0] = 0xFF; 7855 if ((up[0] & 0x80) == 0) 7856 return (mask); 7857 7858 maskp[1] = 0xFF; 7859 if ((up[0] & 0xC0) == 0x80) 7860 return (mask); 7861 7862 maskp[2] = 0xFF; 7863 if ((up[0] & 0xE0) == 0xC0) 7864 return (mask); 7865 7866 /* Otherwise return no mask */ 7867 return ((ipaddr_t)0); 7868 } 7869 7870 /* 7871 * Helper ill lookup function used by IPsec. 7872 */ 7873 ill_t * 7874 ip_grab_ill(mblk_t *first_mp, int ifindex, boolean_t isv6, ip_stack_t *ipst) 7875 { 7876 ill_t *ret_ill; 7877 7878 ASSERT(ifindex != 0); 7879 7880 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 7881 ipst); 7882 if (ret_ill == NULL) { 7883 if (isv6) { 7884 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 7885 ip1dbg(("ip_grab_ill (IPv6): bad ifindex %d.\n", 7886 ifindex)); 7887 } else { 7888 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 7889 ip1dbg(("ip_grab_ill (IPv4): bad ifindex %d.\n", 7890 ifindex)); 7891 } 7892 freemsg(first_mp); 7893 return (NULL); 7894 } 7895 return (ret_ill); 7896 } 7897 7898 /* 7899 * IPv4 - 7900 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7901 * out a packet to a destination address for which we do not have specific 7902 * (or sufficient) routing information. 7903 * 7904 * NOTE : These are the scopes of some of the variables that point at IRE, 7905 * which needs to be followed while making any future modifications 7906 * to avoid memory leaks. 7907 * 7908 * - ire and sire are the entries looked up initially by 7909 * ire_ftable_lookup. 7910 * - ipif_ire is used to hold the interface ire associated with 7911 * the new cache ire. But it's scope is limited, so we always REFRELE 7912 * it before branching out to error paths. 7913 * - save_ire is initialized before ire_create, so that ire returned 7914 * by ire_create will not over-write the ire. We REFRELE save_ire 7915 * before breaking out of the switch. 7916 * 7917 * Thus on failures, we have to REFRELE only ire and sire, if they 7918 * are not NULL. 7919 */ 7920 void 7921 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, conn_t *connp, 7922 zoneid_t zoneid, ip_stack_t *ipst) 7923 { 7924 areq_t *areq; 7925 ipaddr_t gw = 0; 7926 ire_t *ire = NULL; 7927 mblk_t *res_mp; 7928 ipaddr_t *addrp; 7929 ipaddr_t nexthop_addr; 7930 ipif_t *src_ipif = NULL; 7931 ill_t *dst_ill = NULL; 7932 ipha_t *ipha; 7933 ire_t *sire = NULL; 7934 mblk_t *first_mp; 7935 ire_t *save_ire; 7936 ushort_t ire_marks = 0; 7937 boolean_t mctl_present; 7938 ipsec_out_t *io; 7939 mblk_t *saved_mp; 7940 mblk_t *copy_mp = NULL; 7941 mblk_t *xmit_mp = NULL; 7942 ipaddr_t save_dst; 7943 uint32_t multirt_flags = 7944 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7945 boolean_t multirt_is_resolvable; 7946 boolean_t multirt_resolve_next; 7947 boolean_t unspec_src; 7948 boolean_t ip_nexthop = B_FALSE; 7949 tsol_ire_gw_secattr_t *attrp = NULL; 7950 tsol_gcgrp_t *gcgrp = NULL; 7951 tsol_gcgrp_addr_t ga; 7952 int multirt_res_failures = 0; 7953 int multirt_res_attempts = 0; 7954 int multirt_already_resolved = 0; 7955 boolean_t multirt_no_icmp_error = B_FALSE; 7956 7957 if (ip_debug > 2) { 7958 /* ip1dbg */ 7959 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7960 } 7961 7962 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7963 if (mctl_present) { 7964 io = (ipsec_out_t *)first_mp->b_rptr; 7965 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7966 ASSERT(zoneid == io->ipsec_out_zoneid); 7967 ASSERT(zoneid != ALL_ZONES); 7968 } 7969 7970 ipha = (ipha_t *)mp->b_rptr; 7971 7972 /* All multicast lookups come through ip_newroute_ipif() */ 7973 if (CLASSD(dst)) { 7974 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7975 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7976 freemsg(first_mp); 7977 return; 7978 } 7979 7980 if (mctl_present && io->ipsec_out_ip_nexthop) { 7981 ip_nexthop = B_TRUE; 7982 nexthop_addr = io->ipsec_out_nexthop_addr; 7983 } 7984 /* 7985 * If this IRE is created for forwarding or it is not for 7986 * traffic for congestion controlled protocols, mark it as temporary. 7987 */ 7988 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7989 ire_marks |= IRE_MARK_TEMPORARY; 7990 7991 /* 7992 * Get what we can from ire_ftable_lookup which will follow an IRE 7993 * chain until it gets the most specific information available. 7994 * For example, we know that there is no IRE_CACHE for this dest, 7995 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7996 * ire_ftable_lookup will look up the gateway, etc. 7997 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7998 * to the destination, of equal netmask length in the forward table, 7999 * will be recursively explored. If no information is available 8000 * for the final gateway of that route, we force the returned ire 8001 * to be equal to sire using MATCH_IRE_PARENT. 8002 * At least, in this case we have a starting point (in the buckets) 8003 * to look for other routes to the destination in the forward table. 8004 * This is actually used only for multirouting, where a list 8005 * of routes has to be processed in sequence. 8006 * 8007 * In the process of coming up with the most specific information, 8008 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 8009 * for the gateway (i.e., one for which the ire_nce->nce_state is 8010 * not yet ND_REACHABLE, and is in the middle of arp resolution). 8011 * Two caveats when handling incomplete ire's in ip_newroute: 8012 * - we should be careful when accessing its ire_nce (specifically 8013 * the nce_res_mp) ast it might change underneath our feet, and, 8014 * - not all legacy code path callers are prepared to handle 8015 * incomplete ire's, so we should not create/add incomplete 8016 * ire_cache entries here. (See discussion about temporary solution 8017 * further below). 8018 * 8019 * In order to minimize packet dropping, and to preserve existing 8020 * behavior, we treat this case as if there were no IRE_CACHE for the 8021 * gateway, and instead use the IF_RESOLVER ire to send out 8022 * another request to ARP (this is achieved by passing the 8023 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 8024 * arp response comes back in ip_wput_nondata, we will create 8025 * a per-dst ire_cache that has an ND_COMPLETE ire. 8026 * 8027 * Note that this is a temporary solution; the correct solution is 8028 * to create an incomplete per-dst ire_cache entry, and send the 8029 * packet out when the gw's nce is resolved. In order to achieve this, 8030 * all packet processing must have been completed prior to calling 8031 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 8032 * to be modified to accomodate this solution. 8033 */ 8034 if (ip_nexthop) { 8035 /* 8036 * The first time we come here, we look for an IRE_INTERFACE 8037 * entry for the specified nexthop, set the dst to be the 8038 * nexthop address and create an IRE_CACHE entry for the 8039 * nexthop. The next time around, we are able to find an 8040 * IRE_CACHE entry for the nexthop, set the gateway to be the 8041 * nexthop address and create an IRE_CACHE entry for the 8042 * destination address via the specified nexthop. 8043 */ 8044 ire = ire_cache_lookup(nexthop_addr, zoneid, 8045 msg_getlabel(mp), ipst); 8046 if (ire != NULL) { 8047 gw = nexthop_addr; 8048 ire_marks |= IRE_MARK_PRIVATE_ADDR; 8049 } else { 8050 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 8051 IRE_INTERFACE, NULL, NULL, zoneid, 0, 8052 msg_getlabel(mp), 8053 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 8054 ipst); 8055 if (ire != NULL) { 8056 dst = nexthop_addr; 8057 } 8058 } 8059 } else { 8060 ire = ire_ftable_lookup(dst, 0, 0, 0, 8061 NULL, &sire, zoneid, 0, msg_getlabel(mp), 8062 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 8063 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 8064 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE, 8065 ipst); 8066 } 8067 8068 ip3dbg(("ip_newroute: ire_ftable_lookup() " 8069 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 8070 8071 /* 8072 * This loop is run only once in most cases. 8073 * We loop to resolve further routes only when the destination 8074 * can be reached through multiple RTF_MULTIRT-flagged ires. 8075 */ 8076 do { 8077 /* Clear the previous iteration's values */ 8078 if (src_ipif != NULL) { 8079 ipif_refrele(src_ipif); 8080 src_ipif = NULL; 8081 } 8082 if (dst_ill != NULL) { 8083 ill_refrele(dst_ill); 8084 dst_ill = NULL; 8085 } 8086 8087 multirt_resolve_next = B_FALSE; 8088 /* 8089 * We check if packets have to be multirouted. 8090 * In this case, given the current <ire, sire> couple, 8091 * we look for the next suitable <ire, sire>. 8092 * This check is done in ire_multirt_lookup(), 8093 * which applies various criteria to find the next route 8094 * to resolve. ire_multirt_lookup() leaves <ire, sire> 8095 * unchanged if it detects it has not been tried yet. 8096 */ 8097 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8098 ip3dbg(("ip_newroute: starting next_resolution " 8099 "with first_mp %p, tag %d\n", 8100 (void *)first_mp, 8101 MULTIRT_DEBUG_TAGGED(first_mp))); 8102 8103 ASSERT(sire != NULL); 8104 multirt_is_resolvable = 8105 ire_multirt_lookup(&ire, &sire, multirt_flags, 8106 &multirt_already_resolved, msg_getlabel(mp), ipst); 8107 8108 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 8109 "multirt_already_resolved %d, " 8110 "multirt_res_attempts %d, multirt_res_failures %d, " 8111 "ire %p, sire %p\n", multirt_is_resolvable, 8112 multirt_already_resolved, multirt_res_attempts, 8113 multirt_res_failures, (void *)ire, (void *)sire)); 8114 8115 if (!multirt_is_resolvable) { 8116 /* 8117 * No more multirt route to resolve; give up 8118 * (all routes resolved or no more 8119 * resolvable routes). 8120 */ 8121 if (ire != NULL) { 8122 ire_refrele(ire); 8123 ire = NULL; 8124 } 8125 /* 8126 * Generate ICMP error only if all attempts to 8127 * resolve multirt route failed and there is no 8128 * already resolved one. Don't generate ICMP 8129 * error when: 8130 * 8131 * 1) there was no attempt to resolve 8132 * 2) at least one attempt passed 8133 * 3) a multirt route is already resolved 8134 * 8135 * Case 1) may occur due to multiple 8136 * resolution attempts during single 8137 * ip_multirt_resolution_interval. 8138 * 8139 * Case 2-3) means that CGTP destination is 8140 * reachable via one link so we don't want to 8141 * generate ICMP host unreachable error. 8142 */ 8143 if (multirt_res_attempts == 0 || 8144 multirt_res_failures < 8145 multirt_res_attempts || 8146 multirt_already_resolved > 0) 8147 multirt_no_icmp_error = B_TRUE; 8148 } else { 8149 ASSERT(sire != NULL); 8150 ASSERT(ire != NULL); 8151 8152 multirt_res_attempts++; 8153 } 8154 } 8155 8156 if (ire == NULL) { 8157 if (ip_debug > 3) { 8158 /* ip2dbg */ 8159 pr_addr_dbg("ip_newroute: " 8160 "can't resolve %s\n", AF_INET, &dst); 8161 } 8162 ip3dbg(("ip_newroute: " 8163 "ire %p, sire %p, multirt_no_icmp_error %d\n", 8164 (void *)ire, (void *)sire, 8165 (int)multirt_no_icmp_error)); 8166 8167 if (sire != NULL) { 8168 ire_refrele(sire); 8169 sire = NULL; 8170 } 8171 8172 if (multirt_no_icmp_error) { 8173 /* There is no need to report an ICMP error. */ 8174 MULTIRT_DEBUG_UNTAG(first_mp); 8175 freemsg(first_mp); 8176 return; 8177 } 8178 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 8179 RTA_DST, ipst); 8180 goto icmp_err_ret; 8181 } 8182 8183 /* 8184 * Verify that the returned IRE does not have either 8185 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 8186 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 8187 */ 8188 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 8189 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 8190 goto icmp_err_ret; 8191 } 8192 /* 8193 * Increment the ire_ob_pkt_count field for ire if it is an 8194 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 8195 * increment the same for the parent IRE, sire, if it is some 8196 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST) 8197 */ 8198 if ((ire->ire_type & IRE_INTERFACE) != 0) { 8199 UPDATE_OB_PKT_COUNT(ire); 8200 ire->ire_last_used_time = lbolt; 8201 } 8202 8203 if (sire != NULL) { 8204 gw = sire->ire_gateway_addr; 8205 ASSERT((sire->ire_type & (IRE_CACHETABLE | 8206 IRE_INTERFACE)) == 0); 8207 UPDATE_OB_PKT_COUNT(sire); 8208 sire->ire_last_used_time = lbolt; 8209 } 8210 /* 8211 * We have a route to reach the destination. Find the 8212 * appropriate ill, then get a source address using 8213 * ipif_select_source(). 8214 * 8215 * If we are here trying to create an IRE_CACHE for an offlink 8216 * destination and have an IRE_CACHE entry for VNI, then use 8217 * ire_stq instead since VNI's queue is a black hole. 8218 */ 8219 if ((ire->ire_type == IRE_CACHE) && 8220 IS_VNI(ire->ire_ipif->ipif_ill)) { 8221 dst_ill = ire->ire_stq->q_ptr; 8222 ill_refhold(dst_ill); 8223 } else { 8224 ill_t *ill = ire->ire_ipif->ipif_ill; 8225 8226 if (IS_IPMP(ill)) { 8227 dst_ill = 8228 ipmp_illgrp_hold_next_ill(ill->ill_grp); 8229 } else { 8230 dst_ill = ill; 8231 ill_refhold(dst_ill); 8232 } 8233 } 8234 8235 if (dst_ill == NULL) { 8236 if (ip_debug > 2) { 8237 pr_addr_dbg("ip_newroute: no dst " 8238 "ill for dst %s\n", AF_INET, &dst); 8239 } 8240 goto icmp_err_ret; 8241 } 8242 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8243 8244 /* 8245 * Pick the best source address from dst_ill. 8246 * 8247 * 1) Try to pick the source address from the destination 8248 * route. Clustering assumes that when we have multiple 8249 * prefixes hosted on an interface, the prefix of the 8250 * source address matches the prefix of the destination 8251 * route. We do this only if the address is not 8252 * DEPRECATED. 8253 * 8254 * 2) If the conn is in a different zone than the ire, we 8255 * need to pick a source address from the right zone. 8256 */ 8257 ASSERT(src_ipif == NULL); 8258 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8259 /* 8260 * The RTF_SETSRC flag is set in the parent ire (sire). 8261 * Check that the ipif matching the requested source 8262 * address still exists. 8263 */ 8264 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8265 zoneid, NULL, NULL, NULL, NULL, ipst); 8266 } 8267 8268 unspec_src = (connp != NULL && connp->conn_unspec_src); 8269 8270 if (src_ipif == NULL && 8271 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 8272 ire_marks |= IRE_MARK_USESRC_CHECK; 8273 if (!IS_UNDER_IPMP(ire->ire_ipif->ipif_ill) && 8274 IS_IPMP(ire->ire_ipif->ipif_ill) || 8275 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8276 (connp != NULL && ire->ire_zoneid != zoneid && 8277 ire->ire_zoneid != ALL_ZONES) || 8278 (dst_ill->ill_usesrc_ifindex != 0)) { 8279 /* 8280 * If the destination is reachable via a 8281 * given gateway, the selected source address 8282 * should be in the same subnet as the gateway. 8283 * Otherwise, the destination is not reachable. 8284 * 8285 * If there are no interfaces on the same subnet 8286 * as the destination, ipif_select_source gives 8287 * first non-deprecated interface which might be 8288 * on a different subnet than the gateway. 8289 * This is not desirable. Hence pass the dst_ire 8290 * source address to ipif_select_source. 8291 * It is sure that the destination is reachable 8292 * with the dst_ire source address subnet. 8293 * So passing dst_ire source address to 8294 * ipif_select_source will make sure that the 8295 * selected source will be on the same subnet 8296 * as dst_ire source address. 8297 */ 8298 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8299 8300 src_ipif = ipif_select_source(dst_ill, saddr, 8301 zoneid); 8302 if (src_ipif == NULL) { 8303 /* 8304 * In the case of multirouting, it may 8305 * happen that ipif_select_source fails 8306 * as DAD may disallow use of the 8307 * particular source interface. Anyway, 8308 * we need to continue and attempt to 8309 * resolve other multirt routes. 8310 */ 8311 if ((sire != NULL) && 8312 (sire->ire_flags & RTF_MULTIRT)) { 8313 ire_refrele(ire); 8314 ire = NULL; 8315 multirt_resolve_next = B_TRUE; 8316 multirt_res_failures++; 8317 continue; 8318 } 8319 8320 if (ip_debug > 2) { 8321 pr_addr_dbg("ip_newroute: " 8322 "no src for dst %s ", 8323 AF_INET, &dst); 8324 printf("on interface %s\n", 8325 dst_ill->ill_name); 8326 } 8327 goto icmp_err_ret; 8328 } 8329 } else { 8330 src_ipif = ire->ire_ipif; 8331 ASSERT(src_ipif != NULL); 8332 /* hold src_ipif for uniformity */ 8333 ipif_refhold(src_ipif); 8334 } 8335 } 8336 8337 /* 8338 * Assign a source address while we have the conn. 8339 * We can't have ip_wput_ire pick a source address when the 8340 * packet returns from arp since we need to look at 8341 * conn_unspec_src and conn_zoneid, and we lose the conn when 8342 * going through arp. 8343 * 8344 * NOTE : ip_newroute_v6 does not have this piece of code as 8345 * it uses ip6i to store this information. 8346 */ 8347 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 8348 ipha->ipha_src = src_ipif->ipif_src_addr; 8349 8350 if (ip_debug > 3) { 8351 /* ip2dbg */ 8352 pr_addr_dbg("ip_newroute: first hop %s\n", 8353 AF_INET, &gw); 8354 } 8355 ip2dbg(("\tire type %s (%d)\n", 8356 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8357 8358 /* 8359 * The TTL of multirouted packets is bounded by the 8360 * ip_multirt_ttl ndd variable. 8361 */ 8362 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8363 /* Force TTL of multirouted packets */ 8364 if ((ipst->ips_ip_multirt_ttl > 0) && 8365 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 8366 ip2dbg(("ip_newroute: forcing multirt TTL " 8367 "to %d (was %d), dst 0x%08x\n", 8368 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 8369 ntohl(sire->ire_addr))); 8370 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 8371 } 8372 } 8373 /* 8374 * At this point in ip_newroute(), ire is either the 8375 * IRE_CACHE of the next-hop gateway for an off-subnet 8376 * destination or an IRE_INTERFACE type that should be used 8377 * to resolve an on-subnet destination or an on-subnet 8378 * next-hop gateway. 8379 * 8380 * In the IRE_CACHE case, we have the following : 8381 * 8382 * 1) src_ipif - used for getting a source address. 8383 * 8384 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8385 * means packets using this IRE_CACHE will go out on 8386 * dst_ill. 8387 * 8388 * 3) The IRE sire will point to the prefix that is the 8389 * longest matching route for the destination. These 8390 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8391 * 8392 * The newly created IRE_CACHE entry for the off-subnet 8393 * destination is tied to both the prefix route and the 8394 * interface route used to resolve the next-hop gateway 8395 * via the ire_phandle and ire_ihandle fields, 8396 * respectively. 8397 * 8398 * In the IRE_INTERFACE case, we have the following : 8399 * 8400 * 1) src_ipif - used for getting a source address. 8401 * 8402 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8403 * means packets using the IRE_CACHE that we will build 8404 * here will go out on dst_ill. 8405 * 8406 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8407 * to be created will only be tied to the IRE_INTERFACE 8408 * that was derived from the ire_ihandle field. 8409 * 8410 * If sire is non-NULL, it means the destination is 8411 * off-link and we will first create the IRE_CACHE for the 8412 * gateway. Next time through ip_newroute, we will create 8413 * the IRE_CACHE for the final destination as described 8414 * above. 8415 * 8416 * In both cases, after the current resolution has been 8417 * completed (or possibly initialised, in the IRE_INTERFACE 8418 * case), the loop may be re-entered to attempt the resolution 8419 * of another RTF_MULTIRT route. 8420 * 8421 * When an IRE_CACHE entry for the off-subnet destination is 8422 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8423 * for further processing in emission loops. 8424 */ 8425 save_ire = ire; 8426 switch (ire->ire_type) { 8427 case IRE_CACHE: { 8428 ire_t *ipif_ire; 8429 8430 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8431 if (gw == 0) 8432 gw = ire->ire_gateway_addr; 8433 /* 8434 * We need 3 ire's to create a new cache ire for an 8435 * off-link destination from the cache ire of the 8436 * gateway. 8437 * 8438 * 1. The prefix ire 'sire' (Note that this does 8439 * not apply to the conn_nexthop_set case) 8440 * 2. The cache ire of the gateway 'ire' 8441 * 3. The interface ire 'ipif_ire' 8442 * 8443 * We have (1) and (2). We lookup (3) below. 8444 * 8445 * If there is no interface route to the gateway, 8446 * it is a race condition, where we found the cache 8447 * but the interface route has been deleted. 8448 */ 8449 if (ip_nexthop) { 8450 ipif_ire = ire_ihandle_lookup_onlink(ire); 8451 } else { 8452 ipif_ire = 8453 ire_ihandle_lookup_offlink(ire, sire); 8454 } 8455 if (ipif_ire == NULL) { 8456 ip1dbg(("ip_newroute: " 8457 "ire_ihandle_lookup_offlink failed\n")); 8458 goto icmp_err_ret; 8459 } 8460 8461 /* 8462 * Check cached gateway IRE for any security 8463 * attributes; if found, associate the gateway 8464 * credentials group to the destination IRE. 8465 */ 8466 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8467 mutex_enter(&attrp->igsa_lock); 8468 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8469 GCGRP_REFHOLD(gcgrp); 8470 mutex_exit(&attrp->igsa_lock); 8471 } 8472 8473 /* 8474 * XXX For the source of the resolver mp, 8475 * we are using the same DL_UNITDATA_REQ 8476 * (from save_ire->ire_nce->nce_res_mp) 8477 * though the save_ire is not pointing at the same ill. 8478 * This is incorrect. We need to send it up to the 8479 * resolver to get the right res_mp. For ethernets 8480 * this may be okay (ill_type == DL_ETHER). 8481 */ 8482 8483 ire = ire_create( 8484 (uchar_t *)&dst, /* dest address */ 8485 (uchar_t *)&ip_g_all_ones, /* mask */ 8486 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8487 (uchar_t *)&gw, /* gateway address */ 8488 &save_ire->ire_max_frag, 8489 save_ire->ire_nce, /* src nce */ 8490 dst_ill->ill_rq, /* recv-from queue */ 8491 dst_ill->ill_wq, /* send-to queue */ 8492 IRE_CACHE, /* IRE type */ 8493 src_ipif, 8494 (sire != NULL) ? 8495 sire->ire_mask : 0, /* Parent mask */ 8496 (sire != NULL) ? 8497 sire->ire_phandle : 0, /* Parent handle */ 8498 ipif_ire->ire_ihandle, /* Interface handle */ 8499 (sire != NULL) ? (sire->ire_flags & 8500 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8501 (sire != NULL) ? 8502 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8503 NULL, 8504 gcgrp, 8505 ipst); 8506 8507 if (ire == NULL) { 8508 if (gcgrp != NULL) { 8509 GCGRP_REFRELE(gcgrp); 8510 gcgrp = NULL; 8511 } 8512 ire_refrele(ipif_ire); 8513 ire_refrele(save_ire); 8514 break; 8515 } 8516 8517 /* reference now held by IRE */ 8518 gcgrp = NULL; 8519 8520 ire->ire_marks |= ire_marks; 8521 8522 /* 8523 * Prevent sire and ipif_ire from getting deleted. 8524 * The newly created ire is tied to both of them via 8525 * the phandle and ihandle respectively. 8526 */ 8527 if (sire != NULL) { 8528 IRB_REFHOLD(sire->ire_bucket); 8529 /* Has it been removed already ? */ 8530 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8531 IRB_REFRELE(sire->ire_bucket); 8532 ire_refrele(ipif_ire); 8533 ire_refrele(save_ire); 8534 break; 8535 } 8536 } 8537 8538 IRB_REFHOLD(ipif_ire->ire_bucket); 8539 /* Has it been removed already ? */ 8540 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8541 IRB_REFRELE(ipif_ire->ire_bucket); 8542 if (sire != NULL) 8543 IRB_REFRELE(sire->ire_bucket); 8544 ire_refrele(ipif_ire); 8545 ire_refrele(save_ire); 8546 break; 8547 } 8548 8549 xmit_mp = first_mp; 8550 /* 8551 * In the case of multirouting, a copy 8552 * of the packet is done before its sending. 8553 * The copy is used to attempt another 8554 * route resolution, in a next loop. 8555 */ 8556 if (ire->ire_flags & RTF_MULTIRT) { 8557 copy_mp = copymsg(first_mp); 8558 if (copy_mp != NULL) { 8559 xmit_mp = copy_mp; 8560 MULTIRT_DEBUG_TAG(first_mp); 8561 } 8562 } 8563 8564 ire_add_then_send(q, ire, xmit_mp); 8565 ire_refrele(save_ire); 8566 8567 /* Assert that sire is not deleted yet. */ 8568 if (sire != NULL) { 8569 ASSERT(sire->ire_ptpn != NULL); 8570 IRB_REFRELE(sire->ire_bucket); 8571 } 8572 8573 /* Assert that ipif_ire is not deleted yet. */ 8574 ASSERT(ipif_ire->ire_ptpn != NULL); 8575 IRB_REFRELE(ipif_ire->ire_bucket); 8576 ire_refrele(ipif_ire); 8577 8578 /* 8579 * If copy_mp is not NULL, multirouting was 8580 * requested. We loop to initiate a next 8581 * route resolution attempt, starting from sire. 8582 */ 8583 if (copy_mp != NULL) { 8584 /* 8585 * Search for the next unresolved 8586 * multirt route. 8587 */ 8588 copy_mp = NULL; 8589 ipif_ire = NULL; 8590 ire = NULL; 8591 multirt_resolve_next = B_TRUE; 8592 continue; 8593 } 8594 if (sire != NULL) 8595 ire_refrele(sire); 8596 ipif_refrele(src_ipif); 8597 ill_refrele(dst_ill); 8598 return; 8599 } 8600 case IRE_IF_NORESOLVER: { 8601 if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN && 8602 dst_ill->ill_resolver_mp == NULL) { 8603 ip1dbg(("ip_newroute: dst_ill %p " 8604 "for IRE_IF_NORESOLVER ire %p has " 8605 "no ill_resolver_mp\n", 8606 (void *)dst_ill, (void *)ire)); 8607 break; 8608 } 8609 8610 /* 8611 * TSol note: We are creating the ire cache for the 8612 * destination 'dst'. If 'dst' is offlink, going 8613 * through the first hop 'gw', the security attributes 8614 * of 'dst' must be set to point to the gateway 8615 * credentials of gateway 'gw'. If 'dst' is onlink, it 8616 * is possible that 'dst' is a potential gateway that is 8617 * referenced by some route that has some security 8618 * attributes. Thus in the former case, we need to do a 8619 * gcgrp_lookup of 'gw' while in the latter case we 8620 * need to do gcgrp_lookup of 'dst' itself. 8621 */ 8622 ga.ga_af = AF_INET; 8623 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8624 &ga.ga_addr); 8625 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8626 8627 ire = ire_create( 8628 (uchar_t *)&dst, /* dest address */ 8629 (uchar_t *)&ip_g_all_ones, /* mask */ 8630 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8631 (uchar_t *)&gw, /* gateway address */ 8632 &save_ire->ire_max_frag, 8633 NULL, /* no src nce */ 8634 dst_ill->ill_rq, /* recv-from queue */ 8635 dst_ill->ill_wq, /* send-to queue */ 8636 IRE_CACHE, 8637 src_ipif, 8638 save_ire->ire_mask, /* Parent mask */ 8639 (sire != NULL) ? /* Parent handle */ 8640 sire->ire_phandle : 0, 8641 save_ire->ire_ihandle, /* Interface handle */ 8642 (sire != NULL) ? sire->ire_flags & 8643 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8644 &(save_ire->ire_uinfo), 8645 NULL, 8646 gcgrp, 8647 ipst); 8648 8649 if (ire == NULL) { 8650 if (gcgrp != NULL) { 8651 GCGRP_REFRELE(gcgrp); 8652 gcgrp = NULL; 8653 } 8654 ire_refrele(save_ire); 8655 break; 8656 } 8657 8658 /* reference now held by IRE */ 8659 gcgrp = NULL; 8660 8661 ire->ire_marks |= ire_marks; 8662 8663 /* Prevent save_ire from getting deleted */ 8664 IRB_REFHOLD(save_ire->ire_bucket); 8665 /* Has it been removed already ? */ 8666 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8667 IRB_REFRELE(save_ire->ire_bucket); 8668 ire_refrele(save_ire); 8669 break; 8670 } 8671 8672 /* 8673 * In the case of multirouting, a copy 8674 * of the packet is made before it is sent. 8675 * The copy is used in the next 8676 * loop to attempt another resolution. 8677 */ 8678 xmit_mp = first_mp; 8679 if ((sire != NULL) && 8680 (sire->ire_flags & RTF_MULTIRT)) { 8681 copy_mp = copymsg(first_mp); 8682 if (copy_mp != NULL) { 8683 xmit_mp = copy_mp; 8684 MULTIRT_DEBUG_TAG(first_mp); 8685 } 8686 } 8687 ire_add_then_send(q, ire, xmit_mp); 8688 8689 /* Assert that it is not deleted yet. */ 8690 ASSERT(save_ire->ire_ptpn != NULL); 8691 IRB_REFRELE(save_ire->ire_bucket); 8692 ire_refrele(save_ire); 8693 8694 if (copy_mp != NULL) { 8695 /* 8696 * If we found a (no)resolver, we ignore any 8697 * trailing top priority IRE_CACHE in further 8698 * loops. This ensures that we do not omit any 8699 * (no)resolver. 8700 * This IRE_CACHE, if any, will be processed 8701 * by another thread entering ip_newroute(). 8702 * IRE_CACHE entries, if any, will be processed 8703 * by another thread entering ip_newroute(), 8704 * (upon resolver response, for instance). 8705 * This aims to force parallel multirt 8706 * resolutions as soon as a packet must be sent. 8707 * In the best case, after the tx of only one 8708 * packet, all reachable routes are resolved. 8709 * Otherwise, the resolution of all RTF_MULTIRT 8710 * routes would require several emissions. 8711 */ 8712 multirt_flags &= ~MULTIRT_CACHEGW; 8713 8714 /* 8715 * Search for the next unresolved multirt 8716 * route. 8717 */ 8718 copy_mp = NULL; 8719 save_ire = NULL; 8720 ire = NULL; 8721 multirt_resolve_next = B_TRUE; 8722 continue; 8723 } 8724 8725 /* 8726 * Don't need sire anymore 8727 */ 8728 if (sire != NULL) 8729 ire_refrele(sire); 8730 8731 ipif_refrele(src_ipif); 8732 ill_refrele(dst_ill); 8733 return; 8734 } 8735 case IRE_IF_RESOLVER: 8736 /* 8737 * We can't build an IRE_CACHE yet, but at least we 8738 * found a resolver that can help. 8739 */ 8740 res_mp = dst_ill->ill_resolver_mp; 8741 if (!OK_RESOLVER_MP(res_mp)) 8742 break; 8743 8744 /* 8745 * To be at this point in the code with a non-zero gw 8746 * means that dst is reachable through a gateway that 8747 * we have never resolved. By changing dst to the gw 8748 * addr we resolve the gateway first. 8749 * When ire_add_then_send() tries to put the IP dg 8750 * to dst, it will reenter ip_newroute() at which 8751 * time we will find the IRE_CACHE for the gw and 8752 * create another IRE_CACHE in case IRE_CACHE above. 8753 */ 8754 if (gw != INADDR_ANY) { 8755 /* 8756 * The source ipif that was determined above was 8757 * relative to the destination address, not the 8758 * gateway's. If src_ipif was not taken out of 8759 * the IRE_IF_RESOLVER entry, we'll need to call 8760 * ipif_select_source() again. 8761 */ 8762 if (src_ipif != ire->ire_ipif) { 8763 ipif_refrele(src_ipif); 8764 src_ipif = ipif_select_source(dst_ill, 8765 gw, zoneid); 8766 /* 8767 * In the case of multirouting, it may 8768 * happen that ipif_select_source fails 8769 * as DAD may disallow use of the 8770 * particular source interface. Anyway, 8771 * we need to continue and attempt to 8772 * resolve other multirt routes. 8773 */ 8774 if (src_ipif == NULL) { 8775 if (sire != NULL && 8776 (sire->ire_flags & 8777 RTF_MULTIRT)) { 8778 ire_refrele(ire); 8779 ire = NULL; 8780 multirt_resolve_next = 8781 B_TRUE; 8782 multirt_res_failures++; 8783 continue; 8784 } 8785 if (ip_debug > 2) { 8786 pr_addr_dbg( 8787 "ip_newroute: no " 8788 "src for gw %s ", 8789 AF_INET, &gw); 8790 printf("on " 8791 "interface %s\n", 8792 dst_ill->ill_name); 8793 } 8794 goto icmp_err_ret; 8795 } 8796 } 8797 save_dst = dst; 8798 dst = gw; 8799 gw = INADDR_ANY; 8800 } 8801 8802 /* 8803 * We obtain a partial IRE_CACHE which we will pass 8804 * along with the resolver query. When the response 8805 * comes back it will be there ready for us to add. 8806 * The ire_max_frag is atomically set under the 8807 * irebucket lock in ire_add_v[46]. 8808 */ 8809 8810 ire = ire_create_mp( 8811 (uchar_t *)&dst, /* dest address */ 8812 (uchar_t *)&ip_g_all_ones, /* mask */ 8813 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8814 (uchar_t *)&gw, /* gateway address */ 8815 NULL, /* ire_max_frag */ 8816 NULL, /* no src nce */ 8817 dst_ill->ill_rq, /* recv-from queue */ 8818 dst_ill->ill_wq, /* send-to queue */ 8819 IRE_CACHE, 8820 src_ipif, /* Interface ipif */ 8821 save_ire->ire_mask, /* Parent mask */ 8822 0, 8823 save_ire->ire_ihandle, /* Interface handle */ 8824 0, /* flags if any */ 8825 &(save_ire->ire_uinfo), 8826 NULL, 8827 NULL, 8828 ipst); 8829 8830 if (ire == NULL) { 8831 ire_refrele(save_ire); 8832 break; 8833 } 8834 8835 if ((sire != NULL) && 8836 (sire->ire_flags & RTF_MULTIRT)) { 8837 copy_mp = copymsg(first_mp); 8838 if (copy_mp != NULL) 8839 MULTIRT_DEBUG_TAG(copy_mp); 8840 } 8841 8842 ire->ire_marks |= ire_marks; 8843 8844 /* 8845 * Construct message chain for the resolver 8846 * of the form: 8847 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8848 * Packet could contain a IPSEC_OUT mp. 8849 * 8850 * NOTE : ire will be added later when the response 8851 * comes back from ARP. If the response does not 8852 * come back, ARP frees the packet. For this reason, 8853 * we can't REFHOLD the bucket of save_ire to prevent 8854 * deletions. We may not be able to REFRELE the bucket 8855 * if the response never comes back. Thus, before 8856 * adding the ire, ire_add_v4 will make sure that the 8857 * interface route does not get deleted. This is the 8858 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8859 * where we can always prevent deletions because of 8860 * the synchronous nature of adding IRES i.e 8861 * ire_add_then_send is called after creating the IRE. 8862 */ 8863 ASSERT(ire->ire_mp != NULL); 8864 ire->ire_mp->b_cont = first_mp; 8865 /* Have saved_mp handy, for cleanup if canput fails */ 8866 saved_mp = mp; 8867 mp = copyb(res_mp); 8868 if (mp == NULL) { 8869 /* Prepare for cleanup */ 8870 mp = saved_mp; /* pkt */ 8871 ire_delete(ire); /* ire_mp */ 8872 ire = NULL; 8873 ire_refrele(save_ire); 8874 if (copy_mp != NULL) { 8875 MULTIRT_DEBUG_UNTAG(copy_mp); 8876 freemsg(copy_mp); 8877 copy_mp = NULL; 8878 } 8879 break; 8880 } 8881 linkb(mp, ire->ire_mp); 8882 8883 /* 8884 * Fill in the source and dest addrs for the resolver. 8885 * NOTE: this depends on memory layouts imposed by 8886 * ill_init(). 8887 */ 8888 areq = (areq_t *)mp->b_rptr; 8889 addrp = (ipaddr_t *)((char *)areq + 8890 areq->areq_sender_addr_offset); 8891 *addrp = save_ire->ire_src_addr; 8892 8893 ire_refrele(save_ire); 8894 addrp = (ipaddr_t *)((char *)areq + 8895 areq->areq_target_addr_offset); 8896 *addrp = dst; 8897 /* Up to the resolver. */ 8898 if (canputnext(dst_ill->ill_rq) && 8899 !(dst_ill->ill_arp_closing)) { 8900 putnext(dst_ill->ill_rq, mp); 8901 ire = NULL; 8902 if (copy_mp != NULL) { 8903 /* 8904 * If we found a resolver, we ignore 8905 * any trailing top priority IRE_CACHE 8906 * in the further loops. This ensures 8907 * that we do not omit any resolver. 8908 * IRE_CACHE entries, if any, will be 8909 * processed next time we enter 8910 * ip_newroute(). 8911 */ 8912 multirt_flags &= ~MULTIRT_CACHEGW; 8913 /* 8914 * Search for the next unresolved 8915 * multirt route. 8916 */ 8917 first_mp = copy_mp; 8918 copy_mp = NULL; 8919 /* Prepare the next resolution loop. */ 8920 mp = first_mp; 8921 EXTRACT_PKT_MP(mp, first_mp, 8922 mctl_present); 8923 if (mctl_present) 8924 io = (ipsec_out_t *) 8925 first_mp->b_rptr; 8926 ipha = (ipha_t *)mp->b_rptr; 8927 8928 ASSERT(sire != NULL); 8929 8930 dst = save_dst; 8931 multirt_resolve_next = B_TRUE; 8932 continue; 8933 } 8934 8935 if (sire != NULL) 8936 ire_refrele(sire); 8937 8938 /* 8939 * The response will come back in ip_wput 8940 * with db_type IRE_DB_TYPE. 8941 */ 8942 ipif_refrele(src_ipif); 8943 ill_refrele(dst_ill); 8944 return; 8945 } else { 8946 /* Prepare for cleanup */ 8947 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8948 mp); 8949 mp->b_cont = NULL; 8950 freeb(mp); /* areq */ 8951 /* 8952 * this is an ire that is not added to the 8953 * cache. ire_freemblk will handle the release 8954 * of any resources associated with the ire. 8955 */ 8956 ire_delete(ire); /* ire_mp */ 8957 mp = saved_mp; /* pkt */ 8958 ire = NULL; 8959 if (copy_mp != NULL) { 8960 MULTIRT_DEBUG_UNTAG(copy_mp); 8961 freemsg(copy_mp); 8962 copy_mp = NULL; 8963 } 8964 break; 8965 } 8966 default: 8967 break; 8968 } 8969 } while (multirt_resolve_next); 8970 8971 ip1dbg(("ip_newroute: dropped\n")); 8972 /* Did this packet originate externally? */ 8973 if (mp->b_prev) { 8974 mp->b_next = NULL; 8975 mp->b_prev = NULL; 8976 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 8977 } else { 8978 if (dst_ill != NULL) { 8979 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8980 } else { 8981 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 8982 } 8983 } 8984 ASSERT(copy_mp == NULL); 8985 MULTIRT_DEBUG_UNTAG(first_mp); 8986 freemsg(first_mp); 8987 if (ire != NULL) 8988 ire_refrele(ire); 8989 if (sire != NULL) 8990 ire_refrele(sire); 8991 if (src_ipif != NULL) 8992 ipif_refrele(src_ipif); 8993 if (dst_ill != NULL) 8994 ill_refrele(dst_ill); 8995 return; 8996 8997 icmp_err_ret: 8998 ip1dbg(("ip_newroute: no route\n")); 8999 if (src_ipif != NULL) 9000 ipif_refrele(src_ipif); 9001 if (dst_ill != NULL) 9002 ill_refrele(dst_ill); 9003 if (sire != NULL) 9004 ire_refrele(sire); 9005 /* Did this packet originate externally? */ 9006 if (mp->b_prev) { 9007 mp->b_next = NULL; 9008 mp->b_prev = NULL; 9009 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes); 9010 q = WR(q); 9011 } else { 9012 /* 9013 * There is no outgoing ill, so just increment the 9014 * system MIB. 9015 */ 9016 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 9017 /* 9018 * Since ip_wput() isn't close to finished, we fill 9019 * in enough of the header for credible error reporting. 9020 */ 9021 if (ip_hdr_complete(ipha, zoneid, ipst)) { 9022 /* Failed */ 9023 MULTIRT_DEBUG_UNTAG(first_mp); 9024 freemsg(first_mp); 9025 if (ire != NULL) 9026 ire_refrele(ire); 9027 return; 9028 } 9029 } 9030 9031 /* 9032 * At this point we will have ire only if RTF_BLACKHOLE 9033 * or RTF_REJECT flags are set on the IRE. It will not 9034 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9035 */ 9036 if (ire != NULL) { 9037 if (ire->ire_flags & RTF_BLACKHOLE) { 9038 ire_refrele(ire); 9039 MULTIRT_DEBUG_UNTAG(first_mp); 9040 freemsg(first_mp); 9041 return; 9042 } 9043 ire_refrele(ire); 9044 } 9045 if (ip_source_routed(ipha, ipst)) { 9046 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 9047 zoneid, ipst); 9048 return; 9049 } 9050 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9051 } 9052 9053 ip_opt_info_t zero_info; 9054 9055 /* 9056 * IPv4 - 9057 * ip_newroute_ipif is called by ip_wput_multicast and 9058 * ip_rput_forward_multicast whenever we need to send 9059 * out a packet to a destination address for which we do not have specific 9060 * routing information. It is used when the packet will be sent out 9061 * on a specific interface. It is also called by ip_wput() when IP_BOUND_IF 9062 * socket option is set or icmp error message wants to go out on a particular 9063 * interface for a unicast packet. 9064 * 9065 * In most cases, the destination address is resolved thanks to the ipif 9066 * intrinsic resolver. However, there are some cases where the call to 9067 * ip_newroute_ipif must take into account the potential presence of 9068 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 9069 * that uses the interface. This is specified through flags, 9070 * which can be a combination of: 9071 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 9072 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 9073 * and flags. Additionally, the packet source address has to be set to 9074 * the specified address. The caller is thus expected to set this flag 9075 * if the packet has no specific source address yet. 9076 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 9077 * flag, the resulting ire will inherit the flag. All unresolved routes 9078 * to the destination must be explored in the same call to 9079 * ip_newroute_ipif(). 9080 */ 9081 static void 9082 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 9083 conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop) 9084 { 9085 areq_t *areq; 9086 ire_t *ire = NULL; 9087 mblk_t *res_mp; 9088 ipaddr_t *addrp; 9089 mblk_t *first_mp; 9090 ire_t *save_ire = NULL; 9091 ipif_t *src_ipif = NULL; 9092 ushort_t ire_marks = 0; 9093 ill_t *dst_ill = NULL; 9094 ipha_t *ipha; 9095 mblk_t *saved_mp; 9096 ire_t *fire = NULL; 9097 mblk_t *copy_mp = NULL; 9098 boolean_t multirt_resolve_next; 9099 boolean_t unspec_src; 9100 ipaddr_t ipha_dst; 9101 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 9102 9103 /* 9104 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 9105 * here for uniformity 9106 */ 9107 ipif_refhold(ipif); 9108 9109 /* 9110 * This loop is run only once in most cases. 9111 * We loop to resolve further routes only when the destination 9112 * can be reached through multiple RTF_MULTIRT-flagged ires. 9113 */ 9114 do { 9115 if (dst_ill != NULL) { 9116 ill_refrele(dst_ill); 9117 dst_ill = NULL; 9118 } 9119 if (src_ipif != NULL) { 9120 ipif_refrele(src_ipif); 9121 src_ipif = NULL; 9122 } 9123 multirt_resolve_next = B_FALSE; 9124 9125 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 9126 ipif->ipif_ill->ill_name)); 9127 9128 first_mp = mp; 9129 if (DB_TYPE(mp) == M_CTL) 9130 mp = mp->b_cont; 9131 ipha = (ipha_t *)mp->b_rptr; 9132 9133 /* 9134 * Save the packet destination address, we may need it after 9135 * the packet has been consumed. 9136 */ 9137 ipha_dst = ipha->ipha_dst; 9138 9139 /* 9140 * If the interface is a pt-pt interface we look for an 9141 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 9142 * local_address and the pt-pt destination address. Otherwise 9143 * we just match the local address. 9144 * NOTE: dst could be different than ipha->ipha_dst in case 9145 * of sending igmp multicast packets over a point-to-point 9146 * connection. 9147 * Thus we must be careful enough to check ipha_dst to be a 9148 * multicast address, otherwise it will take xmit_if path for 9149 * multicast packets resulting into kernel stack overflow by 9150 * repeated calls to ip_newroute_ipif from ire_send(). 9151 */ 9152 if (CLASSD(ipha_dst) && 9153 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 9154 goto err_ret; 9155 } 9156 9157 /* 9158 * We check if an IRE_OFFSUBNET for the addr that goes through 9159 * ipif exists. We need it to determine if the RTF_SETSRC and/or 9160 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9161 * propagate its flags to the new ire. 9162 */ 9163 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9164 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9165 ip2dbg(("ip_newroute_ipif: " 9166 "ipif_lookup_multi_ire(" 9167 "ipif %p, dst %08x) = fire %p\n", 9168 (void *)ipif, ntohl(dst), (void *)fire)); 9169 } 9170 9171 /* 9172 * Note: While we pick a dst_ill we are really only 9173 * interested in the ill for load spreading. The source 9174 * ipif is determined by source address selection below. 9175 */ 9176 if (IS_IPMP(ipif->ipif_ill)) { 9177 ipmp_illgrp_t *illg = ipif->ipif_ill->ill_grp; 9178 9179 if (CLASSD(ipha_dst)) 9180 dst_ill = ipmp_illgrp_hold_cast_ill(illg); 9181 else 9182 dst_ill = ipmp_illgrp_hold_next_ill(illg); 9183 } else { 9184 dst_ill = ipif->ipif_ill; 9185 ill_refhold(dst_ill); 9186 } 9187 9188 if (dst_ill == NULL) { 9189 if (ip_debug > 2) { 9190 pr_addr_dbg("ip_newroute_ipif: no dst ill " 9191 "for dst %s\n", AF_INET, &dst); 9192 } 9193 goto err_ret; 9194 } 9195 9196 /* 9197 * Pick a source address preferring non-deprecated ones. 9198 * Unlike ip_newroute, we don't do any source address 9199 * selection here since for multicast it really does not help 9200 * in inbound load spreading as in the unicast case. 9201 */ 9202 if ((flags & RTF_SETSRC) && (fire != NULL) && 9203 (fire->ire_flags & RTF_SETSRC)) { 9204 /* 9205 * As requested by flags, an IRE_OFFSUBNET was looked up 9206 * on that interface. This ire has RTF_SETSRC flag, so 9207 * the source address of the packet must be changed. 9208 * Check that the ipif matching the requested source 9209 * address still exists. 9210 */ 9211 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9212 zoneid, NULL, NULL, NULL, NULL, ipst); 9213 } 9214 9215 unspec_src = (connp != NULL && connp->conn_unspec_src); 9216 9217 if (!IS_UNDER_IPMP(ipif->ipif_ill) && 9218 (IS_IPMP(ipif->ipif_ill) || 9219 (!ipif->ipif_isv6 && ipif->ipif_lcl_addr == INADDR_ANY) || 9220 (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_UP)) != IPIF_UP || 9221 (connp != NULL && ipif->ipif_zoneid != zoneid && 9222 ipif->ipif_zoneid != ALL_ZONES)) && 9223 (src_ipif == NULL) && 9224 (!unspec_src || ipha->ipha_src != INADDR_ANY)) { 9225 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9226 if (src_ipif == NULL) { 9227 if (ip_debug > 2) { 9228 /* ip1dbg */ 9229 pr_addr_dbg("ip_newroute_ipif: " 9230 "no src for dst %s", 9231 AF_INET, &dst); 9232 } 9233 ip1dbg((" on interface %s\n", 9234 dst_ill->ill_name)); 9235 goto err_ret; 9236 } 9237 ipif_refrele(ipif); 9238 ipif = src_ipif; 9239 ipif_refhold(ipif); 9240 } 9241 if (src_ipif == NULL) { 9242 src_ipif = ipif; 9243 ipif_refhold(src_ipif); 9244 } 9245 9246 /* 9247 * Assign a source address while we have the conn. 9248 * We can't have ip_wput_ire pick a source address when the 9249 * packet returns from arp since conn_unspec_src might be set 9250 * and we lose the conn when going through arp. 9251 */ 9252 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 9253 ipha->ipha_src = src_ipif->ipif_src_addr; 9254 9255 /* 9256 * In the case of IP_BOUND_IF and IP_PKTINFO, it is possible 9257 * that the outgoing interface does not have an interface ire. 9258 */ 9259 if (CLASSD(ipha_dst) && (connp == NULL || 9260 connp->conn_outgoing_ill == NULL) && 9261 infop->ip_opt_ill_index == 0) { 9262 /* ipif_to_ire returns an held ire */ 9263 ire = ipif_to_ire(ipif); 9264 if (ire == NULL) 9265 goto err_ret; 9266 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9267 goto err_ret; 9268 save_ire = ire; 9269 9270 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9271 "flags %04x\n", 9272 (void *)ire, (void *)ipif, flags)); 9273 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9274 (fire->ire_flags & RTF_MULTIRT)) { 9275 /* 9276 * As requested by flags, an IRE_OFFSUBNET was 9277 * looked up on that interface. This ire has 9278 * RTF_MULTIRT flag, so the resolution loop will 9279 * be re-entered to resolve additional routes on 9280 * other interfaces. For that purpose, a copy of 9281 * the packet is performed at this point. 9282 */ 9283 fire->ire_last_used_time = lbolt; 9284 copy_mp = copymsg(first_mp); 9285 if (copy_mp) { 9286 MULTIRT_DEBUG_TAG(copy_mp); 9287 } 9288 } 9289 if ((flags & RTF_SETSRC) && (fire != NULL) && 9290 (fire->ire_flags & RTF_SETSRC)) { 9291 /* 9292 * As requested by flags, an IRE_OFFSUBET was 9293 * looked up on that interface. This ire has 9294 * RTF_SETSRC flag, so the source address of the 9295 * packet must be changed. 9296 */ 9297 ipha->ipha_src = fire->ire_src_addr; 9298 } 9299 } else { 9300 /* 9301 * The only ways we can come here are: 9302 * 1) IP_BOUND_IF socket option is set 9303 * 2) SO_DONTROUTE socket option is set 9304 * 3) IP_PKTINFO option is passed in as ancillary data. 9305 * In all cases, the new ire will not be added 9306 * into cache table. 9307 */ 9308 ASSERT(connp == NULL || connp->conn_dontroute || 9309 connp->conn_outgoing_ill != NULL || 9310 infop->ip_opt_ill_index != 0); 9311 ire_marks |= IRE_MARK_NOADD; 9312 } 9313 9314 switch (ipif->ipif_net_type) { 9315 case IRE_IF_NORESOLVER: { 9316 /* We have what we need to build an IRE_CACHE. */ 9317 9318 if ((dst_ill->ill_phys_addr_length != IP_ADDR_LEN) && 9319 (dst_ill->ill_resolver_mp == NULL)) { 9320 ip1dbg(("ip_newroute_ipif: dst_ill %p " 9321 "for IRE_IF_NORESOLVER ire %p has " 9322 "no ill_resolver_mp\n", 9323 (void *)dst_ill, (void *)ire)); 9324 break; 9325 } 9326 9327 /* 9328 * The new ire inherits the IRE_OFFSUBNET flags 9329 * and source address, if this was requested. 9330 */ 9331 ire = ire_create( 9332 (uchar_t *)&dst, /* dest address */ 9333 (uchar_t *)&ip_g_all_ones, /* mask */ 9334 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9335 NULL, /* gateway address */ 9336 &ipif->ipif_mtu, 9337 NULL, /* no src nce */ 9338 dst_ill->ill_rq, /* recv-from queue */ 9339 dst_ill->ill_wq, /* send-to queue */ 9340 IRE_CACHE, 9341 src_ipif, 9342 (save_ire != NULL ? save_ire->ire_mask : 0), 9343 (fire != NULL) ? /* Parent handle */ 9344 fire->ire_phandle : 0, 9345 (save_ire != NULL) ? /* Interface handle */ 9346 save_ire->ire_ihandle : 0, 9347 (fire != NULL) ? 9348 (fire->ire_flags & 9349 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9350 (save_ire == NULL ? &ire_uinfo_null : 9351 &save_ire->ire_uinfo), 9352 NULL, 9353 NULL, 9354 ipst); 9355 9356 if (ire == NULL) { 9357 if (save_ire != NULL) 9358 ire_refrele(save_ire); 9359 break; 9360 } 9361 9362 ire->ire_marks |= ire_marks; 9363 9364 /* 9365 * If IRE_MARK_NOADD is set then we need to convert 9366 * the max_fragp to a useable value now. This is 9367 * normally done in ire_add_v[46]. We also need to 9368 * associate the ire with an nce (normally would be 9369 * done in ip_wput_nondata()). 9370 * 9371 * Note that IRE_MARK_NOADD packets created here 9372 * do not have a non-null ire_mp pointer. The null 9373 * value of ire_bucket indicates that they were 9374 * never added. 9375 */ 9376 if (ire->ire_marks & IRE_MARK_NOADD) { 9377 uint_t max_frag; 9378 9379 max_frag = *ire->ire_max_fragp; 9380 ire->ire_max_fragp = NULL; 9381 ire->ire_max_frag = max_frag; 9382 9383 if ((ire->ire_nce = ndp_lookup_v4( 9384 ire_to_ill(ire), 9385 (ire->ire_gateway_addr != INADDR_ANY ? 9386 &ire->ire_gateway_addr : &ire->ire_addr), 9387 B_FALSE)) == NULL) { 9388 if (save_ire != NULL) 9389 ire_refrele(save_ire); 9390 break; 9391 } 9392 ASSERT(ire->ire_nce->nce_state == 9393 ND_REACHABLE); 9394 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9395 } 9396 9397 /* Prevent save_ire from getting deleted */ 9398 if (save_ire != NULL) { 9399 IRB_REFHOLD(save_ire->ire_bucket); 9400 /* Has it been removed already ? */ 9401 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9402 IRB_REFRELE(save_ire->ire_bucket); 9403 ire_refrele(save_ire); 9404 break; 9405 } 9406 } 9407 9408 ire_add_then_send(q, ire, first_mp); 9409 9410 /* Assert that save_ire is not deleted yet. */ 9411 if (save_ire != NULL) { 9412 ASSERT(save_ire->ire_ptpn != NULL); 9413 IRB_REFRELE(save_ire->ire_bucket); 9414 ire_refrele(save_ire); 9415 save_ire = NULL; 9416 } 9417 if (fire != NULL) { 9418 ire_refrele(fire); 9419 fire = NULL; 9420 } 9421 9422 /* 9423 * the resolution loop is re-entered if this 9424 * was requested through flags and if we 9425 * actually are in a multirouting case. 9426 */ 9427 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9428 boolean_t need_resolve = 9429 ire_multirt_need_resolve(ipha_dst, 9430 msg_getlabel(copy_mp), ipst); 9431 if (!need_resolve) { 9432 MULTIRT_DEBUG_UNTAG(copy_mp); 9433 freemsg(copy_mp); 9434 copy_mp = NULL; 9435 } else { 9436 /* 9437 * ipif_lookup_group() calls 9438 * ire_lookup_multi() that uses 9439 * ire_ftable_lookup() to find 9440 * an IRE_INTERFACE for the group. 9441 * In the multirt case, 9442 * ire_lookup_multi() then invokes 9443 * ire_multirt_lookup() to find 9444 * the next resolvable ire. 9445 * As a result, we obtain an new 9446 * interface, derived from the 9447 * next ire. 9448 */ 9449 ipif_refrele(ipif); 9450 ipif = ipif_lookup_group(ipha_dst, 9451 zoneid, ipst); 9452 ip2dbg(("ip_newroute_ipif: " 9453 "multirt dst %08x, ipif %p\n", 9454 htonl(dst), (void *)ipif)); 9455 if (ipif != NULL) { 9456 mp = copy_mp; 9457 copy_mp = NULL; 9458 multirt_resolve_next = B_TRUE; 9459 continue; 9460 } else { 9461 freemsg(copy_mp); 9462 } 9463 } 9464 } 9465 if (ipif != NULL) 9466 ipif_refrele(ipif); 9467 ill_refrele(dst_ill); 9468 ipif_refrele(src_ipif); 9469 return; 9470 } 9471 case IRE_IF_RESOLVER: 9472 /* 9473 * We can't build an IRE_CACHE yet, but at least 9474 * we found a resolver that can help. 9475 */ 9476 res_mp = dst_ill->ill_resolver_mp; 9477 if (!OK_RESOLVER_MP(res_mp)) 9478 break; 9479 9480 /* 9481 * We obtain a partial IRE_CACHE which we will pass 9482 * along with the resolver query. When the response 9483 * comes back it will be there ready for us to add. 9484 * The new ire inherits the IRE_OFFSUBNET flags 9485 * and source address, if this was requested. 9486 * The ire_max_frag is atomically set under the 9487 * irebucket lock in ire_add_v[46]. Only in the 9488 * case of IRE_MARK_NOADD, we set it here itself. 9489 */ 9490 ire = ire_create_mp( 9491 (uchar_t *)&dst, /* dest address */ 9492 (uchar_t *)&ip_g_all_ones, /* mask */ 9493 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9494 NULL, /* gateway address */ 9495 (ire_marks & IRE_MARK_NOADD) ? 9496 ipif->ipif_mtu : 0, /* max_frag */ 9497 NULL, /* no src nce */ 9498 dst_ill->ill_rq, /* recv-from queue */ 9499 dst_ill->ill_wq, /* send-to queue */ 9500 IRE_CACHE, 9501 src_ipif, 9502 (save_ire != NULL ? save_ire->ire_mask : 0), 9503 (fire != NULL) ? /* Parent handle */ 9504 fire->ire_phandle : 0, 9505 (save_ire != NULL) ? /* Interface handle */ 9506 save_ire->ire_ihandle : 0, 9507 (fire != NULL) ? /* flags if any */ 9508 (fire->ire_flags & 9509 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9510 (save_ire == NULL ? &ire_uinfo_null : 9511 &save_ire->ire_uinfo), 9512 NULL, 9513 NULL, 9514 ipst); 9515 9516 if (save_ire != NULL) { 9517 ire_refrele(save_ire); 9518 save_ire = NULL; 9519 } 9520 if (ire == NULL) 9521 break; 9522 9523 ire->ire_marks |= ire_marks; 9524 /* 9525 * Construct message chain for the resolver of the 9526 * form: 9527 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9528 * 9529 * NOTE : ire will be added later when the response 9530 * comes back from ARP. If the response does not 9531 * come back, ARP frees the packet. For this reason, 9532 * we can't REFHOLD the bucket of save_ire to prevent 9533 * deletions. We may not be able to REFRELE the 9534 * bucket if the response never comes back. 9535 * Thus, before adding the ire, ire_add_v4 will make 9536 * sure that the interface route does not get deleted. 9537 * This is the only case unlike ip_newroute_v6, 9538 * ip_newroute_ipif_v6 where we can always prevent 9539 * deletions because ire_add_then_send is called after 9540 * creating the IRE. 9541 * If IRE_MARK_NOADD is set, then ire_add_then_send 9542 * does not add this IRE into the IRE CACHE. 9543 */ 9544 ASSERT(ire->ire_mp != NULL); 9545 ire->ire_mp->b_cont = first_mp; 9546 /* Have saved_mp handy, for cleanup if canput fails */ 9547 saved_mp = mp; 9548 mp = copyb(res_mp); 9549 if (mp == NULL) { 9550 /* Prepare for cleanup */ 9551 mp = saved_mp; /* pkt */ 9552 ire_delete(ire); /* ire_mp */ 9553 ire = NULL; 9554 if (copy_mp != NULL) { 9555 MULTIRT_DEBUG_UNTAG(copy_mp); 9556 freemsg(copy_mp); 9557 copy_mp = NULL; 9558 } 9559 break; 9560 } 9561 linkb(mp, ire->ire_mp); 9562 9563 /* 9564 * Fill in the source and dest addrs for the resolver. 9565 * NOTE: this depends on memory layouts imposed by 9566 * ill_init(). There are corner cases above where we 9567 * might've created the IRE with an INADDR_ANY source 9568 * address (e.g., if the zeroth ipif on an underlying 9569 * ill in an IPMP group is 0.0.0.0, but another ipif 9570 * on the ill has a usable test address). If so, tell 9571 * ARP to use ipha_src as its sender address. 9572 */ 9573 areq = (areq_t *)mp->b_rptr; 9574 addrp = (ipaddr_t *)((char *)areq + 9575 areq->areq_sender_addr_offset); 9576 if (ire->ire_src_addr != INADDR_ANY) 9577 *addrp = ire->ire_src_addr; 9578 else 9579 *addrp = ipha->ipha_src; 9580 addrp = (ipaddr_t *)((char *)areq + 9581 areq->areq_target_addr_offset); 9582 *addrp = dst; 9583 /* Up to the resolver. */ 9584 if (canputnext(dst_ill->ill_rq) && 9585 !(dst_ill->ill_arp_closing)) { 9586 putnext(dst_ill->ill_rq, mp); 9587 /* 9588 * The response will come back in ip_wput 9589 * with db_type IRE_DB_TYPE. 9590 */ 9591 } else { 9592 mp->b_cont = NULL; 9593 freeb(mp); /* areq */ 9594 ire_delete(ire); /* ire_mp */ 9595 saved_mp->b_next = NULL; 9596 saved_mp->b_prev = NULL; 9597 freemsg(first_mp); /* pkt */ 9598 ip2dbg(("ip_newroute_ipif: dropped\n")); 9599 } 9600 9601 if (fire != NULL) { 9602 ire_refrele(fire); 9603 fire = NULL; 9604 } 9605 9606 /* 9607 * The resolution loop is re-entered if this was 9608 * requested through flags and we actually are 9609 * in a multirouting case. 9610 */ 9611 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9612 boolean_t need_resolve = 9613 ire_multirt_need_resolve(ipha_dst, 9614 msg_getlabel(copy_mp), ipst); 9615 if (!need_resolve) { 9616 MULTIRT_DEBUG_UNTAG(copy_mp); 9617 freemsg(copy_mp); 9618 copy_mp = NULL; 9619 } else { 9620 /* 9621 * ipif_lookup_group() calls 9622 * ire_lookup_multi() that uses 9623 * ire_ftable_lookup() to find 9624 * an IRE_INTERFACE for the group. 9625 * In the multirt case, 9626 * ire_lookup_multi() then invokes 9627 * ire_multirt_lookup() to find 9628 * the next resolvable ire. 9629 * As a result, we obtain an new 9630 * interface, derived from the 9631 * next ire. 9632 */ 9633 ipif_refrele(ipif); 9634 ipif = ipif_lookup_group(ipha_dst, 9635 zoneid, ipst); 9636 if (ipif != NULL) { 9637 mp = copy_mp; 9638 copy_mp = NULL; 9639 multirt_resolve_next = B_TRUE; 9640 continue; 9641 } else { 9642 freemsg(copy_mp); 9643 } 9644 } 9645 } 9646 if (ipif != NULL) 9647 ipif_refrele(ipif); 9648 ill_refrele(dst_ill); 9649 ipif_refrele(src_ipif); 9650 return; 9651 default: 9652 break; 9653 } 9654 } while (multirt_resolve_next); 9655 9656 err_ret: 9657 ip2dbg(("ip_newroute_ipif: dropped\n")); 9658 if (fire != NULL) 9659 ire_refrele(fire); 9660 ipif_refrele(ipif); 9661 /* Did this packet originate externally? */ 9662 if (dst_ill != NULL) 9663 ill_refrele(dst_ill); 9664 if (src_ipif != NULL) 9665 ipif_refrele(src_ipif); 9666 if (mp->b_prev || mp->b_next) { 9667 mp->b_next = NULL; 9668 mp->b_prev = NULL; 9669 } else { 9670 /* 9671 * Since ip_wput() isn't close to finished, we fill 9672 * in enough of the header for credible error reporting. 9673 */ 9674 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 9675 /* Failed */ 9676 freemsg(first_mp); 9677 if (ire != NULL) 9678 ire_refrele(ire); 9679 return; 9680 } 9681 } 9682 /* 9683 * At this point we will have ire only if RTF_BLACKHOLE 9684 * or RTF_REJECT flags are set on the IRE. It will not 9685 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9686 */ 9687 if (ire != NULL) { 9688 if (ire->ire_flags & RTF_BLACKHOLE) { 9689 ire_refrele(ire); 9690 freemsg(first_mp); 9691 return; 9692 } 9693 ire_refrele(ire); 9694 } 9695 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst); 9696 } 9697 9698 /* Name/Value Table Lookup Routine */ 9699 char * 9700 ip_nv_lookup(nv_t *nv, int value) 9701 { 9702 if (!nv) 9703 return (NULL); 9704 for (; nv->nv_name; nv++) { 9705 if (nv->nv_value == value) 9706 return (nv->nv_name); 9707 } 9708 return ("unknown"); 9709 } 9710 9711 /* 9712 * This is a module open, i.e. this is a control stream for access 9713 * to a DLPI device. We allocate an ill_t as the instance data in 9714 * this case. 9715 */ 9716 int 9717 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9718 { 9719 ill_t *ill; 9720 int err; 9721 zoneid_t zoneid; 9722 netstack_t *ns; 9723 ip_stack_t *ipst; 9724 9725 /* 9726 * Prevent unprivileged processes from pushing IP so that 9727 * they can't send raw IP. 9728 */ 9729 if (secpolicy_net_rawaccess(credp) != 0) 9730 return (EPERM); 9731 9732 ns = netstack_find_by_cred(credp); 9733 ASSERT(ns != NULL); 9734 ipst = ns->netstack_ip; 9735 ASSERT(ipst != NULL); 9736 9737 /* 9738 * For exclusive stacks we set the zoneid to zero 9739 * to make IP operate as if in the global zone. 9740 */ 9741 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9742 zoneid = GLOBAL_ZONEID; 9743 else 9744 zoneid = crgetzoneid(credp); 9745 9746 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9747 q->q_ptr = WR(q)->q_ptr = ill; 9748 ill->ill_ipst = ipst; 9749 ill->ill_zoneid = zoneid; 9750 9751 /* 9752 * ill_init initializes the ill fields and then sends down 9753 * down a DL_INFO_REQ after calling qprocson. 9754 */ 9755 err = ill_init(q, ill); 9756 if (err != 0) { 9757 mi_free(ill); 9758 netstack_rele(ipst->ips_netstack); 9759 q->q_ptr = NULL; 9760 WR(q)->q_ptr = NULL; 9761 return (err); 9762 } 9763 9764 /* ill_init initializes the ipsq marking this thread as writer */ 9765 ipsq_exit(ill->ill_phyint->phyint_ipsq); 9766 /* Wait for the DL_INFO_ACK */ 9767 mutex_enter(&ill->ill_lock); 9768 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9769 /* 9770 * Return value of 0 indicates a pending signal. 9771 */ 9772 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9773 if (err == 0) { 9774 mutex_exit(&ill->ill_lock); 9775 (void) ip_close(q, 0); 9776 return (EINTR); 9777 } 9778 } 9779 mutex_exit(&ill->ill_lock); 9780 9781 /* 9782 * ip_rput_other could have set an error in ill_error on 9783 * receipt of M_ERROR. 9784 */ 9785 9786 err = ill->ill_error; 9787 if (err != 0) { 9788 (void) ip_close(q, 0); 9789 return (err); 9790 } 9791 9792 ill->ill_credp = credp; 9793 crhold(credp); 9794 9795 mutex_enter(&ipst->ips_ip_mi_lock); 9796 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag, 9797 credp); 9798 mutex_exit(&ipst->ips_ip_mi_lock); 9799 if (err) { 9800 (void) ip_close(q, 0); 9801 return (err); 9802 } 9803 return (0); 9804 } 9805 9806 /* For /dev/ip aka AF_INET open */ 9807 int 9808 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9809 { 9810 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 9811 } 9812 9813 /* For /dev/ip6 aka AF_INET6 open */ 9814 int 9815 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9816 { 9817 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 9818 } 9819 9820 /* IP open routine. */ 9821 int 9822 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9823 boolean_t isv6) 9824 { 9825 conn_t *connp; 9826 major_t maj; 9827 zoneid_t zoneid; 9828 netstack_t *ns; 9829 ip_stack_t *ipst; 9830 9831 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9832 9833 /* Allow reopen. */ 9834 if (q->q_ptr != NULL) 9835 return (0); 9836 9837 if (sflag & MODOPEN) { 9838 /* This is a module open */ 9839 return (ip_modopen(q, devp, flag, sflag, credp)); 9840 } 9841 9842 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 9843 /* 9844 * Non streams based socket looking for a stream 9845 * to access IP 9846 */ 9847 return (ip_helper_stream_setup(q, devp, flag, sflag, 9848 credp, isv6)); 9849 } 9850 9851 ns = netstack_find_by_cred(credp); 9852 ASSERT(ns != NULL); 9853 ipst = ns->netstack_ip; 9854 ASSERT(ipst != NULL); 9855 9856 /* 9857 * For exclusive stacks we set the zoneid to zero 9858 * to make IP operate as if in the global zone. 9859 */ 9860 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 9861 zoneid = GLOBAL_ZONEID; 9862 else 9863 zoneid = crgetzoneid(credp); 9864 9865 /* 9866 * We are opening as a device. This is an IP client stream, and we 9867 * allocate an conn_t as the instance data. 9868 */ 9869 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 9870 9871 /* 9872 * ipcl_conn_create did a netstack_hold. Undo the hold that was 9873 * done by netstack_find_by_cred() 9874 */ 9875 netstack_rele(ipst->ips_netstack); 9876 9877 connp->conn_zoneid = zoneid; 9878 connp->conn_sqp = NULL; 9879 connp->conn_initial_sqp = NULL; 9880 connp->conn_final_sqp = NULL; 9881 9882 connp->conn_upq = q; 9883 q->q_ptr = WR(q)->q_ptr = connp; 9884 9885 if (flag & SO_SOCKSTR) 9886 connp->conn_flags |= IPCL_SOCKET; 9887 9888 /* Minor tells us which /dev entry was opened */ 9889 if (isv6) { 9890 connp->conn_flags |= IPCL_ISV6; 9891 connp->conn_af_isv6 = B_TRUE; 9892 ip_setpktversion(connp, isv6, B_FALSE, ipst); 9893 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9894 } else { 9895 connp->conn_af_isv6 = B_FALSE; 9896 connp->conn_pkt_isv6 = B_FALSE; 9897 } 9898 9899 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9900 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9901 connp->conn_minor_arena = ip_minor_arena_la; 9902 } else { 9903 /* 9904 * Either minor numbers in the large arena were exhausted 9905 * or a non socket application is doing the open. 9906 * Try to allocate from the small arena. 9907 */ 9908 if ((connp->conn_dev = 9909 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9910 /* CONN_DEC_REF takes care of netstack_rele() */ 9911 q->q_ptr = WR(q)->q_ptr = NULL; 9912 CONN_DEC_REF(connp); 9913 return (EBUSY); 9914 } 9915 connp->conn_minor_arena = ip_minor_arena_sa; 9916 } 9917 9918 maj = getemajor(*devp); 9919 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9920 9921 /* 9922 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9923 */ 9924 connp->conn_cred = credp; 9925 9926 /* 9927 * Handle IP_RTS_REQUEST and other ioctls which use conn_recv 9928 */ 9929 connp->conn_recv = ip_conn_input; 9930 9931 crhold(connp->conn_cred); 9932 9933 /* 9934 * If the caller has the process-wide flag set, then default to MAC 9935 * exempt mode. This allows read-down to unlabeled hosts. 9936 */ 9937 if (getpflags(NET_MAC_AWARE, credp) != 0) 9938 connp->conn_mac_exempt = B_TRUE; 9939 9940 connp->conn_rq = q; 9941 connp->conn_wq = WR(q); 9942 9943 /* Non-zero default values */ 9944 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9945 9946 /* 9947 * Make the conn globally visible to walkers 9948 */ 9949 ASSERT(connp->conn_ref == 1); 9950 mutex_enter(&connp->conn_lock); 9951 connp->conn_state_flags &= ~CONN_INCIPIENT; 9952 mutex_exit(&connp->conn_lock); 9953 9954 qprocson(q); 9955 9956 return (0); 9957 } 9958 9959 /* 9960 * Change the output format (IPv4 vs. IPv6) for a conn_t. 9961 * Note that there is no race since either ip_output function works - it 9962 * is just an optimization to enter the best ip_output routine directly. 9963 */ 9964 void 9965 ip_setpktversion(conn_t *connp, boolean_t isv6, boolean_t bump_mib, 9966 ip_stack_t *ipst) 9967 { 9968 if (isv6) { 9969 if (bump_mib) { 9970 BUMP_MIB(&ipst->ips_ip6_mib, 9971 ipIfStatsOutSwitchIPVersion); 9972 } 9973 connp->conn_send = ip_output_v6; 9974 connp->conn_pkt_isv6 = B_TRUE; 9975 } else { 9976 if (bump_mib) { 9977 BUMP_MIB(&ipst->ips_ip_mib, 9978 ipIfStatsOutSwitchIPVersion); 9979 } 9980 connp->conn_send = ip_output; 9981 connp->conn_pkt_isv6 = B_FALSE; 9982 } 9983 9984 } 9985 9986 /* 9987 * See if IPsec needs loading because of the options in mp. 9988 */ 9989 static boolean_t 9990 ipsec_opt_present(mblk_t *mp) 9991 { 9992 uint8_t *optcp, *next_optcp, *opt_endcp; 9993 struct opthdr *opt; 9994 struct T_opthdr *topt; 9995 int opthdr_len; 9996 t_uscalar_t optname, optlevel; 9997 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9998 ipsec_req_t *ipsr; 9999 10000 /* 10001 * Walk through the mess, and find IP_SEC_OPT. If it's there, 10002 * return TRUE. 10003 */ 10004 10005 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 10006 opt_endcp = optcp + tor->OPT_length; 10007 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10008 opthdr_len = sizeof (struct T_opthdr); 10009 } else { /* O_OPTMGMT_REQ */ 10010 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 10011 opthdr_len = sizeof (struct opthdr); 10012 } 10013 for (; optcp < opt_endcp; optcp = next_optcp) { 10014 if (optcp + opthdr_len > opt_endcp) 10015 return (B_FALSE); /* Not enough option header. */ 10016 if (tor->PRIM_type == T_OPTMGMT_REQ) { 10017 topt = (struct T_opthdr *)optcp; 10018 optlevel = topt->level; 10019 optname = topt->name; 10020 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 10021 } else { 10022 opt = (struct opthdr *)optcp; 10023 optlevel = opt->level; 10024 optname = opt->name; 10025 next_optcp = optcp + opthdr_len + 10026 _TPI_ALIGN_OPT(opt->len); 10027 } 10028 if ((next_optcp < optcp) || /* wraparound pointer space */ 10029 ((next_optcp >= opt_endcp) && /* last option bad len */ 10030 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 10031 return (B_FALSE); /* bad option buffer */ 10032 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 10033 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 10034 /* 10035 * Check to see if it's an all-bypass or all-zeroes 10036 * IPsec request. Don't bother loading IPsec if 10037 * the socket doesn't want to use it. (A good example 10038 * is a bypass request.) 10039 * 10040 * Basically, if any of the non-NEVER bits are set, 10041 * load IPsec. 10042 */ 10043 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 10044 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 10045 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 10046 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 10047 != 0) 10048 return (B_TRUE); 10049 } 10050 } 10051 return (B_FALSE); 10052 } 10053 10054 /* 10055 * If conn is is waiting for ipsec to finish loading, kick it. 10056 */ 10057 /* ARGSUSED */ 10058 static void 10059 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 10060 { 10061 t_scalar_t optreq_prim; 10062 mblk_t *mp; 10063 cred_t *cr; 10064 int err = 0; 10065 10066 /* 10067 * This function is called, after ipsec loading is complete. 10068 * Since IP checks exclusively and atomically (i.e it prevents 10069 * ipsec load from completing until ip_optcom_req completes) 10070 * whether ipsec load is complete, there cannot be a race with IP 10071 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 10072 */ 10073 mutex_enter(&connp->conn_lock); 10074 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 10075 ASSERT(connp->conn_ipsec_opt_mp != NULL); 10076 mp = connp->conn_ipsec_opt_mp; 10077 connp->conn_ipsec_opt_mp = NULL; 10078 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 10079 mutex_exit(&connp->conn_lock); 10080 10081 /* 10082 * All Solaris components should pass a db_credp 10083 * for this TPI message, hence we ASSERT. 10084 * But in case there is some other M_PROTO that looks 10085 * like a TPI message sent by some other kernel 10086 * component, we check and return an error. 10087 */ 10088 cr = msg_getcred(mp, NULL); 10089 ASSERT(cr != NULL); 10090 if (cr == NULL) { 10091 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 10092 if (mp != NULL) 10093 qreply(connp->conn_wq, mp); 10094 return; 10095 } 10096 10097 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 10098 10099 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 10100 if (optreq_prim == T_OPTMGMT_REQ) { 10101 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10102 &ip_opt_obj, B_FALSE); 10103 } else { 10104 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 10105 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 10106 &ip_opt_obj, B_FALSE); 10107 } 10108 if (err != EINPROGRESS) 10109 CONN_OPER_PENDING_DONE(connp); 10110 return; 10111 } 10112 mutex_exit(&connp->conn_lock); 10113 } 10114 10115 /* 10116 * Called from the ipsec_loader thread, outside any perimeter, to tell 10117 * ip qenable any of the queues waiting for the ipsec loader to 10118 * complete. 10119 */ 10120 void 10121 ip_ipsec_load_complete(ipsec_stack_t *ipss) 10122 { 10123 netstack_t *ns = ipss->ipsec_netstack; 10124 10125 ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip); 10126 } 10127 10128 /* 10129 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 10130 * determines the grp on which it has to become exclusive, queues the mp 10131 * and IPSQ draining restarts the optmgmt 10132 */ 10133 static boolean_t 10134 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 10135 { 10136 conn_t *connp = Q_TO_CONN(q); 10137 ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec; 10138 10139 /* 10140 * Take IPsec requests and treat them special. 10141 */ 10142 if (ipsec_opt_present(mp)) { 10143 /* First check if IPsec is loaded. */ 10144 mutex_enter(&ipss->ipsec_loader_lock); 10145 if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) { 10146 mutex_exit(&ipss->ipsec_loader_lock); 10147 return (B_FALSE); 10148 } 10149 mutex_enter(&connp->conn_lock); 10150 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10151 10152 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10153 connp->conn_ipsec_opt_mp = mp; 10154 mutex_exit(&connp->conn_lock); 10155 mutex_exit(&ipss->ipsec_loader_lock); 10156 10157 ipsec_loader_loadnow(ipss); 10158 return (B_TRUE); 10159 } 10160 return (B_FALSE); 10161 } 10162 10163 /* 10164 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10165 * all of them are copied to the conn_t. If the req is "zero", the policy is 10166 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10167 * fields. 10168 * We keep only the latest setting of the policy and thus policy setting 10169 * is not incremental/cumulative. 10170 * 10171 * Requests to set policies with multiple alternative actions will 10172 * go through a different API. 10173 */ 10174 int 10175 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10176 { 10177 uint_t ah_req = 0; 10178 uint_t esp_req = 0; 10179 uint_t se_req = 0; 10180 ipsec_selkey_t sel; 10181 ipsec_act_t *actp = NULL; 10182 uint_t nact; 10183 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10184 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10185 ipsec_policy_root_t *pr; 10186 ipsec_policy_head_t *ph; 10187 int fam; 10188 boolean_t is_pol_reset; 10189 int error = 0; 10190 netstack_t *ns = connp->conn_netstack; 10191 ip_stack_t *ipst = ns->netstack_ip; 10192 ipsec_stack_t *ipss = ns->netstack_ipsec; 10193 10194 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10195 10196 /* 10197 * The IP_SEC_OPT option does not allow variable length parameters, 10198 * hence a request cannot be NULL. 10199 */ 10200 if (req == NULL) 10201 return (EINVAL); 10202 10203 ah_req = req->ipsr_ah_req; 10204 esp_req = req->ipsr_esp_req; 10205 se_req = req->ipsr_self_encap_req; 10206 10207 /* Don't allow setting self-encap without one or more of AH/ESP. */ 10208 if (se_req != 0 && esp_req == 0 && ah_req == 0) 10209 return (EINVAL); 10210 10211 /* 10212 * Are we dealing with a request to reset the policy (i.e. 10213 * zero requests). 10214 */ 10215 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10216 (esp_req & REQ_MASK) == 0 && 10217 (se_req & REQ_MASK) == 0); 10218 10219 if (!is_pol_reset) { 10220 /* 10221 * If we couldn't load IPsec, fail with "protocol 10222 * not supported". 10223 * IPsec may not have been loaded for a request with zero 10224 * policies, so we don't fail in this case. 10225 */ 10226 mutex_enter(&ipss->ipsec_loader_lock); 10227 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10228 mutex_exit(&ipss->ipsec_loader_lock); 10229 return (EPROTONOSUPPORT); 10230 } 10231 mutex_exit(&ipss->ipsec_loader_lock); 10232 10233 /* 10234 * Test for valid requests. Invalid algorithms 10235 * need to be tested by IPsec code because new 10236 * algorithms can be added dynamically. 10237 */ 10238 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10239 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10240 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10241 return (EINVAL); 10242 } 10243 10244 /* 10245 * Only privileged users can issue these 10246 * requests. 10247 */ 10248 if (((ah_req & IPSEC_PREF_NEVER) || 10249 (esp_req & IPSEC_PREF_NEVER) || 10250 (se_req & IPSEC_PREF_NEVER)) && 10251 secpolicy_ip_config(cr, B_FALSE) != 0) { 10252 return (EPERM); 10253 } 10254 10255 /* 10256 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10257 * are mutually exclusive. 10258 */ 10259 if (((ah_req & REQ_MASK) == REQ_MASK) || 10260 ((esp_req & REQ_MASK) == REQ_MASK) || 10261 ((se_req & REQ_MASK) == REQ_MASK)) { 10262 /* Both of them are set */ 10263 return (EINVAL); 10264 } 10265 } 10266 10267 mutex_enter(&connp->conn_lock); 10268 10269 /* 10270 * If we have already cached policies in ip_bind_connected*(), don't 10271 * let them change now. We cache policies for connections 10272 * whose src,dst [addr, port] is known. 10273 */ 10274 if (connp->conn_policy_cached) { 10275 mutex_exit(&connp->conn_lock); 10276 return (EINVAL); 10277 } 10278 10279 /* 10280 * We have a zero policies, reset the connection policy if already 10281 * set. This will cause the connection to inherit the 10282 * global policy, if any. 10283 */ 10284 if (is_pol_reset) { 10285 if (connp->conn_policy != NULL) { 10286 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 10287 connp->conn_policy = NULL; 10288 } 10289 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10290 connp->conn_in_enforce_policy = B_FALSE; 10291 connp->conn_out_enforce_policy = B_FALSE; 10292 mutex_exit(&connp->conn_lock); 10293 return (0); 10294 } 10295 10296 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 10297 ipst->ips_netstack); 10298 if (ph == NULL) 10299 goto enomem; 10300 10301 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 10302 if (actp == NULL) 10303 goto enomem; 10304 10305 /* 10306 * Always allocate IPv4 policy entries, since they can also 10307 * apply to ipv6 sockets being used in ipv4-compat mode. 10308 */ 10309 bzero(&sel, sizeof (sel)); 10310 sel.ipsl_valid = IPSL_IPV4; 10311 10312 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10313 ipst->ips_netstack); 10314 if (pin4 == NULL) 10315 goto enomem; 10316 10317 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL, 10318 ipst->ips_netstack); 10319 if (pout4 == NULL) 10320 goto enomem; 10321 10322 if (connp->conn_af_isv6) { 10323 /* 10324 * We're looking at a v6 socket, also allocate the 10325 * v6-specific entries... 10326 */ 10327 sel.ipsl_valid = IPSL_IPV6; 10328 pin6 = ipsec_policy_create(&sel, actp, nact, 10329 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10330 if (pin6 == NULL) 10331 goto enomem; 10332 10333 pout6 = ipsec_policy_create(&sel, actp, nact, 10334 IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack); 10335 if (pout6 == NULL) 10336 goto enomem; 10337 10338 /* 10339 * .. and file them away in the right place. 10340 */ 10341 fam = IPSEC_AF_V6; 10342 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10343 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10344 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10345 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10346 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10347 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10348 } 10349 10350 ipsec_actvec_free(actp, nact); 10351 10352 /* 10353 * File the v4 policies. 10354 */ 10355 fam = IPSEC_AF_V4; 10356 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10357 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10358 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10359 10360 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10361 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10362 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10363 10364 /* 10365 * If the requests need security, set enforce_policy. 10366 * If the requests are IPSEC_PREF_NEVER, one should 10367 * still set conn_out_enforce_policy so that an ipsec_out 10368 * gets attached in ip_wput. This is needed so that 10369 * for connections that we don't cache policy in ip_bind, 10370 * if global policy matches in ip_wput_attach_policy, we 10371 * don't wrongly inherit global policy. Similarly, we need 10372 * to set conn_in_enforce_policy also so that we don't verify 10373 * policy wrongly. 10374 */ 10375 if ((ah_req & REQ_MASK) != 0 || 10376 (esp_req & REQ_MASK) != 0 || 10377 (se_req & REQ_MASK) != 0) { 10378 connp->conn_in_enforce_policy = B_TRUE; 10379 connp->conn_out_enforce_policy = B_TRUE; 10380 connp->conn_flags |= IPCL_CHECK_POLICY; 10381 } 10382 10383 mutex_exit(&connp->conn_lock); 10384 return (error); 10385 #undef REQ_MASK 10386 10387 /* 10388 * Common memory-allocation-failure exit path. 10389 */ 10390 enomem: 10391 mutex_exit(&connp->conn_lock); 10392 if (actp != NULL) 10393 ipsec_actvec_free(actp, nact); 10394 if (pin4 != NULL) 10395 IPPOL_REFRELE(pin4, ipst->ips_netstack); 10396 if (pout4 != NULL) 10397 IPPOL_REFRELE(pout4, ipst->ips_netstack); 10398 if (pin6 != NULL) 10399 IPPOL_REFRELE(pin6, ipst->ips_netstack); 10400 if (pout6 != NULL) 10401 IPPOL_REFRELE(pout6, ipst->ips_netstack); 10402 return (ENOMEM); 10403 } 10404 10405 /* 10406 * Only for options that pass in an IP addr. Currently only V4 options 10407 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10408 * So this function assumes level is IPPROTO_IP 10409 */ 10410 int 10411 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10412 mblk_t *first_mp) 10413 { 10414 ipif_t *ipif = NULL; 10415 int error; 10416 ill_t *ill; 10417 int zoneid; 10418 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10419 10420 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10421 10422 if (addr != INADDR_ANY || checkonly) { 10423 ASSERT(connp != NULL); 10424 zoneid = IPCL_ZONEID(connp); 10425 if (option == IP_NEXTHOP) { 10426 ipif = ipif_lookup_onlink_addr(addr, 10427 connp->conn_zoneid, ipst); 10428 } else { 10429 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10430 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10431 &error, ipst); 10432 } 10433 if (ipif == NULL) { 10434 if (error == EINPROGRESS) 10435 return (error); 10436 if ((option == IP_MULTICAST_IF) || 10437 (option == IP_NEXTHOP)) 10438 return (EHOSTUNREACH); 10439 else 10440 return (EINVAL); 10441 } else if (checkonly) { 10442 if (option == IP_MULTICAST_IF) { 10443 ill = ipif->ipif_ill; 10444 /* not supported by the virtual network iface */ 10445 if (IS_VNI(ill)) { 10446 ipif_refrele(ipif); 10447 return (EINVAL); 10448 } 10449 } 10450 ipif_refrele(ipif); 10451 return (0); 10452 } 10453 ill = ipif->ipif_ill; 10454 mutex_enter(&connp->conn_lock); 10455 mutex_enter(&ill->ill_lock); 10456 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10457 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10458 mutex_exit(&ill->ill_lock); 10459 mutex_exit(&connp->conn_lock); 10460 ipif_refrele(ipif); 10461 return (option == IP_MULTICAST_IF ? 10462 EHOSTUNREACH : EINVAL); 10463 } 10464 } else { 10465 mutex_enter(&connp->conn_lock); 10466 } 10467 10468 /* None of the options below are supported on the VNI */ 10469 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10470 mutex_exit(&ill->ill_lock); 10471 mutex_exit(&connp->conn_lock); 10472 ipif_refrele(ipif); 10473 return (EINVAL); 10474 } 10475 10476 switch (option) { 10477 case IP_MULTICAST_IF: 10478 connp->conn_multicast_ipif = ipif; 10479 break; 10480 case IP_NEXTHOP: 10481 connp->conn_nexthop_v4 = addr; 10482 connp->conn_nexthop_set = B_TRUE; 10483 break; 10484 } 10485 10486 if (ipif != NULL) { 10487 mutex_exit(&ill->ill_lock); 10488 mutex_exit(&connp->conn_lock); 10489 ipif_refrele(ipif); 10490 return (0); 10491 } 10492 mutex_exit(&connp->conn_lock); 10493 /* We succeded in cleared the option */ 10494 return (0); 10495 } 10496 10497 /* 10498 * For options that pass in an ifindex specifying the ill. V6 options always 10499 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10500 */ 10501 int 10502 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10503 int level, int option, mblk_t *first_mp) 10504 { 10505 ill_t *ill = NULL; 10506 int error = 0; 10507 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10508 10509 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10510 if (ifindex != 0) { 10511 ASSERT(connp != NULL); 10512 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10513 first_mp, ip_restart_optmgmt, &error, ipst); 10514 if (ill != NULL) { 10515 if (checkonly) { 10516 /* not supported by the virtual network iface */ 10517 if (IS_VNI(ill)) { 10518 ill_refrele(ill); 10519 return (EINVAL); 10520 } 10521 ill_refrele(ill); 10522 return (0); 10523 } 10524 if (!ipif_lookup_zoneid(ill, connp->conn_zoneid, 10525 0, NULL)) { 10526 ill_refrele(ill); 10527 ill = NULL; 10528 mutex_enter(&connp->conn_lock); 10529 goto setit; 10530 } 10531 mutex_enter(&connp->conn_lock); 10532 mutex_enter(&ill->ill_lock); 10533 if (ill->ill_state_flags & ILL_CONDEMNED) { 10534 mutex_exit(&ill->ill_lock); 10535 mutex_exit(&connp->conn_lock); 10536 ill_refrele(ill); 10537 ill = NULL; 10538 mutex_enter(&connp->conn_lock); 10539 } 10540 goto setit; 10541 } else if (error == EINPROGRESS) { 10542 return (error); 10543 } else { 10544 error = 0; 10545 } 10546 } 10547 mutex_enter(&connp->conn_lock); 10548 setit: 10549 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10550 10551 /* 10552 * The options below assume that the ILL (if any) transmits and/or 10553 * receives traffic. Neither of which is true for the virtual network 10554 * interface, so fail setting these on a VNI. 10555 */ 10556 if (IS_VNI(ill)) { 10557 ASSERT(ill != NULL); 10558 mutex_exit(&ill->ill_lock); 10559 mutex_exit(&connp->conn_lock); 10560 ill_refrele(ill); 10561 return (EINVAL); 10562 } 10563 10564 if (level == IPPROTO_IP) { 10565 switch (option) { 10566 case IP_BOUND_IF: 10567 connp->conn_incoming_ill = ill; 10568 connp->conn_outgoing_ill = ill; 10569 break; 10570 10571 case IP_MULTICAST_IF: 10572 /* 10573 * This option is an internal special. The socket 10574 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10575 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10576 * specifies an ifindex and we try first on V6 ill's. 10577 * If we don't find one, we they try using on v4 ill's 10578 * intenally and we come here. 10579 */ 10580 if (!checkonly && ill != NULL) { 10581 ipif_t *ipif; 10582 ipif = ill->ill_ipif; 10583 10584 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10585 mutex_exit(&ill->ill_lock); 10586 mutex_exit(&connp->conn_lock); 10587 ill_refrele(ill); 10588 ill = NULL; 10589 mutex_enter(&connp->conn_lock); 10590 } else { 10591 connp->conn_multicast_ipif = ipif; 10592 } 10593 } 10594 break; 10595 10596 case IP_DHCPINIT_IF: 10597 if (connp->conn_dhcpinit_ill != NULL) { 10598 /* 10599 * We've locked the conn so conn_cleanup_ill() 10600 * cannot clear conn_dhcpinit_ill -- so it's 10601 * safe to access the ill. 10602 */ 10603 ill_t *oill = connp->conn_dhcpinit_ill; 10604 10605 ASSERT(oill->ill_dhcpinit != 0); 10606 atomic_dec_32(&oill->ill_dhcpinit); 10607 connp->conn_dhcpinit_ill = NULL; 10608 } 10609 10610 if (ill != NULL) { 10611 connp->conn_dhcpinit_ill = ill; 10612 atomic_inc_32(&ill->ill_dhcpinit); 10613 } 10614 break; 10615 } 10616 } else { 10617 switch (option) { 10618 case IPV6_BOUND_IF: 10619 connp->conn_incoming_ill = ill; 10620 connp->conn_outgoing_ill = ill; 10621 break; 10622 10623 case IPV6_MULTICAST_IF: 10624 /* 10625 * Set conn_multicast_ill to be the IPv6 ill. 10626 * Set conn_multicast_ipif to be an IPv4 ipif 10627 * for ifindex to make IPv4 mapped addresses 10628 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10629 * Even if no IPv6 ill exists for the ifindex 10630 * we need to check for an IPv4 ifindex in order 10631 * for this to work with mapped addresses. In that 10632 * case only set conn_multicast_ipif. 10633 */ 10634 if (!checkonly) { 10635 if (ifindex == 0) { 10636 connp->conn_multicast_ill = NULL; 10637 connp->conn_multicast_ipif = NULL; 10638 } else if (ill != NULL) { 10639 connp->conn_multicast_ill = ill; 10640 } 10641 } 10642 break; 10643 } 10644 } 10645 10646 if (ill != NULL) { 10647 mutex_exit(&ill->ill_lock); 10648 mutex_exit(&connp->conn_lock); 10649 ill_refrele(ill); 10650 return (0); 10651 } 10652 mutex_exit(&connp->conn_lock); 10653 /* 10654 * We succeeded in clearing the option (ifindex == 0) or failed to 10655 * locate the ill and could not set the option (ifindex != 0) 10656 */ 10657 return (ifindex == 0 ? 0 : EINVAL); 10658 } 10659 10660 /* This routine sets socket options. */ 10661 /* ARGSUSED */ 10662 int 10663 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10664 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10665 void *dummy, cred_t *cr, mblk_t *first_mp) 10666 { 10667 int *i1 = (int *)invalp; 10668 conn_t *connp = Q_TO_CONN(q); 10669 int error = 0; 10670 boolean_t checkonly; 10671 ire_t *ire; 10672 boolean_t found; 10673 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 10674 10675 switch (optset_context) { 10676 10677 case SETFN_OPTCOM_CHECKONLY: 10678 checkonly = B_TRUE; 10679 /* 10680 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10681 * inlen != 0 implies value supplied and 10682 * we have to "pretend" to set it. 10683 * inlen == 0 implies that there is no 10684 * value part in T_CHECK request and just validation 10685 * done elsewhere should be enough, we just return here. 10686 */ 10687 if (inlen == 0) { 10688 *outlenp = 0; 10689 return (0); 10690 } 10691 break; 10692 case SETFN_OPTCOM_NEGOTIATE: 10693 case SETFN_UD_NEGOTIATE: 10694 case SETFN_CONN_NEGOTIATE: 10695 checkonly = B_FALSE; 10696 break; 10697 default: 10698 /* 10699 * We should never get here 10700 */ 10701 *outlenp = 0; 10702 return (EINVAL); 10703 } 10704 10705 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10706 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10707 10708 /* 10709 * For fixed length options, no sanity check 10710 * of passed in length is done. It is assumed *_optcom_req() 10711 * routines do the right thing. 10712 */ 10713 10714 switch (level) { 10715 case SOL_SOCKET: 10716 /* 10717 * conn_lock protects the bitfields, and is used to 10718 * set the fields atomically. 10719 */ 10720 switch (name) { 10721 case SO_BROADCAST: 10722 if (!checkonly) { 10723 /* TODO: use value someplace? */ 10724 mutex_enter(&connp->conn_lock); 10725 connp->conn_broadcast = *i1 ? 