1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/stream.h> 31 #include <sys/dlpi.h> 32 #include <sys/stropts.h> 33 #include <sys/sysmacros.h> 34 #include <sys/strsubr.h> 35 #include <sys/strlog.h> 36 #include <sys/strsun.h> 37 #include <sys/zone.h> 38 #define _SUN_TPI_VERSION 2 39 #include <sys/tihdr.h> 40 #include <sys/xti_inet.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/kobj.h> 46 #include <sys/modctl.h> 47 #include <sys/atomic.h> 48 #include <sys/policy.h> 49 #include <sys/priv.h> 50 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/kmem.h> 54 #include <sys/sdt.h> 55 #include <sys/socket.h> 56 #include <sys/vtrace.h> 57 #include <sys/isa_defs.h> 58 #include <net/if.h> 59 #include <net/if_arp.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <net/if_dl.h> 64 65 #include <inet/common.h> 66 #include <inet/mi.h> 67 #include <inet/mib2.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/snmpcom.h> 71 #include <inet/kstatcom.h> 72 73 #include <netinet/igmp_var.h> 74 #include <netinet/ip6.h> 75 #include <netinet/icmp6.h> 76 #include <netinet/sctp.h> 77 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip6_asp.h> 82 #include <inet/tcp.h> 83 #include <inet/tcp_impl.h> 84 #include <inet/ip_multi.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_ire.h> 87 #include <inet/ip_ftable.h> 88 #include <inet/ip_rts.h> 89 #include <inet/optcom.h> 90 #include <inet/ip_ndp.h> 91 #include <inet/ip_listutils.h> 92 #include <netinet/igmp.h> 93 #include <netinet/ip_mroute.h> 94 #include <inet/ipp_common.h> 95 96 #include <net/pfkeyv2.h> 97 #include <inet/ipsec_info.h> 98 #include <inet/sadb.h> 99 #include <inet/ipsec_impl.h> 100 #include <sys/iphada.h> 101 #include <inet/tun.h> 102 #include <inet/ipdrop.h> 103 #include <inet/ip_netinfo.h> 104 105 #include <sys/ethernet.h> 106 #include <net/if_types.h> 107 #include <sys/cpuvar.h> 108 109 #include <ipp/ipp.h> 110 #include <ipp/ipp_impl.h> 111 #include <ipp/ipgpc/ipgpc.h> 112 113 #include <sys/multidata.h> 114 #include <sys/pattr.h> 115 116 #include <inet/ipclassifier.h> 117 #include <inet/sctp_ip.h> 118 #include <inet/sctp/sctp_impl.h> 119 #include <inet/udp_impl.h> 120 #include <sys/sunddi.h> 121 122 #include <sys/tsol/label.h> 123 #include <sys/tsol/tnet.h> 124 125 #include <rpc/pmap_prot.h> 126 127 /* 128 * Values for squeue switch: 129 * IP_SQUEUE_ENTER_NODRAIN: squeue_enter_nodrain 130 * IP_SQUEUE_ENTER: squeue_enter 131 * IP_SQUEUE_FILL: squeue_fill 132 */ 133 int ip_squeue_enter = 2; 134 squeue_func_t ip_input_proc; 135 /* 136 * IP statistics. 137 */ 138 #define IP_STAT(x) (ip_statistics.x.value.ui64++) 139 #define IP_STAT_UPDATE(x, n) (ip_statistics.x.value.ui64 += (n)) 140 #define SET_BPREV_FLAG(x) ((mblk_t *)(uintptr_t)(x)) 141 142 typedef struct ip_stat { 143 kstat_named_t ipsec_fanout_proto; 144 kstat_named_t ip_udp_fannorm; 145 kstat_named_t ip_udp_fanmb; 146 kstat_named_t ip_udp_fanothers; 147 kstat_named_t ip_udp_fast_path; 148 kstat_named_t ip_udp_slow_path; 149 kstat_named_t ip_udp_input_err; 150 kstat_named_t ip_tcppullup; 151 kstat_named_t ip_tcpoptions; 152 kstat_named_t ip_multipkttcp; 153 kstat_named_t ip_tcp_fast_path; 154 kstat_named_t ip_tcp_slow_path; 155 kstat_named_t ip_tcp_input_error; 156 kstat_named_t ip_db_ref; 157 kstat_named_t ip_notaligned1; 158 kstat_named_t ip_notaligned2; 159 kstat_named_t ip_multimblk3; 160 kstat_named_t ip_multimblk4; 161 kstat_named_t ip_ipoptions; 162 kstat_named_t ip_classify_fail; 163 kstat_named_t ip_opt; 164 kstat_named_t ip_udp_rput_local; 165 kstat_named_t ipsec_proto_ahesp; 166 kstat_named_t ip_conn_flputbq; 167 kstat_named_t ip_conn_walk_drain; 168 kstat_named_t ip_out_sw_cksum; 169 kstat_named_t ip_in_sw_cksum; 170 kstat_named_t ip_trash_ire_reclaim_calls; 171 kstat_named_t ip_trash_ire_reclaim_success; 172 kstat_named_t ip_ire_arp_timer_expired; 173 kstat_named_t ip_ire_redirect_timer_expired; 174 kstat_named_t ip_ire_pmtu_timer_expired; 175 kstat_named_t ip_input_multi_squeue; 176 kstat_named_t ip_tcp_in_full_hw_cksum_err; 177 kstat_named_t ip_tcp_in_part_hw_cksum_err; 178 kstat_named_t ip_tcp_in_sw_cksum_err; 179 kstat_named_t ip_tcp_out_sw_cksum_bytes; 180 kstat_named_t ip_udp_in_full_hw_cksum_err; 181 kstat_named_t ip_udp_in_part_hw_cksum_err; 182 kstat_named_t ip_udp_in_sw_cksum_err; 183 kstat_named_t ip_udp_out_sw_cksum_bytes; 184 kstat_named_t ip_frag_mdt_pkt_out; 185 kstat_named_t ip_frag_mdt_discarded; 186 kstat_named_t ip_frag_mdt_allocfail; 187 kstat_named_t ip_frag_mdt_addpdescfail; 188 kstat_named_t ip_frag_mdt_allocd; 189 } ip_stat_t; 190 191 static ip_stat_t ip_statistics = { 192 { "ipsec_fanout_proto", KSTAT_DATA_UINT64 }, 193 { "ip_udp_fannorm", KSTAT_DATA_UINT64 }, 194 { "ip_udp_fanmb", KSTAT_DATA_UINT64 }, 195 { "ip_udp_fanothers", KSTAT_DATA_UINT64 }, 196 { "ip_udp_fast_path", KSTAT_DATA_UINT64 }, 197 { "ip_udp_slow_path", KSTAT_DATA_UINT64 }, 198 { "ip_udp_input_err", KSTAT_DATA_UINT64 }, 199 { "ip_tcppullup", KSTAT_DATA_UINT64 }, 200 { "ip_tcpoptions", KSTAT_DATA_UINT64 }, 201 { "ip_multipkttcp", KSTAT_DATA_UINT64 }, 202 { "ip_tcp_fast_path", KSTAT_DATA_UINT64 }, 203 { "ip_tcp_slow_path", KSTAT_DATA_UINT64 }, 204 { "ip_tcp_input_error", KSTAT_DATA_UINT64 }, 205 { "ip_db_ref", KSTAT_DATA_UINT64 }, 206 { "ip_notaligned1", KSTAT_DATA_UINT64 }, 207 { "ip_notaligned2", KSTAT_DATA_UINT64 }, 208 { "ip_multimblk3", KSTAT_DATA_UINT64 }, 209 { "ip_multimblk4", KSTAT_DATA_UINT64 }, 210 { "ip_ipoptions", KSTAT_DATA_UINT64 }, 211 { "ip_classify_fail", KSTAT_DATA_UINT64 }, 212 { "ip_opt", KSTAT_DATA_UINT64 }, 213 { "ip_udp_rput_local", KSTAT_DATA_UINT64 }, 214 { "ipsec_proto_ahesp", KSTAT_DATA_UINT64 }, 215 { "ip_conn_flputbq", KSTAT_DATA_UINT64 }, 216 { "ip_conn_walk_drain", KSTAT_DATA_UINT64 }, 217 { "ip_out_sw_cksum", KSTAT_DATA_UINT64 }, 218 { "ip_in_sw_cksum", KSTAT_DATA_UINT64 }, 219 { "ip_trash_ire_reclaim_calls", KSTAT_DATA_UINT64 }, 220 { "ip_trash_ire_reclaim_success", KSTAT_DATA_UINT64 }, 221 { "ip_ire_arp_timer_expired", KSTAT_DATA_UINT64 }, 222 { "ip_ire_redirect_timer_expired", KSTAT_DATA_UINT64 }, 223 { "ip_ire_pmtu_timer_expired", KSTAT_DATA_UINT64 }, 224 { "ip_input_multi_squeue", KSTAT_DATA_UINT64 }, 225 { "ip_tcp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 226 { "ip_tcp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 227 { "ip_tcp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 228 { "ip_tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 229 { "ip_udp_in_full_hw_cksum_err", KSTAT_DATA_UINT64 }, 230 { "ip_udp_in_part_hw_cksum_err", KSTAT_DATA_UINT64 }, 231 { "ip_udp_in_sw_cksum_err", KSTAT_DATA_UINT64 }, 232 { "ip_udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 233 { "ip_frag_mdt_pkt_out", KSTAT_DATA_UINT64 }, 234 { "ip_frag_mdt_discarded", KSTAT_DATA_UINT64 }, 235 { "ip_frag_mdt_allocfail", KSTAT_DATA_UINT64 }, 236 { "ip_frag_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 237 { "ip_frag_mdt_allocd", KSTAT_DATA_UINT64 }, 238 }; 239 240 static kstat_t *ip_kstat; 241 242 #define TCP6 "tcp6" 243 #define TCP "tcp" 244 #define SCTP "sctp" 245 #define SCTP6 "sctp6" 246 247 major_t TCP6_MAJ; 248 major_t TCP_MAJ; 249 major_t SCTP_MAJ; 250 major_t SCTP6_MAJ; 251 252 int ip_poll_normal_ms = 100; 253 int ip_poll_normal_ticks = 0; 254 int ip_modclose_ackwait_ms = 3000; 255 256 /* 257 * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions. 258 */ 259 260 struct listptr_s { 261 mblk_t *lp_head; /* pointer to the head of the list */ 262 mblk_t *lp_tail; /* pointer to the tail of the list */ 263 }; 264 265 typedef struct listptr_s listptr_t; 266 267 /* 268 * This is used by ip_snmp_get_mib2_ip_route_media and 269 * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data. 270 */ 271 typedef struct iproutedata_s { 272 uint_t ird_idx; 273 listptr_t ird_route; /* ipRouteEntryTable */ 274 listptr_t ird_netmedia; /* ipNetToMediaEntryTable */ 275 listptr_t ird_attrs; /* ipRouteAttributeTable */ 276 } iproutedata_t; 277 278 /* 279 * Cluster specific hooks. These should be NULL when booted as a non-cluster 280 */ 281 282 /* 283 * Hook functions to enable cluster networking 284 * On non-clustered systems these vectors must always be NULL. 285 * 286 * Hook function to Check ip specified ip address is a shared ip address 287 * in the cluster 288 * 289 */ 290 int (*cl_inet_isclusterwide)(uint8_t protocol, 291 sa_family_t addr_family, uint8_t *laddrp) = NULL; 292 293 /* 294 * Hook function to generate cluster wide ip fragment identifier 295 */ 296 uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 297 uint8_t *laddrp, uint8_t *faddrp) = NULL; 298 299 /* 300 * Synchronization notes: 301 * 302 * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any 303 * MT level protection given by STREAMS. IP uses a combination of its own 304 * internal serialization mechanism and standard Solaris locking techniques. 305 * The internal serialization is per phyint (no IPMP) or per IPMP group. 306 * This is used to serialize plumbing operations, IPMP operations, certain 307 * multicast operations, most set ioctls, igmp/mld timers etc. 308 * 309 * Plumbing is a long sequence of operations involving message 310 * exchanges between IP, ARP and device drivers. Many set ioctls are typically 311 * involved in plumbing operations. A natural model is to serialize these 312 * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in 313 * parallel without any interference. But various set ioctls on hme0 are best 314 * serialized. However if the system uses IPMP, the operations are easier if 315 * they are serialized on a per IPMP group basis since IPMP operations 316 * happen across ill's of a group. Thus the lowest common denominator is to 317 * serialize most set ioctls, multicast join/leave operations, IPMP operations 318 * igmp/mld timer operations, and processing of DLPI control messages received 319 * from drivers on a per IPMP group basis. If the system does not employ 320 * IPMP the serialization is on a per phyint basis. This serialization is 321 * provided by the ipsq_t and primitives operating on this. Details can 322 * be found in ip_if.c above the core primitives operating on ipsq_t. 323 * 324 * Lookups of an ipif or ill by a thread return a refheld ipif / ill. 325 * Simiarly lookup of an ire by a thread also returns a refheld ire. 326 * In addition ipif's and ill's referenced by the ire are also indirectly 327 * refheld. Thus no ipif or ill can vanish nor can critical parameters like 328 * the ipif's address or netmask change as long as an ipif is refheld 329 * directly or indirectly. For example an SIOCLIFADDR ioctl that changes the 330 * address of an ipif has to go through the ipsq_t. This ensures that only 331 * 1 such exclusive operation proceeds at any time on the ipif. It then 332 * deletes all ires associated with this ipif, and waits for all refcnts 333 * associated with this ipif to come down to zero. The address is changed 334 * only after the ipif has been quiesced. Then the ipif is brought up again. 335 * More details are described above the comment in ip_sioctl_flags. 336 * 337 * Packet processing is based mostly on IREs and are fully multi-threaded 338 * using standard Solaris MT techniques. 339 * 340 * There are explicit locks in IP to handle: 341 * - The ip_g_head list maintained by mi_open_link() and friends. 342 * 343 * - The reassembly data structures (one lock per hash bucket) 344 * 345 * - conn_lock is meant to protect conn_t fields. The fields actually 346 * protected by conn_lock are documented in the conn_t definition. 347 * 348 * - ire_lock to protect some of the fields of the ire, IRE tables 349 * (one lock per hash bucket). Refer to ip_ire.c for details. 350 * 351 * - ndp_g_lock and nce_lock for protecting NCEs. 352 * 353 * - ill_lock protects fields of the ill and ipif. Details in ip.h 354 * 355 * - ill_g_lock: This is a global reader/writer lock. Protects the following 356 * * The AVL tree based global multi list of all ills. 357 * * The linked list of all ipifs of an ill 358 * * The <ill-ipsq> mapping 359 * * The ipsq->ipsq_phyint_list threaded by phyint_ipsq_next 360 * * The illgroup list threaded by ill_group_next. 361 * * <ill-phyint> association 362 * Insertion/deletion of an ill in the system, insertion/deletion of an ipif 363 * into an ill, changing the <ill-ipsq> mapping of an ill, insertion/deletion 364 * of an ill into the illgrp list, changing the <ill-phyint> assoc of an ill 365 * will all have to hold the ill_g_lock as writer for the actual duration 366 * of the insertion/deletion/change. More details about the <ill-ipsq> mapping 367 * may be found in the IPMP section. 368 * 369 * - ill_lock: This is a per ill mutex. 370 * It protects some members of the ill and is documented below. 371 * It also protects the <ill-ipsq> mapping 372 * It also protects the illgroup list threaded by ill_group_next. 373 * It also protects the <ill-phyint> assoc. 374 * It also protects the list of ipifs hanging off the ill. 375 * 376 * - ipsq_lock: This is a per ipsq_t mutex lock. 377 * This protects all the other members of the ipsq struct except 378 * ipsq_refs and ipsq_phyint_list which are protected by ill_g_lock 379 * 380 * - illgrp_lock: This is a per ill_group mutex lock. 381 * The only thing it protects is the illgrp_ill_schednext member of ill_group 382 * which dictates which is the next ill in an ill_group that is to be chosen 383 * for sending outgoing packets, through creation of an IRE_CACHE that 384 * references this ill. 385 * 386 * - phyint_lock: This is a per phyint mutex lock. Protects just the 387 * phyint_flags 388 * 389 * - ip_g_nd_lock: This is a global reader/writer lock. 390 * Any call to nd_load to load a new parameter to the ND table must hold the 391 * lock as writer. ND_GET/ND_SET routines that read the ND table hold the lock 392 * as reader. 393 * 394 * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses. 395 * This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the 396 * uniqueness check also done atomically. 397 * 398 * - ipsec_capab_ills_lock: This readers/writer lock protects the global 399 * lists of IPsec capable ills (ipsec_capab_ills_{ah,esp}). It is taken 400 * as a writer when adding or deleting elements from these lists, and 401 * as a reader when walking these lists to send a SADB update to the 402 * IPsec capable ills. 403 * 404 * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc 405 * group list linked by ill_usesrc_grp_next. It also protects the 406 * ill_usesrc_ifindex field. It is taken as a writer when a member of the 407 * group is being added or deleted. This lock is taken as a reader when 408 * walking the list/group(eg: to get the number of members in a usesrc group). 409 * Note, it is only necessary to take this lock if the ill_usesrc_grp_next 410 * field is changing state i.e from NULL to non-NULL or vice-versa. For 411 * example, it is not necessary to take this lock in the initial portion 412 * of ip_sioctl_slifusesrc or at all in ip_sioctl_groupname and 413 * ip_sioctl_flags since the these operations are executed exclusively and 414 * that ensures that the "usesrc group state" cannot change. The "usesrc 415 * group state" change can happen only in the latter part of 416 * ip_sioctl_slifusesrc and in ill_delete. 417 * 418 * Changing <ill-phyint>, <ill-ipsq>, <ill-illgroup> assocications. 419 * 420 * To change the <ill-phyint> association, the ill_g_lock must be held 421 * as writer, and the ill_locks of both the v4 and v6 instance of the ill 422 * must be held. 423 * 424 * To change the <ill-ipsq> association the ill_g_lock must be held as writer 425 * and the ill_lock of the ill in question must be held. 426 * 427 * To change the <ill-illgroup> association the ill_g_lock must be held as 428 * writer and the ill_lock of the ill in question must be held. 429 * 430 * To add or delete an ipif from the list of ipifs hanging off the ill, 431 * ill_g_lock (writer) and ill_lock must be held and the thread must be 432 * a writer on the associated ipsq,. 433 * 434 * To add or delete an ill to the system, the ill_g_lock must be held as 435 * writer and the thread must be a writer on the associated ipsq. 436 * 437 * To add or delete an ilm to an ill, the ill_lock must be held and the thread 438 * must be a writer on the associated ipsq. 439 * 440 * Lock hierarchy 441 * 442 * Some lock hierarchy scenarios are listed below. 443 * 444 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 445 * ill_g_lock -> illgrp_lock -> ill_lock 446 * ill_g_lock -> ill_lock(s) -> phyint_lock 447 * ill_g_lock -> ndp_g_lock -> ill_lock -> nce_lock 448 * ill_g_lock -> ip_addr_avail_lock 449 * conn_lock -> irb_lock -> ill_lock -> ire_lock 450 * ill_g_lock -> ip_g_nd_lock 451 * 452 * When more than 1 ill lock is needed to be held, all ill lock addresses 453 * are sorted on address and locked starting from highest addressed lock 454 * downward. 455 * 456 * Mobile-IP scenarios 457 * 458 * irb_lock -> ill_lock -> ire_mrtun_lock 459 * irb_lock -> ill_lock -> ire_srcif_table_lock 460 * 461 * IPsec scenarios 462 * 463 * ipsa_lock -> ill_g_lock -> ill_lock 464 * ipsec_capab_ills_lock -> ill_g_lock -> ill_lock 465 * ipsec_capab_ills_lock -> ipsa_lock 466 * ill_g_usesrc_lock -> ill_g_lock -> ill_lock 467 * 468 * Trusted Solaris scenarios 469 * 470 * igsa_lock -> gcgrp_rwlock -> gcgrp_lock 471 * igsa_lock -> gcdb_lock 472 * gcgrp_rwlock -> ire_lock 473 * gcgrp_rwlock -> gcdb_lock 474 * 475 * 476 * Routing/forwarding table locking notes: 477 * 478 * Lock acquisition order: Radix tree lock, irb_lock. 479 * Requirements: 480 * i. Walker must not hold any locks during the walker callback. 481 * ii Walker must not see a truncated tree during the walk because of any node 482 * deletion. 483 * iii Existing code assumes ire_bucket is valid if it is non-null and is used 484 * in many places in the code to walk the irb list. Thus even if all the 485 * ires in a bucket have been deleted, we still can't free the radix node 486 * until the ires have actually been inactive'd (freed). 487 * 488 * Tree traversal - Need to hold the global tree lock in read mode. 489 * Before dropping the global tree lock, need to either increment the ire_refcnt 490 * to ensure that the radix node can't be deleted. 491 * 492 * Tree add - Need to hold the global tree lock in write mode to add a 493 * radix node. To prevent the node from being deleted, increment the 494 * irb_refcnt, after the node is added to the tree. The ire itself is 495 * added later while holding the irb_lock, but not the tree lock. 496 * 497 * Tree delete - Need to hold the global tree lock and irb_lock in write mode. 498 * All associated ires must be inactive (i.e. freed), and irb_refcnt 499 * must be zero. 500 * 501 * Walker - Increment irb_refcnt before calling the walker callback. Hold the 502 * global tree lock (read mode) for traversal. 503 * 504 * IPSEC notes : 505 * 506 * IP interacts with the IPSEC code (AH/ESP) by tagging a M_CTL message 507 * in front of the actual packet. For outbound datagrams, the M_CTL 508 * contains a ipsec_out_t (defined in ipsec_info.h), which has the 509 * information used by the IPSEC code for applying the right level of 510 * protection. The information initialized by IP in the ipsec_out_t 511 * is determined by the per-socket policy or global policy in the system. 512 * For inbound datagrams, the M_CTL contains a ipsec_in_t (defined in 513 * ipsec_info.h) which starts out with nothing in it. It gets filled 514 * with the right information if it goes through the AH/ESP code, which 515 * happens if the incoming packet is secure. The information initialized 516 * by AH/ESP, is later used by IP(during fanouts to ULP) to see whether 517 * the policy requirements needed by per-socket policy or global policy 518 * is met or not. 519 * 520 * If there is both per-socket policy (set using setsockopt) and there 521 * is also global policy match for the 5 tuples of the socket, 522 * ipsec_override_policy() makes the decision of which one to use. 523 * 524 * For fully connected sockets i.e dst, src [addr, port] is known, 525 * conn_policy_cached is set indicating that policy has been cached. 526 * conn_in_enforce_policy may or may not be set depending on whether 527 * there is a global policy match or per-socket policy match. 528 * Policy inheriting happpens in ip_bind during the ipa_conn_t bind. 529 * Once the right policy is set on the conn_t, policy cannot change for 530 * this socket. This makes life simpler for TCP (UDP ?) where 531 * re-transmissions go out with the same policy. For symmetry, policy 532 * is cached for fully connected UDP sockets also. Thus if policy is cached, 533 * it also implies that policy is latched i.e policy cannot change 534 * on these sockets. As we have the right policy on the conn, we don't 535 * have to lookup global policy for every outbound and inbound datagram 536 * and thus serving as an optimization. Note that a global policy change 537 * does not affect fully connected sockets if they have policy. If fully 538 * connected sockets did not have any policy associated with it, global 539 * policy change may affect them. 540 * 541 * IP Flow control notes: 542 * 543 * Non-TCP streams are flow controlled by IP. On the send side, if the packet 544 * cannot be sent down to the driver by IP, because of a canput failure, IP 545 * does a putq on the conn_wq. This will cause ip_wsrv to run on the conn_wq. 546 * ip_wsrv in turn, inserts the conn in a list of conn's that need to be drained 547 * when the flowcontrol condition subsides. Ultimately STREAMS backenables the 548 * ip_wsrv on the IP module, which in turn does a qenable of the conn_wq of the 549 * first conn in the list of conn's to be drained. ip_wsrv on this conn drains 550 * the queued messages, and removes the conn from the drain list, if all 551 * messages were drained. It also qenables the next conn in the drain list to 552 * continue the drain process. 553 * 554 * In reality the drain list is not a single list, but a configurable number 555 * of lists. The ip_wsrv on the IP module, qenables the first conn in each 556 * list. If the ip_wsrv of the next qenabled conn does not run, because the 557 * stream closes, ip_close takes responsibility to qenable the next conn in 558 * the drain list. The directly called ip_wput path always does a putq, if 559 * it cannot putnext. Thus synchronization problems are handled between 560 * ip_wsrv and ip_close. conn_drain_insert and conn_drain_tail are the only 561 * functions that manipulate this drain list. Furthermore conn_drain_insert 562 * is called only from ip_wsrv, and there can be only 1 instance of ip_wsrv 563 * running on a queue at any time. conn_drain_tail can be simultaneously called 564 * from both ip_wsrv and ip_close. 565 * 566 * IPQOS notes: 567 * 568 * IPQoS Policies are applied to packets using IPPF (IP Policy framework) 569 * and IPQoS modules. IPPF includes hooks in IP at different control points 570 * (callout positions) which direct packets to IPQoS modules for policy 571 * processing. Policies, if present, are global. 572 * 573 * The callout positions are located in the following paths: 574 * o local_in (packets destined for this host) 575 * o local_out (packets orginating from this host ) 576 * o fwd_in (packets forwarded by this m/c - inbound) 577 * o fwd_out (packets forwarded by this m/c - outbound) 578 * Hooks at these callout points can be enabled/disabled using the ndd variable 579 * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions). 580 * By default all the callout positions are enabled. 581 * 582 * Outbound (local_out) 583 * Hooks are placed in ip_wput_ire and ipsec_out_process. 584 * 585 * Inbound (local_in) 586 * Hooks are placed in ip_proto_input, icmp_inbound, ip_fanout_proto and 587 * TCP and UDP fanout routines. 588 * 589 * Forwarding (in and out) 590 * Hooks are placed in ip_rput_forward and ip_mrtun_forward. 591 * 592 * IP Policy Framework processing (IPPF processing) 593 * Policy processing for a packet is initiated by ip_process, which ascertains 594 * that the classifier (ipgpc) is loaded and configured, failing which the 595 * packet resumes normal processing in IP. If the clasifier is present, the 596 * packet is acted upon by one or more IPQoS modules (action instances), per 597 * filters configured in ipgpc and resumes normal IP processing thereafter. 598 * An action instance can drop a packet in course of its processing. 599 * 600 * A boolean variable, ip_policy, is used in all the fanout routines that can 601 * invoke ip_process for a packet. This variable indicates if the packet should 602 * to be sent for policy processing. The variable is set to B_TRUE by default, 603 * i.e. when the routines are invoked in the normal ip procesing path for a 604 * packet. The two exceptions being ip_wput_local and icmp_inbound_error_fanout; 605 * ip_policy is set to B_FALSE for all the routines called in these two 606 * functions because, in the former case, we don't process loopback traffic 607 * currently while in the latter, the packets have already been processed in 608 * icmp_inbound. 609 * 610 * Zones notes: 611 * 612 * The partitioning rules for networking are as follows: 613 * 1) Packets coming from a zone must have a source address belonging to that 614 * zone. 615 * 2) Packets coming from a zone can only be sent on a physical interface on 616 * which the zone has an IP address. 617 * 3) Between two zones on the same machine, packet delivery is only allowed if 618 * there's a matching route for the destination and zone in the forwarding 619 * table. 620 * 4) The TCP and UDP port spaces are per-zone; that is, two processes in 621 * different zones can bind to the same port with the wildcard address 622 * (INADDR_ANY). 623 * 624 * The granularity of interface partitioning is at the logical interface level. 625 * Therefore, every zone has its own IP addresses, and incoming packets can be 626 * attributed to a zone unambiguously. A logical interface is placed into a zone 627 * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t 628 * structure. Rule (1) is implemented by modifying the source address selection 629 * algorithm so that the list of eligible addresses is filtered based on the 630 * sending process zone. 631 * 632 * The Internet Routing Entries (IREs) are either exclusive to a zone or shared 633 * across all zones, depending on their type. Here is the break-up: 634 * 635 * IRE type Shared/exclusive 636 * -------- ---------------- 637 * IRE_BROADCAST Exclusive 638 * IRE_DEFAULT (default routes) Shared (*) 639 * IRE_LOCAL Exclusive (x) 640 * IRE_LOOPBACK Exclusive 641 * IRE_PREFIX (net routes) Shared (*) 642 * IRE_CACHE Exclusive 643 * IRE_IF_NORESOLVER (interface routes) Exclusive 644 * IRE_IF_RESOLVER (interface routes) Exclusive 645 * IRE_HOST (host routes) Shared (*) 646 * 647 * (*) A zone can only use a default or off-subnet route if the gateway is 648 * directly reachable from the zone, that is, if the gateway's address matches 649 * one of the zone's logical interfaces. 650 * 651 * (x) IRE_LOCAL are handled a bit differently, since for all other entries 652 * in ire_ctable and IRE_INTERFACE, ire_src_addr is what can be used as source 653 * when sending packets using the IRE. For IRE_LOCAL ire_src_addr is the IP 654 * address of the zone itself (the destination). Since IRE_LOCAL is used 655 * for communication between zones, ip_wput_ire has special logic to set 656 * the right source address when sending using an IRE_LOCAL. 657 * 658 * Furthermore, when ip_restrict_interzone_loopback is set (the default), 659 * ire_cache_lookup restricts loopback using an IRE_LOCAL 660 * between zone to the case when L2 would have conceptually looped the packet 661 * back, i.e. the loopback which is required since neither Ethernet drivers 662 * nor Ethernet hardware loops them back. This is the case when the normal 663 * routes (ignoring IREs with different zoneids) would send out the packet on 664 * the same ill (or ill group) as the ill with which is IRE_LOCAL is 665 * associated. 666 * 667 * Multiple zones can share a common broadcast address; typically all zones 668 * share the 255.255.255.255 address. Incoming as well as locally originated 669 * broadcast packets must be dispatched to all the zones on the broadcast 670 * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial 671 * since some zones may not be on the 10.16.72/24 network. To handle this, each 672 * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are 673 * sent to every zone that has an IRE_BROADCAST entry for the destination 674 * address on the input ill, see conn_wantpacket(). 675 * 676 * Applications in different zones can join the same multicast group address. 677 * For IPv4, group memberships are per-logical interface, so they're already 678 * inherently part of a zone. For IPv6, group memberships are per-physical 679 * interface, so we distinguish IPv6 group memberships based on group address, 680 * interface and zoneid. In both cases, received multicast packets are sent to 681 * every zone for which a group membership entry exists. On IPv6 we need to 682 * check that the target zone still has an address on the receiving physical 683 * interface; it could have been removed since the application issued the 684 * IPV6_JOIN_GROUP. 685 */ 686 687 /* 688 * Squeue Fanout flags: 689 * 0: No fanout. 690 * 1: Fanout across all squeues 691 */ 692 boolean_t ip_squeue_fanout = 0; 693 694 /* 695 * Maximum dups allowed per packet. 696 */ 697 uint_t ip_max_frag_dups = 10; 698 699 #define IS_SIMPLE_IPH(ipha) \ 700 ((ipha)->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION) 701 702 /* RFC1122 Conformance */ 703 #define IP_FORWARD_DEFAULT IP_FORWARD_NEVER 704 705 #define ILL_MAX_NAMELEN LIFNAMSIZ 706 707 static int conn_set_held_ipif(conn_t *, ipif_t **, ipif_t *); 708 709 static mblk_t *ip_wput_attach_llhdr(mblk_t *, ire_t *, ip_proc_t, uint32_t); 710 static void ip_ipsec_out_prepend(mblk_t *, mblk_t *, ill_t *); 711 712 static void icmp_frag_needed(queue_t *, mblk_t *, int, zoneid_t); 713 static void icmp_inbound(queue_t *, mblk_t *, boolean_t, ill_t *, int, 714 uint32_t, boolean_t, boolean_t, ill_t *, zoneid_t); 715 static ipaddr_t icmp_get_nexthop_addr(ipha_t *, ill_t *, zoneid_t, mblk_t *mp); 716 static boolean_t icmp_inbound_too_big(icmph_t *, ipha_t *, ill_t *, zoneid_t, 717 mblk_t *, int); 718 static void icmp_inbound_error_fanout(queue_t *, ill_t *, mblk_t *, 719 icmph_t *, ipha_t *, int, int, boolean_t, boolean_t, 720 ill_t *, zoneid_t); 721 static void icmp_options_update(ipha_t *); 722 static void icmp_param_problem(queue_t *, mblk_t *, uint8_t, zoneid_t); 723 static void icmp_pkt(queue_t *, mblk_t *, void *, size_t, boolean_t, 724 zoneid_t zoneid); 725 static mblk_t *icmp_pkt_err_ok(mblk_t *); 726 static void icmp_redirect(mblk_t *); 727 static void icmp_send_redirect(queue_t *, mblk_t *, ipaddr_t); 728 729 static void ip_arp_news(queue_t *, mblk_t *); 730 static boolean_t ip_bind_insert_ire(mblk_t *, ire_t *, iulp_t *); 731 mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 732 char *ip_dot_addr(ipaddr_t, char *); 733 mblk_t *ip_carve_mp(mblk_t **, ssize_t); 734 int ip_close(queue_t *, int); 735 static char *ip_dot_saddr(uchar_t *, char *); 736 static void ip_fanout_proto(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 737 boolean_t, boolean_t, ill_t *, zoneid_t); 738 static void ip_fanout_tcp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint_t, 739 boolean_t, boolean_t, zoneid_t); 740 static void ip_fanout_udp(queue_t *, mblk_t *, ill_t *, ipha_t *, uint32_t, 741 boolean_t, uint_t, boolean_t, boolean_t, ill_t *, zoneid_t); 742 static void ip_lrput(queue_t *, mblk_t *); 743 ipaddr_t ip_massage_options(ipha_t *); 744 static void ip_mrtun_forward(ire_t *, ill_t *, mblk_t *); 745 ipaddr_t ip_net_mask(ipaddr_t); 746 void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 747 zoneid_t); 748 static void ip_newroute_ipif(queue_t *, mblk_t *, ipif_t *, ipaddr_t, 749 conn_t *, uint32_t, zoneid_t); 750 char *ip_nv_lookup(nv_t *, int); 751 static boolean_t ip_check_for_ipsec_opt(queue_t *, mblk_t *); 752 static int ip_param_get(queue_t *, mblk_t *, caddr_t, cred_t *); 753 static int ip_param_generic_get(queue_t *, mblk_t *, caddr_t, cred_t *); 754 static boolean_t ip_param_register(ipparam_t *, size_t, ipndp_t *, 755 size_t); 756 static int ip_param_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 757 void ip_rput(queue_t *, mblk_t *); 758 static void ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 759 void *dummy_arg); 760 void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 761 static int ip_rput_forward_options(mblk_t *, ipha_t *, ire_t *); 762 static boolean_t ip_rput_local_options(queue_t *, mblk_t *, ipha_t *, 763 ire_t *); 764 static boolean_t ip_rput_multimblk_ipoptions(queue_t *, ill_t *, 765 mblk_t *, ipha_t **, ipaddr_t *); 766 static int ip_rput_options(queue_t *, mblk_t *, ipha_t *, ipaddr_t *); 767 static boolean_t ip_rput_fragment(queue_t *, mblk_t **, ipha_t *, uint32_t *, 768 uint16_t *); 769 int ip_snmp_get(queue_t *, mblk_t *); 770 static mblk_t *ip_snmp_get_mib2_ip(queue_t *, mblk_t *, 771 mib2_ipIfStatsEntry_t *); 772 static mblk_t *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *); 773 static mblk_t *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *); 774 static mblk_t *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *); 775 static mblk_t *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *); 776 static mblk_t *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *); 777 static mblk_t *ip_snmp_get_mib2_multi(queue_t *, mblk_t *); 778 static mblk_t *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *); 779 static mblk_t *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *); 780 static mblk_t *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *); 781 static mblk_t *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *); 782 static mblk_t *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *); 783 static mblk_t *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *); 784 static mblk_t *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *); 785 static mblk_t *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *); 786 static mblk_t *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *); 787 static mblk_t *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *); 788 static void ip_snmp_get2_v4(ire_t *, iproutedata_t *); 789 static void ip_snmp_get2_v6_route(ire_t *, iproutedata_t *); 790 static int ip_snmp_get2_v6_media(nce_t *, iproutedata_t *); 791 int ip_snmp_set(queue_t *, int, int, uchar_t *, int); 792 static boolean_t ip_source_routed(ipha_t *); 793 static boolean_t ip_source_route_included(ipha_t *); 794 795 static void ip_wput_frag(ire_t *, mblk_t *, ip_pkt_t, uint32_t, uint32_t, 796 zoneid_t); 797 static mblk_t *ip_wput_frag_copyhdr(uchar_t *, int, int); 798 static void ip_wput_local_options(ipha_t *); 799 static int ip_wput_options(queue_t *, mblk_t *, ipha_t *, boolean_t, 800 zoneid_t); 801 802 static void conn_drain_init(void); 803 static void conn_drain_fini(void); 804 static void conn_drain_tail(conn_t *connp, boolean_t closing); 805 806 static void conn_walk_drain(void); 807 static void conn_walk_fanout_table(connf_t *, uint_t, pfv_t, void *, 808 zoneid_t); 809 810 static boolean_t conn_wantpacket(conn_t *, ill_t *, ipha_t *, int, 811 zoneid_t); 812 static void ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, 813 void *dummy_arg); 814 815 static int ip_forward_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 816 817 static int ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, 818 ipaddr_t, ipaddr_t, uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *, 819 conn_t *, boolean_t, ipaddr_t, mcast_record_t, ipaddr_t, mblk_t *); 820 static void ip_multirt_bad_mtu(ire_t *, uint32_t); 821 822 static int ip_cgtp_filter_get(queue_t *, mblk_t *, caddr_t, cred_t *); 823 static int ip_cgtp_filter_set(queue_t *, mblk_t *, char *, 824 caddr_t, cred_t *); 825 extern int ip_squeue_bind_set(queue_t *q, mblk_t *mp, char *value, 826 caddr_t cp, cred_t *cr); 827 extern int ip_squeue_profile_set(queue_t *, mblk_t *, char *, caddr_t, 828 cred_t *); 829 static int ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 830 caddr_t cp, cred_t *cr); 831 static int ip_int_set(queue_t *, mblk_t *, char *, caddr_t, 832 cred_t *); 833 static squeue_func_t ip_squeue_switch(int); 834 835 static void ip_kstat_init(void); 836 static void ip_kstat_fini(void); 837 static int ip_kstat_update(kstat_t *kp, int rw); 838 static void icmp_kstat_init(void); 839 static void icmp_kstat_fini(void); 840 static int icmp_kstat_update(kstat_t *kp, int rw); 841 842 static int ip_conn_report(queue_t *, mblk_t *, caddr_t, cred_t *); 843 844 static mblk_t *ip_tcp_input(mblk_t *, ipha_t *, ill_t *, boolean_t, 845 ire_t *, mblk_t *, uint_t, queue_t *, ill_rx_ring_t *); 846 847 static void ip_rput_process_forward(queue_t *, mblk_t *, ire_t *, 848 ipha_t *, ill_t *, boolean_t); 849 850 timeout_id_t ip_ire_expire_id; /* IRE expiration timer. */ 851 static clock_t ip_ire_arp_time_elapsed; /* Time since IRE cache last flushed */ 852 static clock_t ip_ire_rd_time_elapsed; /* ... redirect IREs last flushed */ 853 static clock_t ip_ire_pmtu_time_elapsed; /* Time since path mtu increase */ 854 855 ipaddr_t ip_g_all_ones = IP_HOST_MASK; 856 clock_t icmp_pkt_err_last = 0; /* Time since last icmp_pkt_err */ 857 uint_t icmp_pkt_err_sent = 0; /* Number of packets sent in burst */ 858 859 /* How long, in seconds, we allow frags to hang around. */ 860 #define IP_FRAG_TIMEOUT 60 861 862 time_t ip_g_frag_timeout = IP_FRAG_TIMEOUT; 863 clock_t ip_g_frag_timo_ms = IP_FRAG_TIMEOUT * 1000; 864 865 /* 866 * Threshold which determines whether MDT should be used when 867 * generating IP fragments; payload size must be greater than 868 * this threshold for MDT to take place. 869 */ 870 #define IP_WPUT_FRAG_MDT_MIN 32768 871 872 int ip_wput_frag_mdt_min = IP_WPUT_FRAG_MDT_MIN; 873 874 /* Protected by ip_mi_lock */ 875 static void *ip_g_head; /* Instance Data List Head */ 876 kmutex_t ip_mi_lock; /* Lock for list of instances */ 877 878 /* Only modified during _init and _fini thus no locking is needed. */ 879 caddr_t ip_g_nd; /* Named Dispatch List Head */ 880 881 882 static long ip_rput_pullups; 883 int dohwcksum = 1; /* use h/w cksum if supported by the hardware */ 884 885 vmem_t *ip_minor_arena; 886 887 /* 888 * MIB-2 stuff for SNMP (both IP and ICMP) 889 */ 890 mib2_ipIfStatsEntry_t ip_mib; 891 mib2_icmp_t icmp_mib; 892 893 #ifdef DEBUG 894 uint32_t ipsechw_debug = 0; 895 #endif 896 897 kstat_t *ip_mibkp; /* kstat exporting ip_mib data */ 898 kstat_t *icmp_mibkp; /* kstat exporting icmp_mib data */ 899 900 uint_t loopback_packets = 0; 901 902 /* 903 * Multirouting/CGTP stuff 904 */ 905 cgtp_filter_ops_t *ip_cgtp_filter_ops; /* CGTP hooks */ 906 int ip_cgtp_filter_rev = CGTP_FILTER_REV; /* CGTP hooks version */ 907 boolean_t ip_cgtp_filter; /* Enable/disable CGTP hooks */ 908 /* Interval (in ms) between consecutive 'bad MTU' warnings */ 909 hrtime_t ip_multirt_log_interval = 1000; 910 /* Time since last warning issued. */ 911 static hrtime_t multirt_bad_mtu_last_time = 0; 912 913 kmutex_t ip_trash_timer_lock; 914 krwlock_t ip_g_nd_lock; 915 916 /* 917 * XXX following really should only be in a header. Would need more 918 * header and .c clean up first. 919 */ 920 extern optdb_obj_t ip_opt_obj; 921 922 ulong_t ip_squeue_enter_unbound = 0; 923 924 /* 925 * Named Dispatch Parameter Table. 926 * All of these are alterable, within the min/max values given, at run time. 927 */ 928 static ipparam_t lcl_param_arr[] = { 929 /* min max value name */ 930 { 0, 1, 0, "ip_respond_to_address_mask_broadcast"}, 931 { 0, 1, 1, "ip_respond_to_echo_broadcast"}, 932 { 0, 1, 1, "ip_respond_to_echo_multicast"}, 933 { 0, 1, 0, "ip_respond_to_timestamp"}, 934 { 0, 1, 0, "ip_respond_to_timestamp_broadcast"}, 935 { 0, 1, 1, "ip_send_redirects"}, 936 { 0, 1, 0, "ip_forward_directed_broadcasts"}, 937 { 0, 10, 0, "ip_debug"}, 938 { 0, 10, 0, "ip_mrtdebug"}, 939 { 5000, 999999999, 60000, "ip_ire_timer_interval" }, 940 { 60000, 999999999, 1200000, "ip_ire_arp_interval" }, 941 { 60000, 999999999, 60000, "ip_ire_redirect_interval" }, 942 { 1, 255, 255, "ip_def_ttl" }, 943 { 0, 1, 0, "ip_forward_src_routed"}, 944 { 0, 256, 32, "ip_wroff_extra" }, 945 { 5000, 999999999, 600000, "ip_ire_pathmtu_interval" }, 946 { 8, 65536, 64, "ip_icmp_return_data_bytes" }, 947 { 0, 1, 1, "ip_path_mtu_discovery" }, 948 { 0, 240, 30, "ip_ignore_delete_time" }, 949 { 0, 1, 0, "ip_ignore_redirect" }, 950 { 0, 1, 1, "ip_output_queue" }, 951 { 1, 254, 1, "ip_broadcast_ttl" }, 952 { 0, 99999, 100, "ip_icmp_err_interval" }, 953 { 1, 99999, 10, "ip_icmp_err_burst" }, 954 { 0, 999999999, 1000000, "ip_reass_queue_bytes" }, 955 { 0, 1, 0, "ip_strict_dst_multihoming" }, 956 { 1, MAX_ADDRS_PER_IF, 256, "ip_addrs_per_if"}, 957 { 0, 1, 0, "ipsec_override_persocket_policy" }, 958 { 0, 1, 1, "icmp_accept_clear_messages" }, 959 { 0, 1, 1, "igmp_accept_clear_messages" }, 960 { 2, 999999999, ND_DELAY_FIRST_PROBE_TIME, 961 "ip_ndp_delay_first_probe_time"}, 962 { 1, 999999999, ND_MAX_UNICAST_SOLICIT, 963 "ip_ndp_max_unicast_solicit"}, 964 { 1, 255, IPV6_MAX_HOPS, "ip6_def_hops" }, 965 { 8, IPV6_MIN_MTU, IPV6_MIN_MTU, "ip6_icmp_return_data_bytes" }, 966 { 0, 1, 0, "ip6_forward_src_routed"}, 967 { 0, 1, 1, "ip6_respond_to_echo_multicast"}, 968 { 0, 1, 1, "ip6_send_redirects"}, 969 { 0, 1, 0, "ip6_ignore_redirect" }, 970 { 0, 1, 0, "ip6_strict_dst_multihoming" }, 971 972 { 1, 8, 3, "ip_ire_reclaim_fraction" }, 973 974 { 0, 999999, 1000, "ipsec_policy_log_interval" }, 975 976 { 0, 1, 1, "pim_accept_clear_messages" }, 977 { 1000, 20000, 2000, "ip_ndp_unsolicit_interval" }, 978 { 1, 20, 3, "ip_ndp_unsolicit_count" }, 979 { 0, 1, 1, "ip6_ignore_home_address_opt" }, 980 { 0, 15, 0, "ip_policy_mask" }, 981 { 1000, 60000, 1000, "ip_multirt_resolution_interval" }, 982 { 0, 255, 1, "ip_multirt_ttl" }, 983 { 0, 1, 1, "ip_multidata_outbound" }, 984 { 0, 3600000, 300000, "ip_ndp_defense_interval" }, 985 { 0, 999999, 60*60*24, "ip_max_temp_idle" }, 986 { 0, 1000, 1, "ip_max_temp_defend" }, 987 { 0, 1000, 3, "ip_max_defend" }, 988 { 0, 999999, 30, "ip_defend_interval" }, 989 { 0, 3600000, 300000, "ip_dup_recovery" }, 990 { 0, 1, 1, "ip_restrict_interzone_loopback" }, 991 { 0, 1, 1, "ip_lso_outbound" }, 992 #ifdef DEBUG 993 { 0, 1, 0, "ip6_drop_inbound_icmpv6" }, 994 #endif 995 }; 996 997 ipparam_t *ip_param_arr = lcl_param_arr; 998 999 /* Extended NDP table */ 1000 static ipndp_t lcl_ndp_arr[] = { 1001 /* getf setf data name */ 1002 { ip_param_generic_get, ip_forward_set, (caddr_t)&ip_g_forward, 1003 "ip_forwarding" }, 1004 { ip_param_generic_get, ip_forward_set, (caddr_t)&ipv6_forward, 1005 "ip6_forwarding" }, 1006 { ip_ill_report, NULL, NULL, 1007 "ip_ill_status" }, 1008 { ip_ipif_report, NULL, NULL, 1009 "ip_ipif_status" }, 1010 { ip_ire_report, NULL, NULL, 1011 "ipv4_ire_status" }, 1012 { ip_ire_report_mrtun, NULL, NULL, 1013 "ipv4_mrtun_ire_status" }, 1014 { ip_ire_report_srcif, NULL, NULL, 1015 "ipv4_srcif_ire_status" }, 1016 { ip_ire_report_v6, NULL, NULL, 1017 "ipv6_ire_status" }, 1018 { ip_conn_report, NULL, NULL, 1019 "ip_conn_status" }, 1020 { nd_get_long, nd_set_long, (caddr_t)&ip_rput_pullups, 1021 "ip_rput_pullups" }, 1022 { ndp_report, NULL, NULL, 1023 "ip_ndp_cache_report" }, 1024 { ip_srcid_report, NULL, NULL, 1025 "ip_srcid_status" }, 1026 { ip_param_generic_get, ip_squeue_profile_set, 1027 (caddr_t)&ip_squeue_profile, "ip_squeue_profile" }, 1028 { ip_param_generic_get, ip_squeue_bind_set, 1029 (caddr_t)&ip_squeue_bind, "ip_squeue_bind" }, 1030 { ip_param_generic_get, ip_input_proc_set, 1031 (caddr_t)&ip_squeue_enter, "ip_squeue_enter" }, 1032 { ip_param_generic_get, ip_int_set, 1033 (caddr_t)&ip_squeue_fanout, "ip_squeue_fanout" }, 1034 { ip_cgtp_filter_get, ip_cgtp_filter_set, (caddr_t)&ip_cgtp_filter, 1035 "ip_cgtp_filter" }, 1036 { ip_param_generic_get, ip_int_set, 1037 (caddr_t)&ip_soft_rings_cnt, "ip_soft_rings_cnt" } 1038 }; 1039 1040 /* 1041 * ip_g_forward controls IP forwarding. It takes two values: 1042 * 0: IP_FORWARD_NEVER Don't forward packets ever. 1043 * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. 1044 * 1045 * RFC1122 says there must be a configuration switch to control forwarding, 1046 * but that the default MUST be to not forward packets ever. Implicit 1047 * control based on configuration of multiple interfaces MUST NOT be 1048 * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability 1049 * and, in fact, it was the default. That capability is now provided in the 1050 * /etc/rc2.d/S69inet script. 1051 */ 1052 int ip_g_forward = IP_FORWARD_DEFAULT; 1053 1054 /* It also has an IPv6 counterpart. */ 1055 1056 int ipv6_forward = IP_FORWARD_DEFAULT; 1057 1058 /* 1059 * Table of IP ioctls encoding the various properties of the ioctl and 1060 * indexed based on the last byte of the ioctl command. Occasionally there 1061 * is a clash, and there is more than 1 ioctl with the same last byte. 1062 * In such a case 1 ioctl is encoded in the ndx table and the remaining 1063 * ioctls are encoded in the misc table. An entry in the ndx table is 1064 * retrieved by indexing on the last byte of the ioctl command and comparing 1065 * the ioctl command with the value in the ndx table. In the event of a 1066 * mismatch the misc table is then searched sequentially for the desired 1067 * ioctl command. 1068 * 1069 * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func> 1070 */ 1071 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = { 1072 /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1073 /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1074 /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1075 /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1076 /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1077 /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1078 /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1079 /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1080 /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1081 /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1082 1083 /* 010 */ { SIOCADDRT, sizeof (struct rtentry), IPI_PRIV, 1084 MISC_CMD, ip_siocaddrt, NULL }, 1085 /* 011 */ { SIOCDELRT, sizeof (struct rtentry), IPI_PRIV, 1086 MISC_CMD, ip_siocdelrt, NULL }, 1087 1088 /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1089 IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1090 /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1091 IF_CMD, ip_sioctl_get_addr, NULL }, 1092 1093 /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1094 IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1095 /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq), 1096 IPI_GET_CMD | IPI_REPL, 1097 IF_CMD, ip_sioctl_get_dstaddr, NULL }, 1098 1099 /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq), 1100 IPI_PRIV | IPI_WR | IPI_REPL, 1101 IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1102 /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq), 1103 IPI_MODOK | IPI_GET_CMD | IPI_REPL, 1104 IF_CMD, ip_sioctl_get_flags, NULL }, 1105 1106 /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1107 /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1108 1109 /* copyin size cannot be coded for SIOCGIFCONF */ 1110 /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1111 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1112 1113 /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1114 IF_CMD, ip_sioctl_mtu, NULL }, 1115 /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1116 IF_CMD, ip_sioctl_get_mtu, NULL }, 1117 /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq), 1118 IPI_GET_CMD | IPI_REPL, 1119 IF_CMD, ip_sioctl_get_brdaddr, NULL }, 1120 /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1121 IF_CMD, ip_sioctl_brdaddr, NULL }, 1122 /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq), 1123 IPI_GET_CMD | IPI_REPL, 1124 IF_CMD, ip_sioctl_get_netmask, NULL }, 1125 /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR, 1126 IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1127 /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq), 1128 IPI_GET_CMD | IPI_REPL, 1129 IF_CMD, ip_sioctl_get_metric, NULL }, 1130 /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV, 1131 IF_CMD, ip_sioctl_metric, NULL }, 1132 /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1133 1134 /* See 166-168 below for extended SIOC*XARP ioctls */ 1135 /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV, 1136 MISC_CMD, ip_sioctl_arp, NULL }, 1137 /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD | IPI_REPL, 1138 MISC_CMD, ip_sioctl_arp, NULL }, 1139 /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV, 1140 MISC_CMD, ip_sioctl_arp, NULL }, 1141 1142 /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1143 /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1144 /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1145 /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1146 /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1147 /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1148 /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1149 /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1150 /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1151 /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1152 /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1153 /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1154 /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1155 /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1156 /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1157 /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1158 /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1159 /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1160 /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1161 /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1162 /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1163 1164 /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK, 1165 MISC_CMD, if_unitsel, if_unitsel_restart }, 1166 1167 /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1168 /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1169 /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1170 /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1171 /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1172 /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1173 /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1174 /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1175 /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1176 /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1177 /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1178 /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1179 /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1180 /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1181 /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1182 /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1183 /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1184 /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1185 1186 /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq), 1187 IPI_PRIV | IPI_WR | IPI_MODOK, 1188 IF_CMD, ip_sioctl_sifname, NULL }, 1189 1190 /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1191 /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1192 /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1193 /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1194 /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1195 /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1196 /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1197 /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1198 /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1199 /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1200 /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1201 /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1202 /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1203 1204 /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD | IPI_REPL, 1205 MISC_CMD, ip_sioctl_get_ifnum, NULL }, 1206 /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1207 IF_CMD, ip_sioctl_get_muxid, NULL }, 1208 /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq), 1209 IPI_PRIV | IPI_WR | IPI_REPL, 1210 IF_CMD, ip_sioctl_muxid, NULL }, 1211 1212 /* Both if and lif variants share same func */ 1213 /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD | IPI_REPL, 1214 IF_CMD, ip_sioctl_get_lifindex, NULL }, 1215 /* Both if and lif variants share same func */ 1216 /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq), 1217 IPI_PRIV | IPI_WR | IPI_REPL, 1218 IF_CMD, ip_sioctl_slifindex, NULL }, 1219 1220 /* copyin size cannot be coded for SIOCGIFCONF */ 1221 /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD | IPI_REPL, 1222 MISC_CMD, ip_sioctl_get_ifconf, NULL }, 1223 /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1224 /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1225 /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1226 /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1227 /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1228 /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1229 /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1230 /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1231 /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1232 /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1233 /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1234 /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1235 /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1236 /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1237 /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1238 /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1239 /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1240 1241 /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq), 1242 IPI_PRIV | IPI_WR | IPI_REPL, 1243 LIF_CMD, ip_sioctl_removeif, 1244 ip_sioctl_removeif_restart }, 1245 /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq), 1246 IPI_GET_CMD | IPI_PRIV | IPI_WR | IPI_REPL, 1247 LIF_CMD, ip_sioctl_addif, NULL }, 1248 #define SIOCLIFADDR_NDX 112 1249 /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1250 LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart }, 1251 /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq), 1252 IPI_GET_CMD | IPI_REPL, 1253 LIF_CMD, ip_sioctl_get_addr, NULL }, 1254 /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1255 LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart }, 1256 /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq), 1257 IPI_GET_CMD | IPI_REPL, 1258 LIF_CMD, ip_sioctl_get_dstaddr, NULL }, 1259 /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq), 1260 IPI_PRIV | IPI_WR | IPI_REPL, 1261 LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart }, 1262 /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq), 1263 IPI_GET_CMD | IPI_MODOK | IPI_REPL, 1264 LIF_CMD, ip_sioctl_get_flags, NULL }, 1265 1266 /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1267 /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1268 1269 /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1270 ip_sioctl_get_lifconf, NULL }, 1271 /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1272 LIF_CMD, ip_sioctl_mtu, NULL }, 1273 /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD | IPI_REPL, 1274 LIF_CMD, ip_sioctl_get_mtu, NULL }, 1275 /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq), 1276 IPI_GET_CMD | IPI_REPL, 1277 LIF_CMD, ip_sioctl_get_brdaddr, NULL }, 1278 /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1279 LIF_CMD, ip_sioctl_brdaddr, NULL }, 1280 /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq), 1281 IPI_GET_CMD | IPI_REPL, 1282 LIF_CMD, ip_sioctl_get_netmask, NULL }, 1283 /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1284 LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart }, 1285 /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq), 1286 IPI_GET_CMD | IPI_REPL, 1287 LIF_CMD, ip_sioctl_get_metric, NULL }, 1288 /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1289 LIF_CMD, ip_sioctl_metric, NULL }, 1290 /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq), 1291 IPI_PRIV | IPI_WR | IPI_MODOK | IPI_REPL, 1292 LIF_CMD, ip_sioctl_slifname, 1293 ip_sioctl_slifname_restart }, 1294 1295 /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD | IPI_REPL, 1296 MISC_CMD, ip_sioctl_get_lifnum, NULL }, 1297 /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq), 1298 IPI_GET_CMD | IPI_REPL, 1299 LIF_CMD, ip_sioctl_get_muxid, NULL }, 1300 /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq), 1301 IPI_PRIV | IPI_WR | IPI_REPL, 1302 LIF_CMD, ip_sioctl_muxid, NULL }, 1303 /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq), 1304 IPI_GET_CMD | IPI_REPL, 1305 LIF_CMD, ip_sioctl_get_lifindex, 0 }, 1306 /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq), 1307 IPI_PRIV | IPI_WR | IPI_REPL, 1308 LIF_CMD, ip_sioctl_slifindex, 0 }, 1309 /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1310 LIF_CMD, ip_sioctl_token, NULL }, 1311 /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq), 1312 IPI_GET_CMD | IPI_REPL, 1313 LIF_CMD, ip_sioctl_get_token, NULL }, 1314 /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1315 LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart }, 1316 /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq), 1317 IPI_GET_CMD | IPI_REPL, 1318 LIF_CMD, ip_sioctl_get_subnet, NULL }, 1319 /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1320 LIF_CMD, ip_sioctl_lnkinfo, NULL }, 1321 1322 /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq), 1323 IPI_GET_CMD | IPI_REPL, 1324 LIF_CMD, ip_sioctl_get_lnkinfo, NULL }, 1325 /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV, 1326 LIF_CMD, ip_siocdelndp_v6, NULL }, 1327 /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD, 1328 LIF_CMD, ip_siocqueryndp_v6, NULL }, 1329 /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV, 1330 LIF_CMD, ip_siocsetndp_v6, NULL }, 1331 /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1332 MISC_CMD, ip_sioctl_tmyaddr, NULL }, 1333 /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD, 1334 MISC_CMD, ip_sioctl_tonlink, NULL }, 1335 /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0, 1336 MISC_CMD, ip_sioctl_tmysite, NULL }, 1337 /* 147 */ { SIOCGTUNPARAM, sizeof (struct iftun_req), IPI_REPL, 1338 TUN_CMD, ip_sioctl_tunparam, NULL }, 1339 /* 148 */ { SIOCSTUNPARAM, sizeof (struct iftun_req), 1340 IPI_PRIV | IPI_WR, 1341 TUN_CMD, ip_sioctl_tunparam, NULL }, 1342 1343 /* IPSECioctls handled in ip_sioctl_copyin_setup itself */ 1344 /* 149 */ { SIOCFIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1345 /* 150 */ { SIOCSIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1346 /* 151 */ { SIOCDIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1347 /* 152 */ { SIOCLIPSECONFIG, 0, IPI_PRIV, MISC_CMD, NULL, NULL }, 1348 1349 /* 153 */ { SIOCLIFFAILOVER, sizeof (struct lifreq), 1350 IPI_PRIV | IPI_WR | IPI_REPL, 1351 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1352 /* 154 */ { SIOCLIFFAILBACK, sizeof (struct lifreq), 1353 IPI_PRIV | IPI_WR | IPI_REPL, 1354 LIF_CMD, ip_sioctl_move, ip_sioctl_move }, 1355 /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq), 1356 IPI_PRIV | IPI_WR, 1357 LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname }, 1358 /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq), 1359 IPI_GET_CMD | IPI_REPL, 1360 LIF_CMD, ip_sioctl_get_groupname, NULL }, 1361 /* 157 */ { SIOCGLIFOINDEX, sizeof (struct lifreq), 1362 IPI_GET_CMD | IPI_REPL, 1363 LIF_CMD, ip_sioctl_get_oindex, NULL }, 1364 1365 /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */ 1366 /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1367 /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1368 /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1369 1370 /* 161 */ { SIOCSLIFOINDEX, sizeof (struct lifreq), IPI_PRIV | IPI_WR, 1371 LIF_CMD, ip_sioctl_slifoindex, NULL }, 1372 1373 /* These are handled in ip_sioctl_copyin_setup itself */ 1374 /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT, 1375 MISC_CMD, NULL, NULL }, 1376 /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT, 1377 MISC_CMD, NULL, NULL }, 1378 /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL }, 1379 1380 /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD | IPI_REPL, 1381 ip_sioctl_get_lifconf, NULL }, 1382 1383 /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV, 1384 MISC_CMD, ip_sioctl_xarp, NULL }, 1385 /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD | IPI_REPL, 1386 MISC_CMD, ip_sioctl_xarp, NULL }, 1387 /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV, 1388 MISC_CMD, ip_sioctl_xarp, NULL }, 1389 1390 /* SIOCPOPSOCKFS is not handled by IP */ 1391 /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL }, 1392 1393 /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq), 1394 IPI_GET_CMD | IPI_REPL, 1395 LIF_CMD, ip_sioctl_get_lifzone, NULL }, 1396 /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq), 1397 IPI_PRIV | IPI_WR | IPI_REPL, 1398 LIF_CMD, ip_sioctl_slifzone, 1399 ip_sioctl_slifzone_restart }, 1400 /* 172-174 are SCTP ioctls and not handled by IP */ 1401 /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1402 /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1403 /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL }, 1404 /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq), 1405 IPI_GET_CMD, LIF_CMD, 1406 ip_sioctl_get_lifusesrc, 0 }, 1407 /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq), 1408 IPI_PRIV | IPI_WR, 1409 LIF_CMD, ip_sioctl_slifusesrc, 1410 NULL }, 1411 /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD, 1412 ip_sioctl_get_lifsrcof, NULL }, 1413 /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD, 1414 MISC_CMD, ip_sioctl_msfilter, NULL }, 1415 /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), IPI_WR, 1416 MISC_CMD, ip_sioctl_msfilter, NULL }, 1417 /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD, 1418 MISC_CMD, ip_sioctl_msfilter, NULL }, 1419 /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), IPI_WR, 1420 MISC_CMD, ip_sioctl_msfilter, NULL }, 1421 /* 182 */ { SIOCSIPMPFAILBACK, sizeof (int), IPI_PRIV, MISC_CMD, 1422 ip_sioctl_set_ipmpfailback, NULL } 1423 }; 1424 1425 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1426 1427 ip_ioctl_cmd_t ip_misc_ioctl_table[] = { 1428 { OSIOCGTUNPARAM, sizeof (struct old_iftun_req), 1429 IPI_GET_CMD | IPI_REPL, TUN_CMD, ip_sioctl_tunparam, NULL }, 1430 { OSIOCSTUNPARAM, sizeof (struct old_iftun_req), IPI_PRIV | IPI_WR, 1431 TUN_CMD, ip_sioctl_tunparam, NULL }, 1432 { I_LINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1433 { I_UNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1434 { I_PLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1435 { I_PUNLINK, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1436 { ND_GET, 0, IPI_PASS_DOWN, 0, NULL, NULL }, 1437 { ND_SET, 0, IPI_PRIV | IPI_WR | IPI_PASS_DOWN, 0, NULL, NULL }, 1438 { IP_IOCTL, 0, 0, 0, NULL, NULL }, 1439 { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_REPL | IPI_GET_CMD, 1440 MISC_CMD, mrt_ioctl}, 1441 { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_REPL | IPI_GET_CMD, 1442 MISC_CMD, mrt_ioctl}, 1443 { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_REPL | IPI_GET_CMD, 1444 MISC_CMD, mrt_ioctl} 1445 }; 1446 1447 int ip_misc_ioctl_count = 1448 sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t); 1449 1450 static idl_t *conn_drain_list; /* The array of conn drain lists */ 1451 static uint_t conn_drain_list_cnt; /* Total count of conn_drain_list */ 1452 static int conn_drain_list_index; /* Next drain_list to be used */ 1453 int conn_drain_nthreads; /* Number of drainers reqd. */ 1454 /* Settable in /etc/system */ 1455 uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 1456 1457 /* Defined in ip_ire.c */ 1458 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt; 1459 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt; 1460 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio; 1461 1462 static nv_t ire_nv_arr[] = { 1463 { IRE_BROADCAST, "BROADCAST" }, 1464 { IRE_LOCAL, "LOCAL" }, 1465 { IRE_LOOPBACK, "LOOPBACK" }, 1466 { IRE_CACHE, "CACHE" }, 1467 { IRE_DEFAULT, "DEFAULT" }, 1468 { IRE_PREFIX, "PREFIX" }, 1469 { IRE_IF_NORESOLVER, "IF_NORESOL" }, 1470 { IRE_IF_RESOLVER, "IF_RESOLV" }, 1471 { IRE_HOST, "HOST" }, 1472 { 0 } 1473 }; 1474 1475 nv_t *ire_nv_tbl = ire_nv_arr; 1476 1477 /* Defined in ip_if.c, protect the list of IPsec capable ills */ 1478 extern krwlock_t ipsec_capab_ills_lock; 1479 1480 /* Defined in ip_netinfo.c */ 1481 extern ddi_taskq_t *eventq_queue_nic; 1482 1483 /* Packet dropper for IP IPsec processing failures */ 1484 ipdropper_t ip_dropper; 1485 1486 /* Simple ICMP IP Header Template */ 1487 static ipha_t icmp_ipha = { 1488 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 1489 }; 1490 1491 struct module_info ip_mod_info = { 1492 IP_MOD_ID, IP_MOD_NAME, 1, INFPSZ, 65536, 1024 1493 }; 1494 1495 /* 1496 * Duplicate static symbols within a module confuses mdb; so we avoid the 1497 * problem by making the symbols here distinct from those in udp.c. 1498 */ 1499 1500 static struct qinit iprinit = { 1501 (pfi_t)ip_rput, NULL, ip_open, ip_close, NULL, 1502 &ip_mod_info 1503 }; 1504 1505 static struct qinit ipwinit = { 1506 (pfi_t)ip_wput, (pfi_t)ip_wsrv, ip_open, ip_close, NULL, 1507 &ip_mod_info 1508 }; 1509 1510 static struct qinit iplrinit = { 1511 (pfi_t)ip_lrput, NULL, ip_open, ip_close, NULL, 1512 &ip_mod_info 1513 }; 1514 1515 static struct qinit iplwinit = { 1516 (pfi_t)ip_lwput, NULL, ip_open, ip_close, NULL, 1517 &ip_mod_info 1518 }; 1519 1520 struct streamtab ipinfo = { 1521 &iprinit, &ipwinit, &iplrinit, &iplwinit 1522 }; 1523 1524 #ifdef DEBUG 1525 static boolean_t skip_sctp_cksum = B_FALSE; 1526 #endif 1527 1528 /* 1529 * Prepend the zoneid using an ipsec_out_t for later use by functions like 1530 * ip_rput_v6(), ip_output(), etc. If the message 1531 * block already has a M_CTL at the front of it, then simply set the zoneid 1532 * appropriately. 1533 */ 1534 mblk_t * 1535 ip_prepend_zoneid(mblk_t *mp, zoneid_t zoneid) 1536 { 1537 mblk_t *first_mp; 1538 ipsec_out_t *io; 1539 1540 ASSERT(zoneid != ALL_ZONES); 1541 if (mp->b_datap->db_type == M_CTL) { 1542 io = (ipsec_out_t *)mp->b_rptr; 1543 ASSERT(io->ipsec_out_type == IPSEC_OUT); 1544 io->ipsec_out_zoneid = zoneid; 1545 return (mp); 1546 } 1547 1548 first_mp = ipsec_alloc_ipsec_out(); 1549 if (first_mp == NULL) 1550 return (NULL); 1551 io = (ipsec_out_t *)first_mp->b_rptr; 1552 /* This is not a secure packet */ 1553 io->ipsec_out_secure = B_FALSE; 1554 io->ipsec_out_zoneid = zoneid; 1555 first_mp->b_cont = mp; 1556 return (first_mp); 1557 } 1558 1559 /* 1560 * Copy an M_CTL-tagged message, preserving reference counts appropriately. 1561 */ 1562 mblk_t * 1563 ip_copymsg(mblk_t *mp) 1564 { 1565 mblk_t *nmp; 1566 ipsec_info_t *in; 1567 1568 if (mp->b_datap->db_type != M_CTL) 1569 return (copymsg(mp)); 1570 1571 in = (ipsec_info_t *)mp->b_rptr; 1572 1573 /* 1574 * Note that M_CTL is also used for delivering ICMP error messages 1575 * upstream to transport layers. 1576 */ 1577 if (in->ipsec_info_type != IPSEC_OUT && 1578 in->ipsec_info_type != IPSEC_IN) 1579 return (copymsg(mp)); 1580 1581 nmp = copymsg(mp->b_cont); 1582 1583 if (in->ipsec_info_type == IPSEC_OUT) 1584 return (ipsec_out_tag(mp, nmp)); 1585 else 1586 return (ipsec_in_tag(mp, nmp)); 1587 } 1588 1589 /* Generate an ICMP fragmentation needed message. */ 1590 static void 1591 icmp_frag_needed(queue_t *q, mblk_t *mp, int mtu, zoneid_t zoneid) 1592 { 1593 icmph_t icmph; 1594 mblk_t *first_mp; 1595 boolean_t mctl_present; 1596 1597 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 1598 1599 if (!(mp = icmp_pkt_err_ok(mp))) { 1600 if (mctl_present) 1601 freeb(first_mp); 1602 return; 1603 } 1604 1605 bzero(&icmph, sizeof (icmph_t)); 1606 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 1607 icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED; 1608 icmph.icmph_du_mtu = htons((uint16_t)mtu); 1609 BUMP_MIB(&icmp_mib, icmpOutFragNeeded); 1610 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 1611 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 1612 } 1613 1614 /* 1615 * icmp_inbound deals with ICMP messages in the following ways. 1616 * 1617 * 1) It needs to send a reply back and possibly delivering it 1618 * to the "interested" upper clients. 1619 * 2) It needs to send it to the upper clients only. 1620 * 3) It needs to change some values in IP only. 1621 * 4) It needs to change some values in IP and upper layers e.g TCP. 1622 * 1623 * We need to accomodate icmp messages coming in clear until we get 1624 * everything secure from the wire. If icmp_accept_clear_messages 1625 * is zero we check with the global policy and act accordingly. If 1626 * it is non-zero, we accept the message without any checks. But 1627 * *this does not mean* that this will be delivered to the upper 1628 * clients. By accepting we might send replies back, change our MTU 1629 * value etc. but delivery to the ULP/clients depends on their policy 1630 * dispositions. 1631 * 1632 * We handle the above 4 cases in the context of IPSEC in the 1633 * following way : 1634 * 1635 * 1) Send the reply back in the same way as the request came in. 1636 * If it came in encrypted, it goes out encrypted. If it came in 1637 * clear, it goes out in clear. Thus, this will prevent chosen 1638 * plain text attack. 1639 * 2) The client may or may not expect things to come in secure. 1640 * If it comes in secure, the policy constraints are checked 1641 * before delivering it to the upper layers. If it comes in 1642 * clear, ipsec_inbound_accept_clear will decide whether to 1643 * accept this in clear or not. In both the cases, if the returned 1644 * message (IP header + 8 bytes) that caused the icmp message has 1645 * AH/ESP headers, it is sent up to AH/ESP for validation before 1646 * sending up. If there are only 8 bytes of returned message, then 1647 * upper client will not be notified. 1648 * 3) Check with global policy to see whether it matches the constaints. 1649 * But this will be done only if icmp_accept_messages_in_clear is 1650 * zero. 1651 * 4) If we need to change both in IP and ULP, then the decision taken 1652 * while affecting the values in IP and while delivering up to TCP 1653 * should be the same. 1654 * 1655 * There are two cases. 1656 * 1657 * a) If we reject data at the IP layer (ipsec_check_global_policy() 1658 * failed), we will not deliver it to the ULP, even though they 1659 * are *willing* to accept in *clear*. This is fine as our global 1660 * disposition to icmp messages asks us reject the datagram. 1661 * 1662 * b) If we accept data at the IP layer (ipsec_check_global_policy() 1663 * succeeded or icmp_accept_messages_in_clear is 1), and not able 1664 * to deliver it to ULP (policy failed), it can lead to 1665 * consistency problems. The cases known at this time are 1666 * ICMP_DESTINATION_UNREACHABLE messages with following code 1667 * values : 1668 * 1669 * - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value 1670 * and Upper layer rejects. Then the communication will 1671 * come to a stop. This is solved by making similar decisions 1672 * at both levels. Currently, when we are unable to deliver 1673 * to the Upper Layer (due to policy failures) while IP has 1674 * adjusted ire_max_frag, the next outbound datagram would 1675 * generate a local ICMP_FRAGMENTATION_NEEDED message - which 1676 * will be with the right level of protection. Thus the right 1677 * value will be communicated even if we are not able to 1678 * communicate when we get from the wire initially. But this 1679 * assumes there would be at least one outbound datagram after 1680 * IP has adjusted its ire_max_frag value. To make things 1681 * simpler, we accept in clear after the validation of 1682 * AH/ESP headers. 1683 * 1684 * - Other ICMP ERRORS : We may not be able to deliver it to the 1685 * upper layer depending on the level of protection the upper 1686 * layer expects and the disposition in ipsec_inbound_accept_clear(). 1687 * ipsec_inbound_accept_clear() decides whether a given ICMP error 1688 * should be accepted in clear when the Upper layer expects secure. 1689 * Thus the communication may get aborted by some bad ICMP 1690 * packets. 1691 * 1692 * IPQoS Notes: 1693 * The only instance when a packet is sent for processing is when there 1694 * isn't an ICMP client and if we are interested in it. 1695 * If there is a client, IPPF processing will take place in the 1696 * ip_fanout_proto routine. 1697 * 1698 * Zones notes: 1699 * The packet is only processed in the context of the specified zone: typically 1700 * only this zone will reply to an echo request, and only interested clients in 1701 * this zone will receive a copy of the packet. This means that the caller must 1702 * call icmp_inbound() for each relevant zone. 1703 */ 1704 static void 1705 icmp_inbound(queue_t *q, mblk_t *mp, boolean_t broadcast, ill_t *ill, 1706 int sum_valid, uint32_t sum, boolean_t mctl_present, boolean_t ip_policy, 1707 ill_t *recv_ill, zoneid_t zoneid) 1708 { 1709 icmph_t *icmph; 1710 ipha_t *ipha; 1711 int iph_hdr_length; 1712 int hdr_length; 1713 boolean_t interested; 1714 uint32_t ts; 1715 uchar_t *wptr; 1716 ipif_t *ipif; 1717 mblk_t *first_mp; 1718 ipsec_in_t *ii; 1719 ire_t *src_ire; 1720 boolean_t onlink; 1721 timestruc_t now; 1722 uint32_t ill_index; 1723 1724 ASSERT(ill != NULL); 1725 1726 first_mp = mp; 1727 if (mctl_present) { 1728 mp = first_mp->b_cont; 1729 ASSERT(mp != NULL); 1730 } 1731 1732 ipha = (ipha_t *)mp->b_rptr; 1733 if (icmp_accept_clear_messages == 0) { 1734 first_mp = ipsec_check_global_policy(first_mp, NULL, 1735 ipha, NULL, mctl_present); 1736 if (first_mp == NULL) 1737 return; 1738 } 1739 1740 /* 1741 * On a labeled system, we have to check whether the zone itself is 1742 * permitted to receive raw traffic. 1743 */ 1744 if (is_system_labeled()) { 1745 if (zoneid == ALL_ZONES) 1746 zoneid = tsol_packet_to_zoneid(mp); 1747 if (!tsol_can_accept_raw(mp, B_FALSE)) { 1748 ip1dbg(("icmp_inbound: zone %d can't receive raw", 1749 zoneid)); 1750 BUMP_MIB(&icmp_mib, icmpInErrors); 1751 freemsg(first_mp); 1752 return; 1753 } 1754 } 1755 1756 /* 1757 * We have accepted the ICMP message. It means that we will 1758 * respond to the packet if needed. It may not be delivered 1759 * to the upper client depending on the policy constraints 1760 * and the disposition in ipsec_inbound_accept_clear. 1761 */ 1762 1763 ASSERT(ill != NULL); 1764 1765 BUMP_MIB(&icmp_mib, icmpInMsgs); 1766 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1767 if ((mp->b_wptr - mp->b_rptr) < (iph_hdr_length + ICMPH_SIZE)) { 1768 /* Last chance to get real. */ 1769 if (!pullupmsg(mp, iph_hdr_length + ICMPH_SIZE)) { 1770 BUMP_MIB(&icmp_mib, icmpInErrors); 1771 freemsg(first_mp); 1772 return; 1773 } 1774 /* Refresh iph following the pullup. */ 1775 ipha = (ipha_t *)mp->b_rptr; 1776 } 1777 /* ICMP header checksum, including checksum field, should be zero. */ 1778 if (sum_valid ? (sum != 0 && sum != 0xFFFF) : 1779 IP_CSUM(mp, iph_hdr_length, 0)) { 1780 BUMP_MIB(&icmp_mib, icmpInCksumErrs); 1781 freemsg(first_mp); 1782 return; 1783 } 1784 /* The IP header will always be a multiple of four bytes */ 1785 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1786 ip2dbg(("icmp_inbound: type %d code %d\n", icmph->icmph_type, 1787 icmph->icmph_code)); 1788 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1789 /* We will set "interested" to "true" if we want a copy */ 1790 interested = B_FALSE; 1791 switch (icmph->icmph_type) { 1792 case ICMP_ECHO_REPLY: 1793 BUMP_MIB(&icmp_mib, icmpInEchoReps); 1794 break; 1795 case ICMP_DEST_UNREACHABLE: 1796 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) 1797 BUMP_MIB(&icmp_mib, icmpInFragNeeded); 1798 interested = B_TRUE; /* Pass up to transport */ 1799 BUMP_MIB(&icmp_mib, icmpInDestUnreachs); 1800 break; 1801 case ICMP_SOURCE_QUENCH: 1802 interested = B_TRUE; /* Pass up to transport */ 1803 BUMP_MIB(&icmp_mib, icmpInSrcQuenchs); 1804 break; 1805 case ICMP_REDIRECT: 1806 if (!ip_ignore_redirect) 1807 interested = B_TRUE; 1808 BUMP_MIB(&icmp_mib, icmpInRedirects); 1809 break; 1810 case ICMP_ECHO_REQUEST: 1811 /* 1812 * Whether to respond to echo requests that come in as IP 1813 * broadcasts or as IP multicast is subject to debate 1814 * (what isn't?). We aim to please, you pick it. 1815 * Default is do it. 1816 */ 1817 if (!broadcast && !CLASSD(ipha->ipha_dst)) { 1818 /* unicast: always respond */ 1819 interested = B_TRUE; 1820 } else if (CLASSD(ipha->ipha_dst)) { 1821 /* multicast: respond based on tunable */ 1822 interested = ip_g_resp_to_echo_mcast; 1823 } else if (broadcast) { 1824 /* broadcast: respond based on tunable */ 1825 interested = ip_g_resp_to_echo_bcast; 1826 } 1827 BUMP_MIB(&icmp_mib, icmpInEchos); 1828 break; 1829 case ICMP_ROUTER_ADVERTISEMENT: 1830 case ICMP_ROUTER_SOLICITATION: 1831 break; 1832 case ICMP_TIME_EXCEEDED: 1833 interested = B_TRUE; /* Pass up to transport */ 1834 BUMP_MIB(&icmp_mib, icmpInTimeExcds); 1835 break; 1836 case ICMP_PARAM_PROBLEM: 1837 interested = B_TRUE; /* Pass up to transport */ 1838 BUMP_MIB(&icmp_mib, icmpInParmProbs); 1839 break; 1840 case ICMP_TIME_STAMP_REQUEST: 1841 /* Response to Time Stamp Requests is local policy. */ 1842 if (ip_g_resp_to_timestamp && 1843 /* So is whether to respond if it was an IP broadcast. */ 1844 (!broadcast || ip_g_resp_to_timestamp_bcast)) { 1845 int tstamp_len = 3 * sizeof (uint32_t); 1846 1847 if (wptr + tstamp_len > mp->b_wptr) { 1848 if (!pullupmsg(mp, wptr + tstamp_len - 1849 mp->b_rptr)) { 1850 BUMP_MIB(ill->ill_ip_mib, 1851 ipIfStatsInDiscards); 1852 freemsg(first_mp); 1853 return; 1854 } 1855 /* Refresh ipha following the pullup. */ 1856 ipha = (ipha_t *)mp->b_rptr; 1857 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1858 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1859 } 1860 interested = B_TRUE; 1861 } 1862 BUMP_MIB(&icmp_mib, icmpInTimestamps); 1863 break; 1864 case ICMP_TIME_STAMP_REPLY: 1865 BUMP_MIB(&icmp_mib, icmpInTimestampReps); 1866 break; 1867 case ICMP_INFO_REQUEST: 1868 /* Per RFC 1122 3.2.2.7, ignore this. */ 1869 case ICMP_INFO_REPLY: 1870 break; 1871 case ICMP_ADDRESS_MASK_REQUEST: 1872 if ((ip_respond_to_address_mask_broadcast || !broadcast) && 1873 /* TODO m_pullup of complete header? */ 1874 (mp->b_datap->db_lim - wptr) >= IP_ADDR_LEN) 1875 interested = B_TRUE; 1876 BUMP_MIB(&icmp_mib, icmpInAddrMasks); 1877 break; 1878 case ICMP_ADDRESS_MASK_REPLY: 1879 BUMP_MIB(&icmp_mib, icmpInAddrMaskReps); 1880 break; 1881 default: 1882 interested = B_TRUE; /* Pass up to transport */ 1883 BUMP_MIB(&icmp_mib, icmpInUnknowns); 1884 break; 1885 } 1886 /* See if there is an ICMP client. */ 1887 if (ipcl_proto_search(IPPROTO_ICMP) != NULL) { 1888 /* If there is an ICMP client and we want one too, copy it. */ 1889 mblk_t *first_mp1; 1890 1891 if (!interested) { 1892 ip_fanout_proto(q, first_mp, ill, ipha, 0, mctl_present, 1893 ip_policy, recv_ill, zoneid); 1894 return; 1895 } 1896 first_mp1 = ip_copymsg(first_mp); 1897 if (first_mp1 != NULL) { 1898 ip_fanout_proto(q, first_mp1, ill, ipha, 1899 0, mctl_present, ip_policy, recv_ill, zoneid); 1900 } 1901 } else if (!interested) { 1902 freemsg(first_mp); 1903 return; 1904 } else { 1905 /* 1906 * Initiate policy processing for this packet if ip_policy 1907 * is true. 1908 */ 1909 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 1910 ill_index = ill->ill_phyint->phyint_ifindex; 1911 ip_process(IPP_LOCAL_IN, &mp, ill_index); 1912 if (mp == NULL) { 1913 if (mctl_present) { 1914 freeb(first_mp); 1915 } 1916 BUMP_MIB(&icmp_mib, icmpInErrors); 1917 return; 1918 } 1919 } 1920 } 1921 /* We want to do something with it. */ 1922 /* Check db_ref to make sure we can modify the packet. */ 1923 if (mp->b_datap->db_ref > 1) { 1924 mblk_t *first_mp1; 1925 1926 first_mp1 = ip_copymsg(first_mp); 1927 freemsg(first_mp); 1928 if (!first_mp1) { 1929 BUMP_MIB(&icmp_mib, icmpOutDrops); 1930 return; 1931 } 1932 first_mp = first_mp1; 1933 if (mctl_present) { 1934 mp = first_mp->b_cont; 1935 ASSERT(mp != NULL); 1936 } else { 1937 mp = first_mp; 1938 } 1939 ipha = (ipha_t *)mp->b_rptr; 1940 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1941 wptr = (uchar_t *)icmph + ICMPH_SIZE; 1942 } 1943 switch (icmph->icmph_type) { 1944 case ICMP_ADDRESS_MASK_REQUEST: 1945 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 1946 if (ipif == NULL) { 1947 freemsg(first_mp); 1948 return; 1949 } 1950 /* 1951 * outging interface must be IPv4 1952 */ 1953 ASSERT(ipif != NULL && !ipif->ipif_isv6); 1954 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 1955 bcopy(&ipif->ipif_net_mask, wptr, IP_ADDR_LEN); 1956 ipif_refrele(ipif); 1957 BUMP_MIB(&icmp_mib, icmpOutAddrMaskReps); 1958 break; 1959 case ICMP_ECHO_REQUEST: 1960 icmph->icmph_type = ICMP_ECHO_REPLY; 1961 BUMP_MIB(&icmp_mib, icmpOutEchoReps); 1962 break; 1963 case ICMP_TIME_STAMP_REQUEST: { 1964 uint32_t *tsp; 1965 1966 icmph->icmph_type = ICMP_TIME_STAMP_REPLY; 1967 tsp = (uint32_t *)wptr; 1968 tsp++; /* Skip past 'originate time' */ 1969 /* Compute # of milliseconds since midnight */ 1970 gethrestime(&now); 1971 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 1972 now.tv_nsec / (NANOSEC / MILLISEC); 1973 *tsp++ = htonl(ts); /* Lay in 'receive time' */ 1974 *tsp++ = htonl(ts); /* Lay in 'send time' */ 1975 BUMP_MIB(&icmp_mib, icmpOutTimestampReps); 1976 break; 1977 } 1978 default: 1979 ipha = (ipha_t *)&icmph[1]; 1980 if ((uchar_t *)&ipha[1] > mp->b_wptr) { 1981 if (!pullupmsg(mp, (uchar_t *)&ipha[1] - mp->b_rptr)) { 1982 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1983 freemsg(first_mp); 1984 return; 1985 } 1986 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1987 ipha = (ipha_t *)&icmph[1]; 1988 } 1989 if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION)) { 1990 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1991 freemsg(first_mp); 1992 return; 1993 } 1994 hdr_length = IPH_HDR_LENGTH(ipha); 1995 if (hdr_length < sizeof (ipha_t)) { 1996 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 1997 freemsg(first_mp); 1998 return; 1999 } 2000 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 2001 if (!pullupmsg(mp, 2002 (uchar_t *)ipha + hdr_length - mp->b_rptr)) { 2003 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2004 freemsg(first_mp); 2005 return; 2006 } 2007 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2008 ipha = (ipha_t *)&icmph[1]; 2009 } 2010 switch (icmph->icmph_type) { 2011 case ICMP_REDIRECT: 2012 /* 2013 * As there is no upper client to deliver, we don't 2014 * need the first_mp any more. 2015 */ 2016 if (mctl_present) { 2017 freeb(first_mp); 2018 } 2019 icmp_redirect(mp); 2020 return; 2021 case ICMP_DEST_UNREACHABLE: 2022 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 2023 if (!icmp_inbound_too_big(icmph, ipha, ill, 2024 zoneid, mp, iph_hdr_length)) { 2025 freemsg(first_mp); 2026 return; 2027 } 2028 /* 2029 * icmp_inbound_too_big() may alter mp. 2030 * Resynch ipha and icmph accordingly. 2031 */ 2032 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2033 ipha = (ipha_t *)&icmph[1]; 2034 } 2035 /* FALLTHRU */ 2036 default : 2037 /* 2038 * IPQoS notes: Since we have already done IPQoS 2039 * processing we don't want to do it again in 2040 * the fanout routines called by 2041 * icmp_inbound_error_fanout, hence the last 2042 * argument, ip_policy, is B_FALSE. 2043 */ 2044 icmp_inbound_error_fanout(q, ill, first_mp, icmph, 2045 ipha, iph_hdr_length, hdr_length, mctl_present, 2046 B_FALSE, recv_ill, zoneid); 2047 } 2048 return; 2049 } 2050 /* Send out an ICMP packet */ 2051 icmph->icmph_checksum = 0; 2052 icmph->icmph_checksum = IP_CSUM(mp, iph_hdr_length, 0); 2053 if (icmph->icmph_checksum == 0) 2054 icmph->icmph_checksum = 0xFFFF; 2055 if (broadcast || CLASSD(ipha->ipha_dst)) { 2056 ipif_t *ipif_chosen; 2057 /* 2058 * Make it look like it was directed to us, so we don't look 2059 * like a fool with a broadcast or multicast source address. 2060 */ 2061 ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid); 2062 /* 2063 * Make sure that we haven't grabbed an interface that's DOWN. 2064 */ 2065 if (ipif != NULL) { 2066 ipif_chosen = ipif_select_source(ipif->ipif_ill, 2067 ipha->ipha_src, zoneid); 2068 if (ipif_chosen != NULL) { 2069 ipif_refrele(ipif); 2070 ipif = ipif_chosen; 2071 } 2072 } 2073 if (ipif == NULL) { 2074 ip0dbg(("icmp_inbound: " 2075 "No source for broadcast/multicast:\n" 2076 "\tsrc 0x%x dst 0x%x ill %p " 2077 "ipif_lcl_addr 0x%x\n", 2078 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), 2079 (void *)ill, 2080 ill->ill_ipif->ipif_lcl_addr)); 2081 freemsg(first_mp); 2082 return; 2083 } 2084 ASSERT(ipif != NULL && !ipif->ipif_isv6); 2085 ipha->ipha_dst = ipif->ipif_src_addr; 2086 ipif_refrele(ipif); 2087 } 2088 /* Reset time to live. */ 2089 ipha->ipha_ttl = ip_def_ttl; 2090 { 2091 /* Swap source and destination addresses */ 2092 ipaddr_t tmp; 2093 2094 tmp = ipha->ipha_src; 2095 ipha->ipha_src = ipha->ipha_dst; 2096 ipha->ipha_dst = tmp; 2097 } 2098 ipha->ipha_ident = 0; 2099 if (!IS_SIMPLE_IPH(ipha)) 2100 icmp_options_update(ipha); 2101 2102 /* 2103 * ICMP echo replies should go out on the same interface 2104 * the request came on as probes used by in.mpathd for detecting 2105 * NIC failures are ECHO packets. We turn-off load spreading 2106 * by setting ipsec_in_attach_if to B_TRUE, which is copied 2107 * to ipsec_out_attach_if by ipsec_in_to_out called later in this 2108 * function. This is in turn handled by ip_wput and ip_newroute 2109 * to make sure that the packet goes out on the interface it came 2110 * in on. If we don't turnoff load spreading, the packets might get 2111 * dropped if there are no non-FAILED/INACTIVE interfaces for it 2112 * to go out and in.mpathd would wrongly detect a failure or 2113 * mis-detect a NIC failure for link failure. As load spreading 2114 * can happen only if ill_group is not NULL, we do only for 2115 * that case and this does not affect the normal case. 2116 * 2117 * We turn off load spreading only on echo packets that came from 2118 * on-link hosts. If the interface route has been deleted, this will 2119 * not be enforced as we can't do much. For off-link hosts, as the 2120 * default routes in IPv4 does not typically have an ire_ipif 2121 * pointer, we can't force MATCH_IRE_ILL in ip_wput/ip_newroute. 2122 * Moreover, expecting a default route through this interface may 2123 * not be correct. We use ipha_dst because of the swap above. 2124 */ 2125 onlink = B_FALSE; 2126 if (icmph->icmph_type == ICMP_ECHO_REPLY && ill->ill_group != NULL) { 2127 /* 2128 * First, we need to make sure that it is not one of our 2129 * local addresses. If we set onlink when it is one of 2130 * our local addresses, we will end up creating IRE_CACHES 2131 * for one of our local addresses. Then, we will never 2132 * accept packets for them afterwards. 2133 */ 2134 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_LOCAL, 2135 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2136 if (src_ire == NULL) { 2137 ipif = ipif_get_next_ipif(NULL, ill); 2138 if (ipif == NULL) { 2139 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2140 freemsg(mp); 2141 return; 2142 } 2143 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 2144 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 2145 NULL, MATCH_IRE_ILL | MATCH_IRE_TYPE); 2146 ipif_refrele(ipif); 2147 if (src_ire != NULL) { 2148 onlink = B_TRUE; 2149 ire_refrele(src_ire); 2150 } 2151 } else { 2152 ire_refrele(src_ire); 2153 } 2154 } 2155 if (!mctl_present) { 2156 /* 2157 * This packet should go out the same way as it 2158 * came in i.e in clear. To make sure that global 2159 * policy will not be applied to this in ip_wput_ire, 2160 * we attach a IPSEC_IN mp and clear ipsec_in_secure. 2161 */ 2162 ASSERT(first_mp == mp); 2163 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 2164 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2165 freemsg(mp); 2166 return; 2167 } 2168 ii = (ipsec_in_t *)first_mp->b_rptr; 2169 2170 /* This is not a secure packet */ 2171 ii->ipsec_in_secure = B_FALSE; 2172 if (onlink) { 2173 ii->ipsec_in_attach_if = B_TRUE; 2174 ii->ipsec_in_ill_index = 2175 ill->ill_phyint->phyint_ifindex; 2176 ii->ipsec_in_rill_index = 2177 recv_ill->ill_phyint->phyint_ifindex; 2178 } 2179 first_mp->b_cont = mp; 2180 } else if (onlink) { 2181 ii = (ipsec_in_t *)first_mp->b_rptr; 2182 ii->ipsec_in_attach_if = B_TRUE; 2183 ii->ipsec_in_ill_index = ill->ill_phyint->phyint_ifindex; 2184 ii->ipsec_in_rill_index = recv_ill->ill_phyint->phyint_ifindex; 2185 } else { 2186 ii = (ipsec_in_t *)first_mp->b_rptr; 2187 } 2188 ii->ipsec_in_zoneid = zoneid; 2189 ASSERT(zoneid != ALL_ZONES); 2190 if (!ipsec_in_to_out(first_mp, ipha, NULL)) { 2191 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2192 return; 2193 } 2194 BUMP_MIB(&icmp_mib, icmpOutMsgs); 2195 put(WR(q), first_mp); 2196 } 2197 2198 static ipaddr_t 2199 icmp_get_nexthop_addr(ipha_t *ipha, ill_t *ill, zoneid_t zoneid, mblk_t *mp) 2200 { 2201 conn_t *connp; 2202 connf_t *connfp; 2203 ipaddr_t nexthop_addr = INADDR_ANY; 2204 int hdr_length = IPH_HDR_LENGTH(ipha); 2205 uint16_t *up; 2206 uint32_t ports; 2207 2208 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2209 switch (ipha->ipha_protocol) { 2210 case IPPROTO_TCP: 2211 { 2212 tcph_t *tcph; 2213 2214 /* do a reverse lookup */ 2215 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2216 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, 2217 TCPS_LISTEN); 2218 break; 2219 } 2220 case IPPROTO_UDP: 2221 { 2222 uint32_t dstport, srcport; 2223 2224 ((uint16_t *)&ports)[0] = up[1]; 2225 ((uint16_t *)&ports)[1] = up[0]; 2226 2227 /* Extract ports in net byte order */ 2228 dstport = htons(ntohl(ports) & 0xFFFF); 2229 srcport = htons(ntohl(ports) >> 16); 2230 2231 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 2232 mutex_enter(&connfp->connf_lock); 2233 connp = connfp->connf_head; 2234 2235 /* do a reverse lookup */ 2236 while ((connp != NULL) && 2237 (!IPCL_UDP_MATCH(connp, dstport, 2238 ipha->ipha_src, srcport, ipha->ipha_dst) || 2239 !IPCL_ZONE_MATCH(connp, zoneid))) { 2240 connp = connp->conn_next; 2241 } 2242 if (connp != NULL) 2243 CONN_INC_REF(connp); 2244 mutex_exit(&connfp->connf_lock); 2245 break; 2246 } 2247 case IPPROTO_SCTP: 2248 { 2249 in6_addr_t map_src, map_dst; 2250 2251 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_src); 2252 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_dst); 2253 ((uint16_t *)&ports)[0] = up[1]; 2254 ((uint16_t *)&ports)[1] = up[0]; 2255 2256 if ((connp = sctp_find_conn(&map_src, &map_dst, ports, 2257 0, zoneid)) == NULL) { 2258 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, 2259 zoneid, ports, ipha); 2260 } else { 2261 CONN_INC_REF(connp); 2262 SCTP_REFRELE(CONN2SCTP(connp)); 2263 } 2264 break; 2265 } 2266 default: 2267 { 2268 ipha_t ripha; 2269 2270 ripha.ipha_src = ipha->ipha_dst; 2271 ripha.ipha_dst = ipha->ipha_src; 2272 ripha.ipha_protocol = ipha->ipha_protocol; 2273 2274 connfp = &ipcl_proto_fanout[ipha->ipha_protocol]; 2275 mutex_enter(&connfp->connf_lock); 2276 connp = connfp->connf_head; 2277 for (connp = connfp->connf_head; connp != NULL; 2278 connp = connp->conn_next) { 2279 if (IPCL_PROTO_MATCH(connp, 2280 ipha->ipha_protocol, &ripha, ill, 2281 0, zoneid)) { 2282 CONN_INC_REF(connp); 2283 break; 2284 } 2285 } 2286 mutex_exit(&connfp->connf_lock); 2287 } 2288 } 2289 if (connp != NULL) { 2290 if (connp->conn_nexthop_set) 2291 nexthop_addr = connp->conn_nexthop_v4; 2292 CONN_DEC_REF(connp); 2293 } 2294 return (nexthop_addr); 2295 } 2296 2297 /* Table from RFC 1191 */ 2298 static int icmp_frag_size_table[] = 2299 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 }; 2300 2301 /* 2302 * Process received ICMP Packet too big. 2303 * After updating any IRE it does the fanout to any matching transport streams. 2304 * Assumes the message has been pulled up till the IP header that caused 2305 * the error. 2306 * 2307 * Returns B_FALSE on failure and B_TRUE on success. 2308 */ 2309 static boolean_t 2310 icmp_inbound_too_big(icmph_t *icmph, ipha_t *ipha, ill_t *ill, 2311 zoneid_t zoneid, mblk_t *mp, int iph_hdr_length) 2312 { 2313 ire_t *ire, *first_ire; 2314 int mtu; 2315 int hdr_length; 2316 ipaddr_t nexthop_addr; 2317 2318 ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE && 2319 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED); 2320 ASSERT(ill != NULL); 2321 2322 hdr_length = IPH_HDR_LENGTH(ipha); 2323 2324 /* Drop if the original packet contained a source route */ 2325 if (ip_source_route_included(ipha)) { 2326 return (B_FALSE); 2327 } 2328 /* 2329 * Verify we have atleast ICMP_MIN_TP_HDR_LENGTH bytes of transport 2330 * header. 2331 */ 2332 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2333 mp->b_wptr) { 2334 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2335 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2336 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2337 ip1dbg(("icmp_inbound_too_big: insufficient hdr\n")); 2338 return (B_FALSE); 2339 } 2340 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2341 ipha = (ipha_t *)&icmph[1]; 2342 } 2343 nexthop_addr = icmp_get_nexthop_addr(ipha, ill, zoneid, mp); 2344 if (nexthop_addr != INADDR_ANY) { 2345 /* nexthop set */ 2346 first_ire = ire_ctable_lookup(ipha->ipha_dst, 2347 nexthop_addr, 0, NULL, ALL_ZONES, MBLK_GETLABEL(mp), 2348 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2349 } else { 2350 /* nexthop not set */ 2351 first_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_CACHE, 2352 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 2353 } 2354 2355 if (!first_ire) { 2356 ip1dbg(("icmp_inbound_too_big: no route for 0x%x\n", 2357 ntohl(ipha->ipha_dst))); 2358 return (B_FALSE); 2359 } 2360 /* Check for MTU discovery advice as described in RFC 1191 */ 2361 mtu = ntohs(icmph->icmph_du_mtu); 2362 rw_enter(&first_ire->ire_bucket->irb_lock, RW_READER); 2363 for (ire = first_ire; ire != NULL && ire->ire_addr == ipha->ipha_dst; 2364 ire = ire->ire_next) { 2365 /* 2366 * Look for the connection to which this ICMP message is 2367 * directed. If it has the IP_NEXTHOP option set, then the 2368 * search is limited to IREs with the MATCH_IRE_PRIVATE 2369 * option. Else the search is limited to regular IREs. 2370 */ 2371 if (((ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2372 (nexthop_addr != ire->ire_gateway_addr)) || 2373 (!(ire->ire_marks & IRE_MARK_PRIVATE_ADDR) && 2374 (nexthop_addr != INADDR_ANY))) 2375 continue; 2376 2377 mutex_enter(&ire->ire_lock); 2378 if (icmph->icmph_du_zero == 0 && mtu > 68) { 2379 /* Reduce the IRE max frag value as advised. */ 2380 ip1dbg(("Received mtu from router: %d (was %d)\n", 2381 mtu, ire->ire_max_frag)); 2382 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2383 } else { 2384 uint32_t length; 2385 int i; 2386 2387 /* 2388 * Use the table from RFC 1191 to figure out 2389 * the next "plateau" based on the length in 2390 * the original IP packet. 2391 */ 2392 length = ntohs(ipha->ipha_length); 2393 if (ire->ire_max_frag <= length && 2394 ire->ire_max_frag >= length - hdr_length) { 2395 /* 2396 * Handle broken BSD 4.2 systems that 2397 * return the wrong iph_length in ICMP 2398 * errors. 2399 */ 2400 ip1dbg(("Wrong mtu: sent %d, ire %d\n", 2401 length, ire->ire_max_frag)); 2402 length -= hdr_length; 2403 } 2404 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) { 2405 if (length > icmp_frag_size_table[i]) 2406 break; 2407 } 2408 if (i == A_CNT(icmp_frag_size_table)) { 2409 /* Smaller than 68! */ 2410 ip1dbg(("Too big for packet size %d\n", 2411 length)); 2412 ire->ire_max_frag = MIN(ire->ire_max_frag, 576); 2413 ire->ire_frag_flag = 0; 2414 } else { 2415 mtu = icmp_frag_size_table[i]; 2416 ip1dbg(("Calculated mtu %d, packet size %d, " 2417 "before %d", mtu, length, 2418 ire->ire_max_frag)); 2419 ire->ire_max_frag = MIN(ire->ire_max_frag, mtu); 2420 ip1dbg((", after %d\n", ire->ire_max_frag)); 2421 } 2422 /* Record the new max frag size for the ULP. */ 2423 icmph->icmph_du_zero = 0; 2424 icmph->icmph_du_mtu = 2425 htons((uint16_t)ire->ire_max_frag); 2426 } 2427 mutex_exit(&ire->ire_lock); 2428 } 2429 rw_exit(&first_ire->ire_bucket->irb_lock); 2430 ire_refrele(first_ire); 2431 return (B_TRUE); 2432 } 2433 2434 /* 2435 * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout 2436 * calls this function. 2437 */ 2438 static mblk_t * 2439 icmp_inbound_self_encap_error(mblk_t *mp, int iph_hdr_length, int hdr_length) 2440 { 2441 ipha_t *ipha; 2442 icmph_t *icmph; 2443 ipha_t *in_ipha; 2444 int length; 2445 2446 ASSERT(mp->b_datap->db_type == M_DATA); 2447 2448 /* 2449 * For Self-encapsulated packets, we added an extra IP header 2450 * without the options. Inner IP header is the one from which 2451 * the outer IP header was formed. Thus, we need to remove the 2452 * outer IP header. To do this, we pullup the whole message 2453 * and overlay whatever follows the outer IP header over the 2454 * outer IP header. 2455 */ 2456 2457 if (!pullupmsg(mp, -1)) 2458 return (NULL); 2459 2460 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2461 ipha = (ipha_t *)&icmph[1]; 2462 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2463 2464 /* 2465 * The length that we want to overlay is following the inner 2466 * IP header. Subtracting the IP header + icmp header + outer 2467 * IP header's length should give us the length that we want to 2468 * overlay. 2469 */ 2470 length = msgdsize(mp) - iph_hdr_length - sizeof (icmph_t) - 2471 hdr_length; 2472 /* 2473 * Overlay whatever follows the inner header over the 2474 * outer header. 2475 */ 2476 bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length); 2477 2478 /* Set the wptr to account for the outer header */ 2479 mp->b_wptr -= hdr_length; 2480 return (mp); 2481 } 2482 2483 /* 2484 * Try to pass the ICMP message upstream in case the ULP cares. 2485 * 2486 * If the packet that caused the ICMP error is secure, we send 2487 * it to AH/ESP to make sure that the attached packet has a 2488 * valid association. ipha in the code below points to the 2489 * IP header of the packet that caused the error. 2490 * 2491 * We handle ICMP_FRAGMENTATION_NEEDED(IFN) message differently 2492 * in the context of IPSEC. Normally we tell the upper layer 2493 * whenever we send the ire (including ip_bind), the IPSEC header 2494 * length in ire_ipsec_overhead. TCP can deduce the MSS as it 2495 * has both the MTU (ire_max_frag) and the ire_ipsec_overhead. 2496 * Similarly, we pass the new MTU icmph_du_mtu and TCP does the 2497 * same thing. As TCP has the IPSEC options size that needs to be 2498 * adjusted, we just pass the MTU unchanged. 2499 * 2500 * IFN could have been generated locally or by some router. 