xref: /illumos-gate/usr/src/uts/common/inet/ip/ip.c (revision 150d2c5288c645a1c1a7d2bee61199a3729406c7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/dlpi.h>
33 #include <sys/stropts.h>
34 #include <sys/sysmacros.h>
35 #include <sys/strsubr.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/zone.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/xti_inet.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/cmn_err.h>
45 #include <sys/debug.h>
46 #include <sys/kobj.h>
47 #include <sys/modctl.h>
48 #include <sys/atomic.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 
52 #include <sys/systm.h>
53 #include <sys/param.h>
54 #include <sys/kmem.h>
55 #include <sys/sdt.h>
56 #include <sys/socket.h>
57 #include <sys/vtrace.h>
58 #include <sys/isa_defs.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/route.h>
62 #include <sys/sockio.h>
63 #include <netinet/in.h>
64 #include <net/if_dl.h>
65 
66 #include <inet/common.h>
67 #include <inet/mi.h>
68 #include <inet/mib2.h>
69 #include <inet/nd.h>
70 #include <inet/arp.h>
71 #include <inet/snmpcom.h>
72 #include <inet/kstatcom.h>
73 
74 #include <netinet/igmp_var.h>
75 #include <netinet/ip6.h>
76 #include <netinet/icmp6.h>
77 #include <netinet/sctp.h>
78 
79 #include <inet/ip.h>
80 #include <inet/ip_impl.h>
81 #include <inet/ip6.h>
82 #include <inet/ip6_asp.h>
83 #include <inet/tcp.h>
84 #include <inet/tcp_impl.h>
85 #include <inet/ip_multi.h>
86 #include <inet/ip_if.h>
87 #include <inet/ip_ire.h>
88 #include <inet/ip_ftable.h>
89 #include <inet/ip_rts.h>
90 #include <inet/optcom.h>
91 #include <inet/ip_ndp.h>
92 #include <inet/ip_listutils.h>
93 #include <netinet/igmp.h>
94 #include <netinet/ip_mroute.h>
95 #include <inet/ipp_common.h>
96 
97 #include <net/pfkeyv2.h>
98 #include <inet/ipsec_info.h>
99 #include <inet/sadb.h>
100 #include <inet/ipsec_impl.h>
101 #include <sys/iphada.h>
102 #include <inet/tun.h>
103 #include <inet/ipdrop.h>
104 #include <inet/ip_netinfo.h>
105 
106 #include <sys/ethernet.h>
107 #include <net/if_types.h>
108 #include <sys/cpuvar.h>
109 
110 #include <ipp/ipp.h>
111 #include <ipp/ipp_impl.h>
112 #include <ipp/ipgpc/ipgpc.h>
113 
114 #include <sys/multidata.h>
115 #include <sys/pattr.h>
116 
117 #include <inet/ipclassifier.h>
118 #include <inet/sctp_ip.h>
119 #include <inet/sctp/sctp_impl.h>
120 #include <inet/udp_impl.h>
121 #include <sys/sunddi.h>
122 
123 #include <sys/tsol/label.h>
124 #include <sys/tsol/tnet.h>
125 
126 #include <rpc/pmap_prot.h>
127 
128 /*
129  * Values for squeue switch:
130  * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain
131  * IP_SQUEUE_ENTER: squeue_enter
132  * IP_SQUEUE_FILL: squeue_fill
133  */
134 int ip_squeue_enter = 2;	/* Setable in /etc/system */
135 
136 squeue_func_t ip_input_proc;
137 #define	SET_BPREV_FLAG(x)	((mblk_t *)(uintptr_t)(x))
138 
139 #define	TCP6 "tcp6"
140 #define	TCP "tcp"
141 #define	SCTP "sctp"
142 #define	SCTP6 "sctp6"
143 
144 major_t TCP6_MAJ;
145 major_t TCP_MAJ;
146 major_t SCTP_MAJ;
147 major_t SCTP6_MAJ;
148 
149 /*
150  * Setable in /etc/system
151  */
152 int ip_poll_normal_ms = 100;
153 int ip_poll_normal_ticks = 0;
154 int ip_modclose_ackwait_ms = 3000;
155 
156 /*
157  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
158  */
159 
160 struct listptr_s {
161 	mblk_t	*lp_head;	/* pointer to the head of the list */
162 	mblk_t	*lp_tail;	/* pointer to the tail of the list */
163 };
164 
165 typedef struct listptr_s listptr_t;
166 
167 /*
168  * This is used by ip_snmp_get_mib2_ip_route_media and
169  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
170  */
171 typedef struct iproutedata_s {
172 	uint_t		ird_idx;
173 	listptr_t	ird_route;	/* ipRouteEntryTable */
174 	listptr_t	ird_netmedia;	/* ipNetToMediaEntryTable */
175 	listptr_t	ird_attrs;	/* ipRouteAttributeTable */
176 } iproutedata_t;
177 
178 /*
179  * Cluster specific hooks. These should be NULL when booted as a non-cluster
180  */
181 
182 /*
183  * Hook functions to enable cluster networking
184  * On non-clustered systems these vectors must always be NULL.
185  *
186  * Hook function to Check ip specified ip address is a shared ip address
187  * in the cluster
188  *
189  */
190 int (*cl_inet_isclusterwide)(uint8_t protocol,
191     sa_family_t addr_family, uint8_t *laddrp) = NULL;
192 
193 /*
194  * Hook function to generate cluster wide ip fragment identifier
195  */
196 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
197     uint8_t *laddrp, uint8_t *faddrp) = NULL;
198 
199 /*
200  * Synchronization notes:
201  *
202  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
203  * MT level protection given by STREAMS. IP uses a combination of its own
204  * internal serialization mechanism and standard Solaris locking techniques.
205  * The internal serialization is per phyint (no IPMP) or per IPMP group.
206  * This is used to serialize plumbing operations, IPMP operations, certain
207  * multicast operations, most set ioctls, igmp/mld timers etc.
208  *
209  * Plumbing is a long sequence of operations involving message
210  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
211  * involved in plumbing operations. A natural model is to serialize these
212  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
213  * parallel without any interference. But various set ioctls on hme0 are best
214  * serialized. However if the system uses IPMP, the operations are easier if
215  * they are serialized on a per IPMP group basis since IPMP operations
216  * happen across ill's of a group. Thus the lowest common denominator is to
217  * serialize most set ioctls, multicast join/leave operations, IPMP operations
218  * igmp/mld timer operations, and processing of DLPI control messages received
219  * from drivers on a per IPMP group basis. If the system does not employ
220  * IPMP the serialization is on a per phyint basis. This serialization is
221  * provided by the ipsq_t and primitives operating on this. Details can
222  * be found in ip_if.c above the core primitives operating on ipsq_t.
223  *
224  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
225  * Simiarly lookup of an ire by a thread also returns a refheld ire.
226  * In addition ipif's and ill's referenced by the ire are also indirectly
227  * refheld. Thus no ipif or ill can vanish nor can critical parameters like
228  * the ipif's address or netmask change as long as an ipif is refheld
229  * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the
230  * address of an ipif has to go through the ipsq_t. This ensures that only
231  * 1 such exclusive operation proceeds at any time on the ipif. It then
232  * deletes all ires associated with this ipif, and waits for all refcnts
233  * associated with this ipif to come down to zero. The address is changed
234  * only after the ipif has been quiesced. Then the ipif is brought up again.
235  * More details are described above the comment in ip_sioctl_flags.
236  *
237  * Packet processing is based mostly on IREs and are fully multi-threaded
238  * using standard Solaris MT techniques.
239  *
240  * There are explicit locks in IP to handle:
241  * - The ip_g_head list maintained by mi_open_link() and friends.
242  *
243  * - The reassembly data structures (one lock per hash bucket)
244  *
245  * - conn_lock is meant to protect conn_t fields. The fields actually
246  *   protected by conn_lock are documented in the conn_t definition.
247  *
248  * - ire_lock to protect some of the fields of the ire, IRE tables
249  *   (one lock per hash bucket). Refer to ip_ire.c for details.
250  *
251  * - ndp_g_lock and nce_lock for protecting NCEs.
252  *
253  * - ill_lock protects fields of the ill and ipif. Details in ip.h
254  *
255  * - ill_g_lock: This is a global reader/writer lock. Protects the following
256  *	* The AVL tree based global multi list of all ills.
257  *	* The linked list of all ipifs of an ill
258  *	* The <ill-ipsq> mapping
259  *	* The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next
260  *	* The illgroup list threaded by ill_group_next.
261  *	* <ill-phyint> association
262  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
263  *   into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion
264  *   of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill
265  *   will all have to hold the ill_g_lock as writer for the actual duration
266  *   of the insertion/deletion/change. More details about the <ill-ipsq> mapping
267  *   may be found in the IPMP section.
268  *
269  * - ill_lock:  This is a per ill mutex.
270  *   It protects some members of the ill and is documented below.
271  *   It also protects the <ill-ipsq> mapping
272  *   It also protects the illgroup list threaded by ill_group_next.
273  *   It also protects the <ill-phyint> assoc.
274  *   It also protects the list of ipifs hanging off the ill.
275  *
276  * - ipsq_lock: This is a per ipsq_t mutex lock.
277  *   This protects all the other members of the ipsq struct except
278  *   ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock
279  *
280  * - illgrp_lock: This is a per ill_group mutex lock.
281  *   The only thing it protects is the illgrp_ill_schednext member of ill_group
282  *   which dictates which is the next ill in an ill_group that is to be chosen
283  *   for sending outgoing packets, through creation of an IRE_CACHE that
284  *   references this ill.
285  *
286  * - phyint_lock: This is a per phyint mutex lock. Protects just the
287  *   phyint_flags
288  *
289  * - ip_g_nd_lock: This is a global reader/writer lock.
290  *   Any call to nd_load to load a new parameter to the ND table must hold the
291  *   lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock
292  *   as reader.
293  *
294  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
295  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
296  *   uniqueness check also done atomically.
297  *
298  * - ipsec_capab_ills_lock: This readers/writer lock protects the global
299  *   lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken
300  *   as a writer when adding or deleting elements from these lists, and
301  *   as a reader when walking these lists to send a SADB update to the
302  *   IPsec capable ills.
303  *
304  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
305  *   group list linked by ill_usesrc_grp_next. It also protects the
306  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
307  *   group is being added or deleted.  This lock is taken as a reader when
308  *   walking the list/group(eg: to get the number of members in a usesrc group).
309  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
310  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
311  *   example, it is not necessary to take this lock in the initial portion
312  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and
313  *   ip_sioctl_flags since the these operations are executed exclusively and
314  *   that ensures that the "usesrc group state" cannot change. The "usesrc
315  *   group state" change can happen only in the latter part of
316  *   ip_sioctl_slifusesrc and in ill_delete.
317  *
318  * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications.
319  *
320  * To change the <ill-phyint> association, the ill_g_lock must be held
321  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
322  * must be held.
323  *
324  * To change the <ill-ipsq> association the ill_g_lock must be held as writer
325  * and the ill_lock of the ill in question must be held.
326  *
327  * To change the <ill-illgroup> association the ill_g_lock must be held as
328  * writer and the ill_lock of the ill in question must be held.
329  *
330  * To add or delete an ipif from the list of ipifs hanging off the ill,
331  * ill_g_lock (writer) and ill_lock must be held and the thread must be
332  * a writer on the associated ipsq,.
333  *
334  * To add or delete an ill to the system, the ill_g_lock must be held as
335  * writer and the thread must be a writer on the associated ipsq.
336  *
337  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
338  * must be a writer on the associated ipsq.
339  *
340  * Lock hierarchy
341  *
342  * Some lock hierarchy scenarios are listed below.
343  *
344  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
345  * ill_g_lock -> illgrp_lock -> ill_lock
346  * ill_g_lock -> ill_lock(s) -> phyint_lock
347  * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock
348  * ill_g_lock -> ip_addr_avail_lock
349  * conn_lock -> irb_lock -> ill_lock -> ire_lock
350  * ill_g_lock -> ip_g_nd_lock
351  *
352  * When more than 1 ill lock is needed to be held, all ill lock addresses
353  * are sorted on address and locked starting from highest addressed lock
354  * downward.
355  *
356  * Mobile-IP scenarios
357  *
358  * irb_lock -> ill_lock -> ire_mrtun_lock
359  * irb_lock -> ill_lock -> ire_srcif_table_lock
360  *
361  * IPsec scenarios
362  *
363  * ipsa_lock -> ill_g_lock -> ill_lock
364  * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock
365  * ipsec_capab_ills_lock -> ipsa_lock
366  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
367  *
368  * Trusted Solaris scenarios
369  *
370  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
371  * igsa_lock -> gcdb_lock
372  * gcgrp_rwlock -> ire_lock
373  * gcgrp_rwlock -> gcdb_lock
374  *
375  *
376  * Routing/forwarding table locking notes:
377  *
378  * Lock acquisition order: Radix tree lock, irb_lock.
379  * Requirements:
380  * i.  Walker must not hold any locks during the walker callback.
381  * ii  Walker must not see a truncated tree during the walk because of any node
382  *     deletion.
383  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
384  *     in many places in the code to walk the irb list. Thus even if all the
385  *     ires in a bucket have been deleted, we still can't free the radix node
386  *     until the ires have actually been inactive'd (freed).
387  *
388  * Tree traversal - Need to hold the global tree lock in read mode.
389  * Before dropping the global tree lock, need to either increment the ire_refcnt
390  * to ensure that the radix node can't be deleted.
391  *
392  * Tree add - Need to hold the global tree lock in write mode to add a
393  * radix node. To prevent the node from being deleted, increment the
394  * irb_refcnt, after the node is added to the tree. The ire itself is
395  * added later while holding the irb_lock, but not the tree lock.
396  *
397  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
398  * All associated ires must be inactive (i.e. freed), and irb_refcnt
399  * must be zero.
400  *
401  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
402  * global tree lock (read mode) for traversal.
403  *
404  * IPSEC notes :
405  *
406  * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message
407  * in front of the actual packet. For outbound datagrams, the M_CTL
408  * contains a ipsec_out_t (defined in ipsec_info.h), which has the
409  * information used by the IPSEC code for applying the right level of
410  * protection. The information initialized by IP in the ipsec_out_t
411  * is determined by the per-socket policy or global policy in the system.
412  * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in
413  * ipsec_info.h) which starts out with nothing in it. It gets filled
414  * with the right information if it goes through the AH/ESP code, which
415  * happens if the incoming packet is secure. The information initialized
416  * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether
417  * the policy requirements needed by per-socket policy or global policy
418  * is met or not.
419  *
420  * If there is both per-socket policy (set using setsockopt) and there
421  * is also global policy match for the 5 tuples of the socket,
422  * ipsec_override_policy() makes the decision of which one to use.
423  *
424  * For fully connected sockets i.e dst, src [addr, port] is known,
425  * conn_policy_cached is set indicating that policy has been cached.
426  * conn_in_enforce_policy may or may not be set depending on whether
427  * there is a global policy match or per-socket policy match.
428  * Policy inheriting happpens in ip_bind during the ipa_conn_t bind.
429  * Once the right policy is set on the conn_t, policy cannot change for
430  * this socket. This makes life simpler for TCP (UDP ?) where
431  * re-transmissions go out with the same policy. For symmetry, policy
432  * is cached for fully connected UDP sockets also. Thus if policy is cached,
433  * it also implies that policy is latched i.e policy cannot change
434  * on these sockets. As we have the right policy on the conn, we don't
435  * have to lookup global policy for every outbound and inbound datagram
436  * and thus serving as an optimization. Note that a global policy change
437  * does not affect fully connected sockets if they have policy. If fully
438  * connected sockets did not have any policy associated with it, global
439  * policy change may affect them.
440  *
441  * IP Flow control notes:
442  *
443  * Non-TCP streams are flow controlled by IP. On the send side, if the packet
444  * cannot be sent down to the driver by IP, because of a canput failure, IP
445  * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq.
446  * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained
447  * when the flowcontrol condition subsides. Ultimately STREAMS backenables the
448  * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the
449  * first conn in the list of conn's to be drained. ip_wsrv on this conn drains
450  * the queued messages, and removes the conn from the drain list, if all
451  * messages were drained. It also qenables the next conn in the drain list to
452  * continue the drain process.
453  *
454  * In reality the drain list is not a single list, but a configurable number
455  * of lists. The ip_wsrv on the IP module, qenables the first conn in each
456  * list. If the ip_wsrv of the next qenabled conn does not run, because the
457  * stream closes, ip_close takes responsibility to qenable the next conn in
458  * the drain list. The directly called ip_wput path always does a putq, if
459  * it cannot putnext. Thus synchronization problems are handled between
460  * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only
461  * functions that manipulate this drain list. Furthermore conn_drain_insert
462  * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv
463  * running on a queue at any time. conn_drain_tail can be simultaneously called
464  * from both ip_wsrv and ip_close.
465  *
466  * IPQOS notes:
467  *
468  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
469  * and IPQoS modules. IPPF includes hooks in IP at different control points
470  * (callout positions) which direct packets to IPQoS modules for policy
471  * processing. Policies, if present, are global.
472  *
473  * The callout positions are located in the following paths:
474  *		o local_in (packets destined for this host)
475  *		o local_out (packets orginating from this host )
476  *		o fwd_in  (packets forwarded by this m/c - inbound)
477  *		o fwd_out (packets forwarded by this m/c - outbound)
478  * Hooks at these callout points can be enabled/disabled using the ndd variable
479  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
480  * By default all the callout positions are enabled.
481  *
482  * Outbound (local_out)
483  * Hooks are placed in ip_wput_ire and ipsec_out_process.
484  *
485  * Inbound (local_in)
486  * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and
487  * TCP and UDP fanout routines.
488  *
489  * Forwarding (in and out)
490  * Hooks are placed in ip_rput_forward and ip_mrtun_forward.
491  *
492  * IP Policy Framework processing (IPPF processing)
493  * Policy processing for a packet is initiated by ip_process, which ascertains
494  * that the classifier (ipgpc) is loaded and configured, failing which the
495  * packet resumes normal processing in IP. If the clasifier is present, the
496  * packet is acted upon by one or more IPQoS modules (action instances), per
497  * filters configured in ipgpc and resumes normal IP processing thereafter.
498  * An action instance can drop a packet in course of its processing.
499  *
500  * A boolean variable, ip_policy, is used in all the fanout routines that can
501  * invoke ip_process for a packet. This variable indicates if the packet should
502  * to be sent for policy processing. The variable is set to B_TRUE by default,
503  * i.e. when the routines are invoked in the normal ip procesing path for a
504  * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout;
505  * ip_policy is set to B_FALSE for all the routines called in these two
506  * functions because, in the former case,  we don't process loopback traffic
507  * currently while in the latter, the packets have already been processed in
508  * icmp_inbound.
509  *
510  * Zones notes:
511  *
512  * The partitioning rules for networking are as follows:
513  * 1) Packets coming from a zone must have a source address belonging to that
514  * zone.
515  * 2) Packets coming from a zone can only be sent on a physical interface on
516  * which the zone has an IP address.
517  * 3) Between two zones on the same machine, packet delivery is only allowed if
518  * there's a matching route for the destination and zone in the forwarding
519  * table.
520  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
521  * different zones can bind to the same port with the wildcard address
522  * (INADDR_ANY).
523  *
524  * The granularity of interface partitioning is at the logical interface level.
525  * Therefore, every zone has its own IP addresses, and incoming packets can be
526  * attributed to a zone unambiguously. A logical interface is placed into a zone
527  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
528  * structure. Rule (1) is implemented by modifying the source address selection
529  * algorithm so that the list of eligible addresses is filtered based on the
530  * sending process zone.
531  *
532  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
533  * across all zones, depending on their type. Here is the break-up:
534  *
535  * IRE type				Shared/exclusive
536  * --------				----------------
537  * IRE_BROADCAST			Exclusive
538  * IRE_DEFAULT (default routes)		Shared (*)
539  * IRE_LOCAL				Exclusive (x)
540  * IRE_LOOPBACK				Exclusive
541  * IRE_PREFIX (net routes)		Shared (*)
542  * IRE_CACHE				Exclusive
543  * IRE_IF_NORESOLVER (interface routes)	Exclusive
544  * IRE_IF_RESOLVER (interface routes)	Exclusive
545  * IRE_HOST (host routes)		Shared (*)
546  *
547  * (*) A zone can only use a default or off-subnet route if the gateway is
548  * directly reachable from the zone, that is, if the gateway's address matches
549  * one of the zone's logical interfaces.
550  *
551  * (x) IRE_LOCAL are handled a bit differently, since for all other entries
552  * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source
553  * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP
554  * address of the zone itself (the destination). Since IRE_LOCAL is used
555  * for communication between zones, ip_wput_ire has special logic to set
556  * the right source address when sending using an IRE_LOCAL.
557  *
558  * Furthermore, when ip_restrict_interzone_loopback is set (the default),
559  * ire_cache_lookup restricts loopback using an IRE_LOCAL
560  * between zone to the case when L2 would have conceptually looped the packet
561  * back, i.e. the loopback which is required since neither Ethernet drivers
562  * nor Ethernet hardware loops them back. This is the case when the normal
563  * routes (ignoring IREs with different zoneids) would send out the packet on
564  * the same ill (or ill group) as the ill with which is IRE_LOCAL is
565  * associated.
566  *
567  * Multiple zones can share a common broadcast address; typically all zones
568  * share the 255.255.255.255 address. Incoming as well as locally originated
569  * broadcast packets must be dispatched to all the zones on the broadcast
570  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
571  * since some zones may not be on the 10.16.72/24 network. To handle this, each
572  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
573  * sent to every zone that has an IRE_BROADCAST entry for the destination
574  * address on the input ill, see conn_wantpacket().
575  *
576  * Applications in different zones can join the same multicast group address.
577  * For IPv4, group memberships are per-logical interface, so they're already
578  * inherently part of a zone. For IPv6, group memberships are per-physical
579  * interface, so we distinguish IPv6 group memberships based on group address,
580  * interface and zoneid. In both cases, received multicast packets are sent to
581  * every zone for which a group membership entry exists. On IPv6 we need to
582  * check that the target zone still has an address on the receiving physical
583  * interface; it could have been removed since the application issued the
584  * IPV6_JOIN_GROUP.
585  */
586 
587 /*
588  * Squeue Fanout flags:
589  *	0: No fanout.
590  *	1: Fanout across all squeues
591  */
592 boolean_t	ip_squeue_fanout = 0;
593 
594 /*
595  * Maximum dups allowed per packet.
596  */
597 uint_t ip_max_frag_dups = 10;
598 
599 #define	IS_SIMPLE_IPH(ipha)						\
600 	((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION)
601 
602 /* RFC1122 Conformance */
603 #define	IP_FORWARD_DEFAULT	IP_FORWARD_NEVER
604 
605 #define	ILL_MAX_NAMELEN			LIFNAMSIZ
606 
607 static int	conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *);
608 
609 static mblk_t	*ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t);
610 static void	ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *);
611 
612 static void	icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t,
613 		    ip_stack_t *);
614 static void	icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int,
615 		    uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t);
616 static ipaddr_t	icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp);
617 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t,
618 		    mblk_t *, int, ip_stack_t *);
619 static void	icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *,
620 		    icmph_t *, ipha_t *, int, int, boolean_t, boolean_t,
621 		    ill_t *, zoneid_t);
622 static void	icmp_options_update(ipha_t *);
623 static void	icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t,
624 		    ip_stack_t *);
625 static void	icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t,
626 		    zoneid_t zoneid, ip_stack_t *);
627 static mblk_t	*icmp_pkt_err_ok(mblk_t *, ip_stack_t *);
628 static void	icmp_redirect(ill_t *, mblk_t *);
629 static void	icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t,
630 		    ip_stack_t *);
631 
632 static void	ip_arp_news(queue_t *, mblk_t *);
633 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *,
634 		    ip_stack_t *);
635 mblk_t		*ip_dlpi_alloc(size_t, t_uscalar_t);
636 char		*ip_dot_addr(ipaddr_t, char *);
637 mblk_t		*ip_carve_mp(mblk_t **, ssize_t);
638 int		ip_close(queue_t *, int);
639 static char	*ip_dot_saddr(uchar_t *, char *);
640 static void	ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t,
641 		    boolean_t, boolean_t, ill_t *, zoneid_t);
642 static void	ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t,
643 		    boolean_t, boolean_t, zoneid_t);
644 static void	ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t,
645 		    boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t);
646 static void	ip_lrput(queue_t *, mblk_t *);
647 static void	ip_mrtun_forward(ire_t *, ill_t *, mblk_t *);
648 ipaddr_t	ip_net_mask(ipaddr_t);
649 void		ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *,
650 		    zoneid_t, ip_stack_t *);
651 static void	ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t,
652 		    conn_t *, uint32_t, zoneid_t, ip_opt_info_t *);
653 char		*ip_nv_lookup(nv_t *, int);
654 static boolean_t	ip_check_for_ipsec_opt(queue_t *, mblk_t *);
655 static int	ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *);
656 static int	ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *);
657 static boolean_t	ip_param_register(IDP *ndp, ipparam_t *, size_t,
658     ipndp_t *, size_t);
659 static int	ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
660 void	ip_rput(queue_t *, mblk_t *);
661 static void	ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
662 		    void *dummy_arg);
663 void	ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *);
664 static int	ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *,
665     ip_stack_t *);
666 static boolean_t	ip_rput_local_options(queue_t *, mblk_t *, ipha_t *,
667 			    ire_t *, ip_stack_t *);
668 static boolean_t	ip_rput_multimblk_ipoptions(queue_t *, ill_t *,
669 			    mblk_t *, ipha_t **, ipaddr_t *, ip_stack_t *);
670 static int	ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *,
671     ip_stack_t *);
672 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *,
673 		    uint16_t *);
674 int		ip_snmp_get(queue_t *, mblk_t *);
675 static mblk_t	*ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
676 		    mib2_ipIfStatsEntry_t *, ip_stack_t *);
677 static mblk_t	*ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
678 		    ip_stack_t *);
679 static mblk_t	*ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *);
680 static mblk_t	*ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
681 static mblk_t	*ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
682 static mblk_t	*ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
683 static mblk_t	*ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
684 static mblk_t	*ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
685 		    ip_stack_t *ipst);
686 static mblk_t	*ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
687 		    ip_stack_t *ipst);
688 static mblk_t	*ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
689 		    ip_stack_t *ipst);
690 static mblk_t	*ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
691 		    ip_stack_t *ipst);
692 static mblk_t	*ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
693 		    ip_stack_t *ipst);
694 static mblk_t	*ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
695 		    ip_stack_t *ipst);
696 static mblk_t	*ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
697 		    ip_stack_t *ipst);
698 static mblk_t	*ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
699 		    ip_stack_t *ipst);
700 static mblk_t	*ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *,
701 		    ip_stack_t *ipst);
702 static mblk_t	*ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *,
703 		    ip_stack_t *ipst);
704 static void	ip_snmp_get2_v4(ire_t *, iproutedata_t *);
705 static void	ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
706 static int	ip_snmp_get2_v6_media(nce_t *, iproutedata_t *);
707 int		ip_snmp_set(queue_t *, int, int, uchar_t *, int);
708 static boolean_t	ip_source_routed(ipha_t *, ip_stack_t *);
709 static boolean_t	ip_source_route_included(ipha_t *);
710 static void	ip_trash_ire_reclaim_stack(ip_stack_t *);
711 
712 static void	ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t,
713 		    zoneid_t, ip_stack_t *);
714 static mblk_t	*ip_wput_frag_copyhdr(uchar_t *, int, int, ip_stack_t *);
715 static void	ip_wput_local_options(ipha_t *, ip_stack_t *);
716 static int	ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t,
717 		    zoneid_t, ip_stack_t *);
718 
719 static void	conn_drain_init(ip_stack_t *);
720 static void	conn_drain_fini(ip_stack_t *);
721 static void	conn_drain_tail(conn_t *connp, boolean_t closing);
722 
723 static void	conn_walk_drain(ip_stack_t *);
724 static void	conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *,
725     zoneid_t);
726 
727 static void	*ip_stack_init(netstackid_t stackid, netstack_t *ns);
728 static void	ip_stack_shutdown(netstackid_t stackid, void *arg);
729 static void	ip_stack_fini(netstackid_t stackid, void *arg);
730 
731 static boolean_t	conn_wantpacket(conn_t *, ill_t *, ipha_t *, int,
732     zoneid_t);
733 static void	ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
734     void *dummy_arg);
735 
736 static int	ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
737 
738 static int	ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
739     ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *,
740     conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *);
741 static void	ip_multirt_bad_mtu(ire_t *, uint32_t);
742 
743 static int	ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *);
744 static int	ip_cgtp_filter_set(queue_t *, mblk_t *, char *,
745     caddr_t, cred_t *);
746 extern int	ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value,
747     caddr_t cp, cred_t *cr);
748 extern int	ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t,
749     cred_t *);
750 static int	ip_input_proc_set(queue_t *q, mblk_t *mp, char *value,
751     caddr_t cp, cred_t *cr);
752 static int	ip_int_set(queue_t *, mblk_t *, char *, caddr_t,
753     cred_t *);
754 static squeue_func_t ip_squeue_switch(int);
755 
756 static void	*ip_kstat_init(netstackid_t, ip_stack_t *);
757 static void	ip_kstat_fini(netstackid_t, kstat_t *);
758 static int	ip_kstat_update(kstat_t *kp, int rw);
759 static void	*icmp_kstat_init(netstackid_t);
760 static void	icmp_kstat_fini(netstackid_t, kstat_t *);
761 static int	icmp_kstat_update(kstat_t *kp, int rw);
762 static void	*ip_kstat2_init(netstackid_t, ip_stat_t *);
763 static void	ip_kstat2_fini(netstackid_t, kstat_t *);
764 
765 static int	ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *);
766 
767 static mblk_t	*ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t,
768     ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *);
769 
770 static void	ip_rput_process_forward(queue_t *, mblk_t *, ire_t *,
771     ipha_t *, ill_t *, boolean_t);
772 
773 static void	ip_rput_process_forward(queue_t *, mblk_t *, ire_t *,
774     ipha_t *, ill_t *, boolean_t);
775 ipaddr_t	ip_g_all_ones = IP_HOST_MASK;
776 
777 /* How long, in seconds, we allow frags to hang around. */
778 #define	IP_FRAG_TIMEOUT	60
779 
780 /*
781  * Threshold which determines whether MDT should be used when
782  * generating IP fragments; payload size must be greater than
783  * this threshold for MDT to take place.
784  */
785 #define	IP_WPUT_FRAG_MDT_MIN	32768
786 
787 /* Setable in /etc/system only */
788 int	ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN;
789 
790 static long ip_rput_pullups;
791 int	dohwcksum = 1;	/* use h/w cksum if supported by the hardware */
792 
793 vmem_t *ip_minor_arena;
794 
795 int	ip_debug;
796 
797 #ifdef DEBUG
798 uint32_t ipsechw_debug = 0;
799 #endif
800 
801 /*
802  * Multirouting/CGTP stuff
803  */
804 cgtp_filter_ops_t	*ip_cgtp_filter_ops;	/* CGTP hooks */
805 int	ip_cgtp_filter_rev = CGTP_FILTER_REV;	/* CGTP hooks version */
806 boolean_t	ip_cgtp_filter;		/* Enable/disable CGTP hooks */
807 
808 /*
809  * XXX following really should only be in a header. Would need more
810  * header and .c clean up first.
811  */
812 extern optdb_obj_t	ip_opt_obj;
813 
814 ulong_t ip_squeue_enter_unbound = 0;
815 
816 /*
817  * Named Dispatch Parameter Table.
818  * All of these are alterable, within the min/max values given, at run time.
819  */
820 static ipparam_t	lcl_param_arr[] = {
821 	/* min	max	value	name */
822 	{  0,	1,	0,	"ip_respond_to_address_mask_broadcast"},
823 	{  0,	1,	1,	"ip_respond_to_echo_broadcast"},
824 	{  0,	1,	1,	"ip_respond_to_echo_multicast"},
825 	{  0,	1,	0,	"ip_respond_to_timestamp"},
826 	{  0,	1,	0,	"ip_respond_to_timestamp_broadcast"},
827 	{  0,	1,	1,	"ip_send_redirects"},
828 	{  0,	1,	0,	"ip_forward_directed_broadcasts"},
829 	{  0,	10,	0,	"ip_debug"},
830 	{  0,	10,	0,	"ip_mrtdebug"},
831 	{  5000, 999999999,	60000, "ip_ire_timer_interval" },
832 	{  60000, 999999999,	1200000, "ip_ire_arp_interval" },
833 	{  60000, 999999999,	60000, "ip_ire_redirect_interval" },
834 	{  1,	255,	255,	"ip_def_ttl" },
835 	{  0,	1,	0,	"ip_forward_src_routed"},
836 	{  0,	256,	32,	"ip_wroff_extra" },
837 	{  5000, 999999999, 600000, "ip_ire_pathmtu_interval" },
838 	{  8,	65536,  64,	"ip_icmp_return_data_bytes" },
839 	{  0,	1,	1,	"ip_path_mtu_discovery" },
840 	{  0,	240,	30,	"ip_ignore_delete_time" },
841 	{  0,	1,	0,	"ip_ignore_redirect" },
842 	{  0,	1,	1,	"ip_output_queue" },
843 	{  1,	254,	1,	"ip_broadcast_ttl" },
844 	{  0,	99999,	100,	"ip_icmp_err_interval" },
845 	{  1,	99999,	10,	"ip_icmp_err_burst" },
846 	{  0,	999999999,	1000000, "ip_reass_queue_bytes" },
847 	{  0,	1,	0,	"ip_strict_dst_multihoming" },
848 	{  1,	MAX_ADDRS_PER_IF,	256,	"ip_addrs_per_if"},
849 	{  0,	1,	0,	"ipsec_override_persocket_policy" },
850 	{  0,	1,	1,	"icmp_accept_clear_messages" },
851 	{  0,	1,	1,	"igmp_accept_clear_messages" },
852 	{  2,	999999999, ND_DELAY_FIRST_PROBE_TIME,
853 				"ip_ndp_delay_first_probe_time"},
854 	{  1,	999999999, ND_MAX_UNICAST_SOLICIT,
855 				"ip_ndp_max_unicast_solicit"},
856 	{  1,	255,	IPV6_MAX_HOPS,	"ip6_def_hops" },
857 	{  8,	IPV6_MIN_MTU,	IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" },
858 	{  0,	1,	0,	"ip6_forward_src_routed"},
859 	{  0,	1,	1,	"ip6_respond_to_echo_multicast"},
860 	{  0,	1,	1,	"ip6_send_redirects"},
861 	{  0,	1,	0,	"ip6_ignore_redirect" },
862 	{  0,	1,	0,	"ip6_strict_dst_multihoming" },
863 
864 	{  1,	8,	3,	"ip_ire_reclaim_fraction" },
865 
866 	{  0,	999999,	1000,	"ipsec_policy_log_interval" },
867 
868 	{  0,	1,	1,	"pim_accept_clear_messages" },
869 	{  1000, 20000,	2000,	"ip_ndp_unsolicit_interval" },
870 	{  1,	20,	3,	"ip_ndp_unsolicit_count" },
871 	{  0,	1,	1,	"ip6_ignore_home_address_opt" },
872 	{  0,	15,	0,	"ip_policy_mask" },
873 	{  1000, 60000, 1000,	"ip_multirt_resolution_interval" },
874 	{  0,	255,	1,	"ip_multirt_ttl" },
875 	{  0,	1,	1,	"ip_multidata_outbound" },
876 	{  0,	3600000, 300000, "ip_ndp_defense_interval" },
877 	{  0,	999999,	60*60*24, "ip_max_temp_idle" },
878 	{  0,	1000,	1,	"ip_max_temp_defend" },
879 	{  0,	1000,	3,	"ip_max_defend" },
880 	{  0,	999999,	30,	"ip_defend_interval" },
881 	{  0,	3600000, 300000, "ip_dup_recovery" },
882 	{  0,	1,	1,	"ip_restrict_interzone_loopback" },
883 	{  0,	1,	1,	"ip_lso_outbound" },
884 #ifdef DEBUG
885 	{  0,	1,	0,	"ip6_drop_inbound_icmpv6" },
886 #else
887 	{  0,	0,	0,	"" },
888 #endif
889 };
890 
891 /*
892  * Extended NDP table
893  * The addresses for the first two are filled in to be ips_ip_g_forward
894  * and ips_ipv6_forward at init time.
895  */
896 static ipndp_t	lcl_ndp_arr[] = {
897 	/* getf			setf		data			name */
898 #define	IPNDP_IP_FORWARDING_OFFSET	0
899 	{  ip_param_generic_get,	ip_forward_set,	NULL,
900 	    "ip_forwarding" },
901 #define	IPNDP_IP6_FORWARDING_OFFSET	1
902 	{  ip_param_generic_get,	ip_forward_set,	NULL,
903 	    "ip6_forwarding" },
904 	{  ip_ill_report,	NULL,		NULL,
905 	    "ip_ill_status" },
906 	{  ip_ipif_report,	NULL,		NULL,
907 	    "ip_ipif_status" },
908 	{  ip_ire_report,	NULL,		NULL,
909 	    "ipv4_ire_status" },
910 	{  ip_ire_report_mrtun,	NULL,		NULL,
911 	    "ipv4_mrtun_ire_status" },
912 	{  ip_ire_report_srcif,	NULL,		NULL,
913 	    "ipv4_srcif_ire_status" },
914 	{  ip_ire_report_v6,	NULL,		NULL,
915 	    "ipv6_ire_status" },
916 	{  ip_conn_report,	NULL,		NULL,
917 	    "ip_conn_status" },
918 	{  nd_get_long,		nd_set_long,	(caddr_t)&ip_rput_pullups,
919 	    "ip_rput_pullups" },
920 	{  ndp_report,		NULL,		NULL,
921 	    "ip_ndp_cache_report" },
922 	{  ip_srcid_report,	NULL,		NULL,
923 	    "ip_srcid_status" },
924 	{ ip_param_generic_get, ip_squeue_profile_set,
925 	    (caddr_t)&ip_squeue_profile, "ip_squeue_profile" },
926 	{ ip_param_generic_get, ip_squeue_bind_set,
927 	    (caddr_t)&ip_squeue_bind, "ip_squeue_bind" },
928 	{ ip_param_generic_get, ip_input_proc_set,
929 	    (caddr_t)&ip_squeue_enter, "ip_squeue_enter" },
930 	{ ip_param_generic_get, ip_int_set,
931 	    (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" },
932 #define	IPNDP_CGTP_FILTER_OFFSET	16
933 	{  ip_cgtp_filter_get,	ip_cgtp_filter_set, NULL,
934 	    "ip_cgtp_filter" },
935 	{ ip_param_generic_get, ip_int_set,
936 	    (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" },
937 };
938 
939 /*
940  * Table of IP ioctls encoding the various properties of the ioctl and
941  * indexed based on the last byte of the ioctl command. Occasionally there
942  * is a clash, and there is more than 1 ioctl with the same last byte.
943  * In such a case 1 ioctl is encoded in the ndx table and the remaining
944  * ioctls are encoded in the misc table. An entry in the ndx table is
945  * retrieved by indexing on the last byte of the ioctl command and comparing
946  * the ioctl command with the value in the ndx table. In the event of a
947  * mismatch the misc table is then searched sequentially for the desired
948  * ioctl command.
949  *
950  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
951  */
952 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
953 	/* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
954 	/* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
955 	/* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
956 	/* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
957 	/* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
958 	/* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
959 	/* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
960 	/* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
961 	/* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
962 	/* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
963 
964 	/* 010 */ { SIOCADDRT,	sizeof (struct rtentry), IPI_PRIV,
965 			MISC_CMD, ip_siocaddrt, NULL },
966 	/* 011 */ { SIOCDELRT,	sizeof (struct rtentry), IPI_PRIV,
967 			MISC_CMD, ip_siocdelrt, NULL },
968 
969 	/* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
970 			IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
971 	/* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
972 			IF_CMD, ip_sioctl_get_addr, NULL },
973 
974 	/* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
975 			IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
976 	/* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
977 			IPI_GET_CMD | IPI_REPL,
978 			IF_CMD, ip_sioctl_get_dstaddr, NULL },
979 
980 	/* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
981 			IPI_PRIV | IPI_WR | IPI_REPL,
982 			IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
983 	/* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
984 			IPI_MODOK | IPI_GET_CMD | IPI_REPL,
985 			IF_CMD, ip_sioctl_get_flags, NULL },
986 
987 	/* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
988 	/* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
989 
990 	/* copyin size cannot be coded for SIOCGIFCONF */
991 	/* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL,
992 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
993 
994 	/* 021 */ { SIOCSIFMTU,	sizeof (struct ifreq), IPI_PRIV | IPI_WR,
995 			IF_CMD, ip_sioctl_mtu, NULL },
996 	/* 022 */ { SIOCGIFMTU,	sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
997 			IF_CMD, ip_sioctl_get_mtu, NULL },
998 	/* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
999 			IPI_GET_CMD | IPI_REPL,
1000 			IF_CMD, ip_sioctl_get_brdaddr, NULL },
1001 	/* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
1002 			IF_CMD, ip_sioctl_brdaddr, NULL },
1003 	/* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
1004 			IPI_GET_CMD | IPI_REPL,
1005 			IF_CMD, ip_sioctl_get_netmask, NULL },
1006 	/* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
1007 			IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
1008 	/* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
1009 			IPI_GET_CMD | IPI_REPL,
1010 			IF_CMD, ip_sioctl_get_metric, NULL },
1011 	/* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
1012 			IF_CMD, ip_sioctl_metric, NULL },
1013 	/* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1014 
1015 	/* See 166-168 below for extended SIOC*XARP ioctls */
1016 	/* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV,
1017 			MISC_CMD, ip_sioctl_arp, NULL },
1018 	/* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL,
1019 			MISC_CMD, ip_sioctl_arp, NULL },
1020 	/* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV,
1021 			MISC_CMD, ip_sioctl_arp, NULL },
1022 
1023 	/* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1024 	/* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1025 	/* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1026 	/* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1027 	/* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1028 	/* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1029 	/* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1030 	/* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031 	/* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1032 	/* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1033 	/* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1034 	/* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035 	/* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036 	/* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037 	/* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1038 	/* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1039 	/* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1040 	/* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1041 	/* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1042 	/* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1043 	/* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1044 
1045 	/* 054 */ { IF_UNITSEL,	sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
1046 			MISC_CMD, if_unitsel, if_unitsel_restart },
1047 
1048 	/* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1049 	/* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1050 	/* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1051 	/* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1052 	/* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053 	/* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054 	/* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1055 	/* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1056 	/* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1057 	/* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1058 	/* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1059 	/* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1060 	/* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1061 	/* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1062 	/* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1063 	/* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1064 	/* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1065 	/* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1066 
1067 	/* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
1068 			IPI_PRIV | IPI_WR | IPI_MODOK,
1069 			IF_CMD, ip_sioctl_sifname, NULL },
1070 
1071 	/* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1072 	/* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1073 	/* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1074 	/* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1075 	/* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1076 	/* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1077 	/* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1078 	/* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1079 	/* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1080 	/* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1081 	/* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1082 	/* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1083 	/* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1084 
1085 	/* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL,
1086 			MISC_CMD, ip_sioctl_get_ifnum, NULL },
1087 	/* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
1088 			IF_CMD, ip_sioctl_get_muxid, NULL },
1089 	/* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
1090 			IPI_PRIV | IPI_WR | IPI_REPL,
1091 			IF_CMD, ip_sioctl_muxid, NULL },
1092 
1093 	/* Both if and lif variants share same func */
1094 	/* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL,
1095 			IF_CMD, ip_sioctl_get_lifindex, NULL },
1096 	/* Both if and lif variants share same func */
1097 	/* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
1098 			IPI_PRIV | IPI_WR | IPI_REPL,
1099 			IF_CMD, ip_sioctl_slifindex, NULL },
1100 
1101 	/* copyin size cannot be coded for SIOCGIFCONF */
1102 	/* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL,
1103 			MISC_CMD, ip_sioctl_get_ifconf, NULL },
1104 	/* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1105 	/* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1106 	/* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1107 	/* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1108 	/* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1109 	/* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1110 	/* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1111 	/* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1112 	/* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1113 	/* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1114 	/* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1115 	/* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1116 	/* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1117 	/* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1118 	/* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1119 	/* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1120 	/* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1121 
1122 	/* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
1123 			IPI_PRIV | IPI_WR | IPI_REPL,
1124 			LIF_CMD, ip_sioctl_removeif,
1125 			ip_sioctl_removeif_restart },
1126 	/* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
1127 			IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL,
1128 			LIF_CMD, ip_sioctl_addif, NULL },
1129 #define	SIOCLIFADDR_NDX 112
1130 	/* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1131 			LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
1132 	/* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
1133 			IPI_GET_CMD | IPI_REPL,
1134 			LIF_CMD, ip_sioctl_get_addr, NULL },
1135 	/* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1136 			LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
1137 	/* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
1138 			IPI_GET_CMD | IPI_REPL,
1139 			LIF_CMD, ip_sioctl_get_dstaddr, NULL },
1140 	/* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
1141 			IPI_PRIV | IPI_WR | IPI_REPL,
1142 			LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
1143 	/* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
1144 			IPI_GET_CMD | IPI_MODOK | IPI_REPL,
1145 			LIF_CMD, ip_sioctl_get_flags, NULL },
1146 
1147 	/* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1148 	/* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1149 
1150 	/* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL,
1151 			ip_sioctl_get_lifconf, NULL },
1152 	/* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1153 			LIF_CMD, ip_sioctl_mtu, NULL },
1154 	/* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL,
1155 			LIF_CMD, ip_sioctl_get_mtu, NULL },
1156 	/* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
1157 			IPI_GET_CMD | IPI_REPL,
1158 			LIF_CMD, ip_sioctl_get_brdaddr, NULL },
1159 	/* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1160 			LIF_CMD, ip_sioctl_brdaddr, NULL },
1161 	/* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
1162 			IPI_GET_CMD | IPI_REPL,
1163 			LIF_CMD, ip_sioctl_get_netmask, NULL },
1164 	/* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1165 			LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
1166 	/* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
1167 			IPI_GET_CMD | IPI_REPL,
1168 			LIF_CMD, ip_sioctl_get_metric, NULL },
1169 	/* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1170 			LIF_CMD, ip_sioctl_metric, NULL },
1171 	/* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
1172 			IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL,
1173 			LIF_CMD, ip_sioctl_slifname,
1174 			ip_sioctl_slifname_restart },
1175 
1176 	/* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL,
1177 			MISC_CMD, ip_sioctl_get_lifnum, NULL },
1178 	/* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
1179 			IPI_GET_CMD | IPI_REPL,
1180 			LIF_CMD, ip_sioctl_get_muxid, NULL },
1181 	/* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1182 			IPI_PRIV | IPI_WR | IPI_REPL,
1183 			LIF_CMD, ip_sioctl_muxid, NULL },
1184 	/* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1185 			IPI_GET_CMD | IPI_REPL,
1186 			LIF_CMD, ip_sioctl_get_lifindex, 0 },
1187 	/* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1188 			IPI_PRIV | IPI_WR | IPI_REPL,
1189 			LIF_CMD, ip_sioctl_slifindex, 0 },
1190 	/* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1191 			LIF_CMD, ip_sioctl_token, NULL },
1192 	/* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1193 			IPI_GET_CMD | IPI_REPL,
1194 			LIF_CMD, ip_sioctl_get_token, NULL },
1195 	/* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1196 			LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1197 	/* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1198 			IPI_GET_CMD | IPI_REPL,
1199 			LIF_CMD, ip_sioctl_get_subnet, NULL },
1200 	/* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1201 			LIF_CMD, ip_sioctl_lnkinfo, NULL },
1202 
1203 	/* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1204 			IPI_GET_CMD | IPI_REPL,
1205 			LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1206 	/* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1207 			LIF_CMD, ip_siocdelndp_v6, NULL },
1208 	/* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1209 			LIF_CMD, ip_siocqueryndp_v6, NULL },
1210 	/* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1211 			LIF_CMD, ip_siocsetndp_v6, NULL },
1212 	/* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1213 			MISC_CMD, ip_sioctl_tmyaddr, NULL },
1214 	/* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1215 			MISC_CMD, ip_sioctl_tonlink, NULL },
1216 	/* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1217 			MISC_CMD, ip_sioctl_tmysite, NULL },
1218 	/* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL,
1219 			TUN_CMD, ip_sioctl_tunparam, NULL },
1220 	/* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req),
1221 			IPI_PRIV | IPI_WR,
1222 			TUN_CMD, ip_sioctl_tunparam, NULL },
1223 
1224 	/* IPSECioctls handled in ip_sioctl_copyin_setup itself */
1225 	/* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1226 	/* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1227 	/* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1228 	/* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL },
1229 
1230 	/* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq),
1231 			IPI_PRIV | IPI_WR | IPI_REPL,
1232 			LIF_CMD, ip_sioctl_move, ip_sioctl_move },
1233 	/* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq),
1234 			IPI_PRIV | IPI_WR | IPI_REPL,
1235 			LIF_CMD, ip_sioctl_move, ip_sioctl_move },
1236 	/* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1237 			IPI_PRIV | IPI_WR,
1238 			LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1239 	/* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1240 			IPI_GET_CMD | IPI_REPL,
1241 			LIF_CMD, ip_sioctl_get_groupname, NULL },
1242 	/* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq),
1243 			IPI_GET_CMD | IPI_REPL,
1244 			LIF_CMD, ip_sioctl_get_oindex, NULL },
1245 
1246 	/* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1247 	/* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1248 	/* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1249 	/* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1250 
1251 	/* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1252 		    LIF_CMD, ip_sioctl_slifoindex, NULL },
1253 
1254 	/* These are handled in ip_sioctl_copyin_setup itself */
1255 	/* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1256 			MISC_CMD, NULL, NULL },
1257 	/* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1258 			MISC_CMD, NULL, NULL },
1259 	/* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1260 
1261 	/* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL,
1262 			ip_sioctl_get_lifconf, NULL },
1263 
1264 	/* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV,
1265 			MISC_CMD, ip_sioctl_xarp, NULL },
1266 	/* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL,
1267 			MISC_CMD, ip_sioctl_xarp, NULL },
1268 	/* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV,
1269 			MISC_CMD, ip_sioctl_xarp, NULL },
1270 
1271 	/* SIOCPOPSOCKFS is not handled by IP */
1272 	/* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1273 
1274 	/* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1275 			IPI_GET_CMD | IPI_REPL,
1276 			LIF_CMD, ip_sioctl_get_lifzone, NULL },
1277 	/* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1278 			IPI_PRIV | IPI_WR | IPI_REPL,
1279 			LIF_CMD, ip_sioctl_slifzone,
1280 			ip_sioctl_slifzone_restart },
1281 	/* 172-174 are SCTP ioctls and not handled by IP */
1282 	/* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1283 	/* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1284 	/* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1285 	/* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1286 			IPI_GET_CMD, LIF_CMD,
1287 			ip_sioctl_get_lifusesrc, 0 },
1288 	/* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1289 			IPI_PRIV | IPI_WR,
1290 			LIF_CMD, ip_sioctl_slifusesrc,
1291 			NULL },
1292 	/* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1293 			ip_sioctl_get_lifsrcof, NULL },
1294 	/* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1295 			MISC_CMD, ip_sioctl_msfilter, NULL },
1296 	/* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR,
1297 			MISC_CMD, ip_sioctl_msfilter, NULL },
1298 	/* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1299 			MISC_CMD, ip_sioctl_msfilter, NULL },
1300 	/* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR,
1301 			MISC_CMD, ip_sioctl_msfilter, NULL },
1302 	/* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD,
1303 			ip_sioctl_set_ipmpfailback, NULL }
1304 };
1305 
1306 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1307 
1308 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1309 	{ OSIOCGTUNPARAM, sizeof (struct old_iftun_req),
1310 		IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL },
1311 	{ OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR,
1312 		TUN_CMD, ip_sioctl_tunparam, NULL },
1313 	{ I_LINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1314 	{ I_UNLINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1315 	{ I_PLINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1316 	{ I_PUNLINK,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1317 	{ ND_GET,	0, IPI_PASS_DOWN, 0, NULL, NULL },
1318 	{ ND_SET,	0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL },
1319 	{ IP_IOCTL,	0, 0, 0, NULL, NULL },
1320 	{ SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD,
1321 		MISC_CMD, mrt_ioctl},
1322 	{ SIOCGETSGCNT,	sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD,
1323 		MISC_CMD, mrt_ioctl},
1324 	{ SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD,
1325 		MISC_CMD, mrt_ioctl}
1326 };
1327 
1328 int ip_misc_ioctl_count =
1329     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1330 
1331 int	conn_drain_nthreads;		/* Number of drainers reqd. */
1332 					/* Settable in /etc/system */
1333 /* Defined in ip_ire.c */
1334 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1335 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1336 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1337 
1338 static nv_t	ire_nv_arr[] = {
1339 	{ IRE_BROADCAST, "BROADCAST" },
1340 	{ IRE_LOCAL, "LOCAL" },
1341 	{ IRE_LOOPBACK, "LOOPBACK" },
1342 	{ IRE_CACHE, "CACHE" },
1343 	{ IRE_DEFAULT, "DEFAULT" },
1344 	{ IRE_PREFIX, "PREFIX" },
1345 	{ IRE_IF_NORESOLVER, "IF_NORESOL" },
1346 	{ IRE_IF_RESOLVER, "IF_RESOLV" },
1347 	{ IRE_HOST, "HOST" },
1348 	{ 0 }
1349 };
1350 
1351 nv_t	*ire_nv_tbl = ire_nv_arr;
1352 
1353 /* Defined in ip_netinfo.c */
1354 extern ddi_taskq_t	*eventq_queue_nic;
1355 
1356 /* Simple ICMP IP Header Template */
1357 static ipha_t icmp_ipha = {
1358 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1359 };
1360 
1361 struct module_info ip_mod_info = {
1362 	IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024
1363 };
1364 
1365 /*
1366  * Duplicate static symbols within a module confuses mdb; so we avoid the
1367  * problem by making the symbols here distinct from those in udp.c.
1368  */
1369 
1370 static struct qinit iprinit = {
1371 	(pfi_t)ip_rput, NULL, ip_open, ip_close, NULL,
1372 	&ip_mod_info
1373 };
1374 
1375 static struct qinit ipwinit = {
1376 	(pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL,
1377 	&ip_mod_info
1378 };
1379 
1380 static struct qinit iplrinit = {
1381 	(pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL,
1382 	&ip_mod_info
1383 };
1384 
1385 static struct qinit iplwinit = {
1386 	(pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL,
1387 	&ip_mod_info
1388 };
1389 
1390 struct streamtab ipinfo = {
1391 	&iprinit, &ipwinit, &iplrinit, &iplwinit
1392 };
1393 
1394 #ifdef	DEBUG
1395 static boolean_t skip_sctp_cksum = B_FALSE;
1396 #endif
1397 
1398 /*
1399  * Prepend the zoneid using an ipsec_out_t for later use by functions like
1400  * ip_rput_v6(), ip_output(), etc.  If the message
1401  * block already has a M_CTL at the front of it, then simply set the zoneid
1402  * appropriately.
1403  */
1404 mblk_t *
1405 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid, ip_stack_t *ipst)
1406 {
1407 	mblk_t		*first_mp;
1408 	ipsec_out_t	*io;
1409 
1410 	ASSERT(zoneid != ALL_ZONES);
1411 	if (mp->b_datap->db_type == M_CTL) {
1412 		io = (ipsec_out_t *)mp->b_rptr;
1413 		ASSERT(io->ipsec_out_type == IPSEC_OUT);
1414 		io->ipsec_out_zoneid = zoneid;
1415 		return (mp);
1416 	}
1417 
1418 	first_mp = ipsec_alloc_ipsec_out(ipst->ips_netstack);
1419 	if (first_mp == NULL)
1420 		return (NULL);
1421 	io = (ipsec_out_t *)first_mp->b_rptr;
1422 	/* This is not a secure packet */
1423 	io->ipsec_out_secure = B_FALSE;
1424 	io->ipsec_out_zoneid = zoneid;
1425 	first_mp->b_cont = mp;
1426 	return (first_mp);
1427 }
1428 
1429 /*
1430  * Copy an M_CTL-tagged message, preserving reference counts appropriately.
1431  */
1432 mblk_t *
1433 ip_copymsg(mblk_t *mp)
1434 {
1435 	mblk_t *nmp;
1436 	ipsec_info_t *in;
1437 
1438 	if (mp->b_datap->db_type != M_CTL)
1439 		return (copymsg(mp));
1440 
1441 	in = (ipsec_info_t *)mp->b_rptr;
1442 
1443 	/*
1444 	 * Note that M_CTL is also used for delivering ICMP error messages
1445 	 * upstream to transport layers.
1446 	 */
1447 	if (in->ipsec_info_type != IPSEC_OUT &&
1448 	    in->ipsec_info_type != IPSEC_IN)
1449 		return (copymsg(mp));
1450 
1451 	nmp = copymsg(mp->b_cont);
1452 
1453 	if (in->ipsec_info_type == IPSEC_OUT) {
1454 		return (ipsec_out_tag(mp, nmp,
1455 			    ((ipsec_out_t *)in)->ipsec_out_ns));
1456 	} else {
1457 		return (ipsec_in_tag(mp, nmp,
1458 			    ((ipsec_in_t *)in)->ipsec_in_ns));
1459 	}
1460 }
1461 
1462 /* Generate an ICMP fragmentation needed message. */
1463 static void
1464 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid,
1465     ip_stack_t *ipst)
1466 {
1467 	icmph_t	icmph;
1468 	mblk_t *first_mp;
1469 	boolean_t mctl_present;
1470 
1471 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
1472 
1473 	if (!(mp = icmp_pkt_err_ok(mp, ipst))) {
1474 		if (mctl_present)
1475 			freeb(first_mp);
1476 		return;
1477 	}
1478 
1479 	bzero(&icmph, sizeof (icmph_t));
1480 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1481 	icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1482 	icmph.icmph_du_mtu = htons((uint16_t)mtu);
1483 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1484 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1485 	icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid,
1486 	    ipst);
1487 }
1488 
1489 /*
1490  * icmp_inbound deals with ICMP messages in the following ways.
1491  *
1492  * 1) It needs to send a reply back and possibly delivering it
1493  *    to the "interested" upper clients.
1494  * 2) It needs to send it to the upper clients only.
1495  * 3) It needs to change some values in IP only.
1496  * 4) It needs to change some values in IP and upper layers e.g TCP.
1497  *
1498  * We need to accomodate icmp messages coming in clear until we get
1499  * everything secure from the wire. If icmp_accept_clear_messages
1500  * is zero we check with the global policy and act accordingly. If
1501  * it is non-zero, we accept the message without any checks. But
1502  * *this does not mean* that this will be delivered to the upper
1503  * clients. By accepting we might send replies back, change our MTU
1504  * value etc. but delivery to the ULP/clients depends on their policy
1505  * dispositions.
1506  *
1507  * We handle the above 4 cases in the context of IPSEC in the
1508  * following way :
1509  *
1510  * 1) Send the reply back in the same way as the request came in.
1511  *    If it came in encrypted, it goes out encrypted. If it came in
1512  *    clear, it goes out in clear. Thus, this will prevent chosen
1513  *    plain text attack.
1514  * 2) The client may or may not expect things to come in secure.
1515  *    If it comes in secure, the policy constraints are checked
1516  *    before delivering it to the upper layers. If it comes in
1517  *    clear, ipsec_inbound_accept_clear will decide whether to
1518  *    accept this in clear or not. In both the cases, if the returned
1519  *    message (IP header + 8 bytes) that caused the icmp message has
1520  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1521  *    sending up. If there are only 8 bytes of returned message, then
1522  *    upper client will not be notified.
1523  * 3) Check with global policy to see whether it matches the constaints.
1524  *    But this will be done only if icmp_accept_messages_in_clear is
1525  *    zero.
1526  * 4) If we need to change both in IP and ULP, then the decision taken
1527  *    while affecting the values in IP and while delivering up to TCP
1528  *    should be the same.
1529  *
1530  * 	There are two cases.
1531  *
1532  * 	a) If we reject data at the IP layer (ipsec_check_global_policy()
1533  *	   failed), we will not deliver it to the ULP, even though they
1534  *	   are *willing* to accept in *clear*. This is fine as our global
1535  *	   disposition to icmp messages asks us reject the datagram.
1536  *
1537  *	b) If we accept data at the IP layer (ipsec_check_global_policy()
1538  *	   succeeded or icmp_accept_messages_in_clear is 1), and not able
1539  *	   to deliver it to ULP (policy failed), it can lead to
1540  *	   consistency problems. The cases known at this time are
1541  *	   ICMP_DESTINATION_UNREACHABLE  messages with following code
1542  *	   values :
1543  *
1544  *	   - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1545  *	     and Upper layer rejects. Then the communication will
1546  *	     come to a stop. This is solved by making similar decisions
1547  *	     at both levels. Currently, when we are unable to deliver
1548  *	     to the Upper Layer (due to policy failures) while IP has
1549  *	     adjusted ire_max_frag, the next outbound datagram would
1550  *	     generate a local ICMP_FRAGMENTATION_NEEDED message - which
1551  *	     will be with the right level of protection. Thus the right
1552  *	     value will be communicated even if we are not able to
1553  *	     communicate when we get from the wire initially. But this
1554  *	     assumes there would be at least one outbound datagram after
1555  *	     IP has adjusted its ire_max_frag value. To make things
1556  *	     simpler, we accept in clear after the validation of
1557  *	     AH/ESP headers.
1558  *
1559  *	   - Other ICMP ERRORS : We may not be able to deliver it to the
1560  *	     upper layer depending on the level of protection the upper
1561  *	     layer expects and the disposition in ipsec_inbound_accept_clear().
1562  *	     ipsec_inbound_accept_clear() decides whether a given ICMP error
1563  *	     should be accepted in clear when the Upper layer expects secure.
1564  *	     Thus the communication may get aborted by some bad ICMP
1565  *	     packets.
1566  *
1567  * IPQoS Notes:
1568  * The only instance when a packet is sent for processing is when there
1569  * isn't an ICMP client and if we are interested in it.
1570  * If there is a client, IPPF processing will take place in the
1571  * ip_fanout_proto routine.
1572  *
1573  * Zones notes:
1574  * The packet is only processed in the context of the specified zone: typically
1575  * only this zone will reply to an echo request, and only interested clients in
1576  * this zone will receive a copy of the packet. This means that the caller must
1577  * call icmp_inbound() for each relevant zone.
1578  */
1579 static void
1580 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill,
1581     int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy,
1582     ill_t *recv_ill, zoneid_t zoneid)
1583 {
1584 	icmph_t	*icmph;
1585 	ipha_t	*ipha;
1586 	int	iph_hdr_length;
1587 	int	hdr_length;
1588 	boolean_t	interested;
1589 	uint32_t	ts;
1590 	uchar_t	*wptr;
1591 	ipif_t	*ipif;
1592 	mblk_t *first_mp;
1593 	ipsec_in_t *ii;
1594 	ire_t *src_ire;
1595 	boolean_t onlink;
1596 	timestruc_t now;
1597 	uint32_t ill_index;
1598 	ip_stack_t *ipst;
1599 
1600 	ASSERT(ill != NULL);
1601 	ipst = ill->ill_ipst;
1602 
1603 	first_mp = mp;
1604 	if (mctl_present) {
1605 		mp = first_mp->b_cont;
1606 		ASSERT(mp != NULL);
1607 	}
1608 
1609 	ipha = (ipha_t *)mp->b_rptr;
1610 	if (ipst->ips_icmp_accept_clear_messages == 0) {
1611 		first_mp = ipsec_check_global_policy(first_mp, NULL,
1612 		    ipha, NULL, mctl_present, ipst->ips_netstack);
1613 		if (first_mp == NULL)
1614 			return;
1615 	}
1616 
1617 	/*
1618 	 * On a labeled system, we have to check whether the zone itself is
1619 	 * permitted to receive raw traffic.
1620 	 */
1621 	if (is_system_labeled()) {
1622 		if (zoneid == ALL_ZONES)
1623 			zoneid = tsol_packet_to_zoneid(mp);
1624 		if (!tsol_can_accept_raw(mp, B_FALSE)) {
1625 			ip1dbg(("icmp_inbound: zone %d can't receive raw",
1626 			    zoneid));
1627 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1628 			freemsg(first_mp);
1629 			return;
1630 		}
1631 	}
1632 
1633 	/*
1634 	 * We have accepted the ICMP message. It means that we will
1635 	 * respond to the packet if needed. It may not be delivered
1636 	 * to the upper client depending on the policy constraints
1637 	 * and the disposition in ipsec_inbound_accept_clear.
1638 	 */
1639 
1640 	ASSERT(ill != NULL);
1641 
1642 	BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1643 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1644 	if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) {
1645 		/* Last chance to get real. */
1646 		if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) {
1647 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1648 			freemsg(first_mp);
1649 			return;
1650 		}
1651 		/* Refresh iph following the pullup. */
1652 		ipha = (ipha_t *)mp->b_rptr;
1653 	}
1654 	/* ICMP header checksum, including checksum field, should be zero. */
1655 	if (sum_valid ? (sum != 0 && sum != 0xFFFF) :
1656 	    IP_CSUM(mp, iph_hdr_length, 0)) {
1657 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInCksumErrs);
1658 		freemsg(first_mp);
1659 		return;
1660 	}
1661 	/* The IP header will always be a multiple of four bytes */
1662 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1663 	ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type,
1664 	    icmph->icmph_code));
1665 	wptr = (uchar_t *)icmph + ICMPH_SIZE;
1666 	/* We will set "interested" to "true" if we want a copy */
1667 	interested = B_FALSE;
1668 	switch (icmph->icmph_type) {
1669 	case ICMP_ECHO_REPLY:
1670 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1671 		break;
1672 	case ICMP_DEST_UNREACHABLE:
1673 		if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1674 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1675 		interested = B_TRUE;	/* Pass up to transport */
1676 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1677 		break;
1678 	case ICMP_SOURCE_QUENCH:
1679 		interested = B_TRUE;	/* Pass up to transport */
1680 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1681 		break;
1682 	case ICMP_REDIRECT:
1683 		if (!ipst->ips_ip_ignore_redirect)
1684 			interested = B_TRUE;
1685 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1686 		break;
1687 	case ICMP_ECHO_REQUEST:
1688 		/*
1689 		 * Whether to respond to echo requests that come in as IP
1690 		 * broadcasts or as IP multicast is subject to debate
1691 		 * (what isn't?).  We aim to please, you pick it.
1692 		 * Default is do it.
1693 		 */
1694 		if (!broadcast && !CLASSD(ipha->ipha_dst)) {
1695 			/* unicast: always respond */
1696 			interested = B_TRUE;
1697 		} else if (CLASSD(ipha->ipha_dst)) {
1698 			/* multicast: respond based on tunable */
1699 			interested = ipst->ips_ip_g_resp_to_echo_mcast;
1700 		} else if (broadcast) {
1701 			/* broadcast: respond based on tunable */
1702 			interested = ipst->ips_ip_g_resp_to_echo_bcast;
1703 		}
1704 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1705 		break;
1706 	case ICMP_ROUTER_ADVERTISEMENT:
1707 	case ICMP_ROUTER_SOLICITATION:
1708 		break;
1709 	case ICMP_TIME_EXCEEDED:
1710 		interested = B_TRUE;	/* Pass up to transport */
1711 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1712 		break;
1713 	case ICMP_PARAM_PROBLEM:
1714 		interested = B_TRUE;	/* Pass up to transport */
1715 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1716 		break;
1717 	case ICMP_TIME_STAMP_REQUEST:
1718 		/* Response to Time Stamp Requests is local policy. */
1719 		if (ipst->ips_ip_g_resp_to_timestamp &&
1720 		    /* So is whether to respond if it was an IP broadcast. */
1721 		    (!broadcast || ipst->ips_ip_g_resp_to_timestamp_bcast)) {
1722 			int tstamp_len = 3 * sizeof (uint32_t);
1723 
1724 			if (wptr +  tstamp_len > mp->b_wptr) {
1725 				if (!pullupmsg(mp, wptr + tstamp_len -
1726 				    mp->b_rptr)) {
1727 					BUMP_MIB(ill->ill_ip_mib,
1728 					    ipIfStatsInDiscards);
1729 					freemsg(first_mp);
1730 					return;
1731 				}
1732 				/* Refresh ipha following the pullup. */
1733 				ipha = (ipha_t *)mp->b_rptr;
1734 				icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1735 				wptr = (uchar_t *)icmph + ICMPH_SIZE;
1736 			}
1737 			interested = B_TRUE;
1738 		}
1739 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1740 		break;
1741 	case ICMP_TIME_STAMP_REPLY:
1742 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1743 		break;
1744 	case ICMP_INFO_REQUEST:
1745 		/* Per RFC 1122 3.2.2.7, ignore this. */
1746 	case ICMP_INFO_REPLY:
1747 		break;
1748 	case ICMP_ADDRESS_MASK_REQUEST:
1749 		if ((ipst->ips_ip_respond_to_address_mask_broadcast ||
1750 			!broadcast) &&
1751 		    /* TODO m_pullup of complete header? */
1752 		    (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN)
1753 			interested = B_TRUE;
1754 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1755 		break;
1756 	case ICMP_ADDRESS_MASK_REPLY:
1757 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1758 		break;
1759 	default:
1760 		interested = B_TRUE;	/* Pass up to transport */
1761 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1762 		break;
1763 	}
1764 	/* See if there is an ICMP client. */
1765 	if (ipst->ips_ipcl_proto_fanout[IPPROTO_ICMP].connf_head != NULL) {
1766 		/* If there is an ICMP client and we want one too, copy it. */
1767 		mblk_t *first_mp1;
1768 
1769 		if (!interested) {
1770 			ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present,
1771 			    ip_policy, recv_ill, zoneid);
1772 			return;
1773 		}
1774 		first_mp1 = ip_copymsg(first_mp);
1775 		if (first_mp1 != NULL) {
1776 			ip_fanout_proto(q, first_mp1, ill, ipha,
1777 			    0, mctl_present, ip_policy, recv_ill, zoneid);
1778 		}
1779 	} else if (!interested) {
1780 		freemsg(first_mp);
1781 		return;
1782 	} else {
1783 		/*
1784 		 * Initiate policy processing for this packet if ip_policy
1785 		 * is true.
1786 		 */
1787 		if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) {
1788 			ill_index = ill->ill_phyint->phyint_ifindex;
1789 			ip_process(IPP_LOCAL_IN, &mp, ill_index);
1790 			if (mp == NULL) {
1791 				if (mctl_present) {
1792 					freeb(first_mp);
1793 				}
1794 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1795 				return;
1796 			}
1797 		}
1798 	}
1799 	/* We want to do something with it. */
1800 	/* Check db_ref to make sure we can modify the packet. */
1801 	if (mp->b_datap->db_ref > 1) {
1802 		mblk_t	*first_mp1;
1803 
1804 		first_mp1 = ip_copymsg(first_mp);
1805 		freemsg(first_mp);
1806 		if (!first_mp1) {
1807 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1808 			return;
1809 		}
1810 		first_mp = first_mp1;
1811 		if (mctl_present) {
1812 			mp = first_mp->b_cont;
1813 			ASSERT(mp != NULL);
1814 		} else {
1815 			mp = first_mp;
1816 		}
1817 		ipha = (ipha_t *)mp->b_rptr;
1818 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1819 		wptr = (uchar_t *)icmph + ICMPH_SIZE;
1820 	}
1821 	switch (icmph->icmph_type) {
1822 	case ICMP_ADDRESS_MASK_REQUEST:
1823 		ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1824 		if (ipif == NULL) {
1825 			freemsg(first_mp);
1826 			return;
1827 		}
1828 		/*
1829 		 * outging interface must be IPv4
1830 		 */
1831 		ASSERT(ipif != NULL && !ipif->ipif_isv6);
1832 		icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1833 		bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN);
1834 		ipif_refrele(ipif);
1835 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1836 		break;
1837 	case ICMP_ECHO_REQUEST:
1838 		icmph->icmph_type = ICMP_ECHO_REPLY;
1839 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1840 		break;
1841 	case ICMP_TIME_STAMP_REQUEST: {
1842 		uint32_t *tsp;
1843 
1844 		icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1845 		tsp = (uint32_t *)wptr;
1846 		tsp++;		/* Skip past 'originate time' */
1847 		/* Compute # of milliseconds since midnight */
1848 		gethrestime(&now);
1849 		ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1850 		    now.tv_nsec / (NANOSEC / MILLISEC);
1851 		*tsp++ = htonl(ts);	/* Lay in 'receive time' */
1852 		*tsp++ = htonl(ts);	/* Lay in 'send time' */
1853 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1854 		break;
1855 	}
1856 	default:
1857 		ipha = (ipha_t *)&icmph[1];
1858 		if ((uchar_t *)&ipha[1] > mp->b_wptr) {
1859 			if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) {
1860 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1861 				freemsg(first_mp);
1862 				return;
1863 			}
1864 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1865 			ipha = (ipha_t *)&icmph[1];
1866 		}
1867 		if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) {
1868 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1869 			freemsg(first_mp);
1870 			return;
1871 		}
1872 		hdr_length = IPH_HDR_LENGTH(ipha);
1873 		if (hdr_length < sizeof (ipha_t)) {
1874 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1875 			freemsg(first_mp);
1876 			return;
1877 		}
1878 		if ((uchar_t *)ipha + hdr_length > mp->b_wptr) {
1879 			if (!pullupmsg(mp,
1880 			    (uchar_t *)ipha + hdr_length - mp->b_rptr)) {
1881 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1882 				freemsg(first_mp);
1883 				return;
1884 			}
1885 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1886 			ipha = (ipha_t *)&icmph[1];
1887 		}
1888 		switch (icmph->icmph_type) {
1889 		case ICMP_REDIRECT:
1890 			/*
1891 			 * As there is no upper client to deliver, we don't
1892 			 * need the first_mp any more.
1893 			 */
1894 			if (mctl_present) {
1895 				freeb(first_mp);
1896 			}
1897 			icmp_redirect(ill, mp);
1898 			return;
1899 		case ICMP_DEST_UNREACHABLE:
1900 			if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1901 				if (!icmp_inbound_too_big(icmph, ipha, ill,
1902 				    zoneid, mp, iph_hdr_length, ipst)) {
1903 					freemsg(first_mp);
1904 					return;
1905 				}
1906 				/*
1907 				 * icmp_inbound_too_big() may alter mp.
1908 				 * Resynch ipha and icmph accordingly.
1909 				 */
1910 				icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1911 				ipha = (ipha_t *)&icmph[1];
1912 			}
1913 			/* FALLTHRU */
1914 		default :
1915 			/*
1916 			 * IPQoS notes: Since we have already done IPQoS
1917 			 * processing we don't want to do it again in
1918 			 * the fanout routines called by
1919 			 * icmp_inbound_error_fanout, hence the last
1920 			 * argument, ip_policy, is B_FALSE.
1921 			 */
1922 			icmp_inbound_error_fanout(q, ill, first_mp, icmph,
1923 			    ipha, iph_hdr_length, hdr_length, mctl_present,
1924 			    B_FALSE, recv_ill, zoneid);
1925 		}
1926 		return;
1927 	}
1928 	/* Send out an ICMP packet */
1929 	icmph->icmph_checksum = 0;
1930 	icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0);
1931 	if (icmph->icmph_checksum == 0)
1932 		icmph->icmph_checksum = 0xFFFF;
1933 	if (broadcast || CLASSD(ipha->ipha_dst)) {
1934 		ipif_t	*ipif_chosen;
1935 		/*
1936 		 * Make it look like it was directed to us, so we don't look
1937 		 * like a fool with a broadcast or multicast source address.
1938 		 */
1939 		ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1940 		/*
1941 		 * Make sure that we haven't grabbed an interface that's DOWN.
1942 		 */
1943 		if (ipif != NULL) {
1944 			ipif_chosen = ipif_select_source(ipif->ipif_ill,
1945 			    ipha->ipha_src, zoneid);
1946 			if (ipif_chosen != NULL) {
1947 				ipif_refrele(ipif);
1948 				ipif = ipif_chosen;
1949 			}
1950 		}
1951 		if (ipif == NULL) {
1952 			ip0dbg(("icmp_inbound: "
1953 			    "No source for broadcast/multicast:\n"
1954 			    "\tsrc 0x%x dst 0x%x ill %p "
1955 			    "ipif_lcl_addr 0x%x\n",
1956 			    ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst),
1957 			    (void *)ill,
1958 			    ill->ill_ipif->ipif_lcl_addr));
1959 			freemsg(first_mp);
1960 			return;
1961 		}
1962 		ASSERT(ipif != NULL && !ipif->ipif_isv6);
1963 		ipha->ipha_dst = ipif->ipif_src_addr;
1964 		ipif_refrele(ipif);
1965 	}
1966 	/* Reset time to live. */
1967 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1968 	{
1969 		/* Swap source and destination addresses */
1970 		ipaddr_t tmp;
1971 
1972 		tmp = ipha->ipha_src;
1973 		ipha->ipha_src = ipha->ipha_dst;
1974 		ipha->ipha_dst = tmp;
1975 	}
1976 	ipha->ipha_ident = 0;
1977 	if (!IS_SIMPLE_IPH(ipha))
1978 		icmp_options_update(ipha);
1979 
1980 	/*
1981 	 * ICMP echo replies should go out on the same interface
1982 	 * the request came on as probes used by in.mpathd for detecting
1983 	 * NIC failures are ECHO packets. We turn-off load spreading
1984 	 * by setting ipsec_in_attach_if to B_TRUE, which is copied
1985 	 * to ipsec_out_attach_if by ipsec_in_to_out called later in this
1986 	 * function. This is in turn handled by ip_wput and ip_newroute
1987 	 * to make sure that the packet goes out on the interface it came
1988 	 * in on. If we don't turnoff load spreading, the packets might get
1989 	 * dropped if there are no non-FAILED/INACTIVE interfaces for it
1990 	 * to go out and in.mpathd would wrongly detect a failure or
1991 	 * mis-detect a NIC failure for link failure. As load spreading
1992 	 * can happen only if ill_group is not NULL, we do only for
1993 	 * that case and this does not affect the normal case.
1994 	 *
1995 	 * We turn off load spreading only on echo packets that came from
1996 	 * on-link hosts. If the interface route has been deleted, this will
1997 	 * not be enforced as we can't do much. For off-link hosts, as the
1998 	 * default routes in IPv4 does not typically have an ire_ipif
1999 	 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute.
2000 	 * Moreover, expecting a default route through this interface may
2001 	 * not be correct. We use ipha_dst because of the swap above.
2002 	 */
2003 	onlink = B_FALSE;
2004 	if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) {
2005 		/*
2006 		 * First, we need to make sure that it is not one of our
2007 		 * local addresses. If we set onlink when it is one of
2008 		 * our local addresses, we will end up creating IRE_CACHES
2009 		 * for one of our local addresses. Then, we will never
2010 		 * accept packets for them afterwards.
2011 		 */
2012 		src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL,
2013 		    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
2014 		if (src_ire == NULL) {
2015 			ipif = ipif_get_next_ipif(NULL, ill);
2016 			if (ipif == NULL) {
2017 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2018 				freemsg(mp);
2019 				return;
2020 			}
2021 			src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0,
2022 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
2023 			    NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE, ipst);
2024 			ipif_refrele(ipif);
2025 			if (src_ire != NULL) {
2026 				onlink = B_TRUE;
2027 				ire_refrele(src_ire);
2028 			}
2029 		} else {
2030 			ire_refrele(src_ire);
2031 		}
2032 	}
2033 	if (!mctl_present) {
2034 		/*
2035 		 * This packet should go out the same way as it
2036 		 * came in i.e in clear. To make sure that global
2037 		 * policy will not be applied to this in ip_wput_ire,
2038 		 * we attach a IPSEC_IN mp and clear ipsec_in_secure.
2039 		 */
2040 		ASSERT(first_mp == mp);
2041 		first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack);
2042 		if (first_mp == NULL) {
2043 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2044 			freemsg(mp);
2045 			return;
2046 		}
2047 		ii = (ipsec_in_t *)first_mp->b_rptr;
2048 
2049 		/* This is not a secure packet */
2050 		ii->ipsec_in_secure = B_FALSE;
2051 		if (onlink) {
2052 			ii->ipsec_in_attach_if = B_TRUE;
2053 			ii->ipsec_in_ill_index =
2054 			    ill->ill_phyint->phyint_ifindex;
2055 			ii->ipsec_in_rill_index =
2056 			    recv_ill->ill_phyint->phyint_ifindex;
2057 		}
2058 		first_mp->b_cont = mp;
2059 	} else if (onlink) {
2060 		ii = (ipsec_in_t *)first_mp->b_rptr;
2061 		ii->ipsec_in_attach_if = B_TRUE;
2062 		ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex;
2063 		ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex;
2064 		ii->ipsec_in_ns = ipst->ips_netstack;	/* No netstack_hold */
2065 	} else {
2066 		ii = (ipsec_in_t *)first_mp->b_rptr;
2067 		ii->ipsec_in_ns = ipst->ips_netstack;	/* No netstack_hold */
2068 	}
2069 	ii->ipsec_in_zoneid = zoneid;
2070 	ASSERT(zoneid != ALL_ZONES);
2071 	if (!ipsec_in_to_out(first_mp, ipha, NULL)) {
2072 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2073 		return;
2074 	}
2075 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2076 	put(WR(q), first_mp);
2077 }
2078 
2079 static ipaddr_t
2080 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp)
2081 {
2082 	conn_t *connp;
2083 	connf_t *connfp;
2084 	ipaddr_t nexthop_addr = INADDR_ANY;
2085 	int hdr_length = IPH_HDR_LENGTH(ipha);
2086 	uint16_t *up;
2087 	uint32_t ports;
2088 	ip_stack_t *ipst = ill->ill_ipst;
2089 
2090 	up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2091 	switch (ipha->ipha_protocol) {
2092 		case IPPROTO_TCP:
2093 		{
2094 			tcph_t *tcph;
2095 
2096 			/* do a reverse lookup */
2097 			tcph = (tcph_t *)((uchar_t *)ipha + hdr_length);
2098 			connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph,
2099 			    TCPS_LISTEN, ipst);
2100 			break;
2101 		}
2102 		case IPPROTO_UDP:
2103 		{
2104 			uint32_t dstport, srcport;
2105 
2106 			((uint16_t *)&ports)[0] = up[1];
2107 			((uint16_t *)&ports)[1] = up[0];
2108 
2109 			/* Extract ports in net byte order */
2110 			dstport = htons(ntohl(ports) & 0xFFFF);
2111 			srcport = htons(ntohl(ports) >> 16);
2112 
2113 			connfp = &ipst->ips_ipcl_udp_fanout[
2114 			    IPCL_UDP_HASH(dstport, ipst)];
2115 			mutex_enter(&connfp->connf_lock);
2116 			connp = connfp->connf_head;
2117 
2118 			/* do a reverse lookup */
2119 			while ((connp != NULL) &&
2120 			    (!IPCL_UDP_MATCH(connp, dstport,
2121 			    ipha->ipha_src, srcport, ipha->ipha_dst) ||
2122 			    !IPCL_ZONE_MATCH(connp, zoneid))) {
2123 				connp = connp->conn_next;
2124 			}
2125 			if (connp != NULL)
2126 				CONN_INC_REF(connp);
2127 			mutex_exit(&connfp->connf_lock);
2128 			break;
2129 		}
2130 		case IPPROTO_SCTP:
2131 		{
2132 			in6_addr_t map_src, map_dst;
2133 
2134 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src);
2135 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst);
2136 			((uint16_t *)&ports)[0] = up[1];
2137 			((uint16_t *)&ports)[1] = up[0];
2138 
2139 			connp = sctp_find_conn(&map_src, &map_dst, ports,
2140 			    0, zoneid, ipst->ips_netstack->netstack_sctp);
2141 			if (connp == NULL) {
2142 				connp = ipcl_classify_raw(mp, IPPROTO_SCTP,
2143 				    zoneid, ports, ipha, ipst);
2144 			} else {
2145 				CONN_INC_REF(connp);
2146 				SCTP_REFRELE(CONN2SCTP(connp));
2147 			}
2148 			break;
2149 		}
2150 		default:
2151 		{
2152 			ipha_t ripha;
2153 
2154 			ripha.ipha_src = ipha->ipha_dst;
2155 			ripha.ipha_dst = ipha->ipha_src;
2156 			ripha.ipha_protocol = ipha->ipha_protocol;
2157 
2158 			connfp = &ipst->ips_ipcl_proto_fanout[
2159 			    ipha->ipha_protocol];
2160 			mutex_enter(&connfp->connf_lock);
2161 			connp = connfp->connf_head;
2162 			for (connp = connfp->connf_head; connp != NULL;
2163 			    connp = connp->conn_next) {
2164 				if (IPCL_PROTO_MATCH(connp,
2165 				    ipha->ipha_protocol, &ripha, ill,
2166 				    0, zoneid)) {
2167 					CONN_INC_REF(connp);
2168 					break;
2169 				}
2170 			}
2171 			mutex_exit(&connfp->connf_lock);
2172 		}
2173 	}
2174 	if (connp != NULL) {
2175 		if (connp->conn_nexthop_set)
2176 			nexthop_addr = connp->conn_nexthop_v4;
2177 		CONN_DEC_REF(connp);
2178 	}
2179 	return (nexthop_addr);
2180 }
2181 
2182 /* Table from RFC 1191 */
2183 static int icmp_frag_size_table[] =
2184 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
2185 
2186 /*
2187  * Process received ICMP Packet too big.
2188  * After updating any IRE it does the fanout to any matching transport streams.
2189  * Assumes the message has been pulled up till the IP header that caused
2190  * the error.
2191  *
2192  * Returns B_FALSE on failure and B_TRUE on success.
2193  */
2194 static boolean_t
2195 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill,
2196     zoneid_t zoneid, mblk_t *mp, int iph_hdr_length,
2197     ip_stack_t *ipst)
2198 {
2199 	ire_t	*ire, *first_ire;
2200 	int	mtu;
2201 	int	hdr_length;
2202 	ipaddr_t nexthop_addr;
2203 
2204 	ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
2205 	    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
2206 	ASSERT(ill != NULL);
2207 
2208 	hdr_length = IPH_HDR_LENGTH(ipha);
2209 
2210 	/* Drop if the original packet contained a source route */
2211 	if (ip_source_route_included(ipha)) {
2212 		return (B_FALSE);
2213 	}
2214 	/*
2215 	 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport
2216 	 * header.
2217 	 */
2218 	if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
2219 	    mp->b_wptr) {
2220 		if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
2221 		    ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
2222 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2223 			ip1dbg(("icmp_inbound_too_big: insufficient hdr\n"));
2224 			return (B_FALSE);
2225 		}
2226 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2227 		ipha = (ipha_t *)&icmph[1];
2228 	}
2229 	nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp);
2230 	if (nexthop_addr != INADDR_ANY) {
2231 		/* nexthop set */
2232 		first_ire = ire_ctable_lookup(ipha->ipha_dst,
2233 		    nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp),
2234 		    MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, ipst);
2235 	} else {
2236 		/* nexthop not set */
2237 		first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE,
2238 		    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
2239 	}
2240 
2241 	if (!first_ire) {
2242 		ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n",
2243 		    ntohl(ipha->ipha_dst)));
2244 		return (B_FALSE);
2245 	}
2246 	/* Check for MTU discovery advice as described in RFC 1191 */
2247 	mtu = ntohs(icmph->icmph_du_mtu);
2248 	rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER);
2249 	for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst;
2250 	    ire = ire->ire_next) {
2251 		/*
2252 		 * Look for the connection to which this ICMP message is
2253 		 * directed. If it has the IP_NEXTHOP option set, then the
2254 		 * search is limited to IREs with the MATCH_IRE_PRIVATE
2255 		 * option. Else the search is limited to regular IREs.
2256 		 */
2257 		if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) &&
2258 		    (nexthop_addr != ire->ire_gateway_addr)) ||
2259 		    (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) &&
2260 		    (nexthop_addr != INADDR_ANY)))
2261 			continue;
2262 
2263 		mutex_enter(&ire->ire_lock);
2264 		if (icmph->icmph_du_zero == 0 && mtu > 68) {
2265 			/* Reduce the IRE max frag value as advised. */
2266 			ip1dbg(("Received mtu from router: %d (was %d)\n",
2267 			    mtu, ire->ire_max_frag));
2268 			ire->ire_max_frag = MIN(ire->ire_max_frag, mtu);
2269 		} else {
2270 			uint32_t length;
2271 			int	i;
2272 
2273 			/*
2274 			 * Use the table from RFC 1191 to figure out
2275 			 * the next "plateau" based on the length in
2276 			 * the original IP packet.
2277 			 */
2278 			length = ntohs(ipha->ipha_length);
2279 			if (ire->ire_max_frag <= length &&
2280 			    ire->ire_max_frag >= length - hdr_length) {
2281 				/*
2282 				 * Handle broken BSD 4.2 systems that
2283 				 * return the wrong iph_length in ICMP
2284 				 * errors.
2285 				 */
2286 				ip1dbg(("Wrong mtu: sent %d, ire %d\n",
2287 				    length, ire->ire_max_frag));
2288 				length -= hdr_length;
2289 			}
2290 			for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
2291 				if (length > icmp_frag_size_table[i])
2292 					break;
2293 			}
2294 			if (i == A_CNT(icmp_frag_size_table)) {
2295 				/* Smaller than 68! */
2296 				ip1dbg(("Too big for packet size %d\n",
2297 				    length));
2298 				ire->ire_max_frag = MIN(ire->ire_max_frag, 576);
2299 				ire->ire_frag_flag = 0;
2300 			} else {
2301 				mtu = icmp_frag_size_table[i];
2302 				ip1dbg(("Calculated mtu %d, packet size %d, "
2303 				    "before %d", mtu, length,
2304 				    ire->ire_max_frag));
2305 				ire->ire_max_frag = MIN(ire->ire_max_frag, mtu);
2306 				ip1dbg((", after %d\n", ire->ire_max_frag));
2307 			}
2308 			/* Record the new max frag size for the ULP. */
2309 			icmph->icmph_du_zero = 0;
2310 			icmph->icmph_du_mtu =
2311 			    htons((uint16_t)ire->ire_max_frag);
2312 		}
2313 		mutex_exit(&ire->ire_lock);
2314 	}
2315 	rw_exit(&first_ire->ire_bucket->irb_lock);
2316 	ire_refrele(first_ire);
2317 	return (B_TRUE);
2318 }
2319 
2320 /*
2321  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout
2322  * calls this function.
2323  */
2324 static mblk_t *
2325 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length)
2326 {
2327 	ipha_t *ipha;
2328 	icmph_t *icmph;
2329 	ipha_t *in_ipha;
2330 	int length;
2331 
2332 	ASSERT(mp->b_datap->db_type == M_DATA);
2333 
2334 	/*
2335 	 * For Self-encapsulated packets, we added an extra IP header
2336 	 * without the options. Inner IP header is the one from which
2337 	 * the outer IP header was formed. Thus, we need to remove the
2338 	 * outer IP header. To do this, we pullup the whole message
2339 	 * and overlay whatever follows the outer IP header over the
2340 	 * outer IP header.
2341 	 */
2342 
2343 	if (!pullupmsg(mp, -1))
2344 		return (NULL);
2345 
2346 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2347 	ipha = (ipha_t *)&icmph[1];
2348 	in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2349 
2350 	/*
2351 	 * The length that we want to overlay is following the inner
2352 	 * IP header. Subtracting the IP header + icmp header + outer
2353 	 * IP header's length should give us the length that we want to
2354 	 * overlay.
2355 	 */
2356 	length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) -
2357 	    hdr_length;
2358 	/*
2359 	 * Overlay whatever follows the inner header over the
2360 	 * outer header.
2361 	 */
2362 	bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2363 
2364 	/* Set the wptr to account for the outer header */
2365 	mp->b_wptr -= hdr_length;
2366 	return (mp);
2367 }
2368 
2369 /*
2370  * Try to pass the ICMP message upstream in case the ULP cares.
2371  *
2372  * If the packet that caused the ICMP error is secure, we send
2373  * it to AH/ESP to make sure that the attached packet has a
2374  * valid association. ipha in the code below points to the
2375  * IP header of the packet that caused the error.
2376  *
2377  * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently
2378  * in the context of IPSEC. Normally we tell the upper layer
2379  * whenever we send the ire (including ip_bind), the IPSEC header
2380  * length in ire_ipsec_overhead. TCP can deduce the MSS as it
2381  * has both the MTU (ire_max_frag) and the ire_ipsec_overhead.
2382  * Similarly, we pass the new MTU icmph_du_mtu and TCP does the
2383  * same thing. As TCP has the IPSEC options size that needs to be
2384  * adjusted, we just pass the MTU unchanged.
2385  *
2386  * IFN could have been generated locally or by some router.
2387  *
2388  * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this.
2389  *	    This happens because IP adjusted its value of MTU on an
2390  *	    earlier IFN message and could not tell the upper layer,
2391  *	    the new adjusted value of MTU e.g. Packet was encrypted
2392  *	    or there was not enough information to fanout to upper
2393  *	    layers. Thus on the next outbound datagram, ip_wput_ire
2394  *	    generates the IFN, where IPSEC processing has *not* been
2395  *	    done.
2396  *
2397  *	   *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed
2398  *	    could have generated this. This happens because ire_max_frag
2399  *	    value in IP was set to a new value, while the IPSEC processing
2400  *	    was being done and after we made the fragmentation check in
2401  *	    ip_wput_ire. Thus on return from IPSEC processing,
2402  *	    ip_wput_ipsec_out finds that the new length is > ire_max_frag
2403  *	    and generates the IFN. As IPSEC processing is over, we fanout
2404  *	    to AH/ESP to remove the header.
2405  *
2406  *	    In both these cases, ipsec_in_loopback will be set indicating
2407  *	    that IFN was generated locally.
2408  *
2409  * ROUTER : IFN could be secure or non-secure.
2410  *
2411  *	    * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2412  *	      packet in error has AH/ESP headers to validate the AH/ESP
2413  *	      headers. AH/ESP will verify whether there is a valid SA or
2414  *	      not and send it back. We will fanout again if we have more
2415  *	      data in the packet.
2416  *
2417  *	      If the packet in error does not have AH/ESP, we handle it
2418  *	      like any other case.
2419  *
2420  *	    * NON_SECURE : If the packet in error has AH/ESP headers,
2421  *	      we attach a dummy ipsec_in and send it up to AH/ESP
2422  *	      for validation. AH/ESP will verify whether there is a
2423  *	      valid SA or not and send it back. We will fanout again if
2424  *	      we have more data in the packet.
2425  *
2426  *	      If the packet in error does not have AH/ESP, we handle it
2427  *	      like any other case.
2428  */
2429 static void
2430 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp,
2431     icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length,
2432     boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill,
2433     zoneid_t zoneid)
2434 {
2435 	uint16_t *up;	/* Pointer to ports in ULP header */
2436 	uint32_t ports;	/* reversed ports for fanout */
2437 	ipha_t ripha;	/* With reversed addresses */
2438 	mblk_t *first_mp;
2439 	ipsec_in_t *ii;
2440 	tcph_t	*tcph;
2441 	conn_t	*connp;
2442 	ip_stack_t *ipst;
2443 
2444 	ASSERT(ill != NULL);
2445 
2446 	ASSERT(recv_ill != NULL);
2447 	ipst = recv_ill->ill_ipst;
2448 
2449 	first_mp = mp;
2450 	if (mctl_present) {
2451 		mp = first_mp->b_cont;
2452 		ASSERT(mp != NULL);
2453 
2454 		ii = (ipsec_in_t *)first_mp->b_rptr;
2455 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
2456 	} else {
2457 		ii = NULL;
2458 	}
2459 
2460 	switch (ipha->ipha_protocol) {
2461 	case IPPROTO_UDP:
2462 		/*
2463 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
2464 		 * transport header.
2465 		 */
2466 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
2467 		    mp->b_wptr) {
2468 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
2469 			    ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
2470 				goto discard_pkt;
2471 			}
2472 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2473 			ipha = (ipha_t *)&icmph[1];
2474 		}
2475 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2476 
2477 		/*
2478 		 * Attempt to find a client stream based on port.
2479 		 * Note that we do a reverse lookup since the header is
2480 		 * in the form we sent it out.
2481 		 * The ripha header is only used for the IP_UDP_MATCH and we
2482 		 * only set the src and dst addresses and protocol.
2483 		 */
2484 		ripha.ipha_src = ipha->ipha_dst;
2485 		ripha.ipha_dst = ipha->ipha_src;
2486 		ripha.ipha_protocol = ipha->ipha_protocol;
2487 		((uint16_t *)&ports)[0] = up[1];
2488 		((uint16_t *)&ports)[1] = up[0];
2489 		ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n",
2490 		    ntohl(ipha->ipha_src), ntohs(up[0]),
2491 		    ntohl(ipha->ipha_dst), ntohs(up[1]),
2492 		    icmph->icmph_type, icmph->icmph_code));
2493 
2494 		/* Have to change db_type after any pullupmsg */
2495 		DB_TYPE(mp) = M_CTL;
2496 
2497 		ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0,
2498 		    mctl_present, ip_policy, recv_ill, zoneid);
2499 		return;
2500 
2501 	case IPPROTO_TCP:
2502 		/*
2503 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
2504 		 * transport header.
2505 		 */
2506 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
2507 		    mp->b_wptr) {
2508 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
2509 			    ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
2510 				goto discard_pkt;
2511 			}
2512 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2513 			ipha = (ipha_t *)&icmph[1];
2514 		}
2515 		/*
2516 		 * Find a TCP client stream for this packet.
2517 		 * Note that we do a reverse lookup since the header is
2518 		 * in the form we sent it out.
2519 		 */
2520 		tcph = (tcph_t *)((uchar_t *)ipha + hdr_length);
2521 		connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN,
2522 		    ipst);
2523 		if (connp == NULL)
2524 			goto discard_pkt;
2525 
2526 		/* Have to change db_type after any pullupmsg */
2527 		DB_TYPE(mp) = M_CTL;
2528 		squeue_fill(connp->conn_sqp, first_mp, tcp_input,
2529 		    connp, SQTAG_TCP_INPUT_ICMP_ERR);
2530 		return;
2531 
2532 	case IPPROTO_SCTP:
2533 		/*
2534 		 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
2535 		 * transport header.
2536 		 */
2537 		if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
2538 		    mp->b_wptr) {
2539 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
2540 			    ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) {
2541 				goto discard_pkt;
2542 			}
2543 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2544 			ipha = (ipha_t *)&icmph[1];
2545 		}
2546 		up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2547 		/*
2548 		 * Find a SCTP client stream for this packet.
2549 		 * Note that we do a reverse lookup since the header is
2550 		 * in the form we sent it out.
2551 		 * The ripha header is only used for the matching and we
2552 		 * only set the src and dst addresses, protocol, and version.
2553 		 */
2554 		ripha.ipha_src = ipha->ipha_dst;
2555 		ripha.ipha_dst = ipha->ipha_src;
2556 		ripha.ipha_protocol = ipha->ipha_protocol;
2557 		ripha.ipha_version_and_hdr_length =
2558 		    ipha->ipha_version_and_hdr_length;
2559 		((uint16_t *)&ports)[0] = up[1];
2560 		((uint16_t *)&ports)[1] = up[0];
2561 
2562 		/* Have to change db_type after any pullupmsg */
2563 		DB_TYPE(mp) = M_CTL;
2564 		ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0,
2565 		    mctl_present, ip_policy, 0, zoneid);
2566 		return;
2567 
2568 	case IPPROTO_ESP:
2569 	case IPPROTO_AH: {
2570 		int ipsec_rc;
2571 		ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
2572 
2573 		/*
2574 		 * We need a IPSEC_IN in the front to fanout to AH/ESP.
2575 		 * We will re-use the IPSEC_IN if it is already present as
2576 		 * AH/ESP will not affect any fields in the IPSEC_IN for
2577 		 * ICMP errors. If there is no IPSEC_IN, allocate a new
2578 		 * one and attach it in the front.
2579 		 */
2580 		if (ii != NULL) {
2581 			/*
2582 			 * ip_fanout_proto_again converts the ICMP errors
2583 			 * that come back from AH/ESP to M_DATA so that
2584 			 * if it is non-AH/ESP and we do a pullupmsg in
2585 			 * this function, it would work. Convert it back
2586 			 * to M_CTL before we send up as this is a ICMP
2587 			 * error. This could have been generated locally or
2588 			 * by some router. Validate the inner IPSEC
2589 			 * headers.
2590 			 *
2591 			 * NOTE : ill_index is used by ip_fanout_proto_again
2592 			 * to locate the ill.
2593 			 */
2594 			ASSERT(ill != NULL);
2595 			ii->ipsec_in_ill_index =
2596 			    ill->ill_phyint->phyint_ifindex;
2597 			ii->ipsec_in_rill_index =
2598 			    recv_ill->ill_phyint->phyint_ifindex;
2599 			DB_TYPE(first_mp->b_cont) = M_CTL;
2600 		} else {
2601 			/*
2602 			 * IPSEC_IN is not present. We attach a ipsec_in
2603 			 * message and send up to IPSEC for validating
2604 			 * and removing the IPSEC headers. Clear
2605 			 * ipsec_in_secure so that when we return
2606 			 * from IPSEC, we don't mistakenly think that this
2607 			 * is a secure packet came from the network.
2608 			 *
2609 			 * NOTE : ill_index is used by ip_fanout_proto_again
2610 			 * to locate the ill.
2611 			 */
2612 			ASSERT(first_mp == mp);
2613 			first_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack);
2614 			if (first_mp == NULL) {
2615 				freemsg(mp);
2616 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2617 				return;
2618 			}
2619 			ii = (ipsec_in_t *)first_mp->b_rptr;
2620 
2621 			/* This is not a secure packet */
2622 			ii->ipsec_in_secure = B_FALSE;
2623 			first_mp->b_cont = mp;
2624 			DB_TYPE(mp) = M_CTL;
2625 			ASSERT(ill != NULL);
2626 			ii->ipsec_in_ill_index =
2627 			    ill->ill_phyint->phyint_ifindex;
2628 			ii->ipsec_in_rill_index =
2629 			    recv_ill->ill_phyint->phyint_ifindex;
2630 		}
2631 		ip2dbg(("icmp_inbound_error: ipsec\n"));
2632 
2633 		if (!ipsec_loaded(ipss)) {
2634 			ip_proto_not_sup(q, first_mp, 0, zoneid, ipst);
2635 			return;
2636 		}
2637 
2638 		if (ipha->ipha_protocol == IPPROTO_ESP)
2639 			ipsec_rc = ipsecesp_icmp_error(first_mp);
2640 		else
2641 			ipsec_rc = ipsecah_icmp_error(first_mp);
2642 		if (ipsec_rc == IPSEC_STATUS_FAILED)
2643 			return;
2644 
2645 		ip_fanout_proto_again(first_mp, ill, recv_ill, NULL);
2646 		return;
2647 	}
2648 	default:
2649 		/*
2650 		 * The ripha header is only used for the lookup and we
2651 		 * only set the src and dst addresses and protocol.
2652 		 */
2653 		ripha.ipha_src = ipha->ipha_dst;
2654 		ripha.ipha_dst = ipha->ipha_src;
2655 		ripha.ipha_protocol = ipha->ipha_protocol;
2656 		ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n",
2657 		    ripha.ipha_protocol, ntohl(ipha->ipha_src),
2658 		    ntohl(ipha->ipha_dst),
2659 		    icmph->icmph_type, icmph->icmph_code));
2660 		if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2661 			ipha_t *in_ipha;
2662 
2663 			if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
2664 			    mp->b_wptr) {
2665 				if (!pullupmsg(mp, (uchar_t *)ipha +
2666 				    hdr_length + sizeof (ipha_t) -
2667 				    mp->b_rptr)) {
2668 					goto discard_pkt;
2669 				}
2670 				icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2671 				ipha = (ipha_t *)&icmph[1];
2672 			}
2673 			/*
2674 			 * Caller has verified that length has to be
2675 			 * at least the size of IP header.
2676 			 */
2677 			ASSERT(hdr_length >= sizeof (ipha_t));
2678 			/*
2679 			 * Check the sanity of the inner IP header like
2680 			 * we did for the outer header.
2681 			 */
2682 			in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2683 			if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2684 				goto discard_pkt;
2685 			}
2686 			if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2687 				goto discard_pkt;
2688 			}
2689 			/* Check for Self-encapsulated tunnels */
2690 			if (in_ipha->ipha_src == ipha->ipha_src &&
2691 			    in_ipha->ipha_dst == ipha->ipha_dst) {
2692 
2693 				mp = icmp_inbound_self_encap_error(mp,
2694 				    iph_hdr_length, hdr_length);
2695 				if (mp == NULL)
2696 					goto discard_pkt;
2697 				icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2698 				ipha = (ipha_t *)&icmph[1];
2699 				hdr_length = IPH_HDR_LENGTH(ipha);
2700 				/*
2701 				 * The packet in error is self-encapsualted.
2702 				 * And we are finding it further encapsulated
2703 				 * which we could not have possibly generated.
2704 				 */
2705 				if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2706 					goto discard_pkt;
2707 				}
2708 				icmp_inbound_error_fanout(q, ill, first_mp,
2709 				    icmph, ipha, iph_hdr_length, hdr_length,
2710 				    mctl_present, ip_policy, recv_ill, zoneid);
2711 				return;
2712 			}
2713 		}
2714 		if ((ipha->ipha_protocol == IPPROTO_ENCAP ||
2715 			ipha->ipha_protocol == IPPROTO_IPV6) &&
2716 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
2717 		    ii != NULL &&
2718 		    ii->ipsec_in_loopback &&
2719 		    ii->ipsec_in_secure) {
2720 			/*
2721 			 * For IP tunnels that get a looped-back
2722 			 * ICMP_FRAGMENTATION_NEEDED message, adjust the
2723 			 * reported new MTU to take into account the IPsec
2724 			 * headers protecting this configured tunnel.
2725 			 *
2726 			 * This allows the tunnel module (tun.c) to blindly
2727 			 * accept the MTU reported in an ICMP "too big"
2728 			 * message.
2729 			 *
2730 			 * Non-looped back ICMP messages will just be
2731 			 * handled by the security protocols (if needed),
2732 			 * and the first subsequent packet will hit this
2733 			 * path.
2734 			 */
2735 			icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) -
2736 			    ipsec_in_extra_length(first_mp));
2737 		}
2738 		/* Have to change db_type after any pullupmsg */
2739 		DB_TYPE(mp) = M_CTL;
2740 
2741 		ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present,
2742 		    ip_policy, recv_ill, zoneid);
2743 		return;
2744 	}
2745 	/* NOTREACHED */
2746 discard_pkt:
2747 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2748 drop_pkt:;
2749 	ip1dbg(("icmp_inbound_error_fanout: drop pkt\n"));
2750 	freemsg(first_mp);
2751 }
2752 
2753 /*
2754  * Common IP options parser.
2755  *
2756  * Setup routine: fill in *optp with options-parsing state, then
2757  * tail-call ipoptp_next to return the first option.
2758  */
2759 uint8_t
2760 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2761 {
2762 	uint32_t totallen; /* total length of all options */
2763 
2764 	totallen = ipha->ipha_version_and_hdr_length -
2765 	    (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2766 	totallen <<= 2;
2767 	optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2768 	optp->ipoptp_end = optp->ipoptp_next + totallen;
2769 	optp->ipoptp_flags = 0;
2770 	return (ipoptp_next(optp));
2771 }
2772 
2773 /*
2774  * Common IP options parser: extract next option.
2775  */
2776 uint8_t
2777 ipoptp_next(ipoptp_t *optp)
2778 {
2779 	uint8_t *end = optp->ipoptp_end;
2780 	uint8_t *cur = optp->ipoptp_next;
2781 	uint8_t opt, len, pointer;
2782 
2783 	/*
2784 	 * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2785 	 * has been corrupted.
2786 	 */
2787 	ASSERT(cur <= end);
2788 
2789 	if (cur == end)
2790 		return (IPOPT_EOL);
2791 
2792 	opt = cur[IPOPT_OPTVAL];
2793 
2794 	/*
2795 	 * Skip any NOP options.
2796 	 */
2797 	while (opt == IPOPT_NOP) {
2798 		cur++;
2799 		if (cur == end)
2800 			return (IPOPT_EOL);
2801 		opt = cur[IPOPT_OPTVAL];
2802 	}
2803 
2804 	if (opt == IPOPT_EOL)
2805 		return (IPOPT_EOL);
2806 
2807 	/*
2808 	 * Option requiring a length.
2809 	 */
2810 	if ((cur + 1) >= end) {
2811 		optp->ipoptp_flags |= IPOPTP_ERROR;
2812 		return (IPOPT_EOL);
2813 	}
2814 	len = cur[IPOPT_OLEN];
2815 	if (len < 2) {
2816 		optp->ipoptp_flags |= IPOPTP_ERROR;
2817 		return (IPOPT_EOL);
2818 	}
2819 	optp->ipoptp_cur = cur;
2820 	optp->ipoptp_len = len;
2821 	optp->ipoptp_next = cur + len;
2822 	if (cur + len > end) {
2823 		optp->ipoptp_flags |= IPOPTP_ERROR;
2824 		return (IPOPT_EOL);
2825 	}
2826 
2827 	/*
2828 	 * For the options which require a pointer field, make sure
2829 	 * its there, and make sure it points to either something
2830 	 * inside this option, or the end of the option.
2831 	 */
2832 	switch (opt) {
2833 	case IPOPT_RR:
2834 	case IPOPT_TS:
2835 	case IPOPT_LSRR:
2836 	case IPOPT_SSRR:
2837 		if (len <= IPOPT_OFFSET) {
2838 			optp->ipoptp_flags |= IPOPTP_ERROR;
2839 			return (opt);
2840 		}
2841 		pointer = cur[IPOPT_OFFSET];
2842 		if (pointer - 1 > len) {
2843 			optp->ipoptp_flags |= IPOPTP_ERROR;
2844 			return (opt);
2845 		}
2846 		break;
2847 	}
2848 
2849 	/*
2850 	 * Sanity check the pointer field based on the type of the
2851 	 * option.
2852 	 */
2853 	switch (opt) {
2854 	case IPOPT_RR:
2855 	case IPOPT_SSRR:
2856 	case IPOPT_LSRR:
2857 		if (pointer < IPOPT_MINOFF_SR)
2858 			optp->ipoptp_flags |= IPOPTP_ERROR;
2859 		break;
2860 	case IPOPT_TS:
2861 		if (pointer < IPOPT_MINOFF_IT)
2862 			optp->ipoptp_flags |= IPOPTP_ERROR;
2863 		/*
2864 		 * Note that the Internet Timestamp option also
2865 		 * contains two four bit fields (the Overflow field,
2866 		 * and the Flag field), which follow the pointer
2867 		 * field.  We don't need to check that these fields
2868 		 * fall within the length of the option because this
2869 		 * was implicitely done above.  We've checked that the
2870 		 * pointer value is at least IPOPT_MINOFF_IT, and that
2871 		 * it falls within the option.  Since IPOPT_MINOFF_IT >
2872 		 * IPOPT_POS_OV_FLG, we don't need the explicit check.
2873 		 */
2874 		ASSERT(len > IPOPT_POS_OV_FLG);
2875 		break;
2876 	}
2877 
2878 	return (opt);
2879 }
2880 
2881 /*
2882  * Use the outgoing IP header to create an IP_OPTIONS option the way
2883  * it was passed down from the application.
2884  */
2885 int
2886 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf)
2887 {
2888 	ipoptp_t	opts;
2889 	const uchar_t	*opt;
2890 	uint8_t		optval;
2891 	uint8_t		optlen;
2892 	uint32_t	len = 0;
2893 	uchar_t	*buf1 = buf;
2894 
2895 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
2896 	len += IP_ADDR_LEN;
2897 	bzero(buf1, IP_ADDR_LEN);
2898 
2899 	/*
2900 	 * OK to cast away const here, as we don't store through the returned
2901 	 * opts.ipoptp_cur pointer.
2902 	 */
2903 	for (optval = ipoptp_first(&opts, (ipha_t *)ipha);
2904 	    optval != IPOPT_EOL;
2905 	    optval = ipoptp_next(&opts)) {
2906 		int	off;
2907 
2908 		opt = opts.ipoptp_cur;
2909 		optlen = opts.ipoptp_len;
2910 		switch (optval) {
2911 		case IPOPT_SSRR:
2912 		case IPOPT_LSRR:
2913 
2914 			/*
2915 			 * Insert ipha_dst as the first entry in the source
2916 			 * route and move down the entries on step.
2917 			 * The last entry gets placed at buf1.
2918 			 */
2919 			buf[IPOPT_OPTVAL] = optval;
2920 			buf[IPOPT_OLEN] = optlen;
2921 			buf[IPOPT_OFFSET] = optlen;
2922 
2923 			off = optlen - IP_ADDR_LEN;
2924 			if (off < 0) {
2925 				/* No entries in source route */
2926 				break;
2927 			}
2928 			/* Last entry in source route */
2929 			bcopy(opt + off, buf1, IP_ADDR_LEN);
2930 			off -= IP_ADDR_LEN;
2931 
2932 			while (off > 0) {
2933 				bcopy(opt + off,
2934 				    buf + off + IP_ADDR_LEN,
2935 				    IP_ADDR_LEN);
2936 				off -= IP_ADDR_LEN;
2937 			}
2938 			/* ipha_dst into first slot */
2939 			bcopy(&ipha->ipha_dst,
2940 			    buf + off + IP_ADDR_LEN,
2941 			    IP_ADDR_LEN);
2942 			buf += optlen;
2943 			len += optlen;
2944 			break;
2945 
2946 		case IPOPT_COMSEC:
2947 		case IPOPT_SECURITY:
2948 			/* if passing up a label is not ok, then remove */
2949 			if (is_system_labeled())
2950 				break;
2951 			/* FALLTHROUGH */
2952 		default:
2953 			bcopy(opt, buf, optlen);
2954 			buf += optlen;
2955 			len += optlen;
2956 			break;
2957 		}
2958 	}
2959 done:
2960 	/* Pad the resulting options */
2961 	while (len & 0x3) {
2962 		*buf++ = IPOPT_EOL;
2963 		len++;
2964 	}
2965 	return (len);
2966 }
2967 
2968 /*
2969  * Update any record route or timestamp options to include this host.
2970  * Reverse any source route option.
2971  * This routine assumes that the options are well formed i.e. that they
2972  * have already been checked.
2973  */
2974 static void
2975 icmp_options_update(ipha_t *ipha)
2976 {
2977 	ipoptp_t	opts;
2978 	uchar_t		*opt;
2979 	uint8_t		optval;
2980 	ipaddr_t	src;		/* Our local address */
2981 	ipaddr_t	dst;
2982 
2983 	ip2dbg(("icmp_options_update\n"));
2984 	src = ipha->ipha_src;
2985 	dst = ipha->ipha_dst;
2986 
2987 	for (optval = ipoptp_first(&opts, ipha);
2988 	    optval != IPOPT_EOL;
2989 	    optval = ipoptp_next(&opts)) {
2990 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2991 		opt = opts.ipoptp_cur;
2992 		ip2dbg(("icmp_options_update: opt %d, len %d\n",
2993 		    optval, opts.ipoptp_len));
2994 		switch (optval) {
2995 			int off1, off2;
2996 		case IPOPT_SSRR:
2997 		case IPOPT_LSRR:
2998 			/*
2999 			 * Reverse the source route.  The first entry
3000 			 * should be the next to last one in the current
3001 			 * source route (the last entry is our address).
3002 			 * The last entry should be the final destination.
3003 			 */
3004 			off1 = IPOPT_MINOFF_SR - 1;
3005 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
3006 			if (off2 < 0) {
3007 				/* No entries in source route */
3008 				ip1dbg((
3009 				    "icmp_options_update: bad src route\n"));
3010 				break;
3011 			}
3012 			bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
3013 			bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
3014 			bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
3015 			off2 -= IP_ADDR_LEN;
3016 
3017 			while (off1 < off2) {
3018 				bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
3019 				bcopy((char *)opt + off2, (char *)opt + off1,
3020 				    IP_ADDR_LEN);
3021 				bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
3022 				off1 += IP_ADDR_LEN;
3023 				off2 -= IP_ADDR_LEN;
3024 			}
3025 			opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
3026 			break;
3027 		}
3028 	}
3029 }
3030 
3031 /*
3032  * Process received ICMP Redirect messages.
3033  */
3034 static void
3035 icmp_redirect(ill_t *ill, mblk_t *mp)
3036 {
3037 	ipha_t	*ipha;
3038 	int	iph_hdr_length;
3039 	icmph_t	*icmph;
3040 	ipha_t	*ipha_err;
3041 	ire_t	*ire;
3042 	ire_t	*prev_ire;
3043 	ire_t	*save_ire;
3044 	ipaddr_t  src, dst, gateway;
3045 	iulp_t	ulp_info = { 0 };
3046 	int	error;
3047 	ip_stack_t *ipst;
3048 
3049 	ASSERT(ill != NULL);
3050 	ipst = ill->ill_ipst;
3051 
3052 	ipha = (ipha_t *)mp->b_rptr;
3053 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
3054 	if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) <
3055 	    sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) {
3056 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3057 		freemsg(mp);
3058 		return;
3059 	}
3060 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
3061 	ipha_err = (ipha_t *)&icmph[1];
3062 	src = ipha->ipha_src;
3063 	dst = ipha_err->ipha_dst;
3064 	gateway = icmph->icmph_rd_gateway;
3065 	/* Make sure the new gateway is reachable somehow. */
3066 	ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL,
3067 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3068 	/*
3069 	 * Make sure we had a route for the dest in question and that
3070 	 * that route was pointing to the old gateway (the source of the
3071 	 * redirect packet.)
3072 	 */
3073 	prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES,
3074 	    NULL, MATCH_IRE_GW, ipst);
3075 	/*
3076 	 * Check that
3077 	 *	the redirect was not from ourselves
3078 	 *	the new gateway and the old gateway are directly reachable
3079 	 */
3080 	if (!prev_ire ||
3081 	    !ire ||
3082 	    ire->ire_type == IRE_LOCAL) {
3083 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
3084 		freemsg(mp);
3085 		if (ire != NULL)
3086 			ire_refrele(ire);
3087 		if (prev_ire != NULL)
3088 			ire_refrele(prev_ire);
3089 		return;
3090 	}
3091 
3092 	/*
3093 	 * Should we use the old ULP info to create the new gateway?  From
3094 	 * a user's perspective, we should inherit the info so that it
3095 	 * is a "smooth" transition.  If we do not do that, then new
3096 	 * connections going thru the new gateway will have no route metrics,
3097 	 * which is counter-intuitive to user.  From a network point of
3098 	 * view, this may or may not make sense even though the new gateway
3099 	 * is still directly connected to us so the route metrics should not
3100 	 * change much.
3101 	 *
3102 	 * But if the old ire_uinfo is not initialized, we do another
3103 	 * recursive lookup on the dest using the new gateway.  There may
3104 	 * be a route to that.  If so, use it to initialize the redirect
3105 	 * route.
3106 	 */
3107 	if (prev_ire->ire_uinfo.iulp_set) {
3108 		bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t));
3109 	} else {
3110 		ire_t *tmp_ire;
3111 		ire_t *sire;
3112 
3113 		tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire,
3114 		    ALL_ZONES, 0, NULL,
3115 		    (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT),
3116 		    ipst);
3117 		if (sire != NULL) {
3118 			bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t));
3119 			/*
3120 			 * If sire != NULL, ire_ftable_lookup() should not
3121 			 * return a NULL value.
3122 			 */
3123 			ASSERT(tmp_ire != NULL);
3124 			ire_refrele(tmp_ire);
3125 			ire_refrele(sire);
3126 		} else if (tmp_ire != NULL) {
3127 			bcopy(&tmp_ire->ire_uinfo, &ulp_info,
3128 			    sizeof (iulp_t));
3129 			ire_refrele(tmp_ire);
3130 		}
3131 	}
3132 	if (prev_ire->ire_type == IRE_CACHE)
3133 		ire_delete(prev_ire);
3134 	ire_refrele(prev_ire);
3135 	/*
3136 	 * TODO: more precise handling for cases 0, 2, 3, the latter two
3137 	 * require TOS routing
3138 	 */
3139 	switch (icmph->icmph_code) {
3140 	case 0:
3141 	case 1:
3142 		/* TODO: TOS specificity for cases 2 and 3 */
3143 	case 2:
3144 	case 3:
3145 		break;
3146 	default:
3147 		freemsg(mp);
3148 		BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
3149 		ire_refrele(ire);
3150 		return;
3151 	}
3152 	/*
3153 	 * Create a Route Association.  This will allow us to remember that
3154 	 * someone we believe told us to use the particular gateway.
3155 	 */
3156 	save_ire = ire;
3157 	ire = ire_create(
3158 		(uchar_t *)&dst,			/* dest addr */
3159 		(uchar_t *)&ip_g_all_ones,		/* mask */
3160 		(uchar_t *)&save_ire->ire_src_addr,	/* source addr */
3161 		(uchar_t *)&gateway,			/* gateway addr */
3162 		NULL,					/* no in_srcaddr */
3163 		&save_ire->ire_max_frag,		/* max frag */
3164 		NULL,					/* Fast Path header */
3165 		NULL,					/* no rfq */
3166 		NULL,					/* no stq */
3167 		IRE_HOST,
3168 		NULL,
3169 		NULL,
3170 		NULL,
3171 		0,
3172 		0,
3173 		0,
3174 		(RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
3175 		&ulp_info,
3176 		NULL,
3177 		NULL,
3178 		ipst);
3179 
3180 	if (ire == NULL) {
3181 		freemsg(mp);
3182 		ire_refrele(save_ire);
3183 		return;
3184 	}
3185 	error = ire_add(&ire, NULL, NULL, NULL, B_FALSE);
3186 	ire_refrele(save_ire);
3187 	atomic_inc_32(&ipst->ips_ip_redirect_cnt);
3188 
3189 	if (error == 0) {
3190 		ire_refrele(ire);		/* Held in ire_add_v4 */
3191 		/* tell routing sockets that we received a redirect */
3192 		ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
3193 		    (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
3194 		    (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
3195 	}
3196 
3197 	/*
3198 	 * Delete any existing IRE_HOST type redirect ires for this destination.
3199 	 * This together with the added IRE has the effect of
3200 	 * modifying an existing redirect.
3201 	 */
3202 	prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL,
3203 	    ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), ipst);
3204 	if (prev_ire != NULL) {
3205 		if (prev_ire ->ire_flags & RTF_DYNAMIC)
3206 			ire_delete(prev_ire);
3207 		ire_refrele(prev_ire);
3208 	}
3209 
3210 	freemsg(mp);
3211 }
3212 
3213 /*
3214  * Generate an ICMP parameter problem message.
3215  */
3216 static void
3217 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid,
3218 	ip_stack_t *ipst)
3219 {
3220 	icmph_t	icmph;
3221 	boolean_t mctl_present;
3222 	mblk_t *first_mp;
3223 
3224 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
3225 
3226 	if (!(mp = icmp_pkt_err_ok(mp, ipst))) {
3227 		if (mctl_present)
3228 			freeb(first_mp);
3229 		return;
3230 	}
3231 
3232 	bzero(&icmph, sizeof (icmph_t));
3233 	icmph.icmph_type = ICMP_PARAM_PROBLEM;
3234 	icmph.icmph_pp_ptr = ptr;
3235 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
3236 	icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid,
3237 	    ipst);
3238 }
3239 
3240 /*
3241  * Build and ship an IPv4 ICMP message using the packet data in mp, and
3242  * the ICMP header pointed to by "stuff".  (May be called as writer.)
3243  * Note: assumes that icmp_pkt_err_ok has been called to verify that
3244  * an icmp error packet can be sent.
3245  * Assigns an appropriate source address to the packet. If ipha_dst is
3246  * one of our addresses use it for source. Otherwise pick a source based
3247  * on a route lookup back to ipha_src.
3248  * Note that ipha_src must be set here since the
3249  * packet is likely to arrive on an ill queue in ip_wput() which will
3250  * not set a source address.
3251  */
3252 static void
3253 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len,
3254     boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst)
3255 {
3256 	ipaddr_t dst;
3257 	icmph_t	*icmph;
3258 	ipha_t	*ipha;
3259 	uint_t	len_needed;
3260 	size_t	msg_len;
3261 	mblk_t	*mp1;
3262 	ipaddr_t src;
3263 	ire_t	*ire;
3264 	mblk_t *ipsec_mp;
3265 	ipsec_out_t	*io = NULL;
3266 	boolean_t xmit_if_on = B_FALSE;
3267 
3268 	if (mctl_present) {
3269 		/*
3270 		 * If it is :
3271 		 *
3272 		 * 1) a IPSEC_OUT, then this is caused by outbound
3273 		 *    datagram originating on this host. IPSEC processing
3274 		 *    may or may not have been done. Refer to comments above
3275 		 *    icmp_inbound_error_fanout for details.
3276 		 *
3277 		 * 2) a IPSEC_IN if we are generating a icmp_message
3278 		 *    for an incoming datagram destined for us i.e called
3279 		 *    from ip_fanout_send_icmp.
3280 		 */
3281 		ipsec_info_t *in;
3282 		ipsec_mp = mp;
3283 		mp = ipsec_mp->b_cont;
3284 
3285 		in = (ipsec_info_t *)ipsec_mp->b_rptr;
3286 		ipha = (ipha_t *)mp->b_rptr;
3287 
3288 		ASSERT(in->ipsec_info_type == IPSEC_OUT ||
3289 		    in->ipsec_info_type == IPSEC_IN);
3290 
3291 		if (in->ipsec_info_type == IPSEC_IN) {
3292 			/*
3293 			 * Convert the IPSEC_IN to IPSEC_OUT.
3294 			 */
3295 			if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) {
3296 				BUMP_MIB(&ipst->ips_ip_mib,
3297 				    ipIfStatsOutDiscards);
3298 				return;
3299 			}
3300 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
3301 		} else {
3302 			ASSERT(in->ipsec_info_type == IPSEC_OUT);
3303 			io = (ipsec_out_t *)in;
3304 			if (io->ipsec_out_xmit_if)
3305 				xmit_if_on = B_TRUE;
3306 			/*
3307 			 * Clear out ipsec_out_proc_begin, so we do a fresh
3308 			 * ire lookup.
3309 			 */
3310 			io->ipsec_out_proc_begin = B_FALSE;
3311 		}
3312 		ASSERT(zoneid == io->ipsec_out_zoneid);
3313 		ASSERT(zoneid != ALL_ZONES);
3314 	} else {
3315 		/*
3316 		 * This is in clear. The icmp message we are building
3317 		 * here should go out in clear.
3318 		 *
3319 		 * Pardon the convolution of it all, but it's easier to
3320 		 * allocate a "use cleartext" IPSEC_IN message and convert
3321 		 * it than it is to allocate a new one.
3322 		 */
3323 		ipsec_in_t *ii;
3324 		ASSERT(DB_TYPE(mp) == M_DATA);
3325 		ipsec_mp = ipsec_in_alloc(B_TRUE, ipst->ips_netstack);
3326 		if (ipsec_mp == NULL) {
3327 			freemsg(mp);
3328 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
3329 			return;
3330 		}
3331 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
3332 
3333 		/* This is not a secure packet */
3334 		ii->ipsec_in_secure = B_FALSE;
3335 		/*
3336 		 * For trusted extensions using a shared IP address we can
3337 		 * send using any zoneid.
3338 		 */
3339 		if (zoneid == ALL_ZONES)
3340 			ii->ipsec_in_zoneid = GLOBAL_ZONEID;
3341 		else
3342 			ii->ipsec_in_zoneid = zoneid;
3343 		ipsec_mp->b_cont = mp;
3344 		ipha = (ipha_t *)mp->b_rptr;
3345 		/*
3346 		 * Convert the IPSEC_IN to IPSEC_OUT.
3347 		 */
3348 		if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) {
3349 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
3350 			return;
3351 		}
3352 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
3353 	}
3354 
3355 	/* Remember our eventual destination */
3356 	dst = ipha->ipha_src;
3357 
3358 	ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK),
3359 	    NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE, ipst);
3360 	if (ire != NULL &&
3361 	    (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) {
3362 		src = ipha->ipha_dst;
3363 	} else if (!xmit_if_on) {
3364 		if (ire != NULL)
3365 			ire_refrele(ire);
3366 		ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL,
3367 		    (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY),
3368 		    ipst);
3369 		if (ire == NULL) {
3370 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
3371 			freemsg(ipsec_mp);
3372 			return;
3373 		}
3374 		src = ire->ire_src_addr;
3375 	} else {
3376 		ipif_t	*ipif = NULL;
3377 		ill_t	*ill;
3378 		/*
3379 		 * This must be an ICMP error coming from
3380 		 * ip_mrtun_forward(). The src addr should
3381 		 * be equal to the IP-addr of the outgoing
3382 		 * interface.
3383 		 */
3384 		if (io == NULL) {
3385 			/* This is not a IPSEC_OUT type control msg */
3386 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
3387 			freemsg(ipsec_mp);
3388 			return;
3389 		}
3390 		ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE,
3391 		    NULL, NULL, NULL, NULL, ipst);
3392 		if (ill != NULL) {
3393 			ipif = ipif_get_next_ipif(NULL, ill);
3394 			ill_refrele(ill);
3395 		}
3396 		if (ipif == NULL) {
3397 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
3398 			freemsg(ipsec_mp);
3399 			return;
3400 		}
3401 		src = ipif->ipif_src_addr;
3402 		ipif_refrele(ipif);
3403 	}
3404 
3405 	if (ire != NULL)
3406 		ire_refrele(ire);
3407 
3408 	/*
3409 	 * Check if we can send back more then 8 bytes in addition
3410 	 * to the IP header. We will include as much as 64 bytes.
3411 	 */
3412 	len_needed = IPH_HDR_LENGTH(ipha);
3413 	if (ipha->ipha_protocol == IPPROTO_ENCAP &&
3414 	    (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) {
3415 		len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed));
3416 	}
3417 	len_needed += ipst->ips_ip_icmp_return;
3418 	msg_len = msgdsize(mp);
3419 	if (msg_len > len_needed) {
3420 		(void) adjmsg(mp, len_needed - msg_len);
3421 		msg_len = len_needed;
3422 	}
3423 	mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI);
3424 	if (mp1 == NULL) {
3425 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
3426 		freemsg(ipsec_mp);
3427 		return;
3428 	}
3429 	/*
3430 	 * On an unlabeled system, dblks don't necessarily have creds.
3431 	 */
3432 	ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL);
3433 	if (DB_CRED(mp) != NULL)
3434 		mblk_setcred(mp1, DB_CRED(mp));
3435 	mp1->b_cont = mp;
3436 	mp = mp1;
3437 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL &&
3438 	    ipsec_mp->b_rptr == (uint8_t *)io &&
3439 	    io->ipsec_out_type == IPSEC_OUT);
3440 	ipsec_mp->b_cont = mp;
3441 
3442 	/*
3443 	 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this
3444 	 * node generates be accepted in peace by all on-host destinations.
3445 	 * If we do NOT assume that all on-host destinations trust
3446 	 * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
3447 	 * (Look for ipsec_out_icmp_loopback).
3448 	 */
3449 	io->ipsec_out_icmp_loopback = B_TRUE;
3450 
3451 	ipha = (ipha_t *)mp->b_rptr;
3452 	mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
3453 	*ipha = icmp_ipha;
3454 	ipha->ipha_src = src;
3455 	ipha->ipha_dst = dst;
3456 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
3457 	msg_len += sizeof (icmp_ipha) + len;
3458 	if (msg_len > IP_MAXPACKET) {
3459 		(void) adjmsg(mp, IP_MAXPACKET - msg_len);
3460 		msg_len = IP_MAXPACKET;
3461 	}
3462 	ipha->ipha_length = htons((uint16_t)msg_len);
3463 	icmph = (icmph_t *)&ipha[1];
3464 	bcopy(stuff, icmph, len);
3465 	icmph->icmph_checksum = 0;
3466 	icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
3467 	if (icmph->icmph_checksum == 0)
3468 		icmph->icmph_checksum = 0xFFFF;
3469 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
3470 	put(q, ipsec_mp);
3471 }
3472 
3473 /*
3474  * Determine if an ICMP error packet can be sent given the rate limit.
3475  * The limit consists of an average frequency (icmp_pkt_err_interval measured
3476  * in milliseconds) and a burst size. Burst size number of packets can
3477  * be sent arbitrarely closely spaced.
3478  * The state is tracked using two variables to implement an approximate
3479  * token bucket filter:
3480  *	icmp_pkt_err_last - lbolt value when the last burst started
3481  *	icmp_pkt_err_sent - number of packets sent in current burst
3482  */
3483 boolean_t
3484 icmp_err_rate_limit(ip_stack_t *ipst)
3485 {
3486 	clock_t now = TICK_TO_MSEC(lbolt);
3487 	uint_t refilled; /* Number of packets refilled in tbf since last */
3488 	/* Guard against changes by loading into local variable */
3489 	uint_t err_interval = ipst->ips_ip_icmp_err_interval;
3490 
3491 	if (err_interval == 0)
3492 		return (B_FALSE);
3493 
3494 	if (ipst->ips_icmp_pkt_err_last > now) {
3495 		/* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
3496 		ipst->ips_icmp_pkt_err_last = 0;
3497 		ipst->ips_icmp_pkt_err_sent = 0;
3498 	}
3499 	/*
3500 	 * If we are in a burst update the token bucket filter.
3501 	 * Update the "last" time to be close to "now" but make sure
3502 	 * we don't loose precision.
3503 	 */
3504 	if (ipst->ips_icmp_pkt_err_sent != 0) {
3505 		refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
3506 		if (refilled > ipst->ips_icmp_pkt_err_sent) {
3507 			ipst->ips_icmp_pkt_err_sent = 0;
3508 		} else {
3509 			ipst->ips_icmp_pkt_err_sent -= refilled;
3510 			ipst->ips_icmp_pkt_err_last += refilled * err_interval;
3511 		}
3512 	}
3513 	if (ipst->ips_icmp_pkt_err_sent == 0) {
3514 		/* Start of new burst */
3515 		ipst->ips_icmp_pkt_err_last = now;
3516 	}
3517 	if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
3518 		ipst->ips_icmp_pkt_err_sent++;
3519 		ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
3520 			    ipst->ips_icmp_pkt_err_sent));
3521 		return (B_FALSE);
3522 	}
3523 	ip1dbg(("icmp_err_rate_limit: dropped\n"));
3524 	return (B_TRUE);
3525 }
3526 
3527 /*
3528  * Check if it is ok to send an IPv4 ICMP error packet in
3529  * response to the IPv4 packet in mp.
3530  * Free the message and return null if no
3531  * ICMP error packet should be sent.
3532  */
3533 static mblk_t *
3534 icmp_pkt_err_ok(mblk_t *mp, ip_stack_t *ipst)
3535 {
3536 	icmph_t	*icmph;
3537 	ipha_t	*ipha;
3538 	uint_t	len_needed;
3539 	ire_t	*src_ire;
3540 	ire_t	*dst_ire;
3541 
3542 	if (!mp)
3543 		return (NULL);
3544 	ipha = (ipha_t *)mp->b_rptr;
3545 	if (ip_csum_hdr(ipha)) {
3546 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
3547 		freemsg(mp);
3548 		return (NULL);
3549 	}
3550 	src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST,
3551 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3552 	dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST,
3553 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
3554 	if (src_ire != NULL || dst_ire != NULL ||
3555 	    CLASSD(ipha->ipha_dst) ||
3556 	    CLASSD(ipha->ipha_src) ||
3557 	    (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
3558 		/* Note: only errors to the fragment with offset 0 */
3559 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3560 		freemsg(mp);
3561 		if (src_ire != NULL)
3562 			ire_refrele(src_ire);
3563 		if (dst_ire != NULL)
3564 			ire_refrele(dst_ire);
3565 		return (NULL);
3566 	}
3567 	if (ipha->ipha_protocol == IPPROTO_ICMP) {
3568 		/*
3569 		 * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3570 		 * errors in response to any ICMP errors.
3571 		 */
3572 		len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3573 		if (mp->b_wptr - mp->b_rptr < len_needed) {
3574 			if (!pullupmsg(mp, len_needed)) {
3575 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3576 				freemsg(mp);
3577 				return (NULL);
3578 			}
3579 			ipha = (ipha_t *)mp->b_rptr;
3580 		}
3581 		icmph = (icmph_t *)
3582 		    (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3583 		switch (icmph->icmph_type) {
3584 		case ICMP_DEST_UNREACHABLE:
3585 		case ICMP_SOURCE_QUENCH:
3586 		case ICMP_TIME_EXCEEDED:
3587 		case ICMP_PARAM_PROBLEM:
3588 		case ICMP_REDIRECT:
3589 			BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3590 			freemsg(mp);
3591 			return (NULL);
3592 		default:
3593 			break;
3594 		}
3595 	}
3596 	/*
3597 	 * If this is a labeled system, then check to see if we're allowed to
3598 	 * send a response to this particular sender.  If not, then just drop.
3599 	 */
3600 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
3601 		ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3602 		BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3603 		freemsg(mp);
3604 		return (NULL);
3605 	}
3606 	if (icmp_err_rate_limit(ipst)) {
3607 		/*
3608 		 * Only send ICMP error packets every so often.
3609 		 * This should be done on a per port/source basis,
3610 		 * but for now this will suffice.
3611 		 */
3612 		freemsg(mp);
3613 		return (NULL);
3614 	}
3615 	return (mp);
3616 }
3617 
3618 /*
3619  * Generate an ICMP redirect message.
3620  */
3621 static void
3622 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway, ip_stack_t *ipst)
3623 {
3624 	icmph_t	icmph;
3625 
3626 	/*
3627 	 * We are called from ip_rput where we could
3628 	 * not have attached an IPSEC_IN.
3629 	 */
3630 	ASSERT(mp->b_datap->db_type == M_DATA);
3631 
3632 	if (!(mp = icmp_pkt_err_ok(mp, ipst))) {
3633 		return;
3634 	}
3635 
3636 	bzero(&icmph, sizeof (icmph_t));
3637 	icmph.icmph_type = ICMP_REDIRECT;
3638 	icmph.icmph_code = 1;
3639 	icmph.icmph_rd_gateway = gateway;
3640 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3641 	/* Redirects sent by router, and router is global zone */
3642 	icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID, ipst);
3643 }
3644 
3645 /*
3646  * Generate an ICMP time exceeded message.
3647  */
3648 void
3649 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid,
3650     ip_stack_t *ipst)
3651 {
3652 	icmph_t	icmph;
3653 	boolean_t mctl_present;
3654 	mblk_t *first_mp;
3655 
3656 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
3657 
3658 	if (!(mp = icmp_pkt_err_ok(mp, ipst))) {
3659 		if (mctl_present)
3660 			freeb(first_mp);
3661 		return;
3662 	}
3663 
3664 	bzero(&icmph, sizeof (icmph_t));
3665 	icmph.icmph_type = ICMP_TIME_EXCEEDED;
3666 	icmph.icmph_code = code;
3667 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3668 	icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid,
3669 	    ipst);
3670 }
3671 
3672 /*
3673  * Generate an ICMP unreachable message.
3674  */
3675 void
3676 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid,
3677     ip_stack_t *ipst)
3678 {
3679 	icmph_t	icmph;
3680 	mblk_t *first_mp;
3681 	boolean_t mctl_present;
3682 
3683 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
3684 
3685 	if (!(mp = icmp_pkt_err_ok(mp, ipst))) {
3686 		if (mctl_present)
3687 			freeb(first_mp);
3688 		return;
3689 	}
3690 
3691 	bzero(&icmph, sizeof (icmph_t));
3692 	icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3693 	icmph.icmph_code = code;
3694 	BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3695 	ip2dbg(("send icmp destination unreachable code %d\n", code));
3696 	icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present,
3697 	    zoneid, ipst);
3698 }
3699 
3700 /*
3701  * Attempt to start recovery of an IPv4 interface that's been shut down as a
3702  * duplicate.  As long as someone else holds the address, the interface will
3703  * stay down.  When that conflict goes away, the interface is brought back up.
3704  * This is done so that accidental shutdowns of addresses aren't made
3705  * permanent.  Your server will recover from a failure.
3706  *
3707  * For DHCP, recovery is not done in the kernel.  Instead, it's handled by a
3708  * user space process (dhcpagent).
3709  *
3710  * Recovery completes if ARP reports that the address is now ours (via
3711  * AR_CN_READY).  In that case, we go to ip_arp_excl to finish the operation.
3712  *
3713  * This function is entered on a timer expiry; the ID is in ipif_recovery_id.
3714  */
3715 static void
3716 ipif_dup_recovery(void *arg)
3717 {
3718 	ipif_t *ipif = arg;
3719 	ill_t *ill = ipif->ipif_ill;
3720 	mblk_t *arp_add_mp;
3721 	mblk_t *arp_del_mp;
3722 	area_t *area;
3723 	ip_stack_t *ipst = ill->ill_ipst;
3724 
3725 	ipif->ipif_recovery_id = 0;
3726 
3727 	/*
3728 	 * No lock needed for moving or condemned check, as this is just an
3729 	 * optimization.
3730 	 */
3731 	if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) ||
3732 	    (ipif->ipif_flags & IPIF_POINTOPOINT) ||
3733 	    (ipif->ipif_state_flags & (IPIF_MOVING | IPIF_CONDEMNED))) {
3734 		/* No reason to try to bring this address back. */
3735 		return;
3736 	}
3737 
3738 	if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL)
3739 		goto alloc_fail;
3740 
3741 	if (ipif->ipif_arp_del_mp == NULL) {
3742 		if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL)
3743 			goto alloc_fail;
3744 		ipif->ipif_arp_del_mp = arp_del_mp;
3745 	}
3746 
3747 	/* Setting the 'unverified' flag restarts DAD */
3748 	area = (area_t *)arp_add_mp->b_rptr;
3749 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
3750 	    ACE_F_UNVERIFIED;
3751 	putnext(ill->ill_rq, arp_add_mp);
3752 	return;
3753 
3754 alloc_fail:
3755 	/*
3756 	 * On allocation failure, just restart the timer.  Note that the ipif
3757 	 * is down here, so no other thread could be trying to start a recovery
3758 	 * timer.  The ill_lock protects the condemned flag and the recovery
3759 	 * timer ID.
3760 	 */
3761 	freemsg(arp_add_mp);
3762 	mutex_enter(&ill->ill_lock);
3763 	if (ipst->ips_ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0 &&
3764 	    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
3765 		ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif,
3766 		    MSEC_TO_TICK(ipst->ips_ip_dup_recovery));
3767 	}
3768 	mutex_exit(&ill->ill_lock);
3769 }
3770 
3771 /*
3772  * This is for exclusive changes due to ARP.  Either tear down an interface due
3773  * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery.
