1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 28 * Copyright 2021 Joyent, Inc. 29 * Copyright 2024 Oxide Computer Company 30 */ 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/dlpi.h> 35 #include <sys/stropts.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/strsun.h> 40 #include <sys/zone.h> 41 #define _SUN_TPI_VERSION 2 42 #include <sys/tihdr.h> 43 #include <sys/xti_inet.h> 44 #include <sys/ddi.h> 45 #include <sys/suntpi.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/kobj.h> 49 #include <sys/modctl.h> 50 #include <sys/atomic.h> 51 #include <sys/policy.h> 52 #include <sys/priv.h> 53 #include <sys/taskq.h> 54 55 #include <sys/systm.h> 56 #include <sys/param.h> 57 #include <sys/kmem.h> 58 #include <sys/sdt.h> 59 #include <sys/socket.h> 60 #include <sys/vtrace.h> 61 #include <sys/isa_defs.h> 62 #include <sys/mac.h> 63 #include <net/if.h> 64 #include <net/if_arp.h> 65 #include <net/route.h> 66 #include <sys/sockio.h> 67 #include <netinet/in.h> 68 #include <net/if_dl.h> 69 70 #include <inet/common.h> 71 #include <inet/mi.h> 72 #include <inet/mib2.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/snmpcom.h> 76 #include <inet/optcom.h> 77 #include <inet/kstatcom.h> 78 79 #include <netinet/igmp_var.h> 80 #include <netinet/ip6.h> 81 #include <netinet/icmp6.h> 82 #include <netinet/sctp.h> 83 84 #include <inet/ip.h> 85 #include <inet/ip_impl.h> 86 #include <inet/ip6.h> 87 #include <inet/ip6_asp.h> 88 #include <inet/tcp.h> 89 #include <inet/tcp_impl.h> 90 #include <inet/ip_multi.h> 91 #include <inet/ip_if.h> 92 #include <inet/ip_ire.h> 93 #include <inet/ip_ftable.h> 94 #include <inet/ip_rts.h> 95 #include <inet/ip_ndp.h> 96 #include <inet/ip_listutils.h> 97 #include <netinet/igmp.h> 98 #include <netinet/ip_mroute.h> 99 #include <inet/ipp_common.h> 100 #include <inet/cc.h> 101 102 #include <net/pfkeyv2.h> 103 #include <inet/sadb.h> 104 #include <inet/ipsec_impl.h> 105 #include <inet/iptun/iptun_impl.h> 106 #include <inet/ipdrop.h> 107 #include <inet/ip_netinfo.h> 108 #include <inet/ilb_ip.h> 109 110 #include <sys/ethernet.h> 111 #include <net/if_types.h> 112 #include <sys/cpuvar.h> 113 114 #include <ipp/ipp.h> 115 #include <ipp/ipp_impl.h> 116 #include <ipp/ipgpc/ipgpc.h> 117 118 #include <sys/pattr.h> 119 #include <inet/ipclassifier.h> 120 #include <inet/sctp_ip.h> 121 #include <inet/sctp/sctp_impl.h> 122 #include <inet/udp_impl.h> 123 #include <inet/rawip_impl.h> 124 #include <inet/rts_impl.h> 125 126 #include <sys/tsol/label.h> 127 #include <sys/tsol/tnet.h> 128 129 #include <sys/squeue_impl.h> 130 #include <inet/ip_arp.h> 131 132 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 133 134 /* 135 * Values for squeue switch: 136 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 137 * IP_SQUEUE_ENTER: SQ_PROCESS 138 * IP_SQUEUE_FILL: SQ_FILL 139 */ 140 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 141 142 int ip_squeue_flag; 143 144 /* 145 * Setable in /etc/system 146 */ 147 int ip_poll_normal_ms = 100; 148 int ip_poll_normal_ticks = 0; 149 int ip_modclose_ackwait_ms = 3000; 150 151 /* 152 * It would be nice to have these present only in DEBUG systems, but the 153 * current design of the global symbol checking logic requires them to be 154 * unconditionally present. 155 */ 156 uint_t ip_thread_data; /* TSD key for debug support */ 157 krwlock_t ip_thread_rwlock; 158 list_t ip_thread_list; 159 160 /* 161 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 162 */ 163 164 struct listptr_s { 165 mblk_t *lp_head; /* pointer to the head of the list */ 166 mblk_t *lp_tail; /* pointer to the tail of the list */ 167 }; 168 169 typedef struct listptr_s listptr_t; 170 171 /* 172 * This is used by ip_snmp_get_mib2_ip_route_media and 173 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 174 */ 175 typedef struct iproutedata_s { 176 uint_t ird_idx; 177 uint_t ird_flags; /* see below */ 178 listptr_t ird_route; /* ipRouteEntryTable */ 179 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 180 listptr_t ird_attrs; /* ipRouteAttributeTable */ 181 } iproutedata_t; 182 183 /* Include ire_testhidden and IRE_IF_CLONE routes */ 184 #define IRD_REPORT_ALL 0x01 185 186 /* 187 * Cluster specific hooks. These should be NULL when booted as a non-cluster 188 */ 189 190 /* 191 * Hook functions to enable cluster networking 192 * On non-clustered systems these vectors must always be NULL. 193 * 194 * Hook function to Check ip specified ip address is a shared ip address 195 * in the cluster 196 * 197 */ 198 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 199 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 200 201 /* 202 * Hook function to generate cluster wide ip fragment identifier 203 */ 204 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 205 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 206 void *args) = NULL; 207 208 /* 209 * Hook function to generate cluster wide SPI. 210 */ 211 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 212 void *) = NULL; 213 214 /* 215 * Hook function to verify if the SPI is already utlized. 216 */ 217 218 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 219 220 /* 221 * Hook function to delete the SPI from the cluster wide repository. 222 */ 223 224 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 225 226 /* 227 * Hook function to inform the cluster when packet received on an IDLE SA 228 */ 229 230 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 231 in6_addr_t, in6_addr_t, void *) = NULL; 232 233 /* 234 * Synchronization notes: 235 * 236 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 237 * MT level protection given by STREAMS. IP uses a combination of its own 238 * internal serialization mechanism and standard Solaris locking techniques. 239 * The internal serialization is per phyint. This is used to serialize 240 * plumbing operations, IPMP operations, most set ioctls, etc. 241 * 242 * Plumbing is a long sequence of operations involving message 243 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 244 * involved in plumbing operations. A natural model is to serialize these 245 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 246 * parallel without any interference. But various set ioctls on hme0 are best 247 * serialized, along with IPMP operations and processing of DLPI control 248 * messages received from drivers on a per phyint basis. This serialization is 249 * provided by the ipsq_t and primitives operating on this. Details can 250 * be found in ip_if.c above the core primitives operating on ipsq_t. 251 * 252 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 253 * Simiarly lookup of an ire by a thread also returns a refheld ire. 254 * In addition ipif's and ill's referenced by the ire are also indirectly 255 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 256 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 257 * address of an ipif has to go through the ipsq_t. This ensures that only 258 * one such exclusive operation proceeds at any time on the ipif. It then 259 * waits for all refcnts 260 * associated with this ipif to come down to zero. The address is changed 261 * only after the ipif has been quiesced. Then the ipif is brought up again. 262 * More details are described above the comment in ip_sioctl_flags. 263 * 264 * Packet processing is based mostly on IREs and are fully multi-threaded 265 * using standard Solaris MT techniques. 266 * 267 * There are explicit locks in IP to handle: 268 * - The ip_g_head list maintained by mi_open_link() and friends. 269 * 270 * - The reassembly data structures (one lock per hash bucket) 271 * 272 * - conn_lock is meant to protect conn_t fields. The fields actually 273 * protected by conn_lock are documented in the conn_t definition. 274 * 275 * - ire_lock to protect some of the fields of the ire, IRE tables 276 * (one lock per hash bucket). Refer to ip_ire.c for details. 277 * 278 * - ndp_g_lock and ncec_lock for protecting NCEs. 279 * 280 * - ill_lock protects fields of the ill and ipif. Details in ip.h 281 * 282 * - ill_g_lock: This is a global reader/writer lock. Protects the following 283 * * The AVL tree based global multi list of all ills. 284 * * The linked list of all ipifs of an ill 285 * * The <ipsq-xop> mapping 286 * * <ill-phyint> association 287 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 288 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 289 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 290 * writer for the actual duration of the insertion/deletion/change. 291 * 292 * - ill_lock: This is a per ill mutex. 293 * It protects some members of the ill_t struct; see ip.h for details. 294 * It also protects the <ill-phyint> assoc. 295 * It also protects the list of ipifs hanging off the ill. 296 * 297 * - ipsq_lock: This is a per ipsq_t mutex lock. 298 * This protects some members of the ipsq_t struct; see ip.h for details. 299 * It also protects the <ipsq-ipxop> mapping 300 * 301 * - ipx_lock: This is a per ipxop_t mutex lock. 302 * This protects some members of the ipxop_t struct; see ip.h for details. 303 * 304 * - phyint_lock: This is a per phyint mutex lock. Protects just the 305 * phyint_flags 306 * 307 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 308 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 309 * uniqueness check also done atomically. 310 * 311 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 312 * group list linked by ill_usesrc_grp_next. It also protects the 313 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 314 * group is being added or deleted. This lock is taken as a reader when 315 * walking the list/group(eg: to get the number of members in a usesrc group). 316 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 317 * field is changing state i.e from NULL to non-NULL or vice-versa. For 318 * example, it is not necessary to take this lock in the initial portion 319 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 320 * operations are executed exclusively and that ensures that the "usesrc 321 * group state" cannot change. The "usesrc group state" change can happen 322 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 323 * 324 * Changing <ill-phyint>, <ipsq-xop> assocications: 325 * 326 * To change the <ill-phyint> association, the ill_g_lock must be held 327 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 328 * must be held. 329 * 330 * To change the <ipsq-xop> association, the ill_g_lock must be held as 331 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 332 * This is only done when ills are added or removed from IPMP groups. 333 * 334 * To add or delete an ipif from the list of ipifs hanging off the ill, 335 * ill_g_lock (writer) and ill_lock must be held and the thread must be 336 * a writer on the associated ipsq. 337 * 338 * To add or delete an ill to the system, the ill_g_lock must be held as 339 * writer and the thread must be a writer on the associated ipsq. 340 * 341 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 342 * must be a writer on the associated ipsq. 343 * 344 * Lock hierarchy 345 * 346 * Some lock hierarchy scenarios are listed below. 347 * 348 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 349 * ill_g_lock -> ill_lock(s) -> phyint_lock 350 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 351 * ill_g_lock -> ip_addr_avail_lock 352 * conn_lock -> irb_lock -> ill_lock -> ire_lock 353 * ill_g_lock -> ip_g_nd_lock 354 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 355 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 356 * arl_lock -> ill_lock 357 * ips_ire_dep_lock -> irb_lock 358 * 359 * When more than 1 ill lock is needed to be held, all ill lock addresses 360 * are sorted on address and locked starting from highest addressed lock 361 * downward. 362 * 363 * Multicast scenarios 364 * ips_ill_g_lock -> ill_mcast_lock 365 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 367 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 368 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 369 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 370 * 371 * IPsec scenarios 372 * 373 * ipsa_lock -> ill_g_lock -> ill_lock 374 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 375 * 376 * Trusted Solaris scenarios 377 * 378 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 379 * igsa_lock -> gcdb_lock 380 * gcgrp_rwlock -> ire_lock 381 * gcgrp_rwlock -> gcdb_lock 382 * 383 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 384 * 385 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 386 * sq_lock -> conn_lock -> QLOCK(q) 387 * ill_lock -> ft_lock -> fe_lock 388 * 389 * Routing/forwarding table locking notes: 390 * 391 * Lock acquisition order: Radix tree lock, irb_lock. 392 * Requirements: 393 * i. Walker must not hold any locks during the walker callback. 394 * ii Walker must not see a truncated tree during the walk because of any node 395 * deletion. 396 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 397 * in many places in the code to walk the irb list. Thus even if all the 398 * ires in a bucket have been deleted, we still can't free the radix node 399 * until the ires have actually been inactive'd (freed). 400 * 401 * Tree traversal - Need to hold the global tree lock in read mode. 402 * Before dropping the global tree lock, need to either increment the ire_refcnt 403 * to ensure that the radix node can't be deleted. 404 * 405 * Tree add - Need to hold the global tree lock in write mode to add a 406 * radix node. To prevent the node from being deleted, increment the 407 * irb_refcnt, after the node is added to the tree. The ire itself is 408 * added later while holding the irb_lock, but not the tree lock. 409 * 410 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 411 * All associated ires must be inactive (i.e. freed), and irb_refcnt 412 * must be zero. 413 * 414 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 415 * global tree lock (read mode) for traversal. 416 * 417 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 418 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 419 * 420 * IPsec notes : 421 * 422 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 423 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 424 * ip_xmit_attr_t has the 425 * information used by the IPsec code for applying the right level of 426 * protection. The information initialized by IP in the ip_xmit_attr_t 427 * is determined by the per-socket policy or global policy in the system. 428 * For inbound datagrams, the ip_recv_attr_t 429 * starts out with nothing in it. It gets filled 430 * with the right information if it goes through the AH/ESP code, which 431 * happens if the incoming packet is secure. The information initialized 432 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 433 * the policy requirements needed by per-socket policy or global policy 434 * is met or not. 435 * 436 * For fully connected sockets i.e dst, src [addr, port] is known, 437 * conn_policy_cached is set indicating that policy has been cached. 438 * conn_in_enforce_policy may or may not be set depending on whether 439 * there is a global policy match or per-socket policy match. 440 * Policy inheriting happpens in ip_policy_set once the destination is known. 441 * Once the right policy is set on the conn_t, policy cannot change for 442 * this socket. This makes life simpler for TCP (UDP ?) where 443 * re-transmissions go out with the same policy. For symmetry, policy 444 * is cached for fully connected UDP sockets also. Thus if policy is cached, 445 * it also implies that policy is latched i.e policy cannot change 446 * on these sockets. As we have the right policy on the conn, we don't 447 * have to lookup global policy for every outbound and inbound datagram 448 * and thus serving as an optimization. Note that a global policy change 449 * does not affect fully connected sockets if they have policy. If fully 450 * connected sockets did not have any policy associated with it, global 451 * policy change may affect them. 452 * 453 * IP Flow control notes: 454 * --------------------- 455 * Non-TCP streams are flow controlled by IP. The way this is accomplished 456 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 457 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 458 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 459 * functions. 460 * 461 * Per Tx ring udp flow control: 462 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 463 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 464 * 465 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 466 * To achieve best performance, outgoing traffic need to be fanned out among 467 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 468 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 469 * the address of connp as fanout hint to mac_tx(). Under flow controlled 470 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 471 * cookie points to a specific Tx ring that is blocked. The cookie is used to 472 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 473 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 474 * connp's. The drain list is not a single list but a configurable number of 475 * lists. 476 * 477 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 478 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 479 * which is equal to 128. This array in turn contains a pointer to idl_t[], 480 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 481 * list will point to the list of connp's that are flow controlled. 482 * 483 * --------------- ------- ------- ------- 484 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 485 * | --------------- ------- ------- ------- 486 * | --------------- ------- ------- ------- 487 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 488 * ---------------- | --------------- ------- ------- ------- 489 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 490 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 491 * | --------------- ------- ------- ------- 492 * . . . . . 493 * | --------------- ------- ------- ------- 494 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 495 * --------------- ------- ------- ------- 496 * --------------- ------- ------- ------- 497 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 498 * | --------------- ------- ------- ------- 499 * | --------------- ------- ------- ------- 500 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 501 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 502 * ---------------- | . . . . 503 * | --------------- ------- ------- ------- 504 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 505 * --------------- ------- ------- ------- 506 * ..... 507 * ---------------- 508 * |idl_tx_list[n]|-> ... 509 * ---------------- 510 * 511 * When mac_tx() returns a cookie, the cookie is hashed into an index into 512 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 513 * to insert the conn onto. conn_drain_insert() asserts flow control for the 514 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 515 * Further, conn_blocked is set to indicate that the conn is blocked. 516 * 517 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 518 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 519 * is again hashed to locate the appropriate idl_tx_list, which is then 520 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 521 * the drain list and calls conn_drain_remove() to clear flow control (via 522 * calling su_txq_full() or clearing QFULL), and remove the conn from the 523 * drain list. 524 * 525 * Note that the drain list is not a single list but a (configurable) array of 526 * lists (8 elements by default). Synchronization between drain insertion and 527 * flow control wakeup is handled by using idl_txl->txl_lock, and only 528 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 529 * 530 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 531 * On the send side, if the packet cannot be sent down to the driver by IP 532 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 533 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 534 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 535 * control has been relieved, the blocked conns in the 0'th drain list are 536 * drained as in the non-STREAMS case. 537 * 538 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 539 * is done when the conn is inserted into the drain list (conn_drain_insert()) 540 * and cleared when the conn is removed from the it (conn_drain_remove()). 541 * 542 * IPQOS notes: 543 * 544 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 545 * and IPQoS modules. IPPF includes hooks in IP at different control points 546 * (callout positions) which direct packets to IPQoS modules for policy 547 * processing. Policies, if present, are global. 548 * 549 * The callout positions are located in the following paths: 550 * o local_in (packets destined for this host) 551 * o local_out (packets orginating from this host ) 552 * o fwd_in (packets forwarded by this m/c - inbound) 553 * o fwd_out (packets forwarded by this m/c - outbound) 554 * Hooks at these callout points can be enabled/disabled using the ndd variable 555 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 556 * By default all the callout positions are enabled. 557 * 558 * Outbound (local_out) 559 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 560 * 561 * Inbound (local_in) 562 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 563 * 564 * Forwarding (in and out) 565 * Hooks are placed in ire_recv_forward_v4/v6. 566 * 567 * IP Policy Framework processing (IPPF processing) 568 * Policy processing for a packet is initiated by ip_process, which ascertains 569 * that the classifier (ipgpc) is loaded and configured, failing which the 570 * packet resumes normal processing in IP. If the clasifier is present, the 571 * packet is acted upon by one or more IPQoS modules (action instances), per 572 * filters configured in ipgpc and resumes normal IP processing thereafter. 573 * An action instance can drop a packet in course of its processing. 574 * 575 * Zones notes: 576 * 577 * The partitioning rules for networking are as follows: 578 * 1) Packets coming from a zone must have a source address belonging to that 579 * zone. 580 * 2) Packets coming from a zone can only be sent on a physical interface on 581 * which the zone has an IP address. 582 * 3) Between two zones on the same machine, packet delivery is only allowed if 583 * there's a matching route for the destination and zone in the forwarding 584 * table. 585 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 586 * different zones can bind to the same port with the wildcard address 587 * (INADDR_ANY). 588 * 589 * The granularity of interface partitioning is at the logical interface level. 590 * Therefore, every zone has its own IP addresses, and incoming packets can be 591 * attributed to a zone unambiguously. A logical interface is placed into a zone 592 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 593 * structure. Rule (1) is implemented by modifying the source address selection 594 * algorithm so that the list of eligible addresses is filtered based on the 595 * sending process zone. 596 * 597 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 598 * across all zones, depending on their type. Here is the break-up: 599 * 600 * IRE type Shared/exclusive 601 * -------- ---------------- 602 * IRE_BROADCAST Exclusive 603 * IRE_DEFAULT (default routes) Shared (*) 604 * IRE_LOCAL Exclusive (x) 605 * IRE_LOOPBACK Exclusive 606 * IRE_PREFIX (net routes) Shared (*) 607 * IRE_IF_NORESOLVER (interface routes) Exclusive 608 * IRE_IF_RESOLVER (interface routes) Exclusive 609 * IRE_IF_CLONE (interface routes) Exclusive 610 * IRE_HOST (host routes) Shared (*) 611 * 612 * (*) A zone can only use a default or off-subnet route if the gateway is 613 * directly reachable from the zone, that is, if the gateway's address matches 614 * one of the zone's logical interfaces. 615 * 616 * (x) IRE_LOCAL are handled a bit differently. 617 * When ip_restrict_interzone_loopback is set (the default), 618 * ire_route_recursive restricts loopback using an IRE_LOCAL 619 * between zone to the case when L2 would have conceptually looped the packet 620 * back, i.e. the loopback which is required since neither Ethernet drivers 621 * nor Ethernet hardware loops them back. This is the case when the normal 622 * routes (ignoring IREs with different zoneids) would send out the packet on 623 * the same ill as the ill with which is IRE_LOCAL is associated. 624 * 625 * Multiple zones can share a common broadcast address; typically all zones 626 * share the 255.255.255.255 address. Incoming as well as locally originated 627 * broadcast packets must be dispatched to all the zones on the broadcast 628 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 629 * since some zones may not be on the 10.16.72/24 network. To handle this, each 630 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 631 * sent to every zone that has an IRE_BROADCAST entry for the destination 632 * address on the input ill, see ip_input_broadcast(). 633 * 634 * Applications in different zones can join the same multicast group address. 635 * The same logic applies for multicast as for broadcast. ip_input_multicast 636 * dispatches packets to all zones that have members on the physical interface. 637 */ 638 639 /* 640 * Squeue Fanout flags: 641 * 0: No fanout. 642 * 1: Fanout across all squeues 643 */ 644 boolean_t ip_squeue_fanout = 0; 645 646 /* 647 * Maximum dups allowed per packet. 648 */ 649 uint_t ip_max_frag_dups = 10; 650 651 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 652 cred_t *credp, boolean_t isv6); 653 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 654 655 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 656 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 657 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 658 ip_recv_attr_t *); 659 static void icmp_options_update(ipha_t *); 660 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 661 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 662 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 663 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 664 ip_recv_attr_t *); 665 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 666 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 667 ip_recv_attr_t *); 668 669 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 670 char *ip_dot_addr(ipaddr_t, char *); 671 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 672 static char *ip_dot_saddr(uchar_t *, char *); 673 static int ip_lrput(queue_t *, mblk_t *); 674 ipaddr_t ip_net_mask(ipaddr_t); 675 char *ip_nv_lookup(nv_t *, int); 676 int ip_rput(queue_t *, mblk_t *); 677 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 678 void *dummy_arg); 679 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 680 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 681 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 682 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 683 ip_stack_t *, boolean_t); 684 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 685 boolean_t); 686 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 688 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 689 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 690 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 691 ip_stack_t *ipst, boolean_t); 692 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 693 ip_stack_t *ipst, boolean_t); 694 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 695 ip_stack_t *ipst); 696 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 697 ip_stack_t *ipst); 698 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 699 ip_stack_t *ipst); 700 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 701 ip_stack_t *ipst); 702 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 703 ip_stack_t *ipst); 704 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 705 ip_stack_t *ipst); 706 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 707 ip_stack_t *ipst); 708 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 709 ip_stack_t *ipst); 710 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 711 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 712 static void ip_snmp_get2_v4_media(ncec_t *, void *); 713 static void ip_snmp_get2_v6_media(ncec_t *, void *); 714 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 715 716 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 717 mblk_t *); 718 719 static void conn_drain_init(ip_stack_t *); 720 static void conn_drain_fini(ip_stack_t *); 721 static void conn_drain(conn_t *connp, boolean_t closing); 722 723 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 724 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 725 726 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 727 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 728 static void ip_stack_fini(netstackid_t stackid, void *arg); 729 730 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 731 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 732 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 733 const in6_addr_t *); 734 735 static int ip_squeue_switch(int); 736 737 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 738 static void ip_kstat_fini(netstackid_t, kstat_t *); 739 static int ip_kstat_update(kstat_t *kp, int rw); 740 static void *icmp_kstat_init(netstackid_t); 741 static void icmp_kstat_fini(netstackid_t, kstat_t *); 742 static int icmp_kstat_update(kstat_t *kp, int rw); 743 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 744 static void ip_kstat2_fini(netstackid_t, kstat_t *); 745 746 static void ipobs_init(ip_stack_t *); 747 static void ipobs_fini(ip_stack_t *); 748 749 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 750 751 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 752 753 static long ip_rput_pullups; 754 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 755 756 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 757 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 758 759 int ip_debug; 760 761 /* 762 * Multirouting/CGTP stuff 763 */ 764 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 765 766 /* 767 * IP tunables related declarations. Definitions are in ip_tunables.c 768 */ 769 extern mod_prop_info_t ip_propinfo_tbl[]; 770 extern int ip_propinfo_count; 771 772 /* 773 * Table of IP ioctls encoding the various properties of the ioctl and 774 * indexed based on the last byte of the ioctl command. Occasionally there 775 * is a clash, and there is more than 1 ioctl with the same last byte. 776 * In such a case 1 ioctl is encoded in the ndx table and the remaining 777 * ioctls are encoded in the misc table. An entry in the ndx table is 778 * retrieved by indexing on the last byte of the ioctl command and comparing 779 * the ioctl command with the value in the ndx table. In the event of a 780 * mismatch the misc table is then searched sequentially for the desired 781 * ioctl command. 782 * 783 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 784 */ 785 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 786 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 794 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 795 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 796 797 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 798 MISC_CMD, ip_siocaddrt, NULL }, 799 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 800 MISC_CMD, ip_siocdelrt, NULL }, 801 802 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 803 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 804 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 805 IF_CMD, ip_sioctl_get_addr, NULL }, 806 807 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 808 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 809 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 810 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 811 812 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 813 IPI_PRIV | IPI_WR, 814 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 815 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 816 IPI_MODOK | IPI_GET_CMD, 817 IF_CMD, ip_sioctl_get_flags, NULL }, 818 819 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 820 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 821 822 /* copyin size cannot be coded for SIOCGIFCONF */ 823 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 824 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 825 826 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 827 IF_CMD, ip_sioctl_mtu, NULL }, 828 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 829 IF_CMD, ip_sioctl_get_mtu, NULL }, 830 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 831 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 832 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 833 IF_CMD, ip_sioctl_brdaddr, NULL }, 834 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 835 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 836 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 837 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 838 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 839 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 840 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 841 IF_CMD, ip_sioctl_metric, NULL }, 842 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 843 844 /* See 166-168 below for extended SIOC*XARP ioctls */ 845 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 846 ARP_CMD, ip_sioctl_arp, NULL }, 847 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 848 ARP_CMD, ip_sioctl_arp, NULL }, 849 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 850 ARP_CMD, ip_sioctl_arp, NULL }, 851 852 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 871 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 872 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 873 874 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 875 MISC_CMD, if_unitsel, if_unitsel_restart }, 876 877 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 893 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 894 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 895 896 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 897 IPI_PRIV | IPI_WR | IPI_MODOK, 898 IF_CMD, ip_sioctl_sifname, NULL }, 899 900 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 911 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 912 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 913 914 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 915 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 916 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 917 IF_CMD, ip_sioctl_get_muxid, NULL }, 918 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 919 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 920 921 /* Both if and lif variants share same func */ 922 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 923 IF_CMD, ip_sioctl_get_lifindex, NULL }, 924 /* Both if and lif variants share same func */ 925 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 926 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 927 928 /* copyin size cannot be coded for SIOCGIFCONF */ 929 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 930 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 931 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 946 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 947 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 948 949 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 950 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 951 ip_sioctl_removeif_restart }, 952 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 953 IPI_GET_CMD | IPI_PRIV | IPI_WR, 954 LIF_CMD, ip_sioctl_addif, NULL }, 955 #define SIOCLIFADDR_NDX 112 956 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 957 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 958 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 959 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 960 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 961 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 962 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 963 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 964 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 965 IPI_PRIV | IPI_WR, 966 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 967 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 968 IPI_GET_CMD | IPI_MODOK, 969 LIF_CMD, ip_sioctl_get_flags, NULL }, 970 971 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 972 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 973 974 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 975 ip_sioctl_get_lifconf, NULL }, 976 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 977 LIF_CMD, ip_sioctl_mtu, NULL }, 978 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 979 LIF_CMD, ip_sioctl_get_mtu, NULL }, 980 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 981 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 982 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 983 LIF_CMD, ip_sioctl_brdaddr, NULL }, 984 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 985 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 986 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 987 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 988 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 989 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 990 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 991 LIF_CMD, ip_sioctl_metric, NULL }, 992 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 993 IPI_PRIV | IPI_WR | IPI_MODOK, 994 LIF_CMD, ip_sioctl_slifname, 995 ip_sioctl_slifname_restart }, 996 997 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 998 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 999 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1000 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 1001 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1002 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1003 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1004 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1005 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1006 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1007 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1008 LIF_CMD, ip_sioctl_token, NULL }, 1009 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1010 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1011 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1012 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1013 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1014 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1015 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1016 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1017 1018 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1019 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1020 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1021 LIF_CMD, ip_siocdelndp_v6, NULL }, 1022 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1023 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1024 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1025 LIF_CMD, ip_siocsetndp_v6, NULL }, 1026 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1027 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1028 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1029 MISC_CMD, ip_sioctl_tonlink, NULL }, 1030 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1031 MISC_CMD, ip_sioctl_tmysite, NULL }, 1032 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1033 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 1035 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */ 1036 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1038 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1040 1041 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1042 1043 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1044 LIF_CMD, ip_sioctl_get_binding, NULL }, 1045 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1046 IPI_PRIV | IPI_WR, 1047 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1048 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1049 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1050 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1051 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1052 1053 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1054 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1055 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1057 1058 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1059 1060 /* These are handled in ip_sioctl_copyin_setup itself */ 1061 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1062 MISC_CMD, NULL, NULL }, 1063 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1064 MISC_CMD, NULL, NULL }, 1065 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1066 1067 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1068 ip_sioctl_get_lifconf, NULL }, 1069 1070 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1071 XARP_CMD, ip_sioctl_arp, NULL }, 1072 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1073 XARP_CMD, ip_sioctl_arp, NULL }, 1074 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1075 XARP_CMD, ip_sioctl_arp, NULL }, 1076 1077 /* SIOCPOPSOCKFS is not handled by IP */ 1078 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1079 1080 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1081 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1082 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1083 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1084 ip_sioctl_slifzone_restart }, 1085 /* 172-174 are SCTP ioctls and not handled by IP */ 1086 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1087 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1088 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1089 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1090 IPI_GET_CMD, LIF_CMD, 1091 ip_sioctl_get_lifusesrc, 0 }, 1092 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1093 IPI_PRIV | IPI_WR, 1094 LIF_CMD, ip_sioctl_slifusesrc, 1095 NULL }, 1096 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1097 ip_sioctl_get_lifsrcof, NULL }, 1098 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1099 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1100 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1101 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1102 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1103 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1104 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1105 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1106 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* SIOCSENABLESDP is handled by SDP */ 1108 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1109 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1110 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1111 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1112 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1113 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1114 ip_sioctl_ilb_cmd, NULL }, 1115 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1116 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1117 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1118 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1119 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1120 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1121 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1122 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1123 }; 1124 1125 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1126 1127 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1128 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1130 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1131 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1132 { ND_GET, 0, 0, 0, NULL, NULL }, 1133 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1134 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1135 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1136 MISC_CMD, mrt_ioctl}, 1137 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1138 MISC_CMD, mrt_ioctl}, 1139 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1140 MISC_CMD, mrt_ioctl} 1141 }; 1142 1143 int ip_misc_ioctl_count = 1144 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1145 1146 int conn_drain_nthreads; /* Number of drainers reqd. */ 1147 /* Settable in /etc/system */ 1148 /* Defined in ip_ire.c */ 1149 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1150 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1151 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1152 1153 static nv_t ire_nv_arr[] = { 1154 { IRE_BROADCAST, "BROADCAST" }, 1155 { IRE_LOCAL, "LOCAL" }, 1156 { IRE_LOOPBACK, "LOOPBACK" }, 1157 { IRE_DEFAULT, "DEFAULT" }, 1158 { IRE_PREFIX, "PREFIX" }, 1159 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1160 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1161 { IRE_IF_CLONE, "IF_CLONE" }, 1162 { IRE_HOST, "HOST" }, 1163 { IRE_MULTICAST, "MULTICAST" }, 1164 { IRE_NOROUTE, "NOROUTE" }, 1165 { 0 } 1166 }; 1167 1168 nv_t *ire_nv_tbl = ire_nv_arr; 1169 1170 /* Simple ICMP IP Header Template */ 1171 static ipha_t icmp_ipha = { 1172 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1173 }; 1174 1175 struct module_info ip_mod_info = { 1176 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1177 IP_MOD_LOWAT 1178 }; 1179 1180 /* 1181 * Duplicate static symbols within a module confuses mdb; so we avoid the 1182 * problem by making the symbols here distinct from those in udp.c. 1183 */ 1184 1185 /* 1186 * Entry points for IP as a device and as a module. 1187 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1188 */ 1189 static struct qinit iprinitv4 = { 1190 ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1191 }; 1192 1193 struct qinit iprinitv6 = { 1194 ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info 1195 }; 1196 1197 static struct qinit ipwinit = { 1198 ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info 1199 }; 1200 1201 static struct qinit iplrinit = { 1202 ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info 1203 }; 1204 1205 static struct qinit iplwinit = { 1206 ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info 1207 }; 1208 1209 /* For AF_INET aka /dev/ip */ 1210 struct streamtab ipinfov4 = { 1211 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1212 }; 1213 1214 /* For AF_INET6 aka /dev/ip6 */ 1215 struct streamtab ipinfov6 = { 1216 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1217 }; 1218 1219 #ifdef DEBUG 1220 boolean_t skip_sctp_cksum = B_FALSE; 1221 #endif 1222 1223 /* 1224 * Generate an ICMP fragmentation needed message. 1225 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1226 * constructed by the caller. 1227 */ 1228 void 1229 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1230 { 1231 icmph_t icmph; 1232 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1233 1234 mp = icmp_pkt_err_ok(mp, ira); 1235 if (mp == NULL) 1236 return; 1237 1238 bzero(&icmph, sizeof (icmph_t)); 1239 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1240 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1241 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1242 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1243 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1244 1245 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1246 } 1247 1248 /* 1249 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1250 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1251 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1252 * Likewise, if the ICMP error is misformed (too short, etc), then it 1253 * returns NULL. The caller uses this to determine whether or not to send 1254 * to raw sockets. 1255 * 1256 * All error messages are passed to the matching transport stream. 1257 * 1258 * The following cases are handled by icmp_inbound: 1259 * 1) It needs to send a reply back and possibly delivering it 1260 * to the "interested" upper clients. 1261 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1262 * 3) It needs to change some values in IP only. 1263 * 4) It needs to change some values in IP and upper layers e.g TCP 1264 * by delivering an error to the upper layers. 1265 * 1266 * We handle the above three cases in the context of IPsec in the 1267 * following way : 1268 * 1269 * 1) Send the reply back in the same way as the request came in. 1270 * If it came in encrypted, it goes out encrypted. If it came in 1271 * clear, it goes out in clear. Thus, this will prevent chosen 1272 * plain text attack. 1273 * 2) The client may or may not expect things to come in secure. 1274 * If it comes in secure, the policy constraints are checked 1275 * before delivering it to the upper layers. If it comes in 1276 * clear, ipsec_inbound_accept_clear will decide whether to 1277 * accept this in clear or not. In both the cases, if the returned 1278 * message (IP header + 8 bytes) that caused the icmp message has 1279 * AH/ESP headers, it is sent up to AH/ESP for validation before 1280 * sending up. If there are only 8 bytes of returned message, then 1281 * upper client will not be notified. 1282 * 3) Check with global policy to see whether it matches the constaints. 1283 * But this will be done only if icmp_accept_messages_in_clear is 1284 * zero. 1285 * 4) If we need to change both in IP and ULP, then the decision taken 1286 * while affecting the values in IP and while delivering up to TCP 1287 * should be the same. 1288 * 1289 * There are two cases. 1290 * 1291 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1292 * failed), we will not deliver it to the ULP, even though they 1293 * are *willing* to accept in *clear*. This is fine as our global 1294 * disposition to icmp messages asks us reject the datagram. 1295 * 1296 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1297 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1298 * to deliver it to ULP (policy failed), it can lead to 1299 * consistency problems. The cases known at this time are 1300 * ICMP_DESTINATION_UNREACHABLE messages with following code 1301 * values : 1302 * 1303 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1304 * and Upper layer rejects. Then the communication will 1305 * come to a stop. This is solved by making similar decisions 1306 * at both levels. Currently, when we are unable to deliver 1307 * to the Upper Layer (due to policy failures) while IP has 1308 * adjusted dce_pmtu, the next outbound datagram would 1309 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1310 * will be with the right level of protection. Thus the right 1311 * value will be communicated even if we are not able to 1312 * communicate when we get from the wire initially. But this 1313 * assumes there would be at least one outbound datagram after 1314 * IP has adjusted its dce_pmtu value. To make things 1315 * simpler, we accept in clear after the validation of 1316 * AH/ESP headers. 1317 * 1318 * - Other ICMP ERRORS : We may not be able to deliver it to the 1319 * upper layer depending on the level of protection the upper 1320 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1321 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1322 * should be accepted in clear when the Upper layer expects secure. 1323 * Thus the communication may get aborted by some bad ICMP 1324 * packets. 1325 */ 1326 mblk_t * 1327 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1328 { 1329 icmph_t *icmph; 1330 ipha_t *ipha; /* Outer header */ 1331 int ip_hdr_length; /* Outer header length */ 1332 boolean_t interested; 1333 ipif_t *ipif; 1334 uint32_t ts; 1335 uint32_t *tsp; 1336 timestruc_t now; 1337 ill_t *ill = ira->ira_ill; 1338 ip_stack_t *ipst = ill->ill_ipst; 1339 zoneid_t zoneid = ira->ira_zoneid; 1340 int len_needed; 1341 mblk_t *mp_ret = NULL; 1342 1343 ipha = (ipha_t *)mp->b_rptr; 1344 1345 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1346 1347 ip_hdr_length = ira->ira_ip_hdr_length; 1348 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1349 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1351 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1352 freemsg(mp); 1353 return (NULL); 1354 } 1355 /* Last chance to get real. */ 1356 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1357 if (ipha == NULL) { 1358 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1359 freemsg(mp); 1360 return (NULL); 1361 } 1362 } 1363 1364 /* The IP header will always be a multiple of four bytes */ 1365 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1366 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1367 icmph->icmph_code)); 1368 1369 /* 1370 * We will set "interested" to "true" if we should pass a copy to 1371 * the transport or if we handle the packet locally. 1372 */ 1373 interested = B_FALSE; 1374 switch (icmph->icmph_type) { 1375 case ICMP_ECHO_REPLY: 1376 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1377 break; 1378 case ICMP_DEST_UNREACHABLE: 1379 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1380 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1381 interested = B_TRUE; /* Pass up to transport */ 1382 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1383 break; 1384 case ICMP_SOURCE_QUENCH: 1385 interested = B_TRUE; /* Pass up to transport */ 1386 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1387 break; 1388 case ICMP_REDIRECT: 1389 if (!ipst->ips_ip_ignore_redirect) 1390 interested = B_TRUE; 1391 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1392 break; 1393 case ICMP_ECHO_REQUEST: 1394 /* 1395 * Whether to respond to echo requests that come in as IP 1396 * broadcasts or as IP multicast is subject to debate 1397 * (what isn't?). We aim to please, you pick it. 1398 * Default is do it. 1399 */ 1400 if (ira->ira_flags & IRAF_MULTICAST) { 1401 /* multicast: respond based on tunable */ 1402 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1403 } else if (ira->ira_flags & IRAF_BROADCAST) { 1404 /* broadcast: respond based on tunable */ 1405 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1406 } else { 1407 /* unicast: always respond */ 1408 interested = B_TRUE; 1409 } 1410 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1411 if (!interested) { 1412 /* We never pass these to RAW sockets */ 1413 freemsg(mp); 1414 return (NULL); 1415 } 1416 1417 /* Check db_ref to make sure we can modify the packet. */ 1418 if (mp->b_datap->db_ref > 1) { 1419 mblk_t *mp1; 1420 1421 mp1 = copymsg(mp); 1422 freemsg(mp); 1423 if (!mp1) { 1424 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1425 return (NULL); 1426 } 1427 mp = mp1; 1428 ipha = (ipha_t *)mp->b_rptr; 1429 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1430 } 1431 icmph->icmph_type = ICMP_ECHO_REPLY; 1432 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1433 icmp_send_reply_v4(mp, ipha, icmph, ira); 1434 return (NULL); 1435 1436 case ICMP_ROUTER_ADVERTISEMENT: 1437 case ICMP_ROUTER_SOLICITATION: 1438 break; 1439 case ICMP_TIME_EXCEEDED: 1440 interested = B_TRUE; /* Pass up to transport */ 1441 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1442 break; 1443 case ICMP_PARAM_PROBLEM: 1444 interested = B_TRUE; /* Pass up to transport */ 1445 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1446 break; 1447 case ICMP_TIME_STAMP_REQUEST: 1448 /* Response to Time Stamp Requests is local policy. */ 1449 if (ipst->ips_ip_g_resp_to_timestamp) { 1450 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1451 interested = 1452 ipst->ips_ip_g_resp_to_timestamp_bcast; 1453 else 1454 interested = B_TRUE; 1455 } 1456 if (!interested) { 1457 /* We never pass these to RAW sockets */ 1458 freemsg(mp); 1459 return (NULL); 1460 } 1461 1462 /* Make sure we have enough of the packet */ 1463 len_needed = ip_hdr_length + ICMPH_SIZE + 1464 3 * sizeof (uint32_t); 1465 1466 if (mp->b_wptr - mp->b_rptr < len_needed) { 1467 ipha = ip_pullup(mp, len_needed, ira); 1468 if (ipha == NULL) { 1469 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1470 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1471 mp, ill); 1472 freemsg(mp); 1473 return (NULL); 1474 } 1475 /* Refresh following the pullup. */ 1476 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1477 } 1478 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1479 /* Check db_ref to make sure we can modify the packet. */ 1480 if (mp->b_datap->db_ref > 1) { 1481 mblk_t *mp1; 1482 1483 mp1 = copymsg(mp); 1484 freemsg(mp); 1485 if (!mp1) { 1486 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1487 return (NULL); 1488 } 1489 mp = mp1; 1490 ipha = (ipha_t *)mp->b_rptr; 1491 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1492 } 1493 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1494 tsp = (uint32_t *)&icmph[1]; 1495 tsp++; /* Skip past 'originate time' */ 1496 /* Compute # of milliseconds since midnight */ 1497 gethrestime(&now); 1498 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1499 NSEC2MSEC(now.tv_nsec); 1500 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1501 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1502 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1503 icmp_send_reply_v4(mp, ipha, icmph, ira); 1504 return (NULL); 1505 1506 case ICMP_TIME_STAMP_REPLY: 1507 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1508 break; 1509 case ICMP_INFO_REQUEST: 1510 /* Per RFC 1122 3.2.2.7, ignore this. */ 1511 case ICMP_INFO_REPLY: 1512 break; 1513 case ICMP_ADDRESS_MASK_REQUEST: 1514 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1515 interested = 1516 ipst->ips_ip_respond_to_address_mask_broadcast; 1517 } else { 1518 interested = B_TRUE; 1519 } 1520 if (!interested) { 1521 /* We never pass these to RAW sockets */ 1522 freemsg(mp); 1523 return (NULL); 1524 } 1525 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1526 if (mp->b_wptr - mp->b_rptr < len_needed) { 1527 ipha = ip_pullup(mp, len_needed, ira); 1528 if (ipha == NULL) { 1529 BUMP_MIB(ill->ill_ip_mib, 1530 ipIfStatsInTruncatedPkts); 1531 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1532 ill); 1533 freemsg(mp); 1534 return (NULL); 1535 } 1536 /* Refresh following the pullup. */ 1537 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1538 } 1539 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1540 /* Check db_ref to make sure we can modify the packet. */ 1541 if (mp->b_datap->db_ref > 1) { 1542 mblk_t *mp1; 1543 1544 mp1 = copymsg(mp); 1545 freemsg(mp); 1546 if (!mp1) { 1547 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1548 return (NULL); 1549 } 1550 mp = mp1; 1551 ipha = (ipha_t *)mp->b_rptr; 1552 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1553 } 1554 /* 1555 * Need the ipif with the mask be the same as the source 1556 * address of the mask reply. For unicast we have a specific 1557 * ipif. For multicast/broadcast we only handle onlink 1558 * senders, and use the source address to pick an ipif. 1559 */ 1560 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1561 if (ipif == NULL) { 1562 /* Broadcast or multicast */ 1563 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1564 if (ipif == NULL) { 1565 freemsg(mp); 1566 return (NULL); 1567 } 1568 } 1569 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1570 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1571 ipif_refrele(ipif); 1572 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1573 icmp_send_reply_v4(mp, ipha, icmph, ira); 1574 return (NULL); 1575 1576 case ICMP_ADDRESS_MASK_REPLY: 1577 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1578 break; 1579 default: 1580 interested = B_TRUE; /* Pass up to transport */ 1581 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1582 break; 1583 } 1584 /* 1585 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1586 * if there isn't one. 1587 */ 1588 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1589 /* If there is an ICMP client and we want one too, copy it. */ 1590 1591 if (!interested) { 1592 /* Caller will deliver to RAW sockets */ 1593 return (mp); 1594 } 1595 mp_ret = copymsg(mp); 1596 if (mp_ret == NULL) { 1597 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1598 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1599 } 1600 } else if (!interested) { 1601 /* Neither we nor raw sockets are interested. Drop packet now */ 1602 freemsg(mp); 1603 return (NULL); 1604 } 1605 1606 /* 1607 * ICMP error or redirect packet. Make sure we have enough of 1608 * the header and that db_ref == 1 since we might end up modifying 1609 * the packet. 1610 */ 1611 if (mp->b_cont != NULL) { 1612 if (ip_pullup(mp, -1, ira) == NULL) { 1613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1614 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1615 mp, ill); 1616 freemsg(mp); 1617 return (mp_ret); 1618 } 1619 } 1620 1621 if (mp->b_datap->db_ref > 1) { 1622 mblk_t *mp1; 1623 1624 mp1 = copymsg(mp); 1625 if (mp1 == NULL) { 1626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1627 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1628 freemsg(mp); 1629 return (mp_ret); 1630 } 1631 freemsg(mp); 1632 mp = mp1; 1633 } 1634 1635 /* 1636 * In case mp has changed, verify the message before any further 1637 * processes. 