2501 * 2502 * LOCAL : *ip_wput_ire -> icmp_frag_needed could have generated this. 2503 * This happens because IP adjusted its value of MTU on an 2504 * earlier IFN message and could not tell the upper layer, 2505 * the new adjusted value of MTU e.g. Packet was encrypted 2506 * or there was not enough information to fanout to upper 2507 * layers. Thus on the next outbound datagram, ip_wput_ire 2508 * generates the IFN, where IPSEC processing has *not* been 2509 * done. 2510 * 2511 * *ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed 2512 * could have generated this. This happens because ire_max_frag 2513 * value in IP was set to a new value, while the IPSEC processing 2514 * was being done and after we made the fragmentation check in 2515 * ip_wput_ire. Thus on return from IPSEC processing, 2516 * ip_wput_ipsec_out finds that the new length is > ire_max_frag 2517 * and generates the IFN. As IPSEC processing is over, we fanout 2518 * to AH/ESP to remove the header. 2519 * 2520 * In both these cases, ipsec_in_loopback will be set indicating 2521 * that IFN was generated locally. 2522 * 2523 * ROUTER : IFN could be secure or non-secure. 2524 * 2525 * * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the 2526 * packet in error has AH/ESP headers to validate the AH/ESP 2527 * headers. AH/ESP will verify whether there is a valid SA or 2528 * not and send it back. We will fanout again if we have more 2529 * data in the packet. 2530 * 2531 * If the packet in error does not have AH/ESP, we handle it 2532 * like any other case. 2533 * 2534 * * NON_SECURE : If the packet in error has AH/ESP headers, 2535 * we attach a dummy ipsec_in and send it up to AH/ESP 2536 * for validation. AH/ESP will verify whether there is a 2537 * valid SA or not and send it back. We will fanout again if 2538 * we have more data in the packet. 2539 * 2540 * If the packet in error does not have AH/ESP, we handle it 2541 * like any other case. 2542 */ 2543 static void 2544 icmp_inbound_error_fanout(queue_t *q, ill_t *ill, mblk_t *mp, 2545 icmph_t *icmph, ipha_t *ipha, int iph_hdr_length, int hdr_length, 2546 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 2547 zoneid_t zoneid) 2548 { 2549 uint16_t *up; /* Pointer to ports in ULP header */ 2550 uint32_t ports; /* reversed ports for fanout */ 2551 ipha_t ripha; /* With reversed addresses */ 2552 mblk_t *first_mp; 2553 ipsec_in_t *ii; 2554 tcph_t *tcph; 2555 conn_t *connp; 2556 2557 ASSERT(ill != NULL); 2558 2559 first_mp = mp; 2560 if (mctl_present) { 2561 mp = first_mp->b_cont; 2562 ASSERT(mp != NULL); 2563 2564 ii = (ipsec_in_t *)first_mp->b_rptr; 2565 ASSERT(ii->ipsec_in_type == IPSEC_IN); 2566 } else { 2567 ii = NULL; 2568 } 2569 2570 switch (ipha->ipha_protocol) { 2571 case IPPROTO_UDP: 2572 /* 2573 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2574 * transport header. 2575 */ 2576 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2577 mp->b_wptr) { 2578 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2579 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2580 goto discard_pkt; 2581 } 2582 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2583 ipha = (ipha_t *)&icmph[1]; 2584 } 2585 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2586 2587 /* 2588 * Attempt to find a client stream based on port. 2589 * Note that we do a reverse lookup since the header is 2590 * in the form we sent it out. 2591 * The ripha header is only used for the IP_UDP_MATCH and we 2592 * only set the src and dst addresses and protocol. 2593 */ 2594 ripha.ipha_src = ipha->ipha_dst; 2595 ripha.ipha_dst = ipha->ipha_src; 2596 ripha.ipha_protocol = ipha->ipha_protocol; 2597 ((uint16_t *)&ports)[0] = up[1]; 2598 ((uint16_t *)&ports)[1] = up[0]; 2599 ip2dbg(("icmp_inbound_error: UDP %x:%d to %x:%d: %d/%d\n", 2600 ntohl(ipha->ipha_src), ntohs(up[0]), 2601 ntohl(ipha->ipha_dst), ntohs(up[1]), 2602 icmph->icmph_type, icmph->icmph_code)); 2603 2604 /* Have to change db_type after any pullupmsg */ 2605 DB_TYPE(mp) = M_CTL; 2606 2607 ip_fanout_udp(q, first_mp, ill, &ripha, ports, B_FALSE, 0, 2608 mctl_present, ip_policy, recv_ill, zoneid); 2609 return; 2610 2611 case IPPROTO_TCP: 2612 /* 2613 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2614 * transport header. 2615 */ 2616 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2617 mp->b_wptr) { 2618 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2619 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2620 goto discard_pkt; 2621 } 2622 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2623 ipha = (ipha_t *)&icmph[1]; 2624 } 2625 /* 2626 * Find a TCP client stream for this packet. 2627 * Note that we do a reverse lookup since the header is 2628 * in the form we sent it out. 2629 */ 2630 tcph = (tcph_t *)((uchar_t *)ipha + hdr_length); 2631 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcph, TCPS_LISTEN); 2632 if (connp == NULL) 2633 goto discard_pkt; 2634 2635 /* Have to change db_type after any pullupmsg */ 2636 DB_TYPE(mp) = M_CTL; 2637 squeue_fill(connp->conn_sqp, first_mp, tcp_input, 2638 connp, SQTAG_TCP_INPUT_ICMP_ERR); 2639 return; 2640 2641 case IPPROTO_SCTP: 2642 /* 2643 * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of 2644 * transport header. 2645 */ 2646 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN > 2647 mp->b_wptr) { 2648 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 2649 ICMP_MIN_TP_HDR_LEN - mp->b_rptr)) { 2650 goto discard_pkt; 2651 } 2652 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2653 ipha = (ipha_t *)&icmph[1]; 2654 } 2655 up = (uint16_t *)((uchar_t *)ipha + hdr_length); 2656 /* 2657 * Find a SCTP client stream for this packet. 2658 * Note that we do a reverse lookup since the header is 2659 * in the form we sent it out. 2660 * The ripha header is only used for the matching and we 2661 * only set the src and dst addresses, protocol, and version. 2662 */ 2663 ripha.ipha_src = ipha->ipha_dst; 2664 ripha.ipha_dst = ipha->ipha_src; 2665 ripha.ipha_protocol = ipha->ipha_protocol; 2666 ripha.ipha_version_and_hdr_length = 2667 ipha->ipha_version_and_hdr_length; 2668 ((uint16_t *)&ports)[0] = up[1]; 2669 ((uint16_t *)&ports)[1] = up[0]; 2670 2671 /* Have to change db_type after any pullupmsg */ 2672 DB_TYPE(mp) = M_CTL; 2673 ip_fanout_sctp(first_mp, recv_ill, &ripha, ports, 0, 2674 mctl_present, ip_policy, 0, zoneid); 2675 return; 2676 2677 case IPPROTO_ESP: 2678 case IPPROTO_AH: { 2679 int ipsec_rc; 2680 2681 /* 2682 * We need a IPSEC_IN in the front to fanout to AH/ESP. 2683 * We will re-use the IPSEC_IN if it is already present as 2684 * AH/ESP will not affect any fields in the IPSEC_IN for 2685 * ICMP errors. If there is no IPSEC_IN, allocate a new 2686 * one and attach it in the front. 2687 */ 2688 if (ii != NULL) { 2689 /* 2690 * ip_fanout_proto_again converts the ICMP errors 2691 * that come back from AH/ESP to M_DATA so that 2692 * if it is non-AH/ESP and we do a pullupmsg in 2693 * this function, it would work. Convert it back 2694 * to M_CTL before we send up as this is a ICMP 2695 * error. This could have been generated locally or 2696 * by some router. Validate the inner IPSEC 2697 * headers. 2698 * 2699 * NOTE : ill_index is used by ip_fanout_proto_again 2700 * to locate the ill. 2701 */ 2702 ASSERT(ill != NULL); 2703 ii->ipsec_in_ill_index = 2704 ill->ill_phyint->phyint_ifindex; 2705 ii->ipsec_in_rill_index = 2706 recv_ill->ill_phyint->phyint_ifindex; 2707 DB_TYPE(first_mp->b_cont) = M_CTL; 2708 } else { 2709 /* 2710 * IPSEC_IN is not present. We attach a ipsec_in 2711 * message and send up to IPSEC for validating 2712 * and removing the IPSEC headers. Clear 2713 * ipsec_in_secure so that when we return 2714 * from IPSEC, we don't mistakenly think that this 2715 * is a secure packet came from the network. 2716 * 2717 * NOTE : ill_index is used by ip_fanout_proto_again 2718 * to locate the ill. 2719 */ 2720 ASSERT(first_mp == mp); 2721 first_mp = ipsec_in_alloc(B_TRUE); 2722 if (first_mp == NULL) { 2723 freemsg(mp); 2724 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2725 return; 2726 } 2727 ii = (ipsec_in_t *)first_mp->b_rptr; 2728 2729 /* This is not a secure packet */ 2730 ii->ipsec_in_secure = B_FALSE; 2731 first_mp->b_cont = mp; 2732 DB_TYPE(mp) = M_CTL; 2733 ASSERT(ill != NULL); 2734 ii->ipsec_in_ill_index = 2735 ill->ill_phyint->phyint_ifindex; 2736 ii->ipsec_in_rill_index = 2737 recv_ill->ill_phyint->phyint_ifindex; 2738 } 2739 ip2dbg(("icmp_inbound_error: ipsec\n")); 2740 2741 if (!ipsec_loaded()) { 2742 ip_proto_not_sup(q, first_mp, 0, zoneid); 2743 return; 2744 } 2745 2746 if (ipha->ipha_protocol == IPPROTO_ESP) 2747 ipsec_rc = ipsecesp_icmp_error(first_mp); 2748 else 2749 ipsec_rc = ipsecah_icmp_error(first_mp); 2750 if (ipsec_rc == IPSEC_STATUS_FAILED) 2751 return; 2752 2753 ip_fanout_proto_again(first_mp, ill, recv_ill, NULL); 2754 return; 2755 } 2756 default: 2757 /* 2758 * The ripha header is only used for the lookup and we 2759 * only set the src and dst addresses and protocol. 2760 */ 2761 ripha.ipha_src = ipha->ipha_dst; 2762 ripha.ipha_dst = ipha->ipha_src; 2763 ripha.ipha_protocol = ipha->ipha_protocol; 2764 ip2dbg(("icmp_inbound_error: proto %d %x to %x: %d/%d\n", 2765 ripha.ipha_protocol, ntohl(ipha->ipha_src), 2766 ntohl(ipha->ipha_dst), 2767 icmph->icmph_type, icmph->icmph_code)); 2768 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2769 ipha_t *in_ipha; 2770 2771 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 2772 mp->b_wptr) { 2773 if (!pullupmsg(mp, (uchar_t *)ipha + 2774 hdr_length + sizeof (ipha_t) - 2775 mp->b_rptr)) { 2776 goto discard_pkt; 2777 } 2778 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2779 ipha = (ipha_t *)&icmph[1]; 2780 } 2781 /* 2782 * Caller has verified that length has to be 2783 * at least the size of IP header. 2784 */ 2785 ASSERT(hdr_length >= sizeof (ipha_t)); 2786 /* 2787 * Check the sanity of the inner IP header like 2788 * we did for the outer header. 2789 */ 2790 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 2791 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) { 2792 goto discard_pkt; 2793 } 2794 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) { 2795 goto discard_pkt; 2796 } 2797 /* Check for Self-encapsulated tunnels */ 2798 if (in_ipha->ipha_src == ipha->ipha_src && 2799 in_ipha->ipha_dst == ipha->ipha_dst) { 2800 2801 mp = icmp_inbound_self_encap_error(mp, 2802 iph_hdr_length, hdr_length); 2803 if (mp == NULL) 2804 goto discard_pkt; 2805 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 2806 ipha = (ipha_t *)&icmph[1]; 2807 hdr_length = IPH_HDR_LENGTH(ipha); 2808 /* 2809 * The packet in error is self-encapsualted. 2810 * And we are finding it further encapsulated 2811 * which we could not have possibly generated. 2812 */ 2813 if (ipha->ipha_protocol == IPPROTO_ENCAP) { 2814 goto discard_pkt; 2815 } 2816 icmp_inbound_error_fanout(q, ill, first_mp, 2817 icmph, ipha, iph_hdr_length, hdr_length, 2818 mctl_present, ip_policy, recv_ill, zoneid); 2819 return; 2820 } 2821 } 2822 if ((ipha->ipha_protocol == IPPROTO_ENCAP || 2823 ipha->ipha_protocol == IPPROTO_IPV6) && 2824 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED && 2825 ii != NULL && 2826 ii->ipsec_in_loopback && 2827 ii->ipsec_in_secure) { 2828 /* 2829 * For IP tunnels that get a looped-back 2830 * ICMP_FRAGMENTATION_NEEDED message, adjust the 2831 * reported new MTU to take into account the IPsec 2832 * headers protecting this configured tunnel. 2833 * 2834 * This allows the tunnel module (tun.c) to blindly 2835 * accept the MTU reported in an ICMP "too big" 2836 * message. 2837 * 2838 * Non-looped back ICMP messages will just be 2839 * handled by the security protocols (if needed), 2840 * and the first subsequent packet will hit this 2841 * path. 2842 */ 2843 icmph->icmph_du_mtu = htons(ntohs(icmph->icmph_du_mtu) - 2844 ipsec_in_extra_length(first_mp)); 2845 } 2846 /* Have to change db_type after any pullupmsg */ 2847 DB_TYPE(mp) = M_CTL; 2848 2849 ip_fanout_proto(q, first_mp, ill, &ripha, 0, mctl_present, 2850 ip_policy, recv_ill, zoneid); 2851 return; 2852 } 2853 /* NOTREACHED */ 2854 discard_pkt: 2855 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 2856 drop_pkt:; 2857 ip1dbg(("icmp_inbound_error_fanout: drop pkt\n")); 2858 freemsg(first_mp); 2859 } 2860 2861 /* 2862 * Common IP options parser. 2863 * 2864 * Setup routine: fill in *optp with options-parsing state, then 2865 * tail-call ipoptp_next to return the first option. 2866 */ 2867 uint8_t 2868 ipoptp_first(ipoptp_t *optp, ipha_t *ipha) 2869 { 2870 uint32_t totallen; /* total length of all options */ 2871 2872 totallen = ipha->ipha_version_and_hdr_length - 2873 (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 2874 totallen <<= 2; 2875 optp->ipoptp_next = (uint8_t *)(&ipha[1]); 2876 optp->ipoptp_end = optp->ipoptp_next + totallen; 2877 optp->ipoptp_flags = 0; 2878 return (ipoptp_next(optp)); 2879 } 2880 2881 /* 2882 * Common IP options parser: extract next option. 2883 */ 2884 uint8_t 2885 ipoptp_next(ipoptp_t *optp) 2886 { 2887 uint8_t *end = optp->ipoptp_end; 2888 uint8_t *cur = optp->ipoptp_next; 2889 uint8_t opt, len, pointer; 2890 2891 /* 2892 * If cur > end already, then the ipoptp_end or ipoptp_next pointer 2893 * has been corrupted. 2894 */ 2895 ASSERT(cur <= end); 2896 2897 if (cur == end) 2898 return (IPOPT_EOL); 2899 2900 opt = cur[IPOPT_OPTVAL]; 2901 2902 /* 2903 * Skip any NOP options. 2904 */ 2905 while (opt == IPOPT_NOP) { 2906 cur++; 2907 if (cur == end) 2908 return (IPOPT_EOL); 2909 opt = cur[IPOPT_OPTVAL]; 2910 } 2911 2912 if (opt == IPOPT_EOL) 2913 return (IPOPT_EOL); 2914 2915 /* 2916 * Option requiring a length. 2917 */ 2918 if ((cur + 1) >= end) { 2919 optp->ipoptp_flags |= IPOPTP_ERROR; 2920 return (IPOPT_EOL); 2921 } 2922 len = cur[IPOPT_OLEN]; 2923 if (len < 2) { 2924 optp->ipoptp_flags |= IPOPTP_ERROR; 2925 return (IPOPT_EOL); 2926 } 2927 optp->ipoptp_cur = cur; 2928 optp->ipoptp_len = len; 2929 optp->ipoptp_next = cur + len; 2930 if (cur + len > end) { 2931 optp->ipoptp_flags |= IPOPTP_ERROR; 2932 return (IPOPT_EOL); 2933 } 2934 2935 /* 2936 * For the options which require a pointer field, make sure 2937 * its there, and make sure it points to either something 2938 * inside this option, or the end of the option. 2939 */ 2940 switch (opt) { 2941 case IPOPT_RR: 2942 case IPOPT_TS: 2943 case IPOPT_LSRR: 2944 case IPOPT_SSRR: 2945 if (len <= IPOPT_OFFSET) { 2946 optp->ipoptp_flags |= IPOPTP_ERROR; 2947 return (opt); 2948 } 2949 pointer = cur[IPOPT_OFFSET]; 2950 if (pointer - 1 > len) { 2951 optp->ipoptp_flags |= IPOPTP_ERROR; 2952 return (opt); 2953 } 2954 break; 2955 } 2956 2957 /* 2958 * Sanity check the pointer field based on the type of the 2959 * option. 2960 */ 2961 switch (opt) { 2962 case IPOPT_RR: 2963 case IPOPT_SSRR: 2964 case IPOPT_LSRR: 2965 if (pointer < IPOPT_MINOFF_SR) 2966 optp->ipoptp_flags |= IPOPTP_ERROR; 2967 break; 2968 case IPOPT_TS: 2969 if (pointer < IPOPT_MINOFF_IT) 2970 optp->ipoptp_flags |= IPOPTP_ERROR; 2971 /* 2972 * Note that the Internet Timestamp option also 2973 * contains two four bit fields (the Overflow field, 2974 * and the Flag field), which follow the pointer 2975 * field. We don't need to check that these fields 2976 * fall within the length of the option because this 2977 * was implicitely done above. We've checked that the 2978 * pointer value is at least IPOPT_MINOFF_IT, and that 2979 * it falls within the option. Since IPOPT_MINOFF_IT > 2980 * IPOPT_POS_OV_FLG, we don't need the explicit check. 2981 */ 2982 ASSERT(len > IPOPT_POS_OV_FLG); 2983 break; 2984 } 2985 2986 return (opt); 2987 } 2988 2989 /* 2990 * Use the outgoing IP header to create an IP_OPTIONS option the way 2991 * it was passed down from the application. 2992 */ 2993 int 2994 ip_opt_get_user(const ipha_t *ipha, uchar_t *buf) 2995 { 2996 ipoptp_t opts; 2997 const uchar_t *opt; 2998 uint8_t optval; 2999 uint8_t optlen; 3000 uint32_t len = 0; 3001 uchar_t *buf1 = buf; 3002 3003 buf += IP_ADDR_LEN; /* Leave room for final destination */ 3004 len += IP_ADDR_LEN; 3005 bzero(buf1, IP_ADDR_LEN); 3006 3007 /* 3008 * OK to cast away const here, as we don't store through the returned 3009 * opts.ipoptp_cur pointer. 3010 */ 3011 for (optval = ipoptp_first(&opts, (ipha_t *)ipha); 3012 optval != IPOPT_EOL; 3013 optval = ipoptp_next(&opts)) { 3014 int off; 3015 3016 opt = opts.ipoptp_cur; 3017 optlen = opts.ipoptp_len; 3018 switch (optval) { 3019 case IPOPT_SSRR: 3020 case IPOPT_LSRR: 3021 3022 /* 3023 * Insert ipha_dst as the first entry in the source 3024 * route and move down the entries on step. 3025 * The last entry gets placed at buf1. 3026 */ 3027 buf[IPOPT_OPTVAL] = optval; 3028 buf[IPOPT_OLEN] = optlen; 3029 buf[IPOPT_OFFSET] = optlen; 3030 3031 off = optlen - IP_ADDR_LEN; 3032 if (off < 0) { 3033 /* No entries in source route */ 3034 break; 3035 } 3036 /* Last entry in source route */ 3037 bcopy(opt + off, buf1, IP_ADDR_LEN); 3038 off -= IP_ADDR_LEN; 3039 3040 while (off > 0) { 3041 bcopy(opt + off, 3042 buf + off + IP_ADDR_LEN, 3043 IP_ADDR_LEN); 3044 off -= IP_ADDR_LEN; 3045 } 3046 /* ipha_dst into first slot */ 3047 bcopy(&ipha->ipha_dst, 3048 buf + off + IP_ADDR_LEN, 3049 IP_ADDR_LEN); 3050 buf += optlen; 3051 len += optlen; 3052 break; 3053 3054 case IPOPT_COMSEC: 3055 case IPOPT_SECURITY: 3056 /* if passing up a label is not ok, then remove */ 3057 if (is_system_labeled()) 3058 break; 3059 /* FALLTHROUGH */ 3060 default: 3061 bcopy(opt, buf, optlen); 3062 buf += optlen; 3063 len += optlen; 3064 break; 3065 } 3066 } 3067 done: 3068 /* Pad the resulting options */ 3069 while (len & 0x3) { 3070 *buf++ = IPOPT_EOL; 3071 len++; 3072 } 3073 return (len); 3074 } 3075 3076 /* 3077 * Update any record route or timestamp options to include this host. 3078 * Reverse any source route option. 3079 * This routine assumes that the options are well formed i.e. that they 3080 * have already been checked. 3081 */ 3082 static void 3083 icmp_options_update(ipha_t *ipha) 3084 { 3085 ipoptp_t opts; 3086 uchar_t *opt; 3087 uint8_t optval; 3088 ipaddr_t src; /* Our local address */ 3089 ipaddr_t dst; 3090 3091 ip2dbg(("icmp_options_update\n")); 3092 src = ipha->ipha_src; 3093 dst = ipha->ipha_dst; 3094 3095 for (optval = ipoptp_first(&opts, ipha); 3096 optval != IPOPT_EOL; 3097 optval = ipoptp_next(&opts)) { 3098 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 3099 opt = opts.ipoptp_cur; 3100 ip2dbg(("icmp_options_update: opt %d, len %d\n", 3101 optval, opts.ipoptp_len)); 3102 switch (optval) { 3103 int off1, off2; 3104 case IPOPT_SSRR: 3105 case IPOPT_LSRR: 3106 /* 3107 * Reverse the source route. The first entry 3108 * should be the next to last one in the current 3109 * source route (the last entry is our address). 3110 * The last entry should be the final destination. 3111 */ 3112 off1 = IPOPT_MINOFF_SR - 1; 3113 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 3114 if (off2 < 0) { 3115 /* No entries in source route */ 3116 ip1dbg(( 3117 "icmp_options_update: bad src route\n")); 3118 break; 3119 } 3120 bcopy((char *)opt + off2, &dst, IP_ADDR_LEN); 3121 bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN); 3122 bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN); 3123 off2 -= IP_ADDR_LEN; 3124 3125 while (off1 < off2) { 3126 bcopy((char *)opt + off1, &src, IP_ADDR_LEN); 3127 bcopy((char *)opt + off2, (char *)opt + off1, 3128 IP_ADDR_LEN); 3129 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN); 3130 off1 += IP_ADDR_LEN; 3131 off2 -= IP_ADDR_LEN; 3132 } 3133 opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 3134 break; 3135 } 3136 } 3137 } 3138 3139 /* 3140 * Process received ICMP Redirect messages. 3141 */ 3142 /* ARGSUSED */ 3143 static void 3144 icmp_redirect(mblk_t *mp) 3145 { 3146 ipha_t *ipha; 3147 int iph_hdr_length; 3148 icmph_t *icmph; 3149 ipha_t *ipha_err; 3150 ire_t *ire; 3151 ire_t *prev_ire; 3152 ire_t *save_ire; 3153 ipaddr_t src, dst, gateway; 3154 iulp_t ulp_info = { 0 }; 3155 int error; 3156 3157 ipha = (ipha_t *)mp->b_rptr; 3158 iph_hdr_length = IPH_HDR_LENGTH(ipha); 3159 if (((mp->b_wptr - mp->b_rptr) - iph_hdr_length) < 3160 sizeof (icmph_t) + IP_SIMPLE_HDR_LENGTH) { 3161 BUMP_MIB(&icmp_mib, icmpInErrors); 3162 freemsg(mp); 3163 return; 3164 } 3165 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 3166 ipha_err = (ipha_t *)&icmph[1]; 3167 src = ipha->ipha_src; 3168 dst = ipha_err->ipha_dst; 3169 gateway = icmph->icmph_rd_gateway; 3170 /* Make sure the new gateway is reachable somehow. */ 3171 ire = ire_route_lookup(gateway, 0, 0, IRE_INTERFACE, NULL, NULL, 3172 ALL_ZONES, NULL, MATCH_IRE_TYPE); 3173 /* 3174 * Make sure we had a route for the dest in question and that 3175 * that route was pointing to the old gateway (the source of the 3176 * redirect packet.) 3177 */ 3178 prev_ire = ire_route_lookup(dst, 0, src, 0, NULL, NULL, ALL_ZONES, 3179 NULL, MATCH_IRE_GW); 3180 /* 3181 * Check that 3182 * the redirect was not from ourselves 3183 * the new gateway and the old gateway are directly reachable 3184 */ 3185 if (!prev_ire || 3186 !ire || 3187 ire->ire_type == IRE_LOCAL) { 3188 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3189 freemsg(mp); 3190 if (ire != NULL) 3191 ire_refrele(ire); 3192 if (prev_ire != NULL) 3193 ire_refrele(prev_ire); 3194 return; 3195 } 3196 3197 /* 3198 * Should we use the old ULP info to create the new gateway? From 3199 * a user's perspective, we should inherit the info so that it 3200 * is a "smooth" transition. If we do not do that, then new 3201 * connections going thru the new gateway will have no route metrics, 3202 * which is counter-intuitive to user. From a network point of 3203 * view, this may or may not make sense even though the new gateway 3204 * is still directly connected to us so the route metrics should not 3205 * change much. 3206 * 3207 * But if the old ire_uinfo is not initialized, we do another 3208 * recursive lookup on the dest using the new gateway. There may 3209 * be a route to that. If so, use it to initialize the redirect 3210 * route. 3211 */ 3212 if (prev_ire->ire_uinfo.iulp_set) { 3213 bcopy(&prev_ire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3214 } else { 3215 ire_t *tmp_ire; 3216 ire_t *sire; 3217 3218 tmp_ire = ire_ftable_lookup(dst, 0, gateway, 0, NULL, &sire, 3219 ALL_ZONES, 0, NULL, 3220 (MATCH_IRE_RECURSIVE | MATCH_IRE_GW | MATCH_IRE_DEFAULT)); 3221 if (sire != NULL) { 3222 bcopy(&sire->ire_uinfo, &ulp_info, sizeof (iulp_t)); 3223 /* 3224 * If sire != NULL, ire_ftable_lookup() should not 3225 * return a NULL value. 3226 */ 3227 ASSERT(tmp_ire != NULL); 3228 ire_refrele(tmp_ire); 3229 ire_refrele(sire); 3230 } else if (tmp_ire != NULL) { 3231 bcopy(&tmp_ire->ire_uinfo, &ulp_info, 3232 sizeof (iulp_t)); 3233 ire_refrele(tmp_ire); 3234 } 3235 } 3236 if (prev_ire->ire_type == IRE_CACHE) 3237 ire_delete(prev_ire); 3238 ire_refrele(prev_ire); 3239 /* 3240 * TODO: more precise handling for cases 0, 2, 3, the latter two 3241 * require TOS routing 3242 */ 3243 switch (icmph->icmph_code) { 3244 case 0: 3245 case 1: 3246 /* TODO: TOS specificity for cases 2 and 3 */ 3247 case 2: 3248 case 3: 3249 break; 3250 default: 3251 freemsg(mp); 3252 BUMP_MIB(&icmp_mib, icmpInBadRedirects); 3253 ire_refrele(ire); 3254 return; 3255 } 3256 /* 3257 * Create a Route Association. This will allow us to remember that 3258 * someone we believe told us to use the particular gateway. 3259 */ 3260 save_ire = ire; 3261 ire = ire_create( 3262 (uchar_t *)&dst, /* dest addr */ 3263 (uchar_t *)&ip_g_all_ones, /* mask */ 3264 (uchar_t *)&save_ire->ire_src_addr, /* source addr */ 3265 (uchar_t *)&gateway, /* gateway addr */ 3266 NULL, /* no in_srcaddr */ 3267 &save_ire->ire_max_frag, /* max frag */ 3268 NULL, /* Fast Path header */ 3269 NULL, /* no rfq */ 3270 NULL, /* no stq */ 3271 IRE_HOST, 3272 NULL, 3273 NULL, 3274 NULL, 3275 0, 3276 0, 3277 0, 3278 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 3279 &ulp_info, 3280 NULL, 3281 NULL); 3282 3283 if (ire == NULL) { 3284 freemsg(mp); 3285 ire_refrele(save_ire); 3286 return; 3287 } 3288 error = ire_add(&ire, NULL, NULL, NULL, B_FALSE); 3289 ire_refrele(save_ire); 3290 atomic_inc_32(&ip_redirect_cnt); 3291 3292 if (error == 0) { 3293 ire_refrele(ire); /* Held in ire_add_v4 */ 3294 /* tell routing sockets that we received a redirect */ 3295 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src, 3296 (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0, 3297 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR)); 3298 } 3299 3300 /* 3301 * Delete any existing IRE_HOST type redirect ires for this destination. 3302 * This together with the added IRE has the effect of 3303 * modifying an existing redirect. 3304 */ 3305 prev_ire = ire_ftable_lookup(dst, 0, src, IRE_HOST, NULL, NULL, 3306 ALL_ZONES, 0, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE)); 3307 if (prev_ire != NULL) { 3308 if (prev_ire ->ire_flags & RTF_DYNAMIC) 3309 ire_delete(prev_ire); 3310 ire_refrele(prev_ire); 3311 } 3312 3313 freemsg(mp); 3314 } 3315 3316 /* 3317 * Generate an ICMP parameter problem message. 3318 */ 3319 static void 3320 icmp_param_problem(queue_t *q, mblk_t *mp, uint8_t ptr, zoneid_t zoneid) 3321 { 3322 icmph_t icmph; 3323 boolean_t mctl_present; 3324 mblk_t *first_mp; 3325 3326 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3327 3328 if (!(mp = icmp_pkt_err_ok(mp))) { 3329 if (mctl_present) 3330 freeb(first_mp); 3331 return; 3332 } 3333 3334 bzero(&icmph, sizeof (icmph_t)); 3335 icmph.icmph_type = ICMP_PARAM_PROBLEM; 3336 icmph.icmph_pp_ptr = ptr; 3337 BUMP_MIB(&icmp_mib, icmpOutParmProbs); 3338 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3339 } 3340 3341 /* 3342 * Build and ship an IPv4 ICMP message using the packet data in mp, and 3343 * the ICMP header pointed to by "stuff". (May be called as writer.) 3344 * Note: assumes that icmp_pkt_err_ok has been called to verify that 3345 * an icmp error packet can be sent. 3346 * Assigns an appropriate source address to the packet. If ipha_dst is 3347 * one of our addresses use it for source. Otherwise pick a source based 3348 * on a route lookup back to ipha_src. 3349 * Note that ipha_src must be set here since the 3350 * packet is likely to arrive on an ill queue in ip_wput() which will 3351 * not set a source address. 3352 */ 3353 static void 3354 icmp_pkt(queue_t *q, mblk_t *mp, void *stuff, size_t len, 3355 boolean_t mctl_present, zoneid_t zoneid) 3356 { 3357 ipaddr_t dst; 3358 icmph_t *icmph; 3359 ipha_t *ipha; 3360 uint_t len_needed; 3361 size_t msg_len; 3362 mblk_t *mp1; 3363 ipaddr_t src; 3364 ire_t *ire; 3365 mblk_t *ipsec_mp; 3366 ipsec_out_t *io = NULL; 3367 boolean_t xmit_if_on = B_FALSE; 3368 3369 if (mctl_present) { 3370 /* 3371 * If it is : 3372 * 3373 * 1) a IPSEC_OUT, then this is caused by outbound 3374 * datagram originating on this host. IPSEC processing 3375 * may or may not have been done. Refer to comments above 3376 * icmp_inbound_error_fanout for details. 3377 * 3378 * 2) a IPSEC_IN if we are generating a icmp_message 3379 * for an incoming datagram destined for us i.e called 3380 * from ip_fanout_send_icmp. 3381 */ 3382 ipsec_info_t *in; 3383 ipsec_mp = mp; 3384 mp = ipsec_mp->b_cont; 3385 3386 in = (ipsec_info_t *)ipsec_mp->b_rptr; 3387 ipha = (ipha_t *)mp->b_rptr; 3388 3389 ASSERT(in->ipsec_info_type == IPSEC_OUT || 3390 in->ipsec_info_type == IPSEC_IN); 3391 3392 if (in->ipsec_info_type == IPSEC_IN) { 3393 /* 3394 * Convert the IPSEC_IN to IPSEC_OUT. 3395 */ 3396 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3397 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 3398 return; 3399 } 3400 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3401 } else { 3402 ASSERT(in->ipsec_info_type == IPSEC_OUT); 3403 io = (ipsec_out_t *)in; 3404 if (io->ipsec_out_xmit_if) 3405 xmit_if_on = B_TRUE; 3406 /* 3407 * Clear out ipsec_out_proc_begin, so we do a fresh 3408 * ire lookup. 3409 */ 3410 io->ipsec_out_proc_begin = B_FALSE; 3411 } 3412 ASSERT(zoneid == io->ipsec_out_zoneid); 3413 ASSERT(zoneid != ALL_ZONES); 3414 } else { 3415 /* 3416 * This is in clear. The icmp message we are building 3417 * here should go out in clear. 3418 * 3419 * Pardon the convolution of it all, but it's easier to 3420 * allocate a "use cleartext" IPSEC_IN message and convert 3421 * it than it is to allocate a new one. 3422 */ 3423 ipsec_in_t *ii; 3424 ASSERT(DB_TYPE(mp) == M_DATA); 3425 if ((ipsec_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 3426 freemsg(mp); 3427 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 3428 return; 3429 } 3430 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 3431 3432 /* This is not a secure packet */ 3433 ii->ipsec_in_secure = B_FALSE; 3434 /* 3435 * For trusted extensions using a shared IP address we can 3436 * send using any zoneid. 3437 */ 3438 if (zoneid == ALL_ZONES) 3439 ii->ipsec_in_zoneid = GLOBAL_ZONEID; 3440 else 3441 ii->ipsec_in_zoneid = zoneid; 3442 ipsec_mp->b_cont = mp; 3443 ipha = (ipha_t *)mp->b_rptr; 3444 /* 3445 * Convert the IPSEC_IN to IPSEC_OUT. 3446 */ 3447 if (!ipsec_in_to_out(ipsec_mp, ipha, NULL)) { 3448 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 3449 return; 3450 } 3451 io = (ipsec_out_t *)ipsec_mp->b_rptr; 3452 } 3453 3454 /* Remember our eventual destination */ 3455 dst = ipha->ipha_src; 3456 3457 ire = ire_route_lookup(ipha->ipha_dst, 0, 0, (IRE_LOCAL|IRE_LOOPBACK), 3458 NULL, NULL, zoneid, NULL, MATCH_IRE_TYPE); 3459 if (ire != NULL && 3460 (ire->ire_zoneid == zoneid || ire->ire_zoneid == ALL_ZONES)) { 3461 src = ipha->ipha_dst; 3462 } else if (!xmit_if_on) { 3463 if (ire != NULL) 3464 ire_refrele(ire); 3465 ire = ire_route_lookup(dst, 0, 0, 0, NULL, NULL, zoneid, NULL, 3466 (MATCH_IRE_DEFAULT|MATCH_IRE_RECURSIVE|MATCH_IRE_ZONEONLY)); 3467 if (ire == NULL) { 3468 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 3469 freemsg(ipsec_mp); 3470 return; 3471 } 3472 src = ire->ire_src_addr; 3473 } else { 3474 ipif_t *ipif = NULL; 3475 ill_t *ill; 3476 /* 3477 * This must be an ICMP error coming from 3478 * ip_mrtun_forward(). The src addr should 3479 * be equal to the IP-addr of the outgoing 3480 * interface. 3481 */ 3482 if (io == NULL) { 3483 /* This is not a IPSEC_OUT type control msg */ 3484 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 3485 freemsg(ipsec_mp); 3486 return; 3487 } 3488 ill = ill_lookup_on_ifindex(io->ipsec_out_ill_index, B_FALSE, 3489 NULL, NULL, NULL, NULL); 3490 if (ill != NULL) { 3491 ipif = ipif_get_next_ipif(NULL, ill); 3492 ill_refrele(ill); 3493 } 3494 if (ipif == NULL) { 3495 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 3496 freemsg(ipsec_mp); 3497 return; 3498 } 3499 src = ipif->ipif_src_addr; 3500 ipif_refrele(ipif); 3501 } 3502 3503 if (ire != NULL) 3504 ire_refrele(ire); 3505 3506 /* 3507 * Check if we can send back more then 8 bytes in addition 3508 * to the IP header. We will include as much as 64 bytes. 3509 */ 3510 len_needed = IPH_HDR_LENGTH(ipha); 3511 if (ipha->ipha_protocol == IPPROTO_ENCAP && 3512 (uchar_t *)ipha + len_needed + 1 <= mp->b_wptr) { 3513 len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha + len_needed)); 3514 } 3515 len_needed += ip_icmp_return; 3516 msg_len = msgdsize(mp); 3517 if (msg_len > len_needed) { 3518 (void) adjmsg(mp, len_needed - msg_len); 3519 msg_len = len_needed; 3520 } 3521 mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_HI); 3522 if (mp1 == NULL) { 3523 BUMP_MIB(&icmp_mib, icmpOutErrors); 3524 freemsg(ipsec_mp); 3525 return; 3526 } 3527 /* 3528 * On an unlabeled system, dblks don't necessarily have creds. 3529 */ 3530 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL); 3531 if (DB_CRED(mp) != NULL) 3532 mblk_setcred(mp1, DB_CRED(mp)); 3533 mp1->b_cont = mp; 3534 mp = mp1; 3535 ASSERT(ipsec_mp->b_datap->db_type == M_CTL && 3536 ipsec_mp->b_rptr == (uint8_t *)io && 3537 io->ipsec_out_type == IPSEC_OUT); 3538 ipsec_mp->b_cont = mp; 3539 3540 /* 3541 * Set ipsec_out_icmp_loopback so we can let the ICMP messages this 3542 * node generates be accepted in peace by all on-host destinations. 3543 * If we do NOT assume that all on-host destinations trust 3544 * self-generated ICMP messages, then rework here, ip6.c, and spd.c. 3545 * (Look for ipsec_out_icmp_loopback). 3546 */ 3547 io->ipsec_out_icmp_loopback = B_TRUE; 3548 3549 ipha = (ipha_t *)mp->b_rptr; 3550 mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len); 3551 *ipha = icmp_ipha; 3552 ipha->ipha_src = src; 3553 ipha->ipha_dst = dst; 3554 ipha->ipha_ttl = ip_def_ttl; 3555 msg_len += sizeof (icmp_ipha) + len; 3556 if (msg_len > IP_MAXPACKET) { 3557 (void) adjmsg(mp, IP_MAXPACKET - msg_len); 3558 msg_len = IP_MAXPACKET; 3559 } 3560 ipha->ipha_length = htons((uint16_t)msg_len); 3561 icmph = (icmph_t *)&ipha[1]; 3562 bcopy(stuff, icmph, len); 3563 icmph->icmph_checksum = 0; 3564 icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0); 3565 if (icmph->icmph_checksum == 0) 3566 icmph->icmph_checksum = 0xFFFF; 3567 BUMP_MIB(&icmp_mib, icmpOutMsgs); 3568 put(q, ipsec_mp); 3569 } 3570 3571 /* 3572 * Determine if an ICMP error packet can be sent given the rate limit. 3573 * The limit consists of an average frequency (icmp_pkt_err_interval measured 3574 * in milliseconds) and a burst size. Burst size number of packets can 3575 * be sent arbitrarely closely spaced. 3576 * The state is tracked using two variables to implement an approximate 3577 * token bucket filter: 3578 * icmp_pkt_err_last - lbolt value when the last burst started 3579 * icmp_pkt_err_sent - number of packets sent in current burst 3580 */ 3581 boolean_t 3582 icmp_err_rate_limit(void) 3583 { 3584 clock_t now = TICK_TO_MSEC(lbolt); 3585 uint_t refilled; /* Number of packets refilled in tbf since last */ 3586 uint_t err_interval = ip_icmp_err_interval; /* Guard against changes */ 3587 3588 if (err_interval == 0) 3589 return (B_FALSE); 3590 3591 if (icmp_pkt_err_last > now) { 3592 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */ 3593 icmp_pkt_err_last = 0; 3594 icmp_pkt_err_sent = 0; 3595 } 3596 /* 3597 * If we are in a burst update the token bucket filter. 3598 * Update the "last" time to be close to "now" but make sure 3599 * we don't loose precision. 3600 */ 3601 if (icmp_pkt_err_sent != 0) { 3602 refilled = (now - icmp_pkt_err_last)/err_interval; 3603 if (refilled > icmp_pkt_err_sent) { 3604 icmp_pkt_err_sent = 0; 3605 } else { 3606 icmp_pkt_err_sent -= refilled; 3607 icmp_pkt_err_last += refilled * err_interval; 3608 } 3609 } 3610 if (icmp_pkt_err_sent == 0) { 3611 /* Start of new burst */ 3612 icmp_pkt_err_last = now; 3613 } 3614 if (icmp_pkt_err_sent < ip_icmp_err_burst) { 3615 icmp_pkt_err_sent++; 3616 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n", 3617 icmp_pkt_err_sent)); 3618 return (B_FALSE); 3619 } 3620 ip1dbg(("icmp_err_rate_limit: dropped\n")); 3621 return (B_TRUE); 3622 } 3623 3624 /* 3625 * Check if it is ok to send an IPv4 ICMP error packet in 3626 * response to the IPv4 packet in mp. 3627 * Free the message and return null if no 3628 * ICMP error packet should be sent. 3629 */ 3630 static mblk_t * 3631 icmp_pkt_err_ok(mblk_t *mp) 3632 { 3633 icmph_t *icmph; 3634 ipha_t *ipha; 3635 uint_t len_needed; 3636 ire_t *src_ire; 3637 ire_t *dst_ire; 3638 3639 if (!mp) 3640 return (NULL); 3641 ipha = (ipha_t *)mp->b_rptr; 3642 if (ip_csum_hdr(ipha)) { 3643 BUMP_MIB(&ip_mib, ipIfStatsInCksumErrs); 3644 freemsg(mp); 3645 return (NULL); 3646 } 3647 src_ire = ire_ctable_lookup(ipha->ipha_dst, 0, IRE_BROADCAST, 3648 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3649 dst_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, 3650 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 3651 if (src_ire != NULL || dst_ire != NULL || 3652 CLASSD(ipha->ipha_dst) || 3653 CLASSD(ipha->ipha_src) || 3654 (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) { 3655 /* Note: only errors to the fragment with offset 0 */ 3656 BUMP_MIB(&icmp_mib, icmpOutDrops); 3657 freemsg(mp); 3658 if (src_ire != NULL) 3659 ire_refrele(src_ire); 3660 if (dst_ire != NULL) 3661 ire_refrele(dst_ire); 3662 return (NULL); 3663 } 3664 if (ipha->ipha_protocol == IPPROTO_ICMP) { 3665 /* 3666 * Check the ICMP type. RFC 1122 sez: don't send ICMP 3667 * errors in response to any ICMP errors. 3668 */ 3669 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE; 3670 if (mp->b_wptr - mp->b_rptr < len_needed) { 3671 if (!pullupmsg(mp, len_needed)) { 3672 BUMP_MIB(&icmp_mib, icmpInErrors); 3673 freemsg(mp); 3674 return (NULL); 3675 } 3676 ipha = (ipha_t *)mp->b_rptr; 3677 } 3678 icmph = (icmph_t *) 3679 (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]); 3680 switch (icmph->icmph_type) { 3681 case ICMP_DEST_UNREACHABLE: 3682 case ICMP_SOURCE_QUENCH: 3683 case ICMP_TIME_EXCEEDED: 3684 case ICMP_PARAM_PROBLEM: 3685 case ICMP_REDIRECT: 3686 BUMP_MIB(&icmp_mib, icmpOutDrops); 3687 freemsg(mp); 3688 return (NULL); 3689 default: 3690 break; 3691 } 3692 } 3693 /* 3694 * If this is a labeled system, then check to see if we're allowed to 3695 * send a response to this particular sender. If not, then just drop. 3696 */ 3697 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 3698 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n")); 3699 BUMP_MIB(&icmp_mib, icmpOutDrops); 3700 freemsg(mp); 3701 return (NULL); 3702 } 3703 if (icmp_err_rate_limit()) { 3704 /* 3705 * Only send ICMP error packets every so often. 3706 * This should be done on a per port/source basis, 3707 * but for now this will suffice. 3708 */ 3709 freemsg(mp); 3710 return (NULL); 3711 } 3712 return (mp); 3713 } 3714 3715 /* 3716 * Generate an ICMP redirect message. 3717 */ 3718 static void 3719 icmp_send_redirect(queue_t *q, mblk_t *mp, ipaddr_t gateway) 3720 { 3721 icmph_t icmph; 3722 3723 /* 3724 * We are called from ip_rput where we could 3725 * not have attached an IPSEC_IN. 3726 */ 3727 ASSERT(mp->b_datap->db_type == M_DATA); 3728 3729 if (!(mp = icmp_pkt_err_ok(mp))) { 3730 return; 3731 } 3732 3733 bzero(&icmph, sizeof (icmph_t)); 3734 icmph.icmph_type = ICMP_REDIRECT; 3735 icmph.icmph_code = 1; 3736 icmph.icmph_rd_gateway = gateway; 3737 BUMP_MIB(&icmp_mib, icmpOutRedirects); 3738 /* Redirects sent by router, and router is global zone */ 3739 icmp_pkt(q, mp, &icmph, sizeof (icmph_t), B_FALSE, GLOBAL_ZONEID); 3740 } 3741 3742 /* 3743 * Generate an ICMP time exceeded message. 3744 */ 3745 void 3746 icmp_time_exceeded(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3747 { 3748 icmph_t icmph; 3749 boolean_t mctl_present; 3750 mblk_t *first_mp; 3751 3752 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3753 3754 if (!(mp = icmp_pkt_err_ok(mp))) { 3755 if (mctl_present) 3756 freeb(first_mp); 3757 return; 3758 } 3759 3760 bzero(&icmph, sizeof (icmph_t)); 3761 icmph.icmph_type = ICMP_TIME_EXCEEDED; 3762 icmph.icmph_code = code; 3763 BUMP_MIB(&icmp_mib, icmpOutTimeExcds); 3764 icmp_pkt(q, first_mp, &icmph, sizeof (icmph_t), mctl_present, zoneid); 3765 } 3766 3767 /* 3768 * Generate an ICMP unreachable message. 3769 */ 3770 void 3771 icmp_unreachable(queue_t *q, mblk_t *mp, uint8_t code, zoneid_t zoneid) 3772 { 3773 icmph_t icmph; 3774 mblk_t *first_mp; 3775 boolean_t mctl_present; 3776 3777 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 3778 3779 if (!(mp = icmp_pkt_err_ok(mp))) { 3780 if (mctl_present) 3781 freeb(first_mp); 3782 return; 3783 } 3784 3785 bzero(&icmph, sizeof (icmph_t)); 3786 icmph.icmph_type = ICMP_DEST_UNREACHABLE; 3787 icmph.icmph_code = code; 3788 BUMP_MIB(&icmp_mib, icmpOutDestUnreachs); 3789 ip2dbg(("send icmp destination unreachable code %d\n", code)); 3790 icmp_pkt(q, first_mp, (char *)&icmph, sizeof (icmph_t), mctl_present, 3791 zoneid); 3792 } 3793 3794 /* 3795 * Attempt to start recovery of an IPv4 interface that's been shut down as a 3796 * duplicate. As long as someone else holds the address, the interface will 3797 * stay down. When that conflict goes away, the interface is brought back up. 3798 * This is done so that accidental shutdowns of addresses aren't made 3799 * permanent. Your server will recover from a failure. 3800 * 3801 * For DHCP, recovery is not done in the kernel. Instead, it's handled by a 3802 * user space process (dhcpagent). 3803 * 3804 * Recovery completes if ARP reports that the address is now ours (via 3805 * AR_CN_READY). In that case, we go to ip_arp_excl to finish the operation. 3806 * 3807 * This function is entered on a timer expiry; the ID is in ipif_recovery_id. 3808 */ 3809 static void 3810 ipif_dup_recovery(void *arg) 3811 { 3812 ipif_t *ipif = arg; 3813 ill_t *ill = ipif->ipif_ill; 3814 mblk_t *arp_add_mp; 3815 mblk_t *arp_del_mp; 3816 area_t *area; 3817 3818 ipif->ipif_recovery_id = 0; 3819 3820 if (ill->ill_arp_closing || !(ipif->ipif_flags & IPIF_DUPLICATE) || 3821 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 3822 /* No reason to try to bring this address back. */ 3823 return; 3824 } 3825 3826 if ((arp_add_mp = ipif_area_alloc(ipif)) == NULL) 3827 goto alloc_fail; 3828 3829 if (ipif->ipif_arp_del_mp == NULL) { 3830 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 3831 goto alloc_fail; 3832 ipif->ipif_arp_del_mp = arp_del_mp; 3833 } 3834 3835 /* Setting the 'unverified' flag restarts DAD */ 3836 area = (area_t *)arp_add_mp->b_rptr; 3837 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 3838 ACE_F_UNVERIFIED; 3839 putnext(ill->ill_rq, arp_add_mp); 3840 return; 3841 3842 alloc_fail: 3843 /* On allocation failure, just restart the timer */ 3844 freemsg(arp_add_mp); 3845 if (ip_dup_recovery > 0) { 3846 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, ipif, 3847 MSEC_TO_TICK(ip_dup_recovery)); 3848 } 3849 } 3850 3851 /* 3852 * This is for exclusive changes due to ARP. Either tear down an interface due 3853 * to AR_CN_FAILED and AR_CN_BOGON, or bring one up for successful recovery. 3854 */ 3855 /* ARGSUSED */ 3856 static void 3857 ip_arp_excl(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3858 { 3859 ill_t *ill = rq->q_ptr; 3860 arh_t *arh; 3861 ipaddr_t src; 3862 ipif_t *ipif; 3863 char ibuf[LIFNAMSIZ + 10]; /* 10 digits for logical i/f number */ 3864 char hbuf[MAC_STR_LEN]; 3865 char sbuf[INET_ADDRSTRLEN]; 3866 const char *failtype; 3867 boolean_t bring_up; 3868 3869 switch (((arcn_t *)mp->b_rptr)->arcn_code) { 3870 case AR_CN_READY: 3871 failtype = NULL; 3872 bring_up = B_TRUE; 3873 break; 3874 case AR_CN_FAILED: 3875 failtype = "in use"; 3876 bring_up = B_FALSE; 3877 break; 3878 default: 3879 failtype = "claimed"; 3880 bring_up = B_FALSE; 3881 break; 3882 } 3883 3884 arh = (arh_t *)mp->b_cont->b_rptr; 3885 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3886 3887 /* Handle failures due to probes */ 3888 if (src == 0) { 3889 bcopy((char *)&arh[1] + 2 * arh->arh_hlen + IP_ADDR_LEN, &src, 3890 IP_ADDR_LEN); 3891 } 3892 3893 (void) strlcpy(ibuf, ill->ill_name, sizeof (ibuf)); 3894 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, hbuf, 3895 sizeof (hbuf)); 3896 (void) ip_dot_addr(src, sbuf); 3897 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3898 3899 if ((ipif->ipif_flags & IPIF_POINTOPOINT) || 3900 ipif->ipif_lcl_addr != src) { 3901 continue; 3902 } 3903 3904 /* 3905 * If we failed on a recovery probe, then restart the timer to 3906 * try again later. 3907 */ 3908 if (!bring_up && (ipif->ipif_flags & IPIF_DUPLICATE) && 3909 !(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3910 ill->ill_net_type == IRE_IF_RESOLVER && 3911 ip_dup_recovery > 0 && ipif->ipif_recovery_id == 0) { 3912 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3913 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3914 continue; 3915 } 3916 3917 /* 3918 * If what we're trying to do has already been done, then do 3919 * nothing. 3920 */ 3921 if (bring_up == ((ipif->ipif_flags & IPIF_UP) != 0)) 3922 continue; 3923 3924 if (ipif->ipif_id != 0) { 3925 (void) snprintf(ibuf + ill->ill_name_length - 1, 3926 sizeof (ibuf) - ill->ill_name_length + 1, ":%d", 3927 ipif->ipif_id); 3928 } 3929 if (failtype == NULL) { 3930 cmn_err(CE_NOTE, "recovered address %s on %s", sbuf, 3931 ibuf); 3932 } else { 3933 cmn_err(CE_WARN, "%s has duplicate address %s (%s " 3934 "by %s); disabled", ibuf, sbuf, failtype, hbuf); 3935 } 3936 3937 if (bring_up) { 3938 ASSERT(ill->ill_dl_up); 3939 /* 3940 * Free up the ARP delete message so we can allocate 3941 * a fresh one through the normal path. 3942 */ 3943 freemsg(ipif->ipif_arp_del_mp); 3944 ipif->ipif_arp_del_mp = NULL; 3945 if (ipif_resolver_up(ipif, Res_act_initial) != 3946 EINPROGRESS) { 3947 ipif->ipif_addr_ready = 1; 3948 (void) ipif_up_done(ipif); 3949 } 3950 continue; 3951 } 3952 3953 mutex_enter(&ill->ill_lock); 3954 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 3955 ipif->ipif_flags |= IPIF_DUPLICATE; 3956 ill->ill_ipif_dup_count++; 3957 mutex_exit(&ill->ill_lock); 3958 /* 3959 * Already exclusive on the ill; no need to handle deferred 3960 * processing here. 3961 */ 3962 (void) ipif_down(ipif, NULL, NULL); 3963 ipif_down_tail(ipif); 3964 if (!(ipif->ipif_flags & (IPIF_DHCPRUNNING|IPIF_TEMPORARY)) && 3965 ill->ill_net_type == IRE_IF_RESOLVER && 3966 ip_dup_recovery > 0) { 3967 ipif->ipif_recovery_id = timeout(ipif_dup_recovery, 3968 ipif, MSEC_TO_TICK(ip_dup_recovery)); 3969 } 3970 } 3971 freemsg(mp); 3972 } 3973 3974 /* ARGSUSED */ 3975 static void 3976 ip_arp_defend(ipsq_t *ipsq, queue_t *rq, mblk_t *mp, void *dummy_arg) 3977 { 3978 ill_t *ill = rq->q_ptr; 3979 arh_t *arh; 3980 ipaddr_t src; 3981 ipif_t *ipif; 3982 3983 arh = (arh_t *)mp->b_cont->b_rptr; 3984 bcopy((char *)&arh[1] + arh->arh_hlen, &src, IP_ADDR_LEN); 3985 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3986 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_lcl_addr == src) 3987 (void) ipif_resolver_up(ipif, Res_act_defend); 3988 } 3989 freemsg(mp); 3990 } 3991 3992 /* 3993 * News from ARP. ARP sends notification of interesting events down 3994 * to its clients using M_CTL messages with the interesting ARP packet 3995 * attached via b_cont. 3996 * The interesting event from a device comes up the corresponding ARP-IP-DEV 3997 * queue as opposed to ARP sending the message to all the clients, i.e. all 3998 * its ARP-IP-DEV instances. Thus, for AR_CN_ANNOUNCE, we must walk the cache 3999 * table if a cache IRE is found to delete all the entries for the address in 4000 * the packet. 4001 */ 4002 static void 4003 ip_arp_news(queue_t *q, mblk_t *mp) 4004 { 4005 arcn_t *arcn; 4006 arh_t *arh; 4007 ire_t *ire = NULL; 4008 char hbuf[MAC_STR_LEN]; 4009 char sbuf[INET_ADDRSTRLEN]; 4010 ipaddr_t src; 4011 in6_addr_t v6src; 4012 boolean_t isv6 = B_FALSE; 4013 ipif_t *ipif; 4014 ill_t *ill; 4015 4016 if ((mp->b_wptr - mp->b_rptr) < sizeof (arcn_t) || !mp->b_cont) { 4017 if (q->q_next) { 4018 putnext(q, mp); 4019 } else 4020 freemsg(mp); 4021 return; 4022 } 4023 arh = (arh_t *)mp->b_cont->b_rptr; 4024 /* Is it one we are interested in? */ 4025 if (BE16_TO_U16(arh->arh_proto) == IP6_DL_SAP) { 4026 isv6 = B_TRUE; 4027 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &v6src, 4028 IPV6_ADDR_LEN); 4029 } else if (BE16_TO_U16(arh->arh_proto) == IP_ARP_PROTO_TYPE) { 4030 bcopy((char *)&arh[1] + (arh->arh_hlen & 0xFF), &src, 4031 IP_ADDR_LEN); 4032 } else { 4033 freemsg(mp); 4034 return; 4035 } 4036 4037 ill = q->q_ptr; 4038 4039 arcn = (arcn_t *)mp->b_rptr; 4040 switch (arcn->arcn_code) { 4041 case AR_CN_BOGON: 4042 /* 4043 * Someone is sending ARP packets with a source protocol 4044 * address that we have published and for which we believe our 4045 * entry is authoritative and (when ill_arp_extend is set) 4046 * verified to be unique on the network. 4047 * 4048 * The ARP module internally handles the cases where the sender 4049 * is just probing (for DAD) and where the hardware address of 4050 * a non-authoritative entry has changed. Thus, these are the 4051 * real conflicts, and we have to do resolution. 4052 * 4053 * We back away quickly from the address if it's from DHCP or 4054 * otherwise temporary and hasn't been used recently (or at 4055 * all). We'd like to include "deprecated" addresses here as 4056 * well (as there's no real reason to defend something we're 4057 * discarding), but IPMP "reuses" this flag to mean something 4058 * other than the standard meaning. 4059 * 4060 * If the ARP module above is not extended (meaning that it 4061 * doesn't know how to defend the address), then we just log 4062 * the problem as we always did and continue on. It's not 4063 * right, but there's little else we can do, and those old ATM 4064 * users are going away anyway. 4065 */ 4066 (void) mac_colon_addr((uint8_t *)(arh + 1), arh->arh_hlen, 4067 hbuf, sizeof (hbuf)); 4068 (void) ip_dot_addr(src, sbuf); 4069 if (isv6) 4070 ire = ire_cache_lookup_v6(&v6src, ALL_ZONES, NULL); 4071 else 4072 ire = ire_cache_lookup(src, ALL_ZONES, NULL); 4073 4074 if (ire != NULL && IRE_IS_LOCAL(ire)) { 4075 uint32_t now; 4076 uint32_t maxage; 4077 clock_t lused; 4078 uint_t maxdefense; 4079 uint_t defs; 4080 4081 /* 4082 * First, figure out if this address hasn't been used 4083 * in a while. If it hasn't, then it's a better 4084 * candidate for abandoning. 4085 */ 4086 ipif = ire->ire_ipif; 4087 ASSERT(ipif != NULL); 4088 now = gethrestime_sec(); 4089 maxage = now - ire->ire_create_time; 4090 if (maxage > ip_max_temp_idle) 4091 maxage = ip_max_temp_idle; 4092 lused = drv_hztousec(ddi_get_lbolt() - 4093 ire->ire_last_used_time) / MICROSEC + 1; 4094 if (lused >= maxage && (ipif->ipif_flags & 4095 (IPIF_DHCPRUNNING | IPIF_TEMPORARY))) 4096 maxdefense = ip_max_temp_defend; 4097 else 4098 maxdefense = ip_max_defend; 4099 4100 /* 4101 * Now figure out how many times we've defended 4102 * ourselves. Ignore defenses that happened long in 4103 * the past. 4104 */ 4105 mutex_enter(&ire->ire_lock); 4106 if ((defs = ire->ire_defense_count) > 0 && 4107 now - ire->ire_defense_time > ip_defend_interval) { 4108 ire->ire_defense_count = defs = 0; 4109 } 4110 ire->ire_defense_count++; 4111 ire->ire_defense_time = now; 4112 mutex_exit(&ire->ire_lock); 4113 ill_refhold(ill); 4114 ire_refrele(ire); 4115 4116 /* 4117 * If we've defended ourselves too many times already, 4118 * then give up and tear down the interface(s) using 4119 * this address. Otherwise, defend by sending out a 4120 * gratuitous ARP. 4121 */ 4122 if (defs >= maxdefense && ill->ill_arp_extend) { 4123 (void) qwriter_ip(NULL, ill, q, mp, 4124 ip_arp_excl, CUR_OP, B_FALSE); 4125 } else { 4126 cmn_err(CE_WARN, 4127 "node %s is using our IP address %s on %s", 4128 hbuf, sbuf, ill->ill_name); 4129 /* 4130 * If this is an old (ATM) ARP module, then 4131 * don't try to defend the address. Remain 4132 * compatible with the old behavior. Defend 4133 * only with new ARP. 4134 */ 4135 if (ill->ill_arp_extend) { 4136 (void) qwriter_ip(NULL, ill, q, mp, 4137 ip_arp_defend, CUR_OP, B_FALSE); 4138 } else { 4139 ill_refrele(ill); 4140 } 4141 } 4142 return; 4143 } 4144 cmn_err(CE_WARN, 4145 "proxy ARP problem? Node '%s' is using %s on %s", 4146 hbuf, sbuf, ill->ill_name); 4147 if (ire != NULL) 4148 ire_refrele(ire); 4149 break; 4150 case AR_CN_ANNOUNCE: 4151 if (isv6) { 4152 /* 4153 * For XRESOLV interfaces. 4154 * Delete the IRE cache entry and NCE for this 4155 * v6 address 4156 */ 4157 ip_ire_clookup_and_delete_v6(&v6src); 4158 /* 4159 * If v6src is a non-zero, it's a router address 4160 * as below. Do the same sort of thing to clean 4161 * out off-net IRE_CACHE entries that go through 4162 * the router. 4163 */ 4164 if (!IN6_IS_ADDR_UNSPECIFIED(&v6src)) { 4165 ire_walk_v6(ire_delete_cache_gw_v6, 4166 (char *)&v6src, ALL_ZONES); 4167 } 4168 } else { 4169 nce_hw_map_t hwm; 4170 4171 /* 4172 * ARP gives us a copy of any packet where it thinks 4173 * the address has changed, so that we can update our 4174 * caches. We're responsible for caching known answers 4175 * in the current design. We check whether the 4176 * hardware address really has changed in all of our 4177 * entries that have cached this mapping, and if so, we 4178 * blow them away. This way we will immediately pick 4179 * up the rare case of a host changing hardware 4180 * address. 4181 */ 4182 if (src == 0) 4183 break; 4184 hwm.hwm_addr = src; 4185 hwm.hwm_hwlen = arh->arh_hlen; 4186 hwm.hwm_hwaddr = (uchar_t *)(arh + 1); 4187 ndp_walk_common(&ndp4, NULL, 4188 (pfi_t)nce_delete_hw_changed, &hwm, ALL_ZONES); 4189 } 4190 break; 4191 case AR_CN_READY: 4192 /* No external v6 resolver has a contract to use this */ 4193 if (isv6) 4194 break; 4195 /* If the link is down, we'll retry this later */ 4196 if (!(ill->ill_phyint->phyint_flags & PHYI_RUNNING)) 4197 break; 4198 ipif = ipif_lookup_addr(src, ill, ALL_ZONES, NULL, NULL, 4199 NULL, NULL); 4200 if (ipif != NULL) { 4201 /* 4202 * If this is a duplicate recovery, then we now need to 4203 * go exclusive to bring this thing back up. 4204 */ 4205 if ((ipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)) == 4206 IPIF_DUPLICATE) { 4207 ipif_refrele(ipif); 4208 ill_refhold(ill); 4209 (void) qwriter_ip(NULL, ill, q, mp, 4210 ip_arp_excl, CUR_OP, B_FALSE); 4211 return; 4212 } 4213 /* 4214 * If this is the first notice that this address is 4215 * ready, then let the user know now. 4216 */ 4217 if ((ipif->ipif_flags & IPIF_UP) && 4218 !ipif->ipif_addr_ready) { 4219 ipif_mask_reply(ipif); 4220 ip_rts_ifmsg(ipif); 4221 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 4222 sctp_update_ipif(ipif, SCTP_IPIF_UP); 4223 } 4224 ipif->ipif_addr_ready = 1; 4225 ipif_refrele(ipif); 4226 } 4227 ire = ire_cache_lookup(src, ALL_ZONES, MBLK_GETLABEL(mp)); 4228 if (ire != NULL) { 4229 ire->ire_defense_count = 0; 4230 ire_refrele(ire); 4231 } 4232 break; 4233 case AR_CN_FAILED: 4234 /* No external v6 resolver has a contract to use this */ 4235 if (isv6) 4236 break; 4237 ill_refhold(ill); 4238 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_excl, CUR_OP, 4239 B_FALSE); 4240 return; 4241 } 4242 freemsg(mp); 4243 } 4244 4245 /* 4246 * Create a mblk suitable for carrying the interface index and/or source link 4247 * address. This mblk is tagged as an M_CTL and is sent to ULP. This is used 4248 * when the IP_RECVIF and/or IP_RECVSLLA socket option is set by the user 4249 * application. 4250 */ 4251 mblk_t * 4252 ip_add_info(mblk_t *data_mp, ill_t *ill, uint_t flags) 4253 { 4254 mblk_t *mp; 4255 in_pktinfo_t *pinfo; 4256 ipha_t *ipha; 4257 struct ether_header *pether; 4258 4259 mp = allocb(sizeof (in_pktinfo_t), BPRI_MED); 4260 if (mp == NULL) { 4261 ip1dbg(("ip_add_info: allocation failure.\n")); 4262 return (data_mp); 4263 } 4264 4265 ipha = (ipha_t *)data_mp->b_rptr; 4266 pinfo = (in_pktinfo_t *)mp->b_rptr; 4267 bzero(pinfo, sizeof (in_pktinfo_t)); 4268 pinfo->in_pkt_flags = (uchar_t)flags; 4269 pinfo->in_pkt_ulp_type = IN_PKTINFO; /* Tell ULP what type of info */ 4270 4271 if (flags & IPF_RECVIF) 4272 pinfo->in_pkt_ifindex = ill->ill_phyint->phyint_ifindex; 4273 4274 pether = (struct ether_header *)((char *)ipha 4275 - sizeof (struct ether_header)); 4276 /* 4277 * Make sure the interface is an ethernet type, since this option 4278 * is currently supported only on this type of interface. Also make 4279 * sure we are pointing correctly above db_base. 4280 */ 4281 4282 if ((flags & IPF_RECVSLLA) && 4283 ((uchar_t *)pether >= data_mp->b_datap->db_base) && 4284 (ill->ill_type == IFT_ETHER) && 4285 (ill->ill_net_type == IRE_IF_RESOLVER)) { 4286 4287 pinfo->in_pkt_slla.sdl_type = IFT_ETHER; 4288 bcopy((uchar_t *)pether->ether_shost.ether_addr_octet, 4289 (uchar_t *)pinfo->in_pkt_slla.sdl_data, ETHERADDRL); 4290 } else { 4291 /* 4292 * Clear the bit. Indicate to upper layer that IP is not 4293 * sending this ancillary info. 4294 */ 4295 pinfo->in_pkt_flags = pinfo->in_pkt_flags & ~IPF_RECVSLLA; 4296 } 4297 4298 mp->b_datap->db_type = M_CTL; 4299 mp->b_wptr += sizeof (in_pktinfo_t); 4300 mp->b_cont = data_mp; 4301 4302 return (mp); 4303 } 4304 4305 /* 4306 * Latch in the IPsec state for a stream based on the ipsec_in_t passed in as 4307 * part of the bind request. 4308 */ 4309 4310 boolean_t 4311 ip_bind_ipsec_policy_set(conn_t *connp, mblk_t *policy_mp) 4312 { 4313 ipsec_in_t *ii; 4314 4315 ASSERT(policy_mp != NULL); 4316 ASSERT(policy_mp->b_datap->db_type == IPSEC_POLICY_SET); 4317 4318 ii = (ipsec_in_t *)policy_mp->b_rptr; 4319 ASSERT(ii->ipsec_in_type == IPSEC_IN); 4320 4321 connp->conn_policy = ii->ipsec_in_policy; 4322 ii->ipsec_in_policy = NULL; 4323 4324 if (ii->ipsec_in_action != NULL) { 4325 if (connp->conn_latch == NULL) { 4326 connp->conn_latch = iplatch_create(); 4327 if (connp->conn_latch == NULL) 4328 return (B_FALSE); 4329 } 4330 ipsec_latch_inbound(connp->conn_latch, ii); 4331 } 4332 return (B_TRUE); 4333 } 4334 4335 /* 4336 * Upper level protocols (ULP) pass through bind requests to IP for inspection 4337 * and to arrange for power-fanout assist. The ULP is identified by 4338 * adding a single byte at the end of the original bind message. 4339 * A ULP other than UDP or TCP that wishes to be recognized passes 4340 * down a bind with a zero length address. 4341 * 4342 * The binding works as follows: 4343 * - A zero byte address means just bind to the protocol. 4344 * - A four byte address is treated as a request to validate 4345 * that the address is a valid local address, appropriate for 4346 * an application to bind to. This does not affect any fanout 4347 * information in IP. 4348 * - A sizeof sin_t byte address is used to bind to only the local address 4349 * and port. 4350 * - A sizeof ipa_conn_t byte address contains complete fanout information 4351 * consisting of local and remote addresses and ports. In 4352 * this case, the addresses are both validated as appropriate 4353 * for this operation, and, if so, the information is retained 4354 * for use in the inbound fanout. 4355 * 4356 * The ULP (except in the zero-length bind) can append an 4357 * additional mblk of db_type IRE_DB_REQ_TYPE or IPSEC_POLICY_SET to the 4358 * T_BIND_REQ/O_T_BIND_REQ. IRE_DB_REQ_TYPE indicates that the ULP wants 4359 * a copy of the source or destination IRE (source for local bind; 4360 * destination for complete bind). IPSEC_POLICY_SET indicates that the 4361 * policy information contained should be copied on to the conn. 4362 * 4363 * NOTE : Only one of IRE_DB_REQ_TYPE or IPSEC_POLICY_SET can be present. 4364 */ 4365 mblk_t * 4366 ip_bind_v4(queue_t *q, mblk_t *mp, conn_t *connp) 4367 { 4368 ssize_t len; 4369 struct T_bind_req *tbr; 4370 sin_t *sin; 4371 ipa_conn_t *ac; 4372 uchar_t *ucp; 4373 mblk_t *mp1; 4374 boolean_t ire_requested; 4375 boolean_t ipsec_policy_set = B_FALSE; 4376 int error = 0; 4377 int protocol; 4378 ipa_conn_x_t *acx; 4379 4380 ASSERT(!connp->conn_af_isv6); 4381 connp->conn_pkt_isv6 = B_FALSE; 4382 4383 len = MBLKL(mp); 4384 if (len < (sizeof (*tbr) + 1)) { 4385 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 4386 "ip_bind: bogus msg, len %ld", len); 4387 /* XXX: Need to return something better */ 4388 goto bad_addr; 4389 } 4390 /* Back up and extract the protocol identifier. */ 4391 mp->b_wptr--; 4392 protocol = *mp->b_wptr & 0xFF; 4393 tbr = (struct T_bind_req *)mp->b_rptr; 4394 /* Reset the message type in preparation for shipping it back. */ 4395 DB_TYPE(mp) = M_PCPROTO; 4396 4397 connp->conn_ulp = (uint8_t)protocol; 4398 4399 /* 4400 * Check for a zero length address. This is from a protocol that 4401 * wants to register to receive all packets of its type. 4402 */ 4403 if (tbr->ADDR_length == 0) { 4404 /* 4405 * These protocols are now intercepted in ip_bind_v6(). 4406 * Reject protocol-level binds here for now. 4407 * 4408 * For SCTP raw socket, ICMP sends down a bind with sin_t 4409 * so that the protocol type cannot be SCTP. 4410 */ 4411 if (protocol == IPPROTO_TCP || protocol == IPPROTO_AH || 4412 protocol == IPPROTO_ESP || protocol == IPPROTO_SCTP) { 4413 goto bad_addr; 4414 } 4415 4416 /* 4417 * 4418 * The udp module never sends down a zero-length address, 4419 * and allowing this on a labeled system will break MLP 4420 * functionality. 4421 */ 4422 if (is_system_labeled() && protocol == IPPROTO_UDP) 4423 goto bad_addr; 4424 4425 if (connp->conn_mac_exempt) 4426 goto bad_addr; 4427 4428 /* No hash here really. The table is big enough. */ 4429 connp->conn_srcv6 = ipv6_all_zeros; 4430 4431 ipcl_proto_insert(connp, protocol); 4432 4433 tbr->PRIM_type = T_BIND_ACK; 4434 return (mp); 4435 } 4436 4437 /* Extract the address pointer from the message. */ 4438 ucp = (uchar_t *)mi_offset_param(mp, tbr->ADDR_offset, 4439 tbr->ADDR_length); 4440 if (ucp == NULL) { 4441 ip1dbg(("ip_bind: no address\n")); 4442 goto bad_addr; 4443 } 4444 if (!OK_32PTR(ucp)) { 4445 ip1dbg(("ip_bind: unaligned address\n")); 4446 goto bad_addr; 4447 } 4448 /* 4449 * Check for trailing mps. 4450 */ 4451 4452 mp1 = mp->b_cont; 4453 ire_requested = (mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE); 4454 ipsec_policy_set = (mp1 != NULL && DB_TYPE(mp1) == IPSEC_POLICY_SET); 4455 4456 switch (tbr->ADDR_length) { 4457 default: 4458 ip1dbg(("ip_bind: bad address length %d\n", 4459 (int)tbr->ADDR_length)); 4460 goto bad_addr; 4461 4462 case IP_ADDR_LEN: 4463 /* Verification of local address only */ 4464 error = ip_bind_laddr(connp, mp, *(ipaddr_t *)ucp, 0, 4465 ire_requested, ipsec_policy_set, B_FALSE); 4466 break; 4467 4468 case sizeof (sin_t): 4469 sin = (sin_t *)ucp; 4470 error = ip_bind_laddr(connp, mp, sin->sin_addr.s_addr, 4471 sin->sin_port, ire_requested, ipsec_policy_set, B_TRUE); 4472 break; 4473 4474 case sizeof (ipa_conn_t): 4475 ac = (ipa_conn_t *)ucp; 4476 /* For raw socket, the local port is not set. */ 4477 if (ac->ac_lport == 0) 4478 ac->ac_lport = connp->conn_lport; 4479 /* Always verify destination reachability. */ 4480 error = ip_bind_connected(connp, mp, &ac->ac_laddr, 4481 ac->ac_lport, ac->ac_faddr, ac->ac_fport, ire_requested, 4482 ipsec_policy_set, B_TRUE, B_TRUE); 4483 break; 4484 4485 case sizeof (ipa_conn_x_t): 4486 acx = (ipa_conn_x_t *)ucp; 4487 /* 4488 * Whether or not to verify destination reachability depends 4489 * on the setting of the ACX_VERIFY_DST flag in acx->acx_flags. 4490 */ 4491 error = ip_bind_connected(connp, mp, &acx->acx_conn.ac_laddr, 4492 acx->acx_conn.ac_lport, acx->acx_conn.ac_faddr, 4493 acx->acx_conn.ac_fport, ire_requested, ipsec_policy_set, 4494 B_TRUE, (acx->acx_flags & ACX_VERIFY_DST) != 0); 4495 break; 4496 } 4497 if (error == EINPROGRESS) 4498 return (NULL); 4499 else if (error != 0) 4500 goto bad_addr; 4501 /* 4502 * Pass the IPSEC headers size in ire_ipsec_overhead. 4503 * We can't do this in ip_bind_insert_ire because the policy 4504 * may not have been inherited at that point in time and hence 4505 * conn_out_enforce_policy may not be set. 4506 */ 4507 mp1 = mp->b_cont; 4508 if (ire_requested && connp->conn_out_enforce_policy && 4509 mp1 != NULL && DB_TYPE(mp1) == IRE_DB_REQ_TYPE) { 4510 ire_t *ire = (ire_t *)mp1->b_rptr; 4511 ASSERT(MBLKL(mp1) >= sizeof (ire_t)); 4512 ire->ire_ipsec_overhead = conn_ipsec_length(connp); 4513 } 4514 4515 /* Send it home. */ 4516 mp->b_datap->db_type = M_PCPROTO; 4517 tbr->PRIM_type = T_BIND_ACK; 4518 return (mp); 4519 4520 bad_addr: 4521 /* 4522 * If error = -1 then we generate a TBADADDR - otherwise error is 4523 * a unix errno. 4524 */ 4525 if (error > 0) 4526 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 4527 else 4528 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 4529 return (mp); 4530 } 4531 4532 /* 4533 * Here address is verified to be a valid local address. 4534 * If the IRE_DB_REQ_TYPE mp is present, a broadcast/multicast 4535 * address is also considered a valid local address. 4536 * In the case of a broadcast/multicast address, however, the 4537 * upper protocol is expected to reset the src address 4538 * to 0 if it sees a IRE_BROADCAST type returned so that 4539 * no packets are emitted with broadcast/multicast address as 4540 * source address (that violates hosts requirements RFC1122) 4541 * The addresses valid for bind are: 4542 * (1) - INADDR_ANY (0) 4543 * (2) - IP address of an UP interface 4544 * (3) - IP address of a DOWN interface 4545 * (4) - valid local IP broadcast addresses. In this case 4546 * the conn will only receive packets destined to 4547 * the specified broadcast address. 4548 * (5) - a multicast address. In this case 4549 * the conn will only receive packets destined to 4550 * the specified multicast address. Note: the 4551 * application still has to issue an 4552 * IP_ADD_MEMBERSHIP socket option. 4553 * 4554 * On error, return -1 for TBADADDR otherwise pass the 4555 * errno with TSYSERR reply. 4556 * 4557 * In all the above cases, the bound address must be valid in the current zone. 4558 * When the address is loopback, multicast or broadcast, there might be many 4559 * matching IREs so bind has to look up based on the zone. 4560 * 4561 * Note: lport is in network byte order. 4562 */ 4563 int 4564 ip_bind_laddr(conn_t *connp, mblk_t *mp, ipaddr_t src_addr, uint16_t lport, 4565 boolean_t ire_requested, boolean_t ipsec_policy_set, 4566 boolean_t fanout_insert) 4567 { 4568 int error = 0; 4569 ire_t *src_ire; 4570 mblk_t *policy_mp; 4571 ipif_t *ipif; 4572 zoneid_t zoneid; 4573 4574 if (ipsec_policy_set) { 4575 policy_mp = mp->b_cont; 4576 } 4577 4578 /* 4579 * If it was previously connected, conn_fully_bound would have 4580 * been set. 4581 */ 4582 connp->conn_fully_bound = B_FALSE; 4583 4584 src_ire = NULL; 4585 ipif = NULL; 4586 4587 zoneid = IPCL_ZONEID(connp); 4588 4589 if (src_addr) { 4590 src_ire = ire_route_lookup(src_addr, 0, 0, 0, 4591 NULL, NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 4592 /* 4593 * If an address other than 0.0.0.0 is requested, 4594 * we verify that it is a valid address for bind 4595 * Note: Following code is in if-else-if form for 4596 * readability compared to a condition check. 4597 */ 4598 /* LINTED - statement has no consequent */ 4599 if (IRE_IS_LOCAL(src_ire)) { 4600 /* 4601 * (2) Bind to address of local UP interface 4602 */ 4603 } else if (src_ire && src_ire->ire_type == IRE_BROADCAST) { 4604 /* 4605 * (4) Bind to broadcast address 4606 * Note: permitted only from transports that 4607 * request IRE 4608 */ 4609 if (!ire_requested) 4610 error = EADDRNOTAVAIL; 4611 } else { 4612 /* 4613 * (3) Bind to address of local DOWN interface 4614 * (ipif_lookup_addr() looks up all interfaces 4615 * but we do not get here for UP interfaces 4616 * - case (2) above) 4617 * We put the protocol byte back into the mblk 4618 * since we may come back via ip_wput_nondata() 4619 * later with this mblk if ipif_lookup_addr chooses 4620 * to defer processing. 4621 */ 4622 *mp->b_wptr++ = (char)connp->conn_ulp; 4623 if ((ipif = ipif_lookup_addr(src_addr, NULL, zoneid, 4624 CONNP_TO_WQ(connp), mp, ip_wput_nondata, 4625 &error)) != NULL) { 4626 ipif_refrele(ipif); 4627 } else if (error == EINPROGRESS) { 4628 if (src_ire != NULL) 4629 ire_refrele(src_ire); 4630 return (EINPROGRESS); 4631 } else if (CLASSD(src_addr)) { 4632 error = 0; 4633 if (src_ire != NULL) 4634 ire_refrele(src_ire); 4635 /* 4636 * (5) bind to multicast address. 4637 * Fake out the IRE returned to upper 4638 * layer to be a broadcast IRE. 4639 */ 4640 src_ire = ire_ctable_lookup( 4641 INADDR_BROADCAST, INADDR_ANY, 4642 IRE_BROADCAST, NULL, zoneid, NULL, 4643 (MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY)); 4644 if (src_ire == NULL || !ire_requested) 4645 error = EADDRNOTAVAIL; 4646 } else { 4647 /* 4648 * Not a valid address for bind 4649 */ 4650 error = EADDRNOTAVAIL; 4651 } 4652 /* 4653 * Just to keep it consistent with the processing in 4654 * ip_bind_v4() 4655 */ 4656 mp->b_wptr--; 4657 } 4658 if (error) { 4659 /* Red Alert! Attempting to be a bogon! */ 4660 ip1dbg(("ip_bind: bad src address 0x%x\n", 4661 ntohl(src_addr))); 4662 goto bad_addr; 4663 } 4664 } 4665 4666 /* 4667 * Allow setting new policies. For example, disconnects come 4668 * down as ipa_t bind. As we would have set conn_policy_cached 4669 * to B_TRUE before, we should set it to B_FALSE, so that policy 4670 * can change after the disconnect. 4671 */ 4672 connp->conn_policy_cached = B_FALSE; 4673 4674 /* 4675 * If not fanout_insert this was just an address verification 4676 */ 4677 if (fanout_insert) { 4678 /* 4679 * The addresses have been verified. Time to insert in 4680 * the correct fanout list. 4681 */ 4682 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 4683 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &connp->conn_remv6); 4684 connp->conn_lport = lport; 4685 connp->conn_fport = 0; 4686 /* 4687 * Do we need to add a check to reject Multicast packets 4688 * 4689 * We need to make sure that the conn_recv is set to a non-null 4690 * value before we insert the conn into the classifier table. 4691 * This is to avoid a race with an incoming packet which does an 4692 * ipcl_classify(). 4693 */ 4694 if (*mp->b_wptr == IPPROTO_TCP) 4695 connp->conn_recv = tcp_conn_request; 4696 error = ipcl_bind_insert(connp, *mp->b_wptr, src_addr, lport); 4697 } 4698 4699 if (error == 0) { 4700 if (ire_requested) { 4701 if (!ip_bind_insert_ire(mp, src_ire, NULL)) { 4702 error = -1; 4703 /* Falls through to bad_addr */ 4704 } 4705 } else if (ipsec_policy_set) { 4706 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 4707 error = -1; 4708 /* Falls through to bad_addr */ 4709 } 4710 } 4711 } else if (connp->conn_ulp == IPPROTO_TCP) { 4712 connp->conn_recv = tcp_input; 4713 } 4714 bad_addr: 4715 if (error != 0) { 4716 if (connp->conn_anon_port) { 4717 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 4718 connp->conn_mlp_type, connp->conn_ulp, ntohs(lport), 4719 B_FALSE); 4720 } 4721 connp->conn_mlp_type = mlptSingle; 4722 } 4723 if (src_ire != NULL) 4724 IRE_REFRELE(src_ire); 4725 if (ipsec_policy_set) { 4726 ASSERT(policy_mp == mp->b_cont); 4727 ASSERT(policy_mp != NULL); 4728 freeb(policy_mp); 4729 /* 4730 * As of now assume that nothing else accompanies 4731 * IPSEC_POLICY_SET. 4732 */ 4733 mp->b_cont = NULL; 4734 } 4735 return (error); 4736 } 4737 4738 /* 4739 * Verify that both the source and destination addresses 4740 * are valid. If verify_dst is false, then the destination address may be 4741 * unreachable, i.e. have no route to it. Protocols like TCP want to verify 4742 * destination reachability, while tunnels do not. 4743 * Note that we allow connect to broadcast and multicast 4744 * addresses when ire_requested is set. Thus the ULP 4745 * has to check for IRE_BROADCAST and multicast. 4746 * 4747 * Returns zero if ok. 4748 * On error: returns -1 to mean TBADADDR otherwise returns an errno 4749 * (for use with TSYSERR reply). 4750 * 4751 * Note: lport and fport are in network byte order. 4752 */ 4753 int 4754 ip_bind_connected(conn_t *connp, mblk_t *mp, ipaddr_t *src_addrp, 4755 uint16_t lport, ipaddr_t dst_addr, uint16_t fport, 4756 boolean_t ire_requested, boolean_t ipsec_policy_set, 4757 boolean_t fanout_insert, boolean_t verify_dst) 4758 { 4759 ire_t *src_ire; 4760 ire_t *dst_ire; 4761 int error = 0; 4762 int protocol; 4763 mblk_t *policy_mp; 4764 ire_t *sire = NULL; 4765 ire_t *md_dst_ire = NULL; 4766 ire_t *lso_dst_ire = NULL; 4767 ill_t *ill = NULL; 4768 zoneid_t zoneid; 4769 ipaddr_t src_addr = *src_addrp; 4770 4771 src_ire = dst_ire = NULL; 4772 protocol = *mp->b_wptr & 0xFF; 4773 4774 /* 4775 * If we never got a disconnect before, clear it now. 4776 */ 4777 connp->conn_fully_bound = B_FALSE; 4778 4779 if (ipsec_policy_set) { 4780 policy_mp = mp->b_cont; 4781 } 4782 4783 zoneid = IPCL_ZONEID(connp); 4784 4785 if (CLASSD(dst_addr)) { 4786 /* Pick up an IRE_BROADCAST */ 4787 dst_ire = ire_route_lookup(ip_g_all_ones, 0, 0, 0, NULL, 4788 NULL, zoneid, MBLK_GETLABEL(mp), 4789 (MATCH_IRE_RECURSIVE | 4790 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE | 4791 MATCH_IRE_SECATTR)); 4792 } else { 4793 /* 4794 * If conn_dontroute is set or if conn_nexthop_set is set, 4795 * and onlink ipif is not found set ENETUNREACH error. 4796 */ 4797 if (connp->conn_dontroute || connp->conn_nexthop_set) { 4798 ipif_t *ipif; 4799 4800 ipif = ipif_lookup_onlink_addr(connp->conn_dontroute ? 4801 dst_addr : connp->conn_nexthop_v4, 4802 connp->conn_zoneid); 4803 if (ipif == NULL) { 4804 error = ENETUNREACH; 4805 goto bad_addr; 4806 } 4807 ipif_refrele(ipif); 4808 } 4809 4810 if (connp->conn_nexthop_set) { 4811 dst_ire = ire_route_lookup(connp->conn_nexthop_v4, 0, 4812 0, 0, NULL, NULL, zoneid, MBLK_GETLABEL(mp), 4813 MATCH_IRE_SECATTR); 4814 } else { 4815 dst_ire = ire_route_lookup(dst_addr, 0, 0, 0, NULL, 4816 &sire, zoneid, MBLK_GETLABEL(mp), 4817 (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4818 MATCH_IRE_PARENT | MATCH_IRE_RJ_BHOLE | 4819 MATCH_IRE_SECATTR)); 4820 } 4821 } 4822 /* 4823 * dst_ire can't be a broadcast when not ire_requested. 4824 * We also prevent ire's with src address INADDR_ANY to 4825 * be used, which are created temporarily for 4826 * sending out packets from endpoints that have 4827 * conn_unspec_src set. If verify_dst is true, the destination must be 4828 * reachable. If verify_dst is false, the destination needn't be 4829 * reachable. 4830 * 4831 * If we match on a reject or black hole, then we've got a 4832 * local failure. May as well fail out the connect() attempt, 4833 * since it's never going to succeed. 4834 */ 4835 if (dst_ire == NULL || dst_ire->ire_src_addr == INADDR_ANY || 4836 (dst_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) || 4837 ((dst_ire->ire_type & IRE_BROADCAST) && !ire_requested)) { 4838 /* 4839 * If we're verifying destination reachability, we always want 4840 * to complain here. 4841 * 4842 * If we're not verifying destination reachability but the 4843 * destination has a route, we still want to fail on the 4844 * temporary address and broadcast address tests. 4845 */ 4846 if (verify_dst || (dst_ire != NULL)) { 4847 if (ip_debug > 2) { 4848 pr_addr_dbg("ip_bind_connected: bad connected " 4849 "dst %s\n", AF_INET, &dst_addr); 4850 } 4851 if (dst_ire == NULL || !(dst_ire->ire_type & IRE_HOST)) 4852 error = ENETUNREACH; 4853 else 4854 error = EHOSTUNREACH; 4855 goto bad_addr; 4856 } 4857 } 4858 4859 /* 4860 * We now know that routing will allow us to reach the destination. 4861 * Check whether Trusted Solaris policy allows communication with this 4862 * host, and pretend that the destination is unreachable if not. 4863 * 4864 * This is never a problem for TCP, since that transport is known to 4865 * compute the label properly as part of the tcp_rput_other T_BIND_ACK 4866 * handling. If the remote is unreachable, it will be detected at that 4867 * point, so there's no reason to check it here. 4868 * 4869 * Note that for sendto (and other datagram-oriented friends), this 4870 * check is done as part of the data path label computation instead. 4871 * The check here is just to make non-TCP connect() report the right 4872 * error. 4873 */ 4874 if (dst_ire != NULL && is_system_labeled() && 4875 !IPCL_IS_TCP(connp) && 4876 tsol_compute_label(DB_CREDDEF(mp, connp->conn_cred), dst_addr, NULL, 4877 connp->conn_mac_exempt) != 0) { 4878 error = EHOSTUNREACH; 4879 if (ip_debug > 2) { 4880 pr_addr_dbg("ip_bind_connected: no label for dst %s\n", 4881 AF_INET, &dst_addr); 4882 } 4883 goto bad_addr; 4884 } 4885 4886 /* 4887 * If the app does a connect(), it means that it will most likely 4888 * send more than 1 packet to the destination. It makes sense 4889 * to clear the temporary flag. 4890 */ 4891 if (dst_ire != NULL && dst_ire->ire_type == IRE_CACHE && 4892 (dst_ire->ire_marks & IRE_MARK_TEMPORARY)) { 4893 irb_t *irb = dst_ire->ire_bucket; 4894 4895 rw_enter(&irb->irb_lock, RW_WRITER); 4896 dst_ire->ire_marks &= ~IRE_MARK_TEMPORARY; 4897 irb->irb_tmp_ire_cnt--; 4898 rw_exit(&irb->irb_lock); 4899 } 4900 4901 /* 4902 * See if we should notify ULP about LSO/MDT; we do this whether or not 4903 * ire_requested is TRUE, in order to handle active connects; LSO/MDT 4904 * eligibility tests for passive connects are handled separately 4905 * through tcp_adapt_ire(). We do this before the source address 4906 * selection, because dst_ire may change after a call to 4907 * ipif_select_source(). This is a best-effort check, as the 4908 * packet for this connection may not actually go through 4909 * dst_ire->ire_stq, and the exact IRE can only be known after 4910 * calling ip_newroute(). This is why we further check on the 4911 * IRE during LSO/Multidata packet transmission in 4912 * tcp_lsosend()/tcp_multisend(). 4913 */ 4914 if (!ipsec_policy_set && dst_ire != NULL && 4915 !(dst_ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK | IRE_BROADCAST)) && 4916 (ill = ire_to_ill(dst_ire), ill != NULL)) { 4917 if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 4918 lso_dst_ire = dst_ire; 4919 IRE_REFHOLD(lso_dst_ire); 4920 } else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) { 4921 md_dst_ire = dst_ire; 4922 IRE_REFHOLD(md_dst_ire); 4923 } 4924 } 4925 4926 if (dst_ire != NULL && 4927 dst_ire->ire_type == IRE_LOCAL && 4928 dst_ire->ire_zoneid != zoneid && dst_ire->ire_zoneid != ALL_ZONES) { 4929 /* 4930 * If the IRE belongs to a different zone, look for a matching 4931 * route in the forwarding table and use the source address from 4932 * that route. 4933 */ 4934 src_ire = ire_ftable_lookup(dst_addr, 0, 0, 0, NULL, NULL, 4935 zoneid, 0, NULL, 4936 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 4937 MATCH_IRE_RJ_BHOLE); 4938 if (src_ire == NULL) { 4939 error = EHOSTUNREACH; 4940 goto bad_addr; 4941 } else if (src_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 4942 if (!(src_ire->ire_type & IRE_HOST)) 4943 error = ENETUNREACH; 4944 else 4945 error = EHOSTUNREACH; 4946 goto bad_addr; 4947 } 4948 if (src_addr == INADDR_ANY) 4949 src_addr = src_ire->ire_src_addr; 4950 ire_refrele(src_ire); 4951 src_ire = NULL; 4952 } else if ((src_addr == INADDR_ANY) && (dst_ire != NULL)) { 4953 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 4954 src_addr = sire->ire_src_addr; 4955 ire_refrele(dst_ire); 4956 dst_ire = sire; 4957 sire = NULL; 4958 } else { 4959 /* 4960 * Pick a source address so that a proper inbound 4961 * load spreading would happen. 4962 */ 4963 ill_t *dst_ill = dst_ire->ire_ipif->ipif_ill; 4964 ipif_t *src_ipif = NULL; 4965 ire_t *ipif_ire; 4966 4967 /* 4968 * Supply a local source address such that inbound 4969 * load spreading happens. 4970 * 4971 * Determine the best source address on this ill for 4972 * the destination. 4973 * 4974 * 1) For broadcast, we should return a broadcast ire 4975 * found above so that upper layers know that the 4976 * destination address is a broadcast address. 4977 * 4978 * 2) If this is part of a group, select a better 4979 * source address so that better inbound load 4980 * balancing happens. Do the same if the ipif 4981 * is DEPRECATED. 4982 * 4983 * 3) If the outgoing interface is part of a usesrc 4984 * group, then try selecting a source address from 4985 * the usesrc ILL. 4986 */ 4987 if ((dst_ire->ire_zoneid != zoneid && 4988 dst_ire->ire_zoneid != ALL_ZONES) || 4989 (!(dst_ire->ire_type & IRE_BROADCAST) && 4990 ((dst_ill->ill_group != NULL) || 4991 (dst_ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 4992 (dst_ill->ill_usesrc_ifindex != 0)))) { 4993 /* 4994 * If the destination is reachable via a 4995 * given gateway, the selected source address 4996 * should be in the same subnet as the gateway. 4997 * Otherwise, the destination is not reachable. 4998 * 4999 * If there are no interfaces on the same subnet 5000 * as the destination, ipif_select_source gives 5001 * first non-deprecated interface which might be 5002 * on a different subnet than the gateway. 5003 * This is not desirable. Hence pass the dst_ire 5004 * source address to ipif_select_source. 5005 * It is sure that the destination is reachable 5006 * with the dst_ire source address subnet. 5007 * So passing dst_ire source address to 5008 * ipif_select_source will make sure that the 5009 * selected source will be on the same subnet 5010 * as dst_ire source address. 5011 */ 5012 ipaddr_t saddr = 5013 dst_ire->ire_ipif->ipif_src_addr; 5014 src_ipif = ipif_select_source(dst_ill, 5015 saddr, zoneid); 5016 if (src_ipif != NULL) { 5017 if (IS_VNI(src_ipif->ipif_ill)) { 5018 /* 5019 * For VNI there is no 5020 * interface route 5021 */ 5022 src_addr = 5023 src_ipif->ipif_src_addr; 5024 } else { 5025 ipif_ire = 5026 ipif_to_ire(src_ipif); 5027 if (ipif_ire != NULL) { 5028 IRE_REFRELE(dst_ire); 5029 dst_ire = ipif_ire; 5030 } 5031 src_addr = 5032 dst_ire->ire_src_addr; 5033 } 5034 ipif_refrele(src_ipif); 5035 } else { 5036 src_addr = dst_ire->ire_src_addr; 5037 } 5038 } else { 5039 src_addr = dst_ire->ire_src_addr; 5040 } 5041 } 5042 } 5043 5044 /* 5045 * We do ire_route_lookup() here (and not 5046 * interface lookup as we assert that 5047 * src_addr should only come from an 5048 * UP interface for hard binding. 5049 */ 5050 ASSERT(src_ire == NULL); 5051 src_ire = ire_route_lookup(src_addr, 0, 0, 0, NULL, 5052 NULL, zoneid, NULL, MATCH_IRE_ZONEONLY); 5053 /* src_ire must be a local|loopback */ 5054 if (!IRE_IS_LOCAL(src_ire)) { 5055 if (ip_debug > 2) { 5056 pr_addr_dbg("ip_bind_connected: bad connected " 5057 "src %s\n", AF_INET, &src_addr); 5058 } 5059 error = EADDRNOTAVAIL; 5060 goto bad_addr; 5061 } 5062 5063 /* 5064 * If the source address is a loopback address, the 5065 * destination had best be local or multicast. 5066 * The transports that can't handle multicast will reject 5067 * those addresses. 5068 */ 5069 if (src_ire->ire_type == IRE_LOOPBACK && 5070 !(IRE_IS_LOCAL(dst_ire) || CLASSD(dst_addr))) { 5071 ip1dbg(("ip_bind_connected: bad connected loopback\n")); 5072 error = -1; 5073 goto bad_addr; 5074 } 5075 5076 /* 5077 * Allow setting new policies. For example, disconnects come 5078 * down as ipa_t bind. As we would have set conn_policy_cached 5079 * to B_TRUE before, we should set it to B_FALSE, so that policy 5080 * can change after the disconnect. 5081 */ 5082 connp->conn_policy_cached = B_FALSE; 5083 5084 /* 5085 * Set the conn addresses/ports immediately, so the IPsec policy calls 5086 * can handle their passed-in conn's. 5087 */ 5088 5089 IN6_IPADDR_TO_V4MAPPED(src_addr, &connp->conn_srcv6); 5090 IN6_IPADDR_TO_V4MAPPED(dst_addr, &connp->conn_remv6); 5091 connp->conn_lport = lport; 5092 connp->conn_fport = fport; 5093 *src_addrp = src_addr; 5094 5095 ASSERT(!(ipsec_policy_set && ire_requested)); 5096 if (ire_requested) { 5097 iulp_t *ulp_info = NULL; 5098 5099 /* 5100 * Note that sire will not be NULL if this is an off-link 5101 * connection and there is not cache for that dest yet. 5102 * 5103 * XXX Because of an existing bug, if there are multiple 5104 * default routes, the IRE returned now may not be the actual 5105 * default route used (default routes are chosen in a 5106 * round robin fashion). So if the metrics for different 5107 * default routes are different, we may return the wrong 5108 * metrics. This will not be a problem if the existing 5109 * bug is fixed. 5110 */ 5111 if (sire != NULL) { 5112 ulp_info = &(sire->ire_uinfo); 5113 } 5114 if (!ip_bind_insert_ire(mp, dst_ire, ulp_info)) { 5115 error = -1; 5116 goto bad_addr; 5117 } 5118 } else if (ipsec_policy_set) { 5119 if (!ip_bind_ipsec_policy_set(connp, policy_mp)) { 5120 error = -1; 5121 goto bad_addr; 5122 } 5123 } 5124 5125 /* 5126 * Cache IPsec policy in this conn. If we have per-socket policy, 5127 * we'll cache that. If we don't, we'll inherit global policy. 5128 * 5129 * We can't insert until the conn reflects the policy. Note that 5130 * conn_policy_cached is set by ipsec_conn_cache_policy() even for 5131 * connections where we don't have a policy. This is to prevent 5132 * global policy lookups in the inbound path. 5133 * 5134 * If we insert before we set conn_policy_cached, 5135 * CONN_INBOUND_POLICY_PRESENT() check can still evaluate true 5136 * because global policy cound be non-empty. We normally call 5137 * ipsec_check_policy() for conn_policy_cached connections only if 5138 * ipc_in_enforce_policy is set. But in this case, 5139 * conn_policy_cached can get set anytime since we made the 5140 * CONN_INBOUND_POLICY_PRESENT() check and ipsec_check_policy() is 5141 * called, which will make the above assumption false. Thus, we 5142 * need to insert after we set conn_policy_cached. 5143 */ 5144 if ((error = ipsec_conn_cache_policy(connp, B_TRUE)) != 0) 5145 goto bad_addr; 5146 5147 if (fanout_insert) { 5148 /* 5149 * The addresses have been verified. Time to insert in 5150 * the correct fanout list. 5151 * We need to make sure that the conn_recv is set to a non-null 5152 * value before we insert into the classifier table to avoid a 5153 * race with an incoming packet which does an ipcl_classify(). 5154 */ 5155 if (protocol == IPPROTO_TCP) 5156 connp->conn_recv = tcp_input; 5157 error = ipcl_conn_insert(connp, protocol, src_addr, 5158 dst_addr, connp->conn_ports); 5159 } 5160 5161 if (error == 0) { 5162 connp->conn_fully_bound = B_TRUE; 5163 /* 5164 * Our initial checks for LSO/MDT have passed; the IRE is not 5165 * LOCAL/LOOPBACK/BROADCAST, and the link layer seems to 5166 * be supporting LSO/MDT. Pass the IRE, IPC and ILL into 5167 * ip_xxinfo_return(), which performs further checks 5168 * against them and upon success, returns the LSO/MDT info 5169 * mblk which we will attach to the bind acknowledgment. 5170 */ 5171 if (lso_dst_ire != NULL) { 5172 mblk_t *lsoinfo_mp; 5173 5174 ASSERT(ill->ill_lso_capab != NULL); 5175 if ((lsoinfo_mp = ip_lsoinfo_return(lso_dst_ire, connp, 5176 ill->ill_name, ill->ill_lso_capab)) != NULL) 5177 linkb(mp, lsoinfo_mp); 5178 } else if (md_dst_ire != NULL) { 5179 mblk_t *mdinfo_mp; 5180 5181 ASSERT(ill->ill_mdt_capab != NULL); 5182 if ((mdinfo_mp = ip_mdinfo_return(md_dst_ire, connp, 5183 ill->ill_name, ill->ill_mdt_capab)) != NULL) 5184 linkb(mp, mdinfo_mp); 5185 } 5186 } 5187 bad_addr: 5188 if (ipsec_policy_set) { 5189 ASSERT(policy_mp == mp->b_cont); 5190 ASSERT(policy_mp != NULL); 5191 freeb(policy_mp); 5192 /* 5193 * As of now assume that nothing else accompanies 5194 * IPSEC_POLICY_SET. 5195 */ 5196 mp->b_cont = NULL; 5197 } 5198 if (src_ire != NULL) 5199 IRE_REFRELE(src_ire); 5200 if (dst_ire != NULL) 5201 IRE_REFRELE(dst_ire); 5202 if (sire != NULL) 5203 IRE_REFRELE(sire); 5204 if (md_dst_ire != NULL) 5205 IRE_REFRELE(md_dst_ire); 5206 if (lso_dst_ire != NULL) 5207 IRE_REFRELE(lso_dst_ire); 5208 return (error); 5209 } 5210 5211 /* 5212 * Insert the ire in b_cont. Returns false if it fails (due to lack of space). 5213 * Prefers dst_ire over src_ire. 5214 */ 5215 static boolean_t 5216 ip_bind_insert_ire(mblk_t *mp, ire_t *ire, iulp_t *ulp_info) 5217 { 5218 mblk_t *mp1; 5219 ire_t *ret_ire = NULL; 5220 5221 mp1 = mp->b_cont; 5222 ASSERT(mp1 != NULL); 5223 5224 if (ire != NULL) { 5225 /* 5226 * mp1 initialized above to IRE_DB_REQ_TYPE 5227 * appended mblk. Its <upper protocol>'s 5228 * job to make sure there is room. 5229 */ 5230 if ((mp1->b_datap->db_lim - mp1->b_rptr) < sizeof (ire_t)) 5231 return (0); 5232 5233 mp1->b_datap->db_type = IRE_DB_TYPE; 5234 mp1->b_wptr = mp1->b_rptr + sizeof (ire_t); 5235 bcopy(ire, mp1->b_rptr, sizeof (ire_t)); 5236 ret_ire = (ire_t *)mp1->b_rptr; 5237 /* 5238 * Pass the latest setting of the ip_path_mtu_discovery and 5239 * copy the ulp info if any. 5240 */ 5241 ret_ire->ire_frag_flag |= (ip_path_mtu_discovery) ? 5242 IPH_DF : 0; 5243 if (ulp_info != NULL) { 5244 bcopy(ulp_info, &(ret_ire->ire_uinfo), 5245 sizeof (iulp_t)); 5246 } 5247 ret_ire->ire_mp = mp1; 5248 } else { 5249 /* 5250 * No IRE was found. Remove IRE mblk. 5251 */ 5252 mp->b_cont = mp1->b_cont; 5253 freeb(mp1); 5254 } 5255 5256 return (1); 5257 } 5258 5259 /* 5260 * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping 5261 * the final piece where we don't. Return a pointer to the first mblk in the 5262 * result, and update the pointer to the next mblk to chew on. If anything 5263 * goes wrong (i.e., dupb fails), we waste everything in sight and return a 5264 * NULL pointer. 5265 */ 5266 mblk_t * 5267 ip_carve_mp(mblk_t **mpp, ssize_t len) 5268 { 5269 mblk_t *mp0; 5270 mblk_t *mp1; 5271 mblk_t *mp2; 5272 5273 if (!len || !mpp || !(mp0 = *mpp)) 5274 return (NULL); 5275 /* If we aren't going to consume the first mblk, we need a dup. */ 5276 if (mp0->b_wptr - mp0->b_rptr > len) { 5277 mp1 = dupb(mp0); 5278 if (mp1) { 5279 /* Partition the data between the two mblks. */ 5280 mp1->b_wptr = mp1->b_rptr + len; 5281 mp0->b_rptr = mp1->b_wptr; 5282 /* 5283 * after adjustments if mblk not consumed is now 5284 * unaligned, try to align it. If this fails free 5285 * all messages and let upper layer recover. 5286 */ 5287 if (!OK_32PTR(mp0->b_rptr)) { 5288 if (!pullupmsg(mp0, -1)) { 5289 freemsg(mp0); 5290 freemsg(mp1); 5291 *mpp = NULL; 5292 return (NULL); 5293 } 5294 } 5295 } 5296 return (mp1); 5297 } 5298 /* Eat through as many mblks as we need to get len bytes. */ 5299 len -= mp0->b_wptr - mp0->b_rptr; 5300 for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) { 5301 if (mp2->b_wptr - mp2->b_rptr > len) { 5302 /* 5303 * We won't consume the entire last mblk. Like 5304 * above, dup and partition it. 5305 */ 5306 mp1->b_cont = dupb(mp2); 5307 mp1 = mp1->b_cont; 5308 if (!mp1) { 5309 /* 5310 * Trouble. Rather than go to a lot of 5311 * trouble to clean up, we free the messages. 5312 * This won't be any worse than losing it on 5313 * the wire. 5314 */ 5315 freemsg(mp0); 5316 freemsg(mp2); 5317 *mpp = NULL; 5318 return (NULL); 5319 } 5320 mp1->b_wptr = mp1->b_rptr + len; 5321 mp2->b_rptr = mp1->b_wptr; 5322 /* 5323 * after adjustments if mblk not consumed is now 5324 * unaligned, try to align it. If this fails free 5325 * all messages and let upper layer recover. 5326 */ 5327 if (!OK_32PTR(mp2->b_rptr)) { 5328 if (!pullupmsg(mp2, -1)) { 5329 freemsg(mp0); 5330 freemsg(mp2); 5331 *mpp = NULL; 5332 return (NULL); 5333 } 5334 } 5335 *mpp = mp2; 5336 return (mp0); 5337 } 5338 /* Decrement len by the amount we just got. */ 5339 len -= mp2->b_wptr - mp2->b_rptr; 5340 } 5341 /* 5342 * len should be reduced to zero now. If not our caller has 5343 * screwed up. 5344 */ 5345 if (len) { 5346 /* Shouldn't happen! */ 5347 freemsg(mp0); 5348 *mpp = NULL; 5349 return (NULL); 5350 } 5351 /* 5352 * We consumed up to exactly the end of an mblk. Detach the part 5353 * we are returning from the rest of the chain. 5354 */ 5355 mp1->b_cont = NULL; 5356 *mpp = mp2; 5357 return (mp0); 5358 } 5359 5360 /* The ill stream is being unplumbed. Called from ip_close */ 5361 int 5362 ip_modclose(ill_t *ill) 5363 { 5364 5365 boolean_t success; 5366 ipsq_t *ipsq; 5367 ipif_t *ipif; 5368 queue_t *q = ill->ill_rq; 5369 hook_nic_event_t *info; 5370 clock_t timeout; 5371 5372 /* 5373 * Wait for the ACKs of all deferred control messages to be processed. 5374 * In particular, we wait for a potential capability reset initiated 5375 * in ip_sioctl_plink() to complete before proceeding. 5376 * 5377 * Note: we wait for at most ip_modclose_ackwait_ms (by default 3000 ms) 5378 * in case the driver never replies. 5379 */ 5380 timeout = lbolt + MSEC_TO_TICK(ip_modclose_ackwait_ms); 5381 mutex_enter(&ill->ill_lock); 5382 while (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 5383 if (cv_timedwait(&ill->ill_cv, &ill->ill_lock, timeout) < 0) { 5384 /* Timeout */ 5385 break; 5386 } 5387 } 5388 mutex_exit(&ill->ill_lock); 5389 5390 /* 5391 * Forcibly enter the ipsq after some delay. This is to take 5392 * care of the case when some ioctl does not complete because 5393 * we sent a control message to the driver and it did not 5394 * send us a reply. We want to be able to at least unplumb 5395 * and replumb rather than force the user to reboot the system. 5396 */ 5397 success = ipsq_enter(ill, B_FALSE); 5398 5399 /* 5400 * Open/close/push/pop is guaranteed to be single threaded 5401 * per stream by STREAMS. FS guarantees that all references 5402 * from top are gone before close is called. So there can't 5403 * be another close thread that has set CONDEMNED on this ill. 5404 * and cause ipsq_enter to return failure. 5405 */ 5406 ASSERT(success); 5407 ipsq = ill->ill_phyint->phyint_ipsq; 5408 5409 /* 5410 * Mark it condemned. No new reference will be made to this ill. 5411 * Lookup functions will return an error. Threads that try to 5412 * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures 5413 * that the refcnt will drop down to zero. 5414 */ 5415 mutex_enter(&ill->ill_lock); 5416 ill->ill_state_flags |= ILL_CONDEMNED; 5417 for (ipif = ill->ill_ipif; ipif != NULL; 5418 ipif = ipif->ipif_next) { 5419 ipif->ipif_state_flags |= IPIF_CONDEMNED; 5420 } 5421 /* 5422 * Wake up anybody waiting to enter the ipsq. ipsq_enter 5423 * returns error if ILL_CONDEMNED is set 5424 */ 5425 cv_broadcast(&ill->ill_cv); 5426 mutex_exit(&ill->ill_lock); 5427 5428 /* 5429 * Send all the deferred control messages downstream which came in 5430 * during the small window right before ipsq_enter(). We do this 5431 * without waiting for the ACKs because all the ACKs for M_PROTO 5432 * messages are ignored in ip_rput() when ILL_CONDEMNED is set. 5433 */ 5434 ill_send_all_deferred_mp(ill); 5435 5436 /* 5437 * Shut down fragmentation reassembly. 5438 * ill_frag_timer won't start a timer again. 5439 * Now cancel any existing timer 5440 */ 5441 (void) untimeout(ill->ill_frag_timer_id); 5442 (void) ill_frag_timeout(ill, 0); 5443 5444 /* 5445 * If MOVE was in progress, clear the 5446 * move_in_progress fields also. 5447 */ 5448 if (ill->ill_move_in_progress) { 5449 ILL_CLEAR_MOVE(ill); 5450 } 5451 5452 /* 5453 * Call ill_delete to bring down the ipifs, ilms and ill on 5454 * this ill. Then wait for the refcnts to drop to zero. 5455 * ill_is_quiescent checks whether the ill is really quiescent. 5456 * Then make sure that threads that are waiting to enter the 5457 * ipsq have seen the error returned by ipsq_enter and have 5458 * gone away. Then we call ill_delete_tail which does the 5459 * DL_UNBIND and DL_DETACH with the driver and then qprocsoff. 5460 */ 5461 ill_delete(ill); 5462 mutex_enter(&ill->ill_lock); 5463 while (!ill_is_quiescent(ill)) 5464 cv_wait(&ill->ill_cv, &ill->ill_lock); 5465 while (ill->ill_waiters) 5466 cv_wait(&ill->ill_cv, &ill->ill_lock); 5467 5468 mutex_exit(&ill->ill_lock); 5469 5470 /* qprocsoff is called in ill_delete_tail */ 5471 ill_delete_tail(ill); 5472 5473 /* 5474 * Walk through all upper (conn) streams and qenable 5475 * those that have queued data. 5476 * close synchronization needs this to 5477 * be done to ensure that all upper layers blocked 5478 * due to flow control to the closing device 5479 * get unblocked. 5480 */ 5481 ip1dbg(("ip_wsrv: walking\n")); 5482 conn_walk_drain(); 5483 5484 mutex_enter(&ip_mi_lock); 5485 mi_close_unlink(&ip_g_head, (IDP)ill); 5486 mutex_exit(&ip_mi_lock); 5487 5488 /* 5489 * credp could be null if the open didn't succeed and ip_modopen 5490 * itself calls ip_close. 5491 */ 5492 if (ill->ill_credp != NULL) 5493 crfree(ill->ill_credp); 5494 5495 /* 5496 * Unhook the nic event message from the ill and enqueue it into the nic 5497 * event taskq. 5498 */ 5499 if ((info = ill->ill_nic_event_info) != NULL) { 5500 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, 5501 (void *)info, DDI_SLEEP) == DDI_FAILURE) { 5502 ip2dbg(("ip_ioctl_finish:ddi_taskq_dispatch failed\n")); 5503 if (info->hne_data != NULL) 5504 kmem_free(info->hne_data, info->hne_datalen); 5505 kmem_free(info, sizeof (hook_nic_event_t)); 5506 } 5507 ill->ill_nic_event_info = NULL; 5508 } 5509 5510 mi_close_free((IDP)ill); 5511 q->q_ptr = WR(q)->q_ptr = NULL; 5512 5513 ipsq_exit(ipsq, B_TRUE, B_TRUE); 5514 5515 return (0); 5516 } 5517 5518 /* 5519 * This is called as part of close() for both IP and UDP 5520 * in order to quiesce the conn. 5521 */ 5522 void 5523 ip_quiesce_conn(conn_t *connp) 5524 { 5525 boolean_t drain_cleanup_reqd = B_FALSE; 5526 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 5527 boolean_t ilg_cleanup_reqd = B_FALSE; 5528 5529 ASSERT(!IPCL_IS_TCP(connp)); 5530 5531 /* 5532 * Mark the conn as closing, and this conn must not be 5533 * inserted in future into any list. Eg. conn_drain_insert(), 5534 * won't insert this conn into the conn_drain_list. 5535 * Similarly ill_pending_mp_add() will not add any mp to 5536 * the pending mp list, after this conn has started closing. 5537 * 5538 * conn_idl, conn_pending_ill, conn_down_pending_ill, conn_ilg 5539 * cannot get set henceforth. 5540 */ 5541 mutex_enter(&connp->conn_lock); 5542 ASSERT(!(connp->conn_state_flags & CONN_QUIESCED)); 5543 connp->conn_state_flags |= CONN_CLOSING; 5544 if (connp->conn_idl != NULL) 5545 drain_cleanup_reqd = B_TRUE; 5546 if (connp->conn_oper_pending_ill != NULL) 5547 conn_ioctl_cleanup_reqd = B_TRUE; 5548 if (connp->conn_ilg_inuse != 0) 5549 ilg_cleanup_reqd = B_TRUE; 5550 mutex_exit(&connp->conn_lock); 5551 5552 if (IPCL_IS_UDP(connp)) 5553 udp_quiesce_conn(connp); 5554 5555 if (conn_ioctl_cleanup_reqd) 5556 conn_ioctl_cleanup(connp); 5557 5558 if (is_system_labeled() && connp->conn_anon_port) { 5559 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 5560 connp->conn_mlp_type, connp->conn_ulp, 5561 ntohs(connp->conn_lport), B_FALSE); 5562 connp->conn_anon_port = 0; 5563 } 5564 connp->conn_mlp_type = mlptSingle; 5565 5566 /* 5567 * Remove this conn from any fanout list it is on. 5568 * and then wait for any threads currently operating 5569 * on this endpoint to finish 5570 */ 5571 ipcl_hash_remove(connp); 5572 5573 /* 5574 * Remove this conn from the drain list, and do 5575 * any other cleanup that may be required. 5576 * (Only non-tcp streams may have a non-null conn_idl. 5577 * TCP streams are never flow controlled, and 5578 * conn_idl will be null) 5579 */ 5580 if (drain_cleanup_reqd) 5581 conn_drain_tail(connp, B_TRUE); 5582 5583 if (connp->conn_rq == ip_g_mrouter || connp->conn_wq == ip_g_mrouter) 5584 (void) ip_mrouter_done(NULL); 5585 5586 if (ilg_cleanup_reqd) 5587 ilg_delete_all(connp); 5588 5589 conn_delete_ire(connp, NULL); 5590 5591 /* 5592 * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED. 5593 * callers from write side can't be there now because close 5594 * is in progress. The only other caller is ipcl_walk 5595 * which checks for the condemned flag. 5596 */ 5597 mutex_enter(&connp->conn_lock); 5598 connp->conn_state_flags |= CONN_CONDEMNED; 5599 while (connp->conn_ref != 1) 5600 cv_wait(&connp->conn_cv, &connp->conn_lock); 5601 connp->conn_state_flags |= CONN_QUIESCED; 5602 mutex_exit(&connp->conn_lock); 5603 } 5604 5605 /* ARGSUSED */ 5606 int 5607 ip_close(queue_t *q, int flags) 5608 { 5609 conn_t *connp; 5610 5611 TRACE_1(TR_FAC_IP, TR_IP_CLOSE, "ip_close: q %p", q); 5612 5613 /* 5614 * Call the appropriate delete routine depending on whether this is 5615 * a module or device. 5616 */ 5617 if (WR(q)->q_next != NULL) { 5618 /* This is a module close */ 5619 return (ip_modclose((ill_t *)q->q_ptr)); 5620 } 5621 5622 connp = q->q_ptr; 5623 ip_quiesce_conn(connp); 5624 5625 qprocsoff(q); 5626 5627 /* 5628 * Now we are truly single threaded on this stream, and can 5629 * delete the things hanging off the connp, and finally the connp. 5630 * We removed this connp from the fanout list, it cannot be 5631 * accessed thru the fanouts, and we already waited for the 5632 * conn_ref to drop to 0. We are already in close, so 5633 * there cannot be any other thread from the top. qprocsoff 5634 * has completed, and service has completed or won't run in 5635 * future. 5636 */ 5637 ASSERT(connp->conn_ref == 1); 5638 5639 /* 5640 * A conn which was previously marked as IPCL_UDP cannot 5641 * retain the flag because it would have been cleared by 5642 * udp_close(). 5643 */ 5644 ASSERT(!IPCL_IS_UDP(connp)); 5645 5646 if (connp->conn_latch != NULL) { 5647 IPLATCH_REFRELE(connp->conn_latch); 5648 connp->conn_latch = NULL; 5649 } 5650 if (connp->conn_policy != NULL) { 5651 IPPH_REFRELE(connp->conn_policy); 5652 connp->conn_policy = NULL; 5653 } 5654 if (connp->conn_ipsec_opt_mp != NULL) { 5655 freemsg(connp->conn_ipsec_opt_mp); 5656 connp->conn_ipsec_opt_mp = NULL; 5657 } 5658 5659 inet_minor_free(ip_minor_arena, connp->conn_dev); 5660 5661 connp->conn_ref--; 5662 ipcl_conn_destroy(connp); 5663 5664 q->q_ptr = WR(q)->q_ptr = NULL; 5665 return (0); 5666 } 5667 5668 int 5669 ip_snmpmod_close(queue_t *q) 5670 { 5671 conn_t *connp = Q_TO_CONN(q); 5672 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5673 5674 qprocsoff(q); 5675 5676 if (connp->conn_flags & IPCL_UDPMOD) 5677 udp_close_free(connp); 5678 5679 if (connp->conn_cred != NULL) { 5680 crfree(connp->conn_cred); 5681 connp->conn_cred = NULL; 5682 } 5683 CONN_DEC_REF(connp); 5684 q->q_ptr = WR(q)->q_ptr = NULL; 5685 return (0); 5686 } 5687 5688 /* 5689 * Write side put procedure for TCP module or UDP module instance. TCP/UDP 5690 * as a module is only used for MIB browsers that push TCP/UDP over IP or ARP. 5691 * The only supported primitives are T_SVR4_OPTMGMT_REQ and T_OPTMGMT_REQ. 5692 * M_FLUSH messages and ioctls are only passed downstream; we don't flush our 5693 * queues as we never enqueue messages there and we don't handle any ioctls. 