1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 1990 Mentat Inc. 25 * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright (c) 2018 Joyent, Inc. All rights reserved. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/sysmacros.h> 35 #include <sys/strsubr.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/zone.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/xti_inet.h> 42 #include <sys/ddi.h> 43 #include <sys/suntpi.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/kobj.h> 47 #include <sys/modctl.h> 48 #include <sys/atomic.h> 49 #include <sys/policy.h> 50 #include <sys/priv.h> 51 #include <sys/taskq.h> 52 53 #include <sys/systm.h> 54 #include <sys/param.h> 55 #include <sys/kmem.h> 56 #include <sys/sdt.h> 57 #include <sys/socket.h> 58 #include <sys/vtrace.h> 59 #include <sys/isa_defs.h> 60 #include <sys/mac.h> 61 #include <net/if.h> 62 #include <net/if_arp.h> 63 #include <net/route.h> 64 #include <sys/sockio.h> 65 #include <netinet/in.h> 66 #include <net/if_dl.h> 67 68 #include <inet/common.h> 69 #include <inet/mi.h> 70 #include <inet/mib2.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/snmpcom.h> 74 #include <inet/optcom.h> 75 #include <inet/kstatcom.h> 76 77 #include <netinet/igmp_var.h> 78 #include <netinet/ip6.h> 79 #include <netinet/icmp6.h> 80 #include <netinet/sctp.h> 81 82 #include <inet/ip.h> 83 #include <inet/ip_impl.h> 84 #include <inet/ip6.h> 85 #include <inet/ip6_asp.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/ip_multi.h> 89 #include <inet/ip_if.h> 90 #include <inet/ip_ire.h> 91 #include <inet/ip_ftable.h> 92 #include <inet/ip_rts.h> 93 #include <inet/ip_ndp.h> 94 #include <inet/ip_listutils.h> 95 #include <netinet/igmp.h> 96 #include <netinet/ip_mroute.h> 97 #include <inet/ipp_common.h> 98 99 #include <net/pfkeyv2.h> 100 #include <inet/sadb.h> 101 #include <inet/ipsec_impl.h> 102 #include <inet/iptun/iptun_impl.h> 103 #include <inet/ipdrop.h> 104 #include <inet/ip_netinfo.h> 105 #include <inet/ilb_ip.h> 106 107 #include <sys/ethernet.h> 108 #include <net/if_types.h> 109 #include <sys/cpuvar.h> 110 111 #include <ipp/ipp.h> 112 #include <ipp/ipp_impl.h> 113 #include <ipp/ipgpc/ipgpc.h> 114 115 #include <sys/pattr.h> 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <inet/rawip_impl.h> 121 #include <inet/rts_impl.h> 122 123 #include <sys/tsol/label.h> 124 #include <sys/tsol/tnet.h> 125 126 #include <sys/squeue_impl.h> 127 #include <inet/ip_arp.h> 128 129 #include <sys/clock_impl.h> /* For LBOLT_FASTPATH{,64} */ 130 131 /* 132 * Values for squeue switch: 133 * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN 134 * IP_SQUEUE_ENTER: SQ_PROCESS 135 * IP_SQUEUE_FILL: SQ_FILL 136 */ 137 int ip_squeue_enter = IP_SQUEUE_ENTER; /* Setable in /etc/system */ 138 139 int ip_squeue_flag; 140 141 /* 142 * Setable in /etc/system 143 */ 144 int ip_poll_normal_ms = 100; 145 int ip_poll_normal_ticks = 0; 146 int ip_modclose_ackwait_ms = 3000; 147 148 /* 149 * It would be nice to have these present only in DEBUG systems, but the 150 * current design of the global symbol checking logic requires them to be 151 * unconditionally present. 152 */ 153 uint_t ip_thread_data; /* TSD key for debug support */ 154 krwlock_t ip_thread_rwlock; 155 list_t ip_thread_list; 156 157 /* 158 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 159 */ 160 161 struct listptr_s { 162 mblk_t *lp_head; /* pointer to the head of the list */ 163 mblk_t *lp_tail; /* pointer to the tail of the list */ 164 }; 165 166 typedef struct listptr_s listptr_t; 167 168 /* 169 * This is used by ip_snmp_get_mib2_ip_route_media and 170 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 171 */ 172 typedef struct iproutedata_s { 173 uint_t ird_idx; 174 uint_t ird_flags; /* see below */ 175 listptr_t ird_route; /* ipRouteEntryTable */ 176 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 177 listptr_t ird_attrs; /* ipRouteAttributeTable */ 178 } iproutedata_t; 179 180 /* Include ire_testhidden and IRE_IF_CLONE routes */ 181 #define IRD_REPORT_ALL 0x01 182 183 /* 184 * Cluster specific hooks. These should be NULL when booted as a non-cluster 185 */ 186 187 /* 188 * Hook functions to enable cluster networking 189 * On non-clustered systems these vectors must always be NULL. 190 * 191 * Hook function to Check ip specified ip address is a shared ip address 192 * in the cluster 193 * 194 */ 195 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 196 sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL; 197 198 /* 199 * Hook function to generate cluster wide ip fragment identifier 200 */ 201 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 202 sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp, 203 void *args) = NULL; 204 205 /* 206 * Hook function to generate cluster wide SPI. 207 */ 208 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t, 209 void *) = NULL; 210 211 /* 212 * Hook function to verify if the SPI is already utlized. 213 */ 214 215 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 216 217 /* 218 * Hook function to delete the SPI from the cluster wide repository. 219 */ 220 221 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL; 222 223 /* 224 * Hook function to inform the cluster when packet received on an IDLE SA 225 */ 226 227 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t, 228 in6_addr_t, in6_addr_t, void *) = NULL; 229 230 /* 231 * Synchronization notes: 232 * 233 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 234 * MT level protection given by STREAMS. IP uses a combination of its own 235 * internal serialization mechanism and standard Solaris locking techniques. 236 * The internal serialization is per phyint. This is used to serialize 237 * plumbing operations, IPMP operations, most set ioctls, etc. 238 * 239 * Plumbing is a long sequence of operations involving message 240 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 241 * involved in plumbing operations. A natural model is to serialize these 242 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 243 * parallel without any interference. But various set ioctls on hme0 are best 244 * serialized, along with IPMP operations and processing of DLPI control 245 * messages received from drivers on a per phyint basis. This serialization is 246 * provided by the ipsq_t and primitives operating on this. Details can 247 * be found in ip_if.c above the core primitives operating on ipsq_t. 248 * 249 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 250 * Simiarly lookup of an ire by a thread also returns a refheld ire. 251 * In addition ipif's and ill's referenced by the ire are also indirectly 252 * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld 253 * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the 254 * address of an ipif has to go through the ipsq_t. This ensures that only 255 * one such exclusive operation proceeds at any time on the ipif. It then 256 * waits for all refcnts 257 * associated with this ipif to come down to zero. The address is changed 258 * only after the ipif has been quiesced. Then the ipif is brought up again. 259 * More details are described above the comment in ip_sioctl_flags. 260 * 261 * Packet processing is based mostly on IREs and are fully multi-threaded 262 * using standard Solaris MT techniques. 263 * 264 * There are explicit locks in IP to handle: 265 * - The ip_g_head list maintained by mi_open_link() and friends. 266 * 267 * - The reassembly data structures (one lock per hash bucket) 268 * 269 * - conn_lock is meant to protect conn_t fields. The fields actually 270 * protected by conn_lock are documented in the conn_t definition. 271 * 272 * - ire_lock to protect some of the fields of the ire, IRE tables 273 * (one lock per hash bucket). Refer to ip_ire.c for details. 274 * 275 * - ndp_g_lock and ncec_lock for protecting NCEs. 276 * 277 * - ill_lock protects fields of the ill and ipif. Details in ip.h 278 * 279 * - ill_g_lock: This is a global reader/writer lock. Protects the following 280 * * The AVL tree based global multi list of all ills. 281 * * The linked list of all ipifs of an ill 282 * * The <ipsq-xop> mapping 283 * * <ill-phyint> association 284 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 285 * into an ill, changing the <ipsq-xop> mapping of an ill, changing the 286 * <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as 287 * writer for the actual duration of the insertion/deletion/change. 288 * 289 * - ill_lock: This is a per ill mutex. 290 * It protects some members of the ill_t struct; see ip.h for details. 291 * It also protects the <ill-phyint> assoc. 292 * It also protects the list of ipifs hanging off the ill. 293 * 294 * - ipsq_lock: This is a per ipsq_t mutex lock. 295 * This protects some members of the ipsq_t struct; see ip.h for details. 296 * It also protects the <ipsq-ipxop> mapping 297 * 298 * - ipx_lock: This is a per ipxop_t mutex lock. 299 * This protects some members of the ipxop_t struct; see ip.h for details. 300 * 301 * - phyint_lock: This is a per phyint mutex lock. Protects just the 302 * phyint_flags 303 * 304 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 305 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 306 * uniqueness check also done atomically. 307 * 308 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 309 * group list linked by ill_usesrc_grp_next. It also protects the 310 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 311 * group is being added or deleted. This lock is taken as a reader when 312 * walking the list/group(eg: to get the number of members in a usesrc group). 313 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 314 * field is changing state i.e from NULL to non-NULL or vice-versa. For 315 * example, it is not necessary to take this lock in the initial portion 316 * of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these 317 * operations are executed exclusively and that ensures that the "usesrc 318 * group state" cannot change. The "usesrc group state" change can happen 319 * only in the latter part of ip_sioctl_slifusesrc and in ill_delete. 320 * 321 * Changing <ill-phyint>, <ipsq-xop> assocications: 322 * 323 * To change the <ill-phyint> association, the ill_g_lock must be held 324 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 325 * must be held. 326 * 327 * To change the <ipsq-xop> association, the ill_g_lock must be held as 328 * writer, the ipsq_lock must be held, and one must be writer on the ipsq. 329 * This is only done when ills are added or removed from IPMP groups. 330 * 331 * To add or delete an ipif from the list of ipifs hanging off the ill, 332 * ill_g_lock (writer) and ill_lock must be held and the thread must be 333 * a writer on the associated ipsq. 334 * 335 * To add or delete an ill to the system, the ill_g_lock must be held as 336 * writer and the thread must be a writer on the associated ipsq. 337 * 338 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 339 * must be a writer on the associated ipsq. 340 * 341 * Lock hierarchy 342 * 343 * Some lock hierarchy scenarios are listed below. 344 * 345 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock 346 * ill_g_lock -> ill_lock(s) -> phyint_lock 347 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock 348 * ill_g_lock -> ip_addr_avail_lock 349 * conn_lock -> irb_lock -> ill_lock -> ire_lock 350 * ill_g_lock -> ip_g_nd_lock 351 * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock 352 * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock 353 * arl_lock -> ill_lock 354 * ips_ire_dep_lock -> irb_lock 355 * 356 * When more than 1 ill lock is needed to be held, all ill lock addresses 357 * are sorted on address and locked starting from highest addressed lock 358 * downward. 359 * 360 * Multicast scenarios 361 * ips_ill_g_lock -> ill_mcast_lock 362 * conn_ilg_lock -> ips_ill_g_lock -> ill_lock 363 * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock 364 * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock 365 * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock 366 * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock 367 * 368 * IPsec scenarios 369 * 370 * ipsa_lock -> ill_g_lock -> ill_lock 371 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 372 * 373 * Trusted Solaris scenarios 374 * 375 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 376 * igsa_lock -> gcdb_lock 377 * gcgrp_rwlock -> ire_lock 378 * gcgrp_rwlock -> gcdb_lock 379 * 380 * squeue(sq_lock), flow related (ft_lock, fe_lock) locking 381 * 382 * cpu_lock --> ill_lock --> sqset_lock --> sq_lock 383 * sq_lock -> conn_lock -> QLOCK(q) 384 * ill_lock -> ft_lock -> fe_lock 385 * 386 * Routing/forwarding table locking notes: 387 * 388 * Lock acquisition order: Radix tree lock, irb_lock. 389 * Requirements: 390 * i. Walker must not hold any locks during the walker callback. 391 * ii Walker must not see a truncated tree during the walk because of any node 392 * deletion. 393 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 394 * in many places in the code to walk the irb list. Thus even if all the 395 * ires in a bucket have been deleted, we still can't free the radix node 396 * until the ires have actually been inactive'd (freed). 397 * 398 * Tree traversal - Need to hold the global tree lock in read mode. 399 * Before dropping the global tree lock, need to either increment the ire_refcnt 400 * to ensure that the radix node can't be deleted. 401 * 402 * Tree add - Need to hold the global tree lock in write mode to add a 403 * radix node. To prevent the node from being deleted, increment the 404 * irb_refcnt, after the node is added to the tree. The ire itself is 405 * added later while holding the irb_lock, but not the tree lock. 406 * 407 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 408 * All associated ires must be inactive (i.e. freed), and irb_refcnt 409 * must be zero. 410 * 411 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 412 * global tree lock (read mode) for traversal. 413 * 414 * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele 415 * hence we will acquire irb_lock while holding ips_ire_dep_lock. 416 * 417 * IPsec notes : 418 * 419 * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes 420 * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the 421 * ip_xmit_attr_t has the 422 * information used by the IPsec code for applying the right level of 423 * protection. The information initialized by IP in the ip_xmit_attr_t 424 * is determined by the per-socket policy or global policy in the system. 425 * For inbound datagrams, the ip_recv_attr_t 426 * starts out with nothing in it. It gets filled 427 * with the right information if it goes through the AH/ESP code, which 428 * happens if the incoming packet is secure. The information initialized 429 * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether 430 * the policy requirements needed by per-socket policy or global policy 431 * is met or not. 432 * 433 * For fully connected sockets i.e dst, src [addr, port] is known, 434 * conn_policy_cached is set indicating that policy has been cached. 435 * conn_in_enforce_policy may or may not be set depending on whether 436 * there is a global policy match or per-socket policy match. 437 * Policy inheriting happpens in ip_policy_set once the destination is known. 438 * Once the right policy is set on the conn_t, policy cannot change for 439 * this socket. This makes life simpler for TCP (UDP ?) where 440 * re-transmissions go out with the same policy. For symmetry, policy 441 * is cached for fully connected UDP sockets also. Thus if policy is cached, 442 * it also implies that policy is latched i.e policy cannot change 443 * on these sockets. As we have the right policy on the conn, we don't 444 * have to lookup global policy for every outbound and inbound datagram 445 * and thus serving as an optimization. Note that a global policy change 446 * does not affect fully connected sockets if they have policy. If fully 447 * connected sockets did not have any policy associated with it, global 448 * policy change may affect them. 449 * 450 * IP Flow control notes: 451 * --------------------- 452 * Non-TCP streams are flow controlled by IP. The way this is accomplished 453 * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When 454 * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into 455 * GLDv3. Otherwise packets are sent down to lower layers using STREAMS 456 * functions. 457 * 458 * Per Tx ring udp flow control: 459 * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in 460 * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true). 461 * 462 * The underlying link can expose multiple Tx rings to the GLDv3 mac layer. 463 * To achieve best performance, outgoing traffic need to be fanned out among 464 * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send 465 * traffic out of the NIC and it takes a fanout hint. UDP connections pass 466 * the address of connp as fanout hint to mac_tx(). Under flow controlled 467 * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This 468 * cookie points to a specific Tx ring that is blocked. The cookie is used to 469 * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t 470 * point to drain_lists (idl_t's). These drain list will store the blocked UDP 471 * connp's. The drain list is not a single list but a configurable number of 472 * lists. 473 * 474 * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t 475 * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE 476 * which is equal to 128. This array in turn contains a pointer to idl_t[], 477 * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain 478 * list will point to the list of connp's that are flow controlled. 479 * 480 * --------------- ------- ------- ------- 481 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 482 * | --------------- ------- ------- ------- 483 * | --------------- ------- ------- ------- 484 * |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 485 * ---------------- | --------------- ------- ------- ------- 486 * |idl_tx_list[0]|->| --------------- ------- ------- ------- 487 * ---------------- |->|drain_list[2]|-->|connp|-->|connp|-->|connp|--> 488 * | --------------- ------- ------- ------- 489 * . . . . . 490 * | --------------- ------- ------- ------- 491 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 492 * --------------- ------- ------- ------- 493 * --------------- ------- ------- ------- 494 * |->|drain_list[0]|-->|connp|-->|connp|-->|connp|--> 495 * | --------------- ------- ------- ------- 496 * | --------------- ------- ------- ------- 497 * ---------------- |->|drain_list[1]|-->|connp|-->|connp|-->|connp|--> 498 * |idl_tx_list[1]|->| --------------- ------- ------- ------- 499 * ---------------- | . . . . 500 * | --------------- ------- ------- ------- 501 * |->|drain_list[n]|-->|connp|-->|connp|-->|connp|--> 502 * --------------- ------- ------- ------- 503 * ..... 504 * ---------------- 505 * |idl_tx_list[n]|-> ... 506 * ---------------- 507 * 508 * When mac_tx() returns a cookie, the cookie is hashed into an index into 509 * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list 510 * to insert the conn onto. conn_drain_insert() asserts flow control for the 511 * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS). 512 * Further, conn_blocked is set to indicate that the conn is blocked. 513 * 514 * GLDv3 calls ill_flow_enable() when flow control is relieved. The cookie 515 * passed in the call to ill_flow_enable() identifies the blocked Tx ring and 516 * is again hashed to locate the appropriate idl_tx_list, which is then 517 * drained via conn_walk_drain(). conn_walk_drain() goes through each conn in 518 * the drain list and calls conn_drain_remove() to clear flow control (via 519 * calling su_txq_full() or clearing QFULL), and remove the conn from the 520 * drain list. 521 * 522 * Note that the drain list is not a single list but a (configurable) array of 523 * lists (8 elements by default). Synchronization between drain insertion and 524 * flow control wakeup is handled by using idl_txl->txl_lock, and only 525 * conn_drain_insert() and conn_drain_remove() manipulate the drain list. 526 * 527 * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE. 528 * On the send side, if the packet cannot be sent down to the driver by IP 529 * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the 530 * caller, who may then invoke ixa_check_drain_insert() to insert the conn on 531 * the 0'th drain list. When ip_wsrv() runs on the ill_wq because flow 532 * control has been relieved, the blocked conns in the 0'th drain list are 533 * drained as in the non-STREAMS case. 534 * 535 * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL 536 * is done when the conn is inserted into the drain list (conn_drain_insert()) 537 * and cleared when the conn is removed from the it (conn_drain_remove()). 538 * 539 * IPQOS notes: 540 * 541 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 542 * and IPQoS modules. IPPF includes hooks in IP at different control points 543 * (callout positions) which direct packets to IPQoS modules for policy 544 * processing. Policies, if present, are global. 545 * 546 * The callout positions are located in the following paths: 547 * o local_in (packets destined for this host) 548 * o local_out (packets orginating from this host ) 549 * o fwd_in (packets forwarded by this m/c - inbound) 550 * o fwd_out (packets forwarded by this m/c - outbound) 551 * Hooks at these callout points can be enabled/disabled using the ndd variable 552 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 553 * By default all the callout positions are enabled. 554 * 555 * Outbound (local_out) 556 * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6. 557 * 558 * Inbound (local_in) 559 * Hooks are placed in ip_fanout_v4 and ip_fanout_v6. 560 * 561 * Forwarding (in and out) 562 * Hooks are placed in ire_recv_forward_v4/v6. 563 * 564 * IP Policy Framework processing (IPPF processing) 565 * Policy processing for a packet is initiated by ip_process, which ascertains 566 * that the classifier (ipgpc) is loaded and configured, failing which the 567 * packet resumes normal processing in IP. If the clasifier is present, the 568 * packet is acted upon by one or more IPQoS modules (action instances), per 569 * filters configured in ipgpc and resumes normal IP processing thereafter. 570 * An action instance can drop a packet in course of its processing. 571 * 572 * Zones notes: 573 * 574 * The partitioning rules for networking are as follows: 575 * 1) Packets coming from a zone must have a source address belonging to that 576 * zone. 577 * 2) Packets coming from a zone can only be sent on a physical interface on 578 * which the zone has an IP address. 579 * 3) Between two zones on the same machine, packet delivery is only allowed if 580 * there's a matching route for the destination and zone in the forwarding 581 * table. 582 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 583 * different zones can bind to the same port with the wildcard address 584 * (INADDR_ANY). 585 * 586 * The granularity of interface partitioning is at the logical interface level. 587 * Therefore, every zone has its own IP addresses, and incoming packets can be 588 * attributed to a zone unambiguously. A logical interface is placed into a zone 589 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 590 * structure. Rule (1) is implemented by modifying the source address selection 591 * algorithm so that the list of eligible addresses is filtered based on the 592 * sending process zone. 593 * 594 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 595 * across all zones, depending on their type. Here is the break-up: 596 * 597 * IRE type Shared/exclusive 598 * -------- ---------------- 599 * IRE_BROADCAST Exclusive 600 * IRE_DEFAULT (default routes) Shared (*) 601 * IRE_LOCAL Exclusive (x) 602 * IRE_LOOPBACK Exclusive 603 * IRE_PREFIX (net routes) Shared (*) 604 * IRE_IF_NORESOLVER (interface routes) Exclusive 605 * IRE_IF_RESOLVER (interface routes) Exclusive 606 * IRE_IF_CLONE (interface routes) Exclusive 607 * IRE_HOST (host routes) Shared (*) 608 * 609 * (*) A zone can only use a default or off-subnet route if the gateway is 610 * directly reachable from the zone, that is, if the gateway's address matches 611 * one of the zone's logical interfaces. 612 * 613 * (x) IRE_LOCAL are handled a bit differently. 614 * When ip_restrict_interzone_loopback is set (the default), 615 * ire_route_recursive restricts loopback using an IRE_LOCAL 616 * between zone to the case when L2 would have conceptually looped the packet 617 * back, i.e. the loopback which is required since neither Ethernet drivers 618 * nor Ethernet hardware loops them back. This is the case when the normal 619 * routes (ignoring IREs with different zoneids) would send out the packet on 620 * the same ill as the ill with which is IRE_LOCAL is associated. 621 * 622 * Multiple zones can share a common broadcast address; typically all zones 623 * share the 255.255.255.255 address. Incoming as well as locally originated 624 * broadcast packets must be dispatched to all the zones on the broadcast 625 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 626 * since some zones may not be on the 10.16.72/24 network. To handle this, each 627 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 628 * sent to every zone that has an IRE_BROADCAST entry for the destination 629 * address on the input ill, see ip_input_broadcast(). 630 * 631 * Applications in different zones can join the same multicast group address. 632 * The same logic applies for multicast as for broadcast. ip_input_multicast 633 * dispatches packets to all zones that have members on the physical interface. 634 */ 635 636 /* 637 * Squeue Fanout flags: 638 * 0: No fanout. 639 * 1: Fanout across all squeues 640 */ 641 boolean_t ip_squeue_fanout = 0; 642 643 /* 644 * Maximum dups allowed per packet. 645 */ 646 uint_t ip_max_frag_dups = 10; 647 648 static int ip_open(queue_t *q, dev_t *devp, int flag, int sflag, 649 cred_t *credp, boolean_t isv6); 650 static mblk_t *ip_xmit_attach_llhdr(mblk_t *, nce_t *); 651 652 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *); 653 static void icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *); 654 static void icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *, 655 ip_recv_attr_t *); 656 static void icmp_options_update(ipha_t *); 657 static void icmp_param_problem(mblk_t *, uint8_t, ip_recv_attr_t *); 658 static void icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *); 659 static mblk_t *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *); 660 static void icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *, 661 ip_recv_attr_t *); 662 static void icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *); 663 static void icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *, 664 ip_recv_attr_t *); 665 666 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 667 char *ip_dot_addr(ipaddr_t, char *); 668 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 669 static char *ip_dot_saddr(uchar_t *, char *); 670 static void ip_lrput(queue_t *, mblk_t *); 671 ipaddr_t ip_net_mask(ipaddr_t); 672 char *ip_nv_lookup(nv_t *, int); 673 void ip_rput(queue_t *, mblk_t *); 674 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 675 void *dummy_arg); 676 int ip_snmp_get(queue_t *, mblk_t *, int, boolean_t); 677 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 678 mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t); 679 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *, 680 ip_stack_t *, boolean_t); 681 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *, 682 boolean_t); 683 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst); 684 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst); 685 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst); 686 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst); 687 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *, 688 ip_stack_t *ipst, boolean_t); 689 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *, 690 ip_stack_t *ipst, boolean_t); 691 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *, 692 ip_stack_t *ipst); 693 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *, 694 ip_stack_t *ipst); 695 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *, 696 ip_stack_t *ipst); 697 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *, 698 ip_stack_t *ipst); 699 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *, 700 ip_stack_t *ipst); 701 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *, 702 ip_stack_t *ipst); 703 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int, 704 ip_stack_t *ipst); 705 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int, 706 ip_stack_t *ipst); 707 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 708 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 709 static int ip_snmp_get2_v4_media(ncec_t *, iproutedata_t *); 710 static int ip_snmp_get2_v6_media(ncec_t *, iproutedata_t *); 711 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 712 713 static mblk_t *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *, 714 mblk_t *); 715 716 static void conn_drain_init(ip_stack_t *); 717 static void conn_drain_fini(ip_stack_t *); 718 static void conn_drain(conn_t *connp, boolean_t closing); 719 720 static void conn_walk_drain(ip_stack_t *, idl_tx_list_t *); 721 static void conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *); 722 723 static void *ip_stack_init(netstackid_t stackid, netstack_t *ns); 724 static void ip_stack_shutdown(netstackid_t stackid, void *arg); 725 static void ip_stack_fini(netstackid_t stackid, void *arg); 726 727 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 728 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 729 ire_t *, conn_t *, boolean_t, const in6_addr_t *, mcast_record_t, 730 const in6_addr_t *); 731 732 static int ip_squeue_switch(int); 733 734 static void *ip_kstat_init(netstackid_t, ip_stack_t *); 735 static void ip_kstat_fini(netstackid_t, kstat_t *); 736 static int ip_kstat_update(kstat_t *kp, int rw); 737 static void *icmp_kstat_init(netstackid_t); 738 static void icmp_kstat_fini(netstackid_t, kstat_t *); 739 static int icmp_kstat_update(kstat_t *kp, int rw); 740 static void *ip_kstat2_init(netstackid_t, ip_stat_t *); 741 static void ip_kstat2_fini(netstackid_t, kstat_t *); 742 743 static void ipobs_init(ip_stack_t *); 744 static void ipobs_fini(ip_stack_t *); 745 746 static int ip_tp_cpu_update(cpu_setup_t, int, void *); 747 748 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 749 750 static long ip_rput_pullups; 751 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 752 753 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */ 754 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */ 755 756 int ip_debug; 757 758 /* 759 * Multirouting/CGTP stuff 760 */ 761 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 762 763 /* 764 * IP tunables related declarations. Definitions are in ip_tunables.c 765 */ 766 extern mod_prop_info_t ip_propinfo_tbl[]; 767 extern int ip_propinfo_count; 768 769 /* 770 * Table of IP ioctls encoding the various properties of the ioctl and 771 * indexed based on the last byte of the ioctl command. Occasionally there 772 * is a clash, and there is more than 1 ioctl with the same last byte. 773 * In such a case 1 ioctl is encoded in the ndx table and the remaining 774 * ioctls are encoded in the misc table. An entry in the ndx table is 775 * retrieved by indexing on the last byte of the ioctl command and comparing 776 * the ioctl command with the value in the ndx table. In the event of a 777 * mismatch the misc table is then searched sequentially for the desired 778 * ioctl command. 779 * 780 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 781 */ 782 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 783 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 784 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 785 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 786 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 787 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 788 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 789 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 790 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 791 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 792 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 793 794 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 795 MISC_CMD, ip_siocaddrt, NULL }, 796 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 797 MISC_CMD, ip_siocdelrt, NULL }, 798 799 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 800 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 801 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD, 802 IF_CMD, ip_sioctl_get_addr, NULL }, 803 804 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 805 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 806 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 807 IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL }, 808 809 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 810 IPI_PRIV | IPI_WR, 811 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 812 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 813 IPI_MODOK | IPI_GET_CMD, 814 IF_CMD, ip_sioctl_get_flags, NULL }, 815 816 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 817 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 818 819 /* copyin size cannot be coded for SIOCGIFCONF */ 820 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD, 821 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 822 823 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 824 IF_CMD, ip_sioctl_mtu, NULL }, 825 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD, 826 IF_CMD, ip_sioctl_get_mtu, NULL }, 827 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 828 IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL }, 829 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 830 IF_CMD, ip_sioctl_brdaddr, NULL }, 831 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 832 IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL }, 833 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 834 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 835 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 836 IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL }, 837 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 838 IF_CMD, ip_sioctl_metric, NULL }, 839 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 840 841 /* See 166-168 below for extended SIOC*XARP ioctls */ 842 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 843 ARP_CMD, ip_sioctl_arp, NULL }, 844 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD, 845 ARP_CMD, ip_sioctl_arp, NULL }, 846 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR, 847 ARP_CMD, ip_sioctl_arp, NULL }, 848 849 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 850 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 851 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 852 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 853 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 854 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 855 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 856 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 857 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 858 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 859 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 860 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 861 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 862 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 863 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 864 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 865 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 866 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 867 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 868 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 869 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 870 871 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 872 MISC_CMD, if_unitsel, if_unitsel_restart }, 873 874 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 875 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 876 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 877 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 878 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 879 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 880 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 881 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 882 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 883 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 884 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 885 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 886 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 887 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 888 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 889 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 890 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 891 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 892 893 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 894 IPI_PRIV | IPI_WR | IPI_MODOK, 895 IF_CMD, ip_sioctl_sifname, NULL }, 896 897 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 898 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 899 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 900 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 901 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 902 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 903 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 904 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 905 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 906 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 907 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 908 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 909 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 910 911 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD, 912 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 913 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD, 914 IF_CMD, ip_sioctl_get_muxid, NULL }, 915 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 916 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL }, 917 918 /* Both if and lif variants share same func */ 919 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD, 920 IF_CMD, ip_sioctl_get_lifindex, NULL }, 921 /* Both if and lif variants share same func */ 922 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 923 IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL }, 924 925 /* copyin size cannot be coded for SIOCGIFCONF */ 926 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD, 927 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 928 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 929 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 930 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 931 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 932 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 933 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 934 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 935 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 936 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 937 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 938 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 939 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 940 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 941 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 942 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 943 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 944 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 945 946 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 947 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif, 948 ip_sioctl_removeif_restart }, 949 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 950 IPI_GET_CMD | IPI_PRIV | IPI_WR, 951 LIF_CMD, ip_sioctl_addif, NULL }, 952 #define SIOCLIFADDR_NDX 112 953 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 954 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 955 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 956 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL }, 957 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 958 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 959 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 960 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 961 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 962 IPI_PRIV | IPI_WR, 963 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 964 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 965 IPI_GET_CMD | IPI_MODOK, 966 LIF_CMD, ip_sioctl_get_flags, NULL }, 967 968 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 969 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 970 971 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 972 ip_sioctl_get_lifconf, NULL }, 973 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 974 LIF_CMD, ip_sioctl_mtu, NULL }, 975 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD, 976 LIF_CMD, ip_sioctl_get_mtu, NULL }, 977 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 978 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 979 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 980 LIF_CMD, ip_sioctl_brdaddr, NULL }, 981 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 982 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL }, 983 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 984 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 985 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 986 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL }, 987 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 988 LIF_CMD, ip_sioctl_metric, NULL }, 989 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 990 IPI_PRIV | IPI_WR | IPI_MODOK, 991 LIF_CMD, ip_sioctl_slifname, 992 ip_sioctl_slifname_restart }, 993 994 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD, 995 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 996 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 997 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL }, 998 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 999 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL }, 1000 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1001 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1002 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1003 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 }, 1004 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1005 LIF_CMD, ip_sioctl_token, NULL }, 1006 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1007 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL }, 1008 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1009 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1010 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1011 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL }, 1012 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1013 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1014 1015 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1016 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1017 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1018 LIF_CMD, ip_siocdelndp_v6, NULL }, 1019 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1020 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1021 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1022 LIF_CMD, ip_siocsetndp_v6, NULL }, 1023 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1024 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1025 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1026 MISC_CMD, ip_sioctl_tonlink, NULL }, 1027 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1028 MISC_CMD, ip_sioctl_tmysite, NULL }, 1029 /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1030 /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1031 1032 /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */ 1033 /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1034 /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1035 /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1036 /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1037 1038 /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1039 1040 /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD, 1041 LIF_CMD, ip_sioctl_get_binding, NULL }, 1042 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1043 IPI_PRIV | IPI_WR, 1044 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1045 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1046 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL }, 1047 /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t), 1048 IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL }, 1049 1050 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1051 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1052 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1053 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1054 1055 /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1056 1057 /* These are handled in ip_sioctl_copyin_setup itself */ 1058 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1059 MISC_CMD, NULL, NULL }, 1060 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1061 MISC_CMD, NULL, NULL }, 1062 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1063 1064 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD, 1065 ip_sioctl_get_lifconf, NULL }, 1066 1067 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1068 XARP_CMD, ip_sioctl_arp, NULL }, 1069 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD, 1070 XARP_CMD, ip_sioctl_arp, NULL }, 1071 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR, 1072 XARP_CMD, ip_sioctl_arp, NULL }, 1073 1074 /* SIOCPOPSOCKFS is not handled by IP */ 1075 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1076 1077 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1078 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1079 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1080 IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone, 1081 ip_sioctl_slifzone_restart }, 1082 /* 172-174 are SCTP ioctls and not handled by IP */ 1083 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1084 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1085 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1086 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1087 IPI_GET_CMD, LIF_CMD, 1088 ip_sioctl_get_lifusesrc, 0 }, 1089 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1090 IPI_PRIV | IPI_WR, 1091 LIF_CMD, ip_sioctl_slifusesrc, 1092 NULL }, 1093 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1094 ip_sioctl_get_lifsrcof, NULL }, 1095 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1096 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1097 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0, 1098 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1099 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1100 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1101 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0, 1102 MSFILT_CMD, ip_sioctl_msfilter, NULL }, 1103 /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1104 /* SIOCSENABLESDP is handled by SDP */ 1105 /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL }, 1106 /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL }, 1107 /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD, 1108 IF_CMD, ip_sioctl_get_ifhwaddr, NULL }, 1109 /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL }, 1110 /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD, 1111 ip_sioctl_ilb_cmd, NULL }, 1112 /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL }, 1113 /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL}, 1114 /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq), 1115 IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL }, 1116 /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1117 LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart }, 1118 /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD, 1119 LIF_CMD, ip_sioctl_get_lifhwaddr, NULL } 1120 }; 1121 1122 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1123 1124 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1125 { I_LINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1126 { I_UNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1127 { I_PLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1128 { I_PUNLINK, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1129 { ND_GET, 0, 0, 0, NULL, NULL }, 1130 { ND_SET, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL }, 1131 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1132 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD, 1133 MISC_CMD, mrt_ioctl}, 1134 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD, 1135 MISC_CMD, mrt_ioctl}, 1136 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD, 1137 MISC_CMD, mrt_ioctl} 1138 }; 1139 1140 int ip_misc_ioctl_count = 1141 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1142 1143 int conn_drain_nthreads; /* Number of drainers reqd. */ 1144 /* Settable in /etc/system */ 1145 /* Defined in ip_ire.c */ 1146 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1147 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1148 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1149 1150 static nv_t ire_nv_arr[] = { 1151 { IRE_BROADCAST, "BROADCAST" }, 1152 { IRE_LOCAL, "LOCAL" }, 1153 { IRE_LOOPBACK, "LOOPBACK" }, 1154 { IRE_DEFAULT, "DEFAULT" }, 1155 { IRE_PREFIX, "PREFIX" }, 1156 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1157 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1158 { IRE_IF_CLONE, "IF_CLONE" }, 1159 { IRE_HOST, "HOST" }, 1160 { IRE_MULTICAST, "MULTICAST" }, 1161 { IRE_NOROUTE, "NOROUTE" }, 1162 { 0 } 1163 }; 1164 1165 nv_t *ire_nv_tbl = ire_nv_arr; 1166 1167 /* Simple ICMP IP Header Template */ 1168 static ipha_t icmp_ipha = { 1169 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1170 }; 1171 1172 struct module_info ip_mod_info = { 1173 IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT, 1174 IP_MOD_LOWAT 1175 }; 1176 1177 /* 1178 * Duplicate static symbols within a module confuses mdb; so we avoid the 1179 * problem by making the symbols here distinct from those in udp.c. 1180 */ 1181 1182 /* 1183 * Entry points for IP as a device and as a module. 1184 * We have separate open functions for the /dev/ip and /dev/ip6 devices. 1185 */ 1186 static struct qinit iprinitv4 = { 1187 (pfi_t)ip_rput, NULL, ip_openv4, ip_close, NULL, 1188 &ip_mod_info 1189 }; 1190 1191 struct qinit iprinitv6 = { 1192 (pfi_t)ip_rput_v6, NULL, ip_openv6, ip_close, NULL, 1193 &ip_mod_info 1194 }; 1195 1196 static struct qinit ipwinit = { 1197 (pfi_t)ip_wput_nondata, (pfi_t)ip_wsrv, NULL, NULL, NULL, 1198 &ip_mod_info 1199 }; 1200 1201 static struct qinit iplrinit = { 1202 (pfi_t)ip_lrput, NULL, ip_openv4, ip_close, NULL, 1203 &ip_mod_info 1204 }; 1205 1206 static struct qinit iplwinit = { 1207 (pfi_t)ip_lwput, NULL, NULL, NULL, NULL, 1208 &ip_mod_info 1209 }; 1210 1211 /* For AF_INET aka /dev/ip */ 1212 struct streamtab ipinfov4 = { 1213 &iprinitv4, &ipwinit, &iplrinit, &iplwinit 1214 }; 1215 1216 /* For AF_INET6 aka /dev/ip6 */ 1217 struct streamtab ipinfov6 = { 1218 &iprinitv6, &ipwinit, &iplrinit, &iplwinit 1219 }; 1220 1221 #ifdef DEBUG 1222 boolean_t skip_sctp_cksum = B_FALSE; 1223 #endif 1224 1225 /* 1226 * Generate an ICMP fragmentation needed message. 1227 * When called from ip_output side a minimal ip_recv_attr_t needs to be 1228 * constructed by the caller. 1229 */ 1230 void 1231 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira) 1232 { 1233 icmph_t icmph; 1234 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1235 1236 mp = icmp_pkt_err_ok(mp, ira); 1237 if (mp == NULL) 1238 return; 1239 1240 bzero(&icmph, sizeof (icmph_t)); 1241 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1242 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1243 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1244 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded); 1245 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 1246 1247 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 1248 } 1249 1250 /* 1251 * icmp_inbound_v4 deals with ICMP messages that are handled by IP. 1252 * If the ICMP message is consumed by IP, i.e., it should not be delivered 1253 * to any IPPROTO_ICMP raw sockets, then it returns NULL. 1254 * Likewise, if the ICMP error is misformed (too short, etc), then it 1255 * returns NULL. The caller uses this to determine whether or not to send 1256 * to raw sockets. 1257 * 1258 * All error messages are passed to the matching transport stream. 1259 * 1260 * The following cases are handled by icmp_inbound: 1261 * 1) It needs to send a reply back and possibly delivering it 1262 * to the "interested" upper clients. 1263 * 2) Return the mblk so that the caller can pass it to the RAW socket clients. 1264 * 3) It needs to change some values in IP only. 1265 * 4) It needs to change some values in IP and upper layers e.g TCP 1266 * by delivering an error to the upper layers. 1267 * 1268 * We handle the above three cases in the context of IPsec in the 1269 * following way : 1270 * 1271 * 1) Send the reply back in the same way as the request came in. 1272 * If it came in encrypted, it goes out encrypted. If it came in 1273 * clear, it goes out in clear. Thus, this will prevent chosen 1274 * plain text attack. 1275 * 2) The client may or may not expect things to come in secure. 1276 * If it comes in secure, the policy constraints are checked 1277 * before delivering it to the upper layers. If it comes in 1278 * clear, ipsec_inbound_accept_clear will decide whether to 1279 * accept this in clear or not. In both the cases, if the returned 1280 * message (IP header + 8 bytes) that caused the icmp message has 1281 * AH/ESP headers, it is sent up to AH/ESP for validation before 1282 * sending up. If there are only 8 bytes of returned message, then 1283 * upper client will not be notified. 1284 * 3) Check with global policy to see whether it matches the constaints. 1285 * But this will be done only if icmp_accept_messages_in_clear is 1286 * zero. 1287 * 4) If we need to change both in IP and ULP, then the decision taken 1288 * while affecting the values in IP and while delivering up to TCP 1289 * should be the same. 1290 * 1291 * There are two cases. 1292 * 1293 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1294 * failed), we will not deliver it to the ULP, even though they 1295 * are *willing* to accept in *clear*. This is fine as our global 1296 * disposition to icmp messages asks us reject the datagram. 1297 * 1298 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1299 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1300 * to deliver it to ULP (policy failed), it can lead to 1301 * consistency problems. The cases known at this time are 1302 * ICMP_DESTINATION_UNREACHABLE messages with following code 1303 * values : 1304 * 1305 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1306 * and Upper layer rejects. Then the communication will 1307 * come to a stop. This is solved by making similar decisions 1308 * at both levels. Currently, when we are unable to deliver 1309 * to the Upper Layer (due to policy failures) while IP has 1310 * adjusted dce_pmtu, the next outbound datagram would 1311 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1312 * will be with the right level of protection. Thus the right 1313 * value will be communicated even if we are not able to 1314 * communicate when we get from the wire initially. But this 1315 * assumes there would be at least one outbound datagram after 1316 * IP has adjusted its dce_pmtu value. To make things 1317 * simpler, we accept in clear after the validation of 1318 * AH/ESP headers. 1319 * 1320 * - Other ICMP ERRORS : We may not be able to deliver it to the 1321 * upper layer depending on the level of protection the upper 1322 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1323 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1324 * should be accepted in clear when the Upper layer expects secure. 1325 * Thus the communication may get aborted by some bad ICMP 1326 * packets. 1327 */ 1328 mblk_t * 1329 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira) 1330 { 1331 icmph_t *icmph; 1332 ipha_t *ipha; /* Outer header */ 1333 int ip_hdr_length; /* Outer header length */ 1334 boolean_t interested; 1335 ipif_t *ipif; 1336 uint32_t ts; 1337 uint32_t *tsp; 1338 timestruc_t now; 1339 ill_t *ill = ira->ira_ill; 1340 ip_stack_t *ipst = ill->ill_ipst; 1341 zoneid_t zoneid = ira->ira_zoneid; 1342 int len_needed; 1343 mblk_t *mp_ret = NULL; 1344 1345 ipha = (ipha_t *)mp->b_rptr; 1346 1347 BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs); 1348 1349 ip_hdr_length = ira->ira_ip_hdr_length; 1350 if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) { 1351 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) { 1352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1353 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1354 freemsg(mp); 1355 return (NULL); 1356 } 1357 /* Last chance to get real. */ 1358 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira); 1359 if (ipha == NULL) { 1360 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 1361 freemsg(mp); 1362 return (NULL); 1363 } 1364 } 1365 1366 /* The IP header will always be a multiple of four bytes */ 1367 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1368 ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type, 1369 icmph->icmph_code)); 1370 1371 /* 1372 * We will set "interested" to "true" if we should pass a copy to 1373 * the transport or if we handle the packet locally. 1374 */ 1375 interested = B_FALSE; 1376 switch (icmph->icmph_type) { 1377 case ICMP_ECHO_REPLY: 1378 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps); 1379 break; 1380 case ICMP_DEST_UNREACHABLE: 1381 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1382 BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded); 1383 interested = B_TRUE; /* Pass up to transport */ 1384 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs); 1385 break; 1386 case ICMP_SOURCE_QUENCH: 1387 interested = B_TRUE; /* Pass up to transport */ 1388 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs); 1389 break; 1390 case ICMP_REDIRECT: 1391 if (!ipst->ips_ip_ignore_redirect) 1392 interested = B_TRUE; 1393 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects); 1394 break; 1395 case ICMP_ECHO_REQUEST: 1396 /* 1397 * Whether to respond to echo requests that come in as IP 1398 * broadcasts or as IP multicast is subject to debate 1399 * (what isn't?). We aim to please, you pick it. 1400 * Default is do it. 1401 */ 1402 if (ira->ira_flags & IRAF_MULTICAST) { 1403 /* multicast: respond based on tunable */ 1404 interested = ipst->ips_ip_g_resp_to_echo_mcast; 1405 } else if (ira->ira_flags & IRAF_BROADCAST) { 1406 /* broadcast: respond based on tunable */ 1407 interested = ipst->ips_ip_g_resp_to_echo_bcast; 1408 } else { 1409 /* unicast: always respond */ 1410 interested = B_TRUE; 1411 } 1412 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos); 1413 if (!interested) { 1414 /* We never pass these to RAW sockets */ 1415 freemsg(mp); 1416 return (NULL); 1417 } 1418 1419 /* Check db_ref to make sure we can modify the packet. */ 1420 if (mp->b_datap->db_ref > 1) { 1421 mblk_t *mp1; 1422 1423 mp1 = copymsg(mp); 1424 freemsg(mp); 1425 if (!mp1) { 1426 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1427 return (NULL); 1428 } 1429 mp = mp1; 1430 ipha = (ipha_t *)mp->b_rptr; 1431 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1432 } 1433 icmph->icmph_type = ICMP_ECHO_REPLY; 1434 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps); 1435 icmp_send_reply_v4(mp, ipha, icmph, ira); 1436 return (NULL); 1437 1438 case ICMP_ROUTER_ADVERTISEMENT: 1439 case ICMP_ROUTER_SOLICITATION: 1440 break; 1441 case ICMP_TIME_EXCEEDED: 1442 interested = B_TRUE; /* Pass up to transport */ 1443 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds); 1444 break; 1445 case ICMP_PARAM_PROBLEM: 1446 interested = B_TRUE; /* Pass up to transport */ 1447 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs); 1448 break; 1449 case ICMP_TIME_STAMP_REQUEST: 1450 /* Response to Time Stamp Requests is local policy. */ 1451 if (ipst->ips_ip_g_resp_to_timestamp) { 1452 if (ira->ira_flags & IRAF_MULTIBROADCAST) 1453 interested = 1454 ipst->ips_ip_g_resp_to_timestamp_bcast; 1455 else 1456 interested = B_TRUE; 1457 } 1458 if (!interested) { 1459 /* We never pass these to RAW sockets */ 1460 freemsg(mp); 1461 return (NULL); 1462 } 1463 1464 /* Make sure we have enough of the packet */ 1465 len_needed = ip_hdr_length + ICMPH_SIZE + 1466 3 * sizeof (uint32_t); 1467 1468 if (mp->b_wptr - mp->b_rptr < len_needed) { 1469 ipha = ip_pullup(mp, len_needed, ira); 1470 if (ipha == NULL) { 1471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1472 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1473 mp, ill); 1474 freemsg(mp); 1475 return (NULL); 1476 } 1477 /* Refresh following the pullup. */ 1478 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1479 } 1480 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps); 1481 /* Check db_ref to make sure we can modify the packet. */ 1482 if (mp->b_datap->db_ref > 1) { 1483 mblk_t *mp1; 1484 1485 mp1 = copymsg(mp); 1486 freemsg(mp); 1487 if (!mp1) { 1488 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1489 return (NULL); 1490 } 1491 mp = mp1; 1492 ipha = (ipha_t *)mp->b_rptr; 1493 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1494 } 1495 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1496 tsp = (uint32_t *)&icmph[1]; 1497 tsp++; /* Skip past 'originate time' */ 1498 /* Compute # of milliseconds since midnight */ 1499 gethrestime(&now); 1500 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1501 NSEC2MSEC(now.tv_nsec); 1502 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1503 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1504 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps); 1505 icmp_send_reply_v4(mp, ipha, icmph, ira); 1506 return (NULL); 1507 1508 case ICMP_TIME_STAMP_REPLY: 1509 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps); 1510 break; 1511 case ICMP_INFO_REQUEST: 1512 /* Per RFC 1122 3.2.2.7, ignore this. */ 1513 case ICMP_INFO_REPLY: 1514 break; 1515 case ICMP_ADDRESS_MASK_REQUEST: 1516 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1517 interested = 1518 ipst->ips_ip_respond_to_address_mask_broadcast; 1519 } else { 1520 interested = B_TRUE; 1521 } 1522 if (!interested) { 1523 /* We never pass these to RAW sockets */ 1524 freemsg(mp); 1525 return (NULL); 1526 } 1527 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN; 1528 if (mp->b_wptr - mp->b_rptr < len_needed) { 1529 ipha = ip_pullup(mp, len_needed, ira); 1530 if (ipha == NULL) { 1531 BUMP_MIB(ill->ill_ip_mib, 1532 ipIfStatsInTruncatedPkts); 1533 ip_drop_input("ipIfStatsInTruncatedPkts", mp, 1534 ill); 1535 freemsg(mp); 1536 return (NULL); 1537 } 1538 /* Refresh following the pullup. */ 1539 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1540 } 1541 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks); 1542 /* Check db_ref to make sure we can modify the packet. */ 1543 if (mp->b_datap->db_ref > 1) { 1544 mblk_t *mp1; 1545 1546 mp1 = copymsg(mp); 1547 freemsg(mp); 1548 if (!mp1) { 1549 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 1550 return (NULL); 1551 } 1552 mp = mp1; 1553 ipha = (ipha_t *)mp->b_rptr; 1554 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1555 } 1556 /* 1557 * Need the ipif with the mask be the same as the source 1558 * address of the mask reply. For unicast we have a specific 1559 * ipif. For multicast/broadcast we only handle onlink 1560 * senders, and use the source address to pick an ipif. 1561 */ 1562 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst); 1563 if (ipif == NULL) { 1564 /* Broadcast or multicast */ 1565 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1566 if (ipif == NULL) { 1567 freemsg(mp); 1568 return (NULL); 1569 } 1570 } 1571 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1572 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 1573 ipif_refrele(ipif); 1574 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps); 1575 icmp_send_reply_v4(mp, ipha, icmph, ira); 1576 return (NULL); 1577 1578 case ICMP_ADDRESS_MASK_REPLY: 1579 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps); 1580 break; 1581 default: 1582 interested = B_TRUE; /* Pass up to transport */ 1583 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns); 1584 break; 1585 } 1586 /* 1587 * See if there is an ICMP client to avoid an extra copymsg/freemsg 1588 * if there isn't one. 1589 */ 1590 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) { 1591 /* If there is an ICMP client and we want one too, copy it. */ 1592 1593 if (!interested) { 1594 /* Caller will deliver to RAW sockets */ 1595 return (mp); 1596 } 1597 mp_ret = copymsg(mp); 1598 if (mp_ret == NULL) { 1599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1600 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1601 } 1602 } else if (!interested) { 1603 /* Neither we nor raw sockets are interested. Drop packet now */ 1604 freemsg(mp); 1605 return (NULL); 1606 } 1607 1608 /* 1609 * ICMP error or redirect packet. Make sure we have enough of 1610 * the header and that db_ref == 1 since we might end up modifying 1611 * the packet. 