1638 */ 1639 ipha = (ipha_t *)mp->b_rptr; 1640 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1641 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1642 freemsg(mp); 1643 return (mp_ret); 1644 } 1645 1646 switch (icmph->icmph_type) { 1647 case ICMP_REDIRECT: 1648 icmp_redirect_v4(mp, ipha, icmph, ira); 1649 break; 1650 case ICMP_DEST_UNREACHABLE: 1651 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1652 /* Update DCE and adjust MTU is icmp header if needed */ 1653 icmp_inbound_too_big_v4(icmph, ira); 1654 } 1655 /* FALLTHROUGH */ 1656 default: 1657 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1658 break; 1659 } 1660 return (mp_ret); 1661 } 1662 1663 /* 1664 * Send an ICMP echo, timestamp or address mask reply. 1665 * The caller has already updated the payload part of the packet. 1666 * We handle the ICMP checksum, IP source address selection and feed 1667 * the packet into ip_output_simple. 1668 */ 1669 static void 1670 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1671 ip_recv_attr_t *ira) 1672 { 1673 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1674 ill_t *ill = ira->ira_ill; 1675 ip_stack_t *ipst = ill->ill_ipst; 1676 ip_xmit_attr_t ixas; 1677 1678 /* Send out an ICMP packet */ 1679 icmph->icmph_checksum = 0; 1680 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1681 /* Reset time to live. */ 1682 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1683 { 1684 /* Swap source and destination addresses */ 1685 ipaddr_t tmp; 1686 1687 tmp = ipha->ipha_src; 1688 ipha->ipha_src = ipha->ipha_dst; 1689 ipha->ipha_dst = tmp; 1690 } 1691 ipha->ipha_ident = 0; 1692 if (!IS_SIMPLE_IPH(ipha)) 1693 icmp_options_update(ipha); 1694 1695 bzero(&ixas, sizeof (ixas)); 1696 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1697 ixas.ixa_zoneid = ira->ira_zoneid; 1698 ixas.ixa_cred = kcred; 1699 ixas.ixa_cpid = NOPID; 1700 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1701 ixas.ixa_ifindex = 0; 1702 ixas.ixa_ipst = ipst; 1703 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1704 1705 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1706 /* 1707 * This packet should go out the same way as it 1708 * came in i.e in clear, independent of the IPsec policy 1709 * for transmitting packets. 1710 */ 1711 ixas.ixa_flags |= IXAF_NO_IPSEC; 1712 } else { 1713 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1715 /* Note: mp already consumed and ip_drop_packet done */ 1716 return; 1717 } 1718 } 1719 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1720 /* 1721 * Not one or our addresses (IRE_LOCALs), thus we let 1722 * ip_output_simple pick the source. 1723 */ 1724 ipha->ipha_src = INADDR_ANY; 1725 ixas.ixa_flags |= IXAF_SET_SOURCE; 1726 } 1727 /* Should we send with DF and use dce_pmtu? */ 1728 if (ipst->ips_ipv4_icmp_return_pmtu) { 1729 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1730 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1731 } 1732 1733 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1734 1735 (void) ip_output_simple(mp, &ixas); 1736 ixa_cleanup(&ixas); 1737 } 1738 1739 /* 1740 * Verify the ICMP messages for either for ICMP error or redirect packet. 1741 * The caller should have fully pulled up the message. If it's a redirect 1742 * packet, only basic checks on IP header will be done; otherwise, verify 1743 * the packet by looking at the included ULP header. 1744 * 1745 * Called before icmp_inbound_error_fanout_v4 is called. 1746 */ 1747 static boolean_t 1748 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1749 { 1750 ill_t *ill = ira->ira_ill; 1751 int hdr_length; 1752 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1753 conn_t *connp; 1754 ipha_t *ipha; /* Inner IP header */ 1755 1756 ipha = (ipha_t *)&icmph[1]; 1757 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1758 goto truncated; 1759 1760 hdr_length = IPH_HDR_LENGTH(ipha); 1761 1762 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1763 goto discard_pkt; 1764 1765 if (hdr_length < sizeof (ipha_t)) 1766 goto truncated; 1767 1768 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1769 goto truncated; 1770 1771 /* 1772 * Stop here for ICMP_REDIRECT. 1773 */ 1774 if (icmph->icmph_type == ICMP_REDIRECT) 1775 return (B_TRUE); 1776 1777 /* 1778 * ICMP errors only. 1779 */ 1780 switch (ipha->ipha_protocol) { 1781 case IPPROTO_UDP: 1782 /* 1783 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1784 * transport header. 1785 */ 1786 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1787 mp->b_wptr) 1788 goto truncated; 1789 break; 1790 case IPPROTO_TCP: { 1791 tcpha_t *tcpha; 1792 1793 /* 1794 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1795 * transport header. 1796 */ 1797 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1798 mp->b_wptr) 1799 goto truncated; 1800 1801 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1802 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1803 ipst); 1804 if (connp == NULL) 1805 goto discard_pkt; 1806 1807 if ((connp->conn_verifyicmp != NULL) && 1808 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1809 CONN_DEC_REF(connp); 1810 goto discard_pkt; 1811 } 1812 CONN_DEC_REF(connp); 1813 break; 1814 } 1815 case IPPROTO_SCTP: 1816 /* 1817 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1818 * transport header. 1819 */ 1820 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1821 mp->b_wptr) 1822 goto truncated; 1823 break; 1824 case IPPROTO_ESP: 1825 case IPPROTO_AH: 1826 break; 1827 case IPPROTO_ENCAP: 1828 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1829 mp->b_wptr) 1830 goto truncated; 1831 break; 1832 default: 1833 break; 1834 } 1835 1836 return (B_TRUE); 1837 1838 discard_pkt: 1839 /* Bogus ICMP error. */ 1840 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1841 return (B_FALSE); 1842 1843 truncated: 1844 /* We pulled up everthing already. Must be truncated */ 1845 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1846 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1847 return (B_FALSE); 1848 } 1849 1850 /* Table from RFC 1191 */ 1851 static int icmp_frag_size_table[] = 1852 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1853 1854 /* 1855 * Process received ICMP Packet too big. 1856 * Just handles the DCE create/update, including using the above table of 1857 * PMTU guesses. The caller is responsible for validating the packet before 1858 * passing it in and also to fanout the ICMP error to any matching transport 1859 * conns. Assumes the message has been fully pulled up and verified. 1860 * 1861 * Before getting here, the caller has called icmp_inbound_verify_v4() 1862 * that should have verified with ULP to prevent undoing the changes we're 1863 * going to make to DCE. For example, TCP might have verified that the packet 1864 * which generated error is in the send window. 1865 * 1866 * In some cases modified this MTU in the ICMP header packet; the caller 1867 * should pass to the matching ULP after this returns. 1868 */ 1869 static void 1870 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1871 { 1872 dce_t *dce; 1873 int old_mtu; 1874 int mtu, orig_mtu; 1875 ipaddr_t dst; 1876 boolean_t disable_pmtud; 1877 ill_t *ill = ira->ira_ill; 1878 ip_stack_t *ipst = ill->ill_ipst; 1879 uint_t hdr_length; 1880 ipha_t *ipha; 1881 1882 /* Caller already pulled up everything. */ 1883 ipha = (ipha_t *)&icmph[1]; 1884 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1885 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1886 ASSERT(ill != NULL); 1887 1888 hdr_length = IPH_HDR_LENGTH(ipha); 1889 1890 /* 1891 * We handle path MTU for source routed packets since the DCE 1892 * is looked up using the final destination. 1893 */ 1894 dst = ip_get_dst(ipha); 1895 1896 dce = dce_lookup_and_add_v4(dst, ipst); 1897 if (dce == NULL) { 1898 /* Couldn't add a unique one - ENOMEM */ 1899 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1900 ntohl(dst))); 1901 return; 1902 } 1903 1904 /* Check for MTU discovery advice as described in RFC 1191 */ 1905 mtu = ntohs(icmph->icmph_du_mtu); 1906 orig_mtu = mtu; 1907 disable_pmtud = B_FALSE; 1908 1909 mutex_enter(&dce->dce_lock); 1910 if (dce->dce_flags & DCEF_PMTU) 1911 old_mtu = dce->dce_pmtu; 1912 else 1913 old_mtu = ill->ill_mtu; 1914 1915 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1916 uint32_t length; 1917 int i; 1918 1919 /* 1920 * Use the table from RFC 1191 to figure out 1921 * the next "plateau" based on the length in 1922 * the original IP packet. 1923 */ 1924 length = ntohs(ipha->ipha_length); 1925 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1926 uint32_t, length); 1927 if (old_mtu <= length && 1928 old_mtu >= length - hdr_length) { 1929 /* 1930 * Handle broken BSD 4.2 systems that 1931 * return the wrong ipha_length in ICMP 1932 * errors. 1933 */ 1934 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1935 length, old_mtu)); 1936 length -= hdr_length; 1937 } 1938 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1939 if (length > icmp_frag_size_table[i]) 1940 break; 1941 } 1942 if (i == A_CNT(icmp_frag_size_table)) { 1943 /* Smaller than IP_MIN_MTU! */ 1944 ip1dbg(("Too big for packet size %d\n", 1945 length)); 1946 disable_pmtud = B_TRUE; 1947 mtu = ipst->ips_ip_pmtu_min; 1948 } else { 1949 mtu = icmp_frag_size_table[i]; 1950 ip1dbg(("Calculated mtu %d, packet size %d, " 1951 "before %d\n", mtu, length, old_mtu)); 1952 if (mtu < ipst->ips_ip_pmtu_min) { 1953 mtu = ipst->ips_ip_pmtu_min; 1954 disable_pmtud = B_TRUE; 1955 } 1956 } 1957 } 1958 if (disable_pmtud) 1959 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1960 else 1961 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1962 1963 dce->dce_pmtu = MIN(old_mtu, mtu); 1964 /* Prepare to send the new max frag size for the ULP. */ 1965 icmph->icmph_du_zero = 0; 1966 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1967 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1968 dce, int, orig_mtu, int, mtu); 1969 1970 /* We now have a PMTU for sure */ 1971 dce->dce_flags |= DCEF_PMTU; 1972 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1973 mutex_exit(&dce->dce_lock); 1974 /* 1975 * After dropping the lock the new value is visible to everyone. 1976 * Then we bump the generation number so any cached values reinspect 1977 * the dce_t. 1978 */ 1979 dce_increment_generation(dce); 1980 dce_refrele(dce); 1981 } 1982 1983 /* 1984 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1985 * calls this function. 1986 */ 1987 static mblk_t * 1988 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1989 { 1990 int length; 1991 1992 ASSERT(mp->b_datap->db_type == M_DATA); 1993 1994 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1995 ASSERT(mp->b_cont == NULL); 1996 1997 /* 1998 * The length that we want to overlay is the inner header 1999 * and what follows it. 2000 */ 2001 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2002 2003 /* 2004 * Overlay the inner header and whatever follows it over the 2005 * outer header. 2006 */ 2007 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2008 2009 /* Adjust for what we removed */ 2010 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2011 return (mp); 2012 } 2013 2014 /* 2015 * Try to pass the ICMP message upstream in case the ULP cares. 2016 * 2017 * If the packet that caused the ICMP error is secure, we send 2018 * it to AH/ESP to make sure that the attached packet has a 2019 * valid association. ipha in the code below points to the 2020 * IP header of the packet that caused the error. 2021 * 2022 * For IPsec cases, we let the next-layer-up (which has access to 2023 * cached policy on the conn_t, or can query the SPD directly) 2024 * subtract out any IPsec overhead if they must. We therefore make no 2025 * adjustments here for IPsec overhead. 2026 * 2027 * IFN could have been generated locally or by some router. 2028 * 2029 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2030 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2031 * This happens because IP adjusted its value of MTU on an 2032 * earlier IFN message and could not tell the upper layer, 2033 * the new adjusted value of MTU e.g. Packet was encrypted 2034 * or there was not enough information to fanout to upper 2035 * layers. Thus on the next outbound datagram, ire_send_wire 2036 * generates the IFN, where IPsec processing has *not* been 2037 * done. 2038 * 2039 * Note that we retain ixa_fragsize across IPsec thus once 2040 * we have picking ixa_fragsize and entered ipsec_out_process we do 2041 * no change the fragsize even if the path MTU changes before 2042 * we reach ip_output_post_ipsec. 2043 * 2044 * In the local case, IRAF_LOOPBACK will be set indicating 2045 * that IFN was generated locally. 2046 * 2047 * ROUTER : IFN could be secure or non-secure. 2048 * 2049 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2050 * packet in error has AH/ESP headers to validate the AH/ESP 2051 * headers. AH/ESP will verify whether there is a valid SA or 2052 * not and send it back. We will fanout again if we have more 2053 * data in the packet. 2054 * 2055 * If the packet in error does not have AH/ESP, we handle it 2056 * like any other case. 2057 * 2058 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2059 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2060 * valid SA or not and send it back. We will fanout again if 2061 * we have more data in the packet. 2062 * 2063 * If the packet in error does not have AH/ESP, we handle it 2064 * like any other case. 2065 * 2066 * The caller must have called icmp_inbound_verify_v4. 2067 */ 2068 static void 2069 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2070 { 2071 uint16_t *up; /* Pointer to ports in ULP header */ 2072 uint32_t ports; /* reversed ports for fanout */ 2073 ipha_t ripha; /* With reversed addresses */ 2074 ipha_t *ipha; /* Inner IP header */ 2075 uint_t hdr_length; /* Inner IP header length */ 2076 tcpha_t *tcpha; 2077 conn_t *connp; 2078 ill_t *ill = ira->ira_ill; 2079 ip_stack_t *ipst = ill->ill_ipst; 2080 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2081 ill_t *rill = ira->ira_rill; 2082 2083 /* Caller already pulled up everything. */ 2084 ipha = (ipha_t *)&icmph[1]; 2085 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2086 ASSERT(mp->b_cont == NULL); 2087 2088 hdr_length = IPH_HDR_LENGTH(ipha); 2089 ira->ira_protocol = ipha->ipha_protocol; 2090 2091 /* 2092 * We need a separate IP header with the source and destination 2093 * addresses reversed to do fanout/classification because the ipha in 2094 * the ICMP error is in the form we sent it out. 2095 */ 2096 ripha.ipha_src = ipha->ipha_dst; 2097 ripha.ipha_dst = ipha->ipha_src; 2098 ripha.ipha_protocol = ipha->ipha_protocol; 2099 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2100 2101 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2102 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2103 ntohl(ipha->ipha_dst), 2104 icmph->icmph_type, icmph->icmph_code)); 2105 2106 switch (ipha->ipha_protocol) { 2107 case IPPROTO_UDP: 2108 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2109 2110 /* Attempt to find a client stream based on port. */ 2111 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2112 ntohs(up[0]), ntohs(up[1]))); 2113 2114 /* Note that we send error to all matches. */ 2115 ira->ira_flags |= IRAF_ICMP_ERROR; 2116 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2117 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2118 return; 2119 2120 case IPPROTO_TCP: 2121 /* 2122 * Find a TCP client stream for this packet. 2123 * Note that we do a reverse lookup since the header is 2124 * in the form we sent it out. 2125 */ 2126 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2127 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2128 ipst); 2129 if (connp == NULL) 2130 goto discard_pkt; 2131 2132 if (connp->conn_min_ttl != 0 && 2133 connp->conn_min_ttl > ira->ira_ttl) { 2134 CONN_DEC_REF(connp); 2135 goto discard_pkt; 2136 } 2137 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2138 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2139 mp = ipsec_check_inbound_policy(mp, connp, 2140 ipha, NULL, ira); 2141 if (mp == NULL) { 2142 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2143 /* Note that mp is NULL */ 2144 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2145 CONN_DEC_REF(connp); 2146 return; 2147 } 2148 } 2149 2150 ira->ira_flags |= IRAF_ICMP_ERROR; 2151 ira->ira_ill = ira->ira_rill = NULL; 2152 if (IPCL_IS_TCP(connp)) { 2153 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2154 connp->conn_recvicmp, connp, ira, SQ_FILL, 2155 SQTAG_TCP_INPUT_ICMP_ERR); 2156 } else { 2157 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2158 (connp->conn_recv)(connp, mp, NULL, ira); 2159 CONN_DEC_REF(connp); 2160 } 2161 ira->ira_ill = ill; 2162 ira->ira_rill = rill; 2163 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2164 return; 2165 2166 case IPPROTO_SCTP: 2167 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2168 /* Find a SCTP client stream for this packet. */ 2169 ((uint16_t *)&ports)[0] = up[1]; 2170 ((uint16_t *)&ports)[1] = up[0]; 2171 2172 ira->ira_flags |= IRAF_ICMP_ERROR; 2173 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2174 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2175 return; 2176 2177 case IPPROTO_ESP: 2178 case IPPROTO_AH: 2179 if (!ipsec_loaded(ipss)) { 2180 ip_proto_not_sup(mp, ira); 2181 return; 2182 } 2183 2184 if (ipha->ipha_protocol == IPPROTO_ESP) 2185 mp = ipsecesp_icmp_error(mp, ira); 2186 else 2187 mp = ipsecah_icmp_error(mp, ira); 2188 if (mp == NULL) 2189 return; 2190 2191 /* Just in case ipsec didn't preserve the NULL b_cont */ 2192 if (mp->b_cont != NULL) { 2193 if (!pullupmsg(mp, -1)) 2194 goto discard_pkt; 2195 } 2196 2197 /* 2198 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2199 * correct, but we don't use them any more here. 2200 * 2201 * If succesful, the mp has been modified to not include 2202 * the ESP/AH header so we can fanout to the ULP's icmp 2203 * error handler. 2204 */ 2205 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2206 goto truncated; 2207 2208 /* Verify the modified message before any further processes. */ 2209 ipha = (ipha_t *)mp->b_rptr; 2210 hdr_length = IPH_HDR_LENGTH(ipha); 2211 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2212 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2213 freemsg(mp); 2214 return; 2215 } 2216 2217 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2218 return; 2219 2220 case IPPROTO_ENCAP: { 2221 /* Look for self-encapsulated packets that caused an error */ 2222 ipha_t *in_ipha; 2223 2224 /* 2225 * Caller has verified that length has to be 2226 * at least the size of IP header. 2227 */ 2228 ASSERT(hdr_length >= sizeof (ipha_t)); 2229 /* 2230 * Check the sanity of the inner IP header like 2231 * we did for the outer header. 2232 */ 2233 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2234 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2235 goto discard_pkt; 2236 } 2237 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2238 goto discard_pkt; 2239 } 2240 /* Check for Self-encapsulated tunnels */ 2241 if (in_ipha->ipha_src == ipha->ipha_src && 2242 in_ipha->ipha_dst == ipha->ipha_dst) { 2243 2244 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2245 in_ipha); 2246 if (mp == NULL) 2247 goto discard_pkt; 2248 2249 /* 2250 * Just in case self_encap didn't preserve the NULL 2251 * b_cont 2252 */ 2253 if (mp->b_cont != NULL) { 2254 if (!pullupmsg(mp, -1)) 2255 goto discard_pkt; 2256 } 2257 /* 2258 * Note that ira_pktlen and ira_ip_hdr_length are no 2259 * longer correct, but we don't use them any more here. 2260 */ 2261 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2262 goto truncated; 2263 2264 /* 2265 * Verify the modified message before any further 2266 * processes. 2267 */ 2268 ipha = (ipha_t *)mp->b_rptr; 2269 hdr_length = IPH_HDR_LENGTH(ipha); 2270 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2271 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2272 freemsg(mp); 2273 return; 2274 } 2275 2276 /* 2277 * The packet in error is self-encapsualted. 2278 * And we are finding it further encapsulated 2279 * which we could not have possibly generated. 2280 */ 2281 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2282 goto discard_pkt; 2283 } 2284 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2285 return; 2286 } 2287 /* No self-encapsulated */ 2288 } 2289 /* FALLTHROUGH */ 2290 case IPPROTO_IPV6: 2291 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2292 &ripha.ipha_dst, ipst)) != NULL) { 2293 ira->ira_flags |= IRAF_ICMP_ERROR; 2294 connp->conn_recvicmp(connp, mp, NULL, ira); 2295 CONN_DEC_REF(connp); 2296 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2297 return; 2298 } 2299 /* 2300 * No IP tunnel is interested, fallthrough and see 2301 * if a raw socket will want it. 2302 */ 2303 /* FALLTHROUGH */ 2304 default: 2305 ira->ira_flags |= IRAF_ICMP_ERROR; 2306 ip_fanout_proto_v4(mp, &ripha, ira); 2307 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2308 return; 2309 } 2310 /* NOTREACHED */ 2311 discard_pkt: 2312 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2313 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2314 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2315 freemsg(mp); 2316 return; 2317 2318 truncated: 2319 /* We pulled up everthing already. Must be truncated */ 2320 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2321 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2322 freemsg(mp); 2323 } 2324 2325 /* 2326 * Common IP options parser. 2327 * 2328 * Setup routine: fill in *optp with options-parsing state, then 2329 * tail-call ipoptp_next to return the first option. 2330 */ 2331 uint8_t 2332 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2333 { 2334 uint32_t totallen; /* total length of all options */ 2335 2336 totallen = ipha->ipha_version_and_hdr_length - 2337 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2338 totallen <<= 2; 2339 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2340 optp->ipoptp_end = optp->ipoptp_next + totallen; 2341 optp->ipoptp_flags = 0; 2342 return (ipoptp_next(optp)); 2343 } 2344 2345 /* Like above but without an ipha_t */ 2346 uint8_t 2347 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2348 { 2349 optp->ipoptp_next = opt; 2350 optp->ipoptp_end = optp->ipoptp_next + totallen; 2351 optp->ipoptp_flags = 0; 2352 return (ipoptp_next(optp)); 2353 } 2354 2355 /* 2356 * Common IP options parser: extract next option. 2357 */ 2358 uint8_t 2359 ipoptp_next(ipoptp_t *optp) 2360 { 2361 uint8_t *end = optp->ipoptp_end; 2362 uint8_t *cur = optp->ipoptp_next; 2363 uint8_t opt, len, pointer; 2364 2365 /* 2366 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2367 * has been corrupted. 2368 */ 2369 ASSERT(cur <= end); 2370 2371 if (cur == end) 2372 return (IPOPT_EOL); 2373 2374 opt = cur[IPOPT_OPTVAL]; 2375 2376 /* 2377 * Skip any NOP options. 2378 */ 2379 while (opt == IPOPT_NOP) { 2380 cur++; 2381 if (cur == end) 2382 return (IPOPT_EOL); 2383 opt = cur[IPOPT_OPTVAL]; 2384 } 2385 2386 if (opt == IPOPT_EOL) 2387 return (IPOPT_EOL); 2388 2389 /* 2390 * Option requiring a length. 2391 */ 2392 if ((cur + 1) >= end) { 2393 optp->ipoptp_flags |= IPOPTP_ERROR; 2394 return (IPOPT_EOL); 2395 } 2396 len = cur[IPOPT_OLEN]; 2397 if (len < 2) { 2398 optp->ipoptp_flags |= IPOPTP_ERROR; 2399 return (IPOPT_EOL); 2400 } 2401 optp->ipoptp_cur = cur; 2402 optp->ipoptp_len = len; 2403 optp->ipoptp_next = cur + len; 2404 if (cur + len > end) { 2405 optp->ipoptp_flags |= IPOPTP_ERROR; 2406 return (IPOPT_EOL); 2407 } 2408 2409 /* 2410 * For the options which require a pointer field, make sure 2411 * its there, and make sure it points to either something 2412 * inside this option, or the end of the option. 2413 */ 2414 pointer = IPOPT_EOL; 2415 switch (opt) { 2416 case IPOPT_RR: 2417 case IPOPT_TS: 2418 case IPOPT_LSRR: 2419 case IPOPT_SSRR: 2420 if (len <= IPOPT_OFFSET) { 2421 optp->ipoptp_flags |= IPOPTP_ERROR; 2422 return (opt); 2423 } 2424 pointer = cur[IPOPT_OFFSET]; 2425 if (pointer - 1 > len) { 2426 optp->ipoptp_flags |= IPOPTP_ERROR; 2427 return (opt); 2428 } 2429 break; 2430 } 2431 2432 /* 2433 * Sanity check the pointer field based on the type of the 2434 * option. 2435 */ 2436 switch (opt) { 2437 case IPOPT_RR: 2438 case IPOPT_SSRR: 2439 case IPOPT_LSRR: 2440 if (pointer < IPOPT_MINOFF_SR) 2441 optp->ipoptp_flags |= IPOPTP_ERROR; 2442 break; 2443 case IPOPT_TS: 2444 if (pointer < IPOPT_MINOFF_IT) 2445 optp->ipoptp_flags |= IPOPTP_ERROR; 2446 /* 2447 * Note that the Internet Timestamp option also 2448 * contains two four bit fields (the Overflow field, 2449 * and the Flag field), which follow the pointer 2450 * field. We don't need to check that these fields 2451 * fall within the length of the option because this 2452 * was implicitely done above. We've checked that the 2453 * pointer value is at least IPOPT_MINOFF_IT, and that 2454 * it falls within the option. Since IPOPT_MINOFF_IT > 2455 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2456 */ 2457 ASSERT(len > IPOPT_POS_OV_FLG); 2458 break; 2459 } 2460 2461 return (opt); 2462 } 2463 2464 /* 2465 * Use the outgoing IP header to create an IP_OPTIONS option the way 2466 * it was passed down from the application. 2467 * 2468 * This is compatible with BSD in that it returns 2469 * the reverse source route with the final destination 2470 * as the last entry. The first 4 bytes of the option 2471 * will contain the final destination. 2472 */ 2473 int 2474 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2475 { 2476 ipoptp_t opts; 2477 uchar_t *opt; 2478 uint8_t optval; 2479 uint8_t optlen; 2480 uint32_t len = 0; 2481 uchar_t *buf1 = buf; 2482 uint32_t totallen; 2483 ipaddr_t dst; 2484 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2485 2486 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2487 return (0); 2488 2489 totallen = ipp->ipp_ipv4_options_len; 2490 if (totallen & 0x3) 2491 return (0); 2492 2493 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2494 len += IP_ADDR_LEN; 2495 bzero(buf1, IP_ADDR_LEN); 2496 2497 dst = connp->conn_faddr_v4; 2498 2499 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2500 optval != IPOPT_EOL; 2501 optval = ipoptp_next(&opts)) { 2502 int off; 2503 2504 opt = opts.ipoptp_cur; 2505 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2506 break; 2507 } 2508 optlen = opts.ipoptp_len; 2509 2510 switch (optval) { 2511 case IPOPT_SSRR: 2512 case IPOPT_LSRR: 2513 2514 /* 2515 * Insert destination as the first entry in the source 2516 * route and move down the entries on step. 2517 * The last entry gets placed at buf1. 2518 */ 2519 buf[IPOPT_OPTVAL] = optval; 2520 buf[IPOPT_OLEN] = optlen; 2521 buf[IPOPT_OFFSET] = optlen; 2522 2523 off = optlen - IP_ADDR_LEN; 2524 if (off < 0) { 2525 /* No entries in source route */ 2526 break; 2527 } 2528 /* Last entry in source route if not already set */ 2529 if (dst == INADDR_ANY) 2530 bcopy(opt + off, buf1, IP_ADDR_LEN); 2531 off -= IP_ADDR_LEN; 2532 2533 while (off > 0) { 2534 bcopy(opt + off, 2535 buf + off + IP_ADDR_LEN, 2536 IP_ADDR_LEN); 2537 off -= IP_ADDR_LEN; 2538 } 2539 /* ipha_dst into first slot */ 2540 bcopy(&dst, buf + off + IP_ADDR_LEN, 2541 IP_ADDR_LEN); 2542 buf += optlen; 2543 len += optlen; 2544 break; 2545 2546 default: 2547 bcopy(opt, buf, optlen); 2548 buf += optlen; 2549 len += optlen; 2550 break; 2551 } 2552 } 2553 done: 2554 /* Pad the resulting options */ 2555 while (len & 0x3) { 2556 *buf++ = IPOPT_EOL; 2557 len++; 2558 } 2559 return (len); 2560 } 2561 2562 /* 2563 * Update any record route or timestamp options to include this host. 2564 * Reverse any source route option. 2565 * This routine assumes that the options are well formed i.e. that they 2566 * have already been checked. 2567 */ 2568 static void 2569 icmp_options_update(ipha_t *ipha) 2570 { 2571 ipoptp_t opts; 2572 uchar_t *opt; 2573 uint8_t optval; 2574 ipaddr_t src; /* Our local address */ 2575 ipaddr_t dst; 2576 2577 ip2dbg(("icmp_options_update\n")); 2578 src = ipha->ipha_src; 2579 dst = ipha->ipha_dst; 2580 2581 for (optval = ipoptp_first(&opts, ipha); 2582 optval != IPOPT_EOL; 2583 optval = ipoptp_next(&opts)) { 2584 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2585 opt = opts.ipoptp_cur; 2586 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2587 optval, opts.ipoptp_len)); 2588 switch (optval) { 2589 int off1, off2; 2590 case IPOPT_SSRR: 2591 case IPOPT_LSRR: 2592 /* 2593 * Reverse the source route. The first entry 2594 * should be the next to last one in the current 2595 * source route (the last entry is our address). 2596 * The last entry should be the final destination. 2597 */ 2598 off1 = IPOPT_MINOFF_SR - 1; 2599 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2600 if (off2 < 0) { 2601 /* No entries in source route */ 2602 ip1dbg(( 2603 "icmp_options_update: bad src route\n")); 2604 break; 2605 } 2606 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2607 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2608 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2609 off2 -= IP_ADDR_LEN; 2610 2611 while (off1 < off2) { 2612 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2613 bcopy((char *)opt + off2, (char *)opt + off1, 2614 IP_ADDR_LEN); 2615 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2616 off1 += IP_ADDR_LEN; 2617 off2 -= IP_ADDR_LEN; 2618 } 2619 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2620 break; 2621 } 2622 } 2623 } 2624 2625 /* 2626 * Process received ICMP Redirect messages. 2627 * Assumes the caller has verified that the headers are in the pulled up mblk. 2628 * Consumes mp. 2629 */ 2630 static void 2631 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2632 { 2633 ire_t *ire, *nire; 2634 ire_t *prev_ire; 2635 ipaddr_t src, dst, gateway; 2636 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2637 ipha_t *inner_ipha; /* Inner IP header */ 2638 2639 /* Caller already pulled up everything. */ 2640 inner_ipha = (ipha_t *)&icmph[1]; 2641 src = ipha->ipha_src; 2642 dst = inner_ipha->ipha_dst; 2643 gateway = icmph->icmph_rd_gateway; 2644 /* Make sure the new gateway is reachable somehow. */ 2645 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2646 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2647 /* 2648 * Make sure we had a route for the dest in question and that 2649 * that route was pointing to the old gateway (the source of the 2650 * redirect packet.) 2651 * We do longest match and then compare ire_gateway_addr below. 2652 */ 2653 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2654 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2655 /* 2656 * Check that 2657 * the redirect was not from ourselves 2658 * the new gateway and the old gateway are directly reachable 2659 */ 2660 if (prev_ire == NULL || ire == NULL || 2661 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2662 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2663 !(ire->ire_type & IRE_IF_ALL) || 2664 prev_ire->ire_gateway_addr != src) { 2665 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2666 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2667 freemsg(mp); 2668 if (ire != NULL) 2669 ire_refrele(ire); 2670 if (prev_ire != NULL) 2671 ire_refrele(prev_ire); 2672 return; 2673 } 2674 2675 ire_refrele(prev_ire); 2676 ire_refrele(ire); 2677 2678 /* 2679 * TODO: more precise handling for cases 0, 2, 3, the latter two 2680 * require TOS routing 2681 */ 2682 switch (icmph->icmph_code) { 2683 case 0: 2684 case 1: 2685 /* TODO: TOS specificity for cases 2 and 3 */ 2686 case 2: 2687 case 3: 2688 break; 2689 default: 2690 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2691 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2692 freemsg(mp); 2693 return; 2694 } 2695 /* 2696 * Create a Route Association. This will allow us to remember that 2697 * someone we believe told us to use the particular gateway. 2698 */ 2699 ire = ire_create( 2700 (uchar_t *)&dst, /* dest addr */ 2701 (uchar_t *)&ip_g_all_ones, /* mask */ 2702 (uchar_t *)&gateway, /* gateway addr */ 2703 IRE_HOST, 2704 NULL, /* ill */ 2705 ALL_ZONES, 2706 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2707 NULL, /* tsol_gc_t */ 2708 ipst); 2709 2710 if (ire == NULL) { 2711 freemsg(mp); 2712 return; 2713 } 2714 nire = ire_add(ire); 2715 /* Check if it was a duplicate entry */ 2716 if (nire != NULL && nire != ire) { 2717 ASSERT(nire->ire_identical_ref > 1); 2718 ire_delete(nire); 2719 ire_refrele(nire); 2720 nire = NULL; 2721 } 2722 ire = nire; 2723 if (ire != NULL) { 2724 ire_refrele(ire); /* Held in ire_add */ 2725 2726 /* tell routing sockets that we received a redirect */ 2727 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2728 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2729 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2730 } 2731 2732 /* 2733 * Delete any existing IRE_HOST type redirect ires for this destination. 2734 * This together with the added IRE has the effect of 2735 * modifying an existing redirect. 2736 */ 2737 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2738 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2739 if (prev_ire != NULL) { 2740 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2741 ire_delete(prev_ire); 2742 ire_refrele(prev_ire); 2743 } 2744 2745 freemsg(mp); 2746 } 2747 2748 /* 2749 * Generate an ICMP parameter problem message. 2750 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2751 * constructed by the caller. 2752 */ 2753 static void 2754 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2755 { 2756 icmph_t icmph; 2757 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2758 2759 mp = icmp_pkt_err_ok(mp, ira); 2760 if (mp == NULL) 2761 return; 2762 2763 bzero(&icmph, sizeof (icmph_t)); 2764 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2765 icmph.icmph_pp_ptr = ptr; 2766 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2767 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2768 } 2769 2770 /* 2771 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2772 * the ICMP header pointed to by "stuff". (May be called as writer.) 2773 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2774 * an icmp error packet can be sent. 2775 * Assigns an appropriate source address to the packet. If ipha_dst is 2776 * one of our addresses use it for source. Otherwise let ip_output_simple 2777 * pick the source address. 2778 */ 2779 static void 2780 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2781 { 2782 ipaddr_t dst; 2783 icmph_t *icmph; 2784 ipha_t *ipha; 2785 uint_t len_needed; 2786 size_t msg_len; 2787 mblk_t *mp1; 2788 ipaddr_t src; 2789 ire_t *ire; 2790 ip_xmit_attr_t ixas; 2791 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2792 2793 ipha = (ipha_t *)mp->b_rptr; 2794 2795 bzero(&ixas, sizeof (ixas)); 2796 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2797 ixas.ixa_zoneid = ira->ira_zoneid; 2798 ixas.ixa_ifindex = 0; 2799 ixas.ixa_ipst = ipst; 2800 ixas.ixa_cred = kcred; 2801 ixas.ixa_cpid = NOPID; 2802 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2803 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2804 2805 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2806 /* 2807 * Apply IPsec based on how IPsec was applied to 2808 * the packet that had the error. 2809 * 2810 * If it was an outbound packet that caused the ICMP 2811 * error, then the caller will have setup the IRA 2812 * appropriately. 2813 */ 2814 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2815 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2816 /* Note: mp already consumed and ip_drop_packet done */ 2817 return; 2818 } 2819 } else { 2820 /* 2821 * This is in clear. The icmp message we are building 2822 * here should go out in clear, independent of our policy. 2823 */ 2824 ixas.ixa_flags |= IXAF_NO_IPSEC; 2825 } 2826 2827 /* Remember our eventual destination */ 2828 dst = ipha->ipha_src; 2829 2830 /* 2831 * If the packet was for one of our unicast addresses, make 2832 * sure we respond with that as the source. Otherwise 2833 * have ip_output_simple pick the source address. 2834 */ 2835 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2836 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2837 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2838 if (ire != NULL) { 2839 ire_refrele(ire); 2840 src = ipha->ipha_dst; 2841 } else { 2842 src = INADDR_ANY; 2843 ixas.ixa_flags |= IXAF_SET_SOURCE; 2844 } 2845 2846 /* 2847 * Check if we can send back more then 8 bytes in addition to 2848 * the IP header. We try to send 64 bytes of data and the internal 2849 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2850 */ 2851 len_needed = IPH_HDR_LENGTH(ipha); 2852 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2853 ipha->ipha_protocol == IPPROTO_IPV6) { 2854 /* 2855 * NOTE: It is posssible that the inner packet is poorly 2856 * formed (e.g. IP version is corrupt, or v6 extension headers 2857 * got cut off). The receiver of the ICMP message should see 2858 * what we saw. In the absence of a sane inner-packet (which 2859 * protocol types IPPPROTO_ENCAP and IPPROTO_IPV6 indicate 2860 * would be an IP header), we should send the size of what is 2861 * normally expected to be there (either sizeof (ipha_t) or 2862 * sizeof (ip6_t). It may be useful for diagnostic purposes. 2863 * 2864 * ALSO NOTE: "inner_ip6h" is the inner packet header, v4 or v6. 2865 */ 2866 ip6_t *inner_ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2867 2868 if (!pullupmsg(mp, -1)) { 2869 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2870 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2871 freemsg(mp); 2872 return; 2873 } 2874 ipha = (ipha_t *)mp->b_rptr; 2875 2876 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2877 /* 2878 * Check the inner IP version here to guard against 2879 * bogons. 2880 */ 2881 if (IPH_HDR_VERSION(inner_ip6h) == IPV4_VERSION) { 2882 len_needed += 2883 IPH_HDR_LENGTH(((uchar_t *)inner_ip6h)); 2884 } else { 2885 len_needed = sizeof (ipha_t); 2886 } 2887 } else { 2888 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2889 /* function called next-line checks inner IP version */ 2890 len_needed += ip_hdr_length_v6(mp, inner_ip6h); 2891 } 2892 } 2893 len_needed += ipst->ips_ip_icmp_return; 2894 msg_len = msgdsize(mp); 2895 if (msg_len > len_needed) { 2896 (void) adjmsg(mp, len_needed - msg_len); 2897 msg_len = len_needed; 2898 } 2899 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2900 if (mp1 == NULL) { 2901 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2902 freemsg(mp); 2903 return; 2904 } 2905 mp1->b_cont = mp; 2906 mp = mp1; 2907 2908 /* 2909 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2910 * node generates be accepted in peace by all on-host destinations. 2911 * If we do NOT assume that all on-host destinations trust 2912 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2913 * (Look for IXAF_TRUSTED_ICMP). 2914 */ 2915 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2916 2917 ipha = (ipha_t *)mp->b_rptr; 2918 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2919 *ipha = icmp_ipha; 2920 ipha->ipha_src = src; 2921 ipha->ipha_dst = dst; 2922 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2923 msg_len += sizeof (icmp_ipha) + len; 2924 if (msg_len > IP_MAXPACKET) { 2925 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2926 msg_len = IP_MAXPACKET; 2927 } 2928 ipha->ipha_length = htons((uint16_t)msg_len); 2929 icmph = (icmph_t *)&ipha[1]; 2930 bcopy(stuff, icmph, len); 2931 icmph->icmph_checksum = 0; 2932 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2933 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2934 2935 (void) ip_output_simple(mp, &ixas); 2936 ixa_cleanup(&ixas); 2937 } 2938 2939 /* 2940 * Determine if an ICMP error packet can be sent given the rate limit. 2941 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2942 * in milliseconds) and a burst size. Burst size number of packets can 2943 * be sent arbitrarely closely spaced. 2944 * The state is tracked using two variables to implement an approximate 2945 * token bucket filter: 2946 * icmp_pkt_err_last - lbolt value when the last burst started 2947 * icmp_pkt_err_sent - number of packets sent in current burst 2948 */ 2949 boolean_t 2950 icmp_err_rate_limit(ip_stack_t *ipst) 2951 { 2952 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2953 uint_t refilled; /* Number of packets refilled in tbf since last */ 2954 /* Guard against changes by loading into local variable */ 2955 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2956 2957 if (err_interval == 0) 2958 return (B_FALSE); 2959 2960 if (ipst->ips_icmp_pkt_err_last > now) { 2961 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2962 ipst->ips_icmp_pkt_err_last = 0; 2963 ipst->ips_icmp_pkt_err_sent = 0; 2964 } 2965 /* 2966 * If we are in a burst update the token bucket filter. 2967 * Update the "last" time to be close to "now" but make sure 2968 * we don't loose precision. 2969 */ 2970 if (ipst->ips_icmp_pkt_err_sent != 0) { 2971 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2972 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2973 ipst->ips_icmp_pkt_err_sent = 0; 2974 } else { 2975 ipst->ips_icmp_pkt_err_sent -= refilled; 2976 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2977 } 2978 } 2979 if (ipst->ips_icmp_pkt_err_sent == 0) { 2980 /* Start of new burst */ 2981 ipst->ips_icmp_pkt_err_last = now; 2982 } 2983 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2984 ipst->ips_icmp_pkt_err_sent++; 2985 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2986 ipst->ips_icmp_pkt_err_sent)); 2987 return (B_FALSE); 2988 } 2989 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2990 return (B_TRUE); 2991 } 2992 2993 /* 2994 * Check if it is ok to send an IPv4 ICMP error packet in 2995 * response to the IPv4 packet in mp. 2996 * Free the message and return null if no 2997 * ICMP error packet should be sent. 2998 */ 2999 static mblk_t * 3000 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 3001 { 3002 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3003 icmph_t *icmph; 3004 ipha_t *ipha; 3005 uint_t len_needed; 3006 3007 if (!mp) 3008 return (NULL); 3009 ipha = (ipha_t *)mp->b_rptr; 3010 if (ip_csum_hdr(ipha)) { 3011 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 3012 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 3013 freemsg(mp); 3014 return (NULL); 3015 } 3016 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 3017 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 3018 CLASSD(ipha->ipha_dst) || 3019 CLASSD(ipha->ipha_src) || 3020 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3021 /* Note: only errors to the fragment with offset 0 */ 3022 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3023 freemsg(mp); 3024 return (NULL); 3025 } 3026 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3027 /* 3028 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3029 * errors in response to any ICMP errors. 3030 */ 3031 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3032 if (mp->b_wptr - mp->b_rptr < len_needed) { 3033 if (!pullupmsg(mp, len_needed)) { 3034 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3035 freemsg(mp); 3036 return (NULL); 3037 } 3038 ipha = (ipha_t *)mp->b_rptr; 3039 } 3040 icmph = (icmph_t *) 3041 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3042 switch (icmph->icmph_type) { 3043 case ICMP_DEST_UNREACHABLE: 3044 case ICMP_SOURCE_QUENCH: 3045 case ICMP_TIME_EXCEEDED: 3046 case ICMP_PARAM_PROBLEM: 3047 case ICMP_REDIRECT: 3048 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3049 freemsg(mp); 3050 return (NULL); 3051 default: 3052 break; 3053 } 3054 } 3055 /* 3056 * If this is a labeled system, then check to see if we're allowed to 3057 * send a response to this particular sender. If not, then just drop. 3058 */ 3059 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3060 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3061 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3062 freemsg(mp); 3063 return (NULL); 3064 } 3065 if (icmp_err_rate_limit(ipst)) { 3066 /* 3067 * Only send ICMP error packets every so often. 3068 * This should be done on a per port/source basis, 3069 * but for now this will suffice. 3070 */ 3071 freemsg(mp); 3072 return (NULL); 3073 } 3074 return (mp); 3075 } 3076 3077 /* 3078 * Called when a packet was sent out the same link that it arrived on. 3079 * Check if it is ok to send a redirect and then send it. 3080 */ 3081 void 3082 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3083 ip_recv_attr_t *ira) 3084 { 3085 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3086 ipaddr_t src, nhop; 3087 mblk_t *mp1; 3088 ire_t *nhop_ire; 3089 3090 /* 3091 * Check the source address to see if it originated 3092 * on the same logical subnet it is going back out on. 3093 * If so, we should be able to send it a redirect. 3094 * Avoid sending a redirect if the destination 3095 * is directly connected (i.e., we matched an IRE_ONLINK), 3096 * or if the packet was source routed out this interface. 3097 * 3098 * We avoid sending a redirect if the 3099 * destination is directly connected 3100 * because it is possible that multiple 3101 * IP subnets may have been configured on 3102 * the link, and the source may not 3103 * be on the same subnet as ip destination, 3104 * even though they are on the same 3105 * physical link. 3106 */ 3107 if ((ire->ire_type & IRE_ONLINK) || 3108 ip_source_routed(ipha, ipst)) 3109 return; 3110 3111 nhop_ire = ire_nexthop(ire); 3112 if (nhop_ire == NULL) 3113 return; 3114 3115 nhop = nhop_ire->ire_addr; 3116 3117 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3118 ire_t *ire2; 3119 3120 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3121 mutex_enter(&nhop_ire->ire_lock); 3122 ire2 = nhop_ire->ire_dep_parent; 3123 if (ire2 != NULL) 3124 ire_refhold(ire2); 3125 mutex_exit(&nhop_ire->ire_lock); 3126 ire_refrele(nhop_ire); 3127 nhop_ire = ire2; 3128 } 3129 if (nhop_ire == NULL) 3130 return; 3131 3132 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3133 3134 src = ipha->ipha_src; 3135 3136 /* 3137 * We look at the interface ire for the nexthop, 3138 * to see if ipha_src is in the same subnet 3139 * as the nexthop. 3140 */ 3141 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3142 /* 3143 * The source is directly connected. 3144 */ 3145 mp1 = copymsg(mp); 3146 if (mp1 != NULL) { 3147 icmp_send_redirect(mp1, nhop, ira); 3148 } 3149 } 3150 ire_refrele(nhop_ire); 3151 } 3152 3153 /* 3154 * Generate an ICMP redirect message. 3155 */ 3156 static void 3157 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3158 { 3159 icmph_t icmph; 3160 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3161 3162 mp = icmp_pkt_err_ok(mp, ira); 3163 if (mp == NULL) 3164 return; 3165 3166 bzero(&icmph, sizeof (icmph_t)); 3167 icmph.icmph_type = ICMP_REDIRECT; 3168 icmph.icmph_code = 1; 3169 icmph.icmph_rd_gateway = gateway; 3170 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3171 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3172 } 3173 3174 /* 3175 * Generate an ICMP time exceeded message. 3176 */ 3177 void 3178 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3179 { 3180 icmph_t icmph; 3181 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3182 3183 mp = icmp_pkt_err_ok(mp, ira); 3184 if (mp == NULL) 3185 return; 3186 3187 bzero(&icmph, sizeof (icmph_t)); 3188 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3189 icmph.icmph_code = code; 3190 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3191 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3192 } 3193 3194 /* 3195 * Generate an ICMP unreachable message. 3196 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3197 * constructed by the caller. 3198 */ 3199 void 3200 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3201 { 3202 icmph_t icmph; 3203 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3204 3205 mp = icmp_pkt_err_ok(mp, ira); 3206 if (mp == NULL) 3207 return; 3208 3209 bzero(&icmph, sizeof (icmph_t)); 3210 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3211 icmph.icmph_code = code; 3212 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3213 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3214 } 3215 3216 /* 3217 * Latch in the IPsec state for a stream based the policy in the listener 3218 * and the actions in the ip_recv_attr_t. 3219 * Called directly from TCP and SCTP. 3220 */ 3221 boolean_t 3222 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3223 { 3224 ASSERT(lconnp->conn_policy != NULL); 3225 ASSERT(connp->conn_policy == NULL); 3226 3227 IPPH_REFHOLD(lconnp->conn_policy); 3228 connp->conn_policy = lconnp->conn_policy; 3229 3230 if (ira->ira_ipsec_action != NULL) { 3231 if (connp->conn_latch == NULL) { 3232 connp->conn_latch = iplatch_create(); 3233 if (connp->conn_latch == NULL) 3234 return (B_FALSE); 3235 } 3236 ipsec_latch_inbound(connp, ira); 3237 } 3238 return (B_TRUE); 3239 } 3240 3241 /* 3242 * Verify whether or not the IP address is a valid local address. 3243 * Could be a unicast, including one for a down interface. 3244 * If allow_mcbc then a multicast or broadcast address is also 3245 * acceptable. 3246 * 3247 * In the case of a broadcast/multicast address, however, the 3248 * upper protocol is expected to reset the src address 3249 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3250 * no packets are emitted with broadcast/multicast address as 3251 * source address (that violates hosts requirements RFC 1122) 3252 * The addresses valid for bind are: 3253 * (1) - INADDR_ANY (0) 3254 * (2) - IP address of an UP interface 3255 * (3) - IP address of a DOWN interface 3256 * (4) - valid local IP broadcast addresses. In this case 3257 * the conn will only receive packets destined to 3258 * the specified broadcast address. 3259 * (5) - a multicast address. In this case 3260 * the conn will only receive packets destined to 3261 * the specified multicast address. Note: the 3262 * application still has to issue an 3263 * IP_ADD_MEMBERSHIP socket option. 3264 * 3265 * In all the above cases, the bound address must be valid in the current zone. 3266 * When the address is loopback, multicast or broadcast, there might be many 3267 * matching IREs so bind has to look up based on the zone. 3268 */ 3269 ip_laddr_t 3270 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3271 ip_stack_t *ipst, boolean_t allow_mcbc) 3272 { 3273 ire_t *src_ire; 3274 3275 ASSERT(src_addr != INADDR_ANY); 3276 3277 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3278 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3279 3280 /* 3281 * If an address other than in6addr_any is requested, 3282 * we verify that it is a valid address for bind 3283 * Note: Following code is in if-else-if form for 3284 * readability compared to a condition check. 3285 */ 3286 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3287 /* 3288 * (2) Bind to address of local UP interface 3289 */ 3290 ire_refrele(src_ire); 3291 return (IPVL_UNICAST_UP); 3292 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3293 /* 3294 * (4) Bind to broadcast address 3295 */ 3296 ire_refrele(src_ire); 3297 if (allow_mcbc) 3298 return (IPVL_BCAST); 3299 else 3300 return (IPVL_BAD); 3301 } else if (CLASSD(src_addr)) { 3302 /* (5) bind to multicast address. */ 3303 if (src_ire != NULL) 3304 ire_refrele(src_ire); 3305 3306 if (allow_mcbc) 3307 return (IPVL_MCAST); 3308 else 3309 return (IPVL_BAD); 3310 } else { 3311 ipif_t *ipif; 3312 3313 /* 3314 * (3) Bind to address of local DOWN interface? 3315 * (ipif_lookup_addr() looks up all interfaces 3316 * but we do not get here for UP interfaces 3317 * - case (2) above) 3318 */ 3319 if (src_ire != NULL) 3320 ire_refrele(src_ire); 3321 3322 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3323 if (ipif == NULL) 3324 return (IPVL_BAD); 3325 3326 /* Not a useful source? */ 3327 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3328 ipif_refrele(ipif); 3329 return (IPVL_BAD); 3330 } 3331 ipif_refrele(ipif); 3332 return (IPVL_UNICAST_DOWN); 3333 } 3334 } 3335 3336 /* 3337 * Insert in the bind fanout for IPv4 and IPv6. 3338 * The caller should already have used ip_laddr_verify_v*() before calling 3339 * this. 3340 */ 3341 int 3342 ip_laddr_fanout_insert(conn_t *connp) 3343 { 3344 int error; 3345 3346 /* 3347 * Allow setting new policies. For example, disconnects result 3348 * in us being called. As we would have set conn_policy_cached 3349 * to B_TRUE before, we should set it to B_FALSE, so that policy 3350 * can change after the disconnect. 3351 */ 3352 connp->conn_policy_cached = B_FALSE; 3353 3354 error = ipcl_bind_insert(connp); 3355 if (error != 0) { 3356 if (connp->conn_anon_port) { 3357 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3358 connp->conn_mlp_type, connp->conn_proto, 3359 ntohs(connp->conn_lport), B_FALSE); 3360 } 3361 connp->conn_mlp_type = mlptSingle; 3362 } 3363 return (error); 3364 } 3365 3366 /* 3367 * Verify that both the source and destination addresses are valid. If 3368 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3369 * i.e. have no route to it. Protocols like TCP want to verify destination 3370 * reachability, while tunnels do not. 3371 * 3372 * Determine the route, the interface, and (optionally) the source address 3373 * to use to reach a given destination. 3374 * Note that we allow connect to broadcast and multicast addresses when 3375 * IPDF_ALLOW_MCBC is set. 3376 * first_hop and dst_addr are normally the same, but if source routing 3377 * they will differ; in that case the first_hop is what we'll use for the 3378 * routing lookup but the dce and label checks will be done on dst_addr, 3379 * 3380 * If uinfo is set, then we fill in the best available information 3381 * we have for the destination. This is based on (in priority order) any 3382 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3383 * ill_mtu/ill_mc_mtu. 3384 * 3385 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3386 * always do the label check on dst_addr. 3387 */ 3388 int 3389 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3390 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3391 { 3392 ire_t *ire = NULL; 3393 int error = 0; 3394 ipaddr_t setsrc; /* RTF_SETSRC */ 3395 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3396 ip_stack_t *ipst = ixa->ixa_ipst; 3397 dce_t *dce; 3398 uint_t pmtu; 3399 uint_t generation; 3400 nce_t *nce; 3401 ill_t *ill = NULL; 3402 boolean_t multirt = B_FALSE; 3403 3404 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3405 3406 /* 3407 * We never send to zero; the ULPs map it to the loopback address. 3408 * We can't allow it since we use zero to mean unitialized in some 3409 * places. 3410 */ 3411 ASSERT(dst_addr != INADDR_ANY); 3412 3413 if (is_system_labeled()) { 3414 ts_label_t *tsl = NULL; 3415 3416 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3417 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3418 if (error != 0) 3419 return (error); 3420 if (tsl != NULL) { 3421 /* Update the label */ 3422 ip_xmit_attr_replace_tsl(ixa, tsl); 3423 } 3424 } 3425 3426 setsrc = INADDR_ANY; 3427 /* 3428 * Select a route; For IPMP interfaces, we would only select 3429 * a "hidden" route (i.e., going through a specific under_ill) 3430 * if ixa_ifindex has been specified. 3431 */ 3432 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3433 &generation, &setsrc, &error, &multirt); 3434 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3435 if (error != 0) 3436 goto bad_addr; 3437 3438 /* 3439 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3440 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3441 * Otherwise the destination needn't be reachable. 3442 * 3443 * If we match on a reject or black hole, then we've got a 3444 * local failure. May as well fail out the connect() attempt, 3445 * since it's never going to succeed. 3446 */ 3447 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3448 /* 3449 * If we're verifying destination reachability, we always want 3450 * to complain here. 3451 * 3452 * If we're not verifying destination reachability but the 3453 * destination has a route, we still want to fail on the 3454 * temporary address and broadcast address tests. 3455 * 3456 * In both cases do we let the code continue so some reasonable 3457 * information is returned to the caller. That enables the 3458 * caller to use (and even cache) the IRE. conn_ip_ouput will 3459 * use the generation mismatch path to check for the unreachable 3460 * case thereby avoiding any specific check in the main path. 3461 */ 3462 ASSERT(generation == IRE_GENERATION_VERIFY); 3463 if (flags & IPDF_VERIFY_DST) { 3464 /* 3465 * Set errno but continue to set up ixa_ire to be 3466 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3467 * That allows callers to use ip_output to get an 3468 * ICMP error back. 3469 */ 3470 if (!(ire->ire_type & IRE_HOST)) 3471 error = ENETUNREACH; 3472 else 3473 error = EHOSTUNREACH; 3474 } 3475 } 3476 3477 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3478 !(flags & IPDF_ALLOW_MCBC)) { 3479 ire_refrele(ire); 3480 ire = ire_reject(ipst, B_FALSE); 3481 generation = IRE_GENERATION_VERIFY; 3482 error = ENETUNREACH; 3483 } 3484 3485 /* Cache things */ 3486 if (ixa->ixa_ire != NULL) 3487 ire_refrele_notr(ixa->ixa_ire); 3488 #ifdef DEBUG 3489 ire_refhold_notr(ire); 3490 ire_refrele(ire); 3491 #endif 3492 ixa->ixa_ire = ire; 3493 ixa->ixa_ire_generation = generation; 3494 3495 /* 3496 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3497 * since some callers will send a packet to conn_ip_output() even if 3498 * there's an error. 3499 */ 3500 if (flags & IPDF_UNIQUE_DCE) { 3501 /* Fallback to the default dce if allocation fails */ 3502 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3503 if (dce != NULL) 3504 generation = dce->dce_generation; 3505 else 3506 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3507 } else { 3508 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3509 } 3510 ASSERT(dce != NULL); 3511 if (ixa->ixa_dce != NULL) 3512 dce_refrele_notr(ixa->ixa_dce); 3513 #ifdef DEBUG 3514 dce_refhold_notr(dce); 3515 dce_refrele(dce); 3516 #endif 3517 ixa->ixa_dce = dce; 3518 ixa->ixa_dce_generation = generation; 3519 3520 /* 3521 * For multicast with multirt we have a flag passed back from 3522 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3523 * possible multicast address. 3524 * We also need a flag for multicast since we can't check 3525 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3526 */ 3527 if (multirt) { 3528 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3529 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3530 } else { 3531 ixa->ixa_postfragfn = ire->ire_postfragfn; 3532 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3533 } 3534 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3535 /* Get an nce to cache. */ 3536 nce = ire_to_nce(ire, firsthop, NULL); 3537 if (nce == NULL) { 3538 /* Allocation failure? */ 3539 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3540 } else { 3541 if (ixa->ixa_nce != NULL) 3542 nce_refrele(ixa->ixa_nce); 3543 ixa->ixa_nce = nce; 3544 } 3545 } 3546 3547 /* 3548 * If the source address is a loopback address, the 3549 * destination had best be local or multicast. 3550 * If we are sending to an IRE_LOCAL using a loopback source then 3551 * it had better be the same zoneid. 3552 */ 3553 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3554 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3555 ire = NULL; /* Stored in ixa_ire */ 3556 error = EADDRNOTAVAIL; 3557 goto bad_addr; 3558 } 3559 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3560 ire = NULL; /* Stored in ixa_ire */ 3561 error = EADDRNOTAVAIL; 3562 goto bad_addr; 3563 } 3564 } 3565 if (ire->ire_type & IRE_BROADCAST) { 3566 /* 3567 * If the ULP didn't have a specified source, then we 3568 * make sure we reselect the source when sending 3569 * broadcasts out different interfaces. 3570 */ 3571 if (flags & IPDF_SELECT_SRC) 3572 ixa->ixa_flags |= IXAF_SET_SOURCE; 3573 else 3574 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3575 } 3576 3577 /* 3578 * Does the caller want us to pick a source address? 3579 */ 3580 if (flags & IPDF_SELECT_SRC) { 3581 ipaddr_t src_addr; 3582 3583 /* 3584 * We use use ire_nexthop_ill to avoid the under ipmp 3585 * interface for source address selection. Note that for ipmp 3586 * probe packets, ixa_ifindex would have been specified, and 3587 * the ip_select_route() invocation would have picked an ire 3588 * will ire_ill pointing at an under interface. 3589 */ 3590 ill = ire_nexthop_ill(ire); 3591 3592 /* If unreachable we have no ill but need some source */ 3593 if (ill == NULL) { 3594 src_addr = htonl(INADDR_LOOPBACK); 3595 /* Make sure we look for a better source address */ 3596 generation = SRC_GENERATION_VERIFY; 3597 } else { 3598 error = ip_select_source_v4(ill, setsrc, dst_addr, 3599 ixa->ixa_multicast_ifaddr, zoneid, 3600 ipst, &src_addr, &generation, NULL); 3601 if (error != 0) { 3602 ire = NULL; /* Stored in ixa_ire */ 3603 goto bad_addr; 3604 } 3605 } 3606 3607 /* 3608 * We allow the source address to to down. 3609 * However, we check that we don't use the loopback address 3610 * as a source when sending out on the wire. 3611 */ 3612 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3613 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3614 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3615 ire = NULL; /* Stored in ixa_ire */ 3616 error = EADDRNOTAVAIL; 3617 goto bad_addr; 3618 } 3619 3620 *src_addrp = src_addr; 3621 ixa->ixa_src_generation = generation; 3622 } 3623 3624 /* 3625 * Make sure we don't leave an unreachable ixa_nce in place 3626 * since ip_select_route is used when we unplumb i.e., remove 3627 * references on ixa_ire, ixa_nce, and ixa_dce. 3628 */ 3629 nce = ixa->ixa_nce; 3630 if (nce != NULL && nce->nce_is_condemned) { 3631 nce_refrele(nce); 3632 ixa->ixa_nce = NULL; 3633 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3634 } 3635 3636 /* 3637 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3638 * However, we can't do it for IPv4 multicast or broadcast. 