5694 * Everything else is freed. 5695 */ 5696 void 5697 ip_snmpmod_wput(queue_t *q, mblk_t *mp) 5698 { 5699 conn_t *connp = q->q_ptr; 5700 pfi_t setfn; 5701 pfi_t getfn; 5702 5703 ASSERT(connp->conn_flags & (IPCL_TCPMOD | IPCL_UDPMOD)); 5704 5705 switch (DB_TYPE(mp)) { 5706 case M_PROTO: 5707 case M_PCPROTO: 5708 if ((MBLKL(mp) >= sizeof (t_scalar_t)) && 5709 ((((union T_primitives *)mp->b_rptr)->type == 5710 T_SVR4_OPTMGMT_REQ) || 5711 (((union T_primitives *)mp->b_rptr)->type == 5712 T_OPTMGMT_REQ))) { 5713 /* 5714 * This is the only TPI primitive supported. Its 5715 * handling does not require tcp_t, but it does require 5716 * conn_t to check permissions. 5717 */ 5718 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 5719 5720 if (connp->conn_flags & IPCL_TCPMOD) { 5721 setfn = tcp_snmp_set; 5722 getfn = tcp_snmp_get; 5723 } else { 5724 setfn = udp_snmp_set; 5725 getfn = udp_snmp_get; 5726 } 5727 if (!snmpcom_req(q, mp, setfn, getfn, cr)) { 5728 freemsg(mp); 5729 return; 5730 } 5731 } else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP)) 5732 != NULL) 5733 qreply(q, mp); 5734 break; 5735 case M_FLUSH: 5736 case M_IOCTL: 5737 putnext(q, mp); 5738 break; 5739 default: 5740 freemsg(mp); 5741 break; 5742 } 5743 } 5744 5745 /* Return the IP checksum for the IP header at "iph". */ 5746 uint16_t 5747 ip_csum_hdr(ipha_t *ipha) 5748 { 5749 uint16_t *uph; 5750 uint32_t sum; 5751 int opt_len; 5752 5753 opt_len = (ipha->ipha_version_and_hdr_length & 0xF) - 5754 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 5755 uph = (uint16_t *)ipha; 5756 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 5757 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 5758 if (opt_len > 0) { 5759 do { 5760 sum += uph[10]; 5761 sum += uph[11]; 5762 uph += 2; 5763 } while (--opt_len); 5764 } 5765 sum = (sum & 0xFFFF) + (sum >> 16); 5766 sum = ~(sum + (sum >> 16)) & 0xFFFF; 5767 if (sum == 0xffff) 5768 sum = 0; 5769 return ((uint16_t)sum); 5770 } 5771 5772 void 5773 ip_ddi_destroy(void) 5774 { 5775 ipv4_hook_destroy(); 5776 ipv6_hook_destroy(); 5777 ip_net_destroy(); 5778 5779 tnet_fini(); 5780 tcp_ddi_destroy(); 5781 sctp_ddi_destroy(); 5782 ipsec_loader_destroy(); 5783 ipsec_policy_destroy(); 5784 ipsec_kstat_destroy(); 5785 nd_free(&ip_g_nd); 5786 mutex_destroy(&igmp_timer_lock); 5787 mutex_destroy(&mld_timer_lock); 5788 mutex_destroy(&igmp_slowtimeout_lock); 5789 mutex_destroy(&mld_slowtimeout_lock); 5790 mutex_destroy(&ip_mi_lock); 5791 mutex_destroy(&rts_clients.connf_lock); 5792 ip_ire_fini(); 5793 ip6_asp_free(); 5794 conn_drain_fini(); 5795 ipcl_destroy(); 5796 inet_minor_destroy(ip_minor_arena); 5797 icmp_kstat_fini(); 5798 ip_kstat_fini(); 5799 rw_destroy(&ipsec_capab_ills_lock); 5800 rw_destroy(&ill_g_usesrc_lock); 5801 ip_drop_unregister(&ip_dropper); 5802 } 5803 5804 5805 void 5806 ip_ddi_init(void) 5807 { 5808 TCP6_MAJ = ddi_name_to_major(TCP6); 5809 TCP_MAJ = ddi_name_to_major(TCP); 5810 SCTP_MAJ = ddi_name_to_major(SCTP); 5811 SCTP6_MAJ = ddi_name_to_major(SCTP6); 5812 5813 ip_input_proc = ip_squeue_switch(ip_squeue_enter); 5814 5815 /* IP's IPsec code calls the packet dropper */ 5816 ip_drop_register(&ip_dropper, "IP IPsec processing"); 5817 5818 if (!ip_g_nd) { 5819 if (!ip_param_register(lcl_param_arr, A_CNT(lcl_param_arr), 5820 lcl_ndp_arr, A_CNT(lcl_ndp_arr))) { 5821 nd_free(&ip_g_nd); 5822 } 5823 } 5824 5825 ipsec_loader_init(); 5826 ipsec_policy_init(); 5827 ipsec_kstat_init(); 5828 rw_init(&ip_g_nd_lock, NULL, RW_DEFAULT, NULL); 5829 mutex_init(&igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5830 mutex_init(&mld_timer_lock, NULL, MUTEX_DEFAULT, NULL); 5831 mutex_init(&igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5832 mutex_init(&mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL); 5833 mutex_init(&ip_mi_lock, NULL, MUTEX_DEFAULT, NULL); 5834 mutex_init(&ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL); 5835 rw_init(&ill_g_lock, NULL, RW_DEFAULT, NULL); 5836 rw_init(&ipsec_capab_ills_lock, NULL, RW_DEFAULT, NULL); 5837 rw_init(&ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL); 5838 5839 /* 5840 * For IP and TCP the minor numbers should start from 2 since we have 4 5841 * initial devices: ip, ip6, tcp, tcp6. 5842 */ 5843 if ((ip_minor_arena = inet_minor_create("ip_minor_arena", 5844 INET_MIN_DEV + 2, KM_SLEEP)) == NULL) { 5845 cmn_err(CE_PANIC, 5846 "ip_ddi_init: ip_minor_arena creation failed\n"); 5847 } 5848 5849 ipcl_init(); 5850 mutex_init(&rts_clients.connf_lock, NULL, MUTEX_DEFAULT, NULL); 5851 ip_ire_init(); 5852 ip6_asp_init(); 5853 ipif_init(); 5854 conn_drain_init(); 5855 tcp_ddi_init(); 5856 sctp_ddi_init(); 5857 5858 ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms); 5859 5860 if ((ip_kstat = kstat_create("ip", 0, "ipstat", 5861 "net", KSTAT_TYPE_NAMED, 5862 sizeof (ip_statistics) / sizeof (kstat_named_t), 5863 KSTAT_FLAG_VIRTUAL)) != NULL) { 5864 ip_kstat->ks_data = &ip_statistics; 5865 kstat_install(ip_kstat); 5866 } 5867 ip_kstat_init(); 5868 ip6_kstat_init(); 5869 icmp_kstat_init(); 5870 ipsec_loader_start(); 5871 tnet_init(); 5872 5873 ip_net_init(); 5874 ipv4_hook_init(); 5875 ipv6_hook_init(); 5876 } 5877 5878 /* 5879 * Allocate and initialize a DLPI template of the specified length. (May be 5880 * called as writer.) 5881 */ 5882 mblk_t * 5883 ip_dlpi_alloc(size_t len, t_uscalar_t prim) 5884 { 5885 mblk_t *mp; 5886 5887 mp = allocb(len, BPRI_MED); 5888 if (!mp) 5889 return (NULL); 5890 5891 /* 5892 * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter 5893 * of which we don't seem to use) are sent with M_PCPROTO, and 5894 * that other DLPI are M_PROTO. 5895 */ 5896 if (prim == DL_INFO_REQ) { 5897 mp->b_datap->db_type = M_PCPROTO; 5898 } else { 5899 mp->b_datap->db_type = M_PROTO; 5900 } 5901 5902 mp->b_wptr = mp->b_rptr + len; 5903 bzero(mp->b_rptr, len); 5904 ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim; 5905 return (mp); 5906 } 5907 5908 const char * 5909 dlpi_prim_str(int prim) 5910 { 5911 switch (prim) { 5912 case DL_INFO_REQ: return ("DL_INFO_REQ"); 5913 case DL_INFO_ACK: return ("DL_INFO_ACK"); 5914 case DL_ATTACH_REQ: return ("DL_ATTACH_REQ"); 5915 case DL_DETACH_REQ: return ("DL_DETACH_REQ"); 5916 case DL_BIND_REQ: return ("DL_BIND_REQ"); 5917 case DL_BIND_ACK: return ("DL_BIND_ACK"); 5918 case DL_UNBIND_REQ: return ("DL_UNBIND_REQ"); 5919 case DL_OK_ACK: return ("DL_OK_ACK"); 5920 case DL_ERROR_ACK: return ("DL_ERROR_ACK"); 5921 case DL_ENABMULTI_REQ: return ("DL_ENABMULTI_REQ"); 5922 case DL_DISABMULTI_REQ: return ("DL_DISABMULTI_REQ"); 5923 case DL_PROMISCON_REQ: return ("DL_PROMISCON_REQ"); 5924 case DL_PROMISCOFF_REQ: return ("DL_PROMISCOFF_REQ"); 5925 case DL_UNITDATA_REQ: return ("DL_UNITDATA_REQ"); 5926 case DL_UNITDATA_IND: return ("DL_UNITDATA_IND"); 5927 case DL_UDERROR_IND: return ("DL_UDERROR_IND"); 5928 case DL_PHYS_ADDR_REQ: return ("DL_PHYS_ADDR_REQ"); 5929 case DL_PHYS_ADDR_ACK: return ("DL_PHYS_ADDR_ACK"); 5930 case DL_SET_PHYS_ADDR_REQ: return ("DL_SET_PHYS_ADDR_REQ"); 5931 case DL_NOTIFY_REQ: return ("DL_NOTIFY_REQ"); 5932 case DL_NOTIFY_ACK: return ("DL_NOTIFY_ACK"); 5933 case DL_NOTIFY_IND: return ("DL_NOTIFY_IND"); 5934 case DL_CAPABILITY_REQ: return ("DL_CAPABILITY_REQ"); 5935 case DL_CAPABILITY_ACK: return ("DL_CAPABILITY_ACK"); 5936 case DL_CONTROL_REQ: return ("DL_CONTROL_REQ"); 5937 case DL_CONTROL_ACK: return ("DL_CONTROL_ACK"); 5938 default: return ("<unknown primitive>"); 5939 } 5940 } 5941 5942 const char * 5943 dlpi_err_str(int err) 5944 { 5945 switch (err) { 5946 case DL_ACCESS: return ("DL_ACCESS"); 5947 case DL_BADADDR: return ("DL_BADADDR"); 5948 case DL_BADCORR: return ("DL_BADCORR"); 5949 case DL_BADDATA: return ("DL_BADDATA"); 5950 case DL_BADPPA: return ("DL_BADPPA"); 5951 case DL_BADPRIM: return ("DL_BADPRIM"); 5952 case DL_BADQOSPARAM: return ("DL_BADQOSPARAM"); 5953 case DL_BADQOSTYPE: return ("DL_BADQOSTYPE"); 5954 case DL_BADSAP: return ("DL_BADSAP"); 5955 case DL_BADTOKEN: return ("DL_BADTOKEN"); 5956 case DL_BOUND: return ("DL_BOUND"); 5957 case DL_INITFAILED: return ("DL_INITFAILED"); 5958 case DL_NOADDR: return ("DL_NOADDR"); 5959 case DL_NOTINIT: return ("DL_NOTINIT"); 5960 case DL_OUTSTATE: return ("DL_OUTSTATE"); 5961 case DL_SYSERR: return ("DL_SYSERR"); 5962 case DL_UNSUPPORTED: return ("DL_UNSUPPORTED"); 5963 case DL_UNDELIVERABLE: return ("DL_UNDELIVERABLE"); 5964 case DL_NOTSUPPORTED : return ("DL_NOTSUPPORTED "); 5965 case DL_TOOMANY: return ("DL_TOOMANY"); 5966 case DL_NOTENAB: return ("DL_NOTENAB"); 5967 case DL_BUSY: return ("DL_BUSY"); 5968 case DL_NOAUTO: return ("DL_NOAUTO"); 5969 case DL_NOXIDAUTO: return ("DL_NOXIDAUTO"); 5970 case DL_NOTESTAUTO: return ("DL_NOTESTAUTO"); 5971 case DL_XIDAUTO: return ("DL_XIDAUTO"); 5972 case DL_TESTAUTO: return ("DL_TESTAUTO"); 5973 case DL_PENDING: return ("DL_PENDING"); 5974 default: return ("<unknown error>"); 5975 } 5976 } 5977 5978 /* 5979 * Debug formatting routine. Returns a character string representation of the 5980 * addr in buf, of the form xxx.xxx.xxx.xxx. This routine takes the address 5981 * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer. 5982 * 5983 * Once the ndd table-printing interfaces are removed, this can be changed to 5984 * standard dotted-decimal form. 5985 */ 5986 char * 5987 ip_dot_addr(ipaddr_t addr, char *buf) 5988 { 5989 uint8_t *ap = (uint8_t *)&addr; 5990 5991 (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d", 5992 ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF); 5993 return (buf); 5994 } 5995 5996 /* 5997 * Write the given MAC address as a printable string in the usual colon- 5998 * separated format. 5999 */ 6000 const char * 6001 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen) 6002 { 6003 char *bp; 6004 6005 if (alen == 0 || buflen < 4) 6006 return ("?"); 6007 bp = buf; 6008 for (;;) { 6009 /* 6010 * If there are more MAC address bytes available, but we won't 6011 * have any room to print them, then add "..." to the string 6012 * instead. See below for the 'magic number' explanation. 6013 */ 6014 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) { 6015 (void) strcpy(bp, "..."); 6016 break; 6017 } 6018 (void) sprintf(bp, "%02x", *addr++); 6019 bp += 2; 6020 if (--alen == 0) 6021 break; 6022 *bp++ = ':'; 6023 buflen -= 3; 6024 /* 6025 * At this point, based on the first 'if' statement above, 6026 * either alen == 1 and buflen >= 3, or alen > 1 and 6027 * buflen >= 4. The first case leaves room for the final "xx" 6028 * number and trailing NUL byte. The second leaves room for at 6029 * least "...". Thus the apparently 'magic' numbers chosen for 6030 * that statement. 6031 */ 6032 } 6033 return (buf); 6034 } 6035 6036 /* 6037 * Send an ICMP error after patching up the packet appropriately. Returns 6038 * non-zero if the appropriate MIB should be bumped; zero otherwise. 6039 */ 6040 static boolean_t 6041 ip_fanout_send_icmp(queue_t *q, mblk_t *mp, uint_t flags, 6042 uint_t icmp_type, uint_t icmp_code, boolean_t mctl_present, zoneid_t zoneid) 6043 { 6044 ipha_t *ipha; 6045 mblk_t *first_mp; 6046 boolean_t secure; 6047 unsigned char db_type; 6048 6049 first_mp = mp; 6050 if (mctl_present) { 6051 mp = mp->b_cont; 6052 secure = ipsec_in_is_secure(first_mp); 6053 ASSERT(mp != NULL); 6054 } else { 6055 /* 6056 * If this is an ICMP error being reported - which goes 6057 * up as M_CTLs, we need to convert them to M_DATA till 6058 * we finish checking with global policy because 6059 * ipsec_check_global_policy() assumes M_DATA as clear 6060 * and M_CTL as secure. 6061 */ 6062 db_type = DB_TYPE(mp); 6063 DB_TYPE(mp) = M_DATA; 6064 secure = B_FALSE; 6065 } 6066 /* 6067 * We are generating an icmp error for some inbound packet. 6068 * Called from all ip_fanout_(udp, tcp, proto) functions. 6069 * Before we generate an error, check with global policy 6070 * to see whether this is allowed to enter the system. As 6071 * there is no "conn", we are checking with global policy. 6072 */ 6073 ipha = (ipha_t *)mp->b_rptr; 6074 if (secure || ipsec_inbound_v4_policy_present) { 6075 first_mp = ipsec_check_global_policy(first_mp, NULL, 6076 ipha, NULL, mctl_present); 6077 if (first_mp == NULL) 6078 return (B_FALSE); 6079 } 6080 6081 if (!mctl_present) 6082 DB_TYPE(mp) = db_type; 6083 6084 if (flags & IP_FF_SEND_ICMP) { 6085 if (flags & IP_FF_HDR_COMPLETE) { 6086 if (ip_hdr_complete(ipha, zoneid)) { 6087 freemsg(first_mp); 6088 return (B_TRUE); 6089 } 6090 } 6091 if (flags & IP_FF_CKSUM) { 6092 /* 6093 * Have to correct checksum since 6094 * the packet might have been 6095 * fragmented and the reassembly code in ip_rput 6096 * does not restore the IP checksum. 6097 */ 6098 ipha->ipha_hdr_checksum = 0; 6099 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 6100 } 6101 switch (icmp_type) { 6102 case ICMP_DEST_UNREACHABLE: 6103 icmp_unreachable(WR(q), first_mp, icmp_code, zoneid); 6104 break; 6105 default: 6106 freemsg(first_mp); 6107 break; 6108 } 6109 } else { 6110 freemsg(first_mp); 6111 return (B_FALSE); 6112 } 6113 6114 return (B_TRUE); 6115 } 6116 6117 /* 6118 * Used to send an ICMP error message when a packet is received for 6119 * a protocol that is not supported. The mblk passed as argument 6120 * is consumed by this function. 6121 */ 6122 void 6123 ip_proto_not_sup(queue_t *q, mblk_t *ipsec_mp, uint_t flags, zoneid_t zoneid) 6124 { 6125 mblk_t *mp; 6126 ipha_t *ipha; 6127 ill_t *ill; 6128 ipsec_in_t *ii; 6129 6130 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6131 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6132 6133 mp = ipsec_mp->b_cont; 6134 ipsec_mp->b_cont = NULL; 6135 ipha = (ipha_t *)mp->b_rptr; 6136 /* Get ill from index in ipsec_in_t. */ 6137 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 6138 (IPH_HDR_VERSION(ipha) == IPV6_VERSION), NULL, NULL, NULL, NULL); 6139 if (ill != NULL) { 6140 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 6141 if (ip_fanout_send_icmp(q, mp, flags, 6142 ICMP_DEST_UNREACHABLE, 6143 ICMP_PROTOCOL_UNREACHABLE, B_FALSE, zoneid)) { 6144 BUMP_MIB(ill->ill_ip_mib, 6145 ipIfStatsInUnknownProtos); 6146 } 6147 } else { 6148 if (ip_fanout_send_icmp_v6(q, mp, flags, 6149 ICMP6_PARAM_PROB, ICMP6_PARAMPROB_NEXTHEADER, 6150 0, B_FALSE, zoneid)) { 6151 BUMP_MIB(ill->ill_ip_mib, 6152 ipIfStatsInUnknownProtos); 6153 } 6154 } 6155 ill_refrele(ill); 6156 } else { /* re-link for the freemsg() below. */ 6157 ipsec_mp->b_cont = mp; 6158 } 6159 6160 /* If ICMP delivered, ipsec_mp will be a singleton (b_cont == NULL). */ 6161 freemsg(ipsec_mp); 6162 } 6163 6164 /* 6165 * See if the inbound datagram has had IPsec processing applied to it. 6166 */ 6167 boolean_t 6168 ipsec_in_is_secure(mblk_t *ipsec_mp) 6169 { 6170 ipsec_in_t *ii; 6171 6172 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 6173 ASSERT(ii->ipsec_in_type == IPSEC_IN); 6174 6175 if (ii->ipsec_in_loopback) { 6176 return (ii->ipsec_in_secure); 6177 } else { 6178 return (ii->ipsec_in_ah_sa != NULL || 6179 ii->ipsec_in_esp_sa != NULL || 6180 ii->ipsec_in_decaps); 6181 } 6182 } 6183 6184 /* 6185 * Handle protocols with which IP is less intimate. There 6186 * can be more than one stream bound to a particular 6187 * protocol. When this is the case, normally each one gets a copy 6188 * of any incoming packets. 6189 * 6190 * IPSEC NOTE : 6191 * 6192 * Don't allow a secure packet going up a non-secure connection. 6193 * We don't allow this because 6194 * 6195 * 1) Reply might go out in clear which will be dropped at 6196 * the sending side. 6197 * 2) If the reply goes out in clear it will give the 6198 * adversary enough information for getting the key in 6199 * most of the cases. 6200 * 6201 * Moreover getting a secure packet when we expect clear 6202 * implies that SA's were added without checking for 6203 * policy on both ends. This should not happen once ISAKMP 6204 * is used to negotiate SAs as SAs will be added only after 6205 * verifying the policy. 6206 * 6207 * NOTE : If the packet was tunneled and not multicast we only send 6208 * to it the first match. Unlike TCP and UDP fanouts this doesn't fall 6209 * back to delivering packets to AF_INET6 raw sockets. 6210 * 6211 * IPQoS Notes: 6212 * Once we have determined the client, invoke IPPF processing. 6213 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6214 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6215 * ip_policy will be false. 6216 * 6217 * Zones notes: 6218 * Currently only applications in the global zone can create raw sockets for 6219 * protocols other than ICMP. So unlike the broadcast / multicast case of 6220 * ip_fanout_udp(), we only send a copy of the packet to streams in the 6221 * specified zone. For ICMP, this is handled by the callers of icmp_inbound(). 6222 */ 6223 static void 6224 ip_fanout_proto(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, uint_t flags, 6225 boolean_t mctl_present, boolean_t ip_policy, ill_t *recv_ill, 6226 zoneid_t zoneid) 6227 { 6228 queue_t *rq; 6229 mblk_t *mp1, *first_mp1; 6230 uint_t protocol = ipha->ipha_protocol; 6231 ipaddr_t dst; 6232 boolean_t one_only; 6233 mblk_t *first_mp = mp; 6234 boolean_t secure; 6235 uint32_t ill_index; 6236 conn_t *connp, *first_connp, *next_connp; 6237 connf_t *connfp; 6238 boolean_t shared_addr; 6239 mib2_ipIfStatsEntry_t *mibptr; 6240 6241 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ip_mib; 6242 if (mctl_present) { 6243 mp = first_mp->b_cont; 6244 secure = ipsec_in_is_secure(first_mp); 6245 ASSERT(mp != NULL); 6246 } else { 6247 secure = B_FALSE; 6248 } 6249 dst = ipha->ipha_dst; 6250 /* 6251 * If the packet was tunneled and not multicast we only send to it 6252 * the first match. 6253 */ 6254 one_only = ((protocol == IPPROTO_ENCAP || protocol == IPPROTO_IPV6) && 6255 !CLASSD(dst)); 6256 6257 shared_addr = (zoneid == ALL_ZONES); 6258 if (shared_addr) { 6259 /* 6260 * We don't allow multilevel ports for raw IP, so no need to 6261 * check for that here. 6262 */ 6263 zoneid = tsol_packet_to_zoneid(mp); 6264 } 6265 6266 connfp = &ipcl_proto_fanout[protocol]; 6267 mutex_enter(&connfp->connf_lock); 6268 connp = connfp->connf_head; 6269 for (connp = connfp->connf_head; connp != NULL; 6270 connp = connp->conn_next) { 6271 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, flags, 6272 zoneid) && 6273 (!is_system_labeled() || 6274 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6275 connp))) 6276 break; 6277 } 6278 6279 if (connp == NULL || connp->conn_upq == NULL) { 6280 /* 6281 * No one bound to these addresses. Is 6282 * there a client that wants all 6283 * unclaimed datagrams? 6284 */ 6285 mutex_exit(&connfp->connf_lock); 6286 /* 6287 * Check for IPPROTO_ENCAP... 6288 */ 6289 if (protocol == IPPROTO_ENCAP && ip_g_mrouter) { 6290 /* 6291 * If an IPsec mblk is here on a multicast 6292 * tunnel (using ip_mroute stuff), check policy here, 6293 * THEN ship off to ip_mroute_decap(). 6294 * 6295 * BTW, If I match a configured IP-in-IP 6296 * tunnel, this path will not be reached, and 6297 * ip_mroute_decap will never be called. 6298 */ 6299 first_mp = ipsec_check_global_policy(first_mp, connp, 6300 ipha, NULL, mctl_present); 6301 if (first_mp != NULL) { 6302 if (mctl_present) 6303 freeb(first_mp); 6304 ip_mroute_decap(q, mp); 6305 } /* Else we already freed everything! */ 6306 } else { 6307 /* 6308 * Otherwise send an ICMP protocol unreachable. 6309 */ 6310 if (ip_fanout_send_icmp(q, first_mp, flags, 6311 ICMP_DEST_UNREACHABLE, ICMP_PROTOCOL_UNREACHABLE, 6312 mctl_present, zoneid)) { 6313 BUMP_MIB(mibptr, ipIfStatsInUnknownProtos); 6314 } 6315 } 6316 return; 6317 } 6318 CONN_INC_REF(connp); 6319 first_connp = connp; 6320 6321 /* 6322 * Only send message to one tunnel driver by immediately 6323 * terminating the loop. 6324 */ 6325 connp = one_only ? NULL : connp->conn_next; 6326 6327 for (;;) { 6328 while (connp != NULL) { 6329 if (IPCL_PROTO_MATCH(connp, protocol, ipha, ill, 6330 flags, zoneid) && 6331 (!is_system_labeled() || 6332 tsol_receive_local(mp, &dst, IPV4_VERSION, 6333 shared_addr, connp))) 6334 break; 6335 connp = connp->conn_next; 6336 } 6337 6338 /* 6339 * Copy the packet. 6340 */ 6341 if (connp == NULL || connp->conn_upq == NULL || 6342 (((first_mp1 = dupmsg(first_mp)) == NULL) && 6343 ((first_mp1 = ip_copymsg(first_mp)) == NULL))) { 6344 /* 6345 * No more interested clients or memory 6346 * allocation failed 6347 */ 6348 connp = first_connp; 6349 break; 6350 } 6351 mp1 = mctl_present ? first_mp1->b_cont : first_mp1; 6352 CONN_INC_REF(connp); 6353 mutex_exit(&connfp->connf_lock); 6354 rq = connp->conn_rq; 6355 if (!canputnext(rq)) { 6356 if (flags & IP_FF_RAWIP) { 6357 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6358 } else { 6359 BUMP_MIB(&icmp_mib, icmpInOverflows); 6360 } 6361 6362 freemsg(first_mp1); 6363 } else { 6364 /* 6365 * Don't enforce here if we're an actual tunnel - 6366 * let "tun" do it instead. 6367 */ 6368 if (!IPCL_IS_IPTUN(connp) && 6369 (CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6370 first_mp1 = ipsec_check_inbound_policy 6371 (first_mp1, connp, ipha, NULL, 6372 mctl_present); 6373 } 6374 if (first_mp1 != NULL) { 6375 /* 6376 * ip_fanout_proto also gets called from 6377 * icmp_inbound_error_fanout, in which case 6378 * the msg type is M_CTL. Don't add info 6379 * in this case for the time being. In future 6380 * when there is a need for knowing the 6381 * inbound iface index for ICMP error msgs, 6382 * then this can be changed. 6383 */ 6384 if ((connp->conn_recvif != 0) && 6385 (mp->b_datap->db_type != M_CTL)) { 6386 /* 6387 * the actual data will be 6388 * contained in b_cont upon 6389 * successful return of the 6390 * following call else 6391 * original mblk is returned 6392 */ 6393 ASSERT(recv_ill != NULL); 6394 mp1 = ip_add_info(mp1, recv_ill, 6395 IPF_RECVIF); 6396 } 6397 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6398 if (mctl_present) 6399 freeb(first_mp1); 6400 putnext(rq, mp1); 6401 } 6402 } 6403 mutex_enter(&connfp->connf_lock); 6404 /* Follow the next pointer before releasing the conn. */ 6405 next_connp = connp->conn_next; 6406 CONN_DEC_REF(connp); 6407 connp = next_connp; 6408 } 6409 6410 /* Last one. Send it upstream. */ 6411 mutex_exit(&connfp->connf_lock); 6412 6413 /* 6414 * If this packet is coming from icmp_inbound_error_fanout ip_policy 6415 * will be set to false. 6416 */ 6417 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6418 ill_index = ill->ill_phyint->phyint_ifindex; 6419 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6420 if (mp == NULL) { 6421 CONN_DEC_REF(connp); 6422 if (mctl_present) { 6423 freeb(first_mp); 6424 } 6425 return; 6426 } 6427 } 6428 6429 rq = connp->conn_rq; 6430 if (!canputnext(rq)) { 6431 if (flags & IP_FF_RAWIP) { 6432 BUMP_MIB(mibptr, rawipIfStatsInOverflows); 6433 } else { 6434 BUMP_MIB(&icmp_mib, icmpInOverflows); 6435 } 6436 6437 freemsg(first_mp); 6438 } else { 6439 if (IPCL_IS_IPTUN(connp)) { 6440 /* 6441 * Tunneled packet. We enforce policy in the tunnel 6442 * module itself. 6443 * 6444 * Send the WHOLE packet up (incl. IPSEC_IN) without 6445 * a policy check. 6446 */ 6447 putnext(rq, first_mp); 6448 CONN_DEC_REF(connp); 6449 return; 6450 } 6451 6452 if ((CONN_INBOUND_POLICY_PRESENT(connp) || secure)) { 6453 first_mp = ipsec_check_inbound_policy(first_mp, connp, 6454 ipha, NULL, mctl_present); 6455 } 6456 6457 if (first_mp != NULL) { 6458 /* 6459 * ip_fanout_proto also gets called 6460 * from icmp_inbound_error_fanout, in 6461 * which case the msg type is M_CTL. 6462 * Don't add info in this case for time 6463 * being. In future when there is a 6464 * need for knowing the inbound iface 6465 * index for ICMP error msgs, then this 6466 * can be changed 6467 */ 6468 if ((connp->conn_recvif != 0) && 6469 (mp->b_datap->db_type != M_CTL)) { 6470 /* 6471 * the actual data will be contained in 6472 * b_cont upon successful return 6473 * of the following call else original 6474 * mblk is returned 6475 */ 6476 ASSERT(recv_ill != NULL); 6477 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6478 } 6479 BUMP_MIB(mibptr, ipIfStatsHCInDelivers); 6480 putnext(rq, mp); 6481 if (mctl_present) 6482 freeb(first_mp); 6483 } 6484 } 6485 CONN_DEC_REF(connp); 6486 } 6487 6488 /* 6489 * Fanout for TCP packets 6490 * The caller puts <fport, lport> in the ports parameter. 6491 * 6492 * IPQoS Notes 6493 * Before sending it to the client, invoke IPPF processing. 6494 * Policy processing takes place only if the callout_position, IPP_LOCAL_IN, 6495 * is enabled. If we get here from icmp_inbound_error_fanout or ip_wput_local 6496 * ip_policy is false. 6497 */ 6498 static void 6499 ip_fanout_tcp(queue_t *q, mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, 6500 uint_t flags, boolean_t mctl_present, boolean_t ip_policy, zoneid_t zoneid) 6501 { 6502 mblk_t *first_mp; 6503 boolean_t secure; 6504 uint32_t ill_index; 6505 int ip_hdr_len; 6506 tcph_t *tcph; 6507 boolean_t syn_present = B_FALSE; 6508 conn_t *connp; 6509 6510 ASSERT(recv_ill != NULL); 6511 6512 first_mp = mp; 6513 if (mctl_present) { 6514 ASSERT(first_mp->b_datap->db_type == M_CTL); 6515 mp = first_mp->b_cont; 6516 secure = ipsec_in_is_secure(first_mp); 6517 ASSERT(mp != NULL); 6518 } else { 6519 secure = B_FALSE; 6520 } 6521 6522 ip_hdr_len = IPH_HDR_LENGTH(mp->b_rptr); 6523 6524 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 6525 NULL) { 6526 /* 6527 * No connected connection or listener. Send a 6528 * TH_RST via tcp_xmit_listeners_reset. 6529 */ 6530 6531 /* Initiate IPPf processing, if needed. */ 6532 if (IPP_ENABLED(IPP_LOCAL_IN)) { 6533 uint32_t ill_index; 6534 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6535 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 6536 if (first_mp == NULL) 6537 return; 6538 } 6539 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6540 ip2dbg(("ip_fanout_tcp: no listener; send reset to zone %d\n", 6541 zoneid)); 6542 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6543 return; 6544 } 6545 6546 /* 6547 * Allocate the SYN for the TCP connection here itself 6548 */ 6549 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 6550 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 6551 if (IPCL_IS_TCP(connp)) { 6552 squeue_t *sqp; 6553 6554 /* 6555 * For fused tcp loopback, assign the eager's 6556 * squeue to be that of the active connect's. 6557 * Note that we don't check for IP_FF_LOOPBACK 6558 * here since this routine gets called only 6559 * for loopback (unlike the IPv6 counterpart). 6560 */ 6561 ASSERT(Q_TO_CONN(q) != NULL); 6562 if (do_tcp_fusion && 6563 !CONN_INBOUND_POLICY_PRESENT(connp) && !secure && 6564 !IPP_ENABLED(IPP_LOCAL_IN) && !ip_policy && 6565 IPCL_IS_TCP(Q_TO_CONN(q))) { 6566 ASSERT(Q_TO_CONN(q)->conn_sqp != NULL); 6567 sqp = Q_TO_CONN(q)->conn_sqp; 6568 } else { 6569 sqp = IP_SQUEUE_GET(lbolt); 6570 } 6571 6572 mp->b_datap->db_struioflag |= STRUIO_EAGER; 6573 DB_CKSUMSTART(mp) = (intptr_t)sqp; 6574 syn_present = B_TRUE; 6575 } 6576 } 6577 6578 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 6579 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 6580 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6581 if ((flags & TH_RST) || (flags & TH_URG)) { 6582 CONN_DEC_REF(connp); 6583 freemsg(first_mp); 6584 return; 6585 } 6586 if (flags & TH_ACK) { 6587 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 6588 CONN_DEC_REF(connp); 6589 return; 6590 } 6591 6592 CONN_DEC_REF(connp); 6593 freemsg(first_mp); 6594 return; 6595 } 6596 6597 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6598 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6599 NULL, mctl_present); 6600 if (first_mp == NULL) { 6601 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6602 CONN_DEC_REF(connp); 6603 return; 6604 } 6605 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 6606 ASSERT(syn_present); 6607 if (mctl_present) { 6608 ASSERT(first_mp != mp); 6609 first_mp->b_datap->db_struioflag |= 6610 STRUIO_POLICY; 6611 } else { 6612 ASSERT(first_mp == mp); 6613 mp->b_datap->db_struioflag &= 6614 ~STRUIO_EAGER; 6615 mp->b_datap->db_struioflag |= 6616 STRUIO_POLICY; 6617 } 6618 } else { 6619 /* 6620 * Discard first_mp early since we're dealing with a 6621 * fully-connected conn_t and tcp doesn't do policy in 6622 * this case. 6623 */ 6624 if (mctl_present) { 6625 freeb(first_mp); 6626 mctl_present = B_FALSE; 6627 } 6628 first_mp = mp; 6629 } 6630 } 6631 6632 /* 6633 * Initiate policy processing here if needed. If we get here from 6634 * icmp_inbound_error_fanout, ip_policy is false. 6635 */ 6636 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6637 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6638 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6639 if (mp == NULL) { 6640 CONN_DEC_REF(connp); 6641 if (mctl_present) 6642 freeb(first_mp); 6643 return; 6644 } else if (mctl_present) { 6645 ASSERT(first_mp != mp); 6646 first_mp->b_cont = mp; 6647 } else { 6648 first_mp = mp; 6649 } 6650 } 6651 6652 6653 6654 /* Handle IPv6 socket options. */ 6655 if (!syn_present && 6656 connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) { 6657 /* Add header */ 6658 ASSERT(recv_ill != NULL); 6659 mp = ip_add_info(mp, recv_ill, IPF_RECVIF); 6660 if (mp == NULL) { 6661 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 6662 CONN_DEC_REF(connp); 6663 if (mctl_present) 6664 freeb(first_mp); 6665 return; 6666 } else if (mctl_present) { 6667 /* 6668 * ip_add_info might return a new mp. 6669 */ 6670 ASSERT(first_mp != mp); 6671 first_mp->b_cont = mp; 6672 } else { 6673 first_mp = mp; 6674 } 6675 } 6676 6677 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 6678 if (IPCL_IS_TCP(connp)) { 6679 (*ip_input_proc)(connp->conn_sqp, first_mp, 6680 connp->conn_recv, connp, SQTAG_IP_FANOUT_TCP); 6681 } else { 6682 putnext(connp->conn_rq, first_mp); 6683 CONN_DEC_REF(connp); 6684 } 6685 } 6686 6687 /* 6688 * Deliver a udp packet to the given conn, possibly applying ipsec policy. 6689 * We are responsible for disposing of mp, such as by freemsg() or putnext() 6690 * Caller is responsible for dropping references to the conn, and freeing 6691 * first_mp. 6692 * 6693 * IPQoS Notes 6694 * Before sending it to the client, invoke IPPF processing. Policy processing 6695 * takes place only if the callout_position, IPP_LOCAL_IN, is enabled and 6696 * ip_policy is true. If we get here from icmp_inbound_error_fanout or 6697 * ip_wput_local, ip_policy is false. 6698 */ 6699 static void 6700 ip_fanout_udp_conn(conn_t *connp, mblk_t *first_mp, mblk_t *mp, 6701 boolean_t secure, ill_t *ill, ipha_t *ipha, uint_t flags, ill_t *recv_ill, 6702 boolean_t ip_policy) 6703 { 6704 boolean_t mctl_present = (first_mp != NULL); 6705 uint32_t in_flags = 0; /* set to IP_RECVSLLA and/or IP_RECVIF */ 6706 uint32_t ill_index; 6707 6708 ASSERT(ill != NULL); 6709 6710 if (mctl_present) 6711 first_mp->b_cont = mp; 6712 else 6713 first_mp = mp; 6714 6715 if (CONN_UDP_FLOWCTLD(connp)) { 6716 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 6717 freemsg(first_mp); 6718 return; 6719 } 6720 6721 if (CONN_INBOUND_POLICY_PRESENT(connp) || secure) { 6722 first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, 6723 NULL, mctl_present); 6724 if (first_mp == NULL) { 6725 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 6726 return; /* Freed by ipsec_check_inbound_policy(). */ 6727 } 6728 } 6729 if (mctl_present) 6730 freeb(first_mp); 6731 6732 if (connp->conn_recvif) 6733 in_flags = IPF_RECVIF; 6734 if (connp->conn_recvslla && !(flags & IP_FF_SEND_SLLA)) 6735 in_flags |= IPF_RECVSLLA; 6736 6737 /* Handle IPv6 options. */ 6738 if (connp->conn_ipv6_recvpktinfo && (flags & IP_FF_IP6INFO)) 6739 in_flags |= IPF_RECVIF; 6740 6741 /* 6742 * Initiate IPPF processing here, if needed. Note first_mp won't be 6743 * freed if the packet is dropped. The caller will do so. 6744 */ 6745 if (IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) { 6746 ill_index = recv_ill->ill_phyint->phyint_ifindex; 6747 ip_process(IPP_LOCAL_IN, &mp, ill_index); 6748 if (mp == NULL) { 6749 return; 6750 } 6751 } 6752 if ((in_flags != 0) && 6753 (mp->b_datap->db_type != M_CTL)) { 6754 /* 6755 * The actual data will be contained in b_cont 6756 * upon successful return of the following call 6757 * else original mblk is returned 6758 */ 6759 ASSERT(recv_ill != NULL); 6760 mp = ip_add_info(mp, recv_ill, in_flags); 6761 } 6762 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 6763 /* Send it upstream */ 6764 CONN_UDP_RECV(connp, mp); 6765 } 6766 6767 /* 6768 * Fanout for UDP packets. 6769 * The caller puts <fport, lport> in the ports parameter. 6770 * 6771 * If SO_REUSEADDR is set all multicast and broadcast packets 6772 * will be delivered to all streams bound to the same port. 6773 * 6774 * Zones notes: 6775 * Multicast and broadcast packets will be distributed to streams in all zones. 6776 * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an 6777 * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4 6778 * packets. To maintain this behavior with multiple zones, the conns are grouped 6779 * by zone and the SO_REUSEADDR flag is checked for the first matching conn in 6780 * each zone. If unset, all the following conns in the same zone are skipped. 6781 */ 6782 static void 6783 ip_fanout_udp(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 6784 uint32_t ports, boolean_t broadcast, uint_t flags, boolean_t mctl_present, 6785 boolean_t ip_policy, ill_t *recv_ill, zoneid_t zoneid) 6786 { 6787 uint32_t dstport, srcport; 6788 ipaddr_t dst; 6789 mblk_t *first_mp; 6790 boolean_t secure; 6791 in6_addr_t v6src; 6792 conn_t *connp; 6793 connf_t *connfp; 6794 conn_t *first_connp; 6795 conn_t *next_connp; 6796 mblk_t *mp1, *first_mp1; 6797 ipaddr_t src; 6798 zoneid_t last_zoneid; 6799 boolean_t reuseaddr; 6800 boolean_t shared_addr; 6801 6802 first_mp = mp; 6803 if (mctl_present) { 6804 mp = first_mp->b_cont; 6805 first_mp->b_cont = NULL; 6806 secure = ipsec_in_is_secure(first_mp); 6807 ASSERT(mp != NULL); 6808 } else { 6809 first_mp = NULL; 6810 secure = B_FALSE; 6811 } 6812 6813 /* Extract ports in net byte order */ 6814 dstport = htons(ntohl(ports) & 0xFFFF); 6815 srcport = htons(ntohl(ports) >> 16); 6816 dst = ipha->ipha_dst; 6817 src = ipha->ipha_src; 6818 6819 shared_addr = (zoneid == ALL_ZONES); 6820 if (shared_addr) { 6821 zoneid = tsol_mlp_findzone(IPPROTO_UDP, dstport); 6822 if (zoneid == ALL_ZONES) 6823 zoneid = tsol_packet_to_zoneid(mp); 6824 } 6825 6826 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6827 mutex_enter(&connfp->connf_lock); 6828 connp = connfp->connf_head; 6829 if (!broadcast && !CLASSD(dst)) { 6830 /* 6831 * Not broadcast or multicast. Send to the one (first) 6832 * client we find. No need to check conn_wantpacket() 6833 * since IP_BOUND_IF/conn_incoming_ill does not apply to 6834 * IPv4 unicast packets. 6835 */ 6836 while ((connp != NULL) && 6837 (!IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) || 6838 !IPCL_ZONE_MATCH(connp, zoneid))) { 6839 connp = connp->conn_next; 6840 } 6841 6842 if (connp == NULL || connp->conn_upq == NULL) 6843 goto notfound; 6844 6845 if (is_system_labeled() && 6846 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6847 connp)) 6848 goto notfound; 6849 6850 CONN_INC_REF(connp); 6851 mutex_exit(&connfp->connf_lock); 6852 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 6853 flags, recv_ill, ip_policy); 6854 IP_STAT(ip_udp_fannorm); 6855 CONN_DEC_REF(connp); 6856 return; 6857 } 6858 6859 /* 6860 * Broadcast and multicast case 6861 * 6862 * Need to check conn_wantpacket(). 6863 * If SO_REUSEADDR has been set on the first we send the 6864 * packet to all clients that have joined the group and 6865 * match the port. 6866 */ 6867 6868 while (connp != NULL) { 6869 if ((IPCL_UDP_MATCH(connp, dstport, dst, srcport, src)) && 6870 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6871 (!is_system_labeled() || 6872 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6873 connp))) 6874 break; 6875 connp = connp->conn_next; 6876 } 6877 6878 if (connp == NULL || connp->conn_upq == NULL) 6879 goto notfound; 6880 6881 first_connp = connp; 6882 /* 6883 * When SO_REUSEADDR is not set, send the packet only to the first 6884 * matching connection in its zone by keeping track of the zoneid. 6885 */ 6886 reuseaddr = first_connp->conn_reuseaddr; 6887 last_zoneid = first_connp->conn_zoneid; 6888 6889 CONN_INC_REF(connp); 6890 connp = connp->conn_next; 6891 for (;;) { 6892 while (connp != NULL) { 6893 if (IPCL_UDP_MATCH(connp, dstport, dst, srcport, src) && 6894 (reuseaddr || connp->conn_zoneid != last_zoneid) && 6895 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6896 (!is_system_labeled() || 6897 tsol_receive_local(mp, &dst, IPV4_VERSION, 6898 shared_addr, connp))) 6899 break; 6900 connp = connp->conn_next; 6901 } 6902 /* 6903 * Just copy the data part alone. The mctl part is 6904 * needed just for verifying policy and it is never 6905 * sent up. 6906 */ 6907 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 6908 ((mp1 = copymsg(mp)) == NULL))) { 6909 /* 6910 * No more interested clients or memory 6911 * allocation failed 6912 */ 6913 connp = first_connp; 6914 break; 6915 } 6916 if (connp->conn_zoneid != last_zoneid) { 6917 /* 6918 * Update the zoneid so that the packet isn't sent to 6919 * any more conns in the same zone unless SO_REUSEADDR 6920 * is set. 6921 */ 6922 reuseaddr = connp->conn_reuseaddr; 6923 last_zoneid = connp->conn_zoneid; 6924 } 6925 if (first_mp != NULL) { 6926 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 6927 ipsec_info_type == IPSEC_IN); 6928 first_mp1 = ipsec_in_tag(first_mp, NULL); 6929 if (first_mp1 == NULL) { 6930 freemsg(mp1); 6931 connp = first_connp; 6932 break; 6933 } 6934 } else { 6935 first_mp1 = NULL; 6936 } 6937 CONN_INC_REF(connp); 6938 mutex_exit(&connfp->connf_lock); 6939 /* 6940 * IPQoS notes: We don't send the packet for policy 6941 * processing here, will do it for the last one (below). 6942 * i.e. we do it per-packet now, but if we do policy 6943 * processing per-conn, then we would need to do it 6944 * here too. 6945 */ 6946 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 6947 ipha, flags, recv_ill, B_FALSE); 6948 mutex_enter(&connfp->connf_lock); 6949 /* Follow the next pointer before releasing the conn. */ 6950 next_connp = connp->conn_next; 6951 IP_STAT(ip_udp_fanmb); 6952 CONN_DEC_REF(connp); 6953 connp = next_connp; 6954 } 6955 6956 /* Last one. Send it upstream. */ 6957 mutex_exit(&connfp->connf_lock); 6958 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 6959 recv_ill, ip_policy); 6960 IP_STAT(ip_udp_fanmb); 6961 CONN_DEC_REF(connp); 6962 return; 6963 6964 notfound: 6965 6966 mutex_exit(&connfp->connf_lock); 6967 IP_STAT(ip_udp_fanothers); 6968 /* 6969 * IPv6 endpoints bound to unicast or multicast IPv4-mapped addresses 6970 * have already been matched above, since they live in the IPv4 6971 * fanout tables. This implies we only need to 6972 * check for IPv6 in6addr_any endpoints here. 6973 * Thus we compare using ipv6_all_zeros instead of the destination 6974 * address, except for the multicast group membership lookup which 6975 * uses the IPv4 destination. 6976 */ 6977 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6src); 6978 connfp = &ipcl_udp_fanout[IPCL_UDP_HASH(dstport)]; 6979 mutex_enter(&connfp->connf_lock); 6980 connp = connfp->connf_head; 6981 if (!broadcast && !CLASSD(dst)) { 6982 while (connp != NULL) { 6983 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 6984 srcport, v6src) && IPCL_ZONE_MATCH(connp, zoneid) && 6985 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 6986 !connp->conn_ipv6_v6only) 6987 break; 6988 connp = connp->conn_next; 6989 } 6990 6991 if (connp != NULL && is_system_labeled() && 6992 !tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 6993 connp)) 6994 connp = NULL; 6995 6996 if (connp == NULL || connp->conn_upq == NULL) { 6997 /* 6998 * No one bound to this port. Is 6999 * there a client that wants all 7000 * unclaimed datagrams? 7001 */ 7002 mutex_exit(&connfp->connf_lock); 7003 7004 if (mctl_present) 7005 first_mp->b_cont = mp; 7006 else 7007 first_mp = mp; 7008 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 7009 ip_fanout_proto(q, first_mp, ill, ipha, 7010 flags | IP_FF_RAWIP, mctl_present, 7011 ip_policy, recv_ill, zoneid); 7012 } else { 7013 if (ip_fanout_send_icmp(q, first_mp, flags, 7014 ICMP_DEST_UNREACHABLE, 7015 ICMP_PORT_UNREACHABLE, 7016 mctl_present, zoneid)) { 7017 BUMP_MIB(ill->ill_ip_mib, 7018 udpIfStatsNoPorts); 7019 } 7020 } 7021 return; 7022 } 7023 7024 CONN_INC_REF(connp); 7025 mutex_exit(&connfp->connf_lock); 7026 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, 7027 flags, recv_ill, ip_policy); 7028 CONN_DEC_REF(connp); 7029 return; 7030 } 7031 /* 7032 * IPv4 multicast packet being delivered to an AF_INET6 7033 * in6addr_any endpoint. 7034 * Need to check conn_wantpacket(). Note that we use conn_wantpacket() 7035 * and not conn_wantpacket_v6() since any multicast membership is 7036 * for an IPv4-mapped multicast address. 7037 * The packet is sent to all clients in all zones that have joined the 7038 * group and match the port. 7039 */ 7040 while (connp != NULL) { 7041 if (IPCL_UDP_MATCH_V6(connp, dstport, ipv6_all_zeros, 7042 srcport, v6src) && 7043 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7044 (!is_system_labeled() || 7045 tsol_receive_local(mp, &dst, IPV4_VERSION, shared_addr, 7046 connp))) 7047 break; 7048 connp = connp->conn_next; 7049 } 7050 7051 if (connp == NULL || connp->conn_upq == NULL) { 7052 /* 7053 * No one bound to this port. Is 7054 * there a client that wants all 7055 * unclaimed datagrams? 7056 */ 7057 mutex_exit(&connfp->connf_lock); 7058 7059 if (mctl_present) 7060 first_mp->b_cont = mp; 7061 else 7062 first_mp = mp; 7063 if (ipcl_proto_search(IPPROTO_UDP) != NULL) { 7064 ip_fanout_proto(q, first_mp, ill, ipha, 7065 flags | IP_FF_RAWIP, mctl_present, ip_policy, 7066 recv_ill, zoneid); 7067 } else { 7068 /* 7069 * We used to attempt to send an icmp error here, but 7070 * since this is known to be a multicast packet 7071 * and we don't send icmp errors in response to 7072 * multicast, just drop the packet and give up sooner. 7073 */ 7074 BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts); 7075 freemsg(first_mp); 7076 } 7077 return; 7078 } 7079 7080 first_connp = connp; 7081 7082 CONN_INC_REF(connp); 7083 connp = connp->conn_next; 7084 for (;;) { 7085 while (connp != NULL) { 7086 if (IPCL_UDP_MATCH_V6(connp, dstport, 7087 ipv6_all_zeros, srcport, v6src) && 7088 conn_wantpacket(connp, ill, ipha, flags, zoneid) && 7089 (!is_system_labeled() || 7090 tsol_receive_local(mp, &dst, IPV4_VERSION, 7091 shared_addr, connp))) 7092 break; 7093 connp = connp->conn_next; 7094 } 7095 /* 7096 * Just copy the data part alone. The mctl part is 7097 * needed just for verifying policy and it is never 7098 * sent up. 7099 */ 7100 if (connp == NULL || (((mp1 = dupmsg(mp)) == NULL) && 7101 ((mp1 = copymsg(mp)) == NULL))) { 7102 /* 7103 * No more intested clients or memory 7104 * allocation failed 7105 */ 7106 connp = first_connp; 7107 break; 7108 } 7109 if (first_mp != NULL) { 7110 ASSERT(((ipsec_info_t *)first_mp->b_rptr)-> 7111 ipsec_info_type == IPSEC_IN); 7112 first_mp1 = ipsec_in_tag(first_mp, NULL); 7113 if (first_mp1 == NULL) { 7114 freemsg(mp1); 7115 connp = first_connp; 7116 break; 7117 } 7118 } else { 7119 first_mp1 = NULL; 7120 } 7121 CONN_INC_REF(connp); 7122 mutex_exit(&connfp->connf_lock); 7123 /* 7124 * IPQoS notes: We don't send the packet for policy 7125 * processing here, will do it for the last one (below). 7126 * i.e. we do it per-packet now, but if we do policy 7127 * processing per-conn, then we would need to do it 7128 * here too. 7129 */ 7130 ip_fanout_udp_conn(connp, first_mp1, mp1, secure, ill, 7131 ipha, flags, recv_ill, B_FALSE); 7132 mutex_enter(&connfp->connf_lock); 7133 /* Follow the next pointer before releasing the conn. */ 7134 next_connp = connp->conn_next; 7135 CONN_DEC_REF(connp); 7136 connp = next_connp; 7137 } 7138 7139 /* Last one. Send it upstream. */ 7140 mutex_exit(&connfp->connf_lock); 7141 ip_fanout_udp_conn(connp, first_mp, mp, secure, ill, ipha, flags, 7142 recv_ill, ip_policy); 7143 CONN_DEC_REF(connp); 7144 } 7145 7146 /* 7147 * Complete the ip_wput header so that it 7148 * is possible to generate ICMP 7149 * errors. 7150 */ 7151 int 7152 ip_hdr_complete(ipha_t *ipha, zoneid_t zoneid) 7153 { 7154 ire_t *ire; 7155 7156 if (ipha->ipha_src == INADDR_ANY) { 7157 ire = ire_lookup_local(zoneid); 7158 if (ire == NULL) { 7159 ip1dbg(("ip_hdr_complete: no source IRE\n")); 7160 return (1); 7161 } 7162 ipha->ipha_src = ire->ire_addr; 7163 ire_refrele(ire); 7164 } 7165 ipha->ipha_ttl = ip_def_ttl; 7166 ipha->ipha_hdr_checksum = 0; 7167 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 7168 return (0); 7169 } 7170 7171 /* 7172 * Nobody should be sending 7173 * packets up this stream 7174 */ 7175 static void 7176 ip_lrput(queue_t *q, mblk_t *mp) 7177 { 7178 mblk_t *mp1; 7179 7180 switch (mp->b_datap->db_type) { 7181 case M_FLUSH: 7182 /* Turn around */ 7183 if (*mp->b_rptr & FLUSHW) { 7184 *mp->b_rptr &= ~FLUSHR; 7185 qreply(q, mp); 7186 return; 7187 } 7188 break; 7189 } 7190 /* Could receive messages that passed through ar_rput */ 7191 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 7192 mp1->b_prev = mp1->b_next = NULL; 7193 freemsg(mp); 7194 } 7195 7196 /* Nobody should be sending packets down this stream */ 7197 /* ARGSUSED */ 7198 void 7199 ip_lwput(queue_t *q, mblk_t *mp) 7200 { 7201 freemsg(mp); 7202 } 7203 7204 /* 7205 * Move the first hop in any source route to ipha_dst and remove that part of 7206 * the source route. Called by other protocols. Errors in option formatting 7207 * are ignored - will be handled by ip_wput_options Return the final 7208 * destination (either ipha_dst or the last entry in a source route.) 7209 */ 7210 ipaddr_t 7211 ip_massage_options(ipha_t *ipha) 7212 { 7213 ipoptp_t opts; 7214 uchar_t *opt; 7215 uint8_t optval; 7216 uint8_t optlen; 7217 ipaddr_t dst; 7218 int i; 7219 ire_t *ire; 7220 7221 ip2dbg(("ip_massage_options\n")); 7222 dst = ipha->ipha_dst; 7223 for (optval = ipoptp_first(&opts, ipha); 7224 optval != IPOPT_EOL; 7225 optval = ipoptp_next(&opts)) { 7226 opt = opts.ipoptp_cur; 7227 switch (optval) { 7228 uint8_t off; 7229 case IPOPT_SSRR: 7230 case IPOPT_LSRR: 7231 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 7232 ip1dbg(("ip_massage_options: bad src route\n")); 7233 break; 7234 } 7235 optlen = opts.ipoptp_len; 7236 off = opt[IPOPT_OFFSET]; 7237 off--; 7238 redo_srr: 7239 if (optlen < IP_ADDR_LEN || 7240 off > optlen - IP_ADDR_LEN) { 7241 /* End of source route */ 7242 ip1dbg(("ip_massage_options: end of SR\n")); 7243 break; 7244 } 7245 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 7246 ip1dbg(("ip_massage_options: next hop 0x%x\n", 7247 ntohl(dst))); 7248 /* 7249 * Check if our address is present more than 7250 * once as consecutive hops in source route. 7251 * XXX verify per-interface ip_forwarding 7252 * for source route? 7253 */ 7254 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 7255 ALL_ZONES, NULL, MATCH_IRE_TYPE); 7256 if (ire != NULL) { 7257 ire_refrele(ire); 7258 off += IP_ADDR_LEN; 7259 goto redo_srr; 7260 } 7261 if (dst == htonl(INADDR_LOOPBACK)) { 7262 ip1dbg(("ip_massage_options: loopback addr in " 7263 "source route!\n")); 7264 break; 7265 } 7266 /* 7267 * Update ipha_dst to be the first hop and remove the 7268 * first hop from the source route (by overwriting 7269 * part of the option with NOP options). 7270 */ 7271 ipha->ipha_dst = dst; 7272 /* Put the last entry in dst */ 7273 off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) + 7274 3; 7275 bcopy(&opt[off], &dst, IP_ADDR_LEN); 7276 7277 ip1dbg(("ip_massage_options: last hop 0x%x\n", 7278 ntohl(dst))); 7279 /* Move down and overwrite */ 7280 opt[IP_ADDR_LEN] = opt[0]; 7281 opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN; 7282 opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET]; 7283 for (i = 0; i < IP_ADDR_LEN; i++) 7284 opt[i] = IPOPT_NOP; 7285 break; 7286 } 7287 } 7288 return (dst); 7289 } 7290 7291 /* 7292 * This function's job is to forward data to the reverse tunnel (FA->HA) 7293 * after doing a few checks. It is assumed that the incoming interface 7294 * of the packet is always different than the outgoing interface and the 7295 * ire_type of the found ire has to be a non-resolver type. 7296 * 7297 * IPQoS notes 7298 * IP policy is invoked twice for a forwarded packet, once on the read side 7299 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 7300 * enabled. 7301 */ 7302 static void 7303 ip_mrtun_forward(ire_t *ire, ill_t *in_ill, mblk_t *mp) 7304 { 7305 ipha_t *ipha; 7306 queue_t *q; 7307 uint32_t pkt_len; 7308 #define rptr ((uchar_t *)ipha) 7309 uint32_t sum; 7310 uint32_t max_frag; 7311 mblk_t *first_mp; 7312 uint32_t ill_index; 7313 ipxmit_state_t pktxmit_state; 7314 ill_t *out_ill; 7315 7316 ASSERT(ire != NULL); 7317 ASSERT(ire->ire_ipif->ipif_net_type == IRE_IF_NORESOLVER); 7318 ASSERT(ire->ire_stq != NULL); 7319 7320 /* Initiate read side IPPF processing */ 7321 if (IPP_ENABLED(IPP_FWD_IN)) { 7322 ill_index = in_ill->ill_phyint->phyint_ifindex; 7323 ip_process(IPP_FWD_IN, &mp, ill_index); 7324 if (mp == NULL) { 7325 ip2dbg(("ip_mrtun_forward: inbound pkt " 7326 "dropped during IPPF processing\n")); 7327 return; 7328 } 7329 } 7330 7331 if (((in_ill->ill_flags & ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 7332 ILLF_ROUTER) == 0) || 7333 (in_ill == (ill_t *)ire->ire_stq->q_ptr)) { 7334 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7335 ip0dbg(("ip_mrtun_forward: Can't forward :" 7336 "forwarding is not turned on\n")); 7337 goto drop_pkt; 7338 } 7339 7340 /* 7341 * Don't forward if the interface is down 7342 */ 7343 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 7344 goto discard_pkt; 7345 } 7346 7347 ipha = (ipha_t *)mp->b_rptr; 7348 pkt_len = ntohs(ipha->ipha_length); 7349 /* Adjust the checksum to reflect the ttl decrement. */ 7350 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 7351 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 7352 if (ipha->ipha_ttl-- <= 1) { 7353 if (ip_csum_hdr(ipha)) { 7354 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7355 goto drop_pkt; 7356 } 7357 q = ire->ire_stq; 7358 if ((first_mp = allocb(sizeof (ipsec_info_t), 7359 BPRI_HI)) == NULL) { 7360 goto discard_pkt; 7361 } 7362 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsForwProhibits); 7363 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7364 /* Sent by forwarding path, and router is global zone */ 7365 icmp_time_exceeded(q, first_mp, ICMP_TTL_EXCEEDED, 7366 GLOBAL_ZONEID); 7367 return; 7368 } 7369 7370 /* Get the ill_index of the ILL */ 7371 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 7372 7373 /* 7374 * This location is chosen for the placement of the forwarding hook 7375 * because at this point we know that we have a path out for the 7376 * packet but haven't yet applied any logic (such as fragmenting) 7377 * that happen as part of transmitting the packet out. 7378 */ 7379 out_ill = ire->ire_ipif->ipif_ill; 7380 7381 DTRACE_PROBE4(ip4__forwarding__start, 7382 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7383 7384 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 7385 in_ill, out_ill, ipha, mp, mp); 7386 7387 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 7388 7389 if (mp == NULL) 7390 return; 7391 pkt_len = ntohs(ipha->ipha_length); 7392 7393 /* 7394 * ip_mrtun_forward is only used by foreign agent to reverse 7395 * tunnel the incoming packet. So it does not do any option 7396 * processing for source routing. 7397 */ 7398 max_frag = ire->ire_max_frag; 7399 if (pkt_len > max_frag) { 7400 /* 7401 * It needs fragging on its way out. We haven't 7402 * verified the header checksum yet. Since we 7403 * are going to put a surely good checksum in the 7404 * outgoing header, we have to make sure that it 7405 * was good coming in. 7406 */ 7407 if (ip_csum_hdr(ipha)) { 7408 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInCksumErrs); 7409 goto drop_pkt; 7410 } 7411 7412 /* Initiate write side IPPF processing */ 7413 if (IPP_ENABLED(IPP_FWD_OUT)) { 7414 ip_process(IPP_FWD_OUT, &mp, ill_index); 7415 if (mp == NULL) { 7416 ip2dbg(("ip_mrtun_forward: outbound pkt "\ 7417 "dropped/deferred during ip policy "\ 7418 "processing\n")); 7419 return; 7420 } 7421 } 7422 if ((first_mp = allocb(sizeof (ipsec_info_t), 7423 BPRI_HI)) == NULL) { 7424 goto discard_pkt; 7425 } 7426 ip_ipsec_out_prepend(first_mp, mp, in_ill); 7427 mp = first_mp; 7428 7429 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 7430 return; 7431 } 7432 7433 ip2dbg(("ip_mrtun_forward: ire type (%d)\n", ire->ire_type)); 7434 7435 ASSERT(ire->ire_ipif != NULL); 7436 7437 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 7438 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 7439 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 7440 NULL, out_ill, ipha, mp, mp); 7441 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 7442 if (mp == NULL) 7443 return; 7444 7445 /* Now send the packet to the tunnel interface */ 7446 mp->b_prev = SET_BPREV_FLAG(IPP_FWD_OUT); 7447 q = ire->ire_stq; 7448 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_FALSE); 7449 if ((pktxmit_state == SEND_FAILED) || 7450 (pktxmit_state == LLHDR_RESLV_FAILED)) { 7451 ip2dbg(("ip_mrtun_forward: failed to send packet to ill %p\n", 7452 q->q_ptr)); 7453 } 7454 7455 return; 7456 discard_pkt: 7457 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 7458 drop_pkt:; 7459 ip2dbg(("ip_mrtun_forward: dropping pkt\n")); 7460 freemsg(mp); 7461 #undef rptr 7462 } 7463 7464 /* 7465 * Fills the ipsec_out_t data structure with appropriate fields and 7466 * prepends it to mp which contains the IP hdr + data that was meant 7467 * to be forwarded. Please note that ipsec_out_info data structure 7468 * is used here to communicate the outgoing ill path at ip_wput() 7469 * for the ICMP error packet. This has nothing to do with ipsec IP 7470 * security. ipsec_out_t is really used to pass the info to the module 7471 * IP where this information cannot be extracted from conn. 7472 * This functions is called by ip_mrtun_forward(). 7473 */ 7474 void 7475 ip_ipsec_out_prepend(mblk_t *first_mp, mblk_t *mp, ill_t *xmit_ill) 7476 { 7477 ipsec_out_t *io; 7478 7479 ASSERT(xmit_ill != NULL); 7480 first_mp->b_datap->db_type = M_CTL; 7481 first_mp->b_wptr += sizeof (ipsec_info_t); 7482 /* 7483 * This is to pass info to ip_wput in absence of conn. 7484 * ipsec_out_secure will be B_FALSE because of this. 7485 * Thus ipsec_out_secure being B_FALSE indicates that 7486 * this is not IPSEC security related information. 7487 */ 7488 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 7489 io = (ipsec_out_t *)first_mp->b_rptr; 7490 io->ipsec_out_type = IPSEC_OUT; 7491 io->ipsec_out_len = sizeof (ipsec_out_t); 7492 first_mp->b_cont = mp; 7493 io->ipsec_out_ill_index = 7494 xmit_ill->ill_phyint->phyint_ifindex; 7495 io->ipsec_out_xmit_if = B_TRUE; 7496 } 7497 7498 /* 7499 * Return the network mask 7500 * associated with the specified address. 7501 */ 7502 ipaddr_t 7503 ip_net_mask(ipaddr_t addr) 7504 { 7505 uchar_t *up = (uchar_t *)&addr; 7506 ipaddr_t mask = 0; 7507 uchar_t *maskp = (uchar_t *)&mask; 7508 7509 #if defined(__i386) || defined(__amd64) 7510 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER 7511 #endif 7512 #ifdef TOTALLY_BRAIN_DAMAGED_C_COMPILER 7513 maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0; 7514 #endif 7515 if (CLASSD(addr)) { 7516 maskp[0] = 0xF0; 7517 return (mask); 7518 } 7519 if (addr == 0) 7520 return (0); 7521 maskp[0] = 0xFF; 7522 if ((up[0] & 0x80) == 0) 7523 return (mask); 7524 7525 maskp[1] = 0xFF; 7526 if ((up[0] & 0xC0) == 0x80) 7527 return (mask); 7528 7529 maskp[2] = 0xFF; 7530 if ((up[0] & 0xE0) == 0xC0) 7531 return (mask); 7532 7533 /* Must be experimental or multicast, indicate as much */ 7534 return ((ipaddr_t)0); 7535 } 7536 7537 /* 7538 * Select an ill for the packet by considering load spreading across 7539 * a different ill in the group if dst_ill is part of some group. 7540 */ 7541 ill_t * 7542 ip_newroute_get_dst_ill(ill_t *dst_ill) 7543 { 7544 ill_t *ill; 7545 7546 /* 7547 * We schedule irrespective of whether the source address is 7548 * INADDR_ANY or not. illgrp_scheduler returns a held ill. 7549 */ 7550 ill = illgrp_scheduler(dst_ill); 7551 if (ill == NULL) 7552 return (NULL); 7553 7554 /* 7555 * For groups with names ip_sioctl_groupname ensures that all 7556 * ills are of same type. For groups without names, ifgrp_insert 7557 * ensures this. 7558 */ 7559 ASSERT(dst_ill->ill_type == ill->ill_type); 7560 7561 return (ill); 7562 } 7563 7564 /* 7565 * Helper function for the IPIF_NOFAILOVER/ATTACH_IF interface attachment case. 7566 */ 7567 ill_t * 7568 ip_grab_attach_ill(ill_t *ill, mblk_t *first_mp, int ifindex, boolean_t isv6) 7569 { 7570 ill_t *ret_ill; 7571 7572 ASSERT(ifindex != 0); 7573 ret_ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL); 7574 if (ret_ill == NULL || 7575 (ret_ill->ill_phyint->phyint_flags & PHYI_OFFLINE)) { 7576 if (isv6) { 7577 if (ill != NULL) { 7578 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7579 } else { 7580 BUMP_MIB(&ip6_mib, ipIfStatsOutDiscards); 7581 } 7582 ip1dbg(("ip_grab_attach_ill (IPv6): " 7583 "bad ifindex %d.\n", ifindex)); 7584 } else { 7585 if (ill != NULL) { 7586 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 7587 } else { 7588 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 7589 } 7590 ip1dbg(("ip_grab_attach_ill (IPv4): " 7591 "bad ifindex %d.\n", ifindex)); 7592 } 7593 if (ret_ill != NULL) 7594 ill_refrele(ret_ill); 7595 freemsg(first_mp); 7596 return (NULL); 7597 } 7598 7599 return (ret_ill); 7600 } 7601 7602 /* 7603 * IPv4 - 7604 * ip_newroute is called by ip_rput or ip_wput whenever we need to send 7605 * out a packet to a destination address for which we do not have specific 7606 * (or sufficient) routing information. 7607 * 7608 * NOTE : These are the scopes of some of the variables that point at IRE, 7609 * which needs to be followed while making any future modifications 7610 * to avoid memory leaks. 7611 * 7612 * - ire and sire are the entries looked up initially by 7613 * ire_ftable_lookup. 7614 * - ipif_ire is used to hold the interface ire associated with 7615 * the new cache ire. But it's scope is limited, so we always REFRELE 7616 * it before branching out to error paths. 7617 * - save_ire is initialized before ire_create, so that ire returned 7618 * by ire_create will not over-write the ire. We REFRELE save_ire 7619 * before breaking out of the switch. 7620 * 7621 * Thus on failures, we have to REFRELE only ire and sire, if they 7622 * are not NULL. 7623 */ 7624 void 7625 ip_newroute(queue_t *q, mblk_t *mp, ipaddr_t dst, ill_t *in_ill, conn_t *connp, 7626 zoneid_t zoneid) 7627 { 7628 areq_t *areq; 7629 ipaddr_t gw = 0; 7630 ire_t *ire = NULL; 7631 mblk_t *res_mp; 7632 ipaddr_t *addrp; 7633 ipaddr_t nexthop_addr; 7634 ipif_t *src_ipif = NULL; 7635 ill_t *dst_ill = NULL; 7636 ipha_t *ipha; 7637 ire_t *sire = NULL; 7638 mblk_t *first_mp; 7639 ire_t *save_ire; 7640 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER address */ 7641 ushort_t ire_marks = 0; 7642 boolean_t mctl_present; 7643 ipsec_out_t *io; 7644 mblk_t *saved_mp; 7645 ire_t *first_sire = NULL; 7646 mblk_t *copy_mp = NULL; 7647 mblk_t *xmit_mp = NULL; 7648 ipaddr_t save_dst; 7649 uint32_t multirt_flags = 7650 MULTIRT_CACHEGW | MULTIRT_USESTAMP | MULTIRT_SETSTAMP; 7651 boolean_t multirt_is_resolvable; 7652 boolean_t multirt_resolve_next; 7653 boolean_t do_attach_ill = B_FALSE; 7654 boolean_t ip_nexthop = B_FALSE; 7655 tsol_ire_gw_secattr_t *attrp = NULL; 7656 tsol_gcgrp_t *gcgrp = NULL; 7657 tsol_gcgrp_addr_t ga; 7658 7659 if (ip_debug > 2) { 7660 /* ip1dbg */ 7661 pr_addr_dbg("ip_newroute: dst %s\n", AF_INET, &dst); 7662 } 7663 7664 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 7665 if (mctl_present) { 7666 io = (ipsec_out_t *)first_mp->b_rptr; 7667 ASSERT(io->ipsec_out_type == IPSEC_OUT); 7668 ASSERT(zoneid == io->ipsec_out_zoneid); 7669 ASSERT(zoneid != ALL_ZONES); 7670 } 7671 7672 ipha = (ipha_t *)mp->b_rptr; 7673 7674 /* All multicast lookups come through ip_newroute_ipif() */ 7675 if (CLASSD(dst)) { 7676 ip0dbg(("ip_newroute: CLASSD 0x%x (b_prev %p, b_next %p)\n", 7677 ntohl(dst), (void *)mp->b_prev, (void *)mp->b_next)); 7678 freemsg(first_mp); 7679 return; 7680 } 7681 7682 if (mctl_present && io->ipsec_out_attach_if) { 7683 /* ip_grab_attach_ill returns a held ill */ 7684 attach_ill = ip_grab_attach_ill(NULL, first_mp, 7685 io->ipsec_out_ill_index, B_FALSE); 7686 7687 /* Failure case frees things for us. */ 7688 if (attach_ill == NULL) 7689 return; 7690 7691 /* 7692 * Check if we need an ire that will not be 7693 * looked up by anybody else i.e. HIDDEN. 7694 */ 7695 if (ill_is_probeonly(attach_ill)) 7696 ire_marks = IRE_MARK_HIDDEN; 7697 } 7698 if (mctl_present && io->ipsec_out_ip_nexthop) { 7699 ip_nexthop = B_TRUE; 7700 nexthop_addr = io->ipsec_out_nexthop_addr; 7701 } 7702 /* 7703 * If this IRE is created for forwarding or it is not for 7704 * traffic for congestion controlled protocols, mark it as temporary. 7705 */ 7706 if (mp->b_prev != NULL || !IP_FLOW_CONTROLLED_ULP(ipha->ipha_protocol)) 7707 ire_marks |= IRE_MARK_TEMPORARY; 7708 7709 /* 7710 * Get what we can from ire_ftable_lookup which will follow an IRE 7711 * chain until it gets the most specific information available. 7712 * For example, we know that there is no IRE_CACHE for this dest, 7713 * but there may be an IRE_OFFSUBNET which specifies a gateway. 7714 * ire_ftable_lookup will look up the gateway, etc. 7715 * Check if in_ill != NULL. If it is true, the packet must be 7716 * from an incoming interface where RTA_SRCIFP is set. 7717 * Otherwise, given ire_ftable_lookup algorithm, only one among routes 7718 * to the destination, of equal netmask length in the forward table, 7719 * will be recursively explored. If no information is available 7720 * for the final gateway of that route, we force the returned ire 7721 * to be equal to sire using MATCH_IRE_PARENT. 7722 * At least, in this case we have a starting point (in the buckets) 7723 * to look for other routes to the destination in the forward table. 7724 * This is actually used only for multirouting, where a list 7725 * of routes has to be processed in sequence. 7726 * 7727 * In the process of coming up with the most specific information, 7728 * ire_ftable_lookup may end up with an incomplete IRE_CACHE entry 7729 * for the gateway (i.e., one for which the ire_nce->nce_state is 7730 * not yet ND_REACHABLE, and is in the middle of arp resolution). 7731 * Two caveats when handling incomplete ire's in ip_newroute: 7732 * - we should be careful when accessing its ire_nce (specifically 7733 * the nce_res_mp) ast it might change underneath our feet, and, 7734 * - not all legacy code path callers are prepared to handle 7735 * incomplete ire's, so we should not create/add incomplete 7736 * ire_cache entries here. (See discussion about temporary solution 7737 * further below). 7738 * 7739 * In order to minimize packet dropping, and to preserve existing 7740 * behavior, we treat this case as if there were no IRE_CACHE for the 7741 * gateway, and instead use the IF_RESOLVER ire to send out 7742 * another request to ARP (this is achieved by passing the 7743 * MATCH_IRE_COMPLETE flag to ire_ftable_lookup). When the 7744 * arp response comes back in ip_wput_nondata, we will create 7745 * a per-dst ire_cache that has an ND_COMPLETE ire. 7746 * 7747 * Note that this is a temporary solution; the correct solution is 7748 * to create an incomplete per-dst ire_cache entry, and send the 7749 * packet out when the gw's nce is resolved. In order to achieve this, 7750 * all packet processing must have been completed prior to calling 7751 * ire_add_then_send. Some legacy code paths (e.g. cgtp) would need 7752 * to be modified to accomodate this solution. 7753 */ 7754 if (in_ill != NULL) { 7755 ire = ire_srcif_table_lookup(dst, IRE_IF_RESOLVER, NULL, 7756 in_ill, MATCH_IRE_TYPE); 7757 } else if (ip_nexthop) { 7758 /* 7759 * The first time we come here, we look for an IRE_INTERFACE 7760 * entry for the specified nexthop, set the dst to be the 7761 * nexthop address and create an IRE_CACHE entry for the 7762 * nexthop. The next time around, we are able to find an 7763 * IRE_CACHE entry for the nexthop, set the gateway to be the 7764 * nexthop address and create an IRE_CACHE entry for the 7765 * destination address via the specified nexthop. 7766 */ 7767 ire = ire_cache_lookup(nexthop_addr, zoneid, 7768 MBLK_GETLABEL(mp)); 7769 if (ire != NULL) { 7770 gw = nexthop_addr; 7771 ire_marks |= IRE_MARK_PRIVATE_ADDR; 7772 } else { 7773 ire = ire_ftable_lookup(nexthop_addr, 0, 0, 7774 IRE_INTERFACE, NULL, NULL, zoneid, 0, 7775 MBLK_GETLABEL(mp), 7776 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 7777 if (ire != NULL) { 7778 dst = nexthop_addr; 7779 } 7780 } 7781 } else if (attach_ill == NULL) { 7782 ire = ire_ftable_lookup(dst, 0, 0, 0, 7783 NULL, &sire, zoneid, 0, MBLK_GETLABEL(mp), 7784 MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 7785 MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT | 7786 MATCH_IRE_SECATTR | MATCH_IRE_COMPLETE); 7787 } else { 7788 /* 7789 * attach_ill is set only for communicating with 7790 * on-link hosts. So, don't look for DEFAULT. 7791 */ 7792 ipif_t *attach_ipif; 7793 7794 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 7795 if (attach_ipif == NULL) { 7796 ill_refrele(attach_ill); 7797 goto icmp_err_ret; 7798 } 7799 ire = ire_ftable_lookup(dst, 0, 0, 0, attach_ipif, 7800 &sire, zoneid, 0, MBLK_GETLABEL(mp), 7801 MATCH_IRE_RJ_BHOLE | MATCH_IRE_ILL | 7802 MATCH_IRE_SECATTR); 7803 ipif_refrele(attach_ipif); 7804 } 7805 ip3dbg(("ip_newroute: ire_ftable_lookup() " 7806 "returned ire %p, sire %p\n", (void *)ire, (void *)sire)); 7807 7808 /* 7809 * This loop is run only once in most cases. 7810 * We loop to resolve further routes only when the destination 7811 * can be reached through multiple RTF_MULTIRT-flagged ires. 7812 */ 7813 do { 7814 /* Clear the previous iteration's values */ 7815 if (src_ipif != NULL) { 7816 ipif_refrele(src_ipif); 7817 src_ipif = NULL; 7818 } 7819 if (dst_ill != NULL) { 7820 ill_refrele(dst_ill); 7821 dst_ill = NULL; 7822 } 7823 7824 multirt_resolve_next = B_FALSE; 7825 /* 7826 * We check if packets have to be multirouted. 7827 * In this case, given the current <ire, sire> couple, 7828 * we look for the next suitable <ire, sire>. 7829 * This check is done in ire_multirt_lookup(), 7830 * which applies various criteria to find the next route 7831 * to resolve. ire_multirt_lookup() leaves <ire, sire> 7832 * unchanged if it detects it has not been tried yet. 7833 */ 7834 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7835 ip3dbg(("ip_newroute: starting next_resolution " 7836 "with first_mp %p, tag %d\n", 7837 (void *)first_mp, 7838 MULTIRT_DEBUG_TAGGED(first_mp))); 7839 7840 ASSERT(sire != NULL); 7841 multirt_is_resolvable = 7842 ire_multirt_lookup(&ire, &sire, multirt_flags, 7843 MBLK_GETLABEL(mp)); 7844 7845 ip3dbg(("ip_newroute: multirt_is_resolvable %d, " 7846 "ire %p, sire %p\n", 7847 multirt_is_resolvable, 7848 (void *)ire, (void *)sire)); 7849 7850 if (!multirt_is_resolvable) { 7851 /* 7852 * No more multirt route to resolve; give up 7853 * (all routes resolved or no more 7854 * resolvable routes). 7855 */ 7856 if (ire != NULL) { 7857 ire_refrele(ire); 7858 ire = NULL; 7859 } 7860 } else { 7861 ASSERT(sire != NULL); 7862 ASSERT(ire != NULL); 7863 /* 7864 * We simply use first_sire as a flag that 7865 * indicates if a resolvable multirt route 7866 * has already been found. 7867 * If it is not the case, we may have to send 7868 * an ICMP error to report that the 7869 * destination is unreachable. 7870 * We do not IRE_REFHOLD first_sire. 7871 */ 7872 if (first_sire == NULL) { 7873 first_sire = sire; 7874 } 7875 } 7876 } 7877 if (ire == NULL) { 7878 if (ip_debug > 3) { 7879 /* ip2dbg */ 7880 pr_addr_dbg("ip_newroute: " 7881 "can't resolve %s\n", AF_INET, &dst); 7882 } 7883 ip3dbg(("ip_newroute: " 7884 "ire %p, sire %p, first_sire %p\n", 7885 (void *)ire, (void *)sire, (void *)first_sire)); 7886 7887 if (sire != NULL) { 7888 ire_refrele(sire); 7889 sire = NULL; 7890 } 7891 7892 if (first_sire != NULL) { 7893 /* 7894 * At least one multirt route has been found 7895 * in the same call to ip_newroute(); 7896 * there is no need to report an ICMP error. 7897 * first_sire was not IRE_REFHOLDed. 7898 */ 7899 MULTIRT_DEBUG_UNTAG(first_mp); 7900 freemsg(first_mp); 7901 return; 7902 } 7903 ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, 7904 RTA_DST); 7905 if (attach_ill != NULL) 7906 ill_refrele(attach_ill); 7907 goto icmp_err_ret; 7908 } 7909 7910 /* 7911 * When RTA_SRCIFP is used to add a route, then an interface 7912 * route is added in the source interface's routing table. 7913 * If the outgoing interface of this route is of type 7914 * IRE_IF_RESOLVER, then upon creation of the ire, 7915 * ire_nce->nce_res_mp is set to NULL. 7916 * Later, when this route is first used for forwarding 7917 * a packet, ip_newroute() is called 7918 * to resolve the hardware address of the outgoing ipif. 7919 * We do not come here for IRE_IF_NORESOLVER entries in the 7920 * source interface based table. We only come here if the 7921 * outgoing interface is a resolver interface and we don't 7922 * have the ire_nce->nce_res_mp information yet. 7923 * If in_ill is not null that means it is called from 7924 * ip_rput. 7925 */ 7926 7927 ASSERT(ire->ire_in_ill == NULL || 7928 (ire->ire_type == IRE_IF_RESOLVER && 7929 ire->ire_nce != NULL && ire->ire_nce->nce_res_mp == NULL)); 7930 7931 /* 7932 * Verify that the returned IRE does not have either 7933 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is 7934 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER. 7935 */ 7936 if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) || 7937 (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) { 7938 if (attach_ill != NULL) 7939 ill_refrele(attach_ill); 7940 goto icmp_err_ret; 7941 } 7942 /* 7943 * Increment the ire_ob_pkt_count field for ire if it is an 7944 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and 7945 * increment the same for the parent IRE, sire, if it is some 7946 * sort of prefix IRE (which includes DEFAULT, PREFIX, HOST 7947 * and HOST_REDIRECT). 7948 */ 7949 if ((ire->ire_type & IRE_INTERFACE) != 0) { 7950 UPDATE_OB_PKT_COUNT(ire); 7951 ire->ire_last_used_time = lbolt; 7952 } 7953 7954 if (sire != NULL) { 7955 gw = sire->ire_gateway_addr; 7956 ASSERT((sire->ire_type & (IRE_CACHETABLE | 7957 IRE_INTERFACE)) == 0); 7958 UPDATE_OB_PKT_COUNT(sire); 7959 sire->ire_last_used_time = lbolt; 7960 } 7961 /* 7962 * We have a route to reach the destination. 7963 * 7964 * 1) If the interface is part of ill group, try to get a new 7965 * ill taking load spreading into account. 7966 * 7967 * 2) After selecting the ill, get a source address that 7968 * might create good inbound load spreading. 7969 * ipif_select_source does this for us. 7970 * 7971 * If the application specified the ill (ifindex), we still 7972 * load spread. Only if the packets needs to go out 7973 * specifically on a given ill e.g. binding to 7974 * IPIF_NOFAILOVER address, then we don't try to use a 7975 * different ill for load spreading. 7976 */ 7977 if (attach_ill == NULL) { 7978 /* 7979 * Don't perform outbound load spreading in the 7980 * case of an RTF_MULTIRT route, as we actually 7981 * typically want to replicate outgoing packets 7982 * through particular interfaces. 7983 */ 7984 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 7985 dst_ill = ire->ire_ipif->ipif_ill; 7986 /* for uniformity */ 7987 ill_refhold(dst_ill); 7988 } else { 7989 /* 7990 * If we are here trying to create an IRE_CACHE 7991 * for an offlink destination and have the 7992 * IRE_CACHE for the next hop and the latter is 7993 * using virtual IP source address selection i.e 7994 * it's ire->ire_ipif is pointing to a virtual 7995 * network interface (vni) then 7996 * ip_newroute_get_dst_ll() will return the vni 7997 * interface as the dst_ill. Since the vni is 7998 * virtual i.e not associated with any physical 7999 * interface, it cannot be the dst_ill, hence 8000 * in such a case call ip_newroute_get_dst_ll() 8001 * with the stq_ill instead of the ire_ipif ILL. 8002 * The function returns a refheld ill. 8003 */ 8004 if ((ire->ire_type == IRE_CACHE) && 8005 IS_VNI(ire->ire_ipif->ipif_ill)) 8006 dst_ill = ip_newroute_get_dst_ill( 8007 ire->ire_stq->q_ptr); 8008 else 8009 dst_ill = ip_newroute_get_dst_ill( 8010 ire->ire_ipif->ipif_ill); 8011 } 8012 if (dst_ill == NULL) { 8013 if (ip_debug > 2) { 8014 pr_addr_dbg("ip_newroute: " 8015 "no dst ill for dst" 8016 " %s\n", AF_INET, &dst); 8017 } 8018 goto icmp_err_ret; 8019 } 8020 } else { 8021 dst_ill = ire->ire_ipif->ipif_ill; 8022 /* for uniformity */ 8023 ill_refhold(dst_ill); 8024 /* 8025 * We should have found a route matching ill as we 8026 * called ire_ftable_lookup with MATCH_IRE_ILL. 8027 * Rather than asserting, when there is a mismatch, 8028 * we just drop the packet. 8029 */ 8030 if (dst_ill != attach_ill) { 8031 ip0dbg(("ip_newroute: Packet dropped as " 8032 "IPIF_NOFAILOVER ill is %s, " 8033 "ire->ire_ipif->ipif_ill is %s\n", 8034 attach_ill->ill_name, 8035 dst_ill->ill_name)); 8036 ill_refrele(attach_ill); 8037 goto icmp_err_ret; 8038 } 8039 } 8040 /* attach_ill can't go in loop. IPMP and CGTP are disjoint */ 8041 if (attach_ill != NULL) { 8042 ill_refrele(attach_ill); 8043 attach_ill = NULL; 8044 do_attach_ill = B_TRUE; 8045 } 8046 ASSERT(dst_ill != NULL); 8047 ip2dbg(("ip_newroute: dst_ill %s\n", dst_ill->ill_name)); 8048 8049 /* 8050 * Pick the best source address from dst_ill. 8051 * 8052 * 1) If it is part of a multipathing group, we would 8053 * like to spread the inbound packets across different 8054 * interfaces. ipif_select_source picks a random source 8055 * across the different ills in the group. 8056 * 8057 * 2) If it is not part of a multipathing group, we try 8058 * to pick the source address from the destination 8059 * route. Clustering assumes that when we have multiple 8060 * prefixes hosted on an interface, the prefix of the 8061 * source address matches the prefix of the destination 8062 * route. We do this only if the address is not 8063 * DEPRECATED. 8064 * 8065 * 3) If the conn is in a different zone than the ire, we 8066 * need to pick a source address from the right zone. 8067 * 8068 * NOTE : If we hit case (1) above, the prefix of the source 8069 * address picked may not match the prefix of the 8070 * destination routes prefix as ipif_select_source 8071 * does not look at "dst" while picking a source 8072 * address. 8073 * If we want the same behavior as (2), we will need 8074 * to change the behavior of ipif_select_source. 8075 */ 8076 ASSERT(src_ipif == NULL); 8077 if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) { 8078 /* 8079 * The RTF_SETSRC flag is set in the parent ire (sire). 8080 * Check that the ipif matching the requested source 8081 * address still exists. 8082 */ 8083 src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL, 8084 zoneid, NULL, NULL, NULL, NULL); 8085 } 8086 if (src_ipif == NULL) { 8087 ire_marks |= IRE_MARK_USESRC_CHECK; 8088 if ((dst_ill->ill_group != NULL) || 8089 (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) || 8090 (connp != NULL && ire->ire_zoneid != zoneid && 8091 ire->ire_zoneid != ALL_ZONES) || 8092 (dst_ill->ill_usesrc_ifindex != 0)) { 8093 /* 8094 * If the destination is reachable via a 8095 * given gateway, the selected source address 8096 * should be in the same subnet as the gateway. 8097 * Otherwise, the destination is not reachable. 8098 * 8099 * If there are no interfaces on the same subnet 8100 * as the destination, ipif_select_source gives 8101 * first non-deprecated interface which might be 8102 * on a different subnet than the gateway. 8103 * This is not desirable. Hence pass the dst_ire 8104 * source address to ipif_select_source. 8105 * It is sure that the destination is reachable 8106 * with the dst_ire source address subnet. 8107 * So passing dst_ire source address to 8108 * ipif_select_source will make sure that the 8109 * selected source will be on the same subnet 8110 * as dst_ire source address. 8111 */ 8112 ipaddr_t saddr = ire->ire_ipif->ipif_src_addr; 8113 src_ipif = ipif_select_source(dst_ill, saddr, 8114 zoneid); 8115 if (src_ipif == NULL) { 8116 if (ip_debug > 2) { 8117 pr_addr_dbg("ip_newroute: " 8118 "no src for dst %s ", 8119 AF_INET, &dst); 8120 printf("through interface %s\n", 8121 dst_ill->ill_name); 8122 } 8123 goto icmp_err_ret; 8124 } 8125 } else { 8126 src_ipif = ire->ire_ipif; 8127 ASSERT(src_ipif != NULL); 8128 /* hold src_ipif for uniformity */ 8129 ipif_refhold(src_ipif); 8130 } 8131 } 8132 8133 /* 8134 * Assign a source address while we have the conn. 8135 * We can't have ip_wput_ire pick a source address when the 8136 * packet returns from arp since we need to look at 8137 * conn_unspec_src and conn_zoneid, and we lose the conn when 8138 * going through arp. 8139 * 8140 * NOTE : ip_newroute_v6 does not have this piece of code as 8141 * it uses ip6i to store this information. 8142 */ 8143 if (ipha->ipha_src == INADDR_ANY && 8144 (connp == NULL || !connp->conn_unspec_src)) { 8145 ipha->ipha_src = src_ipif->ipif_src_addr; 8146 } 8147 if (ip_debug > 3) { 8148 /* ip2dbg */ 8149 pr_addr_dbg("ip_newroute: first hop %s\n", 8150 AF_INET, &gw); 8151 } 8152 ip2dbg(("\tire type %s (%d)\n", 8153 ip_nv_lookup(ire_nv_tbl, ire->ire_type), ire->ire_type)); 8154 8155 /* 8156 * The TTL of multirouted packets is bounded by the 8157 * ip_multirt_ttl ndd variable. 8158 */ 8159 if ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)) { 8160 /* Force TTL of multirouted packets */ 8161 if ((ip_multirt_ttl > 0) && 8162 (ipha->ipha_ttl > ip_multirt_ttl)) { 8163 ip2dbg(("ip_newroute: forcing multirt TTL " 8164 "to %d (was %d), dst 0x%08x\n", 8165 ip_multirt_ttl, ipha->ipha_ttl, 8166 ntohl(sire->ire_addr))); 8167 ipha->ipha_ttl = ip_multirt_ttl; 8168 } 8169 } 8170 /* 8171 * At this point in ip_newroute(), ire is either the 8172 * IRE_CACHE of the next-hop gateway for an off-subnet 8173 * destination or an IRE_INTERFACE type that should be used 8174 * to resolve an on-subnet destination or an on-subnet 8175 * next-hop gateway. 8176 * 8177 * In the IRE_CACHE case, we have the following : 8178 * 8179 * 1) src_ipif - used for getting a source address. 8180 * 8181 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8182 * means packets using this IRE_CACHE will go out on 8183 * dst_ill. 8184 * 8185 * 3) The IRE sire will point to the prefix that is the 8186 * longest matching route for the destination. These 8187 * prefix types include IRE_DEFAULT, IRE_PREFIX, IRE_HOST. 8188 * 8189 * The newly created IRE_CACHE entry for the off-subnet 8190 * destination is tied to both the prefix route and the 8191 * interface route used to resolve the next-hop gateway 8192 * via the ire_phandle and ire_ihandle fields, 8193 * respectively. 8194 * 8195 * In the IRE_INTERFACE case, we have the following : 8196 * 8197 * 1) src_ipif - used for getting a source address. 8198 * 8199 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This 8200 * means packets using the IRE_CACHE that we will build 8201 * here will go out on dst_ill. 8202 * 8203 * 3) sire may or may not be NULL. But, the IRE_CACHE that is 8204 * to be created will only be tied to the IRE_INTERFACE 8205 * that was derived from the ire_ihandle field. 8206 * 8207 * If sire is non-NULL, it means the destination is 8208 * off-link and we will first create the IRE_CACHE for the 8209 * gateway. Next time through ip_newroute, we will create 8210 * the IRE_CACHE for the final destination as described 8211 * above. 8212 * 8213 * In both cases, after the current resolution has been 8214 * completed (or possibly initialised, in the IRE_INTERFACE 8215 * case), the loop may be re-entered to attempt the resolution 8216 * of another RTF_MULTIRT route. 8217 * 8218 * When an IRE_CACHE entry for the off-subnet destination is 8219 * created, RTF_SETSRC and RTF_MULTIRT are inherited from sire, 8220 * for further processing in emission loops. 8221 */ 8222 save_ire = ire; 8223 switch (ire->ire_type) { 8224 case IRE_CACHE: { 8225 ire_t *ipif_ire; 8226 mblk_t *ire_fp_mp; 8227 8228 ASSERT(save_ire->ire_nce->nce_state == ND_REACHABLE); 8229 if (gw == 0) 8230 gw = ire->ire_gateway_addr; 8231 /* 8232 * We need 3 ire's to create a new cache ire for an 8233 * off-link destination from the cache ire of the 8234 * gateway. 8235 * 8236 * 1. The prefix ire 'sire' (Note that this does 8237 * not apply to the conn_nexthop_set case) 8238 * 2. The cache ire of the gateway 'ire' 8239 * 3. The interface ire 'ipif_ire' 8240 * 8241 * We have (1) and (2). We lookup (3) below. 8242 * 8243 * If there is no interface route to the gateway, 8244 * it is a race condition, where we found the cache 8245 * but the interface route has been deleted. 8246 */ 8247 if (ip_nexthop) { 8248 ipif_ire = ire_ihandle_lookup_onlink(ire); 8249 } else { 8250 ipif_ire = 8251 ire_ihandle_lookup_offlink(ire, sire); 8252 } 8253 if (ipif_ire == NULL) { 8254 ip1dbg(("ip_newroute: " 8255 "ire_ihandle_lookup_offlink failed\n")); 8256 goto icmp_err_ret; 8257 } 8258 /* 8259 * XXX We are using the same res_mp 8260 * (DL_UNITDATA_REQ) though the save_ire is not 8261 * pointing at the same ill. 8262 * This is incorrect. We need to send it up to the 8263 * resolver to get the right res_mp. For ethernets 8264 * this may be okay (ill_type == DL_ETHER). 8265 */ 8266 res_mp = save_ire->ire_nce->nce_res_mp; 8267 ire_fp_mp = NULL; 8268 /* 8269 * save_ire's nce_fp_mp can't change since it is 8270 * not an IRE_MIPRTUN or IRE_BROADCAST 8271 * LOCK_IRE_FP_MP does not do any useful work in 8272 * the case of IRE_CACHE. So we don't use it below. 8273 */ 8274 if (save_ire->ire_stq == dst_ill->ill_wq) 8275 ire_fp_mp = save_ire->ire_nce->nce_fp_mp; 8276 8277 /* 8278 * Check cached gateway IRE for any security 8279 * attributes; if found, associate the gateway 8280 * credentials group to the destination IRE. 8281 */ 8282 if ((attrp = save_ire->ire_gw_secattr) != NULL) { 8283 mutex_enter(&attrp->igsa_lock); 8284 if ((gcgrp = attrp->igsa_gcgrp) != NULL) 8285 GCGRP_REFHOLD(gcgrp); 8286 mutex_exit(&attrp->igsa_lock); 8287 } 8288 8289 ire = ire_create( 8290 (uchar_t *)&dst, /* dest address */ 8291 (uchar_t *)&ip_g_all_ones, /* mask */ 8292 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8293 (uchar_t *)&gw, /* gateway address */ 8294 NULL, 8295 &save_ire->ire_max_frag, 8296 ire_fp_mp, /* Fast Path header */ 8297 dst_ill->ill_rq, /* recv-from queue */ 8298 dst_ill->ill_wq, /* send-to queue */ 8299 IRE_CACHE, /* IRE type */ 8300 res_mp, 8301 src_ipif, 8302 in_ill, /* incoming ill */ 8303 (sire != NULL) ? 8304 sire->ire_mask : 0, /* Parent mask */ 8305 (sire != NULL) ? 8306 sire->ire_phandle : 0, /* Parent handle */ 8307 ipif_ire->ire_ihandle, /* Interface handle */ 8308 (sire != NULL) ? (sire->ire_flags & 8309 (RTF_SETSRC | RTF_MULTIRT)) : 0, /* flags */ 8310 (sire != NULL) ? 8311 &(sire->ire_uinfo) : &(save_ire->ire_uinfo), 8312 NULL, 8313 gcgrp); 8314 8315 if (ire == NULL) { 8316 if (gcgrp != NULL) { 8317 GCGRP_REFRELE(gcgrp); 8318 gcgrp = NULL; 8319 } 8320 ire_refrele(ipif_ire); 8321 ire_refrele(save_ire); 8322 break; 8323 } 8324 8325 /* reference now held by IRE */ 8326 gcgrp = NULL; 8327 8328 ire->ire_marks |= ire_marks; 8329 8330 /* 8331 * Prevent sire and ipif_ire from getting deleted. 8332 * The newly created ire is tied to both of them via 8333 * the phandle and ihandle respectively. 8334 */ 8335 if (sire != NULL) { 8336 IRB_REFHOLD(sire->ire_bucket); 8337 /* Has it been removed already ? */ 8338 if (sire->ire_marks & IRE_MARK_CONDEMNED) { 8339 IRB_REFRELE(sire->ire_bucket); 8340 ire_refrele(ipif_ire); 8341 ire_refrele(save_ire); 8342 break; 8343 } 8344 } 8345 8346 IRB_REFHOLD(ipif_ire->ire_bucket); 8347 /* Has it been removed already ? */ 8348 if (ipif_ire->ire_marks & IRE_MARK_CONDEMNED) { 8349 IRB_REFRELE(ipif_ire->ire_bucket); 8350 if (sire != NULL) 8351 IRB_REFRELE(sire->ire_bucket); 8352 ire_refrele(ipif_ire); 8353 ire_refrele(save_ire); 8354 break; 8355 } 8356 8357 xmit_mp = first_mp; 8358 /* 8359 * In the case of multirouting, a copy 8360 * of the packet is done before its sending. 8361 * The copy is used to attempt another 8362 * route resolution, in a next loop. 8363 */ 8364 if (ire->ire_flags & RTF_MULTIRT) { 8365 copy_mp = copymsg(first_mp); 8366 if (copy_mp != NULL) { 8367 xmit_mp = copy_mp; 8368 MULTIRT_DEBUG_TAG(first_mp); 8369 } 8370 } 8371 ire_add_then_send(q, ire, xmit_mp); 8372 ire_refrele(save_ire); 8373 8374 /* Assert that sire is not deleted yet. */ 8375 if (sire != NULL) { 8376 ASSERT(sire->ire_ptpn != NULL); 8377 IRB_REFRELE(sire->ire_bucket); 8378 } 8379 8380 /* Assert that ipif_ire is not deleted yet. */ 8381 ASSERT(ipif_ire->ire_ptpn != NULL); 8382 IRB_REFRELE(ipif_ire->ire_bucket); 8383 ire_refrele(ipif_ire); 8384 8385 /* 8386 * If copy_mp is not NULL, multirouting was 8387 * requested. We loop to initiate a next 8388 * route resolution attempt, starting from sire. 8389 */ 8390 if (copy_mp != NULL) { 8391 /* 8392 * Search for the next unresolved 8393 * multirt route. 8394 */ 8395 copy_mp = NULL; 8396 ipif_ire = NULL; 8397 ire = NULL; 8398 multirt_resolve_next = B_TRUE; 8399 continue; 8400 } 8401 if (sire != NULL) 8402 ire_refrele(sire); 8403 ipif_refrele(src_ipif); 8404 ill_refrele(dst_ill); 8405 return; 8406 } 8407 case IRE_IF_NORESOLVER: { 8408 /* 8409 * We have what we need to build an IRE_CACHE. 8410 * 8411 * Create a new res_mp with the IP gateway address 8412 * in destination address in the DLPI hdr if the 8413 * physical length is exactly 4 bytes. 8414 */ 8415 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 8416 uchar_t *addr; 8417 8418 if (gw) 8419 addr = (uchar_t *)&gw; 8420 else 8421 addr = (uchar_t *)&dst; 8422 8423 res_mp = ill_dlur_gen(addr, 8424 dst_ill->ill_phys_addr_length, 8425 dst_ill->ill_sap, 8426 dst_ill->ill_sap_length); 8427 8428 if (res_mp == NULL) { 8429 ip1dbg(("ip_newroute: res_mp NULL\n")); 8430 break; 8431 } 8432 } else if (dst_ill->ill_resolver_mp == NULL) { 8433 ip1dbg(("ip_newroute: dst_ill %p " 8434 "for IF_NORESOLV ire %p has " 8435 "no ill_resolver_mp\n", 8436 (void *)dst_ill, (void *)ire)); 8437 break; 8438 } else { 8439 res_mp = NULL; 8440 } 8441 8442 /* 8443 * TSol note: We are creating the ire cache for the 8444 * destination 'dst'. If 'dst' is offlink, going 8445 * through the first hop 'gw', the security attributes 8446 * of 'dst' must be set to point to the gateway 8447 * credentials of gateway 'gw'. If 'dst' is onlink, it 8448 * is possible that 'dst' is a potential gateway that is 8449 * referenced by some route that has some security 8450 * attributes. Thus in the former case, we need to do a 8451 * gcgrp_lookup of 'gw' while in the latter case we 8452 * need to do gcgrp_lookup of 'dst' itself. 8453 */ 8454 ga.ga_af = AF_INET; 8455 IN6_IPADDR_TO_V4MAPPED(gw != INADDR_ANY ? gw : dst, 8456 &ga.ga_addr); 8457 gcgrp = gcgrp_lookup(&ga, B_FALSE); 8458 8459 ire = ire_create( 8460 (uchar_t *)&dst, /* dest address */ 8461 (uchar_t *)&ip_g_all_ones, /* mask */ 8462 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8463 (uchar_t *)&gw, /* gateway address */ 8464 NULL, 8465 &save_ire->ire_max_frag, 8466 NULL, /* Fast Path header */ 8467 dst_ill->ill_rq, /* recv-from queue */ 8468 dst_ill->ill_wq, /* send-to queue */ 8469 IRE_CACHE, 8470 res_mp, 8471 src_ipif, 8472 in_ill, /* Incoming ill */ 8473 save_ire->ire_mask, /* Parent mask */ 8474 (sire != NULL) ? /* Parent handle */ 8475 sire->ire_phandle : 0, 8476 save_ire->ire_ihandle, /* Interface handle */ 8477 (sire != NULL) ? sire->ire_flags & 8478 (RTF_SETSRC | RTF_MULTIRT) : 0, /* flags */ 8479 &(save_ire->ire_uinfo), 8480 NULL, 8481 gcgrp); 8482 8483 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) 8484 freeb(res_mp); 8485 8486 if (ire == NULL) { 8487 if (gcgrp != NULL) { 8488 GCGRP_REFRELE(gcgrp); 8489 gcgrp = NULL; 8490 } 8491 ire_refrele(save_ire); 8492 break; 8493 } 8494 8495 /* reference now held by IRE */ 8496 gcgrp = NULL; 8497 8498 ire->ire_marks |= ire_marks; 8499 8500 /* Prevent save_ire from getting deleted */ 8501 IRB_REFHOLD(save_ire->ire_bucket); 8502 /* Has it been removed already ? */ 8503 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 8504 IRB_REFRELE(save_ire->ire_bucket); 8505 ire_refrele(save_ire); 8506 break; 8507 } 8508 8509 /* 8510 * In the case of multirouting, a copy 8511 * of the packet is made before it is sent. 8512 * The copy is used in the next 8513 * loop to attempt another resolution. 8514 */ 8515 xmit_mp = first_mp; 8516 if ((sire != NULL) && 8517 (sire->ire_flags & RTF_MULTIRT)) { 8518 copy_mp = copymsg(first_mp); 8519 if (copy_mp != NULL) { 8520 xmit_mp = copy_mp; 8521 MULTIRT_DEBUG_TAG(first_mp); 8522 } 8523 } 8524 ire_add_then_send(q, ire, xmit_mp); 8525 8526 /* Assert that it is not deleted yet. */ 8527 ASSERT(save_ire->ire_ptpn != NULL); 8528 IRB_REFRELE(save_ire->ire_bucket); 8529 ire_refrele(save_ire); 8530 8531 if (copy_mp != NULL) { 8532 /* 8533 * If we found a (no)resolver, we ignore any 8534 * trailing top priority IRE_CACHE in further 8535 * loops. This ensures that we do not omit any 8536 * (no)resolver. 8537 * This IRE_CACHE, if any, will be processed 8538 * by another thread entering ip_newroute(). 8539 * IRE_CACHE entries, if any, will be processed 8540 * by another thread entering ip_newroute(), 8541 * (upon resolver response, for instance). 8542 * This aims to force parallel multirt 8543 * resolutions as soon as a packet must be sent. 8544 * In the best case, after the tx of only one 8545 * packet, all reachable routes are resolved. 8546 * Otherwise, the resolution of all RTF_MULTIRT 8547 * routes would require several emissions. 8548 */ 8549 multirt_flags &= ~MULTIRT_CACHEGW; 8550 8551 /* 8552 * Search for the next unresolved multirt 8553 * route. 8554 */ 8555 copy_mp = NULL; 8556 save_ire = NULL; 8557 ire = NULL; 8558 multirt_resolve_next = B_TRUE; 8559 continue; 8560 } 8561 8562 /* 8563 * Don't need sire anymore 8564 */ 8565 if (sire != NULL) 8566 ire_refrele(sire); 8567 8568 ipif_refrele(src_ipif); 8569 ill_refrele(dst_ill); 8570 return; 8571 } 8572 case IRE_IF_RESOLVER: 8573 /* 8574 * We can't build an IRE_CACHE yet, but at least we 8575 * found a resolver that can help. 8576 */ 8577 res_mp = dst_ill->ill_resolver_mp; 8578 if (!OK_RESOLVER_MP(res_mp)) 8579 break; 8580 8581 /* 8582 * To be at this point in the code with a non-zero gw 8583 * means that dst is reachable through a gateway that 8584 * we have never resolved. By changing dst to the gw 8585 * addr we resolve the gateway first. 8586 * When ire_add_then_send() tries to put the IP dg 8587 * to dst, it will reenter ip_newroute() at which 8588 * time we will find the IRE_CACHE for the gw and 8589 * create another IRE_CACHE in case IRE_CACHE above. 8590 */ 8591 if (gw != INADDR_ANY) { 8592 /* 8593 * The source ipif that was determined above was 8594 * relative to the destination address, not the 8595 * gateway's. If src_ipif was not taken out of 8596 * the IRE_IF_RESOLVER entry, we'll need to call 8597 * ipif_select_source() again. 8598 */ 8599 if (src_ipif != ire->ire_ipif) { 8600 ipif_refrele(src_ipif); 8601 src_ipif = ipif_select_source(dst_ill, 8602 gw, zoneid); 8603 if (src_ipif == NULL) { 8604 if (ip_debug > 2) { 8605 pr_addr_dbg( 8606 "ip_newroute: no " 8607 "src for gw %s ", 8608 AF_INET, &gw); 8609 printf("through " 8610 "interface %s\n", 8611 dst_ill->ill_name); 8612 } 8613 goto icmp_err_ret; 8614 } 8615 } 8616 save_dst = dst; 8617 dst = gw; 8618 gw = INADDR_ANY; 8619 } 8620 8621 /* 8622 * We obtain a partial IRE_CACHE which we will pass 8623 * along with the resolver query. When the response 8624 * comes back it will be there ready for us to add. 8625 * The ire_max_frag is atomically set under the 8626 * irebucket lock in ire_add_v[46]. 8627 */ 8628 8629 ire = ire_create_mp( 8630 (uchar_t *)&dst, /* dest address */ 8631 (uchar_t *)&ip_g_all_ones, /* mask */ 8632 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 8633 (uchar_t *)&gw, /* gateway address */ 8634 NULL, /* no in_src_addr */ 8635 NULL, /* ire_max_frag */ 8636 NULL, /* Fast Path header */ 8637 dst_ill->ill_rq, /* recv-from queue */ 8638 dst_ill->ill_wq, /* send-to queue */ 8639 IRE_CACHE, 8640 NULL, 8641 src_ipif, /* Interface ipif */ 8642 in_ill, /* Incoming ILL */ 8643 save_ire->ire_mask, /* Parent mask */ 8644 0, 8645 save_ire->ire_ihandle, /* Interface handle */ 8646 0, /* flags if any */ 8647 &(save_ire->ire_uinfo), 8648 NULL, 8649 NULL); 8650 8651 if (ire == NULL) { 8652 ire_refrele(save_ire); 8653 break; 8654 } 8655 8656 if ((sire != NULL) && 8657 (sire->ire_flags & RTF_MULTIRT)) { 8658 copy_mp = copymsg(first_mp); 8659 if (copy_mp != NULL) 8660 MULTIRT_DEBUG_TAG(copy_mp); 8661 } 8662 8663 ire->ire_marks |= ire_marks; 8664 8665 /* 8666 * Construct message chain for the resolver 8667 * of the form: 8668 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 8669 * Packet could contain a IPSEC_OUT mp. 8670 * 8671 * NOTE : ire will be added later when the response 8672 * comes back from ARP. If the response does not 8673 * come back, ARP frees the packet. For this reason, 8674 * we can't REFHOLD the bucket of save_ire to prevent 8675 * deletions. We may not be able to REFRELE the bucket 8676 * if the response never comes back. Thus, before 8677 * adding the ire, ire_add_v4 will make sure that the 8678 * interface route does not get deleted. This is the 8679 * only case unlike ip_newroute_v6, ip_newroute_ipif_v6 8680 * where we can always prevent deletions because of 8681 * the synchronous nature of adding IRES i.e 8682 * ire_add_then_send is called after creating the IRE. 8683 */ 8684 ASSERT(ire->ire_mp != NULL); 8685 ire->ire_mp->b_cont = first_mp; 8686 /* Have saved_mp handy, for cleanup if canput fails */ 8687 saved_mp = mp; 8688 mp = copyb(res_mp); 8689 if (mp == NULL) { 8690 /* Prepare for cleanup */ 8691 mp = saved_mp; /* pkt */ 8692 ire_delete(ire); /* ire_mp */ 8693 ire = NULL; 8694 ire_refrele(save_ire); 8695 if (copy_mp != NULL) { 8696 MULTIRT_DEBUG_UNTAG(copy_mp); 8697 freemsg(copy_mp); 8698 copy_mp = NULL; 8699 } 8700 break; 8701 } 8702 linkb(mp, ire->ire_mp); 8703 8704 /* 8705 * Fill in the source and dest addrs for the resolver. 8706 * NOTE: this depends on memory layouts imposed by 8707 * ill_init(). 8708 */ 8709 areq = (areq_t *)mp->b_rptr; 8710 addrp = (ipaddr_t *)((char *)areq + 8711 areq->areq_sender_addr_offset); 8712 if (do_attach_ill) { 8713 /* 8714 * This is bind to no failover case. 8715 * arp packet also must go out on attach_ill. 8716 */ 8717 ASSERT(ipha->ipha_src != NULL); 8718 *addrp = ipha->ipha_src; 8719 } else { 8720 *addrp = save_ire->ire_src_addr; 8721 } 8722 8723 ire_refrele(save_ire); 8724 addrp = (ipaddr_t *)((char *)areq + 8725 areq->areq_target_addr_offset); 8726 *addrp = dst; 8727 /* Up to the resolver. */ 8728 if (canputnext(dst_ill->ill_rq) && 8729 !(dst_ill->ill_arp_closing)) { 8730 putnext(dst_ill->ill_rq, mp); 8731 ire = NULL; 8732 if (copy_mp != NULL) { 8733 /* 8734 * If we found a resolver, we ignore 8735 * any trailing top priority IRE_CACHE 8736 * in the further loops. This ensures 8737 * that we do not omit any resolver. 8738 * IRE_CACHE entries, if any, will be 8739 * processed next time we enter 8740 * ip_newroute(). 8741 */ 8742 multirt_flags &= ~MULTIRT_CACHEGW; 8743 /* 8744 * Search for the next unresolved 8745 * multirt route. 8746 */ 8747 first_mp = copy_mp; 8748 copy_mp = NULL; 8749 /* Prepare the next resolution loop. */ 8750 mp = first_mp; 8751 EXTRACT_PKT_MP(mp, first_mp, 8752 mctl_present); 8753 if (mctl_present) 8754 io = (ipsec_out_t *) 8755 first_mp->b_rptr; 8756 ipha = (ipha_t *)mp->b_rptr; 8757 8758 ASSERT(sire != NULL); 8759 8760 dst = save_dst; 8761 multirt_resolve_next = B_TRUE; 8762 continue; 8763 } 8764 8765 if (sire != NULL) 8766 ire_refrele(sire); 8767 8768 /* 8769 * The response will come back in ip_wput 8770 * with db_type IRE_DB_TYPE. 8771 */ 8772 ipif_refrele(src_ipif); 8773 ill_refrele(dst_ill); 8774 return; 8775 } else { 8776 /* Prepare for cleanup */ 8777 DTRACE_PROBE1(ip__newroute__drop, mblk_t *, 8778 mp); 8779 mp->b_cont = NULL; 8780 freeb(mp); /* areq */ 8781 /* 8782 * this is an ire that is not added to the 8783 * cache. ire_freemblk will handle the release 8784 * of any resources associated with the ire. 8785 */ 8786 ire_delete(ire); /* ire_mp */ 8787 mp = saved_mp; /* pkt */ 8788 ire = NULL; 8789 if (copy_mp != NULL) { 8790 MULTIRT_DEBUG_UNTAG(copy_mp); 8791 freemsg(copy_mp); 8792 copy_mp = NULL; 8793 } 8794 break; 8795 } 8796 default: 8797 break; 8798 } 8799 } while (multirt_resolve_next); 8800 8801 ip1dbg(("ip_newroute: dropped\n")); 8802 /* Did this packet originate externally? */ 8803 if (mp->b_prev) { 8804 mp->b_next = NULL; 8805 mp->b_prev = NULL; 8806 if (in_ill != NULL) { 8807 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInDiscards); 8808 } else { 8809 BUMP_MIB(&ip_mib, ipIfStatsInDiscards); 8810 } 8811 } else { 8812 if (dst_ill != NULL) { 8813 BUMP_MIB(dst_ill->ill_ip_mib, ipIfStatsOutDiscards); 8814 } else { 8815 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 8816 } 8817 } 8818 ASSERT(copy_mp == NULL); 8819 MULTIRT_DEBUG_UNTAG(first_mp); 8820 freemsg(first_mp); 8821 if (ire != NULL) 8822 ire_refrele(ire); 8823 if (sire != NULL) 8824 ire_refrele(sire); 8825 if (src_ipif != NULL) 8826 ipif_refrele(src_ipif); 8827 if (dst_ill != NULL) 8828 ill_refrele(dst_ill); 8829 return; 8830 8831 icmp_err_ret: 8832 ip1dbg(("ip_newroute: no route\n")); 8833 if (src_ipif != NULL) 8834 ipif_refrele(src_ipif); 8835 if (dst_ill != NULL) 8836 ill_refrele(dst_ill); 8837 if (sire != NULL) 8838 ire_refrele(sire); 8839 /* Did this packet originate externally? */ 8840 if (mp->b_prev) { 8841 mp->b_next = NULL; 8842 mp->b_prev = NULL; 8843 if (in_ill != NULL) { 8844 BUMP_MIB(in_ill->ill_ip_mib, ipIfStatsInNoRoutes); 8845 } else { 8846 BUMP_MIB(&ip_mib, ipIfStatsInNoRoutes); 8847 } 8848 q = WR(q); 8849 } else { 8850 /* 8851 * There is no outgoing ill, so just increment the 8852 * system MIB. 8853 */ 8854 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 8855 /* 8856 * Since ip_wput() isn't close to finished, we fill 8857 * in enough of the header for credible error reporting. 