1612 */ 1613 if (mp->b_cont != NULL) { 1614 if (ip_pullup(mp, -1, ira) == NULL) { 1615 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1616 ip_drop_input("ipIfStatsInDiscards - ip_pullup", 1617 mp, ill); 1618 freemsg(mp); 1619 return (mp_ret); 1620 } 1621 } 1622 1623 if (mp->b_datap->db_ref > 1) { 1624 mblk_t *mp1; 1625 1626 mp1 = copymsg(mp); 1627 if (mp1 == NULL) { 1628 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1629 ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill); 1630 freemsg(mp); 1631 return (mp_ret); 1632 } 1633 freemsg(mp); 1634 mp = mp1; 1635 } 1636 1637 /* 1638 * In case mp has changed, verify the message before any further 1639 * processes. 1640 */ 1641 ipha = (ipha_t *)mp->b_rptr; 1642 icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length]; 1643 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 1644 freemsg(mp); 1645 return (mp_ret); 1646 } 1647 1648 switch (icmph->icmph_type) { 1649 case ICMP_REDIRECT: 1650 icmp_redirect_v4(mp, ipha, icmph, ira); 1651 break; 1652 case ICMP_DEST_UNREACHABLE: 1653 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 1654 /* Update DCE and adjust MTU is icmp header if needed */ 1655 icmp_inbound_too_big_v4(icmph, ira); 1656 } 1657 /* FALLTHROUGH */ 1658 default: 1659 icmp_inbound_error_fanout_v4(mp, icmph, ira); 1660 break; 1661 } 1662 return (mp_ret); 1663 } 1664 1665 /* 1666 * Send an ICMP echo, timestamp or address mask reply. 1667 * The caller has already updated the payload part of the packet. 1668 * We handle the ICMP checksum, IP source address selection and feed 1669 * the packet into ip_output_simple. 1670 */ 1671 static void 1672 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, 1673 ip_recv_attr_t *ira) 1674 { 1675 uint_t ip_hdr_length = ira->ira_ip_hdr_length; 1676 ill_t *ill = ira->ira_ill; 1677 ip_stack_t *ipst = ill->ill_ipst; 1678 ip_xmit_attr_t ixas; 1679 1680 /* Send out an ICMP packet */ 1681 icmph->icmph_checksum = 0; 1682 icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0); 1683 /* Reset time to live. */ 1684 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 1685 { 1686 /* Swap source and destination addresses */ 1687 ipaddr_t tmp; 1688 1689 tmp = ipha->ipha_src; 1690 ipha->ipha_src = ipha->ipha_dst; 1691 ipha->ipha_dst = tmp; 1692 } 1693 ipha->ipha_ident = 0; 1694 if (!IS_SIMPLE_IPH(ipha)) 1695 icmp_options_update(ipha); 1696 1697 bzero(&ixas, sizeof (ixas)); 1698 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 1699 ixas.ixa_zoneid = ira->ira_zoneid; 1700 ixas.ixa_cred = kcred; 1701 ixas.ixa_cpid = NOPID; 1702 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 1703 ixas.ixa_ifindex = 0; 1704 ixas.ixa_ipst = ipst; 1705 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 1706 1707 if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) { 1708 /* 1709 * This packet should go out the same way as it 1710 * came in i.e in clear, independent of the IPsec policy 1711 * for transmitting packets. 1712 */ 1713 ixas.ixa_flags |= IXAF_NO_IPSEC; 1714 } else { 1715 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 1716 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1717 /* Note: mp already consumed and ip_drop_packet done */ 1718 return; 1719 } 1720 } 1721 if (ira->ira_flags & IRAF_MULTIBROADCAST) { 1722 /* 1723 * Not one or our addresses (IRE_LOCALs), thus we let 1724 * ip_output_simple pick the source. 1725 */ 1726 ipha->ipha_src = INADDR_ANY; 1727 ixas.ixa_flags |= IXAF_SET_SOURCE; 1728 } 1729 /* Should we send with DF and use dce_pmtu? */ 1730 if (ipst->ips_ipv4_icmp_return_pmtu) { 1731 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY; 1732 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS; 1733 } 1734 1735 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 1736 1737 (void) ip_output_simple(mp, &ixas); 1738 ixa_cleanup(&ixas); 1739 } 1740 1741 /* 1742 * Verify the ICMP messages for either for ICMP error or redirect packet. 1743 * The caller should have fully pulled up the message. If it's a redirect 1744 * packet, only basic checks on IP header will be done; otherwise, verify 1745 * the packet by looking at the included ULP header. 1746 * 1747 * Called before icmp_inbound_error_fanout_v4 is called. 1748 */ 1749 static boolean_t 1750 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 1751 { 1752 ill_t *ill = ira->ira_ill; 1753 int hdr_length; 1754 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 1755 conn_t *connp; 1756 ipha_t *ipha; /* Inner IP header */ 1757 1758 ipha = (ipha_t *)&icmph[1]; 1759 if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr) 1760 goto truncated; 1761 1762 hdr_length = IPH_HDR_LENGTH(ipha); 1763 1764 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) 1765 goto discard_pkt; 1766 1767 if (hdr_length < sizeof (ipha_t)) 1768 goto truncated; 1769 1770 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) 1771 goto truncated; 1772 1773 /* 1774 * Stop here for ICMP_REDIRECT. 1775 */ 1776 if (icmph->icmph_type == ICMP_REDIRECT) 1777 return (B_TRUE); 1778 1779 /* 1780 * ICMP errors only. 1781 */ 1782 switch (ipha->ipha_protocol) { 1783 case IPPROTO_UDP: 1784 /* 1785 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1786 * transport header. 1787 */ 1788 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1789 mp->b_wptr) 1790 goto truncated; 1791 break; 1792 case IPPROTO_TCP: { 1793 tcpha_t *tcpha; 1794 1795 /* 1796 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1797 * transport header. 1798 */ 1799 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1800 mp->b_wptr) 1801 goto truncated; 1802 1803 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 1804 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 1805 ipst); 1806 if (connp == NULL) 1807 goto discard_pkt; 1808 1809 if ((connp->conn_verifyicmp != NULL) && 1810 !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) { 1811 CONN_DEC_REF(connp); 1812 goto discard_pkt; 1813 } 1814 CONN_DEC_REF(connp); 1815 break; 1816 } 1817 case IPPROTO_SCTP: 1818 /* 1819 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 1820 * transport header. 1821 */ 1822 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 1823 mp->b_wptr) 1824 goto truncated; 1825 break; 1826 case IPPROTO_ESP: 1827 case IPPROTO_AH: 1828 break; 1829 case IPPROTO_ENCAP: 1830 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 1831 mp->b_wptr) 1832 goto truncated; 1833 break; 1834 default: 1835 break; 1836 } 1837 1838 return (B_TRUE); 1839 1840 discard_pkt: 1841 /* Bogus ICMP error. */ 1842 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1843 return (B_FALSE); 1844 1845 truncated: 1846 /* We pulled up everthing already. Must be truncated */ 1847 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 1848 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 1849 return (B_FALSE); 1850 } 1851 1852 /* Table from RFC 1191 */ 1853 static int icmp_frag_size_table[] = 1854 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 1855 1856 /* 1857 * Process received ICMP Packet too big. 1858 * Just handles the DCE create/update, including using the above table of 1859 * PMTU guesses. The caller is responsible for validating the packet before 1860 * passing it in and also to fanout the ICMP error to any matching transport 1861 * conns. Assumes the message has been fully pulled up and verified. 1862 * 1863 * Before getting here, the caller has called icmp_inbound_verify_v4() 1864 * that should have verified with ULP to prevent undoing the changes we're 1865 * going to make to DCE. For example, TCP might have verified that the packet 1866 * which generated error is in the send window. 1867 * 1868 * In some cases modified this MTU in the ICMP header packet; the caller 1869 * should pass to the matching ULP after this returns. 1870 */ 1871 static void 1872 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira) 1873 { 1874 dce_t *dce; 1875 int old_mtu; 1876 int mtu, orig_mtu; 1877 ipaddr_t dst; 1878 boolean_t disable_pmtud; 1879 ill_t *ill = ira->ira_ill; 1880 ip_stack_t *ipst = ill->ill_ipst; 1881 uint_t hdr_length; 1882 ipha_t *ipha; 1883 1884 /* Caller already pulled up everything. */ 1885 ipha = (ipha_t *)&icmph[1]; 1886 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 1887 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 1888 ASSERT(ill != NULL); 1889 1890 hdr_length = IPH_HDR_LENGTH(ipha); 1891 1892 /* 1893 * We handle path MTU for source routed packets since the DCE 1894 * is looked up using the final destination. 1895 */ 1896 dst = ip_get_dst(ipha); 1897 1898 dce = dce_lookup_and_add_v4(dst, ipst); 1899 if (dce == NULL) { 1900 /* Couldn't add a unique one - ENOMEM */ 1901 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n", 1902 ntohl(dst))); 1903 return; 1904 } 1905 1906 /* Check for MTU discovery advice as described in RFC 1191 */ 1907 mtu = ntohs(icmph->icmph_du_mtu); 1908 orig_mtu = mtu; 1909 disable_pmtud = B_FALSE; 1910 1911 mutex_enter(&dce->dce_lock); 1912 if (dce->dce_flags & DCEF_PMTU) 1913 old_mtu = dce->dce_pmtu; 1914 else 1915 old_mtu = ill->ill_mtu; 1916 1917 if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) { 1918 uint32_t length; 1919 int i; 1920 1921 /* 1922 * Use the table from RFC 1191 to figure out 1923 * the next "plateau" based on the length in 1924 * the original IP packet. 1925 */ 1926 length = ntohs(ipha->ipha_length); 1927 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce, 1928 uint32_t, length); 1929 if (old_mtu <= length && 1930 old_mtu >= length - hdr_length) { 1931 /* 1932 * Handle broken BSD 4.2 systems that 1933 * return the wrong ipha_length in ICMP 1934 * errors. 1935 */ 1936 ip1dbg(("Wrong mtu: sent %d, dce %d\n", 1937 length, old_mtu)); 1938 length -= hdr_length; 1939 } 1940 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 1941 if (length > icmp_frag_size_table[i]) 1942 break; 1943 } 1944 if (i == A_CNT(icmp_frag_size_table)) { 1945 /* Smaller than IP_MIN_MTU! */ 1946 ip1dbg(("Too big for packet size %d\n", 1947 length)); 1948 disable_pmtud = B_TRUE; 1949 mtu = ipst->ips_ip_pmtu_min; 1950 } else { 1951 mtu = icmp_frag_size_table[i]; 1952 ip1dbg(("Calculated mtu %d, packet size %d, " 1953 "before %d\n", mtu, length, old_mtu)); 1954 if (mtu < ipst->ips_ip_pmtu_min) { 1955 mtu = ipst->ips_ip_pmtu_min; 1956 disable_pmtud = B_TRUE; 1957 } 1958 } 1959 } 1960 if (disable_pmtud) 1961 dce->dce_flags |= DCEF_TOO_SMALL_PMTU; 1962 else 1963 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU; 1964 1965 dce->dce_pmtu = MIN(old_mtu, mtu); 1966 /* Prepare to send the new max frag size for the ULP. */ 1967 icmph->icmph_du_zero = 0; 1968 icmph->icmph_du_mtu = htons((uint16_t)dce->dce_pmtu); 1969 DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *, 1970 dce, int, orig_mtu, int, mtu); 1971 1972 /* We now have a PMTU for sure */ 1973 dce->dce_flags |= DCEF_PMTU; 1974 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 1975 mutex_exit(&dce->dce_lock); 1976 /* 1977 * After dropping the lock the new value is visible to everyone. 1978 * Then we bump the generation number so any cached values reinspect 1979 * the dce_t. 1980 */ 1981 dce_increment_generation(dce); 1982 dce_refrele(dce); 1983 } 1984 1985 /* 1986 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4 1987 * calls this function. 1988 */ 1989 static mblk_t * 1990 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha) 1991 { 1992 int length; 1993 1994 ASSERT(mp->b_datap->db_type == M_DATA); 1995 1996 /* icmp_inbound_v4 has already pulled up the whole error packet */ 1997 ASSERT(mp->b_cont == NULL); 1998 1999 /* 2000 * The length that we want to overlay is the inner header 2001 * and what follows it. 2002 */ 2003 length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr); 2004 2005 /* 2006 * Overlay the inner header and whatever follows it over the 2007 * outer header. 2008 */ 2009 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2010 2011 /* Adjust for what we removed */ 2012 mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha; 2013 return (mp); 2014 } 2015 2016 /* 2017 * Try to pass the ICMP message upstream in case the ULP cares. 2018 * 2019 * If the packet that caused the ICMP error is secure, we send 2020 * it to AH/ESP to make sure that the attached packet has a 2021 * valid association. ipha in the code below points to the 2022 * IP header of the packet that caused the error. 2023 * 2024 * For IPsec cases, we let the next-layer-up (which has access to 2025 * cached policy on the conn_t, or can query the SPD directly) 2026 * subtract out any IPsec overhead if they must. We therefore make no 2027 * adjustments here for IPsec overhead. 2028 * 2029 * IFN could have been generated locally or by some router. 2030 * 2031 * LOCAL : ire_send_wire (before calling ipsec_out_process) can call 2032 * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN. 2033 * This happens because IP adjusted its value of MTU on an 2034 * earlier IFN message and could not tell the upper layer, 2035 * the new adjusted value of MTU e.g. Packet was encrypted 2036 * or there was not enough information to fanout to upper 2037 * layers. Thus on the next outbound datagram, ire_send_wire 2038 * generates the IFN, where IPsec processing has *not* been 2039 * done. 2040 * 2041 * Note that we retain ixa_fragsize across IPsec thus once 2042 * we have picking ixa_fragsize and entered ipsec_out_process we do 2043 * no change the fragsize even if the path MTU changes before 2044 * we reach ip_output_post_ipsec. 2045 * 2046 * In the local case, IRAF_LOOPBACK will be set indicating 2047 * that IFN was generated locally. 2048 * 2049 * ROUTER : IFN could be secure or non-secure. 2050 * 2051 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2052 * packet in error has AH/ESP headers to validate the AH/ESP 2053 * headers. AH/ESP will verify whether there is a valid SA or 2054 * not and send it back. We will fanout again if we have more 2055 * data in the packet. 2056 * 2057 * If the packet in error does not have AH/ESP, we handle it 2058 * like any other case. 2059 * 2060 * * NON_SECURE : If the packet in error has AH/ESP headers, we send it 2061 * up to AH/ESP for validation. AH/ESP will verify whether there is a 2062 * valid SA or not and send it back. We will fanout again if 2063 * we have more data in the packet. 2064 * 2065 * If the packet in error does not have AH/ESP, we handle it 2066 * like any other case. 2067 * 2068 * The caller must have called icmp_inbound_verify_v4. 2069 */ 2070 static void 2071 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira) 2072 { 2073 uint16_t *up; /* Pointer to ports in ULP header */ 2074 uint32_t ports; /* reversed ports for fanout */ 2075 ipha_t ripha; /* With reversed addresses */ 2076 ipha_t *ipha; /* Inner IP header */ 2077 uint_t hdr_length; /* Inner IP header length */ 2078 tcpha_t *tcpha; 2079 conn_t *connp; 2080 ill_t *ill = ira->ira_ill; 2081 ip_stack_t *ipst = ill->ill_ipst; 2082 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 2083 ill_t *rill = ira->ira_rill; 2084 2085 /* Caller already pulled up everything. */ 2086 ipha = (ipha_t *)&icmph[1]; 2087 ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr); 2088 ASSERT(mp->b_cont == NULL); 2089 2090 hdr_length = IPH_HDR_LENGTH(ipha); 2091 ira->ira_protocol = ipha->ipha_protocol; 2092 2093 /* 2094 * We need a separate IP header with the source and destination 2095 * addresses reversed to do fanout/classification because the ipha in 2096 * the ICMP error is in the form we sent it out. 2097 */ 2098 ripha.ipha_src = ipha->ipha_dst; 2099 ripha.ipha_dst = ipha->ipha_src; 2100 ripha.ipha_protocol = ipha->ipha_protocol; 2101 ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length; 2102 2103 ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n", 2104 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2105 ntohl(ipha->ipha_dst), 2106 icmph->icmph_type, icmph->icmph_code)); 2107 2108 switch (ipha->ipha_protocol) { 2109 case IPPROTO_UDP: 2110 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2111 2112 /* Attempt to find a client stream based on port. */ 2113 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n", 2114 ntohs(up[0]), ntohs(up[1]))); 2115 2116 /* Note that we send error to all matches. */ 2117 ira->ira_flags |= IRAF_ICMP_ERROR; 2118 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira); 2119 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2120 return; 2121 2122 case IPPROTO_TCP: 2123 /* 2124 * Find a TCP client stream for this packet. 2125 * Note that we do a reverse lookup since the header is 2126 * in the form we sent it out. 2127 */ 2128 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length); 2129 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN, 2130 ipst); 2131 if (connp == NULL) 2132 goto discard_pkt; 2133 2134 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || 2135 (ira->ira_flags & IRAF_IPSEC_SECURE)) { 2136 mp = ipsec_check_inbound_policy(mp, connp, 2137 ipha, NULL, ira); 2138 if (mp == NULL) { 2139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2140 /* Note that mp is NULL */ 2141 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2142 CONN_DEC_REF(connp); 2143 return; 2144 } 2145 } 2146 2147 ira->ira_flags |= IRAF_ICMP_ERROR; 2148 ira->ira_ill = ira->ira_rill = NULL; 2149 if (IPCL_IS_TCP(connp)) { 2150 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 2151 connp->conn_recvicmp, connp, ira, SQ_FILL, 2152 SQTAG_TCP_INPUT_ICMP_ERR); 2153 } else { 2154 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */ 2155 (connp->conn_recv)(connp, mp, NULL, ira); 2156 CONN_DEC_REF(connp); 2157 } 2158 ira->ira_ill = ill; 2159 ira->ira_rill = rill; 2160 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2161 return; 2162 2163 case IPPROTO_SCTP: 2164 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2165 /* Find a SCTP client stream for this packet. */ 2166 ((uint16_t *)&ports)[0] = up[1]; 2167 ((uint16_t *)&ports)[1] = up[0]; 2168 2169 ira->ira_flags |= IRAF_ICMP_ERROR; 2170 ip_fanout_sctp(mp, &ripha, NULL, ports, ira); 2171 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2172 return; 2173 2174 case IPPROTO_ESP: 2175 case IPPROTO_AH: 2176 if (!ipsec_loaded(ipss)) { 2177 ip_proto_not_sup(mp, ira); 2178 return; 2179 } 2180 2181 if (ipha->ipha_protocol == IPPROTO_ESP) 2182 mp = ipsecesp_icmp_error(mp, ira); 2183 else 2184 mp = ipsecah_icmp_error(mp, ira); 2185 if (mp == NULL) 2186 return; 2187 2188 /* Just in case ipsec didn't preserve the NULL b_cont */ 2189 if (mp->b_cont != NULL) { 2190 if (!pullupmsg(mp, -1)) 2191 goto discard_pkt; 2192 } 2193 2194 /* 2195 * Note that ira_pktlen and ira_ip_hdr_length are no longer 2196 * correct, but we don't use them any more here. 2197 * 2198 * If succesful, the mp has been modified to not include 2199 * the ESP/AH header so we can fanout to the ULP's icmp 2200 * error handler. 2201 */ 2202 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2203 goto truncated; 2204 2205 /* Verify the modified message before any further processes. */ 2206 ipha = (ipha_t *)mp->b_rptr; 2207 hdr_length = IPH_HDR_LENGTH(ipha); 2208 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2209 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2210 freemsg(mp); 2211 return; 2212 } 2213 2214 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2215 return; 2216 2217 case IPPROTO_ENCAP: { 2218 /* Look for self-encapsulated packets that caused an error */ 2219 ipha_t *in_ipha; 2220 2221 /* 2222 * Caller has verified that length has to be 2223 * at least the size of IP header. 2224 */ 2225 ASSERT(hdr_length >= sizeof (ipha_t)); 2226 /* 2227 * Check the sanity of the inner IP header like 2228 * we did for the outer header. 2229 */ 2230 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2231 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2232 goto discard_pkt; 2233 } 2234 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2235 goto discard_pkt; 2236 } 2237 /* Check for Self-encapsulated tunnels */ 2238 if (in_ipha->ipha_src == ipha->ipha_src && 2239 in_ipha->ipha_dst == ipha->ipha_dst) { 2240 2241 mp = icmp_inbound_self_encap_error_v4(mp, ipha, 2242 in_ipha); 2243 if (mp == NULL) 2244 goto discard_pkt; 2245 2246 /* 2247 * Just in case self_encap didn't preserve the NULL 2248 * b_cont 2249 */ 2250 if (mp->b_cont != NULL) { 2251 if (!pullupmsg(mp, -1)) 2252 goto discard_pkt; 2253 } 2254 /* 2255 * Note that ira_pktlen and ira_ip_hdr_length are no 2256 * longer correct, but we don't use them any more here. 2257 */ 2258 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH) 2259 goto truncated; 2260 2261 /* 2262 * Verify the modified message before any further 2263 * processes. 2264 */ 2265 ipha = (ipha_t *)mp->b_rptr; 2266 hdr_length = IPH_HDR_LENGTH(ipha); 2267 icmph = (icmph_t *)&mp->b_rptr[hdr_length]; 2268 if (!icmp_inbound_verify_v4(mp, icmph, ira)) { 2269 freemsg(mp); 2270 return; 2271 } 2272 2273 /* 2274 * The packet in error is self-encapsualted. 2275 * And we are finding it further encapsulated 2276 * which we could not have possibly generated. 2277 */ 2278 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2279 goto discard_pkt; 2280 } 2281 icmp_inbound_error_fanout_v4(mp, icmph, ira); 2282 return; 2283 } 2284 /* No self-encapsulated */ 2285 } 2286 /* FALLTHROUGH */ 2287 case IPPROTO_IPV6: 2288 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src, 2289 &ripha.ipha_dst, ipst)) != NULL) { 2290 ira->ira_flags |= IRAF_ICMP_ERROR; 2291 connp->conn_recvicmp(connp, mp, NULL, ira); 2292 CONN_DEC_REF(connp); 2293 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2294 return; 2295 } 2296 /* 2297 * No IP tunnel is interested, fallthrough and see 2298 * if a raw socket will want it. 2299 */ 2300 /* FALLTHROUGH */ 2301 default: 2302 ira->ira_flags |= IRAF_ICMP_ERROR; 2303 ip_fanout_proto_v4(mp, &ripha, ira); 2304 ira->ira_flags &= ~IRAF_ICMP_ERROR; 2305 return; 2306 } 2307 /* NOTREACHED */ 2308 discard_pkt: 2309 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2310 ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n")); 2311 ip_drop_input("ipIfStatsInDiscards", mp, ill); 2312 freemsg(mp); 2313 return; 2314 2315 truncated: 2316 /* We pulled up everthing already. Must be truncated */ 2317 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 2318 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 2319 freemsg(mp); 2320 } 2321 2322 /* 2323 * Common IP options parser. 2324 * 2325 * Setup routine: fill in *optp with options-parsing state, then 2326 * tail-call ipoptp_next to return the first option. 2327 */ 2328 uint8_t 2329 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2330 { 2331 uint32_t totallen; /* total length of all options */ 2332 2333 totallen = ipha->ipha_version_and_hdr_length - 2334 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2335 totallen <<= 2; 2336 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2337 optp->ipoptp_end = optp->ipoptp_next + totallen; 2338 optp->ipoptp_flags = 0; 2339 return (ipoptp_next(optp)); 2340 } 2341 2342 /* Like above but without an ipha_t */ 2343 uint8_t 2344 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt) 2345 { 2346 optp->ipoptp_next = opt; 2347 optp->ipoptp_end = optp->ipoptp_next + totallen; 2348 optp->ipoptp_flags = 0; 2349 return (ipoptp_next(optp)); 2350 } 2351 2352 /* 2353 * Common IP options parser: extract next option. 2354 */ 2355 uint8_t 2356 ipoptp_next(ipoptp_t *optp) 2357 { 2358 uint8_t *end = optp->ipoptp_end; 2359 uint8_t *cur = optp->ipoptp_next; 2360 uint8_t opt, len, pointer; 2361 2362 /* 2363 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2364 * has been corrupted. 2365 */ 2366 ASSERT(cur <= end); 2367 2368 if (cur == end) 2369 return (IPOPT_EOL); 2370 2371 opt = cur[IPOPT_OPTVAL]; 2372 2373 /* 2374 * Skip any NOP options. 2375 */ 2376 while (opt == IPOPT_NOP) { 2377 cur++; 2378 if (cur == end) 2379 return (IPOPT_EOL); 2380 opt = cur[IPOPT_OPTVAL]; 2381 } 2382 2383 if (opt == IPOPT_EOL) 2384 return (IPOPT_EOL); 2385 2386 /* 2387 * Option requiring a length. 2388 */ 2389 if ((cur + 1) >= end) { 2390 optp->ipoptp_flags |= IPOPTP_ERROR; 2391 return (IPOPT_EOL); 2392 } 2393 len = cur[IPOPT_OLEN]; 2394 if (len < 2) { 2395 optp->ipoptp_flags |= IPOPTP_ERROR; 2396 return (IPOPT_EOL); 2397 } 2398 optp->ipoptp_cur = cur; 2399 optp->ipoptp_len = len; 2400 optp->ipoptp_next = cur + len; 2401 if (cur + len > end) { 2402 optp->ipoptp_flags |= IPOPTP_ERROR; 2403 return (IPOPT_EOL); 2404 } 2405 2406 /* 2407 * For the options which require a pointer field, make sure 2408 * its there, and make sure it points to either something 2409 * inside this option, or the end of the option. 2410 */ 2411 switch (opt) { 2412 case IPOPT_RR: 2413 case IPOPT_TS: 2414 case IPOPT_LSRR: 2415 case IPOPT_SSRR: 2416 if (len <= IPOPT_OFFSET) { 2417 optp->ipoptp_flags |= IPOPTP_ERROR; 2418 return (opt); 2419 } 2420 pointer = cur[IPOPT_OFFSET]; 2421 if (pointer - 1 > len) { 2422 optp->ipoptp_flags |= IPOPTP_ERROR; 2423 return (opt); 2424 } 2425 break; 2426 } 2427 2428 /* 2429 * Sanity check the pointer field based on the type of the 2430 * option. 2431 */ 2432 switch (opt) { 2433 case IPOPT_RR: 2434 case IPOPT_SSRR: 2435 case IPOPT_LSRR: 2436 if (pointer < IPOPT_MINOFF_SR) 2437 optp->ipoptp_flags |= IPOPTP_ERROR; 2438 break; 2439 case IPOPT_TS: 2440 if (pointer < IPOPT_MINOFF_IT) 2441 optp->ipoptp_flags |= IPOPTP_ERROR; 2442 /* 2443 * Note that the Internet Timestamp option also 2444 * contains two four bit fields (the Overflow field, 2445 * and the Flag field), which follow the pointer 2446 * field. We don't need to check that these fields 2447 * fall within the length of the option because this 2448 * was implicitely done above. We've checked that the 2449 * pointer value is at least IPOPT_MINOFF_IT, and that 2450 * it falls within the option. Since IPOPT_MINOFF_IT > 2451 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2452 */ 2453 ASSERT(len > IPOPT_POS_OV_FLG); 2454 break; 2455 } 2456 2457 return (opt); 2458 } 2459 2460 /* 2461 * Use the outgoing IP header to create an IP_OPTIONS option the way 2462 * it was passed down from the application. 2463 * 2464 * This is compatible with BSD in that it returns 2465 * the reverse source route with the final destination 2466 * as the last entry. The first 4 bytes of the option 2467 * will contain the final destination. 2468 */ 2469 int 2470 ip_opt_get_user(conn_t *connp, uchar_t *buf) 2471 { 2472 ipoptp_t opts; 2473 uchar_t *opt; 2474 uint8_t optval; 2475 uint8_t optlen; 2476 uint32_t len = 0; 2477 uchar_t *buf1 = buf; 2478 uint32_t totallen; 2479 ipaddr_t dst; 2480 ip_pkt_t *ipp = &connp->conn_xmit_ipp; 2481 2482 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 2483 return (0); 2484 2485 totallen = ipp->ipp_ipv4_options_len; 2486 if (totallen & 0x3) 2487 return (0); 2488 2489 buf += IP_ADDR_LEN; /* Leave room for final destination */ 2490 len += IP_ADDR_LEN; 2491 bzero(buf1, IP_ADDR_LEN); 2492 2493 dst = connp->conn_faddr_v4; 2494 2495 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 2496 optval != IPOPT_EOL; 2497 optval = ipoptp_next(&opts)) { 2498 int off; 2499 2500 opt = opts.ipoptp_cur; 2501 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 2502 break; 2503 } 2504 optlen = opts.ipoptp_len; 2505 2506 switch (optval) { 2507 case IPOPT_SSRR: 2508 case IPOPT_LSRR: 2509 2510 /* 2511 * Insert destination as the first entry in the source 2512 * route and move down the entries on step. 2513 * The last entry gets placed at buf1. 2514 */ 2515 buf[IPOPT_OPTVAL] = optval; 2516 buf[IPOPT_OLEN] = optlen; 2517 buf[IPOPT_OFFSET] = optlen; 2518 2519 off = optlen - IP_ADDR_LEN; 2520 if (off < 0) { 2521 /* No entries in source route */ 2522 break; 2523 } 2524 /* Last entry in source route if not already set */ 2525 if (dst == INADDR_ANY) 2526 bcopy(opt + off, buf1, IP_ADDR_LEN); 2527 off -= IP_ADDR_LEN; 2528 2529 while (off > 0) { 2530 bcopy(opt + off, 2531 buf + off + IP_ADDR_LEN, 2532 IP_ADDR_LEN); 2533 off -= IP_ADDR_LEN; 2534 } 2535 /* ipha_dst into first slot */ 2536 bcopy(&dst, buf + off + IP_ADDR_LEN, 2537 IP_ADDR_LEN); 2538 buf += optlen; 2539 len += optlen; 2540 break; 2541 2542 default: 2543 bcopy(opt, buf, optlen); 2544 buf += optlen; 2545 len += optlen; 2546 break; 2547 } 2548 } 2549 done: 2550 /* Pad the resulting options */ 2551 while (len & 0x3) { 2552 *buf++ = IPOPT_EOL; 2553 len++; 2554 } 2555 return (len); 2556 } 2557 2558 /* 2559 * Update any record route or timestamp options to include this host. 2560 * Reverse any source route option. 2561 * This routine assumes that the options are well formed i.e. that they 2562 * have already been checked. 2563 */ 2564 static void 2565 icmp_options_update(ipha_t *ipha) 2566 { 2567 ipoptp_t opts; 2568 uchar_t *opt; 2569 uint8_t optval; 2570 ipaddr_t src; /* Our local address */ 2571 ipaddr_t dst; 2572 2573 ip2dbg(("icmp_options_update\n")); 2574 src = ipha->ipha_src; 2575 dst = ipha->ipha_dst; 2576 2577 for (optval = ipoptp_first(&opts, ipha); 2578 optval != IPOPT_EOL; 2579 optval = ipoptp_next(&opts)) { 2580 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 2581 opt = opts.ipoptp_cur; 2582 ip2dbg(("icmp_options_update: opt %d, len %d\n", 2583 optval, opts.ipoptp_len)); 2584 switch (optval) { 2585 int off1, off2; 2586 case IPOPT_SSRR: 2587 case IPOPT_LSRR: 2588 /* 2589 * Reverse the source route. The first entry 2590 * should be the next to last one in the current 2591 * source route (the last entry is our address). 2592 * The last entry should be the final destination. 2593 */ 2594 off1 = IPOPT_MINOFF_SR - 1; 2595 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 2596 if (off2 < 0) { 2597 /* No entries in source route */ 2598 ip1dbg(( 2599 "icmp_options_update: bad src route\n")); 2600 break; 2601 } 2602 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 2603 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 2604 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 2605 off2 -= IP_ADDR_LEN; 2606 2607 while (off1 < off2) { 2608 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 2609 bcopy((char *)opt + off2, (char *)opt + off1, 2610 IP_ADDR_LEN); 2611 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 2612 off1 += IP_ADDR_LEN; 2613 off2 -= IP_ADDR_LEN; 2614 } 2615 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 2616 break; 2617 } 2618 } 2619 } 2620 2621 /* 2622 * Process received ICMP Redirect messages. 2623 * Assumes the caller has verified that the headers are in the pulled up mblk. 2624 * Consumes mp. 2625 */ 2626 static void 2627 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira) 2628 { 2629 ire_t *ire, *nire; 2630 ire_t *prev_ire; 2631 ipaddr_t src, dst, gateway; 2632 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2633 ipha_t *inner_ipha; /* Inner IP header */ 2634 2635 /* Caller already pulled up everything. */ 2636 inner_ipha = (ipha_t *)&icmph[1]; 2637 src = ipha->ipha_src; 2638 dst = inner_ipha->ipha_dst; 2639 gateway = icmph->icmph_rd_gateway; 2640 /* Make sure the new gateway is reachable somehow. */ 2641 ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL, 2642 ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 2643 /* 2644 * Make sure we had a route for the dest in question and that 2645 * that route was pointing to the old gateway (the source of the 2646 * redirect packet.) 2647 * We do longest match and then compare ire_gateway_addr below. 2648 */ 2649 prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES, 2650 NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 2651 /* 2652 * Check that 2653 * the redirect was not from ourselves 2654 * the new gateway and the old gateway are directly reachable 2655 */ 2656 if (prev_ire == NULL || ire == NULL || 2657 (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) || 2658 (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 2659 !(ire->ire_type & IRE_IF_ALL) || 2660 prev_ire->ire_gateway_addr != src) { 2661 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2662 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill); 2663 freemsg(mp); 2664 if (ire != NULL) 2665 ire_refrele(ire); 2666 if (prev_ire != NULL) 2667 ire_refrele(prev_ire); 2668 return; 2669 } 2670 2671 ire_refrele(prev_ire); 2672 ire_refrele(ire); 2673 2674 /* 2675 * TODO: more precise handling for cases 0, 2, 3, the latter two 2676 * require TOS routing 2677 */ 2678 switch (icmph->icmph_code) { 2679 case 0: 2680 case 1: 2681 /* TODO: TOS specificity for cases 2 and 3 */ 2682 case 2: 2683 case 3: 2684 break; 2685 default: 2686 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects); 2687 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill); 2688 freemsg(mp); 2689 return; 2690 } 2691 /* 2692 * Create a Route Association. This will allow us to remember that 2693 * someone we believe told us to use the particular gateway. 2694 */ 2695 ire = ire_create( 2696 (uchar_t *)&dst, /* dest addr */ 2697 (uchar_t *)&ip_g_all_ones, /* mask */ 2698 (uchar_t *)&gateway, /* gateway addr */ 2699 IRE_HOST, 2700 NULL, /* ill */ 2701 ALL_ZONES, 2702 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 2703 NULL, /* tsol_gc_t */ 2704 ipst); 2705 2706 if (ire == NULL) { 2707 freemsg(mp); 2708 return; 2709 } 2710 nire = ire_add(ire); 2711 /* Check if it was a duplicate entry */ 2712 if (nire != NULL && nire != ire) { 2713 ASSERT(nire->ire_identical_ref > 1); 2714 ire_delete(nire); 2715 ire_refrele(nire); 2716 nire = NULL; 2717 } 2718 ire = nire; 2719 if (ire != NULL) { 2720 ire_refrele(ire); /* Held in ire_add */ 2721 2722 /* tell routing sockets that we received a redirect */ 2723 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 2724 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 2725 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst); 2726 } 2727 2728 /* 2729 * Delete any existing IRE_HOST type redirect ires for this destination. 2730 * This together with the added IRE has the effect of 2731 * modifying an existing redirect. 2732 */ 2733 prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL, 2734 ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL); 2735 if (prev_ire != NULL) { 2736 if (prev_ire ->ire_flags & RTF_DYNAMIC) 2737 ire_delete(prev_ire); 2738 ire_refrele(prev_ire); 2739 } 2740 2741 freemsg(mp); 2742 } 2743 2744 /* 2745 * Generate an ICMP parameter problem message. 2746 * When called from ip_output side a minimal ip_recv_attr_t needs to be 2747 * constructed by the caller. 2748 */ 2749 static void 2750 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira) 2751 { 2752 icmph_t icmph; 2753 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2754 2755 mp = icmp_pkt_err_ok(mp, ira); 2756 if (mp == NULL) 2757 return; 2758 2759 bzero(&icmph, sizeof (icmph_t)); 2760 icmph.icmph_type = ICMP_PARAM_PROBLEM; 2761 icmph.icmph_pp_ptr = ptr; 2762 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs); 2763 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 2764 } 2765 2766 /* 2767 * Build and ship an IPv4 ICMP message using the packet data in mp, and 2768 * the ICMP header pointed to by "stuff". (May be called as writer.) 2769 * Note: assumes that icmp_pkt_err_ok has been called to verify that 2770 * an icmp error packet can be sent. 2771 * Assigns an appropriate source address to the packet. If ipha_dst is 2772 * one of our addresses use it for source. Otherwise let ip_output_simple 2773 * pick the source address. 2774 */ 2775 static void 2776 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira) 2777 { 2778 ipaddr_t dst; 2779 icmph_t *icmph; 2780 ipha_t *ipha; 2781 uint_t len_needed; 2782 size_t msg_len; 2783 mblk_t *mp1; 2784 ipaddr_t src; 2785 ire_t *ire; 2786 ip_xmit_attr_t ixas; 2787 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2788 2789 ipha = (ipha_t *)mp->b_rptr; 2790 2791 bzero(&ixas, sizeof (ixas)); 2792 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 2793 ixas.ixa_zoneid = ira->ira_zoneid; 2794 ixas.ixa_ifindex = 0; 2795 ixas.ixa_ipst = ipst; 2796 ixas.ixa_cred = kcred; 2797 ixas.ixa_cpid = NOPID; 2798 ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */ 2799 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2800 2801 if (ira->ira_flags & IRAF_IPSEC_SECURE) { 2802 /* 2803 * Apply IPsec based on how IPsec was applied to 2804 * the packet that had the error. 2805 * 2806 * If it was an outbound packet that caused the ICMP 2807 * error, then the caller will have setup the IRA 2808 * appropriately. 2809 */ 2810 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) { 2811 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2812 /* Note: mp already consumed and ip_drop_packet done */ 2813 return; 2814 } 2815 } else { 2816 /* 2817 * This is in clear. The icmp message we are building 2818 * here should go out in clear, independent of our policy. 2819 */ 2820 ixas.ixa_flags |= IXAF_NO_IPSEC; 2821 } 2822 2823 /* Remember our eventual destination */ 2824 dst = ipha->ipha_src; 2825 2826 /* 2827 * If the packet was for one of our unicast addresses, make 2828 * sure we respond with that as the source. Otherwise 2829 * have ip_output_simple pick the source address. 2830 */ 2831 ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0, 2832 (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL, 2833 MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL); 2834 if (ire != NULL) { 2835 ire_refrele(ire); 2836 src = ipha->ipha_dst; 2837 } else { 2838 src = INADDR_ANY; 2839 ixas.ixa_flags |= IXAF_SET_SOURCE; 2840 } 2841 2842 /* 2843 * Check if we can send back more then 8 bytes in addition to 2844 * the IP header. We try to send 64 bytes of data and the internal 2845 * header in the special cases of ipv4 encapsulated ipv4 or ipv6. 2846 */ 2847 len_needed = IPH_HDR_LENGTH(ipha); 2848 if (ipha->ipha_protocol == IPPROTO_ENCAP || 2849 ipha->ipha_protocol == IPPROTO_IPV6) { 2850 if (!pullupmsg(mp, -1)) { 2851 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 2852 ip_drop_output("ipIfStatsOutDiscards", mp, NULL); 2853 freemsg(mp); 2854 return; 2855 } 2856 ipha = (ipha_t *)mp->b_rptr; 2857 2858 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2859 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + 2860 len_needed)); 2861 } else { 2862 ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed); 2863 2864 ASSERT(ipha->ipha_protocol == IPPROTO_IPV6); 2865 len_needed += ip_hdr_length_v6(mp, ip6h); 2866 } 2867 } 2868 len_needed += ipst->ips_ip_icmp_return; 2869 msg_len = msgdsize(mp); 2870 if (msg_len > len_needed) { 2871 (void) adjmsg(mp, len_needed - msg_len); 2872 msg_len = len_needed; 2873 } 2874 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED); 2875 if (mp1 == NULL) { 2876 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors); 2877 freemsg(mp); 2878 return; 2879 } 2880 mp1->b_cont = mp; 2881 mp = mp1; 2882 2883 /* 2884 * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this 2885 * node generates be accepted in peace by all on-host destinations. 2886 * If we do NOT assume that all on-host destinations trust 2887 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 2888 * (Look for IXAF_TRUSTED_ICMP). 2889 */ 2890 ixas.ixa_flags |= IXAF_TRUSTED_ICMP; 2891 2892 ipha = (ipha_t *)mp->b_rptr; 2893 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 2894 *ipha = icmp_ipha; 2895 ipha->ipha_src = src; 2896 ipha->ipha_dst = dst; 2897 ipha->ipha_ttl = ipst->ips_ip_def_ttl; 2898 msg_len += sizeof (icmp_ipha) + len; 2899 if (msg_len > IP_MAXPACKET) { 2900 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 2901 msg_len = IP_MAXPACKET; 2902 } 2903 ipha->ipha_length = htons((uint16_t)msg_len); 2904 icmph = (icmph_t *)&ipha[1]; 2905 bcopy(stuff, icmph, len); 2906 icmph->icmph_checksum = 0; 2907 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 2908 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs); 2909 2910 (void) ip_output_simple(mp, &ixas); 2911 ixa_cleanup(&ixas); 2912 } 2913 2914 /* 2915 * Determine if an ICMP error packet can be sent given the rate limit. 2916 * The limit consists of an average frequency (icmp_pkt_err_interval measured 2917 * in milliseconds) and a burst size. Burst size number of packets can 2918 * be sent arbitrarely closely spaced. 2919 * The state is tracked using two variables to implement an approximate 2920 * token bucket filter: 2921 * icmp_pkt_err_last - lbolt value when the last burst started 2922 * icmp_pkt_err_sent - number of packets sent in current burst 2923 */ 2924 boolean_t 2925 icmp_err_rate_limit(ip_stack_t *ipst) 2926 { 2927 clock_t now = TICK_TO_MSEC(ddi_get_lbolt()); 2928 uint_t refilled; /* Number of packets refilled in tbf since last */ 2929 /* Guard against changes by loading into local variable */ 2930 uint_t err_interval = ipst->ips_ip_icmp_err_interval; 2931 2932 if (err_interval == 0) 2933 return (B_FALSE); 2934 2935 if (ipst->ips_icmp_pkt_err_last > now) { 2936 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 2937 ipst->ips_icmp_pkt_err_last = 0; 2938 ipst->ips_icmp_pkt_err_sent = 0; 2939 } 2940 /* 2941 * If we are in a burst update the token bucket filter. 2942 * Update the "last" time to be close to "now" but make sure 2943 * we don't loose precision. 2944 */ 2945 if (ipst->ips_icmp_pkt_err_sent != 0) { 2946 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval; 2947 if (refilled > ipst->ips_icmp_pkt_err_sent) { 2948 ipst->ips_icmp_pkt_err_sent = 0; 2949 } else { 2950 ipst->ips_icmp_pkt_err_sent -= refilled; 2951 ipst->ips_icmp_pkt_err_last += refilled * err_interval; 2952 } 2953 } 2954 if (ipst->ips_icmp_pkt_err_sent == 0) { 2955 /* Start of new burst */ 2956 ipst->ips_icmp_pkt_err_last = now; 2957 } 2958 if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) { 2959 ipst->ips_icmp_pkt_err_sent++; 2960 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 2961 ipst->ips_icmp_pkt_err_sent)); 2962 return (B_FALSE); 2963 } 2964 ip1dbg(("icmp_err_rate_limit: dropped\n")); 2965 return (B_TRUE); 2966 } 2967 2968 /* 2969 * Check if it is ok to send an IPv4 ICMP error packet in 2970 * response to the IPv4 packet in mp. 2971 * Free the message and return null if no 2972 * ICMP error packet should be sent. 2973 */ 2974 static mblk_t * 2975 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira) 2976 { 2977 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 2978 icmph_t *icmph; 2979 ipha_t *ipha; 2980 uint_t len_needed; 2981 2982 if (!mp) 2983 return (NULL); 2984 ipha = (ipha_t *)mp->b_rptr; 2985 if (ip_csum_hdr(ipha)) { 2986 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs); 2987 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL); 2988 freemsg(mp); 2989 return (NULL); 2990 } 2991 if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST || 2992 ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST || 2993 CLASSD(ipha->ipha_dst) || 2994 CLASSD(ipha->ipha_src) || 2995 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 2996 /* Note: only errors to the fragment with offset 0 */ 2997 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 2998 freemsg(mp); 2999 return (NULL); 3000 } 3001 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3002 /* 3003 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3004 * errors in response to any ICMP errors. 3005 */ 3006 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3007 if (mp->b_wptr - mp->b_rptr < len_needed) { 3008 if (!pullupmsg(mp, len_needed)) { 3009 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors); 3010 freemsg(mp); 3011 return (NULL); 3012 } 3013 ipha = (ipha_t *)mp->b_rptr; 3014 } 3015 icmph = (icmph_t *) 3016 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3017 switch (icmph->icmph_type) { 3018 case ICMP_DEST_UNREACHABLE: 3019 case ICMP_SOURCE_QUENCH: 3020 case ICMP_TIME_EXCEEDED: 3021 case ICMP_PARAM_PROBLEM: 3022 case ICMP_REDIRECT: 3023 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3024 freemsg(mp); 3025 return (NULL); 3026 default: 3027 break; 3028 } 3029 } 3030 /* 3031 * If this is a labeled system, then check to see if we're allowed to 3032 * send a response to this particular sender. If not, then just drop. 3033 */ 3034 if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) { 3035 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3036 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops); 3037 freemsg(mp); 3038 return (NULL); 3039 } 3040 if (icmp_err_rate_limit(ipst)) { 3041 /* 3042 * Only send ICMP error packets every so often. 3043 * This should be done on a per port/source basis, 3044 * but for now this will suffice. 3045 */ 3046 freemsg(mp); 3047 return (NULL); 3048 } 3049 return (mp); 3050 } 3051 3052 /* 3053 * Called when a packet was sent out the same link that it arrived on. 3054 * Check if it is ok to send a redirect and then send it. 3055 */ 3056 void 3057 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire, 3058 ip_recv_attr_t *ira) 3059 { 3060 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3061 ipaddr_t src, nhop; 3062 mblk_t *mp1; 3063 ire_t *nhop_ire; 3064 3065 /* 3066 * Check the source address to see if it originated 3067 * on the same logical subnet it is going back out on. 3068 * If so, we should be able to send it a redirect. 3069 * Avoid sending a redirect if the destination 3070 * is directly connected (i.e., we matched an IRE_ONLINK), 3071 * or if the packet was source routed out this interface. 3072 * 3073 * We avoid sending a redirect if the 3074 * destination is directly connected 3075 * because it is possible that multiple 3076 * IP subnets may have been configured on 3077 * the link, and the source may not 3078 * be on the same subnet as ip destination, 3079 * even though they are on the same 3080 * physical link. 3081 */ 3082 if ((ire->ire_type & IRE_ONLINK) || 3083 ip_source_routed(ipha, ipst)) 3084 return; 3085 3086 nhop_ire = ire_nexthop(ire); 3087 if (nhop_ire == NULL) 3088 return; 3089 3090 nhop = nhop_ire->ire_addr; 3091 3092 if (nhop_ire->ire_type & IRE_IF_CLONE) { 3093 ire_t *ire2; 3094 3095 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */ 3096 mutex_enter(&nhop_ire->ire_lock); 3097 ire2 = nhop_ire->ire_dep_parent; 3098 if (ire2 != NULL) 3099 ire_refhold(ire2); 3100 mutex_exit(&nhop_ire->ire_lock); 3101 ire_refrele(nhop_ire); 3102 nhop_ire = ire2; 3103 } 3104 if (nhop_ire == NULL) 3105 return; 3106 3107 ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE)); 3108 3109 src = ipha->ipha_src; 3110 3111 /* 3112 * We look at the interface ire for the nexthop, 3113 * to see if ipha_src is in the same subnet 3114 * as the nexthop. 3115 */ 3116 if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) { 3117 /* 3118 * The source is directly connected. 3119 */ 3120 mp1 = copymsg(mp); 3121 if (mp1 != NULL) { 3122 icmp_send_redirect(mp1, nhop, ira); 3123 } 3124 } 3125 ire_refrele(nhop_ire); 3126 } 3127 3128 /* 3129 * Generate an ICMP redirect message. 3130 */ 3131 static void 3132 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira) 3133 { 3134 icmph_t icmph; 3135 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3136 3137 mp = icmp_pkt_err_ok(mp, ira); 3138 if (mp == NULL) 3139 return; 3140 3141 bzero(&icmph, sizeof (icmph_t)); 3142 icmph.icmph_type = ICMP_REDIRECT; 3143 icmph.icmph_code = 1; 3144 icmph.icmph_rd_gateway = gateway; 3145 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects); 3146 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3147 } 3148 3149 /* 3150 * Generate an ICMP time exceeded message. 3151 */ 3152 void 3153 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3154 { 3155 icmph_t icmph; 3156 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3157 3158 mp = icmp_pkt_err_ok(mp, ira); 3159 if (mp == NULL) 3160 return; 3161 3162 bzero(&icmph, sizeof (icmph_t)); 3163 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3164 icmph.icmph_code = code; 3165 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds); 3166 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3167 } 3168 3169 /* 3170 * Generate an ICMP unreachable message. 3171 * When called from ip_output side a minimal ip_recv_attr_t needs to be 3172 * constructed by the caller. 3173 */ 3174 void 3175 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira) 3176 { 3177 icmph_t icmph; 3178 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 3179 3180 mp = icmp_pkt_err_ok(mp, ira); 3181 if (mp == NULL) 3182 return; 3183 3184 bzero(&icmph, sizeof (icmph_t)); 3185 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3186 icmph.icmph_code = code; 3187 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs); 3188 icmp_pkt(mp, &icmph, sizeof (icmph_t), ira); 3189 } 3190 3191 /* 3192 * Latch in the IPsec state for a stream based the policy in the listener 3193 * and the actions in the ip_recv_attr_t. 3194 * Called directly from TCP and SCTP. 3195 */ 3196 boolean_t 3197 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira) 3198 { 3199 ASSERT(lconnp->conn_policy != NULL); 3200 ASSERT(connp->conn_policy == NULL); 3201 3202 IPPH_REFHOLD(lconnp->conn_policy); 3203 connp->conn_policy = lconnp->conn_policy; 3204 3205 if (ira->ira_ipsec_action != NULL) { 3206 if (connp->conn_latch == NULL) { 3207 connp->conn_latch = iplatch_create(); 3208 if (connp->conn_latch == NULL) 3209 return (B_FALSE); 3210 } 3211 ipsec_latch_inbound(connp, ira); 3212 } 3213 return (B_TRUE); 3214 } 3215 3216 /* 3217 * Verify whether or not the IP address is a valid local address. 3218 * Could be a unicast, including one for a down interface. 3219 * If allow_mcbc then a multicast or broadcast address is also 3220 * acceptable. 3221 * 3222 * In the case of a broadcast/multicast address, however, the 3223 * upper protocol is expected to reset the src address 3224 * to zero when we return IPVL_MCAST/IPVL_BCAST so that 3225 * no packets are emitted with broadcast/multicast address as 3226 * source address (that violates hosts requirements RFC 1122) 3227 * The addresses valid for bind are: 3228 * (1) - INADDR_ANY (0) 3229 * (2) - IP address of an UP interface 3230 * (3) - IP address of a DOWN interface 3231 * (4) - valid local IP broadcast addresses. In this case 3232 * the conn will only receive packets destined to 3233 * the specified broadcast address. 3234 * (5) - a multicast address. In this case 3235 * the conn will only receive packets destined to 3236 * the specified multicast address. Note: the 3237 * application still has to issue an 3238 * IP_ADD_MEMBERSHIP socket option. 3239 * 3240 * In all the above cases, the bound address must be valid in the current zone. 3241 * When the address is loopback, multicast or broadcast, there might be many 3242 * matching IREs so bind has to look up based on the zone. 3243 */ 3244 ip_laddr_t 3245 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid, 3246 ip_stack_t *ipst, boolean_t allow_mcbc) 3247 { 3248 ire_t *src_ire; 3249 3250 ASSERT(src_addr != INADDR_ANY); 3251 3252 src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0, 3253 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL); 3254 3255 /* 3256 * If an address other than in6addr_any is requested, 3257 * we verify that it is a valid address for bind 3258 * Note: Following code is in if-else-if form for 3259 * readability compared to a condition check. 3260 */ 3261 if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) { 3262 /* 3263 * (2) Bind to address of local UP interface 3264 */ 3265 ire_refrele(src_ire); 3266 return (IPVL_UNICAST_UP); 3267 } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) { 3268 /* 3269 * (4) Bind to broadcast address 3270 */ 3271 ire_refrele(src_ire); 3272 if (allow_mcbc) 3273 return (IPVL_BCAST); 3274 else 3275 return (IPVL_BAD); 3276 } else if (CLASSD(src_addr)) { 3277 /* (5) bind to multicast address. */ 3278 if (src_ire != NULL) 3279 ire_refrele(src_ire); 3280 3281 if (allow_mcbc) 3282 return (IPVL_MCAST); 3283 else 3284 return (IPVL_BAD); 3285 } else { 3286 ipif_t *ipif; 3287 3288 /* 3289 * (3) Bind to address of local DOWN interface? 3290 * (ipif_lookup_addr() looks up all interfaces 3291 * but we do not get here for UP interfaces 3292 * - case (2) above) 3293 */ 3294 if (src_ire != NULL) 3295 ire_refrele(src_ire); 3296 3297 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst); 3298 if (ipif == NULL) 3299 return (IPVL_BAD); 3300 3301 /* Not a useful source? */ 3302 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) { 3303 ipif_refrele(ipif); 3304 return (IPVL_BAD); 3305 } 3306 ipif_refrele(ipif); 3307 return (IPVL_UNICAST_DOWN); 3308 } 3309 } 3310 3311 /* 3312 * Insert in the bind fanout for IPv4 and IPv6. 3313 * The caller should already have used ip_laddr_verify_v*() before calling 3314 * this. 3315 */ 3316 int 3317 ip_laddr_fanout_insert(conn_t *connp) 3318 { 3319 int error; 3320 3321 /* 3322 * Allow setting new policies. For example, disconnects result 3323 * in us being called. As we would have set conn_policy_cached 3324 * to B_TRUE before, we should set it to B_FALSE, so that policy 3325 * can change after the disconnect. 3326 */ 3327 connp->conn_policy_cached = B_FALSE; 3328 3329 error = ipcl_bind_insert(connp); 3330 if (error != 0) { 3331 if (connp->conn_anon_port) { 3332 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 3333 connp->conn_mlp_type, connp->conn_proto, 3334 ntohs(connp->conn_lport), B_FALSE); 3335 } 3336 connp->conn_mlp_type = mlptSingle; 3337 } 3338 return (error); 3339 } 3340 3341 /* 3342 * Verify that both the source and destination addresses are valid. If 3343 * IPDF_VERIFY_DST is not set, then the destination address may be unreachable, 3344 * i.e. have no route to it. Protocols like TCP want to verify destination 3345 * reachability, while tunnels do not. 3346 * 3347 * Determine the route, the interface, and (optionally) the source address 3348 * to use to reach a given destination. 3349 * Note that we allow connect to broadcast and multicast addresses when 3350 * IPDF_ALLOW_MCBC is set. 3351 * first_hop and dst_addr are normally the same, but if source routing 3352 * they will differ; in that case the first_hop is what we'll use for the 3353 * routing lookup but the dce and label checks will be done on dst_addr, 3354 * 3355 * If uinfo is set, then we fill in the best available information 3356 * we have for the destination. This is based on (in priority order) any 3357 * metrics and path MTU stored in a dce_t, route metrics, and finally the 3358 * ill_mtu/ill_mc_mtu. 3359 * 3360 * Tsol note: If we have a source route then dst_addr != firsthop. But we 3361 * always do the label check on dst_addr. 3362 */ 3363 int 3364 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop, 3365 ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode) 3366 { 3367 ire_t *ire = NULL; 3368 int error = 0; 3369 ipaddr_t setsrc; /* RTF_SETSRC */ 3370 zoneid_t zoneid = ixa->ixa_zoneid; /* Honors SO_ALLZONES */ 3371 ip_stack_t *ipst = ixa->ixa_ipst; 3372 dce_t *dce; 3373 uint_t pmtu; 3374 uint_t generation; 3375 nce_t *nce; 3376 ill_t *ill = NULL; 3377 boolean_t multirt = B_FALSE; 3378 3379 ASSERT(ixa->ixa_flags & IXAF_IS_IPV4); 3380 3381 /* 3382 * We never send to zero; the ULPs map it to the loopback address. 3383 * We can't allow it since we use zero to mean unitialized in some 3384 * places. 3385 */ 3386 ASSERT(dst_addr != INADDR_ANY); 3387 3388 if (is_system_labeled()) { 3389 ts_label_t *tsl = NULL; 3390 3391 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION, 3392 mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl); 3393 if (error != 0) 3394 return (error); 3395 if (tsl != NULL) { 3396 /* Update the label */ 3397 ip_xmit_attr_replace_tsl(ixa, tsl); 3398 } 3399 } 3400 3401 setsrc = INADDR_ANY; 3402 /* 3403 * Select a route; For IPMP interfaces, we would only select 3404 * a "hidden" route (i.e., going through a specific under_ill) 3405 * if ixa_ifindex has been specified. 3406 */ 3407 ire = ip_select_route_v4(firsthop, *src_addrp, ixa, 3408 &generation, &setsrc, &error, &multirt); 3409 ASSERT(ire != NULL); /* IRE_NOROUTE if none found */ 3410 if (error != 0) 3411 goto bad_addr; 3412 3413 /* 3414 * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set. 3415 * If IPDF_VERIFY_DST is set, the destination must be reachable; 3416 * Otherwise the destination needn't be reachable. 3417 * 3418 * If we match on a reject or black hole, then we've got a 3419 * local failure. May as well fail out the connect() attempt, 3420 * since it's never going to succeed. 3421 */ 3422 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 3423 /* 3424 * If we're verifying destination reachability, we always want 3425 * to complain here. 3426 * 3427 * If we're not verifying destination reachability but the 3428 * destination has a route, we still want to fail on the 3429 * temporary address and broadcast address tests. 3430 * 3431 * In both cases do we let the code continue so some reasonable 3432 * information is returned to the caller. That enables the 3433 * caller to use (and even cache) the IRE. conn_ip_ouput will 3434 * use the generation mismatch path to check for the unreachable 3435 * case thereby avoiding any specific check in the main path. 3436 */ 3437 ASSERT(generation == IRE_GENERATION_VERIFY); 3438 if (flags & IPDF_VERIFY_DST) { 3439 /* 3440 * Set errno but continue to set up ixa_ire to be 3441 * the RTF_REJECT|RTF_BLACKHOLE IRE. 3442 * That allows callers to use ip_output to get an 3443 * ICMP error back. 3444 */ 3445 if (!(ire->ire_type & IRE_HOST)) 3446 error = ENETUNREACH; 3447 else 3448 error = EHOSTUNREACH; 3449 } 3450 } 3451 3452 if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) && 3453 !(flags & IPDF_ALLOW_MCBC)) { 3454 ire_refrele(ire); 3455 ire = ire_reject(ipst, B_FALSE); 3456 generation = IRE_GENERATION_VERIFY; 3457 error = ENETUNREACH; 3458 } 3459 3460 /* Cache things */ 3461 if (ixa->ixa_ire != NULL) 3462 ire_refrele_notr(ixa->ixa_ire); 3463 #ifdef DEBUG 3464 ire_refhold_notr(ire); 3465 ire_refrele(ire); 3466 #endif 3467 ixa->ixa_ire = ire; 3468 ixa->ixa_ire_generation = generation; 3469 3470 /* 3471 * Ensure that ixa_dce is always set any time that ixa_ire is set, 3472 * since some callers will send a packet to conn_ip_output() even if 3473 * there's an error. 3474 */ 3475 if (flags & IPDF_UNIQUE_DCE) { 3476 /* Fallback to the default dce if allocation fails */ 3477 dce = dce_lookup_and_add_v4(dst_addr, ipst); 3478 if (dce != NULL) 3479 generation = dce->dce_generation; 3480 else 3481 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3482 } else { 3483 dce = dce_lookup_v4(dst_addr, ipst, &generation); 3484 } 3485 ASSERT(dce != NULL); 3486 if (ixa->ixa_dce != NULL) 3487 dce_refrele_notr(ixa->ixa_dce); 3488 #ifdef DEBUG 3489 dce_refhold_notr(dce); 3490 dce_refrele(dce); 3491 #endif 3492 ixa->ixa_dce = dce; 3493 ixa->ixa_dce_generation = generation; 3494 3495 /* 3496 * For multicast with multirt we have a flag passed back from 3497 * ire_lookup_multi_ill_v4 since we don't have an IRE for each 3498 * possible multicast address. 