3639 */ 3640 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3641 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3642 3643 /* 3644 * Set initial value for fragmentation limit. Either conn_ip_output 3645 * or ULP might updates it when there are routing changes. 3646 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3647 */ 3648 pmtu = ip_get_pmtu(ixa); 3649 ixa->ixa_fragsize = pmtu; 3650 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3651 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3652 ixa->ixa_pmtu = pmtu; 3653 3654 /* 3655 * Extract information useful for some transports. 3656 * First we look for DCE metrics. Then we take what we have in 3657 * the metrics in the route, where the offlink is used if we have 3658 * one. 3659 */ 3660 if (uinfo != NULL) { 3661 bzero(uinfo, sizeof (*uinfo)); 3662 3663 if (dce->dce_flags & DCEF_UINFO) 3664 *uinfo = dce->dce_uinfo; 3665 3666 rts_merge_metrics(uinfo, &ire->ire_metrics); 3667 3668 /* Allow ire_metrics to decrease the path MTU from above */ 3669 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3670 uinfo->iulp_mtu = pmtu; 3671 3672 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3673 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3674 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3675 } 3676 3677 if (ill != NULL) 3678 ill_refrele(ill); 3679 3680 return (error); 3681 3682 bad_addr: 3683 if (ire != NULL) 3684 ire_refrele(ire); 3685 3686 if (ill != NULL) 3687 ill_refrele(ill); 3688 3689 /* 3690 * Make sure we don't leave an unreachable ixa_nce in place 3691 * since ip_select_route is used when we unplumb i.e., remove 3692 * references on ixa_ire, ixa_nce, and ixa_dce. 3693 */ 3694 nce = ixa->ixa_nce; 3695 if (nce != NULL && nce->nce_is_condemned) { 3696 nce_refrele(nce); 3697 ixa->ixa_nce = NULL; 3698 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3699 } 3700 3701 return (error); 3702 } 3703 3704 3705 /* 3706 * Get the base MTU for the case when path MTU discovery is not used. 3707 * Takes the MTU of the IRE into account. 3708 */ 3709 uint_t 3710 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3711 { 3712 uint_t mtu; 3713 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3714 3715 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3716 mtu = ill->ill_mc_mtu; 3717 else 3718 mtu = ill->ill_mtu; 3719 3720 if (iremtu != 0 && iremtu < mtu) 3721 mtu = iremtu; 3722 3723 return (mtu); 3724 } 3725 3726 /* 3727 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3728 * Assumes that ixa_ire, dce, and nce have already been set up. 3729 * 3730 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3731 * We avoid path MTU discovery if it is disabled with ndd. 3732 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3733 * 3734 * NOTE: We also used to turn it off for source routed packets. That 3735 * is no longer required since the dce is per final destination. 3736 */ 3737 uint_t 3738 ip_get_pmtu(ip_xmit_attr_t *ixa) 3739 { 3740 ip_stack_t *ipst = ixa->ixa_ipst; 3741 dce_t *dce; 3742 nce_t *nce; 3743 ire_t *ire; 3744 uint_t pmtu; 3745 3746 ire = ixa->ixa_ire; 3747 dce = ixa->ixa_dce; 3748 nce = ixa->ixa_nce; 3749 3750 /* 3751 * If path MTU discovery has been turned off by ndd, then we ignore 3752 * any dce_pmtu and for IPv4 we will not set DF. 3753 */ 3754 if (!ipst->ips_ip_path_mtu_discovery) 3755 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3756 3757 pmtu = IP_MAXPACKET; 3758 /* 3759 * We need to determine if it is acceptable to set DF for IPv4 or not 3760 * and for IPv6 if we need to use the minimum MTU. If a connection has 3761 * opted into path MTU discovery, then we can use 'DF' in IPv4 and do 3762 * not have to constrain ourselves to the IPv6 minimum MTU. There is a 3763 * second consideration here: IXAF_DONTFRAG. This is set as a result of 3764 * someone setting the IP_DONTFRAG or IPV6_DONTFRAG socket option. In 3765 * such a case, it is acceptable to set DF for IPv4 and to use a larger 3766 * MTU. Note, the actual MTU is constrained by the ill_t later on in 3767 * this function. 3768 */ 3769 if (ixa->ixa_flags & (IXAF_PMTU_DISCOVERY | IXAF_DONTFRAG)) { 3770 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3771 } else { 3772 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3773 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3774 pmtu = IPV6_MIN_MTU; 3775 } 3776 3777 /* Check if the PMTU is to old before we use it */ 3778 if ((dce->dce_flags & DCEF_PMTU) && 3779 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3780 ipst->ips_ip_pathmtu_interval) { 3781 /* 3782 * Older than 20 minutes. Drop the path MTU information. 3783 */ 3784 mutex_enter(&dce->dce_lock); 3785 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3786 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3787 mutex_exit(&dce->dce_lock); 3788 dce_increment_generation(dce); 3789 } 3790 3791 /* The metrics on the route can lower the path MTU */ 3792 if (ire->ire_metrics.iulp_mtu != 0 && 3793 ire->ire_metrics.iulp_mtu < pmtu) 3794 pmtu = ire->ire_metrics.iulp_mtu; 3795 3796 /* 3797 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3798 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3799 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3800 */ 3801 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3802 if (dce->dce_flags & DCEF_PMTU) { 3803 if (dce->dce_pmtu < pmtu) 3804 pmtu = dce->dce_pmtu; 3805 3806 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3807 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3808 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3809 } else { 3810 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3811 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3812 } 3813 } else { 3814 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3815 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3816 } 3817 } 3818 3819 /* 3820 * If we have an IRE_LOCAL we use the loopback mtu instead of 3821 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3822 * mtu as IRE_LOOPBACK. 3823 */ 3824 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3825 uint_t loopback_mtu; 3826 3827 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3828 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3829 3830 if (loopback_mtu < pmtu) 3831 pmtu = loopback_mtu; 3832 } else if (nce != NULL) { 3833 /* 3834 * Make sure we don't exceed the interface MTU. 3835 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3836 * an ill. We'd use the above IP_MAXPACKET in that case just 3837 * to tell the transport something larger than zero. 3838 */ 3839 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3840 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3841 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3842 if (nce->nce_common->ncec_ill != nce->nce_ill && 3843 nce->nce_ill->ill_mc_mtu < pmtu) { 3844 /* 3845 * for interfaces in an IPMP group, the mtu of 3846 * the nce_ill (under_ill) could be different 3847 * from the mtu of the ncec_ill, so we take the 3848 * min of the two. 3849 */ 3850 pmtu = nce->nce_ill->ill_mc_mtu; 3851 } 3852 } else { 3853 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3854 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3855 if (nce->nce_common->ncec_ill != nce->nce_ill && 3856 nce->nce_ill->ill_mtu < pmtu) { 3857 /* 3858 * for interfaces in an IPMP group, the mtu of 3859 * the nce_ill (under_ill) could be different 3860 * from the mtu of the ncec_ill, so we take the 3861 * min of the two. 3862 */ 3863 pmtu = nce->nce_ill->ill_mtu; 3864 } 3865 } 3866 } 3867 3868 /* 3869 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3870 * Only applies to IPv6. 3871 */ 3872 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3873 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3874 switch (ixa->ixa_use_min_mtu) { 3875 case IPV6_USE_MIN_MTU_MULTICAST: 3876 if (ire->ire_type & IRE_MULTICAST) 3877 pmtu = IPV6_MIN_MTU; 3878 break; 3879 case IPV6_USE_MIN_MTU_ALWAYS: 3880 pmtu = IPV6_MIN_MTU; 3881 break; 3882 case IPV6_USE_MIN_MTU_NEVER: 3883 break; 3884 } 3885 } else { 3886 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3887 if (ire->ire_type & IRE_MULTICAST) 3888 pmtu = IPV6_MIN_MTU; 3889 } 3890 } 3891 3892 /* 3893 * For multirouted IPv6 packets, the IP layer will insert a 8-byte 3894 * fragment header in every packet. We compensate for those cases by 3895 * returning a smaller path MTU to the ULP. 3896 * 3897 * In the case of CGTP then ip_output will add a fragment header. 3898 * Make sure there is room for it by telling a smaller number 3899 * to the transport. 3900 * 3901 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3902 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3903 * which is the size of the packets it can send. 3904 */ 3905 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3906 if ((ire->ire_flags & RTF_MULTIRT) || 3907 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3908 pmtu -= sizeof (ip6_frag_t); 3909 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3910 } 3911 } 3912 3913 return (pmtu); 3914 } 3915 3916 /* 3917 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3918 * the final piece where we don't. Return a pointer to the first mblk in the 3919 * result, and update the pointer to the next mblk to chew on. If anything 3920 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3921 * NULL pointer. 3922 */ 3923 mblk_t * 3924 ip_carve_mp(mblk_t **mpp, ssize_t len) 3925 { 3926 mblk_t *mp0; 3927 mblk_t *mp1; 3928 mblk_t *mp2; 3929 3930 if (!len || !mpp || !(mp0 = *mpp)) 3931 return (NULL); 3932 /* If we aren't going to consume the first mblk, we need a dup. */ 3933 if (mp0->b_wptr - mp0->b_rptr > len) { 3934 mp1 = dupb(mp0); 3935 if (mp1) { 3936 /* Partition the data between the two mblks. */ 3937 mp1->b_wptr = mp1->b_rptr + len; 3938 mp0->b_rptr = mp1->b_wptr; 3939 /* 3940 * after adjustments if mblk not consumed is now 3941 * unaligned, try to align it. If this fails free 3942 * all messages and let upper layer recover. 3943 */ 3944 if (!OK_32PTR(mp0->b_rptr)) { 3945 if (!pullupmsg(mp0, -1)) { 3946 freemsg(mp0); 3947 freemsg(mp1); 3948 *mpp = NULL; 3949 return (NULL); 3950 } 3951 } 3952 } 3953 return (mp1); 3954 } 3955 /* Eat through as many mblks as we need to get len bytes. */ 3956 len -= mp0->b_wptr - mp0->b_rptr; 3957 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3958 if (mp2->b_wptr - mp2->b_rptr > len) { 3959 /* 3960 * We won't consume the entire last mblk. Like 3961 * above, dup and partition it. 3962 */ 3963 mp1->b_cont = dupb(mp2); 3964 mp1 = mp1->b_cont; 3965 if (!mp1) { 3966 /* 3967 * Trouble. Rather than go to a lot of 3968 * trouble to clean up, we free the messages. 3969 * This won't be any worse than losing it on 3970 * the wire. 3971 */ 3972 freemsg(mp0); 3973 freemsg(mp2); 3974 *mpp = NULL; 3975 return (NULL); 3976 } 3977 mp1->b_wptr = mp1->b_rptr + len; 3978 mp2->b_rptr = mp1->b_wptr; 3979 /* 3980 * after adjustments if mblk not consumed is now 3981 * unaligned, try to align it. If this fails free 3982 * all messages and let upper layer recover. 3983 */ 3984 if (!OK_32PTR(mp2->b_rptr)) { 3985 if (!pullupmsg(mp2, -1)) { 3986 freemsg(mp0); 3987 freemsg(mp2); 3988 *mpp = NULL; 3989 return (NULL); 3990 } 3991 } 3992 *mpp = mp2; 3993 return (mp0); 3994 } 3995 /* Decrement len by the amount we just got. */ 3996 len -= mp2->b_wptr - mp2->b_rptr; 3997 } 3998 /* 3999 * len should be reduced to zero now. If not our caller has 4000 * screwed up. 4001 */ 4002 if (len) { 4003 /* Shouldn't happen! */ 4004 freemsg(mp0); 4005 *mpp = NULL; 4006 return (NULL); 4007 } 4008 /* 4009 * We consumed up to exactly the end of an mblk. Detach the part 4010 * we are returning from the rest of the chain. 4011 */ 4012 mp1->b_cont = NULL; 4013 *mpp = mp2; 4014 return (mp0); 4015 } 4016 4017 /* The ill stream is being unplumbed. Called from ip_close */ 4018 int 4019 ip_modclose(ill_t *ill) 4020 { 4021 boolean_t success; 4022 ipsq_t *ipsq; 4023 ipif_t *ipif; 4024 queue_t *q = ill->ill_rq; 4025 ip_stack_t *ipst = ill->ill_ipst; 4026 int i; 4027 arl_ill_common_t *ai = ill->ill_common; 4028 4029 /* 4030 * The punlink prior to this may have initiated a capability 4031 * negotiation. But ipsq_enter will block until that finishes or 4032 * times out. 4033 */ 4034 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4035 4036 /* 4037 * Open/close/push/pop is guaranteed to be single threaded 4038 * per stream by STREAMS. FS guarantees that all references 4039 * from top are gone before close is called. So there can't 4040 * be another close thread that has set CONDEMNED on this ill. 4041 * and cause ipsq_enter to return failure. 4042 */ 4043 ASSERT(success); 4044 ipsq = ill->ill_phyint->phyint_ipsq; 4045 4046 /* 4047 * Mark it condemned. No new reference will be made to this ill. 4048 * Lookup functions will return an error. Threads that try to 4049 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4050 * that the refcnt will drop down to zero. 4051 */ 4052 mutex_enter(&ill->ill_lock); 4053 ill->ill_state_flags |= ILL_CONDEMNED; 4054 for (ipif = ill->ill_ipif; ipif != NULL; 4055 ipif = ipif->ipif_next) { 4056 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4057 } 4058 /* 4059 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4060 * returns error if ILL_CONDEMNED is set 4061 */ 4062 cv_broadcast(&ill->ill_cv); 4063 mutex_exit(&ill->ill_lock); 4064 4065 /* 4066 * Send all the deferred DLPI messages downstream which came in 4067 * during the small window right before ipsq_enter(). We do this 4068 * without waiting for the ACKs because all the ACKs for M_PROTO 4069 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4070 */ 4071 ill_dlpi_send_deferred(ill); 4072 4073 /* 4074 * Shut down fragmentation reassembly. 4075 * ill_frag_timer won't start a timer again. 4076 * Now cancel any existing timer 4077 */ 4078 (void) untimeout(ill->ill_frag_timer_id); 4079 (void) ill_frag_timeout(ill, 0); 4080 4081 /* 4082 * Call ill_delete to bring down the ipifs, ilms and ill on 4083 * this ill. Then wait for the refcnts to drop to zero. 4084 * ill_is_freeable checks whether the ill is really quiescent. 4085 * Then make sure that threads that are waiting to enter the 4086 * ipsq have seen the error returned by ipsq_enter and have 4087 * gone away. Then we call ill_delete_tail which does the 4088 * DL_UNBIND_REQ with the driver and then qprocsoff. 4089 */ 4090 ill_delete(ill); 4091 mutex_enter(&ill->ill_lock); 4092 while (!ill_is_freeable(ill)) 4093 cv_wait(&ill->ill_cv, &ill->ill_lock); 4094 4095 while (ill->ill_waiters) 4096 cv_wait(&ill->ill_cv, &ill->ill_lock); 4097 4098 mutex_exit(&ill->ill_lock); 4099 4100 /* 4101 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4102 * it held until the end of the function since the cleanup 4103 * below needs to be able to use the ip_stack_t. 4104 */ 4105 netstack_hold(ipst->ips_netstack); 4106 4107 /* qprocsoff is done via ill_delete_tail */ 4108 ill_delete_tail(ill); 4109 /* 4110 * synchronously wait for arp stream to unbind. After this, we 4111 * cannot get any data packets up from the driver. 4112 */ 4113 arp_unbind_complete(ill); 4114 ASSERT(ill->ill_ipst == NULL); 4115 4116 /* 4117 * Walk through all conns and qenable those that have queued data. 4118 * Close synchronization needs this to 4119 * be done to ensure that all upper layers blocked 4120 * due to flow control to the closing device 4121 * get unblocked. 4122 */ 4123 ip1dbg(("ip_wsrv: walking\n")); 4124 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4125 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4126 } 4127 4128 /* 4129 * ai can be null if this is an IPv6 ill, or if the IPv4 4130 * stream is being torn down before ARP was plumbed (e.g., 4131 * /sbin/ifconfig plumbing a stream twice, and encountering 4132 * an error 4133 */ 4134 if (ai != NULL) { 4135 ASSERT(!ill->ill_isv6); 4136 mutex_enter(&ai->ai_lock); 4137 ai->ai_ill = NULL; 4138 if (ai->ai_arl == NULL) { 4139 mutex_destroy(&ai->ai_lock); 4140 kmem_free(ai, sizeof (*ai)); 4141 } else { 4142 cv_signal(&ai->ai_ill_unplumb_done); 4143 mutex_exit(&ai->ai_lock); 4144 } 4145 } 4146 4147 mutex_enter(&ipst->ips_ip_mi_lock); 4148 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4149 mutex_exit(&ipst->ips_ip_mi_lock); 4150 4151 /* 4152 * credp could be null if the open didn't succeed and ip_modopen 4153 * itself calls ip_close. 4154 */ 4155 if (ill->ill_credp != NULL) 4156 crfree(ill->ill_credp); 4157 4158 mutex_destroy(&ill->ill_saved_ire_lock); 4159 mutex_destroy(&ill->ill_lock); 4160 rw_destroy(&ill->ill_mcast_lock); 4161 mutex_destroy(&ill->ill_mcast_serializer); 4162 list_destroy(&ill->ill_nce); 4163 4164 /* 4165 * Now we are done with the module close pieces that 4166 * need the netstack_t. 4167 */ 4168 netstack_rele(ipst->ips_netstack); 4169 4170 mi_close_free((IDP)ill); 4171 q->q_ptr = WR(q)->q_ptr = NULL; 4172 4173 ipsq_exit(ipsq); 4174 4175 return (0); 4176 } 4177 4178 /* 4179 * This is called as part of close() for IP, UDP, ICMP, and RTS 4180 * in order to quiesce the conn. 4181 */ 4182 void 4183 ip_quiesce_conn(conn_t *connp) 4184 { 4185 boolean_t drain_cleanup_reqd = B_FALSE; 4186 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4187 boolean_t ilg_cleanup_reqd = B_FALSE; 4188 ip_stack_t *ipst; 4189 4190 ASSERT(!IPCL_IS_TCP(connp)); 4191 ipst = connp->conn_netstack->netstack_ip; 4192 4193 /* 4194 * Mark the conn as closing, and this conn must not be 4195 * inserted in future into any list. Eg. conn_drain_insert(), 4196 * won't insert this conn into the conn_drain_list. 4197 * 4198 * conn_idl, and conn_ilg cannot get set henceforth. 4199 */ 4200 mutex_enter(&connp->conn_lock); 4201 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4202 connp->conn_state_flags |= CONN_CLOSING; 4203 if (connp->conn_idl != NULL) 4204 drain_cleanup_reqd = B_TRUE; 4205 if (connp->conn_oper_pending_ill != NULL) 4206 conn_ioctl_cleanup_reqd = B_TRUE; 4207 if (connp->conn_dhcpinit_ill != NULL) { 4208 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4209 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4210 ill_set_inputfn(connp->conn_dhcpinit_ill); 4211 connp->conn_dhcpinit_ill = NULL; 4212 } 4213 if (connp->conn_ilg != NULL) 4214 ilg_cleanup_reqd = B_TRUE; 4215 mutex_exit(&connp->conn_lock); 4216 4217 if (conn_ioctl_cleanup_reqd) 4218 conn_ioctl_cleanup(connp); 4219 4220 if (is_system_labeled() && connp->conn_anon_port) { 4221 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4222 connp->conn_mlp_type, connp->conn_proto, 4223 ntohs(connp->conn_lport), B_FALSE); 4224 connp->conn_anon_port = 0; 4225 } 4226 connp->conn_mlp_type = mlptSingle; 4227 4228 /* 4229 * Remove this conn from any fanout list it is on. 4230 * and then wait for any threads currently operating 4231 * on this endpoint to finish 4232 */ 4233 ipcl_hash_remove(connp); 4234 4235 /* 4236 * Remove this conn from the drain list, and do any other cleanup that 4237 * may be required. (TCP conns are never flow controlled, and 4238 * conn_idl will be NULL.) 4239 */ 4240 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4241 idl_t *idl = connp->conn_idl; 4242 4243 mutex_enter(&idl->idl_lock); 4244 conn_drain(connp, B_TRUE); 4245 mutex_exit(&idl->idl_lock); 4246 } 4247 4248 if (connp == ipst->ips_ip_g_mrouter) 4249 (void) ip_mrouter_done(ipst); 4250 4251 if (ilg_cleanup_reqd) 4252 ilg_delete_all(connp); 4253 4254 /* 4255 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4256 * callers from write side can't be there now because close 4257 * is in progress. The only other caller is ipcl_walk 4258 * which checks for the condemned flag. 4259 */ 4260 mutex_enter(&connp->conn_lock); 4261 connp->conn_state_flags |= CONN_CONDEMNED; 4262 while (connp->conn_ref != 1) 4263 cv_wait(&connp->conn_cv, &connp->conn_lock); 4264 connp->conn_state_flags |= CONN_QUIESCED; 4265 mutex_exit(&connp->conn_lock); 4266 } 4267 4268 /* ARGSUSED */ 4269 int 4270 ip_close(queue_t *q, int flags, cred_t *credp __unused) 4271 { 4272 conn_t *connp; 4273 4274 /* 4275 * Call the appropriate delete routine depending on whether this is 4276 * a module or device. 4277 */ 4278 if (WR(q)->q_next != NULL) { 4279 /* This is a module close */ 4280 return (ip_modclose((ill_t *)q->q_ptr)); 4281 } 4282 4283 connp = q->q_ptr; 4284 ip_quiesce_conn(connp); 4285 4286 qprocsoff(q); 4287 4288 /* 4289 * Now we are truly single threaded on this stream, and can 4290 * delete the things hanging off the connp, and finally the connp. 4291 * We removed this connp from the fanout list, it cannot be 4292 * accessed thru the fanouts, and we already waited for the 4293 * conn_ref to drop to 0. We are already in close, so 4294 * there cannot be any other thread from the top. qprocsoff 4295 * has completed, and service has completed or won't run in 4296 * future. 4297 */ 4298 ASSERT(connp->conn_ref == 1); 4299 4300 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4301 4302 connp->conn_ref--; 4303 ipcl_conn_destroy(connp); 4304 4305 q->q_ptr = WR(q)->q_ptr = NULL; 4306 return (0); 4307 } 4308 4309 /* 4310 * Wapper around putnext() so that ip_rts_request can merely use 4311 * conn_recv. 4312 */ 4313 /*ARGSUSED2*/ 4314 static void 4315 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4316 { 4317 conn_t *connp = (conn_t *)arg1; 4318 4319 putnext(connp->conn_rq, mp); 4320 } 4321 4322 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4323 /* ARGSUSED */ 4324 static void 4325 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4326 { 4327 freemsg(mp); 4328 } 4329 4330 /* 4331 * Called when the module is about to be unloaded 4332 */ 4333 void 4334 ip_ddi_destroy(void) 4335 { 4336 /* This needs to be called before destroying any transports. */ 4337 mutex_enter(&cpu_lock); 4338 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4339 mutex_exit(&cpu_lock); 4340 4341 tnet_fini(); 4342 4343 icmp_ddi_g_destroy(); 4344 rts_ddi_g_destroy(); 4345 udp_ddi_g_destroy(); 4346 sctp_ddi_g_destroy(); 4347 tcp_ddi_g_destroy(); 4348 ilb_ddi_g_destroy(); 4349 dce_g_destroy(); 4350 ipsec_policy_g_destroy(); 4351 ipcl_g_destroy(); 4352 ip_net_g_destroy(); 4353 ip_ire_g_fini(); 4354 inet_minor_destroy(ip_minor_arena_sa); 4355 #if defined(_LP64) 4356 inet_minor_destroy(ip_minor_arena_la); 4357 #endif 4358 4359 #ifdef DEBUG 4360 list_destroy(&ip_thread_list); 4361 rw_destroy(&ip_thread_rwlock); 4362 tsd_destroy(&ip_thread_data); 4363 #endif 4364 4365 netstack_unregister(NS_IP); 4366 } 4367 4368 /* 4369 * First step in cleanup. 4370 */ 4371 /* ARGSUSED */ 4372 static void 4373 ip_stack_shutdown(netstackid_t stackid, void *arg) 4374 { 4375 ip_stack_t *ipst = (ip_stack_t *)arg; 4376 kt_did_t ktid; 4377 4378 #ifdef NS_DEBUG 4379 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4380 #endif 4381 4382 /* 4383 * Perform cleanup for special interfaces (loopback and IPMP). 4384 */ 4385 ip_interface_cleanup(ipst); 4386 4387 /* 4388 * The *_hook_shutdown()s start the process of notifying any 4389 * consumers that things are going away.... nothing is destroyed. 4390 */ 4391 ipv4_hook_shutdown(ipst); 4392 ipv6_hook_shutdown(ipst); 4393 arp_hook_shutdown(ipst); 4394 4395 mutex_enter(&ipst->ips_capab_taskq_lock); 4396 ktid = ipst->ips_capab_taskq_thread->t_did; 4397 ipst->ips_capab_taskq_quit = B_TRUE; 4398 cv_signal(&ipst->ips_capab_taskq_cv); 4399 mutex_exit(&ipst->ips_capab_taskq_lock); 4400 4401 /* 4402 * In rare occurrences, particularly on virtual hardware where CPUs can 4403 * be de-scheduled, the thread that we just signaled will not run until 4404 * after we have gotten through parts of ip_stack_fini. If that happens 4405 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4406 * from cv_wait which no longer exists. 4407 */ 4408 thread_join(ktid); 4409 } 4410 4411 /* 4412 * Free the IP stack instance. 4413 */ 4414 static void 4415 ip_stack_fini(netstackid_t stackid, void *arg) 4416 { 4417 ip_stack_t *ipst = (ip_stack_t *)arg; 4418 int ret; 4419 4420 #ifdef NS_DEBUG 4421 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4422 #endif 4423 /* 4424 * At this point, all of the notifications that the events and 4425 * protocols are going away have been run, meaning that we can 4426 * now set about starting to clean things up. 4427 */ 4428 ipobs_fini(ipst); 4429 ipv4_hook_destroy(ipst); 4430 ipv6_hook_destroy(ipst); 4431 arp_hook_destroy(ipst); 4432 ip_net_destroy(ipst); 4433 4434 ipmp_destroy(ipst); 4435 4436 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4437 ipst->ips_ip_mibkp = NULL; 4438 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4439 ipst->ips_icmp_mibkp = NULL; 4440 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4441 ipst->ips_ip_kstat = NULL; 4442 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4443 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4444 ipst->ips_ip6_kstat = NULL; 4445 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4446 4447 kmem_free(ipst->ips_propinfo_tbl, 4448 ip_propinfo_count * sizeof (mod_prop_info_t)); 4449 ipst->ips_propinfo_tbl = NULL; 4450 4451 dce_stack_destroy(ipst); 4452 ip_mrouter_stack_destroy(ipst); 4453 4454 /* 4455 * Quiesce all of our timers. Note we set the quiesce flags before we 4456 * call untimeout. The slowtimers may actually kick off another instance 4457 * of the non-slow timers. 4458 */ 4459 mutex_enter(&ipst->ips_igmp_timer_lock); 4460 ipst->ips_igmp_timer_quiesce = B_TRUE; 4461 mutex_exit(&ipst->ips_igmp_timer_lock); 4462 4463 mutex_enter(&ipst->ips_mld_timer_lock); 4464 ipst->ips_mld_timer_quiesce = B_TRUE; 4465 mutex_exit(&ipst->ips_mld_timer_lock); 4466 4467 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 4468 ipst->ips_igmp_slowtimeout_quiesce = B_TRUE; 4469 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 4470 4471 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 4472 ipst->ips_mld_slowtimeout_quiesce = B_TRUE; 4473 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 4474 4475 ret = untimeout(ipst->ips_igmp_timeout_id); 4476 if (ret == -1) { 4477 ASSERT(ipst->ips_igmp_timeout_id == 0); 4478 } else { 4479 ASSERT(ipst->ips_igmp_timeout_id != 0); 4480 ipst->ips_igmp_timeout_id = 0; 4481 } 4482 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4483 if (ret == -1) { 4484 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4485 } else { 4486 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4487 ipst->ips_igmp_slowtimeout_id = 0; 4488 } 4489 ret = untimeout(ipst->ips_mld_timeout_id); 4490 if (ret == -1) { 4491 ASSERT(ipst->ips_mld_timeout_id == 0); 4492 } else { 4493 ASSERT(ipst->ips_mld_timeout_id != 0); 4494 ipst->ips_mld_timeout_id = 0; 4495 } 4496 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4497 if (ret == -1) { 4498 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4499 } else { 4500 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4501 ipst->ips_mld_slowtimeout_id = 0; 4502 } 4503 4504 ip_ire_fini(ipst); 4505 ip6_asp_free(ipst); 4506 conn_drain_fini(ipst); 4507 ipcl_destroy(ipst); 4508 4509 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4510 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4511 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4512 ipst->ips_ndp4 = NULL; 4513 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4514 ipst->ips_ndp6 = NULL; 4515 4516 if (ipst->ips_loopback_ksp != NULL) { 4517 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4518 ipst->ips_loopback_ksp = NULL; 4519 } 4520 4521 mutex_destroy(&ipst->ips_capab_taskq_lock); 4522 cv_destroy(&ipst->ips_capab_taskq_cv); 4523 4524 rw_destroy(&ipst->ips_srcid_lock); 4525 4526 mutex_destroy(&ipst->ips_ip_mi_lock); 4527 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4528 4529 mutex_destroy(&ipst->ips_igmp_timer_lock); 4530 mutex_destroy(&ipst->ips_mld_timer_lock); 4531 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4532 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4533 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4534 rw_destroy(&ipst->ips_ill_g_lock); 4535 4536 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4537 ipst->ips_phyint_g_list = NULL; 4538 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4539 ipst->ips_ill_g_heads = NULL; 4540 4541 ldi_ident_release(ipst->ips_ldi_ident); 4542 kmem_free(ipst, sizeof (*ipst)); 4543 } 4544 4545 /* 4546 * This function is called from the TSD destructor, and is used to debug 4547 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4548 * details. 4549 */ 4550 static void 4551 ip_thread_exit(void *phash) 4552 { 4553 th_hash_t *thh = phash; 4554 4555 rw_enter(&ip_thread_rwlock, RW_WRITER); 4556 list_remove(&ip_thread_list, thh); 4557 rw_exit(&ip_thread_rwlock); 4558 mod_hash_destroy_hash(thh->thh_hash); 4559 kmem_free(thh, sizeof (*thh)); 4560 } 4561 4562 /* 4563 * Called when the IP kernel module is loaded into the kernel 4564 */ 4565 void 4566 ip_ddi_init(void) 4567 { 4568 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4569 4570 /* 4571 * For IP and TCP the minor numbers should start from 2 since we have 4 4572 * initial devices: ip, ip6, tcp, tcp6. 4573 */ 4574 /* 4575 * If this is a 64-bit kernel, then create two separate arenas - 4576 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4577 * other for socket apps in the range 2^^18 through 2^^32-1. 4578 */ 4579 ip_minor_arena_la = NULL; 4580 ip_minor_arena_sa = NULL; 4581 #if defined(_LP64) 4582 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4583 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4584 cmn_err(CE_PANIC, 4585 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4586 } 4587 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4588 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4589 cmn_err(CE_PANIC, 4590 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4591 } 4592 #else 4593 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4594 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4595 cmn_err(CE_PANIC, 4596 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4597 } 4598 #endif 4599 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4600 4601 ipcl_g_init(); 4602 ip_ire_g_init(); 4603 ip_net_g_init(); 4604 4605 #ifdef DEBUG 4606 tsd_create(&ip_thread_data, ip_thread_exit); 4607 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4608 list_create(&ip_thread_list, sizeof (th_hash_t), 4609 offsetof(th_hash_t, thh_link)); 4610 #endif 4611 ipsec_policy_g_init(); 4612 tcp_ddi_g_init(); 4613 sctp_ddi_g_init(); 4614 dce_g_init(); 4615 4616 /* 4617 * We want to be informed each time a stack is created or 4618 * destroyed in the kernel, so we can maintain the 4619 * set of udp_stack_t's. 4620 */ 4621 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4622 ip_stack_fini); 4623 4624 tnet_init(); 4625 4626 udp_ddi_g_init(); 4627 rts_ddi_g_init(); 4628 icmp_ddi_g_init(); 4629 ilb_ddi_g_init(); 4630 4631 /* This needs to be called after all transports are initialized. */ 4632 mutex_enter(&cpu_lock); 4633 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4634 mutex_exit(&cpu_lock); 4635 } 4636 4637 /* 4638 * Initialize the IP stack instance. 4639 */ 4640 static void * 4641 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4642 { 4643 ip_stack_t *ipst; 4644 size_t arrsz; 4645 major_t major; 4646 4647 #ifdef NS_DEBUG 4648 printf("ip_stack_init(stack %d)\n", stackid); 4649 #endif 4650 4651 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4652 ipst->ips_netstack = ns; 4653 4654 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4655 KM_SLEEP); 4656 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4657 KM_SLEEP); 4658 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4659 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4660 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4661 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4662 4663 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4664 ipst->ips_igmp_deferred_next = INFINITY; 4665 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4666 ipst->ips_mld_deferred_next = INFINITY; 4667 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4668 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4669 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4670 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4671 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4672 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4673 4674 ipcl_init(ipst); 4675 ip_ire_init(ipst); 4676 ip6_asp_init(ipst); 4677 ipif_init(ipst); 4678 conn_drain_init(ipst); 4679 ip_mrouter_stack_init(ipst); 4680 dce_stack_init(ipst); 4681 4682 ipst->ips_ip_multirt_log_interval = 1000; 4683 4684 ipst->ips_ill_index = 1; 4685 4686 ipst->ips_saved_ip_forwarding = -1; 4687 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4688 4689 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4690 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4691 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4692 4693 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4694 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4695 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4696 ipst->ips_ip6_kstat = 4697 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4698 4699 ipst->ips_ip_src_id = 1; 4700 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4701 4702 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4703 4704 ip_net_init(ipst, ns); 4705 ipv4_hook_init(ipst); 4706 ipv6_hook_init(ipst); 4707 arp_hook_init(ipst); 4708 ipmp_init(ipst); 4709 ipobs_init(ipst); 4710 4711 /* 4712 * Create the taskq dispatcher thread and initialize related stuff. 4713 */ 4714 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4715 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4716 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4717 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4718 4719 major = mod_name_to_major(INET_NAME); 4720 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4721 return (ipst); 4722 } 4723 4724 /* 4725 * Allocate and initialize a DLPI template of the specified length. (May be 4726 * called as writer.) 4727 */ 4728 mblk_t * 4729 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4730 { 4731 mblk_t *mp; 4732 4733 mp = allocb(len, BPRI_MED); 4734 if (!mp) 4735 return (NULL); 4736 4737 /* 4738 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4739 * of which we don't seem to use) are sent with M_PCPROTO, and 4740 * that other DLPI are M_PROTO. 4741 */ 4742 if (prim == DL_INFO_REQ) { 4743 mp->b_datap->db_type = M_PCPROTO; 4744 } else { 4745 mp->b_datap->db_type = M_PROTO; 4746 } 4747 4748 mp->b_wptr = mp->b_rptr + len; 4749 bzero(mp->b_rptr, len); 4750 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4751 return (mp); 4752 } 4753 4754 /* 4755 * Allocate and initialize a DLPI notification. (May be called as writer.) 4756 */ 4757 mblk_t * 4758 ip_dlnotify_alloc(uint_t notification, uint_t data) 4759 { 4760 dl_notify_ind_t *notifyp; 4761 mblk_t *mp; 4762 4763 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4764 return (NULL); 4765 4766 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4767 notifyp->dl_notification = notification; 4768 notifyp->dl_data = data; 4769 return (mp); 4770 } 4771 4772 mblk_t * 4773 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4774 { 4775 dl_notify_ind_t *notifyp; 4776 mblk_t *mp; 4777 4778 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4779 return (NULL); 4780 4781 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4782 notifyp->dl_notification = notification; 4783 notifyp->dl_data1 = data1; 4784 notifyp->dl_data2 = data2; 4785 return (mp); 4786 } 4787 4788 /* 4789 * Debug formatting routine. Returns a character string representation of the 4790 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4791 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4792 * 4793 * Once the ndd table-printing interfaces are removed, this can be changed to 4794 * standard dotted-decimal form. 4795 */ 4796 char * 4797 ip_dot_addr(ipaddr_t addr, char *buf) 4798 { 4799 uint8_t *ap = (uint8_t *)&addr; 4800 4801 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4802 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4803 return (buf); 4804 } 4805 4806 /* 4807 * Write the given MAC address as a printable string in the usual colon- 4808 * separated format. 4809 */ 4810 const char * 4811 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4812 { 4813 char *bp; 4814 4815 if (alen == 0 || buflen < 4) 4816 return ("?"); 4817 bp = buf; 4818 for (;;) { 4819 /* 4820 * If there are more MAC address bytes available, but we won't 4821 * have any room to print them, then add "..." to the string 4822 * instead. See below for the 'magic number' explanation. 4823 */ 4824 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4825 (void) strcpy(bp, "..."); 4826 break; 4827 } 4828 (void) sprintf(bp, "%02x", *addr++); 4829 bp += 2; 4830 if (--alen == 0) 4831 break; 4832 *bp++ = ':'; 4833 buflen -= 3; 4834 /* 4835 * At this point, based on the first 'if' statement above, 4836 * either alen == 1 and buflen >= 3, or alen > 1 and 4837 * buflen >= 4. The first case leaves room for the final "xx" 4838 * number and trailing NUL byte. The second leaves room for at 4839 * least "...". Thus the apparently 'magic' numbers chosen for 4840 * that statement. 4841 */ 4842 } 4843 return (buf); 4844 } 4845 4846 /* 4847 * Called when it is conceptually a ULP that would sent the packet 4848 * e.g., port unreachable and protocol unreachable. Check that the packet 4849 * would have passed the IPsec global policy before sending the error. 4850 * 4851 * Send an ICMP error after patching up the packet appropriately. 4852 * Uses ip_drop_input and bumps the appropriate MIB. 4853 */ 4854 void 4855 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4856 ip_recv_attr_t *ira) 4857 { 4858 ipha_t *ipha; 4859 boolean_t secure; 4860 ill_t *ill = ira->ira_ill; 4861 ip_stack_t *ipst = ill->ill_ipst; 4862 netstack_t *ns = ipst->ips_netstack; 4863 ipsec_stack_t *ipss = ns->netstack_ipsec; 4864 4865 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4866 4867 /* 4868 * We are generating an icmp error for some inbound packet. 4869 * Called from all ip_fanout_(udp, tcp, proto) functions. 4870 * Before we generate an error, check with global policy 4871 * to see whether this is allowed to enter the system. As 4872 * there is no "conn", we are checking with global policy. 4873 */ 4874 ipha = (ipha_t *)mp->b_rptr; 4875 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4876 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4877 if (mp == NULL) 4878 return; 4879 } 4880 4881 /* We never send errors for protocols that we do implement */ 4882 if (ira->ira_protocol == IPPROTO_ICMP || 4883 ira->ira_protocol == IPPROTO_IGMP) { 4884 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4885 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4886 freemsg(mp); 4887 return; 4888 } 4889 /* 4890 * Have to correct checksum since 4891 * the packet might have been 4892 * fragmented and the reassembly code in ip_rput 4893 * does not restore the IP checksum. 4894 */ 4895 ipha->ipha_hdr_checksum = 0; 4896 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4897 4898 switch (icmp_type) { 4899 case ICMP_DEST_UNREACHABLE: 4900 switch (icmp_code) { 4901 case ICMP_PROTOCOL_UNREACHABLE: 4902 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4903 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4904 break; 4905 case ICMP_PORT_UNREACHABLE: 4906 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4907 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4908 break; 4909 } 4910 4911 icmp_unreachable(mp, icmp_code, ira); 4912 break; 4913 default: 4914 #ifdef DEBUG 4915 panic("ip_fanout_send_icmp_v4: wrong type"); 4916 /*NOTREACHED*/ 4917 #else 4918 freemsg(mp); 4919 break; 4920 #endif 4921 } 4922 } 4923 4924 /* 4925 * Used to send an ICMP error message when a packet is received for 4926 * a protocol that is not supported. The mblk passed as argument 4927 * is consumed by this function. 4928 */ 4929 void 4930 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4931 { 4932 ipha_t *ipha; 4933 4934 ipha = (ipha_t *)mp->b_rptr; 4935 if (ira->ira_flags & IRAF_IS_IPV4) { 4936 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4937 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4938 ICMP_PROTOCOL_UNREACHABLE, ira); 4939 } else { 4940 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4941 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4942 ICMP6_PARAMPROB_NEXTHEADER, ira); 4943 } 4944 } 4945 4946 /* 4947 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4948 * Handles IPv4 and IPv6. 4949 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4950 * Caller is responsible for dropping references to the conn. 4951 */ 4952 void 4953 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4954 ip_recv_attr_t *ira) 4955 { 4956 ill_t *ill = ira->ira_ill; 4957 ip_stack_t *ipst = ill->ill_ipst; 4958 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4959 boolean_t secure; 4960 uint_t protocol = ira->ira_protocol; 4961 iaflags_t iraflags = ira->ira_flags; 4962 queue_t *rq; 4963 4964 secure = iraflags & IRAF_IPSEC_SECURE; 4965 4966 rq = connp->conn_rq; 4967 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4968 switch (protocol) { 4969 case IPPROTO_ICMPV6: 4970 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4971 break; 4972 case IPPROTO_ICMP: 4973 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4974 break; 4975 default: 4976 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4977 break; 4978 } 4979 freemsg(mp); 4980 return; 4981 } 4982 4983 ASSERT(!(IPCL_IS_IPTUN(connp))); 4984 4985 if (connp->conn_min_ttl != 0 && connp->conn_min_ttl > ira->ira_ttl) { 4986 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4987 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4988 freemsg(mp); 4989 return; 4990 } 4991 4992 if (((iraflags & IRAF_IS_IPV4) ? 4993 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4994 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4995 secure) { 4996 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4997 ip6h, ira); 4998 if (mp == NULL) { 4999 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5000 /* Note that mp is NULL */ 5001 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5002 return; 5003 } 5004 } 5005 5006 if (iraflags & IRAF_ICMP_ERROR) { 5007 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5008 } else { 5009 ill_t *rill = ira->ira_rill; 5010 5011 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5012 ira->ira_ill = ira->ira_rill = NULL; 5013 /* Send it upstream */ 5014 (connp->conn_recv)(connp, mp, NULL, ira); 5015 ira->ira_ill = ill; 5016 ira->ira_rill = rill; 5017 } 5018 } 5019 5020 /* 5021 * Handle protocols with which IP is less intimate. There 5022 * can be more than one stream bound to a particular 5023 * protocol. When this is the case, normally each one gets a copy 5024 * of any incoming packets. 5025 * 5026 * IPsec NOTE : 5027 * 5028 * Don't allow a secure packet going up a non-secure connection. 5029 * We don't allow this because 5030 * 5031 * 1) Reply might go out in clear which will be dropped at 5032 * the sending side. 5033 * 2) If the reply goes out in clear it will give the 5034 * adversary enough information for getting the key in 5035 * most of the cases. 5036 * 5037 * Moreover getting a secure packet when we expect clear 5038 * implies that SA's were added without checking for 5039 * policy on both ends. This should not happen once ISAKMP 5040 * is used to negotiate SAs as SAs will be added only after 5041 * verifying the policy. 5042 * 5043 * Zones notes: 5044 * Earlier in ip_input on a system with multiple shared-IP zones we 5045 * duplicate the multicast and broadcast packets and send them up 5046 * with each explicit zoneid that exists on that ill. 5047 * This means that here we can match the zoneid with SO_ALLZONES being special. 5048 */ 5049 void 5050 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5051 { 5052 mblk_t *mp1; 5053 ipaddr_t laddr; 5054 conn_t *connp, *first_connp, *next_connp; 5055 connf_t *connfp; 5056 ill_t *ill = ira->ira_ill; 5057 ip_stack_t *ipst = ill->ill_ipst; 5058 5059 laddr = ipha->ipha_dst; 5060 5061 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5062 mutex_enter(&connfp->connf_lock); 5063 connp = connfp->connf_head; 5064 for (connp = connfp->connf_head; connp != NULL; 5065 connp = connp->conn_next) { 5066 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5067 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5068 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5069 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5070 break; 5071 } 5072 } 5073 5074 if (connp == NULL) { 5075 /* 5076 * No one bound to these addresses. Is 5077 * there a client that wants all 5078 * unclaimed datagrams? 5079 */ 5080 mutex_exit(&connfp->connf_lock); 5081 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5082 ICMP_PROTOCOL_UNREACHABLE, ira); 5083 return; 5084 } 5085 5086 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5087 5088 CONN_INC_REF(connp); 5089 first_connp = connp; 5090 connp = connp->conn_next; 5091 5092 for (;;) { 5093 while (connp != NULL) { 5094 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5095 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5096 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5097 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5098 ira, connp))) 5099 break; 5100 connp = connp->conn_next; 5101 } 5102 5103 if (connp == NULL) { 5104 /* No more interested clients */ 5105 connp = first_connp; 5106 break; 5107 } 5108 if (((mp1 = dupmsg(mp)) == NULL) && 5109 ((mp1 = copymsg(mp)) == NULL)) { 5110 /* Memory allocation failed */ 5111 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5112 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5113 connp = first_connp; 5114 break; 5115 } 5116 5117 CONN_INC_REF(connp); 5118 mutex_exit(&connfp->connf_lock); 5119 5120 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5121 ira); 5122 5123 mutex_enter(&connfp->connf_lock); 5124 /* Follow the next pointer before releasing the conn. */ 5125 next_connp = connp->conn_next; 5126 CONN_DEC_REF(connp); 5127 connp = next_connp; 5128 } 5129 5130 /* Last one. Send it upstream. */ 5131 mutex_exit(&connfp->connf_lock); 5132 5133 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5134 5135 CONN_DEC_REF(connp); 5136 } 5137 5138 /* 5139 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5140 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5141 * is not consumed. 5142 * 5143 * One of three things can happen, all of which affect the passed-in mblk: 5144 * 5145 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5146 * 5147 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5148 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5149 * 5150 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5151 */ 5152 mblk_t * 5153 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5154 { 5155 int shift, plen, iph_len; 5156 ipha_t *ipha; 5157 udpha_t *udpha; 5158 uint32_t *spi; 5159 uint32_t esp_ports; 5160 uint8_t *orptr; 5161 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5162 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5163 5164 ipha = (ipha_t *)mp->b_rptr; 5165 iph_len = ira->ira_ip_hdr_length; 5166 plen = ira->ira_pktlen; 5167 5168 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5169 /* 5170 * Most likely a keepalive for the benefit of an intervening 5171 * NAT. These aren't for us, per se, so drop it. 5172 * 5173 * RFC 3947/8 doesn't say for sure what to do for 2-3 5174 * byte packets (keepalives are 1-byte), but we'll drop them 5175 * also. 5176 */ 5177 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5178 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5179 return (NULL); 5180 } 5181 5182 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5183 /* might as well pull it all up - it might be ESP. */ 5184 if (!pullupmsg(mp, -1)) { 5185 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5186 DROPPER(ipss, ipds_esp_nomem), 5187 &ipss->ipsec_dropper); 5188 return (NULL); 5189 } 5190 5191 ipha = (ipha_t *)mp->b_rptr; 5192 } 5193 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5194 if (*spi == 0) { 5195 /* UDP packet - remove 0-spi. */ 5196 shift = sizeof (uint32_t); 5197 } else { 5198 /* ESP-in-UDP packet - reduce to ESP. */ 5199 ipha->ipha_protocol = IPPROTO_ESP; 5200 shift = sizeof (udpha_t); 5201 } 5202 5203 /* Fix IP header */ 5204 ira->ira_pktlen = (plen - shift); 5205 ipha->ipha_length = htons(ira->ira_pktlen); 5206 ipha->ipha_hdr_checksum = 0; 5207 5208 orptr = mp->b_rptr; 5209 mp->b_rptr += shift; 5210 5211 udpha = (udpha_t *)(orptr + iph_len); 5212 if (*spi == 0) { 5213 ASSERT((uint8_t *)ipha == orptr); 5214 udpha->uha_length = htons(plen - shift - iph_len); 5215 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5216 esp_ports = 0; 5217 } else { 5218 esp_ports = *((uint32_t *)udpha); 5219 ASSERT(esp_ports != 0); 5220 } 5221 ovbcopy(orptr, orptr + shift, iph_len); 5222 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5223 ipha = (ipha_t *)(orptr + shift); 5224 5225 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5226 ira->ira_esp_udp_ports = esp_ports; 5227 ip_fanout_v4(mp, ipha, ira); 5228 return (NULL); 5229 } 5230 return (mp); 5231 } 5232 5233 /* 5234 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5235 * Handles IPv4 and IPv6. 5236 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5237 * Caller is responsible for dropping references to the conn. 5238 */ 5239 void 5240 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5241 ip_recv_attr_t *ira) 5242 { 5243 ill_t *ill = ira->ira_ill; 5244 ip_stack_t *ipst = ill->ill_ipst; 5245 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5246 boolean_t secure; 5247 iaflags_t iraflags = ira->ira_flags; 5248 5249 secure = iraflags & IRAF_IPSEC_SECURE; 5250 5251 if (connp->conn_min_ttl != 0 && connp->conn_min_ttl > ira->ira_ttl) { 5252 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5253 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5254 freemsg(mp); 5255 return; 5256 } 5257 5258 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5259 !canputnext(connp->conn_rq)) { 5260 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5261 freemsg(mp); 5262 return; 5263 } 5264 5265 if (((iraflags & IRAF_IS_IPV4) ? 5266 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5267 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5268 secure) { 5269 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5270 ip6h, ira); 5271 if (mp == NULL) { 5272 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5273 /* Note that mp is NULL */ 5274 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5275 return; 5276 } 5277 } 5278 5279 /* 5280 * Since this code is not used for UDP unicast we don't need a NAT_T 5281 * check. Only ip_fanout_v4 has that check. 5282 */ 5283 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5284 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5285 } else { 5286 ill_t *rill = ira->ira_rill; 5287 5288 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5289 ira->ira_ill = ira->ira_rill = NULL; 5290 /* Send it upstream */ 5291 (connp->conn_recv)(connp, mp, NULL, ira); 5292 ira->ira_ill = ill; 5293 ira->ira_rill = rill; 5294 } 5295 } 5296 5297 /* 5298 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5299 * (Unicast fanout is handled in ip_input_v4.) 5300 * 5301 * If SO_REUSEADDR is set all multicast and broadcast packets 5302 * will be delivered to all conns bound to the same port. 5303 * 5304 * If there is at least one matching AF_INET receiver, then we will 5305 * ignore any AF_INET6 receivers. 5306 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5307 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5308 * packets. 5309 * 5310 * Zones notes: 5311 * Earlier in ip_input on a system with multiple shared-IP zones we 5312 * duplicate the multicast and broadcast packets and send them up 5313 * with each explicit zoneid that exists on that ill. 5314 * This means that here we can match the zoneid with SO_ALLZONES being special. 5315 */ 5316 void 5317 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5318 ip_recv_attr_t *ira) 5319 { 5320 ipaddr_t laddr; 5321 in6_addr_t v6faddr; 5322 conn_t *connp; 5323 connf_t *connfp; 5324 ipaddr_t faddr; 5325 ill_t *ill = ira->ira_ill; 5326 ip_stack_t *ipst = ill->ill_ipst; 5327 5328 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5329 5330 laddr = ipha->ipha_dst; 5331 faddr = ipha->ipha_src; 5332 5333 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5334 mutex_enter(&connfp->connf_lock); 5335 connp = connfp->connf_head; 5336 5337 /* 5338 * If SO_REUSEADDR has been set on the first we send the 5339 * packet to all clients that have joined the group and 5340 * match the port. 5341 */ 5342 while (connp != NULL) { 5343 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5344 conn_wantpacket(connp, ira, ipha) && 5345 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5346 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5347 break; 5348 connp = connp->conn_next; 5349 } 5350 5351 if (connp == NULL) 5352 goto notfound; 5353 5354 CONN_INC_REF(connp); 5355 5356 if (connp->conn_reuseaddr) { 5357 conn_t *first_connp = connp; 5358 conn_t *next_connp; 5359 mblk_t *mp1; 5360 5361 connp = connp->conn_next; 5362 for (;;) { 5363 while (connp != NULL) { 5364 if (IPCL_UDP_MATCH(connp, lport, laddr, 5365 fport, faddr) && 5366 conn_wantpacket(connp, ira, ipha) && 5367 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5368 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5369 ira, connp))) 5370 break; 5371 connp = connp->conn_next; 5372 } 5373 if (connp == NULL) { 5374 /* No more interested clients */ 5375 connp = first_connp; 5376 break; 5377 } 5378 if (((mp1 = dupmsg(mp)) == NULL) && 5379 ((mp1 = copymsg(mp)) == NULL)) { 5380 /* Memory allocation failed */ 5381 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5382 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5383 connp = first_connp; 5384 break; 5385 } 5386 CONN_INC_REF(connp); 5387 mutex_exit(&connfp->connf_lock); 5388 5389 IP_STAT(ipst, ip_udp_fanmb); 5390 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5391 NULL, ira); 5392 mutex_enter(&connfp->connf_lock); 5393 /* Follow the next pointer before releasing the conn */ 5394 next_connp = connp->conn_next; 5395 CONN_DEC_REF(connp); 5396 connp = next_connp; 5397 } 5398 } 5399 5400 /* Last one. Send it upstream. */ 5401 mutex_exit(&connfp->connf_lock); 5402 IP_STAT(ipst, ip_udp_fanmb); 5403 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5404 CONN_DEC_REF(connp); 5405 return; 5406 5407 notfound: 5408 mutex_exit(&connfp->connf_lock); 5409 /* 5410 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5411 * have already been matched above, since they live in the IPv4 5412 * fanout tables. This implies we only need to 5413 * check for IPv6 in6addr_any endpoints here. 5414 * Thus we compare using ipv6_all_zeros instead of the destination 5415 * address, except for the multicast group membership lookup which 5416 * uses the IPv4 destination. 5417 */ 5418 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5419 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5420 mutex_enter(&connfp->connf_lock); 5421 connp = connfp->connf_head; 5422 /* 5423 * IPv4 multicast packet being delivered to an AF_INET6 5424 * in6addr_any endpoint. 5425 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5426 * and not conn_wantpacket_v6() since any multicast membership is 5427 * for an IPv4-mapped multicast address. 5428 */ 5429 while (connp != NULL) { 5430 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5431 fport, v6faddr) && 5432 conn_wantpacket(connp, ira, ipha) && 5433 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5434 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5435 break; 5436 connp = connp->conn_next; 5437 } 5438 5439 if (connp == NULL) { 5440 /* 5441 * No one bound to this port. Is 5442 * there a client that wants all 5443 * unclaimed datagrams? 5444 */ 5445 mutex_exit(&connfp->connf_lock); 5446 5447 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5448 NULL) { 5449 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5450 ip_fanout_proto_v4(mp, ipha, ira); 5451 } else { 5452 /* 5453 * We used to attempt to send an icmp error here, but 5454 * since this is known to be a multicast packet 5455 * and we don't send icmp errors in response to 5456 * multicast, just drop the packet and give up sooner. 5457 */ 5458 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5459 freemsg(mp); 5460 } 5461 return; 5462 } 5463 CONN_INC_REF(connp); 5464 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5465 5466 /* 5467 * If SO_REUSEADDR has been set on the first we send the 5468 * packet to all clients that have joined the group and 5469 * match the port. 5470 */ 5471 if (connp->conn_reuseaddr) { 5472 conn_t *first_connp = connp; 5473 conn_t *next_connp; 5474 mblk_t *mp1; 5475 5476 connp = connp->conn_next; 5477 for (;;) { 5478 while (connp != NULL) { 5479 if (IPCL_UDP_MATCH_V6(connp, lport, 5480 ipv6_all_zeros, fport, v6faddr) && 5481 conn_wantpacket(connp, ira, ipha) && 5482 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5483 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5484 ira, connp))) 5485 break; 5486 connp = connp->conn_next; 5487 } 5488 if (connp == NULL) { 5489 /* No more interested clients */ 5490 connp = first_connp; 5491 break; 5492 } 5493 if (((mp1 = dupmsg(mp)) == NULL) && 5494 ((mp1 = copymsg(mp)) == NULL)) { 5495 /* Memory allocation failed */ 5496 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5497 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5498 connp = first_connp; 5499 break; 5500 } 5501 CONN_INC_REF(connp); 5502 mutex_exit(&connfp->connf_lock); 5503 5504 IP_STAT(ipst, ip_udp_fanmb); 5505 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5506 NULL, ira); 5507 mutex_enter(&connfp->connf_lock); 5508 /* Follow the next pointer before releasing the conn */ 5509 next_connp = connp->conn_next; 5510 CONN_DEC_REF(connp); 5511 connp = next_connp; 5512 } 5513 } 5514 5515 /* Last one. Send it upstream. */ 5516 mutex_exit(&connfp->connf_lock); 5517 IP_STAT(ipst, ip_udp_fanmb); 5518 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5519 CONN_DEC_REF(connp); 5520 } 5521 5522 /* 5523 * Split an incoming packet's IPv4 options into the label and the other options. 5524 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5525 * clearing out any leftover label or options. 5526 * Otherwise it just makes ipp point into the packet. 5527 * 5528 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5529 */ 5530 int 5531 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5532 { 5533 uchar_t *opt; 5534 uint32_t totallen; 5535 uint32_t optval; 5536 uint32_t optlen; 5537 5538 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5539 ipp->ipp_hoplimit = ipha->ipha_ttl; 5540 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5541 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5542 5543 /* 5544 * Get length (in 4 byte octets) of IP header options. 5545 */ 5546 totallen = ipha->ipha_version_and_hdr_length - 5547 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5548 5549 if (totallen == 0) { 5550 if (!allocate) 5551 return (0); 5552 5553 /* Clear out anything from a previous packet */ 5554 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5555 kmem_free(ipp->ipp_ipv4_options, 5556 ipp->ipp_ipv4_options_len); 5557 ipp->ipp_ipv4_options = NULL; 5558 ipp->ipp_ipv4_options_len = 0; 5559 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5560 } 5561 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5562 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5563 ipp->ipp_label_v4 = NULL; 5564 ipp->ipp_label_len_v4 = 0; 5565 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5566 } 5567 return (0); 5568 } 5569 5570 totallen <<= 2; 5571 opt = (uchar_t *)&ipha[1]; 5572 if (!is_system_labeled()) { 5573 5574 copyall: 5575 if (!allocate) { 5576 if (totallen != 0) { 5577 ipp->ipp_ipv4_options = opt; 5578 ipp->ipp_ipv4_options_len = totallen; 5579 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5580 } 5581 return (0); 5582 } 5583 /* Just copy all of options */ 5584 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5585 if (totallen == ipp->ipp_ipv4_options_len) { 5586 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5587 return (0); 5588 } 5589 kmem_free(ipp->ipp_ipv4_options, 5590 ipp->ipp_ipv4_options_len); 5591 ipp->ipp_ipv4_options = NULL; 5592 ipp->ipp_ipv4_options_len = 0; 5593 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5594 } 5595 if (totallen == 0) 5596 return (0); 5597 5598 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5599 if (ipp->ipp_ipv4_options == NULL) 5600 return (ENOMEM); 5601 ipp->ipp_ipv4_options_len = totallen; 5602 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5603 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5604 return (0); 5605 } 5606 5607 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5608 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5609 ipp->ipp_label_v4 = NULL; 5610 ipp->ipp_label_len_v4 = 0; 5611 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5612 } 5613 5614 /* 5615 * Search for CIPSO option. 