8858 */ 8859 if (ip_hdr_complete(ipha, zoneid)) { 8860 /* Failed */ 8861 MULTIRT_DEBUG_UNTAG(first_mp); 8862 freemsg(first_mp); 8863 if (ire != NULL) 8864 ire_refrele(ire); 8865 return; 8866 } 8867 } 8868 8869 /* 8870 * At this point we will have ire only if RTF_BLACKHOLE 8871 * or RTF_REJECT flags are set on the IRE. It will not 8872 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 8873 */ 8874 if (ire != NULL) { 8875 if (ire->ire_flags & RTF_BLACKHOLE) { 8876 ire_refrele(ire); 8877 MULTIRT_DEBUG_UNTAG(first_mp); 8878 freemsg(first_mp); 8879 return; 8880 } 8881 ire_refrele(ire); 8882 } 8883 if (ip_source_routed(ipha)) { 8884 icmp_unreachable(q, first_mp, ICMP_SOURCE_ROUTE_FAILED, 8885 zoneid); 8886 return; 8887 } 8888 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 8889 } 8890 8891 /* 8892 * IPv4 - 8893 * ip_newroute_ipif is called by ip_wput_multicast and 8894 * ip_rput_forward_multicast whenever we need to send 8895 * out a packet to a destination address for which we do not have specific 8896 * routing information. It is used when the packet will be sent out 8897 * on a specific interface. It is also called by ip_wput() when IP_XMIT_IF 8898 * socket option is set or icmp error message wants to go out on a particular 8899 * interface for a unicast packet. 8900 * 8901 * In most cases, the destination address is resolved thanks to the ipif 8902 * intrinsic resolver. However, there are some cases where the call to 8903 * ip_newroute_ipif must take into account the potential presence of 8904 * RTF_SETSRC and/or RTF_MULITRT flags in an IRE_OFFSUBNET ire 8905 * that uses the interface. This is specified through flags, 8906 * which can be a combination of: 8907 * - RTF_SETSRC: if an IRE_OFFSUBNET ire exists that has the RTF_SETSRC 8908 * flag, the resulting ire will inherit the IRE_OFFSUBNET source address 8909 * and flags. Additionally, the packet source address has to be set to 8910 * the specified address. The caller is thus expected to set this flag 8911 * if the packet has no specific source address yet. 8912 * - RTF_MULTIRT: if an IRE_OFFSUBNET ire exists that has the RTF_MULTIRT 8913 * flag, the resulting ire will inherit the flag. All unresolved routes 8914 * to the destination must be explored in the same call to 8915 * ip_newroute_ipif(). 8916 */ 8917 static void 8918 ip_newroute_ipif(queue_t *q, mblk_t *mp, ipif_t *ipif, ipaddr_t dst, 8919 conn_t *connp, uint32_t flags, zoneid_t zoneid) 8920 { 8921 areq_t *areq; 8922 ire_t *ire = NULL; 8923 mblk_t *res_mp; 8924 ipaddr_t *addrp; 8925 mblk_t *first_mp; 8926 ire_t *save_ire = NULL; 8927 ill_t *attach_ill = NULL; /* Bind to IPIF_NOFAILOVER */ 8928 ipif_t *src_ipif = NULL; 8929 ushort_t ire_marks = 0; 8930 ill_t *dst_ill = NULL; 8931 boolean_t mctl_present; 8932 ipsec_out_t *io; 8933 ipha_t *ipha; 8934 int ihandle = 0; 8935 mblk_t *saved_mp; 8936 ire_t *fire = NULL; 8937 mblk_t *copy_mp = NULL; 8938 boolean_t multirt_resolve_next; 8939 ipaddr_t ipha_dst; 8940 8941 /* 8942 * CGTP goes in a loop which looks up a new ipif, do an ipif_refhold 8943 * here for uniformity 8944 */ 8945 ipif_refhold(ipif); 8946 8947 /* 8948 * This loop is run only once in most cases. 8949 * We loop to resolve further routes only when the destination 8950 * can be reached through multiple RTF_MULTIRT-flagged ires. 8951 */ 8952 do { 8953 if (dst_ill != NULL) { 8954 ill_refrele(dst_ill); 8955 dst_ill = NULL; 8956 } 8957 if (src_ipif != NULL) { 8958 ipif_refrele(src_ipif); 8959 src_ipif = NULL; 8960 } 8961 multirt_resolve_next = B_FALSE; 8962 8963 ip1dbg(("ip_newroute_ipif: dst 0x%x, if %s\n", ntohl(dst), 8964 ipif->ipif_ill->ill_name)); 8965 8966 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 8967 if (mctl_present) 8968 io = (ipsec_out_t *)first_mp->b_rptr; 8969 8970 ipha = (ipha_t *)mp->b_rptr; 8971 8972 /* 8973 * Save the packet destination address, we may need it after 8974 * the packet has been consumed. 8975 */ 8976 ipha_dst = ipha->ipha_dst; 8977 8978 /* 8979 * If the interface is a pt-pt interface we look for an 8980 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER that matches both the 8981 * local_address and the pt-pt destination address. Otherwise 8982 * we just match the local address. 8983 * NOTE: dst could be different than ipha->ipha_dst in case 8984 * of sending igmp multicast packets over a point-to-point 8985 * connection. 8986 * Thus we must be careful enough to check ipha_dst to be a 8987 * multicast address, otherwise it will take xmit_if path for 8988 * multicast packets resulting into kernel stack overflow by 8989 * repeated calls to ip_newroute_ipif from ire_send(). 8990 */ 8991 if (CLASSD(ipha_dst) && 8992 !(ipif->ipif_ill->ill_flags & ILLF_MULTICAST)) { 8993 goto err_ret; 8994 } 8995 8996 /* 8997 * We check if an IRE_OFFSUBNET for the addr that goes through 8998 * ipif exists. We need it to determine if the RTF_SETSRC and/or 8999 * RTF_MULTIRT flags must be honored. This IRE_OFFSUBNET ire may 9000 * propagate its flags to the new ire. 9001 */ 9002 if (CLASSD(ipha_dst) && (flags & (RTF_MULTIRT | RTF_SETSRC))) { 9003 fire = ipif_lookup_multi_ire(ipif, ipha_dst); 9004 ip2dbg(("ip_newroute_ipif: " 9005 "ipif_lookup_multi_ire(" 9006 "ipif %p, dst %08x) = fire %p\n", 9007 (void *)ipif, ntohl(dst), (void *)fire)); 9008 } 9009 9010 if (mctl_present && io->ipsec_out_attach_if) { 9011 attach_ill = ip_grab_attach_ill(NULL, first_mp, 9012 io->ipsec_out_ill_index, B_FALSE); 9013 9014 /* Failure case frees things for us. */ 9015 if (attach_ill == NULL) { 9016 ipif_refrele(ipif); 9017 if (fire != NULL) 9018 ire_refrele(fire); 9019 return; 9020 } 9021 9022 /* 9023 * Check if we need an ire that will not be 9024 * looked up by anybody else i.e. HIDDEN. 9025 */ 9026 if (ill_is_probeonly(attach_ill)) { 9027 ire_marks = IRE_MARK_HIDDEN; 9028 } 9029 /* 9030 * ip_wput passes the right ipif for IPIF_NOFAILOVER 9031 * case. 9032 */ 9033 dst_ill = ipif->ipif_ill; 9034 /* attach_ill has been refheld by ip_grab_attach_ill */ 9035 ASSERT(dst_ill == attach_ill); 9036 } else { 9037 /* 9038 * If this is set by IP_XMIT_IF, then make sure that 9039 * ipif is pointing to the same ill as the IP_XMIT_IF 9040 * specified ill. 9041 */ 9042 ASSERT((connp == NULL) || 9043 (connp->conn_xmit_if_ill == NULL) || 9044 (connp->conn_xmit_if_ill == ipif->ipif_ill)); 9045 /* 9046 * If the interface belongs to an interface group, 9047 * make sure the next possible interface in the group 9048 * is used. This encourages load spreading among 9049 * peers in an interface group. 9050 * Note: load spreading is disabled for RTF_MULTIRT 9051 * routes. 9052 */ 9053 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9054 (fire->ire_flags & RTF_MULTIRT)) { 9055 /* 9056 * Don't perform outbound load spreading 9057 * in the case of an RTF_MULTIRT issued route, 9058 * we actually typically want to replicate 9059 * outgoing packets through particular 9060 * interfaces. 9061 */ 9062 dst_ill = ipif->ipif_ill; 9063 ill_refhold(dst_ill); 9064 } else { 9065 dst_ill = ip_newroute_get_dst_ill( 9066 ipif->ipif_ill); 9067 } 9068 if (dst_ill == NULL) { 9069 if (ip_debug > 2) { 9070 pr_addr_dbg("ip_newroute_ipif: " 9071 "no dst ill for dst %s\n", 9072 AF_INET, &dst); 9073 } 9074 goto err_ret; 9075 } 9076 } 9077 9078 /* 9079 * Pick a source address preferring non-deprecated ones. 9080 * Unlike ip_newroute, we don't do any source address 9081 * selection here since for multicast it really does not help 9082 * in inbound load spreading as in the unicast case. 9083 */ 9084 if ((flags & RTF_SETSRC) && (fire != NULL) && 9085 (fire->ire_flags & RTF_SETSRC)) { 9086 /* 9087 * As requested by flags, an IRE_OFFSUBNET was looked up 9088 * on that interface. This ire has RTF_SETSRC flag, so 9089 * the source address of the packet must be changed. 9090 * Check that the ipif matching the requested source 9091 * address still exists. 9092 */ 9093 src_ipif = ipif_lookup_addr(fire->ire_src_addr, NULL, 9094 zoneid, NULL, NULL, NULL, NULL); 9095 } 9096 if (((ipif->ipif_flags & IPIF_DEPRECATED) || 9097 (connp != NULL && ipif->ipif_zoneid != zoneid && 9098 ipif->ipif_zoneid != ALL_ZONES)) && 9099 (src_ipif == NULL)) { 9100 src_ipif = ipif_select_source(dst_ill, dst, zoneid); 9101 if (src_ipif == NULL) { 9102 if (ip_debug > 2) { 9103 /* ip1dbg */ 9104 pr_addr_dbg("ip_newroute_ipif: " 9105 "no src for dst %s", 9106 AF_INET, &dst); 9107 } 9108 ip1dbg((" through interface %s\n", 9109 dst_ill->ill_name)); 9110 goto err_ret; 9111 } 9112 ipif_refrele(ipif); 9113 ipif = src_ipif; 9114 ipif_refhold(ipif); 9115 } 9116 if (src_ipif == NULL) { 9117 src_ipif = ipif; 9118 ipif_refhold(src_ipif); 9119 } 9120 9121 /* 9122 * Assign a source address while we have the conn. 9123 * We can't have ip_wput_ire pick a source address when the 9124 * packet returns from arp since conn_unspec_src might be set 9125 * and we loose the conn when going through arp. 9126 */ 9127 if (ipha->ipha_src == INADDR_ANY && 9128 (connp == NULL || !connp->conn_unspec_src)) { 9129 ipha->ipha_src = src_ipif->ipif_src_addr; 9130 } 9131 9132 /* 9133 * In case of IP_XMIT_IF, it is possible that the outgoing 9134 * interface does not have an interface ire. 9135 * Example: Thousands of mobileip PPP interfaces to mobile 9136 * nodes. We don't want to create interface ires because 9137 * packets from other mobile nodes must not take the route 9138 * via interface ires to the visiting mobile node without 9139 * going through the home agent, in absence of mobileip 9140 * route optimization. 9141 */ 9142 if (CLASSD(ipha_dst) && (connp == NULL || 9143 connp->conn_xmit_if_ill == NULL)) { 9144 /* ipif_to_ire returns an held ire */ 9145 ire = ipif_to_ire(ipif); 9146 if (ire == NULL) 9147 goto err_ret; 9148 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 9149 goto err_ret; 9150 /* 9151 * ihandle is needed when the ire is added to 9152 * cache table. 9153 */ 9154 save_ire = ire; 9155 ihandle = save_ire->ire_ihandle; 9156 9157 ip2dbg(("ip_newroute_ipif: ire %p, ipif %p, " 9158 "flags %04x\n", 9159 (void *)ire, (void *)ipif, flags)); 9160 if ((flags & RTF_MULTIRT) && (fire != NULL) && 9161 (fire->ire_flags & RTF_MULTIRT)) { 9162 /* 9163 * As requested by flags, an IRE_OFFSUBNET was 9164 * looked up on that interface. This ire has 9165 * RTF_MULTIRT flag, so the resolution loop will 9166 * be re-entered to resolve additional routes on 9167 * other interfaces. For that purpose, a copy of 9168 * the packet is performed at this point. 9169 */ 9170 fire->ire_last_used_time = lbolt; 9171 copy_mp = copymsg(first_mp); 9172 if (copy_mp) { 9173 MULTIRT_DEBUG_TAG(copy_mp); 9174 } 9175 } 9176 if ((flags & RTF_SETSRC) && (fire != NULL) && 9177 (fire->ire_flags & RTF_SETSRC)) { 9178 /* 9179 * As requested by flags, an IRE_OFFSUBET was 9180 * looked up on that interface. This ire has 9181 * RTF_SETSRC flag, so the source address of the 9182 * packet must be changed. 9183 */ 9184 ipha->ipha_src = fire->ire_src_addr; 9185 } 9186 } else { 9187 ASSERT((connp == NULL) || 9188 (connp->conn_xmit_if_ill != NULL) || 9189 (connp->conn_dontroute)); 9190 /* 9191 * The only ways we can come here are: 9192 * 1) IP_XMIT_IF socket option is set 9193 * 2) ICMP error message generated from 9194 * ip_mrtun_forward() routine and it needs 9195 * to go through the specified ill. 9196 * 3) SO_DONTROUTE socket option is set 9197 * In all cases, the new ire will not be added 9198 * into cache table. 9199 */ 9200 ire_marks |= IRE_MARK_NOADD; 9201 } 9202 9203 switch (ipif->ipif_net_type) { 9204 case IRE_IF_NORESOLVER: { 9205 /* We have what we need to build an IRE_CACHE. */ 9206 mblk_t *res_mp; 9207 9208 /* 9209 * Create a new res_mp with the 9210 * IP gateway address as destination address in the 9211 * DLPI hdr if the physical length is exactly 4 bytes. 9212 */ 9213 if (dst_ill->ill_phys_addr_length == IP_ADDR_LEN) { 9214 res_mp = ill_dlur_gen((uchar_t *)&dst, 9215 dst_ill->ill_phys_addr_length, 9216 dst_ill->ill_sap, 9217 dst_ill->ill_sap_length); 9218 } else if (dst_ill->ill_resolver_mp == NULL) { 9219 ip1dbg(("ip_newroute: dst_ill %p " 9220 "for IF_NORESOLV ire %p has " 9221 "no ill_resolver_mp\n", 9222 (void *)dst_ill, (void *)ire)); 9223 break; 9224 } else { 9225 /* use the value set in ip_ll_subnet_defaults */ 9226 res_mp = ill_dlur_gen(NULL, 9227 dst_ill->ill_phys_addr_length, 9228 dst_ill->ill_sap, 9229 dst_ill->ill_sap_length); 9230 } 9231 9232 if (res_mp == NULL) 9233 break; 9234 /* 9235 * The new ire inherits the IRE_OFFSUBNET flags 9236 * and source address, if this was requested. 9237 */ 9238 ire = ire_create( 9239 (uchar_t *)&dst, /* dest address */ 9240 (uchar_t *)&ip_g_all_ones, /* mask */ 9241 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9242 NULL, /* gateway address */ 9243 NULL, 9244 &ipif->ipif_mtu, 9245 NULL, /* Fast Path header */ 9246 dst_ill->ill_rq, /* recv-from queue */ 9247 dst_ill->ill_wq, /* send-to queue */ 9248 IRE_CACHE, 9249 res_mp, 9250 src_ipif, 9251 NULL, 9252 (save_ire != NULL ? save_ire->ire_mask : 0), 9253 (fire != NULL) ? /* Parent handle */ 9254 fire->ire_phandle : 0, 9255 ihandle, /* Interface handle */ 9256 (fire != NULL) ? 9257 (fire->ire_flags & 9258 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9259 (save_ire == NULL ? &ire_uinfo_null : 9260 &save_ire->ire_uinfo), 9261 NULL, 9262 NULL); 9263 9264 freeb(res_mp); 9265 9266 if (ire == NULL) { 9267 if (save_ire != NULL) 9268 ire_refrele(save_ire); 9269 break; 9270 } 9271 9272 ire->ire_marks |= ire_marks; 9273 9274 /* 9275 * If IRE_MARK_NOADD is set then we need to convert 9276 * the max_fragp to a useable value now. This is 9277 * normally done in ire_add_v[46]. We also need to 9278 * associate the ire with an nce (normally would be 9279 * done in ip_wput_nondata()). 9280 * 9281 * Note that IRE_MARK_NOADD packets created here 9282 * do not have a non-null ire_mp pointer. The null 9283 * value of ire_bucket indicates that they were 9284 * never added. 9285 */ 9286 if (ire->ire_marks & IRE_MARK_NOADD) { 9287 uint_t max_frag; 9288 9289 max_frag = *ire->ire_max_fragp; 9290 ire->ire_max_fragp = NULL; 9291 ire->ire_max_frag = max_frag; 9292 9293 if ((ire->ire_nce = ndp_lookup_v4( 9294 ire_to_ill(ire), 9295 (ire->ire_gateway_addr != INADDR_ANY ? 9296 &ire->ire_gateway_addr : &ire->ire_addr), 9297 B_FALSE)) == NULL) { 9298 if (save_ire != NULL) 9299 ire_refrele(save_ire); 9300 break; 9301 } 9302 ASSERT(ire->ire_nce->nce_state == 9303 ND_REACHABLE); 9304 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 9305 } 9306 9307 /* Prevent save_ire from getting deleted */ 9308 if (save_ire != NULL) { 9309 IRB_REFHOLD(save_ire->ire_bucket); 9310 /* Has it been removed already ? */ 9311 if (save_ire->ire_marks & IRE_MARK_CONDEMNED) { 9312 IRB_REFRELE(save_ire->ire_bucket); 9313 ire_refrele(save_ire); 9314 break; 9315 } 9316 } 9317 9318 ire_add_then_send(q, ire, first_mp); 9319 9320 /* Assert that save_ire is not deleted yet. */ 9321 if (save_ire != NULL) { 9322 ASSERT(save_ire->ire_ptpn != NULL); 9323 IRB_REFRELE(save_ire->ire_bucket); 9324 ire_refrele(save_ire); 9325 save_ire = NULL; 9326 } 9327 if (fire != NULL) { 9328 ire_refrele(fire); 9329 fire = NULL; 9330 } 9331 9332 /* 9333 * the resolution loop is re-entered if this 9334 * was requested through flags and if we 9335 * actually are in a multirouting case. 9336 */ 9337 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9338 boolean_t need_resolve = 9339 ire_multirt_need_resolve(ipha_dst, 9340 MBLK_GETLABEL(copy_mp)); 9341 if (!need_resolve) { 9342 MULTIRT_DEBUG_UNTAG(copy_mp); 9343 freemsg(copy_mp); 9344 copy_mp = NULL; 9345 } else { 9346 /* 9347 * ipif_lookup_group() calls 9348 * ire_lookup_multi() that uses 9349 * ire_ftable_lookup() to find 9350 * an IRE_INTERFACE for the group. 9351 * In the multirt case, 9352 * ire_lookup_multi() then invokes 9353 * ire_multirt_lookup() to find 9354 * the next resolvable ire. 9355 * As a result, we obtain an new 9356 * interface, derived from the 9357 * next ire. 9358 */ 9359 ipif_refrele(ipif); 9360 ipif = ipif_lookup_group(ipha_dst, 9361 zoneid); 9362 ip2dbg(("ip_newroute_ipif: " 9363 "multirt dst %08x, ipif %p\n", 9364 htonl(dst), (void *)ipif)); 9365 if (ipif != NULL) { 9366 mp = copy_mp; 9367 copy_mp = NULL; 9368 multirt_resolve_next = B_TRUE; 9369 continue; 9370 } else { 9371 freemsg(copy_mp); 9372 } 9373 } 9374 } 9375 if (ipif != NULL) 9376 ipif_refrele(ipif); 9377 ill_refrele(dst_ill); 9378 ipif_refrele(src_ipif); 9379 return; 9380 } 9381 case IRE_IF_RESOLVER: 9382 /* 9383 * We can't build an IRE_CACHE yet, but at least 9384 * we found a resolver that can help. 9385 */ 9386 res_mp = dst_ill->ill_resolver_mp; 9387 if (!OK_RESOLVER_MP(res_mp)) 9388 break; 9389 9390 /* 9391 * We obtain a partial IRE_CACHE which we will pass 9392 * along with the resolver query. When the response 9393 * comes back it will be there ready for us to add. 9394 * The new ire inherits the IRE_OFFSUBNET flags 9395 * and source address, if this was requested. 9396 * The ire_max_frag is atomically set under the 9397 * irebucket lock in ire_add_v[46]. Only in the 9398 * case of IRE_MARK_NOADD, we set it here itself. 9399 */ 9400 ire = ire_create_mp( 9401 (uchar_t *)&dst, /* dest address */ 9402 (uchar_t *)&ip_g_all_ones, /* mask */ 9403 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 9404 NULL, /* gateway address */ 9405 NULL, /* no in_src_addr */ 9406 (ire_marks & IRE_MARK_NOADD) ? 9407 ipif->ipif_mtu : 0, /* max_frag */ 9408 NULL, /* Fast path header */ 9409 dst_ill->ill_rq, /* recv-from queue */ 9410 dst_ill->ill_wq, /* send-to queue */ 9411 IRE_CACHE, 9412 NULL, /* let ire_nce_init figure res_mp out */ 9413 src_ipif, 9414 NULL, 9415 (save_ire != NULL ? save_ire->ire_mask : 0), 9416 (fire != NULL) ? /* Parent handle */ 9417 fire->ire_phandle : 0, 9418 ihandle, /* Interface handle */ 9419 (fire != NULL) ? /* flags if any */ 9420 (fire->ire_flags & 9421 (RTF_SETSRC | RTF_MULTIRT)) : 0, 9422 (save_ire == NULL ? &ire_uinfo_null : 9423 &save_ire->ire_uinfo), 9424 NULL, 9425 NULL); 9426 9427 if (save_ire != NULL) { 9428 ire_refrele(save_ire); 9429 save_ire = NULL; 9430 } 9431 if (ire == NULL) 9432 break; 9433 9434 ire->ire_marks |= ire_marks; 9435 /* 9436 * Construct message chain for the resolver of the 9437 * form: 9438 * ARP_REQ_MBLK-->IRE_MBLK-->Packet 9439 * 9440 * NOTE : ire will be added later when the response 9441 * comes back from ARP. If the response does not 9442 * come back, ARP frees the packet. For this reason, 9443 * we can't REFHOLD the bucket of save_ire to prevent 9444 * deletions. We may not be able to REFRELE the 9445 * bucket if the response never comes back. 9446 * Thus, before adding the ire, ire_add_v4 will make 9447 * sure that the interface route does not get deleted. 9448 * This is the only case unlike ip_newroute_v6, 9449 * ip_newroute_ipif_v6 where we can always prevent 9450 * deletions because ire_add_then_send is called after 9451 * creating the IRE. 9452 * If IRE_MARK_NOADD is set, then ire_add_then_send 9453 * does not add this IRE into the IRE CACHE. 9454 */ 9455 ASSERT(ire->ire_mp != NULL); 9456 ire->ire_mp->b_cont = first_mp; 9457 /* Have saved_mp handy, for cleanup if canput fails */ 9458 saved_mp = mp; 9459 mp = copyb(res_mp); 9460 if (mp == NULL) { 9461 /* Prepare for cleanup */ 9462 mp = saved_mp; /* pkt */ 9463 ire_delete(ire); /* ire_mp */ 9464 ire = NULL; 9465 if (copy_mp != NULL) { 9466 MULTIRT_DEBUG_UNTAG(copy_mp); 9467 freemsg(copy_mp); 9468 copy_mp = NULL; 9469 } 9470 break; 9471 } 9472 linkb(mp, ire->ire_mp); 9473 9474 /* 9475 * Fill in the source and dest addrs for the resolver. 9476 * NOTE: this depends on memory layouts imposed by 9477 * ill_init(). 9478 */ 9479 areq = (areq_t *)mp->b_rptr; 9480 addrp = (ipaddr_t *)((char *)areq + 9481 areq->areq_sender_addr_offset); 9482 *addrp = ire->ire_src_addr; 9483 addrp = (ipaddr_t *)((char *)areq + 9484 areq->areq_target_addr_offset); 9485 *addrp = dst; 9486 /* Up to the resolver. */ 9487 if (canputnext(dst_ill->ill_rq) && 9488 !(dst_ill->ill_arp_closing)) { 9489 putnext(dst_ill->ill_rq, mp); 9490 /* 9491 * The response will come back in ip_wput 9492 * with db_type IRE_DB_TYPE. 9493 */ 9494 } else { 9495 mp->b_cont = NULL; 9496 freeb(mp); /* areq */ 9497 ire_delete(ire); /* ire_mp */ 9498 saved_mp->b_next = NULL; 9499 saved_mp->b_prev = NULL; 9500 freemsg(first_mp); /* pkt */ 9501 ip2dbg(("ip_newroute_ipif: dropped\n")); 9502 } 9503 9504 if (fire != NULL) { 9505 ire_refrele(fire); 9506 fire = NULL; 9507 } 9508 9509 9510 /* 9511 * The resolution loop is re-entered if this was 9512 * requested through flags and we actually are 9513 * in a multirouting case. 9514 */ 9515 if ((flags & RTF_MULTIRT) && (copy_mp != NULL)) { 9516 boolean_t need_resolve = 9517 ire_multirt_need_resolve(ipha_dst, 9518 MBLK_GETLABEL(copy_mp)); 9519 if (!need_resolve) { 9520 MULTIRT_DEBUG_UNTAG(copy_mp); 9521 freemsg(copy_mp); 9522 copy_mp = NULL; 9523 } else { 9524 /* 9525 * ipif_lookup_group() calls 9526 * ire_lookup_multi() that uses 9527 * ire_ftable_lookup() to find 9528 * an IRE_INTERFACE for the group. 9529 * In the multirt case, 9530 * ire_lookup_multi() then invokes 9531 * ire_multirt_lookup() to find 9532 * the next resolvable ire. 9533 * As a result, we obtain an new 9534 * interface, derived from the 9535 * next ire. 9536 */ 9537 ipif_refrele(ipif); 9538 ipif = ipif_lookup_group(ipha_dst, 9539 zoneid); 9540 if (ipif != NULL) { 9541 mp = copy_mp; 9542 copy_mp = NULL; 9543 multirt_resolve_next = B_TRUE; 9544 continue; 9545 } else { 9546 freemsg(copy_mp); 9547 } 9548 } 9549 } 9550 if (ipif != NULL) 9551 ipif_refrele(ipif); 9552 ill_refrele(dst_ill); 9553 ipif_refrele(src_ipif); 9554 return; 9555 default: 9556 break; 9557 } 9558 } while (multirt_resolve_next); 9559 9560 err_ret: 9561 ip2dbg(("ip_newroute_ipif: dropped\n")); 9562 if (fire != NULL) 9563 ire_refrele(fire); 9564 ipif_refrele(ipif); 9565 /* Did this packet originate externally? */ 9566 if (dst_ill != NULL) 9567 ill_refrele(dst_ill); 9568 if (src_ipif != NULL) 9569 ipif_refrele(src_ipif); 9570 if (mp->b_prev || mp->b_next) { 9571 mp->b_next = NULL; 9572 mp->b_prev = NULL; 9573 } else { 9574 /* 9575 * Since ip_wput() isn't close to finished, we fill 9576 * in enough of the header for credible error reporting. 9577 */ 9578 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 9579 /* Failed */ 9580 freemsg(first_mp); 9581 if (ire != NULL) 9582 ire_refrele(ire); 9583 return; 9584 } 9585 } 9586 /* 9587 * At this point we will have ire only if RTF_BLACKHOLE 9588 * or RTF_REJECT flags are set on the IRE. It will not 9589 * generate ICMP_HOST_UNREACHABLE if RTF_BLACKHOLE is set. 9590 */ 9591 if (ire != NULL) { 9592 if (ire->ire_flags & RTF_BLACKHOLE) { 9593 ire_refrele(ire); 9594 freemsg(first_mp); 9595 return; 9596 } 9597 ire_refrele(ire); 9598 } 9599 icmp_unreachable(q, first_mp, ICMP_HOST_UNREACHABLE, zoneid); 9600 } 9601 9602 /* Name/Value Table Lookup Routine */ 9603 char * 9604 ip_nv_lookup(nv_t *nv, int value) 9605 { 9606 if (!nv) 9607 return (NULL); 9608 for (; nv->nv_name; nv++) { 9609 if (nv->nv_value == value) 9610 return (nv->nv_name); 9611 } 9612 return ("unknown"); 9613 } 9614 9615 /* 9616 * one day it can be patched to 1 from /etc/system for machines that have few 9617 * fast network interfaces feeding multiple cpus. 9618 */ 9619 int ill_stream_putlocks = 0; 9620 9621 /* 9622 * This is a module open, i.e. this is a control stream for access 9623 * to a DLPI device. We allocate an ill_t as the instance data in 9624 * this case. 9625 */ 9626 int 9627 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9628 { 9629 uint32_t mem_cnt; 9630 uint32_t cpu_cnt; 9631 uint32_t min_cnt; 9632 pgcnt_t mem_avail; 9633 ill_t *ill; 9634 int err; 9635 9636 /* 9637 * Prevent unprivileged processes from pushing IP so that 9638 * they can't send raw IP. 9639 */ 9640 if (secpolicy_net_rawaccess(credp) != 0) 9641 return (EPERM); 9642 9643 ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t)); 9644 q->q_ptr = WR(q)->q_ptr = ill; 9645 9646 /* 9647 * ill_init initializes the ill fields and then sends down 9648 * down a DL_INFO_REQ after calling qprocson. 9649 */ 9650 err = ill_init(q, ill); 9651 if (err != 0) { 9652 mi_free(ill); 9653 q->q_ptr = NULL; 9654 WR(q)->q_ptr = NULL; 9655 return (err); 9656 } 9657 9658 /* ill_init initializes the ipsq marking this thread as writer */ 9659 ipsq_exit(ill->ill_phyint->phyint_ipsq, B_TRUE, B_TRUE); 9660 /* Wait for the DL_INFO_ACK */ 9661 mutex_enter(&ill->ill_lock); 9662 while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) { 9663 /* 9664 * Return value of 0 indicates a pending signal. 9665 */ 9666 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock); 9667 if (err == 0) { 9668 mutex_exit(&ill->ill_lock); 9669 (void) ip_close(q, 0); 9670 return (EINTR); 9671 } 9672 } 9673 mutex_exit(&ill->ill_lock); 9674 9675 /* 9676 * ip_rput_other could have set an error in ill_error on 9677 * receipt of M_ERROR. 9678 */ 9679 9680 err = ill->ill_error; 9681 if (err != 0) { 9682 (void) ip_close(q, 0); 9683 return (err); 9684 } 9685 9686 /* 9687 * ip_ire_max_bucket_cnt is sized below based on the memory 9688 * size and the cpu speed of the machine. This is upper 9689 * bounded by the compile time value of ip_ire_max_bucket_cnt 9690 * and is lower bounded by the compile time value of 9691 * ip_ire_min_bucket_cnt. Similar logic applies to 9692 * ip6_ire_max_bucket_cnt. 9693 */ 9694 mem_avail = kmem_avail(); 9695 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9696 ip_cache_table_size / sizeof (ire_t); 9697 cpu_cnt = CPU->cpu_type_info.pi_clock >> ip_ire_cpu_ratio; 9698 9699 min_cnt = MIN(cpu_cnt, mem_cnt); 9700 if (min_cnt < ip_ire_min_bucket_cnt) 9701 min_cnt = ip_ire_min_bucket_cnt; 9702 if (ip_ire_max_bucket_cnt > min_cnt) { 9703 ip_ire_max_bucket_cnt = min_cnt; 9704 } 9705 9706 mem_cnt = (mem_avail >> ip_ire_mem_ratio) / 9707 ip6_cache_table_size / sizeof (ire_t); 9708 min_cnt = MIN(cpu_cnt, mem_cnt); 9709 if (min_cnt < ip6_ire_min_bucket_cnt) 9710 min_cnt = ip6_ire_min_bucket_cnt; 9711 if (ip6_ire_max_bucket_cnt > min_cnt) { 9712 ip6_ire_max_bucket_cnt = min_cnt; 9713 } 9714 9715 ill->ill_credp = credp; 9716 crhold(credp); 9717 9718 mutex_enter(&ip_mi_lock); 9719 err = mi_open_link(&ip_g_head, (IDP)ill, devp, flag, sflag, credp); 9720 mutex_exit(&ip_mi_lock); 9721 if (err) { 9722 (void) ip_close(q, 0); 9723 return (err); 9724 } 9725 return (0); 9726 } 9727 9728 /* IP open routine. */ 9729 int 9730 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9731 { 9732 conn_t *connp; 9733 major_t maj; 9734 9735 TRACE_1(TR_FAC_IP, TR_IP_OPEN, "ip_open: q %p", q); 9736 9737 /* Allow reopen. */ 9738 if (q->q_ptr != NULL) 9739 return (0); 9740 9741 if (sflag & MODOPEN) { 9742 /* This is a module open */ 9743 return (ip_modopen(q, devp, flag, sflag, credp)); 9744 } 9745 9746 /* 9747 * We are opening as a device. This is an IP client stream, and we 9748 * allocate an conn_t as the instance data. 9749 */ 9750 connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP); 9751 connp->conn_upq = q; 9752 q->q_ptr = WR(q)->q_ptr = connp; 9753 9754 if (flag & SO_SOCKSTR) 9755 connp->conn_flags |= IPCL_SOCKET; 9756 9757 /* Minor tells us which /dev entry was opened */ 9758 if (geteminor(*devp) == IPV6_MINOR) { 9759 connp->conn_flags |= IPCL_ISV6; 9760 connp->conn_af_isv6 = B_TRUE; 9761 ip_setqinfo(q, geteminor(*devp), B_FALSE); 9762 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9763 } else { 9764 connp->conn_af_isv6 = B_FALSE; 9765 connp->conn_pkt_isv6 = B_FALSE; 9766 } 9767 9768 if ((connp->conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 9769 q->q_ptr = WR(q)->q_ptr = NULL; 9770 CONN_DEC_REF(connp); 9771 return (EBUSY); 9772 } 9773 9774 maj = getemajor(*devp); 9775 *devp = makedevice(maj, (minor_t)connp->conn_dev); 9776 9777 /* 9778 * connp->conn_cred is crfree()ed in ipcl_conn_destroy() 9779 */ 9780 connp->conn_cred = credp; 9781 crhold(connp->conn_cred); 9782 9783 /* 9784 * If the caller has the process-wide flag set, then default to MAC 9785 * exempt mode. This allows read-down to unlabeled hosts. 9786 */ 9787 if (getpflags(NET_MAC_AWARE, credp) != 0) 9788 connp->conn_mac_exempt = B_TRUE; 9789 9790 connp->conn_zoneid = getzoneid(); 9791 9792 /* 9793 * This should only happen for ndd, netstat, raw socket or other SCTP 9794 * administrative ops. In these cases, we just need a normal conn_t 9795 * with ulp set to IPPROTO_SCTP. All other ops are trapped and 9796 * an error will be returned. 9797 */ 9798 if (maj != SCTP_MAJ && maj != SCTP6_MAJ) { 9799 connp->conn_rq = q; 9800 connp->conn_wq = WR(q); 9801 } else { 9802 connp->conn_ulp = IPPROTO_SCTP; 9803 connp->conn_rq = connp->conn_wq = NULL; 9804 } 9805 /* Non-zero default values */ 9806 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9807 9808 /* 9809 * Make the conn globally visible to walkers 9810 */ 9811 mutex_enter(&connp->conn_lock); 9812 connp->conn_state_flags &= ~CONN_INCIPIENT; 9813 mutex_exit(&connp->conn_lock); 9814 ASSERT(connp->conn_ref == 1); 9815 9816 qprocson(q); 9817 9818 return (0); 9819 } 9820 9821 /* 9822 * Change q_qinfo based on the value of isv6. 9823 * This can not called on an ill queue. 9824 * Note that there is no race since either q_qinfo works for conn queues - it 9825 * is just an optimization to enter the best wput routine directly. 9826 */ 9827 void 9828 ip_setqinfo(queue_t *q, minor_t minor, boolean_t bump_mib) 9829 { 9830 ASSERT(q->q_flag & QREADR); 9831 ASSERT(WR(q)->q_next == NULL); 9832 ASSERT(q->q_ptr != NULL); 9833 9834 if (minor == IPV6_MINOR) { 9835 if (bump_mib) 9836 BUMP_MIB(&ip6_mib, ipIfStatsOutSwitchIPVersion); 9837 q->q_qinfo = &rinit_ipv6; 9838 WR(q)->q_qinfo = &winit_ipv6; 9839 (Q_TO_CONN(q))->conn_pkt_isv6 = B_TRUE; 9840 } else { 9841 if (bump_mib) 9842 BUMP_MIB(&ip_mib, ipIfStatsOutSwitchIPVersion); 9843 q->q_qinfo = &iprinit; 9844 WR(q)->q_qinfo = &ipwinit; 9845 (Q_TO_CONN(q))->conn_pkt_isv6 = B_FALSE; 9846 } 9847 9848 } 9849 9850 /* 9851 * See if IPsec needs loading because of the options in mp. 9852 */ 9853 static boolean_t 9854 ipsec_opt_present(mblk_t *mp) 9855 { 9856 uint8_t *optcp, *next_optcp, *opt_endcp; 9857 struct opthdr *opt; 9858 struct T_opthdr *topt; 9859 int opthdr_len; 9860 t_uscalar_t optname, optlevel; 9861 struct T_optmgmt_req *tor = (struct T_optmgmt_req *)mp->b_rptr; 9862 ipsec_req_t *ipsr; 9863 9864 /* 9865 * Walk through the mess, and find IP_SEC_OPT. If it's there, 9866 * return TRUE. 9867 */ 9868 9869 optcp = mi_offset_param(mp, tor->OPT_offset, tor->OPT_length); 9870 opt_endcp = optcp + tor->OPT_length; 9871 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9872 opthdr_len = sizeof (struct T_opthdr); 9873 } else { /* O_OPTMGMT_REQ */ 9874 ASSERT(tor->PRIM_type == T_SVR4_OPTMGMT_REQ); 9875 opthdr_len = sizeof (struct opthdr); 9876 } 9877 for (; optcp < opt_endcp; optcp = next_optcp) { 9878 if (optcp + opthdr_len > opt_endcp) 9879 return (B_FALSE); /* Not enough option header. */ 9880 if (tor->PRIM_type == T_OPTMGMT_REQ) { 9881 topt = (struct T_opthdr *)optcp; 9882 optlevel = topt->level; 9883 optname = topt->name; 9884 next_optcp = optcp + _TPI_ALIGN_TOPT(topt->len); 9885 } else { 9886 opt = (struct opthdr *)optcp; 9887 optlevel = opt->level; 9888 optname = opt->name; 9889 next_optcp = optcp + opthdr_len + 9890 _TPI_ALIGN_OPT(opt->len); 9891 } 9892 if ((next_optcp < optcp) || /* wraparound pointer space */ 9893 ((next_optcp >= opt_endcp) && /* last option bad len */ 9894 ((next_optcp - opt_endcp) >= __TPI_ALIGN_SIZE))) 9895 return (B_FALSE); /* bad option buffer */ 9896 if ((optlevel == IPPROTO_IP && optname == IP_SEC_OPT) || 9897 (optlevel == IPPROTO_IPV6 && optname == IPV6_SEC_OPT)) { 9898 /* 9899 * Check to see if it's an all-bypass or all-zeroes 9900 * IPsec request. Don't bother loading IPsec if 9901 * the socket doesn't want to use it. (A good example 9902 * is a bypass request.) 9903 * 9904 * Basically, if any of the non-NEVER bits are set, 9905 * load IPsec. 9906 */ 9907 ipsr = (ipsec_req_t *)(optcp + opthdr_len); 9908 if ((ipsr->ipsr_ah_req & ~IPSEC_PREF_NEVER) != 0 || 9909 (ipsr->ipsr_esp_req & ~IPSEC_PREF_NEVER) != 0 || 9910 (ipsr->ipsr_self_encap_req & ~IPSEC_PREF_NEVER) 9911 != 0) 9912 return (B_TRUE); 9913 } 9914 } 9915 return (B_FALSE); 9916 } 9917 9918 /* 9919 * If conn is is waiting for ipsec to finish loading, kick it. 9920 */ 9921 /* ARGSUSED */ 9922 static void 9923 conn_restart_ipsec_waiter(conn_t *connp, void *arg) 9924 { 9925 t_scalar_t optreq_prim; 9926 mblk_t *mp; 9927 cred_t *cr; 9928 int err = 0; 9929 9930 /* 9931 * This function is called, after ipsec loading is complete. 9932 * Since IP checks exclusively and atomically (i.e it prevents 9933 * ipsec load from completing until ip_optcom_req completes) 9934 * whether ipsec load is complete, there cannot be a race with IP 9935 * trying to set the CONN_IPSEC_LOAD_WAIT flag on any conn now. 9936 */ 9937 mutex_enter(&connp->conn_lock); 9938 if (connp->conn_state_flags & CONN_IPSEC_LOAD_WAIT) { 9939 ASSERT(connp->conn_ipsec_opt_mp != NULL); 9940 mp = connp->conn_ipsec_opt_mp; 9941 connp->conn_ipsec_opt_mp = NULL; 9942 connp->conn_state_flags &= ~CONN_IPSEC_LOAD_WAIT; 9943 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(CONNP_TO_WQ(connp))); 9944 mutex_exit(&connp->conn_lock); 9945 9946 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 9947 9948 optreq_prim = ((union T_primitives *)mp->b_rptr)->type; 9949 if (optreq_prim == T_OPTMGMT_REQ) { 9950 err = tpi_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9951 &ip_opt_obj); 9952 } else { 9953 ASSERT(optreq_prim == T_SVR4_OPTMGMT_REQ); 9954 err = svr4_optcom_req(CONNP_TO_WQ(connp), mp, cr, 9955 &ip_opt_obj); 9956 } 9957 if (err != EINPROGRESS) 9958 CONN_OPER_PENDING_DONE(connp); 9959 return; 9960 } 9961 mutex_exit(&connp->conn_lock); 9962 } 9963 9964 /* 9965 * Called from the ipsec_loader thread, outside any perimeter, to tell 9966 * ip qenable any of the queues waiting for the ipsec loader to 9967 * complete. 9968 * 9969 * Use ip_mi_lock to be safe here: all modifications of the mi lists 9970 * are done with this lock held, so it's guaranteed that none of the 9971 * links will change along the way. 9972 */ 9973 void 9974 ip_ipsec_load_complete() 9975 { 9976 ipcl_walk(conn_restart_ipsec_waiter, NULL); 9977 } 9978 9979 /* 9980 * Can't be used. Need to call svr4* -> optset directly. the leaf routine 9981 * determines the grp on which it has to become exclusive, queues the mp 9982 * and sq draining restarts the optmgmt 9983 */ 9984 static boolean_t 9985 ip_check_for_ipsec_opt(queue_t *q, mblk_t *mp) 9986 { 9987 conn_t *connp; 9988 9989 /* 9990 * Take IPsec requests and treat them special. 9991 */ 9992 if (ipsec_opt_present(mp)) { 9993 /* First check if IPsec is loaded. */ 9994 mutex_enter(&ipsec_loader_lock); 9995 if (ipsec_loader_state != IPSEC_LOADER_WAIT) { 9996 mutex_exit(&ipsec_loader_lock); 9997 return (B_FALSE); 9998 } 9999 connp = Q_TO_CONN(q); 10000 mutex_enter(&connp->conn_lock); 10001 connp->conn_state_flags |= CONN_IPSEC_LOAD_WAIT; 10002 10003 ASSERT(connp->conn_ipsec_opt_mp == NULL); 10004 connp->conn_ipsec_opt_mp = mp; 10005 mutex_exit(&connp->conn_lock); 10006 mutex_exit(&ipsec_loader_lock); 10007 10008 ipsec_loader_loadnow(); 10009 return (B_TRUE); 10010 } 10011 return (B_FALSE); 10012 } 10013 10014 /* 10015 * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid, 10016 * all of them are copied to the conn_t. If the req is "zero", the policy is 10017 * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req 10018 * fields. 10019 * We keep only the latest setting of the policy and thus policy setting 10020 * is not incremental/cumulative. 10021 * 10022 * Requests to set policies with multiple alternative actions will 10023 * go through a different API. 10024 */ 10025 int 10026 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req) 10027 { 10028 uint_t ah_req = 0; 10029 uint_t esp_req = 0; 10030 uint_t se_req = 0; 10031 ipsec_selkey_t sel; 10032 ipsec_act_t *actp = NULL; 10033 uint_t nact; 10034 ipsec_policy_t *pin4 = NULL, *pout4 = NULL; 10035 ipsec_policy_t *pin6 = NULL, *pout6 = NULL; 10036 ipsec_policy_root_t *pr; 10037 ipsec_policy_head_t *ph; 10038 int fam; 10039 boolean_t is_pol_reset; 10040 int error = 0; 10041 10042 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER) 10043 10044 /* 10045 * The IP_SEC_OPT option does not allow variable length parameters, 10046 * hence a request cannot be NULL. 10047 */ 10048 if (req == NULL) 10049 return (EINVAL); 10050 10051 ah_req = req->ipsr_ah_req; 10052 esp_req = req->ipsr_esp_req; 10053 se_req = req->ipsr_self_encap_req; 10054 10055 /* 10056 * Are we dealing with a request to reset the policy (i.e. 10057 * zero requests). 10058 */ 10059 is_pol_reset = ((ah_req & REQ_MASK) == 0 && 10060 (esp_req & REQ_MASK) == 0 && 10061 (se_req & REQ_MASK) == 0); 10062 10063 if (!is_pol_reset) { 10064 /* 10065 * If we couldn't load IPsec, fail with "protocol 10066 * not supported". 10067 * IPsec may not have been loaded for a request with zero 10068 * policies, so we don't fail in this case. 10069 */ 10070 mutex_enter(&ipsec_loader_lock); 10071 if (ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) { 10072 mutex_exit(&ipsec_loader_lock); 10073 return (EPROTONOSUPPORT); 10074 } 10075 mutex_exit(&ipsec_loader_lock); 10076 10077 /* 10078 * Test for valid requests. Invalid algorithms 10079 * need to be tested by IPSEC code because new 10080 * algorithms can be added dynamically. 10081 */ 10082 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10083 (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 || 10084 (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) { 10085 return (EINVAL); 10086 } 10087 10088 /* 10089 * Only privileged users can issue these 10090 * requests. 10091 */ 10092 if (((ah_req & IPSEC_PREF_NEVER) || 10093 (esp_req & IPSEC_PREF_NEVER) || 10094 (se_req & IPSEC_PREF_NEVER)) && 10095 secpolicy_net_config(cr, B_FALSE) != 0) { 10096 return (EPERM); 10097 } 10098 10099 /* 10100 * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER 10101 * are mutually exclusive. 10102 */ 10103 if (((ah_req & REQ_MASK) == REQ_MASK) || 10104 ((esp_req & REQ_MASK) == REQ_MASK) || 10105 ((se_req & REQ_MASK) == REQ_MASK)) { 10106 /* Both of them are set */ 10107 return (EINVAL); 10108 } 10109 } 10110 10111 mutex_enter(&connp->conn_lock); 10112 10113 /* 10114 * If we have already cached policies in ip_bind_connected*(), don't 10115 * let them change now. We cache policies for connections 10116 * whose src,dst [addr, port] is known. 10117 */ 10118 if (connp->conn_policy_cached) { 10119 mutex_exit(&connp->conn_lock); 10120 return (EINVAL); 10121 } 10122 10123 /* 10124 * We have a zero policies, reset the connection policy if already 10125 * set. This will cause the connection to inherit the 10126 * global policy, if any. 10127 */ 10128 if (is_pol_reset) { 10129 if (connp->conn_policy != NULL) { 10130 IPPH_REFRELE(connp->conn_policy); 10131 connp->conn_policy = NULL; 10132 } 10133 connp->conn_flags &= ~IPCL_CHECK_POLICY; 10134 connp->conn_in_enforce_policy = B_FALSE; 10135 connp->conn_out_enforce_policy = B_FALSE; 10136 mutex_exit(&connp->conn_lock); 10137 return (0); 10138 } 10139 10140 ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy); 10141 if (ph == NULL) 10142 goto enomem; 10143 10144 ipsec_actvec_from_req(req, &actp, &nact); 10145 if (actp == NULL) 10146 goto enomem; 10147 10148 /* 10149 * Always allocate IPv4 policy entries, since they can also 10150 * apply to ipv6 sockets being used in ipv4-compat mode. 10151 */ 10152 bzero(&sel, sizeof (sel)); 10153 sel.ipsl_valid = IPSL_IPV4; 10154 10155 pin4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10156 if (pin4 == NULL) 10157 goto enomem; 10158 10159 pout4 = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET, NULL); 10160 if (pout4 == NULL) 10161 goto enomem; 10162 10163 if (connp->conn_pkt_isv6) { 10164 /* 10165 * We're looking at a v6 socket, also allocate the 10166 * v6-specific entries... 10167 */ 10168 sel.ipsl_valid = IPSL_IPV6; 10169 pin6 = ipsec_policy_create(&sel, actp, nact, 10170 IPSEC_PRIO_SOCKET, NULL); 10171 if (pin6 == NULL) 10172 goto enomem; 10173 10174 pout6 = ipsec_policy_create(&sel, actp, nact, 10175 IPSEC_PRIO_SOCKET, NULL); 10176 if (pout6 == NULL) 10177 goto enomem; 10178 10179 /* 10180 * .. and file them away in the right place. 10181 */ 10182 fam = IPSEC_AF_V6; 10183 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10184 HASHLIST_INSERT(pin6, ipsp_hash, pr->ipr_nonhash[fam]); 10185 ipsec_insert_always(&ph->iph_rulebyid, pin6); 10186 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10187 HASHLIST_INSERT(pout6, ipsp_hash, pr->ipr_nonhash[fam]); 10188 ipsec_insert_always(&ph->iph_rulebyid, pout6); 10189 } 10190 10191 ipsec_actvec_free(actp, nact); 10192 10193 /* 10194 * File the v4 policies. 10195 */ 10196 fam = IPSEC_AF_V4; 10197 pr = &ph->iph_root[IPSEC_TYPE_INBOUND]; 10198 HASHLIST_INSERT(pin4, ipsp_hash, pr->ipr_nonhash[fam]); 10199 ipsec_insert_always(&ph->iph_rulebyid, pin4); 10200 10201 pr = &ph->iph_root[IPSEC_TYPE_OUTBOUND]; 10202 HASHLIST_INSERT(pout4, ipsp_hash, pr->ipr_nonhash[fam]); 10203 ipsec_insert_always(&ph->iph_rulebyid, pout4); 10204 10205 /* 10206 * If the requests need security, set enforce_policy. 10207 * If the requests are IPSEC_PREF_NEVER, one should 10208 * still set conn_out_enforce_policy so that an ipsec_out 10209 * gets attached in ip_wput. This is needed so that 10210 * for connections that we don't cache policy in ip_bind, 10211 * if global policy matches in ip_wput_attach_policy, we 10212 * don't wrongly inherit global policy. Similarly, we need 10213 * to set conn_in_enforce_policy also so that we don't verify 10214 * policy wrongly. 10215 */ 10216 if ((ah_req & REQ_MASK) != 0 || 10217 (esp_req & REQ_MASK) != 0 || 10218 (se_req & REQ_MASK) != 0) { 10219 connp->conn_in_enforce_policy = B_TRUE; 10220 connp->conn_out_enforce_policy = B_TRUE; 10221 connp->conn_flags |= IPCL_CHECK_POLICY; 10222 } 10223 10224 mutex_exit(&connp->conn_lock); 10225 return (error); 10226 #undef REQ_MASK 10227 10228 /* 10229 * Common memory-allocation-failure exit path. 10230 */ 10231 enomem: 10232 mutex_exit(&connp->conn_lock); 10233 if (actp != NULL) 10234 ipsec_actvec_free(actp, nact); 10235 if (pin4 != NULL) 10236 IPPOL_REFRELE(pin4); 10237 if (pout4 != NULL) 10238 IPPOL_REFRELE(pout4); 10239 if (pin6 != NULL) 10240 IPPOL_REFRELE(pin6); 10241 if (pout6 != NULL) 10242 IPPOL_REFRELE(pout6); 10243 return (ENOMEM); 10244 } 10245 10246 /* 10247 * Only for options that pass in an IP addr. Currently only V4 options 10248 * pass in an ipif. V6 options always pass an ifindex specifying the ill. 10249 * So this function assumes level is IPPROTO_IP 10250 */ 10251 int 10252 ip_opt_set_ipif(conn_t *connp, ipaddr_t addr, boolean_t checkonly, int option, 10253 mblk_t *first_mp) 10254 { 10255 ipif_t *ipif = NULL; 10256 int error; 10257 ill_t *ill; 10258 int zoneid; 10259 10260 ip2dbg(("ip_opt_set_ipif: ipaddr %X\n", addr)); 10261 10262 if (addr != INADDR_ANY || checkonly) { 10263 ASSERT(connp != NULL); 10264 zoneid = IPCL_ZONEID(connp); 10265 if (option == IP_NEXTHOP) { 10266 ipif = ipif_lookup_onlink_addr(addr, 10267 connp->conn_zoneid); 10268 } else { 10269 ipif = ipif_lookup_addr(addr, NULL, zoneid, 10270 CONNP_TO_WQ(connp), first_mp, ip_restart_optmgmt, 10271 &error); 10272 } 10273 if (ipif == NULL) { 10274 if (error == EINPROGRESS) 10275 return (error); 10276 else if ((option == IP_MULTICAST_IF) || 10277 (option == IP_NEXTHOP)) 10278 return (EHOSTUNREACH); 10279 else 10280 return (EINVAL); 10281 } else if (checkonly) { 10282 if (option == IP_MULTICAST_IF) { 10283 ill = ipif->ipif_ill; 10284 /* not supported by the virtual network iface */ 10285 if (IS_VNI(ill)) { 10286 ipif_refrele(ipif); 10287 return (EINVAL); 10288 } 10289 } 10290 ipif_refrele(ipif); 10291 return (0); 10292 } 10293 ill = ipif->ipif_ill; 10294 mutex_enter(&connp->conn_lock); 10295 mutex_enter(&ill->ill_lock); 10296 if ((ill->ill_state_flags & ILL_CONDEMNED) || 10297 (ipif->ipif_state_flags & IPIF_CONDEMNED)) { 10298 mutex_exit(&ill->ill_lock); 10299 mutex_exit(&connp->conn_lock); 10300 ipif_refrele(ipif); 10301 return (option == IP_MULTICAST_IF ? 10302 EHOSTUNREACH : EINVAL); 10303 } 10304 } else { 10305 mutex_enter(&connp->conn_lock); 10306 } 10307 10308 /* None of the options below are supported on the VNI */ 10309 if (ipif != NULL && IS_VNI(ipif->ipif_ill)) { 10310 mutex_exit(&ill->ill_lock); 10311 mutex_exit(&connp->conn_lock); 10312 ipif_refrele(ipif); 10313 return (EINVAL); 10314 } 10315 10316 switch (option) { 10317 case IP_DONTFAILOVER_IF: 10318 /* 10319 * This option is used by in.mpathd to ensure 10320 * that IPMP probe packets only go out on the 10321 * test interfaces. in.mpathd sets this option 10322 * on the non-failover interfaces. 10323 * For backward compatibility, this option 10324 * implicitly sets IP_MULTICAST_IF, as used 10325 * be done in bind(), so that ip_wput gets 10326 * this ipif to send mcast packets. 10327 */ 10328 if (ipif != NULL) { 10329 ASSERT(addr != INADDR_ANY); 10330 connp->conn_nofailover_ill = ipif->ipif_ill; 10331 connp->conn_multicast_ipif = ipif; 10332 } else { 10333 ASSERT(addr == INADDR_ANY); 10334 connp->conn_nofailover_ill = NULL; 10335 connp->conn_multicast_ipif = NULL; 10336 } 10337 break; 10338 10339 case IP_MULTICAST_IF: 10340 connp->conn_multicast_ipif = ipif; 10341 break; 10342 case IP_NEXTHOP: 10343 connp->conn_nexthop_v4 = addr; 10344 connp->conn_nexthop_set = B_TRUE; 10345 break; 10346 } 10347 10348 if (ipif != NULL) { 10349 mutex_exit(&ill->ill_lock); 10350 mutex_exit(&connp->conn_lock); 10351 ipif_refrele(ipif); 10352 return (0); 10353 } 10354 mutex_exit(&connp->conn_lock); 10355 /* We succeded in cleared the option */ 10356 return (0); 10357 } 10358 10359 /* 10360 * For options that pass in an ifindex specifying the ill. V6 options always 10361 * pass in an ill. Some v4 options also pass in ifindex specifying the ill. 10362 */ 10363 int 10364 ip_opt_set_ill(conn_t *connp, int ifindex, boolean_t isv6, boolean_t checkonly, 10365 int level, int option, mblk_t *first_mp) 10366 { 10367 ill_t *ill = NULL; 10368 int error = 0; 10369 10370 ip2dbg(("ip_opt_set_ill: ifindex %d\n", ifindex)); 10371 if (ifindex != 0) { 10372 ASSERT(connp != NULL); 10373 ill = ill_lookup_on_ifindex(ifindex, isv6, CONNP_TO_WQ(connp), 10374 first_mp, ip_restart_optmgmt, &error); 10375 if (ill != NULL) { 10376 if (checkonly) { 10377 /* not supported by the virtual network iface */ 10378 if (IS_VNI(ill)) { 10379 ill_refrele(ill); 10380 return (EINVAL); 10381 } 10382 ill_refrele(ill); 10383 return (0); 10384 } 10385 if (!ipif_lookup_zoneid_group(ill, connp->conn_zoneid, 10386 0, NULL)) { 10387 ill_refrele(ill); 10388 ill = NULL; 10389 mutex_enter(&connp->conn_lock); 10390 goto setit; 10391 } 10392 mutex_enter(&connp->conn_lock); 10393 mutex_enter(&ill->ill_lock); 10394 if (ill->ill_state_flags & ILL_CONDEMNED) { 10395 mutex_exit(&ill->ill_lock); 10396 mutex_exit(&connp->conn_lock); 10397 ill_refrele(ill); 10398 ill = NULL; 10399 mutex_enter(&connp->conn_lock); 10400 } 10401 goto setit; 10402 } else if (error == EINPROGRESS) { 10403 return (error); 10404 } else { 10405 error = 0; 10406 } 10407 } 10408 mutex_enter(&connp->conn_lock); 10409 setit: 10410 ASSERT((level == IPPROTO_IP || level == IPPROTO_IPV6)); 10411 10412 /* 10413 * The options below assume that the ILL (if any) transmits and/or 10414 * receives traffic. Neither of which is true for the virtual network 10415 * interface, so fail setting these on a VNI. 10416 */ 10417 if (IS_VNI(ill)) { 10418 ASSERT(ill != NULL); 10419 mutex_exit(&ill->ill_lock); 10420 mutex_exit(&connp->conn_lock); 10421 ill_refrele(ill); 10422 return (EINVAL); 10423 } 10424 10425 if (level == IPPROTO_IP) { 10426 switch (option) { 10427 case IP_BOUND_IF: 10428 connp->conn_incoming_ill = ill; 10429 connp->conn_outgoing_ill = ill; 10430 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10431 0 : ifindex; 10432 break; 10433 10434 case IP_XMIT_IF: 10435 /* 10436 * Similar to IP_BOUND_IF, but this only 10437 * determines the outgoing interface for 10438 * unicast packets. Also no IRE_CACHE entry 10439 * is added for the destination of the 10440 * outgoing packets. This feature is needed 10441 * for mobile IP. 10442 */ 10443 connp->conn_xmit_if_ill = ill; 10444 connp->conn_orig_xmit_ifindex = (ill == NULL) ? 10445 0 : ifindex; 10446 break; 10447 10448 case IP_MULTICAST_IF: 10449 /* 10450 * This option is an internal special. The socket 10451 * level IP_MULTICAST_IF specifies an 'ipaddr' and 10452 * is handled in ip_opt_set_ipif. IPV6_MULTICAST_IF 10453 * specifies an ifindex and we try first on V6 ill's. 10454 * If we don't find one, we they try using on v4 ill's 10455 * intenally and we come here. 10456 */ 10457 if (!checkonly && ill != NULL) { 10458 ipif_t *ipif; 10459 ipif = ill->ill_ipif; 10460 10461 if (ipif->ipif_state_flags & IPIF_CONDEMNED) { 10462 mutex_exit(&ill->ill_lock); 10463 mutex_exit(&connp->conn_lock); 10464 ill_refrele(ill); 10465 ill = NULL; 10466 mutex_enter(&connp->conn_lock); 10467 } else { 10468 connp->conn_multicast_ipif = ipif; 10469 } 10470 } 10471 break; 10472 } 10473 } else { 10474 switch (option) { 10475 case IPV6_BOUND_IF: 10476 connp->conn_incoming_ill = ill; 10477 connp->conn_outgoing_ill = ill; 10478 connp->conn_orig_bound_ifindex = (ill == NULL) ? 10479 0 : ifindex; 10480 break; 10481 10482 case IPV6_BOUND_PIF: 10483 /* 10484 * Limit all transmit to this ill. 10485 * Unlike IPV6_BOUND_IF, using this option 10486 * prevents load spreading and failover from 10487 * happening when the interface is part of the 10488 * group. That's why we don't need to remember 10489 * the ifindex in orig_bound_ifindex as in 10490 * IPV6_BOUND_IF. 10491 */ 10492 connp->conn_outgoing_pill = ill; 10493 break; 10494 10495 case IPV6_DONTFAILOVER_IF: 10496 /* 10497 * This option is used by in.mpathd to ensure 10498 * that IPMP probe packets only go out on the 10499 * test interfaces. in.mpathd sets this option 10500 * on the non-failover interfaces. 10501 */ 10502 connp->conn_nofailover_ill = ill; 10503 /* 10504 * For backward compatibility, this option 10505 * implicitly sets ip_multicast_ill as used in 10506 * IP_MULTICAST_IF so that ip_wput gets 10507 * this ipif to send mcast packets. 10508 */ 10509 connp->conn_multicast_ill = ill; 10510 connp->conn_orig_multicast_ifindex = (ill == NULL) ? 10511 0 : ifindex; 10512 break; 10513 10514 case IPV6_MULTICAST_IF: 10515 /* 10516 * Set conn_multicast_ill to be the IPv6 ill. 10517 * Set conn_multicast_ipif to be an IPv4 ipif 10518 * for ifindex to make IPv4 mapped addresses 10519 * on PF_INET6 sockets honor IPV6_MULTICAST_IF. 10520 * Even if no IPv6 ill exists for the ifindex 10521 * we need to check for an IPv4 ifindex in order 10522 * for this to work with mapped addresses. In that 10523 * case only set conn_multicast_ipif. 10524 */ 10525 if (!checkonly) { 10526 if (ifindex == 0) { 10527 connp->conn_multicast_ill = NULL; 10528 connp->conn_orig_multicast_ifindex = 0; 10529 connp->conn_multicast_ipif = NULL; 10530 } else if (ill != NULL) { 10531 connp->conn_multicast_ill = ill; 10532 connp->conn_orig_multicast_ifindex = 10533 ifindex; 10534 } 10535 } 10536 break; 10537 } 10538 } 10539 10540 if (ill != NULL) { 10541 mutex_exit(&ill->ill_lock); 10542 mutex_exit(&connp->conn_lock); 10543 ill_refrele(ill); 10544 return (0); 10545 } 10546 mutex_exit(&connp->conn_lock); 10547 /* 10548 * We succeeded in clearing the option (ifindex == 0) or failed to 10549 * locate the ill and could not set the option (ifindex != 0) 10550 */ 10551 return (ifindex == 0 ? 0 : EINVAL); 10552 } 10553 10554 /* This routine sets socket options. */ 10555 /* ARGSUSED */ 10556 int 10557 ip_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10558 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10559 void *dummy, cred_t *cr, mblk_t *first_mp) 10560 { 10561 int *i1 = (int *)invalp; 10562 conn_t *connp = Q_TO_CONN(q); 10563 int error = 0; 10564 boolean_t checkonly; 10565 ire_t *ire; 10566 boolean_t found; 10567 10568 switch (optset_context) { 10569 10570 case SETFN_OPTCOM_CHECKONLY: 10571 checkonly = B_TRUE; 10572 /* 10573 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10574 * inlen != 0 implies value supplied and 10575 * we have to "pretend" to set it. 10576 * inlen == 0 implies that there is no 10577 * value part in T_CHECK request and just validation 10578 * done elsewhere should be enough, we just return here. 10579 */ 10580 if (inlen == 0) { 10581 *outlenp = 0; 10582 return (0); 10583 } 10584 break; 10585 case SETFN_OPTCOM_NEGOTIATE: 10586 case SETFN_UD_NEGOTIATE: 10587 case SETFN_CONN_NEGOTIATE: 10588 checkonly = B_FALSE; 10589 break; 10590 default: 10591 /* 10592 * We should never get here 10593 */ 10594 *outlenp = 0; 10595 return (EINVAL); 10596 } 10597 10598 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10599 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10600 10601 /* 10602 * For fixed length options, no sanity check 10603 * of passed in length is done. It is assumed *_optcom_req() 10604 * routines do the right thing. 10605 */ 10606 10607 switch (level) { 10608 case SOL_SOCKET: 10609 /* 10610 * conn_lock protects the bitfields, and is used to 10611 * set the fields atomically. 10612 */ 10613 switch (name) { 10614 case SO_BROADCAST: 10615 if (!checkonly) { 10616 /* TODO: use value someplace? */ 10617 mutex_enter(&connp->conn_lock); 10618 connp->conn_broadcast = *i1 ? 1 : 0; 10619 mutex_exit(&connp->conn_lock); 10620 } 10621 break; /* goto sizeof (int) option return */ 10622 case SO_USELOOPBACK: 10623 if (!checkonly) { 10624 /* TODO: use value someplace? */ 10625 mutex_enter(&connp->conn_lock); 10626 connp->conn_loopback = *i1 ? 1 : 0; 10627 mutex_exit(&connp->conn_lock); 10628 } 10629 break; /* goto sizeof (int) option return */ 10630 case SO_DONTROUTE: 10631 if (!checkonly) { 10632 mutex_enter(&connp->conn_lock); 10633 connp->conn_dontroute = *i1 ? 1 : 0; 10634 mutex_exit(&connp->conn_lock); 10635 } 10636 break; /* goto sizeof (int) option return */ 10637 case SO_REUSEADDR: 10638 if (!checkonly) { 10639 mutex_enter(&connp->conn_lock); 10640 connp->conn_reuseaddr = *i1 ? 1 : 0; 10641 mutex_exit(&connp->conn_lock); 10642 } 10643 break; /* goto sizeof (int) option return */ 10644 case SO_PROTOTYPE: 10645 if (!checkonly) { 10646 mutex_enter(&connp->conn_lock); 10647 connp->conn_proto = *i1; 10648 mutex_exit(&connp->conn_lock); 10649 } 10650 break; /* goto sizeof (int) option return */ 10651 case SO_ALLZONES: 10652 if (!checkonly) { 10653 mutex_enter(&connp->conn_lock); 10654 if (IPCL_IS_BOUND(connp)) { 10655 mutex_exit(&connp->conn_lock); 10656 return (EINVAL); 10657 } 10658 connp->conn_allzones = *i1 != 0 ? 1 : 0; 10659 mutex_exit(&connp->conn_lock); 10660 } 10661 break; /* goto sizeof (int) option return */ 10662 case SO_ANON_MLP: 10663 if (!checkonly) { 10664 mutex_enter(&connp->conn_lock); 10665 connp->conn_anon_mlp = *i1 != 0 ? 1 : 0; 10666 mutex_exit(&connp->conn_lock); 10667 } 10668 break; /* goto sizeof (int) option return */ 10669 case SO_MAC_EXEMPT: 10670 if (secpolicy_net_mac_aware(cr) != 0 || 10671 IPCL_IS_BOUND(connp)) 10672 return (EACCES); 10673 if (!checkonly) { 10674 mutex_enter(&connp->conn_lock); 10675 connp->conn_mac_exempt = *i1 != 0 ? 1 : 0; 10676 mutex_exit(&connp->conn_lock); 10677 } 10678 break; /* goto sizeof (int) option return */ 10679 default: 10680 /* 10681 * "soft" error (negative) 10682 * option not handled at this level 10683 * Note: Do not modify *outlenp 10684 */ 10685 return (-EINVAL); 10686 } 10687 break; 10688 case IPPROTO_IP: 10689 switch (name) { 10690 case IP_NEXTHOP: 10691 if (secpolicy_net_config(cr, B_FALSE) != 0) 10692 return (EPERM); 10693 /* FALLTHRU */ 10694 case IP_MULTICAST_IF: 10695 case IP_DONTFAILOVER_IF: { 10696 ipaddr_t addr = *i1; 10697 10698 error = ip_opt_set_ipif(connp, addr, checkonly, name, 10699 first_mp); 10700 if (error != 0) 10701 return (error); 10702 break; /* goto sizeof (int) option return */ 10703 } 10704 10705 case IP_MULTICAST_TTL: 10706 /* Recorded in transport above IP */ 10707 *outvalp = *invalp; 10708 *outlenp = sizeof (uchar_t); 10709 return (0); 10710 case IP_MULTICAST_LOOP: 10711 if (!checkonly) { 10712 mutex_enter(&connp->conn_lock); 10713 connp->conn_multicast_loop = *invalp ? 1 : 0; 10714 mutex_exit(&connp->conn_lock); 10715 } 10716 *outvalp = *invalp; 10717 *outlenp = sizeof (uchar_t); 10718 return (0); 10719 case IP_ADD_MEMBERSHIP: 10720 case MCAST_JOIN_GROUP: 10721 case IP_DROP_MEMBERSHIP: 10722 case MCAST_LEAVE_GROUP: { 10723 struct ip_mreq *mreqp; 10724 struct group_req *greqp; 10725 ire_t *ire; 10726 boolean_t done = B_FALSE; 10727 ipaddr_t group, ifaddr; 10728 struct sockaddr_in *sin; 10729 uint32_t *ifindexp; 10730 boolean_t mcast_opt = B_TRUE; 10731 mcast_record_t fmode; 10732 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10733 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10734 10735 switch (name) { 10736 case IP_ADD_MEMBERSHIP: 10737 mcast_opt = B_FALSE; 10738 /* FALLTHRU */ 10739 case MCAST_JOIN_GROUP: 10740 fmode = MODE_IS_EXCLUDE; 10741 optfn = ip_opt_add_group; 10742 break; 10743 10744 case IP_DROP_MEMBERSHIP: 10745 mcast_opt = B_FALSE; 10746 /* FALLTHRU */ 10747 case MCAST_LEAVE_GROUP: 10748 fmode = MODE_IS_INCLUDE; 10749 optfn = ip_opt_delete_group; 10750 break; 10751 } 10752 10753 if (mcast_opt) { 10754 greqp = (struct group_req *)i1; 10755 sin = (struct sockaddr_in *)&greqp->gr_group; 10756 if (sin->sin_family != AF_INET) { 10757 *outlenp = 0; 10758 return (ENOPROTOOPT); 10759 } 10760 group = (ipaddr_t)sin->sin_addr.s_addr; 10761 ifaddr = INADDR_ANY; 10762 ifindexp = &greqp->gr_interface; 10763 } else { 10764 mreqp = (struct ip_mreq *)i1; 10765 group = (ipaddr_t)mreqp->imr_multiaddr.s_addr; 10766 ifaddr = (ipaddr_t)mreqp->imr_interface.s_addr; 10767 ifindexp = NULL; 10768 } 10769 10770 /* 10771 * In the multirouting case, we need to replicate 10772 * the request on all interfaces that will take part 10773 * in replication. We do so because multirouting is 10774 * reflective, thus we will probably receive multi- 10775 * casts on those interfaces. 10776 * The ip_multirt_apply_membership() succeeds if the 10777 * operation succeeds on at least one interface. 10778 */ 10779 ire = ire_ftable_lookup(group, IP_HOST_MASK, 0, 10780 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10781 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10782 if (ire != NULL) { 10783 if (ire->ire_flags & RTF_MULTIRT) { 10784 error = ip_multirt_apply_membership( 10785 optfn, ire, connp, checkonly, group, 10786 fmode, INADDR_ANY, first_mp); 10787 done = B_TRUE; 10788 } 10789 ire_refrele(ire); 10790 } 10791 if (!done) { 10792 error = optfn(connp, checkonly, group, ifaddr, 10793 ifindexp, fmode, INADDR_ANY, first_mp); 10794 } 10795 if (error) { 10796 /* 10797 * EINPROGRESS is a soft error, needs retry 10798 * so don't make *outlenp zero. 10799 */ 10800 if (error != EINPROGRESS) 10801 *outlenp = 0; 10802 return (error); 10803 } 10804 /* OK return - copy input buffer into output buffer */ 10805 if (invalp != outvalp) { 10806 /* don't trust bcopy for identical src/dst */ 10807 bcopy(invalp, outvalp, inlen); 10808 } 10809 *outlenp = inlen; 10810 return (0); 10811 } 10812 case IP_BLOCK_SOURCE: 10813 case IP_UNBLOCK_SOURCE: 10814 case IP_ADD_SOURCE_MEMBERSHIP: 10815 case IP_DROP_SOURCE_MEMBERSHIP: 10816 case MCAST_BLOCK_SOURCE: 10817 case MCAST_UNBLOCK_SOURCE: 10818 case MCAST_JOIN_SOURCE_GROUP: 10819 case MCAST_LEAVE_SOURCE_GROUP: { 10820 struct ip_mreq_source *imreqp; 10821 struct group_source_req *gsreqp; 10822 in_addr_t grp, src, ifaddr = INADDR_ANY; 10823 uint32_t ifindex = 0; 10824 mcast_record_t fmode; 10825 struct sockaddr_in *sin; 10826 ire_t *ire; 10827 boolean_t mcast_opt = B_TRUE, done = B_FALSE; 10828 int (*optfn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 10829 uint_t *, mcast_record_t, ipaddr_t, mblk_t *); 10830 10831 switch (name) { 10832 case IP_BLOCK_SOURCE: 10833 mcast_opt = B_FALSE; 10834 /* FALLTHRU */ 10835 case MCAST_BLOCK_SOURCE: 10836 fmode = MODE_IS_EXCLUDE; 10837 optfn = ip_opt_add_group; 10838 break; 10839 10840 case IP_UNBLOCK_SOURCE: 10841 mcast_opt = B_FALSE; 10842 /* FALLTHRU */ 10843 case MCAST_UNBLOCK_SOURCE: 10844 fmode = MODE_IS_EXCLUDE; 10845 optfn = ip_opt_delete_group; 10846 break; 10847 10848 case IP_ADD_SOURCE_MEMBERSHIP: 10849 mcast_opt = B_FALSE; 10850 /* FALLTHRU */ 10851 case MCAST_JOIN_SOURCE_GROUP: 10852 fmode = MODE_IS_INCLUDE; 10853 optfn = ip_opt_add_group; 10854 break; 10855 10856 case IP_DROP_SOURCE_MEMBERSHIP: 10857 mcast_opt = B_FALSE; 10858 /* FALLTHRU */ 10859 case MCAST_LEAVE_SOURCE_GROUP: 10860 fmode = MODE_IS_INCLUDE; 10861 optfn = ip_opt_delete_group; 10862 break; 10863 } 10864 10865 if (mcast_opt) { 10866 gsreqp = (struct group_source_req *)i1; 10867 if (gsreqp->gsr_group.ss_family != AF_INET) { 10868 *outlenp = 0; 10869 return (ENOPROTOOPT); 10870 } 10871 sin = (struct sockaddr_in *)&gsreqp->gsr_group; 10872 grp = (ipaddr_t)sin->sin_addr.s_addr; 10873 sin = (struct sockaddr_in *)&gsreqp->gsr_source; 10874 src = (ipaddr_t)sin->sin_addr.s_addr; 10875 ifindex = gsreqp->gsr_interface; 10876 } else { 10877 imreqp = (struct ip_mreq_source *)i1; 10878 grp = (ipaddr_t)imreqp->imr_multiaddr.s_addr; 10879 src = (ipaddr_t)imreqp->imr_sourceaddr.s_addr; 10880 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr; 10881 } 10882 10883 /* 10884 * In the multirouting case, we need to replicate 10885 * the request as noted in the mcast cases above. 10886 */ 10887 ire = ire_ftable_lookup(grp, IP_HOST_MASK, 0, 10888 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 10889 MATCH_IRE_MASK | MATCH_IRE_TYPE); 10890 if (ire != NULL) { 10891 if (ire->ire_flags & RTF_MULTIRT) { 10892 error = ip_multirt_apply_membership( 10893 optfn, ire, connp, checkonly, grp, 10894 fmode, src, first_mp); 10895 done = B_TRUE; 10896 } 10897 ire_refrele(ire); 10898 } 10899 if (!done) { 10900 error = optfn(connp, checkonly, grp, ifaddr, 10901 &ifindex, fmode, src, first_mp); 10902 } 10903 if (error != 0) { 10904 /* 10905 * EINPROGRESS is a soft error, needs retry 10906 * so don't make *outlenp zero. 10907 */ 10908 if (error != EINPROGRESS) 10909 *outlenp = 0; 10910 return (error); 10911 } 10912 /* OK return - copy input buffer into output buffer */ 10913 if (invalp != outvalp) { 10914 bcopy(invalp, outvalp, inlen); 10915 } 10916 *outlenp = inlen; 10917 return (0); 10918 } 10919 case IP_SEC_OPT: 10920 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 10921 if (error != 0) { 10922 *outlenp = 0; 10923 return (error); 10924 } 10925 break; 10926 case IP_HDRINCL: 10927 case IP_OPTIONS: 10928 case T_IP_OPTIONS: 10929 case IP_TOS: 10930 case T_IP_TOS: 10931 case IP_TTL: 10932 case IP_RECVDSTADDR: 10933 case IP_RECVOPTS: 10934 /* OK return - copy input buffer into output buffer */ 10935 if (invalp != outvalp) { 10936 /* don't trust bcopy for identical src/dst */ 10937 bcopy(invalp, outvalp, inlen); 10938 } 10939 *outlenp = inlen; 10940 return (0); 10941 case IP_RECVIF: 10942 /* Retrieve the inbound interface index */ 10943 if (!checkonly) { 10944 mutex_enter(&connp->conn_lock); 10945 connp->conn_recvif = *i1 ? 1 : 0; 10946 mutex_exit(&connp->conn_lock); 10947 } 10948 break; /* goto sizeof (int) option return */ 10949 case IP_RECVSLLA: 10950 /* Retrieve the source link layer address */ 10951 if (!checkonly) { 10952 mutex_enter(&connp->conn_lock); 10953 connp->conn_recvslla = *i1 ? 1 : 0; 10954 mutex_exit(&connp->conn_lock); 10955 } 10956 break; /* goto sizeof (int) option return */ 10957 case MRT_INIT: 10958 case MRT_DONE: 10959 case MRT_ADD_VIF: 10960 case MRT_DEL_VIF: 10961 case MRT_ADD_MFC: 10962 case MRT_DEL_MFC: 10963 case MRT_ASSERT: 10964 if ((error = secpolicy_net_config(cr, B_FALSE)) != 0) { 10965 *outlenp = 0; 10966 return (error); 10967 } 10968 error = ip_mrouter_set((int)name, q, checkonly, 10969 (uchar_t *)invalp, inlen, first_mp); 10970 if (error) { 10971 *outlenp = 0; 10972 return (error); 10973 } 10974 /* OK return - copy input buffer into output buffer */ 10975 if (invalp != outvalp) { 10976 /* don't trust bcopy for identical src/dst */ 10977 bcopy(invalp, outvalp, inlen); 10978 } 10979 *outlenp = inlen; 10980 return (0); 10981 case IP_BOUND_IF: 10982 case IP_XMIT_IF: 10983 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 10984 level, name, first_mp); 10985 if (error != 0) 10986 return (error); 10987 break; /* goto sizeof (int) option return */ 10988 10989 case IP_UNSPEC_SRC: 10990 /* Allow sending with a zero source address */ 10991 if (!checkonly) { 10992 mutex_enter(&connp->conn_lock); 10993 connp->conn_unspec_src = *i1 ? 1 : 0; 10994 mutex_exit(&connp->conn_lock); 10995 } 10996 break; /* goto sizeof (int) option return */ 10997 default: 10998 /* 10999 * "soft" error (negative) 11000 * option not handled at this level 11001 * Note: Do not modify *outlenp 11002 */ 11003 return (-EINVAL); 11004 } 11005 break; 11006 case IPPROTO_IPV6: 11007 switch (name) { 11008 case IPV6_BOUND_IF: 11009 case IPV6_BOUND_PIF: 11010 case IPV6_DONTFAILOVER_IF: 11011 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11012 level, name, first_mp); 11013 if (error != 0) 11014 return (error); 11015 break; /* goto sizeof (int) option return */ 11016 11017 case IPV6_MULTICAST_IF: 11018 /* 11019 * The only possible errors are EINPROGRESS and 11020 * EINVAL. EINPROGRESS will be restarted and is not 11021 * a hard error. We call this option on both V4 and V6 11022 * If both return EINVAL, then this call returns 11023 * EINVAL. If at least one of them succeeds we 11024 * return success. 11025 */ 11026 found = B_FALSE; 11027 error = ip_opt_set_ill(connp, *i1, B_TRUE, checkonly, 11028 level, name, first_mp); 11029 if (error == EINPROGRESS) 11030 return (error); 11031 if (error == 0) 11032 found = B_TRUE; 11033 error = ip_opt_set_ill(connp, *i1, B_FALSE, checkonly, 11034 IPPROTO_IP, IP_MULTICAST_IF, first_mp); 11035 if (error == 0) 11036 found = B_TRUE; 11037 if (!found) 11038 return (error); 11039 break; /* goto sizeof (int) option return */ 11040 11041 case IPV6_MULTICAST_HOPS: 11042 /* Recorded in transport above IP */ 11043 break; /* goto sizeof (int) option return */ 11044 case IPV6_MULTICAST_LOOP: 11045 if (!checkonly) { 11046 mutex_enter(&connp->conn_lock); 11047 connp->conn_multicast_loop = *i1; 11048 mutex_exit(&connp->conn_lock); 11049 } 11050 break; /* goto sizeof (int) option return */ 11051 case IPV6_JOIN_GROUP: 11052 case MCAST_JOIN_GROUP: 11053 case IPV6_LEAVE_GROUP: 11054 case MCAST_LEAVE_GROUP: { 11055 struct ipv6_mreq *ip_mreqp; 11056 struct group_req *greqp; 11057 ire_t *ire; 11058 boolean_t done = B_FALSE; 11059 in6_addr_t groupv6; 11060 uint32_t ifindex; 11061 boolean_t mcast_opt = B_TRUE; 11062 mcast_record_t fmode; 11063 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11064 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11065 11066 switch (name) { 11067 case IPV6_JOIN_GROUP: 11068 mcast_opt = B_FALSE; 11069 /* FALLTHRU */ 11070 case MCAST_JOIN_GROUP: 11071 fmode = MODE_IS_EXCLUDE; 11072 optfn = ip_opt_add_group_v6; 11073 break; 11074 11075 case IPV6_LEAVE_GROUP: 11076 mcast_opt = B_FALSE; 11077 /* FALLTHRU */ 11078 case MCAST_LEAVE_GROUP: 11079 fmode = MODE_IS_INCLUDE; 11080 optfn = ip_opt_delete_group_v6; 11081 break; 11082 } 11083 11084 if (mcast_opt) { 11085 struct sockaddr_in *sin; 11086 struct sockaddr_in6 *sin6; 11087 greqp = (struct group_req *)i1; 11088 if (greqp->gr_group.ss_family == AF_INET) { 11089 sin = (struct sockaddr_in *) 11090 &(greqp->gr_group); 11091 IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, 11092 &groupv6); 11093 } else { 11094 sin6 = (struct sockaddr_in6 *) 11095 &(greqp->gr_group); 11096 groupv6 = sin6->sin6_addr; 11097 } 11098 ifindex = greqp->gr_interface; 11099 } else { 11100 ip_mreqp = (struct ipv6_mreq *)i1; 11101 groupv6 = ip_mreqp->ipv6mr_multiaddr; 11102 ifindex = ip_mreqp->ipv6mr_interface; 11103 } 11104 /* 11105 * In the multirouting case, we need to replicate 11106 * the request on all interfaces that will take part 11107 * in replication. We do so because multirouting is 11108 * reflective, thus we will probably receive multi- 11109 * casts on those interfaces. 11110 * The ip_multirt_apply_membership_v6() succeeds if 11111 * the operation succeeds on at least one interface. 11112 */ 11113 ire = ire_ftable_lookup_v6(&groupv6, &ipv6_all_ones, 0, 11114 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11115 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11116 if (ire != NULL) { 11117 if (ire->ire_flags & RTF_MULTIRT) { 11118 error = ip_multirt_apply_membership_v6( 11119 optfn, ire, connp, checkonly, 11120 &groupv6, fmode, &ipv6_all_zeros, 11121 first_mp); 11122 done = B_TRUE; 11123 } 11124 ire_refrele(ire); 11125 } 11126 if (!done) { 11127 error = optfn(connp, checkonly, &groupv6, 11128 ifindex, fmode, &ipv6_all_zeros, first_mp); 11129 } 11130 if (error) { 11131 /* 11132 * EINPROGRESS is a soft error, needs retry 11133 * so don't make *outlenp zero. 11134 */ 11135 if (error != EINPROGRESS) 11136 *outlenp = 0; 11137 return (error); 11138 } 11139 /* OK return - copy input buffer into output buffer */ 11140 if (invalp != outvalp) { 11141 /* don't trust bcopy for identical src/dst */ 11142 bcopy(invalp, outvalp, inlen); 11143 } 11144 *outlenp = inlen; 11145 return (0); 11146 } 11147 case MCAST_BLOCK_SOURCE: 11148 case MCAST_UNBLOCK_SOURCE: 11149 case MCAST_JOIN_SOURCE_GROUP: 11150 case MCAST_LEAVE_SOURCE_GROUP: { 11151 struct group_source_req *gsreqp; 11152 in6_addr_t v6grp, v6src; 11153 uint32_t ifindex; 11154 mcast_record_t fmode; 11155 ire_t *ire; 11156 boolean_t done = B_FALSE; 11157 int (*optfn)(conn_t *, boolean_t, const in6_addr_t *, 11158 int, mcast_record_t, const in6_addr_t *, mblk_t *); 11159 11160 switch (name) { 11161 case MCAST_BLOCK_SOURCE: 11162 fmode = MODE_IS_EXCLUDE; 11163 optfn = ip_opt_add_group_v6; 11164 break; 11165 case MCAST_UNBLOCK_SOURCE: 11166 fmode = MODE_IS_EXCLUDE; 11167 optfn = ip_opt_delete_group_v6; 11168 break; 11169 case MCAST_JOIN_SOURCE_GROUP: 11170 fmode = MODE_IS_INCLUDE; 11171 optfn = ip_opt_add_group_v6; 11172 break; 11173 case MCAST_LEAVE_SOURCE_GROUP: 11174 fmode = MODE_IS_INCLUDE; 11175 optfn = ip_opt_delete_group_v6; 11176 break; 11177 } 11178 11179 gsreqp = (struct group_source_req *)i1; 11180 ifindex = gsreqp->gsr_interface; 11181 if (gsreqp->gsr_group.ss_family == AF_INET) { 11182 struct sockaddr_in *s; 11183 s = (struct sockaddr_in *)&gsreqp->gsr_group; 11184 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6grp); 11185 s = (struct sockaddr_in *)&gsreqp->gsr_source; 11186 IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src); 11187 } else { 11188 struct sockaddr_in6 *s6; 11189 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group; 11190 v6grp = s6->sin6_addr; 11191 s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source; 11192 v6src = s6->sin6_addr; 11193 } 11194 11195 /* 11196 * In the multirouting case, we need to replicate 11197 * the request as noted in the mcast cases above. 11198 */ 11199 ire = ire_ftable_lookup_v6(&v6grp, &ipv6_all_ones, 0, 11200 IRE_HOST, NULL, NULL, ALL_ZONES, 0, NULL, 11201 MATCH_IRE_MASK | MATCH_IRE_TYPE); 11202 if (ire != NULL) { 11203 if (ire->ire_flags & RTF_MULTIRT) { 11204 error = ip_multirt_apply_membership_v6( 11205 optfn, ire, connp, checkonly, 11206 &v6grp, fmode, &v6src, first_mp); 11207 done = B_TRUE; 11208 } 11209 ire_refrele(ire); 11210 } 11211 if (!done) { 11212 error = optfn(connp, checkonly, &v6grp, 11213 ifindex, fmode, &v6src, first_mp); 11214 } 11215 if (error != 0) { 11216 /* 11217 * EINPROGRESS is a soft error, needs retry 11218 * so don't make *outlenp zero. 11219 */ 11220 if (error != EINPROGRESS) 11221 *outlenp = 0; 11222 return (error); 11223 } 11224 /* OK return - copy input buffer into output buffer */ 11225 if (invalp != outvalp) { 11226 bcopy(invalp, outvalp, inlen); 11227 } 11228 *outlenp = inlen; 11229 return (0); 11230 } 11231 case IPV6_UNICAST_HOPS: 11232 /* Recorded in transport above IP */ 11233 break; /* goto sizeof (int) option return */ 11234 case IPV6_UNSPEC_SRC: 11235 /* Allow sending with a zero source address */ 11236 if (!checkonly) { 11237 mutex_enter(&connp->conn_lock); 11238 connp->conn_unspec_src = *i1 ? 1 : 0; 11239 mutex_exit(&connp->conn_lock); 11240 } 11241 break; /* goto sizeof (int) option return */ 11242 case IPV6_RECVPKTINFO: 11243 if (!checkonly) { 11244 mutex_enter(&connp->conn_lock); 11245 connp->conn_ipv6_recvpktinfo = *i1 ? 1 : 0; 11246 mutex_exit(&connp->conn_lock); 11247 } 11248 break; /* goto sizeof (int) option return */ 11249 case IPV6_RECVTCLASS: 11250 if (!checkonly) { 11251 if (*i1 < 0 || *i1 > 1) { 11252 return (EINVAL); 11253 } 11254 mutex_enter(&connp->conn_lock); 11255 connp->conn_ipv6_recvtclass = *i1; 11256 mutex_exit(&connp->conn_lock); 11257 } 11258 break; 11259 case IPV6_RECVPATHMTU: 11260 if (!checkonly) { 11261 if (*i1 < 0 || *i1 > 1) { 11262 return (EINVAL); 11263 } 11264 mutex_enter(&connp->conn_lock); 11265 connp->conn_ipv6_recvpathmtu = *i1; 11266 mutex_exit(&connp->conn_lock); 11267 } 11268 break; 11269 case IPV6_RECVHOPLIMIT: 11270 if (!checkonly) { 11271 mutex_enter(&connp->conn_lock); 11272 connp->conn_ipv6_recvhoplimit = *i1 ? 1 : 0; 11273 mutex_exit(&connp->conn_lock); 11274 } 11275 break; /* goto sizeof (int) option return */ 11276 case IPV6_RECVHOPOPTS: 11277 if (!checkonly) { 11278 mutex_enter(&connp->conn_lock); 11279 connp->conn_ipv6_recvhopopts = *i1 ? 1 : 0; 11280 mutex_exit(&connp->conn_lock); 11281 } 11282 break; /* goto sizeof (int) option return */ 11283 case IPV6_RECVDSTOPTS: 11284 if (!checkonly) { 11285 mutex_enter(&connp->conn_lock); 11286 connp->conn_ipv6_recvdstopts = *i1 ? 1 : 0; 11287 mutex_exit(&connp->conn_lock); 11288 } 11289 break; /* goto sizeof (int) option return */ 11290 case IPV6_RECVRTHDR: 11291 if (!checkonly) { 11292 mutex_enter(&connp->conn_lock); 11293 connp->conn_ipv6_recvrthdr = *i1 ? 1 : 0; 11294 mutex_exit(&connp->conn_lock); 11295 } 11296 break; /* goto sizeof (int) option return */ 11297 case IPV6_RECVRTHDRDSTOPTS: 11298 if (!checkonly) { 11299 mutex_enter(&connp->conn_lock); 11300 connp->conn_ipv6_recvrtdstopts = *i1 ? 1 : 0; 11301 mutex_exit(&connp->conn_lock); 11302 } 11303 break; /* goto sizeof (int) option return */ 11304 case IPV6_PKTINFO: 11305 if (inlen == 0) 11306 return (-EINVAL); /* clearing option */ 11307 error = ip6_set_pktinfo(cr, connp, 11308 (struct in6_pktinfo *)invalp, first_mp); 11309 if (error != 0) 11310 *outlenp = 0; 11311 else 11312 *outlenp = inlen; 11313 return (error); 11314 case IPV6_NEXTHOP: { 11315 struct sockaddr_in6 *sin6; 11316 11317 /* Verify that the nexthop is reachable */ 11318 if (inlen == 0) 11319 return (-EINVAL); /* clearing option */ 11320 11321 sin6 = (struct sockaddr_in6 *)invalp; 11322 ire = ire_route_lookup_v6(&sin6->sin6_addr, 11323 0, 0, 0, NULL, NULL, connp->conn_zoneid, 11324 NULL, MATCH_IRE_DEFAULT); 11325 11326 if (ire == NULL) { 11327 *outlenp = 0; 11328 return (EHOSTUNREACH); 11329 } 11330 ire_refrele(ire); 11331 return (-EINVAL); 11332 } 11333 case IPV6_SEC_OPT: 11334 error = ipsec_set_req(cr, connp, (ipsec_req_t *)invalp); 11335 if (error != 0) { 11336 *outlenp = 0; 11337 return (error); 11338 } 11339 break; 11340 case IPV6_SRC_PREFERENCES: { 11341 /* 11342 * This is implemented strictly in the ip module 11343 * (here and in tcp_opt_*() to accomodate tcp 11344 * sockets). Modules above ip pass this option 11345 * down here since ip is the only one that needs to 11346 * be aware of source address preferences. 11347 * 11348 * This socket option only affects connected 11349 * sockets that haven't already bound to a specific 11350 * IPv6 address. In other words, sockets that 11351 * don't call bind() with an address other than the 11352 * unspecified address and that call connect(). 11353 * ip_bind_connected_v6() passes these preferences 11354 * to the ipif_select_source_v6() function. 11355 */ 11356 if (inlen != sizeof (uint32_t)) 11357 return (EINVAL); 11358 error = ip6_set_src_preferences(connp, 11359 *(uint32_t *)invalp); 11360 if (error != 0) { 11361 *outlenp = 0; 11362 return (error); 11363 } else { 11364 *outlenp = sizeof (uint32_t); 11365 } 11366 break; 11367 } 11368 case IPV6_V6ONLY: 11369 if (*i1 < 0 || *i1 > 1) { 11370 return (EINVAL); 11371 } 11372 mutex_enter(&connp->conn_lock); 11373 connp->conn_ipv6_v6only = *i1; 11374 mutex_exit(&connp->conn_lock); 11375 break; 11376 default: 11377 return (-EINVAL); 11378 } 11379 break; 11380 default: 11381 /* 11382 * "soft" error (negative) 11383 * option not handled at this level 11384 * Note: Do not modify *outlenp 11385 */ 11386 return (-EINVAL); 11387 } 11388 /* 11389 * Common case of return from an option that is sizeof (int) 11390 */ 11391 *(int *)outvalp = *i1; 11392 *outlenp = sizeof (int); 11393 return (0); 11394 } 11395 11396 /* 11397 * This routine gets default values of certain options whose default 11398 * values are maintained by protocol specific code 11399 */ 11400 /* ARGSUSED */ 11401 int 11402 ip_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 11403 { 11404 int *i1 = (int *)ptr; 11405 11406 switch (level) { 11407 case IPPROTO_IP: 11408 switch (name) { 11409 case IP_MULTICAST_TTL: 11410 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 11411 return (sizeof (uchar_t)); 11412 case IP_MULTICAST_LOOP: 11413 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 11414 return (sizeof (uchar_t)); 11415 default: 11416 return (-1); 11417 } 11418 case IPPROTO_IPV6: 11419 switch (name) { 11420 case IPV6_UNICAST_HOPS: 11421 *i1 = ipv6_def_hops; 11422 return (sizeof (int)); 11423 case IPV6_MULTICAST_HOPS: 11424 *i1 = IP_DEFAULT_MULTICAST_TTL; 11425 return (sizeof (int)); 11426 case IPV6_MULTICAST_LOOP: 11427 *i1 = IP_DEFAULT_MULTICAST_LOOP; 11428 return (sizeof (int)); 11429 case IPV6_V6ONLY: 11430 *i1 = 1; 11431 return (sizeof (int)); 11432 default: 11433 return (-1); 11434 } 11435 default: 11436 return (-1); 11437 } 11438 /* NOTREACHED */ 11439 } 11440 11441 /* 11442 * Given a destination address and a pointer to where to put the information 11443 * this routine fills in the mtuinfo. 11444 */ 11445 int 11446 ip_fill_mtuinfo(struct in6_addr *in6, in_port_t port, 11447 struct ip6_mtuinfo *mtuinfo) 11448 { 11449 ire_t *ire; 11450 11451 if (IN6_IS_ADDR_UNSPECIFIED(in6)) 11452 return (-1); 11453 11454 bzero(mtuinfo, sizeof (*mtuinfo)); 11455 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 11456 mtuinfo->ip6m_addr.sin6_port = port; 11457 mtuinfo->ip6m_addr.sin6_addr = *in6; 11458 11459 ire = ire_cache_lookup_v6(in6, ALL_ZONES, NULL); 11460 if (ire != NULL) { 11461 mtuinfo->ip6m_mtu = ire->ire_max_frag; 11462 ire_refrele(ire); 11463 } else { 11464 mtuinfo->ip6m_mtu = IPV6_MIN_MTU; 11465 } 11466 return (sizeof (struct ip6_mtuinfo)); 11467 } 11468 11469 /* 11470 * This routine gets socket options. For MRT_VERSION and MRT_ASSERT, error 11471 * checking of GET_QUEUE_CRED(q) and that ip_g_mrouter is set should be done and 11472 * isn't. This doesn't matter as the error checking is done properly for the 11473 * other MRT options coming in through ip_opt_set. 11474 */ 11475 int 11476 ip_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 11477 { 11478 conn_t *connp = Q_TO_CONN(q); 11479 ipsec_req_t *req = (ipsec_req_t *)ptr; 11480 11481 switch (level) { 11482 case IPPROTO_IP: 11483 switch (name) { 11484 case MRT_VERSION: 11485 case MRT_ASSERT: 11486 (void) ip_mrouter_get(name, q, ptr); 11487 return (sizeof (int)); 11488 case IP_SEC_OPT: 11489 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V4)); 11490 case IP_NEXTHOP: 11491 if (connp->conn_nexthop_set) { 11492 *(ipaddr_t *)ptr = connp->conn_nexthop_v4; 11493 return (sizeof (ipaddr_t)); 11494 } else 11495 return (0); 11496 default: 11497 break; 11498 } 11499 break; 11500 case IPPROTO_IPV6: 11501 switch (name) { 11502 case IPV6_SEC_OPT: 11503 return (ipsec_req_from_conn(connp, req, IPSEC_AF_V6)); 11504 case IPV6_SRC_PREFERENCES: { 11505 return (ip6_get_src_preferences(connp, 11506 (uint32_t *)ptr)); 11507 } 11508 case IPV6_V6ONLY: 11509 *(int *)ptr = connp->conn_ipv6_v6only ? 1 : 0; 11510 return (sizeof (int)); 11511 case IPV6_PATHMTU: 11512 return (ip_fill_mtuinfo(&connp->conn_remv6, 0, 11513 (struct ip6_mtuinfo *)ptr)); 11514 default: 11515 break; 11516 } 11517 break; 11518 default: 11519 break; 11520 } 11521 return (-1); 11522 } 11523 11524 /* Named Dispatch routine to get a current value out of our parameter table. */ 11525 /* ARGSUSED */ 11526 static int 11527 ip_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11528 { 11529 ipparam_t *ippa = (ipparam_t *)cp; 11530 11531 (void) mi_mpprintf(mp, "%d", ippa->ip_param_value); 11532 return (0); 11533 } 11534 11535 /* ARGSUSED */ 11536 static int 11537 ip_param_generic_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 11538 { 11539 11540 (void) mi_mpprintf(mp, "%d", *(int *)cp); 11541 return (0); 11542 } 11543 11544 /* 11545 * Set ip{,6}_forwarding values. This means walking through all of the 11546 * ill's and toggling their forwarding values. 11547 */ 11548 /* ARGSUSED */ 11549 static int 11550 ip_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11551 { 11552 long new_value; 11553 int *forwarding_value = (int *)cp; 11554 ill_t *walker; 11555 boolean_t isv6 = (forwarding_value == &ipv6_forward); 11556 ill_walk_context_t ctx; 11557 11558 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11559 new_value < 0 || new_value > 1) { 11560 return (EINVAL); 11561 } 11562 11563 *forwarding_value = new_value; 11564 11565 /* 11566 * Regardless of the current value of ip_forwarding, set all per-ill 11567 * values of ip_forwarding to the value being set. 11568 * 11569 * Bring all the ill's up to date with the new global value. 11570 */ 11571 rw_enter(&ill_g_lock, RW_READER); 11572 11573 if (isv6) 11574 walker = ILL_START_WALK_V6(&ctx); 11575 else 11576 walker = ILL_START_WALK_V4(&ctx); 11577 for (; walker != NULL; walker = ill_next(&ctx, walker)) { 11578 (void) ill_forward_set(q, mp, (new_value != 0), 11579 (caddr_t)walker); 11580 } 11581 rw_exit(&ill_g_lock); 11582 11583 return (0); 11584 } 11585 11586 /* 11587 * Walk through the param array specified registering each element with the 11588 * Named Dispatch handler. This is called only during init. So it is ok 11589 * not to acquire any locks 11590 */ 11591 static boolean_t 11592 ip_param_register(ipparam_t *ippa, size_t ippa_cnt, 11593 ipndp_t *ipnd, size_t ipnd_cnt) 11594 { 11595 for (; ippa_cnt-- > 0; ippa++) { 11596 if (ippa->ip_param_name && ippa->ip_param_name[0]) { 11597 if (!nd_load(&ip_g_nd, ippa->ip_param_name, 11598 ip_param_get, ip_param_set, (caddr_t)ippa)) { 11599 nd_free(&ip_g_nd); 11600 return (B_FALSE); 11601 } 11602 } 11603 } 11604 11605 for (; ipnd_cnt-- > 0; ipnd++) { 11606 if (ipnd->ip_ndp_name && ipnd->ip_ndp_name[0]) { 11607 if (!nd_load(&ip_g_nd, ipnd->ip_ndp_name, 11608 ipnd->ip_ndp_getf, ipnd->ip_ndp_setf, 11609 ipnd->ip_ndp_data)) { 11610 nd_free(&ip_g_nd); 11611 return (B_FALSE); 11612 } 11613 } 11614 } 11615 11616 return (B_TRUE); 11617 } 11618 11619 /* Named Dispatch routine to negotiate a new value for one of our parameters. */ 11620 /* ARGSUSED */ 11621 static int 11622 ip_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr) 11623 { 11624 long new_value; 11625 ipparam_t *ippa = (ipparam_t *)cp; 11626 11627 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11628 new_value < ippa->ip_param_min || new_value > ippa->ip_param_max) { 11629 return (EINVAL); 11630 } 11631 ippa->ip_param_value = new_value; 11632 return (0); 11633 } 11634 11635 /* 11636 * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases, 11637 * When an ipf is passed here for the first time, if 11638 * we already have in-order fragments on the queue, we convert from the fast- 11639 * path reassembly scheme to the hard-case scheme. From then on, additional 11640 * fragments are reassembled here. We keep track of the start and end offsets 11641 * of each piece, and the number of holes in the chain. When the hole count 11642 * goes to zero, we are done! 11643 * 11644 * The ipf_count will be updated to account for any mblk(s) added (pointed to 11645 * by mp) or subtracted (freeb()ed dups), upon return the caller must update 11646 * ipfb_count and ill_frag_count by the difference of ipf_count before and 11647 * after the call to ip_reassemble(). 11648 */ 11649 int 11650 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill, 11651 size_t msg_len) 11652 { 11653 uint_t end; 11654 mblk_t *next_mp; 11655 mblk_t *mp1; 11656 uint_t offset; 11657 boolean_t incr_dups = B_TRUE; 11658 boolean_t offset_zero_seen = B_FALSE; 11659 boolean_t pkt_boundary_checked = B_FALSE; 11660 11661 /* If start == 0 then ipf_nf_hdr_len has to be set. */ 11662 ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0); 11663 11664 /* Add in byte count */ 11665 ipf->ipf_count += msg_len; 11666 if (ipf->ipf_end) { 11667 /* 11668 * We were part way through in-order reassembly, but now there 11669 * is a hole. We walk through messages already queued, and 11670 * mark them for hard case reassembly. We know that up till 11671 * now they were in order starting from offset zero. 11672 */ 11673 offset = 0; 11674 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11675 IP_REASS_SET_START(mp1, offset); 11676 if (offset == 0) { 11677 ASSERT(ipf->ipf_nf_hdr_len != 0); 11678 offset = -ipf->ipf_nf_hdr_len; 11679 } 11680 offset += mp1->b_wptr - mp1->b_rptr; 11681 IP_REASS_SET_END(mp1, offset); 11682 } 11683 /* One hole at the end. */ 11684 ipf->ipf_hole_cnt = 1; 11685 /* Brand it as a hard case, forever. */ 11686 ipf->ipf_end = 0; 11687 } 11688 /* Walk through all the new pieces. */ 11689 do { 11690 end = start + (mp->b_wptr - mp->b_rptr); 11691 /* 11692 * If start is 0, decrease 'end' only for the first mblk of 11693 * the fragment. Otherwise 'end' can get wrong value in the 11694 * second pass of the loop if first mblk is exactly the 11695 * size of ipf_nf_hdr_len. 11696 */ 11697 if (start == 0 && !offset_zero_seen) { 11698 /* First segment */ 11699 ASSERT(ipf->ipf_nf_hdr_len != 0); 11700 end -= ipf->ipf_nf_hdr_len; 11701 offset_zero_seen = B_TRUE; 11702 } 11703 next_mp = mp->b_cont; 11704 /* 11705 * We are checking to see if there is any interesing data 11706 * to process. If there isn't and the mblk isn't the 11707 * one which carries the unfragmentable header then we 11708 * drop it. It's possible to have just the unfragmentable 11709 * header come through without any data. That needs to be 11710 * saved. 11711 * 11712 * If the assert at the top of this function holds then the 11713 * term "ipf->ipf_nf_hdr_len != 0" isn't needed. This code 11714 * is infrequently traveled enough that the test is left in 11715 * to protect against future code changes which break that 11716 * invariant. 11717 */ 11718 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) { 11719 /* Empty. Blast it. */ 11720 IP_REASS_SET_START(mp, 0); 11721 IP_REASS_SET_END(mp, 0); 11722 /* 11723 * If the ipf points to the mblk we are about to free, 11724 * update ipf to point to the next mblk (or NULL 11725 * if none). 11726 */ 11727 if (ipf->ipf_mp->b_cont == mp) 11728 ipf->ipf_mp->b_cont = next_mp; 11729 freeb(mp); 11730 continue; 11731 } 11732 mp->b_cont = NULL; 11733 IP_REASS_SET_START(mp, start); 11734 IP_REASS_SET_END(mp, end); 11735 if (!ipf->ipf_tail_mp) { 11736 ipf->ipf_tail_mp = mp; 11737 ipf->ipf_mp->b_cont = mp; 11738 if (start == 0 || !more) { 11739 ipf->ipf_hole_cnt = 1; 11740 /* 11741 * if the first fragment comes in more than one 11742 * mblk, this loop will be executed for each 11743 * mblk. Need to adjust hole count so exiting 11744 * this routine will leave hole count at 1. 11745 */ 11746 if (next_mp) 11747 ipf->ipf_hole_cnt++; 11748 } else 11749 ipf->ipf_hole_cnt = 2; 11750 continue; 11751 } else if (ipf->ipf_last_frag_seen && !more && 11752 !pkt_boundary_checked) { 11753 /* 11754 * We check datagram boundary only if this fragment 11755 * claims to be the last fragment and we have seen a 11756 * last fragment in the past too. We do this only 11757 * once for a given fragment. 11758 * 11759 * start cannot be 0 here as fragments with start=0 11760 * and MF=0 gets handled as a complete packet. These 11761 * fragments should not reach here. 11762 */ 11763 11764 if (start + msgdsize(mp) != 11765 IP_REASS_END(ipf->ipf_tail_mp)) { 11766 /* 11767 * We have two fragments both of which claim 11768 * to be the last fragment but gives conflicting 11769 * information about the whole datagram size. 11770 * Something fishy is going on. Drop the 11771 * fragment and free up the reassembly list. 11772 */ 11773 return (IP_REASS_FAILED); 11774 } 11775 11776 /* 11777 * We shouldn't come to this code block again for this 11778 * particular fragment. 11779 */ 11780 pkt_boundary_checked = B_TRUE; 11781 } 11782 11783 /* New stuff at or beyond tail? */ 11784 offset = IP_REASS_END(ipf->ipf_tail_mp); 11785 if (start >= offset) { 11786 if (ipf->ipf_last_frag_seen) { 11787 /* current fragment is beyond last fragment */ 11788 return (IP_REASS_FAILED); 11789 } 11790 /* Link it on end. */ 11791 ipf->ipf_tail_mp->b_cont = mp; 11792 ipf->ipf_tail_mp = mp; 11793 if (more) { 11794 if (start != offset) 11795 ipf->ipf_hole_cnt++; 11796 } else if (start == offset && next_mp == NULL) 11797 ipf->ipf_hole_cnt--; 11798 continue; 11799 } 11800 mp1 = ipf->ipf_mp->b_cont; 11801 offset = IP_REASS_START(mp1); 11802 /* New stuff at the front? */ 11803 if (start < offset) { 11804 if (start == 0) { 11805 if (end >= offset) { 11806 /* Nailed the hole at the begining. */ 11807 ipf->ipf_hole_cnt--; 11808 } 11809 } else if (end < offset) { 11810 /* 11811 * A hole, stuff, and a hole where there used 11812 * to be just a hole. 11813 */ 11814 ipf->ipf_hole_cnt++; 11815 } 11816 mp->b_cont = mp1; 11817 /* Check for overlap. */ 11818 while (end > offset) { 11819 if (end < IP_REASS_END(mp1)) { 11820 mp->b_wptr -= end - offset; 11821 IP_REASS_SET_END(mp, offset); 11822 BUMP_MIB(ill->ill_ip_mib, 11823 ipIfStatsReasmPartDups); 11824 break; 11825 } 11826 /* Did we cover another hole? */ 11827 if ((mp1->b_cont && 11828 IP_REASS_END(mp1) != 11829 IP_REASS_START(mp1->b_cont) && 11830 end >= IP_REASS_START(mp1->b_cont)) || 11831 (!ipf->ipf_last_frag_seen && !more)) { 11832 ipf->ipf_hole_cnt--; 11833 } 11834 /* Clip out mp1. */ 11835 if ((mp->b_cont = mp1->b_cont) == NULL) { 11836 /* 11837 * After clipping out mp1, this guy 11838 * is now hanging off the end. 11839 */ 11840 ipf->ipf_tail_mp = mp; 11841 } 11842 IP_REASS_SET_START(mp1, 0); 11843 IP_REASS_SET_END(mp1, 0); 11844 /* Subtract byte count */ 11845 ipf->ipf_count -= mp1->b_datap->db_lim - 11846 mp1->b_datap->db_base; 11847 freeb(mp1); 11848 BUMP_MIB(ill->ill_ip_mib, 11849 ipIfStatsReasmPartDups); 11850 mp1 = mp->b_cont; 11851 if (!mp1) 11852 break; 11853 offset = IP_REASS_START(mp1); 11854 } 11855 ipf->ipf_mp->b_cont = mp; 11856 continue; 11857 } 11858 /* 11859 * The new piece starts somewhere between the start of the head 11860 * and before the end of the tail. 11861 */ 11862 for (; mp1; mp1 = mp1->b_cont) { 11863 offset = IP_REASS_END(mp1); 11864 if (start < offset) { 11865 if (end <= offset) { 11866 /* Nothing new. */ 11867 IP_REASS_SET_START(mp, 0); 11868 IP_REASS_SET_END(mp, 0); 11869 /* Subtract byte count */ 11870 ipf->ipf_count -= mp->b_datap->db_lim - 11871 mp->b_datap->db_base; 11872 if (incr_dups) { 11873 ipf->ipf_num_dups++; 11874 incr_dups = B_FALSE; 11875 } 11876 freeb(mp); 11877 BUMP_MIB(ill->ill_ip_mib, 11878 ipIfStatsReasmDuplicates); 11879 break; 11880 } 11881 /* 11882 * Trim redundant stuff off beginning of new 11883 * piece. 11884 */ 11885 IP_REASS_SET_START(mp, offset); 11886 mp->b_rptr += offset - start; 11887 BUMP_MIB(ill->ill_ip_mib, 11888 ipIfStatsReasmPartDups); 11889 start = offset; 11890 if (!mp1->b_cont) { 11891 /* 11892 * After trimming, this guy is now 11893 * hanging off the end. 11894 */ 11895 mp1->b_cont = mp; 11896 ipf->ipf_tail_mp = mp; 11897 if (!more) { 11898 ipf->ipf_hole_cnt--; 11899 } 11900 break; 11901 } 11902 } 11903 if (start >= IP_REASS_START(mp1->b_cont)) 11904 continue; 11905 /* Fill a hole */ 11906 if (start > offset) 11907 ipf->ipf_hole_cnt++; 11908 mp->b_cont = mp1->b_cont; 11909 mp1->b_cont = mp; 11910 mp1 = mp->b_cont; 11911 offset = IP_REASS_START(mp1); 11912 if (end >= offset) { 11913 ipf->ipf_hole_cnt--; 11914 /* Check for overlap. */ 11915 while (end > offset) { 11916 if (end < IP_REASS_END(mp1)) { 11917 mp->b_wptr -= end - offset; 11918 IP_REASS_SET_END(mp, offset); 11919 /* 11920 * TODO we might bump 11921 * this up twice if there is 11922 * overlap at both ends. 11923 */ 11924 BUMP_MIB(ill->ill_ip_mib, 11925 ipIfStatsReasmPartDups); 11926 break; 11927 } 11928 /* Did we cover another hole? */ 11929 if ((mp1->b_cont && 11930 IP_REASS_END(mp1) 11931 != IP_REASS_START(mp1->b_cont) && 11932 end >= 11933 IP_REASS_START(mp1->b_cont)) || 11934 (!ipf->ipf_last_frag_seen && 11935 !more)) { 11936 ipf->ipf_hole_cnt--; 11937 } 11938 /* Clip out mp1. */ 11939 if ((mp->b_cont = mp1->b_cont) == 11940 NULL) { 11941 /* 11942 * After clipping out mp1, 11943 * this guy is now hanging 11944 * off the end. 11945 */ 11946 ipf->ipf_tail_mp = mp; 11947 } 11948 IP_REASS_SET_START(mp1, 0); 11949 IP_REASS_SET_END(mp1, 0); 11950 /* Subtract byte count */ 11951 ipf->ipf_count -= 11952 mp1->b_datap->db_lim - 11953 mp1->b_datap->db_base; 11954 freeb(mp1); 11955 BUMP_MIB(ill->ill_ip_mib, 11956 ipIfStatsReasmPartDups); 11957 mp1 = mp->b_cont; 11958 if (!mp1) 11959 break; 11960 offset = IP_REASS_START(mp1); 11961 } 11962 } 11963 break; 11964 } 11965 } while (start = end, mp = next_mp); 11966 11967 /* Fragment just processed could be the last one. Remember this fact */ 11968 if (!more) 11969 ipf->ipf_last_frag_seen = B_TRUE; 11970 11971 /* Still got holes? */ 11972 if (ipf->ipf_hole_cnt) 11973 return (IP_REASS_PARTIAL); 11974 /* Clean up overloaded fields to avoid upstream disasters. */ 11975 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) { 11976 IP_REASS_SET_START(mp1, 0); 11977 IP_REASS_SET_END(mp1, 0); 11978 } 11979 return (IP_REASS_COMPLETE); 11980 } 11981 11982 /* 11983 * ipsec processing for the fast path, used for input UDP Packets 11984 */ 11985 static boolean_t 11986 ip_udp_check(queue_t *q, conn_t *connp, ill_t *ill, ipha_t *ipha, 11987 mblk_t **mpp, mblk_t **first_mpp, boolean_t mctl_present) 11988 { 11989 uint32_t ill_index; 11990 uint_t in_flags; /* IPF_RECVSLLA and/or IPF_RECVIF */ 11991 11992 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 11993 /* The ill_index of the incoming ILL */ 11994 ill_index = ((ill_t *)q->q_ptr)->ill_phyint->phyint_ifindex; 11995 11996 /* pass packet up to the transport */ 11997 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 11998 *first_mpp = ipsec_check_inbound_policy(*first_mpp, connp, ipha, 11999 NULL, mctl_present); 12000 if (*first_mpp == NULL) { 12001 return (B_FALSE); 12002 } 12003 } 12004 12005 /* Initiate IPPF processing for fastpath UDP */ 12006 if (IPP_ENABLED(IPP_LOCAL_IN)) { 12007 ip_process(IPP_LOCAL_IN, mpp, ill_index); 12008 if (*mpp == NULL) { 12009 ip2dbg(("ip_input_ipsec_process: UDP pkt " 12010 "deferred/dropped during IPPF processing\n")); 12011 return (B_FALSE); 12012 } 12013 } 12014 /* 12015 * We make the checks as below since we are in the fast path 12016 * and want to minimize the number of checks if the IP_RECVIF and/or 12017 * IP_RECVSLLA and/or IPV6_RECVPKTINFO options are not set 12018 */ 12019 if (connp->conn_recvif || connp->conn_recvslla || 12020 connp->conn_ipv6_recvpktinfo) { 12021 if (connp->conn_recvif || 12022 connp->conn_ipv6_recvpktinfo) { 12023 in_flags = IPF_RECVIF; 12024 } 12025 if (connp->conn_recvslla) { 12026 in_flags |= IPF_RECVSLLA; 12027 } 12028 /* 12029 * since in_flags are being set ill will be 12030 * referenced in ip_add_info, so it better not 12031 * be NULL. 12032 */ 12033 /* 12034 * the actual data will be contained in b_cont 12035 * upon successful return of the following call. 12036 * If the call fails then the original mblk is 12037 * returned. 12038 */ 12039 *mpp = ip_add_info(*mpp, ill, in_flags); 12040 } 12041 12042 return (B_TRUE); 12043 } 12044 12045 /* 12046 * Fragmentation reassembly. Each ILL has a hash table for 12047 * queuing packets undergoing reassembly for all IPIFs 12048 * associated with the ILL. The hash is based on the packet 12049 * IP ident field. The ILL frag hash table was allocated 12050 * as a timer block at the time the ILL was created. Whenever 12051 * there is anything on the reassembly queue, the timer will 12052 * be running. Returns B_TRUE if successful else B_FALSE; 12053 * frees mp on failure. 12054 */ 12055 static boolean_t 12056 ip_rput_fragment(queue_t *q, mblk_t **mpp, ipha_t *ipha, 12057 uint32_t *cksum_val, uint16_t *cksum_flags) 12058 { 12059 uint32_t frag_offset_flags; 12060 ill_t *ill = (ill_t *)q->q_ptr; 12061 mblk_t *mp = *mpp; 12062 mblk_t *t_mp; 12063 ipaddr_t dst; 12064 uint8_t proto = ipha->ipha_protocol; 12065 uint32_t sum_val; 12066 uint16_t sum_flags; 12067 ipf_t *ipf; 12068 ipf_t **ipfp; 12069 ipfb_t *ipfb; 12070 uint16_t ident; 12071 uint32_t offset; 12072 ipaddr_t src; 12073 uint_t hdr_length; 12074 uint32_t end; 12075 mblk_t *mp1; 12076 mblk_t *tail_mp; 12077 size_t count; 12078 size_t msg_len; 12079 uint8_t ecn_info = 0; 12080 uint32_t packet_size; 12081 boolean_t pruned = B_FALSE; 12082 12083 if (cksum_val != NULL) 12084 *cksum_val = 0; 12085 if (cksum_flags != NULL) 12086 *cksum_flags = 0; 12087 12088 /* 12089 * Drop the fragmented as early as possible, if 12090 * we don't have resource(s) to re-assemble. 12091 */ 12092 if (ip_reass_queue_bytes == 0) { 12093 freemsg(mp); 12094 return (B_FALSE); 12095 } 12096 12097 /* Check for fragmentation offset; return if there's none */ 12098 if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) & 12099 (IPH_MF | IPH_OFFSET)) == 0) 12100 return (B_TRUE); 12101 12102 /* 12103 * We utilize hardware computed checksum info only for UDP since 12104 * IP fragmentation is a normal occurence for the protocol. In 12105 * addition, checksum offload support for IP fragments carrying 12106 * UDP payload is commonly implemented across network adapters. 12107 */ 12108 ASSERT(ill != NULL); 12109 if (proto == IPPROTO_UDP && dohwcksum && ILL_HCKSUM_CAPABLE(ill) && 12110 (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) { 12111 mblk_t *mp1 = mp->b_cont; 12112 int32_t len; 12113 12114 /* Record checksum information from the packet */ 12115 sum_val = (uint32_t)DB_CKSUM16(mp); 12116 sum_flags = DB_CKSUMFLAGS(mp); 12117 12118 /* IP payload offset from beginning of mblk */ 12119 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr; 12120 12121 if ((sum_flags & HCK_PARTIALCKSUM) && 12122 (mp1 == NULL || mp1->b_cont == NULL) && 12123 offset >= DB_CKSUMSTART(mp) && 12124 ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) { 12125 uint32_t adj; 12126 /* 12127 * Partial checksum has been calculated by hardware 12128 * and attached to the packet; in addition, any 12129 * prepended extraneous data is even byte aligned. 12130 * If any such data exists, we adjust the checksum; 12131 * this would also handle any postpended data. 12132 */ 12133 IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp), 12134 mp, mp1, len, adj); 12135 12136 /* One's complement subtract extraneous checksum */ 12137 if (adj >= sum_val) 12138 sum_val = ~(adj - sum_val) & 0xFFFF; 12139 else 12140 sum_val -= adj; 12141 } 12142 } else { 12143 sum_val = 0; 12144 sum_flags = 0; 12145 } 12146 12147 /* Clear hardware checksumming flag */ 12148 DB_CKSUMFLAGS(mp) = 0; 12149 12150 ident = ipha->ipha_ident; 12151 offset = (frag_offset_flags << 3) & 0xFFFF; 12152 src = ipha->ipha_src; 12153 dst = ipha->ipha_dst; 12154 hdr_length = IPH_HDR_LENGTH(ipha); 12155 end = ntohs(ipha->ipha_length) - hdr_length; 12156 12157 /* If end == 0 then we have a packet with no data, so just free it */ 12158 if (end == 0) { 12159 freemsg(mp); 12160 return (B_FALSE); 12161 } 12162 12163 /* Record the ECN field info. */ 12164 ecn_info = (ipha->ipha_type_of_service & 0x3); 12165 if (offset != 0) { 12166 /* 12167 * If this isn't the first piece, strip the header, and 12168 * add the offset to the end value. 12169 */ 12170 mp->b_rptr += hdr_length; 12171 end += offset; 12172 } 12173 12174 msg_len = MBLKSIZE(mp); 12175 tail_mp = mp; 12176 while (tail_mp->b_cont != NULL) { 12177 tail_mp = tail_mp->b_cont; 12178 msg_len += MBLKSIZE(tail_mp); 12179 } 12180 12181 /* If the reassembly list for this ILL will get too big, prune it */ 12182 if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >= 12183 ip_reass_queue_bytes) { 12184 ill_frag_prune(ill, 12185 (ip_reass_queue_bytes < msg_len) ? 