3499 * We also need a flag for multicast since we can't check 3500 * whether RTF_MULTIRT is set in ixa_ire for multicast. 3501 */ 3502 if (multirt) { 3503 ixa->ixa_postfragfn = ip_postfrag_multirt_v4; 3504 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST; 3505 } else { 3506 ixa->ixa_postfragfn = ire->ire_postfragfn; 3507 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST; 3508 } 3509 if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3510 /* Get an nce to cache. */ 3511 nce = ire_to_nce(ire, firsthop, NULL); 3512 if (nce == NULL) { 3513 /* Allocation failure? */ 3514 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3515 } else { 3516 if (ixa->ixa_nce != NULL) 3517 nce_refrele(ixa->ixa_nce); 3518 ixa->ixa_nce = nce; 3519 } 3520 } 3521 3522 /* 3523 * If the source address is a loopback address, the 3524 * destination had best be local or multicast. 3525 * If we are sending to an IRE_LOCAL using a loopback source then 3526 * it had better be the same zoneid. 3527 */ 3528 if (*src_addrp == htonl(INADDR_LOOPBACK)) { 3529 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) { 3530 ire = NULL; /* Stored in ixa_ire */ 3531 error = EADDRNOTAVAIL; 3532 goto bad_addr; 3533 } 3534 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) { 3535 ire = NULL; /* Stored in ixa_ire */ 3536 error = EADDRNOTAVAIL; 3537 goto bad_addr; 3538 } 3539 } 3540 if (ire->ire_type & IRE_BROADCAST) { 3541 /* 3542 * If the ULP didn't have a specified source, then we 3543 * make sure we reselect the source when sending 3544 * broadcasts out different interfaces. 3545 */ 3546 if (flags & IPDF_SELECT_SRC) 3547 ixa->ixa_flags |= IXAF_SET_SOURCE; 3548 else 3549 ixa->ixa_flags &= ~IXAF_SET_SOURCE; 3550 } 3551 3552 /* 3553 * Does the caller want us to pick a source address? 3554 */ 3555 if (flags & IPDF_SELECT_SRC) { 3556 ipaddr_t src_addr; 3557 3558 /* 3559 * We use use ire_nexthop_ill to avoid the under ipmp 3560 * interface for source address selection. Note that for ipmp 3561 * probe packets, ixa_ifindex would have been specified, and 3562 * the ip_select_route() invocation would have picked an ire 3563 * will ire_ill pointing at an under interface. 3564 */ 3565 ill = ire_nexthop_ill(ire); 3566 3567 /* If unreachable we have no ill but need some source */ 3568 if (ill == NULL) { 3569 src_addr = htonl(INADDR_LOOPBACK); 3570 /* Make sure we look for a better source address */ 3571 generation = SRC_GENERATION_VERIFY; 3572 } else { 3573 error = ip_select_source_v4(ill, setsrc, dst_addr, 3574 ixa->ixa_multicast_ifaddr, zoneid, 3575 ipst, &src_addr, &generation, NULL); 3576 if (error != 0) { 3577 ire = NULL; /* Stored in ixa_ire */ 3578 goto bad_addr; 3579 } 3580 } 3581 3582 /* 3583 * We allow the source address to to down. 3584 * However, we check that we don't use the loopback address 3585 * as a source when sending out on the wire. 3586 */ 3587 if ((src_addr == htonl(INADDR_LOOPBACK)) && 3588 !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) && 3589 !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 3590 ire = NULL; /* Stored in ixa_ire */ 3591 error = EADDRNOTAVAIL; 3592 goto bad_addr; 3593 } 3594 3595 *src_addrp = src_addr; 3596 ixa->ixa_src_generation = generation; 3597 } 3598 3599 /* 3600 * Make sure we don't leave an unreachable ixa_nce in place 3601 * since ip_select_route is used when we unplumb i.e., remove 3602 * references on ixa_ire, ixa_nce, and ixa_dce. 3603 */ 3604 nce = ixa->ixa_nce; 3605 if (nce != NULL && nce->nce_is_condemned) { 3606 nce_refrele(nce); 3607 ixa->ixa_nce = NULL; 3608 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3609 } 3610 3611 /* 3612 * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired. 3613 * However, we can't do it for IPv4 multicast or broadcast. 3614 */ 3615 if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) 3616 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3617 3618 /* 3619 * Set initial value for fragmentation limit. Either conn_ip_output 3620 * or ULP might updates it when there are routing changes. 3621 * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT. 3622 */ 3623 pmtu = ip_get_pmtu(ixa); 3624 ixa->ixa_fragsize = pmtu; 3625 /* Make sure ixa_fragsize and ixa_pmtu remain identical */ 3626 if (ixa->ixa_flags & IXAF_VERIFY_PMTU) 3627 ixa->ixa_pmtu = pmtu; 3628 3629 /* 3630 * Extract information useful for some transports. 3631 * First we look for DCE metrics. Then we take what we have in 3632 * the metrics in the route, where the offlink is used if we have 3633 * one. 3634 */ 3635 if (uinfo != NULL) { 3636 bzero(uinfo, sizeof (*uinfo)); 3637 3638 if (dce->dce_flags & DCEF_UINFO) 3639 *uinfo = dce->dce_uinfo; 3640 3641 rts_merge_metrics(uinfo, &ire->ire_metrics); 3642 3643 /* Allow ire_metrics to decrease the path MTU from above */ 3644 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu) 3645 uinfo->iulp_mtu = pmtu; 3646 3647 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0; 3648 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0; 3649 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0; 3650 } 3651 3652 if (ill != NULL) 3653 ill_refrele(ill); 3654 3655 return (error); 3656 3657 bad_addr: 3658 if (ire != NULL) 3659 ire_refrele(ire); 3660 3661 if (ill != NULL) 3662 ill_refrele(ill); 3663 3664 /* 3665 * Make sure we don't leave an unreachable ixa_nce in place 3666 * since ip_select_route is used when we unplumb i.e., remove 3667 * references on ixa_ire, ixa_nce, and ixa_dce. 3668 */ 3669 nce = ixa->ixa_nce; 3670 if (nce != NULL && nce->nce_is_condemned) { 3671 nce_refrele(nce); 3672 ixa->ixa_nce = NULL; 3673 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 3674 } 3675 3676 return (error); 3677 } 3678 3679 3680 /* 3681 * Get the base MTU for the case when path MTU discovery is not used. 3682 * Takes the MTU of the IRE into account. 3683 */ 3684 uint_t 3685 ip_get_base_mtu(ill_t *ill, ire_t *ire) 3686 { 3687 uint_t mtu; 3688 uint_t iremtu = ire->ire_metrics.iulp_mtu; 3689 3690 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) 3691 mtu = ill->ill_mc_mtu; 3692 else 3693 mtu = ill->ill_mtu; 3694 3695 if (iremtu != 0 && iremtu < mtu) 3696 mtu = iremtu; 3697 3698 return (mtu); 3699 } 3700 3701 /* 3702 * Get the PMTU for the attributes. Handles both IPv4 and IPv6. 3703 * Assumes that ixa_ire, dce, and nce have already been set up. 3704 * 3705 * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired. 3706 * We avoid path MTU discovery if it is disabled with ndd. 3707 * Furtermore, if the path MTU is too small, then we don't set DF for IPv4. 3708 * 3709 * NOTE: We also used to turn it off for source routed packets. That 3710 * is no longer required since the dce is per final destination. 3711 */ 3712 uint_t 3713 ip_get_pmtu(ip_xmit_attr_t *ixa) 3714 { 3715 ip_stack_t *ipst = ixa->ixa_ipst; 3716 dce_t *dce; 3717 nce_t *nce; 3718 ire_t *ire; 3719 uint_t pmtu; 3720 3721 ire = ixa->ixa_ire; 3722 dce = ixa->ixa_dce; 3723 nce = ixa->ixa_nce; 3724 3725 /* 3726 * If path MTU discovery has been turned off by ndd, then we ignore 3727 * any dce_pmtu and for IPv4 we will not set DF. 3728 */ 3729 if (!ipst->ips_ip_path_mtu_discovery) 3730 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY; 3731 3732 pmtu = IP_MAXPACKET; 3733 /* 3734 * Decide whether whether IPv4 sets DF 3735 * For IPv6 "no DF" means to use the 1280 mtu 3736 */ 3737 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3738 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3739 } else { 3740 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3741 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) 3742 pmtu = IPV6_MIN_MTU; 3743 } 3744 3745 /* Check if the PMTU is to old before we use it */ 3746 if ((dce->dce_flags & DCEF_PMTU) && 3747 TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time > 3748 ipst->ips_ip_pathmtu_interval) { 3749 /* 3750 * Older than 20 minutes. Drop the path MTU information. 3751 */ 3752 mutex_enter(&dce->dce_lock); 3753 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU); 3754 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64()); 3755 mutex_exit(&dce->dce_lock); 3756 dce_increment_generation(dce); 3757 } 3758 3759 /* The metrics on the route can lower the path MTU */ 3760 if (ire->ire_metrics.iulp_mtu != 0 && 3761 ire->ire_metrics.iulp_mtu < pmtu) 3762 pmtu = ire->ire_metrics.iulp_mtu; 3763 3764 /* 3765 * If the path MTU is smaller than some minimum, we still use dce_pmtu 3766 * above (would be 576 for IPv4 and 1280 for IPv6), but we clear 3767 * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4. 3768 */ 3769 if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) { 3770 if (dce->dce_flags & DCEF_PMTU) { 3771 if (dce->dce_pmtu < pmtu) 3772 pmtu = dce->dce_pmtu; 3773 3774 if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) { 3775 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL; 3776 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF; 3777 } else { 3778 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3779 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3780 } 3781 } else { 3782 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL; 3783 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF; 3784 } 3785 } 3786 3787 /* 3788 * If we have an IRE_LOCAL we use the loopback mtu instead of 3789 * the ill for going out the wire i.e., IRE_LOCAL gets the same 3790 * mtu as IRE_LOOPBACK. 3791 */ 3792 if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 3793 uint_t loopback_mtu; 3794 3795 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ? 3796 ip_loopback_mtu_v6plus : ip_loopback_mtuplus; 3797 3798 if (loopback_mtu < pmtu) 3799 pmtu = loopback_mtu; 3800 } else if (nce != NULL) { 3801 /* 3802 * Make sure we don't exceed the interface MTU. 3803 * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have 3804 * an ill. We'd use the above IP_MAXPACKET in that case just 3805 * to tell the transport something larger than zero. 3806 */ 3807 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) { 3808 if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu) 3809 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu; 3810 if (nce->nce_common->ncec_ill != nce->nce_ill && 3811 nce->nce_ill->ill_mc_mtu < pmtu) { 3812 /* 3813 * for interfaces in an IPMP group, the mtu of 3814 * the nce_ill (under_ill) could be different 3815 * from the mtu of the ncec_ill, so we take the 3816 * min of the two. 3817 */ 3818 pmtu = nce->nce_ill->ill_mc_mtu; 3819 } 3820 } else { 3821 if (nce->nce_common->ncec_ill->ill_mtu < pmtu) 3822 pmtu = nce->nce_common->ncec_ill->ill_mtu; 3823 if (nce->nce_common->ncec_ill != nce->nce_ill && 3824 nce->nce_ill->ill_mtu < pmtu) { 3825 /* 3826 * for interfaces in an IPMP group, the mtu of 3827 * the nce_ill (under_ill) could be different 3828 * from the mtu of the ncec_ill, so we take the 3829 * min of the two. 3830 */ 3831 pmtu = nce->nce_ill->ill_mtu; 3832 } 3833 } 3834 } 3835 3836 /* 3837 * Handle the IPV6_USE_MIN_MTU socket option or ancillary data. 3838 * Only applies to IPv6. 3839 */ 3840 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3841 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) { 3842 switch (ixa->ixa_use_min_mtu) { 3843 case IPV6_USE_MIN_MTU_MULTICAST: 3844 if (ire->ire_type & IRE_MULTICAST) 3845 pmtu = IPV6_MIN_MTU; 3846 break; 3847 case IPV6_USE_MIN_MTU_ALWAYS: 3848 pmtu = IPV6_MIN_MTU; 3849 break; 3850 case IPV6_USE_MIN_MTU_NEVER: 3851 break; 3852 } 3853 } else { 3854 /* Default is IPV6_USE_MIN_MTU_MULTICAST */ 3855 if (ire->ire_type & IRE_MULTICAST) 3856 pmtu = IPV6_MIN_MTU; 3857 } 3858 } 3859 3860 /* 3861 * For multirouted IPv6 packets, the IP layer will insert a 8-byte 3862 * fragment header in every packet. We compensate for those cases by 3863 * returning a smaller path MTU to the ULP. 3864 * 3865 * In the case of CGTP then ip_output will add a fragment header. 3866 * Make sure there is room for it by telling a smaller number 3867 * to the transport. 3868 * 3869 * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here 3870 * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu() 3871 * which is the size of the packets it can send. 3872 */ 3873 if (!(ixa->ixa_flags & IXAF_IS_IPV4)) { 3874 if ((ire->ire_flags & RTF_MULTIRT) || 3875 (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) { 3876 pmtu -= sizeof (ip6_frag_t); 3877 ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR; 3878 } 3879 } 3880 3881 return (pmtu); 3882 } 3883 3884 /* 3885 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 3886 * the final piece where we don't. Return a pointer to the first mblk in the 3887 * result, and update the pointer to the next mblk to chew on. If anything 3888 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 3889 * NULL pointer. 3890 */ 3891 mblk_t * 3892 ip_carve_mp(mblk_t **mpp, ssize_t len) 3893 { 3894 mblk_t *mp0; 3895 mblk_t *mp1; 3896 mblk_t *mp2; 3897 3898 if (!len || !mpp || !(mp0 = *mpp)) 3899 return (NULL); 3900 /* If we aren't going to consume the first mblk, we need a dup. */ 3901 if (mp0->b_wptr - mp0->b_rptr > len) { 3902 mp1 = dupb(mp0); 3903 if (mp1) { 3904 /* Partition the data between the two mblks. */ 3905 mp1->b_wptr = mp1->b_rptr + len; 3906 mp0->b_rptr = mp1->b_wptr; 3907 /* 3908 * after adjustments if mblk not consumed is now 3909 * unaligned, try to align it. If this fails free 3910 * all messages and let upper layer recover. 3911 */ 3912 if (!OK_32PTR(mp0->b_rptr)) { 3913 if (!pullupmsg(mp0, -1)) { 3914 freemsg(mp0); 3915 freemsg(mp1); 3916 *mpp = NULL; 3917 return (NULL); 3918 } 3919 } 3920 } 3921 return (mp1); 3922 } 3923 /* Eat through as many mblks as we need to get len bytes. */ 3924 len -= mp0->b_wptr - mp0->b_rptr; 3925 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 3926 if (mp2->b_wptr - mp2->b_rptr > len) { 3927 /* 3928 * We won't consume the entire last mblk. Like 3929 * above, dup and partition it. 3930 */ 3931 mp1->b_cont = dupb(mp2); 3932 mp1 = mp1->b_cont; 3933 if (!mp1) { 3934 /* 3935 * Trouble. Rather than go to a lot of 3936 * trouble to clean up, we free the messages. 3937 * This won't be any worse than losing it on 3938 * the wire. 3939 */ 3940 freemsg(mp0); 3941 freemsg(mp2); 3942 *mpp = NULL; 3943 return (NULL); 3944 } 3945 mp1->b_wptr = mp1->b_rptr + len; 3946 mp2->b_rptr = mp1->b_wptr; 3947 /* 3948 * after adjustments if mblk not consumed is now 3949 * unaligned, try to align it. If this fails free 3950 * all messages and let upper layer recover. 3951 */ 3952 if (!OK_32PTR(mp2->b_rptr)) { 3953 if (!pullupmsg(mp2, -1)) { 3954 freemsg(mp0); 3955 freemsg(mp2); 3956 *mpp = NULL; 3957 return (NULL); 3958 } 3959 } 3960 *mpp = mp2; 3961 return (mp0); 3962 } 3963 /* Decrement len by the amount we just got. */ 3964 len -= mp2->b_wptr - mp2->b_rptr; 3965 } 3966 /* 3967 * len should be reduced to zero now. If not our caller has 3968 * screwed up. 3969 */ 3970 if (len) { 3971 /* Shouldn't happen! */ 3972 freemsg(mp0); 3973 *mpp = NULL; 3974 return (NULL); 3975 } 3976 /* 3977 * We consumed up to exactly the end of an mblk. Detach the part 3978 * we are returning from the rest of the chain. 3979 */ 3980 mp1->b_cont = NULL; 3981 *mpp = mp2; 3982 return (mp0); 3983 } 3984 3985 /* The ill stream is being unplumbed. Called from ip_close */ 3986 int 3987 ip_modclose(ill_t *ill) 3988 { 3989 boolean_t success; 3990 ipsq_t *ipsq; 3991 ipif_t *ipif; 3992 queue_t *q = ill->ill_rq; 3993 ip_stack_t *ipst = ill->ill_ipst; 3994 int i; 3995 arl_ill_common_t *ai = ill->ill_common; 3996 3997 /* 3998 * The punlink prior to this may have initiated a capability 3999 * negotiation. But ipsq_enter will block until that finishes or 4000 * times out. 4001 */ 4002 success = ipsq_enter(ill, B_FALSE, NEW_OP); 4003 4004 /* 4005 * Open/close/push/pop is guaranteed to be single threaded 4006 * per stream by STREAMS. FS guarantees that all references 4007 * from top are gone before close is called. So there can't 4008 * be another close thread that has set CONDEMNED on this ill. 4009 * and cause ipsq_enter to return failure. 4010 */ 4011 ASSERT(success); 4012 ipsq = ill->ill_phyint->phyint_ipsq; 4013 4014 /* 4015 * Mark it condemned. No new reference will be made to this ill. 4016 * Lookup functions will return an error. Threads that try to 4017 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 4018 * that the refcnt will drop down to zero. 4019 */ 4020 mutex_enter(&ill->ill_lock); 4021 ill->ill_state_flags |= ILL_CONDEMNED; 4022 for (ipif = ill->ill_ipif; ipif != NULL; 4023 ipif = ipif->ipif_next) { 4024 ipif->ipif_state_flags |= IPIF_CONDEMNED; 4025 } 4026 /* 4027 * Wake up anybody waiting to enter the ipsq. ipsq_enter 4028 * returns error if ILL_CONDEMNED is set 4029 */ 4030 cv_broadcast(&ill->ill_cv); 4031 mutex_exit(&ill->ill_lock); 4032 4033 /* 4034 * Send all the deferred DLPI messages downstream which came in 4035 * during the small window right before ipsq_enter(). We do this 4036 * without waiting for the ACKs because all the ACKs for M_PROTO 4037 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 4038 */ 4039 ill_dlpi_send_deferred(ill); 4040 4041 /* 4042 * Shut down fragmentation reassembly. 4043 * ill_frag_timer won't start a timer again. 4044 * Now cancel any existing timer 4045 */ 4046 (void) untimeout(ill->ill_frag_timer_id); 4047 (void) ill_frag_timeout(ill, 0); 4048 4049 /* 4050 * Call ill_delete to bring down the ipifs, ilms and ill on 4051 * this ill. Then wait for the refcnts to drop to zero. 4052 * ill_is_freeable checks whether the ill is really quiescent. 4053 * Then make sure that threads that are waiting to enter the 4054 * ipsq have seen the error returned by ipsq_enter and have 4055 * gone away. Then we call ill_delete_tail which does the 4056 * DL_UNBIND_REQ with the driver and then qprocsoff. 4057 */ 4058 ill_delete(ill); 4059 mutex_enter(&ill->ill_lock); 4060 while (!ill_is_freeable(ill)) 4061 cv_wait(&ill->ill_cv, &ill->ill_lock); 4062 4063 while (ill->ill_waiters) 4064 cv_wait(&ill->ill_cv, &ill->ill_lock); 4065 4066 mutex_exit(&ill->ill_lock); 4067 4068 /* 4069 * ill_delete_tail drops reference on ill_ipst, but we need to keep 4070 * it held until the end of the function since the cleanup 4071 * below needs to be able to use the ip_stack_t. 4072 */ 4073 netstack_hold(ipst->ips_netstack); 4074 4075 /* qprocsoff is done via ill_delete_tail */ 4076 ill_delete_tail(ill); 4077 /* 4078 * synchronously wait for arp stream to unbind. After this, we 4079 * cannot get any data packets up from the driver. 4080 */ 4081 arp_unbind_complete(ill); 4082 ASSERT(ill->ill_ipst == NULL); 4083 4084 /* 4085 * Walk through all conns and qenable those that have queued data. 4086 * Close synchronization needs this to 4087 * be done to ensure that all upper layers blocked 4088 * due to flow control to the closing device 4089 * get unblocked. 4090 */ 4091 ip1dbg(("ip_wsrv: walking\n")); 4092 for (i = 0; i < TX_FANOUT_SIZE; i++) { 4093 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]); 4094 } 4095 4096 /* 4097 * ai can be null if this is an IPv6 ill, or if the IPv4 4098 * stream is being torn down before ARP was plumbed (e.g., 4099 * /sbin/ifconfig plumbing a stream twice, and encountering 4100 * an error 4101 */ 4102 if (ai != NULL) { 4103 ASSERT(!ill->ill_isv6); 4104 mutex_enter(&ai->ai_lock); 4105 ai->ai_ill = NULL; 4106 if (ai->ai_arl == NULL) { 4107 mutex_destroy(&ai->ai_lock); 4108 kmem_free(ai, sizeof (*ai)); 4109 } else { 4110 cv_signal(&ai->ai_ill_unplumb_done); 4111 mutex_exit(&ai->ai_lock); 4112 } 4113 } 4114 4115 mutex_enter(&ipst->ips_ip_mi_lock); 4116 mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill); 4117 mutex_exit(&ipst->ips_ip_mi_lock); 4118 4119 /* 4120 * credp could be null if the open didn't succeed and ip_modopen 4121 * itself calls ip_close. 4122 */ 4123 if (ill->ill_credp != NULL) 4124 crfree(ill->ill_credp); 4125 4126 mutex_destroy(&ill->ill_saved_ire_lock); 4127 mutex_destroy(&ill->ill_lock); 4128 rw_destroy(&ill->ill_mcast_lock); 4129 mutex_destroy(&ill->ill_mcast_serializer); 4130 list_destroy(&ill->ill_nce); 4131 4132 /* 4133 * Now we are done with the module close pieces that 4134 * need the netstack_t. 4135 */ 4136 netstack_rele(ipst->ips_netstack); 4137 4138 mi_close_free((IDP)ill); 4139 q->q_ptr = WR(q)->q_ptr = NULL; 4140 4141 ipsq_exit(ipsq); 4142 4143 return (0); 4144 } 4145 4146 /* 4147 * This is called as part of close() for IP, UDP, ICMP, and RTS 4148 * in order to quiesce the conn. 4149 */ 4150 void 4151 ip_quiesce_conn(conn_t *connp) 4152 { 4153 boolean_t drain_cleanup_reqd = B_FALSE; 4154 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4155 boolean_t ilg_cleanup_reqd = B_FALSE; 4156 ip_stack_t *ipst; 4157 4158 ASSERT(!IPCL_IS_TCP(connp)); 4159 ipst = connp->conn_netstack->netstack_ip; 4160 4161 /* 4162 * Mark the conn as closing, and this conn must not be 4163 * inserted in future into any list. Eg. conn_drain_insert(), 4164 * won't insert this conn into the conn_drain_list. 4165 * 4166 * conn_idl, and conn_ilg cannot get set henceforth. 4167 */ 4168 mutex_enter(&connp->conn_lock); 4169 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 4170 connp->conn_state_flags |= CONN_CLOSING; 4171 if (connp->conn_idl != NULL) 4172 drain_cleanup_reqd = B_TRUE; 4173 if (connp->conn_oper_pending_ill != NULL) 4174 conn_ioctl_cleanup_reqd = B_TRUE; 4175 if (connp->conn_dhcpinit_ill != NULL) { 4176 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0); 4177 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit); 4178 ill_set_inputfn(connp->conn_dhcpinit_ill); 4179 connp->conn_dhcpinit_ill = NULL; 4180 } 4181 if (connp->conn_ilg != NULL) 4182 ilg_cleanup_reqd = B_TRUE; 4183 mutex_exit(&connp->conn_lock); 4184 4185 if (conn_ioctl_cleanup_reqd) 4186 conn_ioctl_cleanup(connp); 4187 4188 if (is_system_labeled() && connp->conn_anon_port) { 4189 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4190 connp->conn_mlp_type, connp->conn_proto, 4191 ntohs(connp->conn_lport), B_FALSE); 4192 connp->conn_anon_port = 0; 4193 } 4194 connp->conn_mlp_type = mlptSingle; 4195 4196 /* 4197 * Remove this conn from any fanout list it is on. 4198 * and then wait for any threads currently operating 4199 * on this endpoint to finish 4200 */ 4201 ipcl_hash_remove(connp); 4202 4203 /* 4204 * Remove this conn from the drain list, and do any other cleanup that 4205 * may be required. (TCP conns are never flow controlled, and 4206 * conn_idl will be NULL.) 4207 */ 4208 if (drain_cleanup_reqd && connp->conn_idl != NULL) { 4209 idl_t *idl = connp->conn_idl; 4210 4211 mutex_enter(&idl->idl_lock); 4212 conn_drain(connp, B_TRUE); 4213 mutex_exit(&idl->idl_lock); 4214 } 4215 4216 if (connp == ipst->ips_ip_g_mrouter) 4217 (void) ip_mrouter_done(ipst); 4218 4219 if (ilg_cleanup_reqd) 4220 ilg_delete_all(connp); 4221 4222 /* 4223 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 4224 * callers from write side can't be there now because close 4225 * is in progress. The only other caller is ipcl_walk 4226 * which checks for the condemned flag. 4227 */ 4228 mutex_enter(&connp->conn_lock); 4229 connp->conn_state_flags |= CONN_CONDEMNED; 4230 while (connp->conn_ref != 1) 4231 cv_wait(&connp->conn_cv, &connp->conn_lock); 4232 connp->conn_state_flags |= CONN_QUIESCED; 4233 mutex_exit(&connp->conn_lock); 4234 } 4235 4236 /* ARGSUSED */ 4237 int 4238 ip_close(queue_t *q, int flags, cred_t *credp __unused) 4239 { 4240 conn_t *connp; 4241 4242 /* 4243 * Call the appropriate delete routine depending on whether this is 4244 * a module or device. 4245 */ 4246 if (WR(q)->q_next != NULL) { 4247 /* This is a module close */ 4248 return (ip_modclose((ill_t *)q->q_ptr)); 4249 } 4250 4251 connp = q->q_ptr; 4252 ip_quiesce_conn(connp); 4253 4254 qprocsoff(q); 4255 4256 /* 4257 * Now we are truly single threaded on this stream, and can 4258 * delete the things hanging off the connp, and finally the connp. 4259 * We removed this connp from the fanout list, it cannot be 4260 * accessed thru the fanouts, and we already waited for the 4261 * conn_ref to drop to 0. We are already in close, so 4262 * there cannot be any other thread from the top. qprocsoff 4263 * has completed, and service has completed or won't run in 4264 * future. 4265 */ 4266 ASSERT(connp->conn_ref == 1); 4267 4268 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4269 4270 connp->conn_ref--; 4271 ipcl_conn_destroy(connp); 4272 4273 q->q_ptr = WR(q)->q_ptr = NULL; 4274 return (0); 4275 } 4276 4277 /* 4278 * Wapper around putnext() so that ip_rts_request can merely use 4279 * conn_recv. 4280 */ 4281 /*ARGSUSED2*/ 4282 static void 4283 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4284 { 4285 conn_t *connp = (conn_t *)arg1; 4286 4287 putnext(connp->conn_rq, mp); 4288 } 4289 4290 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */ 4291 /* ARGSUSED */ 4292 static void 4293 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira) 4294 { 4295 freemsg(mp); 4296 } 4297 4298 /* 4299 * Called when the module is about to be unloaded 4300 */ 4301 void 4302 ip_ddi_destroy(void) 4303 { 4304 /* This needs to be called before destroying any transports. */ 4305 mutex_enter(&cpu_lock); 4306 unregister_cpu_setup_func(ip_tp_cpu_update, NULL); 4307 mutex_exit(&cpu_lock); 4308 4309 tnet_fini(); 4310 4311 icmp_ddi_g_destroy(); 4312 rts_ddi_g_destroy(); 4313 udp_ddi_g_destroy(); 4314 sctp_ddi_g_destroy(); 4315 tcp_ddi_g_destroy(); 4316 ilb_ddi_g_destroy(); 4317 dce_g_destroy(); 4318 ipsec_policy_g_destroy(); 4319 ipcl_g_destroy(); 4320 ip_net_g_destroy(); 4321 ip_ire_g_fini(); 4322 inet_minor_destroy(ip_minor_arena_sa); 4323 #if defined(_LP64) 4324 inet_minor_destroy(ip_minor_arena_la); 4325 #endif 4326 4327 #ifdef DEBUG 4328 list_destroy(&ip_thread_list); 4329 rw_destroy(&ip_thread_rwlock); 4330 tsd_destroy(&ip_thread_data); 4331 #endif 4332 4333 netstack_unregister(NS_IP); 4334 } 4335 4336 /* 4337 * First step in cleanup. 4338 */ 4339 /* ARGSUSED */ 4340 static void 4341 ip_stack_shutdown(netstackid_t stackid, void *arg) 4342 { 4343 ip_stack_t *ipst = (ip_stack_t *)arg; 4344 kt_did_t ktid; 4345 4346 #ifdef NS_DEBUG 4347 printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid); 4348 #endif 4349 4350 /* 4351 * Perform cleanup for special interfaces (loopback and IPMP). 4352 */ 4353 ip_interface_cleanup(ipst); 4354 4355 /* 4356 * The *_hook_shutdown()s start the process of notifying any 4357 * consumers that things are going away.... nothing is destroyed. 4358 */ 4359 ipv4_hook_shutdown(ipst); 4360 ipv6_hook_shutdown(ipst); 4361 arp_hook_shutdown(ipst); 4362 4363 mutex_enter(&ipst->ips_capab_taskq_lock); 4364 ktid = ipst->ips_capab_taskq_thread->t_did; 4365 ipst->ips_capab_taskq_quit = B_TRUE; 4366 cv_signal(&ipst->ips_capab_taskq_cv); 4367 mutex_exit(&ipst->ips_capab_taskq_lock); 4368 4369 /* 4370 * In rare occurrences, particularly on virtual hardware where CPUs can 4371 * be de-scheduled, the thread that we just signaled will not run until 4372 * after we have gotten through parts of ip_stack_fini. If that happens 4373 * then we'll try to grab the ips_capab_taskq_lock as part of returning 4374 * from cv_wait which no longer exists. 4375 */ 4376 thread_join(ktid); 4377 } 4378 4379 /* 4380 * Free the IP stack instance. 4381 */ 4382 static void 4383 ip_stack_fini(netstackid_t stackid, void *arg) 4384 { 4385 ip_stack_t *ipst = (ip_stack_t *)arg; 4386 int ret; 4387 4388 #ifdef NS_DEBUG 4389 printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid); 4390 #endif 4391 /* 4392 * At this point, all of the notifications that the events and 4393 * protocols are going away have been run, meaning that we can 4394 * now set about starting to clean things up. 4395 */ 4396 ipobs_fini(ipst); 4397 ipv4_hook_destroy(ipst); 4398 ipv6_hook_destroy(ipst); 4399 arp_hook_destroy(ipst); 4400 ip_net_destroy(ipst); 4401 4402 ipmp_destroy(ipst); 4403 4404 ip_kstat_fini(stackid, ipst->ips_ip_mibkp); 4405 ipst->ips_ip_mibkp = NULL; 4406 icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp); 4407 ipst->ips_icmp_mibkp = NULL; 4408 ip_kstat2_fini(stackid, ipst->ips_ip_kstat); 4409 ipst->ips_ip_kstat = NULL; 4410 bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics)); 4411 ip6_kstat_fini(stackid, ipst->ips_ip6_kstat); 4412 ipst->ips_ip6_kstat = NULL; 4413 bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics)); 4414 4415 kmem_free(ipst->ips_propinfo_tbl, 4416 ip_propinfo_count * sizeof (mod_prop_info_t)); 4417 ipst->ips_propinfo_tbl = NULL; 4418 4419 dce_stack_destroy(ipst); 4420 ip_mrouter_stack_destroy(ipst); 4421 4422 /* 4423 * Quiesce all of our timers. Note we set the quiesce flags before we 4424 * call untimeout. The slowtimers may actually kick off another instance 4425 * of the non-slow timers. 4426 */ 4427 mutex_enter(&ipst->ips_igmp_timer_lock); 4428 ipst->ips_igmp_timer_quiesce = B_TRUE; 4429 mutex_exit(&ipst->ips_igmp_timer_lock); 4430 4431 mutex_enter(&ipst->ips_mld_timer_lock); 4432 ipst->ips_mld_timer_quiesce = B_TRUE; 4433 mutex_exit(&ipst->ips_mld_timer_lock); 4434 4435 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 4436 ipst->ips_igmp_slowtimeout_quiesce = B_TRUE; 4437 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 4438 4439 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 4440 ipst->ips_mld_slowtimeout_quiesce = B_TRUE; 4441 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 4442 4443 ret = untimeout(ipst->ips_igmp_timeout_id); 4444 if (ret == -1) { 4445 ASSERT(ipst->ips_igmp_timeout_id == 0); 4446 } else { 4447 ASSERT(ipst->ips_igmp_timeout_id != 0); 4448 ipst->ips_igmp_timeout_id = 0; 4449 } 4450 ret = untimeout(ipst->ips_igmp_slowtimeout_id); 4451 if (ret == -1) { 4452 ASSERT(ipst->ips_igmp_slowtimeout_id == 0); 4453 } else { 4454 ASSERT(ipst->ips_igmp_slowtimeout_id != 0); 4455 ipst->ips_igmp_slowtimeout_id = 0; 4456 } 4457 ret = untimeout(ipst->ips_mld_timeout_id); 4458 if (ret == -1) { 4459 ASSERT(ipst->ips_mld_timeout_id == 0); 4460 } else { 4461 ASSERT(ipst->ips_mld_timeout_id != 0); 4462 ipst->ips_mld_timeout_id = 0; 4463 } 4464 ret = untimeout(ipst->ips_mld_slowtimeout_id); 4465 if (ret == -1) { 4466 ASSERT(ipst->ips_mld_slowtimeout_id == 0); 4467 } else { 4468 ASSERT(ipst->ips_mld_slowtimeout_id != 0); 4469 ipst->ips_mld_slowtimeout_id = 0; 4470 } 4471 4472 ip_ire_fini(ipst); 4473 ip6_asp_free(ipst); 4474 conn_drain_fini(ipst); 4475 ipcl_destroy(ipst); 4476 4477 mutex_destroy(&ipst->ips_ndp4->ndp_g_lock); 4478 mutex_destroy(&ipst->ips_ndp6->ndp_g_lock); 4479 kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t)); 4480 ipst->ips_ndp4 = NULL; 4481 kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t)); 4482 ipst->ips_ndp6 = NULL; 4483 4484 if (ipst->ips_loopback_ksp != NULL) { 4485 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid); 4486 ipst->ips_loopback_ksp = NULL; 4487 } 4488 4489 mutex_destroy(&ipst->ips_capab_taskq_lock); 4490 cv_destroy(&ipst->ips_capab_taskq_cv); 4491 4492 rw_destroy(&ipst->ips_srcid_lock); 4493 4494 mutex_destroy(&ipst->ips_ip_mi_lock); 4495 rw_destroy(&ipst->ips_ill_g_usesrc_lock); 4496 4497 mutex_destroy(&ipst->ips_igmp_timer_lock); 4498 mutex_destroy(&ipst->ips_mld_timer_lock); 4499 mutex_destroy(&ipst->ips_igmp_slowtimeout_lock); 4500 mutex_destroy(&ipst->ips_mld_slowtimeout_lock); 4501 mutex_destroy(&ipst->ips_ip_addr_avail_lock); 4502 rw_destroy(&ipst->ips_ill_g_lock); 4503 4504 kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t)); 4505 ipst->ips_phyint_g_list = NULL; 4506 kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS); 4507 ipst->ips_ill_g_heads = NULL; 4508 4509 ldi_ident_release(ipst->ips_ldi_ident); 4510 kmem_free(ipst, sizeof (*ipst)); 4511 } 4512 4513 /* 4514 * This function is called from the TSD destructor, and is used to debug 4515 * reference count issues in IP. See block comment in <inet/ip_if.h> for 4516 * details. 4517 */ 4518 static void 4519 ip_thread_exit(void *phash) 4520 { 4521 th_hash_t *thh = phash; 4522 4523 rw_enter(&ip_thread_rwlock, RW_WRITER); 4524 list_remove(&ip_thread_list, thh); 4525 rw_exit(&ip_thread_rwlock); 4526 mod_hash_destroy_hash(thh->thh_hash); 4527 kmem_free(thh, sizeof (*thh)); 4528 } 4529 4530 /* 4531 * Called when the IP kernel module is loaded into the kernel 4532 */ 4533 void 4534 ip_ddi_init(void) 4535 { 4536 ip_squeue_flag = ip_squeue_switch(ip_squeue_enter); 4537 4538 /* 4539 * For IP and TCP the minor numbers should start from 2 since we have 4 4540 * initial devices: ip, ip6, tcp, tcp6. 4541 */ 4542 /* 4543 * If this is a 64-bit kernel, then create two separate arenas - 4544 * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the 4545 * other for socket apps in the range 2^^18 through 2^^32-1. 4546 */ 4547 ip_minor_arena_la = NULL; 4548 ip_minor_arena_sa = NULL; 4549 #if defined(_LP64) 4550 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4551 INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) { 4552 cmn_err(CE_PANIC, 4553 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4554 } 4555 if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la", 4556 MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) { 4557 cmn_err(CE_PANIC, 4558 "ip_ddi_init: ip_minor_arena_la creation failed\n"); 4559 } 4560 #else 4561 if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa", 4562 INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) { 4563 cmn_err(CE_PANIC, 4564 "ip_ddi_init: ip_minor_arena_sa creation failed\n"); 4565 } 4566 #endif 4567 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 4568 4569 ipcl_g_init(); 4570 ip_ire_g_init(); 4571 ip_net_g_init(); 4572 4573 #ifdef DEBUG 4574 tsd_create(&ip_thread_data, ip_thread_exit); 4575 rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL); 4576 list_create(&ip_thread_list, sizeof (th_hash_t), 4577 offsetof(th_hash_t, thh_link)); 4578 #endif 4579 ipsec_policy_g_init(); 4580 tcp_ddi_g_init(); 4581 sctp_ddi_g_init(); 4582 dce_g_init(); 4583 4584 /* 4585 * We want to be informed each time a stack is created or 4586 * destroyed in the kernel, so we can maintain the 4587 * set of udp_stack_t's. 4588 */ 4589 netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown, 4590 ip_stack_fini); 4591 4592 tnet_init(); 4593 4594 udp_ddi_g_init(); 4595 rts_ddi_g_init(); 4596 icmp_ddi_g_init(); 4597 ilb_ddi_g_init(); 4598 4599 /* This needs to be called after all transports are initialized. */ 4600 mutex_enter(&cpu_lock); 4601 register_cpu_setup_func(ip_tp_cpu_update, NULL); 4602 mutex_exit(&cpu_lock); 4603 } 4604 4605 /* 4606 * Initialize the IP stack instance. 4607 */ 4608 static void * 4609 ip_stack_init(netstackid_t stackid, netstack_t *ns) 4610 { 4611 ip_stack_t *ipst; 4612 size_t arrsz; 4613 major_t major; 4614 4615 #ifdef NS_DEBUG 4616 printf("ip_stack_init(stack %d)\n", stackid); 4617 #endif 4618 4619 ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP); 4620 ipst->ips_netstack = ns; 4621 4622 ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS, 4623 KM_SLEEP); 4624 ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t), 4625 KM_SLEEP); 4626 ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4627 ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP); 4628 mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4629 mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL); 4630 4631 mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4632 ipst->ips_igmp_deferred_next = INFINITY; 4633 mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 4634 ipst->ips_mld_deferred_next = INFINITY; 4635 mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4636 mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 4637 mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 4638 mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 4639 rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL); 4640 rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 4641 4642 ipcl_init(ipst); 4643 ip_ire_init(ipst); 4644 ip6_asp_init(ipst); 4645 ipif_init(ipst); 4646 conn_drain_init(ipst); 4647 ip_mrouter_stack_init(ipst); 4648 dce_stack_init(ipst); 4649 4650 ipst->ips_ip_multirt_log_interval = 1000; 4651 4652 ipst->ips_ill_index = 1; 4653 4654 ipst->ips_saved_ip_forwarding = -1; 4655 ipst->ips_reg_vif_num = ALL_VIFS; /* Index to Register vif */ 4656 4657 arrsz = ip_propinfo_count * sizeof (mod_prop_info_t); 4658 ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP); 4659 bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz); 4660 4661 ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst); 4662 ipst->ips_icmp_mibkp = icmp_kstat_init(stackid); 4663 ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics); 4664 ipst->ips_ip6_kstat = 4665 ip6_kstat_init(stackid, &ipst->ips_ip6_statistics); 4666 4667 ipst->ips_ip_src_id = 1; 4668 rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL); 4669 4670 ipst->ips_src_generation = SRC_GENERATION_INITIAL; 4671 4672 ip_net_init(ipst, ns); 4673 ipv4_hook_init(ipst); 4674 ipv6_hook_init(ipst); 4675 arp_hook_init(ipst); 4676 ipmp_init(ipst); 4677 ipobs_init(ipst); 4678 4679 /* 4680 * Create the taskq dispatcher thread and initialize related stuff. 4681 */ 4682 mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL); 4683 cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL); 4684 ipst->ips_capab_taskq_thread = thread_create(NULL, 0, 4685 ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri); 4686 4687 major = mod_name_to_major(INET_NAME); 4688 (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident); 4689 return (ipst); 4690 } 4691 4692 /* 4693 * Allocate and initialize a DLPI template of the specified length. (May be 4694 * called as writer.) 4695 */ 4696 mblk_t * 4697 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 4698 { 4699 mblk_t *mp; 4700 4701 mp = allocb(len, BPRI_MED); 4702 if (!mp) 4703 return (NULL); 4704 4705 /* 4706 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 4707 * of which we don't seem to use) are sent with M_PCPROTO, and 4708 * that other DLPI are M_PROTO. 4709 */ 4710 if (prim == DL_INFO_REQ) { 4711 mp->b_datap->db_type = M_PCPROTO; 4712 } else { 4713 mp->b_datap->db_type = M_PROTO; 4714 } 4715 4716 mp->b_wptr = mp->b_rptr + len; 4717 bzero(mp->b_rptr, len); 4718 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 4719 return (mp); 4720 } 4721 4722 /* 4723 * Allocate and initialize a DLPI notification. (May be called as writer.) 4724 */ 4725 mblk_t * 4726 ip_dlnotify_alloc(uint_t notification, uint_t data) 4727 { 4728 dl_notify_ind_t *notifyp; 4729 mblk_t *mp; 4730 4731 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4732 return (NULL); 4733 4734 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4735 notifyp->dl_notification = notification; 4736 notifyp->dl_data = data; 4737 return (mp); 4738 } 4739 4740 mblk_t * 4741 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2) 4742 { 4743 dl_notify_ind_t *notifyp; 4744 mblk_t *mp; 4745 4746 if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL) 4747 return (NULL); 4748 4749 notifyp = (dl_notify_ind_t *)mp->b_rptr; 4750 notifyp->dl_notification = notification; 4751 notifyp->dl_data1 = data1; 4752 notifyp->dl_data2 = data2; 4753 return (mp); 4754 } 4755 4756 /* 4757 * Debug formatting routine. Returns a character string representation of the 4758 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 4759 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 4760 * 4761 * Once the ndd table-printing interfaces are removed, this can be changed to 4762 * standard dotted-decimal form. 4763 */ 4764 char * 4765 ip_dot_addr(ipaddr_t addr, char *buf) 4766 { 4767 uint8_t *ap = (uint8_t *)&addr; 4768 4769 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 4770 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 4771 return (buf); 4772 } 4773 4774 /* 4775 * Write the given MAC address as a printable string in the usual colon- 4776 * separated format. 4777 */ 4778 const char * 4779 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 4780 { 4781 char *bp; 4782 4783 if (alen == 0 || buflen < 4) 4784 return ("?"); 4785 bp = buf; 4786 for (;;) { 4787 /* 4788 * If there are more MAC address bytes available, but we won't 4789 * have any room to print them, then add "..." to the string 4790 * instead. See below for the 'magic number' explanation. 4791 */ 4792 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 4793 (void) strcpy(bp, "..."); 4794 break; 4795 } 4796 (void) sprintf(bp, "%02x", *addr++); 4797 bp += 2; 4798 if (--alen == 0) 4799 break; 4800 *bp++ = ':'; 4801 buflen -= 3; 4802 /* 4803 * At this point, based on the first 'if' statement above, 4804 * either alen == 1 and buflen >= 3, or alen > 1 and 4805 * buflen >= 4. The first case leaves room for the final "xx" 4806 * number and trailing NUL byte. The second leaves room for at 4807 * least "...". Thus the apparently 'magic' numbers chosen for 4808 * that statement. 4809 */ 4810 } 4811 return (buf); 4812 } 4813 4814 /* 4815 * Called when it is conceptually a ULP that would sent the packet 4816 * e.g., port unreachable and protocol unreachable. Check that the packet 4817 * would have passed the IPsec global policy before sending the error. 4818 * 4819 * Send an ICMP error after patching up the packet appropriately. 4820 * Uses ip_drop_input and bumps the appropriate MIB. 4821 */ 4822 void 4823 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code, 4824 ip_recv_attr_t *ira) 4825 { 4826 ipha_t *ipha; 4827 boolean_t secure; 4828 ill_t *ill = ira->ira_ill; 4829 ip_stack_t *ipst = ill->ill_ipst; 4830 netstack_t *ns = ipst->ips_netstack; 4831 ipsec_stack_t *ipss = ns->netstack_ipsec; 4832 4833 secure = ira->ira_flags & IRAF_IPSEC_SECURE; 4834 4835 /* 4836 * We are generating an icmp error for some inbound packet. 4837 * Called from all ip_fanout_(udp, tcp, proto) functions. 4838 * Before we generate an error, check with global policy 4839 * to see whether this is allowed to enter the system. As 4840 * there is no "conn", we are checking with global policy. 4841 */ 4842 ipha = (ipha_t *)mp->b_rptr; 4843 if (secure || ipss->ipsec_inbound_v4_policy_present) { 4844 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns); 4845 if (mp == NULL) 4846 return; 4847 } 4848 4849 /* We never send errors for protocols that we do implement */ 4850 if (ira->ira_protocol == IPPROTO_ICMP || 4851 ira->ira_protocol == IPPROTO_IGMP) { 4852 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4853 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill); 4854 freemsg(mp); 4855 return; 4856 } 4857 /* 4858 * Have to correct checksum since 4859 * the packet might have been 4860 * fragmented and the reassembly code in ip_rput 4861 * does not restore the IP checksum. 4862 */ 4863 ipha->ipha_hdr_checksum = 0; 4864 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 4865 4866 switch (icmp_type) { 4867 case ICMP_DEST_UNREACHABLE: 4868 switch (icmp_code) { 4869 case ICMP_PROTOCOL_UNREACHABLE: 4870 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos); 4871 ip_drop_input("ipIfStatsInUnknownProtos", mp, ill); 4872 break; 4873 case ICMP_PORT_UNREACHABLE: 4874 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 4875 ip_drop_input("ipIfStatsNoPorts", mp, ill); 4876 break; 4877 } 4878 4879 icmp_unreachable(mp, icmp_code, ira); 4880 break; 4881 default: 4882 #ifdef DEBUG 4883 panic("ip_fanout_send_icmp_v4: wrong type"); 4884 /*NOTREACHED*/ 4885 #else 4886 freemsg(mp); 4887 break; 4888 #endif 4889 } 4890 } 4891 4892 /* 4893 * Used to send an ICMP error message when a packet is received for 4894 * a protocol that is not supported. The mblk passed as argument 4895 * is consumed by this function. 4896 */ 4897 void 4898 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira) 4899 { 4900 ipha_t *ipha; 4901 4902 ipha = (ipha_t *)mp->b_rptr; 4903 if (ira->ira_flags & IRAF_IS_IPV4) { 4904 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION); 4905 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 4906 ICMP_PROTOCOL_UNREACHABLE, ira); 4907 } else { 4908 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 4909 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB, 4910 ICMP6_PARAMPROB_NEXTHEADER, ira); 4911 } 4912 } 4913 4914 /* 4915 * Deliver a rawip packet to the given conn, possibly applying ipsec policy. 4916 * Handles IPv4 and IPv6. 4917 * We are responsible for disposing of mp, such as by freemsg() or putnext() 4918 * Caller is responsible for dropping references to the conn. 4919 */ 4920 void 4921 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 4922 ip_recv_attr_t *ira) 4923 { 4924 ill_t *ill = ira->ira_ill; 4925 ip_stack_t *ipst = ill->ill_ipst; 4926 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 4927 boolean_t secure; 4928 uint_t protocol = ira->ira_protocol; 4929 iaflags_t iraflags = ira->ira_flags; 4930 queue_t *rq; 4931 4932 secure = iraflags & IRAF_IPSEC_SECURE; 4933 4934 rq = connp->conn_rq; 4935 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 4936 switch (protocol) { 4937 case IPPROTO_ICMPV6: 4938 BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows); 4939 break; 4940 case IPPROTO_ICMP: 4941 BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows); 4942 break; 4943 default: 4944 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 4945 break; 4946 } 4947 freemsg(mp); 4948 return; 4949 } 4950 4951 ASSERT(!(IPCL_IS_IPTUN(connp))); 4952 4953 if (((iraflags & IRAF_IS_IPV4) ? 4954 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 4955 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 4956 secure) { 4957 mp = ipsec_check_inbound_policy(mp, connp, ipha, 4958 ip6h, ira); 4959 if (mp == NULL) { 4960 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 4961 /* Note that mp is NULL */ 4962 ip_drop_input("ipIfStatsInDiscards", mp, ill); 4963 return; 4964 } 4965 } 4966 4967 if (iraflags & IRAF_ICMP_ERROR) { 4968 (connp->conn_recvicmp)(connp, mp, NULL, ira); 4969 } else { 4970 ill_t *rill = ira->ira_rill; 4971 4972 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 4973 ira->ira_ill = ira->ira_rill = NULL; 4974 /* Send it upstream */ 4975 (connp->conn_recv)(connp, mp, NULL, ira); 4976 ira->ira_ill = ill; 4977 ira->ira_rill = rill; 4978 } 4979 } 4980 4981 /* 4982 * Handle protocols with which IP is less intimate. There 4983 * can be more than one stream bound to a particular 4984 * protocol. When this is the case, normally each one gets a copy 4985 * of any incoming packets. 4986 * 4987 * IPsec NOTE : 4988 * 4989 * Don't allow a secure packet going up a non-secure connection. 4990 * We don't allow this because 4991 * 4992 * 1) Reply might go out in clear which will be dropped at 4993 * the sending side. 4994 * 2) If the reply goes out in clear it will give the 4995 * adversary enough information for getting the key in 4996 * most of the cases. 4997 * 4998 * Moreover getting a secure packet when we expect clear 4999 * implies that SA's were added without checking for 5000 * policy on both ends. This should not happen once ISAKMP 5001 * is used to negotiate SAs as SAs will be added only after 5002 * verifying the policy. 5003 * 5004 * Zones notes: 5005 * Earlier in ip_input on a system with multiple shared-IP zones we 5006 * duplicate the multicast and broadcast packets and send them up 5007 * with each explicit zoneid that exists on that ill. 5008 * This means that here we can match the zoneid with SO_ALLZONES being special. 5009 */ 5010 void 5011 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 5012 { 5013 mblk_t *mp1; 5014 ipaddr_t laddr; 5015 conn_t *connp, *first_connp, *next_connp; 5016 connf_t *connfp; 5017 ill_t *ill = ira->ira_ill; 5018 ip_stack_t *ipst = ill->ill_ipst; 5019 5020 laddr = ipha->ipha_dst; 5021 5022 connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol]; 5023 mutex_enter(&connfp->connf_lock); 5024 connp = connfp->connf_head; 5025 for (connp = connfp->connf_head; connp != NULL; 5026 connp = connp->conn_next) { 5027 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5028 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5029 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5030 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) { 5031 break; 5032 } 5033 } 5034 5035 if (connp == NULL) { 5036 /* 5037 * No one bound to these addresses. Is 5038 * there a client that wants all 5039 * unclaimed datagrams? 5040 */ 5041 mutex_exit(&connfp->connf_lock); 5042 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE, 5043 ICMP_PROTOCOL_UNREACHABLE, ira); 5044 return; 5045 } 5046 5047 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5048 5049 CONN_INC_REF(connp); 5050 first_connp = connp; 5051 connp = connp->conn_next; 5052 5053 for (;;) { 5054 while (connp != NULL) { 5055 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */ 5056 if (IPCL_PROTO_MATCH(connp, ira, ipha) && 5057 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5058 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5059 ira, connp))) 5060 break; 5061 connp = connp->conn_next; 5062 } 5063 5064 if (connp == NULL) { 5065 /* No more interested clients */ 5066 connp = first_connp; 5067 break; 5068 } 5069 if (((mp1 = dupmsg(mp)) == NULL) && 5070 ((mp1 = copymsg(mp)) == NULL)) { 5071 /* Memory allocation failed */ 5072 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5073 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5074 connp = first_connp; 5075 break; 5076 } 5077 5078 CONN_INC_REF(connp); 5079 mutex_exit(&connfp->connf_lock); 5080 5081 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL, 5082 ira); 5083 5084 mutex_enter(&connfp->connf_lock); 5085 /* Follow the next pointer before releasing the conn. */ 5086 next_connp = connp->conn_next; 5087 CONN_DEC_REF(connp); 5088 connp = next_connp; 5089 } 5090 5091 /* Last one. Send it upstream. */ 5092 mutex_exit(&connfp->connf_lock); 5093 5094 ip_fanout_proto_conn(connp, mp, ipha, NULL, ira); 5095 5096 CONN_DEC_REF(connp); 5097 } 5098 5099 /* 5100 * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or 5101 * pass it along to ESP if the SPI is non-zero. Returns the mblk if the mblk 5102 * is not consumed. 5103 * 5104 * One of three things can happen, all of which affect the passed-in mblk: 5105 * 5106 * 1.) The packet is stock UDP and gets its zero-SPI stripped. Return mblk.. 5107 * 5108 * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent 5109 * ESP packet, and is passed along to ESP for consumption. Return NULL. 5110 * 5111 * 3.) The packet is an ESP-in-UDP Keepalive. Drop it and return NULL. 5112 */ 5113 mblk_t * 5114 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira) 5115 { 5116 int shift, plen, iph_len; 5117 ipha_t *ipha; 5118 udpha_t *udpha; 5119 uint32_t *spi; 5120 uint32_t esp_ports; 5121 uint8_t *orptr; 5122 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 5123 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5124 5125 ipha = (ipha_t *)mp->b_rptr; 5126 iph_len = ira->ira_ip_hdr_length; 5127 plen = ira->ira_pktlen; 5128 5129 if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) { 5130 /* 5131 * Most likely a keepalive for the benefit of an intervening 5132 * NAT. These aren't for us, per se, so drop it. 5133 * 5134 * RFC 3947/8 doesn't say for sure what to do for 2-3 5135 * byte packets (keepalives are 1-byte), but we'll drop them 5136 * also. 5137 */ 5138 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5139 DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper); 5140 return (NULL); 5141 } 5142 5143 if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) { 5144 /* might as well pull it all up - it might be ESP. */ 5145 if (!pullupmsg(mp, -1)) { 5146 ip_drop_packet(mp, B_TRUE, ira->ira_ill, 5147 DROPPER(ipss, ipds_esp_nomem), 5148 &ipss->ipsec_dropper); 5149 return (NULL); 5150 } 5151 5152 ipha = (ipha_t *)mp->b_rptr; 5153 } 5154 spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t)); 5155 if (*spi == 0) { 5156 /* UDP packet - remove 0-spi. */ 5157 shift = sizeof (uint32_t); 5158 } else { 5159 /* ESP-in-UDP packet - reduce to ESP. */ 5160 ipha->ipha_protocol = IPPROTO_ESP; 5161 shift = sizeof (udpha_t); 5162 } 5163 5164 /* Fix IP header */ 5165 ira->ira_pktlen = (plen - shift); 5166 ipha->ipha_length = htons(ira->ira_pktlen); 5167 ipha->ipha_hdr_checksum = 0; 5168 5169 orptr = mp->b_rptr; 5170 mp->b_rptr += shift; 5171 5172 udpha = (udpha_t *)(orptr + iph_len); 5173 if (*spi == 0) { 5174 ASSERT((uint8_t *)ipha == orptr); 5175 udpha->uha_length = htons(plen - shift - iph_len); 5176 iph_len += sizeof (udpha_t); /* For the call to ovbcopy(). */ 5177 esp_ports = 0; 5178 } else { 5179 esp_ports = *((uint32_t *)udpha); 5180 ASSERT(esp_ports != 0); 5181 } 5182 ovbcopy(orptr, orptr + shift, iph_len); 5183 if (esp_ports != 0) /* Punt up for ESP processing. */ { 5184 ipha = (ipha_t *)(orptr + shift); 5185 5186 ira->ira_flags |= IRAF_ESP_UDP_PORTS; 5187 ira->ira_esp_udp_ports = esp_ports; 5188 ip_fanout_v4(mp, ipha, ira); 5189 return (NULL); 5190 } 5191 return (mp); 5192 } 5193 5194 /* 5195 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 5196 * Handles IPv4 and IPv6. 5197 * We are responsible for disposing of mp, such as by freemsg() or putnext() 5198 * Caller is responsible for dropping references to the conn. 5199 */ 5200 void 5201 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, 5202 ip_recv_attr_t *ira) 5203 { 5204 ill_t *ill = ira->ira_ill; 5205 ip_stack_t *ipst = ill->ill_ipst; 5206 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5207 boolean_t secure; 5208 iaflags_t iraflags = ira->ira_flags; 5209 5210 secure = iraflags & IRAF_IPSEC_SECURE; 5211 5212 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : 5213 !canputnext(connp->conn_rq)) { 5214 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 5215 freemsg(mp); 5216 return; 5217 } 5218 5219 if (((iraflags & IRAF_IS_IPV4) ? 5220 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 5221 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 5222 secure) { 5223 mp = ipsec_check_inbound_policy(mp, connp, ipha, 5224 ip6h, ira); 5225 if (mp == NULL) { 5226 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5227 /* Note that mp is NULL */ 5228 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5229 return; 5230 } 5231 } 5232 5233 /* 5234 * Since this code is not used for UDP unicast we don't need a NAT_T 5235 * check. Only ip_fanout_v4 has that check. 5236 */ 5237 if (ira->ira_flags & IRAF_ICMP_ERROR) { 5238 (connp->conn_recvicmp)(connp, mp, NULL, ira); 5239 } else { 5240 ill_t *rill = ira->ira_rill; 5241 5242 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 5243 ira->ira_ill = ira->ira_rill = NULL; 5244 /* Send it upstream */ 5245 (connp->conn_recv)(connp, mp, NULL, ira); 5246 ira->ira_ill = ill; 5247 ira->ira_rill = rill; 5248 } 5249 } 5250 5251 /* 5252 * Fanout for UDP packets that are multicast or broadcast, and ICMP errors. 5253 * (Unicast fanout is handled in ip_input_v4.) 5254 * 5255 * If SO_REUSEADDR is set all multicast and broadcast packets 5256 * will be delivered to all conns bound to the same port. 5257 * 5258 * If there is at least one matching AF_INET receiver, then we will 5259 * ignore any AF_INET6 receivers. 5260 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 5261 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 5262 * packets. 5263 * 5264 * Zones notes: 5265 * Earlier in ip_input on a system with multiple shared-IP zones we 5266 * duplicate the multicast and broadcast packets and send them up 5267 * with each explicit zoneid that exists on that ill. 5268 * This means that here we can match the zoneid with SO_ALLZONES being special. 5269 */ 5270 void 5271 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport, 5272 ip_recv_attr_t *ira) 5273 { 5274 ipaddr_t laddr; 5275 in6_addr_t v6faddr; 5276 conn_t *connp; 5277 connf_t *connfp; 5278 ipaddr_t faddr; 5279 ill_t *ill = ira->ira_ill; 5280 ip_stack_t *ipst = ill->ill_ipst; 5281 5282 ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR)); 5283 5284 laddr = ipha->ipha_dst; 5285 faddr = ipha->ipha_src; 5286 5287 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5288 mutex_enter(&connfp->connf_lock); 5289 connp = connfp->connf_head; 5290 5291 /* 5292 * If SO_REUSEADDR has been set on the first we send the 5293 * packet to all clients that have joined the group and 5294 * match the port. 5295 */ 5296 while (connp != NULL) { 5297 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) && 5298 conn_wantpacket(connp, ira, ipha) && 5299 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5300 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5301 break; 5302 connp = connp->conn_next; 5303 } 5304 5305 if (connp == NULL) 5306 goto notfound; 5307 5308 CONN_INC_REF(connp); 5309 5310 if (connp->conn_reuseaddr) { 5311 conn_t *first_connp = connp; 5312 conn_t *next_connp; 5313 mblk_t *mp1; 5314 5315 connp = connp->conn_next; 5316 for (;;) { 5317 while (connp != NULL) { 5318 if (IPCL_UDP_MATCH(connp, lport, laddr, 5319 fport, faddr) && 5320 conn_wantpacket(connp, ira, ipha) && 5321 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5322 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5323 ira, connp))) 5324 break; 5325 connp = connp->conn_next; 5326 } 5327 if (connp == NULL) { 5328 /* No more interested clients */ 5329 connp = first_connp; 5330 break; 5331 } 5332 if (((mp1 = dupmsg(mp)) == NULL) && 5333 ((mp1 = copymsg(mp)) == NULL)) { 5334 /* Memory allocation failed */ 5335 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5336 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5337 connp = first_connp; 5338 break; 5339 } 5340 CONN_INC_REF(connp); 5341 mutex_exit(&connfp->connf_lock); 5342 5343 IP_STAT(ipst, ip_udp_fanmb); 5344 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5345 NULL, ira); 5346 mutex_enter(&connfp->connf_lock); 5347 /* Follow the next pointer before releasing the conn */ 5348 next_connp = connp->conn_next; 5349 CONN_DEC_REF(connp); 5350 connp = next_connp; 5351 } 5352 } 5353 5354 /* Last one. Send it upstream. */ 5355 mutex_exit(&connfp->connf_lock); 5356 IP_STAT(ipst, ip_udp_fanmb); 5357 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5358 CONN_DEC_REF(connp); 5359 return; 5360 5361 notfound: 5362 mutex_exit(&connfp->connf_lock); 5363 /* 5364 * IPv6 endpoints bound to multicast IPv4-mapped addresses 5365 * have already been matched above, since they live in the IPv4 5366 * fanout tables. This implies we only need to 5367 * check for IPv6 in6addr_any endpoints here. 5368 * Thus we compare using ipv6_all_zeros instead of the destination 5369 * address, except for the multicast group membership lookup which 5370 * uses the IPv4 destination. 5371 */ 5372 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr); 5373 connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)]; 5374 mutex_enter(&connfp->connf_lock); 5375 connp = connfp->connf_head; 5376 /* 5377 * IPv4 multicast packet being delivered to an AF_INET6 5378 * in6addr_any endpoint. 5379 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 5380 * and not conn_wantpacket_v6() since any multicast membership is 5381 * for an IPv4-mapped multicast address. 5382 */ 5383 while (connp != NULL) { 5384 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros, 5385 fport, v6faddr) && 5386 conn_wantpacket(connp, ira, ipha) && 5387 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5388 tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) 5389 break; 5390 connp = connp->conn_next; 5391 } 5392 5393 if (connp == NULL) { 5394 /* 5395 * No one bound to this port. Is 5396 * there a client that wants all 5397 * unclaimed datagrams? 5398 */ 5399 mutex_exit(&connfp->connf_lock); 5400 5401 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head != 5402 NULL) { 5403 ASSERT(ira->ira_protocol == IPPROTO_UDP); 5404 ip_fanout_proto_v4(mp, ipha, ira); 5405 } else { 5406 /* 5407 * We used to attempt to send an icmp error here, but 5408 * since this is known to be a multicast packet 5409 * and we don't send icmp errors in response to 5410 * multicast, just drop the packet and give up sooner. 5411 */ 5412 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 5413 freemsg(mp); 5414 } 5415 return; 5416 } 5417 CONN_INC_REF(connp); 5418 ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL); 5419 5420 /* 5421 * If SO_REUSEADDR has been set on the first we send the 5422 * packet to all clients that have joined the group and 5423 * match the port. 5424 */ 5425 if (connp->conn_reuseaddr) { 5426 conn_t *first_connp = connp; 5427 conn_t *next_connp; 5428 mblk_t *mp1; 5429 5430 connp = connp->conn_next; 5431 for (;;) { 5432 while (connp != NULL) { 5433 if (IPCL_UDP_MATCH_V6(connp, lport, 5434 ipv6_all_zeros, fport, v6faddr) && 5435 conn_wantpacket(connp, ira, ipha) && 5436 (!(ira->ira_flags & IRAF_SYSTEM_LABELED) || 5437 tsol_receive_local(mp, &laddr, IPV4_VERSION, 5438 ira, connp))) 5439 break; 5440 connp = connp->conn_next; 5441 } 5442 if (connp == NULL) { 5443 /* No more interested clients */ 5444 connp = first_connp; 5445 break; 5446 } 5447 if (((mp1 = dupmsg(mp)) == NULL) && 5448 ((mp1 = copymsg(mp)) == NULL)) { 5449 /* Memory allocation failed */ 5450 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 5451 ip_drop_input("ipIfStatsInDiscards", mp, ill); 5452 connp = first_connp; 5453 break; 5454 } 5455 CONN_INC_REF(connp); 5456 mutex_exit(&connfp->connf_lock); 5457 5458 IP_STAT(ipst, ip_udp_fanmb); 5459 ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr, 5460 NULL, ira); 5461 mutex_enter(&connfp->connf_lock); 5462 /* Follow the next pointer before releasing the conn */ 5463 next_connp = connp->conn_next; 5464 CONN_DEC_REF(connp); 5465 connp = next_connp; 5466 } 5467 } 5468 5469 /* Last one. Send it upstream. */ 5470 mutex_exit(&connfp->connf_lock); 5471 IP_STAT(ipst, ip_udp_fanmb); 5472 ip_fanout_udp_conn(connp, mp, ipha, NULL, ira); 5473 CONN_DEC_REF(connp); 5474 } 5475 5476 /* 5477 * Split an incoming packet's IPv4 options into the label and the other options. 5478 * If 'allocate' is set it does memory allocation for the ip_pkt_t, including 5479 * clearing out any leftover label or options. 5480 * Otherwise it just makes ipp point into the packet. 5481 * 5482 * Returns zero if ok; ENOMEM if the buffer couldn't be allocated. 