5616 * We assume CIPSO is first in options if it is present. 5617 * If it isn't, then ipp_opt_ipv4_options will not include the options 5618 * prior to the CIPSO option. 5619 */ 5620 while (totallen != 0) { 5621 switch (optval = opt[IPOPT_OPTVAL]) { 5622 case IPOPT_EOL: 5623 return (0); 5624 case IPOPT_NOP: 5625 optlen = 1; 5626 break; 5627 default: 5628 if (totallen <= IPOPT_OLEN) 5629 return (EINVAL); 5630 optlen = opt[IPOPT_OLEN]; 5631 if (optlen < 2) 5632 return (EINVAL); 5633 } 5634 if (optlen > totallen) 5635 return (EINVAL); 5636 5637 switch (optval) { 5638 case IPOPT_COMSEC: 5639 if (!allocate) { 5640 ipp->ipp_label_v4 = opt; 5641 ipp->ipp_label_len_v4 = optlen; 5642 ipp->ipp_fields |= IPPF_LABEL_V4; 5643 } else { 5644 ipp->ipp_label_v4 = kmem_alloc(optlen, 5645 KM_NOSLEEP); 5646 if (ipp->ipp_label_v4 == NULL) 5647 return (ENOMEM); 5648 ipp->ipp_label_len_v4 = optlen; 5649 ipp->ipp_fields |= IPPF_LABEL_V4; 5650 bcopy(opt, ipp->ipp_label_v4, optlen); 5651 } 5652 totallen -= optlen; 5653 opt += optlen; 5654 5655 /* Skip padding bytes until we get to a multiple of 4 */ 5656 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5657 totallen--; 5658 opt++; 5659 } 5660 /* Remaining as ipp_ipv4_options */ 5661 goto copyall; 5662 } 5663 totallen -= optlen; 5664 opt += optlen; 5665 } 5666 /* No CIPSO found; return everything as ipp_ipv4_options */ 5667 totallen = ipha->ipha_version_and_hdr_length - 5668 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5669 totallen <<= 2; 5670 opt = (uchar_t *)&ipha[1]; 5671 goto copyall; 5672 } 5673 5674 /* 5675 * Efficient versions of lookup for an IRE when we only 5676 * match the address. 5677 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5678 * Does not handle multicast addresses. 5679 */ 5680 uint_t 5681 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5682 { 5683 ire_t *ire; 5684 uint_t result; 5685 5686 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5687 ASSERT(ire != NULL); 5688 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5689 result = IRE_NOROUTE; 5690 else 5691 result = ire->ire_type; 5692 ire_refrele(ire); 5693 return (result); 5694 } 5695 5696 /* 5697 * Efficient versions of lookup for an IRE when we only 5698 * match the address. 5699 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5700 * Does not handle multicast addresses. 5701 */ 5702 uint_t 5703 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5704 { 5705 ire_t *ire; 5706 uint_t result; 5707 5708 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5709 ASSERT(ire != NULL); 5710 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5711 result = IRE_NOROUTE; 5712 else 5713 result = ire->ire_type; 5714 ire_refrele(ire); 5715 return (result); 5716 } 5717 5718 /* 5719 * Nobody should be sending 5720 * packets up this stream 5721 */ 5722 static int 5723 ip_lrput(queue_t *q, mblk_t *mp) 5724 { 5725 switch (mp->b_datap->db_type) { 5726 case M_FLUSH: 5727 /* Turn around */ 5728 if (*mp->b_rptr & FLUSHW) { 5729 *mp->b_rptr &= ~FLUSHR; 5730 qreply(q, mp); 5731 return (0); 5732 } 5733 break; 5734 } 5735 freemsg(mp); 5736 return (0); 5737 } 5738 5739 /* Nobody should be sending packets down this stream */ 5740 /* ARGSUSED */ 5741 int 5742 ip_lwput(queue_t *q, mblk_t *mp) 5743 { 5744 freemsg(mp); 5745 return (0); 5746 } 5747 5748 /* 5749 * Move the first hop in any source route to ipha_dst and remove that part of 5750 * the source route. Called by other protocols. Errors in option formatting 5751 * are ignored - will be handled by ip_output_options. Return the final 5752 * destination (either ipha_dst or the last entry in a source route.) 5753 */ 5754 ipaddr_t 5755 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5756 { 5757 ipoptp_t opts; 5758 uchar_t *opt; 5759 uint8_t optval; 5760 uint8_t optlen; 5761 ipaddr_t dst; 5762 int i; 5763 ip_stack_t *ipst = ns->netstack_ip; 5764 5765 ip2dbg(("ip_massage_options\n")); 5766 dst = ipha->ipha_dst; 5767 for (optval = ipoptp_first(&opts, ipha); 5768 optval != IPOPT_EOL; 5769 optval = ipoptp_next(&opts)) { 5770 opt = opts.ipoptp_cur; 5771 switch (optval) { 5772 uint8_t off; 5773 case IPOPT_SSRR: 5774 case IPOPT_LSRR: 5775 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5776 ip1dbg(("ip_massage_options: bad src route\n")); 5777 break; 5778 } 5779 optlen = opts.ipoptp_len; 5780 off = opt[IPOPT_OFFSET]; 5781 off--; 5782 redo_srr: 5783 if (optlen < IP_ADDR_LEN || 5784 off > optlen - IP_ADDR_LEN) { 5785 /* End of source route */ 5786 ip1dbg(("ip_massage_options: end of SR\n")); 5787 break; 5788 } 5789 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5790 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5791 ntohl(dst))); 5792 /* 5793 * Check if our address is present more than 5794 * once as consecutive hops in source route. 5795 * XXX verify per-interface ip_forwarding 5796 * for source route? 5797 */ 5798 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5799 off += IP_ADDR_LEN; 5800 goto redo_srr; 5801 } 5802 if (dst == htonl(INADDR_LOOPBACK)) { 5803 ip1dbg(("ip_massage_options: loopback addr in " 5804 "source route!\n")); 5805 break; 5806 } 5807 /* 5808 * Update ipha_dst to be the first hop and remove the 5809 * first hop from the source route (by overwriting 5810 * part of the option with NOP options). 5811 */ 5812 ipha->ipha_dst = dst; 5813 /* Put the last entry in dst */ 5814 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5815 3; 5816 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5817 5818 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5819 ntohl(dst))); 5820 /* Move down and overwrite */ 5821 opt[IP_ADDR_LEN] = opt[0]; 5822 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5823 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5824 for (i = 0; i < IP_ADDR_LEN; i++) 5825 opt[i] = IPOPT_NOP; 5826 break; 5827 } 5828 } 5829 return (dst); 5830 } 5831 5832 /* 5833 * Return the network mask 5834 * associated with the specified address. 5835 */ 5836 ipaddr_t 5837 ip_net_mask(ipaddr_t addr) 5838 { 5839 uchar_t *up = (uchar_t *)&addr; 5840 ipaddr_t mask = 0; 5841 uchar_t *maskp = (uchar_t *)&mask; 5842 5843 #if defined(__x86) 5844 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5845 #endif 5846 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5847 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5848 #endif 5849 if (CLASSD(addr)) { 5850 maskp[0] = 0xF0; 5851 return (mask); 5852 } 5853 5854 /* We assume Class E default netmask to be 32 */ 5855 if (CLASSE(addr)) 5856 return (0xffffffffU); 5857 5858 if (addr == 0) 5859 return (0); 5860 maskp[0] = 0xFF; 5861 if ((up[0] & 0x80) == 0) 5862 return (mask); 5863 5864 maskp[1] = 0xFF; 5865 if ((up[0] & 0xC0) == 0x80) 5866 return (mask); 5867 5868 maskp[2] = 0xFF; 5869 if ((up[0] & 0xE0) == 0xC0) 5870 return (mask); 5871 5872 /* Otherwise return no mask */ 5873 return ((ipaddr_t)0); 5874 } 5875 5876 /* Name/Value Table Lookup Routine */ 5877 char * 5878 ip_nv_lookup(nv_t *nv, int value) 5879 { 5880 if (!nv) 5881 return (NULL); 5882 for (; nv->nv_name; nv++) { 5883 if (nv->nv_value == value) 5884 return (nv->nv_name); 5885 } 5886 return ("unknown"); 5887 } 5888 5889 static int 5890 ip_wait_for_info_ack(ill_t *ill) 5891 { 5892 int err; 5893 5894 mutex_enter(&ill->ill_lock); 5895 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5896 /* 5897 * Return value of 0 indicates a pending signal. 5898 */ 5899 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5900 if (err == 0) { 5901 mutex_exit(&ill->ill_lock); 5902 return (EINTR); 5903 } 5904 } 5905 mutex_exit(&ill->ill_lock); 5906 /* 5907 * ip_rput_other could have set an error in ill_error on 5908 * receipt of M_ERROR. 5909 */ 5910 return (ill->ill_error); 5911 } 5912 5913 /* 5914 * This is a module open, i.e. this is a control stream for access 5915 * to a DLPI device. We allocate an ill_t as the instance data in 5916 * this case. 5917 */ 5918 static int 5919 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5920 { 5921 ill_t *ill; 5922 int err; 5923 zoneid_t zoneid; 5924 netstack_t *ns; 5925 ip_stack_t *ipst; 5926 5927 /* 5928 * Prevent unprivileged processes from pushing IP so that 5929 * they can't send raw IP. 5930 */ 5931 if (secpolicy_net_rawaccess(credp) != 0) 5932 return (EPERM); 5933 5934 ns = netstack_find_by_cred(credp); 5935 ASSERT(ns != NULL); 5936 ipst = ns->netstack_ip; 5937 ASSERT(ipst != NULL); 5938 5939 /* 5940 * For exclusive stacks we set the zoneid to zero 5941 * to make IP operate as if in the global zone. 5942 */ 5943 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5944 zoneid = GLOBAL_ZONEID; 5945 else 5946 zoneid = crgetzoneid(credp); 5947 5948 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5949 q->q_ptr = WR(q)->q_ptr = ill; 5950 ill->ill_ipst = ipst; 5951 ill->ill_zoneid = zoneid; 5952 5953 /* 5954 * ill_init initializes the ill fields and then sends down 5955 * down a DL_INFO_REQ after calling qprocson. 5956 */ 5957 err = ill_init(q, ill); 5958 5959 if (err != 0) { 5960 mi_free(ill); 5961 netstack_rele(ipst->ips_netstack); 5962 q->q_ptr = NULL; 5963 WR(q)->q_ptr = NULL; 5964 return (err); 5965 } 5966 5967 /* 5968 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5969 * 5970 * ill_init initializes the ipsq marking this thread as 5971 * writer 5972 */ 5973 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5974 err = ip_wait_for_info_ack(ill); 5975 if (err == 0) 5976 ill->ill_credp = credp; 5977 else 5978 goto fail; 5979 5980 crhold(credp); 5981 5982 mutex_enter(&ipst->ips_ip_mi_lock); 5983 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5984 sflag, credp); 5985 mutex_exit(&ipst->ips_ip_mi_lock); 5986 fail: 5987 if (err) { 5988 (void) ip_close(q, 0, credp); 5989 return (err); 5990 } 5991 return (0); 5992 } 5993 5994 /* For /dev/ip aka AF_INET open */ 5995 int 5996 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5997 { 5998 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5999 } 6000 6001 /* For /dev/ip6 aka AF_INET6 open */ 6002 int 6003 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 6004 { 6005 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 6006 } 6007 6008 /* IP open routine. */ 6009 int 6010 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 6011 boolean_t isv6) 6012 { 6013 conn_t *connp; 6014 major_t maj; 6015 zoneid_t zoneid; 6016 netstack_t *ns; 6017 ip_stack_t *ipst; 6018 6019 /* Allow reopen. */ 6020 if (q->q_ptr != NULL) 6021 return (0); 6022 6023 if (sflag & MODOPEN) { 6024 /* This is a module open */ 6025 return (ip_modopen(q, devp, flag, sflag, credp)); 6026 } 6027 6028 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 6029 /* 6030 * Non streams based socket looking for a stream 6031 * to access IP 6032 */ 6033 return (ip_helper_stream_setup(q, devp, flag, sflag, 6034 credp, isv6)); 6035 } 6036 6037 ns = netstack_find_by_cred(credp); 6038 ASSERT(ns != NULL); 6039 ipst = ns->netstack_ip; 6040 ASSERT(ipst != NULL); 6041 6042 /* 6043 * For exclusive stacks we set the zoneid to zero 6044 * to make IP operate as if in the global zone. 6045 */ 6046 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 6047 zoneid = GLOBAL_ZONEID; 6048 else 6049 zoneid = crgetzoneid(credp); 6050 6051 /* 6052 * We are opening as a device. This is an IP client stream, and we 6053 * allocate an conn_t as the instance data. 6054 */ 6055 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6056 6057 /* 6058 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6059 * done by netstack_find_by_cred() 6060 */ 6061 netstack_rele(ipst->ips_netstack); 6062 6063 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6064 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6065 connp->conn_ixa->ixa_zoneid = zoneid; 6066 connp->conn_zoneid = zoneid; 6067 6068 connp->conn_rq = q; 6069 q->q_ptr = WR(q)->q_ptr = connp; 6070 6071 /* Minor tells us which /dev entry was opened */ 6072 if (isv6) { 6073 connp->conn_family = AF_INET6; 6074 connp->conn_ipversion = IPV6_VERSION; 6075 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6076 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6077 } else { 6078 connp->conn_family = AF_INET; 6079 connp->conn_ipversion = IPV4_VERSION; 6080 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6081 } 6082 6083 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6084 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6085 connp->conn_minor_arena = ip_minor_arena_la; 6086 } else { 6087 /* 6088 * Either minor numbers in the large arena were exhausted 6089 * or a non socket application is doing the open. 6090 * Try to allocate from the small arena. 6091 */ 6092 if ((connp->conn_dev = 6093 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6094 /* CONN_DEC_REF takes care of netstack_rele() */ 6095 q->q_ptr = WR(q)->q_ptr = NULL; 6096 CONN_DEC_REF(connp); 6097 return (EBUSY); 6098 } 6099 connp->conn_minor_arena = ip_minor_arena_sa; 6100 } 6101 6102 maj = getemajor(*devp); 6103 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6104 6105 /* 6106 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6107 */ 6108 connp->conn_cred = credp; 6109 connp->conn_cpid = curproc->p_pid; 6110 /* Cache things in ixa without an extra refhold */ 6111 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6112 connp->conn_ixa->ixa_cred = connp->conn_cred; 6113 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6114 if (is_system_labeled()) 6115 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6116 6117 /* 6118 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6119 */ 6120 connp->conn_recv = ip_conn_input; 6121 connp->conn_recvicmp = ip_conn_input_icmp; 6122 6123 crhold(connp->conn_cred); 6124 6125 /* 6126 * If the caller has the process-wide flag set, then default to MAC 6127 * exempt mode. This allows read-down to unlabeled hosts. 6128 */ 6129 if (getpflags(NET_MAC_AWARE, credp) != 0) 6130 connp->conn_mac_mode = CONN_MAC_AWARE; 6131 6132 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6133 6134 connp->conn_rq = q; 6135 connp->conn_wq = WR(q); 6136 6137 /* Non-zero default values */ 6138 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6139 6140 /* 6141 * Make the conn globally visible to walkers 6142 */ 6143 ASSERT(connp->conn_ref == 1); 6144 mutex_enter(&connp->conn_lock); 6145 connp->conn_state_flags &= ~CONN_INCIPIENT; 6146 mutex_exit(&connp->conn_lock); 6147 6148 qprocson(q); 6149 6150 return (0); 6151 } 6152 6153 /* 6154 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6155 * all of them are copied to the conn_t. If the req is "zero", the policy is 6156 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6157 * fields. 6158 * We keep only the latest setting of the policy and thus policy setting 6159 * is not incremental/cumulative. 6160 * 6161 * Requests to set policies with multiple alternative actions will 6162 * go through a different API. 6163 */ 6164 int 6165 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6166 { 6167 uint_t ah_req = 0; 6168 uint_t esp_req = 0; 6169 uint_t se_req = 0; 6170 ipsec_act_t *actp = NULL; 6171 uint_t nact; 6172 ipsec_policy_head_t *ph; 6173 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6174 int error = 0; 6175 netstack_t *ns = connp->conn_netstack; 6176 ip_stack_t *ipst = ns->netstack_ip; 6177 ipsec_stack_t *ipss = ns->netstack_ipsec; 6178 6179 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6180 6181 /* 6182 * The IP_SEC_OPT option does not allow variable length parameters, 6183 * hence a request cannot be NULL. 6184 */ 6185 if (req == NULL) 6186 return (EINVAL); 6187 6188 ah_req = req->ipsr_ah_req; 6189 esp_req = req->ipsr_esp_req; 6190 se_req = req->ipsr_self_encap_req; 6191 6192 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6193 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6194 return (EINVAL); 6195 6196 /* 6197 * Are we dealing with a request to reset the policy (i.e. 6198 * zero requests). 6199 */ 6200 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6201 (esp_req & REQ_MASK) == 0 && 6202 (se_req & REQ_MASK) == 0); 6203 6204 if (!is_pol_reset) { 6205 /* 6206 * If we couldn't load IPsec, fail with "protocol 6207 * not supported". 6208 * IPsec may not have been loaded for a request with zero 6209 * policies, so we don't fail in this case. 6210 */ 6211 mutex_enter(&ipss->ipsec_loader_lock); 6212 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6213 mutex_exit(&ipss->ipsec_loader_lock); 6214 return (EPROTONOSUPPORT); 6215 } 6216 mutex_exit(&ipss->ipsec_loader_lock); 6217 6218 /* 6219 * Test for valid requests. Invalid algorithms 6220 * need to be tested by IPsec code because new 6221 * algorithms can be added dynamically. 6222 */ 6223 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6224 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6225 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6226 return (EINVAL); 6227 } 6228 6229 /* 6230 * Only privileged users can issue these 6231 * requests. 6232 */ 6233 if (((ah_req & IPSEC_PREF_NEVER) || 6234 (esp_req & IPSEC_PREF_NEVER) || 6235 (se_req & IPSEC_PREF_NEVER)) && 6236 secpolicy_ip_config(cr, B_FALSE) != 0) { 6237 return (EPERM); 6238 } 6239 6240 /* 6241 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6242 * are mutually exclusive. 6243 */ 6244 if (((ah_req & REQ_MASK) == REQ_MASK) || 6245 ((esp_req & REQ_MASK) == REQ_MASK) || 6246 ((se_req & REQ_MASK) == REQ_MASK)) { 6247 /* Both of them are set */ 6248 return (EINVAL); 6249 } 6250 } 6251 6252 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6253 6254 /* 6255 * If we have already cached policies in conn_connect(), don't 6256 * let them change now. We cache policies for connections 6257 * whose src,dst [addr, port] is known. 6258 */ 6259 if (connp->conn_policy_cached) { 6260 return (EINVAL); 6261 } 6262 6263 /* 6264 * We have a zero policies, reset the connection policy if already 6265 * set. This will cause the connection to inherit the 6266 * global policy, if any. 6267 */ 6268 if (is_pol_reset) { 6269 if (connp->conn_policy != NULL) { 6270 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6271 connp->conn_policy = NULL; 6272 } 6273 connp->conn_in_enforce_policy = B_FALSE; 6274 connp->conn_out_enforce_policy = B_FALSE; 6275 return (0); 6276 } 6277 6278 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6279 ipst->ips_netstack); 6280 if (ph == NULL) 6281 goto enomem; 6282 6283 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6284 if (actp == NULL) 6285 goto enomem; 6286 6287 /* 6288 * Always insert IPv4 policy entries, since they can also apply to 6289 * ipv6 sockets being used in ipv4-compat mode. 6290 */ 6291 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6292 IPSEC_TYPE_INBOUND, ns)) 6293 goto enomem; 6294 is_pol_inserted = B_TRUE; 6295 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6296 IPSEC_TYPE_OUTBOUND, ns)) 6297 goto enomem; 6298 6299 /* 6300 * We're looking at a v6 socket, also insert the v6-specific 6301 * entries. 6302 */ 6303 if (connp->conn_family == AF_INET6) { 6304 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6305 IPSEC_TYPE_INBOUND, ns)) 6306 goto enomem; 6307 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6308 IPSEC_TYPE_OUTBOUND, ns)) 6309 goto enomem; 6310 } 6311 6312 ipsec_actvec_free(actp, nact); 6313 6314 /* 6315 * If the requests need security, set enforce_policy. 6316 * If the requests are IPSEC_PREF_NEVER, one should 6317 * still set conn_out_enforce_policy so that ip_set_destination 6318 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6319 * for connections that we don't cache policy in at connect time, 6320 * if global policy matches in ip_output_attach_policy, we 6321 * don't wrongly inherit global policy. Similarly, we need 6322 * to set conn_in_enforce_policy also so that we don't verify 6323 * policy wrongly. 6324 */ 6325 if ((ah_req & REQ_MASK) != 0 || 6326 (esp_req & REQ_MASK) != 0 || 6327 (se_req & REQ_MASK) != 0) { 6328 connp->conn_in_enforce_policy = B_TRUE; 6329 connp->conn_out_enforce_policy = B_TRUE; 6330 } 6331 6332 return (error); 6333 #undef REQ_MASK 6334 6335 /* 6336 * Common memory-allocation-failure exit path. 6337 */ 6338 enomem: 6339 if (actp != NULL) 6340 ipsec_actvec_free(actp, nact); 6341 if (is_pol_inserted) 6342 ipsec_polhead_flush(ph, ns); 6343 return (ENOMEM); 6344 } 6345 6346 /* 6347 * Set socket options for joining and leaving multicast groups. 6348 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6349 * The caller has already check that the option name is consistent with 6350 * the address family of the socket. 6351 */ 6352 int 6353 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6354 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6355 { 6356 int *i1 = (int *)invalp; 6357 int error = 0; 6358 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6359 struct ip_mreq *v4_mreqp; 6360 struct ipv6_mreq *v6_mreqp; 6361 struct group_req *greqp; 6362 ire_t *ire; 6363 boolean_t done = B_FALSE; 6364 ipaddr_t ifaddr; 6365 in6_addr_t v6group; 6366 uint_t ifindex; 6367 boolean_t mcast_opt = B_TRUE; 6368 mcast_record_t fmode; 6369 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6370 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6371 6372 switch (name) { 6373 case IP_ADD_MEMBERSHIP: 6374 case IPV6_JOIN_GROUP: 6375 mcast_opt = B_FALSE; 6376 /* FALLTHROUGH */ 6377 case MCAST_JOIN_GROUP: 6378 fmode = MODE_IS_EXCLUDE; 6379 optfn = ip_opt_add_group; 6380 break; 6381 6382 case IP_DROP_MEMBERSHIP: 6383 case IPV6_LEAVE_GROUP: 6384 mcast_opt = B_FALSE; 6385 /* FALLTHROUGH */ 6386 case MCAST_LEAVE_GROUP: 6387 fmode = MODE_IS_INCLUDE; 6388 optfn = ip_opt_delete_group; 6389 break; 6390 default: 6391 /* Should not be reached. */ 6392 fmode = MODE_IS_INCLUDE; 6393 optfn = NULL; 6394 ASSERT(0); 6395 } 6396 6397 if (mcast_opt) { 6398 struct sockaddr_in *sin; 6399 struct sockaddr_in6 *sin6; 6400 6401 greqp = (struct group_req *)i1; 6402 if (greqp->gr_group.ss_family == AF_INET) { 6403 sin = (struct sockaddr_in *)&(greqp->gr_group); 6404 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6405 } else { 6406 if (!inet6) 6407 return (EINVAL); /* Not on INET socket */ 6408 6409 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6410 v6group = sin6->sin6_addr; 6411 } 6412 ifaddr = INADDR_ANY; 6413 ifindex = greqp->gr_interface; 6414 } else if (inet6) { 6415 v6_mreqp = (struct ipv6_mreq *)i1; 6416 v6group = v6_mreqp->ipv6mr_multiaddr; 6417 ifaddr = INADDR_ANY; 6418 ifindex = v6_mreqp->ipv6mr_interface; 6419 } else { 6420 v4_mreqp = (struct ip_mreq *)i1; 6421 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6422 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6423 ifindex = 0; 6424 } 6425 6426 /* 6427 * In the multirouting case, we need to replicate 6428 * the request on all interfaces that will take part 6429 * in replication. We do so because multirouting is 6430 * reflective, thus we will probably receive multi- 6431 * casts on those interfaces. 6432 * The ip_multirt_apply_membership() succeeds if 6433 * the operation succeeds on at least one interface. 6434 */ 6435 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6436 ipaddr_t group; 6437 6438 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6439 6440 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6441 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6442 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6443 } else { 6444 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6445 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6446 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6447 } 6448 if (ire != NULL) { 6449 if (ire->ire_flags & RTF_MULTIRT) { 6450 error = ip_multirt_apply_membership(optfn, ire, connp, 6451 checkonly, &v6group, fmode, &ipv6_all_zeros); 6452 done = B_TRUE; 6453 } 6454 ire_refrele(ire); 6455 } 6456 6457 if (!done) { 6458 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6459 fmode, &ipv6_all_zeros); 6460 } 6461 return (error); 6462 } 6463 6464 /* 6465 * Set socket options for joining and leaving multicast groups 6466 * for specific sources. 6467 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6468 * The caller has already check that the option name is consistent with 6469 * the address family of the socket. 6470 */ 6471 int 6472 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6473 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6474 { 6475 int *i1 = (int *)invalp; 6476 int error = 0; 6477 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6478 struct ip_mreq_source *imreqp; 6479 struct group_source_req *gsreqp; 6480 in6_addr_t v6group, v6src; 6481 uint32_t ifindex; 6482 ipaddr_t ifaddr; 6483 boolean_t mcast_opt = B_TRUE; 6484 mcast_record_t fmode; 6485 ire_t *ire; 6486 boolean_t done = B_FALSE; 6487 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6488 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6489 6490 switch (name) { 6491 case IP_BLOCK_SOURCE: 6492 mcast_opt = B_FALSE; 6493 /* FALLTHROUGH */ 6494 case MCAST_BLOCK_SOURCE: 6495 fmode = MODE_IS_EXCLUDE; 6496 optfn = ip_opt_add_group; 6497 break; 6498 6499 case IP_UNBLOCK_SOURCE: 6500 mcast_opt = B_FALSE; 6501 /* FALLTHROUGH */ 6502 case MCAST_UNBLOCK_SOURCE: 6503 fmode = MODE_IS_EXCLUDE; 6504 optfn = ip_opt_delete_group; 6505 break; 6506 6507 case IP_ADD_SOURCE_MEMBERSHIP: 6508 mcast_opt = B_FALSE; 6509 /* FALLTHROUGH */ 6510 case MCAST_JOIN_SOURCE_GROUP: 6511 fmode = MODE_IS_INCLUDE; 6512 optfn = ip_opt_add_group; 6513 break; 6514 6515 case IP_DROP_SOURCE_MEMBERSHIP: 6516 mcast_opt = B_FALSE; 6517 /* FALLTHROUGH */ 6518 case MCAST_LEAVE_SOURCE_GROUP: 6519 fmode = MODE_IS_INCLUDE; 6520 optfn = ip_opt_delete_group; 6521 break; 6522 default: 6523 /* Should not be reached. */ 6524 optfn = NULL; 6525 fmode = 0; 6526 ASSERT(0); 6527 } 6528 6529 if (mcast_opt) { 6530 gsreqp = (struct group_source_req *)i1; 6531 ifindex = gsreqp->gsr_interface; 6532 if (gsreqp->gsr_group.ss_family == AF_INET) { 6533 struct sockaddr_in *s; 6534 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6535 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6536 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6537 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6538 } else { 6539 struct sockaddr_in6 *s6; 6540 6541 if (!inet6) 6542 return (EINVAL); /* Not on INET socket */ 6543 6544 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6545 v6group = s6->sin6_addr; 6546 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6547 v6src = s6->sin6_addr; 6548 } 6549 ifaddr = INADDR_ANY; 6550 } else { 6551 imreqp = (struct ip_mreq_source *)i1; 6552 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6553 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6554 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6555 ifindex = 0; 6556 } 6557 6558 /* 6559 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6560 */ 6561 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6562 v6src = ipv6_all_zeros; 6563 6564 /* 6565 * In the multirouting case, we need to replicate 6566 * the request as noted in the mcast cases above. 6567 */ 6568 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6569 ipaddr_t group; 6570 6571 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6572 6573 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6574 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6575 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6576 } else { 6577 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6578 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6579 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6580 } 6581 if (ire != NULL) { 6582 if (ire->ire_flags & RTF_MULTIRT) { 6583 error = ip_multirt_apply_membership(optfn, ire, connp, 6584 checkonly, &v6group, fmode, &v6src); 6585 done = B_TRUE; 6586 } 6587 ire_refrele(ire); 6588 } 6589 if (!done) { 6590 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6591 fmode, &v6src); 6592 } 6593 return (error); 6594 } 6595 6596 /* 6597 * Given a destination address and a pointer to where to put the information 6598 * this routine fills in the mtuinfo. 6599 * The socket must be connected. 6600 * For sctp conn_faddr is the primary address. 6601 */ 6602 int 6603 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6604 { 6605 uint32_t pmtu = IP_MAXPACKET; 6606 uint_t scopeid; 6607 6608 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6609 return (-1); 6610 6611 /* In case we never sent or called ip_set_destination_v4/v6 */ 6612 if (ixa->ixa_ire != NULL) 6613 pmtu = ip_get_pmtu(ixa); 6614 6615 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6616 scopeid = ixa->ixa_scopeid; 6617 else 6618 scopeid = 0; 6619 6620 bzero(mtuinfo, sizeof (*mtuinfo)); 6621 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6622 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6623 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6624 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6625 mtuinfo->ip6m_mtu = pmtu; 6626 6627 return (sizeof (struct ip6_mtuinfo)); 6628 } 6629 6630 /* 6631 * When the src multihoming is changed from weak to [strong, preferred] 6632 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6633 * and identify routes that were created by user-applications in the 6634 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6635 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6636 * is selected by finding an interface route for the gateway. 6637 */ 6638 /* ARGSUSED */ 6639 void 6640 ip_ire_rebind_walker(ire_t *ire, void *notused) 6641 { 6642 if (!ire->ire_unbound || ire->ire_ill != NULL) 6643 return; 6644 ire_rebind(ire); 6645 ire_delete(ire); 6646 } 6647 6648 /* 6649 * When the src multihoming is changed from [strong, preferred] to weak, 6650 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6651 * set any entries that were created by user-applications in the unbound state 6652 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6653 */ 6654 /* ARGSUSED */ 6655 void 6656 ip_ire_unbind_walker(ire_t *ire, void *notused) 6657 { 6658 ire_t *new_ire; 6659 6660 if (!ire->ire_unbound || ire->ire_ill == NULL) 6661 return; 6662 if (ire->ire_ipversion == IPV6_VERSION) { 6663 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6664 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6665 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6666 } else { 6667 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6668 (uchar_t *)&ire->ire_mask, 6669 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6670 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6671 } 6672 if (new_ire == NULL) 6673 return; 6674 new_ire->ire_unbound = B_TRUE; 6675 /* 6676 * The bound ire must first be deleted so that we don't return 6677 * the existing one on the attempt to add the unbound new_ire. 6678 */ 6679 ire_delete(ire); 6680 new_ire = ire_add(new_ire); 6681 if (new_ire != NULL) 6682 ire_refrele(new_ire); 6683 } 6684 6685 /* 6686 * When the settings of ip*_strict_src_multihoming tunables are changed, 6687 * all cached routes need to be recomputed. This recomputation needs to be 6688 * done when going from weaker to stronger modes so that the cached ire 6689 * for the connection does not violate the current ip*_strict_src_multihoming 6690 * setting. It also needs to be done when going from stronger to weaker modes, 6691 * so that we fall back to matching on the longest-matching-route (as opposed 6692 * to a shorter match that may have been selected in the strong mode 6693 * to satisfy src_multihoming settings). 6694 * 6695 * The cached ixa_ire entires for all conn_t entries are marked as 6696 * "verify" so that they will be recomputed for the next packet. 6697 */ 6698 void 6699 conn_ire_revalidate(conn_t *connp, void *arg) 6700 { 6701 boolean_t isv6 = (boolean_t)arg; 6702 6703 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6704 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6705 return; 6706 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6707 } 6708 6709 /* 6710 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6711 * When an ipf is passed here for the first time, if 6712 * we already have in-order fragments on the queue, we convert from the fast- 6713 * path reassembly scheme to the hard-case scheme. From then on, additional 6714 * fragments are reassembled here. We keep track of the start and end offsets 6715 * of each piece, and the number of holes in the chain. When the hole count 6716 * goes to zero, we are done! 6717 * 6718 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6719 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6720 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6721 * after the call to ip_reassemble(). 6722 */ 6723 int 6724 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6725 size_t msg_len) 6726 { 6727 uint_t end; 6728 mblk_t *next_mp; 6729 mblk_t *mp1; 6730 uint_t offset; 6731 boolean_t incr_dups = B_TRUE; 6732 boolean_t offset_zero_seen = B_FALSE; 6733 boolean_t pkt_boundary_checked = B_FALSE; 6734 6735 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6736 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6737 6738 /* Add in byte count */ 6739 ipf->ipf_count += msg_len; 6740 if (ipf->ipf_end) { 6741 /* 6742 * We were part way through in-order reassembly, but now there 6743 * is a hole. We walk through messages already queued, and 6744 * mark them for hard case reassembly. We know that up till 6745 * now they were in order starting from offset zero. 6746 */ 6747 offset = 0; 6748 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6749 IP_REASS_SET_START(mp1, offset); 6750 if (offset == 0) { 6751 ASSERT(ipf->ipf_nf_hdr_len != 0); 6752 offset = -ipf->ipf_nf_hdr_len; 6753 } 6754 offset += mp1->b_wptr - mp1->b_rptr; 6755 IP_REASS_SET_END(mp1, offset); 6756 } 6757 /* One hole at the end. */ 6758 ipf->ipf_hole_cnt = 1; 6759 /* Brand it as a hard case, forever. */ 6760 ipf->ipf_end = 0; 6761 } 6762 /* Walk through all the new pieces. */ 6763 do { 6764 end = start + (mp->b_wptr - mp->b_rptr); 6765 /* 6766 * If start is 0, decrease 'end' only for the first mblk of 6767 * the fragment. Otherwise 'end' can get wrong value in the 6768 * second pass of the loop if first mblk is exactly the 6769 * size of ipf_nf_hdr_len. 6770 */ 6771 if (start == 0 && !offset_zero_seen) { 6772 /* First segment */ 6773 ASSERT(ipf->ipf_nf_hdr_len != 0); 6774 end -= ipf->ipf_nf_hdr_len; 6775 offset_zero_seen = B_TRUE; 6776 } 6777 next_mp = mp->b_cont; 6778 /* 6779 * We are checking to see if there is any interesing data 6780 * to process. If there isn't and the mblk isn't the 6781 * one which carries the unfragmentable header then we 6782 * drop it. It's possible to have just the unfragmentable 6783 * header come through without any data. That needs to be 6784 * saved. 6785 * 6786 * If the assert at the top of this function holds then the 6787 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6788 * is infrequently traveled enough that the test is left in 6789 * to protect against future code changes which break that 6790 * invariant. 6791 */ 6792 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6793 /* Empty. Blast it. */ 6794 IP_REASS_SET_START(mp, 0); 6795 IP_REASS_SET_END(mp, 0); 6796 /* 6797 * If the ipf points to the mblk we are about to free, 6798 * update ipf to point to the next mblk (or NULL 6799 * if none). 6800 */ 6801 if (ipf->ipf_mp->b_cont == mp) 6802 ipf->ipf_mp->b_cont = next_mp; 6803 freeb(mp); 6804 continue; 6805 } 6806 mp->b_cont = NULL; 6807 IP_REASS_SET_START(mp, start); 6808 IP_REASS_SET_END(mp, end); 6809 if (!ipf->ipf_tail_mp) { 6810 ipf->ipf_tail_mp = mp; 6811 ipf->ipf_mp->b_cont = mp; 6812 if (start == 0 || !more) { 6813 ipf->ipf_hole_cnt = 1; 6814 /* 6815 * if the first fragment comes in more than one 6816 * mblk, this loop will be executed for each 6817 * mblk. Need to adjust hole count so exiting 6818 * this routine will leave hole count at 1. 6819 */ 6820 if (next_mp) 6821 ipf->ipf_hole_cnt++; 6822 } else 6823 ipf->ipf_hole_cnt = 2; 6824 continue; 6825 } else if (ipf->ipf_last_frag_seen && !more && 6826 !pkt_boundary_checked) { 6827 /* 6828 * We check datagram boundary only if this fragment 6829 * claims to be the last fragment and we have seen a 6830 * last fragment in the past too. We do this only 6831 * once for a given fragment. 6832 * 6833 * start cannot be 0 here as fragments with start=0 6834 * and MF=0 gets handled as a complete packet. These 6835 * fragments should not reach here. 6836 */ 6837 6838 if (start + msgdsize(mp) != 6839 IP_REASS_END(ipf->ipf_tail_mp)) { 6840 /* 6841 * We have two fragments both of which claim 6842 * to be the last fragment but gives conflicting 6843 * information about the whole datagram size. 6844 * Something fishy is going on. Drop the 6845 * fragment and free up the reassembly list. 6846 */ 6847 return (IP_REASS_FAILED); 6848 } 6849 6850 /* 6851 * We shouldn't come to this code block again for this 6852 * particular fragment. 6853 */ 6854 pkt_boundary_checked = B_TRUE; 6855 } 6856 6857 /* New stuff at or beyond tail? */ 6858 offset = IP_REASS_END(ipf->ipf_tail_mp); 6859 if (start >= offset) { 6860 if (ipf->ipf_last_frag_seen) { 6861 /* current fragment is beyond last fragment */ 6862 return (IP_REASS_FAILED); 6863 } 6864 /* Link it on end. */ 6865 ipf->ipf_tail_mp->b_cont = mp; 6866 ipf->ipf_tail_mp = mp; 6867 if (more) { 6868 if (start != offset) 6869 ipf->ipf_hole_cnt++; 6870 } else if (start == offset && next_mp == NULL) 6871 ipf->ipf_hole_cnt--; 6872 continue; 6873 } 6874 mp1 = ipf->ipf_mp->b_cont; 6875 offset = IP_REASS_START(mp1); 6876 /* New stuff at the front? */ 6877 if (start < offset) { 6878 if (start == 0) { 6879 if (end >= offset) { 6880 /* Nailed the hole at the begining. */ 6881 ipf->ipf_hole_cnt--; 6882 } 6883 } else if (end < offset) { 6884 /* 6885 * A hole, stuff, and a hole where there used 6886 * to be just a hole. 6887 */ 6888 ipf->ipf_hole_cnt++; 6889 } 6890 mp->b_cont = mp1; 6891 /* Check for overlap. */ 6892 while (end > offset) { 6893 if (end < IP_REASS_END(mp1)) { 6894 mp->b_wptr -= end - offset; 6895 IP_REASS_SET_END(mp, offset); 6896 BUMP_MIB(ill->ill_ip_mib, 6897 ipIfStatsReasmPartDups); 6898 break; 6899 } 6900 /* Did we cover another hole? */ 6901 if ((mp1->b_cont && 6902 IP_REASS_END(mp1) != 6903 IP_REASS_START(mp1->b_cont) && 6904 end >= IP_REASS_START(mp1->b_cont)) || 6905 (!ipf->ipf_last_frag_seen && !more)) { 6906 ipf->ipf_hole_cnt--; 6907 } 6908 /* Clip out mp1. */ 6909 if ((mp->b_cont = mp1->b_cont) == NULL) { 6910 /* 6911 * After clipping out mp1, this guy 6912 * is now hanging off the end. 6913 */ 6914 ipf->ipf_tail_mp = mp; 6915 } 6916 IP_REASS_SET_START(mp1, 0); 6917 IP_REASS_SET_END(mp1, 0); 6918 /* Subtract byte count */ 6919 ipf->ipf_count -= mp1->b_datap->db_lim - 6920 mp1->b_datap->db_base; 6921 freeb(mp1); 6922 BUMP_MIB(ill->ill_ip_mib, 6923 ipIfStatsReasmPartDups); 6924 mp1 = mp->b_cont; 6925 if (!mp1) 6926 break; 6927 offset = IP_REASS_START(mp1); 6928 } 6929 ipf->ipf_mp->b_cont = mp; 6930 continue; 6931 } 6932 /* 6933 * The new piece starts somewhere between the start of the head 6934 * and before the end of the tail. 6935 */ 6936 for (; mp1; mp1 = mp1->b_cont) { 6937 offset = IP_REASS_END(mp1); 6938 if (start < offset) { 6939 if (end <= offset) { 6940 /* Nothing new. */ 6941 IP_REASS_SET_START(mp, 0); 6942 IP_REASS_SET_END(mp, 0); 6943 /* Subtract byte count */ 6944 ipf->ipf_count -= mp->b_datap->db_lim - 6945 mp->b_datap->db_base; 6946 if (incr_dups) { 6947 ipf->ipf_num_dups++; 6948 incr_dups = B_FALSE; 6949 } 6950 freeb(mp); 6951 BUMP_MIB(ill->ill_ip_mib, 6952 ipIfStatsReasmDuplicates); 6953 break; 6954 } 6955 /* 6956 * Trim redundant stuff off beginning of new 6957 * piece. 6958 */ 6959 IP_REASS_SET_START(mp, offset); 6960 mp->b_rptr += offset - start; 6961 BUMP_MIB(ill->ill_ip_mib, 6962 ipIfStatsReasmPartDups); 6963 start = offset; 6964 if (!mp1->b_cont) { 6965 /* 6966 * After trimming, this guy is now 6967 * hanging off the end. 6968 */ 6969 mp1->b_cont = mp; 6970 ipf->ipf_tail_mp = mp; 6971 if (!more) { 6972 ipf->ipf_hole_cnt--; 6973 } 6974 break; 6975 } 6976 } 6977 if (start >= IP_REASS_START(mp1->b_cont)) 6978 continue; 6979 /* Fill a hole */ 6980 if (start > offset) 6981 ipf->ipf_hole_cnt++; 6982 mp->b_cont = mp1->b_cont; 6983 mp1->b_cont = mp; 6984 mp1 = mp->b_cont; 6985 offset = IP_REASS_START(mp1); 6986 if (end >= offset) { 6987 ipf->ipf_hole_cnt--; 6988 /* Check for overlap. */ 6989 while (end > offset) { 6990 if (end < IP_REASS_END(mp1)) { 6991 mp->b_wptr -= end - offset; 6992 IP_REASS_SET_END(mp, offset); 6993 /* 6994 * TODO we might bump 6995 * this up twice if there is 6996 * overlap at both ends. 6997 */ 6998 BUMP_MIB(ill->ill_ip_mib, 6999 ipIfStatsReasmPartDups); 7000 break; 7001 } 7002 /* Did we cover another hole? */ 7003 if ((mp1->b_cont && 7004 IP_REASS_END(mp1) 7005 != IP_REASS_START(mp1->b_cont) && 7006 end >= 7007 IP_REASS_START(mp1->b_cont)) || 7008 (!ipf->ipf_last_frag_seen && 7009 !more)) { 7010 ipf->ipf_hole_cnt--; 7011 } 7012 /* Clip out mp1. */ 7013 if ((mp->b_cont = mp1->b_cont) == 7014 NULL) { 7015 /* 7016 * After clipping out mp1, 7017 * this guy is now hanging 7018 * off the end. 7019 */ 7020 ipf->ipf_tail_mp = mp; 7021 } 7022 IP_REASS_SET_START(mp1, 0); 7023 IP_REASS_SET_END(mp1, 0); 7024 /* Subtract byte count */ 7025 ipf->ipf_count -= 7026 mp1->b_datap->db_lim - 7027 mp1->b_datap->db_base; 7028 freeb(mp1); 7029 BUMP_MIB(ill->ill_ip_mib, 7030 ipIfStatsReasmPartDups); 7031 mp1 = mp->b_cont; 7032 if (!mp1) 7033 break; 7034 offset = IP_REASS_START(mp1); 7035 } 7036 } 7037 break; 7038 } 7039 } while (start = end, mp = next_mp); 7040 7041 /* Fragment just processed could be the last one. Remember this fact */ 7042 if (!more) 7043 ipf->ipf_last_frag_seen = B_TRUE; 7044 7045 /* Still got holes? */ 7046 if (ipf->ipf_hole_cnt) 7047 return (IP_REASS_PARTIAL); 7048 /* Clean up overloaded fields to avoid upstream disasters. */ 7049 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 7050 IP_REASS_SET_START(mp1, 0); 7051 IP_REASS_SET_END(mp1, 0); 7052 } 7053 return (IP_REASS_COMPLETE); 7054 } 7055 7056 /* 7057 * Fragmentation reassembly. Each ILL has a hash table for 7058 * queuing packets undergoing reassembly for all IPIFs 7059 * associated with the ILL. The hash is based on the packet 7060 * IP ident field. The ILL frag hash table was allocated 7061 * as a timer block at the time the ILL was created. Whenever 7062 * there is anything on the reassembly queue, the timer will 7063 * be running. Returns the reassembled packet if reassembly completes. 7064 */ 7065 mblk_t * 7066 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7067 { 7068 uint32_t frag_offset_flags; 7069 mblk_t *t_mp; 7070 ipaddr_t dst; 7071 uint8_t proto = ipha->ipha_protocol; 7072 uint32_t sum_val; 7073 uint16_t sum_flags; 7074 ipf_t *ipf; 7075 ipf_t **ipfp; 7076 ipfb_t *ipfb; 7077 uint16_t ident; 7078 uint32_t offset; 7079 ipaddr_t src; 7080 uint_t hdr_length; 7081 uint32_t end; 7082 mblk_t *mp1; 7083 mblk_t *tail_mp; 7084 size_t count; 7085 size_t msg_len; 7086 uint8_t ecn_info = 0; 7087 uint32_t packet_size; 7088 boolean_t pruned = B_FALSE; 7089 ill_t *ill = ira->ira_ill; 7090 ip_stack_t *ipst = ill->ill_ipst; 7091 7092 /* 7093 * Drop the fragmented as early as possible, if 7094 * we don't have resource(s) to re-assemble. 7095 */ 7096 if (ipst->ips_ip_reass_queue_bytes == 0) { 7097 freemsg(mp); 7098 return (NULL); 7099 } 7100 7101 /* Check for fragmentation offset; return if there's none */ 7102 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7103 (IPH_MF | IPH_OFFSET)) == 0) 7104 return (mp); 7105 7106 /* 7107 * We utilize hardware computed checksum info only for UDP since 7108 * IP fragmentation is a normal occurrence for the protocol. In 7109 * addition, checksum offload support for IP fragments carrying 7110 * UDP payload is commonly implemented across network adapters. 7111 */ 7112 ASSERT(ira->ira_rill != NULL); 7113 if (proto == IPPROTO_UDP && dohwcksum && 7114 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7115 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7116 mblk_t *mp1 = mp->b_cont; 7117 int32_t len; 7118 7119 /* Record checksum information from the packet */ 7120 sum_val = (uint32_t)DB_CKSUM16(mp); 7121 sum_flags = DB_CKSUMFLAGS(mp); 7122 7123 /* IP payload offset from beginning of mblk */ 7124 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7125 7126 if ((sum_flags & HCK_PARTIALCKSUM) && 7127 (mp1 == NULL || mp1->b_cont == NULL) && 7128 offset >= DB_CKSUMSTART(mp) && 7129 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7130 uint32_t adj; 7131 /* 7132 * Partial checksum has been calculated by hardware 7133 * and attached to the packet; in addition, any 7134 * prepended extraneous data is even byte aligned. 7135 * If any such data exists, we adjust the checksum; 7136 * this would also handle any postpended data. 7137 */ 7138 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7139 mp, mp1, len, adj); 7140 7141 /* One's complement subtract extraneous checksum */ 7142 if (adj >= sum_val) 7143 sum_val = ~(adj - sum_val) & 0xFFFF; 7144 else 7145 sum_val -= adj; 7146 } 7147 } else { 7148 sum_val = 0; 7149 sum_flags = 0; 7150 } 7151 7152 /* Clear hardware checksumming flag */ 7153 DB_CKSUMFLAGS(mp) = 0; 7154 7155 ident = ipha->ipha_ident; 7156 offset = (frag_offset_flags << 3) & 0xFFFF; 7157 src = ipha->ipha_src; 7158 dst = ipha->ipha_dst; 7159 hdr_length = IPH_HDR_LENGTH(ipha); 7160 end = ntohs(ipha->ipha_length) - hdr_length; 7161 7162 /* If end == 0 then we have a packet with no data, so just free it */ 7163 if (end == 0) { 7164 freemsg(mp); 7165 return (NULL); 7166 } 7167 7168 /* Record the ECN field info. */ 7169 ecn_info = (ipha->ipha_type_of_service & 0x3); 7170 if (offset != 0) { 7171 /* 7172 * If this isn't the first piece, strip the header, and 7173 * add the offset to the end value. 7174 */ 7175 mp->b_rptr += hdr_length; 7176 end += offset; 7177 } 7178 7179 /* Handle vnic loopback of fragments */ 7180 if (mp->b_datap->db_ref > 2) 7181 msg_len = 0; 7182 else 7183 msg_len = MBLKSIZE(mp); 7184 7185 tail_mp = mp; 7186 while (tail_mp->b_cont != NULL) { 7187 tail_mp = tail_mp->b_cont; 7188 if (tail_mp->b_datap->db_ref <= 2) 7189 msg_len += MBLKSIZE(tail_mp); 7190 } 7191 7192 /* If the reassembly list for this ILL will get too big, prune it */ 7193 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7194 ipst->ips_ip_reass_queue_bytes) { 7195 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7196 uint_t, ill->ill_frag_count, 7197 uint_t, ipst->ips_ip_reass_queue_bytes); 7198 ill_frag_prune(ill, 7199 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7200 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7201 pruned = B_TRUE; 7202 } 7203 7204 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7205 mutex_enter(&ipfb->ipfb_lock); 7206 7207 ipfp = &ipfb->ipfb_ipf; 7208 /* Try to find an existing fragment queue for this packet. */ 7209 for (;;) { 7210 ipf = ipfp[0]; 7211 if (ipf != NULL) { 7212 /* 7213 * It has to match on ident and src/dst address. 7214 */ 7215 if (ipf->ipf_ident == ident && 7216 ipf->ipf_src == src && 7217 ipf->ipf_dst == dst && 7218 ipf->ipf_protocol == proto) { 7219 /* 7220 * If we have received too many 7221 * duplicate fragments for this packet 7222 * free it. 7223 */ 7224 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7225 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7226 freemsg(mp); 7227 mutex_exit(&ipfb->ipfb_lock); 7228 return (NULL); 7229 } 7230 /* Found it. */ 7231 break; 7232 } 7233 ipfp = &ipf->ipf_hash_next; 7234 continue; 7235 } 7236 7237 /* 7238 * If we pruned the list, do we want to store this new 7239 * fragment?. We apply an optimization here based on the 7240 * fact that most fragments will be received in order. 7241 * So if the offset of this incoming fragment is zero, 7242 * it is the first fragment of a new packet. We will 7243 * keep it. Otherwise drop the fragment, as we have 7244 * probably pruned the packet already (since the 7245 * packet cannot be found). 7246 */ 7247 if (pruned && offset != 0) { 7248 mutex_exit(&ipfb->ipfb_lock); 7249 freemsg(mp); 7250 return (NULL); 7251 } 7252 7253 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7254 /* 7255 * Too many fragmented packets in this hash 7256 * bucket. Free the oldest. 7257 */ 7258 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7259 } 7260 7261 /* New guy. Allocate a frag message. */ 7262 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7263 if (mp1 == NULL) { 7264 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7265 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7266 freemsg(mp); 7267 reass_done: 7268 mutex_exit(&ipfb->ipfb_lock); 7269 return (NULL); 7270 } 7271 7272 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7273 mp1->b_cont = mp; 7274 7275 /* Initialize the fragment header. */ 7276 ipf = (ipf_t *)mp1->b_rptr; 7277 ipf->ipf_mp = mp1; 7278 ipf->ipf_ptphn = ipfp; 7279 ipfp[0] = ipf; 7280 ipf->ipf_hash_next = NULL; 7281 ipf->ipf_ident = ident; 7282 ipf->ipf_protocol = proto; 7283 ipf->ipf_src = src; 7284 ipf->ipf_dst = dst; 7285 ipf->ipf_nf_hdr_len = 0; 7286 /* Record reassembly start time. */ 7287 ipf->ipf_timestamp = gethrestime_sec(); 7288 /* Record ipf generation and account for frag header */ 7289 ipf->ipf_gen = ill->ill_ipf_gen++; 7290 ipf->ipf_count = MBLKSIZE(mp1); 7291 ipf->ipf_last_frag_seen = B_FALSE; 7292 ipf->ipf_ecn = ecn_info; 7293 ipf->ipf_num_dups = 0; 7294 ipfb->ipfb_frag_pkts++; 7295 ipf->ipf_checksum = 0; 7296 ipf->ipf_checksum_flags = 0; 7297 7298 /* Store checksum value in fragment header */ 7299 if (sum_flags != 0) { 7300 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7301 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7302 ipf->ipf_checksum = sum_val; 7303 ipf->ipf_checksum_flags = sum_flags; 7304 } 7305 7306 /* 7307 * We handle reassembly two ways. In the easy case, 7308 * where all the fragments show up in order, we do 7309 * minimal bookkeeping, and just clip new pieces on 7310 * the end. If we ever see a hole, then we go off 7311 * to ip_reassemble which has to mark the pieces and 7312 * keep track of the number of holes, etc. Obviously, 7313 * the point of having both mechanisms is so we can 7314 * handle the easy case as efficiently as possible. 7315 */ 7316 if (offset == 0) { 7317 /* Easy case, in-order reassembly so far. */ 7318 ipf->ipf_count += msg_len; 7319 ipf->ipf_tail_mp = tail_mp; 7320 /* 7321 * Keep track of next expected offset in 7322 * ipf_end. 7323 */ 7324 ipf->ipf_end = end; 7325 ipf->ipf_nf_hdr_len = hdr_length; 7326 } else { 7327 /* Hard case, hole at the beginning. */ 7328 ipf->ipf_tail_mp = NULL; 7329 /* 7330 * ipf_end == 0 means that we have given up 7331 * on easy reassembly. 7332 */ 7333 ipf->ipf_end = 0; 7334 7335 /* Forget checksum offload from now on */ 7336 ipf->ipf_checksum_flags = 0; 7337 7338 /* 7339 * ipf_hole_cnt is set by ip_reassemble. 7340 * ipf_count is updated by ip_reassemble. 7341 * No need to check for return value here 7342 * as we don't expect reassembly to complete 7343 * or fail for the first fragment itself. 7344 */ 7345 (void) ip_reassemble(mp, ipf, 7346 (frag_offset_flags & IPH_OFFSET) << 3, 7347 (frag_offset_flags & IPH_MF), ill, msg_len); 7348 } 7349 /* Update per ipfb and ill byte counts */ 7350 ipfb->ipfb_count += ipf->ipf_count; 7351 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7352 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7353 /* If the frag timer wasn't already going, start it. */ 7354 mutex_enter(&ill->ill_lock); 7355 ill_frag_timer_start(ill); 7356 mutex_exit(&ill->ill_lock); 7357 goto reass_done; 7358 } 7359 7360 /* 7361 * If the packet's flag has changed (it could be coming up 7362 * from an interface different than the previous, therefore 7363 * possibly different checksum capability), then forget about 7364 * any stored checksum states. Otherwise add the value to 7365 * the existing one stored in the fragment header. 7366 */ 7367 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7368 sum_val += ipf->ipf_checksum; 7369 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7370 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7371 ipf->ipf_checksum = sum_val; 7372 } else if (ipf->ipf_checksum_flags != 0) { 7373 /* Forget checksum offload from now on */ 7374 ipf->ipf_checksum_flags = 0; 7375 } 7376 7377 /* 7378 * We have a new piece of a datagram which is already being 7379 * reassembled. Update the ECN info if all IP fragments 7380 * are ECN capable. If there is one which is not, clear 7381 * all the info. If there is at least one which has CE 7382 * code point, IP needs to report that up to transport. 7383 */ 7384 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7385 if (ecn_info == IPH_ECN_CE) 7386 ipf->ipf_ecn = IPH_ECN_CE; 7387 } else { 7388 ipf->ipf_ecn = IPH_ECN_NECT; 7389 } 7390 if (offset && ipf->ipf_end == offset) { 7391 /* The new fragment fits at the end */ 7392 ipf->ipf_tail_mp->b_cont = mp; 7393 /* Update the byte count */ 7394 ipf->ipf_count += msg_len; 7395 /* Update per ipfb and ill byte counts */ 7396 ipfb->ipfb_count += msg_len; 7397 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7398 atomic_add_32(&ill->ill_frag_count, msg_len); 7399 if (frag_offset_flags & IPH_MF) { 7400 /* More to come. */ 7401 ipf->ipf_end = end; 7402 ipf->ipf_tail_mp = tail_mp; 7403 goto reass_done; 7404 } 7405 } else { 7406 /* Go do the hard cases. */ 7407 int ret; 7408 7409 if (offset == 0) 7410 ipf->ipf_nf_hdr_len = hdr_length; 7411 7412 /* Save current byte count */ 7413 count = ipf->ipf_count; 7414 ret = ip_reassemble(mp, ipf, 7415 (frag_offset_flags & IPH_OFFSET) << 3, 7416 (frag_offset_flags & IPH_MF), ill, msg_len); 7417 /* Count of bytes added and subtracted (freeb()ed) */ 7418 count = ipf->ipf_count - count; 7419 if (count) { 7420 /* Update per ipfb and ill byte counts */ 7421 ipfb->ipfb_count += count; 7422 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7423 atomic_add_32(&ill->ill_frag_count, count); 7424 } 7425 if (ret == IP_REASS_PARTIAL) { 7426 goto reass_done; 7427 } else if (ret == IP_REASS_FAILED) { 7428 /* Reassembly failed. Free up all resources */ 7429 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7430 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7431 IP_REASS_SET_START(t_mp, 0); 7432 IP_REASS_SET_END(t_mp, 0); 7433 } 7434 freemsg(mp); 7435 goto reass_done; 7436 } 7437 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7438 } 7439 /* 7440 * We have completed reassembly. Unhook the frag header from 7441 * the reassembly list. 7442 * 7443 * Before we free the frag header, record the ECN info 7444 * to report back to the transport. 7445 */ 7446 ecn_info = ipf->ipf_ecn; 7447 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7448 ipfp = ipf->ipf_ptphn; 7449 7450 /* We need to supply these to caller */ 7451 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7452 sum_val = ipf->ipf_checksum; 7453 else 7454 sum_val = 0; 7455 7456 mp1 = ipf->ipf_mp; 7457 count = ipf->ipf_count; 7458 ipf = ipf->ipf_hash_next; 7459 if (ipf != NULL) 7460 ipf->ipf_ptphn = ipfp; 7461 ipfp[0] = ipf; 7462 atomic_add_32(&ill->ill_frag_count, -count); 7463 ASSERT(ipfb->ipfb_count >= count); 7464 ipfb->ipfb_count -= count; 7465 ipfb->ipfb_frag_pkts--; 7466 mutex_exit(&ipfb->ipfb_lock); 7467 /* Ditch the frag header. */ 7468 mp = mp1->b_cont; 7469 7470 freeb(mp1); 7471 7472 /* Restore original IP length in header. */ 7473 packet_size = (uint32_t)msgdsize(mp); 7474 if (packet_size > IP_MAXPACKET) { 7475 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7476 ip_drop_input("Reassembled packet too large", mp, ill); 7477 freemsg(mp); 7478 return (NULL); 7479 } 7480 7481 if (DB_REF(mp) > 1) { 7482 mblk_t *mp2 = copymsg(mp); 7483 7484 if (mp2 == NULL) { 7485 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7486 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7487 freemsg(mp); 7488 return (NULL); 7489 } 7490 freemsg(mp); 7491 mp = mp2; 7492 } 7493 ipha = (ipha_t *)mp->b_rptr; 7494 7495 ipha->ipha_length = htons((uint16_t)packet_size); 7496 /* We're now complete, zip the frag state */ 7497 ipha->ipha_fragment_offset_and_flags = 0; 7498 /* Record the ECN info. */ 7499 ipha->ipha_type_of_service &= 0xFC; 7500 ipha->ipha_type_of_service |= ecn_info; 7501 7502 /* Update the receive attributes */ 7503 ira->ira_pktlen = packet_size; 7504 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7505 7506 /* Reassembly is successful; set checksum information in packet */ 7507 DB_CKSUM16(mp) = (uint16_t)sum_val; 7508 DB_CKSUMFLAGS(mp) = sum_flags; 7509 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7510 7511 return (mp); 7512 } 7513 7514 /* 7515 * Pullup function that should be used for IP input in order to 7516 * ensure we do not loose the L2 source address; we need the l2 source 7517 * address for IP_RECVSLLA and for ndp_input. 7518 * 7519 * We return either NULL or b_rptr. 7520 */ 7521 void * 7522 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7523 { 7524 ill_t *ill = ira->ira_ill; 7525 7526 if (ip_rput_pullups++ == 0) { 7527 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7528 "ip_pullup: %s forced us to " 7529 " pullup pkt, hdr len %ld, hdr addr %p", 7530 ill->ill_name, len, (void *)mp->b_rptr); 7531 } 7532 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7533 ip_setl2src(mp, ira, ira->ira_rill); 7534 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7535 if (!pullupmsg(mp, len)) 7536 return (NULL); 7537 else 7538 return (mp->b_rptr); 7539 } 7540 7541 /* 7542 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7543 * When called from the ULP ira_rill will be NULL hence the caller has to 7544 * pass in the ill. 7545 */ 7546 /* ARGSUSED */ 7547 void 7548 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7549 { 7550 const uchar_t *addr; 7551 int alen; 7552 7553 if (ira->ira_flags & IRAF_L2SRC_SET) 7554 return; 7555 7556 ASSERT(ill != NULL); 7557 alen = ill->ill_phys_addr_length; 7558 ASSERT(alen <= sizeof (ira->ira_l2src)); 7559 if (ira->ira_mhip != NULL && 7560 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7561 bcopy(addr, ira->ira_l2src, alen); 7562 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7563 (addr = ill->ill_phys_addr) != NULL) { 7564 bcopy(addr, ira->ira_l2src, alen); 7565 } else { 7566 bzero(ira->ira_l2src, alen); 7567 } 7568 ira->ira_flags |= IRAF_L2SRC_SET; 7569 } 7570 7571 /* 7572 * check ip header length and align it. 7573 */ 7574 mblk_t * 7575 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7576 { 7577 ill_t *ill = ira->ira_ill; 7578 ssize_t len; 7579 7580 len = MBLKL(mp); 7581 7582 if (!OK_32PTR(mp->b_rptr)) 7583 IP_STAT(ill->ill_ipst, ip_notaligned); 7584 else 7585 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7586 7587 /* Guard against bogus device drivers */ 7588 if (len < 0) { 7589 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7590 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7591 freemsg(mp); 7592 return (NULL); 7593 } 7594 7595 if (len == 0) { 7596 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7597 mblk_t *mp1 = mp->b_cont; 7598 7599 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7600 ip_setl2src(mp, ira, ira->ira_rill); 7601 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7602 7603 freeb(mp); 7604 mp = mp1; 7605 if (mp == NULL) 7606 return (NULL); 7607 7608 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7609 return (mp); 7610 } 7611 if (ip_pullup(mp, min_size, ira) == NULL) { 7612 if (msgdsize(mp) < min_size) { 7613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7614 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7615 } else { 7616 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7617 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7618 } 7619 freemsg(mp); 7620 return (NULL); 7621 } 7622 return (mp); 7623 } 7624 7625 /* 7626 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7627 */ 7628 mblk_t * 7629 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7630 uint_t min_size, ip_recv_attr_t *ira) 7631 { 7632 ill_t *ill = ira->ira_ill; 7633 7634 /* 7635 * Make sure we have data length consistent 7636 * with the IP header. 7637 */ 7638 if (mp->b_cont == NULL) { 7639 /* pkt_len is based on ipha_len, not the mblk length */ 7640 if (pkt_len < min_size) { 7641 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7642 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7643 freemsg(mp); 7644 return (NULL); 7645 } 7646 if (len < 0) { 7647 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7648 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7649 freemsg(mp); 7650 return (NULL); 7651 } 7652 /* Drop any pad */ 7653 mp->b_wptr = rptr + pkt_len; 7654 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7655 ASSERT(pkt_len >= min_size); 7656 if (pkt_len < min_size) { 7657 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7658 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7659 freemsg(mp); 7660 return (NULL); 7661 } 7662 if (len < 0) { 7663 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7664 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7665 freemsg(mp); 7666 return (NULL); 7667 } 7668 /* Drop any pad */ 7669 (void) adjmsg(mp, -len); 7670 /* 7671 * adjmsg may have freed an mblk from the chain, hence 7672 * invalidate any hw checksum here. This will force IP to 7673 * calculate the checksum in sw, but only for this packet. 7674 */ 7675 DB_CKSUMFLAGS(mp) = 0; 7676 IP_STAT(ill->ill_ipst, ip_multimblk); 7677 } 7678 return (mp); 7679 } 7680 7681 /* 7682 * Check that the IPv4 opt_len is consistent with the packet and pullup 7683 * the options. 