3774  */
3775 /* ARGSUSED */
3776 static void
3777 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg)
3778 {
3779 	ill_t	*ill = rq->q_ptr;
3780 	arh_t *arh;
3781 	ipaddr_t src;
3782 	ipif_t	*ipif;
3783 	char ibuf[LIFNAMSIZ + 10];	/* 10 digits for logical i/f number */
3784 	char hbuf[MAC_STR_LEN];
3785 	char sbuf[INET_ADDRSTRLEN];
3786 	const char *failtype;
3787 	boolean_t bring_up;
3788 	ip_stack_t *ipst = ill->ill_ipst;
3789 
3790 	switch (((arcn_t *)mp->b_rptr)->arcn_code) {
3791 	case AR_CN_READY:
3792 		failtype = NULL;
3793 		bring_up = B_TRUE;
3794 		break;
3795 	case AR_CN_FAILED:
3796 		failtype = "in use";
3797 		bring_up = B_FALSE;
3798 		break;
3799 	default:
3800 		failtype = "claimed";
3801 		bring_up = B_FALSE;
3802 		break;
3803 	}
3804 
3805 	arh = (arh_t *)mp->b_cont->b_rptr;
3806 	bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN);
3807 
3808 	/* Handle failures due to probes */
3809 	if (src == 0) {
3810 		bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src,
3811 		    IP_ADDR_LEN);
3812 	}
3813 
3814 	(void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf));
3815 	(void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf,
3816 	    sizeof (hbuf));
3817 	(void) ip_dot_addr(src, sbuf);
3818 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3819 
3820 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) ||
3821 		    ipif->ipif_lcl_addr != src) {
3822 			continue;
3823 		}
3824 
3825 		/*
3826 		 * If we failed on a recovery probe, then restart the timer to
3827 		 * try again later.
3828 		 */
3829 		if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) &&
3830 		    !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) &&
3831 		    ill->ill_net_type == IRE_IF_RESOLVER &&
3832 		    !(ipif->ipif_state_flags & IPIF_CONDEMNED) &&
3833 		    ipst->ips_ip_dup_recovery > 0 &&
3834 		    ipif->ipif_recovery_id == 0) {
3835 			ipif->ipif_recovery_id = timeout(ipif_dup_recovery,
3836 			    ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery));
3837 			continue;
3838 		}
3839 
3840 		/*
3841 		 * If what we're trying to do has already been done, then do
3842 		 * nothing.
3843 		 */
3844 		if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0))
3845 			continue;
3846 
3847 		if (ipif->ipif_id != 0) {
3848 			(void) snprintf(ibuf + ill->ill_name_length - 1,
3849 			    sizeof (ibuf) - ill->ill_name_length + 1, ":%d",
3850 			    ipif->ipif_id);
3851 		}
3852 		if (failtype == NULL) {
3853 			cmn_err(CE_NOTE, "recovered address %s on %s", sbuf,
3854 			    ibuf);
3855 		} else {
3856 			cmn_err(CE_WARN, "%s has duplicate address %s (%s "
3857 			    "by %s); disabled", ibuf, sbuf, failtype, hbuf);
3858 		}
3859 
3860 		if (bring_up) {
3861 			ASSERT(ill->ill_dl_up);
3862 			/*
3863 			 * Free up the ARP delete message so we can allocate
3864 			 * a fresh one through the normal path.
3865 			 */
3866 			freemsg(ipif->ipif_arp_del_mp);
3867 			ipif->ipif_arp_del_mp = NULL;
3868 			if (ipif_resolver_up(ipif, Res_act_initial) !=
3869 			    EINPROGRESS) {
3870 				ipif->ipif_addr_ready = 1;
3871 				(void) ipif_up_done(ipif);
3872 			}
3873 			continue;
3874 		}
3875 
3876 		mutex_enter(&ill->ill_lock);
3877 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
3878 		ipif->ipif_flags |= IPIF_DUPLICATE;
3879 		ill->ill_ipif_dup_count++;
3880 		mutex_exit(&ill->ill_lock);
3881 		/*
3882 		 * Already exclusive on the ill; no need to handle deferred
3883 		 * processing here.
3884 		 */
3885 		(void) ipif_down(ipif, NULL, NULL);
3886 		ipif_down_tail(ipif);
3887 		mutex_enter(&ill->ill_lock);
3888 		if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) &&
3889 		    ill->ill_net_type == IRE_IF_RESOLVER &&
3890 		    !(ipif->ipif_state_flags & IPIF_CONDEMNED) &&
3891 		    ipst->ips_ip_dup_recovery > 0) {
3892 			ipif->ipif_recovery_id = timeout(ipif_dup_recovery,
3893 			    ipif, MSEC_TO_TICK(ipst->ips_ip_dup_recovery));
3894 		}
3895 		mutex_exit(&ill->ill_lock);
3896 	}
3897 	freemsg(mp);
3898 }
3899 
3900 /* ARGSUSED */
3901 static void
3902 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg)
3903 {
3904 	ill_t	*ill = rq->q_ptr;
3905 	arh_t *arh;
3906 	ipaddr_t src;
3907 	ipif_t	*ipif;
3908 
3909 	arh = (arh_t *)mp->b_cont->b_rptr;
3910 	bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN);
3911 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3912 		if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src)
3913 			(void) ipif_resolver_up(ipif, Res_act_defend);
3914 	}
3915 	freemsg(mp);
3916 }
3917 
3918 /*
3919  * News from ARP.  ARP sends notification of interesting events down
3920  * to its clients using M_CTL messages with the interesting ARP packet
3921  * attached via b_cont.
3922  * The interesting event from a device comes up the corresponding ARP-IP-DEV
3923  * queue as opposed to ARP sending the message to all the clients, i.e. all
3924  * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache
3925  * table if a cache IRE is found to delete all the entries for the address in
3926  * the packet.
3927  */
3928 static void
3929 ip_arp_news(queue_t *q, mblk_t *mp)
3930 {
3931 	arcn_t		*arcn;
3932 	arh_t		*arh;
3933 	ire_t		*ire = NULL;
3934 	char		hbuf[MAC_STR_LEN];
3935 	char		sbuf[INET_ADDRSTRLEN];
3936 	ipaddr_t	src;
3937 	in6_addr_t	v6src;
3938 	boolean_t	isv6 = B_FALSE;
3939 	ipif_t		*ipif;
3940 	ill_t		*ill;
3941 	ip_stack_t	*ipst;
3942 
3943 	if (CONN_Q(q)) {
3944 		conn_t *connp = Q_TO_CONN(q);
3945 
3946 		ipst = connp->conn_netstack->netstack_ip;
3947 	} else {
3948 		ill_t *ill = (ill_t *)q->q_ptr;
3949 
3950 		ipst = ill->ill_ipst;
3951 	}
3952 
3953 	if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t)	|| !mp->b_cont) {
3954 		if (q->q_next) {
3955 			putnext(q, mp);
3956 		} else
3957 			freemsg(mp);
3958 		return;
3959 	}
3960 	arh = (arh_t *)mp->b_cont->b_rptr;
3961 	/* Is it one we are interested in? */
3962 	if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) {
3963 		isv6 = B_TRUE;
3964 		bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src,
3965 		    IPV6_ADDR_LEN);
3966 	} else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) {
3967 		bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src,
3968 		    IP_ADDR_LEN);
3969 	} else {
3970 		freemsg(mp);
3971 		return;
3972 	}
3973 
3974 	ill = q->q_ptr;
3975 
3976 	arcn = (arcn_t *)mp->b_rptr;
3977 	switch (arcn->arcn_code) {
3978 	case AR_CN_BOGON:
3979 		/*
3980 		 * Someone is sending ARP packets with a source protocol
3981 		 * address that we have published and for which we believe our
3982 		 * entry is authoritative and (when ill_arp_extend is set)
3983 		 * verified to be unique on the network.
3984 		 *
3985 		 * The ARP module internally handles the cases where the sender
3986 		 * is just probing (for DAD) and where the hardware address of
3987 		 * a non-authoritative entry has changed.  Thus, these are the
3988 		 * real conflicts, and we have to do resolution.
3989 		 *
3990 		 * We back away quickly from the address if it's from DHCP or
3991 		 * otherwise temporary and hasn't been used recently (or at
3992 		 * all).  We'd like to include "deprecated" addresses here as
3993 		 * well (as there's no real reason to defend something we're
3994 		 * discarding), but IPMP "reuses" this flag to mean something
3995 		 * other than the standard meaning.
3996 		 *
3997 		 * If the ARP module above is not extended (meaning that it
3998 		 * doesn't know how to defend the address), then we just log
3999 		 * the problem as we always did and continue on.  It's not
4000 		 * right, but there's little else we can do, and those old ATM
4001 		 * users are going away anyway.
4002 		 */
4003 		(void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen,
4004 		    hbuf, sizeof (hbuf));
4005 		(void) ip_dot_addr(src, sbuf);
4006 		if (isv6) {
4007 			ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL,
4008 			    ipst);
4009 		} else {
4010 			ire = ire_cache_lookup(src, ALL_ZONES, NULL, ipst);
4011 		}
4012 		if (ire != NULL	&& IRE_IS_LOCAL(ire)) {
4013 			uint32_t now;
4014 			uint32_t maxage;
4015 			clock_t lused;
4016 			uint_t maxdefense;
4017 			uint_t defs;
4018 
4019 			/*
4020 			 * First, figure out if this address hasn't been used
4021 			 * in a while.  If it hasn't, then it's a better
4022 			 * candidate for abandoning.
4023 			 */
4024 			ipif = ire->ire_ipif;
4025 			ASSERT(ipif != NULL);
4026 			now = gethrestime_sec();
4027 			maxage = now - ire->ire_create_time;
4028 			if (maxage > ipst->ips_ip_max_temp_idle)
4029 				maxage = ipst->ips_ip_max_temp_idle;
4030 			lused = drv_hztousec(ddi_get_lbolt() -
4031 			    ire->ire_last_used_time) / MICROSEC + 1;
4032 			if (lused >= maxage && (ipif->ipif_flags &
4033 			    (IPIF_DHCPRUNNING | IPIF_TEMPORARY)))
4034 				maxdefense = ipst->ips_ip_max_temp_defend;
4035 			else
4036 				maxdefense = ipst->ips_ip_max_defend;
4037 
4038 			/*
4039 			 * Now figure out how many times we've defended
4040 			 * ourselves.  Ignore defenses that happened long in
4041 			 * the past.
4042 			 */
4043 			mutex_enter(&ire->ire_lock);
4044 			if ((defs = ire->ire_defense_count) > 0 &&
4045 			    now - ire->ire_defense_time >
4046 			    ipst->ips_ip_defend_interval) {
4047 				ire->ire_defense_count = defs = 0;
4048 			}
4049 			ire->ire_defense_count++;
4050 			ire->ire_defense_time = now;
4051 			mutex_exit(&ire->ire_lock);
4052 			ill_refhold(ill);
4053 			ire_refrele(ire);
4054 
4055 			/*
4056 			 * If we've defended ourselves too many times already,
4057 			 * then give up and tear down the interface(s) using
4058 			 * this address.  Otherwise, defend by sending out a
4059 			 * gratuitous ARP.
4060 			 */
4061 			if (defs >= maxdefense && ill->ill_arp_extend) {
4062 				(void) qwriter_ip(NULL, ill, q, mp,
4063 				    ip_arp_excl, CUR_OP, B_FALSE);
4064 			} else {
4065 				cmn_err(CE_WARN,
4066 				    "node %s is using our IP address %s on %s",
4067 				    hbuf, sbuf, ill->ill_name);
4068 				/*
4069 				 * If this is an old (ATM) ARP module, then
4070 				 * don't try to defend the address.  Remain
4071 				 * compatible with the old behavior.  Defend
4072 				 * only with new ARP.
4073 				 */
4074 				if (ill->ill_arp_extend) {
4075 					(void) qwriter_ip(NULL, ill, q, mp,
4076 					    ip_arp_defend, CUR_OP, B_FALSE);
4077 				} else {
4078 					ill_refrele(ill);
4079 				}
4080 			}
4081 			return;
4082 		}
4083 		cmn_err(CE_WARN,
4084 		    "proxy ARP problem?  Node '%s' is using %s on %s",
4085 		    hbuf, sbuf, ill->ill_name);
4086 		if (ire != NULL)
4087 			ire_refrele(ire);
4088 		break;
4089 	case AR_CN_ANNOUNCE:
4090 		if (isv6) {
4091 			/*
4092 			 * For XRESOLV interfaces.
4093 			 * Delete the IRE cache entry and NCE for this
4094 			 * v6 address
4095 			 */
4096 			ip_ire_clookup_and_delete_v6(&v6src, ipst);
4097 			/*
4098 			 * If v6src is a non-zero, it's a router address
4099 			 * as below. Do the same sort of thing to clean
4100 			 * out off-net IRE_CACHE entries that go through
4101 			 * the router.
4102 			 */
4103 			if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) {
4104 				ire_walk_v6(ire_delete_cache_gw_v6,
4105 				    (char *)&v6src, ALL_ZONES, ipst);
4106 			}
4107 		} else {
4108 			nce_hw_map_t hwm;
4109 
4110 			/*
4111 			 * ARP gives us a copy of any packet where it thinks
4112 			 * the address has changed, so that we can update our
4113 			 * caches.  We're responsible for caching known answers
4114 			 * in the current design.  We check whether the
4115 			 * hardware address really has changed in all of our
4116 			 * entries that have cached this mapping, and if so, we
4117 			 * blow them away.  This way we will immediately pick
4118 			 * up the rare case of a host changing hardware
4119 			 * address.
4120 			 */
4121 			if (src == 0)
4122 				break;
4123 			hwm.hwm_addr = src;
4124 			hwm.hwm_hwlen = arh->arh_hlen;
4125 			hwm.hwm_hwaddr = (uchar_t *)(arh + 1);
4126 			ndp_walk_common(ipst->ips_ndp4, NULL,
4127 			    (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES);
4128 		}
4129 		break;
4130 	case AR_CN_READY:
4131 		/* No external v6 resolver has a contract to use this */
4132 		if (isv6)
4133 			break;
4134 		/* If the link is down, we'll retry this later */
4135 		if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING))
4136 			break;
4137 		ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL,
4138 		    NULL, NULL, ipst);
4139 		if (ipif != NULL) {
4140 			/*
4141 			 * If this is a duplicate recovery, then we now need to
4142 			 * go exclusive to bring this thing back up.
4143 			 */
4144 			if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) ==
4145 			    IPIF_DUPLICATE) {
4146 				ipif_refrele(ipif);
4147 				ill_refhold(ill);
4148 				(void) qwriter_ip(NULL, ill, q, mp,
4149 				    ip_arp_excl, CUR_OP, B_FALSE);
4150 				return;
4151 			}
4152 			/*
4153 			 * If this is the first notice that this address is
4154 			 * ready, then let the user know now.
4155 			 */
4156 			if ((ipif->ipif_flags & IPIF_UP) &&
4157 			    !ipif->ipif_addr_ready) {
4158 				ipif_mask_reply(ipif);
4159 				ip_rts_ifmsg(ipif);
4160 				ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
4161 				sctp_update_ipif(ipif, SCTP_IPIF_UP);
4162 			}
4163 			ipif->ipif_addr_ready = 1;
4164 			ipif_refrele(ipif);
4165 		}
4166 		ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp), ipst);
4167 		if (ire != NULL) {
4168 			ire->ire_defense_count = 0;
4169 			ire_refrele(ire);
4170 		}
4171 		break;
4172 	case AR_CN_FAILED:
4173 		/* No external v6 resolver has a contract to use this */
4174 		if (isv6)
4175 			break;
4176 		ill_refhold(ill);
4177 		(void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP,
4178 		    B_FALSE);
4179 		return;
4180 	}
4181 	freemsg(mp);
4182 }
4183 
4184 /*
4185  * Create a mblk suitable for carrying the interface index and/or source link
4186  * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used
4187  * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user
4188  * application.
4189  */
4190 mblk_t *
4191 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags, zoneid_t zoneid,
4192     ip_stack_t *ipst)
4193 {
4194 	mblk_t		*mp;
4195 	ip_pktinfo_t	*pinfo;
4196 	ipha_t *ipha;
4197 	struct ether_header *pether;
4198 
4199 	mp = allocb(sizeof (ip_pktinfo_t), BPRI_MED);
4200 	if (mp == NULL) {
4201 		ip1dbg(("ip_add_info: allocation failure.\n"));
4202 		return (data_mp);
4203 	}
4204 
4205 	ipha	= (ipha_t *)data_mp->b_rptr;
4206 	pinfo = (ip_pktinfo_t *)mp->b_rptr;
4207 	bzero(pinfo, sizeof (ip_pktinfo_t));
4208 	pinfo->ip_pkt_flags = (uchar_t)flags;
4209 	pinfo->ip_pkt_ulp_type = IN_PKTINFO;	/* Tell ULP what type of info */
4210 
4211 	if (flags & (IPF_RECVIF | IPF_RECVADDR))
4212 		pinfo->ip_pkt_ifindex = ill->ill_phyint->phyint_ifindex;
4213 	if (flags & IPF_RECVADDR) {
4214 		ipif_t	*ipif;
4215 		ire_t	*ire;
4216 
4217 		/*
4218 		 * Only valid for V4
4219 		 */
4220 		ASSERT((ipha->ipha_version_and_hdr_length & 0xf0) ==
4221 		    (IPV4_VERSION << 4));
4222 
4223 		ipif = ipif_get_next_ipif(NULL, ill);
4224 		if (ipif != NULL) {
4225 			/*
4226 			 * Since a decision has already been made to deliver the
4227 			 * packet, there is no need to test for SECATTR and
4228 			 * ZONEONLY.
4229 			 */
4230 			ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0, ipif,
4231 			    zoneid, NULL, MATCH_IRE_ILL_GROUP, ipst);
4232 			if (ire == NULL) {
4233 				/*
4234 				 * packet must have come on a different
4235 				 * interface.
4236 				 * Since a decision has already been made to
4237 				 * deliver the packet, there is no need to test
4238 				 * for SECATTR and ZONEONLY.
4239 				 */
4240 				ire = ire_ctable_lookup(ipha->ipha_dst, 0, 0,
4241 				    ipif, zoneid, NULL, NULL, ipst);
4242 			}
4243 
4244 			if (ire == NULL) {
4245 				/*
4246 				 * This is either a multicast packet or
4247 				 * the address has been removed since
4248 				 * the packet was received.
4249 				 * Return INADDR_ANY so that normal source
4250 				 * selection occurs for the response.
4251 				 */
4252 
4253 				pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY;
4254 			} else {
4255 				ASSERT(ire->ire_type != IRE_CACHE);
4256 				pinfo->ip_pkt_match_addr.s_addr =
4257 				    ire->ire_src_addr;
4258 				ire_refrele(ire);
4259 			}
4260 			ipif_refrele(ipif);
4261 		} else {
4262 			pinfo->ip_pkt_match_addr.s_addr = INADDR_ANY;
4263 		}
4264 	}
4265 
4266 	pether = (struct ether_header *)((char *)ipha
4267 	    - sizeof (struct ether_header));
4268 	/*
4269 	 * Make sure the interface is an ethernet type, since this option
4270 	 * is currently supported only on this type of interface. Also make
4271 	 * sure we are pointing correctly above db_base.
4272 	 */
4273 
4274 	if ((flags & IPF_RECVSLLA) &&
4275 	    ((uchar_t *)pether >= data_mp->b_datap->db_base) &&
4276 	    (ill->ill_type == IFT_ETHER) &&
4277 	    (ill->ill_net_type == IRE_IF_RESOLVER)) {
4278 
4279 		pinfo->ip_pkt_slla.sdl_type = IFT_ETHER;
4280 		bcopy((uchar_t *)pether->ether_shost.ether_addr_octet,
4281 		    (uchar_t *)pinfo->ip_pkt_slla.sdl_data, ETHERADDRL);
4282 	} else {
4283 		/*
4284 		 * Clear the bit. Indicate to upper layer that IP is not
4285 		 * sending this ancillary info.
4286 		 */
4287 		pinfo->ip_pkt_flags = pinfo->ip_pkt_flags & ~IPF_RECVSLLA;
4288 	}
4289 
4290 	mp->b_datap->db_type = M_CTL;
4291 	mp->b_wptr += sizeof (ip_pktinfo_t);
4292 	mp->b_cont = data_mp;
4293 
4294 	return (mp);
4295 }
4296 
4297 /*
4298  * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as
4299  * part of the bind request.
4300  */
4301 
4302 boolean_t
4303 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp)
4304 {
4305 	ipsec_in_t *ii;
4306 
4307 	ASSERT(policy_mp != NULL);
4308 	ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET);
4309 
4310 	ii = (ipsec_in_t *)policy_mp->b_rptr;
4311 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
4312 
4313 	connp->conn_policy = ii->ipsec_in_policy;
4314 	ii->ipsec_in_policy = NULL;
4315 
4316 	if (ii->ipsec_in_action != NULL) {
4317 		if (connp->conn_latch == NULL) {
4318 			connp->conn_latch = iplatch_create();
4319 			if (connp->conn_latch == NULL)
4320 				return (B_FALSE);
4321 		}
4322 		ipsec_latch_inbound(connp->conn_latch, ii);
4323 	}
4324 	return (B_TRUE);
4325 }
4326 
4327 /*
4328  * Upper level protocols (ULP) pass through bind requests to IP for inspection
4329  * and to arrange for power-fanout assist.  The ULP is identified by
4330  * adding a single byte at the end of the original bind message.
4331  * A ULP other than UDP or TCP that wishes to be recognized passes
4332  * down a bind with a zero length address.
4333  *
4334  * The binding works as follows:
4335  * - A zero byte address means just bind to the protocol.
4336  * - A four byte address is treated as a request to validate
4337  *   that the address is a valid local address, appropriate for
4338  *   an application to bind to. This does not affect any fanout
4339  *   information in IP.
4340  * - A sizeof sin_t byte address is used to bind to only the local address
4341  *   and port.
4342  * - A sizeof ipa_conn_t byte address contains complete fanout information
4343  *   consisting of local and remote addresses and ports.  In
4344  *   this case, the addresses are both validated as appropriate
4345  *   for this operation, and, if so, the information is retained
4346  *   for use in the inbound fanout.
4347  *
4348  * The ULP (except in the zero-length bind) can append an
4349  * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the
4350  * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants
4351  * a copy of the source or destination IRE (source for local bind;
4352  * destination for complete bind). IPSEC_POLICY_SET indicates that the
4353  * policy information contained should be copied on to the conn.
4354  *
4355  * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present.
4356  */
4357 mblk_t *
4358 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp)
4359 {
4360 	ssize_t		len;
4361 	struct T_bind_req	*tbr;
4362 	sin_t		*sin;
4363 	ipa_conn_t	*ac;
4364 	uchar_t		*ucp;
4365 	mblk_t		*mp1;
4366 	boolean_t	ire_requested;
4367 	boolean_t	ipsec_policy_set = B_FALSE;
4368 	int		error = 0;
4369 	int		protocol;
4370 	ipa_conn_x_t	*acx;
4371 
4372 	ASSERT(!connp->conn_af_isv6);
4373 	connp->conn_pkt_isv6 = B_FALSE;
4374 
4375 	len = MBLKL(mp);
4376 	if (len < (sizeof (*tbr) + 1)) {
4377 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
4378 		    "ip_bind: bogus msg, len %ld", len);
4379 		/* XXX: Need to return something better */
4380 		goto bad_addr;
4381 	}
4382 	/* Back up and extract the protocol identifier. */
4383 	mp->b_wptr--;
4384 	protocol = *mp->b_wptr & 0xFF;
4385 	tbr = (struct T_bind_req *)mp->b_rptr;
4386 	/* Reset the message type in preparation for shipping it back. */
4387 	DB_TYPE(mp) = M_PCPROTO;
4388 
4389 	connp->conn_ulp = (uint8_t)protocol;
4390 
4391 	/*
4392 	 * Check for a zero length address.  This is from a protocol that
4393 	 * wants to register to receive all packets of its type.
4394 	 */
4395 	if (tbr->ADDR_length == 0) {
4396 		/*
4397 		 * These protocols are now intercepted in ip_bind_v6().
4398 		 * Reject protocol-level binds here for now.
4399 		 *
4400 		 * For SCTP raw socket, ICMP sends down a bind with sin_t
4401 		 * so that the protocol type cannot be SCTP.
4402 		 */
4403 		if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH ||
4404 		    protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) {
4405 			goto bad_addr;
4406 		}
4407 
4408 		/*
4409 		 *
4410 		 * The udp module never sends down a zero-length address,
4411 		 * and allowing this on a labeled system will break MLP
4412 		 * functionality.
4413 		 */
4414 		if (is_system_labeled() && protocol == IPPROTO_UDP)
4415 			goto bad_addr;
4416 
4417 		if (connp->conn_mac_exempt)
4418 			goto bad_addr;
4419 
4420 		/* No hash here really.  The table is big enough. */
4421 		connp->conn_srcv6 = ipv6_all_zeros;
4422 
4423 		ipcl_proto_insert(connp, protocol);
4424 
4425 		tbr->PRIM_type = T_BIND_ACK;
4426 		return (mp);
4427 	}
4428 
4429 	/* Extract the address pointer from the message. */
4430 	ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset,
4431 	    tbr->ADDR_length);
4432 	if (ucp == NULL) {
4433 		ip1dbg(("ip_bind: no address\n"));
4434 		goto bad_addr;
4435 	}
4436 	if (!OK_32PTR(ucp)) {
4437 		ip1dbg(("ip_bind: unaligned address\n"));
4438 		goto bad_addr;
4439 	}
4440 	/*
4441 	 * Check for trailing mps.
4442 	 */
4443 
4444 	mp1 = mp->b_cont;
4445 	ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE);
4446 	ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET);
4447 
4448 	switch (tbr->ADDR_length) {
4449 	default:
4450 		ip1dbg(("ip_bind: bad address length %d\n",
4451 		    (int)tbr->ADDR_length));
4452 		goto bad_addr;
4453 
4454 	case IP_ADDR_LEN:
4455 		/* Verification of local address only */
4456 		error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0,
4457 		    ire_requested, ipsec_policy_set, B_FALSE);
4458 		break;
4459 
4460 	case sizeof (sin_t):
4461 		sin = (sin_t *)ucp;
4462 		error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr,
4463 		    sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE);
4464 		break;
4465 
4466 	case sizeof (ipa_conn_t):
4467 		ac = (ipa_conn_t *)ucp;
4468 		/* For raw socket, the local port is not set. */
4469 		if (ac->ac_lport == 0)
4470 			ac->ac_lport = connp->conn_lport;
4471 		/* Always verify destination reachability. */
4472 		error = ip_bind_connected(connp, mp, &ac->ac_laddr,
4473 		    ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested,
4474 		    ipsec_policy_set, B_TRUE, B_TRUE);
4475 		break;
4476 
4477 	case sizeof (ipa_conn_x_t):
4478 		acx = (ipa_conn_x_t *)ucp;
4479 		/*
4480 		 * Whether or not to verify destination reachability depends
4481 		 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags.
4482 		 */
4483 		error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr,
4484 		    acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr,
4485 		    acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set,
4486 		    B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0);
4487 		break;
4488 	}
4489 	if (error == EINPROGRESS)
4490 		return (NULL);
4491 	else if (error != 0)
4492 		goto bad_addr;
4493 	/*
4494 	 * Pass the IPSEC headers size in ire_ipsec_overhead.
4495 	 * We can't do this in ip_bind_insert_ire because the policy
4496 	 * may not have been inherited at that point in time and hence
4497 	 * conn_out_enforce_policy may not be set.
4498 	 */
4499 	mp1 = mp->b_cont;
4500 	if (ire_requested && connp->conn_out_enforce_policy &&
4501 	    mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) {
4502 		ire_t *ire = (ire_t *)mp1->b_rptr;
4503 		ASSERT(MBLKL(mp1) >= sizeof (ire_t));
4504 		ire->ire_ipsec_overhead = conn_ipsec_length(connp);
4505 	}
4506 
4507 	/* Send it home. */
4508 	mp->b_datap->db_type = M_PCPROTO;
4509 	tbr->PRIM_type = T_BIND_ACK;
4510 	return (mp);
4511 
4512 bad_addr:
4513 	/*
4514 	 * If error = -1 then we generate a TBADADDR - otherwise error is
4515 	 * a unix errno.
4516 	 */
4517 	if (error > 0)
4518 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
4519 	else
4520 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
4521 	return (mp);
4522 }
4523 
4524 /*
4525  * Here address is verified to be a valid local address.
4526  * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast
4527  * address is also considered a valid local address.
4528  * In the case of a broadcast/multicast address, however, the
4529  * upper protocol is expected to reset the src address
4530  * to 0 if it sees a IRE_BROADCAST type returned so that
4531  * no packets are emitted with broadcast/multicast address as
4532  * source address (that violates hosts requirements RFC1122)
4533  * The addresses valid for bind are:
4534  *	(1) - INADDR_ANY (0)
4535  *	(2) - IP address of an UP interface
4536  *	(3) - IP address of a DOWN interface
4537  *	(4) - valid local IP broadcast addresses. In this case
4538  *	the conn will only receive packets destined to
4539  *	the specified broadcast address.
4540  *	(5) - a multicast address. In this case
4541  *	the conn will only receive packets destined to
4542  *	the specified multicast address. Note: the
4543  *	application still has to issue an
4544  *	IP_ADD_MEMBERSHIP socket option.
4545  *
4546  * On error, return -1 for TBADADDR otherwise pass the
4547  * errno with TSYSERR reply.
4548  *
4549  * In all the above cases, the bound address must be valid in the current zone.
4550  * When the address is loopback, multicast or broadcast, there might be many
4551  * matching IREs so bind has to look up based on the zone.
4552  *
4553  * Note: lport is in network byte order.
4554  */
4555 int
4556 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport,
4557     boolean_t ire_requested, boolean_t ipsec_policy_set,
4558     boolean_t fanout_insert)
4559 {
4560 	int		error = 0;
4561 	ire_t		*src_ire;
4562 	mblk_t		*policy_mp;
4563 	ipif_t		*ipif;
4564 	zoneid_t	zoneid;
4565 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
4566 
4567 	if (ipsec_policy_set) {
4568 		policy_mp = mp->b_cont;
4569 	}
4570 
4571 	/*
4572 	 * If it was previously connected, conn_fully_bound would have
4573 	 * been set.
4574 	 */
4575 	connp->conn_fully_bound = B_FALSE;
4576 
4577 	src_ire = NULL;
4578 	ipif = NULL;
4579 
4580 	zoneid = IPCL_ZONEID(connp);
4581 
4582 	if (src_addr) {
4583 		src_ire = ire_route_lookup(src_addr, 0, 0, 0,
4584 		    NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst);
4585 		/*
4586 		 * If an address other than 0.0.0.0 is requested,
4587 		 * we verify that it is a valid address for bind
4588 		 * Note: Following code is in if-else-if form for
4589 		 * readability compared to a condition check.
4590 		 */
4591 		/* LINTED - statement has no consequent */
4592 		if (IRE_IS_LOCAL(src_ire)) {
4593 			/*
4594 			 * (2) Bind to address of local UP interface
4595 			 */
4596 		} else if (src_ire && src_ire->ire_type == IRE_BROADCAST) {
4597 			/*
4598 			 * (4) Bind to broadcast address
4599 			 * Note: permitted only from transports that
4600 			 * request IRE
4601 			 */
4602 			if (!ire_requested)
4603 				error = EADDRNOTAVAIL;
4604 		} else {
4605 			/*
4606 			 * (3) Bind to address of local DOWN interface
4607 			 * (ipif_lookup_addr() looks up all interfaces
4608 			 * but we do not get here for UP interfaces
4609 			 * - case (2) above)
4610 			 * We put the protocol byte back into the mblk
4611 			 * since we may come back via ip_wput_nondata()
4612 			 * later with this mblk if ipif_lookup_addr chooses
4613 			 * to defer processing.
4614 			 */
4615 			*mp->b_wptr++ = (char)connp->conn_ulp;
4616 			if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid,
4617 			    CONNP_TO_WQ(connp), mp, ip_wput_nondata,
4618 			    &error, ipst)) != NULL) {
4619 				ipif_refrele(ipif);
4620 			} else if (error == EINPROGRESS) {
4621 				if (src_ire != NULL)
4622 					ire_refrele(src_ire);
4623 				return (EINPROGRESS);
4624 			} else if (CLASSD(src_addr)) {
4625 				error = 0;
4626 				if (src_ire != NULL)
4627 					ire_refrele(src_ire);
4628 				/*
4629 				 * (5) bind to multicast address.
4630 				 * Fake out the IRE returned to upper
4631 				 * layer to be a broadcast IRE.
4632 				 */
4633 				src_ire = ire_ctable_lookup(
4634 				    INADDR_BROADCAST, INADDR_ANY,
4635 				    IRE_BROADCAST, NULL, zoneid, NULL,
4636 				    (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY),
4637 				    ipst);
4638 				if (src_ire == NULL || !ire_requested)
4639 					error = EADDRNOTAVAIL;
4640 			} else {
4641 				/*
4642 				 * Not a valid address for bind
4643 				 */
4644 				error = EADDRNOTAVAIL;
4645 			}
4646 			/*
4647 			 * Just to keep it consistent with the processing in
4648 			 * ip_bind_v4()
4649 			 */
4650 			mp->b_wptr--;
4651 		}
4652 		if (error) {
4653 			/* Red Alert!  Attempting to be a bogon! */
4654 			ip1dbg(("ip_bind: bad src address 0x%x\n",
4655 			    ntohl(src_addr)));
4656 			goto bad_addr;
4657 		}
4658 	}
4659 
4660 	/*
4661 	 * Allow setting new policies. For example, disconnects come
4662 	 * down as ipa_t bind. As we would have set conn_policy_cached
4663 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
4664 	 * can change after the disconnect.
4665 	 */
4666 	connp->conn_policy_cached = B_FALSE;
4667 
4668 	/*
4669 	 * If not fanout_insert this was just an address verification
4670 	 */
4671 	if (fanout_insert) {
4672 		/*
4673 		 * The addresses have been verified. Time to insert in
4674 		 * the correct fanout list.
4675 		 */
4676 		IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6);
4677 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6);
4678 		connp->conn_lport = lport;
4679 		connp->conn_fport = 0;
4680 		/*
4681 		 * Do we need to add a check to reject Multicast packets
4682 		 *
4683 		 * We need to make sure that the conn_recv is set to a non-null
4684 		 * value before we insert the conn into the classifier table.
4685 		 * This is to avoid a race with an incoming packet which does an
4686 		 * ipcl_classify().
4687 		 */
4688 		if (*mp->b_wptr == IPPROTO_TCP)
4689 			connp->conn_recv = tcp_conn_request;
4690 		error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport);
4691 	}
4692 
4693 	if (error == 0) {
4694 		if (ire_requested) {
4695 			if (!ip_bind_insert_ire(mp, src_ire, NULL, ipst)) {
4696 				error = -1;
4697 				/* Falls through to bad_addr */
4698 			}
4699 		} else if (ipsec_policy_set) {
4700 			if (!ip_bind_ipsec_policy_set(connp, policy_mp)) {
4701 				error = -1;
4702 				/* Falls through to bad_addr */
4703 			}
4704 		}
4705 	} else if (connp->conn_ulp == IPPROTO_TCP) {
4706 		connp->conn_recv = tcp_input;
4707 	}
4708 bad_addr:
4709 	if (error != 0) {
4710 		if (connp->conn_anon_port) {
4711 			(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4712 			    connp->conn_mlp_type, connp->conn_ulp, ntohs(lport),
4713 			    B_FALSE);
4714 		}
4715 		connp->conn_mlp_type = mlptSingle;
4716 	}
4717 	if (src_ire != NULL)
4718 		IRE_REFRELE(src_ire);
4719 	if (ipsec_policy_set) {
4720 		ASSERT(policy_mp == mp->b_cont);
4721 		ASSERT(policy_mp != NULL);
4722 		freeb(policy_mp);
4723 		/*
4724 		 * As of now assume that nothing else accompanies
4725 		 * IPSEC_POLICY_SET.
4726 		 */
4727 		mp->b_cont = NULL;
4728 	}
4729 	return (error);
4730 }
4731 
4732 /*
4733  * Verify that both the source and destination addresses
4734  * are valid.  If verify_dst is false, then the destination address may be
4735  * unreachable, i.e. have no route to it.  Protocols like TCP want to verify
4736  * destination reachability, while tunnels do not.
4737  * Note that we allow connect to broadcast and multicast
4738  * addresses when ire_requested is set. Thus the ULP
4739  * has to check for IRE_BROADCAST and multicast.
4740  *
4741  * Returns zero if ok.
4742  * On error: returns -1 to mean TBADADDR otherwise returns an errno
4743  * (for use with TSYSERR reply).
4744  *
4745  * Note: lport and fport are in network byte order.
4746  */
4747 int
4748 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp,
4749     uint16_t lport, ipaddr_t dst_addr, uint16_t fport,
4750     boolean_t ire_requested, boolean_t ipsec_policy_set,
4751     boolean_t fanout_insert, boolean_t verify_dst)
4752 {
4753 	ire_t		*src_ire;
4754 	ire_t		*dst_ire;
4755 	int		error = 0;
4756 	int 		protocol;
4757 	mblk_t		*policy_mp;
4758 	ire_t		*sire = NULL;
4759 	ire_t		*md_dst_ire = NULL;
4760 	ire_t		*lso_dst_ire = NULL;
4761 	ill_t		*ill = NULL;
4762 	zoneid_t	zoneid;
4763 	ipaddr_t	src_addr = *src_addrp;
4764 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
4765 
4766 	src_ire = dst_ire = NULL;
4767 	protocol = *mp->b_wptr & 0xFF;
4768 
4769 	/*
4770 	 * If we never got a disconnect before, clear it now.
4771 	 */
4772 	connp->conn_fully_bound = B_FALSE;
4773 
4774 	if (ipsec_policy_set) {
4775 		policy_mp = mp->b_cont;
4776 	}
4777 
4778 	zoneid = IPCL_ZONEID(connp);
4779 
4780 	if (CLASSD(dst_addr)) {
4781 		/* Pick up an IRE_BROADCAST */
4782 		dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL,
4783 		    NULL, zoneid, MBLK_GETLABEL(mp),
4784 		    (MATCH_IRE_RECURSIVE |
4785 		    MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE |
4786 		    MATCH_IRE_SECATTR), ipst);
4787 	} else {
4788 		/*
4789 		 * If conn_dontroute is set or if conn_nexthop_set is set,
4790 		 * and onlink ipif is not found set ENETUNREACH error.
4791 		 */
4792 		if (connp->conn_dontroute || connp->conn_nexthop_set) {
4793 			ipif_t *ipif;
4794 
4795 			ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ?
4796 			    dst_addr : connp->conn_nexthop_v4, zoneid, ipst);
4797 			if (ipif == NULL) {
4798 				error = ENETUNREACH;
4799 				goto bad_addr;
4800 			}
4801 			ipif_refrele(ipif);
4802 		}
4803 
4804 		if (connp->conn_nexthop_set) {
4805 			dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0,
4806 			    0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp),
4807 			    MATCH_IRE_SECATTR, ipst);
4808 		} else {
4809 			dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL,
4810 			    &sire, zoneid, MBLK_GETLABEL(mp),
4811 			    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4812 			    MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE |
4813 			    MATCH_IRE_SECATTR), ipst);
4814 		}
4815 	}
4816 	/*
4817 	 * dst_ire can't be a broadcast when not ire_requested.
4818 	 * We also prevent ire's with src address INADDR_ANY to
4819 	 * be used, which are created temporarily for
4820 	 * sending out packets from endpoints that have
4821 	 * conn_unspec_src set.  If verify_dst is true, the destination must be
4822 	 * reachable.  If verify_dst is false, the destination needn't be
4823 	 * reachable.
4824 	 *
4825 	 * If we match on a reject or black hole, then we've got a
4826 	 * local failure.  May as well fail out the connect() attempt,
4827 	 * since it's never going to succeed.
4828 	 */
4829 	if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY ||
4830 	    (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
4831 	    ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) {
4832 		/*
4833 		 * If we're verifying destination reachability, we always want
4834 		 * to complain here.
4835 		 *
4836 		 * If we're not verifying destination reachability but the
4837 		 * destination has a route, we still want to fail on the
4838 		 * temporary address and broadcast address tests.
4839 		 */
4840 		if (verify_dst || (dst_ire != NULL)) {
4841 			if (ip_debug > 2) {
4842 				pr_addr_dbg("ip_bind_connected: bad connected "
4843 				    "dst %s\n", AF_INET, &dst_addr);
4844 			}
4845 			if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST))
4846 				error = ENETUNREACH;
4847 			else
4848 				error = EHOSTUNREACH;
4849 			goto bad_addr;
4850 		}
4851 	}
4852 
4853 	/*
4854 	 * We now know that routing will allow us to reach the destination.
4855 	 * Check whether Trusted Solaris policy allows communication with this
4856 	 * host, and pretend that the destination is unreachable if not.
4857 	 *
4858 	 * This is never a problem for TCP, since that transport is known to
4859 	 * compute the label properly as part of the tcp_rput_other T_BIND_ACK
4860 	 * handling.  If the remote is unreachable, it will be detected at that
4861 	 * point, so there's no reason to check it here.
4862 	 *
4863 	 * Note that for sendto (and other datagram-oriented friends), this
4864 	 * check is done as part of the data path label computation instead.
4865 	 * The check here is just to make non-TCP connect() report the right
4866 	 * error.
4867 	 */
4868 	if (dst_ire != NULL && is_system_labeled() &&
4869 	    !IPCL_IS_TCP(connp) &&
4870 	    tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL,
4871 	    connp->conn_mac_exempt, ipst) != 0) {
4872 		error = EHOSTUNREACH;
4873 		if (ip_debug > 2) {
4874 			pr_addr_dbg("ip_bind_connected: no label for dst %s\n",
4875 			    AF_INET, &dst_addr);
4876 		}
4877 		goto bad_addr;
4878 	}
4879 
4880 	/*
4881 	 * If the app does a connect(), it means that it will most likely
4882 	 * send more than 1 packet to the destination.  It makes sense
4883 	 * to clear the temporary flag.
4884 	 */
4885 	if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE &&
4886 	    (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) {
4887 		irb_t *irb = dst_ire->ire_bucket;
4888 
4889 		rw_enter(&irb->irb_lock, RW_WRITER);
4890 		dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY;
4891 		irb->irb_tmp_ire_cnt--;
4892 		rw_exit(&irb->irb_lock);
4893 	}
4894 
4895 	/*
4896 	 * See if we should notify ULP about LSO/MDT; we do this whether or not
4897 	 * ire_requested is TRUE, in order to handle active connects; LSO/MDT
4898 	 * eligibility tests for passive connects are handled separately
4899 	 * through tcp_adapt_ire().  We do this before the source address
4900 	 * selection, because dst_ire may change after a call to
4901 	 * ipif_select_source().  This is a best-effort check, as the
4902 	 * packet for this connection may not actually go through
4903 	 * dst_ire->ire_stq, and the exact IRE can only be known after
4904 	 * calling ip_newroute().  This is why we further check on the
4905 	 * IRE during LSO/Multidata packet transmission in
4906 	 * tcp_lsosend()/tcp_multisend().
4907 	 */
4908 	if (!ipsec_policy_set && dst_ire != NULL &&
4909 	    !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) &&
4910 	    (ill = ire_to_ill(dst_ire), ill != NULL)) {
4911 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
4912 			lso_dst_ire = dst_ire;
4913 			IRE_REFHOLD(lso_dst_ire);
4914 		} else if (ipst->ips_ip_multidata_outbound &&
4915 		    ILL_MDT_CAPABLE(ill)) {
4916 			md_dst_ire = dst_ire;
4917 			IRE_REFHOLD(md_dst_ire);
4918 		}
4919 	}
4920 
4921 	if (dst_ire != NULL &&
4922 	    dst_ire->ire_type == IRE_LOCAL &&
4923 	    dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) {
4924 		/*
4925 		 * If the IRE belongs to a different zone, look for a matching
4926 		 * route in the forwarding table and use the source address from
4927 		 * that route.
4928 		 */
4929 		src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL,
4930 		    zoneid, 0, NULL,
4931 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
4932 		    MATCH_IRE_RJ_BHOLE, ipst);
4933 		if (src_ire == NULL) {
4934 			error = EHOSTUNREACH;
4935 			goto bad_addr;
4936 		} else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
4937 			if (!(src_ire->ire_type & IRE_HOST))
4938 				error = ENETUNREACH;
4939 			else
4940 				error = EHOSTUNREACH;
4941 			goto bad_addr;
4942 		}
4943 		if (src_addr == INADDR_ANY)
4944 			src_addr = src_ire->ire_src_addr;
4945 		ire_refrele(src_ire);
4946 		src_ire = NULL;
4947 	} else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) {
4948 		if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) {
4949 			src_addr = sire->ire_src_addr;
4950 			ire_refrele(dst_ire);
4951 			dst_ire = sire;
4952 			sire = NULL;
4953 		} else {
4954 			/*
4955 			 * Pick a source address so that a proper inbound
4956 			 * load spreading would happen.
4957 			 */
4958 			ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill;
4959 			ipif_t *src_ipif = NULL;
4960 			ire_t *ipif_ire;
4961 
4962 			/*
4963 			 * Supply a local source address such that inbound
4964 			 * load spreading happens.
4965 			 *
4966 			 * Determine the best source address on this ill for
4967 			 * the destination.
4968 			 *
4969 			 * 1) For broadcast, we should return a broadcast ire
4970 			 *    found above so that upper layers know that the
4971 			 *    destination address is a broadcast address.
4972 			 *
4973 			 * 2) If this is part of a group, select a better
4974 			 *    source address so that better inbound load
4975 			 *    balancing happens. Do the same if the ipif
4976 			 *    is DEPRECATED.
4977 			 *
4978 			 * 3) If the outgoing interface is part of a usesrc
4979 			 *    group, then try selecting a source address from
4980 			 *    the usesrc ILL.
4981 			 */
4982 			if ((dst_ire->ire_zoneid != zoneid &&
4983 			    dst_ire->ire_zoneid != ALL_ZONES) ||
4984 			    (!(dst_ire->ire_type & IRE_BROADCAST) &&
4985 			    ((dst_ill->ill_group != NULL) ||
4986 			    (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) ||
4987 			    (dst_ill->ill_usesrc_ifindex != 0)))) {
4988 				/*
4989 				 * If the destination is reachable via a
4990 				 * given gateway, the selected source address
4991 				 * should be in the same subnet as the gateway.
4992 				 * Otherwise, the destination is not reachable.
4993 				 *
4994 				 * If there are no interfaces on the same subnet
4995 				 * as the destination, ipif_select_source gives
4996 				 * first non-deprecated interface which might be
4997 				 * on a different subnet than the gateway.
4998 				 * This is not desirable. Hence pass the dst_ire
4999 				 * source address to ipif_select_source.
5000 				 * It is sure that the destination is reachable
5001 				 * with the dst_ire source address subnet.
5002 				 * So passing dst_ire source address to
5003 				 * ipif_select_source will make sure that the
5004 				 * selected source will be on the same subnet
5005 				 * as dst_ire source address.
5006 				 */
5007 				ipaddr_t saddr =
5008 				    dst_ire->ire_ipif->ipif_src_addr;
5009 				src_ipif = ipif_select_source(dst_ill,
5010 				    saddr, zoneid);
5011 				if (src_ipif != NULL) {
5012 					if (IS_VNI(src_ipif->ipif_ill)) {
5013 						/*
5014 						 * For VNI there is no
5015 						 * interface route
5016 						 */
5017 						src_addr =
5018 						    src_ipif->ipif_src_addr;
5019 					} else {
5020 						ipif_ire =
5021 						    ipif_to_ire(src_ipif);
5022 						if (ipif_ire != NULL) {
5023 							IRE_REFRELE(dst_ire);
5024 							dst_ire = ipif_ire;
5025 						}
5026 						src_addr =
5027 						    dst_ire->ire_src_addr;
5028 					}
5029 					ipif_refrele(src_ipif);
5030 				} else {
5031 					src_addr = dst_ire->ire_src_addr;
5032 				}
5033 			} else {
5034 				src_addr = dst_ire->ire_src_addr;
5035 			}
5036 		}
5037 	}
5038 
5039 	/*
5040 	 * We do ire_route_lookup() here (and not
5041 	 * interface lookup as we assert that
5042 	 * src_addr should only come from an
5043 	 * UP interface for hard binding.
5044 	 */
5045 	ASSERT(src_ire == NULL);
5046 	src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL,
5047 	    NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, ipst);
5048 	/* src_ire must be a local|loopback */
5049 	if (!IRE_IS_LOCAL(src_ire)) {
5050 		if (ip_debug > 2) {
5051 			pr_addr_dbg("ip_bind_connected: bad connected "
5052 			    "src %s\n", AF_INET, &src_addr);
5053 		}
5054 		error = EADDRNOTAVAIL;
5055 		goto bad_addr;
5056 	}
5057 
5058 	/*
5059 	 * If the source address is a loopback address, the
5060 	 * destination had best be local or multicast.
5061 	 * The transports that can't handle multicast will reject
5062 	 * those addresses.
5063 	 */
5064 	if (src_ire->ire_type == IRE_LOOPBACK &&
5065 	    !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) {
5066 		ip1dbg(("ip_bind_connected: bad connected loopback\n"));
5067 		error = -1;
5068 		goto bad_addr;
5069 	}
5070 
5071 	/*
5072 	 * Allow setting new policies. For example, disconnects come
5073 	 * down as ipa_t bind. As we would have set conn_policy_cached
5074 	 * to B_TRUE before, we should set it to B_FALSE, so that policy
5075 	 * can change after the disconnect.
5076 	 */
5077 	connp->conn_policy_cached = B_FALSE;
5078 
5079 	/*
5080 	 * Set the conn addresses/ports immediately, so the IPsec policy calls
5081 	 * can handle their passed-in conn's.
5082 	 */
5083 
5084 	IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6);
5085 	IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6);
5086 	connp->conn_lport = lport;
5087 	connp->conn_fport = fport;
5088 	*src_addrp = src_addr;
5089 
5090 	ASSERT(!(ipsec_policy_set && ire_requested));
5091 	if (ire_requested) {
5092 		iulp_t *ulp_info = NULL;
5093 
5094 		/*
5095 		 * Note that sire will not be NULL if this is an off-link
5096 		 * connection and there is not cache for that dest yet.
5097 		 *
5098 		 * XXX Because of an existing bug, if there are multiple
5099 		 * default routes, the IRE returned now may not be the actual
5100 		 * default route used (default routes are chosen in a
5101 		 * round robin fashion).  So if the metrics for different
5102 		 * default routes are different, we may return the wrong
5103 		 * metrics.  This will not be a problem if the existing
5104 		 * bug is fixed.
5105 		 */
5106 		if (sire != NULL) {
5107 			ulp_info = &(sire->ire_uinfo);
5108 		}
5109 		if (!ip_bind_insert_ire(mp, dst_ire, ulp_info, ipst)) {
5110 			error = -1;
5111 			goto bad_addr;
5112 		}
5113 	} else if (ipsec_policy_set) {
5114 		if (!ip_bind_ipsec_policy_set(connp, policy_mp)) {
5115 			error = -1;
5116 			goto bad_addr;
5117 		}
5118 	}
5119 
5120 	/*
5121 	 * Cache IPsec policy in this conn.  If we have per-socket policy,
5122 	 * we'll cache that.  If we don't, we'll inherit global policy.
5123 	 *
5124 	 * We can't insert until the conn reflects the policy. Note that
5125 	 * conn_policy_cached is set by ipsec_conn_cache_policy() even for
5126 	 * connections where we don't have a policy. This is to prevent
5127 	 * global policy lookups in the inbound path.
5128 	 *
5129 	 * If we insert before we set conn_policy_cached,
5130 	 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true
5131 	 * because global policy cound be non-empty. We normally call
5132 	 * ipsec_check_policy() for conn_policy_cached connections only if
5133 	 * ipc_in_enforce_policy is set. But in this case,
5134 	 * conn_policy_cached can get set anytime since we made the
5135 	 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is
5136 	 * called, which will make the above assumption false.  Thus, we
5137 	 * need to insert after we set conn_policy_cached.
5138 	 */
5139 	if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0)
5140 		goto bad_addr;
5141 
5142 	if (fanout_insert) {
5143 		/*
5144 		 * The addresses have been verified. Time to insert in
5145 		 * the correct fanout list.
5146 		 * We need to make sure that the conn_recv is set to a non-null
5147 		 * value before we insert into the classifier table to avoid a
5148 		 * race with an incoming packet which does an ipcl_classify().
5149 		 */
5150 		if (protocol == IPPROTO_TCP)
5151 			connp->conn_recv = tcp_input;
5152 		error = ipcl_conn_insert(connp, protocol, src_addr,
5153 		    dst_addr, connp->conn_ports);
5154 	}
5155 
5156 	if (error == 0) {
5157 		connp->conn_fully_bound = B_TRUE;
5158 		/*
5159 		 * Our initial checks for LSO/MDT have passed; the IRE is not
5160 		 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to
5161 		 * be supporting LSO/MDT.  Pass the IRE, IPC and ILL into
5162 		 * ip_xxinfo_return(), which performs further checks
5163 		 * against them and upon success, returns the LSO/MDT info
5164 		 * mblk which we will attach to the bind acknowledgment.
5165 		 */
5166 		if (lso_dst_ire != NULL) {
5167 			mblk_t *lsoinfo_mp;
5168 
5169 			ASSERT(ill->ill_lso_capab != NULL);
5170 			if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp,
5171 			    ill->ill_name, ill->ill_lso_capab)) != NULL)
5172 				linkb(mp, lsoinfo_mp);
5173 		} else if (md_dst_ire != NULL) {
5174 			mblk_t *mdinfo_mp;
5175 
5176 			ASSERT(ill->ill_mdt_capab != NULL);
5177 			if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp,
5178 			    ill->ill_name, ill->ill_mdt_capab)) != NULL)
5179 				linkb(mp, mdinfo_mp);
5180 		}
5181 	}
5182 bad_addr:
5183 	if (ipsec_policy_set) {
5184 		ASSERT(policy_mp == mp->b_cont);
5185 		ASSERT(policy_mp != NULL);
5186 		freeb(policy_mp);
5187 		/*
5188 		 * As of now assume that nothing else accompanies
5189 		 * IPSEC_POLICY_SET.
5190 		 */
5191 		mp->b_cont = NULL;
5192 	}
5193 	if (src_ire != NULL)
5194 		IRE_REFRELE(src_ire);
5195 	if (dst_ire != NULL)
5196 		IRE_REFRELE(dst_ire);
5197 	if (sire != NULL)
5198 		IRE_REFRELE(sire);
5199 	if (md_dst_ire != NULL)
5200 		IRE_REFRELE(md_dst_ire);
5201 	if (lso_dst_ire != NULL)
5202 		IRE_REFRELE(lso_dst_ire);
5203 	return (error);
5204 }
5205 
5206 /*
5207  * Insert the ire in b_cont. Returns false if it fails (due to lack of space).
5208  * Prefers dst_ire over src_ire.
5209  */
5210 static boolean_t
5211 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info, ip_stack_t *ipst)
5212 {
5213 	mblk_t	*mp1;
5214 	ire_t *ret_ire = NULL;
5215 
5216 	mp1 = mp->b_cont;
5217 	ASSERT(mp1 != NULL);
5218 
5219 	if (ire != NULL) {
5220 		/*
5221 		 * mp1 initialized above to IRE_DB_REQ_TYPE
5222 		 * appended mblk. Its <upper protocol>'s
5223 		 * job to make sure there is room.
5224 		 */
5225 		if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t))
5226 			return (0);
5227 
5228 		mp1->b_datap->db_type = IRE_DB_TYPE;
5229 		mp1->b_wptr = mp1->b_rptr + sizeof (ire_t);
5230 		bcopy(ire, mp1->b_rptr, sizeof (ire_t));
5231 		ret_ire = (ire_t *)mp1->b_rptr;
5232 		/*
5233 		 * Pass the latest setting of the ip_path_mtu_discovery and
5234 		 * copy the ulp info if any.
5235 		 */
5236 		ret_ire->ire_frag_flag |= (ipst->ips_ip_path_mtu_discovery) ?
5237 		    IPH_DF : 0;
5238 		if (ulp_info != NULL) {
5239 			bcopy(ulp_info, &(ret_ire->ire_uinfo),
5240 			    sizeof (iulp_t));
5241 		}
5242 		ret_ire->ire_mp = mp1;
5243 	} else {
5244 		/*
5245 		 * No IRE was found. Remove IRE mblk.
5246 		 */
5247 		mp->b_cont = mp1->b_cont;
5248 		freeb(mp1);
5249 	}
5250 
5251 	return (1);
5252 }
5253 
5254 /*
5255  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
5256  * the final piece where we don't.  Return a pointer to the first mblk in the
5257  * result, and update the pointer to the next mblk to chew on.  If anything
5258  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
5259  * NULL pointer.
5260  */
5261 mblk_t *
5262 ip_carve_mp(mblk_t **mpp, ssize_t len)
5263 {
5264 	mblk_t	*mp0;
5265 	mblk_t	*mp1;
5266 	mblk_t	*mp2;
5267 
5268 	if (!len || !mpp || !(mp0 = *mpp))
5269 		return (NULL);
5270 	/* If we aren't going to consume the first mblk, we need a dup. */
5271 	if (mp0->b_wptr - mp0->b_rptr > len) {
5272 		mp1 = dupb(mp0);
5273 		if (mp1) {
5274 			/* Partition the data between the two mblks. */
5275 			mp1->b_wptr = mp1->b_rptr + len;
5276 			mp0->b_rptr = mp1->b_wptr;
5277 			/*
5278 			 * after adjustments if mblk not consumed is now
5279 			 * unaligned, try to align it. If this fails free
5280 			 * all messages and let upper layer recover.
5281 			 */
5282 			if (!OK_32PTR(mp0->b_rptr)) {
5283 				if (!pullupmsg(mp0, -1)) {
5284 					freemsg(mp0);
5285 					freemsg(mp1);
5286 					*mpp = NULL;
5287 					return (NULL);
5288 				}
5289 			}
5290 		}
5291 		return (mp1);
5292 	}
5293 	/* Eat through as many mblks as we need to get len bytes. */
5294 	len -= mp0->b_wptr - mp0->b_rptr;
5295 	for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
5296 		if (mp2->b_wptr - mp2->b_rptr > len) {
5297 			/*
5298 			 * We won't consume the entire last mblk.  Like
5299 			 * above, dup and partition it.
5300 			 */
5301 			mp1->b_cont = dupb(mp2);
5302 			mp1 = mp1->b_cont;
5303 			if (!mp1) {
5304 				/*
5305 				 * Trouble.  Rather than go to a lot of
5306 				 * trouble to clean up, we free the messages.
5307 				 * This won't be any worse than losing it on
5308 				 * the wire.
5309 				 */
5310 				freemsg(mp0);
5311 				freemsg(mp2);
5312 				*mpp = NULL;
5313 				return (NULL);
5314 			}
5315 			mp1->b_wptr = mp1->b_rptr + len;
5316 			mp2->b_rptr = mp1->b_wptr;
5317 			/*
5318 			 * after adjustments if mblk not consumed is now
5319 			 * unaligned, try to align it. If this fails free
5320 			 * all messages and let upper layer recover.
5321 			 */
5322 			if (!OK_32PTR(mp2->b_rptr)) {
5323 				if (!pullupmsg(mp2, -1)) {
5324 					freemsg(mp0);
5325 					freemsg(mp2);
5326 					*mpp = NULL;
5327 					return (NULL);
5328 				}
5329 			}
5330 			*mpp = mp2;
5331 			return (mp0);
5332 		}
5333 		/* Decrement len by the amount we just got. */
5334 		len -= mp2->b_wptr - mp2->b_rptr;
5335 	}
5336 	/*
5337 	 * len should be reduced to zero now.  If not our caller has
5338 	 * screwed up.
5339 	 */
5340 	if (len) {
5341 		/* Shouldn't happen! */
5342 		freemsg(mp0);
5343 		*mpp = NULL;
5344 		return (NULL);
5345 	}
5346 	/*
5347 	 * We consumed up to exactly the end of an mblk.  Detach the part
5348 	 * we are returning from the rest of the chain.
5349 	 */
5350 	mp1->b_cont = NULL;
5351 	*mpp = mp2;
5352 	return (mp0);
5353 }
5354 
5355 /* The ill stream is being unplumbed. Called from ip_close */
5356 int
5357 ip_modclose(ill_t *ill)
5358 {
5359 
5360 	boolean_t success;
5361 	ipsq_t	*ipsq;
5362 	ipif_t	*ipif;
5363 	queue_t	*q = ill->ill_rq;
5364 	hook_nic_event_t *info;
5365 	ip_stack_t	*ipst = ill->ill_ipst;
5366 	clock_t timeout;
5367 
5368 	/*
5369 	 * Wait for the ACKs of all deferred control messages to be processed.
5370 	 * In particular, we wait for a potential capability reset initiated
5371 	 * in ip_sioctl_plink() to complete before proceeding.
5372 	 *
5373 	 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms)
5374 	 * in case the driver never replies.
5375 	 */
5376 	timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms);
5377 	mutex_enter(&ill->ill_lock);
5378 	while (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
5379 		if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) {
5380 			/* Timeout */
5381 			break;
5382 		}
5383 	}
5384 	mutex_exit(&ill->ill_lock);
5385 
5386 	/*
5387 	 * Forcibly enter the ipsq after some delay. This is to take
5388 	 * care of the case when some ioctl does not complete because
5389 	 * we sent a control message to the driver and it did not
5390 	 * send us a reply. We want to be able to at least unplumb
5391 	 * and replumb rather than force the user to reboot the system.
5392 	 */
5393 	success = ipsq_enter(ill, B_FALSE);
5394 
5395 	/*
5396 	 * Open/close/push/pop is guaranteed to be single threaded
5397 	 * per stream by STREAMS. FS guarantees that all references
5398 	 * from top are gone before close is called. So there can't
5399 	 * be another close thread that has set CONDEMNED on this ill.
5400 	 * and cause ipsq_enter to return failure.
5401 	 */
5402 	ASSERT(success);
5403 	ipsq = ill->ill_phyint->phyint_ipsq;
5404 
5405 	/*
5406 	 * Mark it condemned. No new reference will be made to this ill.
5407 	 * Lookup functions will return an error. Threads that try to
5408 	 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
5409 	 * that the refcnt will drop down to zero.
5410 	 */
5411 	mutex_enter(&ill->ill_lock);
5412 	ill->ill_state_flags |= ILL_CONDEMNED;
5413 	for (ipif = ill->ill_ipif; ipif != NULL;
5414 	    ipif = ipif->ipif_next) {
5415 		ipif->ipif_state_flags |= IPIF_CONDEMNED;
5416 	}
5417 	/*
5418 	 * Wake up anybody waiting to enter the ipsq. ipsq_enter
5419 	 * returns  error if ILL_CONDEMNED is set
5420 	 */
5421 	cv_broadcast(&ill->ill_cv);
5422 	mutex_exit(&ill->ill_lock);
5423 
5424 	/*
5425 	 * Send all the deferred control messages downstream which came in
5426 	 * during the small window right before ipsq_enter(). We do this
5427 	 * without waiting for the ACKs because all the ACKs for M_PROTO
5428 	 * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
5429 	 */
5430 	ill_send_all_deferred_mp(ill);
5431 
5432 	/*
5433 	 * Shut down fragmentation reassembly.
5434 	 * ill_frag_timer won't start a timer again.
5435 	 * Now cancel any existing timer
5436 	 */
5437 	(void) untimeout(ill->ill_frag_timer_id);
5438 	(void) ill_frag_timeout(ill, 0);
5439 
5440 	/*
5441 	 * If MOVE was in progress, clear the
5442 	 * move_in_progress fields also.
5443 	 */
5444 	if (ill->ill_move_in_progress) {
5445 		ILL_CLEAR_MOVE(ill);
5446 	}
5447 
5448 	/*
5449 	 * Call ill_delete to bring down the ipifs, ilms and ill on
5450 	 * this ill. Then wait for the refcnts to drop to zero.
5451 	 * ill_is_quiescent checks whether the ill is really quiescent.
5452 	 * Then make sure that threads that are waiting to enter the
5453 	 * ipsq have seen the error returned by ipsq_enter and have
5454 	 * gone away. Then we call ill_delete_tail which does the
5455 	 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff.
5456 	 */
5457 	ill_delete(ill);
5458 	mutex_enter(&ill->ill_lock);
5459 	while (!ill_is_quiescent(ill))
5460 		cv_wait(&ill->ill_cv, &ill->ill_lock);
5461 	while (ill->ill_waiters)
5462 		cv_wait(&ill->ill_cv, &ill->ill_lock);
5463 
5464 	mutex_exit(&ill->ill_lock);
5465 
5466 	/*
5467 	 * ill_delete_tail drops reference on ill_ipst, but we need to keep
5468 	 * it held until the end of the function since the cleanup
5469 	 * below needs to be able to use the ip_stack_t.
5470 	 */
5471 	netstack_hold(ipst->ips_netstack);
5472 
5473 	/* qprocsoff is called in ill_delete_tail */
5474 	ill_delete_tail(ill);
5475 	ASSERT(ill->ill_ipst == NULL);
5476 
5477 	/*
5478 	 * Walk through all upper (conn) streams and qenable
5479 	 * those that have queued data.
5480 	 * close synchronization needs this to
5481 	 * be done to ensure that all upper layers blocked
5482 	 * due to flow control to the closing device
5483 	 * get unblocked.
5484 	 */
5485 	ip1dbg(("ip_wsrv: walking\n"));
5486 	conn_walk_drain(ipst);
5487 
5488 	mutex_enter(&ipst->ips_ip_mi_lock);
5489 	mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
5490 	mutex_exit(&ipst->ips_ip_mi_lock);
5491 
5492 	/*
5493 	 * credp could be null if the open didn't succeed and ip_modopen
5494 	 * itself calls ip_close.
5495 	 */
5496 	if (ill->ill_credp != NULL)
5497 		crfree(ill->ill_credp);
5498 
5499 	/*
5500 	 * Unhook the nic event message from the ill and enqueue it into the nic
5501 	 * event taskq.
5502 	 */
5503 	if ((info = ill->ill_nic_event_info) != NULL) {
5504 		if (ddi_taskq_dispatch(eventq_queue_nic,
5505 		    ip_ne_queue_func,
5506 		    (void *)info, DDI_SLEEP) == DDI_FAILURE) {
5507 			ip2dbg(("ip_ioctl_finish:ddi_taskq_dispatch failed\n"));
5508 			if (info->hne_data != NULL)
5509 				kmem_free(info->hne_data, info->hne_datalen);
5510 			kmem_free(info, sizeof (hook_nic_event_t));
5511 		}
5512 		ill->ill_nic_event_info = NULL;
5513 	}
5514 
5515 	/*
5516 	 * Now we are done with the module close pieces that
5517 	 * need the netstack_t.
5518 	 */
5519 	netstack_rele(ipst->ips_netstack);
5520 
5521 	mi_close_free((IDP)ill);
5522 	q->q_ptr = WR(q)->q_ptr = NULL;
5523 
5524 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
5525 
5526 	return (0);
5527 }
5528 
5529 /*
5530  * This is called as part of close() for both IP and UDP
5531  * in order to quiesce the conn.
5532  */
5533 void
5534 ip_quiesce_conn(conn_t *connp)
5535 {
5536 	boolean_t	drain_cleanup_reqd = B_FALSE;
5537 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
5538 	boolean_t	ilg_cleanup_reqd = B_FALSE;
5539 	ip_stack_t	*ipst;
5540 
5541 	ASSERT(!IPCL_IS_TCP(connp));
5542 	ipst = connp->conn_netstack->netstack_ip;
5543 
5544 	/*
5545 	 * Mark the conn as closing, and this conn must not be
5546 	 * inserted in future into any list. Eg. conn_drain_insert(),
5547 	 * won't insert this conn into the conn_drain_list.
5548 	 * Similarly ill_pending_mp_add() will not add any mp to
5549 	 * the pending mp list, after this conn has started closing.
5550 	 *
5551 	 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg
5552 	 * cannot get set henceforth.
5553 	 */
5554 	mutex_enter(&connp->conn_lock);
5555 	ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
5556 	connp->conn_state_flags |= CONN_CLOSING;
5557 	if (connp->conn_idl != NULL)
5558 		drain_cleanup_reqd = B_TRUE;
5559 	if (connp->conn_oper_pending_ill != NULL)
5560 		conn_ioctl_cleanup_reqd = B_TRUE;
5561 	if (connp->conn_ilg_inuse != 0)
5562 		ilg_cleanup_reqd = B_TRUE;
5563 	mutex_exit(&connp->conn_lock);
5564 
5565 	if (IPCL_IS_UDP(connp))
5566 		udp_quiesce_conn(connp);
5567 
5568 	if (conn_ioctl_cleanup_reqd)
5569 		conn_ioctl_cleanup(connp);
5570 
5571 	if (is_system_labeled() && connp->conn_anon_port) {
5572 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
5573 		    connp->conn_mlp_type, connp->conn_ulp,
5574 		    ntohs(connp->conn_lport), B_FALSE);
5575 		connp->conn_anon_port = 0;
5576 	}
5577 	connp->conn_mlp_type = mlptSingle;
5578 
5579 	/*
5580 	 * Remove this conn from any fanout list it is on.
5581 	 * and then wait for any threads currently operating
5582 	 * on this endpoint to finish
5583 	 */
5584 	ipcl_hash_remove(connp);
5585 
5586 	/*
5587 	 * Remove this conn from the drain list, and do
5588 	 * any other cleanup that may be required.
5589 	 * (Only non-tcp streams may have a non-null conn_idl.
5590 	 * TCP streams are never flow controlled, and
5591 	 * conn_idl will be null)
5592 	 */
5593 	if (drain_cleanup_reqd)
5594 		conn_drain_tail(connp, B_TRUE);
5595 
5596 	if (connp->conn_rq == ipst->ips_ip_g_mrouter ||
5597 	    connp->conn_wq == ipst->ips_ip_g_mrouter)
5598 		(void) ip_mrouter_done(NULL, ipst);
5599 
5600 	if (ilg_cleanup_reqd)
5601 		ilg_delete_all(connp);
5602 
5603 	conn_delete_ire(connp, NULL);
5604 
5605 	/*
5606 	 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
5607 	 * callers from write side can't be there now because close
5608 	 * is in progress. The only other caller is ipcl_walk
5609 	 * which checks for the condemned flag.
5610 	 */
5611 	mutex_enter(&connp->conn_lock);
5612 	connp->conn_state_flags |= CONN_CONDEMNED;
5613 	while (connp->conn_ref != 1)
5614 		cv_wait(&connp->conn_cv, &connp->conn_lock);
5615 	connp->conn_state_flags |= CONN_QUIESCED;
5616 	mutex_exit(&connp->conn_lock);
5617 }
5618 
5619 /* ARGSUSED */
5620 int
5621 ip_close(queue_t *q, int flags)
5622 {
5623 	conn_t		*connp;
5624 
5625 	TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q);
5626 
5627 	/*
5628 	 * Call the appropriate delete routine depending on whether this is
5629 	 * a module or device.
5630 	 */
5631 	if (WR(q)->q_next != NULL) {
5632 		/* This is a module close */
5633 		return (ip_modclose((ill_t *)q->q_ptr));
5634 	}
5635 
5636 	connp = q->q_ptr;
5637 	ip_quiesce_conn(connp);
5638 
5639 	qprocsoff(q);
5640 
5641 	/*
5642 	 * Now we are truly single threaded on this stream, and can
5643 	 * delete the things hanging off the connp, and finally the connp.
5644 	 * We removed this connp from the fanout list, it cannot be
5645 	 * accessed thru the fanouts, and we already waited for the
5646 	 * conn_ref to drop to 0. We are already in close, so
5647 	 * there cannot be any other thread from the top. qprocsoff
5648 	 * has completed, and service has completed or won't run in
5649 	 * future.
5650 	 */
5651 	ASSERT(connp->conn_ref == 1);
5652 
5653 	/*
5654 	 * A conn which was previously marked as IPCL_UDP cannot
5655 	 * retain the flag because it would have been cleared by
5656 	 * udp_close().
5657 	 */
5658 	ASSERT(!IPCL_IS_UDP(connp));
5659 
5660 	if (connp->conn_latch != NULL) {
5661 		IPLATCH_REFRELE(connp->conn_latch, connp->conn_netstack);
5662 		connp->conn_latch = NULL;
5663 	}
5664 	if (connp->conn_policy != NULL) {
5665 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
5666 		connp->conn_policy = NULL;
5667 	}
5668 	if (connp->conn_ipsec_opt_mp != NULL) {
5669 		freemsg(connp->conn_ipsec_opt_mp);
5670 		connp->conn_ipsec_opt_mp = NULL;
5671 	}
5672 
5673 	inet_minor_free(ip_minor_arena, connp->conn_dev);
5674 
5675 	connp->conn_ref--;
5676 	ipcl_conn_destroy(connp);
5677 
5678 	q->q_ptr = WR(q)->q_ptr = NULL;
5679 	return (0);
5680 }
5681 
5682 int
5683 ip_snmpmod_close(queue_t *q)
5684 {
5685 	conn_t *connp = Q_TO_CONN(q);
5686 	ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD));
5687 
5688 	qprocsoff(q);
5689 
5690 	if (connp->conn_flags & IPCL_UDPMOD)
5691 		udp_close_free(connp);
5692 
5693 	if (connp->conn_cred != NULL) {
5694 		crfree(connp->conn_cred);
5695 		connp->conn_cred = NULL;
5696 	}
5697 	CONN_DEC_REF(connp);
5698 	q->q_ptr = WR(q)->q_ptr = NULL;
5699 	return (0);
5700 }
5701 
5702 /*
5703  * Write side put procedure for TCP module or UDP module instance.  TCP/UDP
5704  * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP.
5705  * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ.
5706  * M_FLUSH messages and ioctls are only passed downstream; we don't flush our
5707  * queues as we never enqueue messages there and we don't handle any ioctls.
5708  * Everything else is freed.
5709  */
5710 void
5711 ip_snmpmod_wput(queue_t *q, mblk_t *mp)
5712 {
5713 	conn_t	*connp = q->q_ptr;
5714 	pfi_t	setfn;
5715 	pfi_t	getfn;
5716 
5717 	ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD));
5718 
5719 	switch (DB_TYPE(mp)) {
5720 	case M_PROTO:
5721 	case M_PCPROTO:
5722 		if ((MBLKL(mp) >= sizeof (t_scalar_t)) &&
5723 		    ((((union T_primitives *)mp->b_rptr)->type ==
5724 			T_SVR4_OPTMGMT_REQ) ||
5725 		    (((union T_primitives *)mp->b_rptr)->type ==
5726 			T_OPTMGMT_REQ))) {
5727 			/*
5728 			 * This is the only TPI primitive supported. Its
5729 			 * handling does not require tcp_t, but it does require
5730 			 * conn_t to check permissions.
5731 			 */
5732 			cred_t	*cr = DB_CREDDEF(mp, connp->conn_cred);
5733 
5734 			if (connp->conn_flags & IPCL_TCPMOD) {
5735 				setfn = tcp_snmp_set;
5736 				getfn = tcp_snmp_get;
5737 			} else {
5738 				setfn = udp_snmp_set;
5739 				getfn = udp_snmp_get;
5740 			}
5741 			if (!snmpcom_req(q, mp, setfn, getfn, cr)) {
5742 				freemsg(mp);
5743 				return;
5744 			}
5745 		} else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP))
5746 		    != NULL)
5747 			qreply(q, mp);
5748 		break;
5749 	case M_FLUSH:
5750 	case M_IOCTL:
5751 		putnext(q, mp);
5752 		break;
5753 	default:
5754 		freemsg(mp);
5755 		break;
5756 	}
5757 }
5758 
5759 /* Return the IP checksum for the IP header at "iph". */
5760 uint16_t
5761 ip_csum_hdr(ipha_t *ipha)
5762 {
5763 	uint16_t	*uph;
5764 	uint32_t	sum;
5765 	int		opt_len;
5766 
5767 	opt_len = (ipha->ipha_version_and_hdr_length & 0xF) -
5768 	    IP_SIMPLE_HDR_LENGTH_IN_WORDS;
5769 	uph = (uint16_t *)ipha;
5770 	sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
5771 		uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
5772 	if (opt_len > 0) {
5773 		do {
5774 			sum += uph[10];
5775 			sum += uph[11];
5776 			uph += 2;
5777 		} while (--opt_len);
5778 	}
5779 	sum = (sum & 0xFFFF) + (sum >> 16);
5780 	sum = ~(sum + (sum >> 16)) & 0xFFFF;
5781 	if (sum == 0xffff)
5782 		sum = 0;
5783 	return ((uint16_t)sum);
5784 }
5785 
5786 /*
5787  * Called when the module is about to be unloaded
5788  */
5789 void
5790 ip_ddi_destroy(void)
5791 {
5792 	tnet_fini();
5793 
5794 	sctp_ddi_g_destroy();
5795 	tcp_ddi_g_destroy();
5796 	ipsec_policy_g_destroy();
5797 	ipcl_g_destroy();
5798 	ip_net_g_destroy();
5799 	ip_ire_g_fini();
5800 	inet_minor_destroy(ip_minor_arena);
5801 
5802 	netstack_unregister(NS_IP);
5803 }
5804 
5805 /*
5806  * First step in cleanup.
5807  */
5808 /* ARGSUSED */
5809 static void
5810 ip_stack_shutdown(netstackid_t stackid, void *arg)
5811 {
5812 	ip_stack_t *ipst = (ip_stack_t *)arg;
5813 
5814 #ifdef NS_DEBUG
5815 	printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
5816 #endif
5817 
5818 	/* Get rid of loopback interfaces and their IREs */
5819 	ip_loopback_cleanup(ipst);
5820 }
5821 
5822 /*
5823  * Free the IP stack instance.
5824  */
5825 static void
5826 ip_stack_fini(netstackid_t stackid, void *arg)
5827 {
5828 	ip_stack_t *ipst = (ip_stack_t *)arg;
5829 	int ret;
5830 
5831 #ifdef NS_DEBUG
5832 	printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
5833 #endif
5834 	ipv4_hook_destroy(ipst);
5835 	ipv6_hook_destroy(ipst);
5836 	ip_net_destroy(ipst);
5837 
5838 	rw_destroy(&ipst->ips_srcid_lock);
5839 
5840 	ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
5841 	ipst->ips_ip_mibkp = NULL;
5842 	icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
5843 	ipst->ips_icmp_mibkp = NULL;
5844 	ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
5845 	ipst->ips_ip_kstat = NULL;
5846 	bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
5847 	ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
5848 	ipst->ips_ip6_kstat = NULL;
5849 	bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
5850 
5851 	nd_free(&ipst->ips_ip_g_nd);
5852 	kmem_free(ipst->ips_param_arr, sizeof (lcl_param_arr));
5853 	ipst->ips_param_arr = NULL;
5854 	kmem_free(ipst->ips_ndp_arr, sizeof (lcl_ndp_arr));
5855 	ipst->ips_ndp_arr = NULL;
5856 
5857 	ip_mrouter_stack_destroy(ipst);
5858 
5859 	mutex_destroy(&ipst->ips_ip_mi_lock);
5860 	rw_destroy(&ipst->ips_ipsec_capab_ills_lock);
5861 	rw_destroy(&ipst->ips_ill_g_usesrc_lock);
5862 	rw_destroy(&ipst->ips_ip_g_nd_lock);
5863 
5864 	ret = untimeout(ipst->ips_igmp_timeout_id);
5865 	if (ret == -1) {
5866 		ASSERT(ipst->ips_igmp_timeout_id == 0);
5867 	} else {
5868 		ASSERT(ipst->ips_igmp_timeout_id != 0);
5869 		ipst->ips_igmp_timeout_id = 0;
5870 	}
5871 	ret = untimeout(ipst->ips_igmp_slowtimeout_id);
5872 	if (ret == -1) {
5873 		ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
5874 	} else {
5875 		ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
5876 		ipst->ips_igmp_slowtimeout_id = 0;
5877 	}
5878 	ret = untimeout(ipst->ips_mld_timeout_id);
5879 	if (ret == -1) {
5880 		ASSERT(ipst->ips_mld_timeout_id == 0);
5881 	} else {
5882 		ASSERT(ipst->ips_mld_timeout_id != 0);
5883 		ipst->ips_mld_timeout_id = 0;
5884 	}
5885 	ret = untimeout(ipst->ips_mld_slowtimeout_id);
5886 	if (ret == -1) {
5887 		ASSERT(ipst->ips_mld_slowtimeout_id == 0);
5888 	} else {
5889 		ASSERT(ipst->ips_mld_slowtimeout_id != 0);
5890 		ipst->ips_mld_slowtimeout_id = 0;
5891 	}
5892 	ret = untimeout(ipst->ips_ip_ire_expire_id);
5893 	if (ret == -1) {
5894 		ASSERT(ipst->ips_ip_ire_expire_id == 0);
5895 	} else {
5896 		ASSERT(ipst->ips_ip_ire_expire_id != 0);
5897 		ipst->ips_ip_ire_expire_id = 0;
5898 	}
5899 
5900 	mutex_destroy(&ipst->ips_igmp_timer_lock);
5901 	mutex_destroy(&ipst->ips_mld_timer_lock);
5902 	mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
5903 	mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
5904 	mutex_destroy(&ipst->ips_ip_addr_avail_lock);
5905 	rw_destroy(&ipst->ips_ill_g_lock);
5906 
5907 	ip_ire_fini(ipst);
5908 	ip6_asp_free(ipst);
5909 	conn_drain_fini(ipst);
5910 	ipcl_destroy(ipst);
5911 
5912 	mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
5913 	mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
5914 	kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
5915 	ipst->ips_ndp4 = NULL;
5916 	kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
5917 	ipst->ips_ndp6 = NULL;
5918 
5919 	if (ipst->ips_loopback_ksp != NULL) {
5920 		kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
5921 		ipst->ips_loopback_ksp = NULL;
5922 	}
5923 
5924 	kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
5925 	ipst->ips_phyint_g_list = NULL;
5926 	kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
5927 	ipst->ips_ill_g_heads = NULL;
5928 
5929 	kmem_free(ipst, sizeof (*ipst));
5930 }
5931 
5932 /*
5933  * Called when the IP kernel module is loaded into the kernel
5934  */
5935 void
5936 ip_ddi_init(void)
5937 {
5938 	TCP6_MAJ = ddi_name_to_major(TCP6);
5939 	TCP_MAJ	= ddi_name_to_major(TCP);
5940 	SCTP_MAJ = ddi_name_to_major(SCTP);
5941 	SCTP6_MAJ = ddi_name_to_major(SCTP6);
5942 
5943 	ip_input_proc = ip_squeue_switch(ip_squeue_enter);
5944 
5945 	/*
5946 	 * For IP and TCP the minor numbers should start from 2 since we have 4
5947 	 * initial devices: ip, ip6, tcp, tcp6.
5948 	 */
5949 	if ((ip_minor_arena = inet_minor_create("ip_minor_arena",
5950 	    INET_MIN_DEV + 2, KM_SLEEP)) == NULL) {
5951 		cmn_err(CE_PANIC,
5952 		    "ip_ddi_init: ip_minor_arena creation failed\n");
5953 	}
5954 
5955 	ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
5956 
5957 	ipcl_g_init();
5958 	ip_ire_g_init();
5959 	ip_net_g_init();
5960 
5961 	/*
5962 	 * We want to be informed each time a stack is created or
5963 	 * destroyed in the kernel, so we can maintain the
5964 	 * set of udp_stack_t's.
5965 	 */
5966 	netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
5967 	    ip_stack_fini);
5968 
5969 	ipsec_policy_g_init();
5970 	tcp_ddi_g_init();
5971 	sctp_ddi_g_init();
5972 
5973 	tnet_init();
5974 }
5975 
5976 /*
5977  * Initialize the IP stack instance.
5978  */
5979 static void *
5980 ip_stack_init(netstackid_t stackid, netstack_t *ns)
5981 {
5982 	ip_stack_t	*ipst;
5983 	ipparam_t	*pa;
5984 	ipndp_t		*na;
5985 
5986 #ifdef NS_DEBUG
5987 	printf("ip_stack_init(stack %d)\n", stackid);
5988 #endif
5989 
5990 	ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
5991 	ipst->ips_netstack = ns;
5992 
5993 	ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
5994 	    KM_SLEEP);
5995 	ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
5996 	    KM_SLEEP);
5997 	ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
5998 	ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
5999 	mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
6000 	mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
6001 
6002 	rw_init(&ipst->ips_ip_g_nd_lock, NULL, RW_DEFAULT, NULL);
6003 	mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
6004 	ipst->ips_igmp_deferred_next = INFINITY;
6005 	mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
6006 	ipst->ips_mld_deferred_next = INFINITY;
6007 	mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
6008 	mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
6009 	mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
6010 	mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
6011 	rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
6012 	rw_init(&ipst->ips_ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL);
6013 	rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
6014 
6015 	ipcl_init(ipst);
6016 	ip_ire_init(ipst);
6017 	ip6_asp_init(ipst);
6018 	ipif_init(ipst);
6019 	conn_drain_init(ipst);
6020 	ip_mrouter_stack_init(ipst);
6021 
6022 	ipst->ips_ip_g_frag_timeout = IP_FRAG_TIMEOUT;
6023 	ipst->ips_ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000;
6024 
6025 	ipst->ips_ip_multirt_log_interval = 1000;
6026 
6027 	ipst->ips_ip_g_forward = IP_FORWARD_DEFAULT;
6028 	ipst->ips_ipv6_forward = IP_FORWARD_DEFAULT;
6029 	ipst->ips_ill_index = 1;
6030 
6031 	ipst->ips_saved_ip_g_forward = -1;
6032 	ipst->ips_reg_vif_num = ALL_VIFS; 	/* Index to Register vif */
6033 
6034 	pa = (ipparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
6035 	ipst->ips_param_arr = pa;
6036 	bcopy(lcl_param_arr, ipst->ips_param_arr, sizeof (lcl_param_arr));
6037 
6038 	na = (ipndp_t *)kmem_alloc(sizeof (lcl_ndp_arr), KM_SLEEP);
6039 	ipst->ips_ndp_arr = na;
6040 	bcopy(lcl_ndp_arr, ipst->ips_ndp_arr, sizeof (lcl_ndp_arr));
6041 	ipst->ips_ndp_arr[IPNDP_IP_FORWARDING_OFFSET].ip_ndp_data =
6042 	    (caddr_t)&ipst->ips_ip_g_forward;
6043 	ipst->ips_ndp_arr[IPNDP_IP6_FORWARDING_OFFSET].ip_ndp_data =
6044 	    (caddr_t)&ipst->ips_ipv6_forward;
6045 	ASSERT(strcmp(ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_name,
6046 		"ip_cgtp_filter") == 0);
6047 	ipst->ips_ndp_arr[IPNDP_CGTP_FILTER_OFFSET].ip_ndp_data =
6048 	    (caddr_t)&ip_cgtp_filter;
6049 
6050 	(void) ip_param_register(&ipst->ips_ip_g_nd,
6051 	    ipst->ips_param_arr, A_CNT(lcl_param_arr),
6052 	    ipst->ips_ndp_arr, A_CNT(lcl_ndp_arr));
6053 
6054 	ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
6055 	ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
6056 	ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
6057 	ipst->ips_ip6_kstat =
6058 	    ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
6059 
6060 	ipst->ips_ipmp_enable_failback = B_TRUE;
6061 
6062 	ipst->ips_ip_src_id = 1;
6063 	rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
6064 
6065 	ip_net_init(ipst, ns);
6066 	ipv4_hook_init(ipst);
6067 	ipv6_hook_init(ipst);
6068 
6069 	return (ipst);
6070 }
6071 
6072 /*
6073  * Allocate and initialize a DLPI template of the specified length.  (May be
6074  * called as writer.)
6075  */
6076 mblk_t *
6077 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
6078 {
6079 	mblk_t	*mp;
6080 
6081 	mp = allocb(len, BPRI_MED);
6082 	if (!mp)
6083 		return (NULL);
6084 
6085 	/*
6086 	 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
6087 	 * of which we don't seem to use) are sent with M_PCPROTO, and
6088 	 * that other DLPI are M_PROTO.
6089 	 */
6090 	if (prim == DL_INFO_REQ) {
6091 		mp->b_datap->db_type = M_PCPROTO;
6092 	} else {
6093 		mp->b_datap->db_type = M_PROTO;
6094 	}
6095 
6096 	mp->b_wptr = mp->b_rptr + len;
6097 	bzero(mp->b_rptr, len);
6098 	((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
6099 	return (mp);
6100 }
6101 
6102 const char *
6103 dlpi_prim_str(int prim)
6104 {
6105 	switch (prim) {
6106 	case DL_INFO_REQ:	return ("DL_INFO_REQ");
6107 	case DL_INFO_ACK:	return ("DL_INFO_ACK");
6108 	case DL_ATTACH_REQ:	return ("DL_ATTACH_REQ");
6109 	case DL_DETACH_REQ:	return ("DL_DETACH_REQ");
6110 	case DL_BIND_REQ:	return ("DL_BIND_REQ");
6111 	case DL_BIND_ACK:	return ("DL_BIND_ACK");
6112 	case DL_UNBIND_REQ:	return ("DL_UNBIND_REQ");
6113 	case DL_OK_ACK:		return ("DL_OK_ACK");
6114 	case DL_ERROR_ACK:	return ("DL_ERROR_ACK");
6115 	case DL_ENABMULTI_REQ:	return ("DL_ENABMULTI_REQ");
6116 	case DL_DISABMULTI_REQ:	return ("DL_DISABMULTI_REQ");
6117 	case DL_PROMISCON_REQ:	return ("DL_PROMISCON_REQ");
6118 	case DL_PROMISCOFF_REQ:	return ("DL_PROMISCOFF_REQ");
6119 	case DL_UNITDATA_REQ:	return ("DL_UNITDATA_REQ");
6120 	case DL_UNITDATA_IND:	return ("DL_UNITDATA_IND");
6121 	case DL_UDERROR_IND:	return ("DL_UDERROR_IND");
6122 	case DL_PHYS_ADDR_REQ:	return ("DL_PHYS_ADDR_REQ");
6123 	case DL_PHYS_ADDR_ACK:	return ("DL_PHYS_ADDR_ACK");
6124 	case DL_SET_PHYS_ADDR_REQ:	return ("DL_SET_PHYS_ADDR_REQ");
6125 	case DL_NOTIFY_REQ:	return ("DL_NOTIFY_REQ");
6126 	case DL_NOTIFY_ACK:	return ("DL_NOTIFY_ACK");
6127 	case DL_NOTIFY_IND:	return ("DL_NOTIFY_IND");
6128 	case DL_CAPABILITY_REQ:	return ("DL_CAPABILITY_REQ");
6129 	case DL_CAPABILITY_ACK:	return ("DL_CAPABILITY_ACK");
6130 	case DL_CONTROL_REQ:	return ("DL_CONTROL_REQ");
6131 	case DL_CONTROL_ACK:	return ("DL_CONTROL_ACK");
6132 	default:		return ("<unknown primitive>");
6133 	}
6134 }
6135 
6136 const char *
6137 dlpi_err_str(int err)
6138 {
6139 	switch (err) {
6140 	case DL_ACCESS:		return ("DL_ACCESS");
6141 	case DL_BADADDR:	return ("DL_BADADDR");
6142 	case DL_BADCORR:	return ("DL_BADCORR");
6143 	case DL_BADDATA:	return ("DL_BADDATA");
6144 	case DL_BADPPA:		return ("DL_BADPPA");
6145 	case DL_BADPRIM:	return ("DL_BADPRIM");
6146 	case DL_BADQOSPARAM:	return ("DL_BADQOSPARAM");
6147 	case DL_BADQOSTYPE:	return ("DL_BADQOSTYPE");
6148 	case DL_BADSAP:		return ("DL_BADSAP");
6149 	case DL_BADTOKEN:	return ("DL_BADTOKEN");
6150 	case DL_BOUND:		return ("DL_BOUND");
6151 	case DL_INITFAILED:	return ("DL_INITFAILED");
6152 	case DL_NOADDR:		return ("DL_NOADDR");
6153 	case DL_NOTINIT:	return ("DL_NOTINIT");
6154 	case DL_OUTSTATE:	return ("DL_OUTSTATE");
6155 	case DL_SYSERR:		return ("DL_SYSERR");
6156 	case DL_UNSUPPORTED:	return ("DL_UNSUPPORTED");
6157 	case DL_UNDELIVERABLE:	return ("DL_UNDELIVERABLE");
6158 	case DL_NOTSUPPORTED :	return ("DL_NOTSUPPORTED ");
6159 	case DL_TOOMANY:	return ("DL_TOOMANY");
6160 	case DL_NOTENAB:	return ("DL_NOTENAB");
6161 	case DL_BUSY:		return ("DL_BUSY");
6162 	case DL_NOAUTO:		return ("DL_NOAUTO");
6163 	case DL_NOXIDAUTO:	return ("DL_NOXIDAUTO");
6164 	case DL_NOTESTAUTO:	return ("DL_NOTESTAUTO");
6165 	case DL_XIDAUTO:	return ("DL_XIDAUTO");
6166 	case DL_TESTAUTO:	return ("DL_TESTAUTO");
6167 	case DL_PENDING:	return ("DL_PENDING");
6168 	default:		return ("<unknown error>");
6169 	}
6170 }
6171 
6172 /*
6173  * Debug formatting routine.  Returns a character string representation of the
6174  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
6175  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
6176  *
6177  * Once the ndd table-printing interfaces are removed, this can be changed to
6178  * standard dotted-decimal form.
6179  */
6180 char *
6181 ip_dot_addr(ipaddr_t addr, char *buf)
6182 {
6183 	uint8_t *ap = (uint8_t *)&addr;
6184 
6185 	(void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
6186 	    ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
6187 	return (buf);
6188 }
6189 
6190 /*
6191  * Write the given MAC address as a printable string in the usual colon-
6192  * separated format.
6193  */
6194 const char *
6195 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
6196 {
6197 	char *bp;
6198 
6199 	if (alen == 0 || buflen < 4)
6200 		return ("?");
6201 	bp = buf;
6202 	for (;;) {
6203 		/*
6204 		 * If there are more MAC address bytes available, but we won't
6205 		 * have any room to print them, then add "..." to the string
6206 		 * instead.  See below for the 'magic number' explanation.
6207 		 */
6208 		if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
6209 			(void) strcpy(bp, "...");
6210 			break;
6211 		}
6212 		(void) sprintf(bp, "%02x", *addr++);
6213 		bp += 2;
6214 		if (--alen == 0)
6215 			break;
6216 		*bp++ = ':';
6217 		buflen -= 3;
6218 		/*
6219 		 * At this point, based on the first 'if' statement above,
6220 		 * either alen == 1 and buflen >= 3, or alen > 1 and
6221 		 * buflen >= 4.  The first case leaves room for the final "xx"
6222 		 * number and trailing NUL byte.  The second leaves room for at
6223 		 * least "...".  Thus the apparently 'magic' numbers chosen for
6224 		 * that statement.
6225 		 */
6226 	}
6227 	return (buf);
6228 }
6229 
6230 /*
6231  * Send an ICMP error after patching up the packet appropriately.  Returns
6232  * non-zero if the appropriate MIB should be bumped; zero otherwise.
6233  */
6234 static boolean_t
6235 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags,
6236     uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present,
6237     zoneid_t zoneid, ip_stack_t *ipst)
6238 {
6239 	ipha_t *ipha;
6240 	mblk_t *first_mp;
6241 	boolean_t secure;
6242 	unsigned char db_type;
6243 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
6244 
6245 	first_mp = mp;
6246 	if (mctl_present) {
6247 		mp = mp->b_cont;
6248 		secure = ipsec_in_is_secure(first_mp);
6249 		ASSERT(mp != NULL);
6250 	} else {
6251 		/*
6252 		 * If this is an ICMP error being reported - which goes
6253 		 * up as M_CTLs, we need to convert them to M_DATA till
6254 		 * we finish checking with global policy because
6255 		 * ipsec_check_global_policy() assumes M_DATA as clear
6256 		 * and M_CTL as secure.
6257 		 */
6258 		db_type = DB_TYPE(mp);
6259 		DB_TYPE(mp) = M_DATA;
6260 		secure = B_FALSE;
6261 	}
6262 	/*
6263 	 * We are generating an icmp error for some inbound packet.
6264 	 * Called from all ip_fanout_(udp, tcp, proto) functions.
6265 	 * Before we generate an error, check with global policy
6266 	 * to see whether this is allowed to enter the system. As
6267 	 * there is no "conn", we are checking with global policy.
6268 	 */
6269 	ipha = (ipha_t *)mp->b_rptr;
6270 	if (secure || ipss->ipsec_inbound_v4_policy_present) {
6271 		first_mp = ipsec_check_global_policy(first_mp, NULL,
6272 		    ipha, NULL, mctl_present, ipst->ips_netstack);
6273 		if (first_mp == NULL)
6274 			return (B_FALSE);
6275 	}
6276 
6277 	if (!mctl_present)
6278 		DB_TYPE(mp) = db_type;
6279 
6280 	if (flags & IP_FF_SEND_ICMP) {
6281 		if (flags & IP_FF_HDR_COMPLETE) {
6282 			if (ip_hdr_complete(ipha, zoneid, ipst)) {
6283 				freemsg(first_mp);
6284 				return (B_TRUE);
6285 			}
6286 		}
6287 		if (flags & IP_FF_CKSUM) {
6288 			/*
6289 			 * Have to correct checksum since
6290 			 * the packet might have been
6291 			 * fragmented and the reassembly code in ip_rput
6292 			 * does not restore the IP checksum.
6293 			 */
6294 			ipha->ipha_hdr_checksum = 0;
6295 			ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
6296 		}
6297 		switch (icmp_type) {
6298 		case ICMP_DEST_UNREACHABLE:
6299 			icmp_unreachable(WR(q), first_mp, icmp_code, zoneid,
6300 			    ipst);
6301 			break;
6302 		default:
6303 			freemsg(first_mp);
6304 			break;
6305 		}
6306 	} else {
6307 		freemsg(first_mp);
6308 		return (B_FALSE);
6309 	}
6310 
6311 	return (B_TRUE);
6312 }
6313 
6314 /*
6315  * Used to send an ICMP error message when a packet is received for
6316  * a protocol that is not supported. The mblk passed as argument
6317  * is consumed by this function.
6318  */
6319 void
6320 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid,
6321     ip_stack_t *ipst)
6322 {
6323 	mblk_t *mp;
6324 	ipha_t *ipha;
6325 	ill_t *ill;
6326 	ipsec_in_t *ii;
6327 
6328 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
6329 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
6330 
6331 	mp = ipsec_mp->b_cont;
6332 	ipsec_mp->b_cont = NULL;
6333 	ipha = (ipha_t *)mp->b_rptr;
6334 	/* Get ill from index in ipsec_in_t. */
6335 	ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index,
6336 	    (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL,
6337 	    ipst);
6338 	if (ill != NULL) {
6339 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
6340 			if (ip_fanout_send_icmp(q, mp, flags,
6341 			    ICMP_DEST_UNREACHABLE,
6342 			    ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid, ipst)) {
6343 				BUMP_MIB(ill->ill_ip_mib,
6344 				    ipIfStatsInUnknownProtos);
6345 			}
6346 		} else {
6347 			if (ip_fanout_send_icmp_v6(q, mp, flags,
6348 			    ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER,
6349 			    0, B_FALSE, zoneid, ipst)) {
6350 				BUMP_MIB(ill->ill_ip_mib,
6351 				    ipIfStatsInUnknownProtos);
6352 			}
6353 		}
6354 		ill_refrele(ill);
6355 	} else { /* re-link for the freemsg() below. */
6356 		ipsec_mp->b_cont = mp;
6357 	}
6358 
6359 	/* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */
6360 	freemsg(ipsec_mp);
6361 }
6362 
6363 /*
6364  * See if the inbound datagram has had IPsec processing applied to it.
6365  */
6366 boolean_t
6367 ipsec_in_is_secure(mblk_t *ipsec_mp)
6368 {
6369 	ipsec_in_t *ii;
6370 
6371 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
6372 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
6373 
6374 	if (ii->ipsec_in_loopback) {
6375 		return (ii->ipsec_in_secure);
6376 	} else {
6377 		return (ii->ipsec_in_ah_sa != NULL ||
6378 		    ii->ipsec_in_esp_sa != NULL ||
6379 		    ii->ipsec_in_decaps);
6380 	}
6381 }
6382 
6383 /*
6384  * Handle protocols with which IP is less intimate.  There
6385  * can be more than one stream bound to a particular
6386  * protocol.  When this is the case, normally each one gets a copy
6387  * of any incoming packets.
6388  *
6389  * IPSEC NOTE :
6390  *
6391  * Don't allow a secure packet going up a non-secure connection.
6392  * We don't allow this because
6393  *
6394  * 1) Reply might go out in clear which will be dropped at
6395  *    the sending side.
6396  * 2) If the reply goes out in clear it will give the
6397  *    adversary enough information for getting the key in
6398  *    most of the cases.
6399  *
6400  * Moreover getting a secure packet when we expect clear
6401  * implies that SA's were added without checking for
6402  * policy on both ends. This should not happen once ISAKMP
6403  * is used to negotiate SAs as SAs will be added only after
6404  * verifying the policy.
6405  *
6406  * NOTE : If the packet was tunneled and not multicast we only send
6407  * to it the first match. Unlike TCP and UDP fanouts this doesn't fall
6408  * back to delivering packets to AF_INET6 raw sockets.
6409  *
6410  * IPQoS Notes:
6411  * Once we have determined the client, invoke IPPF processing.
6412  * Policy processing takes place only if the callout_position, IPP_LOCAL_IN,
6413  * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local
6414  * ip_policy will be false.
6415  *
6416  * Zones notes:
6417  * Currently only applications in the global zone can create raw sockets for
6418  * protocols other than ICMP. So unlike the broadcast / multicast case of
6419  * ip_fanout_udp(), we only send a copy of the packet to streams in the
6420  * specified zone. For ICMP, this is handled by the callers of icmp_inbound().
6421  */
6422 static void
6423 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags,
6424     boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill,
6425     zoneid_t zoneid)
6426 {
6427 	queue_t	*rq;
6428 	mblk_t	*mp1, *first_mp1;
6429 	uint_t	protocol = ipha->ipha_protocol;
6430 	ipaddr_t dst;
6431 	boolean_t one_only;
6432 	mblk_t *first_mp = mp;
6433 	boolean_t secure;
6434 	uint32_t ill_index;
6435 	conn_t	*connp, *first_connp, *next_connp;
6436 	connf_t	*connfp;
6437 	boolean_t shared_addr;
6438 	mib2_ipIfStatsEntry_t *mibptr;
6439 	ip_stack_t *ipst = recv_ill->ill_ipst;
6440 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
6441 
6442 	mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib;
6443 	if (mctl_present) {
6444 		mp = first_mp->b_cont;
6445 		secure = ipsec_in_is_secure(first_mp);
6446 		ASSERT(mp != NULL);
6447 	} else {
6448 		secure = B_FALSE;
6449 	}
6450 	dst = ipha->ipha_dst;
6451 	/*
6452 	 * If the packet was tunneled and not multicast we only send to it
6453 	 * the first match.
6454 	 */
6455 	one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) &&
6456 	    !CLASSD(dst));
6457 
6458 	shared_addr = (zoneid == ALL_ZONES);
6459 	if (shared_addr) {
6460 		/*
6461 		 * We don't allow multilevel ports for raw IP, so no need to
6462 		 * check for that here.
6463 		 */
6464 		zoneid = tsol_packet_to_zoneid(mp);
6465 	}
6466 
6467 	connfp = &ipst->ips_ipcl_proto_fanout[protocol];
6468 	mutex_enter(&connfp->connf_lock);
6469 	connp = connfp->connf_head;
6470 	for (connp = connfp->connf_head; connp != NULL;
6471 		connp = connp->conn_next) {
6472 		if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags,
6473 		    zoneid) &&
6474 		    (!is_system_labeled() ||
6475 		    tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
6476 		    connp)))
6477 			break;
6478 	}
6479 
6480 	if (connp == NULL || connp->conn_upq == NULL) {
6481 		/*
6482 		 * No one bound to these addresses.  Is
6483 		 * there a client that wants all
6484 		 * unclaimed datagrams?
6485 		 */
6486 		mutex_exit(&connfp->connf_lock);
6487 		/*
6488 		 * Check for IPPROTO_ENCAP...
6489 		 */
6490 		if (protocol == IPPROTO_ENCAP && ipst->ips_ip_g_mrouter) {
6491 			/*
6492 			 * If an IPsec mblk is here on a multicast
6493 			 * tunnel (using ip_mroute stuff), check policy here,
6494 			 * THEN ship off to ip_mroute_decap().
6495 			 *
6496 			 * BTW,  If I match a configured IP-in-IP
6497 			 * tunnel, this path will not be reached, and
6498 			 * ip_mroute_decap will never be called.
6499 			 */
6500 			first_mp = ipsec_check_global_policy(first_mp, connp,
6501 			    ipha, NULL, mctl_present, ipst->ips_netstack);
6502 			if (first_mp != NULL) {
6503 				if (mctl_present)
6504 					freeb(first_mp);
6505 				ip_mroute_decap(q, mp, ill);
6506 			} /* Else we already freed everything! */
6507 		} else {
6508 			/*
6509 			 * Otherwise send an ICMP protocol unreachable.
6510 			 */
6511 			if (ip_fanout_send_icmp(q, first_mp, flags,
6512 			    ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE,
6513 			    mctl_present, zoneid, ipst)) {
6514 				BUMP_MIB(mibptr, ipIfStatsInUnknownProtos);
6515 			}
6516 		}
6517 		return;
6518 	}
6519 	CONN_INC_REF(connp);
6520 	first_connp = connp;
6521 
6522 	/*
6523 	 * Only send message to one tunnel driver by immediately
6524 	 * terminating the loop.
6525 	 */
6526 	connp = one_only ? NULL : connp->conn_next;
6527 
6528 	for (;;) {
6529 		while (connp != NULL) {
6530 			if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill,
6531 			    flags, zoneid) &&
6532 			    (!is_system_labeled() ||
6533 			    tsol_receive_local(mp, &dst, IPV4_VERSION,
6534 			    shared_addr, connp)))
6535 				break;
6536 			connp = connp->conn_next;
6537 		}
6538 
6539 		/*
6540 		 * Copy the packet.
6541 		 */
6542 		if (connp == NULL || connp->conn_upq == NULL ||
6543 		    (((first_mp1 = dupmsg(first_mp)) == NULL) &&
6544 			((first_mp1 = ip_copymsg(first_mp)) == NULL))) {
6545 			/*
6546 			 * No more interested clients or memory
6547 			 * allocation failed
6548 			 */
6549 			connp = first_connp;
6550 			break;
6551 		}
6552 		mp1 = mctl_present ? first_mp1->b_cont : first_mp1;
6553 		CONN_INC_REF(connp);
6554 		mutex_exit(&connfp->connf_lock);
6555 		rq = connp->conn_rq;
6556 		if (!canputnext(rq)) {
6557 			if (flags & IP_FF_RAWIP) {
6558 				BUMP_MIB(mibptr, rawipIfStatsInOverflows);
6559 			} else {
6560 				BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
6561 			}
6562 
6563 			freemsg(first_mp1);
6564 		} else {
6565 			/*
6566 			 * Don't enforce here if we're an actual tunnel -
6567 			 * let "tun" do it instead.
6568 			 */
6569 			if (!IPCL_IS_IPTUN(connp) &&
6570 			    (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
6571 			    secure)) {
6572 				first_mp1 = ipsec_check_inbound_policy
6573 				    (first_mp1, connp, ipha, NULL,
6574 				    mctl_present);
6575 			}
6576 			if (first_mp1 != NULL) {
6577 				int in_flags = 0;
6578 				/*
6579 				 * ip_fanout_proto also gets called from
6580 				 * icmp_inbound_error_fanout, in which case
6581 				 * the msg type is M_CTL.  Don't add info
6582 				 * in this case for the time being. In future
6583 				 * when there is a need for knowing the
6584 				 * inbound iface index for ICMP error msgs,
6585 				 * then this can be changed.
6586 				 */
6587 				if (connp->conn_recvif)
6588 					in_flags = IPF_RECVIF;
6589 				/*
6590 				 * The ULP may support IP_RECVPKTINFO for both
6591 				 * IP v4 and v6 so pass the appropriate argument
6592 				 * based on conn IP version.
6593 				 */
6594 				if (connp->conn_ip_recvpktinfo) {
6595 					if (connp->conn_af_isv6) {
6596 						/*
6597 						 * V6 only needs index
6598 						 */
6599 						in_flags |= IPF_RECVIF;
6600 					} else {
6601 						/*
6602 						 * V4 needs index +
6603 						 * matching address.
6604 						 */
6605 						in_flags |= IPF_RECVADDR;
6606 					}
6607 				}
6608 				if ((in_flags != 0) &&
6609 				    (mp->b_datap->db_type != M_CTL)) {
6610 					/*
6611 					 * the actual data will be
6612 					 * contained in b_cont upon
6613 					 * successful return of the
6614 					 * following call else
6615 					 * original mblk is returned
6616 					 */
6617 					ASSERT(recv_ill != NULL);
6618 					mp1 = ip_add_info(mp1, recv_ill,
6619 					    in_flags, IPCL_ZONEID(connp), ipst);
6620 				}
6621 				BUMP_MIB(mibptr, ipIfStatsHCInDelivers);
6622 				if (mctl_present)
6623 					freeb(first_mp1);
6624 				putnext(rq, mp1);
6625 			}
6626 		}
6627 		mutex_enter(&connfp->connf_lock);
6628 		/* Follow the next pointer before releasing the conn. */
6629 		next_connp = connp->conn_next;
6630 		CONN_DEC_REF(connp);
6631 		connp = next_connp;
6632 	}
6633 
6634 	/* Last one.  Send it upstream. */
6635 	mutex_exit(&connfp->connf_lock);
6636 
6637 	/*
6638 	 * If this packet is coming from icmp_inbound_error_fanout ip_policy
6639 	 * will be set to false.
6640 	 */
6641 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) {
6642 		ill_index = ill->ill_phyint->phyint_ifindex;
6643 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
6644 		if (mp == NULL) {
6645 			CONN_DEC_REF(connp);
6646 			if (mctl_present) {
6647 				freeb(first_mp);
6648 			}
6649 			return;
6650 		}
6651 	}
6652 
6653 	rq = connp->conn_rq;
6654 	if (!canputnext(rq)) {
6655 		if (flags & IP_FF_RAWIP) {
6656 			BUMP_MIB(mibptr, rawipIfStatsInOverflows);
6657 		} else {
6658 			BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
6659 		}
6660 
6661 		freemsg(first_mp);
6662 	} else {
6663 		if (IPCL_IS_IPTUN(connp)) {
6664 			/*
6665 			 * Tunneled packet.  We enforce policy in the tunnel
6666 			 * module itself.
6667 			 *
6668 			 * Send the WHOLE packet up (incl. IPSEC_IN) without
6669 			 * a policy check.
6670 			 */
6671 			putnext(rq, first_mp);
6672 			CONN_DEC_REF(connp);
6673 			return;
6674 		}
6675 
6676 		if ((CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure)) {
6677 			first_mp = ipsec_check_inbound_policy(first_mp, connp,
6678 			    ipha, NULL, mctl_present);
6679 		}
6680 
6681 		if (first_mp != NULL) {
6682 			int in_flags = 0;
6683 
6684 			/*
6685 			 * ip_fanout_proto also gets called
6686 			 * from icmp_inbound_error_fanout, in
6687 			 * which case the msg type is M_CTL.
6688 			 * Don't add info in this case for time
6689 			 * being. In future when there is a
6690 			 * need for knowing the inbound iface
6691 			 * index for ICMP error msgs, then this
6692 			 * can be changed
6693 			 */
6694 			if (connp->conn_recvif)
6695 				in_flags = IPF_RECVIF;
6696 			if (connp->conn_ip_recvpktinfo) {
6697 				if (connp->conn_af_isv6) {
6698 					/*
6699 					 * V6 only needs index
6700 					 */
6701 					in_flags |= IPF_RECVIF;
6702 				} else {
6703 					/*
6704 					 * V4 needs index +
6705 					 * matching address.
6706 					 */
6707 					in_flags |= IPF_RECVADDR;
6708 				}
6709 			}
6710 			if ((in_flags != 0) &&
6711 			    (mp->b_datap->db_type != M_CTL)) {
6712 
6713 				/*
6714 				 * the actual data will be contained in
6715 				 * b_cont upon successful return
6716 				 * of the following call else original
6717 				 * mblk is returned
6718 				 */
6719 				ASSERT(recv_ill != NULL);
6720 				mp = ip_add_info(mp, recv_ill,
6721 				    in_flags, IPCL_ZONEID(connp), ipst);
6722 			}
6723 			BUMP_MIB(mibptr, ipIfStatsHCInDelivers);
6724 			putnext(rq, mp);
6725 			if (mctl_present)
6726 				freeb(first_mp);
6727 		}
6728 	}
6729 	CONN_DEC_REF(connp);
6730 }
6731 
6732 /*
6733  * Fanout for TCP packets
6734  * The caller puts <fport, lport> in the ports parameter.
6735  *
6736  * IPQoS Notes
6737  * Before sending it to the client, invoke IPPF processing.
6738  * Policy processing takes place only if the callout_position, IPP_LOCAL_IN,
6739  * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local
6740  * ip_policy is false.
6741  */
6742 static void
6743 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha,
6744     uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid)
6745 {
6746 	mblk_t  *first_mp;
6747 	boolean_t secure;
6748 	uint32_t ill_index;
6749 	int	ip_hdr_len;
6750 	tcph_t	*tcph;
6751 	boolean_t syn_present = B_FALSE;
6752 	conn_t	*connp;
6753 	ip_stack_t	*ipst = recv_ill->ill_ipst;
6754 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
6755 
6756 	ASSERT(recv_ill != NULL);
6757 
6758 	first_mp = mp;
6759 	if (mctl_present) {
6760 		ASSERT(first_mp->b_datap->db_type == M_CTL);
6761 		mp = first_mp->b_cont;
6762 		secure = ipsec_in_is_secure(first_mp);
6763 		ASSERT(mp != NULL);
6764 	} else {
6765 		secure = B_FALSE;
6766 	}
6767 
6768 	ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr);
6769 
6770 	if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len,
6771 		    zoneid, ipst)) == NULL) {
6772 		/*
6773 		 * No connected connection or listener. Send a
6774 		 * TH_RST via tcp_xmit_listeners_reset.
6775 		 */
6776 
6777 		/* Initiate IPPf processing, if needed. */
6778 		if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) {
6779 			uint32_t ill_index;
6780 			ill_index = recv_ill->ill_phyint->phyint_ifindex;
6781 			ip_process(IPP_LOCAL_IN, &first_mp, ill_index);
6782 			if (first_mp == NULL)
6783 				return;
6784 		}
6785 		BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers);
6786 		ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n",
6787 		    zoneid));
6788 		tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid,
6789 		    ipst->ips_netstack->netstack_tcp);
6790 		return;
6791 	}
6792 
6793 	/*
6794 	 * Allocate the SYN for the TCP connection here itself
6795 	 */
6796 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
6797 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
6798 		if (IPCL_IS_TCP(connp)) {
6799 			squeue_t *sqp;
6800 
6801 			/*
6802 			 * For fused tcp loopback, assign the eager's
6803 			 * squeue to be that of the active connect's.
6804 			 * Note that we don't check for IP_FF_LOOPBACK
6805 			 * here since this routine gets called only
6806 			 * for loopback (unlike the IPv6 counterpart).
6807 			 */
6808 			ASSERT(Q_TO_CONN(q) != NULL);
6809 			if (do_tcp_fusion &&
6810 			    !CONN_INBOUND_POLICY_PRESENT(connp, ipss) &&
6811 			    !secure &&
6812 			    !IPP_ENABLED(IPP_LOCAL_IN, ipst) && !ip_policy &&
6813 			    IPCL_IS_TCP(Q_TO_CONN(q))) {
6814 				ASSERT(Q_TO_CONN(q)->conn_sqp != NULL);
6815 				sqp = Q_TO_CONN(q)->conn_sqp;
6816 			} else {
6817 				sqp = IP_SQUEUE_GET(lbolt);
6818 			}
6819 
6820 			mp->b_datap->db_struioflag |= STRUIO_EAGER;
6821 			DB_CKSUMSTART(mp) = (intptr_t)sqp;
6822 			syn_present = B_TRUE;
6823 		}
6824 	}
6825 
6826 	if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) {
6827 		uint_t	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
6828 		BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers);
6829 		if ((flags & TH_RST) || (flags & TH_URG)) {
6830 			CONN_DEC_REF(connp);
6831 			freemsg(first_mp);
6832 			return;
6833 		}
6834 		if (flags & TH_ACK) {
6835 			tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid,
6836 			    ipst->ips_netstack->netstack_tcp);
6837 			CONN_DEC_REF(connp);
6838 			return;
6839 		}
6840 
6841 		CONN_DEC_REF(connp);
6842 		freemsg(first_mp);
6843 		return;
6844 	}
6845 
6846 	if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) {
6847 		first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha,
6848 		    NULL, mctl_present);
6849 		if (first_mp == NULL) {
6850 			BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards);
6851 			CONN_DEC_REF(connp);
6852 			return;
6853 		}
6854 		if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) {
6855 			ASSERT(syn_present);
6856 			if (mctl_present) {
6857 				ASSERT(first_mp != mp);
6858 				first_mp->b_datap->db_struioflag |=
6859 				    STRUIO_POLICY;
6860 			} else {
6861 				ASSERT(first_mp == mp);
6862 				mp->b_datap->db_struioflag &=
6863 				    ~STRUIO_EAGER;
6864 				mp->b_datap->db_struioflag |=
6865 				    STRUIO_POLICY;
6866 			}
6867 		} else {
6868 			/*
6869 			 * Discard first_mp early since we're dealing with a
6870 			 * fully-connected conn_t and tcp doesn't do policy in
6871 			 * this case.
6872 			 */
6873 			if (mctl_present) {
6874 				freeb(first_mp);
6875 				mctl_present = B_FALSE;
6876 			}
6877 			first_mp = mp;
6878 		}
6879 	}
6880 
6881 	/*
6882 	 * Initiate policy processing here if needed. If we get here from
6883 	 * icmp_inbound_error_fanout, ip_policy is false.
6884 	 */
6885 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) {
6886 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
6887 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
6888 		if (mp == NULL) {
6889 			CONN_DEC_REF(connp);
6890 			if (mctl_present)
6891 				freeb(first_mp);
6892 			return;
6893 		} else if (mctl_present) {
6894 			ASSERT(first_mp != mp);
6895 			first_mp->b_cont = mp;
6896 		} else {
6897 			first_mp = mp;
6898 		}
6899 	}
6900 
6901 
6902 
6903 	/* Handle socket options. */
6904 	if (!syn_present &&
6905 	    connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) {
6906 		/* Add header */
6907 		ASSERT(recv_ill != NULL);
6908 		/*
6909 		 * Since tcp does not support IP_RECVPKTINFO for V4, only pass
6910 		 * IPF_RECVIF.
6911 		 */
6912 		mp = ip_add_info(mp, recv_ill, IPF_RECVIF, IPCL_ZONEID(connp),
6913 		    ipst);
6914 		if (mp == NULL) {
6915 			BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards);
6916 			CONN_DEC_REF(connp);
6917 			if (mctl_present)
6918 				freeb(first_mp);
6919 			return;
6920 		} else if (mctl_present) {
6921 			/*
6922 			 * ip_add_info might return a new mp.
6923 			 */
6924 			ASSERT(first_mp != mp);
6925 			first_mp->b_cont = mp;
6926 		} else {
6927 			first_mp = mp;
6928 		}
6929 	}
6930 
6931 	BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers);
6932 	if (IPCL_IS_TCP(connp)) {
6933 		(*ip_input_proc)(connp->conn_sqp, first_mp,
6934 		    connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP);
6935 	} else {
6936 		putnext(connp->conn_rq, first_mp);
6937 		CONN_DEC_REF(connp);
6938 	}
6939 }
6940 
6941 /*
6942  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
6943  * We are responsible for disposing of mp, such as by freemsg() or putnext()
6944  * Caller is responsible for dropping references to the conn, and freeing
6945  * first_mp.
6946  *
6947  * IPQoS Notes
6948  * Before sending it to the client, invoke IPPF processing. Policy processing
6949  * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and
6950  * ip_policy is true. If we get here from icmp_inbound_error_fanout or
6951  * ip_wput_local, ip_policy is false.
6952  */
6953 static void
6954 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp,
6955     boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill,
6956     boolean_t ip_policy)
6957 {
6958 	boolean_t	mctl_present = (first_mp != NULL);
6959 	uint32_t	in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */
6960 	uint32_t	ill_index;
6961 	ip_stack_t	*ipst = recv_ill->ill_ipst;
6962 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
6963 
6964 	ASSERT(ill != NULL);
6965 
6966 	if (mctl_present)
6967 		first_mp->b_cont = mp;
6968 	else
6969 		first_mp = mp;
6970 
6971 	if (CONN_UDP_FLOWCTLD(connp)) {
6972 		BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
6973 		freemsg(first_mp);
6974 		return;
6975 	}
6976 
6977 	if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || secure) {
6978 		first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha,
6979 		    NULL, mctl_present);
6980 		if (first_mp == NULL) {
6981 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
6982 			return;	/* Freed by ipsec_check_inbound_policy(). */
6983 		}
6984 	}
6985 	if (mctl_present)
6986 		freeb(first_mp);
6987 
6988 	/* Handle options. */
6989 	if (connp->conn_recvif)
6990 		in_flags = IPF_RECVIF;
6991 	/*
6992 	 * UDP supports IP_RECVPKTINFO option for both v4 and v6 so the flag
6993 	 * passed to ip_add_info is based on IP version of connp.
6994 	 */
6995 	if (connp->conn_ip_recvpktinfo && (flags & IP_FF_IPINFO)) {
6996 		if (connp->conn_af_isv6) {
6997 			/*
6998 			 * V6 only needs index
6999 			 */
7000 			in_flags |= IPF_RECVIF;
7001 		} else {
7002 			/*
7003 			 * V4 needs index + matching address.
7004 			 */
7005 			in_flags |= IPF_RECVADDR;
7006 		}
7007 	}
7008 
7009 	if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA))
7010 		in_flags |= IPF_RECVSLLA;
7011 
7012 	/*
7013 	 * Initiate IPPF processing here, if needed. Note first_mp won't be
7014 	 * freed if the packet is dropped. The caller will do so.
7015 	 */
7016 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) {
7017 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
7018 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
7019 		if (mp == NULL) {
7020 			return;
7021 		}
7022 	}
7023 	if ((in_flags != 0) &&
7024 	    (mp->b_datap->db_type != M_CTL)) {
7025 		/*
7026 		 * The actual data will be contained in b_cont
7027 		 * upon successful return of the following call
7028 		 * else original mblk is returned
7029 		 */
7030 		ASSERT(recv_ill != NULL);
7031 		mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp),
7032 		    ipst);
7033 	}
7034 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
7035 	/* Send it upstream */
7036 	CONN_UDP_RECV(connp, mp);
7037 }
7038 
7039 /*
7040  * Fanout for UDP packets.
7041  * The caller puts <fport, lport> in the ports parameter.
7042  *
7043  * If SO_REUSEADDR is set all multicast and broadcast packets
7044  * will be delivered to all streams bound to the same port.
7045  *
7046  * Zones notes:
7047  * Multicast and broadcast packets will be distributed to streams in all zones.
7048  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
7049  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
7050  * packets. To maintain this behavior with multiple zones, the conns are grouped
7051  * by zone and the SO_REUSEADDR flag is checked for the first matching conn in
7052  * each zone. If unset, all the following conns in the same zone are skipped.
7053  */
7054 static void
7055 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha,
7056     uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present,
7057     boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid)
7058 {
7059 	uint32_t	dstport, srcport;
7060 	ipaddr_t	dst;
7061 	mblk_t		*first_mp;
7062 	boolean_t	secure;
7063 	in6_addr_t	v6src;
7064 	conn_t		*connp;
7065 	connf_t		*connfp;
7066 	conn_t		*first_connp;
7067 	conn_t		*next_connp;
7068 	mblk_t		*mp1, *first_mp1;
7069 	ipaddr_t	src;
7070 	zoneid_t	last_zoneid;
7071 	boolean_t	reuseaddr;
7072 	boolean_t	shared_addr;
7073 	ip_stack_t	*ipst;
7074 
7075 	ASSERT(recv_ill != NULL);
7076 	ipst = recv_ill->ill_ipst;
7077 
7078 	first_mp = mp;
7079 	if (mctl_present) {
7080 		mp = first_mp->b_cont;
7081 		first_mp->b_cont = NULL;
7082 		secure = ipsec_in_is_secure(first_mp);
7083 		ASSERT(mp != NULL);
7084 	} else {
7085 		first_mp = NULL;
7086 		secure = B_FALSE;
7087 	}
7088 
7089 	/* Extract ports in net byte order */
7090 	dstport = htons(ntohl(ports) & 0xFFFF);
7091 	srcport = htons(ntohl(ports) >> 16);
7092 	dst = ipha->ipha_dst;
7093 	src = ipha->ipha_src;
7094 
7095 	shared_addr = (zoneid == ALL_ZONES);
7096 	if (shared_addr) {
7097 		/*
7098 		 * No need to handle exclusive-stack zones since ALL_ZONES
7099 		 * only applies to the shared stack.
7100 		 */
7101 		zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport);
7102 		if (zoneid == ALL_ZONES)
7103 			zoneid = tsol_packet_to_zoneid(mp);
7104 	}
7105 
7106 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)];
7107 	mutex_enter(&connfp->connf_lock);
7108 	connp = connfp->connf_head;
7109 	if (!broadcast && !CLASSD(dst)) {
7110 		/*
7111 		 * Not broadcast or multicast. Send to the one (first)
7112 		 * client we find. No need to check conn_wantpacket()
7113 		 * since IP_BOUND_IF/conn_incoming_ill does not apply to
7114 		 * IPv4 unicast packets.
7115 		 */
7116 		while ((connp != NULL) &&
7117 		    (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) ||
7118 		    !IPCL_ZONE_MATCH(connp, zoneid))) {
7119 			connp = connp->conn_next;
7120 		}
7121 
7122 		if (connp == NULL || connp->conn_upq == NULL)
7123 			goto notfound;
7124 
7125 		if (is_system_labeled() &&
7126 		    !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
7127 		    connp))
7128 			goto notfound;
7129 
7130 		CONN_INC_REF(connp);
7131 		mutex_exit(&connfp->connf_lock);
7132 		ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha,
7133 		    flags, recv_ill, ip_policy);
7134 		IP_STAT(ipst, ip_udp_fannorm);
7135 		CONN_DEC_REF(connp);
7136 		return;
7137 	}
7138 
7139 	/*
7140 	 * Broadcast and multicast case
7141 	 *
7142 	 * Need to check conn_wantpacket().
7143 	 * If SO_REUSEADDR has been set on the first we send the
7144 	 * packet to all clients that have joined the group and
7145 	 * match the port.
7146 	 */
7147 
7148 	while (connp != NULL) {
7149 		if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) &&
7150 		    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
7151 		    (!is_system_labeled() ||
7152 		    tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
7153 		    connp)))
7154 			break;
7155 		connp = connp->conn_next;
7156 	}
7157 
7158 	if (connp == NULL || connp->conn_upq == NULL)
7159 		goto notfound;
7160 
7161 	first_connp = connp;
7162 	/*
7163 	 * When SO_REUSEADDR is not set, send the packet only to the first
7164 	 * matching connection in its zone by keeping track of the zoneid.
7165 	 */
7166 	reuseaddr = first_connp->conn_reuseaddr;
7167 	last_zoneid = first_connp->conn_zoneid;
7168 
7169 	CONN_INC_REF(connp);
7170 	connp = connp->conn_next;
7171 	for (;;) {
7172 		while (connp != NULL) {
7173 			if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) &&
7174 			    (reuseaddr || connp->conn_zoneid != last_zoneid) &&
7175 			    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
7176 			    (!is_system_labeled() ||
7177 			    tsol_receive_local(mp, &dst, IPV4_VERSION,
7178 			    shared_addr, connp)))
7179 				break;
7180 			connp = connp->conn_next;
7181 		}
7182 		/*
7183 		 * Just copy the data part alone. The mctl part is
7184 		 * needed just for verifying policy and it is never
7185 		 * sent up.
7186 		 */
7187 		if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) &&
7188 		    ((mp1 = copymsg(mp)) == NULL))) {
7189 			/*
7190 			 * No more interested clients or memory
7191 			 * allocation failed
7192 			 */
7193 			connp = first_connp;
7194 			break;
7195 		}
7196 		if (connp->conn_zoneid != last_zoneid) {
7197 			/*
7198 			 * Update the zoneid so that the packet isn't sent to
7199 			 * any more conns in the same zone unless SO_REUSEADDR
7200 			 * is set.
7201 			 */
7202 			reuseaddr = connp->conn_reuseaddr;
7203 			last_zoneid = connp->conn_zoneid;
7204 		}
7205 		if (first_mp != NULL) {
7206 			ASSERT(((ipsec_info_t *)first_mp->b_rptr)->
7207 			    ipsec_info_type == IPSEC_IN);
7208 			first_mp1 = ipsec_in_tag(first_mp, NULL,
7209 			    ipst->ips_netstack);
7210 			if (first_mp1 == NULL) {
7211 				freemsg(mp1);
7212 				connp = first_connp;
7213 				break;
7214 			}
7215 		} else {
7216 			first_mp1 = NULL;
7217 		}
7218 		CONN_INC_REF(connp);
7219 		mutex_exit(&connfp->connf_lock);
7220 		/*
7221 		 * IPQoS notes: We don't send the packet for policy
7222 		 * processing here, will do it for the last one (below).
7223 		 * i.e. we do it per-packet now, but if we do policy
7224 		 * processing per-conn, then we would need to do it
7225 		 * here too.
7226 		 */
7227 		ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill,
7228 		    ipha, flags, recv_ill, B_FALSE);
7229 		mutex_enter(&connfp->connf_lock);
7230 		/* Follow the next pointer before releasing the conn. */
7231 		next_connp = connp->conn_next;
7232 		IP_STAT(ipst, ip_udp_fanmb);
7233 		CONN_DEC_REF(connp);
7234 		connp = next_connp;
7235 	}
7236 
7237 	/* Last one.  Send it upstream. */
7238 	mutex_exit(&connfp->connf_lock);
7239 	ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags,
7240 	    recv_ill, ip_policy);
7241 	IP_STAT(ipst, ip_udp_fanmb);
7242 	CONN_DEC_REF(connp);
7243 	return;
7244 
7245 notfound:
7246 
7247 	mutex_exit(&connfp->connf_lock);
7248 	IP_STAT(ipst, ip_udp_fanothers);
7249 	/*
7250 	 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses
7251 	 * have already been matched above, since they live in the IPv4
7252 	 * fanout tables. This implies we only need to
7253 	 * check for IPv6 in6addr_any endpoints here.
7254 	 * Thus we compare using ipv6_all_zeros instead of the destination
7255 	 * address, except for the multicast group membership lookup which
7256 	 * uses the IPv4 destination.
7257 	 */
7258 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src);
7259 	connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(dstport, ipst)];
7260 	mutex_enter(&connfp->connf_lock);
7261 	connp = connfp->connf_head;
7262 	if (!broadcast && !CLASSD(dst)) {
7263 		while (connp != NULL) {
7264 			if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros,
7265 			    srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) &&
7266 			    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
7267 			    !connp->conn_ipv6_v6only)
7268 				break;
7269 			connp = connp->conn_next;
7270 		}
7271 
7272 		if (connp != NULL && is_system_labeled() &&
7273 		    !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
7274 		    connp))
7275 			connp = NULL;
7276 
7277 		if (connp == NULL || connp->conn_upq == NULL) {
7278 			/*
7279 			 * No one bound to this port.  Is
7280 			 * there a client that wants all
7281 			 * unclaimed datagrams?
7282 			 */
7283 			mutex_exit(&connfp->connf_lock);
7284 
7285 			if (mctl_present)
7286 				first_mp->b_cont = mp;
7287 			else
7288 				first_mp = mp;
7289 			if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].
7290 			    connf_head != NULL) {
7291 				ip_fanout_proto(q, first_mp, ill, ipha,
7292 				    flags | IP_FF_RAWIP, mctl_present,
7293 				    ip_policy, recv_ill, zoneid);
7294 			} else {
7295 				if (ip_fanout_send_icmp(q, first_mp, flags,
7296 				    ICMP_DEST_UNREACHABLE,
7297 				    ICMP_PORT_UNREACHABLE,
7298 				    mctl_present, zoneid, ipst)) {
7299 					BUMP_MIB(ill->ill_ip_mib,
7300 					    udpIfStatsNoPorts);
7301 				}
7302 			}
7303 			return;
7304 		}
7305 
7306 		CONN_INC_REF(connp);
7307 		mutex_exit(&connfp->connf_lock);
7308 		ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha,
7309 		    flags, recv_ill, ip_policy);
7310 		CONN_DEC_REF(connp);
7311 		return;
7312 	}
7313 	/*
7314 	 * IPv4 multicast packet being delivered to an AF_INET6
7315 	 * in6addr_any endpoint.
7316 	 * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
7317 	 * and not conn_wantpacket_v6() since any multicast membership is
7318 	 * for an IPv4-mapped multicast address.
7319 	 * The packet is sent to all clients in all zones that have joined the
7320 	 * group and match the port.
7321 	 */
7322 	while (connp != NULL) {
7323 		if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros,
7324 		    srcport, v6src) &&
7325 		    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
7326 		    (!is_system_labeled() ||
7327 		    tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr,
7328 		    connp)))
7329 			break;
7330 		connp = connp->conn_next;
7331 	}
7332 
7333 	if (connp == NULL || connp->conn_upq == NULL) {
7334 		/*
7335 		 * No one bound to this port.  Is
7336 		 * there a client that wants all
7337 		 * unclaimed datagrams?
7338 		 */
7339 		mutex_exit(&connfp->connf_lock);
7340 
7341 		if (mctl_present)
7342 			first_mp->b_cont = mp;
7343 		else
7344 			first_mp = mp;
7345 		if (ipst->ips_ipcl_proto_fanout[IPPROTO_UDP].connf_head !=
7346 		    NULL) {
7347 			ip_fanout_proto(q, first_mp, ill, ipha,
7348 			    flags | IP_FF_RAWIP, mctl_present, ip_policy,
7349 			    recv_ill, zoneid);
7350 		} else {
7351 			/*
7352 			 * We used to attempt to send an icmp error here, but
7353 			 * since this is known to be a multicast packet
7354 			 * and we don't send icmp errors in response to
7355 			 * multicast, just drop the packet and give up sooner.
7356 			 */
7357 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
7358 			freemsg(first_mp);
7359 		}
7360 		return;
7361 	}
7362 
7363 	first_connp = connp;
7364 
7365 	CONN_INC_REF(connp);
7366 	connp = connp->conn_next;
7367 	for (;;) {
7368 		while (connp != NULL) {
7369 			if (IPCL_UDP_MATCH_V6(connp, dstport,
7370 			    ipv6_all_zeros, srcport, v6src) &&
7371 			    conn_wantpacket(connp, ill, ipha, flags, zoneid) &&
7372 			    (!is_system_labeled() ||
7373 			    tsol_receive_local(mp, &dst, IPV4_VERSION,
7374 			    shared_addr, connp)))
7375 				break;
7376 			connp = connp->conn_next;
7377 		}
7378 		/*
7379 		 * Just copy the data part alone. The mctl part is
7380 		 * needed just for verifying policy and it is never
7381 		 * sent up.
7382 		 */
7383 		if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) &&
7384 		    ((mp1 = copymsg(mp)) == NULL))) {
7385 			/*
7386 			 * No more intested clients or memory
7387 			 * allocation failed
7388 			 */
7389 			connp = first_connp;
7390 			break;
7391 		}
7392 		if (first_mp != NULL) {
7393 			ASSERT(((ipsec_info_t *)first_mp->b_rptr)->
7394 			    ipsec_info_type == IPSEC_IN);
7395 			first_mp1 = ipsec_in_tag(first_mp, NULL,
7396 			    ipst->ips_netstack);
7397 			if (first_mp1 == NULL) {
7398 				freemsg(mp1);
7399 				connp = first_connp;
7400 				break;
7401 			}
7402 		} else {
7403 			first_mp1 = NULL;
7404 		}
7405 		CONN_INC_REF(connp);
7406 		mutex_exit(&connfp->connf_lock);
7407 		/*
7408 		 * IPQoS notes: We don't send the packet for policy
7409 		 * processing here, will do it for the last one (below).
7410 		 * i.e. we do it per-packet now, but if we do policy
7411 		 * processing per-conn, then we would need to do it
7412 		 * here too.
7413 		 */
7414 		ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill,
7415 		    ipha, flags, recv_ill, B_FALSE);
7416 		mutex_enter(&connfp->connf_lock);
7417 		/* Follow the next pointer before releasing the conn. */
7418 		next_connp = connp->conn_next;
7419 		CONN_DEC_REF(connp);
7420 		connp = next_connp;
7421 	}
7422 
7423 	/* Last one.  Send it upstream. */
7424 	mutex_exit(&connfp->connf_lock);
7425 	ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags,
7426 	    recv_ill, ip_policy);
7427 	CONN_DEC_REF(connp);
7428 }
7429 
7430 /*
7431  * Complete the ip_wput header so that it
7432  * is possible to generate ICMP
7433  * errors.
7434  */
7435 int
7436 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid, ip_stack_t *ipst)
7437 {
7438 	ire_t *ire;
7439 
7440 	if (ipha->ipha_src == INADDR_ANY) {
7441 		ire = ire_lookup_local(zoneid, ipst);
7442 		if (ire == NULL) {
7443 			ip1dbg(("ip_hdr_complete: no source IRE\n"));
7444 			return (1);
7445 		}
7446 		ipha->ipha_src = ire->ire_addr;
7447 		ire_refrele(ire);
7448 	}
7449 	ipha->ipha_ttl = ipst->ips_ip_def_ttl;
7450 	ipha->ipha_hdr_checksum = 0;
7451 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
7452 	return (0);
7453 }
7454 
7455 /*
7456  * Nobody should be sending
7457  * packets up this stream
7458  */
7459 static void
7460 ip_lrput(queue_t *q, mblk_t *mp)
7461 {
7462 	mblk_t *mp1;
7463 
7464 	switch (mp->b_datap->db_type) {
7465 	case M_FLUSH:
7466 		/* Turn around */
7467 		if (*mp->b_rptr & FLUSHW) {
7468 			*mp->b_rptr &= ~FLUSHR;
7469 			qreply(q, mp);
7470 			return;
7471 		}
7472 		break;
7473 	}
7474 	/* Could receive messages that passed through ar_rput */
7475 	for (mp1 = mp; mp1; mp1 = mp1->b_cont)
7476 		mp1->b_prev = mp1->b_next = NULL;
7477 	freemsg(mp);
7478 }
7479 
7480 /* Nobody should be sending packets down this stream */
7481 /* ARGSUSED */
7482 void
7483 ip_lwput(queue_t *q, mblk_t *mp)
7484 {
7485 	freemsg(mp);
7486 }
7487 
7488 /*
7489  * Move the first hop in any source route to ipha_dst and remove that part of
7490  * the source route.  Called by other protocols.  Errors in option formatting
7491  * are ignored - will be handled by ip_wput_options Return the final
7492  * destination (either ipha_dst or the last entry in a source route.)
7493  */
7494 ipaddr_t
7495 ip_massage_options(ipha_t *ipha, netstack_t *ns)
7496 {
7497 	ipoptp_t	opts;
7498 	uchar_t		*opt;
7499 	uint8_t		optval;
7500 	uint8_t		optlen;
7501 	ipaddr_t	dst;
7502 	int		i;
7503 	ire_t		*ire;
7504 	ip_stack_t	*ipst = ns->netstack_ip;
7505 
7506 	ip2dbg(("ip_massage_options\n"));
7507 	dst = ipha->ipha_dst;
7508 	for (optval = ipoptp_first(&opts, ipha);
7509 	    optval != IPOPT_EOL;
7510 	    optval = ipoptp_next(&opts)) {
7511 		opt = opts.ipoptp_cur;
7512 		switch (optval) {
7513 			uint8_t off;
7514 		case IPOPT_SSRR:
7515 		case IPOPT_LSRR:
7516 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
7517 				ip1dbg(("ip_massage_options: bad src route\n"));
7518 				break;
7519 			}
7520 			optlen = opts.ipoptp_len;
7521 			off = opt[IPOPT_OFFSET];
7522 			off--;
7523 		redo_srr:
7524 			if (optlen < IP_ADDR_LEN ||
7525 			    off > optlen - IP_ADDR_LEN) {
7526 				/* End of source route */
7527 				ip1dbg(("ip_massage_options: end of SR\n"));
7528 				break;
7529 			}
7530 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
7531 			ip1dbg(("ip_massage_options: next hop 0x%x\n",
7532 			    ntohl(dst)));
7533 			/*
7534 			 * Check if our address is present more than
7535 			 * once as consecutive hops in source route.
7536 			 * XXX verify per-interface ip_forwarding
7537 			 * for source route?
7538 			 */
7539 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
7540 			    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
7541 			if (ire != NULL) {
7542 				ire_refrele(ire);
7543 				off += IP_ADDR_LEN;
7544 				goto redo_srr;
7545 			}
7546 			if (dst == htonl(INADDR_LOOPBACK)) {
7547 				ip1dbg(("ip_massage_options: loopback addr in "
7548 				    "source route!\n"));
7549 				break;
7550 			}
7551 			/*
7552 			 * Update ipha_dst to be the first hop and remove the
7553 			 * first hop from the source route (by overwriting
7554 			 * part of the option with NOP options).
7555 			 */
7556 			ipha->ipha_dst = dst;
7557 			/* Put the last entry in dst */
7558 			off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
7559 			    3;
7560 			bcopy(&opt[off], &dst, IP_ADDR_LEN);
7561 
7562 			ip1dbg(("ip_massage_options: last hop 0x%x\n",
7563 			    ntohl(dst)));
7564 			/* Move down and overwrite */
7565 			opt[IP_ADDR_LEN] = opt[0];
7566 			opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
7567 			opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
7568 			for (i = 0; i < IP_ADDR_LEN; i++)
7569 				opt[i] = IPOPT_NOP;
7570 			break;
7571 		}
7572 	}
7573 	return (dst);
7574 }
7575 
7576 /*
7577  * This function's job is to forward data to the reverse tunnel (FA->HA)
7578  * after doing a few checks. It is assumed that the incoming interface
7579  * of the packet is always different than the outgoing interface and the
7580  * ire_type of the found ire has to be a non-resolver type.
7581  *
7582  * IPQoS notes
7583  * IP policy is invoked twice for a forwarded packet, once on the read side
7584  * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are
7585  * enabled.