0 : 12186 (ip_reass_queue_bytes - msg_len)); 12187 pruned = B_TRUE; 12188 } 12189 12190 ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)]; 12191 mutex_enter(&ipfb->ipfb_lock); 12192 12193 ipfp = &ipfb->ipfb_ipf; 12194 /* Try to find an existing fragment queue for this packet. */ 12195 for (;;) { 12196 ipf = ipfp[0]; 12197 if (ipf != NULL) { 12198 /* 12199 * It has to match on ident and src/dst address. 12200 */ 12201 if (ipf->ipf_ident == ident && 12202 ipf->ipf_src == src && 12203 ipf->ipf_dst == dst && 12204 ipf->ipf_protocol == proto) { 12205 /* 12206 * If we have received too many 12207 * duplicate fragments for this packet 12208 * free it. 12209 */ 12210 if (ipf->ipf_num_dups > ip_max_frag_dups) { 12211 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12212 freemsg(mp); 12213 mutex_exit(&ipfb->ipfb_lock); 12214 return (B_FALSE); 12215 } 12216 /* Found it. */ 12217 break; 12218 } 12219 ipfp = &ipf->ipf_hash_next; 12220 continue; 12221 } 12222 12223 /* 12224 * If we pruned the list, do we want to store this new 12225 * fragment?. We apply an optimization here based on the 12226 * fact that most fragments will be received in order. 12227 * So if the offset of this incoming fragment is zero, 12228 * it is the first fragment of a new packet. We will 12229 * keep it. Otherwise drop the fragment, as we have 12230 * probably pruned the packet already (since the 12231 * packet cannot be found). 12232 */ 12233 if (pruned && offset != 0) { 12234 mutex_exit(&ipfb->ipfb_lock); 12235 freemsg(mp); 12236 return (B_FALSE); 12237 } 12238 12239 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS) { 12240 /* 12241 * Too many fragmented packets in this hash 12242 * bucket. Free the oldest. 12243 */ 12244 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1); 12245 } 12246 12247 /* New guy. Allocate a frag message. */ 12248 mp1 = allocb(sizeof (*ipf), BPRI_MED); 12249 if (mp1 == NULL) { 12250 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12251 freemsg(mp); 12252 reass_done: 12253 mutex_exit(&ipfb->ipfb_lock); 12254 return (B_FALSE); 12255 } 12256 12257 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds); 12258 mp1->b_cont = mp; 12259 12260 /* Initialize the fragment header. */ 12261 ipf = (ipf_t *)mp1->b_rptr; 12262 ipf->ipf_mp = mp1; 12263 ipf->ipf_ptphn = ipfp; 12264 ipfp[0] = ipf; 12265 ipf->ipf_hash_next = NULL; 12266 ipf->ipf_ident = ident; 12267 ipf->ipf_protocol = proto; 12268 ipf->ipf_src = src; 12269 ipf->ipf_dst = dst; 12270 ipf->ipf_nf_hdr_len = 0; 12271 /* Record reassembly start time. */ 12272 ipf->ipf_timestamp = gethrestime_sec(); 12273 /* Record ipf generation and account for frag header */ 12274 ipf->ipf_gen = ill->ill_ipf_gen++; 12275 ipf->ipf_count = MBLKSIZE(mp1); 12276 ipf->ipf_last_frag_seen = B_FALSE; 12277 ipf->ipf_ecn = ecn_info; 12278 ipf->ipf_num_dups = 0; 12279 ipfb->ipfb_frag_pkts++; 12280 ipf->ipf_checksum = 0; 12281 ipf->ipf_checksum_flags = 0; 12282 12283 /* Store checksum value in fragment header */ 12284 if (sum_flags != 0) { 12285 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12286 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12287 ipf->ipf_checksum = sum_val; 12288 ipf->ipf_checksum_flags = sum_flags; 12289 } 12290 12291 /* 12292 * We handle reassembly two ways. In the easy case, 12293 * where all the fragments show up in order, we do 12294 * minimal bookkeeping, and just clip new pieces on 12295 * the end. If we ever see a hole, then we go off 12296 * to ip_reassemble which has to mark the pieces and 12297 * keep track of the number of holes, etc. Obviously, 12298 * the point of having both mechanisms is so we can 12299 * handle the easy case as efficiently as possible. 12300 */ 12301 if (offset == 0) { 12302 /* Easy case, in-order reassembly so far. */ 12303 ipf->ipf_count += msg_len; 12304 ipf->ipf_tail_mp = tail_mp; 12305 /* 12306 * Keep track of next expected offset in 12307 * ipf_end. 12308 */ 12309 ipf->ipf_end = end; 12310 ipf->ipf_nf_hdr_len = hdr_length; 12311 } else { 12312 /* Hard case, hole at the beginning. */ 12313 ipf->ipf_tail_mp = NULL; 12314 /* 12315 * ipf_end == 0 means that we have given up 12316 * on easy reassembly. 12317 */ 12318 ipf->ipf_end = 0; 12319 12320 /* Forget checksum offload from now on */ 12321 ipf->ipf_checksum_flags = 0; 12322 12323 /* 12324 * ipf_hole_cnt is set by ip_reassemble. 12325 * ipf_count is updated by ip_reassemble. 12326 * No need to check for return value here 12327 * as we don't expect reassembly to complete 12328 * or fail for the first fragment itself. 12329 */ 12330 (void) ip_reassemble(mp, ipf, 12331 (frag_offset_flags & IPH_OFFSET) << 3, 12332 (frag_offset_flags & IPH_MF), ill, msg_len); 12333 } 12334 /* Update per ipfb and ill byte counts */ 12335 ipfb->ipfb_count += ipf->ipf_count; 12336 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12337 ill->ill_frag_count += ipf->ipf_count; 12338 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12339 /* If the frag timer wasn't already going, start it. */ 12340 mutex_enter(&ill->ill_lock); 12341 ill_frag_timer_start(ill); 12342 mutex_exit(&ill->ill_lock); 12343 goto reass_done; 12344 } 12345 12346 /* 12347 * If the packet's flag has changed (it could be coming up 12348 * from an interface different than the previous, therefore 12349 * possibly different checksum capability), then forget about 12350 * any stored checksum states. Otherwise add the value to 12351 * the existing one stored in the fragment header. 12352 */ 12353 if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) { 12354 sum_val += ipf->ipf_checksum; 12355 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12356 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16); 12357 ipf->ipf_checksum = sum_val; 12358 } else if (ipf->ipf_checksum_flags != 0) { 12359 /* Forget checksum offload from now on */ 12360 ipf->ipf_checksum_flags = 0; 12361 } 12362 12363 /* 12364 * We have a new piece of a datagram which is already being 12365 * reassembled. Update the ECN info if all IP fragments 12366 * are ECN capable. If there is one which is not, clear 12367 * all the info. If there is at least one which has CE 12368 * code point, IP needs to report that up to transport. 12369 */ 12370 if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) { 12371 if (ecn_info == IPH_ECN_CE) 12372 ipf->ipf_ecn = IPH_ECN_CE; 12373 } else { 12374 ipf->ipf_ecn = IPH_ECN_NECT; 12375 } 12376 if (offset && ipf->ipf_end == offset) { 12377 /* The new fragment fits at the end */ 12378 ipf->ipf_tail_mp->b_cont = mp; 12379 /* Update the byte count */ 12380 ipf->ipf_count += msg_len; 12381 /* Update per ipfb and ill byte counts */ 12382 ipfb->ipfb_count += msg_len; 12383 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12384 ill->ill_frag_count += msg_len; 12385 ASSERT(ill->ill_frag_count > 0); /* Wraparound */ 12386 if (frag_offset_flags & IPH_MF) { 12387 /* More to come. */ 12388 ipf->ipf_end = end; 12389 ipf->ipf_tail_mp = tail_mp; 12390 goto reass_done; 12391 } 12392 } else { 12393 /* Go do the hard cases. */ 12394 int ret; 12395 12396 if (offset == 0) 12397 ipf->ipf_nf_hdr_len = hdr_length; 12398 12399 /* Save current byte count */ 12400 count = ipf->ipf_count; 12401 ret = ip_reassemble(mp, ipf, 12402 (frag_offset_flags & IPH_OFFSET) << 3, 12403 (frag_offset_flags & IPH_MF), ill, msg_len); 12404 /* Count of bytes added and subtracted (freeb()ed) */ 12405 count = ipf->ipf_count - count; 12406 if (count) { 12407 /* Update per ipfb and ill byte counts */ 12408 ipfb->ipfb_count += count; 12409 ASSERT(ipfb->ipfb_count > 0); /* Wraparound */ 12410 ill->ill_frag_count += count; 12411 ASSERT(ill->ill_frag_count > 0); 12412 } 12413 if (ret == IP_REASS_PARTIAL) { 12414 goto reass_done; 12415 } else if (ret == IP_REASS_FAILED) { 12416 /* Reassembly failed. Free up all resources */ 12417 ill_frag_free_pkts(ill, ipfb, ipf, 1); 12418 for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) { 12419 IP_REASS_SET_START(t_mp, 0); 12420 IP_REASS_SET_END(t_mp, 0); 12421 } 12422 freemsg(mp); 12423 goto reass_done; 12424 } 12425 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */ 12426 } 12427 /* 12428 * We have completed reassembly. Unhook the frag header from 12429 * the reassembly list. 12430 * 12431 * Before we free the frag header, record the ECN info 12432 * to report back to the transport. 12433 */ 12434 ecn_info = ipf->ipf_ecn; 12435 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs); 12436 ipfp = ipf->ipf_ptphn; 12437 12438 /* We need to supply these to caller */ 12439 if ((sum_flags = ipf->ipf_checksum_flags) != 0) 12440 sum_val = ipf->ipf_checksum; 12441 else 12442 sum_val = 0; 12443 12444 mp1 = ipf->ipf_mp; 12445 count = ipf->ipf_count; 12446 ipf = ipf->ipf_hash_next; 12447 if (ipf != NULL) 12448 ipf->ipf_ptphn = ipfp; 12449 ipfp[0] = ipf; 12450 ill->ill_frag_count -= count; 12451 ASSERT(ipfb->ipfb_count >= count); 12452 ipfb->ipfb_count -= count; 12453 ipfb->ipfb_frag_pkts--; 12454 mutex_exit(&ipfb->ipfb_lock); 12455 /* Ditch the frag header. */ 12456 mp = mp1->b_cont; 12457 12458 freeb(mp1); 12459 12460 /* Restore original IP length in header. */ 12461 packet_size = (uint32_t)msgdsize(mp); 12462 if (packet_size > IP_MAXPACKET) { 12463 freemsg(mp); 12464 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 12465 return (B_FALSE); 12466 } 12467 12468 if (DB_REF(mp) > 1) { 12469 mblk_t *mp2 = copymsg(mp); 12470 12471 freemsg(mp); 12472 if (mp2 == NULL) { 12473 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12474 return (B_FALSE); 12475 } 12476 mp = mp2; 12477 } 12478 ipha = (ipha_t *)mp->b_rptr; 12479 12480 ipha->ipha_length = htons((uint16_t)packet_size); 12481 /* We're now complete, zip the frag state */ 12482 ipha->ipha_fragment_offset_and_flags = 0; 12483 /* Record the ECN info. */ 12484 ipha->ipha_type_of_service &= 0xFC; 12485 ipha->ipha_type_of_service |= ecn_info; 12486 *mpp = mp; 12487 12488 /* Reassembly is successful; return checksum information if needed */ 12489 if (cksum_val != NULL) 12490 *cksum_val = sum_val; 12491 if (cksum_flags != NULL) 12492 *cksum_flags = sum_flags; 12493 12494 return (B_TRUE); 12495 } 12496 12497 /* 12498 * Perform ip header check sum update local options. 12499 * return B_TRUE if all is well, else return B_FALSE and release 12500 * the mp. caller is responsible for decrementing ire ref cnt. 12501 */ 12502 static boolean_t 12503 ip_options_cksum(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t *ipha, ire_t *ire) 12504 { 12505 mblk_t *first_mp; 12506 boolean_t mctl_present; 12507 uint16_t sum; 12508 12509 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12510 /* 12511 * Don't do the checksum if it has gone through AH/ESP 12512 * processing. 12513 */ 12514 if (!mctl_present) { 12515 sum = ip_csum_hdr(ipha); 12516 if (sum != 0) { 12517 if (ill != NULL) { 12518 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12519 } else { 12520 BUMP_MIB(&ip_mib, ipIfStatsInCksumErrs); 12521 } 12522 freemsg(first_mp); 12523 return (B_FALSE); 12524 } 12525 } 12526 12527 if (!ip_rput_local_options(q, mp, ipha, ire)) { 12528 if (mctl_present) 12529 freeb(first_mp); 12530 return (B_FALSE); 12531 } 12532 12533 return (B_TRUE); 12534 } 12535 12536 /* 12537 * All udp packet are delivered to the local host via this routine. 12538 */ 12539 void 12540 ip_udp_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 12541 ill_t *recv_ill) 12542 { 12543 uint32_t sum; 12544 uint32_t u1; 12545 boolean_t mctl_present; 12546 conn_t *connp; 12547 mblk_t *first_mp; 12548 uint16_t *up; 12549 ill_t *ill = (ill_t *)q->q_ptr; 12550 uint16_t reass_hck_flags = 0; 12551 12552 #define rptr ((uchar_t *)ipha) 12553 12554 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 12555 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 12556 ASSERT(ipha->ipha_protocol == IPPROTO_UDP); 12557 ASSERT(ill != NULL); 12558 12559 /* 12560 * FAST PATH for udp packets 12561 */ 12562 12563 /* u1 is # words of IP options */ 12564 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) + 12565 IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12566 12567 /* IP options present */ 12568 if (u1 != 0) 12569 goto ipoptions; 12570 12571 /* Check the IP header checksum. */ 12572 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12573 /* Clear the IP header h/w cksum flag */ 12574 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12575 } else { 12576 #define uph ((uint16_t *)ipha) 12577 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 12578 uph[6] + uph[7] + uph[8] + uph[9]; 12579 #undef uph 12580 /* finish doing IP checksum */ 12581 sum = (sum & 0xFFFF) + (sum >> 16); 12582 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12583 /* 12584 * Don't verify header checksum if this packet is coming 12585 * back from AH/ESP as we already did it. 12586 */ 12587 if (!mctl_present && sum != 0 && sum != 0xFFFF) { 12588 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 12589 freemsg(first_mp); 12590 return; 12591 } 12592 } 12593 12594 /* 12595 * Count for SNMP of inbound packets for ire. 12596 * if mctl is present this might be a secure packet and 12597 * has already been counted for in ip_proto_input(). 12598 */ 12599 if (!mctl_present) { 12600 UPDATE_IB_PKT_COUNT(ire); 12601 ire->ire_last_used_time = lbolt; 12602 } 12603 12604 /* packet part of fragmented IP packet? */ 12605 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12606 if (u1 & (IPH_MF | IPH_OFFSET)) { 12607 goto fragmented; 12608 } 12609 12610 /* u1 = IP header length (20 bytes) */ 12611 u1 = IP_SIMPLE_HDR_LENGTH; 12612 12613 /* packet does not contain complete IP & UDP headers */ 12614 if ((mp->b_wptr - rptr) < (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE)) 12615 goto udppullup; 12616 12617 /* up points to UDP header */ 12618 up = (uint16_t *)((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH); 12619 #define iphs ((uint16_t *)ipha) 12620 12621 /* if udp hdr cksum != 0, then need to checksum udp packet */ 12622 if (up[3] != 0) { 12623 mblk_t *mp1 = mp->b_cont; 12624 boolean_t cksum_err; 12625 uint16_t hck_flags = 0; 12626 12627 /* Pseudo-header checksum */ 12628 u1 = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12629 iphs[9] + up[2]; 12630 12631 /* 12632 * Revert to software checksum calculation if the interface 12633 * isn't capable of checksum offload or if IPsec is present. 12634 */ 12635 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12636 hck_flags = DB_CKSUMFLAGS(mp); 12637 12638 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12639 IP_STAT(ip_in_sw_cksum); 12640 12641 IP_CKSUM_RECV(hck_flags, u1, 12642 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12643 (int32_t)((uchar_t *)up - rptr), 12644 mp, mp1, cksum_err); 12645 12646 if (cksum_err) { 12647 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12648 if (hck_flags & HCK_FULLCKSUM) 12649 IP_STAT(ip_udp_in_full_hw_cksum_err); 12650 else if (hck_flags & HCK_PARTIALCKSUM) 12651 IP_STAT(ip_udp_in_part_hw_cksum_err); 12652 else 12653 IP_STAT(ip_udp_in_sw_cksum_err); 12654 12655 freemsg(first_mp); 12656 return; 12657 } 12658 } 12659 12660 /* Non-fragmented broadcast or multicast packet? */ 12661 if (ire->ire_type == IRE_BROADCAST) 12662 goto udpslowpath; 12663 12664 if ((connp = ipcl_classify_v4(mp, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 12665 ire->ire_zoneid)) != NULL) { 12666 ASSERT(connp->conn_upq != NULL); 12667 IP_STAT(ip_udp_fast_path); 12668 12669 if (CONN_UDP_FLOWCTLD(connp)) { 12670 freemsg(mp); 12671 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows); 12672 } else { 12673 if (!mctl_present) { 12674 BUMP_MIB(ill->ill_ip_mib, 12675 ipIfStatsHCInDelivers); 12676 } 12677 /* 12678 * mp and first_mp can change. 12679 */ 12680 if (ip_udp_check(q, connp, recv_ill, 12681 ipha, &mp, &first_mp, mctl_present)) { 12682 /* Send it upstream */ 12683 CONN_UDP_RECV(connp, mp); 12684 } 12685 } 12686 /* 12687 * freeb() cannot deal with null mblk being passed 12688 * in and first_mp can be set to null in the call 12689 * ipsec_input_fast_proc()->ipsec_check_inbound_policy. 12690 */ 12691 if (mctl_present && first_mp != NULL) { 12692 freeb(first_mp); 12693 } 12694 CONN_DEC_REF(connp); 12695 return; 12696 } 12697 12698 /* 12699 * if we got here we know the packet is not fragmented and 12700 * has no options. The classifier could not find a conn_t and 12701 * most likely its an icmp packet so send it through slow path. 12702 */ 12703 12704 goto udpslowpath; 12705 12706 ipoptions: 12707 if (!ip_options_cksum(q, ill, mp, ipha, ire)) { 12708 goto slow_done; 12709 } 12710 12711 UPDATE_IB_PKT_COUNT(ire); 12712 ire->ire_last_used_time = lbolt; 12713 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12714 if (u1 & (IPH_MF | IPH_OFFSET)) { 12715 fragmented: 12716 /* 12717 * "sum" and "reass_hck_flags" are non-zero if the 12718 * reassembled packet has a valid hardware computed 12719 * checksum information associated with it. 12720 */ 12721 if (!ip_rput_fragment(q, &mp, ipha, &sum, &reass_hck_flags)) 12722 goto slow_done; 12723 /* 12724 * Make sure that first_mp points back to mp as 12725 * the mp we came in with could have changed in 12726 * ip_rput_fragment(). 12727 */ 12728 ASSERT(!mctl_present); 12729 ipha = (ipha_t *)mp->b_rptr; 12730 first_mp = mp; 12731 } 12732 12733 /* Now we have a complete datagram, destined for this machine. */ 12734 u1 = IPH_HDR_LENGTH(ipha); 12735 /* Pull up the UDP header, if necessary. */ 12736 if ((MBLKL(mp)) < (u1 + UDPH_SIZE)) { 12737 udppullup: 12738 if (!pullupmsg(mp, u1 + UDPH_SIZE)) { 12739 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 12740 freemsg(first_mp); 12741 goto slow_done; 12742 } 12743 ipha = (ipha_t *)mp->b_rptr; 12744 } 12745 12746 /* 12747 * Validate the checksum for the reassembled packet; for the 12748 * pullup case we calculate the payload checksum in software. 12749 */ 12750 up = (uint16_t *)((uchar_t *)ipha + u1 + UDP_PORTS_OFFSET); 12751 if (up[3] != 0) { 12752 boolean_t cksum_err; 12753 12754 if ((reass_hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12755 IP_STAT(ip_in_sw_cksum); 12756 12757 IP_CKSUM_RECV_REASS(reass_hck_flags, 12758 (int32_t)((uchar_t *)up - (uchar_t *)ipha), 12759 IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 12760 iphs[9] + up[2], sum, cksum_err); 12761 12762 if (cksum_err) { 12763 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInCksumErrs); 12764 12765 if (reass_hck_flags & HCK_FULLCKSUM) 12766 IP_STAT(ip_udp_in_full_hw_cksum_err); 12767 else if (reass_hck_flags & HCK_PARTIALCKSUM) 12768 IP_STAT(ip_udp_in_part_hw_cksum_err); 12769 else 12770 IP_STAT(ip_udp_in_sw_cksum_err); 12771 12772 freemsg(first_mp); 12773 goto slow_done; 12774 } 12775 } 12776 udpslowpath: 12777 12778 /* Clear hardware checksum flag to be safe */ 12779 DB_CKSUMFLAGS(mp) = 0; 12780 12781 ip_fanout_udp(q, first_mp, ill, ipha, *(uint32_t *)up, 12782 (ire->ire_type == IRE_BROADCAST), 12783 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_IP6INFO, 12784 mctl_present, B_TRUE, recv_ill, ire->ire_zoneid); 12785 12786 slow_done: 12787 IP_STAT(ip_udp_slow_path); 12788 return; 12789 12790 #undef iphs 12791 #undef rptr 12792 } 12793 12794 /* ARGSUSED */ 12795 static mblk_t * 12796 ip_tcp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 12797 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, 12798 ill_rx_ring_t *ill_ring) 12799 { 12800 conn_t *connp; 12801 uint32_t sum; 12802 uint32_t u1; 12803 uint16_t *up; 12804 int offset; 12805 ssize_t len; 12806 mblk_t *mp1; 12807 boolean_t syn_present = B_FALSE; 12808 tcph_t *tcph; 12809 uint_t ip_hdr_len; 12810 ill_t *ill = (ill_t *)q->q_ptr; 12811 zoneid_t zoneid = ire->ire_zoneid; 12812 boolean_t cksum_err; 12813 uint16_t hck_flags = 0; 12814 12815 #define rptr ((uchar_t *)ipha) 12816 12817 ASSERT(ipha->ipha_protocol == IPPROTO_TCP); 12818 ASSERT(ill != NULL); 12819 12820 /* 12821 * FAST PATH for tcp packets 12822 */ 12823 12824 /* u1 is # words of IP options */ 12825 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 12826 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 12827 12828 /* IP options present */ 12829 if (u1) { 12830 goto ipoptions; 12831 } else { 12832 /* Check the IP header checksum. */ 12833 if (IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 12834 /* Clear the IP header h/w cksum flag */ 12835 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 12836 } else { 12837 #define uph ((uint16_t *)ipha) 12838 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 12839 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 12840 #undef uph 12841 /* finish doing IP checksum */ 12842 sum = (sum & 0xFFFF) + (sum >> 16); 12843 sum = ~(sum + (sum >> 16)) & 0xFFFF; 12844 /* 12845 * Don't verify header checksum if this packet 12846 * is coming back from AH/ESP as we already did it. 12847 */ 12848 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 12849 BUMP_MIB(ill->ill_ip_mib, 12850 ipIfStatsInCksumErrs); 12851 goto error; 12852 } 12853 } 12854 } 12855 12856 if (!mctl_present) { 12857 UPDATE_IB_PKT_COUNT(ire); 12858 ire->ire_last_used_time = lbolt; 12859 } 12860 12861 /* packet part of fragmented IP packet? */ 12862 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 12863 if (u1 & (IPH_MF | IPH_OFFSET)) { 12864 goto fragmented; 12865 } 12866 12867 /* u1 = IP header length (20 bytes) */ 12868 u1 = ip_hdr_len = IP_SIMPLE_HDR_LENGTH; 12869 12870 /* does packet contain IP+TCP headers? */ 12871 len = mp->b_wptr - rptr; 12872 if (len < (IP_SIMPLE_HDR_LENGTH + TCP_MIN_HEADER_LENGTH)) { 12873 IP_STAT(ip_tcppullup); 12874 goto tcppullup; 12875 } 12876 12877 /* TCP options present? */ 12878 offset = ((uchar_t *)ipha)[IP_SIMPLE_HDR_LENGTH + 12] >> 4; 12879 12880 /* 12881 * If options need to be pulled up, then goto tcpoptions. 12882 * otherwise we are still in the fast path 12883 */ 12884 if (len < (offset << 2) + IP_SIMPLE_HDR_LENGTH) { 12885 IP_STAT(ip_tcpoptions); 12886 goto tcpoptions; 12887 } 12888 12889 /* multiple mblks of tcp data? */ 12890 if ((mp1 = mp->b_cont) != NULL) { 12891 /* more then two? */ 12892 if (mp1->b_cont != NULL) { 12893 IP_STAT(ip_multipkttcp); 12894 goto multipkttcp; 12895 } 12896 len += mp1->b_wptr - mp1->b_rptr; 12897 } 12898 12899 up = (uint16_t *)(rptr + IP_SIMPLE_HDR_LENGTH + TCP_PORTS_OFFSET); 12900 12901 /* part of pseudo checksum */ 12902 12903 /* TCP datagram length */ 12904 u1 = len - IP_SIMPLE_HDR_LENGTH; 12905 12906 #define iphs ((uint16_t *)ipha) 12907 12908 #ifdef _BIG_ENDIAN 12909 u1 += IPPROTO_TCP; 12910 #else 12911 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 12912 #endif 12913 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 12914 12915 /* 12916 * Revert to software checksum calculation if the interface 12917 * isn't capable of checksum offload or if IPsec is present. 12918 */ 12919 if (ILL_HCKSUM_CAPABLE(ill) && !mctl_present && dohwcksum) 12920 hck_flags = DB_CKSUMFLAGS(mp); 12921 12922 if ((hck_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) == 0) 12923 IP_STAT(ip_in_sw_cksum); 12924 12925 IP_CKSUM_RECV(hck_flags, u1, 12926 (uchar_t *)(rptr + DB_CKSUMSTART(mp)), 12927 (int32_t)((uchar_t *)up - rptr), 12928 mp, mp1, cksum_err); 12929 12930 if (cksum_err) { 12931 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 12932 12933 if (hck_flags & HCK_FULLCKSUM) 12934 IP_STAT(ip_tcp_in_full_hw_cksum_err); 12935 else if (hck_flags & HCK_PARTIALCKSUM) 12936 IP_STAT(ip_tcp_in_part_hw_cksum_err); 12937 else 12938 IP_STAT(ip_tcp_in_sw_cksum_err); 12939 12940 goto error; 12941 } 12942 12943 try_again: 12944 12945 if ((connp = ipcl_classify_v4(mp, IPPROTO_TCP, ip_hdr_len, zoneid)) == 12946 NULL) { 12947 /* Send the TH_RST */ 12948 goto no_conn; 12949 } 12950 12951 /* 12952 * TCP FAST PATH for AF_INET socket. 12953 * 12954 * TCP fast path to avoid extra work. An AF_INET socket type 12955 * does not have facility to receive extra information via 12956 * ip_process or ip_add_info. Also, when the connection was 12957 * established, we made a check if this connection is impacted 12958 * by any global IPSec policy or per connection policy (a 12959 * policy that comes in effect later will not apply to this 12960 * connection). Since all this can be determined at the 12961 * connection establishment time, a quick check of flags 12962 * can avoid extra work. 12963 */ 12964 if (IPCL_IS_TCP4_CONNECTED_NO_POLICY(connp) && !mctl_present && 12965 !IPP_ENABLED(IPP_LOCAL_IN)) { 12966 ASSERT(first_mp == mp); 12967 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 12968 SET_SQUEUE(mp, tcp_rput_data, connp); 12969 return (mp); 12970 } 12971 12972 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 12973 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 12974 if (IPCL_IS_TCP(connp)) { 12975 mp->b_datap->db_struioflag |= STRUIO_EAGER; 12976 DB_CKSUMSTART(mp) = 12977 (intptr_t)ip_squeue_get(ill_ring); 12978 if (IPCL_IS_FULLY_BOUND(connp) && !mctl_present && 12979 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12980 BUMP_MIB(ill->ill_ip_mib, 12981 ipIfStatsHCInDelivers); 12982 SET_SQUEUE(mp, connp->conn_recv, connp); 12983 return (mp); 12984 } else if (IPCL_IS_BOUND(connp) && !mctl_present && 12985 !CONN_INBOUND_POLICY_PRESENT(connp)) { 12986 BUMP_MIB(ill->ill_ip_mib, 12987 ipIfStatsHCInDelivers); 12988 ip_squeue_enter_unbound++; 12989 SET_SQUEUE(mp, tcp_conn_request_unbound, 12990 connp); 12991 return (mp); 12992 } 12993 syn_present = B_TRUE; 12994 } 12995 12996 } 12997 12998 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp) && !syn_present) { 12999 uint_t flags = (unsigned int)tcph->th_flags[0] & 0xFF; 13000 13001 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13002 /* No need to send this packet to TCP */ 13003 if ((flags & TH_RST) || (flags & TH_URG)) { 13004 CONN_DEC_REF(connp); 13005 freemsg(first_mp); 13006 return (NULL); 13007 } 13008 if (flags & TH_ACK) { 13009 tcp_xmit_listeners_reset(first_mp, ip_hdr_len, zoneid); 13010 CONN_DEC_REF(connp); 13011 return (NULL); 13012 } 13013 13014 CONN_DEC_REF(connp); 13015 freemsg(first_mp); 13016 return (NULL); 13017 } 13018 13019 if (CONN_INBOUND_POLICY_PRESENT(connp) || mctl_present) { 13020 first_mp = ipsec_check_inbound_policy(first_mp, connp, 13021 ipha, NULL, mctl_present); 13022 if (first_mp == NULL) { 13023 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13024 CONN_DEC_REF(connp); 13025 return (NULL); 13026 } 13027 if (IPCL_IS_TCP(connp) && IPCL_IS_BOUND(connp)) { 13028 ASSERT(syn_present); 13029 if (mctl_present) { 13030 ASSERT(first_mp != mp); 13031 first_mp->b_datap->db_struioflag |= 13032 STRUIO_POLICY; 13033 } else { 13034 ASSERT(first_mp == mp); 13035 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 13036 mp->b_datap->db_struioflag |= STRUIO_POLICY; 13037 } 13038 } else { 13039 /* 13040 * Discard first_mp early since we're dealing with a 13041 * fully-connected conn_t and tcp doesn't do policy in 13042 * this case. 13043 */ 13044 if (mctl_present) { 13045 freeb(first_mp); 13046 mctl_present = B_FALSE; 13047 } 13048 first_mp = mp; 13049 } 13050 } 13051 13052 /* Initiate IPPF processing for fastpath */ 13053 if (IPP_ENABLED(IPP_LOCAL_IN)) { 13054 uint32_t ill_index; 13055 13056 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13057 ip_process(IPP_LOCAL_IN, &mp, ill_index); 13058 if (mp == NULL) { 13059 ip2dbg(("ip_input_ipsec_process: TCP pkt " 13060 "deferred/dropped during IPPF processing\n")); 13061 CONN_DEC_REF(connp); 13062 if (mctl_present) 13063 freeb(first_mp); 13064 return (NULL); 13065 } else if (mctl_present) { 13066 /* 13067 * ip_process might return a new mp. 13068 */ 13069 ASSERT(first_mp != mp); 13070 first_mp->b_cont = mp; 13071 } else { 13072 first_mp = mp; 13073 } 13074 13075 } 13076 13077 if (!syn_present && connp->conn_ipv6_recvpktinfo) { 13078 mp = ip_add_info(mp, recv_ill, flags); 13079 if (mp == NULL) { 13080 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13081 CONN_DEC_REF(connp); 13082 if (mctl_present) 13083 freeb(first_mp); 13084 return (NULL); 13085 } else if (mctl_present) { 13086 /* 13087 * ip_add_info might return a new mp. 13088 */ 13089 ASSERT(first_mp != mp); 13090 first_mp->b_cont = mp; 13091 } else { 13092 first_mp = mp; 13093 } 13094 } 13095 13096 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13097 if (IPCL_IS_TCP(connp)) { 13098 SET_SQUEUE(first_mp, connp->conn_recv, connp); 13099 return (first_mp); 13100 } else { 13101 putnext(connp->conn_rq, first_mp); 13102 CONN_DEC_REF(connp); 13103 return (NULL); 13104 } 13105 13106 no_conn: 13107 /* Initiate IPPf processing, if needed. */ 13108 if (IPP_ENABLED(IPP_LOCAL_IN)) { 13109 uint32_t ill_index; 13110 ill_index = recv_ill->ill_phyint->phyint_ifindex; 13111 ip_process(IPP_LOCAL_IN, &first_mp, ill_index); 13112 if (first_mp == NULL) { 13113 return (NULL); 13114 } 13115 } 13116 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13117 13118 tcp_xmit_listeners_reset(first_mp, IPH_HDR_LENGTH(mp->b_rptr), zoneid); 13119 return (NULL); 13120 ipoptions: 13121 if (!ip_options_cksum(q, ill, first_mp, ipha, ire)) { 13122 goto slow_done; 13123 } 13124 13125 UPDATE_IB_PKT_COUNT(ire); 13126 ire->ire_last_used_time = lbolt; 13127 13128 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13129 if (u1 & (IPH_MF | IPH_OFFSET)) { 13130 fragmented: 13131 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 13132 if (mctl_present) 13133 freeb(first_mp); 13134 goto slow_done; 13135 } 13136 /* 13137 * Make sure that first_mp points back to mp as 13138 * the mp we came in with could have changed in 13139 * ip_rput_fragment(). 13140 */ 13141 ASSERT(!mctl_present); 13142 ipha = (ipha_t *)mp->b_rptr; 13143 first_mp = mp; 13144 } 13145 13146 /* Now we have a complete datagram, destined for this machine. */ 13147 u1 = ip_hdr_len = IPH_HDR_LENGTH(ipha); 13148 13149 len = mp->b_wptr - mp->b_rptr; 13150 /* Pull up a minimal TCP header, if necessary. */ 13151 if (len < (u1 + 20)) { 13152 tcppullup: 13153 if (!pullupmsg(mp, u1 + 20)) { 13154 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13155 goto error; 13156 } 13157 ipha = (ipha_t *)mp->b_rptr; 13158 len = mp->b_wptr - mp->b_rptr; 13159 } 13160 13161 /* 13162 * Extract the offset field from the TCP header. As usual, we 13163 * try to help the compiler more than the reader. 13164 */ 13165 offset = ((uchar_t *)ipha)[u1 + 12] >> 4; 13166 if (offset != 5) { 13167 tcpoptions: 13168 if (offset < 5) { 13169 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13170 goto error; 13171 } 13172 /* 13173 * There must be TCP options. 13174 * Make sure we can grab them. 13175 */ 13176 offset <<= 2; 13177 offset += u1; 13178 if (len < offset) { 13179 if (!pullupmsg(mp, offset)) { 13180 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13181 goto error; 13182 } 13183 ipha = (ipha_t *)mp->b_rptr; 13184 len = mp->b_wptr - rptr; 13185 } 13186 } 13187 13188 /* Get the total packet length in len, including headers. */ 13189 if (mp->b_cont) { 13190 multipkttcp: 13191 len = msgdsize(mp); 13192 } 13193 13194 /* 13195 * Check the TCP checksum by pulling together the pseudo- 13196 * header checksum, and passing it to ip_csum to be added in 13197 * with the TCP datagram. 13198 * 13199 * Since we are not using the hwcksum if available we must 13200 * clear the flag. We may come here via tcppullup or tcpoptions. 13201 * If either of these fails along the way the mblk is freed. 13202 * If this logic ever changes and mblk is reused to say send 13203 * ICMP's back, then this flag may need to be cleared in 13204 * other places as well. 13205 */ 13206 DB_CKSUMFLAGS(mp) = 0; 13207 13208 up = (uint16_t *)(rptr + u1 + TCP_PORTS_OFFSET); 13209 13210 u1 = (uint32_t)(len - u1); /* TCP datagram length. */ 13211 #ifdef _BIG_ENDIAN 13212 u1 += IPPROTO_TCP; 13213 #else 13214 u1 = ((u1 >> 8) & 0xFF) + (((u1 & 0xFF) + IPPROTO_TCP) << 8); 13215 #endif 13216 u1 += iphs[6] + iphs[7] + iphs[8] + iphs[9]; 13217 /* 13218 * Not M_DATA mblk or its a dup, so do the checksum now. 13219 */ 13220 IP_STAT(ip_in_sw_cksum); 13221 if (IP_CSUM(mp, (int32_t)((uchar_t *)up - rptr), u1) != 0) { 13222 BUMP_MIB(ill->ill_ip_mib, tcpIfStatsInErrs); 13223 goto error; 13224 } 13225 13226 IP_STAT(ip_tcp_slow_path); 13227 goto try_again; 13228 #undef iphs 13229 #undef rptr 13230 13231 error: 13232 freemsg(first_mp); 13233 slow_done: 13234 return (NULL); 13235 } 13236 13237 /* ARGSUSED */ 13238 static void 13239 ip_sctp_input(mblk_t *mp, ipha_t *ipha, ill_t *recv_ill, boolean_t mctl_present, 13240 ire_t *ire, mblk_t *first_mp, uint_t flags, queue_t *q, ipaddr_t dst) 13241 { 13242 conn_t *connp; 13243 uint32_t sum; 13244 uint32_t u1; 13245 ssize_t len; 13246 sctp_hdr_t *sctph; 13247 zoneid_t zoneid = ire->ire_zoneid; 13248 uint32_t pktsum; 13249 uint32_t calcsum; 13250 uint32_t ports; 13251 uint_t ipif_seqid; 13252 in6_addr_t map_src, map_dst; 13253 ill_t *ill = (ill_t *)q->q_ptr; 13254 13255 #define rptr ((uchar_t *)ipha) 13256 13257 ASSERT(ipha->ipha_protocol == IPPROTO_SCTP); 13258 ASSERT(ill != NULL); 13259 13260 /* u1 is # words of IP options */ 13261 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 13262 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 13263 13264 /* IP options present */ 13265 if (u1 > 0) { 13266 goto ipoptions; 13267 } else { 13268 /* Check the IP header checksum. */ 13269 if (!IS_IP_HDR_HWCKSUM(mctl_present, mp, ill)) { 13270 #define uph ((uint16_t *)ipha) 13271 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + 13272 uph[5] + uph[6] + uph[7] + uph[8] + uph[9]; 13273 #undef uph 13274 /* finish doing IP checksum */ 13275 sum = (sum & 0xFFFF) + (sum >> 16); 13276 sum = ~(sum + (sum >> 16)) & 0xFFFF; 13277 /* 13278 * Don't verify header checksum if this packet 13279 * is coming back from AH/ESP as we already did it. 13280 */ 13281 if (!mctl_present && (sum != 0) && sum != 0xFFFF) { 13282 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 13283 goto error; 13284 } 13285 } 13286 /* 13287 * Since there is no SCTP h/w cksum support yet, just 13288 * clear the flag. 13289 */ 13290 DB_CKSUMFLAGS(mp) = 0; 13291 } 13292 13293 /* 13294 * Don't verify header checksum if this packet is coming 13295 * back from AH/ESP as we already did it. 13296 */ 13297 if (!mctl_present) { 13298 UPDATE_IB_PKT_COUNT(ire); 13299 ire->ire_last_used_time = lbolt; 13300 } 13301 13302 /* packet part of fragmented IP packet? */ 13303 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13304 if (u1 & (IPH_MF | IPH_OFFSET)) 13305 goto fragmented; 13306 13307 /* u1 = IP header length (20 bytes) */ 13308 u1 = IP_SIMPLE_HDR_LENGTH; 13309 13310 find_sctp_client: 13311 /* Pullup if we don't have the sctp common header. */ 13312 len = MBLKL(mp); 13313 if (len < (u1 + SCTP_COMMON_HDR_LENGTH)) { 13314 if (mp->b_cont == NULL || 13315 !pullupmsg(mp, u1 + SCTP_COMMON_HDR_LENGTH)) { 13316 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13317 goto error; 13318 } 13319 ipha = (ipha_t *)mp->b_rptr; 13320 len = MBLKL(mp); 13321 } 13322 13323 sctph = (sctp_hdr_t *)(rptr + u1); 13324 #ifdef DEBUG 13325 if (!skip_sctp_cksum) { 13326 #endif 13327 pktsum = sctph->sh_chksum; 13328 sctph->sh_chksum = 0; 13329 calcsum = sctp_cksum(mp, u1); 13330 if (calcsum != pktsum) { 13331 BUMP_MIB(&sctp_mib, sctpChecksumError); 13332 goto error; 13333 } 13334 sctph->sh_chksum = pktsum; 13335 #ifdef DEBUG /* skip_sctp_cksum */ 13336 } 13337 #endif 13338 /* get the ports */ 13339 ports = *(uint32_t *)&sctph->sh_sport; 13340 13341 ipif_seqid = ire->ire_ipif->ipif_seqid; 13342 IRE_REFRELE(ire); 13343 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &map_dst); 13344 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &map_src); 13345 if ((connp = sctp_fanout(&map_src, &map_dst, ports, ipif_seqid, zoneid, 13346 mp)) == NULL) { 13347 /* Check for raw socket or OOTB handling */ 13348 goto no_conn; 13349 } 13350 13351 /* Found a client; up it goes */ 13352 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers); 13353 sctp_input(connp, ipha, mp, first_mp, recv_ill, B_TRUE, mctl_present); 13354 return; 13355 13356 no_conn: 13357 ip_fanout_sctp_raw(first_mp, recv_ill, ipha, B_TRUE, 13358 ports, mctl_present, flags, B_TRUE, ipif_seqid, zoneid); 13359 return; 13360 13361 ipoptions: 13362 DB_CKSUMFLAGS(mp) = 0; 13363 if (!ip_options_cksum(q, ill, first_mp, ipha, ire)) 13364 goto slow_done; 13365 13366 UPDATE_IB_PKT_COUNT(ire); 13367 ire->ire_last_used_time = lbolt; 13368 13369 u1 = ntohs(ipha->ipha_fragment_offset_and_flags); 13370 if (u1 & (IPH_MF | IPH_OFFSET)) { 13371 fragmented: 13372 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) 13373 goto slow_done; 13374 /* 13375 * Make sure that first_mp points back to mp as 13376 * the mp we came in with could have changed in 13377 * ip_rput_fragment(). 13378 */ 13379 ASSERT(!mctl_present); 13380 ipha = (ipha_t *)mp->b_rptr; 13381 first_mp = mp; 13382 } 13383 13384 /* Now we have a complete datagram, destined for this machine. */ 13385 u1 = IPH_HDR_LENGTH(ipha); 13386 goto find_sctp_client; 13387 #undef iphs 13388 #undef rptr 13389 13390 error: 13391 freemsg(first_mp); 13392 slow_done: 13393 IRE_REFRELE(ire); 13394 } 13395 13396 #define VER_BITS 0xF0 13397 #define VERSION_6 0x60 13398 13399 static boolean_t 13400 ip_rput_multimblk_ipoptions(queue_t *q, ill_t *ill, mblk_t *mp, ipha_t **iphapp, 13401 ipaddr_t *dstp) 13402 { 13403 uint_t opt_len; 13404 ipha_t *ipha; 13405 ssize_t len; 13406 uint_t pkt_len; 13407 13408 ASSERT(ill != NULL); 13409 IP_STAT(ip_ipoptions); 13410 ipha = *iphapp; 13411 13412 #define rptr ((uchar_t *)ipha) 13413 /* Assume no IPv6 packets arrive over the IPv4 queue */ 13414 if (IPH_HDR_VERSION(ipha) == IPV6_VERSION) { 13415 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion); 13416 freemsg(mp); 13417 return (B_FALSE); 13418 } 13419 13420 /* multiple mblk or too short */ 13421 pkt_len = ntohs(ipha->ipha_length); 13422 13423 /* Get the number of words of IP options in the IP header. */ 13424 opt_len = ipha->ipha_version_and_hdr_length - IP_SIMPLE_HDR_VERSION; 13425 if (opt_len) { 13426 /* IP Options present! Validate and process. */ 13427 if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) { 13428 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13429 goto done; 13430 } 13431 /* 13432 * Recompute complete header length and make sure we 13433 * have access to all of it. 13434 */ 13435 len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2; 13436 if (len > (mp->b_wptr - rptr)) { 13437 if (len > pkt_len) { 13438 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13439 goto done; 13440 } 13441 if (!pullupmsg(mp, len)) { 13442 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13443 goto done; 13444 } 13445 ipha = (ipha_t *)mp->b_rptr; 13446 } 13447 /* 13448 * Go off to ip_rput_options which returns the next hop 13449 * destination address, which may have been affected 13450 * by source routing. 13451 */ 13452 IP_STAT(ip_opt); 13453 if (ip_rput_options(q, mp, ipha, dstp) == -1) { 13454 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13455 return (B_FALSE); 13456 } 13457 } 13458 *iphapp = ipha; 13459 return (B_TRUE); 13460 done: 13461 /* clear b_prev - used by ip_mroute_decap */ 13462 mp->b_prev = NULL; 13463 freemsg(mp); 13464 return (B_FALSE); 13465 #undef rptr 13466 } 13467 13468 /* 13469 * Deal with the fact that there is no ire for the destination. 13470 * The incoming ill (in_ill) is passed in to ip_newroute only 13471 * in the case of packets coming from mobile ip forward tunnel. 13472 * It must be null otherwise. 13473 */ 13474 static ire_t * 13475 ip_rput_noire(queue_t *q, ill_t *in_ill, mblk_t *mp, int ll_multicast, 13476 ipaddr_t dst) 13477 { 13478 ipha_t *ipha; 13479 ill_t *ill; 13480 ire_t *ire; 13481 boolean_t check_multirt = B_FALSE; 13482 13483 ipha = (ipha_t *)mp->b_rptr; 13484 ill = (ill_t *)q->q_ptr; 13485 13486 ASSERT(ill != NULL); 13487 /* 13488 * No IRE for this destination, so it can't be for us. 13489 * Unless we are forwarding, drop the packet. 13490 * We have to let source routed packets through 13491 * since we don't yet know if they are 'ping -l' 13492 * packets i.e. if they will go out over the 13493 * same interface as they came in on. 13494 */ 13495 if (ll_multicast) { 13496 freemsg(mp); 13497 return (NULL); 13498 } 13499 if (!(ill->ill_flags & ILLF_ROUTER) && !ip_source_routed(ipha)) { 13500 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13501 freemsg(mp); 13502 return (NULL); 13503 } 13504 13505 /* 13506 * Mark this packet as having originated externally. 13507 * 13508 * For non-forwarding code path, ire_send later double 13509 * checks this interface to see if it is still exists 13510 * post-ARP resolution. 13511 * 13512 * Also, IPQOS uses this to differentiate between 13513 * IPP_FWD_OUT and IPP_LOCAL_OUT for post-ARP 13514 * QOS packet processing in ip_wput_attach_llhdr(). 13515 * The QoS module can mark the b_band for a fastpath message 13516 * or the dl_priority field in a unitdata_req header for 13517 * CoS marking. This info can only be found in 13518 * ip_wput_attach_llhdr(). 13519 */ 13520 mp->b_prev = (mblk_t *)(uintptr_t)ill->ill_phyint->phyint_ifindex; 13521 /* 13522 * Clear the indication that this may have a hardware checksum 13523 * as we are not using it 13524 */ 13525 DB_CKSUMFLAGS(mp) = 0; 13526 13527 if (in_ill != NULL) { 13528 /* 13529 * Now hand the packet to ip_newroute. 13530 */ 13531 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13532 return (NULL); 13533 } 13534 ire = ire_forward(dst, &check_multirt, NULL, NULL, 13535 MBLK_GETLABEL(mp)); 13536 13537 if (ire == NULL && check_multirt) { 13538 /* Let ip_newroute handle CGTP */ 13539 ip_newroute(q, mp, dst, in_ill, NULL, GLOBAL_ZONEID); 13540 return (NULL); 13541 } 13542 13543 if (ire != NULL) 13544 return (ire); 13545 13546 mp->b_prev = mp->b_next = 0; 13547 /* send icmp unreachable */ 13548 q = WR(q); 13549 /* Sent by forwarding path, and router is global zone */ 13550 if (ip_source_routed(ipha)) { 13551 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, 13552 GLOBAL_ZONEID); 13553 } else { 13554 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13555 } 13556 13557 return (NULL); 13558 13559 } 13560 13561 /* 13562 * check ip header length and align it. 13563 */ 13564 static boolean_t 13565 ip_check_and_align_header(queue_t *q, mblk_t *mp) 13566 { 13567 ssize_t len; 13568 ill_t *ill; 13569 ipha_t *ipha; 13570 13571 len = MBLKL(mp); 13572 13573 if (!OK_32PTR(mp->b_rptr) || len < IP_SIMPLE_HDR_LENGTH) { 13574 ill = (ill_t *)q->q_ptr; 13575 13576 if (!OK_32PTR(mp->b_rptr)) 13577 IP_STAT(ip_notaligned1); 13578 else 13579 IP_STAT(ip_notaligned2); 13580 /* Guard against bogus device drivers */ 13581 if (len < 0) { 13582 /* clear b_prev - used by ip_mroute_decap */ 13583 mp->b_prev = NULL; 13584 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors); 13585 freemsg(mp); 13586 return (B_FALSE); 13587 } 13588 13589 if (ip_rput_pullups++ == 0) { 13590 ipha = (ipha_t *)mp->b_rptr; 13591 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 13592 "ip_check_and_align_header: %s forced us to " 13593 " pullup pkt, hdr len %ld, hdr addr %p", 13594 ill->ill_name, len, ipha); 13595 } 13596 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 13597 /* clear b_prev - used by ip_mroute_decap */ 13598 mp->b_prev = NULL; 13599 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13600 freemsg(mp); 13601 return (B_FALSE); 13602 } 13603 } 13604 return (B_TRUE); 13605 } 13606 13607 static boolean_t 13608 ip_rput_notforus(queue_t **qp, mblk_t *mp, ire_t *ire, ill_t *ill) 13609 { 13610 ill_group_t *ill_group; 13611 ill_group_t *ire_group; 13612 queue_t *q; 13613 ill_t *ire_ill; 13614 uint_t ill_ifindex; 13615 13616 q = *qp; 13617 /* 13618 * We need to check to make sure the packet came in 13619 * on the queue associated with the destination IRE. 13620 * Note that for multicast packets and broadcast packets sent to 13621 * a broadcast address which is shared between multiple interfaces 13622 * we should not do this since we just got a random broadcast ire. 13623 */ 13624 if (ire->ire_rfq && ire->ire_type != IRE_BROADCAST) { 13625 boolean_t check_multi = B_TRUE; 13626 13627 /* 13628 * This packet came in on an interface other than the 13629 * one associated with the destination address. 13630 * "Gateway" it to the appropriate interface here. 13631 * As long as the ills belong to the same group, 13632 * we don't consider them to arriving on the wrong 13633 * interface. Thus, when the switch is doing inbound 13634 * load spreading, we won't drop packets when we 13635 * are doing strict multihoming checks. Note, the 13636 * same holds true for 'usesrc groups' where the 13637 * destination address may belong to another interface 13638 * to allow multipathing to happen 13639 */ 13640 ill_group = ill->ill_group; 13641 ire_ill = (ill_t *)(ire->ire_rfq)->q_ptr; 13642 ill_ifindex = ill->ill_usesrc_ifindex; 13643 ire_group = ire_ill->ill_group; 13644 13645 /* 13646 * If it's part of the same IPMP group, or if it's a legal 13647 * address on the 'usesrc' interface, then bypass strict 13648 * checks. 13649 */ 13650 if (ill_group != NULL && ill_group == ire_group) { 13651 check_multi = B_FALSE; 13652 } else if (ill_ifindex != 0 && 13653 ill_ifindex == ire_ill->ill_phyint->phyint_ifindex) { 13654 check_multi = B_FALSE; 13655 } 13656 13657 if (check_multi && 13658 ip_strict_dst_multihoming && 13659 ((ill->ill_flags & 13660 ire->ire_ipif->ipif_ill->ill_flags & 13661 ILLF_ROUTER) == 0)) { 13662 /* Drop packet */ 13663 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13664 freemsg(mp); 13665 return (B_TRUE); 13666 } 13667 13668 /* 13669 * Change the queue (for non-virtual destination network 13670 * interfaces) and ip_rput_local will be called with the right 13671 * queue 13672 */ 13673 q = ire->ire_rfq; 13674 } 13675 /* Must be broadcast. We'll take it. */ 13676 *qp = q; 13677 return (B_FALSE); 13678 } 13679 13680 ire_t * 13681 ip_fast_forward(ire_t *ire, ipaddr_t dst, ill_t *ill, mblk_t *mp) 13682 { 13683 ipha_t *ipha; 13684 ipaddr_t ip_dst, ip_src; 13685 ire_t *src_ire = NULL; 13686 ill_t *stq_ill; 13687 uint_t hlen; 13688 uint_t pkt_len; 13689 uint32_t sum; 13690 queue_t *dev_q; 13691 boolean_t check_multirt = B_FALSE; 13692 13693 13694 ipha = (ipha_t *)mp->b_rptr; 13695 13696 /* 13697 * Martian Address Filtering [RFC 1812, Section 5.3.7] 13698 * The loopback address check for both src and dst has already 13699 * been checked in ip_input 13700 */ 13701 ip_dst = ntohl(dst); 13702 ip_src = ntohl(ipha->ipha_src); 13703 13704 if (ip_dst == INADDR_ANY || IN_BADCLASS(ip_dst) || 13705 IN_CLASSD(ip_src)) { 13706 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13707 goto drop; 13708 } 13709 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13710 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13711 13712 if (src_ire != NULL) { 13713 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13714 goto drop; 13715 } 13716 13717 13718 /* No ire cache of nexthop. So first create one */ 13719 if (ire == NULL) { 13720 ire = ire_forward(dst, &check_multirt, NULL, NULL, NULL); 13721 /* 13722 * We only come to ip_fast_forward if ip_cgtp_filter is 13723 * is not set. So upon return from ire_forward 13724 * check_multirt should remain as false. 13725 */ 13726 ASSERT(!check_multirt); 13727 if (ire == NULL) { 13728 /* An attempt was made to forward the packet */ 13729 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13730 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13731 mp->b_prev = mp->b_next = 0; 13732 /* send icmp unreachable */ 13733 /* Sent by forwarding path, and router is global zone */ 13734 if (ip_source_routed(ipha)) { 13735 icmp_unreachable(ill->ill_wq, mp, 13736 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13737 } else { 13738 icmp_unreachable(ill->ill_wq, mp, 13739 ICMP_HOST_UNREACHABLE, GLOBAL_ZONEID); 13740 } 13741 return (ire); 13742 } 13743 } 13744 13745 /* 13746 * Forwarding fastpath exception case: 13747 * If either of the follwoing case is true, we take 13748 * the slowpath 13749 * o forwarding is not enabled 13750 * o incoming and outgoing interface are the same, or the same 13751 * IPMP group 13752 * o corresponding ire is in incomplete state 13753 * o packet needs fragmentation 13754 * 13755 * The codeflow from here on is thus: 13756 * ip_rput_process_forward->ip_rput_forward->ip_xmit_v4 13757 */ 13758 pkt_len = ntohs(ipha->ipha_length); 13759 stq_ill = (ill_t *)ire->ire_stq->q_ptr; 13760 if (!(stq_ill->ill_flags & ILLF_ROUTER) || 13761 !(ill->ill_flags & ILLF_ROUTER) || 13762 (ill == stq_ill) || 13763 (ill->ill_group != NULL && ill->ill_group == stq_ill->ill_group) || 13764 (ire->ire_nce == NULL) || 13765 (ire->ire_nce->nce_state != ND_REACHABLE) || 13766 (pkt_len > ire->ire_max_frag) || 13767 ipha->ipha_ttl <= 1) { 13768 ip_rput_process_forward(ill->ill_rq, mp, ire, 13769 ipha, ill, B_FALSE); 13770 return (ire); 13771 } 13772 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13773 13774 DTRACE_PROBE4(ip4__forwarding__start, 13775 ill_t *, ill, ill_t *, stq_ill, ipha_t *, ipha, mblk_t *, mp); 13776 13777 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 13778 ill, stq_ill, ipha, mp, mp); 13779 13780 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 13781 13782 if (mp == NULL) 13783 goto drop; 13784 13785 mp->b_datap->db_struioun.cksum.flags = 0; 13786 /* Adjust the checksum to reflect the ttl decrement. */ 13787 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 13788 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 13789 ipha->ipha_ttl--; 13790 13791 dev_q = ire->ire_stq->q_next; 13792 if ((dev_q->q_next != NULL || 13793 dev_q->q_first != NULL) && !canput(dev_q)) { 13794 goto indiscard; 13795 } 13796 13797 hlen = ire->ire_nce->nce_fp_mp != NULL ? 13798 MBLKL(ire->ire_nce->nce_fp_mp) : 0; 13799 13800 if (hlen != 0 || ire->ire_nce->nce_res_mp != NULL) { 13801 mblk_t *mpip = mp; 13802 13803 mp = ip_wput_attach_llhdr(mpip, ire, 0, 0); 13804 if (mp != NULL) { 13805 DTRACE_PROBE4(ip4__physical__out__start, 13806 ill_t *, NULL, ill_t *, stq_ill, 13807 ipha_t *, ipha, mblk_t *, mp); 13808 FW_HOOKS(ip4_physical_out_event, 13809 ipv4firewall_physical_out, 13810 NULL, stq_ill, ipha, mp, mpip); 13811 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, 13812 mp); 13813 if (mp == NULL) 13814 goto drop; 13815 13816 UPDATE_IB_PKT_COUNT(ire); 13817 ire->ire_last_used_time = lbolt; 13818 BUMP_MIB(stq_ill->ill_ip_mib, 13819 ipIfStatsHCOutForwDatagrams); 13820 BUMP_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 13821 UPDATE_MIB(stq_ill->ill_ip_mib, ipIfStatsHCOutOctets, 13822 pkt_len); 13823 putnext(ire->ire_stq, mp); 13824 return (ire); 13825 } 13826 } 13827 13828 indiscard: 13829 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13830 drop: 13831 if (mp != NULL) 13832 freemsg(mp); 13833 if (src_ire != NULL) 13834 ire_refrele(src_ire); 13835 return (ire); 13836 13837 } 13838 13839 /* 13840 * This function is called in the forwarding slowpath, when 13841 * either the ire lacks the link-layer address, or the packet needs 13842 * further processing(eg. fragmentation), before transmission. 13843 */ 13844 13845 static void 13846 ip_rput_process_forward(queue_t *q, mblk_t *mp, ire_t *ire, ipha_t *ipha, 13847 ill_t *ill, boolean_t ll_multicast) 13848 { 13849 ill_group_t *ill_group; 13850 ill_group_t *ire_group; 13851 queue_t *dev_q; 13852 ire_t *src_ire; 13853 13854 ASSERT(ire->ire_stq != NULL); 13855 13856 mp->b_prev = NULL; /* ip_rput_noire sets incoming interface here */ 13857 mp->b_next = NULL; /* ip_rput_noire sets dst here */ 13858 13859 if (ll_multicast != 0) { 13860 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 13861 goto drop_pkt; 13862 } 13863 13864 /* 13865 * check if ipha_src is a broadcast address. Note that this 13866 * check is redundant when we get here from ip_fast_forward() 13867 * which has already done this check. However, since we can 13868 * also get here from ip_rput_process_broadcast() or, for 13869 * for the slow path through ip_fast_forward(), we perform 13870 * the check again for code-reusability 13871 */ 13872 src_ire = ire_ctable_lookup(ipha->ipha_src, 0, IRE_BROADCAST, NULL, 13873 ALL_ZONES, NULL, MATCH_IRE_TYPE); 13874 if (src_ire != NULL || ntohl(ipha->ipha_dst) == INADDR_ANY || 13875 IN_BADCLASS(ntohl(ipha->ipha_dst))) { 13876 if (src_ire != NULL) 13877 ire_refrele(src_ire); 13878 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13879 ip2dbg(("ip_rput_process_forward: Received packet with" 13880 " bad src/dst address on %s\n", ill->ill_name)); 13881 goto drop_pkt; 13882 } 13883 13884 ill_group = ill->ill_group; 13885 ire_group = ((ill_t *)(ire->ire_rfq)->q_ptr)->ill_group; 13886 /* 13887 * Check if we want to forward this one at this time. 13888 * We allow source routed packets on a host provided that 13889 * they go out the same interface or same interface group 13890 * as they came in on. 13891 * 13892 * XXX To be quicker, we may wish to not chase pointers to 13893 * get the ILLF_ROUTER flag and instead store the 13894 * forwarding policy in the ire. An unfortunate 13895 * side-effect of that would be requiring an ire flush 13896 * whenever the ILLF_ROUTER flag changes. 13897 */ 13898 if (((ill->ill_flags & 13899 ((ill_t *)ire->ire_stq->q_ptr)->ill_flags & 13900 ILLF_ROUTER) == 0) && 13901 !(ip_source_routed(ipha) && (ire->ire_rfq == q || 13902 (ill_group != NULL && ill_group == ire_group)))) { 13903 BUMP_MIB(ill->ill_ip_mib, ipIfStatsForwProhibits); 13904 if (ip_source_routed(ipha)) { 13905 q = WR(q); 13906 /* 13907 * Clear the indication that this may have 13908 * hardware checksum as we are not using it. 13909 */ 13910 DB_CKSUMFLAGS(mp) = 0; 13911 /* Sent by forwarding path, and router is global zone */ 13912 icmp_unreachable(q, mp, 13913 ICMP_SOURCE_ROUTE_FAILED, GLOBAL_ZONEID); 13914 return; 13915 } 13916 goto drop_pkt; 13917 } 13918 13919 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInForwDatagrams); 13920 13921 /* Packet is being forwarded. Turning off hwcksum flag. */ 13922 DB_CKSUMFLAGS(mp) = 0; 13923 if (ip_g_send_redirects) { 13924 /* 13925 * Check whether the incoming interface and outgoing 13926 * interface is part of the same group. If so, 13927 * send redirects. 13928 * 13929 * Check the source address to see if it originated 13930 * on the same logical subnet it is going back out on. 13931 * If so, we should be able to send it a redirect. 13932 * Avoid sending a redirect if the destination 13933 * is directly connected (i.e., ipha_dst is the same 13934 * as ire_gateway_addr or the ire_addr of the 13935 * nexthop IRE_CACHE ), or if the packet was source 13936 * routed out this interface. 13937 */ 13938 ipaddr_t src, nhop; 13939 mblk_t *mp1; 13940 ire_t *nhop_ire = NULL; 13941 13942 /* 13943 * Check whether ire_rfq and q are from the same ill 13944 * or if they are not same, they at least belong 13945 * to the same group. If so, send redirects. 13946 */ 13947 if ((ire->ire_rfq == q || 13948 (ill_group != NULL && ill_group == ire_group)) && 13949 !ip_source_routed(ipha)) { 13950 13951 nhop = (ire->ire_gateway_addr != 0 ? 13952 ire->ire_gateway_addr : ire->ire_addr); 13953 13954 if (ipha->ipha_dst == nhop) { 13955 /* 13956 * We avoid sending a redirect if the 13957 * destination is directly connected 13958 * because it is possible that multiple 13959 * IP subnets may have been configured on 13960 * the link, and the source may not 13961 * be on the same subnet as ip destination, 13962 * even though they are on the same 13963 * physical link. 13964 */ 13965 goto sendit; 13966 } 13967 13968 src = ipha->ipha_src; 13969 13970 /* 13971 * We look up the interface ire for the nexthop, 13972 * to see if ipha_src is in the same subnet 13973 * as the nexthop. 13974 * 13975 * Note that, if, in the future, IRE_CACHE entries 13976 * are obsoleted, this lookup will not be needed, 13977 * as the ire passed to this function will be the 13978 * same as the nhop_ire computed below. 13979 */ 13980 nhop_ire = ire_ftable_lookup(nhop, 0, 0, 13981 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 13982 0, NULL, MATCH_IRE_TYPE); 13983 13984 if (nhop_ire != NULL) { 13985 if ((src & nhop_ire->ire_mask) == 13986 (nhop & nhop_ire->ire_mask)) { 13987 /* 13988 * The source is directly connected. 13989 * Just copy the ip header (which is 13990 * in the first mblk) 13991 */ 13992 mp1 = copyb(mp); 13993 if (mp1 != NULL) { 13994 icmp_send_redirect(WR(q), mp1, 13995 nhop); 13996 } 13997 } 13998 ire_refrele(nhop_ire); 13999 } 14000 } 14001 } 14002 sendit: 14003 dev_q = ire->ire_stq->q_next; 14004 if ((dev_q->q_next || dev_q->q_first) && !canput(dev_q)) { 14005 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14006 freemsg(mp); 14007 return; 14008 } 14009 14010 ip_rput_forward(ire, ipha, mp, ill); 14011 return; 14012 14013 drop_pkt: 14014 ip2dbg(("ip_rput_process_forward: drop pkt\n")); 14015 freemsg(mp); 14016 } 14017 14018 ire_t * 14019 ip_rput_process_broadcast(queue_t **qp, mblk_t *mp, ire_t *ire, ipha_t *ipha, 14020 ill_t *ill, ipaddr_t dst, int cgtp_flt_pkt, int ll_multicast) 14021 { 14022 queue_t *q; 14023 uint16_t hcksumflags; 14024 14025 q = *qp; 14026 14027 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInBcastPkts); 14028 14029 /* 14030 * Clear the indication that this may have hardware 14031 * checksum as we are not using it for forwarding. 14032 */ 14033 hcksumflags = DB_CKSUMFLAGS(mp); 14034 DB_CKSUMFLAGS(mp) = 0; 14035 14036 /* 14037 * Directed broadcast forwarding: if the packet came in over a 14038 * different interface then it is routed out over we can forward it. 14039 */ 14040 if (ipha->ipha_protocol == IPPROTO_TCP) { 14041 ire_refrele(ire); 14042 freemsg(mp); 14043 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14044 return (NULL); 14045 } 14046 /* 14047 * For multicast we have set dst to be INADDR_BROADCAST 14048 * for delivering to all STREAMS. IRE_MARK_NORECV is really 14049 * only for broadcast packets. 14050 */ 14051 if (!CLASSD(ipha->ipha_dst)) { 14052 ire_t *new_ire; 14053 ipif_t *ipif; 14054 /* 14055 * For ill groups, as the switch duplicates broadcasts 14056 * across all the ports, we need to filter out and 14057 * send up only one copy. There is one copy for every 14058 * broadcast address on each ill. Thus, we look for a 14059 * specific IRE on this ill and look at IRE_MARK_NORECV 14060 * later to see whether this ill is eligible to receive 14061 * them or not. ill_nominate_bcast_rcv() nominates only 14062 * one set of IREs for receiving. 14063 */ 14064 14065 ipif = ipif_get_next_ipif(NULL, ill); 14066 if (ipif == NULL) { 14067 ire_refrele(ire); 14068 freemsg(mp); 14069 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14070 return (NULL); 14071 } 14072 new_ire = ire_ctable_lookup(dst, 0, 0, 14073 ipif, ALL_ZONES, NULL, MATCH_IRE_ILL); 14074 ipif_refrele(ipif); 14075 14076 if (new_ire != NULL) { 14077 if (new_ire->ire_marks & IRE_MARK_NORECV) { 14078 ire_refrele(ire); 14079 ire_refrele(new_ire); 14080 freemsg(mp); 14081 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14082 return (NULL); 14083 } 14084 /* 14085 * In the special case of multirouted broadcast 14086 * packets, we unconditionally need to "gateway" 14087 * them to the appropriate interface here. 14088 * In the normal case, this cannot happen, because 14089 * there is no broadcast IRE tagged with the 14090 * RTF_MULTIRT flag. 14091 */ 14092 if (new_ire->ire_flags & RTF_MULTIRT) { 14093 ire_refrele(new_ire); 14094 if (ire->ire_rfq != NULL) { 14095 q = ire->ire_rfq; 14096 *qp = q; 14097 } 14098 } else { 14099 ire_refrele(ire); 14100 ire = new_ire; 14101 } 14102 } else if (cgtp_flt_pkt == CGTP_IP_PKT_NOT_CGTP) { 14103 if (!ip_g_forward_directed_bcast) { 14104 /* 14105 * Free the message if 14106 * ip_g_forward_directed_bcast is turned 14107 * off for non-local broadcast. 14108 */ 14109 ire_refrele(ire); 14110 freemsg(mp); 14111 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14112 return (NULL); 14113 } 14114 } else { 14115 /* 14116 * This CGTP packet successfully passed the 14117 * CGTP filter, but the related CGTP 14118 * broadcast IRE has not been found, 14119 * meaning that the redundant ipif is 14120 * probably down. However, if we discarded 14121 * this packet, its duplicate would be 14122 * filtered out by the CGTP filter so none 14123 * of them would get through. So we keep 14124 * going with this one. 14125 */ 14126 ASSERT(cgtp_flt_pkt == CGTP_IP_PKT_PREMIUM); 14127 if (ire->ire_rfq != NULL) { 14128 q = ire->ire_rfq; 14129 *qp = q; 14130 } 14131 } 14132 } 14133 if (ip_g_forward_directed_bcast && ll_multicast == 0) { 14134 /* 14135 * Verify that there are not more then one 14136 * IRE_BROADCAST with this broadcast address which 14137 * has ire_stq set. 14138 * TODO: simplify, loop over all IRE's 14139 */ 14140 ire_t *ire1; 14141 int num_stq = 0; 14142 mblk_t *mp1; 14143 14144 /* Find the first one with ire_stq set */ 14145 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 14146 for (ire1 = ire; ire1 && 14147 !ire1->ire_stq && ire1->ire_addr == ire->ire_addr; 14148 ire1 = ire1->ire_next) 14149 ; 14150 if (ire1) { 14151 ire_refrele(ire); 14152 ire = ire1; 14153 IRE_REFHOLD(ire); 14154 } 14155 14156 /* Check if there are additional ones with stq set */ 14157 for (ire1 = ire; ire1; ire1 = ire1->ire_next) { 14158 if (ire->ire_addr != ire1->ire_addr) 14159 break; 14160 if (ire1->ire_stq) { 14161 num_stq++; 14162 break; 14163 } 14164 } 14165 rw_exit(&ire->ire_bucket->irb_lock); 14166 if (num_stq == 1 && ire->ire_stq != NULL) { 14167 ip1dbg(("ip_rput_process_broadcast: directed " 14168 "broadcast to 0x%x\n", 14169 ntohl(ire->ire_addr))); 14170 mp1 = copymsg(mp); 14171 if (mp1) { 14172 switch (ipha->ipha_protocol) { 14173 case IPPROTO_UDP: 14174 ip_udp_input(q, mp1, ipha, ire, ill); 14175 break; 14176 default: 14177 ip_proto_input(q, mp1, ipha, ire, ill); 14178 break; 14179 } 14180 } 14181 /* 14182 * Adjust ttl to 2 (1+1 - the forward engine 14183 * will decrement it by one. 14184 */ 14185 if (ip_csum_hdr(ipha)) { 14186 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 14187 ip2dbg(("ip_rput_broadcast:drop pkt\n")); 14188 freemsg(mp); 14189 ire_refrele(ire); 14190 return (NULL); 14191 } 14192 ipha->ipha_ttl = ip_broadcast_ttl + 1; 14193 ipha->ipha_hdr_checksum = 0; 14194 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 14195 ip_rput_process_forward(q, mp, ire, ipha, 14196 ill, ll_multicast); 14197 ire_refrele(ire); 14198 return (NULL); 14199 } 14200 ip1dbg(("ip_rput: NO directed broadcast to 0x%x\n", 14201 ntohl(ire->ire_addr))); 14202 } 14203 14204 14205 /* Restore any hardware checksum flags */ 14206 DB_CKSUMFLAGS(mp) = hcksumflags; 14207 return (ire); 14208 } 14209 14210 /* ARGSUSED */ 14211 static boolean_t 14212 ip_rput_process_multicast(queue_t *q, mblk_t *mp, ill_t *ill, ipha_t *ipha, 14213 int *ll_multicast, ipaddr_t *dstp) 14214 { 14215 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastPkts); 14216 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInMcastOctets, 14217 ntohs(ipha->ipha_length)); 14218 14219 /* 14220 * Forward packets only if we have joined the allmulti 14221 * group on this interface. 14222 */ 14223 if (ip_g_mrouter && ill->ill_join_allmulti) { 14224 int retval; 14225 14226 /* 14227 * Clear the indication that this may have hardware 14228 * checksum as we are not using it. 14229 */ 14230 DB_CKSUMFLAGS(mp) = 0; 14231 retval = ip_mforward(ill, ipha, mp); 14232 /* ip_mforward updates mib variables if needed */ 14233 /* clear b_prev - used by ip_mroute_decap */ 14234 mp->b_prev = NULL; 14235 14236 switch (retval) { 14237 case 0: 14238 /* 14239 * pkt is okay and arrived on phyint. 14240 * 14241 * If we are running as a multicast router 14242 * we need to see all IGMP and/or PIM packets. 14243 */ 14244 if ((ipha->ipha_protocol == IPPROTO_IGMP) || 14245 (ipha->ipha_protocol == IPPROTO_PIM)) { 14246 goto done; 14247 } 14248 break; 14249 case -1: 14250 /* pkt is mal-formed, toss it */ 14251 goto drop_pkt; 14252 case 1: 14253 /* pkt is okay and arrived on a tunnel */ 14254 /* 14255 * If we are running a multicast router 14256 * we need to see all igmp packets. 14257 */ 14258 if (ipha->ipha_protocol == IPPROTO_IGMP) { 14259 *dstp = INADDR_BROADCAST; 14260 *ll_multicast = 1; 14261 return (B_FALSE); 14262 } 14263 14264 goto drop_pkt; 14265 } 14266 } 14267 14268 ILM_WALKER_HOLD(ill); 14269 if (ilm_lookup_ill(ill, *dstp, ALL_ZONES) == NULL) { 14270 /* 14271 * This might just be caused by the fact that 14272 * multiple IP Multicast addresses map to the same 14273 * link layer multicast - no need to increment counter! 14274 */ 14275 ILM_WALKER_RELE(ill); 14276 freemsg(mp); 14277 return (B_TRUE); 14278 } 14279 ILM_WALKER_RELE(ill); 14280 done: 14281 ip2dbg(("ip_rput: multicast for us: 0x%x\n", ntohl(*dstp))); 14282 /* 14283 * This assumes the we deliver to all streams for multicast 14284 * and broadcast packets. 14285 */ 14286 *dstp = INADDR_BROADCAST; 14287 *ll_multicast = 1; 14288 return (B_FALSE); 14289 drop_pkt: 14290 ip2dbg(("ip_rput: drop pkt\n")); 14291 freemsg(mp); 14292 return (B_TRUE); 14293 } 14294 14295 static boolean_t 14296 ip_rput_process_notdata(queue_t *q, mblk_t **first_mpp, ill_t *ill, 14297 int *ll_multicast, mblk_t **mpp) 14298 { 14299 mblk_t *mp1, *from_mp, *to_mp, *mp, *first_mp; 14300 boolean_t must_copy = B_FALSE; 14301 struct iocblk *iocp; 14302 ipha_t *ipha; 14303 14304 #define rptr ((uchar_t *)ipha) 14305 14306 first_mp = *first_mpp; 14307 mp = *mpp; 14308 14309 ASSERT(first_mp == mp); 14310 14311 /* 14312 * if db_ref > 1 then copymsg and free original. Packet may be 14313 * changed and do not want other entity who has a reference to this 14314 * message to trip over the changes. This is a blind change because 14315 * trying to catch all places that might change packet is too 14316 * difficult (since it may be a module above this one) 14317 * 14318 * This corresponds to the non-fast path case. We walk down the full 14319 * chain in this case, and check the db_ref count of all the dblks, 14320 * and do a copymsg if required. It is possible that the db_ref counts 14321 * of the data blocks in the mblk chain can be different. 14322 * For Example, we can get a DL_UNITDATA_IND(M_PROTO) with a db_ref 14323 * count of 1, followed by a M_DATA block with a ref count of 2, if 14324 * 'snoop' is running. 14325 */ 14326 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 14327 if (mp1->b_datap->db_ref > 1) { 14328 must_copy = B_TRUE; 14329 break; 14330 } 14331 } 14332 14333 if (must_copy) { 14334 mp1 = copymsg(mp); 14335 if (mp1 == NULL) { 14336 for (mp1 = mp; mp1 != NULL; 14337 mp1 = mp1->b_cont) { 14338 mp1->b_next = NULL; 14339 mp1->b_prev = NULL; 14340 } 14341 freemsg(mp); 14342 if (ill != NULL) { 14343 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14344 } else { 14345 BUMP_MIB(&ip_mib, ipIfStatsInDiscards); 14346 } 14347 return (B_TRUE); 14348 } 14349 for (from_mp = mp, to_mp = mp1; from_mp != NULL; 14350 from_mp = from_mp->b_cont, to_mp = to_mp->b_cont) { 14351 /* Copy b_prev - used by ip_mroute_decap */ 14352 to_mp->b_prev = from_mp->b_prev; 14353 from_mp->b_prev = NULL; 14354 } 14355 *first_mpp = first_mp = mp1; 14356 freemsg(mp); 14357 mp = mp1; 14358 *mpp = mp1; 14359 } 14360 14361 ipha = (ipha_t *)mp->b_rptr; 14362 14363 /* 14364 * previous code has a case for M_DATA. 14365 * We want to check how that happens. 14366 */ 14367 ASSERT(first_mp->b_datap->db_type != M_DATA); 14368 switch (first_mp->b_datap->db_type) { 14369 case M_PROTO: 14370 case M_PCPROTO: 14371 if (((dl_unitdata_ind_t *)rptr)->dl_primitive != 14372 DL_UNITDATA_IND) { 14373 /* Go handle anything other than data elsewhere. */ 14374 ip_rput_dlpi(q, mp); 14375 return (B_TRUE); 14376 } 14377 *ll_multicast = ((dl_unitdata_ind_t *)rptr)->dl_group_address; 14378 /* Ditch the DLPI header. */ 14379 mp1 = mp->b_cont; 14380 ASSERT(first_mp == mp); 14381 *first_mpp = mp1; 14382 freeb(mp); 14383 *mpp = mp1; 14384 return (B_FALSE); 14385 case M_IOCACK: 14386 ip1dbg(("got iocack ")); 14387 iocp = (struct iocblk *)mp->b_rptr; 14388 switch (iocp->ioc_cmd) { 14389 case DL_IOC_HDR_INFO: 14390 ill = (ill_t *)q->q_ptr; 14391 ill_fastpath_ack(ill, mp); 14392 return (B_TRUE); 14393 case SIOCSTUNPARAM: 14394 case OSIOCSTUNPARAM: 14395 /* Go through qwriter_ip */ 14396 break; 14397 case SIOCGTUNPARAM: 14398 case OSIOCGTUNPARAM: 14399 ip_rput_other(NULL, q, mp, NULL); 14400 return (B_TRUE); 14401 default: 14402 putnext(q, mp); 14403 return (B_TRUE); 14404 } 14405 /* FALLTHRU */ 14406 case M_ERROR: 14407 case M_HANGUP: 14408 /* 14409 * Since this is on the ill stream we unconditionally 14410 * bump up the refcount 14411 */ 14412 ill_refhold(ill); 14413 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, CUR_OP, 14414 B_FALSE); 14415 return (B_TRUE); 14416 case M_CTL: 14417 if ((MBLKL(first_mp) >= sizeof (da_ipsec_t)) && 14418 (((da_ipsec_t *)first_mp->b_rptr)->da_type == 14419 IPHADA_M_CTL)) { 14420 /* 14421 * It's an IPsec accelerated packet. 14422 * Make sure that the ill from which we received the 14423 * packet has enabled IPsec hardware acceleration. 14424 */ 14425 if (!(ill->ill_capabilities & 14426 (ILL_CAPAB_AH|ILL_CAPAB_ESP))) { 14427 /* IPsec kstats: bean counter */ 14428 freemsg(mp); 14429 return (B_TRUE); 14430 } 14431 14432 /* 14433 * Make mp point to the mblk following the M_CTL, 14434 * then process according to type of mp. 14435 * After this processing, first_mp will point to 14436 * the data-attributes and mp to the pkt following 14437 * the M_CTL. 14438 */ 14439 mp = first_mp->b_cont; 14440 if (mp == NULL) { 14441 freemsg(first_mp); 14442 return (B_TRUE); 14443 } 14444 /* 14445 * A Hardware Accelerated packet can only be M_DATA 14446 * ESP or AH packet. 14447 */ 14448 if (mp->b_datap->db_type != M_DATA) { 14449 /* non-M_DATA IPsec accelerated packet */ 14450 IPSECHW_DEBUG(IPSECHW_PKT, 14451 ("non-M_DATA IPsec accelerated pkt\n")); 14452 freemsg(first_mp); 14453 return (B_TRUE); 14454 } 14455 ipha = (ipha_t *)mp->b_rptr; 14456 if (ipha->ipha_protocol != IPPROTO_AH && 14457 ipha->ipha_protocol != IPPROTO_ESP) { 14458 IPSECHW_DEBUG(IPSECHW_PKT, 14459 ("non-M_DATA IPsec accelerated pkt\n")); 14460 freemsg(first_mp); 14461 return (B_TRUE); 14462 } 14463 *mpp = mp; 14464 return (B_FALSE); 14465 } 14466 putnext(q, mp); 14467 return (B_TRUE); 14468 case M_FLUSH: 14469 if (*mp->b_rptr & FLUSHW) { 14470 *mp->b_rptr &= ~FLUSHR; 14471 qreply(q, mp); 14472 return (B_TRUE); 14473 } 14474 freemsg(mp); 14475 return (B_TRUE); 14476 case M_IOCNAK: 14477 ip1dbg(("got iocnak ")); 14478 iocp = (struct iocblk *)mp->b_rptr; 14479 switch (iocp->ioc_cmd) { 14480 case DL_IOC_HDR_INFO: 14481 case SIOCSTUNPARAM: 14482 case OSIOCSTUNPARAM: 14483 /* 14484 * Since this is on the ill stream we unconditionally 14485 * bump up the refcount 14486 */ 14487 ill_refhold(ill); 14488 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_other, 14489 CUR_OP, B_FALSE); 14490 return (B_TRUE); 14491 case SIOCGTUNPARAM: 14492 case OSIOCGTUNPARAM: 14493 ip_rput_other(NULL, q, mp, NULL); 14494 return (B_TRUE); 14495 default: 14496 break; 14497 } 14498 /* FALLTHRU */ 14499 default: 14500 putnext(q, mp); 14501 return (B_TRUE); 14502 } 14503 } 14504 14505 /* Read side put procedure. Packets coming from the wire arrive here. */ 14506 void 14507 ip_rput(queue_t *q, mblk_t *mp) 14508 { 14509 ill_t *ill; 14510 mblk_t *dmp = NULL; 14511 14512 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_rput_start: q %p", q); 14513 14514 ill = (ill_t *)q->q_ptr; 14515 14516 if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) { 14517 union DL_primitives *dl; 14518 14519 /* 14520 * Things are opening or closing. Only accept DLPI control 14521 * messages. In the open case, the ill->ill_ipif has not yet 14522 * been created. In the close case, things hanging off the 14523 * ill could have been freed already. In either case it 14524 * may not be safe to proceed further. 14525 */ 14526 14527 dl = (union DL_primitives *)mp->b_rptr; 14528 if ((mp->b_datap->db_type != M_PCPROTO) || 14529 (dl->dl_primitive == DL_UNITDATA_IND)) { 14530 /* 14531 * Also SIOC[GS]TUN* ioctls can come here. 14532 */ 14533 inet_freemsg(mp); 14534 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14535 "ip_input_end: q %p (%S)", q, "uninit"); 14536 return; 14537 } 14538 } 14539 14540 /* 14541 * if db_ref > 1 then copymsg and free original. Packet may be 14542 * changed and we do not want the other entity who has a reference to 14543 * this message to trip over the changes. This is a blind change because 14544 * trying to catch all places that might change the packet is too 14545 * difficult. 14546 * 14547 * This corresponds to the fast path case, where we have a chain of 14548 * M_DATA mblks. We check the db_ref count of only the 1st data block 14549 * in the mblk chain. There doesn't seem to be a reason why a device 14550 * driver would send up data with varying db_ref counts in the mblk 14551 * chain. In any case the Fast path is a private interface, and our 14552 * drivers don't do such a thing. Given the above assumption, there is 14553 * no need to walk down the entire mblk chain (which could have a 14554 * potential performance problem) 14555 */ 14556 if (mp->b_datap->db_ref > 1) { 14557 mblk_t *mp1; 14558 boolean_t adjusted = B_FALSE; 14559 IP_STAT(ip_db_ref); 14560 14561 /* 14562 * The IP_RECVSLLA option depends on having the link layer 14563 * header. First check that: 14564 * a> the underlying device is of type ether, since this 14565 * option is currently supported only over ethernet. 14566 * b> there is enough room to copy over the link layer header. 14567 * 14568 * Once the checks are done, adjust rptr so that the link layer 14569 * header will be copied via copymsg. Note that, IFT_ETHER may 14570 * be returned by some non-ethernet drivers but in this case the 14571 * second check will fail. 14572 */ 14573 if (ill->ill_type == IFT_ETHER && 14574 (mp->b_rptr - mp->b_datap->db_base) >= 14575 sizeof (struct ether_header)) { 14576 mp->b_rptr -= sizeof (struct ether_header); 14577 adjusted = B_TRUE; 14578 } 14579 mp1 = copymsg(mp); 14580 if (mp1 == NULL) { 14581 mp->b_next = NULL; 14582 /* clear b_prev - used by ip_mroute_decap */ 14583 mp->b_prev = NULL; 14584 freemsg(mp); 14585 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14586 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14587 "ip_rput_end: q %p (%S)", q, "copymsg"); 14588 return; 14589 } 14590 if (adjusted) { 14591 /* 14592 * Copy is done. Restore the pointer in the _new_ mblk 14593 */ 14594 mp1->b_rptr += sizeof (struct ether_header); 14595 } 14596 /* Copy b_prev - used by ip_mroute_decap */ 14597 mp1->b_prev = mp->b_prev; 14598 mp->b_prev = NULL; 14599 freemsg(mp); 14600 mp = mp1; 14601 } 14602 if (DB_TYPE(mp) == M_DATA) { 14603 dmp = mp; 14604 } else if (DB_TYPE(mp) == M_PROTO && 14605 *(t_uscalar_t *)mp->b_rptr == DL_UNITDATA_IND) { 14606 dmp = mp->b_cont; 14607 } 14608 if (dmp != NULL) { 14609 /* 14610 * IP header ptr not aligned? 14611 * OR IP header not complete in first mblk 14612 */ 14613 if (!OK_32PTR(dmp->b_rptr) || 14614 (dmp->b_wptr - dmp->b_rptr) < IP_SIMPLE_HDR_LENGTH) { 14615 if (!ip_check_and_align_header(q, dmp)) 14616 return; 14617 } 14618 } 14619 14620 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14621 "ip_rput_end: q %p (%S)", q, "end"); 14622 14623 ip_input(ill, NULL, mp, NULL); 14624 } 14625 14626 /* 14627 * Direct read side procedure capable of dealing with chains. GLDv3 based 14628 * drivers call this function directly with mblk chains while STREAMS 14629 * read side procedure ip_rput() calls this for single packet with ip_ring 14630 * set to NULL to process one packet at a time. 14631 * 14632 * The ill will always be valid if this function is called directly from 14633 * the driver. 14634 * 14635 * If ip_input() is called from GLDv3: 14636 * 14637 * - This must be a non-VLAN IP stream. 14638 * - 'mp' is either an untagged or a special priority-tagged packet. 14639 * - Any VLAN tag that was in the MAC header has been stripped. 14640 * 14641 * Thus, there is no need to adjust b_rptr in this function. 14642 */ 14643 /* ARGSUSED */ 14644 void 14645 ip_input(ill_t *ill, ill_rx_ring_t *ip_ring, mblk_t *mp_chain, 14646 struct mac_header_info_s *mhip) 14647 { 14648 ipaddr_t dst = NULL; 14649 ipaddr_t prev_dst; 14650 ire_t *ire = NULL; 14651 ipha_t *ipha; 14652 uint_t pkt_len; 14653 ssize_t len; 14654 uint_t opt_len; 14655 int ll_multicast; 14656 int cgtp_flt_pkt; 14657 queue_t *q = ill->ill_rq; 14658 squeue_t *curr_sqp = NULL; 14659 mblk_t *head = NULL; 14660 mblk_t *tail = NULL; 14661 mblk_t *first_mp; 14662 mblk_t *mp; 14663 int cnt = 0; 14664 14665 ASSERT(mp_chain != NULL); 14666 ASSERT(ill != NULL); 14667 14668 TRACE_1(TR_FAC_IP, TR_IP_RPUT_START, "ip_input_start: q %p", q); 14669 14670 #define rptr ((uchar_t *)ipha) 14671 14672 while (mp_chain != NULL) { 14673 first_mp = mp = mp_chain; 14674 mp_chain = mp_chain->b_next; 14675 mp->b_next = NULL; 14676 ll_multicast = 0; 14677 14678 /* 14679 * We do ire caching from one iteration to 14680 * another. In the event the packet chain contains 14681 * all packets from the same dst, this caching saves 14682 * an ire_cache_lookup for each of the succeeding 14683 * packets in a packet chain. 14684 */ 14685 prev_dst = dst; 14686 14687 /* 14688 * ip_input fast path 14689 */ 14690 14691 /* mblk type is not M_DATA */ 14692 if (mp->b_datap->db_type != M_DATA) { 14693 if (ip_rput_process_notdata(q, &first_mp, ill, 14694 &ll_multicast, &mp)) 14695 continue; 14696 } 14697 14698 /* Make sure its an M_DATA and that its aligned */ 14699 ASSERT(mp->b_datap->db_type == M_DATA); 14700 ASSERT(mp->b_datap->db_ref == 1 && OK_32PTR(mp->b_rptr)); 14701 14702 ipha = (ipha_t *)mp->b_rptr; 14703 len = mp->b_wptr - rptr; 14704 pkt_len = ntohs(ipha->ipha_length); 14705 14706 /* 14707 * We must count all incoming packets, even if they end 14708 * up being dropped later on. 14709 */ 14710 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInReceives); 14711 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCInOctets, pkt_len); 14712 14713 /* multiple mblk or too short */ 14714 len -= pkt_len; 14715 if (len != 0) { 14716 /* 14717 * Make sure we have data length consistent 14718 * with the IP header. 14719 */ 14720 if (mp->b_cont == NULL) { 14721 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14722 BUMP_MIB(ill->ill_ip_mib, 14723 ipIfStatsInHdrErrors); 14724 ip2dbg(("ip_input: drop pkt\n")); 14725 freemsg(mp); 14726 continue; 14727 } 14728 mp->b_wptr = rptr + pkt_len; 14729 } else if ((len += msgdsize(mp->b_cont)) != 0) { 14730 if (len < 0 || pkt_len < IP_SIMPLE_HDR_LENGTH) { 14731 BUMP_MIB(ill->ill_ip_mib, 14732 ipIfStatsInHdrErrors); 14733 ip2dbg(("ip_input: drop pkt\n")); 14734 freemsg(mp); 14735 continue; 14736 } 14737 (void) adjmsg(mp, -len); 14738 IP_STAT(ip_multimblk3); 14739 } 14740 } 14741 14742 /* Obtain the dst of the current packet */ 14743 dst = ipha->ipha_dst; 14744 14745 if (IP_LOOPBACK_ADDR(dst) || 14746 IP_LOOPBACK_ADDR(ipha->ipha_src)) { 14747 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInAddrErrors); 14748 cmn_err(CE_CONT, "dst %X src %X\n", 14749 dst, ipha->ipha_src); 14750 freemsg(mp); 14751 continue; 14752 } 14753 14754 /* 14755 * The event for packets being received from a 'physical' 14756 * interface is placed after validation of the source and/or 14757 * destination address as being local so that packets can be 14758 * redirected to loopback addresses using ipnat. 14759 */ 14760 DTRACE_PROBE4(ip4__physical__in__start, 14761 ill_t *, ill, ill_t *, NULL, 14762 ipha_t *, ipha, mblk_t *, first_mp); 14763 14764 FW_HOOKS(ip4_physical_in_event, ipv4firewall_physical_in, 14765 ill, NULL, ipha, first_mp, mp); 14766 14767 DTRACE_PROBE1(ip4__physical__in__end, mblk_t *, first_mp); 14768 14769 if (first_mp == NULL) { 14770 continue; 14771 } 14772 dst = ipha->ipha_dst; 14773 14774 /* 14775 * Attach any necessary label information to 14776 * this packet 14777 */ 14778 if (is_system_labeled() && 14779 !tsol_get_pkt_label(mp, IPV4_VERSION)) { 14780 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 14781 freemsg(mp); 14782 continue; 14783 } 14784 14785 /* 14786 * Reuse the cached ire only if the ipha_dst of the previous 14787 * packet is the same as the current packet AND it is not 14788 * INADDR_ANY. 14789 */ 14790 if (!(dst == prev_dst && dst != INADDR_ANY) && 14791 (ire != NULL)) { 14792 ire_refrele(ire); 14793 ire = NULL; 14794 } 14795 opt_len = ipha->ipha_version_and_hdr_length - 14796 IP_SIMPLE_HDR_VERSION; 14797 14798 /* 14799 * Check to see if we can take the fastpath. 14800 * That is possible if the following conditions are met 14801 * o Tsol disabled 14802 * o CGTP disabled 14803 * o ipp_action_count is 0 14804 * o Mobile IP not running 14805 * o no options in the packet 14806 * o not a RSVP packet 14807 * o not a multicast packet 14808 */ 14809 if (!is_system_labeled() && 14810 !ip_cgtp_filter && ipp_action_count == 0 && 14811 ill->ill_mrtun_refcnt == 0 && ill->ill_srcif_refcnt == 0 && 14812 opt_len == 0 && ipha->ipha_protocol != IPPROTO_RSVP && 14813 !ll_multicast && !CLASSD(dst)) { 14814 if (ire == NULL) 14815 ire = ire_cache_lookup(dst, ALL_ZONES, NULL); 14816 14817 /* incoming packet is for forwarding */ 14818 if (ire == NULL || (ire->ire_type & IRE_CACHE)) { 14819 ire = ip_fast_forward(ire, dst, ill, mp); 14820 continue; 14821 } 14822 /* incoming packet is for local consumption */ 14823 if (ire->ire_type & IRE_LOCAL) 14824 goto local; 14825 } 14826 14827 /* 14828 * Disable ire caching for anything more complex 14829 * than the simple fast path case we checked for above. 14830 */ 14831 if (ire != NULL) { 14832 ire_refrele(ire); 14833 ire = NULL; 14834 } 14835 14836 /* Full-blown slow path */ 14837 if (opt_len != 0) { 14838 if (len != 0) 14839 IP_STAT(ip_multimblk4); 14840 else 14841 IP_STAT(ip_ipoptions); 14842 if (!ip_rput_multimblk_ipoptions(q, ill, mp, &ipha, 14843 &dst)) 14844 continue; 14845 } 14846 14847 /* 14848 * Invoke the CGTP (multirouting) filtering module to process 14849 * the incoming packet. Packets identified as duplicates 14850 * must be discarded. Filtering is active only if the 14851 * the ip_cgtp_filter ndd variable is non-zero. 14852 */ 14853 cgtp_flt_pkt = CGTP_IP_PKT_NOT_CGTP; 14854 if (ip_cgtp_filter && (ip_cgtp_filter_ops != NULL)) { 14855 cgtp_flt_pkt = 14856 ip_cgtp_filter_ops->cfo_filter(q, mp); 14857 if (cgtp_flt_pkt == CGTP_IP_PKT_DUPLICATE) { 14858 freemsg(first_mp); 14859 continue; 14860 } 14861 } 14862 14863 /* 14864 * If rsvpd is running, let RSVP daemon handle its processing 14865 * and forwarding of RSVP multicast/unicast packets. 14866 * If rsvpd is not running but mrouted is running, RSVP 14867 * multicast packets are forwarded as multicast traffic 14868 * and RSVP unicast packets are forwarded by unicast router. 14869 * If neither rsvpd nor mrouted is running, RSVP multicast 14870 * packets are not forwarded, but the unicast packets are 14871 * forwarded like unicast traffic. 14872 */ 14873 if (ipha->ipha_protocol == IPPROTO_RSVP && 14874 ipcl_proto_search(IPPROTO_RSVP) != NULL) { 14875 /* RSVP packet and rsvpd running. Treat as ours */ 14876 ip2dbg(("ip_input: RSVP for us: 0x%x\n", ntohl(dst))); 14877 /* 14878 * This assumes that we deliver to all streams for 14879 * multicast and broadcast packets. 14880 * We have to force ll_multicast to 1 to handle the 14881 * M_DATA messages passed in from ip_mroute_decap. 14882 */ 14883 dst = INADDR_BROADCAST; 14884 ll_multicast = 1; 14885 } else if (CLASSD(dst)) { 14886 /* packet is multicast */ 14887 mp->b_next = NULL; 14888 if (ip_rput_process_multicast(q, mp, ill, ipha, 14889 &ll_multicast, &dst)) 14890 continue; 14891 } 14892 14893 14894 /* 14895 * Check if the packet is coming from the Mobile IP 14896 * forward tunnel interface 14897 */ 14898 if (ill->ill_srcif_refcnt > 0) { 14899 ire = ire_srcif_table_lookup(dst, IRE_INTERFACE, 14900 NULL, ill, MATCH_IRE_TYPE); 14901 if (ire != NULL && ire->ire_nce->nce_res_mp == NULL && 14902 ire->ire_ipif->ipif_net_type == IRE_IF_RESOLVER) { 14903 14904 /* We need to resolve the link layer info */ 14905 ire_refrele(ire); 14906 ire = NULL; 14907 (void) ip_rput_noire(q, (ill_t *)q->q_ptr, mp, 14908 ll_multicast, dst); 14909 continue; 14910 } 14911 } 14912 14913 if (ire == NULL) { 14914 ire = ire_cache_lookup(dst, ALL_ZONES, 14915 MBLK_GETLABEL(mp)); 14916 } 14917 14918 /* 14919 * If mipagent is running and reverse tunnel is created as per 14920 * mobile node request, then any packet coming through the 14921 * incoming interface from the mobile-node, should be reverse 14922 * tunneled to it's home agent except those that are destined 14923 * to foreign agent only. 14924 * This needs source address based ire lookup. The routing 14925 * entries for source address based lookup are only created by 14926 * mipagent program only when a reverse tunnel is created. 14927 * Reference : RFC2002, RFC2344 14928 */ 14929 if (ill->ill_mrtun_refcnt > 0) { 14930 ipaddr_t srcaddr; 14931 ire_t *tmp_ire; 14932 14933 tmp_ire = ire; /* Save, we might need it later */ 14934 if (ire == NULL || (ire->ire_type != IRE_LOCAL && 14935 ire->ire_type != IRE_BROADCAST)) { 14936 srcaddr = ipha->ipha_src; 14937 ire = ire_mrtun_lookup(srcaddr, ill); 14938 if (ire != NULL) { 14939 /* 14940 * Should not be getting iphada packet 14941 * here. we should only get those for 14942 * IRE_LOCAL traffic, excluded above. 14943 * Fail-safe (drop packet) in the event 14944 * hardware is misbehaving. 14945 */ 14946 if (first_mp != mp) { 14947 /* IPsec KSTATS: beancount me */ 14948 freemsg(first_mp); 14949 } else { 14950 /* 14951 * This packet must be forwarded 14952 * to Reverse Tunnel 14953 */ 14954 ip_mrtun_forward(ire, ill, mp); 14955 } 14956 ire_refrele(ire); 14957 ire = NULL; 14958 if (tmp_ire != NULL) { 14959 ire_refrele(tmp_ire); 14960 tmp_ire = NULL; 14961 } 14962 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 14963 "ip_input_end: q %p (%S)", 14964 q, "uninit"); 14965 continue; 14966 } 14967 } 14968 /* 14969 * If this packet is from a non-mobilenode or a 14970 * mobile-node which does not request reverse 14971 * tunnel service 14972 */ 14973 ire = tmp_ire; 14974 } 14975 14976 14977 /* 14978 * If we reach here that means the incoming packet satisfies 14979 * one of the following conditions: 14980 * - packet is from a mobile node which does not request 14981 * reverse tunnel 14982 * - packet is from a non-mobile node, which is the most 14983 * common case 14984 * - packet is from a reverse tunnel enabled mobile node 14985 * and destined to foreign agent only 14986 */ 14987 14988 if (ire == NULL) { 14989 /* 14990 * No IRE for this destination, so it can't be for us. 14991 * Unless we are forwarding, drop the packet. 14992 * We have to let source routed packets through 14993 * since we don't yet know if they are 'ping -l' 14994 * packets i.e. if they will go out over the 14995 * same interface as they came in on. 14996 */ 14997 ire = ip_rput_noire(q, NULL, mp, ll_multicast, dst); 14998 if (ire == NULL) 14999 continue; 15000 } 15001 15002 /* 15003 * Broadcast IRE may indicate either broadcast or 15004 * multicast packet 15005 */ 15006 if (ire->ire_type == IRE_BROADCAST) { 15007 /* 15008 * Skip broadcast checks if packet is UDP multicast; 15009 * we'd rather not enter ip_rput_process_broadcast() 15010 * unless the packet is broadcast for real, since 15011 * that routine is a no-op for multicast. 15012 */ 15013 if (ipha->ipha_protocol != IPPROTO_UDP || 15014 !CLASSD(ipha->ipha_dst)) { 15015 ire = ip_rput_process_broadcast(&q, mp, 15016 ire, ipha, ill, dst, cgtp_flt_pkt, 15017 ll_multicast); 15018 if (ire == NULL) 15019 continue; 15020 } 15021 } else if (ire->ire_stq != NULL) { 15022 /* fowarding? */ 15023 ip_rput_process_forward(q, mp, ire, ipha, ill, 15024 ll_multicast); 15025 /* ip_rput_process_forward consumed the packet */ 15026 continue; 15027 } 15028 15029 local: 15030 /* packet not for us */ 15031 if (ire->ire_rfq != q) { 15032 if (ip_rput_notforus(&q, mp, ire, ill)) 15033 continue; 15034 } 15035 15036 switch (ipha->ipha_protocol) { 15037 case IPPROTO_TCP: 15038 ASSERT(first_mp == mp); 15039 if ((mp = ip_tcp_input(mp, ipha, ill, B_FALSE, ire, 15040 mp, 0, q, ip_ring)) != NULL) { 15041 if (curr_sqp == NULL) { 15042 curr_sqp = GET_SQUEUE(mp); 15043 ASSERT(cnt == 0); 15044 cnt++; 15045 head = tail = mp; 15046 } else if (curr_sqp == GET_SQUEUE(mp)) { 15047 ASSERT(tail != NULL); 15048 cnt++; 15049 tail->b_next = mp; 15050 tail = mp; 15051 } else { 15052 /* 15053 * A different squeue. Send the 15054 * chain for the previous squeue on 15055 * its way. This shouldn't happen 15056 * often unless interrupt binding 15057 * changes. 15058 */ 15059 IP_STAT(ip_input_multi_squeue); 15060 squeue_enter_chain(curr_sqp, head, 15061 tail, cnt, SQTAG_IP_INPUT); 15062 curr_sqp = GET_SQUEUE(mp); 15063 head = mp; 15064 tail = mp; 15065 cnt = 1; 15066 } 15067 } 15068 continue; 15069 case IPPROTO_UDP: 15070 ASSERT(first_mp == mp); 15071 ip_udp_input(q, mp, ipha, ire, ill); 15072 continue; 15073 case IPPROTO_SCTP: 15074 ASSERT(first_mp == mp); 15075 ip_sctp_input(mp, ipha, ill, B_FALSE, ire, mp, 0, 15076 q, dst); 15077 /* ire has been released by ip_sctp_input */ 15078 ire = NULL; 15079 continue; 15080 default: 15081 ip_proto_input(q, first_mp, ipha, ire, ill); 15082 continue; 15083 } 15084 } 15085 15086 if (ire != NULL) 15087 ire_refrele(ire); 15088 15089 if (head != NULL) 15090 squeue_enter_chain(curr_sqp, head, tail, cnt, SQTAG_IP_INPUT); 15091 15092 /* 15093 * This code is there just to make netperf/ttcp look good. 15094 * 15095 * Its possible that after being in polling mode (and having cleared 15096 * the backlog), squeues have turned the interrupt frequency higher 15097 * to improve latency at the expense of more CPU utilization (less 15098 * packets per interrupts or more number of interrupts). Workloads 15099 * like ttcp/netperf do manage to tickle polling once in a while 15100 * but for the remaining time, stay in higher interrupt mode since 15101 * their packet arrival rate is pretty uniform and this shows up 15102 * as higher CPU utilization. Since people care about CPU utilization 15103 * while running netperf/ttcp, turn the interrupt frequency back to 15104 * normal/default if polling has not been used in ip_poll_normal_ticks. 15105 */ 15106 if (ip_ring != NULL && (ip_ring->rr_poll_state & ILL_POLLING)) { 15107 if (lbolt >= (ip_ring->rr_poll_time + ip_poll_normal_ticks)) { 15108 ip_ring->rr_poll_state &= ~ILL_POLLING; 15109 ip_ring->rr_blank(ip_ring->rr_handle, 15110 ip_ring->rr_normal_blank_time, 15111 ip_ring->rr_normal_pkt_cnt); 15112 } 15113 } 15114 15115 TRACE_2(TR_FAC_IP, TR_IP_RPUT_END, 15116 "ip_input_end: q %p (%S)", q, "end"); 15117 #undef rptr 15118 } 15119 15120 static void 15121 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err, 15122 t_uscalar_t err) 15123 { 15124 if (dl_err == DL_SYSERR) { 15125 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15126 "%s: %s failed: DL_SYSERR (errno %u)\n", 15127 ill->ill_name, dlpi_prim_str(prim), err); 15128 return; 15129 } 15130 15131 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 15132 "%s: %s failed: %s\n", ill->ill_name, dlpi_prim_str(prim), 15133 dlpi_err_str(dl_err)); 15134 } 15135 15136 /* 15137 * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other 15138 * than DL_UNITDATA_IND messages. If we need to process this message 15139 * exclusively, we call qwriter_ip, in which case we also need to call 15140 * ill_refhold before that, since qwriter_ip does an ill_refrele. 15141 */ 15142 void 15143 ip_rput_dlpi(queue_t *q, mblk_t *mp) 15144 { 15145 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15146 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15147 ill_t *ill; 15148 15149 ip1dbg(("ip_rput_dlpi")); 15150 ill = (ill_t *)q->q_ptr; 15151 switch (dloa->dl_primitive) { 15152 case DL_ERROR_ACK: 15153 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK %s (0x%x): " 15154 "%s (0x%x), unix %u\n", ill->ill_name, 15155 dlpi_prim_str(dlea->dl_error_primitive), 15156 dlea->dl_error_primitive, 15157 dlpi_err_str(dlea->dl_errno), 15158 dlea->dl_errno, 15159 dlea->dl_unix_errno)); 15160 switch (dlea->dl_error_primitive) { 15161 case DL_UNBIND_REQ: 15162 mutex_enter(&ill->ill_lock); 15163 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15164 cv_signal(&ill->ill_cv); 15165 mutex_exit(&ill->ill_lock); 15166 /* FALLTHRU */ 15167 case DL_NOTIFY_REQ: 15168 case DL_ATTACH_REQ: 15169 case DL_DETACH_REQ: 15170 case DL_INFO_REQ: 15171 case DL_BIND_REQ: 15172 case DL_ENABMULTI_REQ: 15173 case DL_PHYS_ADDR_REQ: 15174 case DL_CAPABILITY_REQ: 15175 case DL_CONTROL_REQ: 15176 /* 15177 * Refhold the ill to match qwriter_ip which does a 15178 * refrele. Since this is on the ill stream we 15179 * unconditionally bump up the refcount without 15180 * checking for ILL_CAN_LOOKUP 15181 */ 15182 ill_refhold(ill); 15183 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15184 CUR_OP, B_FALSE); 15185 return; 15186 case DL_DISABMULTI_REQ: 15187 freemsg(mp); /* Don't want to pass this up */ 15188 return; 15189 default: 15190 break; 15191 } 15192 ip_dlpi_error(ill, dlea->dl_error_primitive, 15193 dlea->dl_errno, dlea->dl_unix_errno); 15194 freemsg(mp); 15195 return; 15196 case DL_INFO_ACK: 15197 case DL_BIND_ACK: 15198 case DL_PHYS_ADDR_ACK: 15199 case DL_NOTIFY_ACK: 15200 case DL_CAPABILITY_ACK: 15201 case DL_CONTROL_ACK: 15202 /* 15203 * Refhold the ill to match qwriter_ip which does a refrele 15204 * Since this is on the ill stream we unconditionally 15205 * bump up the refcount without doing ILL_CAN_LOOKUP. 15206 */ 15207 ill_refhold(ill); 15208 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15209 CUR_OP, B_FALSE); 15210 return; 15211 case DL_NOTIFY_IND: 15212 ill_refhold(ill); 15213 /* 15214 * The DL_NOTIFY_IND is an asynchronous message that has no 15215 * relation to the current ioctl in progress (if any). Hence we 15216 * pass in NEW_OP in this case. 15217 */ 15218 (void) qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15219 NEW_OP, B_FALSE); 15220 return; 15221 case DL_OK_ACK: 15222 ip1dbg(("ip_rput: DL_OK_ACK for %s\n", 15223 dlpi_prim_str((int)dloa->dl_correct_primitive))); 15224 switch (dloa->dl_correct_primitive) { 15225 case DL_UNBIND_REQ: 15226 mutex_enter(&ill->ill_lock); 15227 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 15228 cv_signal(&ill->ill_cv); 15229 mutex_exit(&ill->ill_lock); 15230 /* FALLTHRU */ 15231 case DL_ATTACH_REQ: 15232 case DL_DETACH_REQ: 15233 /* 15234 * Refhold the ill to match qwriter_ip which does a 15235 * refrele. Since this is on the ill stream we 15236 * unconditionally bump up the refcount 15237 */ 15238 ill_refhold(ill); 15239 qwriter_ip(NULL, ill, q, mp, ip_rput_dlpi_writer, 15240 CUR_OP, B_FALSE); 15241 return; 15242 case DL_ENABMULTI_REQ: 15243 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15244 ill->ill_dlpi_multicast_state = IDS_OK; 15245 break; 15246 15247 } 15248 break; 15249 default: 15250 break; 15251 } 15252 freemsg(mp); 15253 } 15254 15255 /* 15256 * Handling of DLPI messages that require exclusive access to the ipsq. 15257 * 15258 * Need to do ill_pending_mp_release on ioctl completion, which could 15259 * happen here. (along with mi_copy_done) 15260 */ 15261 /* ARGSUSED */ 15262 static void 15263 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 15264 { 15265 dl_ok_ack_t *dloa = (dl_ok_ack_t *)mp->b_rptr; 15266 dl_error_ack_t *dlea = (dl_error_ack_t *)dloa; 15267 int err = 0; 15268 ill_t *ill; 15269 ipif_t *ipif = NULL; 15270 mblk_t *mp1 = NULL; 15271 conn_t *connp = NULL; 15272 t_uscalar_t physaddr_req; 15273 mblk_t *mp_hw; 15274 union DL_primitives *dlp; 15275 boolean_t success; 15276 boolean_t ioctl_aborted = B_FALSE; 15277 boolean_t log = B_TRUE; 15278 hook_nic_event_t *info; 15279 15280 ip1dbg(("ip_rput_dlpi_writer ..")); 15281 ill = (ill_t *)q->q_ptr; 15282 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 15283 15284 ASSERT(IAM_WRITER_ILL(ill)); 15285 15286 /* 15287 * ipsq_pending_mp and ipsq_pending_ipif track each other. i.e. 15288 * both are null or non-null. However we can assert that only 15289 * after grabbing the ipsq_lock. So we don't make any assertion 15290 * here and in other places in the code. 15291 */ 15292 ipif = ipsq->ipsq_pending_ipif; 15293 /* 15294 * The current ioctl could have been aborted by the user and a new 15295 * ioctl to bring up another ill could have started. We could still 15296 * get a response from the driver later. 15297 */ 15298 if (ipif != NULL && ipif->ipif_ill != ill) 15299 ioctl_aborted = B_TRUE; 15300 15301 switch (dloa->dl_primitive) { 15302 case DL_ERROR_ACK: 15303 switch (dlea->dl_error_primitive) { 15304 case DL_UNBIND_REQ: 15305 case DL_ATTACH_REQ: 15306 case DL_DETACH_REQ: 15307 case DL_INFO_REQ: 15308 ill_dlpi_done(ill, dlea->dl_error_primitive); 15309 break; 15310 case DL_NOTIFY_REQ: 15311 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15312 log = B_FALSE; 15313 break; 15314 case DL_PHYS_ADDR_REQ: 15315 /* 15316 * For IPv6 only, there are two additional 15317 * phys_addr_req's sent to the driver to get the 15318 * IPv6 token and lla. This allows IP to acquire 15319 * the hardware address format for a given interface 15320 * without having built in knowledge of the hardware 15321 * address. ill_phys_addr_pend keeps track of the last 15322 * DL_PAR sent so we know which response we are 15323 * dealing with. ill_dlpi_done will update 15324 * ill_phys_addr_pend when it sends the next req. 15325 * We don't complete the IOCTL until all three DL_PARs 15326 * have been attempted, so set *_len to 0 and break. 15327 */ 15328 physaddr_req = ill->ill_phys_addr_pend; 15329 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15330 if (physaddr_req == DL_IPV6_TOKEN) { 15331 ill->ill_token_length = 0; 15332 log = B_FALSE; 15333 break; 15334 } else if (physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15335 ill->ill_nd_lla_len = 0; 15336 log = B_FALSE; 15337 break; 15338 } 15339 /* 15340 * Something went wrong with the DL_PHYS_ADDR_REQ. 15341 * We presumably have an IOCTL hanging out waiting 15342 * for completion. Find it and complete the IOCTL 15343 * with the error noted. 15344 * However, ill_dl_phys was called on an ill queue 15345 * (from SIOCSLIFNAME), thus conn_pending_ill is not 15346 * set. But the ioctl is known to be pending on ill_wq. 15347 */ 15348 if (!ill->ill_ifname_pending) 15349 break; 15350 ill->ill_ifname_pending = 0; 15351 if (!ioctl_aborted) 15352 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15353 if (mp1 != NULL) { 15354 /* 15355 * This operation (SIOCSLIFNAME) must have 15356 * happened on the ill. Assert there is no conn 15357 */ 15358 ASSERT(connp == NULL); 15359 q = ill->ill_wq; 15360 } 15361 break; 15362 case DL_BIND_REQ: 15363 ill_dlpi_done(ill, DL_BIND_REQ); 15364 if (ill->ill_ifname_pending) 15365 break; 15366 /* 15367 * Something went wrong with the bind. We presumably 15368 * have an IOCTL hanging out waiting for completion. 15369 * Find it, take down the interface that was coming 15370 * up, and complete the IOCTL with the error noted. 15371 */ 15372 if (!ioctl_aborted) 15373 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15374 if (mp1 != NULL) { 15375 /* 15376 * This operation (SIOCSLIFFLAGS) must have 15377 * happened from a conn. 15378 */ 15379 ASSERT(connp != NULL); 15380 q = CONNP_TO_WQ(connp); 15381 if (ill->ill_move_in_progress) { 15382 ILL_CLEAR_MOVE(ill); 15383 } 15384 (void) ipif_down(ipif, NULL, NULL); 15385 /* error is set below the switch */ 15386 } 15387 break; 15388 case DL_ENABMULTI_REQ: 15389 ip1dbg(("DL_ERROR_ACK to enabmulti\n")); 15390 15391 if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS) 15392 ill->ill_dlpi_multicast_state = IDS_FAILED; 15393 if (ill->ill_dlpi_multicast_state == IDS_FAILED) { 15394 ipif_t *ipif; 15395 15396 log = B_FALSE; 15397 printf("ip: joining multicasts failed (%d)" 15398 " on %s - will use link layer " 15399 "broadcasts for multicast\n", 15400 dlea->dl_errno, ill->ill_name); 15401 15402 /* 15403 * Set up the multicast mapping alone. 