7684 */ 7685 mblk_t * 7686 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7687 ip_recv_attr_t *ira) 7688 { 7689 ill_t *ill = ira->ira_ill; 7690 ssize_t len; 7691 7692 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7693 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7694 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7696 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7697 freemsg(mp); 7698 return (NULL); 7699 } 7700 7701 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7702 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7703 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7704 freemsg(mp); 7705 return (NULL); 7706 } 7707 /* 7708 * Recompute complete header length and make sure we 7709 * have access to all of it. 7710 */ 7711 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7712 if (len > (mp->b_wptr - mp->b_rptr)) { 7713 if (len > pkt_len) { 7714 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7715 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7716 freemsg(mp); 7717 return (NULL); 7718 } 7719 if (ip_pullup(mp, len, ira) == NULL) { 7720 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7721 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7722 freemsg(mp); 7723 return (NULL); 7724 } 7725 } 7726 return (mp); 7727 } 7728 7729 /* 7730 * Returns a new ire, or the same ire, or NULL. 7731 * If a different IRE is returned, then it is held; the caller 7732 * needs to release it. 7733 * In no case is there any hold/release on the ire argument. 7734 */ 7735 ire_t * 7736 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7737 { 7738 ire_t *new_ire; 7739 ill_t *ire_ill; 7740 uint_t ifindex; 7741 ip_stack_t *ipst = ill->ill_ipst; 7742 boolean_t strict_check = B_FALSE; 7743 7744 /* 7745 * IPMP common case: if IRE and ILL are in the same group, there's no 7746 * issue (e.g. packet received on an underlying interface matched an 7747 * IRE_LOCAL on its associated group interface). 7748 */ 7749 ASSERT(ire->ire_ill != NULL); 7750 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7751 return (ire); 7752 7753 /* 7754 * Do another ire lookup here, using the ingress ill, to see if the 7755 * interface is in a usesrc group. 7756 * As long as the ills belong to the same group, we don't consider 7757 * them to be arriving on the wrong interface. Thus, if the switch 7758 * is doing inbound load spreading, we won't drop packets when the 7759 * ip*_strict_dst_multihoming switch is on. 7760 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7761 * where the local address may not be unique. In this case we were 7762 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7763 * actually returned. The new lookup, which is more specific, should 7764 * only find the IRE_LOCAL associated with the ingress ill if one 7765 * exists. 7766 */ 7767 if (ire->ire_ipversion == IPV4_VERSION) { 7768 if (ipst->ips_ip_strict_dst_multihoming) 7769 strict_check = B_TRUE; 7770 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7771 IRE_LOCAL, ill, ALL_ZONES, NULL, 7772 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7773 } else { 7774 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7775 if (ipst->ips_ipv6_strict_dst_multihoming) 7776 strict_check = B_TRUE; 7777 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7778 IRE_LOCAL, ill, ALL_ZONES, NULL, 7779 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7780 } 7781 /* 7782 * If the same ire that was returned in ip_input() is found then this 7783 * is an indication that usesrc groups are in use. The packet 7784 * arrived on a different ill in the group than the one associated with 7785 * the destination address. If a different ire was found then the same 7786 * IP address must be hosted on multiple ills. This is possible with 7787 * unnumbered point2point interfaces. We switch to use this new ire in 7788 * order to have accurate interface statistics. 7789 */ 7790 if (new_ire != NULL) { 7791 /* Note: held in one case but not the other? Caller handles */ 7792 if (new_ire != ire) 7793 return (new_ire); 7794 /* Unchanged */ 7795 ire_refrele(new_ire); 7796 return (ire); 7797 } 7798 7799 /* 7800 * Chase pointers once and store locally. 7801 */ 7802 ASSERT(ire->ire_ill != NULL); 7803 ire_ill = ire->ire_ill; 7804 ifindex = ill->ill_usesrc_ifindex; 7805 7806 /* 7807 * Check if it's a legal address on the 'usesrc' interface. 7808 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7809 * can just check phyint_ifindex. 7810 */ 7811 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7812 return (ire); 7813 } 7814 7815 /* 7816 * If the ip*_strict_dst_multihoming switch is on then we can 7817 * only accept this packet if the interface is marked as routing. 7818 */ 7819 if (!(strict_check)) 7820 return (ire); 7821 7822 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7823 return (ire); 7824 } 7825 return (NULL); 7826 } 7827 7828 /* 7829 * This function is used to construct a mac_header_info_s from a 7830 * DL_UNITDATA_IND message. 7831 * The address fields in the mhi structure points into the message, 7832 * thus the caller can't use those fields after freeing the message. 7833 * 7834 * We determine whether the packet received is a non-unicast packet 7835 * and in doing so, determine whether or not it is broadcast vs multicast. 7836 * For it to be a broadcast packet, we must have the appropriate mblk_t 7837 * hanging off the ill_t. If this is either not present or doesn't match 7838 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7839 * to be multicast. Thus NICs that have no broadcast address (or no 7840 * capability for one, such as point to point links) cannot return as 7841 * the packet being broadcast. 7842 */ 7843 void 7844 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7845 { 7846 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7847 mblk_t *bmp; 7848 uint_t extra_offset; 7849 7850 bzero(mhip, sizeof (struct mac_header_info_s)); 7851 7852 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7853 7854 if (ill->ill_sap_length < 0) 7855 extra_offset = 0; 7856 else 7857 extra_offset = ill->ill_sap_length; 7858 7859 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7860 extra_offset; 7861 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7862 extra_offset; 7863 7864 if (!ind->dl_group_address) 7865 return; 7866 7867 /* Multicast or broadcast */ 7868 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7869 7870 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7871 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7872 (bmp = ill->ill_bcast_mp) != NULL) { 7873 dl_unitdata_req_t *dlur; 7874 uint8_t *bphys_addr; 7875 7876 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7877 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7878 extra_offset; 7879 7880 if (bcmp(mhip->mhi_daddr, bphys_addr, 7881 ind->dl_dest_addr_length) == 0) 7882 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7883 } 7884 } 7885 7886 /* 7887 * This function is used to construct a mac_header_info_s from a 7888 * M_DATA fastpath message from a DLPI driver. 7889 * The address fields in the mhi structure points into the message, 7890 * thus the caller can't use those fields after freeing the message. 7891 * 7892 * We determine whether the packet received is a non-unicast packet 7893 * and in doing so, determine whether or not it is broadcast vs multicast. 7894 * For it to be a broadcast packet, we must have the appropriate mblk_t 7895 * hanging off the ill_t. If this is either not present or doesn't match 7896 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7897 * to be multicast. Thus NICs that have no broadcast address (or no 7898 * capability for one, such as point to point links) cannot return as 7899 * the packet being broadcast. 7900 */ 7901 void 7902 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7903 { 7904 mblk_t *bmp; 7905 struct ether_header *pether; 7906 7907 bzero(mhip, sizeof (struct mac_header_info_s)); 7908 7909 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7910 7911 pether = (struct ether_header *)((char *)mp->b_rptr 7912 - sizeof (struct ether_header)); 7913 7914 /* 7915 * Make sure the interface is an ethernet type, since we don't 7916 * know the header format for anything but Ethernet. Also make 7917 * sure we are pointing correctly above db_base. 7918 */ 7919 if (ill->ill_type != IFT_ETHER) 7920 return; 7921 7922 retry: 7923 if ((uchar_t *)pether < mp->b_datap->db_base) 7924 return; 7925 7926 /* Is there a VLAN tag? */ 7927 if (ill->ill_isv6) { 7928 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7929 pether = (struct ether_header *)((char *)pether - 4); 7930 goto retry; 7931 } 7932 } else { 7933 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7934 pether = (struct ether_header *)((char *)pether - 4); 7935 goto retry; 7936 } 7937 } 7938 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7939 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7940 7941 if (!(mhip->mhi_daddr[0] & 0x01)) 7942 return; 7943 7944 /* Multicast or broadcast */ 7945 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7946 7947 if ((bmp = ill->ill_bcast_mp) != NULL) { 7948 dl_unitdata_req_t *dlur; 7949 uint8_t *bphys_addr; 7950 uint_t addrlen; 7951 7952 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7953 addrlen = dlur->dl_dest_addr_length; 7954 if (ill->ill_sap_length < 0) { 7955 bphys_addr = (uchar_t *)dlur + 7956 dlur->dl_dest_addr_offset; 7957 addrlen += ill->ill_sap_length; 7958 } else { 7959 bphys_addr = (uchar_t *)dlur + 7960 dlur->dl_dest_addr_offset + 7961 ill->ill_sap_length; 7962 addrlen -= ill->ill_sap_length; 7963 } 7964 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7965 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7966 } 7967 } 7968 7969 /* 7970 * Handle anything but M_DATA messages 7971 * We see the DL_UNITDATA_IND which are part 7972 * of the data path, and also the other messages from the driver. 7973 */ 7974 void 7975 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7976 { 7977 mblk_t *first_mp; 7978 struct iocblk *iocp; 7979 struct mac_header_info_s mhi; 7980 7981 switch (DB_TYPE(mp)) { 7982 case M_PROTO: 7983 case M_PCPROTO: { 7984 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7985 DL_UNITDATA_IND) { 7986 /* Go handle anything other than data elsewhere. */ 7987 ip_rput_dlpi(ill, mp); 7988 return; 7989 } 7990 7991 first_mp = mp; 7992 mp = first_mp->b_cont; 7993 first_mp->b_cont = NULL; 7994 7995 if (mp == NULL) { 7996 freeb(first_mp); 7997 return; 7998 } 7999 ip_dlur_to_mhi(ill, first_mp, &mhi); 8000 if (ill->ill_isv6) 8001 ip_input_v6(ill, NULL, mp, &mhi); 8002 else 8003 ip_input(ill, NULL, mp, &mhi); 8004 8005 /* Ditch the DLPI header. */ 8006 freeb(first_mp); 8007 return; 8008 } 8009 case M_IOCACK: 8010 iocp = (struct iocblk *)mp->b_rptr; 8011 switch (iocp->ioc_cmd) { 8012 case DL_IOC_HDR_INFO: 8013 ill_fastpath_ack(ill, mp); 8014 return; 8015 default: 8016 putnext(ill->ill_rq, mp); 8017 return; 8018 } 8019 /* FALLTHROUGH */ 8020 case M_ERROR: 8021 case M_HANGUP: 8022 mutex_enter(&ill->ill_lock); 8023 if (ill->ill_state_flags & ILL_CONDEMNED) { 8024 mutex_exit(&ill->ill_lock); 8025 freemsg(mp); 8026 return; 8027 } 8028 ill_refhold_locked(ill); 8029 mutex_exit(&ill->ill_lock); 8030 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 8031 B_FALSE); 8032 return; 8033 case M_CTL: 8034 putnext(ill->ill_rq, mp); 8035 return; 8036 case M_IOCNAK: 8037 ip1dbg(("got iocnak ")); 8038 iocp = (struct iocblk *)mp->b_rptr; 8039 switch (iocp->ioc_cmd) { 8040 case DL_IOC_HDR_INFO: 8041 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 8042 return; 8043 default: 8044 break; 8045 } 8046 /* FALLTHROUGH */ 8047 default: 8048 putnext(ill->ill_rq, mp); 8049 return; 8050 } 8051 } 8052 8053 /* Read side put procedure. Packets coming from the wire arrive here. */ 8054 int 8055 ip_rput(queue_t *q, mblk_t *mp) 8056 { 8057 ill_t *ill; 8058 union DL_primitives *dl; 8059 8060 ill = (ill_t *)q->q_ptr; 8061 8062 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8063 /* 8064 * If things are opening or closing, only accept high-priority 8065 * DLPI messages. (On open ill->ill_ipif has not yet been 8066 * created; on close, things hanging off the ill may have been 8067 * freed already.) 8068 */ 8069 dl = (union DL_primitives *)mp->b_rptr; 8070 if (DB_TYPE(mp) != M_PCPROTO || 8071 dl->dl_primitive == DL_UNITDATA_IND) { 8072 inet_freemsg(mp); 8073 return (0); 8074 } 8075 } 8076 if (DB_TYPE(mp) == M_DATA) { 8077 struct mac_header_info_s mhi; 8078 8079 ip_mdata_to_mhi(ill, mp, &mhi); 8080 ip_input(ill, NULL, mp, &mhi); 8081 } else { 8082 ip_rput_notdata(ill, mp); 8083 } 8084 return (0); 8085 } 8086 8087 /* 8088 * Move the information to a copy. 8089 */ 8090 mblk_t * 8091 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8092 { 8093 mblk_t *mp1; 8094 ill_t *ill = ira->ira_ill; 8095 ip_stack_t *ipst = ill->ill_ipst; 8096 8097 IP_STAT(ipst, ip_db_ref); 8098 8099 /* Make sure we have ira_l2src before we loose the original mblk */ 8100 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8101 ip_setl2src(mp, ira, ira->ira_rill); 8102 8103 mp1 = copymsg(mp); 8104 if (mp1 == NULL) { 8105 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8106 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8107 freemsg(mp); 8108 return (NULL); 8109 } 8110 /* preserve the hardware checksum flags and data, if present */ 8111 if (DB_CKSUMFLAGS(mp) != 0) { 8112 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8113 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8114 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8115 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8116 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8117 } 8118 freemsg(mp); 8119 return (mp1); 8120 } 8121 8122 static void 8123 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8124 t_uscalar_t err) 8125 { 8126 if (dl_err == DL_SYSERR) { 8127 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8128 "%s: %s failed: DL_SYSERR (errno %u)\n", 8129 ill->ill_name, dl_primstr(prim), err); 8130 return; 8131 } 8132 8133 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8134 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8135 dl_errstr(dl_err)); 8136 } 8137 8138 /* 8139 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8140 * than DL_UNITDATA_IND messages. If we need to process this message 8141 * exclusively, we call qwriter_ip, in which case we also need to call 8142 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8143 */ 8144 void 8145 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8146 { 8147 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8148 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8149 queue_t *q = ill->ill_rq; 8150 t_uscalar_t prim = dloa->dl_primitive; 8151 t_uscalar_t reqprim = DL_PRIM_INVAL; 8152 8153 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8154 char *, dl_primstr(prim), ill_t *, ill); 8155 ip1dbg(("ip_rput_dlpi")); 8156 8157 /* 8158 * If we received an ACK but didn't send a request for it, then it 8159 * can't be part of any pending operation; discard up-front. 8160 */ 8161 switch (prim) { 8162 case DL_ERROR_ACK: 8163 reqprim = dlea->dl_error_primitive; 8164 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8165 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8166 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8167 dlea->dl_unix_errno)); 8168 break; 8169 case DL_OK_ACK: 8170 reqprim = dloa->dl_correct_primitive; 8171 break; 8172 case DL_INFO_ACK: 8173 reqprim = DL_INFO_REQ; 8174 break; 8175 case DL_BIND_ACK: 8176 reqprim = DL_BIND_REQ; 8177 break; 8178 case DL_PHYS_ADDR_ACK: 8179 reqprim = DL_PHYS_ADDR_REQ; 8180 break; 8181 case DL_NOTIFY_ACK: 8182 reqprim = DL_NOTIFY_REQ; 8183 break; 8184 case DL_CAPABILITY_ACK: 8185 reqprim = DL_CAPABILITY_REQ; 8186 break; 8187 } 8188 8189 if (prim != DL_NOTIFY_IND) { 8190 if (reqprim == DL_PRIM_INVAL || 8191 !ill_dlpi_pending(ill, reqprim)) { 8192 /* Not a DLPI message we support or expected */ 8193 freemsg(mp); 8194 return; 8195 } 8196 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8197 dl_primstr(reqprim))); 8198 } 8199 8200 switch (reqprim) { 8201 case DL_UNBIND_REQ: 8202 /* 8203 * NOTE: we mark the unbind as complete even if we got a 8204 * DL_ERROR_ACK, since there's not much else we can do. 8205 */ 8206 mutex_enter(&ill->ill_lock); 8207 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8208 cv_signal(&ill->ill_cv); 8209 mutex_exit(&ill->ill_lock); 8210 break; 8211 8212 case DL_ENABMULTI_REQ: 8213 if (prim == DL_OK_ACK) { 8214 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8215 ill->ill_dlpi_multicast_state = IDS_OK; 8216 } 8217 break; 8218 } 8219 8220 /* 8221 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8222 * need to become writer to continue to process it. Because an 8223 * exclusive operation doesn't complete until replies to all queued 8224 * DLPI messages have been received, we know we're in the middle of an 8225 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8226 * 8227 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8228 * Since this is on the ill stream we unconditionally bump up the 8229 * refcount without doing ILL_CAN_LOOKUP(). 8230 */ 8231 ill_refhold(ill); 8232 if (prim == DL_NOTIFY_IND) 8233 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8234 else 8235 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8236 } 8237 8238 /* 8239 * Handling of DLPI messages that require exclusive access to the ipsq. 8240 * 8241 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8242 * happen here. (along with mi_copy_done) 8243 */ 8244 /* ARGSUSED */ 8245 static void 8246 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8247 { 8248 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8249 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8250 int err = 0; 8251 ill_t *ill = (ill_t *)q->q_ptr; 8252 ipif_t *ipif = NULL; 8253 mblk_t *mp1 = NULL; 8254 conn_t *connp = NULL; 8255 t_uscalar_t paddrreq; 8256 mblk_t *mp_hw; 8257 boolean_t success; 8258 boolean_t ioctl_aborted = B_FALSE; 8259 boolean_t log = B_TRUE; 8260 8261 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8262 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8263 8264 ip1dbg(("ip_rput_dlpi_writer ..")); 8265 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8266 ASSERT(IAM_WRITER_ILL(ill)); 8267 8268 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8269 /* 8270 * The current ioctl could have been aborted by the user and a new 8271 * ioctl to bring up another ill could have started. We could still 8272 * get a response from the driver later. 8273 */ 8274 if (ipif != NULL && ipif->ipif_ill != ill) 8275 ioctl_aborted = B_TRUE; 8276 8277 switch (dloa->dl_primitive) { 8278 case DL_ERROR_ACK: 8279 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8280 dl_primstr(dlea->dl_error_primitive))); 8281 8282 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8283 char *, dl_primstr(dlea->dl_error_primitive), 8284 ill_t *, ill); 8285 8286 switch (dlea->dl_error_primitive) { 8287 case DL_DISABMULTI_REQ: 8288 ill_dlpi_done(ill, dlea->dl_error_primitive); 8289 break; 8290 case DL_PROMISCON_REQ: 8291 case DL_PROMISCOFF_REQ: 8292 case DL_UNBIND_REQ: 8293 case DL_ATTACH_REQ: 8294 case DL_INFO_REQ: 8295 ill_dlpi_done(ill, dlea->dl_error_primitive); 8296 break; 8297 case DL_NOTIFY_REQ: 8298 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8299 log = B_FALSE; 8300 break; 8301 case DL_PHYS_ADDR_REQ: 8302 /* 8303 * For IPv6 only, there are two additional 8304 * phys_addr_req's sent to the driver to get the 8305 * IPv6 token and lla. This allows IP to acquire 8306 * the hardware address format for a given interface 8307 * without having built in knowledge of the hardware 8308 * address. ill_phys_addr_pend keeps track of the last 8309 * DL_PAR sent so we know which response we are 8310 * dealing with. ill_dlpi_done will update 8311 * ill_phys_addr_pend when it sends the next req. 8312 * We don't complete the IOCTL until all three DL_PARs 8313 * have been attempted, so set *_len to 0 and break. 8314 */ 8315 paddrreq = ill->ill_phys_addr_pend; 8316 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8317 if (paddrreq == DL_IPV6_TOKEN) { 8318 ill->ill_token_length = 0; 8319 log = B_FALSE; 8320 break; 8321 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8322 ill->ill_nd_lla_len = 0; 8323 log = B_FALSE; 8324 break; 8325 } 8326 /* 8327 * Something went wrong with the DL_PHYS_ADDR_REQ. 8328 * We presumably have an IOCTL hanging out waiting 8329 * for completion. Find it and complete the IOCTL 8330 * with the error noted. 8331 * However, ill_dl_phys was called on an ill queue 8332 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8333 * set. But the ioctl is known to be pending on ill_wq. 8334 */ 8335 if (!ill->ill_ifname_pending) 8336 break; 8337 ill->ill_ifname_pending = 0; 8338 if (!ioctl_aborted) 8339 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8340 if (mp1 != NULL) { 8341 /* 8342 * This operation (SIOCSLIFNAME) must have 8343 * happened on the ill. Assert there is no conn 8344 */ 8345 ASSERT(connp == NULL); 8346 q = ill->ill_wq; 8347 } 8348 break; 8349 case DL_BIND_REQ: 8350 ill_dlpi_done(ill, DL_BIND_REQ); 8351 if (ill->ill_ifname_pending) 8352 break; 8353 mutex_enter(&ill->ill_lock); 8354 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8355 mutex_exit(&ill->ill_lock); 8356 /* 8357 * Something went wrong with the bind. We presumably 8358 * have an IOCTL hanging out waiting for completion. 8359 * Find it, take down the interface that was coming 8360 * up, and complete the IOCTL with the error noted. 8361 */ 8362 if (!ioctl_aborted) 8363 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8364 if (mp1 != NULL) { 8365 /* 8366 * This might be a result of a DL_NOTE_REPLUMB 8367 * notification. In that case, connp is NULL. 8368 */ 8369 if (connp != NULL) 8370 q = CONNP_TO_WQ(connp); 8371 8372 (void) ipif_down(ipif, NULL, NULL); 8373 /* error is set below the switch */ 8374 } 8375 break; 8376 case DL_ENABMULTI_REQ: 8377 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8378 8379 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8380 ill->ill_dlpi_multicast_state = IDS_FAILED; 8381 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8382 8383 printf("ip: joining multicasts failed (%d)" 8384 " on %s - will use link layer " 8385 "broadcasts for multicast\n", 8386 dlea->dl_errno, ill->ill_name); 8387 8388 /* 8389 * Set up for multi_bcast; We are the 8390 * writer, so ok to access ill->ill_ipif 8391 * without any lock. 8392 */ 8393 mutex_enter(&ill->ill_phyint->phyint_lock); 8394 ill->ill_phyint->phyint_flags |= 8395 PHYI_MULTI_BCAST; 8396 mutex_exit(&ill->ill_phyint->phyint_lock); 8397 8398 } 8399 freemsg(mp); /* Don't want to pass this up */ 8400 return; 8401 case DL_CAPABILITY_REQ: 8402 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8403 "DL_CAPABILITY REQ\n")); 8404 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8405 ill->ill_dlpi_capab_state = IDCS_FAILED; 8406 ill_capability_done(ill); 8407 freemsg(mp); 8408 return; 8409 } 8410 /* 8411 * Note the error for IOCTL completion (mp1 is set when 8412 * ready to complete ioctl). If ill_ifname_pending_err is 8413 * set, an error occured during plumbing (ill_ifname_pending), 8414 * so we want to report that error. 8415 * 8416 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8417 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8418 * expected to get errack'd if the driver doesn't support 8419 * these flags (e.g. ethernet). log will be set to B_FALSE 8420 * if these error conditions are encountered. 8421 */ 8422 if (mp1 != NULL) { 8423 if (ill->ill_ifname_pending_err != 0) { 8424 err = ill->ill_ifname_pending_err; 8425 ill->ill_ifname_pending_err = 0; 8426 } else { 8427 err = dlea->dl_unix_errno ? 8428 dlea->dl_unix_errno : ENXIO; 8429 } 8430 /* 8431 * If we're plumbing an interface and an error hasn't already 8432 * been saved, set ill_ifname_pending_err to the error passed 8433 * up. Ignore the error if log is B_FALSE (see comment above). 8434 */ 8435 } else if (log && ill->ill_ifname_pending && 8436 ill->ill_ifname_pending_err == 0) { 8437 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8438 dlea->dl_unix_errno : ENXIO; 8439 } 8440 8441 if (log) 8442 ip_dlpi_error(ill, dlea->dl_error_primitive, 8443 dlea->dl_errno, dlea->dl_unix_errno); 8444 break; 8445 case DL_CAPABILITY_ACK: 8446 ill_capability_ack(ill, mp); 8447 /* 8448 * The message has been handed off to ill_capability_ack 8449 * and must not be freed below 8450 */ 8451 mp = NULL; 8452 break; 8453 8454 case DL_INFO_ACK: 8455 /* Call a routine to handle this one. */ 8456 ill_dlpi_done(ill, DL_INFO_REQ); 8457 ip_ll_subnet_defaults(ill, mp); 8458 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8459 return; 8460 case DL_BIND_ACK: 8461 /* 8462 * We should have an IOCTL waiting on this unless 8463 * sent by ill_dl_phys, in which case just return 8464 */ 8465 ill_dlpi_done(ill, DL_BIND_REQ); 8466 8467 if (ill->ill_ifname_pending) { 8468 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8469 ill_t *, ill, mblk_t *, mp); 8470 break; 8471 } 8472 mutex_enter(&ill->ill_lock); 8473 ill->ill_dl_up = 1; 8474 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8475 mutex_exit(&ill->ill_lock); 8476 8477 if (!ioctl_aborted) 8478 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8479 if (mp1 == NULL) { 8480 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8481 break; 8482 } 8483 /* 8484 * mp1 was added by ill_dl_up(). if that is a result of 8485 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8486 */ 8487 if (connp != NULL) 8488 q = CONNP_TO_WQ(connp); 8489 /* 8490 * We are exclusive. So nothing can change even after 8491 * we get the pending mp. 8492 */ 8493 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8494 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8495 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8496 8497 /* 8498 * Now bring up the resolver; when that is complete, we'll 8499 * create IREs. Note that we intentionally mirror what 8500 * ipif_up() would have done, because we got here by way of 8501 * ill_dl_up(), which stopped ipif_up()'s processing. 8502 */ 8503 if (ill->ill_isv6) { 8504 /* 8505 * v6 interfaces. 8506 * Unlike ARP which has to do another bind 8507 * and attach, once we get here we are 8508 * done with NDP 8509 */ 8510 (void) ipif_resolver_up(ipif, Res_act_initial); 8511 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8512 err = ipif_up_done_v6(ipif); 8513 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8514 /* 8515 * ARP and other v4 external resolvers. 8516 * Leave the pending mblk intact so that 8517 * the ioctl completes in ip_rput(). 8518 */ 8519 if (connp != NULL) 8520 mutex_enter(&connp->conn_lock); 8521 mutex_enter(&ill->ill_lock); 8522 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8523 mutex_exit(&ill->ill_lock); 8524 if (connp != NULL) 8525 mutex_exit(&connp->conn_lock); 8526 if (success) { 8527 err = ipif_resolver_up(ipif, Res_act_initial); 8528 if (err == EINPROGRESS) { 8529 freemsg(mp); 8530 return; 8531 } 8532 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8533 } else { 8534 /* The conn has started closing */ 8535 err = EINTR; 8536 } 8537 } else { 8538 /* 8539 * This one is complete. Reply to pending ioctl. 8540 */ 8541 (void) ipif_resolver_up(ipif, Res_act_initial); 8542 err = ipif_up_done(ipif); 8543 } 8544 8545 if ((err == 0) && (ill->ill_up_ipifs)) { 8546 err = ill_up_ipifs(ill, q, mp1); 8547 if (err == EINPROGRESS) { 8548 freemsg(mp); 8549 return; 8550 } 8551 } 8552 8553 /* 8554 * If we have a moved ipif to bring up, and everything has 8555 * succeeded to this point, bring it up on the IPMP ill. 8556 * Otherwise, leave it down -- the admin can try to bring it 8557 * up by hand if need be. 8558 */ 8559 if (ill->ill_move_ipif != NULL) { 8560 if (err != 0) { 8561 ill->ill_move_ipif = NULL; 8562 } else { 8563 ipif = ill->ill_move_ipif; 8564 ill->ill_move_ipif = NULL; 8565 err = ipif_up(ipif, q, mp1); 8566 if (err == EINPROGRESS) { 8567 freemsg(mp); 8568 return; 8569 } 8570 } 8571 } 8572 break; 8573 8574 case DL_NOTIFY_IND: { 8575 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8576 uint_t orig_mtu, orig_mc_mtu; 8577 8578 switch (notify->dl_notification) { 8579 case DL_NOTE_PHYS_ADDR: 8580 err = ill_set_phys_addr(ill, mp); 8581 break; 8582 8583 case DL_NOTE_REPLUMB: 8584 /* 8585 * Directly return after calling ill_replumb(). 8586 * Note that we should not free mp as it is reused 8587 * in the ill_replumb() function. 8588 */ 8589 err = ill_replumb(ill, mp); 8590 return; 8591 8592 case DL_NOTE_FASTPATH_FLUSH: 8593 nce_flush(ill, B_FALSE); 8594 break; 8595 8596 case DL_NOTE_SDU_SIZE: 8597 case DL_NOTE_SDU_SIZE2: 8598 /* 8599 * The dce and fragmentation code can cope with 8600 * this changing while packets are being sent. 8601 * When packets are sent ip_output will discover 8602 * a change. 8603 * 8604 * Change the MTU size of the interface. 8605 */ 8606 mutex_enter(&ill->ill_lock); 8607 orig_mtu = ill->ill_mtu; 8608 orig_mc_mtu = ill->ill_mc_mtu; 8609 switch (notify->dl_notification) { 8610 case DL_NOTE_SDU_SIZE: 8611 ill->ill_current_frag = 8612 (uint_t)notify->dl_data; 8613 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8614 break; 8615 case DL_NOTE_SDU_SIZE2: 8616 ill->ill_current_frag = 8617 (uint_t)notify->dl_data1; 8618 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8619 break; 8620 } 8621 if (ill->ill_current_frag > ill->ill_max_frag) 8622 ill->ill_max_frag = ill->ill_current_frag; 8623 8624 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8625 ill->ill_mtu = ill->ill_current_frag; 8626 8627 /* 8628 * If ill_user_mtu was set (via 8629 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8630 */ 8631 if (ill->ill_user_mtu != 0 && 8632 ill->ill_user_mtu < ill->ill_mtu) 8633 ill->ill_mtu = ill->ill_user_mtu; 8634 8635 if (ill->ill_user_mtu != 0 && 8636 ill->ill_user_mtu < ill->ill_mc_mtu) 8637 ill->ill_mc_mtu = ill->ill_user_mtu; 8638 8639 if (ill->ill_isv6) { 8640 if (ill->ill_mtu < IPV6_MIN_MTU) 8641 ill->ill_mtu = IPV6_MIN_MTU; 8642 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8643 ill->ill_mc_mtu = IPV6_MIN_MTU; 8644 } else { 8645 if (ill->ill_mtu < IP_MIN_MTU) 8646 ill->ill_mtu = IP_MIN_MTU; 8647 if (ill->ill_mc_mtu < IP_MIN_MTU) 8648 ill->ill_mc_mtu = IP_MIN_MTU; 8649 } 8650 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8651 ill->ill_mc_mtu = ill->ill_mtu; 8652 } 8653 8654 mutex_exit(&ill->ill_lock); 8655 /* 8656 * Make sure all dce_generation checks find out 8657 * that ill_mtu/ill_mc_mtu has changed. 8658 */ 8659 if (orig_mtu != ill->ill_mtu || 8660 orig_mc_mtu != ill->ill_mc_mtu) { 8661 dce_increment_all_generations(ill->ill_isv6, 8662 ill->ill_ipst); 8663 } 8664 8665 /* 8666 * Refresh IPMP meta-interface MTU if necessary. 8667 */ 8668 if (IS_UNDER_IPMP(ill)) 8669 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8670 break; 8671 8672 case DL_NOTE_LINK_UP: 8673 case DL_NOTE_LINK_DOWN: { 8674 /* 8675 * We are writer. ill / phyint / ipsq assocs stable. 8676 * The RUNNING flag reflects the state of the link. 8677 */ 8678 phyint_t *phyint = ill->ill_phyint; 8679 uint64_t new_phyint_flags; 8680 boolean_t changed = B_FALSE; 8681 boolean_t went_up; 8682 8683 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8684 mutex_enter(&phyint->phyint_lock); 8685 8686 new_phyint_flags = went_up ? 8687 phyint->phyint_flags | PHYI_RUNNING : 8688 phyint->phyint_flags & ~PHYI_RUNNING; 8689 8690 if (IS_IPMP(ill)) { 8691 new_phyint_flags = went_up ? 8692 new_phyint_flags & ~PHYI_FAILED : 8693 new_phyint_flags | PHYI_FAILED; 8694 } 8695 8696 if (new_phyint_flags != phyint->phyint_flags) { 8697 phyint->phyint_flags = new_phyint_flags; 8698 changed = B_TRUE; 8699 } 8700 mutex_exit(&phyint->phyint_lock); 8701 /* 8702 * ill_restart_dad handles the DAD restart and routing 8703 * socket notification logic. 8704 */ 8705 if (changed) { 8706 ill_restart_dad(phyint->phyint_illv4, went_up); 8707 ill_restart_dad(phyint->phyint_illv6, went_up); 8708 } 8709 break; 8710 } 8711 case DL_NOTE_PROMISC_ON_PHYS: { 8712 phyint_t *phyint = ill->ill_phyint; 8713 8714 mutex_enter(&phyint->phyint_lock); 8715 phyint->phyint_flags |= PHYI_PROMISC; 8716 mutex_exit(&phyint->phyint_lock); 8717 break; 8718 } 8719 case DL_NOTE_PROMISC_OFF_PHYS: { 8720 phyint_t *phyint = ill->ill_phyint; 8721 8722 mutex_enter(&phyint->phyint_lock); 8723 phyint->phyint_flags &= ~PHYI_PROMISC; 8724 mutex_exit(&phyint->phyint_lock); 8725 break; 8726 } 8727 case DL_NOTE_CAPAB_RENEG: 8728 /* 8729 * Something changed on the driver side. 8730 * It wants us to renegotiate the capabilities 8731 * on this ill. One possible cause is the aggregation 8732 * interface under us where a port got added or 8733 * went away. 8734 * 8735 * If the capability negotiation is already done 8736 * or is in progress, reset the capabilities and 8737 * mark the ill's ill_capab_reneg to be B_TRUE, 8738 * so that when the ack comes back, we can start 8739 * the renegotiation process. 8740 * 8741 * Note that if ill_capab_reneg is already B_TRUE 8742 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8743 * the capability resetting request has been sent 8744 * and the renegotiation has not been started yet; 8745 * nothing needs to be done in this case. 8746 */ 8747 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8748 ill_capability_reset(ill, B_TRUE); 8749 ipsq_current_finish(ipsq); 8750 break; 8751 8752 case DL_NOTE_ALLOWED_IPS: 8753 ill_set_allowed_ips(ill, mp); 8754 break; 8755 default: 8756 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8757 "type 0x%x for DL_NOTIFY_IND\n", 8758 notify->dl_notification)); 8759 break; 8760 } 8761 8762 /* 8763 * As this is an asynchronous operation, we 8764 * should not call ill_dlpi_done 8765 */ 8766 break; 8767 } 8768 case DL_NOTIFY_ACK: { 8769 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8770 8771 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8772 ill->ill_note_link = 1; 8773 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8774 break; 8775 } 8776 case DL_PHYS_ADDR_ACK: { 8777 /* 8778 * As part of plumbing the interface via SIOCSLIFNAME, 8779 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8780 * whose answers we receive here. As each answer is received, 8781 * we call ill_dlpi_done() to dispatch the next request as 8782 * we're processing the current one. Once all answers have 8783 * been received, we use ipsq_pending_mp_get() to dequeue the 8784 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8785 * is invoked from an ill queue, conn_oper_pending_ill is not 8786 * available, but we know the ioctl is pending on ill_wq.) 8787 */ 8788 uint_t paddrlen, paddroff; 8789 uint8_t *addr; 8790 8791 paddrreq = ill->ill_phys_addr_pend; 8792 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8793 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8794 addr = mp->b_rptr + paddroff; 8795 8796 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8797 if (paddrreq == DL_IPV6_TOKEN) { 8798 /* 8799 * bcopy to low-order bits of ill_token 8800 * 8801 * XXX Temporary hack - currently, all known tokens 8802 * are 64 bits, so I'll cheat for the moment. 8803 */ 8804 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8805 ill->ill_token_length = paddrlen; 8806 break; 8807 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8808 ASSERT(ill->ill_nd_lla_mp == NULL); 8809 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8810 mp = NULL; 8811 break; 8812 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8813 ASSERT(ill->ill_dest_addr_mp == NULL); 8814 ill->ill_dest_addr_mp = mp; 8815 ill->ill_dest_addr = addr; 8816 mp = NULL; 8817 if (ill->ill_isv6) { 8818 ill_setdesttoken(ill); 8819 ipif_setdestlinklocal(ill->ill_ipif); 8820 } 8821 break; 8822 } 8823 8824 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8825 ASSERT(ill->ill_phys_addr_mp == NULL); 8826 if (!ill->ill_ifname_pending) 8827 break; 8828 ill->ill_ifname_pending = 0; 8829 if (!ioctl_aborted) 8830 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8831 if (mp1 != NULL) { 8832 ASSERT(connp == NULL); 8833 q = ill->ill_wq; 8834 } 8835 /* 8836 * If any error acks received during the plumbing sequence, 8837 * ill_ifname_pending_err will be set. Break out and send up 8838 * the error to the pending ioctl. 8839 */ 8840 if (ill->ill_ifname_pending_err != 0) { 8841 err = ill->ill_ifname_pending_err; 8842 ill->ill_ifname_pending_err = 0; 8843 break; 8844 } 8845 8846 ill->ill_phys_addr_mp = mp; 8847 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8848 mp = NULL; 8849 8850 /* 8851 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8852 * provider doesn't support physical addresses. We check both 8853 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8854 * not have physical addresses, but historically adversises a 8855 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8856 * its DL_PHYS_ADDR_ACK. 8857 */ 8858 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8859 ill->ill_phys_addr = NULL; 8860 } else if (paddrlen != ill->ill_phys_addr_length) { 8861 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8862 paddrlen, ill->ill_phys_addr_length)); 8863 err = EINVAL; 8864 break; 8865 } 8866 8867 if (ill->ill_nd_lla_mp == NULL) { 8868 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8869 err = ENOMEM; 8870 break; 8871 } 8872 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8873 } 8874 8875 if (ill->ill_isv6) { 8876 ill_setdefaulttoken(ill); 8877 ipif_setlinklocal(ill->ill_ipif); 8878 } 8879 break; 8880 } 8881 case DL_OK_ACK: 8882 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8883 dl_primstr((int)dloa->dl_correct_primitive), 8884 dloa->dl_correct_primitive)); 8885 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8886 char *, dl_primstr(dloa->dl_correct_primitive), 8887 ill_t *, ill); 8888 8889 switch (dloa->dl_correct_primitive) { 8890 case DL_ENABMULTI_REQ: 8891 case DL_DISABMULTI_REQ: 8892 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8893 break; 8894 case DL_PROMISCON_REQ: 8895 case DL_PROMISCOFF_REQ: 8896 case DL_UNBIND_REQ: 8897 case DL_ATTACH_REQ: 8898 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8899 break; 8900 } 8901 break; 8902 default: 8903 break; 8904 } 8905 8906 freemsg(mp); 8907 if (mp1 == NULL) 8908 return; 8909 8910 /* 8911 * The operation must complete without EINPROGRESS since 8912 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8913 * the operation will be stuck forever inside the IPSQ. 8914 */ 8915 ASSERT(err != EINPROGRESS); 8916 8917 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8918 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8919 ipif_t *, NULL); 8920 8921 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8922 case 0: 8923 ipsq_current_finish(ipsq); 8924 break; 8925 8926 case SIOCSLIFNAME: 8927 case IF_UNITSEL: { 8928 ill_t *ill_other = ILL_OTHER(ill); 8929 8930 /* 8931 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8932 * ill has a peer which is in an IPMP group, then place ill 8933 * into the same group. One catch: although ifconfig plumbs 8934 * the appropriate IPMP meta-interface prior to plumbing this 8935 * ill, it is possible for multiple ifconfig applications to 8936 * race (or for another application to adjust plumbing), in 8937 * which case the IPMP meta-interface we need will be missing. 8938 * If so, kick the phyint out of the group. 8939 */ 8940 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8941 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8942 ipmp_illgrp_t *illg; 8943 8944 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8945 if (illg == NULL) 8946 ipmp_phyint_leave_grp(ill->ill_phyint); 8947 else 8948 ipmp_ill_join_illgrp(ill, illg); 8949 } 8950 8951 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8952 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8953 else 8954 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8955 break; 8956 } 8957 case SIOCLIFADDIF: 8958 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8959 break; 8960 8961 default: 8962 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8963 break; 8964 } 8965 } 8966 8967 /* 8968 * ip_rput_other is called by ip_rput to handle messages modifying the global 8969 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8970 */ 8971 /* ARGSUSED */ 8972 void 8973 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8974 { 8975 ill_t *ill = q->q_ptr; 8976 struct iocblk *iocp; 8977 8978 ip1dbg(("ip_rput_other ")); 8979 if (ipsq != NULL) { 8980 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8981 ASSERT(ipsq->ipsq_xop == 8982 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8983 } 8984 8985 switch (mp->b_datap->db_type) { 8986 case M_ERROR: 8987 case M_HANGUP: 8988 /* 8989 * The device has a problem. We force the ILL down. It can 8990 * be brought up again manually using SIOCSIFFLAGS (via 8991 * ifconfig or equivalent). 8992 */ 8993 ASSERT(ipsq != NULL); 8994 if (mp->b_rptr < mp->b_wptr) 8995 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8996 if (ill->ill_error == 0) 8997 ill->ill_error = ENXIO; 8998 if (!ill_down_start(q, mp)) 8999 return; 9000 ipif_all_down_tail(ipsq, q, mp, NULL); 9001 break; 9002 case M_IOCNAK: { 9003 iocp = (struct iocblk *)mp->b_rptr; 9004 9005 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 9006 /* 9007 * If this was the first attempt, turn off the fastpath 9008 * probing. 9009 */ 9010 mutex_enter(&ill->ill_lock); 9011 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 9012 ill->ill_dlpi_fastpath_state = IDS_FAILED; 9013 mutex_exit(&ill->ill_lock); 9014 /* 9015 * don't flush the nce_t entries: we use them 9016 * as an index to the ncec itself. 9017 */ 9018 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 9019 ill->ill_name)); 9020 } else { 9021 mutex_exit(&ill->ill_lock); 9022 } 9023 freemsg(mp); 9024 break; 9025 } 9026 default: 9027 ASSERT(0); 9028 break; 9029 } 9030 } 9031 9032 /* 9033 * Update any source route, record route or timestamp options 9034 * When it fails it has consumed the message and BUMPed the MIB. 9035 */ 9036 boolean_t 9037 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 9038 ip_recv_attr_t *ira) 9039 { 9040 ipoptp_t opts; 9041 uchar_t *opt; 9042 uint8_t optval; 9043 uint8_t optlen; 9044 ipaddr_t dst; 9045 ipaddr_t ifaddr; 9046 uint32_t ts; 9047 timestruc_t now; 9048 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9049 9050 ip2dbg(("ip_forward_options\n")); 9051 dst = ipha->ipha_dst; 9052 opt = NULL; 9053 9054 for (optval = ipoptp_first(&opts, ipha); 9055 optval != IPOPT_EOL; 9056 optval = ipoptp_next(&opts)) { 9057 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9058 opt = opts.ipoptp_cur; 9059 optlen = opts.ipoptp_len; 9060 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9061 optval, opts.ipoptp_len)); 9062 switch (optval) { 9063 uint32_t off; 9064 case IPOPT_SSRR: 9065 case IPOPT_LSRR: 9066 /* Check if adminstratively disabled */ 9067 if (!ipst->ips_ip_forward_src_routed) { 9068 BUMP_MIB(dst_ill->ill_ip_mib, 9069 ipIfStatsForwProhibits); 9070 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9071 mp, dst_ill); 9072 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9073 ira); 9074 return (B_FALSE); 9075 } 9076 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9077 /* 9078 * Must be partial since ip_input_options 9079 * checked for strict. 9080 */ 9081 break; 9082 } 9083 off = opt[IPOPT_OFFSET]; 9084 off--; 9085 redo_srr: 9086 if (optlen < IP_ADDR_LEN || 9087 off > optlen - IP_ADDR_LEN) { 9088 /* End of source route */ 9089 ip1dbg(( 9090 "ip_forward_options: end of SR\n")); 9091 break; 9092 } 9093 /* Pick a reasonable address on the outbound if */ 9094 ASSERT(dst_ill != NULL); 9095 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9096 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9097 NULL) != 0) { 9098 /* No source! Shouldn't happen */ 9099 ifaddr = INADDR_ANY; 9100 } 9101 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9102 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9103 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9104 ntohl(dst))); 9105 9106 /* 9107 * Check if our address is present more than 9108 * once as consecutive hops in source route. 9109 */ 9110 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9111 off += IP_ADDR_LEN; 9112 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9113 goto redo_srr; 9114 } 9115 ipha->ipha_dst = dst; 9116 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9117 break; 9118 case IPOPT_RR: 9119 off = opt[IPOPT_OFFSET]; 9120 off--; 9121 if (optlen < IP_ADDR_LEN || 9122 off > optlen - IP_ADDR_LEN) { 9123 /* No more room - ignore */ 9124 ip1dbg(( 9125 "ip_forward_options: end of RR\n")); 9126 break; 9127 } 9128 /* Pick a reasonable address on the outbound if */ 9129 ASSERT(dst_ill != NULL); 9130 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9131 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9132 NULL) != 0) { 9133 /* No source! Shouldn't happen */ 9134 ifaddr = INADDR_ANY; 9135 } 9136 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9137 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9138 break; 9139 case IPOPT_TS: 9140 off = 0; 9141 /* Insert timestamp if there is room */ 9142 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9143 case IPOPT_TS_TSONLY: 9144 off = IPOPT_TS_TIMELEN; 9145 break; 9146 case IPOPT_TS_PRESPEC: 9147 case IPOPT_TS_PRESPEC_RFC791: 9148 /* Verify that the address matched */ 9149 off = opt[IPOPT_OFFSET] - 1; 9150 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9151 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9152 /* Not for us */ 9153 break; 9154 } 9155 /* FALLTHROUGH */ 9156 case IPOPT_TS_TSANDADDR: 9157 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9158 break; 9159 default: 9160 /* 9161 * ip_*put_options should have already 9162 * dropped this packet. 9163 */ 9164 cmn_err(CE_PANIC, "ip_forward_options: " 9165 "unknown IT - bug in ip_input_options?\n"); 9166 } 9167 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9168 /* Increase overflow counter */ 9169 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9170 opt[IPOPT_POS_OV_FLG] = 9171 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9172 (off << 4)); 9173 break; 9174 } 9175 off = opt[IPOPT_OFFSET] - 1; 9176 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9177 case IPOPT_TS_PRESPEC: 9178 case IPOPT_TS_PRESPEC_RFC791: 9179 case IPOPT_TS_TSANDADDR: 9180 /* Pick a reasonable addr on the outbound if */ 9181 ASSERT(dst_ill != NULL); 9182 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9183 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9184 NULL, NULL) != 0) { 9185 /* No source! Shouldn't happen */ 9186 ifaddr = INADDR_ANY; 9187 } 9188 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9189 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9190 /* FALLTHROUGH */ 9191 case IPOPT_TS_TSONLY: 9192 off = opt[IPOPT_OFFSET] - 1; 9193 /* Compute # of milliseconds since midnight */ 9194 gethrestime(&now); 9195 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9196 NSEC2MSEC(now.tv_nsec); 9197 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9198 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9199 break; 9200 } 9201 break; 9202 } 9203 } 9204 return (B_TRUE); 9205 } 9206 9207 /* 9208 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9209 * returns 'true' if there are still fragments left on the queue, in 9210 * which case we restart the timer. 9211 */ 9212 void 9213 ill_frag_timer(void *arg) 9214 { 9215 ill_t *ill = (ill_t *)arg; 9216 boolean_t frag_pending; 9217 ip_stack_t *ipst = ill->ill_ipst; 9218 time_t timeout; 9219 9220 mutex_enter(&ill->ill_lock); 9221 ASSERT(!ill->ill_fragtimer_executing); 9222 if (ill->ill_state_flags & ILL_CONDEMNED) { 9223 ill->ill_frag_timer_id = 0; 9224 mutex_exit(&ill->ill_lock); 9225 return; 9226 } 9227 ill->ill_fragtimer_executing = 1; 9228 mutex_exit(&ill->ill_lock); 9229 9230 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9231 ipst->ips_ip_reassembly_timeout); 9232 9233 frag_pending = ill_frag_timeout(ill, timeout); 9234 9235 /* 9236 * Restart the timer, if we have fragments pending or if someone 9237 * wanted us to be scheduled again. 9238 */ 9239 mutex_enter(&ill->ill_lock); 9240 ill->ill_fragtimer_executing = 0; 9241 ill->ill_frag_timer_id = 0; 9242 if (frag_pending || ill->ill_fragtimer_needrestart) 9243 ill_frag_timer_start(ill); 9244 mutex_exit(&ill->ill_lock); 9245 } 9246 9247 void 9248 ill_frag_timer_start(ill_t *ill) 9249 { 9250 ip_stack_t *ipst = ill->ill_ipst; 9251 clock_t timeo_ms; 9252 9253 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9254 9255 /* If the ill is closing or opening don't proceed */ 9256 if (ill->ill_state_flags & ILL_CONDEMNED) 9257 return; 9258 9259 if (ill->ill_fragtimer_executing) { 9260 /* 9261 * ill_frag_timer is currently executing. Just record the 9262 * the fact that we want the timer to be restarted. 9263 * ill_frag_timer will post a timeout before it returns, 9264 * ensuring it will be called again. 9265 */ 9266 ill->ill_fragtimer_needrestart = 1; 9267 return; 9268 } 9269 9270 if (ill->ill_frag_timer_id == 0) { 9271 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9272 ipst->ips_ip_reassembly_timeout) * SECONDS; 9273 9274 /* 9275 * The timer is neither running nor is the timeout handler 9276 * executing. Post a timeout so that ill_frag_timer will be 9277 * called 9278 */ 9279 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9280 MSEC_TO_TICK(timeo_ms >> 1)); 9281 ill->ill_fragtimer_needrestart = 0; 9282 } 9283 } 9284 9285 /* 9286 * Update any source route, record route or timestamp options. 9287 * Check that we are at end of strict source route. 9288 * The options have already been checked for sanity in ip_input_options(). 9289 */ 9290 boolean_t 9291 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9292 { 9293 ipoptp_t opts; 9294 uchar_t *opt; 9295 uint8_t optval; 9296 uint8_t optlen; 9297 ipaddr_t dst; 9298 ipaddr_t ifaddr; 9299 uint32_t ts; 9300 timestruc_t now; 9301 ill_t *ill = ira->ira_ill; 9302 ip_stack_t *ipst = ill->ill_ipst; 9303 9304 ip2dbg(("ip_input_local_options\n")); 9305 opt = NULL; 9306 9307 for (optval = ipoptp_first(&opts, ipha); 9308 optval != IPOPT_EOL; 9309 optval = ipoptp_next(&opts)) { 9310 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9311 opt = opts.ipoptp_cur; 9312 optlen = opts.ipoptp_len; 9313 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9314 optval, optlen)); 9315 switch (optval) { 9316 uint32_t off; 9317 case IPOPT_SSRR: 9318 case IPOPT_LSRR: 9319 off = opt[IPOPT_OFFSET]; 9320 off--; 9321 if (optlen < IP_ADDR_LEN || 9322 off > optlen - IP_ADDR_LEN) { 9323 /* End of source route */ 9324 ip1dbg(("ip_input_local_options: end of SR\n")); 9325 break; 9326 } 9327 /* 9328 * This will only happen if two consecutive entries 9329 * in the source route contains our address or if 9330 * it is a packet with a loose source route which 9331 * reaches us before consuming the whole source route 9332 */ 9333 ip1dbg(("ip_input_local_options: not end of SR\n")); 9334 if (optval == IPOPT_SSRR) { 9335 goto bad_src_route; 9336 } 9337 /* 9338 * Hack: instead of dropping the packet truncate the 9339 * source route to what has been used by filling the 9340 * rest with IPOPT_NOP. 9341 */ 9342 opt[IPOPT_OLEN] = (uint8_t)off; 9343 while (off < optlen) { 9344 opt[off++] = IPOPT_NOP; 9345 } 9346 break; 9347 case IPOPT_RR: 9348 off = opt[IPOPT_OFFSET]; 9349 off--; 9350 if (optlen < IP_ADDR_LEN || 9351 off > optlen - IP_ADDR_LEN) { 9352 /* No more room - ignore */ 9353 ip1dbg(( 9354 "ip_input_local_options: end of RR\n")); 9355 break; 9356 } 9357 /* Pick a reasonable address on the outbound if */ 9358 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9359 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9360 NULL) != 0) { 9361 /* No source! Shouldn't happen */ 9362 ifaddr = INADDR_ANY; 9363 } 9364 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9365 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9366 break; 9367 case IPOPT_TS: 9368 off = 0; 9369 /* Insert timestamp if there is romm */ 9370 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9371 case IPOPT_TS_TSONLY: 9372 off = IPOPT_TS_TIMELEN; 9373 break; 9374 case IPOPT_TS_PRESPEC: 9375 case IPOPT_TS_PRESPEC_RFC791: 9376 /* Verify that the address matched */ 9377 off = opt[IPOPT_OFFSET] - 1; 9378 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9379 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9380 /* Not for us */ 9381 break; 9382 } 9383 /* FALLTHROUGH */ 9384 case IPOPT_TS_TSANDADDR: 9385 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9386 break; 9387 default: 9388 /* 9389 * ip_*put_options should have already 9390 * dropped this packet. 9391 */ 9392 cmn_err(CE_PANIC, "ip_input_local_options: " 9393 "unknown IT - bug in ip_input_options?\n"); 9394 } 9395 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9396 /* Increase overflow counter */ 9397 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9398 opt[IPOPT_POS_OV_FLG] = 9399 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9400 (off << 4)); 9401 break; 9402 } 9403 off = opt[IPOPT_OFFSET] - 1; 9404 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9405 case IPOPT_TS_PRESPEC: 9406 case IPOPT_TS_PRESPEC_RFC791: 9407 case IPOPT_TS_TSANDADDR: 9408 /* Pick a reasonable addr on the outbound if */ 9409 if (ip_select_source_v4(ill, INADDR_ANY, 9410 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9411 &ifaddr, NULL, NULL) != 0) { 9412 /* No source! Shouldn't happen */ 9413 ifaddr = INADDR_ANY; 9414 } 9415 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9416 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9417 /* FALLTHROUGH */ 9418 case IPOPT_TS_TSONLY: 9419 off = opt[IPOPT_OFFSET] - 1; 9420 /* Compute # of milliseconds since midnight */ 9421 gethrestime(&now); 9422 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9423 NSEC2MSEC(now.tv_nsec); 9424 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9425 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9426 break; 9427 } 9428 break; 9429 } 9430 } 9431 return (B_TRUE); 9432 9433 bad_src_route: 9434 /* make sure we clear any indication of a hardware checksum */ 9435 DB_CKSUMFLAGS(mp) = 0; 9436 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9437 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9438 return (B_FALSE); 9439 9440 } 9441 9442 /* 9443 * Process IP options in an inbound packet. Always returns the nexthop. 9444 * Normally this is the passed in nexthop, but if there is an option 9445 * that effects the nexthop (such as a source route) that will be returned. 9446 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9447 * and mp freed. 9448 */ 9449 ipaddr_t 9450 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9451 ip_recv_attr_t *ira, int *errorp) 9452 { 9453 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9454 ipoptp_t opts; 9455 uchar_t *opt; 9456 uint8_t optval; 9457 uint8_t optlen; 9458 intptr_t code = 0; 9459 ire_t *ire; 9460 9461 ip2dbg(("ip_input_options\n")); 9462 opt = NULL; 9463 *errorp = 0; 9464 for (optval = ipoptp_first(&opts, ipha); 9465 optval != IPOPT_EOL; 9466 optval = ipoptp_next(&opts)) { 9467 opt = opts.ipoptp_cur; 9468 optlen = opts.ipoptp_len; 9469 ip2dbg(("ip_input_options: opt %d, len %d\n", 9470 optval, optlen)); 9471 /* 9472 * Note: we need to verify the checksum before we 9473 * modify anything thus this routine only extracts the next 9474 * hop dst from any source route. 9475 */ 9476 switch (optval) { 9477 uint32_t off; 9478 case IPOPT_SSRR: 9479 case IPOPT_LSRR: 9480 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9481 if (optval == IPOPT_SSRR) { 9482 ip1dbg(("ip_input_options: not next" 9483 " strict source route 0x%x\n", 9484 ntohl(dst))); 9485 code = (char *)&ipha->ipha_dst - 9486 (char *)ipha; 9487 goto param_prob; /* RouterReq's */ 9488 } 9489 ip2dbg(("ip_input_options: " 9490 "not next source route 0x%x\n", 9491 ntohl(dst))); 9492 break; 9493 } 9494 9495 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9496 ip1dbg(( 9497 "ip_input_options: bad option offset\n")); 9498 code = (char *)&opt[IPOPT_OLEN] - 9499 (char *)ipha; 9500 goto param_prob; 9501 } 9502 off = opt[IPOPT_OFFSET]; 9503 off--; 9504 redo_srr: 9505 if (optlen < IP_ADDR_LEN || 9506 off > optlen - IP_ADDR_LEN) { 9507 /* End of source route */ 9508 ip1dbg(("ip_input_options: end of SR\n")); 9509 break; 9510 } 9511 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9512 ip1dbg(("ip_input_options: next hop 0x%x\n", 9513 ntohl(dst))); 9514 9515 /* 9516 * Check if our address is present more than 9517 * once as consecutive hops in source route. 9518 * XXX verify per-interface ip_forwarding 9519 * for source route? 9520 */ 9521 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9522 off += IP_ADDR_LEN; 9523 goto redo_srr; 9524 } 9525 9526 if (dst == htonl(INADDR_LOOPBACK)) { 9527 ip1dbg(("ip_input_options: loopback addr in " 9528 "source route!\n")); 9529 goto bad_src_route; 9530 } 9531 /* 9532 * For strict: verify that dst is directly 9533 * reachable. 9534 */ 9535 if (optval == IPOPT_SSRR) { 9536 ire = ire_ftable_lookup_v4(dst, 0, 0, 9537 IRE_INTERFACE, NULL, ALL_ZONES, 9538 ira->ira_tsl, 9539 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9540 NULL); 9541 if (ire == NULL) { 9542 ip1dbg(("ip_input_options: SSRR not " 9543 "directly reachable: 0x%x\n", 9544 ntohl(dst))); 9545 goto bad_src_route; 9546 } 9547 ire_refrele(ire); 9548 } 9549 /* 9550 * Defer update of the offset and the record route 9551 * until the packet is forwarded. 9552 */ 9553 break; 9554 case IPOPT_RR: 9555 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9556 ip1dbg(( 9557 "ip_input_options: bad option offset\n")); 9558 code = (char *)&opt[IPOPT_OLEN] - 9559 (char *)ipha; 9560 goto param_prob; 9561 } 9562 break; 9563 case IPOPT_TS: 9564 /* 9565 * Verify that length >= 5 and that there is either 9566 * room for another timestamp or that the overflow 9567 * counter is not maxed out. 9568 */ 9569 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9570 if (optlen < IPOPT_MINLEN_IT) { 9571 goto param_prob; 9572 } 9573 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9574 ip1dbg(( 9575 "ip_input_options: bad option offset\n")); 9576 code = (char *)&opt[IPOPT_OFFSET] - 9577 (char *)ipha; 9578 goto param_prob; 9579 } 9580 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9581 case IPOPT_TS_TSONLY: 9582 off = IPOPT_TS_TIMELEN; 9583 break; 9584 case IPOPT_TS_TSANDADDR: 9585 case IPOPT_TS_PRESPEC: 9586 case IPOPT_TS_PRESPEC_RFC791: 9587 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9588 break; 9589 default: 9590 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9591 (char *)ipha; 9592 goto param_prob; 9593 } 9594 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9595 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9596 /* 9597 * No room and the overflow counter is 15 9598 * already. 9599 */ 9600 goto param_prob; 9601 } 9602 break; 9603 } 9604 } 9605 9606 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9607 return (dst); 9608 } 9609 9610 ip1dbg(("ip_input_options: error processing IP options.")); 9611 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9612 9613 param_prob: 9614 /* make sure we clear any indication of a hardware checksum */ 9615 DB_CKSUMFLAGS(mp) = 0; 9616 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9617 icmp_param_problem(mp, (uint8_t)code, ira); 9618 *errorp = -1; 9619 return (dst); 9620 9621 bad_src_route: 9622 /* make sure we clear any indication of a hardware checksum */ 9623 DB_CKSUMFLAGS(mp) = 0; 9624 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9625 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9626 *errorp = -1; 9627 return (dst); 9628 } 9629 9630 /* 9631 * IP & ICMP info in >=14 msg's ... 9632 * - ip fixed part (mib2_ip_t) 9633 * - icmp fixed part (mib2_icmp_t) 9634 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9635 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9636 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9637 * - ipRouteAttributeTable (ip 102) labeled routes 9638 * - ip multicast membership (ip_member_t) 9639 * - ip multicast source filtering (ip_grpsrc_t) 9640 * - igmp fixed part (struct igmpstat) 9641 * - multicast routing stats (struct mrtstat) 9642 * - multicast routing vifs (array of struct vifctl) 9643 * - multicast routing routes (array of struct mfcctl) 9644 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9645 * One per ill plus one generic 9646 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9647 * One per ill plus one generic 9648 * - ipv6RouteEntry all IPv6 IREs 9649 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9650 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9651 * - ipv6AddrEntry all IPv6 ipifs 9652 * - ipv6 multicast membership (ipv6_member_t) 9653 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9654 * 9655 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9656 * already filled in by the caller. 9657 * If legacy_req is true then MIB structures needs to be truncated to their 9658 * legacy sizes before being returned. 9659 * Return value of 0 indicates that no messages were sent and caller 9660 * should free mpctl. 9661 */ 9662 int 9663 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9664 { 9665 ip_stack_t *ipst; 9666 sctp_stack_t *sctps; 9667 9668 if (q->q_next != NULL) { 9669 ipst = ILLQ_TO_IPST(q); 9670 } else { 9671 ipst = CONNQ_TO_IPST(q); 9672 } 9673 ASSERT(ipst != NULL); 9674 sctps = ipst->ips_netstack->netstack_sctp; 9675 9676 if (mpctl == NULL || mpctl->b_cont == NULL) { 9677 return (0); 9678 } 9679 9680 /* 9681 * For the purposes of the (broken) packet shell use 9682 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9683 * to make TCP and UDP appear first in the list of mib items. 