5483 */ 5484 int 5485 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate) 5486 { 5487 uchar_t *opt; 5488 uint32_t totallen; 5489 uint32_t optval; 5490 uint32_t optlen; 5491 5492 ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR; 5493 ipp->ipp_hoplimit = ipha->ipha_ttl; 5494 ipp->ipp_type_of_service = ipha->ipha_type_of_service; 5495 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr); 5496 5497 /* 5498 * Get length (in 4 byte octets) of IP header options. 5499 */ 5500 totallen = ipha->ipha_version_and_hdr_length - 5501 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5502 5503 if (totallen == 0) { 5504 if (!allocate) 5505 return (0); 5506 5507 /* Clear out anything from a previous packet */ 5508 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5509 kmem_free(ipp->ipp_ipv4_options, 5510 ipp->ipp_ipv4_options_len); 5511 ipp->ipp_ipv4_options = NULL; 5512 ipp->ipp_ipv4_options_len = 0; 5513 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5514 } 5515 if (ipp->ipp_fields & IPPF_LABEL_V4) { 5516 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5517 ipp->ipp_label_v4 = NULL; 5518 ipp->ipp_label_len_v4 = 0; 5519 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5520 } 5521 return (0); 5522 } 5523 5524 totallen <<= 2; 5525 opt = (uchar_t *)&ipha[1]; 5526 if (!is_system_labeled()) { 5527 5528 copyall: 5529 if (!allocate) { 5530 if (totallen != 0) { 5531 ipp->ipp_ipv4_options = opt; 5532 ipp->ipp_ipv4_options_len = totallen; 5533 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5534 } 5535 return (0); 5536 } 5537 /* Just copy all of options */ 5538 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 5539 if (totallen == ipp->ipp_ipv4_options_len) { 5540 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5541 return (0); 5542 } 5543 kmem_free(ipp->ipp_ipv4_options, 5544 ipp->ipp_ipv4_options_len); 5545 ipp->ipp_ipv4_options = NULL; 5546 ipp->ipp_ipv4_options_len = 0; 5547 ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS; 5548 } 5549 if (totallen == 0) 5550 return (0); 5551 5552 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP); 5553 if (ipp->ipp_ipv4_options == NULL) 5554 return (ENOMEM); 5555 ipp->ipp_ipv4_options_len = totallen; 5556 ipp->ipp_fields |= IPPF_IPV4_OPTIONS; 5557 bcopy(opt, ipp->ipp_ipv4_options, totallen); 5558 return (0); 5559 } 5560 5561 if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) { 5562 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 5563 ipp->ipp_label_v4 = NULL; 5564 ipp->ipp_label_len_v4 = 0; 5565 ipp->ipp_fields &= ~IPPF_LABEL_V4; 5566 } 5567 5568 /* 5569 * Search for CIPSO option. 5570 * We assume CIPSO is first in options if it is present. 5571 * If it isn't, then ipp_opt_ipv4_options will not include the options 5572 * prior to the CIPSO option. 5573 */ 5574 while (totallen != 0) { 5575 switch (optval = opt[IPOPT_OPTVAL]) { 5576 case IPOPT_EOL: 5577 return (0); 5578 case IPOPT_NOP: 5579 optlen = 1; 5580 break; 5581 default: 5582 if (totallen <= IPOPT_OLEN) 5583 return (EINVAL); 5584 optlen = opt[IPOPT_OLEN]; 5585 if (optlen < 2) 5586 return (EINVAL); 5587 } 5588 if (optlen > totallen) 5589 return (EINVAL); 5590 5591 switch (optval) { 5592 case IPOPT_COMSEC: 5593 if (!allocate) { 5594 ipp->ipp_label_v4 = opt; 5595 ipp->ipp_label_len_v4 = optlen; 5596 ipp->ipp_fields |= IPPF_LABEL_V4; 5597 } else { 5598 ipp->ipp_label_v4 = kmem_alloc(optlen, 5599 KM_NOSLEEP); 5600 if (ipp->ipp_label_v4 == NULL) 5601 return (ENOMEM); 5602 ipp->ipp_label_len_v4 = optlen; 5603 ipp->ipp_fields |= IPPF_LABEL_V4; 5604 bcopy(opt, ipp->ipp_label_v4, optlen); 5605 } 5606 totallen -= optlen; 5607 opt += optlen; 5608 5609 /* Skip padding bytes until we get to a multiple of 4 */ 5610 while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) { 5611 totallen--; 5612 opt++; 5613 } 5614 /* Remaining as ipp_ipv4_options */ 5615 goto copyall; 5616 } 5617 totallen -= optlen; 5618 opt += optlen; 5619 } 5620 /* No CIPSO found; return everything as ipp_ipv4_options */ 5621 totallen = ipha->ipha_version_and_hdr_length - 5622 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 5623 totallen <<= 2; 5624 opt = (uchar_t *)&ipha[1]; 5625 goto copyall; 5626 } 5627 5628 /* 5629 * Efficient versions of lookup for an IRE when we only 5630 * match the address. 5631 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5632 * Does not handle multicast addresses. 5633 */ 5634 uint_t 5635 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst) 5636 { 5637 ire_t *ire; 5638 uint_t result; 5639 5640 ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL); 5641 ASSERT(ire != NULL); 5642 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5643 result = IRE_NOROUTE; 5644 else 5645 result = ire->ire_type; 5646 ire_refrele(ire); 5647 return (result); 5648 } 5649 5650 /* 5651 * Efficient versions of lookup for an IRE when we only 5652 * match the address. 5653 * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE. 5654 * Does not handle multicast addresses. 5655 */ 5656 uint_t 5657 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst) 5658 { 5659 ire_t *ire; 5660 uint_t result; 5661 5662 ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL); 5663 ASSERT(ire != NULL); 5664 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) 5665 result = IRE_NOROUTE; 5666 else 5667 result = ire->ire_type; 5668 ire_refrele(ire); 5669 return (result); 5670 } 5671 5672 /* 5673 * Nobody should be sending 5674 * packets up this stream 5675 */ 5676 static void 5677 ip_lrput(queue_t *q, mblk_t *mp) 5678 { 5679 switch (mp->b_datap->db_type) { 5680 case M_FLUSH: 5681 /* Turn around */ 5682 if (*mp->b_rptr & FLUSHW) { 5683 *mp->b_rptr &= ~FLUSHR; 5684 qreply(q, mp); 5685 return; 5686 } 5687 break; 5688 } 5689 freemsg(mp); 5690 } 5691 5692 /* Nobody should be sending packets down this stream */ 5693 /* ARGSUSED */ 5694 void 5695 ip_lwput(queue_t *q, mblk_t *mp) 5696 { 5697 freemsg(mp); 5698 } 5699 5700 /* 5701 * Move the first hop in any source route to ipha_dst and remove that part of 5702 * the source route. Called by other protocols. Errors in option formatting 5703 * are ignored - will be handled by ip_output_options. Return the final 5704 * destination (either ipha_dst or the last entry in a source route.) 5705 */ 5706 ipaddr_t 5707 ip_massage_options(ipha_t *ipha, netstack_t *ns) 5708 { 5709 ipoptp_t opts; 5710 uchar_t *opt; 5711 uint8_t optval; 5712 uint8_t optlen; 5713 ipaddr_t dst; 5714 int i; 5715 ip_stack_t *ipst = ns->netstack_ip; 5716 5717 ip2dbg(("ip_massage_options\n")); 5718 dst = ipha->ipha_dst; 5719 for (optval = ipoptp_first(&opts, ipha); 5720 optval != IPOPT_EOL; 5721 optval = ipoptp_next(&opts)) { 5722 opt = opts.ipoptp_cur; 5723 switch (optval) { 5724 uint8_t off; 5725 case IPOPT_SSRR: 5726 case IPOPT_LSRR: 5727 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 5728 ip1dbg(("ip_massage_options: bad src route\n")); 5729 break; 5730 } 5731 optlen = opts.ipoptp_len; 5732 off = opt[IPOPT_OFFSET]; 5733 off--; 5734 redo_srr: 5735 if (optlen < IP_ADDR_LEN || 5736 off > optlen - IP_ADDR_LEN) { 5737 /* End of source route */ 5738 ip1dbg(("ip_massage_options: end of SR\n")); 5739 break; 5740 } 5741 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 5742 ip1dbg(("ip_massage_options: next hop 0x%x\n", 5743 ntohl(dst))); 5744 /* 5745 * Check if our address is present more than 5746 * once as consecutive hops in source route. 5747 * XXX verify per-interface ip_forwarding 5748 * for source route? 5749 */ 5750 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 5751 off += IP_ADDR_LEN; 5752 goto redo_srr; 5753 } 5754 if (dst == htonl(INADDR_LOOPBACK)) { 5755 ip1dbg(("ip_massage_options: loopback addr in " 5756 "source route!\n")); 5757 break; 5758 } 5759 /* 5760 * Update ipha_dst to be the first hop and remove the 5761 * first hop from the source route (by overwriting 5762 * part of the option with NOP options). 5763 */ 5764 ipha->ipha_dst = dst; 5765 /* Put the last entry in dst */ 5766 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 5767 3; 5768 bcopy(&opt[off], &dst, IP_ADDR_LEN); 5769 5770 ip1dbg(("ip_massage_options: last hop 0x%x\n", 5771 ntohl(dst))); 5772 /* Move down and overwrite */ 5773 opt[IP_ADDR_LEN] = opt[0]; 5774 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 5775 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 5776 for (i = 0; i < IP_ADDR_LEN; i++) 5777 opt[i] = IPOPT_NOP; 5778 break; 5779 } 5780 } 5781 return (dst); 5782 } 5783 5784 /* 5785 * Return the network mask 5786 * associated with the specified address. 5787 */ 5788 ipaddr_t 5789 ip_net_mask(ipaddr_t addr) 5790 { 5791 uchar_t *up = (uchar_t *)&addr; 5792 ipaddr_t mask = 0; 5793 uchar_t *maskp = (uchar_t *)&mask; 5794 5795 #if defined(__i386) || defined(__amd64) 5796 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 5797 #endif 5798 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 5799 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 5800 #endif 5801 if (CLASSD(addr)) { 5802 maskp[0] = 0xF0; 5803 return (mask); 5804 } 5805 5806 /* We assume Class E default netmask to be 32 */ 5807 if (CLASSE(addr)) 5808 return (0xffffffffU); 5809 5810 if (addr == 0) 5811 return (0); 5812 maskp[0] = 0xFF; 5813 if ((up[0] & 0x80) == 0) 5814 return (mask); 5815 5816 maskp[1] = 0xFF; 5817 if ((up[0] & 0xC0) == 0x80) 5818 return (mask); 5819 5820 maskp[2] = 0xFF; 5821 if ((up[0] & 0xE0) == 0xC0) 5822 return (mask); 5823 5824 /* Otherwise return no mask */ 5825 return ((ipaddr_t)0); 5826 } 5827 5828 /* Name/Value Table Lookup Routine */ 5829 char * 5830 ip_nv_lookup(nv_t *nv, int value) 5831 { 5832 if (!nv) 5833 return (NULL); 5834 for (; nv->nv_name; nv++) { 5835 if (nv->nv_value == value) 5836 return (nv->nv_name); 5837 } 5838 return ("unknown"); 5839 } 5840 5841 static int 5842 ip_wait_for_info_ack(ill_t *ill) 5843 { 5844 int err; 5845 5846 mutex_enter(&ill->ill_lock); 5847 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 5848 /* 5849 * Return value of 0 indicates a pending signal. 5850 */ 5851 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 5852 if (err == 0) { 5853 mutex_exit(&ill->ill_lock); 5854 return (EINTR); 5855 } 5856 } 5857 mutex_exit(&ill->ill_lock); 5858 /* 5859 * ip_rput_other could have set an error in ill_error on 5860 * receipt of M_ERROR. 5861 */ 5862 return (ill->ill_error); 5863 } 5864 5865 /* 5866 * This is a module open, i.e. this is a control stream for access 5867 * to a DLPI device. We allocate an ill_t as the instance data in 5868 * this case. 5869 */ 5870 static int 5871 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5872 { 5873 ill_t *ill; 5874 int err; 5875 zoneid_t zoneid; 5876 netstack_t *ns; 5877 ip_stack_t *ipst; 5878 5879 /* 5880 * Prevent unprivileged processes from pushing IP so that 5881 * they can't send raw IP. 5882 */ 5883 if (secpolicy_net_rawaccess(credp) != 0) 5884 return (EPERM); 5885 5886 ns = netstack_find_by_cred(credp); 5887 ASSERT(ns != NULL); 5888 ipst = ns->netstack_ip; 5889 ASSERT(ipst != NULL); 5890 5891 /* 5892 * For exclusive stacks we set the zoneid to zero 5893 * to make IP operate as if in the global zone. 5894 */ 5895 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5896 zoneid = GLOBAL_ZONEID; 5897 else 5898 zoneid = crgetzoneid(credp); 5899 5900 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 5901 q->q_ptr = WR(q)->q_ptr = ill; 5902 ill->ill_ipst = ipst; 5903 ill->ill_zoneid = zoneid; 5904 5905 /* 5906 * ill_init initializes the ill fields and then sends down 5907 * down a DL_INFO_REQ after calling qprocson. 5908 */ 5909 err = ill_init(q, ill); 5910 5911 if (err != 0) { 5912 mi_free(ill); 5913 netstack_rele(ipst->ips_netstack); 5914 q->q_ptr = NULL; 5915 WR(q)->q_ptr = NULL; 5916 return (err); 5917 } 5918 5919 /* 5920 * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent. 5921 * 5922 * ill_init initializes the ipsq marking this thread as 5923 * writer 5924 */ 5925 ipsq_exit(ill->ill_phyint->phyint_ipsq); 5926 err = ip_wait_for_info_ack(ill); 5927 if (err == 0) 5928 ill->ill_credp = credp; 5929 else 5930 goto fail; 5931 5932 crhold(credp); 5933 5934 mutex_enter(&ipst->ips_ip_mi_lock); 5935 err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag, 5936 sflag, credp); 5937 mutex_exit(&ipst->ips_ip_mi_lock); 5938 fail: 5939 if (err) { 5940 (void) ip_close(q, 0, credp); 5941 return (err); 5942 } 5943 return (0); 5944 } 5945 5946 /* For /dev/ip aka AF_INET open */ 5947 int 5948 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5949 { 5950 return (ip_open(q, devp, flag, sflag, credp, B_FALSE)); 5951 } 5952 5953 /* For /dev/ip6 aka AF_INET6 open */ 5954 int 5955 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 5956 { 5957 return (ip_open(q, devp, flag, sflag, credp, B_TRUE)); 5958 } 5959 5960 /* IP open routine. */ 5961 int 5962 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 5963 boolean_t isv6) 5964 { 5965 conn_t *connp; 5966 major_t maj; 5967 zoneid_t zoneid; 5968 netstack_t *ns; 5969 ip_stack_t *ipst; 5970 5971 /* Allow reopen. */ 5972 if (q->q_ptr != NULL) 5973 return (0); 5974 5975 if (sflag & MODOPEN) { 5976 /* This is a module open */ 5977 return (ip_modopen(q, devp, flag, sflag, credp)); 5978 } 5979 5980 if ((flag & ~(FKLYR)) == IP_HELPER_STR) { 5981 /* 5982 * Non streams based socket looking for a stream 5983 * to access IP 5984 */ 5985 return (ip_helper_stream_setup(q, devp, flag, sflag, 5986 credp, isv6)); 5987 } 5988 5989 ns = netstack_find_by_cred(credp); 5990 ASSERT(ns != NULL); 5991 ipst = ns->netstack_ip; 5992 ASSERT(ipst != NULL); 5993 5994 /* 5995 * For exclusive stacks we set the zoneid to zero 5996 * to make IP operate as if in the global zone. 5997 */ 5998 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID) 5999 zoneid = GLOBAL_ZONEID; 6000 else 6001 zoneid = crgetzoneid(credp); 6002 6003 /* 6004 * We are opening as a device. This is an IP client stream, and we 6005 * allocate an conn_t as the instance data. 6006 */ 6007 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack); 6008 6009 /* 6010 * ipcl_conn_create did a netstack_hold. Undo the hold that was 6011 * done by netstack_find_by_cred() 6012 */ 6013 netstack_rele(ipst->ips_netstack); 6014 6015 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM; 6016 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 6017 connp->conn_ixa->ixa_zoneid = zoneid; 6018 connp->conn_zoneid = zoneid; 6019 6020 connp->conn_rq = q; 6021 q->q_ptr = WR(q)->q_ptr = connp; 6022 6023 /* Minor tells us which /dev entry was opened */ 6024 if (isv6) { 6025 connp->conn_family = AF_INET6; 6026 connp->conn_ipversion = IPV6_VERSION; 6027 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4; 6028 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 6029 } else { 6030 connp->conn_family = AF_INET; 6031 connp->conn_ipversion = IPV4_VERSION; 6032 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4; 6033 } 6034 6035 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 6036 ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 6037 connp->conn_minor_arena = ip_minor_arena_la; 6038 } else { 6039 /* 6040 * Either minor numbers in the large arena were exhausted 6041 * or a non socket application is doing the open. 6042 * Try to allocate from the small arena. 6043 */ 6044 if ((connp->conn_dev = 6045 inet_minor_alloc(ip_minor_arena_sa)) == 0) { 6046 /* CONN_DEC_REF takes care of netstack_rele() */ 6047 q->q_ptr = WR(q)->q_ptr = NULL; 6048 CONN_DEC_REF(connp); 6049 return (EBUSY); 6050 } 6051 connp->conn_minor_arena = ip_minor_arena_sa; 6052 } 6053 6054 maj = getemajor(*devp); 6055 *devp = makedevice(maj, (minor_t)connp->conn_dev); 6056 6057 /* 6058 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 6059 */ 6060 connp->conn_cred = credp; 6061 connp->conn_cpid = curproc->p_pid; 6062 /* Cache things in ixa without an extra refhold */ 6063 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 6064 connp->conn_ixa->ixa_cred = connp->conn_cred; 6065 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 6066 if (is_system_labeled()) 6067 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred); 6068 6069 /* 6070 * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv 6071 */ 6072 connp->conn_recv = ip_conn_input; 6073 connp->conn_recvicmp = ip_conn_input_icmp; 6074 6075 crhold(connp->conn_cred); 6076 6077 /* 6078 * If the caller has the process-wide flag set, then default to MAC 6079 * exempt mode. This allows read-down to unlabeled hosts. 6080 */ 6081 if (getpflags(NET_MAC_AWARE, credp) != 0) 6082 connp->conn_mac_mode = CONN_MAC_AWARE; 6083 6084 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 6085 6086 connp->conn_rq = q; 6087 connp->conn_wq = WR(q); 6088 6089 /* Non-zero default values */ 6090 connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP; 6091 6092 /* 6093 * Make the conn globally visible to walkers 6094 */ 6095 ASSERT(connp->conn_ref == 1); 6096 mutex_enter(&connp->conn_lock); 6097 connp->conn_state_flags &= ~CONN_INCIPIENT; 6098 mutex_exit(&connp->conn_lock); 6099 6100 qprocson(q); 6101 6102 return (0); 6103 } 6104 6105 /* 6106 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 6107 * all of them are copied to the conn_t. If the req is "zero", the policy is 6108 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 6109 * fields. 6110 * We keep only the latest setting of the policy and thus policy setting 6111 * is not incremental/cumulative. 6112 * 6113 * Requests to set policies with multiple alternative actions will 6114 * go through a different API. 6115 */ 6116 int 6117 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 6118 { 6119 uint_t ah_req = 0; 6120 uint_t esp_req = 0; 6121 uint_t se_req = 0; 6122 ipsec_act_t *actp = NULL; 6123 uint_t nact; 6124 ipsec_policy_head_t *ph; 6125 boolean_t is_pol_reset, is_pol_inserted = B_FALSE; 6126 int error = 0; 6127 netstack_t *ns = connp->conn_netstack; 6128 ip_stack_t *ipst = ns->netstack_ip; 6129 ipsec_stack_t *ipss = ns->netstack_ipsec; 6130 6131 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 6132 6133 /* 6134 * The IP_SEC_OPT option does not allow variable length parameters, 6135 * hence a request cannot be NULL. 6136 */ 6137 if (req == NULL) 6138 return (EINVAL); 6139 6140 ah_req = req->ipsr_ah_req; 6141 esp_req = req->ipsr_esp_req; 6142 se_req = req->ipsr_self_encap_req; 6143 6144 /* Don't allow setting self-encap without one or more of AH/ESP. */ 6145 if (se_req != 0 && esp_req == 0 && ah_req == 0) 6146 return (EINVAL); 6147 6148 /* 6149 * Are we dealing with a request to reset the policy (i.e. 6150 * zero requests). 6151 */ 6152 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 6153 (esp_req & REQ_MASK) == 0 && 6154 (se_req & REQ_MASK) == 0); 6155 6156 if (!is_pol_reset) { 6157 /* 6158 * If we couldn't load IPsec, fail with "protocol 6159 * not supported". 6160 * IPsec may not have been loaded for a request with zero 6161 * policies, so we don't fail in this case. 6162 */ 6163 mutex_enter(&ipss->ipsec_loader_lock); 6164 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 6165 mutex_exit(&ipss->ipsec_loader_lock); 6166 return (EPROTONOSUPPORT); 6167 } 6168 mutex_exit(&ipss->ipsec_loader_lock); 6169 6170 /* 6171 * Test for valid requests. Invalid algorithms 6172 * need to be tested by IPsec code because new 6173 * algorithms can be added dynamically. 6174 */ 6175 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6176 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 6177 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 6178 return (EINVAL); 6179 } 6180 6181 /* 6182 * Only privileged users can issue these 6183 * requests. 6184 */ 6185 if (((ah_req & IPSEC_PREF_NEVER) || 6186 (esp_req & IPSEC_PREF_NEVER) || 6187 (se_req & IPSEC_PREF_NEVER)) && 6188 secpolicy_ip_config(cr, B_FALSE) != 0) { 6189 return (EPERM); 6190 } 6191 6192 /* 6193 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 6194 * are mutually exclusive. 6195 */ 6196 if (((ah_req & REQ_MASK) == REQ_MASK) || 6197 ((esp_req & REQ_MASK) == REQ_MASK) || 6198 ((se_req & REQ_MASK) == REQ_MASK)) { 6199 /* Both of them are set */ 6200 return (EINVAL); 6201 } 6202 } 6203 6204 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6205 6206 /* 6207 * If we have already cached policies in conn_connect(), don't 6208 * let them change now. We cache policies for connections 6209 * whose src,dst [addr, port] is known. 6210 */ 6211 if (connp->conn_policy_cached) { 6212 return (EINVAL); 6213 } 6214 6215 /* 6216 * We have a zero policies, reset the connection policy if already 6217 * set. This will cause the connection to inherit the 6218 * global policy, if any. 6219 */ 6220 if (is_pol_reset) { 6221 if (connp->conn_policy != NULL) { 6222 IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack); 6223 connp->conn_policy = NULL; 6224 } 6225 connp->conn_in_enforce_policy = B_FALSE; 6226 connp->conn_out_enforce_policy = B_FALSE; 6227 return (0); 6228 } 6229 6230 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy, 6231 ipst->ips_netstack); 6232 if (ph == NULL) 6233 goto enomem; 6234 6235 ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack); 6236 if (actp == NULL) 6237 goto enomem; 6238 6239 /* 6240 * Always insert IPv4 policy entries, since they can also apply to 6241 * ipv6 sockets being used in ipv4-compat mode. 6242 */ 6243 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6244 IPSEC_TYPE_INBOUND, ns)) 6245 goto enomem; 6246 is_pol_inserted = B_TRUE; 6247 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4, 6248 IPSEC_TYPE_OUTBOUND, ns)) 6249 goto enomem; 6250 6251 /* 6252 * We're looking at a v6 socket, also insert the v6-specific 6253 * entries. 6254 */ 6255 if (connp->conn_family == AF_INET6) { 6256 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6257 IPSEC_TYPE_INBOUND, ns)) 6258 goto enomem; 6259 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6, 6260 IPSEC_TYPE_OUTBOUND, ns)) 6261 goto enomem; 6262 } 6263 6264 ipsec_actvec_free(actp, nact); 6265 6266 /* 6267 * If the requests need security, set enforce_policy. 6268 * If the requests are IPSEC_PREF_NEVER, one should 6269 * still set conn_out_enforce_policy so that ip_set_destination 6270 * marks the ip_xmit_attr_t appropriatly. This is needed so that 6271 * for connections that we don't cache policy in at connect time, 6272 * if global policy matches in ip_output_attach_policy, we 6273 * don't wrongly inherit global policy. Similarly, we need 6274 * to set conn_in_enforce_policy also so that we don't verify 6275 * policy wrongly. 6276 */ 6277 if ((ah_req & REQ_MASK) != 0 || 6278 (esp_req & REQ_MASK) != 0 || 6279 (se_req & REQ_MASK) != 0) { 6280 connp->conn_in_enforce_policy = B_TRUE; 6281 connp->conn_out_enforce_policy = B_TRUE; 6282 } 6283 6284 return (error); 6285 #undef REQ_MASK 6286 6287 /* 6288 * Common memory-allocation-failure exit path. 6289 */ 6290 enomem: 6291 if (actp != NULL) 6292 ipsec_actvec_free(actp, nact); 6293 if (is_pol_inserted) 6294 ipsec_polhead_flush(ph, ns); 6295 return (ENOMEM); 6296 } 6297 6298 /* 6299 * Set socket options for joining and leaving multicast groups. 6300 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6301 * The caller has already check that the option name is consistent with 6302 * the address family of the socket. 6303 */ 6304 int 6305 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name, 6306 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6307 { 6308 int *i1 = (int *)invalp; 6309 int error = 0; 6310 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6311 struct ip_mreq *v4_mreqp; 6312 struct ipv6_mreq *v6_mreqp; 6313 struct group_req *greqp; 6314 ire_t *ire; 6315 boolean_t done = B_FALSE; 6316 ipaddr_t ifaddr; 6317 in6_addr_t v6group; 6318 uint_t ifindex; 6319 boolean_t mcast_opt = B_TRUE; 6320 mcast_record_t fmode; 6321 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6322 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6323 6324 switch (name) { 6325 case IP_ADD_MEMBERSHIP: 6326 case IPV6_JOIN_GROUP: 6327 mcast_opt = B_FALSE; 6328 /* FALLTHROUGH */ 6329 case MCAST_JOIN_GROUP: 6330 fmode = MODE_IS_EXCLUDE; 6331 optfn = ip_opt_add_group; 6332 break; 6333 6334 case IP_DROP_MEMBERSHIP: 6335 case IPV6_LEAVE_GROUP: 6336 mcast_opt = B_FALSE; 6337 /* FALLTHROUGH */ 6338 case MCAST_LEAVE_GROUP: 6339 fmode = MODE_IS_INCLUDE; 6340 optfn = ip_opt_delete_group; 6341 break; 6342 default: 6343 ASSERT(0); 6344 } 6345 6346 if (mcast_opt) { 6347 struct sockaddr_in *sin; 6348 struct sockaddr_in6 *sin6; 6349 6350 greqp = (struct group_req *)i1; 6351 if (greqp->gr_group.ss_family == AF_INET) { 6352 sin = (struct sockaddr_in *)&(greqp->gr_group); 6353 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group); 6354 } else { 6355 if (!inet6) 6356 return (EINVAL); /* Not on INET socket */ 6357 6358 sin6 = (struct sockaddr_in6 *)&(greqp->gr_group); 6359 v6group = sin6->sin6_addr; 6360 } 6361 ifaddr = INADDR_ANY; 6362 ifindex = greqp->gr_interface; 6363 } else if (inet6) { 6364 v6_mreqp = (struct ipv6_mreq *)i1; 6365 v6group = v6_mreqp->ipv6mr_multiaddr; 6366 ifaddr = INADDR_ANY; 6367 ifindex = v6_mreqp->ipv6mr_interface; 6368 } else { 6369 v4_mreqp = (struct ip_mreq *)i1; 6370 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group); 6371 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr; 6372 ifindex = 0; 6373 } 6374 6375 /* 6376 * In the multirouting case, we need to replicate 6377 * the request on all interfaces that will take part 6378 * in replication. We do so because multirouting is 6379 * reflective, thus we will probably receive multi- 6380 * casts on those interfaces. 6381 * The ip_multirt_apply_membership() succeeds if 6382 * the operation succeeds on at least one interface. 6383 */ 6384 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6385 ipaddr_t group; 6386 6387 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6388 6389 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6390 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6391 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6392 } else { 6393 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6394 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6395 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6396 } 6397 if (ire != NULL) { 6398 if (ire->ire_flags & RTF_MULTIRT) { 6399 error = ip_multirt_apply_membership(optfn, ire, connp, 6400 checkonly, &v6group, fmode, &ipv6_all_zeros); 6401 done = B_TRUE; 6402 } 6403 ire_refrele(ire); 6404 } 6405 6406 if (!done) { 6407 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6408 fmode, &ipv6_all_zeros); 6409 } 6410 return (error); 6411 } 6412 6413 /* 6414 * Set socket options for joining and leaving multicast groups 6415 * for specific sources. 6416 * Common to IPv4 and IPv6; inet6 indicates the type of socket. 6417 * The caller has already check that the option name is consistent with 6418 * the address family of the socket. 6419 */ 6420 int 6421 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name, 6422 uchar_t *invalp, boolean_t inet6, boolean_t checkonly) 6423 { 6424 int *i1 = (int *)invalp; 6425 int error = 0; 6426 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6427 struct ip_mreq_source *imreqp; 6428 struct group_source_req *gsreqp; 6429 in6_addr_t v6group, v6src; 6430 uint32_t ifindex; 6431 ipaddr_t ifaddr; 6432 boolean_t mcast_opt = B_TRUE; 6433 mcast_record_t fmode; 6434 ire_t *ire; 6435 boolean_t done = B_FALSE; 6436 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 6437 ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *); 6438 6439 switch (name) { 6440 case IP_BLOCK_SOURCE: 6441 mcast_opt = B_FALSE; 6442 /* FALLTHROUGH */ 6443 case MCAST_BLOCK_SOURCE: 6444 fmode = MODE_IS_EXCLUDE; 6445 optfn = ip_opt_add_group; 6446 break; 6447 6448 case IP_UNBLOCK_SOURCE: 6449 mcast_opt = B_FALSE; 6450 /* FALLTHROUGH */ 6451 case MCAST_UNBLOCK_SOURCE: 6452 fmode = MODE_IS_EXCLUDE; 6453 optfn = ip_opt_delete_group; 6454 break; 6455 6456 case IP_ADD_SOURCE_MEMBERSHIP: 6457 mcast_opt = B_FALSE; 6458 /* FALLTHROUGH */ 6459 case MCAST_JOIN_SOURCE_GROUP: 6460 fmode = MODE_IS_INCLUDE; 6461 optfn = ip_opt_add_group; 6462 break; 6463 6464 case IP_DROP_SOURCE_MEMBERSHIP: 6465 mcast_opt = B_FALSE; 6466 /* FALLTHROUGH */ 6467 case MCAST_LEAVE_SOURCE_GROUP: 6468 fmode = MODE_IS_INCLUDE; 6469 optfn = ip_opt_delete_group; 6470 break; 6471 default: 6472 ASSERT(0); 6473 } 6474 6475 if (mcast_opt) { 6476 gsreqp = (struct group_source_req *)i1; 6477 ifindex = gsreqp->gsr_interface; 6478 if (gsreqp->gsr_group.ss_family == AF_INET) { 6479 struct sockaddr_in *s; 6480 s = (struct sockaddr_in *)&gsreqp->gsr_group; 6481 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group); 6482 s = (struct sockaddr_in *)&gsreqp->gsr_source; 6483 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 6484 } else { 6485 struct sockaddr_in6 *s6; 6486 6487 if (!inet6) 6488 return (EINVAL); /* Not on INET socket */ 6489 6490 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 6491 v6group = s6->sin6_addr; 6492 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 6493 v6src = s6->sin6_addr; 6494 } 6495 ifaddr = INADDR_ANY; 6496 } else { 6497 imreqp = (struct ip_mreq_source *)i1; 6498 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group); 6499 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src); 6500 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 6501 ifindex = 0; 6502 } 6503 6504 /* 6505 * Handle src being mapped INADDR_ANY by changing it to unspecified. 6506 */ 6507 if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src)) 6508 v6src = ipv6_all_zeros; 6509 6510 /* 6511 * In the multirouting case, we need to replicate 6512 * the request as noted in the mcast cases above. 6513 */ 6514 if (IN6_IS_ADDR_V4MAPPED(&v6group)) { 6515 ipaddr_t group; 6516 6517 IN6_V4MAPPED_TO_IPADDR(&v6group, group); 6518 6519 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0, 6520 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6521 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6522 } else { 6523 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0, 6524 IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL, 6525 MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL); 6526 } 6527 if (ire != NULL) { 6528 if (ire->ire_flags & RTF_MULTIRT) { 6529 error = ip_multirt_apply_membership(optfn, ire, connp, 6530 checkonly, &v6group, fmode, &v6src); 6531 done = B_TRUE; 6532 } 6533 ire_refrele(ire); 6534 } 6535 if (!done) { 6536 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex, 6537 fmode, &v6src); 6538 } 6539 return (error); 6540 } 6541 6542 /* 6543 * Given a destination address and a pointer to where to put the information 6544 * this routine fills in the mtuinfo. 6545 * The socket must be connected. 6546 * For sctp conn_faddr is the primary address. 6547 */ 6548 int 6549 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo) 6550 { 6551 uint32_t pmtu = IP_MAXPACKET; 6552 uint_t scopeid; 6553 6554 if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6)) 6555 return (-1); 6556 6557 /* In case we never sent or called ip_set_destination_v4/v6 */ 6558 if (ixa->ixa_ire != NULL) 6559 pmtu = ip_get_pmtu(ixa); 6560 6561 if (ixa->ixa_flags & IXAF_SCOPEID_SET) 6562 scopeid = ixa->ixa_scopeid; 6563 else 6564 scopeid = 0; 6565 6566 bzero(mtuinfo, sizeof (*mtuinfo)); 6567 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 6568 mtuinfo->ip6m_addr.sin6_port = connp->conn_fport; 6569 mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6; 6570 mtuinfo->ip6m_addr.sin6_scope_id = scopeid; 6571 mtuinfo->ip6m_mtu = pmtu; 6572 6573 return (sizeof (struct ip6_mtuinfo)); 6574 } 6575 6576 /* 6577 * When the src multihoming is changed from weak to [strong, preferred] 6578 * ip_ire_rebind_walker is called to walk the list of all ire_t entries 6579 * and identify routes that were created by user-applications in the 6580 * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not 6581 * currently defined. These routes are then 'rebound', i.e., their ire_ill 6582 * is selected by finding an interface route for the gateway. 6583 */ 6584 /* ARGSUSED */ 6585 void 6586 ip_ire_rebind_walker(ire_t *ire, void *notused) 6587 { 6588 if (!ire->ire_unbound || ire->ire_ill != NULL) 6589 return; 6590 ire_rebind(ire); 6591 ire_delete(ire); 6592 } 6593 6594 /* 6595 * When the src multihoming is changed from [strong, preferred] to weak, 6596 * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and 6597 * set any entries that were created by user-applications in the unbound state 6598 * (i.e., without RTA_IFP) back to having a NULL ire_ill. 6599 */ 6600 /* ARGSUSED */ 6601 void 6602 ip_ire_unbind_walker(ire_t *ire, void *notused) 6603 { 6604 ire_t *new_ire; 6605 6606 if (!ire->ire_unbound || ire->ire_ill == NULL) 6607 return; 6608 if (ire->ire_ipversion == IPV6_VERSION) { 6609 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6, 6610 &ire->ire_gateway_addr_v6, ire->ire_type, NULL, 6611 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6612 } else { 6613 new_ire = ire_create((uchar_t *)&ire->ire_addr, 6614 (uchar_t *)&ire->ire_mask, 6615 (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL, 6616 ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst); 6617 } 6618 if (new_ire == NULL) 6619 return; 6620 new_ire->ire_unbound = B_TRUE; 6621 /* 6622 * The bound ire must first be deleted so that we don't return 6623 * the existing one on the attempt to add the unbound new_ire. 6624 */ 6625 ire_delete(ire); 6626 new_ire = ire_add(new_ire); 6627 if (new_ire != NULL) 6628 ire_refrele(new_ire); 6629 } 6630 6631 /* 6632 * When the settings of ip*_strict_src_multihoming tunables are changed, 6633 * all cached routes need to be recomputed. This recomputation needs to be 6634 * done when going from weaker to stronger modes so that the cached ire 6635 * for the connection does not violate the current ip*_strict_src_multihoming 6636 * setting. It also needs to be done when going from stronger to weaker modes, 6637 * so that we fall back to matching on the longest-matching-route (as opposed 6638 * to a shorter match that may have been selected in the strong mode 6639 * to satisfy src_multihoming settings). 6640 * 6641 * The cached ixa_ire entires for all conn_t entries are marked as 6642 * "verify" so that they will be recomputed for the next packet. 6643 */ 6644 void 6645 conn_ire_revalidate(conn_t *connp, void *arg) 6646 { 6647 boolean_t isv6 = (boolean_t)arg; 6648 6649 if ((isv6 && connp->conn_ipversion != IPV6_VERSION) || 6650 (!isv6 && connp->conn_ipversion != IPV4_VERSION)) 6651 return; 6652 connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY; 6653 } 6654 6655 /* 6656 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 6657 * When an ipf is passed here for the first time, if 6658 * we already have in-order fragments on the queue, we convert from the fast- 6659 * path reassembly scheme to the hard-case scheme. From then on, additional 6660 * fragments are reassembled here. We keep track of the start and end offsets 6661 * of each piece, and the number of holes in the chain. When the hole count 6662 * goes to zero, we are done! 6663 * 6664 * The ipf_count will be updated to account for any mblk(s) added (pointed to 6665 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 6666 * ipfb_count and ill_frag_count by the difference of ipf_count before and 6667 * after the call to ip_reassemble(). 6668 */ 6669 int 6670 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 6671 size_t msg_len) 6672 { 6673 uint_t end; 6674 mblk_t *next_mp; 6675 mblk_t *mp1; 6676 uint_t offset; 6677 boolean_t incr_dups = B_TRUE; 6678 boolean_t offset_zero_seen = B_FALSE; 6679 boolean_t pkt_boundary_checked = B_FALSE; 6680 6681 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 6682 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 6683 6684 /* Add in byte count */ 6685 ipf->ipf_count += msg_len; 6686 if (ipf->ipf_end) { 6687 /* 6688 * We were part way through in-order reassembly, but now there 6689 * is a hole. We walk through messages already queued, and 6690 * mark them for hard case reassembly. We know that up till 6691 * now they were in order starting from offset zero. 6692 */ 6693 offset = 0; 6694 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6695 IP_REASS_SET_START(mp1, offset); 6696 if (offset == 0) { 6697 ASSERT(ipf->ipf_nf_hdr_len != 0); 6698 offset = -ipf->ipf_nf_hdr_len; 6699 } 6700 offset += mp1->b_wptr - mp1->b_rptr; 6701 IP_REASS_SET_END(mp1, offset); 6702 } 6703 /* One hole at the end. */ 6704 ipf->ipf_hole_cnt = 1; 6705 /* Brand it as a hard case, forever. */ 6706 ipf->ipf_end = 0; 6707 } 6708 /* Walk through all the new pieces. */ 6709 do { 6710 end = start + (mp->b_wptr - mp->b_rptr); 6711 /* 6712 * If start is 0, decrease 'end' only for the first mblk of 6713 * the fragment. Otherwise 'end' can get wrong value in the 6714 * second pass of the loop if first mblk is exactly the 6715 * size of ipf_nf_hdr_len. 6716 */ 6717 if (start == 0 && !offset_zero_seen) { 6718 /* First segment */ 6719 ASSERT(ipf->ipf_nf_hdr_len != 0); 6720 end -= ipf->ipf_nf_hdr_len; 6721 offset_zero_seen = B_TRUE; 6722 } 6723 next_mp = mp->b_cont; 6724 /* 6725 * We are checking to see if there is any interesing data 6726 * to process. If there isn't and the mblk isn't the 6727 * one which carries the unfragmentable header then we 6728 * drop it. It's possible to have just the unfragmentable 6729 * header come through without any data. That needs to be 6730 * saved. 6731 * 6732 * If the assert at the top of this function holds then the 6733 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 6734 * is infrequently traveled enough that the test is left in 6735 * to protect against future code changes which break that 6736 * invariant. 6737 */ 6738 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 6739 /* Empty. Blast it. */ 6740 IP_REASS_SET_START(mp, 0); 6741 IP_REASS_SET_END(mp, 0); 6742 /* 6743 * If the ipf points to the mblk we are about to free, 6744 * update ipf to point to the next mblk (or NULL 6745 * if none). 6746 */ 6747 if (ipf->ipf_mp->b_cont == mp) 6748 ipf->ipf_mp->b_cont = next_mp; 6749 freeb(mp); 6750 continue; 6751 } 6752 mp->b_cont = NULL; 6753 IP_REASS_SET_START(mp, start); 6754 IP_REASS_SET_END(mp, end); 6755 if (!ipf->ipf_tail_mp) { 6756 ipf->ipf_tail_mp = mp; 6757 ipf->ipf_mp->b_cont = mp; 6758 if (start == 0 || !more) { 6759 ipf->ipf_hole_cnt = 1; 6760 /* 6761 * if the first fragment comes in more than one 6762 * mblk, this loop will be executed for each 6763 * mblk. Need to adjust hole count so exiting 6764 * this routine will leave hole count at 1. 6765 */ 6766 if (next_mp) 6767 ipf->ipf_hole_cnt++; 6768 } else 6769 ipf->ipf_hole_cnt = 2; 6770 continue; 6771 } else if (ipf->ipf_last_frag_seen && !more && 6772 !pkt_boundary_checked) { 6773 /* 6774 * We check datagram boundary only if this fragment 6775 * claims to be the last fragment and we have seen a 6776 * last fragment in the past too. We do this only 6777 * once for a given fragment. 6778 * 6779 * start cannot be 0 here as fragments with start=0 6780 * and MF=0 gets handled as a complete packet. These 6781 * fragments should not reach here. 6782 */ 6783 6784 if (start + msgdsize(mp) != 6785 IP_REASS_END(ipf->ipf_tail_mp)) { 6786 /* 6787 * We have two fragments both of which claim 6788 * to be the last fragment but gives conflicting 6789 * information about the whole datagram size. 6790 * Something fishy is going on. Drop the 6791 * fragment and free up the reassembly list. 6792 */ 6793 return (IP_REASS_FAILED); 6794 } 6795 6796 /* 6797 * We shouldn't come to this code block again for this 6798 * particular fragment. 6799 */ 6800 pkt_boundary_checked = B_TRUE; 6801 } 6802 6803 /* New stuff at or beyond tail? */ 6804 offset = IP_REASS_END(ipf->ipf_tail_mp); 6805 if (start >= offset) { 6806 if (ipf->ipf_last_frag_seen) { 6807 /* current fragment is beyond last fragment */ 6808 return (IP_REASS_FAILED); 6809 } 6810 /* Link it on end. */ 6811 ipf->ipf_tail_mp->b_cont = mp; 6812 ipf->ipf_tail_mp = mp; 6813 if (more) { 6814 if (start != offset) 6815 ipf->ipf_hole_cnt++; 6816 } else if (start == offset && next_mp == NULL) 6817 ipf->ipf_hole_cnt--; 6818 continue; 6819 } 6820 mp1 = ipf->ipf_mp->b_cont; 6821 offset = IP_REASS_START(mp1); 6822 /* New stuff at the front? */ 6823 if (start < offset) { 6824 if (start == 0) { 6825 if (end >= offset) { 6826 /* Nailed the hole at the begining. */ 6827 ipf->ipf_hole_cnt--; 6828 } 6829 } else if (end < offset) { 6830 /* 6831 * A hole, stuff, and a hole where there used 6832 * to be just a hole. 6833 */ 6834 ipf->ipf_hole_cnt++; 6835 } 6836 mp->b_cont = mp1; 6837 /* Check for overlap. */ 6838 while (end > offset) { 6839 if (end < IP_REASS_END(mp1)) { 6840 mp->b_wptr -= end - offset; 6841 IP_REASS_SET_END(mp, offset); 6842 BUMP_MIB(ill->ill_ip_mib, 6843 ipIfStatsReasmPartDups); 6844 break; 6845 } 6846 /* Did we cover another hole? */ 6847 if ((mp1->b_cont && 6848 IP_REASS_END(mp1) != 6849 IP_REASS_START(mp1->b_cont) && 6850 end >= IP_REASS_START(mp1->b_cont)) || 6851 (!ipf->ipf_last_frag_seen && !more)) { 6852 ipf->ipf_hole_cnt--; 6853 } 6854 /* Clip out mp1. */ 6855 if ((mp->b_cont = mp1->b_cont) == NULL) { 6856 /* 6857 * After clipping out mp1, this guy 6858 * is now hanging off the end. 6859 */ 6860 ipf->ipf_tail_mp = mp; 6861 } 6862 IP_REASS_SET_START(mp1, 0); 6863 IP_REASS_SET_END(mp1, 0); 6864 /* Subtract byte count */ 6865 ipf->ipf_count -= mp1->b_datap->db_lim - 6866 mp1->b_datap->db_base; 6867 freeb(mp1); 6868 BUMP_MIB(ill->ill_ip_mib, 6869 ipIfStatsReasmPartDups); 6870 mp1 = mp->b_cont; 6871 if (!mp1) 6872 break; 6873 offset = IP_REASS_START(mp1); 6874 } 6875 ipf->ipf_mp->b_cont = mp; 6876 continue; 6877 } 6878 /* 6879 * The new piece starts somewhere between the start of the head 6880 * and before the end of the tail. 6881 */ 6882 for (; mp1; mp1 = mp1->b_cont) { 6883 offset = IP_REASS_END(mp1); 6884 if (start < offset) { 6885 if (end <= offset) { 6886 /* Nothing new. */ 6887 IP_REASS_SET_START(mp, 0); 6888 IP_REASS_SET_END(mp, 0); 6889 /* Subtract byte count */ 6890 ipf->ipf_count -= mp->b_datap->db_lim - 6891 mp->b_datap->db_base; 6892 if (incr_dups) { 6893 ipf->ipf_num_dups++; 6894 incr_dups = B_FALSE; 6895 } 6896 freeb(mp); 6897 BUMP_MIB(ill->ill_ip_mib, 6898 ipIfStatsReasmDuplicates); 6899 break; 6900 } 6901 /* 6902 * Trim redundant stuff off beginning of new 6903 * piece. 6904 */ 6905 IP_REASS_SET_START(mp, offset); 6906 mp->b_rptr += offset - start; 6907 BUMP_MIB(ill->ill_ip_mib, 6908 ipIfStatsReasmPartDups); 6909 start = offset; 6910 if (!mp1->b_cont) { 6911 /* 6912 * After trimming, this guy is now 6913 * hanging off the end. 6914 */ 6915 mp1->b_cont = mp; 6916 ipf->ipf_tail_mp = mp; 6917 if (!more) { 6918 ipf->ipf_hole_cnt--; 6919 } 6920 break; 6921 } 6922 } 6923 if (start >= IP_REASS_START(mp1->b_cont)) 6924 continue; 6925 /* Fill a hole */ 6926 if (start > offset) 6927 ipf->ipf_hole_cnt++; 6928 mp->b_cont = mp1->b_cont; 6929 mp1->b_cont = mp; 6930 mp1 = mp->b_cont; 6931 offset = IP_REASS_START(mp1); 6932 if (end >= offset) { 6933 ipf->ipf_hole_cnt--; 6934 /* Check for overlap. */ 6935 while (end > offset) { 6936 if (end < IP_REASS_END(mp1)) { 6937 mp->b_wptr -= end - offset; 6938 IP_REASS_SET_END(mp, offset); 6939 /* 6940 * TODO we might bump 6941 * this up twice if there is 6942 * overlap at both ends. 6943 */ 6944 BUMP_MIB(ill->ill_ip_mib, 6945 ipIfStatsReasmPartDups); 6946 break; 6947 } 6948 /* Did we cover another hole? */ 6949 if ((mp1->b_cont && 6950 IP_REASS_END(mp1) 6951 != IP_REASS_START(mp1->b_cont) && 6952 end >= 6953 IP_REASS_START(mp1->b_cont)) || 6954 (!ipf->ipf_last_frag_seen && 6955 !more)) { 6956 ipf->ipf_hole_cnt--; 6957 } 6958 /* Clip out mp1. */ 6959 if ((mp->b_cont = mp1->b_cont) == 6960 NULL) { 6961 /* 6962 * After clipping out mp1, 6963 * this guy is now hanging 6964 * off the end. 6965 */ 6966 ipf->ipf_tail_mp = mp; 6967 } 6968 IP_REASS_SET_START(mp1, 0); 6969 IP_REASS_SET_END(mp1, 0); 6970 /* Subtract byte count */ 6971 ipf->ipf_count -= 6972 mp1->b_datap->db_lim - 6973 mp1->b_datap->db_base; 6974 freeb(mp1); 6975 BUMP_MIB(ill->ill_ip_mib, 6976 ipIfStatsReasmPartDups); 6977 mp1 = mp->b_cont; 6978 if (!mp1) 6979 break; 6980 offset = IP_REASS_START(mp1); 6981 } 6982 } 6983 break; 6984 } 6985 } while (start = end, mp = next_mp); 6986 6987 /* Fragment just processed could be the last one. Remember this fact */ 6988 if (!more) 6989 ipf->ipf_last_frag_seen = B_TRUE; 6990 6991 /* Still got holes? */ 6992 if (ipf->ipf_hole_cnt) 6993 return (IP_REASS_PARTIAL); 6994 /* Clean up overloaded fields to avoid upstream disasters. */ 6995 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 6996 IP_REASS_SET_START(mp1, 0); 6997 IP_REASS_SET_END(mp1, 0); 6998 } 6999 return (IP_REASS_COMPLETE); 7000 } 7001 7002 /* 7003 * Fragmentation reassembly. Each ILL has a hash table for 7004 * queuing packets undergoing reassembly for all IPIFs 7005 * associated with the ILL. The hash is based on the packet 7006 * IP ident field. The ILL frag hash table was allocated 7007 * as a timer block at the time the ILL was created. Whenever 7008 * there is anything on the reassembly queue, the timer will 7009 * be running. Returns the reassembled packet if reassembly completes. 7010 */ 7011 mblk_t * 7012 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 7013 { 7014 uint32_t frag_offset_flags; 7015 mblk_t *t_mp; 7016 ipaddr_t dst; 7017 uint8_t proto = ipha->ipha_protocol; 7018 uint32_t sum_val; 7019 uint16_t sum_flags; 7020 ipf_t *ipf; 7021 ipf_t **ipfp; 7022 ipfb_t *ipfb; 7023 uint16_t ident; 7024 uint32_t offset; 7025 ipaddr_t src; 7026 uint_t hdr_length; 7027 uint32_t end; 7028 mblk_t *mp1; 7029 mblk_t *tail_mp; 7030 size_t count; 7031 size_t msg_len; 7032 uint8_t ecn_info = 0; 7033 uint32_t packet_size; 7034 boolean_t pruned = B_FALSE; 7035 ill_t *ill = ira->ira_ill; 7036 ip_stack_t *ipst = ill->ill_ipst; 7037 7038 /* 7039 * Drop the fragmented as early as possible, if 7040 * we don't have resource(s) to re-assemble. 7041 */ 7042 if (ipst->ips_ip_reass_queue_bytes == 0) { 7043 freemsg(mp); 7044 return (NULL); 7045 } 7046 7047 /* Check for fragmentation offset; return if there's none */ 7048 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 7049 (IPH_MF | IPH_OFFSET)) == 0) 7050 return (mp); 7051 7052 /* 7053 * We utilize hardware computed checksum info only for UDP since 7054 * IP fragmentation is a normal occurrence for the protocol. In 7055 * addition, checksum offload support for IP fragments carrying 7056 * UDP payload is commonly implemented across network adapters. 7057 */ 7058 ASSERT(ira->ira_rill != NULL); 7059 if (proto == IPPROTO_UDP && dohwcksum && 7060 ILL_HCKSUM_CAPABLE(ira->ira_rill) && 7061 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 7062 mblk_t *mp1 = mp->b_cont; 7063 int32_t len; 7064 7065 /* Record checksum information from the packet */ 7066 sum_val = (uint32_t)DB_CKSUM16(mp); 7067 sum_flags = DB_CKSUMFLAGS(mp); 7068 7069 /* IP payload offset from beginning of mblk */ 7070 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 7071 7072 if ((sum_flags & HCK_PARTIALCKSUM) && 7073 (mp1 == NULL || mp1->b_cont == NULL) && 7074 offset >= DB_CKSUMSTART(mp) && 7075 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 7076 uint32_t adj; 7077 /* 7078 * Partial checksum has been calculated by hardware 7079 * and attached to the packet; in addition, any 7080 * prepended extraneous data is even byte aligned. 7081 * If any such data exists, we adjust the checksum; 7082 * this would also handle any postpended data. 7083 */ 7084 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 7085 mp, mp1, len, adj); 7086 7087 /* One's complement subtract extraneous checksum */ 7088 if (adj >= sum_val) 7089 sum_val = ~(adj - sum_val) & 0xFFFF; 7090 else 7091 sum_val -= adj; 7092 } 7093 } else { 7094 sum_val = 0; 7095 sum_flags = 0; 7096 } 7097 7098 /* Clear hardware checksumming flag */ 7099 DB_CKSUMFLAGS(mp) = 0; 7100 7101 ident = ipha->ipha_ident; 7102 offset = (frag_offset_flags << 3) & 0xFFFF; 7103 src = ipha->ipha_src; 7104 dst = ipha->ipha_dst; 7105 hdr_length = IPH_HDR_LENGTH(ipha); 7106 end = ntohs(ipha->ipha_length) - hdr_length; 7107 7108 /* If end == 0 then we have a packet with no data, so just free it */ 7109 if (end == 0) { 7110 freemsg(mp); 7111 return (NULL); 7112 } 7113 7114 /* Record the ECN field info. */ 7115 ecn_info = (ipha->ipha_type_of_service & 0x3); 7116 if (offset != 0) { 7117 /* 7118 * If this isn't the first piece, strip the header, and 7119 * add the offset to the end value. 7120 */ 7121 mp->b_rptr += hdr_length; 7122 end += offset; 7123 } 7124 7125 /* Handle vnic loopback of fragments */ 7126 if (mp->b_datap->db_ref > 2) 7127 msg_len = 0; 7128 else 7129 msg_len = MBLKSIZE(mp); 7130 7131 tail_mp = mp; 7132 while (tail_mp->b_cont != NULL) { 7133 tail_mp = tail_mp->b_cont; 7134 if (tail_mp->b_datap->db_ref <= 2) 7135 msg_len += MBLKSIZE(tail_mp); 7136 } 7137 7138 /* If the reassembly list for this ILL will get too big, prune it */ 7139 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 7140 ipst->ips_ip_reass_queue_bytes) { 7141 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len, 7142 uint_t, ill->ill_frag_count, 7143 uint_t, ipst->ips_ip_reass_queue_bytes); 7144 ill_frag_prune(ill, 7145 (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 : 7146 (ipst->ips_ip_reass_queue_bytes - msg_len)); 7147 pruned = B_TRUE; 7148 } 7149 7150 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 7151 mutex_enter(&ipfb->ipfb_lock); 7152 7153 ipfp = &ipfb->ipfb_ipf; 7154 /* Try to find an existing fragment queue for this packet. */ 7155 for (;;) { 7156 ipf = ipfp[0]; 7157 if (ipf != NULL) { 7158 /* 7159 * It has to match on ident and src/dst address. 7160 */ 7161 if (ipf->ipf_ident == ident && 7162 ipf->ipf_src == src && 7163 ipf->ipf_dst == dst && 7164 ipf->ipf_protocol == proto) { 7165 /* 7166 * If we have received too many 7167 * duplicate fragments for this packet 7168 * free it. 7169 */ 7170 if (ipf->ipf_num_dups > ip_max_frag_dups) { 7171 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7172 freemsg(mp); 7173 mutex_exit(&ipfb->ipfb_lock); 7174 return (NULL); 7175 } 7176 /* Found it. */ 7177 break; 7178 } 7179 ipfp = &ipf->ipf_hash_next; 7180 continue; 7181 } 7182 7183 /* 7184 * If we pruned the list, do we want to store this new 7185 * fragment?. We apply an optimization here based on the 7186 * fact that most fragments will be received in order. 7187 * So if the offset of this incoming fragment is zero, 7188 * it is the first fragment of a new packet. We will 7189 * keep it. Otherwise drop the fragment, as we have 7190 * probably pruned the packet already (since the 7191 * packet cannot be found). 7192 */ 7193 if (pruned && offset != 0) { 7194 mutex_exit(&ipfb->ipfb_lock); 7195 freemsg(mp); 7196 return (NULL); 7197 } 7198 7199 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst)) { 7200 /* 7201 * Too many fragmented packets in this hash 7202 * bucket. Free the oldest. 7203 */ 7204 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 7205 } 7206 7207 /* New guy. Allocate a frag message. */ 7208 mp1 = allocb(sizeof (*ipf), BPRI_MED); 7209 if (mp1 == NULL) { 7210 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7211 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7212 freemsg(mp); 7213 reass_done: 7214 mutex_exit(&ipfb->ipfb_lock); 7215 return (NULL); 7216 } 7217 7218 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 7219 mp1->b_cont = mp; 7220 7221 /* Initialize the fragment header. */ 7222 ipf = (ipf_t *)mp1->b_rptr; 7223 ipf->ipf_mp = mp1; 7224 ipf->ipf_ptphn = ipfp; 7225 ipfp[0] = ipf; 7226 ipf->ipf_hash_next = NULL; 7227 ipf->ipf_ident = ident; 7228 ipf->ipf_protocol = proto; 7229 ipf->ipf_src = src; 7230 ipf->ipf_dst = dst; 7231 ipf->ipf_nf_hdr_len = 0; 7232 /* Record reassembly start time. */ 7233 ipf->ipf_timestamp = gethrestime_sec(); 7234 /* Record ipf generation and account for frag header */ 7235 ipf->ipf_gen = ill->ill_ipf_gen++; 7236 ipf->ipf_count = MBLKSIZE(mp1); 7237 ipf->ipf_last_frag_seen = B_FALSE; 7238 ipf->ipf_ecn = ecn_info; 7239 ipf->ipf_num_dups = 0; 7240 ipfb->ipfb_frag_pkts++; 7241 ipf->ipf_checksum = 0; 7242 ipf->ipf_checksum_flags = 0; 7243 7244 /* Store checksum value in fragment header */ 7245 if (sum_flags != 0) { 7246 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7247 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7248 ipf->ipf_checksum = sum_val; 7249 ipf->ipf_checksum_flags = sum_flags; 7250 } 7251 7252 /* 7253 * We handle reassembly two ways. In the easy case, 7254 * where all the fragments show up in order, we do 7255 * minimal bookkeeping, and just clip new pieces on 7256 * the end. If we ever see a hole, then we go off 7257 * to ip_reassemble which has to mark the pieces and 7258 * keep track of the number of holes, etc. Obviously, 7259 * the point of having both mechanisms is so we can 7260 * handle the easy case as efficiently as possible. 7261 */ 7262 if (offset == 0) { 7263 /* Easy case, in-order reassembly so far. */ 7264 ipf->ipf_count += msg_len; 7265 ipf->ipf_tail_mp = tail_mp; 7266 /* 7267 * Keep track of next expected offset in 7268 * ipf_end. 7269 */ 7270 ipf->ipf_end = end; 7271 ipf->ipf_nf_hdr_len = hdr_length; 7272 } else { 7273 /* Hard case, hole at the beginning. */ 7274 ipf->ipf_tail_mp = NULL; 7275 /* 7276 * ipf_end == 0 means that we have given up 7277 * on easy reassembly. 7278 */ 7279 ipf->ipf_end = 0; 7280 7281 /* Forget checksum offload from now on */ 7282 ipf->ipf_checksum_flags = 0; 7283 7284 /* 7285 * ipf_hole_cnt is set by ip_reassemble. 7286 * ipf_count is updated by ip_reassemble. 7287 * No need to check for return value here 7288 * as we don't expect reassembly to complete 7289 * or fail for the first fragment itself. 7290 */ 7291 (void) ip_reassemble(mp, ipf, 7292 (frag_offset_flags & IPH_OFFSET) << 3, 7293 (frag_offset_flags & IPH_MF), ill, msg_len); 7294 } 7295 /* Update per ipfb and ill byte counts */ 7296 ipfb->ipfb_count += ipf->ipf_count; 7297 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7298 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count); 7299 /* If the frag timer wasn't already going, start it. */ 7300 mutex_enter(&ill->ill_lock); 7301 ill_frag_timer_start(ill); 7302 mutex_exit(&ill->ill_lock); 7303 goto reass_done; 7304 } 7305 7306 /* 7307 * If the packet's flag has changed (it could be coming up 7308 * from an interface different than the previous, therefore 7309 * possibly different checksum capability), then forget about 7310 * any stored checksum states. Otherwise add the value to 7311 * the existing one stored in the fragment header. 7312 */ 7313 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 7314 sum_val += ipf->ipf_checksum; 7315 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7316 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 7317 ipf->ipf_checksum = sum_val; 7318 } else if (ipf->ipf_checksum_flags != 0) { 7319 /* Forget checksum offload from now on */ 7320 ipf->ipf_checksum_flags = 0; 7321 } 7322 7323 /* 7324 * We have a new piece of a datagram which is already being 7325 * reassembled. Update the ECN info if all IP fragments 7326 * are ECN capable. If there is one which is not, clear 7327 * all the info. If there is at least one which has CE 7328 * code point, IP needs to report that up to transport. 7329 */ 7330 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 7331 if (ecn_info == IPH_ECN_CE) 7332 ipf->ipf_ecn = IPH_ECN_CE; 7333 } else { 7334 ipf->ipf_ecn = IPH_ECN_NECT; 7335 } 7336 if (offset && ipf->ipf_end == offset) { 7337 /* The new fragment fits at the end */ 7338 ipf->ipf_tail_mp->b_cont = mp; 7339 /* Update the byte count */ 7340 ipf->ipf_count += msg_len; 7341 /* Update per ipfb and ill byte counts */ 7342 ipfb->ipfb_count += msg_len; 7343 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7344 atomic_add_32(&ill->ill_frag_count, msg_len); 7345 if (frag_offset_flags & IPH_MF) { 7346 /* More to come. */ 7347 ipf->ipf_end = end; 7348 ipf->ipf_tail_mp = tail_mp; 7349 goto reass_done; 7350 } 7351 } else { 7352 /* Go do the hard cases. */ 7353 int ret; 7354 7355 if (offset == 0) 7356 ipf->ipf_nf_hdr_len = hdr_length; 7357 7358 /* Save current byte count */ 7359 count = ipf->ipf_count; 7360 ret = ip_reassemble(mp, ipf, 7361 (frag_offset_flags & IPH_OFFSET) << 3, 7362 (frag_offset_flags & IPH_MF), ill, msg_len); 7363 /* Count of bytes added and subtracted (freeb()ed) */ 7364 count = ipf->ipf_count - count; 7365 if (count) { 7366 /* Update per ipfb and ill byte counts */ 7367 ipfb->ipfb_count += count; 7368 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 7369 atomic_add_32(&ill->ill_frag_count, count); 7370 } 7371 if (ret == IP_REASS_PARTIAL) { 7372 goto reass_done; 7373 } else if (ret == IP_REASS_FAILED) { 7374 /* Reassembly failed. Free up all resources */ 7375 ill_frag_free_pkts(ill, ipfb, ipf, 1); 7376 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 7377 IP_REASS_SET_START(t_mp, 0); 7378 IP_REASS_SET_END(t_mp, 0); 7379 } 7380 freemsg(mp); 7381 goto reass_done; 7382 } 7383 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 7384 } 7385 /* 7386 * We have completed reassembly. Unhook the frag header from 7387 * the reassembly list. 7388 * 7389 * Before we free the frag header, record the ECN info 7390 * to report back to the transport. 7391 */ 7392 ecn_info = ipf->ipf_ecn; 7393 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 7394 ipfp = ipf->ipf_ptphn; 7395 7396 /* We need to supply these to caller */ 7397 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 7398 sum_val = ipf->ipf_checksum; 7399 else 7400 sum_val = 0; 7401 7402 mp1 = ipf->ipf_mp; 7403 count = ipf->ipf_count; 7404 ipf = ipf->ipf_hash_next; 7405 if (ipf != NULL) 7406 ipf->ipf_ptphn = ipfp; 7407 ipfp[0] = ipf; 7408 atomic_add_32(&ill->ill_frag_count, -count); 7409 ASSERT(ipfb->ipfb_count >= count); 7410 ipfb->ipfb_count -= count; 7411 ipfb->ipfb_frag_pkts--; 7412 mutex_exit(&ipfb->ipfb_lock); 7413 /* Ditch the frag header. */ 7414 mp = mp1->b_cont; 7415 7416 freeb(mp1); 7417 7418 /* Restore original IP length in header. */ 7419 packet_size = (uint32_t)msgdsize(mp); 7420 if (packet_size > IP_MAXPACKET) { 7421 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7422 ip_drop_input("Reassembled packet too large", mp, ill); 7423 freemsg(mp); 7424 return (NULL); 7425 } 7426 7427 if (DB_REF(mp) > 1) { 7428 mblk_t *mp2 = copymsg(mp); 7429 7430 if (mp2 == NULL) { 7431 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7432 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7433 freemsg(mp); 7434 return (NULL); 7435 } 7436 freemsg(mp); 7437 mp = mp2; 7438 } 7439 ipha = (ipha_t *)mp->b_rptr; 7440 7441 ipha->ipha_length = htons((uint16_t)packet_size); 7442 /* We're now complete, zip the frag state */ 7443 ipha->ipha_fragment_offset_and_flags = 0; 7444 /* Record the ECN info. */ 7445 ipha->ipha_type_of_service &= 0xFC; 7446 ipha->ipha_type_of_service |= ecn_info; 7447 7448 /* Update the receive attributes */ 7449 ira->ira_pktlen = packet_size; 7450 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 7451 7452 /* Reassembly is successful; set checksum information in packet */ 7453 DB_CKSUM16(mp) = (uint16_t)sum_val; 7454 DB_CKSUMFLAGS(mp) = sum_flags; 7455 DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length; 7456 7457 return (mp); 7458 } 7459 7460 /* 7461 * Pullup function that should be used for IP input in order to 7462 * ensure we do not loose the L2 source address; we need the l2 source 7463 * address for IP_RECVSLLA and for ndp_input. 7464 * 7465 * We return either NULL or b_rptr. 7466 */ 7467 void * 7468 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira) 7469 { 7470 ill_t *ill = ira->ira_ill; 7471 7472 if (ip_rput_pullups++ == 0) { 7473 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE, 7474 "ip_pullup: %s forced us to " 7475 " pullup pkt, hdr len %ld, hdr addr %p", 7476 ill->ill_name, len, (void *)mp->b_rptr); 7477 } 7478 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7479 ip_setl2src(mp, ira, ira->ira_rill); 7480 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7481 if (!pullupmsg(mp, len)) 7482 return (NULL); 7483 else 7484 return (mp->b_rptr); 7485 } 7486 7487 /* 7488 * Make sure ira_l2src has an address. If we don't have one fill with zeros. 7489 * When called from the ULP ira_rill will be NULL hence the caller has to 7490 * pass in the ill. 7491 */ 7492 /* ARGSUSED */ 7493 void 7494 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill) 7495 { 7496 const uchar_t *addr; 7497 int alen; 7498 7499 if (ira->ira_flags & IRAF_L2SRC_SET) 7500 return; 7501 7502 ASSERT(ill != NULL); 7503 alen = ill->ill_phys_addr_length; 7504 ASSERT(alen <= sizeof (ira->ira_l2src)); 7505 if (ira->ira_mhip != NULL && 7506 (addr = ira->ira_mhip->mhi_saddr) != NULL) { 7507 bcopy(addr, ira->ira_l2src, alen); 7508 } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) && 7509 (addr = ill->ill_phys_addr) != NULL) { 7510 bcopy(addr, ira->ira_l2src, alen); 7511 } else { 7512 bzero(ira->ira_l2src, alen); 7513 } 7514 ira->ira_flags |= IRAF_L2SRC_SET; 7515 } 7516 7517 /* 7518 * check ip header length and align it. 7519 */ 7520 mblk_t * 7521 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira) 7522 { 7523 ill_t *ill = ira->ira_ill; 7524 ssize_t len; 7525 7526 len = MBLKL(mp); 7527 7528 if (!OK_32PTR(mp->b_rptr)) 7529 IP_STAT(ill->ill_ipst, ip_notaligned); 7530 else 7531 IP_STAT(ill->ill_ipst, ip_recv_pullup); 7532 7533 /* Guard against bogus device drivers */ 7534 if (len < 0) { 7535 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7536 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7537 freemsg(mp); 7538 return (NULL); 7539 } 7540 7541 if (len == 0) { 7542 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */ 7543 mblk_t *mp1 = mp->b_cont; 7544 7545 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 7546 ip_setl2src(mp, ira, ira->ira_rill); 7547 ASSERT(ira->ira_flags & IRAF_L2SRC_SET); 7548 7549 freeb(mp); 7550 mp = mp1; 7551 if (mp == NULL) 7552 return (NULL); 7553 7554 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size) 7555 return (mp); 7556 } 7557 if (ip_pullup(mp, min_size, ira) == NULL) { 7558 if (msgdsize(mp) < min_size) { 7559 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7560 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7561 } else { 7562 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7563 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7564 } 7565 freemsg(mp); 7566 return (NULL); 7567 } 7568 return (mp); 7569 } 7570 7571 /* 7572 * Common code for IPv4 and IPv6 to check and pullup multi-mblks 7573 */ 7574 mblk_t * 7575 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len, 7576 uint_t min_size, ip_recv_attr_t *ira) 7577 { 7578 ill_t *ill = ira->ira_ill; 7579 7580 /* 7581 * Make sure we have data length consistent 7582 * with the IP header. 