1 : 0; 10726 mutex_exit(&connp->conn_lock); 10727 } 10728 break; /* goto sizeof (int) option return */ 10729 case SO_USELOOPBACK: 10730 if (!checkonly) { 10731 /* TODO: use value someplace? */ 10732 mutex_enter(&connp->conn_lock); 10733 connp->conn_loopback = *i1 ? 1 : 0; 10734 mutex_exit(&connp->conn_lock); 10735 } 10736 break; /* goto sizeof (int) option return */ 10737 case SO_DONTROUTE: 10738 if (!checkonly) { 10739 mutex_enter(&connp->conn_lock); 10740 connp->conn_dontroute = *i1 ? 1 : 0; 10741 mutex_exit(&connp->conn_lock); 10742 } 10743 break; /* goto sizeof (int) option return */ 10744 case SO_REUSEADDR: 10745 if (!checkonly) { 10746 mutex_enter(&connp->conn_lock); 10747 connp->conn_reuseaddr = *i1 ? 1 : 0; 10748 mutex_exit(&connp->conn_lock); 10749 } 10750 break; /* goto sizeof (int) option return */ 10751 case SO_PROTOTYPE: 10752 if (!checkonly) { 10753 mutex_enter(&connp->conn_lock); 10754 connp->conn_proto = *i1; 10755 mutex_exit(&connp->conn_lock); 10756 } 10757 break; /* goto sizeof (int) option return */ 10758 case SO_ALLZONES: 10759 if (!checkonly) { 10760 mutex_enter(&connp->conn_lock); 10761 if (IPCL_IS_BOUND(connp)) { 10762 mutex_exit(&connp->conn_lock); 10763 return (EINVAL); 10764 } 10765 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10766 mutex_exit(&connp->conn_lock); 10767 } 10768 break; /* goto sizeof (int) option return */ 10769 case SO_ANON_MLP: 10770 if (!checkonly) { 10771 mutex_enter(&connp->conn_lock); 10772 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10773 mutex_exit(&connp->conn_lock); 10774 } 10775 break; /* goto sizeof (int) option return */ 10776 case SO_MAC_EXEMPT: 10777 if (secpolicy_net_mac_aware(cr) != 0 || 10778 IPCL_IS_BOUND(connp)) 10779 return (EACCES); 10780 if (!checkonly) { 10781 mutex_enter(&connp->conn_lock); 10782 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10783 mutex_exit(&connp->conn_lock); 10784 } 10785 break; /* goto sizeof (int) option return */ 10786 default: 10787 /* 10788 * "soft" error (negative) 10789 * option not handled at this level 10790 * Note: Do not modify *outlenp 10791 */ 10792 return (-EINVAL); 10793 } 10794 break; 10795 case IPPROTO_IP: 10796 switch (name) { 10797 case IP_NEXTHOP: 10798 if (secpolicy_ip_config(cr, B_FALSE) != 0) 10799 return (EPERM); 10800 /* FALLTHRU */ 10801 case IP_MULTICAST_IF: { 10802 ipaddr_t addr = *i1; 10803 10804 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10805 first_mp); 10806 if (error != 0) 10807 return (error); 10808 break; /* goto sizeof (int) option return */ 10809 } 10810 10811 case IP_MULTICAST_TTL: 10812 /* Recorded in transport above IP */ 10813 *outvalp = *invalp; 10814 *outlenp = sizeof (uchar_t); 10815 return (0); 10816 case IP_MULTICAST_LOOP: 10817 if (!checkonly) { 10818 mutex_enter(&connp->conn_lock); 10819 connp->conn_multicast_loop = *invalp ? 1 : 0; 10820 mutex_exit(&connp->conn_lock); 10821 } 10822 *outvalp = *invalp; 10823 *outlenp = sizeof (uchar_t); 10824 return (0); 10825 case IP_ADD_MEMBERSHIP: 10826 case MCAST_JOIN_GROUP: 10827 case IP_DROP_MEMBERSHIP: 10828 case MCAST_LEAVE_GROUP: { 10829 struct ip_mreq *mreqp; 10830 struct group_req *greqp; 10831 ire_t *ire; 10832 boolean_t done = B_FALSE; 10833 ipaddr_t group, ifaddr; 10834 struct sockaddr_in *sin; 10835 uint32_t *ifindexp; 10836 boolean_t mcast_opt = B_TRUE; 10837 mcast_record_t fmode; 10838 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10839 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10840 10841 switch (name) { 10842 case IP_ADD_MEMBERSHIP: 10843 mcast_opt = B_FALSE; 10844 /* FALLTHRU */ 10845 case MCAST_JOIN_GROUP: 10846 fmode = MODE_IS_EXCLUDE; 10847 optfn = ip_opt_add_group; 10848 break; 10849 10850 case IP_DROP_MEMBERSHIP: 10851 mcast_opt = B_FALSE; 10852 /* FALLTHRU */ 10853 case MCAST_LEAVE_GROUP: 10854 fmode = MODE_IS_INCLUDE; 10855 optfn = ip_opt_delete_group; 10856 break; 10857 } 10858 10859 if (mcast_opt) { 10860 greqp = (struct group_req *)i1; 10861 sin = (struct sockaddr_in *)&greqp->gr_group; 10862 if (sin->sin_family != AF_INET) { 10863 *outlenp = 0; 10864 return (ENOPROTOOPT); 10865 } 10866 group = (ipaddr_t)sin->sin_addr.s_addr; 10867 ifaddr = INADDR_ANY; 10868 ifindexp = &greqp->gr_interface; 10869 } else { 10870 mreqp = (struct ip_mreq *)i1; 10871 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10872 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10873 ifindexp = NULL; 10874 } 10875 10876 /* 10877 * In the multirouting case, we need to replicate 10878 * the request on all interfaces that will take part 10879 * in replication. We do so because multirouting is 10880 * reflective, thus we will probably receive multi- 10881 * casts on those interfaces. 10882 * The ip_multirt_apply_membership() succeeds if the 10883 * operation succeeds on at least one interface. 10884 */ 10885 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10886 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10887 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10888 if (ire != NULL) { 10889 if (ire->ire_flags & RTF_MULTIRT) { 10890 error = ip_multirt_apply_membership( 10891 optfn, ire, connp, checkonly, group, 10892 fmode, INADDR_ANY, first_mp); 10893 done = B_TRUE; 10894 } 10895 ire_refrele(ire); 10896 } 10897 if (!done) { 10898 error = optfn(connp, checkonly, group, ifaddr, 10899 ifindexp, fmode, INADDR_ANY, first_mp); 10900 } 10901 if (error) { 10902 /* 10903 * EINPROGRESS is a soft error, needs retry 10904 * so don't make *outlenp zero. 10905 */ 10906 if (error != EINPROGRESS) 10907 *outlenp = 0; 10908 return (error); 10909 } 10910 /* OK return - copy input buffer into output buffer */ 10911 if (invalp != outvalp) { 10912 /* don't trust bcopy for identical src/dst */ 10913 bcopy(invalp, outvalp, inlen); 10914 } 10915 *outlenp = inlen; 10916 return (0); 10917 } 10918 case IP_BLOCK_SOURCE: 10919 case IP_UNBLOCK_SOURCE: 10920 case IP_ADD_SOURCE_MEMBERSHIP: 10921 case IP_DROP_SOURCE_MEMBERSHIP: 10922 case MCAST_BLOCK_SOURCE: 10923 case MCAST_UNBLOCK_SOURCE: 10924 case MCAST_JOIN_SOURCE_GROUP: 10925 case MCAST_LEAVE_SOURCE_GROUP: { 10926 struct ip_mreq_source *imreqp; 10927 struct group_source_req *gsreqp; 10928 in_addr_t grp, src, ifaddr = INADDR_ANY; 10929 uint32_t ifindex = 0; 10930 mcast_record_t fmode; 10931 struct sockaddr_in *sin; 10932 ire_t *ire; 10933 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10934 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10935 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10936 10937 switch (name) { 10938 case IP_BLOCK_SOURCE: 10939 mcast_opt = B_FALSE; 10940 /* FALLTHRU */ 10941 case MCAST_BLOCK_SOURCE: 10942 fmode = MODE_IS_EXCLUDE; 10943 optfn = ip_opt_add_group; 10944 break; 10945 10946 case IP_UNBLOCK_SOURCE: 10947 mcast_opt = B_FALSE; 10948 /* FALLTHRU */ 10949 case MCAST_UNBLOCK_SOURCE: 10950 fmode = MODE_IS_EXCLUDE; 10951 optfn = ip_opt_delete_group; 10952 break; 10953 10954 case IP_ADD_SOURCE_MEMBERSHIP: 10955 mcast_opt = B_FALSE; 10956 /* FALLTHRU */ 10957 case MCAST_JOIN_SOURCE_GROUP: 10958 fmode = MODE_IS_INCLUDE; 10959 optfn = ip_opt_add_group; 10960 break; 10961 10962 case IP_DROP_SOURCE_MEMBERSHIP: 10963 mcast_opt = B_FALSE; 10964 /* FALLTHRU */ 10965 case MCAST_LEAVE_SOURCE_GROUP: 10966 fmode = MODE_IS_INCLUDE; 10967 optfn = ip_opt_delete_group; 10968 break; 10969 } 10970 10971 if (mcast_opt) { 10972 gsreqp = (struct group_source_req *)i1; 10973 if (gsreqp->gsr_group.ss_family != AF_INET) { 10974 *outlenp = 0; 10975 return (ENOPROTOOPT); 10976 } 10977 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10978 grp = (ipaddr_t)sin->sin_addr.s_addr; 10979 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10980 src = (ipaddr_t)sin->sin_addr.s_addr; 10981 ifindex = gsreqp->gsr_interface; 10982 } else { 10983 imreqp = (struct ip_mreq_source *)i1; 10984 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10985 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10986 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10987 } 10988 10989 /* 10990 * In the multirouting case, we need to replicate 10991 * the request as noted in the mcast cases above. 10992 */ 10993 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10994 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10995 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 10996 if (ire != NULL) { 10997 if (ire->ire_flags & RTF_MULTIRT) { 10998 error = ip_multirt_apply_membership( 10999 optfn, ire, connp, checkonly, grp, 11000 fmode, src, first_mp); 11001 done = B_TRUE; 11002 } 11003 ire_refrele(ire); 11004 } 11005 if (!done) { 11006 error = optfn(connp, checkonly, grp, ifaddr, 11007 &ifindex, fmode, src, first_mp); 11008 } 11009 if (error != 0) { 11010 /* 11011 * EINPROGRESS is a soft error, needs retry 11012 * so don't make *outlenp zero. 11013 */ 11014 if (error != EINPROGRESS) 11015 *outlenp = 0; 11016 return (error); 11017 } 11018 /* OK return - copy input buffer into output buffer */ 11019 if (invalp != outvalp) { 11020 bcopy(invalp, outvalp, inlen); 11021 } 11022 *outlenp = inlen; 11023 return (0); 11024 } 11025 case IP_SEC_OPT: 11026 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11027 if (error != 0) { 11028 *outlenp = 0; 11029 return (error); 11030 } 11031 break; 11032 case IP_HDRINCL: 11033 case IP_OPTIONS: 11034 case T_IP_OPTIONS: 11035 case IP_TOS: 11036 case T_IP_TOS: 11037 case IP_TTL: 11038 case IP_RECVDSTADDR: 11039 case IP_RECVOPTS: 11040 /* OK return - copy input buffer into output buffer */ 11041 if (invalp != outvalp) { 11042 /* don't trust bcopy for identical src/dst */ 11043 bcopy(invalp, outvalp, inlen); 11044 } 11045 *outlenp = inlen; 11046 return (0); 11047 case IP_RECVIF: 11048 /* Retrieve the inbound interface index */ 11049 if (!checkonly) { 11050 mutex_enter(&connp->conn_lock); 11051 connp->conn_recvif = *i1 ? 1 : 0; 11052 mutex_exit(&connp->conn_lock); 11053 } 11054 break; /* goto sizeof (int) option return */ 11055 case IP_RECVPKTINFO: 11056 if (!checkonly) { 11057 mutex_enter(&connp->conn_lock); 11058 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11059 mutex_exit(&connp->conn_lock); 11060 } 11061 break; /* goto sizeof (int) option return */ 11062 case IP_RECVSLLA: 11063 /* Retrieve the source link layer address */ 11064 if (!checkonly) { 11065 mutex_enter(&connp->conn_lock); 11066 connp->conn_recvslla = *i1 ? 1 : 0; 11067 mutex_exit(&connp->conn_lock); 11068 } 11069 break; /* goto sizeof (int) option return */ 11070 case MRT_INIT: 11071 case MRT_DONE: 11072 case MRT_ADD_VIF: 11073 case MRT_DEL_VIF: 11074 case MRT_ADD_MFC: 11075 case MRT_DEL_MFC: 11076 case MRT_ASSERT: 11077 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 11078 *outlenp = 0; 11079 return (error); 11080 } 11081 error = ip_mrouter_set((int)name, q, checkonly, 11082 (uchar_t *)invalp, inlen, first_mp); 11083 if (error) { 11084 *outlenp = 0; 11085 return (error); 11086 } 11087 /* OK return - copy input buffer into output buffer */ 11088 if (invalp != outvalp) { 11089 /* don't trust bcopy for identical src/dst */ 11090 bcopy(invalp, outvalp, inlen); 11091 } 11092 *outlenp = inlen; 11093 return (0); 11094 case IP_BOUND_IF: 11095 case IP_DHCPINIT_IF: 11096 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11097 level, name, first_mp); 11098 if (error != 0) 11099 return (error); 11100 break; /* goto sizeof (int) option return */ 11101 11102 case IP_UNSPEC_SRC: 11103 /* Allow sending with a zero source address */ 11104 if (!checkonly) { 11105 mutex_enter(&connp->conn_lock); 11106 connp->conn_unspec_src = *i1 ? 1 : 0; 11107 mutex_exit(&connp->conn_lock); 11108 } 11109 break; /* goto sizeof (int) option return */ 11110 default: 11111 /* 11112 * "soft" error (negative) 11113 * option not handled at this level 11114 * Note: Do not modify *outlenp 11115 */ 11116 return (-EINVAL); 11117 } 11118 break; 11119 case IPPROTO_IPV6: 11120 switch (name) { 11121 case IPV6_BOUND_IF: 11122 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11123 level, name, first_mp); 11124 if (error != 0) 11125 return (error); 11126 break; /* goto sizeof (int) option return */ 11127 11128 case IPV6_MULTICAST_IF: 11129 /* 11130 * The only possible errors are EINPROGRESS and 11131 * EINVAL. EINPROGRESS will be restarted and is not 11132 * a hard error. We call this option on both V4 and V6 11133 * If both return EINVAL, then this call returns 11134 * EINVAL. If at least one of them succeeds we 11135 * return success. 11136 */ 11137 found = B_FALSE; 11138 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11139 level, name, first_mp); 11140 if (error == EINPROGRESS) 11141 return (error); 11142 if (error == 0) 11143 found = B_TRUE; 11144 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11145 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11146 if (error == 0) 11147 found = B_TRUE; 11148 if (!found) 11149 return (error); 11150 break; /* goto sizeof (int) option return */ 11151 11152 case IPV6_MULTICAST_HOPS: 11153 /* Recorded in transport above IP */ 11154 break; /* goto sizeof (int) option return */ 11155 case IPV6_MULTICAST_LOOP: 11156 if (!checkonly) { 11157 mutex_enter(&connp->conn_lock); 11158 connp->conn_multicast_loop = *i1; 11159 mutex_exit(&connp->conn_lock); 11160 } 11161 break; /* goto sizeof (int) option return */ 11162 case IPV6_JOIN_GROUP: 11163 case MCAST_JOIN_GROUP: 11164 case IPV6_LEAVE_GROUP: 11165 case MCAST_LEAVE_GROUP: { 11166 struct ipv6_mreq *ip_mreqp; 11167 struct group_req *greqp; 11168 ire_t *ire; 11169 boolean_t done = B_FALSE; 11170 in6_addr_t groupv6; 11171 uint32_t ifindex; 11172 boolean_t mcast_opt = B_TRUE; 11173 mcast_record_t fmode; 11174 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11175 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11176 11177 switch (name) { 11178 case IPV6_JOIN_GROUP: 11179 mcast_opt = B_FALSE; 11180 /* FALLTHRU */ 11181 case MCAST_JOIN_GROUP: 11182 fmode = MODE_IS_EXCLUDE; 11183 optfn = ip_opt_add_group_v6; 11184 break; 11185 11186 case IPV6_LEAVE_GROUP: 11187 mcast_opt = B_FALSE; 11188 /* FALLTHRU */ 11189 case MCAST_LEAVE_GROUP: 11190 fmode = MODE_IS_INCLUDE; 11191 optfn = ip_opt_delete_group_v6; 11192 break; 11193 } 11194 11195 if (mcast_opt) { 11196 struct sockaddr_in *sin; 11197 struct sockaddr_in6 *sin6; 11198 greqp = (struct group_req *)i1; 11199 if (greqp->gr_group.ss_family == AF_INET) { 11200 sin = (struct sockaddr_in *) 11201 &(greqp->gr_group); 11202 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11203 &groupv6); 11204 } else { 11205 sin6 = (struct sockaddr_in6 *) 11206 &(greqp->gr_group); 11207 groupv6 = sin6->sin6_addr; 11208 } 11209 ifindex = greqp->gr_interface; 11210 } else { 11211 ip_mreqp = (struct ipv6_mreq *)i1; 11212 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11213 ifindex = ip_mreqp->ipv6mr_interface; 11214 } 11215 /* 11216 * In the multirouting case, we need to replicate 11217 * the request on all interfaces that will take part 11218 * in replication. We do so because multirouting is 11219 * reflective, thus we will probably receive multi- 11220 * casts on those interfaces. 11221 * The ip_multirt_apply_membership_v6() succeeds if 11222 * the operation succeeds on at least one interface. 11223 */ 11224 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11225 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11226 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11227 if (ire != NULL) { 11228 if (ire->ire_flags & RTF_MULTIRT) { 11229 error = ip_multirt_apply_membership_v6( 11230 optfn, ire, connp, checkonly, 11231 &groupv6, fmode, &ipv6_all_zeros, 11232 first_mp); 11233 done = B_TRUE; 11234 } 11235 ire_refrele(ire); 11236 } 11237 if (!done) { 11238 error = optfn(connp, checkonly, &groupv6, 11239 ifindex, fmode, &ipv6_all_zeros, first_mp); 11240 } 11241 if (error) { 11242 /* 11243 * EINPROGRESS is a soft error, needs retry 11244 * so don't make *outlenp zero. 11245 */ 11246 if (error != EINPROGRESS) 11247 *outlenp = 0; 11248 return (error); 11249 } 11250 /* OK return - copy input buffer into output buffer */ 11251 if (invalp != outvalp) { 11252 /* don't trust bcopy for identical src/dst */ 11253 bcopy(invalp, outvalp, inlen); 11254 } 11255 *outlenp = inlen; 11256 return (0); 11257 } 11258 case MCAST_BLOCK_SOURCE: 11259 case MCAST_UNBLOCK_SOURCE: 11260 case MCAST_JOIN_SOURCE_GROUP: 11261 case MCAST_LEAVE_SOURCE_GROUP: { 11262 struct group_source_req *gsreqp; 11263 in6_addr_t v6grp, v6src; 11264 uint32_t ifindex; 11265 mcast_record_t fmode; 11266 ire_t *ire; 11267 boolean_t done = B_FALSE; 11268 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11269 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11270 11271 switch (name) { 11272 case MCAST_BLOCK_SOURCE: 11273 fmode = MODE_IS_EXCLUDE; 11274 optfn = ip_opt_add_group_v6; 11275 break; 11276 case MCAST_UNBLOCK_SOURCE: 11277 fmode = MODE_IS_EXCLUDE; 11278 optfn = ip_opt_delete_group_v6; 11279 break; 11280 case MCAST_JOIN_SOURCE_GROUP: 11281 fmode = MODE_IS_INCLUDE; 11282 optfn = ip_opt_add_group_v6; 11283 break; 11284 case MCAST_LEAVE_SOURCE_GROUP: 11285 fmode = MODE_IS_INCLUDE; 11286 optfn = ip_opt_delete_group_v6; 11287 break; 11288 } 11289 11290 gsreqp = (struct group_source_req *)i1; 11291 ifindex = gsreqp->gsr_interface; 11292 if (gsreqp->gsr_group.ss_family == AF_INET) { 11293 struct sockaddr_in *s; 11294 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11295 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11296 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11297 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11298 } else { 11299 struct sockaddr_in6 *s6; 11300 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11301 v6grp = s6->sin6_addr; 11302 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11303 v6src = s6->sin6_addr; 11304 } 11305 11306 /* 11307 * In the multirouting case, we need to replicate 11308 * the request as noted in the mcast cases above. 11309 */ 11310 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11311 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11312 MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst); 11313 if (ire != NULL) { 11314 if (ire->ire_flags & RTF_MULTIRT) { 11315 error = ip_multirt_apply_membership_v6( 11316 optfn, ire, connp, checkonly, 11317 &v6grp, fmode, &v6src, first_mp); 11318 done = B_TRUE; 11319 } 11320 ire_refrele(ire); 11321 } 11322 if (!done) { 11323 error = optfn(connp, checkonly, &v6grp, 11324 ifindex, fmode, &v6src, first_mp); 11325 } 11326 if (error != 0) { 11327 /* 11328 * EINPROGRESS is a soft error, needs retry 11329 * so don't make *outlenp zero. 11330 */ 11331 if (error != EINPROGRESS) 11332 *outlenp = 0; 11333 return (error); 11334 } 11335 /* OK return - copy input buffer into output buffer */ 11336 if (invalp != outvalp) { 11337 bcopy(invalp, outvalp, inlen); 11338 } 11339 *outlenp = inlen; 11340 return (0); 11341 } 11342 case IPV6_UNICAST_HOPS: 11343 /* Recorded in transport above IP */ 11344 break; /* goto sizeof (int) option return */ 11345 case IPV6_UNSPEC_SRC: 11346 /* Allow sending with a zero source address */ 11347 if (!checkonly) { 11348 mutex_enter(&connp->conn_lock); 11349 connp->conn_unspec_src = *i1 ? 1 : 0; 11350 mutex_exit(&connp->conn_lock); 11351 } 11352 break; /* goto sizeof (int) option return */ 11353 case IPV6_RECVPKTINFO: 11354 if (!checkonly) { 11355 mutex_enter(&connp->conn_lock); 11356 connp->conn_ip_recvpktinfo = *i1 ? 1 : 0; 11357 mutex_exit(&connp->conn_lock); 11358 } 11359 break; /* goto sizeof (int) option return */ 11360 case IPV6_RECVTCLASS: 11361 if (!checkonly) { 11362 if (*i1 < 0 || *i1 > 1) { 11363 return (EINVAL); 11364 } 11365 mutex_enter(&connp->conn_lock); 11366 connp->conn_ipv6_recvtclass = *i1; 11367 mutex_exit(&connp->conn_lock); 11368 } 11369 break; 11370 case IPV6_RECVPATHMTU: 11371 if (!checkonly) { 11372 if (*i1 < 0 || *i1 > 1) { 11373 return (EINVAL); 11374 } 11375 mutex_enter(&connp->conn_lock); 11376 connp->conn_ipv6_recvpathmtu = *i1; 11377 mutex_exit(&connp->conn_lock); 11378 } 11379 break; 11380 case IPV6_RECVHOPLIMIT: 11381 if (!checkonly) { 11382 mutex_enter(&connp->conn_lock); 11383 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11384 mutex_exit(&connp->conn_lock); 11385 } 11386 break; /* goto sizeof (int) option return */ 11387 case IPV6_RECVHOPOPTS: 11388 if (!checkonly) { 11389 mutex_enter(&connp->conn_lock); 11390 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11391 mutex_exit(&connp->conn_lock); 11392 } 11393 break; /* goto sizeof (int) option return */ 11394 case IPV6_RECVDSTOPTS: 11395 if (!checkonly) { 11396 mutex_enter(&connp->conn_lock); 11397 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11398 mutex_exit(&connp->conn_lock); 11399 } 11400 break; /* goto sizeof (int) option return */ 11401 case IPV6_RECVRTHDR: 11402 if (!checkonly) { 11403 mutex_enter(&connp->conn_lock); 11404 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11405 mutex_exit(&connp->conn_lock); 11406 } 11407 break; /* goto sizeof (int) option return */ 11408 case IPV6_RECVRTHDRDSTOPTS: 11409 if (!checkonly) { 11410 mutex_enter(&connp->conn_lock); 11411 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11412 mutex_exit(&connp->conn_lock); 11413 } 11414 break; /* goto sizeof (int) option return */ 11415 case IPV6_PKTINFO: 11416 if (inlen == 0) 11417 return (-EINVAL); /* clearing option */ 11418 error = ip6_set_pktinfo(cr, connp, 11419 (struct in6_pktinfo *)invalp); 11420 if (error != 0) 11421 *outlenp = 0; 11422 else 11423 *outlenp = inlen; 11424 return (error); 11425 case IPV6_NEXTHOP: { 11426 struct sockaddr_in6 *sin6; 11427 11428 /* Verify that the nexthop is reachable */ 11429 if (inlen == 0) 11430 return (-EINVAL); /* clearing option */ 11431 11432 sin6 = (struct sockaddr_in6 *)invalp; 11433 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11434 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11435 NULL, MATCH_IRE_DEFAULT, ipst); 11436 11437 if (ire == NULL) { 11438 *outlenp = 0; 11439 return (EHOSTUNREACH); 11440 } 11441 ire_refrele(ire); 11442 return (-EINVAL); 11443 } 11444 case IPV6_SEC_OPT: 11445 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11446 if (error != 0) { 11447 *outlenp = 0; 11448 return (error); 11449 } 11450 break; 11451 case IPV6_SRC_PREFERENCES: { 11452 /* 11453 * This is implemented strictly in the ip module 11454 * (here and in tcp_opt_*() to accomodate tcp 11455 * sockets). Modules above ip pass this option 11456 * down here since ip is the only one that needs to 11457 * be aware of source address preferences. 11458 * 11459 * This socket option only affects connected 11460 * sockets that haven't already bound to a specific 11461 * IPv6 address. In other words, sockets that 11462 * don't call bind() with an address other than the 11463 * unspecified address and that call connect(). 11464 * ip_bind_connected_v6() passes these preferences 11465 * to the ipif_select_source_v6() function. 11466 */ 11467 if (inlen != sizeof (uint32_t)) 11468 return (EINVAL); 11469 error = ip6_set_src_preferences(connp, 11470 *(uint32_t *)invalp); 11471 if (error != 0) { 11472 *outlenp = 0; 11473 return (error); 11474 } else { 11475 *outlenp = sizeof (uint32_t); 11476 } 11477 break; 11478 } 11479 case IPV6_V6ONLY: 11480 if (*i1 < 0 || *i1 > 1) { 11481 return (EINVAL); 11482 } 11483 mutex_enter(&connp->conn_lock); 11484 connp->conn_ipv6_v6only = *i1; 11485 mutex_exit(&connp->conn_lock); 11486 break; 11487 default: 11488 return (-EINVAL); 11489 } 11490 break; 11491 default: 11492 /* 11493 * "soft" error (negative) 11494 * option not handled at this level 11495 * Note: Do not modify *outlenp 11496 */ 11497 return (-EINVAL); 11498 } 11499 /* 11500 * Common case of return from an option that is sizeof (int) 11501 */ 11502 *(int *)outvalp = *i1; 11503 *outlenp = sizeof (int); 11504 return (0); 11505 } 11506 11507 /* 11508 * This routine gets default values of certain options whose default 11509 * values are maintained by protocol specific code 11510 */ 11511 /* ARGSUSED */ 11512 int 11513 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11514 { 11515 int *i1 = (int *)ptr; 11516 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11517 11518 switch (level) { 11519 case IPPROTO_IP: 11520 switch (name) { 11521 case IP_MULTICAST_TTL: 11522 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11523 return (sizeof (uchar_t)); 11524 case IP_MULTICAST_LOOP: 11525 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11526 return (sizeof (uchar_t)); 11527 default: 11528 return (-1); 11529 } 11530 case IPPROTO_IPV6: 11531 switch (name) { 11532 case IPV6_UNICAST_HOPS: 11533 *i1 = ipst->ips_ipv6_def_hops; 11534 return (sizeof (int)); 11535 case IPV6_MULTICAST_HOPS: 11536 *i1 = IP_DEFAULT_MULTICAST_TTL; 11537 return (sizeof (int)); 11538 case IPV6_MULTICAST_LOOP: 11539 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11540 return (sizeof (int)); 11541 case IPV6_V6ONLY: 11542 *i1 = 1; 11543 return (sizeof (int)); 11544 default: 11545 return (-1); 11546 } 11547 default: 11548 return (-1); 11549 } 11550 /* NOTREACHED */ 11551 } 11552 11553 /* 11554 * Given a destination address and a pointer to where to put the information 11555 * this routine fills in the mtuinfo. 11556 */ 11557 int 11558 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11559 struct ip6_mtuinfo *mtuinfo, netstack_t *ns) 11560 { 11561 ire_t *ire; 11562 ip_stack_t *ipst = ns->netstack_ip; 11563 11564 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11565 return (-1); 11566 11567 bzero(mtuinfo, sizeof (*mtuinfo)); 11568 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11569 mtuinfo->ip6m_addr.sin6_port = port; 11570 mtuinfo->ip6m_addr.sin6_addr = *in6; 11571 11572 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst); 11573 if (ire != NULL) { 11574 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11575 ire_refrele(ire); 11576 } else { 11577 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11578 } 11579 return (sizeof (struct ip6_mtuinfo)); 11580 } 11581 11582 /* 11583 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11584 * checking of cred and that ip_g_mrouter is set should be done and 11585 * isn't. This doesn't matter as the error checking is done properly for the 11586 * other MRT options coming in through ip_opt_set. 11587 */ 11588 int 11589 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11590 { 11591 conn_t *connp = Q_TO_CONN(q); 11592 ipsec_req_t *req = (ipsec_req_t *)ptr; 11593 11594 switch (level) { 11595 case IPPROTO_IP: 11596 switch (name) { 11597 case MRT_VERSION: 11598 case MRT_ASSERT: 11599 (void) ip_mrouter_get(name, q, ptr); 11600 return (sizeof (int)); 11601 case IP_SEC_OPT: 11602 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11603 case IP_NEXTHOP: 11604 if (connp->conn_nexthop_set) { 11605 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11606 return (sizeof (ipaddr_t)); 11607 } else 11608 return (0); 11609 case IP_RECVPKTINFO: 11610 *(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0; 11611 return (sizeof (int)); 11612 default: 11613 break; 11614 } 11615 break; 11616 case IPPROTO_IPV6: 11617 switch (name) { 11618 case IPV6_SEC_OPT: 11619 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11620 case IPV6_SRC_PREFERENCES: { 11621 return (ip6_get_src_preferences(connp, 11622 (uint32_t *)ptr)); 11623 } 11624 case IPV6_V6ONLY: 11625 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11626 return (sizeof (int)); 11627 case IPV6_PATHMTU: 11628 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11629 (struct ip6_mtuinfo *)ptr, connp->conn_netstack)); 11630 default: 11631 break; 11632 } 11633 break; 11634 default: 11635 break; 11636 } 11637 return (-1); 11638 } 11639 /* Named Dispatch routine to get a current value out of our parameter table. */ 11640 /* ARGSUSED */ 11641 static int 11642 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11643 { 11644 ipparam_t *ippa = (ipparam_t *)cp; 11645 11646 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11647 return (0); 11648 } 11649 11650 /* ARGSUSED */ 11651 static int 11652 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11653 { 11654 11655 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11656 return (0); 11657 } 11658 11659 /* 11660 * Set ip{,6}_forwarding values. This means walking through all of the 11661 * ill's and toggling their forwarding values. 11662 */ 11663 /* ARGSUSED */ 11664 static int 11665 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11666 { 11667 long new_value; 11668 int *forwarding_value = (int *)cp; 11669 ill_t *ill; 11670 boolean_t isv6; 11671 ill_walk_context_t ctx; 11672 ip_stack_t *ipst = CONNQ_TO_IPST(q); 11673 11674 isv6 = (forwarding_value == &ipst->ips_ipv6_forward); 11675 11676 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11677 new_value < 0 || new_value > 1) { 11678 return (EINVAL); 11679 } 11680 11681 *forwarding_value = new_value; 11682 11683 /* 11684 * Regardless of the current value of ip_forwarding, set all per-ill 11685 * values of ip_forwarding to the value being set. 11686 * 11687 * Bring all the ill's up to date with the new global value. 11688 */ 11689 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11690 11691 if (isv6) 11692 ill = ILL_START_WALK_V6(&ctx, ipst); 11693 else 11694 ill = ILL_START_WALK_V4(&ctx, ipst); 11695 11696 for (; ill != NULL; ill = ill_next(&ctx, ill)) 11697 (void) ill_forward_set(ill, new_value != 0); 11698 11699 rw_exit(&ipst->ips_ill_g_lock); 11700 return (0); 11701 } 11702 11703 /* 11704 * Walk through the param array specified registering each element with the 11705 * Named Dispatch handler. This is called only during init. So it is ok 11706 * not to acquire any locks 11707 */ 11708 static boolean_t 11709 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt, 11710 ipndp_t *ipnd, size_t ipnd_cnt) 11711 { 11712 for (; ippa_cnt-- > 0; ippa++) { 11713 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11714 if (!nd_load(ndp, ippa->ip_param_name, 11715 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11716 nd_free(ndp); 11717 return (B_FALSE); 11718 } 11719 } 11720 } 11721 11722 for (; ipnd_cnt-- > 0; ipnd++) { 11723 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11724 if (!nd_load(ndp, ipnd->ip_ndp_name, 11725 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11726 ipnd->ip_ndp_data)) { 11727 nd_free(ndp); 11728 return (B_FALSE); 11729 } 11730 } 11731 } 11732 11733 return (B_TRUE); 11734 } 11735 11736 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11737 /* ARGSUSED */ 11738 static int 11739 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11740 { 11741 long new_value; 11742 ipparam_t *ippa = (ipparam_t *)cp; 11743 11744 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11745 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11746 return (EINVAL); 11747 } 11748 ippa->ip_param_value = new_value; 11749 return (0); 11750 } 11751 11752 /* 11753 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11754 * When an ipf is passed here for the first time, if 11755 * we already have in-order fragments on the queue, we convert from the fast- 11756 * path reassembly scheme to the hard-case scheme. From then on, additional 11757 * fragments are reassembled here. We keep track of the start and end offsets 11758 * of each piece, and the number of holes in the chain. When the hole count 11759 * goes to zero, we are done! 11760 * 11761 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11762 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11763 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11764 * after the call to ip_reassemble(). 11765 */ 11766 int 11767 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11768 size_t msg_len) 11769 { 11770 uint_t end; 11771 mblk_t *next_mp; 11772 mblk_t *mp1; 11773 uint_t offset; 11774 boolean_t incr_dups = B_TRUE; 11775 boolean_t offset_zero_seen = B_FALSE; 11776 boolean_t pkt_boundary_checked = B_FALSE; 11777 11778 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11779 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11780 11781 /* Add in byte count */ 11782 ipf->ipf_count += msg_len; 11783 if (ipf->ipf_end) { 11784 /* 11785 * We were part way through in-order reassembly, but now there 11786 * is a hole. We walk through messages already queued, and 11787 * mark them for hard case reassembly. We know that up till 11788 * now they were in order starting from offset zero. 11789 */ 11790 offset = 0; 11791 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11792 IP_REASS_SET_START(mp1, offset); 11793 if (offset == 0) { 11794 ASSERT(ipf->ipf_nf_hdr_len != 0); 11795 offset = -ipf->ipf_nf_hdr_len; 11796 } 11797 offset += mp1->b_wptr - mp1->b_rptr; 11798 IP_REASS_SET_END(mp1, offset); 11799 } 11800 /* One hole at the end. */ 11801 ipf->ipf_hole_cnt = 1; 11802 /* Brand it as a hard case, forever. */ 11803 ipf->ipf_end = 0; 11804 } 11805 /* Walk through all the new pieces. */ 11806 do { 11807 end = start + (mp->b_wptr - mp->b_rptr); 11808 /* 11809 * If start is 0, decrease 'end' only for the first mblk of 11810 * the fragment. Otherwise 'end' can get wrong value in the 11811 * second pass of the loop if first mblk is exactly the 11812 * size of ipf_nf_hdr_len. 11813 */ 11814 if (start == 0 && !offset_zero_seen) { 11815 /* First segment */ 11816 ASSERT(ipf->ipf_nf_hdr_len != 0); 11817 end -= ipf->ipf_nf_hdr_len; 11818 offset_zero_seen = B_TRUE; 11819 } 11820 next_mp = mp->b_cont; 11821 /* 11822 * We are checking to see if there is any interesing data 11823 * to process. If there isn't and the mblk isn't the 11824 * one which carries the unfragmentable header then we 11825 * drop it. It's possible to have just the unfragmentable 11826 * header come through without any data. That needs to be 11827 * saved. 11828 * 11829 * If the assert at the top of this function holds then the 11830 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11831 * is infrequently traveled enough that the test is left in 11832 * to protect against future code changes which break that 11833 * invariant. 11834 */ 11835 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11836 /* Empty. Blast it. */ 11837 IP_REASS_SET_START(mp, 0); 11838 IP_REASS_SET_END(mp, 0); 11839 /* 11840 * If the ipf points to the mblk we are about to free, 11841 * update ipf to point to the next mblk (or NULL 11842 * if none). 11843 */ 11844 if (ipf->ipf_mp->b_cont == mp) 11845 ipf->ipf_mp->b_cont = next_mp; 11846 freeb(mp); 11847 continue; 11848 } 11849 mp->b_cont = NULL; 11850 IP_REASS_SET_START(mp, start); 11851 IP_REASS_SET_END(mp, end); 11852 if (!ipf->ipf_tail_mp) { 11853 ipf->ipf_tail_mp = mp; 11854 ipf->ipf_mp->b_cont = mp; 11855 if (start == 0 || !more) { 11856 ipf->ipf_hole_cnt = 1; 11857 /* 11858 * if the first fragment comes in more than one 11859 * mblk, this loop will be executed for each 11860 * mblk. Need to adjust hole count so exiting 11861 * this routine will leave hole count at 1. 11862 */ 11863 if (next_mp) 11864 ipf->ipf_hole_cnt++; 11865 } else 11866 ipf->ipf_hole_cnt = 2; 11867 continue; 11868 } else if (ipf->ipf_last_frag_seen && !more && 11869 !pkt_boundary_checked) { 11870 /* 11871 * We check datagram boundary only if this fragment 11872 * claims to be the last fragment and we have seen a 11873 * last fragment in the past too. We do this only 11874 * once for a given fragment. 11875 * 11876 * start cannot be 0 here as fragments with start=0 11877 * and MF=0 gets handled as a complete packet. These 11878 * fragments should not reach here. 11879 */ 11880 11881 if (start + msgdsize(mp) != 11882 IP_REASS_END(ipf->ipf_tail_mp)) { 11883 /* 11884 * We have two fragments both of which claim 11885 * to be the last fragment but gives conflicting 11886 * information about the whole datagram size. 11887 * Something fishy is going on. Drop the 11888 * fragment and free up the reassembly list. 11889 */ 11890 return (IP_REASS_FAILED); 11891 } 11892 11893 /* 11894 * We shouldn't come to this code block again for this 11895 * particular fragment. 11896 */ 11897 pkt_boundary_checked = B_TRUE; 11898 } 11899 11900 /* New stuff at or beyond tail? */ 11901 offset = IP_REASS_END(ipf->ipf_tail_mp); 11902 if (start >= offset) { 11903 if (ipf->ipf_last_frag_seen) { 11904 /* current fragment is beyond last fragment */ 11905 return (IP_REASS_FAILED); 11906 } 11907 /* Link it on end. */ 11908 ipf->ipf_tail_mp->b_cont = mp; 11909 ipf->ipf_tail_mp = mp; 11910 if (more) { 11911 if (start != offset) 11912 ipf->ipf_hole_cnt++; 11913 } else if (start == offset && next_mp == NULL) 11914 ipf->ipf_hole_cnt--; 11915 continue; 11916 } 11917 mp1 = ipf->ipf_mp->b_cont; 11918 offset = IP_REASS_START(mp1); 11919 /* New stuff at the front? */ 11920 if (start < offset) { 11921 if (start == 0) { 11922 if (end >= offset) { 11923 /* Nailed the hole at the begining. */ 11924 ipf->ipf_hole_cnt--; 11925 } 11926 } else if (end < offset) { 11927 /* 11928 * A hole, stuff, and a hole where there used 11929 * to be just a hole. 11930 */ 11931 ipf->ipf_hole_cnt++; 11932 } 11933 mp->b_cont = mp1; 11934 /* Check for overlap. */ 11935 while (end > offset) { 11936 if (end < IP_REASS_END(mp1)) { 11937 mp->b_wptr -= end - offset; 11938 IP_REASS_SET_END(mp, offset); 11939 BUMP_MIB(ill->ill_ip_mib, 11940 ipIfStatsReasmPartDups); 11941 break; 11942 } 11943 /* Did we cover another hole? */ 11944 if ((mp1->b_cont && 11945 IP_REASS_END(mp1) != 11946 IP_REASS_START(mp1->b_cont) && 11947 end >= IP_REASS_START(mp1->b_cont)) || 11948 (!ipf->ipf_last_frag_seen && !more)) { 11949 ipf->ipf_hole_cnt--; 11950 } 11951 /* Clip out mp1. */ 11952 if ((mp->b_cont = mp1->b_cont) == NULL) { 11953 /* 11954 * After clipping out mp1, this guy 11955 * is now hanging off the end. 11956 */ 11957 ipf->ipf_tail_mp = mp; 11958 } 11959 IP_REASS_SET_START(mp1, 0); 11960 IP_REASS_SET_END(mp1, 0); 11961 /* Subtract byte count */ 11962 ipf->ipf_count -= mp1->b_datap->db_lim - 11963 mp1->b_datap->db_base; 11964 freeb(mp1); 11965 BUMP_MIB(ill->ill_ip_mib, 11966 ipIfStatsReasmPartDups); 11967 mp1 = mp->b_cont; 11968 if (!mp1) 11969 break; 11970 offset = IP_REASS_START(mp1); 11971 } 11972 ipf->ipf_mp->b_cont = mp; 11973 continue; 11974 } 11975 /* 11976 * The new piece starts somewhere between the start of the head 11977 * and before the end of the tail. 11978 */ 11979 for (; mp1; mp1 = mp1->b_cont) { 11980 offset = IP_REASS_END(mp1); 11981 if (start < offset) { 11982 if (end <= offset) { 11983 /* Nothing new. */ 11984 IP_REASS_SET_START(mp, 0); 11985 IP_REASS_SET_END(mp, 0); 11986 /* Subtract byte count */ 11987 ipf->ipf_count -= mp->b_datap->db_lim - 11988 mp->b_datap->db_base; 11989 if (incr_dups) { 11990 ipf->ipf_num_dups++; 11991 incr_dups = B_FALSE; 11992 } 11993 freeb(mp); 11994 BUMP_MIB(ill->ill_ip_mib, 11995 ipIfStatsReasmDuplicates); 11996 break; 11997 } 11998 /* 11999 * Trim redundant stuff off beginning of new 12000 * piece. 12001 */ 12002 IP_REASS_SET_START(mp, offset); 12003 mp->b_rptr += offset - start; 12004 BUMP_MIB(ill->ill_ip_mib, 12005 ipIfStatsReasmPartDups); 12006 start = offset; 12007 if (!mp1->b_cont) { 12008 /* 12009 * After trimming, this guy is now 12010 * hanging off the end. 12011 */ 12012 mp1->b_cont = mp; 12013 ipf->ipf_tail_mp = mp; 12014 if (!more) { 12015 ipf->ipf_hole_cnt--; 12016 } 12017 break; 12018 } 12019 } 12020 if (start >= IP_REASS_START(mp1->b_cont)) 12021 continue; 12022 /* Fill a hole */ 12023 if (start > offset) 12024 ipf->ipf_hole_cnt++; 12025 mp->b_cont = mp1->b_cont; 12026 mp1->b_cont = mp; 12027 mp1 = mp->b_cont; 12028 offset = IP_REASS_START(mp1); 12029 if (end >= offset) { 12030 ipf->ipf_hole_cnt--; 12031 /* Check for overlap. */ 12032 while (end > offset) { 12033 if (end < IP_REASS_END(mp1)) { 12034 mp->b_wptr -= end - offset; 12035 IP_REASS_SET_END(mp, offset); 12036 /* 12037 * TODO we might bump 12038 * this up twice if there is 12039 * overlap at both ends. 12040 */ 12041 BUMP_MIB(ill->ill_ip_mib, 12042 ipIfStatsReasmPartDups); 12043 break; 12044 } 12045 /* Did we cover another hole? */ 12046 if ((mp1->b_cont && 12047 IP_REASS_END(mp1) 12048 != IP_REASS_START(mp1->b_cont) && 12049 end >= 12050 IP_REASS_START(mp1->b_cont)) || 12051 (!ipf->ipf_last_frag_seen && 12052 !more)) { 12053 ipf->ipf_hole_cnt--; 12054 } 12055 /* Clip out mp1. */ 12056 if ((mp->b_cont = mp1->b_cont) == 12057 NULL) { 12058 /* 12059 * After clipping out mp1, 12060 * this guy is now hanging 12061 * off the end. 12062 */ 12063 ipf->ipf_tail_mp = mp; 12064 } 12065 IP_REASS_SET_START(mp1, 0); 12066 IP_REASS_SET_END(mp1, 0); 12067 /* Subtract byte count */ 12068 ipf->ipf_count -= 12069 mp1->b_datap->db_lim - 12070 mp1->b_datap->db_base; 12071 freeb(mp1); 12072 BUMP_MIB(ill->ill_ip_mib, 12073 ipIfStatsReasmPartDups); 12074 mp1 = mp->b_cont; 12075 if (!mp1) 12076 break; 12077 offset = IP_REASS_START(mp1); 12078 } 12079 } 12080 break; 12081 } 12082 } while (start = end, mp = next_mp); 12083 12084 /* Fragment just processed could be the last one. Remember this fact */ 12085 if (!more) 12086 ipf->ipf_last_frag_seen = B_TRUE; 12087 12088 /* Still got holes? */ 12089 if (ipf->ipf_hole_cnt) 12090 return (IP_REASS_PARTIAL); 12091 /* Clean up overloaded fields to avoid upstream disasters. */ 12092 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 12093 IP_REASS_SET_START(mp1, 0); 12094 IP_REASS_SET_END(mp1, 0); 12095 } 12096 return (IP_REASS_COMPLETE); 12097 } 12098 12099 /* 12100 * ipsec processing for the fast path, used for input UDP Packets 12101 * Returns true if ready for passup to UDP. 12102 * Return false if packet is not passable to UDP (e.g. it failed IPsec policy, 12103 * was an ESP-in-UDP packet, etc.). 12104 */ 12105 static boolean_t 12106 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 12107 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present, ire_t *ire) 12108 { 12109 uint32_t ill_index; 12110 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 12111 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 12112 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12113 udp_t *udp = connp->conn_udp; 12114 12115 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12116 /* The ill_index of the incoming ILL */ 12117 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 12118 12119 /* pass packet up to the transport */ 12120 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 12121 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 12122 NULL, mctl_present); 12123 if (*first_mpp == NULL) { 12124 return (B_FALSE); 12125 } 12126 } 12127 12128 /* Initiate IPPF processing for fastpath UDP */ 12129 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 12130 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12131 if (*mpp == NULL) { 12132 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12133 "deferred/dropped during IPPF processing\n")); 12134 return (B_FALSE); 12135 } 12136 } 12137 /* 12138 * Remove 0-spi if it's 0, or move everything behind 12139 * the UDP header over it and forward to ESP via 12140 * ip_proto_input(). 12141 */ 12142 if (udp->udp_nat_t_endpoint) { 12143 if (mctl_present) { 12144 /* mctl_present *shouldn't* happen. */ 12145 ip_drop_packet(*first_mpp, B_TRUE, NULL, 12146 NULL, DROPPER(ipss, ipds_esp_nat_t_ipsec), 12147 &ipss->ipsec_dropper); 12148 *first_mpp = NULL; 12149 return (B_FALSE); 12150 } 12151 12152 /* "ill" is "recv_ill" in actuality. */ 12153 if (!zero_spi_check(q, *mpp, ire, ill, ipss)) 12154 return (B_FALSE); 12155 12156 /* Else continue like a normal UDP packet. */ 12157 } 12158 12159 /* 12160 * We make the checks as below since we are in the fast path 12161 * and want to minimize the number of checks if the IP_RECVIF and/or 12162 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12163 */ 12164 if (connp->conn_recvif || connp->conn_recvslla || 12165 connp->conn_ip_recvpktinfo) { 12166 if (connp->conn_recvif) { 12167 in_flags = IPF_RECVIF; 12168 } 12169 /* 12170 * UDP supports IP_RECVPKTINFO option for both v4 and v6 12171 * so the flag passed to ip_add_info is based on IP version 12172 * of connp. 12173 */ 12174 if (connp->conn_ip_recvpktinfo) { 12175 if (connp->conn_af_isv6) { 12176 /* 12177 * V6 only needs index 12178 */ 12179 in_flags |= IPF_RECVIF; 12180 } else { 12181 /* 12182 * V4 needs index + matching address. 12183 */ 12184 in_flags |= IPF_RECVADDR; 12185 } 12186 } 12187 if (connp->conn_recvslla) { 12188 in_flags |= IPF_RECVSLLA; 12189 } 12190 /* 12191 * since in_flags are being set ill will be 12192 * referenced in ip_add_info, so it better not 12193 * be NULL. 12194 */ 12195 /* 12196 * the actual data will be contained in b_cont 12197 * upon successful return of the following call. 12198 * If the call fails then the original mblk is 12199 * returned. 12200 */ 12201 *mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp), 12202 ipst); 12203 } 12204 12205 return (B_TRUE); 12206 } 12207 12208 /* 12209 * Fragmentation reassembly. Each ILL has a hash table for 12210 * queuing packets undergoing reassembly for all IPIFs 12211 * associated with the ILL. The hash is based on the packet 12212 * IP ident field. The ILL frag hash table was allocated 12213 * as a timer block at the time the ILL was created. Whenever 12214 * there is anything on the reassembly queue, the timer will 12215 * be running. Returns B_TRUE if successful else B_FALSE; 12216 * frees mp on failure. 12217 */ 12218 static boolean_t 12219 ip_rput_fragment(ill_t *ill, ill_t *recv_ill, mblk_t **mpp, ipha_t *ipha, 12220 uint32_t *cksum_val, uint16_t *cksum_flags) 12221 { 12222 uint32_t frag_offset_flags; 12223 mblk_t *mp = *mpp; 12224 mblk_t *t_mp; 12225 ipaddr_t dst; 12226 uint8_t proto = ipha->ipha_protocol; 12227 uint32_t sum_val; 12228 uint16_t sum_flags; 12229 ipf_t *ipf; 12230 ipf_t **ipfp; 12231 ipfb_t *ipfb; 12232 uint16_t ident; 12233 uint32_t offset; 12234 ipaddr_t src; 12235 uint_t hdr_length; 12236 uint32_t end; 12237 mblk_t *mp1; 12238 mblk_t *tail_mp; 12239 size_t count; 12240 size_t msg_len; 12241 uint8_t ecn_info = 0; 12242 uint32_t packet_size; 12243 boolean_t pruned = B_FALSE; 12244 ip_stack_t *ipst = ill->ill_ipst; 12245 12246 if (cksum_val != NULL) 12247 *cksum_val = 0; 12248 if (cksum_flags != NULL) 12249 *cksum_flags = 0; 12250 12251 /* 12252 * Drop the fragmented as early as possible, if 12253 * we don't have resource(s) to re-assemble. 12254 */ 12255 if (ipst->ips_ip_reass_queue_bytes == 0) { 12256 freemsg(mp); 12257 return (B_FALSE); 12258 } 12259 12260 /* Check for fragmentation offset; return if there's none */ 12261 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12262 (IPH_MF | IPH_OFFSET)) == 0) 12263 return (B_TRUE); 12264 12265 /* 12266 * We utilize hardware computed checksum info only for UDP since 12267 * IP fragmentation is a normal occurrence for the protocol. In 12268 * addition, checksum offload support for IP fragments carrying 12269 * UDP payload is commonly implemented across network adapters. 12270 */ 12271 ASSERT(recv_ill != NULL); 12272 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(recv_ill) && 12273 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12274 mblk_t *mp1 = mp->b_cont; 12275 int32_t len; 12276 12277 /* Record checksum information from the packet */ 12278 sum_val = (uint32_t)DB_CKSUM16(mp); 12279 sum_flags = DB_CKSUMFLAGS(mp); 12280 12281 /* IP payload offset from beginning of mblk */ 12282 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12283 12284 if ((sum_flags & HCK_PARTIALCKSUM) && 12285 (mp1 == NULL || mp1->b_cont == NULL) && 12286 offset >= DB_CKSUMSTART(mp) && 12287 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12288 uint32_t adj; 12289 /* 12290 * Partial checksum has been calculated by hardware 12291 * and attached to the packet; in addition, any 12292 * prepended extraneous data is even byte aligned. 12293 * If any such data exists, we adjust the checksum; 12294 * this would also handle any postpended data. 12295 */ 12296 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12297 mp, mp1, len, adj); 12298 12299 /* One's complement subtract extraneous checksum */ 12300 if (adj >= sum_val) 12301 sum_val = ~(adj - sum_val) & 0xFFFF; 12302 else 12303 sum_val -= adj; 12304 } 12305 } else { 12306 sum_val = 0; 12307 sum_flags = 0; 12308 } 12309 12310 /* Clear hardware checksumming flag */ 12311 DB_CKSUMFLAGS(mp) = 0; 12312 12313 ident = ipha->ipha_ident; 12314 offset = (frag_offset_flags << 3) & 0xFFFF; 12315 src = ipha->ipha_src; 12316 dst = ipha->ipha_dst; 12317 hdr_length = IPH_HDR_LENGTH(ipha); 12318 end = ntohs(ipha->ipha_length) - hdr_length; 12319 12320 /* If end == 0 then we have a packet with no data, so just free it */ 12321 if (end == 0) { 12322 freemsg(mp); 12323 return (B_FALSE); 12324 } 12325 12326 /* Record the ECN field info. */ 12327 ecn_info = (ipha->ipha_type_of_service & 0x3); 12328 if (offset != 0) { 12329 /* 12330 * If this isn't the first piece, strip the header, and 12331 * add the offset to the end value. 12332 */ 12333 mp->b_rptr += hdr_length; 12334 end += offset; 12335 } 12336 12337 msg_len = MBLKSIZE(mp); 12338 tail_mp = mp; 12339 while (tail_mp->b_cont != NULL) { 12340 tail_mp = tail_mp->b_cont; 12341 msg_len += MBLKSIZE(tail_mp); 12342 } 12343 12344 /* If the reassembly list for this ILL will get too big, prune it */ 12345 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12346 ipst->ips_ip_reass_queue_bytes) { 12347 ill_frag_prune(ill, 12348 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 12349 (ipst->ips_ip_reass_queue_bytes - msg_len)); 12350 pruned = B_TRUE; 12351 } 12352 12353 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12354 mutex_enter(&ipfb->ipfb_lock); 12355 12356 ipfp = &ipfb->ipfb_ipf; 12357 /* Try to find an existing fragment queue for this packet. */ 12358 for (;;) { 12359 ipf = ipfp[0]; 12360 if (ipf != NULL) { 12361 /* 12362 * It has to match on ident and src/dst address. 12363 */ 12364 if (ipf->ipf_ident == ident && 12365 ipf->ipf_src == src && 12366 ipf->ipf_dst == dst && 12367 ipf->ipf_protocol == proto) { 12368 /* 12369 * If we have received too many 12370 * duplicate fragments for this packet 12371 * free it. 12372 */ 12373 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12374 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12375 freemsg(mp); 12376 mutex_exit(&ipfb->ipfb_lock); 12377 return (B_FALSE); 12378 } 12379 /* Found it. */ 12380 break; 12381 } 12382 ipfp = &ipf->ipf_hash_next; 12383 continue; 12384 } 12385 12386 /* 12387 * If we pruned the list, do we want to store this new 12388 * fragment?. We apply an optimization here based on the 12389 * fact that most fragments will be received in order. 12390 * So if the offset of this incoming fragment is zero, 12391 * it is the first fragment of a new packet. We will 12392 * keep it. Otherwise drop the fragment, as we have 12393 * probably pruned the packet already (since the 12394 * packet cannot be found). 12395 */ 12396 if (pruned && offset != 0) { 12397 mutex_exit(&ipfb->ipfb_lock); 12398 freemsg(mp); 12399 return (B_FALSE); 12400 } 12401 12402 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 12403 /* 12404 * Too many fragmented packets in this hash 12405 * bucket. Free the oldest. 12406 */ 12407 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12408 } 12409 12410 /* New guy. Allocate a frag message. */ 12411 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12412 if (mp1 == NULL) { 12413 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12414 freemsg(mp); 12415 reass_done: 12416 mutex_exit(&ipfb->ipfb_lock); 12417 return (B_FALSE); 12418 } 12419 12420 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12421 mp1->b_cont = mp; 12422 12423 /* Initialize the fragment header. */ 12424 ipf = (ipf_t *)mp1->b_rptr; 12425 ipf->ipf_mp = mp1; 12426 ipf->ipf_ptphn = ipfp; 12427 ipfp[0] = ipf; 12428 ipf->ipf_hash_next = NULL; 12429 ipf->ipf_ident = ident; 12430 ipf->ipf_protocol = proto; 12431 ipf->ipf_src = src; 12432 ipf->ipf_dst = dst; 12433 ipf->ipf_nf_hdr_len = 0; 12434 /* Record reassembly start time. */ 12435 ipf->ipf_timestamp = gethrestime_sec(); 12436 /* Record ipf generation and account for frag header */ 12437 ipf->ipf_gen = ill->ill_ipf_gen++; 12438 ipf->ipf_count = MBLKSIZE(mp1); 12439 ipf->ipf_last_frag_seen = B_FALSE; 12440 ipf->ipf_ecn = ecn_info; 12441 ipf->ipf_num_dups = 0; 12442 ipfb->ipfb_frag_pkts++; 12443 ipf->ipf_checksum = 0; 12444 ipf->ipf_checksum_flags = 0; 12445 12446 /* Store checksum value in fragment header */ 12447 if (sum_flags != 0) { 12448 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12449 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12450 ipf->ipf_checksum = sum_val; 12451 ipf->ipf_checksum_flags = sum_flags; 12452 } 12453 12454 /* 12455 * We handle reassembly two ways. In the easy case, 12456 * where all the fragments show up in order, we do 12457 * minimal bookkeeping, and just clip new pieces on 12458 * the end. If we ever see a hole, then we go off 12459 * to ip_reassemble which has to mark the pieces and 12460 * keep track of the number of holes, etc. Obviously, 12461 * the point of having both mechanisms is so we can 12462 * handle the easy case as efficiently as possible. 12463 */ 12464 if (offset == 0) { 12465 /* Easy case, in-order reassembly so far. */ 12466 ipf->ipf_count += msg_len; 12467 ipf->ipf_tail_mp = tail_mp; 12468 /* 12469 * Keep track of next expected offset in 12470 * ipf_end. 12471 */ 12472 ipf->ipf_end = end; 12473 ipf->ipf_nf_hdr_len = hdr_length; 12474 } else { 12475 /* Hard case, hole at the beginning. */ 12476 ipf->ipf_tail_mp = NULL; 12477 /* 12478 * ipf_end == 0 means that we have given up 12479 * on easy reassembly. 12480 */ 12481 ipf->ipf_end = 0; 12482 12483 /* Forget checksum offload from now on */ 12484 ipf->ipf_checksum_flags = 0; 12485 12486 /* 12487 * ipf_hole_cnt is set by ip_reassemble. 12488 * ipf_count is updated by ip_reassemble. 12489 * No need to check for return value here 12490 * as we don't expect reassembly to complete 12491 * or fail for the first fragment itself. 12492 */ 12493 (void) ip_reassemble(mp, ipf, 12494 (frag_offset_flags & IPH_OFFSET) << 3, 12495 (frag_offset_flags & IPH_MF), ill, msg_len); 12496 } 12497 /* Update per ipfb and ill byte counts */ 12498 ipfb->ipfb_count += ipf->ipf_count; 12499 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12500 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 12501 /* If the frag timer wasn't already going, start it. */ 12502 mutex_enter(&ill->ill_lock); 12503 ill_frag_timer_start(ill); 12504 mutex_exit(&ill->ill_lock); 12505 goto reass_done; 12506 } 12507 12508 /* 12509 * If the packet's flag has changed (it could be coming up 12510 * from an interface different than the previous, therefore 12511 * possibly different checksum capability), then forget about 12512 * any stored checksum states. Otherwise add the value to 12513 * the existing one stored in the fragment header. 12514 */ 12515 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12516 sum_val += ipf->ipf_checksum; 12517 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12518 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12519 ipf->ipf_checksum = sum_val; 12520 } else if (ipf->ipf_checksum_flags != 0) { 12521 /* Forget checksum offload from now on */ 12522 ipf->ipf_checksum_flags = 0; 12523 } 12524 12525 /* 12526 * We have a new piece of a datagram which is already being 12527 * reassembled. Update the ECN info if all IP fragments 12528 * are ECN capable. If there is one which is not, clear 12529 * all the info. If there is at least one which has CE 12530 * code point, IP needs to report that up to transport. 12531 */ 12532 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12533 if (ecn_info == IPH_ECN_CE) 12534 ipf->ipf_ecn = IPH_ECN_CE; 12535 } else { 12536 ipf->ipf_ecn = IPH_ECN_NECT; 12537 } 12538 if (offset && ipf->ipf_end == offset) { 12539 /* The new fragment fits at the end */ 12540 ipf->ipf_tail_mp->b_cont = mp; 12541 /* Update the byte count */ 12542 ipf->ipf_count += msg_len; 12543 /* Update per ipfb and ill byte counts */ 12544 ipfb->ipfb_count += msg_len; 12545 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12546 atomic_add_32(&ill->ill_frag_count, msg_len); 12547 if (frag_offset_flags & IPH_MF) { 12548 /* More to come. */ 12549 ipf->ipf_end = end; 12550 ipf->ipf_tail_mp = tail_mp; 12551 goto reass_done; 12552 } 12553 } else { 12554 /* Go do the hard cases. */ 12555 int ret; 12556 12557 if (offset == 0) 12558 ipf->ipf_nf_hdr_len = hdr_length; 12559 12560 /* Save current byte count */ 12561 count = ipf->ipf_count; 12562 ret = ip_reassemble(mp, ipf, 12563 (frag_offset_flags & IPH_OFFSET) << 3, 12564 (frag_offset_flags & IPH_MF), ill, msg_len); 12565 /* Count of bytes added and subtracted (freeb()ed) */ 12566 count = ipf->ipf_count - count; 12567 if (count) { 12568 /* Update per ipfb and ill byte counts */ 12569 ipfb->ipfb_count += count; 12570 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12571 atomic_add_32(&ill->ill_frag_count, count); 12572 } 12573 if (ret == IP_REASS_PARTIAL) { 12574 goto reass_done; 12575 } else if (ret == IP_REASS_FAILED) { 12576 /* Reassembly failed. Free up all resources */ 12577 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12578 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12579 IP_REASS_SET_START(t_mp, 0); 12580 IP_REASS_SET_END(t_mp, 0); 12581 } 12582 freemsg(mp); 12583 goto reass_done; 12584 } 12585 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12586 } 12587 /* 12588 * We have completed reassembly. Unhook the frag header from 12589 * the reassembly list. 12590 * 12591 * Before we free the frag header, record the ECN info 12592 * to report back to the transport. 12593 */ 12594 ecn_info = ipf->ipf_ecn; 12595 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12596 ipfp = ipf->ipf_ptphn; 12597 12598 /* We need to supply these to caller */ 12599 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12600 sum_val = ipf->ipf_checksum; 12601 else 12602 sum_val = 0; 12603 12604 mp1 = ipf->ipf_mp; 12605 count = ipf->ipf_count; 12606 ipf = ipf->ipf_hash_next; 12607 if (ipf != NULL) 12608 ipf->ipf_ptphn = ipfp; 12609 ipfp[0] = ipf; 12610 atomic_add_32(&ill->ill_frag_count, -count); 12611 ASSERT(ipfb->ipfb_count >= count); 12612 ipfb->ipfb_count -= count; 12613 ipfb->ipfb_frag_pkts--; 12614 mutex_exit(&ipfb->ipfb_lock); 12615 /* Ditch the frag header. */ 12616 mp = mp1->b_cont; 12617 12618 freeb(mp1); 12619 12620 /* Restore original IP length in header. */ 12621 packet_size = (uint32_t)msgdsize(mp); 12622 if (packet_size > IP_MAXPACKET) { 12623 freemsg(mp); 12624 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12625 return (B_FALSE); 12626 } 12627 12628 if (DB_REF(mp) > 1) { 12629 mblk_t *mp2 = copymsg(mp); 12630 12631 freemsg(mp); 12632 if (mp2 == NULL) { 12633 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12634 return (B_FALSE); 12635 } 12636 mp = mp2; 12637 } 12638 ipha = (ipha_t *)mp->b_rptr; 12639 12640 ipha->ipha_length = htons((uint16_t)packet_size); 12641 /* We're now complete, zip the frag state */ 12642 ipha->ipha_fragment_offset_and_flags = 0; 12643 /* Record the ECN info. */ 12644 ipha->ipha_type_of_service &= 0xFC; 12645 ipha->ipha_type_of_service |= ecn_info; 12646 *mpp = mp; 12647 12648 /* Reassembly is successful; return checksum information if needed */ 12649 if (cksum_val != NULL) 12650 *cksum_val = sum_val; 12651 if (cksum_flags != NULL) 12652 *cksum_flags = sum_flags; 12653 12654 return (B_TRUE); 12655 } 12656 12657 /* 12658 * Perform ip header check sum update local options. 12659 * return B_TRUE if all is well, else return B_FALSE and release 12660 * the mp. caller is responsible for decrementing ire ref cnt. 12661 */ 12662 static boolean_t 12663 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12664 ip_stack_t *ipst) 12665 { 12666 mblk_t *first_mp; 12667 boolean_t mctl_present; 12668 uint16_t sum; 12669 12670 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12671 /* 12672 * Don't do the checksum if it has gone through AH/ESP 12673 * processing. 12674 */ 12675 if (!mctl_present) { 12676 sum = ip_csum_hdr(ipha); 12677 if (sum != 0) { 12678 if (ill != NULL) { 12679 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12680 } else { 12681 BUMP_MIB(&ipst->ips_ip_mib, 12682 ipIfStatsInCksumErrs); 12683 } 12684 freemsg(first_mp); 12685 return (B_FALSE); 12686 } 12687 } 12688 12689 if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) { 12690 if (mctl_present) 12691 freeb(first_mp); 12692 return (B_FALSE); 12693 } 12694 12695 return (B_TRUE); 12696 } 12697 12698 /* 12699 * All udp packet are delivered to the local host via this routine. 12700 */ 12701 void 12702 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12703 ill_t *recv_ill) 12704 { 12705 uint32_t sum; 12706 uint32_t u1; 12707 boolean_t mctl_present; 12708 conn_t *connp; 12709 mblk_t *first_mp; 12710 uint16_t *up; 12711 ill_t *ill = (ill_t *)q->q_ptr; 12712 uint16_t reass_hck_flags = 0; 12713 ip_stack_t *ipst; 12714 12715 ASSERT(recv_ill != NULL); 12716 ipst = recv_ill->ill_ipst; 12717 12718 #define rptr ((uchar_t *)ipha) 12719 12720 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12721 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12722 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12723 ASSERT(ill != NULL); 12724 12725 /* 12726 * FAST PATH for udp packets 12727 */ 12728 12729 /* u1 is # words of IP options */ 12730 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12731 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12732 12733 /* IP options present */ 12734 if (u1 != 0) 12735 goto ipoptions; 12736 12737 /* Check the IP header checksum. */ 12738 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 12739 /* Clear the IP header h/w cksum flag */ 12740 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12741 } else if (!mctl_present) { 12742 /* 12743 * Don't verify header checksum if this packet is coming 12744 * back from AH/ESP as we already did it. 12745 */ 12746 #define uph ((uint16_t *)ipha) 12747 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12748 uph[6] + uph[7] + uph[8] + uph[9]; 12749 #undef uph 12750 /* finish doing IP checksum */ 12751 sum = (sum & 0xFFFF) + (sum >> 16); 12752 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12753 if (sum != 0 && sum != 0xFFFF) { 12754 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12755 freemsg(first_mp); 12756 return; 12757 } 12758 } 12759 12760 /* 12761 * Count for SNMP of inbound packets for ire. 12762 * if mctl is present this might be a secure packet and 12763 * has already been counted for in ip_proto_input(). 12764 */ 12765 if (!mctl_present) { 12766 UPDATE_IB_PKT_COUNT(ire); 12767 ire->ire_last_used_time = lbolt; 12768 } 12769 12770 /* packet part of fragmented IP packet? */ 12771 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12772 if (u1 & (IPH_MF | IPH_OFFSET)) { 12773 goto fragmented; 12774 } 12775 12776 /* u1 = IP header length (20 bytes) */ 12777 u1 = IP_SIMPLE_HDR_LENGTH; 12778 12779 /* packet does not contain complete IP & UDP headers */ 12780 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12781 goto udppullup; 12782 12783 /* up points to UDP header */ 12784 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12785 #define iphs ((uint16_t *)ipha) 12786 12787 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12788 if (up[3] != 0) { 12789 mblk_t *mp1 = mp->b_cont; 12790 boolean_t cksum_err; 12791 uint16_t hck_flags = 0; 12792 12793 /* Pseudo-header checksum */ 12794 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12795 iphs[9] + up[2]; 12796 12797 /* 12798 * Revert to software checksum calculation if the interface 12799 * isn't capable of checksum offload or if IPsec is present. 12800 */ 12801 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 12802 hck_flags = DB_CKSUMFLAGS(mp); 12803 12804 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12805 IP_STAT(ipst, ip_in_sw_cksum); 12806 12807 IP_CKSUM_RECV(hck_flags, u1, 12808 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12809 (int32_t)((uchar_t *)up - rptr), 12810 mp, mp1, cksum_err); 12811 12812 if (cksum_err) { 12813 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12814 if (hck_flags & HCK_FULLCKSUM) 12815 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12816 else if (hck_flags & HCK_PARTIALCKSUM) 12817 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12818 else 12819 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12820 12821 freemsg(first_mp); 12822 return; 12823 } 12824 } 12825 12826 /* Non-fragmented broadcast or multicast packet? */ 12827 if (ire->ire_type == IRE_BROADCAST) 12828 goto udpslowpath; 12829 12830 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12831 ire->ire_zoneid, ipst)) != NULL) { 12832 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_upq != NULL); 12833 IP_STAT(ipst, ip_udp_fast_path); 12834 12835 if ((IPCL_IS_NONSTR(connp) && PROTO_FLOW_CNTRLD(connp)) || 12836 (!IPCL_IS_NONSTR(connp) && CONN_UDP_FLOWCTLD(connp))) { 12837 freemsg(mp); 12838 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12839 } else { 12840 if (!mctl_present) { 12841 BUMP_MIB(ill->ill_ip_mib, 12842 ipIfStatsHCInDelivers); 12843 } 12844 /* 12845 * mp and first_mp can change. 12846 */ 12847 if (ip_udp_check(q, connp, recv_ill, 12848 ipha, &mp, &first_mp, mctl_present, ire)) { 12849 /* Send it upstream */ 12850 (connp->conn_recv)(connp, mp, NULL); 12851 } 12852 } 12853 /* 12854 * freeb() cannot deal with null mblk being passed 12855 * in and first_mp can be set to null in the call 12856 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12857 */ 12858 if (mctl_present && first_mp != NULL) { 12859 freeb(first_mp); 12860 } 12861 CONN_DEC_REF(connp); 12862 return; 12863 } 12864 12865 /* 12866 * if we got here we know the packet is not fragmented and 12867 * has no options. The classifier could not find a conn_t and 12868 * most likely its an icmp packet so send it through slow path. 12869 */ 12870 12871 goto udpslowpath; 12872 12873 ipoptions: 12874 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 12875 goto slow_done; 12876 } 12877 12878 UPDATE_IB_PKT_COUNT(ire); 12879 ire->ire_last_used_time = lbolt; 12880 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12881 if (u1 & (IPH_MF | IPH_OFFSET)) { 12882 fragmented: 12883 /* 12884 * "sum" and "reass_hck_flags" are non-zero if the 12885 * reassembled packet has a valid hardware computed 12886 * checksum information associated with it. 12887 */ 12888 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, &sum, 12889 &reass_hck_flags)) { 12890 goto slow_done; 12891 } 12892 12893 /* 12894 * Make sure that first_mp points back to mp as 12895 * the mp we came in with could have changed in 12896 * ip_rput_fragment(). 12897 */ 12898 ASSERT(!mctl_present); 12899 ipha = (ipha_t *)mp->b_rptr; 12900 first_mp = mp; 12901 } 12902 12903 /* Now we have a complete datagram, destined for this machine. */ 12904 u1 = IPH_HDR_LENGTH(ipha); 12905 /* Pull up the UDP header, if necessary. */ 12906 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12907 udppullup: 12908 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12909 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12910 freemsg(first_mp); 12911 goto slow_done; 12912 } 12913 ipha = (ipha_t *)mp->b_rptr; 12914 } 12915 12916 /* 12917 * Validate the checksum for the reassembled packet; for the 12918 * pullup case we calculate the payload checksum in software. 12919 */ 12920 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12921 if (up[3] != 0) { 12922 boolean_t cksum_err; 12923 12924 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12925 IP_STAT(ipst, ip_in_sw_cksum); 12926 12927 IP_CKSUM_RECV_REASS(reass_hck_flags, 12928 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12929 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12930 iphs[9] + up[2], sum, cksum_err); 12931 12932 if (cksum_err) { 12933 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12934 12935 if (reass_hck_flags & HCK_FULLCKSUM) 12936 IP_STAT(ipst, ip_udp_in_full_hw_cksum_err); 12937 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12938 IP_STAT(ipst, ip_udp_in_part_hw_cksum_err); 12939 else 12940 IP_STAT(ipst, ip_udp_in_sw_cksum_err); 12941 12942 freemsg(first_mp); 12943 goto slow_done; 12944 } 12945 } 12946 udpslowpath: 12947 12948 /* Clear hardware checksum flag to be safe */ 12949 DB_CKSUMFLAGS(mp) = 0; 12950 12951 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12952 (ire->ire_type == IRE_BROADCAST), 12953 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO, 12954 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12955 12956 slow_done: 12957 IP_STAT(ipst, ip_udp_slow_path); 12958 return; 12959 12960 #undef iphs 12961 #undef rptr 12962 } 12963 12964 /* ARGSUSED */ 12965 static mblk_t * 12966 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12967 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12968 ill_rx_ring_t *ill_ring) 12969 { 12970 conn_t *connp; 12971 uint32_t sum; 12972 uint32_t u1; 12973 uint16_t *up; 12974 int offset; 12975 ssize_t len; 12976 mblk_t *mp1; 12977 boolean_t syn_present = B_FALSE; 12978 tcph_t *tcph; 12979 uint_t tcph_flags; 12980 uint_t ip_hdr_len; 12981 ill_t *ill = (ill_t *)q->q_ptr; 12982 zoneid_t zoneid = ire->ire_zoneid; 12983 boolean_t cksum_err; 12984 uint16_t hck_flags = 0; 12985 ip_stack_t *ipst = recv_ill->ill_ipst; 12986 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 12987 12988 #define rptr ((uchar_t *)ipha) 12989 12990 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12991 ASSERT(ill != NULL); 12992 12993 /* 12994 * FAST PATH for tcp packets 12995 */ 12996 12997 /* u1 is # words of IP options */ 12998 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12999 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13000 13001 /* IP options present */ 13002 if (u1) { 13003 goto ipoptions; 13004 } else if (!mctl_present) { 13005 /* Check the IP header checksum. */ 13006 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill)) { 13007 /* Clear the IP header h/w cksum flag */ 13008 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 13009 } else if (!mctl_present) { 13010 /* 13011 * Don't verify header checksum if this packet 13012 * is coming back from AH/ESP as we already did it. 13013 */ 13014 #define uph ((uint16_t *)ipha) 13015 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13016 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13017 #undef uph 13018 /* finish doing IP checksum */ 13019 sum = (sum & 0xFFFF) + (sum >> 16); 13020 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13021 if (sum != 0 && sum != 0xFFFF) { 13022 BUMP_MIB(ill->ill_ip_mib, 13023 ipIfStatsInCksumErrs); 13024 goto error; 13025 } 13026 } 13027 } 13028 13029 if (!mctl_present) { 13030 UPDATE_IB_PKT_COUNT(ire); 13031 ire->ire_last_used_time = lbolt; 13032 } 13033 13034 /* packet part of fragmented IP packet? */ 13035 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13036 if (u1 & (IPH_MF | IPH_OFFSET)) { 13037 goto fragmented; 13038 } 13039 13040 /* u1 = IP header length (20 bytes) */ 13041 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 13042 13043 /* does packet contain IP+TCP headers? */ 13044 len = mp->b_wptr - rptr; 13045 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 13046 IP_STAT(ipst, ip_tcppullup); 13047 goto tcppullup; 13048 } 13049 13050 /* TCP options present? */ 13051 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 13052 13053 /* 13054 * If options need to be pulled up, then goto tcpoptions. 13055 * otherwise we are still in the fast path 13056 */ 13057 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 13058 IP_STAT(ipst, ip_tcpoptions); 13059 goto tcpoptions; 13060 } 13061 13062 /* multiple mblks of tcp data? */ 13063 if ((mp1 = mp->b_cont) != NULL) { 13064 IP_STAT(ipst, ip_multipkttcp); 13065 len += msgdsize(mp1); 13066 } 13067 13068 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 13069 13070 /* part of pseudo checksum */ 13071 13072 /* TCP datagram length */ 13073 u1 = len - IP_SIMPLE_HDR_LENGTH; 13074 13075 #define iphs ((uint16_t *)ipha) 13076 13077 #ifdef _BIG_ENDIAN 13078 u1 += IPPROTO_TCP; 13079 #else 13080 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13081 #endif 13082 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13083 13084 /* 13085 * Revert to software checksum calculation if the interface 13086 * isn't capable of checksum offload or if IPsec is present. 13087 */ 13088 if (ILL_HCKSUM_CAPABLE(recv_ill) && !mctl_present && dohwcksum) 13089 hck_flags = DB_CKSUMFLAGS(mp); 13090 13091 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 13092 IP_STAT(ipst, ip_in_sw_cksum); 13093 13094 IP_CKSUM_RECV(hck_flags, u1, 13095 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 13096 (int32_t)((uchar_t *)up - rptr), 13097 mp, mp1, cksum_err); 13098 13099 if (cksum_err) { 13100 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13101 13102 if (hck_flags & HCK_FULLCKSUM) 13103 IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err); 13104 else if (hck_flags & HCK_PARTIALCKSUM) 13105 IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err); 13106 else 13107 IP_STAT(ipst, ip_tcp_in_sw_cksum_err); 13108 13109 goto error; 13110 } 13111 13112 try_again: 13113 13114 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, 13115 zoneid, ipst)) == NULL) { 13116 /* Send the TH_RST */ 13117 goto no_conn; 13118 } 13119 13120 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 13121 tcph_flags = tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG); 13122 13123 /* 13124 * TCP FAST PATH for AF_INET socket. 13125 * 13126 * TCP fast path to avoid extra work. An AF_INET socket type 13127 * does not have facility to receive extra information via 13128 * ip_process or ip_add_info. Also, when the connection was 13129 * established, we made a check if this connection is impacted 13130 * by any global IPsec policy or per connection policy (a 13131 * policy that comes in effect later will not apply to this 13132 * connection). Since all this can be determined at the 13133 * connection establishment time, a quick check of flags 13134 * can avoid extra work. 13135 */ 13136 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 13137 !IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13138 ASSERT(first_mp == mp); 13139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13140 if (tcph_flags != (TH_SYN | TH_ACK)) { 13141 SET_SQUEUE(mp, tcp_rput_data, connp); 13142 return (mp); 13143 } 13144 mp->b_datap->db_struioflag |= STRUIO_CONNECT; 13145 DB_CKSUMSTART(mp) = (intptr_t)ip_squeue_get(ill_ring); 13146 SET_SQUEUE(mp, tcp_input, connp); 13147 return (mp); 13148 } 13149 13150 if (tcph_flags == TH_SYN) { 13151 if (IPCL_IS_TCP(connp)) { 13152 mp->b_datap->db_struioflag |= STRUIO_EAGER; 13153 DB_CKSUMSTART(mp) = 13154 (intptr_t)ip_squeue_get(ill_ring); 13155 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 13156 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13157 BUMP_MIB(ill->ill_ip_mib, 13158 ipIfStatsHCInDelivers); 13159 SET_SQUEUE(mp, connp->conn_recv, connp); 13160 return (mp); 13161 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 13162 !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) { 13163 BUMP_MIB(ill->ill_ip_mib, 13164 ipIfStatsHCInDelivers); 13165 ip_squeue_enter_unbound++; 13166 SET_SQUEUE(mp, tcp_conn_request_unbound, 13167 connp); 13168 return (mp); 13169 } 13170 syn_present = B_TRUE; 13171 } 13172 } 13173 13174 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 13175 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13176 13177 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13178 /* No need to send this packet to TCP */ 13179 if ((flags & TH_RST) || (flags & TH_URG)) { 13180 CONN_DEC_REF(connp); 13181 freemsg(first_mp); 13182 return (NULL); 13183 } 13184 if (flags & TH_ACK) { 13185 ip_xmit_reset_serialize(first_mp, ip_hdr_len, zoneid, 13186 ipst->ips_netstack->netstack_tcp, connp); 13187 CONN_DEC_REF(connp); 13188 return (NULL); 13189 } 13190 13191 CONN_DEC_REF(connp); 13192 freemsg(first_mp); 13193 return (NULL); 13194 } 13195 13196 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { 13197 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13198 ipha, NULL, mctl_present); 13199 if (first_mp == NULL) { 13200 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13201 CONN_DEC_REF(connp); 13202 return (NULL); 13203 } 13204 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13205 ASSERT(syn_present); 13206 if (mctl_present) { 13207 ASSERT(first_mp != mp); 13208 first_mp->b_datap->db_struioflag |= 13209 STRUIO_POLICY; 13210 } else { 13211 ASSERT(first_mp == mp); 13212 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13213 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13214 } 13215 } else { 13216 /* 13217 * Discard first_mp early since we're dealing with a 13218 * fully-connected conn_t and tcp doesn't do policy in 13219 * this case. 13220 */ 13221 if (mctl_present) { 13222 freeb(first_mp); 13223 mctl_present = B_FALSE; 13224 } 13225 first_mp = mp; 13226 } 13227 } 13228 13229 /* Initiate IPPF processing for fastpath */ 13230 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13231 uint32_t ill_index; 13232 13233 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13234 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13235 if (mp == NULL) { 13236 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13237 "deferred/dropped during IPPF processing\n")); 13238 CONN_DEC_REF(connp); 13239 if (mctl_present) 13240 freeb(first_mp); 13241 return (NULL); 13242 } else if (mctl_present) { 13243 /* 13244 * ip_process might return a new mp. 13245 */ 13246 ASSERT(first_mp != mp); 13247 first_mp->b_cont = mp; 13248 } else { 13249 first_mp = mp; 13250 } 13251 13252 } 13253 13254 if (!syn_present && connp->conn_ip_recvpktinfo) { 13255 /* 13256 * TCP does not support IP_RECVPKTINFO for v4 so lets 13257 * make sure IPF_RECVIF is passed to ip_add_info. 13258 */ 13259 mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF, 13260 IPCL_ZONEID(connp), ipst); 13261 if (mp == NULL) { 13262 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13263 CONN_DEC_REF(connp); 13264 if (mctl_present) 13265 freeb(first_mp); 13266 return (NULL); 13267 } else if (mctl_present) { 13268 /* 13269 * ip_add_info might return a new mp. 13270 */ 13271 ASSERT(first_mp != mp); 13272 first_mp->b_cont = mp; 13273 } else { 13274 first_mp = mp; 13275 } 13276 } 13277 13278 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13279 if (IPCL_IS_TCP(connp)) { 13280 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13281 return (first_mp); 13282 } else { 13283 /* SOCK_RAW, IPPROTO_TCP case */ 13284 (connp->conn_recv)(connp, first_mp, NULL); 13285 CONN_DEC_REF(connp); 13286 return (NULL); 13287 } 13288 13289 no_conn: 13290 /* Initiate IPPf processing, if needed. */ 13291 if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { 13292 uint32_t ill_index; 13293 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13294 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13295 if (first_mp == NULL) { 13296 return (NULL); 13297 } 13298 } 13299 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13300 13301 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid, 13302 ipst->ips_netstack->netstack_tcp, NULL); 13303 return (NULL); 13304 ipoptions: 13305 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) { 13306 goto slow_done; 13307 } 13308 13309 UPDATE_IB_PKT_COUNT(ire); 13310 ire->ire_last_used_time = lbolt; 13311 13312 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13313 if (u1 & (IPH_MF | IPH_OFFSET)) { 13314 fragmented: 13315 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) { 13316 if (mctl_present) 13317 freeb(first_mp); 13318 goto slow_done; 13319 } 13320 /* 13321 * Make sure that first_mp points back to mp as 13322 * the mp we came in with could have changed in 13323 * ip_rput_fragment(). 13324 */ 13325 ASSERT(!mctl_present); 13326 ipha = (ipha_t *)mp->b_rptr; 13327 first_mp = mp; 13328 } 13329 13330 /* Now we have a complete datagram, destined for this machine. */ 13331 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13332 13333 len = mp->b_wptr - mp->b_rptr; 13334 /* Pull up a minimal TCP header, if necessary. */ 13335 if (len < (u1 + 20)) { 13336 tcppullup: 13337 if (!pullupmsg(mp, u1 + 20)) { 13338 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13339 goto error; 13340 } 13341 ipha = (ipha_t *)mp->b_rptr; 13342 len = mp->b_wptr - mp->b_rptr; 13343 } 13344 13345 /* 13346 * Extract the offset field from the TCP header. As usual, we 13347 * try to help the compiler more than the reader. 13348 */ 13349 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13350 if (offset != 5) { 13351 tcpoptions: 13352 if (offset < 5) { 13353 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13354 goto error; 13355 } 13356 /* 13357 * There must be TCP options. 13358 * Make sure we can grab them. 13359 */ 13360 offset <<= 2; 13361 offset += u1; 13362 if (len < offset) { 13363 if (!pullupmsg(mp, offset)) { 13364 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13365 goto error; 13366 } 13367 ipha = (ipha_t *)mp->b_rptr; 13368 len = mp->b_wptr - rptr; 13369 } 13370 } 13371 13372 /* Get the total packet length in len, including headers. */ 13373 if (mp->b_cont) 13374 len = msgdsize(mp); 13375 13376 /* 13377 * Check the TCP checksum by pulling together the pseudo- 13378 * header checksum, and passing it to ip_csum to be added in 13379 * with the TCP datagram. 13380 * 13381 * Since we are not using the hwcksum if available we must 13382 * clear the flag. We may come here via tcppullup or tcpoptions. 13383 * If either of these fails along the way the mblk is freed. 13384 * If this logic ever changes and mblk is reused to say send 13385 * ICMP's back, then this flag may need to be cleared in 13386 * other places as well. 13387 */ 13388 DB_CKSUMFLAGS(mp) = 0; 13389 13390 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13391 13392 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13393 #ifdef _BIG_ENDIAN 13394 u1 += IPPROTO_TCP; 13395 #else 13396 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13397 #endif 13398 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13399 /* 13400 * Not M_DATA mblk or its a dup, so do the checksum now. 13401 */ 13402 IP_STAT(ipst, ip_in_sw_cksum); 13403 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13404 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13405 goto error; 13406 } 13407 13408 IP_STAT(ipst, ip_tcp_slow_path); 13409 goto try_again; 13410 #undef iphs 13411 #undef rptr 13412 13413 error: 13414 freemsg(first_mp); 13415 slow_done: 13416 return (NULL); 13417 } 13418 13419 /* ARGSUSED */ 13420 static void 13421 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13422 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13423 { 13424 conn_t *connp; 13425 uint32_t sum; 13426 uint32_t u1; 13427 ssize_t len; 13428 sctp_hdr_t *sctph; 13429 zoneid_t zoneid = ire->ire_zoneid; 13430 uint32_t pktsum; 13431 uint32_t calcsum; 13432 uint32_t ports; 13433 in6_addr_t map_src, map_dst; 13434 ill_t *ill = (ill_t *)q->q_ptr; 13435 ip_stack_t *ipst; 13436 sctp_stack_t *sctps; 13437 boolean_t sctp_csum_err = B_FALSE; 13438 13439 ASSERT(recv_ill != NULL); 13440 ipst = recv_ill->ill_ipst; 13441 sctps = ipst->ips_netstack->netstack_sctp; 13442 13443 #define rptr ((uchar_t *)ipha) 13444 13445 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13446 ASSERT(ill != NULL); 13447 13448 /* u1 is # words of IP options */ 13449 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13450 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13451 13452 /* IP options present */ 13453 if (u1 > 0) { 13454 goto ipoptions; 13455 } else { 13456 /* Check the IP header checksum. */ 13457 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, recv_ill) && 13458 !mctl_present) { 13459 #define uph ((uint16_t *)ipha) 13460 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13461 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13462 #undef uph 13463 /* finish doing IP checksum */ 13464 sum = (sum & 0xFFFF) + (sum >> 16); 13465 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13466 /* 13467 * Don't verify header checksum if this packet 13468 * is coming back from AH/ESP as we already did it. 13469 */ 13470 if (sum != 0 && sum != 0xFFFF) { 13471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13472 goto error; 13473 } 13474 } 13475 /* 13476 * Since there is no SCTP h/w cksum support yet, just 13477 * clear the flag. 13478 */ 13479 DB_CKSUMFLAGS(mp) = 0; 13480 } 13481 13482 /* 13483 * Don't verify header checksum if this packet is coming 13484 * back from AH/ESP as we already did it. 13485 */ 13486 if (!mctl_present) { 13487 UPDATE_IB_PKT_COUNT(ire); 13488 ire->ire_last_used_time = lbolt; 13489 } 13490 13491 /* packet part of fragmented IP packet? */ 13492 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13493 if (u1 & (IPH_MF | IPH_OFFSET)) 13494 goto fragmented; 13495 13496 /* u1 = IP header length (20 bytes) */ 13497 u1 = IP_SIMPLE_HDR_LENGTH; 13498 13499 find_sctp_client: 13500 /* Pullup if we don't have the sctp common header. */ 13501 len = MBLKL(mp); 13502 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13503 if (mp->b_cont == NULL || 13504 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13505 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13506 goto error; 13507 } 13508 ipha = (ipha_t *)mp->b_rptr; 13509 len = MBLKL(mp); 13510 } 13511 13512 sctph = (sctp_hdr_t *)(rptr + u1); 13513 #ifdef DEBUG 13514 if (!skip_sctp_cksum) { 13515 #endif 13516 pktsum = sctph->sh_chksum; 13517 sctph->sh_chksum = 0; 13518 calcsum = sctp_cksum(mp, u1); 13519 sctph->sh_chksum = pktsum; 13520 if (calcsum != pktsum) 13521 sctp_csum_err = B_TRUE; 13522 #ifdef DEBUG /* skip_sctp_cksum */ 13523 } 13524 #endif 13525 /* get the ports */ 13526 ports = *(uint32_t *)&sctph->sh_sport; 13527 13528 IRE_REFRELE(ire); 13529 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13530 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13531 if (sctp_csum_err) { 13532 /* 13533 * No potential sctp checksum errors go to the Sun 13534 * sctp stack however they might be Adler-32 summed 13535 * packets a userland stack bound to a raw IP socket 13536 * could reasonably use. Note though that Adler-32 is 13537 * a long deprecated algorithm and customer sctp 13538 * networks should eventually migrate to CRC-32 at 13539 * which time this facility should be removed. 13540 */ 13541 flags |= IP_FF_SCTP_CSUM_ERR; 13542 goto no_conn; 13543 } 13544 if ((connp = sctp_fanout(&map_src, &map_dst, ports, zoneid, mp, 13545 sctps)) == NULL) { 13546 /* Check for raw socket or OOTB handling */ 13547 goto no_conn; 13548 } 13549 13550 /* Found a client; up it goes */ 13551 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13552 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13553 return; 13554 13555 no_conn: 13556 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13557 ports, mctl_present, flags, B_TRUE, zoneid); 13558 return; 13559 13560 ipoptions: 13561 DB_CKSUMFLAGS(mp) = 0; 13562 if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) 13563 goto slow_done; 13564 13565 UPDATE_IB_PKT_COUNT(ire); 13566 ire->ire_last_used_time = lbolt; 13567 13568 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13569 if (u1 & (IPH_MF | IPH_OFFSET)) { 13570 fragmented: 13571 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 13572 goto slow_done; 13573 /* 13574 * Make sure that first_mp points back to mp as 13575 * the mp we came in with could have changed in 13576 * ip_rput_fragment(). 