7586  */
7587 static void
7588 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp)
7589 {
7590 	ipha_t		*ipha;
7591 	queue_t		*q;
7592 	uint32_t 	pkt_len;
7593 #define	rptr    ((uchar_t *)ipha)
7594 	uint32_t 	sum;
7595 	uint32_t 	max_frag;
7596 	mblk_t		*first_mp;
7597 	uint32_t	ill_index;
7598 	ipxmit_state_t	pktxmit_state;
7599 	ill_t		*out_ill;
7600 	ip_stack_t	*ipst = in_ill->ill_ipst;
7601 
7602 	ASSERT(ire != NULL);
7603 	ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER);
7604 	ASSERT(ire->ire_stq != NULL);
7605 
7606 	/* Initiate read side IPPF processing */
7607 	if (IPP_ENABLED(IPP_FWD_IN, ipst)) {
7608 		ill_index = in_ill->ill_phyint->phyint_ifindex;
7609 		ip_process(IPP_FWD_IN, &mp, ill_index);
7610 		if (mp == NULL) {
7611 			ip2dbg(("ip_mrtun_forward: inbound pkt "
7612 			    "dropped during IPPF processing\n"));
7613 			return;
7614 		}
7615 	}
7616 
7617 	if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags &
7618 		ILLF_ROUTER) == 0) ||
7619 	    (in_ill == (ill_t *)ire->ire_stq->q_ptr)) {
7620 		BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits);
7621 		ip0dbg(("ip_mrtun_forward: Can't forward :"
7622 		    "forwarding is not turned on\n"));
7623 		goto drop_pkt;
7624 	}
7625 
7626 	/*
7627 	 * Don't forward if the interface is down
7628 	 */
7629 	if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) {
7630 		goto discard_pkt;
7631 	}
7632 
7633 	ipha = (ipha_t *)mp->b_rptr;
7634 	pkt_len = ntohs(ipha->ipha_length);
7635 	/* Adjust the checksum to reflect the ttl decrement. */
7636 	sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
7637 	ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));
7638 	if (ipha->ipha_ttl-- <= 1) {
7639 		if (ip_csum_hdr(ipha)) {
7640 			BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs);
7641 			goto drop_pkt;
7642 		}
7643 		q = ire->ire_stq;
7644 		if ((first_mp = allocb(sizeof (ipsec_info_t),
7645 		    BPRI_HI)) == NULL) {
7646 			goto discard_pkt;
7647 		}
7648 		BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits);
7649 		ip_ipsec_out_prepend(first_mp, mp, in_ill);
7650 		/* Sent by forwarding path, and router is global zone */
7651 		icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED,
7652 		    GLOBAL_ZONEID, ipst);
7653 		return;
7654 	}
7655 
7656 	/* Get the ill_index of the ILL */
7657 	ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex;
7658 
7659 	/*
7660 	 * This location is chosen for the placement of the forwarding hook
7661 	 * because at this point we know that we have a path out for the
7662 	 * packet but haven't yet applied any logic (such as fragmenting)
7663 	 * that happen as part of transmitting the packet out.
7664 	 */
7665 	out_ill = ire->ire_ipif->ipif_ill;
7666 
7667 	DTRACE_PROBE4(ip4__forwarding__start,
7668 	    ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp);
7669 
7670 	FW_HOOKS(ipst->ips_ip4_forwarding_event,
7671 	    ipst->ips_ipv4firewall_forwarding,
7672 	    in_ill, out_ill, ipha, mp, mp, ipst);
7673 
7674 	DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp);
7675 
7676 	if (mp == NULL)
7677 		return;
7678 	pkt_len = ntohs(ipha->ipha_length);
7679 
7680 	/*
7681 	 * ip_mrtun_forward is only used by foreign agent to reverse
7682 	 * tunnel the incoming packet. So it does not do any option
7683 	 * processing for source routing.
7684 	 */
7685 	max_frag = ire->ire_max_frag;
7686 	if (pkt_len > max_frag) {
7687 		/*
7688 		 * It needs fragging on its way out.  We haven't
7689 		 * verified the header checksum yet.  Since we
7690 		 * are going to put a surely good checksum in the
7691 		 * outgoing header, we have to make sure that it
7692 		 * was good coming in.
7693 		 */
7694 		if (ip_csum_hdr(ipha)) {
7695 			BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs);
7696 			goto drop_pkt;
7697 		}
7698 
7699 		/* Initiate write side IPPF processing */
7700 		if (IPP_ENABLED(IPP_FWD_OUT, ipst)) {
7701 			ip_process(IPP_FWD_OUT, &mp, ill_index);
7702 			if (mp == NULL) {
7703 				ip2dbg(("ip_mrtun_forward: outbound pkt "\
7704 				    "dropped/deferred during ip policy "\
7705 				    "processing\n"));
7706 				return;
7707 			}
7708 		}
7709 		if ((first_mp = allocb(sizeof (ipsec_info_t),
7710 		    BPRI_HI)) == NULL) {
7711 			goto discard_pkt;
7712 		}
7713 		ip_ipsec_out_prepend(first_mp, mp, in_ill);
7714 		mp = first_mp;
7715 
7716 		ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst);
7717 		return;
7718 	}
7719 
7720 	ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type));
7721 
7722 	ASSERT(ire->ire_ipif != NULL);
7723 
7724 	DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL,
7725 	    ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp);
7726 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
7727 	    ipst->ips_ipv4firewall_physical_out,
7728 	    NULL, out_ill, ipha, mp, mp, ipst);
7729 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
7730 	if (mp == NULL)
7731 		return;
7732 
7733 	/* Now send the packet to the tunnel interface */
7734 	mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT);
7735 	q = ire->ire_stq;
7736 	pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE);
7737 	if ((pktxmit_state == SEND_FAILED) ||
7738 	    (pktxmit_state == LLHDR_RESLV_FAILED)) {
7739 		ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n",
7740 		    q->q_ptr));
7741 	}
7742 
7743 	return;
7744 discard_pkt:
7745 	BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards);
7746 drop_pkt:;
7747 	ip2dbg(("ip_mrtun_forward: dropping pkt\n"));
7748 	freemsg(mp);
7749 #undef	rptr
7750 }
7751 
7752 /*
7753  * Fills the ipsec_out_t data structure with appropriate fields and
7754  * prepends it to mp which contains the IP hdr + data that was meant
7755  * to be forwarded. Please note that ipsec_out_info data structure
7756  * is used here to communicate the outgoing ill path at ip_wput()
7757  * for the ICMP error packet. This has nothing to do with ipsec IP
7758  * security. ipsec_out_t is really used to pass the info to the module
7759  * IP where this information cannot be extracted from conn.
7760  * This functions is called by ip_mrtun_forward().
7761  */
7762 void
7763 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill)
7764 {
7765 	ipsec_out_t	*io;
7766 
7767 	ASSERT(xmit_ill != NULL);
7768 	first_mp->b_datap->db_type = M_CTL;
7769 	first_mp->b_wptr += sizeof (ipsec_info_t);
7770 	/*
7771 	 * This is to pass info to ip_wput in absence of conn.
7772 	 * ipsec_out_secure will be B_FALSE because of this.
7773 	 * Thus ipsec_out_secure being B_FALSE indicates that
7774 	 * this is not IPSEC security related information.
7775 	 */
7776 	bzero(first_mp->b_rptr, sizeof (ipsec_info_t));
7777 	io = (ipsec_out_t *)first_mp->b_rptr;
7778 	io->ipsec_out_type = IPSEC_OUT;
7779 	io->ipsec_out_len = sizeof (ipsec_out_t);
7780 	first_mp->b_cont = mp;
7781 	io->ipsec_out_ill_index =
7782 	    xmit_ill->ill_phyint->phyint_ifindex;
7783 	io->ipsec_out_xmit_if = B_TRUE;
7784 	io->ipsec_out_ns = xmit_ill->ill_ipst->ips_netstack;
7785 }
7786 
7787 /*
7788  * Return the network mask
7789  * associated with the specified address.
7790  */
7791 ipaddr_t
7792 ip_net_mask(ipaddr_t addr)
7793 {
7794 	uchar_t	*up = (uchar_t *)&addr;
7795 	ipaddr_t mask = 0;
7796 	uchar_t	*maskp = (uchar_t *)&mask;
7797 
7798 #if defined(__i386) || defined(__amd64)
7799 #define	TOTALLY_BRAIN_DAMAGED_C_COMPILER
7800 #endif
7801 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
7802 	maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
7803 #endif
7804 	if (CLASSD(addr)) {
7805 		maskp[0] = 0xF0;
7806 		return (mask);
7807 	}
7808 	if (addr == 0)
7809 		return (0);
7810 	maskp[0] = 0xFF;
7811 	if ((up[0] & 0x80) == 0)
7812 		return (mask);
7813 
7814 	maskp[1] = 0xFF;
7815 	if ((up[0] & 0xC0) == 0x80)
7816 		return (mask);
7817 
7818 	maskp[2] = 0xFF;
7819 	if ((up[0] & 0xE0) == 0xC0)
7820 		return (mask);
7821 
7822 	/* Must be experimental or multicast, indicate as much */
7823 	return ((ipaddr_t)0);
7824 }
7825 
7826 /*
7827  * Select an ill for the packet by considering load spreading across
7828  * a different ill in the group if dst_ill is part of some group.
7829  */
7830 ill_t *
7831 ip_newroute_get_dst_ill(ill_t *dst_ill)
7832 {
7833 	ill_t *ill;
7834 
7835 	/*
7836 	 * We schedule irrespective of whether the source address is
7837 	 * INADDR_ANY or not. illgrp_scheduler returns a held ill.
7838 	 */
7839 	ill = illgrp_scheduler(dst_ill);
7840 	if (ill == NULL)
7841 		return (NULL);
7842 
7843 	/*
7844 	 * For groups with names ip_sioctl_groupname ensures that all
7845 	 * ills are of same type. For groups without names, ifgrp_insert
7846 	 * ensures this.
7847 	 */
7848 	ASSERT(dst_ill->ill_type == ill->ill_type);
7849 
7850 	return (ill);
7851 }
7852 
7853 /*
7854  * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case.
7855  */
7856 ill_t *
7857 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6,
7858     ip_stack_t *ipst)
7859 {
7860 	ill_t *ret_ill;
7861 
7862 	ASSERT(ifindex != 0);
7863 	ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
7864 	    ipst);
7865 	if (ret_ill == NULL ||
7866 	    (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) {
7867 		if (isv6) {
7868 			if (ill != NULL) {
7869 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
7870 			} else {
7871 				BUMP_MIB(&ipst->ips_ip6_mib,
7872 				    ipIfStatsOutDiscards);
7873 			}
7874 			ip1dbg(("ip_grab_attach_ill (IPv6): "
7875 			    "bad ifindex %d.\n", ifindex));
7876 		} else {
7877 			if (ill != NULL) {
7878 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
7879 			} else {
7880 				BUMP_MIB(&ipst->ips_ip_mib,
7881 				    ipIfStatsOutDiscards);
7882 			}
7883 			ip1dbg(("ip_grab_attach_ill (IPv4): "
7884 			    "bad ifindex %d.\n", ifindex));
7885 		}
7886 		if (ret_ill != NULL)
7887 			ill_refrele(ret_ill);
7888 		freemsg(first_mp);
7889 		return (NULL);
7890 	}
7891 
7892 	return (ret_ill);
7893 }
7894 
7895 /*
7896  * IPv4 -
7897  * ip_newroute is called by ip_rput or ip_wput whenever we need to send
7898  * out a packet to a destination address for which we do not have specific
7899  * (or sufficient) routing information.
7900  *
7901  * NOTE : These are the scopes of some of the variables that point at IRE,
7902  *	  which needs to be followed while making any future modifications
7903  *	  to avoid memory leaks.
7904  *
7905  *	- ire and sire are the entries looked up initially by
7906  *	  ire_ftable_lookup.
7907  *	- ipif_ire is used to hold the interface ire associated with
7908  *	  the new cache ire. But it's scope is limited, so we always REFRELE
7909  *	  it before branching out to error paths.
7910  *	- save_ire is initialized before ire_create, so that ire returned
7911  *	  by ire_create will not over-write the ire. We REFRELE save_ire
7912  *	  before breaking out of the switch.
7913  *
7914  *	Thus on failures, we have to REFRELE only ire and sire, if they
7915  *	are not NULL.
7916  */
7917 void
7918 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp,
7919     zoneid_t zoneid, ip_stack_t *ipst)
7920 {
7921 	areq_t	*areq;
7922 	ipaddr_t gw = 0;
7923 	ire_t	*ire = NULL;
7924 	mblk_t	*res_mp;
7925 	ipaddr_t *addrp;
7926 	ipaddr_t nexthop_addr;
7927 	ipif_t  *src_ipif = NULL;
7928 	ill_t	*dst_ill = NULL;
7929 	ipha_t  *ipha;
7930 	ire_t	*sire = NULL;
7931 	mblk_t	*first_mp;
7932 	ire_t	*save_ire;
7933 	ill_t	*attach_ill = NULL;	/* Bind to IPIF_NOFAILOVER address */
7934 	ushort_t ire_marks = 0;
7935 	boolean_t mctl_present;
7936 	ipsec_out_t *io;
7937 	mblk_t	*saved_mp;
7938 	ire_t	*first_sire = NULL;
7939 	mblk_t	*copy_mp = NULL;
7940 	mblk_t	*xmit_mp = NULL;
7941 	ipaddr_t save_dst;
7942 	uint32_t multirt_flags =
7943 	    MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP;
7944 	boolean_t multirt_is_resolvable;
7945 	boolean_t multirt_resolve_next;
7946 	boolean_t do_attach_ill = B_FALSE;
7947 	boolean_t ip_nexthop = B_FALSE;
7948 	tsol_ire_gw_secattr_t *attrp = NULL;
7949 	tsol_gcgrp_t *gcgrp = NULL;
7950 	tsol_gcgrp_addr_t ga;
7951 
7952 	if (ip_debug > 2) {
7953 		/* ip1dbg */
7954 		pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst);
7955 	}
7956 
7957 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
7958 	if (mctl_present) {
7959 		io = (ipsec_out_t *)first_mp->b_rptr;
7960 		ASSERT(io->ipsec_out_type == IPSEC_OUT);
7961 		ASSERT(zoneid == io->ipsec_out_zoneid);
7962 		ASSERT(zoneid != ALL_ZONES);
7963 	}
7964 
7965 	ipha = (ipha_t *)mp->b_rptr;
7966 
7967 	/* All multicast lookups come through ip_newroute_ipif() */
7968 	if (CLASSD(dst)) {
7969 		ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n",
7970 		    ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next));
7971 		freemsg(first_mp);
7972 		return;
7973 	}
7974 
7975 	if (mctl_present && io->ipsec_out_attach_if) {
7976 		/* ip_grab_attach_ill returns a held ill */
7977 		attach_ill = ip_grab_attach_ill(NULL, first_mp,
7978 		    io->ipsec_out_ill_index, B_FALSE, ipst);
7979 
7980 		/* Failure case frees things for us. */
7981 		if (attach_ill == NULL)
7982 			return;
7983 
7984 		/*
7985 		 * Check if we need an ire that will not be
7986 		 * looked up by anybody else i.e. HIDDEN.
7987 		 */
7988 		if (ill_is_probeonly(attach_ill))
7989 			ire_marks = IRE_MARK_HIDDEN;
7990 	}
7991 	if (mctl_present && io->ipsec_out_ip_nexthop) {
7992 		ip_nexthop = B_TRUE;
7993 		nexthop_addr = io->ipsec_out_nexthop_addr;
7994 	}
7995 	/*
7996 	 * If this IRE is created for forwarding or it is not for
7997 	 * traffic for congestion controlled protocols, mark it as temporary.
7998 	 */
7999 	if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol))
8000 		ire_marks |= IRE_MARK_TEMPORARY;
8001 
8002 	/*
8003 	 * Get what we can from ire_ftable_lookup which will follow an IRE
8004 	 * chain until it gets the most specific information available.
8005 	 * For example, we know that there is no IRE_CACHE for this dest,
8006 	 * but there may be an IRE_OFFSUBNET which specifies a gateway.
8007 	 * ire_ftable_lookup will look up the gateway, etc.
8008 	 * Check if in_ill != NULL. If it is true, the packet must be
8009 	 * from an incoming interface where RTA_SRCIFP is set.
8010 	 * Otherwise, given ire_ftable_lookup algorithm, only one among routes
8011 	 * to the destination, of equal netmask length in the forward table,
8012 	 * will be recursively explored. If no information is available
8013 	 * for the final gateway of that route, we force the returned ire
8014 	 * to be equal to sire using MATCH_IRE_PARENT.
8015 	 * At least, in this case we have a starting point (in the buckets)
8016 	 * to look for other routes to the destination in the forward table.
8017 	 * This is actually used only for multirouting, where a list
8018 	 * of routes has to be processed in sequence.
8019 	 *
8020 	 * In the process of coming up with the most specific information,
8021 	 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry
8022 	 * for the gateway (i.e., one for which the ire_nce->nce_state is
8023 	 * not yet ND_REACHABLE, and is in the middle of arp resolution).
8024 	 * Two caveats when handling incomplete ire's in ip_newroute:
8025 	 * - we should be careful when accessing its ire_nce (specifically
8026 	 *   the nce_res_mp) ast it might change underneath our feet, and,
8027 	 * - not all legacy code path callers are prepared to handle
8028 	 *   incomplete ire's, so we should not create/add incomplete
8029 	 *   ire_cache entries here. (See discussion about temporary solution
8030 	 *   further below).
8031 	 *
8032 	 * In order to minimize packet dropping, and to preserve existing
8033 	 * behavior, we treat this case as if there were no IRE_CACHE for the
8034 	 * gateway, and instead use the IF_RESOLVER ire to send out
8035 	 * another request to ARP (this is achieved by passing the
8036 	 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the
8037 	 * arp response comes back in ip_wput_nondata, we will create
8038 	 * a per-dst ire_cache that has an ND_COMPLETE ire.
8039 	 *
8040 	 * Note that this is a temporary solution; the correct solution is
8041 	 * to create an incomplete  per-dst ire_cache entry, and send the
8042 	 * packet out when the gw's nce is resolved. In order to achieve this,
8043 	 * all packet processing must have been completed prior to calling
8044 	 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need
8045 	 * to be modified to accomodate this solution.
8046 	 */
8047 	if (in_ill != NULL) {
8048 		ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL,
8049 		    in_ill, MATCH_IRE_TYPE);
8050 	} else if (ip_nexthop) {
8051 		/*
8052 		 * The first time we come here, we look for an IRE_INTERFACE
8053 		 * entry for the specified nexthop, set the dst to be the
8054 		 * nexthop address and create an IRE_CACHE entry for the
8055 		 * nexthop. The next time around, we are able to find an
8056 		 * IRE_CACHE entry for the nexthop, set the gateway to be the
8057 		 * nexthop address and create an IRE_CACHE entry for the
8058 		 * destination address via the specified nexthop.
8059 		 */
8060 		ire = ire_cache_lookup(nexthop_addr, zoneid,
8061 		    MBLK_GETLABEL(mp), ipst);
8062 		if (ire != NULL) {
8063 			gw = nexthop_addr;
8064 			ire_marks |= IRE_MARK_PRIVATE_ADDR;
8065 		} else {
8066 			ire = ire_ftable_lookup(nexthop_addr, 0, 0,
8067 			    IRE_INTERFACE, NULL, NULL, zoneid, 0,
8068 			    MBLK_GETLABEL(mp),
8069 			    MATCH_IRE_TYPE | MATCH_IRE_SECATTR,
8070 			    ipst);
8071 			if (ire != NULL) {
8072 				dst = nexthop_addr;
8073 			}
8074 		}
8075 	} else if (attach_ill == NULL) {
8076 		ire = ire_ftable_lookup(dst, 0, 0, 0,
8077 		    NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp),
8078 		    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
8079 		    MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT |
8080 		    MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE,
8081 		    ipst);
8082 	} else {
8083 		/*
8084 		 * attach_ill is set only for communicating with
8085 		 * on-link hosts. So, don't look for DEFAULT.
8086 		 */
8087 		ipif_t	*attach_ipif;
8088 
8089 		attach_ipif = ipif_get_next_ipif(NULL, attach_ill);
8090 		if (attach_ipif == NULL) {
8091 			ill_refrele(attach_ill);
8092 			goto icmp_err_ret;
8093 		}
8094 		ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif,
8095 		    &sire, zoneid, 0, MBLK_GETLABEL(mp),
8096 		    MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL |
8097 		    MATCH_IRE_SECATTR, ipst);
8098 		ipif_refrele(attach_ipif);
8099 	}
8100 	ip3dbg(("ip_newroute: ire_ftable_lookup() "
8101 	    "returned ire %p, sire %p\n", (void *)ire, (void *)sire));
8102 
8103 	/*
8104 	 * This loop is run only once in most cases.
8105 	 * We loop to resolve further routes only when the destination
8106 	 * can be reached through multiple RTF_MULTIRT-flagged ires.
8107 	 */
8108 	do {
8109 		/* Clear the previous iteration's values */
8110 		if (src_ipif != NULL) {
8111 			ipif_refrele(src_ipif);
8112 			src_ipif = NULL;
8113 		}
8114 		if (dst_ill != NULL) {
8115 			ill_refrele(dst_ill);
8116 			dst_ill = NULL;
8117 		}
8118 
8119 		multirt_resolve_next = B_FALSE;
8120 		/*
8121 		 * We check if packets have to be multirouted.
8122 		 * In this case, given the current <ire, sire> couple,
8123 		 * we look for the next suitable <ire, sire>.
8124 		 * This check is done in ire_multirt_lookup(),
8125 		 * which applies various criteria to find the next route
8126 		 * to resolve. ire_multirt_lookup() leaves <ire, sire>
8127 		 * unchanged if it detects it has not been tried yet.
8128 		 */
8129 		if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
8130 			ip3dbg(("ip_newroute: starting next_resolution "
8131 			    "with first_mp %p, tag %d\n",
8132 			    (void *)first_mp,
8133 			    MULTIRT_DEBUG_TAGGED(first_mp)));
8134 
8135 			ASSERT(sire != NULL);
8136 			multirt_is_resolvable =
8137 			    ire_multirt_lookup(&ire, &sire, multirt_flags,
8138 				MBLK_GETLABEL(mp), ipst);
8139 
8140 			ip3dbg(("ip_newroute: multirt_is_resolvable %d, "
8141 			    "ire %p, sire %p\n",
8142 			    multirt_is_resolvable,
8143 			    (void *)ire, (void *)sire));
8144 
8145 			if (!multirt_is_resolvable) {
8146 				/*
8147 				 * No more multirt route to resolve; give up
8148 				 * (all routes resolved or no more
8149 				 * resolvable routes).
8150 				 */
8151 				if (ire != NULL) {
8152 					ire_refrele(ire);
8153 					ire = NULL;
8154 				}
8155 			} else {
8156 				ASSERT(sire != NULL);
8157 				ASSERT(ire != NULL);
8158 				/*
8159 				 * We simply use first_sire as a flag that
8160 				 * indicates if a resolvable multirt route
8161 				 * has already been found.
8162 				 * If it is not the case, we may have to send
8163 				 * an ICMP error to report that the
8164 				 * destination is unreachable.
8165 				 * We do not IRE_REFHOLD first_sire.
8166 				 */
8167 				if (first_sire == NULL) {
8168 					first_sire = sire;
8169 				}
8170 			}
8171 		}
8172 		if (ire == NULL) {
8173 			if (ip_debug > 3) {
8174 				/* ip2dbg */
8175 				pr_addr_dbg("ip_newroute: "
8176 				    "can't resolve %s\n", AF_INET, &dst);
8177 			}
8178 			ip3dbg(("ip_newroute: "
8179 			    "ire %p, sire %p, first_sire %p\n",
8180 			    (void *)ire, (void *)sire, (void *)first_sire));
8181 
8182 			if (sire != NULL) {
8183 				ire_refrele(sire);
8184 				sire = NULL;
8185 			}
8186 
8187 			if (first_sire != NULL) {
8188 				/*
8189 				 * At least one multirt route has been found
8190 				 * in the same call to ip_newroute();
8191 				 * there is no need to report an ICMP error.
8192 				 * first_sire was not IRE_REFHOLDed.
8193 				 */
8194 				MULTIRT_DEBUG_UNTAG(first_mp);
8195 				freemsg(first_mp);
8196 				return;
8197 			}
8198 			ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0,
8199 			    RTA_DST, ipst);
8200 			if (attach_ill != NULL)
8201 				ill_refrele(attach_ill);
8202 			goto icmp_err_ret;
8203 		}
8204 
8205 		/*
8206 		 * When RTA_SRCIFP is used to add a route, then an interface
8207 		 * route is added in the source interface's routing table.
8208 		 * If the outgoing interface of this route is of type
8209 		 * IRE_IF_RESOLVER, then upon creation of the ire,
8210 		 * ire_nce->nce_res_mp is set to NULL.
8211 		 * Later, when this route is first used for forwarding
8212 		 * a packet, ip_newroute() is called
8213 		 * to resolve the hardware address of the outgoing ipif.
8214 		 * We do not come here for IRE_IF_NORESOLVER entries in the
8215 		 * source interface based table. We only come here if the
8216 		 * outgoing interface is a resolver interface and we don't
8217 		 * have the ire_nce->nce_res_mp information yet.
8218 		 * If in_ill is not null that means it is called from
8219 		 * ip_rput.
8220 		 */
8221 
8222 		ASSERT(ire->ire_in_ill == NULL ||
8223 		    (ire->ire_type == IRE_IF_RESOLVER &&
8224 		    ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL));
8225 
8226 		/*
8227 		 * Verify that the returned IRE does not have either
8228 		 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is
8229 		 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER.
8230 		 */
8231 		if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) ||
8232 		    (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) {
8233 			if (attach_ill != NULL)
8234 				ill_refrele(attach_ill);
8235 			goto icmp_err_ret;
8236 		}
8237 		/*
8238 		 * Increment the ire_ob_pkt_count field for ire if it is an
8239 		 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and
8240 		 * increment the same for the parent IRE, sire, if it is some
8241 		 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST
8242 		 * and HOST_REDIRECT).
8243 		 */
8244 		if ((ire->ire_type & IRE_INTERFACE) != 0) {
8245 			UPDATE_OB_PKT_COUNT(ire);
8246 			ire->ire_last_used_time = lbolt;
8247 		}
8248 
8249 		if (sire != NULL) {
8250 			gw = sire->ire_gateway_addr;
8251 			ASSERT((sire->ire_type & (IRE_CACHETABLE |
8252 			    IRE_INTERFACE)) == 0);
8253 			UPDATE_OB_PKT_COUNT(sire);
8254 			sire->ire_last_used_time = lbolt;
8255 		}
8256 		/*
8257 		 * We have a route to reach the destination.
8258 		 *
8259 		 * 1) If the interface is part of ill group, try to get a new
8260 		 *    ill taking load spreading into account.
8261 		 *
8262 		 * 2) After selecting the ill, get a source address that
8263 		 *    might create good inbound load spreading.
8264 		 *    ipif_select_source does this for us.
8265 		 *
8266 		 * If the application specified the ill (ifindex), we still
8267 		 * load spread. Only if the packets needs to go out
8268 		 * specifically on a given ill e.g. binding to
8269 		 * IPIF_NOFAILOVER address, then we don't try to use a
8270 		 * different ill for load spreading.
8271 		 */
8272 		if (attach_ill == NULL) {
8273 			/*
8274 			 * Don't perform outbound load spreading in the
8275 			 * case of an RTF_MULTIRT route, as we actually
8276 			 * typically want to replicate outgoing packets
8277 			 * through particular interfaces.
8278 			 */
8279 			if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
8280 				dst_ill = ire->ire_ipif->ipif_ill;
8281 				/* for uniformity */
8282 				ill_refhold(dst_ill);
8283 			} else {
8284 				/*
8285 				 * If we are here trying to create an IRE_CACHE
8286 				 * for an offlink destination and have the
8287 				 * IRE_CACHE for the next hop and the latter is
8288 				 * using virtual IP source address selection i.e
8289 				 * it's ire->ire_ipif is pointing to a virtual
8290 				 * network interface (vni) then
8291 				 * ip_newroute_get_dst_ll() will return the vni
8292 				 * interface as the dst_ill. Since the vni is
8293 				 * virtual i.e not associated with any physical
8294 				 * interface, it cannot be the dst_ill, hence
8295 				 * in such a case call ip_newroute_get_dst_ll()
8296 				 * with the stq_ill instead of the ire_ipif ILL.
8297 				 * The function returns a refheld ill.
8298 				 */
8299 				if ((ire->ire_type == IRE_CACHE) &&
8300 				    IS_VNI(ire->ire_ipif->ipif_ill))
8301 					dst_ill = ip_newroute_get_dst_ill(
8302 						ire->ire_stq->q_ptr);
8303 				else
8304 					dst_ill = ip_newroute_get_dst_ill(
8305 						ire->ire_ipif->ipif_ill);
8306 			}
8307 			if (dst_ill == NULL) {
8308 				if (ip_debug > 2) {
8309 					pr_addr_dbg("ip_newroute: "
8310 					    "no dst ill for dst"
8311 					    " %s\n", AF_INET, &dst);
8312 				}
8313 				goto icmp_err_ret;
8314 			}
8315 		} else {
8316 			dst_ill = ire->ire_ipif->ipif_ill;
8317 			/* for uniformity */
8318 			ill_refhold(dst_ill);
8319 			/*
8320 			 * We should have found a route matching ill as we
8321 			 * called ire_ftable_lookup with MATCH_IRE_ILL.
8322 			 * Rather than asserting, when there is a mismatch,
8323 			 * we just drop the packet.
8324 			 */
8325 			if (dst_ill != attach_ill) {
8326 				ip0dbg(("ip_newroute: Packet dropped as "
8327 				    "IPIF_NOFAILOVER ill is %s, "
8328 				    "ire->ire_ipif->ipif_ill is %s\n",
8329 				    attach_ill->ill_name,
8330 				    dst_ill->ill_name));
8331 				ill_refrele(attach_ill);
8332 				goto icmp_err_ret;
8333 			}
8334 		}
8335 		/* attach_ill can't go in loop. IPMP and CGTP are disjoint */
8336 		if (attach_ill != NULL) {
8337 			ill_refrele(attach_ill);
8338 			attach_ill = NULL;
8339 			do_attach_ill = B_TRUE;
8340 		}
8341 		ASSERT(dst_ill != NULL);
8342 		ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name));
8343 
8344 		/*
8345 		 * Pick the best source address from dst_ill.
8346 		 *
8347 		 * 1) If it is part of a multipathing group, we would
8348 		 *    like to spread the inbound packets across different
8349 		 *    interfaces. ipif_select_source picks a random source
8350 		 *    across the different ills in the group.
8351 		 *
8352 		 * 2) If it is not part of a multipathing group, we try
8353 		 *    to pick the source address from the destination
8354 		 *    route. Clustering assumes that when we have multiple
8355 		 *    prefixes hosted on an interface, the prefix of the
8356 		 *    source address matches the prefix of the destination
8357 		 *    route. We do this only if the address is not
8358 		 *    DEPRECATED.
8359 		 *
8360 		 * 3) If the conn is in a different zone than the ire, we
8361 		 *    need to pick a source address from the right zone.
8362 		 *
8363 		 * NOTE : If we hit case (1) above, the prefix of the source
8364 		 *	  address picked may not match the prefix of the
8365 		 *	  destination routes prefix as ipif_select_source
8366 		 *	  does not look at "dst" while picking a source
8367 		 *	  address.
8368 		 *	  If we want the same behavior as (2), we will need
8369 		 *	  to change the behavior of ipif_select_source.
8370 		 */
8371 		ASSERT(src_ipif == NULL);
8372 		if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) {
8373 			/*
8374 			 * The RTF_SETSRC flag is set in the parent ire (sire).
8375 			 * Check that the ipif matching the requested source
8376 			 * address still exists.
8377 			 */
8378 			src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL,
8379 			    zoneid, NULL, NULL, NULL, NULL, ipst);
8380 		}
8381 		if (src_ipif == NULL) {
8382 			ire_marks |= IRE_MARK_USESRC_CHECK;
8383 			if ((dst_ill->ill_group != NULL) ||
8384 			    (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) ||
8385 			    (connp != NULL && ire->ire_zoneid != zoneid &&
8386 			    ire->ire_zoneid != ALL_ZONES) ||
8387 			    (dst_ill->ill_usesrc_ifindex != 0)) {
8388 				/*
8389 				 * If the destination is reachable via a
8390 				 * given gateway, the selected source address
8391 				 * should be in the same subnet as the gateway.
8392 				 * Otherwise, the destination is not reachable.
8393 				 *
8394 				 * If there are no interfaces on the same subnet
8395 				 * as the destination, ipif_select_source gives
8396 				 * first non-deprecated interface which might be
8397 				 * on a different subnet than the gateway.
8398 				 * This is not desirable. Hence pass the dst_ire
8399 				 * source address to ipif_select_source.
8400 				 * It is sure that the destination is reachable
8401 				 * with the dst_ire source address subnet.
8402 				 * So passing dst_ire source address to
8403 				 * ipif_select_source will make sure that the
8404 				 * selected source will be on the same subnet
8405 				 * as dst_ire source address.
8406 				 */
8407 				ipaddr_t saddr = ire->ire_ipif->ipif_src_addr;
8408 				src_ipif = ipif_select_source(dst_ill, saddr,
8409 				    zoneid);
8410 				if (src_ipif == NULL) {
8411 					if (ip_debug > 2) {
8412 						pr_addr_dbg("ip_newroute: "
8413 						    "no src for dst %s ",
8414 						    AF_INET, &dst);
8415 						printf("through interface %s\n",
8416 						    dst_ill->ill_name);
8417 					}
8418 					goto icmp_err_ret;
8419 				}
8420 			} else {
8421 				src_ipif = ire->ire_ipif;
8422 				ASSERT(src_ipif != NULL);
8423 				/* hold src_ipif for uniformity */
8424 				ipif_refhold(src_ipif);
8425 			}
8426 		}
8427 
8428 		/*
8429 		 * Assign a source address while we have the conn.
8430 		 * We can't have ip_wput_ire pick a source address when the
8431 		 * packet returns from arp since we need to look at
8432 		 * conn_unspec_src and conn_zoneid, and we lose the conn when
8433 		 * going through arp.
8434 		 *
8435 		 * NOTE : ip_newroute_v6 does not have this piece of code as
8436 		 *	  it uses ip6i to store this information.
8437 		 */
8438 		if (ipha->ipha_src == INADDR_ANY &&
8439 		    (connp == NULL || !connp->conn_unspec_src)) {
8440 			ipha->ipha_src = src_ipif->ipif_src_addr;
8441 		}
8442 		if (ip_debug > 3) {
8443 			/* ip2dbg */
8444 			pr_addr_dbg("ip_newroute: first hop %s\n",
8445 			    AF_INET, &gw);
8446 		}
8447 		ip2dbg(("\tire type %s (%d)\n",
8448 		    ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type));
8449 
8450 		/*
8451 		 * The TTL of multirouted packets is bounded by the
8452 		 * ip_multirt_ttl ndd variable.
8453 		 */
8454 		if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) {
8455 			/* Force TTL of multirouted packets */
8456 			if ((ipst->ips_ip_multirt_ttl > 0) &&
8457 			    (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) {
8458 				ip2dbg(("ip_newroute: forcing multirt TTL "
8459 				    "to %d (was %d), dst 0x%08x\n",
8460 				    ipst->ips_ip_multirt_ttl, ipha->ipha_ttl,
8461 				    ntohl(sire->ire_addr)));
8462 				ipha->ipha_ttl = ipst->ips_ip_multirt_ttl;
8463 			}
8464 		}
8465 		/*
8466 		 * At this point in ip_newroute(), ire is either the
8467 		 * IRE_CACHE of the next-hop gateway for an off-subnet
8468 		 * destination or an IRE_INTERFACE type that should be used
8469 		 * to resolve an on-subnet destination or an on-subnet
8470 		 * next-hop gateway.
8471 		 *
8472 		 * In the IRE_CACHE case, we have the following :
8473 		 *
8474 		 * 1) src_ipif - used for getting a source address.
8475 		 *
8476 		 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This
8477 		 *    means packets using this IRE_CACHE will go out on
8478 		 *    dst_ill.
8479 		 *
8480 		 * 3) The IRE sire will point to the prefix that is the
8481 		 *    longest  matching route for the destination. These
8482 		 *    prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST.
8483 		 *
8484 		 *    The newly created IRE_CACHE entry for the off-subnet
8485 		 *    destination is tied to both the prefix route and the
8486 		 *    interface route used to resolve the next-hop gateway
8487 		 *    via the ire_phandle and ire_ihandle fields,
8488 		 *    respectively.
8489 		 *
8490 		 * In the IRE_INTERFACE case, we have the following :
8491 		 *
8492 		 * 1) src_ipif - used for getting a source address.
8493 		 *
8494 		 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This
8495 		 *    means packets using the IRE_CACHE that we will build
8496 		 *    here will go out on dst_ill.
8497 		 *
8498 		 * 3) sire may or may not be NULL. But, the IRE_CACHE that is
8499 		 *    to be created will only be tied to the IRE_INTERFACE
8500 		 *    that was derived from the ire_ihandle field.
8501 		 *
8502 		 *    If sire is non-NULL, it means the destination is
8503 		 *    off-link and we will first create the IRE_CACHE for the
8504 		 *    gateway. Next time through ip_newroute, we will create
8505 		 *    the IRE_CACHE for the final destination as described
8506 		 *    above.
8507 		 *
8508 		 * In both cases, after the current resolution has been
8509 		 * completed (or possibly initialised, in the IRE_INTERFACE
8510 		 * case), the loop may be re-entered to attempt the resolution
8511 		 * of another RTF_MULTIRT route.
8512 		 *
8513 		 * When an IRE_CACHE entry for the off-subnet destination is
8514 		 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire,
8515 		 * for further processing in emission loops.
8516 		 */
8517 		save_ire = ire;
8518 		switch (ire->ire_type) {
8519 		case IRE_CACHE: {
8520 			ire_t	*ipif_ire;
8521 			mblk_t	*ire_fp_mp;
8522 
8523 			ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE);
8524 			if (gw == 0)
8525 				gw = ire->ire_gateway_addr;
8526 			/*
8527 			 * We need 3 ire's to create a new cache ire for an
8528 			 * off-link destination from the cache ire of the
8529 			 * gateway.
8530 			 *
8531 			 *	1. The prefix ire 'sire' (Note that this does
8532 			 *	   not apply to the conn_nexthop_set case)
8533 			 *	2. The cache ire of the gateway 'ire'
8534 			 *	3. The interface ire 'ipif_ire'
8535 			 *
8536 			 * We have (1) and (2). We lookup (3) below.
8537 			 *
8538 			 * If there is no interface route to the gateway,
8539 			 * it is a race condition, where we found the cache
8540 			 * but the interface route has been deleted.
8541 			 */
8542 			if (ip_nexthop) {
8543 				ipif_ire = ire_ihandle_lookup_onlink(ire);
8544 			} else {
8545 				ipif_ire =
8546 				    ire_ihandle_lookup_offlink(ire, sire);
8547 			}
8548 			if (ipif_ire == NULL) {
8549 				ip1dbg(("ip_newroute: "
8550 				    "ire_ihandle_lookup_offlink failed\n"));
8551 				goto icmp_err_ret;
8552 			}
8553 			/*
8554 			 * XXX We are using the same res_mp
8555 			 * (DL_UNITDATA_REQ) though the save_ire is not
8556 			 * pointing at the same ill.
8557 			 * This is incorrect. We need to send it up to the
8558 			 * resolver to get the right res_mp. For ethernets
8559 			 * this may be okay (ill_type == DL_ETHER).
8560 			 */
8561 			res_mp = save_ire->ire_nce->nce_res_mp;
8562 			ire_fp_mp = NULL;
8563 			/*
8564 			 * save_ire's nce_fp_mp can't change since it is
8565 			 * not an IRE_MIPRTUN or IRE_BROADCAST
8566 			 * LOCK_IRE_FP_MP does not do any useful work in
8567 			 * the case of IRE_CACHE. So we don't use it below.
8568 			 */
8569 			if (save_ire->ire_stq == dst_ill->ill_wq)
8570 				ire_fp_mp = save_ire->ire_nce->nce_fp_mp;
8571 
8572 			/*
8573 			 * Check cached gateway IRE for any security
8574 			 * attributes; if found, associate the gateway
8575 			 * credentials group to the destination IRE.
8576 			 */
8577 			if ((attrp = save_ire->ire_gw_secattr) != NULL) {
8578 				mutex_enter(&attrp->igsa_lock);
8579 				if ((gcgrp = attrp->igsa_gcgrp) != NULL)
8580 					GCGRP_REFHOLD(gcgrp);
8581 				mutex_exit(&attrp->igsa_lock);
8582 			}
8583 
8584 			ire = ire_create(
8585 			    (uchar_t *)&dst,		/* dest address */
8586 			    (uchar_t *)&ip_g_all_ones,	/* mask */
8587 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
8588 			    (uchar_t *)&gw,		/* gateway address */
8589 			    NULL,
8590 			    &save_ire->ire_max_frag,
8591 			    ire_fp_mp,			/* Fast Path header */
8592 			    dst_ill->ill_rq,		/* recv-from queue */
8593 			    dst_ill->ill_wq,		/* send-to queue */
8594 			    IRE_CACHE,			/* IRE type */
8595 			    res_mp,
8596 			    src_ipif,
8597 			    in_ill,			/* incoming ill */
8598 			    (sire != NULL) ?
8599 				sire->ire_mask : 0, 	/* Parent mask */
8600 			    (sire != NULL) ?
8601 				sire->ire_phandle : 0,  /* Parent handle */
8602 			    ipif_ire->ire_ihandle,	/* Interface handle */
8603 			    (sire != NULL) ? (sire->ire_flags &
8604 				(RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */
8605 			    (sire != NULL) ?
8606 				&(sire->ire_uinfo) : &(save_ire->ire_uinfo),
8607 			    NULL,
8608 			    gcgrp,
8609 			    ipst);
8610 
8611 			if (ire == NULL) {
8612 				if (gcgrp != NULL) {
8613 					GCGRP_REFRELE(gcgrp);
8614 					gcgrp = NULL;
8615 				}
8616 				ire_refrele(ipif_ire);
8617 				ire_refrele(save_ire);
8618 				break;
8619 			}
8620 
8621 			/* reference now held by IRE */
8622 			gcgrp = NULL;
8623 
8624 			ire->ire_marks |= ire_marks;
8625 
8626 			/*
8627 			 * Prevent sire and ipif_ire from getting deleted.
8628 			 * The newly created ire is tied to both of them via
8629 			 * the phandle and ihandle respectively.
8630 			 */
8631 			if (sire != NULL) {
8632 				IRB_REFHOLD(sire->ire_bucket);
8633 				/* Has it been removed already ? */
8634 				if (sire->ire_marks & IRE_MARK_CONDEMNED) {
8635 					IRB_REFRELE(sire->ire_bucket);
8636 					ire_refrele(ipif_ire);
8637 					ire_refrele(save_ire);
8638 					break;
8639 				}
8640 			}
8641 
8642 			IRB_REFHOLD(ipif_ire->ire_bucket);
8643 			/* Has it been removed already ? */
8644 			if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) {
8645 				IRB_REFRELE(ipif_ire->ire_bucket);
8646 				if (sire != NULL)
8647 					IRB_REFRELE(sire->ire_bucket);
8648 				ire_refrele(ipif_ire);
8649 				ire_refrele(save_ire);
8650 				break;
8651 			}
8652 
8653 			xmit_mp = first_mp;
8654 			/*
8655 			 * In the case of multirouting, a copy
8656 			 * of the packet is done before its sending.
8657 			 * The copy is used to attempt another
8658 			 * route resolution, in a next loop.
8659 			 */
8660 			if (ire->ire_flags & RTF_MULTIRT) {
8661 				copy_mp = copymsg(first_mp);
8662 				if (copy_mp != NULL) {
8663 					xmit_mp = copy_mp;
8664 					MULTIRT_DEBUG_TAG(first_mp);
8665 				}
8666 			}
8667 			ire_add_then_send(q, ire, xmit_mp);
8668 			ire_refrele(save_ire);
8669 
8670 			/* Assert that sire is not deleted yet. */
8671 			if (sire != NULL) {
8672 				ASSERT(sire->ire_ptpn != NULL);
8673 				IRB_REFRELE(sire->ire_bucket);
8674 			}
8675 
8676 			/* Assert that ipif_ire is not deleted yet. */
8677 			ASSERT(ipif_ire->ire_ptpn != NULL);
8678 			IRB_REFRELE(ipif_ire->ire_bucket);
8679 			ire_refrele(ipif_ire);
8680 
8681 			/*
8682 			 * If copy_mp is not NULL, multirouting was
8683 			 * requested. We loop to initiate a next
8684 			 * route resolution attempt, starting from sire.
8685 			 */
8686 			if (copy_mp != NULL) {
8687 				/*
8688 				 * Search for the next unresolved
8689 				 * multirt route.
8690 				 */
8691 				copy_mp = NULL;
8692 				ipif_ire = NULL;
8693 				ire = NULL;
8694 				multirt_resolve_next = B_TRUE;
8695 				continue;
8696 			}
8697 			if (sire != NULL)
8698 				ire_refrele(sire);
8699 			ipif_refrele(src_ipif);
8700 			ill_refrele(dst_ill);
8701 			return;
8702 		}
8703 		case IRE_IF_NORESOLVER: {
8704 			/*
8705 			 * We have what we need to build an IRE_CACHE.
8706 			 *
8707 			 * Create a new res_mp with the IP gateway address
8708 			 * in destination address in the DLPI hdr if the
8709 			 * physical length is exactly 4 bytes.
8710 			 */
8711 			if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) {
8712 				uchar_t *addr;
8713 
8714 				if (gw)
8715 					addr = (uchar_t *)&gw;
8716 				else
8717 					addr = (uchar_t *)&dst;
8718 
8719 				res_mp = ill_dlur_gen(addr,
8720 				    dst_ill->ill_phys_addr_length,
8721 				    dst_ill->ill_sap,
8722 				    dst_ill->ill_sap_length);
8723 
8724 				if (res_mp == NULL) {
8725 					ip1dbg(("ip_newroute: res_mp NULL\n"));
8726 					break;
8727 				}
8728 			} else if (dst_ill->ill_resolver_mp == NULL) {
8729 				ip1dbg(("ip_newroute: dst_ill %p "
8730 				    "for IF_NORESOLV ire %p has "
8731 				    "no ill_resolver_mp\n",
8732 				    (void *)dst_ill, (void *)ire));
8733 				break;
8734 			} else {
8735 				res_mp = NULL;
8736 			}
8737 
8738 			/*
8739 			 * TSol note: We are creating the ire cache for the
8740 			 * destination 'dst'. If 'dst' is offlink, going
8741 			 * through the first hop 'gw', the security attributes
8742 			 * of 'dst' must be set to point to the gateway
8743 			 * credentials of gateway 'gw'. If 'dst' is onlink, it
8744 			 * is possible that 'dst' is a potential gateway that is
8745 			 * referenced by some route that has some security
8746 			 * attributes. Thus in the former case, we need to do a
8747 			 * gcgrp_lookup of 'gw' while in the latter case we
8748 			 * need to do gcgrp_lookup of 'dst' itself.
8749 			 */
8750 			ga.ga_af = AF_INET;
8751 			IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst,
8752 			    &ga.ga_addr);
8753 			gcgrp = gcgrp_lookup(&ga, B_FALSE);
8754 
8755 			ire = ire_create(
8756 			    (uchar_t *)&dst,		/* dest address */
8757 			    (uchar_t *)&ip_g_all_ones,	/* mask */
8758 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
8759 			    (uchar_t *)&gw,		/* gateway address */
8760 			    NULL,
8761 			    &save_ire->ire_max_frag,
8762 			    NULL,			/* Fast Path header */
8763 			    dst_ill->ill_rq,		/* recv-from queue */
8764 			    dst_ill->ill_wq,		/* send-to queue */
8765 			    IRE_CACHE,
8766 			    res_mp,
8767 			    src_ipif,
8768 			    in_ill,			/* Incoming ill */
8769 			    save_ire->ire_mask,		/* Parent mask */
8770 			    (sire != NULL) ?		/* Parent handle */
8771 				sire->ire_phandle : 0,
8772 			    save_ire->ire_ihandle,	/* Interface handle */
8773 			    (sire != NULL) ? sire->ire_flags &
8774 				(RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */
8775 			    &(save_ire->ire_uinfo),
8776 			    NULL,
8777 			    gcgrp,
8778 			    ipst);
8779 
8780 			if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN)
8781 				freeb(res_mp);
8782 
8783 			if (ire == NULL) {
8784 				if (gcgrp != NULL) {
8785 					GCGRP_REFRELE(gcgrp);
8786 					gcgrp = NULL;
8787 				}
8788 				ire_refrele(save_ire);
8789 				break;
8790 			}
8791 
8792 			/* reference now held by IRE */
8793 			gcgrp = NULL;
8794 
8795 			ire->ire_marks |= ire_marks;
8796 
8797 			/* Prevent save_ire from getting deleted */
8798 			IRB_REFHOLD(save_ire->ire_bucket);
8799 			/* Has it been removed already ? */
8800 			if (save_ire->ire_marks & IRE_MARK_CONDEMNED) {
8801 				IRB_REFRELE(save_ire->ire_bucket);
8802 				ire_refrele(save_ire);
8803 				break;
8804 			}
8805 
8806 			/*
8807 			 * In the case of multirouting, a copy
8808 			 * of the packet is made before it is sent.
8809 			 * The copy is used in the next
8810 			 * loop to attempt another resolution.
8811 			 */
8812 			xmit_mp = first_mp;
8813 			if ((sire != NULL) &&
8814 			    (sire->ire_flags & RTF_MULTIRT)) {
8815 				copy_mp = copymsg(first_mp);
8816 				if (copy_mp != NULL) {
8817 					xmit_mp = copy_mp;
8818 					MULTIRT_DEBUG_TAG(first_mp);
8819 				}
8820 			}
8821 			ire_add_then_send(q, ire, xmit_mp);
8822 
8823 			/* Assert that it is not deleted yet. */
8824 			ASSERT(save_ire->ire_ptpn != NULL);
8825 			IRB_REFRELE(save_ire->ire_bucket);
8826 			ire_refrele(save_ire);
8827 
8828 			if (copy_mp != NULL) {
8829 				/*
8830 				 * If we found a (no)resolver, we ignore any
8831 				 * trailing top priority IRE_CACHE in further
8832 				 * loops. This ensures that we do not omit any
8833 				 * (no)resolver.
8834 				 * This IRE_CACHE, if any, will be processed
8835 				 * by another thread entering ip_newroute().
8836 				 * IRE_CACHE entries, if any, will be processed
8837 				 * by another thread entering ip_newroute(),
8838 				 * (upon resolver response, for instance).
8839 				 * This aims to force parallel multirt
8840 				 * resolutions as soon as a packet must be sent.
8841 				 * In the best case, after the tx of only one
8842 				 * packet, all reachable routes are resolved.
8843 				 * Otherwise, the resolution of all RTF_MULTIRT
8844 				 * routes would require several emissions.
8845 				 */
8846 				multirt_flags &= ~MULTIRT_CACHEGW;
8847 
8848 				/*
8849 				 * Search for the next unresolved multirt
8850 				 * route.
8851 				 */
8852 				copy_mp = NULL;
8853 				save_ire = NULL;
8854 				ire = NULL;
8855 				multirt_resolve_next = B_TRUE;
8856 				continue;
8857 			}
8858 
8859 			/*
8860 			 * Don't need sire anymore
8861 			 */
8862 			if (sire != NULL)
8863 				ire_refrele(sire);
8864 
8865 			ipif_refrele(src_ipif);
8866 			ill_refrele(dst_ill);
8867 			return;
8868 		}
8869 		case IRE_IF_RESOLVER:
8870 			/*
8871 			 * We can't build an IRE_CACHE yet, but at least we
8872 			 * found a resolver that can help.
8873 			 */
8874 			res_mp = dst_ill->ill_resolver_mp;
8875 			if (!OK_RESOLVER_MP(res_mp))
8876 				break;
8877 
8878 			/*
8879 			 * To be at this point in the code with a non-zero gw
8880 			 * means that dst is reachable through a gateway that
8881 			 * we have never resolved.  By changing dst to the gw
8882 			 * addr we resolve the gateway first.
8883 			 * When ire_add_then_send() tries to put the IP dg
8884 			 * to dst, it will reenter ip_newroute() at which
8885 			 * time we will find the IRE_CACHE for the gw and
8886 			 * create another IRE_CACHE in case IRE_CACHE above.
8887 			 */
8888 			if (gw != INADDR_ANY) {
8889 				/*
8890 				 * The source ipif that was determined above was
8891 				 * relative to the destination address, not the
8892 				 * gateway's. If src_ipif was not taken out of
8893 				 * the IRE_IF_RESOLVER entry, we'll need to call
8894 				 * ipif_select_source() again.
8895 				 */
8896 				if (src_ipif != ire->ire_ipif) {
8897 					ipif_refrele(src_ipif);
8898 					src_ipif = ipif_select_source(dst_ill,
8899 					    gw, zoneid);
8900 					if (src_ipif == NULL) {
8901 						if (ip_debug > 2) {
8902 							pr_addr_dbg(
8903 							    "ip_newroute: no "
8904 							    "src for gw %s ",
8905 							    AF_INET, &gw);
8906 							printf("through "
8907 							    "interface %s\n",
8908 							    dst_ill->ill_name);
8909 						}
8910 						goto icmp_err_ret;
8911 					}
8912 				}
8913 				save_dst = dst;
8914 				dst = gw;
8915 				gw = INADDR_ANY;
8916 			}
8917 
8918 			/*
8919 			 * We obtain a partial IRE_CACHE which we will pass
8920 			 * along with the resolver query.  When the response
8921 			 * comes back it will be there ready for us to add.
8922 			 * The ire_max_frag is atomically set under the
8923 			 * irebucket lock in ire_add_v[46].
8924 			 */
8925 
8926 			ire = ire_create_mp(
8927 			    (uchar_t *)&dst,		/* dest address */
8928 			    (uchar_t *)&ip_g_all_ones,	/* mask */
8929 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
8930 			    (uchar_t *)&gw,		/* gateway address */
8931 			    NULL,			/* no in_src_addr */
8932 			    NULL,			/* ire_max_frag */
8933 			    NULL,			/* Fast Path header */
8934 			    dst_ill->ill_rq,		/* recv-from queue */
8935 			    dst_ill->ill_wq,		/* send-to queue */
8936 			    IRE_CACHE,
8937 			    NULL,
8938 			    src_ipif,			/* Interface ipif */
8939 			    in_ill,			/* Incoming ILL */
8940 			    save_ire->ire_mask,		/* Parent mask */
8941 			    0,
8942 			    save_ire->ire_ihandle,	/* Interface handle */
8943 			    0,				/* flags if any */
8944 			    &(save_ire->ire_uinfo),
8945 			    NULL,
8946 			    NULL,
8947 			    ipst);
8948 
8949 			if (ire == NULL) {
8950 				ire_refrele(save_ire);
8951 				break;
8952 			}
8953 
8954 			if ((sire != NULL) &&
8955 			    (sire->ire_flags & RTF_MULTIRT)) {
8956 				copy_mp = copymsg(first_mp);
8957 				if (copy_mp != NULL)
8958 					MULTIRT_DEBUG_TAG(copy_mp);
8959 			}
8960 
8961 			ire->ire_marks |= ire_marks;
8962 
8963 			/*
8964 			 * Construct message chain for the resolver
8965 			 * of the form:
8966 			 * 	ARP_REQ_MBLK-->IRE_MBLK-->Packet
8967 			 * Packet could contain a IPSEC_OUT mp.
8968 			 *
8969 			 * NOTE : ire will be added later when the response
8970 			 * comes back from ARP. If the response does not
8971 			 * come back, ARP frees the packet. For this reason,
8972 			 * we can't REFHOLD the bucket of save_ire to prevent
8973 			 * deletions. We may not be able to REFRELE the bucket
8974 			 * if the response never comes back. Thus, before
8975 			 * adding the ire, ire_add_v4 will make sure that the
8976 			 * interface route does not get deleted. This is the
8977 			 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6
8978 			 * where we can always prevent deletions because of
8979 			 * the synchronous nature of adding IRES i.e
8980 			 * ire_add_then_send is called after creating the IRE.
8981 			 */
8982 			ASSERT(ire->ire_mp != NULL);
8983 			ire->ire_mp->b_cont = first_mp;
8984 			/* Have saved_mp handy, for cleanup if canput fails */
8985 			saved_mp = mp;
8986 			mp = copyb(res_mp);
8987 			if (mp == NULL) {
8988 				/* Prepare for cleanup */
8989 				mp = saved_mp; /* pkt */
8990 				ire_delete(ire); /* ire_mp */
8991 				ire = NULL;
8992 				ire_refrele(save_ire);
8993 				if (copy_mp != NULL) {
8994 					MULTIRT_DEBUG_UNTAG(copy_mp);
8995 					freemsg(copy_mp);
8996 					copy_mp = NULL;
8997 				}
8998 				break;
8999 			}
9000 			linkb(mp, ire->ire_mp);
9001 
9002 			/*
9003 			 * Fill in the source and dest addrs for the resolver.
9004 			 * NOTE: this depends on memory layouts imposed by
9005 			 * ill_init().
9006 			 */
9007 			areq = (areq_t *)mp->b_rptr;
9008 			addrp = (ipaddr_t *)((char *)areq +
9009 			    areq->areq_sender_addr_offset);
9010 			if (do_attach_ill) {
9011 				/*
9012 				 * This is bind to no failover case.
9013 				 * arp packet also must go out on attach_ill.
9014 				 */
9015 				ASSERT(ipha->ipha_src != NULL);
9016 				*addrp = ipha->ipha_src;
9017 			} else {
9018 				*addrp = save_ire->ire_src_addr;
9019 			}
9020 
9021 			ire_refrele(save_ire);
9022 			addrp = (ipaddr_t *)((char *)areq +
9023 			    areq->areq_target_addr_offset);
9024 			*addrp = dst;
9025 			/* Up to the resolver. */
9026 			if (canputnext(dst_ill->ill_rq) &&
9027 			    !(dst_ill->ill_arp_closing)) {
9028 				putnext(dst_ill->ill_rq, mp);
9029 				ire = NULL;
9030 				if (copy_mp != NULL) {
9031 					/*
9032 					 * If we found a resolver, we ignore
9033 					 * any trailing top priority IRE_CACHE
9034 					 * in the further loops. This ensures
9035 					 * that we do not omit any resolver.
9036 					 * IRE_CACHE entries, if any, will be
9037 					 * processed next time we enter
9038 					 * ip_newroute().
9039 					 */
9040 					multirt_flags &= ~MULTIRT_CACHEGW;
9041 					/*
9042 					 * Search for the next unresolved
9043 					 * multirt route.
9044 					 */
9045 					first_mp = copy_mp;
9046 					copy_mp = NULL;
9047 					/* Prepare the next resolution loop. */
9048 					mp = first_mp;
9049 					EXTRACT_PKT_MP(mp, first_mp,
9050 					    mctl_present);
9051 					if (mctl_present)
9052 						io = (ipsec_out_t *)
9053 						    first_mp->b_rptr;
9054 					ipha = (ipha_t *)mp->b_rptr;
9055 
9056 					ASSERT(sire != NULL);
9057 
9058 					dst = save_dst;
9059 					multirt_resolve_next = B_TRUE;
9060 					continue;
9061 				}
9062 
9063 				if (sire != NULL)
9064 					ire_refrele(sire);
9065 
9066 				/*
9067 				 * The response will come back in ip_wput
9068 				 * with db_type IRE_DB_TYPE.
9069 				 */
9070 				ipif_refrele(src_ipif);
9071 				ill_refrele(dst_ill);
9072 				return;
9073 			} else {
9074 				/* Prepare for cleanup */
9075 				DTRACE_PROBE1(ip__newroute__drop, mblk_t *,
9076 				    mp);
9077 				mp->b_cont = NULL;
9078 				freeb(mp); /* areq */
9079 				/*
9080 				 * this is an ire that is not added to the
9081 				 * cache. ire_freemblk will handle the release
9082 				 * of any resources associated with the ire.
9083 				 */
9084 				ire_delete(ire); /* ire_mp */
9085 				mp = saved_mp; /* pkt */
9086 				ire = NULL;
9087 				if (copy_mp != NULL) {
9088 					MULTIRT_DEBUG_UNTAG(copy_mp);
9089 					freemsg(copy_mp);
9090 					copy_mp = NULL;
9091 				}
9092 				break;
9093 			}
9094 		default:
9095 			break;
9096 		}
9097 	} while (multirt_resolve_next);
9098 
9099 	ip1dbg(("ip_newroute: dropped\n"));
9100 	/* Did this packet originate externally? */
9101 	if (mp->b_prev) {
9102 		mp->b_next = NULL;
9103 		mp->b_prev = NULL;
9104 		if (in_ill != NULL) {
9105 			BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards);
9106 		} else {
9107 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
9108 		}
9109 	} else {
9110 		if (dst_ill != NULL) {
9111 			BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards);
9112 		} else {
9113 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
9114 		}
9115 	}
9116 	ASSERT(copy_mp == NULL);
9117 	MULTIRT_DEBUG_UNTAG(first_mp);
9118 	freemsg(first_mp);
9119 	if (ire != NULL)
9120 		ire_refrele(ire);
9121 	if (sire != NULL)
9122 		ire_refrele(sire);
9123 	if (src_ipif != NULL)
9124 		ipif_refrele(src_ipif);
9125 	if (dst_ill != NULL)
9126 		ill_refrele(dst_ill);
9127 	return;
9128 
9129 icmp_err_ret:
9130 	ip1dbg(("ip_newroute: no route\n"));
9131 	if (src_ipif != NULL)
9132 		ipif_refrele(src_ipif);
9133 	if (dst_ill != NULL)
9134 		ill_refrele(dst_ill);
9135 	if (sire != NULL)
9136 		ire_refrele(sire);
9137 	/* Did this packet originate externally? */
9138 	if (mp->b_prev) {
9139 		mp->b_next = NULL;
9140 		mp->b_prev = NULL;
9141 		if (in_ill != NULL) {
9142 			BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes);
9143 		} else {
9144 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInNoRoutes);
9145 		}
9146 		q = WR(q);
9147 	} else {
9148 		/*
9149 		 * There is no outgoing ill, so just increment the
9150 		 * system MIB.
9151 		 */
9152 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
9153 		/*
9154 		 * Since ip_wput() isn't close to finished, we fill
9155 		 * in enough of the header for credible error reporting.
9156 		 */
9157 		if (ip_hdr_complete(ipha, zoneid, ipst)) {
9158 			/* Failed */
9159 			MULTIRT_DEBUG_UNTAG(first_mp);
9160 			freemsg(first_mp);
9161 			if (ire != NULL)
9162 				ire_refrele(ire);
9163 			return;
9164 		}
9165 	}
9166 
9167 	/*
9168 	 * At this point we will have ire only if RTF_BLACKHOLE
9169 	 * or RTF_REJECT flags are set on the IRE. It will not
9170 	 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set.
9171 	 */
9172 	if (ire != NULL) {
9173 		if (ire->ire_flags & RTF_BLACKHOLE) {
9174 			ire_refrele(ire);
9175 			MULTIRT_DEBUG_UNTAG(first_mp);
9176 			freemsg(first_mp);
9177 			return;
9178 		}
9179 		ire_refrele(ire);
9180 	}
9181 	if (ip_source_routed(ipha, ipst)) {
9182 		icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED,
9183 		    zoneid, ipst);
9184 		return;
9185 	}
9186 	icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst);
9187 }
9188 
9189 ip_opt_info_t zero_info;
9190 
9191 /*
9192  * IPv4 -
9193  * ip_newroute_ipif is called by ip_wput_multicast and
9194  * ip_rput_forward_multicast whenever we need to send
9195  * out a packet to a destination address for which we do not have specific
9196  * routing information. It is used when the packet will be sent out
9197  * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF
9198  * socket option is set or icmp error message wants to go out on a particular
9199  * interface for a unicast packet.
9200  *
9201  * In most cases, the destination address is resolved thanks to the ipif
9202  * intrinsic resolver. However, there are some cases where the call to
9203  * ip_newroute_ipif must take into account the potential presence of
9204  * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire
9205  * that uses the interface. This is specified through flags,
9206  * which can be a combination of:
9207  * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC
9208  *   flag, the resulting ire will inherit the IRE_OFFSUBNET source address
9209  *   and flags. Additionally, the packet source address has to be set to
9210  *   the specified address. The caller is thus expected to set this flag
9211  *   if the packet has no specific source address yet.
9212  * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT
9213  *   flag, the resulting ire will inherit the flag. All unresolved routes
9214  *   to the destination must be explored in the same call to
9215  *   ip_newroute_ipif().
9216  */
9217 static void
9218 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst,
9219     conn_t *connp, uint32_t flags, zoneid_t zoneid, ip_opt_info_t *infop)
9220 {
9221 	areq_t	*areq;
9222 	ire_t	*ire = NULL;
9223 	mblk_t	*res_mp;
9224 	ipaddr_t *addrp;
9225 	mblk_t *first_mp;
9226 	ire_t	*save_ire = NULL;
9227 	ill_t	*attach_ill = NULL;		/* Bind to IPIF_NOFAILOVER */
9228 	ipif_t	*src_ipif = NULL;
9229 	ushort_t ire_marks = 0;
9230 	ill_t	*dst_ill = NULL;
9231 	boolean_t mctl_present;
9232 	ipsec_out_t *io;
9233 	ipha_t *ipha;
9234 	int	ihandle = 0;
9235 	mblk_t	*saved_mp;
9236 	ire_t   *fire = NULL;
9237 	mblk_t  *copy_mp = NULL;
9238 	boolean_t multirt_resolve_next;
9239 	ipaddr_t ipha_dst;
9240 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
9241 
9242 	/*
9243 	 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold
9244 	 * here for uniformity
9245 	 */
9246 	ipif_refhold(ipif);
9247 
9248 	/*
9249 	 * This loop is run only once in most cases.
9250 	 * We loop to resolve further routes only when the destination
9251 	 * can be reached through multiple RTF_MULTIRT-flagged ires.
9252 	 */
9253 	do {
9254 		if (dst_ill != NULL) {
9255 			ill_refrele(dst_ill);
9256 			dst_ill = NULL;
9257 		}
9258 		if (src_ipif != NULL) {
9259 			ipif_refrele(src_ipif);
9260 			src_ipif = NULL;
9261 		}
9262 		multirt_resolve_next = B_FALSE;
9263 
9264 		ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst),
9265 		    ipif->ipif_ill->ill_name));
9266 
9267 		EXTRACT_PKT_MP(mp, first_mp, mctl_present);
9268 		if (mctl_present)
9269 			io = (ipsec_out_t *)first_mp->b_rptr;
9270 
9271 		ipha = (ipha_t *)mp->b_rptr;
9272 
9273 		/*
9274 		 * Save the packet destination address, we may need it after
9275 		 * the packet has been consumed.
9276 		 */
9277 		ipha_dst = ipha->ipha_dst;
9278 
9279 		/*
9280 		 * If the interface is a pt-pt interface we look for an
9281 		 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the
9282 		 * local_address and the pt-pt destination address. Otherwise
9283 		 * we just match the local address.
9284 		 * NOTE: dst could be different than ipha->ipha_dst in case
9285 		 * of sending igmp multicast packets over a point-to-point
9286 		 * connection.
9287 		 * Thus we must be careful enough to check ipha_dst to be a
9288 		 * multicast address, otherwise it will take xmit_if path for
9289 		 * multicast packets resulting into kernel stack overflow by
9290 		 * repeated calls to ip_newroute_ipif from ire_send().
9291 		 */
9292 		if (CLASSD(ipha_dst) &&
9293 		    !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) {
9294 			goto err_ret;
9295 		}
9296 
9297 		/*
9298 		 * We check if an IRE_OFFSUBNET for the addr that goes through
9299 		 * ipif exists. We need it to determine if the RTF_SETSRC and/or
9300 		 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may
9301 		 * propagate its flags to the new ire.
9302 		 */
9303 		if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) {
9304 			fire = ipif_lookup_multi_ire(ipif, ipha_dst);
9305 			ip2dbg(("ip_newroute_ipif: "
9306 			    "ipif_lookup_multi_ire("
9307 			    "ipif %p, dst %08x) = fire %p\n",
9308 			    (void *)ipif, ntohl(dst), (void *)fire));
9309 		}
9310 
9311 		if (mctl_present && io->ipsec_out_attach_if) {
9312 			attach_ill = ip_grab_attach_ill(NULL, first_mp,
9313 			    io->ipsec_out_ill_index, B_FALSE, ipst);
9314 
9315 			/* Failure case frees things for us. */
9316 			if (attach_ill == NULL) {
9317 				ipif_refrele(ipif);
9318 				if (fire != NULL)
9319 					ire_refrele(fire);
9320 				return;
9321 			}
9322 
9323 			/*
9324 			 * Check if we need an ire that will not be
9325 			 * looked up by anybody else i.e. HIDDEN.
9326 			 */
9327 			if (ill_is_probeonly(attach_ill)) {
9328 				ire_marks = IRE_MARK_HIDDEN;
9329 			}
9330 			/*
9331 			 * ip_wput passes the right ipif for IPIF_NOFAILOVER
9332 			 * case.
9333 			 */
9334 			dst_ill = ipif->ipif_ill;
9335 			/* attach_ill has been refheld by ip_grab_attach_ill */
9336 			ASSERT(dst_ill == attach_ill);
9337 		} else {
9338 			/*
9339 			 * If this is set by IP_XMIT_IF, then make sure that
9340 			 * ipif is pointing to the same ill as the IP_XMIT_IF
9341 			 * specified ill.
9342 			 */
9343 			ASSERT((connp == NULL) ||
9344 			    (connp->conn_xmit_if_ill == NULL) ||
9345 			    (connp->conn_xmit_if_ill == ipif->ipif_ill));
9346 			/*
9347 			 * If the interface belongs to an interface group,
9348 			 * make sure the next possible interface in the group
9349 			 * is used.  This encourages load spreading among
9350 			 * peers in an interface group.
9351 			 * Note: load spreading is disabled for RTF_MULTIRT
9352 			 * routes.
9353 			 */
9354 			if ((flags & RTF_MULTIRT) && (fire != NULL) &&
9355 			    (fire->ire_flags & RTF_MULTIRT)) {
9356 				/*
9357 				 * Don't perform outbound load spreading
9358 				 * in the case of an RTF_MULTIRT issued route,
9359 				 * we actually typically want to replicate
9360 				 * outgoing packets through particular
9361 				 * interfaces.
9362 				 */
9363 				dst_ill = ipif->ipif_ill;
9364 				ill_refhold(dst_ill);
9365 			} else {
9366 				dst_ill = ip_newroute_get_dst_ill(
9367 				    ipif->ipif_ill);
9368 			}
9369 			if (dst_ill == NULL) {
9370 				if (ip_debug > 2) {
9371 					pr_addr_dbg("ip_newroute_ipif: "
9372 					    "no dst ill for dst %s\n",
9373 					    AF_INET, &dst);
9374 				}
9375 				goto err_ret;
9376 			}
9377 		}
9378 
9379 		/*
9380 		 * Pick a source address preferring non-deprecated ones.
9381 		 * Unlike ip_newroute, we don't do any source address
9382 		 * selection here since for multicast it really does not help
9383 		 * in inbound load spreading as in the unicast case.
9384 		 */
9385 		if ((flags & RTF_SETSRC) && (fire != NULL) &&
9386 		    (fire->ire_flags & RTF_SETSRC)) {
9387 			/*
9388 			 * As requested by flags, an IRE_OFFSUBNET was looked up
9389 			 * on that interface. This ire has RTF_SETSRC flag, so
9390 			 * the source address of the packet must be changed.
9391 			 * Check that the ipif matching the requested source
9392 			 * address still exists.
9393 			 */
9394 			src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL,
9395 			    zoneid, NULL, NULL, NULL, NULL, ipst);
9396 		}
9397 		if (((ipif->ipif_flags & IPIF_DEPRECATED) ||
9398 		    (connp != NULL && ipif->ipif_zoneid != zoneid &&
9399 		    ipif->ipif_zoneid != ALL_ZONES)) &&
9400 		    (src_ipif == NULL)) {
9401 			src_ipif = ipif_select_source(dst_ill, dst, zoneid);
9402 			if (src_ipif == NULL) {
9403 				if (ip_debug > 2) {
9404 					/* ip1dbg */
9405 					pr_addr_dbg("ip_newroute_ipif: "
9406 					    "no src for dst %s",
9407 					    AF_INET, &dst);
9408 				}
9409 				ip1dbg((" through interface %s\n",
9410 				    dst_ill->ill_name));
9411 				goto err_ret;
9412 			}
9413 			ipif_refrele(ipif);
9414 			ipif = src_ipif;
9415 			ipif_refhold(ipif);
9416 		}
9417 		if (src_ipif == NULL) {
9418 			src_ipif = ipif;
9419 			ipif_refhold(src_ipif);
9420 		}
9421 
9422 		/*
9423 		 * Assign a source address while we have the conn.
9424 		 * We can't have ip_wput_ire pick a source address when the
9425 		 * packet returns from arp since conn_unspec_src might be set
9426 		 * and we loose the conn when going through arp.
9427 		 */
9428 		if (ipha->ipha_src == INADDR_ANY &&
9429 		    (connp == NULL || !connp->conn_unspec_src)) {
9430 			ipha->ipha_src = src_ipif->ipif_src_addr;
9431 		}
9432 
9433 		/*
9434 		 * In case of IP_XMIT_IF, it is possible that the outgoing
9435 		 * interface does not have an interface ire.
9436 		 * Example: Thousands of mobileip PPP interfaces to mobile
9437 		 * nodes. We don't want to create interface ires because
9438 		 * packets from other mobile nodes must not take the route
9439 		 * via interface ires to the visiting mobile node without
9440 		 * going through the home agent, in absence of mobileip
9441 		 * route optimization.
9442 		 */
9443 		if (CLASSD(ipha_dst) && (connp == NULL ||
9444 		    connp->conn_xmit_if_ill == NULL) &&
9445 		    infop->ip_opt_ill_index == 0) {
9446 			/* ipif_to_ire returns an held ire */
9447 			ire = ipif_to_ire(ipif);
9448 			if (ire == NULL)
9449 				goto err_ret;
9450 			if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
9451 				goto err_ret;
9452 			/*
9453 			 * ihandle is needed when the ire is added to
9454 			 * cache table.
9455 			 */
9456 			save_ire = ire;
9457 			ihandle = save_ire->ire_ihandle;
9458 
9459 			ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, "
9460 			    "flags %04x\n",
9461 			    (void *)ire, (void *)ipif, flags));
9462 			if ((flags & RTF_MULTIRT) && (fire != NULL) &&
9463 			    (fire->ire_flags & RTF_MULTIRT)) {
9464 				/*
9465 				 * As requested by flags, an IRE_OFFSUBNET was
9466 				 * looked up on that interface. This ire has
9467 				 * RTF_MULTIRT flag, so the resolution loop will
9468 				 * be re-entered to resolve additional routes on
9469 				 * other interfaces. For that purpose, a copy of
9470 				 * the packet is performed at this point.
9471 				 */
9472 				fire->ire_last_used_time = lbolt;
9473 				copy_mp = copymsg(first_mp);
9474 				if (copy_mp) {
9475 					MULTIRT_DEBUG_TAG(copy_mp);
9476 				}
9477 			}
9478 			if ((flags & RTF_SETSRC) && (fire != NULL) &&
9479 			    (fire->ire_flags & RTF_SETSRC)) {
9480 				/*
9481 				 * As requested by flags, an IRE_OFFSUBET was
9482 				 * looked up on that interface. This ire has
9483 				 * RTF_SETSRC flag, so the source address of the
9484 				 * packet must be changed.
9485 				 */
9486 				ipha->ipha_src = fire->ire_src_addr;
9487 			}
9488 		} else {
9489 			ASSERT((connp == NULL) ||
9490 			    (connp->conn_xmit_if_ill != NULL) ||
9491 			    (connp->conn_dontroute) ||
9492 			    infop->ip_opt_ill_index != 0);
9493 			/*
9494 			 * The only ways we can come here are:
9495 			 * 1) IP_XMIT_IF socket option is set
9496 			 * 2) ICMP error message generated from
9497 			 *    ip_mrtun_forward() routine and it needs
9498 			 *    to go through the specified ill.
9499 			 * 3) SO_DONTROUTE socket option is set
9500 			 * 4) IP_PKTINFO option is passed in as ancillary data.
9501 			 * In all cases, the new ire will not be added
9502 			 * into cache table.
9503 			 */
9504 			ire_marks |= IRE_MARK_NOADD;
9505 		}
9506 
9507 		switch (ipif->ipif_net_type) {
9508 		case IRE_IF_NORESOLVER: {
9509 			/* We have what we need to build an IRE_CACHE. */
9510 			mblk_t	*res_mp;
9511 
9512 			/*
9513 			 * Create a new res_mp with the
9514 			 * IP gateway address as destination address in the
9515 			 * DLPI hdr if the physical length is exactly 4 bytes.
9516 			 */
9517 			if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) {
9518 				res_mp = ill_dlur_gen((uchar_t *)&dst,
9519 				    dst_ill->ill_phys_addr_length,
9520 				    dst_ill->ill_sap,
9521 				    dst_ill->ill_sap_length);
9522 			} else if (dst_ill->ill_resolver_mp == NULL) {
9523 				ip1dbg(("ip_newroute: dst_ill %p "
9524 				    "for IF_NORESOLV ire %p has "
9525 				    "no ill_resolver_mp\n",
9526 				    (void *)dst_ill, (void *)ire));
9527 				break;
9528 			} else {
9529 				/* use the value set in ip_ll_subnet_defaults */
9530 				res_mp = ill_dlur_gen(NULL,
9531 				    dst_ill->ill_phys_addr_length,
9532 				    dst_ill->ill_sap,
9533 				    dst_ill->ill_sap_length);
9534 			}
9535 
9536 			if (res_mp == NULL)
9537 				break;
9538 			/*
9539 			 * The new ire inherits the IRE_OFFSUBNET flags
9540 			 * and source address, if this was requested.
9541 			 */
9542 			ire = ire_create(
9543 			    (uchar_t *)&dst,		/* dest address */
9544 			    (uchar_t *)&ip_g_all_ones,	/* mask */
9545 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
9546 			    NULL,			/* gateway address */
9547 			    NULL,
9548 			    &ipif->ipif_mtu,
9549 			    NULL,			/* Fast Path header */
9550 			    dst_ill->ill_rq,		/* recv-from queue */
9551 			    dst_ill->ill_wq,		/* send-to queue */
9552 			    IRE_CACHE,
9553 			    res_mp,
9554 			    src_ipif,
9555 			    NULL,
9556 			    (save_ire != NULL ? save_ire->ire_mask : 0),
9557 			    (fire != NULL) ?		/* Parent handle */
9558 				fire->ire_phandle : 0,
9559 			    ihandle,			/* Interface handle */
9560 			    (fire != NULL) ?
9561 				(fire->ire_flags &
9562 				(RTF_SETSRC | RTF_MULTIRT)) : 0,
9563 			    (save_ire == NULL ? &ire_uinfo_null :
9564 				&save_ire->ire_uinfo),
9565 			    NULL,
9566 			    NULL,
9567 			    ipst);
9568 
9569 			freeb(res_mp);
9570 
9571 			if (ire == NULL) {
9572 				if (save_ire != NULL)
9573 					ire_refrele(save_ire);
9574 				break;
9575 			}
9576 
9577 			ire->ire_marks |= ire_marks;
9578 
9579 			/*
9580 			 * If IRE_MARK_NOADD is set then we need to convert
9581 			 * the max_fragp to a useable value now. This is
9582 			 * normally done in ire_add_v[46]. We also need to
9583 			 * associate the ire with an nce (normally would be
9584 			 * done in ip_wput_nondata()).
9585 			 *
9586 			 * Note that IRE_MARK_NOADD packets created here
9587 			 * do not have a non-null ire_mp pointer. The null
9588 			 * value of ire_bucket indicates that they were
9589 			 * never added.
9590 			 */
9591 			if (ire->ire_marks & IRE_MARK_NOADD) {
9592 				uint_t  max_frag;
9593 
9594 				max_frag = *ire->ire_max_fragp;
9595 				ire->ire_max_fragp = NULL;
9596 				ire->ire_max_frag = max_frag;
9597 
9598 				if ((ire->ire_nce = ndp_lookup_v4(
9599 				    ire_to_ill(ire),
9600 				    (ire->ire_gateway_addr != INADDR_ANY ?
9601 				    &ire->ire_gateway_addr : &ire->ire_addr),
9602 				    B_FALSE)) == NULL) {
9603 					if (save_ire != NULL)
9604 						ire_refrele(save_ire);
9605 					break;
9606 				}
9607 				ASSERT(ire->ire_nce->nce_state ==
9608 				    ND_REACHABLE);
9609 				NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
9610 			}
9611 
9612 			/* Prevent save_ire from getting deleted */
9613 			if (save_ire != NULL) {
9614 				IRB_REFHOLD(save_ire->ire_bucket);
9615 				/* Has it been removed already ? */
9616 				if (save_ire->ire_marks & IRE_MARK_CONDEMNED) {
9617 					IRB_REFRELE(save_ire->ire_bucket);
9618 					ire_refrele(save_ire);
9619 					break;
9620 				}
9621 			}
9622 
9623 			ire_add_then_send(q, ire, first_mp);
9624 
9625 			/* Assert that save_ire is not deleted yet. */
9626 			if (save_ire != NULL) {
9627 				ASSERT(save_ire->ire_ptpn != NULL);
9628 				IRB_REFRELE(save_ire->ire_bucket);
9629 				ire_refrele(save_ire);
9630 				save_ire = NULL;
9631 			}
9632 			if (fire != NULL) {
9633 				ire_refrele(fire);
9634 				fire = NULL;
9635 			}
9636 
9637 			/*
9638 			 * the resolution loop is re-entered if this
9639 			 * was requested through flags and if we
9640 			 * actually are in a multirouting case.
9641 			 */
9642 			if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) {
9643 				boolean_t need_resolve =
9644 				    ire_multirt_need_resolve(ipha_dst,
9645 					MBLK_GETLABEL(copy_mp), ipst);
9646 				if (!need_resolve) {
9647 					MULTIRT_DEBUG_UNTAG(copy_mp);
9648 					freemsg(copy_mp);
9649 					copy_mp = NULL;
9650 				} else {
9651 					/*
9652 					 * ipif_lookup_group() calls
9653 					 * ire_lookup_multi() that uses
9654 					 * ire_ftable_lookup() to find
9655 					 * an IRE_INTERFACE for the group.
9656 					 * In the multirt case,
9657 					 * ire_lookup_multi() then invokes
9658 					 * ire_multirt_lookup() to find
9659 					 * the next resolvable ire.
9660 					 * As a result, we obtain an new
9661 					 * interface, derived from the
9662 					 * next ire.
9663 					 */
9664 					ipif_refrele(ipif);
9665 					ipif = ipif_lookup_group(ipha_dst,
9666 					    zoneid, ipst);
9667 					ip2dbg(("ip_newroute_ipif: "
9668 					    "multirt dst %08x, ipif %p\n",
9669 					    htonl(dst), (void *)ipif));
9670 					if (ipif != NULL) {
9671 						mp = copy_mp;
9672 						copy_mp = NULL;
9673 						multirt_resolve_next = B_TRUE;
9674 						continue;
9675 					} else {
9676 						freemsg(copy_mp);
9677 					}
9678 				}
9679 			}
9680 			if (ipif != NULL)
9681 				ipif_refrele(ipif);
9682 			ill_refrele(dst_ill);
9683 			ipif_refrele(src_ipif);
9684 			return;
9685 		}
9686 		case IRE_IF_RESOLVER:
9687 			/*
9688 			 * We can't build an IRE_CACHE yet, but at least
9689 			 * we found a resolver that can help.
9690 			 */
9691 			res_mp = dst_ill->ill_resolver_mp;
9692 			if (!OK_RESOLVER_MP(res_mp))
9693 				break;
9694 
9695 			/*
9696 			 * We obtain a partial IRE_CACHE which we will pass
9697 			 * along with the resolver query.  When the response
9698 			 * comes back it will be there ready for us to add.
9699 			 * The new ire inherits the IRE_OFFSUBNET flags
9700 			 * and source address, if this was requested.
9701 			 * The ire_max_frag is atomically set under the
9702 			 * irebucket lock in ire_add_v[46]. Only in the
9703 			 * case of IRE_MARK_NOADD, we set it here itself.
9704 			 */
9705 			ire = ire_create_mp(
9706 			    (uchar_t *)&dst,		/* dest address */
9707 			    (uchar_t *)&ip_g_all_ones,	/* mask */
9708 			    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
9709 			    NULL,			/* gateway address */
9710 			    NULL,			/* no in_src_addr */
9711 			    (ire_marks & IRE_MARK_NOADD) ?
9712 				ipif->ipif_mtu : 0,	/* max_frag */
9713 			    NULL,			/* Fast path header */
9714 			    dst_ill->ill_rq,		/* recv-from queue */
9715 			    dst_ill->ill_wq,		/* send-to queue */
9716 			    IRE_CACHE,
9717 			    NULL,	/* let ire_nce_init figure res_mp out */
9718 			    src_ipif,
9719 			    NULL,
9720 			    (save_ire != NULL ? save_ire->ire_mask : 0),
9721 			    (fire != NULL) ?		/* Parent handle */
9722 				fire->ire_phandle : 0,
9723 			    ihandle,			/* Interface handle */
9724 			    (fire != NULL) ?		/* flags if any */
9725 				(fire->ire_flags &
9726 				(RTF_SETSRC | RTF_MULTIRT)) : 0,
9727 			    (save_ire == NULL ? &ire_uinfo_null :
9728 				&save_ire->ire_uinfo),
9729 			    NULL,
9730 			    NULL,
9731 			    ipst);
9732 
9733 			if (save_ire != NULL) {
9734 				ire_refrele(save_ire);
9735 				save_ire = NULL;
9736 			}
9737 			if (ire == NULL)
9738 				break;
9739 
9740 			ire->ire_marks |= ire_marks;
9741 			/*
9742 			 * Construct message chain for the resolver of the
9743 			 * form:
9744 			 *	ARP_REQ_MBLK-->IRE_MBLK-->Packet
9745 			 *
9746 			 * NOTE : ire will be added later when the response
9747 			 * comes back from ARP. If the response does not
9748 			 * come back, ARP frees the packet. For this reason,
9749 			 * we can't REFHOLD the bucket of save_ire to prevent
9750 			 * deletions. We may not be able to REFRELE the
9751 			 * bucket if the response never comes back.
9752 			 * Thus, before adding the ire, ire_add_v4 will make
9753 			 * sure that the interface route does not get deleted.
9754 			 * This is the only case unlike ip_newroute_v6,
9755 			 * ip_newroute_ipif_v6 where we can always prevent
9756 			 * deletions because ire_add_then_send is called after
9757 			 * creating the IRE.
9758 			 * If IRE_MARK_NOADD is set, then ire_add_then_send
9759 			 * does not add this IRE into the IRE CACHE.
9760 			 */
9761 			ASSERT(ire->ire_mp != NULL);
9762 			ire->ire_mp->b_cont = first_mp;
9763 			/* Have saved_mp handy, for cleanup if canput fails */
9764 			saved_mp = mp;
9765 			mp = copyb(res_mp);
9766 			if (mp == NULL) {
9767 				/* Prepare for cleanup */
9768 				mp = saved_mp; /* pkt */
9769 				ire_delete(ire); /* ire_mp */
9770 				ire = NULL;
9771 				if (copy_mp != NULL) {
9772 					MULTIRT_DEBUG_UNTAG(copy_mp);
9773 					freemsg(copy_mp);
9774 					copy_mp = NULL;
9775 				}
9776 				break;
9777 			}
9778 			linkb(mp, ire->ire_mp);
9779 
9780 			/*
9781 			 * Fill in the source and dest addrs for the resolver.
9782 			 * NOTE: this depends on memory layouts imposed by
9783 			 * ill_init().
9784 			 */
9785 			areq = (areq_t *)mp->b_rptr;
9786 			addrp = (ipaddr_t *)((char *)areq +
9787 			    areq->areq_sender_addr_offset);
9788 			*addrp = ire->ire_src_addr;
9789 			addrp = (ipaddr_t *)((char *)areq +
9790 			    areq->areq_target_addr_offset);
9791 			*addrp = dst;
9792 			/* Up to the resolver. */
9793 			if (canputnext(dst_ill->ill_rq) &&
9794 			    !(dst_ill->ill_arp_closing)) {
9795 				putnext(dst_ill->ill_rq, mp);
9796 				/*
9797 				 * The response will come back in ip_wput
9798 				 * with db_type IRE_DB_TYPE.
9799 				 */
9800 			} else {
9801 				mp->b_cont = NULL;
9802 				freeb(mp); /* areq */
9803 				ire_delete(ire); /* ire_mp */
9804 				saved_mp->b_next = NULL;
9805 				saved_mp->b_prev = NULL;
9806 				freemsg(first_mp); /* pkt */
9807 				ip2dbg(("ip_newroute_ipif: dropped\n"));
9808 			}
9809 
9810 			if (fire != NULL) {
9811 				ire_refrele(fire);
9812 				fire = NULL;
9813 			}
9814 
9815 
9816 			/*
9817 			 * The resolution loop is re-entered if this was
9818 			 * requested through flags and we actually are
9819 			 * in a multirouting case.
9820 			 */
9821 			if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) {
9822 				boolean_t need_resolve =
9823 				    ire_multirt_need_resolve(ipha_dst,
9824 					MBLK_GETLABEL(copy_mp), ipst);
9825 				if (!need_resolve) {
9826 					MULTIRT_DEBUG_UNTAG(copy_mp);
9827 					freemsg(copy_mp);
9828 					copy_mp = NULL;
9829 				} else {
9830 					/*
9831 					 * ipif_lookup_group() calls
9832 					 * ire_lookup_multi() that uses
9833 					 * ire_ftable_lookup() to find
9834 					 * an IRE_INTERFACE for the group.
9835 					 * In the multirt case,
9836 					 * ire_lookup_multi() then invokes
9837 					 * ire_multirt_lookup() to find
9838 					 * the next resolvable ire.
9839 					 * As a result, we obtain an new
9840 					 * interface, derived from the
9841 					 * next ire.
9842 					 */
9843 					ipif_refrele(ipif);
9844 					ipif = ipif_lookup_group(ipha_dst,
9845 					    zoneid, ipst);
9846 					if (ipif != NULL) {
9847 						mp = copy_mp;
9848 						copy_mp = NULL;
9849 						multirt_resolve_next = B_TRUE;
9850 						continue;
9851 					} else {
9852 						freemsg(copy_mp);
9853 					}
9854 				}
9855 			}
9856 			if (ipif != NULL)
9857 				ipif_refrele(ipif);
9858 			ill_refrele(dst_ill);
9859 			ipif_refrele(src_ipif);
9860 			return;
9861 		default:
9862 			break;
9863 		}
9864 	} while (multirt_resolve_next);
9865 
9866 err_ret:
9867 	ip2dbg(("ip_newroute_ipif: dropped\n"));
9868 	if (fire != NULL)
9869 		ire_refrele(fire);
9870 	ipif_refrele(ipif);
9871 	/* Did this packet originate externally? */
9872 	if (dst_ill != NULL)
9873 		ill_refrele(dst_ill);
9874 	if (src_ipif != NULL)
9875 		ipif_refrele(src_ipif);
9876 	if (mp->b_prev || mp->b_next) {
9877 		mp->b_next = NULL;
9878 		mp->b_prev = NULL;
9879 	} else {
9880 		/*
9881 		 * Since ip_wput() isn't close to finished, we fill
9882 		 * in enough of the header for credible error reporting.
9883 		 */
9884 		if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) {
9885 			/* Failed */
9886 			freemsg(first_mp);
9887 			if (ire != NULL)
9888 				ire_refrele(ire);
9889 			return;
9890 		}
9891 	}
9892 	/*
9893 	 * At this point we will have ire only if RTF_BLACKHOLE
9894 	 * or RTF_REJECT flags are set on the IRE. It will not
9895 	 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set.
9896 	 */
9897 	if (ire != NULL) {
9898 		if (ire->ire_flags & RTF_BLACKHOLE) {
9899 			ire_refrele(ire);
9900 			freemsg(first_mp);
9901 			return;
9902 		}
9903 		ire_refrele(ire);
9904 	}
9905 	icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid, ipst);
9906 }
9907 
9908 /* Name/Value Table Lookup Routine */
9909 char *
9910 ip_nv_lookup(nv_t *nv, int value)
9911 {
9912 	if (!nv)
9913 		return (NULL);
9914 	for (; nv->nv_name; nv++) {
9915 		if (nv->nv_value == value)
9916 			return (nv->nv_name);
9917 	}
9918 	return ("unknown");
9919 }
9920 
9921 /*
9922  * This is a module open, i.e. this is a control stream for access
9923  * to a DLPI device.  We allocate an ill_t as the instance data in
9924  * this case.
9925  */
9926 int
9927 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9928 {
9929 	ill_t	*ill;
9930 	int	err;
9931 	zoneid_t zoneid;
9932 	netstack_t *ns;
9933 	ip_stack_t *ipst;
9934 
9935 	/*
9936 	 * Prevent unprivileged processes from pushing IP so that
9937 	 * they can't send raw IP.
9938 	 */
9939 	if (secpolicy_net_rawaccess(credp) != 0)
9940 		return (EPERM);
9941 
9942 	ns = netstack_find_by_cred(credp);
9943 	ASSERT(ns != NULL);
9944 	ipst = ns->netstack_ip;
9945 	ASSERT(ipst != NULL);
9946 
9947 	/*
9948 	 * For exclusive stacks we set the zoneid to zero
9949 	 * to make IP operate as if in the global zone.
9950 	 */
9951 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
9952 		zoneid = GLOBAL_ZONEID;
9953 	else
9954 		zoneid = crgetzoneid(credp);
9955 
9956 	ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
9957 	q->q_ptr = WR(q)->q_ptr = ill;
9958 	ill->ill_ipst = ipst;
9959 	ill->ill_zoneid = zoneid;
9960 
9961 	/*
9962 	 * ill_init initializes the ill fields and then sends down
9963 	 * down a DL_INFO_REQ after calling qprocson.
9964 	 */
9965 	err = ill_init(q, ill);
9966 	if (err != 0) {
9967 		mi_free(ill);
9968 		netstack_rele(ipst->ips_netstack);
9969 		q->q_ptr = NULL;
9970 		WR(q)->q_ptr = NULL;
9971 		return (err);
9972 	}
9973 
9974 	/* ill_init initializes the ipsq marking this thread as writer */
9975 	ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE);
9976 	/* Wait for the DL_INFO_ACK */
9977 	mutex_enter(&ill->ill_lock);
9978 	while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
9979 		/*
9980 		 * Return value of 0 indicates a pending signal.
9981 		 */
9982 		err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
9983 		if (err == 0) {
9984 			mutex_exit(&ill->ill_lock);
9985 			(void) ip_close(q, 0);
9986 			return (EINTR);
9987 		}
9988 	}
9989 	mutex_exit(&ill->ill_lock);
9990 
9991 	/*
9992 	 * ip_rput_other could have set an error  in ill_error on
9993 	 * receipt of M_ERROR.
9994 	 */
9995 
9996 	err = ill->ill_error;
9997 	if (err != 0) {
9998 		(void) ip_close(q, 0);
9999 		return (err);
10000 	}
10001 
10002 	ill->ill_credp = credp;
10003 	crhold(credp);
10004 
10005 	mutex_enter(&ipst->ips_ip_mi_lock);
10006 	err = mi_open_link(&ipst->ips_ip_g_head, (IDP)ill, devp, flag, sflag,
10007 	    credp);
10008 	mutex_exit(&ipst->ips_ip_mi_lock);
10009 	if (err) {
10010 		(void) ip_close(q, 0);
10011 		return (err);
10012 	}
10013 	return (0);
10014 }
10015 
10016 /* IP open routine. */
10017 int
10018 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
10019 {
10020 	conn_t 		*connp;
10021 	major_t		maj;
10022 	zoneid_t	zoneid;
10023 	netstack_t	*ns;
10024 	ip_stack_t	*ipst;
10025 
10026 	TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q);
10027 
10028 	/* Allow reopen. */
10029 	if (q->q_ptr != NULL)
10030 		return (0);
10031 
10032 	if (sflag & MODOPEN) {
10033 		/* This is a module open */
10034 		return (ip_modopen(q, devp, flag, sflag, credp));
10035 	}
10036 
10037 	ns = netstack_find_by_cred(credp);
10038 	ASSERT(ns != NULL);
10039 	ipst = ns->netstack_ip;
10040 	ASSERT(ipst != NULL);
10041 
10042 	/*
10043 	 * For exclusive stacks we set the zoneid to zero
10044 	 * to make IP operate as if in the global zone.
10045 	 */
10046 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
10047 		zoneid = GLOBAL_ZONEID;
10048 	else
10049 		zoneid = crgetzoneid(credp);
10050 
10051 	/*
10052 	 * We are opening as a device. This is an IP client stream, and we
10053 	 * allocate an conn_t as the instance data.
10054 	 */
10055 	connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
10056 
10057 	/*
10058 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
10059 	 * done by netstack_find_by_cred()
10060 	 */
10061 	netstack_rele(ipst->ips_netstack);
10062 
10063 	connp->conn_zoneid = zoneid;
10064 
10065 	connp->conn_upq = q;
10066 	q->q_ptr = WR(q)->q_ptr = connp;
10067 
10068 	if (flag & SO_SOCKSTR)
10069 		connp->conn_flags |= IPCL_SOCKET;
10070 
10071 	/* Minor tells us which /dev entry was opened */
10072 	if (geteminor(*devp) == IPV6_MINOR) {
10073 		connp->conn_flags |= IPCL_ISV6;
10074 		connp->conn_af_isv6 = B_TRUE;
10075 		ip_setqinfo(q, geteminor(*devp), B_FALSE, ipst);
10076 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
10077 	} else {
10078 		connp->conn_af_isv6 = B_FALSE;
10079 		connp->conn_pkt_isv6 = B_FALSE;
10080 	}
10081 
10082 	if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) {
10083 		/* CONN_DEC_REF takes care of netstack_rele() */
10084 		q->q_ptr = WR(q)->q_ptr = NULL;
10085 		CONN_DEC_REF(connp);
10086 		return (EBUSY);
10087 	}
10088 
10089 	maj = getemajor(*devp);
10090 	*devp = makedevice(maj, (minor_t)connp->conn_dev);
10091 
10092 	/*
10093 	 * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
10094 	 */
10095 	connp->conn_cred = credp;
10096 	crhold(connp->conn_cred);
10097 
10098 	/*
10099 	 * If the caller has the process-wide flag set, then default to MAC
10100 	 * exempt mode.  This allows read-down to unlabeled hosts.
10101 	 */
10102 	if (getpflags(NET_MAC_AWARE, credp) != 0)
10103 		connp->conn_mac_exempt = B_TRUE;
10104 
10105 	/*
10106 	 * This should only happen for ndd, netstat, raw socket or other SCTP
10107 	 * administrative ops.  In these cases, we just need a normal conn_t
10108 	 * with ulp set to IPPROTO_SCTP.  All other ops are trapped and
10109 	 * an error will be returned.
10110 	 */
10111 	if (maj != SCTP_MAJ && maj != SCTP6_MAJ) {
10112 		connp->conn_rq = q;
10113 		connp->conn_wq = WR(q);
10114 	} else {
10115 		connp->conn_ulp = IPPROTO_SCTP;
10116 		connp->conn_rq = connp->conn_wq = NULL;
10117 	}
10118 	/* Non-zero default values */
10119 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
10120 
10121 	/*
10122 	 * Make the conn globally visible to walkers
10123 	 */
10124 	mutex_enter(&connp->conn_lock);
10125 	connp->conn_state_flags &= ~CONN_INCIPIENT;
10126 	mutex_exit(&connp->conn_lock);
10127 	ASSERT(connp->conn_ref == 1);
10128 
10129 	qprocson(q);
10130 
10131 	return (0);
10132 }
10133 
10134 /*
10135  * Change q_qinfo based on the value of isv6.
10136  * This can not called on an ill queue.
10137  * Note that there is no race since either q_qinfo works for conn queues - it
10138  * is just an optimization to enter the best wput routine directly.
10139  */
10140 void
10141 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib, ip_stack_t *ipst)
10142 {
10143 	ASSERT(q->q_flag & QREADR);
10144 	ASSERT(WR(q)->q_next == NULL);
10145 	ASSERT(q->q_ptr != NULL);
10146 
10147 	if (minor == IPV6_MINOR)  {
10148 		if (bump_mib) {
10149 			BUMP_MIB(&ipst->ips_ip6_mib,
10150 			    ipIfStatsOutSwitchIPVersion);
10151 		}
10152 		q->q_qinfo = &rinit_ipv6;
10153 		WR(q)->q_qinfo = &winit_ipv6;
10154 		(Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE;
10155 	} else {
10156 		if (bump_mib) {
10157 			BUMP_MIB(&ipst->ips_ip_mib,
10158 			    ipIfStatsOutSwitchIPVersion);
10159 		}
10160 		q->q_qinfo = &iprinit;
10161 		WR(q)->q_qinfo = &ipwinit;
10162 		(Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE;
10163 	}
10164 
10165 }
10166 
10167 /*
10168  * See if IPsec needs loading because of the options in mp.
10169  */
10170 static boolean_t
10171 ipsec_opt_present(mblk_t *mp)
10172 {
10173 	uint8_t *optcp, *next_optcp, *opt_endcp;
10174 	struct opthdr *opt;
10175 	struct T_opthdr *topt;
10176 	int opthdr_len;
10177 	t_uscalar_t optname, optlevel;
10178 	struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr;
10179 	ipsec_req_t *ipsr;
10180 
10181 	/*
10182 	 * Walk through the mess, and find IP_SEC_OPT.  If it's there,
10183 	 * return TRUE.
10184 	 */
10185 
10186 	optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length);
10187 	opt_endcp = optcp + tor->OPT_length;
10188 	if (tor->PRIM_type == T_OPTMGMT_REQ) {
10189 		opthdr_len = sizeof (struct T_opthdr);
10190 	} else {		/* O_OPTMGMT_REQ */
10191 		ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ);
10192 		opthdr_len = sizeof (struct opthdr);
10193 	}
10194 	for (; optcp < opt_endcp; optcp = next_optcp) {
10195 		if (optcp + opthdr_len > opt_endcp)
10196 			return (B_FALSE);	/* Not enough option header. */
10197 		if (tor->PRIM_type == T_OPTMGMT_REQ) {
10198 			topt = (struct T_opthdr *)optcp;
10199 			optlevel = topt->level;
10200 			optname = topt->name;
10201 			next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len);
10202 		} else {
10203 			opt = (struct opthdr *)optcp;
10204 			optlevel = opt->level;
10205 			optname = opt->name;
10206 			next_optcp = optcp + opthdr_len +
10207 			    _TPI_ALIGN_OPT(opt->len);
10208 		}
10209 		if ((next_optcp < optcp) || /* wraparound pointer space */
10210 		    ((next_optcp >= opt_endcp) && /* last option bad len */
10211 		    ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE)))
10212 			return (B_FALSE); /* bad option buffer */
10213 		if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) ||
10214 		    (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) {
10215 			/*
10216 			 * Check to see if it's an all-bypass or all-zeroes
10217 			 * IPsec request.  Don't bother loading IPsec if
10218 			 * the socket doesn't want to use it.  (A good example
10219 			 * is a bypass request.)
10220 			 *
10221 			 * Basically, if any of the non-NEVER bits are set,
10222 			 * load IPsec.
10223 			 */
10224 			ipsr = (ipsec_req_t *)(optcp + opthdr_len);
10225 			if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 ||
10226 			    (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 ||
10227 			    (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER)
10228 			    != 0)
10229 				return (B_TRUE);
10230 		}
10231 	}
10232 	return (B_FALSE);
10233 }
10234 
10235 /*
10236  * If conn is is waiting for ipsec to finish loading, kick it.
10237  */
10238 /* ARGSUSED */
10239 static void
10240 conn_restart_ipsec_waiter(conn_t *connp, void *arg)
10241 {
10242 	t_scalar_t	optreq_prim;
10243 	mblk_t		*mp;
10244 	cred_t		*cr;
10245 	int		err = 0;
10246 
10247 	/*
10248 	 * This function is called, after ipsec loading is complete.
10249 	 * Since IP checks exclusively and atomically (i.e it prevents
10250 	 * ipsec load from completing until ip_optcom_req completes)
10251 	 * whether ipsec load is complete, there cannot be a race with IP
10252 	 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now.
10253 	 */
10254 	mutex_enter(&connp->conn_lock);
10255 	if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) {
10256 		ASSERT(connp->conn_ipsec_opt_mp != NULL);
10257 		mp = connp->conn_ipsec_opt_mp;
10258 		connp->conn_ipsec_opt_mp = NULL;
10259 		connp->conn_state_flags  &= ~CONN_IPSEC_LOAD_WAIT;
10260 		cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp)));
10261 		mutex_exit(&connp->conn_lock);
10262 
10263 		ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
10264 
10265 		optreq_prim = ((union T_primitives *)mp->b_rptr)->type;
10266 		if (optreq_prim == T_OPTMGMT_REQ) {
10267 			err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr,
10268 			    &ip_opt_obj);
10269 		} else {
10270 			ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ);
10271 			err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr,
10272 			    &ip_opt_obj);
10273 		}
10274 		if (err != EINPROGRESS)
10275 			CONN_OPER_PENDING_DONE(connp);
10276 		return;
10277 	}
10278 	mutex_exit(&connp->conn_lock);
10279 }
10280 
10281 /*
10282  * Called from the ipsec_loader thread, outside any perimeter, to tell
10283  * ip qenable any of the queues waiting for the ipsec loader to
10284  * complete.
10285  */
10286 void
10287 ip_ipsec_load_complete(ipsec_stack_t *ipss)
10288 {
10289 	netstack_t *ns = ipss->ipsec_netstack;
10290 
10291 	ipcl_walk(conn_restart_ipsec_waiter, NULL, ns->netstack_ip);
10292 }
10293 
10294 /*
10295  * Can't be used. Need to call svr4* -> optset directly. the leaf routine
10296  * determines the grp on which it has to become exclusive, queues the mp
10297  * and sq draining restarts the optmgmt
10298  */
10299 static boolean_t
10300 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp)
10301 {
10302 	conn_t *connp = Q_TO_CONN(q);
10303 	ipsec_stack_t *ipss = connp->conn_netstack->netstack_ipsec;
10304 
10305 	/*
10306 	 * Take IPsec requests and treat them special.
10307 	 */
10308 	if (ipsec_opt_present(mp)) {
10309 		/* First check if IPsec is loaded. */
10310 		mutex_enter(&ipss->ipsec_loader_lock);
10311 		if (ipss->ipsec_loader_state != IPSEC_LOADER_WAIT) {
10312 			mutex_exit(&ipss->ipsec_loader_lock);
10313 			return (B_FALSE);
10314 		}
10315 		mutex_enter(&connp->conn_lock);
10316 		connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT;
10317 
10318 		ASSERT(connp->conn_ipsec_opt_mp == NULL);
10319 		connp->conn_ipsec_opt_mp = mp;
10320 		mutex_exit(&connp->conn_lock);
10321 		mutex_exit(&ipss->ipsec_loader_lock);
10322 
10323 		ipsec_loader_loadnow(ipss);
10324 		return (B_TRUE);
10325 	}
10326 	return (B_FALSE);
10327 }
10328 
10329 /*
10330  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
10331  * all of them are copied to the conn_t. If the req is "zero", the policy is
10332  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
10333  * fields.
10334  * We keep only the latest setting of the policy and thus policy setting
10335  * is not incremental/cumulative.
10336  *
10337  * Requests to set policies with multiple alternative actions will
10338  * go through a different API.
10339  */
10340 int
10341 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
10342 {
10343 	uint_t ah_req = 0;
10344 	uint_t esp_req = 0;
10345 	uint_t se_req = 0;
10346 	ipsec_selkey_t sel;
10347 	ipsec_act_t *actp = NULL;
10348 	uint_t nact;
10349 	ipsec_policy_t *pin4 = NULL, *pout4 = NULL;
10350 	ipsec_policy_t *pin6 = NULL, *pout6 = NULL;
10351 	ipsec_policy_root_t *pr;
10352 	ipsec_policy_head_t *ph;
10353 	int fam;
10354 	boolean_t is_pol_reset;
10355 	int error = 0;
10356 	netstack_t	*ns = connp->conn_netstack;
10357 	ip_stack_t	*ipst = ns->netstack_ip;
10358 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
10359 
10360 #define	REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
10361 
10362 	/*
10363 	 * The IP_SEC_OPT option does not allow variable length parameters,
10364 	 * hence a request cannot be NULL.
10365 	 */
10366 	if (req == NULL)
10367 		return (EINVAL);
10368 
10369 	ah_req = req->ipsr_ah_req;
10370 	esp_req = req->ipsr_esp_req;
10371 	se_req = req->ipsr_self_encap_req;
10372 
10373 	/*
10374 	 * Are we dealing with a request to reset the policy (i.e.
10375 	 * zero requests).
10376 	 */
10377 	is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
10378 	    (esp_req & REQ_MASK) == 0 &&
10379 	    (se_req & REQ_MASK) == 0);
10380 
10381 	if (!is_pol_reset) {
10382 		/*
10383 		 * If we couldn't load IPsec, fail with "protocol
10384 		 * not supported".
10385 		 * IPsec may not have been loaded for a request with zero
10386 		 * policies, so we don't fail in this case.
10387 		 */
10388 		mutex_enter(&ipss->ipsec_loader_lock);
10389 		if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
10390 			mutex_exit(&ipss->ipsec_loader_lock);
10391 			return (EPROTONOSUPPORT);
10392 		}
10393 		mutex_exit(&ipss->ipsec_loader_lock);
10394 
10395 		/*
10396 		 * Test for valid requests. Invalid algorithms
10397 		 * need to be tested by IPSEC code because new
10398 		 * algorithms can be added dynamically.
10399 		 */
10400 		if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
10401 		    (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
10402 		    (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
10403 			return (EINVAL);
10404 		}
10405 
10406 		/*
10407 		 * Only privileged users can issue these
10408 		 * requests.
10409 		 */
10410 		if (((ah_req & IPSEC_PREF_NEVER) ||
10411 		    (esp_req & IPSEC_PREF_NEVER) ||
10412 		    (se_req & IPSEC_PREF_NEVER)) &&
10413 		    secpolicy_ip_config(cr, B_FALSE) != 0) {
10414 			return (EPERM);
10415 		}
10416 
10417 		/*
10418 		 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
10419 		 * are mutually exclusive.
10420 		 */
10421 		if (((ah_req & REQ_MASK) == REQ_MASK) ||
10422 		    ((esp_req & REQ_MASK) == REQ_MASK) ||
10423 		    ((se_req & REQ_MASK) == REQ_MASK)) {
10424 			/* Both of them are set */
10425 			return (EINVAL);
10426 		}
10427 	}
10428 
10429 	mutex_enter(&connp->conn_lock);
10430 
10431 	/*
10432 	 * If we have already cached policies in ip_bind_connected*(), don't
10433 	 * let them change now. We cache policies for connections
10434 	 * whose src,dst [addr, port] is known.
10435 	 */
10436 	if (connp->conn_policy_cached) {
10437 		mutex_exit(&connp->conn_lock);
10438 		return (EINVAL);
10439 	}
10440 
10441 	/*
10442 	 * We have a zero policies, reset the connection policy if already
10443 	 * set. This will cause the connection to inherit the
10444 	 * global policy, if any.
10445 	 */
10446 	if (is_pol_reset) {
10447 		if (connp->conn_policy != NULL) {
10448 			IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
10449 			connp->conn_policy = NULL;
10450 		}
10451 		connp->conn_flags &= ~IPCL_CHECK_POLICY;
10452 		connp->conn_in_enforce_policy = B_FALSE;
10453 		connp->conn_out_enforce_policy = B_FALSE;
10454 		mutex_exit(&connp->conn_lock);
10455 		return (0);
10456 	}
10457 
10458 	ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
10459 	    ipst->ips_netstack);
10460 	if (ph == NULL)
10461 		goto enomem;
10462 
10463 	ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
10464 	if (actp == NULL)
10465 		goto enomem;
10466 
10467 	/*
10468 	 * Always allocate IPv4 policy entries, since they can also
10469 	 * apply to ipv6 sockets being used in ipv4-compat mode.
10470 	 */
10471 	bzero(&sel, sizeof (sel));
10472 	sel.ipsl_valid = IPSL_IPV4;
10473 
10474 	pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL,
10475 	    ipst->ips_netstack);
10476 	if (pin4 == NULL)
10477 		goto enomem;
10478 
10479 	pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL,
10480 	    ipst->ips_netstack);
10481 	if (pout4 == NULL)
10482 		goto enomem;
10483 
10484 	if (connp->conn_pkt_isv6) {
10485 		/*
10486 		 * We're looking at a v6 socket, also allocate the
10487 		 * v6-specific entries...
10488 		 */
10489 		sel.ipsl_valid = IPSL_IPV6;
10490 		pin6 = ipsec_policy_create(&sel, actp, nact,
10491 		    IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack);
10492 		if (pin6 == NULL)
10493 			goto enomem;
10494 
10495 		pout6 = ipsec_policy_create(&sel, actp, nact,
10496 		    IPSEC_PRIO_SOCKET, NULL, ipst->ips_netstack);
10497 		if (pout6 == NULL)
10498 			goto enomem;
10499 
10500 		/*
10501 		 * .. and file them away in the right place.
10502 		 */
10503 		fam = IPSEC_AF_V6;
10504 		pr = &ph->iph_root[IPSEC_TYPE_INBOUND];
10505 		HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]);
10506 		ipsec_insert_always(&ph->iph_rulebyid, pin6);
10507 		pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND];
10508 		HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]);
10509 		ipsec_insert_always(&ph->iph_rulebyid, pout6);
10510 	}
10511 
10512 	ipsec_actvec_free(actp, nact);
10513 
10514 	/*
10515 	 * File the v4 policies.
10516 	 */
10517 	fam = IPSEC_AF_V4;
10518 	pr = &ph->iph_root[IPSEC_TYPE_INBOUND];
10519 	HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]);
10520 	ipsec_insert_always(&ph->iph_rulebyid, pin4);
10521 
10522 	pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND];
10523 	HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]);
10524 	ipsec_insert_always(&ph->iph_rulebyid, pout4);
10525 
10526 	/*
10527 	 * If the requests need security, set enforce_policy.
10528 	 * If the requests are IPSEC_PREF_NEVER, one should
10529 	 * still set conn_out_enforce_policy so that an ipsec_out
10530 	 * gets attached in ip_wput. This is needed so that
10531 	 * for connections that we don't cache policy in ip_bind,
10532 	 * if global policy matches in ip_wput_attach_policy, we
10533 	 * don't wrongly inherit global policy. Similarly, we need
10534 	 * to set conn_in_enforce_policy also so that we don't verify
10535 	 * policy wrongly.
10536 	 */
10537 	if ((ah_req & REQ_MASK) != 0 ||
10538 	    (esp_req & REQ_MASK) != 0 ||
10539 	    (se_req & REQ_MASK) != 0) {
10540 		connp->conn_in_enforce_policy = B_TRUE;
10541 		connp->conn_out_enforce_policy = B_TRUE;
10542 		connp->conn_flags |= IPCL_CHECK_POLICY;
10543 	}
10544 
10545 	mutex_exit(&connp->conn_lock);
10546 	return (error);
10547 #undef REQ_MASK
10548 
10549 	/*
10550 	 * Common memory-allocation-failure exit path.
10551 	 */
10552 enomem:
10553 	mutex_exit(&connp->conn_lock);
10554 	if (actp != NULL)
10555 		ipsec_actvec_free(actp, nact);
10556 	if (pin4 != NULL)
10557 		IPPOL_REFRELE(pin4, ipst->ips_netstack);
10558 	if (pout4 != NULL)
10559 		IPPOL_REFRELE(pout4, ipst->ips_netstack);
10560 	if (pin6 != NULL)
10561 		IPPOL_REFRELE(pin6, ipst->ips_netstack);
10562 	if (pout6 != NULL)
10563 		IPPOL_REFRELE(pout6, ipst->ips_netstack);
10564 	return (ENOMEM);
10565 }
10566 
10567 /*
10568  * Only for options that pass in an IP addr. Currently only V4 options
10569  * pass in an ipif. V6 options always pass an ifindex specifying the ill.
10570  * So this function assumes level is IPPROTO_IP
10571  */
10572 int
10573 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option,
10574     mblk_t *first_mp)
10575 {
10576 	ipif_t *ipif = NULL;
10577 	int error;
10578 	ill_t *ill;
10579 	int zoneid;
10580 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
10581 
10582 	ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr));
10583 
10584 	if (addr != INADDR_ANY || checkonly) {
10585 		ASSERT(connp != NULL);
10586 		zoneid = IPCL_ZONEID(connp);
10587 		if (option == IP_NEXTHOP) {
10588 			ipif = ipif_lookup_onlink_addr(addr,
10589 			    connp->conn_zoneid, ipst);
10590 		} else {
10591 			ipif = ipif_lookup_addr(addr, NULL, zoneid,
10592 			    CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt,
10593 			    &error, ipst);
10594 		}
10595 		if (ipif == NULL) {
10596 			if (error == EINPROGRESS)
10597 				return (error);
10598 			else if ((option == IP_MULTICAST_IF) ||
10599 			    (option == IP_NEXTHOP))
10600 				return (EHOSTUNREACH);
10601 			else
10602 				return (EINVAL);
10603 		} else if (checkonly) {
10604 			if (option == IP_MULTICAST_IF) {
10605 				ill = ipif->ipif_ill;
10606 				/* not supported by the virtual network iface */
10607 				if (IS_VNI(ill)) {
10608 					ipif_refrele(ipif);
10609 					return (EINVAL);
10610 				}
10611 			}
10612 			ipif_refrele(ipif);
10613 			return (0);
10614 		}
10615 		ill = ipif->ipif_ill;
10616 		mutex_enter(&connp->conn_lock);
10617 		mutex_enter(&ill->ill_lock);
10618 		if ((ill->ill_state_flags & ILL_CONDEMNED) ||
10619 		    (ipif->ipif_state_flags & IPIF_CONDEMNED)) {
10620 			mutex_exit(&ill->ill_lock);
10621 			mutex_exit(&connp->conn_lock);
10622 			ipif_refrele(ipif);
10623 			return (option == IP_MULTICAST_IF ?
10624 			    EHOSTUNREACH : EINVAL);
10625 		}
10626 	} else {
10627 		mutex_enter(&connp->conn_lock);
10628 	}
10629 
10630 	/* None of the options below are supported on the VNI */
10631 	if (ipif != NULL && IS_VNI(ipif->ipif_ill)) {
10632 		mutex_exit(&ill->ill_lock);
10633 		mutex_exit(&connp->conn_lock);
10634 		ipif_refrele(ipif);
10635 		return (EINVAL);
10636 	}
10637 
10638 	switch (option) {
10639 	case IP_DONTFAILOVER_IF:
10640 		/*
10641 		 * This option is used by in.mpathd to ensure
10642 		 * that IPMP probe packets only go out on the
10643 		 * test interfaces. in.mpathd sets this option
10644 		 * on the non-failover interfaces.
10645 		 * For backward compatibility, this option
10646 		 * implicitly sets IP_MULTICAST_IF, as used
10647 		 * be done in bind(), so that ip_wput gets
10648 		 * this ipif to send mcast packets.
10649 		 */
10650 		if (ipif != NULL) {
10651 			ASSERT(addr != INADDR_ANY);
10652 			connp->conn_nofailover_ill = ipif->ipif_ill;
10653 			connp->conn_multicast_ipif = ipif;
10654 		} else {
10655 			ASSERT(addr == INADDR_ANY);
10656 			connp->conn_nofailover_ill = NULL;
10657 			connp->conn_multicast_ipif = NULL;
10658 		}
10659 		break;
10660 
10661 	case IP_MULTICAST_IF:
10662 		connp->conn_multicast_ipif = ipif;
10663 		break;
10664 	case IP_NEXTHOP:
10665 		connp->conn_nexthop_v4 = addr;
10666 		connp->conn_nexthop_set = B_TRUE;
10667 		break;
10668 	}
10669 
10670 	if (ipif != NULL) {
10671 		mutex_exit(&ill->ill_lock);
10672 		mutex_exit(&connp->conn_lock);
10673 		ipif_refrele(ipif);
10674 		return (0);
10675 	}
10676 	mutex_exit(&connp->conn_lock);
10677 	/* We succeded in cleared the option */
10678 	return (0);
10679 }
10680 
10681 /*
10682  * For options that pass in an ifindex specifying the ill. V6 options always
10683  * pass in an ill. Some v4 options also pass in ifindex specifying the ill.
10684  */
10685 int
10686 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly,
10687     int level, int option, mblk_t *first_mp)
10688 {
10689 	ill_t *ill = NULL;
10690 	int error = 0;
10691 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
10692 
10693 	ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex));
10694 	if (ifindex != 0) {
10695 		ASSERT(connp != NULL);
10696 		ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp),
10697 		    first_mp, ip_restart_optmgmt, &error, ipst);
10698 		if (ill != NULL) {
10699 			if (checkonly) {
10700 				/* not supported by the virtual network iface */
10701 				if (IS_VNI(ill)) {
10702 					ill_refrele(ill);
10703 					return (EINVAL);
10704 				}
10705 				ill_refrele(ill);
10706 				return (0);
10707 			}
10708 			if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid,
10709 			    0, NULL)) {
10710 				ill_refrele(ill);
10711 				ill = NULL;
10712 				mutex_enter(&connp->conn_lock);
10713 				goto setit;
10714 			}
10715 			mutex_enter(&connp->conn_lock);
10716 			mutex_enter(&ill->ill_lock);
10717 			if (ill->ill_state_flags & ILL_CONDEMNED) {
10718 				mutex_exit(&ill->ill_lock);
10719 				mutex_exit(&connp->conn_lock);
10720 				ill_refrele(ill);
10721 				ill = NULL;
10722 				mutex_enter(&connp->conn_lock);
10723 			}
10724 			goto setit;
10725 		} else if (error == EINPROGRESS) {
10726 			return (error);
10727 		} else {
10728 			error = 0;
10729 		}
10730 	}
10731 	mutex_enter(&connp->conn_lock);
10732 setit:
10733 	ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6));
10734 
10735 	/*
10736 	 * The options below assume that the ILL (if any) transmits and/or
10737 	 * receives traffic. Neither of which is true for the virtual network
10738 	 * interface, so fail setting these on a VNI.
10739 	 */
10740 	if (IS_VNI(ill)) {
10741 		ASSERT(ill != NULL);
10742 		mutex_exit(&ill->ill_lock);
10743 		mutex_exit(&connp->conn_lock);
10744 		ill_refrele(ill);
10745 		return (EINVAL);
10746 	}
10747 
10748 	if (level == IPPROTO_IP) {
10749 		switch (option) {
10750 		case IP_BOUND_IF:
10751 			connp->conn_incoming_ill = ill;
10752 			connp->conn_outgoing_ill = ill;
10753 			connp->conn_orig_bound_ifindex = (ill == NULL) ?
10754 			    0 : ifindex;
10755 			break;
10756 
10757 		case IP_XMIT_IF:
10758 			/*
10759 			 * Similar to IP_BOUND_IF, but this only
10760 			 * determines the outgoing interface for
10761 			 * unicast packets. Also no IRE_CACHE entry
10762 			 * is added for the destination of the
10763 			 * outgoing packets. This feature is needed
10764 			 * for mobile IP.
10765 			 */
10766 			connp->conn_xmit_if_ill = ill;
10767 			connp->conn_orig_xmit_ifindex = (ill == NULL) ?
10768 			    0 : ifindex;
10769 			break;
10770 
10771 		case IP_MULTICAST_IF:
10772 			/*
10773 			 * This option is an internal special. The socket
10774 			 * level IP_MULTICAST_IF specifies an 'ipaddr' and
10775 			 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF
10776 			 * specifies an ifindex and we try first on V6 ill's.
10777 			 * If we don't find one, we they try using on v4 ill's
10778 			 * intenally and we come here.
10779 			 */
10780 			if (!checkonly && ill != NULL) {
10781 				ipif_t	*ipif;
10782 				ipif = ill->ill_ipif;
10783 
10784 				if (ipif->ipif_state_flags & IPIF_CONDEMNED) {
10785 					mutex_exit(&ill->ill_lock);
10786 					mutex_exit(&connp->conn_lock);
10787 					ill_refrele(ill);
10788 					ill = NULL;
10789 					mutex_enter(&connp->conn_lock);
10790 				} else {
10791 					connp->conn_multicast_ipif = ipif;
10792 				}
10793 			}
10794 			break;
10795 		}
10796 	} else {
10797 		switch (option) {
10798 		case IPV6_BOUND_IF:
10799 			connp->conn_incoming_ill = ill;
10800 			connp->conn_outgoing_ill = ill;
10801 			connp->conn_orig_bound_ifindex = (ill == NULL) ?
10802 			    0 : ifindex;
10803 			break;
10804 
10805 		case IPV6_BOUND_PIF:
10806 			/*
10807 			 * Limit all transmit to this ill.
10808 			 * Unlike IPV6_BOUND_IF, using this option
10809 			 * prevents load spreading and failover from
10810 			 * happening when the interface is part of the
10811 			 * group. That's why we don't need to remember
10812 			 * the ifindex in orig_bound_ifindex as in
10813 			 * IPV6_BOUND_IF.
10814 			 */
10815 			connp->conn_outgoing_pill = ill;
10816 			break;
10817 
10818 		case IPV6_DONTFAILOVER_IF:
10819 			/*
10820 			 * This option is used by in.mpathd to ensure
10821 			 * that IPMP probe packets only go out on the
10822 			 * test interfaces. in.mpathd sets this option
10823 			 * on the non-failover interfaces.
10824 			 */
10825 			connp->conn_nofailover_ill = ill;
10826 			/*
10827 			 * For backward compatibility, this option
10828 			 * implicitly sets ip_multicast_ill as used in
10829 			 * IP_MULTICAST_IF so that ip_wput gets
10830 			 * this ipif to send mcast packets.
10831 			 */
10832 			connp->conn_multicast_ill = ill;
10833 			connp->conn_orig_multicast_ifindex = (ill == NULL) ?
10834 			    0 : ifindex;
10835 			break;
10836 
10837 		case IPV6_MULTICAST_IF:
10838 			/*
10839 			 * Set conn_multicast_ill to be the IPv6 ill.
10840 			 * Set conn_multicast_ipif to be an IPv4 ipif
10841 			 * for ifindex to make IPv4 mapped addresses
10842 			 * on PF_INET6 sockets honor IPV6_MULTICAST_IF.
10843 			 * Even if no IPv6 ill exists for the ifindex
10844 			 * we need to check for an IPv4 ifindex in order
10845 			 * for this to work with mapped addresses. In that
10846 			 * case only set conn_multicast_ipif.
10847 			 */
10848 			if (!checkonly) {
10849 				if (ifindex == 0) {
10850 					connp->conn_multicast_ill = NULL;
10851 					connp->conn_orig_multicast_ifindex = 0;
10852 					connp->conn_multicast_ipif = NULL;
10853 				} else if (ill != NULL) {
10854 					connp->conn_multicast_ill = ill;
10855 					connp->conn_orig_multicast_ifindex =
10856 					    ifindex;
10857 				}
10858 			}
10859 			break;
10860 		}
10861 	}
10862 
10863 	if (ill != NULL) {
10864 		mutex_exit(&ill->ill_lock);
10865 		mutex_exit(&connp->conn_lock);
10866 		ill_refrele(ill);
10867 		return (0);
10868 	}
10869 	mutex_exit(&connp->conn_lock);
10870 	/*
10871 	 * We succeeded in clearing the option (ifindex == 0) or failed to
10872 	 * locate the ill and could not set the option (ifindex != 0)
10873 	 */
10874 	return (ifindex == 0 ? 0 : EINVAL);
10875 }
10876 
10877 /* This routine sets socket options. */
10878 /* ARGSUSED */
10879 int
10880 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10881     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10882     void *dummy, cred_t *cr, mblk_t *first_mp)
10883 {
10884 	int		*i1 = (int *)invalp;
10885 	conn_t		*connp = Q_TO_CONN(q);
10886 	int		error = 0;
10887 	boolean_t	checkonly;
10888 	ire_t		*ire;
10889 	boolean_t	found;
10890 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
10891 
10892 	switch (optset_context) {
10893 
10894 	case SETFN_OPTCOM_CHECKONLY:
10895 		checkonly = B_TRUE;
10896 		/*
10897 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10898 		 * inlen != 0 implies value supplied and
10899 		 * 	we have to "pretend" to set it.
10900 		 * inlen == 0 implies that there is no
10901 		 * 	value part in T_CHECK request and just validation
10902 		 * done elsewhere should be enough, we just return here.
10903 		 */
10904 		if (inlen == 0) {
10905 			*outlenp = 0;
10906 			return (0);
10907 		}
10908 		break;
10909 	case SETFN_OPTCOM_NEGOTIATE:
10910 	case SETFN_UD_NEGOTIATE:
10911 	case SETFN_CONN_NEGOTIATE:
10912 		checkonly = B_FALSE;
10913 		break;
10914 	default:
10915 		/*
10916 		 * We should never get here
10917 		 */
10918 		*outlenp = 0;
10919 		return (EINVAL);
10920 	}
10921 
10922 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10923 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10924 
10925 	/*
10926 	 * For fixed length options, no sanity check
10927 	 * of passed in length is done. It is assumed *_optcom_req()
10928 	 * routines do the right thing.
10929 	 */
10930 
10931 	switch (level) {
10932 	case SOL_SOCKET:
10933 		/*
10934 		 * conn_lock protects the bitfields, and is used to
10935 		 * set the fields atomically.
10936 		 */
10937 		switch (name) {
10938 		case SO_BROADCAST:
10939 			if (!checkonly) {
10940 				/* TODO: use value someplace? */
10941 				mutex_enter(&connp->conn_lock);
10942 				connp->conn_broadcast = *i1 ? 1 : 0;
10943 				mutex_exit(&connp->conn_lock);
10944 			}
10945 			break;	/* goto sizeof (int) option return */
10946 		case SO_USELOOPBACK:
10947 			if (!checkonly) {
10948 				/* TODO: use value someplace? */
10949 				mutex_enter(&connp->conn_lock);
10950 				connp->conn_loopback = *i1 ? 1 : 0;
10951 				mutex_exit(&connp->conn_lock);
10952 			}
10953 			break;	/* goto sizeof (int) option return */
10954 		case SO_DONTROUTE:
10955 			if (!checkonly) {
10956 				mutex_enter(&connp->conn_lock);
10957 				connp->conn_dontroute = *i1 ? 1 : 0;
10958 				mutex_exit(&connp->conn_lock);
10959 			}
10960 			break;	/* goto sizeof (int) option return */
10961 		case SO_REUSEADDR:
10962 			if (!checkonly) {
10963 				mutex_enter(&connp->conn_lock);
10964 				connp->conn_reuseaddr = *i1 ? 1 : 0;
10965 				mutex_exit(&connp->conn_lock);
10966 			}
10967 			break;	/* goto sizeof (int) option return */
10968 		case SO_PROTOTYPE:
10969 			if (!checkonly) {
10970 				mutex_enter(&connp->conn_lock);
10971 				connp->conn_proto = *i1;
10972 				mutex_exit(&connp->conn_lock);
10973 			}
10974 			break;	/* goto sizeof (int) option return */
10975 		case SO_ALLZONES:
10976 			if (!checkonly) {
10977 				mutex_enter(&connp->conn_lock);
10978 				if (IPCL_IS_BOUND(connp)) {
10979 					mutex_exit(&connp->conn_lock);
10980 					return (EINVAL);
10981 				}
10982 				connp->conn_allzones = *i1 != 0 ? 1 : 0;
10983 				mutex_exit(&connp->conn_lock);
10984 			}
10985 			break;	/* goto sizeof (int) option return */
10986 		case SO_ANON_MLP:
10987 			if (!checkonly) {
10988 				mutex_enter(&connp->conn_lock);
10989 				connp->conn_anon_mlp = *i1 != 0 ? 1 : 0;
10990 				mutex_exit(&connp->conn_lock);
10991 			}
10992 			break;	/* goto sizeof (int) option return */
10993 		case SO_MAC_EXEMPT:
10994 			if (secpolicy_net_mac_aware(cr) != 0 ||
10995 			    IPCL_IS_BOUND(connp))
10996 				return (EACCES);
10997 			if (!checkonly) {
10998 				mutex_enter(&connp->conn_lock);
10999 				connp->conn_mac_exempt = *i1 != 0 ? 1 : 0;
11000 				mutex_exit(&connp->conn_lock);
11001 			}
11002 			break;	/* goto sizeof (int) option return */
11003 		default:
11004 			/*
11005 			 * "soft" error (negative)
11006 			 * option not handled at this level
11007 			 * Note: Do not modify *outlenp
11008 			 */
11009 			return (-EINVAL);
11010 		}
11011 		break;
11012 	case IPPROTO_IP:
11013 		switch (name) {
11014 		case IP_NEXTHOP:
11015 			if (secpolicy_ip_config(cr, B_FALSE) != 0)
11016 				return (EPERM);
11017 			/* FALLTHRU */
11018 		case IP_MULTICAST_IF:
11019 		case IP_DONTFAILOVER_IF: {
11020 			ipaddr_t addr = *i1;
11021 
11022 			error = ip_opt_set_ipif(connp, addr, checkonly, name,
11023 			    first_mp);
11024 			if (error != 0)
11025 				return (error);
11026 			break;	/* goto sizeof (int) option return */
11027 		}
11028 
11029 		case IP_MULTICAST_TTL:
11030 			/* Recorded in transport above IP */
11031 			*outvalp = *invalp;
11032 			*outlenp = sizeof (uchar_t);
11033 			return (0);
11034 		case IP_MULTICAST_LOOP:
11035 			if (!checkonly) {
11036 				mutex_enter(&connp->conn_lock);
11037 				connp->conn_multicast_loop = *invalp ? 1 : 0;
11038 				mutex_exit(&connp->conn_lock);
11039 			}
11040 			*outvalp = *invalp;
11041 			*outlenp = sizeof (uchar_t);
11042 			return (0);
11043 		case IP_ADD_MEMBERSHIP:
11044 		case MCAST_JOIN_GROUP:
11045 		case IP_DROP_MEMBERSHIP:
11046 		case MCAST_LEAVE_GROUP: {
11047 			struct ip_mreq *mreqp;
11048 			struct group_req *greqp;
11049 			ire_t *ire;
11050 			boolean_t done = B_FALSE;
11051 			ipaddr_t group, ifaddr;
11052 			struct sockaddr_in *sin;
11053 			uint32_t *ifindexp;
11054 			boolean_t mcast_opt = B_TRUE;
11055 			mcast_record_t fmode;
11056 			int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
11057 			    uint_t *, mcast_record_t, ipaddr_t, mblk_t *);
11058 
11059 			switch (name) {
11060 			case IP_ADD_MEMBERSHIP:
11061 				mcast_opt = B_FALSE;
11062 				/* FALLTHRU */
11063 			case MCAST_JOIN_GROUP:
11064 				fmode = MODE_IS_EXCLUDE;
11065 				optfn = ip_opt_add_group;
11066 				break;
11067 
11068 			case IP_DROP_MEMBERSHIP:
11069 				mcast_opt = B_FALSE;
11070 				/* FALLTHRU */
11071 			case MCAST_LEAVE_GROUP:
11072 				fmode = MODE_IS_INCLUDE;
11073 				optfn = ip_opt_delete_group;
11074 				break;
11075 			}
11076 
11077 			if (mcast_opt) {
11078 				greqp = (struct group_req *)i1;
11079 				sin = (struct sockaddr_in *)&greqp->gr_group;
11080 				if (sin->sin_family != AF_INET) {
11081 					*outlenp = 0;
11082 					return (ENOPROTOOPT);
11083 				}
11084 				group = (ipaddr_t)sin->sin_addr.s_addr;
11085 				ifaddr = INADDR_ANY;
11086 				ifindexp = &greqp->gr_interface;
11087 			} else {
11088 				mreqp = (struct ip_mreq *)i1;
11089 				group = (ipaddr_t)mreqp->imr_multiaddr.s_addr;
11090 				ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr;
11091 				ifindexp = NULL;
11092 			}
11093 
11094 			/*
11095 			 * In the multirouting case, we need to replicate
11096 			 * the request on all interfaces that will take part
11097 			 * in replication.  We do so because multirouting is
11098 			 * reflective, thus we will probably receive multi-
11099 			 * casts on those interfaces.
11100 			 * The ip_multirt_apply_membership() succeeds if the
11101 			 * operation succeeds on at least one interface.
11102 			 */
11103 			ire = ire_ftable_lookup(group, IP_HOST_MASK, 0,
11104 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
11105 			    MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst);
11106 			if (ire != NULL) {
11107 				if (ire->ire_flags & RTF_MULTIRT) {
11108 					error = ip_multirt_apply_membership(
11109 					    optfn, ire, connp, checkonly, group,
11110 					    fmode, INADDR_ANY, first_mp);
11111 					done = B_TRUE;
11112 				}
11113 				ire_refrele(ire);
11114 			}
11115 			if (!done) {
11116 				error = optfn(connp, checkonly, group, ifaddr,
11117 				    ifindexp, fmode, INADDR_ANY, first_mp);
11118 			}
11119 			if (error) {
11120 				/*
11121 				 * EINPROGRESS is a soft error, needs retry
11122 				 * so don't make *outlenp zero.
11123 				 */
11124 				if (error != EINPROGRESS)
11125 					*outlenp = 0;
11126 				return (error);
11127 			}
11128 			/* OK return - copy input buffer into output buffer */
11129 			if (invalp != outvalp) {
11130 				/* don't trust bcopy for identical src/dst */
11131 				bcopy(invalp, outvalp, inlen);
11132 			}
11133 			*outlenp = inlen;
11134 			return (0);
11135 		}
11136 		case IP_BLOCK_SOURCE:
11137 		case IP_UNBLOCK_SOURCE:
11138 		case IP_ADD_SOURCE_MEMBERSHIP:
11139 		case IP_DROP_SOURCE_MEMBERSHIP:
11140 		case MCAST_BLOCK_SOURCE:
11141 		case MCAST_UNBLOCK_SOURCE:
11142 		case MCAST_JOIN_SOURCE_GROUP:
11143 		case MCAST_LEAVE_SOURCE_GROUP: {
11144 			struct ip_mreq_source *imreqp;
11145 			struct group_source_req *gsreqp;
11146 			in_addr_t grp, src, ifaddr = INADDR_ANY;
11147 			uint32_t ifindex = 0;
11148 			mcast_record_t fmode;
11149 			struct sockaddr_in *sin;
11150 			ire_t *ire;
11151 			boolean_t mcast_opt = B_TRUE, done = B_FALSE;
11152 			int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
11153 			    uint_t *, mcast_record_t, ipaddr_t, mblk_t *);
11154 
11155 			switch (name) {
11156 			case IP_BLOCK_SOURCE:
11157 				mcast_opt = B_FALSE;
11158 				/* FALLTHRU */
11159 			case MCAST_BLOCK_SOURCE:
11160 				fmode = MODE_IS_EXCLUDE;
11161 				optfn = ip_opt_add_group;
11162 				break;
11163 
11164 			case IP_UNBLOCK_SOURCE:
11165 				mcast_opt = B_FALSE;
11166 				/* FALLTHRU */
11167 			case MCAST_UNBLOCK_SOURCE:
11168 				fmode = MODE_IS_EXCLUDE;
11169 				optfn = ip_opt_delete_group;
11170 				break;
11171 
11172 			case IP_ADD_SOURCE_MEMBERSHIP:
11173 				mcast_opt = B_FALSE;
11174 				/* FALLTHRU */
11175 			case MCAST_JOIN_SOURCE_GROUP:
11176 				fmode = MODE_IS_INCLUDE;
11177 				optfn = ip_opt_add_group;
11178 				break;
11179 
11180 			case IP_DROP_SOURCE_MEMBERSHIP:
11181 				mcast_opt = B_FALSE;
11182 				/* FALLTHRU */
11183 			case MCAST_LEAVE_SOURCE_GROUP:
11184 				fmode = MODE_IS_INCLUDE;
11185 				optfn = ip_opt_delete_group;
11186 				break;
11187 			}
11188 
11189 			if (mcast_opt) {
11190 				gsreqp = (struct group_source_req *)i1;
11191 				if (gsreqp->gsr_group.ss_family != AF_INET) {
11192 					*outlenp = 0;
11193 					return (ENOPROTOOPT);
11194 				}
11195 				sin = (struct sockaddr_in *)&gsreqp->gsr_group;
11196 				grp = (ipaddr_t)sin->sin_addr.s_addr;
11197 				sin = (struct sockaddr_in *)&gsreqp->gsr_source;
11198 				src = (ipaddr_t)sin->sin_addr.s_addr;
11199 				ifindex = gsreqp->gsr_interface;
11200 			} else {
11201 				imreqp = (struct ip_mreq_source *)i1;
11202 				grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr;
11203 				src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr;
11204 				ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
11205 			}
11206 
11207 			/*
11208 			 * In the multirouting case, we need to replicate
11209 			 * the request as noted in the mcast cases above.
11210 			 */
11211 			ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0,
11212 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
11213 			    MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst);
11214 			if (ire != NULL) {
11215 				if (ire->ire_flags & RTF_MULTIRT) {
11216 					error = ip_multirt_apply_membership(
11217 					    optfn, ire, connp, checkonly, grp,
11218 					    fmode, src, first_mp);
11219 					done = B_TRUE;
11220 				}
11221 				ire_refrele(ire);
11222 			}
11223 			if (!done) {
11224 				error = optfn(connp, checkonly, grp, ifaddr,
11225 				    &ifindex, fmode, src, first_mp);
11226 			}
11227 			if (error != 0) {
11228 				/*
11229 				 * EINPROGRESS is a soft error, needs retry
11230 				 * so don't make *outlenp zero.