15404 * writer, so ok to access ill->ill_ipif 15405 * without any lock. 15406 */ 15407 ipif = ill->ill_ipif; 15408 mutex_enter(&ill->ill_phyint->phyint_lock); 15409 ill->ill_phyint->phyint_flags |= 15410 PHYI_MULTI_BCAST; 15411 mutex_exit(&ill->ill_phyint->phyint_lock); 15412 15413 if (!ill->ill_isv6) { 15414 (void) ipif_arp_setup_multicast(ipif, 15415 NULL); 15416 } else { 15417 (void) ipif_ndp_setup_multicast(ipif, 15418 NULL); 15419 } 15420 } 15421 freemsg(mp); /* Don't want to pass this up */ 15422 return; 15423 case DL_CAPABILITY_REQ: 15424 case DL_CONTROL_REQ: 15425 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for " 15426 "DL_CAPABILITY/CONTROL REQ\n")); 15427 ill_dlpi_done(ill, dlea->dl_error_primitive); 15428 ill->ill_dlpi_capab_state = IDS_FAILED; 15429 freemsg(mp); 15430 return; 15431 } 15432 /* 15433 * Note the error for IOCTL completion (mp1 is set when 15434 * ready to complete ioctl). If ill_ifname_pending_err is 15435 * set, an error occured during plumbing (ill_ifname_pending), 15436 * so we want to report that error. 15437 * 15438 * NOTE: there are two addtional DL_PHYS_ADDR_REQ's 15439 * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are 15440 * expected to get errack'd if the driver doesn't support 15441 * these flags (e.g. ethernet). log will be set to B_FALSE 15442 * if these error conditions are encountered. 15443 */ 15444 if (mp1 != NULL) { 15445 if (ill->ill_ifname_pending_err != 0) { 15446 err = ill->ill_ifname_pending_err; 15447 ill->ill_ifname_pending_err = 0; 15448 } else { 15449 err = dlea->dl_unix_errno ? 15450 dlea->dl_unix_errno : ENXIO; 15451 } 15452 /* 15453 * If we're plumbing an interface and an error hasn't already 15454 * been saved, set ill_ifname_pending_err to the error passed 15455 * up. Ignore the error if log is B_FALSE (see comment above). 15456 */ 15457 } else if (log && ill->ill_ifname_pending && 15458 ill->ill_ifname_pending_err == 0) { 15459 ill->ill_ifname_pending_err = dlea->dl_unix_errno ? 15460 dlea->dl_unix_errno : ENXIO; 15461 } 15462 15463 if (log) 15464 ip_dlpi_error(ill, dlea->dl_error_primitive, 15465 dlea->dl_errno, dlea->dl_unix_errno); 15466 break; 15467 case DL_CAPABILITY_ACK: { 15468 boolean_t reneg_flag = B_FALSE; 15469 /* Call a routine to handle this one. */ 15470 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 15471 /* 15472 * Check if the ACK is due to renegotiation case since we 15473 * will need to send a new CAPABILITY_REQ later. 15474 */ 15475 if (ill->ill_dlpi_capab_state == IDS_RENEG) { 15476 /* This is the ack for a renogiation case */ 15477 reneg_flag = B_TRUE; 15478 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 15479 } 15480 ill_capability_ack(ill, mp); 15481 if (reneg_flag) 15482 ill_capability_probe(ill); 15483 break; 15484 } 15485 case DL_CONTROL_ACK: 15486 /* We treat all of these as "fire and forget" */ 15487 ill_dlpi_done(ill, DL_CONTROL_REQ); 15488 break; 15489 case DL_INFO_ACK: 15490 /* Call a routine to handle this one. */ 15491 ill_dlpi_done(ill, DL_INFO_REQ); 15492 ip_ll_subnet_defaults(ill, mp); 15493 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock)); 15494 return; 15495 case DL_BIND_ACK: 15496 /* 15497 * We should have an IOCTL waiting on this unless 15498 * sent by ill_dl_phys, in which case just return 15499 */ 15500 ill_dlpi_done(ill, DL_BIND_REQ); 15501 if (ill->ill_ifname_pending) 15502 break; 15503 15504 if (!ioctl_aborted) 15505 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15506 if (mp1 == NULL) 15507 break; 15508 ASSERT(connp != NULL); 15509 q = CONNP_TO_WQ(connp); 15510 15511 /* 15512 * We are exclusive. So nothing can change even after 15513 * we get the pending mp. If need be we can put it back 15514 * and restart, as in calling ipif_arp_up() below. 15515 */ 15516 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name)); 15517 15518 mutex_enter(&ill->ill_lock); 15519 15520 ill->ill_dl_up = 1; 15521 15522 if ((info = ill->ill_nic_event_info) != NULL) { 15523 ip2dbg(("ip_rput_dlpi_writer: unexpected nic event %d " 15524 "attached for %s\n", info->hne_event, 15525 ill->ill_name)); 15526 if (info->hne_data != NULL) 15527 kmem_free(info->hne_data, info->hne_datalen); 15528 kmem_free(info, sizeof (hook_nic_event_t)); 15529 } 15530 15531 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 15532 if (info != NULL) { 15533 info->hne_nic = ill->ill_phyint->phyint_ifindex; 15534 info->hne_lif = 0; 15535 info->hne_event = NE_UP; 15536 info->hne_data = NULL; 15537 info->hne_datalen = 0; 15538 info->hne_family = ill->ill_isv6 ? ipv6 : ipv4; 15539 } else 15540 ip2dbg(("ip_rput_dlpi_writer: could not attach UP nic " 15541 "event information for %s (ENOMEM)\n", 15542 ill->ill_name)); 15543 15544 ill->ill_nic_event_info = info; 15545 15546 mutex_exit(&ill->ill_lock); 15547 15548 /* 15549 * Now bring up the resolver; when that is complete, we'll 15550 * create IREs. Note that we intentionally mirror what 15551 * ipif_up() would have done, because we got here by way of 15552 * ill_dl_up(), which stopped ipif_up()'s processing. 15553 */ 15554 if (ill->ill_isv6) { 15555 /* 15556 * v6 interfaces. 15557 * Unlike ARP which has to do another bind 15558 * and attach, once we get here we are 15559 * done with NDP. Except in the case of 15560 * ILLF_XRESOLV, in which case we send an 15561 * AR_INTERFACE_UP to the external resolver. 15562 * If all goes well, the ioctl will complete 15563 * in ip_rput(). If there's an error, we 15564 * complete it here. 15565 */ 15566 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 15567 B_FALSE); 15568 if (err == 0) { 15569 if (ill->ill_flags & ILLF_XRESOLV) { 15570 mutex_enter(&connp->conn_lock); 15571 mutex_enter(&ill->ill_lock); 15572 success = ipsq_pending_mp_add( 15573 connp, ipif, q, mp1, 0); 15574 mutex_exit(&ill->ill_lock); 15575 mutex_exit(&connp->conn_lock); 15576 if (success) { 15577 err = ipif_resolver_up(ipif, 15578 Res_act_initial); 15579 if (err == EINPROGRESS) { 15580 freemsg(mp); 15581 return; 15582 } 15583 ASSERT(err != 0); 15584 mp1 = ipsq_pending_mp_get(ipsq, 15585 &connp); 15586 ASSERT(mp1 != NULL); 15587 } else { 15588 /* conn has started closing */ 15589 err = EINTR; 15590 } 15591 } else { /* Non XRESOLV interface */ 15592 (void) ipif_resolver_up(ipif, 15593 Res_act_initial); 15594 err = ipif_up_done_v6(ipif); 15595 } 15596 } 15597 } else if (ill->ill_net_type == IRE_IF_RESOLVER) { 15598 /* 15599 * ARP and other v4 external resolvers. 15600 * Leave the pending mblk intact so that 15601 * the ioctl completes in ip_rput(). 15602 */ 15603 mutex_enter(&connp->conn_lock); 15604 mutex_enter(&ill->ill_lock); 15605 success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0); 15606 mutex_exit(&ill->ill_lock); 15607 mutex_exit(&connp->conn_lock); 15608 if (success) { 15609 err = ipif_resolver_up(ipif, Res_act_initial); 15610 if (err == EINPROGRESS) { 15611 freemsg(mp); 15612 return; 15613 } 15614 ASSERT(err != 0); 15615 mp1 = ipsq_pending_mp_get(ipsq, &connp); 15616 } else { 15617 /* The conn has started closing */ 15618 err = EINTR; 15619 } 15620 } else { 15621 /* 15622 * This one is complete. Reply to pending ioctl. 15623 */ 15624 (void) ipif_resolver_up(ipif, Res_act_initial); 15625 err = ipif_up_done(ipif); 15626 } 15627 15628 if ((err == 0) && (ill->ill_up_ipifs)) { 15629 err = ill_up_ipifs(ill, q, mp1); 15630 if (err == EINPROGRESS) { 15631 freemsg(mp); 15632 return; 15633 } 15634 } 15635 15636 if (ill->ill_up_ipifs) { 15637 ill_group_cleanup(ill); 15638 } 15639 15640 break; 15641 case DL_NOTIFY_IND: { 15642 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr; 15643 ire_t *ire; 15644 boolean_t need_ire_walk_v4 = B_FALSE; 15645 boolean_t need_ire_walk_v6 = B_FALSE; 15646 15647 /* 15648 * Change the address everywhere we need to. 15649 * What we're getting here is a link-level addr or phys addr. 15650 * The new addr is at notify + notify->dl_addr_offset 15651 * The address length is notify->dl_addr_length; 15652 */ 15653 switch (notify->dl_notification) { 15654 case DL_NOTE_PHYS_ADDR: 15655 mp_hw = copyb(mp); 15656 if (mp_hw == NULL) { 15657 err = ENOMEM; 15658 break; 15659 } 15660 dlp = (union DL_primitives *)mp_hw->b_rptr; 15661 /* 15662 * We currently don't support changing 15663 * the token via DL_NOTIFY_IND. 15664 * When we do support it, we have to consider 15665 * what the implications are with respect to 15666 * the token and the link local address. 15667 */ 15668 mutex_enter(&ill->ill_lock); 15669 if (dlp->notify_ind.dl_data == 15670 DL_IPV6_LINK_LAYER_ADDR) { 15671 if (ill->ill_nd_lla_mp != NULL) 15672 freemsg(ill->ill_nd_lla_mp); 15673 ill->ill_nd_lla_mp = mp_hw; 15674 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 15675 dlp->notify_ind.dl_addr_offset; 15676 ill->ill_nd_lla_len = 15677 dlp->notify_ind.dl_addr_length - 15678 ABS(ill->ill_sap_length); 15679 mutex_exit(&ill->ill_lock); 15680 break; 15681 } else if (dlp->notify_ind.dl_data == 15682 DL_CURR_PHYS_ADDR) { 15683 if (ill->ill_phys_addr_mp != NULL) 15684 freemsg(ill->ill_phys_addr_mp); 15685 ill->ill_phys_addr_mp = mp_hw; 15686 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 15687 dlp->notify_ind.dl_addr_offset; 15688 ill->ill_phys_addr_length = 15689 dlp->notify_ind.dl_addr_length - 15690 ABS(ill->ill_sap_length); 15691 if (ill->ill_isv6 && 15692 !(ill->ill_flags & ILLF_XRESOLV)) { 15693 if (ill->ill_nd_lla_mp != NULL) 15694 freemsg(ill->ill_nd_lla_mp); 15695 ill->ill_nd_lla_mp = copyb(mp_hw); 15696 ill->ill_nd_lla = (uchar_t *) 15697 ill->ill_nd_lla_mp->b_rptr + 15698 dlp->notify_ind.dl_addr_offset; 15699 ill->ill_nd_lla_len = 15700 ill->ill_phys_addr_length; 15701 } 15702 } 15703 mutex_exit(&ill->ill_lock); 15704 /* 15705 * Send out gratuitous arp request for our new 15706 * hardware address. 15707 */ 15708 for (ipif = ill->ill_ipif; ipif != NULL; 15709 ipif = ipif->ipif_next) { 15710 if (!(ipif->ipif_flags & IPIF_UP)) 15711 continue; 15712 if (ill->ill_isv6) { 15713 ipif_ndp_down(ipif); 15714 /* 15715 * Set B_TRUE to enable 15716 * ipif_ndp_up() to send out 15717 * unsolicited advertisements. 15718 */ 15719 err = ipif_ndp_up(ipif, 15720 &ipif->ipif_v6lcl_addr, 15721 B_TRUE); 15722 if (err) { 15723 ip1dbg(( 15724 "ip_rput_dlpi_writer: " 15725 "Failed to update ndp " 15726 "err %d\n", err)); 15727 } 15728 } else { 15729 /* 15730 * IPv4 ARP case 15731 * 15732 * Set Res_act_move, as we only want 15733 * ipif_resolver_up to send an 15734 * AR_ENTRY_ADD request up to 15735 * ARP. 15736 */ 15737 err = ipif_resolver_up(ipif, 15738 Res_act_move); 15739 if (err) { 15740 ip1dbg(( 15741 "ip_rput_dlpi_writer: " 15742 "Failed to update arp " 15743 "err %d\n", err)); 15744 } 15745 } 15746 } 15747 /* 15748 * Allow "fall through" to the DL_NOTE_FASTPATH_FLUSH 15749 * case so that all old fastpath information can be 15750 * purged from IRE caches. 15751 */ 15752 /* FALLTHRU */ 15753 case DL_NOTE_FASTPATH_FLUSH: 15754 /* 15755 * Any fastpath probe sent henceforth will get the 15756 * new fp mp. So we first delete any ires that are 15757 * waiting for the fastpath. Then walk all ires and 15758 * delete the ire or delete the fp mp. In the case of 15759 * IRE_MIPRTUN and IRE_BROADCAST it is difficult to 15760 * recreate the ire's without going through a complex 15761 * ipif up/down dance. So we don't delete the ire 15762 * itself, but just the nce_fp_mp for these 2 ire's 15763 * In the case of the other ire's we delete the ire's 15764 * themselves. Access to nce_fp_mp is completely 15765 * protected by ire_lock for IRE_MIPRTUN and 15766 * IRE_BROADCAST. Deleting the ire is preferable in the 15767 * other cases for performance. 15768 */ 15769 if (ill->ill_isv6) { 15770 nce_fastpath_list_dispatch(ill, NULL, NULL); 15771 ndp_walk(ill, (pfi_t)ndp_fastpath_flush, 15772 NULL); 15773 } else { 15774 ire_fastpath_list_dispatch(ill, NULL, NULL); 15775 ire_walk_ill_v4(MATCH_IRE_WQ | MATCH_IRE_TYPE, 15776 IRE_CACHE | IRE_BROADCAST, 15777 ire_fastpath_flush, NULL, ill); 15778 mutex_enter(&ire_mrtun_lock); 15779 if (ire_mrtun_count != 0) { 15780 mutex_exit(&ire_mrtun_lock); 15781 ire_walk_ill_mrtun(MATCH_IRE_WQ, 15782 IRE_MIPRTUN, ire_fastpath_flush, 15783 NULL, ill); 15784 } else { 15785 mutex_exit(&ire_mrtun_lock); 15786 } 15787 } 15788 break; 15789 case DL_NOTE_SDU_SIZE: 15790 /* 15791 * Change the MTU size of the interface, of all 15792 * attached ipif's, and of all relevant ire's. The 15793 * new value's a uint32_t at notify->dl_data. 15794 * Mtu change Vs. new ire creation - protocol below. 15795 * 15796 * a Mark the ipif as IPIF_CHANGING. 15797 * b Set the new mtu in the ipif. 15798 * c Change the ire_max_frag on all affected ires 15799 * d Unmark the IPIF_CHANGING 15800 * 15801 * To see how the protocol works, assume an interface 15802 * route is also being added simultaneously by 15803 * ip_rt_add and let 'ipif' be the ipif referenced by 15804 * the ire. If the ire is created before step a, 15805 * it will be cleaned up by step c. If the ire is 15806 * created after step d, it will see the new value of 15807 * ipif_mtu. Any attempt to create the ire between 15808 * steps a to d will fail because of the IPIF_CHANGING 15809 * flag. Note that ire_create() is passed a pointer to 15810 * the ipif_mtu, and not the value. During ire_add 15811 * under the bucket lock, the ire_max_frag of the 15812 * new ire being created is set from the ipif/ire from 15813 * which it is being derived. 15814 */ 15815 mutex_enter(&ill->ill_lock); 15816 ill->ill_max_frag = (uint_t)notify->dl_data; 15817 15818 /* 15819 * If an SIOCSLIFLNKINFO has changed the ill_max_mtu 15820 * leave it alone 15821 */ 15822 if (ill->ill_mtu_userspecified) { 15823 mutex_exit(&ill->ill_lock); 15824 break; 15825 } 15826 ill->ill_max_mtu = ill->ill_max_frag; 15827 if (ill->ill_isv6) { 15828 if (ill->ill_max_mtu < IPV6_MIN_MTU) 15829 ill->ill_max_mtu = IPV6_MIN_MTU; 15830 } else { 15831 if (ill->ill_max_mtu < IP_MIN_MTU) 15832 ill->ill_max_mtu = IP_MIN_MTU; 15833 } 15834 for (ipif = ill->ill_ipif; ipif != NULL; 15835 ipif = ipif->ipif_next) { 15836 /* 15837 * Don't override the mtu if the user 15838 * has explicitly set it. 15839 */ 15840 if (ipif->ipif_flags & IPIF_FIXEDMTU) 15841 continue; 15842 ipif->ipif_mtu = (uint_t)notify->dl_data; 15843 if (ipif->ipif_isv6) 15844 ire = ipif_to_ire_v6(ipif); 15845 else 15846 ire = ipif_to_ire(ipif); 15847 if (ire != NULL) { 15848 ire->ire_max_frag = ipif->ipif_mtu; 15849 ire_refrele(ire); 15850 } 15851 if (ipif->ipif_flags & IPIF_UP) { 15852 if (ill->ill_isv6) 15853 need_ire_walk_v6 = B_TRUE; 15854 else 15855 need_ire_walk_v4 = B_TRUE; 15856 } 15857 } 15858 mutex_exit(&ill->ill_lock); 15859 if (need_ire_walk_v4) 15860 ire_walk_v4(ill_mtu_change, (char *)ill, 15861 ALL_ZONES); 15862 if (need_ire_walk_v6) 15863 ire_walk_v6(ill_mtu_change, (char *)ill, 15864 ALL_ZONES); 15865 break; 15866 case DL_NOTE_LINK_UP: 15867 case DL_NOTE_LINK_DOWN: { 15868 /* 15869 * We are writer. ill / phyint / ipsq assocs stable. 15870 * The RUNNING flag reflects the state of the link. 15871 */ 15872 phyint_t *phyint = ill->ill_phyint; 15873 uint64_t new_phyint_flags; 15874 boolean_t changed = B_FALSE; 15875 boolean_t went_up; 15876 15877 went_up = notify->dl_notification == DL_NOTE_LINK_UP; 15878 mutex_enter(&phyint->phyint_lock); 15879 new_phyint_flags = went_up ? 15880 phyint->phyint_flags | PHYI_RUNNING : 15881 phyint->phyint_flags & ~PHYI_RUNNING; 15882 if (new_phyint_flags != phyint->phyint_flags) { 15883 phyint->phyint_flags = new_phyint_flags; 15884 changed = B_TRUE; 15885 } 15886 mutex_exit(&phyint->phyint_lock); 15887 /* 15888 * ill_restart_dad handles the DAD restart and routing 15889 * socket notification logic. 15890 */ 15891 if (changed) { 15892 ill_restart_dad(phyint->phyint_illv4, went_up); 15893 ill_restart_dad(phyint->phyint_illv6, went_up); 15894 } 15895 break; 15896 } 15897 case DL_NOTE_PROMISC_ON_PHYS: 15898 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15899 "got a DL_NOTE_PROMISC_ON_PHYS\n")); 15900 mutex_enter(&ill->ill_lock); 15901 ill->ill_promisc_on_phys = B_TRUE; 15902 mutex_exit(&ill->ill_lock); 15903 break; 15904 case DL_NOTE_PROMISC_OFF_PHYS: 15905 IPSECHW_DEBUG(IPSECHW_PKT, ("ip_rput_dlpi_writer: " 15906 "got a DL_NOTE_PROMISC_OFF_PHYS\n")); 15907 mutex_enter(&ill->ill_lock); 15908 ill->ill_promisc_on_phys = B_FALSE; 15909 mutex_exit(&ill->ill_lock); 15910 break; 15911 case DL_NOTE_CAPAB_RENEG: 15912 /* 15913 * Something changed on the driver side. 15914 * It wants us to renegotiate the capabilities 15915 * on this ill. The most likely cause is the 15916 * aggregation interface under us where a 15917 * port got added or went away. 15918 * 15919 * We reset the capabilities and set the 15920 * state to IDS_RENG so that when the ack 15921 * comes back, we can start the 15922 * renegotiation process. 15923 */ 15924 ill_capability_reset(ill); 15925 ill->ill_dlpi_capab_state = IDS_RENEG; 15926 break; 15927 default: 15928 ip0dbg(("ip_rput_dlpi_writer: unknown notification " 15929 "type 0x%x for DL_NOTIFY_IND\n", 15930 notify->dl_notification)); 15931 break; 15932 } 15933 15934 /* 15935 * As this is an asynchronous operation, we 15936 * should not call ill_dlpi_done 15937 */ 15938 break; 15939 } 15940 case DL_NOTIFY_ACK: { 15941 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr; 15942 15943 if (noteack->dl_notifications & DL_NOTE_LINK_UP) 15944 ill->ill_note_link = 1; 15945 ill_dlpi_done(ill, DL_NOTIFY_REQ); 15946 break; 15947 } 15948 case DL_PHYS_ADDR_ACK: { 15949 /* 15950 * We should have an IOCTL waiting on this when request 15951 * sent by ill_dl_phys. 15952 * However, ill_dl_phys was called on an ill queue (from 15953 * SIOCSLIFNAME), thus conn_pending_ill is not set. But the 15954 * ioctl is known to be pending on ill_wq. 15955 * There are two additional phys_addr_req's sent to the 15956 * driver to get the token and lla. ill_phys_addr_pend 15957 * keeps track of the last one sent so we know which 15958 * response we are dealing with. ill_dlpi_done will 15959 * update ill_phys_addr_pend when it sends the next req. 15960 * We don't complete the IOCTL until all three DL_PARs 15961 * have been attempted. 15962 * 15963 * We don't need any lock to update ill_nd_lla* fields, 15964 * since the ill is not yet up, We grab the lock just 15965 * for uniformity with other code that accesses ill_nd_lla. 15966 */ 15967 physaddr_req = ill->ill_phys_addr_pend; 15968 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ); 15969 if (physaddr_req == DL_IPV6_TOKEN || 15970 physaddr_req == DL_IPV6_LINK_LAYER_ADDR) { 15971 if (physaddr_req == DL_IPV6_TOKEN) { 15972 /* 15973 * bcopy to low-order bits of ill_token 15974 * 15975 * XXX Temporary hack - currently, 15976 * all known tokens are 64 bits, 15977 * so I'll cheat for the moment. 15978 */ 15979 dlp = (union DL_primitives *)mp->b_rptr; 15980 15981 mutex_enter(&ill->ill_lock); 15982 bcopy((uchar_t *)(mp->b_rptr + 15983 dlp->physaddr_ack.dl_addr_offset), 15984 (void *)&ill->ill_token.s6_addr32[2], 15985 dlp->physaddr_ack.dl_addr_length); 15986 ill->ill_token_length = 15987 dlp->physaddr_ack.dl_addr_length; 15988 mutex_exit(&ill->ill_lock); 15989 } else { 15990 ASSERT(ill->ill_nd_lla_mp == NULL); 15991 mp_hw = copyb(mp); 15992 if (mp_hw == NULL) { 15993 err = ENOMEM; 15994 break; 15995 } 15996 dlp = (union DL_primitives *)mp_hw->b_rptr; 15997 mutex_enter(&ill->ill_lock); 15998 ill->ill_nd_lla_mp = mp_hw; 15999 ill->ill_nd_lla = (uchar_t *)mp_hw->b_rptr + 16000 dlp->physaddr_ack.dl_addr_offset; 16001 ill->ill_nd_lla_len = 16002 dlp->physaddr_ack.dl_addr_length; 16003 mutex_exit(&ill->ill_lock); 16004 } 16005 break; 16006 } 16007 ASSERT(physaddr_req == DL_CURR_PHYS_ADDR); 16008 ASSERT(ill->ill_phys_addr_mp == NULL); 16009 if (!ill->ill_ifname_pending) 16010 break; 16011 ill->ill_ifname_pending = 0; 16012 if (!ioctl_aborted) 16013 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16014 if (mp1 != NULL) { 16015 ASSERT(connp == NULL); 16016 q = ill->ill_wq; 16017 } 16018 /* 16019 * If any error acks received during the plumbing sequence, 16020 * ill_ifname_pending_err will be set. Break out and send up 16021 * the error to the pending ioctl. 16022 */ 16023 if (ill->ill_ifname_pending_err != 0) { 16024 err = ill->ill_ifname_pending_err; 16025 ill->ill_ifname_pending_err = 0; 16026 break; 16027 } 16028 /* 16029 * Get the interface token. If the zeroth interface 16030 * address is zero then set the address to the link local 16031 * address 16032 */ 16033 mp_hw = copyb(mp); 16034 if (mp_hw == NULL) { 16035 err = ENOMEM; 16036 break; 16037 } 16038 dlp = (union DL_primitives *)mp_hw->b_rptr; 16039 ill->ill_phys_addr_mp = mp_hw; 16040 ill->ill_phys_addr = (uchar_t *)mp_hw->b_rptr + 16041 dlp->physaddr_ack.dl_addr_offset; 16042 if (dlp->physaddr_ack.dl_addr_length == 0 || 16043 ill->ill_phys_addr_length == 0 || 16044 ill->ill_phys_addr_length == IP_ADDR_LEN) { 16045 /* 16046 * Compatibility: atun driver returns a length of 0. 16047 * ipdptp has an ill_phys_addr_length of zero(from 16048 * DL_BIND_ACK) but a non-zero length here. 16049 * ipd has an ill_phys_addr_length of 4(from 16050 * DL_BIND_ACK) but a non-zero length here. 16051 */ 16052 ill->ill_phys_addr = NULL; 16053 } else if (dlp->physaddr_ack.dl_addr_length != 16054 ill->ill_phys_addr_length) { 16055 ip0dbg(("DL_PHYS_ADDR_ACK: " 16056 "Address length mismatch %d %d\n", 16057 dlp->physaddr_ack.dl_addr_length, 16058 ill->ill_phys_addr_length)); 16059 err = EINVAL; 16060 break; 16061 } 16062 mutex_enter(&ill->ill_lock); 16063 if (ill->ill_nd_lla_mp == NULL) { 16064 ill->ill_nd_lla_mp = copyb(mp_hw); 16065 if (ill->ill_nd_lla_mp == NULL) { 16066 err = ENOMEM; 16067 mutex_exit(&ill->ill_lock); 16068 break; 16069 } 16070 ill->ill_nd_lla = 16071 (uchar_t *)ill->ill_nd_lla_mp->b_rptr + 16072 dlp->physaddr_ack.dl_addr_offset; 16073 ill->ill_nd_lla_len = ill->ill_phys_addr_length; 16074 } 16075 mutex_exit(&ill->ill_lock); 16076 if (IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 16077 (void) ill_setdefaulttoken(ill); 16078 16079 /* 16080 * If the ill zero interface has a zero address assign 16081 * it the proper link local address. 16082 */ 16083 ASSERT(ill->ill_ipif->ipif_id == 0); 16084 if (ipif != NULL && 16085 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 16086 (void) ipif_setlinklocal(ipif); 16087 break; 16088 } 16089 case DL_OK_ACK: 16090 ip2dbg(("DL_OK_ACK %s (0x%x)\n", 16091 dlpi_prim_str((int)dloa->dl_correct_primitive), 16092 dloa->dl_correct_primitive)); 16093 switch (dloa->dl_correct_primitive) { 16094 case DL_UNBIND_REQ: 16095 case DL_ATTACH_REQ: 16096 case DL_DETACH_REQ: 16097 ill_dlpi_done(ill, dloa->dl_correct_primitive); 16098 break; 16099 } 16100 break; 16101 default: 16102 break; 16103 } 16104 16105 freemsg(mp); 16106 if (mp1) { 16107 struct iocblk *iocp; 16108 int mode; 16109 16110 /* 16111 * Complete the waiting IOCTL. For SIOCLIFADDIF or 16112 * SIOCSLIFNAME do a copyout. 16113 */ 16114 iocp = (struct iocblk *)mp1->b_rptr; 16115 16116 if (iocp->ioc_cmd == SIOCLIFADDIF || 16117 iocp->ioc_cmd == SIOCSLIFNAME) 16118 mode = COPYOUT; 16119 else 16120 mode = NO_COPYOUT; 16121 /* 16122 * The ioctl must complete now without EINPROGRESS 16123 * since ipsq_pending_mp_get has removed the ioctl mblk 16124 * from ipsq_pending_mp. Otherwise the ioctl will be 16125 * stuck for ever in the ipsq. 16126 */ 16127 ASSERT(err != EINPROGRESS); 16128 ip_ioctl_finish(q, mp1, err, mode, ipif, ipsq); 16129 16130 } 16131 } 16132 16133 /* 16134 * ip_rput_other is called by ip_rput to handle messages modifying the global 16135 * state in IP. Normally called as writer. Exception SIOCGTUNPARAM (shared) 16136 */ 16137 /* ARGSUSED */ 16138 void 16139 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 16140 { 16141 ill_t *ill; 16142 struct iocblk *iocp; 16143 mblk_t *mp1; 16144 conn_t *connp = NULL; 16145 16146 ip1dbg(("ip_rput_other ")); 16147 ill = (ill_t *)q->q_ptr; 16148 /* 16149 * This routine is not a writer in the case of SIOCGTUNPARAM 16150 * in which case ipsq is NULL. 16151 */ 16152 if (ipsq != NULL) { 16153 ASSERT(IAM_WRITER_IPSQ(ipsq)); 16154 ASSERT(ipsq == ill->ill_phyint->phyint_ipsq); 16155 } 16156 16157 switch (mp->b_datap->db_type) { 16158 case M_ERROR: 16159 case M_HANGUP: 16160 /* 16161 * The device has a problem. We force the ILL down. It can 16162 * be brought up again manually using SIOCSIFFLAGS (via 16163 * ifconfig or equivalent). 16164 */ 16165 ASSERT(ipsq != NULL); 16166 if (mp->b_rptr < mp->b_wptr) 16167 ill->ill_error = (int)(*mp->b_rptr & 0xFF); 16168 if (ill->ill_error == 0) 16169 ill->ill_error = ENXIO; 16170 if (!ill_down_start(q, mp)) 16171 return; 16172 ipif_all_down_tail(ipsq, q, mp, NULL); 16173 break; 16174 case M_IOCACK: 16175 iocp = (struct iocblk *)mp->b_rptr; 16176 ASSERT(iocp->ioc_cmd != DL_IOC_HDR_INFO); 16177 switch (iocp->ioc_cmd) { 16178 case SIOCSTUNPARAM: 16179 case OSIOCSTUNPARAM: 16180 ASSERT(ipsq != NULL); 16181 /* 16182 * Finish socket ioctl passed through to tun. 16183 * We should have an IOCTL waiting on this. 16184 */ 16185 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16186 if (ill->ill_isv6) { 16187 struct iftun_req *ta; 16188 16189 /* 16190 * if a source or destination is 16191 * being set, try and set the link 16192 * local address for the tunnel 16193 */ 16194 ta = (struct iftun_req *)mp->b_cont-> 16195 b_cont->b_rptr; 16196 if (ta->ifta_flags & (IFTUN_SRC | IFTUN_DST)) { 16197 ipif_set_tun_llink(ill, ta); 16198 } 16199 16200 } 16201 if (mp1 != NULL) { 16202 /* 16203 * Now copy back the b_next/b_prev used by 16204 * mi code for the mi_copy* functions. 16205 * See ip_sioctl_tunparam() for the reason. 16206 * Also protect against missing b_cont. 16207 */ 16208 if (mp->b_cont != NULL) { 16209 mp->b_cont->b_next = 16210 mp1->b_cont->b_next; 16211 mp->b_cont->b_prev = 16212 mp1->b_cont->b_prev; 16213 } 16214 inet_freemsg(mp1); 16215 ASSERT(ipsq->ipsq_current_ipif != NULL); 16216 ASSERT(connp != NULL); 16217 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16218 iocp->ioc_error, NO_COPYOUT, 16219 ipsq->ipsq_current_ipif, ipsq); 16220 } else { 16221 ASSERT(connp == NULL); 16222 putnext(q, mp); 16223 } 16224 break; 16225 case SIOCGTUNPARAM: 16226 case OSIOCGTUNPARAM: 16227 /* 16228 * This is really M_IOCDATA from the tunnel driver. 16229 * convert back and complete the ioctl. 16230 * We should have an IOCTL waiting on this. 16231 */ 16232 mp1 = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 16233 if (mp1) { 16234 /* 16235 * Now copy back the b_next/b_prev used by 16236 * mi code for the mi_copy* functions. 16237 * See ip_sioctl_tunparam() for the reason. 16238 * Also protect against missing b_cont. 16239 */ 16240 if (mp->b_cont != NULL) { 16241 mp->b_cont->b_next = 16242 mp1->b_cont->b_next; 16243 mp->b_cont->b_prev = 16244 mp1->b_cont->b_prev; 16245 } 16246 inet_freemsg(mp1); 16247 if (iocp->ioc_error == 0) 16248 mp->b_datap->db_type = M_IOCDATA; 16249 ASSERT(connp != NULL); 16250 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16251 iocp->ioc_error, COPYOUT, NULL, NULL); 16252 } else { 16253 ASSERT(connp == NULL); 16254 putnext(q, mp); 16255 } 16256 break; 16257 default: 16258 break; 16259 } 16260 break; 16261 case M_IOCNAK: 16262 iocp = (struct iocblk *)mp->b_rptr; 16263 16264 switch (iocp->ioc_cmd) { 16265 int mode; 16266 ipif_t *ipif; 16267 16268 case DL_IOC_HDR_INFO: 16269 /* 16270 * If this was the first attempt turn of the 16271 * fastpath probing. 16272 */ 16273 mutex_enter(&ill->ill_lock); 16274 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) { 16275 ill->ill_dlpi_fastpath_state = IDS_FAILED; 16276 mutex_exit(&ill->ill_lock); 16277 ill_fastpath_nack(ill); 16278 ip1dbg(("ip_rput: DLPI fastpath off on " 16279 "interface %s\n", 16280 ill->ill_name)); 16281 } else { 16282 mutex_exit(&ill->ill_lock); 16283 } 16284 freemsg(mp); 16285 break; 16286 case SIOCSTUNPARAM: 16287 case OSIOCSTUNPARAM: 16288 ASSERT(ipsq != NULL); 16289 /* 16290 * Finish socket ioctl passed through to tun 16291 * We should have an IOCTL waiting on this. 16292 */ 16293 /* FALLTHRU */ 16294 case SIOCGTUNPARAM: 16295 case OSIOCGTUNPARAM: 16296 /* 16297 * This is really M_IOCDATA from the tunnel driver. 16298 * convert back and complete the ioctl. 16299 * We should have an IOCTL waiting on this. 16300 */ 16301 if (iocp->ioc_cmd == SIOCGTUNPARAM || 16302 iocp->ioc_cmd == OSIOCGTUNPARAM) { 16303 mp1 = ill_pending_mp_get(ill, &connp, 16304 iocp->ioc_id); 16305 mode = COPYOUT; 16306 ipsq = NULL; 16307 ipif = NULL; 16308 } else { 16309 mp1 = ipsq_pending_mp_get(ipsq, &connp); 16310 mode = NO_COPYOUT; 16311 ASSERT(ipsq->ipsq_current_ipif != NULL); 16312 ipif = ipsq->ipsq_current_ipif; 16313 } 16314 if (mp1 != NULL) { 16315 /* 16316 * Now copy back the b_next/b_prev used by 16317 * mi code for the mi_copy* functions. 16318 * See ip_sioctl_tunparam() for the reason. 16319 * Also protect against missing b_cont. 16320 */ 16321 if (mp->b_cont != NULL) { 16322 mp->b_cont->b_next = 16323 mp1->b_cont->b_next; 16324 mp->b_cont->b_prev = 16325 mp1->b_cont->b_prev; 16326 } 16327 inet_freemsg(mp1); 16328 if (iocp->ioc_error == 0) 16329 iocp->ioc_error = EINVAL; 16330 ASSERT(connp != NULL); 16331 ip_ioctl_finish(CONNP_TO_WQ(connp), mp, 16332 iocp->ioc_error, mode, ipif, ipsq); 16333 } else { 16334 ASSERT(connp == NULL); 16335 putnext(q, mp); 16336 } 16337 break; 16338 default: 16339 break; 16340 } 16341 default: 16342 break; 16343 } 16344 } 16345 16346 /* 16347 * NOTE : This function does not ire_refrele the ire argument passed in. 16348 * 16349 * IPQoS notes 16350 * IP policy is invoked twice for a forwarded packet, once on the read side 16351 * and again on the write side if both, IPP_FWD_IN and IPP_FWD_OUT are 16352 * enabled. An additional parameter, in_ill, has been added for this purpose. 16353 * Note that in_ill could be NULL when called from ip_rput_forward_multicast 16354 * because ip_mroute drops this information. 16355 * 16356 */ 16357 void 16358 ip_rput_forward(ire_t *ire, ipha_t *ipha, mblk_t *mp, ill_t *in_ill) 16359 { 16360 uint32_t pkt_len; 16361 queue_t *q; 16362 uint32_t sum; 16363 #define rptr ((uchar_t *)ipha) 16364 uint32_t max_frag; 16365 uint32_t ill_index; 16366 ill_t *out_ill; 16367 mib2_ipIfStatsEntry_t *mibptr; 16368 16369 /* Get the ill_index of the incoming ILL */ 16370 ill_index = (in_ill != NULL) ? in_ill->ill_phyint->phyint_ifindex : 0; 16371 mibptr = (in_ill != NULL) ? in_ill->ill_ip_mib : &ip_mib; 16372 16373 /* Initiate Read side IPPF processing */ 16374 if (IPP_ENABLED(IPP_FWD_IN)) { 16375 ip_process(IPP_FWD_IN, &mp, ill_index); 16376 if (mp == NULL) { 16377 ip2dbg(("ip_rput_forward: pkt dropped/deferred "\ 16378 "during IPPF processing\n")); 16379 return; 16380 } 16381 } 16382 16383 pkt_len = ntohs(ipha->ipha_length); 16384 16385 /* Adjust the checksum to reflect the ttl decrement. */ 16386 sum = (int)ipha->ipha_hdr_checksum + IP_HDR_CSUM_TTL_ADJUST; 16387 ipha->ipha_hdr_checksum = (uint16_t)(sum + (sum >> 16)); 16388 16389 if (ipha->ipha_ttl-- <= 1) { 16390 if (ip_csum_hdr(ipha)) { 16391 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16392 goto drop_pkt; 16393 } 16394 /* 16395 * Note: ire_stq this will be NULL for multicast 16396 * datagrams using the long path through arp (the IRE 16397 * is not an IRE_CACHE). This should not cause 16398 * problems since we don't generate ICMP errors for 16399 * multicast packets. 16400 */ 16401 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16402 q = ire->ire_stq; 16403 if (q != NULL) { 16404 /* Sent by forwarding path, and router is global zone */ 16405 icmp_time_exceeded(q, mp, ICMP_TTL_EXCEEDED, 16406 GLOBAL_ZONEID); 16407 } else 16408 freemsg(mp); 16409 return; 16410 } 16411 16412 /* 16413 * Don't forward if the interface is down 16414 */ 16415 if (ire->ire_ipif->ipif_ill->ill_ipif_up_count == 0) { 16416 BUMP_MIB(mibptr, ipIfStatsInDiscards); 16417 ip2dbg(("ip_rput_forward:interface is down\n")); 16418 goto drop_pkt; 16419 } 16420 16421 /* Get the ill_index of the outgoing ILL */ 16422 ill_index = ire->ire_ipif->ipif_ill->ill_phyint->phyint_ifindex; 16423 16424 out_ill = ire->ire_ipif->ipif_ill; 16425 16426 DTRACE_PROBE4(ip4__forwarding__start, 16427 ill_t *, in_ill, ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16428 16429 FW_HOOKS(ip4_forwarding_event, ipv4firewall_forwarding, 16430 in_ill, out_ill, ipha, mp, mp); 16431 16432 DTRACE_PROBE1(ip4__forwarding__end, mblk_t *, mp); 16433 16434 if (mp == NULL) 16435 return; 16436 pkt_len = ntohs(ipha->ipha_length); 16437 16438 if (is_system_labeled()) { 16439 mblk_t *mp1; 16440 16441 if ((mp1 = tsol_ip_forward(ire, mp)) == NULL) { 16442 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16443 goto drop_pkt; 16444 } 16445 /* Size may have changed */ 16446 mp = mp1; 16447 ipha = (ipha_t *)mp->b_rptr; 16448 pkt_len = ntohs(ipha->ipha_length); 16449 } 16450 16451 /* Check if there are options to update */ 16452 if (!IS_SIMPLE_IPH(ipha)) { 16453 if (ip_csum_hdr(ipha)) { 16454 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16455 goto drop_pkt; 16456 } 16457 if (ip_rput_forward_options(mp, ipha, ire)) { 16458 BUMP_MIB(mibptr, ipIfStatsForwProhibits); 16459 return; 16460 } 16461 16462 ipha->ipha_hdr_checksum = 0; 16463 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 16464 } 16465 max_frag = ire->ire_max_frag; 16466 if (pkt_len > max_frag) { 16467 /* 16468 * It needs fragging on its way out. We haven't 16469 * verified the header checksum yet. Since we 16470 * are going to put a surely good checksum in the 16471 * outgoing header, we have to make sure that it 16472 * was good coming in. 16473 */ 16474 if (ip_csum_hdr(ipha)) { 16475 BUMP_MIB(mibptr, ipIfStatsInCksumErrs); 16476 goto drop_pkt; 16477 } 16478 /* Initiate Write side IPPF processing */ 16479 if (IPP_ENABLED(IPP_FWD_OUT)) { 16480 ip_process(IPP_FWD_OUT, &mp, ill_index); 16481 if (mp == NULL) { 16482 ip2dbg(("ip_rput_forward: pkt dropped/deferred"\ 16483 " during IPPF processing\n")); 16484 return; 16485 } 16486 } 16487 ip_wput_frag(ire, mp, IB_PKT, max_frag, 0, GLOBAL_ZONEID); 16488 ip2dbg(("ip_rput_forward:sent to ip_wput_frag\n")); 16489 return; 16490 } 16491 16492 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 16493 ill_t *, out_ill, ipha_t *, ipha, mblk_t *, mp); 16494 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 16495 NULL, out_ill, ipha, mp, mp); 16496 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 16497 if (mp == NULL) 16498 return; 16499 16500 mp->b_prev = (mblk_t *)IPP_FWD_OUT; 16501 ip1dbg(("ip_rput_forward: Calling ip_xmit_v4\n")); 16502 (void) ip_xmit_v4(mp, ire, NULL, B_FALSE); 16503 /* ip_xmit_v4 always consumes the packet */ 16504 return; 16505 16506 drop_pkt:; 16507 ip1dbg(("ip_rput_forward: drop pkt\n")); 16508 freemsg(mp); 16509 #undef rptr 16510 } 16511 16512 void 16513 ip_rput_forward_multicast(ipaddr_t dst, mblk_t *mp, ipif_t *ipif) 16514 { 16515 ire_t *ire; 16516 16517 ASSERT(!ipif->ipif_isv6); 16518 /* 16519 * Find an IRE which matches the destination and the outgoing 16520 * queue in the cache table. All we need is an IRE_CACHE which 16521 * is pointing at ipif->ipif_ill. If it is part of some ill group, 16522 * then it is enough to have some IRE_CACHE in the group. 16523 */ 16524 if (ipif->ipif_flags & IPIF_POINTOPOINT) 16525 dst = ipif->ipif_pp_dst_addr; 16526 ire = ire_ctable_lookup(dst, 0, 0, ipif, ALL_ZONES, MBLK_GETLABEL(mp), 16527 MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR); 16528 if (ire == NULL) { 16529 /* 16530 * Mark this packet to make it be delivered to 16531 * ip_rput_forward after the new ire has been 16532 * created. 16533 */ 16534 mp->b_prev = NULL; 16535 mp->b_next = mp; 16536 ip_newroute_ipif(ipif->ipif_ill->ill_wq, mp, ipif, dst, 16537 NULL, 0, GLOBAL_ZONEID); 16538 } else { 16539 ip_rput_forward(ire, (ipha_t *)mp->b_rptr, mp, NULL); 16540 IRE_REFRELE(ire); 16541 } 16542 } 16543 16544 /* Update any source route, record route or timestamp options */ 16545 static int 16546 ip_rput_forward_options(mblk_t *mp, ipha_t *ipha, ire_t *ire) 16547 { 16548 ipoptp_t opts; 16549 uchar_t *opt; 16550 uint8_t optval; 16551 uint8_t optlen; 16552 ipaddr_t dst; 16553 uint32_t ts; 16554 ire_t *dst_ire = NULL; 16555 ire_t *tmp_ire = NULL; 16556 timestruc_t now; 16557 16558 ip2dbg(("ip_rput_forward_options\n")); 16559 dst = ipha->ipha_dst; 16560 for (optval = ipoptp_first(&opts, ipha); 16561 optval != IPOPT_EOL; 16562 optval = ipoptp_next(&opts)) { 16563 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 16564 opt = opts.ipoptp_cur; 16565 optlen = opts.ipoptp_len; 16566 ip2dbg(("ip_rput_forward_options: opt %d, len %d\n", 16567 optval, opts.ipoptp_len)); 16568 switch (optval) { 16569 uint32_t off; 16570 case IPOPT_SSRR: 16571 case IPOPT_LSRR: 16572 /* Check if adminstratively disabled */ 16573 if (!ip_forward_src_routed) { 16574 if (ire->ire_stq != NULL) { 16575 /* 16576 * Sent by forwarding path, and router 16577 * is global zone 16578 */ 16579 icmp_unreachable(ire->ire_stq, mp, 16580 ICMP_SOURCE_ROUTE_FAILED, 16581 GLOBAL_ZONEID); 16582 } else { 16583 ip0dbg(("ip_rput_forward_options: " 16584 "unable to send unreach\n")); 16585 freemsg(mp); 16586 } 16587 return (-1); 16588 } 16589 16590 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16591 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16592 if (dst_ire == NULL) { 16593 /* 16594 * Must be partial since ip_rput_options 16595 * checked for strict. 16596 */ 16597 break; 16598 } 16599 off = opt[IPOPT_OFFSET]; 16600 off--; 16601 redo_srr: 16602 if (optlen < IP_ADDR_LEN || 16603 off > optlen - IP_ADDR_LEN) { 16604 /* End of source route */ 16605 ip1dbg(( 16606 "ip_rput_forward_options: end of SR\n")); 16607 ire_refrele(dst_ire); 16608 break; 16609 } 16610 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16611 bcopy(&ire->ire_src_addr, (char *)opt + off, 16612 IP_ADDR_LEN); 16613 ip1dbg(("ip_rput_forward_options: next hop 0x%x\n", 16614 ntohl(dst))); 16615 16616 /* 16617 * Check if our address is present more than 16618 * once as consecutive hops in source route. 16619 */ 16620 tmp_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 16621 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 16622 if (tmp_ire != NULL) { 16623 ire_refrele(tmp_ire); 16624 off += IP_ADDR_LEN; 16625 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16626 goto redo_srr; 16627 } 16628 ipha->ipha_dst = dst; 16629 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16630 ire_refrele(dst_ire); 16631 break; 16632 case IPOPT_RR: 16633 off = opt[IPOPT_OFFSET]; 16634 off--; 16635 if (optlen < IP_ADDR_LEN || 16636 off > optlen - IP_ADDR_LEN) { 16637 /* No more room - ignore */ 16638 ip1dbg(( 16639 "ip_rput_forward_options: end of RR\n")); 16640 break; 16641 } 16642 bcopy(&ire->ire_src_addr, (char *)opt + off, 16643 IP_ADDR_LEN); 16644 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16645 break; 16646 case IPOPT_TS: 16647 /* Insert timestamp if there is room */ 16648 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16649 case IPOPT_TS_TSONLY: 16650 off = IPOPT_TS_TIMELEN; 16651 break; 16652 case IPOPT_TS_PRESPEC: 16653 case IPOPT_TS_PRESPEC_RFC791: 16654 /* Verify that the address matched */ 16655 off = opt[IPOPT_OFFSET] - 1; 16656 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 16657 dst_ire = ire_ctable_lookup(dst, 0, 16658 IRE_LOCAL, NULL, ALL_ZONES, NULL, 16659 MATCH_IRE_TYPE); 16660 16661 if (dst_ire == NULL) { 16662 /* Not for us */ 16663 break; 16664 } 16665 ire_refrele(dst_ire); 16666 /* FALLTHRU */ 16667 case IPOPT_TS_TSANDADDR: 16668 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 16669 break; 16670 default: 16671 /* 16672 * ip_*put_options should have already 16673 * dropped this packet. 16674 */ 16675 cmn_err(CE_PANIC, "ip_rput_forward_options: " 16676 "unknown IT - bug in ip_rput_options?\n"); 16677 return (0); /* Keep "lint" happy */ 16678 } 16679 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 16680 /* Increase overflow counter */ 16681 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 16682 opt[IPOPT_POS_OV_FLG] = 16683 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 16684 (off << 4)); 16685 break; 16686 } 16687 off = opt[IPOPT_OFFSET] - 1; 16688 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 16689 case IPOPT_TS_PRESPEC: 16690 case IPOPT_TS_PRESPEC_RFC791: 16691 case IPOPT_TS_TSANDADDR: 16692 bcopy(&ire->ire_src_addr, 16693 (char *)opt + off, IP_ADDR_LEN); 16694 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 16695 /* FALLTHRU */ 16696 case IPOPT_TS_TSONLY: 16697 off = opt[IPOPT_OFFSET] - 1; 16698 /* Compute # of milliseconds since midnight */ 16699 gethrestime(&now); 16700 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 16701 now.tv_nsec / (NANOSEC / MILLISEC); 16702 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 16703 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 16704 break; 16705 } 16706 break; 16707 } 16708 } 16709 return (0); 16710 } 16711 16712 /* 16713 * This is called after processing at least one of AH/ESP headers. 16714 * 16715 * NOTE: the ill corresponding to ipsec_in_ill_index may not be 16716 * the actual, physical interface on which the packet was received, 16717 * but, when ip_strict_dst_multihoming is set to 1, could be the 16718 * interface which had the ipha_dst configured when the packet went 16719 * through ip_rput. The ill_index corresponding to the recv_ill 16720 * is saved in ipsec_in_rill_index 16721 */ 16722 void 16723 ip_fanout_proto_again(mblk_t *ipsec_mp, ill_t *ill, ill_t *recv_ill, ire_t *ire) 16724 { 16725 mblk_t *mp; 16726 ipaddr_t dst; 16727 in6_addr_t *v6dstp; 16728 ipha_t *ipha; 16729 ip6_t *ip6h; 16730 ipsec_in_t *ii; 16731 boolean_t ill_need_rele = B_FALSE; 16732 boolean_t rill_need_rele = B_FALSE; 16733 boolean_t ire_need_rele = B_FALSE; 16734 16735 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 16736 ASSERT(ii->ipsec_in_ill_index != 0); 16737 16738 mp = ipsec_mp->b_cont; 16739 ASSERT(mp != NULL); 16740 16741 16742 if (ill == NULL) { 16743 ASSERT(recv_ill == NULL); 16744 /* 16745 * We need to get the original queue on which ip_rput_local 16746 * or ip_rput_data_v6 was called. 16747 */ 16748 ill = ill_lookup_on_ifindex(ii->ipsec_in_ill_index, 16749 !ii->ipsec_in_v4, NULL, NULL, NULL, NULL); 16750 ill_need_rele = B_TRUE; 16751 16752 if (ii->ipsec_in_ill_index != ii->ipsec_in_rill_index) { 16753 recv_ill = ill_lookup_on_ifindex( 16754 ii->ipsec_in_rill_index, !ii->ipsec_in_v4, 16755 NULL, NULL, NULL, NULL); 16756 rill_need_rele = B_TRUE; 16757 } else { 16758 recv_ill = ill; 16759 } 16760 16761 if ((ill == NULL) || (recv_ill == NULL)) { 16762 ip0dbg(("ip_fanout_proto_again: interface " 16763 "disappeared\n")); 16764 if (ill != NULL) 16765 ill_refrele(ill); 16766 if (recv_ill != NULL) 16767 ill_refrele(recv_ill); 16768 freemsg(ipsec_mp); 16769 return; 16770 } 16771 } 16772 16773 ASSERT(ill != NULL && recv_ill != NULL); 16774 16775 if (mp->b_datap->db_type == M_CTL) { 16776 /* 16777 * AH/ESP is returning the ICMP message after 16778 * removing their headers. Fanout again till 16779 * it gets to the right protocol. 16780 */ 16781 if (ii->ipsec_in_v4) { 16782 icmph_t *icmph; 16783 int iph_hdr_length; 16784 int hdr_length; 16785 16786 ipha = (ipha_t *)mp->b_rptr; 16787 iph_hdr_length = IPH_HDR_LENGTH(ipha); 16788 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 16789 ipha = (ipha_t *)&icmph[1]; 16790 hdr_length = IPH_HDR_LENGTH(ipha); 16791 /* 16792 * icmp_inbound_error_fanout may need to do pullupmsg. 16793 * Reset the type to M_DATA. 16794 */ 16795 mp->b_datap->db_type = M_DATA; 16796 icmp_inbound_error_fanout(ill->ill_rq, ill, ipsec_mp, 16797 icmph, ipha, iph_hdr_length, hdr_length, B_TRUE, 16798 B_FALSE, ill, ii->ipsec_in_zoneid); 16799 } else { 16800 icmp6_t *icmp6; 16801 int hdr_length; 16802 16803 ip6h = (ip6_t *)mp->b_rptr; 16804 /* Don't call hdr_length_v6() unless you have to. */ 16805 if (ip6h->ip6_nxt != IPPROTO_ICMPV6) 16806 hdr_length = ip_hdr_length_v6(mp, ip6h); 16807 else 16808 hdr_length = IPV6_HDR_LEN; 16809 16810 icmp6 = (icmp6_t *)(&mp->b_rptr[hdr_length]); 16811 /* 16812 * icmp_inbound_error_fanout_v6 may need to do 16813 * pullupmsg. Reset the type to M_DATA. 16814 */ 16815 mp->b_datap->db_type = M_DATA; 16816 icmp_inbound_error_fanout_v6(ill->ill_rq, ipsec_mp, 16817 ip6h, icmp6, ill, B_TRUE, ii->ipsec_in_zoneid); 16818 } 16819 if (ill_need_rele) 16820 ill_refrele(ill); 16821 if (rill_need_rele) 16822 ill_refrele(recv_ill); 16823 return; 16824 } 16825 16826 if (ii->ipsec_in_v4) { 16827 ipha = (ipha_t *)mp->b_rptr; 16828 dst = ipha->ipha_dst; 16829 if (CLASSD(dst)) { 16830 /* 16831 * Multicast has to be delivered to all streams. 16832 */ 16833 dst = INADDR_BROADCAST; 16834 } 16835 16836 if (ire == NULL) { 16837 ire = ire_cache_lookup(dst, ii->ipsec_in_zoneid, 16838 MBLK_GETLABEL(mp)); 16839 if (ire == NULL) { 16840 if (ill_need_rele) 16841 ill_refrele(ill); 16842 if (rill_need_rele) 16843 ill_refrele(recv_ill); 16844 ip1dbg(("ip_fanout_proto_again: " 16845 "IRE not found")); 16846 freemsg(ipsec_mp); 16847 return; 16848 } 16849 ire_need_rele = B_TRUE; 16850 } 16851 16852 switch (ipha->ipha_protocol) { 16853 case IPPROTO_UDP: 16854 ip_udp_input(ill->ill_rq, ipsec_mp, ipha, ire, 16855 recv_ill); 16856 if (ire_need_rele) 16857 ire_refrele(ire); 16858 break; 16859 case IPPROTO_TCP: 16860 if (!ire_need_rele) 16861 IRE_REFHOLD(ire); 16862 mp = ip_tcp_input(mp, ipha, ill, B_TRUE, 16863 ire, ipsec_mp, 0, ill->ill_rq, NULL); 16864 IRE_REFRELE(ire); 16865 if (mp != NULL) 16866 squeue_enter_chain(GET_SQUEUE(mp), mp, 16867 mp, 1, SQTAG_IP_PROTO_AGAIN); 16868 break; 16869 case IPPROTO_SCTP: 16870 if (!ire_need_rele) 16871 IRE_REFHOLD(ire); 16872 ip_sctp_input(mp, ipha, ill, B_TRUE, ire, 16873 ipsec_mp, 0, ill->ill_rq, dst); 16874 break; 16875 default: 16876 ip_proto_input(ill->ill_rq, ipsec_mp, ipha, ire, 16877 recv_ill); 16878 if (ire_need_rele) 16879 ire_refrele(ire); 16880 break; 16881 } 16882 } else { 16883 uint32_t rput_flags = 0; 16884 16885 ip6h = (ip6_t *)mp->b_rptr; 16886 v6dstp = &ip6h->ip6_dst; 16887 /* 16888 * XXX Assumes ip_rput_v6 sets ll_multicast only for multicast 16889 * address. 16890 * 16891 * Currently, we don't store that state in the IPSEC_IN 16892 * message, and we may need to. 16893 */ 16894 rput_flags |= (IN6_IS_ADDR_MULTICAST(v6dstp) ? 16895 IP6_IN_LLMCAST : 0); 16896 ip_rput_data_v6(ill->ill_rq, ill, ipsec_mp, ip6h, rput_flags, 16897 NULL, NULL); 16898 } 16899 if (ill_need_rele) 16900 ill_refrele(ill); 16901 if (rill_need_rele) 16902 ill_refrele(recv_ill); 16903 } 16904 16905 /* 16906 * Call ill_frag_timeout to do garbage collection. ill_frag_timeout 16907 * returns 'true' if there are still fragments left on the queue, in 16908 * which case we restart the timer. 16909 */ 16910 void 16911 ill_frag_timer(void *arg) 16912 { 16913 ill_t *ill = (ill_t *)arg; 16914 boolean_t frag_pending; 16915 16916 mutex_enter(&ill->ill_lock); 16917 ASSERT(!ill->ill_fragtimer_executing); 16918 if (ill->ill_state_flags & ILL_CONDEMNED) { 16919 ill->ill_frag_timer_id = 0; 16920 mutex_exit(&ill->ill_lock); 16921 return; 16922 } 16923 ill->ill_fragtimer_executing = 1; 16924 mutex_exit(&ill->ill_lock); 16925 16926 frag_pending = ill_frag_timeout(ill, ip_g_frag_timeout); 16927 16928 /* 16929 * Restart the timer, if we have fragments pending or if someone 16930 * wanted us to be scheduled again. 16931 */ 16932 mutex_enter(&ill->ill_lock); 16933 ill->ill_fragtimer_executing = 0; 16934 ill->ill_frag_timer_id = 0; 16935 if (frag_pending || ill->ill_fragtimer_needrestart) 16936 ill_frag_timer_start(ill); 16937 mutex_exit(&ill->ill_lock); 16938 } 16939 16940 void 16941 ill_frag_timer_start(ill_t *ill) 16942 { 16943 ASSERT(MUTEX_HELD(&ill->ill_lock)); 16944 16945 /* If the ill is closing or opening don't proceed */ 16946 if (ill->ill_state_flags & ILL_CONDEMNED) 16947 return; 16948 16949 if (ill->ill_fragtimer_executing) { 16950 /* 16951 * ill_frag_timer is currently executing. Just record the 16952 * the fact that we want the timer to be restarted. 16953 * ill_frag_timer will post a timeout before it returns, 16954 * ensuring it will be called again. 16955 */ 16956 ill->ill_fragtimer_needrestart = 1; 16957 return; 16958 } 16959 16960 if (ill->ill_frag_timer_id == 0) { 16961 /* 16962 * The timer is neither running nor is the timeout handler 16963 * executing. Post a timeout so that ill_frag_timer will be 16964 * called 16965 */ 16966 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill, 16967 MSEC_TO_TICK(ip_g_frag_timo_ms >> 1)); 16968 ill->ill_fragtimer_needrestart = 0; 16969 } 16970 } 16971 16972 /* 16973 * This routine is needed for loopback when forwarding multicasts. 16974 * 16975 * IPQoS Notes: 16976 * IPPF processing is done in fanout routines. 16977 * Policy processing is done only if IPP_lOCAL_IN is enabled. Further, 16978 * processing for IPSec packets is done when it comes back in clear. 16979 * NOTE : The callers of this function need to do the ire_refrele for the 16980 * ire that is being passed in. 16981 */ 16982 void 16983 ip_proto_input(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire, 16984 ill_t *recv_ill) 16985 { 16986 ill_t *ill = (ill_t *)q->q_ptr; 16987 uint32_t sum; 16988 uint32_t u1; 16989 uint32_t u2; 16990 int hdr_length; 16991 boolean_t mctl_present; 16992 mblk_t *first_mp = mp; 16993 mblk_t *hada_mp = NULL; 16994 ipha_t *inner_ipha; 16995 16996 TRACE_1(TR_FAC_IP, TR_IP_RPUT_LOCL_START, 16997 "ip_rput_locl_start: q %p", q); 16998 16999 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17000 ASSERT(ill != NULL); 17001 17002 17003 #define rptr ((uchar_t *)ipha) 17004 #define iphs ((uint16_t *)ipha) 17005 17006 /* 17007 * no UDP or TCP packet should come here anymore. 17008 */ 17009 ASSERT((ipha->ipha_protocol != IPPROTO_TCP) && 17010 (ipha->ipha_protocol != IPPROTO_UDP)); 17011 17012 EXTRACT_PKT_MP(mp, first_mp, mctl_present); 17013 if (mctl_present && 17014 ((da_ipsec_t *)first_mp->b_rptr)->da_type == IPHADA_M_CTL) { 17015 ASSERT(MBLKL(first_mp) >= sizeof (da_ipsec_t)); 17016 17017 /* 17018 * It's an IPsec accelerated packet. 17019 * Keep a pointer to the data attributes around until 17020 * we allocate the ipsec_info_t. 17021 */ 17022 IPSECHW_DEBUG(IPSECHW_PKT, 17023 ("ip_rput_local: inbound HW accelerated IPsec pkt\n")); 17024 hada_mp = first_mp; 17025 hada_mp->b_cont = NULL; 17026 /* 17027 * Since it is accelerated, it comes directly from 17028 * the ill and the data attributes is followed by 17029 * the packet data. 17030 */ 17031 ASSERT(mp->b_datap->db_type != M_CTL); 17032 first_mp = mp; 17033 mctl_present = B_FALSE; 17034 } 17035 17036 /* 17037 * IF M_CTL is not present, then ipsec_in_is_secure 17038 * should return B_TRUE. There is a case where loopback 17039 * packets has an M_CTL in the front with all the 17040 * IPSEC options set to IPSEC_PREF_NEVER - which means 17041 * ipsec_in_is_secure will return B_FALSE. As loopback 17042 * packets never comes here, it is safe to ASSERT the 17043 * following. 17044 */ 17045 ASSERT(!mctl_present || ipsec_in_is_secure(first_mp)); 17046 17047 17048 /* u1 is # words of IP options */ 17049 u1 = ipha->ipha_version_and_hdr_length - (uchar_t)((IP_VERSION << 4) 17050 + IP_SIMPLE_HDR_LENGTH_IN_WORDS); 17051 17052 if (u1) { 17053 if (!ip_options_cksum(q, ill, mp, ipha, ire)) { 17054 if (hada_mp != NULL) 17055 freemsg(hada_mp); 17056 return; 17057 } 17058 } else { 17059 /* Check the IP header checksum. */ 17060 #define uph ((uint16_t *)ipha) 17061 sum = uph[0] + uph[1] + uph[2] + uph[3] + uph[4] + uph[5] + 17062 uph[6] + uph[7] + uph[8] + uph[9]; 17063 #undef uph 17064 /* finish doing IP checksum */ 17065 sum = (sum & 0xFFFF) + (sum >> 16); 17066 sum = ~(sum + (sum >> 16)) & 0xFFFF; 17067 /* 17068 * Don't verify header checksum if this packet is coming 17069 * back from AH/ESP as we already did it. 17070 */ 17071 if (!mctl_present && (sum && sum != 0xFFFF)) { 17072 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInCksumErrs); 17073 goto drop_pkt; 17074 } 17075 } 17076 17077 /* 17078 * Count for SNMP of inbound packets for ire. As ip_proto_input 17079 * might be called more than once for secure packets, count only 17080 * the first time. 17081 */ 17082 if (!mctl_present) { 17083 UPDATE_IB_PKT_COUNT(ire); 17084 ire->ire_last_used_time = lbolt; 17085 } 17086 17087 /* Check for fragmentation offset. */ 17088 u2 = ntohs(ipha->ipha_fragment_offset_and_flags); 17089 u1 = u2 & (IPH_MF | IPH_OFFSET); 17090 if (u1) { 17091 /* 17092 * We re-assemble fragments before we do the AH/ESP 17093 * processing. Thus, M_CTL should not be present 17094 * while we are re-assembling. 17095 */ 17096 ASSERT(!mctl_present); 17097 ASSERT(first_mp == mp); 17098 if (!ip_rput_fragment(q, &mp, ipha, NULL, NULL)) { 17099 return; 17100 } 17101 /* 17102 * Make sure that first_mp points back to mp as 17103 * the mp we came in with could have changed in 17104 * ip_rput_fragment(). 17105 */ 17106 ipha = (ipha_t *)mp->b_rptr; 17107 first_mp = mp; 17108 } 17109 17110 /* 17111 * Clear hardware checksumming flag as it is currently only 17112 * used by TCP and UDP. 17113 */ 17114 DB_CKSUMFLAGS(mp) = 0; 17115 17116 /* Now we have a complete datagram, destined for this machine. */ 17117 u1 = IPH_HDR_LENGTH(ipha); 17118 switch (ipha->ipha_protocol) { 17119 case IPPROTO_ICMP: { 17120 ire_t *ire_zone; 17121 ilm_t *ilm; 17122 mblk_t *mp1; 17123 zoneid_t last_zoneid; 17124 17125 if (CLASSD(ipha->ipha_dst) && 17126 !(recv_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 17127 ASSERT(ire->ire_type == IRE_BROADCAST); 17128 /* 17129 * In the multicast case, applications may have joined 17130 * the group from different zones, so we need to deliver 17131 * the packet to each of them. Loop through the 17132 * multicast memberships structures (ilm) on the receive 17133 * ill and send a copy of the packet up each matching 17134 * one. However, we don't do this for multicasts sent on 17135 * the loopback interface (PHYI_LOOPBACK flag set) as 17136 * they must stay in the sender's zone. 17137 * 17138 * ilm_add_v6() ensures that ilms in the same zone are 17139 * contiguous in the ill_ilm list. We use this property 17140 * to avoid sending duplicates needed when two 17141 * applications in the same zone join the same group on 17142 * different logical interfaces: we ignore the ilm if 17143 * its zoneid is the same as the last matching one. 17144 * In addition, the sending of the packet for 17145 * ire_zoneid is delayed until all of the other ilms 17146 * have been exhausted. 17147 */ 17148 last_zoneid = -1; 17149 ILM_WALKER_HOLD(recv_ill); 17150 for (ilm = recv_ill->ill_ilm; ilm != NULL; 17151 ilm = ilm->ilm_next) { 17152 if ((ilm->ilm_flags & ILM_DELETED) || 17153 ipha->ipha_dst != ilm->ilm_addr || 17154 ilm->ilm_zoneid == last_zoneid || 17155 ilm->ilm_zoneid == ire->ire_zoneid || 17156 ilm->ilm_zoneid == ALL_ZONES || 17157 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 17158 continue; 17159 mp1 = ip_copymsg(first_mp); 17160 if (mp1 == NULL) 17161 continue; 17162 icmp_inbound(q, mp1, B_TRUE, ill, 17163 0, sum, mctl_present, B_TRUE, 17164 recv_ill, ilm->ilm_zoneid); 17165 last_zoneid = ilm->ilm_zoneid; 17166 } 17167 ILM_WALKER_RELE(recv_ill); 17168 } else if (ire->ire_type == IRE_BROADCAST) { 17169 /* 17170 * In the broadcast case, there may be many zones 17171 * which need a copy of the packet delivered to them. 17172 * There is one IRE_BROADCAST per broadcast address 17173 * and per zone; we walk those using a helper function. 17174 * In addition, the sending of the packet for ire is 17175 * delayed until all of the other ires have been 17176 * processed. 17177 */ 17178 IRB_REFHOLD(ire->ire_bucket); 17179 ire_zone = NULL; 17180 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 17181 ire)) != NULL) { 17182 mp1 = ip_copymsg(first_mp); 17183 if (mp1 == NULL) 17184 continue; 17185 17186 UPDATE_IB_PKT_COUNT(ire_zone); 17187 ire_zone->ire_last_used_time = lbolt; 17188 icmp_inbound(q, mp1, B_TRUE, ill, 17189 0, sum, mctl_present, B_TRUE, 17190 recv_ill, ire_zone->ire_zoneid); 17191 } 17192 IRB_REFRELE(ire->ire_bucket); 17193 } 17194 icmp_inbound(q, first_mp, (ire->ire_type == IRE_BROADCAST), 17195 ill, 0, sum, mctl_present, B_TRUE, recv_ill, 17196 ire->ire_zoneid); 17197 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17198 "ip_rput_locl_end: q %p (%S)", q, "icmp"); 17199 return; 17200 } 17201 case IPPROTO_IGMP: 17202 /* 17203 * If we are not willing to accept IGMP packets in clear, 17204 * then check with global policy. 17205 */ 17206 if (igmp_accept_clear_messages == 0) { 17207 first_mp = ipsec_check_global_policy(first_mp, NULL, 17208 ipha, NULL, mctl_present); 17209 if (first_mp == NULL) 17210 return; 17211 } 17212 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17213 freemsg(first_mp); 17214 ip1dbg(("ip_proto_input: zone all cannot accept raw")); 17215 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17216 return; 17217 } 17218 if ((mp = igmp_input(q, mp, ill)) == NULL) { 17219 /* Bad packet - discarded by igmp_input */ 17220 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17221 "ip_rput_locl_end: q %p (%S)", q, "igmp"); 17222 if (mctl_present) 17223 freeb(first_mp); 17224 return; 17225 } 17226 /* 17227 * igmp_input() may have returned the pulled up message. 17228 * So first_mp and ipha need to be reinitialized. 17229 */ 17230 ipha = (ipha_t *)mp->b_rptr; 17231 if (mctl_present) 17232 first_mp->b_cont = mp; 17233 else 17234 first_mp = mp; 17235 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17236 /* No user-level listener for IGMP packets */ 17237 goto drop_pkt; 17238 } 17239 /* deliver to local raw users */ 17240 break; 17241 case IPPROTO_PIM: 17242 /* 17243 * If we are not willing to accept PIM packets in clear, 17244 * then check with global policy. 17245 */ 17246 if (pim_accept_clear_messages == 0) { 17247 first_mp = ipsec_check_global_policy(first_mp, NULL, 17248 ipha, NULL, mctl_present); 17249 if (first_mp == NULL) 17250 return; 17251 } 17252 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_TRUE)) { 17253 freemsg(first_mp); 17254 ip1dbg(("ip_proto_input: zone all cannot accept PIM")); 17255 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17256 return; 17257 } 17258 if (pim_input(q, mp) != 0) { 17259 /* Bad packet - discarded by pim_input */ 17260 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17261 "ip_rput_locl_end: q %p (%S)", q, "pim"); 17262 if (mctl_present) 17263 freeb(first_mp); 17264 return; 17265 } 17266 17267 /* 17268 * pim_input() may have pulled up the message so ipha needs to 17269 * be reinitialized. 17270 */ 17271 ipha = (ipha_t *)mp->b_rptr; 17272 if (ipcl_proto_search(ipha->ipha_protocol) == NULL) { 17273 /* No user-level listener for PIM packets */ 17274 goto drop_pkt; 17275 } 17276 /* deliver to local raw users */ 17277 break; 17278 case IPPROTO_ENCAP: 17279 /* 17280 * Handle self-encapsulated packets (IP-in-IP where 17281 * the inner addresses == the outer addresses). 17282 */ 17283 hdr_length = IPH_HDR_LENGTH(ipha); 17284 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) > 17285 mp->b_wptr) { 17286 if (!pullupmsg(mp, (uchar_t *)ipha + hdr_length + 17287 sizeof (ipha_t) - mp->b_rptr)) { 17288 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17289 freemsg(first_mp); 17290 return; 17291 } 17292 ipha = (ipha_t *)mp->b_rptr; 17293 } 17294 inner_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length); 17295 /* 17296 * Check the sanity of the inner IP header. 17297 */ 17298 if ((IPH_HDR_VERSION(inner_ipha) != IPV4_VERSION)) { 17299 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17300 freemsg(first_mp); 17301 return; 17302 } 17303 if (IPH_HDR_LENGTH(inner_ipha) < sizeof (ipha_t)) { 17304 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17305 freemsg(first_mp); 17306 return; 17307 } 17308 if (inner_ipha->ipha_src == ipha->ipha_src && 17309 inner_ipha->ipha_dst == ipha->ipha_dst) { 17310 ipsec_in_t *ii; 17311 17312 /* 17313 * Self-encapsulated tunnel packet. Remove 17314 * the outer IP header and fanout again. 17315 * We also need to make sure that the inner 17316 * header is pulled up until options. 17317 */ 17318 mp->b_rptr = (uchar_t *)inner_ipha; 17319 ipha = inner_ipha; 17320 hdr_length = IPH_HDR_LENGTH(ipha); 17321 if ((uchar_t *)ipha + hdr_length > mp->b_wptr) { 17322 if (!pullupmsg(mp, (uchar_t *)ipha + 17323 + hdr_length - mp->b_rptr)) { 17324 freemsg(first_mp); 17325 return; 17326 } 17327 ipha = (ipha_t *)mp->b_rptr; 17328 } 17329 if (!mctl_present) { 17330 ASSERT(first_mp == mp); 17331 /* 17332 * This means that somebody is sending 17333 * Self-encapsualted packets without AH/ESP. 17334 * If AH/ESP was present, we would have already 17335 * allocated the first_mp. 17336 */ 17337 if ((first_mp = ipsec_in_alloc(B_TRUE)) == 17338 NULL) { 17339 ip1dbg(("ip_proto_input: IPSEC_IN " 17340 "allocation failure.\n")); 17341 BUMP_MIB(ill->ill_ip_mib, 17342 ipIfStatsInDiscards); 17343 freemsg(mp); 17344 return; 17345 } 17346 first_mp->b_cont = mp; 17347 } 17348 /* 17349 * We generally store the ill_index if we need to 17350 * do IPSEC processing as we lose the ill queue when 17351 * we come back. But in this case, we never should 17352 * have to store the ill_index here as it should have 17353 * been stored previously when we processed the 17354 * AH/ESP header in this routine or for non-ipsec 17355 * cases, we still have the queue. But for some bad 17356 * packets from the wire, we can get to IPSEC after 17357 * this and we better store the index for that case. 17358 */ 17359 ill = (ill_t *)q->q_ptr; 17360 ii = (ipsec_in_t *)first_mp->b_rptr; 17361 ii->ipsec_in_ill_index = 17362 ill->ill_phyint->phyint_ifindex; 17363 ii->ipsec_in_rill_index = 17364 recv_ill->ill_phyint->phyint_ifindex; 17365 if (ii->ipsec_in_decaps) { 17366 /* 17367 * This packet is self-encapsulated multiple 17368 * times. We don't want to recurse infinitely. 17369 * To keep it simple, drop the packet. 17370 */ 17371 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17372 freemsg(first_mp); 17373 return; 17374 } 17375 ii->ipsec_in_decaps = B_TRUE; 17376 ip_fanout_proto_again(first_mp, recv_ill, recv_ill, 17377 ire); 17378 return; 17379 } 17380 break; 17381 case IPPROTO_AH: 17382 case IPPROTO_ESP: { 17383 /* 17384 * Fast path for AH/ESP. If this is the first time 17385 * we are sending a datagram to AH/ESP, allocate 17386 * a IPSEC_IN message and prepend it. Otherwise, 17387 * just fanout. 17388 */ 17389 17390 int ipsec_rc; 17391 ipsec_in_t *ii; 17392 17393 IP_STAT(ipsec_proto_ahesp); 17394 if (!mctl_present) { 17395 ASSERT(first_mp == mp); 17396 if ((first_mp = ipsec_in_alloc(B_TRUE)) == NULL) { 17397 ip1dbg(("ip_proto_input: IPSEC_IN " 17398 "allocation failure.\n")); 17399 freemsg(hada_mp); /* okay ifnull */ 17400 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17401 freemsg(mp); 17402 return; 17403 } 17404 /* 17405 * Store the ill_index so that when we come back 17406 * from IPSEC we ride on the same queue. 17407 */ 17408 ill = (ill_t *)q->q_ptr; 17409 ii = (ipsec_in_t *)first_mp->b_rptr; 17410 ii->ipsec_in_ill_index = 17411 ill->ill_phyint->phyint_ifindex; 17412 ii->ipsec_in_rill_index = 17413 recv_ill->ill_phyint->phyint_ifindex; 17414 first_mp->b_cont = mp; 17415 /* 17416 * Cache hardware acceleration info. 17417 */ 17418 if (hada_mp != NULL) { 17419 IPSECHW_DEBUG(IPSECHW_PKT, 17420 ("ip_rput_local: caching data attr.\n")); 17421 ii->ipsec_in_accelerated = B_TRUE; 17422 ii->ipsec_in_da = hada_mp; 17423 hada_mp = NULL; 17424 } 17425 } else { 17426 ii = (ipsec_in_t *)first_mp->b_rptr; 17427 } 17428 17429 if (!ipsec_loaded()) { 17430 ip_proto_not_sup(q, first_mp, IP_FF_SEND_ICMP, 17431 ire->ire_zoneid); 17432 return; 17433 } 17434 17435 /* select inbound SA and have IPsec process the pkt */ 17436 if (ipha->ipha_protocol == IPPROTO_ESP) { 17437 esph_t *esph = ipsec_inbound_esp_sa(first_mp); 17438 if (esph == NULL) 17439 return; 17440 ASSERT(ii->ipsec_in_esp_sa != NULL); 17441 ASSERT(ii->ipsec_in_esp_sa->ipsa_input_func != NULL); 17442 ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func( 17443 first_mp, esph); 17444 } else { 17445 ah_t *ah = ipsec_inbound_ah_sa(first_mp); 17446 if (ah == NULL) 17447 return; 17448 ASSERT(ii->ipsec_in_ah_sa != NULL); 17449 ASSERT(ii->ipsec_in_ah_sa->ipsa_input_func != NULL); 17450 ipsec_rc = ii->ipsec_in_ah_sa->ipsa_input_func( 17451 first_mp, ah); 17452 } 17453 17454 switch (ipsec_rc) { 17455 case IPSEC_STATUS_SUCCESS: 17456 break; 17457 case IPSEC_STATUS_FAILED: 17458 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 17459 /* FALLTHRU */ 17460 case IPSEC_STATUS_PENDING: 17461 return; 17462 } 17463 /* we're done with IPsec processing, send it up */ 17464 ip_fanout_proto_again(first_mp, ill, recv_ill, ire); 17465 return; 17466 } 17467 default: 17468 break; 17469 } 17470 if (is_system_labeled() && !tsol_can_accept_raw(mp, B_FALSE)) { 17471 ip1dbg(("ip_proto_input: zone %d cannot accept raw IP", 17472 ire->ire_zoneid)); 17473 goto drop_pkt; 17474 } 17475 /* 17476 * Handle protocols with which IP is less intimate. There 17477 * can be more than one stream bound to a particular 17478 * protocol. When this is the case, each one gets a copy 17479 * of any incoming packets. 17480 */ 17481 ip_fanout_proto(q, first_mp, ill, ipha, 17482 IP_FF_SEND_ICMP | IP_FF_CKSUM | IP_FF_RAWIP, mctl_present, 17483 B_TRUE, recv_ill, ire->ire_zoneid); 17484 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17485 "ip_rput_locl_end: q %p (%S)", q, "ip_fanout_proto"); 17486 return; 17487 17488 drop_pkt: 17489 freemsg(first_mp); 17490 if (hada_mp != NULL) 17491 freeb(hada_mp); 17492 TRACE_2(TR_FAC_IP, TR_IP_RPUT_LOCL_END, 17493 "ip_rput_locl_end: q %p (%S)", q, "droppkt"); 17494 #undef rptr 17495 #undef iphs 17496 17497 } 17498 17499 /* 17500 * Update any source route, record route or timestamp options. 17501 * Check that we are at end of strict source route. 17502 * The options have already been checked for sanity in ip_rput_options(). 17503 */ 17504 static boolean_t 17505 ip_rput_local_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ire_t *ire) 17506 { 17507 ipoptp_t opts; 17508 uchar_t *opt; 17509 uint8_t optval; 17510 uint8_t optlen; 17511 ipaddr_t dst; 17512 uint32_t ts; 17513 ire_t *dst_ire; 17514 timestruc_t now; 17515 zoneid_t zoneid; 17516 ill_t *ill; 17517 17518 ASSERT(ire->ire_ipversion == IPV4_VERSION); 17519 17520 ip2dbg(("ip_rput_local_options\n")); 17521 17522 for (optval = ipoptp_first(&opts, ipha); 17523 optval != IPOPT_EOL; 17524 optval = ipoptp_next(&opts)) { 17525 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 17526 opt = opts.ipoptp_cur; 17527 optlen = opts.ipoptp_len; 17528 ip2dbg(("ip_rput_local_options: opt %d, len %d\n", 17529 optval, optlen)); 17530 switch (optval) { 17531 uint32_t off; 17532 case IPOPT_SSRR: 17533 case IPOPT_LSRR: 17534 off = opt[IPOPT_OFFSET]; 17535 off--; 17536 if (optlen < IP_ADDR_LEN || 17537 off > optlen - IP_ADDR_LEN) { 17538 /* End of source route */ 17539 ip1dbg(("ip_rput_local_options: end of SR\n")); 17540 break; 17541 } 17542 /* 17543 * This will only happen if two consecutive entries 17544 * in the source route contains our address or if 17545 * it is a packet with a loose source route which 17546 * reaches us before consuming the whole source route 17547 */ 17548 ip1dbg(("ip_rput_local_options: not end of SR\n")); 17549 if (optval == IPOPT_SSRR) { 17550 goto bad_src_route; 17551 } 17552 /* 17553 * Hack: instead of dropping the packet truncate the 17554 * source route to what has been used by filling the 17555 * rest with IPOPT_NOP. 17556 */ 17557 opt[IPOPT_OLEN] = (uint8_t)off; 17558 while (off < optlen) { 17559 opt[off++] = IPOPT_NOP; 17560 } 17561 break; 17562 case IPOPT_RR: 17563 off = opt[IPOPT_OFFSET]; 17564 off--; 17565 if (optlen < IP_ADDR_LEN || 17566 off > optlen - IP_ADDR_LEN) { 17567 /* No more room - ignore */ 17568 ip1dbg(( 17569 "ip_rput_local_options: end of RR\n")); 17570 break; 17571 } 17572 bcopy(&ire->ire_src_addr, (char *)opt + off, 17573 IP_ADDR_LEN); 17574 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17575 break; 17576 case IPOPT_TS: 17577 /* Insert timestamp if there is romm */ 17578 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17579 case IPOPT_TS_TSONLY: 17580 off = IPOPT_TS_TIMELEN; 17581 break; 17582 case IPOPT_TS_PRESPEC: 17583 case IPOPT_TS_PRESPEC_RFC791: 17584 /* Verify that the address matched */ 17585 off = opt[IPOPT_OFFSET] - 1; 17586 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17587 dst_ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 17588 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 17589 if (dst_ire == NULL) { 17590 /* Not for us */ 17591 break; 17592 } 17593 ire_refrele(dst_ire); 17594 /* FALLTHRU */ 17595 case IPOPT_TS_TSANDADDR: 17596 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17597 break; 17598 default: 17599 /* 17600 * ip_*put_options should have already 17601 * dropped this packet. 17602 */ 17603 cmn_err(CE_PANIC, "ip_rput_local_options: " 17604 "unknown IT - bug in ip_rput_options?\n"); 17605 return (B_TRUE); /* Keep "lint" happy */ 17606 } 17607 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 17608 /* Increase overflow counter */ 17609 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 17610 opt[IPOPT_POS_OV_FLG] = 17611 (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) | 17612 (off << 4)); 17613 break; 17614 } 17615 off = opt[IPOPT_OFFSET] - 1; 17616 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17617 case IPOPT_TS_PRESPEC: 17618 case IPOPT_TS_PRESPEC_RFC791: 17619 case IPOPT_TS_TSANDADDR: 17620 bcopy(&ire->ire_src_addr, (char *)opt + off, 17621 IP_ADDR_LEN); 17622 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 17623 /* FALLTHRU */ 17624 case IPOPT_TS_TSONLY: 17625 off = opt[IPOPT_OFFSET] - 1; 17626 /* Compute # of milliseconds since midnight */ 17627 gethrestime(&now); 17628 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 17629 now.tv_nsec / (NANOSEC / MILLISEC); 17630 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 17631 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 17632 break; 17633 } 17634 break; 17635 } 17636 } 17637 return (B_TRUE); 17638 17639 bad_src_route: 17640 q = WR(q); 17641 if (q->q_next != NULL) 17642 ill = q->q_ptr; 17643 else 17644 ill = NULL; 17645 17646 /* make sure we clear any indication of a hardware checksum */ 17647 DB_CKSUMFLAGS(mp) = 0; 17648 zoneid = ipif_lookup_addr_zoneid(ipha->ipha_dst, ill); 17649 if (zoneid == ALL_ZONES) 17650 freemsg(mp); 17651 else 17652 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17653 return (B_FALSE); 17654 17655 } 17656 17657 /* 17658 * Process IP options in an inbound packet. If an option affects the 17659 * effective destination address, return the next hop address via dstp. 17660 * Returns -1 if something fails in which case an ICMP error has been sent 17661 * and mp freed. 17662 */ 17663 static int 17664 ip_rput_options(queue_t *q, mblk_t *mp, ipha_t *ipha, ipaddr_t *dstp) 17665 { 17666 ipoptp_t opts; 17667 uchar_t *opt; 17668 uint8_t optval; 17669 uint8_t optlen; 17670 ipaddr_t dst; 17671 intptr_t code = 0; 17672 ire_t *ire = NULL; 17673 zoneid_t zoneid; 17674 ill_t *ill; 17675 17676 ip2dbg(("ip_rput_options\n")); 17677 dst = ipha->ipha_dst; 17678 for (optval = ipoptp_first(&opts, ipha); 17679 optval != IPOPT_EOL; 17680 optval = ipoptp_next(&opts)) { 17681 opt = opts.ipoptp_cur; 17682 optlen = opts.ipoptp_len; 17683 ip2dbg(("ip_rput_options: opt %d, len %d\n", 17684 optval, optlen)); 17685 /* 17686 * Note: we need to verify the checksum before we 17687 * modify anything thus this routine only extracts the next 17688 * hop dst from any source route. 17689 */ 17690 switch (optval) { 17691 uint32_t off; 17692 case IPOPT_SSRR: 17693 case IPOPT_LSRR: 17694 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17695 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17696 if (ire == NULL) { 17697 if (optval == IPOPT_SSRR) { 17698 ip1dbg(("ip_rput_options: not next" 17699 " strict source route 0x%x\n", 17700 ntohl(dst))); 17701 code = (char *)&ipha->ipha_dst - 17702 (char *)ipha; 17703 goto param_prob; /* RouterReq's */ 17704 } 17705 ip2dbg(("ip_rput_options: " 17706 "not next source route 0x%x\n", 17707 ntohl(dst))); 17708 break; 17709 } 17710 ire_refrele(ire); 17711 17712 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17713 ip1dbg(( 17714 "ip_rput_options: bad option offset\n")); 17715 code = (char *)&opt[IPOPT_OLEN] - 17716 (char *)ipha; 17717 goto param_prob; 17718 } 17719 off = opt[IPOPT_OFFSET]; 17720 off--; 17721 redo_srr: 17722 if (optlen < IP_ADDR_LEN || 17723 off > optlen - IP_ADDR_LEN) { 17724 /* End of source route */ 17725 ip1dbg(("ip_rput_options: end of SR\n")); 17726 break; 17727 } 17728 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 17729 ip1dbg(("ip_rput_options: next hop 0x%x\n", 17730 ntohl(dst))); 17731 17732 /* 17733 * Check if our address is present more than 17734 * once as consecutive hops in source route. 17735 * XXX verify per-interface ip_forwarding 17736 * for source route? 17737 */ 17738 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 17739 ALL_ZONES, NULL, MATCH_IRE_TYPE); 17740 17741 if (ire != NULL) { 17742 ire_refrele(ire); 17743 off += IP_ADDR_LEN; 17744 goto redo_srr; 17745 } 17746 17747 if (dst == htonl(INADDR_LOOPBACK)) { 17748 ip1dbg(("ip_rput_options: loopback addr in " 17749 "source route!\n")); 17750 goto bad_src_route; 17751 } 17752 /* 17753 * For strict: verify that dst is directly 17754 * reachable. 17755 */ 17756 if (optval == IPOPT_SSRR) { 17757 ire = ire_ftable_lookup(dst, 0, 0, 17758 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 17759 MBLK_GETLABEL(mp), 17760 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 17761 if (ire == NULL) { 17762 ip1dbg(("ip_rput_options: SSRR not " 17763 "directly reachable: 0x%x\n", 17764 ntohl(dst))); 17765 goto bad_src_route; 17766 } 17767 ire_refrele(ire); 17768 } 17769 /* 17770 * Defer update of the offset and the record route 17771 * until the packet is forwarded. 17772 */ 17773 break; 17774 case IPOPT_RR: 17775 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17776 ip1dbg(( 17777 "ip_rput_options: bad option offset\n")); 17778 code = (char *)&opt[IPOPT_OLEN] - 17779 (char *)ipha; 17780 goto param_prob; 17781 } 17782 break; 17783 case IPOPT_TS: 17784 /* 17785 * Verify that length >= 5 and that there is either 17786 * room for another timestamp or that the overflow 17787 * counter is not maxed out. 17788 */ 17789 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 17790 if (optlen < IPOPT_MINLEN_IT) { 17791 goto param_prob; 17792 } 17793 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 17794 ip1dbg(( 17795 "ip_rput_options: bad option offset\n")); 17796 code = (char *)&opt[IPOPT_OFFSET] - 17797 (char *)ipha; 17798 goto param_prob; 17799 } 17800 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 17801 case IPOPT_TS_TSONLY: 17802 off = IPOPT_TS_TIMELEN; 17803 break; 17804 case IPOPT_TS_TSANDADDR: 17805 case IPOPT_TS_PRESPEC: 17806 case IPOPT_TS_PRESPEC_RFC791: 17807 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 17808 break; 17809 default: 17810 code = (char *)&opt[IPOPT_POS_OV_FLG] - 17811 (char *)ipha; 17812 goto param_prob; 17813 } 17814 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 17815 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 17816 /* 17817 * No room and the overflow counter is 15 17818 * already. 17819 */ 17820 goto param_prob; 17821 } 17822 break; 17823 } 17824 } 17825 17826 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) { 17827 *dstp = dst; 17828 return (0); 17829 } 17830 17831 ip1dbg(("ip_rput_options: error processing IP options.")); 17832 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 17833 17834 param_prob: 17835 q = WR(q); 17836 if (q->q_next != NULL) 17837 ill = q->q_ptr; 17838 else 17839 ill = NULL; 17840 17841 /* make sure we clear any indication of a hardware checksum */ 17842 DB_CKSUMFLAGS(mp) = 0; 17843 /* Don't know whether this is for non-global or global/forwarding */ 17844 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17845 if (zoneid == ALL_ZONES) 17846 freemsg(mp); 17847 else 17848 icmp_param_problem(q, mp, (uint8_t)code, zoneid); 17849 return (-1); 17850 17851 bad_src_route: 17852 q = WR(q); 17853 if (q->q_next != NULL) 17854 ill = q->q_ptr; 17855 else 17856 ill = NULL; 17857 17858 /* make sure we clear any indication of a hardware checksum */ 17859 DB_CKSUMFLAGS(mp) = 0; 17860 zoneid = ipif_lookup_addr_zoneid(dst, ill); 17861 if (zoneid == ALL_ZONES) 17862 freemsg(mp); 17863 else 17864 icmp_unreachable(q, mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 17865 return (-1); 17866 } 17867 17868 /* 17869 * IP & ICMP info in >=14 msg's ... 17870 * - ip fixed part (mib2_ip_t) 17871 * - icmp fixed part (mib2_icmp_t) 17872 * - ipAddrEntryTable (ip 20) all IPv4 ipifs 17873 * - ipRouteEntryTable (ip 21) all IPv4 IREs 17874 * - ipNetToMediaEntryTable (ip 22) [filled in by the arp module] 17875 * - ipRouteAttributeTable (ip 102) labeled routes 17876 * - ip multicast membership (ip_member_t) 17877 * - ip multicast source filtering (ip_grpsrc_t) 17878 * - igmp fixed part (struct igmpstat) 17879 * - multicast routing stats (struct mrtstat) 17880 * - multicast routing vifs (array of struct vifctl) 17881 * - multicast routing routes (array of struct mfcctl) 17882 * - ip6 fixed part (mib2_ipv6IfStatsEntry_t) 17883 * One per ill plus one generic 17884 * - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t) 17885 * One per ill plus one generic 17886 * - ipv6RouteEntry all IPv6 IREs 17887 * - ipv6RouteAttributeTable (ip6 102) labeled routes 17888 * - ipv6NetToMediaEntry all Neighbor Cache entries 17889 * - ipv6AddrEntry all IPv6 ipifs 17890 * - ipv6 multicast membership (ipv6_member_t) 17891 * - ipv6 multicast source filtering (ipv6_grpsrc_t) 17892 * 17893 * MIB2_IP_MEDIA is filled in by the arp module with ARP cache entries. 17894 * 17895 * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is 17896 * already filled in by the caller. 17897 * Return value of 0 indicates that no messages were sent and caller 17898 * should free mpctl. 17899 */ 17900 int 17901 ip_snmp_get(queue_t *q, mblk_t *mpctl) 17902 { 17903 if (mpctl == NULL || mpctl->b_cont == NULL) { 17904 return (0); 17905 } 17906 17907 if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl)) == NULL) { 17908 return (1); 17909 } 17910 17911 if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl)) == NULL) { 17912 return (1); 17913 } 17914 17915 if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl)) == NULL) { 17916 return (1); 17917 } 17918 17919 if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl)) == NULL) { 17920 return (1); 17921 } 17922 17923 if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl)) == NULL) { 17924 return (1); 17925 } 17926 17927 if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl)) == NULL) { 17928 return (1); 17929 } 17930 17931 if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl)) == NULL) { 17932 return (1); 17933 } 17934 17935 if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl)) == NULL) { 17936 return (1); 17937 } 17938 17939 if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl)) == NULL) { 17940 return (1); 17941 } 17942 17943 if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl)) == NULL) { 17944 return (1); 17945 } 17946 17947 if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl)) == NULL) { 17948 return (1); 17949 } 17950 17951 if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl)) == NULL) { 17952 return (1); 17953 } 17954 17955 if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl)) == NULL) { 17956 return (1); 17957 } 17958 17959 if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl)) == NULL) { 17960 return (1); 17961 } 17962 17963 if ((mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl)) == NULL) { 17964 return (1); 17965 } 17966 17967 if ((mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl)) == NULL) { 17968 return (1); 17969 } 17970 17971 if ((mpctl = sctp_snmp_get_mib2(q, mpctl)) == NULL) { 17972 return (1); 17973 } 17974 freemsg(mpctl); 17975 return (1); 17976 } 17977 17978 17979 /* Get global (legacy) IPv4 statistics */ 17980 static mblk_t * 17981 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib) 17982 { 17983 mib2_ip_t old_ip_mib; 17984 struct opthdr *optp; 17985 mblk_t *mp2ctl; 17986 17987 /* 17988 * make a copy of the original message 17989 */ 17990 mp2ctl = copymsg(mpctl); 17991 17992 /* fixed length IP structure... */ 17993 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 17994 optp->level = MIB2_IP; 17995 optp->name = 0; 17996 SET_MIB(old_ip_mib.ipForwarding, 17997 (WE_ARE_FORWARDING ? 1 : 2)); 17998 SET_MIB(old_ip_mib.ipDefaultTTL, 17999 (uint32_t)ip_def_ttl); 18000 SET_MIB(old_ip_mib.ipReasmTimeout, 18001 ip_g_frag_timeout); 18002 SET_MIB(old_ip_mib.ipAddrEntrySize, 18003 sizeof (mib2_ipAddrEntry_t)); 18004 SET_MIB(old_ip_mib.ipRouteEntrySize, 18005 sizeof (mib2_ipRouteEntry_t)); 18006 SET_MIB(old_ip_mib.ipNetToMediaEntrySize, 18007 sizeof (mib2_ipNetToMediaEntry_t)); 18008 SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t)); 18009 SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18010 SET_MIB(old_ip_mib.ipRouteAttributeSize, 18011 sizeof (mib2_ipAttributeEntry_t)); 18012 SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t)); 18013 18014 /* 18015 * Grab the statistics from the new IP MIB 18016 */ 18017 SET_MIB(old_ip_mib.ipInReceives, 18018 (uint32_t)ipmib->ipIfStatsHCInReceives); 18019 SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors); 18020 SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors); 18021 SET_MIB(old_ip_mib.ipForwDatagrams, 18022 (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams); 18023 SET_MIB(old_ip_mib.ipInUnknownProtos, 18024 ipmib->ipIfStatsInUnknownProtos); 18025 SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards); 18026 SET_MIB(old_ip_mib.ipInDelivers, 18027 (uint32_t)ipmib->ipIfStatsHCInDelivers); 18028 SET_MIB(old_ip_mib.ipOutRequests, 18029 (uint32_t)ipmib->ipIfStatsHCOutRequests); 18030 SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards); 18031 SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes); 18032 SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds); 18033 SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs); 18034 SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails); 18035 SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs); 18036 SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails); 18037 SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates); 18038 18039 /* ipRoutingDiscards is not being used */ 18040 SET_MIB(old_ip_mib.ipRoutingDiscards, 0); 18041 SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs); 18042 SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts); 18043 SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs); 18044 SET_MIB(old_ip_mib.ipReasmDuplicates, 18045 ipmib->ipIfStatsReasmDuplicates); 18046 SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups); 18047 SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits); 18048 SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs); 18049 SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows); 18050 SET_MIB(old_ip_mib.rawipInOverflows, 18051 ipmib->rawipIfStatsInOverflows); 18052 18053 SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded); 18054 SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed); 18055 SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion); 18056 SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion); 18057 SET_MIB(old_ip_mib.ipOutSwitchIPv6, 18058 ipmib->ipIfStatsOutSwitchIPVersion); 18059 18060 if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib, 18061 (int)sizeof (old_ip_mib))) { 18062 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n", 18063 (uint_t)sizeof (old_ip_mib))); 18064 } 18065 18066 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18067 ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n", 18068 (int)optp->level, (int)optp->name, (int)optp->len)); 18069 qreply(q, mpctl); 18070 return (mp2ctl); 18071 } 18072 18073 /* Per interface IPv4 statistics */ 18074 static mblk_t * 18075 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl) 18076 { 18077 struct opthdr *optp; 18078 mblk_t *mp2ctl; 18079 ill_t *ill; 18080 ill_walk_context_t ctx; 18081 mblk_t *mp_tail = NULL; 18082 mib2_ipIfStatsEntry_t global_ip_mib; 18083 18084 /* 18085 * Make a copy of the original message 18086 */ 18087 mp2ctl = copymsg(mpctl); 18088 18089 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18090 optp->level = MIB2_IP; 18091 optp->name = MIB2_IP_TRAFFIC_STATS; 18092 /* Include "unknown interface" ip_mib */ 18093 ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 18094 ip_mib.ipIfStatsIfIndex = MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18095 SET_MIB(ip_mib.ipIfStatsForwarding, (WE_ARE_FORWARDING ? 1 : 2)); 18096 SET_MIB(ip_mib.ipIfStatsDefaultTTL, (uint32_t)ip_def_ttl); 18097 SET_MIB(ip_mib.ipIfStatsEntrySize, sizeof (mib2_ipIfStatsEntry_t)); 18098 SET_MIB(ip_mib.ipIfStatsAddrEntrySize, sizeof (mib2_ipAddrEntry_t)); 18099 SET_MIB(ip_mib.ipIfStatsRouteEntrySize, sizeof (mib2_ipRouteEntry_t)); 18100 SET_MIB(ip_mib.ipIfStatsNetToMediaEntrySize, 18101 sizeof (mib2_ipNetToMediaEntry_t)); 18102 SET_MIB(ip_mib.ipIfStatsMemberEntrySize, sizeof (ip_member_t)); 18103 SET_MIB(ip_mib.ipIfStatsGroupSourceEntrySize, sizeof (ip_grpsrc_t)); 18104 18105 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip_mib, 18106 (int)sizeof (ip_mib))) { 18107 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18108 "failed to allocate %u bytes\n", 18109 (uint_t)sizeof (ip_mib))); 18110 } 18111 18112 bcopy(&ip_mib, &global_ip_mib, sizeof (global_ip_mib)); 18113 18114 rw_enter(&ill_g_lock, RW_READER); 18115 ill = ILL_START_WALK_V4(&ctx); 18116 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18117 ill->ill_ip_mib->ipIfStatsIfIndex = 18118 ill->ill_phyint->phyint_ifindex; 18119 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18120 (WE_ARE_FORWARDING ? 1 : 2)); 18121 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL, 18122 (uint32_t)ip_def_ttl); 18123 18124 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib); 18125 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18126 (char *)ill->ill_ip_mib, 18127 (int)sizeof (*ill->ill_ip_mib))) { 18128 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18129 "failed to allocate %u bytes\n", 18130 (uint_t)sizeof (*ill->ill_ip_mib))); 18131 } 18132 } 18133 rw_exit(&ill_g_lock); 18134 18135 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18136 ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: " 18137 "level %d, name %d, len %d\n", 18138 (int)optp->level, (int)optp->name, (int)optp->len)); 18139 qreply(q, mpctl); 18140 18141 return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib)); 18142 } 18143 18144 /* Global IPv4 ICMP statistics */ 18145 static mblk_t * 18146 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl) 18147 { 18148 struct opthdr *optp; 18149 mblk_t *mp2ctl; 18150 18151 /* 18152 * Make a copy of the original message 18153 */ 18154 mp2ctl = copymsg(mpctl); 18155 18156 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18157 optp->level = MIB2_ICMP; 18158 optp->name = 0; 18159 if (!snmp_append_data(mpctl->b_cont, (char *)&icmp_mib, 18160 (int)sizeof (icmp_mib))) { 18161 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n", 18162 (uint_t)sizeof (icmp_mib))); 18163 } 18164 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18165 ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n", 18166 (int)optp->level, (int)optp->name, (int)optp->len)); 18167 qreply(q, mpctl); 18168 return (mp2ctl); 18169 } 18170 18171 /* Global IPv4 IGMP statistics */ 18172 static mblk_t * 18173 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl) 18174 { 18175 struct opthdr *optp; 18176 mblk_t *mp2ctl; 18177 18178 /* 18179 * make a copy of the original message 18180 */ 18181 mp2ctl = copymsg(mpctl); 18182 18183 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18184 optp->level = EXPER_IGMP; 18185 optp->name = 0; 18186 if (!snmp_append_data(mpctl->b_cont, (char *)&igmpstat, 18187 (int)sizeof (igmpstat))) { 18188 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n", 18189 (uint_t)sizeof (igmpstat))); 18190 } 18191 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18192 ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n", 18193 (int)optp->level, (int)optp->name, (int)optp->len)); 18194 qreply(q, mpctl); 18195 return (mp2ctl); 18196 } 18197 18198 /* Global IPv4 Multicast Routing statistics */ 18199 static mblk_t * 18200 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl) 18201 { 18202 struct opthdr *optp; 18203 mblk_t *mp2ctl; 18204 18205 /* 18206 * make a copy of the original message 18207 */ 18208 mp2ctl = copymsg(mpctl); 18209 18210 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18211 optp->level = EXPER_DVMRP; 18212 optp->name = 0; 18213 if (!ip_mroute_stats(mpctl->b_cont)) { 18214 ip0dbg(("ip_mroute_stats: failed\n")); 18215 } 18216 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18217 ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n", 18218 (int)optp->level, (int)optp->name, (int)optp->len)); 18219 qreply(q, mpctl); 18220 return (mp2ctl); 18221 } 18222 18223 /* IPv4 address information */ 18224 static mblk_t * 18225 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl) 18226 { 18227 struct opthdr *optp; 18228 mblk_t *mp2ctl; 18229 mblk_t *mp_tail = NULL; 18230 ill_t *ill; 18231 ipif_t *ipif; 18232 uint_t bitval; 18233 mib2_ipAddrEntry_t mae; 18234 zoneid_t zoneid; 18235 ill_walk_context_t ctx; 18236 18237 /* 18238 * make a copy of the original message 18239 */ 18240 mp2ctl = copymsg(mpctl); 18241 18242 /* ipAddrEntryTable */ 18243 18244 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18245 optp->level = MIB2_IP; 18246 optp->name = MIB2_IP_ADDR; 18247 zoneid = Q_TO_CONN(q)->conn_zoneid; 18248 18249 rw_enter(&ill_g_lock, RW_READER); 18250 ill = ILL_START_WALK_V4(&ctx); 18251 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18252 for (ipif = ill->ill_ipif; ipif != NULL; 18253 ipif = ipif->ipif_next) { 18254 if (ipif->ipif_zoneid != zoneid && 18255 ipif->ipif_zoneid != ALL_ZONES) 18256 continue; 18257 mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18258 mae.ipAdEntInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18259 mae.ipAdEntInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18260 18261 (void) ipif_get_name(ipif, 18262 mae.ipAdEntIfIndex.o_bytes, 18263 OCTET_LENGTH); 18264 mae.ipAdEntIfIndex.o_length = 18265 mi_strlen(mae.ipAdEntIfIndex.o_bytes); 18266 mae.ipAdEntAddr = ipif->ipif_lcl_addr; 18267 mae.ipAdEntNetMask = ipif->ipif_net_mask; 18268 mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet; 18269 mae.ipAdEntInfo.ae_subnet_len = 18270 ip_mask_to_plen(ipif->ipif_net_mask); 18271 mae.ipAdEntInfo.ae_src_addr = ipif->ipif_src_addr; 18272 for (bitval = 1; 18273 bitval && 18274 !(bitval & ipif->ipif_brd_addr); 18275 bitval <<= 1) 18276 noop; 18277 mae.ipAdEntBcastAddr = bitval; 18278 mae.ipAdEntReasmMaxSize = IP_MAXPACKET; 18279 mae.ipAdEntInfo.ae_mtu = ipif->ipif_mtu; 18280 mae.ipAdEntInfo.ae_metric = ipif->ipif_metric; 18281 mae.ipAdEntInfo.ae_broadcast_addr = 18282 ipif->ipif_brd_addr; 18283 mae.ipAdEntInfo.ae_pp_dst_addr = 18284 ipif->ipif_pp_dst_addr; 18285 mae.ipAdEntInfo.ae_flags = ipif->ipif_flags | 18286 ill->ill_flags | ill->ill_phyint->phyint_flags; 18287 mae.ipAdEntRetransmitTime = AR_EQ_DEFAULT_XMIT_INTERVAL; 18288 18289 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18290 (char *)&mae, (int)sizeof (mib2_ipAddrEntry_t))) { 18291 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to " 18292 "allocate %u bytes\n", 18293 (uint_t)sizeof (mib2_ipAddrEntry_t))); 18294 } 18295 } 18296 } 18297 rw_exit(&ill_g_lock); 18298 18299 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18300 ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n", 18301 (int)optp->level, (int)optp->name, (int)optp->len)); 18302 qreply(q, mpctl); 18303 return (mp2ctl); 18304 } 18305 18306 /* IPv6 address information */ 18307 static mblk_t * 18308 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl) 18309 { 18310 struct opthdr *optp; 18311 mblk_t *mp2ctl; 18312 mblk_t *mp_tail = NULL; 18313 ill_t *ill; 18314 ipif_t *ipif; 18315 mib2_ipv6AddrEntry_t mae6; 18316 zoneid_t zoneid; 18317 ill_walk_context_t ctx; 18318 18319 /* 18320 * make a copy of the original message 18321 */ 18322 mp2ctl = copymsg(mpctl); 18323 18324 /* ipv6AddrEntryTable */ 18325 18326 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18327 optp->level = MIB2_IP6; 18328 optp->name = MIB2_IP6_ADDR; 18329 zoneid = Q_TO_CONN(q)->conn_zoneid; 18330 18331 rw_enter(&ill_g_lock, RW_READER); 18332 ill = ILL_START_WALK_V6(&ctx); 18333 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18334 for (ipif = ill->ill_ipif; ipif != NULL; 18335 ipif = ipif->ipif_next) { 18336 if (ipif->ipif_zoneid != zoneid && 18337 ipif->ipif_zoneid != ALL_ZONES) 18338 continue; 18339 mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count; 18340 mae6.ipv6AddrInfo.ae_obcnt = ipif->ipif_ob_pkt_count; 18341 mae6.ipv6AddrInfo.ae_focnt = ipif->ipif_fo_pkt_count; 18342 18343 (void) ipif_get_name(ipif, 18344 mae6.ipv6AddrIfIndex.o_bytes, 18345 OCTET_LENGTH); 18346 mae6.ipv6AddrIfIndex.o_length = 18347 mi_strlen(mae6.ipv6AddrIfIndex.o_bytes); 18348 mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr; 18349 mae6.ipv6AddrPfxLength = 18350 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 18351 mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet; 18352 mae6.ipv6AddrInfo.ae_subnet_len = 18353 mae6.ipv6AddrPfxLength; 18354 mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6src_addr; 18355 18356 /* Type: stateless(1), stateful(2), unknown(3) */ 18357 if (ipif->ipif_flags & IPIF_ADDRCONF) 18358 mae6.ipv6AddrType = 1; 18359 else 18360 mae6.ipv6AddrType = 2; 18361 /* Anycast: true(1), false(2) */ 18362 if (ipif->ipif_flags & IPIF_ANYCAST) 18363 mae6.ipv6AddrAnycastFlag = 1; 18364 else 18365 mae6.ipv6AddrAnycastFlag = 2; 18366 18367 /* 18368 * Address status: preferred(1), deprecated(2), 18369 * invalid(3), inaccessible(4), unknown(5) 18370 */ 18371 if (ipif->ipif_flags & IPIF_NOLOCAL) 18372 mae6.ipv6AddrStatus = 3; 18373 else if (ipif->ipif_flags & IPIF_DEPRECATED) 18374 mae6.ipv6AddrStatus = 2; 18375 else 18376 mae6.ipv6AddrStatus = 1; 18377 mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_mtu; 18378 mae6.ipv6AddrInfo.ae_metric = ipif->ipif_metric; 18379 mae6.ipv6AddrInfo.ae_pp_dst_addr = 18380 ipif->ipif_v6pp_dst_addr; 18381 mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags | 18382 ill->ill_flags | ill->ill_phyint->phyint_flags; 18383 mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET; 18384 mae6.ipv6AddrIdentifier = ill->ill_token; 18385 mae6.ipv6AddrIdentifierLen = ill->ill_token_length; 18386 mae6.ipv6AddrReachableTime = ill->ill_reachable_time; 18387 mae6.ipv6AddrRetransmitTime = 18388 ill->ill_reachable_retrans_time; 18389 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18390 (char *)&mae6, 18391 (int)sizeof (mib2_ipv6AddrEntry_t))) { 18392 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to " 18393 "allocate %u bytes\n", 18394 (uint_t)sizeof (mib2_ipv6AddrEntry_t))); 18395 } 18396 } 18397 } 18398 rw_exit(&ill_g_lock); 18399 18400 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18401 ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n", 18402 (int)optp->level, (int)optp->name, (int)optp->len)); 18403 qreply(q, mpctl); 18404 return (mp2ctl); 18405 } 18406 18407 /* IPv4 multicast group membership. */ 18408 static mblk_t * 18409 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl) 18410 { 18411 struct opthdr *optp; 18412 mblk_t *mp2ctl; 18413 ill_t *ill; 18414 ipif_t *ipif; 18415 ilm_t *ilm; 18416 ip_member_t ipm; 18417 mblk_t *mp_tail = NULL; 18418 ill_walk_context_t ctx; 18419 zoneid_t zoneid; 18420 18421 /* 18422 * make a copy of the original message 18423 */ 18424 mp2ctl = copymsg(mpctl); 18425 zoneid = Q_TO_CONN(q)->conn_zoneid; 18426 18427 /* ipGroupMember table */ 18428 optp = (struct opthdr *)&mpctl->b_rptr[ 18429 sizeof (struct T_optmgmt_ack)]; 18430 optp->level = MIB2_IP; 18431 optp->name = EXPER_IP_GROUP_MEMBERSHIP; 18432 18433 rw_enter(&ill_g_lock, RW_READER); 18434 ill = ILL_START_WALK_V4(&ctx); 18435 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18436 ILM_WALKER_HOLD(ill); 18437 for (ipif = ill->ill_ipif; ipif != NULL; 18438 ipif = ipif->ipif_next) { 18439 if (ipif->ipif_zoneid != zoneid && 18440 ipif->ipif_zoneid != ALL_ZONES) 18441 continue; /* not this zone */ 18442 (void) ipif_get_name(ipif, 18443 ipm.ipGroupMemberIfIndex.o_bytes, 18444 OCTET_LENGTH); 18445 ipm.ipGroupMemberIfIndex.o_length = 18446 mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes); 18447 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18448 ASSERT(ilm->ilm_ipif != NULL); 18449 ASSERT(ilm->ilm_ill == NULL); 18450 if (ilm->ilm_ipif != ipif) 18451 continue; 18452 ipm.ipGroupMemberAddress = ilm->ilm_addr; 18453 ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt; 18454 ipm.ipGroupMemberFilterMode = ilm->ilm_fmode; 18455 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18456 (char *)&ipm, (int)sizeof (ipm))) { 18457 ip1dbg(("ip_snmp_get_mib2_ip_group: " 18458 "failed to allocate %u bytes\n", 18459 (uint_t)sizeof (ipm))); 18460 } 18461 } 18462 } 18463 ILM_WALKER_RELE(ill); 18464 } 18465 rw_exit(&ill_g_lock); 18466 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18467 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18468 (int)optp->level, (int)optp->name, (int)optp->len)); 18469 qreply(q, mpctl); 18470 return (mp2ctl); 18471 } 18472 18473 /* IPv6 multicast group membership. */ 18474 static mblk_t * 18475 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl) 18476 { 18477 struct opthdr *optp; 18478 mblk_t *mp2ctl; 18479 ill_t *ill; 18480 ilm_t *ilm; 18481 ipv6_member_t ipm6; 18482 mblk_t *mp_tail = NULL; 18483 ill_walk_context_t ctx; 18484 zoneid_t zoneid; 18485 18486 /* 18487 * make a copy of the original message 18488 */ 18489 mp2ctl = copymsg(mpctl); 18490 zoneid = Q_TO_CONN(q)->conn_zoneid; 18491 18492 /* ip6GroupMember table */ 18493 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18494 optp->level = MIB2_IP6; 18495 optp->name = EXPER_IP6_GROUP_MEMBERSHIP; 18496 18497 rw_enter(&ill_g_lock, RW_READER); 18498 ill = ILL_START_WALK_V6(&ctx); 18499 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18500 ILM_WALKER_HOLD(ill); 18501 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex; 18502 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18503 ASSERT(ilm->ilm_ipif == NULL); 18504 ASSERT(ilm->ilm_ill != NULL); 18505 if (ilm->ilm_zoneid != zoneid) 18506 continue; /* not this zone */ 18507 ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr; 18508 ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt; 18509 ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode; 18510 if (!snmp_append_data2(mpctl->b_cont, 18511 &mp_tail, 18512 (char *)&ipm6, (int)sizeof (ipm6))) { 18513 ip1dbg(("ip_snmp_get_mib2_ip6_group: " 18514 "failed to allocate %u bytes\n", 18515 (uint_t)sizeof (ipm6))); 18516 } 18517 } 18518 ILM_WALKER_RELE(ill); 18519 } 18520 rw_exit(&ill_g_lock); 18521 18522 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18523 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18524 (int)optp->level, (int)optp->name, (int)optp->len)); 18525 qreply(q, mpctl); 18526 return (mp2ctl); 18527 } 18528 18529 /* IP multicast filtered sources */ 18530 static mblk_t * 18531 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl) 18532 { 18533 struct opthdr *optp; 18534 mblk_t *mp2ctl; 18535 ill_t *ill; 18536 ipif_t *ipif; 18537 ilm_t *ilm; 18538 ip_grpsrc_t ips; 18539 mblk_t *mp_tail = NULL; 18540 ill_walk_context_t ctx; 18541 zoneid_t zoneid; 18542 int i; 18543 slist_t *sl; 18544 18545 /* 18546 * make a copy of the original message 18547 */ 18548 mp2ctl = copymsg(mpctl); 18549 zoneid = Q_TO_CONN(q)->conn_zoneid; 18550 18551 /* ipGroupSource table */ 18552 optp = (struct opthdr *)&mpctl->b_rptr[ 18553 sizeof (struct T_optmgmt_ack)]; 18554 optp->level = MIB2_IP; 18555 optp->name = EXPER_IP_GROUP_SOURCES; 18556 18557 rw_enter(&ill_g_lock, RW_READER); 18558 ill = ILL_START_WALK_V4(&ctx); 18559 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18560 ILM_WALKER_HOLD(ill); 18561 for (ipif = ill->ill_ipif; ipif != NULL; 18562 ipif = ipif->ipif_next) { 18563 if (ipif->ipif_zoneid != zoneid) 18564 continue; /* not this zone */ 18565 (void) ipif_get_name(ipif, 18566 ips.ipGroupSourceIfIndex.o_bytes, 18567 OCTET_LENGTH); 18568 ips.ipGroupSourceIfIndex.o_length = 18569 mi_strlen(ips.ipGroupSourceIfIndex.o_bytes); 18570 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18571 ASSERT(ilm->ilm_ipif != NULL); 18572 ASSERT(ilm->ilm_ill == NULL); 18573 sl = ilm->ilm_filter; 18574 if (ilm->ilm_ipif != ipif || SLIST_IS_EMPTY(sl)) 18575 continue; 18576 ips.ipGroupSourceGroup = ilm->ilm_addr; 18577 for (i = 0; i < sl->sl_numsrc; i++) { 18578 if (!IN6_IS_ADDR_V4MAPPED( 18579 &sl->sl_addr[i])) 18580 continue; 18581 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i], 18582 ips.ipGroupSourceAddress); 18583 if (snmp_append_data2(mpctl->b_cont, 18584 &mp_tail, (char *)&ips, 18585 (int)sizeof (ips)) == 0) { 18586 ip1dbg(("ip_snmp_get_mib2_" 18587 "ip_group_src: failed to " 18588 "allocate %u bytes\n", 18589 (uint_t)sizeof (ips))); 18590 } 18591 } 18592 } 18593 } 18594 ILM_WALKER_RELE(ill); 18595 } 18596 rw_exit(&ill_g_lock); 18597 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18598 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18599 (int)optp->level, (int)optp->name, (int)optp->len)); 18600 qreply(q, mpctl); 18601 return (mp2ctl); 18602 } 18603 18604 /* IPv6 multicast filtered sources. */ 18605 static mblk_t * 18606 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl) 18607 { 18608 struct opthdr *optp; 18609 mblk_t *mp2ctl; 18610 ill_t *ill; 18611 ilm_t *ilm; 18612 ipv6_grpsrc_t ips6; 18613 mblk_t *mp_tail = NULL; 18614 ill_walk_context_t ctx; 18615 zoneid_t zoneid; 18616 int i; 18617 slist_t *sl; 18618 18619 /* 18620 * make a copy of the original message 18621 */ 18622 mp2ctl = copymsg(mpctl); 18623 zoneid = Q_TO_CONN(q)->conn_zoneid; 18624 18625 /* ip6GroupMember table */ 18626 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18627 optp->level = MIB2_IP6; 18628 optp->name = EXPER_IP6_GROUP_SOURCES; 18629 18630 rw_enter(&ill_g_lock, RW_READER); 18631 ill = ILL_START_WALK_V6(&ctx); 18632 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18633 ILM_WALKER_HOLD(ill); 18634 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex; 18635 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) { 18636 ASSERT(ilm->ilm_ipif == NULL); 18637 ASSERT(ilm->ilm_ill != NULL); 18638 sl = ilm->ilm_filter; 18639 if (ilm->ilm_zoneid != zoneid || SLIST_IS_EMPTY(sl)) 18640 continue; 18641 ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr; 18642 for (i = 0; i < sl->sl_numsrc; i++) { 18643 ips6.ipv6GroupSourceAddress = sl->sl_addr[i]; 18644 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18645 (char *)&ips6, (int)sizeof (ips6))) { 18646 ip1dbg(("ip_snmp_get_mib2_ip6_" 18647 "group_src: failed to allocate " 18648 "%u bytes\n", 18649 (uint_t)sizeof (ips6))); 18650 } 18651 } 18652 } 18653 ILM_WALKER_RELE(ill); 18654 } 18655 rw_exit(&ill_g_lock); 18656 18657 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18658 ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n", 18659 (int)optp->level, (int)optp->name, (int)optp->len)); 18660 qreply(q, mpctl); 18661 return (mp2ctl); 18662 } 18663 18664 /* Multicast routing virtual interface table. */ 18665 static mblk_t * 18666 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl) 18667 { 18668 struct opthdr *optp; 18669 mblk_t *mp2ctl; 18670 18671 /* 18672 * make a copy of the original message 18673 */ 18674 mp2ctl = copymsg(mpctl); 18675 18676 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18677 optp->level = EXPER_DVMRP; 18678 optp->name = EXPER_DVMRP_VIF; 18679 if (!ip_mroute_vif(mpctl->b_cont)) { 18680 ip0dbg(("ip_mroute_vif: failed\n")); 18681 } 18682 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18683 ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n", 18684 (int)optp->level, (int)optp->name, (int)optp->len)); 18685 qreply(q, mpctl); 18686 return (mp2ctl); 18687 } 18688 18689 /* Multicast routing table. */ 18690 static mblk_t * 18691 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl) 18692 { 18693 struct opthdr *optp; 18694 mblk_t *mp2ctl; 18695 18696 /* 18697 * make a copy of the original message 18698 */ 18699 mp2ctl = copymsg(mpctl); 18700 18701 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18702 optp->level = EXPER_DVMRP; 18703 optp->name = EXPER_DVMRP_MRT; 18704 if (!ip_mroute_mrt(mpctl->b_cont)) { 18705 ip0dbg(("ip_mroute_mrt: failed\n")); 18706 } 18707 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18708 ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n", 18709 (int)optp->level, (int)optp->name, (int)optp->len)); 18710 qreply(q, mpctl); 18711 return (mp2ctl); 18712 } 18713 18714 /* 18715 * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable 18716 * in one IRE walk. 18717 */ 18718 static mblk_t * 18719 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl) 18720 { 18721 struct opthdr *optp; 18722 mblk_t *mp2ctl; /* Returned */ 18723 mblk_t *mp3ctl; /* nettomedia */ 18724 mblk_t *mp4ctl; /* routeattrs */ 18725 iproutedata_t ird; 18726 zoneid_t zoneid; 18727 18728 /* 18729 * make copies of the original message 18730 * - mp2ctl is returned unchanged to the caller for his use 18731 * - mpctl is sent upstream as ipRouteEntryTable 18732 * - mp3ctl is sent upstream as ipNetToMediaEntryTable 18733 * - mp4ctl is sent upstream as ipRouteAttributeTable 18734 */ 18735 mp2ctl = copymsg(mpctl); 18736 mp3ctl = copymsg(mpctl); 18737 mp4ctl = copymsg(mpctl); 18738 if (mp3ctl == NULL || mp4ctl == NULL) { 18739 freemsg(mp4ctl); 18740 freemsg(mp3ctl); 18741 freemsg(mp2ctl); 18742 freemsg(mpctl); 18743 return (NULL); 18744 } 18745 18746 bzero(&ird, sizeof (ird)); 18747 18748 ird.ird_route.lp_head = mpctl->b_cont; 18749 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18750 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18751 18752 zoneid = Q_TO_CONN(q)->conn_zoneid; 18753 ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid); 18754 if (zoneid == GLOBAL_ZONEID) { 18755 /* 18756 * Those IREs are used by Mobile-IP; since mipagent(1M) requires 18757 * the sys_net_config privilege, it can only run in the global 18758 * zone, so we don't display these IREs in the other zones. 