9684 * TBD: We could expand this and use it in netstat so that 9685 * the kernel doesn't have to produce large tables (connections, 9686 * routes, etc) when netstat only wants the statistics or a particular 9687 * table. 9688 */ 9689 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9690 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9691 return (1); 9692 } 9693 } 9694 9695 if (level != MIB2_TCP) { 9696 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9697 return (1); 9698 } 9699 if (level == MIB2_UDP) { 9700 goto done; 9701 } 9702 } 9703 9704 if (level != MIB2_UDP) { 9705 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9706 return (1); 9707 } 9708 if (level == MIB2_TCP) { 9709 goto done; 9710 } 9711 } 9712 9713 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9714 ipst, legacy_req)) == NULL) { 9715 return (1); 9716 } 9717 9718 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9719 legacy_req)) == NULL) { 9720 return (1); 9721 } 9722 9723 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9724 return (1); 9725 } 9726 9727 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9728 return (1); 9729 } 9730 9731 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9732 return (1); 9733 } 9734 9735 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9736 return (1); 9737 } 9738 9739 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9740 legacy_req)) == NULL) { 9741 return (1); 9742 } 9743 9744 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9745 legacy_req)) == NULL) { 9746 return (1); 9747 } 9748 9749 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9750 return (1); 9751 } 9752 9753 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9754 return (1); 9755 } 9756 9757 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9758 return (1); 9759 } 9760 9761 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9762 return (1); 9763 } 9764 9765 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9766 return (1); 9767 } 9768 9769 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9770 return (1); 9771 } 9772 9773 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9774 if (mpctl == NULL) 9775 return (1); 9776 9777 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9778 if (mpctl == NULL) 9779 return (1); 9780 9781 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9782 return (1); 9783 } 9784 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9785 return (1); 9786 } 9787 done: 9788 freemsg(mpctl); 9789 return (1); 9790 } 9791 9792 /* Get global (legacy) IPv4 statistics */ 9793 static mblk_t * 9794 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9795 ip_stack_t *ipst, boolean_t legacy_req) 9796 { 9797 mib2_ip_t old_ip_mib; 9798 struct opthdr *optp; 9799 mblk_t *mp2ctl; 9800 mib2_ipAddrEntry_t mae; 9801 9802 /* 9803 * make a copy of the original message 9804 */ 9805 mp2ctl = copymsg(mpctl); 9806 9807 /* fixed length IP structure... */ 9808 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9809 optp->level = MIB2_IP; 9810 optp->name = 0; 9811 SET_MIB(old_ip_mib.ipForwarding, 9812 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9813 SET_MIB(old_ip_mib.ipDefaultTTL, 9814 (uint32_t)ipst->ips_ip_def_ttl); 9815 SET_MIB(old_ip_mib.ipReasmTimeout, 9816 ipst->ips_ip_reassembly_timeout); 9817 SET_MIB(old_ip_mib.ipAddrEntrySize, 9818 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9819 sizeof (mib2_ipAddrEntry_t)); 9820 SET_MIB(old_ip_mib.ipRouteEntrySize, 9821 sizeof (mib2_ipRouteEntry_t)); 9822 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9823 sizeof (mib2_ipNetToMediaEntry_t)); 9824 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9825 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9826 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9827 sizeof (mib2_ipAttributeEntry_t)); 9828 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9829 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9830 9831 /* 9832 * Grab the statistics from the new IP MIB 9833 */ 9834 SET_MIB(old_ip_mib.ipInReceives, 9835 (uint32_t)ipmib->ipIfStatsHCInReceives); 9836 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9837 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9838 SET_MIB(old_ip_mib.ipForwDatagrams, 9839 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9840 SET_MIB(old_ip_mib.ipInUnknownProtos, 9841 ipmib->ipIfStatsInUnknownProtos); 9842 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9843 SET_MIB(old_ip_mib.ipInDelivers, 9844 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9845 SET_MIB(old_ip_mib.ipOutRequests, 9846 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9847 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9848 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9849 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9850 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9851 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9852 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9853 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9854 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9855 9856 /* ipRoutingDiscards is not being used */ 9857 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9858 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9859 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9860 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9861 SET_MIB(old_ip_mib.ipReasmDuplicates, 9862 ipmib->ipIfStatsReasmDuplicates); 9863 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9864 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9865 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9866 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9867 SET_MIB(old_ip_mib.rawipInOverflows, 9868 ipmib->rawipIfStatsInOverflows); 9869 9870 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9871 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9872 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9873 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9874 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9875 ipmib->ipIfStatsOutSwitchIPVersion); 9876 9877 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9878 (int)sizeof (old_ip_mib))) { 9879 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9880 (uint_t)sizeof (old_ip_mib))); 9881 } 9882 9883 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9884 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9885 (int)optp->level, (int)optp->name, (int)optp->len)); 9886 qreply(q, mpctl); 9887 return (mp2ctl); 9888 } 9889 9890 /* Per interface IPv4 statistics */ 9891 static mblk_t * 9892 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9893 boolean_t legacy_req) 9894 { 9895 struct opthdr *optp; 9896 mblk_t *mp2ctl; 9897 ill_t *ill; 9898 ill_walk_context_t ctx; 9899 mblk_t *mp_tail = NULL; 9900 mib2_ipIfStatsEntry_t global_ip_mib; 9901 mib2_ipAddrEntry_t mae; 9902 9903 /* 9904 * Make a copy of the original message 9905 */ 9906 mp2ctl = copymsg(mpctl); 9907 9908 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9909 optp->level = MIB2_IP; 9910 optp->name = MIB2_IP_TRAFFIC_STATS; 9911 /* Include "unknown interface" ip_mib */ 9912 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9913 ipst->ips_ip_mib.ipIfStatsIfIndex = 9914 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9915 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9916 (ipst->ips_ip_forwarding ? 1 : 2)); 9917 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9918 (uint32_t)ipst->ips_ip_def_ttl); 9919 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9920 sizeof (mib2_ipIfStatsEntry_t)); 9921 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9922 sizeof (mib2_ipAddrEntry_t)); 9923 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9924 sizeof (mib2_ipRouteEntry_t)); 9925 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9926 sizeof (mib2_ipNetToMediaEntry_t)); 9927 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9928 sizeof (ip_member_t)); 9929 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9930 sizeof (ip_grpsrc_t)); 9931 9932 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9933 9934 if (legacy_req) { 9935 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9936 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9937 } 9938 9939 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9940 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9941 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9942 "failed to allocate %u bytes\n", 9943 (uint_t)sizeof (global_ip_mib))); 9944 } 9945 9946 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9947 ill = ILL_START_WALK_V4(&ctx, ipst); 9948 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9949 ill->ill_ip_mib->ipIfStatsIfIndex = 9950 ill->ill_phyint->phyint_ifindex; 9951 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9952 (ipst->ips_ip_forwarding ? 1 : 2)); 9953 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9954 (uint32_t)ipst->ips_ip_def_ttl); 9955 9956 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9957 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9958 (char *)ill->ill_ip_mib, 9959 (int)sizeof (*ill->ill_ip_mib))) { 9960 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9961 "failed to allocate %u bytes\n", 9962 (uint_t)sizeof (*ill->ill_ip_mib))); 9963 } 9964 } 9965 rw_exit(&ipst->ips_ill_g_lock); 9966 9967 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9968 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9969 "level %d, name %d, len %d\n", 9970 (int)optp->level, (int)optp->name, (int)optp->len)); 9971 qreply(q, mpctl); 9972 9973 if (mp2ctl == NULL) 9974 return (NULL); 9975 9976 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9977 legacy_req)); 9978 } 9979 9980 /* Global IPv4 ICMP statistics */ 9981 static mblk_t * 9982 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9983 { 9984 struct opthdr *optp; 9985 mblk_t *mp2ctl; 9986 9987 /* 9988 * Make a copy of the original message 9989 */ 9990 mp2ctl = copymsg(mpctl); 9991 9992 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9993 optp->level = MIB2_ICMP; 9994 optp->name = 0; 9995 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9996 (int)sizeof (ipst->ips_icmp_mib))) { 9997 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9998 (uint_t)sizeof (ipst->ips_icmp_mib))); 9999 } 10000 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10001 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 10002 (int)optp->level, (int)optp->name, (int)optp->len)); 10003 qreply(q, mpctl); 10004 return (mp2ctl); 10005 } 10006 10007 /* Global IPv4 IGMP statistics */ 10008 static mblk_t * 10009 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10010 { 10011 struct opthdr *optp; 10012 mblk_t *mp2ctl; 10013 10014 /* 10015 * make a copy of the original message 10016 */ 10017 mp2ctl = copymsg(mpctl); 10018 10019 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10020 optp->level = EXPER_IGMP; 10021 optp->name = 0; 10022 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 10023 (int)sizeof (ipst->ips_igmpstat))) { 10024 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 10025 (uint_t)sizeof (ipst->ips_igmpstat))); 10026 } 10027 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10028 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 10029 (int)optp->level, (int)optp->name, (int)optp->len)); 10030 qreply(q, mpctl); 10031 return (mp2ctl); 10032 } 10033 10034 /* Global IPv4 Multicast Routing statistics */ 10035 static mblk_t * 10036 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10037 { 10038 struct opthdr *optp; 10039 mblk_t *mp2ctl; 10040 10041 /* 10042 * make a copy of the original message 10043 */ 10044 mp2ctl = copymsg(mpctl); 10045 10046 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10047 optp->level = EXPER_DVMRP; 10048 optp->name = 0; 10049 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 10050 ip0dbg(("ip_mroute_stats: failed\n")); 10051 } 10052 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10053 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 10054 (int)optp->level, (int)optp->name, (int)optp->len)); 10055 qreply(q, mpctl); 10056 return (mp2ctl); 10057 } 10058 10059 /* IPv4 address information */ 10060 static mblk_t * 10061 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10062 boolean_t legacy_req) 10063 { 10064 struct opthdr *optp; 10065 mblk_t *mp2ctl; 10066 mblk_t *mp_tail = NULL; 10067 ill_t *ill; 10068 ipif_t *ipif; 10069 uint_t bitval; 10070 mib2_ipAddrEntry_t mae; 10071 size_t mae_size; 10072 zoneid_t zoneid; 10073 ill_walk_context_t ctx; 10074 10075 /* 10076 * make a copy of the original message 10077 */ 10078 mp2ctl = copymsg(mpctl); 10079 10080 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 10081 sizeof (mib2_ipAddrEntry_t); 10082 10083 /* ipAddrEntryTable */ 10084 10085 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10086 optp->level = MIB2_IP; 10087 optp->name = MIB2_IP_ADDR; 10088 zoneid = Q_TO_CONN(q)->conn_zoneid; 10089 10090 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10091 ill = ILL_START_WALK_V4(&ctx, ipst); 10092 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10093 for (ipif = ill->ill_ipif; ipif != NULL; 10094 ipif = ipif->ipif_next) { 10095 if (ipif->ipif_zoneid != zoneid && 10096 ipif->ipif_zoneid != ALL_ZONES) 10097 continue; 10098 /* Sum of count from dead IRE_LO* and our current */ 10099 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10100 if (ipif->ipif_ire_local != NULL) { 10101 mae.ipAdEntInfo.ae_ibcnt += 10102 ipif->ipif_ire_local->ire_ib_pkt_count; 10103 } 10104 mae.ipAdEntInfo.ae_obcnt = 0; 10105 mae.ipAdEntInfo.ae_focnt = 0; 10106 10107 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10108 OCTET_LENGTH); 10109 mae.ipAdEntIfIndex.o_length = 10110 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10111 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10112 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10113 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10114 mae.ipAdEntInfo.ae_subnet_len = 10115 ip_mask_to_plen(ipif->ipif_net_mask); 10116 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10117 for (bitval = 1; 10118 bitval && 10119 !(bitval & ipif->ipif_brd_addr); 10120 bitval <<= 1) 10121 noop; 10122 mae.ipAdEntBcastAddr = bitval; 10123 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10124 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10125 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10126 mae.ipAdEntInfo.ae_broadcast_addr = 10127 ipif->ipif_brd_addr; 10128 mae.ipAdEntInfo.ae_pp_dst_addr = 10129 ipif->ipif_pp_dst_addr; 10130 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10131 ill->ill_flags | ill->ill_phyint->phyint_flags; 10132 mae.ipAdEntRetransmitTime = 10133 ill->ill_reachable_retrans_time; 10134 10135 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10136 (char *)&mae, (int)mae_size)) { 10137 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10138 "allocate %u bytes\n", (uint_t)mae_size)); 10139 } 10140 } 10141 } 10142 rw_exit(&ipst->ips_ill_g_lock); 10143 10144 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10145 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10146 (int)optp->level, (int)optp->name, (int)optp->len)); 10147 qreply(q, mpctl); 10148 return (mp2ctl); 10149 } 10150 10151 /* IPv6 address information */ 10152 static mblk_t * 10153 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10154 boolean_t legacy_req) 10155 { 10156 struct opthdr *optp; 10157 mblk_t *mp2ctl; 10158 mblk_t *mp_tail = NULL; 10159 ill_t *ill; 10160 ipif_t *ipif; 10161 mib2_ipv6AddrEntry_t mae6; 10162 size_t mae6_size; 10163 zoneid_t zoneid; 10164 ill_walk_context_t ctx; 10165 10166 /* 10167 * make a copy of the original message 10168 */ 10169 mp2ctl = copymsg(mpctl); 10170 10171 mae6_size = (legacy_req) ? 10172 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10173 sizeof (mib2_ipv6AddrEntry_t); 10174 10175 /* ipv6AddrEntryTable */ 10176 10177 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10178 optp->level = MIB2_IP6; 10179 optp->name = MIB2_IP6_ADDR; 10180 zoneid = Q_TO_CONN(q)->conn_zoneid; 10181 10182 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10183 ill = ILL_START_WALK_V6(&ctx, ipst); 10184 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10185 for (ipif = ill->ill_ipif; ipif != NULL; 10186 ipif = ipif->ipif_next) { 10187 if (ipif->ipif_zoneid != zoneid && 10188 ipif->ipif_zoneid != ALL_ZONES) 10189 continue; 10190 /* Sum of count from dead IRE_LO* and our current */ 10191 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10192 if (ipif->ipif_ire_local != NULL) { 10193 mae6.ipv6AddrInfo.ae_ibcnt += 10194 ipif->ipif_ire_local->ire_ib_pkt_count; 10195 } 10196 mae6.ipv6AddrInfo.ae_obcnt = 0; 10197 mae6.ipv6AddrInfo.ae_focnt = 0; 10198 10199 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10200 OCTET_LENGTH); 10201 mae6.ipv6AddrIfIndex.o_length = 10202 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10203 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10204 mae6.ipv6AddrPfxLength = 10205 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10206 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10207 mae6.ipv6AddrInfo.ae_subnet_len = 10208 mae6.ipv6AddrPfxLength; 10209 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10210 10211 /* Type: stateless(1), stateful(2), unknown(3) */ 10212 if (ipif->ipif_flags & IPIF_ADDRCONF) 10213 mae6.ipv6AddrType = 1; 10214 else 10215 mae6.ipv6AddrType = 2; 10216 /* Anycast: true(1), false(2) */ 10217 if (ipif->ipif_flags & IPIF_ANYCAST) 10218 mae6.ipv6AddrAnycastFlag = 1; 10219 else 10220 mae6.ipv6AddrAnycastFlag = 2; 10221 10222 /* 10223 * Address status: preferred(1), deprecated(2), 10224 * invalid(3), inaccessible(4), unknown(5) 10225 */ 10226 if (ipif->ipif_flags & IPIF_NOLOCAL) 10227 mae6.ipv6AddrStatus = 3; 10228 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10229 mae6.ipv6AddrStatus = 2; 10230 else 10231 mae6.ipv6AddrStatus = 1; 10232 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10233 mae6.ipv6AddrInfo.ae_metric = 10234 ipif->ipif_ill->ill_metric; 10235 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10236 ipif->ipif_v6pp_dst_addr; 10237 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10238 ill->ill_flags | ill->ill_phyint->phyint_flags; 10239 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10240 mae6.ipv6AddrIdentifier = ill->ill_token; 10241 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10242 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10243 mae6.ipv6AddrRetransmitTime = 10244 ill->ill_reachable_retrans_time; 10245 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10246 (char *)&mae6, (int)mae6_size)) { 10247 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10248 "allocate %u bytes\n", 10249 (uint_t)mae6_size)); 10250 } 10251 } 10252 } 10253 rw_exit(&ipst->ips_ill_g_lock); 10254 10255 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10256 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10257 (int)optp->level, (int)optp->name, (int)optp->len)); 10258 qreply(q, mpctl); 10259 return (mp2ctl); 10260 } 10261 10262 /* IPv4 multicast group membership. */ 10263 static mblk_t * 10264 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10265 { 10266 struct opthdr *optp; 10267 mblk_t *mp2ctl; 10268 ill_t *ill; 10269 ipif_t *ipif; 10270 ilm_t *ilm; 10271 ip_member_t ipm; 10272 mblk_t *mp_tail = NULL; 10273 ill_walk_context_t ctx; 10274 zoneid_t zoneid; 10275 10276 /* 10277 * make a copy of the original message 10278 */ 10279 mp2ctl = copymsg(mpctl); 10280 zoneid = Q_TO_CONN(q)->conn_zoneid; 10281 10282 /* ipGroupMember table */ 10283 optp = (struct opthdr *)&mpctl->b_rptr[ 10284 sizeof (struct T_optmgmt_ack)]; 10285 optp->level = MIB2_IP; 10286 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10287 10288 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10289 ill = ILL_START_WALK_V4(&ctx, ipst); 10290 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10291 /* Make sure the ill isn't going away. */ 10292 if (!ill_check_and_refhold(ill)) 10293 continue; 10294 rw_exit(&ipst->ips_ill_g_lock); 10295 rw_enter(&ill->ill_mcast_lock, RW_READER); 10296 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10297 if (ilm->ilm_zoneid != zoneid && 10298 ilm->ilm_zoneid != ALL_ZONES) 10299 continue; 10300 10301 /* Is there an ipif for ilm_ifaddr? */ 10302 for (ipif = ill->ill_ipif; ipif != NULL; 10303 ipif = ipif->ipif_next) { 10304 if (!IPIF_IS_CONDEMNED(ipif) && 10305 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10306 ilm->ilm_ifaddr != INADDR_ANY) 10307 break; 10308 } 10309 if (ipif != NULL) { 10310 ipif_get_name(ipif, 10311 ipm.ipGroupMemberIfIndex.o_bytes, 10312 OCTET_LENGTH); 10313 } else { 10314 ill_get_name(ill, 10315 ipm.ipGroupMemberIfIndex.o_bytes, 10316 OCTET_LENGTH); 10317 } 10318 ipm.ipGroupMemberIfIndex.o_length = 10319 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10320 10321 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10322 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10323 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10324 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10325 (char *)&ipm, (int)sizeof (ipm))) { 10326 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10327 "failed to allocate %u bytes\n", 10328 (uint_t)sizeof (ipm))); 10329 } 10330 } 10331 rw_exit(&ill->ill_mcast_lock); 10332 ill_refrele(ill); 10333 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10334 } 10335 rw_exit(&ipst->ips_ill_g_lock); 10336 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10337 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10338 (int)optp->level, (int)optp->name, (int)optp->len)); 10339 qreply(q, mpctl); 10340 return (mp2ctl); 10341 } 10342 10343 /* IPv6 multicast group membership. */ 10344 static mblk_t * 10345 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10346 { 10347 struct opthdr *optp; 10348 mblk_t *mp2ctl; 10349 ill_t *ill; 10350 ilm_t *ilm; 10351 ipv6_member_t ipm6; 10352 mblk_t *mp_tail = NULL; 10353 ill_walk_context_t ctx; 10354 zoneid_t zoneid; 10355 10356 /* 10357 * make a copy of the original message 10358 */ 10359 mp2ctl = copymsg(mpctl); 10360 zoneid = Q_TO_CONN(q)->conn_zoneid; 10361 10362 /* ip6GroupMember table */ 10363 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10364 optp->level = MIB2_IP6; 10365 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10366 10367 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10368 ill = ILL_START_WALK_V6(&ctx, ipst); 10369 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10370 /* Make sure the ill isn't going away. */ 10371 if (!ill_check_and_refhold(ill)) 10372 continue; 10373 rw_exit(&ipst->ips_ill_g_lock); 10374 /* 10375 * Normally we don't have any members on under IPMP interfaces. 10376 * We report them as a debugging aid. 10377 */ 10378 rw_enter(&ill->ill_mcast_lock, RW_READER); 10379 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10380 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10381 if (ilm->ilm_zoneid != zoneid && 10382 ilm->ilm_zoneid != ALL_ZONES) 10383 continue; /* not this zone */ 10384 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10385 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10386 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10387 if (!snmp_append_data2(mpctl->b_cont, 10388 &mp_tail, 10389 (char *)&ipm6, (int)sizeof (ipm6))) { 10390 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10391 "failed to allocate %u bytes\n", 10392 (uint_t)sizeof (ipm6))); 10393 } 10394 } 10395 rw_exit(&ill->ill_mcast_lock); 10396 ill_refrele(ill); 10397 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10398 } 10399 rw_exit(&ipst->ips_ill_g_lock); 10400 10401 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10402 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10403 (int)optp->level, (int)optp->name, (int)optp->len)); 10404 qreply(q, mpctl); 10405 return (mp2ctl); 10406 } 10407 10408 /* IP multicast filtered sources */ 10409 static mblk_t * 10410 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10411 { 10412 struct opthdr *optp; 10413 mblk_t *mp2ctl; 10414 ill_t *ill; 10415 ipif_t *ipif; 10416 ilm_t *ilm; 10417 ip_grpsrc_t ips; 10418 mblk_t *mp_tail = NULL; 10419 ill_walk_context_t ctx; 10420 zoneid_t zoneid; 10421 int i; 10422 slist_t *sl; 10423 10424 /* 10425 * make a copy of the original message 10426 */ 10427 mp2ctl = copymsg(mpctl); 10428 zoneid = Q_TO_CONN(q)->conn_zoneid; 10429 10430 /* ipGroupSource table */ 10431 optp = (struct opthdr *)&mpctl->b_rptr[ 10432 sizeof (struct T_optmgmt_ack)]; 10433 optp->level = MIB2_IP; 10434 optp->name = EXPER_IP_GROUP_SOURCES; 10435 10436 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10437 ill = ILL_START_WALK_V4(&ctx, ipst); 10438 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10439 /* Make sure the ill isn't going away. */ 10440 if (!ill_check_and_refhold(ill)) 10441 continue; 10442 rw_exit(&ipst->ips_ill_g_lock); 10443 rw_enter(&ill->ill_mcast_lock, RW_READER); 10444 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10445 sl = ilm->ilm_filter; 10446 if (ilm->ilm_zoneid != zoneid && 10447 ilm->ilm_zoneid != ALL_ZONES) 10448 continue; 10449 if (SLIST_IS_EMPTY(sl)) 10450 continue; 10451 10452 /* Is there an ipif for ilm_ifaddr? */ 10453 for (ipif = ill->ill_ipif; ipif != NULL; 10454 ipif = ipif->ipif_next) { 10455 if (!IPIF_IS_CONDEMNED(ipif) && 10456 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10457 ilm->ilm_ifaddr != INADDR_ANY) 10458 break; 10459 } 10460 if (ipif != NULL) { 10461 ipif_get_name(ipif, 10462 ips.ipGroupSourceIfIndex.o_bytes, 10463 OCTET_LENGTH); 10464 } else { 10465 ill_get_name(ill, 10466 ips.ipGroupSourceIfIndex.o_bytes, 10467 OCTET_LENGTH); 10468 } 10469 ips.ipGroupSourceIfIndex.o_length = 10470 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10471 10472 ips.ipGroupSourceGroup = ilm->ilm_addr; 10473 for (i = 0; i < sl->sl_numsrc; i++) { 10474 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10475 continue; 10476 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10477 ips.ipGroupSourceAddress); 10478 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10479 (char *)&ips, (int)sizeof (ips)) == 0) { 10480 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10481 " failed to allocate %u bytes\n", 10482 (uint_t)sizeof (ips))); 10483 } 10484 } 10485 } 10486 rw_exit(&ill->ill_mcast_lock); 10487 ill_refrele(ill); 10488 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10489 } 10490 rw_exit(&ipst->ips_ill_g_lock); 10491 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10492 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10493 (int)optp->level, (int)optp->name, (int)optp->len)); 10494 qreply(q, mpctl); 10495 return (mp2ctl); 10496 } 10497 10498 /* IPv6 multicast filtered sources. */ 10499 static mblk_t * 10500 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10501 { 10502 struct opthdr *optp; 10503 mblk_t *mp2ctl; 10504 ill_t *ill; 10505 ilm_t *ilm; 10506 ipv6_grpsrc_t ips6; 10507 mblk_t *mp_tail = NULL; 10508 ill_walk_context_t ctx; 10509 zoneid_t zoneid; 10510 int i; 10511 slist_t *sl; 10512 10513 /* 10514 * make a copy of the original message 10515 */ 10516 mp2ctl = copymsg(mpctl); 10517 zoneid = Q_TO_CONN(q)->conn_zoneid; 10518 10519 /* ip6GroupMember table */ 10520 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10521 optp->level = MIB2_IP6; 10522 optp->name = EXPER_IP6_GROUP_SOURCES; 10523 10524 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10525 ill = ILL_START_WALK_V6(&ctx, ipst); 10526 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10527 /* Make sure the ill isn't going away. */ 10528 if (!ill_check_and_refhold(ill)) 10529 continue; 10530 rw_exit(&ipst->ips_ill_g_lock); 10531 /* 10532 * Normally we don't have any members on under IPMP interfaces. 10533 * We report them as a debugging aid. 10534 */ 10535 rw_enter(&ill->ill_mcast_lock, RW_READER); 10536 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10537 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10538 sl = ilm->ilm_filter; 10539 if (ilm->ilm_zoneid != zoneid && 10540 ilm->ilm_zoneid != ALL_ZONES) 10541 continue; 10542 if (SLIST_IS_EMPTY(sl)) 10543 continue; 10544 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10545 for (i = 0; i < sl->sl_numsrc; i++) { 10546 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10547 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10548 (char *)&ips6, (int)sizeof (ips6))) { 10549 ip1dbg(("ip_snmp_get_mib2_ip6_" 10550 "group_src: failed to allocate " 10551 "%u bytes\n", 10552 (uint_t)sizeof (ips6))); 10553 } 10554 } 10555 } 10556 rw_exit(&ill->ill_mcast_lock); 10557 ill_refrele(ill); 10558 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10559 } 10560 rw_exit(&ipst->ips_ill_g_lock); 10561 10562 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10563 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10564 (int)optp->level, (int)optp->name, (int)optp->len)); 10565 qreply(q, mpctl); 10566 return (mp2ctl); 10567 } 10568 10569 /* Multicast routing virtual interface table. */ 10570 static mblk_t * 10571 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10572 { 10573 struct opthdr *optp; 10574 mblk_t *mp2ctl; 10575 10576 /* 10577 * make a copy of the original message 10578 */ 10579 mp2ctl = copymsg(mpctl); 10580 10581 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10582 optp->level = EXPER_DVMRP; 10583 optp->name = EXPER_DVMRP_VIF; 10584 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10585 ip0dbg(("ip_mroute_vif: failed\n")); 10586 } 10587 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10588 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10589 (int)optp->level, (int)optp->name, (int)optp->len)); 10590 qreply(q, mpctl); 10591 return (mp2ctl); 10592 } 10593 10594 /* Multicast routing table. */ 10595 static mblk_t * 10596 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10597 { 10598 struct opthdr *optp; 10599 mblk_t *mp2ctl; 10600 10601 /* 10602 * make a copy of the original message 10603 */ 10604 mp2ctl = copymsg(mpctl); 10605 10606 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10607 optp->level = EXPER_DVMRP; 10608 optp->name = EXPER_DVMRP_MRT; 10609 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10610 ip0dbg(("ip_mroute_mrt: failed\n")); 10611 } 10612 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10613 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10614 (int)optp->level, (int)optp->name, (int)optp->len)); 10615 qreply(q, mpctl); 10616 return (mp2ctl); 10617 } 10618 10619 /* 10620 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10621 * in one IRE walk. 10622 */ 10623 static mblk_t * 10624 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10625 ip_stack_t *ipst) 10626 { 10627 struct opthdr *optp; 10628 mblk_t *mp2ctl; /* Returned */ 10629 mblk_t *mp3ctl; /* nettomedia */ 10630 mblk_t *mp4ctl; /* routeattrs */ 10631 iproutedata_t ird; 10632 zoneid_t zoneid; 10633 10634 /* 10635 * make copies of the original message 10636 * - mp2ctl is returned unchanged to the caller for its use 10637 * - mpctl is sent upstream as ipRouteEntryTable 10638 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10639 * - mp4ctl is sent upstream as ipRouteAttributeTable 10640 */ 10641 mp2ctl = copymsg(mpctl); 10642 mp3ctl = copymsg(mpctl); 10643 mp4ctl = copymsg(mpctl); 10644 if (mp3ctl == NULL || mp4ctl == NULL) { 10645 freemsg(mp4ctl); 10646 freemsg(mp3ctl); 10647 freemsg(mp2ctl); 10648 freemsg(mpctl); 10649 return (NULL); 10650 } 10651 10652 bzero(&ird, sizeof (ird)); 10653 10654 ird.ird_route.lp_head = mpctl->b_cont; 10655 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10656 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10657 /* 10658 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10659 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10660 * intended a temporary solution until a proper MIB API is provided 10661 * that provides complete filtering/caller-opt-in. 10662 */ 10663 if (level == EXPER_IP_AND_ALL_IRES) 10664 ird.ird_flags |= IRD_REPORT_ALL; 10665 10666 zoneid = Q_TO_CONN(q)->conn_zoneid; 10667 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10668 10669 /* ipRouteEntryTable in mpctl */ 10670 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10671 optp->level = MIB2_IP; 10672 optp->name = MIB2_IP_ROUTE; 10673 optp->len = msgdsize(ird.ird_route.lp_head); 10674 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10675 (int)optp->level, (int)optp->name, (int)optp->len)); 10676 qreply(q, mpctl); 10677 10678 /* ipNetToMediaEntryTable in mp3ctl */ 10679 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10680 10681 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10682 optp->level = MIB2_IP; 10683 optp->name = MIB2_IP_MEDIA; 10684 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10685 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10686 (int)optp->level, (int)optp->name, (int)optp->len)); 10687 qreply(q, mp3ctl); 10688 10689 /* ipRouteAttributeTable in mp4ctl */ 10690 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10691 optp->level = MIB2_IP; 10692 optp->name = EXPER_IP_RTATTR; 10693 optp->len = msgdsize(ird.ird_attrs.lp_head); 10694 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10695 (int)optp->level, (int)optp->name, (int)optp->len)); 10696 if (optp->len == 0) 10697 freemsg(mp4ctl); 10698 else 10699 qreply(q, mp4ctl); 10700 10701 return (mp2ctl); 10702 } 10703 10704 /* 10705 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10706 * ipv6NetToMediaEntryTable in an NDP walk. 10707 */ 10708 static mblk_t * 10709 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10710 ip_stack_t *ipst) 10711 { 10712 struct opthdr *optp; 10713 mblk_t *mp2ctl; /* Returned */ 10714 mblk_t *mp3ctl; /* nettomedia */ 10715 mblk_t *mp4ctl; /* routeattrs */ 10716 iproutedata_t ird; 10717 zoneid_t zoneid; 10718 10719 /* 10720 * make copies of the original message 10721 * - mp2ctl is returned unchanged to the caller for its use 10722 * - mpctl is sent upstream as ipv6RouteEntryTable 10723 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10724 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10725 */ 10726 mp2ctl = copymsg(mpctl); 10727 mp3ctl = copymsg(mpctl); 10728 mp4ctl = copymsg(mpctl); 10729 if (mp3ctl == NULL || mp4ctl == NULL) { 10730 freemsg(mp4ctl); 10731 freemsg(mp3ctl); 10732 freemsg(mp2ctl); 10733 freemsg(mpctl); 10734 return (NULL); 10735 } 10736 10737 bzero(&ird, sizeof (ird)); 10738 10739 ird.ird_route.lp_head = mpctl->b_cont; 10740 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10741 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10742 /* 10743 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10744 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10745 * intended a temporary solution until a proper MIB API is provided 10746 * that provides complete filtering/caller-opt-in. 10747 */ 10748 if (level == EXPER_IP_AND_ALL_IRES) 10749 ird.ird_flags |= IRD_REPORT_ALL; 10750 10751 zoneid = Q_TO_CONN(q)->conn_zoneid; 10752 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10753 10754 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10755 optp->level = MIB2_IP6; 10756 optp->name = MIB2_IP6_ROUTE; 10757 optp->len = msgdsize(ird.ird_route.lp_head); 10758 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10759 (int)optp->level, (int)optp->name, (int)optp->len)); 10760 qreply(q, mpctl); 10761 10762 /* ipv6NetToMediaEntryTable in mp3ctl */ 10763 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10764 10765 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10766 optp->level = MIB2_IP6; 10767 optp->name = MIB2_IP6_MEDIA; 10768 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10769 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10770 (int)optp->level, (int)optp->name, (int)optp->len)); 10771 qreply(q, mp3ctl); 10772 10773 /* ipv6RouteAttributeTable in mp4ctl */ 10774 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10775 optp->level = MIB2_IP6; 10776 optp->name = EXPER_IP_RTATTR; 10777 optp->len = msgdsize(ird.ird_attrs.lp_head); 10778 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10779 (int)optp->level, (int)optp->name, (int)optp->len)); 10780 if (optp->len == 0) 10781 freemsg(mp4ctl); 10782 else 10783 qreply(q, mp4ctl); 10784 10785 return (mp2ctl); 10786 } 10787 10788 /* 10789 * IPv6 mib: One per ill 10790 */ 10791 static mblk_t * 10792 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10793 boolean_t legacy_req) 10794 { 10795 struct opthdr *optp; 10796 mblk_t *mp2ctl; 10797 ill_t *ill; 10798 ill_walk_context_t ctx; 10799 mblk_t *mp_tail = NULL; 10800 mib2_ipv6AddrEntry_t mae6; 10801 mib2_ipIfStatsEntry_t *ise; 10802 size_t ise_size, iae_size; 10803 10804 /* 10805 * Make a copy of the original message 10806 */ 10807 mp2ctl = copymsg(mpctl); 10808 10809 /* fixed length IPv6 structure ... */ 10810 10811 if (legacy_req) { 10812 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10813 mib2_ipIfStatsEntry_t); 10814 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10815 } else { 10816 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10817 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10818 } 10819 10820 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10821 optp->level = MIB2_IP6; 10822 optp->name = 0; 10823 /* Include "unknown interface" ip6_mib */ 10824 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10825 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10826 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10827 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10828 ipst->ips_ipv6_forwarding ? 1 : 2); 10829 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10830 ipst->ips_ipv6_def_hops); 10831 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10832 sizeof (mib2_ipIfStatsEntry_t)); 10833 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10834 sizeof (mib2_ipv6AddrEntry_t)); 10835 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10836 sizeof (mib2_ipv6RouteEntry_t)); 10837 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10838 sizeof (mib2_ipv6NetToMediaEntry_t)); 10839 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10840 sizeof (ipv6_member_t)); 10841 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10842 sizeof (ipv6_grpsrc_t)); 10843 10844 /* 10845 * Synchronize 64- and 32-bit counters 10846 */ 10847 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10848 ipIfStatsHCInReceives); 10849 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10850 ipIfStatsHCInDelivers); 10851 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10852 ipIfStatsHCOutRequests); 10853 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10854 ipIfStatsHCOutForwDatagrams); 10855 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10856 ipIfStatsHCOutMcastPkts); 10857 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10858 ipIfStatsHCInMcastPkts); 10859 10860 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10861 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10862 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10863 (uint_t)ise_size)); 10864 } else if (legacy_req) { 10865 /* Adjust the EntrySize fields for legacy requests. */ 10866 ise = 10867 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10868 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10869 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10870 } 10871 10872 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10873 ill = ILL_START_WALK_V6(&ctx, ipst); 10874 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10875 ill->ill_ip_mib->ipIfStatsIfIndex = 10876 ill->ill_phyint->phyint_ifindex; 10877 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10878 ipst->ips_ipv6_forwarding ? 1 : 2); 10879 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10880 ill->ill_max_hops); 10881 10882 /* 10883 * Synchronize 64- and 32-bit counters 10884 */ 10885 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10886 ipIfStatsHCInReceives); 10887 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10888 ipIfStatsHCInDelivers); 10889 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10890 ipIfStatsHCOutRequests); 10891 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10892 ipIfStatsHCOutForwDatagrams); 10893 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10894 ipIfStatsHCOutMcastPkts); 10895 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10896 ipIfStatsHCInMcastPkts); 10897 10898 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10899 (char *)ill->ill_ip_mib, (int)ise_size)) { 10900 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10901 "%u bytes\n", (uint_t)ise_size)); 10902 } else if (legacy_req) { 10903 /* Adjust the EntrySize fields for legacy requests. */ 10904 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10905 (int)ise_size); 10906 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10907 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10908 } 10909 } 10910 rw_exit(&ipst->ips_ill_g_lock); 10911 10912 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10913 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10914 (int)optp->level, (int)optp->name, (int)optp->len)); 10915 qreply(q, mpctl); 10916 return (mp2ctl); 10917 } 10918 10919 /* 10920 * ICMPv6 mib: One per ill 10921 */ 10922 static mblk_t * 10923 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10924 { 10925 struct opthdr *optp; 10926 mblk_t *mp2ctl; 10927 ill_t *ill; 10928 ill_walk_context_t ctx; 10929 mblk_t *mp_tail = NULL; 10930 /* 10931 * Make a copy of the original message 10932 */ 10933 mp2ctl = copymsg(mpctl); 10934 10935 /* fixed length ICMPv6 structure ... */ 10936 10937 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10938 optp->level = MIB2_ICMP6; 10939 optp->name = 0; 10940 /* Include "unknown interface" icmp6_mib */ 10941 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10942 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10943 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10944 sizeof (mib2_ipv6IfIcmpEntry_t); 10945 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10946 (char *)&ipst->ips_icmp6_mib, 10947 (int)sizeof (ipst->ips_icmp6_mib))) { 10948 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10949 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10950 } 10951 10952 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10953 ill = ILL_START_WALK_V6(&ctx, ipst); 10954 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10955 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10956 ill->ill_phyint->phyint_ifindex; 10957 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10958 (char *)ill->ill_icmp6_mib, 10959 (int)sizeof (*ill->ill_icmp6_mib))) { 10960 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10961 "%u bytes\n", 10962 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10963 } 10964 } 10965 rw_exit(&ipst->ips_ill_g_lock); 10966 10967 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10968 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10969 (int)optp->level, (int)optp->name, (int)optp->len)); 10970 qreply(q, mpctl); 10971 return (mp2ctl); 10972 } 10973 10974 /* 10975 * ire_walk routine to create both ipRouteEntryTable and 10976 * ipRouteAttributeTable in one IRE walk 10977 */ 10978 static void 10979 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10980 { 10981 ill_t *ill; 10982 mib2_ipRouteEntry_t *re; 10983 mib2_ipAttributeEntry_t iaes; 10984 tsol_ire_gw_secattr_t *attrp; 10985 tsol_gc_t *gc = NULL; 10986 tsol_gcgrp_t *gcgrp = NULL; 10987 ip_stack_t *ipst = ire->ire_ipst; 10988 10989 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10990 10991 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10992 if (ire->ire_testhidden) 10993 return; 10994 if (ire->ire_type & IRE_IF_CLONE) 10995 return; 10996 } 10997 10998 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10999 return; 11000 11001 if ((attrp = ire->ire_gw_secattr) != NULL) { 11002 mutex_enter(&attrp->igsa_lock); 11003 if ((gc = attrp->igsa_gc) != NULL) { 11004 gcgrp = gc->gc_grp; 11005 ASSERT(gcgrp != NULL); 11006 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11007 } 11008 mutex_exit(&attrp->igsa_lock); 11009 } 11010 /* 11011 * Return all IRE types for route table... let caller pick and choose 11012 */ 11013 re->ipRouteDest = ire->ire_addr; 11014 ill = ire->ire_ill; 11015 re->ipRouteIfIndex.o_length = 0; 11016 if (ill != NULL) { 11017 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 11018 re->ipRouteIfIndex.o_length = 11019 mi_strlen(re->ipRouteIfIndex.o_bytes); 11020 } 11021 re->ipRouteMetric1 = -1; 11022 re->ipRouteMetric2 = -1; 11023 re->ipRouteMetric3 = -1; 11024 re->ipRouteMetric4 = -1; 11025 11026 re->ipRouteNextHop = ire->ire_gateway_addr; 11027 /* indirect(4), direct(3), or invalid(2) */ 11028 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11029 re->ipRouteType = 2; 11030 else if (ire->ire_type & IRE_ONLINK) 11031 re->ipRouteType = 3; 11032 else 11033 re->ipRouteType = 4; 11034 11035 re->ipRouteProto = -1; 11036 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 11037 re->ipRouteMask = ire->ire_mask; 11038 re->ipRouteMetric5 = -1; 11039 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11040 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 11041 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11042 11043 re->ipRouteInfo.re_frag_flag = 0; 11044 re->ipRouteInfo.re_rtt = 0; 11045 re->ipRouteInfo.re_src_addr = 0; 11046 re->ipRouteInfo.re_ref = ire->ire_refcnt; 11047 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11048 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11049 re->ipRouteInfo.re_flags = ire->ire_flags; 11050 11051 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11052 if (ire->ire_type & IRE_INTERFACE) { 11053 ire_t *child; 11054 11055 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11056 child = ire->ire_dep_children; 11057 while (child != NULL) { 11058 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 11059 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11060 child = child->ire_dep_sib_next; 11061 } 11062 rw_exit(&ipst->ips_ire_dep_lock); 11063 } 11064 11065 if (ire->ire_flags & RTF_DYNAMIC) { 11066 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11067 } else { 11068 re->ipRouteInfo.re_ire_type = ire->ire_type; 11069 } 11070 11071 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11072 (char *)re, (int)sizeof (*re))) { 11073 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11074 (uint_t)sizeof (*re))); 11075 } 11076 11077 if (gc != NULL) { 11078 iaes.iae_routeidx = ird->ird_idx; 11079 iaes.iae_doi = gc->gc_db->gcdb_doi; 11080 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11081 11082 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11083 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11084 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11085 "bytes\n", (uint_t)sizeof (iaes))); 11086 } 11087 } 11088 11089 /* bump route index for next pass */ 11090 ird->ird_idx++; 11091 11092 kmem_free(re, sizeof (*re)); 11093 if (gcgrp != NULL) 11094 rw_exit(&gcgrp->gcgrp_rwlock); 11095 } 11096 11097 /* 11098 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11099 */ 11100 static void 11101 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11102 { 11103 ill_t *ill; 11104 mib2_ipv6RouteEntry_t *re; 11105 mib2_ipAttributeEntry_t iaes; 11106 tsol_ire_gw_secattr_t *attrp; 11107 tsol_gc_t *gc = NULL; 11108 tsol_gcgrp_t *gcgrp = NULL; 11109 ip_stack_t *ipst = ire->ire_ipst; 11110 11111 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11112 11113 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11114 if (ire->ire_testhidden) 11115 return; 11116 if (ire->ire_type & IRE_IF_CLONE) 11117 return; 11118 } 11119 11120 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11121 return; 11122 11123 if ((attrp = ire->ire_gw_secattr) != NULL) { 11124 mutex_enter(&attrp->igsa_lock); 11125 if ((gc = attrp->igsa_gc) != NULL) { 11126 gcgrp = gc->gc_grp; 11127 ASSERT(gcgrp != NULL); 11128 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11129 } 11130 mutex_exit(&attrp->igsa_lock); 11131 } 11132 /* 11133 * Return all IRE types for route table... let caller pick and choose 11134 */ 11135 re->ipv6RouteDest = ire->ire_addr_v6; 11136 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11137 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11138 re->ipv6RouteIfIndex.o_length = 0; 11139 ill = ire->ire_ill; 11140 if (ill != NULL) { 11141 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11142 re->ipv6RouteIfIndex.o_length = 11143 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11144 } 11145 11146 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11147 11148 mutex_enter(&ire->ire_lock); 11149 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11150 mutex_exit(&ire->ire_lock); 11151 11152 /* remote(4), local(3), or discard(2) */ 11153 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11154 re->ipv6RouteType = 2; 11155 else if (ire->ire_type & IRE_ONLINK) 11156 re->ipv6RouteType = 3; 11157 else 11158 re->ipv6RouteType = 4; 11159 11160 re->ipv6RouteProtocol = -1; 11161 re->ipv6RoutePolicy = 0; 11162 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11163 re->ipv6RouteNextHopRDI = 0; 11164 re->ipv6RouteWeight = 0; 11165 re->ipv6RouteMetric = 0; 11166 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11167 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11168 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11169 11170 re->ipv6RouteInfo.re_frag_flag = 0; 11171 re->ipv6RouteInfo.re_rtt = 0; 11172 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11173 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11174 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11175 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11176 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11177 11178 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11179 if (ire->ire_type & IRE_INTERFACE) { 11180 ire_t *child; 11181 11182 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11183 child = ire->ire_dep_children; 11184 while (child != NULL) { 11185 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11186 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11187 child = child->ire_dep_sib_next; 11188 } 11189 rw_exit(&ipst->ips_ire_dep_lock); 11190 } 11191 if (ire->ire_flags & RTF_DYNAMIC) { 11192 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11193 } else { 11194 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11195 } 11196 11197 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11198 (char *)re, (int)sizeof (*re))) { 11199 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11200 (uint_t)sizeof (*re))); 11201 } 11202 11203 if (gc != NULL) { 11204 iaes.iae_routeidx = ird->ird_idx; 11205 iaes.iae_doi = gc->gc_db->gcdb_doi; 11206 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11207 11208 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11209 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11210 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11211 "bytes\n", (uint_t)sizeof (iaes))); 11212 } 11213 } 11214 11215 /* bump route index for next pass */ 11216 ird->ird_idx++; 11217 11218 kmem_free(re, sizeof (*re)); 11219 if (gcgrp != NULL) 11220 rw_exit(&gcgrp->gcgrp_rwlock); 11221 } 11222 11223 /* 11224 * ncec_walk routine to create ipv6NetToMediaEntryTable 11225 */ 11226 static void 11227 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr) 11228 { 11229 iproutedata_t *ird = ptr; 11230 ill_t *ill; 11231 mib2_ipv6NetToMediaEntry_t ntme; 11232 11233 ill = ncec->ncec_ill; 11234 /* skip arpce entries, and loopback ncec entries */ 11235 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11236 return; 11237 /* 11238 * Neighbor cache entry attached to IRE with on-link 11239 * destination. 11240 * We report all IPMP groups on ncec_ill which is normally the upper. 11241 */ 11242 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11243 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11244 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11245 if (ncec->ncec_lladdr != NULL) { 11246 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11247 ntme.ipv6NetToMediaPhysAddress.o_length); 11248 } 11249 /* 11250 * Note: Returns ND_* states. Should be: 11251 * reachable(1), stale(2), delay(3), probe(4), 11252 * invalid(5), unknown(6) 11253 */ 11254 ntme.ipv6NetToMediaState = ncec->ncec_state; 11255 ntme.ipv6NetToMediaLastUpdated = 0; 11256 11257 /* other(1), dynamic(2), static(3), local(4) */ 11258 if (NCE_MYADDR(ncec)) { 11259 ntme.ipv6NetToMediaType = 4; 11260 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11261 ntme.ipv6NetToMediaType = 1; /* proxy */ 11262 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11263 ntme.ipv6NetToMediaType = 3; 11264 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11265 ntme.ipv6NetToMediaType = 1; 11266 } else { 11267 ntme.ipv6NetToMediaType = 2; 11268 } 11269 11270 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11271 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11272 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11273 (uint_t)sizeof (ntme))); 11274 } 11275 } 11276 11277 int 11278 nce2ace(ncec_t *ncec) 11279 { 11280 int flags = 0; 11281 11282 if (NCE_ISREACHABLE(ncec)) 11283 flags |= ACE_F_RESOLVED; 11284 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11285 flags |= ACE_F_AUTHORITY; 11286 if (ncec->ncec_flags & NCE_F_PUBLISH) 11287 flags |= ACE_F_PUBLISH; 11288 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11289 flags |= ACE_F_PERMANENT; 11290 if (NCE_MYADDR(ncec)) 11291 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11292 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11293 flags |= ACE_F_UNVERIFIED; 11294 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11295 flags |= ACE_F_AUTHORITY; 11296 if (ncec->ncec_flags & NCE_F_DELAYED) 11297 flags |= ACE_F_DELAYED; 11298 return (flags); 11299 } 11300 11301 /* 11302 * ncec_walk routine to create ipNetToMediaEntryTable 11303 */ 11304 static void 11305 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr) 11306 { 11307 iproutedata_t *ird = ptr; 11308 ill_t *ill; 11309 mib2_ipNetToMediaEntry_t ntme; 11310 const char *name = "unknown"; 11311 ipaddr_t ncec_addr; 11312 11313 ill = ncec->ncec_ill; 11314 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11315 ill->ill_net_type == IRE_LOOPBACK) 11316 return; 11317 11318 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11319 name = ill->ill_name; 11320 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11321 if (NCE_MYADDR(ncec)) { 11322 ntme.ipNetToMediaType = 4; 11323 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11324 ntme.ipNetToMediaType = 1; 11325 } else { 11326 ntme.ipNetToMediaType = 3; 11327 } 11328 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11329 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11330 ntme.ipNetToMediaIfIndex.o_length); 11331 11332 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11333 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11334 11335 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11336 ncec_addr = INADDR_BROADCAST; 11337 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11338 sizeof (ncec_addr)); 11339 /* 11340 * map all the flags to the ACE counterpart. 11341 */ 11342 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11343 11344 ntme.ipNetToMediaPhysAddress.o_length = 11345 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11346 11347 if (!NCE_ISREACHABLE(ncec)) 11348 ntme.ipNetToMediaPhysAddress.o_length = 0; 11349 else { 11350 if (ncec->ncec_lladdr != NULL) { 11351 bcopy(ncec->ncec_lladdr, 11352 ntme.ipNetToMediaPhysAddress.o_bytes, 11353 ntme.ipNetToMediaPhysAddress.o_length); 11354 } 11355 } 11356 11357 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11358 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11359 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11360 (uint_t)sizeof (ntme))); 11361 } 11362 } 11363 11364 /* 11365 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11366 */ 11367 /* ARGSUSED */ 11368 int 11369 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11370 { 11371 switch (level) { 11372 case MIB2_IP: 11373 case MIB2_ICMP: 11374 switch (name) { 11375 default: 11376 break; 11377 } 11378 return (1); 11379 default: 11380 return (1); 11381 } 11382 } 11383 11384 /* 11385 * When there exists both a 64- and 32-bit counter of a particular type 11386 * (i.e., InReceives), only the 64-bit counters are added. 11387 */ 11388 void 11389 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11390 { 11391 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11392 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11393 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11394 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11395 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11396 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11397 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11398 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11399 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11400 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11401 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11402 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11403 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11404 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11405 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11406 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11407 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11408 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11409 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11410 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11411 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11412 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11413 o2->ipIfStatsInWrongIPVersion); 11414 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11415 o2->ipIfStatsInWrongIPVersion); 11416 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11417 o2->ipIfStatsOutSwitchIPVersion); 11418 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11419 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11420 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11421 o2->ipIfStatsHCInForwDatagrams); 11422 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11423 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11424 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11425 o2->ipIfStatsHCOutForwDatagrams); 11426 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11427 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11428 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11429 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11430 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11431 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11432 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11433 o2->ipIfStatsHCOutMcastOctets); 11434 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11435 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11436 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11437 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11438 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11439 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11440 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11441 } 11442 11443 void 11444 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11445 { 11446 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11447 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11448 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11449 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11450 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11451 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11452 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11453 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11454 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11455 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11456 o2->ipv6IfIcmpInRouterSolicits); 11457 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11458 o2->ipv6IfIcmpInRouterAdvertisements); 11459 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11460 o2->ipv6IfIcmpInNeighborSolicits); 11461 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11462 o2->ipv6IfIcmpInNeighborAdvertisements); 11463 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11464 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11465 o2->ipv6IfIcmpInGroupMembQueries); 11466 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11467 o2->ipv6IfIcmpInGroupMembResponses); 11468 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11469 o2->ipv6IfIcmpInGroupMembReductions); 11470 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11471 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11472 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11473 o2->ipv6IfIcmpOutDestUnreachs); 11474 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11475 o2->ipv6IfIcmpOutAdminProhibs); 11476 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11477 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11478 o2->ipv6IfIcmpOutParmProblems); 11479 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11480 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11481 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11482 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11483 o2->ipv6IfIcmpOutRouterSolicits); 11484 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11485 o2->ipv6IfIcmpOutRouterAdvertisements); 11486 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11487 o2->ipv6IfIcmpOutNeighborSolicits); 11488 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11489 o2->ipv6IfIcmpOutNeighborAdvertisements); 11490 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11491 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11492 o2->ipv6IfIcmpOutGroupMembQueries); 11493 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11494 o2->ipv6IfIcmpOutGroupMembResponses); 11495 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11496 o2->ipv6IfIcmpOutGroupMembReductions); 11497 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11498 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11499 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11500 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11501 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11502 o2->ipv6IfIcmpInBadNeighborSolicitations); 11503 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11504 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11505 o2->ipv6IfIcmpInGroupMembTotal); 11506 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11507 o2->ipv6IfIcmpInGroupMembBadQueries); 11508 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11509 o2->ipv6IfIcmpInGroupMembBadReports); 11510 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11511 o2->ipv6IfIcmpInGroupMembOurReports); 11512 } 11513 11514 /* 11515 * Called before the options are updated to check if this packet will 11516 * be source routed from here. 11517 * This routine assumes that the options are well formed i.e. that they 11518 * have already been checked. 