11231 				 */
11232 				if (error != EINPROGRESS)
11233 					*outlenp = 0;
11234 				return (error);
11235 			}
11236 			/* OK return - copy input buffer into output buffer */
11237 			if (invalp != outvalp) {
11238 				bcopy(invalp, outvalp, inlen);
11239 			}
11240 			*outlenp = inlen;
11241 			return (0);
11242 		}
11243 		case IP_SEC_OPT:
11244 			error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp);
11245 			if (error != 0) {
11246 				*outlenp = 0;
11247 				return (error);
11248 			}
11249 			break;
11250 		case IP_HDRINCL:
11251 		case IP_OPTIONS:
11252 		case T_IP_OPTIONS:
11253 		case IP_TOS:
11254 		case T_IP_TOS:
11255 		case IP_TTL:
11256 		case IP_RECVDSTADDR:
11257 		case IP_RECVOPTS:
11258 			/* OK return - copy input buffer into output buffer */
11259 			if (invalp != outvalp) {
11260 				/* don't trust bcopy for identical src/dst */
11261 				bcopy(invalp, outvalp, inlen);
11262 			}
11263 			*outlenp = inlen;
11264 			return (0);
11265 		case IP_RECVIF:
11266 			/* Retrieve the inbound interface index */
11267 			if (!checkonly) {
11268 				mutex_enter(&connp->conn_lock);
11269 				connp->conn_recvif = *i1 ? 1 : 0;
11270 				mutex_exit(&connp->conn_lock);
11271 			}
11272 			break;	/* goto sizeof (int) option return */
11273 		case IP_RECVPKTINFO:
11274 			if (!checkonly) {
11275 				mutex_enter(&connp->conn_lock);
11276 				connp->conn_ip_recvpktinfo = *i1 ? 1 : 0;
11277 				mutex_exit(&connp->conn_lock);
11278 			}
11279 			break;	/* goto sizeof (int) option return */
11280 		case IP_RECVSLLA:
11281 			/* Retrieve the source link layer address */
11282 			if (!checkonly) {
11283 				mutex_enter(&connp->conn_lock);
11284 				connp->conn_recvslla = *i1 ? 1 : 0;
11285 				mutex_exit(&connp->conn_lock);
11286 			}
11287 			break;	/* goto sizeof (int) option return */
11288 		case MRT_INIT:
11289 		case MRT_DONE:
11290 		case MRT_ADD_VIF:
11291 		case MRT_DEL_VIF:
11292 		case MRT_ADD_MFC:
11293 		case MRT_DEL_MFC:
11294 		case MRT_ASSERT:
11295 			if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) {
11296 				*outlenp = 0;
11297 				return (error);
11298 			}
11299 			error = ip_mrouter_set((int)name, q, checkonly,
11300 			    (uchar_t *)invalp, inlen, first_mp);
11301 			if (error) {
11302 				*outlenp = 0;
11303 				return (error);
11304 			}
11305 			/* OK return - copy input buffer into output buffer */
11306 			if (invalp != outvalp) {
11307 				/* don't trust bcopy for identical src/dst */
11308 				bcopy(invalp, outvalp, inlen);
11309 			}
11310 			*outlenp = inlen;
11311 			return (0);
11312 		case IP_BOUND_IF:
11313 		case IP_XMIT_IF:
11314 			error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly,
11315 			    level, name, first_mp);
11316 			if (error != 0)
11317 				return (error);
11318 			break; 		/* goto sizeof (int) option return */
11319 
11320 		case IP_UNSPEC_SRC:
11321 			/* Allow sending with a zero source address */
11322 			if (!checkonly) {
11323 				mutex_enter(&connp->conn_lock);
11324 				connp->conn_unspec_src = *i1 ? 1 : 0;
11325 				mutex_exit(&connp->conn_lock);
11326 			}
11327 			break;	/* goto sizeof (int) option return */
11328 		default:
11329 			/*
11330 			 * "soft" error (negative)
11331 			 * option not handled at this level
11332 			 * Note: Do not modify *outlenp
11333 			 */
11334 			return (-EINVAL);
11335 		}
11336 		break;
11337 	case IPPROTO_IPV6:
11338 		switch (name) {
11339 		case IPV6_BOUND_IF:
11340 		case IPV6_BOUND_PIF:
11341 		case IPV6_DONTFAILOVER_IF:
11342 			error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly,
11343 			    level, name, first_mp);
11344 			if (error != 0)
11345 				return (error);
11346 			break; 		/* goto sizeof (int) option return */
11347 
11348 		case IPV6_MULTICAST_IF:
11349 			/*
11350 			 * The only possible errors are EINPROGRESS and
11351 			 * EINVAL. EINPROGRESS will be restarted and is not
11352 			 * a hard error. We call this option on both V4 and V6
11353 			 * If both return EINVAL, then this call returns
11354 			 * EINVAL. If at least one of them succeeds we
11355 			 * return success.
11356 			 */
11357 			found = B_FALSE;
11358 			error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly,
11359 			    level, name, first_mp);
11360 			if (error == EINPROGRESS)
11361 				return (error);
11362 			if (error == 0)
11363 				found = B_TRUE;
11364 			error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly,
11365 			    IPPROTO_IP, IP_MULTICAST_IF, first_mp);
11366 			if (error == 0)
11367 				found = B_TRUE;
11368 			if (!found)
11369 				return (error);
11370 			break; 		/* goto sizeof (int) option return */
11371 
11372 		case IPV6_MULTICAST_HOPS:
11373 			/* Recorded in transport above IP */
11374 			break;	/* goto sizeof (int) option return */
11375 		case IPV6_MULTICAST_LOOP:
11376 			if (!checkonly) {
11377 				mutex_enter(&connp->conn_lock);
11378 				connp->conn_multicast_loop = *i1;
11379 				mutex_exit(&connp->conn_lock);
11380 			}
11381 			break;	/* goto sizeof (int) option return */
11382 		case IPV6_JOIN_GROUP:
11383 		case MCAST_JOIN_GROUP:
11384 		case IPV6_LEAVE_GROUP:
11385 		case MCAST_LEAVE_GROUP: {
11386 			struct ipv6_mreq *ip_mreqp;
11387 			struct group_req *greqp;
11388 			ire_t *ire;
11389 			boolean_t done = B_FALSE;
11390 			in6_addr_t groupv6;
11391 			uint32_t ifindex;
11392 			boolean_t mcast_opt = B_TRUE;
11393 			mcast_record_t fmode;
11394 			int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
11395 			    int, mcast_record_t, const in6_addr_t *, mblk_t *);
11396 
11397 			switch (name) {
11398 			case IPV6_JOIN_GROUP:
11399 				mcast_opt = B_FALSE;
11400 				/* FALLTHRU */
11401 			case MCAST_JOIN_GROUP:
11402 				fmode = MODE_IS_EXCLUDE;
11403 				optfn = ip_opt_add_group_v6;
11404 				break;
11405 
11406 			case IPV6_LEAVE_GROUP:
11407 				mcast_opt = B_FALSE;
11408 				/* FALLTHRU */
11409 			case MCAST_LEAVE_GROUP:
11410 				fmode = MODE_IS_INCLUDE;
11411 				optfn = ip_opt_delete_group_v6;
11412 				break;
11413 			}
11414 
11415 			if (mcast_opt) {
11416 				struct sockaddr_in *sin;
11417 				struct sockaddr_in6 *sin6;
11418 				greqp = (struct group_req *)i1;
11419 				if (greqp->gr_group.ss_family == AF_INET) {
11420 					sin = (struct sockaddr_in *)
11421 					    &(greqp->gr_group);
11422 					IN6_INADDR_TO_V4MAPPED(&sin->sin_addr,
11423 					    &groupv6);
11424 				} else {
11425 					sin6 = (struct sockaddr_in6 *)
11426 					    &(greqp->gr_group);
11427 					groupv6 = sin6->sin6_addr;
11428 				}
11429 				ifindex = greqp->gr_interface;
11430 			} else {
11431 				ip_mreqp = (struct ipv6_mreq *)i1;
11432 				groupv6 = ip_mreqp->ipv6mr_multiaddr;
11433 				ifindex = ip_mreqp->ipv6mr_interface;
11434 			}
11435 			/*
11436 			 * In the multirouting case, we need to replicate
11437 			 * the request on all interfaces that will take part
11438 			 * in replication.  We do so because multirouting is
11439 			 * reflective, thus we will probably receive multi-
11440 			 * casts on those interfaces.
11441 			 * The ip_multirt_apply_membership_v6() succeeds if
11442 			 * the operation succeeds on at least one interface.
11443 			 */
11444 			ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0,
11445 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
11446 			    MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst);
11447 			if (ire != NULL) {
11448 				if (ire->ire_flags & RTF_MULTIRT) {
11449 					error = ip_multirt_apply_membership_v6(
11450 					    optfn, ire, connp, checkonly,
11451 					    &groupv6, fmode, &ipv6_all_zeros,
11452 					    first_mp);
11453 					done = B_TRUE;
11454 				}
11455 				ire_refrele(ire);
11456 			}
11457 			if (!done) {
11458 				error = optfn(connp, checkonly, &groupv6,
11459 				    ifindex, fmode, &ipv6_all_zeros, first_mp);
11460 			}
11461 			if (error) {
11462 				/*
11463 				 * EINPROGRESS is a soft error, needs retry
11464 				 * so don't make *outlenp zero.
11465 				 */
11466 				if (error != EINPROGRESS)
11467 					*outlenp = 0;
11468 				return (error);
11469 			}
11470 			/* OK return - copy input buffer into output buffer */
11471 			if (invalp != outvalp) {
11472 				/* don't trust bcopy for identical src/dst */
11473 				bcopy(invalp, outvalp, inlen);
11474 			}
11475 			*outlenp = inlen;
11476 			return (0);
11477 		}
11478 		case MCAST_BLOCK_SOURCE:
11479 		case MCAST_UNBLOCK_SOURCE:
11480 		case MCAST_JOIN_SOURCE_GROUP:
11481 		case MCAST_LEAVE_SOURCE_GROUP: {
11482 			struct group_source_req *gsreqp;
11483 			in6_addr_t v6grp, v6src;
11484 			uint32_t ifindex;
11485 			mcast_record_t fmode;
11486 			ire_t *ire;
11487 			boolean_t done = B_FALSE;
11488 			int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
11489 			    int, mcast_record_t, const in6_addr_t *, mblk_t *);
11490 
11491 			switch (name) {
11492 			case MCAST_BLOCK_SOURCE:
11493 				fmode = MODE_IS_EXCLUDE;
11494 				optfn = ip_opt_add_group_v6;
11495 				break;
11496 			case MCAST_UNBLOCK_SOURCE:
11497 				fmode = MODE_IS_EXCLUDE;
11498 				optfn = ip_opt_delete_group_v6;
11499 				break;
11500 			case MCAST_JOIN_SOURCE_GROUP:
11501 				fmode = MODE_IS_INCLUDE;
11502 				optfn = ip_opt_add_group_v6;
11503 				break;
11504 			case MCAST_LEAVE_SOURCE_GROUP:
11505 				fmode = MODE_IS_INCLUDE;
11506 				optfn = ip_opt_delete_group_v6;
11507 				break;
11508 			}
11509 
11510 			gsreqp = (struct group_source_req *)i1;
11511 			ifindex = gsreqp->gsr_interface;
11512 			if (gsreqp->gsr_group.ss_family == AF_INET) {
11513 				struct sockaddr_in *s;
11514 				s = (struct sockaddr_in *)&gsreqp->gsr_group;
11515 				IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp);
11516 				s = (struct sockaddr_in *)&gsreqp->gsr_source;
11517 				IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
11518 			} else {
11519 				struct sockaddr_in6 *s6;
11520 				s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
11521 				v6grp = s6->sin6_addr;
11522 				s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
11523 				v6src = s6->sin6_addr;
11524 			}
11525 
11526 			/*
11527 			 * In the multirouting case, we need to replicate
11528 			 * the request as noted in the mcast cases above.
11529 			 */
11530 			ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0,
11531 			    IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL,
11532 			    MATCH_IRE_MASK | MATCH_IRE_TYPE, ipst);
11533 			if (ire != NULL) {
11534 				if (ire->ire_flags & RTF_MULTIRT) {
11535 					error = ip_multirt_apply_membership_v6(
11536 					    optfn, ire, connp, checkonly,
11537 					    &v6grp, fmode, &v6src, first_mp);
11538 					done = B_TRUE;
11539 				}
11540 				ire_refrele(ire);
11541 			}
11542 			if (!done) {
11543 				error = optfn(connp, checkonly, &v6grp,
11544 				    ifindex, fmode, &v6src, first_mp);
11545 			}
11546 			if (error != 0) {
11547 				/*
11548 				 * EINPROGRESS is a soft error, needs retry
11549 				 * so don't make *outlenp zero.
11550 				 */
11551 				if (error != EINPROGRESS)
11552 					*outlenp = 0;
11553 				return (error);
11554 			}
11555 			/* OK return - copy input buffer into output buffer */
11556 			if (invalp != outvalp) {
11557 				bcopy(invalp, outvalp, inlen);
11558 			}
11559 			*outlenp = inlen;
11560 			return (0);
11561 		}
11562 		case IPV6_UNICAST_HOPS:
11563 			/* Recorded in transport above IP */
11564 			break;	/* goto sizeof (int) option return */
11565 		case IPV6_UNSPEC_SRC:
11566 			/* Allow sending with a zero source address */
11567 			if (!checkonly) {
11568 				mutex_enter(&connp->conn_lock);
11569 				connp->conn_unspec_src = *i1 ? 1 : 0;
11570 				mutex_exit(&connp->conn_lock);
11571 			}
11572 			break;	/* goto sizeof (int) option return */
11573 		case IPV6_RECVPKTINFO:
11574 			if (!checkonly) {
11575 				mutex_enter(&connp->conn_lock);
11576 				connp->conn_ip_recvpktinfo = *i1 ? 1 : 0;
11577 				mutex_exit(&connp->conn_lock);
11578 			}
11579 			break;	/* goto sizeof (int) option return */
11580 		case IPV6_RECVTCLASS:
11581 			if (!checkonly) {
11582 				if (*i1 < 0 || *i1 > 1) {
11583 					return (EINVAL);
11584 				}
11585 				mutex_enter(&connp->conn_lock);
11586 				connp->conn_ipv6_recvtclass = *i1;
11587 				mutex_exit(&connp->conn_lock);
11588 			}
11589 			break;
11590 		case IPV6_RECVPATHMTU:
11591 			if (!checkonly) {
11592 				if (*i1 < 0 || *i1 > 1) {
11593 					return (EINVAL);
11594 				}
11595 				mutex_enter(&connp->conn_lock);
11596 				connp->conn_ipv6_recvpathmtu = *i1;
11597 				mutex_exit(&connp->conn_lock);
11598 			}
11599 			break;
11600 		case IPV6_RECVHOPLIMIT:
11601 			if (!checkonly) {
11602 				mutex_enter(&connp->conn_lock);
11603 				connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0;
11604 				mutex_exit(&connp->conn_lock);
11605 			}
11606 			break;	/* goto sizeof (int) option return */
11607 		case IPV6_RECVHOPOPTS:
11608 			if (!checkonly) {
11609 				mutex_enter(&connp->conn_lock);
11610 				connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0;
11611 				mutex_exit(&connp->conn_lock);
11612 			}
11613 			break;	/* goto sizeof (int) option return */
11614 		case IPV6_RECVDSTOPTS:
11615 			if (!checkonly) {
11616 				mutex_enter(&connp->conn_lock);
11617 				connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0;
11618 				mutex_exit(&connp->conn_lock);
11619 			}
11620 			break;	/* goto sizeof (int) option return */
11621 		case IPV6_RECVRTHDR:
11622 			if (!checkonly) {
11623 				mutex_enter(&connp->conn_lock);
11624 				connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0;
11625 				mutex_exit(&connp->conn_lock);
11626 			}
11627 			break;	/* goto sizeof (int) option return */
11628 		case IPV6_RECVRTHDRDSTOPTS:
11629 			if (!checkonly) {
11630 				mutex_enter(&connp->conn_lock);
11631 				connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0;
11632 				mutex_exit(&connp->conn_lock);
11633 			}
11634 			break;	/* goto sizeof (int) option return */
11635 		case IPV6_PKTINFO:
11636 			if (inlen == 0)
11637 				return (-EINVAL);	/* clearing option */
11638 			error = ip6_set_pktinfo(cr, connp,
11639 			    (struct in6_pktinfo *)invalp, first_mp);
11640 			if (error != 0)
11641 				*outlenp = 0;
11642 			else
11643 				*outlenp = inlen;
11644 			return (error);
11645 		case IPV6_NEXTHOP: {
11646 			struct sockaddr_in6 *sin6;
11647 
11648 			/* Verify that the nexthop is reachable */
11649 			if (inlen == 0)
11650 				return (-EINVAL);	/* clearing option */
11651 
11652 			sin6 = (struct sockaddr_in6 *)invalp;
11653 			ire = ire_route_lookup_v6(&sin6->sin6_addr,
11654 			    0, 0, 0, NULL, NULL, connp->conn_zoneid,
11655 			    NULL, MATCH_IRE_DEFAULT, ipst);
11656 
11657 			if (ire == NULL) {
11658 				*outlenp = 0;
11659 				return (EHOSTUNREACH);
11660 			}
11661 			ire_refrele(ire);
11662 			return (-EINVAL);
11663 		}
11664 		case IPV6_SEC_OPT:
11665 			error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp);
11666 			if (error != 0) {
11667 				*outlenp = 0;
11668 				return (error);
11669 			}
11670 			break;
11671 		case IPV6_SRC_PREFERENCES: {
11672 			/*
11673 			 * This is implemented strictly in the ip module
11674 			 * (here and in tcp_opt_*() to accomodate tcp
11675 			 * sockets).  Modules above ip pass this option
11676 			 * down here since ip is the only one that needs to
11677 			 * be aware of source address preferences.
11678 			 *
11679 			 * This socket option only affects connected
11680 			 * sockets that haven't already bound to a specific
11681 			 * IPv6 address.  In other words, sockets that
11682 			 * don't call bind() with an address other than the
11683 			 * unspecified address and that call connect().
11684 			 * ip_bind_connected_v6() passes these preferences
11685 			 * to the ipif_select_source_v6() function.
11686 			 */
11687 			if (inlen != sizeof (uint32_t))
11688 				return (EINVAL);
11689 			error = ip6_set_src_preferences(connp,
11690 			    *(uint32_t *)invalp);
11691 			if (error != 0) {
11692 				*outlenp = 0;
11693 				return (error);
11694 			} else {
11695 				*outlenp = sizeof (uint32_t);
11696 			}
11697 			break;
11698 		}
11699 		case IPV6_V6ONLY:
11700 			if (*i1 < 0 || *i1 > 1) {
11701 				return (EINVAL);
11702 			}
11703 			mutex_enter(&connp->conn_lock);
11704 			connp->conn_ipv6_v6only = *i1;
11705 			mutex_exit(&connp->conn_lock);
11706 			break;
11707 		default:
11708 			return (-EINVAL);
11709 		}
11710 		break;
11711 	default:
11712 		/*
11713 		 * "soft" error (negative)
11714 		 * option not handled at this level
11715 		 * Note: Do not modify *outlenp
11716 		 */
11717 		return (-EINVAL);
11718 	}
11719 	/*
11720 	 * Common case of return from an option that is sizeof (int)
11721 	 */
11722 	*(int *)outvalp = *i1;
11723 	*outlenp = sizeof (int);
11724 	return (0);
11725 }
11726 
11727 /*
11728  * This routine gets default values of certain options whose default
11729  * values are maintained by protocol specific code
11730  */
11731 /* ARGSUSED */
11732 int
11733 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
11734 {
11735 	int *i1 = (int *)ptr;
11736 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
11737 
11738 	switch (level) {
11739 	case IPPROTO_IP:
11740 		switch (name) {
11741 		case IP_MULTICAST_TTL:
11742 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
11743 			return (sizeof (uchar_t));
11744 		case IP_MULTICAST_LOOP:
11745 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
11746 			return (sizeof (uchar_t));
11747 		default:
11748 			return (-1);
11749 		}
11750 	case IPPROTO_IPV6:
11751 		switch (name) {
11752 		case IPV6_UNICAST_HOPS:
11753 			*i1 = ipst->ips_ipv6_def_hops;
11754 			return (sizeof (int));
11755 		case IPV6_MULTICAST_HOPS:
11756 			*i1 = IP_DEFAULT_MULTICAST_TTL;
11757 			return (sizeof (int));
11758 		case IPV6_MULTICAST_LOOP:
11759 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
11760 			return (sizeof (int));
11761 		case IPV6_V6ONLY:
11762 			*i1 = 1;
11763 			return (sizeof (int));
11764 		default:
11765 			return (-1);
11766 		}
11767 	default:
11768 		return (-1);
11769 	}
11770 	/* NOTREACHED */
11771 }
11772 
11773 /*
11774  * Given a destination address and a pointer to where to put the information
11775  * this routine fills in the mtuinfo.
11776  */
11777 int
11778 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port,
11779     struct ip6_mtuinfo *mtuinfo, netstack_t *ns)
11780 {
11781 	ire_t *ire;
11782 	ip_stack_t	*ipst = ns->netstack_ip;
11783 
11784 	if (IN6_IS_ADDR_UNSPECIFIED(in6))
11785 		return (-1);
11786 
11787 	bzero(mtuinfo, sizeof (*mtuinfo));
11788 	mtuinfo->ip6m_addr.sin6_family = AF_INET6;
11789 	mtuinfo->ip6m_addr.sin6_port = port;
11790 	mtuinfo->ip6m_addr.sin6_addr = *in6;
11791 
11792 	ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL, ipst);
11793 	if (ire != NULL) {
11794 		mtuinfo->ip6m_mtu = ire->ire_max_frag;
11795 		ire_refrele(ire);
11796 	} else {
11797 		mtuinfo->ip6m_mtu = IPV6_MIN_MTU;
11798 	}
11799 	return (sizeof (struct ip6_mtuinfo));
11800 }
11801 
11802 /*
11803  * This routine gets socket options.  For MRT_VERSION and MRT_ASSERT, error
11804  * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and
11805  * isn't.  This doesn't matter as the error checking is done properly for the
11806  * other MRT options coming in through ip_opt_set.
11807  */
11808 int
11809 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
11810 {
11811 	conn_t		*connp = Q_TO_CONN(q);
11812 	ipsec_req_t	*req = (ipsec_req_t *)ptr;
11813 
11814 	switch (level) {
11815 	case IPPROTO_IP:
11816 		switch (name) {
11817 		case MRT_VERSION:
11818 		case MRT_ASSERT:
11819 			(void) ip_mrouter_get(name, q, ptr);
11820 			return (sizeof (int));
11821 		case IP_SEC_OPT:
11822 			return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4));
11823 		case IP_NEXTHOP:
11824 			if (connp->conn_nexthop_set) {
11825 				*(ipaddr_t *)ptr = connp->conn_nexthop_v4;
11826 				return (sizeof (ipaddr_t));
11827 			} else
11828 				return (0);
11829 		case IP_RECVPKTINFO:
11830 			*(int *)ptr = connp->conn_ip_recvpktinfo ? 1: 0;
11831 			return (sizeof (int));
11832 		default:
11833 			break;
11834 		}
11835 		break;
11836 	case IPPROTO_IPV6:
11837 		switch (name) {
11838 		case IPV6_SEC_OPT:
11839 			return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6));
11840 		case IPV6_SRC_PREFERENCES: {
11841 			return (ip6_get_src_preferences(connp,
11842 			    (uint32_t *)ptr));
11843 		}
11844 		case IPV6_V6ONLY:
11845 			*(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0;
11846 			return (sizeof (int));
11847 		case IPV6_PATHMTU:
11848 			return (ip_fill_mtuinfo(&connp->conn_remv6, 0,
11849 				(struct ip6_mtuinfo *)ptr,
11850 				connp->conn_netstack));
11851 		default:
11852 			break;
11853 		}
11854 		break;
11855 	default:
11856 		break;
11857 	}
11858 	return (-1);
11859 }
11860 
11861 /* Named Dispatch routine to get a current value out of our parameter table. */
11862 /* ARGSUSED */
11863 static int
11864 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
11865 {
11866 	ipparam_t *ippa = (ipparam_t *)cp;
11867 
11868 	(void) mi_mpprintf(mp, "%d", ippa->ip_param_value);
11869 	return (0);
11870 }
11871 
11872 /* ARGSUSED */
11873 static int
11874 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
11875 {
11876 
11877 	(void) mi_mpprintf(mp, "%d", *(int *)cp);
11878 	return (0);
11879 }
11880 
11881 /*
11882  * Set ip{,6}_forwarding values.  This means walking through all of the
11883  * ill's and toggling their forwarding values.
11884  */
11885 /* ARGSUSED */
11886 static int
11887 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr)
11888 {
11889 	long new_value;
11890 	int *forwarding_value = (int *)cp;
11891 	ill_t *walker;
11892 	boolean_t isv6;
11893 	ill_walk_context_t ctx;
11894 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
11895 
11896 	isv6 = (forwarding_value == &ipst->ips_ipv6_forward);
11897 
11898 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11899 	    new_value < 0 || new_value > 1) {
11900 		return (EINVAL);
11901 	}
11902 
11903 	*forwarding_value = new_value;
11904 
11905 	/*
11906 	 * Regardless of the current value of ip_forwarding, set all per-ill
11907 	 * values of ip_forwarding to the value being set.
11908 	 *
11909 	 * Bring all the ill's up to date with the new global value.
11910 	 */
11911 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11912 
11913 	if (isv6)
11914 		walker = ILL_START_WALK_V6(&ctx, ipst);
11915 	else
11916 		walker = ILL_START_WALK_V4(&ctx, ipst);
11917 	for (; walker != NULL; walker = ill_next(&ctx, walker)) {
11918 		(void) ill_forward_set(q, mp, (new_value != 0),
11919 		    (caddr_t)walker);
11920 	}
11921 	rw_exit(&ipst->ips_ill_g_lock);
11922 
11923 	return (0);
11924 }
11925 
11926 /*
11927  * Walk through the param array specified registering each element with the
11928  * Named Dispatch handler. This is called only during init. So it is ok
11929  * not to acquire any locks
11930  */
11931 static boolean_t
11932 ip_param_register(IDP *ndp, ipparam_t *ippa, size_t ippa_cnt,
11933     ipndp_t *ipnd, size_t ipnd_cnt)
11934 {
11935 	for (; ippa_cnt-- > 0; ippa++) {
11936 		if (ippa->ip_param_name && ippa->ip_param_name[0]) {
11937 			if (!nd_load(ndp, ippa->ip_param_name,
11938 			    ip_param_get, ip_param_set, (caddr_t)ippa)) {
11939 				nd_free(ndp);
11940 				return (B_FALSE);
11941 			}
11942 		}
11943 	}
11944 
11945 	for (; ipnd_cnt-- > 0; ipnd++) {
11946 		if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) {
11947 			if (!nd_load(ndp, ipnd->ip_ndp_name,
11948 			    ipnd->ip_ndp_getf, ipnd->ip_ndp_setf,
11949 			    ipnd->ip_ndp_data)) {
11950 				nd_free(ndp);
11951 				return (B_FALSE);
11952 			}
11953 		}
11954 	}
11955 
11956 	return (B_TRUE);
11957 }
11958 
11959 /* Named Dispatch routine to negotiate a new value for one of our parameters. */
11960 /* ARGSUSED */
11961 static int
11962 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr)
11963 {
11964 	long		new_value;
11965 	ipparam_t	*ippa = (ipparam_t *)cp;
11966 
11967 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11968 	    new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) {
11969 		return (EINVAL);
11970 	}
11971 	ippa->ip_param_value = new_value;
11972 	return (0);
11973 }
11974 
11975 /*
11976  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
11977  * When an ipf is passed here for the first time, if
11978  * we already have in-order fragments on the queue, we convert from the fast-
11979  * path reassembly scheme to the hard-case scheme.  From then on, additional
11980  * fragments are reassembled here.  We keep track of the start and end offsets
11981  * of each piece, and the number of holes in the chain.  When the hole count
11982  * goes to zero, we are done!
11983  *
11984  * The ipf_count will be updated to account for any mblk(s) added (pointed to
11985  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
11986  * ipfb_count and ill_frag_count by the difference of ipf_count before and
11987  * after the call to ip_reassemble().
11988  */
11989 int
11990 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
11991     size_t msg_len)
11992 {
11993 	uint_t	end;
11994 	mblk_t	*next_mp;
11995 	mblk_t	*mp1;
11996 	uint_t	offset;
11997 	boolean_t incr_dups = B_TRUE;
11998 	boolean_t offset_zero_seen = B_FALSE;
11999 	boolean_t pkt_boundary_checked = B_FALSE;
12000 
12001 	/* If start == 0 then ipf_nf_hdr_len has to be set. */
12002 	ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
12003 
12004 	/* Add in byte count */
12005 	ipf->ipf_count += msg_len;
12006 	if (ipf->ipf_end) {
12007 		/*
12008 		 * We were part way through in-order reassembly, but now there
12009 		 * is a hole.  We walk through messages already queued, and
12010 		 * mark them for hard case reassembly.  We know that up till
12011 		 * now they were in order starting from offset zero.
12012 		 */
12013 		offset = 0;
12014 		for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
12015 			IP_REASS_SET_START(mp1, offset);
12016 			if (offset == 0) {
12017 				ASSERT(ipf->ipf_nf_hdr_len != 0);
12018 				offset = -ipf->ipf_nf_hdr_len;
12019 			}
12020 			offset += mp1->b_wptr - mp1->b_rptr;
12021 			IP_REASS_SET_END(mp1, offset);
12022 		}
12023 		/* One hole at the end. */
12024 		ipf->ipf_hole_cnt = 1;
12025 		/* Brand it as a hard case, forever. */
12026 		ipf->ipf_end = 0;
12027 	}
12028 	/* Walk through all the new pieces. */
12029 	do {
12030 		end = start + (mp->b_wptr - mp->b_rptr);
12031 		/*
12032 		 * If start is 0, decrease 'end' only for the first mblk of
12033 		 * the fragment. Otherwise 'end' can get wrong value in the
12034 		 * second pass of the loop if first mblk is exactly the
12035 		 * size of ipf_nf_hdr_len.
12036 		 */
12037 		if (start == 0 && !offset_zero_seen) {
12038 			/* First segment */
12039 			ASSERT(ipf->ipf_nf_hdr_len != 0);
12040 			end -= ipf->ipf_nf_hdr_len;
12041 			offset_zero_seen = B_TRUE;
12042 		}
12043 		next_mp = mp->b_cont;
12044 		/*
12045 		 * We are checking to see if there is any interesing data
12046 		 * to process.  If there isn't and the mblk isn't the
12047 		 * one which carries the unfragmentable header then we
12048 		 * drop it.  It's possible to have just the unfragmentable
12049 		 * header come through without any data.  That needs to be
12050 		 * saved.
12051 		 *
12052 		 * If the assert at the top of this function holds then the
12053 		 * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
12054 		 * is infrequently traveled enough that the test is left in
12055 		 * to protect against future code changes which break that
12056 		 * invariant.
12057 		 */
12058 		if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
12059 			/* Empty.  Blast it. */
12060 			IP_REASS_SET_START(mp, 0);
12061 			IP_REASS_SET_END(mp, 0);
12062 			/*
12063 			 * If the ipf points to the mblk we are about to free,
12064 			 * update ipf to point to the next mblk (or NULL
12065 			 * if none).
12066 			 */
12067 			if (ipf->ipf_mp->b_cont == mp)
12068 				ipf->ipf_mp->b_cont = next_mp;
12069 			freeb(mp);
12070 			continue;
12071 		}
12072 		mp->b_cont = NULL;
12073 		IP_REASS_SET_START(mp, start);
12074 		IP_REASS_SET_END(mp, end);
12075 		if (!ipf->ipf_tail_mp) {
12076 			ipf->ipf_tail_mp = mp;
12077 			ipf->ipf_mp->b_cont = mp;
12078 			if (start == 0 || !more) {
12079 				ipf->ipf_hole_cnt = 1;
12080 				/*
12081 				 * if the first fragment comes in more than one
12082 				 * mblk, this loop will be executed for each
12083 				 * mblk. Need to adjust hole count so exiting
12084 				 * this routine will leave hole count at 1.
12085 				 */
12086 				if (next_mp)
12087 					ipf->ipf_hole_cnt++;
12088 			} else
12089 				ipf->ipf_hole_cnt = 2;
12090 			continue;
12091 		} else if (ipf->ipf_last_frag_seen && !more &&
12092 			    !pkt_boundary_checked) {
12093 			/*
12094 			 * We check datagram boundary only if this fragment
12095 			 * claims to be the last fragment and we have seen a
12096 			 * last fragment in the past too. We do this only
12097 			 * once for a given fragment.
12098 			 *
12099 			 * start cannot be 0 here as fragments with start=0
12100 			 * and MF=0 gets handled as a complete packet. These
12101 			 * fragments should not reach here.
12102 			 */
12103 
12104 			if (start + msgdsize(mp) !=
12105 			    IP_REASS_END(ipf->ipf_tail_mp)) {
12106 				/*
12107 				 * We have two fragments both of which claim
12108 				 * to be the last fragment but gives conflicting
12109 				 * information about the whole datagram size.
12110 				 * Something fishy is going on. Drop the
12111 				 * fragment and free up the reassembly list.
12112 				 */
12113 				return (IP_REASS_FAILED);
12114 			}
12115 
12116 			/*
12117 			 * We shouldn't come to this code block again for this
12118 			 * particular fragment.
12119 			 */
12120 			pkt_boundary_checked = B_TRUE;
12121 		}
12122 
12123 		/* New stuff at or beyond tail? */
12124 		offset = IP_REASS_END(ipf->ipf_tail_mp);
12125 		if (start >= offset) {
12126 			if (ipf->ipf_last_frag_seen) {
12127 				/* current fragment is beyond last fragment */
12128 				return (IP_REASS_FAILED);
12129 			}
12130 			/* Link it on end. */
12131 			ipf->ipf_tail_mp->b_cont = mp;
12132 			ipf->ipf_tail_mp = mp;
12133 			if (more) {
12134 				if (start != offset)
12135 					ipf->ipf_hole_cnt++;
12136 			} else if (start == offset && next_mp == NULL)
12137 					ipf->ipf_hole_cnt--;
12138 			continue;
12139 		}
12140 		mp1 = ipf->ipf_mp->b_cont;
12141 		offset = IP_REASS_START(mp1);
12142 		/* New stuff at the front? */
12143 		if (start < offset) {
12144 			if (start == 0) {
12145 				if (end >= offset) {
12146 					/* Nailed the hole at the begining. */
12147 					ipf->ipf_hole_cnt--;
12148 				}
12149 			} else if (end < offset) {
12150 				/*
12151 				 * A hole, stuff, and a hole where there used
12152 				 * to be just a hole.
12153 				 */
12154 				ipf->ipf_hole_cnt++;
12155 			}
12156 			mp->b_cont = mp1;
12157 			/* Check for overlap. */
12158 			while (end > offset) {
12159 				if (end < IP_REASS_END(mp1)) {
12160 					mp->b_wptr -= end - offset;
12161 					IP_REASS_SET_END(mp, offset);
12162 					BUMP_MIB(ill->ill_ip_mib,
12163 					    ipIfStatsReasmPartDups);
12164 					break;
12165 				}
12166 				/* Did we cover another hole? */
12167 				if ((mp1->b_cont &&
12168 				    IP_REASS_END(mp1) !=
12169 				    IP_REASS_START(mp1->b_cont) &&
12170 				    end >= IP_REASS_START(mp1->b_cont)) ||
12171 				    (!ipf->ipf_last_frag_seen && !more)) {
12172 					ipf->ipf_hole_cnt--;
12173 				}
12174 				/* Clip out mp1. */
12175 				if ((mp->b_cont = mp1->b_cont) == NULL) {
12176 					/*
12177 					 * After clipping out mp1, this guy
12178 					 * is now hanging off the end.
12179 					 */
12180 					ipf->ipf_tail_mp = mp;
12181 				}
12182 				IP_REASS_SET_START(mp1, 0);
12183 				IP_REASS_SET_END(mp1, 0);
12184 				/* Subtract byte count */
12185 				ipf->ipf_count -= mp1->b_datap->db_lim -
12186 				    mp1->b_datap->db_base;
12187 				freeb(mp1);
12188 				BUMP_MIB(ill->ill_ip_mib,
12189 				    ipIfStatsReasmPartDups);
12190 				mp1 = mp->b_cont;
12191 				if (!mp1)
12192 					break;
12193 				offset = IP_REASS_START(mp1);
12194 			}
12195 			ipf->ipf_mp->b_cont = mp;
12196 			continue;
12197 		}
12198 		/*
12199 		 * The new piece starts somewhere between the start of the head
12200 		 * and before the end of the tail.
12201 		 */
12202 		for (; mp1; mp1 = mp1->b_cont) {
12203 			offset = IP_REASS_END(mp1);
12204 			if (start < offset) {
12205 				if (end <= offset) {
12206 					/* Nothing new. */
12207 					IP_REASS_SET_START(mp, 0);
12208 					IP_REASS_SET_END(mp, 0);
12209 					/* Subtract byte count */
12210 					ipf->ipf_count -= mp->b_datap->db_lim -
12211 					    mp->b_datap->db_base;
12212 					if (incr_dups) {
12213 						ipf->ipf_num_dups++;
12214 						incr_dups = B_FALSE;
12215 					}
12216 					freeb(mp);
12217 					BUMP_MIB(ill->ill_ip_mib,
12218 					    ipIfStatsReasmDuplicates);
12219 					break;
12220 				}
12221 				/*
12222 				 * Trim redundant stuff off beginning of new
12223 				 * piece.
12224 				 */
12225 				IP_REASS_SET_START(mp, offset);
12226 				mp->b_rptr += offset - start;
12227 				BUMP_MIB(ill->ill_ip_mib,
12228 				    ipIfStatsReasmPartDups);
12229 				start = offset;
12230 				if (!mp1->b_cont) {
12231 					/*
12232 					 * After trimming, this guy is now
12233 					 * hanging off the end.
12234 					 */
12235 					mp1->b_cont = mp;
12236 					ipf->ipf_tail_mp = mp;
12237 					if (!more) {
12238 						ipf->ipf_hole_cnt--;
12239 					}
12240 					break;
12241 				}
12242 			}
12243 			if (start >= IP_REASS_START(mp1->b_cont))
12244 				continue;
12245 			/* Fill a hole */
12246 			if (start > offset)
12247 				ipf->ipf_hole_cnt++;
12248 			mp->b_cont = mp1->b_cont;
12249 			mp1->b_cont = mp;
12250 			mp1 = mp->b_cont;
12251 			offset = IP_REASS_START(mp1);
12252 			if (end >= offset) {
12253 				ipf->ipf_hole_cnt--;
12254 				/* Check for overlap. */
12255 				while (end > offset) {
12256 					if (end < IP_REASS_END(mp1)) {
12257 						mp->b_wptr -= end - offset;
12258 						IP_REASS_SET_END(mp, offset);
12259 						/*
12260 						 * TODO we might bump
12261 						 * this up twice if there is
12262 						 * overlap at both ends.
12263 						 */
12264 						BUMP_MIB(ill->ill_ip_mib,
12265 						    ipIfStatsReasmPartDups);
12266 						break;
12267 					}
12268 					/* Did we cover another hole? */
12269 					if ((mp1->b_cont &&
12270 					    IP_REASS_END(mp1)
12271 					    != IP_REASS_START(mp1->b_cont) &&
12272 					    end >=
12273 					    IP_REASS_START(mp1->b_cont)) ||
12274 					    (!ipf->ipf_last_frag_seen &&
12275 					    !more)) {
12276 						ipf->ipf_hole_cnt--;
12277 					}
12278 					/* Clip out mp1. */
12279 					if ((mp->b_cont = mp1->b_cont) ==
12280 					    NULL) {
12281 						/*
12282 						 * After clipping out mp1,
12283 						 * this guy is now hanging
12284 						 * off the end.
12285 						 */
12286 						ipf->ipf_tail_mp = mp;
12287 					}
12288 					IP_REASS_SET_START(mp1, 0);
12289 					IP_REASS_SET_END(mp1, 0);
12290 					/* Subtract byte count */
12291 					ipf->ipf_count -=
12292 					    mp1->b_datap->db_lim -
12293 					    mp1->b_datap->db_base;
12294 					freeb(mp1);
12295 					BUMP_MIB(ill->ill_ip_mib,
12296 					    ipIfStatsReasmPartDups);
12297 					mp1 = mp->b_cont;
12298 					if (!mp1)
12299 						break;
12300 					offset = IP_REASS_START(mp1);
12301 				}
12302 			}
12303 			break;
12304 		}
12305 	} while (start = end, mp = next_mp);
12306 
12307 	/* Fragment just processed could be the last one. Remember this fact */
12308 	if (!more)
12309 		ipf->ipf_last_frag_seen = B_TRUE;
12310 
12311 	/* Still got holes? */
12312 	if (ipf->ipf_hole_cnt)
12313 		return (IP_REASS_PARTIAL);
12314 	/* Clean up overloaded fields to avoid upstream disasters. */
12315 	for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
12316 		IP_REASS_SET_START(mp1, 0);
12317 		IP_REASS_SET_END(mp1, 0);
12318 	}
12319 	return (IP_REASS_COMPLETE);
12320 }
12321 
12322 /*
12323  * ipsec processing for the fast path, used for input UDP Packets
12324  */
12325 static boolean_t
12326 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha,
12327     mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present)
12328 {
12329 	uint32_t	ill_index;
12330 	uint_t		in_flags;	/* IPF_RECVSLLA and/or IPF_RECVIF */
12331 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
12332 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
12333 
12334 	ASSERT(ipha->ipha_protocol == IPPROTO_UDP);
12335 	/* The ill_index of the incoming ILL */
12336 	ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex;
12337 
12338 	/* pass packet up to the transport */
12339 	if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) {
12340 		*first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha,
12341 		    NULL, mctl_present);
12342 		if (*first_mpp == NULL) {
12343 			return (B_FALSE);
12344 		}
12345 	}
12346 
12347 	/* Initiate IPPF processing for fastpath UDP */
12348 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) {
12349 		ip_process(IPP_LOCAL_IN, mpp, ill_index);
12350 		if (*mpp == NULL) {
12351 			ip2dbg(("ip_input_ipsec_process: UDP pkt "
12352 			    "deferred/dropped during IPPF processing\n"));
12353 			return (B_FALSE);
12354 		}
12355 	}
12356 	/*
12357 	 * We make the checks as below since we are in the fast path
12358 	 * and want to minimize the number of checks if the IP_RECVIF and/or
12359 	 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set
12360 	 */
12361 	if (connp->conn_recvif || connp->conn_recvslla ||
12362 	    connp->conn_ip_recvpktinfo) {
12363 		if (connp->conn_recvif) {
12364 			in_flags = IPF_RECVIF;
12365 		}
12366 		/*
12367 		 * UDP supports IP_RECVPKTINFO option for both v4 and v6
12368 		 * so the flag passed to ip_add_info is based on IP version
12369 		 * of connp.
12370 		 */
12371 		if (connp->conn_ip_recvpktinfo) {
12372 			if (connp->conn_af_isv6) {
12373 				/*
12374 				 * V6 only needs index
12375 				 */
12376 				in_flags |= IPF_RECVIF;
12377 			} else {
12378 				/*
12379 				 * V4 needs index + matching address.
12380 				 */
12381 				in_flags |= IPF_RECVADDR;
12382 			}
12383 		}
12384 		if (connp->conn_recvslla) {
12385 			in_flags |= IPF_RECVSLLA;
12386 		}
12387 		/*
12388 		 * since in_flags are being set ill will be
12389 		 * referenced in ip_add_info, so it better not
12390 		 * be NULL.
12391 		 */
12392 		/*
12393 		 * the actual data will be contained in b_cont
12394 		 * upon successful return of the following call.
12395 		 * If the call fails then the original mblk is
12396 		 * returned.
12397 		 */
12398 		*mpp = ip_add_info(*mpp, ill, in_flags, IPCL_ZONEID(connp),
12399 		    ipst);
12400 	}
12401 
12402 	return (B_TRUE);
12403 }
12404 
12405 /*
12406  * Fragmentation reassembly.  Each ILL has a hash table for
12407  * queuing packets undergoing reassembly for all IPIFs
12408  * associated with the ILL.  The hash is based on the packet
12409  * IP ident field.  The ILL frag hash table was allocated
12410  * as a timer block at the time the ILL was created.  Whenever
12411  * there is anything on the reassembly queue, the timer will
12412  * be running.  Returns B_TRUE if successful else B_FALSE;
12413  * frees mp on failure.
12414  */
12415 static boolean_t
12416 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha,
12417     uint32_t *cksum_val, uint16_t *cksum_flags)
12418 {
12419 	uint32_t	frag_offset_flags;
12420 	ill_t		*ill = (ill_t *)q->q_ptr;
12421 	mblk_t		*mp = *mpp;
12422 	mblk_t		*t_mp;
12423 	ipaddr_t	dst;
12424 	uint8_t		proto = ipha->ipha_protocol;
12425 	uint32_t	sum_val;
12426 	uint16_t	sum_flags;
12427 	ipf_t		*ipf;
12428 	ipf_t		**ipfp;
12429 	ipfb_t		*ipfb;
12430 	uint16_t	ident;
12431 	uint32_t	offset;
12432 	ipaddr_t	src;
12433 	uint_t		hdr_length;
12434 	uint32_t	end;
12435 	mblk_t		*mp1;
12436 	mblk_t		*tail_mp;
12437 	size_t		count;
12438 	size_t		msg_len;
12439 	uint8_t		ecn_info = 0;
12440 	uint32_t	packet_size;
12441 	boolean_t	pruned = B_FALSE;
12442 	ip_stack_t *ipst = ill->ill_ipst;
12443 
12444 	if (cksum_val != NULL)
12445 		*cksum_val = 0;
12446 	if (cksum_flags != NULL)
12447 		*cksum_flags = 0;
12448 
12449 	/*
12450 	 * Drop the fragmented as early as possible, if
12451 	 * we don't have resource(s) to re-assemble.
12452 	 */
12453 	if (ipst->ips_ip_reass_queue_bytes == 0) {
12454 		freemsg(mp);
12455 		return (B_FALSE);
12456 	}
12457 
12458 	/* Check for fragmentation offset; return if there's none */
12459 	if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
12460 	    (IPH_MF | IPH_OFFSET)) == 0)
12461 		return (B_TRUE);
12462 
12463 	/*
12464 	 * We utilize hardware computed checksum info only for UDP since
12465 	 * IP fragmentation is a normal occurence for the protocol.  In
12466 	 * addition, checksum offload support for IP fragments carrying
12467 	 * UDP payload is commonly implemented across network adapters.
12468 	 */
12469 	ASSERT(ill != NULL);
12470 	if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) &&
12471 	    (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
12472 		mblk_t *mp1 = mp->b_cont;
12473 		int32_t len;
12474 
12475 		/* Record checksum information from the packet */
12476 		sum_val = (uint32_t)DB_CKSUM16(mp);
12477 		sum_flags = DB_CKSUMFLAGS(mp);
12478 
12479 		/* IP payload offset from beginning of mblk */
12480 		offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
12481 
12482 		if ((sum_flags & HCK_PARTIALCKSUM) &&
12483 		    (mp1 == NULL || mp1->b_cont == NULL) &&
12484 		    offset >= DB_CKSUMSTART(mp) &&
12485 		    ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
12486 			uint32_t adj;
12487 			/*
12488 			 * Partial checksum has been calculated by hardware
12489 			 * and attached to the packet; in addition, any
12490 			 * prepended extraneous data is even byte aligned.
12491 			 * If any such data exists, we adjust the checksum;
12492 			 * this would also handle any postpended data.
12493 			 */
12494 			IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
12495 			    mp, mp1, len, adj);
12496 
12497 			/* One's complement subtract extraneous checksum */
12498 			if (adj >= sum_val)
12499 				sum_val = ~(adj - sum_val) & 0xFFFF;
12500 			else
12501 				sum_val -= adj;
12502 		}
12503 	} else {
12504 		sum_val = 0;
12505 		sum_flags = 0;
12506 	}
12507 
12508 	/* Clear hardware checksumming flag */
12509 	DB_CKSUMFLAGS(mp) = 0;
12510 
12511 	ident = ipha->ipha_ident;
12512 	offset = (frag_offset_flags << 3) & 0xFFFF;
12513 	src = ipha->ipha_src;
12514 	dst = ipha->ipha_dst;
12515 	hdr_length = IPH_HDR_LENGTH(ipha);
12516 	end = ntohs(ipha->ipha_length) - hdr_length;
12517 
12518 	/* If end == 0 then we have a packet with no data, so just free it */
12519 	if (end == 0) {
12520 		freemsg(mp);
12521 		return (B_FALSE);
12522 	}
12523 
12524 	/* Record the ECN field info. */
12525 	ecn_info = (ipha->ipha_type_of_service & 0x3);
12526 	if (offset != 0) {
12527 		/*
12528 		 * If this isn't the first piece, strip the header, and
12529 		 * add the offset to the end value.
12530 		 */
12531 		mp->b_rptr += hdr_length;
12532 		end += offset;
12533 	}
12534 
12535 	msg_len = MBLKSIZE(mp);
12536 	tail_mp = mp;
12537 	while (tail_mp->b_cont != NULL) {
12538 		tail_mp = tail_mp->b_cont;
12539 		msg_len += MBLKSIZE(tail_mp);
12540 	}
12541 
12542 	/* If the reassembly list for this ILL will get too big, prune it */
12543 	if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
12544 	    ipst->ips_ip_reass_queue_bytes) {
12545 		ill_frag_prune(ill,
12546 		    (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
12547 		    (ipst->ips_ip_reass_queue_bytes - msg_len));
12548 		pruned = B_TRUE;
12549 	}
12550 
12551 	ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
12552 	mutex_enter(&ipfb->ipfb_lock);
12553 
12554 	ipfp = &ipfb->ipfb_ipf;
12555 	/* Try to find an existing fragment queue for this packet. */
12556 	for (;;) {
12557 		ipf = ipfp[0];
12558 		if (ipf != NULL) {
12559 			/*
12560 			 * It has to match on ident and src/dst address.
12561 			 */
12562 			if (ipf->ipf_ident == ident &&
12563 			    ipf->ipf_src == src &&
12564 			    ipf->ipf_dst == dst &&
12565 			    ipf->ipf_protocol == proto) {
12566 				/*
12567 				 * If we have received too many
12568 				 * duplicate fragments for this packet
12569 				 * free it.
12570 				 */
12571 				if (ipf->ipf_num_dups > ip_max_frag_dups) {
12572 					ill_frag_free_pkts(ill, ipfb, ipf, 1);
12573 					freemsg(mp);
12574 					mutex_exit(&ipfb->ipfb_lock);
12575 					return (B_FALSE);
12576 				}
12577 				/* Found it. */
12578 				break;
12579 			}
12580 			ipfp = &ipf->ipf_hash_next;
12581 			continue;
12582 		}
12583 
12584 		/*
12585 		 * If we pruned the list, do we want to store this new
12586 		 * fragment?. We apply an optimization here based on the
12587 		 * fact that most fragments will be received in order.
12588 		 * So if the offset of this incoming fragment is zero,
12589 		 * it is the first fragment of a new packet. We will
12590 		 * keep it.  Otherwise drop the fragment, as we have
12591 		 * probably pruned the packet already (since the
12592 		 * packet cannot be found).
12593 		 */
12594 		if (pruned && offset != 0) {
12595 			mutex_exit(&ipfb->ipfb_lock);
12596 			freemsg(mp);
12597 			return (B_FALSE);
12598 		}
12599 
12600 		if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
12601 			/*
12602 			 * Too many fragmented packets in this hash
12603 			 * bucket. Free the oldest.
12604 			 */
12605 			ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
12606 		}
12607 
12608 		/* New guy.  Allocate a frag message. */
12609 		mp1 = allocb(sizeof (*ipf), BPRI_MED);
12610 		if (mp1 == NULL) {
12611 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
12612 			freemsg(mp);
12613 reass_done:
12614 			mutex_exit(&ipfb->ipfb_lock);
12615 			return (B_FALSE);
12616 		}
12617 
12618 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
12619 		mp1->b_cont = mp;
12620 
12621 		/* Initialize the fragment header. */
12622 		ipf = (ipf_t *)mp1->b_rptr;
12623 		ipf->ipf_mp = mp1;
12624 		ipf->ipf_ptphn = ipfp;
12625 		ipfp[0] = ipf;
12626 		ipf->ipf_hash_next = NULL;
12627 		ipf->ipf_ident = ident;
12628 		ipf->ipf_protocol = proto;
12629 		ipf->ipf_src = src;
12630 		ipf->ipf_dst = dst;
12631 		ipf->ipf_nf_hdr_len = 0;
12632 		/* Record reassembly start time. */
12633 		ipf->ipf_timestamp = gethrestime_sec();
12634 		/* Record ipf generation and account for frag header */
12635 		ipf->ipf_gen = ill->ill_ipf_gen++;
12636 		ipf->ipf_count = MBLKSIZE(mp1);
12637 		ipf->ipf_last_frag_seen = B_FALSE;
12638 		ipf->ipf_ecn = ecn_info;
12639 		ipf->ipf_num_dups = 0;
12640 		ipfb->ipfb_frag_pkts++;
12641 		ipf->ipf_checksum = 0;
12642 		ipf->ipf_checksum_flags = 0;
12643 
12644 		/* Store checksum value in fragment header */
12645 		if (sum_flags != 0) {
12646 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
12647 			sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
12648 			ipf->ipf_checksum = sum_val;
12649 			ipf->ipf_checksum_flags = sum_flags;
12650 		}
12651 
12652 		/*
12653 		 * We handle reassembly two ways.  In the easy case,
12654 		 * where all the fragments show up in order, we do
12655 		 * minimal bookkeeping, and just clip new pieces on
12656 		 * the end.  If we ever see a hole, then we go off
12657 		 * to ip_reassemble which has to mark the pieces and
12658 		 * keep track of the number of holes, etc.  Obviously,
12659 		 * the point of having both mechanisms is so we can
12660 		 * handle the easy case as efficiently as possible.
12661 		 */
12662 		if (offset == 0) {
12663 			/* Easy case, in-order reassembly so far. */
12664 			ipf->ipf_count += msg_len;
12665 			ipf->ipf_tail_mp = tail_mp;
12666 			/*
12667 			 * Keep track of next expected offset in
12668 			 * ipf_end.
12669 			 */
12670 			ipf->ipf_end = end;
12671 			ipf->ipf_nf_hdr_len = hdr_length;
12672 		} else {
12673 			/* Hard case, hole at the beginning. */
12674 			ipf->ipf_tail_mp = NULL;
12675 			/*
12676 			 * ipf_end == 0 means that we have given up
12677 			 * on easy reassembly.
12678 			 */
12679 			ipf->ipf_end = 0;
12680 
12681 			/* Forget checksum offload from now on */
12682 			ipf->ipf_checksum_flags = 0;
12683 
12684 			/*
12685 			 * ipf_hole_cnt is set by ip_reassemble.
12686 			 * ipf_count is updated by ip_reassemble.
12687 			 * No need to check for return value here
12688 			 * as we don't expect reassembly to complete
12689 			 * or fail for the first fragment itself.
12690 			 */
12691 			(void) ip_reassemble(mp, ipf,
12692 			    (frag_offset_flags & IPH_OFFSET) << 3,
12693 			    (frag_offset_flags & IPH_MF), ill, msg_len);
12694 		}
12695 		/* Update per ipfb and ill byte counts */
12696 		ipfb->ipfb_count += ipf->ipf_count;
12697 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
12698 		ill->ill_frag_count += ipf->ipf_count;
12699 		ASSERT(ill->ill_frag_count > 0); /* Wraparound */
12700 		/* If the frag timer wasn't already going, start it. */
12701 		mutex_enter(&ill->ill_lock);
12702 		ill_frag_timer_start(ill);
12703 		mutex_exit(&ill->ill_lock);
12704 		goto reass_done;
12705 	}
12706 
12707 	/*
12708 	 * If the packet's flag has changed (it could be coming up
12709 	 * from an interface different than the previous, therefore
12710 	 * possibly different checksum capability), then forget about
12711 	 * any stored checksum states.  Otherwise add the value to
12712 	 * the existing one stored in the fragment header.
12713 	 */
12714 	if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
12715 		sum_val += ipf->ipf_checksum;
12716 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
12717 		sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
12718 		ipf->ipf_checksum = sum_val;
12719 	} else if (ipf->ipf_checksum_flags != 0) {
12720 		/* Forget checksum offload from now on */
12721 		ipf->ipf_checksum_flags = 0;
12722 	}
12723 
12724 	/*
12725 	 * We have a new piece of a datagram which is already being
12726 	 * reassembled.  Update the ECN info if all IP fragments
12727 	 * are ECN capable.  If there is one which is not, clear
12728 	 * all the info.  If there is at least one which has CE
12729 	 * code point, IP needs to report that up to transport.
12730 	 */
12731 	if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
12732 		if (ecn_info == IPH_ECN_CE)
12733 			ipf->ipf_ecn = IPH_ECN_CE;
12734 	} else {
12735 		ipf->ipf_ecn = IPH_ECN_NECT;
12736 	}
12737 	if (offset && ipf->ipf_end == offset) {
12738 		/* The new fragment fits at the end */
12739 		ipf->ipf_tail_mp->b_cont = mp;
12740 		/* Update the byte count */
12741 		ipf->ipf_count += msg_len;
12742 		/* Update per ipfb and ill byte counts */
12743 		ipfb->ipfb_count += msg_len;
12744 		ASSERT(ipfb->ipfb_count > 0);	/* Wraparound */
12745 		ill->ill_frag_count += msg_len;
12746 		ASSERT(ill->ill_frag_count > 0); /* Wraparound */
12747 		if (frag_offset_flags & IPH_MF) {
12748 			/* More to come. */
12749 			ipf->ipf_end = end;
12750 			ipf->ipf_tail_mp = tail_mp;
12751 			goto reass_done;
12752 		}
12753 	} else {
12754 		/* Go do the hard cases. */
12755 		int ret;
12756 
12757 		if (offset == 0)
12758 			ipf->ipf_nf_hdr_len = hdr_length;
12759 
12760 		/* Save current byte count */
12761 		count = ipf->ipf_count;
12762 		ret = ip_reassemble(mp, ipf,
12763 		    (frag_offset_flags & IPH_OFFSET) << 3,
12764 		    (frag_offset_flags & IPH_MF), ill, msg_len);
12765 		/* Count of bytes added and subtracted (freeb()ed) */
12766 		count = ipf->ipf_count - count;
12767 		if (count) {
12768 			/* Update per ipfb and ill byte counts */
12769 			ipfb->ipfb_count += count;
12770 			ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
12771 			ill->ill_frag_count += count;
12772 			ASSERT(ill->ill_frag_count > 0);
12773 		}
12774 		if (ret == IP_REASS_PARTIAL) {
12775 			goto reass_done;
12776 		} else if (ret == IP_REASS_FAILED) {
12777 			/* Reassembly failed. Free up all resources */
12778 			ill_frag_free_pkts(ill, ipfb, ipf, 1);
12779 			for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
12780 				IP_REASS_SET_START(t_mp, 0);
12781 				IP_REASS_SET_END(t_mp, 0);
12782 			}
12783 			freemsg(mp);
12784 			goto reass_done;
12785 		}
12786 		/* We will reach here iff 'ret' is IP_REASS_COMPLETE */
12787 	}
12788 	/*
12789 	 * We have completed reassembly.  Unhook the frag header from
12790 	 * the reassembly list.
12791 	 *
12792 	 * Before we free the frag header, record the ECN info
12793 	 * to report back to the transport.
12794 	 */
12795 	ecn_info = ipf->ipf_ecn;
12796 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
12797 	ipfp = ipf->ipf_ptphn;
12798 
12799 	/* We need to supply these to caller */
12800 	if ((sum_flags = ipf->ipf_checksum_flags) != 0)
12801 		sum_val = ipf->ipf_checksum;
12802 	else
12803 		sum_val = 0;
12804 
12805 	mp1 = ipf->ipf_mp;
12806 	count = ipf->ipf_count;
12807 	ipf = ipf->ipf_hash_next;
12808 	if (ipf != NULL)
12809 		ipf->ipf_ptphn = ipfp;
12810 	ipfp[0] = ipf;
12811 	ill->ill_frag_count -= count;
12812 	ASSERT(ipfb->ipfb_count >= count);
12813 	ipfb->ipfb_count -= count;
12814 	ipfb->ipfb_frag_pkts--;
12815 	mutex_exit(&ipfb->ipfb_lock);
12816 	/* Ditch the frag header. */
12817 	mp = mp1->b_cont;
12818 
12819 	freeb(mp1);
12820 
12821 	/* Restore original IP length in header. */
12822 	packet_size = (uint32_t)msgdsize(mp);
12823 	if (packet_size > IP_MAXPACKET) {
12824 		freemsg(mp);
12825 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
12826 		return (B_FALSE);
12827 	}
12828 
12829 	if (DB_REF(mp) > 1) {
12830 		mblk_t *mp2 = copymsg(mp);
12831 
12832 		freemsg(mp);
12833 		if (mp2 == NULL) {
12834 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
12835 			return (B_FALSE);
12836 		}
12837 		mp = mp2;
12838 	}
12839 	ipha = (ipha_t *)mp->b_rptr;
12840 
12841 	ipha->ipha_length = htons((uint16_t)packet_size);
12842 	/* We're now complete, zip the frag state */
12843 	ipha->ipha_fragment_offset_and_flags = 0;
12844 	/* Record the ECN info. */
12845 	ipha->ipha_type_of_service &= 0xFC;
12846 	ipha->ipha_type_of_service |= ecn_info;
12847 	*mpp = mp;
12848 
12849 	/* Reassembly is successful; return checksum information if needed */
12850 	if (cksum_val != NULL)
12851 		*cksum_val = sum_val;
12852 	if (cksum_flags != NULL)
12853 		*cksum_flags = sum_flags;
12854 
12855 	return (B_TRUE);
12856 }
12857 
12858 /*
12859  * Perform ip header check sum update local options.
12860  * return B_TRUE if all is well, else return B_FALSE and release
12861  * the mp. caller is responsible for decrementing ire ref cnt.
12862  */
12863 static boolean_t
12864 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire,
12865     ip_stack_t *ipst)
12866 {
12867 	mblk_t		*first_mp;
12868 	boolean_t	mctl_present;
12869 	uint16_t	sum;
12870 
12871 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
12872 	/*
12873 	 * Don't do the checksum if it has gone through AH/ESP
12874 	 * processing.
12875 	 */
12876 	if (!mctl_present) {
12877 		sum = ip_csum_hdr(ipha);
12878 		if (sum != 0) {
12879 			if (ill != NULL) {
12880 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
12881 			} else {
12882 				BUMP_MIB(&ipst->ips_ip_mib,
12883 				    ipIfStatsInCksumErrs);
12884 			}
12885 			freemsg(first_mp);
12886 			return (B_FALSE);
12887 		}
12888 	}
12889 
12890 	if (!ip_rput_local_options(q, mp, ipha, ire, ipst)) {
12891 		if (mctl_present)
12892 			freeb(first_mp);
12893 		return (B_FALSE);
12894 	}
12895 
12896 	return (B_TRUE);
12897 }
12898 
12899 /*
12900  * All udp packet are delivered to the local host via this routine.
12901  */
12902 void
12903 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire,
12904     ill_t *recv_ill)
12905 {
12906 	uint32_t	sum;
12907 	uint32_t	u1;
12908 	boolean_t	mctl_present;
12909 	conn_t		*connp;
12910 	mblk_t		*first_mp;
12911 	uint16_t	*up;
12912 	ill_t		*ill = (ill_t *)q->q_ptr;
12913 	uint16_t	reass_hck_flags = 0;
12914 	ip_stack_t	*ipst;
12915 
12916 	ASSERT(recv_ill != NULL);
12917 	ipst = recv_ill->ill_ipst;
12918 
12919 #define	rptr    ((uchar_t *)ipha)
12920 
12921 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
12922 	ASSERT(!mctl_present || ipsec_in_is_secure(first_mp));
12923 	ASSERT(ipha->ipha_protocol == IPPROTO_UDP);
12924 	ASSERT(ill != NULL);
12925 
12926 	/*
12927 	 * FAST PATH for udp packets
12928 	 */
12929 
12930 	/* u1 is # words of IP options */
12931 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) +
12932 	    IP_SIMPLE_HDR_LENGTH_IN_WORDS);
12933 
12934 	/* IP options present */
12935 	if (u1 != 0)
12936 		goto ipoptions;
12937 
12938 	/* Check the IP header checksum.  */
12939 	if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) {
12940 		/* Clear the IP header h/w cksum flag */
12941 		DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
12942 	} else {
12943 #define	uph	((uint16_t *)ipha)
12944 		sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] +
12945 		    uph[6] + uph[7] + uph[8] + uph[9];
12946 #undef	uph
12947 		/* finish doing IP checksum */
12948 		sum = (sum & 0xFFFF) + (sum >> 16);
12949 		sum = ~(sum + (sum >> 16)) & 0xFFFF;
12950 		/*
12951 		 * Don't verify header checksum if this packet is coming
12952 		 * back from AH/ESP as we already did it.
12953 		 */
12954 		if (!mctl_present && sum != 0 && sum != 0xFFFF) {
12955 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
12956 			freemsg(first_mp);
12957 			return;
12958 		}
12959 	}
12960 
12961 	/*
12962 	 * Count for SNMP of inbound packets for ire.
12963 	 * if mctl is present this might be a secure packet and
12964 	 * has already been counted for in ip_proto_input().
12965 	 */
12966 	if (!mctl_present) {
12967 		UPDATE_IB_PKT_COUNT(ire);
12968 		ire->ire_last_used_time = lbolt;
12969 	}
12970 
12971 	/* packet part of fragmented IP packet? */
12972 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
12973 	if (u1 & (IPH_MF | IPH_OFFSET)) {
12974 		goto fragmented;
12975 	}
12976 
12977 	/* u1 = IP header length (20 bytes) */
12978 	u1 = IP_SIMPLE_HDR_LENGTH;
12979 
12980 	/* packet does not contain complete IP & UDP headers */
12981 	if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE))
12982 		goto udppullup;
12983 
12984 	/* up points to UDP header */
12985 	up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH);
12986 #define	iphs    ((uint16_t *)ipha)
12987 
12988 	/* if udp hdr cksum != 0, then need to checksum udp packet */
12989 	if (up[3] != 0) {
12990 		mblk_t *mp1 = mp->b_cont;
12991 		boolean_t cksum_err;
12992 		uint16_t hck_flags = 0;
12993 
12994 		/* Pseudo-header checksum */
12995 		u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] +
12996 		    iphs[9] + up[2];
12997 
12998 		/*
12999 		 * Revert to software checksum calculation if the interface
13000 		 * isn't capable of checksum offload or if IPsec is present.
13001 		 */
13002 		if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum)
13003 			hck_flags = DB_CKSUMFLAGS(mp);
13004 
13005 		if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
13006 			IP_STAT(ipst, ip_in_sw_cksum);
13007 
13008 		IP_CKSUM_RECV(hck_flags, u1,
13009 		    (uchar_t *)(rptr + DB_CKSUMSTART(mp)),
13010 		    (int32_t)((uchar_t *)up - rptr),
13011 		    mp, mp1, cksum_err);
13012 
13013 		if (cksum_err) {
13014 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs);
13015 			if (hck_flags & HCK_FULLCKSUM)
13016 				IP_STAT(ipst, ip_udp_in_full_hw_cksum_err);
13017 			else if (hck_flags & HCK_PARTIALCKSUM)
13018 				IP_STAT(ipst, ip_udp_in_part_hw_cksum_err);
13019 			else
13020 				IP_STAT(ipst, ip_udp_in_sw_cksum_err);
13021 
13022 			freemsg(first_mp);
13023 			return;
13024 		}
13025 	}
13026 
13027 	/* Non-fragmented broadcast or multicast packet? */
13028 	if (ire->ire_type == IRE_BROADCAST)
13029 		goto udpslowpath;
13030 
13031 	if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
13032 	    ire->ire_zoneid, ipst)) != NULL) {
13033 		ASSERT(connp->conn_upq != NULL);
13034 		IP_STAT(ipst, ip_udp_fast_path);
13035 
13036 		if (CONN_UDP_FLOWCTLD(connp)) {
13037 			freemsg(mp);
13038 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
13039 		} else {
13040 			if (!mctl_present) {
13041 				BUMP_MIB(ill->ill_ip_mib,
13042 				    ipIfStatsHCInDelivers);
13043 			}
13044 			/*
13045 			 * mp and first_mp can change.
13046 			 */
13047 			if (ip_udp_check(q, connp, recv_ill,
13048 			    ipha, &mp, &first_mp, mctl_present)) {
13049 				/* Send it upstream */
13050 				CONN_UDP_RECV(connp, mp);
13051 			}
13052 		}
13053 		/*
13054 		 * freeb() cannot deal with null mblk being passed
13055 		 * in and first_mp can be set to null in the call
13056 		 * ipsec_input_fast_proc()->ipsec_check_inbound_policy.
13057 		 */
13058 		if (mctl_present && first_mp != NULL) {
13059 			freeb(first_mp);
13060 		}
13061 		CONN_DEC_REF(connp);
13062 		return;
13063 	}
13064 
13065 	/*
13066 	 * if we got here we know the packet is not fragmented and
13067 	 * has no options. The classifier could not find a conn_t and
13068 	 * most likely its an icmp packet so send it through slow path.
13069 	 */
13070 
13071 	goto udpslowpath;
13072 
13073 ipoptions:
13074 	if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) {
13075 		goto slow_done;
13076 	}
13077 
13078 	UPDATE_IB_PKT_COUNT(ire);
13079 	ire->ire_last_used_time = lbolt;
13080 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
13081 	if (u1 & (IPH_MF | IPH_OFFSET)) {
13082 fragmented:
13083 		/*
13084 		 * "sum" and "reass_hck_flags" are non-zero if the
13085 		 * reassembled packet has a valid hardware computed
13086 		 * checksum information associated with it.
13087 		 */
13088 		if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags))
13089 			goto slow_done;
13090 		/*
13091 		 * Make sure that first_mp points back to mp as
13092 		 * the mp we came in with could have changed in
13093 		 * ip_rput_fragment().
13094 		 */
13095 		ASSERT(!mctl_present);
13096 		ipha = (ipha_t *)mp->b_rptr;
13097 		first_mp = mp;
13098 	}
13099 
13100 	/* Now we have a complete datagram, destined for this machine. */
13101 	u1 = IPH_HDR_LENGTH(ipha);
13102 	/* Pull up the UDP header, if necessary. */
13103 	if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) {
13104 udppullup:
13105 		if (!pullupmsg(mp, u1 + UDPH_SIZE)) {
13106 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13107 			freemsg(first_mp);
13108 			goto slow_done;
13109 		}
13110 		ipha = (ipha_t *)mp->b_rptr;
13111 	}
13112 
13113 	/*
13114 	 * Validate the checksum for the reassembled packet; for the
13115 	 * pullup case we calculate the payload checksum in software.
13116 	 */
13117 	up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET);
13118 	if (up[3] != 0) {
13119 		boolean_t cksum_err;
13120 
13121 		if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
13122 			IP_STAT(ipst, ip_in_sw_cksum);
13123 
13124 		IP_CKSUM_RECV_REASS(reass_hck_flags,
13125 		    (int32_t)((uchar_t *)up - (uchar_t *)ipha),
13126 		    IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] +
13127 		    iphs[9] + up[2], sum, cksum_err);
13128 
13129 		if (cksum_err) {
13130 			BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs);
13131 
13132 			if (reass_hck_flags & HCK_FULLCKSUM)
13133 				IP_STAT(ipst, ip_udp_in_full_hw_cksum_err);
13134 			else if (reass_hck_flags & HCK_PARTIALCKSUM)
13135 				IP_STAT(ipst, ip_udp_in_part_hw_cksum_err);
13136 			else
13137 				IP_STAT(ipst, ip_udp_in_sw_cksum_err);
13138 
13139 			freemsg(first_mp);
13140 			goto slow_done;
13141 		}
13142 	}
13143 udpslowpath:
13144 
13145 	/* Clear hardware checksum flag to be safe */
13146 	DB_CKSUMFLAGS(mp) = 0;
13147 
13148 	ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up,
13149 	    (ire->ire_type == IRE_BROADCAST),
13150 	    IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IPINFO,
13151 	    mctl_present, B_TRUE, recv_ill, ire->ire_zoneid);
13152 
13153 slow_done:
13154 	IP_STAT(ipst, ip_udp_slow_path);
13155 	return;
13156 
13157 #undef  iphs
13158 #undef  rptr
13159 }
13160 
13161 /* ARGSUSED */
13162 static mblk_t *
13163 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present,
13164     ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q,
13165     ill_rx_ring_t *ill_ring)
13166 {
13167 	conn_t		*connp;
13168 	uint32_t	sum;
13169 	uint32_t	u1;
13170 	uint16_t	*up;
13171 	int		offset;
13172 	ssize_t		len;
13173 	mblk_t		*mp1;
13174 	boolean_t	syn_present = B_FALSE;
13175 	tcph_t		*tcph;
13176 	uint_t		ip_hdr_len;
13177 	ill_t		*ill = (ill_t *)q->q_ptr;
13178 	zoneid_t	zoneid = ire->ire_zoneid;
13179 	boolean_t	cksum_err;
13180 	uint16_t	hck_flags = 0;
13181 	ip_stack_t	*ipst = recv_ill->ill_ipst;
13182 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
13183 
13184 #define	rptr	((uchar_t *)ipha)
13185 
13186 	ASSERT(ipha->ipha_protocol == IPPROTO_TCP);
13187 	ASSERT(ill != NULL);
13188 
13189 	/*
13190 	 * FAST PATH for tcp packets
13191 	 */
13192 
13193 	/* u1 is # words of IP options */
13194 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4)
13195 	    + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
13196 
13197 	/* IP options present */
13198 	if (u1) {
13199 		goto ipoptions;
13200 	} else {
13201 		/* Check the IP header checksum.  */
13202 		if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) {
13203 			/* Clear the IP header h/w cksum flag */
13204 			DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
13205 		} else {
13206 #define	uph	((uint16_t *)ipha)
13207 			sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
13208 			    uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
13209 #undef	uph
13210 			/* finish doing IP checksum */
13211 			sum = (sum & 0xFFFF) + (sum >> 16);
13212 			sum = ~(sum + (sum >> 16)) & 0xFFFF;
13213 			/*
13214 			 * Don't verify header checksum if this packet
13215 			 * is coming back from AH/ESP as we already did it.
13216 			 */
13217 			if (!mctl_present && (sum != 0) && sum != 0xFFFF) {
13218 				BUMP_MIB(ill->ill_ip_mib,
13219 				    ipIfStatsInCksumErrs);
13220 				goto error;
13221 			}
13222 		}
13223 	}
13224 
13225 	if (!mctl_present) {
13226 		UPDATE_IB_PKT_COUNT(ire);
13227 		ire->ire_last_used_time = lbolt;
13228 	}
13229 
13230 	/* packet part of fragmented IP packet? */
13231 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
13232 	if (u1 & (IPH_MF | IPH_OFFSET)) {
13233 		goto fragmented;
13234 	}
13235 
13236 	/* u1 = IP header length (20 bytes) */
13237 	u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH;
13238 
13239 	/* does packet contain IP+TCP headers? */
13240 	len = mp->b_wptr - rptr;
13241 	if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) {
13242 		IP_STAT(ipst, ip_tcppullup);
13243 		goto tcppullup;
13244 	}
13245 
13246 	/* TCP options present? */
13247 	offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4;
13248 
13249 	/*
13250 	 * If options need to be pulled up, then goto tcpoptions.
13251 	 * otherwise we are still in the fast path
13252 	 */
13253 	if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) {
13254 		IP_STAT(ipst, ip_tcpoptions);
13255 		goto tcpoptions;
13256 	}
13257 
13258 	/* multiple mblks of tcp data? */
13259 	if ((mp1 = mp->b_cont) != NULL) {
13260 		/* more then two? */
13261 		if (mp1->b_cont != NULL) {
13262 			IP_STAT(ipst, ip_multipkttcp);
13263 			goto multipkttcp;
13264 		}
13265 		len += mp1->b_wptr - mp1->b_rptr;
13266 	}
13267 
13268 	up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET);
13269 
13270 	/* part of pseudo checksum */
13271 
13272 	/* TCP datagram length */
13273 	u1 = len - IP_SIMPLE_HDR_LENGTH;
13274 
13275 #define	iphs    ((uint16_t *)ipha)
13276 
13277 #ifdef	_BIG_ENDIAN
13278 	u1 += IPPROTO_TCP;
13279 #else
13280 	u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8);
13281 #endif
13282 	u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9];
13283 
13284 	/*
13285 	 * Revert to software checksum calculation if the interface
13286 	 * isn't capable of checksum offload or if IPsec is present.
13287 	 */
13288 	if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum)
13289 		hck_flags = DB_CKSUMFLAGS(mp);
13290 
13291 	if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0)
13292 		IP_STAT(ipst, ip_in_sw_cksum);
13293 
13294 	IP_CKSUM_RECV(hck_flags, u1,
13295 	    (uchar_t *)(rptr + DB_CKSUMSTART(mp)),
13296 	    (int32_t)((uchar_t *)up - rptr),
13297 	    mp, mp1, cksum_err);
13298 
13299 	if (cksum_err) {
13300 		BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs);
13301 
13302 		if (hck_flags & HCK_FULLCKSUM)
13303 			IP_STAT(ipst, ip_tcp_in_full_hw_cksum_err);
13304 		else if (hck_flags & HCK_PARTIALCKSUM)
13305 			IP_STAT(ipst, ip_tcp_in_part_hw_cksum_err);
13306 		else
13307 			IP_STAT(ipst, ip_tcp_in_sw_cksum_err);
13308 
13309 		goto error;
13310 	}
13311 
13312 try_again:
13313 
13314 	if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len,
13315 		    zoneid, ipst)) == NULL) {
13316 		/* Send the TH_RST */
13317 		goto no_conn;
13318 	}
13319 
13320 	/*
13321 	 * TCP FAST PATH for AF_INET socket.
13322 	 *
13323 	 * TCP fast path to avoid extra work. An AF_INET socket type
13324 	 * does not have facility to receive extra information via
13325 	 * ip_process or ip_add_info. Also, when the connection was
13326 	 * established, we made a check if this connection is impacted
13327 	 * by any global IPSec policy or per connection policy (a
13328 	 * policy that comes in effect later will not apply to this
13329 	 * connection). Since all this can be determined at the
13330 	 * connection establishment time, a quick check of flags
13331 	 * can avoid extra work.
13332 	 */
13333 	if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present &&
13334 	    !IPP_ENABLED(IPP_LOCAL_IN, ipst)) {
13335 		ASSERT(first_mp == mp);
13336 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
13337 		SET_SQUEUE(mp, tcp_rput_data, connp);
13338 		return (mp);
13339 	}
13340 
13341 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
13342 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
13343 		if (IPCL_IS_TCP(connp)) {
13344 			mp->b_datap->db_struioflag |= STRUIO_EAGER;
13345 			DB_CKSUMSTART(mp) =
13346 			    (intptr_t)ip_squeue_get(ill_ring);
13347 			if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present &&
13348 			    !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) {
13349 				BUMP_MIB(ill->ill_ip_mib,
13350 				    ipIfStatsHCInDelivers);
13351 				SET_SQUEUE(mp, connp->conn_recv, connp);
13352 				return (mp);
13353 			} else if (IPCL_IS_BOUND(connp) && !mctl_present &&
13354 			    !CONN_INBOUND_POLICY_PRESENT(connp, ipss)) {
13355 				BUMP_MIB(ill->ill_ip_mib,
13356 				    ipIfStatsHCInDelivers);
13357 				ip_squeue_enter_unbound++;
13358 				SET_SQUEUE(mp, tcp_conn_request_unbound,
13359 				    connp);
13360 				return (mp);
13361 			}
13362 			syn_present = B_TRUE;
13363 		}
13364 
13365 	}
13366 
13367 	if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) {
13368 		uint_t	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
13369 
13370 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
13371 		/* No need to send this packet to TCP */
13372 		if ((flags & TH_RST) || (flags & TH_URG)) {
13373 			CONN_DEC_REF(connp);
13374 			freemsg(first_mp);
13375 			return (NULL);
13376 		}
13377 		if (flags & TH_ACK) {
13378 			tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid,
13379 			    ipst->ips_netstack->netstack_tcp);
13380 			CONN_DEC_REF(connp);
13381 			return (NULL);
13382 		}
13383 
13384 		CONN_DEC_REF(connp);
13385 		freemsg(first_mp);
13386 		return (NULL);
13387 	}
13388 
13389 	if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) {
13390 		first_mp = ipsec_check_inbound_policy(first_mp, connp,
13391 		    ipha, NULL, mctl_present);
13392 		if (first_mp == NULL) {
13393 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13394 			CONN_DEC_REF(connp);
13395 			return (NULL);
13396 		}
13397 		if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) {
13398 			ASSERT(syn_present);
13399 			if (mctl_present) {
13400 				ASSERT(first_mp != mp);
13401 				first_mp->b_datap->db_struioflag |=
13402 				    STRUIO_POLICY;
13403 			} else {
13404 				ASSERT(first_mp == mp);
13405 				mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
13406 				mp->b_datap->db_struioflag |= STRUIO_POLICY;
13407 			}
13408 		} else {
13409 			/*
13410 			 * Discard first_mp early since we're dealing with a
13411 			 * fully-connected conn_t and tcp doesn't do policy in
13412 			 * this case.
13413 			 */
13414 			if (mctl_present) {
13415 				freeb(first_mp);
13416 				mctl_present = B_FALSE;
13417 			}
13418 			first_mp = mp;
13419 		}
13420 	}
13421 
13422 	/* Initiate IPPF processing for fastpath */
13423 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) {
13424 		uint32_t	ill_index;
13425 
13426 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
13427 		ip_process(IPP_LOCAL_IN, &mp, ill_index);
13428 		if (mp == NULL) {
13429 			ip2dbg(("ip_input_ipsec_process: TCP pkt "
13430 			    "deferred/dropped during IPPF processing\n"));
13431 			CONN_DEC_REF(connp);
13432 			if (mctl_present)
13433 				freeb(first_mp);
13434 			return (NULL);
13435 		} else if (mctl_present) {
13436 			/*
13437 			 * ip_process might return a new mp.
13438 			 */
13439 			ASSERT(first_mp != mp);
13440 			first_mp->b_cont = mp;
13441 		} else {
13442 			first_mp = mp;
13443 		}
13444 
13445 	}
13446 
13447 	if (!syn_present && connp->conn_ip_recvpktinfo) {
13448 		/*
13449 		 * TCP does not support IP_RECVPKTINFO for v4 so lets
13450 		 * make sure IPF_RECVIF is passed to ip_add_info.
13451 		 */
13452 		mp = ip_add_info(mp, recv_ill, flags|IPF_RECVIF,
13453 		    IPCL_ZONEID(connp), ipst);
13454 		if (mp == NULL) {
13455 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13456 			CONN_DEC_REF(connp);
13457 			if (mctl_present)
13458 				freeb(first_mp);
13459 			return (NULL);
13460 		} else if (mctl_present) {
13461 			/*
13462 			 * ip_add_info might return a new mp.
13463 			 */
13464 			ASSERT(first_mp != mp);
13465 			first_mp->b_cont = mp;
13466 		} else {
13467 			first_mp = mp;
13468 		}
13469 	}
13470 
13471 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
13472 	if (IPCL_IS_TCP(connp)) {
13473 		SET_SQUEUE(first_mp, connp->conn_recv, connp);
13474 		return (first_mp);
13475 	} else {
13476 		putnext(connp->conn_rq, first_mp);
13477 		CONN_DEC_REF(connp);
13478 		return (NULL);
13479 	}
13480 
13481 no_conn:
13482 	/* Initiate IPPf processing, if needed. */
13483 	if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) {
13484 		uint32_t ill_index;
13485 		ill_index = recv_ill->ill_phyint->phyint_ifindex;
13486 		ip_process(IPP_LOCAL_IN, &first_mp, ill_index);
13487 		if (first_mp == NULL) {
13488 			return (NULL);
13489 		}
13490 	}
13491 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
13492 
13493 	tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid,
13494 	    ipst->ips_netstack->netstack_tcp);
13495 	return (NULL);
13496 ipoptions:
13497 	if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst)) {
13498 		goto slow_done;
13499 	}
13500 
13501 	UPDATE_IB_PKT_COUNT(ire);
13502 	ire->ire_last_used_time = lbolt;
13503 
13504 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
13505 	if (u1 & (IPH_MF | IPH_OFFSET)) {
13506 fragmented:
13507 		if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) {
13508 			if (mctl_present)
13509 				freeb(first_mp);
13510 			goto slow_done;
13511 		}
13512 		/*
13513 		 * Make sure that first_mp points back to mp as
13514 		 * the mp we came in with could have changed in
13515 		 * ip_rput_fragment().
13516 		 */
13517 		ASSERT(!mctl_present);
13518 		ipha = (ipha_t *)mp->b_rptr;
13519 		first_mp = mp;
13520 	}
13521 
13522 	/* Now we have a complete datagram, destined for this machine. */
13523 	u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha);
13524 
13525 	len = mp->b_wptr - mp->b_rptr;
13526 	/* Pull up a minimal TCP header, if necessary. */
13527 	if (len < (u1 + 20)) {
13528 tcppullup:
13529 		if (!pullupmsg(mp, u1 + 20)) {
13530 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13531 			goto error;
13532 		}
13533 		ipha = (ipha_t *)mp->b_rptr;
13534 		len = mp->b_wptr - mp->b_rptr;
13535 	}
13536 
13537 	/*
13538 	 * Extract the offset field from the TCP header.  As usual, we
13539 	 * try to help the compiler more than the reader.
13540 	 */
13541 	offset = ((uchar_t *)ipha)[u1 + 12] >> 4;
13542 	if (offset != 5) {
13543 tcpoptions:
13544 		if (offset < 5) {
13545 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13546 			goto error;
13547 		}
13548 		/*
13549 		 * There must be TCP options.
13550 		 * Make sure we can grab them.
13551 		 */
13552 		offset <<= 2;
13553 		offset += u1;
13554 		if (len < offset) {
13555 			if (!pullupmsg(mp, offset)) {
13556 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13557 				goto error;
13558 			}
13559 			ipha = (ipha_t *)mp->b_rptr;
13560 			len = mp->b_wptr - rptr;
13561 		}
13562 	}
13563 
13564 	/* Get the total packet length in len, including headers. */
13565 	if (mp->b_cont) {
13566 multipkttcp:
13567 		len = msgdsize(mp);
13568 	}
13569 
13570 	/*
13571 	 * Check the TCP checksum by pulling together the pseudo-
13572 	 * header checksum, and passing it to ip_csum to be added in
13573 	 * with the TCP datagram.
13574 	 *
13575 	 * Since we are not using the hwcksum if available we must
13576 	 * clear the flag. We may come here via tcppullup or tcpoptions.
13577 	 * If either of these fails along the way the mblk is freed.
13578 	 * If this logic ever changes and mblk is reused to say send
13579 	 * ICMP's back, then this flag may need to be cleared in
13580 	 * other places as well.
13581 	 */
13582 	DB_CKSUMFLAGS(mp) = 0;
13583 
13584 	up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET);
13585 
13586 	u1 = (uint32_t)(len - u1);	/* TCP datagram length. */
13587 #ifdef	_BIG_ENDIAN
13588 	u1 += IPPROTO_TCP;
13589 #else
13590 	u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8);
13591 #endif
13592 	u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9];
13593 	/*
13594 	 * Not M_DATA mblk or its a dup, so do the checksum now.
13595 	 */
13596 	IP_STAT(ipst, ip_in_sw_cksum);
13597 	if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) {
13598 		BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs);
13599 		goto error;
13600 	}
13601 
13602 	IP_STAT(ipst, ip_tcp_slow_path);
13603 	goto try_again;
13604 #undef  iphs
13605 #undef  rptr
13606 
13607 error:
13608 	freemsg(first_mp);
13609 slow_done:
13610 	return (NULL);
13611 }
13612 
13613 /* ARGSUSED */
13614 static void
13615 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present,
13616     ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst)
13617 {
13618 	conn_t		*connp;
13619 	uint32_t	sum;
13620 	uint32_t	u1;
13621 	ssize_t		len;
13622 	sctp_hdr_t	*sctph;
13623 	zoneid_t	zoneid = ire->ire_zoneid;
13624 	uint32_t	pktsum;
13625 	uint32_t	calcsum;
13626 	uint32_t	ports;
13627 	uint_t		ipif_seqid;
13628 	in6_addr_t	map_src, map_dst;
13629 	ill_t		*ill = (ill_t *)q->q_ptr;
13630 	ip_stack_t	*ipst;
13631 	sctp_stack_t	*sctps;
13632 
13633 	ASSERT(recv_ill != NULL);
13634 	ipst = recv_ill->ill_ipst;
13635 	sctps = ipst->ips_netstack->netstack_sctp;
13636 
13637 #define	rptr	((uchar_t *)ipha)
13638 
13639 	ASSERT(ipha->ipha_protocol == IPPROTO_SCTP);
13640 	ASSERT(ill != NULL);
13641 
13642 	/* u1 is # words of IP options */
13643 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4)
13644 	    + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
13645 
13646 	/* IP options present */
13647 	if (u1 > 0) {
13648 		goto ipoptions;
13649 	} else {
13650 		/* Check the IP header checksum.  */
13651 		if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) {
13652 #define	uph	((uint16_t *)ipha)
13653 			sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] +
13654 			    uph[5] + uph[6] + uph[7] + uph[8] + uph[9];
13655 #undef	uph
13656 			/* finish doing IP checksum */
13657 			sum = (sum & 0xFFFF) + (sum >> 16);
13658 			sum = ~(sum + (sum >> 16)) & 0xFFFF;
13659 			/*
13660 			 * Don't verify header checksum if this packet
13661 			 * is coming back from AH/ESP as we already did it.
13662 			 */
13663 			if (!mctl_present && (sum != 0) && sum != 0xFFFF) {
13664 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
13665 				goto error;
13666 			}
13667 		}
13668 		/*
13669 		 * Since there is no SCTP h/w cksum support yet, just
13670 		 * clear the flag.
13671 		 */
13672 		DB_CKSUMFLAGS(mp) = 0;
13673 	}
13674 
13675 	/*
13676 	 * Don't verify header checksum if this packet is coming
13677 	 * back from AH/ESP as we already did it.
13678 	 */
13679 	if (!mctl_present) {
13680 		UPDATE_IB_PKT_COUNT(ire);
13681 		ire->ire_last_used_time = lbolt;
13682 	}
13683 
13684 	/* packet part of fragmented IP packet? */
13685 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
13686 	if (u1 & (IPH_MF | IPH_OFFSET))
13687 		goto fragmented;
13688 
13689 	/* u1 = IP header length (20 bytes) */
13690 	u1 = IP_SIMPLE_HDR_LENGTH;
13691 
13692 find_sctp_client:
13693 	/* Pullup if we don't have the sctp common header. */
13694 	len = MBLKL(mp);
13695 	if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) {
13696 		if (mp->b_cont == NULL ||
13697 		    !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) {
13698 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13699 			goto error;
13700 		}
13701 		ipha = (ipha_t *)mp->b_rptr;
13702 		len = MBLKL(mp);
13703 	}
13704 
13705 	sctph = (sctp_hdr_t *)(rptr + u1);
13706 #ifdef	DEBUG
13707 	if (!skip_sctp_cksum) {
13708 #endif
13709 		pktsum = sctph->sh_chksum;
13710 		sctph->sh_chksum = 0;
13711 		calcsum = sctp_cksum(mp, u1);
13712 		if (calcsum != pktsum) {
13713 			BUMP_MIB(&sctps->sctps_mib, sctpChecksumError);
13714 			goto error;
13715 		}
13716 		sctph->sh_chksum = pktsum;
13717 #ifdef	DEBUG	/* skip_sctp_cksum */
13718 	}
13719 #endif
13720 	/* get the ports */
13721 	ports = *(uint32_t *)&sctph->sh_sport;
13722 
13723 	ipif_seqid = ire->ire_ipif->ipif_seqid;
13724 	IRE_REFRELE(ire);
13725 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst);
13726 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src);
13727 	if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid,
13728 	    mp, sctps)) == NULL) {
13729 		/* Check for raw socket or OOTB handling */
13730 		goto no_conn;
13731 	}
13732 
13733 	/* Found a client; up it goes */
13734 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
13735 	sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present);
13736 	return;
13737 
13738 no_conn:
13739 	ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE,
13740 	    ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid);
13741 	return;
13742 
13743 ipoptions:
13744 	DB_CKSUMFLAGS(mp) = 0;
13745 	if (!ip_options_cksum(q, ill, first_mp, ipha, ire, ipst))
13746 		goto slow_done;
13747 
13748 	UPDATE_IB_PKT_COUNT(ire);
13749 	ire->ire_last_used_time = lbolt;
13750 
13751 	u1 = ntohs(ipha->ipha_fragment_offset_and_flags);
13752 	if (u1 & (IPH_MF | IPH_OFFSET)) {
13753 fragmented:
13754 		if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL))
13755 			goto slow_done;
13756 		/*
13757 		 * Make sure that first_mp points back to mp as
13758 		 * the mp we came in with could have changed in
13759 		 * ip_rput_fragment().
13760 		 */
13761 		ASSERT(!mctl_present);
13762 		ipha = (ipha_t *)mp->b_rptr;
13763 		first_mp = mp;
13764 	}
13765 
13766 	/* Now we have a complete datagram, destined for this machine. */
13767 	u1 = IPH_HDR_LENGTH(ipha);
13768 	goto find_sctp_client;
13769 #undef  iphs
13770 #undef  rptr
13771 
13772 error:
13773 	freemsg(first_mp);
13774 slow_done:
13775 	IRE_REFRELE(ire);
13776 }
13777 
13778 #define	VER_BITS	0xF0
13779 #define	VERSION_6	0x60
13780 
13781 static boolean_t
13782 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp,
13783     ipaddr_t *dstp, ip_stack_t *ipst)
13784 {
13785 	uint_t	opt_len;
13786 	ipha_t *ipha;
13787 	ssize_t len;
13788 	uint_t	pkt_len;
13789 
13790 	ASSERT(ill != NULL);
13791 	IP_STAT(ipst, ip_ipoptions);
13792 	ipha = *iphapp;
13793 
13794 #define	rptr    ((uchar_t *)ipha)
13795 	/* Assume no IPv6 packets arrive over the IPv4 queue */
13796 	if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) {
13797 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
13798 		freemsg(mp);
13799 		return (B_FALSE);
13800 	}
13801 
13802 	/* multiple mblk or too short */
13803 	pkt_len = ntohs(ipha->ipha_length);
13804 
13805 	/* Get the number of words of IP options in the IP header. */
13806 	opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION;
13807 	if (opt_len) {
13808 		/* IP Options present!  Validate and process. */
13809 		if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
13810 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
13811 			goto done;
13812 		}
13813 		/*
13814 		 * Recompute complete header length and make sure we
13815 		 * have access to all of it.
13816 		 */
13817 		len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
13818 		if (len > (mp->b_wptr - rptr)) {
13819 			if (len > pkt_len) {
13820 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
13821 				goto done;
13822 			}
13823 			if (!pullupmsg(mp, len)) {
13824 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13825 				goto done;
13826 			}
13827 			ipha = (ipha_t *)mp->b_rptr;
13828 		}
13829 		/*
13830 		 * Go off to ip_rput_options which returns the next hop
13831 		 * destination address, which may have been affected
13832 		 * by source routing.
13833 		 */
13834 		IP_STAT(ipst, ip_opt);
13835 		if (ip_rput_options(q, mp, ipha, dstp, ipst) == -1) {
13836 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13837 			return (B_FALSE);
13838 		}
13839 	}
13840 	*iphapp = ipha;
13841 	return (B_TRUE);
13842 done:
13843 	/* clear b_prev - used by ip_mroute_decap */
13844 	mp->b_prev = NULL;
13845 	freemsg(mp);
13846 	return (B_FALSE);
13847 #undef  rptr
13848 }
13849 
13850 /*
13851  * Deal with the fact that there is no ire for the destination.
13852  * The incoming ill (in_ill) is passed in to ip_newroute only
13853  * in the case of packets coming from mobile ip forward tunnel.
13854  * It must be null otherwise.
13855  */
13856 static ire_t *
13857 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast,
13858     ipaddr_t dst)
13859 {
13860 	ipha_t	*ipha;
13861 	ill_t	*ill;
13862 	ire_t	*ire;
13863 	boolean_t	check_multirt = B_FALSE;
13864 	ip_stack_t *ipst;
13865 
13866 	ipha = (ipha_t *)mp->b_rptr;
13867 	ill = (ill_t *)q->q_ptr;
13868 
13869 	ASSERT(ill != NULL);
13870 	ipst = ill->ill_ipst;
13871 
13872 	/*
13873 	 * No IRE for this destination, so it can't be for us.
13874 	 * Unless we are forwarding, drop the packet.
13875 	 * We have to let source routed packets through
13876 	 * since we don't yet know if they are 'ping -l'
13877 	 * packets i.e. if they will go out over the
13878 	 * same interface as they came in on.
13879 	 */
13880 	if (ll_multicast) {
13881 		freemsg(mp);
13882 		return (NULL);
13883 	}
13884 	if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha, ipst)) {
13885 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
13886 		freemsg(mp);
13887 		return (NULL);
13888 	}
13889 
13890 	/*
13891 	 * Mark this packet as having originated externally.
13892 	 *
13893 	 * For non-forwarding code path, ire_send later double
13894 	 * checks this interface to see if it is still exists
13895 	 * post-ARP resolution.
13896 	 *
13897 	 * Also, IPQOS uses this to differentiate between
13898 	 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP
13899 	 * QOS packet processing in ip_wput_attach_llhdr().
13900 	 * The QoS module can mark the b_band for a fastpath message
13901 	 * or the dl_priority field in a unitdata_req header for
13902 	 * CoS marking. This info can only be found in
13903 	 * ip_wput_attach_llhdr().
13904 	 */
13905 	mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex;
13906 	/*
13907 	 * Clear the indication that this may have a hardware checksum
13908 	 * as we are not using it
13909 	 */
13910 	DB_CKSUMFLAGS(mp) = 0;
13911 
13912 	if (in_ill != NULL) {
13913 		/*
13914 		 * Now hand the packet to ip_newroute.
13915 		 */
13916 		ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst);
13917 		return (NULL);
13918 	}
13919 	ire = ire_forward(dst, &check_multirt, NULL, NULL,
13920 	    MBLK_GETLABEL(mp), ipst);
13921 
13922 	if (ire == NULL && check_multirt) {
13923 		/* Let ip_newroute handle CGTP  */
13924 		ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID, ipst);
13925 		return (NULL);
13926 	}
13927 
13928 	if (ire != NULL)
13929 		return (ire);
13930 
13931 	mp->b_prev = mp->b_next = 0;
13932 	/* send icmp unreachable */
13933 	q = WR(q);
13934 	/* Sent by forwarding path, and router is global zone */
13935 	if (ip_source_routed(ipha, ipst)) {
13936 		icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED,
13937 		    GLOBAL_ZONEID, ipst);
13938 	} else {
13939 		icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID,
13940 		    ipst);
13941 	}
13942 
13943 	return (NULL);
13944 
13945 }
13946 
13947 /*
13948  * check ip header length and align it.
13949  */
13950 static boolean_t
13951 ip_check_and_align_header(queue_t *q, mblk_t *mp, ip_stack_t *ipst)
13952 {
13953 	ssize_t len;
13954 	ill_t *ill;
13955 	ipha_t	*ipha;
13956 
13957 	len = MBLKL(mp);
13958 
13959 	if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) {
13960 		ill = (ill_t *)q->q_ptr;
13961 
13962 		if (!OK_32PTR(mp->b_rptr))
13963 			IP_STAT(ipst, ip_notaligned1);
13964 		else
13965 			IP_STAT(ipst, ip_notaligned2);
13966 		/* Guard against bogus device drivers */
13967 		if (len < 0) {
13968 			/* clear b_prev - used by ip_mroute_decap */
13969 			mp->b_prev = NULL;
13970 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
13971 			freemsg(mp);
13972 			return (B_FALSE);
13973 		}
13974 
13975 		if (ip_rput_pullups++ == 0) {
13976 			ipha = (ipha_t *)mp->b_rptr;
13977 			(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
13978 			    "ip_check_and_align_header: %s forced us to "
13979 			    " pullup pkt, hdr len %ld, hdr addr %p",
13980 			    ill->ill_name, len, ipha);
13981 		}
13982 		if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) {
13983 			/* clear b_prev - used by ip_mroute_decap */
13984 			mp->b_prev = NULL;
13985 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13986 			freemsg(mp);
13987 			return (B_FALSE);
13988 		}
13989 	}
13990 	return (B_TRUE);
13991 }
13992 
13993 static boolean_t
13994 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill)
13995 {
13996 	ill_group_t	*ill_group;
13997 	ill_group_t	*ire_group;
13998 	queue_t 	*q;
13999 	ill_t		*ire_ill;
14000 	uint_t		ill_ifindex;
14001 	ip_stack_t *ipst = ill->ill_ipst;
14002 
14003 	q = *qp;
14004 	/*
14005 	 * We need to check to make sure the packet came in
14006 	 * on the queue associated with the destination IRE.
14007 	 * Note that for multicast packets and broadcast packets sent to
14008 	 * a broadcast address which is shared between multiple interfaces
14009 	 * we should not do this since we just got a random broadcast ire.
14010 	 */
14011 	if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) {
14012 		boolean_t check_multi = B_TRUE;
14013 
14014 		/*
14015 		 * This packet came in on an interface other than the
14016 		 * one associated with the destination address.
14017 		 * "Gateway" it to the appropriate interface here.
14018 		 * As long as the ills belong to the same group,
14019 		 * we don't consider them to arriving on the wrong
14020 		 * interface. Thus, when the switch is doing inbound
14021 		 * load spreading, we won't drop packets when we
14022 		 * are doing strict multihoming checks. Note, the
14023 		 * same holds true for 'usesrc groups' where the
14024 		 * destination address may belong to another interface
14025 		 * to allow multipathing to happen
14026 		 */
14027 		ill_group = ill->ill_group;
14028 		ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr;
14029 		ill_ifindex = ill->ill_usesrc_ifindex;
14030 		ire_group = ire_ill->ill_group;
14031 
14032 		/*
14033 		 * If it's part of the same IPMP group, or if it's a legal
14034 		 * address on the 'usesrc' interface, then bypass strict
14035 		 * checks.
14036 		 */
14037 		if (ill_group != NULL && ill_group == ire_group) {
14038 			check_multi = B_FALSE;
14039 		} else if (ill_ifindex != 0 &&
14040 		    ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) {
14041 			check_multi = B_FALSE;
14042 		}
14043 
14044 		if (check_multi &&
14045 		    ipst->ips_ip_strict_dst_multihoming &&
14046 		    ((ill->ill_flags &
14047 		    ire->ire_ipif->ipif_ill->ill_flags &
14048 		    ILLF_ROUTER) == 0)) {
14049 			/* Drop packet */
14050 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
14051 			freemsg(mp);
14052 			return (B_TRUE);
14053 		}
14054 
14055 		/*
14056 		 * Change the queue (for non-virtual destination network
14057 		 * interfaces) and ip_rput_local will be called with the right
14058 		 * queue
14059 		 */
14060 		q = ire->ire_rfq;
14061 	}
14062 	/* Must be broadcast.  We'll take it. */
14063 	*qp = q;
14064 	return (B_FALSE);
14065 }
14066 
14067 ire_t *
14068 ip_fast_forward(ire_t *ire, ipaddr_t dst,  ill_t *ill, mblk_t *mp)
14069 {
14070 	ipha_t	*ipha;
14071 	ipaddr_t ip_dst, ip_src;
14072 	ire_t	*src_ire = NULL;
14073 	ill_t	*stq_ill;
14074 	uint_t	hlen;
14075 	uint_t	pkt_len;
14076 	uint32_t sum;
14077 	queue_t	*dev_q;
14078 	boolean_t check_multirt = B_FALSE;
14079 	ip_stack_t *ipst = ill->ill_ipst;
14080 
14081 	ipha = (ipha_t *)mp->b_rptr;
14082 
14083 	/*
14084 	 * Martian Address Filtering [RFC 1812, Section 5.3.7]
14085 	 * The loopback address check for both src and dst has already
14086 	 * been checked in ip_input
14087 	 */
14088 	ip_dst = ntohl(dst);
14089 	ip_src = ntohl(ipha->ipha_src);
14090 
14091 	if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) ||
14092 	    IN_CLASSD(ip_src)) {
14093 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
14094 		goto drop;
14095 	}
14096 	src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL,
14097 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
14098 
14099 	if (src_ire != NULL) {
14100 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
14101 		goto drop;
14102 	}
14103 
14104 
14105 	/* No ire cache of nexthop. So first create one  */
14106 	if (ire == NULL) {
14107 		ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL, ipst);
14108 		/*
14109 		 * We only come to ip_fast_forward if ip_cgtp_filter is
14110 		 * is not set. So upon return from ire_forward
14111 		 * check_multirt should remain as false.
14112 		 */
14113 		ASSERT(!check_multirt);
14114 		if (ire == NULL) {
14115 			/* An attempt was made to forward the packet */
14116 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams);
14117 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14118 			mp->b_prev = mp->b_next = 0;
14119 			/* send icmp unreachable */
14120 			/* Sent by forwarding path, and router is global zone */
14121 			if (ip_source_routed(ipha, ipst)) {
14122 				icmp_unreachable(ill->ill_wq, mp,
14123 				    ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID,
14124 				    ipst);
14125 			} else {
14126 				icmp_unreachable(ill->ill_wq, mp,
14127 				    ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID,
14128 				    ipst);
14129 			}
14130 			return (ire);
14131 		}
14132 	}
14133 
14134 	/*
14135 	 * Forwarding fastpath exception case:
14136 	 * If either of the follwoing case is true, we take
14137 	 * the slowpath
14138 	 *	o forwarding is not enabled
14139 	 *	o incoming and outgoing interface are the same, or the same
14140 	 *	  IPMP group
14141 	 *	o corresponding ire is in incomplete state
14142 	 *	o packet needs fragmentation
14143 	 *
14144 	 * The codeflow from here on is thus:
14145 	 *	ip_rput_process_forward->ip_rput_forward->ip_xmit_v4
14146 	 */
14147 	pkt_len = ntohs(ipha->ipha_length);
14148 	stq_ill = (ill_t *)ire->ire_stq->q_ptr;
14149 	if (!(stq_ill->ill_flags & ILLF_ROUTER) ||
14150 	    !(ill->ill_flags & ILLF_ROUTER) ||
14151 	    (ill == stq_ill) ||
14152 	    (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) ||
14153 	    (ire->ire_nce == NULL) ||
14154 	    (ire->ire_nce->nce_state != ND_REACHABLE) ||
14155 	    (pkt_len > ire->ire_max_frag) ||
14156 	    ipha->ipha_ttl <= 1) {
14157 		ip_rput_process_forward(ill->ill_rq, mp, ire,
14158 		    ipha, ill, B_FALSE);
14159 		return (ire);
14160 	}
14161 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams);
14162 
14163 	DTRACE_PROBE4(ip4__forwarding__start,
14164 	    ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp);
14165 
14166 	FW_HOOKS(ipst->ips_ip4_forwarding_event,
14167 	    ipst->ips_ipv4firewall_forwarding,
14168 	    ill, stq_ill, ipha, mp, mp, ipst);
14169 
14170 	DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp);
14171 
14172 	if (mp == NULL)
14173 		goto drop;
14174 
14175 	mp->b_datap->db_struioun.cksum.flags = 0;
14176 	/* Adjust the checksum to reflect the ttl decrement. */
14177 	sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
14178 	ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));
14179 	ipha->ipha_ttl--;
14180 
14181 	dev_q = ire->ire_stq->q_next;
14182 	if ((dev_q->q_next != NULL ||
14183 	    dev_q->q_first != NULL) && !canput(dev_q)) {
14184 		goto indiscard;
14185 	}
14186 
14187 	hlen = ire->ire_nce->nce_fp_mp != NULL ?
14188 	    MBLKL(ire->ire_nce->nce_fp_mp) : 0;
14189 
14190 	if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) {
14191 		mblk_t *mpip = mp;
14192 
14193 		mp = ip_wput_attach_llhdr(mpip, ire, 0, 0);
14194 		if (mp != NULL) {
14195 			DTRACE_PROBE4(ip4__physical__out__start,
14196 			    ill_t *, NULL, ill_t *, stq_ill,
14197 			    ipha_t *, ipha, mblk_t *, mp);
14198 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
14199 			    ipst->ips_ipv4firewall_physical_out,
14200 			    NULL, stq_ill, ipha, mp, mpip, ipst);
14201 			DTRACE_PROBE1(ip4__physical__out__end, mblk_t *,
14202 			    mp);
14203 			if (mp == NULL)
14204 				goto drop;
14205 
14206 			UPDATE_IB_PKT_COUNT(ire);
14207 			ire->ire_last_used_time = lbolt;
14208 			BUMP_MIB(stq_ill->ill_ip_mib,
14209 			    ipIfStatsHCOutForwDatagrams);
14210 			BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14211 			UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets,
14212 			    pkt_len);
14213 			putnext(ire->ire_stq, mp);
14214 			return (ire);
14215 		}
14216 	}
14217 
14218 indiscard:
14219 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14220 drop:
14221 	if (mp != NULL)
14222 		freemsg(mp);
14223 	if (src_ire != NULL)
14224 		ire_refrele(src_ire);
14225 	return (ire);
14226 
14227 }
14228 
14229 /*
14230  * This function is called in the forwarding slowpath, when
14231  * either the ire lacks the link-layer address, or the packet needs
14232  * further processing(eg. fragmentation), before transmission.
14233  */
14234 
14235 static void
14236 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha,
14237     ill_t *ill, boolean_t ll_multicast)
14238 {
14239 	ill_group_t	*ill_group;
14240 	ill_group_t	*ire_group;
14241 	queue_t		*dev_q;
14242 	ire_t		*src_ire;
14243 	ip_stack_t	*ipst = ill->ill_ipst;
14244 
14245 	ASSERT(ire->ire_stq != NULL);
14246 
14247 	mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */
14248 	mp->b_next = NULL; /* ip_rput_noire sets dst here */
14249 
14250 	if (ll_multicast != 0) {
14251 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14252 		goto drop_pkt;
14253 	}
14254 
14255 	/*
14256 	 * check if ipha_src is a broadcast address. Note that this
14257 	 * check is redundant when we get here from ip_fast_forward()
14258 	 * which has already done this check. However, since we can
14259 	 * also get here from ip_rput_process_broadcast() or, for
14260 	 * for the slow path through ip_fast_forward(), we perform
14261 	 * the check again for code-reusability
14262 	 */
14263 	src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL,
14264 	    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
14265 	if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY ||
14266 	    IN_BADCLASS(ntohl(ipha->ipha_dst))) {
14267 		if (src_ire != NULL)
14268 			ire_refrele(src_ire);
14269 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
14270 		ip2dbg(("ip_rput_process_forward: Received packet with"
14271 		    " bad src/dst address on %s\n", ill->ill_name));
14272 		goto drop_pkt;
14273 	}
14274 
14275 	ill_group = ill->ill_group;
14276 	ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group;
14277 	/*
14278 	 * Check if we want to forward this one at this time.
14279 	 * We allow source routed packets on a host provided that
14280 	 * they go out the same interface or same interface group
14281 	 * as they came in on.
14282 	 *
14283 	 * XXX To be quicker, we may wish to not chase pointers to
14284 	 * get the ILLF_ROUTER flag and instead store the
14285 	 * forwarding policy in the ire.  An unfortunate
14286 	 * side-effect of that would be requiring an ire flush
14287 	 * whenever the ILLF_ROUTER flag changes.
14288 	 */
14289 	if (((ill->ill_flags &
14290 	    ((ill_t *)ire->ire_stq->q_ptr)->ill_flags &
14291 	    ILLF_ROUTER) == 0) &&
14292 	    !(ip_source_routed(ipha, ipst) && (ire->ire_rfq == q ||
14293 	    (ill_group != NULL && ill_group == ire_group)))) {
14294 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits);
14295 		if (ip_source_routed(ipha, ipst)) {
14296 			q = WR(q);
14297 			/*
14298 			 * Clear the indication that this may have
14299 			 * hardware checksum as we are not using it.
14300 			 */
14301 			DB_CKSUMFLAGS(mp) = 0;
14302 			/* Sent by forwarding path, and router is global zone */
14303 			icmp_unreachable(q, mp,
14304 			    ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID, ipst);
14305 			return;
14306 		}
14307 		goto drop_pkt;
14308 	}
14309 
14310 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams);
14311 
14312 	/* Packet is being forwarded. Turning off hwcksum flag. */
14313 	DB_CKSUMFLAGS(mp) = 0;
14314 	if (ipst->ips_ip_g_send_redirects) {
14315 		/*
14316 		 * Check whether the incoming interface and outgoing
14317 		 * interface is part of the same group. If so,
14318 		 * send redirects.
14319 		 *
14320 		 * Check the source address to see if it originated
14321 		 * on the same logical subnet it is going back out on.
14322 		 * If so, we should be able to send it a redirect.
14323 		 * Avoid sending a redirect if the destination
14324 		 * is directly connected (i.e., ipha_dst is the same
14325 		 * as ire_gateway_addr or the ire_addr of the
14326 		 * nexthop IRE_CACHE ), or if the packet was source
14327 		 * routed out this interface.
14328 		 */
14329 		ipaddr_t src, nhop;
14330 		mblk_t	*mp1;
14331 		ire_t	*nhop_ire = NULL;
14332 
14333 		/*
14334 		 * Check whether ire_rfq and q are from the same ill
14335 		 * or if they are not same, they at least belong
14336 		 * to the same group. If so, send redirects.
14337 		 */
14338 		if ((ire->ire_rfq == q ||
14339 		    (ill_group != NULL && ill_group == ire_group)) &&
14340 		    !ip_source_routed(ipha, ipst)) {
14341 
14342 			nhop = (ire->ire_gateway_addr != 0 ?
14343 			    ire->ire_gateway_addr : ire->ire_addr);
14344 
14345 			if (ipha->ipha_dst == nhop) {
14346 				/*
14347 				 * We avoid sending a redirect if the
14348 				 * destination is directly connected
14349 				 * because it is possible that multiple
14350 				 * IP subnets may have been configured on
14351 				 * the link, and the source may not
14352 				 * be on the same subnet as ip destination,
14353 				 * even though they are on the same
14354 				 * physical link.
14355 				 */
14356 				goto sendit;
14357 			}
14358 
14359 			src = ipha->ipha_src;
14360 
14361 			/*
14362 			 * We look up the interface ire for the nexthop,
14363 			 * to see if ipha_src is in the same subnet
14364 			 * as the nexthop.
14365 			 *
14366 			 * Note that, if, in the future, IRE_CACHE entries
14367 			 * are obsoleted,  this lookup will not be needed,
14368 			 * as the ire passed to this function will be the
14369 			 * same as the nhop_ire computed below.
14370 			 */
14371 			nhop_ire = ire_ftable_lookup(nhop, 0, 0,
14372 			    IRE_INTERFACE, NULL, NULL, ALL_ZONES,
14373 			    0, NULL, MATCH_IRE_TYPE, ipst);
14374 
14375 			if (nhop_ire != NULL) {
14376 				if ((src & nhop_ire->ire_mask) ==
14377 				    (nhop & nhop_ire->ire_mask)) {
14378 					/*
14379 					 * The source is directly connected.
14380 					 * Just copy the ip header (which is
14381 					 * in the first mblk)
14382 					 */
14383 					mp1 = copyb(mp);
14384 					if (mp1 != NULL) {
14385 						icmp_send_redirect(WR(q), mp1,
14386 						    nhop, ipst);
14387 					}
14388 				}
14389 				ire_refrele(nhop_ire);
14390 			}
14391 		}
14392 	}
14393 sendit:
14394 	dev_q = ire->ire_stq->q_next;
14395 	if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) {
14396 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14397 		freemsg(mp);
14398 		return;
14399 	}
14400 
14401 	ip_rput_forward(ire, ipha, mp, ill);
14402 	return;
14403 
14404 drop_pkt:
14405 	ip2dbg(("ip_rput_process_forward: drop pkt\n"));
14406 	freemsg(mp);
14407 }
14408 
14409 ire_t *
14410 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha,
14411     ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast)
14412 {
14413 	queue_t		*q;
14414 	uint16_t	hcksumflags;
14415 	ip_stack_t	*ipst = ill->ill_ipst;
14416 
14417 	q = *qp;
14418 
14419 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts);
14420 
14421 	/*
14422 	 * Clear the indication that this may have hardware
14423 	 * checksum as we are not using it for forwarding.
14424 	 */
14425 	hcksumflags = DB_CKSUMFLAGS(mp);
14426 	DB_CKSUMFLAGS(mp) = 0;
14427 
14428 	/*
14429 	 * Directed broadcast forwarding: if the packet came in over a
14430 	 * different interface then it is routed out over we can forward it.
14431 	 */
14432 	if (ipha->ipha_protocol == IPPROTO_TCP) {
14433 		ire_refrele(ire);
14434 		freemsg(mp);
14435 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14436 		return (NULL);
14437 	}
14438 	/*
14439 	 * For multicast we have set dst to be INADDR_BROADCAST
14440 	 * for delivering to all STREAMS. IRE_MARK_NORECV is really
14441 	 * only for broadcast packets.
14442 	 */
14443 	if (!CLASSD(ipha->ipha_dst)) {
14444 		ire_t *new_ire;
14445 		ipif_t *ipif;
14446 		/*
14447 		 * For ill groups, as the switch duplicates broadcasts
14448 		 * across all the ports, we need to filter out and
14449 		 * send up only one copy. There is one copy for every
14450 		 * broadcast address on each ill. Thus, we look for a
14451 		 * specific IRE on this ill and look at IRE_MARK_NORECV
14452 		 * later to see whether this ill is eligible to receive
14453 		 * them or not. ill_nominate_bcast_rcv() nominates only
14454 		 * one set of IREs for receiving.
14455 		 */
14456 
14457 		ipif = ipif_get_next_ipif(NULL, ill);
14458 		if (ipif == NULL) {
14459 			ire_refrele(ire);
14460 			freemsg(mp);
14461 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14462 			return (NULL);
14463 		}
14464 		new_ire = ire_ctable_lookup(dst, 0, 0,
14465 		    ipif, ALL_ZONES, NULL, MATCH_IRE_ILL, ipst);
14466 		ipif_refrele(ipif);
14467 
14468 		if (new_ire != NULL) {
14469 			if (new_ire->ire_marks & IRE_MARK_NORECV) {
14470 				ire_refrele(ire);
14471 				ire_refrele(new_ire);
14472 				freemsg(mp);
14473 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14474 				return (NULL);
14475 			}
14476 			/*
14477 			 * In the special case of multirouted broadcast
14478 			 * packets, we unconditionally need to "gateway"
14479 			 * them to the appropriate interface here.
14480 			 * In the normal case, this cannot happen, because
14481 			 * there is no broadcast IRE tagged with the
14482 			 * RTF_MULTIRT flag.
14483 			 */
14484 			if (new_ire->ire_flags & RTF_MULTIRT) {
14485 				ire_refrele(new_ire);
14486 				if (ire->ire_rfq != NULL) {
14487 					q = ire->ire_rfq;
14488 					*qp = q;
14489 				}
14490 			} else {
14491 				ire_refrele(ire);
14492 				ire = new_ire;
14493 			}
14494 		} else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) {
14495 			if (!ipst->ips_ip_g_forward_directed_bcast) {
14496 				/*
14497 				 * Free the message if
14498 				 * ip_g_forward_directed_bcast is turned
14499 				 * off for non-local broadcast.
14500 				 */
14501 				ire_refrele(ire);
14502 				freemsg(mp);
14503 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14504 				return (NULL);
14505 			}
14506 		} else {
14507 			/*
14508 			 * This CGTP packet successfully passed the
14509 			 * CGTP filter, but the related CGTP
14510 			 * broadcast IRE has not been found,
14511 			 * meaning that the redundant ipif is
14512 			 * probably down. However, if we discarded
14513 			 * this packet, its duplicate would be
14514 			 * filtered out by the CGTP filter so none
14515 			 * of them would get through. So we keep
14516 			 * going with this one.
14517 			 */
14518 			ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM);
14519 			if (ire->ire_rfq != NULL) {
14520 				q = ire->ire_rfq;
14521 				*qp = q;
14522 			}
14523 		}
14524 	}
14525 	if (ipst->ips_ip_g_forward_directed_bcast && ll_multicast == 0) {
14526 		/*
14527 		 * Verify that there are not more then one
14528 		 * IRE_BROADCAST with this broadcast address which
14529 		 * has ire_stq set.
14530 		 * TODO: simplify, loop over all IRE's
14531 		 */
14532 		ire_t	*ire1;
14533 		int	num_stq = 0;
14534 		mblk_t	*mp1;
14535 
14536 		/* Find the first one with ire_stq set */
14537 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
14538 		for (ire1 = ire; ire1 &&
14539 		    !ire1->ire_stq && ire1->ire_addr == ire->ire_addr;
14540 		    ire1 = ire1->ire_next)
14541 			;
14542 		if (ire1) {
14543 			ire_refrele(ire);
14544 			ire = ire1;
14545 			IRE_REFHOLD(ire);
14546 		}
14547 
14548 		/* Check if there are additional ones with stq set */
14549 		for (ire1 = ire; ire1; ire1 = ire1->ire_next) {
14550 			if (ire->ire_addr != ire1->ire_addr)
14551 				break;
14552 			if (ire1->ire_stq) {
14553 				num_stq++;
14554 				break;
14555 			}
14556 		}
14557 		rw_exit(&ire->ire_bucket->irb_lock);
14558 		if (num_stq == 1 && ire->ire_stq != NULL) {
14559 			ip1dbg(("ip_rput_process_broadcast: directed "
14560 			    "broadcast to 0x%x\n",
14561 			    ntohl(ire->ire_addr)));
14562 			mp1 = copymsg(mp);
14563 			if (mp1) {
14564 				switch (ipha->ipha_protocol) {
14565 				case IPPROTO_UDP:
14566 					ip_udp_input(q, mp1, ipha, ire, ill);
14567 					break;
14568 				default:
14569 					ip_proto_input(q, mp1, ipha, ire, ill);
14570 					break;
14571 				}
14572 			}
14573 			/*
14574 			 * Adjust ttl to 2 (1+1 - the forward engine
14575 			 * will decrement it by one.
14576 			 */
14577 			if (ip_csum_hdr(ipha)) {
14578 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
14579 				ip2dbg(("ip_rput_broadcast:drop pkt\n"));
14580 				freemsg(mp);
14581 				ire_refrele(ire);
14582 				return (NULL);
14583 			}
14584 			ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl + 1;
14585 			ipha->ipha_hdr_checksum = 0;
14586 			ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
14587 			ip_rput_process_forward(q, mp, ire, ipha,
14588 			    ill, ll_multicast);
14589 			ire_refrele(ire);
14590 			return (NULL);
14591 		}
14592 		ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n",
14593 		    ntohl(ire->ire_addr)));
14594 	}
14595 
14596 
14597 	/* Restore any hardware checksum flags */
14598 	DB_CKSUMFLAGS(mp) = hcksumflags;
14599 	return (ire);
14600 }
14601 
14602 /* ARGSUSED */
14603 static boolean_t
14604 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha,
14605     int *ll_multicast, ipaddr_t *dstp)
14606 {
14607 	ip_stack_t	*ipst = ill->ill_ipst;
14608 
14609 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts);
14610 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets,
14611 	    ntohs(ipha->ipha_length));
14612 
14613 	/*
14614 	 * Forward packets only if we have joined the allmulti
14615 	 * group on this interface.
14616 	 */
14617 	if (ipst->ips_ip_g_mrouter && ill->ill_join_allmulti) {
14618 		int retval;
14619 
14620 		/*
14621 		 * Clear the indication that this may have hardware
14622 		 * checksum as we are not using it.
14623 		 */
14624 		DB_CKSUMFLAGS(mp) = 0;
14625 		retval = ip_mforward(ill, ipha, mp);
14626 		/* ip_mforward updates mib variables if needed */
14627 		/* clear b_prev - used by ip_mroute_decap */
14628 		mp->b_prev = NULL;
14629 
14630 		switch (retval) {
14631 		case 0:
14632 			/*
14633 			 * pkt is okay and arrived on phyint.
14634 			 *
14635 			 * If we are running as a multicast router
14636 			 * we need to see all IGMP and/or PIM packets.
14637 			 */
14638 			if ((ipha->ipha_protocol == IPPROTO_IGMP) ||
14639 			    (ipha->ipha_protocol == IPPROTO_PIM)) {
14640 				goto done;
14641 			}
14642 			break;
14643 		case -1:
14644 			/* pkt is mal-formed, toss it */
14645 			goto drop_pkt;
14646 		case 1:
14647 			/* pkt is okay and arrived on a tunnel */
14648 			/*
14649 			 * If we are running a multicast router
14650 			 *  we need to see all igmp packets.
14651 			 */
14652 			if (ipha->ipha_protocol == IPPROTO_IGMP) {
14653 				*dstp = INADDR_BROADCAST;
14654 				*ll_multicast = 1;
14655 				return (B_FALSE);
14656 			}
14657 
14658 			goto drop_pkt;
14659 		}
14660 	}
14661 
14662 	ILM_WALKER_HOLD(ill);
14663 	if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) {
14664 		/*
14665 		 * This might just be caused by the fact that
14666 		 * multiple IP Multicast addresses map to the same
14667 		 * link layer multicast - no need to increment counter!
14668 		 */
14669 		ILM_WALKER_RELE(ill);
14670 		freemsg(mp);
14671 		return (B_TRUE);
14672 	}
14673 	ILM_WALKER_RELE(ill);
14674 done:
14675 	ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp)));
14676 	/*
14677 	 * This assumes the we deliver to all streams for multicast
14678 	 * and broadcast packets.
14679 	 */
14680 	*dstp = INADDR_BROADCAST;
14681 	*ll_multicast = 1;
14682 	return (B_FALSE);
14683 drop_pkt:
14684 	ip2dbg(("ip_rput: drop pkt\n"));
14685 	freemsg(mp);
14686 	return (B_TRUE);
14687 }
14688 
14689 static boolean_t
14690 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill,
14691     int *ll_multicast, mblk_t **mpp)
14692 {
14693 	mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp;
14694 	boolean_t must_copy = B_FALSE;
14695 	struct iocblk   *iocp;
14696 	ipha_t		*ipha;
14697 	ip_stack_t	*ipst = ill->ill_ipst;
14698 
14699 #define	rptr    ((uchar_t *)ipha)
14700 
14701 	first_mp = *first_mpp;
14702 	mp = *mpp;
14703 
14704 	ASSERT(first_mp == mp);
14705 
14706 	/*
14707 	 * if db_ref > 1 then copymsg and free original. Packet may be
14708 	 * changed and do not want other entity who has a reference to this
14709 	 * message to trip over the changes. This is a blind change because
14710 	 * trying to catch all places that might change packet is too
14711 	 * difficult (since it may be a module above this one)
14712 	 *
14713 	 * This corresponds to the non-fast path case. We walk down the full
14714 	 * chain in this case, and check the db_ref count of all the dblks,
14715 	 * and do a copymsg if required. It is possible that the db_ref counts
14716 	 * of the data blocks in the mblk chain can be different.
14717 	 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref
14718 	 * count of 1, followed by a M_DATA block with a ref count of 2, if
14719 	 * 'snoop' is running.
14720 	 */
14721 	for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
14722 		if (mp1->b_datap->db_ref > 1) {
14723 			must_copy = B_TRUE;
14724 			break;
14725 		}
14726 	}
14727 
14728 	if (must_copy) {
14729 		mp1 = copymsg(mp);
14730 		if (mp1 == NULL) {
14731 			for (mp1 = mp; mp1 != NULL;
14732 			    mp1 = mp1->b_cont) {
14733 				mp1->b_next = NULL;
14734 				mp1->b_prev = NULL;
14735 			}
14736 			freemsg(mp);
14737 			if (ill != NULL) {
14738 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14739 			} else {
14740 				BUMP_MIB(&ipst->ips_ip_mib,
14741 				    ipIfStatsInDiscards);
14742 			}
14743 			return (B_TRUE);
14744 		}
14745 		for (from_mp = mp, to_mp = mp1; from_mp != NULL;
14746 		    from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) {
14747 			/* Copy b_prev - used by ip_mroute_decap */
14748 			to_mp->b_prev = from_mp->b_prev;
14749 			from_mp->b_prev = NULL;
14750 		}
14751 		*first_mpp = first_mp = mp1;
14752 		freemsg(mp);
14753 		mp = mp1;
14754 		*mpp = mp1;
14755 	}
14756 
14757 	ipha = (ipha_t *)mp->b_rptr;
14758 
14759 	/*
14760 	 * previous code has a case for M_DATA.
14761 	 * We want to check how that happens.
14762 	 */
14763 	ASSERT(first_mp->b_datap->db_type != M_DATA);
14764 	switch (first_mp->b_datap->db_type) {
14765 	case M_PROTO:
14766 	case M_PCPROTO:
14767 		if (((dl_unitdata_ind_t *)rptr)->dl_primitive !=
14768 		    DL_UNITDATA_IND) {
14769 			/* Go handle anything other than data elsewhere. */
14770 			ip_rput_dlpi(q, mp);
14771 			return (B_TRUE);
14772 		}
14773 		*ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address;
14774 		/* Ditch the DLPI header. */
14775 		mp1 = mp->b_cont;
14776 		ASSERT(first_mp == mp);
14777 		*first_mpp = mp1;
14778 		freeb(mp);
14779 		*mpp = mp1;
14780 		return (B_FALSE);
14781 	case M_IOCACK:
14782 		ip1dbg(("got iocack "));
14783 		iocp = (struct iocblk *)mp->b_rptr;
14784 		switch (iocp->ioc_cmd) {
14785 		case DL_IOC_HDR_INFO:
14786 			ill = (ill_t *)q->q_ptr;
14787 			ill_fastpath_ack(ill, mp);
14788 			return (B_TRUE);
14789 		case SIOCSTUNPARAM:
14790 		case OSIOCSTUNPARAM:
14791 			/* Go through qwriter_ip */
14792 			break;
14793 		case SIOCGTUNPARAM:
14794 		case OSIOCGTUNPARAM:
14795 			ip_rput_other(NULL, q, mp, NULL);
14796 			return (B_TRUE);
14797 		default:
14798 			putnext(q, mp);
14799 			return (B_TRUE);
14800 		}
14801 		/* FALLTHRU */
14802 	case M_ERROR:
14803 	case M_HANGUP:
14804 		/*
14805 		 * Since this is on the ill stream we unconditionally
14806 		 * bump up the refcount
14807 		 */
14808 		ill_refhold(ill);
14809 		(void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP,
14810 		    B_FALSE);
14811 		return (B_TRUE);
14812 	case M_CTL:
14813 		if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) &&
14814 		    (((da_ipsec_t *)first_mp->b_rptr)->da_type ==
14815 			IPHADA_M_CTL)) {
14816 			/*
14817 			 * It's an IPsec accelerated packet.
14818 			 * Make sure that the ill from which we received the
14819 			 * packet has enabled IPsec hardware acceleration.
14820 			 */
14821 			if (!(ill->ill_capabilities &
14822 			    (ILL_CAPAB_AH|ILL_CAPAB_ESP))) {
14823 				/* IPsec kstats: bean counter */
14824 				freemsg(mp);
14825 				return (B_TRUE);
14826 			}
14827 
14828 			/*
14829 			 * Make mp point to the mblk following the M_CTL,
14830 			 * then process according to type of mp.
14831 			 * After this processing, first_mp will point to
14832 			 * the data-attributes and mp to the pkt following
14833 			 * the M_CTL.
14834 			 */
14835 			mp = first_mp->b_cont;
14836 			if (mp == NULL) {
14837 				freemsg(first_mp);
14838 				return (B_TRUE);
14839 			}
14840 			/*
14841 			 * A Hardware Accelerated packet can only be M_DATA
14842 			 * ESP or AH packet.
14843 			 */
14844 			if (mp->b_datap->db_type != M_DATA) {
14845 				/* non-M_DATA IPsec accelerated packet */
14846 				IPSECHW_DEBUG(IPSECHW_PKT,
14847 				    ("non-M_DATA IPsec accelerated pkt\n"));
14848 				freemsg(first_mp);
14849 				return (B_TRUE);
14850 			}
14851 			ipha = (ipha_t *)mp->b_rptr;
14852 			if (ipha->ipha_protocol != IPPROTO_AH &&
14853 			    ipha->ipha_protocol != IPPROTO_ESP) {
14854 				IPSECHW_DEBUG(IPSECHW_PKT,
14855 				    ("non-M_DATA IPsec accelerated pkt\n"));
14856 				freemsg(first_mp);
14857 				return (B_TRUE);
14858 			}
14859 			*mpp = mp;
14860 			return (B_FALSE);
14861 		}
14862 		putnext(q, mp);
14863 		return (B_TRUE);
14864 	case M_FLUSH:
14865 		if (*mp->b_rptr & FLUSHW) {
14866 			*mp->b_rptr &= ~FLUSHR;
14867 			qreply(q, mp);
14868 			return (B_TRUE);
14869 		}
14870 		freemsg(mp);
14871 		return (B_TRUE);
14872 	case M_IOCNAK:
14873 		ip1dbg(("got iocnak "));
14874 		iocp = (struct iocblk *)mp->b_rptr;
14875 		switch (iocp->ioc_cmd) {
14876 		case DL_IOC_HDR_INFO:
14877 		case SIOCSTUNPARAM:
14878 		case OSIOCSTUNPARAM:
14879 			/*
14880 			 * Since this is on the ill stream we unconditionally
14881 			 * bump up the refcount
14882 			 */
14883 			ill_refhold(ill);
14884 			(void) qwriter_ip(NULL, ill, q, mp, ip_rput_other,
14885 			    CUR_OP, B_FALSE);
14886 			return (B_TRUE);
14887 		case SIOCGTUNPARAM:
14888 		case OSIOCGTUNPARAM:
14889 			ip_rput_other(NULL, q, mp, NULL);
14890 			return (B_TRUE);
14891 		default:
14892 			break;
14893 		}
14894 		/* FALLTHRU */
14895 	default:
14896 		putnext(q, mp);
14897 		return (B_TRUE);
14898 	}
14899 }
14900 
14901 /* Read side put procedure.  Packets coming from the wire arrive here. */
14902 void
14903 ip_rput(queue_t *q, mblk_t *mp)
14904 {
14905 	ill_t	*ill;
14906 	ip_stack_t	*ipst;
14907 
14908 	TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q);
14909 
14910 	ill = (ill_t *)q->q_ptr;
14911 	ipst = ill->ill_ipst;
14912 
14913 	if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
14914 		union DL_primitives *dl;
14915 
14916 		/*
14917 		 * Things are opening or closing. Only accept DLPI control
14918 		 * messages. In the open case, the ill->ill_ipif has not yet
14919 		 * been created. In the close case, things hanging off the
14920 		 * ill could have been freed already. In either case it
14921 		 * may not be safe to proceed further.
14922 		 */
14923 
14924 		dl = (union DL_primitives *)mp->b_rptr;
14925 		if ((mp->b_datap->db_type != M_PCPROTO) ||
14926 		    (dl->dl_primitive == DL_UNITDATA_IND)) {
14927 			/*
14928 			 * Also SIOC[GS]TUN* ioctls can come here.
14929 			 */
14930 			inet_freemsg(mp);
14931 			TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
14932 			    "ip_input_end: q %p (%S)", q, "uninit");
14933 			return;
14934 		}
14935 	}
14936 
14937 	/*
14938 	 * if db_ref > 1 then copymsg and free original. Packet may be
14939 	 * changed and we do not want the other entity who has a reference to
14940 	 * this message to trip over the changes. This is a blind change because
14941 	 * trying to catch all places that might change the packet is too
14942 	 * difficult.
14943 	 *
14944 	 * This corresponds to the fast path case, where we have a chain of
14945 	 * M_DATA mblks.  We check the db_ref count of only the 1st data block
14946 	 * in the mblk chain. There doesn't seem to be a reason why a device
14947 	 * driver would send up data with varying db_ref counts in the mblk
14948 	 * chain. In any case the Fast path is a private interface, and our
14949 	 * drivers don't do such a thing. Given the above assumption, there is
14950 	 * no need to walk down the entire mblk chain (which could have a
14951 	 * potential performance problem)
14952 	 */
14953 	if (mp->b_datap->db_ref > 1) {
14954 		mblk_t  *mp1;
14955 		boolean_t adjusted = B_FALSE;
14956 		IP_STAT(ipst, ip_db_ref);
14957 
14958 		/*
14959 		 * The IP_RECVSLLA option depends on having the link layer
14960 		 * header. First check that:
14961 		 * a> the underlying device is of type ether, since this
14962 		 * option is currently supported only over ethernet.
14963 		 * b> there is enough room to copy over the link layer header.
14964 		 *
14965 		 * Once the checks are done, adjust rptr so that the link layer
14966 		 * header will be copied via copymsg. Note that, IFT_ETHER may
14967 		 * be returned by some non-ethernet drivers but in this case the
14968 		 * second check will fail.
14969 		 */
14970 		if (ill->ill_type == IFT_ETHER &&
14971 		    (mp->b_rptr - mp->b_datap->db_base) >=
14972 		    sizeof (struct ether_header)) {
14973 			mp->b_rptr -= sizeof (struct ether_header);
14974 			adjusted = B_TRUE;
14975 		}
14976 		mp1 = copymsg(mp);
14977 		if (mp1 == NULL) {
14978 			mp->b_next = NULL;
14979 			/* clear b_prev - used by ip_mroute_decap */
14980 			mp->b_prev = NULL;
14981 			freemsg(mp);
14982 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14983 			TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
14984 			    "ip_rput_end: q %p (%S)", q, "copymsg");
14985 			return;
14986 		}
14987 		if (adjusted) {
14988 			/*
14989 			 * Copy is done. Restore the pointer in the _new_ mblk
14990 			 */
14991 			mp1->b_rptr += sizeof (struct ether_header);
14992 		}
14993 		/* Copy b_prev - used by ip_mroute_decap */
14994 		mp1->b_prev = mp->b_prev;
14995 		mp->b_prev = NULL;
14996 		freemsg(mp);
14997 		mp = mp1;
14998 	}
14999 
15000 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
15001 	    "ip_rput_end: q %p (%S)", q, "end");
15002 
15003 	ip_input(ill, NULL, mp, NULL);
15004 }
15005 
15006 /*
15007  * Direct read side procedure capable of dealing with chains. GLDv3 based
15008  * drivers call this function directly with mblk chains while STREAMS
15009  * read side procedure ip_rput() calls this for single packet with ip_ring
15010  * set to NULL to process one packet at a time.
15011  *
15012  * The ill will always be valid if this function is called directly from
15013  * the driver.
15014  *
15015  * If ip_input() is called from GLDv3:
15016  *
15017  *   - This must be a non-VLAN IP stream.
15018  *   - 'mp' is either an untagged or a special priority-tagged packet.
15019  *   - Any VLAN tag that was in the MAC header has been stripped.
15020  *
15021  * If the IP header in packet is not 32-bit aligned, every message in the
15022  * chain will be aligned before further operations. This is required on SPARC
15023  * platform.
15024  */
15025 /* ARGSUSED */
15026 void
15027 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain,
15028     struct mac_header_info_s *mhip)
15029 {
15030 	ipaddr_t		dst = NULL;
15031 	ipaddr_t		prev_dst;
15032 	ire_t			*ire = NULL;
15033 	ipha_t			*ipha;
15034 	uint_t			pkt_len;
15035 	ssize_t			len;
15036 	uint_t			opt_len;
15037 	int			ll_multicast;
15038 	int			cgtp_flt_pkt;
15039 	queue_t			*q = ill->ill_rq;
15040 	squeue_t		*curr_sqp = NULL;
15041 	mblk_t 			*head = NULL;
15042 	mblk_t			*tail = NULL;
15043 	mblk_t			*first_mp;
15044 	mblk_t 			*mp;
15045 	mblk_t			*dmp;
15046 	int			cnt = 0;
15047 	ip_stack_t		*ipst = ill->ill_ipst;
15048 
15049 	ASSERT(mp_chain != NULL);
15050 	ASSERT(ill != NULL);
15051 
15052 	TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q);
15053 
15054 #define	rptr	((uchar_t *)ipha)
15055 
15056 	while (mp_chain != NULL) {
15057 		first_mp = mp = mp_chain;
15058 		mp_chain = mp_chain->b_next;
15059 		mp->b_next = NULL;
15060 		ll_multicast = 0;
15061 
15062 		/*
15063 		 * We do ire caching from one iteration to
15064 		 * another. In the event the packet chain contains
15065 		 * all packets from the same dst, this caching saves
15066 		 * an ire_cache_lookup for each of the succeeding
15067 		 * packets in a packet chain.
15068 		 */
15069 		prev_dst = dst;
15070 
15071 		/*
15072 		 * Check and align the IP header.
15073 		 */
15074 		if (DB_TYPE(mp) == M_DATA) {
15075 			dmp = mp;
15076 		} else if (DB_TYPE(mp) == M_PROTO &&
15077 		    *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) {
15078 			dmp = mp->b_cont;
15079 		} else {
15080 			dmp = NULL;
15081 		}
15082 		if (dmp != NULL) {
15083 			/*
15084 			 * IP header ptr not aligned?
15085 			 * OR IP header not complete in first mblk
15086 			 */
15087 			if (!OK_32PTR(dmp->b_rptr) ||
15088 			    MBLKL(dmp) < IP_SIMPLE_HDR_LENGTH) {
15089 				if (!ip_check_and_align_header(q, dmp, ipst))
15090 					continue;
15091 			}
15092 		}
15093 
15094 		/*
15095 		 * ip_input fast path
15096 		 */
15097 
15098 		/* mblk type is not M_DATA */
15099 		if (DB_TYPE(mp) != M_DATA) {
15100 			if (ip_rput_process_notdata(q, &first_mp, ill,
15101 			    &ll_multicast, &mp))
15102 				continue;
15103 		}
15104 
15105 		/* Make sure its an M_DATA and that its aligned */
15106 		ASSERT(DB_TYPE(mp) == M_DATA);
15107 		ASSERT(DB_REF(mp) == 1 && OK_32PTR(mp->b_rptr));
15108 
15109 		ipha = (ipha_t *)mp->b_rptr;
15110 		len = mp->b_wptr - rptr;
15111 		pkt_len = ntohs(ipha->ipha_length);
15112 
15113 		/*
15114 		 * We must count all incoming packets, even if they end
15115 		 * up being dropped later on.
15116 		 */
15117 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives);
15118 		UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len);
15119 
15120 		/* multiple mblk or too short */
15121 		len -= pkt_len;
15122 		if (len != 0) {
15123 			/*
15124 			 * Make sure we have data length consistent
15125 			 * with the IP header.
15126 			 */
15127 			if (mp->b_cont == NULL) {
15128 				if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) {
15129 					BUMP_MIB(ill->ill_ip_mib,
15130 					    ipIfStatsInHdrErrors);
15131 					ip2dbg(("ip_input: drop pkt\n"));
15132 					freemsg(mp);
15133 					continue;
15134 				}
15135 				mp->b_wptr = rptr + pkt_len;
15136 			} else if ((len += msgdsize(mp->b_cont)) != 0) {
15137 				if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) {
15138 					BUMP_MIB(ill->ill_ip_mib,
15139 					    ipIfStatsInHdrErrors);
15140 					ip2dbg(("ip_input: drop pkt\n"));
15141 					freemsg(mp);
15142 					continue;
15143 				}
15144 				(void) adjmsg(mp, -len);
15145 				IP_STAT(ipst, ip_multimblk3);
15146 			}
15147 		}
15148 
15149 		/* Obtain the dst of the current packet */
15150 		dst = ipha->ipha_dst;
15151 
15152 		if (IP_LOOPBACK_ADDR(dst) ||
15153 		    IP_LOOPBACK_ADDR(ipha->ipha_src)) {
15154 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors);
15155 			cmn_err(CE_CONT, "dst %X src %X\n",
15156 			    dst, ipha->ipha_src);
15157 			freemsg(mp);
15158 			continue;
15159 		}
15160 
15161 		/*
15162 		 * The event for packets being received from a 'physical'
15163 		 * interface is placed after validation of the source and/or
15164 		 * destination address as being local so that packets can be
15165 		 * redirected to loopback addresses using ipnat.