13577 */ 13578 ASSERT(!mctl_present); 13579 ipha = (ipha_t *)mp->b_rptr; 13580 first_mp = mp; 13581 } 13582 13583 /* Now we have a complete datagram, destined for this machine. */ 13584 u1 = IPH_HDR_LENGTH(ipha); 13585 goto find_sctp_client; 13586 #undef iphs 13587 #undef rptr 13588 13589 error: 13590 freemsg(first_mp); 13591 slow_done: 13592 IRE_REFRELE(ire); 13593 } 13594 13595 #define VER_BITS 0xF0 13596 #define VERSION_6 0x60 13597 13598 static boolean_t 13599 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13600 ipaddr_t *dstp, ip_stack_t *ipst) 13601 { 13602 uint_t opt_len; 13603 ipha_t *ipha; 13604 ssize_t len; 13605 uint_t pkt_len; 13606 13607 ASSERT(ill != NULL); 13608 IP_STAT(ipst, ip_ipoptions); 13609 ipha = *iphapp; 13610 13611 #define rptr ((uchar_t *)ipha) 13612 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13613 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13614 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13615 freemsg(mp); 13616 return (B_FALSE); 13617 } 13618 13619 /* multiple mblk or too short */ 13620 pkt_len = ntohs(ipha->ipha_length); 13621 13622 /* Get the number of words of IP options in the IP header. */ 13623 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13624 if (opt_len) { 13625 /* IP Options present! Validate and process. */ 13626 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13627 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13628 goto done; 13629 } 13630 /* 13631 * Recompute complete header length and make sure we 13632 * have access to all of it. 13633 */ 13634 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13635 if (len > (mp->b_wptr - rptr)) { 13636 if (len > pkt_len) { 13637 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13638 goto done; 13639 } 13640 if (!pullupmsg(mp, len)) { 13641 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13642 goto done; 13643 } 13644 ipha = (ipha_t *)mp->b_rptr; 13645 } 13646 /* 13647 * Go off to ip_rput_options which returns the next hop 13648 * destination address, which may have been affected 13649 * by source routing. 13650 */ 13651 IP_STAT(ipst, ip_opt); 13652 if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) { 13653 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13654 return (B_FALSE); 13655 } 13656 } 13657 *iphapp = ipha; 13658 return (B_TRUE); 13659 done: 13660 /* clear b_prev - used by ip_mroute_decap */ 13661 mp->b_prev = NULL; 13662 freemsg(mp); 13663 return (B_FALSE); 13664 #undef rptr 13665 } 13666 13667 /* 13668 * Deal with the fact that there is no ire for the destination. 13669 */ 13670 static ire_t * 13671 ip_rput_noire(queue_t *q, mblk_t *mp, int ll_multicast, ipaddr_t dst) 13672 { 13673 ipha_t *ipha; 13674 ill_t *ill; 13675 ire_t *ire; 13676 ip_stack_t *ipst; 13677 enum ire_forward_action ret_action; 13678 13679 ipha = (ipha_t *)mp->b_rptr; 13680 ill = (ill_t *)q->q_ptr; 13681 13682 ASSERT(ill != NULL); 13683 ipst = ill->ill_ipst; 13684 13685 /* 13686 * No IRE for this destination, so it can't be for us. 13687 * Unless we are forwarding, drop the packet. 13688 * We have to let source routed packets through 13689 * since we don't yet know if they are 'ping -l' 13690 * packets i.e. if they will go out over the 13691 * same interface as they came in on. 13692 */ 13693 if (ll_multicast) { 13694 freemsg(mp); 13695 return (NULL); 13696 } 13697 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) { 13698 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13699 freemsg(mp); 13700 return (NULL); 13701 } 13702 13703 /* 13704 * Mark this packet as having originated externally. 13705 * 13706 * For non-forwarding code path, ire_send later double 13707 * checks this interface to see if it is still exists 13708 * post-ARP resolution. 13709 * 13710 * Also, IPQOS uses this to differentiate between 13711 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13712 * QOS packet processing in ip_wput_attach_llhdr(). 13713 * The QoS module can mark the b_band for a fastpath message 13714 * or the dl_priority field in a unitdata_req header for 13715 * CoS marking. This info can only be found in 13716 * ip_wput_attach_llhdr(). 13717 */ 13718 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13719 /* 13720 * Clear the indication that this may have a hardware checksum 13721 * as we are not using it 13722 */ 13723 DB_CKSUMFLAGS(mp) = 0; 13724 13725 ire = ire_forward(dst, &ret_action, NULL, NULL, 13726 msg_getlabel(mp), ipst); 13727 13728 if (ire == NULL && ret_action == Forward_check_multirt) { 13729 /* Let ip_newroute handle CGTP */ 13730 ip_newroute(q, mp, dst, NULL, GLOBAL_ZONEID, ipst); 13731 return (NULL); 13732 } 13733 13734 if (ire != NULL) 13735 return (ire); 13736 13737 mp->b_prev = mp->b_next = 0; 13738 13739 if (ret_action == Forward_blackhole) { 13740 freemsg(mp); 13741 return (NULL); 13742 } 13743 /* send icmp unreachable */ 13744 q = WR(q); 13745 /* Sent by forwarding path, and router is global zone */ 13746 if (ip_source_routed(ipha, ipst)) { 13747 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13748 GLOBAL_ZONEID, ipst); 13749 } else { 13750 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID, 13751 ipst); 13752 } 13753 13754 return (NULL); 13755 13756 } 13757 13758 /* 13759 * check ip header length and align it. 13760 */ 13761 static boolean_t 13762 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst) 13763 { 13764 ssize_t len; 13765 ill_t *ill; 13766 ipha_t *ipha; 13767 13768 len = MBLKL(mp); 13769 13770 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13771 ill = (ill_t *)q->q_ptr; 13772 13773 if (!OK_32PTR(mp->b_rptr)) 13774 IP_STAT(ipst, ip_notaligned1); 13775 else 13776 IP_STAT(ipst, ip_notaligned2); 13777 /* Guard against bogus device drivers */ 13778 if (len < 0) { 13779 /* clear b_prev - used by ip_mroute_decap */ 13780 mp->b_prev = NULL; 13781 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13782 freemsg(mp); 13783 return (B_FALSE); 13784 } 13785 13786 if (ip_rput_pullups++ == 0) { 13787 ipha = (ipha_t *)mp->b_rptr; 13788 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13789 "ip_check_and_align_header: %s forced us to " 13790 " pullup pkt, hdr len %ld, hdr addr %p", 13791 ill->ill_name, len, (void *)ipha); 13792 } 13793 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13794 /* clear b_prev - used by ip_mroute_decap */ 13795 mp->b_prev = NULL; 13796 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13797 freemsg(mp); 13798 return (B_FALSE); 13799 } 13800 } 13801 return (B_TRUE); 13802 } 13803 13804 /* 13805 * Handle the situation where a packet came in on `ill' but matched an IRE 13806 * whose ire_rfq doesn't match `ill'. We return the IRE that should be used 13807 * for interface statistics. 13808 */ 13809 ire_t * 13810 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 13811 { 13812 ire_t *new_ire; 13813 ill_t *ire_ill; 13814 uint_t ifindex; 13815 ip_stack_t *ipst = ill->ill_ipst; 13816 boolean_t strict_check = B_FALSE; 13817 13818 /* 13819 * IPMP common case: if IRE and ILL are in the same group, there's no 13820 * issue (e.g. packet received on an underlying interface matched an 13821 * IRE_LOCAL on its associated group interface). 13822 */ 13823 if (ire->ire_rfq != NULL && 13824 IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr)) { 13825 return (ire); 13826 } 13827 13828 /* 13829 * Do another ire lookup here, using the ingress ill, to see if the 13830 * interface is in a usesrc group. 13831 * As long as the ills belong to the same group, we don't consider 13832 * them to be arriving on the wrong interface. Thus, if the switch 13833 * is doing inbound load spreading, we won't drop packets when the 13834 * ip*_strict_dst_multihoming switch is on. 13835 * We also need to check for IPIF_UNNUMBERED point2point interfaces 13836 * where the local address may not be unique. In this case we were 13837 * at the mercy of the initial ire cache lookup and the IRE_LOCAL it 13838 * actually returned. The new lookup, which is more specific, should 13839 * only find the IRE_LOCAL associated with the ingress ill if one 13840 * exists. 13841 */ 13842 13843 if (ire->ire_ipversion == IPV4_VERSION) { 13844 if (ipst->ips_ip_strict_dst_multihoming) 13845 strict_check = B_TRUE; 13846 new_ire = ire_ctable_lookup(*((ipaddr_t *)addr), 0, IRE_LOCAL, 13847 ill->ill_ipif, ALL_ZONES, NULL, 13848 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13849 } else { 13850 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 13851 if (ipst->ips_ipv6_strict_dst_multihoming) 13852 strict_check = B_TRUE; 13853 new_ire = ire_ctable_lookup_v6((in6_addr_t *)addr, NULL, 13854 IRE_LOCAL, ill->ill_ipif, ALL_ZONES, NULL, 13855 (MATCH_IRE_TYPE|MATCH_IRE_ILL), ipst); 13856 } 13857 /* 13858 * If the same ire that was returned in ip_input() is found then this 13859 * is an indication that usesrc groups are in use. The packet 13860 * arrived on a different ill in the group than the one associated with 13861 * the destination address. If a different ire was found then the same 13862 * IP address must be hosted on multiple ills. This is possible with 13863 * unnumbered point2point interfaces. We switch to use this new ire in 13864 * order to have accurate interface statistics. 13865 */ 13866 if (new_ire != NULL) { 13867 if ((new_ire != ire) && (new_ire->ire_rfq != NULL)) { 13868 ire_refrele(ire); 13869 ire = new_ire; 13870 } else { 13871 ire_refrele(new_ire); 13872 } 13873 return (ire); 13874 } else if ((ire->ire_rfq == NULL) && 13875 (ire->ire_ipversion == IPV4_VERSION)) { 13876 /* 13877 * The best match could have been the original ire which 13878 * was created against an IRE_LOCAL on lo0. In the IPv4 case 13879 * the strict multihoming checks are irrelevant as we consider 13880 * local addresses hosted on lo0 to be interface agnostic. We 13881 * only expect a null ire_rfq on IREs which are associated with 13882 * lo0 hence we can return now. 13883 */ 13884 return (ire); 13885 } 13886 13887 /* 13888 * Chase pointers once and store locally. 13889 */ 13890 ire_ill = (ire->ire_rfq == NULL) ? NULL : 13891 (ill_t *)(ire->ire_rfq->q_ptr); 13892 ifindex = ill->ill_usesrc_ifindex; 13893 13894 /* 13895 * Check if it's a legal address on the 'usesrc' interface. 13896 */ 13897 if ((ifindex != 0) && (ire_ill != NULL) && 13898 (ifindex == ire_ill->ill_phyint->phyint_ifindex)) { 13899 return (ire); 13900 } 13901 13902 /* 13903 * If the ip*_strict_dst_multihoming switch is on then we can 13904 * only accept this packet if the interface is marked as routing. 13905 */ 13906 if (!(strict_check)) 13907 return (ire); 13908 13909 if ((ill->ill_flags & ire->ire_ipif->ipif_ill->ill_flags & 13910 ILLF_ROUTER) != 0) { 13911 return (ire); 13912 } 13913 13914 ire_refrele(ire); 13915 return (NULL); 13916 } 13917 13918 /* 13919 * 13920 * This is the fast forward path. If we are here, we dont need to 13921 * worry about RSVP, CGTP, or TSol. Furthermore the ftable lookup 13922 * needed to find the nexthop in this case is much simpler 13923 */ 13924 ire_t * 13925 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13926 { 13927 ipha_t *ipha; 13928 ire_t *src_ire; 13929 ill_t *stq_ill; 13930 uint_t hlen; 13931 uint_t pkt_len; 13932 uint32_t sum; 13933 queue_t *dev_q; 13934 ip_stack_t *ipst = ill->ill_ipst; 13935 mblk_t *fpmp; 13936 enum ire_forward_action ret_action; 13937 13938 ipha = (ipha_t *)mp->b_rptr; 13939 13940 if (ire != NULL && 13941 ire->ire_zoneid != GLOBAL_ZONEID && 13942 ire->ire_zoneid != ALL_ZONES) { 13943 /* 13944 * Should only use IREs that are visible to the global 13945 * zone for forwarding. 13946 */ 13947 ire_refrele(ire); 13948 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, NULL, ipst); 13949 /* 13950 * ire_cache_lookup() can return ire of IRE_LOCAL in 13951 * transient cases. In such case, just drop the packet 13952 */ 13953 if (ire->ire_type != IRE_CACHE) 13954 goto drop; 13955 } 13956 13957 /* 13958 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13959 * The loopback address check for both src and dst has already 13960 * been checked in ip_input 13961 */ 13962 13963 if (dst == INADDR_ANY || CLASSD(ipha->ipha_src)) { 13964 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13965 goto drop; 13966 } 13967 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13968 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 13969 13970 if (src_ire != NULL) { 13971 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13972 ire_refrele(src_ire); 13973 goto drop; 13974 } 13975 13976 /* No ire cache of nexthop. So first create one */ 13977 if (ire == NULL) { 13978 13979 ire = ire_forward_simple(dst, &ret_action, ipst); 13980 13981 /* 13982 * We only come to ip_fast_forward if ip_cgtp_filter 13983 * is not set. So ire_forward() should not return with 13984 * Forward_check_multirt as the next action. 13985 */ 13986 ASSERT(ret_action != Forward_check_multirt); 13987 if (ire == NULL) { 13988 /* An attempt was made to forward the packet */ 13989 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13990 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13991 mp->b_prev = mp->b_next = 0; 13992 /* send icmp unreachable */ 13993 /* Sent by forwarding path, and router is global zone */ 13994 if (ret_action == Forward_ret_icmp_err) { 13995 if (ip_source_routed(ipha, ipst)) { 13996 icmp_unreachable(ill->ill_wq, mp, 13997 ICMP_SOURCE_ROUTE_FAILED, 13998 GLOBAL_ZONEID, ipst); 13999 } else { 14000 icmp_unreachable(ill->ill_wq, mp, 14001 ICMP_HOST_UNREACHABLE, 14002 GLOBAL_ZONEID, ipst); 14003 } 14004 } else { 14005 freemsg(mp); 14006 } 14007 return (NULL); 14008 } 14009 } 14010 14011 /* 14012 * Forwarding fastpath exception case: 14013 * If any of the following are true, we take the slowpath: 14014 * o forwarding is not enabled 14015 * o incoming and outgoing interface are the same, or in the same 14016 * IPMP group. 14017 * o corresponding ire is in incomplete state 14018 * o packet needs fragmentation 14019 * o ARP cache is not resolved 14020 * 14021 * The codeflow from here on is thus: 14022 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 14023 */ 14024 pkt_len = ntohs(ipha->ipha_length); 14025 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 14026 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 14027 (ill == stq_ill) || IS_IN_SAME_ILLGRP(ill, stq_ill) || 14028 (ire->ire_nce == NULL) || 14029 (pkt_len > ire->ire_max_frag) || 14030 ((fpmp = ire->ire_nce->nce_fp_mp) == NULL) || 14031 ((hlen = MBLKL(fpmp)) > MBLKHEAD(mp)) || 14032 ipha->ipha_ttl <= 1) { 14033 ip_rput_process_forward(ill->ill_rq, mp, ire, 14034 ipha, ill, B_FALSE, B_TRUE); 14035 return (ire); 14036 } 14037 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14038 14039 DTRACE_PROBE4(ip4__forwarding__start, 14040 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14041 14042 FW_HOOKS(ipst->ips_ip4_forwarding_event, 14043 ipst->ips_ipv4firewall_forwarding, 14044 ill, stq_ill, ipha, mp, mp, 0, ipst); 14045 14046 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 14047 14048 if (mp == NULL) 14049 goto drop; 14050 14051 mp->b_datap->db_struioun.cksum.flags = 0; 14052 /* Adjust the checksum to reflect the ttl decrement. */ 14053 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 14054 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 14055 ipha->ipha_ttl--; 14056 14057 /* 14058 * Write the link layer header. We can do this safely here, 14059 * because we have already tested to make sure that the IP 14060 * policy is not set, and that we have a fast path destination 14061 * header. 14062 */ 14063 mp->b_rptr -= hlen; 14064 bcopy(fpmp->b_rptr, mp->b_rptr, hlen); 14065 14066 UPDATE_IB_PKT_COUNT(ire); 14067 ire->ire_last_used_time = lbolt; 14068 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 14069 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14070 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, pkt_len); 14071 14072 if (!ILL_DIRECT_CAPABLE(stq_ill) || DB_TYPE(mp) != M_DATA) { 14073 dev_q = ire->ire_stq->q_next; 14074 if (DEV_Q_FLOW_BLOCKED(dev_q)) 14075 goto indiscard; 14076 } 14077 14078 DTRACE_PROBE4(ip4__physical__out__start, 14079 ill_t *, NULL, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 14080 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14081 ipst->ips_ipv4firewall_physical_out, 14082 NULL, stq_ill, ipha, mp, mp, 0, ipst); 14083 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 14084 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, 14085 ipha, __dtrace_ipsr_ill_t *, stq_ill, ipha_t *, ipha, 14086 ip6_t *, NULL, int, 0); 14087 14088 if (mp != NULL) { 14089 if (ipst->ips_ipobs_enabled) { 14090 zoneid_t szone; 14091 14092 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 14093 ipst, ALL_ZONES); 14094 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 14095 ALL_ZONES, ill, IPV4_VERSION, hlen, ipst); 14096 } 14097 ILL_SEND_TX(stq_ill, ire, dst, mp, IP_DROP_ON_NO_DESC, NULL); 14098 } 14099 return (ire); 14100 14101 indiscard: 14102 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14103 drop: 14104 if (mp != NULL) 14105 freemsg(mp); 14106 return (ire); 14107 14108 } 14109 14110 /* 14111 * This function is called in the forwarding slowpath, when 14112 * either the ire lacks the link-layer address, or the packet needs 14113 * further processing(eg. fragmentation), before transmission. 14114 */ 14115 14116 static void 14117 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14118 ill_t *ill, boolean_t ll_multicast, boolean_t from_ip_fast_forward) 14119 { 14120 queue_t *dev_q; 14121 ire_t *src_ire; 14122 ip_stack_t *ipst = ill->ill_ipst; 14123 boolean_t same_illgrp = B_FALSE; 14124 14125 ASSERT(ire->ire_stq != NULL); 14126 14127 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 14128 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 14129 14130 /* 14131 * If the caller of this function is ip_fast_forward() skip the 14132 * next three checks as it does not apply. 14133 */ 14134 if (from_ip_fast_forward) 14135 goto skip; 14136 14137 if (ll_multicast != 0) { 14138 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14139 goto drop_pkt; 14140 } 14141 14142 /* 14143 * check if ipha_src is a broadcast address. Note that this 14144 * check is redundant when we get here from ip_fast_forward() 14145 * which has already done this check. However, since we can 14146 * also get here from ip_rput_process_broadcast() or, for 14147 * for the slow path through ip_fast_forward(), we perform 14148 * the check again for code-reusability 14149 */ 14150 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 14151 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 14152 if (src_ire != NULL || ipha->ipha_dst == INADDR_ANY) { 14153 if (src_ire != NULL) 14154 ire_refrele(src_ire); 14155 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14156 ip2dbg(("ip_rput_process_forward: Received packet with" 14157 " bad src/dst address on %s\n", ill->ill_name)); 14158 goto drop_pkt; 14159 } 14160 14161 /* 14162 * Check if we want to forward this one at this time. 14163 * We allow source routed packets on a host provided that 14164 * they go out the same ill or illgrp as they came in on. 14165 * 14166 * XXX To be quicker, we may wish to not chase pointers to 14167 * get the ILLF_ROUTER flag and instead store the 14168 * forwarding policy in the ire. An unfortunate 14169 * side-effect of that would be requiring an ire flush 14170 * whenever the ILLF_ROUTER flag changes. 14171 */ 14172 skip: 14173 same_illgrp = IS_IN_SAME_ILLGRP(ill, (ill_t *)ire->ire_rfq->q_ptr); 14174 14175 if (((ill->ill_flags & 14176 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & ILLF_ROUTER) == 0) && 14177 !(ip_source_routed(ipha, ipst) && 14178 (ire->ire_rfq == q || same_illgrp))) { 14179 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 14180 if (ip_source_routed(ipha, ipst)) { 14181 q = WR(q); 14182 /* 14183 * Clear the indication that this may have 14184 * hardware checksum as we are not using it. 14185 */ 14186 DB_CKSUMFLAGS(mp) = 0; 14187 /* Sent by forwarding path, and router is global zone */ 14188 icmp_unreachable(q, mp, 14189 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst); 14190 return; 14191 } 14192 goto drop_pkt; 14193 } 14194 14195 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 14196 14197 /* Packet is being forwarded. Turning off hwcksum flag. */ 14198 DB_CKSUMFLAGS(mp) = 0; 14199 if (ipst->ips_ip_g_send_redirects) { 14200 /* 14201 * Check whether the incoming interface and outgoing 14202 * interface is part of the same group. If so, 14203 * send redirects. 14204 * 14205 * Check the source address to see if it originated 14206 * on the same logical subnet it is going back out on. 14207 * If so, we should be able to send it a redirect. 14208 * Avoid sending a redirect if the destination 14209 * is directly connected (i.e., ipha_dst is the same 14210 * as ire_gateway_addr or the ire_addr of the 14211 * nexthop IRE_CACHE ), or if the packet was source 14212 * routed out this interface. 14213 */ 14214 ipaddr_t src, nhop; 14215 mblk_t *mp1; 14216 ire_t *nhop_ire = NULL; 14217 14218 /* 14219 * Check whether ire_rfq and q are from the same ill or illgrp. 14220 * If so, send redirects. 14221 */ 14222 if ((ire->ire_rfq == q || same_illgrp) && 14223 !ip_source_routed(ipha, ipst)) { 14224 14225 nhop = (ire->ire_gateway_addr != 0 ? 14226 ire->ire_gateway_addr : ire->ire_addr); 14227 14228 if (ipha->ipha_dst == nhop) { 14229 /* 14230 * We avoid sending a redirect if the 14231 * destination is directly connected 14232 * because it is possible that multiple 14233 * IP subnets may have been configured on 14234 * the link, and the source may not 14235 * be on the same subnet as ip destination, 14236 * even though they are on the same 14237 * physical link. 14238 */ 14239 goto sendit; 14240 } 14241 14242 src = ipha->ipha_src; 14243 14244 /* 14245 * We look up the interface ire for the nexthop, 14246 * to see if ipha_src is in the same subnet 14247 * as the nexthop. 14248 * 14249 * Note that, if, in the future, IRE_CACHE entries 14250 * are obsoleted, this lookup will not be needed, 14251 * as the ire passed to this function will be the 14252 * same as the nhop_ire computed below. 14253 */ 14254 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 14255 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 14256 0, NULL, MATCH_IRE_TYPE, ipst); 14257 14258 if (nhop_ire != NULL) { 14259 if ((src & nhop_ire->ire_mask) == 14260 (nhop & nhop_ire->ire_mask)) { 14261 /* 14262 * The source is directly connected. 14263 * Just copy the ip header (which is 14264 * in the first mblk) 14265 */ 14266 mp1 = copyb(mp); 14267 if (mp1 != NULL) { 14268 icmp_send_redirect(WR(q), mp1, 14269 nhop, ipst); 14270 } 14271 } 14272 ire_refrele(nhop_ire); 14273 } 14274 } 14275 } 14276 sendit: 14277 dev_q = ire->ire_stq->q_next; 14278 if (DEV_Q_FLOW_BLOCKED(dev_q)) { 14279 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14280 freemsg(mp); 14281 return; 14282 } 14283 14284 ip_rput_forward(ire, ipha, mp, ill); 14285 return; 14286 14287 drop_pkt: 14288 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14289 freemsg(mp); 14290 } 14291 14292 ire_t * 14293 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14294 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14295 { 14296 queue_t *q; 14297 uint16_t hcksumflags; 14298 ip_stack_t *ipst = ill->ill_ipst; 14299 14300 q = *qp; 14301 14302 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14303 14304 /* 14305 * Clear the indication that this may have hardware 14306 * checksum as we are not using it for forwarding. 14307 */ 14308 hcksumflags = DB_CKSUMFLAGS(mp); 14309 DB_CKSUMFLAGS(mp) = 0; 14310 14311 /* 14312 * Directed broadcast forwarding: if the packet came in over a 14313 * different interface then it is routed out over we can forward it. 14314 */ 14315 if (ipha->ipha_protocol == IPPROTO_TCP) { 14316 ire_refrele(ire); 14317 freemsg(mp); 14318 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14319 return (NULL); 14320 } 14321 /* 14322 * For multicast we have set dst to be INADDR_BROADCAST 14323 * for delivering to all STREAMS. 14324 */ 14325 if (!CLASSD(ipha->ipha_dst)) { 14326 ire_t *new_ire; 14327 ipif_t *ipif; 14328 14329 ipif = ipif_get_next_ipif(NULL, ill); 14330 if (ipif == NULL) { 14331 discard: ire_refrele(ire); 14332 freemsg(mp); 14333 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14334 return (NULL); 14335 } 14336 new_ire = ire_ctable_lookup(dst, 0, 0, 14337 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst); 14338 ipif_refrele(ipif); 14339 14340 if (new_ire != NULL) { 14341 /* 14342 * If the matching IRE_BROADCAST is part of an IPMP 14343 * group, then drop the packet unless our ill has been 14344 * nominated to receive for the group. 14345 */ 14346 if (IS_IPMP(new_ire->ire_ipif->ipif_ill) && 14347 new_ire->ire_rfq != q) { 14348 ire_refrele(new_ire); 14349 goto discard; 14350 } 14351 14352 /* 14353 * In the special case of multirouted broadcast 14354 * packets, we unconditionally need to "gateway" 14355 * them to the appropriate interface here. 14356 * In the normal case, this cannot happen, because 14357 * there is no broadcast IRE tagged with the 14358 * RTF_MULTIRT flag. 14359 */ 14360 if (new_ire->ire_flags & RTF_MULTIRT) { 14361 ire_refrele(new_ire); 14362 if (ire->ire_rfq != NULL) { 14363 q = ire->ire_rfq; 14364 *qp = q; 14365 } 14366 } else { 14367 ire_refrele(ire); 14368 ire = new_ire; 14369 } 14370 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14371 if (!ipst->ips_ip_g_forward_directed_bcast) { 14372 /* 14373 * Free the message if 14374 * ip_g_forward_directed_bcast is turned 14375 * off for non-local broadcast. 14376 */ 14377 ire_refrele(ire); 14378 freemsg(mp); 14379 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14380 return (NULL); 14381 } 14382 } else { 14383 /* 14384 * This CGTP packet successfully passed the 14385 * CGTP filter, but the related CGTP 14386 * broadcast IRE has not been found, 14387 * meaning that the redundant ipif is 14388 * probably down. However, if we discarded 14389 * this packet, its duplicate would be 14390 * filtered out by the CGTP filter so none 14391 * of them would get through. So we keep 14392 * going with this one. 14393 */ 14394 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14395 if (ire->ire_rfq != NULL) { 14396 q = ire->ire_rfq; 14397 *qp = q; 14398 } 14399 } 14400 } 14401 if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) { 14402 /* 14403 * Verify that there are not more then one 14404 * IRE_BROADCAST with this broadcast address which 14405 * has ire_stq set. 14406 * TODO: simplify, loop over all IRE's 14407 */ 14408 ire_t *ire1; 14409 int num_stq = 0; 14410 mblk_t *mp1; 14411 14412 /* Find the first one with ire_stq set */ 14413 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14414 for (ire1 = ire; ire1 && 14415 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14416 ire1 = ire1->ire_next) 14417 ; 14418 if (ire1) { 14419 ire_refrele(ire); 14420 ire = ire1; 14421 IRE_REFHOLD(ire); 14422 } 14423 14424 /* Check if there are additional ones with stq set */ 14425 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14426 if (ire->ire_addr != ire1->ire_addr) 14427 break; 14428 if (ire1->ire_stq) { 14429 num_stq++; 14430 break; 14431 } 14432 } 14433 rw_exit(&ire->ire_bucket->irb_lock); 14434 if (num_stq == 1 && ire->ire_stq != NULL) { 14435 ip1dbg(("ip_rput_process_broadcast: directed " 14436 "broadcast to 0x%x\n", 14437 ntohl(ire->ire_addr))); 14438 mp1 = copymsg(mp); 14439 if (mp1) { 14440 switch (ipha->ipha_protocol) { 14441 case IPPROTO_UDP: 14442 ip_udp_input(q, mp1, ipha, ire, ill); 14443 break; 14444 default: 14445 ip_proto_input(q, mp1, ipha, ire, ill, 14446 0); 14447 break; 14448 } 14449 } 14450 /* 14451 * Adjust ttl to 2 (1+1 - the forward engine 14452 * will decrement it by one. 14453 */ 14454 if (ip_csum_hdr(ipha)) { 14455 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14456 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14457 freemsg(mp); 14458 ire_refrele(ire); 14459 return (NULL); 14460 } 14461 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1; 14462 ipha->ipha_hdr_checksum = 0; 14463 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14464 ip_rput_process_forward(q, mp, ire, ipha, 14465 ill, ll_multicast, B_FALSE); 14466 ire_refrele(ire); 14467 return (NULL); 14468 } 14469 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14470 ntohl(ire->ire_addr))); 14471 } 14472 14473 /* Restore any hardware checksum flags */ 14474 DB_CKSUMFLAGS(mp) = hcksumflags; 14475 return (ire); 14476 } 14477 14478 /* ARGSUSED */ 14479 static boolean_t 14480 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14481 int *ll_multicast, ipaddr_t *dstp) 14482 { 14483 ip_stack_t *ipst = ill->ill_ipst; 14484 14485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14486 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14487 ntohs(ipha->ipha_length)); 14488 14489 /* 14490 * So that we don't end up with dups, only one ill in an IPMP group is 14491 * nominated to receive multicast traffic. 14492 */ 14493 if (IS_UNDER_IPMP(ill) && !ill->ill_nom_cast) 14494 goto drop_pkt; 14495 14496 /* 14497 * Forward packets only if we have joined the allmulti 14498 * group on this interface. 14499 */ 14500 if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) { 14501 int retval; 14502 14503 /* 14504 * Clear the indication that this may have hardware 14505 * checksum as we are not using it. 14506 */ 14507 DB_CKSUMFLAGS(mp) = 0; 14508 retval = ip_mforward(ill, ipha, mp); 14509 /* ip_mforward updates mib variables if needed */ 14510 /* clear b_prev - used by ip_mroute_decap */ 14511 mp->b_prev = NULL; 14512 14513 switch (retval) { 14514 case 0: 14515 /* 14516 * pkt is okay and arrived on phyint. 14517 * 14518 * If we are running as a multicast router 14519 * we need to see all IGMP and/or PIM packets. 14520 */ 14521 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14522 (ipha->ipha_protocol == IPPROTO_PIM)) { 14523 goto done; 14524 } 14525 break; 14526 case -1: 14527 /* pkt is mal-formed, toss it */ 14528 goto drop_pkt; 14529 case 1: 14530 /* pkt is okay and arrived on a tunnel */ 14531 /* 14532 * If we are running a multicast router 14533 * we need to see all igmp packets. 14534 */ 14535 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14536 *dstp = INADDR_BROADCAST; 14537 *ll_multicast = 1; 14538 return (B_FALSE); 14539 } 14540 14541 goto drop_pkt; 14542 } 14543 } 14544 14545 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14546 /* 14547 * This might just be caused by the fact that 14548 * multiple IP Multicast addresses map to the same 14549 * link layer multicast - no need to increment counter! 14550 */ 14551 freemsg(mp); 14552 return (B_TRUE); 14553 } 14554 done: 14555 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14556 /* 14557 * This assumes the we deliver to all streams for multicast 14558 * and broadcast packets. 14559 */ 14560 *dstp = INADDR_BROADCAST; 14561 *ll_multicast = 1; 14562 return (B_FALSE); 14563 drop_pkt: 14564 ip2dbg(("ip_rput: drop pkt\n")); 14565 freemsg(mp); 14566 return (B_TRUE); 14567 } 14568 14569 /* 14570 * This function is used to both return an indication of whether or not 14571 * the packet received is a non-unicast packet (by way of the DL_UNITDATA_IND) 14572 * and in doing so, determine whether or not it is broadcast vs multicast. 14573 * For it to be a broadcast packet, we must have the appropriate mblk_t 14574 * hanging off the ill_t. If this is either not present or doesn't match 14575 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 14576 * to be multicast. Thus NICs that have no broadcast address (or no 14577 * capability for one, such as point to point links) cannot return as 14578 * the packet being broadcast. The use of HPE_BROADCAST/HPE_MULTICAST as 14579 * the return values simplifies the current use of the return value of this 14580 * function, which is to pass through the multicast/broadcast characteristic 14581 * to consumers of the netinfo/pfhooks API. While this is not cast in stone, 14582 * changing the return value to some other symbol demands the appropriate 14583 * "translation" when hpe_flags is set prior to calling hook_run() for 14584 * packet events. 14585 */ 14586 int 14587 ip_get_dlpi_mbcast(ill_t *ill, mblk_t *mb) 14588 { 14589 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 14590 mblk_t *bmp; 14591 14592 if (ind->dl_group_address) { 14593 if (ind->dl_dest_addr_offset > sizeof (*ind) && 14594 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < 14595 MBLKL(mb) && 14596 (bmp = ill->ill_bcast_mp) != NULL) { 14597 dl_unitdata_req_t *dlur; 14598 uint8_t *bphys_addr; 14599 14600 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 14601 if (ill->ill_sap_length < 0) 14602 bphys_addr = (uchar_t *)dlur + 14603 dlur->dl_dest_addr_offset; 14604 else 14605 bphys_addr = (uchar_t *)dlur + 14606 dlur->dl_dest_addr_offset + 14607 ill->ill_sap_length; 14608 14609 if (bcmp(mb->b_rptr + ind->dl_dest_addr_offset, 14610 bphys_addr, ind->dl_dest_addr_length) == 0) { 14611 return (HPE_BROADCAST); 14612 } 14613 return (HPE_MULTICAST); 14614 } 14615 return (HPE_MULTICAST); 14616 } 14617 return (0); 14618 } 14619 14620 static boolean_t 14621 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14622 int *ll_multicast, mblk_t **mpp) 14623 { 14624 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14625 boolean_t must_copy = B_FALSE; 14626 struct iocblk *iocp; 14627 ipha_t *ipha; 14628 ip_stack_t *ipst = ill->ill_ipst; 14629 14630 #define rptr ((uchar_t *)ipha) 14631 14632 first_mp = *first_mpp; 14633 mp = *mpp; 14634 14635 ASSERT(first_mp == mp); 14636 14637 /* 14638 * if db_ref > 1 then copymsg and free original. Packet may be 14639 * changed and do not want other entity who has a reference to this 14640 * message to trip over the changes. This is a blind change because 14641 * trying to catch all places that might change packet is too 14642 * difficult (since it may be a module above this one) 14643 * 14644 * This corresponds to the non-fast path case. We walk down the full 14645 * chain in this case, and check the db_ref count of all the dblks, 14646 * and do a copymsg if required. It is possible that the db_ref counts 14647 * of the data blocks in the mblk chain can be different. 14648 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14649 * count of 1, followed by a M_DATA block with a ref count of 2, if 14650 * 'snoop' is running. 14651 */ 14652 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14653 if (mp1->b_datap->db_ref > 1) { 14654 must_copy = B_TRUE; 14655 break; 14656 } 14657 } 14658 14659 if (must_copy) { 14660 mp1 = copymsg(mp); 14661 if (mp1 == NULL) { 14662 for (mp1 = mp; mp1 != NULL; 14663 mp1 = mp1->b_cont) { 14664 mp1->b_next = NULL; 14665 mp1->b_prev = NULL; 14666 } 14667 freemsg(mp); 14668 if (ill != NULL) { 14669 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14670 } else { 14671 BUMP_MIB(&ipst->ips_ip_mib, 14672 ipIfStatsInDiscards); 14673 } 14674 return (B_TRUE); 14675 } 14676 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14677 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14678 /* Copy b_prev - used by ip_mroute_decap */ 14679 to_mp->b_prev = from_mp->b_prev; 14680 from_mp->b_prev = NULL; 14681 } 14682 *first_mpp = first_mp = mp1; 14683 freemsg(mp); 14684 mp = mp1; 14685 *mpp = mp1; 14686 } 14687 14688 ipha = (ipha_t *)mp->b_rptr; 14689 14690 /* 14691 * previous code has a case for M_DATA. 14692 * We want to check how that happens. 14693 */ 14694 ASSERT(first_mp->b_datap->db_type != M_DATA); 14695 switch (first_mp->b_datap->db_type) { 14696 case M_PROTO: 14697 case M_PCPROTO: 14698 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14699 DL_UNITDATA_IND) { 14700 /* Go handle anything other than data elsewhere. */ 14701 ip_rput_dlpi(q, mp); 14702 return (B_TRUE); 14703 } 14704 14705 *ll_multicast = ip_get_dlpi_mbcast(ill, mp); 14706 /* Ditch the DLPI header. */ 14707 mp1 = mp->b_cont; 14708 ASSERT(first_mp == mp); 14709 *first_mpp = mp1; 14710 freeb(mp); 14711 *mpp = mp1; 14712 return (B_FALSE); 14713 case M_IOCACK: 14714 ip1dbg(("got iocack ")); 14715 iocp = (struct iocblk *)mp->b_rptr; 14716 switch (iocp->ioc_cmd) { 14717 case DL_IOC_HDR_INFO: 14718 ill = (ill_t *)q->q_ptr; 14719 ill_fastpath_ack(ill, mp); 14720 return (B_TRUE); 14721 case SIOCSTUNPARAM: 14722 case OSIOCSTUNPARAM: 14723 /* Go through qwriter_ip */ 14724 break; 14725 case SIOCGTUNPARAM: 14726 case OSIOCGTUNPARAM: 14727 ip_rput_other(NULL, q, mp, NULL); 14728 return (B_TRUE); 14729 default: 14730 putnext(q, mp); 14731 return (B_TRUE); 14732 } 14733 /* FALLTHRU */ 14734 case M_ERROR: 14735 case M_HANGUP: 14736 /* 14737 * Since this is on the ill stream we unconditionally 14738 * bump up the refcount 14739 */ 14740 ill_refhold(ill); 14741 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14742 return (B_TRUE); 14743 case M_CTL: 14744 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14745 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14746 IPHADA_M_CTL)) { 14747 /* 14748 * It's an IPsec accelerated packet. 14749 * Make sure that the ill from which we received the 14750 * packet has enabled IPsec hardware acceleration. 14751 */ 14752 if (!(ill->ill_capabilities & 14753 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14754 /* IPsec kstats: bean counter */ 14755 freemsg(mp); 14756 return (B_TRUE); 14757 } 14758 14759 /* 14760 * Make mp point to the mblk following the M_CTL, 14761 * then process according to type of mp. 14762 * After this processing, first_mp will point to 14763 * the data-attributes and mp to the pkt following 14764 * the M_CTL. 14765 */ 14766 mp = first_mp->b_cont; 14767 if (mp == NULL) { 14768 freemsg(first_mp); 14769 return (B_TRUE); 14770 } 14771 /* 14772 * A Hardware Accelerated packet can only be M_DATA 14773 * ESP or AH packet. 14774 */ 14775 if (mp->b_datap->db_type != M_DATA) { 14776 /* non-M_DATA IPsec accelerated packet */ 14777 IPSECHW_DEBUG(IPSECHW_PKT, 14778 ("non-M_DATA IPsec accelerated pkt\n")); 14779 freemsg(first_mp); 14780 return (B_TRUE); 14781 } 14782 ipha = (ipha_t *)mp->b_rptr; 14783 if (ipha->ipha_protocol != IPPROTO_AH && 14784 ipha->ipha_protocol != IPPROTO_ESP) { 14785 IPSECHW_DEBUG(IPSECHW_PKT, 14786 ("non-M_DATA IPsec accelerated pkt\n")); 14787 freemsg(first_mp); 14788 return (B_TRUE); 14789 } 14790 *mpp = mp; 14791 return (B_FALSE); 14792 } 14793 putnext(q, mp); 14794 return (B_TRUE); 14795 case M_IOCNAK: 14796 ip1dbg(("got iocnak ")); 14797 iocp = (struct iocblk *)mp->b_rptr; 14798 switch (iocp->ioc_cmd) { 14799 case SIOCSTUNPARAM: 14800 case OSIOCSTUNPARAM: 14801 /* 14802 * Since this is on the ill stream we unconditionally 14803 * bump up the refcount 14804 */ 14805 ill_refhold(ill); 14806 qwriter_ip(ill, q, mp, ip_rput_other, CUR_OP, B_FALSE); 14807 return (B_TRUE); 14808 case DL_IOC_HDR_INFO: 14809 case SIOCGTUNPARAM: 14810 case OSIOCGTUNPARAM: 14811 ip_rput_other(NULL, q, mp, NULL); 14812 return (B_TRUE); 14813 default: 14814 break; 14815 } 14816 /* FALLTHRU */ 14817 default: 14818 putnext(q, mp); 14819 return (B_TRUE); 14820 } 14821 } 14822 14823 /* Read side put procedure. Packets coming from the wire arrive here. */ 14824 void 14825 ip_rput(queue_t *q, mblk_t *mp) 14826 { 14827 ill_t *ill; 14828 union DL_primitives *dl; 14829 14830 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14831 14832 ill = (ill_t *)q->q_ptr; 14833 14834 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14835 /* 14836 * If things are opening or closing, only accept high-priority 14837 * DLPI messages. (On open ill->ill_ipif has not yet been 14838 * created; on close, things hanging off the ill may have been 14839 * freed already.) 14840 */ 14841 dl = (union DL_primitives *)mp->b_rptr; 14842 if (DB_TYPE(mp) != M_PCPROTO || 14843 dl->dl_primitive == DL_UNITDATA_IND) { 14844 /* 14845 * SIOC[GS]TUNPARAM ioctls can come here. 14846 */ 14847 inet_freemsg(mp); 14848 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14849 "ip_rput_end: q %p (%S)", q, "uninit"); 14850 return; 14851 } 14852 } 14853 14854 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14855 "ip_rput_end: q %p (%S)", q, "end"); 14856 14857 ip_input(ill, NULL, mp, NULL); 14858 } 14859 14860 static mblk_t * 14861 ip_fix_dbref(ill_t *ill, mblk_t *mp) 14862 { 14863 mblk_t *mp1; 14864 boolean_t adjusted = B_FALSE; 14865 ip_stack_t *ipst = ill->ill_ipst; 14866 14867 IP_STAT(ipst, ip_db_ref); 14868 /* 14869 * The IP_RECVSLLA option depends on having the 14870 * link layer header. First check that: 14871 * a> the underlying device is of type ether, 14872 * since this option is currently supported only 14873 * over ethernet. 14874 * b> there is enough room to copy over the link 14875 * layer header. 14876 * 14877 * Once the checks are done, adjust rptr so that 14878 * the link layer header will be copied via 14879 * copymsg. Note that, IFT_ETHER may be returned 14880 * by some non-ethernet drivers but in this case 14881 * the second check will fail. 14882 */ 14883 if (ill->ill_type == IFT_ETHER && 14884 (mp->b_rptr - mp->b_datap->db_base) >= 14885 sizeof (struct ether_header)) { 14886 mp->b_rptr -= sizeof (struct ether_header); 14887 adjusted = B_TRUE; 14888 } 14889 mp1 = copymsg(mp); 14890 14891 if (mp1 == NULL) { 14892 mp->b_next = NULL; 14893 /* clear b_prev - used by ip_mroute_decap */ 14894 mp->b_prev = NULL; 14895 freemsg(mp); 14896 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14897 return (NULL); 14898 } 14899 14900 if (adjusted) { 14901 /* 14902 * Copy is done. Restore the pointer in 14903 * the _new_ mblk 14904 */ 14905 mp1->b_rptr += sizeof (struct ether_header); 14906 } 14907 14908 /* Copy b_prev - used by ip_mroute_decap */ 14909 mp1->b_prev = mp->b_prev; 14910 mp->b_prev = NULL; 14911 14912 /* preserve the hardware checksum flags and data, if present */ 14913 if (DB_CKSUMFLAGS(mp) != 0) { 14914 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 14915 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 14916 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 14917 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 14918 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 14919 } 14920 14921 freemsg(mp); 14922 return (mp1); 14923 } 14924 14925 #define ADD_TO_CHAIN(head, tail, cnt, mp) { \ 14926 if (tail != NULL) \ 14927 tail->b_next = mp; \ 14928 else \ 14929 head = mp; \ 14930 tail = mp; \ 14931 cnt++; \ 14932 } 14933 14934 /* 14935 * Direct read side procedure capable of dealing with chains. GLDv3 based 14936 * drivers call this function directly with mblk chains while STREAMS 14937 * read side procedure ip_rput() calls this for single packet with ip_ring 14938 * set to NULL to process one packet at a time. 14939 * 14940 * The ill will always be valid if this function is called directly from 14941 * the driver. 14942 * 14943 * If ip_input() is called from GLDv3: 14944 * 14945 * - This must be a non-VLAN IP stream. 14946 * - 'mp' is either an untagged or a special priority-tagged packet. 14947 * - Any VLAN tag that was in the MAC header has been stripped. 14948 * 14949 * If the IP header in packet is not 32-bit aligned, every message in the 14950 * chain will be aligned before further operations. This is required on SPARC 14951 * platform. 14952 */ 14953 /* ARGSUSED */ 14954 void 14955 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14956 struct mac_header_info_s *mhip) 14957 { 14958 ipaddr_t dst = NULL; 14959 ipaddr_t prev_dst; 14960 ire_t *ire = NULL; 14961 ipha_t *ipha; 14962 uint_t pkt_len; 14963 ssize_t len; 14964 uint_t opt_len; 14965 int ll_multicast; 14966 int cgtp_flt_pkt; 14967 queue_t *q = ill->ill_rq; 14968 squeue_t *curr_sqp = NULL; 14969 mblk_t *head = NULL; 14970 mblk_t *tail = NULL; 14971 mblk_t *first_mp; 14972 int cnt = 0; 14973 ip_stack_t *ipst = ill->ill_ipst; 14974 mblk_t *mp; 14975 mblk_t *dmp; 14976 uint8_t tag; 14977 14978 ASSERT(mp_chain != NULL); 14979 ASSERT(ill != NULL); 14980 14981 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14982 14983 tag = (ip_ring != NULL) ? SQTAG_IP_INPUT_RX_RING : SQTAG_IP_INPUT; 14984 14985 #define rptr ((uchar_t *)ipha) 14986 14987 while (mp_chain != NULL) { 14988 mp = mp_chain; 14989 mp_chain = mp_chain->b_next; 14990 mp->b_next = NULL; 14991 ll_multicast = 0; 14992 14993 /* 14994 * We do ire caching from one iteration to 14995 * another. In the event the packet chain contains 14996 * all packets from the same dst, this caching saves 14997 * an ire_cache_lookup for each of the succeeding 14998 * packets in a packet chain. 14999 */ 15000 prev_dst = dst; 15001 15002 /* 15003 * if db_ref > 1 then copymsg and free original. Packet 15004 * may be changed and we do not want the other entity 15005 * who has a reference to this message to trip over the 15006 * changes. This is a blind change because trying to 15007 * catch all places that might change the packet is too 15008 * difficult. 15009 * 15010 * This corresponds to the fast path case, where we have 15011 * a chain of M_DATA mblks. We check the db_ref count 15012 * of only the 1st data block in the mblk chain. There 15013 * doesn't seem to be a reason why a device driver would 15014 * send up data with varying db_ref counts in the mblk 15015 * chain. In any case the Fast path is a private 15016 * interface, and our drivers don't do such a thing. 15017 * Given the above assumption, there is no need to walk 15018 * down the entire mblk chain (which could have a 15019 * potential performance problem) 15020 * 15021 * The "(DB_REF(mp) > 1)" check was moved from ip_rput() 15022 * to here because of exclusive ip stacks and vnics. 15023 * Packets transmitted from exclusive stack over vnic 15024 * can have db_ref > 1 and when it gets looped back to 15025 * another vnic in a different zone, you have ip_input() 15026 * getting dblks with db_ref > 1. So if someone 15027 * complains of TCP performance under this scenario, 15028 * take a serious look here on the impact of copymsg(). 15029 */ 15030 15031 if (DB_REF(mp) > 1) { 15032 if ((mp = ip_fix_dbref(ill, mp)) == NULL) 15033 continue; 15034 } 15035 15036 /* 15037 * Check and align the IP header. 15038 */ 15039 first_mp = mp; 15040 if (DB_TYPE(mp) == M_DATA) { 15041 dmp = mp; 15042 } else if (DB_TYPE(mp) == M_PROTO && 15043 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 15044 dmp = mp->b_cont; 15045 } else { 15046 dmp = NULL; 15047 } 15048 if (dmp != NULL) { 15049 /* 15050 * IP header ptr not aligned? 15051 * OR IP header not complete in first mblk 15052 */ 15053 if (!OK_32PTR(dmp->b_rptr) || 15054 MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) { 15055 if (!ip_check_and_align_header(q, dmp, ipst)) 15056 continue; 15057 } 15058 } 15059 15060 /* 15061 * ip_input fast path 15062 */ 15063 15064 /* mblk type is not M_DATA */ 15065 if (DB_TYPE(mp) != M_DATA) { 15066 if (ip_rput_process_notdata(q, &first_mp, ill, 15067 &ll_multicast, &mp)) 15068 continue; 15069 15070 /* 15071 * The only way we can get here is if we had a 15072 * packet that was either a DL_UNITDATA_IND or 15073 * an M_CTL for an IPsec accelerated packet. 15074 * 15075 * In either case, the first_mp will point to 15076 * the leading M_PROTO or M_CTL. 15077 */ 15078 ASSERT(first_mp != NULL); 15079 } else if (mhip != NULL) { 15080 /* 15081 * ll_multicast is set here so that it is ready 15082 * for easy use with FW_HOOKS(). ip_get_dlpi_mbcast 15083 * manipulates ll_multicast in the same fashion when 15084 * called from ip_rput_process_notdata. 15085 */ 15086 switch (mhip->mhi_dsttype) { 15087 case MAC_ADDRTYPE_MULTICAST : 15088 ll_multicast = HPE_MULTICAST; 15089 break; 15090 case MAC_ADDRTYPE_BROADCAST : 15091 ll_multicast = HPE_BROADCAST; 15092 break; 15093 default : 15094 break; 15095 } 15096 } 15097 15098 /* Only M_DATA can come here and it is always aligned */ 15099 ASSERT(DB_TYPE(mp) == M_DATA); 15100 ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr)); 15101 15102 ipha = (ipha_t *)mp->b_rptr; 15103 len = mp->b_wptr - rptr; 15104 pkt_len = ntohs(ipha->ipha_length); 15105 15106 /* 15107 * We must count all incoming packets, even if they end 15108 * up being dropped later on. 15109 */ 15110 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15111 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15112 15113 /* multiple mblk or too short */ 15114 len -= pkt_len; 15115 if (len != 0) { 15116 /* 15117 * Make sure we have data length consistent 15118 * with the IP header. 15119 */ 15120 if (mp->b_cont == NULL) { 15121 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15122 BUMP_MIB(ill->ill_ip_mib, 15123 ipIfStatsInHdrErrors); 15124 ip2dbg(("ip_input: drop pkt\n")); 15125 freemsg(mp); 15126 continue; 15127 } 15128 mp->b_wptr = rptr + pkt_len; 15129 } else if ((len += msgdsize(mp->b_cont)) != 0) { 15130 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 15131 BUMP_MIB(ill->ill_ip_mib, 15132 ipIfStatsInHdrErrors); 15133 ip2dbg(("ip_input: drop pkt\n")); 15134 freemsg(mp); 15135 continue; 15136 } 15137 (void) adjmsg(mp, -len); 15138 IP_STAT(ipst, ip_multimblk3); 15139 } 15140 } 15141 15142 /* Obtain the dst of the current packet */ 15143 dst = ipha->ipha_dst; 15144 15145 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, 15146 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, 15147 ipha, ip6_t *, NULL, int, 0); 15148 15149 /* 15150 * The following test for loopback is faster than 15151 * IP_LOOPBACK_ADDR(), because it avoids any bitwise 15152 * operations. 15153 * Note that these addresses are always in network byte order 15154 */ 15155 if (((*(uchar_t *)&ipha->ipha_dst) == 127) || 15156 ((*(uchar_t *)&ipha->ipha_src) == 127)) { 15157 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 15158 freemsg(mp); 15159 continue; 15160 } 15161 15162 /* 15163 * The event for packets being received from a 'physical' 15164 * interface is placed after validation of the source and/or 15165 * destination address as being local so that packets can be 15166 * redirected to loopback addresses using ipnat. 15167 */ 15168 DTRACE_PROBE4(ip4__physical__in__start, 15169 ill_t *, ill, ill_t *, NULL, 15170 ipha_t *, ipha, mblk_t *, first_mp); 15171 15172 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15173 ipst->ips_ipv4firewall_physical_in, 15174 ill, NULL, ipha, first_mp, mp, ll_multicast, ipst); 15175 15176 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 15177 15178 if (first_mp == NULL) { 15179 continue; 15180 } 15181 dst = ipha->ipha_dst; 15182 /* 15183 * Attach any necessary label information to 15184 * this packet 15185 */ 15186 if (is_system_labeled() && 15187 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 15188 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 15189 freemsg(mp); 15190 continue; 15191 } 15192 15193 if (ipst->ips_ipobs_enabled) { 15194 zoneid_t dzone; 15195 15196 /* 15197 * On the inbound path the src zone will be unknown as 15198 * this packet has come from the wire. 15199 */ 15200 dzone = ip_get_zoneid_v4(dst, mp, ipst, ALL_ZONES); 15201 ipobs_hook(mp, IPOBS_HOOK_INBOUND, ALL_ZONES, dzone, 15202 ill, IPV4_VERSION, 0, ipst); 15203 } 15204 15205 /* 15206 * Reuse the cached ire only if the ipha_dst of the previous 15207 * packet is the same as the current packet AND it is not 15208 * INADDR_ANY. 15209 */ 15210 if (!(dst == prev_dst && dst != INADDR_ANY) && 15211 (ire != NULL)) { 15212 ire_refrele(ire); 15213 ire = NULL; 15214 } 15215 15216 opt_len = ipha->ipha_version_and_hdr_length - 15217 IP_SIMPLE_HDR_VERSION; 15218 15219 /* 15220 * Check to see if we can take the fastpath. 15221 * That is possible if the following conditions are met 15222 * o Tsol disabled 15223 * o CGTP disabled 15224 * o ipp_action_count is 0 15225 * o no options in the packet 15226 * o not a RSVP packet 15227 * o not a multicast packet 15228 * o ill not in IP_DHCPINIT_IF mode 15229 */ 15230 if (!is_system_labeled() && 15231 !ipst->ips_ip_cgtp_filter && ipp_action_count == 0 && 15232 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 15233 !ll_multicast && !CLASSD(dst) && ill->ill_dhcpinit == 0) { 15234 if (ire == NULL) 15235 ire = ire_cache_lookup_simple(dst, ipst); 15236 /* 15237 * Unless forwarding is enabled, dont call 15238 * ip_fast_forward(). Incoming packet is for forwarding 15239 */ 15240 if ((ill->ill_flags & ILLF_ROUTER) && 15241 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15242 ire = ip_fast_forward(ire, dst, ill, mp); 15243 continue; 15244 } 15245 /* incoming packet is for local consumption */ 15246 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15247 goto local; 15248 } 15249 15250 /* 15251 * Disable ire caching for anything more complex 15252 * than the simple fast path case we checked for above. 15253 */ 15254 if (ire != NULL) { 15255 ire_refrele(ire); 15256 ire = NULL; 15257 } 15258 15259 /* 15260 * Brutal hack for DHCPv4 unicast: RFC2131 allows a DHCP 15261 * server to unicast DHCP packets to a DHCP client using the 15262 * IP address it is offering to the client. This can be 15263 * disabled through the "broadcast bit", but not all DHCP 15264 * servers honor that bit. Therefore, to interoperate with as 15265 * many DHCP servers as possible, the DHCP client allows the 15266 * server to unicast, but we treat those packets as broadcast 15267 * here. Note that we don't rewrite the packet itself since 15268 * (a) that would mess up the checksums and (b) the DHCP 15269 * client conn is bound to INADDR_ANY so ip_fanout_udp() will 15270 * hand it the packet regardless. 15271 */ 15272 if (ill->ill_dhcpinit != 0 && 15273 IS_SIMPLE_IPH(ipha) && ipha->ipha_protocol == IPPROTO_UDP && 15274 pullupmsg(mp, sizeof (ipha_t) + sizeof (udpha_t)) == 1) { 15275 udpha_t *udpha; 15276 15277 /* 15278 * Reload ipha since pullupmsg() can change b_rptr. 15279 */ 15280 ipha = (ipha_t *)mp->b_rptr; 15281 udpha = (udpha_t *)&ipha[1]; 15282 15283 if (ntohs(udpha->uha_dst_port) == IPPORT_BOOTPC) { 15284 DTRACE_PROBE2(ip4__dhcpinit__pkt, ill_t *, ill, 15285 mblk_t *, mp); 15286 dst = INADDR_BROADCAST; 15287 } 15288 } 15289 15290 /* Full-blown slow path */ 15291 if (opt_len != 0) { 15292 if (len != 0) 15293 IP_STAT(ipst, ip_multimblk4); 15294 else 15295 IP_STAT(ipst, ip_ipoptions); 15296 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 15297 &dst, ipst)) 15298 continue; 15299 } 15300 15301 /* 15302 * Invoke the CGTP (multirouting) filtering module to process 15303 * the incoming packet. Packets identified as duplicates 15304 * must be discarded. Filtering is active only if the 15305 * the ip_cgtp_filter ndd variable is non-zero. 15306 */ 15307 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 15308 if (ipst->ips_ip_cgtp_filter && 15309 ipst->ips_ip_cgtp_filter_ops != NULL) { 15310 netstackid_t stackid; 15311 15312 stackid = ipst->ips_netstack->netstack_stackid; 15313 cgtp_flt_pkt = 15314 ipst->ips_ip_cgtp_filter_ops->cfo_filter(stackid, 15315 ill->ill_phyint->phyint_ifindex, mp); 15316 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 15317 freemsg(first_mp); 15318 continue; 15319 } 15320 } 15321 15322 /* 15323 * If rsvpd is running, let RSVP daemon handle its processing 15324 * and forwarding of RSVP multicast/unicast packets. 15325 * If rsvpd is not running but mrouted is running, RSVP 15326 * multicast packets are forwarded as multicast traffic 15327 * and RSVP unicast packets are forwarded by unicast router. 15328 * If neither rsvpd nor mrouted is running, RSVP multicast 15329 * packets are not forwarded, but the unicast packets are 15330 * forwarded like unicast traffic. 15331 */ 15332 if (ipha->ipha_protocol == IPPROTO_RSVP && 15333 ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head != 15334 NULL) { 15335 /* RSVP packet and rsvpd running. Treat as ours */ 15336 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 15337 /* 15338 * This assumes that we deliver to all streams for 15339 * multicast and broadcast packets. 15340 * We have to force ll_multicast to 1 to handle the 15341 * M_DATA messages passed in from ip_mroute_decap. 15342 */ 15343 dst = INADDR_BROADCAST; 15344 ll_multicast = 1; 15345 } else if (CLASSD(dst)) { 15346 /* packet is multicast */ 15347 mp->b_next = NULL; 15348 if (ip_rput_process_multicast(q, mp, ill, ipha, 15349 &ll_multicast, &dst)) 15350 continue; 15351 } 15352 15353 if (ire == NULL) { 15354 ire = ire_cache_lookup(dst, ALL_ZONES, 15355 msg_getlabel(mp), ipst); 15356 } 15357 15358 if (ire != NULL && ire->ire_stq != NULL && 15359 ire->ire_zoneid != GLOBAL_ZONEID && 15360 ire->ire_zoneid != ALL_ZONES) { 15361 /* 15362 * Should only use IREs that are visible from the 15363 * global zone for forwarding. 15364 */ 15365 ire_refrele(ire); 15366 ire = ire_cache_lookup(dst, GLOBAL_ZONEID, 15367 msg_getlabel(mp), ipst); 15368 } 15369 15370 if (ire == NULL) { 15371 /* 15372 * No IRE for this destination, so it can't be for us. 15373 * Unless we are forwarding, drop the packet. 15374 * We have to let source routed packets through 15375 * since we don't yet know if they are 'ping -l' 15376 * packets i.e. if they will go out over the 15377 * same interface as they came in on. 15378 */ 15379 ire = ip_rput_noire(q, mp, ll_multicast, dst); 15380 if (ire == NULL) 15381 continue; 15382 } 15383 15384 /* 15385 * Broadcast IRE may indicate either broadcast or 15386 * multicast packet 15387 */ 15388 if (ire->ire_type == IRE_BROADCAST) { 15389 /* 15390 * Skip broadcast checks if packet is UDP multicast; 15391 * we'd rather not enter ip_rput_process_broadcast() 15392 * unless the packet is broadcast for real, since 15393 * that routine is a no-op for multicast. 15394 */ 15395 if (ipha->ipha_protocol != IPPROTO_UDP || 15396 !CLASSD(ipha->ipha_dst)) { 15397 ire = ip_rput_process_broadcast(&q, mp, 15398 ire, ipha, ill, dst, cgtp_flt_pkt, 15399 ll_multicast); 15400 if (ire == NULL) 15401 continue; 15402 } 15403 } else if (ire->ire_stq != NULL) { 15404 /* fowarding? */ 15405 ip_rput_process_forward(q, mp, ire, ipha, ill, 15406 ll_multicast, B_FALSE); 15407 /* ip_rput_process_forward consumed the packet */ 15408 continue; 15409 } 15410 15411 local: 15412 /* 15413 * If the queue in the ire is different to the ingress queue 15414 * then we need to check to see if we can accept the packet. 15415 * Note that for multicast packets and broadcast packets sent 15416 * to a broadcast address which is shared between multiple 15417 * interfaces we should not do this since we just got a random 15418 * broadcast ire. 15419 */ 15420 if ((ire->ire_rfq != q) && (ire->ire_type != IRE_BROADCAST)) { 15421 ire = ip_check_multihome(&ipha->ipha_dst, ire, ill); 15422 if (ire == NULL) { 15423 /* Drop packet */ 15424 BUMP_MIB(ill->ill_ip_mib, 15425 ipIfStatsForwProhibits); 15426 freemsg(mp); 15427 continue; 15428 } 15429 if (ire->ire_rfq != NULL) 15430 q = ire->ire_rfq; 15431 } 15432 15433 switch (ipha->ipha_protocol) { 15434 case IPPROTO_TCP: 15435 ASSERT(first_mp == mp); 15436 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15437 mp, 0, q, ip_ring)) != NULL) { 15438 if (curr_sqp == NULL) { 15439 curr_sqp = GET_SQUEUE(mp); 15440 ASSERT(cnt == 0); 15441 cnt++; 15442 head = tail = mp; 15443 } else if (curr_sqp == GET_SQUEUE(mp)) { 15444 ASSERT(tail != NULL); 15445 cnt++; 15446 tail->b_next = mp; 15447 tail = mp; 15448 } else { 15449 /* 15450 * A different squeue. Send the 15451 * chain for the previous squeue on 15452 * its way. This shouldn't happen 15453 * often unless interrupt binding 15454 * changes. 15455 */ 15456 IP_STAT(ipst, ip_input_multi_squeue); 15457 SQUEUE_ENTER(curr_sqp, head, 15458 tail, cnt, SQ_PROCESS, tag); 15459 curr_sqp = GET_SQUEUE(mp); 15460 head = mp; 15461 tail = mp; 15462 cnt = 1; 15463 } 15464 } 15465 continue; 15466 case IPPROTO_UDP: 15467 ASSERT(first_mp == mp); 15468 ip_udp_input(q, mp, ipha, ire, ill); 15469 continue; 15470 case IPPROTO_SCTP: 15471 ASSERT(first_mp == mp); 15472 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15473 q, dst); 15474 /* ire has been released by ip_sctp_input */ 15475 ire = NULL; 15476 continue; 15477 default: 15478 ip_proto_input(q, first_mp, ipha, ire, ill, 0); 15479 continue; 15480 } 15481 } 15482 15483 if (ire != NULL) 15484 ire_refrele(ire); 15485 15486 if (head != NULL) 15487 SQUEUE_ENTER(curr_sqp, head, tail, cnt, SQ_PROCESS, tag); 15488 15489 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15490 "ip_input_end: q %p (%S)", q, "end"); 15491 #undef rptr 15492 } 15493 15494 /* 15495 * ip_accept_tcp() - This function is called by the squeue when it retrieves 15496 * a chain of packets in the poll mode. The packets have gone through the 15497 * data link processing but not IP processing. For performance and latency 15498 * reasons, the squeue wants to process the chain in line instead of feeding 15499 * it back via ip_input path. 15500 * 15501 * So this is a light weight function which checks to see if the packets 15502 * retrived are indeed TCP packets (TCP squeue always polls TCP soft ring 15503 * but we still do the paranoid check) meant for local machine and we don't 15504 * have labels etc enabled. Packets that meet the criterion are returned to 15505 * the squeue and processed inline while the rest go via ip_input path. 15506 */ 15507 /*ARGSUSED*/ 15508 mblk_t * 15509 ip_accept_tcp(ill_t *ill, ill_rx_ring_t *ip_ring, squeue_t *target_sqp, 15510 mblk_t *mp_chain, mblk_t **last, uint_t *cnt) 15511 { 15512 mblk_t *mp; 15513 ipaddr_t dst = NULL; 15514 ipaddr_t prev_dst; 15515 ire_t *ire = NULL; 15516 ipha_t *ipha; 15517 uint_t pkt_len; 15518 ssize_t len; 15519 uint_t opt_len; 15520 queue_t *q = ill->ill_rq; 15521 squeue_t *curr_sqp; 15522 mblk_t *ahead = NULL; /* Accepted head */ 15523 mblk_t *atail = NULL; /* Accepted tail */ 15524 uint_t acnt = 0; /* Accepted count */ 15525 mblk_t *utail = NULL; /* Unaccepted head */ 15526 mblk_t *uhead = NULL; /* Unaccepted tail */ 15527 uint_t ucnt = 0; /* Unaccepted cnt */ 15528 ip_stack_t *ipst = ill->ill_ipst; 15529 15530 *cnt = 0; 15531 15532 ASSERT(ill != NULL); 15533 ASSERT(ip_ring != NULL); 15534 15535 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_accept_tcp: q %p", q); 15536 15537 #define rptr ((uchar_t *)ipha) 15538 15539 while (mp_chain != NULL) { 15540 mp = mp_chain; 15541 mp_chain = mp_chain->b_next; 15542 mp->b_next = NULL; 15543 15544 /* 15545 * We do ire caching from one iteration to 15546 * another. In the event the packet chain contains 15547 * all packets from the same dst, this caching saves 15548 * an ire_cache_lookup for each of the succeeding 15549 * packets in a packet chain. 15550 */ 15551 prev_dst = dst; 15552 15553 ipha = (ipha_t *)mp->b_rptr; 15554 len = mp->b_wptr - rptr; 15555 15556 ASSERT(!MBLK_RX_FANOUT_SLOWPATH(mp, ipha)); 15557 15558 /* 15559 * If it is a non TCP packet, or doesn't have H/W cksum, 15560 * or doesn't have min len, reject. 15561 */ 15562 if ((ipha->ipha_protocol != IPPROTO_TCP) || (len < 15563 (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH))) { 15564 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15565 continue; 15566 } 15567 15568 pkt_len = ntohs(ipha->ipha_length); 15569 if (len != pkt_len) { 15570 if (len > pkt_len) { 15571 mp->b_wptr = rptr + pkt_len; 15572 } else { 15573 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15574 continue; 15575 } 15576 } 15577 15578 opt_len = ipha->ipha_version_and_hdr_length - 15579 IP_SIMPLE_HDR_VERSION; 15580 dst = ipha->ipha_dst; 15581 15582 /* IP version bad or there are IP options */ 15583 if (opt_len && (!ip_rput_multimblk_ipoptions(q, ill, 15584 mp, &ipha, &dst, ipst))) 15585 continue; 15586 15587 if (is_system_labeled() || (ill->ill_dhcpinit != 0) || 15588 (ipst->ips_ip_cgtp_filter && 15589 ipst->ips_ip_cgtp_filter_ops != NULL)) { 15590 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15591 continue; 15592 } 15593 15594 /* 15595 * Reuse the cached ire only if the ipha_dst of the previous 15596 * packet is the same as the current packet AND it is not 15597 * INADDR_ANY. 15598 */ 15599 if (!(dst == prev_dst && dst != INADDR_ANY) && 15600 (ire != NULL)) { 15601 ire_refrele(ire); 15602 ire = NULL; 15603 } 15604 15605 if (ire == NULL) 15606 ire = ire_cache_lookup_simple(dst, ipst); 15607 15608 /* 15609 * Unless forwarding is enabled, dont call 15610 * ip_fast_forward(). Incoming packet is for forwarding 15611 */ 15612 if ((ill->ill_flags & ILLF_ROUTER) && 15613 (ire == NULL || (ire->ire_type & IRE_CACHE))) { 15614 15615 DTRACE_PROBE4(ip4__physical__in__start, 15616 ill_t *, ill, ill_t *, NULL, 15617 ipha_t *, ipha, mblk_t *, mp); 15618 15619 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15620 ipst->ips_ipv4firewall_physical_in, 15621 ill, NULL, ipha, mp, mp, 0, ipst); 15622 15623 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15624 15625 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15626 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, 15627 pkt_len); 15628 15629 if (mp != NULL) 15630 ire = ip_fast_forward(ire, dst, ill, mp); 15631 continue; 15632 } 15633 15634 /* incoming packet is for local consumption */ 15635 if ((ire != NULL) && (ire->ire_type & IRE_LOCAL)) 15636 goto local_accept; 15637 15638 /* 15639 * Disable ire caching for anything more complex 15640 * than the simple fast path case we checked for above. 15641 */ 15642 if (ire != NULL) { 15643 ire_refrele(ire); 15644 ire = NULL; 15645 } 15646 15647 ire = ire_cache_lookup(dst, ALL_ZONES, msg_getlabel(mp), 15648 ipst); 15649 if (ire == NULL || ire->ire_type == IRE_BROADCAST || 15650 ire->ire_stq != NULL) { 15651 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15652 if (ire != NULL) { 15653 ire_refrele(ire); 15654 ire = NULL; 15655 } 15656 continue; 15657 } 15658 15659 local_accept: 15660 15661 if (ire->ire_rfq != q) { 15662 ADD_TO_CHAIN(uhead, utail, ucnt, mp); 15663 if (ire != NULL) { 15664 ire_refrele(ire); 15665 ire = NULL; 15666 } 15667 continue; 15668 } 15669 15670 /* 15671 * The event for packets being received from a 'physical' 15672 * interface is placed after validation of the source and/or 15673 * destination address as being local so that packets can be 15674 * redirected to loopback addresses using ipnat. 15675 */ 15676 DTRACE_PROBE4(ip4__physical__in__start, 15677 ill_t *, ill, ill_t *, NULL, 15678 ipha_t *, ipha, mblk_t *, mp); 15679 15680 FW_HOOKS(ipst->ips_ip4_physical_in_event, 15681 ipst->ips_ipv4firewall_physical_in, 15682 ill, NULL, ipha, mp, mp, 0, ipst); 15683 15684 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, mp); 15685 15686 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 15687 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 15688 15689 if (mp != NULL && 15690 (mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, mp, 15691 0, q, ip_ring)) != NULL) { 15692 if ((curr_sqp = GET_SQUEUE(mp)) == target_sqp) { 15693 ADD_TO_CHAIN(ahead, atail, acnt, mp); 15694 } else { 15695 SQUEUE_ENTER(curr_sqp, mp, mp, 1, 15696 SQ_FILL, SQTAG_IP_INPUT); 15697 } 15698 } 15699 } 15700 15701 if (ire != NULL) 15702 ire_refrele(ire); 15703 15704 if (uhead != NULL) 15705 ip_input(ill, ip_ring, uhead, NULL); 15706 15707 if (ahead != NULL) { 15708 *last = atail; 15709 *cnt = acnt; 15710 return (ahead); 15711 } 15712 15713 return (NULL); 15714 #undef rptr 15715 } 15716 15717 static void 15718 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15719 t_uscalar_t err) 15720 { 15721 if (dl_err == DL_SYSERR) { 15722 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15723 "%s: %s failed: DL_SYSERR (errno %u)\n", 15724 ill->ill_name, dl_primstr(prim), err); 15725 return; 15726 } 15727 15728 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15729 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 15730 dl_errstr(dl_err)); 15731 } 15732 15733 /* 15734 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15735 * than DL_UNITDATA_IND messages. If we need to process this message 15736 * exclusively, we call qwriter_ip, in which case we also need to call 15737 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15738 */ 15739 void 15740 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15741 { 15742 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15743 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15744 ill_t *ill = q->q_ptr; 15745 t_uscalar_t prim = dloa->dl_primitive; 15746 t_uscalar_t reqprim = DL_PRIM_INVAL; 15747 15748 ip1dbg(("ip_rput_dlpi")); 15749 15750 /* 15751 * If we received an ACK but didn't send a request for it, then it 15752 * can't be part of any pending operation; discard up-front. 15753 */ 15754 switch (prim) { 15755 case DL_ERROR_ACK: 15756 reqprim = dlea->dl_error_primitive; 15757 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 15758 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 15759 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 15760 dlea->dl_unix_errno)); 15761 break; 15762 case DL_OK_ACK: 15763 reqprim = dloa->dl_correct_primitive; 15764 break; 15765 case DL_INFO_ACK: 15766 reqprim = DL_INFO_REQ; 15767 break; 15768 case DL_BIND_ACK: 15769 reqprim = DL_BIND_REQ; 15770 break; 15771 case DL_PHYS_ADDR_ACK: 15772 reqprim = DL_PHYS_ADDR_REQ; 15773 break; 15774 case DL_NOTIFY_ACK: 15775 reqprim = DL_NOTIFY_REQ; 15776 break; 15777 case DL_CONTROL_ACK: 15778 reqprim = DL_CONTROL_REQ; 15779 break; 15780 case DL_CAPABILITY_ACK: 15781 reqprim = DL_CAPABILITY_REQ; 15782 break; 15783 } 15784 15785 if (prim != DL_NOTIFY_IND) { 15786 if (reqprim == DL_PRIM_INVAL || 15787 !ill_dlpi_pending(ill, reqprim)) { 15788 /* Not a DLPI message we support or expected */ 15789 freemsg(mp); 15790 return; 15791 } 15792 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 15793 dl_primstr(reqprim))); 15794 } 15795 15796 switch (reqprim) { 15797 case DL_UNBIND_REQ: 15798 /* 15799 * NOTE: we mark the unbind as complete even if we got a 15800 * DL_ERROR_ACK, since there's not much else we can do. 15801 */ 15802 mutex_enter(&ill->ill_lock); 15803 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15804 cv_signal(&ill->ill_cv); 15805 mutex_exit(&ill->ill_lock); 15806 break; 15807 15808 case DL_ENABMULTI_REQ: 15809 if (prim == DL_OK_ACK) { 15810 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15811 ill->ill_dlpi_multicast_state = IDS_OK; 15812 } 15813 break; 15814 } 15815 15816 /* 15817 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 15818 * need to become writer to continue to process it. Because an 15819 * exclusive operation doesn't complete until replies to all queued 15820 * DLPI messages have been received, we know we're in the middle of an 15821 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 15822 * 15823 * As required by qwriter_ip(), we refhold the ill; it will refrele. 15824 * Since this is on the ill stream we unconditionally bump up the 15825 * refcount without doing ILL_CAN_LOOKUP(). 15826 */ 15827 ill_refhold(ill); 15828 if (prim == DL_NOTIFY_IND) 15829 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 15830 else 15831 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 15832 } 15833 15834 /* 15835 * Handling of DLPI messages that require exclusive access to the ipsq. 15836 * 15837 * Need to do ill_pending_mp_release on ioctl completion, which could 15838 * happen here. (along with mi_copy_done) 15839 */ 15840 /* ARGSUSED */ 15841 static void 15842 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15843 { 15844 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15845 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15846 int err = 0; 15847 ill_t *ill; 15848 ipif_t *ipif = NULL; 15849 mblk_t *mp1 = NULL; 15850 conn_t *connp = NULL; 15851 t_uscalar_t paddrreq; 15852 mblk_t *mp_hw; 15853 boolean_t success; 15854 boolean_t ioctl_aborted = B_FALSE; 15855 boolean_t log = B_TRUE; 15856 ip_stack_t *ipst; 15857 15858 ip1dbg(("ip_rput_dlpi_writer ..")); 15859 ill = (ill_t *)q->q_ptr; 15860 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 15861 ASSERT(IAM_WRITER_ILL(ill)); 15862 15863 ipst = ill->ill_ipst; 15864 15865 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 15866 /* 15867 * The current ioctl could have been aborted by the user and a new 15868 * ioctl to bring up another ill could have started. We could still 15869 * get a response from the driver later. 15870 */ 15871 if (ipif != NULL && ipif->ipif_ill != ill) 15872 ioctl_aborted = B_TRUE; 15873 15874 switch (dloa->dl_primitive) { 15875 case DL_ERROR_ACK: 15876 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 15877 dl_primstr(dlea->dl_error_primitive))); 15878 15879 switch (dlea->dl_error_primitive) { 15880 case DL_DISABMULTI_REQ: 15881 ill_dlpi_done(ill, dlea->dl_error_primitive); 15882 break; 15883 case DL_PROMISCON_REQ: 15884 case DL_PROMISCOFF_REQ: 15885 case DL_UNBIND_REQ: 15886 case DL_ATTACH_REQ: 15887 case DL_INFO_REQ: 15888 ill_dlpi_done(ill, dlea->dl_error_primitive); 15889 break; 15890 case DL_NOTIFY_REQ: 15891 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15892 log = B_FALSE; 15893 break; 15894 case DL_PHYS_ADDR_REQ: 15895 /* 15896 * For IPv6 only, there are two additional 15897 * phys_addr_req's sent to the driver to get the 15898 * IPv6 token and lla. This allows IP to acquire 15899 * the hardware address format for a given interface 15900 * without having built in knowledge of the hardware 15901 * address. ill_phys_addr_pend keeps track of the last 15902 * DL_PAR sent so we know which response we are 15903 * dealing with. ill_dlpi_done will update 15904 * ill_phys_addr_pend when it sends the next req. 15905 * We don't complete the IOCTL until all three DL_PARs 15906 * have been attempted, so set *_len to 0 and break. 15907 */ 15908 paddrreq = ill->ill_phys_addr_pend; 15909 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15910 if (paddrreq == DL_IPV6_TOKEN) { 15911 ill->ill_token_length = 0; 15912 log = B_FALSE; 15913 break; 15914 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 15915 ill->ill_nd_lla_len = 0; 15916 log = B_FALSE; 15917 break; 15918 } 15919 /* 15920 * Something went wrong with the DL_PHYS_ADDR_REQ. 15921 * We presumably have an IOCTL hanging out waiting 15922 * for completion. Find it and complete the IOCTL 15923 * with the error noted. 15924 * However, ill_dl_phys was called on an ill queue 15925 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15926 * set. But the ioctl is known to be pending on ill_wq. 15927 */ 15928 if (!ill->ill_ifname_pending) 15929 break; 15930 ill->ill_ifname_pending = 0; 15931 if (!ioctl_aborted) 15932 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15933 if (mp1 != NULL) { 15934 /* 15935 * This operation (SIOCSLIFNAME) must have 15936 * happened on the ill. Assert there is no conn 15937 */ 15938 ASSERT(connp == NULL); 15939 q = ill->ill_wq; 15940 } 15941 break; 15942 case DL_BIND_REQ: 15943 ill_dlpi_done(ill, DL_BIND_REQ); 15944 if (ill->ill_ifname_pending) 15945 break; 15946 /* 15947 * Something went wrong with the bind. We presumably 15948 * have an IOCTL hanging out waiting for completion. 15949 * Find it, take down the interface that was coming 15950 * up, and complete the IOCTL with the error noted. 15951 */ 15952 if (!ioctl_aborted) 15953 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15954 if (mp1 != NULL) { 15955 /* 15956 * This might be a result of a DL_NOTE_REPLUMB 15957 * notification. In that case, connp is NULL. 15958 */ 15959 if (connp != NULL) 15960 q = CONNP_TO_WQ(connp); 15961 15962 (void) ipif_down(ipif, NULL, NULL); 15963 /* error is set below the switch */ 15964 } 15965 break; 15966 case DL_ENABMULTI_REQ: 15967 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 15968 15969 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15970 ill->ill_dlpi_multicast_state = IDS_FAILED; 15971 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15972 ipif_t *ipif; 15973 15974 printf("ip: joining multicasts failed (%d)" 15975 " on %s - will use link layer " 15976 "broadcasts for multicast\n", 15977 dlea->dl_errno, ill->ill_name); 15978 15979 /* 15980 * Set up the multicast mapping alone. 15981 * writer, so ok to access ill->ill_ipif 15982 * without any lock. 15983 */ 15984 ipif = ill->ill_ipif; 15985 mutex_enter(&ill->ill_phyint->phyint_lock); 15986 ill->ill_phyint->phyint_flags |= 15987 PHYI_MULTI_BCAST; 15988 mutex_exit(&ill->ill_phyint->phyint_lock); 15989 15990 if (!ill->ill_isv6) { 15991 (void) ipif_arp_setup_multicast(ipif, 15992 NULL); 15993 } else { 15994 (void) ipif_ndp_setup_multicast(ipif, 15995 NULL); 15996 } 15997 } 15998 freemsg(mp); /* Don't want to pass this up */ 15999 return; 16000 case DL_CONTROL_REQ: 16001 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 16002 "DL_CONTROL_REQ\n")); 16003 ill_dlpi_done(ill, dlea->dl_error_primitive); 16004 freemsg(mp); 16005 return; 16006 case DL_CAPABILITY_REQ: 16007 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 16008 "DL_CAPABILITY REQ\n")); 16009 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 16010 ill->ill_dlpi_capab_state = IDCS_FAILED; 16011 ill_capability_done(ill); 16012 freemsg(mp); 16013 return; 16014 } 16015 /* 16016 * Note the error for IOCTL completion (mp1 is set when 16017 * ready to complete ioctl). If ill_ifname_pending_err is 16018 * set, an error occured during plumbing (ill_ifname_pending), 16019 * so we want to report that error. 16020 * 16021 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 16022 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 16023 * expected to get errack'd if the driver doesn't support 16024 * these flags (e.g. ethernet). log will be set to B_FALSE 16025 * if these error conditions are encountered. 16026 */ 16027 if (mp1 != NULL) { 16028 if (ill->ill_ifname_pending_err != 0) { 16029 err = ill->ill_ifname_pending_err; 16030 ill->ill_ifname_pending_err = 0; 16031 } else { 16032 err = dlea->dl_unix_errno ? 16033 dlea->dl_unix_errno : ENXIO; 16034 } 16035 /* 16036 * If we're plumbing an interface and an error hasn't already 16037 * been saved, set ill_ifname_pending_err to the error passed 16038 * up. Ignore the error if log is B_FALSE (see comment above). 16039 */ 16040 } else if (log && ill->ill_ifname_pending && 16041 ill->ill_ifname_pending_err == 0) { 16042 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 16043 dlea->dl_unix_errno : ENXIO; 16044 } 16045 16046 if (log) 16047 ip_dlpi_error(ill, dlea->dl_error_primitive, 16048 dlea->dl_errno, dlea->dl_unix_errno); 16049 break; 16050 case DL_CAPABILITY_ACK: 16051 ill_capability_ack(ill, mp); 16052 /* 16053 * The message has been handed off to ill_capability_ack 16054 * and must not be freed below 16055 */ 16056 mp = NULL; 16057 break; 16058 16059 case DL_CONTROL_ACK: 16060 /* We treat all of these as "fire and forget" */ 16061 ill_dlpi_done(ill, DL_CONTROL_REQ); 16062 break; 16063 case DL_INFO_ACK: 16064 /* Call a routine to handle this one. */ 16065 ill_dlpi_done(ill, DL_INFO_REQ); 16066 ip_ll_subnet_defaults(ill, mp); 16067 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 16068 return; 16069 case DL_BIND_ACK: 16070 /* 16071 * We should have an IOCTL waiting on this unless 16072 * sent by ill_dl_phys, in which case just return 16073 */ 16074 ill_dlpi_done(ill, DL_BIND_REQ); 16075 if (ill->ill_ifname_pending) 16076 break; 16077 16078 if (!ioctl_aborted) 16079 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16080 if (mp1 == NULL) 16081 break; 16082 /* 16083 * mp1 was added by ill_dl_up(). if that is a result of 16084 * a DL_NOTE_REPLUMB notification, connp could be NULL. 16085 */ 16086 if (connp != NULL) 16087 q = CONNP_TO_WQ(connp); 16088 16089 /* 16090 * We are exclusive. So nothing can change even after 16091 * we get the pending mp. If need be we can put it back 16092 * and restart, as in calling ipif_arp_up() below. 16093 */ 16094 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 16095 16096 mutex_enter(&ill->ill_lock); 16097 ill->ill_dl_up = 1; 16098 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 16099 mutex_exit(&ill->ill_lock); 16100 16101 /* 16102 * Now bring up the resolver; when that is complete, we'll 16103 * create IREs. Note that we intentionally mirror what 16104 * ipif_up() would have done, because we got here by way of 16105 * ill_dl_up(), which stopped ipif_up()'s processing. 16106 */ 16107 if (ill->ill_isv6) { 16108 if (ill->ill_flags & ILLF_XRESOLV) { 16109 if (connp != NULL) 16110 mutex_enter(&connp->conn_lock); 16111 mutex_enter(&ill->ill_lock); 16112 success = ipsq_pending_mp_add(connp, ipif, q, 16113 mp1, 0); 16114 mutex_exit(&ill->ill_lock); 16115 if (connp != NULL) 16116 mutex_exit(&connp->conn_lock); 16117 if (success) { 16118 err = ipif_resolver_up(ipif, 16119 Res_act_initial); 16120 if (err == EINPROGRESS) { 16121 freemsg(mp); 16122 return; 16123 } 16124 ASSERT(err != 0); 16125 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16126 ASSERT(mp1 != NULL); 16127 } else { 16128 /* conn has started closing */ 16129 err = EINTR; 16130 } 16131 } else { /* Non XRESOLV interface */ 16132 (void) ipif_resolver_up(ipif, Res_act_initial); 16133 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 16134 err = ipif_up_done_v6(ipif); 16135 } 16136 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 16137 /* 16138 * ARP and other v4 external resolvers. 16139 * Leave the pending mblk intact so that 16140 * the ioctl completes in ip_rput(). 16141 */ 16142 if (connp != NULL) 16143 mutex_enter(&connp->conn_lock); 16144 mutex_enter(&ill->ill_lock); 16145 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 16146 mutex_exit(&ill->ill_lock); 16147 if (connp != NULL) 16148 mutex_exit(&connp->conn_lock); 16149 if (success) { 16150 err = ipif_resolver_up(ipif, Res_act_initial); 16151 if (err == EINPROGRESS) { 16152 freemsg(mp); 16153 return; 16154 } 16155 ASSERT(err != 0); 16156 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16157 } else { 16158 /* The conn has started closing */ 16159 err = EINTR; 16160 } 16161 } else { 16162 /* 16163 * This one is complete. Reply to pending ioctl. 16164 */ 16165 (void) ipif_resolver_up(ipif, Res_act_initial); 16166 err = ipif_up_done(ipif); 16167 } 16168 16169 if ((err == 0) && (ill->ill_up_ipifs)) { 16170 err = ill_up_ipifs(ill, q, mp1); 16171 if (err == EINPROGRESS) { 16172 freemsg(mp); 16173 return; 16174 } 16175 } 16176 16177 /* 16178 * If we have a moved ipif to bring up, and everything has 16179 * succeeded to this point, bring it up on the IPMP ill. 16180 * Otherwise, leave it down -- the admin can try to bring it 16181 * up by hand if need be. 16182 */ 16183 if (ill->ill_move_ipif != NULL) { 16184 if (err != 0) { 16185 ill->ill_move_ipif = NULL; 16186 } else { 16187 ipif = ill->ill_move_ipif; 16188 ill->ill_move_ipif = NULL; 16189 err = ipif_up(ipif, q, mp1); 16190 if (err == EINPROGRESS) { 16191 freemsg(mp); 16192 return; 16193 } 16194 } 16195 } 16196 break; 16197 16198 case DL_NOTIFY_IND: { 16199 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 16200 ire_t *ire; 16201 uint_t orig_mtu; 16202 boolean_t need_ire_walk_v4 = B_FALSE; 16203 boolean_t need_ire_walk_v6 = B_FALSE; 16204 16205 switch (notify->dl_notification) { 16206 case DL_NOTE_PHYS_ADDR: 16207 err = ill_set_phys_addr(ill, mp); 16208 break; 16209 16210 case DL_NOTE_REPLUMB: 16211 /* 16212 * Directly return after calling ill_replumb(). 16213 * Note that we should not free mp as it is reused 16214 * in the ill_replumb() function. 16215 */ 16216 err = ill_replumb(ill, mp); 16217 return; 16218 16219 case DL_NOTE_FASTPATH_FLUSH: 16220 ill_fastpath_flush(ill); 16221 break; 16222 16223 case DL_NOTE_SDU_SIZE: 16224 /* 16225 * Change the MTU size of the interface, of all 16226 * attached ipif's, and of all relevant ire's. The 16227 * new value's a uint32_t at notify->dl_data. 16228 * Mtu change Vs. new ire creation - protocol below. 16229 * 16230 * a Mark the ipif as IPIF_CHANGING. 16231 * b Set the new mtu in the ipif. 16232 * c Change the ire_max_frag on all affected ires 16233 * d Unmark the IPIF_CHANGING 16234 * 16235 * To see how the protocol works, assume an interface 16236 * route is also being added simultaneously by 16237 * ip_rt_add and let 'ipif' be the ipif referenced by 16238 * the ire. If the ire is created before step a, 16239 * it will be cleaned up by step c. If the ire is 16240 * created after step d, it will see the new value of 16241 * ipif_mtu. Any attempt to create the ire between 16242 * steps a to d will fail because of the IPIF_CHANGING 16243 * flag. Note that ire_create() is passed a pointer to 16244 * the ipif_mtu, and not the value. During ire_add 16245 * under the bucket lock, the ire_max_frag of the 16246 * new ire being created is set from the ipif/ire from 16247 * which it is being derived. 16248 */ 16249 mutex_enter(&ill->ill_lock); 16250 16251 orig_mtu = ill->ill_max_mtu; 16252 ill->ill_max_frag = (uint_t)notify->dl_data; 16253 ill->ill_max_mtu = (uint_t)notify->dl_data; 16254 16255 /* 16256 * If ill_user_mtu was set (via SIOCSLIFLNKINFO), 16257 * clamp ill_max_mtu at it. 16258 */ 16259 if (ill->ill_user_mtu != 0 && 16260 ill->ill_user_mtu < ill->ill_max_mtu) 16261 ill->ill_max_mtu = ill->ill_user_mtu; 16262 16263 /* 16264 * If the MTU is unchanged, we're done. 16265 */ 16266 if (orig_mtu == ill->ill_max_mtu) { 16267 mutex_exit(&ill->ill_lock); 16268 break; 16269 } 16270 16271 if (ill->ill_isv6) { 16272 if (ill->ill_max_mtu < IPV6_MIN_MTU) 16273 ill->ill_max_mtu = IPV6_MIN_MTU; 16274 } else { 16275 if (ill->ill_max_mtu < IP_MIN_MTU) 16276 ill->ill_max_mtu = IP_MIN_MTU; 16277 } 16278 for (ipif = ill->ill_ipif; ipif != NULL; 16279 ipif = ipif->ipif_next) { 16280 /* 16281 * Don't override the mtu if the user 16282 * has explicitly set it. 16283 */ 16284 if (ipif->ipif_flags & IPIF_FIXEDMTU) 16285 continue; 16286 ipif->ipif_mtu = (uint_t)notify->dl_data; 16287 if (ipif->ipif_isv6) 16288 ire = ipif_to_ire_v6(ipif); 16289 else 16290 ire = ipif_to_ire(ipif); 16291 if (ire != NULL) { 16292 ire->ire_max_frag = ipif->ipif_mtu; 16293 ire_refrele(ire); 16294 } 16295 if (ipif->ipif_flags & IPIF_UP) { 16296 if (ill->ill_isv6) 16297 need_ire_walk_v6 = B_TRUE; 16298 else 16299 need_ire_walk_v4 = B_TRUE; 16300 } 16301 } 16302 mutex_exit(&ill->ill_lock); 16303 if (need_ire_walk_v4) 16304 ire_walk_v4(ill_mtu_change, (char *)ill, 16305 ALL_ZONES, ipst); 16306 if (need_ire_walk_v6) 16307 ire_walk_v6(ill_mtu_change, (char *)ill, 16308 ALL_ZONES, ipst); 16309 16310 /* 16311 * Refresh IPMP meta-interface MTU if necessary. 16312 */ 16313 if (IS_UNDER_IPMP(ill)) 16314 ipmp_illgrp_refresh_mtu(ill->ill_grp); 16315 break; 16316 16317 case DL_NOTE_LINK_UP: 16318 case DL_NOTE_LINK_DOWN: { 16319 /* 16320 * We are writer. ill / phyint / ipsq assocs stable. 16321 * The RUNNING flag reflects the state of the link. 16322 */ 16323 phyint_t *phyint = ill->ill_phyint; 16324 uint64_t new_phyint_flags; 16325 boolean_t changed = B_FALSE; 16326 boolean_t went_up; 16327 16328 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 16329 mutex_enter(&phyint->phyint_lock); 16330 16331 new_phyint_flags = went_up ? 16332 phyint->phyint_flags | PHYI_RUNNING : 16333 phyint->phyint_flags & ~PHYI_RUNNING; 16334 16335 if (IS_IPMP(ill)) { 16336 new_phyint_flags = went_up ? 16337 new_phyint_flags & ~PHYI_FAILED : 16338 new_phyint_flags | PHYI_FAILED; 16339 } 16340 16341 if (new_phyint_flags != phyint->phyint_flags) { 16342 phyint->phyint_flags = new_phyint_flags; 16343 changed = B_TRUE; 16344 } 16345 mutex_exit(&phyint->phyint_lock); 16346 /* 16347 * ill_restart_dad handles the DAD restart and routing 16348 * socket notification logic. 16349 */ 16350 if (changed) { 16351 ill_restart_dad(phyint->phyint_illv4, went_up); 16352 ill_restart_dad(phyint->phyint_illv6, went_up); 16353 } 16354 break; 16355 } 16356 case DL_NOTE_PROMISC_ON_PHYS: { 16357 phyint_t *phyint = ill->ill_phyint; 16358 16359 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16360 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 16361 mutex_enter(&phyint->phyint_lock); 16362 phyint->phyint_flags |= PHYI_PROMISC; 16363 mutex_exit(&phyint->phyint_lock); 16364 break; 16365 } 16366 case DL_NOTE_PROMISC_OFF_PHYS: { 16367 phyint_t *phyint = ill->ill_phyint; 16368 16369 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 16370 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 16371 mutex_enter(&phyint->phyint_lock); 16372 phyint->phyint_flags &= ~PHYI_PROMISC; 16373 mutex_exit(&phyint->phyint_lock); 16374 break; 16375 } 16376 case DL_NOTE_CAPAB_RENEG: 16377 /* 16378 * Something changed on the driver side. 16379 * It wants us to renegotiate the capabilities 16380 * on this ill. One possible cause is the aggregation 16381 * interface under us where a port got added or 16382 * went away. 16383 * 16384 * If the capability negotiation is already done 16385 * or is in progress, reset the capabilities and 16386 * mark the ill's ill_capab_reneg to be B_TRUE, 16387 * so that when the ack comes back, we can start 16388 * the renegotiation process. 