11519 */ 11520 boolean_t 11521 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11522 { 11523 ipoptp_t opts; 11524 uchar_t *opt; 11525 uint8_t optval; 11526 uint8_t optlen; 11527 ipaddr_t dst; 11528 11529 if (IS_SIMPLE_IPH(ipha)) { 11530 ip2dbg(("not source routed\n")); 11531 return (B_FALSE); 11532 } 11533 dst = ipha->ipha_dst; 11534 for (optval = ipoptp_first(&opts, ipha); 11535 optval != IPOPT_EOL; 11536 optval = ipoptp_next(&opts)) { 11537 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11538 opt = opts.ipoptp_cur; 11539 optlen = opts.ipoptp_len; 11540 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11541 optval, optlen)); 11542 switch (optval) { 11543 uint32_t off; 11544 case IPOPT_SSRR: 11545 case IPOPT_LSRR: 11546 /* 11547 * If dst is one of our addresses and there are some 11548 * entries left in the source route return (true). 11549 */ 11550 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11551 ip2dbg(("ip_source_routed: not next" 11552 " source route 0x%x\n", 11553 ntohl(dst))); 11554 return (B_FALSE); 11555 } 11556 off = opt[IPOPT_OFFSET]; 11557 off--; 11558 if (optlen < IP_ADDR_LEN || 11559 off > optlen - IP_ADDR_LEN) { 11560 /* End of source route */ 11561 ip1dbg(("ip_source_routed: end of SR\n")); 11562 return (B_FALSE); 11563 } 11564 return (B_TRUE); 11565 } 11566 } 11567 ip2dbg(("not source routed\n")); 11568 return (B_FALSE); 11569 } 11570 11571 /* 11572 * ip_unbind is called by the transports to remove a conn from 11573 * the fanout table. 11574 */ 11575 void 11576 ip_unbind(conn_t *connp) 11577 { 11578 11579 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11580 11581 if (is_system_labeled() && connp->conn_anon_port) { 11582 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11583 connp->conn_mlp_type, connp->conn_proto, 11584 ntohs(connp->conn_lport), B_FALSE); 11585 connp->conn_anon_port = 0; 11586 } 11587 connp->conn_mlp_type = mlptSingle; 11588 11589 ipcl_hash_remove(connp); 11590 } 11591 11592 /* 11593 * Used for deciding the MSS size for the upper layer. Thus 11594 * we need to check the outbound policy values in the conn. 11595 */ 11596 int 11597 conn_ipsec_length(conn_t *connp) 11598 { 11599 ipsec_latch_t *ipl; 11600 11601 ipl = connp->conn_latch; 11602 if (ipl == NULL) 11603 return (0); 11604 11605 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11606 return (0); 11607 11608 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11609 } 11610 11611 /* 11612 * Returns an estimate of the IPsec headers size. This is used if 11613 * we don't want to call into IPsec to get the exact size. 11614 */ 11615 int 11616 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11617 { 11618 ipsec_action_t *a; 11619 11620 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11621 return (0); 11622 11623 a = ixa->ixa_ipsec_action; 11624 if (a == NULL) { 11625 ASSERT(ixa->ixa_ipsec_policy != NULL); 11626 a = ixa->ixa_ipsec_policy->ipsp_act; 11627 } 11628 ASSERT(a != NULL); 11629 11630 return (a->ipa_ovhd); 11631 } 11632 11633 /* 11634 * If there are any source route options, return the true final 11635 * destination. Otherwise, return the destination. 11636 */ 11637 ipaddr_t 11638 ip_get_dst(ipha_t *ipha) 11639 { 11640 ipoptp_t opts; 11641 uchar_t *opt; 11642 uint8_t optval; 11643 uint8_t optlen; 11644 ipaddr_t dst; 11645 uint32_t off; 11646 11647 dst = ipha->ipha_dst; 11648 11649 if (IS_SIMPLE_IPH(ipha)) 11650 return (dst); 11651 11652 for (optval = ipoptp_first(&opts, ipha); 11653 optval != IPOPT_EOL; 11654 optval = ipoptp_next(&opts)) { 11655 opt = opts.ipoptp_cur; 11656 optlen = opts.ipoptp_len; 11657 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11658 switch (optval) { 11659 case IPOPT_SSRR: 11660 case IPOPT_LSRR: 11661 off = opt[IPOPT_OFFSET]; 11662 /* 11663 * If one of the conditions is true, it means 11664 * end of options and dst already has the right 11665 * value. 11666 */ 11667 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11668 off = optlen - IP_ADDR_LEN; 11669 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11670 } 11671 return (dst); 11672 default: 11673 break; 11674 } 11675 } 11676 11677 return (dst); 11678 } 11679 11680 /* 11681 * Outbound IP fragmentation routine. 11682 * Assumes the caller has checked whether or not fragmentation should 11683 * be allowed. Here we copy the DF bit from the header to all the generated 11684 * fragments. 11685 */ 11686 int 11687 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11688 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11689 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11690 { 11691 int i1; 11692 int hdr_len; 11693 mblk_t *hdr_mp; 11694 ipha_t *ipha; 11695 int ip_data_end; 11696 int len; 11697 mblk_t *mp = mp_orig; 11698 int offset; 11699 ill_t *ill = nce->nce_ill; 11700 ip_stack_t *ipst = ill->ill_ipst; 11701 mblk_t *carve_mp; 11702 uint32_t frag_flag; 11703 uint_t priority = mp->b_band; 11704 int error = 0; 11705 11706 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11707 11708 if (pkt_len != msgdsize(mp)) { 11709 ip0dbg(("Packet length mismatch: %d, %ld\n", 11710 pkt_len, msgdsize(mp))); 11711 freemsg(mp); 11712 return (EINVAL); 11713 } 11714 11715 if (max_frag == 0) { 11716 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11717 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11718 ip_drop_output("FragFails: zero max_frag", mp, ill); 11719 freemsg(mp); 11720 return (EINVAL); 11721 } 11722 11723 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11724 ipha = (ipha_t *)mp->b_rptr; 11725 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11726 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11727 11728 /* 11729 * Establish the starting offset. May not be zero if we are fragging 11730 * a fragment that is being forwarded. 11731 */ 11732 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11733 11734 /* TODO why is this test needed? */ 11735 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11736 /* TODO: notify ulp somehow */ 11737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11738 ip_drop_output("FragFails: bad starting offset", mp, ill); 11739 freemsg(mp); 11740 return (EINVAL); 11741 } 11742 11743 hdr_len = IPH_HDR_LENGTH(ipha); 11744 ipha->ipha_hdr_checksum = 0; 11745 11746 /* 11747 * Establish the number of bytes maximum per frag, after putting 11748 * in the header. 11749 */ 11750 len = (max_frag - hdr_len) & ~7; 11751 11752 /* Get a copy of the header for the trailing frags */ 11753 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11754 mp); 11755 if (hdr_mp == NULL) { 11756 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11757 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11758 freemsg(mp); 11759 return (ENOBUFS); 11760 } 11761 11762 /* Store the starting offset, with the MoreFrags flag. */ 11763 i1 = offset | IPH_MF | frag_flag; 11764 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11765 11766 /* Establish the ending byte offset, based on the starting offset. */ 11767 offset <<= 3; 11768 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11769 11770 /* Store the length of the first fragment in the IP header. */ 11771 i1 = len + hdr_len; 11772 ASSERT(i1 <= IP_MAXPACKET); 11773 ipha->ipha_length = htons((uint16_t)i1); 11774 11775 /* 11776 * Compute the IP header checksum for the first frag. We have to 11777 * watch out that we stop at the end of the header. 11778 */ 11779 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11780 11781 /* 11782 * Now carve off the first frag. Note that this will include the 11783 * original IP header. 11784 */ 11785 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11786 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11787 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11788 freeb(hdr_mp); 11789 freemsg(mp_orig); 11790 return (ENOBUFS); 11791 } 11792 11793 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11794 11795 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11796 ixa_cookie); 11797 if (error != 0 && error != EWOULDBLOCK) { 11798 /* No point in sending the other fragments */ 11799 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11800 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11801 freeb(hdr_mp); 11802 freemsg(mp_orig); 11803 return (error); 11804 } 11805 11806 /* No need to redo state machine in loop */ 11807 ixaflags &= ~IXAF_REACH_CONF; 11808 11809 /* Advance the offset to the second frag starting point. */ 11810 offset += len; 11811 /* 11812 * Update hdr_len from the copied header - there might be less options 11813 * in the later fragments. 11814 */ 11815 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11816 /* Loop until done. */ 11817 for (;;) { 11818 uint16_t offset_and_flags; 11819 uint16_t ip_len; 11820 11821 if (ip_data_end - offset > len) { 11822 /* 11823 * Carve off the appropriate amount from the original 11824 * datagram. 11825 */ 11826 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11827 mp = NULL; 11828 break; 11829 } 11830 /* 11831 * More frags after this one. Get another copy 11832 * of the header. 11833 */ 11834 if (carve_mp->b_datap->db_ref == 1 && 11835 hdr_mp->b_wptr - hdr_mp->b_rptr < 11836 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11837 /* Inline IP header */ 11838 carve_mp->b_rptr -= hdr_mp->b_wptr - 11839 hdr_mp->b_rptr; 11840 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11841 hdr_mp->b_wptr - hdr_mp->b_rptr); 11842 mp = carve_mp; 11843 } else { 11844 if (!(mp = copyb(hdr_mp))) { 11845 freemsg(carve_mp); 11846 break; 11847 } 11848 /* Get priority marking, if any. */ 11849 mp->b_band = priority; 11850 mp->b_cont = carve_mp; 11851 } 11852 ipha = (ipha_t *)mp->b_rptr; 11853 offset_and_flags = IPH_MF; 11854 } else { 11855 /* 11856 * Last frag. Consume the header. Set len to 11857 * the length of this last piece. 11858 */ 11859 len = ip_data_end - offset; 11860 11861 /* 11862 * Carve off the appropriate amount from the original 11863 * datagram. 11864 */ 11865 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11866 mp = NULL; 11867 break; 11868 } 11869 if (carve_mp->b_datap->db_ref == 1 && 11870 hdr_mp->b_wptr - hdr_mp->b_rptr < 11871 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11872 /* Inline IP header */ 11873 carve_mp->b_rptr -= hdr_mp->b_wptr - 11874 hdr_mp->b_rptr; 11875 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11876 hdr_mp->b_wptr - hdr_mp->b_rptr); 11877 mp = carve_mp; 11878 freeb(hdr_mp); 11879 hdr_mp = mp; 11880 } else { 11881 mp = hdr_mp; 11882 /* Get priority marking, if any. */ 11883 mp->b_band = priority; 11884 mp->b_cont = carve_mp; 11885 } 11886 ipha = (ipha_t *)mp->b_rptr; 11887 /* A frag of a frag might have IPH_MF non-zero */ 11888 offset_and_flags = 11889 ntohs(ipha->ipha_fragment_offset_and_flags) & 11890 IPH_MF; 11891 } 11892 offset_and_flags |= (uint16_t)(offset >> 3); 11893 offset_and_flags |= (uint16_t)frag_flag; 11894 /* Store the offset and flags in the IP header. */ 11895 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11896 11897 /* Store the length in the IP header. */ 11898 ip_len = (uint16_t)(len + hdr_len); 11899 ipha->ipha_length = htons(ip_len); 11900 11901 /* 11902 * Set the IP header checksum. Note that mp is just 11903 * the header, so this is easy to pass to ip_csum. 11904 */ 11905 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11906 11907 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11908 11909 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11910 nolzid, ixa_cookie); 11911 /* All done if we just consumed the hdr_mp. */ 11912 if (mp == hdr_mp) { 11913 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11914 return (error); 11915 } 11916 if (error != 0 && error != EWOULDBLOCK) { 11917 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11918 mblk_t *, hdr_mp); 11919 /* No point in sending the other fragments */ 11920 break; 11921 } 11922 11923 /* Otherwise, advance and loop. */ 11924 offset += len; 11925 } 11926 /* Clean up following allocation failure. */ 11927 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11928 ip_drop_output("FragFails: loop ended", NULL, ill); 11929 if (mp != hdr_mp) 11930 freeb(hdr_mp); 11931 if (mp != mp_orig) 11932 freemsg(mp_orig); 11933 return (error); 11934 } 11935 11936 /* 11937 * Copy the header plus those options which have the copy bit set 11938 */ 11939 static mblk_t * 11940 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11941 mblk_t *src) 11942 { 11943 mblk_t *mp; 11944 uchar_t *up; 11945 11946 /* 11947 * Quick check if we need to look for options without the copy bit 11948 * set 11949 */ 11950 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11951 if (!mp) 11952 return (mp); 11953 mp->b_rptr += ipst->ips_ip_wroff_extra; 11954 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11955 bcopy(rptr, mp->b_rptr, hdr_len); 11956 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11957 return (mp); 11958 } 11959 up = mp->b_rptr; 11960 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11961 up += IP_SIMPLE_HDR_LENGTH; 11962 rptr += IP_SIMPLE_HDR_LENGTH; 11963 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11964 while (hdr_len > 0) { 11965 uint32_t optval; 11966 uint32_t optlen; 11967 11968 optval = *rptr; 11969 if (optval == IPOPT_EOL) 11970 break; 11971 if (optval == IPOPT_NOP) 11972 optlen = 1; 11973 else 11974 optlen = rptr[1]; 11975 if (optval & IPOPT_COPY) { 11976 bcopy(rptr, up, optlen); 11977 up += optlen; 11978 } 11979 rptr += optlen; 11980 hdr_len -= optlen; 11981 } 11982 /* 11983 * Make sure that we drop an even number of words by filling 11984 * with EOL to the next word boundary. 11985 */ 11986 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11987 hdr_len & 0x3; hdr_len++) 11988 *up++ = IPOPT_EOL; 11989 mp->b_wptr = up; 11990 /* Update header length */ 11991 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11992 return (mp); 11993 } 11994 11995 /* 11996 * Update any source route, record route, or timestamp options when 11997 * sending a packet back to ourselves. 11998 * Check that we are at end of strict source route. 11999 * The options have been sanity checked by ip_output_options(). 12000 */ 12001 void 12002 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 12003 { 12004 ipoptp_t opts; 12005 uchar_t *opt; 12006 uint8_t optval; 12007 uint8_t optlen; 12008 ipaddr_t dst; 12009 uint32_t ts; 12010 timestruc_t now; 12011 uint32_t off = 0; 12012 12013 for (optval = ipoptp_first(&opts, ipha); 12014 optval != IPOPT_EOL; 12015 optval = ipoptp_next(&opts)) { 12016 opt = opts.ipoptp_cur; 12017 optlen = opts.ipoptp_len; 12018 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 12019 switch (optval) { 12020 case IPOPT_SSRR: 12021 case IPOPT_LSRR: 12022 off = opt[IPOPT_OFFSET]; 12023 off--; 12024 if (optlen < IP_ADDR_LEN || 12025 off > optlen - IP_ADDR_LEN) { 12026 /* End of source route */ 12027 break; 12028 } 12029 /* 12030 * This will only happen if two consecutive entries 12031 * in the source route contains our address or if 12032 * it is a packet with a loose source route which 12033 * reaches us before consuming the whole source route 12034 */ 12035 12036 if (optval == IPOPT_SSRR) { 12037 return; 12038 } 12039 /* 12040 * Hack: instead of dropping the packet truncate the 12041 * source route to what has been used by filling the 12042 * rest with IPOPT_NOP. 12043 */ 12044 opt[IPOPT_OLEN] = (uint8_t)off; 12045 while (off < optlen) { 12046 opt[off++] = IPOPT_NOP; 12047 } 12048 break; 12049 case IPOPT_RR: 12050 off = opt[IPOPT_OFFSET]; 12051 off--; 12052 if (optlen < IP_ADDR_LEN || 12053 off > optlen - IP_ADDR_LEN) { 12054 /* No more room - ignore */ 12055 ip1dbg(( 12056 "ip_output_local_options: end of RR\n")); 12057 break; 12058 } 12059 dst = htonl(INADDR_LOOPBACK); 12060 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12061 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12062 break; 12063 case IPOPT_TS: 12064 /* Insert timestamp if there is romm */ 12065 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12066 case IPOPT_TS_TSONLY: 12067 off = IPOPT_TS_TIMELEN; 12068 break; 12069 case IPOPT_TS_PRESPEC: 12070 case IPOPT_TS_PRESPEC_RFC791: 12071 /* Verify that the address matched */ 12072 off = opt[IPOPT_OFFSET] - 1; 12073 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12074 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12075 /* Not for us */ 12076 break; 12077 } 12078 /* FALLTHROUGH */ 12079 case IPOPT_TS_TSANDADDR: 12080 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12081 break; 12082 default: 12083 /* 12084 * ip_*put_options should have already 12085 * dropped this packet. 12086 */ 12087 cmn_err(CE_PANIC, "ip_output_local_options: " 12088 "unknown IT - bug in ip_output_options?\n"); 12089 } 12090 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12091 /* Increase overflow counter */ 12092 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12093 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12094 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12095 (off << 4); 12096 break; 12097 } 12098 off = opt[IPOPT_OFFSET] - 1; 12099 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12100 case IPOPT_TS_PRESPEC: 12101 case IPOPT_TS_PRESPEC_RFC791: 12102 case IPOPT_TS_TSANDADDR: 12103 dst = htonl(INADDR_LOOPBACK); 12104 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12105 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12106 /* FALLTHROUGH */ 12107 case IPOPT_TS_TSONLY: 12108 off = opt[IPOPT_OFFSET] - 1; 12109 /* Compute # of milliseconds since midnight */ 12110 gethrestime(&now); 12111 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12112 NSEC2MSEC(now.tv_nsec); 12113 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12114 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12115 break; 12116 } 12117 break; 12118 } 12119 } 12120 } 12121 12122 /* 12123 * Prepend an M_DATA fastpath header, and if none present prepend a 12124 * DL_UNITDATA_REQ. Frees the mblk on failure. 12125 * 12126 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12127 * If there is a change to them, the nce will be deleted (condemned) and 12128 * a new nce_t will be created when packets are sent. Thus we need no locks 12129 * to access those fields. 12130 * 12131 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12132 * we place b_band in dl_priority.dl_max. 12133 */ 12134 static mblk_t * 12135 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12136 { 12137 uint_t hlen; 12138 mblk_t *mp1; 12139 uint_t priority; 12140 uchar_t *rptr; 12141 12142 rptr = mp->b_rptr; 12143 12144 ASSERT(DB_TYPE(mp) == M_DATA); 12145 priority = mp->b_band; 12146 12147 ASSERT(nce != NULL); 12148 if ((mp1 = nce->nce_fp_mp) != NULL) { 12149 hlen = MBLKL(mp1); 12150 /* 12151 * Check if we have enough room to prepend fastpath 12152 * header 12153 */ 12154 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12155 rptr -= hlen; 12156 bcopy(mp1->b_rptr, rptr, hlen); 12157 /* 12158 * Set the b_rptr to the start of the link layer 12159 * header 12160 */ 12161 mp->b_rptr = rptr; 12162 return (mp); 12163 } 12164 mp1 = copyb(mp1); 12165 if (mp1 == NULL) { 12166 ill_t *ill = nce->nce_ill; 12167 12168 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12169 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12170 freemsg(mp); 12171 return (NULL); 12172 } 12173 mp1->b_band = priority; 12174 mp1->b_cont = mp; 12175 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12176 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12177 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12178 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12179 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12180 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12181 /* 12182 * XXX disable ICK_VALID and compute checksum 12183 * here; can happen if nce_fp_mp changes and 12184 * it can't be copied now due to insufficient 12185 * space. (unlikely, fp mp can change, but it 12186 * does not increase in length) 12187 */ 12188 return (mp1); 12189 } 12190 mp1 = copyb(nce->nce_dlur_mp); 12191 12192 if (mp1 == NULL) { 12193 ill_t *ill = nce->nce_ill; 12194 12195 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12196 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12197 freemsg(mp); 12198 return (NULL); 12199 } 12200 mp1->b_cont = mp; 12201 if (priority != 0) { 12202 mp1->b_band = priority; 12203 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12204 priority; 12205 } 12206 return (mp1); 12207 } 12208 12209 /* 12210 * Finish the outbound IPsec processing. This function is called from 12211 * ipsec_out_process() if the IPsec packet was processed 12212 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12213 * asynchronously. 12214 * 12215 * This is common to IPv4 and IPv6. 12216 */ 12217 int 12218 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12219 { 12220 iaflags_t ixaflags = ixa->ixa_flags; 12221 uint_t pktlen; 12222 12223 12224 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12225 if (ixaflags & IXAF_IS_IPV4) { 12226 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12227 12228 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12229 pktlen = ntohs(ipha->ipha_length); 12230 } else { 12231 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12232 12233 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12234 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12235 } 12236 12237 /* 12238 * We release any hard reference on the SAs here to make 12239 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12240 * on the SAs. 12241 * If in the future we want the hard latching of the SAs in the 12242 * ip_xmit_attr_t then we should remove this. 12243 */ 12244 if (ixa->ixa_ipsec_esp_sa != NULL) { 12245 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12246 ixa->ixa_ipsec_esp_sa = NULL; 12247 } 12248 if (ixa->ixa_ipsec_ah_sa != NULL) { 12249 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12250 ixa->ixa_ipsec_ah_sa = NULL; 12251 } 12252 12253 /* Do we need to fragment? */ 12254 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12255 pktlen > ixa->ixa_fragsize) { 12256 if (ixaflags & IXAF_IS_IPV4) { 12257 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12258 /* 12259 * We check for the DF case in ipsec_out_process 12260 * hence this only handles the non-DF case. 12261 */ 12262 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12263 pktlen, ixa->ixa_fragsize, 12264 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12265 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12266 &ixa->ixa_cookie)); 12267 } else { 12268 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12269 if (mp == NULL) { 12270 /* MIB and ip_drop_output already done */ 12271 return (ENOMEM); 12272 } 12273 pktlen += sizeof (ip6_frag_t); 12274 if (pktlen > ixa->ixa_fragsize) { 12275 return (ip_fragment_v6(mp, ixa->ixa_nce, 12276 ixa->ixa_flags, pktlen, 12277 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12278 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12279 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12280 } 12281 } 12282 } 12283 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12284 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12285 ixa->ixa_no_loop_zoneid, NULL)); 12286 } 12287 12288 /* 12289 * Finish the inbound IPsec processing. This function is called from 12290 * ipsec_out_process() if the IPsec packet was processed 12291 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12292 * asynchronously. 12293 * 12294 * This is common to IPv4 and IPv6. 12295 */ 12296 void 12297 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12298 { 12299 iaflags_t iraflags = ira->ira_flags; 12300 12301 /* Length might have changed */ 12302 if (iraflags & IRAF_IS_IPV4) { 12303 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12304 12305 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12306 ira->ira_pktlen = ntohs(ipha->ipha_length); 12307 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12308 ira->ira_protocol = ipha->ipha_protocol; 12309 12310 ip_fanout_v4(mp, ipha, ira); 12311 } else { 12312 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12313 uint8_t *nexthdrp; 12314 12315 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12316 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12317 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12318 &nexthdrp)) { 12319 /* Malformed packet */ 12320 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12321 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12322 freemsg(mp); 12323 return; 12324 } 12325 ira->ira_protocol = *nexthdrp; 12326 ip_fanout_v6(mp, ip6h, ira); 12327 } 12328 } 12329 12330 /* 12331 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12332 * 12333 * If this function returns B_TRUE, the requested SA's have been filled 12334 * into the ixa_ipsec_*_sa pointers. 12335 * 12336 * If the function returns B_FALSE, the packet has been "consumed", most 12337 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12338 * 12339 * The SA references created by the protocol-specific "select" 12340 * function will be released in ip_output_post_ipsec. 12341 */ 12342 static boolean_t 12343 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12344 { 12345 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12346 ipsec_policy_t *pp; 12347 ipsec_action_t *ap; 12348 12349 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12350 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12351 (ixa->ixa_ipsec_action != NULL)); 12352 12353 ap = ixa->ixa_ipsec_action; 12354 if (ap == NULL) { 12355 pp = ixa->ixa_ipsec_policy; 12356 ASSERT(pp != NULL); 12357 ap = pp->ipsp_act; 12358 ASSERT(ap != NULL); 12359 } 12360 12361 /* 12362 * We have an action. now, let's select SA's. 12363 * A side effect of setting ixa_ipsec_*_sa is that it will 12364 * be cached in the conn_t. 12365 */ 12366 if (ap->ipa_want_esp) { 12367 if (ixa->ixa_ipsec_esp_sa == NULL) { 12368 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12369 IPPROTO_ESP); 12370 } 12371 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12372 } 12373 12374 if (ap->ipa_want_ah) { 12375 if (ixa->ixa_ipsec_ah_sa == NULL) { 12376 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12377 IPPROTO_AH); 12378 } 12379 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12380 /* 12381 * The ESP and AH processing order needs to be preserved 12382 * when both protocols are required (ESP should be applied 12383 * before AH for an outbound packet). Force an ESP ACQUIRE 12384 * when both ESP and AH are required, and an AH ACQUIRE 12385 * is needed. 12386 */ 12387 if (ap->ipa_want_esp && need_ah_acquire) 12388 need_esp_acquire = B_TRUE; 12389 } 12390 12391 /* 12392 * Send an ACQUIRE (extended, regular, or both) if we need one. 12393 * Release SAs that got referenced, but will not be used until we 12394 * acquire _all_ of the SAs we need. 12395 */ 12396 if (need_ah_acquire || need_esp_acquire) { 12397 if (ixa->ixa_ipsec_ah_sa != NULL) { 12398 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12399 ixa->ixa_ipsec_ah_sa = NULL; 12400 } 12401 if (ixa->ixa_ipsec_esp_sa != NULL) { 12402 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12403 ixa->ixa_ipsec_esp_sa = NULL; 12404 } 12405 12406 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12407 return (B_FALSE); 12408 } 12409 12410 return (B_TRUE); 12411 } 12412 12413 /* 12414 * Handle IPsec output processing. 12415 * This function is only entered once for a given packet. 12416 * We try to do things synchronously, but if we need to have user-level 12417 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12418 * will be completed 12419 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12420 * - when asynchronous ESP is done it will do AH 12421 * 12422 * In all cases we come back in ip_output_post_ipsec() to fragment and 12423 * send out the packet. 12424 */ 12425 int 12426 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12427 { 12428 ill_t *ill = ixa->ixa_nce->nce_ill; 12429 ip_stack_t *ipst = ixa->ixa_ipst; 12430 ipsec_stack_t *ipss; 12431 ipsec_policy_t *pp; 12432 ipsec_action_t *ap; 12433 12434 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12435 12436 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12437 (ixa->ixa_ipsec_action != NULL)); 12438 12439 ipss = ipst->ips_netstack->netstack_ipsec; 12440 if (!ipsec_loaded(ipss)) { 12441 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12442 ip_drop_packet(mp, B_TRUE, ill, 12443 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12444 &ipss->ipsec_dropper); 12445 return (ENOTSUP); 12446 } 12447 12448 ap = ixa->ixa_ipsec_action; 12449 if (ap == NULL) { 12450 pp = ixa->ixa_ipsec_policy; 12451 ASSERT(pp != NULL); 12452 ap = pp->ipsp_act; 12453 ASSERT(ap != NULL); 12454 } 12455 12456 /* Handle explicit drop action and bypass. */ 12457 switch (ap->ipa_act.ipa_type) { 12458 case IPSEC_ACT_DISCARD: 12459 case IPSEC_ACT_REJECT: 12460 ip_drop_packet(mp, B_FALSE, ill, 12461 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12462 return (EHOSTUNREACH); /* IPsec policy failure */ 12463 case IPSEC_ACT_BYPASS: 12464 return (ip_output_post_ipsec(mp, ixa)); 12465 } 12466 12467 /* 12468 * The order of processing is first insert a IP header if needed. 12469 * Then insert the ESP header and then the AH header. 12470 */ 12471 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12472 /* 12473 * First get the outer IP header before sending 12474 * it to ESP. 12475 */ 12476 ipha_t *oipha, *iipha; 12477 mblk_t *outer_mp, *inner_mp; 12478 12479 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12480 (void) mi_strlog(ill->ill_rq, 0, 12481 SL_ERROR|SL_TRACE|SL_CONSOLE, 12482 "ipsec_out_process: " 12483 "Self-Encapsulation failed: Out of memory\n"); 12484 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12485 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12486 freemsg(mp); 12487 return (ENOBUFS); 12488 } 12489 inner_mp = mp; 12490 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12491 oipha = (ipha_t *)outer_mp->b_rptr; 12492 iipha = (ipha_t *)inner_mp->b_rptr; 12493 *oipha = *iipha; 12494 outer_mp->b_wptr += sizeof (ipha_t); 12495 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12496 sizeof (ipha_t)); 12497 oipha->ipha_protocol = IPPROTO_ENCAP; 12498 oipha->ipha_version_and_hdr_length = 12499 IP_SIMPLE_HDR_VERSION; 12500 oipha->ipha_hdr_checksum = 0; 12501 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12502 outer_mp->b_cont = inner_mp; 12503 mp = outer_mp; 12504 12505 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12506 } 12507 12508 /* If we need to wait for a SA then we can't return any errno */ 12509 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12510 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12511 !ipsec_out_select_sa(mp, ixa)) 12512 return (0); 12513 12514 /* 12515 * By now, we know what SA's to use. Toss over to ESP & AH 12516 * to do the heavy lifting. 12517 */ 12518 if (ap->ipa_want_esp) { 12519 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12520 12521 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12522 if (mp == NULL) { 12523 /* 12524 * Either it failed or is pending. In the former case 12525 * ipIfStatsInDiscards was increased. 12526 */ 12527 return (0); 12528 } 12529 } 12530 12531 if (ap->ipa_want_ah) { 12532 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12533 12534 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12535 if (mp == NULL) { 12536 /* 12537 * Either it failed or is pending. In the former case 12538 * ipIfStatsInDiscards was increased. 12539 */ 12540 return (0); 12541 } 12542 } 12543 /* 12544 * We are done with IPsec processing. Send it over 12545 * the wire. 12546 */ 12547 return (ip_output_post_ipsec(mp, ixa)); 12548 } 12549 12550 /* 12551 * ioctls that go through a down/up sequence may need to wait for the down 12552 * to complete. This involves waiting for the ire and ipif refcnts to go down 12553 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12554 */ 12555 /* ARGSUSED */ 12556 void 12557 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12558 { 12559 struct iocblk *iocp; 12560 mblk_t *mp1; 12561 ip_ioctl_cmd_t *ipip; 12562 int err; 12563 sin_t *sin; 12564 struct lifreq *lifr; 12565 struct ifreq *ifr; 12566 12567 iocp = (struct iocblk *)mp->b_rptr; 12568 ASSERT(ipsq != NULL); 12569 /* Existence of mp1 verified in ip_wput_nondata */ 12570 mp1 = mp->b_cont->b_cont; 12571 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12572 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12573 /* 12574 * Special case where ipx_current_ipif is not set: 12575 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12576 * We are here as were not able to complete the operation in 12577 * ipif_set_values because we could not become exclusive on 12578 * the new ipsq. 12579 */ 12580 ill_t *ill = q->q_ptr; 12581 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12582 } 12583 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12584 12585 if (ipip->ipi_cmd_type == IF_CMD) { 12586 /* This a old style SIOC[GS]IF* command */ 12587 ifr = (struct ifreq *)mp1->b_rptr; 12588 sin = (sin_t *)&ifr->ifr_addr; 12589 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12590 /* This a new style SIOC[GS]LIF* command */ 12591 lifr = (struct lifreq *)mp1->b_rptr; 12592 sin = (sin_t *)&lifr->lifr_addr; 12593 } else { 12594 sin = NULL; 12595 } 12596 12597 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12598 q, mp, ipip, mp1->b_rptr); 12599 12600 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12601 int, ipip->ipi_cmd, 12602 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12603 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12604 12605 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12606 } 12607 12608 /* 12609 * ioctl processing 12610 * 12611 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12612 * the ioctl command in the ioctl tables, determines the copyin data size 12613 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12614 * 12615 * ioctl processing then continues when the M_IOCDATA makes its way down to 12616 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12617 * associated 'conn' is refheld till the end of the ioctl and the general 12618 * ioctl processing function ip_process_ioctl() is called to extract the 12619 * arguments and process the ioctl. To simplify extraction, ioctl commands 12620 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12621 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12622 * is used to extract the ioctl's arguments. 12623 * 12624 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12625 * so goes thru the serialization primitive ipsq_try_enter. Then the 12626 * appropriate function to handle the ioctl is called based on the entry in 12627 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12628 * which also refreleases the 'conn' that was refheld at the start of the 12629 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12630 * 12631 * Many exclusive ioctls go thru an internal down up sequence as part of 12632 * the operation. For example an attempt to change the IP address of an 12633 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12634 * does all the cleanup such as deleting all ires that use this address. 12635 * Then we need to wait till all references to the interface go away. 12636 */ 12637 void 12638 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12639 { 12640 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12641 ip_ioctl_cmd_t *ipip = arg; 12642 ip_extract_func_t *extract_funcp; 12643 cmd_info_t ci; 12644 int err; 12645 boolean_t entered_ipsq = B_FALSE; 12646 12647 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12648 12649 if (ipip == NULL) 12650 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12651 12652 /* 12653 * SIOCLIFADDIF needs to go thru a special path since the 12654 * ill may not exist yet. This happens in the case of lo0 12655 * which is created using this ioctl. 12656 */ 12657 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12658 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12659 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12660 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12661 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12662 return; 12663 } 12664 12665 ci.ci_ipif = NULL; 12666 extract_funcp = NULL; 12667 switch (ipip->ipi_cmd_type) { 12668 case MISC_CMD: 12669 case MSFILT_CMD: 12670 /* 12671 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12672 */ 12673 if (ipip->ipi_cmd == IF_UNITSEL) { 12674 /* ioctl comes down the ill */ 12675 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12676 ipif_refhold(ci.ci_ipif); 12677 } 12678 err = 0; 12679 ci.ci_sin = NULL; 12680 ci.ci_sin6 = NULL; 12681 ci.ci_lifr = NULL; 12682 extract_funcp = NULL; 12683 break; 12684 12685 case IF_CMD: 12686 case LIF_CMD: 12687 extract_funcp = ip_extract_lifreq; 12688 break; 12689 12690 case ARP_CMD: 12691 case XARP_CMD: 12692 extract_funcp = ip_extract_arpreq; 12693 break; 12694 12695 default: 12696 ASSERT(0); 12697 } 12698 12699 if (extract_funcp != NULL) { 12700 err = (*extract_funcp)(q, mp, ipip, &ci); 12701 if (err != 0) { 12702 DTRACE_PROBE4(ipif__ioctl, 12703 char *, "ip_process_ioctl finish err", 12704 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12705 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12706 return; 12707 } 12708 12709 /* 12710 * All of the extraction functions return a refheld ipif. 12711 */ 12712 ASSERT(ci.ci_ipif != NULL); 12713 } 12714 12715 if (!(ipip->ipi_flags & IPI_WR)) { 12716 /* 12717 * A return value of EINPROGRESS means the ioctl is 12718 * either queued and waiting for some reason or has 12719 * already completed. 12720 */ 12721 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12722 ci.ci_lifr); 12723 if (ci.ci_ipif != NULL) { 12724 DTRACE_PROBE4(ipif__ioctl, 12725 char *, "ip_process_ioctl finish RD", 12726 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12727 ipif_t *, ci.ci_ipif); 12728 ipif_refrele(ci.ci_ipif); 12729 } else { 12730 DTRACE_PROBE4(ipif__ioctl, 12731 char *, "ip_process_ioctl finish RD", 12732 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12733 } 12734 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12735 return; 12736 } 12737 12738 ASSERT(ci.ci_ipif != NULL); 12739 12740 /* 12741 * If ipsq is non-NULL, we are already being called exclusively 12742 */ 12743 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12744 if (ipsq == NULL) { 12745 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12746 NEW_OP, B_TRUE); 12747 if (ipsq == NULL) { 12748 ipif_refrele(ci.ci_ipif); 12749 return; 12750 } 12751 entered_ipsq = B_TRUE; 12752 } 12753 /* 12754 * Release the ipif so that ipif_down and friends that wait for 12755 * references to go away are not misled about the current ipif_refcnt 12756 * values. We are writer so we can access the ipif even after releasing 12757 * the ipif. 12758 */ 12759 ipif_refrele(ci.ci_ipif); 12760 12761 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12762 12763 /* 12764 * A return value of EINPROGRESS means the ioctl is 12765 * either queued and waiting for some reason or has 12766 * already completed. 12767 */ 12768 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12769 12770 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12771 int, ipip->ipi_cmd, 12772 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12773 ipif_t *, ci.ci_ipif); 12774 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12775 12776 if (entered_ipsq) 12777 ipsq_exit(ipsq); 12778 } 12779 12780 /* 12781 * Complete the ioctl. Typically ioctls use the mi package and need to 12782 * do mi_copyout/mi_copy_done. 12783 */ 12784 void 12785 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12786 { 12787 conn_t *connp = NULL; 12788 12789 if (err == EINPROGRESS) 12790 return; 12791 12792 if (CONN_Q(q)) { 12793 connp = Q_TO_CONN(q); 12794 ASSERT(connp->conn_ref >= 2); 12795 } 12796 12797 switch (mode) { 12798 case COPYOUT: 12799 if (err == 0) 12800 mi_copyout(q, mp); 12801 else 12802 mi_copy_done(q, mp, err); 12803 break; 12804 12805 case NO_COPYOUT: 12806 mi_copy_done(q, mp, err); 12807 break; 12808 12809 default: 12810 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12811 break; 12812 } 12813 12814 /* 12815 * The conn refhold and ioctlref placed on the conn at the start of the 12816 * ioctl are released here. 12817 */ 12818 if (connp != NULL) { 12819 CONN_DEC_IOCTLREF(connp); 12820 CONN_OPER_PENDING_DONE(connp); 12821 } 12822 12823 if (ipsq != NULL) 12824 ipsq_current_finish(ipsq); 12825 } 12826 12827 /* Handles all non data messages */ 12828 int 12829 ip_wput_nondata(queue_t *q, mblk_t *mp) 12830 { 12831 mblk_t *mp1; 12832 struct iocblk *iocp; 12833 ip_ioctl_cmd_t *ipip; 12834 conn_t *connp; 12835 cred_t *cr; 12836 char *proto_str; 12837 12838 if (CONN_Q(q)) 12839 connp = Q_TO_CONN(q); 12840 else 12841 connp = NULL; 12842 12843 iocp = NULL; 12844 switch (DB_TYPE(mp)) { 12845 case M_IOCTL: 12846 /* 12847 * IOCTL processing begins in ip_sioctl_copyin_setup which 12848 * will arrange to copy in associated control structures. 12849 */ 12850 ip_sioctl_copyin_setup(q, mp); 12851 return (0); 12852 case M_IOCDATA: 12853 /* 12854 * Ensure that this is associated with one of our trans- 12855 * parent ioctls. If it's not ours, discard it if we're 12856 * running as a driver, or pass it on if we're a module. 12857 */ 12858 iocp = (struct iocblk *)mp->b_rptr; 12859 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12860 if (ipip == NULL) { 12861 if (q->q_next == NULL) { 12862 goto nak; 12863 } else { 12864 putnext(q, mp); 12865 } 12866 return (0); 12867 } 12868 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12869 /* 12870 * The ioctl is one we recognise, but is not consumed 12871 * by IP as a module and we are a module, so we drop 12872 */ 12873 goto nak; 12874 } 12875 12876 /* IOCTL continuation following copyin or copyout. */ 12877 if (mi_copy_state(q, mp, NULL) == -1) { 12878 /* 12879 * The copy operation failed. mi_copy_state already 12880 * cleaned up, so we're out of here. 12881 */ 12882 return (0); 12883 } 12884 /* 12885 * If we just completed a copy in, we become writer and 12886 * continue processing in ip_sioctl_copyin_done. If it 12887 * was a copy out, we call mi_copyout again. If there is 12888 * nothing more to copy out, it will complete the IOCTL. 12889 */ 12890 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12891 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12892 mi_copy_done(q, mp, EPROTO); 12893 return (0); 12894 } 12895 /* 12896 * Check for cases that need more copying. A return 12897 * value of 0 means a second copyin has been started, 12898 * so we return; a return value of 1 means no more 12899 * copying is needed, so we continue. 12900 */ 12901 if (ipip->ipi_cmd_type == MSFILT_CMD && 12902 MI_COPY_COUNT(mp) == 1) { 12903 if (ip_copyin_msfilter(q, mp) == 0) 12904 return (0); 12905 } 12906 /* 12907 * Refhold the conn, till the ioctl completes. This is 12908 * needed in case the ioctl ends up in the pending mp 12909 * list. Every mp in the ipx_pending_mp list must have 12910 * a refhold on the conn to resume processing. The 12911 * refhold is released when the ioctl completes 12912 * (whether normally or abnormally). An ioctlref is also 12913 * placed on the conn to prevent TCP from removing the 12914 * queue needed to send the ioctl reply back. 12915 * In all cases ip_ioctl_finish is called to finish 12916 * the ioctl and release the refholds. 12917 */ 12918 if (connp != NULL) { 12919 /* This is not a reentry */ 12920 CONN_INC_REF(connp); 12921 CONN_INC_IOCTLREF(connp); 12922 } else { 12923 if (!(ipip->ipi_flags & IPI_MODOK)) { 12924 mi_copy_done(q, mp, EINVAL); 12925 return (0); 12926 } 12927 } 12928 12929 ip_process_ioctl(NULL, q, mp, ipip); 12930 12931 } else { 12932 mi_copyout(q, mp); 12933 } 12934 return (0); 12935 12936 case M_IOCNAK: 12937 /* 12938 * The only way we could get here is if a resolver didn't like 12939 * an IOCTL we sent it. This shouldn't happen. 12940 */ 12941 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12942 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12943 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12944 freemsg(mp); 12945 return (0); 12946 case M_IOCACK: 12947 /* /dev/ip shouldn't see this */ 12948 goto nak; 12949 case M_FLUSH: 12950 if (*mp->b_rptr & FLUSHW) 12951 flushq(q, FLUSHALL); 12952 if (q->q_next) { 12953 putnext(q, mp); 12954 return (0); 12955 } 12956 if (*mp->b_rptr & FLUSHR) { 12957 *mp->b_rptr &= ~FLUSHW; 12958 qreply(q, mp); 12959 return (0); 12960 } 12961 freemsg(mp); 12962 return (0); 12963 case M_CTL: 12964 break; 12965 case M_PROTO: 12966 case M_PCPROTO: 12967 /* 12968 * The only PROTO messages we expect are SNMP-related. 12969 */ 12970 switch (((union T_primitives *)mp->b_rptr)->type) { 12971 case T_SVR4_OPTMGMT_REQ: 12972 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12973 "flags %x\n", 12974 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12975 12976 if (connp == NULL) { 12977 proto_str = "T_SVR4_OPTMGMT_REQ"; 12978 goto protonak; 12979 } 12980 12981 /* 12982 * All Solaris components should pass a db_credp 12983 * for this TPI message, hence we ASSERT. 12984 * But in case there is some other M_PROTO that looks 12985 * like a TPI message sent by some other kernel 12986 * component, we check and return an error. 12987 */ 12988 cr = msg_getcred(mp, NULL); 12989 ASSERT(cr != NULL); 12990 if (cr == NULL) { 12991 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12992 if (mp != NULL) 12993 qreply(q, mp); 12994 return (0); 12995 } 12996 12997 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12998 proto_str = "Bad SNMPCOM request?"; 12999 goto protonak; 13000 } 13001 return (0); 13002 default: 13003 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 13004 (int)*(uint_t *)mp->b_rptr)); 13005 freemsg(mp); 13006 return (0); 13007 } 13008 default: 13009 break; 13010 } 13011 if (q->q_next) { 13012 putnext(q, mp); 13013 } else 13014 freemsg(mp); 13015 return (0); 13016 13017 nak: 13018 iocp->ioc_error = EINVAL; 13019 mp->b_datap->db_type = M_IOCNAK; 13020 iocp->ioc_count = 0; 13021 qreply(q, mp); 13022 return (0); 13023 13024 protonak: 13025 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 13026 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 13027 qreply(q, mp); 13028 return (0); 13029 } 13030 13031 /* 13032 * Process IP options in an outbound packet. Verify that the nexthop in a 13033 * strict source route is onlink. 13034 * Returns non-zero if something fails in which case an ICMP error has been 13035 * sent and mp freed. 13036 * 13037 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 13038 */ 13039 int 13040 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 13041 { 13042 ipoptp_t opts; 13043 uchar_t *opt; 13044 uint8_t optval; 13045 uint8_t optlen; 13046 ipaddr_t dst; 13047 intptr_t code = 0; 13048 ire_t *ire; 13049 ip_stack_t *ipst = ixa->ixa_ipst; 13050 ip_recv_attr_t iras; 13051 13052 ip2dbg(("ip_output_options\n")); 13053 13054 opt = NULL; 13055 dst = ipha->ipha_dst; 13056 for (optval = ipoptp_first(&opts, ipha); 13057 optval != IPOPT_EOL; 13058 optval = ipoptp_next(&opts)) { 13059 opt = opts.ipoptp_cur; 13060 optlen = opts.ipoptp_len; 13061 ip2dbg(("ip_output_options: opt %d, len %d\n", 13062 optval, optlen)); 13063 switch (optval) { 13064 uint32_t off; 13065 case IPOPT_SSRR: 13066 case IPOPT_LSRR: 13067 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13068 ip1dbg(( 13069 "ip_output_options: bad option offset\n")); 13070 code = (char *)&opt[IPOPT_OLEN] - 13071 (char *)ipha; 13072 goto param_prob; 13073 } 13074 off = opt[IPOPT_OFFSET]; 13075 ip1dbg(("ip_output_options: next hop 0x%x\n", 13076 ntohl(dst))); 13077 /* 13078 * For strict: verify that dst is directly 13079 * reachable. 13080 */ 13081 if (optval == IPOPT_SSRR) { 13082 ire = ire_ftable_lookup_v4(dst, 0, 0, 13083 IRE_INTERFACE, NULL, ALL_ZONES, 13084 ixa->ixa_tsl, 13085 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13086 NULL); 13087 if (ire == NULL) { 13088 ip1dbg(("ip_output_options: SSRR not" 13089 " directly reachable: 0x%x\n", 13090 ntohl(dst))); 13091 goto bad_src_route; 13092 } 13093 ire_refrele(ire); 13094 } 13095 break; 13096 case IPOPT_RR: 13097 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13098 ip1dbg(( 13099 "ip_output_options: bad option offset\n")); 13100 code = (char *)&opt[IPOPT_OLEN] - 13101 (char *)ipha; 13102 goto param_prob; 13103 } 13104 break; 13105 case IPOPT_TS: 13106 /* 13107 * Verify that length >=5 and that there is either 13108 * room for another timestamp or that the overflow 13109 * counter is not maxed out. 13110 */ 13111 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13112 if (optlen < IPOPT_MINLEN_IT) { 13113 goto param_prob; 13114 } 13115 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13116 ip1dbg(( 13117 "ip_output_options: bad option offset\n")); 13118 code = (char *)&opt[IPOPT_OFFSET] - 13119 (char *)ipha; 13120 goto param_prob; 13121 } 13122 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13123 case IPOPT_TS_TSONLY: 13124 off = IPOPT_TS_TIMELEN; 13125 break; 13126 case IPOPT_TS_TSANDADDR: 13127 case IPOPT_TS_PRESPEC: 13128 case IPOPT_TS_PRESPEC_RFC791: 13129 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13130 break; 13131 default: 13132 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13133 (char *)ipha; 13134 goto param_prob; 13135 } 13136 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13137 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13138 /* 13139 * No room and the overflow counter is 15 13140 * already. 13141 */ 13142 goto param_prob; 13143 } 13144 break; 13145 } 13146 } 13147 13148 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13149 return (0); 13150 13151 ip1dbg(("ip_output_options: error processing IP options.")); 13152 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13153 13154 param_prob: 13155 bzero(&iras, sizeof (iras)); 13156 iras.ira_ill = iras.ira_rill = ill; 13157 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13158 iras.ira_rifindex = iras.ira_ruifindex; 13159 iras.ira_flags = IRAF_IS_IPV4; 13160 13161 ip_drop_output("ip_output_options", mp, ill); 13162 icmp_param_problem(mp, (uint8_t)code, &iras); 13163 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13164 return (-1); 13165 13166 bad_src_route: 13167 bzero(&iras, sizeof (iras)); 13168 iras.ira_ill = iras.ira_rill = ill; 13169 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13170 iras.ira_rifindex = iras.ira_ruifindex; 13171 iras.ira_flags = IRAF_IS_IPV4; 13172 13173 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13174 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13175 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13176 return (-1); 13177 } 13178 13179 /* 13180 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13181 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13182 * thru /etc/system. 13183 */ 13184 #define CONN_MAXDRAINCNT 64 13185 13186 static void 13187 conn_drain_init(ip_stack_t *ipst) 13188 { 13189 int i, j; 13190 idl_tx_list_t *itl_tx; 13191 13192 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13193 13194 if ((ipst->ips_conn_drain_list_cnt == 0) || 13195 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13196 /* 13197 * Default value of the number of drainers is the 13198 * number of cpus, subject to maximum of 8 drainers. 13199 */ 13200 if (boot_max_ncpus != -1) 13201 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13202 else 13203 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13204 } 13205 13206 ipst->ips_idl_tx_list = 13207 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13208 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13209 itl_tx = &ipst->ips_idl_tx_list[i]; 13210 itl_tx->txl_drain_list = 13211 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13212 sizeof (idl_t), KM_SLEEP); 13213 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13214 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13215 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13216 MUTEX_DEFAULT, NULL); 13217 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13218 } 13219 } 13220 } 13221 13222 static void 13223 conn_drain_fini(ip_stack_t *ipst) 13224 { 13225 int i; 13226 idl_tx_list_t *itl_tx; 13227 13228 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13229 itl_tx = &ipst->ips_idl_tx_list[i]; 13230 kmem_free(itl_tx->txl_drain_list, 13231 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13232 } 13233 kmem_free(ipst->ips_idl_tx_list, 13234 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13235 ipst->ips_idl_tx_list = NULL; 13236 } 13237 13238 /* 13239 * Flow control has blocked us from proceeding. Insert the given conn in one 13240 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13241 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13242 * will call conn_walk_drain(). See the flow control notes at the top of this 13243 * file for more details. 13244 */ 13245 void 13246 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13247 { 13248 idl_t *idl = tx_list->txl_drain_list; 13249 uint_t index; 13250 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13251 13252 mutex_enter(&connp->conn_lock); 13253 if (connp->conn_state_flags & CONN_CLOSING) { 13254 /* 13255 * The conn is closing as a result of which CONN_CLOSING 13256 * is set. Return. 13257 */ 13258 mutex_exit(&connp->conn_lock); 13259 return; 13260 } else if (connp->conn_idl == NULL) { 13261 /* 13262 * Assign the next drain list round robin. We dont' use 13263 * a lock, and thus it may not be strictly round robin. 13264 * Atomicity of load/stores is enough to make sure that 13265 * conn_drain_list_index is always within bounds. 13266 */ 13267 index = tx_list->txl_drain_index; 13268 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13269 connp->conn_idl = &tx_list->txl_drain_list[index]; 13270 index++; 13271 if (index == ipst->ips_conn_drain_list_cnt) 13272 index = 0; 13273 tx_list->txl_drain_index = index; 13274 } else { 13275 ASSERT(connp->conn_idl->idl_itl == tx_list); 13276 } 13277 mutex_exit(&connp->conn_lock); 13278 13279 idl = connp->conn_idl; 13280 mutex_enter(&idl->idl_lock); 13281 if ((connp->conn_drain_prev != NULL) || 13282 (connp->conn_state_flags & CONN_CLOSING)) { 13283 /* 13284 * The conn is either already in the drain list or closing. 13285 * (We needed to check for CONN_CLOSING again since close can 13286 * sneak in between dropping conn_lock and acquiring idl_lock.) 13287 */ 13288 mutex_exit(&idl->idl_lock); 13289 return; 13290 } 13291 13292 /* 13293 * The conn is not in the drain list. Insert it at the 13294 * tail of the drain list. The drain list is circular 13295 * and doubly linked. idl_conn points to the 1st element 13296 * in the list. 13297 */ 13298 if (idl->idl_conn == NULL) { 13299 idl->idl_conn = connp; 13300 connp->conn_drain_next = connp; 13301 connp->conn_drain_prev = connp; 13302 } else { 13303 conn_t *head = idl->idl_conn; 13304 13305 connp->conn_drain_next = head; 13306 connp->conn_drain_prev = head->conn_drain_prev; 13307 head->conn_drain_prev->conn_drain_next = connp; 13308 head->conn_drain_prev = connp; 13309 } 13310 /* 13311 * For non streams based sockets assert flow control. 13312 */ 13313 conn_setqfull(connp, NULL); 13314 mutex_exit(&idl->idl_lock); 13315 } 13316 13317 static void 13318 conn_drain_remove(conn_t *connp) 13319 { 13320 idl_t *idl = connp->conn_idl; 13321 13322 if (idl != NULL) { 13323 /* 13324 * Remove ourself from the drain list. 13325 */ 13326 if (connp->conn_drain_next == connp) { 13327 /* Singleton in the list */ 13328 ASSERT(connp->conn_drain_prev == connp); 13329 idl->idl_conn = NULL; 13330 } else { 13331 connp->conn_drain_prev->conn_drain_next = 13332 connp->conn_drain_next; 13333 connp->conn_drain_next->conn_drain_prev = 13334 connp->conn_drain_prev; 13335 if (idl->idl_conn == connp) 13336 idl->idl_conn = connp->conn_drain_next; 13337 } 13338 13339 /* 13340 * NOTE: because conn_idl is associated with a specific drain 13341 * list which in turn is tied to the index the TX ring 13342 * (txl_cookie) hashes to, and because the TX ring can change 13343 * over the lifetime of the conn_t, we must clear conn_idl so 13344 * a subsequent conn_drain_insert() will set conn_idl again 13345 * based on the latest txl_cookie. 13346 */ 13347 connp->conn_idl = NULL; 13348 } 13349 connp->conn_drain_next = NULL; 13350 connp->conn_drain_prev = NULL; 13351 13352 conn_clrqfull(connp, NULL); 13353 /* 13354 * For streams based sockets open up flow control. 13355 */ 13356 if (!IPCL_IS_NONSTR(connp)) 13357 enableok(connp->conn_wq); 13358 } 13359 13360 /* 13361 * This conn is closing, and we are called from ip_close. OR 13362 * this conn is draining because flow-control on the ill has been relieved. 13363 * 13364 * We must also need to remove conn's on this idl from the list, and also 13365 * inform the sockfs upcalls about the change in flow-control. 13366 */ 13367 static void 13368 conn_drain(conn_t *connp, boolean_t closing) 13369 { 13370 idl_t *idl; 13371 conn_t *next_connp; 13372 13373 /* 13374 * connp->conn_idl is stable at this point, and no lock is needed 13375 * to check it. If we are called from ip_close, close has already 13376 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13377 * called us only because conn_idl is non-null. If we are called thru 13378 * service, conn_idl could be null, but it cannot change because 13379 * service is single-threaded per queue, and there cannot be another 13380 * instance of service trying to call conn_drain_insert on this conn 13381 * now. 13382 */ 13383 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13384 13385 /* 13386 * If the conn doesn't exist or is not on a drain list, bail. 13387 */ 13388 if (connp == NULL || connp->conn_idl == NULL || 13389 connp->conn_drain_prev == NULL) { 13390 return; 13391 } 13392 13393 idl = connp->conn_idl; 13394 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13395 13396 if (!closing) { 13397 next_connp = connp->conn_drain_next; 13398 while (next_connp != connp) { 13399 conn_t *delconnp = next_connp; 13400 13401 next_connp = next_connp->conn_drain_next; 13402 conn_drain_remove(delconnp); 13403 } 13404 ASSERT(connp->conn_drain_next == idl->idl_conn); 13405 } 13406 conn_drain_remove(connp); 13407 } 13408 13409 /* 13410 * Write service routine. Shared perimeter entry point. 13411 * The device queue's messages has fallen below the low water mark and STREAMS 13412 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13413 * each waiting conn. 13414 */ 13415 int 13416 ip_wsrv(queue_t *q) 13417 { 13418 ill_t *ill; 13419 13420 ill = (ill_t *)q->q_ptr; 13421 if (ill->ill_state_flags == 0) { 13422 ip_stack_t *ipst = ill->ill_ipst; 13423 13424 /* 13425 * The device flow control has opened up. 13426 * Walk through conn drain lists and qenable the 13427 * first conn in each list. This makes sense only 13428 * if the stream is fully plumbed and setup. 13429 * Hence the ill_state_flags check above. 13430 */ 13431 ip1dbg(("ip_wsrv: walking\n")); 13432 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13433 enableok(ill->ill_wq); 13434 } 13435 return (0); 13436 } 13437 13438 /* 13439 * Callback to disable flow control in IP. 13440 * 13441 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13442 * is enabled. 13443 * 13444 * When MAC_TX() is not able to send any more packets, dld sets its queue 13445 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13446 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13447 * function and wakes up corresponding mac worker threads, which in turn 13448 * calls this callback function, and disables flow control. 