15166 		 */
15167 		DTRACE_PROBE4(ip4__physical__in__start,
15168 		    ill_t *, ill, ill_t *, NULL,
15169 		    ipha_t *, ipha, mblk_t *, first_mp);
15170 
15171 		FW_HOOKS(ipst->ips_ip4_physical_in_event,
15172 		    ipst->ips_ipv4firewall_physical_in,
15173 		    ill, NULL, ipha, first_mp, mp, ipst);
15174 
15175 		DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp);
15176 
15177 		if (first_mp == NULL) {
15178 			continue;
15179 		}
15180 		dst = ipha->ipha_dst;
15181 
15182 		/*
15183 		 * Attach any necessary label information to
15184 		 * this packet
15185 		 */
15186 		if (is_system_labeled() &&
15187 		    !tsol_get_pkt_label(mp, IPV4_VERSION)) {
15188 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
15189 			freemsg(mp);
15190 			continue;
15191 		}
15192 
15193 		/*
15194 		 * Reuse the cached ire only if the ipha_dst of the previous
15195 		 * packet is the same as the current packet AND it is not
15196 		 * INADDR_ANY.
15197 		 */
15198 		if (!(dst == prev_dst && dst != INADDR_ANY) &&
15199 		    (ire != NULL)) {
15200 			ire_refrele(ire);
15201 			ire = NULL;
15202 		}
15203 		opt_len = ipha->ipha_version_and_hdr_length -
15204 		    IP_SIMPLE_HDR_VERSION;
15205 
15206 		/*
15207 		 * Check to see if we can take the fastpath.
15208 		 * That is possible if the following conditions are met
15209 		 *	o Tsol disabled
15210 		 *	o CGTP disabled
15211 		 *	o ipp_action_count is 0
15212 		 *	o Mobile IP not running
15213 		 *	o no options in the packet
15214 		 *	o not a RSVP packet
15215 		 * 	o not a multicast packet
15216 		 */
15217 		if (!is_system_labeled() &&
15218 		    !ip_cgtp_filter && ipp_action_count == 0 &&
15219 		    ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 &&
15220 		    opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP &&
15221 		    !ll_multicast && !CLASSD(dst)) {
15222 			if (ire == NULL)
15223 				ire = ire_cache_lookup(dst, ALL_ZONES, NULL,
15224 				    ipst);
15225 
15226 			/* incoming packet is for forwarding */
15227 			if (ire == NULL || (ire->ire_type & IRE_CACHE)) {
15228 				ire = ip_fast_forward(ire, dst, ill, mp);
15229 				continue;
15230 			}
15231 			/* incoming packet is for local consumption */
15232 			if (ire->ire_type & IRE_LOCAL)
15233 				goto local;
15234 		}
15235 
15236 		/*
15237 		 * Disable ire caching for anything more complex
15238 		 * than the simple fast path case we checked for above.
15239 		 */
15240 		if (ire != NULL) {
15241 			ire_refrele(ire);
15242 			ire = NULL;
15243 		}
15244 
15245 		/* Full-blown slow path */
15246 		if (opt_len != 0) {
15247 			if (len != 0)
15248 				IP_STAT(ipst, ip_multimblk4);
15249 			else
15250 				IP_STAT(ipst, ip_ipoptions);
15251 			if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha,
15252 			    &dst, ipst))
15253 				continue;
15254 		}
15255 
15256 		/*
15257 		 * Invoke the CGTP (multirouting) filtering module to process
15258 		 * the incoming packet. Packets identified as duplicates
15259 		 * must be discarded. Filtering is active only if the
15260 		 * the ip_cgtp_filter ndd variable is non-zero.
15261 		 *
15262 		 * Only applies to the shared stack since the filter_ops
15263 		 * do not carry an ip_stack_t or zoneid.
15264 		 */
15265 		cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP;
15266 		if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL) &&
15267 		    ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) {
15268 			cgtp_flt_pkt =
15269 			    ip_cgtp_filter_ops->cfo_filter(q, mp);
15270 			if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) {
15271 				freemsg(first_mp);
15272 				continue;
15273 			}
15274 		}
15275 
15276 		/*
15277 		 * If rsvpd is running, let RSVP daemon handle its processing
15278 		 * and forwarding of RSVP multicast/unicast packets.
15279 		 * If rsvpd is not running but mrouted is running, RSVP
15280 		 * multicast packets are forwarded as multicast traffic
15281 		 * and RSVP unicast packets are forwarded by unicast router.
15282 		 * If neither rsvpd nor mrouted is running, RSVP multicast
15283 		 * packets are not forwarded, but the unicast packets are
15284 		 * forwarded like unicast traffic.
15285 		 */
15286 		if (ipha->ipha_protocol == IPPROTO_RSVP &&
15287 		    ipst->ips_ipcl_proto_fanout[IPPROTO_RSVP].connf_head !=
15288 		    NULL) {
15289 			/* RSVP packet and rsvpd running. Treat as ours */
15290 			ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst)));
15291 			/*
15292 			 * This assumes that we deliver to all streams for
15293 			 * multicast and broadcast packets.
15294 			 * We have to force ll_multicast to 1 to handle the
15295 			 * M_DATA messages passed in from ip_mroute_decap.
15296 			 */
15297 			dst = INADDR_BROADCAST;
15298 			ll_multicast = 1;
15299 		} else if (CLASSD(dst)) {
15300 			/* packet is multicast */
15301 			mp->b_next = NULL;
15302 			if (ip_rput_process_multicast(q, mp, ill, ipha,
15303 			    &ll_multicast, &dst))
15304 				continue;
15305 		}
15306 
15307 
15308 		/*
15309 		 * Check if the packet is coming from the Mobile IP
15310 		 * forward tunnel interface
15311 		 */
15312 		if (ill->ill_srcif_refcnt > 0) {
15313 			ire = ire_srcif_table_lookup(dst, IRE_INTERFACE,
15314 			    NULL, ill, MATCH_IRE_TYPE);
15315 			if (ire != NULL && ire->ire_nce->nce_res_mp == NULL &&
15316 			    ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) {
15317 
15318 				/* We need to resolve the link layer info */
15319 				ire_refrele(ire);
15320 				ire = NULL;
15321 				(void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp,
15322 				    ll_multicast, dst);
15323 				continue;
15324 			}
15325 		}
15326 
15327 		if (ire == NULL) {
15328 			ire = ire_cache_lookup(dst, ALL_ZONES,
15329 			    MBLK_GETLABEL(mp), ipst);
15330 		}
15331 
15332 		/*
15333 		 * If mipagent is running and reverse tunnel is created as per
15334 		 * mobile node request, then any packet coming through the
15335 		 * incoming interface from the mobile-node, should be reverse
15336 		 * tunneled to it's home agent except those that are destined
15337 		 * to foreign agent only.
15338 		 * This needs source address based ire lookup. The routing
15339 		 * entries for source address based lookup are only created by
15340 		 * mipagent program only when a reverse tunnel is created.
15341 		 * Reference : RFC2002, RFC2344
15342 		 */
15343 		if (ill->ill_mrtun_refcnt > 0) {
15344 			ipaddr_t	srcaddr;
15345 			ire_t		*tmp_ire;
15346 
15347 			tmp_ire = ire;	/* Save, we might need it later */
15348 			if (ire == NULL || (ire->ire_type != IRE_LOCAL &&
15349 			    ire->ire_type != IRE_BROADCAST)) {
15350 				srcaddr = ipha->ipha_src;
15351 				ire = ire_mrtun_lookup(srcaddr, ill);
15352 				if (ire != NULL) {
15353 					/*
15354 					 * Should not be getting iphada packet
15355 					 * here. we should only get those for
15356 					 * IRE_LOCAL traffic, excluded above.
15357 					 * Fail-safe (drop packet) in the event
15358 					 * hardware is misbehaving.
15359 					 */
15360 					if (first_mp != mp) {
15361 						/* IPsec KSTATS: beancount me */
15362 						freemsg(first_mp);
15363 					} else {
15364 						/*
15365 						 * This packet must be forwarded
15366 						 * to Reverse Tunnel
15367 						 */
15368 						ip_mrtun_forward(ire, ill, mp);
15369 					}
15370 					ire_refrele(ire);
15371 					ire = NULL;
15372 					if (tmp_ire != NULL) {
15373 						ire_refrele(tmp_ire);
15374 						tmp_ire = NULL;
15375 					}
15376 					TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
15377 					    "ip_input_end: q %p (%S)",
15378 					    q, "uninit");
15379 					continue;
15380 				}
15381 			}
15382 			/*
15383 			 * If this packet is from a non-mobilenode  or a
15384 			 * mobile-node which does not request reverse
15385 			 * tunnel service
15386 			 */
15387 			ire = tmp_ire;
15388 		}
15389 
15390 
15391 		/*
15392 		 * If we reach here that means the incoming packet satisfies
15393 		 * one of the following conditions:
15394 		 *   - packet is from a mobile node which does not request
15395 		 *	reverse tunnel
15396 		 *   - packet is from a non-mobile node, which is the most
15397 		 *	common case
15398 		 *   - packet is from a reverse tunnel enabled mobile node
15399 		 *	and destined to foreign agent only
15400 		 */
15401 
15402 		if (ire == NULL) {
15403 			/*
15404 			 * No IRE for this destination, so it can't be for us.
15405 			 * Unless we are forwarding, drop the packet.
15406 			 * We have to let source routed packets through
15407 			 * since we don't yet know if they are 'ping -l'
15408 			 * packets i.e. if they will go out over the
15409 			 * same interface as they came in on.
15410 			 */
15411 			ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst);
15412 			if (ire == NULL)
15413 				continue;
15414 		}
15415 
15416 		/*
15417 		 * Broadcast IRE may indicate either broadcast or
15418 		 * multicast packet
15419 		 */
15420 		if (ire->ire_type == IRE_BROADCAST) {
15421 			/*
15422 			 * Skip broadcast checks if packet is UDP multicast;
15423 			 * we'd rather not enter ip_rput_process_broadcast()
15424 			 * unless the packet is broadcast for real, since
15425 			 * that routine is a no-op for multicast.
15426 			 */
15427 			if (ipha->ipha_protocol != IPPROTO_UDP ||
15428 			    !CLASSD(ipha->ipha_dst)) {
15429 				ire = ip_rput_process_broadcast(&q, mp,
15430 				    ire, ipha, ill, dst, cgtp_flt_pkt,
15431 				    ll_multicast);
15432 				if (ire == NULL)
15433 					continue;
15434 			}
15435 		} else if (ire->ire_stq != NULL) {
15436 			/* fowarding? */
15437 			ip_rput_process_forward(q, mp, ire, ipha, ill,
15438 			    ll_multicast);
15439 			/* ip_rput_process_forward consumed the packet */
15440 			continue;
15441 		}
15442 
15443 local:
15444 		/* packet not for us */
15445 		if (ire->ire_rfq != q) {
15446 			if (ip_rput_notforus(&q, mp, ire, ill))
15447 				continue;
15448 		}
15449 
15450 		switch (ipha->ipha_protocol) {
15451 		case IPPROTO_TCP:
15452 			ASSERT(first_mp == mp);
15453 			if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire,
15454 				mp, 0, q, ip_ring)) != NULL) {
15455 				if (curr_sqp == NULL) {
15456 					curr_sqp = GET_SQUEUE(mp);
15457 					ASSERT(cnt == 0);
15458 					cnt++;
15459 					head = tail = mp;
15460 				} else if (curr_sqp == GET_SQUEUE(mp)) {
15461 					ASSERT(tail != NULL);
15462 					cnt++;
15463 					tail->b_next = mp;
15464 					tail = mp;
15465 				} else {
15466 					/*
15467 					 * A different squeue. Send the
15468 					 * chain for the previous squeue on
15469 					 * its way. This shouldn't happen
15470 					 * often unless interrupt binding
15471 					 * changes.
15472 					 */
15473 					IP_STAT(ipst, ip_input_multi_squeue);
15474 					squeue_enter_chain(curr_sqp, head,
15475 					    tail, cnt, SQTAG_IP_INPUT);
15476 					curr_sqp = GET_SQUEUE(mp);
15477 					head = mp;
15478 					tail = mp;
15479 					cnt = 1;
15480 				}
15481 			}
15482 			continue;
15483 		case IPPROTO_UDP:
15484 			ASSERT(first_mp == mp);
15485 			ip_udp_input(q, mp, ipha, ire, ill);
15486 			continue;
15487 		case IPPROTO_SCTP:
15488 			ASSERT(first_mp == mp);
15489 			ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0,
15490 			    q, dst);
15491 			/* ire has been released by ip_sctp_input */
15492 			ire = NULL;
15493 			continue;
15494 		default:
15495 			ip_proto_input(q, first_mp, ipha, ire, ill);
15496 			continue;
15497 		}
15498 	}
15499 
15500 	if (ire != NULL)
15501 		ire_refrele(ire);
15502 
15503 	if (head != NULL)
15504 		squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT);
15505 
15506 	/*
15507 	 * This code is there just to make netperf/ttcp look good.
15508 	 *
15509 	 * Its possible that after being in polling mode (and having cleared
15510 	 * the backlog), squeues have turned the interrupt frequency higher
15511 	 * to improve latency at the expense of more CPU utilization (less
15512 	 * packets per interrupts or more number of interrupts). Workloads
15513 	 * like ttcp/netperf do manage to tickle polling once in a while
15514 	 * but for the remaining time, stay in higher interrupt mode since
15515 	 * their packet arrival rate is pretty uniform and this shows up
15516 	 * as higher CPU utilization. Since people care about CPU utilization
15517 	 * while running netperf/ttcp, turn the interrupt frequency back to
15518 	 * normal/default if polling has not been used in ip_poll_normal_ticks.
15519 	 */
15520 	if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) {
15521 		if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) {
15522 			ip_ring->rr_poll_state &= ~ILL_POLLING;
15523 			ip_ring->rr_blank(ip_ring->rr_handle,
15524 			    ip_ring->rr_normal_blank_time,
15525 			    ip_ring->rr_normal_pkt_cnt);
15526 		}
15527 		}
15528 
15529 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_END,
15530 	    "ip_input_end: q %p (%S)", q, "end");
15531 #undef  rptr
15532 }
15533 
15534 static void
15535 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
15536     t_uscalar_t err)
15537 {
15538 	if (dl_err == DL_SYSERR) {
15539 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
15540 		    "%s: %s failed: DL_SYSERR (errno %u)\n",
15541 		    ill->ill_name, dlpi_prim_str(prim), err);
15542 		return;
15543 	}
15544 
15545 	(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
15546 	    "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim),
15547 	    dlpi_err_str(dl_err));
15548 }
15549 
15550 /*
15551  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
15552  * than DL_UNITDATA_IND messages. If we need to process this message
15553  * exclusively, we call qwriter_ip, in which case we also need to call
15554  * ill_refhold before that, since qwriter_ip does an ill_refrele.
15555  */
15556 void
15557 ip_rput_dlpi(queue_t *q, mblk_t *mp)
15558 {
15559 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
15560 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
15561 	ill_t		*ill;
15562 
15563 	ip1dbg(("ip_rput_dlpi"));
15564 	ill = (ill_t *)q->q_ptr;
15565 	switch (dloa->dl_primitive) {
15566 	case DL_ERROR_ACK:
15567 		ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): "
15568 		    "%s (0x%x), unix %u\n", ill->ill_name,
15569 		    dlpi_prim_str(dlea->dl_error_primitive),
15570 		    dlea->dl_error_primitive,
15571 		    dlpi_err_str(dlea->dl_errno),
15572 		    dlea->dl_errno,
15573 		    dlea->dl_unix_errno));
15574 		switch (dlea->dl_error_primitive) {
15575 		case DL_UNBIND_REQ:
15576 			mutex_enter(&ill->ill_lock);
15577 			ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
15578 			cv_signal(&ill->ill_cv);
15579 			mutex_exit(&ill->ill_lock);
15580 			/* FALLTHRU */
15581 		case DL_NOTIFY_REQ:
15582 		case DL_ATTACH_REQ:
15583 		case DL_DETACH_REQ:
15584 		case DL_INFO_REQ:
15585 		case DL_BIND_REQ:
15586 		case DL_ENABMULTI_REQ:
15587 		case DL_PHYS_ADDR_REQ:
15588 		case DL_CAPABILITY_REQ:
15589 		case DL_CONTROL_REQ:
15590 			/*
15591 			 * Refhold the ill to match qwriter_ip which does a
15592 			 * refrele. Since this is on the ill stream we
15593 			 * unconditionally bump up the refcount without
15594 			 * checking for ILL_CAN_LOOKUP
15595 			 */
15596 			ill_refhold(ill);
15597 			(void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
15598 			    CUR_OP, B_FALSE);
15599 			return;
15600 		case DL_DISABMULTI_REQ:
15601 			freemsg(mp);	/* Don't want to pass this up */
15602 			return;
15603 		default:
15604 			break;
15605 		}
15606 		ip_dlpi_error(ill, dlea->dl_error_primitive,
15607 		    dlea->dl_errno, dlea->dl_unix_errno);
15608 		freemsg(mp);
15609 		return;
15610 	case DL_INFO_ACK:
15611 	case DL_BIND_ACK:
15612 	case DL_PHYS_ADDR_ACK:
15613 	case DL_NOTIFY_ACK:
15614 	case DL_CAPABILITY_ACK:
15615 	case DL_CONTROL_ACK:
15616 		/*
15617 		 * Refhold the ill to match qwriter_ip which does a refrele
15618 		 * Since this is on the ill stream we unconditionally
15619 		 * bump up the refcount without doing ILL_CAN_LOOKUP.
15620 		 */
15621 		ill_refhold(ill);
15622 		(void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
15623 		    CUR_OP, B_FALSE);
15624 		return;
15625 	case DL_NOTIFY_IND:
15626 		ill_refhold(ill);
15627 		/*
15628 		 * The DL_NOTIFY_IND is an asynchronous message that has no
15629 		 * relation to the current ioctl in progress (if any). Hence we
15630 		 * pass in NEW_OP in this case.
15631 		 */
15632 		(void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
15633 		    NEW_OP, B_FALSE);
15634 		return;
15635 	case DL_OK_ACK:
15636 		ip1dbg(("ip_rput: DL_OK_ACK for %s\n",
15637 		    dlpi_prim_str((int)dloa->dl_correct_primitive)));
15638 		switch (dloa->dl_correct_primitive) {
15639 		case DL_UNBIND_REQ:
15640 			mutex_enter(&ill->ill_lock);
15641 			ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
15642 			cv_signal(&ill->ill_cv);
15643 			mutex_exit(&ill->ill_lock);
15644 			/* FALLTHRU */
15645 		case DL_ATTACH_REQ:
15646 		case DL_DETACH_REQ:
15647 			/*
15648 			 * Refhold the ill to match qwriter_ip which does a
15649 			 * refrele. Since this is on the ill stream we
15650 			 * unconditionally bump up the refcount
15651 			 */
15652 			ill_refhold(ill);
15653 			qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer,
15654 			    CUR_OP, B_FALSE);
15655 			return;
15656 		case DL_ENABMULTI_REQ:
15657 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
15658 				ill->ill_dlpi_multicast_state = IDS_OK;
15659 			break;
15660 
15661 		}
15662 		break;
15663 	default:
15664 		break;
15665 	}
15666 	freemsg(mp);
15667 }
15668 
15669 /*
15670  * Handling of DLPI messages that require exclusive access to the ipsq.
15671  *
15672  * Need to do ill_pending_mp_release on ioctl completion, which could
15673  * happen here. (along with mi_copy_done)
15674  */
15675 /* ARGSUSED */
15676 static void
15677 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
15678 {
15679 	dl_ok_ack_t	*dloa = (dl_ok_ack_t *)mp->b_rptr;
15680 	dl_error_ack_t	*dlea = (dl_error_ack_t *)dloa;
15681 	int		err = 0;
15682 	ill_t		*ill;
15683 	ipif_t		*ipif = NULL;
15684 	mblk_t		*mp1 = NULL;
15685 	conn_t		*connp = NULL;
15686 	t_uscalar_t	paddrreq;
15687 	mblk_t		*mp_hw;
15688 	boolean_t	success;
15689 	boolean_t	ioctl_aborted = B_FALSE;
15690 	boolean_t	log = B_TRUE;
15691 	hook_nic_event_t	*info;
15692 	ip_stack_t		*ipst;
15693 
15694 	ip1dbg(("ip_rput_dlpi_writer .."));
15695 	ill = (ill_t *)q->q_ptr;
15696 	ASSERT(ipsq == ill->ill_phyint->phyint_ipsq);
15697 
15698 	ASSERT(IAM_WRITER_ILL(ill));
15699 
15700 	ipst = ill->ill_ipst;
15701 
15702 	/*
15703 	 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e.
15704 	 * both are null or non-null. However we can assert that only
15705 	 * after grabbing the ipsq_lock. So we don't make any assertion
15706 	 * here and in other places in the code.
15707 	 */
15708 	ipif = ipsq->ipsq_pending_ipif;
15709 	/*
15710 	 * The current ioctl could have been aborted by the user and a new
15711 	 * ioctl to bring up another ill could have started. We could still
15712 	 * get a response from the driver later.
15713 	 */
15714 	if (ipif != NULL && ipif->ipif_ill != ill)
15715 		ioctl_aborted = B_TRUE;
15716 
15717 	switch (dloa->dl_primitive) {
15718 	case DL_ERROR_ACK:
15719 		switch (dlea->dl_error_primitive) {
15720 		case DL_UNBIND_REQ:
15721 		case DL_ATTACH_REQ:
15722 		case DL_DETACH_REQ:
15723 		case DL_INFO_REQ:
15724 			ill_dlpi_done(ill, dlea->dl_error_primitive);
15725 			break;
15726 		case DL_NOTIFY_REQ:
15727 			ill_dlpi_done(ill, DL_NOTIFY_REQ);
15728 			log = B_FALSE;
15729 			break;
15730 		case DL_PHYS_ADDR_REQ:
15731 			/*
15732 			 * For IPv6 only, there are two additional
15733 			 * phys_addr_req's sent to the driver to get the
15734 			 * IPv6 token and lla. This allows IP to acquire
15735 			 * the hardware address format for a given interface
15736 			 * without having built in knowledge of the hardware
15737 			 * address. ill_phys_addr_pend keeps track of the last
15738 			 * DL_PAR sent so we know which response we are
15739 			 * dealing with. ill_dlpi_done will update
15740 			 * ill_phys_addr_pend when it sends the next req.
15741 			 * We don't complete the IOCTL until all three DL_PARs
15742 			 * have been attempted, so set *_len to 0 and break.
15743 			 */
15744 			paddrreq = ill->ill_phys_addr_pend;
15745 			ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
15746 			if (paddrreq == DL_IPV6_TOKEN) {
15747 				ill->ill_token_length = 0;
15748 				log = B_FALSE;
15749 				break;
15750 			} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
15751 				ill->ill_nd_lla_len = 0;
15752 				log = B_FALSE;
15753 				break;
15754 			}
15755 			/*
15756 			 * Something went wrong with the DL_PHYS_ADDR_REQ.
15757 			 * We presumably have an IOCTL hanging out waiting
15758 			 * for completion. Find it and complete the IOCTL
15759 			 * with the error noted.
15760 			 * However, ill_dl_phys was called on an ill queue
15761 			 * (from SIOCSLIFNAME), thus conn_pending_ill is not
15762 			 * set. But the ioctl is known to be pending on ill_wq.
15763 			 */
15764 			if (!ill->ill_ifname_pending)
15765 				break;
15766 			ill->ill_ifname_pending = 0;
15767 			if (!ioctl_aborted)
15768 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
15769 			if (mp1 != NULL) {
15770 				/*
15771 				 * This operation (SIOCSLIFNAME) must have
15772 				 * happened on the ill. Assert there is no conn
15773 				 */
15774 				ASSERT(connp == NULL);
15775 				q = ill->ill_wq;
15776 			}
15777 			break;
15778 		case DL_BIND_REQ:
15779 			ill_dlpi_done(ill, DL_BIND_REQ);
15780 			if (ill->ill_ifname_pending)
15781 				break;
15782 			/*
15783 			 * Something went wrong with the bind.  We presumably
15784 			 * have an IOCTL hanging out waiting for completion.
15785 			 * Find it, take down the interface that was coming
15786 			 * up, and complete the IOCTL with the error noted.
15787 			 */
15788 			if (!ioctl_aborted)
15789 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
15790 			if (mp1 != NULL) {
15791 				/*
15792 				 * This operation (SIOCSLIFFLAGS) must have
15793 				 * happened from a conn.
15794 				 */
15795 				ASSERT(connp != NULL);
15796 				q = CONNP_TO_WQ(connp);
15797 				if (ill->ill_move_in_progress) {
15798 					ILL_CLEAR_MOVE(ill);
15799 				}
15800 				(void) ipif_down(ipif, NULL, NULL);
15801 				/* error is set below the switch */
15802 			}
15803 			break;
15804 		case DL_ENABMULTI_REQ:
15805 			ip1dbg(("DL_ERROR_ACK to enabmulti\n"));
15806 
15807 			if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
15808 				ill->ill_dlpi_multicast_state = IDS_FAILED;
15809 			if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
15810 				ipif_t *ipif;
15811 
15812 				log = B_FALSE;
15813 				printf("ip: joining multicasts failed (%d)"
15814 				    " on %s - will use link layer "
15815 				    "broadcasts for multicast\n",
15816 				    dlea->dl_errno, ill->ill_name);
15817 
15818 				/*
15819 				 * Set up the multicast mapping alone.
15820 				 * writer, so ok to access ill->ill_ipif
15821 				 * without any lock.
15822 				 */
15823 				ipif = ill->ill_ipif;
15824 				mutex_enter(&ill->ill_phyint->phyint_lock);
15825 				ill->ill_phyint->phyint_flags |=
15826 				    PHYI_MULTI_BCAST;
15827 				mutex_exit(&ill->ill_phyint->phyint_lock);
15828 
15829 				if (!ill->ill_isv6) {
15830 					(void) ipif_arp_setup_multicast(ipif,
15831 					    NULL);
15832 				} else {
15833 					(void) ipif_ndp_setup_multicast(ipif,
15834 					    NULL);
15835 				}
15836 			}
15837 			freemsg(mp);	/* Don't want to pass this up */
15838 			return;
15839 		case DL_CAPABILITY_REQ:
15840 		case DL_CONTROL_REQ:
15841 			ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
15842 			    "DL_CAPABILITY/CONTROL REQ\n"));
15843 			ill_dlpi_done(ill, dlea->dl_error_primitive);
15844 			ill->ill_dlpi_capab_state = IDS_FAILED;
15845 			freemsg(mp);
15846 			return;
15847 		}
15848 		/*
15849 		 * Note the error for IOCTL completion (mp1 is set when
15850 		 * ready to complete ioctl). If ill_ifname_pending_err is
15851 		 * set, an error occured during plumbing (ill_ifname_pending),
15852 		 * so we want to report that error.
15853 		 *
15854 		 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
15855 		 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
15856 		 * expected to get errack'd if the driver doesn't support
15857 		 * these flags (e.g. ethernet). log will be set to B_FALSE
15858 		 * if these error conditions are encountered.
15859 		 */
15860 		if (mp1 != NULL) {
15861 			if (ill->ill_ifname_pending_err != 0)  {
15862 				err = ill->ill_ifname_pending_err;
15863 				ill->ill_ifname_pending_err = 0;
15864 			} else {
15865 				err = dlea->dl_unix_errno ?
15866 				    dlea->dl_unix_errno : ENXIO;
15867 			}
15868 		/*
15869 		 * If we're plumbing an interface and an error hasn't already
15870 		 * been saved, set ill_ifname_pending_err to the error passed
15871 		 * up. Ignore the error if log is B_FALSE (see comment above).
15872 		 */
15873 		} else if (log && ill->ill_ifname_pending &&
15874 		    ill->ill_ifname_pending_err == 0) {
15875 			ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
15876 			dlea->dl_unix_errno : ENXIO;
15877 		}
15878 
15879 		if (log)
15880 			ip_dlpi_error(ill, dlea->dl_error_primitive,
15881 			    dlea->dl_errno, dlea->dl_unix_errno);
15882 		break;
15883 	case DL_CAPABILITY_ACK: {
15884 		boolean_t reneg_flag = B_FALSE;
15885 		/* Call a routine to handle this one. */
15886 		ill_dlpi_done(ill, DL_CAPABILITY_REQ);
15887 		/*
15888 		 * Check if the ACK is due to renegotiation case since we
15889 		 * will need to send a new CAPABILITY_REQ later.
15890 		 */
15891 		if (ill->ill_dlpi_capab_state == IDS_RENEG) {
15892 			/* This is the ack for a renogiation case */
15893 			reneg_flag = B_TRUE;
15894 			ill->ill_dlpi_capab_state = IDS_UNKNOWN;
15895 		}
15896 		ill_capability_ack(ill, mp);
15897 		if (reneg_flag)
15898 			ill_capability_probe(ill);
15899 		break;
15900 	}
15901 	case DL_CONTROL_ACK:
15902 		/* We treat all of these as "fire and forget" */
15903 		ill_dlpi_done(ill, DL_CONTROL_REQ);
15904 		break;
15905 	case DL_INFO_ACK:
15906 		/* Call a routine to handle this one. */
15907 		ill_dlpi_done(ill, DL_INFO_REQ);
15908 		ip_ll_subnet_defaults(ill, mp);
15909 		ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
15910 		return;
15911 	case DL_BIND_ACK:
15912 		/*
15913 		 * We should have an IOCTL waiting on this unless
15914 		 * sent by ill_dl_phys, in which case just return
15915 		 */
15916 		ill_dlpi_done(ill, DL_BIND_REQ);
15917 		if (ill->ill_ifname_pending)
15918 			break;
15919 
15920 		if (!ioctl_aborted)
15921 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
15922 		if (mp1 == NULL)
15923 			break;
15924 		/*
15925 		 * Because mp1 was added by ill_dl_up(), and it always
15926 		 * passes a valid connp, connp must be valid here.
15927 		 */
15928 		ASSERT(connp != NULL);
15929 		q = CONNP_TO_WQ(connp);
15930 
15931 		/*
15932 		 * We are exclusive. So nothing can change even after
15933 		 * we get the pending mp. If need be we can put it back
15934 		 * and restart, as in calling ipif_arp_up()  below.
15935 		 */
15936 		ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
15937 
15938 		mutex_enter(&ill->ill_lock);
15939 
15940 		ill->ill_dl_up = 1;
15941 
15942 		if ((info = ill->ill_nic_event_info) != NULL) {
15943 			ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d "
15944 			    "attached for %s\n", info->hne_event,
15945 			    ill->ill_name));
15946 			if (info->hne_data != NULL)
15947 				kmem_free(info->hne_data, info->hne_datalen);
15948 			kmem_free(info, sizeof (hook_nic_event_t));
15949 		}
15950 
15951 		info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
15952 		if (info != NULL) {
15953 			info->hne_nic = ill->ill_phyint->phyint_ifindex;
15954 			info->hne_lif = 0;
15955 			info->hne_event = NE_UP;
15956 			info->hne_data = NULL;
15957 			info->hne_datalen = 0;
15958 			info->hne_family = ill->ill_isv6 ?
15959 			    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
15960 		} else
15961 			ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic "
15962 			    "event information for %s (ENOMEM)\n",
15963 			    ill->ill_name));
15964 
15965 		ill->ill_nic_event_info = info;
15966 
15967 		mutex_exit(&ill->ill_lock);
15968 
15969 		/*
15970 		 * Now bring up the resolver; when that is complete, we'll
15971 		 * create IREs.  Note that we intentionally mirror what
15972 		 * ipif_up() would have done, because we got here by way of
15973 		 * ill_dl_up(), which stopped ipif_up()'s processing.
15974 		 */
15975 		if (ill->ill_isv6) {
15976 			/*
15977 			 * v6 interfaces.
15978 			 * Unlike ARP which has to do another bind
15979 			 * and attach, once we get here we are
15980 			 * done with NDP. Except in the case of
15981 			 * ILLF_XRESOLV, in which case we send an
15982 			 * AR_INTERFACE_UP to the external resolver.
15983 			 * If all goes well, the ioctl will complete
15984 			 * in ip_rput(). If there's an error, we
15985 			 * complete it here.
15986 			 */
15987 			err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr);
15988 			if (err == 0) {
15989 				if (ill->ill_flags & ILLF_XRESOLV) {
15990 					mutex_enter(&connp->conn_lock);
15991 					mutex_enter(&ill->ill_lock);
15992 					success = ipsq_pending_mp_add(
15993 					    connp, ipif, q, mp1, 0);
15994 					mutex_exit(&ill->ill_lock);
15995 					mutex_exit(&connp->conn_lock);
15996 					if (success) {
15997 						err = ipif_resolver_up(ipif,
15998 						    Res_act_initial);
15999 						if (err == EINPROGRESS) {
16000 							freemsg(mp);
16001 							return;
16002 						}
16003 						ASSERT(err != 0);
16004 						mp1 = ipsq_pending_mp_get(ipsq,
16005 						    &connp);
16006 						ASSERT(mp1 != NULL);
16007 					} else {
16008 						/* conn has started closing */
16009 						err = EINTR;
16010 					}
16011 				} else { /* Non XRESOLV interface */
16012 					(void) ipif_resolver_up(ipif,
16013 					    Res_act_initial);
16014 					err = ipif_up_done_v6(ipif);
16015 				}
16016 			}
16017 		} else if (ill->ill_net_type == IRE_IF_RESOLVER) {
16018 			/*
16019 			 * ARP and other v4 external resolvers.
16020 			 * Leave the pending mblk intact so that
16021 			 * the ioctl completes in ip_rput().
16022 			 */
16023 			mutex_enter(&connp->conn_lock);
16024 			mutex_enter(&ill->ill_lock);
16025 			success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
16026 			mutex_exit(&ill->ill_lock);
16027 			mutex_exit(&connp->conn_lock);
16028 			if (success) {
16029 				err = ipif_resolver_up(ipif, Res_act_initial);
16030 				if (err == EINPROGRESS) {
16031 					freemsg(mp);
16032 					return;
16033 				}
16034 				ASSERT(err != 0);
16035 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
16036 			} else {
16037 				/* The conn has started closing */
16038 				err = EINTR;
16039 			}
16040 		} else {
16041 			/*
16042 			 * This one is complete. Reply to pending ioctl.
16043 			 */
16044 			(void) ipif_resolver_up(ipif, Res_act_initial);
16045 			err = ipif_up_done(ipif);
16046 		}
16047 
16048 		if ((err == 0) && (ill->ill_up_ipifs)) {
16049 			err = ill_up_ipifs(ill, q, mp1);
16050 			if (err == EINPROGRESS) {
16051 				freemsg(mp);
16052 				return;
16053 			}
16054 		}
16055 
16056 		if (ill->ill_up_ipifs) {
16057 			ill_group_cleanup(ill);
16058 		}
16059 
16060 		break;
16061 	case DL_NOTIFY_IND: {
16062 		dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
16063 		ire_t *ire;
16064 		boolean_t need_ire_walk_v4 = B_FALSE;
16065 		boolean_t need_ire_walk_v6 = B_FALSE;
16066 
16067 		switch (notify->dl_notification) {
16068 		case DL_NOTE_PHYS_ADDR:
16069 			err = ill_set_phys_addr(ill, mp);
16070 			break;
16071 
16072 		case DL_NOTE_FASTPATH_FLUSH:
16073 			ill_fastpath_flush(ill);
16074 			break;
16075 
16076 		case DL_NOTE_SDU_SIZE:
16077 			/*
16078 			 * Change the MTU size of the interface, of all
16079 			 * attached ipif's, and of all relevant ire's.  The
16080 			 * new value's a uint32_t at notify->dl_data.
16081 			 * Mtu change Vs. new ire creation - protocol below.
16082 			 *
16083 			 * a Mark the ipif as IPIF_CHANGING.
16084 			 * b Set the new mtu in the ipif.
16085 			 * c Change the ire_max_frag on all affected ires
16086 			 * d Unmark the IPIF_CHANGING
16087 			 *
16088 			 * To see how the protocol works, assume an interface
16089 			 * route is also being added simultaneously by
16090 			 * ip_rt_add and let 'ipif' be the ipif referenced by
16091 			 * the ire. If the ire is created before step a,
16092 			 * it will be cleaned up by step c. If the ire is
16093 			 * created after step d, it will see the new value of
16094 			 * ipif_mtu. Any attempt to create the ire between
16095 			 * steps a to d will fail because of the IPIF_CHANGING
16096 			 * flag. Note that ire_create() is passed a pointer to
16097 			 * the ipif_mtu, and not the value. During ire_add
16098 			 * under the bucket lock, the ire_max_frag of the
16099 			 * new ire being created is set from the ipif/ire from
16100 			 * which it is being derived.
16101 			 */
16102 			mutex_enter(&ill->ill_lock);
16103 			ill->ill_max_frag = (uint_t)notify->dl_data;
16104 
16105 			/*
16106 			 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu
16107 			 * leave it alone
16108 			 */
16109 			if (ill->ill_mtu_userspecified) {
16110 				mutex_exit(&ill->ill_lock);
16111 				break;
16112 			}
16113 			ill->ill_max_mtu = ill->ill_max_frag;
16114 			if (ill->ill_isv6) {
16115 				if (ill->ill_max_mtu < IPV6_MIN_MTU)
16116 					ill->ill_max_mtu = IPV6_MIN_MTU;
16117 			} else {
16118 				if (ill->ill_max_mtu < IP_MIN_MTU)
16119 					ill->ill_max_mtu = IP_MIN_MTU;
16120 			}
16121 			for (ipif = ill->ill_ipif; ipif != NULL;
16122 			    ipif = ipif->ipif_next) {
16123 				/*
16124 				 * Don't override the mtu if the user
16125 				 * has explicitly set it.
16126 				 */
16127 				if (ipif->ipif_flags & IPIF_FIXEDMTU)
16128 					continue;
16129 				ipif->ipif_mtu = (uint_t)notify->dl_data;
16130 				if (ipif->ipif_isv6)
16131 					ire = ipif_to_ire_v6(ipif);
16132 				else
16133 					ire = ipif_to_ire(ipif);
16134 				if (ire != NULL) {
16135 					ire->ire_max_frag = ipif->ipif_mtu;
16136 					ire_refrele(ire);
16137 				}
16138 				if (ipif->ipif_flags & IPIF_UP) {
16139 					if (ill->ill_isv6)
16140 						need_ire_walk_v6 = B_TRUE;
16141 					else
16142 						need_ire_walk_v4 = B_TRUE;
16143 				}
16144 			}
16145 			mutex_exit(&ill->ill_lock);
16146 			if (need_ire_walk_v4)
16147 				ire_walk_v4(ill_mtu_change, (char *)ill,
16148 				    ALL_ZONES, ipst);
16149 			if (need_ire_walk_v6)
16150 				ire_walk_v6(ill_mtu_change, (char *)ill,
16151 				    ALL_ZONES, ipst);
16152 			break;
16153 		case DL_NOTE_LINK_UP:
16154 		case DL_NOTE_LINK_DOWN: {
16155 			/*
16156 			 * We are writer. ill / phyint / ipsq assocs stable.
16157 			 * The RUNNING flag reflects the state of the link.
16158 			 */
16159 			phyint_t *phyint = ill->ill_phyint;
16160 			uint64_t new_phyint_flags;
16161 			boolean_t changed = B_FALSE;
16162 			boolean_t went_up;
16163 
16164 			went_up = notify->dl_notification == DL_NOTE_LINK_UP;
16165 			mutex_enter(&phyint->phyint_lock);
16166 			new_phyint_flags = went_up ?
16167 			    phyint->phyint_flags | PHYI_RUNNING :
16168 			    phyint->phyint_flags & ~PHYI_RUNNING;
16169 			if (new_phyint_flags != phyint->phyint_flags) {
16170 				phyint->phyint_flags = new_phyint_flags;
16171 				changed = B_TRUE;
16172 			}
16173 			mutex_exit(&phyint->phyint_lock);
16174 			/*
16175 			 * ill_restart_dad handles the DAD restart and routing
16176 			 * socket notification logic.
16177 			 */
16178 			if (changed) {
16179 				ill_restart_dad(phyint->phyint_illv4, went_up);
16180 				ill_restart_dad(phyint->phyint_illv6, went_up);
16181 			}
16182 			break;
16183 		}
16184 		case DL_NOTE_PROMISC_ON_PHYS:
16185 			IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: "
16186 			    "got a DL_NOTE_PROMISC_ON_PHYS\n"));
16187 			mutex_enter(&ill->ill_lock);
16188 			ill->ill_promisc_on_phys = B_TRUE;
16189 			mutex_exit(&ill->ill_lock);
16190 			break;
16191 		case DL_NOTE_PROMISC_OFF_PHYS:
16192 			IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: "
16193 			    "got a DL_NOTE_PROMISC_OFF_PHYS\n"));
16194 			mutex_enter(&ill->ill_lock);
16195 			ill->ill_promisc_on_phys = B_FALSE;
16196 			mutex_exit(&ill->ill_lock);
16197 			break;
16198 		case DL_NOTE_CAPAB_RENEG:
16199 			/*
16200 			 * Something changed on the driver side.
16201 			 * It wants us to renegotiate the capabilities
16202 			 * on this ill. The most likely cause is the
16203 			 * aggregation interface under us where a
16204 			 * port got added or went away.
16205 			 *
16206 			 * We reset the capabilities and set the
16207 			 * state to IDS_RENG so that when the ack
16208 			 * comes back, we can start the
16209 			 * renegotiation process.
16210 			 */
16211 			ill_capability_reset(ill);
16212 			ill->ill_dlpi_capab_state = IDS_RENEG;
16213 			break;
16214 		default:
16215 			ip0dbg(("ip_rput_dlpi_writer: unknown notification "
16216 			    "type 0x%x for DL_NOTIFY_IND\n",
16217 			    notify->dl_notification));
16218 			break;
16219 		}
16220 
16221 		/*
16222 		 * As this is an asynchronous operation, we
16223 		 * should not call ill_dlpi_done
16224 		 */
16225 		break;
16226 	}
16227 	case DL_NOTIFY_ACK: {
16228 		dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
16229 
16230 		if (noteack->dl_notifications & DL_NOTE_LINK_UP)
16231 			ill->ill_note_link = 1;
16232 		ill_dlpi_done(ill, DL_NOTIFY_REQ);
16233 		break;
16234 	}
16235 	case DL_PHYS_ADDR_ACK: {
16236 		/*
16237 		 * As part of plumbing the interface via SIOCSLIFNAME,
16238 		 * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
16239 		 * whose answers we receive here.  As each answer is received,
16240 		 * we call ill_dlpi_done() to dispatch the next request as
16241 		 * we're processing the current one.  Once all answers have
16242 		 * been received, we use ipsq_pending_mp_get() to dequeue the
16243 		 * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
16244 		 * is invoked from an ill queue, conn_oper_pending_ill is not
16245 		 * available, but we know the ioctl is pending on ill_wq.)
16246 		 */
16247 		uint_t paddrlen, paddroff;
16248 
16249 		paddrreq = ill->ill_phys_addr_pend;
16250 		paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
16251 		paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
16252 
16253 		ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
16254 		if (paddrreq == DL_IPV6_TOKEN) {
16255 			/*
16256 			 * bcopy to low-order bits of ill_token
16257 			 *
16258 			 * XXX Temporary hack - currently, all known tokens
16259 			 * are 64 bits, so I'll cheat for the moment.
16260 			 */
16261 			bcopy(mp->b_rptr + paddroff,
16262 			    &ill->ill_token.s6_addr32[2], paddrlen);
16263 			ill->ill_token_length = paddrlen;
16264 			break;
16265 		} else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
16266 			ASSERT(ill->ill_nd_lla_mp == NULL);
16267 			ill_set_ndmp(ill, mp, paddroff, paddrlen);
16268 			mp = NULL;
16269 			break;
16270 		}
16271 
16272 		ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
16273 		ASSERT(ill->ill_phys_addr_mp == NULL);
16274 		if (!ill->ill_ifname_pending)
16275 			break;
16276 		ill->ill_ifname_pending = 0;
16277 		if (!ioctl_aborted)
16278 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
16279 		if (mp1 != NULL) {
16280 			ASSERT(connp == NULL);
16281 			q = ill->ill_wq;
16282 		}
16283 		/*
16284 		 * If any error acks received during the plumbing sequence,
16285 		 * ill_ifname_pending_err will be set. Break out and send up
16286 		 * the error to the pending ioctl.
16287 		 */
16288 		if (ill->ill_ifname_pending_err != 0) {
16289 			err = ill->ill_ifname_pending_err;
16290 			ill->ill_ifname_pending_err = 0;
16291 			break;
16292 		}
16293 
16294 		ill->ill_phys_addr_mp = mp;
16295 		ill->ill_phys_addr = mp->b_rptr + paddroff;
16296 		mp = NULL;
16297 
16298 		/*
16299 		 * If paddrlen is zero, the DLPI provider doesn't support
16300 		 * physical addresses.  The other two tests were historical
16301 		 * workarounds for bugs in our former PPP implementation, but
16302 		 * now other things have grown dependencies on them -- e.g.,
16303 		 * the tun module specifies a dl_addr_length of zero in its
16304 		 * DL_BIND_ACK, but then specifies an incorrect value in its
16305 		 * DL_PHYS_ADDR_ACK.  These bogus checks need to be removed,
16306 		 * but only after careful testing ensures that all dependent
16307 		 * broken DLPI providers have been fixed.
16308 		 */
16309 		if (paddrlen == 0 || ill->ill_phys_addr_length == 0 ||
16310 		    ill->ill_phys_addr_length == IP_ADDR_LEN) {
16311 			ill->ill_phys_addr = NULL;
16312 		} else if (paddrlen != ill->ill_phys_addr_length) {
16313 			ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
16314 			    paddrlen, ill->ill_phys_addr_length));
16315 			err = EINVAL;
16316 			break;
16317 		}
16318 
16319 		if (ill->ill_nd_lla_mp == NULL) {
16320 			if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
16321 				err = ENOMEM;
16322 				break;
16323 			}
16324 			ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
16325 		}
16326 
16327 		/*
16328 		 * Set the interface token.  If the zeroth interface address
16329 		 * is unspecified, then set it to the link local address.
16330 		 */
16331 		if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token))
16332 			(void) ill_setdefaulttoken(ill);
16333 
16334 		ASSERT(ill->ill_ipif->ipif_id == 0);
16335 		if (ipif != NULL &&
16336 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
16337 			(void) ipif_setlinklocal(ipif);
16338 		break;
16339 	}
16340 	case DL_OK_ACK:
16341 		ip2dbg(("DL_OK_ACK %s (0x%x)\n",
16342 		    dlpi_prim_str((int)dloa->dl_correct_primitive),
16343 		    dloa->dl_correct_primitive));
16344 		switch (dloa->dl_correct_primitive) {
16345 		case DL_UNBIND_REQ:
16346 		case DL_ATTACH_REQ:
16347 		case DL_DETACH_REQ:
16348 			ill_dlpi_done(ill, dloa->dl_correct_primitive);
16349 			break;
16350 		}
16351 		break;
16352 	default:
16353 		break;
16354 	}
16355 
16356 	freemsg(mp);
16357 	if (mp1 != NULL) {
16358 		/*
16359 		 * The operation must complete without EINPROGRESS
16360 		 * since ipsq_pending_mp_get() has removed the mblk
16361 		 * from ipsq_pending_mp.  Otherwise, the operation
16362 		 * will be stuck forever in the ipsq.
16363 		 */
16364 		ASSERT(err != EINPROGRESS);
16365 
16366 		switch (ipsq->ipsq_current_ioctl) {
16367 		case 0:
16368 			ipsq_current_finish(ipsq);
16369 			break;
16370 
16371 		case SIOCLIFADDIF:
16372 		case SIOCSLIFNAME:
16373 			ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
16374 			break;
16375 
16376 		default:
16377 			ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
16378 			break;
16379 		}
16380 	}
16381 }
16382 
16383 /*
16384  * ip_rput_other is called by ip_rput to handle messages modifying the global
16385  * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared)
16386  */
16387 /* ARGSUSED */
16388 void
16389 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
16390 {
16391 	ill_t		*ill;
16392 	struct iocblk	*iocp;
16393 	mblk_t		*mp1;
16394 	conn_t		*connp = NULL;
16395 
16396 	ip1dbg(("ip_rput_other "));
16397 	ill = (ill_t *)q->q_ptr;
16398 	/*
16399 	 * This routine is not a writer in the case of SIOCGTUNPARAM
16400 	 * in which case ipsq is NULL.
16401 	 */
16402 	if (ipsq != NULL) {
16403 		ASSERT(IAM_WRITER_IPSQ(ipsq));
16404 		ASSERT(ipsq == ill->ill_phyint->phyint_ipsq);
16405 	}
16406 
16407 	switch (mp->b_datap->db_type) {
16408 	case M_ERROR:
16409 	case M_HANGUP:
16410 		/*
16411 		 * The device has a problem.  We force the ILL down.  It can
16412 		 * be brought up again manually using SIOCSIFFLAGS (via
16413 		 * ifconfig or equivalent).
16414 		 */
16415 		ASSERT(ipsq != NULL);
16416 		if (mp->b_rptr < mp->b_wptr)
16417 			ill->ill_error = (int)(*mp->b_rptr & 0xFF);
16418 		if (ill->ill_error == 0)
16419 			ill->ill_error = ENXIO;
16420 		if (!ill_down_start(q, mp))
16421 			return;
16422 		ipif_all_down_tail(ipsq, q, mp, NULL);
16423 		break;
16424 	case M_IOCACK:
16425 		iocp = (struct iocblk *)mp->b_rptr;
16426 		ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO);
16427 		switch (iocp->ioc_cmd) {
16428 		case SIOCSTUNPARAM:
16429 		case OSIOCSTUNPARAM:
16430 			ASSERT(ipsq != NULL);
16431 			/*
16432 			 * Finish socket ioctl passed through to tun.
16433 			 * We should have an IOCTL waiting on this.
16434 			 */
16435 			mp1 = ipsq_pending_mp_get(ipsq, &connp);
16436 			if (ill->ill_isv6) {
16437 				struct iftun_req *ta;
16438 
16439 				/*
16440 				 * if a source or destination is
16441 				 * being set, try and set the link
16442 				 * local address for the tunnel
16443 				 */
16444 				ta = (struct iftun_req *)mp->b_cont->
16445 				    b_cont->b_rptr;
16446 				if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) {
16447 					ipif_set_tun_llink(ill, ta);
16448 				}
16449 
16450 			}
16451 			if (mp1 != NULL) {
16452 				/*
16453 				 * Now copy back the b_next/b_prev used by
16454 				 * mi code for the mi_copy* functions.
16455 				 * See ip_sioctl_tunparam() for the reason.
16456 				 * Also protect against missing b_cont.
16457 				 */
16458 				if (mp->b_cont != NULL) {
16459 					mp->b_cont->b_next =
16460 					    mp1->b_cont->b_next;
16461 					mp->b_cont->b_prev =
16462 					    mp1->b_cont->b_prev;
16463 				}
16464 				inet_freemsg(mp1);
16465 				ASSERT(connp != NULL);
16466 				ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
16467 				    iocp->ioc_error, NO_COPYOUT, ipsq);
16468 			} else {
16469 				ASSERT(connp == NULL);
16470 				putnext(q, mp);
16471 			}
16472 			break;
16473 		case SIOCGTUNPARAM:
16474 		case OSIOCGTUNPARAM:
16475 			/*
16476 			 * This is really M_IOCDATA from the tunnel driver.
16477 			 * convert back and complete the ioctl.
16478 			 * We should have an IOCTL waiting on this.
16479 			 */
16480 			mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id);
16481 			if (mp1) {
16482 				/*
16483 				 * Now copy back the b_next/b_prev used by
16484 				 * mi code for the mi_copy* functions.
16485 				 * See ip_sioctl_tunparam() for the reason.
16486 				 * Also protect against missing b_cont.
16487 				 */
16488 				if (mp->b_cont != NULL) {
16489 					mp->b_cont->b_next =
16490 					    mp1->b_cont->b_next;
16491 					mp->b_cont->b_prev =
16492 					    mp1->b_cont->b_prev;
16493 				}
16494 				inet_freemsg(mp1);
16495 				if (iocp->ioc_error == 0)
16496 					mp->b_datap->db_type = M_IOCDATA;
16497 				ASSERT(connp != NULL);
16498 				ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
16499 				    iocp->ioc_error, COPYOUT, NULL);
16500 			} else {
16501 				ASSERT(connp == NULL);
16502 				putnext(q, mp);
16503 			}
16504 			break;
16505 		default:
16506 			break;
16507 		}
16508 		break;
16509 	case M_IOCNAK:
16510 		iocp = (struct iocblk *)mp->b_rptr;
16511 
16512 		switch (iocp->ioc_cmd) {
16513 		int mode;
16514 
16515 		case DL_IOC_HDR_INFO:
16516 			/*
16517 			 * If this was the first attempt turn of the
16518 			 * fastpath probing.
16519 			 */
16520 			mutex_enter(&ill->ill_lock);
16521 			if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
16522 				ill->ill_dlpi_fastpath_state = IDS_FAILED;
16523 				mutex_exit(&ill->ill_lock);
16524 				ill_fastpath_nack(ill);
16525 				ip1dbg(("ip_rput: DLPI fastpath off on "
16526 				    "interface %s\n",
16527 				    ill->ill_name));
16528 			} else {
16529 				mutex_exit(&ill->ill_lock);
16530 			}
16531 			freemsg(mp);
16532 			break;
16533 		case SIOCSTUNPARAM:
16534 		case OSIOCSTUNPARAM:
16535 			ASSERT(ipsq != NULL);
16536 			/*
16537 			 * Finish socket ioctl passed through to tun
16538 			 * We should have an IOCTL waiting on this.
16539 			 */
16540 			/* FALLTHRU */
16541 		case SIOCGTUNPARAM:
16542 		case OSIOCGTUNPARAM:
16543 			/*
16544 			 * This is really M_IOCDATA from the tunnel driver.
16545 			 * convert back and complete the ioctl.
16546 			 * We should have an IOCTL waiting on this.
16547 			 */
16548 			if (iocp->ioc_cmd == SIOCGTUNPARAM ||
16549 			    iocp->ioc_cmd == OSIOCGTUNPARAM) {
16550 				mp1 = ill_pending_mp_get(ill, &connp,
16551 				    iocp->ioc_id);
16552 				mode = COPYOUT;
16553 				ipsq = NULL;
16554 			} else {
16555 				mp1 = ipsq_pending_mp_get(ipsq, &connp);
16556 				mode = NO_COPYOUT;
16557 			}
16558 			if (mp1 != NULL) {
16559 				/*
16560 				 * Now copy back the b_next/b_prev used by
16561 				 * mi code for the mi_copy* functions.
16562 				 * See ip_sioctl_tunparam() for the reason.
16563 				 * Also protect against missing b_cont.
16564 				 */
16565 				if (mp->b_cont != NULL) {
16566 					mp->b_cont->b_next =
16567 					    mp1->b_cont->b_next;
16568 					mp->b_cont->b_prev =
16569 					    mp1->b_cont->b_prev;
16570 				}
16571 				inet_freemsg(mp1);
16572 				if (iocp->ioc_error == 0)
16573 					iocp->ioc_error = EINVAL;
16574 				ASSERT(connp != NULL);
16575 				ip_ioctl_finish(CONNP_TO_WQ(connp), mp,
16576 				    iocp->ioc_error, mode, ipsq);
16577 			} else {
16578 				ASSERT(connp == NULL);
16579 				putnext(q, mp);
16580 			}
16581 			break;
16582 		default:
16583 			break;
16584 		}
16585 	default:
16586 		break;
16587 	}
16588 }
16589 
16590 /*
16591  * NOTE : This function does not ire_refrele the ire argument passed in.
16592  *
16593  * IPQoS notes
16594  * IP policy is invoked twice for a forwarded packet, once on the read side
16595  * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are
16596  * enabled. An additional parameter, in_ill, has been added for this purpose.
16597  * Note that in_ill could be NULL when called from ip_rput_forward_multicast
16598  * because ip_mroute drops this information.
16599  *
16600  */
16601 void
16602 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill)
16603 {
16604 	uint32_t	pkt_len;
16605 	queue_t	*q;
16606 	uint32_t	sum;
16607 #define	rptr	((uchar_t *)ipha)
16608 	uint32_t	max_frag;
16609 	uint32_t	ill_index;
16610 	ill_t		*out_ill;
16611 	mib2_ipIfStatsEntry_t *mibptr;
16612 	ip_stack_t	*ipst = in_ill->ill_ipst;
16613 
16614 	/* Get the ill_index of the incoming ILL */
16615 	ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0;
16616 	mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ipst->ips_ip_mib;
16617 
16618 	/* Initiate Read side IPPF processing */
16619 	if (IPP_ENABLED(IPP_FWD_IN, ipst)) {
16620 		ip_process(IPP_FWD_IN, &mp, ill_index);
16621 		if (mp == NULL) {
16622 			ip2dbg(("ip_rput_forward: pkt dropped/deferred "\
16623 			    "during IPPF processing\n"));
16624 			return;
16625 		}
16626 	}
16627 
16628 	pkt_len = ntohs(ipha->ipha_length);
16629 
16630 	/* Adjust the checksum to reflect the ttl decrement. */
16631 	sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST;
16632 	ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16));
16633 
16634 	if (ipha->ipha_ttl-- <= 1) {
16635 		if (ip_csum_hdr(ipha)) {
16636 			BUMP_MIB(mibptr, ipIfStatsInCksumErrs);
16637 			goto drop_pkt;
16638 		}
16639 		/*
16640 		 * Note: ire_stq this will be NULL for multicast
16641 		 * datagrams using the long path through arp (the IRE
16642 		 * is not an IRE_CACHE). This should not cause
16643 		 * problems since we don't generate ICMP errors for
16644 		 * multicast packets.
16645 		 */
16646 		BUMP_MIB(mibptr, ipIfStatsForwProhibits);
16647 		q = ire->ire_stq;
16648 		if (q != NULL) {
16649 			/* Sent by forwarding path, and router is global zone */
16650 			icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED,
16651 			    GLOBAL_ZONEID, ipst);
16652 		} else
16653 			freemsg(mp);
16654 		return;
16655 	}
16656 
16657 	/*
16658 	 * Don't forward if the interface is down
16659 	 */
16660 	if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) {
16661 		BUMP_MIB(mibptr, ipIfStatsInDiscards);
16662 		ip2dbg(("ip_rput_forward:interface is down\n"));
16663 		goto drop_pkt;
16664 	}
16665 
16666 	/* Get the ill_index of the outgoing ILL */
16667 	ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex;
16668 
16669 	out_ill = ire->ire_ipif->ipif_ill;
16670 
16671 	DTRACE_PROBE4(ip4__forwarding__start,
16672 	    ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp);
16673 
16674 	FW_HOOKS(ipst->ips_ip4_forwarding_event,
16675 	    ipst->ips_ipv4firewall_forwarding,
16676 	    in_ill, out_ill, ipha, mp, mp, ipst);
16677 
16678 	DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp);
16679 
16680 	if (mp == NULL)
16681 		return;
16682 	pkt_len = ntohs(ipha->ipha_length);
16683 
16684 	if (is_system_labeled()) {
16685 		mblk_t *mp1;
16686 
16687 		if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) {
16688 			BUMP_MIB(mibptr, ipIfStatsForwProhibits);
16689 			goto drop_pkt;
16690 		}
16691 		/* Size may have changed */
16692 		mp = mp1;
16693 		ipha = (ipha_t *)mp->b_rptr;
16694 		pkt_len = ntohs(ipha->ipha_length);
16695 	}
16696 
16697 	/* Check if there are options to update */
16698 	if (!IS_SIMPLE_IPH(ipha)) {
16699 		if (ip_csum_hdr(ipha)) {
16700 			BUMP_MIB(mibptr, ipIfStatsInCksumErrs);
16701 			goto drop_pkt;
16702 		}
16703 		if (ip_rput_forward_options(mp, ipha, ire, ipst)) {
16704 			BUMP_MIB(mibptr, ipIfStatsForwProhibits);
16705 			return;
16706 		}
16707 
16708 		ipha->ipha_hdr_checksum = 0;
16709 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
16710 	}
16711 	max_frag = ire->ire_max_frag;
16712 	if (pkt_len > max_frag) {
16713 		/*
16714 		 * It needs fragging on its way out.  We haven't
16715 		 * verified the header checksum yet.  Since we
16716 		 * are going to put a surely good checksum in the
16717 		 * outgoing header, we have to make sure that it
16718 		 * was good coming in.
16719 		 */
16720 		if (ip_csum_hdr(ipha)) {
16721 			BUMP_MIB(mibptr, ipIfStatsInCksumErrs);
16722 			goto drop_pkt;
16723 		}
16724 		/* Initiate Write side IPPF processing */
16725 		if (IPP_ENABLED(IPP_FWD_OUT, ipst)) {
16726 			ip_process(IPP_FWD_OUT, &mp, ill_index);
16727 			if (mp == NULL) {
16728 				ip2dbg(("ip_rput_forward: pkt dropped/deferred"\
16729 				    " during IPPF processing\n"));
16730 				return;
16731 			}
16732 		}
16733 		ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID, ipst);
16734 		ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n"));
16735 		return;
16736 	}
16737 
16738 	DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL,
16739 	    ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp);
16740 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
16741 	    ipst->ips_ipv4firewall_physical_out,
16742 	    NULL, out_ill, ipha, mp, mp, ipst);
16743 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
16744 	if (mp == NULL)
16745 		return;
16746 
16747 	mp->b_prev = (mblk_t *)IPP_FWD_OUT;
16748 	ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n"));
16749 	(void) ip_xmit_v4(mp, ire, NULL, B_FALSE);
16750 	/* ip_xmit_v4 always consumes the packet */
16751 	return;
16752 
16753 drop_pkt:;
16754 	ip1dbg(("ip_rput_forward: drop pkt\n"));
16755 	freemsg(mp);
16756 #undef	rptr
16757 }
16758 
16759 void
16760 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif)
16761 {
16762 	ire_t	*ire;
16763 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
16764 
16765 	ASSERT(!ipif->ipif_isv6);
16766 	/*
16767 	 * Find an IRE which matches the destination and the outgoing
16768 	 * queue in the cache table. All we need is an IRE_CACHE which
16769 	 * is pointing at ipif->ipif_ill. If it is part of some ill group,
16770 	 * then it is enough to have some IRE_CACHE in the group.
16771 	 */
16772 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
16773 		dst = ipif->ipif_pp_dst_addr;
16774 
16775 	ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp),
16776 	    MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR, ipst);
16777 	if (ire == NULL) {
16778 		/*
16779 		 * Mark this packet to make it be delivered to
16780 		 * ip_rput_forward after the new ire has been
16781 		 * created.
16782 		 */
16783 		mp->b_prev = NULL;
16784 		mp->b_next = mp;
16785 		ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst,
16786 		    NULL, 0, GLOBAL_ZONEID, &zero_info);
16787 	} else {
16788 		ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL);
16789 		IRE_REFRELE(ire);
16790 	}
16791 }
16792 
16793 /* Update any source route, record route or timestamp options */
16794 static int
16795 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire, ip_stack_t *ipst)
16796 {
16797 	ipoptp_t	opts;
16798 	uchar_t		*opt;
16799 	uint8_t		optval;
16800 	uint8_t		optlen;
16801 	ipaddr_t	dst;
16802 	uint32_t	ts;
16803 	ire_t		*dst_ire = NULL;
16804 	ire_t		*tmp_ire = NULL;
16805 	timestruc_t	now;
16806 
16807 	ip2dbg(("ip_rput_forward_options\n"));
16808 	dst = ipha->ipha_dst;
16809 	for (optval = ipoptp_first(&opts, ipha);
16810 	    optval != IPOPT_EOL;
16811 	    optval = ipoptp_next(&opts)) {
16812 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
16813 		opt = opts.ipoptp_cur;
16814 		optlen = opts.ipoptp_len;
16815 		ip2dbg(("ip_rput_forward_options: opt %d, len %d\n",
16816 		    optval, opts.ipoptp_len));
16817 		switch (optval) {
16818 			uint32_t off;
16819 		case IPOPT_SSRR:
16820 		case IPOPT_LSRR:
16821 			/* Check if adminstratively disabled */
16822 			if (!ipst->ips_ip_forward_src_routed) {
16823 				if (ire->ire_stq != NULL) {
16824 					/*
16825 					 * Sent by forwarding path, and router
16826 					 * is global zone
16827 					 */
16828 					icmp_unreachable(ire->ire_stq, mp,
16829 					    ICMP_SOURCE_ROUTE_FAILED,
16830 					    GLOBAL_ZONEID, ipst);
16831 				} else {
16832 					ip0dbg(("ip_rput_forward_options: "
16833 					    "unable to send unreach\n"));
16834 					freemsg(mp);
16835 				}
16836 				return (-1);
16837 			}
16838 
16839 			dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
16840 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
16841 			if (dst_ire == NULL) {
16842 				/*
16843 				 * Must be partial since ip_rput_options
16844 				 * checked for strict.
16845 				 */
16846 				break;
16847 			}
16848 			off = opt[IPOPT_OFFSET];
16849 			off--;
16850 		redo_srr:
16851 			if (optlen < IP_ADDR_LEN ||
16852 			    off > optlen - IP_ADDR_LEN) {
16853 				/* End of source route */
16854 				ip1dbg((
16855 				    "ip_rput_forward_options: end of SR\n"));
16856 				ire_refrele(dst_ire);
16857 				break;
16858 			}
16859 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
16860 			bcopy(&ire->ire_src_addr, (char *)opt + off,
16861 			    IP_ADDR_LEN);
16862 			ip1dbg(("ip_rput_forward_options: next hop 0x%x\n",
16863 			    ntohl(dst)));
16864 
16865 			/*
16866 			 * Check if our address is present more than
16867 			 * once as consecutive hops in source route.
16868 			 */
16869 			tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
16870 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
16871 			if (tmp_ire != NULL) {
16872 				ire_refrele(tmp_ire);
16873 				off += IP_ADDR_LEN;
16874 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
16875 				goto redo_srr;
16876 			}
16877 			ipha->ipha_dst = dst;
16878 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
16879 			ire_refrele(dst_ire);
16880 			break;
16881 		case IPOPT_RR:
16882 			off = opt[IPOPT_OFFSET];
16883 			off--;
16884 			if (optlen < IP_ADDR_LEN ||
16885 			    off > optlen - IP_ADDR_LEN) {
16886 				/* No more room - ignore */
16887 				ip1dbg((
16888 				    "ip_rput_forward_options: end of RR\n"));
16889 				break;
16890 			}
16891 			bcopy(&ire->ire_src_addr, (char *)opt + off,
16892 			    IP_ADDR_LEN);
16893 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
16894 			break;
16895 		case IPOPT_TS:
16896 			/* Insert timestamp if there is room */
16897 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
16898 			case IPOPT_TS_TSONLY:
16899 				off = IPOPT_TS_TIMELEN;
16900 				break;
16901 			case IPOPT_TS_PRESPEC:
16902 			case IPOPT_TS_PRESPEC_RFC791:
16903 				/* Verify that the address matched */
16904 				off = opt[IPOPT_OFFSET] - 1;
16905 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
16906 				dst_ire = ire_ctable_lookup(dst, 0,
16907 				    IRE_LOCAL, NULL, ALL_ZONES, NULL,
16908 				    MATCH_IRE_TYPE, ipst);
16909 				if (dst_ire == NULL) {
16910 					/* Not for us */
16911 					break;
16912 				}
16913 				ire_refrele(dst_ire);
16914 				/* FALLTHRU */
16915 			case IPOPT_TS_TSANDADDR:
16916 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
16917 				break;
16918 			default:
16919 				/*
16920 				 * ip_*put_options should have already
16921 				 * dropped this packet.
16922 				 */
16923 				cmn_err(CE_PANIC, "ip_rput_forward_options: "
16924 				    "unknown IT - bug in ip_rput_options?\n");
16925 				return (0);	/* Keep "lint" happy */
16926 			}
16927 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
16928 				/* Increase overflow counter */
16929 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
16930 				opt[IPOPT_POS_OV_FLG] =
16931 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
16932 				    (off << 4));
16933 				break;
16934 			}
16935 			off = opt[IPOPT_OFFSET] - 1;
16936 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
16937 			case IPOPT_TS_PRESPEC:
16938 			case IPOPT_TS_PRESPEC_RFC791:
16939 			case IPOPT_TS_TSANDADDR:
16940 				bcopy(&ire->ire_src_addr,
16941 				    (char *)opt + off, IP_ADDR_LEN);
16942 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
16943 				/* FALLTHRU */
16944 			case IPOPT_TS_TSONLY:
16945 				off = opt[IPOPT_OFFSET] - 1;
16946 				/* Compute # of milliseconds since midnight */
16947 				gethrestime(&now);
16948 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
16949 				    now.tv_nsec / (NANOSEC / MILLISEC);
16950 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
16951 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
16952 				break;
16953 			}
16954 			break;
16955 		}
16956 	}
16957 	return (0);
16958 }
16959 
16960 /*
16961  * This is called after processing at least one of AH/ESP headers.
16962  *
16963  * NOTE: the ill corresponding to ipsec_in_ill_index may not be
16964  * the actual, physical interface on which the packet was received,
16965  * but, when ip_strict_dst_multihoming is set to 1, could be the
16966  * interface which had the ipha_dst configured when the packet went
16967  * through ip_rput. The ill_index corresponding to the recv_ill
16968  * is saved in ipsec_in_rill_index
16969  */
16970 void
16971 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire)
16972 {
16973 	mblk_t *mp;
16974 	ipaddr_t dst;
16975 	in6_addr_t *v6dstp;
16976 	ipha_t *ipha;
16977 	ip6_t *ip6h;
16978 	ipsec_in_t *ii;
16979 	boolean_t ill_need_rele = B_FALSE;
16980 	boolean_t rill_need_rele = B_FALSE;
16981 	boolean_t ire_need_rele = B_FALSE;
16982 	netstack_t	*ns;
16983 	ip_stack_t	*ipst;
16984 
16985 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
16986 	ASSERT(ii->ipsec_in_ill_index != 0);
16987 	ns = ii->ipsec_in_ns;
16988 	ASSERT(ii->ipsec_in_ns != NULL);
16989 	ipst = ns->netstack_ip;
16990 
16991 	mp = ipsec_mp->b_cont;
16992 	ASSERT(mp != NULL);
16993 
16994 
16995 	if (ill == NULL) {
16996 		ASSERT(recv_ill == NULL);
16997 		/*
16998 		 * We need to get the original queue on which ip_rput_local
16999 		 * or ip_rput_data_v6 was called.
17000 		 */
17001 		ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index,
17002 		    !ii->ipsec_in_v4, NULL, NULL, NULL, NULL, ipst);
17003 		ill_need_rele = B_TRUE;
17004 
17005 		if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) {
17006 			recv_ill = ill_lookup_on_ifindex(
17007 			    ii->ipsec_in_rill_index, !ii->ipsec_in_v4,
17008 			    NULL, NULL, NULL, NULL, ipst);
17009 			rill_need_rele = B_TRUE;
17010 		} else {
17011 			recv_ill = ill;
17012 		}
17013 
17014 		if ((ill == NULL) || (recv_ill == NULL)) {
17015 			ip0dbg(("ip_fanout_proto_again: interface "
17016 			    "disappeared\n"));
17017 			if (ill != NULL)
17018 				ill_refrele(ill);
17019 			if (recv_ill != NULL)
17020 				ill_refrele(recv_ill);
17021 			freemsg(ipsec_mp);
17022 			return;
17023 		}
17024 	}
17025 
17026 	ASSERT(ill != NULL && recv_ill != NULL);
17027 
17028 	if (mp->b_datap->db_type == M_CTL) {
17029 		/*
17030 		 * AH/ESP is returning the ICMP message after
17031 		 * removing their headers. Fanout again till
17032 		 * it gets to the right protocol.
17033 		 */
17034 		if (ii->ipsec_in_v4) {
17035 			icmph_t *icmph;
17036 			int iph_hdr_length;
17037 			int hdr_length;
17038 
17039 			ipha = (ipha_t *)mp->b_rptr;
17040 			iph_hdr_length = IPH_HDR_LENGTH(ipha);
17041 			icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
17042 			ipha = (ipha_t *)&icmph[1];
17043 			hdr_length = IPH_HDR_LENGTH(ipha);
17044 			/*
17045 			 * icmp_inbound_error_fanout may need to do pullupmsg.
17046 			 * Reset the type to M_DATA.
17047 			 */
17048 			mp->b_datap->db_type = M_DATA;
17049 			icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp,
17050 			    icmph, ipha, iph_hdr_length, hdr_length, B_TRUE,
17051 			    B_FALSE, ill, ii->ipsec_in_zoneid);
17052 		} else {
17053 			icmp6_t *icmp6;
17054 			int hdr_length;
17055 
17056 			ip6h = (ip6_t *)mp->b_rptr;
17057 			/* Don't call hdr_length_v6() unless you have to. */
17058 			if (ip6h->ip6_nxt != IPPROTO_ICMPV6)
17059 				hdr_length = ip_hdr_length_v6(mp, ip6h);
17060 			else
17061 				hdr_length = IPV6_HDR_LEN;
17062 
17063 			icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]);
17064 			/*
17065 			 * icmp_inbound_error_fanout_v6 may need to do
17066 			 * pullupmsg.  Reset the type to M_DATA.
17067 			 */
17068 			mp->b_datap->db_type = M_DATA;
17069 			icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp,
17070 			    ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid);
17071 		}
17072 		if (ill_need_rele)
17073 			ill_refrele(ill);
17074 		if (rill_need_rele)
17075 			ill_refrele(recv_ill);
17076 		return;
17077 	}
17078 
17079 	if (ii->ipsec_in_v4) {
17080 		ipha = (ipha_t *)mp->b_rptr;
17081 		dst = ipha->ipha_dst;
17082 		if (CLASSD(dst)) {
17083 			/*
17084 			 * Multicast has to be delivered to all streams.
17085 			 */
17086 			dst = INADDR_BROADCAST;
17087 		}
17088 
17089 		if (ire == NULL) {
17090 			ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid,
17091 			    MBLK_GETLABEL(mp), ipst);
17092 			if (ire == NULL) {
17093 				if (ill_need_rele)
17094 					ill_refrele(ill);
17095 				if (rill_need_rele)
17096 					ill_refrele(recv_ill);
17097 				ip1dbg(("ip_fanout_proto_again: "
17098 				    "IRE not found"));
17099 				freemsg(ipsec_mp);
17100 				return;
17101 			}
17102 			ire_need_rele = B_TRUE;
17103 		}
17104 
17105 		switch (ipha->ipha_protocol) {
17106 			case IPPROTO_UDP:
17107 				ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire,
17108 				    recv_ill);
17109 				if (ire_need_rele)
17110 					ire_refrele(ire);
17111 				break;
17112 			case IPPROTO_TCP:
17113 				if (!ire_need_rele)
17114 					IRE_REFHOLD(ire);
17115 				mp = ip_tcp_input(mp, ipha, ill, B_TRUE,
17116 				    ire, ipsec_mp, 0, ill->ill_rq, NULL);
17117 				IRE_REFRELE(ire);
17118 				if (mp != NULL)
17119 					squeue_enter_chain(GET_SQUEUE(mp), mp,
17120 					    mp, 1, SQTAG_IP_PROTO_AGAIN);
17121 				break;
17122 			case IPPROTO_SCTP:
17123 				if (!ire_need_rele)
17124 					IRE_REFHOLD(ire);
17125 				ip_sctp_input(mp, ipha, ill, B_TRUE, ire,
17126 				    ipsec_mp, 0, ill->ill_rq, dst);
17127 				break;
17128 			default:
17129 				ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire,
17130 				    recv_ill);
17131 				if (ire_need_rele)
17132 					ire_refrele(ire);
17133 				break;
17134 		}
17135 	} else {
17136 		uint32_t rput_flags = 0;
17137 
17138 		ip6h = (ip6_t *)mp->b_rptr;
17139 		v6dstp = &ip6h->ip6_dst;
17140 		/*
17141 		 * XXX Assumes ip_rput_v6 sets ll_multicast  only for multicast
17142 		 * address.
17143 		 *
17144 		 * Currently, we don't store that state in the IPSEC_IN
17145 		 * message, and we may need to.
17146 		 */
17147 		rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ?
17148 		    IP6_IN_LLMCAST : 0);
17149 		ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags,
17150 		    NULL, NULL);
17151 	}
17152 	if (ill_need_rele)
17153 		ill_refrele(ill);
17154 	if (rill_need_rele)
17155 		ill_refrele(recv_ill);
17156 }
17157 
17158 /*
17159  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
17160  * returns 'true' if there are still fragments left on the queue, in
17161  * which case we restart the timer.
17162  */
17163 void
17164 ill_frag_timer(void *arg)
17165 {
17166 	ill_t	*ill = (ill_t *)arg;
17167 	boolean_t frag_pending;
17168 	ip_stack_t	*ipst = ill->ill_ipst;
17169 
17170 	mutex_enter(&ill->ill_lock);
17171 	ASSERT(!ill->ill_fragtimer_executing);
17172 	if (ill->ill_state_flags & ILL_CONDEMNED) {
17173 		ill->ill_frag_timer_id = 0;
17174 		mutex_exit(&ill->ill_lock);
17175 		return;
17176 	}
17177 	ill->ill_fragtimer_executing = 1;
17178 	mutex_exit(&ill->ill_lock);
17179 
17180 	frag_pending = ill_frag_timeout(ill, ipst->ips_ip_g_frag_timeout);
17181 
17182 	/*
17183 	 * Restart the timer, if we have fragments pending or if someone
17184 	 * wanted us to be scheduled again.
17185 	 */
17186 	mutex_enter(&ill->ill_lock);
17187 	ill->ill_fragtimer_executing = 0;
17188 	ill->ill_frag_timer_id = 0;
17189 	if (frag_pending || ill->ill_fragtimer_needrestart)
17190 		ill_frag_timer_start(ill);
17191 	mutex_exit(&ill->ill_lock);
17192 }
17193 
17194 void
17195 ill_frag_timer_start(ill_t *ill)
17196 {
17197 	ip_stack_t	*ipst = ill->ill_ipst;
17198 
17199 	ASSERT(MUTEX_HELD(&ill->ill_lock));
17200 
17201 	/* If the ill is closing or opening don't proceed */
17202 	if (ill->ill_state_flags & ILL_CONDEMNED)
17203 		return;
17204 
17205 	if (ill->ill_fragtimer_executing) {
17206 		/*
17207 		 * ill_frag_timer is currently executing. Just record the
17208 		 * the fact that we want the timer to be restarted.
17209 		 * ill_frag_timer will post a timeout before it returns,
17210 		 * ensuring it will be called again.
17211 		 */
17212 		ill->ill_fragtimer_needrestart = 1;
17213 		return;
17214 	}
17215 
17216 	if (ill->ill_frag_timer_id == 0) {
17217 		/*
17218 		 * The timer is neither running nor is the timeout handler
17219 		 * executing. Post a timeout so that ill_frag_timer will be
17220 		 * called
17221 		 */
17222 		ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
17223 		    MSEC_TO_TICK(ipst->ips_ip_g_frag_timo_ms >> 1));
17224 		ill->ill_fragtimer_needrestart = 0;
17225 	}
17226 }
17227 
17228 /*
17229  * This routine is needed for loopback when forwarding multicasts.
17230  *
17231  * IPQoS Notes:
17232  * IPPF processing is done in fanout routines.
17233  * Policy processing is done only if IPP_lOCAL_IN is enabled. Further,
17234  * processing for IPSec packets is done when it comes back in clear.
17235  * NOTE : The callers of this function need to do the ire_refrele for the
17236  *	  ire that is being passed in.
17237  */
17238 void
17239 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire,
17240     ill_t *recv_ill)
17241 {
17242 	ill_t	*ill = (ill_t *)q->q_ptr;
17243 	uint32_t	sum;
17244 	uint32_t	u1;
17245 	uint32_t	u2;
17246 	int		hdr_length;
17247 	boolean_t	mctl_present;
17248 	mblk_t		*first_mp = mp;
17249 	mblk_t		*hada_mp = NULL;
17250 	ipha_t		*inner_ipha;
17251 	ip_stack_t	*ipst;
17252 
17253 	ASSERT(recv_ill != NULL);
17254 	ipst = recv_ill->ill_ipst;
17255 
17256 	TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START,
17257 	    "ip_rput_locl_start: q %p", q);
17258 
17259 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
17260 	ASSERT(ill != NULL);
17261 
17262 
17263 #define	rptr	((uchar_t *)ipha)
17264 #define	iphs	((uint16_t *)ipha)
17265 
17266 	/*
17267 	 * no UDP or TCP packet should come here anymore.
17268 	 */
17269 	ASSERT((ipha->ipha_protocol != IPPROTO_TCP) &&
17270 	    (ipha->ipha_protocol != IPPROTO_UDP));
17271 
17272 	EXTRACT_PKT_MP(mp, first_mp, mctl_present);
17273 	if (mctl_present &&
17274 	    ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) {
17275 		ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t));
17276 
17277 		/*
17278 		 * It's an IPsec accelerated packet.
17279 		 * Keep a pointer to the data attributes around until
17280 		 * we allocate the ipsec_info_t.
17281 		 */
17282 		IPSECHW_DEBUG(IPSECHW_PKT,
17283 		    ("ip_rput_local: inbound HW accelerated IPsec pkt\n"));
17284 		hada_mp = first_mp;
17285 		hada_mp->b_cont = NULL;
17286 		/*
17287 		 * Since it is accelerated, it comes directly from
17288 		 * the ill and the data attributes is followed by
17289 		 * the packet data.
17290 		 */
17291 		ASSERT(mp->b_datap->db_type != M_CTL);
17292 		first_mp = mp;
17293 		mctl_present = B_FALSE;
17294 	}
17295 
17296 	/*
17297 	 * IF M_CTL is not present, then ipsec_in_is_secure
17298 	 * should return B_TRUE. There is a case where loopback
17299 	 * packets has an M_CTL in the front with all the
17300 	 * IPSEC options set to IPSEC_PREF_NEVER - which means
17301 	 * ipsec_in_is_secure will return B_FALSE. As loopback
17302 	 * packets never comes here, it is safe to ASSERT the
17303 	 * following.
17304 	 */
17305 	ASSERT(!mctl_present || ipsec_in_is_secure(first_mp));
17306 
17307 
17308 	/* u1 is # words of IP options */
17309 	u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4)
17310 	    + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
17311 
17312 	if (u1) {
17313 		if (!ip_options_cksum(q, ill, mp, ipha, ire, ipst)) {
17314 			if (hada_mp != NULL)
17315 				freemsg(hada_mp);
17316 			return;
17317 		}
17318 	} else {
17319 		/* Check the IP header checksum.  */
17320 #define	uph	((uint16_t *)ipha)
17321 		sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] +
17322 		    uph[6] + uph[7] + uph[8] + uph[9];
17323 #undef  uph
17324 		/* finish doing IP checksum */
17325 		sum = (sum & 0xFFFF) + (sum >> 16);
17326 		sum = ~(sum + (sum >> 16)) & 0xFFFF;
17327 		/*
17328 		 * Don't verify header checksum if this packet is coming
17329 		 * back from AH/ESP as we already did it.
17330 		 */
17331 		if (!mctl_present && (sum && sum != 0xFFFF)) {
17332 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs);
17333 			goto drop_pkt;
17334 		}
17335 	}
17336 
17337 	/*
17338 	 * Count for SNMP of inbound packets for ire. As ip_proto_input
17339 	 * might be called more than once for secure packets, count only
17340 	 * the first time.
17341 	 */
17342 	if (!mctl_present) {
17343 		UPDATE_IB_PKT_COUNT(ire);
17344 		ire->ire_last_used_time = lbolt;
17345 	}
17346 
17347 	/* Check for fragmentation offset. */
17348 	u2 = ntohs(ipha->ipha_fragment_offset_and_flags);
17349 	u1 = u2 & (IPH_MF | IPH_OFFSET);
17350 	if (u1) {
17351 		/*
17352 		 * We re-assemble fragments before we do the AH/ESP
17353 		 * processing. Thus, M_CTL should not be present
17354 		 * while we are re-assembling.
17355 		 */
17356 		ASSERT(!mctl_present);
17357 		ASSERT(first_mp == mp);
17358 		if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) {
17359 			return;
17360 		}
17361 		/*
17362 		 * Make sure that first_mp points back to mp as
17363 		 * the mp we came in with could have changed in
17364 		 * ip_rput_fragment().
17365 		 */
17366 		ipha = (ipha_t *)mp->b_rptr;
17367 		first_mp = mp;
17368 	}
17369 
17370 	/*
17371 	 * Clear hardware checksumming flag as it is currently only
17372 	 * used by TCP and UDP.
17373 	 */
17374 	DB_CKSUMFLAGS(mp) = 0;
17375 
17376 	/* Now we have a complete datagram, destined for this machine. */
17377 	u1 = IPH_HDR_LENGTH(ipha);
17378 	switch (ipha->ipha_protocol) {
17379 	case IPPROTO_ICMP: {
17380 		ire_t		*ire_zone;
17381 		ilm_t		*ilm;
17382 		mblk_t		*mp1;
17383 		zoneid_t	last_zoneid;
17384 
17385 		if (CLASSD(ipha->ipha_dst) &&
17386 		    !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) {
17387 			ASSERT(ire->ire_type == IRE_BROADCAST);
17388 			/*
17389 			 * In the multicast case, applications may have joined
17390 			 * the group from different zones, so we need to deliver
17391 			 * the packet to each of them. Loop through the
17392 			 * multicast memberships structures (ilm) on the receive
17393 			 * ill and send a copy of the packet up each matching
17394 			 * one. However, we don't do this for multicasts sent on
17395 			 * the loopback interface (PHYI_LOOPBACK flag set) as
17396 			 * they must stay in the sender's zone.
17397 			 *
17398 			 * ilm_add_v6() ensures that ilms in the same zone are
17399 			 * contiguous in the ill_ilm list. We use this property
17400 			 * to avoid sending duplicates needed when two
17401 			 * applications in the same zone join the same group on
17402 			 * different logical interfaces: we ignore the ilm if
17403 			 * its zoneid is the same as the last matching one.
17404 			 * In addition, the sending of the packet for
17405 			 * ire_zoneid is delayed until all of the other ilms
17406 			 * have been exhausted.
17407 			 */
17408 			last_zoneid = -1;
17409 			ILM_WALKER_HOLD(recv_ill);
17410 			for (ilm = recv_ill->ill_ilm; ilm != NULL;
17411 			    ilm = ilm->ilm_next) {
17412 				if ((ilm->ilm_flags & ILM_DELETED) ||
17413 				    ipha->ipha_dst != ilm->ilm_addr ||
17414 				    ilm->ilm_zoneid == last_zoneid ||
17415 				    ilm->ilm_zoneid == ire->ire_zoneid ||
17416 				    ilm->ilm_zoneid == ALL_ZONES ||
17417 				    !(ilm->ilm_ipif->ipif_flags & IPIF_UP))
17418 					continue;
17419 				mp1 = ip_copymsg(first_mp);
17420 				if (mp1 == NULL)
17421 					continue;
17422 				icmp_inbound(q, mp1, B_TRUE, ill,
17423 				    0, sum, mctl_present, B_TRUE,
17424 				    recv_ill, ilm->ilm_zoneid);
17425 				last_zoneid = ilm->ilm_zoneid;
17426 			}
17427 			ILM_WALKER_RELE(recv_ill);
17428 		} else if (ire->ire_type == IRE_BROADCAST) {
17429 			/*
17430 			 * In the broadcast case, there may be many zones
17431 			 * which need a copy of the packet delivered to them.
17432 			 * There is one IRE_BROADCAST per broadcast address
17433 			 * and per zone; we walk those using a helper function.
17434 			 * In addition, the sending of the packet for ire is
17435 			 * delayed until all of the other ires have been
17436 			 * processed.
17437 			 */
17438 			IRB_REFHOLD(ire->ire_bucket);
17439 			ire_zone = NULL;
17440 			while ((ire_zone = ire_get_next_bcast_ire(ire_zone,
17441 			    ire)) != NULL) {
17442 				mp1 = ip_copymsg(first_mp);
17443 				if (mp1 == NULL)
17444 					continue;
17445 
17446 				UPDATE_IB_PKT_COUNT(ire_zone);
17447 				ire_zone->ire_last_used_time = lbolt;
17448 				icmp_inbound(q, mp1, B_TRUE, ill,
17449 				    0, sum, mctl_present, B_TRUE,
17450 				    recv_ill, ire_zone->ire_zoneid);
17451 			}
17452 			IRB_REFRELE(ire->ire_bucket);
17453 		}
17454 		icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST),
17455 		    ill, 0, sum, mctl_present, B_TRUE, recv_ill,
17456 		    ire->ire_zoneid);
17457 		TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
17458 		    "ip_rput_locl_end: q %p (%S)", q, "icmp");
17459 		return;
17460 	}
17461 	case IPPROTO_IGMP:
17462 		/*
17463 		 * If we are not willing to accept IGMP packets in clear,
17464 		 * then check with global policy.
17465 		 */
17466 		if (ipst->ips_igmp_accept_clear_messages == 0) {
17467 			first_mp = ipsec_check_global_policy(first_mp, NULL,
17468 			    ipha, NULL, mctl_present, ipst->ips_netstack);
17469 			if (first_mp == NULL)
17470 				return;
17471 		}
17472 		if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) {
17473 			freemsg(first_mp);
17474 			ip1dbg(("ip_proto_input: zone all cannot accept raw"));
17475 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17476 			return;
17477 		}
17478 		if ((mp = igmp_input(q, mp, ill)) == NULL) {
17479 			/* Bad packet - discarded by igmp_input */
17480 			TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
17481 			    "ip_rput_locl_end: q %p (%S)", q, "igmp");
17482 			if (mctl_present)
17483 				freeb(first_mp);
17484 			return;
17485 		}
17486 		/*
17487 		 * igmp_input() may have returned the pulled up message.
17488 		 * So first_mp and ipha need to be reinitialized.
17489 		 */
17490 		ipha = (ipha_t *)mp->b_rptr;
17491 		if (mctl_present)
17492 			first_mp->b_cont = mp;
17493 		else
17494 			first_mp = mp;
17495 		if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol].
17496 		    connf_head != NULL) {
17497 			/* No user-level listener for IGMP packets */
17498 			goto drop_pkt;
17499 		}
17500 		/* deliver to local raw users */
17501 		break;
17502 	case IPPROTO_PIM:
17503 		/*
17504 		 * If we are not willing to accept PIM packets in clear,
17505 		 * then check with global policy.
17506 		 */
17507 		if (ipst->ips_pim_accept_clear_messages == 0) {
17508 			first_mp = ipsec_check_global_policy(first_mp, NULL,
17509 			    ipha, NULL, mctl_present, ipst->ips_netstack);
17510 			if (first_mp == NULL)
17511 				return;
17512 		}
17513 		if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) {
17514 			freemsg(first_mp);
17515 			ip1dbg(("ip_proto_input: zone all cannot accept PIM"));
17516 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17517 			return;
17518 		}
17519 		if (pim_input(q, mp, ill) != 0) {
17520 			/* Bad packet - discarded by pim_input */
17521 			TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
17522 			    "ip_rput_locl_end: q %p (%S)", q, "pim");
17523 			if (mctl_present)
17524 				freeb(first_mp);
17525 			return;
17526 		}
17527 
17528 		/*
17529 		 * pim_input() may have pulled up the message so ipha needs to
17530 		 * be reinitialized.
17531 		 */
17532 		ipha = (ipha_t *)mp->b_rptr;
17533 		if (ipst->ips_ipcl_proto_fanout[ipha->ipha_protocol].
17534 		    connf_head != NULL) {
17535 			/* No user-level listener for PIM packets */
17536 			goto drop_pkt;
17537 		}
17538 		/* deliver to local raw users */
17539 		break;
17540 	case IPPROTO_ENCAP:
17541 		/*
17542 		 * Handle self-encapsulated packets (IP-in-IP where
17543 		 * the inner addresses == the outer addresses).
17544 		 */
17545 		hdr_length = IPH_HDR_LENGTH(ipha);
17546 		if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
17547 		    mp->b_wptr) {
17548 			if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length +
17549 			    sizeof (ipha_t) - mp->b_rptr)) {
17550 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17551 				freemsg(first_mp);
17552 				return;
17553 			}
17554 			ipha = (ipha_t *)mp->b_rptr;
17555 		}
17556 		inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
17557 		/*
17558 		 * Check the sanity of the inner IP header.
17559 		 */
17560 		if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) {
17561 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17562 			freemsg(first_mp);
17563 			return;
17564 		}
17565 		if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) {
17566 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17567 			freemsg(first_mp);
17568 			return;
17569 		}
17570 		if (inner_ipha->ipha_src == ipha->ipha_src &&
17571 		    inner_ipha->ipha_dst == ipha->ipha_dst) {
17572 			ipsec_in_t *ii;
17573 
17574 			/*
17575 			 * Self-encapsulated tunnel packet. Remove
17576 			 * the outer IP header and fanout again.
17577 			 * We also need to make sure that the inner
17578 			 * header is pulled up until options.
17579 			 */
17580 			mp->b_rptr = (uchar_t *)inner_ipha;
17581 			ipha = inner_ipha;
17582 			hdr_length = IPH_HDR_LENGTH(ipha);
17583 			if ((uchar_t *)ipha + hdr_length > mp->b_wptr) {
17584 				if (!pullupmsg(mp, (uchar_t *)ipha +
17585 				    + hdr_length - mp->b_rptr)) {
17586 					freemsg(first_mp);
17587 					return;
17588 				}
17589 				ipha = (ipha_t *)mp->b_rptr;
17590 			}
17591 			if (!mctl_present) {
17592 				ASSERT(first_mp == mp);
17593 				/*
17594 				 * This means that somebody is sending
17595 				 * Self-encapsualted packets without AH/ESP.
17596 				 * If AH/ESP was present, we would have already
17597 				 * allocated the first_mp.
17598 				 */
17599 				first_mp = ipsec_in_alloc(B_TRUE,
17600 				    ipst->ips_netstack);
17601 				if (first_mp == NULL) {
17602 					ip1dbg(("ip_proto_input: IPSEC_IN "
17603 					    "allocation failure.\n"));
17604 					BUMP_MIB(ill->ill_ip_mib,
17605 					    ipIfStatsInDiscards);
17606 					freemsg(mp);
17607 					return;
17608 				}
17609 				first_mp->b_cont = mp;
17610 			}
17611 			/*
17612 			 * We generally store the ill_index if we need to
17613 			 * do IPSEC processing as we lose the ill queue when
17614 			 * we come back. But in this case, we never should
17615 			 * have to store the ill_index here as it should have
17616 			 * been stored previously when we processed the
17617 			 * AH/ESP header in this routine or for non-ipsec
17618 			 * cases, we still have the queue. But for some bad
17619 			 * packets from the wire, we can get to IPSEC after
17620 			 * this and we better store the index for that case.
17621 			 */
17622 			ill = (ill_t *)q->q_ptr;
17623 			ii = (ipsec_in_t *)first_mp->b_rptr;
17624 			ii->ipsec_in_ill_index =
17625 			    ill->ill_phyint->phyint_ifindex;
17626 			ii->ipsec_in_rill_index =
17627 			    recv_ill->ill_phyint->phyint_ifindex;
17628 			if (ii->ipsec_in_decaps) {
17629 				/*
17630 				 * This packet is self-encapsulated multiple
17631 				 * times. We don't want to recurse infinitely.
17632 				 * To keep it simple, drop the packet.
17633 				 */
17634 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17635 				freemsg(first_mp);
17636 				return;
17637 			}
17638 			ii->ipsec_in_decaps = B_TRUE;
17639 			ip_fanout_proto_again(first_mp, recv_ill, recv_ill,
17640 			    ire);
17641 			return;
17642 		}
17643 		break;
17644 	case IPPROTO_AH:
17645 	case IPPROTO_ESP: {
17646 		ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
17647 
17648 		/*
17649 		 * Fast path for AH/ESP. If this is the first time
17650 		 * we are sending a datagram to AH/ESP, allocate
17651 		 * a IPSEC_IN message and prepend it. Otherwise,
17652 		 * just fanout.
17653 		 */
17654 
17655 		int ipsec_rc;
17656 		ipsec_in_t *ii;
17657 		netstack_t *ns = ipst->ips_netstack;
17658 
17659 		IP_STAT(ipst, ipsec_proto_ahesp);
17660 		if (!mctl_present) {
17661 			ASSERT(first_mp == mp);
17662 			first_mp = ipsec_in_alloc(B_TRUE, ns);
17663 			if (first_mp == NULL) {
17664 				ip1dbg(("ip_proto_input: IPSEC_IN "
17665 				    "allocation failure.\n"));
17666 				freemsg(hada_mp); /* okay ifnull */
17667 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17668 				freemsg(mp);
17669 				return;
17670 			}
17671 			/*
17672 			 * Store the ill_index so that when we come back
17673 			 * from IPSEC we ride on the same queue.
17674 			 */
17675 			ill = (ill_t *)q->q_ptr;
17676 			ii = (ipsec_in_t *)first_mp->b_rptr;
17677 			ii->ipsec_in_ill_index =
17678 			    ill->ill_phyint->phyint_ifindex;
17679 			ii->ipsec_in_rill_index =
17680 			    recv_ill->ill_phyint->phyint_ifindex;
17681 			first_mp->b_cont = mp;
17682 			/*
17683 			 * Cache hardware acceleration info.
17684 			 */
17685 			if (hada_mp != NULL) {
17686 				IPSECHW_DEBUG(IPSECHW_PKT,
17687 				    ("ip_rput_local: caching data attr.\n"));
17688 				ii->ipsec_in_accelerated = B_TRUE;
17689 				ii->ipsec_in_da = hada_mp;
17690 				hada_mp = NULL;
17691 			}
17692 		} else {
17693 			ii = (ipsec_in_t *)first_mp->b_rptr;
17694 		}
17695 
17696 		if (!ipsec_loaded(ipss)) {
17697 			ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP,
17698 			    ire->ire_zoneid, ipst);
17699 			return;
17700 		}
17701 
17702 		ns = ipst->ips_netstack;
17703 		/* select inbound SA and have IPsec process the pkt */
17704 		if (ipha->ipha_protocol == IPPROTO_ESP) {
17705 			esph_t *esph = ipsec_inbound_esp_sa(first_mp, ns);
17706 			if (esph == NULL)
17707 				return;
17708 			ASSERT(ii->ipsec_in_esp_sa != NULL);
17709 			ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL);
17710 			ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func(
17711 			    first_mp, esph);
17712 		} else {
17713 			ah_t *ah = ipsec_inbound_ah_sa(first_mp, ns);
17714 			if (ah == NULL)
17715 				return;
17716 			ASSERT(ii->ipsec_in_ah_sa != NULL);
17717 			ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL);
17718 			ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func(
17719 			    first_mp, ah);
17720 		}
17721 
17722 		switch (ipsec_rc) {
17723 		case IPSEC_STATUS_SUCCESS:
17724 			break;
17725 		case IPSEC_STATUS_FAILED:
17726 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
17727 			/* FALLTHRU */
17728 		case IPSEC_STATUS_PENDING:
17729 			return;
17730 		}
17731 		/* we're done with IPsec processing, send it up */
17732 		ip_fanout_proto_again(first_mp, ill, recv_ill, ire);
17733 		return;
17734 	}
17735 	default:
17736 		break;
17737 	}
17738 	if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) {
17739 		ip1dbg(("ip_proto_input: zone %d cannot accept raw IP",
17740 		    ire->ire_zoneid));
17741 		goto drop_pkt;
17742 	}
17743 	/*
17744 	 * Handle protocols with which IP is less intimate.  There
17745 	 * can be more than one stream bound to a particular
17746 	 * protocol.  When this is the case, each one gets a copy
17747 	 * of any incoming packets.
17748 	 */
17749 	ip_fanout_proto(q, first_mp, ill, ipha,
17750 	    IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present,
17751 	    B_TRUE, recv_ill, ire->ire_zoneid);
17752 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
17753 	    "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto");
17754 	return;
17755 
17756 drop_pkt:
17757 	freemsg(first_mp);
17758 	if (hada_mp != NULL)
17759 		freeb(hada_mp);
17760 	TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END,
17761 	    "ip_rput_locl_end: q %p (%S)", q, "droppkt");
17762 #undef	rptr
17763 #undef  iphs
17764 
17765 }
17766 
17767 /*
17768  * Update any source route, record route or timestamp options.
17769  * Check that we are at end of strict source route.
17770  * The options have already been checked for sanity in ip_rput_options().
17771  */
17772 static boolean_t
17773 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire,
17774     ip_stack_t *ipst)
17775 {
17776 	ipoptp_t	opts;
17777 	uchar_t		*opt;
17778 	uint8_t		optval;
17779 	uint8_t		optlen;
17780 	ipaddr_t	dst;
17781 	uint32_t	ts;
17782 	ire_t		*dst_ire;
17783 	timestruc_t	now;
17784 	zoneid_t	zoneid;
17785 	ill_t		*ill;
17786 
17787 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
17788 
17789 	ip2dbg(("ip_rput_local_options\n"));
17790 
17791 	for (optval = ipoptp_first(&opts, ipha);
17792 	    optval != IPOPT_EOL;
17793 	    optval = ipoptp_next(&opts)) {
17794 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
17795 		opt = opts.ipoptp_cur;
17796 		optlen = opts.ipoptp_len;
17797 		ip2dbg(("ip_rput_local_options: opt %d, len %d\n",
17798 		    optval, optlen));
17799 		switch (optval) {
17800 			uint32_t off;
17801 		case IPOPT_SSRR:
17802 		case IPOPT_LSRR:
17803 			off = opt[IPOPT_OFFSET];
17804 			off--;
17805 			if (optlen < IP_ADDR_LEN ||
17806 			    off > optlen - IP_ADDR_LEN) {
17807 				/* End of source route */
17808 				ip1dbg(("ip_rput_local_options: end of SR\n"));
17809 				break;
17810 			}
17811 			/*
17812 			 * This will only happen if two consecutive entries
17813 			 * in the source route contains our address or if
17814 			 * it is a packet with a loose source route which
17815 			 * reaches us before consuming the whole source route
17816 			 */
17817 			ip1dbg(("ip_rput_local_options: not end of SR\n"));
17818 			if (optval == IPOPT_SSRR) {
17819 				goto bad_src_route;
17820 			}
17821 			/*
17822 			 * Hack: instead of dropping the packet truncate the
17823 			 * source route to what has been used by filling the
17824 			 * rest with IPOPT_NOP.
17825 			 */
17826 			opt[IPOPT_OLEN] = (uint8_t)off;
17827 			while (off < optlen) {
17828 				opt[off++] = IPOPT_NOP;
17829 			}
17830 			break;
17831 		case IPOPT_RR:
17832 			off = opt[IPOPT_OFFSET];
17833 			off--;
17834 			if (optlen < IP_ADDR_LEN ||
17835 			    off > optlen - IP_ADDR_LEN) {
17836 				/* No more room - ignore */
17837 				ip1dbg((
17838 				    "ip_rput_local_options: end of RR\n"));
17839 				break;
17840 			}
17841 			bcopy(&ire->ire_src_addr, (char *)opt + off,
17842 			    IP_ADDR_LEN);
17843 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
17844 			break;
17845 		case IPOPT_TS:
17846 			/* Insert timestamp if there is romm */
17847 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
17848 			case IPOPT_TS_TSONLY:
17849 				off = IPOPT_TS_TIMELEN;
17850 				break;
17851 			case IPOPT_TS_PRESPEC:
17852 			case IPOPT_TS_PRESPEC_RFC791:
17853 				/* Verify that the address matched */
17854 				off = opt[IPOPT_OFFSET] - 1;
17855 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
17856 				dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
17857 				    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE,
17858 				    ipst);
17859 				if (dst_ire == NULL) {
17860 					/* Not for us */
17861 					break;
17862 				}
17863 				ire_refrele(dst_ire);
17864 				/* FALLTHRU */
17865 			case IPOPT_TS_TSANDADDR:
17866 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
17867 				break;
17868 			default:
17869 				/*
17870 				 * ip_*put_options should have already
17871 				 * dropped this packet.
17872 				 */
17873 				cmn_err(CE_PANIC, "ip_rput_local_options: "
17874 				    "unknown IT - bug in ip_rput_options?\n");
17875 				return (B_TRUE);	/* Keep "lint" happy */
17876 			}
17877 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
17878 				/* Increase overflow counter */
17879 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
17880 				opt[IPOPT_POS_OV_FLG] =
17881 				    (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
17882 				    (off << 4));
17883 				break;
17884 			}
17885 			off = opt[IPOPT_OFFSET] - 1;
17886 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
17887 			case IPOPT_TS_PRESPEC:
17888 			case IPOPT_TS_PRESPEC_RFC791:
17889 			case IPOPT_TS_TSANDADDR:
17890 				bcopy(&ire->ire_src_addr, (char *)opt + off,
17891 				    IP_ADDR_LEN);
17892 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
17893 				/* FALLTHRU */
17894 			case IPOPT_TS_TSONLY:
17895 				off = opt[IPOPT_OFFSET] - 1;
17896 				/* Compute # of milliseconds since midnight */
17897 				gethrestime(&now);
17898 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
17899 				    now.tv_nsec / (NANOSEC / MILLISEC);
17900 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
17901 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
17902 				break;
17903 			}
17904 			break;
17905 		}
17906 	}
17907 	return (B_TRUE);
17908 
17909 bad_src_route:
17910 	q = WR(q);
17911 	if (q->q_next != NULL)
17912 		ill = q->q_ptr;
17913 	else
17914 		ill = NULL;
17915 
17916 	/* make sure we clear any indication of a hardware checksum */
17917 	DB_CKSUMFLAGS(mp) = 0;
17918 	zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill, ipst);
17919 	if (zoneid == ALL_ZONES)
17920 		freemsg(mp);
17921 	else
17922 		icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst);
17923 	return (B_FALSE);
17924 
17925 }
17926 
17927 /*
17928  * Process IP options in an inbound packet.  If an option affects the
17929  * effective destination address, return the next hop address via dstp.
17930  * Returns -1 if something fails in which case an ICMP error has been sent
17931  * and mp freed.
17932  */
17933 static int
17934 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp,
17935     ip_stack_t *ipst)
17936 {
17937 	ipoptp_t	opts;
17938 	uchar_t		*opt;
17939 	uint8_t		optval;
17940 	uint8_t		optlen;
17941 	ipaddr_t	dst;
17942 	intptr_t	code = 0;
17943 	ire_t		*ire = NULL;
17944 	zoneid_t	zoneid;
17945 	ill_t		*ill;
17946 
17947 	ip2dbg(("ip_rput_options\n"));
17948 	dst = ipha->ipha_dst;
17949 	for (optval = ipoptp_first(&opts, ipha);
17950 	    optval != IPOPT_EOL;
17951 	    optval = ipoptp_next(&opts)) {
17952 		opt = opts.ipoptp_cur;
17953 		optlen = opts.ipoptp_len;
17954 		ip2dbg(("ip_rput_options: opt %d, len %d\n",
17955 		    optval, optlen));
17956 		/*
17957 		 * Note: we need to verify the checksum before we
17958 		 * modify anything thus this routine only extracts the next
17959 		 * hop dst from any source route.
17960 		 */
17961 		switch (optval) {
17962 			uint32_t off;
17963 		case IPOPT_SSRR:
17964 		case IPOPT_LSRR:
17965 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
17966 			    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
17967 			if (ire == NULL) {
17968 				if (optval == IPOPT_SSRR) {
17969 					ip1dbg(("ip_rput_options: not next"
17970 					    " strict source route 0x%x\n",
17971 					    ntohl(dst)));
17972 					code = (char *)&ipha->ipha_dst -
17973 					    (char *)ipha;
17974 					goto param_prob; /* RouterReq's */
17975 				}
17976 				ip2dbg(("ip_rput_options: "
17977 				    "not next source route 0x%x\n",
17978 				    ntohl(dst)));
17979 				break;
17980 			}
17981 			ire_refrele(ire);
17982 
17983 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
17984 				ip1dbg((
17985 				    "ip_rput_options: bad option offset\n"));
17986 				code = (char *)&opt[IPOPT_OLEN] -
17987 				    (char *)ipha;
17988 				goto param_prob;
17989 			}
17990 			off = opt[IPOPT_OFFSET];
17991 			off--;
17992 		redo_srr:
17993 			if (optlen < IP_ADDR_LEN ||
17994 			    off > optlen - IP_ADDR_LEN) {
17995 				/* End of source route */
17996 				ip1dbg(("ip_rput_options: end of SR\n"));
17997 				break;
17998 			}
17999 			bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
18000 			ip1dbg(("ip_rput_options: next hop 0x%x\n",
18001 			    ntohl(dst)));
18002 
18003 			/*
18004 			 * Check if our address is present more than
18005 			 * once as consecutive hops in source route.
18006 			 * XXX verify per-interface ip_forwarding
18007 			 * for source route?
18008 			 */
18009 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
18010 			    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
18011 
18012 			if (ire != NULL) {
18013 				ire_refrele(ire);
18014 				off += IP_ADDR_LEN;
18015 				goto redo_srr;
18016 			}
18017 
18018 			if (dst == htonl(INADDR_LOOPBACK)) {
18019 				ip1dbg(("ip_rput_options: loopback addr in "
18020 				    "source route!\n"));
18021 				goto bad_src_route;
18022 			}
18023 			/*
18024 			 * For strict: verify that dst is directly
18025 			 * reachable.
18026 			 */
18027 			if (optval == IPOPT_SSRR) {
18028 				ire = ire_ftable_lookup(dst, 0, 0,
18029 				    IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0,
18030 				    MBLK_GETLABEL(mp),
18031 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
18032 				if (ire == NULL) {
18033 					ip1dbg(("ip_rput_options: SSRR not "
18034 					    "directly reachable: 0x%x\n",
18035 					    ntohl(dst)));
18036 					goto bad_src_route;
18037 				}
18038 				ire_refrele(ire);
18039 			}
18040 			/*
18041 			 * Defer update of the offset and the record route
18042 			 * until the packet is forwarded.
18043 			 */
18044 			break;
18045 		case IPOPT_RR:
18046 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
18047 				ip1dbg((
18048 				    "ip_rput_options: bad option offset\n"));
18049 				code = (char *)&opt[IPOPT_OLEN] -
18050 				    (char *)ipha;
18051 				goto param_prob;
18052 			}
18053 			break;
18054 		case IPOPT_TS:
18055 			/*
18056 			 * Verify that length >= 5 and that there is either
18057 			 * room for another timestamp or that the overflow
18058 			 * counter is not maxed out.
18059 			 */
18060 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
18061 			if (optlen < IPOPT_MINLEN_IT) {
18062 				goto param_prob;
18063 			}
18064 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
18065 				ip1dbg((
18066 				    "ip_rput_options: bad option offset\n"));
18067 				code = (char *)&opt[IPOPT_OFFSET] -
18068 				    (char *)ipha;
18069 				goto param_prob;
18070 			}
18071 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
18072 			case IPOPT_TS_TSONLY:
18073 				off = IPOPT_TS_TIMELEN;
18074 				break;
18075 			case IPOPT_TS_TSANDADDR:
18076 			case IPOPT_TS_PRESPEC:
18077 			case IPOPT_TS_PRESPEC_RFC791:
18078 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
18079 				break;
18080 			default:
18081 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
18082 				    (char *)ipha;
18083 				goto param_prob;
18084 			}
18085 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
18086 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
18087 				/*
18088 				 * No room and the overflow counter is 15
18089 				 * already.
18090 				 */
18091 				goto param_prob;
18092 			}
18093 			break;
18094 		}
18095 	}
18096 
18097 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
18098 		*dstp = dst;
18099 		return (0);
18100 	}
18101 
18102 	ip1dbg(("ip_rput_options: error processing IP options."));
18103 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
18104 
18105 param_prob:
18106 	q = WR(q);
18107 	if (q->q_next != NULL)
18108 		ill = q->q_ptr;
18109 	else
18110 		ill = NULL;
18111 
18112 	/* make sure we clear any indication of a hardware checksum */
18113 	DB_CKSUMFLAGS(mp) = 0;
18114 	/* Don't know whether this is for non-global or global/forwarding */
18115 	zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
18116 	if (zoneid == ALL_ZONES)
18117 		freemsg(mp);
18118 	else
18119 		icmp_param_problem(q, mp, (uint8_t)code, zoneid, ipst);
18120 	return (-1);
18121 
18122 bad_src_route:
18123 	q = WR(q);
18124 	if (q->q_next != NULL)
18125 		ill = q->q_ptr;
18126 	else
18127 		ill = NULL;
18128 
18129 	/* make sure we clear any indication of a hardware checksum */
18130 	DB_CKSUMFLAGS(mp) = 0;
18131 	zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
18132 	if (zoneid == ALL_ZONES)
18133 		freemsg(mp);
18134 	else
18135 		icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst);
18136 	return (-1);
18137 }
18138 
18139 /*
18140  * IP & ICMP info in >=14 msg's ...
18141  *  - ip fixed part (mib2_ip_t)
18142  *  - icmp fixed part (mib2_icmp_t)
18143  *  - ipAddrEntryTable (ip 20)		all IPv4 ipifs
18144  *  - ipRouteEntryTable (ip 21)		all IPv4 IREs
18145  *  - ipNetToMediaEntryTable (ip 22)	[filled in by the arp module]
18146  *  - ipRouteAttributeTable (ip 102)	labeled routes
18147  *  - ip multicast membership (ip_member_t)
18148  *  - ip multicast source filtering (ip_grpsrc_t)
18149  *  - igmp fixed part (struct igmpstat)
18150  *  - multicast routing stats (struct mrtstat)
18151  *  - multicast routing vifs (array of struct vifctl)
18152  *  - multicast routing routes (array of struct mfcctl)
18153  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
18154  *					One per ill plus one generic
18155  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
18156  *					One per ill plus one generic
18157  *  - ipv6RouteEntry			all IPv6 IREs
18158  *  - ipv6RouteAttributeTable (ip6 102)	labeled routes
18159  *  - ipv6NetToMediaEntry		all Neighbor Cache entries
18160  *  - ipv6AddrEntry			all IPv6 ipifs
18161  *  - ipv6 multicast membership (ipv6_member_t)
18162  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
18163  *
18164  * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries.
18165  *
18166  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
18167  * already filled in by the caller.
18168  * Return value of 0 indicates that no messages were sent and caller
18169  * should free mpctl.
18170  */
18171 int
18172 ip_snmp_get(queue_t *q, mblk_t *mpctl)
18173 {
18174 	ip_stack_t *ipst;
18175 	sctp_stack_t *sctps;
18176 
18177 
18178 	if (q->q_next != NULL) {
18179 		ipst = ILLQ_TO_IPST(q);
18180 	} else {
18181 		ipst = CONNQ_TO_IPST(q);
18182 	}
18183 	ASSERT(ipst != NULL);
18184 	sctps = ipst->ips_netstack->netstack_sctp;
18185 
18186 	if (mpctl == NULL || mpctl->b_cont == NULL) {
18187 		return (0);
18188 	}
18189 
18190 	if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
18191 	    ipst)) == NULL) {
18192 		return (1);
18193 	}
18194 
18195 	if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst)) == NULL) {
18196 		return (1);
18197 	}
18198 
18199 	if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
18200 		return (1);
18201 	}
18202 
18203 	if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
18204 		return (1);
18205 	}
18206 
18207 	if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
18208 		return (1);
18209 	}
18210 
18211 	if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
18212 		return (1);
18213 	}
18214 
18215 	if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst)) == NULL) {
18216 		return (1);
18217 	}
18218 
18219 	if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst)) == NULL) {
18220 		return (1);
18221 	}
18222 
18223 	if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
18224 		return (1);
18225 	}
18226 
18227 	if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
18228 		return (1);
18229 	}
18230 
18231 	if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
18232 		return (1);
18233 	}
18234 
18235 	if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
18236 		return (1);
18237 	}
18238 
18239 	if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
18240 		return (1);
18241 	}
18242 
18243 	if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
18244 		return (1);
18245 	}
18246 
18247 	if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, ipst)) == NULL) {
18248 		return (1);
18249 	}
18250 
18251 	mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, ipst);
18252 	if (mpctl == NULL) {
18253 		return (1);
18254 	}
18255 
18256 	if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
18257 		return (1);
18258 	}
18259 	freemsg(mpctl);
18260 	return (1);
18261 }
18262 
18263 
18264 /* Get global (legacy) IPv4 statistics */
18265 static mblk_t *
18266 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
18267     ip_stack_t *ipst)
18268 {
18269 	mib2_ip_t		old_ip_mib;
18270 	struct opthdr		*optp;
18271 	mblk_t			*mp2ctl;
18272 
18273 	/*
18274 	 * make a copy of the original message
18275 	 */
18276 	mp2ctl = copymsg(mpctl);
18277 
18278 	/* fixed length IP structure... */
18279 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18280 	optp->level = MIB2_IP;
18281 	optp->name = 0;
18282 	SET_MIB(old_ip_mib.ipForwarding,
18283 	    (WE_ARE_FORWARDING(ipst) ? 1 : 2));
18284 	SET_MIB(old_ip_mib.ipDefaultTTL,
18285 	    (uint32_t)ipst->ips_ip_def_ttl);
18286 	SET_MIB(old_ip_mib.ipReasmTimeout,
18287 	    ipst->ips_ip_g_frag_timeout);
18288 	SET_MIB(old_ip_mib.ipAddrEntrySize,
18289 	    sizeof (mib2_ipAddrEntry_t));
18290 	SET_MIB(old_ip_mib.ipRouteEntrySize,
18291 	    sizeof (mib2_ipRouteEntry_t));
18292 	SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
18293 	    sizeof (mib2_ipNetToMediaEntry_t));
18294 	SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
18295 	SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
18296 	SET_MIB(old_ip_mib.ipRouteAttributeSize,
18297 	    sizeof (mib2_ipAttributeEntry_t));
18298 	SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
18299 
18300 	/*
18301 	 * Grab the statistics from the new IP MIB
18302 	 */
18303 	SET_MIB(old_ip_mib.ipInReceives,
18304 	    (uint32_t)ipmib->ipIfStatsHCInReceives);
18305 	SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
18306 	SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
18307 	SET_MIB(old_ip_mib.ipForwDatagrams,
18308 	    (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
18309 	SET_MIB(old_ip_mib.ipInUnknownProtos,
18310 	    ipmib->ipIfStatsInUnknownProtos);
18311 	SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
18312 	SET_MIB(old_ip_mib.ipInDelivers,
18313 	    (uint32_t)ipmib->ipIfStatsHCInDelivers);
18314 	SET_MIB(old_ip_mib.ipOutRequests,
18315 	    (uint32_t)ipmib->ipIfStatsHCOutRequests);
18316 	SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
18317 	SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
18318 	SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
18319 	SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
18320 	SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
18321 	SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
18322 	SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
18323 	SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
18324 
18325 	/* ipRoutingDiscards is not being used */
18326 	SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
18327 	SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
18328 	SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
18329 	SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
18330 	SET_MIB(old_ip_mib.ipReasmDuplicates,
18331 	    ipmib->ipIfStatsReasmDuplicates);
18332 	SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
18333 	SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
18334 	SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
18335 	SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
18336 	SET_MIB(old_ip_mib.rawipInOverflows,
18337 	    ipmib->rawipIfStatsInOverflows);
18338 
18339 	SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
18340 	SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
18341 	SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
18342 	SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
18343 	SET_MIB(old_ip_mib.ipOutSwitchIPv6,
18344 	    ipmib->ipIfStatsOutSwitchIPVersion);
18345 
18346 	if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
18347 	    (int)sizeof (old_ip_mib))) {
18348 		ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
18349 		    (uint_t)sizeof (old_ip_mib)));
18350 	}
18351 
18352 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18353 	ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
18354 	    (int)optp->level, (int)optp->name, (int)optp->len));
18355 	qreply(q, mpctl);
18356 	return (mp2ctl);
18357 }
18358 
18359 /* Per interface IPv4 statistics */
18360 static mblk_t *
18361 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18362 {
18363 	struct opthdr		*optp;
18364 	mblk_t			*mp2ctl;
18365 	ill_t			*ill;
18366 	ill_walk_context_t	ctx;
18367 	mblk_t			*mp_tail = NULL;
18368 	mib2_ipIfStatsEntry_t	global_ip_mib;
18369 
18370 	/*
18371 	 * Make a copy of the original message
18372 	 */
18373 	mp2ctl = copymsg(mpctl);
18374 
18375 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18376 	optp->level = MIB2_IP;
18377 	optp->name = MIB2_IP_TRAFFIC_STATS;
18378 	/* Include "unknown interface" ip_mib */
18379 	ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
18380 	ipst->ips_ip_mib.ipIfStatsIfIndex =
18381 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
18382 	SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
18383 	    (ipst->ips_ip_g_forward ? 1 : 2));
18384 	SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
18385 	    (uint32_t)ipst->ips_ip_def_ttl);
18386 	SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
18387 	    sizeof (mib2_ipIfStatsEntry_t));
18388 	SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
18389 	    sizeof (mib2_ipAddrEntry_t));
18390 	SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
18391 	    sizeof (mib2_ipRouteEntry_t));
18392 	SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
18393 	    sizeof (mib2_ipNetToMediaEntry_t));
18394 	SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
18395 	    sizeof (ip_member_t));
18396 	SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
18397 	    sizeof (ip_grpsrc_t));
18398 
18399 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18400 	    (char *)&ipst->ips_ip_mib, (int)sizeof (ipst->ips_ip_mib))) {
18401 		ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
18402 		    "failed to allocate %u bytes\n",
18403 		    (uint_t)sizeof (ipst->ips_ip_mib)));
18404 	}
18405 
18406 	bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
18407 
18408 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18409 	ill = ILL_START_WALK_V4(&ctx, ipst);
18410 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18411 		ill->ill_ip_mib->ipIfStatsIfIndex =
18412 		    ill->ill_phyint->phyint_ifindex;
18413 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
18414 		    (ipst->ips_ip_g_forward ? 1 : 2));
18415 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
18416 		    (uint32_t)ipst->ips_ip_def_ttl);
18417 
18418 		ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
18419 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18420 		    (char *)ill->ill_ip_mib,
18421 		    (int)sizeof (*ill->ill_ip_mib))) {
18422 			ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
18423 			    "failed to allocate %u bytes\n",
18424 			    (uint_t)sizeof (*ill->ill_ip_mib)));
18425 		}
18426 	}
18427 	rw_exit(&ipst->ips_ill_g_lock);
18428 
18429 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18430 	ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
18431 	    "level %d, name %d, len %d\n",
18432 	    (int)optp->level, (int)optp->name, (int)optp->len));
18433 	qreply(q, mpctl);
18434 
18435 	return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst));
18436 }
18437 
18438 /* Global IPv4 ICMP statistics */
18439 static mblk_t *
18440 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18441 {
18442 	struct opthdr		*optp;
18443 	mblk_t			*mp2ctl;
18444 
18445 	/*
18446 	 * Make a copy of the original message
18447 	 */
18448 	mp2ctl = copymsg(mpctl);
18449 
18450 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18451 	optp->level = MIB2_ICMP;
18452 	optp->name = 0;
18453 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
18454 	    (int)sizeof (ipst->ips_icmp_mib))) {
18455 		ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
18456 		    (uint_t)sizeof (ipst->ips_icmp_mib)));
18457 	}
18458 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18459 	ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
18460 	    (int)optp->level, (int)optp->name, (int)optp->len));
18461 	qreply(q, mpctl);
18462 	return (mp2ctl);
18463 }
18464 
18465 /* Global IPv4 IGMP statistics */
18466 static mblk_t *
18467 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18468 {
18469 	struct opthdr		*optp;
18470 	mblk_t			*mp2ctl;
18471 
18472 	/*
18473 	 * make a copy of the original message
18474 	 */
18475 	mp2ctl = copymsg(mpctl);
18476 
18477 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18478 	optp->level = EXPER_IGMP;
18479 	optp->name = 0;
18480 	if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
18481 	    (int)sizeof (ipst->ips_igmpstat))) {
18482 		ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
18483 		    (uint_t)sizeof (ipst->ips_igmpstat)));
18484 	}
18485 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18486 	ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
18487 	    (int)optp->level, (int)optp->name, (int)optp->len));
18488 	qreply(q, mpctl);
18489 	return (mp2ctl);
18490 }
18491 
18492 /* Global IPv4 Multicast Routing statistics */
18493 static mblk_t *
18494 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18495 {
18496 	struct opthdr		*optp;
18497 	mblk_t			*mp2ctl;
18498 
18499 	/*
18500 	 * make a copy of the original message
18501 	 */
18502 	mp2ctl = copymsg(mpctl);
18503 
18504 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18505 	optp->level = EXPER_DVMRP;
18506 	optp->name = 0;
18507 	if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
18508 		ip0dbg(("ip_mroute_stats: failed\n"));
18509 	}
18510 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18511 	ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
18512 	    (int)optp->level, (int)optp->name, (int)optp->len));
18513 	qreply(q, mpctl);
18514 	return (mp2ctl);
18515 }
18516 
18517 /* IPv4 address information */
18518 static mblk_t *
18519 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18520 {
18521 	struct opthdr		*optp;
18522 	mblk_t			*mp2ctl;
18523 	mblk_t			*mp_tail = NULL;
18524 	ill_t			*ill;
18525 	ipif_t			*ipif;
18526 	uint_t			bitval;
18527 	mib2_ipAddrEntry_t	mae;
18528 	zoneid_t		zoneid;
18529 	ill_walk_context_t ctx;
18530 
18531 	/*
18532 	 * make a copy of the original message
18533 	 */
18534 	mp2ctl = copymsg(mpctl);
18535 
18536 	/* ipAddrEntryTable */
18537 
18538 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18539 	optp->level = MIB2_IP;
18540 	optp->name = MIB2_IP_ADDR;
18541 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18542 
18543 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18544 	ill = ILL_START_WALK_V4(&ctx, ipst);
18545 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18546 		for (ipif = ill->ill_ipif; ipif != NULL;
18547 		    ipif = ipif->ipif_next) {
18548 			if (ipif->ipif_zoneid != zoneid &&
18549 			    ipif->ipif_zoneid != ALL_ZONES)
18550 				continue;
18551 			mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
18552 			mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count;
18553 			mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count;
18554 
18555 			(void) ipif_get_name(ipif,
18556 			    mae.ipAdEntIfIndex.o_bytes,
18557 			    OCTET_LENGTH);
18558 			mae.ipAdEntIfIndex.o_length =
18559 			    mi_strlen(mae.ipAdEntIfIndex.o_bytes);
18560 			mae.ipAdEntAddr = ipif->ipif_lcl_addr;
18561 			mae.ipAdEntNetMask = ipif->ipif_net_mask;
18562 			mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
18563 			mae.ipAdEntInfo.ae_subnet_len =
18564 			    ip_mask_to_plen(ipif->ipif_net_mask);
18565 			mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr;
18566 			for (bitval = 1;
18567 			    bitval &&
18568 			    !(bitval & ipif->ipif_brd_addr);
18569 			    bitval <<= 1)
18570 				noop;
18571 			mae.ipAdEntBcastAddr = bitval;
18572 			mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
18573 			mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu;
18574 			mae.ipAdEntInfo.ae_metric  = ipif->ipif_metric;
18575 			mae.ipAdEntInfo.ae_broadcast_addr =
18576 			    ipif->ipif_brd_addr;
18577 			mae.ipAdEntInfo.ae_pp_dst_addr =
18578 			    ipif->ipif_pp_dst_addr;
18579 			    mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
18580 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
18581 			mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL;
18582 
18583 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18584 			    (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) {
18585 				ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
18586 				    "allocate %u bytes\n",
18587 				    (uint_t)sizeof (mib2_ipAddrEntry_t)));
18588 			}
18589 		}
18590 	}
18591 	rw_exit(&ipst->ips_ill_g_lock);
18592 
18593 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18594 	ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
18595 	    (int)optp->level, (int)optp->name, (int)optp->len));
18596 	qreply(q, mpctl);
18597 	return (mp2ctl);
18598 }
18599 
18600 /* IPv6 address information */
18601 static mblk_t *
18602 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18603 {
18604 	struct opthdr		*optp;
18605 	mblk_t			*mp2ctl;
18606 	mblk_t			*mp_tail = NULL;
18607 	ill_t			*ill;
18608 	ipif_t			*ipif;
18609 	mib2_ipv6AddrEntry_t	mae6;
18610 	zoneid_t		zoneid;
18611 	ill_walk_context_t	ctx;
18612 
18613 	/*
18614 	 * make a copy of the original message
18615 	 */
18616 	mp2ctl = copymsg(mpctl);
18617 
18618 	/* ipv6AddrEntryTable */
18619 
18620 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18621 	optp->level = MIB2_IP6;
18622 	optp->name = MIB2_IP6_ADDR;
18623 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18624 
18625 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18626 	ill = ILL_START_WALK_V6(&ctx, ipst);
18627 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18628 		for (ipif = ill->ill_ipif; ipif != NULL;
18629 		    ipif = ipif->ipif_next) {
18630 			if (ipif->ipif_zoneid != zoneid &&
18631 			    ipif->ipif_zoneid != ALL_ZONES)
18632 				continue;
18633 			mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
18634 			mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count;
18635 			mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count;
18636 
18637 			(void) ipif_get_name(ipif,
18638 			    mae6.ipv6AddrIfIndex.o_bytes,
18639 			    OCTET_LENGTH);
18640 			mae6.ipv6AddrIfIndex.o_length =
18641 			    mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
18642 			mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
18643 			mae6.ipv6AddrPfxLength =
18644 			    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
18645 			mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
18646 			mae6.ipv6AddrInfo.ae_subnet_len =
18647 			    mae6.ipv6AddrPfxLength;
18648 			mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr;
18649 
18650 			/* Type: stateless(1), stateful(2), unknown(3) */
18651 			if (ipif->ipif_flags & IPIF_ADDRCONF)
18652 				mae6.ipv6AddrType = 1;
18653 			else
18654 				mae6.ipv6AddrType = 2;
18655 			/* Anycast: true(1), false(2) */
18656 			if (ipif->ipif_flags & IPIF_ANYCAST)
18657 				mae6.ipv6AddrAnycastFlag = 1;
18658 			else
18659 				mae6.ipv6AddrAnycastFlag = 2;
18660 
18661 			/*
18662 			 * Address status: preferred(1), deprecated(2),
18663 			 * invalid(3), inaccessible(4), unknown(5)
18664 			 */
18665 			if (ipif->ipif_flags & IPIF_NOLOCAL)
18666 				mae6.ipv6AddrStatus = 3;
18667 			else if (ipif->ipif_flags & IPIF_DEPRECATED)
18668 				mae6.ipv6AddrStatus = 2;
18669 			else
18670 				mae6.ipv6AddrStatus = 1;
18671 			mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu;
18672 			mae6.ipv6AddrInfo.ae_metric  = ipif->ipif_metric;
18673 			mae6.ipv6AddrInfo.ae_pp_dst_addr =
18674 						ipif->ipif_v6pp_dst_addr;
18675 			mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
18676 			    ill->ill_flags | ill->ill_phyint->phyint_flags;
18677 			mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
18678 			mae6.ipv6AddrIdentifier = ill->ill_token;
18679 			mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
18680 			mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
18681 			mae6.ipv6AddrRetransmitTime =
18682 			    ill->ill_reachable_retrans_time;
18683 			if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18684 				(char *)&mae6,
18685 				(int)sizeof (mib2_ipv6AddrEntry_t))) {
18686 				ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
18687 				    "allocate %u bytes\n",
18688 				    (uint_t)sizeof (mib2_ipv6AddrEntry_t)));
18689 			}
18690 		}
18691 	}
18692 	rw_exit(&ipst->ips_ill_g_lock);
18693 
18694 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18695 	ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
18696 	    (int)optp->level, (int)optp->name, (int)optp->len));
18697 	qreply(q, mpctl);
18698 	return (mp2ctl);
18699 }
18700 
18701 /* IPv4 multicast group membership. */
18702 static mblk_t *
18703 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18704 {
18705 	struct opthdr		*optp;
18706 	mblk_t			*mp2ctl;
18707 	ill_t			*ill;
18708 	ipif_t			*ipif;
18709 	ilm_t			*ilm;
18710 	ip_member_t		ipm;
18711 	mblk_t			*mp_tail = NULL;
18712 	ill_walk_context_t	ctx;
18713 	zoneid_t		zoneid;
18714 
18715 	/*
18716 	 * make a copy of the original message
18717 	 */
18718 	mp2ctl = copymsg(mpctl);
18719 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18720 
18721 	/* ipGroupMember table */
18722 	optp = (struct opthdr *)&mpctl->b_rptr[
18723 	    sizeof (struct T_optmgmt_ack)];
18724 	optp->level = MIB2_IP;
18725 	optp->name = EXPER_IP_GROUP_MEMBERSHIP;
18726 
18727 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18728 	ill = ILL_START_WALK_V4(&ctx, ipst);
18729 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18730 		ILM_WALKER_HOLD(ill);
18731 		for (ipif = ill->ill_ipif; ipif != NULL;
18732 		    ipif = ipif->ipif_next) {
18733 			if (ipif->ipif_zoneid != zoneid &&
18734 			    ipif->ipif_zoneid != ALL_ZONES)
18735 				continue;	/* not this zone */
18736 			(void) ipif_get_name(ipif,
18737 			    ipm.ipGroupMemberIfIndex.o_bytes,
18738 			    OCTET_LENGTH);
18739 			ipm.ipGroupMemberIfIndex.o_length =
18740 			    mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
18741 			for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
18742 				ASSERT(ilm->ilm_ipif != NULL);
18743 				ASSERT(ilm->ilm_ill == NULL);
18744 				if (ilm->ilm_ipif != ipif)
18745 					continue;
18746 				ipm.ipGroupMemberAddress = ilm->ilm_addr;
18747 				ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
18748 				ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
18749 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18750 				    (char *)&ipm, (int)sizeof (ipm))) {
18751 					ip1dbg(("ip_snmp_get_mib2_ip_group: "
18752 					    "failed to allocate %u bytes\n",
18753 						(uint_t)sizeof (ipm)));
18754 				}
18755 			}
18756 		}
18757 		ILM_WALKER_RELE(ill);
18758 	}
18759 	rw_exit(&ipst->ips_ill_g_lock);
18760 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18761 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
18762 	    (int)optp->level, (int)optp->name, (int)optp->len));
18763 	qreply(q, mpctl);
18764 	return (mp2ctl);
18765 }
18766 
18767 /* IPv6 multicast group membership. */
18768 static mblk_t *
18769 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18770 {
18771 	struct opthdr		*optp;
18772 	mblk_t			*mp2ctl;
18773 	ill_t			*ill;
18774 	ilm_t			*ilm;
18775 	ipv6_member_t		ipm6;
18776 	mblk_t			*mp_tail = NULL;
18777 	ill_walk_context_t	ctx;
18778 	zoneid_t		zoneid;
18779 
18780 	/*
18781 	 * make a copy of the original message
18782 	 */
18783 	mp2ctl = copymsg(mpctl);
18784 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18785 
18786 	/* ip6GroupMember table */
18787 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18788 	optp->level = MIB2_IP6;
18789 	optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
18790 
18791 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18792 	ill = ILL_START_WALK_V6(&ctx, ipst);
18793 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18794 		ILM_WALKER_HOLD(ill);
18795 		ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
18796 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
18797 			ASSERT(ilm->ilm_ipif == NULL);
18798 			ASSERT(ilm->ilm_ill != NULL);
18799 			if (ilm->ilm_zoneid != zoneid)
18800 				continue;	/* not this zone */
18801 			ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
18802 			ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
18803 			ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
18804 			if (!snmp_append_data2(mpctl->b_cont,
18805 			    &mp_tail,
18806 			    (char *)&ipm6, (int)sizeof (ipm6))) {
18807 				ip1dbg(("ip_snmp_get_mib2_ip6_group: "
18808 				    "failed to allocate %u bytes\n",
18809 				    (uint_t)sizeof (ipm6)));
18810 			}
18811 		}
18812 		ILM_WALKER_RELE(ill);
18813 	}
18814 	rw_exit(&ipst->ips_ill_g_lock);
18815 
18816 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18817 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
18818 	    (int)optp->level, (int)optp->name, (int)optp->len));
18819 	qreply(q, mpctl);
18820 	return (mp2ctl);
18821 }
18822 
18823 /* IP multicast filtered sources */
18824 static mblk_t *
18825 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18826 {
18827 	struct opthdr		*optp;
18828 	mblk_t			*mp2ctl;
18829 	ill_t			*ill;
18830 	ipif_t			*ipif;
18831 	ilm_t			*ilm;
18832 	ip_grpsrc_t		ips;
18833 	mblk_t			*mp_tail = NULL;
18834 	ill_walk_context_t	ctx;
18835 	zoneid_t		zoneid;
18836 	int			i;
18837 	slist_t			*sl;
18838 
18839 	/*
18840 	 * make a copy of the original message
18841 	 */
18842 	mp2ctl = copymsg(mpctl);
18843 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18844 
18845 	/* ipGroupSource table */
18846 	optp = (struct opthdr *)&mpctl->b_rptr[
18847 	    sizeof (struct T_optmgmt_ack)];
18848 	optp->level = MIB2_IP;
18849 	optp->name = EXPER_IP_GROUP_SOURCES;
18850 
18851 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18852 	ill = ILL_START_WALK_V4(&ctx, ipst);
18853 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18854 		ILM_WALKER_HOLD(ill);
18855 		for (ipif = ill->ill_ipif; ipif != NULL;
18856 		    ipif = ipif->ipif_next) {
18857 			if (ipif->ipif_zoneid != zoneid)
18858 				continue;	/* not this zone */
18859 			(void) ipif_get_name(ipif,
18860 			    ips.ipGroupSourceIfIndex.o_bytes,
18861 			    OCTET_LENGTH);
18862 			ips.ipGroupSourceIfIndex.o_length =
18863 			    mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
18864 			for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
18865 				ASSERT(ilm->ilm_ipif != NULL);
18866 				ASSERT(ilm->ilm_ill == NULL);
18867 				sl = ilm->ilm_filter;
18868 				if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl))
18869 					continue;
18870 				ips.ipGroupSourceGroup = ilm->ilm_addr;
18871 				for (i = 0; i < sl->sl_numsrc; i++) {
18872 					if (!IN6_IS_ADDR_V4MAPPED(
18873 					    &sl->sl_addr[i]))
18874 						continue;
18875 					IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
18876 					    ips.ipGroupSourceAddress);
18877 					if (snmp_append_data2(mpctl->b_cont,
18878 					    &mp_tail, (char *)&ips,
18879 					    (int)sizeof (ips)) == 0) {
18880 						ip1dbg(("ip_snmp_get_mib2_"
18881 						    "ip_group_src: failed to "
18882 						    "allocate %u bytes\n",
18883 						    (uint_t)sizeof (ips)));
18884 					}
18885 				}
18886 			}
18887 		}
18888 		ILM_WALKER_RELE(ill);
18889 	}
18890 	rw_exit(&ipst->ips_ill_g_lock);
18891 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18892 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
18893 	    (int)optp->level, (int)optp->name, (int)optp->len));
18894 	qreply(q, mpctl);
18895 	return (mp2ctl);
18896 }
18897 
18898 /* IPv6 multicast filtered sources. */
18899 static mblk_t *
18900 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18901 {
18902 	struct opthdr		*optp;
18903 	mblk_t			*mp2ctl;
18904 	ill_t			*ill;
18905 	ilm_t			*ilm;
18906 	ipv6_grpsrc_t		ips6;
18907 	mblk_t			*mp_tail = NULL;
18908 	ill_walk_context_t	ctx;
18909 	zoneid_t		zoneid;
18910 	int			i;
18911 	slist_t			*sl;
18912 
18913 	/*
18914 	 * make a copy of the original message
18915 	 */
18916 	mp2ctl = copymsg(mpctl);
18917 	zoneid = Q_TO_CONN(q)->conn_zoneid;
18918 
18919 	/* ip6GroupMember table */
18920 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18921 	optp->level = MIB2_IP6;
18922 	optp->name = EXPER_IP6_GROUP_SOURCES;
18923 
18924 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18925 	ill = ILL_START_WALK_V6(&ctx, ipst);
18926 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18927 		ILM_WALKER_HOLD(ill);
18928 		ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
18929 		for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
18930 			ASSERT(ilm->ilm_ipif == NULL);
18931 			ASSERT(ilm->ilm_ill != NULL);
18932 			sl = ilm->ilm_filter;
18933 			if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl))
18934 				continue;
18935 			ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
18936 			for (i = 0; i < sl->sl_numsrc; i++) {
18937 				ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
18938 				if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
18939 				    (char *)&ips6, (int)sizeof (ips6))) {
18940 					ip1dbg(("ip_snmp_get_mib2_ip6_"
18941 					    "group_src: failed to allocate "
18942 					    "%u bytes\n",
18943 					    (uint_t)sizeof (ips6)));
18944 				}
18945 			}
18946 		}
18947 		ILM_WALKER_RELE(ill);
18948 	}
18949 	rw_exit(&ipst->ips_ill_g_lock);
18950 
18951 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18952 	ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
18953 	    (int)optp->level, (int)optp->name, (int)optp->len));
18954 	qreply(q, mpctl);
18955 	return (mp2ctl);
18956 }
18957 
18958 /* Multicast routing virtual interface table. */
18959 static mblk_t *
18960 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18961 {
18962 	struct opthdr		*optp;
18963 	mblk_t			*mp2ctl;
18964 
18965 	/*
18966 	 * make a copy of the original message
18967 	 */
18968 	mp2ctl = copymsg(mpctl);
18969 
18970 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18971 	optp->level = EXPER_DVMRP;
18972 	optp->name = EXPER_DVMRP_VIF;
18973 	if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
18974 		ip0dbg(("ip_mroute_vif: failed\n"));
18975 	}
18976 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
18977 	ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
18978 	    (int)optp->level, (int)optp->name, (int)optp->len));
18979 	qreply(q, mpctl);
18980 	return (mp2ctl);
18981 }
18982 
18983 /* Multicast routing table. */
18984 static mblk_t *
18985 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
18986 {
18987 	struct opthdr		*optp;
18988 	mblk_t			*mp2ctl;
18989 
18990 	/*
18991 	 * make a copy of the original message
18992 	 */
18993 	mp2ctl = copymsg(mpctl);
18994 
18995 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
18996 	optp->level = EXPER_DVMRP;
18997 	optp->name = EXPER_DVMRP_MRT;
18998 	if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
18999 		ip0dbg(("ip_mroute_mrt: failed\n"));
19000 	}
19001 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
19002 	ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
19003 	    (int)optp->level, (int)optp->name, (int)optp->len));
19004 	qreply(q, mpctl);
19005 	return (mp2ctl);
19006 }
19007 
19008 /*
19009  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
19010  * in one IRE walk.