16389 * 16390 * Note that if ill_capab_reneg is already B_TRUE 16391 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 16392 * the capability resetting request has been sent 16393 * and the renegotiation has not been started yet; 16394 * nothing needs to be done in this case. 16395 */ 16396 ipsq_current_start(ipsq, ill->ill_ipif, 0); 16397 ill_capability_reset(ill, B_TRUE); 16398 ipsq_current_finish(ipsq); 16399 break; 16400 default: 16401 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 16402 "type 0x%x for DL_NOTIFY_IND\n", 16403 notify->dl_notification)); 16404 break; 16405 } 16406 16407 /* 16408 * As this is an asynchronous operation, we 16409 * should not call ill_dlpi_done 16410 */ 16411 break; 16412 } 16413 case DL_NOTIFY_ACK: { 16414 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 16415 16416 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 16417 ill->ill_note_link = 1; 16418 ill_dlpi_done(ill, DL_NOTIFY_REQ); 16419 break; 16420 } 16421 case DL_PHYS_ADDR_ACK: { 16422 /* 16423 * As part of plumbing the interface via SIOCSLIFNAME, 16424 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 16425 * whose answers we receive here. As each answer is received, 16426 * we call ill_dlpi_done() to dispatch the next request as 16427 * we're processing the current one. Once all answers have 16428 * been received, we use ipsq_pending_mp_get() to dequeue the 16429 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 16430 * is invoked from an ill queue, conn_oper_pending_ill is not 16431 * available, but we know the ioctl is pending on ill_wq.) 16432 */ 16433 uint_t paddrlen, paddroff; 16434 16435 paddrreq = ill->ill_phys_addr_pend; 16436 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 16437 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 16438 16439 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 16440 if (paddrreq == DL_IPV6_TOKEN) { 16441 /* 16442 * bcopy to low-order bits of ill_token 16443 * 16444 * XXX Temporary hack - currently, all known tokens 16445 * are 64 bits, so I'll cheat for the moment. 16446 */ 16447 bcopy(mp->b_rptr + paddroff, 16448 &ill->ill_token.s6_addr32[2], paddrlen); 16449 ill->ill_token_length = paddrlen; 16450 break; 16451 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 16452 ASSERT(ill->ill_nd_lla_mp == NULL); 16453 ill_set_ndmp(ill, mp, paddroff, paddrlen); 16454 mp = NULL; 16455 break; 16456 } 16457 16458 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 16459 ASSERT(ill->ill_phys_addr_mp == NULL); 16460 if (!ill->ill_ifname_pending) 16461 break; 16462 ill->ill_ifname_pending = 0; 16463 if (!ioctl_aborted) 16464 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16465 if (mp1 != NULL) { 16466 ASSERT(connp == NULL); 16467 q = ill->ill_wq; 16468 } 16469 /* 16470 * If any error acks received during the plumbing sequence, 16471 * ill_ifname_pending_err will be set. Break out and send up 16472 * the error to the pending ioctl. 16473 */ 16474 if (ill->ill_ifname_pending_err != 0) { 16475 err = ill->ill_ifname_pending_err; 16476 ill->ill_ifname_pending_err = 0; 16477 break; 16478 } 16479 16480 ill->ill_phys_addr_mp = mp; 16481 ill->ill_phys_addr = mp->b_rptr + paddroff; 16482 mp = NULL; 16483 16484 /* 16485 * If paddrlen is zero, the DLPI provider doesn't support 16486 * physical addresses. The other two tests were historical 16487 * workarounds for bugs in our former PPP implementation, but 16488 * now other things have grown dependencies on them -- e.g., 16489 * the tun module specifies a dl_addr_length of zero in its 16490 * DL_BIND_ACK, but then specifies an incorrect value in its 16491 * DL_PHYS_ADDR_ACK. These bogus checks need to be removed, 16492 * but only after careful testing ensures that all dependent 16493 * broken DLPI providers have been fixed. 16494 */ 16495 if (paddrlen == 0 || ill->ill_phys_addr_length == 0 || 16496 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16497 ill->ill_phys_addr = NULL; 16498 } else if (paddrlen != ill->ill_phys_addr_length) { 16499 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 16500 paddrlen, ill->ill_phys_addr_length)); 16501 err = EINVAL; 16502 break; 16503 } 16504 16505 if (ill->ill_nd_lla_mp == NULL) { 16506 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 16507 err = ENOMEM; 16508 break; 16509 } 16510 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 16511 } 16512 16513 /* 16514 * Set the interface token. If the zeroth interface address 16515 * is unspecified, then set it to the link local address. 16516 */ 16517 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16518 (void) ill_setdefaulttoken(ill); 16519 16520 ASSERT(ill->ill_ipif->ipif_id == 0); 16521 if (ipif != NULL && 16522 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 16523 (void) ipif_setlinklocal(ipif); 16524 } 16525 break; 16526 } 16527 case DL_OK_ACK: 16528 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16529 dl_primstr((int)dloa->dl_correct_primitive), 16530 dloa->dl_correct_primitive)); 16531 switch (dloa->dl_correct_primitive) { 16532 case DL_ENABMULTI_REQ: 16533 case DL_DISABMULTI_REQ: 16534 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16535 break; 16536 case DL_PROMISCON_REQ: 16537 case DL_PROMISCOFF_REQ: 16538 case DL_UNBIND_REQ: 16539 case DL_ATTACH_REQ: 16540 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16541 break; 16542 } 16543 break; 16544 default: 16545 break; 16546 } 16547 16548 freemsg(mp); 16549 if (mp1 == NULL) 16550 return; 16551 16552 /* 16553 * The operation must complete without EINPROGRESS since 16554 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 16555 * the operation will be stuck forever inside the IPSQ. 16556 */ 16557 ASSERT(err != EINPROGRESS); 16558 16559 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 16560 case 0: 16561 ipsq_current_finish(ipsq); 16562 break; 16563 16564 case SIOCSLIFNAME: 16565 case IF_UNITSEL: { 16566 ill_t *ill_other = ILL_OTHER(ill); 16567 16568 /* 16569 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 16570 * ill has a peer which is in an IPMP group, then place ill 16571 * into the same group. One catch: although ifconfig plumbs 16572 * the appropriate IPMP meta-interface prior to plumbing this 16573 * ill, it is possible for multiple ifconfig applications to 16574 * race (or for another application to adjust plumbing), in 16575 * which case the IPMP meta-interface we need will be missing. 16576 * If so, kick the phyint out of the group. 16577 */ 16578 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 16579 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 16580 ipmp_illgrp_t *illg; 16581 16582 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 16583 if (illg == NULL) 16584 ipmp_phyint_leave_grp(ill->ill_phyint); 16585 else 16586 ipmp_ill_join_illgrp(ill, illg); 16587 } 16588 16589 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 16590 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16591 else 16592 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16593 break; 16594 } 16595 case SIOCLIFADDIF: 16596 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 16597 break; 16598 16599 default: 16600 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 16601 break; 16602 } 16603 } 16604 16605 /* 16606 * ip_rput_other is called by ip_rput to handle messages modifying the global 16607 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16608 */ 16609 /* ARGSUSED */ 16610 void 16611 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16612 { 16613 ill_t *ill = q->q_ptr; 16614 struct iocblk *iocp; 16615 mblk_t *mp1; 16616 conn_t *connp = NULL; 16617 16618 ip1dbg(("ip_rput_other ")); 16619 if (ipsq != NULL) { 16620 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16621 ASSERT(ipsq->ipsq_xop == 16622 ill->ill_phyint->phyint_ipsq->ipsq_xop); 16623 } 16624 16625 switch (mp->b_datap->db_type) { 16626 case M_ERROR: 16627 case M_HANGUP: 16628 /* 16629 * The device has a problem. We force the ILL down. It can 16630 * be brought up again manually using SIOCSIFFLAGS (via 16631 * ifconfig or equivalent). 16632 */ 16633 ASSERT(ipsq != NULL); 16634 if (mp->b_rptr < mp->b_wptr) 16635 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16636 if (ill->ill_error == 0) 16637 ill->ill_error = ENXIO; 16638 if (!ill_down_start(q, mp)) 16639 return; 16640 ipif_all_down_tail(ipsq, q, mp, NULL); 16641 break; 16642 case M_IOCACK: 16643 iocp = (struct iocblk *)mp->b_rptr; 16644 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16645 switch (iocp->ioc_cmd) { 16646 case SIOCSTUNPARAM: 16647 case OSIOCSTUNPARAM: 16648 ASSERT(ipsq != NULL); 16649 /* 16650 * Finish socket ioctl passed through to tun. 16651 * We should have an IOCTL waiting on this. 16652 */ 16653 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16654 if (ill->ill_isv6) { 16655 struct iftun_req *ta; 16656 16657 /* 16658 * if a source or destination is 16659 * being set, try and set the link 16660 * local address for the tunnel 16661 */ 16662 ta = (struct iftun_req *)mp->b_cont-> 16663 b_cont->b_rptr; 16664 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16665 ipif_set_tun_llink(ill, ta); 16666 } 16667 16668 } 16669 if (mp1 != NULL) { 16670 /* 16671 * Now copy back the b_next/b_prev used by 16672 * mi code for the mi_copy* functions. 16673 * See ip_sioctl_tunparam() for the reason. 16674 * Also protect against missing b_cont. 16675 */ 16676 if (mp->b_cont != NULL) { 16677 mp->b_cont->b_next = 16678 mp1->b_cont->b_next; 16679 mp->b_cont->b_prev = 16680 mp1->b_cont->b_prev; 16681 } 16682 inet_freemsg(mp1); 16683 ASSERT(connp != NULL); 16684 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16685 iocp->ioc_error, NO_COPYOUT, ipsq); 16686 } else { 16687 ASSERT(connp == NULL); 16688 putnext(q, mp); 16689 } 16690 break; 16691 case SIOCGTUNPARAM: 16692 case OSIOCGTUNPARAM: 16693 /* 16694 * This is really M_IOCDATA from the tunnel driver. 16695 * convert back and complete the ioctl. 16696 * We should have an IOCTL waiting on this. 16697 */ 16698 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16699 if (mp1) { 16700 /* 16701 * Now copy back the b_next/b_prev used by 16702 * mi code for the mi_copy* functions. 16703 * See ip_sioctl_tunparam() for the reason. 16704 * Also protect against missing b_cont. 16705 */ 16706 if (mp->b_cont != NULL) { 16707 mp->b_cont->b_next = 16708 mp1->b_cont->b_next; 16709 mp->b_cont->b_prev = 16710 mp1->b_cont->b_prev; 16711 } 16712 inet_freemsg(mp1); 16713 if (iocp->ioc_error == 0) 16714 mp->b_datap->db_type = M_IOCDATA; 16715 ASSERT(connp != NULL); 16716 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16717 iocp->ioc_error, COPYOUT, NULL); 16718 } else { 16719 ASSERT(connp == NULL); 16720 putnext(q, mp); 16721 } 16722 break; 16723 default: 16724 break; 16725 } 16726 break; 16727 case M_IOCNAK: 16728 iocp = (struct iocblk *)mp->b_rptr; 16729 16730 switch (iocp->ioc_cmd) { 16731 int mode; 16732 16733 case DL_IOC_HDR_INFO: 16734 /* 16735 * If this was the first attempt, turn off the 16736 * fastpath probing. 16737 */ 16738 mutex_enter(&ill->ill_lock); 16739 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16740 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16741 mutex_exit(&ill->ill_lock); 16742 ill_fastpath_nack(ill); 16743 ip1dbg(("ip_rput: DLPI fastpath off on " 16744 "interface %s\n", 16745 ill->ill_name)); 16746 } else { 16747 mutex_exit(&ill->ill_lock); 16748 } 16749 freemsg(mp); 16750 break; 16751 case SIOCSTUNPARAM: 16752 case OSIOCSTUNPARAM: 16753 ASSERT(ipsq != NULL); 16754 /* 16755 * Finish socket ioctl passed through to tun 16756 * We should have an IOCTL waiting on this. 16757 */ 16758 /* FALLTHRU */ 16759 case SIOCGTUNPARAM: 16760 case OSIOCGTUNPARAM: 16761 /* 16762 * This is really M_IOCDATA from the tunnel driver. 16763 * convert back and complete the ioctl. 16764 * We should have an IOCTL waiting on this. 16765 */ 16766 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16767 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16768 mp1 = ill_pending_mp_get(ill, &connp, 16769 iocp->ioc_id); 16770 mode = COPYOUT; 16771 ipsq = NULL; 16772 } else { 16773 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16774 mode = NO_COPYOUT; 16775 } 16776 if (mp1 != NULL) { 16777 /* 16778 * Now copy back the b_next/b_prev used by 16779 * mi code for the mi_copy* functions. 16780 * See ip_sioctl_tunparam() for the reason. 16781 * Also protect against missing b_cont. 16782 */ 16783 if (mp->b_cont != NULL) { 16784 mp->b_cont->b_next = 16785 mp1->b_cont->b_next; 16786 mp->b_cont->b_prev = 16787 mp1->b_cont->b_prev; 16788 } 16789 inet_freemsg(mp1); 16790 if (iocp->ioc_error == 0) 16791 iocp->ioc_error = EINVAL; 16792 ASSERT(connp != NULL); 16793 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16794 iocp->ioc_error, mode, ipsq); 16795 } else { 16796 ASSERT(connp == NULL); 16797 putnext(q, mp); 16798 } 16799 break; 16800 default: 16801 break; 16802 } 16803 default: 16804 break; 16805 } 16806 } 16807 16808 /* 16809 * NOTE : This function does not ire_refrele the ire argument passed in. 16810 * 16811 * IPQoS notes 16812 * IP policy is invoked twice for a forwarded packet, once on the read side 16813 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16814 * enabled. An additional parameter, in_ill, has been added for this purpose. 16815 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16816 * because ip_mroute drops this information. 16817 * 16818 */ 16819 void 16820 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16821 { 16822 uint32_t old_pkt_len; 16823 uint32_t pkt_len; 16824 queue_t *q; 16825 uint32_t sum; 16826 #define rptr ((uchar_t *)ipha) 16827 uint32_t max_frag; 16828 uint32_t ill_index; 16829 ill_t *out_ill; 16830 mib2_ipIfStatsEntry_t *mibptr; 16831 ip_stack_t *ipst = ((ill_t *)(ire->ire_stq->q_ptr))->ill_ipst; 16832 16833 /* Get the ill_index of the incoming ILL */ 16834 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16835 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib; 16836 16837 /* Initiate Read side IPPF processing */ 16838 if (IPP_ENABLED(IPP_FWD_IN, ipst)) { 16839 ip_process(IPP_FWD_IN, &mp, ill_index); 16840 if (mp == NULL) { 16841 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16842 "during IPPF processing\n")); 16843 return; 16844 } 16845 } 16846 16847 /* Adjust the checksum to reflect the ttl decrement. */ 16848 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16849 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16850 16851 if (ipha->ipha_ttl-- <= 1) { 16852 if (ip_csum_hdr(ipha)) { 16853 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16854 goto drop_pkt; 16855 } 16856 /* 16857 * Note: ire_stq this will be NULL for multicast 16858 * datagrams using the long path through arp (the IRE 16859 * is not an IRE_CACHE). This should not cause 16860 * problems since we don't generate ICMP errors for 16861 * multicast packets. 16862 */ 16863 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16864 q = ire->ire_stq; 16865 if (q != NULL) { 16866 /* Sent by forwarding path, and router is global zone */ 16867 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16868 GLOBAL_ZONEID, ipst); 16869 } else 16870 freemsg(mp); 16871 return; 16872 } 16873 16874 /* 16875 * Don't forward if the interface is down 16876 */ 16877 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16878 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16879 ip2dbg(("ip_rput_forward:interface is down\n")); 16880 goto drop_pkt; 16881 } 16882 16883 /* Get the ill_index of the outgoing ILL */ 16884 out_ill = ire_to_ill(ire); 16885 ill_index = out_ill->ill_phyint->phyint_ifindex; 16886 16887 DTRACE_PROBE4(ip4__forwarding__start, 16888 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16889 16890 FW_HOOKS(ipst->ips_ip4_forwarding_event, 16891 ipst->ips_ipv4firewall_forwarding, 16892 in_ill, out_ill, ipha, mp, mp, 0, ipst); 16893 16894 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16895 16896 if (mp == NULL) 16897 return; 16898 old_pkt_len = pkt_len = ntohs(ipha->ipha_length); 16899 16900 if (is_system_labeled()) { 16901 mblk_t *mp1; 16902 16903 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16904 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16905 goto drop_pkt; 16906 } 16907 /* Size may have changed */ 16908 mp = mp1; 16909 ipha = (ipha_t *)mp->b_rptr; 16910 pkt_len = ntohs(ipha->ipha_length); 16911 } 16912 16913 /* Check if there are options to update */ 16914 if (!IS_SIMPLE_IPH(ipha)) { 16915 if (ip_csum_hdr(ipha)) { 16916 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16917 goto drop_pkt; 16918 } 16919 if (ip_rput_forward_options(mp, ipha, ire, ipst)) { 16920 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16921 return; 16922 } 16923 16924 ipha->ipha_hdr_checksum = 0; 16925 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16926 } 16927 max_frag = ire->ire_max_frag; 16928 if (pkt_len > max_frag) { 16929 /* 16930 * It needs fragging on its way out. We haven't 16931 * verified the header checksum yet. Since we 16932 * are going to put a surely good checksum in the 16933 * outgoing header, we have to make sure that it 16934 * was good coming in. 16935 */ 16936 if (ip_csum_hdr(ipha)) { 16937 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16938 goto drop_pkt; 16939 } 16940 /* Initiate Write side IPPF processing */ 16941 if (IPP_ENABLED(IPP_FWD_OUT, ipst)) { 16942 ip_process(IPP_FWD_OUT, &mp, ill_index); 16943 if (mp == NULL) { 16944 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16945 " during IPPF processing\n")); 16946 return; 16947 } 16948 } 16949 /* 16950 * Handle labeled packet resizing. 16951 * 16952 * If we have added a label, inform ip_wput_frag() of its 16953 * effect on the MTU for ICMP messages. 16954 */ 16955 if (pkt_len > old_pkt_len) { 16956 uint32_t secopt_size; 16957 16958 secopt_size = pkt_len - old_pkt_len; 16959 if (secopt_size < max_frag) 16960 max_frag -= secopt_size; 16961 } 16962 16963 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, 16964 GLOBAL_ZONEID, ipst, NULL); 16965 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16966 return; 16967 } 16968 16969 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16970 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16971 FW_HOOKS(ipst->ips_ip4_physical_out_event, 16972 ipst->ips_ipv4firewall_physical_out, 16973 NULL, out_ill, ipha, mp, mp, 0, ipst); 16974 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16975 if (mp == NULL) 16976 return; 16977 16978 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16979 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16980 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE, NULL); 16981 /* ip_xmit_v4 always consumes the packet */ 16982 return; 16983 16984 drop_pkt:; 16985 ip1dbg(("ip_rput_forward: drop pkt\n")); 16986 freemsg(mp); 16987 #undef rptr 16988 } 16989 16990 void 16991 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16992 { 16993 ire_t *ire; 16994 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16995 16996 ASSERT(!ipif->ipif_isv6); 16997 /* 16998 * Find an IRE which matches the destination and the outgoing 16999 * queue in the cache table. All we need is an IRE_CACHE which 17000 * is pointing at ipif->ipif_ill. 17001 */ 17002 if (ipif->ipif_flags & IPIF_POINTOPOINT) 17003 dst = ipif->ipif_pp_dst_addr; 17004 17005 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, msg_getlabel(mp), 17006 MATCH_IRE_ILL | MATCH_IRE_SECATTR, ipst); 17007 if (ire == NULL) { 17008 /* 17009 * Mark this packet to make it be delivered to 17010 * ip_rput_forward after the new ire has been 17011 * created. 17012 */ 17013 mp->b_prev = NULL; 17014 mp->b_next = mp; 17015 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 17016 NULL, 0, GLOBAL_ZONEID, &zero_info); 17017 } else { 17018 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 17019 IRE_REFRELE(ire); 17020 } 17021 } 17022 17023 /* Update any source route, record route or timestamp options */ 17024 static int 17025 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst) 17026 { 17027 ipoptp_t opts; 17028 uchar_t *opt; 17029 uint8_t optval; 17030 uint8_t optlen; 17031 ipaddr_t dst; 17032 uint32_t ts; 17033 ire_t *dst_ire = NULL; 17034 ire_t *tmp_ire = NULL; 17035 timestruc_t now; 17036 17037 ip2dbg(("ip_rput_forward_options\n")); 17038 dst = ipha->ipha_dst; 17039 for (optval = ipoptp_first(&opts, ipha); 17040 optval != IPOPT_EOL; 17041 optval = ipoptp_next(&opts)) { 17042 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17043 opt = opts.ipoptp_cur; 17044 optlen = opts.ipoptp_len; 17045 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 17046 optval, opts.ipoptp_len)); 17047 switch (optval) { 17048 uint32_t off; 17049 case IPOPT_SSRR: 17050 case IPOPT_LSRR: 17051 /* Check if adminstratively disabled */ 17052 if (!ipst->ips_ip_forward_src_routed) { 17053 if (ire->ire_stq != NULL) { 17054 /* 17055 * Sent by forwarding path, and router 17056 * is global zone 17057 */ 17058 icmp_unreachable(ire->ire_stq, mp, 17059 ICMP_SOURCE_ROUTE_FAILED, 17060 GLOBAL_ZONEID, ipst); 17061 } else { 17062 ip0dbg(("ip_rput_forward_options: " 17063 "unable to send unreach\n")); 17064 freemsg(mp); 17065 } 17066 return (-1); 17067 } 17068 17069 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17070 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17071 if (dst_ire == NULL) { 17072 /* 17073 * Must be partial since ip_rput_options 17074 * checked for strict. 17075 */ 17076 break; 17077 } 17078 off = opt[IPOPT_OFFSET]; 17079 off--; 17080 redo_srr: 17081 if (optlen < IP_ADDR_LEN || 17082 off > optlen - IP_ADDR_LEN) { 17083 /* End of source route */ 17084 ip1dbg(( 17085 "ip_rput_forward_options: end of SR\n")); 17086 ire_refrele(dst_ire); 17087 break; 17088 } 17089 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17090 bcopy(&ire->ire_src_addr, (char *)opt + off, 17091 IP_ADDR_LEN); 17092 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 17093 ntohl(dst))); 17094 17095 /* 17096 * Check if our address is present more than 17097 * once as consecutive hops in source route. 17098 */ 17099 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17100 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 17101 if (tmp_ire != NULL) { 17102 ire_refrele(tmp_ire); 17103 off += IP_ADDR_LEN; 17104 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17105 goto redo_srr; 17106 } 17107 ipha->ipha_dst = dst; 17108 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17109 ire_refrele(dst_ire); 17110 break; 17111 case IPOPT_RR: 17112 off = opt[IPOPT_OFFSET]; 17113 off--; 17114 if (optlen < IP_ADDR_LEN || 17115 off > optlen - IP_ADDR_LEN) { 17116 /* No more room - ignore */ 17117 ip1dbg(( 17118 "ip_rput_forward_options: end of RR\n")); 17119 break; 17120 } 17121 bcopy(&ire->ire_src_addr, (char *)opt + off, 17122 IP_ADDR_LEN); 17123 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17124 break; 17125 case IPOPT_TS: 17126 /* Insert timestamp if there is room */ 17127 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17128 case IPOPT_TS_TSONLY: 17129 off = IPOPT_TS_TIMELEN; 17130 break; 17131 case IPOPT_TS_PRESPEC: 17132 case IPOPT_TS_PRESPEC_RFC791: 17133 /* Verify that the address matched */ 17134 off = opt[IPOPT_OFFSET] - 1; 17135 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17136 dst_ire = ire_ctable_lookup(dst, 0, 17137 IRE_LOCAL, NULL, ALL_ZONES, NULL, 17138 MATCH_IRE_TYPE, ipst); 17139 if (dst_ire == NULL) { 17140 /* Not for us */ 17141 break; 17142 } 17143 ire_refrele(dst_ire); 17144 /* FALLTHRU */ 17145 case IPOPT_TS_TSANDADDR: 17146 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17147 break; 17148 default: 17149 /* 17150 * ip_*put_options should have already 17151 * dropped this packet. 17152 */ 17153 cmn_err(CE_PANIC, "ip_rput_forward_options: " 17154 "unknown IT - bug in ip_rput_options?\n"); 17155 return (0); /* Keep "lint" happy */ 17156 } 17157 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17158 /* Increase overflow counter */ 17159 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17160 opt[IPOPT_POS_OV_FLG] = 17161 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17162 (off << 4)); 17163 break; 17164 } 17165 off = opt[IPOPT_OFFSET] - 1; 17166 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17167 case IPOPT_TS_PRESPEC: 17168 case IPOPT_TS_PRESPEC_RFC791: 17169 case IPOPT_TS_TSANDADDR: 17170 bcopy(&ire->ire_src_addr, 17171 (char *)opt + off, IP_ADDR_LEN); 17172 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17173 /* FALLTHRU */ 17174 case IPOPT_TS_TSONLY: 17175 off = opt[IPOPT_OFFSET] - 1; 17176 /* Compute # of milliseconds since midnight */ 17177 gethrestime(&now); 17178 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17179 now.tv_nsec / (NANOSEC / MILLISEC); 17180 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17181 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17182 break; 17183 } 17184 break; 17185 } 17186 } 17187 return (0); 17188 } 17189 17190 /* 17191 * This is called after processing at least one of AH/ESP headers. 17192 * 17193 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 17194 * the actual, physical interface on which the packet was received, 17195 * but, when ip_strict_dst_multihoming is set to 1, could be the 17196 * interface which had the ipha_dst configured when the packet went 17197 * through ip_rput. The ill_index corresponding to the recv_ill 17198 * is saved in ipsec_in_rill_index 17199 * 17200 * NOTE2: The "ire" argument is only used in IPv4 cases. This function 17201 * cannot assume "ire" points to valid data for any IPv6 cases. 17202 */ 17203 void 17204 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 17205 { 17206 mblk_t *mp; 17207 ipaddr_t dst; 17208 in6_addr_t *v6dstp; 17209 ipha_t *ipha; 17210 ip6_t *ip6h; 17211 ipsec_in_t *ii; 17212 boolean_t ill_need_rele = B_FALSE; 17213 boolean_t rill_need_rele = B_FALSE; 17214 boolean_t ire_need_rele = B_FALSE; 17215 netstack_t *ns; 17216 ip_stack_t *ipst; 17217 17218 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 17219 ASSERT(ii->ipsec_in_ill_index != 0); 17220 ns = ii->ipsec_in_ns; 17221 ASSERT(ii->ipsec_in_ns != NULL); 17222 ipst = ns->netstack_ip; 17223 17224 mp = ipsec_mp->b_cont; 17225 ASSERT(mp != NULL); 17226 17227 if (ill == NULL) { 17228 ASSERT(recv_ill == NULL); 17229 /* 17230 * We need to get the original queue on which ip_rput_local 17231 * or ip_rput_data_v6 was called. 17232 */ 17233 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 17234 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst); 17235 ill_need_rele = B_TRUE; 17236 17237 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 17238 recv_ill = ill_lookup_on_ifindex( 17239 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 17240 NULL, NULL, NULL, NULL, ipst); 17241 rill_need_rele = B_TRUE; 17242 } else { 17243 recv_ill = ill; 17244 } 17245 17246 if ((ill == NULL) || (recv_ill == NULL)) { 17247 ip0dbg(("ip_fanout_proto_again: interface " 17248 "disappeared\n")); 17249 if (ill != NULL) 17250 ill_refrele(ill); 17251 if (recv_ill != NULL) 17252 ill_refrele(recv_ill); 17253 freemsg(ipsec_mp); 17254 return; 17255 } 17256 } 17257 17258 ASSERT(ill != NULL && recv_ill != NULL); 17259 17260 if (mp->b_datap->db_type == M_CTL) { 17261 /* 17262 * AH/ESP is returning the ICMP message after 17263 * removing their headers. Fanout again till 17264 * it gets to the right protocol. 17265 */ 17266 if (ii->ipsec_in_v4) { 17267 icmph_t *icmph; 17268 int iph_hdr_length; 17269 int hdr_length; 17270 17271 ipha = (ipha_t *)mp->b_rptr; 17272 iph_hdr_length = IPH_HDR_LENGTH(ipha); 17273 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 17274 ipha = (ipha_t *)&icmph[1]; 17275 hdr_length = IPH_HDR_LENGTH(ipha); 17276 /* 17277 * icmp_inbound_error_fanout may need to do pullupmsg. 17278 * Reset the type to M_DATA. 17279 */ 17280 mp->b_datap->db_type = M_DATA; 17281 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 17282 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 17283 B_FALSE, ill, ii->ipsec_in_zoneid); 17284 } else { 17285 icmp6_t *icmp6; 17286 int hdr_length; 17287 17288 ip6h = (ip6_t *)mp->b_rptr; 17289 /* Don't call hdr_length_v6() unless you have to. */ 17290 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 17291 hdr_length = ip_hdr_length_v6(mp, ip6h); 17292 else 17293 hdr_length = IPV6_HDR_LEN; 17294 17295 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 17296 /* 17297 * icmp_inbound_error_fanout_v6 may need to do 17298 * pullupmsg. Reset the type to M_DATA. 17299 */ 17300 mp->b_datap->db_type = M_DATA; 17301 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 17302 ip6h, icmp6, ill, recv_ill, B_TRUE, 17303 ii->ipsec_in_zoneid); 17304 } 17305 if (ill_need_rele) 17306 ill_refrele(ill); 17307 if (rill_need_rele) 17308 ill_refrele(recv_ill); 17309 return; 17310 } 17311 17312 if (ii->ipsec_in_v4) { 17313 ipha = (ipha_t *)mp->b_rptr; 17314 dst = ipha->ipha_dst; 17315 if (CLASSD(dst)) { 17316 /* 17317 * Multicast has to be delivered to all streams. 17318 */ 17319 dst = INADDR_BROADCAST; 17320 } 17321 17322 if (ire == NULL) { 17323 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 17324 msg_getlabel(mp), ipst); 17325 if (ire == NULL) { 17326 if (ill_need_rele) 17327 ill_refrele(ill); 17328 if (rill_need_rele) 17329 ill_refrele(recv_ill); 17330 ip1dbg(("ip_fanout_proto_again: " 17331 "IRE not found")); 17332 freemsg(ipsec_mp); 17333 return; 17334 } 17335 ire_need_rele = B_TRUE; 17336 } 17337 17338 switch (ipha->ipha_protocol) { 17339 case IPPROTO_UDP: 17340 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 17341 recv_ill); 17342 if (ire_need_rele) 17343 ire_refrele(ire); 17344 break; 17345 case IPPROTO_TCP: 17346 if (!ire_need_rele) 17347 IRE_REFHOLD(ire); 17348 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 17349 ire, ipsec_mp, 0, ill->ill_rq, NULL); 17350 IRE_REFRELE(ire); 17351 if (mp != NULL) { 17352 SQUEUE_ENTER(GET_SQUEUE(mp), mp, 17353 mp, 1, SQ_PROCESS, 17354 SQTAG_IP_PROTO_AGAIN); 17355 } 17356 break; 17357 case IPPROTO_SCTP: 17358 if (!ire_need_rele) 17359 IRE_REFHOLD(ire); 17360 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 17361 ipsec_mp, 0, ill->ill_rq, dst); 17362 break; 17363 default: 17364 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 17365 recv_ill, 0); 17366 if (ire_need_rele) 17367 ire_refrele(ire); 17368 break; 17369 } 17370 } else { 17371 uint32_t rput_flags = 0; 17372 17373 ip6h = (ip6_t *)mp->b_rptr; 17374 v6dstp = &ip6h->ip6_dst; 17375 /* 17376 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 17377 * address. 17378 * 17379 * Currently, we don't store that state in the IPSEC_IN 17380 * message, and we may need to. 17381 */ 17382 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 17383 IP6_IN_LLMCAST : 0); 17384 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 17385 NULL, NULL); 17386 } 17387 if (ill_need_rele) 17388 ill_refrele(ill); 17389 if (rill_need_rele) 17390 ill_refrele(recv_ill); 17391 } 17392 17393 /* 17394 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 17395 * returns 'true' if there are still fragments left on the queue, in 17396 * which case we restart the timer. 17397 */ 17398 void 17399 ill_frag_timer(void *arg) 17400 { 17401 ill_t *ill = (ill_t *)arg; 17402 boolean_t frag_pending; 17403 ip_stack_t *ipst = ill->ill_ipst; 17404 time_t timeout; 17405 17406 mutex_enter(&ill->ill_lock); 17407 ASSERT(!ill->ill_fragtimer_executing); 17408 if (ill->ill_state_flags & ILL_CONDEMNED) { 17409 ill->ill_frag_timer_id = 0; 17410 mutex_exit(&ill->ill_lock); 17411 return; 17412 } 17413 ill->ill_fragtimer_executing = 1; 17414 mutex_exit(&ill->ill_lock); 17415 17416 if (ill->ill_isv6) 17417 timeout = ipst->ips_ipv6_frag_timeout; 17418 else 17419 timeout = ipst->ips_ip_g_frag_timeout; 17420 17421 frag_pending = ill_frag_timeout(ill, timeout); 17422 17423 /* 17424 * Restart the timer, if we have fragments pending or if someone 17425 * wanted us to be scheduled again. 17426 */ 17427 mutex_enter(&ill->ill_lock); 17428 ill->ill_fragtimer_executing = 0; 17429 ill->ill_frag_timer_id = 0; 17430 if (frag_pending || ill->ill_fragtimer_needrestart) 17431 ill_frag_timer_start(ill); 17432 mutex_exit(&ill->ill_lock); 17433 } 17434 17435 void 17436 ill_frag_timer_start(ill_t *ill) 17437 { 17438 ip_stack_t *ipst = ill->ill_ipst; 17439 clock_t timeo_ms; 17440 17441 ASSERT(MUTEX_HELD(&ill->ill_lock)); 17442 17443 /* If the ill is closing or opening don't proceed */ 17444 if (ill->ill_state_flags & ILL_CONDEMNED) 17445 return; 17446 17447 if (ill->ill_fragtimer_executing) { 17448 /* 17449 * ill_frag_timer is currently executing. Just record the 17450 * the fact that we want the timer to be restarted. 17451 * ill_frag_timer will post a timeout before it returns, 17452 * ensuring it will be called again. 17453 */ 17454 ill->ill_fragtimer_needrestart = 1; 17455 return; 17456 } 17457 17458 if (ill->ill_frag_timer_id == 0) { 17459 if (ill->ill_isv6) 17460 timeo_ms = ipst->ips_ipv6_frag_timo_ms; 17461 else 17462 timeo_ms = ipst->ips_ip_g_frag_timo_ms; 17463 /* 17464 * The timer is neither running nor is the timeout handler 17465 * executing. Post a timeout so that ill_frag_timer will be 17466 * called 17467 */ 17468 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 17469 MSEC_TO_TICK(timeo_ms >> 1)); 17470 ill->ill_fragtimer_needrestart = 0; 17471 } 17472 } 17473 17474 /* 17475 * This routine is needed for loopback when forwarding multicasts. 17476 * 17477 * IPQoS Notes: 17478 * IPPF processing is done in fanout routines. 17479 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 17480 * processing for IPsec packets is done when it comes back in clear. 17481 * NOTE : The callers of this function need to do the ire_refrele for the 17482 * ire that is being passed in. 17483 */ 17484 void 17485 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 17486 ill_t *recv_ill, uint32_t esp_udp_ports) 17487 { 17488 boolean_t esp_in_udp_packet = (esp_udp_ports != 0); 17489 ill_t *ill = (ill_t *)q->q_ptr; 17490 uint32_t sum; 17491 uint32_t u1; 17492 uint32_t u2; 17493 int hdr_length; 17494 boolean_t mctl_present; 17495 mblk_t *first_mp = mp; 17496 mblk_t *hada_mp = NULL; 17497 ipha_t *inner_ipha; 17498 ip_stack_t *ipst; 17499 17500 ASSERT(recv_ill != NULL); 17501 ipst = recv_ill->ill_ipst; 17502 17503 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 17504 "ip_rput_locl_start: q %p", q); 17505 17506 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17507 ASSERT(ill != NULL); 17508 17509 #define rptr ((uchar_t *)ipha) 17510 #define iphs ((uint16_t *)ipha) 17511 17512 /* 17513 * no UDP or TCP packet should come here anymore. 17514 */ 17515 ASSERT(ipha->ipha_protocol != IPPROTO_TCP && 17516 ipha->ipha_protocol != IPPROTO_UDP); 17517 17518 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17519 if (mctl_present && 17520 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17521 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17522 17523 /* 17524 * It's an IPsec accelerated packet. 17525 * Keep a pointer to the data attributes around until 17526 * we allocate the ipsec_info_t. 17527 */ 17528 IPSECHW_DEBUG(IPSECHW_PKT, 17529 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17530 hada_mp = first_mp; 17531 hada_mp->b_cont = NULL; 17532 /* 17533 * Since it is accelerated, it comes directly from 17534 * the ill and the data attributes is followed by 17535 * the packet data. 17536 */ 17537 ASSERT(mp->b_datap->db_type != M_CTL); 17538 first_mp = mp; 17539 mctl_present = B_FALSE; 17540 } 17541 17542 /* 17543 * IF M_CTL is not present, then ipsec_in_is_secure 17544 * should return B_TRUE. There is a case where loopback 17545 * packets has an M_CTL in the front with all the 17546 * IPsec options set to IPSEC_PREF_NEVER - which means 17547 * ipsec_in_is_secure will return B_FALSE. As loopback 17548 * packets never comes here, it is safe to ASSERT the 17549 * following. 17550 */ 17551 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17552 17553 /* 17554 * Also, we should never have an mctl_present if this is an 17555 * ESP-in-UDP packet. 17556 */ 17557 ASSERT(!mctl_present || !esp_in_udp_packet); 17558 17559 /* u1 is # words of IP options */ 17560 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 17561 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17562 17563 /* 17564 * Don't verify header checksum if we just removed UDP header or 17565 * packet is coming back from AH/ESP. 17566 */ 17567 if (!esp_in_udp_packet && !mctl_present) { 17568 if (u1) { 17569 if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) { 17570 if (hada_mp != NULL) 17571 freemsg(hada_mp); 17572 return; 17573 } 17574 } else { 17575 /* Check the IP header checksum. */ 17576 #define uph ((uint16_t *)ipha) 17577 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 17578 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 17579 #undef uph 17580 /* finish doing IP checksum */ 17581 sum = (sum & 0xFFFF) + (sum >> 16); 17582 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17583 if (sum && sum != 0xFFFF) { 17584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17585 goto drop_pkt; 17586 } 17587 } 17588 } 17589 17590 /* 17591 * Count for SNMP of inbound packets for ire. As ip_proto_input 17592 * might be called more than once for secure packets, count only 17593 * the first time. 17594 */ 17595 if (!mctl_present) { 17596 UPDATE_IB_PKT_COUNT(ire); 17597 ire->ire_last_used_time = lbolt; 17598 } 17599 17600 /* Check for fragmentation offset. */ 17601 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17602 u1 = u2 & (IPH_MF | IPH_OFFSET); 17603 if (u1) { 17604 /* 17605 * We re-assemble fragments before we do the AH/ESP 17606 * processing. Thus, M_CTL should not be present 17607 * while we are re-assembling. 17608 */ 17609 ASSERT(!mctl_present); 17610 ASSERT(first_mp == mp); 17611 if (!ip_rput_fragment(ill, recv_ill, &mp, ipha, NULL, NULL)) 17612 return; 17613 17614 /* 17615 * Make sure that first_mp points back to mp as 17616 * the mp we came in with could have changed in 17617 * ip_rput_fragment(). 17618 */ 17619 ipha = (ipha_t *)mp->b_rptr; 17620 first_mp = mp; 17621 } 17622 17623 /* 17624 * Clear hardware checksumming flag as it is currently only 17625 * used by TCP and UDP. 17626 */ 17627 DB_CKSUMFLAGS(mp) = 0; 17628 17629 /* Now we have a complete datagram, destined for this machine. */ 17630 u1 = IPH_HDR_LENGTH(ipha); 17631 switch (ipha->ipha_protocol) { 17632 case IPPROTO_ICMP: { 17633 ire_t *ire_zone; 17634 ilm_t *ilm; 17635 mblk_t *mp1; 17636 zoneid_t last_zoneid; 17637 ilm_walker_t ilw; 17638 17639 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(recv_ill)) { 17640 ASSERT(ire->ire_type == IRE_BROADCAST); 17641 17642 /* 17643 * In the multicast case, applications may have joined 17644 * the group from different zones, so we need to deliver 17645 * the packet to each of them. Loop through the 17646 * multicast memberships structures (ilm) on the receive 17647 * ill and send a copy of the packet up each matching 17648 * one. However, we don't do this for multicasts sent on 17649 * the loopback interface (PHYI_LOOPBACK flag set) as 17650 * they must stay in the sender's zone. 17651 * 17652 * ilm_add_v6() ensures that ilms in the same zone are 17653 * contiguous in the ill_ilm list. We use this property 17654 * to avoid sending duplicates needed when two 17655 * applications in the same zone join the same group on 17656 * different logical interfaces: we ignore the ilm if 17657 * its zoneid is the same as the last matching one. 17658 * In addition, the sending of the packet for 17659 * ire_zoneid is delayed until all of the other ilms 17660 * have been exhausted. 17661 */ 17662 last_zoneid = -1; 17663 ilm = ilm_walker_start(&ilw, recv_ill); 17664 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 17665 if (ipha->ipha_dst != ilm->ilm_addr || 17666 ilm->ilm_zoneid == last_zoneid || 17667 ilm->ilm_zoneid == ire->ire_zoneid || 17668 ilm->ilm_zoneid == ALL_ZONES || 17669 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17670 continue; 17671 mp1 = ip_copymsg(first_mp); 17672 if (mp1 == NULL) 17673 continue; 17674 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 17675 0, sum, mctl_present, B_TRUE, 17676 recv_ill, ilm->ilm_zoneid); 17677 last_zoneid = ilm->ilm_zoneid; 17678 } 17679 ilm_walker_finish(&ilw); 17680 } else if (ire->ire_type == IRE_BROADCAST) { 17681 /* 17682 * In the broadcast case, there may be many zones 17683 * which need a copy of the packet delivered to them. 17684 * There is one IRE_BROADCAST per broadcast address 17685 * and per zone; we walk those using a helper function. 17686 * In addition, the sending of the packet for ire is 17687 * delayed until all of the other ires have been 17688 * processed. 17689 */ 17690 IRB_REFHOLD(ire->ire_bucket); 17691 ire_zone = NULL; 17692 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17693 ire)) != NULL) { 17694 mp1 = ip_copymsg(first_mp); 17695 if (mp1 == NULL) 17696 continue; 17697 17698 UPDATE_IB_PKT_COUNT(ire_zone); 17699 ire_zone->ire_last_used_time = lbolt; 17700 icmp_inbound(q, mp1, B_TRUE, ill, 17701 0, sum, mctl_present, B_TRUE, 17702 recv_ill, ire_zone->ire_zoneid); 17703 } 17704 IRB_REFRELE(ire->ire_bucket); 17705 } 17706 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17707 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17708 ire->ire_zoneid); 17709 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17710 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17711 return; 17712 } 17713 case IPPROTO_IGMP: 17714 /* 17715 * If we are not willing to accept IGMP packets in clear, 17716 * then check with global policy. 17717 */ 17718 if (ipst->ips_igmp_accept_clear_messages == 0) { 17719 first_mp = ipsec_check_global_policy(first_mp, NULL, 17720 ipha, NULL, mctl_present, ipst->ips_netstack); 17721 if (first_mp == NULL) 17722 return; 17723 } 17724 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17725 freemsg(first_mp); 17726 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17727 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17728 return; 17729 } 17730 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17731 /* Bad packet - discarded by igmp_input */ 17732 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17733 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17734 if (mctl_present) 17735 freeb(first_mp); 17736 return; 17737 } 17738 /* 17739 * igmp_input() may have returned the pulled up message. 17740 * So first_mp and ipha need to be reinitialized. 17741 */ 17742 ipha = (ipha_t *)mp->b_rptr; 17743 if (mctl_present) 17744 first_mp->b_cont = mp; 17745 else 17746 first_mp = mp; 17747 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17748 connf_head != NULL) { 17749 /* No user-level listener for IGMP packets */ 17750 goto drop_pkt; 17751 } 17752 /* deliver to local raw users */ 17753 break; 17754 case IPPROTO_PIM: 17755 /* 17756 * If we are not willing to accept PIM packets in clear, 17757 * then check with global policy. 17758 */ 17759 if (ipst->ips_pim_accept_clear_messages == 0) { 17760 first_mp = ipsec_check_global_policy(first_mp, NULL, 17761 ipha, NULL, mctl_present, ipst->ips_netstack); 17762 if (first_mp == NULL) 17763 return; 17764 } 17765 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17766 freemsg(first_mp); 17767 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17768 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17769 return; 17770 } 17771 if (pim_input(q, mp, ill) != 0) { 17772 /* Bad packet - discarded by pim_input */ 17773 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17774 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17775 if (mctl_present) 17776 freeb(first_mp); 17777 return; 17778 } 17779 17780 /* 17781 * pim_input() may have pulled up the message so ipha needs to 17782 * be reinitialized. 17783 */ 17784 ipha = (ipha_t *)mp->b_rptr; 17785 if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol]. 17786 connf_head != NULL) { 17787 /* No user-level listener for PIM packets */ 17788 goto drop_pkt; 17789 } 17790 /* deliver to local raw users */ 17791 break; 17792 case IPPROTO_ENCAP: 17793 /* 17794 * Handle self-encapsulated packets (IP-in-IP where 17795 * the inner addresses == the outer addresses). 17796 */ 17797 hdr_length = IPH_HDR_LENGTH(ipha); 17798 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17799 mp->b_wptr) { 17800 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17801 sizeof (ipha_t) - mp->b_rptr)) { 17802 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17803 freemsg(first_mp); 17804 return; 17805 } 17806 ipha = (ipha_t *)mp->b_rptr; 17807 } 17808 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17809 /* 17810 * Check the sanity of the inner IP header. 17811 */ 17812 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17813 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17814 freemsg(first_mp); 17815 return; 17816 } 17817 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17818 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17819 freemsg(first_mp); 17820 return; 17821 } 17822 if (inner_ipha->ipha_src == ipha->ipha_src && 17823 inner_ipha->ipha_dst == ipha->ipha_dst) { 17824 ipsec_in_t *ii; 17825 17826 /* 17827 * Self-encapsulated tunnel packet. Remove 17828 * the outer IP header and fanout again. 17829 * We also need to make sure that the inner 17830 * header is pulled up until options. 17831 */ 17832 mp->b_rptr = (uchar_t *)inner_ipha; 17833 ipha = inner_ipha; 17834 hdr_length = IPH_HDR_LENGTH(ipha); 17835 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17836 if (!pullupmsg(mp, (uchar_t *)ipha + 17837 + hdr_length - mp->b_rptr)) { 17838 freemsg(first_mp); 17839 return; 17840 } 17841 ipha = (ipha_t *)mp->b_rptr; 17842 } 17843 if (hdr_length > sizeof (ipha_t)) { 17844 /* We got options on the inner packet. */ 17845 ipaddr_t dst = ipha->ipha_dst; 17846 17847 if (ip_rput_options(q, mp, ipha, &dst, ipst) == 17848 -1) { 17849 /* Bad options! */ 17850 return; 17851 } 17852 if (dst != ipha->ipha_dst) { 17853 /* 17854 * Someone put a source-route in 17855 * the inside header of a self- 17856 * encapsulated packet. Drop it 17857 * with extreme prejudice and let 17858 * the sender know. 17859 */ 17860 icmp_unreachable(q, first_mp, 17861 ICMP_SOURCE_ROUTE_FAILED, 17862 recv_ill->ill_zoneid, ipst); 17863 return; 17864 } 17865 } 17866 if (!mctl_present) { 17867 ASSERT(first_mp == mp); 17868 /* 17869 * This means that somebody is sending 17870 * Self-encapsualted packets without AH/ESP. 17871 * If AH/ESP was present, we would have already 17872 * allocated the first_mp. 17873 * 17874 * Send this packet to find a tunnel endpoint. 17875 * if I can't find one, an ICMP 17876 * PROTOCOL_UNREACHABLE will get sent. 17877 */ 17878 goto fanout; 17879 } 17880 /* 17881 * We generally store the ill_index if we need to 17882 * do IPsec processing as we lose the ill queue when 17883 * we come back. But in this case, we never should 17884 * have to store the ill_index here as it should have 17885 * been stored previously when we processed the 17886 * AH/ESP header in this routine or for non-ipsec 17887 * cases, we still have the queue. But for some bad 17888 * packets from the wire, we can get to IPsec after 17889 * this and we better store the index for that case. 17890 */ 17891 ill = (ill_t *)q->q_ptr; 17892 ii = (ipsec_in_t *)first_mp->b_rptr; 17893 ii->ipsec_in_ill_index = 17894 ill->ill_phyint->phyint_ifindex; 17895 ii->ipsec_in_rill_index = 17896 recv_ill->ill_phyint->phyint_ifindex; 17897 if (ii->ipsec_in_decaps) { 17898 /* 17899 * This packet is self-encapsulated multiple 17900 * times. We don't want to recurse infinitely. 17901 * To keep it simple, drop the packet. 17902 */ 17903 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17904 freemsg(first_mp); 17905 return; 17906 } 17907 ii->ipsec_in_decaps = B_TRUE; 17908 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17909 ire); 17910 return; 17911 } 17912 break; 17913 case IPPROTO_AH: 17914 case IPPROTO_ESP: { 17915 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 17916 17917 /* 17918 * Fast path for AH/ESP. If this is the first time 17919 * we are sending a datagram to AH/ESP, allocate 17920 * a IPSEC_IN message and prepend it. Otherwise, 17921 * just fanout. 17922 */ 17923 17924 int ipsec_rc; 17925 ipsec_in_t *ii; 17926 netstack_t *ns = ipst->ips_netstack; 17927 17928 IP_STAT(ipst, ipsec_proto_ahesp); 17929 if (!mctl_present) { 17930 ASSERT(first_mp == mp); 17931 first_mp = ipsec_in_alloc(B_TRUE, ns); 17932 if (first_mp == NULL) { 17933 ip1dbg(("ip_proto_input: IPSEC_IN " 17934 "allocation failure.\n")); 17935 freemsg(hada_mp); /* okay ifnull */ 17936 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17937 freemsg(mp); 17938 return; 17939 } 17940 /* 17941 * Store the ill_index so that when we come back 17942 * from IPsec we ride on the same queue. 17943 */ 17944 ill = (ill_t *)q->q_ptr; 17945 ii = (ipsec_in_t *)first_mp->b_rptr; 17946 ii->ipsec_in_ill_index = 17947 ill->ill_phyint->phyint_ifindex; 17948 ii->ipsec_in_rill_index = 17949 recv_ill->ill_phyint->phyint_ifindex; 17950 first_mp->b_cont = mp; 17951 /* 17952 * Cache hardware acceleration info. 17953 */ 17954 if (hada_mp != NULL) { 17955 IPSECHW_DEBUG(IPSECHW_PKT, 17956 ("ip_rput_local: caching data attr.\n")); 17957 ii->ipsec_in_accelerated = B_TRUE; 17958 ii->ipsec_in_da = hada_mp; 17959 hada_mp = NULL; 17960 } 17961 } else { 17962 ii = (ipsec_in_t *)first_mp->b_rptr; 17963 } 17964 17965 ii->ipsec_in_esp_udp_ports = esp_udp_ports; 17966 17967 if (!ipsec_loaded(ipss)) { 17968 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17969 ire->ire_zoneid, ipst); 17970 return; 17971 } 17972 17973 ns = ipst->ips_netstack; 17974 /* select inbound SA and have IPsec process the pkt */ 17975 if (ipha->ipha_protocol == IPPROTO_ESP) { 17976 esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns); 17977 boolean_t esp_in_udp_sa; 17978 if (esph == NULL) 17979 return; 17980 ASSERT(ii->ipsec_in_esp_sa != NULL); 17981 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17982 esp_in_udp_sa = ((ii->ipsec_in_esp_sa->ipsa_flags & 17983 IPSA_F_NATT) != 0); 17984 /* 17985 * The following is a fancy, but quick, way of saying: 17986 * ESP-in-UDP SA and Raw ESP packet --> drop 17987 * OR 17988 * ESP SA and ESP-in-UDP packet --> drop 17989 */ 17990 if (esp_in_udp_sa != esp_in_udp_packet) { 17991 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17992 ip_drop_packet(first_mp, B_TRUE, ill, NULL, 17993 DROPPER(ns->netstack_ipsec, ipds_esp_no_sa), 17994 &ns->netstack_ipsec->ipsec_dropper); 17995 return; 17996 } 17997 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17998 first_mp, esph); 17999 } else { 18000 ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns); 18001 if (ah == NULL) 18002 return; 18003 ASSERT(ii->ipsec_in_ah_sa != NULL); 18004 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 18005 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 18006 first_mp, ah); 18007 } 18008 18009 switch (ipsec_rc) { 18010 case IPSEC_STATUS_SUCCESS: 18011 break; 18012 case IPSEC_STATUS_FAILED: 18013 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 18014 /* FALLTHRU */ 18015 case IPSEC_STATUS_PENDING: 18016 return; 18017 } 18018 /* we're done with IPsec processing, send it up */ 18019 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 18020 return; 18021 } 18022 default: 18023 break; 18024 } 18025 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 18026 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 18027 ire->ire_zoneid)); 18028 goto drop_pkt; 18029 } 18030 /* 18031 * Handle protocols with which IP is less intimate. There 18032 * can be more than one stream bound to a particular 18033 * protocol. When this is the case, each one gets a copy 18034 * of any incoming packets. 18035 */ 18036 fanout: 18037 ip_fanout_proto(q, first_mp, ill, ipha, 18038 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 18039 B_TRUE, recv_ill, ire->ire_zoneid); 18040 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 18041 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 18042 return; 18043 18044 drop_pkt: 18045 freemsg(first_mp); 18046 if (hada_mp != NULL) 18047 freeb(hada_mp); 18048 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 18049 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 18050 #undef rptr 18051 #undef iphs 18052 18053 } 18054 18055 /* 18056 * Update any source route, record route or timestamp options. 18057 * Check that we are at end of strict source route. 18058 * The options have already been checked for sanity in ip_rput_options(). 18059 */ 18060 static boolean_t 18061 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 18062 ip_stack_t *ipst) 18063 { 18064 ipoptp_t opts; 18065 uchar_t *opt; 18066 uint8_t optval; 18067 uint8_t optlen; 18068 ipaddr_t dst; 18069 uint32_t ts; 18070 ire_t *dst_ire; 18071 timestruc_t now; 18072 zoneid_t zoneid; 18073 ill_t *ill; 18074 18075 ASSERT(ire->ire_ipversion == IPV4_VERSION); 18076 18077 ip2dbg(("ip_rput_local_options\n")); 18078 18079 for (optval = ipoptp_first(&opts, ipha); 18080 optval != IPOPT_EOL; 18081 optval = ipoptp_next(&opts)) { 18082 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 18083 opt = opts.ipoptp_cur; 18084 optlen = opts.ipoptp_len; 18085 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 18086 optval, optlen)); 18087 switch (optval) { 18088 uint32_t off; 18089 case IPOPT_SSRR: 18090 case IPOPT_LSRR: 18091 off = opt[IPOPT_OFFSET]; 18092 off--; 18093 if (optlen < IP_ADDR_LEN || 18094 off > optlen - IP_ADDR_LEN) { 18095 /* End of source route */ 18096 ip1dbg(("ip_rput_local_options: end of SR\n")); 18097 break; 18098 } 18099 /* 18100 * This will only happen if two consecutive entries 18101 * in the source route contains our address or if 18102 * it is a packet with a loose source route which 18103 * reaches us before consuming the whole source route 18104 */ 18105 ip1dbg(("ip_rput_local_options: not end of SR\n")); 18106 if (optval == IPOPT_SSRR) { 18107 goto bad_src_route; 18108 } 18109 /* 18110 * Hack: instead of dropping the packet truncate the 18111 * source route to what has been used by filling the 18112 * rest with IPOPT_NOP. 18113 */ 18114 opt[IPOPT_OLEN] = (uint8_t)off; 18115 while (off < optlen) { 18116 opt[off++] = IPOPT_NOP; 18117 } 18118 break; 18119 case IPOPT_RR: 18120 off = opt[IPOPT_OFFSET]; 18121 off--; 18122 if (optlen < IP_ADDR_LEN || 18123 off > optlen - IP_ADDR_LEN) { 18124 /* No more room - ignore */ 18125 ip1dbg(( 18126 "ip_rput_local_options: end of RR\n")); 18127 break; 18128 } 18129 bcopy(&ire->ire_src_addr, (char *)opt + off, 18130 IP_ADDR_LEN); 18131 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18132 break; 18133 case IPOPT_TS: 18134 /* Insert timestamp if there is romm */ 18135 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18136 case IPOPT_TS_TSONLY: 18137 off = IPOPT_TS_TIMELEN; 18138 break; 18139 case IPOPT_TS_PRESPEC: 18140 case IPOPT_TS_PRESPEC_RFC791: 18141 /* Verify that the address matched */ 18142 off = opt[IPOPT_OFFSET] - 1; 18143 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18144 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 18145 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 18146 ipst); 18147 if (dst_ire == NULL) { 18148 /* Not for us */ 18149 break; 18150 } 18151 ire_refrele(dst_ire); 18152 /* FALLTHRU */ 18153 case IPOPT_TS_TSANDADDR: 18154 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18155 break; 18156 default: 18157 /* 18158 * ip_*put_options should have already 18159 * dropped this packet. 18160 */ 18161 cmn_err(CE_PANIC, "ip_rput_local_options: " 18162 "unknown IT - bug in ip_rput_options?\n"); 18163 return (B_TRUE); /* Keep "lint" happy */ 18164 } 18165 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 18166 /* Increase overflow counter */ 18167 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 18168 opt[IPOPT_POS_OV_FLG] = 18169 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 18170 (off << 4)); 18171 break; 18172 } 18173 off = opt[IPOPT_OFFSET] - 1; 18174 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18175 case IPOPT_TS_PRESPEC: 18176 case IPOPT_TS_PRESPEC_RFC791: 18177 case IPOPT_TS_TSANDADDR: 18178 bcopy(&ire->ire_src_addr, (char *)opt + off, 18179 IP_ADDR_LEN); 18180 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 18181 /* FALLTHRU */ 18182 case IPOPT_TS_TSONLY: 18183 off = opt[IPOPT_OFFSET] - 1; 18184 /* Compute # of milliseconds since midnight */ 18185 gethrestime(&now); 18186 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 18187 now.tv_nsec / (NANOSEC / MILLISEC); 18188 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 18189 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 18190 break; 18191 } 18192 break; 18193 } 18194 } 18195 return (B_TRUE); 18196 18197 bad_src_route: 18198 q = WR(q); 18199 if (q->q_next != NULL) 18200 ill = q->q_ptr; 18201 else 18202 ill = NULL; 18203 18204 /* make sure we clear any indication of a hardware checksum */ 18205 DB_CKSUMFLAGS(mp) = 0; 18206 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst); 18207 if (zoneid == ALL_ZONES) 18208 freemsg(mp); 18209 else 18210 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18211 return (B_FALSE); 18212 18213 } 18214 18215 /* 18216 * Process IP options in an inbound packet. If an option affects the 18217 * effective destination address, return the next hop address via dstp. 18218 * Returns -1 if something fails in which case an ICMP error has been sent 18219 * and mp freed. 18220 */ 18221 static int 18222 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp, 18223 ip_stack_t *ipst) 18224 { 18225 ipoptp_t opts; 18226 uchar_t *opt; 18227 uint8_t optval; 18228 uint8_t optlen; 18229 ipaddr_t dst; 18230 intptr_t code = 0; 18231 ire_t *ire = NULL; 18232 zoneid_t zoneid; 18233 ill_t *ill; 18234 18235 ip2dbg(("ip_rput_options\n")); 18236 dst = ipha->ipha_dst; 18237 for (optval = ipoptp_first(&opts, ipha); 18238 optval != IPOPT_EOL; 18239 optval = ipoptp_next(&opts)) { 18240 opt = opts.ipoptp_cur; 18241 optlen = opts.ipoptp_len; 18242 ip2dbg(("ip_rput_options: opt %d, len %d\n", 18243 optval, optlen)); 18244 /* 18245 * Note: we need to verify the checksum before we 18246 * modify anything thus this routine only extracts the next 18247 * hop dst from any source route. 18248 */ 18249 switch (optval) { 18250 uint32_t off; 18251 case IPOPT_SSRR: 18252 case IPOPT_LSRR: 18253 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18254 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18255 if (ire == NULL) { 18256 if (optval == IPOPT_SSRR) { 18257 ip1dbg(("ip_rput_options: not next" 18258 " strict source route 0x%x\n", 18259 ntohl(dst))); 18260 code = (char *)&ipha->ipha_dst - 18261 (char *)ipha; 18262 goto param_prob; /* RouterReq's */ 18263 } 18264 ip2dbg(("ip_rput_options: " 18265 "not next source route 0x%x\n", 18266 ntohl(dst))); 18267 break; 18268 } 18269 ire_refrele(ire); 18270 18271 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18272 ip1dbg(( 18273 "ip_rput_options: bad option offset\n")); 18274 code = (char *)&opt[IPOPT_OLEN] - 18275 (char *)ipha; 18276 goto param_prob; 18277 } 18278 off = opt[IPOPT_OFFSET]; 18279 off--; 18280 redo_srr: 18281 if (optlen < IP_ADDR_LEN || 18282 off > optlen - IP_ADDR_LEN) { 18283 /* End of source route */ 18284 ip1dbg(("ip_rput_options: end of SR\n")); 18285 break; 18286 } 18287 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 18288 ip1dbg(("ip_rput_options: next hop 0x%x\n", 18289 ntohl(dst))); 18290 18291 /* 18292 * Check if our address is present more than 18293 * once as consecutive hops in source route. 18294 * XXX verify per-interface ip_forwarding 18295 * for source route? 18296 */ 18297 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 18298 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 18299 18300 if (ire != NULL) { 18301 ire_refrele(ire); 18302 off += IP_ADDR_LEN; 18303 goto redo_srr; 18304 } 18305 18306 if (dst == htonl(INADDR_LOOPBACK)) { 18307 ip1dbg(("ip_rput_options: loopback addr in " 18308 "source route!\n")); 18309 goto bad_src_route; 18310 } 18311 /* 18312 * For strict: verify that dst is directly 18313 * reachable. 18314 */ 18315 if (optval == IPOPT_SSRR) { 18316 ire = ire_ftable_lookup(dst, 0, 0, 18317 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 18318 msg_getlabel(mp), 18319 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 18320 if (ire == NULL) { 18321 ip1dbg(("ip_rput_options: SSRR not " 18322 "directly reachable: 0x%x\n", 18323 ntohl(dst))); 18324 goto bad_src_route; 18325 } 18326 ire_refrele(ire); 18327 } 18328 /* 18329 * Defer update of the offset and the record route 18330 * until the packet is forwarded. 18331 */ 18332 break; 18333 case IPOPT_RR: 18334 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18335 ip1dbg(( 18336 "ip_rput_options: bad option offset\n")); 18337 code = (char *)&opt[IPOPT_OLEN] - 18338 (char *)ipha; 18339 goto param_prob; 18340 } 18341 break; 18342 case IPOPT_TS: 18343 /* 18344 * Verify that length >= 5 and that there is either 18345 * room for another timestamp or that the overflow 18346 * counter is not maxed out. 18347 */ 18348 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 18349 if (optlen < IPOPT_MINLEN_IT) { 18350 goto param_prob; 18351 } 18352 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 18353 ip1dbg(( 18354 "ip_rput_options: bad option offset\n")); 18355 code = (char *)&opt[IPOPT_OFFSET] - 18356 (char *)ipha; 18357 goto param_prob; 18358 } 18359 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 18360 case IPOPT_TS_TSONLY: 18361 off = IPOPT_TS_TIMELEN; 18362 break; 18363 case IPOPT_TS_TSANDADDR: 18364 case IPOPT_TS_PRESPEC: 18365 case IPOPT_TS_PRESPEC_RFC791: 18366 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 18367 break; 18368 default: 18369 code = (char *)&opt[IPOPT_POS_OV_FLG] - 18370 (char *)ipha; 18371 goto param_prob; 18372 } 18373 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 18374 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 18375 /* 18376 * No room and the overflow counter is 15 18377 * already. 18378 */ 18379 goto param_prob; 18380 } 18381 break; 18382 } 18383 } 18384 18385 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 18386 *dstp = dst; 18387 return (0); 18388 } 18389 18390 ip1dbg(("ip_rput_options: error processing IP options.")); 18391 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 18392 18393 param_prob: 18394 q = WR(q); 18395 if (q->q_next != NULL) 18396 ill = q->q_ptr; 18397 else 18398 ill = NULL; 18399 18400 /* make sure we clear any indication of a hardware checksum */ 18401 DB_CKSUMFLAGS(mp) = 0; 18402 /* Don't know whether this is for non-global or global/forwarding */ 18403 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18404 if (zoneid == ALL_ZONES) 18405 freemsg(mp); 18406 else 18407 icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst); 18408 return (-1); 18409 18410 bad_src_route: 18411 q = WR(q); 18412 if (q->q_next != NULL) 18413 ill = q->q_ptr; 18414 else 18415 ill = NULL; 18416 18417 /* make sure we clear any indication of a hardware checksum */ 18418 DB_CKSUMFLAGS(mp) = 0; 18419 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 18420 if (zoneid == ALL_ZONES) 18421 freemsg(mp); 18422 else 18423 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 18424 return (-1); 18425 } 18426 18427 /* 18428 * IP & ICMP info in >=14 msg's ... 18429 * - ip fixed part (mib2_ip_t) 18430 * - icmp fixed part (mib2_icmp_t) 18431 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 18432 * - ipRouteEntryTable (ip 21) all IPv4 IREs 18433 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 18434 * - ipRouteAttributeTable (ip 102) labeled routes 18435 * - ip multicast membership (ip_member_t) 18436 * - ip multicast source filtering (ip_grpsrc_t) 18437 * - igmp fixed part (struct igmpstat) 18438 * - multicast routing stats (struct mrtstat) 18439 * - multicast routing vifs (array of struct vifctl) 18440 * - multicast routing routes (array of struct mfcctl) 18441 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 18442 * One per ill plus one generic 18443 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 18444 * One per ill plus one generic 18445 * - ipv6RouteEntry all IPv6 IREs 18446 * - ipv6RouteAttributeTable (ip6 102) labeled routes 18447 * - ipv6NetToMediaEntry all Neighbor Cache entries 18448 * - ipv6AddrEntry all IPv6 ipifs 18449 * - ipv6 multicast membership (ipv6_member_t) 18450 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 18451 * 18452 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 18453 * 18454 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 18455 * already filled in by the caller. 18456 * Return value of 0 indicates that no messages were sent and caller 18457 * should free mpctl. 18458 */ 18459 int 18460 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level) 18461 { 18462 ip_stack_t *ipst; 18463 sctp_stack_t *sctps; 18464 18465 if (q->q_next != NULL) { 18466 ipst = ILLQ_TO_IPST(q); 18467 } else { 18468 ipst = CONNQ_TO_IPST(q); 18469 } 18470 ASSERT(ipst != NULL); 18471 sctps = ipst->ips_netstack->netstack_sctp; 18472 18473 if (mpctl == NULL || mpctl->b_cont == NULL) { 18474 return (0); 18475 } 18476 18477 /* 18478 * For the purposes of the (broken) packet shell use 18479 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 18480 * to make TCP and UDP appear first in the list of mib items. 18481 * TBD: We could expand this and use it in netstat so that 18482 * the kernel doesn't have to produce large tables (connections, 18483 * routes, etc) when netstat only wants the statistics or a particular 18484 * table. 18485 */ 18486 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 18487 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 18488 return (1); 18489 } 18490 } 18491 18492 if (level != MIB2_TCP) { 18493 if ((mpctl = udp_snmp_get(q, mpctl)) == NULL) { 18494 return (1); 18495 } 18496 } 18497 18498 if (level != MIB2_UDP) { 18499 if ((mpctl = tcp_snmp_get(q, mpctl)) == NULL) { 18500 return (1); 18501 } 18502 } 18503 18504 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 18505 ipst)) == NULL) { 18506 return (1); 18507 } 18508 18509 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) { 18510 return (1); 18511 } 18512 18513 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 18514 return (1); 18515 } 18516 18517 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 18518 return (1); 18519 } 18520 18521 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 18522 return (1); 18523 } 18524 18525 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 18526 return (1); 18527 } 18528 18529 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) { 18530 return (1); 18531 } 18532 18533 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) { 18534 return (1); 18535 } 18536 18537 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 18538 return (1); 18539 } 18540 18541 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 18542 return (1); 18543 } 18544 18545 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 18546 return (1); 18547 } 18548 18549 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 18550 return (1); 18551 } 18552 18553 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 18554 return (1); 18555 } 18556 18557 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 18558 return (1); 18559 } 18560 18561 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 18562 if (mpctl == NULL) 18563 return (1); 18564 18565 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 18566 if (mpctl == NULL) 18567 return (1); 18568 18569 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 18570 return (1); 18571 } 18572 freemsg(mpctl); 18573 return (1); 18574 } 18575 18576 /* Get global (legacy) IPv4 statistics */ 18577 static mblk_t * 18578 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 18579 ip_stack_t *ipst) 18580 { 18581 mib2_ip_t old_ip_mib; 18582 struct opthdr *optp; 18583 mblk_t *mp2ctl; 18584 18585 /* 18586 * make a copy of the original message 18587 */ 18588 mp2ctl = copymsg(mpctl); 18589 18590 /* fixed length IP structure... */ 18591 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18592 optp->level = MIB2_IP; 18593 optp->name = 0; 18594 SET_MIB(old_ip_mib.ipForwarding, 18595 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 18596 SET_MIB(old_ip_mib.ipDefaultTTL, 18597 (uint32_t)ipst->ips_ip_def_ttl); 18598 SET_MIB(old_ip_mib.ipReasmTimeout, 18599 ipst->ips_ip_g_frag_timeout); 18600 SET_MIB(old_ip_mib.ipAddrEntrySize, 18601 sizeof (mib2_ipAddrEntry_t)); 18602 SET_MIB(old_ip_mib.ipRouteEntrySize, 18603 sizeof (mib2_ipRouteEntry_t)); 18604 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18605 sizeof (mib2_ipNetToMediaEntry_t)); 18606 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18607 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18608 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18609 sizeof (mib2_ipAttributeEntry_t)); 18610 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18611 18612 /* 18613 * Grab the statistics from the new IP MIB 18614 */ 18615 SET_MIB(old_ip_mib.ipInReceives, 18616 (uint32_t)ipmib->ipIfStatsHCInReceives); 18617 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18618 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18619 SET_MIB(old_ip_mib.ipForwDatagrams, 18620 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18621 SET_MIB(old_ip_mib.ipInUnknownProtos, 18622 ipmib->ipIfStatsInUnknownProtos); 18623 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18624 SET_MIB(old_ip_mib.ipInDelivers, 18625 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18626 SET_MIB(old_ip_mib.ipOutRequests, 18627 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18628 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18629 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18630 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18631 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18632 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18633 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18634 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18635 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18636 18637 /* ipRoutingDiscards is not being used */ 18638 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18639 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18640 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18641 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18642 SET_MIB(old_ip_mib.ipReasmDuplicates, 18643 ipmib->ipIfStatsReasmDuplicates); 18644 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18645 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18646 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18647 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18648 SET_MIB(old_ip_mib.rawipInOverflows, 18649 ipmib->rawipIfStatsInOverflows); 18650 18651 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18652 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18653 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18654 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18655 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18656 ipmib->ipIfStatsOutSwitchIPVersion); 18657 18658 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18659 (int)sizeof (old_ip_mib))) { 18660 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18661 (uint_t)sizeof (old_ip_mib))); 18662 } 18663 18664 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18665 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18666 (int)optp->level, (int)optp->name, (int)optp->len)); 18667 qreply(q, mpctl); 18668 return (mp2ctl); 18669 } 18670 18671 /* Per interface IPv4 statistics */ 18672 static mblk_t * 18673 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18674 { 18675 struct opthdr *optp; 18676 mblk_t *mp2ctl; 18677 ill_t *ill; 18678 ill_walk_context_t ctx; 18679 mblk_t *mp_tail = NULL; 18680 mib2_ipIfStatsEntry_t global_ip_mib; 18681 18682 /* 18683 * Make a copy of the original message 18684 */ 18685 mp2ctl = copymsg(mpctl); 18686 18687 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18688 optp->level = MIB2_IP; 18689 optp->name = MIB2_IP_TRAFFIC_STATS; 18690 /* Include "unknown interface" ip_mib */ 18691 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18692 ipst->ips_ip_mib.ipIfStatsIfIndex = 18693 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18694 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 18695 (ipst->ips_ip_g_forward ? 1 : 2)); 18696 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 18697 (uint32_t)ipst->ips_ip_def_ttl); 18698 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 18699 sizeof (mib2_ipIfStatsEntry_t)); 18700 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 18701 sizeof (mib2_ipAddrEntry_t)); 18702 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 18703 sizeof (mib2_ipRouteEntry_t)); 18704 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 18705 sizeof (mib2_ipNetToMediaEntry_t)); 18706 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 18707 sizeof (ip_member_t)); 18708 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 18709 sizeof (ip_grpsrc_t)); 18710 18711 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18712 (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) { 18713 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18714 "failed to allocate %u bytes\n", 18715 (uint_t)sizeof (ipst->ips_ip_mib))); 18716 } 18717 18718 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18719 18720 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18721 ill = ILL_START_WALK_V4(&ctx, ipst); 18722 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18723 ill->ill_ip_mib->ipIfStatsIfIndex = 18724 ill->ill_phyint->phyint_ifindex; 18725 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18726 (ipst->ips_ip_g_forward ? 1 : 2)); 18727 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18728 (uint32_t)ipst->ips_ip_def_ttl); 18729 18730 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18731 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18732 (char *)ill->ill_ip_mib, 18733 (int)sizeof (*ill->ill_ip_mib))) { 18734 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18735 "failed to allocate %u bytes\n", 18736 (uint_t)sizeof (*ill->ill_ip_mib))); 18737 } 18738 } 18739 rw_exit(&ipst->ips_ill_g_lock); 18740 18741 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18742 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18743 "level %d, name %d, len %d\n", 18744 (int)optp->level, (int)optp->name, (int)optp->len)); 18745 qreply(q, mpctl); 18746 18747 if (mp2ctl == NULL) 18748 return (NULL); 18749 18750 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst)); 18751 } 18752 18753 /* Global IPv4 ICMP statistics */ 18754 static mblk_t * 18755 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18756 { 18757 struct opthdr *optp; 18758 mblk_t *mp2ctl; 18759 18760 /* 18761 * Make a copy of the original message 18762 */ 18763 mp2ctl = copymsg(mpctl); 18764 18765 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18766 optp->level = MIB2_ICMP; 18767 optp->name = 0; 18768 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 18769 (int)sizeof (ipst->ips_icmp_mib))) { 18770 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18771 (uint_t)sizeof (ipst->ips_icmp_mib))); 18772 } 18773 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18774 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18775 (int)optp->level, (int)optp->name, (int)optp->len)); 18776 qreply(q, mpctl); 18777 return (mp2ctl); 18778 } 18779 18780 /* Global IPv4 IGMP statistics */ 18781 static mblk_t * 18782 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18783 { 18784 struct opthdr *optp; 18785 mblk_t *mp2ctl; 18786 18787 /* 18788 * make a copy of the original message 18789 */ 18790 mp2ctl = copymsg(mpctl); 18791 18792 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18793 optp->level = EXPER_IGMP; 18794 optp->name = 0; 18795 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 18796 (int)sizeof (ipst->ips_igmpstat))) { 18797 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18798 (uint_t)sizeof (ipst->ips_igmpstat))); 18799 } 18800 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18801 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18802 (int)optp->level, (int)optp->name, (int)optp->len)); 18803 qreply(q, mpctl); 18804 return (mp2ctl); 18805 } 18806 18807 /* Global IPv4 Multicast Routing statistics */ 18808 static mblk_t * 18809 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18810 { 18811 struct opthdr *optp; 18812 mblk_t *mp2ctl; 18813 18814 /* 18815 * make a copy of the original message 18816 */ 18817 mp2ctl = copymsg(mpctl); 18818 18819 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18820 optp->level = EXPER_DVMRP; 18821 optp->name = 0; 18822 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 18823 ip0dbg(("ip_mroute_stats: failed\n")); 18824 } 18825 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18826 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18827 (int)optp->level, (int)optp->name, (int)optp->len)); 18828 qreply(q, mpctl); 18829 return (mp2ctl); 18830 } 18831 18832 /* IPv4 address information */ 18833 static mblk_t * 18834 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18835 { 18836 struct opthdr *optp; 18837 mblk_t *mp2ctl; 18838 mblk_t *mp_tail = NULL; 18839 ill_t *ill; 18840 ipif_t *ipif; 18841 uint_t bitval; 18842 mib2_ipAddrEntry_t mae; 18843 zoneid_t zoneid; 18844 ill_walk_context_t ctx; 18845 18846 /* 18847 * make a copy of the original message 18848 */ 18849 mp2ctl = copymsg(mpctl); 18850 18851 /* ipAddrEntryTable */ 18852 18853 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18854 optp->level = MIB2_IP; 18855 optp->name = MIB2_IP_ADDR; 18856 zoneid = Q_TO_CONN(q)->conn_zoneid; 18857 18858 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18859 ill = ILL_START_WALK_V4(&ctx, ipst); 18860 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18861 for (ipif = ill->ill_ipif; ipif != NULL; 18862 ipif = ipif->ipif_next) { 18863 if (ipif->ipif_zoneid != zoneid && 18864 ipif->ipif_zoneid != ALL_ZONES) 18865 continue; 18866 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18867 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18868 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18869 18870 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 18871 OCTET_LENGTH); 18872 mae.ipAdEntIfIndex.o_length = 18873 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18874 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18875 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18876 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18877 mae.ipAdEntInfo.ae_subnet_len = 18878 ip_mask_to_plen(ipif->ipif_net_mask); 18879 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18880 for (bitval = 1; 18881 bitval && 18882 !