7583 */ 7584 if (mp->b_cont == NULL) { 7585 /* pkt_len is based on ipha_len, not the mblk length */ 7586 if (pkt_len < min_size) { 7587 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7588 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7589 freemsg(mp); 7590 return (NULL); 7591 } 7592 if (len < 0) { 7593 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7594 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7595 freemsg(mp); 7596 return (NULL); 7597 } 7598 /* Drop any pad */ 7599 mp->b_wptr = rptr + pkt_len; 7600 } else if ((len += msgdsize(mp->b_cont)) != 0) { 7601 ASSERT(pkt_len >= min_size); 7602 if (pkt_len < min_size) { 7603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7604 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7605 freemsg(mp); 7606 return (NULL); 7607 } 7608 if (len < 0) { 7609 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts); 7610 ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill); 7611 freemsg(mp); 7612 return (NULL); 7613 } 7614 /* Drop any pad */ 7615 (void) adjmsg(mp, -len); 7616 /* 7617 * adjmsg may have freed an mblk from the chain, hence 7618 * invalidate any hw checksum here. This will force IP to 7619 * calculate the checksum in sw, but only for this packet. 7620 */ 7621 DB_CKSUMFLAGS(mp) = 0; 7622 IP_STAT(ill->ill_ipst, ip_multimblk); 7623 } 7624 return (mp); 7625 } 7626 7627 /* 7628 * Check that the IPv4 opt_len is consistent with the packet and pullup 7629 * the options. 7630 */ 7631 mblk_t * 7632 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len, 7633 ip_recv_attr_t *ira) 7634 { 7635 ill_t *ill = ira->ira_ill; 7636 ssize_t len; 7637 7638 /* Assume no IPv6 packets arrive over the IPv4 queue */ 7639 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 7640 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7641 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 7642 ip_drop_input("IPvN packet on IPv4 ill", mp, ill); 7643 freemsg(mp); 7644 return (NULL); 7645 } 7646 7647 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 7648 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7649 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7650 freemsg(mp); 7651 return (NULL); 7652 } 7653 /* 7654 * Recompute complete header length and make sure we 7655 * have access to all of it. 7656 */ 7657 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 7658 if (len > (mp->b_wptr - mp->b_rptr)) { 7659 if (len > pkt_len) { 7660 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 7661 ip_drop_input("ipIfStatsInHdrErrors", mp, ill); 7662 freemsg(mp); 7663 return (NULL); 7664 } 7665 if (ip_pullup(mp, len, ira) == NULL) { 7666 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 7667 ip_drop_input("ipIfStatsInDiscards", mp, ill); 7668 freemsg(mp); 7669 return (NULL); 7670 } 7671 } 7672 return (mp); 7673 } 7674 7675 /* 7676 * Returns a new ire, or the same ire, or NULL. 7677 * If a different IRE is returned, then it is held; the caller 7678 * needs to release it. 7679 * In no case is there any hold/release on the ire argument. 7680 */ 7681 ire_t * 7682 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill) 7683 { 7684 ire_t *new_ire; 7685 ill_t *ire_ill; 7686 uint_t ifindex; 7687 ip_stack_t *ipst = ill->ill_ipst; 7688 boolean_t strict_check = B_FALSE; 7689 7690 /* 7691 * IPMP common case: if IRE and ILL are in the same group, there's no 7692 * issue (e.g. packet received on an underlying interface matched an 7693 * IRE_LOCAL on its associated group interface). 7694 */ 7695 ASSERT(ire->ire_ill != NULL); 7696 if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill)) 7697 return (ire); 7698 7699 /* 7700 * Do another ire lookup here, using the ingress ill, to see if the 7701 * interface is in a usesrc group. 7702 * As long as the ills belong to the same group, we don't consider 7703 * them to be arriving on the wrong interface. Thus, if the switch 7704 * is doing inbound load spreading, we won't drop packets when the 7705 * ip*_strict_dst_multihoming switch is on. 7706 * We also need to check for IPIF_UNNUMBERED point2point interfaces 7707 * where the local address may not be unique. In this case we were 7708 * at the mercy of the initial ire lookup and the IRE_LOCAL it 7709 * actually returned. The new lookup, which is more specific, should 7710 * only find the IRE_LOCAL associated with the ingress ill if one 7711 * exists. 7712 */ 7713 if (ire->ire_ipversion == IPV4_VERSION) { 7714 if (ipst->ips_ip_strict_dst_multihoming) 7715 strict_check = B_TRUE; 7716 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0, 7717 IRE_LOCAL, ill, ALL_ZONES, NULL, 7718 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7719 } else { 7720 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr)); 7721 if (ipst->ips_ipv6_strict_dst_multihoming) 7722 strict_check = B_TRUE; 7723 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL, 7724 IRE_LOCAL, ill, ALL_ZONES, NULL, 7725 (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL); 7726 } 7727 /* 7728 * If the same ire that was returned in ip_input() is found then this 7729 * is an indication that usesrc groups are in use. The packet 7730 * arrived on a different ill in the group than the one associated with 7731 * the destination address. If a different ire was found then the same 7732 * IP address must be hosted on multiple ills. This is possible with 7733 * unnumbered point2point interfaces. We switch to use this new ire in 7734 * order to have accurate interface statistics. 7735 */ 7736 if (new_ire != NULL) { 7737 /* Note: held in one case but not the other? Caller handles */ 7738 if (new_ire != ire) 7739 return (new_ire); 7740 /* Unchanged */ 7741 ire_refrele(new_ire); 7742 return (ire); 7743 } 7744 7745 /* 7746 * Chase pointers once and store locally. 7747 */ 7748 ASSERT(ire->ire_ill != NULL); 7749 ire_ill = ire->ire_ill; 7750 ifindex = ill->ill_usesrc_ifindex; 7751 7752 /* 7753 * Check if it's a legal address on the 'usesrc' interface. 7754 * For IPMP data addresses the IRE_LOCAL is the upper, hence we 7755 * can just check phyint_ifindex. 7756 */ 7757 if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) { 7758 return (ire); 7759 } 7760 7761 /* 7762 * If the ip*_strict_dst_multihoming switch is on then we can 7763 * only accept this packet if the interface is marked as routing. 7764 */ 7765 if (!(strict_check)) 7766 return (ire); 7767 7768 if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) { 7769 return (ire); 7770 } 7771 return (NULL); 7772 } 7773 7774 /* 7775 * This function is used to construct a mac_header_info_s from a 7776 * DL_UNITDATA_IND message. 7777 * The address fields in the mhi structure points into the message, 7778 * thus the caller can't use those fields after freeing the message. 7779 * 7780 * We determine whether the packet received is a non-unicast packet 7781 * and in doing so, determine whether or not it is broadcast vs multicast. 7782 * For it to be a broadcast packet, we must have the appropriate mblk_t 7783 * hanging off the ill_t. If this is either not present or doesn't match 7784 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7785 * to be multicast. Thus NICs that have no broadcast address (or no 7786 * capability for one, such as point to point links) cannot return as 7787 * the packet being broadcast. 7788 */ 7789 void 7790 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip) 7791 { 7792 dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr; 7793 mblk_t *bmp; 7794 uint_t extra_offset; 7795 7796 bzero(mhip, sizeof (struct mac_header_info_s)); 7797 7798 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7799 7800 if (ill->ill_sap_length < 0) 7801 extra_offset = 0; 7802 else 7803 extra_offset = ill->ill_sap_length; 7804 7805 mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset + 7806 extra_offset; 7807 mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset + 7808 extra_offset; 7809 7810 if (!ind->dl_group_address) 7811 return; 7812 7813 /* Multicast or broadcast */ 7814 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7815 7816 if (ind->dl_dest_addr_offset > sizeof (*ind) && 7817 ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) && 7818 (bmp = ill->ill_bcast_mp) != NULL) { 7819 dl_unitdata_req_t *dlur; 7820 uint8_t *bphys_addr; 7821 7822 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7823 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 7824 extra_offset; 7825 7826 if (bcmp(mhip->mhi_daddr, bphys_addr, 7827 ind->dl_dest_addr_length) == 0) 7828 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7829 } 7830 } 7831 7832 /* 7833 * This function is used to construct a mac_header_info_s from a 7834 * M_DATA fastpath message from a DLPI driver. 7835 * The address fields in the mhi structure points into the message, 7836 * thus the caller can't use those fields after freeing the message. 7837 * 7838 * We determine whether the packet received is a non-unicast packet 7839 * and in doing so, determine whether or not it is broadcast vs multicast. 7840 * For it to be a broadcast packet, we must have the appropriate mblk_t 7841 * hanging off the ill_t. If this is either not present or doesn't match 7842 * the destination mac address in the DL_UNITDATA_IND, the packet is deemed 7843 * to be multicast. Thus NICs that have no broadcast address (or no 7844 * capability for one, such as point to point links) cannot return as 7845 * the packet being broadcast. 7846 */ 7847 void 7848 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip) 7849 { 7850 mblk_t *bmp; 7851 struct ether_header *pether; 7852 7853 bzero(mhip, sizeof (struct mac_header_info_s)); 7854 7855 mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST; 7856 7857 pether = (struct ether_header *)((char *)mp->b_rptr 7858 - sizeof (struct ether_header)); 7859 7860 /* 7861 * Make sure the interface is an ethernet type, since we don't 7862 * know the header format for anything but Ethernet. Also make 7863 * sure we are pointing correctly above db_base. 7864 */ 7865 if (ill->ill_type != IFT_ETHER) 7866 return; 7867 7868 retry: 7869 if ((uchar_t *)pether < mp->b_datap->db_base) 7870 return; 7871 7872 /* Is there a VLAN tag? */ 7873 if (ill->ill_isv6) { 7874 if (pether->ether_type != htons(ETHERTYPE_IPV6)) { 7875 pether = (struct ether_header *)((char *)pether - 4); 7876 goto retry; 7877 } 7878 } else { 7879 if (pether->ether_type != htons(ETHERTYPE_IP)) { 7880 pether = (struct ether_header *)((char *)pether - 4); 7881 goto retry; 7882 } 7883 } 7884 mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost; 7885 mhip->mhi_saddr = (uchar_t *)&pether->ether_shost; 7886 7887 if (!(mhip->mhi_daddr[0] & 0x01)) 7888 return; 7889 7890 /* Multicast or broadcast */ 7891 mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST; 7892 7893 if ((bmp = ill->ill_bcast_mp) != NULL) { 7894 dl_unitdata_req_t *dlur; 7895 uint8_t *bphys_addr; 7896 uint_t addrlen; 7897 7898 dlur = (dl_unitdata_req_t *)bmp->b_rptr; 7899 addrlen = dlur->dl_dest_addr_length; 7900 if (ill->ill_sap_length < 0) { 7901 bphys_addr = (uchar_t *)dlur + 7902 dlur->dl_dest_addr_offset; 7903 addrlen += ill->ill_sap_length; 7904 } else { 7905 bphys_addr = (uchar_t *)dlur + 7906 dlur->dl_dest_addr_offset + 7907 ill->ill_sap_length; 7908 addrlen -= ill->ill_sap_length; 7909 } 7910 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0) 7911 mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST; 7912 } 7913 } 7914 7915 /* 7916 * Handle anything but M_DATA messages 7917 * We see the DL_UNITDATA_IND which are part 7918 * of the data path, and also the other messages from the driver. 7919 */ 7920 void 7921 ip_rput_notdata(ill_t *ill, mblk_t *mp) 7922 { 7923 mblk_t *first_mp; 7924 struct iocblk *iocp; 7925 struct mac_header_info_s mhi; 7926 7927 switch (DB_TYPE(mp)) { 7928 case M_PROTO: 7929 case M_PCPROTO: { 7930 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive != 7931 DL_UNITDATA_IND) { 7932 /* Go handle anything other than data elsewhere. */ 7933 ip_rput_dlpi(ill, mp); 7934 return; 7935 } 7936 7937 first_mp = mp; 7938 mp = first_mp->b_cont; 7939 first_mp->b_cont = NULL; 7940 7941 if (mp == NULL) { 7942 freeb(first_mp); 7943 return; 7944 } 7945 ip_dlur_to_mhi(ill, first_mp, &mhi); 7946 if (ill->ill_isv6) 7947 ip_input_v6(ill, NULL, mp, &mhi); 7948 else 7949 ip_input(ill, NULL, mp, &mhi); 7950 7951 /* Ditch the DLPI header. */ 7952 freeb(first_mp); 7953 return; 7954 } 7955 case M_IOCACK: 7956 iocp = (struct iocblk *)mp->b_rptr; 7957 switch (iocp->ioc_cmd) { 7958 case DL_IOC_HDR_INFO: 7959 ill_fastpath_ack(ill, mp); 7960 return; 7961 default: 7962 putnext(ill->ill_rq, mp); 7963 return; 7964 } 7965 /* FALLTHROUGH */ 7966 case M_ERROR: 7967 case M_HANGUP: 7968 mutex_enter(&ill->ill_lock); 7969 if (ill->ill_state_flags & ILL_CONDEMNED) { 7970 mutex_exit(&ill->ill_lock); 7971 freemsg(mp); 7972 return; 7973 } 7974 ill_refhold_locked(ill); 7975 mutex_exit(&ill->ill_lock); 7976 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP, 7977 B_FALSE); 7978 return; 7979 case M_CTL: 7980 putnext(ill->ill_rq, mp); 7981 return; 7982 case M_IOCNAK: 7983 ip1dbg(("got iocnak ")); 7984 iocp = (struct iocblk *)mp->b_rptr; 7985 switch (iocp->ioc_cmd) { 7986 case DL_IOC_HDR_INFO: 7987 ip_rput_other(NULL, ill->ill_rq, mp, NULL); 7988 return; 7989 default: 7990 break; 7991 } 7992 /* FALLTHROUGH */ 7993 default: 7994 putnext(ill->ill_rq, mp); 7995 return; 7996 } 7997 } 7998 7999 /* Read side put procedure. Packets coming from the wire arrive here. */ 8000 void 8001 ip_rput(queue_t *q, mblk_t *mp) 8002 { 8003 ill_t *ill; 8004 union DL_primitives *dl; 8005 8006 ill = (ill_t *)q->q_ptr; 8007 8008 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 8009 /* 8010 * If things are opening or closing, only accept high-priority 8011 * DLPI messages. (On open ill->ill_ipif has not yet been 8012 * created; on close, things hanging off the ill may have been 8013 * freed already.) 8014 */ 8015 dl = (union DL_primitives *)mp->b_rptr; 8016 if (DB_TYPE(mp) != M_PCPROTO || 8017 dl->dl_primitive == DL_UNITDATA_IND) { 8018 inet_freemsg(mp); 8019 return; 8020 } 8021 } 8022 if (DB_TYPE(mp) == M_DATA) { 8023 struct mac_header_info_s mhi; 8024 8025 ip_mdata_to_mhi(ill, mp, &mhi); 8026 ip_input(ill, NULL, mp, &mhi); 8027 } else { 8028 ip_rput_notdata(ill, mp); 8029 } 8030 } 8031 8032 /* 8033 * Move the information to a copy. 8034 */ 8035 mblk_t * 8036 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira) 8037 { 8038 mblk_t *mp1; 8039 ill_t *ill = ira->ira_ill; 8040 ip_stack_t *ipst = ill->ill_ipst; 8041 8042 IP_STAT(ipst, ip_db_ref); 8043 8044 /* Make sure we have ira_l2src before we loose the original mblk */ 8045 if (!(ira->ira_flags & IRAF_L2SRC_SET)) 8046 ip_setl2src(mp, ira, ira->ira_rill); 8047 8048 mp1 = copymsg(mp); 8049 if (mp1 == NULL) { 8050 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 8051 ip_drop_input("ipIfStatsInDiscards", mp, ill); 8052 freemsg(mp); 8053 return (NULL); 8054 } 8055 /* preserve the hardware checksum flags and data, if present */ 8056 if (DB_CKSUMFLAGS(mp) != 0) { 8057 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 8058 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 8059 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 8060 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 8061 DB_CKSUM16(mp1) = DB_CKSUM16(mp); 8062 } 8063 freemsg(mp); 8064 return (mp1); 8065 } 8066 8067 static void 8068 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 8069 t_uscalar_t err) 8070 { 8071 if (dl_err == DL_SYSERR) { 8072 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8073 "%s: %s failed: DL_SYSERR (errno %u)\n", 8074 ill->ill_name, dl_primstr(prim), err); 8075 return; 8076 } 8077 8078 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 8079 "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim), 8080 dl_errstr(dl_err)); 8081 } 8082 8083 /* 8084 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 8085 * than DL_UNITDATA_IND messages. If we need to process this message 8086 * exclusively, we call qwriter_ip, in which case we also need to call 8087 * ill_refhold before that, since qwriter_ip does an ill_refrele. 8088 */ 8089 void 8090 ip_rput_dlpi(ill_t *ill, mblk_t *mp) 8091 { 8092 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8093 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8094 queue_t *q = ill->ill_rq; 8095 t_uscalar_t prim = dloa->dl_primitive; 8096 t_uscalar_t reqprim = DL_PRIM_INVAL; 8097 8098 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi", 8099 char *, dl_primstr(prim), ill_t *, ill); 8100 ip1dbg(("ip_rput_dlpi")); 8101 8102 /* 8103 * If we received an ACK but didn't send a request for it, then it 8104 * can't be part of any pending operation; discard up-front. 8105 */ 8106 switch (prim) { 8107 case DL_ERROR_ACK: 8108 reqprim = dlea->dl_error_primitive; 8109 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s " 8110 "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim), 8111 reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno, 8112 dlea->dl_unix_errno)); 8113 break; 8114 case DL_OK_ACK: 8115 reqprim = dloa->dl_correct_primitive; 8116 break; 8117 case DL_INFO_ACK: 8118 reqprim = DL_INFO_REQ; 8119 break; 8120 case DL_BIND_ACK: 8121 reqprim = DL_BIND_REQ; 8122 break; 8123 case DL_PHYS_ADDR_ACK: 8124 reqprim = DL_PHYS_ADDR_REQ; 8125 break; 8126 case DL_NOTIFY_ACK: 8127 reqprim = DL_NOTIFY_REQ; 8128 break; 8129 case DL_CAPABILITY_ACK: 8130 reqprim = DL_CAPABILITY_REQ; 8131 break; 8132 } 8133 8134 if (prim != DL_NOTIFY_IND) { 8135 if (reqprim == DL_PRIM_INVAL || 8136 !ill_dlpi_pending(ill, reqprim)) { 8137 /* Not a DLPI message we support or expected */ 8138 freemsg(mp); 8139 return; 8140 } 8141 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim), 8142 dl_primstr(reqprim))); 8143 } 8144 8145 switch (reqprim) { 8146 case DL_UNBIND_REQ: 8147 /* 8148 * NOTE: we mark the unbind as complete even if we got a 8149 * DL_ERROR_ACK, since there's not much else we can do. 8150 */ 8151 mutex_enter(&ill->ill_lock); 8152 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 8153 cv_signal(&ill->ill_cv); 8154 mutex_exit(&ill->ill_lock); 8155 break; 8156 8157 case DL_ENABMULTI_REQ: 8158 if (prim == DL_OK_ACK) { 8159 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8160 ill->ill_dlpi_multicast_state = IDS_OK; 8161 } 8162 break; 8163 } 8164 8165 /* 8166 * The message is one we're waiting for (or DL_NOTIFY_IND), but we 8167 * need to become writer to continue to process it. Because an 8168 * exclusive operation doesn't complete until replies to all queued 8169 * DLPI messages have been received, we know we're in the middle of an 8170 * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND). 8171 * 8172 * As required by qwriter_ip(), we refhold the ill; it will refrele. 8173 * Since this is on the ill stream we unconditionally bump up the 8174 * refcount without doing ILL_CAN_LOOKUP(). 8175 */ 8176 ill_refhold(ill); 8177 if (prim == DL_NOTIFY_IND) 8178 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE); 8179 else 8180 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE); 8181 } 8182 8183 /* 8184 * Handling of DLPI messages that require exclusive access to the ipsq. 8185 * 8186 * Need to do ipsq_pending_mp_get on ioctl completion, which could 8187 * happen here. (along with mi_copy_done) 8188 */ 8189 /* ARGSUSED */ 8190 static void 8191 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8192 { 8193 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 8194 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 8195 int err = 0; 8196 ill_t *ill = (ill_t *)q->q_ptr; 8197 ipif_t *ipif = NULL; 8198 mblk_t *mp1 = NULL; 8199 conn_t *connp = NULL; 8200 t_uscalar_t paddrreq; 8201 mblk_t *mp_hw; 8202 boolean_t success; 8203 boolean_t ioctl_aborted = B_FALSE; 8204 boolean_t log = B_TRUE; 8205 8206 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer", 8207 char *, dl_primstr(dloa->dl_primitive), ill_t *, ill); 8208 8209 ip1dbg(("ip_rput_dlpi_writer ..")); 8210 ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop); 8211 ASSERT(IAM_WRITER_ILL(ill)); 8212 8213 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 8214 /* 8215 * The current ioctl could have been aborted by the user and a new 8216 * ioctl to bring up another ill could have started. We could still 8217 * get a response from the driver later. 8218 */ 8219 if (ipif != NULL && ipif->ipif_ill != ill) 8220 ioctl_aborted = B_TRUE; 8221 8222 switch (dloa->dl_primitive) { 8223 case DL_ERROR_ACK: 8224 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n", 8225 dl_primstr(dlea->dl_error_primitive))); 8226 8227 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error", 8228 char *, dl_primstr(dlea->dl_error_primitive), 8229 ill_t *, ill); 8230 8231 switch (dlea->dl_error_primitive) { 8232 case DL_DISABMULTI_REQ: 8233 ill_dlpi_done(ill, dlea->dl_error_primitive); 8234 break; 8235 case DL_PROMISCON_REQ: 8236 case DL_PROMISCOFF_REQ: 8237 case DL_UNBIND_REQ: 8238 case DL_ATTACH_REQ: 8239 case DL_INFO_REQ: 8240 ill_dlpi_done(ill, dlea->dl_error_primitive); 8241 break; 8242 case DL_NOTIFY_REQ: 8243 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8244 log = B_FALSE; 8245 break; 8246 case DL_PHYS_ADDR_REQ: 8247 /* 8248 * For IPv6 only, there are two additional 8249 * phys_addr_req's sent to the driver to get the 8250 * IPv6 token and lla. This allows IP to acquire 8251 * the hardware address format for a given interface 8252 * without having built in knowledge of the hardware 8253 * address. ill_phys_addr_pend keeps track of the last 8254 * DL_PAR sent so we know which response we are 8255 * dealing with. ill_dlpi_done will update 8256 * ill_phys_addr_pend when it sends the next req. 8257 * We don't complete the IOCTL until all three DL_PARs 8258 * have been attempted, so set *_len to 0 and break. 8259 */ 8260 paddrreq = ill->ill_phys_addr_pend; 8261 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8262 if (paddrreq == DL_IPV6_TOKEN) { 8263 ill->ill_token_length = 0; 8264 log = B_FALSE; 8265 break; 8266 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8267 ill->ill_nd_lla_len = 0; 8268 log = B_FALSE; 8269 break; 8270 } 8271 /* 8272 * Something went wrong with the DL_PHYS_ADDR_REQ. 8273 * We presumably have an IOCTL hanging out waiting 8274 * for completion. Find it and complete the IOCTL 8275 * with the error noted. 8276 * However, ill_dl_phys was called on an ill queue 8277 * (from SIOCSLIFNAME), thus conn_pending_ill is not 8278 * set. But the ioctl is known to be pending on ill_wq. 8279 */ 8280 if (!ill->ill_ifname_pending) 8281 break; 8282 ill->ill_ifname_pending = 0; 8283 if (!ioctl_aborted) 8284 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8285 if (mp1 != NULL) { 8286 /* 8287 * This operation (SIOCSLIFNAME) must have 8288 * happened on the ill. Assert there is no conn 8289 */ 8290 ASSERT(connp == NULL); 8291 q = ill->ill_wq; 8292 } 8293 break; 8294 case DL_BIND_REQ: 8295 ill_dlpi_done(ill, DL_BIND_REQ); 8296 if (ill->ill_ifname_pending) 8297 break; 8298 mutex_enter(&ill->ill_lock); 8299 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8300 mutex_exit(&ill->ill_lock); 8301 /* 8302 * Something went wrong with the bind. We presumably 8303 * have an IOCTL hanging out waiting for completion. 8304 * Find it, take down the interface that was coming 8305 * up, and complete the IOCTL with the error noted. 8306 */ 8307 if (!ioctl_aborted) 8308 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8309 if (mp1 != NULL) { 8310 /* 8311 * This might be a result of a DL_NOTE_REPLUMB 8312 * notification. In that case, connp is NULL. 8313 */ 8314 if (connp != NULL) 8315 q = CONNP_TO_WQ(connp); 8316 8317 (void) ipif_down(ipif, NULL, NULL); 8318 /* error is set below the switch */ 8319 } 8320 break; 8321 case DL_ENABMULTI_REQ: 8322 ill_dlpi_done(ill, DL_ENABMULTI_REQ); 8323 8324 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 8325 ill->ill_dlpi_multicast_state = IDS_FAILED; 8326 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 8327 8328 printf("ip: joining multicasts failed (%d)" 8329 " on %s - will use link layer " 8330 "broadcasts for multicast\n", 8331 dlea->dl_errno, ill->ill_name); 8332 8333 /* 8334 * Set up for multi_bcast; We are the 8335 * writer, so ok to access ill->ill_ipif 8336 * without any lock. 8337 */ 8338 mutex_enter(&ill->ill_phyint->phyint_lock); 8339 ill->ill_phyint->phyint_flags |= 8340 PHYI_MULTI_BCAST; 8341 mutex_exit(&ill->ill_phyint->phyint_lock); 8342 8343 } 8344 freemsg(mp); /* Don't want to pass this up */ 8345 return; 8346 case DL_CAPABILITY_REQ: 8347 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 8348 "DL_CAPABILITY REQ\n")); 8349 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 8350 ill->ill_dlpi_capab_state = IDCS_FAILED; 8351 ill_capability_done(ill); 8352 freemsg(mp); 8353 return; 8354 } 8355 /* 8356 * Note the error for IOCTL completion (mp1 is set when 8357 * ready to complete ioctl). If ill_ifname_pending_err is 8358 * set, an error occured during plumbing (ill_ifname_pending), 8359 * so we want to report that error. 8360 * 8361 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 8362 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 8363 * expected to get errack'd if the driver doesn't support 8364 * these flags (e.g. ethernet). log will be set to B_FALSE 8365 * if these error conditions are encountered. 8366 */ 8367 if (mp1 != NULL) { 8368 if (ill->ill_ifname_pending_err != 0) { 8369 err = ill->ill_ifname_pending_err; 8370 ill->ill_ifname_pending_err = 0; 8371 } else { 8372 err = dlea->dl_unix_errno ? 8373 dlea->dl_unix_errno : ENXIO; 8374 } 8375 /* 8376 * If we're plumbing an interface and an error hasn't already 8377 * been saved, set ill_ifname_pending_err to the error passed 8378 * up. Ignore the error if log is B_FALSE (see comment above). 8379 */ 8380 } else if (log && ill->ill_ifname_pending && 8381 ill->ill_ifname_pending_err == 0) { 8382 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 8383 dlea->dl_unix_errno : ENXIO; 8384 } 8385 8386 if (log) 8387 ip_dlpi_error(ill, dlea->dl_error_primitive, 8388 dlea->dl_errno, dlea->dl_unix_errno); 8389 break; 8390 case DL_CAPABILITY_ACK: 8391 ill_capability_ack(ill, mp); 8392 /* 8393 * The message has been handed off to ill_capability_ack 8394 * and must not be freed below 8395 */ 8396 mp = NULL; 8397 break; 8398 8399 case DL_INFO_ACK: 8400 /* Call a routine to handle this one. */ 8401 ill_dlpi_done(ill, DL_INFO_REQ); 8402 ip_ll_subnet_defaults(ill, mp); 8403 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 8404 return; 8405 case DL_BIND_ACK: 8406 /* 8407 * We should have an IOCTL waiting on this unless 8408 * sent by ill_dl_phys, in which case just return 8409 */ 8410 ill_dlpi_done(ill, DL_BIND_REQ); 8411 8412 if (ill->ill_ifname_pending) { 8413 DTRACE_PROBE2(ip__rput__dlpi__ifname__pending, 8414 ill_t *, ill, mblk_t *, mp); 8415 break; 8416 } 8417 mutex_enter(&ill->ill_lock); 8418 ill->ill_dl_up = 1; 8419 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 8420 mutex_exit(&ill->ill_lock); 8421 8422 if (!ioctl_aborted) 8423 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8424 if (mp1 == NULL) { 8425 DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill); 8426 break; 8427 } 8428 /* 8429 * mp1 was added by ill_dl_up(). if that is a result of 8430 * a DL_NOTE_REPLUMB notification, connp could be NULL. 8431 */ 8432 if (connp != NULL) 8433 q = CONNP_TO_WQ(connp); 8434 /* 8435 * We are exclusive. So nothing can change even after 8436 * we get the pending mp. 8437 */ 8438 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 8439 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill); 8440 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0); 8441 8442 /* 8443 * Now bring up the resolver; when that is complete, we'll 8444 * create IREs. Note that we intentionally mirror what 8445 * ipif_up() would have done, because we got here by way of 8446 * ill_dl_up(), which stopped ipif_up()'s processing. 8447 */ 8448 if (ill->ill_isv6) { 8449 /* 8450 * v6 interfaces. 8451 * Unlike ARP which has to do another bind 8452 * and attach, once we get here we are 8453 * done with NDP 8454 */ 8455 (void) ipif_resolver_up(ipif, Res_act_initial); 8456 if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0) 8457 err = ipif_up_done_v6(ipif); 8458 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 8459 /* 8460 * ARP and other v4 external resolvers. 8461 * Leave the pending mblk intact so that 8462 * the ioctl completes in ip_rput(). 8463 */ 8464 if (connp != NULL) 8465 mutex_enter(&connp->conn_lock); 8466 mutex_enter(&ill->ill_lock); 8467 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 8468 mutex_exit(&ill->ill_lock); 8469 if (connp != NULL) 8470 mutex_exit(&connp->conn_lock); 8471 if (success) { 8472 err = ipif_resolver_up(ipif, Res_act_initial); 8473 if (err == EINPROGRESS) { 8474 freemsg(mp); 8475 return; 8476 } 8477 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8478 } else { 8479 /* The conn has started closing */ 8480 err = EINTR; 8481 } 8482 } else { 8483 /* 8484 * This one is complete. Reply to pending ioctl. 8485 */ 8486 (void) ipif_resolver_up(ipif, Res_act_initial); 8487 err = ipif_up_done(ipif); 8488 } 8489 8490 if ((err == 0) && (ill->ill_up_ipifs)) { 8491 err = ill_up_ipifs(ill, q, mp1); 8492 if (err == EINPROGRESS) { 8493 freemsg(mp); 8494 return; 8495 } 8496 } 8497 8498 /* 8499 * If we have a moved ipif to bring up, and everything has 8500 * succeeded to this point, bring it up on the IPMP ill. 8501 * Otherwise, leave it down -- the admin can try to bring it 8502 * up by hand if need be. 8503 */ 8504 if (ill->ill_move_ipif != NULL) { 8505 if (err != 0) { 8506 ill->ill_move_ipif = NULL; 8507 } else { 8508 ipif = ill->ill_move_ipif; 8509 ill->ill_move_ipif = NULL; 8510 err = ipif_up(ipif, q, mp1); 8511 if (err == EINPROGRESS) { 8512 freemsg(mp); 8513 return; 8514 } 8515 } 8516 } 8517 break; 8518 8519 case DL_NOTIFY_IND: { 8520 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 8521 uint_t orig_mtu, orig_mc_mtu; 8522 8523 switch (notify->dl_notification) { 8524 case DL_NOTE_PHYS_ADDR: 8525 err = ill_set_phys_addr(ill, mp); 8526 break; 8527 8528 case DL_NOTE_REPLUMB: 8529 /* 8530 * Directly return after calling ill_replumb(). 8531 * Note that we should not free mp as it is reused 8532 * in the ill_replumb() function. 8533 */ 8534 err = ill_replumb(ill, mp); 8535 return; 8536 8537 case DL_NOTE_FASTPATH_FLUSH: 8538 nce_flush(ill, B_FALSE); 8539 break; 8540 8541 case DL_NOTE_SDU_SIZE: 8542 case DL_NOTE_SDU_SIZE2: 8543 /* 8544 * The dce and fragmentation code can cope with 8545 * this changing while packets are being sent. 8546 * When packets are sent ip_output will discover 8547 * a change. 8548 * 8549 * Change the MTU size of the interface. 8550 */ 8551 mutex_enter(&ill->ill_lock); 8552 orig_mtu = ill->ill_mtu; 8553 orig_mc_mtu = ill->ill_mc_mtu; 8554 switch (notify->dl_notification) { 8555 case DL_NOTE_SDU_SIZE: 8556 ill->ill_current_frag = 8557 (uint_t)notify->dl_data; 8558 ill->ill_mc_mtu = (uint_t)notify->dl_data; 8559 break; 8560 case DL_NOTE_SDU_SIZE2: 8561 ill->ill_current_frag = 8562 (uint_t)notify->dl_data1; 8563 ill->ill_mc_mtu = (uint_t)notify->dl_data2; 8564 break; 8565 } 8566 if (ill->ill_current_frag > ill->ill_max_frag) 8567 ill->ill_max_frag = ill->ill_current_frag; 8568 8569 if (!(ill->ill_flags & ILLF_FIXEDMTU)) { 8570 ill->ill_mtu = ill->ill_current_frag; 8571 8572 /* 8573 * If ill_user_mtu was set (via 8574 * SIOCSLIFLNKINFO), clamp ill_mtu at it. 8575 */ 8576 if (ill->ill_user_mtu != 0 && 8577 ill->ill_user_mtu < ill->ill_mtu) 8578 ill->ill_mtu = ill->ill_user_mtu; 8579 8580 if (ill->ill_user_mtu != 0 && 8581 ill->ill_user_mtu < ill->ill_mc_mtu) 8582 ill->ill_mc_mtu = ill->ill_user_mtu; 8583 8584 if (ill->ill_isv6) { 8585 if (ill->ill_mtu < IPV6_MIN_MTU) 8586 ill->ill_mtu = IPV6_MIN_MTU; 8587 if (ill->ill_mc_mtu < IPV6_MIN_MTU) 8588 ill->ill_mc_mtu = IPV6_MIN_MTU; 8589 } else { 8590 if (ill->ill_mtu < IP_MIN_MTU) 8591 ill->ill_mtu = IP_MIN_MTU; 8592 if (ill->ill_mc_mtu < IP_MIN_MTU) 8593 ill->ill_mc_mtu = IP_MIN_MTU; 8594 } 8595 } else if (ill->ill_mc_mtu > ill->ill_mtu) { 8596 ill->ill_mc_mtu = ill->ill_mtu; 8597 } 8598 8599 mutex_exit(&ill->ill_lock); 8600 /* 8601 * Make sure all dce_generation checks find out 8602 * that ill_mtu/ill_mc_mtu has changed. 8603 */ 8604 if (orig_mtu != ill->ill_mtu || 8605 orig_mc_mtu != ill->ill_mc_mtu) { 8606 dce_increment_all_generations(ill->ill_isv6, 8607 ill->ill_ipst); 8608 } 8609 8610 /* 8611 * Refresh IPMP meta-interface MTU if necessary. 8612 */ 8613 if (IS_UNDER_IPMP(ill)) 8614 ipmp_illgrp_refresh_mtu(ill->ill_grp); 8615 break; 8616 8617 case DL_NOTE_LINK_UP: 8618 case DL_NOTE_LINK_DOWN: { 8619 /* 8620 * We are writer. ill / phyint / ipsq assocs stable. 8621 * The RUNNING flag reflects the state of the link. 8622 */ 8623 phyint_t *phyint = ill->ill_phyint; 8624 uint64_t new_phyint_flags; 8625 boolean_t changed = B_FALSE; 8626 boolean_t went_up; 8627 8628 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 8629 mutex_enter(&phyint->phyint_lock); 8630 8631 new_phyint_flags = went_up ? 8632 phyint->phyint_flags | PHYI_RUNNING : 8633 phyint->phyint_flags & ~PHYI_RUNNING; 8634 8635 if (IS_IPMP(ill)) { 8636 new_phyint_flags = went_up ? 8637 new_phyint_flags & ~PHYI_FAILED : 8638 new_phyint_flags | PHYI_FAILED; 8639 } 8640 8641 if (new_phyint_flags != phyint->phyint_flags) { 8642 phyint->phyint_flags = new_phyint_flags; 8643 changed = B_TRUE; 8644 } 8645 mutex_exit(&phyint->phyint_lock); 8646 /* 8647 * ill_restart_dad handles the DAD restart and routing 8648 * socket notification logic. 8649 */ 8650 if (changed) { 8651 ill_restart_dad(phyint->phyint_illv4, went_up); 8652 ill_restart_dad(phyint->phyint_illv6, went_up); 8653 } 8654 break; 8655 } 8656 case DL_NOTE_PROMISC_ON_PHYS: { 8657 phyint_t *phyint = ill->ill_phyint; 8658 8659 mutex_enter(&phyint->phyint_lock); 8660 phyint->phyint_flags |= PHYI_PROMISC; 8661 mutex_exit(&phyint->phyint_lock); 8662 break; 8663 } 8664 case DL_NOTE_PROMISC_OFF_PHYS: { 8665 phyint_t *phyint = ill->ill_phyint; 8666 8667 mutex_enter(&phyint->phyint_lock); 8668 phyint->phyint_flags &= ~PHYI_PROMISC; 8669 mutex_exit(&phyint->phyint_lock); 8670 break; 8671 } 8672 case DL_NOTE_CAPAB_RENEG: 8673 /* 8674 * Something changed on the driver side. 8675 * It wants us to renegotiate the capabilities 8676 * on this ill. One possible cause is the aggregation 8677 * interface under us where a port got added or 8678 * went away. 8679 * 8680 * If the capability negotiation is already done 8681 * or is in progress, reset the capabilities and 8682 * mark the ill's ill_capab_reneg to be B_TRUE, 8683 * so that when the ack comes back, we can start 8684 * the renegotiation process. 8685 * 8686 * Note that if ill_capab_reneg is already B_TRUE 8687 * (ill_dlpi_capab_state is IDS_UNKNOWN in this case), 8688 * the capability resetting request has been sent 8689 * and the renegotiation has not been started yet; 8690 * nothing needs to be done in this case. 8691 */ 8692 ipsq_current_start(ipsq, ill->ill_ipif, 0); 8693 ill_capability_reset(ill, B_TRUE); 8694 ipsq_current_finish(ipsq); 8695 break; 8696 8697 case DL_NOTE_ALLOWED_IPS: 8698 ill_set_allowed_ips(ill, mp); 8699 break; 8700 default: 8701 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 8702 "type 0x%x for DL_NOTIFY_IND\n", 8703 notify->dl_notification)); 8704 break; 8705 } 8706 8707 /* 8708 * As this is an asynchronous operation, we 8709 * should not call ill_dlpi_done 8710 */ 8711 break; 8712 } 8713 case DL_NOTIFY_ACK: { 8714 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 8715 8716 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 8717 ill->ill_note_link = 1; 8718 ill_dlpi_done(ill, DL_NOTIFY_REQ); 8719 break; 8720 } 8721 case DL_PHYS_ADDR_ACK: { 8722 /* 8723 * As part of plumbing the interface via SIOCSLIFNAME, 8724 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs, 8725 * whose answers we receive here. As each answer is received, 8726 * we call ill_dlpi_done() to dispatch the next request as 8727 * we're processing the current one. Once all answers have 8728 * been received, we use ipsq_pending_mp_get() to dequeue the 8729 * outstanding IOCTL and reply to it. (Because ill_dl_phys() 8730 * is invoked from an ill queue, conn_oper_pending_ill is not 8731 * available, but we know the ioctl is pending on ill_wq.) 8732 */ 8733 uint_t paddrlen, paddroff; 8734 uint8_t *addr; 8735 8736 paddrreq = ill->ill_phys_addr_pend; 8737 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length; 8738 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset; 8739 addr = mp->b_rptr + paddroff; 8740 8741 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 8742 if (paddrreq == DL_IPV6_TOKEN) { 8743 /* 8744 * bcopy to low-order bits of ill_token 8745 * 8746 * XXX Temporary hack - currently, all known tokens 8747 * are 64 bits, so I'll cheat for the moment. 8748 */ 8749 bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen); 8750 ill->ill_token_length = paddrlen; 8751 break; 8752 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) { 8753 ASSERT(ill->ill_nd_lla_mp == NULL); 8754 ill_set_ndmp(ill, mp, paddroff, paddrlen); 8755 mp = NULL; 8756 break; 8757 } else if (paddrreq == DL_CURR_DEST_ADDR) { 8758 ASSERT(ill->ill_dest_addr_mp == NULL); 8759 ill->ill_dest_addr_mp = mp; 8760 ill->ill_dest_addr = addr; 8761 mp = NULL; 8762 if (ill->ill_isv6) { 8763 ill_setdesttoken(ill); 8764 ipif_setdestlinklocal(ill->ill_ipif); 8765 } 8766 break; 8767 } 8768 8769 ASSERT(paddrreq == DL_CURR_PHYS_ADDR); 8770 ASSERT(ill->ill_phys_addr_mp == NULL); 8771 if (!ill->ill_ifname_pending) 8772 break; 8773 ill->ill_ifname_pending = 0; 8774 if (!ioctl_aborted) 8775 mp1 = ipsq_pending_mp_get(ipsq, &connp); 8776 if (mp1 != NULL) { 8777 ASSERT(connp == NULL); 8778 q = ill->ill_wq; 8779 } 8780 /* 8781 * If any error acks received during the plumbing sequence, 8782 * ill_ifname_pending_err will be set. Break out and send up 8783 * the error to the pending ioctl. 8784 */ 8785 if (ill->ill_ifname_pending_err != 0) { 8786 err = ill->ill_ifname_pending_err; 8787 ill->ill_ifname_pending_err = 0; 8788 break; 8789 } 8790 8791 ill->ill_phys_addr_mp = mp; 8792 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr); 8793 mp = NULL; 8794 8795 /* 8796 * If paddrlen or ill_phys_addr_length is zero, the DLPI 8797 * provider doesn't support physical addresses. We check both 8798 * paddrlen and ill_phys_addr_length because sppp (PPP) does 8799 * not have physical addresses, but historically adversises a 8800 * physical address length of 0 in its DL_INFO_ACK, but 6 in 8801 * its DL_PHYS_ADDR_ACK. 8802 */ 8803 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) { 8804 ill->ill_phys_addr = NULL; 8805 } else if (paddrlen != ill->ill_phys_addr_length) { 8806 ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d", 8807 paddrlen, ill->ill_phys_addr_length)); 8808 err = EINVAL; 8809 break; 8810 } 8811 8812 if (ill->ill_nd_lla_mp == NULL) { 8813 if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) { 8814 err = ENOMEM; 8815 break; 8816 } 8817 ill_set_ndmp(ill, mp_hw, paddroff, paddrlen); 8818 } 8819 8820 if (ill->ill_isv6) { 8821 ill_setdefaulttoken(ill); 8822 ipif_setlinklocal(ill->ill_ipif); 8823 } 8824 break; 8825 } 8826 case DL_OK_ACK: 8827 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 8828 dl_primstr((int)dloa->dl_correct_primitive), 8829 dloa->dl_correct_primitive)); 8830 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok", 8831 char *, dl_primstr(dloa->dl_correct_primitive), 8832 ill_t *, ill); 8833 8834 switch (dloa->dl_correct_primitive) { 8835 case DL_ENABMULTI_REQ: 8836 case DL_DISABMULTI_REQ: 8837 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8838 break; 8839 case DL_PROMISCON_REQ: 8840 case DL_PROMISCOFF_REQ: 8841 case DL_UNBIND_REQ: 8842 case DL_ATTACH_REQ: 8843 ill_dlpi_done(ill, dloa->dl_correct_primitive); 8844 break; 8845 } 8846 break; 8847 default: 8848 break; 8849 } 8850 8851 freemsg(mp); 8852 if (mp1 == NULL) 8853 return; 8854 8855 /* 8856 * The operation must complete without EINPROGRESS since 8857 * ipsq_pending_mp_get() has removed the mblk (mp1). Otherwise, 8858 * the operation will be stuck forever inside the IPSQ. 8859 */ 8860 ASSERT(err != EINPROGRESS); 8861 8862 DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish", 8863 int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, 8864 ipif_t *, NULL); 8865 8866 switch (ipsq->ipsq_xop->ipx_current_ioctl) { 8867 case 0: 8868 ipsq_current_finish(ipsq); 8869 break; 8870 8871 case SIOCSLIFNAME: 8872 case IF_UNITSEL: { 8873 ill_t *ill_other = ILL_OTHER(ill); 8874 8875 /* 8876 * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the 8877 * ill has a peer which is in an IPMP group, then place ill 8878 * into the same group. One catch: although ifconfig plumbs 8879 * the appropriate IPMP meta-interface prior to plumbing this 8880 * ill, it is possible for multiple ifconfig applications to 8881 * race (or for another application to adjust plumbing), in 8882 * which case the IPMP meta-interface we need will be missing. 8883 * If so, kick the phyint out of the group. 8884 */ 8885 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) { 8886 ipmp_grp_t *grp = ill->ill_phyint->phyint_grp; 8887 ipmp_illgrp_t *illg; 8888 8889 illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4; 8890 if (illg == NULL) 8891 ipmp_phyint_leave_grp(ill->ill_phyint); 8892 else 8893 ipmp_ill_join_illgrp(ill, illg); 8894 } 8895 8896 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL) 8897 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8898 else 8899 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8900 break; 8901 } 8902 case SIOCLIFADDIF: 8903 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq); 8904 break; 8905 8906 default: 8907 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 8908 break; 8909 } 8910 } 8911 8912 /* 8913 * ip_rput_other is called by ip_rput to handle messages modifying the global 8914 * state in IP. If 'ipsq' is non-NULL, caller is writer on it. 8915 */ 8916 /* ARGSUSED */ 8917 void 8918 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8919 { 8920 ill_t *ill = q->q_ptr; 8921 struct iocblk *iocp; 8922 8923 ip1dbg(("ip_rput_other ")); 8924 if (ipsq != NULL) { 8925 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8926 ASSERT(ipsq->ipsq_xop == 8927 ill->ill_phyint->phyint_ipsq->ipsq_xop); 8928 } 8929 8930 switch (mp->b_datap->db_type) { 8931 case M_ERROR: 8932 case M_HANGUP: 8933 /* 8934 * The device has a problem. We force the ILL down. It can 8935 * be brought up again manually using SIOCSIFFLAGS (via 8936 * ifconfig or equivalent). 8937 */ 8938 ASSERT(ipsq != NULL); 8939 if (mp->b_rptr < mp->b_wptr) 8940 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 8941 if (ill->ill_error == 0) 8942 ill->ill_error = ENXIO; 8943 if (!ill_down_start(q, mp)) 8944 return; 8945 ipif_all_down_tail(ipsq, q, mp, NULL); 8946 break; 8947 case M_IOCNAK: { 8948 iocp = (struct iocblk *)mp->b_rptr; 8949 8950 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO); 8951 /* 8952 * If this was the first attempt, turn off the fastpath 8953 * probing. 8954 */ 8955 mutex_enter(&ill->ill_lock); 8956 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 8957 ill->ill_dlpi_fastpath_state = IDS_FAILED; 8958 mutex_exit(&ill->ill_lock); 8959 /* 8960 * don't flush the nce_t entries: we use them 8961 * as an index to the ncec itself. 8962 */ 8963 ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n", 8964 ill->ill_name)); 8965 } else { 8966 mutex_exit(&ill->ill_lock); 8967 } 8968 freemsg(mp); 8969 break; 8970 } 8971 default: 8972 ASSERT(0); 8973 break; 8974 } 8975 } 8976 8977 /* 8978 * Update any source route, record route or timestamp options 8979 * When it fails it has consumed the message and BUMPed the MIB. 8980 */ 8981 boolean_t 8982 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill, 8983 ip_recv_attr_t *ira) 8984 { 8985 ipoptp_t opts; 8986 uchar_t *opt; 8987 uint8_t optval; 8988 uint8_t optlen; 8989 ipaddr_t dst; 8990 ipaddr_t ifaddr; 8991 uint32_t ts; 8992 timestruc_t now; 8993 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 8994 8995 ip2dbg(("ip_forward_options\n")); 8996 dst = ipha->ipha_dst; 8997 for (optval = ipoptp_first(&opts, ipha); 8998 optval != IPOPT_EOL; 8999 optval = ipoptp_next(&opts)) { 9000 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9001 opt = opts.ipoptp_cur; 9002 optlen = opts.ipoptp_len; 9003 ip2dbg(("ip_forward_options: opt %d, len %d\n", 9004 optval, opts.ipoptp_len)); 9005 switch (optval) { 9006 uint32_t off; 9007 case IPOPT_SSRR: 9008 case IPOPT_LSRR: 9009 /* Check if adminstratively disabled */ 9010 if (!ipst->ips_ip_forward_src_routed) { 9011 BUMP_MIB(dst_ill->ill_ip_mib, 9012 ipIfStatsForwProhibits); 9013 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", 9014 mp, dst_ill); 9015 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, 9016 ira); 9017 return (B_FALSE); 9018 } 9019 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9020 /* 9021 * Must be partial since ip_input_options 9022 * checked for strict. 9023 */ 9024 break; 9025 } 9026 off = opt[IPOPT_OFFSET]; 9027 off--; 9028 redo_srr: 9029 if (optlen < IP_ADDR_LEN || 9030 off > optlen - IP_ADDR_LEN) { 9031 /* End of source route */ 9032 ip1dbg(( 9033 "ip_forward_options: end of SR\n")); 9034 break; 9035 } 9036 /* Pick a reasonable address on the outbound if */ 9037 ASSERT(dst_ill != NULL); 9038 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9039 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9040 NULL) != 0) { 9041 /* No source! Shouldn't happen */ 9042 ifaddr = INADDR_ANY; 9043 } 9044 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9045 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9046 ip1dbg(("ip_forward_options: next hop 0x%x\n", 9047 ntohl(dst))); 9048 9049 /* 9050 * Check if our address is present more than 9051 * once as consecutive hops in source route. 9052 */ 9053 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9054 off += IP_ADDR_LEN; 9055 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9056 goto redo_srr; 9057 } 9058 ipha->ipha_dst = dst; 9059 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9060 break; 9061 case IPOPT_RR: 9062 off = opt[IPOPT_OFFSET]; 9063 off--; 9064 if (optlen < IP_ADDR_LEN || 9065 off > optlen - IP_ADDR_LEN) { 9066 /* No more room - ignore */ 9067 ip1dbg(( 9068 "ip_forward_options: end of RR\n")); 9069 break; 9070 } 9071 /* Pick a reasonable address on the outbound if */ 9072 ASSERT(dst_ill != NULL); 9073 if (ip_select_source_v4(dst_ill, INADDR_ANY, dst, 9074 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9075 NULL) != 0) { 9076 /* No source! Shouldn't happen */ 9077 ifaddr = INADDR_ANY; 9078 } 9079 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9080 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9081 break; 9082 case IPOPT_TS: 9083 /* Insert timestamp if there is room */ 9084 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9085 case IPOPT_TS_TSONLY: 9086 off = IPOPT_TS_TIMELEN; 9087 break; 9088 case IPOPT_TS_PRESPEC: 9089 case IPOPT_TS_PRESPEC_RFC791: 9090 /* Verify that the address matched */ 9091 off = opt[IPOPT_OFFSET] - 1; 9092 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9093 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9094 /* Not for us */ 9095 break; 9096 } 9097 /* FALLTHROUGH */ 9098 case IPOPT_TS_TSANDADDR: 9099 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9100 break; 9101 default: 9102 /* 9103 * ip_*put_options should have already 9104 * dropped this packet. 9105 */ 9106 cmn_err(CE_PANIC, "ip_forward_options: " 9107 "unknown IT - bug in ip_input_options?\n"); 9108 return (B_TRUE); /* Keep "lint" happy */ 9109 } 9110 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9111 /* Increase overflow counter */ 9112 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9113 opt[IPOPT_POS_OV_FLG] = 9114 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9115 (off << 4)); 9116 break; 9117 } 9118 off = opt[IPOPT_OFFSET] - 1; 9119 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9120 case IPOPT_TS_PRESPEC: 9121 case IPOPT_TS_PRESPEC_RFC791: 9122 case IPOPT_TS_TSANDADDR: 9123 /* Pick a reasonable addr on the outbound if */ 9124 ASSERT(dst_ill != NULL); 9125 if (ip_select_source_v4(dst_ill, INADDR_ANY, 9126 dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr, 9127 NULL, NULL) != 0) { 9128 /* No source! Shouldn't happen */ 9129 ifaddr = INADDR_ANY; 9130 } 9131 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9132 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9133 /* FALLTHROUGH */ 9134 case IPOPT_TS_TSONLY: 9135 off = opt[IPOPT_OFFSET] - 1; 9136 /* Compute # of milliseconds since midnight */ 9137 gethrestime(&now); 9138 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9139 NSEC2MSEC(now.tv_nsec); 9140 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9141 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9142 break; 9143 } 9144 break; 9145 } 9146 } 9147 return (B_TRUE); 9148 } 9149 9150 /* 9151 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 9152 * returns 'true' if there are still fragments left on the queue, in 9153 * which case we restart the timer. 9154 */ 9155 void 9156 ill_frag_timer(void *arg) 9157 { 9158 ill_t *ill = (ill_t *)arg; 9159 boolean_t frag_pending; 9160 ip_stack_t *ipst = ill->ill_ipst; 9161 time_t timeout; 9162 9163 mutex_enter(&ill->ill_lock); 9164 ASSERT(!ill->ill_fragtimer_executing); 9165 if (ill->ill_state_flags & ILL_CONDEMNED) { 9166 ill->ill_frag_timer_id = 0; 9167 mutex_exit(&ill->ill_lock); 9168 return; 9169 } 9170 ill->ill_fragtimer_executing = 1; 9171 mutex_exit(&ill->ill_lock); 9172 9173 timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9174 ipst->ips_ip_reassembly_timeout); 9175 9176 frag_pending = ill_frag_timeout(ill, timeout); 9177 9178 /* 9179 * Restart the timer, if we have fragments pending or if someone 9180 * wanted us to be scheduled again. 9181 */ 9182 mutex_enter(&ill->ill_lock); 9183 ill->ill_fragtimer_executing = 0; 9184 ill->ill_frag_timer_id = 0; 9185 if (frag_pending || ill->ill_fragtimer_needrestart) 9186 ill_frag_timer_start(ill); 9187 mutex_exit(&ill->ill_lock); 9188 } 9189 9190 void 9191 ill_frag_timer_start(ill_t *ill) 9192 { 9193 ip_stack_t *ipst = ill->ill_ipst; 9194 clock_t timeo_ms; 9195 9196 ASSERT(MUTEX_HELD(&ill->ill_lock)); 9197 9198 /* If the ill is closing or opening don't proceed */ 9199 if (ill->ill_state_flags & ILL_CONDEMNED) 9200 return; 9201 9202 if (ill->ill_fragtimer_executing) { 9203 /* 9204 * ill_frag_timer is currently executing. Just record the 9205 * the fact that we want the timer to be restarted. 9206 * ill_frag_timer will post a timeout before it returns, 9207 * ensuring it will be called again. 9208 */ 9209 ill->ill_fragtimer_needrestart = 1; 9210 return; 9211 } 9212 9213 if (ill->ill_frag_timer_id == 0) { 9214 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout : 9215 ipst->ips_ip_reassembly_timeout) * SECONDS; 9216 9217 /* 9218 * The timer is neither running nor is the timeout handler 9219 * executing. Post a timeout so that ill_frag_timer will be 9220 * called 9221 */ 9222 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 9223 MSEC_TO_TICK(timeo_ms >> 1)); 9224 ill->ill_fragtimer_needrestart = 0; 9225 } 9226 } 9227 9228 /* 9229 * Update any source route, record route or timestamp options. 9230 * Check that we are at end of strict source route. 9231 * The options have already been checked for sanity in ip_input_options(). 9232 */ 9233 boolean_t 9234 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira) 9235 { 9236 ipoptp_t opts; 9237 uchar_t *opt; 9238 uint8_t optval; 9239 uint8_t optlen; 9240 ipaddr_t dst; 9241 ipaddr_t ifaddr; 9242 uint32_t ts; 9243 timestruc_t now; 9244 ill_t *ill = ira->ira_ill; 9245 ip_stack_t *ipst = ill->ill_ipst; 9246 9247 ip2dbg(("ip_input_local_options\n")); 9248 9249 for (optval = ipoptp_first(&opts, ipha); 9250 optval != IPOPT_EOL; 9251 optval = ipoptp_next(&opts)) { 9252 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 9253 opt = opts.ipoptp_cur; 9254 optlen = opts.ipoptp_len; 9255 ip2dbg(("ip_input_local_options: opt %d, len %d\n", 9256 optval, optlen)); 9257 switch (optval) { 9258 uint32_t off; 9259 case IPOPT_SSRR: 9260 case IPOPT_LSRR: 9261 off = opt[IPOPT_OFFSET]; 9262 off--; 9263 if (optlen < IP_ADDR_LEN || 9264 off > optlen - IP_ADDR_LEN) { 9265 /* End of source route */ 9266 ip1dbg(("ip_input_local_options: end of SR\n")); 9267 break; 9268 } 9269 /* 9270 * This will only happen if two consecutive entries 9271 * in the source route contains our address or if 9272 * it is a packet with a loose source route which 9273 * reaches us before consuming the whole source route 9274 */ 9275 ip1dbg(("ip_input_local_options: not end of SR\n")); 9276 if (optval == IPOPT_SSRR) { 9277 goto bad_src_route; 9278 } 9279 /* 9280 * Hack: instead of dropping the packet truncate the 9281 * source route to what has been used by filling the 9282 * rest with IPOPT_NOP. 9283 */ 9284 opt[IPOPT_OLEN] = (uint8_t)off; 9285 while (off < optlen) { 9286 opt[off++] = IPOPT_NOP; 9287 } 9288 break; 9289 case IPOPT_RR: 9290 off = opt[IPOPT_OFFSET]; 9291 off--; 9292 if (optlen < IP_ADDR_LEN || 9293 off > optlen - IP_ADDR_LEN) { 9294 /* No more room - ignore */ 9295 ip1dbg(( 9296 "ip_input_local_options: end of RR\n")); 9297 break; 9298 } 9299 /* Pick a reasonable address on the outbound if */ 9300 if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst, 9301 INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL, 9302 NULL) != 0) { 9303 /* No source! Shouldn't happen */ 9304 ifaddr = INADDR_ANY; 9305 } 9306 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9307 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9308 break; 9309 case IPOPT_TS: 9310 /* Insert timestamp if there is romm */ 9311 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9312 case IPOPT_TS_TSONLY: 9313 off = IPOPT_TS_TIMELEN; 9314 break; 9315 case IPOPT_TS_PRESPEC: 9316 case IPOPT_TS_PRESPEC_RFC791: 9317 /* Verify that the address matched */ 9318 off = opt[IPOPT_OFFSET] - 1; 9319 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9320 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9321 /* Not for us */ 9322 break; 9323 } 9324 /* FALLTHROUGH */ 9325 case IPOPT_TS_TSANDADDR: 9326 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9327 break; 9328 default: 9329 /* 9330 * ip_*put_options should have already 9331 * dropped this packet. 9332 */ 9333 cmn_err(CE_PANIC, "ip_input_local_options: " 9334 "unknown IT - bug in ip_input_options?\n"); 9335 return (B_TRUE); /* Keep "lint" happy */ 9336 } 9337 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 9338 /* Increase overflow counter */ 9339 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 9340 opt[IPOPT_POS_OV_FLG] = 9341 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 9342 (off << 4)); 9343 break; 9344 } 9345 off = opt[IPOPT_OFFSET] - 1; 9346 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9347 case IPOPT_TS_PRESPEC: 9348 case IPOPT_TS_PRESPEC_RFC791: 9349 case IPOPT_TS_TSANDADDR: 9350 /* Pick a reasonable addr on the outbound if */ 9351 if (ip_select_source_v4(ill, INADDR_ANY, 9352 ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst, 9353 &ifaddr, NULL, NULL) != 0) { 9354 /* No source! Shouldn't happen */ 9355 ifaddr = INADDR_ANY; 9356 } 9357 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN); 9358 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 9359 /* FALLTHROUGH */ 9360 case IPOPT_TS_TSONLY: 9361 off = opt[IPOPT_OFFSET] - 1; 9362 /* Compute # of milliseconds since midnight */ 9363 gethrestime(&now); 9364 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 9365 NSEC2MSEC(now.tv_nsec); 9366 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 9367 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 9368 break; 9369 } 9370 break; 9371 } 9372 } 9373 return (B_TRUE); 9374 9375 bad_src_route: 9376 /* make sure we clear any indication of a hardware checksum */ 9377 DB_CKSUMFLAGS(mp) = 0; 9378 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 9379 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9380 return (B_FALSE); 9381 9382 } 9383 9384 /* 9385 * Process IP options in an inbound packet. Always returns the nexthop. 9386 * Normally this is the passed in nexthop, but if there is an option 9387 * that effects the nexthop (such as a source route) that will be returned. 9388 * Sets *errorp if there is an error, in which case an ICMP error has been sent 9389 * and mp freed. 9390 */ 9391 ipaddr_t 9392 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp, 9393 ip_recv_attr_t *ira, int *errorp) 9394 { 9395 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 9396 ipoptp_t opts; 9397 uchar_t *opt; 9398 uint8_t optval; 9399 uint8_t optlen; 9400 intptr_t code = 0; 9401 ire_t *ire; 9402 9403 ip2dbg(("ip_input_options\n")); 9404 *errorp = 0; 9405 for (optval = ipoptp_first(&opts, ipha); 9406 optval != IPOPT_EOL; 9407 optval = ipoptp_next(&opts)) { 9408 opt = opts.ipoptp_cur; 9409 optlen = opts.ipoptp_len; 9410 ip2dbg(("ip_input_options: opt %d, len %d\n", 9411 optval, optlen)); 9412 /* 9413 * Note: we need to verify the checksum before we 9414 * modify anything thus this routine only extracts the next 9415 * hop dst from any source route. 9416 */ 9417 switch (optval) { 9418 uint32_t off; 9419 case IPOPT_SSRR: 9420 case IPOPT_LSRR: 9421 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 9422 if (optval == IPOPT_SSRR) { 9423 ip1dbg(("ip_input_options: not next" 9424 " strict source route 0x%x\n", 9425 ntohl(dst))); 9426 code = (char *)&ipha->ipha_dst - 9427 (char *)ipha; 9428 goto param_prob; /* RouterReq's */ 9429 } 9430 ip2dbg(("ip_input_options: " 9431 "not next source route 0x%x\n", 9432 ntohl(dst))); 9433 break; 9434 } 9435 9436 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9437 ip1dbg(( 9438 "ip_input_options: bad option offset\n")); 9439 code = (char *)&opt[IPOPT_OLEN] - 9440 (char *)ipha; 9441 goto param_prob; 9442 } 9443 off = opt[IPOPT_OFFSET]; 9444 off--; 9445 redo_srr: 9446 if (optlen < IP_ADDR_LEN || 9447 off > optlen - IP_ADDR_LEN) { 9448 /* End of source route */ 9449 ip1dbg(("ip_input_options: end of SR\n")); 9450 break; 9451 } 9452 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 9453 ip1dbg(("ip_input_options: next hop 0x%x\n", 9454 ntohl(dst))); 9455 9456 /* 9457 * Check if our address is present more than 9458 * once as consecutive hops in source route. 9459 * XXX verify per-interface ip_forwarding 9460 * for source route? 9461 */ 9462 if (ip_type_v4(dst, ipst) == IRE_LOCAL) { 9463 off += IP_ADDR_LEN; 9464 goto redo_srr; 9465 } 9466 9467 if (dst == htonl(INADDR_LOOPBACK)) { 9468 ip1dbg(("ip_input_options: loopback addr in " 9469 "source route!\n")); 9470 goto bad_src_route; 9471 } 9472 /* 9473 * For strict: verify that dst is directly 9474 * reachable. 9475 */ 9476 if (optval == IPOPT_SSRR) { 9477 ire = ire_ftable_lookup_v4(dst, 0, 0, 9478 IRE_INTERFACE, NULL, ALL_ZONES, 9479 ira->ira_tsl, 9480 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 9481 NULL); 9482 if (ire == NULL) { 9483 ip1dbg(("ip_input_options: SSRR not " 9484 "directly reachable: 0x%x\n", 9485 ntohl(dst))); 9486 goto bad_src_route; 9487 } 9488 ire_refrele(ire); 9489 } 9490 /* 9491 * Defer update of the offset and the record route 9492 * until the packet is forwarded. 9493 */ 9494 break; 9495 case IPOPT_RR: 9496 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9497 ip1dbg(( 9498 "ip_input_options: bad option offset\n")); 9499 code = (char *)&opt[IPOPT_OLEN] - 9500 (char *)ipha; 9501 goto param_prob; 9502 } 9503 break; 9504 case IPOPT_TS: 9505 /* 9506 * Verify that length >= 5 and that there is either 9507 * room for another timestamp or that the overflow 9508 * counter is not maxed out. 9509 */ 9510 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 9511 if (optlen < IPOPT_MINLEN_IT) { 9512 goto param_prob; 9513 } 9514 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 9515 ip1dbg(( 9516 "ip_input_options: bad option offset\n")); 9517 code = (char *)&opt[IPOPT_OFFSET] - 9518 (char *)ipha; 9519 goto param_prob; 9520 } 9521 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 9522 case IPOPT_TS_TSONLY: 9523 off = IPOPT_TS_TIMELEN; 9524 break; 9525 case IPOPT_TS_TSANDADDR: 9526 case IPOPT_TS_PRESPEC: 9527 case IPOPT_TS_PRESPEC_RFC791: 9528 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 9529 break; 9530 default: 9531 code = (char *)&opt[IPOPT_POS_OV_FLG] - 9532 (char *)ipha; 9533 goto param_prob; 9534 } 9535 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 9536 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 9537 /* 9538 * No room and the overflow counter is 15 9539 * already. 9540 */ 9541 goto param_prob; 9542 } 9543 break; 9544 } 9545 } 9546 9547 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 9548 return (dst); 9549 } 9550 9551 ip1dbg(("ip_input_options: error processing IP options.")); 9552 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 9553 9554 param_prob: 9555 /* make sure we clear any indication of a hardware checksum */ 9556 DB_CKSUMFLAGS(mp) = 0; 9557 ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill); 9558 icmp_param_problem(mp, (uint8_t)code, ira); 9559 *errorp = -1; 9560 return (dst); 9561 9562 bad_src_route: 9563 /* make sure we clear any indication of a hardware checksum */ 9564 DB_CKSUMFLAGS(mp) = 0; 9565 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill); 9566 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira); 9567 *errorp = -1; 9568 return (dst); 9569 } 9570 9571 /* 9572 * IP & ICMP info in >=14 msg's ... 