18759 */ 18760 ire_walk_srcif_table_v4(ip_snmp_get2_v4, &ird); 18761 ire_walk_ill_mrtun(0, 0, ip_snmp_get2_v4, &ird, NULL); 18762 } 18763 18764 /* ipRouteEntryTable in mpctl */ 18765 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18766 optp->level = MIB2_IP; 18767 optp->name = MIB2_IP_ROUTE; 18768 optp->len = msgdsize(ird.ird_route.lp_head); 18769 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18770 (int)optp->level, (int)optp->name, (int)optp->len)); 18771 qreply(q, mpctl); 18772 18773 /* ipNetToMediaEntryTable in mp3ctl */ 18774 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18775 optp->level = MIB2_IP; 18776 optp->name = MIB2_IP_MEDIA; 18777 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18778 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18779 (int)optp->level, (int)optp->name, (int)optp->len)); 18780 qreply(q, mp3ctl); 18781 18782 /* ipRouteAttributeTable in mp4ctl */ 18783 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18784 optp->level = MIB2_IP; 18785 optp->name = EXPER_IP_RTATTR; 18786 optp->len = msgdsize(ird.ird_attrs.lp_head); 18787 ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n", 18788 (int)optp->level, (int)optp->name, (int)optp->len)); 18789 if (optp->len == 0) 18790 freemsg(mp4ctl); 18791 else 18792 qreply(q, mp4ctl); 18793 18794 return (mp2ctl); 18795 } 18796 18797 /* 18798 * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and 18799 * ipv6NetToMediaEntryTable in an NDP walk. 18800 */ 18801 static mblk_t * 18802 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl) 18803 { 18804 struct opthdr *optp; 18805 mblk_t *mp2ctl; /* Returned */ 18806 mblk_t *mp3ctl; /* nettomedia */ 18807 mblk_t *mp4ctl; /* routeattrs */ 18808 iproutedata_t ird; 18809 zoneid_t zoneid; 18810 18811 /* 18812 * make copies of the original message 18813 * - mp2ctl is returned unchanged to the caller for his use 18814 * - mpctl is sent upstream as ipv6RouteEntryTable 18815 * - mp3ctl is sent upstream as ipv6NetToMediaEntryTable 18816 * - mp4ctl is sent upstream as ipv6RouteAttributeTable 18817 */ 18818 mp2ctl = copymsg(mpctl); 18819 mp3ctl = copymsg(mpctl); 18820 mp4ctl = copymsg(mpctl); 18821 if (mp3ctl == NULL || mp4ctl == NULL) { 18822 freemsg(mp4ctl); 18823 freemsg(mp3ctl); 18824 freemsg(mp2ctl); 18825 freemsg(mpctl); 18826 return (NULL); 18827 } 18828 18829 bzero(&ird, sizeof (ird)); 18830 18831 ird.ird_route.lp_head = mpctl->b_cont; 18832 ird.ird_netmedia.lp_head = mp3ctl->b_cont; 18833 ird.ird_attrs.lp_head = mp4ctl->b_cont; 18834 18835 zoneid = Q_TO_CONN(q)->conn_zoneid; 18836 ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid); 18837 18838 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18839 optp->level = MIB2_IP6; 18840 optp->name = MIB2_IP6_ROUTE; 18841 optp->len = msgdsize(ird.ird_route.lp_head); 18842 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18843 (int)optp->level, (int)optp->name, (int)optp->len)); 18844 qreply(q, mpctl); 18845 18846 /* ipv6NetToMediaEntryTable in mp3ctl */ 18847 ndp_walk(NULL, ip_snmp_get2_v6_media, &ird); 18848 18849 optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18850 optp->level = MIB2_IP6; 18851 optp->name = MIB2_IP6_MEDIA; 18852 optp->len = msgdsize(ird.ird_netmedia.lp_head); 18853 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18854 (int)optp->level, (int)optp->name, (int)optp->len)); 18855 qreply(q, mp3ctl); 18856 18857 /* ipv6RouteAttributeTable in mp4ctl */ 18858 optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18859 optp->level = MIB2_IP6; 18860 optp->name = EXPER_IP_RTATTR; 18861 optp->len = msgdsize(ird.ird_attrs.lp_head); 18862 ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n", 18863 (int)optp->level, (int)optp->name, (int)optp->len)); 18864 if (optp->len == 0) 18865 freemsg(mp4ctl); 18866 else 18867 qreply(q, mp4ctl); 18868 18869 return (mp2ctl); 18870 } 18871 18872 /* 18873 * IPv6 mib: One per ill 18874 */ 18875 static mblk_t * 18876 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl) 18877 { 18878 struct opthdr *optp; 18879 mblk_t *mp2ctl; 18880 ill_t *ill; 18881 ill_walk_context_t ctx; 18882 mblk_t *mp_tail = NULL; 18883 18884 /* 18885 * Make a copy of the original message 18886 */ 18887 mp2ctl = copymsg(mpctl); 18888 18889 /* fixed length IPv6 structure ... */ 18890 18891 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18892 optp->level = MIB2_IP6; 18893 optp->name = 0; 18894 /* Include "unknown interface" ip6_mib */ 18895 ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 18896 ip6_mib.ipIfStatsIfIndex = MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */ 18897 SET_MIB(ip6_mib.ipIfStatsForwarding, ipv6_forward ? 1 : 2); 18898 SET_MIB(ip6_mib.ipIfStatsDefaultHopLimit, ipv6_def_hops); 18899 SET_MIB(ip6_mib.ipIfStatsEntrySize, 18900 sizeof (mib2_ipIfStatsEntry_t)); 18901 SET_MIB(ip6_mib.ipIfStatsAddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); 18902 SET_MIB(ip6_mib.ipIfStatsRouteEntrySize, 18903 sizeof (mib2_ipv6RouteEntry_t)); 18904 SET_MIB(ip6_mib.ipIfStatsNetToMediaEntrySize, 18905 sizeof (mib2_ipv6NetToMediaEntry_t)); 18906 SET_MIB(ip6_mib.ipIfStatsMemberEntrySize, sizeof (ipv6_member_t)); 18907 SET_MIB(ip6_mib.ipIfStatsGroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); 18908 18909 /* 18910 * Synchronize 64- and 32-bit counters 18911 */ 18912 SYNC32_MIB(&ip6_mib, ipIfStatsInReceives, ipIfStatsHCInReceives); 18913 SYNC32_MIB(&ip6_mib, ipIfStatsInDelivers, ipIfStatsHCInDelivers); 18914 SYNC32_MIB(&ip6_mib, ipIfStatsOutRequests, ipIfStatsHCOutRequests); 18915 SYNC32_MIB(&ip6_mib, ipIfStatsOutForwDatagrams, 18916 ipIfStatsHCOutForwDatagrams); 18917 SYNC32_MIB(&ip6_mib, ipIfStatsOutMcastPkts, ipIfStatsHCOutMcastPkts); 18918 SYNC32_MIB(&ip6_mib, ipIfStatsInMcastPkts, ipIfStatsHCInMcastPkts); 18919 18920 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&ip6_mib, 18921 (int)sizeof (ip6_mib))) { 18922 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n", 18923 (uint_t)sizeof (ip6_mib))); 18924 } 18925 18926 rw_enter(&ill_g_lock, RW_READER); 18927 ill = ILL_START_WALK_V6(&ctx); 18928 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18929 ill->ill_ip_mib->ipIfStatsIfIndex = 18930 ill->ill_phyint->phyint_ifindex; 18931 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding, 18932 ipv6_forward ? 1 : 2); 18933 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit, 18934 ill->ill_max_hops); 18935 18936 /* 18937 * Synchronize 64- and 32-bit counters 18938 */ 18939 SYNC32_MIB(&ip6_mib, ipIfStatsInReceives, 18940 ipIfStatsHCInReceives); 18941 SYNC32_MIB(&ip6_mib, ipIfStatsInDelivers, 18942 ipIfStatsHCInDelivers); 18943 SYNC32_MIB(&ip6_mib, ipIfStatsOutRequests, 18944 ipIfStatsHCOutRequests); 18945 SYNC32_MIB(&ip6_mib, ipIfStatsOutForwDatagrams, 18946 ipIfStatsHCOutForwDatagrams); 18947 SYNC32_MIB(&ip6_mib, ipIfStatsOutMcastPkts, 18948 ipIfStatsHCOutMcastPkts); 18949 SYNC32_MIB(&ip6_mib, ipIfStatsInMcastPkts, 18950 ipIfStatsHCInMcastPkts); 18951 18952 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 18953 (char *)ill->ill_ip_mib, 18954 (int)sizeof (*ill->ill_ip_mib))) { 18955 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate " 18956 "%u bytes\n", 18957 (uint_t)sizeof (*ill->ill_ip_mib))); 18958 } 18959 } 18960 rw_exit(&ill_g_lock); 18961 18962 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 18963 ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n", 18964 (int)optp->level, (int)optp->name, (int)optp->len)); 18965 qreply(q, mpctl); 18966 return (mp2ctl); 18967 } 18968 18969 /* 18970 * ICMPv6 mib: One per ill 18971 */ 18972 static mblk_t * 18973 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl) 18974 { 18975 struct opthdr *optp; 18976 mblk_t *mp2ctl; 18977 ill_t *ill; 18978 ill_walk_context_t ctx; 18979 mblk_t *mp_tail = NULL; 18980 /* 18981 * Make a copy of the original message 18982 */ 18983 mp2ctl = copymsg(mpctl); 18984 18985 /* fixed length ICMPv6 structure ... */ 18986 18987 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 18988 optp->level = MIB2_ICMP6; 18989 optp->name = 0; 18990 /* Include "unknown interface" icmp6_mib */ 18991 icmp6_mib.ipv6IfIcmpIfIndex = MIB2_UNKNOWN_INTERFACE; /* netstat flag */ 18992 icmp6_mib.ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); 18993 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, (char *)&icmp6_mib, 18994 (int)sizeof (icmp6_mib))) { 18995 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n", 18996 (uint_t)sizeof (icmp6_mib))); 18997 } 18998 18999 rw_enter(&ill_g_lock, RW_READER); 19000 ill = ILL_START_WALK_V6(&ctx); 19001 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19002 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 19003 ill->ill_phyint->phyint_ifindex; 19004 if (!snmp_append_data2(mpctl->b_cont, &mp_tail, 19005 (char *)ill->ill_icmp6_mib, 19006 (int)sizeof (*ill->ill_icmp6_mib))) { 19007 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate " 19008 "%u bytes\n", 19009 (uint_t)sizeof (*ill->ill_icmp6_mib))); 19010 } 19011 } 19012 rw_exit(&ill_g_lock); 19013 19014 optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont); 19015 ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n", 19016 (int)optp->level, (int)optp->name, (int)optp->len)); 19017 qreply(q, mpctl); 19018 return (mp2ctl); 19019 } 19020 19021 /* 19022 * ire_walk routine to create both ipRouteEntryTable and 19023 * ipRouteAttributeTable in one IRE walk 19024 */ 19025 static void 19026 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird) 19027 { 19028 ill_t *ill; 19029 ipif_t *ipif; 19030 mib2_ipRouteEntry_t *re; 19031 mib2_ipAttributeEntry_t *iae, *iaeptr; 19032 ipaddr_t gw_addr; 19033 tsol_ire_gw_secattr_t *attrp; 19034 tsol_gc_t *gc = NULL; 19035 tsol_gcgrp_t *gcgrp = NULL; 19036 uint_t sacnt = 0; 19037 int i; 19038 19039 ASSERT(ire->ire_ipversion == IPV4_VERSION); 19040 19041 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19042 return; 19043 19044 if ((attrp = ire->ire_gw_secattr) != NULL) { 19045 mutex_enter(&attrp->igsa_lock); 19046 if ((gc = attrp->igsa_gc) != NULL) { 19047 gcgrp = gc->gc_grp; 19048 ASSERT(gcgrp != NULL); 19049 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19050 sacnt = 1; 19051 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19052 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19053 gc = gcgrp->gcgrp_head; 19054 sacnt = gcgrp->gcgrp_count; 19055 } 19056 mutex_exit(&attrp->igsa_lock); 19057 19058 /* do nothing if there's no gc to report */ 19059 if (gc == NULL) { 19060 ASSERT(sacnt == 0); 19061 if (gcgrp != NULL) { 19062 /* we might as well drop the lock now */ 19063 rw_exit(&gcgrp->gcgrp_rwlock); 19064 gcgrp = NULL; 19065 } 19066 attrp = NULL; 19067 } 19068 19069 ASSERT(gc == NULL || (gcgrp != NULL && 19070 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19071 } 19072 ASSERT(sacnt == 0 || gc != NULL); 19073 19074 if (sacnt != 0 && 19075 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19076 kmem_free(re, sizeof (*re)); 19077 rw_exit(&gcgrp->gcgrp_rwlock); 19078 return; 19079 } 19080 19081 /* 19082 * Return all IRE types for route table... let caller pick and choose 19083 */ 19084 re->ipRouteDest = ire->ire_addr; 19085 ipif = ire->ire_ipif; 19086 re->ipRouteIfIndex.o_length = 0; 19087 if (ire->ire_type == IRE_CACHE) { 19088 ill = (ill_t *)ire->ire_stq->q_ptr; 19089 re->ipRouteIfIndex.o_length = 19090 ill->ill_name_length == 0 ? 0 : 19091 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19092 bcopy(ill->ill_name, re->ipRouteIfIndex.o_bytes, 19093 re->ipRouteIfIndex.o_length); 19094 } else if (ipif != NULL) { 19095 (void) ipif_get_name(ipif, re->ipRouteIfIndex.o_bytes, 19096 OCTET_LENGTH); 19097 re->ipRouteIfIndex.o_length = 19098 mi_strlen(re->ipRouteIfIndex.o_bytes); 19099 } 19100 re->ipRouteMetric1 = -1; 19101 re->ipRouteMetric2 = -1; 19102 re->ipRouteMetric3 = -1; 19103 re->ipRouteMetric4 = -1; 19104 19105 gw_addr = ire->ire_gateway_addr; 19106 19107 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK|IRE_BROADCAST)) 19108 re->ipRouteNextHop = ire->ire_src_addr; 19109 else 19110 re->ipRouteNextHop = gw_addr; 19111 /* indirect(4), direct(3), or invalid(2) */ 19112 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19113 re->ipRouteType = 2; 19114 else 19115 re->ipRouteType = (gw_addr != 0) ? 4 : 3; 19116 re->ipRouteProto = -1; 19117 re->ipRouteAge = gethrestime_sec() - ire->ire_create_time; 19118 re->ipRouteMask = ire->ire_mask; 19119 re->ipRouteMetric5 = -1; 19120 re->ipRouteInfo.re_max_frag = ire->ire_max_frag; 19121 re->ipRouteInfo.re_frag_flag = ire->ire_frag_flag; 19122 re->ipRouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19123 re->ipRouteInfo.re_ref = ire->ire_refcnt; 19124 re->ipRouteInfo.re_src_addr = ire->ire_src_addr; 19125 re->ipRouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19126 re->ipRouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19127 re->ipRouteInfo.re_flags = ire->ire_flags; 19128 re->ipRouteInfo.re_in_ill.o_length = 0; 19129 19130 if (ire->ire_flags & RTF_DYNAMIC) { 19131 re->ipRouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19132 } else { 19133 re->ipRouteInfo.re_ire_type = ire->ire_type; 19134 } 19135 19136 if (ire->ire_in_ill != NULL) { 19137 re->ipRouteInfo.re_in_ill.o_length = 19138 ire->ire_in_ill->ill_name_length == 0 ? 0 : 19139 MIN(OCTET_LENGTH, ire->ire_in_ill->ill_name_length - 1); 19140 bcopy(ire->ire_in_ill->ill_name, 19141 re->ipRouteInfo.re_in_ill.o_bytes, 19142 re->ipRouteInfo.re_in_ill.o_length); 19143 } 19144 re->ipRouteInfo.re_in_src_addr = ire->ire_in_src_addr; 19145 19146 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19147 (char *)re, (int)sizeof (*re))) { 19148 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19149 (uint_t)sizeof (*re))); 19150 } 19151 19152 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19153 iaeptr->iae_routeidx = ird->ird_idx; 19154 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19155 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19156 } 19157 19158 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19159 (char *)iae, sacnt * sizeof (*iae))) { 19160 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n", 19161 (unsigned)(sacnt * sizeof (*iae)))); 19162 } 19163 19164 /* bump route index for next pass */ 19165 ird->ird_idx++; 19166 19167 kmem_free(re, sizeof (*re)); 19168 if (sacnt != 0) 19169 kmem_free(iae, sacnt * sizeof (*iae)); 19170 19171 if (gcgrp != NULL) 19172 rw_exit(&gcgrp->gcgrp_rwlock); 19173 } 19174 19175 /* 19176 * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable. 19177 */ 19178 static void 19179 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird) 19180 { 19181 ill_t *ill; 19182 ipif_t *ipif; 19183 mib2_ipv6RouteEntry_t *re; 19184 mib2_ipAttributeEntry_t *iae, *iaeptr; 19185 in6_addr_t gw_addr_v6; 19186 tsol_ire_gw_secattr_t *attrp; 19187 tsol_gc_t *gc = NULL; 19188 tsol_gcgrp_t *gcgrp = NULL; 19189 uint_t sacnt = 0; 19190 int i; 19191 19192 ASSERT(ire->ire_ipversion == IPV6_VERSION); 19193 19194 if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL) 19195 return; 19196 19197 if ((attrp = ire->ire_gw_secattr) != NULL) { 19198 mutex_enter(&attrp->igsa_lock); 19199 if ((gc = attrp->igsa_gc) != NULL) { 19200 gcgrp = gc->gc_grp; 19201 ASSERT(gcgrp != NULL); 19202 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19203 sacnt = 1; 19204 } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { 19205 rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); 19206 gc = gcgrp->gcgrp_head; 19207 sacnt = gcgrp->gcgrp_count; 19208 } 19209 mutex_exit(&attrp->igsa_lock); 19210 19211 /* do nothing if there's no gc to report */ 19212 if (gc == NULL) { 19213 ASSERT(sacnt == 0); 19214 if (gcgrp != NULL) { 19215 /* we might as well drop the lock now */ 19216 rw_exit(&gcgrp->gcgrp_rwlock); 19217 gcgrp = NULL; 19218 } 19219 attrp = NULL; 19220 } 19221 19222 ASSERT(gc == NULL || (gcgrp != NULL && 19223 RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); 19224 } 19225 ASSERT(sacnt == 0 || gc != NULL); 19226 19227 if (sacnt != 0 && 19228 (iae = kmem_alloc(sacnt * sizeof (*iae), KM_NOSLEEP)) == NULL) { 19229 kmem_free(re, sizeof (*re)); 19230 rw_exit(&gcgrp->gcgrp_rwlock); 19231 return; 19232 } 19233 19234 /* 19235 * Return all IRE types for route table... let caller pick and choose 19236 */ 19237 re->ipv6RouteDest = ire->ire_addr_v6; 19238 re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6); 19239 re->ipv6RouteIndex = 0; /* Unique when multiple with same dest/plen */ 19240 re->ipv6RouteIfIndex.o_length = 0; 19241 ipif = ire->ire_ipif; 19242 if (ire->ire_type == IRE_CACHE) { 19243 ill = (ill_t *)ire->ire_stq->q_ptr; 19244 re->ipv6RouteIfIndex.o_length = 19245 ill->ill_name_length == 0 ? 0 : 19246 MIN(OCTET_LENGTH, ill->ill_name_length - 1); 19247 bcopy(ill->ill_name, re->ipv6RouteIfIndex.o_bytes, 19248 re->ipv6RouteIfIndex.o_length); 19249 } else if (ipif != NULL) { 19250 (void) ipif_get_name(ipif, re->ipv6RouteIfIndex.o_bytes, 19251 OCTET_LENGTH); 19252 re->ipv6RouteIfIndex.o_length = 19253 mi_strlen(re->ipv6RouteIfIndex.o_bytes); 19254 } 19255 19256 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19257 19258 mutex_enter(&ire->ire_lock); 19259 gw_addr_v6 = ire->ire_gateway_addr_v6; 19260 mutex_exit(&ire->ire_lock); 19261 19262 if (ire->ire_type & (IRE_INTERFACE|IRE_LOOPBACK)) 19263 re->ipv6RouteNextHop = ire->ire_src_addr_v6; 19264 else 19265 re->ipv6RouteNextHop = gw_addr_v6; 19266 19267 /* remote(4), local(3), or discard(2) */ 19268 if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) 19269 re->ipv6RouteType = 2; 19270 else if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) 19271 re->ipv6RouteType = 3; 19272 else 19273 re->ipv6RouteType = 4; 19274 19275 re->ipv6RouteProtocol = -1; 19276 re->ipv6RoutePolicy = 0; 19277 re->ipv6RouteAge = gethrestime_sec() - ire->ire_create_time; 19278 re->ipv6RouteNextHopRDI = 0; 19279 re->ipv6RouteWeight = 0; 19280 re->ipv6RouteMetric = 0; 19281 re->ipv6RouteInfo.re_max_frag = ire->ire_max_frag; 19282 re->ipv6RouteInfo.re_frag_flag = ire->ire_frag_flag; 19283 re->ipv6RouteInfo.re_rtt = ire->ire_uinfo.iulp_rtt; 19284 re->ipv6RouteInfo.re_src_addr = ire->ire_src_addr_v6; 19285 re->ipv6RouteInfo.re_obpkt = ire->ire_ob_pkt_count; 19286 re->ipv6RouteInfo.re_ibpkt = ire->ire_ib_pkt_count; 19287 re->ipv6RouteInfo.re_ref = ire->ire_refcnt; 19288 re->ipv6RouteInfo.re_flags = ire->ire_flags; 19289 19290 if (ire->ire_flags & RTF_DYNAMIC) { 19291 re->ipv6RouteInfo.re_ire_type = IRE_HOST_REDIRECT; 19292 } else { 19293 re->ipv6RouteInfo.re_ire_type = ire->ire_type; 19294 } 19295 19296 if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail, 19297 (char *)re, (int)sizeof (*re))) { 19298 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19299 (uint_t)sizeof (*re))); 19300 } 19301 19302 for (iaeptr = iae, i = 0; i < sacnt; i++, iaeptr++, gc = gc->gc_next) { 19303 iaeptr->iae_routeidx = ird->ird_idx; 19304 iaeptr->iae_doi = gc->gc_db->gcdb_doi; 19305 iaeptr->iae_slrange = gc->gc_db->gcdb_slrange; 19306 } 19307 19308 if (!snmp_append_data2(ird->ird_attrs.lp_head, &ird->ird_attrs.lp_tail, 19309 (char *)iae, sacnt * sizeof (*iae))) { 19310 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n", 19311 (unsigned)(sacnt * sizeof (*iae)))); 19312 } 19313 19314 /* bump route index for next pass */ 19315 ird->ird_idx++; 19316 19317 kmem_free(re, sizeof (*re)); 19318 if (sacnt != 0) 19319 kmem_free(iae, sacnt * sizeof (*iae)); 19320 19321 if (gcgrp != NULL) 19322 rw_exit(&gcgrp->gcgrp_rwlock); 19323 } 19324 19325 /* 19326 * ndp_walk routine to create ipv6NetToMediaEntryTable 19327 */ 19328 static int 19329 ip_snmp_get2_v6_media(nce_t *nce, iproutedata_t *ird) 19330 { 19331 ill_t *ill; 19332 mib2_ipv6NetToMediaEntry_t ntme; 19333 dl_unitdata_req_t *dl; 19334 19335 ill = nce->nce_ill; 19336 if (ill->ill_isv6 == B_FALSE) /* skip arpce entry */ 19337 return (0); 19338 19339 /* 19340 * Neighbor cache entry attached to IRE with on-link 19341 * destination. 19342 */ 19343 ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex; 19344 ntme.ipv6NetToMediaNetAddress = nce->nce_addr; 19345 if ((ill->ill_flags & ILLF_XRESOLV) && 19346 (nce->nce_res_mp != NULL)) { 19347 dl = (dl_unitdata_req_t *)(nce->nce_res_mp->b_rptr); 19348 ntme.ipv6NetToMediaPhysAddress.o_length = 19349 dl->dl_dest_addr_length; 19350 } else { 19351 ntme.ipv6NetToMediaPhysAddress.o_length = 19352 ill->ill_phys_addr_length; 19353 } 19354 if (nce->nce_res_mp != NULL) { 19355 bcopy((char *)nce->nce_res_mp->b_rptr + 19356 NCE_LL_ADDR_OFFSET(ill), 19357 ntme.ipv6NetToMediaPhysAddress.o_bytes, 19358 ntme.ipv6NetToMediaPhysAddress.o_length); 19359 } else { 19360 bzero(ntme.ipv6NetToMediaPhysAddress.o_bytes, 19361 ill->ill_phys_addr_length); 19362 } 19363 /* 19364 * Note: Returns ND_* states. Should be: 19365 * reachable(1), stale(2), delay(3), probe(4), 19366 * invalid(5), unknown(6) 19367 */ 19368 ntme.ipv6NetToMediaState = nce->nce_state; 19369 ntme.ipv6NetToMediaLastUpdated = 0; 19370 19371 /* other(1), dynamic(2), static(3), local(4) */ 19372 if (IN6_IS_ADDR_LOOPBACK(&nce->nce_addr)) { 19373 ntme.ipv6NetToMediaType = 4; 19374 } else if (IN6_IS_ADDR_MULTICAST(&nce->nce_addr)) { 19375 ntme.ipv6NetToMediaType = 1; 19376 } else { 19377 ntme.ipv6NetToMediaType = 2; 19378 } 19379 19380 if (!snmp_append_data2(ird->ird_netmedia.lp_head, 19381 &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) { 19382 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n", 19383 (uint_t)sizeof (ntme))); 19384 } 19385 return (0); 19386 } 19387 19388 /* 19389 * return (0) if invalid set request, 1 otherwise, including non-tcp requests 19390 */ 19391 /* ARGSUSED */ 19392 int 19393 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 19394 { 19395 switch (level) { 19396 case MIB2_IP: 19397 case MIB2_ICMP: 19398 switch (name) { 19399 default: 19400 break; 19401 } 19402 return (1); 19403 default: 19404 return (1); 19405 } 19406 } 19407 19408 /* 19409 * When there exists both a 64- and 32-bit counter of a particular type 19410 * (i.e., InReceives), only the 64-bit counters are added. 19411 */ 19412 void 19413 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2) 19414 { 19415 UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors); 19416 UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors); 19417 UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes); 19418 UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors); 19419 UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos); 19420 UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts); 19421 UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards); 19422 UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards); 19423 UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs); 19424 UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails); 19425 UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates); 19426 UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds); 19427 UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs); 19428 UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails); 19429 UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes); 19430 UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates); 19431 UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups); 19432 UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits); 19433 UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs); 19434 UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows); 19435 UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows); 19436 UPDATE_MIB(o1, ipIfStatsInWrongIPVersion, 19437 o2->ipIfStatsInWrongIPVersion); 19438 UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion, 19439 o2->ipIfStatsInWrongIPVersion); 19440 UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion, 19441 o2->ipIfStatsOutSwitchIPVersion); 19442 UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives); 19443 UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets); 19444 UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams, 19445 o2->ipIfStatsHCInForwDatagrams); 19446 UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers); 19447 UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests); 19448 UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams, 19449 o2->ipIfStatsHCOutForwDatagrams); 19450 UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds); 19451 UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits); 19452 UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets); 19453 UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts); 19454 UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets); 19455 UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts); 19456 UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets, 19457 o2->ipIfStatsHCOutMcastOctets); 19458 UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts); 19459 UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts); 19460 UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded); 19461 UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed); 19462 UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs); 19463 UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs); 19464 UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts); 19465 } 19466 19467 void 19468 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2) 19469 { 19470 UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs); 19471 UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors); 19472 UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs); 19473 UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs); 19474 UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds); 19475 UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems); 19476 UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs); 19477 UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos); 19478 UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies); 19479 UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits, 19480 o2->ipv6IfIcmpInRouterSolicits); 19481 UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements, 19482 o2->ipv6IfIcmpInRouterAdvertisements); 19483 UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits, 19484 o2->ipv6IfIcmpInNeighborSolicits); 19485 UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements, 19486 o2->ipv6IfIcmpInNeighborAdvertisements); 19487 UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects); 19488 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries, 19489 o2->ipv6IfIcmpInGroupMembQueries); 19490 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses, 19491 o2->ipv6IfIcmpInGroupMembResponses); 19492 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions, 19493 o2->ipv6IfIcmpInGroupMembReductions); 19494 UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs); 19495 UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors); 19496 UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs, 19497 o2->ipv6IfIcmpOutDestUnreachs); 19498 UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs, 19499 o2->ipv6IfIcmpOutAdminProhibs); 19500 UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds); 19501 UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems, 19502 o2->ipv6IfIcmpOutParmProblems); 19503 UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs); 19504 UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos); 19505 UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies); 19506 UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits, 19507 o2->ipv6IfIcmpOutRouterSolicits); 19508 UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements, 19509 o2->ipv6IfIcmpOutRouterAdvertisements); 19510 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits, 19511 o2->ipv6IfIcmpOutNeighborSolicits); 19512 UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements, 19513 o2->ipv6IfIcmpOutNeighborAdvertisements); 19514 UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects); 19515 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries, 19516 o2->ipv6IfIcmpOutGroupMembQueries); 19517 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses, 19518 o2->ipv6IfIcmpOutGroupMembResponses); 19519 UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions, 19520 o2->ipv6IfIcmpOutGroupMembReductions); 19521 UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows); 19522 UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit); 19523 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements, 19524 o2->ipv6IfIcmpInBadNeighborAdvertisements); 19525 UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations, 19526 o2->ipv6IfIcmpInBadNeighborSolicitations); 19527 UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects); 19528 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal, 19529 o2->ipv6IfIcmpInGroupMembTotal); 19530 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries, 19531 o2->ipv6IfIcmpInGroupMembBadQueries); 19532 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports, 19533 o2->ipv6IfIcmpInGroupMembBadReports); 19534 UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports, 19535 o2->ipv6IfIcmpInGroupMembOurReports); 19536 } 19537 19538 /* 19539 * Called before the options are updated to check if this packet will 19540 * be source routed from here. 19541 * This routine assumes that the options are well formed i.e. that they 19542 * have already been checked. 19543 */ 19544 static boolean_t 19545 ip_source_routed(ipha_t *ipha) 19546 { 19547 ipoptp_t opts; 19548 uchar_t *opt; 19549 uint8_t optval; 19550 uint8_t optlen; 19551 ipaddr_t dst; 19552 ire_t *ire; 19553 19554 if (IS_SIMPLE_IPH(ipha)) { 19555 ip2dbg(("not source routed\n")); 19556 return (B_FALSE); 19557 } 19558 dst = ipha->ipha_dst; 19559 for (optval = ipoptp_first(&opts, ipha); 19560 optval != IPOPT_EOL; 19561 optval = ipoptp_next(&opts)) { 19562 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 19563 opt = opts.ipoptp_cur; 19564 optlen = opts.ipoptp_len; 19565 ip2dbg(("ip_source_routed: opt %d, len %d\n", 19566 optval, optlen)); 19567 switch (optval) { 19568 uint32_t off; 19569 case IPOPT_SSRR: 19570 case IPOPT_LSRR: 19571 /* 19572 * If dst is one of our addresses and there are some 19573 * entries left in the source route return (true). 19574 */ 19575 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, NULL, 19576 ALL_ZONES, NULL, MATCH_IRE_TYPE); 19577 if (ire == NULL) { 19578 ip2dbg(("ip_source_routed: not next" 19579 " source route 0x%x\n", 19580 ntohl(dst))); 19581 return (B_FALSE); 19582 } 19583 ire_refrele(ire); 19584 off = opt[IPOPT_OFFSET]; 19585 off--; 19586 if (optlen < IP_ADDR_LEN || 19587 off > optlen - IP_ADDR_LEN) { 19588 /* End of source route */ 19589 ip1dbg(("ip_source_routed: end of SR\n")); 19590 return (B_FALSE); 19591 } 19592 return (B_TRUE); 19593 } 19594 } 19595 ip2dbg(("not source routed\n")); 19596 return (B_FALSE); 19597 } 19598 19599 /* 19600 * Check if the packet contains any source route. 19601 */ 19602 static boolean_t 19603 ip_source_route_included(ipha_t *ipha) 19604 { 19605 ipoptp_t opts; 19606 uint8_t optval; 19607 19608 if (IS_SIMPLE_IPH(ipha)) 19609 return (B_FALSE); 19610 for (optval = ipoptp_first(&opts, ipha); 19611 optval != IPOPT_EOL; 19612 optval = ipoptp_next(&opts)) { 19613 switch (optval) { 19614 case IPOPT_SSRR: 19615 case IPOPT_LSRR: 19616 return (B_TRUE); 19617 } 19618 } 19619 return (B_FALSE); 19620 } 19621 19622 /* 19623 * Called when the IRE expiration timer fires. 19624 */ 19625 /* ARGSUSED */ 19626 void 19627 ip_trash_timer_expire(void *args) 19628 { 19629 int flush_flag = 0; 19630 19631 /* 19632 * ip_ire_expire_id is protected by ip_trash_timer_lock. 19633 * This lock makes sure that a new invocation of this function 19634 * that occurs due to an almost immediate timer firing will not 19635 * progress beyond this point until the current invocation is done 19636 */ 19637 mutex_enter(&ip_trash_timer_lock); 19638 ip_ire_expire_id = 0; 19639 mutex_exit(&ip_trash_timer_lock); 19640 19641 /* Periodic timer */ 19642 if (ip_ire_arp_time_elapsed >= ip_ire_arp_interval) { 19643 /* 19644 * Remove all IRE_CACHE entries since they might 19645 * contain arp information. 19646 */ 19647 flush_flag |= FLUSH_ARP_TIME; 19648 ip_ire_arp_time_elapsed = 0; 19649 IP_STAT(ip_ire_arp_timer_expired); 19650 } 19651 if (ip_ire_rd_time_elapsed >= ip_ire_redir_interval) { 19652 /* Remove all redirects */ 19653 flush_flag |= FLUSH_REDIRECT_TIME; 19654 ip_ire_rd_time_elapsed = 0; 19655 IP_STAT(ip_ire_redirect_timer_expired); 19656 } 19657 if (ip_ire_pmtu_time_elapsed >= ip_ire_pathmtu_interval) { 19658 /* Increase path mtu */ 19659 flush_flag |= FLUSH_MTU_TIME; 19660 ip_ire_pmtu_time_elapsed = 0; 19661 IP_STAT(ip_ire_pmtu_timer_expired); 19662 } 19663 19664 /* 19665 * Optimize for the case when there are no redirects in the 19666 * ftable, that is, no need to walk the ftable in that case. 19667 */ 19668 if (flush_flag & (FLUSH_MTU_TIME|FLUSH_ARP_TIME)) { 19669 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_CACHETABLE, ire_expire, 19670 (char *)(uintptr_t)flush_flag, IP_MASK_TABLE_SIZE, 0, NULL, 19671 ip_cache_table_size, ip_cache_table, NULL, ALL_ZONES); 19672 } 19673 if ((flush_flag & FLUSH_REDIRECT_TIME) && ip_redirect_cnt > 0) { 19674 ire_walk_ill_tables(MATCH_IRE_TYPE, IRE_FORWARDTABLE, 19675 ire_expire, (char *)(uintptr_t)flush_flag, 19676 IP_MASK_TABLE_SIZE, 0, NULL, 0, NULL, NULL, ALL_ZONES); 19677 } 19678 if (flush_flag & FLUSH_MTU_TIME) { 19679 /* 19680 * Walk all IPv6 IRE's and update them 19681 * Note that ARP and redirect timers are not 19682 * needed since NUD handles stale entries. 19683 */ 19684 flush_flag = FLUSH_MTU_TIME; 19685 ire_walk_v6(ire_expire, (char *)(uintptr_t)flush_flag, 19686 ALL_ZONES); 19687 } 19688 19689 ip_ire_arp_time_elapsed += ip_timer_interval; 19690 ip_ire_rd_time_elapsed += ip_timer_interval; 19691 ip_ire_pmtu_time_elapsed += ip_timer_interval; 19692 19693 /* 19694 * Hold the lock to serialize timeout calls and prevent 19695 * stale values in ip_ire_expire_id. Otherwise it is possible 19696 * for the timer to fire and a new invocation of this function 19697 * to start before the return value of timeout has been stored 19698 * in ip_ire_expire_id by the current invocation. 19699 */ 19700 mutex_enter(&ip_trash_timer_lock); 19701 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 19702 MSEC_TO_TICK(ip_timer_interval)); 19703 mutex_exit(&ip_trash_timer_lock); 19704 } 19705 19706 /* 19707 * Called by the memory allocator subsystem directly, when the system 19708 * is running low on memory. 19709 */ 19710 /* ARGSUSED */ 19711 void 19712 ip_trash_ire_reclaim(void *args) 19713 { 19714 ire_cache_count_t icc; 19715 ire_cache_reclaim_t icr; 19716 ncc_cache_count_t ncc; 19717 nce_cache_reclaim_t ncr; 19718 uint_t delete_cnt; 19719 /* 19720 * Memory reclaim call back. 19721 * Count unused, offlink, pmtu, and onlink IRE_CACHE entries. 19722 * Then, with a target of freeing 1/Nth of IRE_CACHE 19723 * entries, determine what fraction to free for 19724 * each category of IRE_CACHE entries giving absolute priority 19725 * in the order of onlink, pmtu, offlink, unused (e.g. no pmtu 19726 * entry will be freed unless all offlink entries are freed). 19727 */ 19728 icc.icc_total = 0; 19729 icc.icc_unused = 0; 19730 icc.icc_offlink = 0; 19731 icc.icc_pmtu = 0; 19732 icc.icc_onlink = 0; 19733 ire_walk(ire_cache_count, (char *)&icc); 19734 19735 /* 19736 * Free NCEs for IPv6 like the onlink ires. 19737 */ 19738 ncc.ncc_total = 0; 19739 ncc.ncc_host = 0; 19740 ndp_walk(NULL, (pfi_t)ndp_cache_count, (uchar_t *)&ncc); 19741 19742 ASSERT(icc.icc_total == icc.icc_unused + icc.icc_offlink + 19743 icc.icc_pmtu + icc.icc_onlink); 19744 delete_cnt = icc.icc_total/ip_ire_reclaim_fraction; 19745 IP_STAT(ip_trash_ire_reclaim_calls); 19746 if (delete_cnt == 0) 19747 return; 19748 IP_STAT(ip_trash_ire_reclaim_success); 19749 /* Always delete all unused offlink entries */ 19750 icr.icr_unused = 1; 19751 if (delete_cnt <= icc.icc_unused) { 19752 /* 19753 * Only need to free unused entries. In other words, 19754 * there are enough unused entries to free to meet our 19755 * target number of freed ire cache entries. 19756 */ 19757 icr.icr_offlink = icr.icr_pmtu = icr.icr_onlink = 0; 19758 ncr.ncr_host = 0; 19759 } else if (delete_cnt <= icc.icc_unused + icc.icc_offlink) { 19760 /* 19761 * Only need to free unused entries, plus a fraction of offlink 19762 * entries. It follows from the first if statement that 19763 * icc_offlink is non-zero, and that delete_cnt != icc_unused. 19764 */ 19765 delete_cnt -= icc.icc_unused; 19766 /* Round up # deleted by truncating fraction */ 19767 icr.icr_offlink = icc.icc_offlink / delete_cnt; 19768 icr.icr_pmtu = icr.icr_onlink = 0; 19769 ncr.ncr_host = 0; 19770 } else if (delete_cnt <= 19771 icc.icc_unused + icc.icc_offlink + icc.icc_pmtu) { 19772 /* 19773 * Free all unused and offlink entries, plus a fraction of 19774 * pmtu entries. It follows from the previous if statement 19775 * that icc_pmtu is non-zero, and that 19776 * delete_cnt != icc_unused + icc_offlink. 19777 */ 19778 icr.icr_offlink = 1; 19779 delete_cnt -= icc.icc_unused + icc.icc_offlink; 19780 /* Round up # deleted by truncating fraction */ 19781 icr.icr_pmtu = icc.icc_pmtu / delete_cnt; 19782 icr.icr_onlink = 0; 19783 ncr.ncr_host = 0; 19784 } else { 19785 /* 19786 * Free all unused, offlink, and pmtu entries, plus a fraction 19787 * of onlink entries. If we're here, then we know that 19788 * icc_onlink is non-zero, and that 19789 * delete_cnt != icc_unused + icc_offlink + icc_pmtu. 19790 */ 19791 icr.icr_offlink = icr.icr_pmtu = 1; 19792 delete_cnt -= icc.icc_unused + icc.icc_offlink + 19793 icc.icc_pmtu; 19794 /* Round up # deleted by truncating fraction */ 19795 icr.icr_onlink = icc.icc_onlink / delete_cnt; 19796 /* Using the same delete fraction as for onlink IREs */ 19797 ncr.ncr_host = ncc.ncc_host / delete_cnt; 19798 } 19799 #ifdef DEBUG 19800 ip1dbg(("IP reclaim: target %d out of %d current %d/%d/%d/%d " 19801 "fractions %d/%d/%d/%d\n", 19802 icc.icc_total/ip_ire_reclaim_fraction, icc.icc_total, 19803 icc.icc_unused, icc.icc_offlink, 19804 icc.icc_pmtu, icc.icc_onlink, 19805 icr.icr_unused, icr.icr_offlink, 19806 icr.icr_pmtu, icr.icr_onlink)); 19807 #endif 19808 ire_walk(ire_cache_reclaim, (char *)&icr); 19809 if (ncr.ncr_host != 0) 19810 ndp_walk(NULL, (pfi_t)ndp_cache_reclaim, 19811 (uchar_t *)&ncr); 19812 #ifdef DEBUG 19813 icc.icc_total = 0; icc.icc_unused = 0; icc.icc_offlink = 0; 19814 icc.icc_pmtu = 0; icc.icc_onlink = 0; 19815 ire_walk(ire_cache_count, (char *)&icc); 19816 ip1dbg(("IP reclaim: result total %d %d/%d/%d/%d\n", 19817 icc.icc_total, icc.icc_unused, icc.icc_offlink, 19818 icc.icc_pmtu, icc.icc_onlink)); 19819 #endif 19820 } 19821 19822 /* 19823 * ip_unbind is called when a copy of an unbind request is received from the 19824 * upper level protocol. We remove this conn from any fanout hash list it is 19825 * on, and zero out the bind information. No reply is expected up above. 19826 */ 19827 mblk_t * 19828 ip_unbind(queue_t *q, mblk_t *mp) 19829 { 19830 conn_t *connp = Q_TO_CONN(q); 19831 19832 ASSERT(!MUTEX_HELD(&connp->conn_lock)); 19833 19834 if (is_system_labeled() && connp->conn_anon_port) { 19835 (void) tsol_mlp_anon(crgetzone(connp->conn_cred), 19836 connp->conn_mlp_type, connp->conn_ulp, 19837 ntohs(connp->conn_lport), B_FALSE); 19838 connp->conn_anon_port = 0; 19839 } 19840 connp->conn_mlp_type = mlptSingle; 19841 19842 ipcl_hash_remove(connp); 19843 19844 ASSERT(mp->b_cont == NULL); 19845 /* 19846 * Convert mp into a T_OK_ACK 19847 */ 19848 mp = mi_tpi_ok_ack_alloc(mp); 19849 19850 /* 19851 * should not happen in practice... T_OK_ACK is smaller than the 19852 * original message. 19853 */ 19854 if (mp == NULL) 19855 return (NULL); 19856 19857 /* 19858 * Don't bzero the ports if its TCP since TCP still needs the 19859 * lport to remove it from its own bind hash. TCP will do the 19860 * cleanup. 19861 */ 19862 if (!IPCL_IS_TCP(connp)) 19863 bzero(&connp->u_port, sizeof (connp->u_port)); 19864 19865 return (mp); 19866 } 19867 19868 /* 19869 * Write side put procedure. Outbound data, IOCTLs, responses from 19870 * resolvers, etc, come down through here. 19871 * 19872 * arg2 is always a queue_t *. 19873 * When that queue is an ill_t (i.e. q_next != NULL), then arg must be 19874 * the zoneid. 19875 * When that queue is not an ill_t, then arg must be a conn_t pointer. 19876 */ 19877 void 19878 ip_output(void *arg, mblk_t *mp, void *arg2, int caller) 19879 { 19880 conn_t *connp = NULL; 19881 queue_t *q = (queue_t *)arg2; 19882 ipha_t *ipha; 19883 #define rptr ((uchar_t *)ipha) 19884 ire_t *ire = NULL; 19885 ire_t *sctp_ire = NULL; 19886 uint32_t v_hlen_tos_len; 19887 ipaddr_t dst; 19888 mblk_t *first_mp = NULL; 19889 boolean_t mctl_present; 19890 ipsec_out_t *io; 19891 int match_flags; 19892 ill_t *attach_ill = NULL; 19893 /* Bind to IPIF_NOFAILOVER ill etc. */ 19894 ill_t *xmit_ill = NULL; /* IP_XMIT_IF etc. */ 19895 ipif_t *dst_ipif; 19896 boolean_t multirt_need_resolve = B_FALSE; 19897 mblk_t *copy_mp = NULL; 19898 int err; 19899 zoneid_t zoneid; 19900 int adjust; 19901 uint16_t iplen; 19902 boolean_t need_decref = B_FALSE; 19903 boolean_t ignore_dontroute = B_FALSE; 19904 boolean_t ignore_nexthop = B_FALSE; 19905 boolean_t ip_nexthop = B_FALSE; 19906 ipaddr_t nexthop_addr; 19907 19908 #ifdef _BIG_ENDIAN 19909 #define V_HLEN (v_hlen_tos_len >> 24) 19910 #else 19911 #define V_HLEN (v_hlen_tos_len & 0xFF) 19912 #endif 19913 19914 TRACE_1(TR_FAC_IP, TR_IP_WPUT_START, 19915 "ip_wput_start: q %p", q); 19916 19917 /* 19918 * ip_wput fast path 19919 */ 19920 19921 /* is packet from ARP ? */ 19922 if (q->q_next != NULL) { 19923 zoneid = (zoneid_t)(uintptr_t)arg; 19924 goto qnext; 19925 } 19926 19927 connp = (conn_t *)arg; 19928 ASSERT(connp != NULL); 19929 zoneid = connp->conn_zoneid; 19930 19931 /* is queue flow controlled? */ 19932 if ((q->q_first != NULL || connp->conn_draining) && 19933 (caller == IP_WPUT)) { 19934 ASSERT(!need_decref); 19935 (void) putq(q, mp); 19936 return; 19937 } 19938 19939 /* Multidata transmit? */ 19940 if (DB_TYPE(mp) == M_MULTIDATA) { 19941 /* 19942 * We should never get here, since all Multidata messages 19943 * originating from tcp should have been directed over to 19944 * tcp_multisend() in the first place. 19945 */ 19946 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 19947 freemsg(mp); 19948 return; 19949 } else if (DB_TYPE(mp) != M_DATA) 19950 goto notdata; 19951 19952 if (mp->b_flag & MSGHASREF) { 19953 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 19954 mp->b_flag &= ~MSGHASREF; 19955 SCTP_EXTRACT_IPINFO(mp, sctp_ire); 19956 need_decref = B_TRUE; 19957 } 19958 ipha = (ipha_t *)mp->b_rptr; 19959 19960 /* is IP header non-aligned or mblk smaller than basic IP header */ 19961 #ifndef SAFETY_BEFORE_SPEED 19962 if (!OK_32PTR(rptr) || 19963 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) 19964 goto hdrtoosmall; 19965 #endif 19966 19967 ASSERT(OK_32PTR(ipha)); 19968 19969 /* 19970 * This function assumes that mp points to an IPv4 packet. If it's the 19971 * wrong version, we'll catch it again in ip_output_v6. 19972 * 19973 * Note that this is *only* locally-generated output here, and never 19974 * forwarded data, and that we need to deal only with transports that 19975 * don't know how to label. (TCP, UDP, and ICMP/raw-IP all know how to 19976 * label.) 19977 */ 19978 if (is_system_labeled() && 19979 (ipha->ipha_version_and_hdr_length & 0xf0) == (IPV4_VERSION << 4) && 19980 !connp->conn_ulp_labeled) { 19981 err = tsol_check_label(BEST_CRED(mp, connp), &mp, &adjust, 19982 connp->conn_mac_exempt); 19983 ipha = (ipha_t *)mp->b_rptr; 19984 if (err != 0) { 19985 first_mp = mp; 19986 if (err == EINVAL) 19987 goto icmp_parameter_problem; 19988 ip2dbg(("ip_wput: label check failed (%d)\n", err)); 19989 goto discard_pkt; 19990 } 19991 iplen = ntohs(ipha->ipha_length) + adjust; 19992 ipha->ipha_length = htons(iplen); 19993 } 19994 19995 /* 19996 * If there is a policy, try to attach an ipsec_out in 19997 * the front. At the end, first_mp either points to a 19998 * M_DATA message or IPSEC_OUT message linked to a 19999 * M_DATA message. We have to do it now as we might 20000 * lose the "conn" if we go through ip_newroute. 20001 */ 20002 if (connp->conn_out_enforce_policy || (connp->conn_latch != NULL)) { 20003 if (((mp = ipsec_attach_ipsec_out(mp, connp, NULL, 20004 ipha->ipha_protocol)) == NULL)) { 20005 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20006 if (need_decref) 20007 CONN_DEC_REF(connp); 20008 return; 20009 } else { 20010 ASSERT(mp->b_datap->db_type == M_CTL); 20011 first_mp = mp; 20012 mp = mp->b_cont; 20013 mctl_present = B_TRUE; 20014 } 20015 } else { 20016 first_mp = mp; 20017 mctl_present = B_FALSE; 20018 } 20019 20020 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20021 20022 /* is wrong version or IP options present */ 20023 if (V_HLEN != IP_SIMPLE_HDR_VERSION) 20024 goto version_hdrlen_check; 20025 dst = ipha->ipha_dst; 20026 20027 if (connp->conn_nofailover_ill != NULL) { 20028 attach_ill = conn_get_held_ill(connp, 20029 &connp->conn_nofailover_ill, &err); 20030 if (err == ILL_LOOKUP_FAILED) { 20031 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20032 if (need_decref) 20033 CONN_DEC_REF(connp); 20034 freemsg(first_mp); 20035 return; 20036 } 20037 } 20038 20039 /* is packet multicast? */ 20040 if (CLASSD(dst)) 20041 goto multicast; 20042 20043 if ((connp->conn_dontroute) || (connp->conn_xmit_if_ill != NULL) || 20044 (connp->conn_nexthop_set)) { 20045 /* 20046 * If the destination is a broadcast or a loopback 20047 * address, SO_DONTROUTE, IP_XMIT_IF and IP_NEXTHOP go 20048 * through the standard path. But in the case of local 20049 * destination only SO_DONTROUTE and IP_NEXTHOP go through 20050 * the standard path not IP_XMIT_IF. 20051 */ 20052 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20053 if ((ire == NULL) || ((ire->ire_type != IRE_BROADCAST) && 20054 (ire->ire_type != IRE_LOOPBACK))) { 20055 if ((connp->conn_dontroute || 20056 connp->conn_nexthop_set) && (ire != NULL) && 20057 (ire->ire_type == IRE_LOCAL)) 20058 goto standard_path; 20059 20060 if (ire != NULL) { 20061 ire_refrele(ire); 20062 /* No more access to ire */ 20063 ire = NULL; 20064 } 20065 /* 20066 * bypass routing checks and go directly to 20067 * interface. 20068 */ 20069 if (connp->conn_dontroute) { 20070 goto dontroute; 20071 } else if (connp->conn_nexthop_set) { 20072 ip_nexthop = B_TRUE; 20073 nexthop_addr = connp->conn_nexthop_v4; 20074 goto send_from_ill; 20075 } 20076 20077 /* 20078 * If IP_XMIT_IF socket option is set, 20079 * then we allow unicast and multicast 20080 * packets to go through the ill. It is 20081 * quite possible that the destination 20082 * is not in the ire cache table and we 20083 * do not want to go to ip_newroute() 20084 * instead we call ip_newroute_ipif. 20085 */ 20086 xmit_ill = conn_get_held_ill(connp, 20087 &connp->conn_xmit_if_ill, &err); 20088 if (err == ILL_LOOKUP_FAILED) { 20089 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20090 if (attach_ill != NULL) 20091 ill_refrele(attach_ill); 20092 if (need_decref) 20093 CONN_DEC_REF(connp); 20094 freemsg(first_mp); 20095 return; 20096 } 20097 goto send_from_ill; 20098 } 20099 standard_path: 20100 /* Must be a broadcast, a loopback or a local ire */ 20101 if (ire != NULL) { 20102 ire_refrele(ire); 20103 /* No more access to ire */ 20104 ire = NULL; 20105 } 20106 } 20107 20108 if (attach_ill != NULL) 20109 goto send_from_ill; 20110 20111 /* 20112 * We cache IRE_CACHEs to avoid lookups. We don't do 20113 * this for the tcp global queue and listen end point 20114 * as it does not really have a real destination to 20115 * talk to. This is also true for SCTP. 20116 */ 20117 if (IP_FLOW_CONTROLLED_ULP(connp->conn_ulp) && 20118 !connp->conn_fully_bound) { 20119 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20120 if (ire == NULL) 20121 goto noirefound; 20122 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20123 "ip_wput_end: q %p (%S)", q, "end"); 20124 20125 /* 20126 * Check if the ire has the RTF_MULTIRT flag, inherited 20127 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20128 */ 20129 if (ire->ire_flags & RTF_MULTIRT) { 20130 20131 /* 20132 * Force the TTL of multirouted packets if required. 20133 * The TTL of such packets is bounded by the 20134 * ip_multirt_ttl ndd variable. 20135 */ 20136 if ((ip_multirt_ttl > 0) && 20137 (ipha->ipha_ttl > ip_multirt_ttl)) { 20138 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20139 "(was %d), dst 0x%08x\n", 20140 ip_multirt_ttl, ipha->ipha_ttl, 20141 ntohl(ire->ire_addr))); 20142 ipha->ipha_ttl = ip_multirt_ttl; 20143 } 20144 /* 20145 * We look at this point if there are pending 20146 * unresolved routes. ire_multirt_resolvable() 20147 * checks in O(n) that all IRE_OFFSUBNET ire 20148 * entries for the packet's destination and 20149 * flagged RTF_MULTIRT are currently resolved. 20150 * If some remain unresolved, we make a copy 20151 * of the current message. It will be used 20152 * to initiate additional route resolutions. 20153 */ 20154 multirt_need_resolve = 20155 ire_multirt_need_resolve(ire->ire_addr, 20156 MBLK_GETLABEL(first_mp)); 20157 ip2dbg(("ip_wput[TCP]: ire %p, " 20158 "multirt_need_resolve %d, first_mp %p\n", 20159 (void *)ire, multirt_need_resolve, 20160 (void *)first_mp)); 20161 if (multirt_need_resolve) { 20162 copy_mp = copymsg(first_mp); 20163 if (copy_mp != NULL) { 20164 MULTIRT_DEBUG_TAG(copy_mp); 20165 } 20166 } 20167 } 20168 20169 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20170 20171 /* 20172 * Try to resolve another multiroute if 20173 * ire_multirt_need_resolve() deemed it necessary. 20174 */ 20175 if (copy_mp != NULL) { 20176 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20177 } 20178 if (need_decref) 20179 CONN_DEC_REF(connp); 20180 return; 20181 } 20182 20183 /* 20184 * Access to conn_ire_cache. (protected by conn_lock) 20185 * 20186 * IRE_MARK_CONDEMNED is marked in ire_delete. We don't grab 20187 * the ire bucket lock here to check for CONDEMNED as it is okay to 20188 * send a packet or two with the IRE_CACHE that is going away. 20189 * Access to the ire requires an ire refhold on the ire prior to 20190 * its use since an interface unplumb thread may delete the cached 20191 * ire and release the refhold at any time. 20192 * 20193 * Caching an ire in the conn_ire_cache 20194 * 20195 * o Caching an ire pointer in the conn requires a strict check for 20196 * IRE_MARK_CONDEMNED. An interface unplumb thread deletes all relevant 20197 * ires before cleaning up the conns. So the caching of an ire pointer 20198 * in the conn is done after making sure under the bucket lock that the 20199 * ire has not yet been marked CONDEMNED. Otherwise we will end up 20200 * caching an ire after the unplumb thread has cleaned up the conn. 20201 * If the conn does not send a packet subsequently the unplumb thread 20202 * will be hanging waiting for the ire count to drop to zero. 20203 * 20204 * o We also need to atomically test for a null conn_ire_cache and 20205 * set the conn_ire_cache under the the protection of the conn_lock 20206 * to avoid races among concurrent threads trying to simultaneously 20207 * cache an ire in the conn_ire_cache. 20208 */ 20209 mutex_enter(&connp->conn_lock); 20210 ire = sctp_ire != NULL ? sctp_ire : connp->conn_ire_cache; 20211 20212 if (ire != NULL && ire->ire_addr == dst && 20213 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20214 20215 IRE_REFHOLD(ire); 20216 mutex_exit(&connp->conn_lock); 20217 20218 } else { 20219 boolean_t cached = B_FALSE; 20220 connp->conn_ire_cache = NULL; 20221 mutex_exit(&connp->conn_lock); 20222 /* Release the old ire */ 20223 if (ire != NULL && sctp_ire == NULL) 20224 IRE_REFRELE_NOTR(ire); 20225 20226 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20227 if (ire == NULL) 20228 goto noirefound; 20229 IRE_REFHOLD_NOTR(ire); 20230 20231 mutex_enter(&connp->conn_lock); 20232 if (!(connp->conn_state_flags & CONN_CLOSING) && 20233 connp->conn_ire_cache == NULL) { 20234 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 20235 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 20236 connp->conn_ire_cache = ire; 20237 cached = B_TRUE; 20238 } 20239 rw_exit(&ire->ire_bucket->irb_lock); 20240 } 20241 mutex_exit(&connp->conn_lock); 20242 20243 /* 20244 * We can continue to use the ire but since it was 20245 * not cached, we should drop the extra reference. 20246 */ 20247 if (!cached) 20248 IRE_REFRELE_NOTR(ire); 20249 } 20250 20251 20252 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20253 "ip_wput_end: q %p (%S)", q, "end"); 20254 20255 /* 20256 * Check if the ire has the RTF_MULTIRT flag, inherited 20257 * from an IRE_OFFSUBNET ire entry in ip_newroute(). 20258 */ 20259 if (ire->ire_flags & RTF_MULTIRT) { 20260 20261 /* 20262 * Force the TTL of multirouted packets if required. 20263 * The TTL of such packets is bounded by the 20264 * ip_multirt_ttl ndd variable. 20265 */ 20266 if ((ip_multirt_ttl > 0) && 20267 (ipha->ipha_ttl > ip_multirt_ttl)) { 20268 ip2dbg(("ip_wput: forcing multirt TTL to %d " 20269 "(was %d), dst 0x%08x\n", 20270 ip_multirt_ttl, ipha->ipha_ttl, 20271 ntohl(ire->ire_addr))); 20272 ipha->ipha_ttl = ip_multirt_ttl; 20273 } 20274 20275 /* 20276 * At this point, we check to see if there are any pending 20277 * unresolved routes. ire_multirt_resolvable() 20278 * checks in O(n) that all IRE_OFFSUBNET ire 20279 * entries for the packet's destination and 20280 * flagged RTF_MULTIRT are currently resolved. 20281 * If some remain unresolved, we make a copy 20282 * of the current message. It will be used 20283 * to initiate additional route resolutions. 20284 */ 20285 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 20286 MBLK_GETLABEL(first_mp)); 20287 ip2dbg(("ip_wput[not TCP]: ire %p, " 20288 "multirt_need_resolve %d, first_mp %p\n", 20289 (void *)ire, multirt_need_resolve, (void *)first_mp)); 20290 if (multirt_need_resolve) { 20291 copy_mp = copymsg(first_mp); 20292 if (copy_mp != NULL) { 20293 MULTIRT_DEBUG_TAG(copy_mp); 20294 } 20295 } 20296 } 20297 20298 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 20299 20300 /* 20301 * Try to resolve another multiroute if 20302 * ire_multirt_resolvable() deemed it necessary 20303 */ 20304 if (copy_mp != NULL) { 20305 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 20306 } 20307 if (need_decref) 20308 CONN_DEC_REF(connp); 20309 return; 20310 20311 qnext: 20312 /* 20313 * Upper Level Protocols pass down complete IP datagrams 20314 * as M_DATA messages. Everything else is a sideshow. 20315 * 20316 * 1) We could be re-entering ip_wput because of ip_neworute 20317 * in which case we could have a IPSEC_OUT message. We 20318 * need to pass through ip_wput like other datagrams and 20319 * hence cannot branch to ip_wput_nondata. 20320 * 20321 * 2) ARP, AH, ESP, and other clients who are on the module 20322 * instance of IP stream, give us something to deal with. 20323 * We will handle AH and ESP here and rest in ip_wput_nondata. 20324 * 20325 * 3) ICMP replies also could come here. 20326 */ 20327 if (DB_TYPE(mp) != M_DATA) { 20328 notdata: 20329 if (DB_TYPE(mp) == M_CTL) { 20330 /* 20331 * M_CTL messages are used by ARP, AH and ESP to 20332 * communicate with IP. We deal with IPSEC_IN and 20333 * IPSEC_OUT here. ip_wput_nondata handles other 20334 * cases. 20335 */ 20336 ipsec_info_t *ii = (ipsec_info_t *)mp->b_rptr; 20337 if (mp->b_cont && (mp->b_cont->b_flag & MSGHASREF)) { 20338 first_mp = mp->b_cont; 20339 first_mp->b_flag &= ~MSGHASREF; 20340 ASSERT(connp->conn_ulp == IPPROTO_SCTP); 20341 SCTP_EXTRACT_IPINFO(first_mp, sctp_ire); 20342 CONN_DEC_REF(connp); 20343 connp = NULL; 20344 } 20345 if (ii->ipsec_info_type == IPSEC_IN) { 20346 /* 20347 * Either this message goes back to 20348 * IPSEC for further processing or to 20349 * ULP after policy checks. 20350 */ 20351 ip_fanout_proto_again(mp, NULL, NULL, NULL); 20352 return; 20353 } else if (ii->ipsec_info_type == IPSEC_OUT) { 20354 io = (ipsec_out_t *)ii; 20355 if (io->ipsec_out_proc_begin) { 20356 /* 20357 * IPSEC processing has already started. 20358 * Complete it. 20359 * IPQoS notes: We don't care what is 20360 * in ipsec_out_ill_index since this 20361 * won't be processed for IPQoS policies 20362 * in ipsec_out_process. 20363 */ 20364 ipsec_out_process(q, mp, NULL, 20365 io->ipsec_out_ill_index); 20366 return; 20367 } else { 20368 connp = (q->q_next != NULL) ? 20369 NULL : Q_TO_CONN(q); 20370 first_mp = mp; 20371 mp = mp->b_cont; 20372 mctl_present = B_TRUE; 20373 } 20374 zoneid = io->ipsec_out_zoneid; 20375 ASSERT(zoneid != ALL_ZONES); 20376 } else if (ii->ipsec_info_type == IPSEC_CTL) { 20377 /* 20378 * It's an IPsec control message requesting 20379 * an SADB update to be sent to the IPsec 20380 * hardware acceleration capable ills. 20381 */ 20382 ipsec_ctl_t *ipsec_ctl = 20383 (ipsec_ctl_t *)mp->b_rptr; 20384 ipsa_t *sa = (ipsa_t *)ipsec_ctl->ipsec_ctl_sa; 20385 uint_t satype = ipsec_ctl->ipsec_ctl_sa_type; 20386 mblk_t *cmp = mp->b_cont; 20387 20388 ASSERT(MBLKL(mp) >= sizeof (ipsec_ctl_t)); 20389 ASSERT(cmp != NULL); 20390 20391 freeb(mp); 20392 ill_ipsec_capab_send_all(satype, cmp, sa); 20393 return; 20394 } else { 20395 /* 20396 * This must be ARP or special TSOL signaling. 20397 */ 20398 ip_wput_nondata(NULL, q, mp, NULL); 20399 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20400 "ip_wput_end: q %p (%S)", q, "nondata"); 20401 return; 20402 } 20403 } else { 20404 /* 20405 * This must be non-(ARP/AH/ESP) messages. 20406 */ 20407 ASSERT(!need_decref); 20408 ip_wput_nondata(NULL, q, mp, NULL); 20409 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20410 "ip_wput_end: q %p (%S)", q, "nondata"); 20411 return; 20412 } 20413 } else { 20414 first_mp = mp; 20415 mctl_present = B_FALSE; 20416 } 20417 20418 ASSERT(first_mp != NULL); 20419 /* 20420 * ICMP echo replies attach an ipsec_out and set ipsec_out_attach_if 20421 * to make sure that this packet goes out on the same interface it 20422 * came in. We handle that here. 20423 */ 20424 if (mctl_present) { 20425 uint_t ifindex; 20426 20427 io = (ipsec_out_t *)first_mp->b_rptr; 20428 if (io->ipsec_out_attach_if || 20429 io->ipsec_out_xmit_if || 20430 io->ipsec_out_ip_nexthop) { 20431 ill_t *ill; 20432 20433 /* 20434 * We may have lost the conn context if we are 20435 * coming here from ip_newroute(). Copy the 20436 * nexthop information. 20437 */ 20438 if (io->ipsec_out_ip_nexthop) { 20439 ip_nexthop = B_TRUE; 20440 nexthop_addr = io->ipsec_out_nexthop_addr; 20441 20442 ipha = (ipha_t *)mp->b_rptr; 20443 dst = ipha->ipha_dst; 20444 goto send_from_ill; 20445 } else { 20446 ASSERT(io->ipsec_out_ill_index != 0); 20447 ifindex = io->ipsec_out_ill_index; 20448 ill = ill_lookup_on_ifindex(ifindex, B_FALSE, 20449 NULL, NULL, NULL, NULL); 20450 /* 20451 * ipsec_out_xmit_if bit is used to tell 20452 * ip_wput to use the ill to send outgoing data 20453 * as we have no conn when data comes from ICMP 20454 * error msg routines. Currently this feature is 20455 * only used by ip_mrtun_forward routine. 20456 */ 20457 if (io->ipsec_out_xmit_if) { 20458 xmit_ill = ill; 20459 if (xmit_ill == NULL) { 20460 ip1dbg(("ip_output:bad ifindex " 20461 "for xmit_ill %d\n", 20462 ifindex)); 20463 freemsg(first_mp); 20464 BUMP_MIB(&ip_mib, 20465 ipIfStatsOutDiscards); 20466 ASSERT(!need_decref); 20467 return; 20468 } 20469 /* Free up the ipsec_out_t mblk */ 20470 ASSERT(first_mp->b_cont == mp); 20471 first_mp->b_cont = NULL; 20472 freeb(first_mp); 20473 /* Just send the IP header+ICMP+data */ 20474 first_mp = mp; 20475 ipha = (ipha_t *)mp->b_rptr; 20476 dst = ipha->ipha_dst; 20477 goto send_from_ill; 20478 } else { 20479 attach_ill = ill; 20480 } 20481 20482 if (attach_ill == NULL) { 20483 ASSERT(xmit_ill == NULL); 20484 ip1dbg(("ip_output: bad ifindex for " 20485 "(BIND TO IPIF_NOFAILOVER) %d\n", 20486 ifindex)); 20487 freemsg(first_mp); 20488 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20489 ASSERT(!need_decref); 20490 return; 20491 } 20492 } 20493 } 20494 } 20495 20496 ASSERT(xmit_ill == NULL); 20497 20498 /* We have a complete IP datagram heading outbound. */ 20499 ipha = (ipha_t *)mp->b_rptr; 20500 20501 #ifndef SPEED_BEFORE_SAFETY 20502 /* 20503 * Make sure we have a full-word aligned message and that at least 20504 * a simple IP header is accessible in the first message. If not, 20505 * try a pullup. 20506 */ 20507 if (!OK_32PTR(rptr) || 20508 (mp->b_wptr - rptr) < IP_SIMPLE_HDR_LENGTH) { 20509 hdrtoosmall: 20510 if (!pullupmsg(mp, IP_SIMPLE_HDR_LENGTH)) { 20511 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20512 "ip_wput_end: q %p (%S)", q, "pullupfailed"); 20513 if (first_mp == NULL) 20514 first_mp = mp; 20515 goto discard_pkt; 20516 } 20517 20518 /* This function assumes that mp points to an IPv4 packet. */ 20519 if (is_system_labeled() && q->q_next == NULL && 20520 (*mp->b_rptr & 0xf0) == (IPV4_VERSION << 4) && 20521 !connp->conn_ulp_labeled) { 20522 err = tsol_check_label(BEST_CRED(mp, connp), &mp, 20523 &adjust, connp->conn_mac_exempt); 20524 ipha = (ipha_t *)mp->b_rptr; 20525 if (first_mp != NULL) 20526 first_mp->b_cont = mp; 20527 if (err != 0) { 20528 if (first_mp == NULL) 20529 first_mp = mp; 20530 if (err == EINVAL) 20531 goto icmp_parameter_problem; 20532 ip2dbg(("ip_wput: label check failed (%d)\n", 20533 err)); 20534 goto discard_pkt; 20535 } 20536 iplen = ntohs(ipha->ipha_length) + adjust; 20537 ipha->ipha_length = htons(iplen); 20538 } 20539 20540 ipha = (ipha_t *)mp->b_rptr; 20541 if (first_mp == NULL) { 20542 ASSERT(attach_ill == NULL && xmit_ill == NULL); 20543 /* 20544 * If we got here because of "goto hdrtoosmall" 20545 * We need to attach a IPSEC_OUT. 20546 */ 20547 if (connp->conn_out_enforce_policy) { 20548 if (((mp = ipsec_attach_ipsec_out(mp, connp, 20549 NULL, ipha->ipha_protocol)) == NULL)) { 20550 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20551 if (need_decref) 20552 CONN_DEC_REF(connp); 20553 return; 20554 } else { 20555 ASSERT(mp->b_datap->db_type == M_CTL); 20556 first_mp = mp; 20557 mp = mp->b_cont; 20558 mctl_present = B_TRUE; 20559 } 20560 } else { 20561 first_mp = mp; 20562 mctl_present = B_FALSE; 20563 } 20564 } 20565 } 20566 #endif 20567 20568 /* Most of the code below is written for speed, not readability */ 20569 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 20570 20571 /* 20572 * If ip_newroute() fails, we're going to need a full 20573 * header for the icmp wraparound. 20574 */ 20575 if (V_HLEN != IP_SIMPLE_HDR_VERSION) { 20576 uint_t v_hlen; 20577 version_hdrlen_check: 20578 ASSERT(first_mp != NULL); 20579 v_hlen = V_HLEN; 20580 /* 20581 * siphon off IPv6 packets coming down from transport 20582 * layer modules here. 20583 * Note: high-order bit carries NUD reachability confirmation 20584 */ 20585 if (((v_hlen >> 4) & 0x7) == IPV6_VERSION) { 20586 /* 20587 * XXX implement a IPv4 and IPv6 packet counter per 20588 * conn and switch when ratio exceeds e.g. 10:1 20589 */ 20590 #ifdef notyet 20591 if (q->q_next == NULL) /* Avoid ill queue */ 20592 ip_setqinfo(RD(q), B_TRUE, B_TRUE); 20593 #endif 20594 BUMP_MIB(&ip_mib, ipIfStatsOutWrongIPVersion); 20595 ASSERT(xmit_ill == NULL); 20596 if (attach_ill != NULL) 20597 ill_refrele(attach_ill); 20598 if (need_decref) 20599 mp->b_flag |= MSGHASREF; 20600 (void) ip_output_v6(arg, first_mp, arg2, caller); 20601 return; 20602 } 20603 20604 if ((v_hlen >> 4) != IP_VERSION) { 20605 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20606 "ip_wput_end: q %p (%S)", q, "badvers"); 20607 goto discard_pkt; 20608 } 20609 /* 20610 * Is the header length at least 20 bytes? 20611 * 20612 * Are there enough bytes accessible in the header? If 20613 * not, try a pullup. 20614 */ 20615 v_hlen &= 0xF; 20616 v_hlen <<= 2; 20617 if (v_hlen < IP_SIMPLE_HDR_LENGTH) { 20618 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20619 "ip_wput_end: q %p (%S)", q, "badlen"); 20620 goto discard_pkt; 20621 } 20622 if (v_hlen > (mp->b_wptr - rptr)) { 20623 if (!pullupmsg(mp, v_hlen)) { 20624 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20625 "ip_wput_end: q %p (%S)", q, "badpullup2"); 20626 goto discard_pkt; 20627 } 20628 ipha = (ipha_t *)mp->b_rptr; 20629 } 20630 /* 20631 * Move first entry from any source route into ipha_dst and 20632 * verify the options 20633 */ 20634 if (ip_wput_options(q, first_mp, ipha, mctl_present, zoneid)) { 20635 ASSERT(xmit_ill == NULL); 20636 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 20637 if (attach_ill != NULL) 20638 ill_refrele(attach_ill); 20639 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20640 "ip_wput_end: q %p (%S)", q, "badopts"); 20641 if (need_decref) 20642 CONN_DEC_REF(connp); 20643 return; 20644 } 20645 } 20646 dst = ipha->ipha_dst; 20647 20648 /* 20649 * Try to get an IRE_CACHE for the destination address. If we can't, 20650 * we have to run the packet through ip_newroute which will take 20651 * the appropriate action to arrange for an IRE_CACHE, such as querying 20652 * a resolver, or assigning a default gateway, etc. 20653 */ 20654 if (CLASSD(dst)) { 20655 ipif_t *ipif; 20656 uint32_t setsrc = 0; 20657 20658 multicast: 20659 ASSERT(first_mp != NULL); 20660 ASSERT(xmit_ill == NULL); 20661 ip2dbg(("ip_wput: CLASSD\n")); 20662 if (connp == NULL) { 20663 /* 20664 * Use the first good ipif on the ill. 20665 * XXX Should this ever happen? (Appears 20666 * to show up with just ppp and no ethernet due 20667 * to in.rdisc.) 20668 * However, ire_send should be able to 20669 * call ip_wput_ire directly. 20670 * 20671 * XXX Also, this can happen for ICMP and other packets 20672 * with multicast source addresses. Perhaps we should 20673 * fix things so that we drop the packet in question, 20674 * but for now, just run with it. 20675 */ 20676 ill_t *ill = (ill_t *)q->q_ptr; 20677 20678 /* 20679 * Don't honor attach_if for this case. If ill 20680 * is part of the group, ipif could belong to 20681 * any ill and we cannot maintain attach_ill 20682 * and ipif_ill same anymore and the assert 20683 * below would fail. 20684 */ 20685 if (mctl_present && io->ipsec_out_attach_if) { 20686 io->ipsec_out_ill_index = 0; 20687 io->ipsec_out_attach_if = B_FALSE; 20688 ASSERT(attach_ill != NULL); 20689 ill_refrele(attach_ill); 20690 attach_ill = NULL; 20691 } 20692 20693 ASSERT(attach_ill == NULL); 20694 ipif = ipif_select_source(ill, dst, GLOBAL_ZONEID); 20695 if (ipif == NULL) { 20696 if (need_decref) 20697 CONN_DEC_REF(connp); 20698 freemsg(first_mp); 20699 return; 20700 } 20701 ip1dbg(("ip_wput: CLASSD no CONN: dst 0x%x on %s\n", 20702 ntohl(dst), ill->ill_name)); 20703 } else { 20704 /* 20705 * If both IP_MULTICAST_IF and IP_XMIT_IF are set, 20706 * IP_XMIT_IF is honoured. 20707 * Block comment above this function explains the 20708 * locking mechanism used here 20709 */ 20710 xmit_ill = conn_get_held_ill(connp, 20711 &connp->conn_xmit_if_ill, &err); 20712 if (err == ILL_LOOKUP_FAILED) { 20713 ip1dbg(("ip_wput: No ill for IP_XMIT_IF\n")); 20714 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 20715 goto drop_pkt; 20716 } 20717 if (xmit_ill == NULL) { 20718 ipif = conn_get_held_ipif(connp, 20719 &connp->conn_multicast_ipif, &err); 20720 if (err == IPIF_LOOKUP_FAILED) { 20721 ip1dbg(("ip_wput: No ipif for " 20722 "multicast\n")); 20723 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 20724 goto drop_pkt; 20725 } 20726 } 20727 if (xmit_ill != NULL) { 20728 ipif = ipif_get_next_ipif(NULL, xmit_ill); 20729 if (ipif == NULL) { 20730 ip1dbg(("ip_wput: No ipif for " 20731 "IP_XMIT_IF\n")); 20732 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 20733 goto drop_pkt; 20734 } 20735 } else if (ipif == NULL || ipif->ipif_isv6) { 20736 /* 20737 * We must do this ipif determination here 20738 * else we could pass through ip_newroute 20739 * and come back here without the conn context. 20740 * 20741 * Note: we do late binding i.e. we bind to 20742 * the interface when the first packet is sent. 20743 * For performance reasons we do not rebind on 20744 * each packet but keep the binding until the 20745 * next IP_MULTICAST_IF option. 20746 * 20747 * conn_multicast_{ipif,ill} are shared between 20748 * IPv4 and IPv6 and AF_INET6 sockets can 20749 * send both IPv4 and IPv6 packets. Hence 20750 * we have to check that "isv6" matches above. 20751 */ 20752 if (ipif != NULL) 20753 ipif_refrele(ipif); 20754 ipif = ipif_lookup_group(dst, zoneid); 20755 if (ipif == NULL) { 20756 ip1dbg(("ip_wput: No ipif for " 20757 "multicast\n")); 20758 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 20759 goto drop_pkt; 20760 } 20761 err = conn_set_held_ipif(connp, 20762 &connp->conn_multicast_ipif, ipif); 20763 if (err == IPIF_LOOKUP_FAILED) { 20764 ipif_refrele(ipif); 20765 ip1dbg(("ip_wput: No ipif for " 20766 "multicast\n")); 20767 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 20768 goto drop_pkt; 20769 } 20770 } 20771 } 20772 ASSERT(!ipif->ipif_isv6); 20773 /* 20774 * As we may lose the conn by the time we reach ip_wput_ire, 20775 * we copy conn_multicast_loop and conn_dontroute on to an 20776 * ipsec_out. In case if this datagram goes out secure, 20777 * we need the ill_index also. Copy that also into the 20778 * ipsec_out. 20779 */ 20780 if (mctl_present) { 20781 io = (ipsec_out_t *)first_mp->b_rptr; 20782 ASSERT(first_mp->b_datap->db_type == M_CTL); 20783 ASSERT(io->ipsec_out_type == IPSEC_OUT); 20784 } else { 20785 ASSERT(mp == first_mp); 20786 if ((first_mp = allocb(sizeof (ipsec_info_t), 20787 BPRI_HI)) == NULL) { 20788 ipif_refrele(ipif); 20789 first_mp = mp; 20790 goto discard_pkt; 20791 } 20792 first_mp->b_datap->db_type = M_CTL; 20793 first_mp->b_wptr += sizeof (ipsec_info_t); 20794 /* ipsec_out_secure is B_FALSE now */ 20795 bzero(first_mp->b_rptr, sizeof (ipsec_info_t)); 20796 io = (ipsec_out_t *)first_mp->b_rptr; 20797 io->ipsec_out_type = IPSEC_OUT; 20798 io->ipsec_out_len = sizeof (ipsec_out_t); 20799 io->ipsec_out_use_global_policy = B_TRUE; 20800 first_mp->b_cont = mp; 20801 mctl_present = B_TRUE; 20802 } 20803 if (attach_ill != NULL) { 20804 ASSERT(attach_ill == ipif->ipif_ill); 20805 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 20806 20807 /* 20808 * Check if we need an ire that will not be 20809 * looked up by anybody else i.e. HIDDEN. 20810 */ 20811 if (ill_is_probeonly(attach_ill)) { 20812 match_flags |= MATCH_IRE_MARK_HIDDEN; 20813 } 20814 io->ipsec_out_ill_index = 20815 attach_ill->ill_phyint->phyint_ifindex; 20816 io->ipsec_out_attach_if = B_TRUE; 20817 } else { 20818 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 20819 io->ipsec_out_ill_index = 20820 ipif->ipif_ill->ill_phyint->phyint_ifindex; 20821 } 20822 if (connp != NULL) { 20823 io->ipsec_out_multicast_loop = 20824 connp->conn_multicast_loop; 20825 io->ipsec_out_dontroute = connp->conn_dontroute; 20826 io->ipsec_out_zoneid = connp->conn_zoneid; 20827 } 20828 /* 20829 * If the application uses IP_MULTICAST_IF with 20830 * different logical addresses of the same ILL, we 20831 * need to make sure that the soruce address of 20832 * the packet matches the logical IP address used 20833 * in the option. We do it by initializing ipha_src 20834 * here. This should keep IPSEC also happy as 20835 * when we return from IPSEC processing, we don't 20836 * have to worry about getting the right address on 20837 * the packet. Thus it is sufficient to look for 20838 * IRE_CACHE using MATCH_IRE_ILL rathen than 20839 * MATCH_IRE_IPIF. 20840 * 20841 * NOTE : We need to do it for non-secure case also as 20842 * this might go out secure if there is a global policy 20843 * match in ip_wput_ire. For bind to IPIF_NOFAILOVER 20844 * address, the source should be initialized already and 20845 * hence we won't be initializing here. 20846 * 20847 * As we do not have the ire yet, it is possible that 20848 * we set the source address here and then later discover 20849 * that the ire implies the source address to be assigned 20850 * through the RTF_SETSRC flag. 20851 * In that case, the setsrc variable will remind us 20852 * that overwritting the source address by the one 20853 * of the RTF_SETSRC-flagged ire is allowed. 20854 */ 20855 if (ipha->ipha_src == INADDR_ANY && 20856 (connp == NULL || !connp->conn_unspec_src)) { 20857 ipha->ipha_src = ipif->ipif_src_addr; 20858 setsrc = RTF_SETSRC; 20859 } 20860 /* 20861 * Find an IRE which matches the destination and the outgoing 20862 * queue (i.e. the outgoing interface.) 20863 * For loopback use a unicast IP address for 20864 * the ire lookup. 20865 */ 20866 if (ipif->ipif_ill->ill_phyint->phyint_flags & 20867 PHYI_LOOPBACK) { 20868 dst = ipif->ipif_lcl_addr; 20869 } 20870 /* 20871 * If IP_XMIT_IF is set, we branch out to ip_newroute_ipif. 20872 * We don't need to lookup ire in ctable as the packet 20873 * needs to be sent to the destination through the specified 20874 * ill irrespective of ires in the cache table. 20875 */ 20876 ire = NULL; 20877 if (xmit_ill == NULL) { 20878 ire = ire_ctable_lookup(dst, 0, 0, ipif, 20879 zoneid, MBLK_GETLABEL(mp), match_flags); 20880 } 20881 20882 /* 20883 * refrele attach_ill as its not needed anymore. 20884 */ 20885 if (attach_ill != NULL) { 20886 ill_refrele(attach_ill); 20887 attach_ill = NULL; 20888 } 20889 20890 if (ire == NULL) { 20891 /* 20892 * Multicast loopback and multicast forwarding is 20893 * done in ip_wput_ire. 20894 * 20895 * Mark this packet to make it be delivered to 20896 * ip_wput_ire after the new ire has been 20897 * created. 20898 * 20899 * The call to ip_newroute_ipif takes into account 20900 * the setsrc reminder. In any case, we take care 20901 * of the RTF_MULTIRT flag. 20902 */ 20903 mp->b_prev = mp->b_next = NULL; 20904 if (xmit_ill == NULL || 20905 xmit_ill->ill_ipif_up_count > 0) { 20906 ip_newroute_ipif(q, first_mp, ipif, dst, connp, 20907 setsrc | RTF_MULTIRT, zoneid); 20908 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 20909 "ip_wput_end: q %p (%S)", q, "noire"); 20910 } else { 20911 freemsg(first_mp); 20912 } 20913 ipif_refrele(ipif); 20914 if (xmit_ill != NULL) 20915 ill_refrele(xmit_ill); 20916 if (need_decref) 20917 CONN_DEC_REF(connp); 20918 return; 20919 } 20920 20921 ipif_refrele(ipif); 20922 ipif = NULL; 20923 ASSERT(xmit_ill == NULL); 20924 20925 /* 20926 * Honor the RTF_SETSRC flag for multicast packets, 20927 * if allowed by the setsrc reminder. 20928 */ 20929 if ((ire->ire_flags & RTF_SETSRC) && setsrc) { 20930 ipha->ipha_src = ire->ire_src_addr; 20931 } 20932 20933 /* 20934 * Unconditionally force the TTL to 1 for 20935 * multirouted multicast packets: 20936 * multirouted multicast should not cross 20937 * multicast routers. 20938 */ 20939 if (ire->ire_flags & RTF_MULTIRT) { 20940 if (ipha->ipha_ttl > 1) { 20941 ip2dbg(("ip_wput: forcing multicast " 20942 "multirt TTL to 1 (was %d), dst 0x%08x\n", 20943 ipha->ipha_ttl, ntohl(ire->ire_addr))); 20944 ipha->ipha_ttl = 1; 20945 } 20946 } 20947 } else { 20948 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 20949 if ((ire != NULL) && (ire->ire_type & 20950 (IRE_BROADCAST | IRE_LOCAL | IRE_LOOPBACK))) { 20951 ignore_dontroute = B_TRUE; 20952 ignore_nexthop = B_TRUE; 20953 } 20954 if (ire != NULL) { 20955 ire_refrele(ire); 20956 ire = NULL; 20957 } 20958 /* 20959 * Guard against coming in from arp in which case conn is NULL. 20960 * Also guard against non M_DATA with dontroute set but 20961 * destined to local, loopback or broadcast addresses. 20962 */ 20963 if (connp != NULL && connp->conn_dontroute && 20964 !ignore_dontroute) { 20965 dontroute: 20966 /* 20967 * Set TTL to 1 if SO_DONTROUTE is set to prevent 20968 * routing protocols from seeing false direct 20969 * connectivity. 20970 */ 20971 ipha->ipha_ttl = 1; 20972 /* 20973 * If IP_XMIT_IF is also set (conn_xmit_if_ill != NULL) 20974 * along with SO_DONTROUTE, higher precedence is 20975 * given to IP_XMIT_IF and the IP_XMIT_IF ipif is used. 20976 */ 20977 if (connp->conn_xmit_if_ill == NULL) { 20978 /* If suitable ipif not found, drop packet */ 20979 dst_ipif = ipif_lookup_onlink_addr(dst, zoneid); 20980 if (dst_ipif == NULL) { 20981 ip1dbg(("ip_wput: no route for " 20982 "dst using SO_DONTROUTE\n")); 20983 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 20984 mp->b_prev = mp->b_next = NULL; 20985 if (first_mp == NULL) 20986 first_mp = mp; 20987 goto drop_pkt; 20988 } else { 20989 /* 20990 * If suitable ipif has been found, set 20991 * xmit_ill to the corresponding 20992 * ipif_ill because we'll be following 20993 * the IP_XMIT_IF logic. 20994 */ 20995 ASSERT(xmit_ill == NULL); 20996 xmit_ill = dst_ipif->ipif_ill; 20997 mutex_enter(&xmit_ill->ill_lock); 20998 if (!ILL_CAN_LOOKUP(xmit_ill)) { 20999 mutex_exit(&xmit_ill->ill_lock); 21000 xmit_ill = NULL; 21001 ipif_refrele(dst_ipif); 21002 ip1dbg(("ip_wput: no route for" 21003 " dst using" 21004 " SO_DONTROUTE\n")); 21005 BUMP_MIB(&ip_mib, 21006 ipIfStatsOutNoRoutes); 21007 mp->b_prev = mp->b_next = NULL; 21008 if (first_mp == NULL) 21009 first_mp = mp; 21010 goto drop_pkt; 21011 } 21012 ill_refhold_locked(xmit_ill); 21013 mutex_exit(&xmit_ill->ill_lock); 21014 ipif_refrele(dst_ipif); 21015 } 21016 } 21017 21018 } 21019 /* 21020 * If we are bound to IPIF_NOFAILOVER address, look for 21021 * an IRE_CACHE matching the ill. 21022 */ 21023 send_from_ill: 21024 if (attach_ill != NULL) { 21025 ipif_t *attach_ipif; 21026 21027 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 21028 21029 /* 21030 * Check if we need an ire that will not be 21031 * looked up by anybody else i.e. HIDDEN. 21032 */ 21033 if (ill_is_probeonly(attach_ill)) { 21034 match_flags |= MATCH_IRE_MARK_HIDDEN; 21035 } 21036 21037 attach_ipif = ipif_get_next_ipif(NULL, attach_ill); 21038 if (attach_ipif == NULL) { 21039 ip1dbg(("ip_wput: No ipif for attach_ill\n")); 21040 goto discard_pkt; 21041 } 21042 ire = ire_ctable_lookup(dst, 0, 0, attach_ipif, 21043 zoneid, MBLK_GETLABEL(mp), match_flags); 21044 ipif_refrele(attach_ipif); 21045 } else if (xmit_ill != NULL || (connp != NULL && 21046 connp->conn_xmit_if_ill != NULL)) { 21047 /* 21048 * Mark this packet as originated locally 21049 */ 21050 mp->b_prev = mp->b_next = NULL; 21051 /* 21052 * xmit_ill could be NULL if SO_DONTROUTE 21053 * is also set. 21054 */ 21055 if (xmit_ill == NULL) { 21056 xmit_ill = conn_get_held_ill(connp, 21057 &connp->conn_xmit_if_ill, &err); 21058 if (err == ILL_LOOKUP_FAILED) { 21059 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 21060 if (need_decref) 21061 CONN_DEC_REF(connp); 21062 freemsg(first_mp); 21063 return; 21064 } 21065 if (xmit_ill == NULL) { 21066 if (connp->conn_dontroute) 21067 goto dontroute; 21068 goto send_from_ill; 21069 } 21070 } 21071 /* 21072 * could be SO_DONTROUTE case also. 21073 * check at least one interface is UP as 21074 * spcified by this ILL, and then call 21075 * ip_newroute_ipif() 21076 */ 21077 if (xmit_ill->ill_ipif_up_count > 0) { 21078 ipif_t *ipif; 21079 21080 ipif = ipif_get_next_ipif(NULL, xmit_ill); 21081 if (ipif != NULL) { 21082 ip_newroute_ipif(q, first_mp, ipif, 21083 dst, connp, 0, zoneid); 21084 ipif_refrele(ipif); 21085 ip1dbg(("ip_wput: ip_unicast_if\n")); 21086 } 21087 } else { 21088 freemsg(first_mp); 21089 } 21090 ill_refrele(xmit_ill); 21091 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21092 "ip_wput_end: q %p (%S)", q, "unicast_if"); 21093 if (need_decref) 21094 CONN_DEC_REF(connp); 21095 return; 21096 } else if (ip_nexthop || (connp != NULL && 21097 (connp->conn_nexthop_set)) && !ignore_nexthop) { 21098 if (!ip_nexthop) { 21099 ip_nexthop = B_TRUE; 21100 nexthop_addr = connp->conn_nexthop_v4; 21101 } 21102 match_flags = MATCH_IRE_MARK_PRIVATE_ADDR | 21103 MATCH_IRE_GW; 21104 ire = ire_ctable_lookup(dst, nexthop_addr, 0, 21105 NULL, zoneid, MBLK_GETLABEL(mp), match_flags); 21106 } else { 21107 ire = ire_cache_lookup(dst, zoneid, MBLK_GETLABEL(mp)); 21108 } 21109 if (!ire) { 21110 /* 21111 * Make sure we don't load spread if this 21112 * is IPIF_NOFAILOVER case. 21113 */ 21114 if ((attach_ill != NULL) || 21115 (ip_nexthop && !ignore_nexthop)) { 21116 if (mctl_present) { 21117 io = (ipsec_out_t *)first_mp->b_rptr; 21118 ASSERT(first_mp->b_datap->db_type == 21119 M_CTL); 21120 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21121 } else { 21122 ASSERT(mp == first_mp); 21123 first_mp = allocb( 21124 sizeof (ipsec_info_t), BPRI_HI); 21125 if (first_mp == NULL) { 21126 first_mp = mp; 21127 goto discard_pkt; 21128 } 21129 first_mp->b_datap->db_type = M_CTL; 21130 first_mp->b_wptr += 21131 sizeof (ipsec_info_t); 21132 /* ipsec_out_secure is B_FALSE now */ 21133 bzero(first_mp->b_rptr, 21134 sizeof (ipsec_info_t)); 21135 io = (ipsec_out_t *)first_mp->b_rptr; 21136 io->ipsec_out_type = IPSEC_OUT; 21137 io->ipsec_out_len = 21138 sizeof (ipsec_out_t); 21139 io->ipsec_out_use_global_policy = 21140 B_TRUE; 21141 first_mp->b_cont = mp; 21142 mctl_present = B_TRUE; 21143 } 21144 if (attach_ill != NULL) { 21145 io->ipsec_out_ill_index = attach_ill-> 21146 ill_phyint->phyint_ifindex; 21147 io->ipsec_out_attach_if = B_TRUE; 21148 } else { 21149 io->ipsec_out_ip_nexthop = ip_nexthop; 21150 io->ipsec_out_nexthop_addr = 21151 nexthop_addr; 21152 } 21153 } 21154 noirefound: 21155 /* 21156 * Mark this packet as having originated on 21157 * this machine. This will be noted in 21158 * ire_add_then_send, which needs to know 21159 * whether to run it back through ip_wput or 21160 * ip_rput following successful resolution. 21161 */ 21162 mp->b_prev = NULL; 21163 mp->b_next = NULL; 21164 ip_newroute(q, first_mp, dst, NULL, connp, zoneid); 21165 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21166 "ip_wput_end: q %p (%S)", q, "newroute"); 21167 if (attach_ill != NULL) 21168 ill_refrele(attach_ill); 21169 if (xmit_ill != NULL) 21170 ill_refrele(xmit_ill); 21171 if (need_decref) 21172 CONN_DEC_REF(connp); 21173 return; 21174 } 21175 } 21176 21177 /* We now know where we are going with it. */ 21178 21179 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21180 "ip_wput_end: q %p (%S)", q, "end"); 21181 21182 /* 21183 * Check if the ire has the RTF_MULTIRT flag, inherited 21184 * from an IRE_OFFSUBNET ire entry in ip_newroute. 21185 */ 21186 if (ire->ire_flags & RTF_MULTIRT) { 21187 /* 21188 * Force the TTL of multirouted packets if required. 21189 * The TTL of such packets is bounded by the 21190 * ip_multirt_ttl ndd variable. 21191 */ 21192 if ((ip_multirt_ttl > 0) && 21193 (ipha->ipha_ttl > ip_multirt_ttl)) { 21194 ip2dbg(("ip_wput: forcing multirt TTL to %d " 21195 "(was %d), dst 0x%08x\n", 21196 ip_multirt_ttl, ipha->ipha_ttl, 21197 ntohl(ire->ire_addr))); 21198 ipha->ipha_ttl = ip_multirt_ttl; 21199 } 21200 /* 21201 * At this point, we check to see if there are any pending 21202 * unresolved routes. ire_multirt_resolvable() 21203 * checks in O(n) that all IRE_OFFSUBNET ire 21204 * entries for the packet's destination and 21205 * flagged RTF_MULTIRT are currently resolved. 21206 * If some remain unresolved, we make a copy 21207 * of the current message. It will be used 21208 * to initiate additional route resolutions. 21209 */ 21210 multirt_need_resolve = ire_multirt_need_resolve(ire->ire_addr, 21211 MBLK_GETLABEL(first_mp)); 21212 ip2dbg(("ip_wput[noirefound]: ire %p, " 21213 "multirt_need_resolve %d, first_mp %p\n", 21214 (void *)ire, multirt_need_resolve, (void *)first_mp)); 21215 if (multirt_need_resolve) { 21216 copy_mp = copymsg(first_mp); 21217 if (copy_mp != NULL) { 21218 MULTIRT_DEBUG_TAG(copy_mp); 21219 } 21220 } 21221 } 21222 21223 ip_wput_ire(q, first_mp, ire, connp, caller, zoneid); 21224 /* 21225 * Try to resolve another multiroute if 21226 * ire_multirt_resolvable() deemed it necessary. 21227 * At this point, we need to distinguish 21228 * multicasts from other packets. For multicasts, 21229 * we call ip_newroute_ipif() and request that both 21230 * multirouting and setsrc flags are checked. 21231 */ 21232 if (copy_mp != NULL) { 21233 if (CLASSD(dst)) { 21234 ipif_t *ipif = ipif_lookup_group(dst, zoneid); 21235 if (ipif) { 21236 ip_newroute_ipif(q, copy_mp, ipif, dst, connp, 21237 RTF_SETSRC | RTF_MULTIRT, zoneid); 21238 ipif_refrele(ipif); 21239 } else { 21240 MULTIRT_DEBUG_UNTAG(copy_mp); 21241 freemsg(copy_mp); 21242 copy_mp = NULL; 21243 } 21244 } else { 21245 ip_newroute(q, copy_mp, dst, NULL, connp, zoneid); 21246 } 21247 } 21248 if (attach_ill != NULL) 21249 ill_refrele(attach_ill); 21250 if (xmit_ill != NULL) 21251 ill_refrele(xmit_ill); 21252 if (need_decref) 21253 CONN_DEC_REF(connp); 21254 return; 21255 21256 icmp_parameter_problem: 21257 /* could not have originated externally */ 21258 ASSERT(mp->b_prev == NULL); 21259 if (ip_hdr_complete(ipha, zoneid) == 0) { 21260 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 21261 /* it's the IP header length that's in trouble */ 21262 icmp_param_problem(q, first_mp, 0, zoneid); 21263 first_mp = NULL; 21264 } 21265 21266 discard_pkt: 21267 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 21268 drop_pkt: 21269 ip1dbg(("ip_wput: dropped packet\n")); 21270 if (ire != NULL) 21271 ire_refrele(ire); 21272 if (need_decref) 21273 CONN_DEC_REF(connp); 21274 freemsg(first_mp); 21275 if (attach_ill != NULL) 21276 ill_refrele(attach_ill); 21277 if (xmit_ill != NULL) 21278 ill_refrele(xmit_ill); 21279 TRACE_2(TR_FAC_IP, TR_IP_WPUT_END, 21280 "ip_wput_end: q %p (%S)", q, "droppkt"); 21281 } 21282 21283 /* 21284 * If this is a conn_t queue, then we pass in the conn. This includes the 21285 * zoneid. 21286 * Otherwise, this is a message coming back from ARP or for an ill_t queue, 21287 * in which case we use the global zoneid since those are all part of 21288 * the global zone. 21289 */ 21290 void 21291 ip_wput(queue_t *q, mblk_t *mp) 21292 { 21293 if (CONN_Q(q)) 21294 ip_output(Q_TO_CONN(q), mp, q, IP_WPUT); 21295 else 21296 ip_output(GLOBAL_ZONEID, mp, q, IP_WPUT); 21297 } 21298 21299 /* 21300 * 21301 * The following rules must be observed when accessing any ipif or ill 21302 * that has been cached in the conn. Typically conn_nofailover_ill, 21303 * conn_xmit_if_ill, conn_multicast_ipif and conn_multicast_ill. 21304 * 21305 * Access: The ipif or ill pointed to from the conn can be accessed under 21306 * the protection of the conn_lock or after it has been refheld under the 21307 * protection of the conn lock. In addition the IPIF_CAN_LOOKUP or 21308 * ILL_CAN_LOOKUP macros must be used before actually doing the refhold. 21309 * The reason for this is that a concurrent unplumb could actually be 21310 * cleaning up these cached pointers by walking the conns and might have 21311 * finished cleaning up the conn in question. The macros check that an 21312 * unplumb has not yet started on the ipif or ill. 21313 * 21314 * Caching: An ipif or ill pointer may be cached in the conn only after 21315 * making sure that an unplumb has not started. So the caching is done 21316 * while holding both the conn_lock and the ill_lock and after using the 21317 * ILL_CAN_LOOKUP/IPIF_CAN_LOOKUP macro. An unplumb will set the ILL_CONDEMNED 21318 * flag before starting the cleanup of conns. 21319 * 21320 * The list of ipifs hanging off the ill is protected by ill_g_lock and ill_lock 21321 * On the other hand to access ipif->ipif_ill, we need one of either ill_g_lock 21322 * or a reference to the ipif or a reference to an ire that references the 21323 * ipif. An ipif does not change its ill except for failover/failback. Since 21324 * failover/failback happens only after bringing down the ipif and making sure 21325 * the ipif refcnt has gone to zero and holding the ill_g_lock and ill_lock 21326 * the above holds. 21327 */ 21328 ipif_t * 21329 conn_get_held_ipif(conn_t *connp, ipif_t **ipifp, int *err) 21330 { 21331 ipif_t *ipif; 21332 ill_t *ill; 21333 21334 *err = 0; 21335 rw_enter(&ill_g_lock, RW_READER); 21336 mutex_enter(&connp->conn_lock); 21337 ipif = *ipifp; 21338 if (ipif != NULL) { 21339 ill = ipif->ipif_ill; 21340 mutex_enter(&ill->ill_lock); 21341 if (IPIF_CAN_LOOKUP(ipif)) { 21342 ipif_refhold_locked(ipif); 21343 mutex_exit(&ill->ill_lock); 21344 mutex_exit(&connp->conn_lock); 21345 rw_exit(&ill_g_lock); 21346 return (ipif); 21347 } else { 21348 *err = IPIF_LOOKUP_FAILED; 21349 } 21350 mutex_exit(&ill->ill_lock); 21351 } 21352 mutex_exit(&connp->conn_lock); 21353 rw_exit(&ill_g_lock); 21354 return (NULL); 21355 } 21356 21357 ill_t * 21358 conn_get_held_ill(conn_t *connp, ill_t **illp, int *err) 21359 { 21360 ill_t *ill; 21361 21362 *err = 0; 21363 mutex_enter(&connp->conn_lock); 21364 ill = *illp; 21365 if (ill != NULL) { 21366 mutex_enter(&ill->ill_lock); 21367 if (ILL_CAN_LOOKUP(ill)) { 21368 ill_refhold_locked(ill); 21369 mutex_exit(&ill->ill_lock); 21370 mutex_exit(&connp->conn_lock); 21371 return (ill); 21372 } else { 21373 *err = ILL_LOOKUP_FAILED; 21374 } 21375 mutex_exit(&ill->ill_lock); 21376 } 21377 mutex_exit(&connp->conn_lock); 21378 return (NULL); 21379 } 21380 21381 static int 21382 conn_set_held_ipif(conn_t *connp, ipif_t **ipifp, ipif_t *ipif) 21383 { 21384 ill_t *ill; 21385 21386 ill = ipif->ipif_ill; 21387 mutex_enter(&connp->conn_lock); 21388 mutex_enter(&ill->ill_lock); 21389 if (IPIF_CAN_LOOKUP(ipif)) { 21390 *ipifp = ipif; 21391 mutex_exit(&ill->ill_lock); 21392 mutex_exit(&connp->conn_lock); 21393 return (0); 21394 } 21395 mutex_exit(&ill->ill_lock); 21396 mutex_exit(&connp->conn_lock); 21397 return (IPIF_LOOKUP_FAILED); 21398 } 21399 21400 /* 21401 * This is called if the outbound datagram needs fragmentation. 21402 * 21403 * NOTE : This function does not ire_refrele the ire argument passed in. 21404 */ 21405 static void 21406 ip_wput_ire_fragmentit(mblk_t *ipsec_mp, ire_t *ire, zoneid_t zoneid) 21407 { 21408 ipha_t *ipha; 21409 mblk_t *mp; 21410 uint32_t v_hlen_tos_len; 21411 uint32_t max_frag; 21412 uint32_t frag_flag; 21413 boolean_t dont_use; 21414 21415 if (ipsec_mp->b_datap->db_type == M_CTL) { 21416 mp = ipsec_mp->b_cont; 21417 } else { 21418 mp = ipsec_mp; 21419 } 21420 21421 ipha = (ipha_t *)mp->b_rptr; 21422 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 21423 21424 #ifdef _BIG_ENDIAN 21425 #define V_HLEN (v_hlen_tos_len >> 24) 21426 #define LENGTH (v_hlen_tos_len & 0xFFFF) 21427 #else 21428 #define V_HLEN (v_hlen_tos_len & 0xFF) 21429 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 21430 #endif 21431 21432 #ifndef SPEED_BEFORE_SAFETY 21433 /* 21434 * Check that ipha_length is consistent with 21435 * the mblk length 21436 */ 21437 if (LENGTH != (mp->b_cont ? msgdsize(mp) : mp->b_wptr - rptr)) { 21438 ip0dbg(("Packet length mismatch: %d, %ld\n", 21439 LENGTH, msgdsize(mp))); 21440 freemsg(ipsec_mp); 21441 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 21442 "ip_wput_ire_fragmentit: mp %p (%S)", mp, 21443 "packet length mismatch"); 21444 return; 21445 } 21446 #endif 21447 /* 21448 * Don't use frag_flag if pre-built packet or source 21449 * routed or if multicast (since multicast packets do not solicit 21450 * ICMP "packet too big" messages). Get the values of 21451 * max_frag and frag_flag atomically by acquiring the 21452 * ire_lock. 21453 */ 21454 mutex_enter(&ire->ire_lock); 21455 max_frag = ire->ire_max_frag; 21456 frag_flag = ire->ire_frag_flag; 21457 mutex_exit(&ire->ire_lock); 21458 21459 dont_use = ((ipha->ipha_ident == IP_HDR_INCLUDED) || 21460 (V_HLEN != IP_SIMPLE_HDR_VERSION && 21461 ip_source_route_included(ipha)) || CLASSD(ipha->ipha_dst)); 21462 21463 ip_wput_frag(ire, ipsec_mp, OB_PKT, max_frag, 21464 (dont_use ? 0 : frag_flag), zoneid); 21465 } 21466 21467 /* 21468 * Used for deciding the MSS size for the upper layer. Thus 21469 * we need to check the outbound policy values in the conn. 21470 */ 21471 int 21472 conn_ipsec_length(conn_t *connp) 21473 { 21474 ipsec_latch_t *ipl; 21475 21476 ipl = connp->conn_latch; 21477 if (ipl == NULL) 21478 return (0); 21479 21480 if (ipl->ipl_out_policy == NULL) 21481 return (0); 21482 21483 return (ipl->ipl_out_policy->ipsp_act->ipa_ovhd); 21484 } 21485 21486 /* 21487 * Returns an estimate of the IPSEC headers size. This is used if 21488 * we don't want to call into IPSEC to get the exact size. 21489 */ 21490 int 21491 ipsec_out_extra_length(mblk_t *ipsec_mp) 21492 { 21493 ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; 21494 ipsec_action_t *a; 21495 21496 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21497 if (!io->ipsec_out_secure) 21498 return (0); 21499 21500 a = io->ipsec_out_act; 21501 21502 if (a == NULL) { 21503 ASSERT(io->ipsec_out_policy != NULL); 21504 a = io->ipsec_out_policy->ipsp_act; 21505 } 21506 ASSERT(a != NULL); 21507 21508 return (a->ipa_ovhd); 21509 } 21510 21511 /* 21512 * Returns an estimate of the IPSEC headers size. This is used if 21513 * we don't want to call into IPSEC to get the exact size. 21514 */ 21515 int 21516 ipsec_in_extra_length(mblk_t *ipsec_mp) 21517 { 21518 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21519 ipsec_action_t *a; 21520 21521 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21522 21523 a = ii->ipsec_in_action; 21524 return (a == NULL ? 