13449 */ 13450 void 13451 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13452 { 13453 ill_t *ill = (ill_t *)arg; 13454 ip_stack_t *ipst = ill->ill_ipst; 13455 idl_tx_list_t *idl_txl; 13456 13457 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13458 mutex_enter(&idl_txl->txl_lock); 13459 /* add code to to set a flag to indicate idl_txl is enabled */ 13460 conn_walk_drain(ipst, idl_txl); 13461 mutex_exit(&idl_txl->txl_lock); 13462 } 13463 13464 /* 13465 * Flow control has been relieved and STREAMS has backenabled us; drain 13466 * all the conn lists on `tx_list'. 13467 */ 13468 static void 13469 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13470 { 13471 int i; 13472 idl_t *idl; 13473 13474 IP_STAT(ipst, ip_conn_walk_drain); 13475 13476 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13477 idl = &tx_list->txl_drain_list[i]; 13478 mutex_enter(&idl->idl_lock); 13479 conn_drain(idl->idl_conn, B_FALSE); 13480 mutex_exit(&idl->idl_lock); 13481 } 13482 } 13483 13484 /* 13485 * Determine if the ill and multicast aspects of that packets 13486 * "matches" the conn. 13487 */ 13488 boolean_t 13489 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13490 { 13491 ill_t *ill = ira->ira_rill; 13492 zoneid_t zoneid = ira->ira_zoneid; 13493 uint_t in_ifindex; 13494 ipaddr_t dst, src; 13495 13496 dst = ipha->ipha_dst; 13497 src = ipha->ipha_src; 13498 13499 /* 13500 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13501 * unicast, broadcast and multicast reception to 13502 * conn_incoming_ifindex. 13503 * conn_wantpacket is called for unicast, broadcast and 13504 * multicast packets. 13505 */ 13506 in_ifindex = connp->conn_incoming_ifindex; 13507 13508 /* mpathd can bind to the under IPMP interface, which we allow */ 13509 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13510 if (!IS_UNDER_IPMP(ill)) 13511 return (B_FALSE); 13512 13513 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13514 return (B_FALSE); 13515 } 13516 13517 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13518 return (B_FALSE); 13519 13520 if (!(ira->ira_flags & IRAF_MULTICAST)) 13521 return (B_TRUE); 13522 13523 if (connp->conn_multi_router) { 13524 /* multicast packet and multicast router socket: send up */ 13525 return (B_TRUE); 13526 } 13527 13528 if (ipha->ipha_protocol == IPPROTO_PIM || 13529 ipha->ipha_protocol == IPPROTO_RSVP) 13530 return (B_TRUE); 13531 13532 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13533 } 13534 13535 void 13536 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13537 { 13538 if (IPCL_IS_NONSTR(connp)) { 13539 (*connp->conn_upcalls->su_txq_full) 13540 (connp->conn_upper_handle, B_TRUE); 13541 if (flow_stopped != NULL) 13542 *flow_stopped = B_TRUE; 13543 } else { 13544 queue_t *q = connp->conn_wq; 13545 13546 ASSERT(q != NULL); 13547 if (!(q->q_flag & QFULL)) { 13548 mutex_enter(QLOCK(q)); 13549 if (!(q->q_flag & QFULL)) { 13550 /* still need to set QFULL */ 13551 q->q_flag |= QFULL; 13552 /* set flow_stopped to true under QLOCK */ 13553 if (flow_stopped != NULL) 13554 *flow_stopped = B_TRUE; 13555 mutex_exit(QLOCK(q)); 13556 } else { 13557 /* flow_stopped is left unchanged */ 13558 mutex_exit(QLOCK(q)); 13559 } 13560 } 13561 } 13562 } 13563 13564 void 13565 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13566 { 13567 if (IPCL_IS_NONSTR(connp)) { 13568 (*connp->conn_upcalls->su_txq_full) 13569 (connp->conn_upper_handle, B_FALSE); 13570 if (flow_stopped != NULL) 13571 *flow_stopped = B_FALSE; 13572 } else { 13573 queue_t *q = connp->conn_wq; 13574 13575 ASSERT(q != NULL); 13576 if (q->q_flag & QFULL) { 13577 mutex_enter(QLOCK(q)); 13578 if (q->q_flag & QFULL) { 13579 q->q_flag &= ~QFULL; 13580 /* set flow_stopped to false under QLOCK */ 13581 if (flow_stopped != NULL) 13582 *flow_stopped = B_FALSE; 13583 mutex_exit(QLOCK(q)); 13584 if (q->q_flag & QWANTW) 13585 qbackenable(q, 0); 13586 } else { 13587 /* flow_stopped is left unchanged */ 13588 mutex_exit(QLOCK(q)); 13589 } 13590 } 13591 } 13592 13593 mutex_enter(&connp->conn_lock); 13594 connp->conn_blocked = B_FALSE; 13595 mutex_exit(&connp->conn_lock); 13596 } 13597 13598 /* 13599 * Return the length in bytes of the IPv4 headers (base header, label, and 13600 * other IP options) that will be needed based on the 13601 * ip_pkt_t structure passed by the caller. 13602 * 13603 * The returned length does not include the length of the upper level 13604 * protocol (ULP) header. 13605 * The caller needs to check that the length doesn't exceed the max for IPv4. 13606 */ 13607 int 13608 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13609 { 13610 int len; 13611 13612 len = IP_SIMPLE_HDR_LENGTH; 13613 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13614 ASSERT(ipp->ipp_label_len_v4 != 0); 13615 /* We need to round up here */ 13616 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13617 } 13618 13619 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13620 ASSERT(ipp->ipp_ipv4_options_len != 0); 13621 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13622 len += ipp->ipp_ipv4_options_len; 13623 } 13624 return (len); 13625 } 13626 13627 /* 13628 * All-purpose routine to build an IPv4 header with options based 13629 * on the abstract ip_pkt_t. 13630 * 13631 * The caller has to set the source and destination address as well as 13632 * ipha_length. The caller has to massage any source route and compensate 13633 * for the ULP pseudo-header checksum due to the source route. 13634 */ 13635 void 13636 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13637 uint8_t protocol) 13638 { 13639 ipha_t *ipha = (ipha_t *)buf; 13640 uint8_t *cp; 13641 13642 /* Initialize IPv4 header */ 13643 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13644 ipha->ipha_length = 0; /* Caller will set later */ 13645 ipha->ipha_ident = 0; 13646 ipha->ipha_fragment_offset_and_flags = 0; 13647 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13648 ipha->ipha_protocol = protocol; 13649 ipha->ipha_hdr_checksum = 0; 13650 13651 if ((ipp->ipp_fields & IPPF_ADDR) && 13652 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13653 ipha->ipha_src = ipp->ipp_addr_v4; 13654 13655 cp = (uint8_t *)&ipha[1]; 13656 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13657 ASSERT(ipp->ipp_label_len_v4 != 0); 13658 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13659 cp += ipp->ipp_label_len_v4; 13660 /* We need to round up here */ 13661 while ((uintptr_t)cp & 0x3) { 13662 *cp++ = IPOPT_NOP; 13663 } 13664 } 13665 13666 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13667 ASSERT(ipp->ipp_ipv4_options_len != 0); 13668 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13669 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13670 cp += ipp->ipp_ipv4_options_len; 13671 } 13672 ipha->ipha_version_and_hdr_length = 13673 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13674 13675 ASSERT((int)(cp - buf) == buf_len); 13676 } 13677 13678 /* Allocate the private structure */ 13679 static int 13680 ip_priv_alloc(void **bufp) 13681 { 13682 void *buf; 13683 13684 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13685 return (ENOMEM); 13686 13687 *bufp = buf; 13688 return (0); 13689 } 13690 13691 /* Function to delete the private structure */ 13692 void 13693 ip_priv_free(void *buf) 13694 { 13695 ASSERT(buf != NULL); 13696 kmem_free(buf, sizeof (ip_priv_t)); 13697 } 13698 13699 /* 13700 * The entry point for IPPF processing. 13701 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13702 * routine just returns. 13703 * 13704 * When called, ip_process generates an ipp_packet_t structure 13705 * which holds the state information for this packet and invokes the 13706 * the classifier (via ipp_packet_process). The classification, depending on 13707 * configured filters, results in a list of actions for this packet. Invoking 13708 * an action may cause the packet to be dropped, in which case we return NULL. 13709 * proc indicates the callout position for 13710 * this packet and ill is the interface this packet arrived on or will leave 13711 * on (inbound and outbound resp.). 13712 * 13713 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13714 * on the ill corrsponding to the destination IP address. 13715 */ 13716 mblk_t * 13717 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13718 { 13719 ip_priv_t *priv; 13720 ipp_action_id_t aid; 13721 int rc = 0; 13722 ipp_packet_t *pp; 13723 13724 /* If the classifier is not loaded, return */ 13725 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13726 return (mp); 13727 } 13728 13729 ASSERT(mp != NULL); 13730 13731 /* Allocate the packet structure */ 13732 rc = ipp_packet_alloc(&pp, "ip", aid); 13733 if (rc != 0) 13734 goto drop; 13735 13736 /* Allocate the private structure */ 13737 rc = ip_priv_alloc((void **)&priv); 13738 if (rc != 0) { 13739 ipp_packet_free(pp); 13740 goto drop; 13741 } 13742 priv->proc = proc; 13743 priv->ill_index = ill_get_upper_ifindex(rill); 13744 13745 ipp_packet_set_private(pp, priv, ip_priv_free); 13746 ipp_packet_set_data(pp, mp); 13747 13748 /* Invoke the classifier */ 13749 rc = ipp_packet_process(&pp); 13750 if (pp != NULL) { 13751 mp = ipp_packet_get_data(pp); 13752 ipp_packet_free(pp); 13753 if (rc != 0) 13754 goto drop; 13755 return (mp); 13756 } else { 13757 /* No mp to trace in ip_drop_input/ip_drop_output */ 13758 mp = NULL; 13759 } 13760 drop: 13761 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13762 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13763 ip_drop_input("ip_process", mp, ill); 13764 } else { 13765 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13766 ip_drop_output("ip_process", mp, ill); 13767 } 13768 freemsg(mp); 13769 return (NULL); 13770 } 13771 13772 /* 13773 * Propagate a multicast group membership operation (add/drop) on 13774 * all the interfaces crossed by the related multirt routes. 13775 * The call is considered successful if the operation succeeds 13776 * on at least one interface. 13777 * 13778 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13779 * multicast addresses with the ire argument being the first one. 13780 * We walk the bucket to find all the of those. 13781 * 13782 * Common to IPv4 and IPv6. 13783 */ 13784 static int 13785 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13786 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13787 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13788 mcast_record_t fmode, const in6_addr_t *v6src) 13789 { 13790 ire_t *ire_gw; 13791 irb_t *irb; 13792 int ifindex; 13793 int error = 0; 13794 int result; 13795 ip_stack_t *ipst = ire->ire_ipst; 13796 ipaddr_t group; 13797 boolean_t isv6; 13798 int match_flags; 13799 13800 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13801 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13802 isv6 = B_FALSE; 13803 } else { 13804 isv6 = B_TRUE; 13805 } 13806 13807 irb = ire->ire_bucket; 13808 ASSERT(irb != NULL); 13809 13810 result = 0; 13811 irb_refhold(irb); 13812 for (; ire != NULL; ire = ire->ire_next) { 13813 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13814 continue; 13815 13816 /* We handle -ifp routes by matching on the ill if set */ 13817 match_flags = MATCH_IRE_TYPE; 13818 if (ire->ire_ill != NULL) 13819 match_flags |= MATCH_IRE_ILL; 13820 13821 if (isv6) { 13822 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13823 continue; 13824 13825 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13826 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13827 match_flags, 0, ipst, NULL); 13828 } else { 13829 if (ire->ire_addr != group) 13830 continue; 13831 13832 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13833 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13834 match_flags, 0, ipst, NULL); 13835 } 13836 /* No interface route exists for the gateway; skip this ire. */ 13837 if (ire_gw == NULL) 13838 continue; 13839 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13840 ire_refrele(ire_gw); 13841 continue; 13842 } 13843 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13844 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13845 13846 /* 13847 * The operation is considered a success if 13848 * it succeeds at least once on any one interface. 13849 */ 13850 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13851 fmode, v6src); 13852 if (error == 0) 13853 result = CGTP_MCAST_SUCCESS; 13854 13855 ire_refrele(ire_gw); 13856 } 13857 irb_refrele(irb); 13858 /* 13859 * Consider the call as successful if we succeeded on at least 13860 * one interface. Otherwise, return the last encountered error. 13861 */ 13862 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13863 } 13864 13865 /* 13866 * Return the expected CGTP hooks version number. 13867 */ 13868 int 13869 ip_cgtp_filter_supported(void) 13870 { 13871 return (ip_cgtp_filter_rev); 13872 } 13873 13874 /* 13875 * CGTP hooks can be registered by invoking this function. 13876 * Checks that the version number matches. 13877 */ 13878 int 13879 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13880 { 13881 netstack_t *ns; 13882 ip_stack_t *ipst; 13883 13884 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13885 return (ENOTSUP); 13886 13887 ns = netstack_find_by_stackid(stackid); 13888 if (ns == NULL) 13889 return (EINVAL); 13890 ipst = ns->netstack_ip; 13891 ASSERT(ipst != NULL); 13892 13893 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13894 netstack_rele(ns); 13895 return (EALREADY); 13896 } 13897 13898 ipst->ips_ip_cgtp_filter_ops = ops; 13899 13900 ill_set_inputfn_all(ipst); 13901 13902 netstack_rele(ns); 13903 return (0); 13904 } 13905 13906 /* 13907 * CGTP hooks can be unregistered by invoking this function. 13908 * Returns ENXIO if there was no registration. 13909 * Returns EBUSY if the ndd variable has not been turned off. 13910 */ 13911 int 13912 ip_cgtp_filter_unregister(netstackid_t stackid) 13913 { 13914 netstack_t *ns; 13915 ip_stack_t *ipst; 13916 13917 ns = netstack_find_by_stackid(stackid); 13918 if (ns == NULL) 13919 return (EINVAL); 13920 ipst = ns->netstack_ip; 13921 ASSERT(ipst != NULL); 13922 13923 if (ipst->ips_ip_cgtp_filter) { 13924 netstack_rele(ns); 13925 return (EBUSY); 13926 } 13927 13928 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13929 netstack_rele(ns); 13930 return (ENXIO); 13931 } 13932 ipst->ips_ip_cgtp_filter_ops = NULL; 13933 13934 ill_set_inputfn_all(ipst); 13935 13936 netstack_rele(ns); 13937 return (0); 13938 } 13939 13940 /* 13941 * Check whether there is a CGTP filter registration. 13942 * Returns non-zero if there is a registration, otherwise returns zero. 13943 * Note: returns zero if bad stackid. 13944 */ 13945 int 13946 ip_cgtp_filter_is_registered(netstackid_t stackid) 13947 { 13948 netstack_t *ns; 13949 ip_stack_t *ipst; 13950 int ret; 13951 13952 ns = netstack_find_by_stackid(stackid); 13953 if (ns == NULL) 13954 return (0); 13955 ipst = ns->netstack_ip; 13956 ASSERT(ipst != NULL); 13957 13958 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13959 ret = 1; 13960 else 13961 ret = 0; 13962 13963 netstack_rele(ns); 13964 return (ret); 13965 } 13966 13967 static int 13968 ip_squeue_switch(int val) 13969 { 13970 int rval; 13971 13972 switch (val) { 13973 case IP_SQUEUE_ENTER_NODRAIN: 13974 rval = SQ_NODRAIN; 13975 break; 13976 case IP_SQUEUE_ENTER: 13977 rval = SQ_PROCESS; 13978 break; 13979 case IP_SQUEUE_FILL: 13980 default: 13981 rval = SQ_FILL; 13982 break; 13983 } 13984 return (rval); 13985 } 13986 13987 static void * 13988 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13989 { 13990 kstat_t *ksp; 13991 13992 ip_stat_t template = { 13993 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13994 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13995 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13996 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13997 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13998 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13999 { "ip_opt", KSTAT_DATA_UINT64 }, 14000 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 14001 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 14002 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 14003 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 14004 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 14005 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 14006 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 14007 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 14008 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 14009 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 14010 { "ip_nce_mcast_reclaim_calls", KSTAT_DATA_UINT64 }, 14011 { "ip_nce_mcast_reclaim_deleted", KSTAT_DATA_UINT64 }, 14012 { "ip_nce_mcast_reclaim_tqfail", KSTAT_DATA_UINT64 }, 14013 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 14014 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 14015 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 14016 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 14017 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 14018 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 14019 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 14020 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 14021 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 14022 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 14023 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 14024 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 14025 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 14026 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 14027 { "conn_in_recvtos", KSTAT_DATA_UINT64 }, 14028 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 14029 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 14030 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 14031 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 14032 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 14033 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 14034 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 14035 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 14036 }; 14037 14038 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 14039 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 14040 KSTAT_FLAG_VIRTUAL, stackid); 14041 14042 if (ksp == NULL) 14043 return (NULL); 14044 14045 bcopy(&template, ip_statisticsp, sizeof (template)); 14046 ksp->ks_data = (void *)ip_statisticsp; 14047 ksp->ks_private = (void *)(uintptr_t)stackid; 14048 14049 kstat_install(ksp); 14050 return (ksp); 14051 } 14052 14053 static void 14054 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 14055 { 14056 if (ksp != NULL) { 14057 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14058 kstat_delete_netstack(ksp, stackid); 14059 } 14060 } 14061 14062 static void * 14063 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 14064 { 14065 kstat_t *ksp; 14066 14067 ip_named_kstat_t template = { 14068 { "forwarding", KSTAT_DATA_UINT32, 0 }, 14069 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 14070 { "inReceives", KSTAT_DATA_UINT64, 0 }, 14071 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 14072 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 14073 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14074 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14075 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14076 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14077 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14078 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14079 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14080 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14081 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14082 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14083 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14084 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14085 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14086 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14087 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14088 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14089 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14090 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14091 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14092 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14093 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14094 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14095 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14096 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14097 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14098 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14099 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14100 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14101 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14102 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14103 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14104 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14105 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14106 }; 14107 14108 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14109 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14110 if (ksp == NULL || ksp->ks_data == NULL) 14111 return (NULL); 14112 14113 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14114 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14115 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14116 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14117 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14118 14119 template.netToMediaEntrySize.value.i32 = 14120 sizeof (mib2_ipNetToMediaEntry_t); 14121 14122 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14123 14124 bcopy(&template, ksp->ks_data, sizeof (template)); 14125 ksp->ks_update = ip_kstat_update; 14126 ksp->ks_private = (void *)(uintptr_t)stackid; 14127 14128 kstat_install(ksp); 14129 return (ksp); 14130 } 14131 14132 static void 14133 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14134 { 14135 if (ksp != NULL) { 14136 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14137 kstat_delete_netstack(ksp, stackid); 14138 } 14139 } 14140 14141 static int 14142 ip_kstat_update(kstat_t *kp, int rw) 14143 { 14144 ip_named_kstat_t *ipkp; 14145 mib2_ipIfStatsEntry_t ipmib; 14146 ill_walk_context_t ctx; 14147 ill_t *ill; 14148 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14149 netstack_t *ns; 14150 ip_stack_t *ipst; 14151 14152 if (kp->ks_data == NULL) 14153 return (EIO); 14154 14155 if (rw == KSTAT_WRITE) 14156 return (EACCES); 14157 14158 ns = netstack_find_by_stackid(stackid); 14159 if (ns == NULL) 14160 return (-1); 14161 ipst = ns->netstack_ip; 14162 if (ipst == NULL) { 14163 netstack_rele(ns); 14164 return (-1); 14165 } 14166 ipkp = (ip_named_kstat_t *)kp->ks_data; 14167 14168 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14169 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14170 ill = ILL_START_WALK_V4(&ctx, ipst); 14171 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14172 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14173 rw_exit(&ipst->ips_ill_g_lock); 14174 14175 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14176 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14177 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14178 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14179 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14180 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14181 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14182 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14183 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14184 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14185 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14186 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14187 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14188 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14189 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14190 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14191 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14192 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14193 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14194 14195 ipkp->routingDiscards.value.ui32 = 0; 14196 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14197 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14198 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14199 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14200 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14201 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14202 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14203 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14204 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14205 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14206 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14207 14208 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14209 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14210 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14211 14212 netstack_rele(ns); 14213 14214 return (0); 14215 } 14216 14217 static void * 14218 icmp_kstat_init(netstackid_t stackid) 14219 { 14220 kstat_t *ksp; 14221 14222 icmp_named_kstat_t template = { 14223 { "inMsgs", KSTAT_DATA_UINT32 }, 14224 { "inErrors", KSTAT_DATA_UINT32 }, 14225 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14226 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14227 { "inParmProbs", KSTAT_DATA_UINT32 }, 14228 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14229 { "inRedirects", KSTAT_DATA_UINT32 }, 14230 { "inEchos", KSTAT_DATA_UINT32 }, 14231 { "inEchoReps", KSTAT_DATA_UINT32 }, 14232 { "inTimestamps", KSTAT_DATA_UINT32 }, 14233 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14234 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14235 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14236 { "outMsgs", KSTAT_DATA_UINT32 }, 14237 { "outErrors", KSTAT_DATA_UINT32 }, 14238 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14239 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14240 { "outParmProbs", KSTAT_DATA_UINT32 }, 14241 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14242 { "outRedirects", KSTAT_DATA_UINT32 }, 14243 { "outEchos", KSTAT_DATA_UINT32 }, 14244 { "outEchoReps", KSTAT_DATA_UINT32 }, 14245 { "outTimestamps", KSTAT_DATA_UINT32 }, 14246 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14247 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14248 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14249 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14250 { "inUnknowns", KSTAT_DATA_UINT32 }, 14251 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14252 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14253 { "outDrops", KSTAT_DATA_UINT32 }, 14254 { "inOverFlows", KSTAT_DATA_UINT32 }, 14255 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14256 }; 14257 14258 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14259 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14260 if (ksp == NULL || ksp->ks_data == NULL) 14261 return (NULL); 14262 14263 bcopy(&template, ksp->ks_data, sizeof (template)); 14264 14265 ksp->ks_update = icmp_kstat_update; 14266 ksp->ks_private = (void *)(uintptr_t)stackid; 14267 14268 kstat_install(ksp); 14269 return (ksp); 14270 } 14271 14272 static void 14273 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14274 { 14275 if (ksp != NULL) { 14276 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14277 kstat_delete_netstack(ksp, stackid); 14278 } 14279 } 14280 14281 static int 14282 icmp_kstat_update(kstat_t *kp, int rw) 14283 { 14284 icmp_named_kstat_t *icmpkp; 14285 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14286 netstack_t *ns; 14287 ip_stack_t *ipst; 14288 14289 if (kp->ks_data == NULL) 14290 return (EIO); 14291 14292 if (rw == KSTAT_WRITE) 14293 return (EACCES); 14294 14295 ns = netstack_find_by_stackid(stackid); 14296 if (ns == NULL) 14297 return (-1); 14298 ipst = ns->netstack_ip; 14299 if (ipst == NULL) { 14300 netstack_rele(ns); 14301 return (-1); 14302 } 14303 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14304 14305 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14306 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14307 icmpkp->inDestUnreachs.value.ui32 = 14308 ipst->ips_icmp_mib.icmpInDestUnreachs; 14309 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14310 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14311 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14312 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14313 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14314 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14315 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14316 icmpkp->inTimestampReps.value.ui32 = 14317 ipst->ips_icmp_mib.icmpInTimestampReps; 14318 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14319 icmpkp->inAddrMaskReps.value.ui32 = 14320 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14321 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14322 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14323 icmpkp->outDestUnreachs.value.ui32 = 14324 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14325 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14326 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14327 icmpkp->outSrcQuenchs.value.ui32 = 14328 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14329 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14330 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14331 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14332 icmpkp->outTimestamps.value.ui32 = 14333 ipst->ips_icmp_mib.icmpOutTimestamps; 14334 icmpkp->outTimestampReps.value.ui32 = 14335 ipst->ips_icmp_mib.icmpOutTimestampReps; 14336 icmpkp->outAddrMasks.value.ui32 = 14337 ipst->ips_icmp_mib.icmpOutAddrMasks; 14338 icmpkp->outAddrMaskReps.value.ui32 = 14339 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14340 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14341 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14342 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14343 icmpkp->outFragNeeded.value.ui32 = 14344 ipst->ips_icmp_mib.icmpOutFragNeeded; 14345 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14346 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14347 icmpkp->inBadRedirects.value.ui32 = 14348 ipst->ips_icmp_mib.icmpInBadRedirects; 14349 14350 netstack_rele(ns); 14351 return (0); 14352 } 14353 14354 /* 14355 * This is the fanout function for raw socket opened for SCTP. Note 14356 * that it is called after SCTP checks that there is no socket which 14357 * wants a packet. Then before SCTP handles this out of the blue packet, 14358 * this function is called to see if there is any raw socket for SCTP. 14359 * If there is and it is bound to the correct address, the packet will 14360 * be sent to that socket. Note that only one raw socket can be bound to 14361 * a port. This is assured in ipcl_sctp_hash_insert(); 14362 */ 14363 void 14364 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14365 ip_recv_attr_t *ira) 14366 { 14367 conn_t *connp; 14368 queue_t *rq; 14369 boolean_t secure; 14370 ill_t *ill = ira->ira_ill; 14371 ip_stack_t *ipst = ill->ill_ipst; 14372 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14373 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14374 iaflags_t iraflags = ira->ira_flags; 14375 ill_t *rill = ira->ira_rill; 14376 14377 secure = iraflags & IRAF_IPSEC_SECURE; 14378 14379 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14380 ira, ipst); 14381 if (connp == NULL) { 14382 /* 14383 * Although raw sctp is not summed, OOB chunks must be. 14384 * Drop the packet here if the sctp checksum failed. 14385 */ 14386 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14387 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14388 freemsg(mp); 14389 return; 14390 } 14391 ira->ira_ill = ira->ira_rill = NULL; 14392 sctp_ootb_input(mp, ira, ipst); 14393 ira->ira_ill = ill; 14394 ira->ira_rill = rill; 14395 return; 14396 } 14397 14398 if (connp->conn_min_ttl != 0 && connp->conn_min_ttl > ira->ira_ttl) { 14399 CONN_DEC_REF(connp); 14400 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14401 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14402 freemsg(mp); 14403 return; 14404 } 14405 14406 rq = connp->conn_rq; 14407 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14408 CONN_DEC_REF(connp); 14409 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14410 freemsg(mp); 14411 return; 14412 } 14413 if (((iraflags & IRAF_IS_IPV4) ? 14414 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14415 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14416 secure) { 14417 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14418 ip6h, ira); 14419 if (mp == NULL) { 14420 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14421 /* Note that mp is NULL */ 14422 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14423 CONN_DEC_REF(connp); 14424 return; 14425 } 14426 } 14427 14428 if (iraflags & IRAF_ICMP_ERROR) { 14429 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14430 } else { 14431 ill_t *rill = ira->ira_rill; 14432 14433 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14434 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14435 ira->ira_ill = ira->ira_rill = NULL; 14436 (connp->conn_recv)(connp, mp, NULL, ira); 14437 ira->ira_ill = ill; 14438 ira->ira_rill = rill; 14439 } 14440 CONN_DEC_REF(connp); 14441 } 14442 14443 /* 14444 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14445 * header before the ip payload. 14446 */ 14447 static void 14448 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14449 { 14450 int len = (mp->b_wptr - mp->b_rptr); 14451 mblk_t *ip_mp; 14452 14453 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14454 if (is_fp_mp || len != fp_mp_len) { 14455 if (len > fp_mp_len) { 14456 /* 14457 * fastpath header and ip header in the first mblk 14458 */ 14459 mp->b_rptr += fp_mp_len; 14460 } else { 14461 /* 14462 * ip_xmit_attach_llhdr had to prepend an mblk to 14463 * attach the fastpath header before ip header. 14464 */ 14465 ip_mp = mp->b_cont; 14466 freeb(mp); 14467 mp = ip_mp; 14468 mp->b_rptr += (fp_mp_len - len); 14469 } 14470 } else { 14471 ip_mp = mp->b_cont; 14472 freeb(mp); 14473 mp = ip_mp; 14474 } 14475 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14476 freemsg(mp); 14477 } 14478 14479 /* 14480 * Normal post fragmentation function. 14481 * 14482 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14483 * using the same state machine. 14484 * 14485 * We return an error on failure. In particular we return EWOULDBLOCK 14486 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14487 * (currently by canputnext failure resulting in backenabling from GLD.) 14488 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14489 * indication that they can flow control until ip_wsrv() tells then to restart. 14490 * 14491 * If the nce passed by caller is incomplete, this function 14492 * queues the packet and if necessary, sends ARP request and bails. 14493 * If the Neighbor Cache passed is fully resolved, we simply prepend 14494 * the link-layer header to the packet, do ipsec hw acceleration 14495 * work if necessary, and send the packet out on the wire. 14496 */ 14497 /* ARGSUSED6 */ 14498 int 14499 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14500 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14501 { 14502 queue_t *wq; 14503 ill_t *ill = nce->nce_ill; 14504 ip_stack_t *ipst = ill->ill_ipst; 14505 uint64_t delta; 14506 boolean_t isv6 = ill->ill_isv6; 14507 boolean_t fp_mp; 14508 ncec_t *ncec = nce->nce_common; 14509 int64_t now = LBOLT_FASTPATH64; 14510 boolean_t is_probe; 14511 14512 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14513 14514 ASSERT(mp != NULL); 14515 ASSERT(mp->b_datap->db_type == M_DATA); 14516 ASSERT3U(pkt_len, ==, msgdsize(mp)); 14517 14518 /* 14519 * If we have already been here and are coming back after ARP/ND. 14520 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14521 * in that case since they have seen the packet when it came here 14522 * the first time. 14523 */ 14524 if (ixaflags & IXAF_NO_TRACE) 14525 goto sendit; 14526 14527 if (ixaflags & IXAF_IS_IPV4) { 14528 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14529 14530 ASSERT(!isv6); 14531 ASSERT3U(pkt_len, ==, 14532 ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14533 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14534 !(ixaflags & IXAF_NO_PFHOOK)) { 14535 int error; 14536 14537 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14538 ipst->ips_ipv4firewall_physical_out, 14539 NULL, ill, ipha, mp, mp, 0, ipst, error); 14540 DTRACE_PROBE1(ip4__physical__out__end, 14541 mblk_t *, mp); 14542 if (mp == NULL) 14543 return (error); 14544 14545 /* The length could have changed */ 14546 pkt_len = msgdsize(mp); 14547 } 14548 if (ipst->ips_ip4_observe.he_interested) { 14549 /* 14550 * Note that for TX the zoneid is the sending 14551 * zone, whether or not MLP is in play. 14552 * Since the szone argument is the IP zoneid (i.e., 14553 * zero for exclusive-IP zones) and ipobs wants 14554 * the system zoneid, we map it here. 14555 */ 14556 szone = IP_REAL_ZONEID(szone, ipst); 14557 14558 /* 14559 * On the outbound path the destination zone will be 14560 * unknown as we're sending this packet out on the 14561 * wire. 14562 */ 14563 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14564 ill, ipst); 14565 } 14566 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14567 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14568 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14569 } else { 14570 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14571 14572 ASSERT(isv6); 14573 ASSERT(pkt_len == 14574 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14575 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14576 !(ixaflags & IXAF_NO_PFHOOK)) { 14577 int error; 14578 14579 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14580 ipst->ips_ipv6firewall_physical_out, 14581 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14582 DTRACE_PROBE1(ip6__physical__out__end, 14583 mblk_t *, mp); 14584 if (mp == NULL) 14585 return (error); 14586 14587 /* The length could have changed */ 14588 pkt_len = msgdsize(mp); 14589 } 14590 if (ipst->ips_ip6_observe.he_interested) { 14591 /* See above */ 14592 szone = IP_REAL_ZONEID(szone, ipst); 14593 14594 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14595 ill, ipst); 14596 } 14597 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14598 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14599 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14600 } 14601 14602 sendit: 14603 /* 14604 * We check the state without a lock because the state can never 14605 * move "backwards" to initial or incomplete. 14606 */ 14607 switch (ncec->ncec_state) { 14608 case ND_REACHABLE: 14609 case ND_STALE: 14610 case ND_DELAY: 14611 case ND_PROBE: 14612 mp = ip_xmit_attach_llhdr(mp, nce); 14613 if (mp == NULL) { 14614 /* 14615 * ip_xmit_attach_llhdr has increased 14616 * ipIfStatsOutDiscards and called ip_drop_output() 14617 */ 14618 return (ENOBUFS); 14619 } 14620 /* 14621 * check if nce_fastpath completed and we tagged on a 14622 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14623 */ 14624 fp_mp = (mp->b_datap->db_type == M_DATA); 14625 14626 if (fp_mp && 14627 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14628 ill_dld_direct_t *idd; 14629 14630 idd = &ill->ill_dld_capab->idc_direct; 14631 /* 14632 * Send the packet directly to DLD, where it 14633 * may be queued depending on the availability 14634 * of transmit resources at the media layer. 14635 * Return value should be taken into 14636 * account and flow control the TCP. 14637 */ 14638 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14639 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14640 pkt_len); 14641 14642 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14643 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14644 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14645 } else { 14646 uintptr_t cookie; 14647 14648 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14649 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14650 if (ixacookie != NULL) 14651 *ixacookie = cookie; 14652 return (EWOULDBLOCK); 14653 } 14654 } 14655 } else { 14656 wq = ill->ill_wq; 14657 14658 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14659 !canputnext(wq)) { 14660 if (ixacookie != NULL) 14661 *ixacookie = 0; 14662 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14663 nce->nce_fp_mp != NULL ? 14664 MBLKL(nce->nce_fp_mp) : 0); 14665 return (EWOULDBLOCK); 14666 } 14667 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14668 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14669 pkt_len); 14670 putnext(wq, mp); 14671 } 14672 14673 /* 14674 * The rest of this function implements Neighbor Unreachability 14675 * detection. Determine if the ncec is eligible for NUD. 14676 */ 14677 if (ncec->ncec_flags & NCE_F_NONUD) 14678 return (0); 14679 14680 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14681 14682 /* 14683 * Check for upper layer advice 14684 */ 14685 if (ixaflags & IXAF_REACH_CONF) { 14686 timeout_id_t tid; 14687 14688 /* 14689 * It should be o.k. to check the state without 14690 * a lock here, at most we lose an advice. 14691 */ 14692 ncec->ncec_last = TICK_TO_MSEC(now); 14693 if (ncec->ncec_state != ND_REACHABLE) { 14694 mutex_enter(&ncec->ncec_lock); 14695 ncec->ncec_state = ND_REACHABLE; 14696 tid = ncec->ncec_timeout_id; 14697 ncec->ncec_timeout_id = 0; 14698 mutex_exit(&ncec->ncec_lock); 14699 (void) untimeout(tid); 14700 if (ip_debug > 2) { 14701 /* ip1dbg */ 14702 pr_addr_dbg("ip_xmit: state" 14703 " for %s changed to" 14704 " REACHABLE\n", AF_INET6, 14705 &ncec->ncec_addr); 14706 } 14707 } 14708 return (0); 14709 } 14710 14711 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14712 ip1dbg(("ip_xmit: delta = %" PRId64 14713 " ill_reachable_time = %d \n", delta, 14714 ill->ill_reachable_time)); 14715 if (delta > (uint64_t)ill->ill_reachable_time) { 14716 mutex_enter(&ncec->ncec_lock); 14717 switch (ncec->ncec_state) { 14718 case ND_REACHABLE: 14719 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14720 /* FALLTHROUGH */ 14721 case ND_STALE: 14722 /* 14723 * ND_REACHABLE is identical to 14724 * ND_STALE in this specific case. If 14725 * reachable time has expired for this 14726 * neighbor (delta is greater than 14727 * reachable time), conceptually, the 14728 * neighbor cache is no longer in 14729 * REACHABLE state, but already in 14730 * STALE state. So the correct 14731 * transition here is to ND_DELAY. 14732 */ 14733 ncec->ncec_state = ND_DELAY; 14734 mutex_exit(&ncec->ncec_lock); 14735 nce_restart_timer(ncec, 14736 ipst->ips_delay_first_probe_time); 14737 if (ip_debug > 3) { 14738 /* ip2dbg */ 14739 pr_addr_dbg("ip_xmit: state" 14740 " for %s changed to" 14741 " DELAY\n", AF_INET6, 14742 &ncec->ncec_addr); 14743 } 14744 break; 14745 case ND_DELAY: 14746 case ND_PROBE: 14747 mutex_exit(&ncec->ncec_lock); 14748 /* Timers have already started */ 14749 break; 14750 case ND_UNREACHABLE: 14751 /* 14752 * nce_timer has detected that this ncec 14753 * is unreachable and initiated deleting 14754 * this ncec. 14755 * This is a harmless race where we found the 14756 * ncec before it was deleted and have 14757 * just sent out a packet using this 14758 * unreachable ncec. 14759 */ 14760 mutex_exit(&ncec->ncec_lock); 14761 break; 14762 default: 14763 ASSERT(0); 14764 mutex_exit(&ncec->ncec_lock); 14765 } 14766 } 14767 return (0); 14768 14769 case ND_INCOMPLETE: 14770 /* 14771 * the state could have changed since we didn't hold the lock. 14772 * Re-verify state under lock. 14773 */ 14774 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14775 mutex_enter(&ncec->ncec_lock); 14776 if (NCE_ISREACHABLE(ncec)) { 14777 mutex_exit(&ncec->ncec_lock); 14778 goto sendit; 14779 } 14780 /* queue the packet */ 14781 nce_queue_mp(ncec, mp, is_probe); 14782 mutex_exit(&ncec->ncec_lock); 14783 DTRACE_PROBE2(ip__xmit__incomplete, 14784 (ncec_t *), ncec, (mblk_t *), mp); 14785 return (0); 14786 14787 case ND_INITIAL: 14788 /* 14789 * State could have changed since we didn't hold the lock, so 14790 * re-verify state. 14791 */ 14792 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14793 mutex_enter(&ncec->ncec_lock); 14794 if (NCE_ISREACHABLE(ncec)) { 14795 mutex_exit(&ncec->ncec_lock); 14796 goto sendit; 14797 } 14798 nce_queue_mp(ncec, mp, is_probe); 14799 if (ncec->ncec_state == ND_INITIAL) { 14800 ncec->ncec_state = ND_INCOMPLETE; 14801 mutex_exit(&ncec->ncec_lock); 14802 /* 14803 * figure out the source we want to use 14804 * and resolve it. 14805 */ 14806 ip_ndp_resolve(ncec); 14807 } else { 14808 mutex_exit(&ncec->ncec_lock); 14809 } 14810 return (0); 14811 14812 case ND_UNREACHABLE: 14813 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14814 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14815 mp, ill); 14816 freemsg(mp); 14817 return (0); 14818 14819 default: 14820 ASSERT(0); 14821 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14822 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14823 mp, ill); 14824 freemsg(mp); 14825 return (ENETUNREACH); 14826 } 14827 } 14828 14829 /* 14830 * Return B_TRUE if the buffers differ in length or content. 14831 * This is used for comparing extension header buffers. 14832 * Note that an extension header would be declared different 14833 * even if all that changed was the next header value in that header i.e. 14834 * what really changed is the next extension header. 14835 */ 14836 boolean_t 14837 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14838 uint_t blen) 14839 { 14840 if (!b_valid) 14841 blen = 0; 14842 14843 if (alen != blen) 14844 return (B_TRUE); 14845 if (alen == 0) 14846 return (B_FALSE); /* Both zero length */ 14847 return (bcmp(abuf, bbuf, alen)); 14848 } 14849 14850 /* 14851 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14852 * Return B_FALSE if memory allocation fails - don't change any state! 14853 */ 14854 boolean_t 14855 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14856 const void *src, uint_t srclen) 14857 { 14858 void *dst; 14859 14860 if (!src_valid) 14861 srclen = 0; 14862 14863 ASSERT(*dstlenp == 0); 14864 if (src != NULL && srclen != 0) { 14865 dst = mi_alloc(srclen, BPRI_MED); 14866 if (dst == NULL) 14867 return (B_FALSE); 14868 } else { 14869 dst = NULL; 14870 } 14871 if (*dstp != NULL) 14872 mi_free(*dstp); 14873 *dstp = dst; 14874 *dstlenp = dst == NULL ? 0 : srclen; 14875 return (B_TRUE); 14876 } 14877 14878 /* 14879 * Replace what is in *dst, *dstlen with the source. 14880 * Assumes ip_allocbuf has already been called. 14881 */ 14882 void 14883 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14884 const void *src, uint_t srclen) 14885 { 14886 if (!src_valid) 14887 srclen = 0; 14888 14889 ASSERT(*dstlenp == srclen); 14890 if (src != NULL && srclen != 0) 14891 bcopy(src, *dstp, srclen); 14892 } 14893 14894 /* 14895 * Free the storage pointed to by the members of an ip_pkt_t. 14896 */ 14897 void 14898 ip_pkt_free(ip_pkt_t *ipp) 14899 { 14900 uint_t fields = ipp->ipp_fields; 14901 14902 if (fields & IPPF_HOPOPTS) { 14903 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14904 ipp->ipp_hopopts = NULL; 14905 ipp->ipp_hopoptslen = 0; 14906 } 14907 if (fields & IPPF_RTHDRDSTOPTS) { 14908 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14909 ipp->ipp_rthdrdstopts = NULL; 14910 ipp->ipp_rthdrdstoptslen = 0; 14911 } 14912 if (fields & IPPF_DSTOPTS) { 14913 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14914 ipp->ipp_dstopts = NULL; 14915 ipp->ipp_dstoptslen = 0; 14916 } 14917 if (fields & IPPF_RTHDR) { 14918 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14919 ipp->ipp_rthdr = NULL; 14920 ipp->ipp_rthdrlen = 0; 14921 } 14922 if (fields & IPPF_IPV4_OPTIONS) { 14923 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14924 ipp->ipp_ipv4_options = NULL; 14925 ipp->ipp_ipv4_options_len = 0; 14926 } 14927 if (fields & IPPF_LABEL_V4) { 14928 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14929 ipp->ipp_label_v4 = NULL; 14930 ipp->ipp_label_len_v4 = 0; 14931 } 14932 if (fields & IPPF_LABEL_V6) { 14933 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14934 ipp->ipp_label_v6 = NULL; 14935 ipp->ipp_label_len_v6 = 0; 14936 } 14937 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14938 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14939 } 14940 14941 /* 14942 * Copy from src to dst and allocate as needed. 14943 * Returns zero or ENOMEM. 14944 * 14945 * The caller must initialize dst to zero. 14946 */ 14947 int 14948 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14949 { 14950 uint_t fields = src->ipp_fields; 14951 14952 /* Start with fields that don't require memory allocation */ 14953 dst->ipp_fields = fields & 14954 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14955 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14956 14957 dst->ipp_addr = src->ipp_addr; 14958 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14959 dst->ipp_hoplimit = src->ipp_hoplimit; 14960 dst->ipp_tclass = src->ipp_tclass; 14961 dst->ipp_type_of_service = src->ipp_type_of_service; 14962 14963 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14964 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14965 return (0); 14966 14967 if (fields & IPPF_HOPOPTS) { 14968 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14969 if (dst->ipp_hopopts == NULL) { 14970 ip_pkt_free(dst); 14971 return (ENOMEM); 14972 } 14973 dst->ipp_fields |= IPPF_HOPOPTS; 14974 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14975 src->ipp_hopoptslen); 14976 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14977 } 14978 if (fields & IPPF_RTHDRDSTOPTS) { 14979 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14980 kmflag); 14981 if (dst->ipp_rthdrdstopts == NULL) { 14982 ip_pkt_free(dst); 14983 return (ENOMEM); 14984 } 14985 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14986 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14987 src->ipp_rthdrdstoptslen); 14988 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14989 } 14990 if (fields & IPPF_DSTOPTS) { 14991 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14992 if (dst->ipp_dstopts == NULL) { 14993 ip_pkt_free(dst); 14994 return (ENOMEM); 14995 } 14996 dst->ipp_fields |= IPPF_DSTOPTS; 14997 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14998 src->ipp_dstoptslen); 14999 dst->ipp_dstoptslen = src->ipp_dstoptslen; 15000 } 15001 if (fields & IPPF_RTHDR) { 15002 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 15003 if (dst->ipp_rthdr == NULL) { 15004 ip_pkt_free(dst); 15005 return (ENOMEM); 15006 } 15007 dst->ipp_fields |= IPPF_RTHDR; 15008 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 15009 src->ipp_rthdrlen); 15010 dst->ipp_rthdrlen = src->ipp_rthdrlen; 15011 } 15012 if (fields & IPPF_IPV4_OPTIONS) { 15013 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 15014 kmflag); 15015 if (dst->ipp_ipv4_options == NULL) { 15016 ip_pkt_free(dst); 15017 return (ENOMEM); 15018 } 15019 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 15020 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 15021 src->ipp_ipv4_options_len); 15022 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 15023 } 15024 if (fields & IPPF_LABEL_V4) { 15025 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 15026 if (dst->ipp_label_v4 == NULL) { 15027 ip_pkt_free(dst); 15028 return (ENOMEM); 15029 } 15030 dst->ipp_fields |= IPPF_LABEL_V4; 15031 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 15032 src->ipp_label_len_v4); 15033 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 15034 } 15035 if (fields & IPPF_LABEL_V6) { 15036 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 15037 if (dst->ipp_label_v6 == NULL) { 15038 ip_pkt_free(dst); 15039 return (ENOMEM); 15040 } 15041 dst->ipp_fields |= IPPF_LABEL_V6; 15042 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 15043 src->ipp_label_len_v6); 15044 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 15045 } 15046 if (fields & IPPF_FRAGHDR) { 15047 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 15048 if (dst->ipp_fraghdr == NULL) { 15049 ip_pkt_free(dst); 15050 return (ENOMEM); 15051 } 15052 dst->ipp_fields |= IPPF_FRAGHDR; 15053 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 15054 src->ipp_fraghdrlen); 15055 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 15056 } 15057 return (0); 15058 } 15059 15060 /* 15061 * Returns INADDR_ANY if no source route 15062 */ 15063 ipaddr_t 15064 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 15065 { 15066 ipaddr_t nexthop = INADDR_ANY; 15067 ipoptp_t opts; 15068 uchar_t *opt; 15069 uint8_t optval; 15070 uint8_t optlen; 15071 uint32_t totallen; 15072 15073 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15074 return (INADDR_ANY); 15075 15076 totallen = ipp->ipp_ipv4_options_len; 15077 if (totallen & 0x3) 15078 return (INADDR_ANY); 15079 15080 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15081 optval != IPOPT_EOL; 15082 optval = ipoptp_next(&opts)) { 15083 opt = opts.ipoptp_cur; 15084 switch (optval) { 15085 uint8_t off; 15086 case IPOPT_SSRR: 15087 case IPOPT_LSRR: 15088 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15089 break; 15090 } 15091 optlen = opts.ipoptp_len; 15092 off = opt[IPOPT_OFFSET]; 15093 off--; 15094 if (optlen < IP_ADDR_LEN || 15095 off > optlen - IP_ADDR_LEN) { 15096 /* End of source route */ 15097 break; 15098 } 15099 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15100 if (nexthop == htonl(INADDR_LOOPBACK)) { 15101 /* Ignore */ 15102 nexthop = INADDR_ANY; 15103 break; 15104 } 15105 break; 15106 } 15107 } 15108 return (nexthop); 15109 } 15110 15111 /* 15112 * Reverse a source route. 15113 */ 15114 void 15115 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15116 { 15117 ipaddr_t tmp; 15118 ipoptp_t opts; 15119 uchar_t *opt; 15120 uint8_t optval; 15121 uint32_t totallen; 15122 15123 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15124 return; 15125 15126 totallen = ipp->ipp_ipv4_options_len; 15127 if (totallen & 0x3) 15128 return; 15129 15130 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15131 optval != IPOPT_EOL; 15132 optval = ipoptp_next(&opts)) { 15133 uint8_t off1, off2; 15134 15135 opt = opts.ipoptp_cur; 15136 switch (optval) { 15137 case IPOPT_SSRR: 15138 case IPOPT_LSRR: 15139 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15140 break; 15141 } 15142 off1 = IPOPT_MINOFF_SR - 1; 15143 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15144 while (off2 > off1) { 15145 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15146 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15147 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15148 off2 -= IP_ADDR_LEN; 15149 off1 += IP_ADDR_LEN; 15150 } 15151 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15152 break; 15153 } 15154 } 15155 } 15156 15157 /* 15158 * Returns NULL if no routing header 15159 */ 15160 in6_addr_t * 15161 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15162 { 15163 in6_addr_t *nexthop = NULL; 15164 ip6_rthdr0_t *rthdr; 15165 15166 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15167 return (NULL); 15168 15169 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15170 if (rthdr->ip6r0_segleft == 0) 15171 return (NULL); 15172 15173 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15174 return (nexthop); 15175 } 15176 15177 zoneid_t 15178 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15179 zoneid_t lookup_zoneid) 15180 { 15181 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15182 ire_t *ire; 15183 int ire_flags = MATCH_IRE_TYPE; 15184 zoneid_t zoneid = ALL_ZONES; 15185 15186 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15187 return (ALL_ZONES); 15188 15189 if (lookup_zoneid != ALL_ZONES) 15190 ire_flags |= MATCH_IRE_ZONEONLY; 15191 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK, 15192 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15193 if (ire != NULL) { 15194 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15195 ire_refrele(ire); 15196 } 15197 return (zoneid); 15198 } 15199 15200 zoneid_t 15201 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15202 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15203 { 15204 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15205 ire_t *ire; 15206 int ire_flags = MATCH_IRE_TYPE; 15207 zoneid_t zoneid = ALL_ZONES; 15208 15209 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15210 return (ALL_ZONES); 15211 15212 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15213 ire_flags |= MATCH_IRE_ILL; 15214 15215 if (lookup_zoneid != ALL_ZONES) 15216 ire_flags |= MATCH_IRE_ZONEONLY; 15217 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15218 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15219 if (ire != NULL) { 15220 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15221 ire_refrele(ire); 15222 } 15223 return (zoneid); 15224 } 15225 15226 /* 15227 * IP obserability hook support functions. 15228 */ 15229 static void 15230 ipobs_init(ip_stack_t *ipst) 15231 { 15232 netid_t id; 15233 15234 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15235 15236 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15237 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15238 15239 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15240 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15241 } 15242 15243 static void 15244 ipobs_fini(ip_stack_t *ipst) 15245 { 15246 15247 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15248 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15249 } 15250 15251 /* 15252 * hook_pkt_observe_t is composed in network byte order so that the 15253 * entire mblk_t chain handed into hook_run can be used as-is. 15254 * The caveat is that use of the fields, such as the zone fields, 15255 * requires conversion into host byte order first. 15256 */ 15257 void 15258 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15259 const ill_t *ill, ip_stack_t *ipst) 15260 { 15261 hook_pkt_observe_t *hdr; 15262 uint64_t grifindex; 15263 mblk_t *imp; 15264 15265 imp = allocb(sizeof (*hdr), BPRI_HI); 15266 if (imp == NULL) 15267 return; 15268 15269 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15270 /* 15271 * b_wptr is set to make the apparent size of the data in the mblk_t 15272 * to exclude the pointers at the end of hook_pkt_observer_t. 15273 */ 15274 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15275 imp->b_cont = mp; 15276 15277 ASSERT(DB_TYPE(mp) == M_DATA); 15278 15279 if (IS_UNDER_IPMP(ill)) 15280 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15281 else 15282 grifindex = 0; 15283 15284 hdr->hpo_version = 1; 15285 hdr->hpo_htype = htons(htype); 15286 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15287 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15288 hdr->hpo_grifindex = htonl(grifindex); 15289 hdr->hpo_zsrc = htonl(zsrc); 15290 hdr->hpo_zdst = htonl(zdst); 15291 hdr->hpo_pkt = imp; 15292 hdr->hpo_ctx = ipst->ips_netstack; 15293 15294 if (ill->ill_isv6) { 15295 hdr->hpo_family = AF_INET6; 15296 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15297 ipst->ips_ipv6observing, (hook_data_t)hdr); 15298 } else { 15299 hdr->hpo_family = AF_INET; 15300 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15301 ipst->ips_ipv4observing, (hook_data_t)hdr); 15302 } 15303 15304 imp->b_cont = NULL; 15305 freemsg(imp); 15306 } 15307 15308 /* 15309 * Utility routine that checks if `v4srcp' is a valid address on underlying 15310 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15311 * associated with `v4srcp' on success. NOTE: if this is not called from 15312 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15313 * group during or after this lookup. 15314 */ 15315 boolean_t 15316 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15317 { 15318 ipif_t *ipif; 15319 15320 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15321 if (ipif != NULL) { 15322 if (ipifp != NULL) 15323 *ipifp = ipif; 15324 else 15325 ipif_refrele(ipif); 15326 return (B_TRUE); 15327 } 15328 15329 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15330 *v4srcp)); 15331 return (B_FALSE); 15332 } 15333 15334 /* 15335 * Transport protocol call back function for CPU state change. 15336 */ 15337 /* ARGSUSED */ 15338 static int 15339 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15340 { 15341 processorid_t cpu_seqid; 15342 netstack_handle_t nh; 15343 netstack_t *ns; 15344 15345 ASSERT(MUTEX_HELD(&cpu_lock)); 15346 15347 switch (what) { 15348 case CPU_CONFIG: 15349 case CPU_ON: 15350 case CPU_INIT: 15351 case CPU_CPUPART_IN: 15352 cpu_seqid = cpu[id]->cpu_seqid; 15353 netstack_next_init(&nh); 15354 while ((ns = netstack_next(&nh)) != NULL) { 15355 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15356 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15357 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15358 netstack_rele(ns); 15359 } 15360 netstack_next_fini(&nh); 15361 break; 15362 case CPU_UNCONFIG: 15363 case CPU_OFF: 15364 case CPU_CPUPART_OUT: 15365 /* 15366 * Nothing to do. We don't remove the per CPU stats from 15367 * the IP stack even when the CPU goes offline. 15368 */ 15369 break; 15370 default: 15371 break; 15372 } 15373 return (0); 15374 } 15375