(bitval & ipif->ipif_brd_addr); 18883 bitval <<= 1) 18884 noop; 18885 mae.ipAdEntBcastAddr = bitval; 18886 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18887 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18888 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18889 mae.ipAdEntInfo.ae_broadcast_addr = 18890 ipif->ipif_brd_addr; 18891 mae.ipAdEntInfo.ae_pp_dst_addr = 18892 ipif->ipif_pp_dst_addr; 18893 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18894 ill->ill_flags | ill->ill_phyint->phyint_flags; 18895 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18896 18897 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18898 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18899 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18900 "allocate %u bytes\n", 18901 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18902 } 18903 } 18904 } 18905 rw_exit(&ipst->ips_ill_g_lock); 18906 18907 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18908 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18909 (int)optp->level, (int)optp->name, (int)optp->len)); 18910 qreply(q, mpctl); 18911 return (mp2ctl); 18912 } 18913 18914 /* IPv6 address information */ 18915 static mblk_t * 18916 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 18917 { 18918 struct opthdr *optp; 18919 mblk_t *mp2ctl; 18920 mblk_t *mp_tail = NULL; 18921 ill_t *ill; 18922 ipif_t *ipif; 18923 mib2_ipv6AddrEntry_t mae6; 18924 zoneid_t zoneid; 18925 ill_walk_context_t ctx; 18926 18927 /* 18928 * make a copy of the original message 18929 */ 18930 mp2ctl = copymsg(mpctl); 18931 18932 /* ipv6AddrEntryTable */ 18933 18934 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18935 optp->level = MIB2_IP6; 18936 optp->name = MIB2_IP6_ADDR; 18937 zoneid = Q_TO_CONN(q)->conn_zoneid; 18938 18939 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18940 ill = ILL_START_WALK_V6(&ctx, ipst); 18941 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18942 for (ipif = ill->ill_ipif; ipif != NULL; 18943 ipif = ipif->ipif_next) { 18944 if (ipif->ipif_zoneid != zoneid && 18945 ipif->ipif_zoneid != ALL_ZONES) 18946 continue; 18947 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18948 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18949 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18950 18951 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 18952 OCTET_LENGTH); 18953 mae6.ipv6AddrIfIndex.o_length = 18954 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18955 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18956 mae6.ipv6AddrPfxLength = 18957 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18958 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18959 mae6.ipv6AddrInfo.ae_subnet_len = 18960 mae6.ipv6AddrPfxLength; 18961 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18962 18963 /* Type: stateless(1), stateful(2), unknown(3) */ 18964 if (ipif->ipif_flags & IPIF_ADDRCONF) 18965 mae6.ipv6AddrType = 1; 18966 else 18967 mae6.ipv6AddrType = 2; 18968 /* Anycast: true(1), false(2) */ 18969 if (ipif->ipif_flags & IPIF_ANYCAST) 18970 mae6.ipv6AddrAnycastFlag = 1; 18971 else 18972 mae6.ipv6AddrAnycastFlag = 2; 18973 18974 /* 18975 * Address status: preferred(1), deprecated(2), 18976 * invalid(3), inaccessible(4), unknown(5) 18977 */ 18978 if (ipif->ipif_flags & IPIF_NOLOCAL) 18979 mae6.ipv6AddrStatus = 3; 18980 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18981 mae6.ipv6AddrStatus = 2; 18982 else 18983 mae6.ipv6AddrStatus = 1; 18984 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18985 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18986 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18987 ipif->ipif_v6pp_dst_addr; 18988 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18989 ill->ill_flags | ill->ill_phyint->phyint_flags; 18990 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18991 mae6.ipv6AddrIdentifier = ill->ill_token; 18992 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18993 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18994 mae6.ipv6AddrRetransmitTime = 18995 ill->ill_reachable_retrans_time; 18996 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18997 (char *)&mae6, 18998 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18999 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 19000 "allocate %u bytes\n", 19001 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 19002 } 19003 } 19004 } 19005 rw_exit(&ipst->ips_ill_g_lock); 19006 19007 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19008 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 19009 (int)optp->level, (int)optp->name, (int)optp->len)); 19010 qreply(q, mpctl); 19011 return (mp2ctl); 19012 } 19013 19014 /* IPv4 multicast group membership. */ 19015 static mblk_t * 19016 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19017 { 19018 struct opthdr *optp; 19019 mblk_t *mp2ctl; 19020 ill_t *ill; 19021 ipif_t *ipif; 19022 ilm_t *ilm; 19023 ip_member_t ipm; 19024 mblk_t *mp_tail = NULL; 19025 ill_walk_context_t ctx; 19026 zoneid_t zoneid; 19027 ilm_walker_t ilw; 19028 19029 /* 19030 * make a copy of the original message 19031 */ 19032 mp2ctl = copymsg(mpctl); 19033 zoneid = Q_TO_CONN(q)->conn_zoneid; 19034 19035 /* ipGroupMember table */ 19036 optp = (struct opthdr *)&mpctl->b_rptr[ 19037 sizeof (struct T_optmgmt_ack)]; 19038 optp->level = MIB2_IP; 19039 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 19040 19041 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19042 ill = ILL_START_WALK_V4(&ctx, ipst); 19043 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19044 if (IS_UNDER_IPMP(ill)) 19045 continue; 19046 19047 ilm = ilm_walker_start(&ilw, ill); 19048 for (ipif = ill->ill_ipif; ipif != NULL; 19049 ipif = ipif->ipif_next) { 19050 if (ipif->ipif_zoneid != zoneid && 19051 ipif->ipif_zoneid != ALL_ZONES) 19052 continue; /* not this zone */ 19053 ipif_get_name(ipif, ipm.ipGroupMemberIfIndex.o_bytes, 19054 OCTET_LENGTH); 19055 ipm.ipGroupMemberIfIndex.o_length = 19056 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 19057 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19058 ASSERT(ilm->ilm_ipif != NULL); 19059 ASSERT(ilm->ilm_ill == NULL); 19060 if (ilm->ilm_ipif != ipif) 19061 continue; 19062 ipm.ipGroupMemberAddress = ilm->ilm_addr; 19063 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 19064 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 19065 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19066 (char *)&ipm, (int)sizeof (ipm))) { 19067 ip1dbg(("ip_snmp_get_mib2_ip_group: " 19068 "failed to allocate %u bytes\n", 19069 (uint_t)sizeof (ipm))); 19070 } 19071 } 19072 } 19073 ilm_walker_finish(&ilw); 19074 } 19075 rw_exit(&ipst->ips_ill_g_lock); 19076 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19077 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19078 (int)optp->level, (int)optp->name, (int)optp->len)); 19079 qreply(q, mpctl); 19080 return (mp2ctl); 19081 } 19082 19083 /* IPv6 multicast group membership. */ 19084 static mblk_t * 19085 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19086 { 19087 struct opthdr *optp; 19088 mblk_t *mp2ctl; 19089 ill_t *ill; 19090 ilm_t *ilm; 19091 ipv6_member_t ipm6; 19092 mblk_t *mp_tail = NULL; 19093 ill_walk_context_t ctx; 19094 zoneid_t zoneid; 19095 ilm_walker_t ilw; 19096 19097 /* 19098 * make a copy of the original message 19099 */ 19100 mp2ctl = copymsg(mpctl); 19101 zoneid = Q_TO_CONN(q)->conn_zoneid; 19102 19103 /* ip6GroupMember table */ 19104 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19105 optp->level = MIB2_IP6; 19106 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 19107 19108 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19109 ill = ILL_START_WALK_V6(&ctx, ipst); 19110 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19111 if (IS_UNDER_IPMP(ill)) 19112 continue; 19113 19114 ilm = ilm_walker_start(&ilw, ill); 19115 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 19116 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19117 ASSERT(ilm->ilm_ipif == NULL); 19118 ASSERT(ilm->ilm_ill != NULL); 19119 if (ilm->ilm_zoneid != zoneid) 19120 continue; /* not this zone */ 19121 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 19122 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 19123 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 19124 if (!snmp_append_data2(mpctl->b_cont, 19125 &mp_tail, 19126 (char *)&ipm6, (int)sizeof (ipm6))) { 19127 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 19128 "failed to allocate %u bytes\n", 19129 (uint_t)sizeof (ipm6))); 19130 } 19131 } 19132 ilm_walker_finish(&ilw); 19133 } 19134 rw_exit(&ipst->ips_ill_g_lock); 19135 19136 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19137 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19138 (int)optp->level, (int)optp->name, (int)optp->len)); 19139 qreply(q, mpctl); 19140 return (mp2ctl); 19141 } 19142 19143 /* IP multicast filtered sources */ 19144 static mblk_t * 19145 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19146 { 19147 struct opthdr *optp; 19148 mblk_t *mp2ctl; 19149 ill_t *ill; 19150 ipif_t *ipif; 19151 ilm_t *ilm; 19152 ip_grpsrc_t ips; 19153 mblk_t *mp_tail = NULL; 19154 ill_walk_context_t ctx; 19155 zoneid_t zoneid; 19156 int i; 19157 slist_t *sl; 19158 ilm_walker_t ilw; 19159 19160 /* 19161 * make a copy of the original message 19162 */ 19163 mp2ctl = copymsg(mpctl); 19164 zoneid = Q_TO_CONN(q)->conn_zoneid; 19165 19166 /* ipGroupSource table */ 19167 optp = (struct opthdr *)&mpctl->b_rptr[ 19168 sizeof (struct T_optmgmt_ack)]; 19169 optp->level = MIB2_IP; 19170 optp->name = EXPER_IP_GROUP_SOURCES; 19171 19172 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19173 ill = ILL_START_WALK_V4(&ctx, ipst); 19174 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19175 if (IS_UNDER_IPMP(ill)) 19176 continue; 19177 19178 ilm = ilm_walker_start(&ilw, ill); 19179 for (ipif = ill->ill_ipif; ipif != NULL; 19180 ipif = ipif->ipif_next) { 19181 if (ipif->ipif_zoneid != zoneid) 19182 continue; /* not this zone */ 19183 ipif_get_name(ipif, ips.ipGroupSourceIfIndex.o_bytes, 19184 OCTET_LENGTH); 19185 ips.ipGroupSourceIfIndex.o_length = 19186 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 19187 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19188 ASSERT(ilm->ilm_ipif != NULL); 19189 ASSERT(ilm->ilm_ill == NULL); 19190 sl = ilm->ilm_filter; 19191 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 19192 continue; 19193 ips.ipGroupSourceGroup = ilm->ilm_addr; 19194 for (i = 0; i < sl->sl_numsrc; i++) { 19195 if (!IN6_IS_ADDR_V4MAPPED( 19196 &sl->sl_addr[i])) 19197 continue; 19198 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 19199 ips.ipGroupSourceAddress); 19200 if (snmp_append_data2(mpctl->b_cont, 19201 &mp_tail, (char *)&ips, 19202 (int)sizeof (ips)) == 0) { 19203 ip1dbg(("ip_snmp_get_mib2_" 19204 "ip_group_src: failed to " 19205 "allocate %u bytes\n", 19206 (uint_t)sizeof (ips))); 19207 } 19208 } 19209 } 19210 } 19211 ilm_walker_finish(&ilw); 19212 } 19213 rw_exit(&ipst->ips_ill_g_lock); 19214 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19215 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19216 (int)optp->level, (int)optp->name, (int)optp->len)); 19217 qreply(q, mpctl); 19218 return (mp2ctl); 19219 } 19220 19221 /* IPv6 multicast filtered sources. */ 19222 static mblk_t * 19223 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19224 { 19225 struct opthdr *optp; 19226 mblk_t *mp2ctl; 19227 ill_t *ill; 19228 ilm_t *ilm; 19229 ipv6_grpsrc_t ips6; 19230 mblk_t *mp_tail = NULL; 19231 ill_walk_context_t ctx; 19232 zoneid_t zoneid; 19233 int i; 19234 slist_t *sl; 19235 ilm_walker_t ilw; 19236 19237 /* 19238 * make a copy of the original message 19239 */ 19240 mp2ctl = copymsg(mpctl); 19241 zoneid = Q_TO_CONN(q)->conn_zoneid; 19242 19243 /* ip6GroupMember table */ 19244 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19245 optp->level = MIB2_IP6; 19246 optp->name = EXPER_IP6_GROUP_SOURCES; 19247 19248 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19249 ill = ILL_START_WALK_V6(&ctx, ipst); 19250 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19251 if (IS_UNDER_IPMP(ill)) 19252 continue; 19253 19254 ilm = ilm_walker_start(&ilw, ill); 19255 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 19256 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 19257 ASSERT(ilm->ilm_ipif == NULL); 19258 ASSERT(ilm->ilm_ill != NULL); 19259 sl = ilm->ilm_filter; 19260 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 19261 continue; 19262 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 19263 for (i = 0; i < sl->sl_numsrc; i++) { 19264 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 19265 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19266 (char *)&ips6, (int)sizeof (ips6))) { 19267 ip1dbg(("ip_snmp_get_mib2_ip6_" 19268 "group_src: failed to allocate " 19269 "%u bytes\n", 19270 (uint_t)sizeof (ips6))); 19271 } 19272 } 19273 } 19274 ilm_walker_finish(&ilw); 19275 } 19276 rw_exit(&ipst->ips_ill_g_lock); 19277 19278 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19279 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 19280 (int)optp->level, (int)optp->name, (int)optp->len)); 19281 qreply(q, mpctl); 19282 return (mp2ctl); 19283 } 19284 19285 /* Multicast routing virtual interface table. */ 19286 static mblk_t * 19287 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19288 { 19289 struct opthdr *optp; 19290 mblk_t *mp2ctl; 19291 19292 /* 19293 * make a copy of the original message 19294 */ 19295 mp2ctl = copymsg(mpctl); 19296 19297 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19298 optp->level = EXPER_DVMRP; 19299 optp->name = EXPER_DVMRP_VIF; 19300 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 19301 ip0dbg(("ip_mroute_vif: failed\n")); 19302 } 19303 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19304 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 19305 (int)optp->level, (int)optp->name, (int)optp->len)); 19306 qreply(q, mpctl); 19307 return (mp2ctl); 19308 } 19309 19310 /* Multicast routing table. */ 19311 static mblk_t * 19312 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19313 { 19314 struct opthdr *optp; 19315 mblk_t *mp2ctl; 19316 19317 /* 19318 * make a copy of the original message 19319 */ 19320 mp2ctl = copymsg(mpctl); 19321 19322 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19323 optp->level = EXPER_DVMRP; 19324 optp->name = EXPER_DVMRP_MRT; 19325 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 19326 ip0dbg(("ip_mroute_mrt: failed\n")); 19327 } 19328 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19329 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 19330 (int)optp->level, (int)optp->name, (int)optp->len)); 19331 qreply(q, mpctl); 19332 return (mp2ctl); 19333 } 19334 19335 /* 19336 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 19337 * in one IRE walk. 19338 */ 19339 static mblk_t * 19340 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 19341 ip_stack_t *ipst) 19342 { 19343 struct opthdr *optp; 19344 mblk_t *mp2ctl; /* Returned */ 19345 mblk_t *mp3ctl; /* nettomedia */ 19346 mblk_t *mp4ctl; /* routeattrs */ 19347 iproutedata_t ird; 19348 zoneid_t zoneid; 19349 19350 /* 19351 * make copies of the original message 19352 * - mp2ctl is returned unchanged to the caller for his use 19353 * - mpctl is sent upstream as ipRouteEntryTable 19354 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 19355 * - mp4ctl is sent upstream as ipRouteAttributeTable 19356 */ 19357 mp2ctl = copymsg(mpctl); 19358 mp3ctl = copymsg(mpctl); 19359 mp4ctl = copymsg(mpctl); 19360 if (mp3ctl == NULL || mp4ctl == NULL) { 19361 freemsg(mp4ctl); 19362 freemsg(mp3ctl); 19363 freemsg(mp2ctl); 19364 freemsg(mpctl); 19365 return (NULL); 19366 } 19367 19368 bzero(&ird, sizeof (ird)); 19369 19370 ird.ird_route.lp_head = mpctl->b_cont; 19371 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19372 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19373 /* 19374 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19375 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19376 * intended a temporary solution until a proper MIB API is provided 19377 * that provides complete filtering/caller-opt-in. 19378 */ 19379 if (level == EXPER_IP_AND_TESTHIDDEN) 19380 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19381 19382 zoneid = Q_TO_CONN(q)->conn_zoneid; 19383 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 19384 19385 /* ipRouteEntryTable in mpctl */ 19386 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19387 optp->level = MIB2_IP; 19388 optp->name = MIB2_IP_ROUTE; 19389 optp->len = msgdsize(ird.ird_route.lp_head); 19390 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19391 (int)optp->level, (int)optp->name, (int)optp->len)); 19392 qreply(q, mpctl); 19393 19394 /* ipNetToMediaEntryTable in mp3ctl */ 19395 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19396 optp->level = MIB2_IP; 19397 optp->name = MIB2_IP_MEDIA; 19398 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19399 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19400 (int)optp->level, (int)optp->name, (int)optp->len)); 19401 qreply(q, mp3ctl); 19402 19403 /* ipRouteAttributeTable in mp4ctl */ 19404 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19405 optp->level = MIB2_IP; 19406 optp->name = EXPER_IP_RTATTR; 19407 optp->len = msgdsize(ird.ird_attrs.lp_head); 19408 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 19409 (int)optp->level, (int)optp->name, (int)optp->len)); 19410 if (optp->len == 0) 19411 freemsg(mp4ctl); 19412 else 19413 qreply(q, mp4ctl); 19414 19415 return (mp2ctl); 19416 } 19417 19418 /* 19419 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 19420 * ipv6NetToMediaEntryTable in an NDP walk. 19421 */ 19422 static mblk_t * 19423 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 19424 ip_stack_t *ipst) 19425 { 19426 struct opthdr *optp; 19427 mblk_t *mp2ctl; /* Returned */ 19428 mblk_t *mp3ctl; /* nettomedia */ 19429 mblk_t *mp4ctl; /* routeattrs */ 19430 iproutedata_t ird; 19431 zoneid_t zoneid; 19432 19433 /* 19434 * make copies of the original message 19435 * - mp2ctl is returned unchanged to the caller for his use 19436 * - mpctl is sent upstream as ipv6RouteEntryTable 19437 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 19438 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 19439 */ 19440 mp2ctl = copymsg(mpctl); 19441 mp3ctl = copymsg(mpctl); 19442 mp4ctl = copymsg(mpctl); 19443 if (mp3ctl == NULL || mp4ctl == NULL) { 19444 freemsg(mp4ctl); 19445 freemsg(mp3ctl); 19446 freemsg(mp2ctl); 19447 freemsg(mpctl); 19448 return (NULL); 19449 } 19450 19451 bzero(&ird, sizeof (ird)); 19452 19453 ird.ird_route.lp_head = mpctl->b_cont; 19454 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 19455 ird.ird_attrs.lp_head = mp4ctl->b_cont; 19456 /* 19457 * If the level has been set the special EXPER_IP_AND_TESTHIDDEN 19458 * value, then also include IRE_MARK_TESTHIDDEN IREs. This is 19459 * intended a temporary solution until a proper MIB API is provided 19460 * that provides complete filtering/caller-opt-in. 19461 */ 19462 if (level == EXPER_IP_AND_TESTHIDDEN) 19463 ird.ird_flags |= IRD_REPORT_TESTHIDDEN; 19464 19465 zoneid = Q_TO_CONN(q)->conn_zoneid; 19466 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 19467 19468 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19469 optp->level = MIB2_IP6; 19470 optp->name = MIB2_IP6_ROUTE; 19471 optp->len = msgdsize(ird.ird_route.lp_head); 19472 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19473 (int)optp->level, (int)optp->name, (int)optp->len)); 19474 qreply(q, mpctl); 19475 19476 /* ipv6NetToMediaEntryTable in mp3ctl */ 19477 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 19478 19479 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19480 optp->level = MIB2_IP6; 19481 optp->name = MIB2_IP6_MEDIA; 19482 optp->len = msgdsize(ird.ird_netmedia.lp_head); 19483 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19484 (int)optp->level, (int)optp->name, (int)optp->len)); 19485 qreply(q, mp3ctl); 19486 19487 /* ipv6RouteAttributeTable in mp4ctl */ 19488 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19489 optp->level = MIB2_IP6; 19490 optp->name = EXPER_IP_RTATTR; 19491 optp->len = msgdsize(ird.ird_attrs.lp_head); 19492 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 19493 (int)optp->level, (int)optp->name, (int)optp->len)); 19494 if (optp->len == 0) 19495 freemsg(mp4ctl); 19496 else 19497 qreply(q, mp4ctl); 19498 19499 return (mp2ctl); 19500 } 19501 19502 /* 19503 * IPv6 mib: One per ill 19504 */ 19505 static mblk_t * 19506 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19507 { 19508 struct opthdr *optp; 19509 mblk_t *mp2ctl; 19510 ill_t *ill; 19511 ill_walk_context_t ctx; 19512 mblk_t *mp_tail = NULL; 19513 19514 /* 19515 * Make a copy of the original message 19516 */ 19517 mp2ctl = copymsg(mpctl); 19518 19519 /* fixed length IPv6 structure ... */ 19520 19521 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19522 optp->level = MIB2_IP6; 19523 optp->name = 0; 19524 /* Include "unknown interface" ip6_mib */ 19525 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 19526 ipst->ips_ip6_mib.ipIfStatsIfIndex = 19527 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 19528 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 19529 ipst->ips_ipv6_forward ? 1 : 2); 19530 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 19531 ipst->ips_ipv6_def_hops); 19532 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 19533 sizeof (mib2_ipIfStatsEntry_t)); 19534 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 19535 sizeof (mib2_ipv6AddrEntry_t)); 19536 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 19537 sizeof (mib2_ipv6RouteEntry_t)); 19538 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 19539 sizeof (mib2_ipv6NetToMediaEntry_t)); 19540 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 19541 sizeof (ipv6_member_t)); 19542 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 19543 sizeof (ipv6_grpsrc_t)); 19544 19545 /* 19546 * Synchronize 64- and 32-bit counters 19547 */ 19548 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 19549 ipIfStatsHCInReceives); 19550 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 19551 ipIfStatsHCInDelivers); 19552 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 19553 ipIfStatsHCOutRequests); 19554 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 19555 ipIfStatsHCOutForwDatagrams); 19556 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 19557 ipIfStatsHCOutMcastPkts); 19558 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 19559 ipIfStatsHCInMcastPkts); 19560 19561 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19562 (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) { 19563 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 19564 (uint_t)sizeof (ipst->ips_ip6_mib))); 19565 } 19566 19567 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19568 ill = ILL_START_WALK_V6(&ctx, ipst); 19569 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19570 ill->ill_ip_mib->ipIfStatsIfIndex = 19571 ill->ill_phyint->phyint_ifindex; 19572 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 19573 ipst->ips_ipv6_forward ? 1 : 2); 19574 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 19575 ill->ill_max_hops); 19576 19577 /* 19578 * Synchronize 64- and 32-bit counters 19579 */ 19580 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 19581 ipIfStatsHCInReceives); 19582 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 19583 ipIfStatsHCInDelivers); 19584 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 19585 ipIfStatsHCOutRequests); 19586 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 19587 ipIfStatsHCOutForwDatagrams); 19588 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 19589 ipIfStatsHCOutMcastPkts); 19590 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 19591 ipIfStatsHCInMcastPkts); 19592 19593 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19594 (char *)ill->ill_ip_mib, 19595 (int)sizeof (*ill->ill_ip_mib))) { 19596 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 19597 "%u bytes\n", (uint_t)sizeof (*ill->ill_ip_mib))); 19598 } 19599 } 19600 rw_exit(&ipst->ips_ill_g_lock); 19601 19602 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19603 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 19604 (int)optp->level, (int)optp->name, (int)optp->len)); 19605 qreply(q, mpctl); 19606 return (mp2ctl); 19607 } 19608 19609 /* 19610 * ICMPv6 mib: One per ill 19611 */ 19612 static mblk_t * 19613 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 19614 { 19615 struct opthdr *optp; 19616 mblk_t *mp2ctl; 19617 ill_t *ill; 19618 ill_walk_context_t ctx; 19619 mblk_t *mp_tail = NULL; 19620 /* 19621 * Make a copy of the original message 19622 */ 19623 mp2ctl = copymsg(mpctl); 19624 19625 /* fixed length ICMPv6 structure ... */ 19626 19627 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 19628 optp->level = MIB2_ICMP6; 19629 optp->name = 0; 19630 /* Include "unknown interface" icmp6_mib */ 19631 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 19632 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 19633 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 19634 sizeof (mib2_ipv6IfIcmpEntry_t); 19635 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19636 (char *)&ipst->ips_icmp6_mib, 19637 (int)sizeof (ipst->ips_icmp6_mib))) { 19638 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 19639 (uint_t)sizeof (ipst->ips_icmp6_mib))); 19640 } 19641 19642 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19643 ill = ILL_START_WALK_V6(&ctx, ipst); 19644 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19645 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19646 ill->ill_phyint->phyint_ifindex; 19647 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19648 (char *)ill->ill_icmp6_mib, 19649 (int)sizeof (*ill->ill_icmp6_mib))) { 19650 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19651 "%u bytes\n", 19652 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19653 } 19654 } 19655 rw_exit(&ipst->ips_ill_g_lock); 19656 19657 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19658 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19659 (int)optp->level, (int)optp->name, (int)optp->len)); 19660 qreply(q, mpctl); 19661 return (mp2ctl); 19662 } 19663 19664 /* 19665 * ire_walk routine to create both ipRouteEntryTable and 19666 * ipRouteAttributeTable in one IRE walk 19667 */ 19668 static void 19669 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19670 { 19671 ill_t *ill; 19672 ipif_t *ipif; 19673 mib2_ipRouteEntry_t *re; 19674 mib2_ipAttributeEntry_t *iae, *iaeptr; 19675 ipaddr_t gw_addr; 19676 tsol_ire_gw_secattr_t *attrp; 19677 tsol_gc_t *gc = NULL; 19678 tsol_gcgrp_t *gcgrp = NULL; 19679 uint_t sacnt = 0; 19680 int i; 19681 19682 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19683 19684 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19685 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19686 return; 19687 } 19688 19689 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19690 return; 19691 19692 if ((attrp = ire->ire_gw_secattr) != NULL) { 19693 mutex_enter(&attrp->igsa_lock); 19694 if ((gc = attrp->igsa_gc) != NULL) { 19695 gcgrp = gc->gc_grp; 19696 ASSERT(gcgrp != NULL); 19697 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19698 sacnt = 1; 19699 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19700 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19701 gc = gcgrp->gcgrp_head; 19702 sacnt = gcgrp->gcgrp_count; 19703 } 19704 mutex_exit(&attrp->igsa_lock); 19705 19706 /* do nothing if there's no gc to report */ 19707 if (gc == NULL) { 19708 ASSERT(sacnt == 0); 19709 if (gcgrp != NULL) { 19710 /* we might as well drop the lock now */ 19711 rw_exit(&gcgrp->gcgrp_rwlock); 19712 gcgrp = NULL; 19713 } 19714 attrp = NULL; 19715 } 19716 19717 ASSERT(gc == NULL || (gcgrp != NULL && 19718 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19719 } 19720 ASSERT(sacnt == 0 || gc != NULL); 19721 19722 if (sacnt != 0 && 19723 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19724 kmem_free(re, sizeof (*re)); 19725 rw_exit(&gcgrp->gcgrp_rwlock); 19726 return; 19727 } 19728 19729 /* 19730 * Return all IRE types for route table... let caller pick and choose 19731 */ 19732 re->ipRouteDest = ire->ire_addr; 19733 ipif = ire->ire_ipif; 19734 re->ipRouteIfIndex.o_length = 0; 19735 if (ire->ire_type == IRE_CACHE) { 19736 ill = (ill_t *)ire->ire_stq->q_ptr; 19737 re->ipRouteIfIndex.o_length = 19738 ill->ill_name_length == 0 ? 0 : 19739 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19740 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19741 re->ipRouteIfIndex.o_length); 19742 } else if (ipif != NULL) { 19743 ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 19744 re->ipRouteIfIndex.o_length = 19745 mi_strlen(re->ipRouteIfIndex.o_bytes); 19746 } 19747 re->ipRouteMetric1 = -1; 19748 re->ipRouteMetric2 = -1; 19749 re->ipRouteMetric3 = -1; 19750 re->ipRouteMetric4 = -1; 19751 19752 gw_addr = ire->ire_gateway_addr; 19753 19754 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19755 re->ipRouteNextHop = ire->ire_src_addr; 19756 else 19757 re->ipRouteNextHop = gw_addr; 19758 /* indirect(4), direct(3), or invalid(2) */ 19759 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19760 re->ipRouteType = 2; 19761 else 19762 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19763 re->ipRouteProto = -1; 19764 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19765 re->ipRouteMask = ire->ire_mask; 19766 re->ipRouteMetric5 = -1; 19767 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19768 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19769 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19770 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19771 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19772 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19773 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19774 re->ipRouteInfo.re_flags = ire->ire_flags; 19775 19776 if (ire->ire_flags & RTF_DYNAMIC) { 19777 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19778 } else { 19779 re->ipRouteInfo.re_ire_type = ire->ire_type; 19780 } 19781 19782 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19783 (char *)re, (int)sizeof (*re))) { 19784 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19785 (uint_t)sizeof (*re))); 19786 } 19787 19788 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19789 iaeptr->iae_routeidx = ird->ird_idx; 19790 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19791 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19792 } 19793 19794 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19795 (char *)iae, sacnt * sizeof (*iae))) { 19796 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19797 (unsigned)(sacnt * sizeof (*iae)))); 19798 } 19799 19800 /* bump route index for next pass */ 19801 ird->ird_idx++; 19802 19803 kmem_free(re, sizeof (*re)); 19804 if (sacnt != 0) 19805 kmem_free(iae, sacnt * sizeof (*iae)); 19806 19807 if (gcgrp != NULL) 19808 rw_exit(&gcgrp->gcgrp_rwlock); 19809 } 19810 19811 /* 19812 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19813 */ 19814 static void 19815 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19816 { 19817 ill_t *ill; 19818 ipif_t *ipif; 19819 mib2_ipv6RouteEntry_t *re; 19820 mib2_ipAttributeEntry_t *iae, *iaeptr; 19821 in6_addr_t gw_addr_v6; 19822 tsol_ire_gw_secattr_t *attrp; 19823 tsol_gc_t *gc = NULL; 19824 tsol_gcgrp_t *gcgrp = NULL; 19825 uint_t sacnt = 0; 19826 int i; 19827 19828 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19829 19830 if (!(ird->ird_flags & IRD_REPORT_TESTHIDDEN) && 19831 ire->ire_marks & IRE_MARK_TESTHIDDEN) { 19832 return; 19833 } 19834 19835 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19836 return; 19837 19838 if ((attrp = ire->ire_gw_secattr) != NULL) { 19839 mutex_enter(&attrp->igsa_lock); 19840 if ((gc = attrp->igsa_gc) != NULL) { 19841 gcgrp = gc->gc_grp; 19842 ASSERT(gcgrp != NULL); 19843 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19844 sacnt = 1; 19845 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19846 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19847 gc = gcgrp->gcgrp_head; 19848 sacnt = gcgrp->gcgrp_count; 19849 } 19850 mutex_exit(&attrp->igsa_lock); 19851 19852 /* do nothing if there's no gc to report */ 19853 if (gc == NULL) { 19854 ASSERT(sacnt == 0); 19855 if (gcgrp != NULL) { 19856 /* we might as well drop the lock now */ 19857 rw_exit(&gcgrp->gcgrp_rwlock); 19858 gcgrp = NULL; 19859 } 19860 attrp = NULL; 19861 } 19862 19863 ASSERT(gc == NULL || (gcgrp != NULL && 19864 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19865 } 19866 ASSERT(sacnt == 0 || gc != NULL); 19867 19868 if (sacnt != 0 && 19869 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19870 kmem_free(re, sizeof (*re)); 19871 rw_exit(&gcgrp->gcgrp_rwlock); 19872 return; 19873 } 19874 19875 /* 19876 * Return all IRE types for route table... let caller pick and choose 19877 */ 19878 re->ipv6RouteDest = ire->ire_addr_v6; 19879 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19880 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19881 re->ipv6RouteIfIndex.o_length = 0; 19882 ipif = ire->ire_ipif; 19883 if (ire->ire_type == IRE_CACHE) { 19884 ill = (ill_t *)ire->ire_stq->q_ptr; 19885 re->ipv6RouteIfIndex.o_length = 19886 ill->ill_name_length == 0 ? 0 : 19887 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19888 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19889 re->ipv6RouteIfIndex.o_length); 19890 } else if (ipif != NULL) { 19891 ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 19892 re->ipv6RouteIfIndex.o_length = 19893 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19894 } 19895 19896 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19897 19898 mutex_enter(&ire->ire_lock); 19899 gw_addr_v6 = ire->ire_gateway_addr_v6; 19900 mutex_exit(&ire->ire_lock); 19901 19902 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19903 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19904 else 19905 re->ipv6RouteNextHop = gw_addr_v6; 19906 19907 /* remote(4), local(3), or discard(2) */ 19908 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19909 re->ipv6RouteType = 2; 19910 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19911 re->ipv6RouteType = 3; 19912 else 19913 re->ipv6RouteType = 4; 19914 19915 re->ipv6RouteProtocol = -1; 19916 re->ipv6RoutePolicy = 0; 19917 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19918 re->ipv6RouteNextHopRDI = 0; 19919 re->ipv6RouteWeight = 0; 19920 re->ipv6RouteMetric = 0; 19921 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19922 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19923 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19924 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19925 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19926 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19927 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19928 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19929 19930 if (ire->ire_flags & RTF_DYNAMIC) { 19931 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19932 } else { 19933 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19934 } 19935 19936 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19937 (char *)re, (int)sizeof (*re))) { 19938 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19939 (uint_t)sizeof (*re))); 19940 } 19941 19942 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19943 iaeptr->iae_routeidx = ird->ird_idx; 19944 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19945 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19946 } 19947 19948 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19949 (char *)iae, sacnt * sizeof (*iae))) { 19950 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19951 (unsigned)(sacnt * sizeof (*iae)))); 19952 } 19953 19954 /* bump route index for next pass */ 19955 ird->ird_idx++; 19956 19957 kmem_free(re, sizeof (*re)); 19958 if (sacnt != 0) 19959 kmem_free(iae, sacnt * sizeof (*iae)); 19960 19961 if (gcgrp != NULL) 19962 rw_exit(&gcgrp->gcgrp_rwlock); 19963 } 19964 19965 /* 19966 * ndp_walk routine to create ipv6NetToMediaEntryTable 19967 */ 19968 static int 19969 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19970 { 19971 ill_t *ill; 19972 mib2_ipv6NetToMediaEntry_t ntme; 19973 dl_unitdata_req_t *dl; 19974 19975 ill = nce->nce_ill; 19976 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19977 return (0); 19978 19979 /* 19980 * Neighbor cache entry attached to IRE with on-link 19981 * destination. 19982 */ 19983 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19984 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19985 if ((ill->ill_flags & ILLF_XRESOLV) && 19986 (nce->nce_res_mp != NULL)) { 19987 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19988 ntme.ipv6NetToMediaPhysAddress.o_length = 19989 dl->dl_dest_addr_length; 19990 } else { 19991 ntme.ipv6NetToMediaPhysAddress.o_length = 19992 ill->ill_phys_addr_length; 19993 } 19994 if (nce->nce_res_mp != NULL) { 19995 bcopy((char *)nce->nce_res_mp->b_rptr + 19996 NCE_LL_ADDR_OFFSET(ill), 19997 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19998 ntme.ipv6NetToMediaPhysAddress.o_length); 19999 } else { 20000 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 20001 ill->ill_phys_addr_length); 20002 } 20003 /* 20004 * Note: Returns ND_* states. Should be: 20005 * reachable(1), stale(2), delay(3), probe(4), 20006 * invalid(5), unknown(6) 20007 */ 20008 ntme.ipv6NetToMediaState = nce->nce_state; 20009 ntme.ipv6NetToMediaLastUpdated = 0; 20010 20011 /* other(1), dynamic(2), static(3), local(4) */ 20012 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 20013 ntme.ipv6NetToMediaType = 4; 20014 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 20015 ntme.ipv6NetToMediaType = 1; 20016 } else { 20017 ntme.ipv6NetToMediaType = 2; 20018 } 20019 20020 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 20021 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 20022 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 20023 (uint_t)sizeof (ntme))); 20024 } 20025 return (0); 20026 } 20027 20028 /* 20029 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 20030 */ 20031 /* ARGSUSED */ 20032 int 20033 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 20034 { 20035 switch (level) { 20036 case MIB2_IP: 20037 case MIB2_ICMP: 20038 switch (name) { 20039 default: 20040 break; 20041 } 20042 return (1); 20043 default: 20044 return (1); 20045 } 20046 } 20047 20048 /* 20049 * When there exists both a 64- and 32-bit counter of a particular type 20050 * (i.e., InReceives), only the 64-bit counters are added. 20051 */ 20052 void 20053 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 20054 { 20055 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 20056 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 20057 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 20058 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 20059 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 20060 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 20061 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 20062 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 20063 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 20064 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 20065 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 20066 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 20067 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 20068 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 20069 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 20070 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 20071 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 20072 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 20073 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 20074 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 20075 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 20076 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 20077 o2->ipIfStatsInWrongIPVersion); 20078 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 20079 o2->ipIfStatsInWrongIPVersion); 20080 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 20081 o2->ipIfStatsOutSwitchIPVersion); 20082 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 20083 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 20084 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 20085 o2->ipIfStatsHCInForwDatagrams); 20086 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 20087 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 20088 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 20089 o2->ipIfStatsHCOutForwDatagrams); 20090 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 20091 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 20092 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 20093 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 20094 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 20095 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 20096 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 20097 o2->ipIfStatsHCOutMcastOctets); 20098 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 20099 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 20100 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 20101 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 20102 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 20103 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 20104 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 20105 } 20106 20107 void 20108 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 20109 { 20110 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 20111 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 20112 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 20113 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 20114 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 20115 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 20116 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 20117 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 20118 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 20119 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 20120 o2->ipv6IfIcmpInRouterSolicits); 20121 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 20122 o2->ipv6IfIcmpInRouterAdvertisements); 20123 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 20124 o2->ipv6IfIcmpInNeighborSolicits); 20125 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 20126 o2->ipv6IfIcmpInNeighborAdvertisements); 20127 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 20128 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 20129 o2->ipv6IfIcmpInGroupMembQueries); 20130 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 20131 o2->ipv6IfIcmpInGroupMembResponses); 20132 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 20133 o2->ipv6IfIcmpInGroupMembReductions); 20134 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 20135 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 20136 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 20137 o2->ipv6IfIcmpOutDestUnreachs); 20138 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 20139 o2->ipv6IfIcmpOutAdminProhibs); 20140 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 20141 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 20142 o2->ipv6IfIcmpOutParmProblems); 20143 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 20144 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 20145 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 20146 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 20147 o2->ipv6IfIcmpOutRouterSolicits); 20148 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 20149 o2->ipv6IfIcmpOutRouterAdvertisements); 20150 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 20151 o2->ipv6IfIcmpOutNeighborSolicits); 20152 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 20153 o2->ipv6IfIcmpOutNeighborAdvertisements); 20154 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 20155 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 20156 o2->ipv6IfIcmpOutGroupMembQueries); 20157 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 20158 o2->ipv6IfIcmpOutGroupMembResponses); 20159 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 20160 o2->ipv6IfIcmpOutGroupMembReductions); 20161 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 20162 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 20163 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 20164 o2->ipv6IfIcmpInBadNeighborAdvertisements); 20165 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 20166 o2->ipv6IfIcmpInBadNeighborSolicitations); 20167 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 20168 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 20169 o2->ipv6IfIcmpInGroupMembTotal); 20170 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 20171 o2->ipv6IfIcmpInGroupMembBadQueries); 20172 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 20173 o2->ipv6IfIcmpInGroupMembBadReports); 20174 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 20175 o2->ipv6IfIcmpInGroupMembOurReports); 20176 } 20177 20178 /* 20179 * Called before the options are updated to check if this packet will 20180 * be source routed from here. 20181 * This routine assumes that the options are well formed i.e. that they 20182 * have already been checked. 20183 */ 20184 static boolean_t 20185 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 20186 { 20187 ipoptp_t opts; 20188 uchar_t *opt; 20189 uint8_t optval; 20190 uint8_t optlen; 20191 ipaddr_t dst; 20192 ire_t *ire; 20193 20194 if (IS_SIMPLE_IPH(ipha)) { 20195 ip2dbg(("not source routed\n")); 20196 return (B_FALSE); 20197 } 20198 dst = ipha->ipha_dst; 20199 for (optval = ipoptp_first(&opts, ipha); 20200 optval != IPOPT_EOL; 20201 optval = ipoptp_next(&opts)) { 20202 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 20203 opt = opts.ipoptp_cur; 20204 optlen = opts.ipoptp_len; 20205 ip2dbg(("ip_source_routed: opt %d, len %d\n", 20206 optval, optlen)); 20207 switch (optval) { 20208 uint32_t off; 20209 case IPOPT_SSRR: 20210 case IPOPT_LSRR: 20211 /* 20212 * If dst is one of our addresses and there are some 20213 * entries left in the source route return (true). 20214 */ 20215 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 20216 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 20217 if (ire == NULL) { 20218 ip2dbg(("ip_source_routed: not next" 20219 " source route 0x%x\n", 20220 ntohl(dst))); 20221 return (B_FALSE); 20222 } 20223 ire_refrele(ire); 20224 off = opt[IPOPT_OFFSET]; 20225 off--; 20226 if (optlen < IP_ADDR_LEN || 20227 off > optlen - IP_ADDR_LEN) { 20228 /* End of source route */ 20229 ip1dbg(("ip_source_routed: end of SR\n")); 20230 return (B_FALSE); 20231 } 20232 return (B_TRUE); 20233 } 20234 } 20235 ip2dbg(("not source routed\n")); 20236 return (B_FALSE); 20237 } 20238 20239 /* 20240 * Check if the packet contains any source route. 20241 */ 20242 static boolean_t 20243 ip_source_route_included(ipha_t *ipha) 20244 { 20245 ipoptp_t opts; 20246 uint8_t optval; 20247 20248 if (IS_SIMPLE_IPH(ipha)) 20249 return (B_FALSE); 20250 for (optval = ipoptp_first(&opts, ipha); 20251 optval != IPOPT_EOL; 20252 optval = ipoptp_next(&opts)) { 20253 switch (optval) { 20254 case IPOPT_SSRR: 20255 case IPOPT_LSRR: 20256 return (B_TRUE); 20257 } 20258 } 20259 return (B_FALSE); 20260 } 20261 20262 /* 20263 * Called when the IRE expiration timer fires. 20264 */ 20265 void 20266 ip_trash_timer_expire(void *args) 20267 { 20268 int flush_flag = 0; 20269 ire_expire_arg_t iea; 20270 ip_stack_t *ipst = (ip_stack_t *)args; 20271 20272 iea.iea_ipst = ipst; /* No netstack_hold */ 20273 20274 /* 20275 * ip_ire_expire_id is protected by ip_trash_timer_lock. 20276 * This lock makes sure that a new invocation of this function 20277 * that occurs due to an almost immediate timer firing will not 20278 * progress beyond this point until the current invocation is done 20279 */ 20280 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20281 ipst->ips_ip_ire_expire_id = 0; 20282 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20283 20284 /* Periodic timer */ 20285 if (ipst->ips_ip_ire_arp_time_elapsed >= 20286 ipst->ips_ip_ire_arp_interval) { 20287 /* 20288 * Remove all IRE_CACHE entries since they might 20289 * contain arp information. 20290 */ 20291 flush_flag |= FLUSH_ARP_TIME; 20292 ipst->ips_ip_ire_arp_time_elapsed = 0; 20293 IP_STAT(ipst, ip_ire_arp_timer_expired); 20294 } 20295 if (ipst->ips_ip_ire_rd_time_elapsed >= 20296 ipst->ips_ip_ire_redir_interval) { 20297 /* Remove all redirects */ 20298 flush_flag |= FLUSH_REDIRECT_TIME; 20299 ipst->ips_ip_ire_rd_time_elapsed = 0; 20300 IP_STAT(ipst, ip_ire_redirect_timer_expired); 20301 } 20302 if (ipst->ips_ip_ire_pmtu_time_elapsed >= 20303 ipst->ips_ip_ire_pathmtu_interval) { 20304 /* Increase path mtu */ 20305 flush_flag |= FLUSH_MTU_TIME; 20306 ipst->ips_ip_ire_pmtu_time_elapsed = 0; 20307 IP_STAT(ipst, ip_ire_pmtu_timer_expired); 20308 } 20309 20310 /* 20311 * Optimize for the case when there are no redirects in the 20312 * ftable, that is, no need to walk the ftable in that case. 20313 */ 20314 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 20315 iea.iea_flush_flag = flush_flag; 20316 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 20317 (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL, 20318 ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table, 20319 NULL, ALL_ZONES, ipst); 20320 } 20321 if ((flush_flag & FLUSH_REDIRECT_TIME) && 20322 ipst->ips_ip_redirect_cnt > 0) { 20323 iea.iea_flush_flag = flush_flag; 20324 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 20325 ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 20326 0, NULL, 0, NULL, NULL, ALL_ZONES, ipst); 20327 } 20328 if (flush_flag & FLUSH_MTU_TIME) { 20329 /* 20330 * Walk all IPv6 IRE's and update them 20331 * Note that ARP and redirect timers are not 20332 * needed since NUD handles stale entries. 20333 */ 20334 flush_flag = FLUSH_MTU_TIME; 20335 iea.iea_flush_flag = flush_flag; 20336 ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea, 20337 ALL_ZONES, ipst); 20338 } 20339 20340 ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval; 20341 ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval; 20342 ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval; 20343 20344 /* 20345 * Hold the lock to serialize timeout calls and prevent 20346 * stale values in ip_ire_expire_id. Otherwise it is possible 20347 * for the timer to fire and a new invocation of this function 20348 * to start before the return value of timeout has been stored 20349 * in ip_ire_expire_id by the current invocation. 20350 */ 20351 mutex_enter(&ipst->ips_ip_trash_timer_lock); 20352 ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire, 20353 (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 20354 mutex_exit(&ipst->ips_ip_trash_timer_lock); 20355 } 20356 20357 /* 20358 * Called by the memory allocator subsystem directly, when the system 20359 * is running low on memory. 20360 */ 20361 /* ARGSUSED */ 20362 void 20363 ip_trash_ire_reclaim(void *args) 20364 { 20365 netstack_handle_t nh; 20366 netstack_t *ns; 20367 20368 netstack_next_init(&nh); 20369 while ((ns = netstack_next(&nh)) != NULL) { 20370 ip_trash_ire_reclaim_stack(ns->netstack_ip); 20371 netstack_rele(ns); 20372 } 20373 netstack_next_fini(&nh); 20374 } 20375 20376 static void 20377 ip_trash_ire_reclaim_stack(ip_stack_t *ipst) 20378 { 20379 ire_cache_count_t icc; 20380 ire_cache_reclaim_t icr; 20381 ncc_cache_count_t ncc; 20382 nce_cache_reclaim_t ncr; 20383 uint_t delete_cnt; 20384 /* 20385 * Memory reclaim call back. 20386 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 20387 * Then, with a target of freeing 1/Nth of IRE_CACHE 20388 * entries, determine what fraction to free for 20389 * each category of IRE_CACHE entries giving absolute priority 20390 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 20391 * entry will be freed unless all offlink entries are freed). 20392 */ 20393 icc.icc_total = 0; 20394 icc.icc_unused = 0; 20395 icc.icc_offlink = 0; 20396 icc.icc_pmtu = 0; 20397 icc.icc_onlink = 0; 20398 ire_walk(ire_cache_count, (char *)&icc, ipst); 20399 20400 /* 20401 * Free NCEs for IPv6 like the onlink ires. 20402 */ 20403 ncc.ncc_total = 0; 20404 ncc.ncc_host = 0; 20405 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst); 20406 20407 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 20408 icc.icc_pmtu + icc.icc_onlink); 20409 delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction; 20410 IP_STAT(ipst, ip_trash_ire_reclaim_calls); 20411 if (delete_cnt == 0) 20412 return; 20413 IP_STAT(ipst, ip_trash_ire_reclaim_success); 20414 /* Always delete all unused offlink entries */ 20415 icr.icr_ipst = ipst; 20416 icr.icr_unused = 1; 20417 if (delete_cnt <= icc.icc_unused) { 20418 /* 20419 * Only need to free unused entries. In other words, 20420 * there are enough unused entries to free to meet our 20421 * target number of freed ire cache entries. 20422 */ 20423 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 20424 ncr.ncr_host = 0; 20425 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 20426 /* 20427 * Only need to free unused entries, plus a fraction of offlink 20428 * entries. It follows from the first if statement that 20429 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 20430 */ 20431 delete_cnt -= icc.icc_unused; 20432 /* Round up # deleted by truncating fraction */ 20433 icr.icr_offlink = icc.icc_offlink / delete_cnt; 20434 icr.icr_pmtu = icr.icr_onlink = 0; 20435 ncr.ncr_host = 0; 20436 } else if (delete_cnt <= 20437 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 20438 /* 20439 * Free all unused and offlink entries, plus a fraction of 20440 * pmtu entries. It follows from the previous if statement 20441 * that icc_pmtu is non-zero, and that 20442 * delete_cnt != icc_unused + icc_offlink. 20443 */ 20444 icr.icr_offlink = 1; 20445 delete_cnt -= icc.icc_unused + icc.icc_offlink; 20446 /* Round up # deleted by truncating fraction */ 20447 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 20448 icr.icr_onlink = 0; 20449 ncr.ncr_host = 0; 20450 } else { 20451 /* 20452 * Free all unused, offlink, and pmtu entries, plus a fraction 20453 * of onlink entries. If we're here, then we know that 20454 * icc_onlink is non-zero, and that 20455 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 20456 */ 20457 icr.icr_offlink = icr.icr_pmtu = 1; 20458 delete_cnt -= icc.icc_unused + icc.icc_offlink + 20459 icc.icc_pmtu; 20460 /* Round up # deleted by truncating fraction */ 20461 icr.icr_onlink = icc.icc_onlink / delete_cnt; 20462 /* Using the same delete fraction as for onlink IREs */ 20463 ncr.ncr_host = ncc.ncc_host / delete_cnt; 20464 } 20465 #ifdef DEBUG 20466 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 20467 "fractions %d/%d/%d/%d\n", 20468 icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total, 20469 icc.icc_unused, icc.icc_offlink, 20470 icc.icc_pmtu, icc.icc_onlink, 20471 icr.icr_unused, icr.icr_offlink, 20472 icr.icr_pmtu, icr.icr_onlink)); 20473 #endif 20474 ire_walk(ire_cache_reclaim, (char *)&icr, ipst); 20475 if (ncr.ncr_host != 0) 20476 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 20477 (uchar_t *)&ncr, ipst); 20478 #ifdef DEBUG 20479 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 20480 icc.icc_pmtu = 0; icc.icc_onlink = 0; 20481 ire_walk(ire_cache_count, (char *)&icc, ipst); 20482 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 20483 icc.icc_total, icc.icc_unused, icc.icc_offlink, 20484 icc.icc_pmtu, icc.icc_onlink)); 20485 #endif 20486 } 20487 20488 /* 20489 * ip_unbind is called when a copy of an unbind request is received from the 20490 * upper level protocol. We remove this conn from any fanout hash list it is 20491 * on, and zero out the bind information. No reply is expected up above. 20492 */ 20493 void 20494 ip_unbind(conn_t *connp) 20495 { 20496 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 20497 20498 if (is_system_labeled() && connp->conn_anon_port) { 20499 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 20500 connp->conn_mlp_type, connp->conn_ulp, 20501 ntohs(connp->conn_lport), B_FALSE); 20502 connp->conn_anon_port = 0; 20503 } 20504 connp->conn_mlp_type = mlptSingle; 20505 20506 ipcl_hash_remove(connp); 20507 20508 } 20509 20510 /* 20511 * Write side put procedure. Outbound data, IOCTLs, responses from 20512 * resolvers, etc, come down through here. 20513 * 20514 * arg2 is always a queue_t *. 20515 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 20516 * the zoneid. 20517 * When that queue is not an ill_t, then arg must be a conn_t pointer. 20518 */ 20519 void 20520 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 20521 { 20522 ip_output_options(arg, mp, arg2, caller, &zero_info); 20523 } 20524 20525 void 20526 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller, 20527 ip_opt_info_t *infop) 20528 { 20529 conn_t *connp = NULL; 20530 queue_t *q = (queue_t *)arg2; 20531 ipha_t *ipha; 20532 #define rptr ((uchar_t *)ipha) 20533 ire_t *ire = NULL; 20534 ire_t *sctp_ire = NULL; 20535 uint32_t v_hlen_tos_len; 20536 ipaddr_t dst; 20537 mblk_t *first_mp = NULL; 20538 boolean_t mctl_present; 20539 ipsec_out_t *io; 20540 int match_flags; 20541 ill_t *xmit_ill = NULL; /* IP_PKTINFO etc. */ 20542 ipif_t *dst_ipif; 20543 boolean_t multirt_need_resolve = B_FALSE; 20544 mblk_t *copy_mp = NULL; 20545 int err = 0; 20546 zoneid_t zoneid; 20547 boolean_t need_decref = B_FALSE; 20548 boolean_t ignore_dontroute = B_FALSE; 20549 boolean_t ignore_nexthop = B_FALSE; 20550 boolean_t ip_nexthop = B_FALSE; 20551 ipaddr_t nexthop_addr; 20552 ip_stack_t *ipst; 20553 20554 #ifdef _BIG_ENDIAN 20555 #define V_HLEN (v_hlen_tos_len >> 24) 20556 #else 20557 #define V_HLEN (v_hlen_tos_len & 0xFF) 20558 #endif 20559 20560 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 20561 "ip_wput_start: q %p", q); 20562 20563 /* 20564 * ip_wput fast path 20565 */ 20566 20567 /* is packet from ARP ? */ 20568 if (q->q_next != NULL) { 20569 zoneid = (zoneid_t)(uintptr_t)arg; 20570 goto qnext; 20571 } 20572 20573 connp = (conn_t *)arg; 20574 ASSERT(connp != NULL); 20575 zoneid = connp->conn_zoneid; 20576 ipst = connp->conn_netstack->netstack_ip; 20577 ASSERT(ipst != NULL); 20578 20579 /* is queue flow controlled? */ 20580 if ((q->q_first != NULL || connp->conn_draining) && 20581 (caller == IP_WPUT)) { 20582 ASSERT(!need_decref); 20583 ASSERT(!IP_FLOW_CONTROLLED_ULP(connp->conn_ulp)); 20584 (void) putq(q, mp); 20585 return; 20586 } 20587 20588 /* Multidata transmit? */ 20589 if (DB_TYPE(mp) == M_MULTIDATA) { 20590 /* 20591 * We should never get here, since all Multidata messages 20592 * originating from tcp should have been directed over to 20593 * tcp_multisend() in the first place. 20594 */ 20595 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20596 freemsg(mp); 20597 return; 20598 } else if (DB_TYPE(mp) != M_DATA) 20599 goto notdata; 20600 20601 if (mp->b_flag & MSGHASREF) { 20602 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20603 mp->b_flag &= ~MSGHASREF; 20604 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 20605 need_decref = B_TRUE; 20606 } 20607 ipha = (ipha_t *)mp->b_rptr; 20608 20609 /* is IP header non-aligned or mblk smaller than basic IP header */ 20610 #ifndef SAFETY_BEFORE_SPEED 20611 if (!OK_32PTR(rptr) || 20612 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 20613 goto hdrtoosmall; 20614 #endif 20615 20616 ASSERT(OK_32PTR(ipha)); 20617 20618 /* 20619 * This function assumes that mp points to an IPv4 packet. If it's the 20620 * wrong version, we'll catch it again in ip_output_v6. 20621 * 20622 * Note that this is *only* locally-generated output here, and never 20623 * forwarded data, and that we need to deal only with transports that 20624 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 20625 * label.) 20626 */ 20627 if (is_system_labeled() && 20628 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 20629 !connp->conn_ulp_labeled) { 20630 cred_t *credp; 20631 pid_t pid; 20632 20633 credp = BEST_CRED(mp, connp, &pid); 20634 err = tsol_check_label(credp, &mp, 20635 connp->conn_mac_exempt, ipst, pid); 20636 ipha = (ipha_t *)mp->b_rptr; 20637 if (err != 0) { 20638 first_mp = mp; 20639 if (err == EINVAL) 20640 goto icmp_parameter_problem; 20641 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 20642 goto discard_pkt; 20643 } 20644 } 20645 20646 ASSERT(infop != NULL); 20647 20648 if (infop->ip_opt_flags & IP_VERIFY_SRC) { 20649 /* 20650 * IP_PKTINFO ancillary option is present. 20651 * IPCL_ZONEID is used to honor IP_ALLZONES option which 20652 * allows using address of any zone as the source address. 20653 */ 20654 ire = ire_ctable_lookup(ipha->ipha_src, 0, 20655 (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp), 20656 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 20657 if (ire == NULL) 20658 goto drop_pkt; 20659 ire_refrele(ire); 20660 ire = NULL; 20661 } 20662 20663 /* 20664 * IP_BOUND_IF has precedence over the ill index passed in IP_PKTINFO. 20665 */ 20666 if (infop->ip_opt_ill_index != 0 && connp->conn_outgoing_ill == NULL) { 20667 xmit_ill = ill_lookup_on_ifindex(infop->ip_opt_ill_index, 20668 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20669 20670 if (xmit_ill == NULL || IS_VNI(xmit_ill)) 20671 goto drop_pkt; 20672 /* 20673 * check that there is an ipif belonging 20674 * to our zone. IPCL_ZONEID is not used because 20675 * IP_ALLZONES option is valid only when the ill is 20676 * accessible from all zones i.e has a valid ipif in 20677 * all zones. 20678 */ 20679 if (!ipif_lookup_zoneid(xmit_ill, zoneid, 0, NULL)) { 20680 goto drop_pkt; 20681 } 20682 } 20683 20684 /* 20685 * If there is a policy, try to attach an ipsec_out in 20686 * the front. At the end, first_mp either points to a 20687 * M_DATA message or IPSEC_OUT message linked to a 20688 * M_DATA message. We have to do it now as we might 20689 * lose the "conn" if we go through ip_newroute. 20690 */ 20691 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20692 if (((mp = ipsec_attach_ipsec_out(&mp, connp, NULL, 20693 ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) { 20694 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 20695 if (need_decref) 20696 CONN_DEC_REF(connp); 20697 return; 20698 } else { 20699 ASSERT(mp->b_datap->db_type == M_CTL); 20700 first_mp = mp; 20701 mp = mp->b_cont; 20702 mctl_present = B_TRUE; 20703 } 20704 } else { 20705 first_mp = mp; 20706 mctl_present = B_FALSE; 20707 } 20708 20709 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20710 20711 /* is wrong version or IP options present */ 20712 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20713 goto version_hdrlen_check; 20714 dst = ipha->ipha_dst; 20715 20716 /* If IP_BOUND_IF has been set, use that ill. */ 20717 if (connp->conn_outgoing_ill != NULL) { 20718 xmit_ill = conn_get_held_ill(connp, 20719 &connp->conn_outgoing_ill, &err); 20720 if (err == ILL_LOOKUP_FAILED) 20721 goto drop_pkt; 20722 20723 goto send_from_ill; 20724 } 20725 20726 /* is packet multicast? */ 20727 if (CLASSD(dst)) 20728 goto multicast; 20729 20730 /* 20731 * If xmit_ill is set above due to index passed in ip_pkt_info. It 20732 * takes precedence over conn_dontroute and conn_nexthop_set 20733 */ 20734 if (xmit_ill != NULL) 20735 goto send_from_ill; 20736 20737 if (connp->conn_dontroute || connp->conn_nexthop_set) { 20738 /* 20739 * If the destination is a broadcast, local, or loopback 20740 * address, SO_DONTROUTE and IP_NEXTHOP go through the 20741 * standard path. 20742 */ 20743 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20744 if ((ire == NULL) || (ire->ire_type & 20745 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK)) == 0) { 20746 if (ire != NULL) { 20747 ire_refrele(ire); 20748 /* No more access to ire */ 20749 ire = NULL; 20750 } 20751 /* 20752 * bypass routing checks and go directly to interface. 20753 */ 20754 if (connp->conn_dontroute) 20755 goto dontroute; 20756 20757 ASSERT(connp->conn_nexthop_set); 20758 ip_nexthop = B_TRUE; 20759 nexthop_addr = connp->conn_nexthop_v4; 20760 goto send_from_ill; 20761 } 20762 20763 /* Must be a broadcast, a loopback or a local ire */ 20764 ire_refrele(ire); 20765 /* No more access to ire */ 20766 ire = NULL; 20767 } 20768 20769 /* 20770 * We cache IRE_CACHEs to avoid lookups. We don't do 20771 * this for the tcp global queue and listen end point 20772 * as it does not really have a real destination to 20773 * talk to. This is also true for SCTP. 20774 */ 20775 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20776 !connp->conn_fully_bound) { 20777 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20778 if (ire == NULL) 20779 goto noirefound; 20780 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20781 "ip_wput_end: q %p (%S)", q, "end"); 20782 20783 /* 20784 * Check if the ire has the RTF_MULTIRT flag, inherited 20785 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20786 */ 20787 if (ire->ire_flags & RTF_MULTIRT) { 20788 20789 /* 20790 * Force the TTL of multirouted packets if required. 20791 * The TTL of such packets is bounded by the 20792 * ip_multirt_ttl ndd variable. 20793 */ 20794 if ((ipst->ips_ip_multirt_ttl > 0) && 20795 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20796 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20797 "(was %d), dst 0x%08x\n", 20798 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20799 ntohl(ire->ire_addr))); 20800 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20801 } 20802 /* 20803 * We look at this point if there are pending 20804 * unresolved routes. ire_multirt_resolvable() 20805 * checks in O(n) that all IRE_OFFSUBNET ire 20806 * entries for the packet's destination and 20807 * flagged RTF_MULTIRT are currently resolved. 20808 * If some remain unresolved, we make a copy 20809 * of the current message. It will be used 20810 * to initiate additional route resolutions. 20811 */ 20812 multirt_need_resolve = 20813 ire_multirt_need_resolve(ire->ire_addr, 20814 msg_getlabel(first_mp), ipst); 20815 ip2dbg(("ip_wput[TCP]: ire %p, " 20816 "multirt_need_resolve %d, first_mp %p\n", 20817 (void *)ire, multirt_need_resolve, 20818 (void *)first_mp)); 20819 if (multirt_need_resolve) { 20820 copy_mp = copymsg(first_mp); 20821 if (copy_mp != NULL) { 20822 MULTIRT_DEBUG_TAG(copy_mp); 20823 } 20824 } 20825 } 20826 20827 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20828 20829 /* 20830 * Try to resolve another multiroute if 20831 * ire_multirt_need_resolve() deemed it necessary. 20832 */ 20833 if (copy_mp != NULL) 20834 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20835 if (need_decref) 20836 CONN_DEC_REF(connp); 20837 return; 20838 } 20839 20840 /* 20841 * Access to conn_ire_cache. (protected by conn_lock) 20842 * 20843 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20844 * the ire bucket lock here to check for CONDEMNED as it is okay to 20845 * send a packet or two with the IRE_CACHE that is going away. 20846 * Access to the ire requires an ire refhold on the ire prior to 20847 * its use since an interface unplumb thread may delete the cached 20848 * ire and release the refhold at any time. 20849 * 20850 * Caching an ire in the conn_ire_cache 20851 * 20852 * o Caching an ire pointer in the conn requires a strict check for 20853 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20854 * ires before cleaning up the conns. So the caching of an ire pointer 20855 * in the conn is done after making sure under the bucket lock that the 20856 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20857 * caching an ire after the unplumb thread has cleaned up the conn. 20858 * If the conn does not send a packet subsequently the unplumb thread 20859 * will be hanging waiting for the ire count to drop to zero. 20860 * 20861 * o We also need to atomically test for a null conn_ire_cache and 20862 * set the conn_ire_cache under the the protection of the conn_lock 20863 * to avoid races among concurrent threads trying to simultaneously 20864 * cache an ire in the conn_ire_cache. 20865 */ 20866 mutex_enter(&connp->conn_lock); 20867 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20868 20869 if (ire != NULL && ire->ire_addr == dst && 20870 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20871 20872 IRE_REFHOLD(ire); 20873 mutex_exit(&connp->conn_lock); 20874 20875 } else { 20876 boolean_t cached = B_FALSE; 20877 connp->conn_ire_cache = NULL; 20878 mutex_exit(&connp->conn_lock); 20879 /* Release the old ire */ 20880 if (ire != NULL && sctp_ire == NULL) 20881 IRE_REFRELE_NOTR(ire); 20882 20883 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 20884 if (ire == NULL) 20885 goto noirefound; 20886 IRE_REFHOLD_NOTR(ire); 20887 20888 mutex_enter(&connp->conn_lock); 20889 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 20890 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20891 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20892 if (connp->conn_ulp == IPPROTO_TCP) 20893 TCP_CHECK_IREINFO(connp->conn_tcp, ire); 20894 connp->conn_ire_cache = ire; 20895 cached = B_TRUE; 20896 } 20897 rw_exit(&ire->ire_bucket->irb_lock); 20898 } 20899 mutex_exit(&connp->conn_lock); 20900 20901 /* 20902 * We can continue to use the ire but since it was 20903 * not cached, we should drop the extra reference. 20904 */ 20905 if (!cached) 20906 IRE_REFRELE_NOTR(ire); 20907 } 20908 20909 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20910 "ip_wput_end: q %p (%S)", q, "end"); 20911 20912 /* 20913 * Check if the ire has the RTF_MULTIRT flag, inherited 20914 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20915 */ 20916 if (ire->ire_flags & RTF_MULTIRT) { 20917 /* 20918 * Force the TTL of multirouted packets if required. 20919 * The TTL of such packets is bounded by the 20920 * ip_multirt_ttl ndd variable. 20921 */ 20922 if ((ipst->ips_ip_multirt_ttl > 0) && 20923 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 20924 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20925 "(was %d), dst 0x%08x\n", 20926 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 20927 ntohl(ire->ire_addr))); 20928 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 20929 } 20930 20931 /* 20932 * At this point, we check to see if there are any pending 20933 * unresolved routes. ire_multirt_resolvable() 20934 * checks in O(n) that all IRE_OFFSUBNET ire 20935 * entries for the packet's destination and 20936 * flagged RTF_MULTIRT are currently resolved. 20937 * If some remain unresolved, we make a copy 20938 * of the current message. It will be used 20939 * to initiate additional route resolutions. 20940 */ 20941 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20942 msg_getlabel(first_mp), ipst); 20943 ip2dbg(("ip_wput[not TCP]: ire %p, " 20944 "multirt_need_resolve %d, first_mp %p\n", 20945 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20946 if (multirt_need_resolve) { 20947 copy_mp = copymsg(first_mp); 20948 if (copy_mp != NULL) { 20949 MULTIRT_DEBUG_TAG(copy_mp); 20950 } 20951 } 20952 } 20953 20954 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20955 20956 /* 20957 * Try to resolve another multiroute if 20958 * ire_multirt_resolvable() deemed it necessary 20959 */ 20960 if (copy_mp != NULL) 20961 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 20962 if (need_decref) 20963 CONN_DEC_REF(connp); 20964 return; 20965 20966 qnext: 20967 /* 20968 * Upper Level Protocols pass down complete IP datagrams 20969 * as M_DATA messages. Everything else is a sideshow. 20970 * 20971 * 1) We could be re-entering ip_wput because of ip_neworute 20972 * in which case we could have a IPSEC_OUT message. We 20973 * need to pass through ip_wput like other datagrams and 20974 * hence cannot branch to ip_wput_nondata. 20975 * 20976 * 2) ARP, AH, ESP, and other clients who are on the module 20977 * instance of IP stream, give us something to deal with. 20978 * We will handle AH and ESP here and rest in ip_wput_nondata. 20979 * 20980 * 3) ICMP replies also could come here. 20981 */ 20982 ipst = ILLQ_TO_IPST(q); 20983 20984 if (DB_TYPE(mp) != M_DATA) { 20985 notdata: 20986 if (DB_TYPE(mp) == M_CTL) { 20987 /* 20988 * M_CTL messages are used by ARP, AH and ESP to 20989 * communicate with IP. We deal with IPSEC_IN and 20990 * IPSEC_OUT here. ip_wput_nondata handles other 20991 * cases. 20992 */ 20993 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20994 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20995 first_mp = mp->b_cont; 20996 first_mp->b_flag &= ~MSGHASREF; 20997 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20998 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20999 CONN_DEC_REF(connp); 21000 connp = NULL; 21001 } 21002 if (ii->ipsec_info_type == IPSEC_IN) { 21003 /* 21004 * Either this message goes back to 21005 * IPsec for further processing or to 21006 * ULP after policy checks. 21007 */ 21008 ip_fanout_proto_again(mp, NULL, NULL, NULL); 21009 return; 21010 } else if (ii->ipsec_info_type == IPSEC_OUT) { 21011 io = (ipsec_out_t *)ii; 21012 if (io->ipsec_out_proc_begin) { 21013 /* 21014 * IPsec processing has already started. 21015 * Complete it. 21016 * IPQoS notes: We don't care what is 21017 * in ipsec_out_ill_index since this 21018 * won't be processed for IPQoS policies 21019 * in ipsec_out_process. 21020 */ 21021 ipsec_out_process(q, mp, NULL, 21022 io->ipsec_out_ill_index); 21023 return; 21024 } else { 21025 connp = (q->q_next != NULL) ? 21026 NULL : Q_TO_CONN(q); 21027 first_mp = mp; 21028 mp = mp->b_cont; 21029 mctl_present = B_TRUE; 21030 } 21031 zoneid = io->ipsec_out_zoneid; 21032 ASSERT(zoneid != ALL_ZONES); 21033 } else if (ii->ipsec_info_type == IPSEC_CTL) { 21034 /* 21035 * It's an IPsec control message requesting 21036 * an SADB update to be sent to the IPsec 21037 * hardware acceleration capable ills. 21038 */ 21039 ipsec_ctl_t *ipsec_ctl = 21040 (ipsec_ctl_t *)mp->b_rptr; 21041 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 21042 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 21043 mblk_t *cmp = mp->b_cont; 21044 21045 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 21046 ASSERT(cmp != NULL); 21047 21048 freeb(mp); 21049 ill_ipsec_capab_send_all(satype, cmp, sa, 21050 ipst->ips_netstack); 21051 return; 21052 } else { 21053 /* 21054 * This must be ARP or special TSOL signaling. 21055 */ 21056 ip_wput_nondata(NULL, q, mp, NULL); 21057 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21058 "ip_wput_end: q %p (%S)", q, "nondata"); 21059 return; 21060 } 21061 } else { 21062 /* 21063 * This must be non-(ARP/AH/ESP) messages. 21064 */ 21065 ASSERT(!need_decref); 21066 ip_wput_nondata(NULL, q, mp, NULL); 21067 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21068 "ip_wput_end: q %p (%S)", q, "nondata"); 21069 return; 21070 } 21071 } else { 21072 first_mp = mp; 21073 mctl_present = B_FALSE; 21074 } 21075 21076 ASSERT(first_mp != NULL); 21077 21078 if (mctl_present) { 21079 io = (ipsec_out_t *)first_mp->b_rptr; 21080 if (io->ipsec_out_ip_nexthop) { 21081 /* 21082 * We may have lost the conn context if we are 21083 * coming here from ip_newroute(). Copy the 21084 * nexthop information. 21085 */ 21086 ip_nexthop = B_TRUE; 21087 nexthop_addr = io->ipsec_out_nexthop_addr; 21088 21089 ipha = (ipha_t *)mp->b_rptr; 21090 dst = ipha->ipha_dst; 21091 goto send_from_ill; 21092 } 21093 } 21094 21095 ASSERT(xmit_ill == NULL); 21096 21097 /* We have a complete IP datagram heading outbound. */ 21098 ipha = (ipha_t *)mp->b_rptr; 21099 21100 #ifndef SPEED_BEFORE_SAFETY 21101 /* 21102 * Make sure we have a full-word aligned message and that at least 21103 * a simple IP header is accessible in the first message. If not, 21104 * try a pullup. For labeled systems we need to always take this 21105 * path as M_CTLs are "notdata" but have trailing data to process. 21106 */ 21107 if (!OK_32PTR(rptr) || 21108 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH || is_system_labeled()) { 21109 hdrtoosmall: 21110 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 21111 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21112 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 21113 if (first_mp == NULL) 21114 first_mp = mp; 21115 goto discard_pkt; 21116 } 21117 21118 /* This function assumes that mp points to an IPv4 packet. */ 21119 if (is_system_labeled() && 21120 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 21121 (connp == NULL || !connp->conn_ulp_labeled)) { 21122 cred_t *credp; 21123 pid_t pid; 21124 21125 if (connp != NULL) { 21126 credp = BEST_CRED(mp, connp, &pid); 21127 err = tsol_check_label(credp, &mp, 21128 connp->conn_mac_exempt, ipst, pid); 21129 } else if ((credp = msg_getcred(mp, &pid)) != NULL) { 21130 err = tsol_check_label(credp, &mp, 21131 B_FALSE, ipst, pid); 21132 } 21133 ipha = (ipha_t *)mp->b_rptr; 21134 if (mctl_present) 21135 first_mp->b_cont = mp; 21136 else 21137 first_mp = mp; 21138 if (err != 0) { 21139 if (err == EINVAL) 21140 goto icmp_parameter_problem; 21141 ip2dbg(("ip_wput: label check failed (%d)\n", 21142 err)); 21143 goto discard_pkt; 21144 } 21145 } 21146 21147 ipha = (ipha_t *)mp->b_rptr; 21148 if (first_mp == NULL) { 21149 ASSERT(xmit_ill == NULL); 21150 /* 21151 * If we got here because of "goto hdrtoosmall" 21152 * We need to attach a IPSEC_OUT. 21153 */ 21154 if (connp->conn_out_enforce_policy) { 21155 if (((mp = ipsec_attach_ipsec_out(&mp, connp, 21156 NULL, ipha->ipha_protocol, 21157 ipst->ips_netstack)) == NULL)) { 21158 BUMP_MIB(&ipst->ips_ip_mib, 21159 ipIfStatsOutDiscards); 21160 if (need_decref) 21161 CONN_DEC_REF(connp); 21162 return; 21163 } else { 21164 ASSERT(mp->b_datap->db_type == M_CTL); 21165 first_mp = mp; 21166 mp = mp->b_cont; 21167 mctl_present = B_TRUE; 21168 } 21169 } else { 21170 first_mp = mp; 21171 mctl_present = B_FALSE; 21172 } 21173 } 21174 } 21175 #endif 21176 21177 /* Most of the code below is written for speed, not readability */ 21178 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21179 21180 /* 21181 * If ip_newroute() fails, we're going to need a full 21182 * header for the icmp wraparound. 21183 */ 21184 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 21185 uint_t v_hlen; 21186 version_hdrlen_check: 21187 ASSERT(first_mp != NULL); 21188 v_hlen = V_HLEN; 21189 /* 21190 * siphon off IPv6 packets coming down from transport 21191 * layer modules here. 21192 * Note: high-order bit carries NUD reachability confirmation 21193 */ 21194 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 21195 /* 21196 * FIXME: assume that callers of ip_output* call 21197 * the right version? 21198 */ 21199 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion); 21200 ASSERT(xmit_ill == NULL); 21201 if (need_decref) 21202 mp->b_flag |= MSGHASREF; 21203 (void) ip_output_v6(arg, first_mp, arg2, caller); 21204 return; 21205 } 21206 21207 if ((v_hlen >> 4) != IP_VERSION) { 21208 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21209 "ip_wput_end: q %p (%S)", q, "badvers"); 21210 goto discard_pkt; 21211 } 21212 /* 21213 * Is the header length at least 20 bytes? 21214 * 21215 * Are there enough bytes accessible in the header? If 21216 * not, try a pullup. 21217 */ 21218 v_hlen &= 0xF; 21219 v_hlen <<= 2; 21220 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 21221 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21222 "ip_wput_end: q %p (%S)", q, "badlen"); 21223 goto discard_pkt; 21224 } 21225 if (v_hlen > (mp->b_wptr - rptr)) { 21226 if (!pullupmsg(mp, v_hlen)) { 21227 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21228 "ip_wput_end: q %p (%S)", q, "badpullup2"); 21229 goto discard_pkt; 21230 } 21231 ipha = (ipha_t *)mp->b_rptr; 21232 } 21233 /* 21234 * Move first entry from any source route into ipha_dst and 21235 * verify the options 21236 */ 21237 if (ip_wput_options(q, first_mp, ipha, mctl_present, 21238 zoneid, ipst)) { 21239 ASSERT(xmit_ill == NULL); 21240 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21241 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21242 "ip_wput_end: q %p (%S)", q, "badopts"); 21243 if (need_decref) 21244 CONN_DEC_REF(connp); 21245 return; 21246 } 21247 } 21248 dst = ipha->ipha_dst; 21249 21250 /* 21251 * Try to get an IRE_CACHE for the destination address. If we can't, 21252 * we have to run the packet through ip_newroute which will take 21253 * the appropriate action to arrange for an IRE_CACHE, such as querying 21254 * a resolver, or assigning a default gateway, etc. 21255 */ 21256 if (CLASSD(dst)) { 21257 ipif_t *ipif; 21258 uint32_t setsrc = 0; 21259 21260 multicast: 21261 ASSERT(first_mp != NULL); 21262 ip2dbg(("ip_wput: CLASSD\n")); 21263 if (connp == NULL) { 21264 /* 21265 * Use the first good ipif on the ill. 21266 * XXX Should this ever happen? (Appears 21267 * to show up with just ppp and no ethernet due 21268 * to in.rdisc.) 21269 * However, ire_send should be able to 21270 * call ip_wput_ire directly. 21271 * 21272 * XXX Also, this can happen for ICMP and other packets 21273 * with multicast source addresses. Perhaps we should 21274 * fix things so that we drop the packet in question, 21275 * but for now, just run with it. 21276 */ 21277 ill_t *ill = (ill_t *)q->q_ptr; 21278 21279 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 21280 if (ipif == NULL) { 21281 if (need_decref) 21282 CONN_DEC_REF(connp); 21283 freemsg(first_mp); 21284 return; 21285 } 21286 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 21287 ntohl(dst), ill->ill_name)); 21288 } else { 21289 /* 21290 * The order of precedence is IP_BOUND_IF, IP_PKTINFO 21291 * and IP_MULTICAST_IF. The block comment above this 21292 * function explains the locking mechanism used here. 21293 */ 21294 if (xmit_ill == NULL) { 21295 xmit_ill = conn_get_held_ill(connp, 21296 &connp->conn_outgoing_ill, &err); 21297 if (err == ILL_LOOKUP_FAILED) { 21298 ip1dbg(("ip_wput: No ill for " 21299 "IP_BOUND_IF\n")); 21300 BUMP_MIB(&ipst->ips_ip_mib, 21301 ipIfStatsOutNoRoutes); 21302 goto drop_pkt; 21303 } 21304 } 21305 21306 if (xmit_ill == NULL) { 21307 ipif = conn_get_held_ipif(connp, 21308 &connp->conn_multicast_ipif, &err); 21309 if (err == IPIF_LOOKUP_FAILED) { 21310 ip1dbg(("ip_wput: No ipif for " 21311 "multicast\n")); 21312 BUMP_MIB(&ipst->ips_ip_mib, 21313 ipIfStatsOutNoRoutes); 21314 goto drop_pkt; 21315 } 21316 } 21317 if (xmit_ill != NULL) { 21318 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21319 if (ipif == NULL) { 21320 ip1dbg(("ip_wput: No ipif for " 21321 "xmit_ill\n")); 21322 BUMP_MIB(&ipst->ips_ip_mib, 21323 ipIfStatsOutNoRoutes); 21324 goto drop_pkt; 21325 } 21326 } else if (ipif == NULL || ipif->ipif_isv6) { 21327 /* 21328 * We must do this ipif determination here 21329 * else we could pass through ip_newroute 21330 * and come back here without the conn context. 21331 * 21332 * Note: we do late binding i.e. we bind to 21333 * the interface when the first packet is sent. 21334 * For performance reasons we do not rebind on 21335 * each packet but keep the binding until the 21336 * next IP_MULTICAST_IF option. 21337 * 21338 * conn_multicast_{ipif,ill} are shared between 21339 * IPv4 and IPv6 and AF_INET6 sockets can 21340 * send both IPv4 and IPv6 packets. Hence 21341 * we have to check that "isv6" matches above. 21342 */ 21343 if (ipif != NULL) 21344 ipif_refrele(ipif); 21345 ipif = ipif_lookup_group(dst, zoneid, ipst); 21346 if (ipif == NULL) { 21347 ip1dbg(("ip_wput: No ipif for " 21348 "multicast\n")); 21349 BUMP_MIB(&ipst->ips_ip_mib, 21350 ipIfStatsOutNoRoutes); 21351 goto drop_pkt; 21352 } 21353 err = conn_set_held_ipif(connp, 21354 &connp->conn_multicast_ipif, ipif); 21355 if (err == IPIF_LOOKUP_FAILED) { 21356 ipif_refrele(ipif); 21357 ip1dbg(("ip_wput: No ipif for " 21358 "multicast\n")); 21359 BUMP_MIB(&ipst->ips_ip_mib, 21360 ipIfStatsOutNoRoutes); 21361 goto drop_pkt; 21362 } 21363 } 21364 } 21365 ASSERT(!ipif->ipif_isv6); 21366 /* 21367 * As we may lose the conn by the time we reach ip_wput_ire, 21368 * we copy conn_multicast_loop and conn_dontroute on to an 21369 * ipsec_out. In case if this datagram goes out secure, 21370 * we need the ill_index also. Copy that also into the 21371 * ipsec_out. 21372 */ 21373 if (mctl_present) { 21374 io = (ipsec_out_t *)first_mp->b_rptr; 21375 ASSERT(first_mp->b_datap->db_type == M_CTL); 21376 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21377 } else { 21378 ASSERT(mp == first_mp); 21379 if ((first_mp = allocb(sizeof (ipsec_info_t), 21380 BPRI_HI)) == NULL) { 21381 ipif_refrele(ipif); 21382 first_mp = mp; 21383 goto discard_pkt; 21384 } 21385 first_mp->b_datap->db_type = M_CTL; 21386 first_mp->b_wptr += sizeof (ipsec_info_t); 21387 /* ipsec_out_secure is B_FALSE now */ 21388 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 21389 io = (ipsec_out_t *)first_mp->b_rptr; 21390 io->ipsec_out_type = IPSEC_OUT; 21391 io->ipsec_out_len = sizeof (ipsec_out_t); 21392 io->ipsec_out_use_global_policy = B_TRUE; 21393 io->ipsec_out_ns = ipst->ips_netstack; 21394 first_mp->b_cont = mp; 21395 mctl_present = B_TRUE; 21396 } 21397 21398 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21399 io->ipsec_out_ill_index = 21400 ipif->ipif_ill->ill_phyint->phyint_ifindex; 21401 21402 if (connp != NULL) { 21403 io->ipsec_out_multicast_loop = 21404 connp->conn_multicast_loop; 21405 io->ipsec_out_dontroute = connp->conn_dontroute; 21406 io->ipsec_out_zoneid = connp->conn_zoneid; 21407 } 21408 /* 21409 * If the application uses IP_MULTICAST_IF with 21410 * different logical addresses of the same ILL, we 21411 * need to make sure that the soruce address of 21412 * the packet matches the logical IP address used 21413 * in the option. We do it by initializing ipha_src 21414 * here. This should keep IPsec also happy as 21415 * when we return from IPsec processing, we don't 21416 * have to worry about getting the right address on 21417 * the packet. Thus it is sufficient to look for 21418 * IRE_CACHE using MATCH_IRE_ILL rathen than 21419 * MATCH_IRE_IPIF. 21420 * 21421 * NOTE : We need to do it for non-secure case also as 21422 * this might go out secure if there is a global policy 21423 * match in ip_wput_ire. 21424 * 21425 * As we do not have the ire yet, it is possible that 21426 * we set the source address here and then later discover 21427 * that the ire implies the source address to be assigned 21428 * through the RTF_SETSRC flag. 21429 * In that case, the setsrc variable will remind us 21430 * that overwritting the source address by the one 21431 * of the RTF_SETSRC-flagged ire is allowed. 21432 */ 21433 if (ipha->ipha_src == INADDR_ANY && 21434 (connp == NULL || !connp->conn_unspec_src)) { 21435 ipha->ipha_src = ipif->ipif_src_addr; 21436 setsrc = RTF_SETSRC; 21437 } 21438 /* 21439 * Find an IRE which matches the destination and the outgoing 21440 * queue (i.e. the outgoing interface.) 21441 * For loopback use a unicast IP address for 21442 * the ire lookup. 21443 */ 21444 if (IS_LOOPBACK(ipif->ipif_ill)) 21445 dst = ipif->ipif_lcl_addr; 21446 21447 /* 21448 * If xmit_ill is set, we branch out to ip_newroute_ipif. 21449 * We don't need to lookup ire in ctable as the packet 21450 * needs to be sent to the destination through the specified 21451 * ill irrespective of ires in the cache table. 21452 */ 21453 ire = NULL; 21454 if (xmit_ill == NULL) { 21455 ire = ire_ctable_lookup(dst, 0, 0, ipif, 21456 zoneid, msg_getlabel(mp), match_flags, ipst); 21457 } 21458 21459 if (ire == NULL) { 21460 /* 21461 * Multicast loopback and multicast forwarding is 21462 * done in ip_wput_ire. 21463 * 21464 * Mark this packet to make it be delivered to 21465 * ip_wput_ire after the new ire has been 21466 * created. 21467 * 21468 * The call to ip_newroute_ipif takes into account 21469 * the setsrc reminder. In any case, we take care 21470 * of the RTF_MULTIRT flag. 21471 */ 21472 mp->b_prev = mp->b_next = NULL; 21473 if (xmit_ill == NULL || 21474 xmit_ill->ill_ipif_up_count > 0) { 21475 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 21476 setsrc | RTF_MULTIRT, zoneid, infop); 21477 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21478 "ip_wput_end: q %p (%S)", q, "noire"); 21479 } else { 21480 freemsg(first_mp); 21481 } 21482 ipif_refrele(ipif); 21483 if (xmit_ill != NULL) 21484 ill_refrele(xmit_ill); 21485 if (need_decref) 21486 CONN_DEC_REF(connp); 21487 return; 21488 } 21489 21490 ipif_refrele(ipif); 21491 ipif = NULL; 21492 ASSERT(xmit_ill == NULL); 21493 21494 /* 21495 * Honor the RTF_SETSRC flag for multicast packets, 21496 * if allowed by the setsrc reminder. 21497 */ 21498 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 21499 ipha->ipha_src = ire->ire_src_addr; 21500 } 21501 21502 /* 21503 * Unconditionally force the TTL to 1 for 21504 * multirouted multicast packets: 21505 * multirouted multicast should not cross 21506 * multicast routers. 21507 */ 21508 if (ire->ire_flags & RTF_MULTIRT) { 21509 if (ipha->ipha_ttl > 1) { 21510 ip2dbg(("ip_wput: forcing multicast " 21511 "multirt TTL to 1 (was %d), dst 0x%08x\n", 21512 ipha->ipha_ttl, ntohl(ire->ire_addr))); 21513 ipha->ipha_ttl = 1; 21514 } 21515 } 21516 } else { 21517 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), ipst); 21518 if ((ire != NULL) && (ire->ire_type & 21519 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 21520 ignore_dontroute = B_TRUE; 21521 ignore_nexthop = B_TRUE; 21522 } 21523 if (ire != NULL) { 21524 ire_refrele(ire); 21525 ire = NULL; 21526 } 21527 /* 21528 * Guard against coming in from arp in which case conn is NULL. 21529 * Also guard against non M_DATA with dontroute set but 21530 * destined to local, loopback or broadcast addresses. 21531 */ 21532 if (connp != NULL && connp->conn_dontroute && 21533 !ignore_dontroute) { 21534 dontroute: 21535 /* 21536 * Set TTL to 1 if SO_DONTROUTE is set to prevent 21537 * routing protocols from seeing false direct 21538 * connectivity. 21539 */ 21540 ipha->ipha_ttl = 1; 21541 /* If suitable ipif not found, drop packet */ 21542 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid, ipst); 21543 if (dst_ipif == NULL) { 21544 noroute: 21545 ip1dbg(("ip_wput: no route for dst using" 21546 " SO_DONTROUTE\n")); 21547 BUMP_MIB(&ipst->ips_ip_mib, 21548 ipIfStatsOutNoRoutes); 21549 mp->b_prev = mp->b_next = NULL; 21550 if (first_mp == NULL) 21551 first_mp = mp; 21552 goto drop_pkt; 21553 } else { 21554 /* 21555 * If suitable ipif has been found, set 21556 * xmit_ill to the corresponding 21557 * ipif_ill because we'll be using the 21558 * send_from_ill logic below. 21559 */ 21560 ASSERT(xmit_ill == NULL); 21561 xmit_ill = dst_ipif->ipif_ill; 21562 mutex_enter(&xmit_ill->ill_lock); 21563 if (!ILL_CAN_LOOKUP(xmit_ill)) { 21564 mutex_exit(&xmit_ill->ill_lock); 21565 xmit_ill = NULL; 21566 ipif_refrele(dst_ipif); 21567 goto noroute; 21568 } 21569 ill_refhold_locked(xmit_ill); 21570 mutex_exit(&xmit_ill->ill_lock); 21571 ipif_refrele(dst_ipif); 21572 } 21573 } 21574 21575 send_from_ill: 21576 if (xmit_ill != NULL) { 21577 ipif_t *ipif; 21578 21579 /* 21580 * Mark this packet as originated locally 21581 */ 21582 mp->b_prev = mp->b_next = NULL; 21583 21584 /* 21585 * Could be SO_DONTROUTE case also. 21586 * Verify that at least one ipif is up on the ill. 21587 */ 21588 if (xmit_ill->ill_ipif_up_count == 0) { 21589 ip1dbg(("ip_output: xmit_ill %s is down\n", 21590 xmit_ill->ill_name)); 21591 goto drop_pkt; 21592 } 21593 21594 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21595 if (ipif == NULL) { 21596 ip1dbg(("ip_output: xmit_ill %s NULL ipif\n", 21597 xmit_ill->ill_name)); 21598 goto drop_pkt; 21599 } 21600 21601 match_flags = 0; 21602 if (IS_UNDER_IPMP(xmit_ill)) 21603 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 21604 21605 /* 21606 * Look for a ire that is part of the group, 21607 * if found use it else call ip_newroute_ipif. 21608 * IPCL_ZONEID is not used for matching because 21609 * IP_ALLZONES option is valid only when the 21610 * ill is accessible from all zones i.e has a 21611 * valid ipif in all zones. 21612 */ 21613 match_flags |= MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21614 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 21615 msg_getlabel(mp), match_flags, ipst); 21616 /* 21617 * If an ire exists use it or else create 21618 * an ire but don't add it to the cache. 21619 * Adding an ire may cause issues with 21620 * asymmetric routing. 21621 * In case of multiroute always act as if 21622 * ire does not exist. 21623 */ 21624 if (ire == NULL || ire->ire_flags & RTF_MULTIRT) { 21625 if (ire != NULL) 21626 ire_refrele(ire); 21627 ip_newroute_ipif(q, first_mp, ipif, 21628 dst, connp, 0, zoneid, infop); 21629 ipif_refrele(ipif); 21630 ip1dbg(("ip_output: xmit_ill via %s\n", 21631 xmit_ill->ill_name)); 21632 ill_refrele(xmit_ill); 21633 if (need_decref) 21634 CONN_DEC_REF(connp); 21635 return; 21636 } 21637 ipif_refrele(ipif); 21638 } else if (ip_nexthop || (connp != NULL && 21639 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21640 if (!ip_nexthop) { 21641 ip_nexthop = B_TRUE; 21642 nexthop_addr = connp->conn_nexthop_v4; 21643 } 21644 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21645 MATCH_IRE_GW; 21646 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21647 NULL, zoneid, msg_getlabel(mp), match_flags, ipst); 21648 } else { 21649 ire = ire_cache_lookup(dst, zoneid, msg_getlabel(mp), 21650 ipst); 21651 } 21652 if (!ire) { 21653 if (ip_nexthop && !ignore_nexthop) { 21654 if (mctl_present) { 21655 io = (ipsec_out_t *)first_mp->b_rptr; 21656 ASSERT(first_mp->b_datap->db_type == 21657 M_CTL); 21658 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21659 } else { 21660 ASSERT(mp == first_mp); 21661 first_mp = allocb( 21662 sizeof (ipsec_info_t), BPRI_HI); 21663 if (first_mp == NULL) { 21664 first_mp = mp; 21665 goto discard_pkt; 21666 } 21667 first_mp->b_datap->db_type = M_CTL; 21668 first_mp->b_wptr += 21669 sizeof (ipsec_info_t); 21670 /* ipsec_out_secure is B_FALSE now */ 21671 bzero(first_mp->b_rptr, 21672 sizeof (ipsec_info_t)); 21673 io = (ipsec_out_t *)first_mp->b_rptr; 21674 io->ipsec_out_type = IPSEC_OUT; 21675 io->ipsec_out_len = 21676 sizeof (ipsec_out_t); 21677 io->ipsec_out_use_global_policy = 21678 B_TRUE; 21679 io->ipsec_out_ns = ipst->ips_netstack; 21680 first_mp->b_cont = mp; 21681 mctl_present = B_TRUE; 21682 } 21683 io->ipsec_out_ip_nexthop = ip_nexthop; 21684 io->ipsec_out_nexthop_addr = nexthop_addr; 21685 } 21686 noirefound: 21687 /* 21688 * Mark this packet as having originated on 21689 * this machine. This will be noted in 21690 * ire_add_then_send, which needs to know 21691 * whether to run it back through ip_wput or 21692 * ip_rput following successful resolution. 21693 */ 21694 mp->b_prev = NULL; 21695 mp->b_next = NULL; 21696 ip_newroute(q, first_mp, dst, connp, zoneid, ipst); 21697 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21698 "ip_wput_end: q %p (%S)", q, "newroute"); 21699 if (xmit_ill != NULL) 21700 ill_refrele(xmit_ill); 21701 if (need_decref) 21702 CONN_DEC_REF(connp); 21703 return; 21704 } 21705 } 21706 21707 /* We now know where we are going with it. */ 21708 21709 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21710 "ip_wput_end: q %p (%S)", q, "end"); 21711 21712 /* 21713 * Check if the ire has the RTF_MULTIRT flag, inherited 21714 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21715 */ 21716 if (ire->ire_flags & RTF_MULTIRT) { 21717 /* 21718 * Force the TTL of multirouted packets if required. 21719 * The TTL of such packets is bounded by the 21720 * ip_multirt_ttl ndd variable. 21721 */ 21722 if ((ipst->ips_ip_multirt_ttl > 0) && 21723 (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) { 21724 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21725 "(was %d), dst 0x%08x\n", 21726 ipst->ips_ip_multirt_ttl, ipha->ipha_ttl, 21727 ntohl(ire->ire_addr))); 21728 ipha->ipha_ttl = ipst->ips_ip_multirt_ttl; 21729 } 21730 /* 21731 * At this point, we check to see if there are any pending 21732 * unresolved routes. ire_multirt_resolvable() 21733 * checks in O(n) that all IRE_OFFSUBNET ire 21734 * entries for the packet's destination and 21735 * flagged RTF_MULTIRT are currently resolved. 21736 * If some remain unresolved, we make a copy 21737 * of the current message. It will be used 21738 * to initiate additional route resolutions. 21739 */ 21740 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21741 msg_getlabel(first_mp), ipst); 21742 ip2dbg(("ip_wput[noirefound]: ire %p, " 21743 "multirt_need_resolve %d, first_mp %p\n", 21744 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21745 if (multirt_need_resolve) { 21746 copy_mp = copymsg(first_mp); 21747 if (copy_mp != NULL) { 21748 MULTIRT_DEBUG_TAG(copy_mp); 21749 } 21750 } 21751 } 21752 21753 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21754 /* 21755 * Try to resolve another multiroute if 21756 * ire_multirt_resolvable() deemed it necessary. 21757 * At this point, we need to distinguish 21758 * multicasts from other packets. For multicasts, 21759 * we call ip_newroute_ipif() and request that both 21760 * multirouting and setsrc flags are checked. 21761 */ 21762 if (copy_mp != NULL) { 21763 if (CLASSD(dst)) { 21764 ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst); 21765 if (ipif) { 21766 ASSERT(infop->ip_opt_ill_index == 0); 21767 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21768 RTF_SETSRC | RTF_MULTIRT, zoneid, infop); 21769 ipif_refrele(ipif); 21770 } else { 21771 MULTIRT_DEBUG_UNTAG(copy_mp); 21772 freemsg(copy_mp); 21773 copy_mp = NULL; 21774 } 21775 } else { 21776 ip_newroute(q, copy_mp, dst, connp, zoneid, ipst); 21777 } 21778 } 21779 if (xmit_ill != NULL) 21780 ill_refrele(xmit_ill); 21781 if (need_decref) 21782 CONN_DEC_REF(connp); 21783 return; 21784 21785 icmp_parameter_problem: 21786 /* could not have originated externally */ 21787 ASSERT(mp->b_prev == NULL); 21788 if (ip_hdr_complete(ipha, zoneid, ipst) == 0) { 21789 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 21790 /* it's the IP header length that's in trouble */ 21791 icmp_param_problem(q, first_mp, 0, zoneid, ipst); 21792 first_mp = NULL; 21793 } 21794 21795 discard_pkt: 21796 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 21797 drop_pkt: 21798 ip1dbg(("ip_wput: dropped packet\n")); 21799 if (ire != NULL) 21800 ire_refrele(ire); 21801 if (need_decref) 21802 CONN_DEC_REF(connp); 21803 freemsg(first_mp); 21804 if (xmit_ill != NULL) 21805 ill_refrele(xmit_ill); 21806 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21807 "ip_wput_end: q %p (%S)", q, "droppkt"); 21808 } 21809 21810 /* 21811 * If this is a conn_t queue, then we pass in the conn. This includes the 21812 * zoneid. 