19011  */
19012 static mblk_t *
19013 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
19014 {
19015 	struct opthdr	*optp;
19016 	mblk_t		*mp2ctl;	/* Returned */
19017 	mblk_t		*mp3ctl;	/* nettomedia */
19018 	mblk_t		*mp4ctl;	/* routeattrs */
19019 	iproutedata_t	ird;
19020 	zoneid_t	zoneid;
19021 
19022 	/*
19023 	 * make copies of the original message
19024 	 *	- mp2ctl is returned unchanged to the caller for his use
19025 	 *	- mpctl is sent upstream as ipRouteEntryTable
19026 	 *	- mp3ctl is sent upstream as ipNetToMediaEntryTable
19027 	 *	- mp4ctl is sent upstream as ipRouteAttributeTable
19028 	 */
19029 	mp2ctl = copymsg(mpctl);
19030 	mp3ctl = copymsg(mpctl);
19031 	mp4ctl = copymsg(mpctl);
19032 	if (mp3ctl == NULL || mp4ctl == NULL) {
19033 		freemsg(mp4ctl);
19034 		freemsg(mp3ctl);
19035 		freemsg(mp2ctl);
19036 		freemsg(mpctl);
19037 		return (NULL);
19038 	}
19039 
19040 	bzero(&ird, sizeof (ird));
19041 
19042 	ird.ird_route.lp_head = mpctl->b_cont;
19043 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
19044 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
19045 
19046 	zoneid = Q_TO_CONN(q)->conn_zoneid;
19047 	ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
19048 	if (zoneid == GLOBAL_ZONEID) {
19049 		/*
19050 		 * Those IREs are used by Mobile-IP; since mipagent(1M)
19051 		 * requires the sys_net_config or sys_ip_config privilege,
19052 		 * it can only run in the global zone or an exclusive-IP zone,
19053 		 * and both those have a conn_zoneid == GLOBAL_ZONEID.
19054 		 */
19055 		ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird, ipst);
19056 		ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL, ipst);
19057 	}
19058 
19059 	/* ipRouteEntryTable in mpctl */
19060 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19061 	optp->level = MIB2_IP;
19062 	optp->name = MIB2_IP_ROUTE;
19063 	optp->len = msgdsize(ird.ird_route.lp_head);
19064 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
19065 	    (int)optp->level, (int)optp->name, (int)optp->len));
19066 	qreply(q, mpctl);
19067 
19068 	/* ipNetToMediaEntryTable in mp3ctl */
19069 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19070 	optp->level = MIB2_IP;
19071 	optp->name = MIB2_IP_MEDIA;
19072 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
19073 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
19074 	    (int)optp->level, (int)optp->name, (int)optp->len));
19075 	qreply(q, mp3ctl);
19076 
19077 	/* ipRouteAttributeTable in mp4ctl */
19078 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19079 	optp->level = MIB2_IP;
19080 	optp->name = EXPER_IP_RTATTR;
19081 	optp->len = msgdsize(ird.ird_attrs.lp_head);
19082 	ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
19083 	    (int)optp->level, (int)optp->name, (int)optp->len));
19084 	if (optp->len == 0)
19085 		freemsg(mp4ctl);
19086 	else
19087 		qreply(q, mp4ctl);
19088 
19089 	return (mp2ctl);
19090 }
19091 
19092 /*
19093  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
19094  * ipv6NetToMediaEntryTable in an NDP walk.
19095  */
19096 static mblk_t *
19097 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
19098 {
19099 	struct opthdr	*optp;
19100 	mblk_t		*mp2ctl;	/* Returned */
19101 	mblk_t		*mp3ctl;	/* nettomedia */
19102 	mblk_t		*mp4ctl;	/* routeattrs */
19103 	iproutedata_t	ird;
19104 	zoneid_t	zoneid;
19105 
19106 	/*
19107 	 * make copies of the original message
19108 	 *	- mp2ctl is returned unchanged to the caller for his use
19109 	 *	- mpctl is sent upstream as ipv6RouteEntryTable
19110 	 *	- mp3ctl is sent upstream as ipv6NetToMediaEntryTable
19111 	 *	- mp4ctl is sent upstream as ipv6RouteAttributeTable
19112 	 */
19113 	mp2ctl = copymsg(mpctl);
19114 	mp3ctl = copymsg(mpctl);
19115 	mp4ctl = copymsg(mpctl);
19116 	if (mp3ctl == NULL || mp4ctl == NULL) {
19117 		freemsg(mp4ctl);
19118 		freemsg(mp3ctl);
19119 		freemsg(mp2ctl);
19120 		freemsg(mpctl);
19121 		return (NULL);
19122 	}
19123 
19124 	bzero(&ird, sizeof (ird));
19125 
19126 	ird.ird_route.lp_head = mpctl->b_cont;
19127 	ird.ird_netmedia.lp_head = mp3ctl->b_cont;
19128 	ird.ird_attrs.lp_head = mp4ctl->b_cont;
19129 
19130 	zoneid = Q_TO_CONN(q)->conn_zoneid;
19131 	ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
19132 
19133 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19134 	optp->level = MIB2_IP6;
19135 	optp->name = MIB2_IP6_ROUTE;
19136 	optp->len = msgdsize(ird.ird_route.lp_head);
19137 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
19138 	    (int)optp->level, (int)optp->name, (int)optp->len));
19139 	qreply(q, mpctl);
19140 
19141 	/* ipv6NetToMediaEntryTable in mp3ctl */
19142 	ndp_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
19143 
19144 	optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19145 	optp->level = MIB2_IP6;
19146 	optp->name = MIB2_IP6_MEDIA;
19147 	optp->len = msgdsize(ird.ird_netmedia.lp_head);
19148 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
19149 	    (int)optp->level, (int)optp->name, (int)optp->len));
19150 	qreply(q, mp3ctl);
19151 
19152 	/* ipv6RouteAttributeTable in mp4ctl */
19153 	optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19154 	optp->level = MIB2_IP6;
19155 	optp->name = EXPER_IP_RTATTR;
19156 	optp->len = msgdsize(ird.ird_attrs.lp_head);
19157 	ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
19158 	    (int)optp->level, (int)optp->name, (int)optp->len));
19159 	if (optp->len == 0)
19160 		freemsg(mp4ctl);
19161 	else
19162 		qreply(q, mp4ctl);
19163 
19164 	return (mp2ctl);
19165 }
19166 
19167 /*
19168  * IPv6 mib: One per ill
19169  */
19170 static mblk_t *
19171 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
19172 {
19173 	struct opthdr		*optp;
19174 	mblk_t			*mp2ctl;
19175 	ill_t			*ill;
19176 	ill_walk_context_t	ctx;
19177 	mblk_t			*mp_tail = NULL;
19178 
19179 	/*
19180 	 * Make a copy of the original message
19181 	 */
19182 	mp2ctl = copymsg(mpctl);
19183 
19184 	/* fixed length IPv6 structure ... */
19185 
19186 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19187 	optp->level = MIB2_IP6;
19188 	optp->name = 0;
19189 	/* Include "unknown interface" ip6_mib */
19190 	ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
19191 	ipst->ips_ip6_mib.ipIfStatsIfIndex =
19192 	    MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
19193 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
19194 	    ipst->ips_ipv6_forward ? 1 : 2);
19195 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
19196 	    ipst->ips_ipv6_def_hops);
19197 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
19198 	    sizeof (mib2_ipIfStatsEntry_t));
19199 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
19200 	    sizeof (mib2_ipv6AddrEntry_t));
19201 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
19202 	    sizeof (mib2_ipv6RouteEntry_t));
19203 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
19204 	    sizeof (mib2_ipv6NetToMediaEntry_t));
19205 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
19206 	    sizeof (ipv6_member_t));
19207 	SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
19208 	    sizeof (ipv6_grpsrc_t));
19209 
19210 	/*
19211 	 * Synchronize 64- and 32-bit counters
19212 	 */
19213 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
19214 	    ipIfStatsHCInReceives);
19215 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
19216 	    ipIfStatsHCInDelivers);
19217 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
19218 	    ipIfStatsHCOutRequests);
19219 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
19220 	    ipIfStatsHCOutForwDatagrams);
19221 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
19222 	    ipIfStatsHCOutMcastPkts);
19223 	SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
19224 	    ipIfStatsHCInMcastPkts);
19225 
19226 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
19227 	    (char *)&ipst->ips_ip6_mib, (int)sizeof (ipst->ips_ip6_mib))) {
19228 		ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
19229 		    (uint_t)sizeof (ipst->ips_ip6_mib)));
19230 	}
19231 
19232 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19233 	ill = ILL_START_WALK_V6(&ctx, ipst);
19234 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
19235 		ill->ill_ip_mib->ipIfStatsIfIndex =
19236 		    ill->ill_phyint->phyint_ifindex;
19237 		SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
19238 		    ipst->ips_ipv6_forward ? 1 : 2);
19239 		SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
19240 		    ill->ill_max_hops);
19241 
19242 		/*
19243 		 * Synchronize 64- and 32-bit counters
19244 		 */
19245 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
19246 		    ipIfStatsHCInReceives);
19247 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
19248 		    ipIfStatsHCInDelivers);
19249 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
19250 		    ipIfStatsHCOutRequests);
19251 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
19252 		    ipIfStatsHCOutForwDatagrams);
19253 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
19254 		    ipIfStatsHCOutMcastPkts);
19255 		SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
19256 		    ipIfStatsHCInMcastPkts);
19257 
19258 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
19259 		    (char *)ill->ill_ip_mib,
19260 		    (int)sizeof (*ill->ill_ip_mib))) {
19261 			ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
19262 				"%u bytes\n",
19263 				(uint_t)sizeof (*ill->ill_ip_mib)));
19264 		}
19265 	}
19266 	rw_exit(&ipst->ips_ill_g_lock);
19267 
19268 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
19269 	ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
19270 	    (int)optp->level, (int)optp->name, (int)optp->len));
19271 	qreply(q, mpctl);
19272 	return (mp2ctl);
19273 }
19274 
19275 /*
19276  * ICMPv6 mib: One per ill
19277  */
19278 static mblk_t *
19279 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
19280 {
19281 	struct opthdr		*optp;
19282 	mblk_t			*mp2ctl;
19283 	ill_t			*ill;
19284 	ill_walk_context_t	ctx;
19285 	mblk_t			*mp_tail = NULL;
19286 	/*
19287 	 * Make a copy of the original message
19288 	 */
19289 	mp2ctl = copymsg(mpctl);
19290 
19291 	/* fixed length ICMPv6 structure ... */
19292 
19293 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
19294 	optp->level = MIB2_ICMP6;
19295 	optp->name = 0;
19296 	/* Include "unknown interface" icmp6_mib */
19297 	ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
19298 	    MIB2_UNKNOWN_INTERFACE; /* netstat flag */
19299 	ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
19300 	    sizeof (mib2_ipv6IfIcmpEntry_t);
19301 	if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
19302 	    (char *)&ipst->ips_icmp6_mib,
19303 	    (int)sizeof (ipst->ips_icmp6_mib))) {
19304 		ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
19305 		    (uint_t)sizeof (ipst->ips_icmp6_mib)));
19306 	}
19307 
19308 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
19309 	ill = ILL_START_WALK_V6(&ctx, ipst);
19310 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
19311 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
19312 		    ill->ill_phyint->phyint_ifindex;
19313 		if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
19314 		    (char *)ill->ill_icmp6_mib,
19315 		    (int)sizeof (*ill->ill_icmp6_mib))) {
19316 			ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
19317 			    "%u bytes\n",
19318 			    (uint_t)sizeof (*ill->ill_icmp6_mib)));
19319 		}
19320 	}
19321 	rw_exit(&ipst->ips_ill_g_lock);
19322 
19323 	optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
19324 	ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
19325 	    (int)optp->level, (int)optp->name, (int)optp->len));
19326 	qreply(q, mpctl);
19327 	return (mp2ctl);
19328 }
19329 
19330 /*
19331  * ire_walk routine to create both ipRouteEntryTable and
19332  * ipRouteAttributeTable in one IRE walk
19333  */
19334 static void
19335 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
19336 {
19337 	ill_t				*ill;
19338 	ipif_t				*ipif;
19339 	mib2_ipRouteEntry_t		*re;
19340 	mib2_ipAttributeEntry_t		*iae, *iaeptr;
19341 	ipaddr_t			gw_addr;
19342 	tsol_ire_gw_secattr_t		*attrp;
19343 	tsol_gc_t			*gc = NULL;
19344 	tsol_gcgrp_t			*gcgrp = NULL;
19345 	uint_t				sacnt = 0;
19346 	int				i;
19347 
19348 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
19349 
19350 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
19351 		return;
19352 
19353 	if ((attrp = ire->ire_gw_secattr) != NULL) {
19354 		mutex_enter(&attrp->igsa_lock);
19355 		if ((gc = attrp->igsa_gc) != NULL) {
19356 			gcgrp = gc->gc_grp;
19357 			ASSERT(gcgrp != NULL);
19358 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
19359 			sacnt = 1;
19360 		} else if ((gcgrp = attrp->igsa_gcgrp) != NULL) {
19361 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
19362 			gc = gcgrp->gcgrp_head;
19363 			sacnt = gcgrp->gcgrp_count;
19364 		}
19365 		mutex_exit(&attrp->igsa_lock);
19366 
19367 		/* do nothing if there's no gc to report */
19368 		if (gc == NULL) {
19369 			ASSERT(sacnt == 0);
19370 			if (gcgrp != NULL) {
19371 				/* we might as well drop the lock now */
19372 				rw_exit(&gcgrp->gcgrp_rwlock);
19373 				gcgrp = NULL;
19374 			}
19375 			attrp = NULL;
19376 		}
19377 
19378 		ASSERT(gc == NULL || (gcgrp != NULL &&
19379 		    RW_LOCK_HELD(&gcgrp->gcgrp_rwlock)));
19380 	}
19381 	ASSERT(sacnt == 0 || gc != NULL);
19382 
19383 	if (sacnt != 0 &&
19384 	    (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) {
19385 		kmem_free(re, sizeof (*re));
19386 		rw_exit(&gcgrp->gcgrp_rwlock);
19387 		return;
19388 	}
19389 
19390 	/*
19391 	 * Return all IRE types for route table... let caller pick and choose
19392 	 */
19393 	re->ipRouteDest = ire->ire_addr;
19394 	ipif = ire->ire_ipif;
19395 	re->ipRouteIfIndex.o_length = 0;
19396 	if (ire->ire_type == IRE_CACHE) {
19397 		ill = (ill_t *)ire->ire_stq->q_ptr;
19398 		re->ipRouteIfIndex.o_length =
19399 		    ill->ill_name_length == 0 ? 0 :
19400 		    MIN(OCTET_LENGTH, ill->ill_name_length - 1);
19401 		bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes,
19402 		    re->ipRouteIfIndex.o_length);
19403 	} else if (ipif != NULL) {
19404 		(void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes,
19405 		    OCTET_LENGTH);
19406 		re->ipRouteIfIndex.o_length =
19407 		    mi_strlen(re->ipRouteIfIndex.o_bytes);
19408 	}
19409 	re->ipRouteMetric1 = -1;
19410 	re->ipRouteMetric2 = -1;
19411 	re->ipRouteMetric3 = -1;
19412 	re->ipRouteMetric4 = -1;
19413 
19414 	gw_addr = ire->ire_gateway_addr;
19415 
19416 	if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST))
19417 		re->ipRouteNextHop = ire->ire_src_addr;
19418 	else
19419 		re->ipRouteNextHop = gw_addr;
19420 	/* indirect(4), direct(3), or invalid(2) */
19421 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
19422 		re->ipRouteType = 2;
19423 	else
19424 		re->ipRouteType = (gw_addr != 0) ? 4 : 3;
19425 	re->ipRouteProto = -1;
19426 	re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
19427 	re->ipRouteMask = ire->ire_mask;
19428 	re->ipRouteMetric5 = -1;
19429 	re->ipRouteInfo.re_max_frag	= ire->ire_max_frag;
19430 	re->ipRouteInfo.re_frag_flag	= ire->ire_frag_flag;
19431 	re->ipRouteInfo.re_rtt		= ire->ire_uinfo.iulp_rtt;
19432 	re->ipRouteInfo.re_ref		= ire->ire_refcnt;
19433 	re->ipRouteInfo.re_src_addr	= ire->ire_src_addr;
19434 	re->ipRouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
19435 	re->ipRouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
19436 	re->ipRouteInfo.re_flags	= ire->ire_flags;
19437 	re->ipRouteInfo.re_in_ill.o_length = 0;
19438 
19439 	if (ire->ire_flags & RTF_DYNAMIC) {
19440 		re->ipRouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
19441 	} else {
19442 		re->ipRouteInfo.re_ire_type	= ire->ire_type;
19443 	}
19444 
19445 	if (ire->ire_in_ill != NULL) {
19446 		re->ipRouteInfo.re_in_ill.o_length =
19447 		    ire->ire_in_ill->ill_name_length == 0 ? 0 :
19448 		    MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1);
19449 		bcopy(ire->ire_in_ill->ill_name,
19450 		    re->ipRouteInfo.re_in_ill.o_bytes,
19451 		    re->ipRouteInfo.re_in_ill.o_length);
19452 	}
19453 	re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr;
19454 
19455 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
19456 	    (char *)re, (int)sizeof (*re))) {
19457 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
19458 		    (uint_t)sizeof (*re)));
19459 	}
19460 
19461 	for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) {
19462 		iaeptr->iae_routeidx = ird->ird_idx;
19463 		iaeptr->iae_doi = gc->gc_db->gcdb_doi;
19464 		iaeptr->iae_slrange = gc->gc_db->gcdb_slrange;
19465 	}
19466 
19467 	if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail,
19468 	    (char *)iae, sacnt * sizeof (*iae))) {
19469 		ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
19470 		    (unsigned)(sacnt * sizeof (*iae))));
19471 	}
19472 
19473 	/* bump route index for next pass */
19474 	ird->ird_idx++;
19475 
19476 	kmem_free(re, sizeof (*re));
19477 	if (sacnt != 0)
19478 		kmem_free(iae, sacnt * sizeof (*iae));
19479 
19480 	if (gcgrp != NULL)
19481 		rw_exit(&gcgrp->gcgrp_rwlock);
19482 }
19483 
19484 /*
19485  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
19486  */
19487 static void
19488 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
19489 {
19490 	ill_t				*ill;
19491 	ipif_t				*ipif;
19492 	mib2_ipv6RouteEntry_t		*re;
19493 	mib2_ipAttributeEntry_t		*iae, *iaeptr;
19494 	in6_addr_t			gw_addr_v6;
19495 	tsol_ire_gw_secattr_t		*attrp;
19496 	tsol_gc_t			*gc = NULL;
19497 	tsol_gcgrp_t			*gcgrp = NULL;
19498 	uint_t				sacnt = 0;
19499 	int				i;
19500 
19501 	ASSERT(ire->ire_ipversion == IPV6_VERSION);
19502 
19503 	if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
19504 		return;
19505 
19506 	if ((attrp = ire->ire_gw_secattr) != NULL) {
19507 		mutex_enter(&attrp->igsa_lock);
19508 		if ((gc = attrp->igsa_gc) != NULL) {
19509 			gcgrp = gc->gc_grp;
19510 			ASSERT(gcgrp != NULL);
19511 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
19512 			sacnt = 1;
19513 		} else if ((gcgrp = attrp->igsa_gcgrp) != NULL) {
19514 			rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
19515 			gc = gcgrp->gcgrp_head;
19516 			sacnt = gcgrp->gcgrp_count;
19517 		}
19518 		mutex_exit(&attrp->igsa_lock);
19519 
19520 		/* do nothing if there's no gc to report */
19521 		if (gc == NULL) {
19522 			ASSERT(sacnt == 0);
19523 			if (gcgrp != NULL) {
19524 				/* we might as well drop the lock now */
19525 				rw_exit(&gcgrp->gcgrp_rwlock);
19526 				gcgrp = NULL;
19527 			}
19528 			attrp = NULL;
19529 		}
19530 
19531 		ASSERT(gc == NULL || (gcgrp != NULL &&
19532 		    RW_LOCK_HELD(&gcgrp->gcgrp_rwlock)));
19533 	}
19534 	ASSERT(sacnt == 0 || gc != NULL);
19535 
19536 	if (sacnt != 0 &&
19537 	    (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) {
19538 		kmem_free(re, sizeof (*re));
19539 		rw_exit(&gcgrp->gcgrp_rwlock);
19540 		return;
19541 	}
19542 
19543 	/*
19544 	 * Return all IRE types for route table... let caller pick and choose
19545 	 */
19546 	re->ipv6RouteDest = ire->ire_addr_v6;
19547 	re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
19548 	re->ipv6RouteIndex = 0;	/* Unique when multiple with same dest/plen */
19549 	re->ipv6RouteIfIndex.o_length = 0;
19550 	ipif = ire->ire_ipif;
19551 	if (ire->ire_type == IRE_CACHE) {
19552 		ill = (ill_t *)ire->ire_stq->q_ptr;
19553 		re->ipv6RouteIfIndex.o_length =
19554 		    ill->ill_name_length == 0 ? 0 :
19555 		    MIN(OCTET_LENGTH, ill->ill_name_length - 1);
19556 		bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes,
19557 		    re->ipv6RouteIfIndex.o_length);
19558 	} else if (ipif != NULL) {
19559 		(void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes,
19560 		    OCTET_LENGTH);
19561 		re->ipv6RouteIfIndex.o_length =
19562 		    mi_strlen(re->ipv6RouteIfIndex.o_bytes);
19563 	}
19564 
19565 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19566 
19567 	mutex_enter(&ire->ire_lock);
19568 	gw_addr_v6 = ire->ire_gateway_addr_v6;
19569 	mutex_exit(&ire->ire_lock);
19570 
19571 	if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK))
19572 		re->ipv6RouteNextHop = ire->ire_src_addr_v6;
19573 	else
19574 		re->ipv6RouteNextHop = gw_addr_v6;
19575 
19576 	/* remote(4), local(3), or discard(2) */
19577 	if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
19578 		re->ipv6RouteType = 2;
19579 	else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6))
19580 		re->ipv6RouteType = 3;
19581 	else
19582 		re->ipv6RouteType = 4;
19583 
19584 	re->ipv6RouteProtocol	= -1;
19585 	re->ipv6RoutePolicy	= 0;
19586 	re->ipv6RouteAge	= gethrestime_sec() - ire->ire_create_time;
19587 	re->ipv6RouteNextHopRDI	= 0;
19588 	re->ipv6RouteWeight	= 0;
19589 	re->ipv6RouteMetric	= 0;
19590 	re->ipv6RouteInfo.re_max_frag	= ire->ire_max_frag;
19591 	re->ipv6RouteInfo.re_frag_flag	= ire->ire_frag_flag;
19592 	re->ipv6RouteInfo.re_rtt	= ire->ire_uinfo.iulp_rtt;
19593 	re->ipv6RouteInfo.re_src_addr	= ire->ire_src_addr_v6;
19594 	re->ipv6RouteInfo.re_obpkt	= ire->ire_ob_pkt_count;
19595 	re->ipv6RouteInfo.re_ibpkt	= ire->ire_ib_pkt_count;
19596 	re->ipv6RouteInfo.re_ref	= ire->ire_refcnt;
19597 	re->ipv6RouteInfo.re_flags	= ire->ire_flags;
19598 
19599 	if (ire->ire_flags & RTF_DYNAMIC) {
19600 		re->ipv6RouteInfo.re_ire_type	= IRE_HOST_REDIRECT;
19601 	} else {
19602 		re->ipv6RouteInfo.re_ire_type	= ire->ire_type;
19603 	}
19604 
19605 	if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
19606 	    (char *)re, (int)sizeof (*re))) {
19607 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
19608 		    (uint_t)sizeof (*re)));
19609 	}
19610 
19611 	for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) {
19612 		iaeptr->iae_routeidx = ird->ird_idx;
19613 		iaeptr->iae_doi = gc->gc_db->gcdb_doi;
19614 		iaeptr->iae_slrange = gc->gc_db->gcdb_slrange;
19615 	}
19616 
19617 	if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail,
19618 	    (char *)iae, sacnt * sizeof (*iae))) {
19619 		ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
19620 		    (unsigned)(sacnt * sizeof (*iae))));
19621 	}
19622 
19623 	/* bump route index for next pass */
19624 	ird->ird_idx++;
19625 
19626 	kmem_free(re, sizeof (*re));
19627 	if (sacnt != 0)
19628 		kmem_free(iae, sacnt * sizeof (*iae));
19629 
19630 	if (gcgrp != NULL)
19631 		rw_exit(&gcgrp->gcgrp_rwlock);
19632 }
19633 
19634 /*
19635  * ndp_walk routine to create ipv6NetToMediaEntryTable
19636  */
19637 static int
19638 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird)
19639 {
19640 	ill_t				*ill;
19641 	mib2_ipv6NetToMediaEntry_t	ntme;
19642 	dl_unitdata_req_t		*dl;
19643 
19644 	ill = nce->nce_ill;
19645 	if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */
19646 		return (0);
19647 
19648 	/*
19649 	 * Neighbor cache entry attached to IRE with on-link
19650 	 * destination.
19651 	 */
19652 	ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
19653 	ntme.ipv6NetToMediaNetAddress = nce->nce_addr;
19654 	if ((ill->ill_flags & ILLF_XRESOLV) &&
19655 	    (nce->nce_res_mp != NULL)) {
19656 		dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr);
19657 		ntme.ipv6NetToMediaPhysAddress.o_length =
19658 		    dl->dl_dest_addr_length;
19659 	} else {
19660 		ntme.ipv6NetToMediaPhysAddress.o_length =
19661 		    ill->ill_phys_addr_length;
19662 	}
19663 	if (nce->nce_res_mp != NULL) {
19664 		bcopy((char *)nce->nce_res_mp->b_rptr +
19665 		    NCE_LL_ADDR_OFFSET(ill),
19666 		    ntme.ipv6NetToMediaPhysAddress.o_bytes,
19667 		    ntme.ipv6NetToMediaPhysAddress.o_length);
19668 	} else {
19669 		bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes,
19670 		    ill->ill_phys_addr_length);
19671 	}
19672 	/*
19673 	 * Note: Returns ND_* states. Should be:
19674 	 * reachable(1), stale(2), delay(3), probe(4),
19675 	 * invalid(5), unknown(6)
19676 	 */
19677 	ntme.ipv6NetToMediaState = nce->nce_state;
19678 	ntme.ipv6NetToMediaLastUpdated = 0;
19679 
19680 	/* other(1), dynamic(2), static(3), local(4) */
19681 	if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) {
19682 		ntme.ipv6NetToMediaType = 4;
19683 	} else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) {
19684 		ntme.ipv6NetToMediaType = 1;
19685 	} else {
19686 		ntme.ipv6NetToMediaType = 2;
19687 	}
19688 
19689 	if (!snmp_append_data2(ird->ird_netmedia.lp_head,
19690 	    &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
19691 		ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
19692 		    (uint_t)sizeof (ntme)));
19693 	}
19694 	return (0);
19695 }
19696 
19697 /*
19698  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
19699  */
19700 /* ARGSUSED */
19701 int
19702 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
19703 {
19704 	switch (level) {
19705 	case MIB2_IP:
19706 	case MIB2_ICMP:
19707 		switch (name) {
19708 		default:
19709 			break;
19710 		}
19711 		return (1);
19712 	default:
19713 		return (1);
19714 	}
19715 }
19716 
19717 /*
19718  * When there exists both a 64- and 32-bit counter of a particular type
19719  * (i.e., InReceives), only the 64-bit counters are added.
19720  */
19721 void
19722 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
19723 {
19724 	UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
19725 	UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
19726 	UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
19727 	UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
19728 	UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
19729 	UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
19730 	UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
19731 	UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
19732 	UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
19733 	UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
19734 	UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
19735 	UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
19736 	UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
19737 	UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
19738 	UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
19739 	UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
19740 	UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
19741 	UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
19742 	UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
19743 	UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
19744 	UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
19745 	UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
19746 	    o2->ipIfStatsInWrongIPVersion);
19747 	UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
19748 	    o2->ipIfStatsInWrongIPVersion);
19749 	UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
19750 	    o2->ipIfStatsOutSwitchIPVersion);
19751 	UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
19752 	UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
19753 	UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
19754 	    o2->ipIfStatsHCInForwDatagrams);
19755 	UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
19756 	UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
19757 	UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
19758 	    o2->ipIfStatsHCOutForwDatagrams);
19759 	UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
19760 	UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
19761 	UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
19762 	UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
19763 	UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
19764 	UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
19765 	UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
19766 	    o2->ipIfStatsHCOutMcastOctets);
19767 	UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
19768 	UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
19769 	UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
19770 	UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
19771 	UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
19772 	UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
19773 	UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
19774 }
19775 
19776 void
19777 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
19778 {
19779 	UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
19780 	UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
19781 	UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
19782 	UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
19783 	UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
19784 	UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
19785 	UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
19786 	UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
19787 	UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
19788 	UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
19789 	    o2->ipv6IfIcmpInRouterSolicits);
19790 	UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
19791 	    o2->ipv6IfIcmpInRouterAdvertisements);
19792 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
19793 	    o2->ipv6IfIcmpInNeighborSolicits);
19794 	UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
19795 	    o2->ipv6IfIcmpInNeighborAdvertisements);
19796 	UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
19797 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
19798 	    o2->ipv6IfIcmpInGroupMembQueries);
19799 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
19800 	    o2->ipv6IfIcmpInGroupMembResponses);
19801 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
19802 	    o2->ipv6IfIcmpInGroupMembReductions);
19803 	UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
19804 	UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
19805 	UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
19806 	    o2->ipv6IfIcmpOutDestUnreachs);
19807 	UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
19808 	    o2->ipv6IfIcmpOutAdminProhibs);
19809 	UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
19810 	UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
19811 	    o2->ipv6IfIcmpOutParmProblems);
19812 	UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
19813 	UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
19814 	UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
19815 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
19816 	    o2->ipv6IfIcmpOutRouterSolicits);
19817 	UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
19818 	    o2->ipv6IfIcmpOutRouterAdvertisements);
19819 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
19820 	    o2->ipv6IfIcmpOutNeighborSolicits);
19821 	UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
19822 	    o2->ipv6IfIcmpOutNeighborAdvertisements);
19823 	UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
19824 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
19825 	    o2->ipv6IfIcmpOutGroupMembQueries);
19826 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
19827 	    o2->ipv6IfIcmpOutGroupMembResponses);
19828 	UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
19829 	    o2->ipv6IfIcmpOutGroupMembReductions);
19830 	UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
19831 	UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
19832 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
19833 	    o2->ipv6IfIcmpInBadNeighborAdvertisements);
19834 	UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
19835 	    o2->ipv6IfIcmpInBadNeighborSolicitations);
19836 	UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
19837 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
19838 	    o2->ipv6IfIcmpInGroupMembTotal);
19839 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
19840 	    o2->ipv6IfIcmpInGroupMembBadQueries);
19841 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
19842 	    o2->ipv6IfIcmpInGroupMembBadReports);
19843 	UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
19844 	    o2->ipv6IfIcmpInGroupMembOurReports);
19845 }
19846 
19847 /*
19848  * Called before the options are updated to check if this packet will
19849  * be source routed from here.
19850  * This routine assumes that the options are well formed i.e. that they
19851  * have already been checked.
19852  */
19853 static boolean_t
19854 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
19855 {
19856 	ipoptp_t	opts;
19857 	uchar_t		*opt;
19858 	uint8_t		optval;
19859 	uint8_t		optlen;
19860 	ipaddr_t	dst;
19861 	ire_t		*ire;
19862 
19863 	if (IS_SIMPLE_IPH(ipha)) {
19864 		ip2dbg(("not source routed\n"));
19865 		return (B_FALSE);
19866 	}
19867 	dst = ipha->ipha_dst;
19868 	for (optval = ipoptp_first(&opts, ipha);
19869 	    optval != IPOPT_EOL;
19870 	    optval = ipoptp_next(&opts)) {
19871 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
19872 		opt = opts.ipoptp_cur;
19873 		optlen = opts.ipoptp_len;
19874 		ip2dbg(("ip_source_routed: opt %d, len %d\n",
19875 		    optval, optlen));
19876 		switch (optval) {
19877 			uint32_t off;
19878 		case IPOPT_SSRR:
19879 		case IPOPT_LSRR:
19880 			/*
19881 			 * If dst is one of our addresses and there are some
19882 			 * entries left in the source route return (true).
19883 			 */
19884 			ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL,
19885 			    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
19886 			if (ire == NULL) {
19887 				ip2dbg(("ip_source_routed: not next"
19888 				    " source route 0x%x\n",
19889 				    ntohl(dst)));
19890 				return (B_FALSE);
19891 			}
19892 			ire_refrele(ire);
19893 			off = opt[IPOPT_OFFSET];
19894 			off--;
19895 			if (optlen < IP_ADDR_LEN ||
19896 			    off > optlen - IP_ADDR_LEN) {
19897 				/* End of source route */
19898 				ip1dbg(("ip_source_routed: end of SR\n"));
19899 				return (B_FALSE);
19900 			}
19901 			return (B_TRUE);
19902 		}
19903 	}
19904 	ip2dbg(("not source routed\n"));
19905 	return (B_FALSE);
19906 }
19907 
19908 /*
19909  * Check if the packet contains any source route.
19910  */
19911 static boolean_t
19912 ip_source_route_included(ipha_t *ipha)
19913 {
19914 	ipoptp_t	opts;
19915 	uint8_t		optval;
19916 
19917 	if (IS_SIMPLE_IPH(ipha))
19918 		return (B_FALSE);
19919 	for (optval = ipoptp_first(&opts, ipha);
19920 	    optval != IPOPT_EOL;
19921 	    optval = ipoptp_next(&opts)) {
19922 		switch (optval) {
19923 		case IPOPT_SSRR:
19924 		case IPOPT_LSRR:
19925 			return (B_TRUE);
19926 		}
19927 	}
19928 	return (B_FALSE);
19929 }
19930 
19931 /*
19932  * Called when the IRE expiration timer fires.
19933  */
19934 void
19935 ip_trash_timer_expire(void *args)
19936 {
19937 	int			flush_flag = 0;
19938 	ire_expire_arg_t	iea;
19939 	ip_stack_t		*ipst = (ip_stack_t *)args;
19940 
19941 	iea.iea_ipst = ipst;	/* No netstack_hold */
19942 
19943 	/*
19944 	 * ip_ire_expire_id is protected by ip_trash_timer_lock.
19945 	 * This lock makes sure that a new invocation of this function
19946 	 * that occurs due to an almost immediate timer firing will not
19947 	 * progress beyond this point until the current invocation is done
19948 	 */
19949 	mutex_enter(&ipst->ips_ip_trash_timer_lock);
19950 	ipst->ips_ip_ire_expire_id = 0;
19951 	mutex_exit(&ipst->ips_ip_trash_timer_lock);
19952 
19953 	/* Periodic timer */
19954 	if (ipst->ips_ip_ire_arp_time_elapsed >=
19955 	    ipst->ips_ip_ire_arp_interval) {
19956 		/*
19957 		 * Remove all IRE_CACHE entries since they might
19958 		 * contain arp information.
19959 		 */
19960 		flush_flag |= FLUSH_ARP_TIME;
19961 		ipst->ips_ip_ire_arp_time_elapsed = 0;
19962 		IP_STAT(ipst, ip_ire_arp_timer_expired);
19963 	}
19964 	if (ipst->ips_ip_ire_rd_time_elapsed >=
19965 	    ipst->ips_ip_ire_redir_interval) {
19966 		/* Remove all redirects */
19967 		flush_flag |= FLUSH_REDIRECT_TIME;
19968 		ipst->ips_ip_ire_rd_time_elapsed = 0;
19969 		IP_STAT(ipst, ip_ire_redirect_timer_expired);
19970 	}
19971 	if (ipst->ips_ip_ire_pmtu_time_elapsed >=
19972 	    ipst->ips_ip_ire_pathmtu_interval) {
19973 		/* Increase path mtu */
19974 		flush_flag |= FLUSH_MTU_TIME;
19975 		ipst->ips_ip_ire_pmtu_time_elapsed = 0;
19976 		IP_STAT(ipst, ip_ire_pmtu_timer_expired);
19977 	}
19978 
19979 	/*
19980 	 * Optimize for the case when there are no redirects in the
19981 	 * ftable, that is, no need to walk the ftable in that case.
19982 	 */
19983 	if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) {
19984 		iea.iea_flush_flag = flush_flag;
19985 		ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire,
19986 		    (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE, 0, NULL,
19987 		    ipst->ips_ip_cache_table_size, ipst->ips_ip_cache_table,
19988 		    NULL, ALL_ZONES, ipst);
19989 	}
19990 	if ((flush_flag & FLUSH_REDIRECT_TIME) &&
19991 	    ipst->ips_ip_redirect_cnt > 0) {
19992 		iea.iea_flush_flag = flush_flag;
19993 		ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE,
19994 		    ire_expire, (char *)(uintptr_t)&iea, IP_MASK_TABLE_SIZE,
19995 		    0, NULL, 0, NULL, NULL, ALL_ZONES, ipst);
19996 	}
19997 	if (flush_flag & FLUSH_MTU_TIME) {
19998 		/*
19999 		 * Walk all IPv6 IRE's and update them
20000 		 * Note that ARP and redirect timers are not
20001 		 * needed since NUD handles stale entries.
20002 		 */
20003 		flush_flag = FLUSH_MTU_TIME;
20004 		iea.iea_flush_flag = flush_flag;
20005 		ire_walk_v6(ire_expire, (char *)(uintptr_t)&iea,
20006 		    ALL_ZONES, ipst);
20007 	}
20008 
20009 	ipst->ips_ip_ire_arp_time_elapsed += ipst->ips_ip_timer_interval;
20010 	ipst->ips_ip_ire_rd_time_elapsed += ipst->ips_ip_timer_interval;
20011 	ipst->ips_ip_ire_pmtu_time_elapsed += ipst->ips_ip_timer_interval;
20012 
20013 	/*
20014 	 * Hold the lock to serialize timeout calls and prevent
20015 	 * stale values in ip_ire_expire_id. Otherwise it is possible
20016 	 * for the timer to fire and a new invocation of this function
20017 	 * to start before the return value of timeout has been stored
20018 	 * in ip_ire_expire_id by the current invocation.
20019 	 */
20020 	mutex_enter(&ipst->ips_ip_trash_timer_lock);
20021 	ipst->ips_ip_ire_expire_id = timeout(ip_trash_timer_expire,
20022 	    (void *)ipst, MSEC_TO_TICK(ipst->ips_ip_timer_interval));
20023 	mutex_exit(&ipst->ips_ip_trash_timer_lock);
20024 }
20025 
20026 /*
20027  * Called by the memory allocator subsystem directly, when the system
20028  * is running low on memory.
20029  */
20030 /* ARGSUSED */
20031 void
20032 ip_trash_ire_reclaim(void *args)
20033 {
20034 	netstack_handle_t nh;
20035 	netstack_t *ns;
20036 
20037 	netstack_next_init(&nh);
20038 	while ((ns = netstack_next(&nh)) != NULL) {
20039 		ip_trash_ire_reclaim_stack(ns->netstack_ip);
20040 		netstack_rele(ns);
20041 	}
20042 	netstack_next_fini(&nh);
20043 }
20044 
20045 static void
20046 ip_trash_ire_reclaim_stack(ip_stack_t *ipst)
20047 {
20048 	ire_cache_count_t icc;
20049 	ire_cache_reclaim_t icr;
20050 	ncc_cache_count_t ncc;
20051 	nce_cache_reclaim_t ncr;
20052 	uint_t delete_cnt;
20053 	/*
20054 	 * Memory reclaim call back.
20055 	 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries.
20056 	 * Then, with a target of freeing 1/Nth of IRE_CACHE
20057 	 * entries, determine what fraction to free for
20058 	 * each category of IRE_CACHE entries giving absolute priority
20059 	 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu
20060 	 * entry will be freed unless all offlink entries are freed).
20061 	 */
20062 	icc.icc_total = 0;
20063 	icc.icc_unused = 0;
20064 	icc.icc_offlink = 0;
20065 	icc.icc_pmtu = 0;
20066 	icc.icc_onlink = 0;
20067 	ire_walk(ire_cache_count, (char *)&icc, ipst);
20068 
20069 	/*
20070 	 * Free NCEs for IPv6 like the onlink ires.
20071 	 */
20072 	ncc.ncc_total = 0;
20073 	ncc.ncc_host = 0;
20074 	ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc, ipst);
20075 
20076 	ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink +
20077 	    icc.icc_pmtu + icc.icc_onlink);
20078 	delete_cnt = icc.icc_total/ipst->ips_ip_ire_reclaim_fraction;
20079 	IP_STAT(ipst, ip_trash_ire_reclaim_calls);
20080 	if (delete_cnt == 0)
20081 		return;
20082 	IP_STAT(ipst, ip_trash_ire_reclaim_success);
20083 	/* Always delete all unused offlink entries */
20084 	icr.icr_ipst = ipst;
20085 	icr.icr_unused = 1;
20086 	if (delete_cnt <= icc.icc_unused) {
20087 		/*
20088 		 * Only need to free unused entries.  In other words,
20089 		 * there are enough unused entries to free to meet our
20090 		 * target number of freed ire cache entries.
20091 		 */
20092 		icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0;
20093 		ncr.ncr_host = 0;
20094 	} else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) {
20095 		/*
20096 		 * Only need to free unused entries, plus a fraction of offlink
20097 		 * entries.  It follows from the first if statement that
20098 		 * icc_offlink is non-zero, and that delete_cnt != icc_unused.
20099 		 */
20100 		delete_cnt -= icc.icc_unused;
20101 		/* Round up # deleted by truncating fraction */
20102 		icr.icr_offlink = icc.icc_offlink / delete_cnt;
20103 		icr.icr_pmtu = icr.icr_onlink = 0;
20104 		ncr.ncr_host = 0;
20105 	} else if (delete_cnt <=
20106 	    icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) {
20107 		/*
20108 		 * Free all unused and offlink entries, plus a fraction of
20109 		 * pmtu entries.  It follows from the previous if statement
20110 		 * that icc_pmtu is non-zero, and that
20111 		 * delete_cnt != icc_unused + icc_offlink.
20112 		 */
20113 		icr.icr_offlink = 1;
20114 		delete_cnt -= icc.icc_unused + icc.icc_offlink;
20115 		/* Round up # deleted by truncating fraction */
20116 		icr.icr_pmtu = icc.icc_pmtu / delete_cnt;
20117 		icr.icr_onlink = 0;
20118 		ncr.ncr_host = 0;
20119 	} else {
20120 		/*
20121 		 * Free all unused, offlink, and pmtu entries, plus a fraction
20122 		 * of onlink entries.  If we're here, then we know that
20123 		 * icc_onlink is non-zero, and that
20124 		 * delete_cnt != icc_unused + icc_offlink + icc_pmtu.
20125 		 */
20126 		icr.icr_offlink = icr.icr_pmtu = 1;
20127 		delete_cnt -= icc.icc_unused + icc.icc_offlink +
20128 		    icc.icc_pmtu;
20129 		/* Round up # deleted by truncating fraction */
20130 		icr.icr_onlink = icc.icc_onlink / delete_cnt;
20131 		/* Using the same delete fraction as for onlink IREs */
20132 		ncr.ncr_host = ncc.ncc_host / delete_cnt;
20133 	}
20134 #ifdef DEBUG
20135 	ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d "
20136 	    "fractions %d/%d/%d/%d\n",
20137 	    icc.icc_total/ipst->ips_ip_ire_reclaim_fraction, icc.icc_total,
20138 	    icc.icc_unused, icc.icc_offlink,
20139 	    icc.icc_pmtu, icc.icc_onlink,
20140 	    icr.icr_unused, icr.icr_offlink,
20141 	    icr.icr_pmtu, icr.icr_onlink));
20142 #endif
20143 	ire_walk(ire_cache_reclaim, (char *)&icr, ipst);
20144 	if (ncr.ncr_host != 0)
20145 		ndp_walk(NULL, (pfi_t)ndp_cache_reclaim,
20146 		    (uchar_t *)&ncr, ipst);
20147 #ifdef DEBUG
20148 	icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0;
20149 	icc.icc_pmtu = 0; icc.icc_onlink = 0;
20150 	ire_walk(ire_cache_count, (char *)&icc, ipst);
20151 	ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n",
20152 	    icc.icc_total, icc.icc_unused, icc.icc_offlink,
20153 	    icc.icc_pmtu, icc.icc_onlink));
20154 #endif
20155 }
20156 
20157 /*
20158  * ip_unbind is called when a copy of an unbind request is received from the
20159  * upper level protocol.  We remove this conn from any fanout hash list it is
20160  * on, and zero out the bind information.  No reply is expected up above.
20161  */
20162 mblk_t *
20163 ip_unbind(queue_t *q, mblk_t *mp)
20164 {
20165 	conn_t	*connp = Q_TO_CONN(q);
20166 
20167 	ASSERT(!MUTEX_HELD(&connp->conn_lock));
20168 
20169 	if (is_system_labeled() && connp->conn_anon_port) {
20170 		(void) tsol_mlp_anon(crgetzone(connp->conn_cred),
20171 		    connp->conn_mlp_type, connp->conn_ulp,
20172 		    ntohs(connp->conn_lport), B_FALSE);
20173 		connp->conn_anon_port = 0;
20174 	}
20175 	connp->conn_mlp_type = mlptSingle;
20176 
20177 	ipcl_hash_remove(connp);
20178 
20179 	ASSERT(mp->b_cont == NULL);
20180 	/*
20181 	 * Convert mp into a T_OK_ACK
20182 	 */
20183 	mp = mi_tpi_ok_ack_alloc(mp);
20184 
20185 	/*
20186 	 * should not happen in practice... T_OK_ACK is smaller than the
20187 	 * original message.
20188 	 */
20189 	if (mp == NULL)
20190 		return (NULL);
20191 
20192 	/*
20193 	 * Don't bzero the ports if its TCP since TCP still needs the
20194 	 * lport to remove it from its own bind hash. TCP will do the
20195 	 * cleanup.
20196 	 */
20197 	if (!IPCL_IS_TCP(connp))
20198 		bzero(&connp->u_port, sizeof (connp->u_port));
20199 
20200 	return (mp);
20201 }
20202 
20203 /*
20204  * Write side put procedure.  Outbound data, IOCTLs, responses from
20205  * resolvers, etc, come down through here.
20206  *
20207  * arg2 is always a queue_t *.
20208  * When that queue is an ill_t (i.e. q_next != NULL), then arg must be
20209  * the zoneid.
20210  * When that queue is not an ill_t, then arg must be a conn_t pointer.
20211  */
20212 void
20213 ip_output(void *arg, mblk_t *mp, void *arg2, int caller)
20214 {
20215 	ip_output_options(arg, mp, arg2, caller, &zero_info);
20216 }
20217 
20218 void
20219 ip_output_options(void *arg, mblk_t *mp, void *arg2, int caller,
20220     ip_opt_info_t *infop)
20221 {
20222 	conn_t		*connp = NULL;
20223 	queue_t		*q = (queue_t *)arg2;
20224 	ipha_t		*ipha;
20225 #define	rptr	((uchar_t *)ipha)
20226 	ire_t		*ire = NULL;
20227 	ire_t		*sctp_ire = NULL;
20228 	uint32_t	v_hlen_tos_len;
20229 	ipaddr_t	dst;
20230 	mblk_t		*first_mp = NULL;
20231 	boolean_t	mctl_present;
20232 	ipsec_out_t	*io;
20233 	int		match_flags;
20234 	ill_t		*attach_ill = NULL;
20235 					/* Bind to IPIF_NOFAILOVER ill etc. */
20236 	ill_t		*xmit_ill = NULL;	/* IP_XMIT_IF etc. */
20237 	ipif_t		*dst_ipif;
20238 	boolean_t	multirt_need_resolve = B_FALSE;
20239 	mblk_t		*copy_mp = NULL;
20240 	int		err;
20241 	zoneid_t	zoneid;
20242 	int	adjust;
20243 	uint16_t iplen;
20244 	boolean_t	need_decref = B_FALSE;
20245 	boolean_t	ignore_dontroute = B_FALSE;
20246 	boolean_t	ignore_nexthop = B_FALSE;
20247 	boolean_t	ip_nexthop = B_FALSE;
20248 	ipaddr_t	nexthop_addr;
20249 	ip_stack_t	*ipst;
20250 
20251 #ifdef	_BIG_ENDIAN
20252 #define	V_HLEN	(v_hlen_tos_len >> 24)
20253 #else
20254 #define	V_HLEN	(v_hlen_tos_len & 0xFF)
20255 #endif
20256 
20257 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_START,
20258 	    "ip_wput_start: q %p", q);
20259 
20260 	/*
20261 	 * ip_wput fast path
20262 	 */
20263 
20264 	/* is packet from ARP ? */
20265 	if (q->q_next != NULL) {
20266 		zoneid = (zoneid_t)(uintptr_t)arg;
20267 		goto qnext;
20268 	}
20269 
20270 	connp = (conn_t *)arg;
20271 	ASSERT(connp != NULL);
20272 	zoneid = connp->conn_zoneid;
20273 	ipst = connp->conn_netstack->netstack_ip;
20274 
20275 	/* is queue flow controlled? */
20276 	if ((q->q_first != NULL || connp->conn_draining) &&
20277 	    (caller == IP_WPUT)) {
20278 		ASSERT(!need_decref);
20279 		(void) putq(q, mp);
20280 		return;
20281 	}
20282 
20283 	/* Multidata transmit? */
20284 	if (DB_TYPE(mp) == M_MULTIDATA) {
20285 		/*
20286 		 * We should never get here, since all Multidata messages
20287 		 * originating from tcp should have been directed over to
20288 		 * tcp_multisend() in the first place.
20289 		 */
20290 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
20291 		freemsg(mp);
20292 		return;
20293 	} else if (DB_TYPE(mp) != M_DATA)
20294 		goto notdata;
20295 
20296 	if (mp->b_flag & MSGHASREF) {
20297 		ASSERT(connp->conn_ulp == IPPROTO_SCTP);
20298 		mp->b_flag &= ~MSGHASREF;
20299 		SCTP_EXTRACT_IPINFO(mp, sctp_ire);
20300 		need_decref = B_TRUE;
20301 	}
20302 	ipha = (ipha_t *)mp->b_rptr;
20303 
20304 	/* is IP header non-aligned or mblk smaller than basic IP header */
20305 #ifndef SAFETY_BEFORE_SPEED
20306 	if (!OK_32PTR(rptr) ||
20307 	    (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH)
20308 		goto hdrtoosmall;
20309 #endif
20310 
20311 	ASSERT(OK_32PTR(ipha));
20312 
20313 	/*
20314 	 * This function assumes that mp points to an IPv4 packet.  If it's the
20315 	 * wrong version, we'll catch it again in ip_output_v6.
20316 	 *
20317 	 * Note that this is *only* locally-generated output here, and never
20318 	 * forwarded data, and that we need to deal only with transports that
20319 	 * don't know how to label.  (TCP, UDP, and ICMP/raw-IP all know how to
20320 	 * label.)
20321 	 */
20322 	if (is_system_labeled() &&
20323 	    (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) &&
20324 	    !connp->conn_ulp_labeled) {
20325 		err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust,
20326 		    connp->conn_mac_exempt, ipst);
20327 		ipha = (ipha_t *)mp->b_rptr;
20328 		if (err != 0) {
20329 			first_mp = mp;
20330 			if (err == EINVAL)
20331 				goto icmp_parameter_problem;
20332 			ip2dbg(("ip_wput: label check failed (%d)\n", err));
20333 			goto discard_pkt;
20334 		}
20335 		iplen = ntohs(ipha->ipha_length) + adjust;
20336 		ipha->ipha_length = htons(iplen);
20337 	}
20338 
20339 	ASSERT(infop != NULL);
20340 
20341 	if (infop->ip_opt_flags & IP_VERIFY_SRC) {
20342 		/*
20343 		 * IP_PKTINFO ancillary option is present.
20344 		 * IPCL_ZONEID is used to honor IP_ALLZONES option which
20345 		 * allows using address of any zone as the source address.
20346 		 */
20347 		ire = ire_ctable_lookup(ipha->ipha_src, 0,
20348 		    (IRE_LOCAL|IRE_LOOPBACK), NULL, IPCL_ZONEID(connp),
20349 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
20350 		if (ire == NULL)
20351 			goto drop_pkt;
20352 		ire_refrele(ire);
20353 		ire = NULL;
20354 	}
20355 
20356 	/*
20357 	 * IP_DONTFAILOVER_IF and IP_XMIT_IF have precedence over
20358 	 * ill index passed in IP_PKTINFO.
20359 	 */
20360 	if (infop->ip_opt_ill_index != 0 &&
20361 	    connp->conn_xmit_if_ill == NULL &&
20362 	    connp->conn_nofailover_ill == NULL) {
20363 
20364 		xmit_ill = ill_lookup_on_ifindex(
20365 		    infop->ip_opt_ill_index, B_FALSE, NULL, NULL, NULL, NULL,
20366 		    ipst);
20367 
20368 		if (xmit_ill == NULL || IS_VNI(xmit_ill))
20369 			goto drop_pkt;
20370 		/*
20371 		 * check that there is an ipif belonging
20372 		 * to our zone. IPCL_ZONEID is not used because
20373 		 * IP_ALLZONES option is valid only when the ill is
20374 		 * accessible from all zones i.e has a valid ipif in
20375 		 * all zones.
20376 		 */
20377 		if (!ipif_lookup_zoneid_group(xmit_ill, zoneid, 0, NULL)) {
20378 			goto drop_pkt;
20379 		}
20380 	}
20381 
20382 	/*
20383 	 * If there is a policy, try to attach an ipsec_out in
20384 	 * the front. At the end, first_mp either points to a
20385 	 * M_DATA message or IPSEC_OUT message linked to a
20386 	 * M_DATA message. We have to do it now as we might
20387 	 * lose the "conn" if we go through ip_newroute.
20388 	 */
20389 	if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) {
20390 		if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL,
20391 		    ipha->ipha_protocol, ipst->ips_netstack)) == NULL)) {
20392 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
20393 			if (need_decref)
20394 				CONN_DEC_REF(connp);
20395 			return;
20396 		} else {
20397 			ASSERT(mp->b_datap->db_type == M_CTL);
20398 			first_mp = mp;
20399 			mp = mp->b_cont;
20400 			mctl_present = B_TRUE;
20401 		}
20402 	} else {
20403 		first_mp = mp;
20404 		mctl_present = B_FALSE;
20405 	}
20406 
20407 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
20408 
20409 	/* is wrong version or IP options present */
20410 	if (V_HLEN != IP_SIMPLE_HDR_VERSION)
20411 		goto version_hdrlen_check;
20412 	dst = ipha->ipha_dst;
20413 
20414 	if (connp->conn_nofailover_ill != NULL) {
20415 		attach_ill = conn_get_held_ill(connp,
20416 		    &connp->conn_nofailover_ill, &err);
20417 		if (err == ILL_LOOKUP_FAILED) {
20418 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
20419 			if (need_decref)
20420 				CONN_DEC_REF(connp);
20421 			freemsg(first_mp);
20422 			return;
20423 		}
20424 	}
20425 
20426 
20427 	/* is packet multicast? */
20428 	if (CLASSD(dst))
20429 		goto multicast;
20430 
20431 	/*
20432 	 * If xmit_ill is set above due to index passed in ip_pkt_info. It
20433 	 * takes precedence over conn_dontroute and conn_nexthop_set
20434 	 */
20435 	if (xmit_ill != NULL) {
20436 		goto send_from_ill;
20437 	}
20438 
20439 	if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) ||
20440 	    (connp->conn_nexthop_set)) {
20441 		/*
20442 		 * If the destination is a broadcast or a loopback
20443 		 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go
20444 		 * through the standard path. But in the case of local
20445 		 * destination only SO_DONTROUTE and IP_NEXTHOP go through
20446 		 * the standard path not IP_XMIT_IF.
20447 		 */
20448 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst);
20449 		if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) &&
20450 		    (ire->ire_type != IRE_LOOPBACK))) {
20451 			if ((connp->conn_dontroute ||
20452 			    connp->conn_nexthop_set) && (ire != NULL) &&
20453 			    (ire->ire_type == IRE_LOCAL))
20454 				goto standard_path;
20455 
20456 			if (ire != NULL) {
20457 				ire_refrele(ire);
20458 				/* No more access to ire */
20459 				ire = NULL;
20460 			}
20461 			/*
20462 			 * bypass routing checks and go directly to
20463 			 * interface.
20464 			 */
20465 			if (connp->conn_dontroute) {
20466 				goto dontroute;
20467 			} else if (connp->conn_nexthop_set) {
20468 				ip_nexthop = B_TRUE;
20469 				nexthop_addr = connp->conn_nexthop_v4;
20470 				goto send_from_ill;
20471 			}
20472 
20473 			/*
20474 			 * If IP_XMIT_IF socket option is set,
20475 			 * then we allow unicast and multicast
20476 			 * packets to go through the ill. It is
20477 			 * quite possible that the destination
20478 			 * is not in the ire cache table and we
20479 			 * do not want to go to ip_newroute()
20480 			 * instead we call ip_newroute_ipif.
20481 			 */
20482 			xmit_ill = conn_get_held_ill(connp,
20483 			    &connp->conn_xmit_if_ill, &err);
20484 			if (err == ILL_LOOKUP_FAILED) {
20485 				BUMP_MIB(&ipst->ips_ip_mib,
20486 				    ipIfStatsOutDiscards);
20487 				if (attach_ill != NULL)
20488 					ill_refrele(attach_ill);
20489 				if (need_decref)
20490 					CONN_DEC_REF(connp);
20491 				freemsg(first_mp);
20492 				return;
20493 			}
20494 			goto send_from_ill;
20495 		}
20496 standard_path:
20497 		/* Must be a broadcast, a loopback or a local ire */
20498 		if (ire != NULL) {
20499 			ire_refrele(ire);
20500 			/* No more access to ire */
20501 			ire = NULL;
20502 		}
20503 	}
20504 
20505 	if (attach_ill != NULL)
20506 		goto send_from_ill;
20507 
20508 	/*
20509 	 * We cache IRE_CACHEs to avoid lookups. We don't do
20510 	 * this for the tcp global queue and listen end point
20511 	 * as it does not really have a real destination to
20512 	 * talk to.  This is also true for SCTP.
20513 	 */
20514 	if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) &&
20515 	    !connp->conn_fully_bound) {
20516 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst);
20517 		if (ire == NULL)
20518 			goto noirefound;
20519 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20520 		    "ip_wput_end: q %p (%S)", q, "end");
20521 
20522 		/*
20523 		 * Check if the ire has the RTF_MULTIRT flag, inherited
20524 		 * from an IRE_OFFSUBNET ire entry in ip_newroute().
20525 		 */
20526 		if (ire->ire_flags & RTF_MULTIRT) {
20527 
20528 			/*
20529 			 * Force the TTL of multirouted packets if required.
20530 			 * The TTL of such packets is bounded by the
20531 			 * ip_multirt_ttl ndd variable.
20532 			 */
20533 			if ((ipst->ips_ip_multirt_ttl > 0) &&
20534 			    (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) {
20535 				ip2dbg(("ip_wput: forcing multirt TTL to %d "
20536 				    "(was %d), dst 0x%08x\n",
20537 				    ipst->ips_ip_multirt_ttl, ipha->ipha_ttl,
20538 				    ntohl(ire->ire_addr)));
20539 				ipha->ipha_ttl = ipst->ips_ip_multirt_ttl;
20540 			}
20541 			/*
20542 			 * We look at this point if there are pending
20543 			 * unresolved routes. ire_multirt_resolvable()
20544 			 * checks in O(n) that all IRE_OFFSUBNET ire
20545 			 * entries for the packet's destination and
20546 			 * flagged RTF_MULTIRT are currently resolved.
20547 			 * If some remain unresolved, we make a copy
20548 			 * of the current message. It will be used
20549 			 * to initiate additional route resolutions.
20550 			 */
20551 			multirt_need_resolve =
20552 			    ire_multirt_need_resolve(ire->ire_addr,
20553 			    MBLK_GETLABEL(first_mp), ipst);
20554 			ip2dbg(("ip_wput[TCP]: ire %p, "
20555 			    "multirt_need_resolve %d, first_mp %p\n",
20556 			    (void *)ire, multirt_need_resolve,
20557 			    (void *)first_mp));
20558 			if (multirt_need_resolve) {
20559 				copy_mp = copymsg(first_mp);
20560 				if (copy_mp != NULL) {
20561 					MULTIRT_DEBUG_TAG(copy_mp);
20562 				}
20563 			}
20564 		}
20565 
20566 		ip_wput_ire(q, first_mp, ire, connp, caller, zoneid);
20567 
20568 		/*
20569 		 * Try to resolve another multiroute if
20570 		 * ire_multirt_need_resolve() deemed it necessary.
20571 		 */
20572 		if (copy_mp != NULL) {
20573 			ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst);
20574 		}
20575 		if (need_decref)
20576 			CONN_DEC_REF(connp);
20577 		return;
20578 	}
20579 
20580 	/*
20581 	 * Access to conn_ire_cache. (protected by conn_lock)
20582 	 *
20583 	 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab
20584 	 * the ire bucket lock here to check for CONDEMNED as it is okay to
20585 	 * send a packet or two with the IRE_CACHE that is going away.
20586 	 * Access to the ire requires an ire refhold on the ire prior to
20587 	 * its use since an interface unplumb thread may delete the cached
20588 	 * ire and release the refhold at any time.
20589 	 *
20590 	 * Caching an ire in the conn_ire_cache
20591 	 *
20592 	 * o Caching an ire pointer in the conn requires a strict check for
20593 	 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant
20594 	 * ires  before cleaning up the conns. So the caching of an ire pointer
20595 	 * in the conn is done after making sure under the bucket lock that the
20596 	 * ire has not yet been marked CONDEMNED. Otherwise we will end up
20597 	 * caching an ire after the unplumb thread has cleaned up the conn.
20598 	 * If the conn does not send a packet subsequently the unplumb thread
20599 	 * will be hanging waiting for the ire count to drop to zero.
20600 	 *
20601 	 * o We also need to atomically test for a null conn_ire_cache and
20602 	 * set the conn_ire_cache under the the protection of the conn_lock
20603 	 * to avoid races among concurrent threads trying to simultaneously
20604 	 * cache an ire in the conn_ire_cache.
20605 	 */
20606 	mutex_enter(&connp->conn_lock);
20607 	ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache;
20608 
20609 	if (ire != NULL && ire->ire_addr == dst &&
20610 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
20611 
20612 		IRE_REFHOLD(ire);
20613 		mutex_exit(&connp->conn_lock);
20614 
20615 	} else {
20616 		boolean_t cached = B_FALSE;
20617 		connp->conn_ire_cache = NULL;
20618 		mutex_exit(&connp->conn_lock);
20619 		/* Release the old ire */
20620 		if (ire != NULL && sctp_ire == NULL)
20621 			IRE_REFRELE_NOTR(ire);
20622 
20623 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst);
20624 		if (ire == NULL)
20625 			goto noirefound;
20626 		IRE_REFHOLD_NOTR(ire);
20627 
20628 		mutex_enter(&connp->conn_lock);
20629 		if (!(connp->conn_state_flags & CONN_CLOSING) &&
20630 		    connp->conn_ire_cache == NULL) {
20631 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
20632 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
20633 				connp->conn_ire_cache = ire;
20634 				cached = B_TRUE;
20635 			}
20636 			rw_exit(&ire->ire_bucket->irb_lock);
20637 		}
20638 		mutex_exit(&connp->conn_lock);
20639 
20640 		/*
20641 		 * We can continue to use the ire but since it was
20642 		 * not cached, we should drop the extra reference.
20643 		 */
20644 		if (!cached)
20645 			IRE_REFRELE_NOTR(ire);
20646 	}
20647 
20648 
20649 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20650 	    "ip_wput_end: q %p (%S)", q, "end");
20651 
20652 	/*
20653 	 * Check if the ire has the RTF_MULTIRT flag, inherited
20654 	 * from an IRE_OFFSUBNET ire entry in ip_newroute().
20655 	 */
20656 	if (ire->ire_flags & RTF_MULTIRT) {
20657 
20658 		/*
20659 		 * Force the TTL of multirouted packets if required.
20660 		 * The TTL of such packets is bounded by the
20661 		 * ip_multirt_ttl ndd variable.
20662 		 */
20663 		if ((ipst->ips_ip_multirt_ttl > 0) &&
20664 		    (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) {
20665 			ip2dbg(("ip_wput: forcing multirt TTL to %d "
20666 			    "(was %d), dst 0x%08x\n",
20667 			    ipst->ips_ip_multirt_ttl, ipha->ipha_ttl,
20668 			    ntohl(ire->ire_addr)));
20669 			ipha->ipha_ttl = ipst->ips_ip_multirt_ttl;
20670 		}
20671 
20672 		/*
20673 		 * At this point, we check to see if there are any pending
20674 		 * unresolved routes. ire_multirt_resolvable()
20675 		 * checks in O(n) that all IRE_OFFSUBNET ire
20676 		 * entries for the packet's destination and
20677 		 * flagged RTF_MULTIRT are currently resolved.
20678 		 * If some remain unresolved, we make a copy
20679 		 * of the current message. It will be used
20680 		 * to initiate additional route resolutions.
20681 		 */
20682 		multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr,
20683 		    MBLK_GETLABEL(first_mp), ipst);
20684 		ip2dbg(("ip_wput[not TCP]: ire %p, "
20685 		    "multirt_need_resolve %d, first_mp %p\n",
20686 		    (void *)ire, multirt_need_resolve, (void *)first_mp));
20687 		if (multirt_need_resolve) {
20688 			copy_mp = copymsg(first_mp);
20689 			if (copy_mp != NULL) {
20690 				MULTIRT_DEBUG_TAG(copy_mp);
20691 			}
20692 		}
20693 	}
20694 
20695 	ip_wput_ire(q, first_mp, ire, connp, caller, zoneid);
20696 
20697 	/*
20698 	 * Try to resolve another multiroute if
20699 	 * ire_multirt_resolvable() deemed it necessary
20700 	 */
20701 	if (copy_mp != NULL) {
20702 		ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst);
20703 	}
20704 	if (need_decref)
20705 		CONN_DEC_REF(connp);
20706 	return;
20707 
20708 qnext:
20709 	/*
20710 	 * Upper Level Protocols pass down complete IP datagrams
20711 	 * as M_DATA messages.	Everything else is a sideshow.
20712 	 *
20713 	 * 1) We could be re-entering ip_wput because of ip_neworute
20714 	 *    in which case we could have a IPSEC_OUT message. We
20715 	 *    need to pass through ip_wput like other datagrams and
20716 	 *    hence cannot branch to ip_wput_nondata.
20717 	 *
20718 	 * 2) ARP, AH, ESP, and other clients who are on the module
20719 	 *    instance of IP stream, give us something to deal with.
20720 	 *    We will handle AH and ESP here and rest in ip_wput_nondata.
20721 	 *
20722 	 * 3) ICMP replies also could come here.
20723 	 */
20724 	ipst = ILLQ_TO_IPST(q);
20725 
20726 	if (DB_TYPE(mp) != M_DATA) {
20727 	    notdata:
20728 		if (DB_TYPE(mp) == M_CTL) {
20729 			/*
20730 			 * M_CTL messages are used by ARP, AH and ESP to
20731 			 * communicate with IP. We deal with IPSEC_IN and
20732 			 * IPSEC_OUT here. ip_wput_nondata handles other
20733 			 * cases.
20734 			 */
20735 			ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr;
20736 			if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) {
20737 				first_mp = mp->b_cont;
20738 				first_mp->b_flag &= ~MSGHASREF;
20739 				ASSERT(connp->conn_ulp == IPPROTO_SCTP);
20740 				SCTP_EXTRACT_IPINFO(first_mp, sctp_ire);
20741 				CONN_DEC_REF(connp);
20742 				connp = NULL;
20743 			}
20744 			if (ii->ipsec_info_type == IPSEC_IN) {
20745 				/*
20746 				 * Either this message goes back to
20747 				 * IPSEC for further processing or to
20748 				 * ULP after policy checks.
20749 				 */
20750 				ip_fanout_proto_again(mp, NULL, NULL, NULL);
20751 				return;
20752 			} else if (ii->ipsec_info_type == IPSEC_OUT) {
20753 				io = (ipsec_out_t *)ii;
20754 				if (io->ipsec_out_proc_begin) {
20755 					/*
20756 					 * IPSEC processing has already started.
20757 					 * Complete it.
20758 					 * IPQoS notes: We don't care what is
20759 					 * in ipsec_out_ill_index since this
20760 					 * won't be processed for IPQoS policies
20761 					 * in ipsec_out_process.
20762 					 */
20763 					ipsec_out_process(q, mp, NULL,
20764 					    io->ipsec_out_ill_index);
20765 					return;
20766 				} else {
20767 					connp = (q->q_next != NULL) ?
20768 					    NULL : Q_TO_CONN(q);
20769 					first_mp = mp;
20770 					mp = mp->b_cont;
20771 					mctl_present = B_TRUE;
20772 				}
20773 				zoneid = io->ipsec_out_zoneid;
20774 				ASSERT(zoneid != ALL_ZONES);
20775 			} else if (ii->ipsec_info_type == IPSEC_CTL) {
20776 				/*
20777 				 * It's an IPsec control message requesting
20778 				 * an SADB update to be sent to the IPsec
20779 				 * hardware acceleration capable ills.
20780 				 */
20781 				ipsec_ctl_t *ipsec_ctl =
20782 				    (ipsec_ctl_t *)mp->b_rptr;
20783 				ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa;
20784 				uint_t satype = ipsec_ctl->ipsec_ctl_sa_type;
20785 				mblk_t *cmp = mp->b_cont;
20786 
20787 				ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t));
20788 				ASSERT(cmp != NULL);
20789 
20790 				freeb(mp);
20791 				ill_ipsec_capab_send_all(satype, cmp, sa,
20792 				    ipst->ips_netstack);
20793 				return;
20794 			} else {
20795 				/*
20796 				 * This must be ARP or special TSOL signaling.
20797 				 */
20798 				ip_wput_nondata(NULL, q, mp, NULL);
20799 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20800 				    "ip_wput_end: q %p (%S)", q, "nondata");
20801 				return;
20802 			}
20803 		} else {
20804 			/*
20805 			 * This must be non-(ARP/AH/ESP) messages.
20806 			 */
20807 			ASSERT(!need_decref);
20808 			ip_wput_nondata(NULL, q, mp, NULL);
20809 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20810 			    "ip_wput_end: q %p (%S)", q, "nondata");
20811 			return;
20812 		}
20813 	} else {
20814 		first_mp = mp;
20815 		mctl_present = B_FALSE;
20816 	}
20817 
20818 	ASSERT(first_mp != NULL);
20819 	/*
20820 	 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if
20821 	 * to make sure that this packet goes out on the same interface it
20822 	 * came in. We handle that here.
20823 	 */
20824 	if (mctl_present) {
20825 		uint_t ifindex;
20826 
20827 		io = (ipsec_out_t *)first_mp->b_rptr;
20828 		if (io->ipsec_out_attach_if ||
20829 		    io->ipsec_out_xmit_if ||
20830 		    io->ipsec_out_ip_nexthop) {
20831 			ill_t	*ill;
20832 
20833 			/*
20834 			 * We may have lost the conn context if we are
20835 			 * coming here from ip_newroute(). Copy the
20836 			 * nexthop information.
20837 			 */
20838 			if (io->ipsec_out_ip_nexthop) {
20839 				ip_nexthop = B_TRUE;
20840 				nexthop_addr = io->ipsec_out_nexthop_addr;
20841 
20842 				ipha = (ipha_t *)mp->b_rptr;
20843 				dst = ipha->ipha_dst;
20844 				goto send_from_ill;
20845 			} else {
20846 				ASSERT(io->ipsec_out_ill_index != 0);
20847 				ifindex = io->ipsec_out_ill_index;
20848 				ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
20849 				    NULL, NULL, NULL, NULL, ipst);
20850 				/*
20851 				 * ipsec_out_xmit_if bit is used to tell
20852 				 * ip_wput to use the ill to send outgoing data
20853 				 * as we have no conn when data comes from ICMP
20854 				 * error msg routines. Currently this feature is
20855 				 * only used by ip_mrtun_forward routine.
20856 				 */
20857 				if (io->ipsec_out_xmit_if) {
20858 					xmit_ill = ill;
20859 					if (xmit_ill == NULL) {
20860 						ip1dbg(("ip_output:bad ifindex "
20861 						    "for xmit_ill %d\n",
20862 						    ifindex));
20863 						freemsg(first_mp);
20864 						BUMP_MIB(&ipst->ips_ip_mib,
20865 						    ipIfStatsOutDiscards);
20866 						ASSERT(!need_decref);
20867 						return;
20868 					}
20869 					/* Free up the ipsec_out_t mblk */
20870 					ASSERT(first_mp->b_cont == mp);
20871 					first_mp->b_cont = NULL;
20872 					freeb(first_mp);
20873 					/* Just send the IP header+ICMP+data */
20874 					first_mp = mp;
20875 					ipha = (ipha_t *)mp->b_rptr;
20876 					dst = ipha->ipha_dst;
20877 					goto send_from_ill;
20878 				} else {
20879 					attach_ill = ill;
20880 				}
20881 
20882 				if (attach_ill == NULL) {
20883 					ASSERT(xmit_ill == NULL);
20884 					ip1dbg(("ip_output: bad ifindex for "
20885 					    "(BIND TO IPIF_NOFAILOVER) %d\n",
20886 					    ifindex));
20887 					freemsg(first_mp);
20888 					BUMP_MIB(&ipst->ips_ip_mib,
20889 					    ipIfStatsOutDiscards);
20890 					ASSERT(!need_decref);
20891 					return;
20892 				}
20893 			}
20894 		}
20895 	}
20896 
20897 	ASSERT(xmit_ill == NULL);
20898 
20899 	/* We have a complete IP datagram heading outbound. */
20900 	ipha = (ipha_t *)mp->b_rptr;
20901 
20902 #ifndef SPEED_BEFORE_SAFETY
20903 	/*
20904 	 * Make sure we have a full-word aligned message and that at least
20905 	 * a simple IP header is accessible in the first message.  If not,
20906 	 * try a pullup.
20907 	 */
20908 	if (!OK_32PTR(rptr) ||
20909 	    (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) {
20910 	    hdrtoosmall:
20911 		if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) {
20912 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
20913 			    "ip_wput_end: q %p (%S)", q, "pullupfailed");
20914 			if (first_mp == NULL)
20915 				first_mp = mp;
20916 			goto discard_pkt;
20917 		}
20918 
20919 		/* This function assumes that mp points to an IPv4 packet. */
20920 		if (is_system_labeled() && q->q_next == NULL &&
20921 		    (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) &&
20922 		    !connp->conn_ulp_labeled) {
20923 			err = tsol_check_label(BEST_CRED(mp, connp), &mp,
20924 			    &adjust, connp->conn_mac_exempt, ipst);
20925 			ipha = (ipha_t *)mp->b_rptr;
20926 			if (first_mp != NULL)
20927 				first_mp->b_cont = mp;
20928 			if (err != 0) {
20929 				if (first_mp == NULL)
20930 					first_mp = mp;
20931 				if (err == EINVAL)
20932 					goto icmp_parameter_problem;
20933 				ip2dbg(("ip_wput: label check failed (%d)\n",
20934 				    err));
20935 				goto discard_pkt;
20936 			}
20937 			iplen = ntohs(ipha->ipha_length) + adjust;
20938 			ipha->ipha_length = htons(iplen);
20939 		}
20940 
20941 		ipha = (ipha_t *)mp->b_rptr;
20942 		if (first_mp == NULL) {
20943 			ASSERT(attach_ill == NULL && xmit_ill == NULL);
20944 			/*
20945 			 * If we got here because of "goto hdrtoosmall"
20946 			 * We need to attach a IPSEC_OUT.
20947 			 */
20948 			if (connp->conn_out_enforce_policy) {
20949 				if (((mp = ipsec_attach_ipsec_out(mp, connp,
20950 				    NULL, ipha->ipha_protocol,
20951 				    ipst->ips_netstack)) == NULL)) {
20952 					BUMP_MIB(&ipst->ips_ip_mib,
20953 					    ipIfStatsOutDiscards);
20954 					if (need_decref)
20955 						CONN_DEC_REF(connp);
20956 					return;
20957 				} else {
20958 					ASSERT(mp->b_datap->db_type == M_CTL);
20959 					first_mp = mp;
20960 					mp = mp->b_cont;
20961 					mctl_present = B_TRUE;
20962 				}
20963 			} else {
20964 				first_mp = mp;
20965 				mctl_present = B_FALSE;
20966 			}
20967 		}
20968 	}
20969 #endif
20970 
20971 	/* Most of the code below is written for speed, not readability */
20972 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
20973 
20974 	/*
20975 	 * If ip_newroute() fails, we're going to need a full
20976 	 * header for the icmp wraparound.
20977 	 */
20978 	if (V_HLEN != IP_SIMPLE_HDR_VERSION) {
20979 		uint_t	v_hlen;
20980 	    version_hdrlen_check:
20981 		ASSERT(first_mp != NULL);
20982 		v_hlen = V_HLEN;
20983 		/*
20984 		 * siphon off IPv6 packets coming down from transport
20985 		 * layer modules here.
20986 		 * Note: high-order bit carries NUD reachability confirmation
20987 		 */
20988 		if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) {
20989 			/*
20990 			 * XXX implement a IPv4 and IPv6 packet counter per
20991 			 * conn and switch when ratio exceeds e.g. 10:1
20992 			 */
20993 #ifdef notyet
20994 			if (q->q_next == NULL) /* Avoid ill queue */
20995 				ip_setqinfo(RD(q), B_TRUE, B_TRUE, ipst);
20996 #endif
20997 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutWrongIPVersion);
20998 			ASSERT(xmit_ill == NULL);
20999 			if (attach_ill != NULL)
21000 				ill_refrele(attach_ill);
21001 			if (need_decref)
21002 				mp->b_flag |= MSGHASREF;
21003 			(void) ip_output_v6(arg, first_mp, arg2, caller);
21004 			return;
21005 		}
21006 
21007 		if ((v_hlen >> 4) != IP_VERSION) {
21008 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21009 			    "ip_wput_end: q %p (%S)", q, "badvers");
21010 			goto discard_pkt;
21011 		}
21012 		/*
21013 		 * Is the header length at least 20 bytes?
21014 		 *
21015 		 * Are there enough bytes accessible in the header?  If
21016 		 * not, try a pullup.
21017 		 */
21018 		v_hlen &= 0xF;
21019 		v_hlen <<= 2;
21020 		if (v_hlen < IP_SIMPLE_HDR_LENGTH) {
21021 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21022 			    "ip_wput_end: q %p (%S)", q, "badlen");
21023 			goto discard_pkt;
21024 		}
21025 		if (v_hlen > (mp->b_wptr - rptr)) {
21026 			if (!pullupmsg(mp, v_hlen)) {
21027 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21028 				    "ip_wput_end: q %p (%S)", q, "badpullup2");
21029 				goto discard_pkt;
21030 			}
21031 			ipha = (ipha_t *)mp->b_rptr;
21032 		}
21033 		/*
21034 		 * Move first entry from any source route into ipha_dst and
21035 		 * verify the options
21036 		 */
21037 		if (ip_wput_options(q, first_mp, ipha, mctl_present,
21038 			zoneid, ipst)) {
21039 			ASSERT(xmit_ill == NULL);
21040 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
21041 			if (attach_ill != NULL)
21042 				ill_refrele(attach_ill);
21043 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21044 			    "ip_wput_end: q %p (%S)", q, "badopts");
21045 			if (need_decref)
21046 				CONN_DEC_REF(connp);
21047 			return;
21048 		}
21049 	}
21050 	dst = ipha->ipha_dst;
21051 
21052 	/*
21053 	 * Try to get an IRE_CACHE for the destination address.	 If we can't,
21054 	 * we have to run the packet through ip_newroute which will take
21055 	 * the appropriate action to arrange for an IRE_CACHE, such as querying
21056 	 * a resolver, or assigning a default gateway, etc.
21057 	 */
21058 	if (CLASSD(dst)) {
21059 		ipif_t	*ipif;
21060 		uint32_t setsrc = 0;
21061 
21062 	    multicast:
21063 		ASSERT(first_mp != NULL);
21064 		ip2dbg(("ip_wput: CLASSD\n"));
21065 		if (connp == NULL) {
21066 			/*
21067 			 * Use the first good ipif on the ill.
21068 			 * XXX Should this ever happen? (Appears
21069 			 * to show up with just ppp and no ethernet due
21070 			 * to in.rdisc.)
21071 			 * However, ire_send should be able to
21072 			 * call ip_wput_ire directly.
21073 			 *
21074 			 * XXX Also, this can happen for ICMP and other packets
21075 			 * with multicast source addresses.  Perhaps we should
21076 			 * fix things so that we drop the packet in question,
21077 			 * but for now, just run with it.
21078 			 */
21079 			ill_t *ill = (ill_t *)q->q_ptr;
21080 
21081 			/*
21082 			 * Don't honor attach_if for this case. If ill
21083 			 * is part of the group, ipif could belong to
21084 			 * any ill and we cannot maintain attach_ill
21085 			 * and ipif_ill same anymore and the assert
21086 			 * below would fail.
21087 			 */
21088 			if (mctl_present && io->ipsec_out_attach_if) {
21089 				io->ipsec_out_ill_index = 0;
21090 				io->ipsec_out_attach_if = B_FALSE;
21091 				ASSERT(attach_ill != NULL);
21092 				ill_refrele(attach_ill);
21093 				attach_ill = NULL;
21094 			}
21095 
21096 			ASSERT(attach_ill == NULL);
21097 			ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID);
21098 			if (ipif == NULL) {
21099 				if (need_decref)
21100 					CONN_DEC_REF(connp);
21101 				freemsg(first_mp);
21102 				return;
21103 			}
21104 			ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n",
21105 			    ntohl(dst), ill->ill_name));
21106 		} else {
21107 			/*
21108 			 * The order of precedence is IP_XMIT_IF, IP_PKTINFO
21109 			 * and IP_MULTICAST_IF.
21110 			 * Block comment above this function explains the
21111 			 * locking mechanism used here
21112 			 */
21113 			if (xmit_ill == NULL) {
21114 				xmit_ill = conn_get_held_ill(connp,
21115 				    &connp->conn_xmit_if_ill, &err);
21116 				if (err == ILL_LOOKUP_FAILED) {
21117 					ip1dbg(("ip_wput: No ill for "
21118 					    "IP_XMIT_IF\n"));
21119 					BUMP_MIB(&ipst->ips_ip_mib,
21120 					    ipIfStatsOutNoRoutes);
21121 					goto drop_pkt;
21122 				}
21123 			}
21124 
21125 			if (xmit_ill == NULL) {
21126 				ipif = conn_get_held_ipif(connp,
21127 				    &connp->conn_multicast_ipif, &err);
21128 				if (err == IPIF_LOOKUP_FAILED) {
21129 					ip1dbg(("ip_wput: No ipif for "
21130 					    "multicast\n"));
21131 					BUMP_MIB(&ipst->ips_ip_mib,
21132 					    ipIfStatsOutNoRoutes);
21133 					goto drop_pkt;
21134 				}
21135 			}
21136 			if (xmit_ill != NULL) {
21137 				ipif = ipif_get_next_ipif(NULL, xmit_ill);
21138 				if (ipif == NULL) {
21139 					ip1dbg(("ip_wput: No ipif for "
21140 					    "IP_XMIT_IF\n"));
21141 					BUMP_MIB(&ipst->ips_ip_mib,
21142 					    ipIfStatsOutNoRoutes);
21143 					goto drop_pkt;
21144 				}
21145 			} else if (ipif == NULL || ipif->ipif_isv6) {
21146 				/*
21147 				 * We must do this ipif determination here
21148 				 * else we could pass through ip_newroute
21149 				 * and come back here without the conn context.
21150 				 *
21151 				 * Note: we do late binding i.e. we bind to
21152 				 * the interface when the first packet is sent.
21153 				 * For performance reasons we do not rebind on
21154 				 * each packet but keep the binding until the
21155 				 * next IP_MULTICAST_IF option.
21156 				 *
21157 				 * conn_multicast_{ipif,ill} are shared between
21158 				 * IPv4 and IPv6 and AF_INET6 sockets can
21159 				 * send both IPv4 and IPv6 packets. Hence
21160 				 * we have to check that "isv6" matches above.
21161 				 */
21162 				if (ipif != NULL)
21163 					ipif_refrele(ipif);
21164 				ipif = ipif_lookup_group(dst, zoneid, ipst);
21165 				if (ipif == NULL) {
21166 					ip1dbg(("ip_wput: No ipif for "
21167 					    "multicast\n"));
21168 					BUMP_MIB(&ipst->ips_ip_mib,
21169 					    ipIfStatsOutNoRoutes);
21170 					goto drop_pkt;
21171 				}
21172 				err = conn_set_held_ipif(connp,
21173 				    &connp->conn_multicast_ipif, ipif);
21174 				if (err == IPIF_LOOKUP_FAILED) {
21175 					ipif_refrele(ipif);
21176 					ip1dbg(("ip_wput: No ipif for "
21177 					    "multicast\n"));
21178 					BUMP_MIB(&ipst->ips_ip_mib,
21179 					    ipIfStatsOutNoRoutes);
21180 					goto drop_pkt;
21181 				}
21182 			}
21183 		}
21184 		ASSERT(!ipif->ipif_isv6);
21185 		/*
21186 		 * As we may lose the conn by the time we reach ip_wput_ire,
21187 		 * we copy conn_multicast_loop and conn_dontroute on to an
21188 		 * ipsec_out. In case if this datagram goes out secure,
21189 		 * we need the ill_index also. Copy that also into the
21190 		 * ipsec_out.
21191 		 */
21192 		if (mctl_present) {
21193 			io = (ipsec_out_t *)first_mp->b_rptr;
21194 			ASSERT(first_mp->b_datap->db_type == M_CTL);
21195 			ASSERT(io->ipsec_out_type == IPSEC_OUT);
21196 		} else {
21197 			ASSERT(mp == first_mp);
21198 			if ((first_mp = allocb(sizeof (ipsec_info_t),
21199 			    BPRI_HI)) == NULL) {
21200 				ipif_refrele(ipif);
21201 				first_mp = mp;
21202 				goto discard_pkt;
21203 			}
21204 			first_mp->b_datap->db_type = M_CTL;
21205 			first_mp->b_wptr += sizeof (ipsec_info_t);
21206 			/* ipsec_out_secure is B_FALSE now */
21207 			bzero(first_mp->b_rptr, sizeof (ipsec_info_t));
21208 			io = (ipsec_out_t *)first_mp->b_rptr;
21209 			io->ipsec_out_type = IPSEC_OUT;
21210 			io->ipsec_out_len = sizeof (ipsec_out_t);
21211 			io->ipsec_out_use_global_policy = B_TRUE;
21212 			io->ipsec_out_ns = ipst->ips_netstack;
21213 			first_mp->b_cont = mp;
21214 			mctl_present = B_TRUE;
21215 		}
21216 		if (attach_ill != NULL) {
21217 			ASSERT(attach_ill == ipif->ipif_ill);
21218 			match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
21219 
21220 			/*
21221 			 * Check if we need an ire that will not be
21222 			 * looked up by anybody else i.e. HIDDEN.
21223 			 */
21224 			if (ill_is_probeonly(attach_ill)) {
21225 				match_flags |= MATCH_IRE_MARK_HIDDEN;
21226 			}
21227 			io->ipsec_out_ill_index =
21228 			    attach_ill->ill_phyint->phyint_ifindex;
21229 			io->ipsec_out_attach_if = B_TRUE;
21230 		} else {
21231 			match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
21232 			io->ipsec_out_ill_index =
21233 			    ipif->ipif_ill->ill_phyint->phyint_ifindex;
21234 		}
21235 		if (connp != NULL) {
21236 			io->ipsec_out_multicast_loop =
21237 			    connp->conn_multicast_loop;
21238 			io->ipsec_out_dontroute = connp->conn_dontroute;
21239 			io->ipsec_out_zoneid = connp->conn_zoneid;
21240 		}
21241 		/*
21242 		 * If the application uses IP_MULTICAST_IF with
21243 		 * different logical addresses of the same ILL, we
21244 		 * need to make sure that the soruce address of
21245 		 * the packet matches the logical IP address used
21246 		 * in the option. We do it by initializing ipha_src
21247 		 * here. This should keep IPSEC also happy as
21248 		 * when we return from IPSEC processing, we don't
21249 		 * have to worry about getting the right address on
21250 		 * the packet. Thus it is sufficient to look for
21251 		 * IRE_CACHE using MATCH_IRE_ILL rathen than
21252 		 * MATCH_IRE_IPIF.
21253 		 *
21254 		 * NOTE : We need to do it for non-secure case also as
21255 		 * this might go out secure if there is a global policy
21256 		 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER
21257 		 * address, the source should be initialized already and
21258 		 * hence we won't be initializing here.
21259 		 *
21260 		 * As we do not have the ire yet, it is possible that
21261 		 * we set the source address here and then later discover
21262 		 * that the ire implies the source address to be assigned
21263 		 * through the RTF_SETSRC flag.
21264 		 * In that case, the setsrc variable will remind us
21265 		 * that overwritting the source address by the one
21266 		 * of the RTF_SETSRC-flagged ire is allowed.
21267 		 */
21268 		if (ipha->ipha_src == INADDR_ANY &&
21269 		    (connp == NULL || !connp->conn_unspec_src)) {
21270 			ipha->ipha_src = ipif->ipif_src_addr;
21271 			setsrc = RTF_SETSRC;
21272 		}
21273 		/*
21274 		 * Find an IRE which matches the destination and the outgoing
21275 		 * queue (i.e. the outgoing interface.)
21276 		 * For loopback use a unicast IP address for
21277 		 * the ire lookup.
21278 		 */
21279 		if (ipif->ipif_ill->ill_phyint->phyint_flags &
21280 		    PHYI_LOOPBACK) {
21281 			dst = ipif->ipif_lcl_addr;
21282 		}
21283 		/*
21284 		 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif.
21285 		 * We don't need to lookup ire in ctable as the packet
21286 		 * needs to be sent to the destination through the specified
21287 		 * ill irrespective of ires in the cache table.
21288 		 */
21289 		ire = NULL;
21290 		if (xmit_ill == NULL) {
21291 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
21292 			    zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
21293 		}
21294 
21295 		/*
21296 		 * refrele attach_ill as its not needed anymore.
21297 		 */
21298 		if (attach_ill != NULL) {
21299 			ill_refrele(attach_ill);
21300 			attach_ill = NULL;
21301 		}
21302 
21303 		if (ire == NULL) {
21304 			/*
21305 			 * Multicast loopback and multicast forwarding is
21306 			 * done in ip_wput_ire.
21307 			 *
21308 			 * Mark this packet to make it be delivered to
21309 			 * ip_wput_ire after the new ire has been
21310 			 * created.
21311 			 *
21312 			 * The call to ip_newroute_ipif takes into account
21313 			 * the setsrc reminder. In any case, we take care
21314 			 * of the RTF_MULTIRT flag.
21315 			 */
21316 			mp->b_prev = mp->b_next = NULL;
21317 			if (xmit_ill == NULL ||
21318 			    xmit_ill->ill_ipif_up_count > 0) {
21319 				ip_newroute_ipif(q, first_mp, ipif, dst, connp,
21320 				    setsrc | RTF_MULTIRT, zoneid, infop);
21321 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21322 				    "ip_wput_end: q %p (%S)", q, "noire");
21323 			} else {
21324 				freemsg(first_mp);
21325 			}
21326 			ipif_refrele(ipif);
21327 			if (xmit_ill != NULL)
21328 				ill_refrele(xmit_ill);
21329 			if (need_decref)
21330 				CONN_DEC_REF(connp);
21331 			return;
21332 		}
21333 
21334 		ipif_refrele(ipif);
21335 		ipif = NULL;
21336 		ASSERT(xmit_ill == NULL);
21337 
21338 		/*
21339 		 * Honor the RTF_SETSRC flag for multicast packets,
21340 		 * if allowed by the setsrc reminder.
21341 		 */
21342 		if ((ire->ire_flags & RTF_SETSRC) && setsrc) {
21343 			ipha->ipha_src = ire->ire_src_addr;
21344 		}
21345 
21346 		/*
21347 		 * Unconditionally force the TTL to 1 for
21348 		 * multirouted multicast packets:
21349 		 * multirouted multicast should not cross
21350 		 * multicast routers.
21351 		 */
21352 		if (ire->ire_flags & RTF_MULTIRT) {
21353 			if (ipha->ipha_ttl > 1) {
21354 				ip2dbg(("ip_wput: forcing multicast "
21355 				    "multirt TTL to 1 (was %d), dst 0x%08x\n",
21356 				    ipha->ipha_ttl, ntohl(ire->ire_addr)));
21357 				ipha->ipha_ttl = 1;
21358 			}
21359 		}
21360 	} else {
21361 		ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp), ipst);
21362 		if ((ire != NULL) && (ire->ire_type &
21363 		    (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) {
21364 			ignore_dontroute = B_TRUE;
21365 			ignore_nexthop = B_TRUE;
21366 		}
21367 		if (ire != NULL) {
21368 			ire_refrele(ire);
21369 			ire = NULL;
21370 		}
21371 		/*
21372 		 * Guard against coming in from arp in which case conn is NULL.
21373 		 * Also guard against non M_DATA with dontroute set but
21374 		 * destined to local, loopback or broadcast addresses.
21375 		 */
21376 		if (connp != NULL && connp->conn_dontroute &&
21377 		    !ignore_dontroute) {
21378 dontroute:
21379 			/*
21380 			 * Set TTL to 1 if SO_DONTROUTE is set to prevent
21381 			 * routing protocols from seeing false direct
21382 			 * connectivity.
21383 			 */
21384 			ipha->ipha_ttl = 1;
21385 			/*
21386 			 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL)
21387 			 * along with SO_DONTROUTE, higher precedence is
21388 			 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used.
21389 			 */
21390 			if (connp->conn_xmit_if_ill == NULL) {
21391 				/* If suitable ipif not found, drop packet */
21392 				dst_ipif = ipif_lookup_onlink_addr(dst, zoneid,
21393 				    ipst);
21394 				if (dst_ipif == NULL) {
21395 					ip1dbg(("ip_wput: no route for "
21396 					    "dst using SO_DONTROUTE\n"));
21397 					BUMP_MIB(&ipst->ips_ip_mib,
21398 					    ipIfStatsOutNoRoutes);
21399 					mp->b_prev = mp->b_next = NULL;
21400 					if (first_mp == NULL)
21401 						first_mp = mp;
21402 					goto drop_pkt;
21403 				} else {
21404 					/*
21405 					 * If suitable ipif has been found, set
21406 					 * xmit_ill to the corresponding
21407 					 * ipif_ill because we'll be following
21408 					 * the IP_XMIT_IF logic.
21409 					 */
21410 					ASSERT(xmit_ill == NULL);
21411 					xmit_ill = dst_ipif->ipif_ill;
21412 					mutex_enter(&xmit_ill->ill_lock);
21413 					if (!ILL_CAN_LOOKUP(xmit_ill)) {
21414 						mutex_exit(&xmit_ill->ill_lock);
21415 						xmit_ill = NULL;
21416 						ipif_refrele(dst_ipif);
21417 						ip1dbg(("ip_wput: no route for"
21418 						    " dst using"
21419 						    " SO_DONTROUTE\n"));
21420 						BUMP_MIB(&ipst->ips_ip_mib,
21421 						    ipIfStatsOutNoRoutes);
21422 						mp->b_prev = mp->b_next = NULL;
21423 						if (first_mp == NULL)
21424 							first_mp = mp;
21425 						goto drop_pkt;
21426 					}
21427 					ill_refhold_locked(xmit_ill);
21428 					mutex_exit(&xmit_ill->ill_lock);
21429 					ipif_refrele(dst_ipif);
21430 				}
21431 			}
21432 
21433 		}
21434 		/*
21435 		 * If we are bound to IPIF_NOFAILOVER address, look for
21436 		 * an IRE_CACHE matching the ill.
21437 		 */
21438 send_from_ill:
21439 		if (attach_ill != NULL) {
21440 			ipif_t	*attach_ipif;
21441 
21442 			match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
21443 
21444 			/*
21445 			 * Check if we need an ire that will not be
21446 			 * looked up by anybody else i.e. HIDDEN.
21447 			 */
21448 			if (ill_is_probeonly(attach_ill)) {
21449 				match_flags |= MATCH_IRE_MARK_HIDDEN;
21450 			}
21451 
21452 			attach_ipif = ipif_get_next_ipif(NULL, attach_ill);
21453 			if (attach_ipif == NULL) {
21454 				ip1dbg(("ip_wput: No ipif for attach_ill\n"));
21455 				goto discard_pkt;
21456 			}
21457 			ire = ire_ctable_lookup(dst, 0, 0, attach_ipif,
21458 			    zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
21459 			ipif_refrele(attach_ipif);
21460 		} else if (xmit_ill != NULL || (connp != NULL &&
21461 			    connp->conn_xmit_if_ill != NULL)) {
21462 			/*
21463 			 * Mark this packet as originated locally
21464 			 */
21465 			mp->b_prev = mp->b_next = NULL;
21466 			/*
21467 			 * xmit_ill could be NULL if SO_DONTROUTE
21468 			 * is also set.
21469 			 */
21470 			if (xmit_ill == NULL) {
21471 				xmit_ill = conn_get_held_ill(connp,
21472 				    &connp->conn_xmit_if_ill, &err);
21473 				if (err == ILL_LOOKUP_FAILED) {
21474 					BUMP_MIB(&ipst->ips_ip_mib,
21475 					    ipIfStatsOutDiscards);
21476 					if (need_decref)
21477 						CONN_DEC_REF(connp);
21478 					freemsg(first_mp);
21479 					return;
21480 				}
21481 				if (xmit_ill == NULL) {
21482 					if (connp->conn_dontroute)
21483 						goto dontroute;
21484 					goto send_from_ill;
21485 				}
21486 			}
21487 			/*
21488 			 * Could be SO_DONTROUTE case also.
21489 			 * check at least one interface is UP as
21490 			 * specified by this ILL
21491 			 */
21492 			if (xmit_ill->ill_ipif_up_count > 0) {
21493 				ipif_t *ipif;
21494 
21495 				ipif = ipif_get_next_ipif(NULL, xmit_ill);
21496 				if (ipif == NULL) {
21497 					ip1dbg(("ip_output: "
21498 					    "xmit_ill NULL ipif\n"));
21499 					goto drop_pkt;
21500 				}
21501 				/*
21502 				 * Look for a ire that is part of the group,
21503 				 * if found use it else call ip_newroute_ipif.
21504 				 * IPCL_ZONEID is not used for matching because
21505 				 * IP_ALLZONES option is valid only when the
21506 				 * ill is accessible from all zones i.e has a
21507 				 * valid ipif in all zones.
21508 				 */
21509 				match_flags = MATCH_IRE_ILL_GROUP |
21510 				    MATCH_IRE_SECATTR;
21511 				ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid,
21512 				    MBLK_GETLABEL(mp), match_flags, ipst);
21513 				/*
21514 				 * If an ire exists use it or else create
21515 				 * an ire but don't add it to the cache.
21516 				 * Adding an ire may cause issues with
21517 				 * asymmetric routing.
21518 				 * In case of multiroute always act as if
21519 				 * ire does not exist.
21520 				 */
21521 				if (ire == NULL ||
21522 				    ire->ire_flags & RTF_MULTIRT) {
21523 					if (ire != NULL)
21524 						ire_refrele(ire);
21525 					ip_newroute_ipif(q, first_mp, ipif,
21526 					    dst, connp, 0, zoneid, infop);
21527 					ipif_refrele(ipif);
21528 					ip1dbg(("ip_wput: ip_unicast_if\n"));
21529 					ill_refrele(xmit_ill);
21530 					if (need_decref)
21531 						CONN_DEC_REF(connp);
21532 					return;
21533 				}
21534 				ipif_refrele(ipif);
21535 			} else {
21536 				goto drop_pkt;
21537 			}
21538 		} else if (ip_nexthop || (connp != NULL &&
21539 		    (connp->conn_nexthop_set)) && !ignore_nexthop) {
21540 			if (!ip_nexthop) {
21541 				ip_nexthop = B_TRUE;
21542 				nexthop_addr = connp->conn_nexthop_v4;
21543 			}
21544 			match_flags = MATCH_IRE_MARK_PRIVATE_ADDR |
21545 			    MATCH_IRE_GW;
21546 			ire = ire_ctable_lookup(dst, nexthop_addr, 0,
21547 			    NULL, zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
21548 		} else {
21549 			ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp),
21550 			    ipst);
21551 		}
21552 		if (!ire) {
21553 			/*
21554 			 * Make sure we don't load spread if this
21555 			 * is IPIF_NOFAILOVER case.
21556 			 */
21557 			if ((attach_ill != NULL) ||
21558 			    (ip_nexthop && !ignore_nexthop)) {
21559 				if (mctl_present) {
21560 					io = (ipsec_out_t *)first_mp->b_rptr;
21561 					ASSERT(first_mp->b_datap->db_type ==
21562 					    M_CTL);
21563 					ASSERT(io->ipsec_out_type == IPSEC_OUT);
21564 				} else {
21565 					ASSERT(mp == first_mp);
21566 					first_mp = allocb(
21567 					    sizeof (ipsec_info_t), BPRI_HI);
21568 					if (first_mp == NULL) {
21569 						first_mp = mp;
21570 						goto discard_pkt;
21571 					}
21572 					first_mp->b_datap->db_type = M_CTL;
21573 					first_mp->b_wptr +=
21574 					    sizeof (ipsec_info_t);
21575 					/* ipsec_out_secure is B_FALSE now */
21576 					bzero(first_mp->b_rptr,
21577 					    sizeof (ipsec_info_t));
21578 					io = (ipsec_out_t *)first_mp->b_rptr;
21579 					io->ipsec_out_type = IPSEC_OUT;
21580 					io->ipsec_out_len =
21581 					    sizeof (ipsec_out_t);
21582 					io->ipsec_out_use_global_policy =
21583 					    B_TRUE;
21584 					io->ipsec_out_ns = ipst->ips_netstack;
21585 					first_mp->b_cont = mp;
21586 					mctl_present = B_TRUE;
21587 				}
21588 				if (attach_ill != NULL) {
21589 					io->ipsec_out_ill_index = attach_ill->
21590 					    ill_phyint->phyint_ifindex;
21591 					io->ipsec_out_attach_if = B_TRUE;
21592 				} else {
21593 					io->ipsec_out_ip_nexthop = ip_nexthop;
21594 					io->ipsec_out_nexthop_addr =
21595 					    nexthop_addr;
21596 				}
21597 			}
21598 noirefound:
21599 			/*
21600 			 * Mark this packet as having originated on
21601 			 * this machine.  This will be noted in
21602 			 * ire_add_then_send, which needs to know
21603 			 * whether to run it back through ip_wput or
21604 			 * ip_rput following successful resolution.
21605 			 */
21606 			mp->b_prev = NULL;
21607 			mp->b_next = NULL;
21608 			ip_newroute(q, first_mp, dst, NULL, connp, zoneid,
21609 			    ipst);
21610 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21611 			    "ip_wput_end: q %p (%S)", q, "newroute");
21612 			if (attach_ill != NULL)
21613 				ill_refrele(attach_ill);
21614 			if (xmit_ill != NULL)
21615 				ill_refrele(xmit_ill);
21616 			if (need_decref)
21617 				CONN_DEC_REF(connp);
21618 			return;
21619 		}
21620 	}
21621 
21622 	/* We now know where we are going with it. */
21623 
21624 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21625 	    "ip_wput_end: q %p (%S)", q, "end");
21626 
21627 	/*
21628 	 * Check if the ire has the RTF_MULTIRT flag, inherited
21629 	 * from an IRE_OFFSUBNET ire entry in ip_newroute.
21630 	 */
21631 	if (ire->ire_flags & RTF_MULTIRT) {
21632 		/*
21633 		 * Force the TTL of multirouted packets if required.
21634 		 * The TTL of such packets is bounded by the
21635 		 * ip_multirt_ttl ndd variable.
21636 		 */
21637 		if ((ipst->ips_ip_multirt_ttl > 0) &&
21638 		    (ipha->ipha_ttl > ipst->ips_ip_multirt_ttl)) {
21639 			ip2dbg(("ip_wput: forcing multirt TTL to %d "
21640 			    "(was %d), dst 0x%08x\n",
21641 			    ipst->ips_ip_multirt_ttl, ipha->ipha_ttl,
21642 			    ntohl(ire->ire_addr)));
21643 			ipha->ipha_ttl = ipst->ips_ip_multirt_ttl;
21644 		}
21645 		/*
21646 		 * At this point, we check to see if there are any pending
21647 		 * unresolved routes. ire_multirt_resolvable()
21648 		 * checks in O(n) that all IRE_OFFSUBNET ire
21649 		 * entries for the packet's destination and
21650 		 * flagged RTF_MULTIRT are currently resolved.
21651 		 * If some remain unresolved, we make a copy
21652 		 * of the current message. It will be used
21653 		 * to initiate additional route resolutions.
21654 		 */
21655 		multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr,
21656 		    MBLK_GETLABEL(first_mp), ipst);
21657 		ip2dbg(("ip_wput[noirefound]: ire %p, "
21658 		    "multirt_need_resolve %d, first_mp %p\n",
21659 		    (void *)ire, multirt_need_resolve, (void *)first_mp));
21660 		if (multirt_need_resolve) {
21661 			copy_mp = copymsg(first_mp);
21662 			if (copy_mp != NULL) {
21663 				MULTIRT_DEBUG_TAG(copy_mp);
21664 			}
21665 		}
21666 	}
21667 
21668 	ip_wput_ire(q, first_mp, ire, connp, caller, zoneid);
21669 	/*
21670 	 * Try to resolve another multiroute if
21671 	 * ire_multirt_resolvable() deemed it necessary.
21672 	 * At this point, we need to distinguish
21673 	 * multicasts from other packets. For multicasts,
21674 	 * we call ip_newroute_ipif() and request that both
21675 	 * multirouting and setsrc flags are checked.
21676 	 */
21677 	if (copy_mp != NULL) {
21678 		if (CLASSD(dst)) {
21679 			ipif_t *ipif = ipif_lookup_group(dst, zoneid, ipst);
21680 			if (ipif) {
21681 				ASSERT(infop->ip_opt_ill_index == 0);
21682 				ip_newroute_ipif(q, copy_mp, ipif, dst, connp,
21683 				    RTF_SETSRC | RTF_MULTIRT, zoneid, infop);
21684 				ipif_refrele(ipif);
21685 			} else {
21686 				MULTIRT_DEBUG_UNTAG(copy_mp);
21687 				freemsg(copy_mp);
21688 				copy_mp = NULL;
21689 			}
21690 		} else {
21691 			ip_newroute(q, copy_mp, dst, NULL, connp, zoneid, ipst);
21692 		}
21693 	}
21694 	if (attach_ill != NULL)
21695 		ill_refrele(attach_ill);
21696 	if (xmit_ill != NULL)
21697 		ill_refrele(xmit_ill);
21698 	if (need_decref)
21699 		CONN_DEC_REF(connp);
21700 	return;
21701 
21702 icmp_parameter_problem:
21703 	/* could not have originated externally */
21704 	ASSERT(mp->b_prev == NULL);
21705 	if (ip_hdr_complete(ipha, zoneid, ipst) == 0) {
21706 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
21707 		/* it's the IP header length that's in trouble */
21708 		icmp_param_problem(q, first_mp, 0, zoneid, ipst);
21709 		first_mp = NULL;
21710 	}
21711 
21712 discard_pkt:
21713 	BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
21714 drop_pkt:
21715 	ip1dbg(("ip_wput: dropped packet\n"));
21716 	if (ire != NULL)
21717 		ire_refrele(ire);
21718 	if (need_decref)
21719 		CONN_DEC_REF(connp);
21720 	freemsg(first_mp);
21721 	if (attach_ill != NULL)
21722 		ill_refrele(attach_ill);
21723 	if (xmit_ill != NULL)
21724 		ill_refrele(xmit_ill);
21725 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_END,
21726 	    "ip_wput_end: q %p (%S)", q, "droppkt");
21727 }
21728 
21729 /*
21730  * If this is a conn_t queue, then we pass in the conn. This includes the
21731  * zoneid.
21732  * Otherwise, this is a message coming back from ARP or for an ill_t queue,
21733  * in which case we use the global zoneid since those are all part of
21734  * the global zone.
21735  */
21736 void
21737 ip_wput(queue_t *q, mblk_t *mp)
21738 {
21739 	if (CONN_Q(q))
21740 		ip_output(Q_TO_CONN(q), mp, q, IP_WPUT);
21741 	else
21742 		ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT);
21743 }
21744 
21745 /*
21746  *
21747  * The following rules must be observed when accessing any ipif or ill
21748  * that has been cached in the conn. Typically conn_nofailover_ill,
21749  * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill.
21750  *
21751  * Access: The ipif or ill pointed to from the conn can be accessed under
21752  * the protection of the conn_lock or after it has been refheld under the
21753  * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or
21754  * ILL_CAN_LOOKUP macros must be used before actually doing the refhold.
21755  * The reason for this is that a concurrent unplumb could actually be
21756  * cleaning up these cached pointers by walking the conns and might have
21757  * finished cleaning up the conn in question. The macros check that an
21758  * unplumb has not yet started on the ipif or ill.
21759  *
21760  * Caching: An ipif or ill pointer may be cached in the conn only after
21761  * making sure that an unplumb has not started. So the caching is done
21762  * while holding both the conn_lock and the ill_lock and after using the
21763  * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED
21764  * flag before starting the cleanup of conns.
21765  *
21766  * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock
21767  * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock
21768  * or a reference to the ipif or a reference to an ire that references the
21769  * ipif. An ipif does not change its ill except for failover/failback. Since
21770  * failover/failback happens only after bringing down the ipif and making sure
21771  * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock
21772  * the above holds.
21773  */
21774 ipif_t *
21775 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err)
21776 {
21777 	ipif_t	*ipif;
21778 	ill_t	*ill;
21779 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
21780 
21781 	*err = 0;
21782 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
21783 	mutex_enter(&connp->conn_lock);
21784 	ipif = *ipifp;
21785 	if (ipif != NULL) {
21786 		ill = ipif->ipif_ill;
21787 		mutex_enter(&ill->ill_lock);
21788 		if (IPIF_CAN_LOOKUP(ipif)) {
21789 			ipif_refhold_locked(ipif);
21790 			mutex_exit(&ill->ill_lock);
21791 			mutex_exit(&connp->conn_lock);
21792 			rw_exit(&ipst->ips_ill_g_lock);
21793 			return (ipif);
21794 		} else {
21795 			*err = IPIF_LOOKUP_FAILED;
21796 		}
21797 		mutex_exit(&ill->ill_lock);
21798 	}
21799 	mutex_exit(&connp->conn_lock);
21800 	rw_exit(&ipst->ips_ill_g_lock);
21801 	return (NULL);
21802 }
21803 
21804 ill_t *
21805 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err)
21806 {
21807 	ill_t	*ill;
21808 
21809 	*err = 0;
21810 	mutex_enter(&connp->conn_lock);
21811 	ill = *illp;
21812 	if (ill != NULL) {
21813 		mutex_enter(&ill->ill_lock);
21814 		if (ILL_CAN_LOOKUP(ill)) {
21815 			ill_refhold_locked(ill);
21816 			mutex_exit(&ill->ill_lock);
21817 			mutex_exit(&connp->conn_lock);
21818 			return (ill);
21819 		} else {
21820 			*err = ILL_LOOKUP_FAILED;
21821 		}
21822 		mutex_exit(&ill->ill_lock);
21823 	}
21824 	mutex_exit(&connp->conn_lock);
21825 	return (NULL);
21826 }
21827 
21828 static int
21829 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif)
21830 {
21831 	ill_t	*ill;
21832 
21833 	ill = ipif->ipif_ill;
21834 	mutex_enter(&connp->conn_lock);
21835 	mutex_enter(&ill->ill_lock);
21836 	if (IPIF_CAN_LOOKUP(ipif)) {
21837 		*ipifp = ipif;
21838 		mutex_exit(&ill->ill_lock);
21839 		mutex_exit(&connp->conn_lock);
21840 		return (0);
21841 	}
21842 	mutex_exit(&ill->ill_lock);
21843 	mutex_exit(&connp->conn_lock);
21844 	return (IPIF_LOOKUP_FAILED);
21845 }
21846 
21847 /*
21848  * This is called if the outbound datagram needs fragmentation.
21849  *
21850  * NOTE : This function does not ire_refrele the ire argument passed in.
21851  */
21852 static void
21853 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid,
21854     ip_stack_t *ipst)
21855 {
21856 	ipha_t		*ipha;
21857 	mblk_t		*mp;
21858 	uint32_t	v_hlen_tos_len;
21859 	uint32_t	max_frag;
21860 	uint32_t	frag_flag;
21861 	boolean_t	dont_use;
21862 
21863 	if (ipsec_mp->b_datap->db_type == M_CTL) {
21864 		mp = ipsec_mp->b_cont;
21865 	} else {
21866 		mp = ipsec_mp;
21867 	}
21868 
21869 	ipha = (ipha_t *)mp->b_rptr;
21870 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
21871 
21872 #ifdef	_BIG_ENDIAN
21873 #define	V_HLEN	(v_hlen_tos_len >> 24)
21874 #define	LENGTH	(v_hlen_tos_len & 0xFFFF)
21875 #else
21876 #define	V_HLEN	(v_hlen_tos_len & 0xFF)
21877 #define	LENGTH	((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
21878 #endif
21879 
21880 #ifndef SPEED_BEFORE_SAFETY
21881 	/*
21882 	 * Check that ipha_length is consistent with
21883 	 * the mblk length
21884 	 */
21885 	if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) {
21886 		ip0dbg(("Packet length mismatch: %d, %ld\n",
21887 		    LENGTH, msgdsize(mp)));
21888 		freemsg(ipsec_mp);
21889 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
21890 		    "ip_wput_ire_fragmentit: mp %p (%S)", mp,
21891 		    "packet length mismatch");
21892 		return;
21893 	}
21894 #endif
21895 	/*
21896 	 * Don't use frag_flag if pre-built packet or source
21897 	 * routed or if multicast (since multicast packets do not solicit
21898 	 * ICMP "packet too big" messages). Get the values of
21899 	 * max_frag and frag_flag atomically by acquiring the
21900 	 * ire_lock.
21901 	 */
21902 	mutex_enter(&ire->ire_lock);
21903 	max_frag = ire->ire_max_frag;
21904 	frag_flag = ire->ire_frag_flag;
21905 	mutex_exit(&ire->ire_lock);
21906 
21907 	dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) ||
21908 	    (V_HLEN != IP_SIMPLE_HDR_VERSION &&
21909 	    ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst));
21910 
21911 	ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag,
21912 	    (dont_use ? 0 : frag_flag), zoneid, ipst);
21913 }
21914 
21915 /*
21916  * Used for deciding the MSS size for the upper layer. Thus
21917  * we need to check the outbound policy values in the conn.
21918  */
21919 int
21920 conn_ipsec_length(conn_t *connp)
21921 {
21922 	ipsec_latch_t *ipl;
21923 
21924 	ipl = connp->conn_latch;
21925 	if (ipl == NULL)
21926 		return (0);
21927 
21928 	if (ipl->ipl_out_policy == NULL)
21929 		return (0);
21930 
21931 	return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd);
21932 }
21933 
21934 /*
21935  * Returns an estimate of the IPSEC headers size. This is used if
21936  * we don't want to call into IPSEC to get the exact size.
21937  */
21938 int
21939 ipsec_out_extra_length(mblk_t *ipsec_mp)
21940 {
21941 	ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr;
21942 	ipsec_action_t *a;
21943 
21944 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
21945 	if (!io->ipsec_out_secure)
21946 		return (0);
21947 
21948 	a = io->ipsec_out_act;
21949 
21950 	if (a == NULL) {
21951 		ASSERT(io->ipsec_out_policy != NULL);
21952 		a = io->ipsec_out_policy->ipsp_act;
21953 	}
21954 	ASSERT(a != NULL);
21955 
21956 	return (a->ipa_ovhd);
21957 }
21958 
21959 /*
21960  * Returns an estimate of the IPSEC headers size. This is used if
21961  * we don't want to call into IPSEC to get the exact size.
21962  */
21963 int
21964 ipsec_in_extra_length(mblk_t *ipsec_mp)
21965 {
21966 	ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21967 	ipsec_action_t *a;
21968 
21969 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
21970 
21971 	a = ii->ipsec_in_action;
21972 	return (a == NULL ? 0 : a->ipa_ovhd);
21973 }
21974 
21975 /*
21976  * If there are any source route options, return the true final
21977  * destination. Otherwise, return the destination.
21978  */
21979 ipaddr_t
21980 ip_get_dst(ipha_t *ipha)
21981 {
21982 	ipoptp_t	opts;
21983 	uchar_t		*opt;
21984 	uint8_t		optval;
21985 	uint8_t		optlen;
21986 	ipaddr_t	dst;
21987 	uint32_t off;
21988 
21989 	dst = ipha->ipha_dst;
21990 
21991 	if (IS_SIMPLE_IPH(ipha))
21992 		return (dst);
21993 
21994 	for (optval = ipoptp_first(&opts, ipha);
21995 	    optval != IPOPT_EOL;
21996 	    optval = ipoptp_next(&opts)) {
21997 		opt = opts.ipoptp_cur;
21998 		optlen = opts.ipoptp_len;
21999 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
22000 		switch (optval) {
22001 		case IPOPT_SSRR:
22002 		case IPOPT_LSRR:
22003 			off = opt[IPOPT_OFFSET];
22004 			/*
22005 			 * If one of the conditions is true, it means
22006 			 * end of options and dst already has the right
22007 			 * value.
22008 			 */
22009 			if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
22010 				off = optlen - IP_ADDR_LEN;
22011 				bcopy(&opt[off], &dst, IP_ADDR_LEN);
22012 			}
22013 			return (dst);
22014 		default:
22015 			break;
22016 		}
22017 	}
22018 
22019 	return (dst);
22020 }
22021 
22022 mblk_t *
22023 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
22024     conn_t *connp, boolean_t unspec_src, zoneid_t zoneid)
22025 {
22026 	ipsec_out_t	*io;
22027 	mblk_t		*first_mp;
22028 	boolean_t policy_present;
22029 	ip_stack_t	*ipst;
22030 	ipsec_stack_t	*ipss;
22031 
22032 	ASSERT(ire != NULL);
22033 	ipst = ire->ire_ipst;
22034 	ipss = ipst->ips_netstack->netstack_ipsec;
22035 
22036 	first_mp = mp;
22037 	if (mp->b_datap->db_type == M_CTL) {
22038 		io = (ipsec_out_t *)first_mp->b_rptr;
22039 		/*
22040 		 * ip_wput[_v6] attaches an IPSEC_OUT in two cases.
22041 		 *
22042 		 * 1) There is per-socket policy (including cached global
22043 		 *    policy) or a policy on the IP-in-IP tunnel.
22044 		 * 2) There is no per-socket policy, but it is
22045 		 *    a multicast packet that needs to go out
22046 		 *    on a specific interface. This is the case
22047 		 *    where (ip_wput and ip_wput_multicast) attaches
22048 		 *    an IPSEC_OUT and sets ipsec_out_secure B_FALSE.
22049 		 *
22050 		 * In case (2) we check with global policy to
22051 		 * see if there is a match and set the ill_index
22052 		 * appropriately so that we can lookup the ire
22053 		 * properly in ip_wput_ipsec_out.
22054 		 */
22055 
22056 		/*
22057 		 * ipsec_out_use_global_policy is set to B_FALSE
22058 		 * in ipsec_in_to_out(). Refer to that function for
22059 		 * details.
22060 		 */
22061 		if ((io->ipsec_out_latch == NULL) &&
22062 		    (io->ipsec_out_use_global_policy)) {
22063 			return (ip_wput_attach_policy(first_mp, ipha, ip6h,
22064 				    ire, connp, unspec_src, zoneid));
22065 		}
22066 		if (!io->ipsec_out_secure) {
22067 			/*
22068 			 * If this is not a secure packet, drop
22069 			 * the IPSEC_OUT mp and treat it as a clear
22070 			 * packet. This happens when we are sending
22071 			 * a ICMP reply back to a clear packet. See
22072 			 * ipsec_in_to_out() for details.
22073 			 */
22074 			mp = first_mp->b_cont;
22075 			freeb(first_mp);
22076 		}
22077 		return (mp);
22078 	}
22079 	/*
22080 	 * See whether we need to attach a global policy here. We
22081 	 * don't depend on the conn (as it could be null) for deciding
22082 	 * what policy this datagram should go through because it
22083 	 * should have happened in ip_wput if there was some
22084 	 * policy. This normally happens for connections which are not
22085 	 * fully bound preventing us from caching policies in
22086 	 * ip_bind. Packets coming from the TCP listener/global queue
22087 	 * - which are non-hard_bound - could also be affected by
22088 	 * applying policy here.
22089 	 *
22090 	 * If this packet is coming from tcp global queue or listener,
22091 	 * we will be applying policy here.  This may not be *right*
22092 	 * if these packets are coming from the detached connection as
22093 	 * it could have gone in clear before. This happens only if a
22094 	 * TCP connection started when there is no policy and somebody
22095 	 * added policy before it became detached. Thus packets of the
22096 	 * detached connection could go out secure and the other end
22097 	 * would drop it because it will be expecting in clear. The
22098 	 * converse is not true i.e if somebody starts a TCP
22099 	 * connection and deletes the policy, all the packets will
22100 	 * still go out with the policy that existed before deleting
22101 	 * because ip_unbind sends up policy information which is used
22102 	 * by TCP on subsequent ip_wputs. The right solution is to fix
22103 	 * TCP to attach a dummy IPSEC_OUT and set
22104 	 * ipsec_out_use_global_policy to B_FALSE. As this might
22105 	 * affect performance for normal cases, we are not doing it.
22106 	 * Thus, set policy before starting any TCP connections.
22107 	 *
22108 	 * NOTE - We might apply policy even for a hard bound connection
22109 	 * - for which we cached policy in ip_bind - if somebody added
22110 	 * global policy after we inherited the policy in ip_bind.
22111 	 * This means that the packets that were going out in clear
22112 	 * previously would start going secure and hence get dropped
22113 	 * on the other side. To fix this, TCP attaches a dummy
22114 	 * ipsec_out and make sure that we don't apply global policy.
22115 	 */
22116 	if (ipha != NULL)
22117 		policy_present = ipss->ipsec_outbound_v4_policy_present;
22118 	else
22119 		policy_present = ipss->ipsec_outbound_v6_policy_present;
22120 	if (!policy_present)
22121 		return (mp);
22122 
22123 	return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src,
22124 		    zoneid));
22125 }
22126 
22127 ire_t *
22128 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill)
22129 {
22130 	ipaddr_t addr;
22131 	ire_t *save_ire;
22132 	irb_t *irb;
22133 	ill_group_t *illgrp;
22134 	int	err;
22135 
22136 	save_ire = ire;
22137 	addr = ire->ire_addr;
22138 
22139 	ASSERT(ire->ire_type == IRE_BROADCAST);
22140 
22141 	illgrp = connp->conn_outgoing_ill->ill_group;
22142 	if (illgrp == NULL) {
22143 		*conn_outgoing_ill = conn_get_held_ill(connp,
22144 		    &connp->conn_outgoing_ill, &err);
22145 		if (err == ILL_LOOKUP_FAILED) {
22146 			ire_refrele(save_ire);
22147 			return (NULL);
22148 		}
22149 		return (save_ire);
22150 	}
22151 	/*
22152 	 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set.
22153 	 * If it is part of the group, we need to send on the ire
22154 	 * that has been cleared of IRE_MARK_NORECV and that belongs
22155 	 * to this group. This is okay as IP_BOUND_IF really means
22156 	 * any ill in the group. We depend on the fact that the
22157 	 * first ire in the group is always cleared of IRE_MARK_NORECV
22158 	 * if such an ire exists. This is possible only if you have
22159 	 * at least one ill in the group that has not failed.
22160 	 *
22161 	 * First get to the ire that matches the address and group.
22162 	 *
22163 	 * We don't look for an ire with a matching zoneid because a given zone
22164 	 * won't always have broadcast ires on all ills in the group.
22165 	 */
22166 	irb = ire->ire_bucket;
22167 	rw_enter(&irb->irb_lock, RW_READER);
22168 	if (ire->ire_marks & IRE_MARK_NORECV) {
22169 		/*
22170 		 * If the current zone only has an ire broadcast for this
22171 		 * address marked NORECV, the ire we want is ahead in the
22172 		 * bucket, so we look it up deliberately ignoring the zoneid.
22173 		 */
22174 		for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
22175 			if (ire->ire_addr != addr)
22176 				continue;
22177 			/* skip over deleted ires */
22178 			if (ire->ire_marks & IRE_MARK_CONDEMNED)
22179 				continue;
22180 		}
22181 	}
22182 	while (ire != NULL) {
22183 		/*
22184 		 * If a new interface is coming up, we could end up
22185 		 * seeing the loopback ire and the non-loopback ire
22186 		 * may not have been added yet. So check for ire_stq
22187 		 */
22188 		if (ire->ire_stq != NULL && (ire->ire_addr != addr ||
22189 		    ire->ire_ipif->ipif_ill->ill_group == illgrp)) {
22190 			break;
22191 		}
22192 		ire = ire->ire_next;
22193 	}
22194 	if (ire != NULL && ire->ire_addr == addr &&
22195 	    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
22196 		IRE_REFHOLD(ire);
22197 		rw_exit(&irb->irb_lock);
22198 		ire_refrele(save_ire);
22199 		*conn_outgoing_ill = ire_to_ill(ire);
22200 		/*
22201 		 * Refhold the ill to make the conn_outgoing_ill
22202 		 * independent of the ire. ip_wput_ire goes in a loop
22203 		 * and may refrele the ire. Since we have an ire at this
22204 		 * point we don't need to use ILL_CAN_LOOKUP on the ill.
22205 		 */
22206 		ill_refhold(*conn_outgoing_ill);
22207 		return (ire);
22208 	}
22209 	rw_exit(&irb->irb_lock);
22210 	ip1dbg(("conn_set_outgoing_ill: No matching ire\n"));
22211 	/*
22212 	 * If we can't find a suitable ire, return the original ire.
22213 	 */
22214 	return (save_ire);
22215 }
22216 
22217 /*
22218  * This function does the ire_refrele of the ire passed in as the
22219  * argument. As this function looks up more ires i.e broadcast ires,
22220  * it needs to REFRELE them. Currently, for simplicity we don't
22221  * differentiate the one passed in and looked up here. We always
22222  * REFRELE.
22223  * IPQoS Notes:
22224  * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for
22225  * IPSec packets are done in ipsec_out_process.
22226  *
22227  */
22228 void
22229 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller,
22230     zoneid_t zoneid)
22231 {
22232 	ipha_t		*ipha;
22233 #define	rptr	((uchar_t *)ipha)
22234 	queue_t		*stq;
22235 #define	Q_TO_INDEX(stq)	(((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex)
22236 	uint32_t	v_hlen_tos_len;
22237 	uint32_t	ttl_protocol;
22238 	ipaddr_t	src;
22239 	ipaddr_t	dst;
22240 	uint32_t	cksum;
22241 	ipaddr_t	orig_src;
22242 	ire_t		*ire1;
22243 	mblk_t		*next_mp;
22244 	uint_t		hlen;
22245 	uint16_t	*up;
22246 	uint32_t	max_frag = ire->ire_max_frag;
22247 	ill_t		*ill = ire_to_ill(ire);
22248 	int		clusterwide;
22249 	uint16_t	ip_hdr_included; /* IP header included by ULP? */
22250 	int		ipsec_len;
22251 	mblk_t		*first_mp;
22252 	ipsec_out_t	*io;
22253 	boolean_t	conn_dontroute;		/* conn value for multicast */
22254 	boolean_t	conn_multicast_loop;	/* conn value for multicast */
22255 	boolean_t	multicast_forward;	/* Should we forward ? */
22256 	boolean_t	unspec_src;
22257 	ill_t		*conn_outgoing_ill = NULL;
22258 	ill_t		*ire_ill;
22259 	ill_t		*ire1_ill;
22260 	ill_t		*out_ill;
22261 	uint32_t 	ill_index = 0;
22262 	boolean_t	multirt_send = B_FALSE;
22263 	int		err;
22264 	ipxmit_state_t	pktxmit_state;
22265 	ip_stack_t	*ipst = ire->ire_ipst;
22266 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
22267 
22268 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START,
22269 	    "ip_wput_ire_start: q %p", q);
22270 
22271 	multicast_forward = B_FALSE;
22272 	unspec_src = (connp != NULL && connp->conn_unspec_src);
22273 
22274 	if (ire->ire_flags & RTF_MULTIRT) {
22275 		/*
22276 		 * Multirouting case. The bucket where ire is stored
22277 		 * probably holds other RTF_MULTIRT flagged ire
22278 		 * to the destination. In this call to ip_wput_ire,
22279 		 * we attempt to send the packet through all
22280 		 * those ires. Thus, we first ensure that ire is the
22281 		 * first RTF_MULTIRT ire in the bucket,
22282 		 * before walking the ire list.
22283 		 */
22284 		ire_t *first_ire;
22285 		irb_t *irb = ire->ire_bucket;
22286 		ASSERT(irb != NULL);
22287 
22288 		/* Make sure we do not omit any multiroute ire. */
22289 		IRB_REFHOLD(irb);
22290 		for (first_ire = irb->irb_ire;
22291 		    first_ire != NULL;
22292 		    first_ire = first_ire->ire_next) {
22293 			if ((first_ire->ire_flags & RTF_MULTIRT) &&
22294 			    (first_ire->ire_addr == ire->ire_addr) &&
22295 			    !(first_ire->ire_marks &
22296 				(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)))
22297 				break;
22298 		}
22299 
22300 		if ((first_ire != NULL) && (first_ire != ire)) {
22301 			IRE_REFHOLD(first_ire);
22302 			ire_refrele(ire);
22303 			ire = first_ire;
22304 			ill = ire_to_ill(ire);
22305 		}
22306 		IRB_REFRELE(irb);
22307 	}
22308 
22309 	/*
22310 	 * conn_outgoing_ill is used only in the broadcast loop.
22311 	 * for performance we don't grab the mutexs in the fastpath
22312 	 */
22313 	if ((connp != NULL) &&
22314 	    (connp->conn_xmit_if_ill == NULL) &&
22315 	    (ire->ire_type == IRE_BROADCAST) &&
22316 	    ((connp->conn_nofailover_ill != NULL) ||
22317 	    (connp->conn_outgoing_ill != NULL))) {
22318 		/*
22319 		 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF
22320 		 * option. So, see if this endpoint is bound to a
22321 		 * IPIF_NOFAILOVER address. If so, honor it. This implies
22322 		 * that if the interface is failed, we will still send
22323 		 * the packet on the same ill which is what we want.
22324 		 */
22325 		conn_outgoing_ill = conn_get_held_ill(connp,
22326 		    &connp->conn_nofailover_ill, &err);
22327 		if (err == ILL_LOOKUP_FAILED) {
22328 			ire_refrele(ire);
22329 			freemsg(mp);
22330 			return;
22331 		}
22332 		if (conn_outgoing_ill == NULL) {
22333 			/*
22334 			 * Choose a good ill in the group to send the
22335 			 * packets on.
22336 			 */
22337 			ire = conn_set_outgoing_ill(connp, ire,
22338 			    &conn_outgoing_ill);
22339 			if (ire == NULL) {
22340 				freemsg(mp);
22341 				return;
22342 			}
22343 		}
22344 	}
22345 
22346 	if (mp->b_datap->db_type != M_CTL) {
22347 		ipha = (ipha_t *)mp->b_rptr;
22348 	} else {
22349 		io = (ipsec_out_t *)mp->b_rptr;
22350 		ASSERT(io->ipsec_out_type == IPSEC_OUT);
22351 		ASSERT(zoneid == io->ipsec_out_zoneid);
22352 		ASSERT(zoneid != ALL_ZONES);
22353 		ipha = (ipha_t *)mp->b_cont->b_rptr;
22354 		dst = ipha->ipha_dst;
22355 		/*
22356 		 * For the multicast case, ipsec_out carries conn_dontroute and
22357 		 * conn_multicast_loop as conn may not be available here. We
22358 		 * need this for multicast loopback and forwarding which is done
22359 		 * later in the code.
22360 		 */
22361 		if (CLASSD(dst)) {
22362 			conn_dontroute = io->ipsec_out_dontroute;
22363 			conn_multicast_loop = io->ipsec_out_multicast_loop;
22364 			/*
22365 			 * If conn_dontroute is not set or conn_multicast_loop
22366 			 * is set, we need to do forwarding/loopback. For
22367 			 * datagrams from ip_wput_multicast, conn_dontroute is
22368 			 * set to B_TRUE and conn_multicast_loop is set to
22369 			 * B_FALSE so that we neither do forwarding nor
22370 			 * loopback.
22371 			 */
22372 			if (!conn_dontroute || conn_multicast_loop)
22373 				multicast_forward = B_TRUE;
22374 		}
22375 	}
22376 
22377 	if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid &&
22378 	    ire->ire_zoneid != ALL_ZONES) {
22379 		/*
22380 		 * When a zone sends a packet to another zone, we try to deliver
22381 		 * the packet under the same conditions as if the destination
22382 		 * was a real node on the network. To do so, we look for a
22383 		 * matching route in the forwarding table.
22384 		 * RTF_REJECT and RTF_BLACKHOLE are handled just like
22385 		 * ip_newroute() does.
22386 		 * Note that IRE_LOCAL are special, since they are used
22387 		 * when the zoneid doesn't match in some cases. This means that
22388 		 * we need to handle ipha_src differently since ire_src_addr
22389 		 * belongs to the receiving zone instead of the sending zone.
22390 		 * When ip_restrict_interzone_loopback is set, then
22391 		 * ire_cache_lookup() ensures that IRE_LOCAL are only used
22392 		 * for loopback between zones when the logical "Ethernet" would
22393 		 * have looped them back.
22394 		 */
22395 		ire_t *src_ire;
22396 
22397 		src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0,
22398 		    NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE |
22399 		    MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE), ipst);
22400 		if (src_ire != NULL &&
22401 		    !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) &&
22402 		    (!ipst->ips_ip_restrict_interzone_loopback ||
22403 		    ire_local_same_ill_group(ire, src_ire))) {
22404 			if (ipha->ipha_src == INADDR_ANY && !unspec_src)
22405 				ipha->ipha_src = src_ire->ire_src_addr;
22406 			ire_refrele(src_ire);
22407 		} else {
22408 			ire_refrele(ire);
22409 			if (conn_outgoing_ill != NULL)
22410 				ill_refrele(conn_outgoing_ill);
22411 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
22412 			if (src_ire != NULL) {
22413 				if (src_ire->ire_flags & RTF_BLACKHOLE) {
22414 					ire_refrele(src_ire);
22415 					freemsg(mp);
22416 					return;
22417 				}
22418 				ire_refrele(src_ire);
22419 			}
22420 			if (ip_hdr_complete(ipha, zoneid, ipst)) {
22421 				/* Failed */
22422 				freemsg(mp);
22423 				return;
22424 			}
22425 			icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid,
22426 			    ipst);
22427 			return;
22428 		}
22429 	}
22430 
22431 	if (mp->b_datap->db_type == M_CTL ||
22432 	    ipss->ipsec_outbound_v4_policy_present) {
22433 		mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp,
22434 		    unspec_src, zoneid);
22435 		if (mp == NULL) {
22436 			ire_refrele(ire);
22437 			if (conn_outgoing_ill != NULL)
22438 				ill_refrele(conn_outgoing_ill);
22439 			return;
22440 		}
22441 	}
22442 
22443 	first_mp = mp;
22444 	ipsec_len = 0;
22445 
22446 	if (first_mp->b_datap->db_type == M_CTL) {
22447 		io = (ipsec_out_t *)first_mp->b_rptr;
22448 		ASSERT(io->ipsec_out_type == IPSEC_OUT);
22449 		mp = first_mp->b_cont;
22450 		ipsec_len = ipsec_out_extra_length(first_mp);
22451 		ASSERT(ipsec_len >= 0);
22452 		/* We already picked up the zoneid from the M_CTL above */
22453 		ASSERT(zoneid == io->ipsec_out_zoneid);
22454 		ASSERT(zoneid != ALL_ZONES);
22455 
22456 		/*
22457 		 * Drop M_CTL here if IPsec processing is not needed.
22458 		 * (Non-IPsec use of M_CTL extracted any information it
22459 		 * needed above).
22460 		 */
22461 		if (ipsec_len == 0) {
22462 			freeb(first_mp);
22463 			first_mp = mp;
22464 		}
22465 	}
22466 
22467 	/*
22468 	 * Fast path for ip_wput_ire
22469 	 */
22470 
22471 	ipha = (ipha_t *)mp->b_rptr;
22472 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
22473 	dst = ipha->ipha_dst;
22474 
22475 	/*
22476 	 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED
22477 	 * if the socket is a SOCK_RAW type. The transport checksum should
22478 	 * be provided in the pre-built packet, so we don't need to compute it.
22479 	 * Also, other application set flags, like DF, should not be altered.
22480 	 * Other transport MUST pass down zero.
22481 	 */
22482 	ip_hdr_included = ipha->ipha_ident;
22483 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
22484 
22485 	if (CLASSD(dst)) {
22486 		ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n",
22487 		    ntohl(dst),
22488 		    ip_nv_lookup(ire_nv_tbl, ire->ire_type),
22489 		    ntohl(ire->ire_addr)));
22490 	}
22491 
22492 /* Macros to extract header fields from data already in registers */
22493 #ifdef	_BIG_ENDIAN
22494 #define	V_HLEN	(v_hlen_tos_len >> 24)
22495 #define	LENGTH	(v_hlen_tos_len & 0xFFFF)
22496 #define	PROTO	(ttl_protocol & 0xFF)
22497 #else
22498 #define	V_HLEN	(v_hlen_tos_len & 0xFF)
22499 #define	LENGTH	((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
22500 #define	PROTO	(ttl_protocol >> 8)
22501 #endif
22502 
22503 
22504 	orig_src = src = ipha->ipha_src;
22505 	/* (The loop back to "another" is explained down below.) */
22506 another:;
22507 	/*
22508 	 * Assign an ident value for this packet.  We assign idents on
22509 	 * a per destination basis out of the IRE.  There could be
22510 	 * other threads targeting the same destination, so we have to
22511 	 * arrange for a atomic increment.  Note that we use a 32-bit
22512 	 * atomic add because it has better performance than its
22513 	 * 16-bit sibling.
22514 	 *
22515 	 * If running in cluster mode and if the source address
22516 	 * belongs to a replicated service then vector through
22517 	 * cl_inet_ipident vector to allocate ip identifier
22518 	 * NOTE: This is a contract private interface with the
22519 	 * clustering group.
22520 	 */
22521 	clusterwide = 0;
22522 	if (cl_inet_ipident) {
22523 		ASSERT(cl_inet_isclusterwide);
22524 		if ((*cl_inet_isclusterwide)(IPPROTO_IP,
22525 		    AF_INET, (uint8_t *)(uintptr_t)src)) {
22526 			ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP,
22527 			    AF_INET, (uint8_t *)(uintptr_t)src,
22528 			    (uint8_t *)(uintptr_t)dst);
22529 			clusterwide = 1;
22530 		}
22531 	}
22532 	if (!clusterwide) {
22533 		ipha->ipha_ident =
22534 		    (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
22535 	}
22536 
22537 #ifndef _BIG_ENDIAN
22538 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
22539 #endif
22540 
22541 	/*
22542 	 * Set source address unless sent on an ill or conn_unspec_src is set.
22543 	 * This is needed to obey conn_unspec_src when packets go through
22544 	 * ip_newroute + arp.
22545 	 * Assumes ip_newroute{,_multi} sets the source address as well.
22546 	 */
22547 	if (src == INADDR_ANY && !unspec_src) {
22548 		/*
22549 		 * Assign the appropriate source address from the IRE if none
22550 		 * was specified.
22551 		 */
22552 		ASSERT(ire->ire_ipversion == IPV4_VERSION);
22553 
22554 		/*
22555 		 * With IP multipathing, broadcast packets are sent on the ire
22556 		 * that has been cleared of IRE_MARK_NORECV and that belongs to
22557 		 * the group. However, this ire might not be in the same zone so
22558 		 * we can't always use its source address. We look for a
22559 		 * broadcast ire in the same group and in the right zone.
22560 		 */
22561 		if (ire->ire_type == IRE_BROADCAST &&
22562 		    ire->ire_zoneid != zoneid) {
22563 			ire_t *src_ire = ire_ctable_lookup(dst, 0,
22564 			    IRE_BROADCAST, ire->ire_ipif, zoneid, NULL,
22565 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst);
22566 			if (src_ire != NULL) {
22567 				src = src_ire->ire_src_addr;
22568 				ire_refrele(src_ire);
22569 			} else {
22570 				ire_refrele(ire);
22571 				if (conn_outgoing_ill != NULL)
22572 					ill_refrele(conn_outgoing_ill);
22573 				freemsg(first_mp);
22574 				if (ill != NULL) {
22575 					BUMP_MIB(ill->ill_ip_mib,
22576 					    ipIfStatsOutDiscards);
22577 				} else {
22578 					BUMP_MIB(&ipst->ips_ip_mib,
22579 					    ipIfStatsOutDiscards);
22580 				}
22581 				return;
22582 			}
22583 		} else {
22584 			src = ire->ire_src_addr;
22585 		}
22586 
22587 		if (connp == NULL) {
22588 			ip1dbg(("ip_wput_ire: no connp and no src "
22589 			    "address for dst 0x%x, using src 0x%x\n",
22590 			    ntohl(dst),
22591 			    ntohl(src)));
22592 		}
22593 		ipha->ipha_src = src;
22594 	}
22595 	stq = ire->ire_stq;
22596 
22597 	/*
22598 	 * We only allow ire chains for broadcasts since there will
22599 	 * be multiple IRE_CACHE entries for the same multicast
22600 	 * address (one per ipif).
22601 	 */
22602 	next_mp = NULL;
22603 
22604 	/* broadcast packet */
22605 	if (ire->ire_type == IRE_BROADCAST)
22606 		goto broadcast;
22607 
22608 	/* loopback ? */
22609 	if (stq == NULL)
22610 		goto nullstq;
22611 
22612 	/* The ill_index for outbound ILL */
22613 	ill_index = Q_TO_INDEX(stq);
22614 
22615 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
22616 	ttl_protocol = ((uint16_t *)ipha)[4];
22617 
22618 	/* pseudo checksum (do it in parts for IP header checksum) */
22619 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
22620 
22621 	if (!IP_FLOW_CONTROLLED_ULP(PROTO)) {
22622 		queue_t *dev_q = stq->q_next;
22623 
22624 		/* flow controlled */
22625 		if ((dev_q->q_next || dev_q->q_first) &&
22626 		    !canput(dev_q))
22627 			goto blocked;
22628 		if ((PROTO == IPPROTO_UDP) &&
22629 		    (ip_hdr_included != IP_HDR_INCLUDED)) {
22630 			hlen = (V_HLEN & 0xF) << 2;
22631 			up = IPH_UDPH_CHECKSUMP(ipha, hlen);
22632 			if (*up != 0) {
22633 				IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO,
22634 				    hlen, LENGTH, max_frag, ipsec_len, cksum);
22635 				/* Software checksum? */
22636 				if (DB_CKSUMFLAGS(mp) == 0) {
22637 					IP_STAT(ipst, ip_out_sw_cksum);
22638 					IP_STAT_UPDATE(ipst,
22639 					    ip_udp_out_sw_cksum_bytes,
22640 					    LENGTH - hlen);
22641 				}
22642 			}
22643 		}
22644 	} else if (ip_hdr_included != IP_HDR_INCLUDED) {
22645 		hlen = (V_HLEN & 0xF) << 2;
22646 		if (PROTO == IPPROTO_TCP) {
22647 			up = IPH_TCPH_CHECKSUMP(ipha, hlen);
22648 			/*
22649 			 * The packet header is processed once and for all, even
22650 			 * in the multirouting case. We disable hardware
22651 			 * checksum if the packet is multirouted, as it will be
22652 			 * replicated via several interfaces, and not all of
22653 			 * them may have this capability.