9573 * - ip fixed part (mib2_ip_t) 9574 * - icmp fixed part (mib2_icmp_t) 9575 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 9576 * - ipRouteEntryTable (ip 21) all IPv4 IREs 9577 * - ipNetToMediaEntryTable (ip 22) all IPv4 Neighbor Cache entries 9578 * - ipRouteAttributeTable (ip 102) labeled routes 9579 * - ip multicast membership (ip_member_t) 9580 * - ip multicast source filtering (ip_grpsrc_t) 9581 * - igmp fixed part (struct igmpstat) 9582 * - multicast routing stats (struct mrtstat) 9583 * - multicast routing vifs (array of struct vifctl) 9584 * - multicast routing routes (array of struct mfcctl) 9585 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 9586 * One per ill plus one generic 9587 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 9588 * One per ill plus one generic 9589 * - ipv6RouteEntry all IPv6 IREs 9590 * - ipv6RouteAttributeTable (ip6 102) labeled routes 9591 * - ipv6NetToMediaEntry all IPv6 Neighbor Cache entries 9592 * - ipv6AddrEntry all IPv6 ipifs 9593 * - ipv6 multicast membership (ipv6_member_t) 9594 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 9595 * 9596 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 9597 * already filled in by the caller. 9598 * If legacy_req is true then MIB structures needs to be truncated to their 9599 * legacy sizes before being returned. 9600 * Return value of 0 indicates that no messages were sent and caller 9601 * should free mpctl. 9602 */ 9603 int 9604 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req) 9605 { 9606 ip_stack_t *ipst; 9607 sctp_stack_t *sctps; 9608 9609 if (q->q_next != NULL) { 9610 ipst = ILLQ_TO_IPST(q); 9611 } else { 9612 ipst = CONNQ_TO_IPST(q); 9613 } 9614 ASSERT(ipst != NULL); 9615 sctps = ipst->ips_netstack->netstack_sctp; 9616 9617 if (mpctl == NULL || mpctl->b_cont == NULL) { 9618 return (0); 9619 } 9620 9621 /* 9622 * For the purposes of the (broken) packet shell use 9623 * of the level we make sure MIB2_TCP/MIB2_UDP can be used 9624 * to make TCP and UDP appear first in the list of mib items. 9625 * TBD: We could expand this and use it in netstat so that 9626 * the kernel doesn't have to produce large tables (connections, 9627 * routes, etc) when netstat only wants the statistics or a particular 9628 * table. 9629 */ 9630 if (!(level == MIB2_TCP || level == MIB2_UDP)) { 9631 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) { 9632 return (1); 9633 } 9634 } 9635 9636 if (level != MIB2_TCP) { 9637 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9638 return (1); 9639 } 9640 } 9641 9642 if (level != MIB2_UDP) { 9643 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) { 9644 return (1); 9645 } 9646 } 9647 9648 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl, 9649 ipst, legacy_req)) == NULL) { 9650 return (1); 9651 } 9652 9653 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst, 9654 legacy_req)) == NULL) { 9655 return (1); 9656 } 9657 9658 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) { 9659 return (1); 9660 } 9661 9662 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) { 9663 return (1); 9664 } 9665 9666 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) { 9667 return (1); 9668 } 9669 9670 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) { 9671 return (1); 9672 } 9673 9674 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst, 9675 legacy_req)) == NULL) { 9676 return (1); 9677 } 9678 9679 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst, 9680 legacy_req)) == NULL) { 9681 return (1); 9682 } 9683 9684 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) { 9685 return (1); 9686 } 9687 9688 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) { 9689 return (1); 9690 } 9691 9692 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) { 9693 return (1); 9694 } 9695 9696 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) { 9697 return (1); 9698 } 9699 9700 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) { 9701 return (1); 9702 } 9703 9704 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) { 9705 return (1); 9706 } 9707 9708 mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst); 9709 if (mpctl == NULL) 9710 return (1); 9711 9712 mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst); 9713 if (mpctl == NULL) 9714 return (1); 9715 9716 if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) { 9717 return (1); 9718 } 9719 if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) { 9720 return (1); 9721 } 9722 freemsg(mpctl); 9723 return (1); 9724 } 9725 9726 /* Get global (legacy) IPv4 statistics */ 9727 static mblk_t * 9728 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib, 9729 ip_stack_t *ipst, boolean_t legacy_req) 9730 { 9731 mib2_ip_t old_ip_mib; 9732 struct opthdr *optp; 9733 mblk_t *mp2ctl; 9734 mib2_ipAddrEntry_t mae; 9735 9736 /* 9737 * make a copy of the original message 9738 */ 9739 mp2ctl = copymsg(mpctl); 9740 9741 /* fixed length IP structure... */ 9742 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9743 optp->level = MIB2_IP; 9744 optp->name = 0; 9745 SET_MIB(old_ip_mib.ipForwarding, 9746 (WE_ARE_FORWARDING(ipst) ? 1 : 2)); 9747 SET_MIB(old_ip_mib.ipDefaultTTL, 9748 (uint32_t)ipst->ips_ip_def_ttl); 9749 SET_MIB(old_ip_mib.ipReasmTimeout, 9750 ipst->ips_ip_reassembly_timeout); 9751 SET_MIB(old_ip_mib.ipAddrEntrySize, 9752 (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 9753 sizeof (mib2_ipAddrEntry_t)); 9754 SET_MIB(old_ip_mib.ipRouteEntrySize, 9755 sizeof (mib2_ipRouteEntry_t)); 9756 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 9757 sizeof (mib2_ipNetToMediaEntry_t)); 9758 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 9759 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 9760 SET_MIB(old_ip_mib.ipRouteAttributeSize, 9761 sizeof (mib2_ipAttributeEntry_t)); 9762 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 9763 SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t)); 9764 9765 /* 9766 * Grab the statistics from the new IP MIB 9767 */ 9768 SET_MIB(old_ip_mib.ipInReceives, 9769 (uint32_t)ipmib->ipIfStatsHCInReceives); 9770 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 9771 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 9772 SET_MIB(old_ip_mib.ipForwDatagrams, 9773 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 9774 SET_MIB(old_ip_mib.ipInUnknownProtos, 9775 ipmib->ipIfStatsInUnknownProtos); 9776 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 9777 SET_MIB(old_ip_mib.ipInDelivers, 9778 (uint32_t)ipmib->ipIfStatsHCInDelivers); 9779 SET_MIB(old_ip_mib.ipOutRequests, 9780 (uint32_t)ipmib->ipIfStatsHCOutRequests); 9781 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 9782 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 9783 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 9784 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 9785 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 9786 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 9787 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 9788 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 9789 9790 /* ipRoutingDiscards is not being used */ 9791 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 9792 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 9793 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 9794 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 9795 SET_MIB(old_ip_mib.ipReasmDuplicates, 9796 ipmib->ipIfStatsReasmDuplicates); 9797 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 9798 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 9799 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 9800 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 9801 SET_MIB(old_ip_mib.rawipInOverflows, 9802 ipmib->rawipIfStatsInOverflows); 9803 9804 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 9805 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 9806 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 9807 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 9808 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 9809 ipmib->ipIfStatsOutSwitchIPVersion); 9810 9811 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 9812 (int)sizeof (old_ip_mib))) { 9813 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 9814 (uint_t)sizeof (old_ip_mib))); 9815 } 9816 9817 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9818 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 9819 (int)optp->level, (int)optp->name, (int)optp->len)); 9820 qreply(q, mpctl); 9821 return (mp2ctl); 9822 } 9823 9824 /* Per interface IPv4 statistics */ 9825 static mblk_t * 9826 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9827 boolean_t legacy_req) 9828 { 9829 struct opthdr *optp; 9830 mblk_t *mp2ctl; 9831 ill_t *ill; 9832 ill_walk_context_t ctx; 9833 mblk_t *mp_tail = NULL; 9834 mib2_ipIfStatsEntry_t global_ip_mib; 9835 mib2_ipAddrEntry_t mae; 9836 9837 /* 9838 * Make a copy of the original message 9839 */ 9840 mp2ctl = copymsg(mpctl); 9841 9842 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9843 optp->level = MIB2_IP; 9844 optp->name = MIB2_IP_TRAFFIC_STATS; 9845 /* Include "unknown interface" ip_mib */ 9846 ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 9847 ipst->ips_ip_mib.ipIfStatsIfIndex = 9848 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 9849 SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding, 9850 (ipst->ips_ip_forwarding ? 1 : 2)); 9851 SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL, 9852 (uint32_t)ipst->ips_ip_def_ttl); 9853 SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize, 9854 sizeof (mib2_ipIfStatsEntry_t)); 9855 SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize, 9856 sizeof (mib2_ipAddrEntry_t)); 9857 SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize, 9858 sizeof (mib2_ipRouteEntry_t)); 9859 SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize, 9860 sizeof (mib2_ipNetToMediaEntry_t)); 9861 SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize, 9862 sizeof (ip_member_t)); 9863 SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize, 9864 sizeof (ip_grpsrc_t)); 9865 9866 bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 9867 9868 if (legacy_req) { 9869 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize, 9870 LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t)); 9871 } 9872 9873 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9874 (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) { 9875 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9876 "failed to allocate %u bytes\n", 9877 (uint_t)sizeof (global_ip_mib))); 9878 } 9879 9880 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9881 ill = ILL_START_WALK_V4(&ctx, ipst); 9882 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9883 ill->ill_ip_mib->ipIfStatsIfIndex = 9884 ill->ill_phyint->phyint_ifindex; 9885 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 9886 (ipst->ips_ip_forwarding ? 1 : 2)); 9887 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 9888 (uint32_t)ipst->ips_ip_def_ttl); 9889 9890 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 9891 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 9892 (char *)ill->ill_ip_mib, 9893 (int)sizeof (*ill->ill_ip_mib))) { 9894 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9895 "failed to allocate %u bytes\n", 9896 (uint_t)sizeof (*ill->ill_ip_mib))); 9897 } 9898 } 9899 rw_exit(&ipst->ips_ill_g_lock); 9900 9901 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9902 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 9903 "level %d, name %d, len %d\n", 9904 (int)optp->level, (int)optp->name, (int)optp->len)); 9905 qreply(q, mpctl); 9906 9907 if (mp2ctl == NULL) 9908 return (NULL); 9909 9910 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst, 9911 legacy_req)); 9912 } 9913 9914 /* Global IPv4 ICMP statistics */ 9915 static mblk_t * 9916 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9917 { 9918 struct opthdr *optp; 9919 mblk_t *mp2ctl; 9920 9921 /* 9922 * Make a copy of the original message 9923 */ 9924 mp2ctl = copymsg(mpctl); 9925 9926 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9927 optp->level = MIB2_ICMP; 9928 optp->name = 0; 9929 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib, 9930 (int)sizeof (ipst->ips_icmp_mib))) { 9931 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 9932 (uint_t)sizeof (ipst->ips_icmp_mib))); 9933 } 9934 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9935 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 9936 (int)optp->level, (int)optp->name, (int)optp->len)); 9937 qreply(q, mpctl); 9938 return (mp2ctl); 9939 } 9940 9941 /* Global IPv4 IGMP statistics */ 9942 static mblk_t * 9943 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9944 { 9945 struct opthdr *optp; 9946 mblk_t *mp2ctl; 9947 9948 /* 9949 * make a copy of the original message 9950 */ 9951 mp2ctl = copymsg(mpctl); 9952 9953 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9954 optp->level = EXPER_IGMP; 9955 optp->name = 0; 9956 if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat, 9957 (int)sizeof (ipst->ips_igmpstat))) { 9958 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 9959 (uint_t)sizeof (ipst->ips_igmpstat))); 9960 } 9961 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9962 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 9963 (int)optp->level, (int)optp->name, (int)optp->len)); 9964 qreply(q, mpctl); 9965 return (mp2ctl); 9966 } 9967 9968 /* Global IPv4 Multicast Routing statistics */ 9969 static mblk_t * 9970 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 9971 { 9972 struct opthdr *optp; 9973 mblk_t *mp2ctl; 9974 9975 /* 9976 * make a copy of the original message 9977 */ 9978 mp2ctl = copymsg(mpctl); 9979 9980 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 9981 optp->level = EXPER_DVMRP; 9982 optp->name = 0; 9983 if (!ip_mroute_stats(mpctl->b_cont, ipst)) { 9984 ip0dbg(("ip_mroute_stats: failed\n")); 9985 } 9986 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 9987 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 9988 (int)optp->level, (int)optp->name, (int)optp->len)); 9989 qreply(q, mpctl); 9990 return (mp2ctl); 9991 } 9992 9993 /* IPv4 address information */ 9994 static mblk_t * 9995 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 9996 boolean_t legacy_req) 9997 { 9998 struct opthdr *optp; 9999 mblk_t *mp2ctl; 10000 mblk_t *mp_tail = NULL; 10001 ill_t *ill; 10002 ipif_t *ipif; 10003 uint_t bitval; 10004 mib2_ipAddrEntry_t mae; 10005 size_t mae_size; 10006 zoneid_t zoneid; 10007 ill_walk_context_t ctx; 10008 10009 /* 10010 * make a copy of the original message 10011 */ 10012 mp2ctl = copymsg(mpctl); 10013 10014 mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) : 10015 sizeof (mib2_ipAddrEntry_t); 10016 10017 /* ipAddrEntryTable */ 10018 10019 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10020 optp->level = MIB2_IP; 10021 optp->name = MIB2_IP_ADDR; 10022 zoneid = Q_TO_CONN(q)->conn_zoneid; 10023 10024 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10025 ill = ILL_START_WALK_V4(&ctx, ipst); 10026 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10027 for (ipif = ill->ill_ipif; ipif != NULL; 10028 ipif = ipif->ipif_next) { 10029 if (ipif->ipif_zoneid != zoneid && 10030 ipif->ipif_zoneid != ALL_ZONES) 10031 continue; 10032 /* Sum of count from dead IRE_LO* and our current */ 10033 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10034 if (ipif->ipif_ire_local != NULL) { 10035 mae.ipAdEntInfo.ae_ibcnt += 10036 ipif->ipif_ire_local->ire_ib_pkt_count; 10037 } 10038 mae.ipAdEntInfo.ae_obcnt = 0; 10039 mae.ipAdEntInfo.ae_focnt = 0; 10040 10041 ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes, 10042 OCTET_LENGTH); 10043 mae.ipAdEntIfIndex.o_length = 10044 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 10045 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 10046 mae.ipAdEntNetMask = ipif->ipif_net_mask; 10047 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 10048 mae.ipAdEntInfo.ae_subnet_len = 10049 ip_mask_to_plen(ipif->ipif_net_mask); 10050 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr; 10051 for (bitval = 1; 10052 bitval && 10053 !(bitval & ipif->ipif_brd_addr); 10054 bitval <<= 1) 10055 noop; 10056 mae.ipAdEntBcastAddr = bitval; 10057 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 10058 mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10059 mae.ipAdEntInfo.ae_metric = ipif->ipif_ill->ill_metric; 10060 mae.ipAdEntInfo.ae_broadcast_addr = 10061 ipif->ipif_brd_addr; 10062 mae.ipAdEntInfo.ae_pp_dst_addr = 10063 ipif->ipif_pp_dst_addr; 10064 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 10065 ill->ill_flags | ill->ill_phyint->phyint_flags; 10066 mae.ipAdEntRetransmitTime = 10067 ill->ill_reachable_retrans_time; 10068 10069 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10070 (char *)&mae, (int)mae_size)) { 10071 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 10072 "allocate %u bytes\n", (uint_t)mae_size)); 10073 } 10074 } 10075 } 10076 rw_exit(&ipst->ips_ill_g_lock); 10077 10078 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10079 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 10080 (int)optp->level, (int)optp->name, (int)optp->len)); 10081 qreply(q, mpctl); 10082 return (mp2ctl); 10083 } 10084 10085 /* IPv6 address information */ 10086 static mblk_t * 10087 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10088 boolean_t legacy_req) 10089 { 10090 struct opthdr *optp; 10091 mblk_t *mp2ctl; 10092 mblk_t *mp_tail = NULL; 10093 ill_t *ill; 10094 ipif_t *ipif; 10095 mib2_ipv6AddrEntry_t mae6; 10096 size_t mae6_size; 10097 zoneid_t zoneid; 10098 ill_walk_context_t ctx; 10099 10100 /* 10101 * make a copy of the original message 10102 */ 10103 mp2ctl = copymsg(mpctl); 10104 10105 mae6_size = (legacy_req) ? 10106 LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) : 10107 sizeof (mib2_ipv6AddrEntry_t); 10108 10109 /* ipv6AddrEntryTable */ 10110 10111 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10112 optp->level = MIB2_IP6; 10113 optp->name = MIB2_IP6_ADDR; 10114 zoneid = Q_TO_CONN(q)->conn_zoneid; 10115 10116 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10117 ill = ILL_START_WALK_V6(&ctx, ipst); 10118 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10119 for (ipif = ill->ill_ipif; ipif != NULL; 10120 ipif = ipif->ipif_next) { 10121 if (ipif->ipif_zoneid != zoneid && 10122 ipif->ipif_zoneid != ALL_ZONES) 10123 continue; 10124 /* Sum of count from dead IRE_LO* and our current */ 10125 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 10126 if (ipif->ipif_ire_local != NULL) { 10127 mae6.ipv6AddrInfo.ae_ibcnt += 10128 ipif->ipif_ire_local->ire_ib_pkt_count; 10129 } 10130 mae6.ipv6AddrInfo.ae_obcnt = 0; 10131 mae6.ipv6AddrInfo.ae_focnt = 0; 10132 10133 ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes, 10134 OCTET_LENGTH); 10135 mae6.ipv6AddrIfIndex.o_length = 10136 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 10137 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 10138 mae6.ipv6AddrPfxLength = 10139 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10140 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 10141 mae6.ipv6AddrInfo.ae_subnet_len = 10142 mae6.ipv6AddrPfxLength; 10143 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr; 10144 10145 /* Type: stateless(1), stateful(2), unknown(3) */ 10146 if (ipif->ipif_flags & IPIF_ADDRCONF) 10147 mae6.ipv6AddrType = 1; 10148 else 10149 mae6.ipv6AddrType = 2; 10150 /* Anycast: true(1), false(2) */ 10151 if (ipif->ipif_flags & IPIF_ANYCAST) 10152 mae6.ipv6AddrAnycastFlag = 1; 10153 else 10154 mae6.ipv6AddrAnycastFlag = 2; 10155 10156 /* 10157 * Address status: preferred(1), deprecated(2), 10158 * invalid(3), inaccessible(4), unknown(5) 10159 */ 10160 if (ipif->ipif_flags & IPIF_NOLOCAL) 10161 mae6.ipv6AddrStatus = 3; 10162 else if (ipif->ipif_flags & IPIF_DEPRECATED) 10163 mae6.ipv6AddrStatus = 2; 10164 else 10165 mae6.ipv6AddrStatus = 1; 10166 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu; 10167 mae6.ipv6AddrInfo.ae_metric = 10168 ipif->ipif_ill->ill_metric; 10169 mae6.ipv6AddrInfo.ae_pp_dst_addr = 10170 ipif->ipif_v6pp_dst_addr; 10171 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 10172 ill->ill_flags | ill->ill_phyint->phyint_flags; 10173 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 10174 mae6.ipv6AddrIdentifier = ill->ill_token; 10175 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 10176 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 10177 mae6.ipv6AddrRetransmitTime = 10178 ill->ill_reachable_retrans_time; 10179 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10180 (char *)&mae6, (int)mae6_size)) { 10181 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 10182 "allocate %u bytes\n", 10183 (uint_t)mae6_size)); 10184 } 10185 } 10186 } 10187 rw_exit(&ipst->ips_ill_g_lock); 10188 10189 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10190 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 10191 (int)optp->level, (int)optp->name, (int)optp->len)); 10192 qreply(q, mpctl); 10193 return (mp2ctl); 10194 } 10195 10196 /* IPv4 multicast group membership. */ 10197 static mblk_t * 10198 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10199 { 10200 struct opthdr *optp; 10201 mblk_t *mp2ctl; 10202 ill_t *ill; 10203 ipif_t *ipif; 10204 ilm_t *ilm; 10205 ip_member_t ipm; 10206 mblk_t *mp_tail = NULL; 10207 ill_walk_context_t ctx; 10208 zoneid_t zoneid; 10209 10210 /* 10211 * make a copy of the original message 10212 */ 10213 mp2ctl = copymsg(mpctl); 10214 zoneid = Q_TO_CONN(q)->conn_zoneid; 10215 10216 /* ipGroupMember table */ 10217 optp = (struct opthdr *)&mpctl->b_rptr[ 10218 sizeof (struct T_optmgmt_ack)]; 10219 optp->level = MIB2_IP; 10220 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 10221 10222 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10223 ill = ILL_START_WALK_V4(&ctx, ipst); 10224 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10225 /* Make sure the ill isn't going away. */ 10226 if (!ill_check_and_refhold(ill)) 10227 continue; 10228 rw_exit(&ipst->ips_ill_g_lock); 10229 rw_enter(&ill->ill_mcast_lock, RW_READER); 10230 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10231 if (ilm->ilm_zoneid != zoneid && 10232 ilm->ilm_zoneid != ALL_ZONES) 10233 continue; 10234 10235 /* Is there an ipif for ilm_ifaddr? */ 10236 for (ipif = ill->ill_ipif; ipif != NULL; 10237 ipif = ipif->ipif_next) { 10238 if (!IPIF_IS_CONDEMNED(ipif) && 10239 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10240 ilm->ilm_ifaddr != INADDR_ANY) 10241 break; 10242 } 10243 if (ipif != NULL) { 10244 ipif_get_name(ipif, 10245 ipm.ipGroupMemberIfIndex.o_bytes, 10246 OCTET_LENGTH); 10247 } else { 10248 ill_get_name(ill, 10249 ipm.ipGroupMemberIfIndex.o_bytes, 10250 OCTET_LENGTH); 10251 } 10252 ipm.ipGroupMemberIfIndex.o_length = 10253 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 10254 10255 ipm.ipGroupMemberAddress = ilm->ilm_addr; 10256 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 10257 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 10258 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10259 (char *)&ipm, (int)sizeof (ipm))) { 10260 ip1dbg(("ip_snmp_get_mib2_ip_group: " 10261 "failed to allocate %u bytes\n", 10262 (uint_t)sizeof (ipm))); 10263 } 10264 } 10265 rw_exit(&ill->ill_mcast_lock); 10266 ill_refrele(ill); 10267 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10268 } 10269 rw_exit(&ipst->ips_ill_g_lock); 10270 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10271 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10272 (int)optp->level, (int)optp->name, (int)optp->len)); 10273 qreply(q, mpctl); 10274 return (mp2ctl); 10275 } 10276 10277 /* IPv6 multicast group membership. */ 10278 static mblk_t * 10279 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10280 { 10281 struct opthdr *optp; 10282 mblk_t *mp2ctl; 10283 ill_t *ill; 10284 ilm_t *ilm; 10285 ipv6_member_t ipm6; 10286 mblk_t *mp_tail = NULL; 10287 ill_walk_context_t ctx; 10288 zoneid_t zoneid; 10289 10290 /* 10291 * make a copy of the original message 10292 */ 10293 mp2ctl = copymsg(mpctl); 10294 zoneid = Q_TO_CONN(q)->conn_zoneid; 10295 10296 /* ip6GroupMember table */ 10297 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10298 optp->level = MIB2_IP6; 10299 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 10300 10301 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10302 ill = ILL_START_WALK_V6(&ctx, ipst); 10303 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10304 /* Make sure the ill isn't going away. */ 10305 if (!ill_check_and_refhold(ill)) 10306 continue; 10307 rw_exit(&ipst->ips_ill_g_lock); 10308 /* 10309 * Normally we don't have any members on under IPMP interfaces. 10310 * We report them as a debugging aid. 10311 */ 10312 rw_enter(&ill->ill_mcast_lock, RW_READER); 10313 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 10314 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10315 if (ilm->ilm_zoneid != zoneid && 10316 ilm->ilm_zoneid != ALL_ZONES) 10317 continue; /* not this zone */ 10318 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 10319 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 10320 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 10321 if (!snmp_append_data2(mpctl->b_cont, 10322 &mp_tail, 10323 (char *)&ipm6, (int)sizeof (ipm6))) { 10324 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 10325 "failed to allocate %u bytes\n", 10326 (uint_t)sizeof (ipm6))); 10327 } 10328 } 10329 rw_exit(&ill->ill_mcast_lock); 10330 ill_refrele(ill); 10331 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10332 } 10333 rw_exit(&ipst->ips_ill_g_lock); 10334 10335 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10336 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10337 (int)optp->level, (int)optp->name, (int)optp->len)); 10338 qreply(q, mpctl); 10339 return (mp2ctl); 10340 } 10341 10342 /* IP multicast filtered sources */ 10343 static mblk_t * 10344 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10345 { 10346 struct opthdr *optp; 10347 mblk_t *mp2ctl; 10348 ill_t *ill; 10349 ipif_t *ipif; 10350 ilm_t *ilm; 10351 ip_grpsrc_t ips; 10352 mblk_t *mp_tail = NULL; 10353 ill_walk_context_t ctx; 10354 zoneid_t zoneid; 10355 int i; 10356 slist_t *sl; 10357 10358 /* 10359 * make a copy of the original message 10360 */ 10361 mp2ctl = copymsg(mpctl); 10362 zoneid = Q_TO_CONN(q)->conn_zoneid; 10363 10364 /* ipGroupSource table */ 10365 optp = (struct opthdr *)&mpctl->b_rptr[ 10366 sizeof (struct T_optmgmt_ack)]; 10367 optp->level = MIB2_IP; 10368 optp->name = EXPER_IP_GROUP_SOURCES; 10369 10370 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10371 ill = ILL_START_WALK_V4(&ctx, ipst); 10372 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10373 /* Make sure the ill isn't going away. */ 10374 if (!ill_check_and_refhold(ill)) 10375 continue; 10376 rw_exit(&ipst->ips_ill_g_lock); 10377 rw_enter(&ill->ill_mcast_lock, RW_READER); 10378 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10379 sl = ilm->ilm_filter; 10380 if (ilm->ilm_zoneid != zoneid && 10381 ilm->ilm_zoneid != ALL_ZONES) 10382 continue; 10383 if (SLIST_IS_EMPTY(sl)) 10384 continue; 10385 10386 /* Is there an ipif for ilm_ifaddr? */ 10387 for (ipif = ill->ill_ipif; ipif != NULL; 10388 ipif = ipif->ipif_next) { 10389 if (!IPIF_IS_CONDEMNED(ipif) && 10390 ipif->ipif_lcl_addr == ilm->ilm_ifaddr && 10391 ilm->ilm_ifaddr != INADDR_ANY) 10392 break; 10393 } 10394 if (ipif != NULL) { 10395 ipif_get_name(ipif, 10396 ips.ipGroupSourceIfIndex.o_bytes, 10397 OCTET_LENGTH); 10398 } else { 10399 ill_get_name(ill, 10400 ips.ipGroupSourceIfIndex.o_bytes, 10401 OCTET_LENGTH); 10402 } 10403 ips.ipGroupSourceIfIndex.o_length = 10404 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 10405 10406 ips.ipGroupSourceGroup = ilm->ilm_addr; 10407 for (i = 0; i < sl->sl_numsrc; i++) { 10408 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i])) 10409 continue; 10410 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 10411 ips.ipGroupSourceAddress); 10412 if (snmp_append_data2(mpctl->b_cont, &mp_tail, 10413 (char *)&ips, (int)sizeof (ips)) == 0) { 10414 ip1dbg(("ip_snmp_get_mib2_ip_group_src:" 10415 " failed to allocate %u bytes\n", 10416 (uint_t)sizeof (ips))); 10417 } 10418 } 10419 } 10420 rw_exit(&ill->ill_mcast_lock); 10421 ill_refrele(ill); 10422 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10423 } 10424 rw_exit(&ipst->ips_ill_g_lock); 10425 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10426 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10427 (int)optp->level, (int)optp->name, (int)optp->len)); 10428 qreply(q, mpctl); 10429 return (mp2ctl); 10430 } 10431 10432 /* IPv6 multicast filtered sources. */ 10433 static mblk_t * 10434 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10435 { 10436 struct opthdr *optp; 10437 mblk_t *mp2ctl; 10438 ill_t *ill; 10439 ilm_t *ilm; 10440 ipv6_grpsrc_t ips6; 10441 mblk_t *mp_tail = NULL; 10442 ill_walk_context_t ctx; 10443 zoneid_t zoneid; 10444 int i; 10445 slist_t *sl; 10446 10447 /* 10448 * make a copy of the original message 10449 */ 10450 mp2ctl = copymsg(mpctl); 10451 zoneid = Q_TO_CONN(q)->conn_zoneid; 10452 10453 /* ip6GroupMember table */ 10454 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10455 optp->level = MIB2_IP6; 10456 optp->name = EXPER_IP6_GROUP_SOURCES; 10457 10458 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10459 ill = ILL_START_WALK_V6(&ctx, ipst); 10460 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10461 /* Make sure the ill isn't going away. */ 10462 if (!ill_check_and_refhold(ill)) 10463 continue; 10464 rw_exit(&ipst->ips_ill_g_lock); 10465 /* 10466 * Normally we don't have any members on under IPMP interfaces. 10467 * We report them as a debugging aid. 10468 */ 10469 rw_enter(&ill->ill_mcast_lock, RW_READER); 10470 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 10471 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 10472 sl = ilm->ilm_filter; 10473 if (ilm->ilm_zoneid != zoneid && 10474 ilm->ilm_zoneid != ALL_ZONES) 10475 continue; 10476 if (SLIST_IS_EMPTY(sl)) 10477 continue; 10478 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 10479 for (i = 0; i < sl->sl_numsrc; i++) { 10480 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 10481 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10482 (char *)&ips6, (int)sizeof (ips6))) { 10483 ip1dbg(("ip_snmp_get_mib2_ip6_" 10484 "group_src: failed to allocate " 10485 "%u bytes\n", 10486 (uint_t)sizeof (ips6))); 10487 } 10488 } 10489 } 10490 rw_exit(&ill->ill_mcast_lock); 10491 ill_refrele(ill); 10492 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10493 } 10494 rw_exit(&ipst->ips_ill_g_lock); 10495 10496 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10497 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 10498 (int)optp->level, (int)optp->name, (int)optp->len)); 10499 qreply(q, mpctl); 10500 return (mp2ctl); 10501 } 10502 10503 /* Multicast routing virtual interface table. */ 10504 static mblk_t * 10505 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10506 { 10507 struct opthdr *optp; 10508 mblk_t *mp2ctl; 10509 10510 /* 10511 * make a copy of the original message 10512 */ 10513 mp2ctl = copymsg(mpctl); 10514 10515 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10516 optp->level = EXPER_DVMRP; 10517 optp->name = EXPER_DVMRP_VIF; 10518 if (!ip_mroute_vif(mpctl->b_cont, ipst)) { 10519 ip0dbg(("ip_mroute_vif: failed\n")); 10520 } 10521 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10522 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 10523 (int)optp->level, (int)optp->name, (int)optp->len)); 10524 qreply(q, mpctl); 10525 return (mp2ctl); 10526 } 10527 10528 /* Multicast routing table. */ 10529 static mblk_t * 10530 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10531 { 10532 struct opthdr *optp; 10533 mblk_t *mp2ctl; 10534 10535 /* 10536 * make a copy of the original message 10537 */ 10538 mp2ctl = copymsg(mpctl); 10539 10540 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10541 optp->level = EXPER_DVMRP; 10542 optp->name = EXPER_DVMRP_MRT; 10543 if (!ip_mroute_mrt(mpctl->b_cont, ipst)) { 10544 ip0dbg(("ip_mroute_mrt: failed\n")); 10545 } 10546 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10547 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 10548 (int)optp->level, (int)optp->name, (int)optp->len)); 10549 qreply(q, mpctl); 10550 return (mp2ctl); 10551 } 10552 10553 /* 10554 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 10555 * in one IRE walk. 10556 */ 10557 static mblk_t * 10558 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level, 10559 ip_stack_t *ipst) 10560 { 10561 struct opthdr *optp; 10562 mblk_t *mp2ctl; /* Returned */ 10563 mblk_t *mp3ctl; /* nettomedia */ 10564 mblk_t *mp4ctl; /* routeattrs */ 10565 iproutedata_t ird; 10566 zoneid_t zoneid; 10567 10568 /* 10569 * make copies of the original message 10570 * - mp2ctl is returned unchanged to the caller for its use 10571 * - mpctl is sent upstream as ipRouteEntryTable 10572 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 10573 * - mp4ctl is sent upstream as ipRouteAttributeTable 10574 */ 10575 mp2ctl = copymsg(mpctl); 10576 mp3ctl = copymsg(mpctl); 10577 mp4ctl = copymsg(mpctl); 10578 if (mp3ctl == NULL || mp4ctl == NULL) { 10579 freemsg(mp4ctl); 10580 freemsg(mp3ctl); 10581 freemsg(mp2ctl); 10582 freemsg(mpctl); 10583 return (NULL); 10584 } 10585 10586 bzero(&ird, sizeof (ird)); 10587 10588 ird.ird_route.lp_head = mpctl->b_cont; 10589 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10590 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10591 /* 10592 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10593 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10594 * intended a temporary solution until a proper MIB API is provided 10595 * that provides complete filtering/caller-opt-in. 10596 */ 10597 if (level == EXPER_IP_AND_ALL_IRES) 10598 ird.ird_flags |= IRD_REPORT_ALL; 10599 10600 zoneid = Q_TO_CONN(q)->conn_zoneid; 10601 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst); 10602 10603 /* ipRouteEntryTable in mpctl */ 10604 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10605 optp->level = MIB2_IP; 10606 optp->name = MIB2_IP_ROUTE; 10607 optp->len = msgdsize(ird.ird_route.lp_head); 10608 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10609 (int)optp->level, (int)optp->name, (int)optp->len)); 10610 qreply(q, mpctl); 10611 10612 /* ipNetToMediaEntryTable in mp3ctl */ 10613 ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst); 10614 10615 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10616 optp->level = MIB2_IP; 10617 optp->name = MIB2_IP_MEDIA; 10618 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10619 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10620 (int)optp->level, (int)optp->name, (int)optp->len)); 10621 qreply(q, mp3ctl); 10622 10623 /* ipRouteAttributeTable in mp4ctl */ 10624 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10625 optp->level = MIB2_IP; 10626 optp->name = EXPER_IP_RTATTR; 10627 optp->len = msgdsize(ird.ird_attrs.lp_head); 10628 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 10629 (int)optp->level, (int)optp->name, (int)optp->len)); 10630 if (optp->len == 0) 10631 freemsg(mp4ctl); 10632 else 10633 qreply(q, mp4ctl); 10634 10635 return (mp2ctl); 10636 } 10637 10638 /* 10639 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 10640 * ipv6NetToMediaEntryTable in an NDP walk. 10641 */ 10642 static mblk_t * 10643 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level, 10644 ip_stack_t *ipst) 10645 { 10646 struct opthdr *optp; 10647 mblk_t *mp2ctl; /* Returned */ 10648 mblk_t *mp3ctl; /* nettomedia */ 10649 mblk_t *mp4ctl; /* routeattrs */ 10650 iproutedata_t ird; 10651 zoneid_t zoneid; 10652 10653 /* 10654 * make copies of the original message 10655 * - mp2ctl is returned unchanged to the caller for its use 10656 * - mpctl is sent upstream as ipv6RouteEntryTable 10657 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 10658 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 10659 */ 10660 mp2ctl = copymsg(mpctl); 10661 mp3ctl = copymsg(mpctl); 10662 mp4ctl = copymsg(mpctl); 10663 if (mp3ctl == NULL || mp4ctl == NULL) { 10664 freemsg(mp4ctl); 10665 freemsg(mp3ctl); 10666 freemsg(mp2ctl); 10667 freemsg(mpctl); 10668 return (NULL); 10669 } 10670 10671 bzero(&ird, sizeof (ird)); 10672 10673 ird.ird_route.lp_head = mpctl->b_cont; 10674 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 10675 ird.ird_attrs.lp_head = mp4ctl->b_cont; 10676 /* 10677 * If the level has been set the special EXPER_IP_AND_ALL_IRES value, 10678 * then also include ire_testhidden IREs and IRE_IF_CLONE. This is 10679 * intended a temporary solution until a proper MIB API is provided 10680 * that provides complete filtering/caller-opt-in. 10681 */ 10682 if (level == EXPER_IP_AND_ALL_IRES) 10683 ird.ird_flags |= IRD_REPORT_ALL; 10684 10685 zoneid = Q_TO_CONN(q)->conn_zoneid; 10686 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst); 10687 10688 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10689 optp->level = MIB2_IP6; 10690 optp->name = MIB2_IP6_ROUTE; 10691 optp->len = msgdsize(ird.ird_route.lp_head); 10692 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10693 (int)optp->level, (int)optp->name, (int)optp->len)); 10694 qreply(q, mpctl); 10695 10696 /* ipv6NetToMediaEntryTable in mp3ctl */ 10697 ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst); 10698 10699 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10700 optp->level = MIB2_IP6; 10701 optp->name = MIB2_IP6_MEDIA; 10702 optp->len = msgdsize(ird.ird_netmedia.lp_head); 10703 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10704 (int)optp->level, (int)optp->name, (int)optp->len)); 10705 qreply(q, mp3ctl); 10706 10707 /* ipv6RouteAttributeTable in mp4ctl */ 10708 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10709 optp->level = MIB2_IP6; 10710 optp->name = EXPER_IP_RTATTR; 10711 optp->len = msgdsize(ird.ird_attrs.lp_head); 10712 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 10713 (int)optp->level, (int)optp->name, (int)optp->len)); 10714 if (optp->len == 0) 10715 freemsg(mp4ctl); 10716 else 10717 qreply(q, mp4ctl); 10718 10719 return (mp2ctl); 10720 } 10721 10722 /* 10723 * IPv6 mib: One per ill 10724 */ 10725 static mblk_t * 10726 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst, 10727 boolean_t legacy_req) 10728 { 10729 struct opthdr *optp; 10730 mblk_t *mp2ctl; 10731 ill_t *ill; 10732 ill_walk_context_t ctx; 10733 mblk_t *mp_tail = NULL; 10734 mib2_ipv6AddrEntry_t mae6; 10735 mib2_ipIfStatsEntry_t *ise; 10736 size_t ise_size, iae_size; 10737 10738 /* 10739 * Make a copy of the original message 10740 */ 10741 mp2ctl = copymsg(mpctl); 10742 10743 /* fixed length IPv6 structure ... */ 10744 10745 if (legacy_req) { 10746 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib, 10747 mib2_ipIfStatsEntry_t); 10748 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t); 10749 } else { 10750 ise_size = sizeof (mib2_ipIfStatsEntry_t); 10751 iae_size = sizeof (mib2_ipv6AddrEntry_t); 10752 } 10753 10754 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10755 optp->level = MIB2_IP6; 10756 optp->name = 0; 10757 /* Include "unknown interface" ip6_mib */ 10758 ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 10759 ipst->ips_ip6_mib.ipIfStatsIfIndex = 10760 MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 10761 SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding, 10762 ipst->ips_ipv6_forwarding ? 1 : 2); 10763 SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit, 10764 ipst->ips_ipv6_def_hops); 10765 SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize, 10766 sizeof (mib2_ipIfStatsEntry_t)); 10767 SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize, 10768 sizeof (mib2_ipv6AddrEntry_t)); 10769 SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize, 10770 sizeof (mib2_ipv6RouteEntry_t)); 10771 SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize, 10772 sizeof (mib2_ipv6NetToMediaEntry_t)); 10773 SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize, 10774 sizeof (ipv6_member_t)); 10775 SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize, 10776 sizeof (ipv6_grpsrc_t)); 10777 10778 /* 10779 * Synchronize 64- and 32-bit counters 10780 */ 10781 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives, 10782 ipIfStatsHCInReceives); 10783 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers, 10784 ipIfStatsHCInDelivers); 10785 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests, 10786 ipIfStatsHCOutRequests); 10787 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams, 10788 ipIfStatsHCOutForwDatagrams); 10789 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts, 10790 ipIfStatsHCOutMcastPkts); 10791 SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts, 10792 ipIfStatsHCInMcastPkts); 10793 10794 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10795 (char *)&ipst->ips_ip6_mib, (int)ise_size)) { 10796 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 10797 (uint_t)ise_size)); 10798 } else if (legacy_req) { 10799 /* Adjust the EntrySize fields for legacy requests. */ 10800 ise = 10801 (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size); 10802 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10803 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10804 } 10805 10806 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10807 ill = ILL_START_WALK_V6(&ctx, ipst); 10808 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10809 ill->ill_ip_mib->ipIfStatsIfIndex = 10810 ill->ill_phyint->phyint_ifindex; 10811 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 10812 ipst->ips_ipv6_forwarding ? 1 : 2); 10813 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 10814 ill->ill_max_hops); 10815 10816 /* 10817 * Synchronize 64- and 32-bit counters 10818 */ 10819 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives, 10820 ipIfStatsHCInReceives); 10821 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers, 10822 ipIfStatsHCInDelivers); 10823 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests, 10824 ipIfStatsHCOutRequests); 10825 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams, 10826 ipIfStatsHCOutForwDatagrams); 10827 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts, 10828 ipIfStatsHCOutMcastPkts); 10829 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts, 10830 ipIfStatsHCInMcastPkts); 10831 10832 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10833 (char *)ill->ill_ip_mib, (int)ise_size)) { 10834 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 10835 "%u bytes\n", (uint_t)ise_size)); 10836 } else if (legacy_req) { 10837 /* Adjust the EntrySize fields for legacy requests. */ 10838 ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - 10839 (int)ise_size); 10840 SET_MIB(ise->ipIfStatsEntrySize, ise_size); 10841 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size); 10842 } 10843 } 10844 rw_exit(&ipst->ips_ill_g_lock); 10845 10846 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10847 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 10848 (int)optp->level, (int)optp->name, (int)optp->len)); 10849 qreply(q, mpctl); 10850 return (mp2ctl); 10851 } 10852 10853 /* 10854 * ICMPv6 mib: One per ill 10855 */ 10856 static mblk_t * 10857 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst) 10858 { 10859 struct opthdr *optp; 10860 mblk_t *mp2ctl; 10861 ill_t *ill; 10862 ill_walk_context_t ctx; 10863 mblk_t *mp_tail = NULL; 10864 /* 10865 * Make a copy of the original message 10866 */ 10867 mp2ctl = copymsg(mpctl); 10868 10869 /* fixed length ICMPv6 structure ... */ 10870 10871 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 10872 optp->level = MIB2_ICMP6; 10873 optp->name = 0; 10874 /* Include "unknown interface" icmp6_mib */ 10875 ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex = 10876 MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 10877 ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize = 10878 sizeof (mib2_ipv6IfIcmpEntry_t); 10879 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10880 (char *)&ipst->ips_icmp6_mib, 10881 (int)sizeof (ipst->ips_icmp6_mib))) { 10882 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 10883 (uint_t)sizeof (ipst->ips_icmp6_mib))); 10884 } 10885 10886 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10887 ill = ILL_START_WALK_V6(&ctx, ipst); 10888 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 10889 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 10890 ill->ill_phyint->phyint_ifindex; 10891 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 10892 (char *)ill->ill_icmp6_mib, 10893 (int)sizeof (*ill->ill_icmp6_mib))) { 10894 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 10895 "%u bytes\n", 10896 (uint_t)sizeof (*ill->ill_icmp6_mib))); 10897 } 10898 } 10899 rw_exit(&ipst->ips_ill_g_lock); 10900 10901 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 10902 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 10903 (int)optp->level, (int)optp->name, (int)optp->len)); 10904 qreply(q, mpctl); 10905 return (mp2ctl); 10906 } 10907 10908 /* 10909 * ire_walk routine to create both ipRouteEntryTable and 10910 * ipRouteAttributeTable in one IRE walk 10911 */ 10912 static void 10913 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 10914 { 10915 ill_t *ill; 10916 mib2_ipRouteEntry_t *re; 10917 mib2_ipAttributeEntry_t iaes; 10918 tsol_ire_gw_secattr_t *attrp; 10919 tsol_gc_t *gc = NULL; 10920 tsol_gcgrp_t *gcgrp = NULL; 10921 ip_stack_t *ipst = ire->ire_ipst; 10922 10923 ASSERT(ire->ire_ipversion == IPV4_VERSION); 10924 10925 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 10926 if (ire->ire_testhidden) 10927 return; 10928 if (ire->ire_type & IRE_IF_CLONE) 10929 return; 10930 } 10931 10932 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 10933 return; 10934 10935 if ((attrp = ire->ire_gw_secattr) != NULL) { 10936 mutex_enter(&attrp->igsa_lock); 10937 if ((gc = attrp->igsa_gc) != NULL) { 10938 gcgrp = gc->gc_grp; 10939 ASSERT(gcgrp != NULL); 10940 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 10941 } 10942 mutex_exit(&attrp->igsa_lock); 10943 } 10944 /* 10945 * Return all IRE types for route table... let caller pick and choose 10946 */ 10947 re->ipRouteDest = ire->ire_addr; 10948 ill = ire->ire_ill; 10949 re->ipRouteIfIndex.o_length = 0; 10950 if (ill != NULL) { 10951 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH); 10952 re->ipRouteIfIndex.o_length = 10953 mi_strlen(re->ipRouteIfIndex.o_bytes); 10954 } 10955 re->ipRouteMetric1 = -1; 10956 re->ipRouteMetric2 = -1; 10957 re->ipRouteMetric3 = -1; 10958 re->ipRouteMetric4 = -1; 10959 10960 re->ipRouteNextHop = ire->ire_gateway_addr; 10961 /* indirect(4), direct(3), or invalid(2) */ 10962 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 10963 re->ipRouteType = 2; 10964 else if (ire->ire_type & IRE_ONLINK) 10965 re->ipRouteType = 3; 10966 else 10967 re->ipRouteType = 4; 10968 10969 re->ipRouteProto = -1; 10970 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 10971 re->ipRouteMask = ire->ire_mask; 10972 re->ipRouteMetric5 = -1; 10973 re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 10974 if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0) 10975 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 10976 10977 re->ipRouteInfo.re_frag_flag = 0; 10978 re->ipRouteInfo.re_rtt = 0; 10979 re->ipRouteInfo.re_src_addr = 0; 10980 re->ipRouteInfo.re_ref = ire->ire_refcnt; 10981 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 10982 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 10983 re->ipRouteInfo.re_flags = ire->ire_flags; 10984 10985 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 10986 if (ire->ire_type & IRE_INTERFACE) { 10987 ire_t *child; 10988 10989 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 10990 child = ire->ire_dep_children; 10991 while (child != NULL) { 10992 re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count; 10993 re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count; 10994 child = child->ire_dep_sib_next; 10995 } 10996 rw_exit(&ipst->ips_ire_dep_lock); 10997 } 10998 10999 if (ire->ire_flags & RTF_DYNAMIC) { 11000 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11001 } else { 11002 re->ipRouteInfo.re_ire_type = ire->ire_type; 11003 } 11004 11005 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11006 (char *)re, (int)sizeof (*re))) { 11007 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 11008 (uint_t)sizeof (*re))); 11009 } 11010 11011 if (gc != NULL) { 11012 iaes.iae_routeidx = ird->ird_idx; 11013 iaes.iae_doi = gc->gc_db->gcdb_doi; 11014 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11015 11016 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11017 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11018 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u " 11019 "bytes\n", (uint_t)sizeof (iaes))); 11020 } 11021 } 11022 11023 /* bump route index for next pass */ 11024 ird->ird_idx++; 11025 11026 kmem_free(re, sizeof (*re)); 11027 if (gcgrp != NULL) 11028 rw_exit(&gcgrp->gcgrp_rwlock); 11029 } 11030 11031 /* 11032 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 11033 */ 11034 static void 11035 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 11036 { 11037 ill_t *ill; 11038 mib2_ipv6RouteEntry_t *re; 11039 mib2_ipAttributeEntry_t iaes; 11040 tsol_ire_gw_secattr_t *attrp; 11041 tsol_gc_t *gc = NULL; 11042 tsol_gcgrp_t *gcgrp = NULL; 11043 ip_stack_t *ipst = ire->ire_ipst; 11044 11045 ASSERT(ire->ire_ipversion == IPV6_VERSION); 11046 11047 if (!(ird->ird_flags & IRD_REPORT_ALL)) { 11048 if (ire->ire_testhidden) 11049 return; 11050 if (ire->ire_type & IRE_IF_CLONE) 11051 return; 11052 } 11053 11054 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 11055 return; 11056 11057 if ((attrp = ire->ire_gw_secattr) != NULL) { 11058 mutex_enter(&attrp->igsa_lock); 11059 if ((gc = attrp->igsa_gc) != NULL) { 11060 gcgrp = gc->gc_grp; 11061 ASSERT(gcgrp != NULL); 11062 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 11063 } 11064 mutex_exit(&attrp->igsa_lock); 11065 } 11066 /* 11067 * Return all IRE types for route table... let caller pick and choose 11068 */ 11069 re->ipv6RouteDest = ire->ire_addr_v6; 11070 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 11071 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 11072 re->ipv6RouteIfIndex.o_length = 0; 11073 ill = ire->ire_ill; 11074 if (ill != NULL) { 11075 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH); 11076 re->ipv6RouteIfIndex.o_length = 11077 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 11078 } 11079 11080 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 11081 11082 mutex_enter(&ire->ire_lock); 11083 re->ipv6RouteNextHop = ire->ire_gateway_addr_v6; 11084 mutex_exit(&ire->ire_lock); 11085 11086 /* remote(4), local(3), or discard(2) */ 11087 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 11088 re->ipv6RouteType = 2; 11089 else if (ire->ire_type & IRE_ONLINK) 11090 re->ipv6RouteType = 3; 11091 else 11092 re->ipv6RouteType = 4; 11093 11094 re->ipv6RouteProtocol = -1; 11095 re->ipv6RoutePolicy = 0; 11096 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 11097 re->ipv6RouteNextHopRDI = 0; 11098 re->ipv6RouteWeight = 0; 11099 re->ipv6RouteMetric = 0; 11100 re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu; 11101 if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0) 11102 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu; 11103 11104 re->ipv6RouteInfo.re_frag_flag = 0; 11105 re->ipv6RouteInfo.re_rtt = 0; 11106 re->ipv6RouteInfo.re_src_addr = ipv6_all_zeros; 11107 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 11108 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 11109 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 11110 re->ipv6RouteInfo.re_flags = ire->ire_flags; 11111 11112 /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */ 11113 if (ire->ire_type & IRE_INTERFACE) { 11114 ire_t *child; 11115 11116 rw_enter(&ipst->ips_ire_dep_lock, RW_READER); 11117 child = ire->ire_dep_children; 11118 while (child != NULL) { 11119 re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count; 11120 re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count; 11121 child = child->ire_dep_sib_next; 11122 } 11123 rw_exit(&ipst->ips_ire_dep_lock); 11124 } 11125 if (ire->ire_flags & RTF_DYNAMIC) { 11126 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 11127 } else { 11128 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 11129 } 11130 11131 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 11132 (char *)re, (int)sizeof (*re))) { 11133 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 11134 (uint_t)sizeof (*re))); 11135 } 11136 11137 if (gc != NULL) { 11138 iaes.iae_routeidx = ird->ird_idx; 11139 iaes.iae_doi = gc->gc_db->gcdb_doi; 11140 iaes.iae_slrange = gc->gc_db->gcdb_slrange; 11141 11142 if (!snmp_append_data2(ird->ird_attrs.lp_head, 11143 &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) { 11144 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u " 11145 "bytes\n", (uint_t)sizeof (iaes))); 11146 } 11147 } 11148 11149 /* bump route index for next pass */ 11150 ird->ird_idx++; 11151 11152 kmem_free(re, sizeof (*re)); 11153 if (gcgrp != NULL) 11154 rw_exit(&gcgrp->gcgrp_rwlock); 11155 } 11156 11157 /* 11158 * ncec_walk routine to create ipv6NetToMediaEntryTable 11159 */ 11160 static int 11161 ip_snmp_get2_v6_media(ncec_t *ncec, iproutedata_t *ird) 11162 { 11163 ill_t *ill; 11164 mib2_ipv6NetToMediaEntry_t ntme; 11165 11166 ill = ncec->ncec_ill; 11167 /* skip arpce entries, and loopback ncec entries */ 11168 if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK) 11169 return (0); 11170 /* 11171 * Neighbor cache entry attached to IRE with on-link 11172 * destination. 11173 * We report all IPMP groups on ncec_ill which is normally the upper. 11174 */ 11175 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 11176 ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr; 11177 ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length; 11178 if (ncec->ncec_lladdr != NULL) { 11179 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes, 11180 ntme.ipv6NetToMediaPhysAddress.o_length); 11181 } 11182 /* 11183 * Note: Returns ND_* states. Should be: 11184 * reachable(1), stale(2), delay(3), probe(4), 11185 * invalid(5), unknown(6) 11186 */ 11187 ntme.ipv6NetToMediaState = ncec->ncec_state; 11188 ntme.ipv6NetToMediaLastUpdated = 0; 11189 11190 /* other(1), dynamic(2), static(3), local(4) */ 11191 if (NCE_MYADDR(ncec)) { 11192 ntme.ipv6NetToMediaType = 4; 11193 } else if (ncec->ncec_flags & NCE_F_PUBLISH) { 11194 ntme.ipv6NetToMediaType = 1; /* proxy */ 11195 } else if (ncec->ncec_flags & NCE_F_STATIC) { 11196 ntme.ipv6NetToMediaType = 3; 11197 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) { 11198 ntme.ipv6NetToMediaType = 1; 11199 } else { 11200 ntme.ipv6NetToMediaType = 2; 11201 } 11202 11203 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11204 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11205 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 11206 (uint_t)sizeof (ntme))); 11207 } 11208 return (0); 11209 } 11210 11211 int 11212 nce2ace(ncec_t *ncec) 11213 { 11214 int flags = 0; 11215 11216 if (NCE_ISREACHABLE(ncec)) 11217 flags |= ACE_F_RESOLVED; 11218 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11219 flags |= ACE_F_AUTHORITY; 11220 if (ncec->ncec_flags & NCE_F_PUBLISH) 11221 flags |= ACE_F_PUBLISH; 11222 if ((ncec->ncec_flags & NCE_F_NONUD) != 0) 11223 flags |= ACE_F_PERMANENT; 11224 if (NCE_MYADDR(ncec)) 11225 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY); 11226 if (ncec->ncec_flags & NCE_F_UNVERIFIED) 11227 flags |= ACE_F_UNVERIFIED; 11228 if (ncec->ncec_flags & NCE_F_AUTHORITY) 11229 flags |= ACE_F_AUTHORITY; 11230 if (ncec->ncec_flags & NCE_F_DELAYED) 11231 flags |= ACE_F_DELAYED; 11232 return (flags); 11233 } 11234 11235 /* 11236 * ncec_walk routine to create ipNetToMediaEntryTable 11237 */ 11238 static int 11239 ip_snmp_get2_v4_media(ncec_t *ncec, iproutedata_t *ird) 11240 { 11241 ill_t *ill; 11242 mib2_ipNetToMediaEntry_t ntme; 11243 const char *name = "unknown"; 11244 ipaddr_t ncec_addr; 11245 11246 ill = ncec->ncec_ill; 11247 if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) || 11248 ill->ill_net_type == IRE_LOOPBACK) 11249 return (0); 11250 11251 /* We report all IPMP groups on ncec_ill which is normally the upper. */ 11252 name = ill->ill_name; 11253 /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */ 11254 if (NCE_MYADDR(ncec)) { 11255 ntme.ipNetToMediaType = 4; 11256 } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) { 11257 ntme.ipNetToMediaType = 1; 11258 } else { 11259 ntme.ipNetToMediaType = 3; 11260 } 11261 ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name)); 11262 bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes, 11263 ntme.ipNetToMediaIfIndex.o_length); 11264 11265 IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr); 11266 bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr)); 11267 11268 ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t); 11269 ncec_addr = INADDR_BROADCAST; 11270 bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes, 11271 sizeof (ncec_addr)); 11272 /* 11273 * map all the flags to the ACE counterpart. 11274 */ 11275 ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec); 11276 11277 ntme.ipNetToMediaPhysAddress.o_length = 11278 MIN(OCTET_LENGTH, ill->ill_phys_addr_length); 11279 11280 if (!NCE_ISREACHABLE(ncec)) 11281 ntme.ipNetToMediaPhysAddress.o_length = 0; 11282 else { 11283 if (ncec->ncec_lladdr != NULL) { 11284 bcopy(ncec->ncec_lladdr, 11285 ntme.ipNetToMediaPhysAddress.o_bytes, 11286 ntme.ipNetToMediaPhysAddress.o_length); 11287 } 11288 } 11289 11290 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 11291 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 11292 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n", 11293 (uint_t)sizeof (ntme))); 11294 } 11295 return (0); 11296 } 11297 11298 /* 11299 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 11300 */ 11301 /* ARGSUSED */ 11302 int 11303 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 11304 { 11305 switch (level) { 11306 case MIB2_IP: 11307 case MIB2_ICMP: 11308 switch (name) { 11309 default: 11310 break; 11311 } 11312 return (1); 11313 default: 11314 return (1); 11315 } 11316 } 11317 11318 /* 11319 * When there exists both a 64- and 32-bit counter of a particular type 11320 * (i.e., InReceives), only the 64-bit counters are added. 11321 */ 11322 void 11323 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 11324 { 11325 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 11326 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 11327 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 11328 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 11329 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 11330 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 11331 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 11332 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 11333 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 11334 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 11335 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 11336 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 11337 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 11338 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 11339 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 11340 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 11341 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 11342 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 11343 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 11344 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 11345 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 11346 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 11347 o2->ipIfStatsInWrongIPVersion); 11348 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 11349 o2->ipIfStatsInWrongIPVersion); 11350 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 11351 o2->ipIfStatsOutSwitchIPVersion); 11352 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 11353 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 11354 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 11355 o2->ipIfStatsHCInForwDatagrams); 11356 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 11357 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 11358 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 11359 o2->ipIfStatsHCOutForwDatagrams); 11360 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 11361 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 11362 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 11363 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 11364 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 11365 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 11366 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 11367 o2->ipIfStatsHCOutMcastOctets); 11368 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 11369 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 11370 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 11371 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 11372 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 11373 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 11374 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 11375 } 11376 11377 void 11378 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 11379 { 11380 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 11381 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 11382 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 11383 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 11384 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 11385 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 11386 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 11387 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 11388 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 11389 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 11390 o2->ipv6IfIcmpInRouterSolicits); 11391 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 11392 o2->ipv6IfIcmpInRouterAdvertisements); 11393 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 11394 o2->ipv6IfIcmpInNeighborSolicits); 11395 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 11396 o2->ipv6IfIcmpInNeighborAdvertisements); 11397 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 11398 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 11399 o2->ipv6IfIcmpInGroupMembQueries); 11400 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 11401 o2->ipv6IfIcmpInGroupMembResponses); 11402 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 11403 o2->ipv6IfIcmpInGroupMembReductions); 11404 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 11405 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 11406 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 11407 o2->ipv6IfIcmpOutDestUnreachs); 11408 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 11409 o2->ipv6IfIcmpOutAdminProhibs); 11410 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 11411 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 11412 o2->ipv6IfIcmpOutParmProblems); 11413 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 11414 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 11415 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 11416 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 11417 o2->ipv6IfIcmpOutRouterSolicits); 11418 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 11419 o2->ipv6IfIcmpOutRouterAdvertisements); 11420 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 11421 o2->ipv6IfIcmpOutNeighborSolicits); 11422 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 11423 o2->ipv6IfIcmpOutNeighborAdvertisements); 11424 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 11425 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 11426 o2->ipv6IfIcmpOutGroupMembQueries); 11427 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 11428 o2->ipv6IfIcmpOutGroupMembResponses); 11429 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 11430 o2->ipv6IfIcmpOutGroupMembReductions); 11431 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 11432 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 11433 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 11434 o2->ipv6IfIcmpInBadNeighborAdvertisements); 11435 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 11436 o2->ipv6IfIcmpInBadNeighborSolicitations); 11437 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 11438 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 11439 o2->ipv6IfIcmpInGroupMembTotal); 11440 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 11441 o2->ipv6IfIcmpInGroupMembBadQueries); 11442 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 11443 o2->ipv6IfIcmpInGroupMembBadReports); 11444 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 11445 o2->ipv6IfIcmpInGroupMembOurReports); 11446 } 11447 11448 /* 11449 * Called before the options are updated to check if this packet will 11450 * be source routed from here. 11451 * This routine assumes that the options are well formed i.e. that they 11452 * have already been checked. 