21813 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21814 * in which case we use the global zoneid since those are all part of 21815 * the global zone. 21816 */ 21817 void 21818 ip_wput(queue_t *q, mblk_t *mp) 21819 { 21820 if (CONN_Q(q)) 21821 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21822 else 21823 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21824 } 21825 21826 /* 21827 * 21828 * The following rules must be observed when accessing any ipif or ill 21829 * that has been cached in the conn. Typically conn_outgoing_ill, 21830 * conn_multicast_ipif and conn_multicast_ill. 21831 * 21832 * Access: The ipif or ill pointed to from the conn can be accessed under 21833 * the protection of the conn_lock or after it has been refheld under the 21834 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21835 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21836 * The reason for this is that a concurrent unplumb could actually be 21837 * cleaning up these cached pointers by walking the conns and might have 21838 * finished cleaning up the conn in question. The macros check that an 21839 * unplumb has not yet started on the ipif or ill. 21840 * 21841 * Caching: An ipif or ill pointer may be cached in the conn only after 21842 * making sure that an unplumb has not started. So the caching is done 21843 * while holding both the conn_lock and the ill_lock and after using the 21844 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21845 * flag before starting the cleanup of conns. 21846 * 21847 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21848 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21849 * or a reference to the ipif or a reference to an ire that references the 21850 * ipif. An ipif only changes its ill when migrating from an underlying ill 21851 * to an IPMP ill in ipif_up(). 21852 */ 21853 ipif_t * 21854 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21855 { 21856 ipif_t *ipif; 21857 ill_t *ill; 21858 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 21859 21860 *err = 0; 21861 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21862 mutex_enter(&connp->conn_lock); 21863 ipif = *ipifp; 21864 if (ipif != NULL) { 21865 ill = ipif->ipif_ill; 21866 mutex_enter(&ill->ill_lock); 21867 if (IPIF_CAN_LOOKUP(ipif)) { 21868 ipif_refhold_locked(ipif); 21869 mutex_exit(&ill->ill_lock); 21870 mutex_exit(&connp->conn_lock); 21871 rw_exit(&ipst->ips_ill_g_lock); 21872 return (ipif); 21873 } else { 21874 *err = IPIF_LOOKUP_FAILED; 21875 } 21876 mutex_exit(&ill->ill_lock); 21877 } 21878 mutex_exit(&connp->conn_lock); 21879 rw_exit(&ipst->ips_ill_g_lock); 21880 return (NULL); 21881 } 21882 21883 ill_t * 21884 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21885 { 21886 ill_t *ill; 21887 21888 *err = 0; 21889 mutex_enter(&connp->conn_lock); 21890 ill = *illp; 21891 if (ill != NULL) { 21892 mutex_enter(&ill->ill_lock); 21893 if (ILL_CAN_LOOKUP(ill)) { 21894 ill_refhold_locked(ill); 21895 mutex_exit(&ill->ill_lock); 21896 mutex_exit(&connp->conn_lock); 21897 return (ill); 21898 } else { 21899 *err = ILL_LOOKUP_FAILED; 21900 } 21901 mutex_exit(&ill->ill_lock); 21902 } 21903 mutex_exit(&connp->conn_lock); 21904 return (NULL); 21905 } 21906 21907 static int 21908 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21909 { 21910 ill_t *ill; 21911 21912 ill = ipif->ipif_ill; 21913 mutex_enter(&connp->conn_lock); 21914 mutex_enter(&ill->ill_lock); 21915 if (IPIF_CAN_LOOKUP(ipif)) { 21916 *ipifp = ipif; 21917 mutex_exit(&ill->ill_lock); 21918 mutex_exit(&connp->conn_lock); 21919 return (0); 21920 } 21921 mutex_exit(&ill->ill_lock); 21922 mutex_exit(&connp->conn_lock); 21923 return (IPIF_LOOKUP_FAILED); 21924 } 21925 21926 /* 21927 * This is called if the outbound datagram needs fragmentation. 21928 * 21929 * NOTE : This function does not ire_refrele the ire argument passed in. 21930 */ 21931 static void 21932 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid, 21933 ip_stack_t *ipst, conn_t *connp) 21934 { 21935 ipha_t *ipha; 21936 mblk_t *mp; 21937 uint32_t v_hlen_tos_len; 21938 uint32_t max_frag; 21939 uint32_t frag_flag; 21940 boolean_t dont_use; 21941 21942 if (ipsec_mp->b_datap->db_type == M_CTL) { 21943 mp = ipsec_mp->b_cont; 21944 } else { 21945 mp = ipsec_mp; 21946 } 21947 21948 ipha = (ipha_t *)mp->b_rptr; 21949 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21950 21951 #ifdef _BIG_ENDIAN 21952 #define V_HLEN (v_hlen_tos_len >> 24) 21953 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21954 #else 21955 #define V_HLEN (v_hlen_tos_len & 0xFF) 21956 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21957 #endif 21958 21959 #ifndef SPEED_BEFORE_SAFETY 21960 /* 21961 * Check that ipha_length is consistent with 21962 * the mblk length 21963 */ 21964 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21965 ip0dbg(("Packet length mismatch: %d, %ld\n", 21966 LENGTH, msgdsize(mp))); 21967 freemsg(ipsec_mp); 21968 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21969 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21970 "packet length mismatch"); 21971 return; 21972 } 21973 #endif 21974 /* 21975 * Don't use frag_flag if pre-built packet or source 21976 * routed or if multicast (since multicast packets do not solicit 21977 * ICMP "packet too big" messages). Get the values of 21978 * max_frag and frag_flag atomically by acquiring the 21979 * ire_lock. 21980 */ 21981 mutex_enter(&ire->ire_lock); 21982 max_frag = ire->ire_max_frag; 21983 frag_flag = ire->ire_frag_flag; 21984 mutex_exit(&ire->ire_lock); 21985 21986 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21987 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21988 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21989 21990 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21991 (dont_use ? 0 : frag_flag), zoneid, ipst, connp); 21992 } 21993 21994 /* 21995 * Used for deciding the MSS size for the upper layer. Thus 21996 * we need to check the outbound policy values in the conn. 21997 */ 21998 int 21999 conn_ipsec_length(conn_t *connp) 22000 { 22001 ipsec_latch_t *ipl; 22002 22003 ipl = connp->conn_latch; 22004 if (ipl == NULL) 22005 return (0); 22006 22007 if (ipl->ipl_out_policy == NULL) 22008 return (0); 22009 22010 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 22011 } 22012 22013 /* 22014 * Returns an estimate of the IPsec headers size. This is used if 22015 * we don't want to call into IPsec to get the exact size. 22016 */ 22017 int 22018 ipsec_out_extra_length(mblk_t *ipsec_mp) 22019 { 22020 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 22021 ipsec_action_t *a; 22022 22023 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22024 if (!io->ipsec_out_secure) 22025 return (0); 22026 22027 a = io->ipsec_out_act; 22028 22029 if (a == NULL) { 22030 ASSERT(io->ipsec_out_policy != NULL); 22031 a = io->ipsec_out_policy->ipsp_act; 22032 } 22033 ASSERT(a != NULL); 22034 22035 return (a->ipa_ovhd); 22036 } 22037 22038 /* 22039 * Returns an estimate of the IPsec headers size. This is used if 22040 * we don't want to call into IPsec to get the exact size. 22041 */ 22042 int 22043 ipsec_in_extra_length(mblk_t *ipsec_mp) 22044 { 22045 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22046 ipsec_action_t *a; 22047 22048 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22049 22050 a = ii->ipsec_in_action; 22051 return (a == NULL ? 0 : a->ipa_ovhd); 22052 } 22053 22054 /* 22055 * If there are any source route options, return the true final 22056 * destination. Otherwise, return the destination. 22057 */ 22058 ipaddr_t 22059 ip_get_dst(ipha_t *ipha) 22060 { 22061 ipoptp_t opts; 22062 uchar_t *opt; 22063 uint8_t optval; 22064 uint8_t optlen; 22065 ipaddr_t dst; 22066 uint32_t off; 22067 22068 dst = ipha->ipha_dst; 22069 22070 if (IS_SIMPLE_IPH(ipha)) 22071 return (dst); 22072 22073 for (optval = ipoptp_first(&opts, ipha); 22074 optval != IPOPT_EOL; 22075 optval = ipoptp_next(&opts)) { 22076 opt = opts.ipoptp_cur; 22077 optlen = opts.ipoptp_len; 22078 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 22079 switch (optval) { 22080 case IPOPT_SSRR: 22081 case IPOPT_LSRR: 22082 off = opt[IPOPT_OFFSET]; 22083 /* 22084 * If one of the conditions is true, it means 22085 * end of options and dst already has the right 22086 * value. 22087 */ 22088 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 22089 off = optlen - IP_ADDR_LEN; 22090 bcopy(&opt[off], &dst, IP_ADDR_LEN); 22091 } 22092 return (dst); 22093 default: 22094 break; 22095 } 22096 } 22097 22098 return (dst); 22099 } 22100 22101 mblk_t * 22102 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 22103 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 22104 { 22105 ipsec_out_t *io; 22106 mblk_t *first_mp; 22107 boolean_t policy_present; 22108 ip_stack_t *ipst; 22109 ipsec_stack_t *ipss; 22110 22111 ASSERT(ire != NULL); 22112 ipst = ire->ire_ipst; 22113 ipss = ipst->ips_netstack->netstack_ipsec; 22114 22115 first_mp = mp; 22116 if (mp->b_datap->db_type == M_CTL) { 22117 io = (ipsec_out_t *)first_mp->b_rptr; 22118 /* 22119 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 22120 * 22121 * 1) There is per-socket policy (including cached global 22122 * policy) or a policy on the IP-in-IP tunnel. 22123 * 2) There is no per-socket policy, but it is 22124 * a multicast packet that needs to go out 22125 * on a specific interface. This is the case 22126 * where (ip_wput and ip_wput_multicast) attaches 22127 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 22128 * 22129 * In case (2) we check with global policy to 22130 * see if there is a match and set the ill_index 22131 * appropriately so that we can lookup the ire 22132 * properly in ip_wput_ipsec_out. 22133 */ 22134 22135 /* 22136 * ipsec_out_use_global_policy is set to B_FALSE 22137 * in ipsec_in_to_out(). Refer to that function for 22138 * details. 22139 */ 22140 if ((io->ipsec_out_latch == NULL) && 22141 (io->ipsec_out_use_global_policy)) { 22142 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 22143 ire, connp, unspec_src, zoneid)); 22144 } 22145 if (!io->ipsec_out_secure) { 22146 /* 22147 * If this is not a secure packet, drop 22148 * the IPSEC_OUT mp and treat it as a clear 22149 * packet. This happens when we are sending 22150 * a ICMP reply back to a clear packet. See 22151 * ipsec_in_to_out() for details. 22152 */ 22153 mp = first_mp->b_cont; 22154 freeb(first_mp); 22155 } 22156 return (mp); 22157 } 22158 /* 22159 * See whether we need to attach a global policy here. We 22160 * don't depend on the conn (as it could be null) for deciding 22161 * what policy this datagram should go through because it 22162 * should have happened in ip_wput if there was some 22163 * policy. This normally happens for connections which are not 22164 * fully bound preventing us from caching policies in 22165 * ip_bind. Packets coming from the TCP listener/global queue 22166 * - which are non-hard_bound - could also be affected by 22167 * applying policy here. 22168 * 22169 * If this packet is coming from tcp global queue or listener, 22170 * we will be applying policy here. This may not be *right* 22171 * if these packets are coming from the detached connection as 22172 * it could have gone in clear before. This happens only if a 22173 * TCP connection started when there is no policy and somebody 22174 * added policy before it became detached. Thus packets of the 22175 * detached connection could go out secure and the other end 22176 * would drop it because it will be expecting in clear. The 22177 * converse is not true i.e if somebody starts a TCP 22178 * connection and deletes the policy, all the packets will 22179 * still go out with the policy that existed before deleting 22180 * because ip_unbind sends up policy information which is used 22181 * by TCP on subsequent ip_wputs. The right solution is to fix 22182 * TCP to attach a dummy IPSEC_OUT and set 22183 * ipsec_out_use_global_policy to B_FALSE. As this might 22184 * affect performance for normal cases, we are not doing it. 22185 * Thus, set policy before starting any TCP connections. 22186 * 22187 * NOTE - We might apply policy even for a hard bound connection 22188 * - for which we cached policy in ip_bind - if somebody added 22189 * global policy after we inherited the policy in ip_bind. 22190 * This means that the packets that were going out in clear 22191 * previously would start going secure and hence get dropped 22192 * on the other side. To fix this, TCP attaches a dummy 22193 * ipsec_out and make sure that we don't apply global policy. 22194 */ 22195 if (ipha != NULL) 22196 policy_present = ipss->ipsec_outbound_v4_policy_present; 22197 else 22198 policy_present = ipss->ipsec_outbound_v6_policy_present; 22199 if (!policy_present) 22200 return (mp); 22201 22202 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 22203 zoneid)); 22204 } 22205 22206 /* 22207 * This function does the ire_refrele of the ire passed in as the 22208 * argument. As this function looks up more ires i.e broadcast ires, 22209 * it needs to REFRELE them. Currently, for simplicity we don't 22210 * differentiate the one passed in and looked up here. We always 22211 * REFRELE. 22212 * IPQoS Notes: 22213 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 22214 * IPsec packets are done in ipsec_out_process. 22215 */ 22216 void 22217 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 22218 zoneid_t zoneid) 22219 { 22220 ipha_t *ipha; 22221 #define rptr ((uchar_t *)ipha) 22222 queue_t *stq; 22223 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 22224 uint32_t v_hlen_tos_len; 22225 uint32_t ttl_protocol; 22226 ipaddr_t src; 22227 ipaddr_t dst; 22228 uint32_t cksum; 22229 ipaddr_t orig_src; 22230 ire_t *ire1; 22231 mblk_t *next_mp; 22232 uint_t hlen; 22233 uint16_t *up; 22234 uint32_t max_frag = ire->ire_max_frag; 22235 ill_t *ill = ire_to_ill(ire); 22236 int clusterwide; 22237 uint16_t ip_hdr_included; /* IP header included by ULP? */ 22238 int ipsec_len; 22239 mblk_t *first_mp; 22240 ipsec_out_t *io; 22241 boolean_t conn_dontroute; /* conn value for multicast */ 22242 boolean_t conn_multicast_loop; /* conn value for multicast */ 22243 boolean_t multicast_forward; /* Should we forward ? */ 22244 boolean_t unspec_src; 22245 ill_t *conn_outgoing_ill = NULL; 22246 ill_t *ire_ill; 22247 ill_t *ire1_ill; 22248 ill_t *out_ill; 22249 uint32_t ill_index = 0; 22250 boolean_t multirt_send = B_FALSE; 22251 int err; 22252 ipxmit_state_t pktxmit_state; 22253 ip_stack_t *ipst = ire->ire_ipst; 22254 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 22255 22256 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 22257 "ip_wput_ire_start: q %p", q); 22258 22259 multicast_forward = B_FALSE; 22260 unspec_src = (connp != NULL && connp->conn_unspec_src); 22261 22262 if (ire->ire_flags & RTF_MULTIRT) { 22263 /* 22264 * Multirouting case. The bucket where ire is stored 22265 * probably holds other RTF_MULTIRT flagged ire 22266 * to the destination. In this call to ip_wput_ire, 22267 * we attempt to send the packet through all 22268 * those ires. Thus, we first ensure that ire is the 22269 * first RTF_MULTIRT ire in the bucket, 22270 * before walking the ire list. 22271 */ 22272 ire_t *first_ire; 22273 irb_t *irb = ire->ire_bucket; 22274 ASSERT(irb != NULL); 22275 22276 /* Make sure we do not omit any multiroute ire. */ 22277 IRB_REFHOLD(irb); 22278 for (first_ire = irb->irb_ire; 22279 first_ire != NULL; 22280 first_ire = first_ire->ire_next) { 22281 if ((first_ire->ire_flags & RTF_MULTIRT) && 22282 (first_ire->ire_addr == ire->ire_addr) && 22283 !(first_ire->ire_marks & 22284 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 22285 break; 22286 } 22287 22288 if ((first_ire != NULL) && (first_ire != ire)) { 22289 IRE_REFHOLD(first_ire); 22290 ire_refrele(ire); 22291 ire = first_ire; 22292 ill = ire_to_ill(ire); 22293 } 22294 IRB_REFRELE(irb); 22295 } 22296 22297 /* 22298 * conn_outgoing_ill variable is used only in the broadcast loop. 22299 * for performance we don't grab the mutexs in the fastpath 22300 */ 22301 if (ire->ire_type == IRE_BROADCAST && connp != NULL && 22302 connp->conn_outgoing_ill != NULL) { 22303 conn_outgoing_ill = conn_get_held_ill(connp, 22304 &connp->conn_outgoing_ill, &err); 22305 if (err == ILL_LOOKUP_FAILED) { 22306 ire_refrele(ire); 22307 freemsg(mp); 22308 return; 22309 } 22310 } 22311 22312 if (mp->b_datap->db_type != M_CTL) { 22313 ipha = (ipha_t *)mp->b_rptr; 22314 } else { 22315 io = (ipsec_out_t *)mp->b_rptr; 22316 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22317 ASSERT(zoneid == io->ipsec_out_zoneid); 22318 ASSERT(zoneid != ALL_ZONES); 22319 ipha = (ipha_t *)mp->b_cont->b_rptr; 22320 dst = ipha->ipha_dst; 22321 /* 22322 * For the multicast case, ipsec_out carries conn_dontroute and 22323 * conn_multicast_loop as conn may not be available here. We 22324 * need this for multicast loopback and forwarding which is done 22325 * later in the code. 22326 */ 22327 if (CLASSD(dst)) { 22328 conn_dontroute = io->ipsec_out_dontroute; 22329 conn_multicast_loop = io->ipsec_out_multicast_loop; 22330 /* 22331 * If conn_dontroute is not set or conn_multicast_loop 22332 * is set, we need to do forwarding/loopback. For 22333 * datagrams from ip_wput_multicast, conn_dontroute is 22334 * set to B_TRUE and conn_multicast_loop is set to 22335 * B_FALSE so that we neither do forwarding nor 22336 * loopback. 22337 */ 22338 if (!conn_dontroute || conn_multicast_loop) 22339 multicast_forward = B_TRUE; 22340 } 22341 } 22342 22343 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 22344 ire->ire_zoneid != ALL_ZONES) { 22345 /* 22346 * When a zone sends a packet to another zone, we try to deliver 22347 * the packet under the same conditions as if the destination 22348 * was a real node on the network. To do so, we look for a 22349 * matching route in the forwarding table. 22350 * RTF_REJECT and RTF_BLACKHOLE are handled just like 22351 * ip_newroute() does. 22352 * Note that IRE_LOCAL are special, since they are used 22353 * when the zoneid doesn't match in some cases. This means that 22354 * we need to handle ipha_src differently since ire_src_addr 22355 * belongs to the receiving zone instead of the sending zone. 22356 * When ip_restrict_interzone_loopback is set, then 22357 * ire_cache_lookup() ensures that IRE_LOCAL are only used 22358 * for loopback between zones when the logical "Ethernet" would 22359 * have looped them back. 22360 */ 22361 ire_t *src_ire; 22362 22363 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 22364 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 22365 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst); 22366 if (src_ire != NULL && 22367 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 22368 (!ipst->ips_ip_restrict_interzone_loopback || 22369 ire_local_same_lan(ire, src_ire))) { 22370 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 22371 ipha->ipha_src = src_ire->ire_src_addr; 22372 ire_refrele(src_ire); 22373 } else { 22374 ire_refrele(ire); 22375 if (conn_outgoing_ill != NULL) 22376 ill_refrele(conn_outgoing_ill); 22377 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 22378 if (src_ire != NULL) { 22379 if (src_ire->ire_flags & RTF_BLACKHOLE) { 22380 ire_refrele(src_ire); 22381 freemsg(mp); 22382 return; 22383 } 22384 ire_refrele(src_ire); 22385 } 22386 if (ip_hdr_complete(ipha, zoneid, ipst)) { 22387 /* Failed */ 22388 freemsg(mp); 22389 return; 22390 } 22391 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid, 22392 ipst); 22393 return; 22394 } 22395 } 22396 22397 if (mp->b_datap->db_type == M_CTL || 22398 ipss->ipsec_outbound_v4_policy_present) { 22399 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 22400 unspec_src, zoneid); 22401 if (mp == NULL) { 22402 ire_refrele(ire); 22403 if (conn_outgoing_ill != NULL) 22404 ill_refrele(conn_outgoing_ill); 22405 return; 22406 } 22407 /* 22408 * Trusted Extensions supports all-zones interfaces, so 22409 * zoneid == ALL_ZONES is valid, but IPsec maps ALL_ZONES to 22410 * the global zone. 22411 */ 22412 if (zoneid == ALL_ZONES && mp->b_datap->db_type == M_CTL) { 22413 io = (ipsec_out_t *)mp->b_rptr; 22414 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22415 zoneid = io->ipsec_out_zoneid; 22416 } 22417 } 22418 22419 first_mp = mp; 22420 ipsec_len = 0; 22421 22422 if (first_mp->b_datap->db_type == M_CTL) { 22423 io = (ipsec_out_t *)first_mp->b_rptr; 22424 ASSERT(io->ipsec_out_type == IPSEC_OUT); 22425 mp = first_mp->b_cont; 22426 ipsec_len = ipsec_out_extra_length(first_mp); 22427 ASSERT(ipsec_len >= 0); 22428 /* We already picked up the zoneid from the M_CTL above */ 22429 ASSERT(zoneid == io->ipsec_out_zoneid); 22430 ASSERT(zoneid != ALL_ZONES); 22431 22432 /* 22433 * Drop M_CTL here if IPsec processing is not needed. 22434 * (Non-IPsec use of M_CTL extracted any information it 22435 * needed above). 22436 */ 22437 if (ipsec_len == 0) { 22438 freeb(first_mp); 22439 first_mp = mp; 22440 } 22441 } 22442 22443 /* 22444 * Fast path for ip_wput_ire 22445 */ 22446 22447 ipha = (ipha_t *)mp->b_rptr; 22448 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22449 dst = ipha->ipha_dst; 22450 22451 /* 22452 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22453 * if the socket is a SOCK_RAW type. The transport checksum should 22454 * be provided in the pre-built packet, so we don't need to compute it. 22455 * Also, other application set flags, like DF, should not be altered. 22456 * Other transport MUST pass down zero. 22457 */ 22458 ip_hdr_included = ipha->ipha_ident; 22459 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22460 22461 if (CLASSD(dst)) { 22462 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22463 ntohl(dst), 22464 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22465 ntohl(ire->ire_addr))); 22466 } 22467 22468 /* Macros to extract header fields from data already in registers */ 22469 #ifdef _BIG_ENDIAN 22470 #define V_HLEN (v_hlen_tos_len >> 24) 22471 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22472 #define PROTO (ttl_protocol & 0xFF) 22473 #else 22474 #define V_HLEN (v_hlen_tos_len & 0xFF) 22475 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22476 #define PROTO (ttl_protocol >> 8) 22477 #endif 22478 22479 orig_src = src = ipha->ipha_src; 22480 /* (The loop back to "another" is explained down below.) */ 22481 another:; 22482 /* 22483 * Assign an ident value for this packet. We assign idents on 22484 * a per destination basis out of the IRE. There could be 22485 * other threads targeting the same destination, so we have to 22486 * arrange for a atomic increment. Note that we use a 32-bit 22487 * atomic add because it has better performance than its 22488 * 16-bit sibling. 22489 * 22490 * If running in cluster mode and if the source address 22491 * belongs to a replicated service then vector through 22492 * cl_inet_ipident vector to allocate ip identifier 22493 * NOTE: This is a contract private interface with the 22494 * clustering group. 22495 */ 22496 clusterwide = 0; 22497 if (cl_inet_ipident) { 22498 ASSERT(cl_inet_isclusterwide); 22499 netstackid_t stack_id = ipst->ips_netstack->netstack_stackid; 22500 22501 if ((*cl_inet_isclusterwide)(stack_id, IPPROTO_IP, 22502 AF_INET, (uint8_t *)(uintptr_t)src, NULL)) { 22503 ipha->ipha_ident = (*cl_inet_ipident)(stack_id, 22504 IPPROTO_IP, AF_INET, (uint8_t *)(uintptr_t)src, 22505 (uint8_t *)(uintptr_t)dst, NULL); 22506 clusterwide = 1; 22507 } 22508 } 22509 if (!clusterwide) { 22510 ipha->ipha_ident = 22511 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22512 } 22513 22514 #ifndef _BIG_ENDIAN 22515 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22516 #endif 22517 22518 /* 22519 * Set source address unless sent on an ill or conn_unspec_src is set. 22520 * This is needed to obey conn_unspec_src when packets go through 22521 * ip_newroute + arp. 22522 * Assumes ip_newroute{,_multi} sets the source address as well. 22523 */ 22524 if (src == INADDR_ANY && !unspec_src) { 22525 /* 22526 * Assign the appropriate source address from the IRE if none 22527 * was specified. 22528 */ 22529 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22530 22531 src = ire->ire_src_addr; 22532 if (connp == NULL) { 22533 ip1dbg(("ip_wput_ire: no connp and no src " 22534 "address for dst 0x%x, using src 0x%x\n", 22535 ntohl(dst), 22536 ntohl(src))); 22537 } 22538 ipha->ipha_src = src; 22539 } 22540 stq = ire->ire_stq; 22541 22542 /* 22543 * We only allow ire chains for broadcasts since there will 22544 * be multiple IRE_CACHE entries for the same multicast 22545 * address (one per ipif). 22546 */ 22547 next_mp = NULL; 22548 22549 /* broadcast packet */ 22550 if (ire->ire_type == IRE_BROADCAST) 22551 goto broadcast; 22552 22553 /* loopback ? */ 22554 if (stq == NULL) 22555 goto nullstq; 22556 22557 /* The ill_index for outbound ILL */ 22558 ill_index = Q_TO_INDEX(stq); 22559 22560 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22561 ttl_protocol = ((uint16_t *)ipha)[4]; 22562 22563 /* pseudo checksum (do it in parts for IP header checksum) */ 22564 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22565 22566 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22567 queue_t *dev_q = stq->q_next; 22568 22569 /* 22570 * For DIRECT_CAPABLE, we do flow control at 22571 * the time of sending the packet. See 22572 * ILL_SEND_TX(). 22573 */ 22574 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22575 (DEV_Q_FLOW_BLOCKED(dev_q))) 22576 goto blocked; 22577 22578 if ((PROTO == IPPROTO_UDP) && 22579 (ip_hdr_included != IP_HDR_INCLUDED)) { 22580 hlen = (V_HLEN & 0xF) << 2; 22581 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22582 if (*up != 0) { 22583 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22584 hlen, LENGTH, max_frag, ipsec_len, cksum); 22585 /* Software checksum? */ 22586 if (DB_CKSUMFLAGS(mp) == 0) { 22587 IP_STAT(ipst, ip_out_sw_cksum); 22588 IP_STAT_UPDATE(ipst, 22589 ip_udp_out_sw_cksum_bytes, 22590 LENGTH - hlen); 22591 } 22592 } 22593 } 22594 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22595 hlen = (V_HLEN & 0xF) << 2; 22596 if (PROTO == IPPROTO_TCP) { 22597 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22598 /* 22599 * The packet header is processed once and for all, even 22600 * in the multirouting case. We disable hardware 22601 * checksum if the packet is multirouted, as it will be 22602 * replicated via several interfaces, and not all of 22603 * them may have this capability. 22604 */ 22605 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22606 LENGTH, max_frag, ipsec_len, cksum); 22607 /* Software checksum? */ 22608 if (DB_CKSUMFLAGS(mp) == 0) { 22609 IP_STAT(ipst, ip_out_sw_cksum); 22610 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22611 LENGTH - hlen); 22612 } 22613 } else { 22614 sctp_hdr_t *sctph; 22615 22616 ASSERT(PROTO == IPPROTO_SCTP); 22617 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22618 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22619 /* 22620 * Zero out the checksum field to ensure proper 22621 * checksum calculation. 22622 */ 22623 sctph->sh_chksum = 0; 22624 #ifdef DEBUG 22625 if (!skip_sctp_cksum) 22626 #endif 22627 sctph->sh_chksum = sctp_cksum(mp, hlen); 22628 } 22629 } 22630 22631 /* 22632 * If this is a multicast packet and originated from ip_wput 22633 * we need to do loopback and forwarding checks. If it comes 22634 * from ip_wput_multicast, we SHOULD not do this. 22635 */ 22636 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22637 22638 /* checksum */ 22639 cksum += ttl_protocol; 22640 22641 /* fragment the packet */ 22642 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22643 goto fragmentit; 22644 /* 22645 * Don't use frag_flag if packet is pre-built or source 22646 * routed or if multicast (since multicast packets do 22647 * not solicit ICMP "packet too big" messages). 22648 */ 22649 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22650 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22651 !ip_source_route_included(ipha)) && 22652 !CLASSD(ipha->ipha_dst)) 22653 ipha->ipha_fragment_offset_and_flags |= 22654 htons(ire->ire_frag_flag); 22655 22656 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22657 /* calculate IP header checksum */ 22658 cksum += ipha->ipha_ident; 22659 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22660 cksum += ipha->ipha_fragment_offset_and_flags; 22661 22662 /* IP options present */ 22663 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22664 if (hlen) 22665 goto checksumoptions; 22666 22667 /* calculate hdr checksum */ 22668 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22669 cksum = ~(cksum + (cksum >> 16)); 22670 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22671 } 22672 if (ipsec_len != 0) { 22673 /* 22674 * We will do the rest of the processing after 22675 * we come back from IPsec in ip_wput_ipsec_out(). 22676 */ 22677 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22678 22679 io = (ipsec_out_t *)first_mp->b_rptr; 22680 io->ipsec_out_ill_index = 22681 ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 22682 ipsec_out_process(q, first_mp, ire, 0); 22683 ire_refrele(ire); 22684 if (conn_outgoing_ill != NULL) 22685 ill_refrele(conn_outgoing_ill); 22686 return; 22687 } 22688 22689 /* 22690 * In most cases, the emission loop below is entered only 22691 * once. Only in the case where the ire holds the 22692 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22693 * flagged ires in the bucket, and send the packet 22694 * through all crossed RTF_MULTIRT routes. 22695 */ 22696 if (ire->ire_flags & RTF_MULTIRT) { 22697 multirt_send = B_TRUE; 22698 } 22699 do { 22700 if (multirt_send) { 22701 irb_t *irb; 22702 /* 22703 * We are in a multiple send case, need to get 22704 * the next ire and make a duplicate of the packet. 22705 * ire1 holds here the next ire to process in the 22706 * bucket. If multirouting is expected, 22707 * any non-RTF_MULTIRT ire that has the 22708 * right destination address is ignored. 22709 */ 22710 irb = ire->ire_bucket; 22711 ASSERT(irb != NULL); 22712 22713 IRB_REFHOLD(irb); 22714 for (ire1 = ire->ire_next; 22715 ire1 != NULL; 22716 ire1 = ire1->ire_next) { 22717 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22718 continue; 22719 if (ire1->ire_addr != ire->ire_addr) 22720 continue; 22721 if (ire1->ire_marks & 22722 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 22723 continue; 22724 22725 /* Got one */ 22726 IRE_REFHOLD(ire1); 22727 break; 22728 } 22729 IRB_REFRELE(irb); 22730 22731 if (ire1 != NULL) { 22732 next_mp = copyb(mp); 22733 if ((next_mp == NULL) || 22734 ((mp->b_cont != NULL) && 22735 ((next_mp->b_cont = 22736 dupmsg(mp->b_cont)) == NULL))) { 22737 freemsg(next_mp); 22738 next_mp = NULL; 22739 ire_refrele(ire1); 22740 ire1 = NULL; 22741 } 22742 } 22743 22744 /* Last multiroute ire; don't loop anymore. */ 22745 if (ire1 == NULL) { 22746 multirt_send = B_FALSE; 22747 } 22748 } 22749 22750 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22751 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22752 mblk_t *, mp); 22753 FW_HOOKS(ipst->ips_ip4_physical_out_event, 22754 ipst->ips_ipv4firewall_physical_out, 22755 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, 0, ipst); 22756 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22757 22758 if (mp == NULL) 22759 goto release_ire_and_ill; 22760 22761 if (ipst->ips_ipobs_enabled) { 22762 zoneid_t szone; 22763 22764 /* 22765 * On the outbound path the destination zone will be 22766 * unknown as we're sending this packet out on the 22767 * wire. 22768 */ 22769 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 22770 ALL_ZONES); 22771 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 22772 ire->ire_ipif->ipif_ill, IPV4_VERSION, 0, ipst); 22773 } 22774 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22775 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22776 22777 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE, connp); 22778 22779 if ((pktxmit_state == SEND_FAILED) || 22780 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22781 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22782 "- packet dropped\n")); 22783 release_ire_and_ill: 22784 ire_refrele(ire); 22785 if (next_mp != NULL) { 22786 freemsg(next_mp); 22787 ire_refrele(ire1); 22788 } 22789 if (conn_outgoing_ill != NULL) 22790 ill_refrele(conn_outgoing_ill); 22791 return; 22792 } 22793 22794 if (CLASSD(dst)) { 22795 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22796 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22797 LENGTH); 22798 } 22799 22800 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22801 "ip_wput_ire_end: q %p (%S)", 22802 q, "last copy out"); 22803 IRE_REFRELE(ire); 22804 22805 if (multirt_send) { 22806 ASSERT(ire1); 22807 /* 22808 * Proceed with the next RTF_MULTIRT ire, 22809 * Also set up the send-to queue accordingly. 22810 */ 22811 ire = ire1; 22812 ire1 = NULL; 22813 stq = ire->ire_stq; 22814 mp = next_mp; 22815 next_mp = NULL; 22816 ipha = (ipha_t *)mp->b_rptr; 22817 ill_index = Q_TO_INDEX(stq); 22818 ill = (ill_t *)stq->q_ptr; 22819 } 22820 } while (multirt_send); 22821 if (conn_outgoing_ill != NULL) 22822 ill_refrele(conn_outgoing_ill); 22823 return; 22824 22825 /* 22826 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22827 */ 22828 broadcast: 22829 { 22830 /* 22831 * To avoid broadcast storms, we usually set the TTL to 1 for 22832 * broadcasts. However, if SO_DONTROUTE isn't set, this value 22833 * can be overridden stack-wide through the ip_broadcast_ttl 22834 * ndd tunable, or on a per-connection basis through the 22835 * IP_BROADCAST_TTL socket option. 22836 * 22837 * In the event that we are replying to incoming ICMP packets, 22838 * connp could be NULL. 22839 */ 22840 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 22841 if (connp != NULL) { 22842 if (connp->conn_dontroute) 22843 ipha->ipha_ttl = 1; 22844 else if (connp->conn_broadcast_ttl != 0) 22845 ipha->ipha_ttl = connp->conn_broadcast_ttl; 22846 } 22847 22848 /* 22849 * Note that we are not doing a IRB_REFHOLD here. 22850 * Actually we don't care if the list changes i.e 22851 * if somebody deletes an IRE from the list while 22852 * we drop the lock, the next time we come around 22853 * ire_next will be NULL and hence we won't send 22854 * out multiple copies which is fine. 22855 */ 22856 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22857 ire1 = ire->ire_next; 22858 if (conn_outgoing_ill != NULL) { 22859 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22860 ASSERT(ire1 == ire->ire_next); 22861 if (ire1 != NULL && ire1->ire_addr == dst) { 22862 ire_refrele(ire); 22863 ire = ire1; 22864 IRE_REFHOLD(ire); 22865 ire1 = ire->ire_next; 22866 continue; 22867 } 22868 rw_exit(&ire->ire_bucket->irb_lock); 22869 /* Did not find a matching ill */ 22870 ip1dbg(("ip_wput_ire: broadcast with no " 22871 "matching IP_BOUND_IF ill %s dst %x\n", 22872 conn_outgoing_ill->ill_name, dst)); 22873 freemsg(first_mp); 22874 if (ire != NULL) 22875 ire_refrele(ire); 22876 ill_refrele(conn_outgoing_ill); 22877 return; 22878 } 22879 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22880 /* 22881 * If the next IRE has the same address and is not one 22882 * of the two copies that we need to send, try to see 22883 * whether this copy should be sent at all. This 22884 * assumes that we insert loopbacks first and then 22885 * non-loopbacks. This is acheived by inserting the 22886 * loopback always before non-loopback. 22887 * This is used to send a single copy of a broadcast 22888 * packet out all physical interfaces that have an 22889 * matching IRE_BROADCAST while also looping 22890 * back one copy (to ip_wput_local) for each 22891 * matching physical interface. However, we avoid 22892 * sending packets out different logical that match by 22893 * having ipif_up/ipif_down supress duplicate 22894 * IRE_BROADCASTS. 22895 * 22896 * This feature is currently used to get broadcasts 22897 * sent to multiple interfaces, when the broadcast 22898 * address being used applies to multiple interfaces. 22899 * For example, a whole net broadcast will be 22900 * replicated on every connected subnet of 22901 * the target net. 22902 * 22903 * Each zone has its own set of IRE_BROADCASTs, so that 22904 * we're able to distribute inbound packets to multiple 22905 * zones who share a broadcast address. We avoid looping 22906 * back outbound packets in different zones but on the 22907 * same ill, as the application would see duplicates. 22908 * 22909 * This logic assumes that ire_add_v4() groups the 22910 * IRE_BROADCAST entries so that those with the same 22911 * ire_addr are kept together. 22912 */ 22913 ire_ill = ire->ire_ipif->ipif_ill; 22914 if (ire->ire_stq != NULL || ire1->ire_stq == NULL) { 22915 while (ire1 != NULL && ire1->ire_addr == dst) { 22916 ire1_ill = ire1->ire_ipif->ipif_ill; 22917 if (ire1_ill != ire_ill) 22918 break; 22919 ire1 = ire1->ire_next; 22920 } 22921 } 22922 } 22923 ASSERT(multirt_send == B_FALSE); 22924 if (ire1 != NULL && ire1->ire_addr == dst) { 22925 if ((ire->ire_flags & RTF_MULTIRT) && 22926 (ire1->ire_flags & RTF_MULTIRT)) { 22927 /* 22928 * We are in the multirouting case. 22929 * The message must be sent at least 22930 * on both ires. These ires have been 22931 * inserted AFTER the standard ones 22932 * in ip_rt_add(). There are thus no 22933 * other ire entries for the destination 22934 * address in the rest of the bucket 22935 * that do not have the RTF_MULTIRT 22936 * flag. We don't process a copy 22937 * of the message here. This will be 22938 * done in the final sending loop. 22939 */ 22940 multirt_send = B_TRUE; 22941 } else { 22942 next_mp = ip_copymsg(first_mp); 22943 if (next_mp != NULL) 22944 IRE_REFHOLD(ire1); 22945 } 22946 } 22947 rw_exit(&ire->ire_bucket->irb_lock); 22948 } 22949 22950 if (stq) { 22951 /* 22952 * A non-NULL send-to queue means this packet is going 22953 * out of this machine. 22954 */ 22955 out_ill = (ill_t *)stq->q_ptr; 22956 22957 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22958 ttl_protocol = ((uint16_t *)ipha)[4]; 22959 /* 22960 * We accumulate the pseudo header checksum in cksum. 22961 * This is pretty hairy code, so watch close. One 22962 * thing to keep in mind is that UDP and TCP have 22963 * stored their respective datagram lengths in their 22964 * checksum fields. This lines things up real nice. 22965 */ 22966 cksum = (dst >> 16) + (dst & 0xFFFF) + 22967 (src >> 16) + (src & 0xFFFF); 22968 /* 22969 * We assume the udp checksum field contains the 22970 * length, so to compute the pseudo header checksum, 22971 * all we need is the protocol number and src/dst. 22972 */ 22973 /* Provide the checksums for UDP and TCP. */ 22974 if ((PROTO == IPPROTO_TCP) && 22975 (ip_hdr_included != IP_HDR_INCLUDED)) { 22976 /* hlen gets the number of uchar_ts in the IP header */ 22977 hlen = (V_HLEN & 0xF) << 2; 22978 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22979 IP_STAT(ipst, ip_out_sw_cksum); 22980 IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes, 22981 LENGTH - hlen); 22982 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22983 } else if (PROTO == IPPROTO_SCTP && 22984 (ip_hdr_included != IP_HDR_INCLUDED)) { 22985 sctp_hdr_t *sctph; 22986 22987 hlen = (V_HLEN & 0xF) << 2; 22988 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22989 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22990 sctph->sh_chksum = 0; 22991 #ifdef DEBUG 22992 if (!skip_sctp_cksum) 22993 #endif 22994 sctph->sh_chksum = sctp_cksum(mp, hlen); 22995 } else { 22996 queue_t *dev_q = stq->q_next; 22997 22998 if (!ILL_DIRECT_CAPABLE((ill_t *)stq->q_ptr) && 22999 (DEV_Q_FLOW_BLOCKED(dev_q))) { 23000 blocked: 23001 ipha->ipha_ident = ip_hdr_included; 23002 /* 23003 * If we don't have a conn to apply 23004 * backpressure, free the message. 23005 * In the ire_send path, we don't know 23006 * the position to requeue the packet. Rather 23007 * than reorder packets, we just drop this 23008 * packet. 23009 */ 23010 if (ipst->ips_ip_output_queue && 23011 connp != NULL && 23012 caller != IRE_SEND) { 23013 if (caller == IP_WSRV) { 23014 idl_tx_list_t *idl_txl; 23015 23016 idl_txl = 23017 &ipst->ips_idl_tx_list[0]; 23018 connp->conn_did_putbq = 1; 23019 (void) putbq(connp->conn_wq, 23020 first_mp); 23021 conn_drain_insert(connp, 23022 idl_txl); 23023 /* 23024 * This is the service thread, 23025 * and the queue is already 23026 * noenabled. The check for 23027 * canput and the putbq is not 23028 * atomic. So we need to check 23029 * again. 23030 */ 23031 if (canput(stq->q_next)) 23032 connp->conn_did_putbq 23033 = 0; 23034 IP_STAT(ipst, ip_conn_flputbq); 23035 } else { 23036 /* 23037 * We are not the service proc. 23038 * ip_wsrv will be scheduled or 23039 * is already running. 23040 */ 23041 23042 (void) putq(connp->conn_wq, 23043 first_mp); 23044 } 23045 } else { 23046 out_ill = (ill_t *)stq->q_ptr; 23047 BUMP_MIB(out_ill->ill_ip_mib, 23048 ipIfStatsOutDiscards); 23049 freemsg(first_mp); 23050 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23051 "ip_wput_ire_end: q %p (%S)", 23052 q, "discard"); 23053 } 23054 ire_refrele(ire); 23055 if (next_mp) { 23056 ire_refrele(ire1); 23057 freemsg(next_mp); 23058 } 23059 if (conn_outgoing_ill != NULL) 23060 ill_refrele(conn_outgoing_ill); 23061 return; 23062 } 23063 if ((PROTO == IPPROTO_UDP) && 23064 (ip_hdr_included != IP_HDR_INCLUDED)) { 23065 /* 23066 * hlen gets the number of uchar_ts in the 23067 * IP header 23068 */ 23069 hlen = (V_HLEN & 0xF) << 2; 23070 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 23071 max_frag = ire->ire_max_frag; 23072 if (*up != 0) { 23073 IP_CKSUM_XMIT(out_ill, ire, mp, ipha, 23074 up, PROTO, hlen, LENGTH, max_frag, 23075 ipsec_len, cksum); 23076 /* Software checksum? */ 23077 if (DB_CKSUMFLAGS(mp) == 0) { 23078 IP_STAT(ipst, ip_out_sw_cksum); 23079 IP_STAT_UPDATE(ipst, 23080 ip_udp_out_sw_cksum_bytes, 23081 LENGTH - hlen); 23082 } 23083 } 23084 } 23085 } 23086 /* 23087 * Need to do this even when fragmenting. The local 23088 * loopback can be done without computing checksums 23089 * but forwarding out other interface must be done 23090 * after the IP checksum (and ULP checksums) have been 23091 * computed. 23092 * 23093 * NOTE : multicast_forward is set only if this packet 23094 * originated from ip_wput. For packets originating from 23095 * ip_wput_multicast, it is not set. 23096 */ 23097 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 23098 multi_loopback: 23099 ip2dbg(("ip_wput: multicast, loop %d\n", 23100 conn_multicast_loop)); 23101 23102 /* Forget header checksum offload */ 23103 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 23104 23105 /* 23106 * Local loopback of multicasts? Check the 23107 * ill. 23108 * 23109 * Note that the loopback function will not come 23110 * in through ip_rput - it will only do the 23111 * client fanout thus we need to do an mforward 23112 * as well. The is different from the BSD 23113 * logic. 23114 */ 23115 if (ill != NULL) { 23116 if (ilm_lookup_ill(ill, ipha->ipha_dst, 23117 ALL_ZONES) != NULL) { 23118 /* 23119 * Pass along the virtual output q. 23120 * ip_wput_local() will distribute the 23121 * packet to all the matching zones, 23122 * except the sending zone when 23123 * IP_MULTICAST_LOOP is false. 23124 */ 23125 ip_multicast_loopback(q, ill, first_mp, 23126 conn_multicast_loop ? 0 : 23127 IP_FF_NO_MCAST_LOOP, zoneid); 23128 } 23129 } 23130 if (ipha->ipha_ttl == 0) { 23131 /* 23132 * 0 => only to this host i.e. we are 23133 * done. We are also done if this was the 23134 * loopback interface since it is sufficient 23135 * to loopback one copy of a multicast packet. 23136 */ 23137 freemsg(first_mp); 23138 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23139 "ip_wput_ire_end: q %p (%S)", 23140 q, "loopback"); 23141 ire_refrele(ire); 23142 if (conn_outgoing_ill != NULL) 23143 ill_refrele(conn_outgoing_ill); 23144 return; 23145 } 23146 /* 23147 * ILLF_MULTICAST is checked in ip_newroute 23148 * i.e. we don't need to check it here since 23149 * all IRE_CACHEs come from ip_newroute. 23150 * For multicast traffic, SO_DONTROUTE is interpreted 23151 * to mean only send the packet out the interface 23152 * (optionally specified with IP_MULTICAST_IF) 23153 * and do not forward it out additional interfaces. 23154 * RSVP and the rsvp daemon is an example of a 23155 * protocol and user level process that 23156 * handles it's own routing. Hence, it uses the 23157 * SO_DONTROUTE option to accomplish this. 23158 */ 23159 23160 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 23161 ill != NULL) { 23162 /* Unconditionally redo the checksum */ 23163 ipha->ipha_hdr_checksum = 0; 23164 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23165 23166 /* 23167 * If this needs to go out secure, we need 23168 * to wait till we finish the IPsec 23169 * processing. 23170 */ 23171 if (ipsec_len == 0 && 23172 ip_mforward(ill, ipha, mp)) { 23173 freemsg(first_mp); 23174 ip1dbg(("ip_wput: mforward failed\n")); 23175 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23176 "ip_wput_ire_end: q %p (%S)", 23177 q, "mforward failed"); 23178 ire_refrele(ire); 23179 if (conn_outgoing_ill != NULL) 23180 ill_refrele(conn_outgoing_ill); 23181 return; 23182 } 23183 } 23184 } 23185 max_frag = ire->ire_max_frag; 23186 cksum += ttl_protocol; 23187 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 23188 /* No fragmentation required for this one. */ 23189 /* 23190 * Don't use frag_flag if packet is pre-built or source 23191 * routed or if multicast (since multicast packets do 23192 * not solicit ICMP "packet too big" messages). 23193 */ 23194 if ((ip_hdr_included != IP_HDR_INCLUDED) && 23195 (V_HLEN == IP_SIMPLE_HDR_VERSION || 23196 !ip_source_route_included(ipha)) && 23197 !CLASSD(ipha->ipha_dst)) 23198 ipha->ipha_fragment_offset_and_flags |= 23199 htons(ire->ire_frag_flag); 23200 23201 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 23202 /* Complete the IP header checksum. */ 23203 cksum += ipha->ipha_ident; 23204 cksum += (v_hlen_tos_len >> 16)+ 23205 (v_hlen_tos_len & 0xFFFF); 23206 cksum += ipha->ipha_fragment_offset_and_flags; 23207 hlen = (V_HLEN & 0xF) - 23208 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 23209 if (hlen) { 23210 checksumoptions: 23211 /* 23212 * Account for the IP Options in the IP 23213 * header checksum. 23214 */ 23215 up = (uint16_t *)(rptr+ 23216 IP_SIMPLE_HDR_LENGTH); 23217 do { 23218 cksum += up[0]; 23219 cksum += up[1]; 23220 up += 2; 23221 } while (--hlen); 23222 } 23223 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 23224 cksum = ~(cksum + (cksum >> 16)); 23225 ipha->ipha_hdr_checksum = (uint16_t)cksum; 23226 } 23227 if (ipsec_len != 0) { 23228 ipsec_out_process(q, first_mp, ire, ill_index); 23229 if (!next_mp) { 23230 ire_refrele(ire); 23231 if (conn_outgoing_ill != NULL) 23232 ill_refrele(conn_outgoing_ill); 23233 return; 23234 } 23235 goto next; 23236 } 23237 23238 /* 23239 * multirt_send has already been handled 23240 * for broadcast, but not yet for multicast 23241 * or IP options. 23242 */ 23243 if (next_mp == NULL) { 23244 if (ire->ire_flags & RTF_MULTIRT) { 23245 multirt_send = B_TRUE; 23246 } 23247 } 23248 23249 /* 23250 * In most cases, the emission loop below is 23251 * entered only once. Only in the case where 23252 * the ire holds the RTF_MULTIRT flag, do we loop 23253 * to process all RTF_MULTIRT ires in the bucket, 23254 * and send the packet through all crossed 23255 * RTF_MULTIRT routes. 23256 */ 23257 do { 23258 if (multirt_send) { 23259 irb_t *irb; 23260 23261 irb = ire->ire_bucket; 23262 ASSERT(irb != NULL); 23263 /* 23264 * We are in a multiple send case, 23265 * need to get the next IRE and make 23266 * a duplicate of the packet. 23267 */ 23268 IRB_REFHOLD(irb); 23269 for (ire1 = ire->ire_next; 23270 ire1 != NULL; 23271 ire1 = ire1->ire_next) { 23272 if (!(ire1->ire_flags & 23273 RTF_MULTIRT)) 23274 continue; 23275 23276 if (ire1->ire_addr != 23277 ire->ire_addr) 23278 continue; 23279 23280 if (ire1->ire_marks & 23281 (IRE_MARK_CONDEMNED | 23282 IRE_MARK_TESTHIDDEN)) 23283 continue; 23284 23285 /* Got one */ 23286 IRE_REFHOLD(ire1); 23287 break; 23288 } 23289 IRB_REFRELE(irb); 23290 23291 if (ire1 != NULL) { 23292 next_mp = copyb(mp); 23293 if ((next_mp == NULL) || 23294 ((mp->b_cont != NULL) && 23295 ((next_mp->b_cont = 23296 dupmsg(mp->b_cont)) 23297 == NULL))) { 23298 freemsg(next_mp); 23299 next_mp = NULL; 23300 ire_refrele(ire1); 23301 ire1 = NULL; 23302 } 23303 } 23304 23305 /* 23306 * Last multiroute ire; don't loop 23307 * anymore. The emission is over 23308 * and next_mp is NULL. 23309 */ 23310 if (ire1 == NULL) { 23311 multirt_send = B_FALSE; 23312 } 23313 } 23314 23315 out_ill = ire_to_ill(ire); 23316 DTRACE_PROBE4(ip4__physical__out__start, 23317 ill_t *, NULL, 23318 ill_t *, out_ill, 23319 ipha_t *, ipha, mblk_t *, mp); 23320 FW_HOOKS(ipst->ips_ip4_physical_out_event, 23321 ipst->ips_ipv4firewall_physical_out, 23322 NULL, out_ill, ipha, mp, mp, 0, ipst); 23323 DTRACE_PROBE1(ip4__physical__out__end, 23324 mblk_t *, mp); 23325 if (mp == NULL) 23326 goto release_ire_and_ill_2; 23327 23328 ASSERT(ipsec_len == 0); 23329 mp->b_prev = 23330 SET_BPREV_FLAG(IPP_LOCAL_OUT); 23331 DTRACE_PROBE2(ip__xmit__2, 23332 mblk_t *, mp, ire_t *, ire); 23333 pktxmit_state = ip_xmit_v4(mp, ire, 23334 NULL, B_TRUE, connp); 23335 if ((pktxmit_state == SEND_FAILED) || 23336 (pktxmit_state == LLHDR_RESLV_FAILED)) { 23337 release_ire_and_ill_2: 23338 if (next_mp) { 23339 freemsg(next_mp); 23340 ire_refrele(ire1); 23341 } 23342 ire_refrele(ire); 23343 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23344 "ip_wput_ire_end: q %p (%S)", 23345 q, "discard MDATA"); 23346 if (conn_outgoing_ill != NULL) 23347 ill_refrele(conn_outgoing_ill); 23348 return; 23349 } 23350 23351 if (CLASSD(dst)) { 23352 BUMP_MIB(out_ill->ill_ip_mib, 23353 ipIfStatsHCOutMcastPkts); 23354 UPDATE_MIB(out_ill->ill_ip_mib, 23355 ipIfStatsHCOutMcastOctets, 23356 LENGTH); 23357 } else if (ire->ire_type == IRE_BROADCAST) { 23358 BUMP_MIB(out_ill->ill_ip_mib, 23359 ipIfStatsHCOutBcastPkts); 23360 } 23361 23362 if (multirt_send) { 23363 /* 23364 * We are in a multiple send case, 23365 * need to re-enter the sending loop 23366 * using the next ire. 23367 */ 23368 ire_refrele(ire); 23369 ire = ire1; 23370 stq = ire->ire_stq; 23371 mp = next_mp; 23372 next_mp = NULL; 23373 ipha = (ipha_t *)mp->b_rptr; 23374 ill_index = Q_TO_INDEX(stq); 23375 } 23376 } while (multirt_send); 23377 23378 if (!next_mp) { 23379 /* 23380 * Last copy going out (the ultra-common 23381 * case). Note that we intentionally replicate 23382 * the putnext rather than calling it before 23383 * the next_mp check in hopes of a little 23384 * tail-call action out of the compiler. 23385 */ 23386 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23387 "ip_wput_ire_end: q %p (%S)", 23388 q, "last copy out(1)"); 23389 ire_refrele(ire); 23390 if (conn_outgoing_ill != NULL) 23391 ill_refrele(conn_outgoing_ill); 23392 return; 23393 } 23394 /* More copies going out below. */ 23395 } else { 23396 int offset; 23397 fragmentit: 23398 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23399 /* 23400 * If this would generate a icmp_frag_needed message, 23401 * we need to handle it before we do the IPsec 23402 * processing. Otherwise, we need to strip the IPsec 23403 * headers before we send up the message to the ULPs 23404 * which becomes messy and difficult. 23405 */ 23406 if (ipsec_len != 0) { 23407 if ((max_frag < (unsigned int)(LENGTH + 23408 ipsec_len)) && (offset & IPH_DF)) { 23409 out_ill = (ill_t *)stq->q_ptr; 23410 BUMP_MIB(out_ill->ill_ip_mib, 23411 ipIfStatsOutFragFails); 23412 BUMP_MIB(out_ill->ill_ip_mib, 23413 ipIfStatsOutFragReqds); 23414 ipha->ipha_hdr_checksum = 0; 23415 ipha->ipha_hdr_checksum = 23416 (uint16_t)ip_csum_hdr(ipha); 23417 icmp_frag_needed(ire->ire_stq, first_mp, 23418 max_frag, zoneid, ipst); 23419 if (!next_mp) { 23420 ire_refrele(ire); 23421 if (conn_outgoing_ill != NULL) { 23422 ill_refrele( 23423 conn_outgoing_ill); 23424 } 23425 return; 23426 } 23427 } else { 23428 /* 23429 * This won't cause a icmp_frag_needed 23430 * message. to be generated. Send it on 23431 * the wire. Note that this could still 23432 * cause fragmentation and all we 23433 * do is the generation of the message 23434 * to the ULP if needed before IPsec. 23435 */ 23436 if (!next_mp) { 23437 ipsec_out_process(q, first_mp, 23438 ire, ill_index); 23439 TRACE_2(TR_FAC_IP, 23440 TR_IP_WPUT_IRE_END, 23441 "ip_wput_ire_end: q %p " 23442 "(%S)", q, 23443 "last ipsec_out_process"); 23444 ire_refrele(ire); 23445 if (conn_outgoing_ill != NULL) { 23446 ill_refrele( 23447 conn_outgoing_ill); 23448 } 23449 return; 23450 } 23451 ipsec_out_process(q, first_mp, 23452 ire, ill_index); 23453 } 23454 } else { 23455 /* 23456 * Initiate IPPF processing. For 23457 * fragmentable packets we finish 23458 * all QOS packet processing before 23459 * calling: 23460 * ip_wput_ire_fragmentit->ip_wput_frag 23461 */ 23462 23463 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23464 ip_process(IPP_LOCAL_OUT, &mp, 23465 ill_index); 23466 if (mp == NULL) { 23467 out_ill = (ill_t *)stq->q_ptr; 23468 BUMP_MIB(out_ill->ill_ip_mib, 23469 ipIfStatsOutDiscards); 23470 if (next_mp != NULL) { 23471 freemsg(next_mp); 23472 ire_refrele(ire1); 23473 } 23474 ire_refrele(ire); 23475 TRACE_2(TR_FAC_IP, 23476 TR_IP_WPUT_IRE_END, 23477 "ip_wput_ire: q %p (%S)", 23478 q, "discard MDATA"); 23479 if (conn_outgoing_ill != NULL) { 23480 ill_refrele( 23481 conn_outgoing_ill); 23482 } 23483 return; 23484 } 23485 } 23486 if (!next_mp) { 23487 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23488 "ip_wput_ire_end: q %p (%S)", 23489 q, "last fragmentation"); 23490 ip_wput_ire_fragmentit(mp, ire, 23491 zoneid, ipst, connp); 23492 ire_refrele(ire); 23493 if (conn_outgoing_ill != NULL) 23494 ill_refrele(conn_outgoing_ill); 23495 return; 23496 } 23497 ip_wput_ire_fragmentit(mp, ire, 23498 zoneid, ipst, connp); 23499 } 23500 } 23501 } else { 23502 nullstq: 23503 /* A NULL stq means the destination address is local. */ 23504 UPDATE_OB_PKT_COUNT(ire); 23505 ire->ire_last_used_time = lbolt; 23506 ASSERT(ire->ire_ipif != NULL); 23507 if (!next_mp) { 23508 /* 23509 * Is there an "in" and "out" for traffic local 23510 * to a host (loopback)? The code in Solaris doesn't 23511 * explicitly draw a line in its code for in vs out, 23512 * so we've had to draw a line in the sand: ip_wput_ire 23513 * is considered to be the "output" side and 23514 * ip_wput_local to be the "input" side. 23515 */ 23516 out_ill = ire_to_ill(ire); 23517 23518 /* 23519 * DTrace this as ip:::send. A blocked packet will 23520 * fire the send probe, but not the receive probe. 23521 */ 23522 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23523 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23524 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23525 23526 DTRACE_PROBE4(ip4__loopback__out__start, 23527 ill_t *, NULL, ill_t *, out_ill, 23528 ipha_t *, ipha, mblk_t *, first_mp); 23529 23530 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23531 ipst->ips_ipv4firewall_loopback_out, 23532 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23533 23534 DTRACE_PROBE1(ip4__loopback__out_end, 23535 mblk_t *, first_mp); 23536 23537 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23538 "ip_wput_ire_end: q %p (%S)", 23539 q, "local address"); 23540 23541 if (first_mp != NULL) 23542 ip_wput_local(q, out_ill, ipha, 23543 first_mp, ire, 0, ire->ire_zoneid); 23544 ire_refrele(ire); 23545 if (conn_outgoing_ill != NULL) 23546 ill_refrele(conn_outgoing_ill); 23547 return; 23548 } 23549 23550 out_ill = ire_to_ill(ire); 23551 23552 /* 23553 * DTrace this as ip:::send. A blocked packet will fire the 23554 * send probe, but not the receive probe. 23555 */ 23556 DTRACE_IP7(send, mblk_t *, first_mp, conn_t *, NULL, 23557 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 23558 ipha_t *, ipha, ip6_t *, NULL, int, 1); 23559 23560 DTRACE_PROBE4(ip4__loopback__out__start, 23561 ill_t *, NULL, ill_t *, out_ill, 23562 ipha_t *, ipha, mblk_t *, first_mp); 23563 23564 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 23565 ipst->ips_ipv4firewall_loopback_out, 23566 NULL, out_ill, ipha, first_mp, mp, 0, ipst); 23567 23568 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23569 23570 if (first_mp != NULL) 23571 ip_wput_local(q, out_ill, ipha, 23572 first_mp, ire, 0, ire->ire_zoneid); 23573 } 23574 next: 23575 /* 23576 * More copies going out to additional interfaces. 23577 * ire1 has already been held. We don't need the 23578 * "ire" anymore. 23579 */ 23580 ire_refrele(ire); 23581 ire = ire1; 23582 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23583 mp = next_mp; 23584 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23585 ill = ire_to_ill(ire); 23586 first_mp = mp; 23587 if (ipsec_len != 0) { 23588 ASSERT(first_mp->b_datap->db_type == M_CTL); 23589 mp = mp->b_cont; 23590 } 23591 dst = ire->ire_addr; 23592 ipha = (ipha_t *)mp->b_rptr; 23593 /* 23594 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23595 * Restore ipha_ident "no checksum" flag. 23596 */ 23597 src = orig_src; 23598 ipha->ipha_ident = ip_hdr_included; 23599 goto another; 23600 23601 #undef rptr 23602 #undef Q_TO_INDEX 23603 } 23604 23605 /* 23606 * Routine to allocate a message that is used to notify the ULP about MDT. 23607 * The caller may provide a pointer to the link-layer MDT capabilities, 23608 * or NULL if MDT is to be disabled on the stream. 23609 */ 23610 mblk_t * 23611 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23612 { 23613 mblk_t *mp; 23614 ip_mdt_info_t *mdti; 23615 ill_mdt_capab_t *idst; 23616 23617 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23618 DB_TYPE(mp) = M_CTL; 23619 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23620 mdti = (ip_mdt_info_t *)mp->b_rptr; 23621 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23622 idst = &(mdti->mdt_capab); 23623 23624 /* 23625 * If the caller provides us with the capability, copy 23626 * it over into our notification message; otherwise 23627 * we zero out the capability portion. 23628 */ 23629 if (isrc != NULL) 23630 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23631 else 23632 bzero((caddr_t)idst, sizeof (*idst)); 23633 } 23634 return (mp); 23635 } 23636 23637 /* 23638 * Routine which determines whether MDT can be enabled on the destination 23639 * IRE and IPC combination, and if so, allocates and returns the MDT 23640 * notification mblk that may be used by ULP. We also check if we need to 23641 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23642 * MDT usage in the past have been lifted. This gets called during IP 23643 * and ULP binding. 23644 */ 23645 mblk_t * 23646 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23647 ill_mdt_capab_t *mdt_cap) 23648 { 23649 mblk_t *mp; 23650 boolean_t rc = B_FALSE; 23651 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23652 23653 ASSERT(dst_ire != NULL); 23654 ASSERT(connp != NULL); 23655 ASSERT(mdt_cap != NULL); 23656 23657 /* 23658 * Currently, we only support simple TCP/{IPv4,IPv6} with 23659 * Multidata, which is handled in tcp_multisend(). This 23660 * is the reason why we do all these checks here, to ensure 23661 * that we don't enable Multidata for the cases which we 23662 * can't handle at the moment. 23663 */ 23664 do { 23665 /* Only do TCP at the moment */ 23666 if (connp->conn_ulp != IPPROTO_TCP) 23667 break; 23668 23669 /* 23670 * IPsec outbound policy present? Note that we get here 23671 * after calling ipsec_conn_cache_policy() where the global 23672 * policy checking is performed. conn_latch will be 23673 * non-NULL as long as there's a policy defined, 23674 * i.e. conn_out_enforce_policy may be NULL in such case 23675 * when the connection is non-secure, and hence we check 23676 * further if the latch refers to an outbound policy. 23677 */ 23678 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23679 break; 23680 23681 /* CGTP (multiroute) is enabled? */ 23682 if (dst_ire->ire_flags & RTF_MULTIRT) 23683 break; 23684 23685 /* Outbound IPQoS enabled? */ 23686 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23687 /* 23688 * In this case, we disable MDT for this and all 23689 * future connections going over the interface. 23690 */ 23691 mdt_cap->ill_mdt_on = 0; 23692 break; 23693 } 23694 23695 /* socket option(s) present? */ 23696 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23697 break; 23698 23699 rc = B_TRUE; 23700 /* CONSTCOND */ 23701 } while (0); 23702 23703 /* Remember the result */ 23704 connp->conn_mdt_ok = rc; 23705 23706 if (!rc) 23707 return (NULL); 23708 else if (!mdt_cap->ill_mdt_on) { 23709 /* 23710 * If MDT has been previously turned off in the past, and we 23711 * currently can do MDT (due to IPQoS policy removal, etc.) 23712 * then enable it for this interface. 23713 */ 23714 mdt_cap->ill_mdt_on = 1; 23715 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23716 "interface %s\n", ill_name)); 23717 } 23718 23719 /* Allocate the MDT info mblk */ 23720 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23721 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23722 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23723 return (NULL); 23724 } 23725 return (mp); 23726 } 23727 23728 /* 23729 * Routine to allocate a message that is used to notify the ULP about LSO. 23730 * The caller may provide a pointer to the link-layer LSO capabilities, 23731 * or NULL if LSO is to be disabled on the stream. 23732 */ 23733 mblk_t * 23734 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23735 { 23736 mblk_t *mp; 23737 ip_lso_info_t *lsoi; 23738 ill_lso_capab_t *idst; 23739 23740 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23741 DB_TYPE(mp) = M_CTL; 23742 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23743 lsoi = (ip_lso_info_t *)mp->b_rptr; 23744 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23745 idst = &(lsoi->lso_capab); 23746 23747 /* 23748 * If the caller provides us with the capability, copy 23749 * it over into our notification message; otherwise 23750 * we zero out the capability portion. 23751 */ 23752 if (isrc != NULL) 23753 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23754 else 23755 bzero((caddr_t)idst, sizeof (*idst)); 23756 } 23757 return (mp); 23758 } 23759 23760 /* 23761 * Routine which determines whether LSO can be enabled on the destination 23762 * IRE and IPC combination, and if so, allocates and returns the LSO 23763 * notification mblk that may be used by ULP. We also check if we need to 23764 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23765 * LSO usage in the past have been lifted. This gets called during IP 23766 * and ULP binding. 23767 */ 23768 mblk_t * 23769 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23770 ill_lso_capab_t *lso_cap) 23771 { 23772 mblk_t *mp; 23773 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 23774 23775 ASSERT(dst_ire != NULL); 23776 ASSERT(connp != NULL); 23777 ASSERT(lso_cap != NULL); 23778 23779 connp->conn_lso_ok = B_TRUE; 23780 23781 if ((connp->conn_ulp != IPPROTO_TCP) || 23782 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23783 (dst_ire->ire_flags & RTF_MULTIRT) || 23784 !CONN_IS_LSO_MD_FASTPATH(connp) || 23785 (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 23786 connp->conn_lso_ok = B_FALSE; 23787 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 23788 /* 23789 * Disable LSO for this and all future connections going 23790 * over the interface. 23791 */ 23792 lso_cap->ill_lso_on = 0; 23793 } 23794 } 23795 23796 if (!connp->conn_lso_ok) 23797 return (NULL); 23798 else if (!lso_cap->ill_lso_on) { 23799 /* 23800 * If LSO has been previously turned off in the past, and we 23801 * currently can do LSO (due to IPQoS policy removal, etc.) 23802 * then enable it for this interface. 23803 */ 23804 lso_cap->ill_lso_on = 1; 23805 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23806 ill_name)); 23807 } 23808 23809 /* Allocate the LSO info mblk */ 23810 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23811 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23812 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23813 23814 return (mp); 23815 } 23816 23817 /* 23818 * Create destination address attribute, and fill it with the physical 23819 * destination address and SAP taken from the template DL_UNITDATA_REQ 23820 * message block. 23821 */ 23822 boolean_t 23823 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23824 { 23825 dl_unitdata_req_t *dlurp; 23826 pattr_t *pa; 23827 pattrinfo_t pa_info; 23828 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23829 uint_t das_len, das_off; 23830 23831 ASSERT(dlmp != NULL); 23832 23833 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23834 das_len = dlurp->dl_dest_addr_length; 23835 das_off = dlurp->dl_dest_addr_offset; 23836 23837 pa_info.type = PATTR_DSTADDRSAP; 23838 pa_info.len = sizeof (**das) + das_len - 1; 23839 23840 /* create and associate the attribute */ 23841 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23842 if (pa != NULL) { 23843 ASSERT(*das != NULL); 23844 (*das)->addr_is_group = 0; 23845 (*das)->addr_len = (uint8_t)das_len; 23846 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23847 } 23848 23849 return (pa != NULL); 23850 } 23851 23852 /* 23853 * Create hardware checksum attribute and fill it with the values passed. 23854 */ 23855 boolean_t 23856 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23857 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23858 { 23859 pattr_t *pa; 23860 pattrinfo_t pa_info; 23861 23862 ASSERT(mmd != NULL); 23863 23864 pa_info.type = PATTR_HCKSUM; 23865 pa_info.len = sizeof (pattr_hcksum_t); 23866 23867 /* create and associate the attribute */ 23868 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23869 if (pa != NULL) { 23870 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23871 23872 hck->hcksum_start_offset = start_offset; 23873 hck->hcksum_stuff_offset = stuff_offset; 23874 hck->hcksum_end_offset = end_offset; 23875 hck->hcksum_flags = flags; 23876 } 23877 return (pa != NULL); 23878 } 23879 23880 /* 23881 * Create zerocopy attribute and fill it with the specified flags 23882 */ 23883 boolean_t 23884 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23885 { 23886 pattr_t *pa; 23887 pattrinfo_t pa_info; 23888 23889 ASSERT(mmd != NULL); 23890 pa_info.type = PATTR_ZCOPY; 23891 pa_info.len = sizeof (pattr_zcopy_t); 23892 23893 /* create and associate the attribute */ 23894 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23895 if (pa != NULL) { 23896 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23897 23898 zcopy->zcopy_flags = flags; 23899 } 23900 return (pa != NULL); 23901 } 23902 23903 /* 23904 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23905 * block chain. We could rewrite to handle arbitrary message block chains but 23906 * that would make the code complicated and slow. Right now there three 23907 * restrictions: 23908 * 23909 * 1. The first message block must contain the complete IP header and 23910 * at least 1 byte of payload data. 23911 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23912 * so that we can use a single Multidata message. 23913 * 3. No frag must be distributed over two or more message blocks so 23914 * that we don't need more than two packet descriptors per frag. 23915 * 23916 * The above restrictions allow us to support userland applications (which 23917 * will send down a single message block) and NFS over UDP (which will 23918 * send down a chain of at most three message blocks). 23919 * 23920 * We also don't use MDT for payloads with less than or equal to 23921 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23922 */ 23923 boolean_t 23924 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23925 { 23926 int blocks; 23927 ssize_t total, missing, size; 23928 23929 ASSERT(mp != NULL); 23930 ASSERT(hdr_len > 0); 23931 23932 size = MBLKL(mp) - hdr_len; 23933 if (size <= 0) 23934 return (B_FALSE); 23935 23936 /* The first mblk contains the header and some payload. */ 23937 blocks = 1; 23938 total = size; 23939 size %= len; 23940 missing = (size == 0) ? 0 : (len - size); 23941 mp = mp->b_cont; 23942 23943 while (mp != NULL) { 23944 /* 23945 * Give up if we encounter a zero length message block. 23946 * In practice, this should rarely happen and therefore 23947 * not worth the trouble of freeing and re-linking the 23948 * mblk from the chain to handle such case. 23949 */ 23950 if ((size = MBLKL(mp)) == 0) 23951 return (B_FALSE); 23952 23953 /* Too many payload buffers for a single Multidata message? */ 23954 if (++blocks > MULTIDATA_MAX_PBUFS) 23955 return (B_FALSE); 23956 23957 total += size; 23958 /* Is a frag distributed over two or more message blocks? */ 23959 if (missing > size) 23960 return (B_FALSE); 23961 size -= missing; 23962 23963 size %= len; 23964 missing = (size == 0) ? 0 : (len - size); 23965 23966 mp = mp->b_cont; 23967 } 23968 23969 return (total > ip_wput_frag_mdt_min); 23970 } 23971 23972 /* 23973 * Outbound IPv4 fragmentation routine using MDT. 23974 */ 23975 static void 23976 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23977 uint32_t frag_flag, int offset) 23978 { 23979 ipha_t *ipha_orig; 23980 int i1, ip_data_end; 23981 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23982 mblk_t *hdr_mp, *md_mp = NULL; 23983 unsigned char *hdr_ptr, *pld_ptr; 23984 multidata_t *mmd; 23985 ip_pdescinfo_t pdi; 23986 ill_t *ill; 23987 ip_stack_t *ipst = ire->ire_ipst; 23988 23989 ASSERT(DB_TYPE(mp) == M_DATA); 23990 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23991 23992 ill = ire_to_ill(ire); 23993 ASSERT(ill != NULL); 23994 23995 ipha_orig = (ipha_t *)mp->b_rptr; 23996 mp->b_rptr += sizeof (ipha_t); 23997 23998 /* Calculate how many packets we will send out */ 23999 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 24000 pkts = (i1 + len - 1) / len; 24001 ASSERT(pkts > 1); 24002 24003 /* Allocate a message block which will hold all the IP Headers. */ 24004 wroff = ipst->ips_ip_wroff_extra; 24005 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 24006 24007 i1 = pkts * hdr_chunk_len; 24008 /* 24009 * Create the header buffer, Multidata and destination address 24010 * and SAP attribute that should be associated with it. 24011 */ 24012 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 24013 ((hdr_mp->b_wptr += i1), 24014 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 24015 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 24016 freemsg(mp); 24017 if (md_mp == NULL) { 24018 freemsg(hdr_mp); 24019 } else { 24020 free_mmd: IP_STAT(ipst, ip_frag_mdt_discarded); 24021 freemsg(md_mp); 24022 } 24023 IP_STAT(ipst, ip_frag_mdt_allocfail); 24024 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 24025 return; 24026 } 24027 IP_STAT(ipst, ip_frag_mdt_allocd); 24028 24029 /* 24030 * Add a payload buffer to the Multidata; this operation must not 24031 * fail, or otherwise our logic in this routine is broken. There 24032 * is no memory allocation done by the routine, so any returned 24033 * failure simply tells us that we've done something wrong. 24034 * 24035 * A failure tells us that either we're adding the same payload 24036 * buffer more than once, or we're trying to add more buffers than 24037 * allowed. None of the above cases should happen, and we panic 24038 * because either there's horrible heap corruption, and/or 24039 * programming mistake. 24040 */ 24041 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24042 goto pbuf_panic; 24043 24044 hdr_ptr = hdr_mp->b_rptr; 24045 pld_ptr = mp->b_rptr; 24046 24047 /* Establish the ending byte offset, based on the starting offset. */ 24048 offset <<= 3; 24049 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 24050 IP_SIMPLE_HDR_LENGTH; 24051 24052 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 24053 24054 while (pld_ptr < mp->b_wptr) { 24055 ipha_t *ipha; 24056 uint16_t offset_and_flags; 24057 uint16_t ip_len; 24058 int error; 24059 24060 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 24061 ipha = (ipha_t *)(hdr_ptr + wroff); 24062 ASSERT(OK_32PTR(ipha)); 24063 *ipha = *ipha_orig; 24064 24065 if (ip_data_end - offset > len) { 24066 offset_and_flags = IPH_MF; 24067 } else { 24068 /* 24069 * Last frag. Set len to the length of this last piece. 24070 */ 24071 len = ip_data_end - offset; 24072 /* A frag of a frag might have IPH_MF non-zero */ 24073 offset_and_flags = 24074 ntohs(ipha->ipha_fragment_offset_and_flags) & 24075 IPH_MF; 24076 } 24077 offset_and_flags |= (uint16_t)(offset >> 3); 24078 offset_and_flags |= (uint16_t)frag_flag; 24079 /* Store the offset and flags in the IP header. */ 24080 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24081 24082 /* Store the length in the IP header. */ 24083 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 24084 ipha->ipha_length = htons(ip_len); 24085 24086 /* 24087 * Set the IP header checksum. Note that mp is just 24088 * the header, so this is easy to pass to ip_csum. 24089 */ 24090 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24091 24092 DTRACE_IP7(send, mblk_t *, md_mp, conn_t *, NULL, void_ip_t *, 24093 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, 24094 NULL, int, 0); 24095 24096 /* 24097 * Record offset and size of header and data of the next packet 24098 * in the multidata message. 24099 */ 24100 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 24101 PDESC_PLD_INIT(&pdi); 24102 i1 = MIN(mp->b_wptr - pld_ptr, len); 24103 ASSERT(i1 > 0); 24104 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 24105 if (i1 == len) { 24106 pld_ptr += len; 24107 } else { 24108 i1 = len - i1; 24109 mp = mp->b_cont; 24110 ASSERT(mp != NULL); 24111 ASSERT(MBLKL(mp) >= i1); 24112 /* 24113 * Attach the next payload message block to the 24114 * multidata message. 24115 */ 24116 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24117 goto pbuf_panic; 24118 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 24119 pld_ptr = mp->b_rptr + i1; 24120 } 24121 24122 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 24123 KM_NOSLEEP)) == NULL) { 24124 /* 24125 * Any failure other than ENOMEM indicates that we 24126 * have passed in invalid pdesc info or parameters 24127 * to mmd_addpdesc, which must not happen. 24128 * 24129 * EINVAL is a result of failure on boundary checks 24130 * against the pdesc info contents. It should not 24131 * happen, and we panic because either there's 24132 * horrible heap corruption, and/or programming 24133 * mistake. 24134 */ 24135 if (error != ENOMEM) { 24136 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 24137 "pdesc logic error detected for " 24138 "mmd %p pinfo %p (%d)\n", 24139 (void *)mmd, (void *)&pdi, error); 24140 /* NOTREACHED */ 24141 } 24142 IP_STAT(ipst, ip_frag_mdt_addpdescfail); 24143 /* Free unattached payload message blocks as well */ 24144 md_mp->b_cont = mp->b_cont; 24145 goto free_mmd; 24146 } 24147 24148 /* Advance fragment offset. */ 24149 offset += len; 24150 24151 /* Advance to location for next header in the buffer. */ 24152 hdr_ptr += hdr_chunk_len; 24153 24154 /* Did we reach the next payload message block? */ 24155 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 24156 mp = mp->b_cont; 24157 /* 24158 * Attach the next message block with payload 24159 * data to the multidata message. 24160 */ 24161 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 24162 goto pbuf_panic; 24163 pld_ptr = mp->b_rptr; 24164 } 24165 } 24166 24167 ASSERT(hdr_mp->b_wptr == hdr_ptr); 24168 ASSERT(mp->b_wptr == pld_ptr); 24169 24170 /* Update IP statistics */ 24171 IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts); 24172 24173 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 24174 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 24175 24176 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 24177 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 24178 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 24179 24180 if (pkt_type == OB_PKT) { 24181 ire->ire_ob_pkt_count += pkts; 24182 if (ire->ire_ipif != NULL) 24183 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 24184 } else { 24185 /* The type is IB_PKT in the forwarding path. */ 24186 ire->ire_ib_pkt_count += pkts; 24187 ASSERT(!IRE_IS_LOCAL(ire)); 24188 if (ire->ire_type & IRE_BROADCAST) { 24189 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 24190 } else { 24191 UPDATE_MIB(ill->ill_ip_mib, 24192 ipIfStatsHCOutForwDatagrams, pkts); 24193 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 24194 } 24195 } 24196 ire->ire_last_used_time = lbolt; 24197 /* Send it down */ 24198 putnext(ire->ire_stq, md_mp); 24199 return; 24200 24201 pbuf_panic: 24202 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 24203 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 24204 pbuf_idx); 24205 /* NOTREACHED */ 24206 } 24207 24208 /* 24209 * Outbound IP fragmentation routine. 24210 * 24211 * NOTE : This routine does not ire_refrele the ire that is passed in 24212 * as the argument. 24213 */ 24214 static void 24215 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 24216 uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst, conn_t *connp) 24217 { 24218 int i1; 24219 mblk_t *ll_hdr_mp; 24220 int ll_hdr_len; 24221 int hdr_len; 24222 mblk_t *hdr_mp; 24223 ipha_t *ipha; 24224 int ip_data_end; 24225 int len; 24226 mblk_t *mp = mp_orig, *mp1; 24227 int offset; 24228 queue_t *q; 24229 uint32_t v_hlen_tos_len; 24230 mblk_t *first_mp; 24231 boolean_t mctl_present; 24232 ill_t *ill; 24233 ill_t *out_ill; 24234 mblk_t *xmit_mp; 24235 mblk_t *carve_mp; 24236 ire_t *ire1 = NULL; 24237 ire_t *save_ire = NULL; 24238 mblk_t *next_mp = NULL; 24239 boolean_t last_frag = B_FALSE; 24240 boolean_t multirt_send = B_FALSE; 24241 ire_t *first_ire = NULL; 24242 irb_t *irb = NULL; 24243 mib2_ipIfStatsEntry_t *mibptr = NULL; 24244 24245 ill = ire_to_ill(ire); 24246 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib; 24247 24248 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 24249 24250 if (max_frag == 0) { 24251 ip1dbg(("ip_wput_frag: ire frag size is 0" 24252 " - dropping packet\n")); 24253 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24254 freemsg(mp); 24255 return; 24256 } 24257 24258 /* 24259 * IPsec does not allow hw accelerated packets to be fragmented 24260 * This check is made in ip_wput_ipsec_out prior to coming here 24261 * via ip_wput_ire_fragmentit. 24262 * 24263 * If at this point we have an ire whose ARP request has not 24264 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 24265 * sending of ARP query and change ire's state to ND_INCOMPLETE. 24266 * This packet and all fragmentable packets for this ire will 24267 * continue to get dropped while ire_nce->nce_state remains in 24268 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 24269 * ND_REACHABLE, all subsquent large packets for this ire will 24270 * get fragemented and sent out by this function. 24271 */ 24272 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 24273 /* If nce_state is ND_INITIAL, trigger ARP query */ 24274 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 24275 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 24276 " - dropping packet\n")); 24277 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24278 freemsg(mp); 24279 return; 24280 } 24281 24282 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 24283 "ip_wput_frag_start:"); 24284 24285 if (mp->b_datap->db_type == M_CTL) { 24286 first_mp = mp; 24287 mp_orig = mp = mp->b_cont; 24288 mctl_present = B_TRUE; 24289 } else { 24290 first_mp = mp; 24291 mctl_present = B_FALSE; 24292 } 24293 24294 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 24295 ipha = (ipha_t *)mp->b_rptr; 24296 24297 /* 24298 * If the Don't Fragment flag is on, generate an ICMP destination 24299 * unreachable, fragmentation needed. 24300 */ 24301 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 24302 if (offset & IPH_DF) { 24303 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24304 if (is_system_labeled()) { 24305 max_frag = tsol_pmtu_adjust(mp, ire->ire_max_frag, 24306 ire->ire_max_frag - max_frag, AF_INET); 24307 } 24308 /* 24309 * Need to compute hdr checksum if called from ip_wput_ire. 24310 * Note that ip_rput_forward verifies the checksum before 24311 * calling this routine so in that case this is a noop. 24312 */ 24313 ipha->ipha_hdr_checksum = 0; 24314 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24315 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid, 24316 ipst); 24317 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24318 "ip_wput_frag_end:(%S)", 24319 "don't fragment"); 24320 return; 24321 } 24322 /* 24323 * Labeled systems adjust max_frag if they add a label 24324 * to send the correct path mtu. We need the real mtu since we 24325 * are fragmenting the packet after label adjustment. 24326 */ 24327 if (is_system_labeled()) 24328 max_frag = ire->ire_max_frag; 24329 if (mctl_present) 24330 freeb(first_mp); 24331 /* 24332 * Establish the starting offset. May not be zero if we are fragging 24333 * a fragment that is being forwarded. 24334 */ 24335 offset = offset & IPH_OFFSET; 24336 24337 /* TODO why is this test needed? */ 24338 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 24339 if (((max_frag - LENGTH) & ~7) < 8) { 24340 /* TODO: notify ulp somehow */ 24341 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24342 freemsg(mp); 24343 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24344 "ip_wput_frag_end:(%S)", 24345 "len < 8"); 24346 return; 24347 } 24348 24349 hdr_len = (V_HLEN & 0xF) << 2; 24350 24351 ipha->ipha_hdr_checksum = 0; 24352 24353 /* 24354 * Establish the number of bytes maximum per frag, after putting 24355 * in the header. 24356 */ 24357 len = (max_frag - hdr_len) & ~7; 24358 24359 /* Check if we can use MDT to send out the frags. */ 24360 ASSERT(!IRE_IS_LOCAL(ire)); 24361 if (hdr_len == IP_SIMPLE_HDR_LENGTH && 24362 ipst->ips_ip_multidata_outbound && 24363 !(ire->ire_flags & RTF_MULTIRT) && 24364 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 24365 ill != NULL && ILL_MDT_CAPABLE(ill) && 24366 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 24367 ASSERT(ill->ill_mdt_capab != NULL); 24368 if (!ill->ill_mdt_capab->ill_mdt_on) { 24369 /* 24370 * If MDT has been previously turned off in the past, 24371 * and we currently can do MDT (due to IPQoS policy 24372 * removal, etc.) then enable it for this interface. 24373 */ 24374 ill->ill_mdt_capab->ill_mdt_on = 1; 24375 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 24376 ill->ill_name)); 24377 } 24378 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 24379 offset); 24380 return; 24381 } 24382 24383 /* Get a copy of the header for the trailing frags */ 24384 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 24385 mp); 24386 if (!hdr_mp) { 24387 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24388 freemsg(mp); 24389 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24390 "ip_wput_frag_end:(%S)", 24391 "couldn't copy hdr"); 24392 return; 24393 } 24394 24395 /* Store the starting offset, with the MoreFrags flag. */ 24396 i1 = offset | IPH_MF | frag_flag; 24397 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 24398 24399 /* Establish the ending byte offset, based on the starting offset. */ 24400 offset <<= 3; 24401 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 24402 24403 /* Store the length of the first fragment in the IP header. */ 24404 i1 = len + hdr_len; 24405 ASSERT(i1 <= IP_MAXPACKET); 24406 ipha->ipha_length = htons((uint16_t)i1); 24407 24408 /* 24409 * Compute the IP header checksum for the first frag. We have to 24410 * watch out that we stop at the end of the header. 24411 */ 24412 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24413 24414 /* 24415 * Now carve off the first frag. Note that this will include the 24416 * original IP header. 24417 */ 24418 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24419 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24420 freeb(hdr_mp); 24421 freemsg(mp_orig); 24422 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24423 "ip_wput_frag_end:(%S)", 24424 "couldn't carve first"); 24425 return; 24426 } 24427 24428 /* 24429 * Multirouting case. Each fragment is replicated 24430 * via all non-condemned RTF_MULTIRT routes 24431 * currently resolved. 24432 * We ensure that first_ire is the first RTF_MULTIRT 24433 * ire in the bucket. 24434 */ 24435 if (ire->ire_flags & RTF_MULTIRT) { 24436 irb = ire->ire_bucket; 24437 ASSERT(irb != NULL); 24438 24439 multirt_send = B_TRUE; 24440 24441 /* Make sure we do not omit any multiroute ire. */ 24442 IRB_REFHOLD(irb); 24443 for (first_ire = irb->irb_ire; 24444 first_ire != NULL; 24445 first_ire = first_ire->ire_next) { 24446 if ((first_ire->ire_flags & RTF_MULTIRT) && 24447 (first_ire->ire_addr == ire->ire_addr) && 24448 !(first_ire->ire_marks & 24449 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 24450 break; 24451 } 24452 24453 if (first_ire != NULL) { 24454 if (first_ire != ire) { 24455 IRE_REFHOLD(first_ire); 24456 /* 24457 * Do not release the ire passed in 24458 * as the argument. 24459 */ 24460 ire = first_ire; 24461 } else { 24462 first_ire = NULL; 24463 } 24464 } 24465 IRB_REFRELE(irb); 24466 24467 /* 24468 * Save the first ire; we will need to restore it 24469 * for the trailing frags. 24470 * We REFHOLD save_ire, as each iterated ire will be 24471 * REFRELEd. 24472 */ 24473 save_ire = ire; 24474 IRE_REFHOLD(save_ire); 24475 } 24476 24477 /* 24478 * First fragment emission loop. 24479 * In most cases, the emission loop below is entered only 24480 * once. Only in the case where the ire holds the RTF_MULTIRT 24481 * flag, do we loop to process all RTF_MULTIRT ires in the 24482 * bucket, and send the fragment through all crossed 24483 * RTF_MULTIRT routes. 24484 */ 24485 do { 24486 if (ire->ire_flags & RTF_MULTIRT) { 24487 /* 24488 * We are in a multiple send case, need to get 24489 * the next ire and make a copy of the packet. 24490 * ire1 holds here the next ire to process in the 24491 * bucket. If multirouting is expected, 24492 * any non-RTF_MULTIRT ire that has the 24493 * right destination address is ignored. 24494 * 24495 * We have to take into account the MTU of 24496 * each walked ire. max_frag is set by the 24497 * the caller and generally refers to 24498 * the primary ire entry. Here we ensure that 24499 * no route with a lower MTU will be used, as 24500 * fragments are carved once for all ires, 24501 * then replicated. 24502 */ 24503 ASSERT(irb != NULL); 24504 IRB_REFHOLD(irb); 24505 for (ire1 = ire->ire_next; 24506 ire1 != NULL; 24507 ire1 = ire1->ire_next) { 24508 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24509 continue; 24510 if (ire1->ire_addr != ire->ire_addr) 24511 continue; 24512 if (ire1->ire_marks & 24513 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 24514 continue; 24515 /* 24516 * Ensure we do not exceed the MTU 24517 * of the next route. 