22654 			 */
22655 			IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen,
22656 			    LENGTH, max_frag, ipsec_len, cksum);
22657 			/* Software checksum? */
22658 			if (DB_CKSUMFLAGS(mp) == 0) {
22659 				IP_STAT(ipst, ip_out_sw_cksum);
22660 				IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes,
22661 				    LENGTH - hlen);
22662 			}
22663 		} else {
22664 			sctp_hdr_t	*sctph;
22665 
22666 			ASSERT(PROTO == IPPROTO_SCTP);
22667 			ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph)));
22668 			sctph = (sctp_hdr_t *)(mp->b_rptr + hlen);
22669 			/*
22670 			 * Zero out the checksum field to ensure proper
22671 			 * checksum calculation.
22672 			 */
22673 			sctph->sh_chksum = 0;
22674 #ifdef	DEBUG
22675 			if (!skip_sctp_cksum)
22676 #endif
22677 				sctph->sh_chksum = sctp_cksum(mp, hlen);
22678 		}
22679 	}
22680 
22681 	/*
22682 	 * If this is a multicast packet and originated from ip_wput
22683 	 * we need to do loopback and forwarding checks. If it comes
22684 	 * from ip_wput_multicast, we SHOULD not do this.
22685 	 */
22686 	if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback;
22687 
22688 	/* checksum */
22689 	cksum += ttl_protocol;
22690 
22691 	/* fragment the packet */
22692 	if (max_frag < (uint_t)(LENGTH + ipsec_len))
22693 		goto fragmentit;
22694 	/*
22695 	 * Don't use frag_flag if packet is pre-built or source
22696 	 * routed or if multicast (since multicast packets do
22697 	 * not solicit ICMP "packet too big" messages).
22698 	 */
22699 	if ((ip_hdr_included != IP_HDR_INCLUDED) &&
22700 	    (V_HLEN == IP_SIMPLE_HDR_VERSION ||
22701 	    !ip_source_route_included(ipha)) &&
22702 	    !CLASSD(ipha->ipha_dst))
22703 		ipha->ipha_fragment_offset_and_flags |=
22704 		    htons(ire->ire_frag_flag);
22705 
22706 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
22707 		/* calculate IP header checksum */
22708 		cksum += ipha->ipha_ident;
22709 		cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF);
22710 		cksum += ipha->ipha_fragment_offset_and_flags;
22711 
22712 		/* IP options present */
22713 		hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS;
22714 		if (hlen)
22715 			goto checksumoptions;
22716 
22717 		/* calculate hdr checksum */
22718 		cksum = ((cksum & 0xFFFF) + (cksum >> 16));
22719 		cksum = ~(cksum + (cksum >> 16));
22720 		ipha->ipha_hdr_checksum = (uint16_t)cksum;
22721 	}
22722 	if (ipsec_len != 0) {
22723 		/*
22724 		 * We will do the rest of the processing after
22725 		 * we come back from IPSEC in ip_wput_ipsec_out().
22726 		 */
22727 		ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t));
22728 
22729 		io = (ipsec_out_t *)first_mp->b_rptr;
22730 		io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)->
22731 				ill_phyint->phyint_ifindex;
22732 
22733 		ipsec_out_process(q, first_mp, ire, ill_index);
22734 		ire_refrele(ire);
22735 		if (conn_outgoing_ill != NULL)
22736 			ill_refrele(conn_outgoing_ill);
22737 		return;
22738 	}
22739 
22740 	/*
22741 	 * In most cases, the emission loop below is entered only
22742 	 * once. Only in the case where the ire holds the
22743 	 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT
22744 	 * flagged ires in the bucket, and send the packet
22745 	 * through all crossed RTF_MULTIRT routes.
22746 	 */
22747 	if (ire->ire_flags & RTF_MULTIRT) {
22748 		multirt_send = B_TRUE;
22749 	}
22750 	do {
22751 		if (multirt_send) {
22752 			irb_t *irb;
22753 			/*
22754 			 * We are in a multiple send case, need to get
22755 			 * the next ire and make a duplicate of the packet.
22756 			 * ire1 holds here the next ire to process in the
22757 			 * bucket. If multirouting is expected,
22758 			 * any non-RTF_MULTIRT ire that has the
22759 			 * right destination address is ignored.
22760 			 */
22761 			irb = ire->ire_bucket;
22762 			ASSERT(irb != NULL);
22763 
22764 			IRB_REFHOLD(irb);
22765 			for (ire1 = ire->ire_next;
22766 			    ire1 != NULL;
22767 			    ire1 = ire1->ire_next) {
22768 				if ((ire1->ire_flags & RTF_MULTIRT) == 0)
22769 					continue;
22770 				if (ire1->ire_addr != ire->ire_addr)
22771 					continue;
22772 				if (ire1->ire_marks &
22773 				    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
22774 					continue;
22775 
22776 				/* Got one */
22777 				IRE_REFHOLD(ire1);
22778 				break;
22779 			}
22780 			IRB_REFRELE(irb);
22781 
22782 			if (ire1 != NULL) {
22783 				next_mp = copyb(mp);
22784 				if ((next_mp == NULL) ||
22785 				    ((mp->b_cont != NULL) &&
22786 				    ((next_mp->b_cont =
22787 				    dupmsg(mp->b_cont)) == NULL))) {
22788 					freemsg(next_mp);
22789 					next_mp = NULL;
22790 					ire_refrele(ire1);
22791 					ire1 = NULL;
22792 				}
22793 			}
22794 
22795 			/* Last multiroute ire; don't loop anymore. */
22796 			if (ire1 == NULL) {
22797 				multirt_send = B_FALSE;
22798 			}
22799 		}
22800 
22801 		DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL,
22802 		    ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha,
22803 		    mblk_t *, mp);
22804 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
22805 		    ipst->ips_ipv4firewall_physical_out,
22806 		    NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp, ipst);
22807 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
22808 		if (mp == NULL)
22809 			goto release_ire_and_ill;
22810 
22811 		mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT);
22812 		DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire);
22813 		pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE);
22814 		if ((pktxmit_state == SEND_FAILED) ||
22815 		    (pktxmit_state == LLHDR_RESLV_FAILED)) {
22816 			ip2dbg(("ip_wput_ire: ip_xmit_v4 failed"
22817 			    "- packet dropped\n"));
22818 release_ire_and_ill:
22819 			ire_refrele(ire);
22820 			if (next_mp != NULL) {
22821 				freemsg(next_mp);
22822 				ire_refrele(ire1);
22823 			}
22824 			if (conn_outgoing_ill != NULL)
22825 				ill_refrele(conn_outgoing_ill);
22826 			return;
22827 		}
22828 
22829 		if (CLASSD(dst)) {
22830 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts);
22831 			UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets,
22832 			    ntohs(ipha->ipha_length));
22833 		}
22834 
22835 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
22836 		    "ip_wput_ire_end: q %p (%S)",
22837 		    q, "last copy out");
22838 		IRE_REFRELE(ire);
22839 
22840 		if (multirt_send) {
22841 			ASSERT(ire1);
22842 			/*
22843 			 * Proceed with the next RTF_MULTIRT ire,
22844 			 * Also set up the send-to queue accordingly.
22845 			 */
22846 			ire = ire1;
22847 			ire1 = NULL;
22848 			stq = ire->ire_stq;
22849 			mp = next_mp;
22850 			next_mp = NULL;
22851 			ipha = (ipha_t *)mp->b_rptr;
22852 			ill_index = Q_TO_INDEX(stq);
22853 			ill = (ill_t *)stq->q_ptr;
22854 		}
22855 	} while (multirt_send);
22856 	if (conn_outgoing_ill != NULL)
22857 		ill_refrele(conn_outgoing_ill);
22858 	return;
22859 
22860 	/*
22861 	 * ire->ire_type == IRE_BROADCAST (minimize diffs)
22862 	 */
22863 broadcast:
22864 	{
22865 		/*
22866 		 * Avoid broadcast storms by setting the ttl to 1
22867 		 * for broadcasts. This parameter can be set
22868 		 * via ndd, so make sure that for the SO_DONTROUTE
22869 		 * case that ipha_ttl is always set to 1.
22870 		 * In the event that we are replying to incoming
22871 		 * ICMP packets, conn could be NULL.
22872 		 */
22873 		if ((connp != NULL) && connp->conn_dontroute)
22874 			ipha->ipha_ttl = 1;
22875 		else
22876 			ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
22877 
22878 		/*
22879 		 * Note that we are not doing a IRB_REFHOLD here.
22880 		 * Actually we don't care if the list changes i.e
22881 		 * if somebody deletes an IRE from the list while
22882 		 * we drop the lock, the next time we come around
22883 		 * ire_next will be NULL and hence we won't send
22884 		 * out multiple copies which is fine.
22885 		 */
22886 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
22887 		ire1 = ire->ire_next;
22888 		if (conn_outgoing_ill != NULL) {
22889 			while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) {
22890 				ASSERT(ire1 == ire->ire_next);
22891 				if (ire1 != NULL && ire1->ire_addr == dst) {
22892 					ire_refrele(ire);
22893 					ire = ire1;
22894 					IRE_REFHOLD(ire);
22895 					ire1 = ire->ire_next;
22896 					continue;
22897 				}
22898 				rw_exit(&ire->ire_bucket->irb_lock);
22899 				/* Did not find a matching ill */
22900 				ip1dbg(("ip_wput_ire: broadcast with no "
22901 				    "matching IP_BOUND_IF ill %s\n",
22902 				    conn_outgoing_ill->ill_name));
22903 				freemsg(first_mp);
22904 				if (ire != NULL)
22905 					ire_refrele(ire);
22906 				ill_refrele(conn_outgoing_ill);
22907 				return;
22908 			}
22909 		} else if (ire1 != NULL && ire1->ire_addr == dst) {
22910 			/*
22911 			 * If the next IRE has the same address and is not one
22912 			 * of the two copies that we need to send, try to see
22913 			 * whether this copy should be sent at all. This
22914 			 * assumes that we insert loopbacks first and then
22915 			 * non-loopbacks. This is acheived by inserting the
22916 			 * loopback always before non-loopback.
22917 			 * This is used to send a single copy of a broadcast
22918 			 * packet out all physical interfaces that have an
22919 			 * matching IRE_BROADCAST while also looping
22920 			 * back one copy (to ip_wput_local) for each
22921 			 * matching physical interface. However, we avoid
22922 			 * sending packets out different logical that match by
22923 			 * having ipif_up/ipif_down supress duplicate
22924 			 * IRE_BROADCASTS.
22925 			 *
22926 			 * This feature is currently used to get broadcasts
22927 			 * sent to multiple interfaces, when the broadcast
22928 			 * address being used applies to multiple interfaces.
22929 			 * For example, a whole net broadcast will be
22930 			 * replicated on every connected subnet of
22931 			 * the target net.
22932 			 *
22933 			 * Each zone has its own set of IRE_BROADCASTs, so that
22934 			 * we're able to distribute inbound packets to multiple
22935 			 * zones who share a broadcast address. We avoid looping
22936 			 * back outbound packets in different zones but on the
22937 			 * same ill, as the application would see duplicates.
22938 			 *
22939 			 * If the interfaces are part of the same group,
22940 			 * we would want to send only one copy out for
22941 			 * whole group.
22942 			 *
22943 			 * This logic assumes that ire_add_v4() groups the
22944 			 * IRE_BROADCAST entries so that those with the same
22945 			 * ire_addr and ill_group are kept together.
22946 			 */
22947 			ire_ill = ire->ire_ipif->ipif_ill;
22948 			if (ire->ire_stq == NULL && ire1->ire_stq != NULL) {
22949 				if (ire_ill->ill_group != NULL &&
22950 				    (ire->ire_marks & IRE_MARK_NORECV)) {
22951 					/*
22952 					 * If the current zone only has an ire
22953 					 * broadcast for this address marked
22954 					 * NORECV, the ire we want is ahead in
22955 					 * the bucket, so we look it up
22956 					 * deliberately ignoring the zoneid.
22957 					 */
22958 					for (ire1 = ire->ire_bucket->irb_ire;
22959 					    ire1 != NULL;
22960 					    ire1 = ire1->ire_next) {
22961 						ire1_ill =
22962 						    ire1->ire_ipif->ipif_ill;
22963 						if (ire1->ire_addr != dst)
22964 							continue;
22965 						/* skip over the current ire */
22966 						if (ire1 == ire)
22967 							continue;
22968 						/* skip over deleted ires */
22969 						if (ire1->ire_marks &
22970 						    IRE_MARK_CONDEMNED)
22971 							continue;
22972 						/*
22973 						 * non-loopback ire in our
22974 						 * group: use it for the next
22975 						 * pass in the loop
22976 						 */
22977 						if (ire1->ire_stq != NULL &&
22978 						    ire1_ill->ill_group ==
22979 						    ire_ill->ill_group)
22980 							break;
22981 					}
22982 				}
22983 			} else {
22984 				while (ire1 != NULL && ire1->ire_addr == dst) {
22985 					ire1_ill = ire1->ire_ipif->ipif_ill;
22986 					/*
22987 					 * We can have two broadcast ires on the
22988 					 * same ill in different zones; here
22989 					 * we'll send a copy of the packet on
22990 					 * each ill and the fanout code will
22991 					 * call conn_wantpacket() to check that
22992 					 * the zone has the broadcast address
22993 					 * configured on the ill. If the two
22994 					 * ires are in the same group we only
22995 					 * send one copy up.
22996 					 */
22997 					if (ire1_ill != ire_ill &&
22998 					    (ire1_ill->ill_group == NULL ||
22999 					    ire_ill->ill_group == NULL ||
23000 					    ire1_ill->ill_group !=
23001 					    ire_ill->ill_group)) {
23002 						break;
23003 					}
23004 					ire1 = ire1->ire_next;
23005 				}
23006 			}
23007 		}
23008 		ASSERT(multirt_send == B_FALSE);
23009 		if (ire1 != NULL && ire1->ire_addr == dst) {
23010 			if ((ire->ire_flags & RTF_MULTIRT) &&
23011 			    (ire1->ire_flags & RTF_MULTIRT)) {
23012 				/*
23013 				 * We are in the multirouting case.
23014 				 * The message must be sent at least
23015 				 * on both ires. These ires have been
23016 				 * inserted AFTER the standard ones
23017 				 * in ip_rt_add(). There are thus no
23018 				 * other ire entries for the destination
23019 				 * address in the rest of the bucket
23020 				 * that do not have the RTF_MULTIRT
23021 				 * flag. We don't process a copy
23022 				 * of the message here. This will be
23023 				 * done in the final sending loop.
23024 				 */
23025 				multirt_send = B_TRUE;
23026 			} else {
23027 				next_mp = ip_copymsg(first_mp);
23028 				if (next_mp != NULL)
23029 					IRE_REFHOLD(ire1);
23030 			}
23031 		}
23032 		rw_exit(&ire->ire_bucket->irb_lock);
23033 	}
23034 
23035 	if (stq) {
23036 		/*
23037 		 * A non-NULL send-to queue means this packet is going
23038 		 * out of this machine.
23039 		 */
23040 		out_ill = (ill_t *)stq->q_ptr;
23041 
23042 		BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests);
23043 		ttl_protocol = ((uint16_t *)ipha)[4];
23044 		/*
23045 		 * We accumulate the pseudo header checksum in cksum.
23046 		 * This is pretty hairy code, so watch close.  One
23047 		 * thing to keep in mind is that UDP and TCP have
23048 		 * stored their respective datagram lengths in their
23049 		 * checksum fields.  This lines things up real nice.
23050 		 */
23051 		cksum = (dst >> 16) + (dst & 0xFFFF) +
23052 		    (src >> 16) + (src & 0xFFFF);
23053 		/*
23054 		 * We assume the udp checksum field contains the
23055 		 * length, so to compute the pseudo header checksum,
23056 		 * all we need is the protocol number and src/dst.
23057 		 */
23058 		/* Provide the checksums for UDP and TCP. */
23059 		if ((PROTO == IPPROTO_TCP) &&
23060 		    (ip_hdr_included != IP_HDR_INCLUDED)) {
23061 			/* hlen gets the number of uchar_ts in the IP header */
23062 			hlen = (V_HLEN & 0xF) << 2;
23063 			up = IPH_TCPH_CHECKSUMP(ipha, hlen);
23064 			IP_STAT(ipst, ip_out_sw_cksum);
23065 			IP_STAT_UPDATE(ipst, ip_tcp_out_sw_cksum_bytes,
23066 			    LENGTH - hlen);
23067 			*up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP);
23068 			if (*up == 0)
23069 				*up = 0xFFFF;
23070 		} else if (PROTO == IPPROTO_SCTP &&
23071 		    (ip_hdr_included != IP_HDR_INCLUDED)) {
23072 			sctp_hdr_t	*sctph;
23073 
23074 			hlen = (V_HLEN & 0xF) << 2;
23075 			ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph)));
23076 			sctph = (sctp_hdr_t *)(mp->b_rptr + hlen);
23077 			sctph->sh_chksum = 0;
23078 #ifdef	DEBUG
23079 			if (!skip_sctp_cksum)
23080 #endif
23081 				sctph->sh_chksum = sctp_cksum(mp, hlen);
23082 		} else {
23083 			queue_t *dev_q = stq->q_next;
23084 
23085 			if ((dev_q->q_next || dev_q->q_first) &&
23086 			    !canput(dev_q)) {
23087 			    blocked:
23088 				ipha->ipha_ident = ip_hdr_included;
23089 				/*
23090 				 * If we don't have a conn to apply
23091 				 * backpressure, free the message.
23092 				 * In the ire_send path, we don't know
23093 				 * the position to requeue the packet. Rather
23094 				 * than reorder packets, we just drop this
23095 				 * packet.
23096 				 */
23097 				if (ipst->ips_ip_output_queue &&
23098 				    connp != NULL &&
23099 				    caller != IRE_SEND) {
23100 					if (caller == IP_WSRV) {
23101 						connp->conn_did_putbq = 1;
23102 						(void) putbq(connp->conn_wq,
23103 						    first_mp);
23104 						conn_drain_insert(connp);
23105 						/*
23106 						 * This is the service thread,
23107 						 * and the queue is already
23108 						 * noenabled. The check for
23109 						 * canput and the putbq is not
23110 						 * atomic. So we need to check
23111 						 * again.
23112 						 */
23113 						if (canput(stq->q_next))
23114 							connp->conn_did_putbq
23115 							    = 0;
23116 						IP_STAT(ipst, ip_conn_flputbq);
23117 					} else {
23118 						/*
23119 						 * We are not the service proc.
23120 						 * ip_wsrv will be scheduled or
23121 						 * is already running.
23122 						 */
23123 						(void) putq(connp->conn_wq,
23124 						    first_mp);
23125 					}
23126 				} else {
23127 					out_ill = (ill_t *)stq->q_ptr;
23128 					BUMP_MIB(out_ill->ill_ip_mib,
23129 					    ipIfStatsOutDiscards);
23130 					freemsg(first_mp);
23131 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23132 					    "ip_wput_ire_end: q %p (%S)",
23133 					    q, "discard");
23134 				}
23135 				ire_refrele(ire);
23136 				if (next_mp) {
23137 					ire_refrele(ire1);
23138 					freemsg(next_mp);
23139 				}
23140 				if (conn_outgoing_ill != NULL)
23141 					ill_refrele(conn_outgoing_ill);
23142 				return;
23143 			}
23144 			if ((PROTO == IPPROTO_UDP) &&
23145 			    (ip_hdr_included != IP_HDR_INCLUDED)) {
23146 				/*
23147 				 * hlen gets the number of uchar_ts in the
23148 				 * IP header
23149 				 */
23150 				hlen = (V_HLEN & 0xF) << 2;
23151 				up = IPH_UDPH_CHECKSUMP(ipha, hlen);
23152 				max_frag = ire->ire_max_frag;
23153 				if (*up != 0) {
23154 					IP_CKSUM_XMIT(ire_ill, ire, mp, ipha,
23155 					    up, PROTO, hlen, LENGTH, max_frag,
23156 					    ipsec_len, cksum);
23157 					/* Software checksum? */
23158 					if (DB_CKSUMFLAGS(mp) == 0) {
23159 						IP_STAT(ipst, ip_out_sw_cksum);
23160 						IP_STAT_UPDATE(ipst,
23161 						    ip_udp_out_sw_cksum_bytes,
23162 						    LENGTH - hlen);
23163 					}
23164 				}
23165 			}
23166 		}
23167 		/*
23168 		 * Need to do this even when fragmenting. The local
23169 		 * loopback can be done without computing checksums
23170 		 * but forwarding out other interface must be done
23171 		 * after the IP checksum (and ULP checksums) have been
23172 		 * computed.
23173 		 *
23174 		 * NOTE : multicast_forward is set only if this packet
23175 		 * originated from ip_wput. For packets originating from
23176 		 * ip_wput_multicast, it is not set.
23177 		 */
23178 		if (CLASSD(ipha->ipha_dst) && multicast_forward) {
23179 		    multi_loopback:
23180 			ip2dbg(("ip_wput: multicast, loop %d\n",
23181 			    conn_multicast_loop));
23182 
23183 			/*  Forget header checksum offload */
23184 			DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
23185 
23186 			/*
23187 			 * Local loopback of multicasts?  Check the
23188 			 * ill.
23189 			 *
23190 			 * Note that the loopback function will not come
23191 			 * in through ip_rput - it will only do the
23192 			 * client fanout thus we need to do an mforward
23193 			 * as well.  The is different from the BSD
23194 			 * logic.
23195 			 */
23196 			if (ill != NULL) {
23197 				ilm_t	*ilm;
23198 
23199 				ILM_WALKER_HOLD(ill);
23200 				ilm = ilm_lookup_ill(ill, ipha->ipha_dst,
23201 				    ALL_ZONES);
23202 				ILM_WALKER_RELE(ill);
23203 				if (ilm != NULL) {
23204 					/*
23205 					 * Pass along the virtual output q.
23206 					 * ip_wput_local() will distribute the
23207 					 * packet to all the matching zones,
23208 					 * except the sending zone when
23209 					 * IP_MULTICAST_LOOP is false.
23210 					 */
23211 					ip_multicast_loopback(q, ill, first_mp,
23212 					    conn_multicast_loop ? 0 :
23213 					    IP_FF_NO_MCAST_LOOP, zoneid);
23214 				}
23215 			}
23216 			if (ipha->ipha_ttl == 0) {
23217 				/*
23218 				 * 0 => only to this host i.e. we are
23219 				 * done. We are also done if this was the
23220 				 * loopback interface since it is sufficient
23221 				 * to loopback one copy of a multicast packet.
23222 				 */
23223 				freemsg(first_mp);
23224 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23225 				    "ip_wput_ire_end: q %p (%S)",
23226 				    q, "loopback");
23227 				ire_refrele(ire);
23228 				if (conn_outgoing_ill != NULL)
23229 					ill_refrele(conn_outgoing_ill);
23230 				return;
23231 			}
23232 			/*
23233 			 * ILLF_MULTICAST is checked in ip_newroute
23234 			 * i.e. we don't need to check it here since
23235 			 * all IRE_CACHEs come from ip_newroute.
23236 			 * For multicast traffic, SO_DONTROUTE is interpreted
23237 			 * to mean only send the packet out the interface
23238 			 * (optionally specified with IP_MULTICAST_IF)
23239 			 * and do not forward it out additional interfaces.
23240 			 * RSVP and the rsvp daemon is an example of a
23241 			 * protocol and user level process that
23242 			 * handles it's own routing. Hence, it uses the
23243 			 * SO_DONTROUTE option to accomplish this.
23244 			 */
23245 
23246 			if (ipst->ips_ip_g_mrouter && !conn_dontroute &&
23247 			    ill != NULL) {
23248 				/* Unconditionally redo the checksum */
23249 				ipha->ipha_hdr_checksum = 0;
23250 				ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
23251 
23252 				/*
23253 				 * If this needs to go out secure, we need
23254 				 * to wait till we finish the IPSEC
23255 				 * processing.
23256 				 */
23257 				if (ipsec_len == 0 &&
23258 				    ip_mforward(ill, ipha, mp)) {
23259 					freemsg(first_mp);
23260 					ip1dbg(("ip_wput: mforward failed\n"));
23261 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23262 					    "ip_wput_ire_end: q %p (%S)",
23263 					    q, "mforward failed");
23264 					ire_refrele(ire);
23265 					if (conn_outgoing_ill != NULL)
23266 						ill_refrele(conn_outgoing_ill);
23267 					return;
23268 				}
23269 			}
23270 		}
23271 		max_frag = ire->ire_max_frag;
23272 		cksum += ttl_protocol;
23273 		if (max_frag >= (uint_t)(LENGTH + ipsec_len)) {
23274 			/* No fragmentation required for this one. */
23275 			/*
23276 			 * Don't use frag_flag if packet is pre-built or source
23277 			 * routed or if multicast (since multicast packets do
23278 			 * not solicit ICMP "packet too big" messages).
23279 			 */
23280 			if ((ip_hdr_included != IP_HDR_INCLUDED) &&
23281 			    (V_HLEN == IP_SIMPLE_HDR_VERSION ||
23282 			    !ip_source_route_included(ipha)) &&
23283 			    !CLASSD(ipha->ipha_dst))
23284 				ipha->ipha_fragment_offset_and_flags |=
23285 				    htons(ire->ire_frag_flag);
23286 
23287 			if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
23288 				/* Complete the IP header checksum. */
23289 				cksum += ipha->ipha_ident;
23290 				cksum += (v_hlen_tos_len >> 16)+
23291 				    (v_hlen_tos_len & 0xFFFF);
23292 				cksum += ipha->ipha_fragment_offset_and_flags;
23293 				hlen = (V_HLEN & 0xF) -
23294 				    IP_SIMPLE_HDR_LENGTH_IN_WORDS;
23295 				if (hlen) {
23296 				    checksumoptions:
23297 					/*
23298 					 * Account for the IP Options in the IP
23299 					 * header checksum.
23300 					 */
23301 					up = (uint16_t *)(rptr+
23302 					    IP_SIMPLE_HDR_LENGTH);
23303 					do {
23304 						cksum += up[0];
23305 						cksum += up[1];
23306 						up += 2;
23307 					} while (--hlen);
23308 				}
23309 				cksum = ((cksum & 0xFFFF) + (cksum >> 16));
23310 				cksum = ~(cksum + (cksum >> 16));
23311 				ipha->ipha_hdr_checksum = (uint16_t)cksum;
23312 			}
23313 			if (ipsec_len != 0) {
23314 				ipsec_out_process(q, first_mp, ire, ill_index);
23315 				if (!next_mp) {
23316 					ire_refrele(ire);
23317 					if (conn_outgoing_ill != NULL)
23318 						ill_refrele(conn_outgoing_ill);
23319 					return;
23320 				}
23321 				goto next;
23322 			}
23323 
23324 			/*
23325 			 * multirt_send has already been handled
23326 			 * for broadcast, but not yet for multicast
23327 			 * or IP options.
23328 			 */
23329 			if (next_mp == NULL) {
23330 				if (ire->ire_flags & RTF_MULTIRT) {
23331 					multirt_send = B_TRUE;
23332 				}
23333 			}
23334 
23335 			/*
23336 			 * In most cases, the emission loop below is
23337 			 * entered only once. Only in the case where
23338 			 * the ire holds the RTF_MULTIRT flag, do we loop
23339 			 * to process all RTF_MULTIRT ires in the bucket,
23340 			 * and send the packet through all crossed
23341 			 * RTF_MULTIRT routes.
23342 			 */
23343 			do {
23344 				if (multirt_send) {
23345 					irb_t *irb;
23346 
23347 					irb = ire->ire_bucket;
23348 					ASSERT(irb != NULL);
23349 					/*
23350 					 * We are in a multiple send case,
23351 					 * need to get the next IRE and make
23352 					 * a duplicate of the packet.
23353 					 */
23354 					IRB_REFHOLD(irb);
23355 					for (ire1 = ire->ire_next;
23356 					    ire1 != NULL;
23357 					    ire1 = ire1->ire_next) {
23358 						if (!(ire1->ire_flags &
23359 						    RTF_MULTIRT))
23360 							continue;
23361 						if (ire1->ire_addr !=
23362 						    ire->ire_addr)
23363 							continue;
23364 						if (ire1->ire_marks &
23365 						    (IRE_MARK_CONDEMNED|
23366 							IRE_MARK_HIDDEN))
23367 							continue;
23368 
23369 						/* Got one */
23370 						IRE_REFHOLD(ire1);
23371 						break;
23372 					}
23373 					IRB_REFRELE(irb);
23374 
23375 					if (ire1 != NULL) {
23376 						next_mp = copyb(mp);
23377 						if ((next_mp == NULL) ||
23378 						    ((mp->b_cont != NULL) &&
23379 						    ((next_mp->b_cont =
23380 						    dupmsg(mp->b_cont))
23381 						    == NULL))) {
23382 							freemsg(next_mp);
23383 							next_mp = NULL;
23384 							ire_refrele(ire1);
23385 							ire1 = NULL;
23386 						}
23387 					}
23388 
23389 					/*
23390 					 * Last multiroute ire; don't loop
23391 					 * anymore. The emission is over
23392 					 * and next_mp is NULL.
23393 					 */
23394 					if (ire1 == NULL) {
23395 						multirt_send = B_FALSE;
23396 					}
23397 				}
23398 
23399 				out_ill = ire->ire_ipif->ipif_ill;
23400 				DTRACE_PROBE4(ip4__physical__out__start,
23401 				    ill_t *, NULL,
23402 				    ill_t *, out_ill,
23403 				    ipha_t *, ipha, mblk_t *, mp);
23404 				FW_HOOKS(ipst->ips_ip4_physical_out_event,
23405 				    ipst->ips_ipv4firewall_physical_out,
23406 				    NULL, out_ill, ipha, mp, mp, ipst);
23407 				DTRACE_PROBE1(ip4__physical__out__end,
23408 				    mblk_t *, mp);
23409 				if (mp == NULL)
23410 					goto release_ire_and_ill_2;
23411 
23412 				ASSERT(ipsec_len == 0);
23413 				mp->b_prev =
23414 				    SET_BPREV_FLAG(IPP_LOCAL_OUT);
23415 				DTRACE_PROBE2(ip__xmit__2,
23416 				    mblk_t *, mp, ire_t *, ire);
23417 				pktxmit_state = ip_xmit_v4(mp, ire,
23418 				    NULL, B_TRUE);
23419 				if ((pktxmit_state == SEND_FAILED) ||
23420 				    (pktxmit_state == LLHDR_RESLV_FAILED)) {
23421 release_ire_and_ill_2:
23422 					if (next_mp) {
23423 						freemsg(next_mp);
23424 						ire_refrele(ire1);
23425 					}
23426 					ire_refrele(ire);
23427 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23428 					    "ip_wput_ire_end: q %p (%S)",
23429 					    q, "discard MDATA");
23430 					if (conn_outgoing_ill != NULL)
23431 						ill_refrele(conn_outgoing_ill);
23432 					return;
23433 				}
23434 
23435 				if (CLASSD(dst)) {
23436 					BUMP_MIB(out_ill->ill_ip_mib,
23437 					    ipIfStatsHCOutMcastPkts);
23438 					UPDATE_MIB(out_ill->ill_ip_mib,
23439 					    ipIfStatsHCOutMcastOctets,
23440 					    ntohs(ipha->ipha_length));
23441 				} else if (ire->ire_type == IRE_BROADCAST) {
23442 					BUMP_MIB(out_ill->ill_ip_mib,
23443 					    ipIfStatsHCOutBcastPkts);
23444 				}
23445 
23446 				if (multirt_send) {
23447 					/*
23448 					 * We are in a multiple send case,
23449 					 * need to re-enter the sending loop
23450 					 * using the next ire.
23451 					 */
23452 					ire_refrele(ire);
23453 					ire = ire1;
23454 					stq = ire->ire_stq;
23455 					mp = next_mp;
23456 					next_mp = NULL;
23457 					ipha = (ipha_t *)mp->b_rptr;
23458 					ill_index = Q_TO_INDEX(stq);
23459 				}
23460 			} while (multirt_send);
23461 
23462 			if (!next_mp) {
23463 				/*
23464 				 * Last copy going out (the ultra-common
23465 				 * case).  Note that we intentionally replicate
23466 				 * the putnext rather than calling it before
23467 				 * the next_mp check in hopes of a little
23468 				 * tail-call action out of the compiler.
23469 				 */
23470 				TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23471 				    "ip_wput_ire_end: q %p (%S)",
23472 				    q, "last copy out(1)");
23473 				ire_refrele(ire);
23474 				if (conn_outgoing_ill != NULL)
23475 					ill_refrele(conn_outgoing_ill);
23476 				return;
23477 			}
23478 			/* More copies going out below. */
23479 		} else {
23480 			int offset;
23481 		    fragmentit:
23482 			offset = ntohs(ipha->ipha_fragment_offset_and_flags);
23483 			/*
23484 			 * If this would generate a icmp_frag_needed message,
23485 			 * we need to handle it before we do the IPSEC
23486 			 * processing. Otherwise, we need to strip the IPSEC
23487 			 * headers before we send up the message to the ULPs
23488 			 * which becomes messy and difficult.
23489 			 */
23490 			if (ipsec_len != 0) {
23491 				if ((max_frag < (unsigned int)(LENGTH +
23492 				    ipsec_len)) && (offset & IPH_DF)) {
23493 					out_ill = (ill_t *)stq->q_ptr;
23494 					BUMP_MIB(out_ill->ill_ip_mib,
23495 					    ipIfStatsOutFragFails);
23496 					BUMP_MIB(out_ill->ill_ip_mib,
23497 					    ipIfStatsOutFragReqds);
23498 					ipha->ipha_hdr_checksum = 0;
23499 					ipha->ipha_hdr_checksum =
23500 					    (uint16_t)ip_csum_hdr(ipha);
23501 					icmp_frag_needed(ire->ire_stq, first_mp,
23502 					    max_frag, zoneid, ipst);
23503 					if (!next_mp) {
23504 						ire_refrele(ire);
23505 						if (conn_outgoing_ill != NULL) {
23506 							ill_refrele(
23507 							    conn_outgoing_ill);
23508 						}
23509 						return;
23510 					}
23511 				} else {
23512 					/*
23513 					 * This won't cause a icmp_frag_needed
23514 					 * message. to be generated. Send it on
23515 					 * the wire. Note that this could still
23516 					 * cause fragmentation and all we
23517 					 * do is the generation of the message
23518 					 * to the ULP if needed before IPSEC.
23519 					 */
23520 					if (!next_mp) {
23521 						ipsec_out_process(q, first_mp,
23522 						    ire, ill_index);
23523 						TRACE_2(TR_FAC_IP,
23524 						    TR_IP_WPUT_IRE_END,
23525 						    "ip_wput_ire_end: q %p "
23526 						    "(%S)", q,
23527 						    "last ipsec_out_process");
23528 						ire_refrele(ire);
23529 						if (conn_outgoing_ill != NULL) {
23530 							ill_refrele(
23531 							    conn_outgoing_ill);
23532 						}
23533 						return;
23534 					}
23535 					ipsec_out_process(q, first_mp,
23536 					    ire, ill_index);
23537 				}
23538 			} else {
23539 				/*
23540 				 * Initiate IPPF processing. For
23541 				 * fragmentable packets we finish
23542 				 * all QOS packet processing before
23543 				 * calling:
23544 				 * ip_wput_ire_fragmentit->ip_wput_frag
23545 				 */
23546 
23547 				if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
23548 					ip_process(IPP_LOCAL_OUT, &mp,
23549 					    ill_index);
23550 					if (mp == NULL) {
23551 						out_ill = (ill_t *)stq->q_ptr;
23552 						BUMP_MIB(out_ill->ill_ip_mib,
23553 						    ipIfStatsOutDiscards);
23554 						if (next_mp != NULL) {
23555 							freemsg(next_mp);
23556 							ire_refrele(ire1);
23557 						}
23558 						ire_refrele(ire);
23559 						TRACE_2(TR_FAC_IP,
23560 						    TR_IP_WPUT_IRE_END,
23561 						    "ip_wput_ire: q %p (%S)",
23562 						    q, "discard MDATA");
23563 						if (conn_outgoing_ill != NULL) {
23564 							ill_refrele(
23565 							    conn_outgoing_ill);
23566 						}
23567 						return;
23568 					}
23569 				}
23570 				if (!next_mp) {
23571 					TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23572 					    "ip_wput_ire_end: q %p (%S)",
23573 					    q, "last fragmentation");
23574 					ip_wput_ire_fragmentit(mp, ire,
23575 					    zoneid, ipst);
23576 					ire_refrele(ire);
23577 					if (conn_outgoing_ill != NULL)
23578 						ill_refrele(conn_outgoing_ill);
23579 					return;
23580 				}
23581 				ip_wput_ire_fragmentit(mp, ire, zoneid, ipst);
23582 			}
23583 		}
23584 	} else {
23585 	    nullstq:
23586 		/* A NULL stq means the destination address is local. */
23587 		UPDATE_OB_PKT_COUNT(ire);
23588 		ire->ire_last_used_time = lbolt;
23589 		ASSERT(ire->ire_ipif != NULL);
23590 		if (!next_mp) {
23591 			/*
23592 			 * Is there an "in" and "out" for traffic local
23593 			 * to a host (loopback)?  The code in Solaris doesn't
23594 			 * explicitly draw a line in its code for in vs out,
23595 			 * so we've had to draw a line in the sand: ip_wput_ire
23596 			 * is considered to be the "output" side and
23597 			 * ip_wput_local to be the "input" side.
23598 			 */
23599 			out_ill = ire->ire_ipif->ipif_ill;
23600 
23601 			DTRACE_PROBE4(ip4__loopback__out__start,
23602 			    ill_t *, NULL, ill_t *, out_ill,
23603 			    ipha_t *, ipha, mblk_t *, first_mp);
23604 
23605 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
23606 			    ipst->ips_ipv4firewall_loopback_out,
23607 			    NULL, out_ill, ipha, first_mp, mp, ipst);
23608 
23609 			DTRACE_PROBE1(ip4__loopback__out_end,
23610 			    mblk_t *, first_mp);
23611 
23612 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END,
23613 			    "ip_wput_ire_end: q %p (%S)",
23614 			    q, "local address");
23615 
23616 			if (first_mp != NULL)
23617 				ip_wput_local(q, out_ill, ipha,
23618 				    first_mp, ire, 0, ire->ire_zoneid);
23619 			ire_refrele(ire);
23620 			if (conn_outgoing_ill != NULL)
23621 				ill_refrele(conn_outgoing_ill);
23622 			return;
23623 		}
23624 
23625 		out_ill = ire->ire_ipif->ipif_ill;
23626 
23627 		DTRACE_PROBE4(ip4__loopback__out__start,
23628 		    ill_t *, NULL, ill_t *, out_ill,
23629 		    ipha_t *, ipha, mblk_t *, first_mp);
23630 
23631 		FW_HOOKS(ipst->ips_ip4_loopback_out_event,
23632 		    ipst->ips_ipv4firewall_loopback_out,
23633 		    NULL, out_ill, ipha, first_mp, mp, ipst);
23634 
23635 		DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp);
23636 
23637 		if (first_mp != NULL)
23638 			ip_wput_local(q, out_ill, ipha,
23639 			    first_mp, ire, 0, ire->ire_zoneid);
23640 	}
23641 next:
23642 	/*
23643 	 * More copies going out to additional interfaces.
23644 	 * ire1 has already been held. We don't need the
23645 	 * "ire" anymore.
23646 	 */
23647 	ire_refrele(ire);
23648 	ire = ire1;
23649 	ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL);
23650 	mp = next_mp;
23651 	ASSERT(ire->ire_ipversion == IPV4_VERSION);
23652 	ill = ire_to_ill(ire);
23653 	first_mp = mp;
23654 	if (ipsec_len != 0) {
23655 		ASSERT(first_mp->b_datap->db_type == M_CTL);
23656 		mp = mp->b_cont;
23657 	}
23658 	dst = ire->ire_addr;
23659 	ipha = (ipha_t *)mp->b_rptr;
23660 	/*
23661 	 * Restore src so that we will pick up ire->ire_src_addr if src was 0.
23662 	 * Restore ipha_ident "no checksum" flag.
23663 	 */
23664 	src = orig_src;
23665 	ipha->ipha_ident = ip_hdr_included;
23666 	goto another;
23667 
23668 #undef	rptr
23669 #undef	Q_TO_INDEX
23670 }
23671 
23672 /*
23673  * Routine to allocate a message that is used to notify the ULP about MDT.
23674  * The caller may provide a pointer to the link-layer MDT capabilities,
23675  * or NULL if MDT is to be disabled on the stream.
23676  */
23677 mblk_t *
23678 ip_mdinfo_alloc(ill_mdt_capab_t *isrc)
23679 {
23680 	mblk_t *mp;
23681 	ip_mdt_info_t *mdti;
23682 	ill_mdt_capab_t *idst;
23683 
23684 	if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) {
23685 		DB_TYPE(mp) = M_CTL;
23686 		mp->b_wptr = mp->b_rptr + sizeof (*mdti);
23687 		mdti = (ip_mdt_info_t *)mp->b_rptr;
23688 		mdti->mdt_info_id = MDT_IOC_INFO_UPDATE;
23689 		idst = &(mdti->mdt_capab);
23690 
23691 		/*
23692 		 * If the caller provides us with the capability, copy
23693 		 * it over into our notification message; otherwise
23694 		 * we zero out the capability portion.
23695 		 */
23696 		if (isrc != NULL)
23697 			bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst));
23698 		else
23699 			bzero((caddr_t)idst, sizeof (*idst));
23700 	}
23701 	return (mp);
23702 }
23703 
23704 /*
23705  * Routine which determines whether MDT can be enabled on the destination
23706  * IRE and IPC combination, and if so, allocates and returns the MDT
23707  * notification mblk that may be used by ULP.  We also check if we need to
23708  * turn MDT back to 'on' when certain restrictions prohibiting us to allow
23709  * MDT usage in the past have been lifted.  This gets called during IP
23710  * and ULP binding.
23711  */
23712 mblk_t *
23713 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name,
23714     ill_mdt_capab_t *mdt_cap)
23715 {
23716 	mblk_t *mp;
23717 	boolean_t rc = B_FALSE;
23718 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
23719 
23720 	ASSERT(dst_ire != NULL);
23721 	ASSERT(connp != NULL);
23722 	ASSERT(mdt_cap != NULL);
23723 
23724 	/*
23725 	 * Currently, we only support simple TCP/{IPv4,IPv6} with
23726 	 * Multidata, which is handled in tcp_multisend().  This
23727 	 * is the reason why we do all these checks here, to ensure
23728 	 * that we don't enable Multidata for the cases which we
23729 	 * can't handle at the moment.
23730 	 */
23731 	do {
23732 		/* Only do TCP at the moment */
23733 		if (connp->conn_ulp != IPPROTO_TCP)
23734 			break;
23735 
23736 		/*
23737 		 * IPSEC outbound policy present?  Note that we get here
23738 		 * after calling ipsec_conn_cache_policy() where the global
23739 		 * policy checking is performed.  conn_latch will be
23740 		 * non-NULL as long as there's a policy defined,
23741 		 * i.e. conn_out_enforce_policy may be NULL in such case
23742 		 * when the connection is non-secure, and hence we check
23743 		 * further if the latch refers to an outbound policy.
23744 		 */
23745 		if (CONN_IPSEC_OUT_ENCAPSULATED(connp))
23746 			break;
23747 
23748 		/* CGTP (multiroute) is enabled? */
23749 		if (dst_ire->ire_flags & RTF_MULTIRT)
23750 			break;
23751 
23752 		/* Outbound IPQoS enabled? */
23753 		if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
23754 			/*
23755 			 * In this case, we disable MDT for this and all
23756 			 * future connections going over the interface.
23757 			 */
23758 			mdt_cap->ill_mdt_on = 0;
23759 			break;
23760 		}
23761 
23762 		/* socket option(s) present? */
23763 		if (!CONN_IS_LSO_MD_FASTPATH(connp))
23764 			break;
23765 
23766 		rc = B_TRUE;
23767 	/* CONSTCOND */
23768 	} while (0);
23769 
23770 	/* Remember the result */
23771 	connp->conn_mdt_ok = rc;
23772 
23773 	if (!rc)
23774 		return (NULL);
23775 	else if (!mdt_cap->ill_mdt_on) {
23776 		/*
23777 		 * If MDT has been previously turned off in the past, and we
23778 		 * currently can do MDT (due to IPQoS policy removal, etc.)
23779 		 * then enable it for this interface.
23780 		 */
23781 		mdt_cap->ill_mdt_on = 1;
23782 		ip1dbg(("ip_mdinfo_return: reenabling MDT for "
23783 		    "interface %s\n", ill_name));
23784 	}
23785 
23786 	/* Allocate the MDT info mblk */
23787 	if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) {
23788 		ip0dbg(("ip_mdinfo_return: can't enable Multidata for "
23789 		    "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name));
23790 		return (NULL);
23791 	}
23792 	return (mp);
23793 }
23794 
23795 /*
23796  * Routine to allocate a message that is used to notify the ULP about LSO.
23797  * The caller may provide a pointer to the link-layer LSO capabilities,
23798  * or NULL if LSO is to be disabled on the stream.
23799  */
23800 mblk_t *
23801 ip_lsoinfo_alloc(ill_lso_capab_t *isrc)
23802 {
23803 	mblk_t *mp;
23804 	ip_lso_info_t *lsoi;
23805 	ill_lso_capab_t *idst;
23806 
23807 	if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) {
23808 		DB_TYPE(mp) = M_CTL;
23809 		mp->b_wptr = mp->b_rptr + sizeof (*lsoi);
23810 		lsoi = (ip_lso_info_t *)mp->b_rptr;
23811 		lsoi->lso_info_id = LSO_IOC_INFO_UPDATE;
23812 		idst = &(lsoi->lso_capab);
23813 
23814 		/*
23815 		 * If the caller provides us with the capability, copy
23816 		 * it over into our notification message; otherwise
23817 		 * we zero out the capability portion.
23818 		 */
23819 		if (isrc != NULL)
23820 			bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst));
23821 		else
23822 			bzero((caddr_t)idst, sizeof (*idst));
23823 	}
23824 	return (mp);
23825 }
23826 
23827 /*
23828  * Routine which determines whether LSO can be enabled on the destination
23829  * IRE and IPC combination, and if so, allocates and returns the LSO
23830  * notification mblk that may be used by ULP.  We also check if we need to
23831  * turn LSO back to 'on' when certain restrictions prohibiting us to allow
23832  * LSO usage in the past have been lifted.  This gets called during IP
23833  * and ULP binding.
23834  */
23835 mblk_t *
23836 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name,
23837     ill_lso_capab_t *lso_cap)
23838 {
23839 	mblk_t *mp;
23840 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
23841 
23842 	ASSERT(dst_ire != NULL);
23843 	ASSERT(connp != NULL);
23844 	ASSERT(lso_cap != NULL);
23845 
23846 	connp->conn_lso_ok = B_TRUE;
23847 
23848 	if ((connp->conn_ulp != IPPROTO_TCP) ||
23849 	    CONN_IPSEC_OUT_ENCAPSULATED(connp) ||
23850 	    (dst_ire->ire_flags & RTF_MULTIRT) ||
23851 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
23852 	    (IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
23853 		connp->conn_lso_ok = B_FALSE;
23854 		if (IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
23855 			/*
23856 			 * Disable LSO for this and all future connections going
23857 			 * over the interface.
23858 			 */
23859 			lso_cap->ill_lso_on = 0;
23860 		}
23861 	}
23862 
23863 	if (!connp->conn_lso_ok)
23864 		return (NULL);
23865 	else if (!lso_cap->ill_lso_on) {
23866 		/*
23867 		 * If LSO has been previously turned off in the past, and we
23868 		 * currently can do LSO (due to IPQoS policy removal, etc.)
23869 		 * then enable it for this interface.
23870 		 */
23871 		lso_cap->ill_lso_on = 1;
23872 		ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n",
23873 		    ill_name));
23874 	}
23875 
23876 	/* Allocate the LSO info mblk */
23877 	if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL)
23878 		ip0dbg(("ip_lsoinfo_return: can't enable LSO for "
23879 		    "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name));
23880 
23881 	return (mp);
23882 }
23883 
23884 /*
23885  * Create destination address attribute, and fill it with the physical
23886  * destination address and SAP taken from the template DL_UNITDATA_REQ
23887  * message block.
23888  */
23889 boolean_t
23890 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp)
23891 {
23892 	dl_unitdata_req_t *dlurp;
23893 	pattr_t *pa;
23894 	pattrinfo_t pa_info;
23895 	pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf;
23896 	uint_t das_len, das_off;
23897 
23898 	ASSERT(dlmp != NULL);
23899 
23900 	dlurp = (dl_unitdata_req_t *)dlmp->b_rptr;
23901 	das_len = dlurp->dl_dest_addr_length;
23902 	das_off = dlurp->dl_dest_addr_offset;
23903 
23904 	pa_info.type = PATTR_DSTADDRSAP;
23905 	pa_info.len = sizeof (**das) + das_len - 1;
23906 
23907 	/* create and associate the attribute */
23908 	pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
23909 	if (pa != NULL) {
23910 		ASSERT(*das != NULL);
23911 		(*das)->addr_is_group = 0;
23912 		(*das)->addr_len = (uint8_t)das_len;
23913 		bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len);
23914 	}
23915 
23916 	return (pa != NULL);
23917 }
23918 
23919 /*
23920  * Create hardware checksum attribute and fill it with the values passed.
23921  */
23922 boolean_t
23923 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset,
23924     uint32_t stuff_offset, uint32_t end_offset, uint32_t flags)
23925 {
23926 	pattr_t *pa;
23927 	pattrinfo_t pa_info;
23928 
23929 	ASSERT(mmd != NULL);
23930 
23931 	pa_info.type = PATTR_HCKSUM;
23932 	pa_info.len = sizeof (pattr_hcksum_t);
23933 
23934 	/* create and associate the attribute */
23935 	pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
23936 	if (pa != NULL) {
23937 		pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
23938 
23939 		hck->hcksum_start_offset = start_offset;
23940 		hck->hcksum_stuff_offset = stuff_offset;
23941 		hck->hcksum_end_offset = end_offset;
23942 		hck->hcksum_flags = flags;
23943 	}
23944 	return (pa != NULL);
23945 }
23946 
23947 /*
23948  * Create zerocopy attribute and fill it with the specified flags
23949  */
23950 boolean_t
23951 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags)
23952 {
23953 	pattr_t *pa;
23954 	pattrinfo_t pa_info;
23955 
23956 	ASSERT(mmd != NULL);
23957 	pa_info.type = PATTR_ZCOPY;
23958 	pa_info.len = sizeof (pattr_zcopy_t);
23959 
23960 	/* create and associate the attribute */
23961 	pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP);
23962 	if (pa != NULL) {
23963 		pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf;
23964 
23965 		zcopy->zcopy_flags = flags;
23966 	}
23967 	return (pa != NULL);
23968 }
23969 
23970 /*
23971  * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message
23972  * block chain. We could rewrite to handle arbitrary message block chains but
23973  * that would make the code complicated and slow. Right now there three
23974  * restrictions:
23975  *
23976  *   1. The first message block must contain the complete IP header and
23977  *	at least 1 byte of payload data.
23978  *   2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed
23979  *	so that we can use a single Multidata message.
23980  *   3. No frag must be distributed over two or more message blocks so
23981  *	that we don't need more than two packet descriptors per frag.
23982  *
23983  * The above restrictions allow us to support userland applications (which
23984  * will send down a single message block) and NFS over UDP (which will
23985  * send down a chain of at most three message blocks).
23986  *
23987  * We also don't use MDT for payloads with less than or equal to
23988  * ip_wput_frag_mdt_min bytes because it would cause too much overhead.
23989  */
23990 boolean_t
23991 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len)
23992 {
23993 	int	blocks;
23994 	ssize_t	total, missing, size;
23995 
23996 	ASSERT(mp != NULL);
23997 	ASSERT(hdr_len > 0);
23998 
23999 	size = MBLKL(mp) - hdr_len;
24000 	if (size <= 0)
24001 		return (B_FALSE);
24002 
24003 	/* The first mblk contains the header and some payload. */
24004 	blocks = 1;
24005 	total = size;
24006 	size %= len;
24007 	missing = (size == 0) ? 0 : (len - size);
24008 	mp = mp->b_cont;
24009 
24010 	while (mp != NULL) {
24011 		/*
24012 		 * Give up if we encounter a zero length message block.
24013 		 * In practice, this should rarely happen and therefore
24014 		 * not worth the trouble of freeing and re-linking the
24015 		 * mblk from the chain to handle such case.
24016 		 */
24017 		if ((size = MBLKL(mp)) == 0)
24018 			return (B_FALSE);
24019 
24020 		/* Too many payload buffers for a single Multidata message? */
24021 		if (++blocks > MULTIDATA_MAX_PBUFS)
24022 			return (B_FALSE);
24023 
24024 		total += size;
24025 		/* Is a frag distributed over two or more message blocks? */
24026 		if (missing > size)
24027 			return (B_FALSE);
24028 		size -= missing;
24029 
24030 		size %= len;
24031 		missing = (size == 0) ? 0 : (len - size);
24032 
24033 		mp = mp->b_cont;
24034 	}
24035 
24036 	return (total > ip_wput_frag_mdt_min);
24037 }
24038 
24039 /*
24040  * Outbound IPv4 fragmentation routine using MDT.
24041  */
24042 static void
24043 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len,
24044     uint32_t frag_flag, int offset)
24045 {
24046 	ipha_t		*ipha_orig;
24047 	int		i1, ip_data_end;
24048 	uint_t		pkts, wroff, hdr_chunk_len, pbuf_idx;
24049 	mblk_t		*hdr_mp, *md_mp = NULL;
24050 	unsigned char	*hdr_ptr, *pld_ptr;
24051 	multidata_t	*mmd;
24052 	ip_pdescinfo_t	pdi;
24053 	ill_t		*ill;
24054 	ip_stack_t	*ipst = ire->ire_ipst;
24055 
24056 	ASSERT(DB_TYPE(mp) == M_DATA);
24057 	ASSERT(MBLKL(mp) > sizeof (ipha_t));
24058 
24059 	ill = ire_to_ill(ire);
24060 	ASSERT(ill != NULL);
24061 
24062 	ipha_orig = (ipha_t *)mp->b_rptr;
24063 	mp->b_rptr += sizeof (ipha_t);
24064 
24065 	/* Calculate how many packets we will send out */
24066 	i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp);
24067 	pkts = (i1 + len - 1) / len;
24068 	ASSERT(pkts > 1);
24069 
24070 	/* Allocate a message block which will hold all the IP Headers. */
24071 	wroff = ipst->ips_ip_wroff_extra;
24072 	hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH;
24073 
24074 	i1 = pkts * hdr_chunk_len;
24075 	/*
24076 	 * Create the header buffer, Multidata and destination address
24077 	 * and SAP attribute that should be associated with it.
24078 	 */
24079 	if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL ||
24080 	    ((hdr_mp->b_wptr += i1),
24081 	    (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) ||
24082 	    !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) {
24083 		freemsg(mp);
24084 		if (md_mp == NULL) {
24085 			freemsg(hdr_mp);
24086 		} else {
24087 free_mmd:		IP_STAT(ipst, ip_frag_mdt_discarded);
24088 			freemsg(md_mp);
24089 		}
24090 		IP_STAT(ipst, ip_frag_mdt_allocfail);
24091 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
24092 		return;
24093 	}
24094 	IP_STAT(ipst, ip_frag_mdt_allocd);
24095 
24096 	/*
24097 	 * Add a payload buffer to the Multidata; this operation must not
24098 	 * fail, or otherwise our logic in this routine is broken.  There
24099 	 * is no memory allocation done by the routine, so any returned
24100 	 * failure simply tells us that we've done something wrong.
24101 	 *
24102 	 * A failure tells us that either we're adding the same payload
24103 	 * buffer more than once, or we're trying to add more buffers than
24104 	 * allowed.  None of the above cases should happen, and we panic
24105 	 * because either there's horrible heap corruption, and/or
24106 	 * programming mistake.
24107 	 */
24108 	if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
24109 		goto pbuf_panic;
24110 
24111 	hdr_ptr = hdr_mp->b_rptr;
24112 	pld_ptr = mp->b_rptr;
24113 
24114 	/* Establish the ending byte offset, based on the starting offset. */
24115 	offset <<= 3;
24116 	ip_data_end = offset + ntohs(ipha_orig->ipha_length) -
24117 	    IP_SIMPLE_HDR_LENGTH;
24118 
24119 	pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF;
24120 
24121 	while (pld_ptr < mp->b_wptr) {
24122 		ipha_t		*ipha;
24123 		uint16_t	offset_and_flags;
24124 		uint16_t	ip_len;
24125 		int		error;
24126 
24127 		ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr);
24128 		ipha = (ipha_t *)(hdr_ptr + wroff);
24129 		ASSERT(OK_32PTR(ipha));
24130 		*ipha = *ipha_orig;
24131 
24132 		if (ip_data_end - offset > len) {
24133 			offset_and_flags = IPH_MF;
24134 		} else {
24135 			/*
24136 			 * Last frag. Set len to the length of this last piece.
24137 			 */
24138 			len = ip_data_end - offset;
24139 			/* A frag of a frag might have IPH_MF non-zero */
24140 			offset_and_flags =
24141 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
24142 			    IPH_MF;
24143 		}
24144 		offset_and_flags |= (uint16_t)(offset >> 3);
24145 		offset_and_flags |= (uint16_t)frag_flag;
24146 		/* Store the offset and flags in the IP header. */
24147 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
24148 
24149 		/* Store the length in the IP header. */
24150 		ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH);
24151 		ipha->ipha_length = htons(ip_len);
24152 
24153 		/*
24154 		 * Set the IP header checksum.  Note that mp is just
24155 		 * the header, so this is easy to pass to ip_csum.
24156 		 */
24157 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
24158 
24159 		/*
24160 		 * Record offset and size of header and data of the next packet
24161 		 * in the multidata message.
24162 		 */
24163 		PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0);
24164 		PDESC_PLD_INIT(&pdi);
24165 		i1 = MIN(mp->b_wptr - pld_ptr, len);
24166 		ASSERT(i1 > 0);
24167 		PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1);
24168 		if (i1 == len) {
24169 			pld_ptr += len;
24170 		} else {
24171 			i1 = len - i1;
24172 			mp = mp->b_cont;
24173 			ASSERT(mp != NULL);
24174 			ASSERT(MBLKL(mp) >= i1);
24175 			/*
24176 			 * Attach the next payload message block to the
24177 			 * multidata message.
24178 			 */
24179 			if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
24180 				goto pbuf_panic;
24181 			PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1);
24182 			pld_ptr = mp->b_rptr + i1;
24183 		}
24184 
24185 		if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error,
24186 		    KM_NOSLEEP)) == NULL) {
24187 			/*
24188 			 * Any failure other than ENOMEM indicates that we
24189 			 * have passed in invalid pdesc info or parameters
24190 			 * to mmd_addpdesc, which must not happen.
24191 			 *
24192 			 * EINVAL is a result of failure on boundary checks
24193 			 * against the pdesc info contents.  It should not
24194 			 * happen, and we panic because either there's
24195 			 * horrible heap corruption, and/or programming
24196 			 * mistake.
24197 			 */
24198 			if (error != ENOMEM) {
24199 				cmn_err(CE_PANIC, "ip_wput_frag_mdt: "
24200 				    "pdesc logic error detected for "
24201 				    "mmd %p pinfo %p (%d)\n",
24202 				    (void *)mmd, (void *)&pdi, error);
24203 				/* NOTREACHED */
24204 			}
24205 			IP_STAT(ipst, ip_frag_mdt_addpdescfail);
24206 			/* Free unattached payload message blocks as well */
24207 			md_mp->b_cont = mp->b_cont;
24208 			goto free_mmd;
24209 		}
24210 
24211 		/* Advance fragment offset. */
24212 		offset += len;
24213 
24214 		/* Advance to location for next header in the buffer. */
24215 		hdr_ptr += hdr_chunk_len;
24216 
24217 		/* Did we reach the next payload message block? */
24218 		if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) {
24219 			mp = mp->b_cont;
24220 			/*
24221 			 * Attach the next message block with payload
24222 			 * data to the multidata message.
24223 			 */
24224 			if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0)
24225 				goto pbuf_panic;
24226 			pld_ptr = mp->b_rptr;
24227 		}
24228 	}
24229 
24230 	ASSERT(hdr_mp->b_wptr == hdr_ptr);
24231 	ASSERT(mp->b_wptr == pld_ptr);
24232 
24233 	/* Update IP statistics */
24234 	IP_STAT_UPDATE(ipst, ip_frag_mdt_pkt_out, pkts);
24235 
24236 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts);
24237 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
24238 
24239 	len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH;
24240 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts);
24241 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len);
24242 
24243 	if (pkt_type == OB_PKT) {
24244 		ire->ire_ob_pkt_count += pkts;
24245 		if (ire->ire_ipif != NULL)
24246 			atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts);
24247 	} else {
24248 		/*
24249 		 * The type is IB_PKT in the forwarding path and in
24250 		 * the mobile IP case when the packet is being reverse-
24251 		 * tunneled to the home agent.
24252 		 */
24253 		ire->ire_ib_pkt_count += pkts;
24254 		ASSERT(!IRE_IS_LOCAL(ire));
24255 		if (ire->ire_type & IRE_BROADCAST) {
24256 			atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts);
24257 		} else {
24258 			UPDATE_MIB(ill->ill_ip_mib,
24259 			    ipIfStatsHCOutForwDatagrams, pkts);
24260 			atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts);
24261 		}
24262 	}
24263 	ire->ire_last_used_time = lbolt;
24264 	/* Send it down */
24265 	putnext(ire->ire_stq, md_mp);
24266 	return;
24267 
24268 pbuf_panic:
24269 	cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic "
24270 	    "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp,
24271 	    pbuf_idx);
24272 	/* NOTREACHED */
24273 }
24274 
24275 /*
24276  * Outbound IP fragmentation routine.
24277  *
24278  * NOTE : This routine does not ire_refrele the ire that is passed in
24279  * as the argument.
24280  */
24281 static void
24282 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag,
24283     uint32_t frag_flag, zoneid_t zoneid, ip_stack_t *ipst)
24284 {
24285 	int		i1;
24286 	mblk_t		*ll_hdr_mp;
24287 	int 		ll_hdr_len;
24288 	int		hdr_len;
24289 	mblk_t		*hdr_mp;
24290 	ipha_t		*ipha;
24291 	int		ip_data_end;
24292 	int		len;
24293 	mblk_t		*mp = mp_orig, *mp1;
24294 	int		offset;
24295 	queue_t		*q;
24296 	uint32_t	v_hlen_tos_len;
24297 	mblk_t		*first_mp;
24298 	boolean_t	mctl_present;
24299 	ill_t		*ill;
24300 	ill_t		*out_ill;
24301 	mblk_t		*xmit_mp;
24302 	mblk_t		*carve_mp;
24303 	ire_t		*ire1 = NULL;
24304 	ire_t		*save_ire = NULL;
24305 	mblk_t  	*next_mp = NULL;
24306 	boolean_t	last_frag = B_FALSE;
24307 	boolean_t	multirt_send = B_FALSE;
24308 	ire_t		*first_ire = NULL;
24309 	irb_t		*irb = NULL;
24310 	mib2_ipIfStatsEntry_t *mibptr = NULL;
24311 
24312 	ill = ire_to_ill(ire);
24313 	mibptr = (ill != NULL) ? ill->ill_ip_mib : &ipst->ips_ip_mib;
24314 
24315 	BUMP_MIB(mibptr, ipIfStatsOutFragReqds);
24316 
24317 	/*
24318 	 * IPSEC does not allow hw accelerated packets to be fragmented
24319 	 * This check is made in ip_wput_ipsec_out prior to coming here
24320 	 * via ip_wput_ire_fragmentit.
24321 	 *
24322 	 * If at this point we have an ire whose ARP request has not
24323 	 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger
24324 	 * sending of ARP query and change ire's state to ND_INCOMPLETE.
24325 	 * This packet and all fragmentable packets for this ire will
24326 	 * continue to get dropped while ire_nce->nce_state remains in
24327 	 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to
24328 	 * ND_REACHABLE, all subsquent large packets for this ire will
24329 	 * get fragemented and sent out by this function.
24330 	 */
24331 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
24332 		/* If nce_state is ND_INITIAL, trigger ARP query */
24333 		(void) ip_xmit_v4(NULL, ire, NULL, B_FALSE);
24334 		ip1dbg(("ip_wput_frag: mac address for ire is unresolved"
24335 		    " -  dropping packet\n"));
24336 		BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24337 		freemsg(mp);
24338 		return;
24339 	}
24340 
24341 	TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START,
24342 	    "ip_wput_frag_start:");
24343 
24344 	if (mp->b_datap->db_type == M_CTL) {
24345 		first_mp = mp;
24346 		mp_orig = mp = mp->b_cont;
24347 		mctl_present = B_TRUE;
24348 	} else {
24349 		first_mp = mp;
24350 		mctl_present = B_FALSE;
24351 	}
24352 
24353 	ASSERT(MBLKL(mp) >= sizeof (ipha_t));
24354 	ipha = (ipha_t *)mp->b_rptr;
24355 
24356 	/*
24357 	 * If the Don't Fragment flag is on, generate an ICMP destination
24358 	 * unreachable, fragmentation needed.
24359 	 */
24360 	offset = ntohs(ipha->ipha_fragment_offset_and_flags);
24361 	if (offset & IPH_DF) {
24362 		BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24363 		/*
24364 		 * Need to compute hdr checksum if called from ip_wput_ire.
24365 		 * Note that ip_rput_forward verifies the checksum before
24366 		 * calling this routine so in that case this is a noop.
24367 		 */
24368 		ipha->ipha_hdr_checksum = 0;
24369 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
24370 		icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid,
24371 		    ipst);
24372 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24373 		    "ip_wput_frag_end:(%S)",
24374 		    "don't fragment");
24375 		return;
24376 	}
24377 	if (mctl_present)
24378 		freeb(first_mp);
24379 	/*
24380 	 * Establish the starting offset.  May not be zero if we are fragging
24381 	 * a fragment that is being forwarded.
24382 	 */
24383 	offset = offset & IPH_OFFSET;
24384 
24385 	/* TODO why is this test needed? */
24386 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
24387 	if (((max_frag - LENGTH) & ~7) < 8) {
24388 		/* TODO: notify ulp somehow */
24389 		BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24390 		freemsg(mp);
24391 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24392 		    "ip_wput_frag_end:(%S)",
24393 		    "len < 8");
24394 		return;
24395 	}
24396 
24397 	hdr_len = (V_HLEN & 0xF) << 2;
24398 
24399 	ipha->ipha_hdr_checksum = 0;
24400 
24401 	/*
24402 	 * Establish the number of bytes maximum per frag, after putting
24403 	 * in the header.
24404 	 */
24405 	len = (max_frag - hdr_len) & ~7;
24406 
24407 	/* Check if we can use MDT to send out the frags. */
24408 	ASSERT(!IRE_IS_LOCAL(ire));
24409 	if (hdr_len == IP_SIMPLE_HDR_LENGTH &&
24410 	    ipst->ips_ip_multidata_outbound &&
24411 	    !(ire->ire_flags & RTF_MULTIRT) &&
24412 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
24413 	    ill != NULL && ILL_MDT_CAPABLE(ill) &&
24414 	    IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) {
24415 		ASSERT(ill->ill_mdt_capab != NULL);
24416 		if (!ill->ill_mdt_capab->ill_mdt_on) {
24417 			/*
24418 			 * If MDT has been previously turned off in the past,
24419 			 * and we currently can do MDT (due to IPQoS policy
24420 			 * removal, etc.) then enable it for this interface.
24421 			 */
24422 			ill->ill_mdt_capab->ill_mdt_on = 1;
24423 			ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n",
24424 			    ill->ill_name));
24425 		}
24426 		ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag,
24427 		    offset);
24428 		return;
24429 	}
24430 
24431 	/* Get a copy of the header for the trailing frags */
24432 	hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst);
24433 	if (!hdr_mp) {
24434 		BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24435 		freemsg(mp);
24436 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24437 		    "ip_wput_frag_end:(%S)",
24438 		    "couldn't copy hdr");
24439 		return;
24440 	}
24441 	if (DB_CRED(mp) != NULL)
24442 		mblk_setcred(hdr_mp, DB_CRED(mp));
24443 
24444 	/* Store the starting offset, with the MoreFrags flag. */
24445 	i1 = offset | IPH_MF | frag_flag;
24446 	ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
24447 
24448 	/* Establish the ending byte offset, based on the starting offset. */
24449 	offset <<= 3;
24450 	ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
24451 
24452 	/* Store the length of the first fragment in the IP header. */
24453 	i1 = len + hdr_len;
24454 	ASSERT(i1 <= IP_MAXPACKET);
24455 	ipha->ipha_length = htons((uint16_t)i1);
24456 
24457 	/*
24458 	 * Compute the IP header checksum for the first frag.  We have to
24459 	 * watch out that we stop at the end of the header.
24460 	 */
24461 	ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
24462 
24463 	/*
24464 	 * Now carve off the first frag.  Note that this will include the
24465 	 * original IP header.
24466 	 */
24467 	if (!(mp = ip_carve_mp(&mp_orig, i1))) {
24468 		BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24469 		freeb(hdr_mp);
24470 		freemsg(mp_orig);
24471 		TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24472 		    "ip_wput_frag_end:(%S)",
24473 		    "couldn't carve first");
24474 		return;
24475 	}
24476 
24477 	/*
24478 	 * Multirouting case. Each fragment is replicated
24479 	 * via all non-condemned RTF_MULTIRT routes
24480 	 * currently resolved.
24481 	 * We ensure that first_ire is the first RTF_MULTIRT
24482 	 * ire in the bucket.
24483 	 */
24484 	if (ire->ire_flags & RTF_MULTIRT) {
24485 		irb = ire->ire_bucket;
24486 		ASSERT(irb != NULL);
24487 
24488 		multirt_send = B_TRUE;
24489 
24490 		/* Make sure we do not omit any multiroute ire. */
24491 		IRB_REFHOLD(irb);
24492 		for (first_ire = irb->irb_ire;
24493 		    first_ire != NULL;
24494 		    first_ire = first_ire->ire_next) {
24495 			if ((first_ire->ire_flags & RTF_MULTIRT) &&
24496 			    (first_ire->ire_addr == ire->ire_addr) &&
24497 			    !(first_ire->ire_marks &
24498 				(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)))
24499 				break;
24500 		}
24501 
24502 		if (first_ire != NULL) {
24503 			if (first_ire != ire) {
24504 				IRE_REFHOLD(first_ire);
24505 				/*
24506 				 * Do not release the ire passed in
24507 				 * as the argument.
24508 				 */
24509 				ire = first_ire;
24510 			} else {
24511 				first_ire = NULL;
24512 			}
24513 		}
24514 		IRB_REFRELE(irb);
24515 
24516 		/*
24517 		 * Save the first ire; we will need to restore it
24518 		 * for the trailing frags.
24519 		 * We REFHOLD save_ire, as each iterated ire will be
24520 		 * REFRELEd.
24521 		 */
24522 		save_ire = ire;
24523 		IRE_REFHOLD(save_ire);
24524 	}
24525 
24526 	/*
24527 	 * First fragment emission loop.
24528 	 * In most cases, the emission loop below is entered only
24529 	 * once. Only in the case where the ire holds the RTF_MULTIRT
24530 	 * flag, do we loop to process all RTF_MULTIRT ires in the
24531 	 * bucket, and send the fragment through all crossed
24532 	 * RTF_MULTIRT routes.
24533 	 */
24534 	do {
24535 		if (ire->ire_flags & RTF_MULTIRT) {
24536 			/*
24537 			 * We are in a multiple send case, need to get
24538 			 * the next ire and make a copy of the packet.
24539 			 * ire1 holds here the next ire to process in the
24540 			 * bucket. If multirouting is expected,
24541 			 * any non-RTF_MULTIRT ire that has the
24542 			 * right destination address is ignored.
24543 			 *
24544 			 * We have to take into account the MTU of
24545 			 * each walked ire. max_frag is set by the
24546 			 * the caller and generally refers to
24547 			 * the primary ire entry. Here we ensure that
24548 			 * no route with a lower MTU will be used, as
24549 			 * fragments are carved once for all ires,
24550 			 * then replicated.
24551 			 */
24552 			ASSERT(irb != NULL);
24553 			IRB_REFHOLD(irb);
24554 			for (ire1 = ire->ire_next;
24555 			    ire1 != NULL;
24556 			    ire1 = ire1->ire_next) {
24557 				if ((ire1->ire_flags & RTF_MULTIRT) == 0)
24558 					continue;
24559 				if (ire1->ire_addr != ire->ire_addr)
24560 					continue;
24561 				if (ire1->ire_marks &
24562 				    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
24563 					continue;
24564 				/*
24565 				 * Ensure we do not exceed the MTU
24566 				 * of the next route.
24567 				 */
24568 				if (ire1->ire_max_frag < max_frag) {
24569 					ip_multirt_bad_mtu(ire1, max_frag);
24570 					continue;
24571 				}
24572 
24573 				/* Got one. */
24574 				IRE_REFHOLD(ire1);
24575 				break;
24576 			}
24577 			IRB_REFRELE(irb);
24578 
24579 			if (ire1 != NULL) {
24580 				next_mp = copyb(mp);
24581 				if ((next_mp == NULL) ||
24582 				    ((mp->b_cont != NULL) &&
24583 				    ((next_mp->b_cont =
24584 				    dupmsg(mp->b_cont)) == NULL))) {
24585 					freemsg(next_mp);
24586 					next_mp = NULL;
24587 					ire_refrele(ire1);
24588 					ire1 = NULL;
24589 				}
24590 			}
24591 
24592 			/* Last multiroute ire; don't loop anymore. */
24593 			if (ire1 == NULL) {
24594 				multirt_send = B_FALSE;
24595 			}
24596 		}
24597 
24598 		ll_hdr_len = 0;
24599 		LOCK_IRE_FP_MP(ire);
24600 		ll_hdr_mp = ire->ire_nce->nce_fp_mp;
24601 		if (ll_hdr_mp != NULL) {
24602 			ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA);
24603 			ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr;
24604 		} else {
24605 			ll_hdr_mp = ire->ire_nce->nce_res_mp;
24606 		}
24607 
24608 		/* If there is a transmit header, get a copy for this frag. */
24609 		/*
24610 		 * TODO: should check db_ref before calling ip_carve_mp since
24611 		 * it might give us a dup.
24612 		 */
24613 		if (!ll_hdr_mp) {
24614 			/* No xmit header. */
24615 			xmit_mp = mp;
24616 
24617 		/* We have a link-layer header that can fit in our mblk. */
24618 		} else if (mp->b_datap->db_ref == 1 &&
24619 		    ll_hdr_len != 0 &&
24620 		    ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) {
24621 			/* M_DATA fastpath */
24622 			mp->b_rptr -= ll_hdr_len;
24623 			bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len);
24624 			xmit_mp = mp;
24625 
24626 		/* Corner case if copyb has failed */
24627 		} else if (!(xmit_mp = copyb(ll_hdr_mp))) {
24628 			UNLOCK_IRE_FP_MP(ire);
24629 			BUMP_MIB(mibptr, ipIfStatsOutFragFails);
24630 			freeb(hdr_mp);
24631 			freemsg(mp);
24632 			freemsg(mp_orig);
24633 			TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
24634 			    "ip_wput_frag_end:(%S)",
24635 			    "discard");
24636 
24637 			if (multirt_send) {
24638 				ASSERT(ire1);
24639 				ASSERT(next_mp);
24640 
24641 				freemsg(next_mp);
24642 				ire_refrele(ire1);
24643 			}
24644 			if (save_ire != NULL)
24645 				IRE_REFRELE(save_ire);
24646 
24647 			if (first_ire != NULL)
24648 				ire_refrele(first_ire);
24649 			return;
24650 
24651 		/*
24652 		 * Case of res_mp OR the fastpath mp can't fit
24653 		 * in the mblk
24654 		 */
24655 		} else {
24656 			xmit_mp->b_cont = mp;
24657 			if (DB_CRED(mp) != NULL)
24658 				mblk_setcred(xmit_mp, DB_CRED(mp));
24659 			/*
24660 			 * Get priority marking, if any.
24661 			 * We propagate the CoS marking from the
24662 			 * original packet that went to QoS processing
24663 			 * in ip_wput_ire to the newly carved mp.
24664 			 */
24665 			if (DB_TYPE(xmit_mp) == M_DATA)
24666 				xmit_mp->b_band = mp->b_band;
24667 		}
24668 		UNLOCK_IRE_FP_MP(ire);
24669 
24670 		q = ire->ire_stq;
24671 		out_ill = (ill_t *)q->q_ptr;
24672 
24673 		BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates);
24674 
24675 		DTRACE_PROBE4(ip4__physical__out__start,
24676 		    ill_t *, NULL, ill_t *, out_ill,
24677 		    ipha_t *, ipha, mblk_t *, xmit_mp);
24678 
24679 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
24680 		    ipst->ips_ipv4firewall_physical_out,
24681 		    NULL, out_ill, ipha, xmit_mp, mp, ipst);
24682 
24683 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp);
24684 
24685 		if (xmit_mp != NULL) {
24686 			putnext(q, xmit_mp);
24687 
24688 			BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits);
24689 			UPDATE_MIB(out_ill->ill_ip_mib,
24690 			    ipIfStatsHCOutOctets, i1);
24691 
24692 			if (pkt_type != OB_PKT) {
24693 				/*
24694 				 * Update the packet count and MIB stats
24695 				 * of trailing RTF_MULTIRT ires.
24696 				 */
24697 				UPDATE_OB_PKT_COUNT(ire);
24698 				BUMP_MIB(out_ill->ill_ip_mib,
24699 				    ipIfStatsOutFragReqds);
24700 			}
24701 		}
24702 
24703 		if (multirt_send) {
24704 			/*
24705 			 * We are in a multiple send case; look for
24706 			 * the next ire and re-enter the loop.
24707 			 */
24708 			ASSERT(ire1);
24709 			ASSERT(next_mp);
24710 			/* REFRELE the current ire before looping */
24711 			ire_refrele(ire);
24712 			ire = ire1;
24713 			ire1 = NULL;
24714 			mp = next_mp;
24715 			next_mp = NULL;
24716 		}
24717 	} while (multirt_send);
24718 
24719 	ASSERT(ire1 == NULL);
24720 
24721 	/* Restore the original ire; we need it for the trailing frags */
24722 	if (save_ire != NULL) {
24723 		/* REFRELE the last iterated ire */
24724 		ire_refrele(ire);
24725 		/* save_ire has been REFHOLDed */
24726 		ire = save_ire;
24727 		save_ire = NULL;
24728 		q = ire->ire_stq;
24729 	}
24730 
24731 	if (pkt_type == OB_PKT) {
24732 		UPDATE_OB_PKT_COUNT(ire);
24733 	} else {
24734 		out_ill = (ill_t *)q->q_ptr;
24735 		BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams);
24736 		UPDATE_IB_PKT_COUNT(ire);
24737 	}
24738 
24739 	/* Advance the offset to the second frag starting point. */
24740 	offset += len;
24741 	/*
24742 	 * Update hdr_len from the copied header - there might be less options
24743 	 * in the later fragments.
24744 	 */
24745 	hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
24746 	/* Loop until done. */
24747 	for (;;) {
24748 		uint16_t	offset_and_flags;
24749 		uint16_t	ip_len;
24750 
24751 		if (ip_data_end - offset > len) {
24752 			/*
24753 			 * Carve off the appropriate amount from the original
24754 			 * datagram.
24755 			 */
24756 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
24757 				mp = NULL;
24758 				break;
24759 			}
24760 			/*
24761 			 * More frags after this one.  Get another copy
24762 			 * of the header.
24763 			 */
24764 			if (carve_mp->b_datap->db_ref == 1 &&
24765 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
24766 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
24767 				/* Inline IP header */
24768 				carve_mp->b_rptr -= hdr_mp->b_wptr -
24769 				    hdr_mp->b_rptr;
24770 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
24771 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
24772 				mp = carve_mp;
24773 			} else {
24774 				if (!(mp = copyb(hdr_mp))) {
24775 					freemsg(carve_mp);
24776 					break;
24777 				}
24778 				/* Get priority marking, if any. */
24779 				mp->b_band = carve_mp->b_band;
24780 				mp->b_cont = carve_mp;
24781 			}
24782 			ipha = (ipha_t *)mp->b_rptr;
24783 			offset_and_flags = IPH_MF;
24784 		} else {
24785 			/*
24786 			 * Last frag.  Consume the header. Set len to
24787 			 * the length of this last piece.
24788 			 */
24789 			len = ip_data_end - offset;
24790 
24791 			/*
24792 			 * Carve off the appropriate amount from the original
24793 			 * datagram.
24794 			 */
24795 			if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
24796 				mp = NULL;
24797 				break;
24798 			}
24799 			if (carve_mp->b_datap->db_ref == 1 &&
24800 			    hdr_mp->b_wptr - hdr_mp->b_rptr <
24801 			    carve_mp->b_rptr - carve_mp->b_datap->db_base) {
24802 				/* Inline IP header */
24803 				carve_mp->b_rptr -= hdr_mp->b_wptr -
24804 				    hdr_mp->b_rptr;
24805 				bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
24806 				    hdr_mp->b_wptr - hdr_mp->b_rptr);
24807 				mp = carve_mp;
24808 				freeb(hdr_mp);
24809 				hdr_mp = mp;
24810 			} else {
24811 				mp = hdr_mp;
24812 				/* Get priority marking, if any. */
24813 				mp->b_band = carve_mp->b_band;
24814 				mp->b_cont = carve_mp;
24815 			}
24816 			ipha = (ipha_t *)mp->b_rptr;
24817 			/* A frag of a frag might have IPH_MF non-zero */
24818 			offset_and_flags =
24819 			    ntohs(ipha->ipha_fragment_offset_and_flags) &
24820 			    IPH_MF;
24821 		}
24822 		offset_and_flags |= (uint16_t)(offset >> 3);
24823 		offset_and_flags |= (uint16_t)frag_flag;
24824 		/* Store the offset and flags in the IP header. */
24825 		ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
24826 
24827 		/* Store the length in the IP header. */
24828 		ip_len = (uint16_t)(len + hdr_len);
24829 		ipha->ipha_length = htons(ip_len);
24830 
24831 		/*
24832 		 * Set the IP header checksum.	Note that mp is just
24833 		 * the header, so this is easy to pass to ip_csum.
24834 		 */
24835 		ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
24836 
24837 		/* Attach a transmit header, if any, and ship it. */
24838 		if (pkt_type == OB_PKT) {
24839 			UPDATE_OB_PKT_COUNT(ire);
24840 		} else {
24841 			out_ill = (ill_t *)q->q_ptr;
24842 			BUMP_MIB(out_ill->ill_ip_mib,
24843 			    ipIfStatsHCOutForwDatagrams);
24844 			UPDATE_IB_PKT_COUNT(ire);
24845 		}
24846 
24847 		if (ire->ire_flags & RTF_MULTIRT) {
24848 			irb = ire->ire_bucket;
24849 			ASSERT(irb != NULL);
24850 
24851 			multirt_send = B_TRUE;
24852 
24853 			/*
24854 			 * Save the original ire; we will need to restore it
24855 			 * for the tailing frags.
24856 			 */
24857 			save_ire = ire;
24858 			IRE_REFHOLD(save_ire);
24859 		}
24860 		/*
24861 		 * Emission loop for this fragment, similar
24862 		 * to what is done for the first fragment.
24863 		 */
24864 		do {
24865 			if (multirt_send) {
24866 				/*
24867 				 * We are in a multiple send case, need to get
24868 				 * the next ire and make a copy of the packet.
24869 				 */
24870 				ASSERT(irb != NULL);
24871 				IRB_REFHOLD(irb);
24872 				for (ire1 = ire->ire_next;
24873 				    ire1 != NULL;
24874 				    ire1 = ire1->ire_next) {
24875 					if (!(ire1->ire_flags & RTF_MULTIRT))
24876 						continue;
24877 					if (ire1->ire_addr != ire->ire_addr)
24878 						continue;
24879 					if (ire1->ire_marks &
24880 					    (IRE_MARK_CONDEMNED|
24881 						IRE_MARK_HIDDEN))
24882 						continue;
24883 					/*
24884 					 * Ensure we do not exceed the MTU
24885 					 * of the next route.
24886 					 */
24887 					if (ire1->ire_max_frag < max_frag) {
24888 						ip_multirt_bad_mtu(ire1,
24889 						    max_frag);
24890 						continue;
24891 					}
24892 
24893 					/* Got one. */
24894 					IRE_REFHOLD(ire1);
24895 					break;
24896 				}
24897 				IRB_REFRELE(irb);
24898 
24899 				if (ire1 != NULL) {
24900 					next_mp = copyb(mp);
24901 					if ((next_mp == NULL) ||
24902 					    ((mp->b_cont != NULL) &&
24903 					    ((next_mp->b_cont =
24904 					    dupmsg(mp->b_cont)) == NULL))) {
24905 						freemsg(next_mp);
24906 						next_mp = NULL;
24907 						ire_refrele(ire1);
24908 						ire1 = NULL;
24909 					}
24910 				}
24911 
24912 				/* Last multiroute ire; don't loop anymore. */
24913 				if (ire1 == NULL) {
24914 					multirt_send = B_FALSE;
24915 				}
24916 			}
24917 
24918 			/* Update transmit header */
24919 			ll_hdr_len = 0;
24920 			LOCK_IRE_FP_MP(ire);
24921 			ll_hdr_mp = ire->ire_nce->nce_fp_mp;
24922 			if (ll_hdr_mp != NULL) {
24923 				ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA);
24924 				ll_hdr_len = MBLKL(ll_hdr_mp);
24925 			} else {
24926 				ll_hdr_mp = ire->ire_nce->nce_res_mp;
24927 			}
24928 
24929 			if (!ll_hdr_mp) {
24930 				xmit_mp = mp;
24931 
24932 			/*
24933 			 * We have link-layer header that can fit in
24934 			 * our mblk.
24935 			 */
24936 			} else if (mp->b_datap->db_ref == 1 &&
24937 			    ll_hdr_len != 0 &&
24938 			    ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) {
24939 				/* M_DATA fastpath */
24940 				mp->b_rptr -= ll_hdr_len;
24941 				bcopy(ll_hdr_mp->b_rptr, mp->b_rptr,
24942 				    ll_hdr_len);
24943 				xmit_mp = mp;
24944 
24945 			/*
24946 			 * Case of res_mp OR the fastpath mp can't fit
24947 			 * in the mblk
24948 			 */
24949 			} else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) {
24950 				xmit_mp->b_cont = mp;
24951 				if (DB_CRED(mp) != NULL)
24952 					mblk_setcred(xmit_mp, DB_CRED(mp));
24953 				/* Get priority marking, if any. */
24954 				if (DB_TYPE(xmit_mp) == M_DATA)
24955 					xmit_mp->b_band = mp->b_band;
24956 
24957 			/* Corner case if copyb failed */
24958 			} else {
24959 				/*
24960 				 * Exit both the replication and
24961 				 * fragmentation loops.
24962 				 */
24963 				UNLOCK_IRE_FP_MP(ire);
24964 				goto drop_pkt;
24965 			}
24966 			UNLOCK_IRE_FP_MP(ire);
24967 
24968 			mp1 = mp;
24969 			out_ill = (ill_t *)q->q_ptr;
24970 
24971 			BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates);
24972 
24973 			DTRACE_PROBE4(ip4__physical__out__start,
24974 			    ill_t *, NULL, ill_t *, out_ill,
24975 			    ipha_t *, ipha, mblk_t *, xmit_mp);
24976 
24977 			FW_HOOKS(ipst->ips_ip4_physical_out_event,
24978 			    ipst->ips_ipv4firewall_physical_out,
24979 			    NULL, out_ill, ipha, xmit_mp, mp, ipst);
24980 
24981 			DTRACE_PROBE1(ip4__physical__out__end,
24982 			    mblk_t *, xmit_mp);
24983 
24984 			if (mp != mp1 && hdr_mp == mp1)
24985 				hdr_mp = mp;
24986 			if (mp != mp1 && mp_orig == mp1)
24987 				mp_orig = mp;
24988 
24989 			if (xmit_mp != NULL) {
24990 				putnext(q, xmit_mp);
24991 
24992 				BUMP_MIB(out_ill->ill_ip_mib,
24993 				    ipIfStatsHCOutTransmits);
24994 				UPDATE_MIB(out_ill->ill_ip_mib,
24995 				    ipIfStatsHCOutOctets, ip_len);
24996 
24997 				if (pkt_type != OB_PKT) {
24998 					/*
24999 					 * Update the packet count of trailing
25000 					 * RTF_MULTIRT ires.
25001 					 */
25002 					UPDATE_OB_PKT_COUNT(ire);
25003 				}
25004 			}
25005 
25006 			/* All done if we just consumed the hdr_mp. */
25007 			if (mp == hdr_mp) {
25008 				last_frag = B_TRUE;
25009 				BUMP_MIB(out_ill->ill_ip_mib,
25010 				    ipIfStatsOutFragOKs);
25011 			}
25012 
25013 			if (multirt_send) {
25014 				/*
25015 				 * We are in a multiple send case; look for
25016 				 * the next ire and re-enter the loop.
25017 				 */
25018 				ASSERT(ire1);
25019 				ASSERT(next_mp);
25020 				/* REFRELE the current ire before looping */
25021 				ire_refrele(ire);
25022 				ire = ire1;
25023 				ire1 = NULL;
25024 				q = ire->ire_stq;
25025 				mp = next_mp;
25026 				next_mp = NULL;
25027 			}
25028 		} while (multirt_send);
25029 		/*
25030 		 * Restore the original ire; we need it for the
25031 		 * trailing frags
25032 		 */
25033 		if (save_ire != NULL) {
25034 			ASSERT(ire1 == NULL);
25035 			/* REFRELE the last iterated ire */
25036 			ire_refrele(ire);
25037 			/* save_ire has been REFHOLDed */
25038 			ire = save_ire;
25039 			q = ire->ire_stq;
25040 			save_ire = NULL;
25041 		}
25042 
25043 		if (last_frag) {
25044 			TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
25045 			    "ip_wput_frag_end:(%S)",
25046 			    "consumed hdr_mp");
25047 
25048 			if (first_ire != NULL)
25049 				ire_refrele(first_ire);
25050 			return;
25051 		}
25052 		/* Otherwise, advance and loop. */
25053 		offset += len;
25054 	}
25055 
25056 drop_pkt:
25057 	/* Clean up following allocation failure. */
25058 	BUMP_MIB(mibptr, ipIfStatsOutFragFails);
25059 	freemsg(mp);
25060 	if (mp != hdr_mp)
25061 		freeb(hdr_mp);
25062 	if (mp != mp_orig)
25063 		freemsg(mp_orig);
25064 
25065 	if (save_ire != NULL)
25066 		IRE_REFRELE(save_ire);
25067 	if (first_ire != NULL)
25068 		ire_refrele(first_ire);
25069 
25070 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END,
25071 	    "ip_wput_frag_end:(%S)",
25072 	    "end--alloc failure");
25073 }
25074 
25075 /*
25076  * Copy the header plus those options which have the copy bit set
25077  */
25078 static mblk_t *
25079 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst)
25080 {
25081 	mblk_t	*mp;
25082 	uchar_t	*up;
25083 
25084 	/*
25085 	 * Quick check if we need to look for options without the copy bit
25086 	 * set
25087 	 */
25088 	mp = allocb(ipst->ips_ip_wroff_extra + hdr_len, BPRI_HI);
25089 	if (!mp)
25090 		return (mp);
25091 	mp->b_rptr += ipst->ips_ip_wroff_extra;
25092 	if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
25093 		bcopy(rptr, mp->b_rptr, hdr_len);
25094 		mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
25095 		return (mp);
25096 	}
25097 	up  = mp->b_rptr;
25098 	bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
25099 	up += IP_SIMPLE_HDR_LENGTH;
25100 	rptr += IP_SIMPLE_HDR_LENGTH;
25101 	hdr_len -= IP_SIMPLE_HDR_LENGTH;
25102 	while (hdr_len > 0) {
25103 		uint32_t optval;
25104 		uint32_t optlen;
25105 
25106 		optval = *rptr;
25107 		if (optval == IPOPT_EOL)
25108 			break;
25109 		if (optval == IPOPT_NOP)
25110 			optlen = 1;
25111 		else
25112 			optlen = rptr[1];
25113 		if (optval & IPOPT_COPY) {
25114 			bcopy(rptr, up, optlen);
25115 			up += optlen;
25116 		}
25117 		rptr += optlen;
25118 		hdr_len -= optlen;
25119 	}
25120 	/*
25121 	 * Make sure that we drop an even number of words by filling
25122 	 * with EOL to the next word boundary.
25123 	 */
25124 	for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
25125 	    hdr_len & 0x3; hdr_len++)
25126 		*up++ = IPOPT_EOL;
25127 	mp->b_wptr = up;
25128 	/* Update header length */
25129 	mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
25130 	return (mp);
25131 }
25132 
25133 /*
25134  * Delivery to local recipients including fanout to multiple recipients.
25135  * Does not do checksumming of UDP/TCP.
25136  * Note: q should be the read side queue for either the ill or conn.
25137  * Note: rq should be the read side q for the lower (ill) stream.
25138  * We don't send packets to IPPF processing, thus the last argument
25139  * to all the fanout calls are B_FALSE.
25140  */
25141 void
25142 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire,
25143     int fanout_flags, zoneid_t zoneid)
25144 {
25145 	uint32_t	protocol;
25146 	mblk_t		*first_mp;
25147 	boolean_t	mctl_present;
25148 	int		ire_type;
25149 #define	rptr	((uchar_t *)ipha)
25150 	ip_stack_t	*ipst = ill->ill_ipst;
25151 
25152 	TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START,
25153 	    "ip_wput_local_start: q %p", q);
25154 
25155 	if (ire != NULL) {
25156 		ire_type = ire->ire_type;
25157 	} else {
25158 		/*
25159 		 * Only ip_multicast_loopback() calls us with a NULL ire. If the
25160 		 * packet is not multicast, we can't tell the ire type.
25161 		 */
25162 		ASSERT(CLASSD(ipha->ipha_dst));
25163 		ire_type = IRE_BROADCAST;
25164 	}
25165 
25166 	first_mp = mp;
25167 	if (first_mp->b_datap->db_type == M_CTL) {
25168 		ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr;
25169 		if (!io->ipsec_out_secure) {
25170 			/*
25171 			 * This ipsec_out_t was allocated in ip_wput
25172 			 * for multicast packets to store the ill_index.
25173 			 * As this is being delivered locally, we don't
25174 			 * need this anymore.
25175 			 */
25176 			mp = first_mp->b_cont;
25177 			freeb(first_mp);
25178 			first_mp = mp;
25179 			mctl_present = B_FALSE;
25180 		} else {
25181 			/*
25182 			 * Convert IPSEC_OUT to IPSEC_IN, preserving all
25183 			 * security properties for the looped-back packet.
25184 			 */
25185 			mctl_present = B_TRUE;
25186 			mp = first_mp->b_cont;
25187 			ASSERT(mp != NULL);
25188 			ipsec_out_to_in(first_mp);
25189 		}
25190 	} else {
25191 		mctl_present = B_FALSE;
25192 	}
25193 
25194 	DTRACE_PROBE4(ip4__loopback__in__start,
25195 	    ill_t *, ill, ill_t *, NULL,
25196 	    ipha_t *, ipha, mblk_t *, first_mp);
25197 
25198 	FW_HOOKS(ipst->ips_ip4_loopback_in_event,
25199 	    ipst->ips_ipv4firewall_loopback_in,
25200 	    ill, NULL, ipha, first_mp, mp, ipst);
25201 
25202 	DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp);
25203 
25204 	if (first_mp == NULL)
25205 		return;
25206 
25207 	ipst->ips_loopback_packets++;
25208 
25209 	ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n",
25210 	    ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid));
25211 	if (!IS_SIMPLE_IPH(ipha)) {
25212 		ip_wput_local_options(ipha, ipst);
25213 	}
25214 
25215 	protocol = ipha->ipha_protocol;
25216 	switch (protocol) {
25217 	case IPPROTO_ICMP: {
25218 		ire_t		*ire_zone;
25219 		ilm_t		*ilm;
25220 		mblk_t		*mp1;
25221 		zoneid_t	last_zoneid;
25222 
25223 		if (CLASSD(ipha->ipha_dst) &&
25224 		    !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) {
25225 			ASSERT(ire_type == IRE_BROADCAST);
25226 			/*
25227 			 * In the multicast case, applications may have joined
25228 			 * the group from different zones, so we need to deliver
25229 			 * the packet to each of them. Loop through the
25230 			 * multicast memberships structures (ilm) on the receive
25231 			 * ill and send a copy of the packet up each matching
25232 			 * one. However, we don't do this for multicasts sent on
25233 			 * the loopback interface (PHYI_LOOPBACK flag set) as
25234 			 * they must stay in the sender's zone.
25235 			 *
25236 			 * ilm_add_v6() ensures that ilms in the same zone are
25237 			 * contiguous in the ill_ilm list. We use this property
25238 			 * to avoid sending duplicates needed when two
25239 			 * applications in the same zone join the same group on
25240 			 * different logical interfaces: we ignore the ilm if
25241 			 * it's zoneid is the same as the last matching one.
25242 			 * In addition, the sending of the packet for
25243 			 * ire_zoneid is delayed until all of the other ilms
25244 			 * have been exhausted.
25245 			 */
25246 			last_zoneid = -1;
25247 			ILM_WALKER_HOLD(ill);
25248 			for (ilm = ill->ill_ilm; ilm != NULL;
25249 			    ilm = ilm->ilm_next) {
25250 				if ((ilm->ilm_flags & ILM_DELETED) ||
25251 				    ipha->ipha_dst != ilm->ilm_addr ||
25252 				    ilm->ilm_zoneid == last_zoneid ||
25253 				    ilm->ilm_zoneid == zoneid ||
25254 				    !(ilm->ilm_ipif->ipif_flags & IPIF_UP))
25255 					continue;
25256 				mp1 = ip_copymsg(first_mp);
25257 				if (mp1 == NULL)
25258 					continue;
25259 				icmp_inbound(q, mp1, B_TRUE, ill, 0, 0,
25260 				    mctl_present, B_FALSE, ill,
25261 				    ilm->ilm_zoneid);
25262 				last_zoneid = ilm->ilm_zoneid;
25263 			}
25264 			ILM_WALKER_RELE(ill);
25265 			/*
25266 			 * Loopback case: the sending endpoint has
25267 			 * IP_MULTICAST_LOOP disabled, therefore we don't
25268 			 * dispatch the multicast packet to the sending zone.
25269 			 */
25270 			if (fanout_flags & IP_FF_NO_MCAST_LOOP) {
25271 				freemsg(first_mp);
25272 				return;
25273 			}
25274 		} else if (ire_type == IRE_BROADCAST) {
25275 			/*
25276 			 * In the broadcast case, there may be many zones
25277 			 * which need a copy of the packet delivered to them.
25278 			 * There is one IRE_BROADCAST per broadcast address
25279 			 * and per zone; we walk those using a helper function.
25280 			 * In addition, the sending of the packet for zoneid is
25281 			 * delayed until all of the other ires have been
25282 			 * processed.
25283 			 */
25284 			IRB_REFHOLD(ire->ire_bucket);
25285 			ire_zone = NULL;
25286 			while ((ire_zone = ire_get_next_bcast_ire(ire_zone,
25287 			    ire)) != NULL) {
25288 				mp1 = ip_copymsg(first_mp);
25289 				if (mp1 == NULL)
25290 					continue;
25291 
25292 				UPDATE_IB_PKT_COUNT(ire_zone);
25293 				ire_zone->ire_last_used_time = lbolt;
25294 				icmp_inbound(q, mp1, B_TRUE, ill, 0, 0,
25295 				    mctl_present, B_FALSE, ill,
25296 				    ire_zone->ire_zoneid);
25297 			}
25298 			IRB_REFRELE(ire->ire_bucket);
25299 		}
25300 		icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0,
25301 		    0, mctl_present, B_FALSE, ill, zoneid);
25302 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
25303 		    "ip_wput_local_end: q %p (%S)",
25304 		    q, "icmp");
25305 		return;
25306 	}
25307 	case IPPROTO_IGMP:
25308 		if ((mp = igmp_input(q, mp, ill)) == NULL) {
25309 			/* Bad packet - discarded by igmp_input */
25310 			TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
25311 			    "ip_wput_local_end: q %p (%S)",
25312 			    q, "igmp_input--bad packet");
25313 			if (mctl_present)
25314 				freeb(first_mp);
25315 			return;
25316 		}
25317 		/*
25318 		 * igmp_input() may have returned the pulled up message.
25319 		 * So first_mp and ipha need to be reinitialized.
25320 		 */
25321 		ipha = (ipha_t *)mp->b_rptr;
25322 		if (mctl_present)
25323 			first_mp->b_cont = mp;
25324 		else
25325 			first_mp = mp;
25326 		/* deliver to local raw users */
25327 		break;
25328 	case IPPROTO_ENCAP:
25329 		/*
25330 		 * This case is covered by either ip_fanout_proto, or by
25331 		 * the above security processing for self-tunneled packets.
25332 		 */
25333 		break;
25334 	case IPPROTO_UDP: {
25335 		uint16_t	*up;
25336 		uint32_t	ports;
25337 
25338 		up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) +
25339 		    UDP_PORTS_OFFSET);
25340 		/* Force a 'valid' checksum. */
25341 		up[3] = 0;
25342 
25343 		ports = *(uint32_t *)up;
25344 		ip_fanout_udp(q, first_mp, ill, ipha, ports,
25345 		    (ire_type == IRE_BROADCAST),
25346 		    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
25347 		    IP_FF_SEND_SLLA | IP_FF_IPINFO, mctl_present, B_FALSE,
25348 		    ill, zoneid);
25349 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
25350 		    "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp");
25351 		return;
25352 	}
25353 	case IPPROTO_TCP: {
25354 
25355 		/*
25356 		 * For TCP, discard broadcast packets.
25357 		 */
25358 		if ((ushort_t)ire_type == IRE_BROADCAST) {
25359 			freemsg(first_mp);
25360 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
25361 			ip2dbg(("ip_wput_local: discard broadcast\n"));
25362 			return;
25363 		}
25364 
25365 		if (mp->b_datap->db_type == M_DATA) {
25366 			/*
25367 			 * M_DATA mblk, so init mblk (chain) for no struio().
25368 			 */
25369 			mblk_t	*mp1 = mp;
25370 
25371 			do
25372 				mp1->b_datap->db_struioflag = 0;
25373 			while ((mp1 = mp1->b_cont) != NULL);
25374 		}
25375 		ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4)
25376 		    <= mp->b_wptr);
25377 		ip_fanout_tcp(q, first_mp, ill, ipha,
25378 		    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
25379 		    IP_FF_SYN_ADDIRE | IP_FF_IPINFO,
25380 		    mctl_present, B_FALSE, zoneid);
25381 		TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
25382 		    "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp");
25383 		return;
25384 	}
25385 	case IPPROTO_SCTP:
25386 	{
25387 		uint32_t	ports;
25388 
25389 		bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports));
25390 		ip_fanout_sctp(first_mp, ill, ipha, ports,
25391 		    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE |
25392 		    IP_FF_IPINFO,
25393 		    mctl_present, B_FALSE, 0, zoneid);
25394 		return;
25395 	}
25396 
25397 	default:
25398 		break;
25399 	}
25400 	/*
25401 	 * Find a client for some other protocol.  We give
25402 	 * copies to multiple clients, if more than one is
25403 	 * bound.
25404 	 */
25405 	ip_fanout_proto(q, first_mp, ill, ipha,
25406 	    fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP,
25407 	    mctl_present, B_FALSE, ill, zoneid);
25408 	TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END,
25409 	    "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto");
25410 #undef	rptr
25411 }
25412 
25413 /*
25414  * Update any source route, record route, or timestamp options.
25415  * Check that we are at end of strict source route.
25416  * The options have been sanity checked by ip_wput_options().
25417  */
25418 static void
25419 ip_wput_local_options(ipha_t *ipha, ip_stack_t *ipst)
25420 {
25421 	ipoptp_t	opts;
25422 	uchar_t		*opt;
25423 	uint8_t		optval;
25424 	uint8_t		optlen;
25425 	ipaddr_t	dst;
25426 	uint32_t	ts;
25427 	ire_t		*ire;
25428 	timestruc_t	now;
25429 
25430 	ip2dbg(("ip_wput_local_options\n"));
25431 	for (optval = ipoptp_first(&opts, ipha);
25432 	    optval != IPOPT_EOL;
25433 	    optval = ipoptp_next(&opts)) {
25434 		opt = opts.ipoptp_cur;
25435 		optlen = opts.ipoptp_len;
25436 		ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
25437 		switch (optval) {
25438 			uint32_t off;
25439 		case IPOPT_SSRR:
25440 		case IPOPT_LSRR:
25441 			off = opt[IPOPT_OFFSET];
25442 			off--;
25443 			if (optlen < IP_ADDR_LEN ||
25444 			    off > optlen - IP_ADDR_LEN) {
25445 				/* End of source route */
25446 				break;
25447 			}
25448 			/*
25449 			 * This will only happen if two consecutive entries
25450 			 * in the source route contains our address or if
25451 			 * it is a packet with a loose source route which
25452 			 * reaches us before consuming the whole source route
25453 			 */
25454 			ip1dbg(("ip_wput_local_options: not end of SR\n"));
25455 			if (optval == IPOPT_SSRR) {
25456 				return;
25457 			}
25458 			/*
25459 			 * Hack: instead of dropping the packet truncate the
25460 			 * source route to what has been used by filling the
25461 			 * rest with IPOPT_NOP.
25462 			 */
25463 			opt[IPOPT_OLEN] = (uint8_t)off;
25464 			while (off < optlen) {
25465 				opt[off++] = IPOPT_NOP;
25466 			}
25467 			break;
25468 		case IPOPT_RR:
25469 			off = opt[IPOPT_OFFSET];
25470 			off--;
25471 			if (optlen < IP_ADDR_LEN ||
25472 			    off > optlen - IP_ADDR_LEN) {
25473 				/* No more room - ignore */
25474 				ip1dbg((
25475 				    "ip_wput_forward_options: end of RR\n"));
25476 				break;
25477 			}
25478 			dst = htonl(INADDR_LOOPBACK);
25479 			bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
25480 			opt[IPOPT_OFFSET] += IP_ADDR_LEN;
25481 			break;
25482 		case IPOPT_TS:
25483 			/* Insert timestamp if there is romm */
25484 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
25485 			case IPOPT_TS_TSONLY:
25486 				off = IPOPT_TS_TIMELEN;
25487 				break;
25488 			case IPOPT_TS_PRESPEC:
25489 			case IPOPT_TS_PRESPEC_RFC791:
25490 				/* Verify that the address matched */
25491 				off = opt[IPOPT_OFFSET] - 1;
25492 				bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
25493 				ire = ire_ctable_lookup(dst, 0, IRE_LOCAL,
25494 				    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE,
25495 				    ipst);
25496 				if (ire == NULL) {
25497 					/* Not for us */
25498 					break;
25499 				}
25500 				ire_refrele(ire);
25501 				/* FALLTHRU */
25502 			case IPOPT_TS_TSANDADDR:
25503 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
25504 				break;
25505 			default:
25506 				/*
25507 				 * ip_*put_options should have already
25508 				 * dropped this packet.
25509 				 */
25510 				cmn_err(CE_PANIC, "ip_wput_local_options: "
25511 				    "unknown IT - bug in ip_wput_options?\n");
25512 				return;	/* Keep "lint" happy */
25513 			}
25514 			if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
25515 				/* Increase overflow counter */
25516 				off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
25517 				opt[IPOPT_POS_OV_FLG] = (uint8_t)
25518 				    (opt[IPOPT_POS_OV_FLG] & 0x0F) |
25519 				    (off << 4);
25520 				break;
25521 			}
25522 			off = opt[IPOPT_OFFSET] - 1;
25523 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
25524 			case IPOPT_TS_PRESPEC:
25525 			case IPOPT_TS_PRESPEC_RFC791:
25526 			case IPOPT_TS_TSANDADDR:
25527 				dst = htonl(INADDR_LOOPBACK);
25528 				bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
25529 				opt[IPOPT_OFFSET] += IP_ADDR_LEN;
25530 				/* FALLTHRU */
25531 			case IPOPT_TS_TSONLY:
25532 				off = opt[IPOPT_OFFSET] - 1;
25533 				/* Compute # of milliseconds since midnight */
25534 				gethrestime(&now);
25535 				ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
25536 				    now.tv_nsec / (NANOSEC / MILLISEC);
25537 				bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
25538 				opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
25539 				break;
25540 			}
25541 			break;
25542 		}
25543 	}
25544 }
25545 
25546 /*
25547  * Send out a multicast packet on interface ipif.
25548  * The sender does not have an conn.
25549  * Caller verifies that this isn't a PHYI_LOOPBACK.
25550  */
25551 void
25552 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid)
25553 {
25554 	ipha_t	*ipha;
25555 	ire_t	*ire;
25556 	ipaddr_t	dst;
25557 	mblk_t		*first_mp;
25558 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
25559 
25560 	/* igmp_sendpkt always allocates a ipsec_out_t */
25561 	ASSERT(mp->b_datap->db_type == M_CTL);
25562 	ASSERT(!ipif->ipif_isv6);
25563 	ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK));
25564 
25565 	first_mp = mp;
25566 	mp = first_mp->b_cont;
25567 	ASSERT(mp->b_datap->db_type == M_DATA);
25568 	ipha = (ipha_t *)mp->b_rptr;
25569 
25570 	/*
25571 	 * Find an IRE which matches the destination and the outgoing
25572 	 * queue (i.e. the outgoing interface.)
25573 	 */
25574 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
25575 		dst = ipif->ipif_pp_dst_addr;
25576 	else
25577 		dst = ipha->ipha_dst;
25578 	/*
25579 	 * The source address has already been initialized by the
25580 	 * caller and hence matching on ILL (MATCH_IRE_ILL) would
25581 	 * be sufficient rather than MATCH_IRE_IPIF.
25582 	 *
25583 	 * This function is used for sending IGMP packets. We need
25584 	 * to make sure that we send the packet out of the interface
25585 	 * (ipif->ipif_ill) where we joined the group. This is to
25586 	 * prevent from switches doing IGMP snooping to send us multicast
25587 	 * packets for a given group on the interface we have joined.
25588 	 * If we can't find an ire, igmp_sendpkt has already initialized
25589 	 * ipsec_out_attach_if so that this will not be load spread in
25590 	 * ip_newroute_ipif.
25591 	 */
25592 	ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL,
25593 	    MATCH_IRE_ILL, ipst);
25594 	if (!ire) {
25595 		/*
25596 		 * Mark this packet to make it be delivered to
25597 		 * ip_wput_ire after the new ire has been
25598 		 * created.
25599 		 */
25600 		mp->b_prev = NULL;
25601 		mp->b_next = NULL;
25602 		ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC,
25603 		    zoneid, &zero_info);
25604 		return;
25605 	}
25606 
25607 	/*
25608 	 * Honor the RTF_SETSRC flag; this is the only case
25609 	 * where we force this addr whatever the current src addr is,
25610 	 * because this address is set by igmp_sendpkt(), and
25611 	 * cannot be specified by any user.
25612 	 */
25613 	if (ire->ire_flags & RTF_SETSRC) {
25614 		ipha->ipha_src = ire->ire_src_addr;
25615 	}
25616 
25617 	ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid);
25618 }
25619 
25620 /*
25621  * NOTE : This function does not ire_refrele the ire argument passed in.
25622  *
25623  * Copy the link layer header and do IPQoS if needed. Frees the mblk on
25624  * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN
25625  * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold
25626  * the ire_lock to access the nce_fp_mp in this case.
25627  * IPQoS assumes that the first M_DATA contains the IP header. So, if we are
25628  * prepending a fastpath message IPQoS processing must precede it, we also set
25629  * the b_band of the fastpath message to that of the  mblk returned by IPQoS
25630  * (IPQoS might have set the b_band for CoS marking).
25631  * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing
25632  * must follow it so that IPQoS can mark the dl_priority field for CoS
25633  * marking, if needed.
25634  */
25635 static mblk_t *
25636 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index)
25637 {
25638 	uint_t	hlen;
25639 	ipha_t *ipha;
25640 	mblk_t *mp1;
25641 	boolean_t qos_done = B_FALSE;
25642 	uchar_t	*ll_hdr;
25643 	ip_stack_t	*ipst = ire->ire_ipst;
25644 
25645 #define	rptr	((uchar_t *)ipha)
25646 
25647 	ipha = (ipha_t *)mp->b_rptr;
25648 	hlen = 0;
25649 	LOCK_IRE_FP_MP(ire);
25650 	if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) {
25651 		ASSERT(DB_TYPE(mp1) == M_DATA);
25652 		/* Initiate IPPF processing */
25653 		if ((proc != 0) && IPP_ENABLED(proc, ipst)) {
25654 			UNLOCK_IRE_FP_MP(ire);
25655 			ip_process(proc, &mp, ill_index);
25656 			if (mp == NULL)
25657 				return (NULL);
25658 
25659 			ipha = (ipha_t *)mp->b_rptr;
25660 			LOCK_IRE_FP_MP(ire);
25661 			if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) {
25662 				qos_done = B_TRUE;
25663 				goto no_fp_mp;
25664 			}
25665 			ASSERT(DB_TYPE(mp1) == M_DATA);
25666 		}
25667 		hlen = MBLKL(mp1);
25668 		/*
25669 		 * Check if we have enough room to prepend fastpath
25670 		 * header
25671 		 */
25672 		if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
25673 			ll_hdr = rptr - hlen;
25674 			bcopy(mp1->b_rptr, ll_hdr, hlen);
25675 			/*
25676 			 * Set the b_rptr to the start of the link layer
25677 			 * header
25678 			 */
25679 			mp->b_rptr = ll_hdr;
25680 			mp1 = mp;
25681 		} else {
25682 			mp1 = copyb(mp1);
25683 			if (mp1 == NULL)
25684 				goto unlock_err;
25685 			mp1->b_band = mp->b_band;
25686 			mp1->b_cont = mp;
25687 			/*
25688 			 * certain system generated traffic may not
25689 			 * have cred/label in ip header block. This
25690 			 * is true even for a labeled system. But for
25691 			 * labeled traffic, inherit the label in the
25692 			 * new header.
25693 			 */
25694 			if (DB_CRED(mp) != NULL)
25695 				mblk_setcred(mp1, DB_CRED(mp));
25696 			/*
25697 			 * XXX disable ICK_VALID and compute checksum
25698 			 * here; can happen if nce_fp_mp changes and
25699 			 * it can't be copied now due to insufficient
25700 			 * space. (unlikely, fp mp can change, but it
25701 			 * does not increase in length)
25702 			 */
25703 		}
25704 		UNLOCK_IRE_FP_MP(ire);
25705 	} else {
25706 no_fp_mp:
25707 		mp1 = copyb(ire->ire_nce->nce_res_mp);
25708 		if (mp1 == NULL) {
25709 unlock_err:
25710 			UNLOCK_IRE_FP_MP(ire);
25711 			freemsg(mp);
25712 			return (NULL);
25713 		}
25714 		UNLOCK_IRE_FP_MP(ire);
25715 		mp1->b_cont = mp;
25716 		/*
25717 		 * certain system generated traffic may not
25718 		 * have cred/label in ip header block. This
25719 		 * is true even for a labeled system. But for
25720 		 * labeled traffic, inherit the label in the
25721 		 * new header.
25722 		 */
25723 		if (DB_CRED(mp) != NULL)
25724 			mblk_setcred(mp1, DB_CRED(mp));
25725 		if (!qos_done && (proc != 0) && IPP_ENABLED(proc, ipst)) {
25726 			ip_process(proc, &mp1, ill_index);
25727 			if (mp1 == NULL)
25728 				return (NULL);
25729 		}
25730 	}
25731 	return (mp1);
25732 #undef rptr
25733 }
25734 
25735 /*
25736  * Finish the outbound IPsec processing for an IPv6 packet. This function
25737  * is called from ipsec_out_process() if the IPsec packet was processed
25738  * synchronously, or from {ah,esp}_kcf_callback() if it was processed
25739  * asynchronously.
25740  */
25741 void
25742 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill,
25743     ire_t *ire_arg)
25744 {
25745 	in6_addr_t *v6dstp;
25746 	ire_t *ire;
25747 	mblk_t *mp;
25748 	ip6_t *ip6h1;
25749 	uint_t	ill_index;
25750 	ipsec_out_t *io;
25751 	boolean_t attach_if, hwaccel;
25752 	uint32_t flags = IP6_NO_IPPOLICY;
25753 	int match_flags;
25754 	zoneid_t zoneid;
25755 	boolean_t ill_need_rele = B_FALSE;
25756 	boolean_t ire_need_rele = B_FALSE;
25757 	ip_stack_t	*ipst;
25758 
25759 	mp = ipsec_mp->b_cont;
25760 	ip6h1 = (ip6_t *)mp->b_rptr;
25761 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
25762 	ASSERT(io->ipsec_out_ns != NULL);
25763 	ipst = io->ipsec_out_ns->netstack_ip;
25764 	ill_index = io->ipsec_out_ill_index;
25765 	if (io->ipsec_out_reachable) {
25766 		flags |= IPV6_REACHABILITY_CONFIRMATION;
25767 	}
25768 	attach_if = io->ipsec_out_attach_if;
25769 	hwaccel = io->ipsec_out_accelerated;
25770 	zoneid = io->ipsec_out_zoneid;
25771 	ASSERT(zoneid != ALL_ZONES);
25772 	match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
25773 	/* Multicast addresses should have non-zero ill_index. */
25774 	v6dstp = &ip6h->ip6_dst;
25775 	ASSERT(ip6h->ip6_nxt != IPPROTO_RAW);
25776 	ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0);
25777 	ASSERT(!attach_if || ill_index != 0);
25778 	if (ill_index != 0) {
25779 		if (ill == NULL) {
25780 			ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index,
25781 			    B_TRUE, ipst);
25782 
25783 			/* Failure case frees things for us. */
25784 			if (ill == NULL)
25785 				return;
25786 
25787 			ill_need_rele = B_TRUE;
25788 		}
25789 		/*
25790 		 * If this packet needs to go out on a particular interface
25791 		 * honor it.
25792 		 */
25793 		if (attach_if) {
25794 			match_flags = MATCH_IRE_ILL;
25795 
25796 			/*
25797 			 * Check if we need an ire that will not be
25798 			 * looked up by anybody else i.e. HIDDEN.
25799 			 */
25800 			if (ill_is_probeonly(ill)) {
25801 				match_flags |= MATCH_IRE_MARK_HIDDEN;
25802 			}
25803 		}
25804 	}
25805 	ASSERT(mp != NULL);
25806 
25807 	if (IN6_IS_ADDR_MULTICAST(v6dstp)) {
25808 		boolean_t unspec_src;
25809 		ipif_t	*ipif;
25810 
25811 		/*
25812 		 * Use the ill_index to get the right ill.
25813 		 */
25814 		unspec_src = io->ipsec_out_unspec_src;
25815 		(void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif);
25816 		if (ipif == NULL) {
25817 			if (ill_need_rele)
25818 				ill_refrele(ill);
25819 			freemsg(ipsec_mp);
25820 			return;
25821 		}
25822 
25823 		if (ire_arg != NULL) {
25824 			ire = ire_arg;
25825 		} else {
25826 			ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif,
25827 			    zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
25828 			ire_need_rele = B_TRUE;
25829 		}
25830 		if (ire != NULL) {
25831 			ipif_refrele(ipif);
25832 			/*
25833 			 * XXX Do the multicast forwarding now, as the IPSEC
25834 			 * processing has been done.
25835 			 */
25836 			goto send;
25837 		}
25838 
25839 		ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n"));
25840 		mp->b_prev = NULL;
25841 		mp->b_next = NULL;
25842 
25843 		/*
25844 		 * If the IPsec packet was processed asynchronously,
25845 		 * drop it now.
25846 		 */
25847 		if (q == NULL) {
25848 			if (ill_need_rele)
25849 				ill_refrele(ill);
25850 			freemsg(ipsec_mp);
25851 			return;
25852 		}
25853 
25854 		ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp,
25855 		    unspec_src, zoneid);
25856 		ipif_refrele(ipif);
25857 	} else {
25858 		if (attach_if) {
25859 			ipif_t	*ipif;
25860 
25861 			ipif = ipif_get_next_ipif(NULL, ill);
25862 			if (ipif == NULL) {
25863 				if (ill_need_rele)
25864 					ill_refrele(ill);
25865 				freemsg(ipsec_mp);
25866 				return;
25867 			}
25868 			ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif,
25869 			    zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
25870 			ire_need_rele = B_TRUE;
25871 			ipif_refrele(ipif);
25872 		} else {
25873 			if (ire_arg != NULL) {
25874 				ire = ire_arg;
25875 			} else {
25876 				ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL,
25877 				    ipst);
25878 				ire_need_rele = B_TRUE;
25879 			}
25880 		}
25881 		if (ire != NULL)
25882 			goto send;
25883 		/*
25884 		 * ire disappeared underneath.
25885 		 *
25886 		 * What we need to do here is the ip_newroute
25887 		 * logic to get the ire without doing the IPSEC
25888 		 * processing. Follow the same old path. But this
25889 		 * time, ip_wput or ire_add_then_send will call us
25890 		 * directly as all the IPSEC operations are done.
25891 		 */
25892 		ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n"));
25893 		mp->b_prev = NULL;
25894 		mp->b_next = NULL;
25895 
25896 		/*
25897 		 * If the IPsec packet was processed asynchronously,
25898 		 * drop it now.
25899 		 */
25900 		if (q == NULL) {
25901 			if (ill_need_rele)
25902 				ill_refrele(ill);
25903 			freemsg(ipsec_mp);
25904 			return;
25905 		}
25906 
25907 		ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill,
25908 		    zoneid, ipst);
25909 	}
25910 	if (ill != NULL && ill_need_rele)
25911 		ill_refrele(ill);
25912 	return;
25913 send:
25914 	if (ill != NULL && ill_need_rele)
25915 		ill_refrele(ill);
25916 
25917 	/* Local delivery */
25918 	if (ire->ire_stq == NULL) {
25919 		ill_t	*out_ill;
25920 		ASSERT(q != NULL);
25921 
25922 		/* PFHooks: LOOPBACK_OUT */
25923 		out_ill = ire->ire_ipif->ipif_ill;
25924 
25925 		DTRACE_PROBE4(ip6__loopback__out__start,
25926 		    ill_t *, NULL, ill_t *, out_ill,
25927 		    ip6_t *, ip6h1, mblk_t *, ipsec_mp);
25928 
25929 		FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
25930 		    ipst->ips_ipv6firewall_loopback_out,
25931 		    NULL, out_ill, ip6h1, ipsec_mp, mp, ipst);
25932 
25933 		DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp);
25934 
25935 		if (ipsec_mp != NULL)
25936 			ip_wput_local_v6(RD(q), out_ill,
25937 			    ip6h, ipsec_mp, ire, 0);
25938 		if (ire_need_rele)
25939 			ire_refrele(ire);
25940 		return;
25941 	}
25942 	/*
25943 	 * Everything is done. Send it out on the wire.
25944 	 * We force the insertion of a fragment header using the
25945 	 * IPH_FRAG_HDR flag in two cases:
25946 	 * - after reception of an ICMPv6 "packet too big" message
25947 	 *   with a MTU < 1280 (cf. RFC 2460 section 5)
25948 	 * - for multirouted IPv6 packets, so that the receiver can
25949 	 *   discard duplicates according to their fragment identifier
25950 	 */
25951 	/* XXX fix flow control problems. */
25952 	if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag ||
25953 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
25954 		if (hwaccel) {
25955 			/*
25956 			 * hardware acceleration does not handle these
25957 			 * "slow path" cases.
25958 			 */
25959 			/* IPsec KSTATS: should bump bean counter here. */
25960 			if (ire_need_rele)
25961 				ire_refrele(ire);
25962 			freemsg(ipsec_mp);
25963 			return;
25964 		}
25965 		if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN !=
25966 		    (mp->b_cont ? msgdsize(mp) :
25967 		    mp->b_wptr - (uchar_t *)ip6h)) {
25968 			/* IPsec KSTATS: should bump bean counter here. */
25969 			ip0dbg(("Packet length mismatch: %d, %ld\n",
25970 			    ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN,
25971 			    msgdsize(mp)));
25972 			if (ire_need_rele)
25973 				ire_refrele(ire);
25974 			freemsg(ipsec_mp);
25975 			return;
25976 		}
25977 		ASSERT(mp->b_prev == NULL);
25978 		ip2dbg(("Fragmenting Size = %d, mtu = %d\n",
25979 		    ntohs(ip6h->ip6_plen) +
25980 		    IPV6_HDR_LEN, ire->ire_max_frag));
25981 		ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE,
25982 		    ire->ire_max_frag);
25983 	} else {
25984 		UPDATE_OB_PKT_COUNT(ire);
25985 		ire->ire_last_used_time = lbolt;
25986 		ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL);
25987 	}
25988 	if (ire_need_rele)
25989 		ire_refrele(ire);
25990 	freeb(ipsec_mp);
25991 }
25992 
25993 void
25994 ipsec_hw_putnext(queue_t *q, mblk_t *mp)
25995 {
25996 	mblk_t *hada_mp;	/* attributes M_CTL mblk */
25997 	da_ipsec_t *hada;	/* data attributes */
25998 	ill_t *ill = (ill_t *)q->q_ptr;
25999 
26000 	IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n"));
26001 
26002 	if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) {
26003 		/* IPsec KSTATS: Bump lose counter here! */
26004 		freemsg(mp);
26005 		return;
26006 	}
26007 
26008 	/*
26009 	 * It's an IPsec packet that must be
26010 	 * accelerated by the Provider, and the
26011 	 * outbound ill is IPsec acceleration capable.
26012 	 * Prepends the mblk with an IPHADA_M_CTL, and ship it
26013 	 * to the ill.
26014 	 * IPsec KSTATS: should bump packet counter here.
26015 	 */
26016 
26017 	hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI);
26018 	if (hada_mp == NULL) {
26019 		/* IPsec KSTATS: should bump packet counter here. */
26020 		freemsg(mp);
26021 		return;
26022 	}
26023 
26024 	hada_mp->b_datap->db_type = M_CTL;
26025 	hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada);
26026 	hada_mp->b_cont = mp;
26027 
26028 	hada = (da_ipsec_t *)hada_mp->b_rptr;
26029 	bzero(hada, sizeof (da_ipsec_t));
26030 	hada->da_type = IPHADA_M_CTL;
26031 
26032 	putnext(q, hada_mp);
26033 }
26034 
26035 /*
26036  * Finish the outbound IPsec processing. This function is called from
26037  * ipsec_out_process() if the IPsec packet was processed
26038  * synchronously, or from {ah,esp}_kcf_callback() if it was processed
26039  * asynchronously.
26040  */
26041 void
26042 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill,
26043     ire_t *ire_arg)
26044 {
26045 	uint32_t v_hlen_tos_len;
26046 	ipaddr_t	dst;
26047 	ipif_t	*ipif = NULL;
26048 	ire_t *ire;
26049 	ire_t *ire1 = NULL;
26050 	mblk_t *next_mp = NULL;
26051 	uint32_t max_frag;
26052 	boolean_t multirt_send = B_FALSE;
26053 	mblk_t *mp;
26054 	mblk_t *mp1;
26055 	ipha_t *ipha1;
26056 	uint_t	ill_index;
26057 	ipsec_out_t *io;
26058 	boolean_t attach_if;
26059 	int match_flags, offset;
26060 	irb_t *irb = NULL;
26061 	boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE;
26062 	zoneid_t zoneid;
26063 	uint32_t cksum;
26064 	uint16_t *up;
26065 	ipxmit_state_t	pktxmit_state;
26066 	ip_stack_t	*ipst;
26067 
26068 #ifdef	_BIG_ENDIAN
26069 #define	LENGTH	(v_hlen_tos_len & 0xFFFF)
26070 #else
26071 #define	LENGTH	((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00))
26072 #endif
26073 
26074 	mp = ipsec_mp->b_cont;
26075 	ipha1 = (ipha_t *)mp->b_rptr;
26076 	ASSERT(mp != NULL);
26077 	v_hlen_tos_len = ((uint32_t *)ipha)[0];
26078 	dst = ipha->ipha_dst;
26079 
26080 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
26081 	ill_index = io->ipsec_out_ill_index;
26082 	attach_if = io->ipsec_out_attach_if;
26083 	zoneid = io->ipsec_out_zoneid;
26084 	ASSERT(zoneid != ALL_ZONES);
26085 	ipst = io->ipsec_out_ns->netstack_ip;
26086 	ASSERT(io->ipsec_out_ns != NULL);
26087 
26088 	match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR;
26089 	if (ill_index != 0) {
26090 		if (ill == NULL) {
26091 			ill = ip_grab_attach_ill(NULL, ipsec_mp,
26092 			    ill_index, B_FALSE, ipst);
26093 
26094 			/* Failure case frees things for us. */
26095 			if (ill == NULL)
26096 				return;
26097 
26098 			ill_need_rele = B_TRUE;
26099 		}
26100 		/*
26101 		 * If this packet needs to go out on a particular interface
26102 		 * honor it.
26103 		 */
26104 		if (attach_if) {
26105 			match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR;
26106 
26107 			/*
26108 			 * Check if we need an ire that will not be
26109 			 * looked up by anybody else i.e. HIDDEN.
26110 			 */
26111 			if (ill_is_probeonly(ill)) {
26112 				match_flags |= MATCH_IRE_MARK_HIDDEN;
26113 			}
26114 		}
26115 	}
26116 
26117 	if (CLASSD(dst)) {
26118 		boolean_t conn_dontroute;
26119 		/*
26120 		 * Use the ill_index to get the right ipif.
26121 		 */
26122 		conn_dontroute = io->ipsec_out_dontroute;
26123 		if (ill_index == 0)
26124 			ipif = ipif_lookup_group(dst, zoneid, ipst);
26125 		else
26126 			(void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif);
26127 		if (ipif == NULL) {
26128 			ip1dbg(("ip_wput_ipsec_out: No ipif for"
26129 			    " multicast\n"));
26130 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutNoRoutes);
26131 			freemsg(ipsec_mp);
26132 			goto done;
26133 		}
26134 		/*
26135 		 * ipha_src has already been intialized with the
26136 		 * value of the ipif in ip_wput. All we need now is
26137 		 * an ire to send this downstream.
26138 		 */
26139 		ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid,
26140 		    MBLK_GETLABEL(mp), match_flags, ipst);
26141 		if (ire != NULL) {
26142 			ill_t *ill1;
26143 			/*
26144 			 * Do the multicast forwarding now, as the IPSEC
26145 			 * processing has been done.
26146 			 */
26147 			if (ipst->ips_ip_g_mrouter && !conn_dontroute &&
26148 			    (ill1 = ire_to_ill(ire))) {
26149 				if (ip_mforward(ill1, ipha, mp)) {
26150 					freemsg(ipsec_mp);
26151 					ip1dbg(("ip_wput_ipsec_out: mforward "
26152 					    "failed\n"));
26153 					ire_refrele(ire);
26154 					goto done;
26155 				}
26156 			}
26157 			goto send;
26158 		}
26159 
26160 		ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n"));
26161 		mp->b_prev = NULL;
26162 		mp->b_next = NULL;
26163 
26164 		/*
26165 		 * If the IPsec packet was processed asynchronously,
26166 		 * drop it now.
26167 		 */
26168 		if (q == NULL) {
26169 			freemsg(ipsec_mp);
26170 			goto done;
26171 		}
26172 
26173 		/*
26174 		 * We may be using a wrong ipif to create the ire.
26175 		 * But it is okay as the source address is assigned
26176 		 * for the packet already. Next outbound packet would
26177 		 * create the IRE with the right IPIF in ip_wput.
26178 		 *
26179 		 * Also handle RTF_MULTIRT routes.
26180 		 */
26181 		ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT,
26182 		    zoneid, &zero_info);
26183 	} else {
26184 		if (attach_if) {
26185 			ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif,
26186 			    zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
26187 		} else {
26188 			if (ire_arg != NULL) {
26189 				ire = ire_arg;
26190 				ire_need_rele = B_FALSE;
26191 			} else {
26192 				ire = ire_cache_lookup(dst, zoneid,
26193 				    MBLK_GETLABEL(mp), ipst);
26194 			}
26195 		}
26196 		if (ire != NULL) {
26197 			goto send;
26198 		}
26199 
26200 		/*
26201 		 * ire disappeared underneath.
26202 		 *
26203 		 * What we need to do here is the ip_newroute
26204 		 * logic to get the ire without doing the IPSEC
26205 		 * processing. Follow the same old path. But this
26206 		 * time, ip_wput or ire_add_then_put will call us
26207 		 * directly as all the IPSEC operations are done.
26208 		 */
26209 		ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n"));
26210 		mp->b_prev = NULL;
26211 		mp->b_next = NULL;
26212 
26213 		/*
26214 		 * If the IPsec packet was processed asynchronously,
26215 		 * drop it now.
26216 		 */
26217 		if (q == NULL) {
26218 			freemsg(ipsec_mp);
26219 			goto done;
26220 		}
26221 
26222 		/*
26223 		 * Since we're going through ip_newroute() again, we
26224 		 * need to make sure we don't:
26225 		 *
26226 		 *	1.) Trigger the ASSERT() with the ipha_ident
26227 		 *	    overloading.
26228 		 *	2.) Redo transport-layer checksumming, since we've
26229 		 *	    already done all that to get this far.
26230 		 *
26231 		 * The easiest way not do either of the above is to set
26232 		 * the ipha_ident field to IP_HDR_INCLUDED.
26233 		 */
26234 		ipha->ipha_ident = IP_HDR_INCLUDED;
26235 		ip_newroute(q, ipsec_mp, dst, NULL,
26236 		    (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid, ipst);
26237 	}
26238 	goto done;
26239 send:
26240 	if (ipha->ipha_protocol == IPPROTO_UDP &&
26241 	    udp_compute_checksum(ipst->ips_netstack)) {
26242 		/*
26243 		 * ESP NAT-Traversal packet.
26244 		 *
26245 		 * Just do software checksum for now.
26246 		 */
26247 
26248 		offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET;
26249 		IP_STAT(ipst, ip_out_sw_cksum);
26250 		IP_STAT_UPDATE(ipst, ip_udp_out_sw_cksum_bytes,
26251 		    ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH));
26252 #define	iphs	((uint16_t *)ipha)
26253 		cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] +
26254 		    iphs[9] + ntohs(htons(ipha->ipha_length) -
26255 		    IP_SIMPLE_HDR_LENGTH);
26256 #undef iphs
26257 		if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0)
26258 			cksum = 0xFFFF;
26259 		for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont)
26260 			if (mp1->b_wptr - mp1->b_rptr >=
26261 			    offset + sizeof (uint16_t)) {
26262 				up = (uint16_t *)(mp1->b_rptr + offset);
26263 				*up = cksum;
26264 				break;	/* out of for loop */
26265 			} else {
26266 				offset -= (mp->b_wptr - mp->b_rptr);
26267 			}
26268 	} /* Otherwise, just keep the all-zero checksum. */
26269 
26270 	if (ire->ire_stq == NULL) {
26271 		ill_t	*out_ill;
26272 		/*
26273 		 * Loopbacks go through ip_wput_local except for one case.
26274 		 * We come here if we generate a icmp_frag_needed message
26275 		 * after IPSEC processing is over. When this function calls
26276 		 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling
26277 		 * icmp_frag_needed. The message generated comes back here
26278 		 * through icmp_frag_needed -> icmp_pkt -> ip_wput ->
26279 		 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the
26280 		 * source address as it is usually set in ip_wput_ire. As
26281 		 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process
26282 		 * and we end up here. We can't enter ip_wput_ire once the
26283 		 * IPSEC processing is over and hence we need to do it here.
26284 		 */
26285 		ASSERT(q != NULL);
26286 		UPDATE_OB_PKT_COUNT(ire);
26287 		ire->ire_last_used_time = lbolt;
26288 		if (ipha->ipha_src == 0)
26289 			ipha->ipha_src = ire->ire_src_addr;
26290 
26291 		/* PFHooks: LOOPBACK_OUT */
26292 		out_ill = ire->ire_ipif->ipif_ill;
26293 
26294 		DTRACE_PROBE4(ip4__loopback__out__start,
26295 		    ill_t *, NULL, ill_t *, out_ill,
26296 		    ipha_t *, ipha1, mblk_t *, ipsec_mp);
26297 
26298 		FW_HOOKS(ipst->ips_ip4_loopback_out_event,
26299 		    ipst->ips_ipv4firewall_loopback_out,
26300 		    NULL, out_ill, ipha1, ipsec_mp, mp, ipst);
26301 
26302 		DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp);
26303 
26304 		if (ipsec_mp != NULL)
26305 			ip_wput_local(RD(q), out_ill,
26306 			    ipha, ipsec_mp, ire, 0, zoneid);
26307 		if (ire_need_rele)
26308 			ire_refrele(ire);
26309 		goto done;
26310 	}
26311 
26312 	if (ire->ire_max_frag < (unsigned int)LENGTH) {
26313 		/*
26314 		 * We are through with IPSEC processing.
26315 		 * Fragment this and send it on the wire.
26316 		 */
26317 		if (io->ipsec_out_accelerated) {
26318 			/*
26319 			 * The packet has been accelerated but must
26320 			 * be fragmented. This should not happen
26321 			 * since AH and ESP must not accelerate
26322 			 * packets that need fragmentation, however
26323 			 * the configuration could have changed
26324 			 * since the AH or ESP processing.
26325 			 * Drop packet.
26326 			 * IPsec KSTATS: bump bean counter here.
26327 			 */
26328 			IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: "
26329 			    "fragmented accelerated packet!\n"));
26330 			freemsg(ipsec_mp);
26331 		} else {
26332 			ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid, ipst);
26333 		}
26334 		if (ire_need_rele)
26335 			ire_refrele(ire);
26336 		goto done;
26337 	}
26338 
26339 	ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, "
26340 	    "ipif %p\n", (void *)ipsec_mp, (void *)ire,
26341 	    (void *)ire->ire_ipif, (void *)ipif));
26342 
26343 	/*
26344 	 * Multiroute the secured packet, unless IPsec really
26345 	 * requires the packet to go out only through a particular
26346 	 * interface.
26347 	 */
26348 	if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) {
26349 		ire_t *first_ire;
26350 		irb = ire->ire_bucket;
26351 		ASSERT(irb != NULL);
26352 		/*
26353 		 * This ire has been looked up as the one that
26354 		 * goes through the given ipif;
26355 		 * make sure we do not omit any other multiroute ire
26356 		 * that may be present in the bucket before this one.
26357 		 */
26358 		IRB_REFHOLD(irb);
26359 		for (first_ire = irb->irb_ire;
26360 		    first_ire != NULL;
26361 		    first_ire = first_ire->ire_next) {
26362 			if ((first_ire->ire_flags & RTF_MULTIRT) &&
26363 			    (first_ire->ire_addr == ire->ire_addr) &&
26364 			    !(first_ire->ire_marks &
26365 				(IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)))
26366 				break;
26367 		}
26368 
26369 		if ((first_ire != NULL) && (first_ire != ire)) {
26370 			/*
26371 			 * Don't change the ire if the packet must
26372 			 * be fragmented if sent via this new one.
26373 			 */
26374 			if (first_ire->ire_max_frag >= (unsigned int)LENGTH) {
26375 				IRE_REFHOLD(first_ire);
26376 				if (ire_need_rele)
26377 					ire_refrele(ire);
26378 				else
26379 					ire_need_rele = B_TRUE;
26380 				ire = first_ire;
26381 			}
26382 		}
26383 		IRB_REFRELE(irb);
26384 
26385 		multirt_send = B_TRUE;
26386 		max_frag = ire->ire_max_frag;
26387 	} else {
26388 		if ((ire->ire_flags & RTF_MULTIRT) && attach_if) {
26389 			ip1dbg(("ip_wput_ipsec_out: ignoring multirouting "
26390 			    "flag, attach_if %d\n", attach_if));
26391 		}
26392 	}
26393 
26394 	/*
26395 	 * In most cases, the emission loop below is entered only once.
26396 	 * Only in the case where the ire holds the RTF_MULTIRT
26397 	 * flag, we loop to process all RTF_MULTIRT ires in the
26398 	 * bucket, and send the packet through all crossed
26399 	 * RTF_MULTIRT routes.
26400 	 */
26401 	do {
26402 		if (multirt_send) {
26403 			/*
26404 			 * ire1 holds here the next ire to process in the
26405 			 * bucket. If multirouting is expected,
26406 			 * any non-RTF_MULTIRT ire that has the
26407 			 * right destination address is ignored.
26408 			 */
26409 			ASSERT(irb != NULL);
26410 			IRB_REFHOLD(irb);
26411 			for (ire1 = ire->ire_next;
26412 			    ire1 != NULL;
26413 			    ire1 = ire1->ire_next) {
26414 				if ((ire1->ire_flags & RTF_MULTIRT) == 0)
26415 					continue;
26416 				if (ire1->ire_addr != ire->ire_addr)
26417 					continue;
26418 				if (ire1->ire_marks &
26419 				    (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))
26420 					continue;
26421 				/* No loopback here */
26422 				if (ire1->ire_stq == NULL)
26423 					continue;
26424 				/*
26425 				 * Ensure we do not exceed the MTU
26426 				 * of the next route.
26427 				 */
26428 				if (ire1->ire_max_frag < (unsigned int)LENGTH) {
26429 					ip_multirt_bad_mtu(ire1, max_frag);
26430 					continue;
26431 				}
26432 
26433 				IRE_REFHOLD(ire1);
26434 				break;
26435 			}
26436 			IRB_REFRELE(irb);
26437 			if (ire1 != NULL) {
26438 				/*
26439 				 * We are in a multiple send case, need to
26440 				 * make a copy of the packet.
26441 				 */
26442 				next_mp = copymsg(ipsec_mp);
26443 				if (next_mp == NULL) {
26444 					ire_refrele(ire1);
26445 					ire1 = NULL;
26446 				}
26447 			}
26448 		}
26449 		/*
26450 		 * Everything is done. Send it out on the wire
26451 		 *
26452 		 * ip_xmit_v4 will call ip_wput_attach_llhdr and then
26453 		 * either send it on the wire or, in the case of
26454 		 * HW acceleration, call ipsec_hw_putnext.