11453 */ 11454 boolean_t 11455 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst) 11456 { 11457 ipoptp_t opts; 11458 uchar_t *opt; 11459 uint8_t optval; 11460 uint8_t optlen; 11461 ipaddr_t dst; 11462 11463 if (IS_SIMPLE_IPH(ipha)) { 11464 ip2dbg(("not source routed\n")); 11465 return (B_FALSE); 11466 } 11467 dst = ipha->ipha_dst; 11468 for (optval = ipoptp_first(&opts, ipha); 11469 optval != IPOPT_EOL; 11470 optval = ipoptp_next(&opts)) { 11471 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11472 opt = opts.ipoptp_cur; 11473 optlen = opts.ipoptp_len; 11474 ip2dbg(("ip_source_routed: opt %d, len %d\n", 11475 optval, optlen)); 11476 switch (optval) { 11477 uint32_t off; 11478 case IPOPT_SSRR: 11479 case IPOPT_LSRR: 11480 /* 11481 * If dst is one of our addresses and there are some 11482 * entries left in the source route return (true). 11483 */ 11484 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 11485 ip2dbg(("ip_source_routed: not next" 11486 " source route 0x%x\n", 11487 ntohl(dst))); 11488 return (B_FALSE); 11489 } 11490 off = opt[IPOPT_OFFSET]; 11491 off--; 11492 if (optlen < IP_ADDR_LEN || 11493 off > optlen - IP_ADDR_LEN) { 11494 /* End of source route */ 11495 ip1dbg(("ip_source_routed: end of SR\n")); 11496 return (B_FALSE); 11497 } 11498 return (B_TRUE); 11499 } 11500 } 11501 ip2dbg(("not source routed\n")); 11502 return (B_FALSE); 11503 } 11504 11505 /* 11506 * ip_unbind is called by the transports to remove a conn from 11507 * the fanout table. 11508 */ 11509 void 11510 ip_unbind(conn_t *connp) 11511 { 11512 11513 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 11514 11515 if (is_system_labeled() && connp->conn_anon_port) { 11516 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 11517 connp->conn_mlp_type, connp->conn_proto, 11518 ntohs(connp->conn_lport), B_FALSE); 11519 connp->conn_anon_port = 0; 11520 } 11521 connp->conn_mlp_type = mlptSingle; 11522 11523 ipcl_hash_remove(connp); 11524 } 11525 11526 /* 11527 * Used for deciding the MSS size for the upper layer. Thus 11528 * we need to check the outbound policy values in the conn. 11529 */ 11530 int 11531 conn_ipsec_length(conn_t *connp) 11532 { 11533 ipsec_latch_t *ipl; 11534 11535 ipl = connp->conn_latch; 11536 if (ipl == NULL) 11537 return (0); 11538 11539 if (connp->conn_ixa->ixa_ipsec_policy == NULL) 11540 return (0); 11541 11542 return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd); 11543 } 11544 11545 /* 11546 * Returns an estimate of the IPsec headers size. This is used if 11547 * we don't want to call into IPsec to get the exact size. 11548 */ 11549 int 11550 ipsec_out_extra_length(ip_xmit_attr_t *ixa) 11551 { 11552 ipsec_action_t *a; 11553 11554 if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) 11555 return (0); 11556 11557 a = ixa->ixa_ipsec_action; 11558 if (a == NULL) { 11559 ASSERT(ixa->ixa_ipsec_policy != NULL); 11560 a = ixa->ixa_ipsec_policy->ipsp_act; 11561 } 11562 ASSERT(a != NULL); 11563 11564 return (a->ipa_ovhd); 11565 } 11566 11567 /* 11568 * If there are any source route options, return the true final 11569 * destination. Otherwise, return the destination. 11570 */ 11571 ipaddr_t 11572 ip_get_dst(ipha_t *ipha) 11573 { 11574 ipoptp_t opts; 11575 uchar_t *opt; 11576 uint8_t optval; 11577 uint8_t optlen; 11578 ipaddr_t dst; 11579 uint32_t off; 11580 11581 dst = ipha->ipha_dst; 11582 11583 if (IS_SIMPLE_IPH(ipha)) 11584 return (dst); 11585 11586 for (optval = ipoptp_first(&opts, ipha); 11587 optval != IPOPT_EOL; 11588 optval = ipoptp_next(&opts)) { 11589 opt = opts.ipoptp_cur; 11590 optlen = opts.ipoptp_len; 11591 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11592 switch (optval) { 11593 case IPOPT_SSRR: 11594 case IPOPT_LSRR: 11595 off = opt[IPOPT_OFFSET]; 11596 /* 11597 * If one of the conditions is true, it means 11598 * end of options and dst already has the right 11599 * value. 11600 */ 11601 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 11602 off = optlen - IP_ADDR_LEN; 11603 bcopy(&opt[off], &dst, IP_ADDR_LEN); 11604 } 11605 return (dst); 11606 default: 11607 break; 11608 } 11609 } 11610 11611 return (dst); 11612 } 11613 11614 /* 11615 * Outbound IP fragmentation routine. 11616 * Assumes the caller has checked whether or not fragmentation should 11617 * be allowed. Here we copy the DF bit from the header to all the generated 11618 * fragments. 11619 */ 11620 int 11621 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags, 11622 uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone, 11623 zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie) 11624 { 11625 int i1; 11626 int hdr_len; 11627 mblk_t *hdr_mp; 11628 ipha_t *ipha; 11629 int ip_data_end; 11630 int len; 11631 mblk_t *mp = mp_orig; 11632 int offset; 11633 ill_t *ill = nce->nce_ill; 11634 ip_stack_t *ipst = ill->ill_ipst; 11635 mblk_t *carve_mp; 11636 uint32_t frag_flag; 11637 uint_t priority = mp->b_band; 11638 int error = 0; 11639 11640 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds); 11641 11642 if (pkt_len != msgdsize(mp)) { 11643 ip0dbg(("Packet length mismatch: %d, %ld\n", 11644 pkt_len, msgdsize(mp))); 11645 freemsg(mp); 11646 return (EINVAL); 11647 } 11648 11649 if (max_frag == 0) { 11650 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n")); 11651 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11652 ip_drop_output("FragFails: zero max_frag", mp, ill); 11653 freemsg(mp); 11654 return (EINVAL); 11655 } 11656 11657 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 11658 ipha = (ipha_t *)mp->b_rptr; 11659 ASSERT(ntohs(ipha->ipha_length) == pkt_len); 11660 frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF; 11661 11662 /* 11663 * Establish the starting offset. May not be zero if we are fragging 11664 * a fragment that is being forwarded. 11665 */ 11666 offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET; 11667 11668 /* TODO why is this test needed? */ 11669 if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) { 11670 /* TODO: notify ulp somehow */ 11671 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11672 ip_drop_output("FragFails: bad starting offset", mp, ill); 11673 freemsg(mp); 11674 return (EINVAL); 11675 } 11676 11677 hdr_len = IPH_HDR_LENGTH(ipha); 11678 ipha->ipha_hdr_checksum = 0; 11679 11680 /* 11681 * Establish the number of bytes maximum per frag, after putting 11682 * in the header. 11683 */ 11684 len = (max_frag - hdr_len) & ~7; 11685 11686 /* Get a copy of the header for the trailing frags */ 11687 hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst, 11688 mp); 11689 if (hdr_mp == NULL) { 11690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11691 ip_drop_output("FragFails: no hdr_mp", mp, ill); 11692 freemsg(mp); 11693 return (ENOBUFS); 11694 } 11695 11696 /* Store the starting offset, with the MoreFrags flag. */ 11697 i1 = offset | IPH_MF | frag_flag; 11698 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 11699 11700 /* Establish the ending byte offset, based on the starting offset. */ 11701 offset <<= 3; 11702 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 11703 11704 /* Store the length of the first fragment in the IP header. */ 11705 i1 = len + hdr_len; 11706 ASSERT(i1 <= IP_MAXPACKET); 11707 ipha->ipha_length = htons((uint16_t)i1); 11708 11709 /* 11710 * Compute the IP header checksum for the first frag. We have to 11711 * watch out that we stop at the end of the header. 11712 */ 11713 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11714 11715 /* 11716 * Now carve off the first frag. Note that this will include the 11717 * original IP header. 11718 */ 11719 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 11720 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11721 ip_drop_output("FragFails: could not carve mp", mp_orig, ill); 11722 freeb(hdr_mp); 11723 freemsg(mp_orig); 11724 return (ENOBUFS); 11725 } 11726 11727 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11728 11729 error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid, 11730 ixa_cookie); 11731 if (error != 0 && error != EWOULDBLOCK) { 11732 /* No point in sending the other fragments */ 11733 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11734 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill); 11735 freeb(hdr_mp); 11736 freemsg(mp_orig); 11737 return (error); 11738 } 11739 11740 /* No need to redo state machine in loop */ 11741 ixaflags &= ~IXAF_REACH_CONF; 11742 11743 /* Advance the offset to the second frag starting point. */ 11744 offset += len; 11745 /* 11746 * Update hdr_len from the copied header - there might be less options 11747 * in the later fragments. 11748 */ 11749 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 11750 /* Loop until done. */ 11751 for (;;) { 11752 uint16_t offset_and_flags; 11753 uint16_t ip_len; 11754 11755 if (ip_data_end - offset > len) { 11756 /* 11757 * Carve off the appropriate amount from the original 11758 * datagram. 11759 */ 11760 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11761 mp = NULL; 11762 break; 11763 } 11764 /* 11765 * More frags after this one. Get another copy 11766 * of the header. 11767 */ 11768 if (carve_mp->b_datap->db_ref == 1 && 11769 hdr_mp->b_wptr - hdr_mp->b_rptr < 11770 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11771 /* Inline IP header */ 11772 carve_mp->b_rptr -= hdr_mp->b_wptr - 11773 hdr_mp->b_rptr; 11774 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11775 hdr_mp->b_wptr - hdr_mp->b_rptr); 11776 mp = carve_mp; 11777 } else { 11778 if (!(mp = copyb(hdr_mp))) { 11779 freemsg(carve_mp); 11780 break; 11781 } 11782 /* Get priority marking, if any. */ 11783 mp->b_band = priority; 11784 mp->b_cont = carve_mp; 11785 } 11786 ipha = (ipha_t *)mp->b_rptr; 11787 offset_and_flags = IPH_MF; 11788 } else { 11789 /* 11790 * Last frag. Consume the header. Set len to 11791 * the length of this last piece. 11792 */ 11793 len = ip_data_end - offset; 11794 11795 /* 11796 * Carve off the appropriate amount from the original 11797 * datagram. 11798 */ 11799 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 11800 mp = NULL; 11801 break; 11802 } 11803 if (carve_mp->b_datap->db_ref == 1 && 11804 hdr_mp->b_wptr - hdr_mp->b_rptr < 11805 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 11806 /* Inline IP header */ 11807 carve_mp->b_rptr -= hdr_mp->b_wptr - 11808 hdr_mp->b_rptr; 11809 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 11810 hdr_mp->b_wptr - hdr_mp->b_rptr); 11811 mp = carve_mp; 11812 freeb(hdr_mp); 11813 hdr_mp = mp; 11814 } else { 11815 mp = hdr_mp; 11816 /* Get priority marking, if any. */ 11817 mp->b_band = priority; 11818 mp->b_cont = carve_mp; 11819 } 11820 ipha = (ipha_t *)mp->b_rptr; 11821 /* A frag of a frag might have IPH_MF non-zero */ 11822 offset_and_flags = 11823 ntohs(ipha->ipha_fragment_offset_and_flags) & 11824 IPH_MF; 11825 } 11826 offset_and_flags |= (uint16_t)(offset >> 3); 11827 offset_and_flags |= (uint16_t)frag_flag; 11828 /* Store the offset and flags in the IP header. */ 11829 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 11830 11831 /* Store the length in the IP header. */ 11832 ip_len = (uint16_t)(len + hdr_len); 11833 ipha->ipha_length = htons(ip_len); 11834 11835 /* 11836 * Set the IP header checksum. Note that mp is just 11837 * the header, so this is easy to pass to ip_csum. 11838 */ 11839 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 11840 11841 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates); 11842 11843 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone, 11844 nolzid, ixa_cookie); 11845 /* All done if we just consumed the hdr_mp. */ 11846 if (mp == hdr_mp) { 11847 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 11848 return (error); 11849 } 11850 if (error != 0 && error != EWOULDBLOCK) { 11851 DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill, 11852 mblk_t *, hdr_mp); 11853 /* No point in sending the other fragments */ 11854 break; 11855 } 11856 11857 /* Otherwise, advance and loop. */ 11858 offset += len; 11859 } 11860 /* Clean up following allocation failure. */ 11861 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 11862 ip_drop_output("FragFails: loop ended", NULL, ill); 11863 if (mp != hdr_mp) 11864 freeb(hdr_mp); 11865 if (mp != mp_orig) 11866 freemsg(mp_orig); 11867 return (error); 11868 } 11869 11870 /* 11871 * Copy the header plus those options which have the copy bit set 11872 */ 11873 static mblk_t * 11874 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst, 11875 mblk_t *src) 11876 { 11877 mblk_t *mp; 11878 uchar_t *up; 11879 11880 /* 11881 * Quick check if we need to look for options without the copy bit 11882 * set 11883 */ 11884 mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src); 11885 if (!mp) 11886 return (mp); 11887 mp->b_rptr += ipst->ips_ip_wroff_extra; 11888 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 11889 bcopy(rptr, mp->b_rptr, hdr_len); 11890 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra; 11891 return (mp); 11892 } 11893 up = mp->b_rptr; 11894 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 11895 up += IP_SIMPLE_HDR_LENGTH; 11896 rptr += IP_SIMPLE_HDR_LENGTH; 11897 hdr_len -= IP_SIMPLE_HDR_LENGTH; 11898 while (hdr_len > 0) { 11899 uint32_t optval; 11900 uint32_t optlen; 11901 11902 optval = *rptr; 11903 if (optval == IPOPT_EOL) 11904 break; 11905 if (optval == IPOPT_NOP) 11906 optlen = 1; 11907 else 11908 optlen = rptr[1]; 11909 if (optval & IPOPT_COPY) { 11910 bcopy(rptr, up, optlen); 11911 up += optlen; 11912 } 11913 rptr += optlen; 11914 hdr_len -= optlen; 11915 } 11916 /* 11917 * Make sure that we drop an even number of words by filling 11918 * with EOL to the next word boundary. 11919 */ 11920 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 11921 hdr_len & 0x3; hdr_len++) 11922 *up++ = IPOPT_EOL; 11923 mp->b_wptr = up; 11924 /* Update header length */ 11925 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 11926 return (mp); 11927 } 11928 11929 /* 11930 * Update any source route, record route, or timestamp options when 11931 * sending a packet back to ourselves. 11932 * Check that we are at end of strict source route. 11933 * The options have been sanity checked by ip_output_options(). 11934 */ 11935 void 11936 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst) 11937 { 11938 ipoptp_t opts; 11939 uchar_t *opt; 11940 uint8_t optval; 11941 uint8_t optlen; 11942 ipaddr_t dst; 11943 uint32_t ts; 11944 timestruc_t now; 11945 11946 for (optval = ipoptp_first(&opts, ipha); 11947 optval != IPOPT_EOL; 11948 optval = ipoptp_next(&opts)) { 11949 opt = opts.ipoptp_cur; 11950 optlen = opts.ipoptp_len; 11951 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 11952 switch (optval) { 11953 uint32_t off; 11954 case IPOPT_SSRR: 11955 case IPOPT_LSRR: 11956 off = opt[IPOPT_OFFSET]; 11957 off--; 11958 if (optlen < IP_ADDR_LEN || 11959 off > optlen - IP_ADDR_LEN) { 11960 /* End of source route */ 11961 break; 11962 } 11963 /* 11964 * This will only happen if two consecutive entries 11965 * in the source route contains our address or if 11966 * it is a packet with a loose source route which 11967 * reaches us before consuming the whole source route 11968 */ 11969 11970 if (optval == IPOPT_SSRR) { 11971 return; 11972 } 11973 /* 11974 * Hack: instead of dropping the packet truncate the 11975 * source route to what has been used by filling the 11976 * rest with IPOPT_NOP. 11977 */ 11978 opt[IPOPT_OLEN] = (uint8_t)off; 11979 while (off < optlen) { 11980 opt[off++] = IPOPT_NOP; 11981 } 11982 break; 11983 case IPOPT_RR: 11984 off = opt[IPOPT_OFFSET]; 11985 off--; 11986 if (optlen < IP_ADDR_LEN || 11987 off > optlen - IP_ADDR_LEN) { 11988 /* No more room - ignore */ 11989 ip1dbg(( 11990 "ip_output_local_options: end of RR\n")); 11991 break; 11992 } 11993 dst = htonl(INADDR_LOOPBACK); 11994 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 11995 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 11996 break; 11997 case IPOPT_TS: 11998 /* Insert timestamp if there is romm */ 11999 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12000 case IPOPT_TS_TSONLY: 12001 off = IPOPT_TS_TIMELEN; 12002 break; 12003 case IPOPT_TS_PRESPEC: 12004 case IPOPT_TS_PRESPEC_RFC791: 12005 /* Verify that the address matched */ 12006 off = opt[IPOPT_OFFSET] - 1; 12007 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 12008 if (ip_type_v4(dst, ipst) != IRE_LOCAL) { 12009 /* Not for us */ 12010 break; 12011 } 12012 /* FALLTHROUGH */ 12013 case IPOPT_TS_TSANDADDR: 12014 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 12015 break; 12016 default: 12017 /* 12018 * ip_*put_options should have already 12019 * dropped this packet. 12020 */ 12021 cmn_err(CE_PANIC, "ip_output_local_options: " 12022 "unknown IT - bug in ip_output_options?\n"); 12023 return; /* Keep "lint" happy */ 12024 } 12025 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 12026 /* Increase overflow counter */ 12027 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 12028 opt[IPOPT_POS_OV_FLG] = (uint8_t) 12029 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 12030 (off << 4); 12031 break; 12032 } 12033 off = opt[IPOPT_OFFSET] - 1; 12034 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 12035 case IPOPT_TS_PRESPEC: 12036 case IPOPT_TS_PRESPEC_RFC791: 12037 case IPOPT_TS_TSANDADDR: 12038 dst = htonl(INADDR_LOOPBACK); 12039 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 12040 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 12041 /* FALLTHROUGH */ 12042 case IPOPT_TS_TSONLY: 12043 off = opt[IPOPT_OFFSET] - 1; 12044 /* Compute # of milliseconds since midnight */ 12045 gethrestime(&now); 12046 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 12047 NSEC2MSEC(now.tv_nsec); 12048 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 12049 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 12050 break; 12051 } 12052 break; 12053 } 12054 } 12055 } 12056 12057 /* 12058 * Prepend an M_DATA fastpath header, and if none present prepend a 12059 * DL_UNITDATA_REQ. Frees the mblk on failure. 12060 * 12061 * nce_dlur_mp and nce_fp_mp can not disappear once they have been set. 12062 * If there is a change to them, the nce will be deleted (condemned) and 12063 * a new nce_t will be created when packets are sent. Thus we need no locks 12064 * to access those fields. 12065 * 12066 * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended 12067 * we place b_band in dl_priority.dl_max. 12068 */ 12069 static mblk_t * 12070 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce) 12071 { 12072 uint_t hlen; 12073 mblk_t *mp1; 12074 uint_t priority; 12075 uchar_t *rptr; 12076 12077 rptr = mp->b_rptr; 12078 12079 ASSERT(DB_TYPE(mp) == M_DATA); 12080 priority = mp->b_band; 12081 12082 ASSERT(nce != NULL); 12083 if ((mp1 = nce->nce_fp_mp) != NULL) { 12084 hlen = MBLKL(mp1); 12085 /* 12086 * Check if we have enough room to prepend fastpath 12087 * header 12088 */ 12089 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 12090 rptr -= hlen; 12091 bcopy(mp1->b_rptr, rptr, hlen); 12092 /* 12093 * Set the b_rptr to the start of the link layer 12094 * header 12095 */ 12096 mp->b_rptr = rptr; 12097 return (mp); 12098 } 12099 mp1 = copyb(mp1); 12100 if (mp1 == NULL) { 12101 ill_t *ill = nce->nce_ill; 12102 12103 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12104 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12105 freemsg(mp); 12106 return (NULL); 12107 } 12108 mp1->b_band = priority; 12109 mp1->b_cont = mp; 12110 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp); 12111 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp); 12112 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp); 12113 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp); 12114 DB_LSOMSS(mp1) = DB_LSOMSS(mp); 12115 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1); 12116 /* 12117 * XXX disable ICK_VALID and compute checksum 12118 * here; can happen if nce_fp_mp changes and 12119 * it can't be copied now due to insufficient 12120 * space. (unlikely, fp mp can change, but it 12121 * does not increase in length) 12122 */ 12123 return (mp1); 12124 } 12125 mp1 = copyb(nce->nce_dlur_mp); 12126 12127 if (mp1 == NULL) { 12128 ill_t *ill = nce->nce_ill; 12129 12130 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12131 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12132 freemsg(mp); 12133 return (NULL); 12134 } 12135 mp1->b_cont = mp; 12136 if (priority != 0) { 12137 mp1->b_band = priority; 12138 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max = 12139 priority; 12140 } 12141 return (mp1); 12142 } 12143 12144 /* 12145 * Finish the outbound IPsec processing. This function is called from 12146 * ipsec_out_process() if the IPsec packet was processed 12147 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12148 * asynchronously. 12149 * 12150 * This is common to IPv4 and IPv6. 12151 */ 12152 int 12153 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa) 12154 { 12155 iaflags_t ixaflags = ixa->ixa_flags; 12156 uint_t pktlen; 12157 12158 12159 /* AH/ESP don't update ixa_pktlen when they modify the packet */ 12160 if (ixaflags & IXAF_IS_IPV4) { 12161 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12162 12163 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12164 pktlen = ntohs(ipha->ipha_length); 12165 } else { 12166 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12167 12168 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12169 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12170 } 12171 12172 /* 12173 * We release any hard reference on the SAs here to make 12174 * sure the SAs can be garbage collected. ipsr_sa has a soft reference 12175 * on the SAs. 12176 * If in the future we want the hard latching of the SAs in the 12177 * ip_xmit_attr_t then we should remove this. 12178 */ 12179 if (ixa->ixa_ipsec_esp_sa != NULL) { 12180 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12181 ixa->ixa_ipsec_esp_sa = NULL; 12182 } 12183 if (ixa->ixa_ipsec_ah_sa != NULL) { 12184 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12185 ixa->ixa_ipsec_ah_sa = NULL; 12186 } 12187 12188 /* Do we need to fragment? */ 12189 if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) || 12190 pktlen > ixa->ixa_fragsize) { 12191 if (ixaflags & IXAF_IS_IPV4) { 12192 ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR)); 12193 /* 12194 * We check for the DF case in ipsec_out_process 12195 * hence this only handles the non-DF case. 12196 */ 12197 return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags, 12198 pktlen, ixa->ixa_fragsize, 12199 ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12200 ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn, 12201 &ixa->ixa_cookie)); 12202 } else { 12203 mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa); 12204 if (mp == NULL) { 12205 /* MIB and ip_drop_output already done */ 12206 return (ENOMEM); 12207 } 12208 pktlen += sizeof (ip6_frag_t); 12209 if (pktlen > ixa->ixa_fragsize) { 12210 return (ip_fragment_v6(mp, ixa->ixa_nce, 12211 ixa->ixa_flags, pktlen, 12212 ixa->ixa_fragsize, ixa->ixa_xmit_hint, 12213 ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid, 12214 ixa->ixa_postfragfn, &ixa->ixa_cookie)); 12215 } 12216 } 12217 } 12218 return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags, 12219 pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid, 12220 ixa->ixa_no_loop_zoneid, NULL)); 12221 } 12222 12223 /* 12224 * Finish the inbound IPsec processing. This function is called from 12225 * ipsec_out_process() if the IPsec packet was processed 12226 * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed 12227 * asynchronously. 12228 * 12229 * This is common to IPv4 and IPv6. 12230 */ 12231 void 12232 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira) 12233 { 12234 iaflags_t iraflags = ira->ira_flags; 12235 12236 /* Length might have changed */ 12237 if (iraflags & IRAF_IS_IPV4) { 12238 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12239 12240 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 12241 ira->ira_pktlen = ntohs(ipha->ipha_length); 12242 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha); 12243 ira->ira_protocol = ipha->ipha_protocol; 12244 12245 ip_fanout_v4(mp, ipha, ira); 12246 } else { 12247 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12248 uint8_t *nexthdrp; 12249 12250 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION); 12251 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN; 12252 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length, 12253 &nexthdrp)) { 12254 /* Malformed packet */ 12255 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards); 12256 ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill); 12257 freemsg(mp); 12258 return; 12259 } 12260 ira->ira_protocol = *nexthdrp; 12261 ip_fanout_v6(mp, ip6h, ira); 12262 } 12263 } 12264 12265 /* 12266 * Select which AH & ESP SA's to use (if any) for the outbound packet. 12267 * 12268 * If this function returns B_TRUE, the requested SA's have been filled 12269 * into the ixa_ipsec_*_sa pointers. 12270 * 12271 * If the function returns B_FALSE, the packet has been "consumed", most 12272 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 12273 * 12274 * The SA references created by the protocol-specific "select" 12275 * function will be released in ip_output_post_ipsec. 12276 */ 12277 static boolean_t 12278 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa) 12279 { 12280 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 12281 ipsec_policy_t *pp; 12282 ipsec_action_t *ap; 12283 12284 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12285 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12286 (ixa->ixa_ipsec_action != NULL)); 12287 12288 ap = ixa->ixa_ipsec_action; 12289 if (ap == NULL) { 12290 pp = ixa->ixa_ipsec_policy; 12291 ASSERT(pp != NULL); 12292 ap = pp->ipsp_act; 12293 ASSERT(ap != NULL); 12294 } 12295 12296 /* 12297 * We have an action. now, let's select SA's. 12298 * A side effect of setting ixa_ipsec_*_sa is that it will 12299 * be cached in the conn_t. 12300 */ 12301 if (ap->ipa_want_esp) { 12302 if (ixa->ixa_ipsec_esp_sa == NULL) { 12303 need_esp_acquire = !ipsec_outbound_sa(mp, ixa, 12304 IPPROTO_ESP); 12305 } 12306 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL); 12307 } 12308 12309 if (ap->ipa_want_ah) { 12310 if (ixa->ixa_ipsec_ah_sa == NULL) { 12311 need_ah_acquire = !ipsec_outbound_sa(mp, ixa, 12312 IPPROTO_AH); 12313 } 12314 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL); 12315 /* 12316 * The ESP and AH processing order needs to be preserved 12317 * when both protocols are required (ESP should be applied 12318 * before AH for an outbound packet). Force an ESP ACQUIRE 12319 * when both ESP and AH are required, and an AH ACQUIRE 12320 * is needed. 12321 */ 12322 if (ap->ipa_want_esp && need_ah_acquire) 12323 need_esp_acquire = B_TRUE; 12324 } 12325 12326 /* 12327 * Send an ACQUIRE (extended, regular, or both) if we need one. 12328 * Release SAs that got referenced, but will not be used until we 12329 * acquire _all_ of the SAs we need. 12330 */ 12331 if (need_ah_acquire || need_esp_acquire) { 12332 if (ixa->ixa_ipsec_ah_sa != NULL) { 12333 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa); 12334 ixa->ixa_ipsec_ah_sa = NULL; 12335 } 12336 if (ixa->ixa_ipsec_esp_sa != NULL) { 12337 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa); 12338 ixa->ixa_ipsec_esp_sa = NULL; 12339 } 12340 12341 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire); 12342 return (B_FALSE); 12343 } 12344 12345 return (B_TRUE); 12346 } 12347 12348 /* 12349 * Handle IPsec output processing. 12350 * This function is only entered once for a given packet. 12351 * We try to do things synchronously, but if we need to have user-level 12352 * set up SAs, or ESP or AH uses asynchronous kEF, then the operation 12353 * will be completed 12354 * - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish 12355 * - when asynchronous ESP is done it will do AH 12356 * 12357 * In all cases we come back in ip_output_post_ipsec() to fragment and 12358 * send out the packet. 12359 */ 12360 int 12361 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa) 12362 { 12363 ill_t *ill = ixa->ixa_nce->nce_ill; 12364 ip_stack_t *ipst = ixa->ixa_ipst; 12365 ipsec_stack_t *ipss; 12366 ipsec_policy_t *pp; 12367 ipsec_action_t *ap; 12368 12369 ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE); 12370 12371 ASSERT((ixa->ixa_ipsec_policy != NULL) || 12372 (ixa->ixa_ipsec_action != NULL)); 12373 12374 ipss = ipst->ips_netstack->netstack_ipsec; 12375 if (!ipsec_loaded(ipss)) { 12376 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12377 ip_drop_packet(mp, B_TRUE, ill, 12378 DROPPER(ipss, ipds_ip_ipsec_not_loaded), 12379 &ipss->ipsec_dropper); 12380 return (ENOTSUP); 12381 } 12382 12383 ap = ixa->ixa_ipsec_action; 12384 if (ap == NULL) { 12385 pp = ixa->ixa_ipsec_policy; 12386 ASSERT(pp != NULL); 12387 ap = pp->ipsp_act; 12388 ASSERT(ap != NULL); 12389 } 12390 12391 /* Handle explicit drop action and bypass. */ 12392 switch (ap->ipa_act.ipa_type) { 12393 case IPSEC_ACT_DISCARD: 12394 case IPSEC_ACT_REJECT: 12395 ip_drop_packet(mp, B_FALSE, ill, 12396 DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper); 12397 return (EHOSTUNREACH); /* IPsec policy failure */ 12398 case IPSEC_ACT_BYPASS: 12399 return (ip_output_post_ipsec(mp, ixa)); 12400 } 12401 12402 /* 12403 * The order of processing is first insert a IP header if needed. 12404 * Then insert the ESP header and then the AH header. 12405 */ 12406 if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) { 12407 /* 12408 * First get the outer IP header before sending 12409 * it to ESP. 12410 */ 12411 ipha_t *oipha, *iipha; 12412 mblk_t *outer_mp, *inner_mp; 12413 12414 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 12415 (void) mi_strlog(ill->ill_rq, 0, 12416 SL_ERROR|SL_TRACE|SL_CONSOLE, 12417 "ipsec_out_process: " 12418 "Self-Encapsulation failed: Out of memory\n"); 12419 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12420 ip_drop_output("ipIfStatsOutDiscards", mp, ill); 12421 freemsg(mp); 12422 return (ENOBUFS); 12423 } 12424 inner_mp = mp; 12425 ASSERT(inner_mp->b_datap->db_type == M_DATA); 12426 oipha = (ipha_t *)outer_mp->b_rptr; 12427 iipha = (ipha_t *)inner_mp->b_rptr; 12428 *oipha = *iipha; 12429 outer_mp->b_wptr += sizeof (ipha_t); 12430 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 12431 sizeof (ipha_t)); 12432 oipha->ipha_protocol = IPPROTO_ENCAP; 12433 oipha->ipha_version_and_hdr_length = 12434 IP_SIMPLE_HDR_VERSION; 12435 oipha->ipha_hdr_checksum = 0; 12436 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 12437 outer_mp->b_cont = inner_mp; 12438 mp = outer_mp; 12439 12440 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL; 12441 } 12442 12443 /* If we need to wait for a SA then we can't return any errno */ 12444 if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) || 12445 (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) && 12446 !ipsec_out_select_sa(mp, ixa)) 12447 return (0); 12448 12449 /* 12450 * By now, we know what SA's to use. Toss over to ESP & AH 12451 * to do the heavy lifting. 12452 */ 12453 if (ap->ipa_want_esp) { 12454 ASSERT(ixa->ixa_ipsec_esp_sa != NULL); 12455 12456 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa); 12457 if (mp == NULL) { 12458 /* 12459 * Either it failed or is pending. In the former case 12460 * ipIfStatsInDiscards was increased. 12461 */ 12462 return (0); 12463 } 12464 } 12465 12466 if (ap->ipa_want_ah) { 12467 ASSERT(ixa->ixa_ipsec_ah_sa != NULL); 12468 12469 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa); 12470 if (mp == NULL) { 12471 /* 12472 * Either it failed or is pending. In the former case 12473 * ipIfStatsInDiscards was increased. 12474 */ 12475 return (0); 12476 } 12477 } 12478 /* 12479 * We are done with IPsec processing. Send it over 12480 * the wire. 12481 */ 12482 return (ip_output_post_ipsec(mp, ixa)); 12483 } 12484 12485 /* 12486 * ioctls that go through a down/up sequence may need to wait for the down 12487 * to complete. This involves waiting for the ire and ipif refcnts to go down 12488 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 12489 */ 12490 /* ARGSUSED */ 12491 void 12492 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 12493 { 12494 struct iocblk *iocp; 12495 mblk_t *mp1; 12496 ip_ioctl_cmd_t *ipip; 12497 int err; 12498 sin_t *sin; 12499 struct lifreq *lifr; 12500 struct ifreq *ifr; 12501 12502 iocp = (struct iocblk *)mp->b_rptr; 12503 ASSERT(ipsq != NULL); 12504 /* Existence of mp1 verified in ip_wput_nondata */ 12505 mp1 = mp->b_cont->b_cont; 12506 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12507 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 12508 /* 12509 * Special case where ipx_current_ipif is not set: 12510 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 12511 * We are here as were not able to complete the operation in 12512 * ipif_set_values because we could not become exclusive on 12513 * the new ipsq. 12514 */ 12515 ill_t *ill = q->q_ptr; 12516 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd); 12517 } 12518 ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL); 12519 12520 if (ipip->ipi_cmd_type == IF_CMD) { 12521 /* This a old style SIOC[GS]IF* command */ 12522 ifr = (struct ifreq *)mp1->b_rptr; 12523 sin = (sin_t *)&ifr->ifr_addr; 12524 } else if (ipip->ipi_cmd_type == LIF_CMD) { 12525 /* This a new style SIOC[GS]LIF* command */ 12526 lifr = (struct lifreq *)mp1->b_rptr; 12527 sin = (sin_t *)&lifr->lifr_addr; 12528 } else { 12529 sin = NULL; 12530 } 12531 12532 err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin, 12533 q, mp, ipip, mp1->b_rptr); 12534 12535 DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish", 12536 int, ipip->ipi_cmd, 12537 ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill, 12538 ipif_t *, ipsq->ipsq_xop->ipx_current_ipif); 12539 12540 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12541 } 12542 12543 /* 12544 * ioctl processing 12545 * 12546 * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up 12547 * the ioctl command in the ioctl tables, determines the copyin data size 12548 * from the ipi_copyin_size field, and does an mi_copyin() of that size. 12549 * 12550 * ioctl processing then continues when the M_IOCDATA makes its way down to 12551 * ip_wput_nondata(). The ioctl is looked up again in the ioctl table, its 12552 * associated 'conn' is refheld till the end of the ioctl and the general 12553 * ioctl processing function ip_process_ioctl() is called to extract the 12554 * arguments and process the ioctl. To simplify extraction, ioctl commands 12555 * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a 12556 * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq()) 12557 * is used to extract the ioctl's arguments. 12558 * 12559 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 12560 * so goes thru the serialization primitive ipsq_try_enter. Then the 12561 * appropriate function to handle the ioctl is called based on the entry in 12562 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 12563 * which also refreleases the 'conn' that was refheld at the start of the 12564 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 12565 * 12566 * Many exclusive ioctls go thru an internal down up sequence as part of 12567 * the operation. For example an attempt to change the IP address of an 12568 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 12569 * does all the cleanup such as deleting all ires that use this address. 12570 * Then we need to wait till all references to the interface go away. 12571 */ 12572 void 12573 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12574 { 12575 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 12576 ip_ioctl_cmd_t *ipip = arg; 12577 ip_extract_func_t *extract_funcp; 12578 cmd_info_t ci; 12579 int err; 12580 boolean_t entered_ipsq = B_FALSE; 12581 12582 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 12583 12584 if (ipip == NULL) 12585 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12586 12587 /* 12588 * SIOCLIFADDIF needs to go thru a special path since the 12589 * ill may not exist yet. This happens in the case of lo0 12590 * which is created using this ioctl. 12591 */ 12592 if (ipip->ipi_cmd == SIOCLIFADDIF) { 12593 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 12594 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish", 12595 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12596 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12597 return; 12598 } 12599 12600 ci.ci_ipif = NULL; 12601 switch (ipip->ipi_cmd_type) { 12602 case MISC_CMD: 12603 case MSFILT_CMD: 12604 /* 12605 * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF. 12606 */ 12607 if (ipip->ipi_cmd == IF_UNITSEL) { 12608 /* ioctl comes down the ill */ 12609 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 12610 ipif_refhold(ci.ci_ipif); 12611 } 12612 err = 0; 12613 ci.ci_sin = NULL; 12614 ci.ci_sin6 = NULL; 12615 ci.ci_lifr = NULL; 12616 extract_funcp = NULL; 12617 break; 12618 12619 case IF_CMD: 12620 case LIF_CMD: 12621 extract_funcp = ip_extract_lifreq; 12622 break; 12623 12624 case ARP_CMD: 12625 case XARP_CMD: 12626 extract_funcp = ip_extract_arpreq; 12627 break; 12628 12629 default: 12630 ASSERT(0); 12631 } 12632 12633 if (extract_funcp != NULL) { 12634 err = (*extract_funcp)(q, mp, ipip, &ci); 12635 if (err != 0) { 12636 DTRACE_PROBE4(ipif__ioctl, 12637 char *, "ip_process_ioctl finish err", 12638 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12639 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12640 return; 12641 } 12642 12643 /* 12644 * All of the extraction functions return a refheld ipif. 12645 */ 12646 ASSERT(ci.ci_ipif != NULL); 12647 } 12648 12649 if (!(ipip->ipi_flags & IPI_WR)) { 12650 /* 12651 * A return value of EINPROGRESS means the ioctl is 12652 * either queued and waiting for some reason or has 12653 * already completed. 12654 */ 12655 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 12656 ci.ci_lifr); 12657 if (ci.ci_ipif != NULL) { 12658 DTRACE_PROBE4(ipif__ioctl, 12659 char *, "ip_process_ioctl finish RD", 12660 int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill, 12661 ipif_t *, ci.ci_ipif); 12662 ipif_refrele(ci.ci_ipif); 12663 } else { 12664 DTRACE_PROBE4(ipif__ioctl, 12665 char *, "ip_process_ioctl finish RD", 12666 int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL); 12667 } 12668 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL); 12669 return; 12670 } 12671 12672 ASSERT(ci.ci_ipif != NULL); 12673 12674 /* 12675 * If ipsq is non-NULL, we are already being called exclusively 12676 */ 12677 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 12678 if (ipsq == NULL) { 12679 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl, 12680 NEW_OP, B_TRUE); 12681 if (ipsq == NULL) { 12682 ipif_refrele(ci.ci_ipif); 12683 return; 12684 } 12685 entered_ipsq = B_TRUE; 12686 } 12687 /* 12688 * Release the ipif so that ipif_down and friends that wait for 12689 * references to go away are not misled about the current ipif_refcnt 12690 * values. We are writer so we can access the ipif even after releasing 12691 * the ipif. 12692 */ 12693 ipif_refrele(ci.ci_ipif); 12694 12695 ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd); 12696 12697 /* 12698 * A return value of EINPROGRESS means the ioctl is 12699 * either queued and waiting for some reason or has 12700 * already completed. 12701 */ 12702 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr); 12703 12704 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR", 12705 int, ipip->ipi_cmd, 12706 ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill, 12707 ipif_t *, ci.ci_ipif); 12708 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq); 12709 12710 if (entered_ipsq) 12711 ipsq_exit(ipsq); 12712 } 12713 12714 /* 12715 * Complete the ioctl. Typically ioctls use the mi package and need to 12716 * do mi_copyout/mi_copy_done. 12717 */ 12718 void 12719 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq) 12720 { 12721 conn_t *connp = NULL; 12722 12723 if (err == EINPROGRESS) 12724 return; 12725 12726 if (CONN_Q(q)) { 12727 connp = Q_TO_CONN(q); 12728 ASSERT(connp->conn_ref >= 2); 12729 } 12730 12731 switch (mode) { 12732 case COPYOUT: 12733 if (err == 0) 12734 mi_copyout(q, mp); 12735 else 12736 mi_copy_done(q, mp, err); 12737 break; 12738 12739 case NO_COPYOUT: 12740 mi_copy_done(q, mp, err); 12741 break; 12742 12743 default: 12744 ASSERT(mode == CONN_CLOSE); /* aborted through CONN_CLOSE */ 12745 break; 12746 } 12747 12748 /* 12749 * The conn refhold and ioctlref placed on the conn at the start of the 12750 * ioctl are released here. 12751 */ 12752 if (connp != NULL) { 12753 CONN_DEC_IOCTLREF(connp); 12754 CONN_OPER_PENDING_DONE(connp); 12755 } 12756 12757 if (ipsq != NULL) 12758 ipsq_current_finish(ipsq); 12759 } 12760 12761 /* Handles all non data messages */ 12762 void 12763 ip_wput_nondata(queue_t *q, mblk_t *mp) 12764 { 12765 mblk_t *mp1; 12766 struct iocblk *iocp; 12767 ip_ioctl_cmd_t *ipip; 12768 conn_t *connp; 12769 cred_t *cr; 12770 char *proto_str; 12771 12772 if (CONN_Q(q)) 12773 connp = Q_TO_CONN(q); 12774 else 12775 connp = NULL; 12776 12777 switch (DB_TYPE(mp)) { 12778 case M_IOCTL: 12779 /* 12780 * IOCTL processing begins in ip_sioctl_copyin_setup which 12781 * will arrange to copy in associated control structures. 12782 */ 12783 ip_sioctl_copyin_setup(q, mp); 12784 return; 12785 case M_IOCDATA: 12786 /* 12787 * Ensure that this is associated with one of our trans- 12788 * parent ioctls. If it's not ours, discard it if we're 12789 * running as a driver, or pass it on if we're a module. 12790 */ 12791 iocp = (struct iocblk *)mp->b_rptr; 12792 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 12793 if (ipip == NULL) { 12794 if (q->q_next == NULL) { 12795 goto nak; 12796 } else { 12797 putnext(q, mp); 12798 } 12799 return; 12800 } 12801 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 12802 /* 12803 * The ioctl is one we recognise, but is not consumed 12804 * by IP as a module and we are a module, so we drop 12805 */ 12806 goto nak; 12807 } 12808 12809 /* IOCTL continuation following copyin or copyout. */ 12810 if (mi_copy_state(q, mp, NULL) == -1) { 12811 /* 12812 * The copy operation failed. mi_copy_state already 12813 * cleaned up, so we're out of here. 12814 */ 12815 return; 12816 } 12817 /* 12818 * If we just completed a copy in, we become writer and 12819 * continue processing in ip_sioctl_copyin_done. If it 12820 * was a copy out, we call mi_copyout again. If there is 12821 * nothing more to copy out, it will complete the IOCTL. 12822 */ 12823 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 12824 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 12825 mi_copy_done(q, mp, EPROTO); 12826 return; 12827 } 12828 /* 12829 * Check for cases that need more copying. A return 12830 * value of 0 means a second copyin has been started, 12831 * so we return; a return value of 1 means no more 12832 * copying is needed, so we continue. 12833 */ 12834 if (ipip->ipi_cmd_type == MSFILT_CMD && 12835 MI_COPY_COUNT(mp) == 1) { 12836 if (ip_copyin_msfilter(q, mp) == 0) 12837 return; 12838 } 12839 /* 12840 * Refhold the conn, till the ioctl completes. This is 12841 * needed in case the ioctl ends up in the pending mp 12842 * list. Every mp in the ipx_pending_mp list must have 12843 * a refhold on the conn to resume processing. The 12844 * refhold is released when the ioctl completes 12845 * (whether normally or abnormally). An ioctlref is also 12846 * placed on the conn to prevent TCP from removing the 12847 * queue needed to send the ioctl reply back. 12848 * In all cases ip_ioctl_finish is called to finish 12849 * the ioctl and release the refholds. 12850 */ 12851 if (connp != NULL) { 12852 /* This is not a reentry */ 12853 CONN_INC_REF(connp); 12854 CONN_INC_IOCTLREF(connp); 12855 } else { 12856 if (!(ipip->ipi_flags & IPI_MODOK)) { 12857 mi_copy_done(q, mp, EINVAL); 12858 return; 12859 } 12860 } 12861 12862 ip_process_ioctl(NULL, q, mp, ipip); 12863 12864 } else { 12865 mi_copyout(q, mp); 12866 } 12867 return; 12868 12869 case M_IOCNAK: 12870 /* 12871 * The only way we could get here is if a resolver didn't like 12872 * an IOCTL we sent it. This shouldn't happen. 12873 */ 12874 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 12875 "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x", 12876 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 12877 freemsg(mp); 12878 return; 12879 case M_IOCACK: 12880 /* /dev/ip shouldn't see this */ 12881 goto nak; 12882 case M_FLUSH: 12883 if (*mp->b_rptr & FLUSHW) 12884 flushq(q, FLUSHALL); 12885 if (q->q_next) { 12886 putnext(q, mp); 12887 return; 12888 } 12889 if (*mp->b_rptr & FLUSHR) { 12890 *mp->b_rptr &= ~FLUSHW; 12891 qreply(q, mp); 12892 return; 12893 } 12894 freemsg(mp); 12895 return; 12896 case M_CTL: 12897 break; 12898 case M_PROTO: 12899 case M_PCPROTO: 12900 /* 12901 * The only PROTO messages we expect are SNMP-related. 12902 */ 12903 switch (((union T_primitives *)mp->b_rptr)->type) { 12904 case T_SVR4_OPTMGMT_REQ: 12905 ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ " 12906 "flags %x\n", 12907 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 12908 12909 if (connp == NULL) { 12910 proto_str = "T_SVR4_OPTMGMT_REQ"; 12911 goto protonak; 12912 } 12913 12914 /* 12915 * All Solaris components should pass a db_credp 12916 * for this TPI message, hence we ASSERT. 12917 * But in case there is some other M_PROTO that looks 12918 * like a TPI message sent by some other kernel 12919 * component, we check and return an error. 12920 */ 12921 cr = msg_getcred(mp, NULL); 12922 ASSERT(cr != NULL); 12923 if (cr == NULL) { 12924 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 12925 if (mp != NULL) 12926 qreply(q, mp); 12927 return; 12928 } 12929 12930 if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) { 12931 proto_str = "Bad SNMPCOM request?"; 12932 goto protonak; 12933 } 12934 return; 12935 default: 12936 ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n", 12937 (int)*(uint_t *)mp->b_rptr)); 12938 freemsg(mp); 12939 return; 12940 } 12941 default: 12942 break; 12943 } 12944 if (q->q_next) { 12945 putnext(q, mp); 12946 } else 12947 freemsg(mp); 12948 return; 12949 12950 nak: 12951 iocp->ioc_error = EINVAL; 12952 mp->b_datap->db_type = M_IOCNAK; 12953 iocp->ioc_count = 0; 12954 qreply(q, mp); 12955 return; 12956 12957 protonak: 12958 cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str); 12959 if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL) 12960 qreply(q, mp); 12961 } 12962 12963 /* 12964 * Process IP options in an outbound packet. Verify that the nexthop in a 12965 * strict source route is onlink. 12966 * Returns non-zero if something fails in which case an ICMP error has been 12967 * sent and mp freed. 12968 * 12969 * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst. 12970 */ 12971 int 12972 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill) 12973 { 12974 ipoptp_t opts; 12975 uchar_t *opt; 12976 uint8_t optval; 12977 uint8_t optlen; 12978 ipaddr_t dst; 12979 intptr_t code = 0; 12980 ire_t *ire; 12981 ip_stack_t *ipst = ixa->ixa_ipst; 12982 ip_recv_attr_t iras; 12983 12984 ip2dbg(("ip_output_options\n")); 12985 12986 dst = ipha->ipha_dst; 12987 for (optval = ipoptp_first(&opts, ipha); 12988 optval != IPOPT_EOL; 12989 optval = ipoptp_next(&opts)) { 12990 opt = opts.ipoptp_cur; 12991 optlen = opts.ipoptp_len; 12992 ip2dbg(("ip_output_options: opt %d, len %d\n", 12993 optval, optlen)); 12994 switch (optval) { 12995 uint32_t off; 12996 case IPOPT_SSRR: 12997 case IPOPT_LSRR: 12998 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 12999 ip1dbg(( 13000 "ip_output_options: bad option offset\n")); 13001 code = (char *)&opt[IPOPT_OLEN] - 13002 (char *)ipha; 13003 goto param_prob; 13004 } 13005 off = opt[IPOPT_OFFSET]; 13006 ip1dbg(("ip_output_options: next hop 0x%x\n", 13007 ntohl(dst))); 13008 /* 13009 * For strict: verify that dst is directly 13010 * reachable. 13011 */ 13012 if (optval == IPOPT_SSRR) { 13013 ire = ire_ftable_lookup_v4(dst, 0, 0, 13014 IRE_INTERFACE, NULL, ALL_ZONES, 13015 ixa->ixa_tsl, 13016 MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst, 13017 NULL); 13018 if (ire == NULL) { 13019 ip1dbg(("ip_output_options: SSRR not" 13020 " directly reachable: 0x%x\n", 13021 ntohl(dst))); 13022 goto bad_src_route; 13023 } 13024 ire_refrele(ire); 13025 } 13026 break; 13027 case IPOPT_RR: 13028 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13029 ip1dbg(( 13030 "ip_output_options: bad option offset\n")); 13031 code = (char *)&opt[IPOPT_OLEN] - 13032 (char *)ipha; 13033 goto param_prob; 13034 } 13035 break; 13036 case IPOPT_TS: 13037 /* 13038 * Verify that length >=5 and that there is either 13039 * room for another timestamp or that the overflow 13040 * counter is not maxed out. 13041 */ 13042 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 13043 if (optlen < IPOPT_MINLEN_IT) { 13044 goto param_prob; 13045 } 13046 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 13047 ip1dbg(( 13048 "ip_output_options: bad option offset\n")); 13049 code = (char *)&opt[IPOPT_OFFSET] - 13050 (char *)ipha; 13051 goto param_prob; 13052 } 13053 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 13054 case IPOPT_TS_TSONLY: 13055 off = IPOPT_TS_TIMELEN; 13056 break; 13057 case IPOPT_TS_TSANDADDR: 13058 case IPOPT_TS_PRESPEC: 13059 case IPOPT_TS_PRESPEC_RFC791: 13060 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 13061 break; 13062 default: 13063 code = (char *)&opt[IPOPT_POS_OV_FLG] - 13064 (char *)ipha; 13065 goto param_prob; 13066 } 13067 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 13068 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 13069 /* 13070 * No room and the overflow counter is 15 13071 * already. 13072 */ 13073 goto param_prob; 13074 } 13075 break; 13076 } 13077 } 13078 13079 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 13080 return (0); 13081 13082 ip1dbg(("ip_output_options: error processing IP options.")); 13083 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 13084 13085 param_prob: 13086 bzero(&iras, sizeof (iras)); 13087 iras.ira_ill = iras.ira_rill = ill; 13088 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13089 iras.ira_rifindex = iras.ira_ruifindex; 13090 iras.ira_flags = IRAF_IS_IPV4; 13091 13092 ip_drop_output("ip_output_options", mp, ill); 13093 icmp_param_problem(mp, (uint8_t)code, &iras); 13094 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13095 return (-1); 13096 13097 bad_src_route: 13098 bzero(&iras, sizeof (iras)); 13099 iras.ira_ill = iras.ira_rill = ill; 13100 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 13101 iras.ira_rifindex = iras.ira_ruifindex; 13102 iras.ira_flags = IRAF_IS_IPV4; 13103 13104 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill); 13105 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras); 13106 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 13107 return (-1); 13108 } 13109 13110 /* 13111 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 13112 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 13113 * thru /etc/system. 13114 */ 13115 #define CONN_MAXDRAINCNT 64 13116 13117 static void 13118 conn_drain_init(ip_stack_t *ipst) 13119 { 13120 int i, j; 13121 idl_tx_list_t *itl_tx; 13122 13123 ipst->ips_conn_drain_list_cnt = conn_drain_nthreads; 13124 13125 if ((ipst->ips_conn_drain_list_cnt == 0) || 13126 (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 13127 /* 13128 * Default value of the number of drainers is the 13129 * number of cpus, subject to maximum of 8 drainers. 13130 */ 13131 if (boot_max_ncpus != -1) 13132 ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 13133 else 13134 ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8); 13135 } 13136 13137 ipst->ips_idl_tx_list = 13138 kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP); 13139 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13140 itl_tx = &ipst->ips_idl_tx_list[i]; 13141 itl_tx->txl_drain_list = 13142 kmem_zalloc(ipst->ips_conn_drain_list_cnt * 13143 sizeof (idl_t), KM_SLEEP); 13144 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL); 13145 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) { 13146 mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL, 13147 MUTEX_DEFAULT, NULL); 13148 itl_tx->txl_drain_list[j].idl_itl = itl_tx; 13149 } 13150 } 13151 } 13152 13153 static void 13154 conn_drain_fini(ip_stack_t *ipst) 13155 { 13156 int i; 13157 idl_tx_list_t *itl_tx; 13158 13159 for (i = 0; i < TX_FANOUT_SIZE; i++) { 13160 itl_tx = &ipst->ips_idl_tx_list[i]; 13161 kmem_free(itl_tx->txl_drain_list, 13162 ipst->ips_conn_drain_list_cnt * sizeof (idl_t)); 13163 } 13164 kmem_free(ipst->ips_idl_tx_list, 13165 TX_FANOUT_SIZE * sizeof (idl_tx_list_t)); 13166 ipst->ips_idl_tx_list = NULL; 13167 } 13168 13169 /* 13170 * Flow control has blocked us from proceeding. Insert the given conn in one 13171 * of the conn drain lists. When flow control is unblocked, either ip_wsrv() 13172 * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn 13173 * will call conn_walk_drain(). See the flow control notes at the top of this 13174 * file for more details. 13175 */ 13176 void 13177 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list) 13178 { 13179 idl_t *idl = tx_list->txl_drain_list; 13180 uint_t index; 13181 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 13182 13183 mutex_enter(&connp->conn_lock); 13184 if (connp->conn_state_flags & CONN_CLOSING) { 13185 /* 13186 * The conn is closing as a result of which CONN_CLOSING 13187 * is set. Return. 13188 */ 13189 mutex_exit(&connp->conn_lock); 13190 return; 13191 } else if (connp->conn_idl == NULL) { 13192 /* 13193 * Assign the next drain list round robin. We dont' use 13194 * a lock, and thus it may not be strictly round robin. 13195 * Atomicity of load/stores is enough to make sure that 13196 * conn_drain_list_index is always within bounds. 13197 */ 13198 index = tx_list->txl_drain_index; 13199 ASSERT(index < ipst->ips_conn_drain_list_cnt); 13200 connp->conn_idl = &tx_list->txl_drain_list[index]; 13201 index++; 13202 if (index == ipst->ips_conn_drain_list_cnt) 13203 index = 0; 13204 tx_list->txl_drain_index = index; 13205 } else { 13206 ASSERT(connp->conn_idl->idl_itl == tx_list); 13207 } 13208 mutex_exit(&connp->conn_lock); 13209 13210 idl = connp->conn_idl; 13211 mutex_enter(&idl->idl_lock); 13212 if ((connp->conn_drain_prev != NULL) || 13213 (connp->conn_state_flags & CONN_CLOSING)) { 13214 /* 13215 * The conn is either already in the drain list or closing. 13216 * (We needed to check for CONN_CLOSING again since close can 13217 * sneak in between dropping conn_lock and acquiring idl_lock.) 13218 */ 13219 mutex_exit(&idl->idl_lock); 13220 return; 13221 } 13222 13223 /* 13224 * The conn is not in the drain list. Insert it at the 13225 * tail of the drain list. The drain list is circular 13226 * and doubly linked. idl_conn points to the 1st element 13227 * in the list. 13228 */ 13229 if (idl->idl_conn == NULL) { 13230 idl->idl_conn = connp; 13231 connp->conn_drain_next = connp; 13232 connp->conn_drain_prev = connp; 13233 } else { 13234 conn_t *head = idl->idl_conn; 13235 13236 connp->conn_drain_next = head; 13237 connp->conn_drain_prev = head->conn_drain_prev; 13238 head->conn_drain_prev->conn_drain_next = connp; 13239 head->conn_drain_prev = connp; 13240 } 13241 /* 13242 * For non streams based sockets assert flow control. 13243 */ 13244 conn_setqfull(connp, NULL); 13245 mutex_exit(&idl->idl_lock); 13246 } 13247 13248 static void 13249 conn_drain_remove(conn_t *connp) 13250 { 13251 idl_t *idl = connp->conn_idl; 13252 13253 if (idl != NULL) { 13254 /* 13255 * Remove ourself from the drain list. 13256 */ 13257 if (connp->conn_drain_next == connp) { 13258 /* Singleton in the list */ 13259 ASSERT(connp->conn_drain_prev == connp); 13260 idl->idl_conn = NULL; 13261 } else { 13262 connp->conn_drain_prev->conn_drain_next = 13263 connp->conn_drain_next; 13264 connp->conn_drain_next->conn_drain_prev = 13265 connp->conn_drain_prev; 13266 if (idl->idl_conn == connp) 13267 idl->idl_conn = connp->conn_drain_next; 13268 } 13269 13270 /* 13271 * NOTE: because conn_idl is associated with a specific drain 13272 * list which in turn is tied to the index the TX ring 13273 * (txl_cookie) hashes to, and because the TX ring can change 13274 * over the lifetime of the conn_t, we must clear conn_idl so 13275 * a subsequent conn_drain_insert() will set conn_idl again 13276 * based on the latest txl_cookie. 13277 */ 13278 connp->conn_idl = NULL; 13279 } 13280 connp->conn_drain_next = NULL; 13281 connp->conn_drain_prev = NULL; 13282 13283 conn_clrqfull(connp, NULL); 13284 /* 13285 * For streams based sockets open up flow control. 13286 */ 13287 if (!IPCL_IS_NONSTR(connp)) 13288 enableok(connp->conn_wq); 13289 } 13290 13291 /* 13292 * This conn is closing, and we are called from ip_close. OR 13293 * this conn is draining because flow-control on the ill has been relieved. 13294 * 13295 * We must also need to remove conn's on this idl from the list, and also 13296 * inform the sockfs upcalls about the change in flow-control. 13297 */ 13298 static void 13299 conn_drain(conn_t *connp, boolean_t closing) 13300 { 13301 idl_t *idl; 13302 conn_t *next_connp; 13303 13304 /* 13305 * connp->conn_idl is stable at this point, and no lock is needed 13306 * to check it. If we are called from ip_close, close has already 13307 * set CONN_CLOSING, thus freezing the value of conn_idl, and 13308 * called us only because conn_idl is non-null. If we are called thru 13309 * service, conn_idl could be null, but it cannot change because 13310 * service is single-threaded per queue, and there cannot be another 13311 * instance of service trying to call conn_drain_insert on this conn 13312 * now. 13313 */ 13314 ASSERT(!closing || connp == NULL || connp->conn_idl != NULL); 13315 13316 /* 13317 * If the conn doesn't exist or is not on a drain list, bail. 13318 */ 13319 if (connp == NULL || connp->conn_idl == NULL || 13320 connp->conn_drain_prev == NULL) { 13321 return; 13322 } 13323 13324 idl = connp->conn_idl; 13325 ASSERT(MUTEX_HELD(&idl->idl_lock)); 13326 13327 if (!closing) { 13328 next_connp = connp->conn_drain_next; 13329 while (next_connp != connp) { 13330 conn_t *delconnp = next_connp; 13331 13332 next_connp = next_connp->conn_drain_next; 13333 conn_drain_remove(delconnp); 13334 } 13335 ASSERT(connp->conn_drain_next == idl->idl_conn); 13336 } 13337 conn_drain_remove(connp); 13338 } 13339 13340 /* 13341 * Write service routine. Shared perimeter entry point. 13342 * The device queue's messages has fallen below the low water mark and STREAMS 13343 * has backenabled the ill_wq. Send sockfs notification about flow-control on 13344 * each waiting conn. 13345 */ 13346 void 13347 ip_wsrv(queue_t *q) 13348 { 13349 ill_t *ill; 13350 13351 ill = (ill_t *)q->q_ptr; 13352 if (ill->ill_state_flags == 0) { 13353 ip_stack_t *ipst = ill->ill_ipst; 13354 13355 /* 13356 * The device flow control has opened up. 13357 * Walk through conn drain lists and qenable the 13358 * first conn in each list. This makes sense only 13359 * if the stream is fully plumbed and setup. 