24518 */ 24519 if (ire1->ire_max_frag < max_frag) { 24520 ip_multirt_bad_mtu(ire1, max_frag); 24521 continue; 24522 } 24523 24524 /* Got one. */ 24525 IRE_REFHOLD(ire1); 24526 break; 24527 } 24528 IRB_REFRELE(irb); 24529 24530 if (ire1 != NULL) { 24531 next_mp = copyb(mp); 24532 if ((next_mp == NULL) || 24533 ((mp->b_cont != NULL) && 24534 ((next_mp->b_cont = 24535 dupmsg(mp->b_cont)) == NULL))) { 24536 freemsg(next_mp); 24537 next_mp = NULL; 24538 ire_refrele(ire1); 24539 ire1 = NULL; 24540 } 24541 } 24542 24543 /* Last multiroute ire; don't loop anymore. */ 24544 if (ire1 == NULL) { 24545 multirt_send = B_FALSE; 24546 } 24547 } 24548 24549 ll_hdr_len = 0; 24550 LOCK_IRE_FP_MP(ire); 24551 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24552 if (ll_hdr_mp != NULL) { 24553 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24554 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24555 } else { 24556 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24557 } 24558 24559 /* If there is a transmit header, get a copy for this frag. */ 24560 /* 24561 * TODO: should check db_ref before calling ip_carve_mp since 24562 * it might give us a dup. 24563 */ 24564 if (!ll_hdr_mp) { 24565 /* No xmit header. */ 24566 xmit_mp = mp; 24567 24568 /* We have a link-layer header that can fit in our mblk. */ 24569 } else if (mp->b_datap->db_ref == 1 && 24570 ll_hdr_len != 0 && 24571 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24572 /* M_DATA fastpath */ 24573 mp->b_rptr -= ll_hdr_len; 24574 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24575 xmit_mp = mp; 24576 24577 /* Corner case if copyb has failed */ 24578 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24579 UNLOCK_IRE_FP_MP(ire); 24580 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24581 freeb(hdr_mp); 24582 freemsg(mp); 24583 freemsg(mp_orig); 24584 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24585 "ip_wput_frag_end:(%S)", 24586 "discard"); 24587 24588 if (multirt_send) { 24589 ASSERT(ire1); 24590 ASSERT(next_mp); 24591 24592 freemsg(next_mp); 24593 ire_refrele(ire1); 24594 } 24595 if (save_ire != NULL) 24596 IRE_REFRELE(save_ire); 24597 24598 if (first_ire != NULL) 24599 ire_refrele(first_ire); 24600 return; 24601 24602 /* 24603 * Case of res_mp OR the fastpath mp can't fit 24604 * in the mblk 24605 */ 24606 } else { 24607 xmit_mp->b_cont = mp; 24608 24609 /* 24610 * Get priority marking, if any. 24611 * We propagate the CoS marking from the 24612 * original packet that went to QoS processing 24613 * in ip_wput_ire to the newly carved mp. 24614 */ 24615 if (DB_TYPE(xmit_mp) == M_DATA) 24616 xmit_mp->b_band = mp->b_band; 24617 } 24618 UNLOCK_IRE_FP_MP(ire); 24619 24620 q = ire->ire_stq; 24621 out_ill = (ill_t *)q->q_ptr; 24622 24623 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24624 24625 DTRACE_PROBE4(ip4__physical__out__start, 24626 ill_t *, NULL, ill_t *, out_ill, 24627 ipha_t *, ipha, mblk_t *, xmit_mp); 24628 24629 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24630 ipst->ips_ipv4firewall_physical_out, 24631 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24632 24633 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24634 24635 if (xmit_mp != NULL) { 24636 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, NULL, 24637 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 24638 ipha_t *, ipha, ip6_t *, NULL, int, 0); 24639 24640 ILL_SEND_TX(out_ill, ire, connp, xmit_mp, 0, connp); 24641 24642 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24643 UPDATE_MIB(out_ill->ill_ip_mib, 24644 ipIfStatsHCOutOctets, i1); 24645 24646 if (pkt_type != OB_PKT) { 24647 /* 24648 * Update the packet count and MIB stats 24649 * of trailing RTF_MULTIRT ires. 24650 */ 24651 UPDATE_OB_PKT_COUNT(ire); 24652 BUMP_MIB(out_ill->ill_ip_mib, 24653 ipIfStatsOutFragReqds); 24654 } 24655 } 24656 24657 if (multirt_send) { 24658 /* 24659 * We are in a multiple send case; look for 24660 * the next ire and re-enter the loop. 24661 */ 24662 ASSERT(ire1); 24663 ASSERT(next_mp); 24664 /* REFRELE the current ire before looping */ 24665 ire_refrele(ire); 24666 ire = ire1; 24667 ire1 = NULL; 24668 mp = next_mp; 24669 next_mp = NULL; 24670 } 24671 } while (multirt_send); 24672 24673 ASSERT(ire1 == NULL); 24674 24675 /* Restore the original ire; we need it for the trailing frags */ 24676 if (save_ire != NULL) { 24677 /* REFRELE the last iterated ire */ 24678 ire_refrele(ire); 24679 /* save_ire has been REFHOLDed */ 24680 ire = save_ire; 24681 save_ire = NULL; 24682 q = ire->ire_stq; 24683 } 24684 24685 if (pkt_type == OB_PKT) { 24686 UPDATE_OB_PKT_COUNT(ire); 24687 } else { 24688 out_ill = (ill_t *)q->q_ptr; 24689 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24690 UPDATE_IB_PKT_COUNT(ire); 24691 } 24692 24693 /* Advance the offset to the second frag starting point. */ 24694 offset += len; 24695 /* 24696 * Update hdr_len from the copied header - there might be less options 24697 * in the later fragments. 24698 */ 24699 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24700 /* Loop until done. */ 24701 for (;;) { 24702 uint16_t offset_and_flags; 24703 uint16_t ip_len; 24704 24705 if (ip_data_end - offset > len) { 24706 /* 24707 * Carve off the appropriate amount from the original 24708 * datagram. 24709 */ 24710 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24711 mp = NULL; 24712 break; 24713 } 24714 /* 24715 * More frags after this one. Get another copy 24716 * of the header. 24717 */ 24718 if (carve_mp->b_datap->db_ref == 1 && 24719 hdr_mp->b_wptr - hdr_mp->b_rptr < 24720 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24721 /* Inline IP header */ 24722 carve_mp->b_rptr -= hdr_mp->b_wptr - 24723 hdr_mp->b_rptr; 24724 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24725 hdr_mp->b_wptr - hdr_mp->b_rptr); 24726 mp = carve_mp; 24727 } else { 24728 if (!(mp = copyb(hdr_mp))) { 24729 freemsg(carve_mp); 24730 break; 24731 } 24732 /* Get priority marking, if any. */ 24733 mp->b_band = carve_mp->b_band; 24734 mp->b_cont = carve_mp; 24735 } 24736 ipha = (ipha_t *)mp->b_rptr; 24737 offset_and_flags = IPH_MF; 24738 } else { 24739 /* 24740 * Last frag. Consume the header. Set len to 24741 * the length of this last piece. 24742 */ 24743 len = ip_data_end - offset; 24744 24745 /* 24746 * Carve off the appropriate amount from the original 24747 * datagram. 24748 */ 24749 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24750 mp = NULL; 24751 break; 24752 } 24753 if (carve_mp->b_datap->db_ref == 1 && 24754 hdr_mp->b_wptr - hdr_mp->b_rptr < 24755 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24756 /* Inline IP header */ 24757 carve_mp->b_rptr -= hdr_mp->b_wptr - 24758 hdr_mp->b_rptr; 24759 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24760 hdr_mp->b_wptr - hdr_mp->b_rptr); 24761 mp = carve_mp; 24762 freeb(hdr_mp); 24763 hdr_mp = mp; 24764 } else { 24765 mp = hdr_mp; 24766 /* Get priority marking, if any. */ 24767 mp->b_band = carve_mp->b_band; 24768 mp->b_cont = carve_mp; 24769 } 24770 ipha = (ipha_t *)mp->b_rptr; 24771 /* A frag of a frag might have IPH_MF non-zero */ 24772 offset_and_flags = 24773 ntohs(ipha->ipha_fragment_offset_and_flags) & 24774 IPH_MF; 24775 } 24776 offset_and_flags |= (uint16_t)(offset >> 3); 24777 offset_and_flags |= (uint16_t)frag_flag; 24778 /* Store the offset and flags in the IP header. */ 24779 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24780 24781 /* Store the length in the IP header. */ 24782 ip_len = (uint16_t)(len + hdr_len); 24783 ipha->ipha_length = htons(ip_len); 24784 24785 /* 24786 * Set the IP header checksum. Note that mp is just 24787 * the header, so this is easy to pass to ip_csum. 24788 */ 24789 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24790 24791 /* Attach a transmit header, if any, and ship it. */ 24792 if (pkt_type == OB_PKT) { 24793 UPDATE_OB_PKT_COUNT(ire); 24794 } else { 24795 out_ill = (ill_t *)q->q_ptr; 24796 BUMP_MIB(out_ill->ill_ip_mib, 24797 ipIfStatsHCOutForwDatagrams); 24798 UPDATE_IB_PKT_COUNT(ire); 24799 } 24800 24801 if (ire->ire_flags & RTF_MULTIRT) { 24802 irb = ire->ire_bucket; 24803 ASSERT(irb != NULL); 24804 24805 multirt_send = B_TRUE; 24806 24807 /* 24808 * Save the original ire; we will need to restore it 24809 * for the tailing frags. 24810 */ 24811 save_ire = ire; 24812 IRE_REFHOLD(save_ire); 24813 } 24814 /* 24815 * Emission loop for this fragment, similar 24816 * to what is done for the first fragment. 24817 */ 24818 do { 24819 if (multirt_send) { 24820 /* 24821 * We are in a multiple send case, need to get 24822 * the next ire and make a copy of the packet. 24823 */ 24824 ASSERT(irb != NULL); 24825 IRB_REFHOLD(irb); 24826 for (ire1 = ire->ire_next; 24827 ire1 != NULL; 24828 ire1 = ire1->ire_next) { 24829 if (!(ire1->ire_flags & RTF_MULTIRT)) 24830 continue; 24831 if (ire1->ire_addr != ire->ire_addr) 24832 continue; 24833 if (ire1->ire_marks & 24834 (IRE_MARK_CONDEMNED | 24835 IRE_MARK_TESTHIDDEN)) 24836 continue; 24837 /* 24838 * Ensure we do not exceed the MTU 24839 * of the next route. 24840 */ 24841 if (ire1->ire_max_frag < max_frag) { 24842 ip_multirt_bad_mtu(ire1, 24843 max_frag); 24844 continue; 24845 } 24846 24847 /* Got one. */ 24848 IRE_REFHOLD(ire1); 24849 break; 24850 } 24851 IRB_REFRELE(irb); 24852 24853 if (ire1 != NULL) { 24854 next_mp = copyb(mp); 24855 if ((next_mp == NULL) || 24856 ((mp->b_cont != NULL) && 24857 ((next_mp->b_cont = 24858 dupmsg(mp->b_cont)) == NULL))) { 24859 freemsg(next_mp); 24860 next_mp = NULL; 24861 ire_refrele(ire1); 24862 ire1 = NULL; 24863 } 24864 } 24865 24866 /* Last multiroute ire; don't loop anymore. */ 24867 if (ire1 == NULL) { 24868 multirt_send = B_FALSE; 24869 } 24870 } 24871 24872 /* Update transmit header */ 24873 ll_hdr_len = 0; 24874 LOCK_IRE_FP_MP(ire); 24875 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24876 if (ll_hdr_mp != NULL) { 24877 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24878 ll_hdr_len = MBLKL(ll_hdr_mp); 24879 } else { 24880 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24881 } 24882 24883 if (!ll_hdr_mp) { 24884 xmit_mp = mp; 24885 24886 /* 24887 * We have link-layer header that can fit in 24888 * our mblk. 24889 */ 24890 } else if (mp->b_datap->db_ref == 1 && 24891 ll_hdr_len != 0 && 24892 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24893 /* M_DATA fastpath */ 24894 mp->b_rptr -= ll_hdr_len; 24895 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24896 ll_hdr_len); 24897 xmit_mp = mp; 24898 24899 /* 24900 * Case of res_mp OR the fastpath mp can't fit 24901 * in the mblk 24902 */ 24903 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24904 xmit_mp->b_cont = mp; 24905 /* Get priority marking, if any. */ 24906 if (DB_TYPE(xmit_mp) == M_DATA) 24907 xmit_mp->b_band = mp->b_band; 24908 24909 /* Corner case if copyb failed */ 24910 } else { 24911 /* 24912 * Exit both the replication and 24913 * fragmentation loops. 24914 */ 24915 UNLOCK_IRE_FP_MP(ire); 24916 goto drop_pkt; 24917 } 24918 UNLOCK_IRE_FP_MP(ire); 24919 24920 mp1 = mp; 24921 out_ill = (ill_t *)q->q_ptr; 24922 24923 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24924 24925 DTRACE_PROBE4(ip4__physical__out__start, 24926 ill_t *, NULL, ill_t *, out_ill, 24927 ipha_t *, ipha, mblk_t *, xmit_mp); 24928 24929 FW_HOOKS(ipst->ips_ip4_physical_out_event, 24930 ipst->ips_ipv4firewall_physical_out, 24931 NULL, out_ill, ipha, xmit_mp, mp, 0, ipst); 24932 24933 DTRACE_PROBE1(ip4__physical__out__end, 24934 mblk_t *, xmit_mp); 24935 24936 if (mp != mp1 && hdr_mp == mp1) 24937 hdr_mp = mp; 24938 if (mp != mp1 && mp_orig == mp1) 24939 mp_orig = mp; 24940 24941 if (xmit_mp != NULL) { 24942 DTRACE_IP7(send, mblk_t *, xmit_mp, conn_t *, 24943 NULL, void_ip_t *, ipha, 24944 __dtrace_ipsr_ill_t *, out_ill, ipha_t *, 24945 ipha, ip6_t *, NULL, int, 0); 24946 24947 ILL_SEND_TX(out_ill, ire, connp, 24948 xmit_mp, 0, connp); 24949 24950 BUMP_MIB(out_ill->ill_ip_mib, 24951 ipIfStatsHCOutTransmits); 24952 UPDATE_MIB(out_ill->ill_ip_mib, 24953 ipIfStatsHCOutOctets, ip_len); 24954 24955 if (pkt_type != OB_PKT) { 24956 /* 24957 * Update the packet count of trailing 24958 * RTF_MULTIRT ires. 24959 */ 24960 UPDATE_OB_PKT_COUNT(ire); 24961 } 24962 } 24963 24964 /* All done if we just consumed the hdr_mp. */ 24965 if (mp == hdr_mp) { 24966 last_frag = B_TRUE; 24967 BUMP_MIB(out_ill->ill_ip_mib, 24968 ipIfStatsOutFragOKs); 24969 } 24970 24971 if (multirt_send) { 24972 /* 24973 * We are in a multiple send case; look for 24974 * the next ire and re-enter the loop. 24975 */ 24976 ASSERT(ire1); 24977 ASSERT(next_mp); 24978 /* REFRELE the current ire before looping */ 24979 ire_refrele(ire); 24980 ire = ire1; 24981 ire1 = NULL; 24982 q = ire->ire_stq; 24983 mp = next_mp; 24984 next_mp = NULL; 24985 } 24986 } while (multirt_send); 24987 /* 24988 * Restore the original ire; we need it for the 24989 * trailing frags 24990 */ 24991 if (save_ire != NULL) { 24992 ASSERT(ire1 == NULL); 24993 /* REFRELE the last iterated ire */ 24994 ire_refrele(ire); 24995 /* save_ire has been REFHOLDed */ 24996 ire = save_ire; 24997 q = ire->ire_stq; 24998 save_ire = NULL; 24999 } 25000 25001 if (last_frag) { 25002 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25003 "ip_wput_frag_end:(%S)", 25004 "consumed hdr_mp"); 25005 25006 if (first_ire != NULL) 25007 ire_refrele(first_ire); 25008 return; 25009 } 25010 /* Otherwise, advance and loop. */ 25011 offset += len; 25012 } 25013 25014 drop_pkt: 25015 /* Clean up following allocation failure. */ 25016 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 25017 freemsg(mp); 25018 if (mp != hdr_mp) 25019 freeb(hdr_mp); 25020 if (mp != mp_orig) 25021 freemsg(mp_orig); 25022 25023 if (save_ire != NULL) 25024 IRE_REFRELE(save_ire); 25025 if (first_ire != NULL) 25026 ire_refrele(first_ire); 25027 25028 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 25029 "ip_wput_frag_end:(%S)", 25030 "end--alloc failure"); 25031 } 25032 25033 /* 25034 * Copy the header plus those options which have the copy bit set 25035 * src is the template to make sure we preserve the cred for TX purposes. 25036 */ 25037 static mblk_t * 25038 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 25039 mblk_t *src) 25040 { 25041 mblk_t *mp; 25042 uchar_t *up; 25043 25044 /* 25045 * Quick check if we need to look for options without the copy bit 25046 * set 25047 */ 25048 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 25049 if (!mp) 25050 return (mp); 25051 mp->b_rptr += ipst->ips_ip_wroff_extra; 25052 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 25053 bcopy(rptr, mp->b_rptr, hdr_len); 25054 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 25055 return (mp); 25056 } 25057 up = mp->b_rptr; 25058 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 25059 up += IP_SIMPLE_HDR_LENGTH; 25060 rptr += IP_SIMPLE_HDR_LENGTH; 25061 hdr_len -= IP_SIMPLE_HDR_LENGTH; 25062 while (hdr_len > 0) { 25063 uint32_t optval; 25064 uint32_t optlen; 25065 25066 optval = *rptr; 25067 if (optval == IPOPT_EOL) 25068 break; 25069 if (optval == IPOPT_NOP) 25070 optlen = 1; 25071 else 25072 optlen = rptr[1]; 25073 if (optval & IPOPT_COPY) { 25074 bcopy(rptr, up, optlen); 25075 up += optlen; 25076 } 25077 rptr += optlen; 25078 hdr_len -= optlen; 25079 } 25080 /* 25081 * Make sure that we drop an even number of words by filling 25082 * with EOL to the next word boundary. 25083 */ 25084 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 25085 hdr_len & 0x3; hdr_len++) 25086 *up++ = IPOPT_EOL; 25087 mp->b_wptr = up; 25088 /* Update header length */ 25089 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 25090 return (mp); 25091 } 25092 25093 /* 25094 * Delivery to local recipients including fanout to multiple recipients. 25095 * Does not do checksumming of UDP/TCP. 25096 * Note: q should be the read side queue for either the ill or conn. 25097 * Note: rq should be the read side q for the lower (ill) stream. 25098 * We don't send packets to IPPF processing, thus the last argument 25099 * to all the fanout calls are B_FALSE. 25100 */ 25101 void 25102 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 25103 int fanout_flags, zoneid_t zoneid) 25104 { 25105 uint32_t protocol; 25106 mblk_t *first_mp; 25107 boolean_t mctl_present; 25108 int ire_type; 25109 #define rptr ((uchar_t *)ipha) 25110 ip_stack_t *ipst = ill->ill_ipst; 25111 25112 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 25113 "ip_wput_local_start: q %p", q); 25114 25115 if (ire != NULL) { 25116 ire_type = ire->ire_type; 25117 } else { 25118 /* 25119 * Only ip_multicast_loopback() calls us with a NULL ire. If the 25120 * packet is not multicast, we can't tell the ire type. 25121 */ 25122 ASSERT(CLASSD(ipha->ipha_dst)); 25123 ire_type = IRE_BROADCAST; 25124 } 25125 25126 first_mp = mp; 25127 if (first_mp->b_datap->db_type == M_CTL) { 25128 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 25129 if (!io->ipsec_out_secure) { 25130 /* 25131 * This ipsec_out_t was allocated in ip_wput 25132 * for multicast packets to store the ill_index. 25133 * As this is being delivered locally, we don't 25134 * need this anymore. 25135 */ 25136 mp = first_mp->b_cont; 25137 freeb(first_mp); 25138 first_mp = mp; 25139 mctl_present = B_FALSE; 25140 } else { 25141 /* 25142 * Convert IPSEC_OUT to IPSEC_IN, preserving all 25143 * security properties for the looped-back packet. 25144 */ 25145 mctl_present = B_TRUE; 25146 mp = first_mp->b_cont; 25147 ASSERT(mp != NULL); 25148 ipsec_out_to_in(first_mp); 25149 } 25150 } else { 25151 mctl_present = B_FALSE; 25152 } 25153 25154 DTRACE_PROBE4(ip4__loopback__in__start, 25155 ill_t *, ill, ill_t *, NULL, 25156 ipha_t *, ipha, mblk_t *, first_mp); 25157 25158 FW_HOOKS(ipst->ips_ip4_loopback_in_event, 25159 ipst->ips_ipv4firewall_loopback_in, 25160 ill, NULL, ipha, first_mp, mp, 0, ipst); 25161 25162 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 25163 25164 if (first_mp == NULL) 25165 return; 25166 25167 if (ipst->ips_ipobs_enabled) { 25168 zoneid_t szone, dzone, lookup_zoneid = ALL_ZONES; 25169 zoneid_t stackzoneid = netstackid_to_zoneid( 25170 ipst->ips_netstack->netstack_stackid); 25171 25172 dzone = (stackzoneid == GLOBAL_ZONEID) ? zoneid : stackzoneid; 25173 /* 25174 * 127.0.0.1 is special, as we cannot lookup its zoneid by 25175 * address. Restrict the lookup below to the destination zone. 25176 */ 25177 if (ipha->ipha_src == ntohl(INADDR_LOOPBACK)) 25178 lookup_zoneid = zoneid; 25179 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, ipst, 25180 lookup_zoneid); 25181 ipobs_hook(mp, IPOBS_HOOK_LOCAL, szone, dzone, ill, 25182 IPV4_VERSION, 0, ipst); 25183 } 25184 25185 DTRACE_IP7(receive, mblk_t *, first_mp, conn_t *, NULL, void_ip_t *, 25186 ipha, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, ip6_t *, NULL, 25187 int, 1); 25188 25189 ipst->ips_loopback_packets++; 25190 25191 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 25192 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 25193 if (!IS_SIMPLE_IPH(ipha)) { 25194 ip_wput_local_options(ipha, ipst); 25195 } 25196 25197 protocol = ipha->ipha_protocol; 25198 switch (protocol) { 25199 case IPPROTO_ICMP: { 25200 ire_t *ire_zone; 25201 ilm_t *ilm; 25202 mblk_t *mp1; 25203 zoneid_t last_zoneid; 25204 ilm_walker_t ilw; 25205 25206 if (CLASSD(ipha->ipha_dst) && !IS_LOOPBACK(ill)) { 25207 ASSERT(ire_type == IRE_BROADCAST); 25208 /* 25209 * In the multicast case, applications may have joined 25210 * the group from different zones, so we need to deliver 25211 * the packet to each of them. Loop through the 25212 * multicast memberships structures (ilm) on the receive 25213 * ill and send a copy of the packet up each matching 25214 * one. However, we don't do this for multicasts sent on 25215 * the loopback interface (PHYI_LOOPBACK flag set) as 25216 * they must stay in the sender's zone. 25217 * 25218 * ilm_add_v6() ensures that ilms in the same zone are 25219 * contiguous in the ill_ilm list. We use this property 25220 * to avoid sending duplicates needed when two 25221 * applications in the same zone join the same group on 25222 * different logical interfaces: we ignore the ilm if 25223 * it's zoneid is the same as the last matching one. 25224 * In addition, the sending of the packet for 25225 * ire_zoneid is delayed until all of the other ilms 25226 * have been exhausted. 25227 */ 25228 last_zoneid = -1; 25229 ilm = ilm_walker_start(&ilw, ill); 25230 for (; ilm != NULL; ilm = ilm_walker_step(&ilw, ilm)) { 25231 if (ipha->ipha_dst != ilm->ilm_addr || 25232 ilm->ilm_zoneid == last_zoneid || 25233 ilm->ilm_zoneid == zoneid || 25234 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 25235 continue; 25236 mp1 = ip_copymsg(first_mp); 25237 if (mp1 == NULL) 25238 continue; 25239 icmp_inbound(q, mp1, B_TRUE, ilw.ilw_walk_ill, 25240 0, 0, mctl_present, B_FALSE, ill, 25241 ilm->ilm_zoneid); 25242 last_zoneid = ilm->ilm_zoneid; 25243 } 25244 ilm_walker_finish(&ilw); 25245 /* 25246 * Loopback case: the sending endpoint has 25247 * IP_MULTICAST_LOOP disabled, therefore we don't 25248 * dispatch the multicast packet to the sending zone. 25249 */ 25250 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 25251 freemsg(first_mp); 25252 return; 25253 } 25254 } else if (ire_type == IRE_BROADCAST) { 25255 /* 25256 * In the broadcast case, there may be many zones 25257 * which need a copy of the packet delivered to them. 25258 * There is one IRE_BROADCAST per broadcast address 25259 * and per zone; we walk those using a helper function. 25260 * In addition, the sending of the packet for zoneid is 25261 * delayed until all of the other ires have been 25262 * processed. 25263 */ 25264 IRB_REFHOLD(ire->ire_bucket); 25265 ire_zone = NULL; 25266 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 25267 ire)) != NULL) { 25268 mp1 = ip_copymsg(first_mp); 25269 if (mp1 == NULL) 25270 continue; 25271 25272 UPDATE_IB_PKT_COUNT(ire_zone); 25273 ire_zone->ire_last_used_time = lbolt; 25274 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 25275 mctl_present, B_FALSE, ill, 25276 ire_zone->ire_zoneid); 25277 } 25278 IRB_REFRELE(ire->ire_bucket); 25279 } 25280 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 25281 0, mctl_present, B_FALSE, ill, zoneid); 25282 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25283 "ip_wput_local_end: q %p (%S)", 25284 q, "icmp"); 25285 return; 25286 } 25287 case IPPROTO_IGMP: 25288 if ((mp = igmp_input(q, mp, ill)) == NULL) { 25289 /* Bad packet - discarded by igmp_input */ 25290 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25291 "ip_wput_local_end: q %p (%S)", 25292 q, "igmp_input--bad packet"); 25293 if (mctl_present) 25294 freeb(first_mp); 25295 return; 25296 } 25297 /* 25298 * igmp_input() may have returned the pulled up message. 25299 * So first_mp and ipha need to be reinitialized. 25300 */ 25301 ipha = (ipha_t *)mp->b_rptr; 25302 if (mctl_present) 25303 first_mp->b_cont = mp; 25304 else 25305 first_mp = mp; 25306 /* deliver to local raw users */ 25307 break; 25308 case IPPROTO_ENCAP: 25309 /* 25310 * This case is covered by either ip_fanout_proto, or by 25311 * the above security processing for self-tunneled packets. 25312 */ 25313 break; 25314 case IPPROTO_UDP: { 25315 uint16_t *up; 25316 uint32_t ports; 25317 25318 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 25319 UDP_PORTS_OFFSET); 25320 /* Force a 'valid' checksum. */ 25321 up[3] = 0; 25322 25323 ports = *(uint32_t *)up; 25324 ip_fanout_udp(q, first_mp, ill, ipha, ports, 25325 (ire_type == IRE_BROADCAST), 25326 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25327 IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE, 25328 ill, zoneid); 25329 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25330 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 25331 return; 25332 } 25333 case IPPROTO_TCP: { 25334 25335 /* 25336 * For TCP, discard broadcast packets. 25337 */ 25338 if ((ushort_t)ire_type == IRE_BROADCAST) { 25339 freemsg(first_mp); 25340 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 25341 ip2dbg(("ip_wput_local: discard broadcast\n")); 25342 return; 25343 } 25344 25345 if (mp->b_datap->db_type == M_DATA) { 25346 /* 25347 * M_DATA mblk, so init mblk (chain) for no struio(). 25348 */ 25349 mblk_t *mp1 = mp; 25350 25351 do { 25352 mp1->b_datap->db_struioflag = 0; 25353 } while ((mp1 = mp1->b_cont) != NULL); 25354 } 25355 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 25356 <= mp->b_wptr); 25357 ip_fanout_tcp(q, first_mp, ill, ipha, 25358 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25359 IP_FF_SYN_ADDIRE | IP_FF_IPINFO, 25360 mctl_present, B_FALSE, zoneid); 25361 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25362 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 25363 return; 25364 } 25365 case IPPROTO_SCTP: 25366 { 25367 uint32_t ports; 25368 25369 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 25370 ip_fanout_sctp(first_mp, ill, ipha, ports, 25371 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 25372 IP_FF_IPINFO, mctl_present, B_FALSE, zoneid); 25373 return; 25374 } 25375 25376 default: 25377 break; 25378 } 25379 /* 25380 * Find a client for some other protocol. We give 25381 * copies to multiple clients, if more than one is 25382 * bound. 25383 */ 25384 ip_fanout_proto(q, first_mp, ill, ipha, 25385 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 25386 mctl_present, B_FALSE, ill, zoneid); 25387 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 25388 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 25389 #undef rptr 25390 } 25391 25392 /* 25393 * Update any source route, record route, or timestamp options. 25394 * Check that we are at end of strict source route. 25395 * The options have been sanity checked by ip_wput_options(). 25396 */ 25397 static void 25398 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst) 25399 { 25400 ipoptp_t opts; 25401 uchar_t *opt; 25402 uint8_t optval; 25403 uint8_t optlen; 25404 ipaddr_t dst; 25405 uint32_t ts; 25406 ire_t *ire; 25407 timestruc_t now; 25408 25409 ip2dbg(("ip_wput_local_options\n")); 25410 for (optval = ipoptp_first(&opts, ipha); 25411 optval != IPOPT_EOL; 25412 optval = ipoptp_next(&opts)) { 25413 opt = opts.ipoptp_cur; 25414 optlen = opts.ipoptp_len; 25415 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 25416 switch (optval) { 25417 uint32_t off; 25418 case IPOPT_SSRR: 25419 case IPOPT_LSRR: 25420 off = opt[IPOPT_OFFSET]; 25421 off--; 25422 if (optlen < IP_ADDR_LEN || 25423 off > optlen - IP_ADDR_LEN) { 25424 /* End of source route */ 25425 break; 25426 } 25427 /* 25428 * This will only happen if two consecutive entries 25429 * in the source route contains our address or if 25430 * it is a packet with a loose source route which 25431 * reaches us before consuming the whole source route 25432 */ 25433 ip1dbg(("ip_wput_local_options: not end of SR\n")); 25434 if (optval == IPOPT_SSRR) { 25435 return; 25436 } 25437 /* 25438 * Hack: instead of dropping the packet truncate the 25439 * source route to what has been used by filling the 25440 * rest with IPOPT_NOP. 25441 */ 25442 opt[IPOPT_OLEN] = (uint8_t)off; 25443 while (off < optlen) { 25444 opt[off++] = IPOPT_NOP; 25445 } 25446 break; 25447 case IPOPT_RR: 25448 off = opt[IPOPT_OFFSET]; 25449 off--; 25450 if (optlen < IP_ADDR_LEN || 25451 off > optlen - IP_ADDR_LEN) { 25452 /* No more room - ignore */ 25453 ip1dbg(( 25454 "ip_wput_forward_options: end of RR\n")); 25455 break; 25456 } 25457 dst = htonl(INADDR_LOOPBACK); 25458 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25459 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25460 break; 25461 case IPOPT_TS: 25462 /* Insert timestamp if there is romm */ 25463 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25464 case IPOPT_TS_TSONLY: 25465 off = IPOPT_TS_TIMELEN; 25466 break; 25467 case IPOPT_TS_PRESPEC: 25468 case IPOPT_TS_PRESPEC_RFC791: 25469 /* Verify that the address matched */ 25470 off = opt[IPOPT_OFFSET] - 1; 25471 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25472 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25473 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 25474 ipst); 25475 if (ire == NULL) { 25476 /* Not for us */ 25477 break; 25478 } 25479 ire_refrele(ire); 25480 /* FALLTHRU */ 25481 case IPOPT_TS_TSANDADDR: 25482 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25483 break; 25484 default: 25485 /* 25486 * ip_*put_options should have already 25487 * dropped this packet. 25488 */ 25489 cmn_err(CE_PANIC, "ip_wput_local_options: " 25490 "unknown IT - bug in ip_wput_options?\n"); 25491 return; /* Keep "lint" happy */ 25492 } 25493 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25494 /* Increase overflow counter */ 25495 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25496 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25497 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25498 (off << 4); 25499 break; 25500 } 25501 off = opt[IPOPT_OFFSET] - 1; 25502 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25503 case IPOPT_TS_PRESPEC: 25504 case IPOPT_TS_PRESPEC_RFC791: 25505 case IPOPT_TS_TSANDADDR: 25506 dst = htonl(INADDR_LOOPBACK); 25507 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25508 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25509 /* FALLTHRU */ 25510 case IPOPT_TS_TSONLY: 25511 off = opt[IPOPT_OFFSET] - 1; 25512 /* Compute # of milliseconds since midnight */ 25513 gethrestime(&now); 25514 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25515 now.tv_nsec / (NANOSEC / MILLISEC); 25516 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25517 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25518 break; 25519 } 25520 break; 25521 } 25522 } 25523 } 25524 25525 /* 25526 * Send out a multicast packet on interface ipif. 25527 * The sender does not have an conn. 25528 * Caller verifies that this isn't a PHYI_LOOPBACK. 25529 */ 25530 void 25531 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25532 { 25533 ipha_t *ipha; 25534 ire_t *ire; 25535 ipaddr_t dst; 25536 mblk_t *first_mp; 25537 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 25538 25539 /* igmp_sendpkt always allocates a ipsec_out_t */ 25540 ASSERT(mp->b_datap->db_type == M_CTL); 25541 ASSERT(!ipif->ipif_isv6); 25542 ASSERT(!IS_LOOPBACK(ipif->ipif_ill)); 25543 25544 first_mp = mp; 25545 mp = first_mp->b_cont; 25546 ASSERT(mp->b_datap->db_type == M_DATA); 25547 ipha = (ipha_t *)mp->b_rptr; 25548 25549 /* 25550 * Find an IRE which matches the destination and the outgoing 25551 * queue (i.e. the outgoing interface.) 25552 */ 25553 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25554 dst = ipif->ipif_pp_dst_addr; 25555 else 25556 dst = ipha->ipha_dst; 25557 /* 25558 * The source address has already been initialized by the 25559 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25560 * be sufficient rather than MATCH_IRE_IPIF. 25561 * 25562 * This function is used for sending IGMP packets. For IPMP, 25563 * we sidestep IGMP snooping issues by sending all multicast 25564 * traffic on a single interface in the IPMP group. 25565 */ 25566 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25567 MATCH_IRE_ILL, ipst); 25568 if (!ire) { 25569 /* 25570 * Mark this packet to make it be delivered to 25571 * ip_wput_ire after the new ire has been 25572 * created. 25573 */ 25574 mp->b_prev = NULL; 25575 mp->b_next = NULL; 25576 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25577 zoneid, &zero_info); 25578 return; 25579 } 25580 25581 /* 25582 * Honor the RTF_SETSRC flag; this is the only case 25583 * where we force this addr whatever the current src addr is, 25584 * because this address is set by igmp_sendpkt(), and 25585 * cannot be specified by any user. 25586 */ 25587 if (ire->ire_flags & RTF_SETSRC) { 25588 ipha->ipha_src = ire->ire_src_addr; 25589 } 25590 25591 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25592 } 25593 25594 /* 25595 * NOTE : This function does not ire_refrele the ire argument passed in. 25596 * 25597 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25598 * failure. The nce_fp_mp can vanish any time in the case of 25599 * IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25600 * the ire_lock to access the nce_fp_mp in this case. 25601 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25602 * prepending a fastpath message IPQoS processing must precede it, we also set 25603 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25604 * (IPQoS might have set the b_band for CoS marking). 25605 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25606 * must follow it so that IPQoS can mark the dl_priority field for CoS 25607 * marking, if needed. 25608 */ 25609 static mblk_t * 25610 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, 25611 uint32_t ill_index, ipha_t **iphap) 25612 { 25613 uint_t hlen; 25614 ipha_t *ipha; 25615 mblk_t *mp1; 25616 boolean_t qos_done = B_FALSE; 25617 uchar_t *ll_hdr; 25618 ip_stack_t *ipst = ire->ire_ipst; 25619 25620 #define rptr ((uchar_t *)ipha) 25621 25622 ipha = (ipha_t *)mp->b_rptr; 25623 hlen = 0; 25624 LOCK_IRE_FP_MP(ire); 25625 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25626 ASSERT(DB_TYPE(mp1) == M_DATA); 25627 /* Initiate IPPF processing */ 25628 if ((proc != 0) && IPP_ENABLED(proc, ipst)) { 25629 UNLOCK_IRE_FP_MP(ire); 25630 ip_process(proc, &mp, ill_index); 25631 if (mp == NULL) 25632 return (NULL); 25633 25634 ipha = (ipha_t *)mp->b_rptr; 25635 LOCK_IRE_FP_MP(ire); 25636 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25637 qos_done = B_TRUE; 25638 goto no_fp_mp; 25639 } 25640 ASSERT(DB_TYPE(mp1) == M_DATA); 25641 } 25642 hlen = MBLKL(mp1); 25643 /* 25644 * Check if we have enough room to prepend fastpath 25645 * header 25646 */ 25647 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25648 ll_hdr = rptr - hlen; 25649 bcopy(mp1->b_rptr, ll_hdr, hlen); 25650 /* 25651 * Set the b_rptr to the start of the link layer 25652 * header 25653 */ 25654 mp->b_rptr = ll_hdr; 25655 mp1 = mp; 25656 } else { 25657 mp1 = copyb(mp1); 25658 if (mp1 == NULL) 25659 goto unlock_err; 25660 mp1->b_band = mp->b_band; 25661 mp1->b_cont = mp; 25662 /* 25663 * XXX disable ICK_VALID and compute checksum 25664 * here; can happen if nce_fp_mp changes and 25665 * it can't be copied now due to insufficient 25666 * space. (unlikely, fp mp can change, but it 25667 * does not increase in length) 25668 */ 25669 } 25670 UNLOCK_IRE_FP_MP(ire); 25671 } else { 25672 no_fp_mp: 25673 mp1 = copyb(ire->ire_nce->nce_res_mp); 25674 if (mp1 == NULL) { 25675 unlock_err: 25676 UNLOCK_IRE_FP_MP(ire); 25677 freemsg(mp); 25678 return (NULL); 25679 } 25680 UNLOCK_IRE_FP_MP(ire); 25681 mp1->b_cont = mp; 25682 if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) { 25683 ip_process(proc, &mp1, ill_index); 25684 if (mp1 == NULL) 25685 return (NULL); 25686 25687 if (mp1->b_cont == NULL) 25688 ipha = NULL; 25689 else 25690 ipha = (ipha_t *)mp1->b_cont->b_rptr; 25691 } 25692 } 25693 25694 *iphap = ipha; 25695 return (mp1); 25696 #undef rptr 25697 } 25698 25699 /* 25700 * Finish the outbound IPsec processing for an IPv6 packet. This function 25701 * is called from ipsec_out_process() if the IPsec packet was processed 25702 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25703 * asynchronously. 25704 */ 25705 void 25706 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25707 ire_t *ire_arg) 25708 { 25709 in6_addr_t *v6dstp; 25710 ire_t *ire; 25711 mblk_t *mp; 25712 ip6_t *ip6h1; 25713 uint_t ill_index; 25714 ipsec_out_t *io; 25715 boolean_t hwaccel; 25716 uint32_t flags = IP6_NO_IPPOLICY; 25717 int match_flags; 25718 zoneid_t zoneid; 25719 boolean_t ill_need_rele = B_FALSE; 25720 boolean_t ire_need_rele = B_FALSE; 25721 ip_stack_t *ipst; 25722 25723 mp = ipsec_mp->b_cont; 25724 ip6h1 = (ip6_t *)mp->b_rptr; 25725 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25726 ASSERT(io->ipsec_out_ns != NULL); 25727 ipst = io->ipsec_out_ns->netstack_ip; 25728 ill_index = io->ipsec_out_ill_index; 25729 if (io->ipsec_out_reachable) { 25730 flags |= IPV6_REACHABILITY_CONFIRMATION; 25731 } 25732 hwaccel = io->ipsec_out_accelerated; 25733 zoneid = io->ipsec_out_zoneid; 25734 ASSERT(zoneid != ALL_ZONES); 25735 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25736 /* Multicast addresses should have non-zero ill_index. */ 25737 v6dstp = &ip6h->ip6_dst; 25738 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25739 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25740 25741 if (ill == NULL && ill_index != 0) { 25742 ill = ip_grab_ill(ipsec_mp, ill_index, B_TRUE, ipst); 25743 /* Failure case frees things for us. */ 25744 if (ill == NULL) 25745 return; 25746 25747 ill_need_rele = B_TRUE; 25748 } 25749 ASSERT(mp != NULL); 25750 25751 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25752 boolean_t unspec_src; 25753 ipif_t *ipif; 25754 25755 /* 25756 * Use the ill_index to get the right ill. 25757 */ 25758 unspec_src = io->ipsec_out_unspec_src; 25759 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25760 if (ipif == NULL) { 25761 if (ill_need_rele) 25762 ill_refrele(ill); 25763 freemsg(ipsec_mp); 25764 return; 25765 } 25766 25767 if (ire_arg != NULL) { 25768 ire = ire_arg; 25769 } else { 25770 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25771 zoneid, msg_getlabel(mp), match_flags, ipst); 25772 ire_need_rele = B_TRUE; 25773 } 25774 if (ire != NULL) { 25775 ipif_refrele(ipif); 25776 /* 25777 * XXX Do the multicast forwarding now, as the IPsec 25778 * processing has been done. 25779 */ 25780 goto send; 25781 } 25782 25783 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25784 mp->b_prev = NULL; 25785 mp->b_next = NULL; 25786 25787 /* 25788 * If the IPsec packet was processed asynchronously, 25789 * drop it now. 25790 */ 25791 if (q == NULL) { 25792 if (ill_need_rele) 25793 ill_refrele(ill); 25794 freemsg(ipsec_mp); 25795 return; 25796 } 25797 25798 ip_newroute_ipif_v6(q, ipsec_mp, ipif, v6dstp, &ip6h->ip6_src, 25799 unspec_src, zoneid); 25800 ipif_refrele(ipif); 25801 } else { 25802 if (ire_arg != NULL) { 25803 ire = ire_arg; 25804 } else { 25805 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL, ipst); 25806 ire_need_rele = B_TRUE; 25807 } 25808 if (ire != NULL) 25809 goto send; 25810 /* 25811 * ire disappeared underneath. 25812 * 25813 * What we need to do here is the ip_newroute 25814 * logic to get the ire without doing the IPsec 25815 * processing. Follow the same old path. But this 25816 * time, ip_wput or ire_add_then_send will call us 25817 * directly as all the IPsec operations are done. 25818 */ 25819 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25820 mp->b_prev = NULL; 25821 mp->b_next = NULL; 25822 25823 /* 25824 * If the IPsec packet was processed asynchronously, 25825 * drop it now. 25826 */ 25827 if (q == NULL) { 25828 if (ill_need_rele) 25829 ill_refrele(ill); 25830 freemsg(ipsec_mp); 25831 return; 25832 } 25833 25834 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25835 zoneid, ipst); 25836 } 25837 if (ill != NULL && ill_need_rele) 25838 ill_refrele(ill); 25839 return; 25840 send: 25841 if (ill != NULL && ill_need_rele) 25842 ill_refrele(ill); 25843 25844 /* Local delivery */ 25845 if (ire->ire_stq == NULL) { 25846 ill_t *out_ill; 25847 ASSERT(q != NULL); 25848 25849 /* PFHooks: LOOPBACK_OUT */ 25850 out_ill = ire_to_ill(ire); 25851 25852 /* 25853 * DTrace this as ip:::send. A blocked packet will fire the 25854 * send probe, but not the receive probe. 25855 */ 25856 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 25857 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, out_ill, 25858 ipha_t *, NULL, ip6_t *, ip6h, int, 1); 25859 25860 DTRACE_PROBE4(ip6__loopback__out__start, 25861 ill_t *, NULL, ill_t *, out_ill, 25862 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25863 25864 FW_HOOKS6(ipst->ips_ip6_loopback_out_event, 25865 ipst->ips_ipv6firewall_loopback_out, 25866 NULL, out_ill, ip6h1, ipsec_mp, mp, 0, ipst); 25867 25868 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25869 25870 if (ipsec_mp != NULL) { 25871 ip_wput_local_v6(RD(q), out_ill, 25872 ip6h, ipsec_mp, ire, 0, zoneid); 25873 } 25874 if (ire_need_rele) 25875 ire_refrele(ire); 25876 return; 25877 } 25878 /* 25879 * Everything is done. Send it out on the wire. 25880 * We force the insertion of a fragment header using the 25881 * IPH_FRAG_HDR flag in two cases: 25882 * - after reception of an ICMPv6 "packet too big" message 25883 * with a MTU < 1280 (cf. RFC 2460 section 5) 25884 * - for multirouted IPv6 packets, so that the receiver can 25885 * discard duplicates according to their fragment identifier 25886 */ 25887 /* XXX fix flow control problems. */ 25888 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25889 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25890 if (hwaccel) { 25891 /* 25892 * hardware acceleration does not handle these 25893 * "slow path" cases. 25894 */ 25895 /* IPsec KSTATS: should bump bean counter here. */ 25896 if (ire_need_rele) 25897 ire_refrele(ire); 25898 freemsg(ipsec_mp); 25899 return; 25900 } 25901 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25902 (mp->b_cont ? msgdsize(mp) : 25903 mp->b_wptr - (uchar_t *)ip6h)) { 25904 /* IPsec KSTATS: should bump bean counter here. */ 25905 ip0dbg(("Packet length mismatch: %d, %ld\n", 25906 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25907 msgdsize(mp))); 25908 if (ire_need_rele) 25909 ire_refrele(ire); 25910 freemsg(ipsec_mp); 25911 return; 25912 } 25913 ASSERT(mp->b_prev == NULL); 25914 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25915 ntohs(ip6h->ip6_plen) + 25916 IPV6_HDR_LEN, ire->ire_max_frag)); 25917 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25918 ire->ire_max_frag); 25919 } else { 25920 UPDATE_OB_PKT_COUNT(ire); 25921 ire->ire_last_used_time = lbolt; 25922 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25923 } 25924 if (ire_need_rele) 25925 ire_refrele(ire); 25926 freeb(ipsec_mp); 25927 } 25928 25929 void 25930 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25931 { 25932 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25933 da_ipsec_t *hada; /* data attributes */ 25934 ill_t *ill = (ill_t *)q->q_ptr; 25935 25936 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25937 25938 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25939 /* IPsec KSTATS: Bump lose counter here! */ 25940 freemsg(mp); 25941 return; 25942 } 25943 25944 /* 25945 * It's an IPsec packet that must be 25946 * accelerated by the Provider, and the 25947 * outbound ill is IPsec acceleration capable. 25948 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25949 * to the ill. 25950 * IPsec KSTATS: should bump packet counter here. 25951 */ 25952 25953 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25954 if (hada_mp == NULL) { 25955 /* IPsec KSTATS: should bump packet counter here. */ 25956 freemsg(mp); 25957 return; 25958 } 25959 25960 hada_mp->b_datap->db_type = M_CTL; 25961 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25962 hada_mp->b_cont = mp; 25963 25964 hada = (da_ipsec_t *)hada_mp->b_rptr; 25965 bzero(hada, sizeof (da_ipsec_t)); 25966 hada->da_type = IPHADA_M_CTL; 25967 25968 putnext(q, hada_mp); 25969 } 25970 25971 /* 25972 * Finish the outbound IPsec processing. This function is called from 25973 * ipsec_out_process() if the IPsec packet was processed 25974 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25975 * asynchronously. 25976 */ 25977 void 25978 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25979 ire_t *ire_arg) 25980 { 25981 uint32_t v_hlen_tos_len; 25982 ipaddr_t dst; 25983 ipif_t *ipif = NULL; 25984 ire_t *ire; 25985 ire_t *ire1 = NULL; 25986 mblk_t *next_mp = NULL; 25987 uint32_t max_frag; 25988 boolean_t multirt_send = B_FALSE; 25989 mblk_t *mp; 25990 ipha_t *ipha1; 25991 uint_t ill_index; 25992 ipsec_out_t *io; 25993 int match_flags; 25994 irb_t *irb = NULL; 25995 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25996 zoneid_t zoneid; 25997 ipxmit_state_t pktxmit_state; 25998 ip_stack_t *ipst; 25999 26000 #ifdef _BIG_ENDIAN 26001 #define LENGTH (v_hlen_tos_len & 0xFFFF) 26002 #else 26003 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 26004 #endif 26005 26006 mp = ipsec_mp->b_cont; 26007 ipha1 = (ipha_t *)mp->b_rptr; 26008 ASSERT(mp != NULL); 26009 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 26010 dst = ipha->ipha_dst; 26011 26012 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26013 ill_index = io->ipsec_out_ill_index; 26014 zoneid = io->ipsec_out_zoneid; 26015 ASSERT(zoneid != ALL_ZONES); 26016 ipst = io->ipsec_out_ns->netstack_ip; 26017 ASSERT(io->ipsec_out_ns != NULL); 26018 26019 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 26020 if (ill == NULL && ill_index != 0) { 26021 ill = ip_grab_ill(ipsec_mp, ill_index, B_FALSE, ipst); 26022 /* Failure case frees things for us. */ 26023 if (ill == NULL) 26024 return; 26025 26026 ill_need_rele = B_TRUE; 26027 } 26028 26029 if (CLASSD(dst)) { 26030 boolean_t conn_dontroute; 26031 /* 26032 * Use the ill_index to get the right ipif. 26033 */ 26034 conn_dontroute = io->ipsec_out_dontroute; 26035 if (ill_index == 0) 26036 ipif = ipif_lookup_group(dst, zoneid, ipst); 26037 else 26038 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 26039 if (ipif == NULL) { 26040 ip1dbg(("ip_wput_ipsec_out: No ipif for" 26041 " multicast\n")); 26042 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes); 26043 freemsg(ipsec_mp); 26044 goto done; 26045 } 26046 /* 26047 * ipha_src has already been intialized with the 26048 * value of the ipif in ip_wput. All we need now is 26049 * an ire to send this downstream. 26050 */ 26051 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 26052 msg_getlabel(mp), match_flags, ipst); 26053 if (ire != NULL) { 26054 ill_t *ill1; 26055 /* 26056 * Do the multicast forwarding now, as the IPsec 26057 * processing has been done. 26058 */ 26059 if (ipst->ips_ip_g_mrouter && !conn_dontroute && 26060 (ill1 = ire_to_ill(ire))) { 26061 if (ip_mforward(ill1, ipha, mp)) { 26062 freemsg(ipsec_mp); 26063 ip1dbg(("ip_wput_ipsec_out: mforward " 26064 "failed\n")); 26065 ire_refrele(ire); 26066 goto done; 26067 } 26068 } 26069 goto send; 26070 } 26071 26072 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 26073 mp->b_prev = NULL; 26074 mp->b_next = NULL; 26075 26076 /* 26077 * If the IPsec packet was processed asynchronously, 26078 * drop it now. 26079 */ 26080 if (q == NULL) { 26081 freemsg(ipsec_mp); 26082 goto done; 26083 } 26084 26085 /* 26086 * We may be using a wrong ipif to create the ire. 26087 * But it is okay as the source address is assigned 26088 * for the packet already. Next outbound packet would 26089 * create the IRE with the right IPIF in ip_wput. 26090 * 26091 * Also handle RTF_MULTIRT routes. 26092 */ 26093 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 26094 zoneid, &zero_info); 26095 } else { 26096 if (ire_arg != NULL) { 26097 ire = ire_arg; 26098 ire_need_rele = B_FALSE; 26099 } else { 26100 ire = ire_cache_lookup(dst, zoneid, 26101 msg_getlabel(mp), ipst); 26102 } 26103 if (ire != NULL) { 26104 goto send; 26105 } 26106 26107 /* 26108 * ire disappeared underneath. 26109 * 26110 * What we need to do here is the ip_newroute 26111 * logic to get the ire without doing the IPsec 26112 * processing. Follow the same old path. But this 26113 * time, ip_wput or ire_add_then_put will call us 26114 * directly as all the IPsec operations are done. 26115 */ 26116 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 26117 mp->b_prev = NULL; 26118 mp->b_next = NULL; 26119 26120 /* 26121 * If the IPsec packet was processed asynchronously, 26122 * drop it now. 26123 */ 26124 if (q == NULL) { 26125 freemsg(ipsec_mp); 26126 goto done; 26127 } 26128 26129 /* 26130 * Since we're going through ip_newroute() again, we 26131 * need to make sure we don't: 26132 * 26133 * 1.) Trigger the ASSERT() with the ipha_ident 26134 * overloading. 26135 * 2.) Redo transport-layer checksumming, since we've 26136 * already done all that to get this far. 26137 * 26138 * The easiest way not do either of the above is to set 26139 * the ipha_ident field to IP_HDR_INCLUDED. 26140 */ 26141 ipha->ipha_ident = IP_HDR_INCLUDED; 26142 ip_newroute(q, ipsec_mp, dst, (CONN_Q(q) ? Q_TO_CONN(q) : NULL), 26143 zoneid, ipst); 26144 } 26145 goto done; 26146 send: 26147 if (ire->ire_stq == NULL) { 26148 ill_t *out_ill; 26149 /* 26150 * Loopbacks go through ip_wput_local except for one case. 26151 * We come here if we generate a icmp_frag_needed message 26152 * after IPsec processing is over. When this function calls 26153 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 26154 * icmp_frag_needed. The message generated comes back here 26155 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 26156 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 26157 * source address as it is usually set in ip_wput_ire. As 26158 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 26159 * and we end up here. We can't enter ip_wput_ire once the 26160 * IPsec processing is over and hence we need to do it here. 26161 */ 26162 ASSERT(q != NULL); 26163 UPDATE_OB_PKT_COUNT(ire); 26164 ire->ire_last_used_time = lbolt; 26165 if (ipha->ipha_src == 0) 26166 ipha->ipha_src = ire->ire_src_addr; 26167 26168 /* PFHooks: LOOPBACK_OUT */ 26169 out_ill = ire_to_ill(ire); 26170 26171 /* 26172 * DTrace this as ip:::send. A blocked packet will fire the 26173 * send probe, but not the receive probe. 26174 */ 26175 DTRACE_IP7(send, mblk_t *, ipsec_mp, conn_t *, NULL, 26176 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, out_ill, 26177 ipha_t *, ipha, ip6_t *, NULL, int, 1); 26178 26179 DTRACE_PROBE4(ip4__loopback__out__start, 26180 ill_t *, NULL, ill_t *, out_ill, 26181 ipha_t *, ipha1, mblk_t *, ipsec_mp); 26182 26183 FW_HOOKS(ipst->ips_ip4_loopback_out_event, 26184 ipst->ips_ipv4firewall_loopback_out, 26185 NULL, out_ill, ipha1, ipsec_mp, mp, 0, ipst); 26186 26187 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 26188 26189 if (ipsec_mp != NULL) 26190 ip_wput_local(RD(q), out_ill, 26191 ipha, ipsec_mp, ire, 0, zoneid); 26192 if (ire_need_rele) 26193 ire_refrele(ire); 26194 goto done; 26195 } 26196 26197 if (ire->ire_max_frag < (unsigned int)LENGTH) { 26198 /* 26199 * We are through with IPsec processing. 26200 * Fragment this and send it on the wire. 26201 */ 26202 if (io->ipsec_out_accelerated) { 26203 /* 26204 * The packet has been accelerated but must 26205 * be fragmented. This should not happen 26206 * since AH and ESP must not accelerate 26207 * packets that need fragmentation, however 26208 * the configuration could have changed 26209 * since the AH or ESP processing. 26210 * Drop packet. 26211 * IPsec KSTATS: bump bean counter here. 26212 */ 26213 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 26214 "fragmented accelerated packet!\n")); 26215 freemsg(ipsec_mp); 26216 } else { 26217 ip_wput_ire_fragmentit(ipsec_mp, ire, 26218 zoneid, ipst, NULL); 26219 } 26220 if (ire_need_rele) 26221 ire_refrele(ire); 26222 goto done; 26223 } 26224 26225 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 26226 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 26227 (void *)ire->ire_ipif, (void *)ipif)); 26228 26229 /* 26230 * Multiroute the secured packet. 26231 */ 26232 if (ire->ire_flags & RTF_MULTIRT) { 26233 ire_t *first_ire; 26234 irb = ire->ire_bucket; 26235 ASSERT(irb != NULL); 26236 /* 26237 * This ire has been looked up as the one that 26238 * goes through the given ipif; 26239 * make sure we do not omit any other multiroute ire 26240 * that may be present in the bucket before this one. 26241 */ 26242 IRB_REFHOLD(irb); 26243 for (first_ire = irb->irb_ire; 26244 first_ire != NULL; 26245 first_ire = first_ire->ire_next) { 26246 if ((first_ire->ire_flags & RTF_MULTIRT) && 26247 (first_ire->ire_addr == ire->ire_addr) && 26248 !(first_ire->ire_marks & 26249 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN))) 26250 break; 26251 } 26252 26253 if ((first_ire != NULL) && (first_ire != ire)) { 26254 /* 26255 * Don't change the ire if the packet must 26256 * be fragmented if sent via this new one. 26257 */ 26258 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 26259 IRE_REFHOLD(first_ire); 26260 if (ire_need_rele) 26261 ire_refrele(ire); 26262 else 26263 ire_need_rele = B_TRUE; 26264 ire = first_ire; 26265 } 26266 } 26267 IRB_REFRELE(irb); 26268 26269 multirt_send = B_TRUE; 26270 max_frag = ire->ire_max_frag; 26271 } 26272 26273 /* 26274 * In most cases, the emission loop below is entered only once. 26275 * Only in the case where the ire holds the RTF_MULTIRT 26276 * flag, we loop to process all RTF_MULTIRT ires in the 26277 * bucket, and send the packet through all crossed 26278 * RTF_MULTIRT routes. 26279 */ 26280 do { 26281 if (multirt_send) { 26282 /* 26283 * ire1 holds here the next ire to process in the 26284 * bucket. If multirouting is expected, 26285 * any non-RTF_MULTIRT ire that has the 26286 * right destination address is ignored. 26287 */ 26288 ASSERT(irb != NULL); 26289 IRB_REFHOLD(irb); 26290 for (ire1 = ire->ire_next; 26291 ire1 != NULL; 26292 ire1 = ire1->ire_next) { 26293 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 26294 continue; 26295 if (ire1->ire_addr != ire->ire_addr) 26296 continue; 26297 if (ire1->ire_marks & 26298 (IRE_MARK_CONDEMNED | IRE_MARK_TESTHIDDEN)) 26299 continue; 26300 /* No loopback here */ 26301 if (ire1->ire_stq == NULL) 26302 continue; 26303 /* 26304 * Ensure we do not exceed the MTU 26305 * of the next route. 26306 */ 26307 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 26308 ip_multirt_bad_mtu(ire1, max_frag); 26309 continue; 26310 } 26311 26312 IRE_REFHOLD(ire1); 26313 break; 26314 } 26315 IRB_REFRELE(irb); 26316 if (ire1 != NULL) { 26317 /* 26318 * We are in a multiple send case, need to 26319 * make a copy of the packet. 26320 */ 26321 next_mp = copymsg(ipsec_mp); 26322 if (next_mp == NULL) { 26323 ire_refrele(ire1); 26324 ire1 = NULL; 26325 } 26326 } 26327 } 26328 /* 26329 * Everything is done. Send it out on the wire 26330 * 26331 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 26332 * either send it on the wire or, in the case of 26333 * HW acceleration, call ipsec_hw_putnext. 26334 */ 26335 if (ire->ire_nce && 26336 ire->ire_nce->nce_state != ND_REACHABLE) { 26337 DTRACE_PROBE2(ip__wput__ipsec__bail, 26338 (ire_t *), ire, (mblk_t *), ipsec_mp); 26339 /* 26340 * If ire's link-layer is unresolved (this 26341 * would only happen if the incomplete ire 26342 * was added to cachetable via forwarding path) 26343 * don't bother going to ip_xmit_v4. Just drop the 26344 * packet. 26345 * There is a slight risk here, in that, if we 26346 * have the forwarding path create an incomplete 26347 * IRE, then until the IRE is completed, any 26348 * transmitted IPsec packets will be dropped 26349 * instead of being queued waiting for resolution. 26350 * 26351 * But the likelihood of a forwarding packet and a wput 26352 * packet sending to the same dst at the same time 26353 * and there not yet be an ARP entry for it is small. 26354 * Furthermore, if this actually happens, it might 26355 * be likely that wput would generate multiple 26356 * packets (and forwarding would also have a train 26357 * of packets) for that destination. If this is 26358 * the case, some of them would have been dropped 26359 * anyway, since ARP only queues a few packets while 26360 * waiting for resolution 26361 * 26362 * NOTE: We should really call ip_xmit_v4, 26363 * and let it queue the packet and send the 26364 * ARP query and have ARP come back thus: 26365 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26366 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26367 * hw accel work. But it's too complex to get 26368 * the IPsec hw acceleration approach to fit 26369 * well with ip_xmit_v4 doing ARP without 26370 * doing IPsec simplification. For now, we just 26371 * poke ip_xmit_v4 to trigger the arp resolve, so 26372 * that we can continue with the send on the next 26373 * attempt. 26374 * 26375 * XXX THis should be revisited, when 26376 * the IPsec/IP interaction is cleaned up 26377 */ 26378 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26379 " - dropping packet\n")); 26380 freemsg(ipsec_mp); 26381 /* 26382 * Call ip_xmit_v4() to trigger ARP query 26383 * in case the nce_state is ND_INITIAL 26384 */ 26385 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 26386 goto drop_pkt; 26387 } 26388 26389 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26390 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26391 mblk_t *, ipsec_mp); 26392 FW_HOOKS(ipst->ips_ip4_physical_out_event, 26393 ipst->ips_ipv4firewall_physical_out, NULL, 26394 ire->ire_ipif->ipif_ill, ipha1, ipsec_mp, mp, 0, ipst); 26395 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, ipsec_mp); 26396 if (ipsec_mp == NULL) 26397 goto drop_pkt; 26398 26399 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26400 pktxmit_state = ip_xmit_v4(mp, ire, 26401 (io->ipsec_out_accelerated ? io : NULL), B_FALSE, NULL); 26402 26403 if ((pktxmit_state == SEND_FAILED) || 26404 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26405 26406 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26407 drop_pkt: 26408 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26409 ipIfStatsOutDiscards); 26410 if (ire_need_rele) 26411 ire_refrele(ire); 26412 if (ire1 != NULL) { 26413 ire_refrele(ire1); 26414 freemsg(next_mp); 26415 } 26416 goto done; 26417 } 26418 26419 freeb(ipsec_mp); 26420 if (ire_need_rele) 26421 ire_refrele(ire); 26422 26423 if (ire1 != NULL) { 26424 ire = ire1; 26425 ire_need_rele = B_TRUE; 26426 ASSERT(next_mp); 26427 ipsec_mp = next_mp; 26428 mp = ipsec_mp->b_cont; 26429 ire1 = NULL; 26430 next_mp = NULL; 26431 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26432 } else { 26433 multirt_send = B_FALSE; 26434 } 26435 } while (multirt_send); 26436 done: 26437 if (ill != NULL && ill_need_rele) 26438 ill_refrele(ill); 26439 if (ipif != NULL) 26440 ipif_refrele(ipif); 26441 } 26442 26443 /* 26444 * Get the ill corresponding to the specified ire, and compare its 26445 * capabilities with the protocol and algorithms specified by the 26446 * the SA obtained from ipsec_out. If they match, annotate the 26447 * ipsec_out structure to indicate that the packet needs acceleration. 26448 * 26449 * 26450 * A packet is eligible for outbound hardware acceleration if the 26451 * following conditions are satisfied: 26452 * 26453 * 1. the packet will not be fragmented 26454 * 2. the provider supports the algorithm 26455 * 3. there is no pending control message being exchanged 26456 * 4. snoop is not attached 26457 * 5. the destination address is not a broadcast or multicast address. 26458 * 26459 * Rationale: 26460 * - Hardware drivers do not support fragmentation with 26461 * the current interface. 26462 * - snoop, multicast, and broadcast may result in exposure of 26463 * a cleartext datagram. 26464 * We check all five of these conditions here. 26465 * 26466 * XXX would like to nuke "ire_t *" parameter here; problem is that 26467 * IRE is only way to figure out if a v4 address is a broadcast and 26468 * thus ineligible for acceleration... 26469 */ 26470 static void 26471 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26472 { 26473 ipsec_out_t *io; 26474 mblk_t *data_mp; 26475 uint_t plen, overhead; 26476 ip_stack_t *ipst; 26477 phyint_t *phyint; 26478 26479 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26480 return; 26481 26482 if (ill == NULL) 26483 return; 26484 ipst = ill->ill_ipst; 26485 phyint = ill->ill_phyint; 26486 26487 /* 26488 * Destination address is a broadcast or multicast. Punt. 26489 */ 26490 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26491 IRE_LOCAL))) 26492 return; 26493 26494 data_mp = ipsec_mp->b_cont; 26495 26496 if (ill->ill_isv6) { 26497 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26498 26499 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26500 return; 26501 26502 plen = ip6h->ip6_plen; 26503 } else { 26504 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26505 26506 if (CLASSD(ipha->ipha_dst)) 26507 return; 26508 26509 plen = ipha->ipha_length; 26510 } 26511 /* 26512 * Is there a pending DLPI control message being exchanged 26513 * between IP/IPsec and the DLS Provider? If there is, it 26514 * could be a SADB update, and the state of the DLS Provider 26515 * SADB might not be in sync with the SADB maintained by 26516 * IPsec. To avoid dropping packets or using the wrong keying 26517 * material, we do not accelerate this packet. 26518 */ 26519 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26520 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26521 "ill_dlpi_pending! don't accelerate packet\n")); 26522 return; 26523 } 26524 26525 /* 26526 * Is the Provider in promiscous mode? If it does, we don't 26527 * accelerate the packet since it will bounce back up to the 26528 * listeners in the clear. 26529 */ 26530 if (phyint->phyint_flags & PHYI_PROMISC) { 26531 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26532 "ill in promiscous mode, don't accelerate packet\n")); 26533 return; 26534 } 26535 26536 /* 26537 * Will the packet require fragmentation? 26538 */ 26539 26540 /* 26541 * IPsec ESP note: this is a pessimistic estimate, but the same 26542 * as is used elsewhere. 26543 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26544 * + 2-byte trailer 26545 */ 26546 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26547 IPSEC_BASE_ESP_HDR_SIZE(sa); 26548 26549 if ((plen + overhead) > ill->ill_max_mtu) 26550 return; 26551 26552 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26553 26554 /* 26555 * Can the ill accelerate this IPsec protocol and algorithm 26556 * specified by the SA? 26557 */ 26558 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26559 ill->ill_isv6, sa, ipst->ips_netstack)) { 26560 return; 26561 } 26562 26563 /* 26564 * Tell AH or ESP that the outbound ill is capable of 26565 * accelerating this packet. 26566 */ 26567 io->ipsec_out_is_capab_ill = B_TRUE; 26568 } 26569 26570 /* 26571 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26572 * 26573 * If this function returns B_TRUE, the requested SA's have been filled 26574 * into the ipsec_out_*_sa pointers. 26575 * 26576 * If the function returns B_FALSE, the packet has been "consumed", most 26577 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26578 * 26579 * The SA references created by the protocol-specific "select" 26580 * function will be released when the ipsec_mp is freed, thanks to the 26581 * ipsec_out_free destructor -- see spd.c. 26582 */ 26583 static boolean_t 26584 ipsec_out_select_sa(mblk_t *ipsec_mp) 26585 { 26586 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26587 ipsec_out_t *io; 26588 ipsec_policy_t *pp; 26589 ipsec_action_t *ap; 26590 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26591 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26592 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26593 26594 if (!io->ipsec_out_secure) { 26595 /* 26596 * We came here by mistake. 26597 * Don't bother with ipsec processing 26598 * We should "discourage" this path in the future. 26599 */ 26600 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26601 return (B_FALSE); 26602 } 26603 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26604 ASSERT((io->ipsec_out_policy != NULL) || 26605 (io->ipsec_out_act != NULL)); 26606 26607 ASSERT(io->ipsec_out_failed == B_FALSE); 26608 26609 /* 26610 * IPsec processing has started. 26611 */ 26612 io->ipsec_out_proc_begin = B_TRUE; 26613 ap = io->ipsec_out_act; 26614 if (ap == NULL) { 26615 pp = io->ipsec_out_policy; 26616 ASSERT(pp != NULL); 26617 ap = pp->ipsp_act; 26618 ASSERT(ap != NULL); 26619 } 26620 26621 /* 26622 * We have an action. now, let's select SA's. 26623 * (In the future, we can cache this in the conn_t..) 26624 */ 26625 if (ap->ipa_want_esp) { 26626 if (io->ipsec_out_esp_sa == NULL) { 26627 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26628 IPPROTO_ESP); 26629 } 26630 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26631 } 26632 26633 if (ap->ipa_want_ah) { 26634 if (io->ipsec_out_ah_sa == NULL) { 26635 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26636 IPPROTO_AH); 26637 } 26638 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26639 /* 26640 * The ESP and AH processing order needs to be preserved 26641 * when both protocols are required (ESP should be applied 26642 * before AH for an outbound packet). Force an ESP ACQUIRE 26643 * when both ESP and AH are required, and an AH ACQUIRE 26644 * is needed. 26645 */ 26646 if (ap->ipa_want_esp && need_ah_acquire) 26647 need_esp_acquire = B_TRUE; 26648 } 26649 26650 /* 26651 * Send an ACQUIRE (extended, regular, or both) if we need one. 26652 * Release SAs that got referenced, but will not be used until we 26653 * acquire _all_ of the SAs we need. 26654 */ 26655 if (need_ah_acquire || need_esp_acquire) { 26656 if (io->ipsec_out_ah_sa != NULL) { 26657 IPSA_REFRELE(io->ipsec_out_ah_sa); 26658 io->ipsec_out_ah_sa = NULL; 26659 } 26660 if (io->ipsec_out_esp_sa != NULL) { 26661 IPSA_REFRELE(io->ipsec_out_esp_sa); 26662 io->ipsec_out_esp_sa = NULL; 26663 } 26664 26665 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26666 return (B_FALSE); 26667 } 26668 26669 return (B_TRUE); 26670 } 26671 26672 /* 26673 * Process an IPSEC_OUT message and see what you can 26674 * do with it. 26675 * IPQoS Notes: 26676 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26677 * IPsec. 26678 * XXX would like to nuke ire_t. 26679 * XXX ill_index better be "real" 26680 */ 26681 void 26682 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26683 { 26684 ipsec_out_t *io; 26685 ipsec_policy_t *pp; 26686 ipsec_action_t *ap; 26687 ipha_t *ipha; 26688 ip6_t *ip6h; 26689 mblk_t *mp; 26690 ill_t *ill; 26691 zoneid_t zoneid; 26692 ipsec_status_t ipsec_rc; 26693 boolean_t ill_need_rele = B_FALSE; 26694 ip_stack_t *ipst; 26695 ipsec_stack_t *ipss; 26696 26697 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26698 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26699 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26700 ipst = io->ipsec_out_ns->netstack_ip; 26701 mp = ipsec_mp->b_cont; 26702 26703 /* 26704 * Initiate IPPF processing. We do it here to account for packets 26705 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26706 * We can check for ipsec_out_proc_begin even for such packets, as 26707 * they will always be false (asserted below). 26708 */ 26709 if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) { 26710 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26711 io->ipsec_out_ill_index : ill_index); 26712 if (mp == NULL) { 26713 ip2dbg(("ipsec_out_process: packet dropped "\ 26714 "during IPPF processing\n")); 26715 freeb(ipsec_mp); 26716 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26717 return; 26718 } 26719 } 26720 26721 if (!io->ipsec_out_secure) { 26722 /* 26723 * We came here by mistake. 26724 * Don't bother with ipsec processing 26725 * Should "discourage" this path in the future. 26726 */ 26727 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26728 goto done; 26729 } 26730 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26731 ASSERT((io->ipsec_out_policy != NULL) || 26732 (io->ipsec_out_act != NULL)); 26733 ASSERT(io->ipsec_out_failed == B_FALSE); 26734 26735 ipss = ipst->ips_netstack->netstack_ipsec; 26736 if (!ipsec_loaded(ipss)) { 26737 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26738 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26739 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 26740 } else { 26741 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards); 26742 } 26743 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26744 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 26745 &ipss->ipsec_dropper); 26746 return; 26747 } 26748 26749 /* 26750 * IPsec processing has started. 26751 */ 26752 io->ipsec_out_proc_begin = B_TRUE; 26753 ap = io->ipsec_out_act; 26754 if (ap == NULL) { 26755 pp = io->ipsec_out_policy; 26756 ASSERT(pp != NULL); 26757 ap = pp->ipsp_act; 26758 ASSERT(ap != NULL); 26759 } 26760 26761 /* 26762 * Save the outbound ill index. When the packet comes back 26763 * from IPsec, we make sure the ill hasn't changed or disappeared 26764 * before sending it the accelerated packet. 26765 */ 26766 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26767 ill = ire_to_ill(ire); 26768 io->ipsec_out_capab_ill_index = ill->ill_phyint->phyint_ifindex; 26769 } 26770 26771 /* 26772 * The order of processing is first insert a IP header if needed. 26773 * Then insert the ESP header and then the AH header. 26774 */ 26775 if ((io->ipsec_out_se_done == B_FALSE) && 26776 (ap->ipa_want_se)) { 26777 /* 26778 * First get the outer IP header before sending 26779 * it to ESP. 26780 */ 26781 ipha_t *oipha, *iipha; 26782 mblk_t *outer_mp, *inner_mp; 26783 26784 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26785 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26786 "ipsec_out_process: " 26787 "Self-Encapsulation failed: Out of memory\n"); 26788 freemsg(ipsec_mp); 26789 if (ill != NULL) { 26790 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26791 } else { 26792 BUMP_MIB(&ipst->ips_ip_mib, 26793 ipIfStatsOutDiscards); 26794 } 26795 return; 26796 } 26797 inner_mp = ipsec_mp->b_cont; 26798 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26799 oipha = (ipha_t *)outer_mp->b_rptr; 26800 iipha = (ipha_t *)inner_mp->b_rptr; 26801 *oipha = *iipha; 26802 outer_mp->b_wptr += sizeof (ipha_t); 26803 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26804 sizeof (ipha_t)); 26805 oipha->ipha_protocol = IPPROTO_ENCAP; 26806 oipha->ipha_version_and_hdr_length = 26807 IP_SIMPLE_HDR_VERSION; 26808 oipha->ipha_hdr_checksum = 0; 26809 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26810 outer_mp->b_cont = inner_mp; 26811 ipsec_mp->b_cont = outer_mp; 26812 26813 io->ipsec_out_se_done = B_TRUE; 26814 io->ipsec_out_tunnel = B_TRUE; 26815 } 26816 26817 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26818 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26819 !ipsec_out_select_sa(ipsec_mp)) 26820 return; 26821 26822 /* 26823 * By now, we know what SA's to use. Toss over to ESP & AH 26824 * to do the heavy lifting. 26825 */ 26826 zoneid = io->ipsec_out_zoneid; 26827 ASSERT(zoneid != ALL_ZONES); 26828 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26829 ASSERT(io->ipsec_out_esp_sa != NULL); 26830 io->ipsec_out_esp_done = B_TRUE; 26831 /* 26832 * Note that since hw accel can only apply one transform, 26833 * not two, we skip hw accel for ESP if we also have AH 26834 * This is an design limitation of the interface 26835 * which should be revisited. 26836 */ 26837 ASSERT(ire != NULL); 26838 if (io->ipsec_out_ah_sa == NULL) { 26839 ill = (ill_t *)ire->ire_stq->q_ptr; 26840 ipsec_out_is_accelerated(ipsec_mp, 26841 io->ipsec_out_esp_sa, ill, ire); 26842 } 26843 26844 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26845 switch (ipsec_rc) { 26846 case IPSEC_STATUS_SUCCESS: 26847 break; 26848 case IPSEC_STATUS_FAILED: 26849 if (ill != NULL) { 26850 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26851 } else { 26852 BUMP_MIB(&ipst->ips_ip_mib, 26853 ipIfStatsOutDiscards); 26854 } 26855 /* FALLTHRU */ 26856 case IPSEC_STATUS_PENDING: 26857 return; 26858 } 26859 } 26860 26861 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26862 ASSERT(io->ipsec_out_ah_sa != NULL); 26863 io->ipsec_out_ah_done = B_TRUE; 26864 if (ire == NULL) { 26865 int idx = io->ipsec_out_capab_ill_index; 26866 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26867 NULL, NULL, NULL, NULL, ipst); 26868 ill_need_rele = B_TRUE; 26869 } else { 26870 ill = (ill_t *)ire->ire_stq->q_ptr; 26871 } 26872 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26873 ire); 26874 26875 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26876 switch (ipsec_rc) { 26877 case IPSEC_STATUS_SUCCESS: 26878 break; 26879 case IPSEC_STATUS_FAILED: 26880 if (ill != NULL) { 26881 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26882 } else { 26883 BUMP_MIB(&ipst->ips_ip_mib, 26884 ipIfStatsOutDiscards); 26885 } 26886 /* FALLTHRU */ 26887 case IPSEC_STATUS_PENDING: 26888 if (ill != NULL && ill_need_rele) 26889 ill_refrele(ill); 26890 return; 26891 } 26892 } 26893 /* 26894 * We are done with IPsec processing. Send it over the wire. 26895 */ 26896 done: 26897 mp = ipsec_mp->b_cont; 26898 ipha = (ipha_t *)mp->b_rptr; 26899 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26900 ip_wput_ipsec_out(q, ipsec_mp, ipha, ire->ire_ipif->ipif_ill, 26901 ire); 26902 } else { 26903 ip6h = (ip6_t *)ipha; 26904 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ire->ire_ipif->ipif_ill, 26905 ire); 26906 } 26907 if (ill != NULL && ill_need_rele) 26908 ill_refrele(ill); 26909 } 26910 26911 /* ARGSUSED */ 26912 void 26913 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26914 { 26915 opt_restart_t *or; 26916 int err; 26917 conn_t *connp; 26918 cred_t *cr; 26919 26920 ASSERT(CONN_Q(q)); 26921 connp = Q_TO_CONN(q); 26922 26923 ASSERT(first_mp->b_datap->db_type == M_CTL); 26924 or = (opt_restart_t *)first_mp->b_rptr; 26925 /* 26926 * We checked for a db_credp the first time svr4_optcom_req 26927 * was called (from ip_wput_nondata). So we can just ASSERT here. 26928 */ 26929 cr = msg_getcred(first_mp, NULL); 26930 ASSERT(cr != NULL); 26931 26932 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26933 err = svr4_optcom_req(q, first_mp, cr, 26934 &ip_opt_obj, B_FALSE); 26935 } else { 26936 ASSERT(or->or_type == T_OPTMGMT_REQ); 26937 err = tpi_optcom_req(q, first_mp, cr, 26938 &ip_opt_obj, B_FALSE); 26939 } 26940 if (err != EINPROGRESS) { 26941 /* operation is done */ 26942 CONN_OPER_PENDING_DONE(connp); 26943 } 26944 } 26945 26946 /* 26947 * ioctls that go through a down/up sequence may need to wait for the down 26948 * to complete. This involves waiting for the ire and ipif refcnts to go down 26949 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26950 */ 26951 /* ARGSUSED */ 26952 void 26953 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26954 { 26955 struct iocblk *iocp; 26956 mblk_t *mp1; 26957 ip_ioctl_cmd_t *ipip; 26958 int err; 26959 sin_t *sin; 26960 struct lifreq *lifr; 26961 struct ifreq *ifr; 26962 26963 iocp = (struct iocblk *)mp->b_rptr; 26964 ASSERT(ipsq != NULL); 26965 /* Existence of mp1 verified in ip_wput_nondata */ 26966 mp1 = mp->b_cont->b_cont; 26967 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26968 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26969 /* 26970 * Special case where ipx_current_ipif is not set: 26971 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26972 * We are here as were not able to complete the operation in 26973 * ipif_set_values because we could not become exclusive on 26974 * the new ipsq. 26975 */ 26976 ill_t *ill = q->q_ptr; 26977 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 26978 } 26979 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 26980 26981 if (ipip->ipi_cmd_type == IF_CMD) { 26982 /* This a old style SIOC[GS]IF* command */ 26983 ifr = (struct ifreq *)mp1->b_rptr; 26984 sin = (sin_t *)&ifr->ifr_addr; 26985 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26986 /* This a new style SIOC[GS]LIF* command */ 26987 lifr = (struct lifreq *)mp1->b_rptr; 26988 sin = (sin_t *)&lifr->lifr_addr; 26989 } else { 26990 sin = NULL; 26991 } 26992 26993 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 26994 q, mp, ipip, mp1->b_rptr); 26995 26996 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 26997 } 26998 26999 /* 27000 * ioctl processing 27001 * 27002 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 27003 * the ioctl command in the ioctl tables, determines the copyin data size 27004 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 27005 * 27006 * ioctl processing then continues when the M_IOCDATA makes its way down to 27007 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 27008 * associated 'conn' is refheld till the end of the ioctl and the general 27009 * ioctl processing function ip_process_ioctl() is called to extract the 27010 * arguments and process the ioctl. To simplify extraction, ioctl commands 27011 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 27012 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 27013 * is used to extract the ioctl's arguments. 27014 * 27015 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 27016 * so goes thru the serialization primitive ipsq_try_enter. Then the 27017 * appropriate function to handle the ioctl is called based on the entry in 27018 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 27019 * which also refreleases the 'conn' that was refheld at the start of the 27020 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 27021 * 27022 * Many exclusive ioctls go thru an internal down up sequence as part of 27023 * the operation. For example an attempt to change the IP address of an 27024 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 27025 * does all the cleanup such as deleting all ires that use this address. 27026 * Then we need to wait till all references to the interface go away. 27027 */ 27028 void 27029 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 27030 { 27031 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 27032 ip_ioctl_cmd_t *ipip = arg; 27033 ip_extract_func_t *extract_funcp; 27034 cmd_info_t ci; 27035 int err; 27036 boolean_t entered_ipsq = B_FALSE; 27037 27038 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 27039 27040 if (ipip == NULL) 27041 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27042 27043 /* 27044 * SIOCLIFADDIF needs to go thru a special path since the 27045 * ill may not exist yet. This happens in the case of lo0 27046 * which is created using this ioctl. 27047 */ 27048 if (ipip->ipi_cmd == SIOCLIFADDIF) { 27049 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 27050 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27051 return; 27052 } 27053 27054 ci.ci_ipif = NULL; 27055 if (ipip->ipi_cmd_type == MISC_CMD) { 27056 /* 27057 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 27058 */ 27059 if (ipip->ipi_cmd == IF_UNITSEL) { 27060 /* ioctl comes down the ill */ 27061 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 27062 ipif_refhold(ci.ci_ipif); 27063 } 27064 err = 0; 27065 ci.ci_sin = NULL; 27066 ci.ci_sin6 = NULL; 27067 ci.ci_lifr = NULL; 27068 } else { 27069 switch (ipip->ipi_cmd_type) { 27070 case IF_CMD: 27071 case LIF_CMD: 27072 extract_funcp = ip_extract_lifreq; 27073 break; 27074 27075 case ARP_CMD: 27076 case XARP_CMD: 27077 extract_funcp = ip_extract_arpreq; 27078 break; 27079 27080 case TUN_CMD: 27081 extract_funcp = ip_extract_tunreq; 27082 break; 27083 27084 case MSFILT_CMD: 27085 extract_funcp = ip_extract_msfilter; 27086 break; 27087 27088 default: 27089 ASSERT(0); 27090 } 27091 27092 err = (*extract_funcp)(q, mp, ipip, &ci, ip_process_ioctl); 27093 if (err != 0) { 27094 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27095 return; 27096 } 27097 27098 /* 27099 * All of the extraction functions return a refheld ipif. 27100 */ 27101 ASSERT(ci.ci_ipif != NULL); 27102 } 27103 27104 if (!(ipip->ipi_flags & IPI_WR)) { 27105 /* 27106 * A return value of EINPROGRESS means the ioctl is 27107 * either queued and waiting for some reason or has 27108 * already completed. 27109 */ 27110 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 27111 ci.ci_lifr); 27112 if (ci.ci_ipif != NULL) 27113 ipif_refrele(ci.ci_ipif); 27114 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 27115 return; 27116 } 27117 27118 ASSERT(ci.ci_ipif != NULL); 27119 27120 /* 27121 * If ipsq is non-NULL, we are already being called exclusively. 27122 */ 27123 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 27124 if (ipsq == NULL) { 27125 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 27126 NEW_OP, B_TRUE); 27127 if (ipsq == NULL) { 27128 ipif_refrele(ci.ci_ipif); 27129 return; 27130 } 27131 entered_ipsq = B_TRUE; 27132 } 27133 27134 /* 27135 * Release the ipif so that ipif_down and friends that wait for 27136 * references to go away are not misled about the current ipif_refcnt 27137 * values. We are writer so we can access the ipif even after releasing 27138 * the ipif. 27139 */ 27140 ipif_refrele(ci.ci_ipif); 27141 27142 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 27143 27144 /* 27145 * A return value of EINPROGRESS means the ioctl is 27146 * either queued and waiting for some reason or has 27147 * already completed. 27148 */ 27149 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 27150 27151 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 27152 27153 if (entered_ipsq) 27154 ipsq_exit(ipsq); 27155 } 27156 27157 /* 27158 * Complete the ioctl. Typically ioctls use the mi package and need to 27159 * do mi_copyout/mi_copy_done. 27160 */ 27161 void 27162 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 27163 { 27164 conn_t *connp = NULL; 27165 27166 if (err == EINPROGRESS) 27167 return; 27168 27169 if (CONN_Q(q)) { 27170 connp = Q_TO_CONN(q); 27171 ASSERT(connp->conn_ref >= 2); 27172 } 27173 27174 switch (mode) { 27175 case COPYOUT: 27176 if (err == 0) 27177 mi_copyout(q, mp); 27178 else 27179 mi_copy_done(q, mp, err); 27180 break; 27181 27182 case NO_COPYOUT: 27183 mi_copy_done(q, mp, err); 27184 break; 27185 27186 default: 27187 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 27188 break; 27189 } 27190 27191 /* 27192 * The refhold placed at the start of the ioctl is released here. 27193 */ 27194 if (connp != NULL) 27195 CONN_OPER_PENDING_DONE(connp); 27196 27197 if (ipsq != NULL) 27198 ipsq_current_finish(ipsq); 27199 } 27200 27201 /* Called from ip_wput for all non data messages */ 27202 /* ARGSUSED */ 27203 void 27204 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 27205 { 27206 mblk_t *mp1; 27207 ire_t *ire, *fake_ire; 27208 ill_t *ill; 27209 struct iocblk *iocp; 27210 ip_ioctl_cmd_t *ipip; 27211 cred_t *cr; 27212 conn_t *connp; 27213 int err; 27214 nce_t *nce; 27215 ipif_t *ipif; 27216 ip_stack_t *ipst; 27217 char *proto_str; 27218 27219 if (CONN_Q(q)) { 27220 connp = Q_TO_CONN(q); 27221 ipst = connp->conn_netstack->netstack_ip; 27222 } else { 27223 connp = NULL; 27224 ipst = ILLQ_TO_IPST(q); 27225 } 27226 27227 switch (DB_TYPE(mp)) { 27228 case M_IOCTL: 27229 /* 27230 * IOCTL processing begins in ip_sioctl_copyin_setup which 27231 * will arrange to copy in associated control structures. 27232 */ 27233 ip_sioctl_copyin_setup(q, mp); 27234 return; 27235 case M_IOCDATA: 27236 /* 27237 * Ensure that this is associated with one of our trans- 27238 * parent ioctls. If it's not ours, discard it if we're 27239 * running as a driver, or pass it on if we're a module. 27240 */ 27241 iocp = (struct iocblk *)mp->b_rptr; 27242 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 27243 if (ipip == NULL) { 27244 if (q->q_next == NULL) { 27245 goto nak; 27246 } else { 27247 putnext(q, mp); 27248 } 27249 return; 27250 } 27251 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 27252 /* 27253 * the ioctl is one we recognise, but is not 27254 * consumed by IP as a module, pass M_IOCDATA 27255 * for processing downstream, but only for 27256 * common Streams ioctls. 27257 */ 27258 if (ipip->ipi_flags & IPI_PASS_DOWN) { 27259 putnext(q, mp); 27260 return; 27261 } else { 27262 goto nak; 27263 } 27264 } 27265 27266 /* IOCTL continuation following copyin or copyout. */ 27267 if (mi_copy_state(q, mp, NULL) == -1) { 27268 /* 27269 * The copy operation failed. mi_copy_state already 27270 * cleaned up, so we're out of here. 27271 */ 27272 return; 27273 } 27274 /* 27275 * If we just completed a copy in, we become writer and 27276 * continue processing in ip_sioctl_copyin_done. If it 27277 * was a copy out, we call mi_copyout again. If there is 27278 * nothing more to copy out, it will complete the IOCTL. 27279 */ 27280 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27281 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27282 mi_copy_done(q, mp, EPROTO); 27283 return; 27284 } 27285 /* 27286 * Check for cases that need more copying. A return 27287 * value of 0 means a second copyin has been started, 27288 * so we return; a return value of 1 means no more 27289 * copying is needed, so we continue. 27290 */ 27291 if (ipip->ipi_cmd_type == MSFILT_CMD && 27292 MI_COPY_COUNT(mp) == 1) { 27293 if (ip_copyin_msfilter(q, mp) == 0) 27294 return; 27295 } 27296 /* 27297 * Refhold the conn, till the ioctl completes. This is 27298 * needed in case the ioctl ends up in the pending mp 27299 * list. Every mp in the ill_pending_mp list and 27300 * the ipx_pending_mp must have a refhold on the conn 27301 * to resume processing. The refhold is released when 27302 * the ioctl completes. (normally or abnormally) 27303 * In all cases ip_ioctl_finish is called to finish 27304 * the ioctl. 27305 */ 27306 if (connp != NULL) { 27307 /* This is not a reentry */ 27308 ASSERT(ipsq == NULL); 27309 CONN_INC_REF(connp); 27310 } else { 27311 if (!(ipip->ipi_flags & IPI_MODOK)) { 27312 mi_copy_done(q, mp, EINVAL); 27313 return; 27314 } 27315 } 27316 27317 ip_process_ioctl(ipsq, q, mp, ipip); 27318 27319 } else { 27320 mi_copyout(q, mp); 27321 } 27322 return; 27323 nak: 27324 iocp->ioc_error = EINVAL; 27325 mp->b_datap->db_type = M_IOCNAK; 27326 iocp->ioc_count = 0; 27327 qreply(q, mp); 27328 return; 27329 27330 case M_IOCNAK: 27331 /* 27332 * The only way we could get here is if a resolver didn't like 27333 * an IOCTL we sent it. This shouldn't happen. 27334 */ 27335 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27336 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27337 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27338 freemsg(mp); 27339 return; 27340 case M_IOCACK: 27341 /* /dev/ip shouldn't see this */ 27342 if (CONN_Q(q)) 27343 goto nak; 27344 27345 /* 27346 * Finish socket ioctls passed through to ARP. We use the 27347 * ioc_cmd values we set in ip_sioctl_arp() to decide whether 27348 * we need to become writer before calling ip_sioctl_iocack(). 27349 * Note that qwriter_ip() will release the refhold, and that a 27350 * refhold is OK without ILL_CAN_LOOKUP() since we're on the 27351 * ill stream. 27352 */ 27353 iocp = (struct iocblk *)mp->b_rptr; 27354 if (iocp->ioc_cmd == AR_ENTRY_SQUERY) { 27355 ip_sioctl_iocack(NULL, q, mp, NULL); 27356 return; 27357 } 27358 27359 ASSERT(iocp->ioc_cmd == AR_ENTRY_DELETE || 27360 iocp->ioc_cmd == AR_ENTRY_ADD); 27361 ill = q->q_ptr; 27362 ill_refhold(ill); 27363 qwriter_ip(ill, q, mp, ip_sioctl_iocack, CUR_OP, B_FALSE); 27364 return; 27365 case M_FLUSH: 27366 if (*mp->b_rptr & FLUSHW) 27367 flushq(q, FLUSHALL); 27368 if (q->q_next) { 27369 putnext(q, mp); 27370 return; 27371 } 27372 if (*mp->b_rptr & FLUSHR) { 27373 *mp->b_rptr &= ~FLUSHW; 27374 qreply(q, mp); 27375 return; 27376 } 27377 freemsg(mp); 27378 return; 27379 case IRE_DB_REQ_TYPE: 27380 if (connp == NULL) { 27381 proto_str = "IRE_DB_REQ_TYPE"; 27382 goto protonak; 27383 } 27384 /* An Upper Level Protocol wants a copy of an IRE. */ 27385 ip_ire_req(q, mp); 27386 return; 27387 case M_CTL: 27388 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27389 break; 27390 27391 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27392 TUN_HELLO) { 27393 ASSERT(connp != NULL); 27394 connp->conn_flags |= IPCL_IPTUN; 27395 freeb(mp); 27396 return; 27397 } 27398 27399 /* M_CTL messages are used by ARP to tell us things. */ 27400 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27401 break; 27402 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27403 case AR_ENTRY_SQUERY: 27404 putnext(q, mp); 27405 return; 27406 case AR_CLIENT_NOTIFY: 27407 ip_arp_news(q, mp); 27408 return; 27409 case AR_DLPIOP_DONE: 27410 ASSERT(q->q_next != NULL); 27411 ill = (ill_t *)q->q_ptr; 27412 /* qwriter_ip releases the refhold */ 27413 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27414 ill_refhold(ill); 27415 qwriter_ip(ill, q, mp, ip_arp_done, CUR_OP, B_FALSE); 27416 return; 27417 case AR_ARP_CLOSING: 27418 /* 27419 * ARP (above us) is closing. If no ARP bringup is 27420 * currently pending, ack the message so that ARP 27421 * can complete its close. Also mark ill_arp_closing 27422 * so that new ARP bringups will fail. If any 27423 * ARP bringup is currently in progress, we will 27424 * ack this when the current ARP bringup completes. 27425 */ 27426 ASSERT(q->q_next != NULL); 27427 ill = (ill_t *)q->q_ptr; 27428 mutex_enter(&ill->ill_lock); 27429 ill->ill_arp_closing = 1; 27430 if (!ill->ill_arp_bringup_pending) { 27431 mutex_exit(&ill->ill_lock); 27432 qreply(q, mp); 27433 } else { 27434 mutex_exit(&ill->ill_lock); 27435 freemsg(mp); 27436 } 27437 return; 27438 case AR_ARP_EXTEND: 27439 /* 27440 * The ARP module above us is capable of duplicate 27441 * address detection. Old ATM drivers will not send 27442 * this message. 27443 */ 27444 ASSERT(q->q_next != NULL); 27445 ill = (ill_t *)q->q_ptr; 27446 ill->ill_arp_extend = B_TRUE; 27447 freemsg(mp); 27448 return; 27449 default: 27450 break; 27451 } 27452 break; 27453 case M_PROTO: 27454 case M_PCPROTO: 27455 /* 27456 * The only PROTO messages we expect are copies of option 27457 * negotiation acknowledgements, AH and ESP bind requests 27458 * are also expected. 27459 */ 27460 switch (((union T_primitives *)mp->b_rptr)->type) { 27461 case O_T_BIND_REQ: 27462 case T_BIND_REQ: { 27463 /* Request can get queued in bind */ 27464 if (connp == NULL) { 27465 proto_str = "O_T_BIND_REQ/T_BIND_REQ"; 27466 goto protonak; 27467 } 27468 /* 27469 * The transports except SCTP call ip_bind_{v4,v6}() 27470 * directly instead of a a putnext. SCTP doesn't 27471 * generate any T_BIND_REQ since it has its own 27472 * fanout data structures. However, ESP and AH 27473 * come in for regular binds; all other cases are 27474 * bind retries. 