26455 		 */
26456 		if (ire->ire_nce &&
26457 		    ire->ire_nce->nce_state != ND_REACHABLE) {
26458 			DTRACE_PROBE2(ip__wput__ipsec__bail,
26459 			    (ire_t *), ire,  (mblk_t *), ipsec_mp);
26460 			/*
26461 			 * If ire's link-layer is unresolved (this
26462 			 * would only happen if the incomplete ire
26463 			 * was added to cachetable via forwarding path)
26464 			 * don't bother going to ip_xmit_v4. Just drop the
26465 			 * packet.
26466 			 * There is a slight risk here, in that, if we
26467 			 * have the forwarding path create an incomplete
26468 			 * IRE, then until the IRE is completed, any
26469 			 * transmitted IPSEC packets will be dropped
26470 			 * instead of being queued waiting for resolution.
26471 			 *
26472 			 * But the likelihood of a forwarding packet and a wput
26473 			 * packet sending to the same dst at the same time
26474 			 * and there not yet be an ARP entry for it is small.
26475 			 * Furthermore, if this actually happens, it might
26476 			 * be likely that wput would generate multiple
26477 			 * packets (and forwarding would also have a train
26478 			 * of packets) for that destination. If this is
26479 			 * the case, some of them would have been dropped
26480 			 * anyway, since ARP only queues a few packets while
26481 			 * waiting for resolution
26482 			 *
26483 			 * NOTE: We should really call ip_xmit_v4,
26484 			 * and let it queue the packet and send the
26485 			 * ARP query and have ARP come back thus:
26486 			 * <ARP> ip_wput->ip_output->ip-wput_nondata->
26487 			 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec
26488 			 * hw accel work. But it's too complex to get
26489 			 * the IPsec hw  acceleration approach to fit
26490 			 * well with ip_xmit_v4 doing ARP without
26491 			 * doing IPSEC simplification. For now, we just
26492 			 * poke ip_xmit_v4 to trigger the arp resolve, so
26493 			 * that we can continue with the send on the next
26494 			 * attempt.
26495 			 *
26496 			 * XXX THis should be revisited, when
26497 			 * the IPsec/IP interaction is cleaned up
26498 			 */
26499 			ip1dbg(("ip_wput_ipsec_out: ire is incomplete"
26500 			    " - dropping packet\n"));
26501 			freemsg(ipsec_mp);
26502 			/*
26503 			 * Call ip_xmit_v4() to trigger ARP query
26504 			 * in case the nce_state is ND_INITIAL
26505 			 */
26506 			(void) ip_xmit_v4(NULL, ire, NULL, B_FALSE);
26507 			goto drop_pkt;
26508 		}
26509 
26510 		DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL,
26511 		    ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1,
26512 		    mblk_t *, mp);
26513 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
26514 		    ipst->ips_ipv4firewall_physical_out,
26515 		    NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp, ipst);
26516 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
26517 		if (mp == NULL)
26518 			goto drop_pkt;
26519 
26520 		ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n"));
26521 		pktxmit_state = ip_xmit_v4(mp, ire,
26522 		    (io->ipsec_out_accelerated ? io : NULL), B_FALSE);
26523 
26524 		if ((pktxmit_state ==  SEND_FAILED) ||
26525 		    (pktxmit_state == LLHDR_RESLV_FAILED)) {
26526 
26527 			freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */
26528 drop_pkt:
26529 			BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib,
26530 			    ipIfStatsOutDiscards);
26531 			if (ire_need_rele)
26532 				ire_refrele(ire);
26533 			if (ire1 != NULL) {
26534 				ire_refrele(ire1);
26535 				freemsg(next_mp);
26536 			}
26537 			goto done;
26538 		}
26539 
26540 		freeb(ipsec_mp);
26541 		if (ire_need_rele)
26542 			ire_refrele(ire);
26543 
26544 		if (ire1 != NULL) {
26545 			ire = ire1;
26546 			ire_need_rele = B_TRUE;
26547 			ASSERT(next_mp);
26548 			ipsec_mp = next_mp;
26549 			mp = ipsec_mp->b_cont;
26550 			ire1 = NULL;
26551 			next_mp = NULL;
26552 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
26553 		} else {
26554 			multirt_send = B_FALSE;
26555 		}
26556 	} while (multirt_send);
26557 done:
26558 	if (ill != NULL && ill_need_rele)
26559 		ill_refrele(ill);
26560 	if (ipif != NULL)
26561 		ipif_refrele(ipif);
26562 }
26563 
26564 /*
26565  * Get the ill corresponding to the specified ire, and compare its
26566  * capabilities with the protocol and algorithms specified by the
26567  * the SA obtained from ipsec_out. If they match, annotate the
26568  * ipsec_out structure to indicate that the packet needs acceleration.
26569  *
26570  *
26571  * A packet is eligible for outbound hardware acceleration if the
26572  * following conditions are satisfied:
26573  *
26574  * 1. the packet will not be fragmented
26575  * 2. the provider supports the algorithm
26576  * 3. there is no pending control message being exchanged
26577  * 4. snoop is not attached
26578  * 5. the destination address is not a broadcast or multicast address.
26579  *
26580  * Rationale:
26581  *	- Hardware drivers do not support fragmentation with
26582  *	  the current interface.
26583  *	- snoop, multicast, and broadcast may result in exposure of
26584  *	  a cleartext datagram.
26585  * We check all five of these conditions here.
26586  *
26587  * XXX would like to nuke "ire_t *" parameter here; problem is that
26588  * IRE is only way to figure out if a v4 address is a broadcast and
26589  * thus ineligible for acceleration...
26590  */
26591 static void
26592 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire)
26593 {
26594 	ipsec_out_t *io;
26595 	mblk_t *data_mp;
26596 	uint_t plen, overhead;
26597 	ip_stack_t	*ipst;
26598 
26599 	if ((sa->ipsa_flags & IPSA_F_HW) == 0)
26600 		return;
26601 
26602 	if (ill == NULL)
26603 		return;
26604 	ipst = ill->ill_ipst;
26605 	/*
26606 	 * Destination address is a broadcast or multicast.  Punt.
26607 	 */
26608 	if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK|
26609 	    IRE_LOCAL)))
26610 		return;
26611 
26612 	data_mp = ipsec_mp->b_cont;
26613 
26614 	if (ill->ill_isv6) {
26615 		ip6_t *ip6h = (ip6_t *)data_mp->b_rptr;
26616 
26617 		if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst))
26618 			return;
26619 
26620 		plen = ip6h->ip6_plen;
26621 	} else {
26622 		ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
26623 
26624 		if (CLASSD(ipha->ipha_dst))
26625 			return;
26626 
26627 		plen = ipha->ipha_length;
26628 	}
26629 	/*
26630 	 * Is there a pending DLPI control message being exchanged
26631 	 * between IP/IPsec and the DLS Provider? If there is, it
26632 	 * could be a SADB update, and the state of the DLS Provider
26633 	 * SADB might not be in sync with the SADB maintained by
26634 	 * IPsec. To avoid dropping packets or using the wrong keying
26635 	 * material, we do not accelerate this packet.
26636 	 */
26637 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
26638 		IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: "
26639 		    "ill_dlpi_pending! don't accelerate packet\n"));
26640 		return;
26641 	}
26642 
26643 	/*
26644 	 * Is the Provider in promiscous mode? If it does, we don't
26645 	 * accelerate the packet since it will bounce back up to the
26646 	 * listeners in the clear.
26647 	 */
26648 	if (ill->ill_promisc_on_phys) {
26649 		IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: "
26650 		    "ill in promiscous mode, don't accelerate packet\n"));
26651 		return;
26652 	}
26653 
26654 	/*
26655 	 * Will the packet require fragmentation?
26656 	 */
26657 
26658 	/*
26659 	 * IPsec ESP note: this is a pessimistic estimate, but the same
26660 	 * as is used elsewhere.
26661 	 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1)
26662 	 *	+ 2-byte trailer
26663 	 */
26664 	overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE :
26665 	    IPSEC_BASE_ESP_HDR_SIZE(sa);
26666 
26667 	if ((plen + overhead) > ill->ill_max_mtu)
26668 		return;
26669 
26670 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
26671 
26672 	/*
26673 	 * Can the ill accelerate this IPsec protocol and algorithm
26674 	 * specified by the SA?
26675 	 */
26676 	if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index,
26677 	    ill->ill_isv6, sa, ipst->ips_netstack)) {
26678 		return;
26679 	}
26680 
26681 	/*
26682 	 * Tell AH or ESP that the outbound ill is capable of
26683 	 * accelerating this packet.
26684 	 */
26685 	io->ipsec_out_is_capab_ill = B_TRUE;
26686 }
26687 
26688 /*
26689  * Select which AH & ESP SA's to use (if any) for the outbound packet.
26690  *
26691  * If this function returns B_TRUE, the requested SA's have been filled
26692  * into the ipsec_out_*_sa pointers.
26693  *
26694  * If the function returns B_FALSE, the packet has been "consumed", most
26695  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
26696  *
26697  * The SA references created by the protocol-specific "select"
26698  * function will be released when the ipsec_mp is freed, thanks to the
26699  * ipsec_out_free destructor -- see spd.c.
26700  */
26701 static boolean_t
26702 ipsec_out_select_sa(mblk_t *ipsec_mp)
26703 {
26704 	boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
26705 	ipsec_out_t *io;
26706 	ipsec_policy_t *pp;
26707 	ipsec_action_t *ap;
26708 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
26709 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
26710 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
26711 
26712 	if (!io->ipsec_out_secure) {
26713 		/*
26714 		 * We came here by mistake.
26715 		 * Don't bother with ipsec processing
26716 		 * We should "discourage" this path in the future.
26717 		 */
26718 		ASSERT(io->ipsec_out_proc_begin == B_FALSE);
26719 		return (B_FALSE);
26720 	}
26721 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
26722 	ASSERT((io->ipsec_out_policy != NULL) ||
26723 	    (io->ipsec_out_act != NULL));
26724 
26725 	ASSERT(io->ipsec_out_failed == B_FALSE);
26726 
26727 	/*
26728 	 * IPSEC processing has started.
26729 	 */
26730 	io->ipsec_out_proc_begin = B_TRUE;
26731 	ap = io->ipsec_out_act;
26732 	if (ap == NULL) {
26733 		pp = io->ipsec_out_policy;
26734 		ASSERT(pp != NULL);
26735 		ap = pp->ipsp_act;
26736 		ASSERT(ap != NULL);
26737 	}
26738 
26739 	/*
26740 	 * We have an action.  now, let's select SA's.
26741 	 * (In the future, we can cache this in the conn_t..)
26742 	 */
26743 	if (ap->ipa_want_esp) {
26744 		if (io->ipsec_out_esp_sa == NULL) {
26745 			need_esp_acquire = !ipsec_outbound_sa(ipsec_mp,
26746 			    IPPROTO_ESP);
26747 		}
26748 		ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL);
26749 	}
26750 
26751 	if (ap->ipa_want_ah) {
26752 		if (io->ipsec_out_ah_sa == NULL) {
26753 			need_ah_acquire = !ipsec_outbound_sa(ipsec_mp,
26754 			    IPPROTO_AH);
26755 		}
26756 		ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL);
26757 		/*
26758 		 * The ESP and AH processing order needs to be preserved
26759 		 * when both protocols are required (ESP should be applied
26760 		 * before AH for an outbound packet). Force an ESP ACQUIRE
26761 		 * when both ESP and AH are required, and an AH ACQUIRE
26762 		 * is needed.
26763 		 */
26764 		if (ap->ipa_want_esp && need_ah_acquire)
26765 			need_esp_acquire = B_TRUE;
26766 	}
26767 
26768 	/*
26769 	 * Send an ACQUIRE (extended, regular, or both) if we need one.
26770 	 * Release SAs that got referenced, but will not be used until we
26771 	 * acquire _all_ of the SAs we need.
26772 	 */
26773 	if (need_ah_acquire || need_esp_acquire) {
26774 		if (io->ipsec_out_ah_sa != NULL) {
26775 			IPSA_REFRELE(io->ipsec_out_ah_sa);
26776 			io->ipsec_out_ah_sa = NULL;
26777 		}
26778 		if (io->ipsec_out_esp_sa != NULL) {
26779 			IPSA_REFRELE(io->ipsec_out_esp_sa);
26780 			io->ipsec_out_esp_sa = NULL;
26781 		}
26782 
26783 		sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire);
26784 		return (B_FALSE);
26785 	}
26786 
26787 	return (B_TRUE);
26788 }
26789 
26790 /*
26791  * Process an IPSEC_OUT message and see what you can
26792  * do with it.
26793  * IPQoS Notes:
26794  * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for
26795  * IPSec.
26796  * XXX would like to nuke ire_t.
26797  * XXX ill_index better be "real"
26798  */
26799 void
26800 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index)
26801 {
26802 	ipsec_out_t *io;
26803 	ipsec_policy_t *pp;
26804 	ipsec_action_t *ap;
26805 	ipha_t *ipha;
26806 	ip6_t *ip6h;
26807 	mblk_t *mp;
26808 	ill_t *ill;
26809 	zoneid_t zoneid;
26810 	ipsec_status_t ipsec_rc;
26811 	boolean_t ill_need_rele = B_FALSE;
26812 	ip_stack_t	*ipst;
26813 	ipsec_stack_t	*ipss;
26814 
26815 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
26816 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
26817 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
26818 	ipst = io->ipsec_out_ns->netstack_ip;
26819 	mp = ipsec_mp->b_cont;
26820 
26821 	/*
26822 	 * Initiate IPPF processing. We do it here to account for packets
26823 	 * coming here that don't have any policy (i.e. !io->ipsec_out_secure).
26824 	 * We can check for ipsec_out_proc_begin even for such packets, as
26825 	 * they will always be false (asserted below).
26826 	 */
26827 	if (IPP_ENABLED(IPP_LOCAL_OUT, ipst) && !io->ipsec_out_proc_begin) {
26828 		ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ?
26829 		    io->ipsec_out_ill_index : ill_index);
26830 		if (mp == NULL) {
26831 			ip2dbg(("ipsec_out_process: packet dropped "\
26832 			    "during IPPF processing\n"));
26833 			freeb(ipsec_mp);
26834 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
26835 			return;
26836 		}
26837 	}
26838 
26839 	if (!io->ipsec_out_secure) {
26840 		/*
26841 		 * We came here by mistake.
26842 		 * Don't bother with ipsec processing
26843 		 * Should "discourage" this path in the future.
26844 		 */
26845 		ASSERT(io->ipsec_out_proc_begin == B_FALSE);
26846 		goto done;
26847 	}
26848 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
26849 	ASSERT((io->ipsec_out_policy != NULL) ||
26850 	    (io->ipsec_out_act != NULL));
26851 	ASSERT(io->ipsec_out_failed == B_FALSE);
26852 
26853 	ipss = ipst->ips_netstack->netstack_ipsec;
26854 	if (!ipsec_loaded(ipss)) {
26855 		ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr;
26856 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
26857 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
26858 		} else {
26859 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
26860 		}
26861 		ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire,
26862 		    DROPPER(ipss, ipds_ip_ipsec_not_loaded),
26863 		    &ipss->ipsec_dropper);
26864 		return;
26865 	}
26866 
26867 	/*
26868 	 * IPSEC processing has started.
26869 	 */
26870 	io->ipsec_out_proc_begin = B_TRUE;
26871 	ap = io->ipsec_out_act;
26872 	if (ap == NULL) {
26873 		pp = io->ipsec_out_policy;
26874 		ASSERT(pp != NULL);
26875 		ap = pp->ipsp_act;
26876 		ASSERT(ap != NULL);
26877 	}
26878 
26879 	/*
26880 	 * Save the outbound ill index. When the packet comes back
26881 	 * from IPsec, we make sure the ill hasn't changed or disappeared
26882 	 * before sending it the accelerated packet.
26883 	 */
26884 	if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) {
26885 		int ifindex;
26886 		ill = ire_to_ill(ire);
26887 		ifindex = ill->ill_phyint->phyint_ifindex;
26888 		io->ipsec_out_capab_ill_index = ifindex;
26889 	}
26890 
26891 	/*
26892 	 * The order of processing is first insert a IP header if needed.
26893 	 * Then insert the ESP header and then the AH header.
26894 	 */
26895 	if ((io->ipsec_out_se_done == B_FALSE) &&
26896 	    (ap->ipa_want_se)) {
26897 		/*
26898 		 * First get the outer IP header before sending
26899 		 * it to ESP.
26900 		 */
26901 		ipha_t *oipha, *iipha;
26902 		mblk_t *outer_mp, *inner_mp;
26903 
26904 		if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
26905 			(void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE,
26906 			    "ipsec_out_process: "
26907 			    "Self-Encapsulation failed: Out of memory\n");
26908 			freemsg(ipsec_mp);
26909 			if (ill != NULL) {
26910 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
26911 			} else {
26912 				BUMP_MIB(&ipst->ips_ip_mib,
26913 				    ipIfStatsOutDiscards);
26914 			}
26915 			return;
26916 		}
26917 		inner_mp = ipsec_mp->b_cont;
26918 		ASSERT(inner_mp->b_datap->db_type == M_DATA);
26919 		oipha = (ipha_t *)outer_mp->b_rptr;
26920 		iipha = (ipha_t *)inner_mp->b_rptr;
26921 		*oipha = *iipha;
26922 		outer_mp->b_wptr += sizeof (ipha_t);
26923 		oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
26924 		    sizeof (ipha_t));
26925 		oipha->ipha_protocol = IPPROTO_ENCAP;
26926 		oipha->ipha_version_and_hdr_length =
26927 		    IP_SIMPLE_HDR_VERSION;
26928 		oipha->ipha_hdr_checksum = 0;
26929 		oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
26930 		outer_mp->b_cont = inner_mp;
26931 		ipsec_mp->b_cont = outer_mp;
26932 
26933 		io->ipsec_out_se_done = B_TRUE;
26934 		io->ipsec_out_tunnel = B_TRUE;
26935 	}
26936 
26937 	if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) ||
26938 	    (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) &&
26939 	    !ipsec_out_select_sa(ipsec_mp))
26940 		return;
26941 
26942 	/*
26943 	 * By now, we know what SA's to use.  Toss over to ESP & AH
26944 	 * to do the heavy lifting.
26945 	 */
26946 	zoneid = io->ipsec_out_zoneid;
26947 	ASSERT(zoneid != ALL_ZONES);
26948 	if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) {
26949 		ASSERT(io->ipsec_out_esp_sa != NULL);
26950 		io->ipsec_out_esp_done = B_TRUE;
26951 		/*
26952 		 * Note that since hw accel can only apply one transform,
26953 		 * not two, we skip hw accel for ESP if we also have AH
26954 		 * This is an design limitation of the interface
26955 		 * which should be revisited.
26956 		 */
26957 		ASSERT(ire != NULL);
26958 		if (io->ipsec_out_ah_sa == NULL) {
26959 			ill = (ill_t *)ire->ire_stq->q_ptr;
26960 			ipsec_out_is_accelerated(ipsec_mp,
26961 			    io->ipsec_out_esp_sa, ill, ire);
26962 		}
26963 
26964 		ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp);
26965 		switch (ipsec_rc) {
26966 		case IPSEC_STATUS_SUCCESS:
26967 			break;
26968 		case IPSEC_STATUS_FAILED:
26969 			if (ill != NULL) {
26970 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
26971 			} else {
26972 				BUMP_MIB(&ipst->ips_ip_mib,
26973 				    ipIfStatsOutDiscards);
26974 			}
26975 			/* FALLTHRU */
26976 		case IPSEC_STATUS_PENDING:
26977 			return;
26978 		}
26979 	}
26980 
26981 	if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) {
26982 		ASSERT(io->ipsec_out_ah_sa != NULL);
26983 		io->ipsec_out_ah_done = B_TRUE;
26984 		if (ire == NULL) {
26985 			int idx = io->ipsec_out_capab_ill_index;
26986 			ill = ill_lookup_on_ifindex(idx, B_FALSE,
26987 			    NULL, NULL, NULL, NULL, ipst);
26988 			ill_need_rele = B_TRUE;
26989 		} else {
26990 			ill = (ill_t *)ire->ire_stq->q_ptr;
26991 		}
26992 		ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill,
26993 		    ire);
26994 
26995 		ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp);
26996 		switch (ipsec_rc) {
26997 		case IPSEC_STATUS_SUCCESS:
26998 			break;
26999 		case IPSEC_STATUS_FAILED:
27000 			if (ill != NULL) {
27001 				BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
27002 			} else {
27003 				BUMP_MIB(&ipst->ips_ip_mib,
27004 				    ipIfStatsOutDiscards);
27005 			}
27006 			/* FALLTHRU */
27007 		case IPSEC_STATUS_PENDING:
27008 			if (ill != NULL && ill_need_rele)
27009 				ill_refrele(ill);
27010 			return;
27011 		}
27012 	}
27013 	/*
27014 	 * We are done with IPSEC processing. Send it over
27015 	 * the wire.
27016 	 */
27017 done:
27018 	mp = ipsec_mp->b_cont;
27019 	ipha = (ipha_t *)mp->b_rptr;
27020 	if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
27021 		ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire);
27022 	} else {
27023 		ip6h = (ip6_t *)ipha;
27024 		ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire);
27025 	}
27026 	if (ill != NULL && ill_need_rele)
27027 		ill_refrele(ill);
27028 }
27029 
27030 /* ARGSUSED */
27031 void
27032 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy)
27033 {
27034 	opt_restart_t	*or;
27035 	int	err;
27036 	conn_t	*connp;
27037 
27038 	ASSERT(CONN_Q(q));
27039 	connp = Q_TO_CONN(q);
27040 
27041 	ASSERT(first_mp->b_datap->db_type == M_CTL);
27042 	or = (opt_restart_t *)first_mp->b_rptr;
27043 	/*
27044 	 * We don't need to pass any credentials here since this is just
27045 	 * a restart. The credentials are passed in when svr4_optcom_req
27046 	 * is called the first time (from ip_wput_nondata).
27047 	 */
27048 	if (or->or_type == T_SVR4_OPTMGMT_REQ) {
27049 		err = svr4_optcom_req(q, first_mp, NULL,
27050 		    &ip_opt_obj);
27051 	} else {
27052 		ASSERT(or->or_type == T_OPTMGMT_REQ);
27053 		err = tpi_optcom_req(q, first_mp, NULL,
27054 		    &ip_opt_obj);
27055 	}
27056 	if (err != EINPROGRESS) {
27057 		/* operation is done */
27058 		CONN_OPER_PENDING_DONE(connp);
27059 	}
27060 }
27061 
27062 /*
27063  * ioctls that go through a down/up sequence may need to wait for the down
27064  * to complete. This involves waiting for the ire and ipif refcnts to go down
27065  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
27066  */
27067 /* ARGSUSED */
27068 void
27069 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
27070 {
27071 	struct iocblk *iocp;
27072 	mblk_t *mp1;
27073 	ip_ioctl_cmd_t *ipip;
27074 	int err;
27075 	sin_t	*sin;
27076 	struct lifreq *lifr;
27077 	struct ifreq *ifr;
27078 
27079 	iocp = (struct iocblk *)mp->b_rptr;
27080 	ASSERT(ipsq != NULL);
27081 	/* Existence of mp1 verified in ip_wput_nondata */
27082 	mp1 = mp->b_cont->b_cont;
27083 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
27084 	if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
27085 		/*
27086 		 * Special case where ipsq_current_ipif is not set:
27087 		 * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
27088 		 * ill could also have become part of a ipmp group in the
27089 		 * process, we are here as were not able to complete the
27090 		 * operation in ipif_set_values because we could not become
27091 		 * exclusive on the new ipsq, In such a case ipsq_current_ipif
27092 		 * will not be set so we need to set it.
27093 		 */
27094 		ill_t *ill = q->q_ptr;
27095 		ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
27096 	}
27097 	ASSERT(ipsq->ipsq_current_ipif != NULL);
27098 
27099 	if (ipip->ipi_cmd_type == IF_CMD) {
27100 		/* This a old style SIOC[GS]IF* command */
27101 		ifr = (struct ifreq *)mp1->b_rptr;
27102 		sin = (sin_t *)&ifr->ifr_addr;
27103 	} else if (ipip->ipi_cmd_type == LIF_CMD) {
27104 		/* This a new style SIOC[GS]LIF* command */
27105 		lifr = (struct lifreq *)mp1->b_rptr;
27106 		sin = (sin_t *)&lifr->lifr_addr;
27107 	} else {
27108 		sin = NULL;
27109 	}
27110 
27111 	err = (*ipip->ipi_func_restart)(ipsq->ipsq_current_ipif, sin, q, mp,
27112 	    ipip, mp1->b_rptr);
27113 
27114 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
27115 }
27116 
27117 /*
27118  * ioctl processing
27119  *
27120  * ioctl processing starts with ip_sioctl_copyin_setup which looks up
27121  * the ioctl command in the ioctl tables and determines the copyin data size
27122  * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that
27123  * size.
27124  *
27125  * ioctl processing then continues when the M_IOCDATA makes its way down.
27126  * Now the ioctl is looked up again in the ioctl table, and its properties are
27127  * extracted. The associated 'conn' is then refheld till the end of the ioctl
27128  * and the general ioctl processing function ip_process_ioctl is called.
27129  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
27130  * so goes thru the serialization primitive ipsq_try_enter. Then the
27131  * appropriate function to handle the ioctl is called based on the entry in
27132  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
27133  * which also refreleases the 'conn' that was refheld at the start of the
27134  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
27135  * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq
27136  * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel.
27137  *
27138  * Many exclusive ioctls go thru an internal down up sequence as part of
27139  * the operation. For example an attempt to change the IP address of an
27140  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
27141  * does all the cleanup such as deleting all ires that use this address.
27142  * Then we need to wait till all references to the interface go away.
27143  */
27144 void
27145 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
27146 {
27147 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
27148 	ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg;
27149 	cmd_info_t ci;
27150 	int err;
27151 	boolean_t entered_ipsq = B_FALSE;
27152 
27153 	ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
27154 
27155 	if (ipip == NULL)
27156 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
27157 
27158 	/*
27159 	 * SIOCLIFADDIF needs to go thru a special path since the
27160 	 * ill may not exist yet. This happens in the case of lo0
27161 	 * which is created using this ioctl.
27162 	 */
27163 	if (ipip->ipi_cmd == SIOCLIFADDIF) {
27164 		err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
27165 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
27166 		return;
27167 	}
27168 
27169 	ci.ci_ipif = NULL;
27170 	switch (ipip->ipi_cmd_type) {
27171 	case IF_CMD:
27172 	case LIF_CMD:
27173 		/*
27174 		 * ioctls that pass in a [l]ifreq appear here.
27175 		 * ip_extract_lifreq_cmn returns a refheld ipif in
27176 		 * ci.ci_ipif
27177 		 */
27178 		err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type,
27179 		    ipip->ipi_flags, &ci, ip_process_ioctl);
27180 		if (err != 0) {
27181 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
27182 			return;
27183 		}
27184 		ASSERT(ci.ci_ipif != NULL);
27185 		break;
27186 
27187 	case TUN_CMD:
27188 		/*
27189 		 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns
27190 		 * a refheld ipif in ci.ci_ipif
27191 		 */
27192 		err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl);
27193 		if (err != 0) {
27194 			ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
27195 			return;
27196 		}
27197 		ASSERT(ci.ci_ipif != NULL);
27198 		break;
27199 
27200 	case MISC_CMD:
27201 		/*
27202 		 * ioctls that neither pass in [l]ifreq or iftun_req come here
27203 		 * For eg. SIOCGLIFCONF will appear here.
27204 		 */
27205 		switch (ipip->ipi_cmd) {
27206 		case IF_UNITSEL:
27207 			/* ioctl comes down the ill */
27208 			ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
27209 			ipif_refhold(ci.ci_ipif);
27210 			break;
27211 		case SIOCGMSFILTER:
27212 		case SIOCSMSFILTER:
27213 		case SIOCGIPMSFILTER:
27214 		case SIOCSIPMSFILTER:
27215 			err = ip_extract_msfilter(q, mp, &ci.ci_ipif,
27216 			    ip_process_ioctl);
27217 			if (err != 0) {
27218 				ip_ioctl_finish(q, mp, err, IPI2MODE(ipip),
27219 				    NULL);
27220 			}
27221 			break;
27222 		}
27223 		err = 0;
27224 		ci.ci_sin = NULL;
27225 		ci.ci_sin6 = NULL;
27226 		ci.ci_lifr = NULL;
27227 		break;
27228 	}
27229 
27230 	/*
27231 	 * If ipsq is non-null, we are already being called exclusively
27232 	 */
27233 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
27234 	if (!(ipip->ipi_flags & IPI_WR)) {
27235 		/*
27236 		 * A return value of EINPROGRESS means the ioctl is
27237 		 * either queued and waiting for some reason or has
27238 		 * already completed.
27239 		 */
27240 		err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
27241 		    ci.ci_lifr);
27242 		if (ci.ci_ipif != NULL)
27243 			ipif_refrele(ci.ci_ipif);
27244 		ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
27245 		return;
27246 	}
27247 
27248 	ASSERT(ci.ci_ipif != NULL);
27249 
27250 	if (ipsq == NULL) {
27251 		ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp,
27252 		    ip_process_ioctl, NEW_OP, B_TRUE);
27253 		entered_ipsq = B_TRUE;
27254 	}
27255 	/*
27256 	 * Release the ipif so that ipif_down and friends that wait for
27257 	 * references to go away are not misled about the current ipif_refcnt
27258 	 * values. We are writer so we can access the ipif even after releasing
27259 	 * the ipif.
27260 	 */
27261 	ipif_refrele(ci.ci_ipif);
27262 	if (ipsq == NULL)
27263 		return;
27264 
27265 	ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
27266 
27267 	/*
27268 	 * For most set ioctls that come here, this serves as a single point
27269 	 * where we set the IPIF_CHANGING flag. This ensures that there won't
27270 	 * be any new references to the ipif. This helps functions that go
27271 	 * through this path and end up trying to wait for the refcnts
27272 	 * associated with the ipif to go down to zero. Some exceptions are
27273 	 * Failover, Failback, and Groupname commands that operate on more than
27274 	 * just the ci.ci_ipif. These commands internally determine the
27275 	 * set of ipif's they operate on and set and clear the IPIF_CHANGING
27276 	 * flags on that set. Another exception is the Removeif command that
27277 	 * sets the IPIF_CONDEMNED flag internally after identifying the right
27278 	 * ipif to operate on.
27279 	 */
27280 	mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock);
27281 	if (ipip->ipi_cmd != SIOCLIFREMOVEIF &&
27282 	    ipip->ipi_cmd != SIOCLIFFAILOVER &&
27283 	    ipip->ipi_cmd != SIOCLIFFAILBACK &&
27284 	    ipip->ipi_cmd != SIOCSLIFGROUPNAME)
27285 		(ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING;
27286 	mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock);
27287 
27288 	/*
27289 	 * A return value of EINPROGRESS means the ioctl is
27290 	 * either queued and waiting for some reason or has
27291 	 * already completed.
27292 	 */
27293 	err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
27294 
27295 	ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
27296 
27297 	if (entered_ipsq)
27298 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
27299 }
27300 
27301 /*
27302  * Complete the ioctl. Typically ioctls use the mi package and need to
27303  * do mi_copyout/mi_copy_done.
27304  */
27305 void
27306 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
27307 {
27308 	conn_t	*connp = NULL;
27309 
27310 	if (err == EINPROGRESS)
27311 		return;
27312 
27313 	if (CONN_Q(q)) {
27314 		connp = Q_TO_CONN(q);
27315 		ASSERT(connp->conn_ref >= 2);
27316 	}
27317 
27318 	switch (mode) {
27319 	case COPYOUT:
27320 		if (err == 0)
27321 			mi_copyout(q, mp);
27322 		else
27323 			mi_copy_done(q, mp, err);
27324 		break;
27325 
27326 	case NO_COPYOUT:
27327 		mi_copy_done(q, mp, err);
27328 		break;
27329 
27330 	default:
27331 		ASSERT(mode == CONN_CLOSE);	/* aborted through CONN_CLOSE */
27332 		break;
27333 	}
27334 
27335 	/*
27336 	 * The refhold placed at the start of the ioctl is released here.
27337 	 */
27338 	if (connp != NULL)
27339 		CONN_OPER_PENDING_DONE(connp);
27340 
27341 	if (ipsq != NULL)
27342 		ipsq_current_finish(ipsq);
27343 }
27344 
27345 /*
27346  * This is called from ip_wput_nondata to resume a deferred TCP bind.
27347  */
27348 /* ARGSUSED */
27349 void
27350 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2)
27351 {
27352 	conn_t *connp = arg;
27353 	tcp_t	*tcp;
27354 
27355 	ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL);
27356 	tcp = connp->conn_tcp;
27357 
27358 	if (connp->conn_tcp->tcp_state == TCPS_CLOSED)
27359 		freemsg(mp);
27360 	else
27361 		tcp_rput_other(tcp, mp);
27362 	CONN_OPER_PENDING_DONE(connp);
27363 }
27364 
27365 /* Called from ip_wput for all non data messages */
27366 /* ARGSUSED */
27367 void
27368 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
27369 {
27370 	mblk_t		*mp1;
27371 	ire_t		*ire, *fake_ire;
27372 	ill_t		*ill;
27373 	struct iocblk	*iocp;
27374 	ip_ioctl_cmd_t	*ipip;
27375 	cred_t		*cr;
27376 	conn_t		*connp;
27377 	int		cmd, err;
27378 	nce_t		*nce;
27379 	ipif_t		*ipif;
27380 	ip_stack_t	*ipst;
27381 	char		*proto_str;
27382 
27383 	if (CONN_Q(q)) {
27384 		connp = Q_TO_CONN(q);
27385 		ipst = connp->conn_netstack->netstack_ip;
27386 	} else {
27387 		connp = NULL;
27388 		ipst = ILLQ_TO_IPST(q);
27389 	}
27390 
27391 	cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q));
27392 
27393 	/* Check if it is a queue to /dev/sctp. */
27394 	if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP &&
27395 	    connp->conn_rq == NULL) {
27396 		sctp_wput(q, mp);
27397 		return;
27398 	}
27399 
27400 	switch (DB_TYPE(mp)) {
27401 	case M_IOCTL:
27402 		/*
27403 		 * IOCTL processing begins in ip_sioctl_copyin_setup which
27404 		 * will arrange to copy in associated control structures.
27405 		 */
27406 		ip_sioctl_copyin_setup(q, mp);
27407 		return;
27408 	case M_IOCDATA:
27409 		/*
27410 		 * Ensure that this is associated with one of our trans-
27411 		 * parent ioctls.  If it's not ours, discard it if we're
27412 		 * running as a driver, or pass it on if we're a module.
27413 		 */
27414 		iocp = (struct iocblk *)mp->b_rptr;
27415 		ipip = ip_sioctl_lookup(iocp->ioc_cmd);
27416 		if (ipip == NULL) {
27417 			if (q->q_next == NULL) {
27418 				goto nak;
27419 			} else {
27420 				putnext(q, mp);
27421 			}
27422 			return;
27423 		} else if ((q->q_next != NULL) &&
27424 		    !(ipip->ipi_flags & IPI_MODOK)) {
27425 			/*
27426 			 * the ioctl is one we recognise, but is not
27427 			 * consumed by IP as a module, pass M_IOCDATA
27428 			 * for processing downstream, but only for
27429 			 * common Streams ioctls.
27430 			 */
27431 			if (ipip->ipi_flags & IPI_PASS_DOWN) {
27432 				putnext(q, mp);
27433 				return;
27434 			} else {
27435 				goto nak;
27436 			}
27437 		}
27438 
27439 		/* IOCTL continuation following copyin or copyout. */
27440 		if (mi_copy_state(q, mp, NULL) == -1) {
27441 			/*
27442 			 * The copy operation failed.  mi_copy_state already
27443 			 * cleaned up, so we're out of here.
27444 			 */
27445 			return;
27446 		}
27447 		/*
27448 		 * If we just completed a copy in, we become writer and
27449 		 * continue processing in ip_sioctl_copyin_done.  If it
27450 		 * was a copy out, we call mi_copyout again.  If there is
27451 		 * nothing more to copy out, it will complete the IOCTL.
27452 		 */
27453 		if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
27454 			if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
27455 				mi_copy_done(q, mp, EPROTO);
27456 				return;
27457 			}
27458 			/*
27459 			 * Check for cases that need more copying.  A return
27460 			 * value of 0 means a second copyin has been started,
27461 			 * so we return; a return value of 1 means no more
27462 			 * copying is needed, so we continue.
27463 			 */
27464 			cmd = iocp->ioc_cmd;
27465 			if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER ||
27466 			    cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) &&
27467 			    MI_COPY_COUNT(mp) == 1) {
27468 				if (ip_copyin_msfilter(q, mp) == 0)
27469 					return;
27470 			}
27471 			/*
27472 			 * Refhold the conn, till the ioctl completes. This is
27473 			 * needed in case the ioctl ends up in the pending mp
27474 			 * list. Every mp in the ill_pending_mp list and
27475 			 * the ipsq_pending_mp must have a refhold on the conn
27476 			 * to resume processing. The refhold is released when
27477 			 * the ioctl completes. (normally or abnormally)
27478 			 * In all cases ip_ioctl_finish is called to finish
27479 			 * the ioctl.
27480 			 */
27481 			if (connp != NULL) {
27482 				/* This is not a reentry */
27483 				ASSERT(ipsq == NULL);
27484 				CONN_INC_REF(connp);
27485 			} else {
27486 				if (!(ipip->ipi_flags & IPI_MODOK)) {
27487 					mi_copy_done(q, mp, EINVAL);
27488 					return;
27489 				}
27490 			}
27491 
27492 			ip_process_ioctl(ipsq, q, mp, ipip);
27493 
27494 		} else {
27495 			mi_copyout(q, mp);
27496 		}
27497 		return;
27498 nak:
27499 		iocp->ioc_error = EINVAL;
27500 		mp->b_datap->db_type = M_IOCNAK;
27501 		iocp->ioc_count = 0;
27502 		qreply(q, mp);
27503 		return;
27504 
27505 	case M_IOCNAK:
27506 		/*
27507 		 * The only way we could get here is if a resolver didn't like
27508 		 * an IOCTL we sent it.	 This shouldn't happen.
27509 		 */
27510 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
27511 		    "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x",
27512 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd);
27513 		freemsg(mp);
27514 		return;
27515 	case M_IOCACK:
27516 		/* /dev/ip shouldn't see this */
27517 		if (CONN_Q(q))
27518 			goto nak;
27519 
27520 		/* Finish socket ioctls passed through to ARP. */
27521 		ip_sioctl_iocack(q, mp);
27522 		return;
27523 	case M_FLUSH:
27524 		if (*mp->b_rptr & FLUSHW)
27525 			flushq(q, FLUSHALL);
27526 		if (q->q_next) {
27527 			/*
27528 			 * M_FLUSH is sent up to IP by some drivers during
27529 			 * unbind. ip_rput has already replied to it. We are
27530 			 * here for the M_FLUSH that we originated in IP
27531 			 * before sending the unbind request to the driver.
27532 			 * Just free it as we don't queue packets in IP
27533 			 * on the write side of the device instance.
27534 			 */
27535 			freemsg(mp);
27536 			return;
27537 		}
27538 		if (*mp->b_rptr & FLUSHR) {
27539 			*mp->b_rptr &= ~FLUSHW;
27540 			qreply(q, mp);
27541 			return;
27542 		}
27543 		freemsg(mp);
27544 		return;
27545 	case IRE_DB_REQ_TYPE:
27546 		if (connp == NULL) {
27547 			proto_str = "IRE_DB_REQ_TYPE";
27548 			goto protonak;
27549 		}
27550 		/* An Upper Level Protocol wants a copy of an IRE. */
27551 		ip_ire_req(q, mp);
27552 		return;
27553 	case M_CTL:
27554 		if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t))
27555 			break;
27556 
27557 		if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type ==
27558 		    TUN_HELLO) {
27559 			ASSERT(connp != NULL);
27560 			connp->conn_flags |= IPCL_IPTUN;
27561 			freeb(mp);
27562 			return;
27563 		}
27564 
27565 		if (connp != NULL && *(uint32_t *)mp->b_rptr ==
27566 		    IP_ULP_OUT_LABELED) {
27567 			out_labeled_t *olp;
27568 
27569 			if (mp->b_wptr - mp->b_rptr != sizeof (*olp))
27570 				break;
27571 			olp = (out_labeled_t *)mp->b_rptr;
27572 			connp->conn_ulp_labeled = olp->out_qnext == q;
27573 			freemsg(mp);
27574 			return;
27575 		}
27576 
27577 		/* M_CTL messages are used by ARP to tell us things. */
27578 		if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t))
27579 			break;
27580 		switch (((arc_t *)mp->b_rptr)->arc_cmd) {
27581 		case AR_ENTRY_SQUERY:
27582 			ip_wput_ctl(q, mp);
27583 			return;
27584 		case AR_CLIENT_NOTIFY:
27585 			ip_arp_news(q, mp);
27586 			return;
27587 		case AR_DLPIOP_DONE:
27588 			ASSERT(q->q_next != NULL);
27589 			ill = (ill_t *)q->q_ptr;
27590 			/* qwriter_ip releases the refhold */
27591 			/* refhold on ill stream is ok without ILL_CAN_LOOKUP */
27592 			ill_refhold(ill);
27593 			(void) qwriter_ip(NULL, ill, q, mp, ip_arp_done,
27594 			    CUR_OP, B_FALSE);
27595 			return;
27596 		case AR_ARP_CLOSING:
27597 			/*
27598 			 * ARP (above us) is closing. If no ARP bringup is
27599 			 * currently pending, ack the message so that ARP
27600 			 * can complete its close. Also mark ill_arp_closing
27601 			 * so that new ARP bringups will fail. If any
27602 			 * ARP bringup is currently in progress, we will
27603 			 * ack this when the current ARP bringup completes.
27604 			 */
27605 			ASSERT(q->q_next != NULL);
27606 			ill = (ill_t *)q->q_ptr;
27607 			mutex_enter(&ill->ill_lock);
27608 			ill->ill_arp_closing = 1;
27609 			if (!ill->ill_arp_bringup_pending) {
27610 				mutex_exit(&ill->ill_lock);
27611 				qreply(q, mp);
27612 			} else {
27613 				mutex_exit(&ill->ill_lock);
27614 				freemsg(mp);
27615 			}
27616 			return;
27617 		case AR_ARP_EXTEND:
27618 			/*
27619 			 * The ARP module above us is capable of duplicate
27620 			 * address detection.  Old ATM drivers will not send
27621 			 * this message.
27622 			 */
27623 			ASSERT(q->q_next != NULL);
27624 			ill = (ill_t *)q->q_ptr;
27625 			ill->ill_arp_extend = B_TRUE;
27626 			freemsg(mp);
27627 			return;
27628 		default:
27629 			break;
27630 		}
27631 		break;
27632 	case M_PROTO:
27633 	case M_PCPROTO:
27634 		/*
27635 		 * The only PROTO messages we expect are ULP binds and
27636 		 * copies of option negotiation acknowledgements.
27637 		 */
27638 		switch (((union T_primitives *)mp->b_rptr)->type) {
27639 		case O_T_BIND_REQ:
27640 		case T_BIND_REQ: {
27641 			/* Request can get queued in bind */
27642 			if (connp == NULL) {
27643 				proto_str = "O_T_BIND_REQ/T_BIND_REQ";
27644 				goto protonak;
27645 			}
27646 			/*
27647 			 * Both TCP and UDP call ip_bind_{v4,v6}() directly
27648 			 * instead of going through this path.  We only get
27649 			 * here in the following cases:
27650 			 *
27651 			 * a. Bind retries, where ipsq is non-NULL.
27652 			 * b. T_BIND_REQ is issued from non TCP/UDP
27653 			 *    transport, e.g. icmp for raw socket,
27654 			 *    in which case ipsq will be NULL.
27655 			 */
27656 			ASSERT(ipsq != NULL ||
27657 			    (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp)));
27658 
27659 			/* Don't increment refcnt if this is a re-entry */
27660 			if (ipsq == NULL)
27661 				CONN_INC_REF(connp);
27662 			mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp,
27663 			    connp, NULL) : ip_bind_v4(q, mp, connp);
27664 			if (mp == NULL)
27665 				return;
27666 			if (IPCL_IS_TCP(connp)) {
27667 				/*
27668 				 * In the case of TCP endpoint we
27669 				 * come here only for bind retries
27670 				 */
27671 				ASSERT(ipsq != NULL);
27672 				CONN_INC_REF(connp);
27673 				squeue_fill(connp->conn_sqp, mp,
27674 				    ip_resume_tcp_bind, connp,
27675 				    SQTAG_BIND_RETRY);
27676 				return;
27677 			} else if (IPCL_IS_UDP(connp)) {
27678 				/*
27679 				 * In the case of UDP endpoint we
27680 				 * come here only for bind retries
27681 				 */
27682 				ASSERT(ipsq != NULL);
27683 				udp_resume_bind(connp, mp);
27684 				return;
27685 			}
27686 			qreply(q, mp);
27687 			CONN_OPER_PENDING_DONE(connp);
27688 			return;
27689 		}
27690 		case T_SVR4_OPTMGMT_REQ:
27691 			ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n",
27692 			    ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
27693 
27694 			if (connp == NULL) {
27695 				proto_str = "T_SVR4_OPTMGMT_REQ";
27696 				goto protonak;
27697 			}
27698 
27699 			if (!snmpcom_req(q, mp, ip_snmp_set,
27700 			    ip_snmp_get, cr)) {
27701 				/*
27702 				 * Call svr4_optcom_req so that it can
27703 				 * generate the ack. We don't come here
27704 				 * if this operation is being restarted.
27705 				 * ip_restart_optmgmt will drop the conn ref.
27706 				 * In the case of ipsec option after the ipsec
27707 				 * load is complete conn_restart_ipsec_waiter
27708 				 * drops the conn ref.
27709 				 */
27710 				ASSERT(ipsq == NULL);
27711 				CONN_INC_REF(connp);
27712 				if (ip_check_for_ipsec_opt(q, mp))
27713 					return;
27714 				err = svr4_optcom_req(q, mp, cr, &ip_opt_obj);
27715 				if (err != EINPROGRESS) {
27716 					/* Operation is done */
27717 					CONN_OPER_PENDING_DONE(connp);
27718 				}
27719 			}
27720 			return;
27721 		case T_OPTMGMT_REQ:
27722 			ip2dbg(("ip_wput: T_OPTMGMT_REQ\n"));
27723 			/*
27724 			 * Note: No snmpcom_req support through new
27725 			 * T_OPTMGMT_REQ.
27726 			 * Call tpi_optcom_req so that it can
27727 			 * generate the ack.
27728 			 */
27729 			if (connp == NULL) {
27730 				proto_str = "T_OPTMGMT_REQ";
27731 				goto protonak;
27732 			}
27733 
27734 			ASSERT(ipsq == NULL);
27735 			/*
27736 			 * We don't come here for restart. ip_restart_optmgmt
27737 			 * will drop the conn ref. In the case of ipsec option
27738 			 * after the ipsec load is complete
27739 			 * conn_restart_ipsec_waiter drops the conn ref.
27740 			 */
27741 			CONN_INC_REF(connp);
27742 			if (ip_check_for_ipsec_opt(q, mp))
27743 				return;
27744 			err = tpi_optcom_req(q, mp, cr, &ip_opt_obj);
27745 			if (err != EINPROGRESS) {
27746 				/* Operation is done */
27747 				CONN_OPER_PENDING_DONE(connp);
27748 			}
27749 			return;
27750 		case T_UNBIND_REQ:
27751 			if (connp == NULL) {
27752 				proto_str = "T_UNBIND_REQ";
27753 				goto protonak;
27754 			}
27755 			mp = ip_unbind(q, mp);
27756 			qreply(q, mp);
27757 			return;
27758 		default:
27759 			/*
27760 			 * Have to drop any DLPI messages coming down from
27761 			 * arp (such as an info_req which would cause ip
27762 			 * to receive an extra info_ack if it was passed
27763 			 * through.
27764 			 */
27765 			ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n",
27766 			    (int)*(uint_t *)mp->b_rptr));
27767 			freemsg(mp);
27768 			return;
27769 		}
27770 		/* NOTREACHED */
27771 	case IRE_DB_TYPE: {
27772 		nce_t		*nce;
27773 		ill_t		*ill;
27774 		in6_addr_t	gw_addr_v6;
27775 
27776 
27777 		/*
27778 		 * This is a response back from a resolver.  It
27779 		 * consists of a message chain containing:
27780 		 *	IRE_MBLK-->LL_HDR_MBLK->pkt
27781 		 * The IRE_MBLK is the one we allocated in ip_newroute.
27782 		 * The LL_HDR_MBLK is the DLPI header to use to get
27783 		 * the attached packet, and subsequent ones for the
27784 		 * same destination, transmitted.
27785 		 */
27786 		if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t))    /* ire */
27787 			break;
27788 		/*
27789 		 * First, check to make sure the resolution succeeded.
27790 		 * If it failed, the second mblk will be empty.
27791 		 * If it is, free the chain, dropping the packet.
27792 		 * (We must ire_delete the ire; that frees the ire mblk)
27793 		 * We're doing this now to support PVCs for ATM; it's
27794 		 * a partial xresolv implementation. When we fully implement
27795 		 * xresolv interfaces, instead of freeing everything here
27796 		 * we'll initiate neighbor discovery.
27797 		 *
27798 		 * For v4 (ARP and other external resolvers) the resolver
27799 		 * frees the message, so no check is needed. This check
27800 		 * is required, though, for a full xresolve implementation.
27801 		 * Including this code here now both shows how external
27802 		 * resolvers can NACK a resolution request using an
27803 		 * existing design that has no specific provisions for NACKs,
27804 		 * and also takes into account that the current non-ARP
27805 		 * external resolver has been coded to use this method of
27806 		 * NACKing for all IPv6 (xresolv) cases,
27807 		 * whether our xresolv implementation is complete or not.
27808 		 *
27809 		 */
27810 		ire = (ire_t *)mp->b_rptr;
27811 		ill = ire_to_ill(ire);
27812 		mp1 = mp->b_cont;		/* dl_unitdata_req */
27813 		if (mp1->b_rptr == mp1->b_wptr) {
27814 			if (ire->ire_ipversion == IPV6_VERSION) {
27815 				/*
27816 				 * XRESOLV interface.
27817 				 */
27818 				ASSERT(ill->ill_flags & ILLF_XRESOLV);
27819 				mutex_enter(&ire->ire_lock);
27820 				gw_addr_v6 = ire->ire_gateway_addr_v6;
27821 				mutex_exit(&ire->ire_lock);
27822 				if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) {
27823 					nce = ndp_lookup_v6(ill,
27824 					    &ire->ire_addr_v6, B_FALSE);
27825 				} else {
27826 					nce = ndp_lookup_v6(ill, &gw_addr_v6,
27827 					    B_FALSE);
27828 				}
27829 				if (nce != NULL) {
27830 					nce_resolv_failed(nce);
27831 					ndp_delete(nce);
27832 					NCE_REFRELE(nce);
27833 				}
27834 			}
27835 			mp->b_cont = NULL;
27836 			freemsg(mp1);		/* frees the pkt as well */
27837 			ASSERT(ire->ire_nce == NULL);
27838 			ire_delete((ire_t *)mp->b_rptr);
27839 			return;
27840 		}
27841 
27842 		/*
27843 		 * Split them into IRE_MBLK and pkt and feed it into
27844 		 * ire_add_then_send. Then in ire_add_then_send
27845 		 * the IRE will be added, and then the packet will be
27846 		 * run back through ip_wput. This time it will make
27847 		 * it to the wire.
27848 		 */
27849 		mp->b_cont = NULL;
27850 		mp = mp1->b_cont;		/* now, mp points to pkt */
27851 		mp1->b_cont = NULL;
27852 		ip1dbg(("ip_wput_nondata: reply from external resolver \n"));
27853 		if (ire->ire_ipversion == IPV6_VERSION) {
27854 			/*
27855 			 * XRESOLV interface. Find the nce and put a copy
27856 			 * of the dl_unitdata_req in nce_res_mp
27857 			 */
27858 			ASSERT(ill->ill_flags & ILLF_XRESOLV);
27859 			mutex_enter(&ire->ire_lock);
27860 			gw_addr_v6 = ire->ire_gateway_addr_v6;
27861 			mutex_exit(&ire->ire_lock);
27862 			if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) {
27863 				nce = ndp_lookup_v6(ill, &ire->ire_addr_v6,
27864 				    B_FALSE);
27865 			} else {
27866 				nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE);
27867 			}
27868 			if (nce != NULL) {
27869 				/*
27870 				 * We have to protect nce_res_mp here
27871 				 * from being accessed by other threads
27872 				 * while we change the mblk pointer.
27873 				 * Other functions will also lock the nce when
27874 				 * accessing nce_res_mp.
27875 				 *
27876 				 * The reason we change the mblk pointer
27877 				 * here rather than copying the resolved address
27878 				 * into the template is that, unlike with
27879 				 * ethernet, we have no guarantee that the
27880 				 * resolved address length will be
27881 				 * smaller than or equal to the lla length
27882 				 * with which the template was allocated,
27883 				 * (for ethernet, they're equal)
27884 				 * so we have to use the actual resolved
27885 				 * address mblk - which holds the real
27886 				 * dl_unitdata_req with the resolved address.
27887 				 *
27888 				 * Doing this is the same behavior as was
27889 				 * previously used in the v4 ARP case.
27890 				 */
27891 				mutex_enter(&nce->nce_lock);
27892 				if (nce->nce_res_mp != NULL)
27893 					freemsg(nce->nce_res_mp);
27894 				nce->nce_res_mp = mp1;
27895 				mutex_exit(&nce->nce_lock);
27896 				/*
27897 				 * We do a fastpath probe here because
27898 				 * we have resolved the address without
27899 				 * using Neighbor Discovery.
27900 				 * In the non-XRESOLV v6 case, the fastpath
27901 				 * probe is done right after neighbor
27902 				 * discovery completes.
27903 				 */
27904 				if (nce->nce_res_mp != NULL) {
27905 					int res;
27906 					nce_fastpath_list_add(nce);
27907 					res = ill_fastpath_probe(ill,
27908 					    nce->nce_res_mp);
27909 					if (res != 0 && res != EAGAIN)
27910 						nce_fastpath_list_delete(nce);
27911 				}
27912 
27913 				ire_add_then_send(q, ire, mp);
27914 				/*
27915 				 * Now we have to clean out any packets
27916 				 * that may have been queued on the nce
27917 				 * while it was waiting for address resolution
27918 				 * to complete.
27919 				 */
27920 				mutex_enter(&nce->nce_lock);
27921 				mp1 = nce->nce_qd_mp;
27922 				nce->nce_qd_mp = NULL;
27923 				mutex_exit(&nce->nce_lock);
27924 				while (mp1 != NULL) {
27925 					mblk_t *nxt_mp;
27926 					queue_t *fwdq = NULL;
27927 					ill_t   *inbound_ill;
27928 					uint_t ifindex;
27929 
27930 					nxt_mp = mp1->b_next;
27931 					mp1->b_next = NULL;
27932 					/*
27933 					 * Retrieve ifindex stored in
27934 					 * ip_rput_data_v6()
27935 					 */
27936 					ifindex =
27937 					    (uint_t)(uintptr_t)mp1->b_prev;
27938 					inbound_ill =
27939 						ill_lookup_on_ifindex(ifindex,
27940 						    B_TRUE, NULL, NULL, NULL,
27941 						    NULL, ipst);
27942 					mp1->b_prev = NULL;
27943 					if (inbound_ill != NULL)
27944 						fwdq = inbound_ill->ill_rq;
27945 
27946 					if (fwdq != NULL) {
27947 						put(fwdq, mp1);
27948 						ill_refrele(inbound_ill);
27949 					} else
27950 						put(WR(ill->ill_rq), mp1);
27951 					mp1 = nxt_mp;
27952 				}
27953 				NCE_REFRELE(nce);
27954 			} else {	/* nce is NULL; clean up */
27955 				ire_delete(ire);
27956 				freemsg(mp);
27957 				freemsg(mp1);
27958 				return;
27959 			}
27960 		} else {
27961 			nce_t *arpce;
27962 			/*
27963 			 * Link layer resolution succeeded. Recompute the
27964 			 * ire_nce.
27965 			 */
27966 			ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST));
27967 			if ((arpce = ndp_lookup_v4(ill,
27968 			    (ire->ire_gateway_addr != INADDR_ANY ?
27969 			    &ire->ire_gateway_addr : &ire->ire_addr),
27970 			    B_FALSE)) == NULL) {
27971 				freeb(ire->ire_mp);
27972 				freeb(mp1);
27973 				freemsg(mp);
27974 				return;
27975 			}
27976 			mutex_enter(&arpce->nce_lock);
27977 			arpce->nce_last = TICK_TO_MSEC(lbolt64);
27978 			if (arpce->nce_state == ND_REACHABLE) {
27979 				/*
27980 				 * Someone resolved this before us;
27981 				 * cleanup the res_mp. Since ire has
27982 				 * not been added yet, the call to ire_add_v4
27983 				 * from ire_add_then_send (when a dup is
27984 				 * detected) will clean up the ire.
27985 				 */
27986 				freeb(mp1);
27987 			} else {
27988 				if (arpce->nce_res_mp != NULL)
27989 					freemsg(arpce->nce_res_mp);
27990 				arpce->nce_res_mp = mp1;
27991 				arpce->nce_state = ND_REACHABLE;
27992 			}
27993 			mutex_exit(&arpce->nce_lock);
27994 			if (ire->ire_marks & IRE_MARK_NOADD) {
27995 				/*
27996 				 * this ire will not be added to the ire
27997 				 * cache table, so we can set the ire_nce
27998 				 * here, as there are no atomicity constraints.
27999 				 */
28000 				ire->ire_nce = arpce;
28001 				/*
28002 				 * We are associating this nce with the ire
28003 				 * so change the nce ref taken in
28004 				 * ndp_lookup_v4() from
28005 				 * NCE_REFHOLD to NCE_REFHOLD_NOTR
28006 				 */
28007 				NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce);
28008 			} else {
28009 				NCE_REFRELE(arpce);
28010 			}
28011 			ire_add_then_send(q, ire, mp);
28012 		}
28013 		return;	/* All is well, the packet has been sent. */
28014 	}
28015 	case IRE_ARPRESOLVE_TYPE: {
28016 
28017 		if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */
28018 			break;
28019 		mp1 = mp->b_cont;		/* dl_unitdata_req */
28020 		mp->b_cont = NULL;
28021 		/*
28022 		 * First, check to make sure the resolution succeeded.
28023 		 * If it failed, the second mblk will be empty.
28024 		 */
28025 		if (mp1->b_rptr == mp1->b_wptr) {
28026 			/* cleanup  the incomplete ire, free queued packets */
28027 			freemsg(mp); /* fake ire */
28028 			freeb(mp1);  /* dl_unitdata response */
28029 			return;
28030 		}
28031 
28032 		/*
28033 		 * update any incomplete nce_t found. we lookup the ctable
28034 		 * and find the nce from the ire->ire_nce because we need
28035 		 * to pass the ire to ip_xmit_v4 later, and can find both
28036 		 * ire and nce in one lookup from the ctable.
28037 		 */
28038 		fake_ire = (ire_t *)mp->b_rptr;
28039 		/*
28040 		 * By the time we come back here from ARP
28041 		 * the logical outgoing interface  of the incomplete ire
28042 		 * we added in ire_forward could have disappeared,
28043 		 * causing the incomplete ire to also have
28044 		 * dissapeared. So we need to retreive the
28045 		 * proper ipif for the ire  before looking
28046 		 * in ctable;  do the ctablelookup based on ire_ipif_seqid
28047 		 */
28048 		ill = q->q_ptr;
28049 
28050 		/* Get the outgoing ipif */
28051 		mutex_enter(&ill->ill_lock);
28052 		if (ill->ill_state_flags & ILL_CONDEMNED) {
28053 			mutex_exit(&ill->ill_lock);
28054 			freemsg(mp); /* fake ire */
28055 			freeb(mp1);  /* dl_unitdata response */
28056 			return;
28057 		}
28058 		ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid);
28059 
28060 		if (ipif == NULL) {
28061 			mutex_exit(&ill->ill_lock);
28062 			ip1dbg(("logical intrf to incomplete ire vanished\n"));
28063 			freemsg(mp);
28064 			freeb(mp1);
28065 			return;
28066 		}
28067 		ipif_refhold_locked(ipif);
28068 		mutex_exit(&ill->ill_lock);
28069 		ire = ire_ctable_lookup(fake_ire->ire_addr,
28070 		    fake_ire->ire_gateway_addr, IRE_CACHE,
28071 		    ipif, fake_ire->ire_zoneid, NULL,
28072 		    (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY), ipst);
28073 		ipif_refrele(ipif);
28074 		if (ire == NULL) {
28075 			/*
28076 			 * no ire was found; check if there is an nce
28077 			 * for this lookup; if it has no ire's pointing at it
28078 			 * cleanup.
28079 			 */
28080 			if ((nce = ndp_lookup_v4(ill,
28081 			    (fake_ire->ire_gateway_addr != INADDR_ANY ?
28082 			    &fake_ire->ire_gateway_addr : &fake_ire->ire_addr),
28083 			    B_FALSE)) != NULL) {
28084 				/*
28085 				 * cleanup: just reset nce.
28086 				 * We check for refcnt 2 (one for the nce
28087 				 * hash list + 1 for the ref taken by
28088 				 * ndp_lookup_v4) to ensure that there are
28089 				 * no ire's pointing at the nce.
28090 				 */
28091 				if (nce->nce_refcnt == 2) {
28092 					nce = nce_reinit(nce);
28093 				}
28094 				if (nce != NULL)
28095 					NCE_REFRELE(nce);
28096 			}
28097 			freeb(mp1);  /* dl_unitdata response */
28098 			freemsg(mp); /* fake ire */
28099 			return;
28100 		}
28101 		nce = ire->ire_nce;
28102 		DTRACE_PROBE2(ire__arpresolve__type,
28103 		    ire_t *, ire, nce_t *, nce);
28104 		ASSERT(nce->nce_state != ND_INITIAL);
28105 		mutex_enter(&nce->nce_lock);
28106 		nce->nce_last = TICK_TO_MSEC(lbolt64);
28107 		if (nce->nce_state == ND_REACHABLE) {
28108 			/*
28109 			 * Someone resolved this before us;
28110 			 * our response is not needed any more.
28111 			 */
28112 			mutex_exit(&nce->nce_lock);
28113 			freeb(mp1);  /* dl_unitdata response */
28114 		} else {
28115 			if (nce->nce_res_mp != NULL) {
28116 				freemsg(nce->nce_res_mp);
28117 				/* existing dl_unitdata template */
28118 			}
28119 			nce->nce_res_mp = mp1;
28120 			nce->nce_state = ND_REACHABLE;
28121 			mutex_exit(&nce->nce_lock);
28122 			nce_fastpath(nce);
28123 		}
28124 		/*
28125 		 * The cached nce_t has been updated to be reachable;
28126 		 * Set the IRE_MARK_UNCACHED flag and free the fake_ire.
28127 		 */
28128 		fake_ire->ire_marks &= ~IRE_MARK_UNCACHED;
28129 		freemsg(mp);
28130 		/*
28131 		 * send out queued packets.
28132 		 */
28133 		(void) ip_xmit_v4(NULL, ire, NULL, B_FALSE);
28134 
28135 		IRE_REFRELE(ire);
28136 		return;
28137 	}
28138 	default:
28139 		break;
28140 	}
28141 	if (q->q_next) {
28142 		putnext(q, mp);
28143 	} else
28144 		freemsg(mp);
28145 	return;
28146 
28147 protonak:
28148 	cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
28149 	if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
28150 		qreply(q, mp);
28151 }
28152 
28153 /*
28154  * Process IP options in an outbound packet.  Modify the destination if there
28155  * is a source route option.
28156  * Returns non-zero if something fails in which case an ICMP error has been
28157  * sent and mp freed.
28158  */
28159 static int
28160 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha,
28161     boolean_t mctl_present, zoneid_t zoneid, ip_stack_t *ipst)
28162 {
28163 	ipoptp_t	opts;
28164 	uchar_t		*opt;
28165 	uint8_t		optval;
28166 	uint8_t		optlen;
28167 	ipaddr_t	dst;
28168 	intptr_t	code = 0;
28169 	mblk_t		*mp;
28170 	ire_t		*ire = NULL;
28171 
28172 	ip2dbg(("ip_wput_options\n"));
28173 	mp = ipsec_mp;
28174 	if (mctl_present) {
28175 		mp = ipsec_mp->b_cont;
28176 	}
28177 
28178 	dst = ipha->ipha_dst;
28179 	for (optval = ipoptp_first(&opts, ipha);
28180 	    optval != IPOPT_EOL;
28181 	    optval = ipoptp_next(&opts)) {
28182 		opt = opts.ipoptp_cur;
28183 		optlen = opts.ipoptp_len;
28184 		ip2dbg(("ip_wput_options: opt %d, len %d\n",
28185 		    optval, optlen));
28186 		switch (optval) {
28187 			uint32_t off;
28188 		case IPOPT_SSRR:
28189 		case IPOPT_LSRR:
28190 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
28191 				ip1dbg((
28192 				    "ip_wput_options: bad option offset\n"));
28193 				code = (char *)&opt[IPOPT_OLEN] -
28194 				    (char *)ipha;
28195 				goto param_prob;
28196 			}
28197 			off = opt[IPOPT_OFFSET];
28198 			ip1dbg(("ip_wput_options: next hop 0x%x\n",
28199 			    ntohl(dst)));
28200 			/*
28201 			 * For strict: verify that dst is directly
28202 			 * reachable.
28203 			 */
28204 			if (optval == IPOPT_SSRR) {
28205 				ire = ire_ftable_lookup(dst, 0, 0,
28206 				    IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0,
28207 				    MBLK_GETLABEL(mp),
28208 				    MATCH_IRE_TYPE | MATCH_IRE_SECATTR, ipst);
28209 				if (ire == NULL) {
28210 					ip1dbg(("ip_wput_options: SSRR not"
28211 					    " directly reachable: 0x%x\n",
28212 					    ntohl(dst)));
28213 					goto bad_src_route;
28214 				}
28215 				ire_refrele(ire);
28216 			}
28217 			break;
28218 		case IPOPT_RR:
28219 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
28220 				ip1dbg((
28221 				    "ip_wput_options: bad option offset\n"));
28222 				code = (char *)&opt[IPOPT_OLEN] -
28223 				    (char *)ipha;
28224 				goto param_prob;
28225 			}
28226 			break;
28227 		case IPOPT_TS:
28228 			/*
28229 			 * Verify that length >=5 and that there is either
28230 			 * room for another timestamp or that the overflow
28231 			 * counter is not maxed out.
28232 			 */
28233 			code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
28234 			if (optlen < IPOPT_MINLEN_IT) {
28235 				goto param_prob;
28236 			}
28237 			if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
28238 				ip1dbg((
28239 				    "ip_wput_options: bad option offset\n"));
28240 				code = (char *)&opt[IPOPT_OFFSET] -
28241 				    (char *)ipha;
28242 				goto param_prob;
28243 			}
28244 			switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
28245 			case IPOPT_TS_TSONLY:
28246 				off = IPOPT_TS_TIMELEN;
28247 				break;
28248 			case IPOPT_TS_TSANDADDR:
28249 			case IPOPT_TS_PRESPEC:
28250 			case IPOPT_TS_PRESPEC_RFC791:
28251 				off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
28252 				break;
28253 			default:
28254 				code = (char *)&opt[IPOPT_POS_OV_FLG] -
28255 				    (char *)ipha;
28256 				goto param_prob;
28257 			}
28258 			if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
28259 			    (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
28260 				/*
28261 				 * No room and the overflow counter is 15
28262 				 * already.
28263 				 */
28264 				goto param_prob;
28265 			}
28266 			break;
28267 		}
28268 	}
28269 
28270 	if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
28271 		return (0);
28272 
28273 	ip1dbg(("ip_wput_options: error processing IP options."));
28274 	code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
28275 
28276 param_prob:
28277 	/*
28278 	 * Since ip_wput() isn't close to finished, we fill
28279 	 * in enough of the header for credible error reporting.
28280 	 */
28281 	if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) {
28282 		/* Failed */
28283 		freemsg(ipsec_mp);
28284 		return (-1);
28285 	}
28286 	icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid, ipst);
28287 	return (-1);
28288 
28289 bad_src_route:
28290 	/*
28291 	 * Since ip_wput() isn't close to finished, we fill
28292 	 * in enough of the header for credible error reporting.
28293 	 */
28294 	if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid, ipst)) {
28295 		/* Failed */
28296 		freemsg(ipsec_mp);
28297 		return (-1);
28298 	}
28299 	icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid, ipst);
28300 	return (-1);
28301 }
28302 
28303 /*
28304  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
28305  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
28306  * thru /etc/system.
28307  */
28308 #define	CONN_MAXDRAINCNT	64
28309 
28310 static void
28311 conn_drain_init(ip_stack_t *ipst)
28312 {
28313 	int i;
28314 
28315 	ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
28316 
28317 	if ((ipst->ips_conn_drain_list_cnt == 0) ||
28318 	    (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
28319 		/*
28320 		 * Default value of the number of drainers is the
28321 		 * number of cpus, subject to maximum of 8 drainers.
28322 		 */
28323 		if (boot_max_ncpus != -1)
28324 			ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
28325 		else
28326 			ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
28327 	}
28328 
28329 	ipst->ips_conn_drain_list = kmem_zalloc(ipst->ips_conn_drain_list_cnt *
28330 	    sizeof (idl_t), KM_SLEEP);
28331 
28332 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
28333 		mutex_init(&ipst->ips_conn_drain_list[i].idl_lock, NULL,
28334 		    MUTEX_DEFAULT, NULL);
28335 	}
28336 }
28337 
28338 static void
28339 conn_drain_fini(ip_stack_t *ipst)
28340 {
28341 	int i;
28342 
28343 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++)
28344 		mutex_destroy(&ipst->ips_conn_drain_list[i].idl_lock);
28345 	kmem_free(ipst->ips_conn_drain_list,
28346 	    ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
28347 	ipst->ips_conn_drain_list = NULL;
28348 }
28349 
28350 /*
28351  * Note: For an overview of how flowcontrol is handled in IP please see the
28352  * IP Flowcontrol notes at the top of this file.
28353  *
28354  * Flow control has blocked us from proceeding. Insert the given conn in one
28355  * of the conn drain lists. These conn wq's will be qenabled later on when
28356  * STREAMS flow control does a backenable. conn_walk_drain will enable
28357  * the first conn in each of these drain lists. Each of these qenabled conns
28358  * in turn enables the next in the list, after it runs, or when it closes,
28359  * thus sustaining the drain process.
28360  *
28361  * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput ->
28362  * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert
28363  * running at any time, on a given conn, since there can be only 1 service proc
28364  * running on a queue at any time.
28365  */
28366 void
28367 conn_drain_insert(conn_t *connp)
28368 {
28369 	idl_t	*idl;
28370 	uint_t	index;
28371 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
28372 
28373 	mutex_enter(&connp->conn_lock);
28374 	if (connp->conn_state_flags & CONN_CLOSING) {
28375 		/*
28376 		 * The conn is closing as a result of which CONN_CLOSING
28377 		 * is set. Return.
28378 		 */
28379 		mutex_exit(&connp->conn_lock);
28380 		return;
28381 	} else if (connp->conn_idl == NULL) {
28382 		/*
28383 		 * Assign the next drain list round robin. We dont' use
28384 		 * a lock, and thus it may not be strictly round robin.
28385 		 * Atomicity of load/stores is enough to make sure that
28386 		 * conn_drain_list_index is always within bounds.
28387 		 */
28388 		index = ipst->ips_conn_drain_list_index;
28389 		ASSERT(index < ipst->ips_conn_drain_list_cnt);
28390 		connp->conn_idl = &ipst->ips_conn_drain_list[index];
28391 		index++;
28392 		if (index == ipst->ips_conn_drain_list_cnt)
28393 			index = 0;
28394 		ipst->ips_conn_drain_list_index = index;
28395 	}
28396 	mutex_exit(&connp->conn_lock);
28397 
28398 	mutex_enter(CONN_DRAIN_LIST_LOCK(connp));
28399 	if ((connp->conn_drain_prev != NULL) ||
28400 	    (connp->conn_state_flags & CONN_CLOSING)) {
28401 		/*
28402 		 * The conn is already in the drain list, OR
28403 		 * the conn is closing. We need to check again for
28404 		 * the closing case again since close can happen
28405 		 * after we drop the conn_lock, and before we
28406 		 * acquire the CONN_DRAIN_LIST_LOCK.
28407 		 */
28408 		mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
28409 		return;
28410 	} else {
28411 		idl = connp->conn_idl;
28412 	}
28413 
28414 	/*
28415 	 * The conn is not in the drain list. Insert it at the
28416 	 * tail of the drain list. The drain list is circular
28417 	 * and doubly linked. idl_conn points to the 1st element
28418 	 * in the list.
28419 	 */
28420 	if (idl->idl_conn == NULL) {
28421 		idl->idl_conn = connp;
28422 		connp->conn_drain_next = connp;
28423 		connp->conn_drain_prev = connp;
28424 	} else {
28425 		conn_t *head = idl->idl_conn;
28426 
28427 		connp->conn_drain_next = head;
28428 		connp->conn_drain_prev = head->conn_drain_prev;
28429 		head->conn_drain_prev->conn_drain_next = connp;
28430 		head->conn_drain_prev = connp;
28431 	}
28432 	mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
28433 }
28434 
28435 /*
28436  * This conn is closing, and we are called from ip_close. OR
28437  * This conn has been serviced by ip_wsrv, and we need to do the tail
28438  * processing.
28439  * If this conn is part of the drain list, we may need to sustain the drain
28440  * process by qenabling the next conn in the drain list. We may also need to
28441  * remove this conn from the list, if it is done.
28442  */
28443 static void
28444 conn_drain_tail(conn_t *connp, boolean_t closing)
28445 {
28446 	idl_t *idl;
28447 
28448 	/*
28449 	 * connp->conn_idl is stable at this point, and no lock is needed
28450 	 * to check it. If we are called from ip_close, close has already
28451 	 * set CONN_CLOSING, thus freezing the value of conn_idl, and
28452 	 * called us only because conn_idl is non-null. If we are called thru
28453 	 * service, conn_idl could be null, but it cannot change because
28454 	 * service is single-threaded per queue, and there cannot be another
28455 	 * instance of service trying to call conn_drain_insert on this conn
28456 	 * now.
28457 	 */
28458 	ASSERT(!closing || (connp->conn_idl != NULL));
28459 
28460 	/*
28461 	 * If connp->conn_idl is null, the conn has not been inserted into any
28462 	 * drain list even once since creation of the conn. Just return.
28463 	 */
28464 	if (connp->conn_idl == NULL)
28465 		return;
28466 
28467 	mutex_enter(CONN_DRAIN_LIST_LOCK(connp));
28468 
28469 	if (connp->conn_drain_prev == NULL) {
28470 		/* This conn is currently not in the drain list.  */
28471 		mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
28472 		return;
28473 	}
28474 	idl = connp->conn_idl;
28475 	if (idl->idl_conn_draining == connp) {
28476 		/*
28477 		 * This conn is the current drainer. If this is the last conn
28478 		 * in the drain list, we need to do more checks, in the 'if'
28479 		 * below. Otherwwise we need to just qenable the next conn,
28480 		 * to sustain the draining, and is handled in the 'else'
28481 		 * below.
28482 		 */
28483 		if (connp->conn_drain_next == idl->idl_conn) {
28484 			/*
28485 			 * This conn is the last in this list. This round
28486 			 * of draining is complete. If idl_repeat is set,
28487 			 * it means another flow enabling has happened from
28488 			 * the driver/streams and we need to another round
28489 			 * of draining.
28490 			 * If there are more than 2 conns in the drain list,
28491 			 * do a left rotate by 1, so that all conns except the
28492 			 * conn at the head move towards the head by 1, and the
28493 			 * the conn at the head goes to the tail. This attempts
28494 			 * a more even share for all queues that are being
28495 			 * drained.
28496 			 */
28497 			if ((connp->conn_drain_next != connp) &&
28498 			    (idl->idl_conn->conn_drain_next != connp)) {
28499 				idl->idl_conn = idl->idl_conn->conn_drain_next;
28500 			}
28501 			if (idl->idl_repeat) {
28502 				qenable(idl->idl_conn->conn_wq);
28503 				idl->idl_conn_draining = idl->idl_conn;
28504 				idl->idl_repeat = 0;
28505 			} else {
28506 				idl->idl_conn_draining = NULL;
28507 			}
28508 		} else {
28509 			/*
28510 			 * If the next queue that we are now qenable'ing,
28511 			 * is closing, it will remove itself from this list
28512 			 * and qenable the subsequent queue in ip_close().
28513 			 * Serialization is acheived thru idl_lock.
28514 			 */
28515 			qenable(connp->conn_drain_next->conn_wq);
28516 			idl->idl_conn_draining = connp->conn_drain_next;
28517 		}
28518 	}
28519 	if (!connp->conn_did_putbq || closing) {
28520 		/*
28521 		 * Remove ourself from the drain list, if we did not do
28522 		 * a putbq, or if the conn is closing.
28523 		 * Note: It is possible that q->q_first is non-null. It means
28524 		 * that these messages landed after we did a enableok() in
28525 		 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to
28526 		 * service them.
28527 		 */
28528 		if (connp->conn_drain_next == connp) {
28529 			/* Singleton in the list */
28530 			ASSERT(connp->conn_drain_prev == connp);
28531 			idl->idl_conn = NULL;
28532 			idl->idl_conn_draining = NULL;
28533 		} else {
28534 			connp->conn_drain_prev->conn_drain_next =
28535 			    connp->conn_drain_next;
28536 			connp->conn_drain_next->conn_drain_prev =
28537 			    connp->conn_drain_prev;
28538 			if (idl->idl_conn == connp)
28539 				idl->idl_conn = connp->conn_drain_next;
28540 			ASSERT(idl->idl_conn_draining != connp);
28541 
28542 		}
28543 		connp->conn_drain_next = NULL;
28544 		connp->conn_drain_prev = NULL;
28545 	}
28546 	mutex_exit(CONN_DRAIN_LIST_LOCK(connp));
28547 }
28548 
28549 /*
28550  * Write service routine. Shared perimeter entry point.
28551  * ip_wsrv can be called in any of the following ways.
28552  * 1. The device queue's messages has fallen below the low water mark
28553  *    and STREAMS has backenabled the ill_wq. We walk thru all the
28554  *    the drain lists and backenable the first conn in each list.
28555  * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the
28556  *    qenabled non-tcp upper layers. We start dequeing messages and call
28557  *    ip_wput for each message.
28558  */
28559 
28560 void
28561 ip_wsrv(queue_t *q)
28562 {
28563 	conn_t	*connp;
28564 	ill_t	*ill;
28565 	mblk_t	*mp;
28566 
28567 	if (q->q_next) {
28568 		ill = (ill_t *)q->q_ptr;
28569 		if (ill->ill_state_flags == 0) {
28570 			/*
28571 			 * The device flow control has opened up.
28572 			 * Walk through conn drain lists and qenable the
28573 			 * first conn in each list. This makes sense only
28574 			 * if the stream is fully plumbed and setup.
28575 			 * Hence the if check above.
28576 			 */
28577 			ip1dbg(("ip_wsrv: walking\n"));
28578 			conn_walk_drain(ill->ill_ipst);
28579 		}
28580 		return;
28581 	}
28582 
28583 	connp = Q_TO_CONN(q);
28584 	ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp));
28585 
28586 	/*
28587 	 * 1. Set conn_draining flag to signal that service is active.
28588 	 *
28589 	 * 2. ip_output determines whether it has been called from service,
28590 	 *    based on the last parameter. If it is IP_WSRV it concludes it
28591 	 *    has been called from service.
28592 	 *
28593 	 * 3. Message ordering is preserved by the following logic.
28594 	 *    i. A directly called ip_output (i.e. not thru service) will queue
28595 	 *    the message at the tail, if conn_draining is set (i.e. service
28596 	 *    is running) or if q->q_first is non-null.
28597 	 *
28598 	 *    ii. If ip_output is called from service, and if ip_output cannot
28599 	 *    putnext due to flow control, it does a putbq.
28600 	 *
28601 	 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable
28602 	 *    (causing an infinite loop).
28603 	 */
28604 	ASSERT(!connp->conn_did_putbq);
28605 	while ((q->q_first != NULL) && !connp->conn_did_putbq) {
28606 		connp->conn_draining = 1;
28607 		noenable(q);
28608 		while ((mp = getq(q)) != NULL) {
28609 			ASSERT(CONN_Q(q));
28610 
28611 			ip_output(Q_TO_CONN(q), mp, q, IP_WSRV);
28612 			if (connp->conn_did_putbq) {
28613 				/* ip_wput did a putbq */
28614 				break;
28615 			}
28616 		}
28617 		/*
28618 		 * At this point, a thread coming down from top, calling
28619 		 * ip_wput, may end up queueing the message. We have not yet
28620 		 * enabled the queue, so ip_wsrv won't be called again.
28621 		 * To avoid this race, check q->q_first again (in the loop)
28622 		 * If the other thread queued the message before we call
28623 		 * enableok(), we will catch it in the q->q_first check.
28624 		 * If the other thread queues the message after we call
28625 		 * enableok(), ip_wsrv will be called again by STREAMS.
28626 		 */
28627 		connp->conn_draining = 0;
28628 		enableok(q);
28629 	}
28630 
28631 	/* Enable the next conn for draining */
28632 	conn_drain_tail(connp, B_FALSE);
28633 
28634 	connp->conn_did_putbq = 0;
28635 }
28636 
28637 /*
28638  * Walk the list of all conn's calling the function provided with the
28639  * specified argument for each.	 Note that this only walks conn's that
28640  * have been bound.
28641  * Applies to both IPv4 and IPv6.
28642  */
28643 static void
28644 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid, ip_stack_t *ipst)
28645 {
28646 	conn_walk_fanout_table(ipst->ips_ipcl_udp_fanout,
28647 	    ipst->ips_ipcl_udp_fanout_size,
28648 	    func, arg, zoneid);
28649 	conn_walk_fanout_table(ipst->ips_ipcl_conn_fanout,
28650 	    ipst->ips_ipcl_conn_fanout_size,
28651 	    func, arg, zoneid);
28652 	conn_walk_fanout_table(ipst->ips_ipcl_bind_fanout,
28653 	    ipst->ips_ipcl_bind_fanout_size,
28654 	    func, arg, zoneid);
28655 	conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout,
28656 	    IPPROTO_MAX, func, arg, zoneid);
28657 	conn_walk_fanout_table(ipst->ips_ipcl_proto_fanout_v6,
28658 	    IPPROTO_MAX, func, arg, zoneid);
28659 }
28660 
28661 /*
28662  * Flowcontrol has relieved, and STREAMS has backenabled us. For each list
28663  * of conns that need to be drained, check if drain is already in progress.
28664  * If so set the idl_repeat bit, indicating that the last conn in the list
28665  * needs to reinitiate the drain once again, for the list. If drain is not
28666  * in progress for the list, initiate the draining, by qenabling the 1st
28667  * conn in the list. The drain is self-sustaining, each qenabled conn will
28668  * in turn qenable the next conn, when it is done/blocked/closing.
28669  */
28670 static void
28671 conn_walk_drain(ip_stack_t *ipst)
28672 {
28673 	int i;
28674 	idl_t *idl;
28675 
28676 	IP_STAT(ipst, ip_conn_walk_drain);
28677 
28678 	for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
28679 		idl = &ipst->ips_conn_drain_list[i];
28680 		mutex_enter(&idl->idl_lock);
28681 		if (idl->idl_conn == NULL) {
28682 			mutex_exit(&idl->idl_lock);
28683 			continue;
28684 		}
28685 		/*
28686 		 * If this list is not being drained currently by
28687 		 * an ip_wsrv thread, start the process.
28688 		 */
28689 		if (idl->idl_conn_draining == NULL) {
28690 			ASSERT(idl->idl_repeat == 0);
28691 			qenable(idl->idl_conn->conn_wq);
28692 			idl->idl_conn_draining = idl->idl_conn;
28693 		} else {
28694 			idl->idl_repeat = 1;
28695 		}
28696 		mutex_exit(&idl->idl_lock);
28697 	}
28698 }
28699 
28700 /*
28701  * Walk an conn hash table of `count' buckets, calling func for each entry.
28702  */
28703 static void
28704 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg,
28705     zoneid_t zoneid)
28706 {
28707 	conn_t	*connp;
28708 
28709 	while (count-- > 0) {
28710 		mutex_enter(&connfp->connf_lock);
28711 		for (connp = connfp->connf_head; connp != NULL;
28712 		    connp = connp->conn_next) {
28713 			if (zoneid == GLOBAL_ZONEID ||
28714 			    zoneid == connp->conn_zoneid) {
28715 				CONN_INC_REF(connp);
28716 				mutex_exit(&connfp->connf_lock);
28717 				(*func)(connp, arg);
28718 				mutex_enter(&connfp->connf_lock);
28719 				CONN_DEC_REF(connp);
28720 			}
28721 		}
28722 		mutex_exit(&connfp->connf_lock);
28723 		connfp++;
28724 	}
28725 }
28726 
28727 /* ipcl_walk routine invoked for ip_conn_report for each conn. */
28728 static void
28729 conn_report1(conn_t *connp, void *mp)
28730 {
28731 	char	buf1[INET6_ADDRSTRLEN];
28732 	char	buf2[INET6_ADDRSTRLEN];
28733 	uint_t	print_len, buf_len;
28734 
28735 	ASSERT(connp != NULL);
28736 
28737 	buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr;
28738 	if (buf_len <= 0)
28739 		return;
28740 	(void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)),
28741 	(void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)),
28742 	print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len,
28743 	    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
28744 	    "%5d %s/%05d %s/%05d\n",
28745 	    (void *)connp, (void *)CONNP_TO_RQ(connp),
28746 	    (void *)CONNP_TO_WQ(connp), connp->conn_zoneid,
28747 	    buf1, connp->conn_lport,
28748 	    buf2, connp->conn_fport);
28749 	if (print_len < buf_len) {
28750 		((mblk_t *)mp)->b_wptr += print_len;
28751 	} else {
28752 		((mblk_t *)mp)->b_wptr += buf_len;
28753 	}
28754 }
28755 
28756 /*
28757  * Named Dispatch routine to produce a formatted report on all conns
28758  * that are listed in one of the fanout tables.
28759  * This report is accessed by using the ndd utility to "get" ND variable
28760  * "ip_conn_status".
28761  */
28762 /* ARGSUSED */
28763 static int
28764 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
28765 {
28766 	conn_t *connp = Q_TO_CONN(q);
28767 
28768 	(void) mi_mpprintf(mp,
28769 	    "CONN      " MI_COL_HDRPAD_STR
28770 	    "rfq      " MI_COL_HDRPAD_STR
28771 	    "stq      " MI_COL_HDRPAD_STR
28772 	    " zone local                 remote");
28773 
28774 	/*
28775 	 * Because of the ndd constraint, at most we can have 64K buffer
28776 	 * to put in all conn info.  So to be more efficient, just
28777 	 * allocate a 64K buffer here, assuming we need that large buffer.
28778 	 * This should be OK as only privileged processes can do ndd /dev/ip.
28779 	 */
28780 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
28781 		/* The following may work even if we cannot get a large buf. */
28782 		(void) mi_mpprintf(mp, "<< Out of buffer >>\n");
28783 		return (0);
28784 	}
28785 
28786 	conn_walk_fanout(conn_report1, mp->b_cont, connp->conn_zoneid,
28787 	    connp->conn_netstack->netstack_ip);
28788 	return (0);
28789 }
28790 
28791 /*
28792  * Determine if the ill and multicast aspects of that packets
28793  * "matches" the conn.
28794  */
28795 boolean_t
28796 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags,
28797     zoneid_t zoneid)
28798 {
28799 	ill_t *in_ill;
28800 	boolean_t found;
28801 	ipif_t *ipif;
28802 	ire_t *ire;
28803 	ipaddr_t dst, src;
28804 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
28805 
28806 	dst = ipha->ipha_dst;
28807 	src = ipha->ipha_src;
28808 
28809 	/*
28810 	 * conn_incoming_ill is set by IP_BOUND_IF which limits
28811 	 * unicast, broadcast and multicast reception to
28812 	 * conn_incoming_ill. conn_wantpacket itself is called
28813 	 * only for BROADCAST and multicast.
28814 	 *
28815 	 * 1) ip_rput supresses duplicate broadcasts if the ill
28816 	 *    is part of a group. Hence, we should be receiving
28817 	 *    just one copy of broadcast for the whole group.
28818 	 *    Thus, if it is part of the group the packet could
28819 	 *    come on any ill of the group and hence we need a
28820 	 *    match on the group. Otherwise, match on ill should
28821 	 *    be sufficient.
28822 	 *
28823 	 * 2) ip_rput does not suppress duplicate multicast packets.
28824 	 *    If there are two interfaces in a ill group and we have
28825 	 *    2 applications (conns) joined a multicast group G on
28826 	 *    both the interfaces, ilm_lookup_ill filter in ip_rput
28827 	 *    will give us two packets because we join G on both the
28828 	 *    interfaces rather than nominating just one interface
28829 	 *    for receiving multicast like broadcast above. So,
28830 	 *    we have to call ilg_lookup_ill to filter out duplicate
28831 	 *    copies, if ill is part of a group.
28832 	 */
28833 	in_ill = connp->conn_incoming_ill;
28834 	if (in_ill != NULL) {
28835 		if (in_ill->ill_group == NULL) {
28836 			if (in_ill != ill)
28837 				return (B_FALSE);
28838 		} else if (in_ill->ill_group != ill->ill_group) {
28839 			return (B_FALSE);
28840 		}
28841 	}
28842 
28843 	if (!CLASSD(dst)) {
28844 		if (IPCL_ZONE_MATCH(connp, zoneid))
28845 			return (B_TRUE);
28846 		/*
28847 		 * The conn is in a different zone; we need to check that this
28848 		 * broadcast address is configured in the application's zone and
28849 		 * on one ill in the group.
28850 		 */
28851 		ipif = ipif_get_next_ipif(NULL, ill);
28852 		if (ipif == NULL)
28853 			return (B_FALSE);
28854 		ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif,
28855 		    connp->conn_zoneid, NULL,
28856 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP), ipst);
28857 		ipif_refrele(ipif);
28858 		if (ire != NULL) {
28859 			ire_refrele(ire);
28860 			return (B_TRUE);
28861 		} else {
28862 			return (B_FALSE);
28863 		}
28864 	}
28865 
28866 	if ((fanout_flags & IP_FF_NO_MCAST_LOOP) &&
28867 	    connp->conn_zoneid == zoneid) {
28868 		/*
28869 		 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP
28870 		 * disabled, therefore we don't dispatch the multicast packet to
28871 		 * the sending zone.
28872 		 */
28873 		return (B_FALSE);
28874 	}
28875 
28876 	if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) &&
28877 	    connp->conn_zoneid != zoneid) {
28878 		/*
28879 		 * Multicast packet on the loopback interface: we only match
28880 		 * conns who joined the group in the specified zone.
28881 		 */
28882 		return (B_FALSE);
28883 	}
28884 
28885 	if (connp->conn_multi_router) {
28886 		/* multicast packet and multicast router socket: send up */
28887 		return (B_TRUE);
28888 	}
28889 
28890 	mutex_enter(&connp->conn_lock);
28891 	found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL);
28892 	mutex_exit(&connp->conn_lock);
28893 	return (found);
28894 }
28895 
28896 /*
28897  * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp.
28898  */
28899 /* ARGSUSED */
28900 static void
28901 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg)
28902 {
28903 	ill_t *ill = (ill_t *)q->q_ptr;
28904 	mblk_t	*mp1, *mp2;
28905 	ipif_t  *ipif;
28906 	int err = 0;
28907 	conn_t *connp = NULL;
28908 	ipsq_t	*ipsq;
28909 	arc_t	*arc;
28910 
28911 	ip1dbg(("ip_arp_done(%s)\n", ill->ill_name));
28912 
28913 	ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t));
28914 	ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE);
28915 
28916 	ASSERT(IAM_WRITER_ILL(ill));
28917 	mp2 = mp->b_cont;
28918 	mp->b_cont = NULL;
28919 
28920 	/*
28921 	 * We have now received the arp bringup completion message
28922 	 * from ARP. Mark the arp bringup as done. Also if the arp
28923 	 * stream has already started closing, send up the AR_ARP_CLOSING
28924 	 * ack now since ARP is waiting in close for this ack.
28925 	 */
28926 	mutex_enter(&ill->ill_lock);
28927 	ill->ill_arp_bringup_pending = 0;
28928 	if (ill->ill_arp_closing) {
28929 		mutex_exit(&ill->ill_lock);
28930 		/* Let's reuse the mp for sending the ack */
28931 		arc = (arc_t *)mp->b_rptr;
28932 		mp->b_wptr = mp->b_rptr + sizeof (arc_t);
28933 		arc->arc_cmd = AR_ARP_CLOSING;
28934 		qreply(q, mp);
28935 	} else {
28936 		mutex_exit(&ill->ill_lock);
28937 		freeb(mp);
28938 	}
28939 
28940 	ipsq = ill->ill_phyint->phyint_ipsq;
28941 	ipif = ipsq->ipsq_pending_ipif;
28942 	mp1 = ipsq_pending_mp_get(ipsq, &connp);
28943 	ASSERT(!((mp1 != NULL) ^ (ipif != NULL)));
28944 	if (mp1 == NULL) {
28945 		/* bringup was aborted by the user */
28946 		freemsg(mp2);
28947 		return;
28948 	}
28949 
28950 	/*
28951 	 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we
28952 	 * must have an associated conn_t.  Otherwise, we're bringing this
28953 	 * interface back up as part of handling an asynchronous event (e.g.,
28954 	 * physical address change).
28955 	 */
28956 	if (ipsq->ipsq_current_ioctl != 0) {
28957 		ASSERT(connp != NULL);
28958 		q = CONNP_TO_WQ(connp);
28959 	} else {
28960 		ASSERT(connp == NULL);
28961 		q = ill->ill_rq;
28962 	}
28963 
28964 	/*
28965 	 * If the DL_BIND_REQ fails, it is noted
28966 	 * in arc_name_offset.
28967 	 */
28968 	err = *((int *)mp2->b_rptr);
28969 	if (err == 0) {
28970 		if (ipif->ipif_isv6) {
28971 			if ((err = ipif_up_done_v6(ipif)) != 0)
28972 				ip0dbg(("ip_arp_done: init failed\n"));
28973 		} else {
28974 			if ((err = ipif_up_done(ipif)) != 0)
28975 				ip0dbg(("ip_arp_done: init failed\n"));
28976 		}
28977 	} else {
28978 		ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n"));
28979 	}
28980 
28981 	freemsg(mp2);
28982 
28983 	if ((err == 0) && (ill->ill_up_ipifs)) {
28984 		err = ill_up_ipifs(ill, q, mp1);
28985 		if (err == EINPROGRESS)
28986 			return;
28987 	}
28988 
28989 	if (ill->ill_up_ipifs)
28990 		ill_group_cleanup(ill);
28991 
28992 	/*
28993 	 * The operation must complete without EINPROGRESS since
28994 	 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp.
28995 	 * Otherwise, the operation will be stuck forever in the ipsq.
28996 	 */
28997 	ASSERT(err != EINPROGRESS);
28998 	if (ipsq->ipsq_current_ioctl != 0)
28999 		ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
29000 	else
29001 		ipsq_current_finish(ipsq);
29002 }
29003 
29004 /* Allocate the private structure */
29005 static int
29006 ip_priv_alloc(void **bufp)
29007 {
29008 	void	*buf;
29009 
29010 	if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
29011 		return (ENOMEM);
29012 
29013 	*bufp = buf;
29014 	return (0);
29015 }
29016 
29017 /* Function to delete the private structure */
29018 void
29019 ip_priv_free(void *buf)
29020 {
29021 	ASSERT(buf != NULL);
29022 	kmem_free(buf, sizeof (ip_priv_t));
29023 }
29024 
29025 /*
29026  * The entry point for IPPF processing.
29027  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
29028  * routine just returns.
29029  *
29030  * When called, ip_process generates an ipp_packet_t structure
29031  * which holds the state information for this packet and invokes the
29032  * the classifier (via ipp_packet_process). The classification, depending on
29033  * configured filters, results in a list of actions for this packet. Invoking
29034  * an action may cause the packet to be dropped, in which case the resulting
29035  * mblk (*mpp) is NULL. proc indicates the callout position for
29036  * this packet and ill_index is the interface this packet on or will leave
29037  * on (inbound and outbound resp.).
29038  */
29039 void
29040 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index)
29041 {
29042 	mblk_t		*mp;
29043 	ip_priv_t	*priv;
29044 	ipp_action_id_t	aid;
29045 	int		rc = 0;
29046 	ipp_packet_t	*pp;
29047 #define	IP_CLASS	"ip"
29048 
29049 	/* If the classifier is not loaded, return  */
29050 	if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
29051 		return;
29052 	}
29053 
29054 	mp = *mpp;
29055 	ASSERT(mp != NULL);
29056 
29057 	/* Allocate the packet structure */
29058 	rc = ipp_packet_alloc(&pp, IP_CLASS, aid);
29059 	if (rc != 0) {
29060 		*mpp = NULL;
29061 		freemsg(mp);
29062 		return;
29063 	}
29064 
29065 	/* Allocate the private structure */
29066 	rc = ip_priv_alloc((void **)&priv);
29067 	if (rc != 0) {
29068 		*mpp = NULL;
29069 		freemsg(mp);
29070 		ipp_packet_free(pp);
29071 		return;
29072 	}
29073 	priv->proc = proc;
29074 	priv->ill_index = ill_index;
29075 	ipp_packet_set_private(pp, priv, ip_priv_free);
29076 	ipp_packet_set_data(pp, mp);
29077 
29078 	/* Invoke the classifier */
29079 	rc = ipp_packet_process(&pp);
29080 	if (pp != NULL) {
29081 		mp = ipp_packet_get_data(pp);
29082 		ipp_packet_free(pp);
29083 		if (rc != 0) {
29084 			freemsg(mp);
29085 			*mpp = NULL;
29086 		}
29087 	} else {
29088 		*mpp = NULL;
29089 	}
29090 #undef	IP_CLASS
29091 }
29092 
29093 /*
29094  * Propagate a multicast group membership operation (add/drop) on
29095  * all the interfaces crossed by the related multirt routes.
29096  * The call is considered successful if the operation succeeds
29097  * on at least one interface.
29098  */
29099 static int
29100 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t,
29101     uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp,
29102     boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src,
29103     mblk_t *first_mp)
29104 {
29105 	ire_t		*ire_gw;
29106 	irb_t		*irb;
29107 	int		error = 0;
29108 	opt_restart_t	*or;
29109 	ip_stack_t	*ipst = ire->ire_ipst;
29110 
29111 	irb = ire->ire_bucket;
29112 	ASSERT(irb != NULL);
29113 
29114 	ASSERT(DB_TYPE(first_mp) == M_CTL);
29115 
29116 	or = (opt_restart_t *)first_mp->b_rptr;
29117 	IRB_REFHOLD(irb);
29118 	for (; ire != NULL; ire = ire->ire_next) {
29119 		if ((ire->ire_flags & RTF_MULTIRT) == 0)
29120 			continue;
29121 		if (ire->ire_addr != group)
29122 			continue;
29123 
29124 		ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0,
29125 		    IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL,
29126 		    MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE, ipst);
29127 		/* No resolver exists for the gateway; skip this ire. */
29128 		if (ire_gw == NULL)
29129 			continue;
29130 
29131 		/*
29132 		 * This function can return EINPROGRESS. If so the operation
29133 		 * will be restarted from ip_restart_optmgmt which will
29134 		 * call ip_opt_set and option processing will restart for
29135 		 * this option. So we may end up calling 'fn' more than once.
29136 		 * This requires that 'fn' is idempotent except for the
29137 		 * return value. The operation is considered a success if
29138 		 * it succeeds at least once on any one interface.
29139 		 */
29140 		error = fn(connp, checkonly, group, ire_gw->ire_src_addr,
29141 		    NULL, fmode, src, first_mp);
29142 		if (error == 0)
29143 			or->or_private = CGTP_MCAST_SUCCESS;
29144 
29145 		if (ip_debug > 0) {
29146 			ulong_t	off;
29147 			char	*ksym;
29148 			ksym = kobj_getsymname((uintptr_t)fn, &off);
29149 			ip2dbg(("ip_multirt_apply_membership: "
29150 			    "called %s, multirt group 0x%08x via itf 0x%08x, "
29151 			    "error %d [success %u]\n",
29152 			    ksym ? ksym : "?",
29153 			    ntohl(group), ntohl(ire_gw->ire_src_addr),
29154 			    error, or->or_private));
29155 		}
29156 
29157 		ire_refrele(ire_gw);
29158 		if (error == EINPROGRESS) {
29159 			IRB_REFRELE(irb);
29160 			return (error);
29161 		}
29162 	}
29163 	IRB_REFRELE(irb);
29164 	/*
29165 	 * Consider the call as successful if we succeeded on at least
29166 	 * one interface. Otherwise, return the last encountered error.
29167 	 */
29168 	return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error);
29169 }
29170 
29171 
29172 /*
29173  * Issue a warning regarding a route crossing an interface with an
29174  * incorrect MTU. Only one message every 'ip_multirt_log_interval'
29175  * amount of time is logged.
29176  */
29177 static void
29178 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag)
29179 {
29180 	hrtime_t	current = gethrtime();
29181 	char		buf[INET_ADDRSTRLEN];
29182 	ip_stack_t	*ipst = ire->ire_ipst;
29183 
29184 	/* Convert interval in ms to hrtime in ns */
29185 	if (ipst->ips_multirt_bad_mtu_last_time +
29186 	    ((hrtime_t)ipst->ips_ip_multirt_log_interval * (hrtime_t)1000000) <=
29187 	    current) {
29188 		cmn_err(CE_WARN, "ip: ignoring multiroute "
29189 		    "to %s, incorrect MTU %u (expected %u)\n",
29190 		    ip_dot_addr(ire->ire_addr, buf),
29191 		    ire->ire_max_frag, max_frag);
29192 
29193 		ipst->ips_multirt_bad_mtu_last_time = current;
29194 	}
29195 }
29196 
29197 
29198 /*
29199  * Get the CGTP (multirouting) filtering status.
29200  * If 0, the CGTP hooks are transparent.
29201  */
29202 /* ARGSUSED */
29203 static int
29204 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
29205 {
29206 	boolean_t	*ip_cgtp_filter_value = (boolean_t *)cp;
29207 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
29208 
29209 	/*
29210 	 * Only applies to the shared stack since the filter_ops
29211 	 * do not carry an ip_stack_t or zoneid.
29212 	 */
29213 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
29214 		return (ENOTSUP);
29215 
29216 	(void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value);
29217 	return (0);
29218 }
29219 
29220 
29221 /*
29222  * Set the CGTP (multirouting) filtering status.
29223  * If the status is changed from active to transparent
29224  * or from transparent to active, forward the new status
29225  * to the filtering module (if loaded).
29226  */
29227 /* ARGSUSED */
29228 static int
29229 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
29230     cred_t *ioc_cr)
29231 {
29232 	long		new_value;
29233 	boolean_t	*ip_cgtp_filter_value = (boolean_t *)cp;
29234 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
29235 
29236 	if (secpolicy_net_config(ioc_cr, B_FALSE) != 0)
29237 		return (EPERM);
29238 
29239 	/*
29240 	 * Only applies to the shared stack since the filter_ops
29241 	 * do not carry an ip_stack_t or zoneid.
29242 	 */
29243 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
29244 		return (ENOTSUP);
29245 
29246 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
29247 	    new_value < 0 || new_value > 1) {
29248 		return (EINVAL);
29249 	}
29250 
29251 	/*
29252 	 * Do not enable CGTP filtering - thus preventing the hooks
29253 	 * from being invoked - if the version number of the
29254 	 * filtering module hooks does not match.
29255 	 */
29256 	if ((ip_cgtp_filter_ops != NULL) &&
29257 	    (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) {
29258 		cmn_err(CE_WARN, "IP: CGTP filtering version mismatch "
29259 		    "(module hooks version %d, expecting %d)\n",
29260 		    ip_cgtp_filter_ops->cfo_filter_rev,
29261 		    CGTP_FILTER_REV);
29262 		return (ENOTSUP);
29263 	}
29264 
29265 	if ((!*ip_cgtp_filter_value) && new_value) {
29266 		cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s",
29267 		    ip_cgtp_filter_ops == NULL ?
29268 		    " (module not loaded)" : "");
29269 	}
29270 	if (*ip_cgtp_filter_value && (!new_value)) {
29271 		cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s",
29272 		    ip_cgtp_filter_ops == NULL ?
29273 		    " (module not loaded)" : "");
29274 	}
29275 
29276 	if (ip_cgtp_filter_ops != NULL) {
29277 		int	res;
29278 
29279 		res = ip_cgtp_filter_ops->cfo_change_state(new_value);
29280 		if (res)
29281 			return (res);
29282 	}
29283 
29284 	*ip_cgtp_filter_value = (boolean_t)new_value;
29285 
29286 	return (0);
29287 }
29288 
29289 
29290 /*
29291  * Return the expected CGTP hooks version number.
29292  */
29293 int
29294 ip_cgtp_filter_supported(void)
29295 {
29296 	ip_stack_t *ipst;
29297 	int ret;
29298 
29299 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
29300 	if (ipst == NULL)
29301 		return (-1);
29302 	ret = ip_cgtp_filter_rev;
29303 	netstack_rele(ipst->ips_netstack);
29304 	return (ret);
29305 }
29306 
29307 
29308 /*
29309  * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops
29310  * or by invoking this function. In the first case, the version number
29311  * of the registered structure is checked at hooks activation time
29312  * in ip_cgtp_filter_set().
29313  *
29314  * Only applies to the shared stack since the filter_ops
29315  * do not carry an ip_stack_t or zoneid.
29316  */
29317 int
29318 ip_cgtp_filter_register(cgtp_filter_ops_t *ops)
29319 {
29320 	ip_stack_t *ipst;
29321 
29322 	if (ops->cfo_filter_rev != CGTP_FILTER_REV)
29323 		return (ENOTSUP);
29324 
29325 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
29326 	if (ipst == NULL)
29327 		return (EINVAL);
29328 
29329 	ip_cgtp_filter_ops = ops;
29330 	netstack_rele(ipst->ips_netstack);
29331 	return (0);
29332 }
29333 
29334 static squeue_func_t
29335 ip_squeue_switch(int val)
29336 {
29337 	squeue_func_t rval = squeue_fill;
29338 
29339 	switch (val) {
29340 	case IP_SQUEUE_ENTER_NODRAIN:
29341 		rval = squeue_enter_nodrain;
29342 		break;
29343 	case IP_SQUEUE_ENTER:
29344 		rval = squeue_enter;
29345 		break;
29346 	default:
29347 		break;
29348 	}
29349 	return (rval);
29350 }
29351 
29352 /* ARGSUSED */
29353 static int
29354 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value,
29355     caddr_t addr, cred_t *cr)
29356 {
29357 	int *v = (int *)addr;
29358 	long new_value;
29359 
29360 	if (secpolicy_net_config(cr, B_FALSE) != 0)
29361 		return (EPERM);
29362 
29363 	if (ddi_strtol(value, NULL, 10, &new_value) != 0)
29364 		return (EINVAL);
29365 
29366 	ip_input_proc = ip_squeue_switch(new_value);
29367 	*v = new_value;
29368 	return (0);
29369 }
29370 
29371 /* ARGSUSED */
29372 static int
29373 ip_int_set(queue_t *q, mblk_t *mp, char *value,
29374     caddr_t addr, cred_t *cr)
29375 {
29376 	int *v = (int *)addr;
29377 	long new_value;
29378 
29379 	if (secpolicy_net_config(cr, B_FALSE) != 0)
29380 		return (EPERM);
29381 
29382 	if (ddi_strtol(value, NULL, 10, &new_value) != 0)
29383 		return (EINVAL);
29384 
29385 	*v = new_value;
29386 	return (0);
29387 }
29388 
29389 static void *
29390 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
29391 {
29392 	kstat_t *ksp;
29393 
29394 	ip_stat_t template = {
29395 		{ "ipsec_fanout_proto", 	KSTAT_DATA_UINT64 },
29396 		{ "ip_udp_fannorm", 		KSTAT_DATA_UINT64 },
29397 		{ "ip_udp_fanmb", 		KSTAT_DATA_UINT64 },
29398 		{ "ip_udp_fanothers", 		KSTAT_DATA_UINT64 },
29399 		{ "ip_udp_fast_path", 		KSTAT_DATA_UINT64 },
29400 		{ "ip_udp_slow_path", 		KSTAT_DATA_UINT64 },
29401 		{ "ip_udp_input_err", 		KSTAT_DATA_UINT64 },
29402 		{ "ip_tcppullup", 		KSTAT_DATA_UINT64 },
29403 		{ "ip_tcpoptions", 		KSTAT_DATA_UINT64 },
29404 		{ "ip_multipkttcp", 		KSTAT_DATA_UINT64 },
29405 		{ "ip_tcp_fast_path",		KSTAT_DATA_UINT64 },
29406 		{ "ip_tcp_slow_path",		KSTAT_DATA_UINT64 },
29407 		{ "ip_tcp_input_error",		KSTAT_DATA_UINT64 },
29408 		{ "ip_db_ref",			KSTAT_DATA_UINT64 },
29409 		{ "ip_notaligned1",		KSTAT_DATA_UINT64 },
29410 		{ "ip_notaligned2",		KSTAT_DATA_UINT64 },
29411 		{ "ip_multimblk3",		KSTAT_DATA_UINT64 },
29412 		{ "ip_multimblk4",		KSTAT_DATA_UINT64 },
29413 		{ "ip_ipoptions",		KSTAT_DATA_UINT64 },
29414 		{ "ip_classify_fail",		KSTAT_DATA_UINT64 },
29415 		{ "ip_opt",			KSTAT_DATA_UINT64 },
29416 		{ "ip_udp_rput_local",		KSTAT_DATA_UINT64 },
29417 		{ "ipsec_proto_ahesp",		KSTAT_DATA_UINT64 },
29418 		{ "ip_conn_flputbq",		KSTAT_DATA_UINT64 },
29419 		{ "ip_conn_walk_drain",		KSTAT_DATA_UINT64 },
29420 		{ "ip_out_sw_cksum",		KSTAT_DATA_UINT64 },
29421 		{ "ip_in_sw_cksum",		KSTAT_DATA_UINT64 },
29422 		{ "ip_trash_ire_reclaim_calls",	KSTAT_DATA_UINT64 },
29423 		{ "ip_trash_ire_reclaim_success",	KSTAT_DATA_UINT64 },
29424 		{ "ip_ire_arp_timer_expired",	KSTAT_DATA_UINT64 },
29425 		{ "ip_ire_redirect_timer_expired",	KSTAT_DATA_UINT64 },
29426 		{ "ip_ire_pmtu_timer_expired",	KSTAT_DATA_UINT64 },
29427 		{ "ip_input_multi_squeue",	KSTAT_DATA_UINT64 },
29428 		{ "ip_tcp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
29429 		{ "ip_tcp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
29430 		{ "ip_tcp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
29431 		{ "ip_tcp_out_sw_cksum_bytes",		KSTAT_DATA_UINT64 },
29432 		{ "ip_udp_in_full_hw_cksum_err",	KSTAT_DATA_UINT64 },
29433 		{ "ip_udp_in_part_hw_cksum_err",	KSTAT_DATA_UINT64 },
29434 		{ "ip_udp_in_sw_cksum_err",		KSTAT_DATA_UINT64 },
29435 		{ "ip_udp_out_sw_cksum_bytes",		KSTAT_DATA_UINT64 },
29436 		{ "ip_frag_mdt_pkt_out",		KSTAT_DATA_UINT64 },
29437 		{ "ip_frag_mdt_discarded",		KSTAT_DATA_UINT64 },
29438 		{ "ip_frag_mdt_allocfail",		KSTAT_DATA_UINT64 },
29439 		{ "ip_frag_mdt_addpdescfail",		KSTAT_DATA_UINT64 },
29440 		{ "ip_frag_mdt_allocd",			KSTAT_DATA_UINT64 },
29441 	};
29442 
29443 	ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
29444 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
29445 	    KSTAT_FLAG_VIRTUAL, stackid);
29446 
29447 	if (ksp == NULL)
29448 		return (NULL);
29449 
29450 	bcopy(&template, ip_statisticsp, sizeof (template));
29451 	ksp->ks_data = (void *)ip_statisticsp;
29452 	ksp->ks_private = (void *)(uintptr_t)stackid;
29453 
29454 	kstat_install(ksp);
29455 	return (ksp);
29456 }
29457 
29458 static void
29459 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
29460 {
29461 	if (ksp != NULL) {
29462 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
29463 		kstat_delete_netstack(ksp, stackid);
29464 	}
29465 }
29466 
29467 static void *
29468 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
29469 {
29470 	kstat_t	*ksp;
29471 
29472 	ip_named_kstat_t template = {
29473 		{ "forwarding",		KSTAT_DATA_UINT32, 0 },
29474 		{ "defaultTTL",		KSTAT_DATA_UINT32, 0 },
29475 		{ "inReceives",		KSTAT_DATA_UINT64, 0 },
29476 		{ "inHdrErrors",	KSTAT_DATA_UINT32, 0 },
29477 		{ "inAddrErrors",	KSTAT_DATA_UINT32, 0 },
29478 		{ "forwDatagrams",	KSTAT_DATA_UINT64, 0 },
29479 		{ "inUnknownProtos",	KSTAT_DATA_UINT32, 0 },
29480 		{ "inDiscards",		KSTAT_DATA_UINT32, 0 },
29481 		{ "inDelivers",		KSTAT_DATA_UINT64, 0 },
29482 		{ "outRequests",	KSTAT_DATA_UINT64, 0 },
29483 		{ "outDiscards",	KSTAT_DATA_UINT32, 0 },
29484 		{ "outNoRoutes",	KSTAT_DATA_UINT32, 0 },
29485 		{ "reasmTimeout",	KSTAT_DATA_UINT32, 0 },
29486 		{ "reasmReqds",		KSTAT_DATA_UINT32, 0 },
29487 		{ "reasmOKs",		KSTAT_DATA_UINT32, 0 },
29488 		{ "reasmFails",		KSTAT_DATA_UINT32, 0 },
29489 		{ "fragOKs",		KSTAT_DATA_UINT32, 0 },
29490 		{ "fragFails",		KSTAT_DATA_UINT32, 0 },
29491 		{ "fragCreates",	KSTAT_DATA_UINT32, 0 },
29492 		{ "addrEntrySize",	KSTAT_DATA_INT32, 0 },
29493 		{ "routeEntrySize",	KSTAT_DATA_INT32, 0 },
29494 		{ "netToMediaEntrySize",	KSTAT_DATA_INT32, 0 },
29495 		{ "routingDiscards",	KSTAT_DATA_UINT32, 0 },
29496 		{ "inErrs",		KSTAT_DATA_UINT32, 0 },
29497 		{ "noPorts",		KSTAT_DATA_UINT32, 0 },
29498 		{ "inCksumErrs",	KSTAT_DATA_UINT32, 0 },
29499 		{ "reasmDuplicates",	KSTAT_DATA_UINT32, 0 },
29500 		{ "reasmPartDups",	KSTAT_DATA_UINT32, 0 },
29501 		{ "forwProhibits",	KSTAT_DATA_UINT32, 0 },
29502 		{ "udpInCksumErrs",	KSTAT_DATA_UINT32, 0 },
29503 		{ "udpInOverflows",	KSTAT_DATA_UINT32, 0 },
29504 		{ "rawipInOverflows",	KSTAT_DATA_UINT32, 0 },
29505 		{ "ipsecInSucceeded",	KSTAT_DATA_UINT32, 0 },
29506 		{ "ipsecInFailed",	KSTAT_DATA_INT32, 0 },
29507 		{ "memberEntrySize",	KSTAT_DATA_INT32, 0 },
29508 		{ "inIPv6",		KSTAT_DATA_UINT32, 0 },
29509 		{ "outIPv6",		KSTAT_DATA_UINT32, 0 },
29510 		{ "outSwitchIPv6",	KSTAT_DATA_UINT32, 0 },
29511 	};
29512 
29513 	ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
29514 					NUM_OF_FIELDS(ip_named_kstat_t),
29515 					0, stackid);
29516 	if (ksp == NULL || ksp->ks_data == NULL)
29517 		return (NULL);
29518 
29519 	template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
29520 	template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
29521 	template.reasmTimeout.value.ui32 = ipst->ips_ip_g_frag_timeout;
29522 	template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
29523 	template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
29524 
29525 	template.netToMediaEntrySize.value.i32 =
29526 		sizeof (mib2_ipNetToMediaEntry_t);
29527 
29528 	template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
29529 
29530 	bcopy(&template, ksp->ks_data, sizeof (template));
29531 	ksp->ks_update = ip_kstat_update;
29532 	ksp->ks_private = (void *)(uintptr_t)stackid;
29533 
29534 	kstat_install(ksp);
29535 	return (ksp);
29536 }
29537 
29538 static void
29539 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
29540 {
29541 	if (ksp != NULL) {
29542 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
29543 		kstat_delete_netstack(ksp, stackid);
29544 	}
29545 }
29546 
29547 static int
29548 ip_kstat_update(kstat_t *kp, int rw)
29549 {
29550 	ip_named_kstat_t *ipkp;
29551 	mib2_ipIfStatsEntry_t ipmib;
29552 	ill_walk_context_t ctx;
29553 	ill_t *ill;
29554 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
29555 	netstack_t	*ns;
29556 	ip_stack_t	*ipst;
29557 
29558 	if (kp == NULL || kp->ks_data == NULL)
29559 		return (EIO);
29560 
29561 	if (rw == KSTAT_WRITE)
29562 		return (EACCES);
29563 
29564 	ns = netstack_find_by_stackid(stackid);
29565 	if (ns == NULL)
29566 		return (-1);
29567 	ipst = ns->netstack_ip;
29568 	if (ipst == NULL) {
29569 		netstack_rele(ns);
29570 		return (-1);
29571 	}
29572 	ipkp = (ip_named_kstat_t *)kp->ks_data;
29573 
29574 	bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
29575 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
29576 	ill = ILL_START_WALK_V4(&ctx, ipst);
29577 	for (; ill != NULL; ill = ill_next(&ctx, ill))
29578 		ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
29579 	rw_exit(&ipst->ips_ill_g_lock);
29580 
29581 	ipkp->forwarding.value.ui32 =		ipmib.ipIfStatsForwarding;
29582 	ipkp->defaultTTL.value.ui32 =		ipmib.ipIfStatsDefaultTTL;
29583 	ipkp->inReceives.value.ui64 =		ipmib.ipIfStatsHCInReceives;
29584 	ipkp->inHdrErrors.value.ui32 =		ipmib.ipIfStatsInHdrErrors;
29585 	ipkp->inAddrErrors.value.ui32 =		ipmib.ipIfStatsInAddrErrors;
29586 	ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
29587 	ipkp->inUnknownProtos.value.ui32 =	ipmib.ipIfStatsInUnknownProtos;
29588 	ipkp->inDiscards.value.ui32 =		ipmib.ipIfStatsInDiscards;
29589 	ipkp->inDelivers.value.ui64 =		ipmib.ipIfStatsHCInDelivers;
29590 	ipkp->outRequests.value.ui64 =		ipmib.ipIfStatsHCOutRequests;
29591 	ipkp->outDiscards.value.ui32 =		ipmib.ipIfStatsOutDiscards;
29592 	ipkp->outNoRoutes.value.ui32 =		ipmib.ipIfStatsOutNoRoutes;
29593 	ipkp->reasmTimeout.value.ui32 =		ipst->ips_ip_g_frag_timeout;
29594 	ipkp->reasmReqds.value.ui32 =		ipmib.ipIfStatsReasmReqds;
29595 	ipkp->reasmOKs.value.ui32 =		ipmib.ipIfStatsReasmOKs;
29596 	ipkp->reasmFails.value.ui32 =		ipmib.ipIfStatsReasmFails;
29597 	ipkp->fragOKs.value.ui32 =		ipmib.ipIfStatsOutFragOKs;
29598 	ipkp->fragFails.value.ui32 =		ipmib.ipIfStatsOutFragFails;
29599 	ipkp->fragCreates.value.ui32 =		ipmib.ipIfStatsOutFragCreates;
29600 
29601 	ipkp->routingDiscards.value.ui32 =	0;
29602 	ipkp->inErrs.value.ui32 =		ipmib.tcpIfStatsInErrs;
29603 	ipkp->noPorts.value.ui32 =		ipmib.udpIfStatsNoPorts;
29604 	ipkp->inCksumErrs.value.ui32 =		ipmib.ipIfStatsInCksumErrs;
29605 	ipkp->reasmDuplicates.value.ui32 =	ipmib.ipIfStatsReasmDuplicates;
29606 	ipkp->reasmPartDups.value.ui32 =	ipmib.ipIfStatsReasmPartDups;
29607 	ipkp->forwProhibits.value.ui32 =	ipmib.ipIfStatsForwProhibits;
29608 	ipkp->udpInCksumErrs.value.ui32 =	ipmib.udpIfStatsInCksumErrs;
29609 	ipkp->udpInOverflows.value.ui32 =	ipmib.udpIfStatsInOverflows;
29610 	ipkp->rawipInOverflows.value.ui32 =	ipmib.rawipIfStatsInOverflows;
29611 	ipkp->ipsecInSucceeded.value.ui32 =	ipmib.ipsecIfStatsInSucceeded;
29612 	ipkp->ipsecInFailed.value.i32 =		ipmib.ipsecIfStatsInFailed;
29613 
29614 	ipkp->inIPv6.value.ui32 =	ipmib.ipIfStatsInWrongIPVersion;
29615 	ipkp->outIPv6.value.ui32 =	ipmib.ipIfStatsOutWrongIPVersion;
29616 	ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
29617 
29618 	netstack_rele(ns);
29619 
29620 	return (0);
29621 }
29622 
29623 static void *
29624 icmp_kstat_init(netstackid_t stackid)
29625 {
29626 	kstat_t	*ksp;
29627 
29628 	icmp_named_kstat_t template = {
29629 		{ "inMsgs",		KSTAT_DATA_UINT32 },
29630 		{ "inErrors",		KSTAT_DATA_UINT32 },
29631 		{ "inDestUnreachs",	KSTAT_DATA_UINT32 },
29632 		{ "inTimeExcds",	KSTAT_DATA_UINT32 },
29633 		{ "inParmProbs",	KSTAT_DATA_UINT32 },
29634 		{ "inSrcQuenchs",	KSTAT_DATA_UINT32 },
29635 		{ "inRedirects",	KSTAT_DATA_UINT32 },
29636 		{ "inEchos",		KSTAT_DATA_UINT32 },
29637 		{ "inEchoReps",		KSTAT_DATA_UINT32 },
29638 		{ "inTimestamps",	KSTAT_DATA_UINT32 },
29639 		{ "inTimestampReps",	KSTAT_DATA_UINT32 },
29640 		{ "inAddrMasks",	KSTAT_DATA_UINT32 },
29641 		{ "inAddrMaskReps",	KSTAT_DATA_UINT32 },
29642 		{ "outMsgs",		KSTAT_DATA_UINT32 },
29643 		{ "outErrors",		KSTAT_DATA_UINT32 },
29644 		{ "outDestUnreachs",	KSTAT_DATA_UINT32 },
29645 		{ "outTimeExcds",	KSTAT_DATA_UINT32 },
29646 		{ "outParmProbs",	KSTAT_DATA_UINT32 },
29647 		{ "outSrcQuenchs",	KSTAT_DATA_UINT32 },
29648 		{ "outRedirects",	KSTAT_DATA_UINT32 },
29649 		{ "outEchos",		KSTAT_DATA_UINT32 },
29650 		{ "outEchoReps",	KSTAT_DATA_UINT32 },
29651 		{ "outTimestamps",	KSTAT_DATA_UINT32 },
29652 		{ "outTimestampReps",	KSTAT_DATA_UINT32 },
29653 		{ "outAddrMasks",	KSTAT_DATA_UINT32 },
29654 		{ "outAddrMaskReps",	KSTAT_DATA_UINT32 },
29655 		{ "inChksumErrs",	KSTAT_DATA_UINT32 },
29656 		{ "inUnknowns",		KSTAT_DATA_UINT32 },
29657 		{ "inFragNeeded",	KSTAT_DATA_UINT32 },
29658 		{ "outFragNeeded",	KSTAT_DATA_UINT32 },
29659 		{ "outDrops",		KSTAT_DATA_UINT32 },
29660 		{ "inOverFlows",	KSTAT_DATA_UINT32 },
29661 		{ "inBadRedirects",	KSTAT_DATA_UINT32 },
29662 	};
29663 
29664 	ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
29665 					NUM_OF_FIELDS(icmp_named_kstat_t),
29666 					0, stackid);
29667 	if (ksp == NULL || ksp->ks_data == NULL)
29668 		return (NULL);
29669 
29670 	bcopy(&template, ksp->ks_data, sizeof (template));
29671 
29672 	ksp->ks_update = icmp_kstat_update;
29673 	ksp->ks_private = (void *)(uintptr_t)stackid;
29674 
29675 	kstat_install(ksp);
29676 	return (ksp);
29677 }
29678 
29679 static void
29680 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
29681 {
29682 	if (ksp != NULL) {
29683 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
29684 		kstat_delete_netstack(ksp, stackid);
29685 	}
29686 }
29687 
29688 static int
29689 icmp_kstat_update(kstat_t *kp, int rw)
29690 {
29691 	icmp_named_kstat_t *icmpkp;
29692 	netstackid_t	stackid = (zoneid_t)(uintptr_t)kp->ks_private;
29693 	netstack_t	*ns;
29694 	ip_stack_t	*ipst;
29695 
29696 	if ((kp == NULL) || (kp->ks_data == NULL))
29697 		return (EIO);
29698 
29699 	if (rw == KSTAT_WRITE)
29700 		return (EACCES);
29701 
29702 	ns = netstack_find_by_stackid(stackid);
29703 	if (ns == NULL)
29704 		return (-1);
29705 	ipst = ns->netstack_ip;
29706 	if (ipst == NULL) {
29707 		netstack_rele(ns);
29708 		return (-1);
29709 	}
29710 	icmpkp = (icmp_named_kstat_t *)kp->ks_data;
29711 
29712 	icmpkp->inMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpInMsgs;
29713 	icmpkp->inErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpInErrors;
29714 	icmpkp->inDestUnreachs.value.ui32 =
29715 	    ipst->ips_icmp_mib.icmpInDestUnreachs;
29716 	icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
29717 	icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
29718 	icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
29719 	icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
29720 	icmpkp->inEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchos;
29721 	icmpkp->inEchoReps.value.ui32 =	    ipst->ips_icmp_mib.icmpInEchoReps;
29722 	icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
29723 	icmpkp->inTimestampReps.value.ui32 =
29724 	    ipst->ips_icmp_mib.icmpInTimestampReps;
29725 	icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
29726 	icmpkp->inAddrMaskReps.value.ui32 =
29727 	    ipst->ips_icmp_mib.icmpInAddrMaskReps;
29728 	icmpkp->outMsgs.value.ui32 =	    ipst->ips_icmp_mib.icmpOutMsgs;
29729 	icmpkp->outErrors.value.ui32 =	    ipst->ips_icmp_mib.icmpOutErrors;
29730 	icmpkp->outDestUnreachs.value.ui32 =
29731 	    ipst->ips_icmp_mib.icmpOutDestUnreachs;
29732 	icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
29733 	icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
29734 	icmpkp->outSrcQuenchs.value.ui32 =
29735 	    ipst->ips_icmp_mib.icmpOutSrcQuenchs;
29736 	icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
29737 	icmpkp->outEchos.value.ui32 =	    ipst->ips_icmp_mib.icmpOutEchos;
29738 	icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
29739 	icmpkp->outTimestamps.value.ui32 =
29740 	    ipst->ips_icmp_mib.icmpOutTimestamps;
29741 	icmpkp->outTimestampReps.value.ui32 =
29742 	    ipst->ips_icmp_mib.icmpOutTimestampReps;
29743 	icmpkp->outAddrMasks.value.ui32 =
29744 	    ipst->ips_icmp_mib.icmpOutAddrMasks;
29745 	icmpkp->outAddrMaskReps.value.ui32 =
29746 	    ipst->ips_icmp_mib.icmpOutAddrMaskReps;
29747 	icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
29748 	icmpkp->inUnknowns.value.ui32 =	    ipst->ips_icmp_mib.icmpInUnknowns;
29749 	icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
29750 	icmpkp->outFragNeeded.value.ui32 =
29751 	    ipst->ips_icmp_mib.icmpOutFragNeeded;
29752 	icmpkp->outDrops.value.ui32 =	    ipst->ips_icmp_mib.icmpOutDrops;
29753 	icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
29754 	icmpkp->inBadRedirects.value.ui32 =
29755 	    ipst->ips_icmp_mib.icmpInBadRedirects;
29756 
29757 	netstack_rele(ns);
29758 	return (0);
29759 }
29760 
29761 /*
29762  * This is the fanout function for raw socket opened for SCTP.  Note
29763  * that it is called after SCTP checks that there is no socket which
29764  * wants a packet.  Then before SCTP handles this out of the blue packet,
29765  * this function is called to see if there is any raw socket for SCTP.
29766  * If there is and it is bound to the correct address, the packet will
29767  * be sent to that socket.  Note that only one raw socket can be bound to
29768  * a port.  This is assured in ipcl_sctp_hash_insert();
29769  */
29770 void
29771 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4,
29772     uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy,
29773     uint_t ipif_seqid, zoneid_t zoneid)
29774 {
29775 	conn_t		*connp;
29776 	queue_t		*rq;
29777 	mblk_t		*first_mp;
29778 	boolean_t	secure;
29779 	ip6_t		*ip6h;
29780 	ip_stack_t	*ipst = recv_ill->ill_ipst;
29781 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
29782 
29783 	first_mp = mp;
29784 	if (mctl_present) {
29785 		mp = first_mp->b_cont;
29786 		secure = ipsec_in_is_secure(first_mp);
29787 		ASSERT(mp != NULL);
29788 	} else {
29789 		secure = B_FALSE;
29790 	}
29791 	ip6h = (isv4) ? NULL : (ip6_t *)ipha;
29792 
29793 	connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha, ipst);
29794 	if (connp == NULL) {
29795 		sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid,
29796 		    mctl_present);
29797 		return;
29798 	}
29799 	rq = connp->conn_rq;
29800 	if (!canputnext(rq)) {
29801 		CONN_DEC_REF(connp);
29802 		BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows);
29803 		freemsg(first_mp);
29804 		return;
29805 	}
29806 	if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
29807 	    CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) || secure) {
29808 		first_mp = ipsec_check_inbound_policy(first_mp, connp,
29809 		    (isv4 ? ipha : NULL), ip6h, mctl_present);
29810 		if (first_mp == NULL) {
29811 			BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards);
29812 			CONN_DEC_REF(connp);
29813 			return;
29814 		}
29815 	}
29816 	/*
29817 	 * We probably should not send M_CTL message up to
29818 	 * raw socket.
29819 	 */
29820 	if (mctl_present)
29821 		freeb(first_mp);
29822 
29823 	/* Initiate IPPF processing here if needed. */
29824 	if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN, ipst) && ip_policy) ||
29825 	    (!isv4 && IP6_IN_IPP(flags, ipst))) {
29826 		ip_process(IPP_LOCAL_IN, &mp,
29827 		    recv_ill->ill_phyint->phyint_ifindex);
29828 		if (mp == NULL) {
29829 			CONN_DEC_REF(connp);
29830 			return;
29831 		}
29832 	}
29833 
29834 	if (connp->conn_recvif || connp->conn_recvslla ||
29835 	    ((connp->conn_ip_recvpktinfo ||
29836 	    (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) &&
29837 	    (flags & IP_FF_IPINFO))) {
29838 		int in_flags = 0;
29839 
29840 		/*
29841 		 * Since sctp does not support IP_RECVPKTINFO for v4, only pass
29842 		 * IPF_RECVIF.
29843 		 */
29844 		if (connp->conn_recvif || connp->conn_ip_recvpktinfo) {
29845 			in_flags = IPF_RECVIF;
29846 		}
29847 		if (connp->conn_recvslla) {
29848 			in_flags |= IPF_RECVSLLA;
29849 		}
29850 		if (isv4) {
29851 			mp = ip_add_info(mp, recv_ill, in_flags,
29852 			    IPCL_ZONEID(connp), ipst);
29853 		} else {
29854 			mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst);
29855 			if (mp == NULL) {
29856 				BUMP_MIB(recv_ill->ill_ip_mib,
29857 				    ipIfStatsInDiscards);
29858 				CONN_DEC_REF(connp);
29859 				return;
29860 			}
29861 		}
29862 	}
29863 
29864 	BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers);
29865 	/*
29866 	 * We are sending the IPSEC_IN message also up. Refer
29867 	 * to comments above this function.
29868 	 */
29869 	putnext(rq, mp);
29870 	CONN_DEC_REF(connp);
29871 }
29872 
29873 #define	UPDATE_IP_MIB_OB_COUNTERS(ill, len)				\
29874 {									\
29875 	BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits);		\
29876 	UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len));	\
29877 }
29878 /*
29879  * This function should be called only if all packet processing
29880  * including fragmentation is complete. Callers of this function
29881  * must set mp->b_prev to one of these values:
29882  *	{0, IPP_FWD_OUT, IPP_LOCAL_OUT}
29883  * prior to handing over the mp as first argument to this function.
29884  *
29885  * If the ire passed by caller is incomplete, this function
29886  * queues the packet and if necessary, sends ARP request and bails.
29887  * If the ire passed is fully resolved, we simply prepend
29888  * the link-layer header to the packet, do ipsec hw acceleration
29889  * work if necessary, and send the packet out on the wire.
29890  *
29891  * NOTE: IPSEC will only call this function with fully resolved
29892  * ires if hw acceleration is involved.
29893  * TODO list :
29894  * 	a Handle M_MULTIDATA so that
29895  *	  tcp_multisend->tcp_multisend_data can
29896  *	  call ip_xmit_v4 directly
29897  *	b Handle post-ARP work for fragments so that
29898  *	  ip_wput_frag can call this function.
29899  */
29900 ipxmit_state_t
29901 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled)
29902 {
29903 	nce_t		*arpce;
29904 	queue_t		*q;
29905 	int		ill_index;
29906 	mblk_t		*nxt_mp, *first_mp;
29907 	boolean_t	xmit_drop = B_FALSE;
29908 	ip_proc_t	proc;
29909 	ill_t		*out_ill;
29910 	int		pkt_len;
29911 
29912 	arpce = ire->ire_nce;
29913 	ASSERT(arpce != NULL);
29914 
29915 	DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire,  nce_t *, arpce);
29916 
29917 	mutex_enter(&arpce->nce_lock);
29918 	switch (arpce->nce_state) {
29919 	case ND_REACHABLE:
29920 		/* If there are other queued packets, queue this packet */
29921 		if (arpce->nce_qd_mp != NULL) {
29922 			if (mp != NULL)
29923 				nce_queue_mp_common(arpce, mp, B_FALSE);
29924 			mp = arpce->nce_qd_mp;
29925 		}
29926 		arpce->nce_qd_mp = NULL;
29927 		mutex_exit(&arpce->nce_lock);
29928 
29929 		/*
29930 		 * Flush the queue.  In the common case, where the
29931 		 * ARP is already resolved,  it will go through the
29932 		 * while loop only once.
29933 		 */
29934 		while (mp != NULL) {
29935 
29936 			nxt_mp = mp->b_next;
29937 			mp->b_next = NULL;
29938 			ASSERT(mp->b_datap->db_type != M_CTL);
29939 			pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length);
29940 			/*
29941 			 * This info is needed for IPQOS to do COS marking
29942 			 * in ip_wput_attach_llhdr->ip_process.
29943 			 */
29944 			proc = (ip_proc_t)(uintptr_t)mp->b_prev;
29945 			mp->b_prev = NULL;
29946 
29947 			/* set up ill index for outbound qos processing */
29948 			out_ill = ire->ire_ipif->ipif_ill;
29949 			ill_index = out_ill->ill_phyint->phyint_ifindex;
29950 			first_mp = ip_wput_attach_llhdr(mp, ire, proc,
29951 			    ill_index);
29952 			if (first_mp == NULL) {
29953 				xmit_drop = B_TRUE;
29954 				BUMP_MIB(out_ill->ill_ip_mib,
29955 				    ipIfStatsOutDiscards);
29956 				goto next_mp;
29957 			}
29958 			/* non-ipsec hw accel case */
29959 			if (io == NULL || !io->ipsec_out_accelerated) {
29960 				/* send it */
29961 				q = ire->ire_stq;
29962 				if (proc == IPP_FWD_OUT) {
29963 					UPDATE_IB_PKT_COUNT(ire);
29964 				} else {
29965 					UPDATE_OB_PKT_COUNT(ire);
29966 				}
29967 				ire->ire_last_used_time = lbolt;
29968 
29969 				if (flow_ctl_enabled || canputnext(q))  {
29970 					if (proc == IPP_FWD_OUT) {
29971 						BUMP_MIB(out_ill->ill_ip_mib,
29972 						ipIfStatsHCOutForwDatagrams);
29973 					}
29974 					UPDATE_IP_MIB_OB_COUNTERS(out_ill,
29975 					    pkt_len);
29976 
29977 					putnext(q, first_mp);
29978 				} else {
29979 					BUMP_MIB(out_ill->ill_ip_mib,
29980 					    ipIfStatsOutDiscards);
29981 					xmit_drop = B_TRUE;
29982 					freemsg(first_mp);
29983 				}
29984 			} else {
29985 				/*
29986 				 * Safety Pup says: make sure this
29987 				 *  is going to the right interface!
29988 				 */
29989 				ill_t *ill1 =
29990 				    (ill_t *)ire->ire_stq->q_ptr;
29991 				int ifindex =
29992 				    ill1->ill_phyint->phyint_ifindex;
29993 				if (ifindex !=
29994 				    io->ipsec_out_capab_ill_index) {
29995 					xmit_drop = B_TRUE;
29996 					freemsg(mp);
29997 				} else {
29998 					UPDATE_IP_MIB_OB_COUNTERS(ill1,
29999 					    pkt_len);
30000 					ipsec_hw_putnext(ire->ire_stq, mp);
30001 				}
30002 			}
30003 next_mp:
30004 			mp = nxt_mp;
30005 		} /* while (mp != NULL) */
30006 		if (xmit_drop)
30007 			return (SEND_FAILED);
30008 		else
30009 			return (SEND_PASSED);
30010 
30011 	case ND_INITIAL:
30012 	case ND_INCOMPLETE:
30013 
30014 		/*
30015 		 * While we do send off packets to dests that
30016 		 * use fully-resolved CGTP routes, we do not
30017 		 * handle unresolved CGTP routes.
30018 		 */
30019 		ASSERT(!(ire->ire_flags & RTF_MULTIRT));
30020 		ASSERT(io == NULL || !io->ipsec_out_accelerated);
30021 
30022 		if (mp != NULL) {
30023 			/* queue the packet */
30024 			nce_queue_mp_common(arpce, mp, B_FALSE);
30025 		}
30026 
30027 		if (arpce->nce_state == ND_INCOMPLETE) {
30028 			mutex_exit(&arpce->nce_lock);
30029 			DTRACE_PROBE3(ip__xmit__incomplete,
30030 			    (ire_t *), ire, (mblk_t *), mp,
30031 			    (ipsec_out_t *), io);
30032 			return (LOOKUP_IN_PROGRESS);
30033 		}
30034 
30035 		arpce->nce_state = ND_INCOMPLETE;
30036 		mutex_exit(&arpce->nce_lock);
30037 		/*
30038 		 * Note that ire_add() (called from ire_forward())
30039 		 * holds a ref on the ire until ARP is completed.
30040 		 */
30041 
30042 		ire_arpresolve(ire, ire_to_ill(ire));
30043 		return (LOOKUP_IN_PROGRESS);
30044 	default:
30045 		ASSERT(0);
30046 		mutex_exit(&arpce->nce_lock);
30047 		return (LLHDR_RESLV_FAILED);
30048 	}
30049 }
30050 
30051 #undef	UPDATE_IP_MIB_OB_COUNTERS
30052 
30053 /*
30054  * Return B_TRUE if the buffers differ in length or content.
30055  * This is used for comparing extension header buffers.
30056  * Note that an extension header would be declared different
30057  * even if all that changed was the next header value in that header i.e.
30058  * what really changed is the next extension header.
30059  */
30060 boolean_t
30061 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
30062     uint_t blen)
30063 {
30064 	if (!b_valid)
30065 		blen = 0;
30066 
30067 	if (alen != blen)
30068 		return (B_TRUE);
30069 	if (alen == 0)
30070 		return (B_FALSE);	/* Both zero length */
30071 	return (bcmp(abuf, bbuf, alen));
30072 }
30073 
30074 /*
30075  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
30076  * Return B_FALSE if memory allocation fails - don't change any state!
30077  */
30078 boolean_t
30079 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
30080     const void *src, uint_t srclen)
30081 {
30082 	void *dst;
30083 
30084 	if (!src_valid)
30085 		srclen = 0;
30086 
30087 	ASSERT(*dstlenp == 0);
30088 	if (src != NULL && srclen != 0) {
30089 		dst = mi_alloc(srclen, BPRI_MED);
30090 		if (dst == NULL)
30091 			return (B_FALSE);
30092 	} else {
30093 		dst = NULL;
30094 	}
30095 	if (*dstp != NULL)
30096 		mi_free(*dstp);
30097 	*dstp = dst;
30098 	*dstlenp = dst == NULL ? 0 : srclen;
30099 	return (B_TRUE);
30100 }
30101 
30102 /*
30103  * Replace what is in *dst, *dstlen with the source.
30104  * Assumes ip_allocbuf has already been called.
30105  */
30106 void
30107 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
30108     const void *src, uint_t srclen)
30109 {
30110 	if (!src_valid)
30111 		srclen = 0;
30112 
30113 	ASSERT(*dstlenp == srclen);
30114 	if (src != NULL && srclen != 0)
30115 		bcopy(src, *dstp, srclen);
30116 }
30117 
30118 /*
30119  * Free the storage pointed to by the members of an ip6_pkt_t.
30120  */
30121 void
30122 ip6_pkt_free(ip6_pkt_t *ipp)
30123 {
30124 	ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU));
30125 
30126 	if (ipp->ipp_fields & IPPF_HOPOPTS) {
30127 		kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
30128 		ipp->ipp_hopopts = NULL;
30129 		ipp->ipp_hopoptslen = 0;
30130 	}
30131 	if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
30132 		kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
30133 		ipp->ipp_rtdstopts = NULL;
30134 		ipp->ipp_rtdstoptslen = 0;
30135 	}
30136 	if (ipp->ipp_fields & IPPF_DSTOPTS) {
30137 		kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
30138 		ipp->ipp_dstopts = NULL;
30139 		ipp->ipp_dstoptslen = 0;
30140 	}
30141 	if (ipp->ipp_fields & IPPF_RTHDR) {
30142 		kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
30143 		ipp->ipp_rthdr = NULL;
30144 		ipp->ipp_rthdrlen = 0;
30145 	}
30146 	ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
30147 	    IPPF_RTHDR);
30148 }
30149