13360 * Hence the ill_state_flags check above. 13361 */ 13362 ip1dbg(("ip_wsrv: walking\n")); 13363 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]); 13364 enableok(ill->ill_wq); 13365 } 13366 } 13367 13368 /* 13369 * Callback to disable flow control in IP. 13370 * 13371 * This is a mac client callback added when the DLD_CAPAB_DIRECT capability 13372 * is enabled. 13373 * 13374 * When MAC_TX() is not able to send any more packets, dld sets its queue 13375 * to QFULL and enable the STREAMS flow control. Later, when the underlying 13376 * driver is able to continue to send packets, it calls mac_tx_(ring_)update() 13377 * function and wakes up corresponding mac worker threads, which in turn 13378 * calls this callback function, and disables flow control. 13379 */ 13380 void 13381 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie) 13382 { 13383 ill_t *ill = (ill_t *)arg; 13384 ip_stack_t *ipst = ill->ill_ipst; 13385 idl_tx_list_t *idl_txl; 13386 13387 idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)]; 13388 mutex_enter(&idl_txl->txl_lock); 13389 /* add code to to set a flag to indicate idl_txl is enabled */ 13390 conn_walk_drain(ipst, idl_txl); 13391 mutex_exit(&idl_txl->txl_lock); 13392 } 13393 13394 /* 13395 * Flow control has been relieved and STREAMS has backenabled us; drain 13396 * all the conn lists on `tx_list'. 13397 */ 13398 static void 13399 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list) 13400 { 13401 int i; 13402 idl_t *idl; 13403 13404 IP_STAT(ipst, ip_conn_walk_drain); 13405 13406 for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) { 13407 idl = &tx_list->txl_drain_list[i]; 13408 mutex_enter(&idl->idl_lock); 13409 conn_drain(idl->idl_conn, B_FALSE); 13410 mutex_exit(&idl->idl_lock); 13411 } 13412 } 13413 13414 /* 13415 * Determine if the ill and multicast aspects of that packets 13416 * "matches" the conn. 13417 */ 13418 boolean_t 13419 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha) 13420 { 13421 ill_t *ill = ira->ira_rill; 13422 zoneid_t zoneid = ira->ira_zoneid; 13423 uint_t in_ifindex; 13424 ipaddr_t dst, src; 13425 13426 dst = ipha->ipha_dst; 13427 src = ipha->ipha_src; 13428 13429 /* 13430 * conn_incoming_ifindex is set by IP_BOUND_IF which limits 13431 * unicast, broadcast and multicast reception to 13432 * conn_incoming_ifindex. 13433 * conn_wantpacket is called for unicast, broadcast and 13434 * multicast packets. 13435 */ 13436 in_ifindex = connp->conn_incoming_ifindex; 13437 13438 /* mpathd can bind to the under IPMP interface, which we allow */ 13439 if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) { 13440 if (!IS_UNDER_IPMP(ill)) 13441 return (B_FALSE); 13442 13443 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill)) 13444 return (B_FALSE); 13445 } 13446 13447 if (!IPCL_ZONE_MATCH(connp, zoneid)) 13448 return (B_FALSE); 13449 13450 if (!(ira->ira_flags & IRAF_MULTICAST)) 13451 return (B_TRUE); 13452 13453 if (connp->conn_multi_router) { 13454 /* multicast packet and multicast router socket: send up */ 13455 return (B_TRUE); 13456 } 13457 13458 if (ipha->ipha_protocol == IPPROTO_PIM || 13459 ipha->ipha_protocol == IPPROTO_RSVP) 13460 return (B_TRUE); 13461 13462 return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill)); 13463 } 13464 13465 void 13466 conn_setqfull(conn_t *connp, boolean_t *flow_stopped) 13467 { 13468 if (IPCL_IS_NONSTR(connp)) { 13469 (*connp->conn_upcalls->su_txq_full) 13470 (connp->conn_upper_handle, B_TRUE); 13471 if (flow_stopped != NULL) 13472 *flow_stopped = B_TRUE; 13473 } else { 13474 queue_t *q = connp->conn_wq; 13475 13476 ASSERT(q != NULL); 13477 if (!(q->q_flag & QFULL)) { 13478 mutex_enter(QLOCK(q)); 13479 if (!(q->q_flag & QFULL)) { 13480 /* still need to set QFULL */ 13481 q->q_flag |= QFULL; 13482 /* set flow_stopped to true under QLOCK */ 13483 if (flow_stopped != NULL) 13484 *flow_stopped = B_TRUE; 13485 mutex_exit(QLOCK(q)); 13486 } else { 13487 /* flow_stopped is left unchanged */ 13488 mutex_exit(QLOCK(q)); 13489 } 13490 } 13491 } 13492 } 13493 13494 void 13495 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped) 13496 { 13497 if (IPCL_IS_NONSTR(connp)) { 13498 (*connp->conn_upcalls->su_txq_full) 13499 (connp->conn_upper_handle, B_FALSE); 13500 if (flow_stopped != NULL) 13501 *flow_stopped = B_FALSE; 13502 } else { 13503 queue_t *q = connp->conn_wq; 13504 13505 ASSERT(q != NULL); 13506 if (q->q_flag & QFULL) { 13507 mutex_enter(QLOCK(q)); 13508 if (q->q_flag & QFULL) { 13509 q->q_flag &= ~QFULL; 13510 /* set flow_stopped to false under QLOCK */ 13511 if (flow_stopped != NULL) 13512 *flow_stopped = B_FALSE; 13513 mutex_exit(QLOCK(q)); 13514 if (q->q_flag & QWANTW) 13515 qbackenable(q, 0); 13516 } else { 13517 /* flow_stopped is left unchanged */ 13518 mutex_exit(QLOCK(q)); 13519 } 13520 } 13521 } 13522 13523 mutex_enter(&connp->conn_lock); 13524 connp->conn_blocked = B_FALSE; 13525 mutex_exit(&connp->conn_lock); 13526 } 13527 13528 /* 13529 * Return the length in bytes of the IPv4 headers (base header, label, and 13530 * other IP options) that will be needed based on the 13531 * ip_pkt_t structure passed by the caller. 13532 * 13533 * The returned length does not include the length of the upper level 13534 * protocol (ULP) header. 13535 * The caller needs to check that the length doesn't exceed the max for IPv4. 13536 */ 13537 int 13538 ip_total_hdrs_len_v4(const ip_pkt_t *ipp) 13539 { 13540 int len; 13541 13542 len = IP_SIMPLE_HDR_LENGTH; 13543 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13544 ASSERT(ipp->ipp_label_len_v4 != 0); 13545 /* We need to round up here */ 13546 len += (ipp->ipp_label_len_v4 + 3) & ~3; 13547 } 13548 13549 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13550 ASSERT(ipp->ipp_ipv4_options_len != 0); 13551 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13552 len += ipp->ipp_ipv4_options_len; 13553 } 13554 return (len); 13555 } 13556 13557 /* 13558 * All-purpose routine to build an IPv4 header with options based 13559 * on the abstract ip_pkt_t. 13560 * 13561 * The caller has to set the source and destination address as well as 13562 * ipha_length. The caller has to massage any source route and compensate 13563 * for the ULP pseudo-header checksum due to the source route. 13564 */ 13565 void 13566 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp, 13567 uint8_t protocol) 13568 { 13569 ipha_t *ipha = (ipha_t *)buf; 13570 uint8_t *cp; 13571 13572 /* Initialize IPv4 header */ 13573 ipha->ipha_type_of_service = ipp->ipp_type_of_service; 13574 ipha->ipha_length = 0; /* Caller will set later */ 13575 ipha->ipha_ident = 0; 13576 ipha->ipha_fragment_offset_and_flags = 0; 13577 ipha->ipha_ttl = ipp->ipp_unicast_hops; 13578 ipha->ipha_protocol = protocol; 13579 ipha->ipha_hdr_checksum = 0; 13580 13581 if ((ipp->ipp_fields & IPPF_ADDR) && 13582 IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr)) 13583 ipha->ipha_src = ipp->ipp_addr_v4; 13584 13585 cp = (uint8_t *)&ipha[1]; 13586 if (ipp->ipp_fields & IPPF_LABEL_V4) { 13587 ASSERT(ipp->ipp_label_len_v4 != 0); 13588 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4); 13589 cp += ipp->ipp_label_len_v4; 13590 /* We need to round up here */ 13591 while ((uintptr_t)cp & 0x3) { 13592 *cp++ = IPOPT_NOP; 13593 } 13594 } 13595 13596 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) { 13597 ASSERT(ipp->ipp_ipv4_options_len != 0); 13598 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0); 13599 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len); 13600 cp += ipp->ipp_ipv4_options_len; 13601 } 13602 ipha->ipha_version_and_hdr_length = 13603 (uint8_t)((IP_VERSION << 4) + buf_len / 4); 13604 13605 ASSERT((int)(cp - buf) == buf_len); 13606 } 13607 13608 /* Allocate the private structure */ 13609 static int 13610 ip_priv_alloc(void **bufp) 13611 { 13612 void *buf; 13613 13614 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 13615 return (ENOMEM); 13616 13617 *bufp = buf; 13618 return (0); 13619 } 13620 13621 /* Function to delete the private structure */ 13622 void 13623 ip_priv_free(void *buf) 13624 { 13625 ASSERT(buf != NULL); 13626 kmem_free(buf, sizeof (ip_priv_t)); 13627 } 13628 13629 /* 13630 * The entry point for IPPF processing. 13631 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 13632 * routine just returns. 13633 * 13634 * When called, ip_process generates an ipp_packet_t structure 13635 * which holds the state information for this packet and invokes the 13636 * the classifier (via ipp_packet_process). The classification, depending on 13637 * configured filters, results in a list of actions for this packet. Invoking 13638 * an action may cause the packet to be dropped, in which case we return NULL. 13639 * proc indicates the callout position for 13640 * this packet and ill is the interface this packet arrived on or will leave 13641 * on (inbound and outbound resp.). 13642 * 13643 * We do the processing on the rill (mapped to the upper if ipmp), but MIB 13644 * on the ill corrsponding to the destination IP address. 13645 */ 13646 mblk_t * 13647 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill) 13648 { 13649 ip_priv_t *priv; 13650 ipp_action_id_t aid; 13651 int rc = 0; 13652 ipp_packet_t *pp; 13653 13654 /* If the classifier is not loaded, return */ 13655 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 13656 return (mp); 13657 } 13658 13659 ASSERT(mp != NULL); 13660 13661 /* Allocate the packet structure */ 13662 rc = ipp_packet_alloc(&pp, "ip", aid); 13663 if (rc != 0) 13664 goto drop; 13665 13666 /* Allocate the private structure */ 13667 rc = ip_priv_alloc((void **)&priv); 13668 if (rc != 0) { 13669 ipp_packet_free(pp); 13670 goto drop; 13671 } 13672 priv->proc = proc; 13673 priv->ill_index = ill_get_upper_ifindex(rill); 13674 13675 ipp_packet_set_private(pp, priv, ip_priv_free); 13676 ipp_packet_set_data(pp, mp); 13677 13678 /* Invoke the classifier */ 13679 rc = ipp_packet_process(&pp); 13680 if (pp != NULL) { 13681 mp = ipp_packet_get_data(pp); 13682 ipp_packet_free(pp); 13683 if (rc != 0) 13684 goto drop; 13685 return (mp); 13686 } else { 13687 /* No mp to trace in ip_drop_input/ip_drop_output */ 13688 mp = NULL; 13689 } 13690 drop: 13691 if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) { 13692 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13693 ip_drop_input("ip_process", mp, ill); 13694 } else { 13695 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13696 ip_drop_output("ip_process", mp, ill); 13697 } 13698 freemsg(mp); 13699 return (NULL); 13700 } 13701 13702 /* 13703 * Propagate a multicast group membership operation (add/drop) on 13704 * all the interfaces crossed by the related multirt routes. 13705 * The call is considered successful if the operation succeeds 13706 * on at least one interface. 13707 * 13708 * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the 13709 * multicast addresses with the ire argument being the first one. 13710 * We walk the bucket to find all the of those. 13711 * 13712 * Common to IPv4 and IPv6. 13713 */ 13714 static int 13715 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 13716 const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *), 13717 ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group, 13718 mcast_record_t fmode, const in6_addr_t *v6src) 13719 { 13720 ire_t *ire_gw; 13721 irb_t *irb; 13722 int ifindex; 13723 int error = 0; 13724 int result; 13725 ip_stack_t *ipst = ire->ire_ipst; 13726 ipaddr_t group; 13727 boolean_t isv6; 13728 int match_flags; 13729 13730 if (IN6_IS_ADDR_V4MAPPED(v6group)) { 13731 IN6_V4MAPPED_TO_IPADDR(v6group, group); 13732 isv6 = B_FALSE; 13733 } else { 13734 isv6 = B_TRUE; 13735 } 13736 13737 irb = ire->ire_bucket; 13738 ASSERT(irb != NULL); 13739 13740 result = 0; 13741 irb_refhold(irb); 13742 for (; ire != NULL; ire = ire->ire_next) { 13743 if ((ire->ire_flags & RTF_MULTIRT) == 0) 13744 continue; 13745 13746 /* We handle -ifp routes by matching on the ill if set */ 13747 match_flags = MATCH_IRE_TYPE; 13748 if (ire->ire_ill != NULL) 13749 match_flags |= MATCH_IRE_ILL; 13750 13751 if (isv6) { 13752 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group)) 13753 continue; 13754 13755 ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6, 13756 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13757 match_flags, 0, ipst, NULL); 13758 } else { 13759 if (ire->ire_addr != group) 13760 continue; 13761 13762 ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr, 13763 0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL, 13764 match_flags, 0, ipst, NULL); 13765 } 13766 /* No interface route exists for the gateway; skip this ire. */ 13767 if (ire_gw == NULL) 13768 continue; 13769 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 13770 ire_refrele(ire_gw); 13771 continue; 13772 } 13773 ASSERT(ire_gw->ire_ill != NULL); /* IRE_INTERFACE */ 13774 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex; 13775 13776 /* 13777 * The operation is considered a success if 13778 * it succeeds at least once on any one interface. 13779 */ 13780 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex, 13781 fmode, v6src); 13782 if (error == 0) 13783 result = CGTP_MCAST_SUCCESS; 13784 13785 ire_refrele(ire_gw); 13786 } 13787 irb_refrele(irb); 13788 /* 13789 * Consider the call as successful if we succeeded on at least 13790 * one interface. Otherwise, return the last encountered error. 13791 */ 13792 return (result == CGTP_MCAST_SUCCESS ? 0 : error); 13793 } 13794 13795 /* 13796 * Return the expected CGTP hooks version number. 13797 */ 13798 int 13799 ip_cgtp_filter_supported(void) 13800 { 13801 return (ip_cgtp_filter_rev); 13802 } 13803 13804 /* 13805 * CGTP hooks can be registered by invoking this function. 13806 * Checks that the version number matches. 13807 */ 13808 int 13809 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops) 13810 { 13811 netstack_t *ns; 13812 ip_stack_t *ipst; 13813 13814 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 13815 return (ENOTSUP); 13816 13817 ns = netstack_find_by_stackid(stackid); 13818 if (ns == NULL) 13819 return (EINVAL); 13820 ipst = ns->netstack_ip; 13821 ASSERT(ipst != NULL); 13822 13823 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 13824 netstack_rele(ns); 13825 return (EALREADY); 13826 } 13827 13828 ipst->ips_ip_cgtp_filter_ops = ops; 13829 13830 ill_set_inputfn_all(ipst); 13831 13832 netstack_rele(ns); 13833 return (0); 13834 } 13835 13836 /* 13837 * CGTP hooks can be unregistered by invoking this function. 13838 * Returns ENXIO if there was no registration. 13839 * Returns EBUSY if the ndd variable has not been turned off. 13840 */ 13841 int 13842 ip_cgtp_filter_unregister(netstackid_t stackid) 13843 { 13844 netstack_t *ns; 13845 ip_stack_t *ipst; 13846 13847 ns = netstack_find_by_stackid(stackid); 13848 if (ns == NULL) 13849 return (EINVAL); 13850 ipst = ns->netstack_ip; 13851 ASSERT(ipst != NULL); 13852 13853 if (ipst->ips_ip_cgtp_filter) { 13854 netstack_rele(ns); 13855 return (EBUSY); 13856 } 13857 13858 if (ipst->ips_ip_cgtp_filter_ops == NULL) { 13859 netstack_rele(ns); 13860 return (ENXIO); 13861 } 13862 ipst->ips_ip_cgtp_filter_ops = NULL; 13863 13864 ill_set_inputfn_all(ipst); 13865 13866 netstack_rele(ns); 13867 return (0); 13868 } 13869 13870 /* 13871 * Check whether there is a CGTP filter registration. 13872 * Returns non-zero if there is a registration, otherwise returns zero. 13873 * Note: returns zero if bad stackid. 13874 */ 13875 int 13876 ip_cgtp_filter_is_registered(netstackid_t stackid) 13877 { 13878 netstack_t *ns; 13879 ip_stack_t *ipst; 13880 int ret; 13881 13882 ns = netstack_find_by_stackid(stackid); 13883 if (ns == NULL) 13884 return (0); 13885 ipst = ns->netstack_ip; 13886 ASSERT(ipst != NULL); 13887 13888 if (ipst->ips_ip_cgtp_filter_ops != NULL) 13889 ret = 1; 13890 else 13891 ret = 0; 13892 13893 netstack_rele(ns); 13894 return (ret); 13895 } 13896 13897 static int 13898 ip_squeue_switch(int val) 13899 { 13900 int rval; 13901 13902 switch (val) { 13903 case IP_SQUEUE_ENTER_NODRAIN: 13904 rval = SQ_NODRAIN; 13905 break; 13906 case IP_SQUEUE_ENTER: 13907 rval = SQ_PROCESS; 13908 break; 13909 case IP_SQUEUE_FILL: 13910 default: 13911 rval = SQ_FILL; 13912 break; 13913 } 13914 return (rval); 13915 } 13916 13917 static void * 13918 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp) 13919 { 13920 kstat_t *ksp; 13921 13922 ip_stat_t template = { 13923 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 13924 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 13925 { "ip_recv_pullup", KSTAT_DATA_UINT64 }, 13926 { "ip_db_ref", KSTAT_DATA_UINT64 }, 13927 { "ip_notaligned", KSTAT_DATA_UINT64 }, 13928 { "ip_multimblk", KSTAT_DATA_UINT64 }, 13929 { "ip_opt", KSTAT_DATA_UINT64 }, 13930 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 13931 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 13932 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 13933 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 13934 { "ip_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 13935 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 13936 { "ip_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 13937 { "ip_ire_reclaim_deleted", KSTAT_DATA_UINT64 }, 13938 { "ip_nce_reclaim_calls", KSTAT_DATA_UINT64 }, 13939 { "ip_nce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13940 { "ip_dce_reclaim_calls", KSTAT_DATA_UINT64 }, 13941 { "ip_dce_reclaim_deleted", KSTAT_DATA_UINT64 }, 13942 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13943 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13944 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13945 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 13946 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 13947 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 13948 { "conn_in_recvdstaddr", KSTAT_DATA_UINT64 }, 13949 { "conn_in_recvopts", KSTAT_DATA_UINT64 }, 13950 { "conn_in_recvif", KSTAT_DATA_UINT64 }, 13951 { "conn_in_recvslla", KSTAT_DATA_UINT64 }, 13952 { "conn_in_recvucred", KSTAT_DATA_UINT64 }, 13953 { "conn_in_recvttl", KSTAT_DATA_UINT64 }, 13954 { "conn_in_recvhopopts", KSTAT_DATA_UINT64 }, 13955 { "conn_in_recvhoplimit", KSTAT_DATA_UINT64 }, 13956 { "conn_in_recvdstopts", KSTAT_DATA_UINT64 }, 13957 { "conn_in_recvrthdrdstopts", KSTAT_DATA_UINT64 }, 13958 { "conn_in_recvrthdr", KSTAT_DATA_UINT64 }, 13959 { "conn_in_recvpktinfo", KSTAT_DATA_UINT64 }, 13960 { "conn_in_recvtclass", KSTAT_DATA_UINT64 }, 13961 { "conn_in_timestamp", KSTAT_DATA_UINT64 }, 13962 }; 13963 13964 ksp = kstat_create_netstack("ip", 0, "ipstat", "net", 13965 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 13966 KSTAT_FLAG_VIRTUAL, stackid); 13967 13968 if (ksp == NULL) 13969 return (NULL); 13970 13971 bcopy(&template, ip_statisticsp, sizeof (template)); 13972 ksp->ks_data = (void *)ip_statisticsp; 13973 ksp->ks_private = (void *)(uintptr_t)stackid; 13974 13975 kstat_install(ksp); 13976 return (ksp); 13977 } 13978 13979 static void 13980 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 13981 { 13982 if (ksp != NULL) { 13983 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 13984 kstat_delete_netstack(ksp, stackid); 13985 } 13986 } 13987 13988 static void * 13989 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst) 13990 { 13991 kstat_t *ksp; 13992 13993 ip_named_kstat_t template = { 13994 { "forwarding", KSTAT_DATA_UINT32, 0 }, 13995 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 13996 { "inReceives", KSTAT_DATA_UINT64, 0 }, 13997 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 13998 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 13999 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 14000 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 14001 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 14002 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 14003 { "outRequests", KSTAT_DATA_UINT64, 0 }, 14004 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 14005 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 14006 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 14007 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 14008 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 14009 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 14010 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 14011 { "fragFails", KSTAT_DATA_UINT32, 0 }, 14012 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 14013 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 14014 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 14015 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 14016 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 14017 { "inErrs", KSTAT_DATA_UINT32, 0 }, 14018 { "noPorts", KSTAT_DATA_UINT32, 0 }, 14019 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 14020 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 14021 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 14022 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 14023 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 14024 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 14025 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 14026 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 14027 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 14028 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 14029 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 14030 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 14031 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 14032 }; 14033 14034 ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 14035 NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid); 14036 if (ksp == NULL || ksp->ks_data == NULL) 14037 return (NULL); 14038 14039 template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2; 14040 template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl; 14041 template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14042 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 14043 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 14044 14045 template.netToMediaEntrySize.value.i32 = 14046 sizeof (mib2_ipNetToMediaEntry_t); 14047 14048 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 14049 14050 bcopy(&template, ksp->ks_data, sizeof (template)); 14051 ksp->ks_update = ip_kstat_update; 14052 ksp->ks_private = (void *)(uintptr_t)stackid; 14053 14054 kstat_install(ksp); 14055 return (ksp); 14056 } 14057 14058 static void 14059 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14060 { 14061 if (ksp != NULL) { 14062 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14063 kstat_delete_netstack(ksp, stackid); 14064 } 14065 } 14066 14067 static int 14068 ip_kstat_update(kstat_t *kp, int rw) 14069 { 14070 ip_named_kstat_t *ipkp; 14071 mib2_ipIfStatsEntry_t ipmib; 14072 ill_walk_context_t ctx; 14073 ill_t *ill; 14074 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14075 netstack_t *ns; 14076 ip_stack_t *ipst; 14077 14078 if (kp == NULL || kp->ks_data == NULL) 14079 return (EIO); 14080 14081 if (rw == KSTAT_WRITE) 14082 return (EACCES); 14083 14084 ns = netstack_find_by_stackid(stackid); 14085 if (ns == NULL) 14086 return (-1); 14087 ipst = ns->netstack_ip; 14088 if (ipst == NULL) { 14089 netstack_rele(ns); 14090 return (-1); 14091 } 14092 ipkp = (ip_named_kstat_t *)kp->ks_data; 14093 14094 bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib)); 14095 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14096 ill = ILL_START_WALK_V4(&ctx, ipst); 14097 for (; ill != NULL; ill = ill_next(&ctx, ill)) 14098 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 14099 rw_exit(&ipst->ips_ill_g_lock); 14100 14101 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 14102 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 14103 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 14104 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 14105 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 14106 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 14107 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 14108 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 14109 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 14110 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 14111 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 14112 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 14113 ipkp->reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout; 14114 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 14115 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 14116 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 14117 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 14118 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 14119 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 14120 14121 ipkp->routingDiscards.value.ui32 = 0; 14122 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 14123 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 14124 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 14125 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 14126 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 14127 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 14128 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 14129 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 14130 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 14131 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 14132 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 14133 14134 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 14135 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 14136 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 14137 14138 netstack_rele(ns); 14139 14140 return (0); 14141 } 14142 14143 static void * 14144 icmp_kstat_init(netstackid_t stackid) 14145 { 14146 kstat_t *ksp; 14147 14148 icmp_named_kstat_t template = { 14149 { "inMsgs", KSTAT_DATA_UINT32 }, 14150 { "inErrors", KSTAT_DATA_UINT32 }, 14151 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 14152 { "inTimeExcds", KSTAT_DATA_UINT32 }, 14153 { "inParmProbs", KSTAT_DATA_UINT32 }, 14154 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 14155 { "inRedirects", KSTAT_DATA_UINT32 }, 14156 { "inEchos", KSTAT_DATA_UINT32 }, 14157 { "inEchoReps", KSTAT_DATA_UINT32 }, 14158 { "inTimestamps", KSTAT_DATA_UINT32 }, 14159 { "inTimestampReps", KSTAT_DATA_UINT32 }, 14160 { "inAddrMasks", KSTAT_DATA_UINT32 }, 14161 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 14162 { "outMsgs", KSTAT_DATA_UINT32 }, 14163 { "outErrors", KSTAT_DATA_UINT32 }, 14164 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 14165 { "outTimeExcds", KSTAT_DATA_UINT32 }, 14166 { "outParmProbs", KSTAT_DATA_UINT32 }, 14167 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 14168 { "outRedirects", KSTAT_DATA_UINT32 }, 14169 { "outEchos", KSTAT_DATA_UINT32 }, 14170 { "outEchoReps", KSTAT_DATA_UINT32 }, 14171 { "outTimestamps", KSTAT_DATA_UINT32 }, 14172 { "outTimestampReps", KSTAT_DATA_UINT32 }, 14173 { "outAddrMasks", KSTAT_DATA_UINT32 }, 14174 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 14175 { "inChksumErrs", KSTAT_DATA_UINT32 }, 14176 { "inUnknowns", KSTAT_DATA_UINT32 }, 14177 { "inFragNeeded", KSTAT_DATA_UINT32 }, 14178 { "outFragNeeded", KSTAT_DATA_UINT32 }, 14179 { "outDrops", KSTAT_DATA_UINT32 }, 14180 { "inOverFlows", KSTAT_DATA_UINT32 }, 14181 { "inBadRedirects", KSTAT_DATA_UINT32 }, 14182 }; 14183 14184 ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 14185 NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid); 14186 if (ksp == NULL || ksp->ks_data == NULL) 14187 return (NULL); 14188 14189 bcopy(&template, ksp->ks_data, sizeof (template)); 14190 14191 ksp->ks_update = icmp_kstat_update; 14192 ksp->ks_private = (void *)(uintptr_t)stackid; 14193 14194 kstat_install(ksp); 14195 return (ksp); 14196 } 14197 14198 static void 14199 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 14200 { 14201 if (ksp != NULL) { 14202 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 14203 kstat_delete_netstack(ksp, stackid); 14204 } 14205 } 14206 14207 static int 14208 icmp_kstat_update(kstat_t *kp, int rw) 14209 { 14210 icmp_named_kstat_t *icmpkp; 14211 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private; 14212 netstack_t *ns; 14213 ip_stack_t *ipst; 14214 14215 if ((kp == NULL) || (kp->ks_data == NULL)) 14216 return (EIO); 14217 14218 if (rw == KSTAT_WRITE) 14219 return (EACCES); 14220 14221 ns = netstack_find_by_stackid(stackid); 14222 if (ns == NULL) 14223 return (-1); 14224 ipst = ns->netstack_ip; 14225 if (ipst == NULL) { 14226 netstack_rele(ns); 14227 return (-1); 14228 } 14229 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 14230 14231 icmpkp->inMsgs.value.ui32 = ipst->ips_icmp_mib.icmpInMsgs; 14232 icmpkp->inErrors.value.ui32 = ipst->ips_icmp_mib.icmpInErrors; 14233 icmpkp->inDestUnreachs.value.ui32 = 14234 ipst->ips_icmp_mib.icmpInDestUnreachs; 14235 icmpkp->inTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpInTimeExcds; 14236 icmpkp->inParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpInParmProbs; 14237 icmpkp->inSrcQuenchs.value.ui32 = ipst->ips_icmp_mib.icmpInSrcQuenchs; 14238 icmpkp->inRedirects.value.ui32 = ipst->ips_icmp_mib.icmpInRedirects; 14239 icmpkp->inEchos.value.ui32 = ipst->ips_icmp_mib.icmpInEchos; 14240 icmpkp->inEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpInEchoReps; 14241 icmpkp->inTimestamps.value.ui32 = ipst->ips_icmp_mib.icmpInTimestamps; 14242 icmpkp->inTimestampReps.value.ui32 = 14243 ipst->ips_icmp_mib.icmpInTimestampReps; 14244 icmpkp->inAddrMasks.value.ui32 = ipst->ips_icmp_mib.icmpInAddrMasks; 14245 icmpkp->inAddrMaskReps.value.ui32 = 14246 ipst->ips_icmp_mib.icmpInAddrMaskReps; 14247 icmpkp->outMsgs.value.ui32 = ipst->ips_icmp_mib.icmpOutMsgs; 14248 icmpkp->outErrors.value.ui32 = ipst->ips_icmp_mib.icmpOutErrors; 14249 icmpkp->outDestUnreachs.value.ui32 = 14250 ipst->ips_icmp_mib.icmpOutDestUnreachs; 14251 icmpkp->outTimeExcds.value.ui32 = ipst->ips_icmp_mib.icmpOutTimeExcds; 14252 icmpkp->outParmProbs.value.ui32 = ipst->ips_icmp_mib.icmpOutParmProbs; 14253 icmpkp->outSrcQuenchs.value.ui32 = 14254 ipst->ips_icmp_mib.icmpOutSrcQuenchs; 14255 icmpkp->outRedirects.value.ui32 = ipst->ips_icmp_mib.icmpOutRedirects; 14256 icmpkp->outEchos.value.ui32 = ipst->ips_icmp_mib.icmpOutEchos; 14257 icmpkp->outEchoReps.value.ui32 = ipst->ips_icmp_mib.icmpOutEchoReps; 14258 icmpkp->outTimestamps.value.ui32 = 14259 ipst->ips_icmp_mib.icmpOutTimestamps; 14260 icmpkp->outTimestampReps.value.ui32 = 14261 ipst->ips_icmp_mib.icmpOutTimestampReps; 14262 icmpkp->outAddrMasks.value.ui32 = 14263 ipst->ips_icmp_mib.icmpOutAddrMasks; 14264 icmpkp->outAddrMaskReps.value.ui32 = 14265 ipst->ips_icmp_mib.icmpOutAddrMaskReps; 14266 icmpkp->inCksumErrs.value.ui32 = ipst->ips_icmp_mib.icmpInCksumErrs; 14267 icmpkp->inUnknowns.value.ui32 = ipst->ips_icmp_mib.icmpInUnknowns; 14268 icmpkp->inFragNeeded.value.ui32 = ipst->ips_icmp_mib.icmpInFragNeeded; 14269 icmpkp->outFragNeeded.value.ui32 = 14270 ipst->ips_icmp_mib.icmpOutFragNeeded; 14271 icmpkp->outDrops.value.ui32 = ipst->ips_icmp_mib.icmpOutDrops; 14272 icmpkp->inOverflows.value.ui32 = ipst->ips_icmp_mib.icmpInOverflows; 14273 icmpkp->inBadRedirects.value.ui32 = 14274 ipst->ips_icmp_mib.icmpInBadRedirects; 14275 14276 netstack_rele(ns); 14277 return (0); 14278 } 14279 14280 /* 14281 * This is the fanout function for raw socket opened for SCTP. Note 14282 * that it is called after SCTP checks that there is no socket which 14283 * wants a packet. Then before SCTP handles this out of the blue packet, 14284 * this function is called to see if there is any raw socket for SCTP. 14285 * If there is and it is bound to the correct address, the packet will 14286 * be sent to that socket. Note that only one raw socket can be bound to 14287 * a port. This is assured in ipcl_sctp_hash_insert(); 14288 */ 14289 void 14290 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports, 14291 ip_recv_attr_t *ira) 14292 { 14293 conn_t *connp; 14294 queue_t *rq; 14295 boolean_t secure; 14296 ill_t *ill = ira->ira_ill; 14297 ip_stack_t *ipst = ill->ill_ipst; 14298 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 14299 sctp_stack_t *sctps = ipst->ips_netstack->netstack_sctp; 14300 iaflags_t iraflags = ira->ira_flags; 14301 ill_t *rill = ira->ira_rill; 14302 14303 secure = iraflags & IRAF_IPSEC_SECURE; 14304 14305 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h, 14306 ira, ipst); 14307 if (connp == NULL) { 14308 /* 14309 * Although raw sctp is not summed, OOB chunks must be. 14310 * Drop the packet here if the sctp checksum failed. 14311 */ 14312 if (iraflags & IRAF_SCTP_CSUM_ERR) { 14313 SCTPS_BUMP_MIB(sctps, sctpChecksumError); 14314 freemsg(mp); 14315 return; 14316 } 14317 ira->ira_ill = ira->ira_rill = NULL; 14318 sctp_ootb_input(mp, ira, ipst); 14319 ira->ira_ill = ill; 14320 ira->ira_rill = rill; 14321 return; 14322 } 14323 rq = connp->conn_rq; 14324 if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) { 14325 CONN_DEC_REF(connp); 14326 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows); 14327 freemsg(mp); 14328 return; 14329 } 14330 if (((iraflags & IRAF_IS_IPV4) ? 14331 CONN_INBOUND_POLICY_PRESENT(connp, ipss) : 14332 CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || 14333 secure) { 14334 mp = ipsec_check_inbound_policy(mp, connp, ipha, 14335 ip6h, ira); 14336 if (mp == NULL) { 14337 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14338 /* Note that mp is NULL */ 14339 ip_drop_input("ipIfStatsInDiscards", mp, ill); 14340 CONN_DEC_REF(connp); 14341 return; 14342 } 14343 } 14344 14345 if (iraflags & IRAF_ICMP_ERROR) { 14346 (connp->conn_recvicmp)(connp, mp, NULL, ira); 14347 } else { 14348 ill_t *rill = ira->ira_rill; 14349 14350 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 14351 /* This is the SOCK_RAW, IPPROTO_SCTP case. */ 14352 ira->ira_ill = ira->ira_rill = NULL; 14353 (connp->conn_recv)(connp, mp, NULL, ira); 14354 ira->ira_ill = ill; 14355 ira->ira_rill = rill; 14356 } 14357 CONN_DEC_REF(connp); 14358 } 14359 14360 /* 14361 * Free a packet that has the link-layer dl_unitdata_req_t or fast-path 14362 * header before the ip payload. 14363 */ 14364 static void 14365 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len) 14366 { 14367 int len = (mp->b_wptr - mp->b_rptr); 14368 mblk_t *ip_mp; 14369 14370 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14371 if (is_fp_mp || len != fp_mp_len) { 14372 if (len > fp_mp_len) { 14373 /* 14374 * fastpath header and ip header in the first mblk 14375 */ 14376 mp->b_rptr += fp_mp_len; 14377 } else { 14378 /* 14379 * ip_xmit_attach_llhdr had to prepend an mblk to 14380 * attach the fastpath header before ip header. 14381 */ 14382 ip_mp = mp->b_cont; 14383 freeb(mp); 14384 mp = ip_mp; 14385 mp->b_rptr += (fp_mp_len - len); 14386 } 14387 } else { 14388 ip_mp = mp->b_cont; 14389 freeb(mp); 14390 mp = ip_mp; 14391 } 14392 ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill); 14393 freemsg(mp); 14394 } 14395 14396 /* 14397 * Normal post fragmentation function. 14398 * 14399 * Send a packet using the passed in nce. This handles both IPv4 and IPv6 14400 * using the same state machine. 14401 * 14402 * We return an error on failure. In particular we return EWOULDBLOCK 14403 * when the driver flow controls. In that case this ensures that ip_wsrv runs 14404 * (currently by canputnext failure resulting in backenabling from GLD.) 14405 * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an 14406 * indication that they can flow control until ip_wsrv() tells then to restart. 14407 * 14408 * If the nce passed by caller is incomplete, this function 14409 * queues the packet and if necessary, sends ARP request and bails. 14410 * If the Neighbor Cache passed is fully resolved, we simply prepend 14411 * the link-layer header to the packet, do ipsec hw acceleration 14412 * work if necessary, and send the packet out on the wire. 14413 */ 14414 /* ARGSUSED6 */ 14415 int 14416 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len, 14417 uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie) 14418 { 14419 queue_t *wq; 14420 ill_t *ill = nce->nce_ill; 14421 ip_stack_t *ipst = ill->ill_ipst; 14422 uint64_t delta; 14423 boolean_t isv6 = ill->ill_isv6; 14424 boolean_t fp_mp; 14425 ncec_t *ncec = nce->nce_common; 14426 int64_t now = LBOLT_FASTPATH64; 14427 boolean_t is_probe; 14428 14429 DTRACE_PROBE1(ip__xmit, nce_t *, nce); 14430 14431 ASSERT(mp != NULL); 14432 ASSERT(mp->b_datap->db_type == M_DATA); 14433 ASSERT(pkt_len == msgdsize(mp)); 14434 14435 /* 14436 * If we have already been here and are coming back after ARP/ND. 14437 * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs 14438 * in that case since they have seen the packet when it came here 14439 * the first time. 14440 */ 14441 if (ixaflags & IXAF_NO_TRACE) 14442 goto sendit; 14443 14444 if (ixaflags & IXAF_IS_IPV4) { 14445 ipha_t *ipha = (ipha_t *)mp->b_rptr; 14446 14447 ASSERT(!isv6); 14448 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length)); 14449 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) && 14450 !(ixaflags & IXAF_NO_PFHOOK)) { 14451 int error; 14452 14453 FW_HOOKS(ipst->ips_ip4_physical_out_event, 14454 ipst->ips_ipv4firewall_physical_out, 14455 NULL, ill, ipha, mp, mp, 0, ipst, error); 14456 DTRACE_PROBE1(ip4__physical__out__end, 14457 mblk_t *, mp); 14458 if (mp == NULL) 14459 return (error); 14460 14461 /* The length could have changed */ 14462 pkt_len = msgdsize(mp); 14463 } 14464 if (ipst->ips_ip4_observe.he_interested) { 14465 /* 14466 * Note that for TX the zoneid is the sending 14467 * zone, whether or not MLP is in play. 14468 * Since the szone argument is the IP zoneid (i.e., 14469 * zero for exclusive-IP zones) and ipobs wants 14470 * the system zoneid, we map it here. 14471 */ 14472 szone = IP_REAL_ZONEID(szone, ipst); 14473 14474 /* 14475 * On the outbound path the destination zone will be 14476 * unknown as we're sending this packet out on the 14477 * wire. 14478 */ 14479 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14480 ill, ipst); 14481 } 14482 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14483 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 14484 ipha_t *, ipha, ip6_t *, NULL, int, 0); 14485 } else { 14486 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 14487 14488 ASSERT(isv6); 14489 ASSERT(pkt_len == 14490 ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN); 14491 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) && 14492 !(ixaflags & IXAF_NO_PFHOOK)) { 14493 int error; 14494 14495 FW_HOOKS6(ipst->ips_ip6_physical_out_event, 14496 ipst->ips_ipv6firewall_physical_out, 14497 NULL, ill, ip6h, mp, mp, 0, ipst, error); 14498 DTRACE_PROBE1(ip6__physical__out__end, 14499 mblk_t *, mp); 14500 if (mp == NULL) 14501 return (error); 14502 14503 /* The length could have changed */ 14504 pkt_len = msgdsize(mp); 14505 } 14506 if (ipst->ips_ip6_observe.he_interested) { 14507 /* See above */ 14508 szone = IP_REAL_ZONEID(szone, ipst); 14509 14510 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES, 14511 ill, ipst); 14512 } 14513 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 14514 void_ip_t *, ip6h, __dtrace_ipsr_ill_t *, ill, 14515 ipha_t *, NULL, ip6_t *, ip6h, int, 0); 14516 } 14517 14518 sendit: 14519 /* 14520 * We check the state without a lock because the state can never 14521 * move "backwards" to initial or incomplete. 14522 */ 14523 switch (ncec->ncec_state) { 14524 case ND_REACHABLE: 14525 case ND_STALE: 14526 case ND_DELAY: 14527 case ND_PROBE: 14528 mp = ip_xmit_attach_llhdr(mp, nce); 14529 if (mp == NULL) { 14530 /* 14531 * ip_xmit_attach_llhdr has increased 14532 * ipIfStatsOutDiscards and called ip_drop_output() 14533 */ 14534 return (ENOBUFS); 14535 } 14536 /* 14537 * check if nce_fastpath completed and we tagged on a 14538 * copy of nce_fp_mp in ip_xmit_attach_llhdr(). 14539 */ 14540 fp_mp = (mp->b_datap->db_type == M_DATA); 14541 14542 if (fp_mp && 14543 (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) { 14544 ill_dld_direct_t *idd; 14545 14546 idd = &ill->ill_dld_capab->idc_direct; 14547 /* 14548 * Send the packet directly to DLD, where it 14549 * may be queued depending on the availability 14550 * of transmit resources at the media layer. 14551 * Return value should be taken into 14552 * account and flow control the TCP. 14553 */ 14554 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14555 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14556 pkt_len); 14557 14558 if (ixaflags & IXAF_NO_DEV_FLOW_CTL) { 14559 (void) idd->idd_tx_df(idd->idd_tx_dh, mp, 14560 (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC); 14561 } else { 14562 uintptr_t cookie; 14563 14564 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh, 14565 mp, (uintptr_t)xmit_hint, 0)) != 0) { 14566 if (ixacookie != NULL) 14567 *ixacookie = cookie; 14568 return (EWOULDBLOCK); 14569 } 14570 } 14571 } else { 14572 wq = ill->ill_wq; 14573 14574 if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) && 14575 !canputnext(wq)) { 14576 if (ixacookie != NULL) 14577 *ixacookie = 0; 14578 ip_xmit_flowctl_drop(ill, mp, fp_mp, 14579 nce->nce_fp_mp != NULL ? 14580 MBLKL(nce->nce_fp_mp) : 0); 14581 return (EWOULDBLOCK); 14582 } 14583 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 14584 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 14585 pkt_len); 14586 putnext(wq, mp); 14587 } 14588 14589 /* 14590 * The rest of this function implements Neighbor Unreachability 14591 * detection. Determine if the ncec is eligible for NUD. 14592 */ 14593 if (ncec->ncec_flags & NCE_F_NONUD) 14594 return (0); 14595 14596 ASSERT(ncec->ncec_state != ND_INCOMPLETE); 14597 14598 /* 14599 * Check for upper layer advice 14600 */ 14601 if (ixaflags & IXAF_REACH_CONF) { 14602 timeout_id_t tid; 14603 14604 /* 14605 * It should be o.k. to check the state without 14606 * a lock here, at most we lose an advice. 14607 */ 14608 ncec->ncec_last = TICK_TO_MSEC(now); 14609 if (ncec->ncec_state != ND_REACHABLE) { 14610 mutex_enter(&ncec->ncec_lock); 14611 ncec->ncec_state = ND_REACHABLE; 14612 tid = ncec->ncec_timeout_id; 14613 ncec->ncec_timeout_id = 0; 14614 mutex_exit(&ncec->ncec_lock); 14615 (void) untimeout(tid); 14616 if (ip_debug > 2) { 14617 /* ip1dbg */ 14618 pr_addr_dbg("ip_xmit: state" 14619 " for %s changed to" 14620 " REACHABLE\n", AF_INET6, 14621 &ncec->ncec_addr); 14622 } 14623 } 14624 return (0); 14625 } 14626 14627 delta = TICK_TO_MSEC(now) - ncec->ncec_last; 14628 ip1dbg(("ip_xmit: delta = %" PRId64 14629 " ill_reachable_time = %d \n", delta, 14630 ill->ill_reachable_time)); 14631 if (delta > (uint64_t)ill->ill_reachable_time) { 14632 mutex_enter(&ncec->ncec_lock); 14633 switch (ncec->ncec_state) { 14634 case ND_REACHABLE: 14635 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0); 14636 /* FALLTHROUGH */ 14637 case ND_STALE: 14638 /* 14639 * ND_REACHABLE is identical to 14640 * ND_STALE in this specific case. If 14641 * reachable time has expired for this 14642 * neighbor (delta is greater than 14643 * reachable time), conceptually, the 14644 * neighbor cache is no longer in 14645 * REACHABLE state, but already in 14646 * STALE state. So the correct 14647 * transition here is to ND_DELAY. 14648 */ 14649 ncec->ncec_state = ND_DELAY; 14650 mutex_exit(&ncec->ncec_lock); 14651 nce_restart_timer(ncec, 14652 ipst->ips_delay_first_probe_time); 14653 if (ip_debug > 3) { 14654 /* ip2dbg */ 14655 pr_addr_dbg("ip_xmit: state" 14656 " for %s changed to" 14657 " DELAY\n", AF_INET6, 14658 &ncec->ncec_addr); 14659 } 14660 break; 14661 case ND_DELAY: 14662 case ND_PROBE: 14663 mutex_exit(&ncec->ncec_lock); 14664 /* Timers have already started */ 14665 break; 14666 case ND_UNREACHABLE: 14667 /* 14668 * nce_timer has detected that this ncec 14669 * is unreachable and initiated deleting 14670 * this ncec. 14671 * This is a harmless race where we found the 14672 * ncec before it was deleted and have 14673 * just sent out a packet using this 14674 * unreachable ncec. 14675 */ 14676 mutex_exit(&ncec->ncec_lock); 14677 break; 14678 default: 14679 ASSERT(0); 14680 mutex_exit(&ncec->ncec_lock); 14681 } 14682 } 14683 return (0); 14684 14685 case ND_INCOMPLETE: 14686 /* 14687 * the state could have changed since we didn't hold the lock. 14688 * Re-verify state under lock. 14689 */ 14690 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14691 mutex_enter(&ncec->ncec_lock); 14692 if (NCE_ISREACHABLE(ncec)) { 14693 mutex_exit(&ncec->ncec_lock); 14694 goto sendit; 14695 } 14696 /* queue the packet */ 14697 nce_queue_mp(ncec, mp, is_probe); 14698 mutex_exit(&ncec->ncec_lock); 14699 DTRACE_PROBE2(ip__xmit__incomplete, 14700 (ncec_t *), ncec, (mblk_t *), mp); 14701 return (0); 14702 14703 case ND_INITIAL: 14704 /* 14705 * State could have changed since we didn't hold the lock, so 14706 * re-verify state. 14707 */ 14708 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill); 14709 mutex_enter(&ncec->ncec_lock); 14710 if (NCE_ISREACHABLE(ncec)) { 14711 mutex_exit(&ncec->ncec_lock); 14712 goto sendit; 14713 } 14714 nce_queue_mp(ncec, mp, is_probe); 14715 if (ncec->ncec_state == ND_INITIAL) { 14716 ncec->ncec_state = ND_INCOMPLETE; 14717 mutex_exit(&ncec->ncec_lock); 14718 /* 14719 * figure out the source we want to use 14720 * and resolve it. 14721 */ 14722 ip_ndp_resolve(ncec); 14723 } else { 14724 mutex_exit(&ncec->ncec_lock); 14725 } 14726 return (0); 14727 14728 case ND_UNREACHABLE: 14729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14730 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE", 14731 mp, ill); 14732 freemsg(mp); 14733 return (0); 14734 14735 default: 14736 ASSERT(0); 14737 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 14738 ip_drop_output("ipIfStatsOutDiscards - ND_other", 14739 mp, ill); 14740 freemsg(mp); 14741 return (ENETUNREACH); 14742 } 14743 } 14744 14745 /* 14746 * Return B_TRUE if the buffers differ in length or content. 14747 * This is used for comparing extension header buffers. 14748 * Note that an extension header would be declared different 14749 * even if all that changed was the next header value in that header i.e. 14750 * what really changed is the next extension header. 14751 */ 14752 boolean_t 14753 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 14754 uint_t blen) 14755 { 14756 if (!b_valid) 14757 blen = 0; 14758 14759 if (alen != blen) 14760 return (B_TRUE); 14761 if (alen == 0) 14762 return (B_FALSE); /* Both zero length */ 14763 return (bcmp(abuf, bbuf, alen)); 14764 } 14765 14766 /* 14767 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 14768 * Return B_FALSE if memory allocation fails - don't change any state! 14769 */ 14770 boolean_t 14771 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14772 const void *src, uint_t srclen) 14773 { 14774 void *dst; 14775 14776 if (!src_valid) 14777 srclen = 0; 14778 14779 ASSERT(*dstlenp == 0); 14780 if (src != NULL && srclen != 0) { 14781 dst = mi_alloc(srclen, BPRI_MED); 14782 if (dst == NULL) 14783 return (B_FALSE); 14784 } else { 14785 dst = NULL; 14786 } 14787 if (*dstp != NULL) 14788 mi_free(*dstp); 14789 *dstp = dst; 14790 *dstlenp = dst == NULL ? 0 : srclen; 14791 return (B_TRUE); 14792 } 14793 14794 /* 14795 * Replace what is in *dst, *dstlen with the source. 14796 * Assumes ip_allocbuf has already been called. 14797 */ 14798 void 14799 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 14800 const void *src, uint_t srclen) 14801 { 14802 if (!src_valid) 14803 srclen = 0; 14804 14805 ASSERT(*dstlenp == srclen); 14806 if (src != NULL && srclen != 0) 14807 bcopy(src, *dstp, srclen); 14808 } 14809 14810 /* 14811 * Free the storage pointed to by the members of an ip_pkt_t. 14812 */ 14813 void 14814 ip_pkt_free(ip_pkt_t *ipp) 14815 { 14816 uint_t fields = ipp->ipp_fields; 14817 14818 if (fields & IPPF_HOPOPTS) { 14819 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14820 ipp->ipp_hopopts = NULL; 14821 ipp->ipp_hopoptslen = 0; 14822 } 14823 if (fields & IPPF_RTHDRDSTOPTS) { 14824 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen); 14825 ipp->ipp_rthdrdstopts = NULL; 14826 ipp->ipp_rthdrdstoptslen = 0; 14827 } 14828 if (fields & IPPF_DSTOPTS) { 14829 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14830 ipp->ipp_dstopts = NULL; 14831 ipp->ipp_dstoptslen = 0; 14832 } 14833 if (fields & IPPF_RTHDR) { 14834 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14835 ipp->ipp_rthdr = NULL; 14836 ipp->ipp_rthdrlen = 0; 14837 } 14838 if (fields & IPPF_IPV4_OPTIONS) { 14839 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len); 14840 ipp->ipp_ipv4_options = NULL; 14841 ipp->ipp_ipv4_options_len = 0; 14842 } 14843 if (fields & IPPF_LABEL_V4) { 14844 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4); 14845 ipp->ipp_label_v4 = NULL; 14846 ipp->ipp_label_len_v4 = 0; 14847 } 14848 if (fields & IPPF_LABEL_V6) { 14849 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6); 14850 ipp->ipp_label_v6 = NULL; 14851 ipp->ipp_label_len_v6 = 0; 14852 } 14853 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14854 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14855 } 14856 14857 /* 14858 * Copy from src to dst and allocate as needed. 14859 * Returns zero or ENOMEM. 14860 * 14861 * The caller must initialize dst to zero. 14862 */ 14863 int 14864 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag) 14865 { 14866 uint_t fields = src->ipp_fields; 14867 14868 /* Start with fields that don't require memory allocation */ 14869 dst->ipp_fields = fields & 14870 ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14871 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6); 14872 14873 dst->ipp_addr = src->ipp_addr; 14874 dst->ipp_unicast_hops = src->ipp_unicast_hops; 14875 dst->ipp_hoplimit = src->ipp_hoplimit; 14876 dst->ipp_tclass = src->ipp_tclass; 14877 dst->ipp_type_of_service = src->ipp_type_of_service; 14878 14879 if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS | 14880 IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6))) 14881 return (0); 14882 14883 if (fields & IPPF_HOPOPTS) { 14884 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag); 14885 if (dst->ipp_hopopts == NULL) { 14886 ip_pkt_free(dst); 14887 return (ENOMEM); 14888 } 14889 dst->ipp_fields |= IPPF_HOPOPTS; 14890 bcopy(src->ipp_hopopts, dst->ipp_hopopts, 14891 src->ipp_hopoptslen); 14892 dst->ipp_hopoptslen = src->ipp_hopoptslen; 14893 } 14894 if (fields & IPPF_RTHDRDSTOPTS) { 14895 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen, 14896 kmflag); 14897 if (dst->ipp_rthdrdstopts == NULL) { 14898 ip_pkt_free(dst); 14899 return (ENOMEM); 14900 } 14901 dst->ipp_fields |= IPPF_RTHDRDSTOPTS; 14902 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts, 14903 src->ipp_rthdrdstoptslen); 14904 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen; 14905 } 14906 if (fields & IPPF_DSTOPTS) { 14907 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag); 14908 if (dst->ipp_dstopts == NULL) { 14909 ip_pkt_free(dst); 14910 return (ENOMEM); 14911 } 14912 dst->ipp_fields |= IPPF_DSTOPTS; 14913 bcopy(src->ipp_dstopts, dst->ipp_dstopts, 14914 src->ipp_dstoptslen); 14915 dst->ipp_dstoptslen = src->ipp_dstoptslen; 14916 } 14917 if (fields & IPPF_RTHDR) { 14918 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag); 14919 if (dst->ipp_rthdr == NULL) { 14920 ip_pkt_free(dst); 14921 return (ENOMEM); 14922 } 14923 dst->ipp_fields |= IPPF_RTHDR; 14924 bcopy(src->ipp_rthdr, dst->ipp_rthdr, 14925 src->ipp_rthdrlen); 14926 dst->ipp_rthdrlen = src->ipp_rthdrlen; 14927 } 14928 if (fields & IPPF_IPV4_OPTIONS) { 14929 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len, 14930 kmflag); 14931 if (dst->ipp_ipv4_options == NULL) { 14932 ip_pkt_free(dst); 14933 return (ENOMEM); 14934 } 14935 dst->ipp_fields |= IPPF_IPV4_OPTIONS; 14936 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options, 14937 src->ipp_ipv4_options_len); 14938 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len; 14939 } 14940 if (fields & IPPF_LABEL_V4) { 14941 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag); 14942 if (dst->ipp_label_v4 == NULL) { 14943 ip_pkt_free(dst); 14944 return (ENOMEM); 14945 } 14946 dst->ipp_fields |= IPPF_LABEL_V4; 14947 bcopy(src->ipp_label_v4, dst->ipp_label_v4, 14948 src->ipp_label_len_v4); 14949 dst->ipp_label_len_v4 = src->ipp_label_len_v4; 14950 } 14951 if (fields & IPPF_LABEL_V6) { 14952 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag); 14953 if (dst->ipp_label_v6 == NULL) { 14954 ip_pkt_free(dst); 14955 return (ENOMEM); 14956 } 14957 dst->ipp_fields |= IPPF_LABEL_V6; 14958 bcopy(src->ipp_label_v6, dst->ipp_label_v6, 14959 src->ipp_label_len_v6); 14960 dst->ipp_label_len_v6 = src->ipp_label_len_v6; 14961 } 14962 if (fields & IPPF_FRAGHDR) { 14963 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag); 14964 if (dst->ipp_fraghdr == NULL) { 14965 ip_pkt_free(dst); 14966 return (ENOMEM); 14967 } 14968 dst->ipp_fields |= IPPF_FRAGHDR; 14969 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr, 14970 src->ipp_fraghdrlen); 14971 dst->ipp_fraghdrlen = src->ipp_fraghdrlen; 14972 } 14973 return (0); 14974 } 14975 14976 /* 14977 * Returns INADDR_ANY if no source route 14978 */ 14979 ipaddr_t 14980 ip_pkt_source_route_v4(const ip_pkt_t *ipp) 14981 { 14982 ipaddr_t nexthop = INADDR_ANY; 14983 ipoptp_t opts; 14984 uchar_t *opt; 14985 uint8_t optval; 14986 uint8_t optlen; 14987 uint32_t totallen; 14988 14989 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 14990 return (INADDR_ANY); 14991 14992 totallen = ipp->ipp_ipv4_options_len; 14993 if (totallen & 0x3) 14994 return (INADDR_ANY); 14995 14996 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 14997 optval != IPOPT_EOL; 14998 optval = ipoptp_next(&opts)) { 14999 opt = opts.ipoptp_cur; 15000 switch (optval) { 15001 uint8_t off; 15002 case IPOPT_SSRR: 15003 case IPOPT_LSRR: 15004 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15005 break; 15006 } 15007 optlen = opts.ipoptp_len; 15008 off = opt[IPOPT_OFFSET]; 15009 off--; 15010 if (optlen < IP_ADDR_LEN || 15011 off > optlen - IP_ADDR_LEN) { 15012 /* End of source route */ 15013 break; 15014 } 15015 bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN); 15016 if (nexthop == htonl(INADDR_LOOPBACK)) { 15017 /* Ignore */ 15018 nexthop = INADDR_ANY; 15019 break; 15020 } 15021 break; 15022 } 15023 } 15024 return (nexthop); 15025 } 15026 15027 /* 15028 * Reverse a source route. 15029 */ 15030 void 15031 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp) 15032 { 15033 ipaddr_t tmp; 15034 ipoptp_t opts; 15035 uchar_t *opt; 15036 uint8_t optval; 15037 uint32_t totallen; 15038 15039 if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS)) 15040 return; 15041 15042 totallen = ipp->ipp_ipv4_options_len; 15043 if (totallen & 0x3) 15044 return; 15045 15046 for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options); 15047 optval != IPOPT_EOL; 15048 optval = ipoptp_next(&opts)) { 15049 uint8_t off1, off2; 15050 15051 opt = opts.ipoptp_cur; 15052 switch (optval) { 15053 case IPOPT_SSRR: 15054 case IPOPT_LSRR: 15055 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 15056 break; 15057 } 15058 off1 = IPOPT_MINOFF_SR - 1; 15059 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 15060 while (off2 > off1) { 15061 bcopy(opt + off2, &tmp, IP_ADDR_LEN); 15062 bcopy(opt + off1, opt + off2, IP_ADDR_LEN); 15063 bcopy(&tmp, opt + off2, IP_ADDR_LEN); 15064 off2 -= IP_ADDR_LEN; 15065 off1 += IP_ADDR_LEN; 15066 } 15067 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 15068 break; 15069 } 15070 } 15071 } 15072 15073 /* 15074 * Returns NULL if no routing header 15075 */ 15076 in6_addr_t * 15077 ip_pkt_source_route_v6(const ip_pkt_t *ipp) 15078 { 15079 in6_addr_t *nexthop = NULL; 15080 ip6_rthdr0_t *rthdr; 15081 15082 if (!(ipp->ipp_fields & IPPF_RTHDR)) 15083 return (NULL); 15084 15085 rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr; 15086 if (rthdr->ip6r0_segleft == 0) 15087 return (NULL); 15088 15089 nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr)); 15090 return (nexthop); 15091 } 15092 15093 zoneid_t 15094 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira, 15095 zoneid_t lookup_zoneid) 15096 { 15097 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15098 ire_t *ire; 15099 int ire_flags = MATCH_IRE_TYPE; 15100 zoneid_t zoneid = ALL_ZONES; 15101 15102 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15103 return (ALL_ZONES); 15104 15105 if (lookup_zoneid != ALL_ZONES) 15106 ire_flags |= MATCH_IRE_ZONEONLY; 15107 ire = ire_ftable_lookup_v4(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15108 NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15109 if (ire != NULL) { 15110 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15111 ire_refrele(ire); 15112 } 15113 return (zoneid); 15114 } 15115 15116 zoneid_t 15117 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill, 15118 ip_recv_attr_t *ira, zoneid_t lookup_zoneid) 15119 { 15120 ip_stack_t *ipst = ira->ira_ill->ill_ipst; 15121 ire_t *ire; 15122 int ire_flags = MATCH_IRE_TYPE; 15123 zoneid_t zoneid = ALL_ZONES; 15124 15125 if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE)) 15126 return (ALL_ZONES); 15127 15128 if (IN6_IS_ADDR_LINKLOCAL(addr)) 15129 ire_flags |= MATCH_IRE_ILL; 15130 15131 if (lookup_zoneid != ALL_ZONES) 15132 ire_flags |= MATCH_IRE_ZONEONLY; 15133 ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK, 15134 ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL); 15135 if (ire != NULL) { 15136 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst); 15137 ire_refrele(ire); 15138 } 15139 return (zoneid); 15140 } 15141 15142 /* 15143 * IP obserability hook support functions. 15144 */ 15145 static void 15146 ipobs_init(ip_stack_t *ipst) 15147 { 15148 netid_t id; 15149 15150 id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid); 15151 15152 ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET); 15153 VERIFY(ipst->ips_ip4_observe_pr != NULL); 15154 15155 ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6); 15156 VERIFY(ipst->ips_ip6_observe_pr != NULL); 15157 } 15158 15159 static void 15160 ipobs_fini(ip_stack_t *ipst) 15161 { 15162 15163 VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0); 15164 VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0); 15165 } 15166 15167 /* 15168 * hook_pkt_observe_t is composed in network byte order so that the 15169 * entire mblk_t chain handed into hook_run can be used as-is. 15170 * The caveat is that use of the fields, such as the zone fields, 15171 * requires conversion into host byte order first. 15172 */ 15173 void 15174 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst, 15175 const ill_t *ill, ip_stack_t *ipst) 15176 { 15177 hook_pkt_observe_t *hdr; 15178 uint64_t grifindex; 15179 mblk_t *imp; 15180 15181 imp = allocb(sizeof (*hdr), BPRI_HI); 15182 if (imp == NULL) 15183 return; 15184 15185 hdr = (hook_pkt_observe_t *)imp->b_rptr; 15186 /* 15187 * b_wptr is set to make the apparent size of the data in the mblk_t 15188 * to exclude the pointers at the end of hook_pkt_observer_t. 15189 */ 15190 imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t); 15191 imp->b_cont = mp; 15192 15193 ASSERT(DB_TYPE(mp) == M_DATA); 15194 15195 if (IS_UNDER_IPMP(ill)) 15196 grifindex = ipmp_ill_get_ipmp_ifindex(ill); 15197 else 15198 grifindex = 0; 15199 15200 hdr->hpo_version = 1; 15201 hdr->hpo_htype = htons(htype); 15202 hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp)); 15203 hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex); 15204 hdr->hpo_grifindex = htonl(grifindex); 15205 hdr->hpo_zsrc = htonl(zsrc); 15206 hdr->hpo_zdst = htonl(zdst); 15207 hdr->hpo_pkt = imp; 15208 hdr->hpo_ctx = ipst->ips_netstack; 15209 15210 if (ill->ill_isv6) { 15211 hdr->hpo_family = AF_INET6; 15212 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks, 15213 ipst->ips_ipv6observing, (hook_data_t)hdr); 15214 } else { 15215 hdr->hpo_family = AF_INET; 15216 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks, 15217 ipst->ips_ipv4observing, (hook_data_t)hdr); 15218 } 15219 15220 imp->b_cont = NULL; 15221 freemsg(imp); 15222 } 15223 15224 /* 15225 * Utility routine that checks if `v4srcp' is a valid address on underlying 15226 * interface `ill'. If `ipifp' is non-NULL, it's set to a held ipif 15227 * associated with `v4srcp' on success. NOTE: if this is not called from 15228 * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the 15229 * group during or after this lookup. 15230 */ 15231 boolean_t 15232 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp) 15233 { 15234 ipif_t *ipif; 15235 15236 ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst); 15237 if (ipif != NULL) { 15238 if (ipifp != NULL) 15239 *ipifp = ipif; 15240 else 15241 ipif_refrele(ipif); 15242 return (B_TRUE); 15243 } 15244 15245 ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n", 15246 *v4srcp)); 15247 return (B_FALSE); 15248 } 15249 15250 /* 15251 * Transport protocol call back function for CPU state change. 15252 */ 15253 /* ARGSUSED */ 15254 static int 15255 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg) 15256 { 15257 processorid_t cpu_seqid; 15258 netstack_handle_t nh; 15259 netstack_t *ns; 15260 15261 ASSERT(MUTEX_HELD(&cpu_lock)); 15262 15263 switch (what) { 15264 case CPU_CONFIG: 15265 case CPU_ON: 15266 case CPU_INIT: 15267 case CPU_CPUPART_IN: 15268 cpu_seqid = cpu[id]->cpu_seqid; 15269 netstack_next_init(&nh); 15270 while ((ns = netstack_next(&nh)) != NULL) { 15271 tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid); 15272 sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid); 15273 udp_stack_cpu_add(ns->netstack_udp, cpu_seqid); 15274 netstack_rele(ns); 15275 } 15276 netstack_next_fini(&nh); 15277 break; 15278 case CPU_UNCONFIG: 15279 case CPU_OFF: 15280 case CPU_CPUPART_OUT: 15281 /* 15282 * Nothing to do. We don't remove the per CPU stats from 15283 * the IP stack even when the CPU goes offline. 15284 */ 15285 break; 15286 default: 15287 break; 15288 } 15289 return (0); 15290 } 15291