27475 */ 27476 ASSERT(!IPCL_IS_SCTP(connp)); 27477 27478 /* Don't increment refcnt if this is a re-entry */ 27479 if (ipsq == NULL) 27480 CONN_INC_REF(connp); 27481 27482 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27483 connp, NULL) : ip_bind_v4(q, mp, connp); 27484 ASSERT(mp != NULL); 27485 27486 ASSERT(!IPCL_IS_TCP(connp)); 27487 ASSERT(!IPCL_IS_UDP(connp)); 27488 ASSERT(!IPCL_IS_RAWIP(connp)); 27489 27490 /* The case of AH and ESP */ 27491 qreply(q, mp); 27492 CONN_OPER_PENDING_DONE(connp); 27493 return; 27494 } 27495 case T_SVR4_OPTMGMT_REQ: 27496 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27497 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27498 27499 if (connp == NULL) { 27500 proto_str = "T_SVR4_OPTMGMT_REQ"; 27501 goto protonak; 27502 } 27503 27504 /* 27505 * All Solaris components should pass a db_credp 27506 * for this TPI message, hence we ASSERT. 27507 * But in case there is some other M_PROTO that looks 27508 * like a TPI message sent by some other kernel 27509 * component, we check and return an error. 27510 */ 27511 cr = msg_getcred(mp, NULL); 27512 ASSERT(cr != NULL); 27513 if (cr == NULL) { 27514 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27515 if (mp != NULL) 27516 qreply(q, mp); 27517 return; 27518 } 27519 27520 if (!snmpcom_req(q, mp, ip_snmp_set, 27521 ip_snmp_get, cr)) { 27522 /* 27523 * Call svr4_optcom_req so that it can 27524 * generate the ack. We don't come here 27525 * if this operation is being restarted. 27526 * ip_restart_optmgmt will drop the conn ref. 27527 * In the case of ipsec option after the ipsec 27528 * load is complete conn_restart_ipsec_waiter 27529 * drops the conn ref. 27530 */ 27531 ASSERT(ipsq == NULL); 27532 CONN_INC_REF(connp); 27533 if (ip_check_for_ipsec_opt(q, mp)) 27534 return; 27535 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj, 27536 B_FALSE); 27537 if (err != EINPROGRESS) { 27538 /* Operation is done */ 27539 CONN_OPER_PENDING_DONE(connp); 27540 } 27541 } 27542 return; 27543 case T_OPTMGMT_REQ: 27544 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27545 /* 27546 * Note: No snmpcom_req support through new 27547 * T_OPTMGMT_REQ. 27548 * Call tpi_optcom_req so that it can 27549 * generate the ack. 27550 */ 27551 if (connp == NULL) { 27552 proto_str = "T_OPTMGMT_REQ"; 27553 goto protonak; 27554 } 27555 27556 /* 27557 * All Solaris components should pass a db_credp 27558 * for this TPI message, hence we ASSERT. 27559 * But in case there is some other M_PROTO that looks 27560 * like a TPI message sent by some other kernel 27561 * component, we check and return an error. 27562 */ 27563 cr = msg_getcred(mp, NULL); 27564 ASSERT(cr != NULL); 27565 if (cr == NULL) { 27566 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 27567 if (mp != NULL) 27568 qreply(q, mp); 27569 return; 27570 } 27571 ASSERT(ipsq == NULL); 27572 /* 27573 * We don't come here for restart. ip_restart_optmgmt 27574 * will drop the conn ref. In the case of ipsec option 27575 * after the ipsec load is complete 27576 * conn_restart_ipsec_waiter drops the conn ref. 27577 */ 27578 CONN_INC_REF(connp); 27579 if (ip_check_for_ipsec_opt(q, mp)) 27580 return; 27581 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj, B_FALSE); 27582 if (err != EINPROGRESS) { 27583 /* Operation is done */ 27584 CONN_OPER_PENDING_DONE(connp); 27585 } 27586 return; 27587 case T_UNBIND_REQ: 27588 if (connp == NULL) { 27589 proto_str = "T_UNBIND_REQ"; 27590 goto protonak; 27591 } 27592 ip_unbind(Q_TO_CONN(q)); 27593 mp = mi_tpi_ok_ack_alloc(mp); 27594 qreply(q, mp); 27595 return; 27596 default: 27597 /* 27598 * Have to drop any DLPI messages coming down from 27599 * arp (such as an info_req which would cause ip 27600 * to receive an extra info_ack if it was passed 27601 * through. 27602 */ 27603 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27604 (int)*(uint_t *)mp->b_rptr)); 27605 freemsg(mp); 27606 return; 27607 } 27608 /* NOTREACHED */ 27609 case IRE_DB_TYPE: { 27610 nce_t *nce; 27611 ill_t *ill; 27612 in6_addr_t gw_addr_v6; 27613 27614 /* 27615 * This is a response back from a resolver. It 27616 * consists of a message chain containing: 27617 * IRE_MBLK-->LL_HDR_MBLK->pkt 27618 * The IRE_MBLK is the one we allocated in ip_newroute. 27619 * The LL_HDR_MBLK is the DLPI header to use to get 27620 * the attached packet, and subsequent ones for the 27621 * same destination, transmitted. 27622 */ 27623 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27624 break; 27625 /* 27626 * First, check to make sure the resolution succeeded. 27627 * If it failed, the second mblk will be empty. 27628 * If it is, free the chain, dropping the packet. 27629 * (We must ire_delete the ire; that frees the ire mblk) 27630 * We're doing this now to support PVCs for ATM; it's 27631 * a partial xresolv implementation. When we fully implement 27632 * xresolv interfaces, instead of freeing everything here 27633 * we'll initiate neighbor discovery. 27634 * 27635 * For v4 (ARP and other external resolvers) the resolver 27636 * frees the message, so no check is needed. This check 27637 * is required, though, for a full xresolve implementation. 27638 * Including this code here now both shows how external 27639 * resolvers can NACK a resolution request using an 27640 * existing design that has no specific provisions for NACKs, 27641 * and also takes into account that the current non-ARP 27642 * external resolver has been coded to use this method of 27643 * NACKing for all IPv6 (xresolv) cases, 27644 * whether our xresolv implementation is complete or not. 27645 * 27646 */ 27647 ire = (ire_t *)mp->b_rptr; 27648 ill = ire_to_ill(ire); 27649 mp1 = mp->b_cont; /* dl_unitdata_req */ 27650 if (mp1->b_rptr == mp1->b_wptr) { 27651 if (ire->ire_ipversion == IPV6_VERSION) { 27652 /* 27653 * XRESOLV interface. 27654 */ 27655 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27656 mutex_enter(&ire->ire_lock); 27657 gw_addr_v6 = ire->ire_gateway_addr_v6; 27658 mutex_exit(&ire->ire_lock); 27659 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27660 nce = ndp_lookup_v6(ill, B_FALSE, 27661 &ire->ire_addr_v6, B_FALSE); 27662 } else { 27663 nce = ndp_lookup_v6(ill, B_FALSE, 27664 &gw_addr_v6, B_FALSE); 27665 } 27666 if (nce != NULL) { 27667 nce_resolv_failed(nce); 27668 ndp_delete(nce); 27669 NCE_REFRELE(nce); 27670 } 27671 } 27672 mp->b_cont = NULL; 27673 freemsg(mp1); /* frees the pkt as well */ 27674 ASSERT(ire->ire_nce == NULL); 27675 ire_delete((ire_t *)mp->b_rptr); 27676 return; 27677 } 27678 27679 /* 27680 * Split them into IRE_MBLK and pkt and feed it into 27681 * ire_add_then_send. Then in ire_add_then_send 27682 * the IRE will be added, and then the packet will be 27683 * run back through ip_wput. This time it will make 27684 * it to the wire. 27685 */ 27686 mp->b_cont = NULL; 27687 mp = mp1->b_cont; /* now, mp points to pkt */ 27688 mp1->b_cont = NULL; 27689 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27690 if (ire->ire_ipversion == IPV6_VERSION) { 27691 /* 27692 * XRESOLV interface. Find the nce and put a copy 27693 * of the dl_unitdata_req in nce_res_mp 27694 */ 27695 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27696 mutex_enter(&ire->ire_lock); 27697 gw_addr_v6 = ire->ire_gateway_addr_v6; 27698 mutex_exit(&ire->ire_lock); 27699 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27700 nce = ndp_lookup_v6(ill, B_FALSE, 27701 &ire->ire_addr_v6, B_FALSE); 27702 } else { 27703 nce = ndp_lookup_v6(ill, B_FALSE, 27704 &gw_addr_v6, B_FALSE); 27705 } 27706 if (nce != NULL) { 27707 /* 27708 * We have to protect nce_res_mp here 27709 * from being accessed by other threads 27710 * while we change the mblk pointer. 27711 * Other functions will also lock the nce when 27712 * accessing nce_res_mp. 27713 * 27714 * The reason we change the mblk pointer 27715 * here rather than copying the resolved address 27716 * into the template is that, unlike with 27717 * ethernet, we have no guarantee that the 27718 * resolved address length will be 27719 * smaller than or equal to the lla length 27720 * with which the template was allocated, 27721 * (for ethernet, they're equal) 27722 * so we have to use the actual resolved 27723 * address mblk - which holds the real 27724 * dl_unitdata_req with the resolved address. 27725 * 27726 * Doing this is the same behavior as was 27727 * previously used in the v4 ARP case. 27728 */ 27729 mutex_enter(&nce->nce_lock); 27730 if (nce->nce_res_mp != NULL) 27731 freemsg(nce->nce_res_mp); 27732 nce->nce_res_mp = mp1; 27733 mutex_exit(&nce->nce_lock); 27734 /* 27735 * We do a fastpath probe here because 27736 * we have resolved the address without 27737 * using Neighbor Discovery. 27738 * In the non-XRESOLV v6 case, the fastpath 27739 * probe is done right after neighbor 27740 * discovery completes. 27741 */ 27742 if (nce->nce_res_mp != NULL) { 27743 int res; 27744 nce_fastpath_list_add(nce); 27745 res = ill_fastpath_probe(ill, 27746 nce->nce_res_mp); 27747 if (res != 0 && res != EAGAIN) 27748 nce_fastpath_list_delete(nce); 27749 } 27750 27751 ire_add_then_send(q, ire, mp); 27752 /* 27753 * Now we have to clean out any packets 27754 * that may have been queued on the nce 27755 * while it was waiting for address resolution 27756 * to complete. 27757 */ 27758 mutex_enter(&nce->nce_lock); 27759 mp1 = nce->nce_qd_mp; 27760 nce->nce_qd_mp = NULL; 27761 mutex_exit(&nce->nce_lock); 27762 while (mp1 != NULL) { 27763 mblk_t *nxt_mp; 27764 queue_t *fwdq = NULL; 27765 ill_t *inbound_ill; 27766 uint_t ifindex; 27767 27768 nxt_mp = mp1->b_next; 27769 mp1->b_next = NULL; 27770 /* 27771 * Retrieve ifindex stored in 27772 * ip_rput_data_v6() 27773 */ 27774 ifindex = 27775 (uint_t)(uintptr_t)mp1->b_prev; 27776 inbound_ill = 27777 ill_lookup_on_ifindex(ifindex, 27778 B_TRUE, NULL, NULL, NULL, 27779 NULL, ipst); 27780 mp1->b_prev = NULL; 27781 if (inbound_ill != NULL) 27782 fwdq = inbound_ill->ill_rq; 27783 27784 if (fwdq != NULL) { 27785 put(fwdq, mp1); 27786 ill_refrele(inbound_ill); 27787 } else 27788 put(WR(ill->ill_rq), mp1); 27789 mp1 = nxt_mp; 27790 } 27791 NCE_REFRELE(nce); 27792 } else { /* nce is NULL; clean up */ 27793 ire_delete(ire); 27794 freemsg(mp); 27795 freemsg(mp1); 27796 return; 27797 } 27798 } else { 27799 nce_t *arpce; 27800 /* 27801 * Link layer resolution succeeded. Recompute the 27802 * ire_nce. 27803 */ 27804 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27805 if ((arpce = ndp_lookup_v4(ill, 27806 (ire->ire_gateway_addr != INADDR_ANY ? 27807 &ire->ire_gateway_addr : &ire->ire_addr), 27808 B_FALSE)) == NULL) { 27809 freeb(ire->ire_mp); 27810 freeb(mp1); 27811 freemsg(mp); 27812 return; 27813 } 27814 mutex_enter(&arpce->nce_lock); 27815 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27816 if (arpce->nce_state == ND_REACHABLE) { 27817 /* 27818 * Someone resolved this before us; 27819 * cleanup the res_mp. Since ire has 27820 * not been added yet, the call to ire_add_v4 27821 * from ire_add_then_send (when a dup is 27822 * detected) will clean up the ire. 27823 */ 27824 freeb(mp1); 27825 } else { 27826 ASSERT(arpce->nce_res_mp == NULL); 27827 arpce->nce_res_mp = mp1; 27828 arpce->nce_state = ND_REACHABLE; 27829 } 27830 mutex_exit(&arpce->nce_lock); 27831 if (ire->ire_marks & IRE_MARK_NOADD) { 27832 /* 27833 * this ire will not be added to the ire 27834 * cache table, so we can set the ire_nce 27835 * here, as there are no atomicity constraints. 27836 */ 27837 ire->ire_nce = arpce; 27838 /* 27839 * We are associating this nce with the ire 27840 * so change the nce ref taken in 27841 * ndp_lookup_v4() from 27842 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27843 */ 27844 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27845 } else { 27846 NCE_REFRELE(arpce); 27847 } 27848 ire_add_then_send(q, ire, mp); 27849 } 27850 return; /* All is well, the packet has been sent. */ 27851 } 27852 case IRE_ARPRESOLVE_TYPE: { 27853 27854 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27855 break; 27856 mp1 = mp->b_cont; /* dl_unitdata_req */ 27857 mp->b_cont = NULL; 27858 /* 27859 * First, check to make sure the resolution succeeded. 27860 * If it failed, the second mblk will be empty. 27861 */ 27862 if (mp1->b_rptr == mp1->b_wptr) { 27863 /* cleanup the incomplete ire, free queued packets */ 27864 freemsg(mp); /* fake ire */ 27865 freeb(mp1); /* dl_unitdata response */ 27866 return; 27867 } 27868 27869 /* 27870 * Update any incomplete nce_t found. We search the ctable 27871 * and find the nce from the ire->ire_nce because we need 27872 * to pass the ire to ip_xmit_v4 later, and can find both 27873 * ire and nce in one lookup. 27874 */ 27875 fake_ire = (ire_t *)mp->b_rptr; 27876 27877 /* 27878 * By the time we come back here from ARP the logical outgoing 27879 * interface of the incomplete ire we added in ire_forward() 27880 * could have disappeared, causing the incomplete ire to also 27881 * disappear. So we need to retreive the proper ipif for the 27882 * ire before looking in ctable. In the case of IPMP, the 27883 * ipif may be on the IPMP ill, so look it up based on the 27884 * ire_ipif_ifindex we stashed back in ire_init_common(). 27885 * Then, we can verify that ire_ipif_seqid still exists. 27886 */ 27887 ill = ill_lookup_on_ifindex(fake_ire->ire_ipif_ifindex, B_FALSE, 27888 NULL, NULL, NULL, NULL, ipst); 27889 if (ill == NULL) { 27890 ip1dbg(("ill for incomplete ire vanished\n")); 27891 freemsg(mp); /* fake ire */ 27892 freeb(mp1); /* dl_unitdata response */ 27893 return; 27894 } 27895 27896 /* Get the outgoing ipif */ 27897 mutex_enter(&ill->ill_lock); 27898 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27899 if (ipif == NULL) { 27900 mutex_exit(&ill->ill_lock); 27901 ill_refrele(ill); 27902 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27903 freemsg(mp); /* fake_ire */ 27904 freeb(mp1); /* dl_unitdata response */ 27905 return; 27906 } 27907 27908 ipif_refhold_locked(ipif); 27909 mutex_exit(&ill->ill_lock); 27910 ill_refrele(ill); 27911 ire = ire_arpresolve_lookup(fake_ire->ire_addr, 27912 fake_ire->ire_gateway_addr, ipif, fake_ire->ire_zoneid, 27913 ipst, ((ill_t *)q->q_ptr)->ill_wq); 27914 ipif_refrele(ipif); 27915 if (ire == NULL) { 27916 /* 27917 * no ire was found; check if there is an nce 27918 * for this lookup; if it has no ire's pointing at it 27919 * cleanup. 27920 */ 27921 if ((nce = ndp_lookup_v4(q->q_ptr, 27922 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27923 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27924 B_FALSE)) != NULL) { 27925 /* 27926 * cleanup: 27927 * We check for refcnt 2 (one for the nce 27928 * hash list + 1 for the ref taken by 27929 * ndp_lookup_v4) to check that there are 27930 * no ire's pointing at the nce. 27931 */ 27932 if (nce->nce_refcnt == 2) 27933 ndp_delete(nce); 27934 NCE_REFRELE(nce); 27935 } 27936 freeb(mp1); /* dl_unitdata response */ 27937 freemsg(mp); /* fake ire */ 27938 return; 27939 } 27940 27941 nce = ire->ire_nce; 27942 DTRACE_PROBE2(ire__arpresolve__type, 27943 ire_t *, ire, nce_t *, nce); 27944 mutex_enter(&nce->nce_lock); 27945 nce->nce_last = TICK_TO_MSEC(lbolt64); 27946 if (nce->nce_state == ND_REACHABLE) { 27947 /* 27948 * Someone resolved this before us; 27949 * our response is not needed any more. 27950 */ 27951 mutex_exit(&nce->nce_lock); 27952 freeb(mp1); /* dl_unitdata response */ 27953 } else { 27954 ASSERT(nce->nce_res_mp == NULL); 27955 nce->nce_res_mp = mp1; 27956 nce->nce_state = ND_REACHABLE; 27957 mutex_exit(&nce->nce_lock); 27958 nce_fastpath(nce); 27959 } 27960 /* 27961 * The cached nce_t has been updated to be reachable; 27962 * Clear the IRE_MARK_UNCACHED flag and free the fake_ire. 27963 */ 27964 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27965 freemsg(mp); 27966 /* 27967 * send out queued packets. 27968 */ 27969 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE, NULL); 27970 27971 IRE_REFRELE(ire); 27972 return; 27973 } 27974 default: 27975 break; 27976 } 27977 if (q->q_next) { 27978 putnext(q, mp); 27979 } else 27980 freemsg(mp); 27981 return; 27982 27983 protonak: 27984 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 27985 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 27986 qreply(q, mp); 27987 } 27988 27989 /* 27990 * Process IP options in an outbound packet. Modify the destination if there 27991 * is a source route option. 27992 * Returns non-zero if something fails in which case an ICMP error has been 27993 * sent and mp freed. 27994 */ 27995 static int 27996 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27997 boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst) 27998 { 27999 ipoptp_t opts; 28000 uchar_t *opt; 28001 uint8_t optval; 28002 uint8_t optlen; 28003 ipaddr_t dst; 28004 intptr_t code = 0; 28005 mblk_t *mp; 28006 ire_t *ire = NULL; 28007 28008 ip2dbg(("ip_wput_options\n")); 28009 mp = ipsec_mp; 28010 if (mctl_present) { 28011 mp = ipsec_mp->b_cont; 28012 } 28013 28014 dst = ipha->ipha_dst; 28015 for (optval = ipoptp_first(&opts, ipha); 28016 optval != IPOPT_EOL; 28017 optval = ipoptp_next(&opts)) { 28018 opt = opts.ipoptp_cur; 28019 optlen = opts.ipoptp_len; 28020 ip2dbg(("ip_wput_options: opt %d, len %d\n", 28021 optval, optlen)); 28022 switch (optval) { 28023 uint32_t off; 28024 case IPOPT_SSRR: 28025 case IPOPT_LSRR: 28026 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28027 ip1dbg(( 28028 "ip_wput_options: bad option offset\n")); 28029 code = (char *)&opt[IPOPT_OLEN] - 28030 (char *)ipha; 28031 goto param_prob; 28032 } 28033 off = opt[IPOPT_OFFSET]; 28034 ip1dbg(("ip_wput_options: next hop 0x%x\n", 28035 ntohl(dst))); 28036 /* 28037 * For strict: verify that dst is directly 28038 * reachable. 28039 */ 28040 if (optval == IPOPT_SSRR) { 28041 ire = ire_ftable_lookup(dst, 0, 0, 28042 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 28043 msg_getlabel(mp), 28044 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst); 28045 if (ire == NULL) { 28046 ip1dbg(("ip_wput_options: SSRR not" 28047 " directly reachable: 0x%x\n", 28048 ntohl(dst))); 28049 goto bad_src_route; 28050 } 28051 ire_refrele(ire); 28052 } 28053 break; 28054 case IPOPT_RR: 28055 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28056 ip1dbg(( 28057 "ip_wput_options: bad option offset\n")); 28058 code = (char *)&opt[IPOPT_OLEN] - 28059 (char *)ipha; 28060 goto param_prob; 28061 } 28062 break; 28063 case IPOPT_TS: 28064 /* 28065 * Verify that length >=5 and that there is either 28066 * room for another timestamp or that the overflow 28067 * counter is not maxed out. 28068 */ 28069 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 28070 if (optlen < IPOPT_MINLEN_IT) { 28071 goto param_prob; 28072 } 28073 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 28074 ip1dbg(( 28075 "ip_wput_options: bad option offset\n")); 28076 code = (char *)&opt[IPOPT_OFFSET] - 28077 (char *)ipha; 28078 goto param_prob; 28079 } 28080 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 28081 case IPOPT_TS_TSONLY: 28082 off = IPOPT_TS_TIMELEN; 28083 break; 28084 case IPOPT_TS_TSANDADDR: 28085 case IPOPT_TS_PRESPEC: 28086 case IPOPT_TS_PRESPEC_RFC791: 28087 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 28088 break; 28089 default: 28090 code = (char *)&opt[IPOPT_POS_OV_FLG] - 28091 (char *)ipha; 28092 goto param_prob; 28093 } 28094 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 28095 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 28096 /* 28097 * No room and the overflow counter is 15 28098 * already. 28099 */ 28100 goto param_prob; 28101 } 28102 break; 28103 } 28104 } 28105 28106 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 28107 return (0); 28108 28109 ip1dbg(("ip_wput_options: error processing IP options.")); 28110 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 28111 28112 param_prob: 28113 /* 28114 * Since ip_wput() isn't close to finished, we fill 28115 * in enough of the header for credible error reporting. 28116 */ 28117 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28118 /* Failed */ 28119 freemsg(ipsec_mp); 28120 return (-1); 28121 } 28122 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst); 28123 return (-1); 28124 28125 bad_src_route: 28126 /* 28127 * Since ip_wput() isn't close to finished, we fill 28128 * in enough of the header for credible error reporting. 28129 */ 28130 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) { 28131 /* Failed */ 28132 freemsg(ipsec_mp); 28133 return (-1); 28134 } 28135 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst); 28136 return (-1); 28137 } 28138 28139 /* 28140 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 28141 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 28142 * thru /etc/system. 28143 */ 28144 #define CONN_MAXDRAINCNT 64 28145 28146 static void 28147 conn_drain_init(ip_stack_t *ipst) 28148 { 28149 int i, j; 28150 idl_tx_list_t *itl_tx; 28151 28152 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 28153 28154 if ((ipst->ips_conn_drain_list_cnt == 0) || 28155 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 28156 /* 28157 * Default value of the number of drainers is the 28158 * number of cpus, subject to maximum of 8 drainers. 28159 */ 28160 if (boot_max_ncpus != -1) 28161 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 28162 else 28163 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 28164 } 28165 28166 ipst->ips_idl_tx_list = 28167 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 28168 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28169 itl_tx = &ipst->ips_idl_tx_list[i]; 28170 itl_tx->txl_drain_list = 28171 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 28172 sizeof (idl_t), KM_SLEEP); 28173 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 28174 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 28175 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 28176 MUTEX_DEFAULT, NULL); 28177 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 28178 } 28179 } 28180 } 28181 28182 static void 28183 conn_drain_fini(ip_stack_t *ipst) 28184 { 28185 int i; 28186 idl_tx_list_t *itl_tx; 28187 28188 for (i = 0; i < TX_FANOUT_SIZE; i++) { 28189 itl_tx = &ipst->ips_idl_tx_list[i]; 28190 kmem_free(itl_tx->txl_drain_list, 28191 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 28192 } 28193 kmem_free(ipst->ips_idl_tx_list, 28194 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 28195 ipst->ips_idl_tx_list = NULL; 28196 } 28197 28198 /* 28199 * Note: For an overview of how flowcontrol is handled in IP please see the 28200 * IP Flowcontrol notes at the top of this file. 28201 * 28202 * Flow control has blocked us from proceeding. Insert the given conn in one 28203 * of the conn drain lists. These conn wq's will be qenabled later on when 28204 * STREAMS flow control does a backenable. conn_walk_drain will enable 28205 * the first conn in each of these drain lists. Each of these qenabled conns 28206 * in turn enables the next in the list, after it runs, or when it closes, 28207 * thus sustaining the drain process. 28208 */ 28209 void 28210 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 28211 { 28212 idl_t *idl = tx_list->txl_drain_list; 28213 uint_t index; 28214 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28215 28216 mutex_enter(&connp->conn_lock); 28217 if (connp->conn_state_flags & CONN_CLOSING) { 28218 /* 28219 * The conn is closing as a result of which CONN_CLOSING 28220 * is set. Return. 28221 */ 28222 mutex_exit(&connp->conn_lock); 28223 return; 28224 } else if (connp->conn_idl == NULL) { 28225 /* 28226 * Assign the next drain list round robin. We dont' use 28227 * a lock, and thus it may not be strictly round robin. 28228 * Atomicity of load/stores is enough to make sure that 28229 * conn_drain_list_index is always within bounds. 28230 */ 28231 index = tx_list->txl_drain_index; 28232 ASSERT(index < ipst->ips_conn_drain_list_cnt); 28233 connp->conn_idl = &tx_list->txl_drain_list[index]; 28234 index++; 28235 if (index == ipst->ips_conn_drain_list_cnt) 28236 index = 0; 28237 tx_list->txl_drain_index = index; 28238 } 28239 mutex_exit(&connp->conn_lock); 28240 28241 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28242 if ((connp->conn_drain_prev != NULL) || 28243 (connp->conn_state_flags & CONN_CLOSING)) { 28244 /* 28245 * The conn is already in the drain list, OR 28246 * the conn is closing. We need to check again for 28247 * the closing case again since close can happen 28248 * after we drop the conn_lock, and before we 28249 * acquire the CONN_DRAIN_LIST_LOCK. 28250 */ 28251 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28252 return; 28253 } else { 28254 idl = connp->conn_idl; 28255 } 28256 28257 /* 28258 * The conn is not in the drain list. Insert it at the 28259 * tail of the drain list. The drain list is circular 28260 * and doubly linked. idl_conn points to the 1st element 28261 * in the list. 28262 */ 28263 if (idl->idl_conn == NULL) { 28264 idl->idl_conn = connp; 28265 connp->conn_drain_next = connp; 28266 connp->conn_drain_prev = connp; 28267 } else { 28268 conn_t *head = idl->idl_conn; 28269 28270 connp->conn_drain_next = head; 28271 connp->conn_drain_prev = head->conn_drain_prev; 28272 head->conn_drain_prev->conn_drain_next = connp; 28273 head->conn_drain_prev = connp; 28274 } 28275 /* 28276 * For non streams based sockets assert flow control. 28277 */ 28278 if (IPCL_IS_NONSTR(connp)) { 28279 DTRACE_PROBE1(su__txq__full, conn_t *, connp); 28280 (*connp->conn_upcalls->su_txq_full) 28281 (connp->conn_upper_handle, B_TRUE); 28282 } else { 28283 conn_setqfull(connp); 28284 noenable(connp->conn_wq); 28285 } 28286 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28287 } 28288 28289 /* 28290 * This conn is closing, and we are called from ip_close. OR 28291 * This conn has been serviced by ip_wsrv, and we need to do the tail 28292 * processing. 28293 * If this conn is part of the drain list, we may need to sustain the drain 28294 * process by qenabling the next conn in the drain list. We may also need to 28295 * remove this conn from the list, if it is done. 28296 */ 28297 static void 28298 conn_drain_tail(conn_t *connp, boolean_t closing) 28299 { 28300 idl_t *idl; 28301 28302 /* 28303 * connp->conn_idl is stable at this point, and no lock is needed 28304 * to check it. If we are called from ip_close, close has already 28305 * set CONN_CLOSING, thus freezing the value of conn_idl, and 28306 * called us only because conn_idl is non-null. If we are called thru 28307 * service, conn_idl could be null, but it cannot change because 28308 * service is single-threaded per queue, and there cannot be another 28309 * instance of service trying to call conn_drain_insert on this conn 28310 * now. 28311 */ 28312 ASSERT(!closing || (connp->conn_idl != NULL)); 28313 28314 /* 28315 * If connp->conn_idl is null, the conn has not been inserted into any 28316 * drain list even once since creation of the conn. Just return. 28317 */ 28318 if (connp->conn_idl == NULL) 28319 return; 28320 28321 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 28322 28323 if (connp->conn_drain_prev == NULL) { 28324 /* This conn is currently not in the drain list. */ 28325 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28326 return; 28327 } 28328 idl = connp->conn_idl; 28329 if (idl->idl_conn_draining == connp) { 28330 /* 28331 * This conn is the current drainer. If this is the last conn 28332 * in the drain list, we need to do more checks, in the 'if' 28333 * below. Otherwwise we need to just qenable the next conn, 28334 * to sustain the draining, and is handled in the 'else' 28335 * below. 28336 */ 28337 if (connp->conn_drain_next == idl->idl_conn) { 28338 /* 28339 * This conn is the last in this list. This round 28340 * of draining is complete. If idl_repeat is set, 28341 * it means another flow enabling has happened from 28342 * the driver/streams and we need to another round 28343 * of draining. 28344 * If there are more than 2 conns in the drain list, 28345 * do a left rotate by 1, so that all conns except the 28346 * conn at the head move towards the head by 1, and the 28347 * the conn at the head goes to the tail. This attempts 28348 * a more even share for all queues that are being 28349 * drained. 28350 */ 28351 if ((connp->conn_drain_next != connp) && 28352 (idl->idl_conn->conn_drain_next != connp)) { 28353 idl->idl_conn = idl->idl_conn->conn_drain_next; 28354 } 28355 if (idl->idl_repeat) { 28356 qenable(idl->idl_conn->conn_wq); 28357 idl->idl_conn_draining = idl->idl_conn; 28358 idl->idl_repeat = 0; 28359 } else { 28360 idl->idl_conn_draining = NULL; 28361 } 28362 } else { 28363 /* 28364 * If the next queue that we are now qenable'ing, 28365 * is closing, it will remove itself from this list 28366 * and qenable the subsequent queue in ip_close(). 28367 * Serialization is acheived thru idl_lock. 28368 */ 28369 qenable(connp->conn_drain_next->conn_wq); 28370 idl->idl_conn_draining = connp->conn_drain_next; 28371 } 28372 } 28373 if (!connp->conn_did_putbq || closing) { 28374 /* 28375 * Remove ourself from the drain list, if we did not do 28376 * a putbq, or if the conn is closing. 28377 * Note: It is possible that q->q_first is non-null. It means 28378 * that these messages landed after we did a enableok() in 28379 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28380 * service them. 28381 */ 28382 if (connp->conn_drain_next == connp) { 28383 /* Singleton in the list */ 28384 ASSERT(connp->conn_drain_prev == connp); 28385 idl->idl_conn = NULL; 28386 idl->idl_conn_draining = NULL; 28387 } else { 28388 connp->conn_drain_prev->conn_drain_next = 28389 connp->conn_drain_next; 28390 connp->conn_drain_next->conn_drain_prev = 28391 connp->conn_drain_prev; 28392 if (idl->idl_conn == connp) 28393 idl->idl_conn = connp->conn_drain_next; 28394 ASSERT(idl->idl_conn_draining != connp); 28395 28396 } 28397 connp->conn_drain_next = NULL; 28398 connp->conn_drain_prev = NULL; 28399 28400 /* 28401 * For non streams based sockets open up flow control. 28402 */ 28403 if (IPCL_IS_NONSTR(connp)) { 28404 (*connp->conn_upcalls->su_txq_full) 28405 (connp->conn_upper_handle, B_FALSE); 28406 } else { 28407 conn_clrqfull(connp); 28408 enableok(connp->conn_wq); 28409 } 28410 } 28411 28412 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28413 } 28414 28415 /* 28416 * Write service routine. Shared perimeter entry point. 28417 * ip_wsrv can be called in any of the following ways. 28418 * 1. The device queue's messages has fallen below the low water mark 28419 * and STREAMS has backenabled the ill_wq. We walk thru all the 28420 * the drain lists and backenable the first conn in each list. 28421 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28422 * qenabled non-tcp upper layers. We start dequeing messages and call 28423 * ip_wput for each message. 28424 */ 28425 28426 void 28427 ip_wsrv(queue_t *q) 28428 { 28429 conn_t *connp; 28430 ill_t *ill; 28431 mblk_t *mp; 28432 28433 if (q->q_next) { 28434 ill = (ill_t *)q->q_ptr; 28435 if (ill->ill_state_flags == 0) { 28436 ip_stack_t *ipst = ill->ill_ipst; 28437 28438 /* 28439 * The device flow control has opened up. 28440 * Walk through conn drain lists and qenable the 28441 * first conn in each list. This makes sense only 28442 * if the stream is fully plumbed and setup. 28443 * Hence the if check above. 28444 */ 28445 ip1dbg(("ip_wsrv: walking\n")); 28446 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 28447 } 28448 return; 28449 } 28450 28451 connp = Q_TO_CONN(q); 28452 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28453 28454 /* 28455 * 1. Set conn_draining flag to signal that service is active. 28456 * 28457 * 2. ip_output determines whether it has been called from service, 28458 * based on the last parameter. If it is IP_WSRV it concludes it 28459 * has been called from service. 28460 * 28461 * 3. Message ordering is preserved by the following logic. 28462 * i. A directly called ip_output (i.e. not thru service) will queue 28463 * the message at the tail, if conn_draining is set (i.e. service 28464 * is running) or if q->q_first is non-null. 28465 * 28466 * ii. If ip_output is called from service, and if ip_output cannot 28467 * putnext due to flow control, it does a putbq. 28468 * 28469 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28470 * (causing an infinite loop). 28471 */ 28472 ASSERT(!connp->conn_did_putbq); 28473 28474 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28475 connp->conn_draining = 1; 28476 noenable(q); 28477 while ((mp = getq(q)) != NULL) { 28478 ASSERT(CONN_Q(q)); 28479 28480 DTRACE_PROBE1(ip__wsrv__ip__output, conn_t *, connp); 28481 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28482 if (connp->conn_did_putbq) { 28483 /* ip_wput did a putbq */ 28484 break; 28485 } 28486 } 28487 /* 28488 * At this point, a thread coming down from top, calling 28489 * ip_wput, may end up queueing the message. We have not yet 28490 * enabled the queue, so ip_wsrv won't be called again. 28491 * To avoid this race, check q->q_first again (in the loop) 28492 * If the other thread queued the message before we call 28493 * enableok(), we will catch it in the q->q_first check. 28494 * If the other thread queues the message after we call 28495 * enableok(), ip_wsrv will be called again by STREAMS. 28496 */ 28497 connp->conn_draining = 0; 28498 enableok(q); 28499 } 28500 28501 /* Enable the next conn for draining */ 28502 conn_drain_tail(connp, B_FALSE); 28503 28504 /* 28505 * conn_direct_blocked is used to indicate blocked 28506 * condition for direct path (ILL_DIRECT_CAPABLE()). 28507 * This is the only place where it is set without 28508 * checking for ILL_DIRECT_CAPABLE() and setting it 28509 * to 0 is ok even if it is not ILL_DIRECT_CAPABLE(). 28510 */ 28511 if (!connp->conn_did_putbq && connp->conn_direct_blocked) { 28512 DTRACE_PROBE1(ip__wsrv__direct__blocked, conn_t *, connp); 28513 connp->conn_direct_blocked = B_FALSE; 28514 } 28515 28516 connp->conn_did_putbq = 0; 28517 } 28518 28519 /* 28520 * Callback to disable flow control in IP. 28521 * 28522 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 28523 * is enabled. 28524 * 28525 * When MAC_TX() is not able to send any more packets, dld sets its queue 28526 * to QFULL and enable the STREAMS flow control. Later, when the underlying 28527 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 28528 * function and wakes up corresponding mac worker threads, which in turn 28529 * calls this callback function, and disables flow control. 28530 */ 28531 void 28532 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 28533 { 28534 ill_t *ill = (ill_t *)arg; 28535 ip_stack_t *ipst = ill->ill_ipst; 28536 idl_tx_list_t *idl_txl; 28537 28538 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 28539 mutex_enter(&idl_txl->txl_lock); 28540 /* add code to to set a flag to indicate idl_txl is enabled */ 28541 conn_walk_drain(ipst, idl_txl); 28542 mutex_exit(&idl_txl->txl_lock); 28543 } 28544 28545 /* 28546 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28547 * of conns that need to be drained, check if drain is already in progress. 28548 * If so set the idl_repeat bit, indicating that the last conn in the list 28549 * needs to reinitiate the drain once again, for the list. If drain is not 28550 * in progress for the list, initiate the draining, by qenabling the 1st 28551 * conn in the list. The drain is self-sustaining, each qenabled conn will 28552 * in turn qenable the next conn, when it is done/blocked/closing. 28553 */ 28554 static void 28555 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 28556 { 28557 int i; 28558 idl_t *idl; 28559 28560 IP_STAT(ipst, ip_conn_walk_drain); 28561 28562 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 28563 idl = &tx_list->txl_drain_list[i]; 28564 mutex_enter(&idl->idl_lock); 28565 if (idl->idl_conn == NULL) { 28566 mutex_exit(&idl->idl_lock); 28567 continue; 28568 } 28569 /* 28570 * If this list is not being drained currently by 28571 * an ip_wsrv thread, start the process. 28572 */ 28573 if (idl->idl_conn_draining == NULL) { 28574 ASSERT(idl->idl_repeat == 0); 28575 qenable(idl->idl_conn->conn_wq); 28576 idl->idl_conn_draining = idl->idl_conn; 28577 } else { 28578 idl->idl_repeat = 1; 28579 } 28580 mutex_exit(&idl->idl_lock); 28581 } 28582 } 28583 28584 /* 28585 * Determine if the ill and multicast aspects of that packets 28586 * "matches" the conn. 28587 */ 28588 boolean_t 28589 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28590 zoneid_t zoneid) 28591 { 28592 ill_t *bound_ill; 28593 boolean_t found; 28594 ipif_t *ipif; 28595 ire_t *ire; 28596 ipaddr_t dst, src; 28597 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 28598 28599 dst = ipha->ipha_dst; 28600 src = ipha->ipha_src; 28601 28602 /* 28603 * conn_incoming_ill is set by IP_BOUND_IF which limits 28604 * unicast, broadcast and multicast reception to 28605 * conn_incoming_ill. conn_wantpacket itself is called 28606 * only for BROADCAST and multicast. 28607 */ 28608 bound_ill = connp->conn_incoming_ill; 28609 if (bound_ill != NULL) { 28610 if (IS_IPMP(bound_ill)) { 28611 if (bound_ill->ill_grp != ill->ill_grp) 28612 return (B_FALSE); 28613 } else { 28614 if (bound_ill != ill) 28615 return (B_FALSE); 28616 } 28617 } 28618 28619 if (!CLASSD(dst)) { 28620 if (IPCL_ZONE_MATCH(connp, zoneid)) 28621 return (B_TRUE); 28622 /* 28623 * The conn is in a different zone; we need to check that this 28624 * broadcast address is configured in the application's zone. 28625 */ 28626 ipif = ipif_get_next_ipif(NULL, ill); 28627 if (ipif == NULL) 28628 return (B_FALSE); 28629 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28630 connp->conn_zoneid, NULL, 28631 (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 28632 ipif_refrele(ipif); 28633 if (ire != NULL) { 28634 ire_refrele(ire); 28635 return (B_TRUE); 28636 } else { 28637 return (B_FALSE); 28638 } 28639 } 28640 28641 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28642 connp->conn_zoneid == zoneid) { 28643 /* 28644 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28645 * disabled, therefore we don't dispatch the multicast packet to 28646 * the sending zone. 28647 */ 28648 return (B_FALSE); 28649 } 28650 28651 if (IS_LOOPBACK(ill) && connp->conn_zoneid != zoneid) { 28652 /* 28653 * Multicast packet on the loopback interface: we only match 28654 * conns who joined the group in the specified zone. 28655 */ 28656 return (B_FALSE); 28657 } 28658 28659 if (connp->conn_multi_router) { 28660 /* multicast packet and multicast router socket: send up */ 28661 return (B_TRUE); 28662 } 28663 28664 mutex_enter(&connp->conn_lock); 28665 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28666 mutex_exit(&connp->conn_lock); 28667 return (found); 28668 } 28669 28670 static void 28671 conn_setqfull(conn_t *connp) 28672 { 28673 queue_t *q = connp->conn_wq; 28674 28675 if (!(q->q_flag & QFULL)) { 28676 mutex_enter(QLOCK(q)); 28677 if (!(q->q_flag & QFULL)) { 28678 /* still need to set QFULL */ 28679 q->q_flag |= QFULL; 28680 mutex_exit(QLOCK(q)); 28681 } else { 28682 mutex_exit(QLOCK(q)); 28683 } 28684 } 28685 } 28686 28687 static void 28688 conn_clrqfull(conn_t *connp) 28689 { 28690 queue_t *q = connp->conn_wq; 28691 28692 if (q->q_flag & QFULL) { 28693 mutex_enter(QLOCK(q)); 28694 if (q->q_flag & QFULL) { 28695 q->q_flag &= ~QFULL; 28696 mutex_exit(QLOCK(q)); 28697 if (q->q_flag & QWANTW) 28698 qbackenable(q, 0); 28699 } else { 28700 mutex_exit(QLOCK(q)); 28701 } 28702 } 28703 } 28704 28705 /* 28706 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28707 */ 28708 /* ARGSUSED */ 28709 static void 28710 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28711 { 28712 ill_t *ill = (ill_t *)q->q_ptr; 28713 mblk_t *mp1, *mp2; 28714 ipif_t *ipif; 28715 int err = 0; 28716 conn_t *connp = NULL; 28717 ipsq_t *ipsq; 28718 arc_t *arc; 28719 28720 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28721 28722 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28723 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28724 28725 ASSERT(IAM_WRITER_ILL(ill)); 28726 mp2 = mp->b_cont; 28727 mp->b_cont = NULL; 28728 28729 /* 28730 * We have now received the arp bringup completion message 28731 * from ARP. Mark the arp bringup as done. Also if the arp 28732 * stream has already started closing, send up the AR_ARP_CLOSING 28733 * ack now since ARP is waiting in close for this ack. 28734 */ 28735 mutex_enter(&ill->ill_lock); 28736 ill->ill_arp_bringup_pending = 0; 28737 if (ill->ill_arp_closing) { 28738 mutex_exit(&ill->ill_lock); 28739 /* Let's reuse the mp for sending the ack */ 28740 arc = (arc_t *)mp->b_rptr; 28741 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28742 arc->arc_cmd = AR_ARP_CLOSING; 28743 qreply(q, mp); 28744 } else { 28745 mutex_exit(&ill->ill_lock); 28746 freeb(mp); 28747 } 28748 28749 ipsq = ill->ill_phyint->phyint_ipsq; 28750 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 28751 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28752 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28753 if (mp1 == NULL) { 28754 /* bringup was aborted by the user */ 28755 freemsg(mp2); 28756 return; 28757 } 28758 28759 /* 28760 * If an IOCTL is waiting on this (ipx_current_ioctl != 0), then we 28761 * must have an associated conn_t. Otherwise, we're bringing this 28762 * interface back up as part of handling an asynchronous event (e.g., 28763 * physical address change). 28764 */ 28765 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 28766 ASSERT(connp != NULL); 28767 q = CONNP_TO_WQ(connp); 28768 } else { 28769 ASSERT(connp == NULL); 28770 q = ill->ill_rq; 28771 } 28772 28773 /* 28774 * If the DL_BIND_REQ fails, it is noted 28775 * in arc_name_offset. 28776 */ 28777 err = *((int *)mp2->b_rptr); 28778 if (err == 0) { 28779 if (ipif->ipif_isv6) { 28780 if ((err = ipif_up_done_v6(ipif)) != 0) 28781 ip0dbg(("ip_arp_done: init failed\n")); 28782 } else { 28783 if ((err = ipif_up_done(ipif)) != 0) 28784 ip0dbg(("ip_arp_done: init failed\n")); 28785 } 28786 } else { 28787 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28788 } 28789 28790 freemsg(mp2); 28791 28792 if ((err == 0) && (ill->ill_up_ipifs)) { 28793 err = ill_up_ipifs(ill, q, mp1); 28794 if (err == EINPROGRESS) 28795 return; 28796 } 28797 28798 /* 28799 * If we have a moved ipif to bring up, and everything has succeeded 28800 * to this point, bring it up on the IPMP ill. Otherwise, leave it 28801 * down -- the admin can try to bring it up by hand if need be. 28802 */ 28803 if (ill->ill_move_ipif != NULL) { 28804 ipif = ill->ill_move_ipif; 28805 ill->ill_move_ipif = NULL; 28806 if (err == 0) { 28807 err = ipif_up(ipif, q, mp1); 28808 if (err == EINPROGRESS) 28809 return; 28810 } 28811 } 28812 28813 /* 28814 * The operation must complete without EINPROGRESS since 28815 * ipsq_pending_mp_get() has removed the mblk. Otherwise, the 28816 * operation will be stuck forever in the ipsq. 28817 */ 28818 ASSERT(err != EINPROGRESS); 28819 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) 28820 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 28821 else 28822 ipsq_current_finish(ipsq); 28823 } 28824 28825 /* Allocate the private structure */ 28826 static int 28827 ip_priv_alloc(void **bufp) 28828 { 28829 void *buf; 28830 28831 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28832 return (ENOMEM); 28833 28834 *bufp = buf; 28835 return (0); 28836 } 28837 28838 /* Function to delete the private structure */ 28839 void 28840 ip_priv_free(void *buf) 28841 { 28842 ASSERT(buf != NULL); 28843 kmem_free(buf, sizeof (ip_priv_t)); 28844 } 28845 28846 /* 28847 * The entry point for IPPF processing. 28848 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28849 * routine just returns. 28850 * 28851 * When called, ip_process generates an ipp_packet_t structure 28852 * which holds the state information for this packet and invokes the 28853 * the classifier (via ipp_packet_process). The classification, depending on 28854 * configured filters, results in a list of actions for this packet. Invoking 28855 * an action may cause the packet to be dropped, in which case the resulting 28856 * mblk (*mpp) is NULL. proc indicates the callout position for 28857 * this packet and ill_index is the interface this packet on or will leave 28858 * on (inbound and outbound resp.). 28859 */ 28860 void 28861 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28862 { 28863 mblk_t *mp; 28864 ip_priv_t *priv; 28865 ipp_action_id_t aid; 28866 int rc = 0; 28867 ipp_packet_t *pp; 28868 #define IP_CLASS "ip" 28869 28870 /* If the classifier is not loaded, return */ 28871 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28872 return; 28873 } 28874 28875 mp = *mpp; 28876 ASSERT(mp != NULL); 28877 28878 /* Allocate the packet structure */ 28879 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28880 if (rc != 0) { 28881 *mpp = NULL; 28882 freemsg(mp); 28883 return; 28884 } 28885 28886 /* Allocate the private structure */ 28887 rc = ip_priv_alloc((void **)&priv); 28888 if (rc != 0) { 28889 *mpp = NULL; 28890 freemsg(mp); 28891 ipp_packet_free(pp); 28892 return; 28893 } 28894 priv->proc = proc; 28895 priv->ill_index = ill_index; 28896 ipp_packet_set_private(pp, priv, ip_priv_free); 28897 ipp_packet_set_data(pp, mp); 28898 28899 /* Invoke the classifier */ 28900 rc = ipp_packet_process(&pp); 28901 if (pp != NULL) { 28902 mp = ipp_packet_get_data(pp); 28903 ipp_packet_free(pp); 28904 if (rc != 0) { 28905 freemsg(mp); 28906 *mpp = NULL; 28907 } 28908 } else { 28909 *mpp = NULL; 28910 } 28911 #undef IP_CLASS 28912 } 28913 28914 /* 28915 * Propagate a multicast group membership operation (add/drop) on 28916 * all the interfaces crossed by the related multirt routes. 28917 * The call is considered successful if the operation succeeds 28918 * on at least one interface. 28919 */ 28920 static int 28921 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28922 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28923 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28924 mblk_t *first_mp) 28925 { 28926 ire_t *ire_gw; 28927 irb_t *irb; 28928 int error = 0; 28929 opt_restart_t *or; 28930 ip_stack_t *ipst = ire->ire_ipst; 28931 28932 irb = ire->ire_bucket; 28933 ASSERT(irb != NULL); 28934 28935 ASSERT(DB_TYPE(first_mp) == M_CTL); 28936 28937 or = (opt_restart_t *)first_mp->b_rptr; 28938 IRB_REFHOLD(irb); 28939 for (; ire != NULL; ire = ire->ire_next) { 28940 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28941 continue; 28942 if (ire->ire_addr != group) 28943 continue; 28944 28945 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28946 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28947 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst); 28948 /* No resolver exists for the gateway; skip this ire. */ 28949 if (ire_gw == NULL) 28950 continue; 28951 28952 /* 28953 * This function can return EINPROGRESS. If so the operation 28954 * will be restarted from ip_restart_optmgmt which will 28955 * call ip_opt_set and option processing will restart for 28956 * this option. So we may end up calling 'fn' more than once. 28957 * This requires that 'fn' is idempotent except for the 28958 * return value. The operation is considered a success if 28959 * it succeeds at least once on any one interface. 28960 */ 28961 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28962 NULL, fmode, src, first_mp); 28963 if (error == 0) 28964 or->or_private = CGTP_MCAST_SUCCESS; 28965 28966 if (ip_debug > 0) { 28967 ulong_t off; 28968 char *ksym; 28969 ksym = kobj_getsymname((uintptr_t)fn, &off); 28970 ip2dbg(("ip_multirt_apply_membership: " 28971 "called %s, multirt group 0x%08x via itf 0x%08x, " 28972 "error %d [success %u]\n", 28973 ksym ? ksym : "?", 28974 ntohl(group), ntohl(ire_gw->ire_src_addr), 28975 error, or->or_private)); 28976 } 28977 28978 ire_refrele(ire_gw); 28979 if (error == EINPROGRESS) { 28980 IRB_REFRELE(irb); 28981 return (error); 28982 } 28983 } 28984 IRB_REFRELE(irb); 28985 /* 28986 * Consider the call as successful if we succeeded on at least 28987 * one interface. Otherwise, return the last encountered error. 28988 */ 28989 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28990 } 28991 28992 /* 28993 * Issue a warning regarding a route crossing an interface with an 28994 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28995 * amount of time is logged. 28996 */ 28997 static void 28998 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28999 { 29000 hrtime_t current = gethrtime(); 29001 char buf[INET_ADDRSTRLEN]; 29002 ip_stack_t *ipst = ire->ire_ipst; 29003 29004 /* Convert interval in ms to hrtime in ns */ 29005 if (ipst->ips_multirt_bad_mtu_last_time + 29006 ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <= 29007 current) { 29008 cmn_err(CE_WARN, "ip: ignoring multiroute " 29009 "to %s, incorrect MTU %u (expected %u)\n", 29010 ip_dot_addr(ire->ire_addr, buf), 29011 ire->ire_max_frag, max_frag); 29012 29013 ipst->ips_multirt_bad_mtu_last_time = current; 29014 } 29015 } 29016 29017 /* 29018 * Get the CGTP (multirouting) filtering status. 29019 * If 0, the CGTP hooks are transparent. 29020 */ 29021 /* ARGSUSED */ 29022 static int 29023 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 29024 { 29025 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29026 29027 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 29028 return (0); 29029 } 29030 29031 /* 29032 * Set the CGTP (multirouting) filtering status. 29033 * If the status is changed from active to transparent 29034 * or from transparent to active, forward the new status 29035 * to the filtering module (if loaded). 29036 */ 29037 /* ARGSUSED */ 29038 static int 29039 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 29040 cred_t *ioc_cr) 29041 { 29042 long new_value; 29043 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 29044 ip_stack_t *ipst = CONNQ_TO_IPST(q); 29045 29046 if (secpolicy_ip_config(ioc_cr, B_FALSE) != 0) 29047 return (EPERM); 29048 29049 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 29050 new_value < 0 || new_value > 1) { 29051 return (EINVAL); 29052 } 29053 29054 if ((!*ip_cgtp_filter_value) && new_value) { 29055 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 29056 ipst->ips_ip_cgtp_filter_ops == NULL ? 29057 " (module not loaded)" : ""); 29058 } 29059 if (*ip_cgtp_filter_value && (!new_value)) { 29060 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 29061 ipst->ips_ip_cgtp_filter_ops == NULL ? 29062 " (module not loaded)" : ""); 29063 } 29064 29065 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29066 int res; 29067 netstackid_t stackid; 29068 29069 stackid = ipst->ips_netstack->netstack_stackid; 29070 res = ipst->ips_ip_cgtp_filter_ops->cfo_change_state(stackid, 29071 new_value); 29072 if (res) 29073 return (res); 29074 } 29075 29076 *ip_cgtp_filter_value = (boolean_t)new_value; 29077 29078 return (0); 29079 } 29080 29081 /* 29082 * Return the expected CGTP hooks version number. 29083 */ 29084 int 29085 ip_cgtp_filter_supported(void) 29086 { 29087 return (ip_cgtp_filter_rev); 29088 } 29089 29090 /* 29091 * CGTP hooks can be registered by invoking this function. 29092 * Checks that the version number matches. 29093 */ 29094 int 29095 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 29096 { 29097 netstack_t *ns; 29098 ip_stack_t *ipst; 29099 29100 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 29101 return (ENOTSUP); 29102 29103 ns = netstack_find_by_stackid(stackid); 29104 if (ns == NULL) 29105 return (EINVAL); 29106 ipst = ns->netstack_ip; 29107 ASSERT(ipst != NULL); 29108 29109 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 29110 netstack_rele(ns); 29111 return (EALREADY); 29112 } 29113 29114 ipst->ips_ip_cgtp_filter_ops = ops; 29115 netstack_rele(ns); 29116 return (0); 29117 } 29118 29119 /* 29120 * CGTP hooks can be unregistered by invoking this function. 29121 * Returns ENXIO if there was no registration. 29122 * Returns EBUSY if the ndd variable has not been turned off. 29123 */ 29124 int 29125 ip_cgtp_filter_unregister(netstackid_t stackid) 29126 { 29127 netstack_t *ns; 29128 ip_stack_t *ipst; 29129 29130 ns = netstack_find_by_stackid(stackid); 29131 if (ns == NULL) 29132 return (EINVAL); 29133 ipst = ns->netstack_ip; 29134 ASSERT(ipst != NULL); 29135 29136 if (ipst->ips_ip_cgtp_filter) { 29137 netstack_rele(ns); 29138 return (EBUSY); 29139 } 29140 29141 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 29142 netstack_rele(ns); 29143 return (ENXIO); 29144 } 29145 ipst->ips_ip_cgtp_filter_ops = NULL; 29146 netstack_rele(ns); 29147 return (0); 29148 } 29149 29150 /* 29151 * Check whether there is a CGTP filter registration. 29152 * Returns non-zero if there is a registration, otherwise returns zero. 29153 * Note: returns zero if bad stackid. 29154 */ 29155 int 29156 ip_cgtp_filter_is_registered(netstackid_t stackid) 29157 { 29158 netstack_t *ns; 29159 ip_stack_t *ipst; 29160 int ret; 29161 29162 ns = netstack_find_by_stackid(stackid); 29163 if (ns == NULL) 29164 return (0); 29165 ipst = ns->netstack_ip; 29166 ASSERT(ipst != NULL); 29167 29168 if (ipst->ips_ip_cgtp_filter_ops != NULL) 29169 ret = 1; 29170 else 29171 ret = 0; 29172 29173 netstack_rele(ns); 29174 return (ret); 29175 } 29176 29177 static int 29178 ip_squeue_switch(int val) 29179 { 29180 int rval = SQ_FILL; 29181 29182 switch (val) { 29183 case IP_SQUEUE_ENTER_NODRAIN: 29184 rval = SQ_NODRAIN; 29185 break; 29186 case IP_SQUEUE_ENTER: 29187 rval = SQ_PROCESS; 29188 break; 29189 default: 29190 break; 29191 } 29192 return (rval); 29193 } 29194 29195 /* ARGSUSED */ 29196 static int 29197 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 29198 caddr_t addr, cred_t *cr) 29199 { 29200 int *v = (int *)addr; 29201 long new_value; 29202 29203 if (secpolicy_net_config(cr, B_FALSE) != 0) 29204 return (EPERM); 29205 29206 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29207 return (EINVAL); 29208 29209 ip_squeue_flag = ip_squeue_switch(new_value); 29210 *v = new_value; 29211 return (0); 29212 } 29213 29214 /* 29215 * Handle ndd set of variables which require PRIV_SYS_NET_CONFIG such as 29216 * ip_debug. 29217 */ 29218 /* ARGSUSED */ 29219 static int 29220 ip_int_set(queue_t *q, mblk_t *mp, char *value, 29221 caddr_t addr, cred_t *cr) 29222 { 29223 int *v = (int *)addr; 29224 long new_value; 29225 29226 if (secpolicy_net_config(cr, B_FALSE) != 0) 29227 return (EPERM); 29228 29229 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 29230 return (EINVAL); 29231 29232 *v = new_value; 29233 return (0); 29234 } 29235 29236 static void * 29237 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 29238 { 29239 kstat_t *ksp; 29240 29241 ip_stat_t template = { 29242 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 29243 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 29244 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 29245 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 29246 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 29247 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 29248 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 29249 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 29250 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 29251 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 29252 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 29253 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 29254 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 29255 { "ip_db_ref", KSTAT_DATA_UINT64 }, 29256 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 29257 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 29258 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 29259 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 29260 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 29261 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 29262 { "ip_opt", KSTAT_DATA_UINT64 }, 29263 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 29264 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 29265 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 29266 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 29267 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 29268 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 29269 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 29270 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 29271 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 29272 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 29273 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 29274 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 29275 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29276 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29277 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29278 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29279 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 29280 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 29281 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 29282 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 29283 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 29284 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 29285 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 29286 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 29287 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 29288 }; 29289 29290 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 29291 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 29292 KSTAT_FLAG_VIRTUAL, stackid); 29293 29294 if (ksp == NULL) 29295 return (NULL); 29296 29297 bcopy(&template, ip_statisticsp, sizeof (template)); 29298 ksp->ks_data = (void *)ip_statisticsp; 29299 ksp->ks_private = (void *)(uintptr_t)stackid; 29300 29301 kstat_install(ksp); 29302 return (ksp); 29303 } 29304 29305 static void 29306 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 29307 { 29308 if (ksp != NULL) { 29309 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29310 kstat_delete_netstack(ksp, stackid); 29311 } 29312 } 29313 29314 static void * 29315 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 29316 { 29317 kstat_t *ksp; 29318 29319 ip_named_kstat_t template = { 29320 { "forwarding", KSTAT_DATA_UINT32, 0 }, 29321 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 29322 { "inReceives", KSTAT_DATA_UINT64, 0 }, 29323 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 29324 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 29325 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 29326 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 29327 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 29328 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 29329 { "outRequests", KSTAT_DATA_UINT64, 0 }, 29330 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 29331 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 29332 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 29333 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 29334 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 29335 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 29336 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 29337 { "fragFails", KSTAT_DATA_UINT32, 0 }, 29338 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 29339 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 29340 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 29341 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 29342 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 29343 { "inErrs", KSTAT_DATA_UINT32, 0 }, 29344 { "noPorts", KSTAT_DATA_UINT32, 0 }, 29345 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 29346 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 29347 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 29348 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 29349 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 29350 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 29351 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 29352 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 29353 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 29354 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 29355 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 29356 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 29357 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 29358 }; 29359 29360 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 29361 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 29362 if (ksp == NULL || ksp->ks_data == NULL) 29363 return (NULL); 29364 29365 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 29366 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 29367 template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29368 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 29369 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 29370 29371 template.netToMediaEntrySize.value.i32 = 29372 sizeof (mib2_ipNetToMediaEntry_t); 29373 29374 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 29375 29376 bcopy(&template, ksp->ks_data, sizeof (template)); 29377 ksp->ks_update = ip_kstat_update; 29378 ksp->ks_private = (void *)(uintptr_t)stackid; 29379 29380 kstat_install(ksp); 29381 return (ksp); 29382 } 29383 29384 static void 29385 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29386 { 29387 if (ksp != NULL) { 29388 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29389 kstat_delete_netstack(ksp, stackid); 29390 } 29391 } 29392 29393 static int 29394 ip_kstat_update(kstat_t *kp, int rw) 29395 { 29396 ip_named_kstat_t *ipkp; 29397 mib2_ipIfStatsEntry_t ipmib; 29398 ill_walk_context_t ctx; 29399 ill_t *ill; 29400 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29401 netstack_t *ns; 29402 ip_stack_t *ipst; 29403 29404 if (kp == NULL || kp->ks_data == NULL) 29405 return (EIO); 29406 29407 if (rw == KSTAT_WRITE) 29408 return (EACCES); 29409 29410 ns = netstack_find_by_stackid(stackid); 29411 if (ns == NULL) 29412 return (-1); 29413 ipst = ns->netstack_ip; 29414 if (ipst == NULL) { 29415 netstack_rele(ns); 29416 return (-1); 29417 } 29418 ipkp = (ip_named_kstat_t *)kp->ks_data; 29419 29420 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 29421 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 29422 ill = ILL_START_WALK_V4(&ctx, ipst); 29423 for (; ill != NULL; ill = ill_next(&ctx, ill)) 29424 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 29425 rw_exit(&ipst->ips_ill_g_lock); 29426 29427 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 29428 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 29429 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 29430 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 29431 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 29432 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 29433 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 29434 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 29435 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 29436 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 29437 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 29438 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 29439 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout; 29440 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 29441 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 29442 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 29443 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 29444 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 29445 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 29446 29447 ipkp->routingDiscards.value.ui32 = 0; 29448 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 29449 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 29450 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 29451 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 29452 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 29453 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 29454 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 29455 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 29456 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 29457 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 29458 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 29459 29460 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 29461 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 29462 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 29463 29464 netstack_rele(ns); 29465 29466 return (0); 29467 } 29468 29469 static void * 29470 icmp_kstat_init(netstackid_t stackid) 29471 { 29472 kstat_t *ksp; 29473 29474 icmp_named_kstat_t template = { 29475 { "inMsgs", KSTAT_DATA_UINT32 }, 29476 { "inErrors", KSTAT_DATA_UINT32 }, 29477 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29478 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29479 { "inParmProbs", KSTAT_DATA_UINT32 }, 29480 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29481 { "inRedirects", KSTAT_DATA_UINT32 }, 29482 { "inEchos", KSTAT_DATA_UINT32 }, 29483 { "inEchoReps", KSTAT_DATA_UINT32 }, 29484 { "inTimestamps", KSTAT_DATA_UINT32 }, 29485 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29486 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29487 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29488 { "outMsgs", KSTAT_DATA_UINT32 }, 29489 { "outErrors", KSTAT_DATA_UINT32 }, 29490 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29491 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29492 { "outParmProbs", KSTAT_DATA_UINT32 }, 29493 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29494 { "outRedirects", KSTAT_DATA_UINT32 }, 29495 { "outEchos", KSTAT_DATA_UINT32 }, 29496 { "outEchoReps", KSTAT_DATA_UINT32 }, 29497 { "outTimestamps", KSTAT_DATA_UINT32 }, 29498 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29499 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29500 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29501 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29502 { "inUnknowns", KSTAT_DATA_UINT32 }, 29503 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29504 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29505 { "outDrops", KSTAT_DATA_UINT32 }, 29506 { "inOverFlows", KSTAT_DATA_UINT32 }, 29507 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29508 }; 29509 29510 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29511 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 29512 if (ksp == NULL || ksp->ks_data == NULL) 29513 return (NULL); 29514 29515 bcopy(&template, ksp->ks_data, sizeof (template)); 29516 29517 ksp->ks_update = icmp_kstat_update; 29518 ksp->ks_private = (void *)(uintptr_t)stackid; 29519 29520 kstat_install(ksp); 29521 return (ksp); 29522 } 29523 29524 static void 29525 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 29526 { 29527 if (ksp != NULL) { 29528 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 29529 kstat_delete_netstack(ksp, stackid); 29530 } 29531 } 29532 29533 static int 29534 icmp_kstat_update(kstat_t *kp, int rw) 29535 { 29536 icmp_named_kstat_t *icmpkp; 29537 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 29538 netstack_t *ns; 29539 ip_stack_t *ipst; 29540 29541 if ((kp == NULL) || (kp->ks_data == NULL)) 29542 return (EIO); 29543 29544 if (rw == KSTAT_WRITE) 29545 return (EACCES); 29546 29547 ns = netstack_find_by_stackid(stackid); 29548 if (ns == NULL) 29549 return (-1); 29550 ipst = ns->netstack_ip; 29551 if (ipst == NULL) { 29552 netstack_rele(ns); 29553 return (-1); 29554 } 29555 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29556 29557 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 29558 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 29559 icmpkp->inDestUnreachs.value.ui32 = 29560 ipst->ips_icmp_mib.icmpInDestUnreachs; 29561 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 29562 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 29563 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 29564 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 29565 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 29566 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 29567 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 29568 icmpkp->inTimestampReps.value.ui32 = 29569 ipst->ips_icmp_mib.icmpInTimestampReps; 29570 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 29571 icmpkp->inAddrMaskReps.value.ui32 = 29572 ipst->ips_icmp_mib.icmpInAddrMaskReps; 29573 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 29574 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 29575 icmpkp->outDestUnreachs.value.ui32 = 29576 ipst->ips_icmp_mib.icmpOutDestUnreachs; 29577 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 29578 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 29579 icmpkp->outSrcQuenchs.value.ui32 = 29580 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 29581 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 29582 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 29583 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 29584 icmpkp->outTimestamps.value.ui32 = 29585 ipst->ips_icmp_mib.icmpOutTimestamps; 29586 icmpkp->outTimestampReps.value.ui32 = 29587 ipst->ips_icmp_mib.icmpOutTimestampReps; 29588 icmpkp->outAddrMasks.value.ui32 = 29589 ipst->ips_icmp_mib.icmpOutAddrMasks; 29590 icmpkp->outAddrMaskReps.value.ui32 = 29591 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 29592 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 29593 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 29594 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 29595 icmpkp->outFragNeeded.value.ui32 = 29596 ipst->ips_icmp_mib.icmpOutFragNeeded; 29597 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 29598 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 29599 icmpkp->inBadRedirects.value.ui32 = 29600 ipst->ips_icmp_mib.icmpInBadRedirects; 29601 29602 netstack_rele(ns); 29603 return (0); 29604 } 29605 29606 /* 29607 * This is the fanout function for raw socket opened for SCTP. Note 29608 * that it is called after SCTP checks that there is no socket which 29609 * wants a packet. Then before SCTP handles this out of the blue packet, 29610 * this function is called to see if there is any raw socket for SCTP. 29611 * If there is and it is bound to the correct address, the packet will 29612 * be sent to that socket. Note that only one raw socket can be bound to 29613 * a port. This is assured in ipcl_sctp_hash_insert(); 29614 */ 29615 void 29616 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29617 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29618 zoneid_t zoneid) 29619 { 29620 conn_t *connp; 29621 queue_t *rq; 29622 mblk_t *first_mp; 29623 boolean_t secure; 29624 ip6_t *ip6h; 29625 ip_stack_t *ipst = recv_ill->ill_ipst; 29626 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 29627 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 29628 boolean_t sctp_csum_err = B_FALSE; 29629 29630 if (flags & IP_FF_SCTP_CSUM_ERR) { 29631 sctp_csum_err = B_TRUE; 29632 flags &= ~IP_FF_SCTP_CSUM_ERR; 29633 } 29634 29635 first_mp = mp; 29636 if (mctl_present) { 29637 mp = first_mp->b_cont; 29638 secure = ipsec_in_is_secure(first_mp); 29639 ASSERT(mp != NULL); 29640 } else { 29641 secure = B_FALSE; 29642 } 29643 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29644 29645 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst); 29646 if (connp == NULL) { 29647 /* 29648 * Although raw sctp is not summed, OOB chunks must be. 29649 * Drop the packet here if the sctp checksum failed. 29650 */ 29651 if (sctp_csum_err) { 29652 BUMP_MIB(&sctps->sctps_mib, sctpChecksumError); 29653 freemsg(first_mp); 29654 return; 29655 } 29656 sctp_ootb_input(first_mp, recv_ill, zoneid, mctl_present); 29657 return; 29658 } 29659 rq = connp->conn_rq; 29660 if (!canputnext(rq)) { 29661 CONN_DEC_REF(connp); 29662 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29663 freemsg(first_mp); 29664 return; 29665 } 29666 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 29667 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) { 29668 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29669 (isv4 ? ipha : NULL), ip6h, mctl_present); 29670 if (first_mp == NULL) { 29671 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29672 CONN_DEC_REF(connp); 29673 return; 29674 } 29675 } 29676 /* 29677 * We probably should not send M_CTL message up to 29678 * raw socket. 29679 */ 29680 if (mctl_present) 29681 freeb(first_mp); 29682 29683 /* Initiate IPPF processing here if needed. */ 29684 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) || 29685 (!isv4 && IP6_IN_IPP(flags, ipst))) { 29686 ip_process(IPP_LOCAL_IN, &mp, 29687 recv_ill->ill_phyint->phyint_ifindex); 29688 if (mp == NULL) { 29689 CONN_DEC_REF(connp); 29690 return; 29691 } 29692 } 29693 29694 if (connp->conn_recvif || connp->conn_recvslla || 29695 ((connp->conn_ip_recvpktinfo || 29696 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29697 (flags & IP_FF_IPINFO))) { 29698 int in_flags = 0; 29699 29700 /* 29701 * Since sctp does not support IP_RECVPKTINFO for v4, only pass 29702 * IPF_RECVIF. 29703 */ 29704 if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { 29705 in_flags = IPF_RECVIF; 29706 } 29707 if (connp->conn_recvslla) { 29708 in_flags |= IPF_RECVSLLA; 29709 } 29710 if (isv4) { 29711 mp = ip_add_info(mp, recv_ill, in_flags, 29712 IPCL_ZONEID(connp), ipst); 29713 } else { 29714 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29715 if (mp == NULL) { 29716 BUMP_MIB(recv_ill->ill_ip_mib, 29717 ipIfStatsInDiscards); 29718 CONN_DEC_REF(connp); 29719 return; 29720 } 29721 } 29722 } 29723 29724 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29725 /* 29726 * We are sending the IPSEC_IN message also up. Refer 29727 * to comments above this function. 29728 * This is the SOCK_RAW, IPPROTO_SCTP case. 29729 */ 29730 (connp->conn_recv)(connp, mp, NULL); 29731 CONN_DEC_REF(connp); 29732 } 29733 29734 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29735 { \ 29736 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29737 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29738 } 29739 /* 29740 * This function should be called only if all packet processing 29741 * including fragmentation is complete. Callers of this function 29742 * must set mp->b_prev to one of these values: 29743 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29744 * prior to handing over the mp as first argument to this function. 29745 * 29746 * If the ire passed by caller is incomplete, this function 29747 * queues the packet and if necessary, sends ARP request and bails. 29748 * If the ire passed is fully resolved, we simply prepend 29749 * the link-layer header to the packet, do ipsec hw acceleration 29750 * work if necessary, and send the packet out on the wire. 29751 * 29752 * NOTE: IPsec will only call this function with fully resolved 29753 * ires if hw acceleration is involved. 29754 * TODO list : 29755 * a Handle M_MULTIDATA so that 29756 * tcp_multisend->tcp_multisend_data can 29757 * call ip_xmit_v4 directly 29758 * b Handle post-ARP work for fragments so that 29759 * ip_wput_frag can call this function. 29760 */ 29761 ipxmit_state_t 29762 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, 29763 boolean_t flow_ctl_enabled, conn_t *connp) 29764 { 29765 nce_t *arpce; 29766 ipha_t *ipha; 29767 queue_t *q; 29768 int ill_index; 29769 mblk_t *nxt_mp, *first_mp; 29770 boolean_t xmit_drop = B_FALSE; 29771 ip_proc_t proc; 29772 ill_t *out_ill; 29773 int pkt_len; 29774 29775 arpce = ire->ire_nce; 29776 ASSERT(arpce != NULL); 29777 29778 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29779 29780 mutex_enter(&arpce->nce_lock); 29781 switch (arpce->nce_state) { 29782 case ND_REACHABLE: 29783 /* If there are other queued packets, queue this packet */ 29784 if (arpce->nce_qd_mp != NULL) { 29785 if (mp != NULL) 29786 nce_queue_mp_common(arpce, mp, B_FALSE); 29787 mp = arpce->nce_qd_mp; 29788 } 29789 arpce->nce_qd_mp = NULL; 29790 mutex_exit(&arpce->nce_lock); 29791 29792 /* 29793 * Flush the queue. In the common case, where the 29794 * ARP is already resolved, it will go through the 29795 * while loop only once. 29796 */ 29797 while (mp != NULL) { 29798 29799 nxt_mp = mp->b_next; 29800 mp->b_next = NULL; 29801 ASSERT(mp->b_datap->db_type != M_CTL); 29802 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29803 /* 29804 * This info is needed for IPQOS to do COS marking 29805 * in ip_wput_attach_llhdr->ip_process. 29806 */ 29807 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29808 mp->b_prev = NULL; 29809 29810 /* set up ill index for outbound qos processing */ 29811 out_ill = ire_to_ill(ire); 29812 ill_index = out_ill->ill_phyint->phyint_ifindex; 29813 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29814 ill_index, &ipha); 29815 if (first_mp == NULL) { 29816 xmit_drop = B_TRUE; 29817 BUMP_MIB(out_ill->ill_ip_mib, 29818 ipIfStatsOutDiscards); 29819 goto next_mp; 29820 } 29821 29822 /* non-ipsec hw accel case */ 29823 if (io == NULL || !io->ipsec_out_accelerated) { 29824 /* send it */ 29825 q = ire->ire_stq; 29826 if (proc == IPP_FWD_OUT) { 29827 UPDATE_IB_PKT_COUNT(ire); 29828 } else { 29829 UPDATE_OB_PKT_COUNT(ire); 29830 } 29831 ire->ire_last_used_time = lbolt; 29832 29833 if (flow_ctl_enabled || canputnext(q)) { 29834 if (proc == IPP_FWD_OUT) { 29835 29836 BUMP_MIB(out_ill->ill_ip_mib, 29837 ipIfStatsHCOutForwDatagrams); 29838 29839 } 29840 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29841 pkt_len); 29842 29843 DTRACE_IP7(send, mblk_t *, first_mp, 29844 conn_t *, NULL, void_ip_t *, ipha, 29845 __dtrace_ipsr_ill_t *, out_ill, 29846 ipha_t *, ipha, ip6_t *, NULL, int, 29847 0); 29848 29849 ILL_SEND_TX(out_ill, 29850 ire, connp, first_mp, 0, connp); 29851 } else { 29852 BUMP_MIB(out_ill->ill_ip_mib, 29853 ipIfStatsOutDiscards); 29854 xmit_drop = B_TRUE; 29855 freemsg(first_mp); 29856 } 29857 } else { 29858 /* 29859 * Safety Pup says: make sure this 29860 * is going to the right interface! 29861 */ 29862 ill_t *ill1 = 29863 (ill_t *)ire->ire_stq->q_ptr; 29864 int ifindex = 29865 ill1->ill_phyint->phyint_ifindex; 29866 if (ifindex != 29867 io->ipsec_out_capab_ill_index) { 29868 xmit_drop = B_TRUE; 29869 freemsg(mp); 29870 } else { 29871 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29872 pkt_len); 29873 29874 DTRACE_IP7(send, mblk_t *, first_mp, 29875 conn_t *, NULL, void_ip_t *, ipha, 29876 __dtrace_ipsr_ill_t *, ill1, 29877 ipha_t *, ipha, ip6_t *, NULL, 29878 int, 0); 29879 29880 ipsec_hw_putnext(ire->ire_stq, mp); 29881 } 29882 } 29883 next_mp: 29884 mp = nxt_mp; 29885 } /* while (mp != NULL) */ 29886 if (xmit_drop) 29887 return (SEND_FAILED); 29888 else 29889 return (SEND_PASSED); 29890 29891 case ND_INITIAL: 29892 case ND_INCOMPLETE: 29893 29894 /* 29895 * While we do send off packets to dests that 29896 * use fully-resolved CGTP routes, we do not 29897 * handle unresolved CGTP routes. 29898 */ 29899 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29900 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29901 29902 if (mp != NULL) { 29903 /* queue the packet */ 29904 nce_queue_mp_common(arpce, mp, B_FALSE); 29905 } 29906 29907 if (arpce->nce_state == ND_INCOMPLETE) { 29908 mutex_exit(&arpce->nce_lock); 29909 DTRACE_PROBE3(ip__xmit__incomplete, 29910 (ire_t *), ire, (mblk_t *), mp, 29911 (ipsec_out_t *), io); 29912 return (LOOKUP_IN_PROGRESS); 29913 } 29914 29915 arpce->nce_state = ND_INCOMPLETE; 29916 mutex_exit(&arpce->nce_lock); 29917 29918 /* 29919 * Note that ire_add() (called from ire_forward()) 29920 * holds a ref on the ire until ARP is completed. 29921 */ 29922 ire_arpresolve(ire); 29923 return (LOOKUP_IN_PROGRESS); 29924 default: 29925 ASSERT(0); 29926 mutex_exit(&arpce->nce_lock); 29927 return (LLHDR_RESLV_FAILED); 29928 } 29929 } 29930 29931 #undef UPDATE_IP_MIB_OB_COUNTERS 29932 29933 /* 29934 * Return B_TRUE if the buffers differ in length or content. 29935 * This is used for comparing extension header buffers. 29936 * Note that an extension header would be declared different 29937 * even if all that changed was the next header value in that header i.e. 29938 * what really changed is the next extension header. 29939 */ 29940 boolean_t 29941 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29942 uint_t blen) 29943 { 29944 if (!b_valid) 29945 blen = 0; 29946 29947 if (alen != blen) 29948 return (B_TRUE); 29949 if (alen == 0) 29950 return (B_FALSE); /* Both zero length */ 29951 return (bcmp(abuf, bbuf, alen)); 29952 } 29953 29954 /* 29955 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29956 * Return B_FALSE if memory allocation fails - don't change any state! 29957 */ 29958 boolean_t 29959 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29960 const void *src, uint_t srclen) 29961 { 29962 void *dst; 29963 29964 if (!src_valid) 29965 srclen = 0; 29966 29967 ASSERT(*dstlenp == 0); 29968 if (src != NULL && srclen != 0) { 29969 dst = mi_alloc(srclen, BPRI_MED); 29970 if (dst == NULL) 29971 return (B_FALSE); 29972 } else { 29973 dst = NULL; 29974 } 29975 if (*dstp != NULL) 29976 mi_free(*dstp); 29977 *dstp = dst; 29978 *dstlenp = dst == NULL ? 0 : srclen; 29979 return (B_TRUE); 29980 } 29981 29982 /* 29983 * Replace what is in *dst, *dstlen with the source. 29984 * Assumes ip_allocbuf has already been called. 29985 */ 29986 void 29987 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29988 const void *src, uint_t srclen) 29989 { 29990 if (!src_valid) 29991 srclen = 0; 29992 29993 ASSERT(*dstlenp == srclen); 29994 if (src != NULL && srclen != 0) 29995 bcopy(src, *dstp, srclen); 29996 } 29997 29998 /* 29999 * Free the storage pointed to by the members of an ip6_pkt_t. 30000 */ 30001 void 30002 ip6_pkt_free(ip6_pkt_t *ipp) 30003 { 30004 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 30005 30006 if (ipp->ipp_fields & IPPF_HOPOPTS) { 30007 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 30008 ipp->ipp_hopopts = NULL; 30009 ipp->ipp_hopoptslen = 0; 30010 } 30011 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 30012 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 30013 ipp->ipp_rtdstopts = NULL; 30014 ipp->ipp_rtdstoptslen = 0; 30015 } 30016 if (ipp->ipp_fields & IPPF_DSTOPTS) { 30017 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 30018 ipp->ipp_dstopts = NULL; 30019 ipp->ipp_dstoptslen = 0; 30020 } 30021 if (ipp->ipp_fields & IPPF_RTHDR) { 30022 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 30023 ipp->ipp_rthdr = NULL; 30024 ipp->ipp_rthdrlen = 0; 30025 } 30026 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 30027 IPPF_RTHDR); 30028 } 30029 30030 zoneid_t 30031 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_stack_t *ipst, 30032 zoneid_t lookup_zoneid) 30033 { 30034 ire_t *ire; 30035 int ire_flags = MATCH_IRE_TYPE; 30036 zoneid_t zoneid = ALL_ZONES; 30037 30038 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30039 return (ALL_ZONES); 30040 30041 if (lookup_zoneid != ALL_ZONES) 30042 ire_flags |= MATCH_IRE_ZONEONLY; 30043 ire = ire_ctable_lookup(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, NULL, 30044 lookup_zoneid, NULL, ire_flags, ipst); 30045 if (ire != NULL) { 30046 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30047 ire_refrele(ire); 30048 } 30049 return (zoneid); 30050 } 30051 30052 zoneid_t 30053 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 30054 ip_stack_t *ipst, zoneid_t lookup_zoneid) 30055 { 30056 ire_t *ire; 30057 int ire_flags = MATCH_IRE_TYPE; 30058 zoneid_t zoneid = ALL_ZONES; 30059 ipif_t *ipif_arg = NULL; 30060 30061 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) 30062 return (ALL_ZONES); 30063 30064 if (IN6_IS_ADDR_LINKLOCAL(addr)) { 30065 ire_flags |= MATCH_IRE_ILL; 30066 ipif_arg = ill->ill_ipif; 30067 } 30068 if (lookup_zoneid != ALL_ZONES) 30069 ire_flags |= MATCH_IRE_ZONEONLY; 30070 ire = ire_ctable_lookup_v6(addr, NULL, IRE_LOCAL | IRE_LOOPBACK, 30071 ipif_arg, lookup_zoneid, NULL, ire_flags, ipst); 30072 if (ire != NULL) { 30073 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 30074 ire_refrele(ire); 30075 } 30076 return (zoneid); 30077 } 30078 30079 /* 30080 * IP obserability hook support functions. 30081 */ 30082 30083 static void 30084 ipobs_init(ip_stack_t *ipst) 30085 { 30086 ipst->ips_ipobs_enabled = B_FALSE; 30087 list_create(&ipst->ips_ipobs_cb_list, sizeof (ipobs_cb_t), 30088 offsetof(ipobs_cb_t, ipobs_cbnext)); 30089 mutex_init(&ipst->ips_ipobs_cb_lock, NULL, MUTEX_DEFAULT, NULL); 30090 ipst->ips_ipobs_cb_nwalkers = 0; 30091 cv_init(&ipst->ips_ipobs_cb_cv, NULL, CV_DRIVER, NULL); 30092 } 30093 30094 static void 30095 ipobs_fini(ip_stack_t *ipst) 30096 { 30097 ipobs_cb_t *cb; 30098 30099 mutex_enter(&ipst->ips_ipobs_cb_lock); 30100 while (ipst->ips_ipobs_cb_nwalkers != 0) 30101 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30102 30103 while ((cb = list_head(&ipst->ips_ipobs_cb_list)) != NULL) { 30104 list_remove(&ipst->ips_ipobs_cb_list, cb); 30105 kmem_free(cb, sizeof (*cb)); 30106 } 30107 list_destroy(&ipst->ips_ipobs_cb_list); 30108 mutex_exit(&ipst->ips_ipobs_cb_lock); 30109 mutex_destroy(&ipst->ips_ipobs_cb_lock); 30110 cv_destroy(&ipst->ips_ipobs_cb_cv); 30111 } 30112 30113 void 30114 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 30115 const ill_t *ill, int ipver, uint32_t hlen, ip_stack_t *ipst) 30116 { 30117 mblk_t *mp2; 30118 ipobs_cb_t *ipobs_cb; 30119 ipobs_hook_data_t *ihd; 30120 uint64_t grifindex = 0; 30121 30122 ASSERT(DB_TYPE(mp) == M_DATA); 30123 30124 if (IS_UNDER_IPMP(ill)) 30125 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 30126 30127 mutex_enter(&ipst->ips_ipobs_cb_lock); 30128 ipst->ips_ipobs_cb_nwalkers++; 30129 mutex_exit(&ipst->ips_ipobs_cb_lock); 30130 for (ipobs_cb = list_head(&ipst->ips_ipobs_cb_list); ipobs_cb != NULL; 30131 ipobs_cb = list_next(&ipst->ips_ipobs_cb_list, ipobs_cb)) { 30132 mp2 = allocb(sizeof (ipobs_hook_data_t), BPRI_HI); 30133 if (mp2 != NULL) { 30134 ihd = (ipobs_hook_data_t *)mp2->b_rptr; 30135 if (((ihd->ihd_mp = dupmsg(mp)) == NULL) && 30136 ((ihd->ihd_mp = copymsg(mp)) == NULL)) { 30137 freemsg(mp2); 30138 continue; 30139 } 30140 ihd->ihd_mp->b_rptr += hlen; 30141 ihd->ihd_htype = htype; 30142 ihd->ihd_ipver = ipver; 30143 ihd->ihd_zsrc = zsrc; 30144 ihd->ihd_zdst = zdst; 30145 ihd->ihd_ifindex = ill->ill_phyint->phyint_ifindex; 30146 ihd->ihd_grifindex = grifindex; 30147 ihd->ihd_stack = ipst->ips_netstack; 30148 mp2->b_wptr += sizeof (*ihd); 30149 ipobs_cb->ipobs_cbfunc(mp2); 30150 } 30151 } 30152 mutex_enter(&ipst->ips_ipobs_cb_lock); 30153 ipst->ips_ipobs_cb_nwalkers--; 30154 if (ipst->ips_ipobs_cb_nwalkers == 0) 30155 cv_broadcast(&ipst->ips_ipobs_cb_cv); 30156 mutex_exit(&ipst->ips_ipobs_cb_lock); 30157 } 30158 30159 void 30160 ipobs_register_hook(netstack_t *ns, pfv_t func) 30161 { 30162 ipobs_cb_t *cb; 30163 ip_stack_t *ipst = ns->netstack_ip; 30164 30165 cb = kmem_alloc(sizeof (*cb), KM_SLEEP); 30166 30167 mutex_enter(&ipst->ips_ipobs_cb_lock); 30168 while (ipst->ips_ipobs_cb_nwalkers != 0) 30169 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30170 ASSERT(ipst->ips_ipobs_cb_nwalkers == 0); 30171 30172 cb->ipobs_cbfunc = func; 30173 list_insert_head(&ipst->ips_ipobs_cb_list, cb); 30174 ipst->ips_ipobs_enabled = B_TRUE; 30175 mutex_exit(&ipst->ips_ipobs_cb_lock); 30176 } 30177 30178 void 30179 ipobs_unregister_hook(netstack_t *ns, pfv_t func) 30180 { 30181 ipobs_cb_t *curcb; 30182 ip_stack_t *ipst = ns->netstack_ip; 30183 30184 mutex_enter(&ipst->ips_ipobs_cb_lock); 30185 while (ipst->ips_ipobs_cb_nwalkers != 0) 30186 cv_wait(&ipst->ips_ipobs_cb_cv, &ipst->ips_ipobs_cb_lock); 30187 30188 for (curcb = list_head(&ipst->ips_ipobs_cb_list); curcb != NULL; 30189 curcb = list_next(&ipst->ips_ipobs_cb_list, curcb)) { 30190 if (func == curcb->ipobs_cbfunc) { 30191 list_remove(&ipst->ips_ipobs_cb_list, curcb); 30192 kmem_free(curcb, sizeof (*curcb)); 30193 break; 30194 } 30195 } 30196 if (list_is_empty(&ipst->ips_ipobs_cb_list)) 30197 ipst->ips_ipobs_enabled = B_FALSE; 30198 mutex_exit(&ipst->ips_ipobs_cb_lock); 30199 } 30200