0 : a->ipa_ovhd); 21525 } 21526 21527 /* 21528 * If there are any source route options, return the true final 21529 * destination. Otherwise, return the destination. 21530 */ 21531 ipaddr_t 21532 ip_get_dst(ipha_t *ipha) 21533 { 21534 ipoptp_t opts; 21535 uchar_t *opt; 21536 uint8_t optval; 21537 uint8_t optlen; 21538 ipaddr_t dst; 21539 uint32_t off; 21540 21541 dst = ipha->ipha_dst; 21542 21543 if (IS_SIMPLE_IPH(ipha)) 21544 return (dst); 21545 21546 for (optval = ipoptp_first(&opts, ipha); 21547 optval != IPOPT_EOL; 21548 optval = ipoptp_next(&opts)) { 21549 opt = opts.ipoptp_cur; 21550 optlen = opts.ipoptp_len; 21551 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 21552 switch (optval) { 21553 case IPOPT_SSRR: 21554 case IPOPT_LSRR: 21555 off = opt[IPOPT_OFFSET]; 21556 /* 21557 * If one of the conditions is true, it means 21558 * end of options and dst already has the right 21559 * value. 21560 */ 21561 if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) { 21562 off = optlen - IP_ADDR_LEN; 21563 bcopy(&opt[off], &dst, IP_ADDR_LEN); 21564 } 21565 return (dst); 21566 default: 21567 break; 21568 } 21569 } 21570 21571 return (dst); 21572 } 21573 21574 mblk_t * 21575 ip_wput_ire_parse_ipsec_out(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire, 21576 conn_t *connp, boolean_t unspec_src, zoneid_t zoneid) 21577 { 21578 ipsec_out_t *io; 21579 mblk_t *first_mp; 21580 boolean_t policy_present; 21581 21582 first_mp = mp; 21583 if (mp->b_datap->db_type == M_CTL) { 21584 io = (ipsec_out_t *)first_mp->b_rptr; 21585 /* 21586 * ip_wput[_v6] attaches an IPSEC_OUT in two cases. 21587 * 21588 * 1) There is per-socket policy (including cached global 21589 * policy) or a policy on the IP-in-IP tunnel. 21590 * 2) There is no per-socket policy, but it is 21591 * a multicast packet that needs to go out 21592 * on a specific interface. This is the case 21593 * where (ip_wput and ip_wput_multicast) attaches 21594 * an IPSEC_OUT and sets ipsec_out_secure B_FALSE. 21595 * 21596 * In case (2) we check with global policy to 21597 * see if there is a match and set the ill_index 21598 * appropriately so that we can lookup the ire 21599 * properly in ip_wput_ipsec_out. 21600 */ 21601 21602 /* 21603 * ipsec_out_use_global_policy is set to B_FALSE 21604 * in ipsec_in_to_out(). Refer to that function for 21605 * details. 21606 */ 21607 if ((io->ipsec_out_latch == NULL) && 21608 (io->ipsec_out_use_global_policy)) { 21609 return (ip_wput_attach_policy(first_mp, ipha, ip6h, 21610 ire, connp, unspec_src, zoneid)); 21611 } 21612 if (!io->ipsec_out_secure) { 21613 /* 21614 * If this is not a secure packet, drop 21615 * the IPSEC_OUT mp and treat it as a clear 21616 * packet. This happens when we are sending 21617 * a ICMP reply back to a clear packet. See 21618 * ipsec_in_to_out() for details. 21619 */ 21620 mp = first_mp->b_cont; 21621 freeb(first_mp); 21622 } 21623 return (mp); 21624 } 21625 /* 21626 * See whether we need to attach a global policy here. We 21627 * don't depend on the conn (as it could be null) for deciding 21628 * what policy this datagram should go through because it 21629 * should have happened in ip_wput if there was some 21630 * policy. This normally happens for connections which are not 21631 * fully bound preventing us from caching policies in 21632 * ip_bind. Packets coming from the TCP listener/global queue 21633 * - which are non-hard_bound - could also be affected by 21634 * applying policy here. 21635 * 21636 * If this packet is coming from tcp global queue or listener, 21637 * we will be applying policy here. This may not be *right* 21638 * if these packets are coming from the detached connection as 21639 * it could have gone in clear before. This happens only if a 21640 * TCP connection started when there is no policy and somebody 21641 * added policy before it became detached. Thus packets of the 21642 * detached connection could go out secure and the other end 21643 * would drop it because it will be expecting in clear. The 21644 * converse is not true i.e if somebody starts a TCP 21645 * connection and deletes the policy, all the packets will 21646 * still go out with the policy that existed before deleting 21647 * because ip_unbind sends up policy information which is used 21648 * by TCP on subsequent ip_wputs. The right solution is to fix 21649 * TCP to attach a dummy IPSEC_OUT and set 21650 * ipsec_out_use_global_policy to B_FALSE. As this might 21651 * affect performance for normal cases, we are not doing it. 21652 * Thus, set policy before starting any TCP connections. 21653 * 21654 * NOTE - We might apply policy even for a hard bound connection 21655 * - for which we cached policy in ip_bind - if somebody added 21656 * global policy after we inherited the policy in ip_bind. 21657 * This means that the packets that were going out in clear 21658 * previously would start going secure and hence get dropped 21659 * on the other side. To fix this, TCP attaches a dummy 21660 * ipsec_out and make sure that we don't apply global policy. 21661 */ 21662 if (ipha != NULL) 21663 policy_present = ipsec_outbound_v4_policy_present; 21664 else 21665 policy_present = ipsec_outbound_v6_policy_present; 21666 if (!policy_present) 21667 return (mp); 21668 21669 return (ip_wput_attach_policy(mp, ipha, ip6h, ire, connp, unspec_src, 21670 zoneid)); 21671 } 21672 21673 ire_t * 21674 conn_set_outgoing_ill(conn_t *connp, ire_t *ire, ill_t **conn_outgoing_ill) 21675 { 21676 ipaddr_t addr; 21677 ire_t *save_ire; 21678 irb_t *irb; 21679 ill_group_t *illgrp; 21680 int err; 21681 21682 save_ire = ire; 21683 addr = ire->ire_addr; 21684 21685 ASSERT(ire->ire_type == IRE_BROADCAST); 21686 21687 illgrp = connp->conn_outgoing_ill->ill_group; 21688 if (illgrp == NULL) { 21689 *conn_outgoing_ill = conn_get_held_ill(connp, 21690 &connp->conn_outgoing_ill, &err); 21691 if (err == ILL_LOOKUP_FAILED) { 21692 ire_refrele(save_ire); 21693 return (NULL); 21694 } 21695 return (save_ire); 21696 } 21697 /* 21698 * If IP_BOUND_IF has been done, conn_outgoing_ill will be set. 21699 * If it is part of the group, we need to send on the ire 21700 * that has been cleared of IRE_MARK_NORECV and that belongs 21701 * to this group. This is okay as IP_BOUND_IF really means 21702 * any ill in the group. We depend on the fact that the 21703 * first ire in the group is always cleared of IRE_MARK_NORECV 21704 * if such an ire exists. This is possible only if you have 21705 * at least one ill in the group that has not failed. 21706 * 21707 * First get to the ire that matches the address and group. 21708 * 21709 * We don't look for an ire with a matching zoneid because a given zone 21710 * won't always have broadcast ires on all ills in the group. 21711 */ 21712 irb = ire->ire_bucket; 21713 rw_enter(&irb->irb_lock, RW_READER); 21714 if (ire->ire_marks & IRE_MARK_NORECV) { 21715 /* 21716 * If the current zone only has an ire broadcast for this 21717 * address marked NORECV, the ire we want is ahead in the 21718 * bucket, so we look it up deliberately ignoring the zoneid. 21719 */ 21720 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) { 21721 if (ire->ire_addr != addr) 21722 continue; 21723 /* skip over deleted ires */ 21724 if (ire->ire_marks & IRE_MARK_CONDEMNED) 21725 continue; 21726 } 21727 } 21728 while (ire != NULL) { 21729 /* 21730 * If a new interface is coming up, we could end up 21731 * seeing the loopback ire and the non-loopback ire 21732 * may not have been added yet. So check for ire_stq 21733 */ 21734 if (ire->ire_stq != NULL && (ire->ire_addr != addr || 21735 ire->ire_ipif->ipif_ill->ill_group == illgrp)) { 21736 break; 21737 } 21738 ire = ire->ire_next; 21739 } 21740 if (ire != NULL && ire->ire_addr == addr && 21741 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 21742 IRE_REFHOLD(ire); 21743 rw_exit(&irb->irb_lock); 21744 ire_refrele(save_ire); 21745 *conn_outgoing_ill = ire_to_ill(ire); 21746 /* 21747 * Refhold the ill to make the conn_outgoing_ill 21748 * independent of the ire. ip_wput_ire goes in a loop 21749 * and may refrele the ire. Since we have an ire at this 21750 * point we don't need to use ILL_CAN_LOOKUP on the ill. 21751 */ 21752 ill_refhold(*conn_outgoing_ill); 21753 return (ire); 21754 } 21755 rw_exit(&irb->irb_lock); 21756 ip1dbg(("conn_set_outgoing_ill: No matching ire\n")); 21757 /* 21758 * If we can't find a suitable ire, return the original ire. 21759 */ 21760 return (save_ire); 21761 } 21762 21763 /* 21764 * This function does the ire_refrele of the ire passed in as the 21765 * argument. As this function looks up more ires i.e broadcast ires, 21766 * it needs to REFRELE them. Currently, for simplicity we don't 21767 * differentiate the one passed in and looked up here. We always 21768 * REFRELE. 21769 * IPQoS Notes: 21770 * IP policy is invoked if IPP_LOCAL_OUT is enabled. Processing for 21771 * IPSec packets are done in ipsec_out_process. 21772 * 21773 */ 21774 void 21775 ip_wput_ire(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, int caller, 21776 zoneid_t zoneid) 21777 { 21778 ipha_t *ipha; 21779 #define rptr ((uchar_t *)ipha) 21780 queue_t *stq; 21781 #define Q_TO_INDEX(stq) (((ill_t *)stq->q_ptr)->ill_phyint->phyint_ifindex) 21782 uint32_t v_hlen_tos_len; 21783 uint32_t ttl_protocol; 21784 ipaddr_t src; 21785 ipaddr_t dst; 21786 uint32_t cksum; 21787 ipaddr_t orig_src; 21788 ire_t *ire1; 21789 mblk_t *next_mp; 21790 uint_t hlen; 21791 uint16_t *up; 21792 uint32_t max_frag = ire->ire_max_frag; 21793 ill_t *ill = ire_to_ill(ire); 21794 int clusterwide; 21795 uint16_t ip_hdr_included; /* IP header included by ULP? */ 21796 int ipsec_len; 21797 mblk_t *first_mp; 21798 ipsec_out_t *io; 21799 boolean_t conn_dontroute; /* conn value for multicast */ 21800 boolean_t conn_multicast_loop; /* conn value for multicast */ 21801 boolean_t multicast_forward; /* Should we forward ? */ 21802 boolean_t unspec_src; 21803 ill_t *conn_outgoing_ill = NULL; 21804 ill_t *ire_ill; 21805 ill_t *ire1_ill; 21806 ill_t *out_ill; 21807 uint32_t ill_index = 0; 21808 boolean_t multirt_send = B_FALSE; 21809 int err; 21810 ipxmit_state_t pktxmit_state; 21811 21812 TRACE_1(TR_FAC_IP, TR_IP_WPUT_IRE_START, 21813 "ip_wput_ire_start: q %p", q); 21814 21815 multicast_forward = B_FALSE; 21816 unspec_src = (connp != NULL && connp->conn_unspec_src); 21817 21818 if (ire->ire_flags & RTF_MULTIRT) { 21819 /* 21820 * Multirouting case. The bucket where ire is stored 21821 * probably holds other RTF_MULTIRT flagged ire 21822 * to the destination. In this call to ip_wput_ire, 21823 * we attempt to send the packet through all 21824 * those ires. Thus, we first ensure that ire is the 21825 * first RTF_MULTIRT ire in the bucket, 21826 * before walking the ire list. 21827 */ 21828 ire_t *first_ire; 21829 irb_t *irb = ire->ire_bucket; 21830 ASSERT(irb != NULL); 21831 21832 /* Make sure we do not omit any multiroute ire. */ 21833 IRB_REFHOLD(irb); 21834 for (first_ire = irb->irb_ire; 21835 first_ire != NULL; 21836 first_ire = first_ire->ire_next) { 21837 if ((first_ire->ire_flags & RTF_MULTIRT) && 21838 (first_ire->ire_addr == ire->ire_addr) && 21839 !(first_ire->ire_marks & 21840 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 21841 break; 21842 } 21843 21844 if ((first_ire != NULL) && (first_ire != ire)) { 21845 IRE_REFHOLD(first_ire); 21846 ire_refrele(ire); 21847 ire = first_ire; 21848 ill = ire_to_ill(ire); 21849 } 21850 IRB_REFRELE(irb); 21851 } 21852 21853 /* 21854 * conn_outgoing_ill is used only in the broadcast loop. 21855 * for performance we don't grab the mutexs in the fastpath 21856 */ 21857 if ((connp != NULL) && 21858 (connp->conn_xmit_if_ill == NULL) && 21859 (ire->ire_type == IRE_BROADCAST) && 21860 ((connp->conn_nofailover_ill != NULL) || 21861 (connp->conn_outgoing_ill != NULL))) { 21862 /* 21863 * Bind to IPIF_NOFAILOVER address overrides IP_BOUND_IF 21864 * option. So, see if this endpoint is bound to a 21865 * IPIF_NOFAILOVER address. If so, honor it. This implies 21866 * that if the interface is failed, we will still send 21867 * the packet on the same ill which is what we want. 21868 */ 21869 conn_outgoing_ill = conn_get_held_ill(connp, 21870 &connp->conn_nofailover_ill, &err); 21871 if (err == ILL_LOOKUP_FAILED) { 21872 ire_refrele(ire); 21873 freemsg(mp); 21874 return; 21875 } 21876 if (conn_outgoing_ill == NULL) { 21877 /* 21878 * Choose a good ill in the group to send the 21879 * packets on. 21880 */ 21881 ire = conn_set_outgoing_ill(connp, ire, 21882 &conn_outgoing_ill); 21883 if (ire == NULL) { 21884 freemsg(mp); 21885 return; 21886 } 21887 } 21888 } 21889 21890 if (mp->b_datap->db_type != M_CTL) { 21891 ipha = (ipha_t *)mp->b_rptr; 21892 } else { 21893 io = (ipsec_out_t *)mp->b_rptr; 21894 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21895 ASSERT(zoneid == io->ipsec_out_zoneid); 21896 ASSERT(zoneid != ALL_ZONES); 21897 ipha = (ipha_t *)mp->b_cont->b_rptr; 21898 dst = ipha->ipha_dst; 21899 /* 21900 * For the multicast case, ipsec_out carries conn_dontroute and 21901 * conn_multicast_loop as conn may not be available here. We 21902 * need this for multicast loopback and forwarding which is done 21903 * later in the code. 21904 */ 21905 if (CLASSD(dst)) { 21906 conn_dontroute = io->ipsec_out_dontroute; 21907 conn_multicast_loop = io->ipsec_out_multicast_loop; 21908 /* 21909 * If conn_dontroute is not set or conn_multicast_loop 21910 * is set, we need to do forwarding/loopback. For 21911 * datagrams from ip_wput_multicast, conn_dontroute is 21912 * set to B_TRUE and conn_multicast_loop is set to 21913 * B_FALSE so that we neither do forwarding nor 21914 * loopback. 21915 */ 21916 if (!conn_dontroute || conn_multicast_loop) 21917 multicast_forward = B_TRUE; 21918 } 21919 } 21920 21921 if (ire->ire_type == IRE_LOCAL && ire->ire_zoneid != zoneid && 21922 ire->ire_zoneid != ALL_ZONES) { 21923 /* 21924 * When a zone sends a packet to another zone, we try to deliver 21925 * the packet under the same conditions as if the destination 21926 * was a real node on the network. To do so, we look for a 21927 * matching route in the forwarding table. 21928 * RTF_REJECT and RTF_BLACKHOLE are handled just like 21929 * ip_newroute() does. 21930 * Note that IRE_LOCAL are special, since they are used 21931 * when the zoneid doesn't match in some cases. This means that 21932 * we need to handle ipha_src differently since ire_src_addr 21933 * belongs to the receiving zone instead of the sending zone. 21934 * When ip_restrict_interzone_loopback is set, then 21935 * ire_cache_lookup() ensures that IRE_LOCAL are only used 21936 * for loopback between zones when the logical "Ethernet" would 21937 * have looped them back. 21938 */ 21939 ire_t *src_ire; 21940 21941 src_ire = ire_ftable_lookup(ipha->ipha_dst, 0, 0, 0, 21942 NULL, NULL, zoneid, 0, NULL, (MATCH_IRE_RECURSIVE | 21943 MATCH_IRE_DEFAULT | MATCH_IRE_RJ_BHOLE)); 21944 if (src_ire != NULL && 21945 !(src_ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) && 21946 (!ip_restrict_interzone_loopback || 21947 ire_local_same_ill_group(ire, src_ire))) { 21948 if (ipha->ipha_src == INADDR_ANY && !unspec_src) 21949 ipha->ipha_src = src_ire->ire_src_addr; 21950 ire_refrele(src_ire); 21951 } else { 21952 ire_refrele(ire); 21953 if (conn_outgoing_ill != NULL) 21954 ill_refrele(conn_outgoing_ill); 21955 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 21956 if (src_ire != NULL) { 21957 if (src_ire->ire_flags & RTF_BLACKHOLE) { 21958 ire_refrele(src_ire); 21959 freemsg(mp); 21960 return; 21961 } 21962 ire_refrele(src_ire); 21963 } 21964 if (ip_hdr_complete(ipha, zoneid)) { 21965 /* Failed */ 21966 freemsg(mp); 21967 return; 21968 } 21969 icmp_unreachable(q, mp, ICMP_HOST_UNREACHABLE, zoneid); 21970 return; 21971 } 21972 } 21973 21974 if (mp->b_datap->db_type == M_CTL || 21975 ipsec_outbound_v4_policy_present) { 21976 mp = ip_wput_ire_parse_ipsec_out(mp, ipha, NULL, ire, connp, 21977 unspec_src, zoneid); 21978 if (mp == NULL) { 21979 ire_refrele(ire); 21980 if (conn_outgoing_ill != NULL) 21981 ill_refrele(conn_outgoing_ill); 21982 return; 21983 } 21984 } 21985 21986 first_mp = mp; 21987 ipsec_len = 0; 21988 21989 if (first_mp->b_datap->db_type == M_CTL) { 21990 io = (ipsec_out_t *)first_mp->b_rptr; 21991 ASSERT(io->ipsec_out_type == IPSEC_OUT); 21992 mp = first_mp->b_cont; 21993 ipsec_len = ipsec_out_extra_length(first_mp); 21994 ASSERT(ipsec_len >= 0); 21995 /* We already picked up the zoneid from the M_CTL above */ 21996 ASSERT(zoneid == io->ipsec_out_zoneid); 21997 ASSERT(zoneid != ALL_ZONES); 21998 21999 /* 22000 * Drop M_CTL here if IPsec processing is not needed. 22001 * (Non-IPsec use of M_CTL extracted any information it 22002 * needed above). 22003 */ 22004 if (ipsec_len == 0) { 22005 freeb(first_mp); 22006 first_mp = mp; 22007 } 22008 } 22009 22010 /* 22011 * Fast path for ip_wput_ire 22012 */ 22013 22014 ipha = (ipha_t *)mp->b_rptr; 22015 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 22016 dst = ipha->ipha_dst; 22017 22018 /* 22019 * ICMP(RAWIP) module should set the ipha_ident to IP_HDR_INCLUDED 22020 * if the socket is a SOCK_RAW type. The transport checksum should 22021 * be provided in the pre-built packet, so we don't need to compute it. 22022 * Also, other application set flags, like DF, should not be altered. 22023 * Other transport MUST pass down zero. 22024 */ 22025 ip_hdr_included = ipha->ipha_ident; 22026 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 22027 22028 if (CLASSD(dst)) { 22029 ip1dbg(("ip_wput_ire: to 0x%x ire %s addr 0x%x\n", 22030 ntohl(dst), 22031 ip_nv_lookup(ire_nv_tbl, ire->ire_type), 22032 ntohl(ire->ire_addr))); 22033 } 22034 22035 /* Macros to extract header fields from data already in registers */ 22036 #ifdef _BIG_ENDIAN 22037 #define V_HLEN (v_hlen_tos_len >> 24) 22038 #define LENGTH (v_hlen_tos_len & 0xFFFF) 22039 #define PROTO (ttl_protocol & 0xFF) 22040 #else 22041 #define V_HLEN (v_hlen_tos_len & 0xFF) 22042 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 22043 #define PROTO (ttl_protocol >> 8) 22044 #endif 22045 22046 22047 orig_src = src = ipha->ipha_src; 22048 /* (The loop back to "another" is explained down below.) */ 22049 another:; 22050 /* 22051 * Assign an ident value for this packet. We assign idents on 22052 * a per destination basis out of the IRE. There could be 22053 * other threads targeting the same destination, so we have to 22054 * arrange for a atomic increment. Note that we use a 32-bit 22055 * atomic add because it has better performance than its 22056 * 16-bit sibling. 22057 * 22058 * If running in cluster mode and if the source address 22059 * belongs to a replicated service then vector through 22060 * cl_inet_ipident vector to allocate ip identifier 22061 * NOTE: This is a contract private interface with the 22062 * clustering group. 22063 */ 22064 clusterwide = 0; 22065 if (cl_inet_ipident) { 22066 ASSERT(cl_inet_isclusterwide); 22067 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 22068 AF_INET, (uint8_t *)(uintptr_t)src)) { 22069 ipha->ipha_ident = (*cl_inet_ipident)(IPPROTO_IP, 22070 AF_INET, (uint8_t *)(uintptr_t)src, 22071 (uint8_t *)(uintptr_t)dst); 22072 clusterwide = 1; 22073 } 22074 } 22075 if (!clusterwide) { 22076 ipha->ipha_ident = 22077 (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 22078 } 22079 22080 #ifndef _BIG_ENDIAN 22081 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 22082 #endif 22083 22084 /* 22085 * Set source address unless sent on an ill or conn_unspec_src is set. 22086 * This is needed to obey conn_unspec_src when packets go through 22087 * ip_newroute + arp. 22088 * Assumes ip_newroute{,_multi} sets the source address as well. 22089 */ 22090 if (src == INADDR_ANY && !unspec_src) { 22091 /* 22092 * Assign the appropriate source address from the IRE if none 22093 * was specified. 22094 */ 22095 ASSERT(ire->ire_ipversion == IPV4_VERSION); 22096 22097 /* 22098 * With IP multipathing, broadcast packets are sent on the ire 22099 * that has been cleared of IRE_MARK_NORECV and that belongs to 22100 * the group. However, this ire might not be in the same zone so 22101 * we can't always use its source address. We look for a 22102 * broadcast ire in the same group and in the right zone. 22103 */ 22104 if (ire->ire_type == IRE_BROADCAST && 22105 ire->ire_zoneid != zoneid) { 22106 ire_t *src_ire = ire_ctable_lookup(dst, 0, 22107 IRE_BROADCAST, ire->ire_ipif, zoneid, NULL, 22108 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 22109 if (src_ire != NULL) { 22110 src = src_ire->ire_src_addr; 22111 ire_refrele(src_ire); 22112 } else { 22113 ire_refrele(ire); 22114 if (conn_outgoing_ill != NULL) 22115 ill_refrele(conn_outgoing_ill); 22116 freemsg(first_mp); 22117 if (ill != NULL) { 22118 BUMP_MIB(ill->ill_ip_mib, 22119 ipIfStatsOutDiscards); 22120 } else { 22121 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 22122 } 22123 return; 22124 } 22125 } else { 22126 src = ire->ire_src_addr; 22127 } 22128 22129 if (connp == NULL) { 22130 ip1dbg(("ip_wput_ire: no connp and no src " 22131 "address for dst 0x%x, using src 0x%x\n", 22132 ntohl(dst), 22133 ntohl(src))); 22134 } 22135 ipha->ipha_src = src; 22136 } 22137 stq = ire->ire_stq; 22138 22139 /* 22140 * We only allow ire chains for broadcasts since there will 22141 * be multiple IRE_CACHE entries for the same multicast 22142 * address (one per ipif). 22143 */ 22144 next_mp = NULL; 22145 22146 /* broadcast packet */ 22147 if (ire->ire_type == IRE_BROADCAST) 22148 goto broadcast; 22149 22150 /* loopback ? */ 22151 if (stq == NULL) 22152 goto nullstq; 22153 22154 /* The ill_index for outbound ILL */ 22155 ill_index = Q_TO_INDEX(stq); 22156 22157 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 22158 ttl_protocol = ((uint16_t *)ipha)[4]; 22159 22160 /* pseudo checksum (do it in parts for IP header checksum) */ 22161 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 22162 22163 if (!IP_FLOW_CONTROLLED_ULP(PROTO)) { 22164 queue_t *dev_q = stq->q_next; 22165 22166 /* flow controlled */ 22167 if ((dev_q->q_next || dev_q->q_first) && 22168 !canput(dev_q)) 22169 goto blocked; 22170 if ((PROTO == IPPROTO_UDP) && 22171 (ip_hdr_included != IP_HDR_INCLUDED)) { 22172 hlen = (V_HLEN & 0xF) << 2; 22173 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22174 if (*up != 0) { 22175 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, 22176 hlen, LENGTH, max_frag, ipsec_len, cksum); 22177 /* Software checksum? */ 22178 if (DB_CKSUMFLAGS(mp) == 0) { 22179 IP_STAT(ip_out_sw_cksum); 22180 IP_STAT_UPDATE( 22181 ip_udp_out_sw_cksum_bytes, 22182 LENGTH - hlen); 22183 } 22184 } 22185 } 22186 } else if (ip_hdr_included != IP_HDR_INCLUDED) { 22187 hlen = (V_HLEN & 0xF) << 2; 22188 if (PROTO == IPPROTO_TCP) { 22189 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22190 /* 22191 * The packet header is processed once and for all, even 22192 * in the multirouting case. We disable hardware 22193 * checksum if the packet is multirouted, as it will be 22194 * replicated via several interfaces, and not all of 22195 * them may have this capability. 22196 */ 22197 IP_CKSUM_XMIT(ill, ire, mp, ipha, up, PROTO, hlen, 22198 LENGTH, max_frag, ipsec_len, cksum); 22199 /* Software checksum? */ 22200 if (DB_CKSUMFLAGS(mp) == 0) { 22201 IP_STAT(ip_out_sw_cksum); 22202 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 22203 LENGTH - hlen); 22204 } 22205 } else { 22206 sctp_hdr_t *sctph; 22207 22208 ASSERT(PROTO == IPPROTO_SCTP); 22209 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22210 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22211 /* 22212 * Zero out the checksum field to ensure proper 22213 * checksum calculation. 22214 */ 22215 sctph->sh_chksum = 0; 22216 #ifdef DEBUG 22217 if (!skip_sctp_cksum) 22218 #endif 22219 sctph->sh_chksum = sctp_cksum(mp, hlen); 22220 } 22221 } 22222 22223 /* 22224 * If this is a multicast packet and originated from ip_wput 22225 * we need to do loopback and forwarding checks. If it comes 22226 * from ip_wput_multicast, we SHOULD not do this. 22227 */ 22228 if (CLASSD(ipha->ipha_dst) && multicast_forward) goto multi_loopback; 22229 22230 /* checksum */ 22231 cksum += ttl_protocol; 22232 22233 /* fragment the packet */ 22234 if (max_frag < (uint_t)(LENGTH + ipsec_len)) 22235 goto fragmentit; 22236 /* 22237 * Don't use frag_flag if packet is pre-built or source 22238 * routed or if multicast (since multicast packets do 22239 * not solicit ICMP "packet too big" messages). 22240 */ 22241 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22242 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22243 !ip_source_route_included(ipha)) && 22244 !CLASSD(ipha->ipha_dst)) 22245 ipha->ipha_fragment_offset_and_flags |= 22246 htons(ire->ire_frag_flag); 22247 22248 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22249 /* calculate IP header checksum */ 22250 cksum += ipha->ipha_ident; 22251 cksum += (v_hlen_tos_len >> 16)+(v_hlen_tos_len & 0xFFFF); 22252 cksum += ipha->ipha_fragment_offset_and_flags; 22253 22254 /* IP options present */ 22255 hlen = (V_HLEN & 0xF) - IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22256 if (hlen) 22257 goto checksumoptions; 22258 22259 /* calculate hdr checksum */ 22260 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22261 cksum = ~(cksum + (cksum >> 16)); 22262 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22263 } 22264 if (ipsec_len != 0) { 22265 /* 22266 * We will do the rest of the processing after 22267 * we come back from IPSEC in ip_wput_ipsec_out(). 22268 */ 22269 ASSERT(MBLKL(first_mp) >= sizeof (ipsec_out_t)); 22270 22271 io = (ipsec_out_t *)first_mp->b_rptr; 22272 io->ipsec_out_ill_index = ((ill_t *)stq->q_ptr)-> 22273 ill_phyint->phyint_ifindex; 22274 22275 ipsec_out_process(q, first_mp, ire, ill_index); 22276 ire_refrele(ire); 22277 if (conn_outgoing_ill != NULL) 22278 ill_refrele(conn_outgoing_ill); 22279 return; 22280 } 22281 22282 /* 22283 * In most cases, the emission loop below is entered only 22284 * once. Only in the case where the ire holds the 22285 * RTF_MULTIRT flag, do we loop to process all RTF_MULTIRT 22286 * flagged ires in the bucket, and send the packet 22287 * through all crossed RTF_MULTIRT routes. 22288 */ 22289 if (ire->ire_flags & RTF_MULTIRT) { 22290 multirt_send = B_TRUE; 22291 } 22292 do { 22293 if (multirt_send) { 22294 irb_t *irb; 22295 /* 22296 * We are in a multiple send case, need to get 22297 * the next ire and make a duplicate of the packet. 22298 * ire1 holds here the next ire to process in the 22299 * bucket. If multirouting is expected, 22300 * any non-RTF_MULTIRT ire that has the 22301 * right destination address is ignored. 22302 */ 22303 irb = ire->ire_bucket; 22304 ASSERT(irb != NULL); 22305 22306 IRB_REFHOLD(irb); 22307 for (ire1 = ire->ire_next; 22308 ire1 != NULL; 22309 ire1 = ire1->ire_next) { 22310 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 22311 continue; 22312 if (ire1->ire_addr != ire->ire_addr) 22313 continue; 22314 if (ire1->ire_marks & 22315 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 22316 continue; 22317 22318 /* Got one */ 22319 IRE_REFHOLD(ire1); 22320 break; 22321 } 22322 IRB_REFRELE(irb); 22323 22324 if (ire1 != NULL) { 22325 next_mp = copyb(mp); 22326 if ((next_mp == NULL) || 22327 ((mp->b_cont != NULL) && 22328 ((next_mp->b_cont = 22329 dupmsg(mp->b_cont)) == NULL))) { 22330 freemsg(next_mp); 22331 next_mp = NULL; 22332 ire_refrele(ire1); 22333 ire1 = NULL; 22334 } 22335 } 22336 22337 /* Last multiroute ire; don't loop anymore. */ 22338 if (ire1 == NULL) { 22339 multirt_send = B_FALSE; 22340 } 22341 } 22342 22343 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 22344 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha, 22345 mblk_t *, mp); 22346 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 22347 NULL, ire->ire_ipif->ipif_ill, ipha, mp, mp); 22348 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 22349 if (mp == NULL) 22350 goto release_ire_and_ill; 22351 22352 mp->b_prev = SET_BPREV_FLAG(IPP_LOCAL_OUT); 22353 DTRACE_PROBE2(ip__xmit__1, mblk_t *, mp, ire_t *, ire); 22354 pktxmit_state = ip_xmit_v4(mp, ire, NULL, B_TRUE); 22355 if ((pktxmit_state == SEND_FAILED) || 22356 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22357 ip2dbg(("ip_wput_ire: ip_xmit_v4 failed" 22358 "- packet dropped\n")); 22359 release_ire_and_ill: 22360 ire_refrele(ire); 22361 if (next_mp != NULL) { 22362 freemsg(next_mp); 22363 ire_refrele(ire1); 22364 } 22365 if (conn_outgoing_ill != NULL) 22366 ill_refrele(conn_outgoing_ill); 22367 return; 22368 } 22369 22370 if (CLASSD(dst)) { 22371 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastPkts); 22372 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutMcastOctets, 22373 ntohs(ipha->ipha_length)); 22374 } 22375 22376 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22377 "ip_wput_ire_end: q %p (%S)", 22378 q, "last copy out"); 22379 IRE_REFRELE(ire); 22380 22381 if (multirt_send) { 22382 ASSERT(ire1); 22383 /* 22384 * Proceed with the next RTF_MULTIRT ire, 22385 * Also set up the send-to queue accordingly. 22386 */ 22387 ire = ire1; 22388 ire1 = NULL; 22389 stq = ire->ire_stq; 22390 mp = next_mp; 22391 next_mp = NULL; 22392 ipha = (ipha_t *)mp->b_rptr; 22393 ill_index = Q_TO_INDEX(stq); 22394 ill = (ill_t *)stq->q_ptr; 22395 } 22396 } while (multirt_send); 22397 if (conn_outgoing_ill != NULL) 22398 ill_refrele(conn_outgoing_ill); 22399 return; 22400 22401 /* 22402 * ire->ire_type == IRE_BROADCAST (minimize diffs) 22403 */ 22404 broadcast: 22405 { 22406 /* 22407 * Avoid broadcast storms by setting the ttl to 1 22408 * for broadcasts. This parameter can be set 22409 * via ndd, so make sure that for the SO_DONTROUTE 22410 * case that ipha_ttl is always set to 1. 22411 * In the event that we are replying to incoming 22412 * ICMP packets, conn could be NULL. 22413 */ 22414 if ((connp != NULL) && connp->conn_dontroute) 22415 ipha->ipha_ttl = 1; 22416 else 22417 ipha->ipha_ttl = ip_broadcast_ttl; 22418 22419 /* 22420 * Note that we are not doing a IRB_REFHOLD here. 22421 * Actually we don't care if the list changes i.e 22422 * if somebody deletes an IRE from the list while 22423 * we drop the lock, the next time we come around 22424 * ire_next will be NULL and hence we won't send 22425 * out multiple copies which is fine. 22426 */ 22427 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 22428 ire1 = ire->ire_next; 22429 if (conn_outgoing_ill != NULL) { 22430 while (ire->ire_ipif->ipif_ill != conn_outgoing_ill) { 22431 ASSERT(ire1 == ire->ire_next); 22432 if (ire1 != NULL && ire1->ire_addr == dst) { 22433 ire_refrele(ire); 22434 ire = ire1; 22435 IRE_REFHOLD(ire); 22436 ire1 = ire->ire_next; 22437 continue; 22438 } 22439 rw_exit(&ire->ire_bucket->irb_lock); 22440 /* Did not find a matching ill */ 22441 ip1dbg(("ip_wput_ire: broadcast with no " 22442 "matching IP_BOUND_IF ill %s\n", 22443 conn_outgoing_ill->ill_name)); 22444 freemsg(first_mp); 22445 if (ire != NULL) 22446 ire_refrele(ire); 22447 ill_refrele(conn_outgoing_ill); 22448 return; 22449 } 22450 } else if (ire1 != NULL && ire1->ire_addr == dst) { 22451 /* 22452 * If the next IRE has the same address and is not one 22453 * of the two copies that we need to send, try to see 22454 * whether this copy should be sent at all. This 22455 * assumes that we insert loopbacks first and then 22456 * non-loopbacks. This is acheived by inserting the 22457 * loopback always before non-loopback. 22458 * This is used to send a single copy of a broadcast 22459 * packet out all physical interfaces that have an 22460 * matching IRE_BROADCAST while also looping 22461 * back one copy (to ip_wput_local) for each 22462 * matching physical interface. However, we avoid 22463 * sending packets out different logical that match by 22464 * having ipif_up/ipif_down supress duplicate 22465 * IRE_BROADCASTS. 22466 * 22467 * This feature is currently used to get broadcasts 22468 * sent to multiple interfaces, when the broadcast 22469 * address being used applies to multiple interfaces. 22470 * For example, a whole net broadcast will be 22471 * replicated on every connected subnet of 22472 * the target net. 22473 * 22474 * Each zone has its own set of IRE_BROADCASTs, so that 22475 * we're able to distribute inbound packets to multiple 22476 * zones who share a broadcast address. We avoid looping 22477 * back outbound packets in different zones but on the 22478 * same ill, as the application would see duplicates. 22479 * 22480 * If the interfaces are part of the same group, 22481 * we would want to send only one copy out for 22482 * whole group. 22483 * 22484 * This logic assumes that ire_add_v4() groups the 22485 * IRE_BROADCAST entries so that those with the same 22486 * ire_addr and ill_group are kept together. 22487 */ 22488 ire_ill = ire->ire_ipif->ipif_ill; 22489 if (ire->ire_stq == NULL && ire1->ire_stq != NULL) { 22490 if (ire_ill->ill_group != NULL && 22491 (ire->ire_marks & IRE_MARK_NORECV)) { 22492 /* 22493 * If the current zone only has an ire 22494 * broadcast for this address marked 22495 * NORECV, the ire we want is ahead in 22496 * the bucket, so we look it up 22497 * deliberately ignoring the zoneid. 22498 */ 22499 for (ire1 = ire->ire_bucket->irb_ire; 22500 ire1 != NULL; 22501 ire1 = ire1->ire_next) { 22502 ire1_ill = 22503 ire1->ire_ipif->ipif_ill; 22504 if (ire1->ire_addr != dst) 22505 continue; 22506 /* skip over the current ire */ 22507 if (ire1 == ire) 22508 continue; 22509 /* skip over deleted ires */ 22510 if (ire1->ire_marks & 22511 IRE_MARK_CONDEMNED) 22512 continue; 22513 /* 22514 * non-loopback ire in our 22515 * group: use it for the next 22516 * pass in the loop 22517 */ 22518 if (ire1->ire_stq != NULL && 22519 ire1_ill->ill_group == 22520 ire_ill->ill_group) 22521 break; 22522 } 22523 } 22524 } else { 22525 while (ire1 != NULL && ire1->ire_addr == dst) { 22526 ire1_ill = ire1->ire_ipif->ipif_ill; 22527 /* 22528 * We can have two broadcast ires on the 22529 * same ill in different zones; here 22530 * we'll send a copy of the packet on 22531 * each ill and the fanout code will 22532 * call conn_wantpacket() to check that 22533 * the zone has the broadcast address 22534 * configured on the ill. If the two 22535 * ires are in the same group we only 22536 * send one copy up. 22537 */ 22538 if (ire1_ill != ire_ill && 22539 (ire1_ill->ill_group == NULL || 22540 ire_ill->ill_group == NULL || 22541 ire1_ill->ill_group != 22542 ire_ill->ill_group)) { 22543 break; 22544 } 22545 ire1 = ire1->ire_next; 22546 } 22547 } 22548 } 22549 ASSERT(multirt_send == B_FALSE); 22550 if (ire1 != NULL && ire1->ire_addr == dst) { 22551 if ((ire->ire_flags & RTF_MULTIRT) && 22552 (ire1->ire_flags & RTF_MULTIRT)) { 22553 /* 22554 * We are in the multirouting case. 22555 * The message must be sent at least 22556 * on both ires. These ires have been 22557 * inserted AFTER the standard ones 22558 * in ip_rt_add(). There are thus no 22559 * other ire entries for the destination 22560 * address in the rest of the bucket 22561 * that do not have the RTF_MULTIRT 22562 * flag. We don't process a copy 22563 * of the message here. This will be 22564 * done in the final sending loop. 22565 */ 22566 multirt_send = B_TRUE; 22567 } else { 22568 next_mp = ip_copymsg(first_mp); 22569 if (next_mp != NULL) 22570 IRE_REFHOLD(ire1); 22571 } 22572 } 22573 rw_exit(&ire->ire_bucket->irb_lock); 22574 } 22575 22576 if (stq) { 22577 /* 22578 * A non-NULL send-to queue means this packet is going 22579 * out of this machine. 22580 */ 22581 out_ill = (ill_t *)stq->q_ptr; 22582 22583 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutRequests); 22584 ttl_protocol = ((uint16_t *)ipha)[4]; 22585 /* 22586 * We accumulate the pseudo header checksum in cksum. 22587 * This is pretty hairy code, so watch close. One 22588 * thing to keep in mind is that UDP and TCP have 22589 * stored their respective datagram lengths in their 22590 * checksum fields. This lines things up real nice. 22591 */ 22592 cksum = (dst >> 16) + (dst & 0xFFFF) + 22593 (src >> 16) + (src & 0xFFFF); 22594 /* 22595 * We assume the udp checksum field contains the 22596 * length, so to compute the pseudo header checksum, 22597 * all we need is the protocol number and src/dst. 22598 */ 22599 /* Provide the checksums for UDP and TCP. */ 22600 if ((PROTO == IPPROTO_TCP) && 22601 (ip_hdr_included != IP_HDR_INCLUDED)) { 22602 /* hlen gets the number of uchar_ts in the IP header */ 22603 hlen = (V_HLEN & 0xF) << 2; 22604 up = IPH_TCPH_CHECKSUMP(ipha, hlen); 22605 IP_STAT(ip_out_sw_cksum); 22606 IP_STAT_UPDATE(ip_tcp_out_sw_cksum_bytes, 22607 LENGTH - hlen); 22608 *up = IP_CSUM(mp, hlen, cksum + IP_TCP_CSUM_COMP); 22609 if (*up == 0) 22610 *up = 0xFFFF; 22611 } else if (PROTO == IPPROTO_SCTP && 22612 (ip_hdr_included != IP_HDR_INCLUDED)) { 22613 sctp_hdr_t *sctph; 22614 22615 hlen = (V_HLEN & 0xF) << 2; 22616 ASSERT(MBLKL(mp) >= (hlen + sizeof (*sctph))); 22617 sctph = (sctp_hdr_t *)(mp->b_rptr + hlen); 22618 sctph->sh_chksum = 0; 22619 #ifdef DEBUG 22620 if (!skip_sctp_cksum) 22621 #endif 22622 sctph->sh_chksum = sctp_cksum(mp, hlen); 22623 } else { 22624 queue_t *dev_q = stq->q_next; 22625 22626 if ((dev_q->q_next || dev_q->q_first) && 22627 !canput(dev_q)) { 22628 blocked: 22629 ipha->ipha_ident = ip_hdr_included; 22630 /* 22631 * If we don't have a conn to apply 22632 * backpressure, free the message. 22633 * In the ire_send path, we don't know 22634 * the position to requeue the packet. Rather 22635 * than reorder packets, we just drop this 22636 * packet. 22637 */ 22638 if (ip_output_queue && connp != NULL && 22639 caller != IRE_SEND) { 22640 if (caller == IP_WSRV) { 22641 connp->conn_did_putbq = 1; 22642 (void) putbq(connp->conn_wq, 22643 first_mp); 22644 conn_drain_insert(connp); 22645 /* 22646 * This is the service thread, 22647 * and the queue is already 22648 * noenabled. The check for 22649 * canput and the putbq is not 22650 * atomic. So we need to check 22651 * again. 22652 */ 22653 if (canput(stq->q_next)) 22654 connp->conn_did_putbq 22655 = 0; 22656 IP_STAT(ip_conn_flputbq); 22657 } else { 22658 /* 22659 * We are not the service proc. 22660 * ip_wsrv will be scheduled or 22661 * is already running. 22662 */ 22663 (void) putq(connp->conn_wq, 22664 first_mp); 22665 } 22666 } else { 22667 out_ill = (ill_t *)stq->q_ptr; 22668 BUMP_MIB(out_ill->ill_ip_mib, 22669 ipIfStatsOutDiscards); 22670 freemsg(first_mp); 22671 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22672 "ip_wput_ire_end: q %p (%S)", 22673 q, "discard"); 22674 } 22675 ire_refrele(ire); 22676 if (next_mp) { 22677 ire_refrele(ire1); 22678 freemsg(next_mp); 22679 } 22680 if (conn_outgoing_ill != NULL) 22681 ill_refrele(conn_outgoing_ill); 22682 return; 22683 } 22684 if ((PROTO == IPPROTO_UDP) && 22685 (ip_hdr_included != IP_HDR_INCLUDED)) { 22686 /* 22687 * hlen gets the number of uchar_ts in the 22688 * IP header 22689 */ 22690 hlen = (V_HLEN & 0xF) << 2; 22691 up = IPH_UDPH_CHECKSUMP(ipha, hlen); 22692 max_frag = ire->ire_max_frag; 22693 if (*up != 0) { 22694 IP_CKSUM_XMIT(ire_ill, ire, mp, ipha, 22695 up, PROTO, hlen, LENGTH, max_frag, 22696 ipsec_len, cksum); 22697 /* Software checksum? */ 22698 if (DB_CKSUMFLAGS(mp) == 0) { 22699 IP_STAT(ip_out_sw_cksum); 22700 IP_STAT_UPDATE( 22701 ip_udp_out_sw_cksum_bytes, 22702 LENGTH - hlen); 22703 } 22704 } 22705 } 22706 } 22707 /* 22708 * Need to do this even when fragmenting. The local 22709 * loopback can be done without computing checksums 22710 * but forwarding out other interface must be done 22711 * after the IP checksum (and ULP checksums) have been 22712 * computed. 22713 * 22714 * NOTE : multicast_forward is set only if this packet 22715 * originated from ip_wput. For packets originating from 22716 * ip_wput_multicast, it is not set. 22717 */ 22718 if (CLASSD(ipha->ipha_dst) && multicast_forward) { 22719 multi_loopback: 22720 ip2dbg(("ip_wput: multicast, loop %d\n", 22721 conn_multicast_loop)); 22722 22723 /* Forget header checksum offload */ 22724 DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM; 22725 22726 /* 22727 * Local loopback of multicasts? Check the 22728 * ill. 22729 * 22730 * Note that the loopback function will not come 22731 * in through ip_rput - it will only do the 22732 * client fanout thus we need to do an mforward 22733 * as well. The is different from the BSD 22734 * logic. 22735 */ 22736 if (ill != NULL) { 22737 ilm_t *ilm; 22738 22739 ILM_WALKER_HOLD(ill); 22740 ilm = ilm_lookup_ill(ill, ipha->ipha_dst, 22741 ALL_ZONES); 22742 ILM_WALKER_RELE(ill); 22743 if (ilm != NULL) { 22744 /* 22745 * Pass along the virtual output q. 22746 * ip_wput_local() will distribute the 22747 * packet to all the matching zones, 22748 * except the sending zone when 22749 * IP_MULTICAST_LOOP is false. 22750 */ 22751 ip_multicast_loopback(q, ill, first_mp, 22752 conn_multicast_loop ? 0 : 22753 IP_FF_NO_MCAST_LOOP, zoneid); 22754 } 22755 } 22756 if (ipha->ipha_ttl == 0) { 22757 /* 22758 * 0 => only to this host i.e. we are 22759 * done. We are also done if this was the 22760 * loopback interface since it is sufficient 22761 * to loopback one copy of a multicast packet. 22762 */ 22763 freemsg(first_mp); 22764 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22765 "ip_wput_ire_end: q %p (%S)", 22766 q, "loopback"); 22767 ire_refrele(ire); 22768 if (conn_outgoing_ill != NULL) 22769 ill_refrele(conn_outgoing_ill); 22770 return; 22771 } 22772 /* 22773 * ILLF_MULTICAST is checked in ip_newroute 22774 * i.e. we don't need to check it here since 22775 * all IRE_CACHEs come from ip_newroute. 22776 * For multicast traffic, SO_DONTROUTE is interpreted 22777 * to mean only send the packet out the interface 22778 * (optionally specified with IP_MULTICAST_IF) 22779 * and do not forward it out additional interfaces. 22780 * RSVP and the rsvp daemon is an example of a 22781 * protocol and user level process that 22782 * handles it's own routing. Hence, it uses the 22783 * SO_DONTROUTE option to accomplish this. 22784 */ 22785 22786 if (ip_g_mrouter && !conn_dontroute && ill != NULL) { 22787 /* Unconditionally redo the checksum */ 22788 ipha->ipha_hdr_checksum = 0; 22789 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 22790 22791 /* 22792 * If this needs to go out secure, we need 22793 * to wait till we finish the IPSEC 22794 * processing. 22795 */ 22796 if (ipsec_len == 0 && 22797 ip_mforward(ill, ipha, mp)) { 22798 freemsg(first_mp); 22799 ip1dbg(("ip_wput: mforward failed\n")); 22800 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22801 "ip_wput_ire_end: q %p (%S)", 22802 q, "mforward failed"); 22803 ire_refrele(ire); 22804 if (conn_outgoing_ill != NULL) 22805 ill_refrele(conn_outgoing_ill); 22806 return; 22807 } 22808 } 22809 } 22810 max_frag = ire->ire_max_frag; 22811 cksum += ttl_protocol; 22812 if (max_frag >= (uint_t)(LENGTH + ipsec_len)) { 22813 /* No fragmentation required for this one. */ 22814 /* 22815 * Don't use frag_flag if packet is pre-built or source 22816 * routed or if multicast (since multicast packets do 22817 * not solicit ICMP "packet too big" messages). 22818 */ 22819 if ((ip_hdr_included != IP_HDR_INCLUDED) && 22820 (V_HLEN == IP_SIMPLE_HDR_VERSION || 22821 !ip_source_route_included(ipha)) && 22822 !CLASSD(ipha->ipha_dst)) 22823 ipha->ipha_fragment_offset_and_flags |= 22824 htons(ire->ire_frag_flag); 22825 22826 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 22827 /* Complete the IP header checksum. */ 22828 cksum += ipha->ipha_ident; 22829 cksum += (v_hlen_tos_len >> 16)+ 22830 (v_hlen_tos_len & 0xFFFF); 22831 cksum += ipha->ipha_fragment_offset_and_flags; 22832 hlen = (V_HLEN & 0xF) - 22833 IP_SIMPLE_HDR_LENGTH_IN_WORDS; 22834 if (hlen) { 22835 checksumoptions: 22836 /* 22837 * Account for the IP Options in the IP 22838 * header checksum. 22839 */ 22840 up = (uint16_t *)(rptr+ 22841 IP_SIMPLE_HDR_LENGTH); 22842 do { 22843 cksum += up[0]; 22844 cksum += up[1]; 22845 up += 2; 22846 } while (--hlen); 22847 } 22848 cksum = ((cksum & 0xFFFF) + (cksum >> 16)); 22849 cksum = ~(cksum + (cksum >> 16)); 22850 ipha->ipha_hdr_checksum = (uint16_t)cksum; 22851 } 22852 if (ipsec_len != 0) { 22853 ipsec_out_process(q, first_mp, ire, ill_index); 22854 if (!next_mp) { 22855 ire_refrele(ire); 22856 if (conn_outgoing_ill != NULL) 22857 ill_refrele(conn_outgoing_ill); 22858 return; 22859 } 22860 goto next; 22861 } 22862 22863 /* 22864 * multirt_send has already been handled 22865 * for broadcast, but not yet for multicast 22866 * or IP options. 22867 */ 22868 if (next_mp == NULL) { 22869 if (ire->ire_flags & RTF_MULTIRT) { 22870 multirt_send = B_TRUE; 22871 } 22872 } 22873 22874 /* 22875 * In most cases, the emission loop below is 22876 * entered only once. Only in the case where 22877 * the ire holds the RTF_MULTIRT flag, do we loop 22878 * to process all RTF_MULTIRT ires in the bucket, 22879 * and send the packet through all crossed 22880 * RTF_MULTIRT routes. 22881 */ 22882 do { 22883 if (multirt_send) { 22884 irb_t *irb; 22885 22886 irb = ire->ire_bucket; 22887 ASSERT(irb != NULL); 22888 /* 22889 * We are in a multiple send case, 22890 * need to get the next IRE and make 22891 * a duplicate of the packet. 22892 */ 22893 IRB_REFHOLD(irb); 22894 for (ire1 = ire->ire_next; 22895 ire1 != NULL; 22896 ire1 = ire1->ire_next) { 22897 if (!(ire1->ire_flags & 22898 RTF_MULTIRT)) 22899 continue; 22900 if (ire1->ire_addr != 22901 ire->ire_addr) 22902 continue; 22903 if (ire1->ire_marks & 22904 (IRE_MARK_CONDEMNED| 22905 IRE_MARK_HIDDEN)) 22906 continue; 22907 22908 /* Got one */ 22909 IRE_REFHOLD(ire1); 22910 break; 22911 } 22912 IRB_REFRELE(irb); 22913 22914 if (ire1 != NULL) { 22915 next_mp = copyb(mp); 22916 if ((next_mp == NULL) || 22917 ((mp->b_cont != NULL) && 22918 ((next_mp->b_cont = 22919 dupmsg(mp->b_cont)) 22920 == NULL))) { 22921 freemsg(next_mp); 22922 next_mp = NULL; 22923 ire_refrele(ire1); 22924 ire1 = NULL; 22925 } 22926 } 22927 22928 /* 22929 * Last multiroute ire; don't loop 22930 * anymore. The emission is over 22931 * and next_mp is NULL. 22932 */ 22933 if (ire1 == NULL) { 22934 multirt_send = B_FALSE; 22935 } 22936 } 22937 22938 out_ill = ire->ire_ipif->ipif_ill; 22939 DTRACE_PROBE4(ip4__physical__out__start, 22940 ill_t *, NULL, 22941 ill_t *, out_ill, 22942 ipha_t *, ipha, mblk_t *, mp); 22943 FW_HOOKS(ip4_physical_out_event, 22944 ipv4firewall_physical_out, 22945 NULL, out_ill, ipha, mp, mp); 22946 DTRACE_PROBE1(ip4__physical__out__end, 22947 mblk_t *, mp); 22948 if (mp == NULL) 22949 goto release_ire_and_ill_2; 22950 22951 ASSERT(ipsec_len == 0); 22952 mp->b_prev = 22953 SET_BPREV_FLAG(IPP_LOCAL_OUT); 22954 DTRACE_PROBE2(ip__xmit__2, 22955 mblk_t *, mp, ire_t *, ire); 22956 pktxmit_state = ip_xmit_v4(mp, ire, 22957 NULL, B_TRUE); 22958 if ((pktxmit_state == SEND_FAILED) || 22959 (pktxmit_state == LLHDR_RESLV_FAILED)) { 22960 release_ire_and_ill_2: 22961 if (next_mp) { 22962 freemsg(next_mp); 22963 ire_refrele(ire1); 22964 } 22965 ire_refrele(ire); 22966 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 22967 "ip_wput_ire_end: q %p (%S)", 22968 q, "discard MDATA"); 22969 if (conn_outgoing_ill != NULL) 22970 ill_refrele(conn_outgoing_ill); 22971 return; 22972 } 22973 22974 if (CLASSD(dst)) { 22975 BUMP_MIB(out_ill->ill_ip_mib, 22976 ipIfStatsHCOutMcastPkts); 22977 UPDATE_MIB(out_ill->ill_ip_mib, 22978 ipIfStatsHCOutMcastOctets, 22979 ntohs(ipha->ipha_length)); 22980 } else if (ire->ire_type == IRE_BROADCAST) { 22981 BUMP_MIB(out_ill->ill_ip_mib, 22982 ipIfStatsHCOutBcastPkts); 22983 } 22984 22985 if (multirt_send) { 22986 /* 22987 * We are in a multiple send case, 22988 * need to re-enter the sending loop 22989 * using the next ire. 22990 */ 22991 ire_refrele(ire); 22992 ire = ire1; 22993 stq = ire->ire_stq; 22994 mp = next_mp; 22995 next_mp = NULL; 22996 ipha = (ipha_t *)mp->b_rptr; 22997 ill_index = Q_TO_INDEX(stq); 22998 } 22999 } while (multirt_send); 23000 23001 if (!next_mp) { 23002 /* 23003 * Last copy going out (the ultra-common 23004 * case). Note that we intentionally replicate 23005 * the putnext rather than calling it before 23006 * the next_mp check in hopes of a little 23007 * tail-call action out of the compiler. 23008 */ 23009 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23010 "ip_wput_ire_end: q %p (%S)", 23011 q, "last copy out(1)"); 23012 ire_refrele(ire); 23013 if (conn_outgoing_ill != NULL) 23014 ill_refrele(conn_outgoing_ill); 23015 return; 23016 } 23017 /* More copies going out below. */ 23018 } else { 23019 int offset; 23020 fragmentit: 23021 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23022 /* 23023 * If this would generate a icmp_frag_needed message, 23024 * we need to handle it before we do the IPSEC 23025 * processing. Otherwise, we need to strip the IPSEC 23026 * headers before we send up the message to the ULPs 23027 * which becomes messy and difficult. 23028 */ 23029 if (ipsec_len != 0) { 23030 if ((max_frag < (unsigned int)(LENGTH + 23031 ipsec_len)) && (offset & IPH_DF)) { 23032 out_ill = (ill_t *)stq->q_ptr; 23033 BUMP_MIB(out_ill->ill_ip_mib, 23034 ipIfStatsOutFragFails); 23035 BUMP_MIB(out_ill->ill_ip_mib, 23036 ipIfStatsOutFragReqds); 23037 ipha->ipha_hdr_checksum = 0; 23038 ipha->ipha_hdr_checksum = 23039 (uint16_t)ip_csum_hdr(ipha); 23040 icmp_frag_needed(ire->ire_stq, first_mp, 23041 max_frag, zoneid); 23042 if (!next_mp) { 23043 ire_refrele(ire); 23044 if (conn_outgoing_ill != NULL) { 23045 ill_refrele( 23046 conn_outgoing_ill); 23047 } 23048 return; 23049 } 23050 } else { 23051 /* 23052 * This won't cause a icmp_frag_needed 23053 * message. to be generated. Send it on 23054 * the wire. Note that this could still 23055 * cause fragmentation and all we 23056 * do is the generation of the message 23057 * to the ULP if needed before IPSEC. 23058 */ 23059 if (!next_mp) { 23060 ipsec_out_process(q, first_mp, 23061 ire, ill_index); 23062 TRACE_2(TR_FAC_IP, 23063 TR_IP_WPUT_IRE_END, 23064 "ip_wput_ire_end: q %p " 23065 "(%S)", q, 23066 "last ipsec_out_process"); 23067 ire_refrele(ire); 23068 if (conn_outgoing_ill != NULL) { 23069 ill_refrele( 23070 conn_outgoing_ill); 23071 } 23072 return; 23073 } 23074 ipsec_out_process(q, first_mp, 23075 ire, ill_index); 23076 } 23077 } else { 23078 /* 23079 * Initiate IPPF processing. For 23080 * fragmentable packets we finish 23081 * all QOS packet processing before 23082 * calling: 23083 * ip_wput_ire_fragmentit->ip_wput_frag 23084 */ 23085 23086 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 23087 ip_process(IPP_LOCAL_OUT, &mp, 23088 ill_index); 23089 if (mp == NULL) { 23090 out_ill = (ill_t *)stq->q_ptr; 23091 BUMP_MIB(out_ill->ill_ip_mib, 23092 ipIfStatsOutDiscards); 23093 if (next_mp != NULL) { 23094 freemsg(next_mp); 23095 ire_refrele(ire1); 23096 } 23097 ire_refrele(ire); 23098 TRACE_2(TR_FAC_IP, 23099 TR_IP_WPUT_IRE_END, 23100 "ip_wput_ire: q %p (%S)", 23101 q, "discard MDATA"); 23102 if (conn_outgoing_ill != NULL) { 23103 ill_refrele( 23104 conn_outgoing_ill); 23105 } 23106 return; 23107 } 23108 } 23109 if (!next_mp) { 23110 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23111 "ip_wput_ire_end: q %p (%S)", 23112 q, "last fragmentation"); 23113 ip_wput_ire_fragmentit(mp, ire, 23114 zoneid); 23115 ire_refrele(ire); 23116 if (conn_outgoing_ill != NULL) 23117 ill_refrele(conn_outgoing_ill); 23118 return; 23119 } 23120 ip_wput_ire_fragmentit(mp, ire, zoneid); 23121 } 23122 } 23123 } else { 23124 nullstq: 23125 /* A NULL stq means the destination address is local. */ 23126 UPDATE_OB_PKT_COUNT(ire); 23127 ire->ire_last_used_time = lbolt; 23128 ASSERT(ire->ire_ipif != NULL); 23129 if (!next_mp) { 23130 /* 23131 * Is there an "in" and "out" for traffic local 23132 * to a host (loopback)? The code in Solaris doesn't 23133 * explicitly draw a line in its code for in vs out, 23134 * so we've had to draw a line in the sand: ip_wput_ire 23135 * is considered to be the "output" side and 23136 * ip_wput_local to be the "input" side. 23137 */ 23138 out_ill = ire->ire_ipif->ipif_ill; 23139 23140 DTRACE_PROBE4(ip4__loopback__out__start, 23141 ill_t *, NULL, ill_t *, out_ill, 23142 ipha_t *, ipha, mblk_t *, first_mp); 23143 23144 FW_HOOKS(ip4_loopback_out_event, 23145 ipv4firewall_loopback_out, 23146 NULL, out_ill, ipha, first_mp, mp); 23147 23148 DTRACE_PROBE1(ip4__loopback__out_end, 23149 mblk_t *, first_mp); 23150 23151 TRACE_2(TR_FAC_IP, TR_IP_WPUT_IRE_END, 23152 "ip_wput_ire_end: q %p (%S)", 23153 q, "local address"); 23154 23155 if (first_mp != NULL) 23156 ip_wput_local(q, out_ill, ipha, 23157 first_mp, ire, 0, ire->ire_zoneid); 23158 ire_refrele(ire); 23159 if (conn_outgoing_ill != NULL) 23160 ill_refrele(conn_outgoing_ill); 23161 return; 23162 } 23163 23164 out_ill = ire->ire_ipif->ipif_ill; 23165 23166 DTRACE_PROBE4(ip4__loopback__out__start, 23167 ill_t *, NULL, ill_t *, out_ill, 23168 ipha_t *, ipha, mblk_t *, first_mp); 23169 23170 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 23171 NULL, out_ill, ipha, first_mp, mp); 23172 23173 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, first_mp); 23174 23175 if (first_mp != NULL) 23176 ip_wput_local(q, out_ill, ipha, 23177 first_mp, ire, 0, ire->ire_zoneid); 23178 } 23179 next: 23180 /* 23181 * More copies going out to additional interfaces. 23182 * ire1 has already been held. We don't need the 23183 * "ire" anymore. 23184 */ 23185 ire_refrele(ire); 23186 ire = ire1; 23187 ASSERT(ire != NULL && ire->ire_refcnt >= 1 && next_mp != NULL); 23188 mp = next_mp; 23189 ASSERT(ire->ire_ipversion == IPV4_VERSION); 23190 ill = ire_to_ill(ire); 23191 first_mp = mp; 23192 if (ipsec_len != 0) { 23193 ASSERT(first_mp->b_datap->db_type == M_CTL); 23194 mp = mp->b_cont; 23195 } 23196 dst = ire->ire_addr; 23197 ipha = (ipha_t *)mp->b_rptr; 23198 /* 23199 * Restore src so that we will pick up ire->ire_src_addr if src was 0. 23200 * Restore ipha_ident "no checksum" flag. 23201 */ 23202 src = orig_src; 23203 ipha->ipha_ident = ip_hdr_included; 23204 goto another; 23205 23206 #undef rptr 23207 #undef Q_TO_INDEX 23208 } 23209 23210 /* 23211 * Routine to allocate a message that is used to notify the ULP about MDT. 23212 * The caller may provide a pointer to the link-layer MDT capabilities, 23213 * or NULL if MDT is to be disabled on the stream. 23214 */ 23215 mblk_t * 23216 ip_mdinfo_alloc(ill_mdt_capab_t *isrc) 23217 { 23218 mblk_t *mp; 23219 ip_mdt_info_t *mdti; 23220 ill_mdt_capab_t *idst; 23221 23222 if ((mp = allocb(sizeof (*mdti), BPRI_HI)) != NULL) { 23223 DB_TYPE(mp) = M_CTL; 23224 mp->b_wptr = mp->b_rptr + sizeof (*mdti); 23225 mdti = (ip_mdt_info_t *)mp->b_rptr; 23226 mdti->mdt_info_id = MDT_IOC_INFO_UPDATE; 23227 idst = &(mdti->mdt_capab); 23228 23229 /* 23230 * If the caller provides us with the capability, copy 23231 * it over into our notification message; otherwise 23232 * we zero out the capability portion. 23233 */ 23234 if (isrc != NULL) 23235 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23236 else 23237 bzero((caddr_t)idst, sizeof (*idst)); 23238 } 23239 return (mp); 23240 } 23241 23242 /* 23243 * Routine which determines whether MDT can be enabled on the destination 23244 * IRE and IPC combination, and if so, allocates and returns the MDT 23245 * notification mblk that may be used by ULP. We also check if we need to 23246 * turn MDT back to 'on' when certain restrictions prohibiting us to allow 23247 * MDT usage in the past have been lifted. This gets called during IP 23248 * and ULP binding. 23249 */ 23250 mblk_t * 23251 ip_mdinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23252 ill_mdt_capab_t *mdt_cap) 23253 { 23254 mblk_t *mp; 23255 boolean_t rc = B_FALSE; 23256 23257 ASSERT(dst_ire != NULL); 23258 ASSERT(connp != NULL); 23259 ASSERT(mdt_cap != NULL); 23260 23261 /* 23262 * Currently, we only support simple TCP/{IPv4,IPv6} with 23263 * Multidata, which is handled in tcp_multisend(). This 23264 * is the reason why we do all these checks here, to ensure 23265 * that we don't enable Multidata for the cases which we 23266 * can't handle at the moment. 23267 */ 23268 do { 23269 /* Only do TCP at the moment */ 23270 if (connp->conn_ulp != IPPROTO_TCP) 23271 break; 23272 23273 /* 23274 * IPSEC outbound policy present? Note that we get here 23275 * after calling ipsec_conn_cache_policy() where the global 23276 * policy checking is performed. conn_latch will be 23277 * non-NULL as long as there's a policy defined, 23278 * i.e. conn_out_enforce_policy may be NULL in such case 23279 * when the connection is non-secure, and hence we check 23280 * further if the latch refers to an outbound policy. 23281 */ 23282 if (CONN_IPSEC_OUT_ENCAPSULATED(connp)) 23283 break; 23284 23285 /* CGTP (multiroute) is enabled? */ 23286 if (dst_ire->ire_flags & RTF_MULTIRT) 23287 break; 23288 23289 /* Outbound IPQoS enabled? */ 23290 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 23291 /* 23292 * In this case, we disable MDT for this and all 23293 * future connections going over the interface. 23294 */ 23295 mdt_cap->ill_mdt_on = 0; 23296 break; 23297 } 23298 23299 /* socket option(s) present? */ 23300 if (!CONN_IS_LSO_MD_FASTPATH(connp)) 23301 break; 23302 23303 rc = B_TRUE; 23304 /* CONSTCOND */ 23305 } while (0); 23306 23307 /* Remember the result */ 23308 connp->conn_mdt_ok = rc; 23309 23310 if (!rc) 23311 return (NULL); 23312 else if (!mdt_cap->ill_mdt_on) { 23313 /* 23314 * If MDT has been previously turned off in the past, and we 23315 * currently can do MDT (due to IPQoS policy removal, etc.) 23316 * then enable it for this interface. 23317 */ 23318 mdt_cap->ill_mdt_on = 1; 23319 ip1dbg(("ip_mdinfo_return: reenabling MDT for " 23320 "interface %s\n", ill_name)); 23321 } 23322 23323 /* Allocate the MDT info mblk */ 23324 if ((mp = ip_mdinfo_alloc(mdt_cap)) == NULL) { 23325 ip0dbg(("ip_mdinfo_return: can't enable Multidata for " 23326 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23327 return (NULL); 23328 } 23329 return (mp); 23330 } 23331 23332 /* 23333 * Routine to allocate a message that is used to notify the ULP about LSO. 23334 * The caller may provide a pointer to the link-layer LSO capabilities, 23335 * or NULL if LSO is to be disabled on the stream. 23336 */ 23337 mblk_t * 23338 ip_lsoinfo_alloc(ill_lso_capab_t *isrc) 23339 { 23340 mblk_t *mp; 23341 ip_lso_info_t *lsoi; 23342 ill_lso_capab_t *idst; 23343 23344 if ((mp = allocb(sizeof (*lsoi), BPRI_HI)) != NULL) { 23345 DB_TYPE(mp) = M_CTL; 23346 mp->b_wptr = mp->b_rptr + sizeof (*lsoi); 23347 lsoi = (ip_lso_info_t *)mp->b_rptr; 23348 lsoi->lso_info_id = LSO_IOC_INFO_UPDATE; 23349 idst = &(lsoi->lso_capab); 23350 23351 /* 23352 * If the caller provides us with the capability, copy 23353 * it over into our notification message; otherwise 23354 * we zero out the capability portion. 23355 */ 23356 if (isrc != NULL) 23357 bcopy((caddr_t)isrc, (caddr_t)idst, sizeof (*idst)); 23358 else 23359 bzero((caddr_t)idst, sizeof (*idst)); 23360 } 23361 return (mp); 23362 } 23363 23364 /* 23365 * Routine which determines whether LSO can be enabled on the destination 23366 * IRE and IPC combination, and if so, allocates and returns the LSO 23367 * notification mblk that may be used by ULP. We also check if we need to 23368 * turn LSO back to 'on' when certain restrictions prohibiting us to allow 23369 * LSO usage in the past have been lifted. This gets called during IP 23370 * and ULP binding. 23371 */ 23372 mblk_t * 23373 ip_lsoinfo_return(ire_t *dst_ire, conn_t *connp, char *ill_name, 23374 ill_lso_capab_t *lso_cap) 23375 { 23376 mblk_t *mp; 23377 23378 ASSERT(dst_ire != NULL); 23379 ASSERT(connp != NULL); 23380 ASSERT(lso_cap != NULL); 23381 23382 connp->conn_lso_ok = B_TRUE; 23383 23384 if ((connp->conn_ulp != IPPROTO_TCP) || 23385 CONN_IPSEC_OUT_ENCAPSULATED(connp) || 23386 (dst_ire->ire_flags & RTF_MULTIRT) || 23387 !CONN_IS_LSO_MD_FASTPATH(connp) || 23388 (IPP_ENABLED(IPP_LOCAL_OUT))) { 23389 connp->conn_lso_ok = B_FALSE; 23390 if (IPP_ENABLED(IPP_LOCAL_OUT)) { 23391 /* 23392 * Disable LSO for this and all future connections going 23393 * over the interface. 23394 */ 23395 lso_cap->ill_lso_on = 0; 23396 } 23397 } 23398 23399 if (!connp->conn_lso_ok) 23400 return (NULL); 23401 else if (!lso_cap->ill_lso_on) { 23402 /* 23403 * If LSO has been previously turned off in the past, and we 23404 * currently can do LSO (due to IPQoS policy removal, etc.) 23405 * then enable it for this interface. 23406 */ 23407 lso_cap->ill_lso_on = 1; 23408 ip1dbg(("ip_mdinfo_return: reenabling LSO for interface %s\n", 23409 ill_name)); 23410 } 23411 23412 /* Allocate the LSO info mblk */ 23413 if ((mp = ip_lsoinfo_alloc(lso_cap)) == NULL) 23414 ip0dbg(("ip_lsoinfo_return: can't enable LSO for " 23415 "conn %p on %s (ENOMEM)\n", (void *)connp, ill_name)); 23416 23417 return (mp); 23418 } 23419 23420 /* 23421 * Create destination address attribute, and fill it with the physical 23422 * destination address and SAP taken from the template DL_UNITDATA_REQ 23423 * message block. 23424 */ 23425 boolean_t 23426 ip_md_addr_attr(multidata_t *mmd, pdesc_t *pd, const mblk_t *dlmp) 23427 { 23428 dl_unitdata_req_t *dlurp; 23429 pattr_t *pa; 23430 pattrinfo_t pa_info; 23431 pattr_addr_t **das = (pattr_addr_t **)&pa_info.buf; 23432 uint_t das_len, das_off; 23433 23434 ASSERT(dlmp != NULL); 23435 23436 dlurp = (dl_unitdata_req_t *)dlmp->b_rptr; 23437 das_len = dlurp->dl_dest_addr_length; 23438 das_off = dlurp->dl_dest_addr_offset; 23439 23440 pa_info.type = PATTR_DSTADDRSAP; 23441 pa_info.len = sizeof (**das) + das_len - 1; 23442 23443 /* create and associate the attribute */ 23444 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23445 if (pa != NULL) { 23446 ASSERT(*das != NULL); 23447 (*das)->addr_is_group = 0; 23448 (*das)->addr_len = (uint8_t)das_len; 23449 bcopy((caddr_t)dlurp + das_off, (*das)->addr, das_len); 23450 } 23451 23452 return (pa != NULL); 23453 } 23454 23455 /* 23456 * Create hardware checksum attribute and fill it with the values passed. 23457 */ 23458 boolean_t 23459 ip_md_hcksum_attr(multidata_t *mmd, pdesc_t *pd, uint32_t start_offset, 23460 uint32_t stuff_offset, uint32_t end_offset, uint32_t flags) 23461 { 23462 pattr_t *pa; 23463 pattrinfo_t pa_info; 23464 23465 ASSERT(mmd != NULL); 23466 23467 pa_info.type = PATTR_HCKSUM; 23468 pa_info.len = sizeof (pattr_hcksum_t); 23469 23470 /* create and associate the attribute */ 23471 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23472 if (pa != NULL) { 23473 pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf; 23474 23475 hck->hcksum_start_offset = start_offset; 23476 hck->hcksum_stuff_offset = stuff_offset; 23477 hck->hcksum_end_offset = end_offset; 23478 hck->hcksum_flags = flags; 23479 } 23480 return (pa != NULL); 23481 } 23482 23483 /* 23484 * Create zerocopy attribute and fill it with the specified flags 23485 */ 23486 boolean_t 23487 ip_md_zcopy_attr(multidata_t *mmd, pdesc_t *pd, uint_t flags) 23488 { 23489 pattr_t *pa; 23490 pattrinfo_t pa_info; 23491 23492 ASSERT(mmd != NULL); 23493 pa_info.type = PATTR_ZCOPY; 23494 pa_info.len = sizeof (pattr_zcopy_t); 23495 23496 /* create and associate the attribute */ 23497 pa = mmd_addpattr(mmd, pd, &pa_info, B_TRUE, KM_NOSLEEP); 23498 if (pa != NULL) { 23499 pattr_zcopy_t *zcopy = (pattr_zcopy_t *)pa_info.buf; 23500 23501 zcopy->zcopy_flags = flags; 23502 } 23503 return (pa != NULL); 23504 } 23505 23506 /* 23507 * Check if ip_wput_frag_mdt() and ip_wput_frag_mdt_v6() can handle a message 23508 * block chain. We could rewrite to handle arbitrary message block chains but 23509 * that would make the code complicated and slow. Right now there three 23510 * restrictions: 23511 * 23512 * 1. The first message block must contain the complete IP header and 23513 * at least 1 byte of payload data. 23514 * 2. At most MULTIDATA_MAX_PBUFS non-empty message blocks are allowed 23515 * so that we can use a single Multidata message. 23516 * 3. No frag must be distributed over two or more message blocks so 23517 * that we don't need more than two packet descriptors per frag. 23518 * 23519 * The above restrictions allow us to support userland applications (which 23520 * will send down a single message block) and NFS over UDP (which will 23521 * send down a chain of at most three message blocks). 23522 * 23523 * We also don't use MDT for payloads with less than or equal to 23524 * ip_wput_frag_mdt_min bytes because it would cause too much overhead. 23525 */ 23526 boolean_t 23527 ip_can_frag_mdt(mblk_t *mp, ssize_t hdr_len, ssize_t len) 23528 { 23529 int blocks; 23530 ssize_t total, missing, size; 23531 23532 ASSERT(mp != NULL); 23533 ASSERT(hdr_len > 0); 23534 23535 size = MBLKL(mp) - hdr_len; 23536 if (size <= 0) 23537 return (B_FALSE); 23538 23539 /* The first mblk contains the header and some payload. */ 23540 blocks = 1; 23541 total = size; 23542 size %= len; 23543 missing = (size == 0) ? 0 : (len - size); 23544 mp = mp->b_cont; 23545 23546 while (mp != NULL) { 23547 /* 23548 * Give up if we encounter a zero length message block. 23549 * In practice, this should rarely happen and therefore 23550 * not worth the trouble of freeing and re-linking the 23551 * mblk from the chain to handle such case. 23552 */ 23553 if ((size = MBLKL(mp)) == 0) 23554 return (B_FALSE); 23555 23556 /* Too many payload buffers for a single Multidata message? */ 23557 if (++blocks > MULTIDATA_MAX_PBUFS) 23558 return (B_FALSE); 23559 23560 total += size; 23561 /* Is a frag distributed over two or more message blocks? */ 23562 if (missing > size) 23563 return (B_FALSE); 23564 size -= missing; 23565 23566 size %= len; 23567 missing = (size == 0) ? 0 : (len - size); 23568 23569 mp = mp->b_cont; 23570 } 23571 23572 return (total > ip_wput_frag_mdt_min); 23573 } 23574 23575 /* 23576 * Outbound IPv4 fragmentation routine using MDT. 23577 */ 23578 static void 23579 ip_wput_frag_mdt(ire_t *ire, mblk_t *mp, ip_pkt_t pkt_type, int len, 23580 uint32_t frag_flag, int offset) 23581 { 23582 ipha_t *ipha_orig; 23583 int i1, ip_data_end; 23584 uint_t pkts, wroff, hdr_chunk_len, pbuf_idx; 23585 mblk_t *hdr_mp, *md_mp = NULL; 23586 unsigned char *hdr_ptr, *pld_ptr; 23587 multidata_t *mmd; 23588 ip_pdescinfo_t pdi; 23589 ill_t *ill; 23590 23591 ASSERT(DB_TYPE(mp) == M_DATA); 23592 ASSERT(MBLKL(mp) > sizeof (ipha_t)); 23593 23594 ill = ire_to_ill(ire); 23595 ASSERT(ill != NULL); 23596 23597 ipha_orig = (ipha_t *)mp->b_rptr; 23598 mp->b_rptr += sizeof (ipha_t); 23599 23600 /* Calculate how many packets we will send out */ 23601 i1 = (mp->b_cont == NULL) ? MBLKL(mp) : msgsize(mp); 23602 pkts = (i1 + len - 1) / len; 23603 ASSERT(pkts > 1); 23604 23605 /* Allocate a message block which will hold all the IP Headers. */ 23606 wroff = ip_wroff_extra; 23607 hdr_chunk_len = wroff + IP_SIMPLE_HDR_LENGTH; 23608 23609 i1 = pkts * hdr_chunk_len; 23610 /* 23611 * Create the header buffer, Multidata and destination address 23612 * and SAP attribute that should be associated with it. 23613 */ 23614 if ((hdr_mp = allocb(i1, BPRI_HI)) == NULL || 23615 ((hdr_mp->b_wptr += i1), 23616 (mmd = mmd_alloc(hdr_mp, &md_mp, KM_NOSLEEP)) == NULL) || 23617 !ip_md_addr_attr(mmd, NULL, ire->ire_nce->nce_res_mp)) { 23618 freemsg(mp); 23619 if (md_mp == NULL) { 23620 freemsg(hdr_mp); 23621 } else { 23622 free_mmd: IP_STAT(ip_frag_mdt_discarded); 23623 freemsg(md_mp); 23624 } 23625 IP_STAT(ip_frag_mdt_allocfail); 23626 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails); 23627 return; 23628 } 23629 IP_STAT(ip_frag_mdt_allocd); 23630 23631 /* 23632 * Add a payload buffer to the Multidata; this operation must not 23633 * fail, or otherwise our logic in this routine is broken. There 23634 * is no memory allocation done by the routine, so any returned 23635 * failure simply tells us that we've done something wrong. 23636 * 23637 * A failure tells us that either we're adding the same payload 23638 * buffer more than once, or we're trying to add more buffers than 23639 * allowed. None of the above cases should happen, and we panic 23640 * because either there's horrible heap corruption, and/or 23641 * programming mistake. 23642 */ 23643 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23644 goto pbuf_panic; 23645 23646 hdr_ptr = hdr_mp->b_rptr; 23647 pld_ptr = mp->b_rptr; 23648 23649 /* Establish the ending byte offset, based on the starting offset. */ 23650 offset <<= 3; 23651 ip_data_end = offset + ntohs(ipha_orig->ipha_length) - 23652 IP_SIMPLE_HDR_LENGTH; 23653 23654 pdi.flags = PDESC_HBUF_REF | PDESC_PBUF_REF; 23655 23656 while (pld_ptr < mp->b_wptr) { 23657 ipha_t *ipha; 23658 uint16_t offset_and_flags; 23659 uint16_t ip_len; 23660 int error; 23661 23662 ASSERT((hdr_ptr + hdr_chunk_len) <= hdr_mp->b_wptr); 23663 ipha = (ipha_t *)(hdr_ptr + wroff); 23664 ASSERT(OK_32PTR(ipha)); 23665 *ipha = *ipha_orig; 23666 23667 if (ip_data_end - offset > len) { 23668 offset_and_flags = IPH_MF; 23669 } else { 23670 /* 23671 * Last frag. Set len to the length of this last piece. 23672 */ 23673 len = ip_data_end - offset; 23674 /* A frag of a frag might have IPH_MF non-zero */ 23675 offset_and_flags = 23676 ntohs(ipha->ipha_fragment_offset_and_flags) & 23677 IPH_MF; 23678 } 23679 offset_and_flags |= (uint16_t)(offset >> 3); 23680 offset_and_flags |= (uint16_t)frag_flag; 23681 /* Store the offset and flags in the IP header. */ 23682 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 23683 23684 /* Store the length in the IP header. */ 23685 ip_len = (uint16_t)(len + IP_SIMPLE_HDR_LENGTH); 23686 ipha->ipha_length = htons(ip_len); 23687 23688 /* 23689 * Set the IP header checksum. Note that mp is just 23690 * the header, so this is easy to pass to ip_csum. 23691 */ 23692 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23693 23694 /* 23695 * Record offset and size of header and data of the next packet 23696 * in the multidata message. 23697 */ 23698 PDESC_HDR_ADD(&pdi, hdr_ptr, wroff, IP_SIMPLE_HDR_LENGTH, 0); 23699 PDESC_PLD_INIT(&pdi); 23700 i1 = MIN(mp->b_wptr - pld_ptr, len); 23701 ASSERT(i1 > 0); 23702 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, pld_ptr, i1); 23703 if (i1 == len) { 23704 pld_ptr += len; 23705 } else { 23706 i1 = len - i1; 23707 mp = mp->b_cont; 23708 ASSERT(mp != NULL); 23709 ASSERT(MBLKL(mp) >= i1); 23710 /* 23711 * Attach the next payload message block to the 23712 * multidata message. 23713 */ 23714 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23715 goto pbuf_panic; 23716 PDESC_PLD_SPAN_ADD(&pdi, pbuf_idx, mp->b_rptr, i1); 23717 pld_ptr = mp->b_rptr + i1; 23718 } 23719 23720 if ((mmd_addpdesc(mmd, (pdescinfo_t *)&pdi, &error, 23721 KM_NOSLEEP)) == NULL) { 23722 /* 23723 * Any failure other than ENOMEM indicates that we 23724 * have passed in invalid pdesc info or parameters 23725 * to mmd_addpdesc, which must not happen. 23726 * 23727 * EINVAL is a result of failure on boundary checks 23728 * against the pdesc info contents. It should not 23729 * happen, and we panic because either there's 23730 * horrible heap corruption, and/or programming 23731 * mistake. 23732 */ 23733 if (error != ENOMEM) { 23734 cmn_err(CE_PANIC, "ip_wput_frag_mdt: " 23735 "pdesc logic error detected for " 23736 "mmd %p pinfo %p (%d)\n", 23737 (void *)mmd, (void *)&pdi, error); 23738 /* NOTREACHED */ 23739 } 23740 IP_STAT(ip_frag_mdt_addpdescfail); 23741 /* Free unattached payload message blocks as well */ 23742 md_mp->b_cont = mp->b_cont; 23743 goto free_mmd; 23744 } 23745 23746 /* Advance fragment offset. */ 23747 offset += len; 23748 23749 /* Advance to location for next header in the buffer. */ 23750 hdr_ptr += hdr_chunk_len; 23751 23752 /* Did we reach the next payload message block? */ 23753 if (pld_ptr == mp->b_wptr && mp->b_cont != NULL) { 23754 mp = mp->b_cont; 23755 /* 23756 * Attach the next message block with payload 23757 * data to the multidata message. 23758 */ 23759 if ((pbuf_idx = mmd_addpldbuf(mmd, mp)) < 0) 23760 goto pbuf_panic; 23761 pld_ptr = mp->b_rptr; 23762 } 23763 } 23764 23765 ASSERT(hdr_mp->b_wptr == hdr_ptr); 23766 ASSERT(mp->b_wptr == pld_ptr); 23767 23768 /* Update IP statistics */ 23769 IP_STAT_UPDATE(ip_frag_mdt_pkt_out, pkts); 23770 23771 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates, pkts); 23772 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs); 23773 23774 len = ntohs(ipha_orig->ipha_length) + (pkts - 1) * IP_SIMPLE_HDR_LENGTH; 23775 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, pkts); 23776 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, len); 23777 23778 if (pkt_type == OB_PKT) { 23779 ire->ire_ob_pkt_count += pkts; 23780 if (ire->ire_ipif != NULL) 23781 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, pkts); 23782 } else { 23783 /* 23784 * The type is IB_PKT in the forwarding path and in 23785 * the mobile IP case when the packet is being reverse- 23786 * tunneled to the home agent. 23787 */ 23788 ire->ire_ib_pkt_count += pkts; 23789 ASSERT(!IRE_IS_LOCAL(ire)); 23790 if (ire->ire_type & IRE_BROADCAST) { 23791 atomic_add_32(&ire->ire_ipif->ipif_ib_pkt_count, pkts); 23792 } else { 23793 UPDATE_MIB(ill->ill_ip_mib, 23794 ipIfStatsHCOutForwDatagrams, pkts); 23795 atomic_add_32(&ire->ire_ipif->ipif_fo_pkt_count, pkts); 23796 } 23797 } 23798 ire->ire_last_used_time = lbolt; 23799 /* Send it down */ 23800 putnext(ire->ire_stq, md_mp); 23801 return; 23802 23803 pbuf_panic: 23804 cmn_err(CE_PANIC, "ip_wput_frag_mdt: payload buffer logic " 23805 "error for mmd %p pbuf %p (%d)", (void *)mmd, (void *)mp, 23806 pbuf_idx); 23807 /* NOTREACHED */ 23808 } 23809 23810 /* 23811 * Outbound IP fragmentation routine. 23812 * 23813 * NOTE : This routine does not ire_refrele the ire that is passed in 23814 * as the argument. 23815 */ 23816 static void 23817 ip_wput_frag(ire_t *ire, mblk_t *mp_orig, ip_pkt_t pkt_type, uint32_t max_frag, 23818 uint32_t frag_flag, zoneid_t zoneid) 23819 { 23820 int i1; 23821 mblk_t *ll_hdr_mp; 23822 int ll_hdr_len; 23823 int hdr_len; 23824 mblk_t *hdr_mp; 23825 ipha_t *ipha; 23826 int ip_data_end; 23827 int len; 23828 mblk_t *mp = mp_orig, *mp1; 23829 int offset; 23830 queue_t *q; 23831 uint32_t v_hlen_tos_len; 23832 mblk_t *first_mp; 23833 boolean_t mctl_present; 23834 ill_t *ill; 23835 ill_t *out_ill; 23836 mblk_t *xmit_mp; 23837 mblk_t *carve_mp; 23838 ire_t *ire1 = NULL; 23839 ire_t *save_ire = NULL; 23840 mblk_t *next_mp = NULL; 23841 boolean_t last_frag = B_FALSE; 23842 boolean_t multirt_send = B_FALSE; 23843 ire_t *first_ire = NULL; 23844 irb_t *irb = NULL; 23845 mib2_ipIfStatsEntry_t *mibptr = NULL; 23846 23847 ill = ire_to_ill(ire); 23848 mibptr = (ill != NULL) ? ill->ill_ip_mib : &ip_mib; 23849 23850 BUMP_MIB(mibptr, ipIfStatsOutFragReqds); 23851 23852 /* 23853 * IPSEC does not allow hw accelerated packets to be fragmented 23854 * This check is made in ip_wput_ipsec_out prior to coming here 23855 * via ip_wput_ire_fragmentit. 23856 * 23857 * If at this point we have an ire whose ARP request has not 23858 * been sent out, we call ip_xmit_v4->ire_arpresolve to trigger 23859 * sending of ARP query and change ire's state to ND_INCOMPLETE. 23860 * This packet and all fragmentable packets for this ire will 23861 * continue to get dropped while ire_nce->nce_state remains in 23862 * ND_INCOMPLETE. Post-ARP resolution, after ire's nce_state changes to 23863 * ND_REACHABLE, all subsquent large packets for this ire will 23864 * get fragemented and sent out by this function. 23865 */ 23866 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 23867 /* If nce_state is ND_INITIAL, trigger ARP query */ 23868 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 23869 ip1dbg(("ip_wput_frag: mac address for ire is unresolved" 23870 " - dropping packet\n")); 23871 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23872 freemsg(mp); 23873 return; 23874 } 23875 23876 TRACE_0(TR_FAC_IP, TR_IP_WPUT_FRAG_START, 23877 "ip_wput_frag_start:"); 23878 23879 if (mp->b_datap->db_type == M_CTL) { 23880 first_mp = mp; 23881 mp_orig = mp = mp->b_cont; 23882 mctl_present = B_TRUE; 23883 } else { 23884 first_mp = mp; 23885 mctl_present = B_FALSE; 23886 } 23887 23888 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 23889 ipha = (ipha_t *)mp->b_rptr; 23890 23891 /* 23892 * If the Don't Fragment flag is on, generate an ICMP destination 23893 * unreachable, fragmentation needed. 23894 */ 23895 offset = ntohs(ipha->ipha_fragment_offset_and_flags); 23896 if (offset & IPH_DF) { 23897 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23898 /* 23899 * Need to compute hdr checksum if called from ip_wput_ire. 23900 * Note that ip_rput_forward verifies the checksum before 23901 * calling this routine so in that case this is a noop. 23902 */ 23903 ipha->ipha_hdr_checksum = 0; 23904 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23905 icmp_frag_needed(ire->ire_stq, first_mp, max_frag, zoneid); 23906 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23907 "ip_wput_frag_end:(%S)", 23908 "don't fragment"); 23909 return; 23910 } 23911 if (mctl_present) 23912 freeb(first_mp); 23913 /* 23914 * Establish the starting offset. May not be zero if we are fragging 23915 * a fragment that is being forwarded. 23916 */ 23917 offset = offset & IPH_OFFSET; 23918 23919 /* TODO why is this test needed? */ 23920 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 23921 if (((max_frag - LENGTH) & ~7) < 8) { 23922 /* TODO: notify ulp somehow */ 23923 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23924 freemsg(mp); 23925 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23926 "ip_wput_frag_end:(%S)", 23927 "len < 8"); 23928 return; 23929 } 23930 23931 hdr_len = (V_HLEN & 0xF) << 2; 23932 23933 ipha->ipha_hdr_checksum = 0; 23934 23935 /* 23936 * Establish the number of bytes maximum per frag, after putting 23937 * in the header. 23938 */ 23939 len = (max_frag - hdr_len) & ~7; 23940 23941 /* Check if we can use MDT to send out the frags. */ 23942 ASSERT(!IRE_IS_LOCAL(ire)); 23943 if (hdr_len == IP_SIMPLE_HDR_LENGTH && ip_multidata_outbound && 23944 !(ire->ire_flags & RTF_MULTIRT) && !IPP_ENABLED(IPP_LOCAL_OUT) && 23945 ill != NULL && ILL_MDT_CAPABLE(ill) && 23946 IP_CAN_FRAG_MDT(mp, IP_SIMPLE_HDR_LENGTH, len)) { 23947 ASSERT(ill->ill_mdt_capab != NULL); 23948 if (!ill->ill_mdt_capab->ill_mdt_on) { 23949 /* 23950 * If MDT has been previously turned off in the past, 23951 * and we currently can do MDT (due to IPQoS policy 23952 * removal, etc.) then enable it for this interface. 23953 */ 23954 ill->ill_mdt_capab->ill_mdt_on = 1; 23955 ip1dbg(("ip_wput_frag: enabled MDT for interface %s\n", 23956 ill->ill_name)); 23957 } 23958 ip_wput_frag_mdt(ire, mp, pkt_type, len, frag_flag, 23959 offset); 23960 return; 23961 } 23962 23963 /* Get a copy of the header for the trailing frags */ 23964 hdr_mp = ip_wput_frag_copyhdr((uchar_t *)ipha, hdr_len, offset); 23965 if (!hdr_mp) { 23966 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 23967 freemsg(mp); 23968 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 23969 "ip_wput_frag_end:(%S)", 23970 "couldn't copy hdr"); 23971 return; 23972 } 23973 if (DB_CRED(mp) != NULL) 23974 mblk_setcred(hdr_mp, DB_CRED(mp)); 23975 23976 /* Store the starting offset, with the MoreFrags flag. */ 23977 i1 = offset | IPH_MF | frag_flag; 23978 ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1); 23979 23980 /* Establish the ending byte offset, based on the starting offset. */ 23981 offset <<= 3; 23982 ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len; 23983 23984 /* Store the length of the first fragment in the IP header. */ 23985 i1 = len + hdr_len; 23986 ASSERT(i1 <= IP_MAXPACKET); 23987 ipha->ipha_length = htons((uint16_t)i1); 23988 23989 /* 23990 * Compute the IP header checksum for the first frag. We have to 23991 * watch out that we stop at the end of the header. 23992 */ 23993 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 23994 23995 /* 23996 * Now carve off the first frag. Note that this will include the 23997 * original IP header. 23998 */ 23999 if (!(mp = ip_carve_mp(&mp_orig, i1))) { 24000 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24001 freeb(hdr_mp); 24002 freemsg(mp_orig); 24003 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24004 "ip_wput_frag_end:(%S)", 24005 "couldn't carve first"); 24006 return; 24007 } 24008 24009 /* 24010 * Multirouting case. Each fragment is replicated 24011 * via all non-condemned RTF_MULTIRT routes 24012 * currently resolved. 24013 * We ensure that first_ire is the first RTF_MULTIRT 24014 * ire in the bucket. 24015 */ 24016 if (ire->ire_flags & RTF_MULTIRT) { 24017 irb = ire->ire_bucket; 24018 ASSERT(irb != NULL); 24019 24020 multirt_send = B_TRUE; 24021 24022 /* Make sure we do not omit any multiroute ire. */ 24023 IRB_REFHOLD(irb); 24024 for (first_ire = irb->irb_ire; 24025 first_ire != NULL; 24026 first_ire = first_ire->ire_next) { 24027 if ((first_ire->ire_flags & RTF_MULTIRT) && 24028 (first_ire->ire_addr == ire->ire_addr) && 24029 !(first_ire->ire_marks & 24030 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 24031 break; 24032 } 24033 24034 if (first_ire != NULL) { 24035 if (first_ire != ire) { 24036 IRE_REFHOLD(first_ire); 24037 /* 24038 * Do not release the ire passed in 24039 * as the argument. 24040 */ 24041 ire = first_ire; 24042 } else { 24043 first_ire = NULL; 24044 } 24045 } 24046 IRB_REFRELE(irb); 24047 24048 /* 24049 * Save the first ire; we will need to restore it 24050 * for the trailing frags. 24051 * We REFHOLD save_ire, as each iterated ire will be 24052 * REFRELEd. 24053 */ 24054 save_ire = ire; 24055 IRE_REFHOLD(save_ire); 24056 } 24057 24058 /* 24059 * First fragment emission loop. 24060 * In most cases, the emission loop below is entered only 24061 * once. Only in the case where the ire holds the RTF_MULTIRT 24062 * flag, do we loop to process all RTF_MULTIRT ires in the 24063 * bucket, and send the fragment through all crossed 24064 * RTF_MULTIRT routes. 24065 */ 24066 do { 24067 if (ire->ire_flags & RTF_MULTIRT) { 24068 /* 24069 * We are in a multiple send case, need to get 24070 * the next ire and make a copy of the packet. 24071 * ire1 holds here the next ire to process in the 24072 * bucket. If multirouting is expected, 24073 * any non-RTF_MULTIRT ire that has the 24074 * right destination address is ignored. 24075 * 24076 * We have to take into account the MTU of 24077 * each walked ire. max_frag is set by the 24078 * the caller and generally refers to 24079 * the primary ire entry. Here we ensure that 24080 * no route with a lower MTU will be used, as 24081 * fragments are carved once for all ires, 24082 * then replicated. 24083 */ 24084 ASSERT(irb != NULL); 24085 IRB_REFHOLD(irb); 24086 for (ire1 = ire->ire_next; 24087 ire1 != NULL; 24088 ire1 = ire1->ire_next) { 24089 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 24090 continue; 24091 if (ire1->ire_addr != ire->ire_addr) 24092 continue; 24093 if (ire1->ire_marks & 24094 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 24095 continue; 24096 /* 24097 * Ensure we do not exceed the MTU 24098 * of the next route. 24099 */ 24100 if (ire1->ire_max_frag < max_frag) { 24101 ip_multirt_bad_mtu(ire1, max_frag); 24102 continue; 24103 } 24104 24105 /* Got one. */ 24106 IRE_REFHOLD(ire1); 24107 break; 24108 } 24109 IRB_REFRELE(irb); 24110 24111 if (ire1 != NULL) { 24112 next_mp = copyb(mp); 24113 if ((next_mp == NULL) || 24114 ((mp->b_cont != NULL) && 24115 ((next_mp->b_cont = 24116 dupmsg(mp->b_cont)) == NULL))) { 24117 freemsg(next_mp); 24118 next_mp = NULL; 24119 ire_refrele(ire1); 24120 ire1 = NULL; 24121 } 24122 } 24123 24124 /* Last multiroute ire; don't loop anymore. */ 24125 if (ire1 == NULL) { 24126 multirt_send = B_FALSE; 24127 } 24128 } 24129 24130 ll_hdr_len = 0; 24131 LOCK_IRE_FP_MP(ire); 24132 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24133 if (ll_hdr_mp != NULL) { 24134 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24135 ll_hdr_len = ll_hdr_mp->b_wptr - ll_hdr_mp->b_rptr; 24136 } else { 24137 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24138 } 24139 24140 /* If there is a transmit header, get a copy for this frag. */ 24141 /* 24142 * TODO: should check db_ref before calling ip_carve_mp since 24143 * it might give us a dup. 24144 */ 24145 if (!ll_hdr_mp) { 24146 /* No xmit header. */ 24147 xmit_mp = mp; 24148 24149 /* We have a link-layer header that can fit in our mblk. */ 24150 } else if (mp->b_datap->db_ref == 1 && 24151 ll_hdr_len != 0 && 24152 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24153 /* M_DATA fastpath */ 24154 mp->b_rptr -= ll_hdr_len; 24155 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, ll_hdr_len); 24156 xmit_mp = mp; 24157 24158 /* Corner case if copyb has failed */ 24159 } else if (!(xmit_mp = copyb(ll_hdr_mp))) { 24160 UNLOCK_IRE_FP_MP(ire); 24161 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24162 freeb(hdr_mp); 24163 freemsg(mp); 24164 freemsg(mp_orig); 24165 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24166 "ip_wput_frag_end:(%S)", 24167 "discard"); 24168 24169 if (multirt_send) { 24170 ASSERT(ire1); 24171 ASSERT(next_mp); 24172 24173 freemsg(next_mp); 24174 ire_refrele(ire1); 24175 } 24176 if (save_ire != NULL) 24177 IRE_REFRELE(save_ire); 24178 24179 if (first_ire != NULL) 24180 ire_refrele(first_ire); 24181 return; 24182 24183 /* 24184 * Case of res_mp OR the fastpath mp can't fit 24185 * in the mblk 24186 */ 24187 } else { 24188 xmit_mp->b_cont = mp; 24189 if (DB_CRED(mp) != NULL) 24190 mblk_setcred(xmit_mp, DB_CRED(mp)); 24191 /* 24192 * Get priority marking, if any. 24193 * We propagate the CoS marking from the 24194 * original packet that went to QoS processing 24195 * in ip_wput_ire to the newly carved mp. 24196 */ 24197 if (DB_TYPE(xmit_mp) == M_DATA) 24198 xmit_mp->b_band = mp->b_band; 24199 } 24200 UNLOCK_IRE_FP_MP(ire); 24201 24202 q = ire->ire_stq; 24203 out_ill = (ill_t *)q->q_ptr; 24204 24205 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24206 24207 DTRACE_PROBE4(ip4__physical__out__start, 24208 ill_t *, NULL, ill_t *, out_ill, 24209 ipha_t *, ipha, mblk_t *, xmit_mp); 24210 24211 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 24212 NULL, out_ill, ipha, xmit_mp, mp); 24213 24214 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, xmit_mp); 24215 24216 if (xmit_mp != NULL) { 24217 putnext(q, xmit_mp); 24218 24219 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutTransmits); 24220 UPDATE_MIB(out_ill->ill_ip_mib, 24221 ipIfStatsHCOutOctets, i1); 24222 24223 if (pkt_type != OB_PKT) { 24224 /* 24225 * Update the packet count and MIB stats 24226 * of trailing RTF_MULTIRT ires. 24227 */ 24228 UPDATE_OB_PKT_COUNT(ire); 24229 BUMP_MIB(out_ill->ill_ip_mib, 24230 ipIfStatsOutFragReqds); 24231 } 24232 } 24233 24234 if (multirt_send) { 24235 /* 24236 * We are in a multiple send case; look for 24237 * the next ire and re-enter the loop. 24238 */ 24239 ASSERT(ire1); 24240 ASSERT(next_mp); 24241 /* REFRELE the current ire before looping */ 24242 ire_refrele(ire); 24243 ire = ire1; 24244 ire1 = NULL; 24245 mp = next_mp; 24246 next_mp = NULL; 24247 } 24248 } while (multirt_send); 24249 24250 ASSERT(ire1 == NULL); 24251 24252 /* Restore the original ire; we need it for the trailing frags */ 24253 if (save_ire != NULL) { 24254 /* REFRELE the last iterated ire */ 24255 ire_refrele(ire); 24256 /* save_ire has been REFHOLDed */ 24257 ire = save_ire; 24258 save_ire = NULL; 24259 q = ire->ire_stq; 24260 } 24261 24262 if (pkt_type == OB_PKT) { 24263 UPDATE_OB_PKT_COUNT(ire); 24264 } else { 24265 out_ill = (ill_t *)q->q_ptr; 24266 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsHCOutForwDatagrams); 24267 UPDATE_IB_PKT_COUNT(ire); 24268 } 24269 24270 /* Advance the offset to the second frag starting point. */ 24271 offset += len; 24272 /* 24273 * Update hdr_len from the copied header - there might be less options 24274 * in the later fragments. 24275 */ 24276 hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr); 24277 /* Loop until done. */ 24278 for (;;) { 24279 uint16_t offset_and_flags; 24280 uint16_t ip_len; 24281 24282 if (ip_data_end - offset > len) { 24283 /* 24284 * Carve off the appropriate amount from the original 24285 * datagram. 24286 */ 24287 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24288 mp = NULL; 24289 break; 24290 } 24291 /* 24292 * More frags after this one. Get another copy 24293 * of the header. 24294 */ 24295 if (carve_mp->b_datap->db_ref == 1 && 24296 hdr_mp->b_wptr - hdr_mp->b_rptr < 24297 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24298 /* Inline IP header */ 24299 carve_mp->b_rptr -= hdr_mp->b_wptr - 24300 hdr_mp->b_rptr; 24301 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24302 hdr_mp->b_wptr - hdr_mp->b_rptr); 24303 mp = carve_mp; 24304 } else { 24305 if (!(mp = copyb(hdr_mp))) { 24306 freemsg(carve_mp); 24307 break; 24308 } 24309 /* Get priority marking, if any. */ 24310 mp->b_band = carve_mp->b_band; 24311 mp->b_cont = carve_mp; 24312 } 24313 ipha = (ipha_t *)mp->b_rptr; 24314 offset_and_flags = IPH_MF; 24315 } else { 24316 /* 24317 * Last frag. Consume the header. Set len to 24318 * the length of this last piece. 24319 */ 24320 len = ip_data_end - offset; 24321 24322 /* 24323 * Carve off the appropriate amount from the original 24324 * datagram. 24325 */ 24326 if (!(carve_mp = ip_carve_mp(&mp_orig, len))) { 24327 mp = NULL; 24328 break; 24329 } 24330 if (carve_mp->b_datap->db_ref == 1 && 24331 hdr_mp->b_wptr - hdr_mp->b_rptr < 24332 carve_mp->b_rptr - carve_mp->b_datap->db_base) { 24333 /* Inline IP header */ 24334 carve_mp->b_rptr -= hdr_mp->b_wptr - 24335 hdr_mp->b_rptr; 24336 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr, 24337 hdr_mp->b_wptr - hdr_mp->b_rptr); 24338 mp = carve_mp; 24339 freeb(hdr_mp); 24340 hdr_mp = mp; 24341 } else { 24342 mp = hdr_mp; 24343 /* Get priority marking, if any. */ 24344 mp->b_band = carve_mp->b_band; 24345 mp->b_cont = carve_mp; 24346 } 24347 ipha = (ipha_t *)mp->b_rptr; 24348 /* A frag of a frag might have IPH_MF non-zero */ 24349 offset_and_flags = 24350 ntohs(ipha->ipha_fragment_offset_and_flags) & 24351 IPH_MF; 24352 } 24353 offset_and_flags |= (uint16_t)(offset >> 3); 24354 offset_and_flags |= (uint16_t)frag_flag; 24355 /* Store the offset and flags in the IP header. */ 24356 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags); 24357 24358 /* Store the length in the IP header. */ 24359 ip_len = (uint16_t)(len + hdr_len); 24360 ipha->ipha_length = htons(ip_len); 24361 24362 /* 24363 * Set the IP header checksum. Note that mp is just 24364 * the header, so this is easy to pass to ip_csum. 24365 */ 24366 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha); 24367 24368 /* Attach a transmit header, if any, and ship it. */ 24369 if (pkt_type == OB_PKT) { 24370 UPDATE_OB_PKT_COUNT(ire); 24371 } else { 24372 out_ill = (ill_t *)q->q_ptr; 24373 BUMP_MIB(out_ill->ill_ip_mib, 24374 ipIfStatsHCOutForwDatagrams); 24375 UPDATE_IB_PKT_COUNT(ire); 24376 } 24377 24378 if (ire->ire_flags & RTF_MULTIRT) { 24379 irb = ire->ire_bucket; 24380 ASSERT(irb != NULL); 24381 24382 multirt_send = B_TRUE; 24383 24384 /* 24385 * Save the original ire; we will need to restore it 24386 * for the tailing frags. 24387 */ 24388 save_ire = ire; 24389 IRE_REFHOLD(save_ire); 24390 } 24391 /* 24392 * Emission loop for this fragment, similar 24393 * to what is done for the first fragment. 24394 */ 24395 do { 24396 if (multirt_send) { 24397 /* 24398 * We are in a multiple send case, need to get 24399 * the next ire and make a copy of the packet. 24400 */ 24401 ASSERT(irb != NULL); 24402 IRB_REFHOLD(irb); 24403 for (ire1 = ire->ire_next; 24404 ire1 != NULL; 24405 ire1 = ire1->ire_next) { 24406 if (!(ire1->ire_flags & RTF_MULTIRT)) 24407 continue; 24408 if (ire1->ire_addr != ire->ire_addr) 24409 continue; 24410 if (ire1->ire_marks & 24411 (IRE_MARK_CONDEMNED| 24412 IRE_MARK_HIDDEN)) 24413 continue; 24414 /* 24415 * Ensure we do not exceed the MTU 24416 * of the next route. 24417 */ 24418 if (ire1->ire_max_frag < max_frag) { 24419 ip_multirt_bad_mtu(ire1, 24420 max_frag); 24421 continue; 24422 } 24423 24424 /* Got one. */ 24425 IRE_REFHOLD(ire1); 24426 break; 24427 } 24428 IRB_REFRELE(irb); 24429 24430 if (ire1 != NULL) { 24431 next_mp = copyb(mp); 24432 if ((next_mp == NULL) || 24433 ((mp->b_cont != NULL) && 24434 ((next_mp->b_cont = 24435 dupmsg(mp->b_cont)) == NULL))) { 24436 freemsg(next_mp); 24437 next_mp = NULL; 24438 ire_refrele(ire1); 24439 ire1 = NULL; 24440 } 24441 } 24442 24443 /* Last multiroute ire; don't loop anymore. */ 24444 if (ire1 == NULL) { 24445 multirt_send = B_FALSE; 24446 } 24447 } 24448 24449 /* Update transmit header */ 24450 ll_hdr_len = 0; 24451 LOCK_IRE_FP_MP(ire); 24452 ll_hdr_mp = ire->ire_nce->nce_fp_mp; 24453 if (ll_hdr_mp != NULL) { 24454 ASSERT(ll_hdr_mp->b_datap->db_type == M_DATA); 24455 ll_hdr_len = MBLKL(ll_hdr_mp); 24456 } else { 24457 ll_hdr_mp = ire->ire_nce->nce_res_mp; 24458 } 24459 24460 if (!ll_hdr_mp) { 24461 xmit_mp = mp; 24462 24463 /* 24464 * We have link-layer header that can fit in 24465 * our mblk. 24466 */ 24467 } else if (mp->b_datap->db_ref == 1 && 24468 ll_hdr_len != 0 && 24469 ll_hdr_len <= mp->b_rptr - mp->b_datap->db_base) { 24470 /* M_DATA fastpath */ 24471 mp->b_rptr -= ll_hdr_len; 24472 bcopy(ll_hdr_mp->b_rptr, mp->b_rptr, 24473 ll_hdr_len); 24474 xmit_mp = mp; 24475 24476 /* 24477 * Case of res_mp OR the fastpath mp can't fit 24478 * in the mblk 24479 */ 24480 } else if ((xmit_mp = copyb(ll_hdr_mp)) != NULL) { 24481 xmit_mp->b_cont = mp; 24482 if (DB_CRED(mp) != NULL) 24483 mblk_setcred(xmit_mp, DB_CRED(mp)); 24484 /* Get priority marking, if any. */ 24485 if (DB_TYPE(xmit_mp) == M_DATA) 24486 xmit_mp->b_band = mp->b_band; 24487 24488 /* Corner case if copyb failed */ 24489 } else { 24490 /* 24491 * Exit both the replication and 24492 * fragmentation loops. 24493 */ 24494 UNLOCK_IRE_FP_MP(ire); 24495 goto drop_pkt; 24496 } 24497 UNLOCK_IRE_FP_MP(ire); 24498 24499 mp1 = mp; 24500 out_ill = (ill_t *)q->q_ptr; 24501 24502 BUMP_MIB(out_ill->ill_ip_mib, ipIfStatsOutFragCreates); 24503 24504 DTRACE_PROBE4(ip4__physical__out__start, 24505 ill_t *, NULL, ill_t *, out_ill, 24506 ipha_t *, ipha, mblk_t *, xmit_mp); 24507 24508 FW_HOOKS(ip4_physical_out_event, 24509 ipv4firewall_physical_out, 24510 NULL, out_ill, ipha, xmit_mp, mp); 24511 24512 DTRACE_PROBE1(ip4__physical__out__end, 24513 mblk_t *, xmit_mp); 24514 24515 if (mp != mp1 && hdr_mp == mp1) 24516 hdr_mp = mp; 24517 if (mp != mp1 && mp_orig == mp1) 24518 mp_orig = mp; 24519 24520 if (xmit_mp != NULL) { 24521 putnext(q, xmit_mp); 24522 24523 BUMP_MIB(out_ill->ill_ip_mib, 24524 ipIfStatsHCOutTransmits); 24525 UPDATE_MIB(out_ill->ill_ip_mib, 24526 ipIfStatsHCOutOctets, ip_len); 24527 24528 if (pkt_type != OB_PKT) { 24529 /* 24530 * Update the packet count of trailing 24531 * RTF_MULTIRT ires. 24532 */ 24533 UPDATE_OB_PKT_COUNT(ire); 24534 } 24535 } 24536 24537 /* All done if we just consumed the hdr_mp. */ 24538 if (mp == hdr_mp) { 24539 last_frag = B_TRUE; 24540 BUMP_MIB(out_ill->ill_ip_mib, 24541 ipIfStatsOutFragOKs); 24542 } 24543 24544 if (multirt_send) { 24545 /* 24546 * We are in a multiple send case; look for 24547 * the next ire and re-enter the loop. 24548 */ 24549 ASSERT(ire1); 24550 ASSERT(next_mp); 24551 /* REFRELE the current ire before looping */ 24552 ire_refrele(ire); 24553 ire = ire1; 24554 ire1 = NULL; 24555 q = ire->ire_stq; 24556 mp = next_mp; 24557 next_mp = NULL; 24558 } 24559 } while (multirt_send); 24560 /* 24561 * Restore the original ire; we need it for the 24562 * trailing frags 24563 */ 24564 if (save_ire != NULL) { 24565 ASSERT(ire1 == NULL); 24566 /* REFRELE the last iterated ire */ 24567 ire_refrele(ire); 24568 /* save_ire has been REFHOLDed */ 24569 ire = save_ire; 24570 q = ire->ire_stq; 24571 save_ire = NULL; 24572 } 24573 24574 if (last_frag) { 24575 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24576 "ip_wput_frag_end:(%S)", 24577 "consumed hdr_mp"); 24578 24579 if (first_ire != NULL) 24580 ire_refrele(first_ire); 24581 return; 24582 } 24583 /* Otherwise, advance and loop. */ 24584 offset += len; 24585 } 24586 24587 drop_pkt: 24588 /* Clean up following allocation failure. */ 24589 BUMP_MIB(mibptr, ipIfStatsOutFragFails); 24590 freemsg(mp); 24591 if (mp != hdr_mp) 24592 freeb(hdr_mp); 24593 if (mp != mp_orig) 24594 freemsg(mp_orig); 24595 24596 if (save_ire != NULL) 24597 IRE_REFRELE(save_ire); 24598 if (first_ire != NULL) 24599 ire_refrele(first_ire); 24600 24601 TRACE_1(TR_FAC_IP, TR_IP_WPUT_FRAG_END, 24602 "ip_wput_frag_end:(%S)", 24603 "end--alloc failure"); 24604 } 24605 24606 /* 24607 * Copy the header plus those options which have the copy bit set 24608 */ 24609 static mblk_t * 24610 ip_wput_frag_copyhdr(uchar_t *rptr, int hdr_len, int offset) 24611 { 24612 mblk_t *mp; 24613 uchar_t *up; 24614 24615 /* 24616 * Quick check if we need to look for options without the copy bit 24617 * set 24618 */ 24619 mp = allocb(ip_wroff_extra + hdr_len, BPRI_HI); 24620 if (!mp) 24621 return (mp); 24622 mp->b_rptr += ip_wroff_extra; 24623 if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) { 24624 bcopy(rptr, mp->b_rptr, hdr_len); 24625 mp->b_wptr += hdr_len + ip_wroff_extra; 24626 return (mp); 24627 } 24628 up = mp->b_rptr; 24629 bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH); 24630 up += IP_SIMPLE_HDR_LENGTH; 24631 rptr += IP_SIMPLE_HDR_LENGTH; 24632 hdr_len -= IP_SIMPLE_HDR_LENGTH; 24633 while (hdr_len > 0) { 24634 uint32_t optval; 24635 uint32_t optlen; 24636 24637 optval = *rptr; 24638 if (optval == IPOPT_EOL) 24639 break; 24640 if (optval == IPOPT_NOP) 24641 optlen = 1; 24642 else 24643 optlen = rptr[1]; 24644 if (optval & IPOPT_COPY) { 24645 bcopy(rptr, up, optlen); 24646 up += optlen; 24647 } 24648 rptr += optlen; 24649 hdr_len -= optlen; 24650 } 24651 /* 24652 * Make sure that we drop an even number of words by filling 24653 * with EOL to the next word boundary. 24654 */ 24655 for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH); 24656 hdr_len & 0x3; hdr_len++) 24657 *up++ = IPOPT_EOL; 24658 mp->b_wptr = up; 24659 /* Update header length */ 24660 mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2)); 24661 return (mp); 24662 } 24663 24664 /* 24665 * Delivery to local recipients including fanout to multiple recipients. 24666 * Does not do checksumming of UDP/TCP. 24667 * Note: q should be the read side queue for either the ill or conn. 24668 * Note: rq should be the read side q for the lower (ill) stream. 24669 * We don't send packets to IPPF processing, thus the last argument 24670 * to all the fanout calls are B_FALSE. 24671 */ 24672 void 24673 ip_wput_local(queue_t *q, ill_t *ill, ipha_t *ipha, mblk_t *mp, ire_t *ire, 24674 int fanout_flags, zoneid_t zoneid) 24675 { 24676 uint32_t protocol; 24677 mblk_t *first_mp; 24678 boolean_t mctl_present; 24679 int ire_type; 24680 #define rptr ((uchar_t *)ipha) 24681 24682 TRACE_1(TR_FAC_IP, TR_IP_WPUT_LOCAL_START, 24683 "ip_wput_local_start: q %p", q); 24684 24685 if (ire != NULL) { 24686 ire_type = ire->ire_type; 24687 } else { 24688 /* 24689 * Only ip_multicast_loopback() calls us with a NULL ire. If the 24690 * packet is not multicast, we can't tell the ire type. 24691 */ 24692 ASSERT(CLASSD(ipha->ipha_dst)); 24693 ire_type = IRE_BROADCAST; 24694 } 24695 24696 first_mp = mp; 24697 if (first_mp->b_datap->db_type == M_CTL) { 24698 ipsec_out_t *io = (ipsec_out_t *)first_mp->b_rptr; 24699 if (!io->ipsec_out_secure) { 24700 /* 24701 * This ipsec_out_t was allocated in ip_wput 24702 * for multicast packets to store the ill_index. 24703 * As this is being delivered locally, we don't 24704 * need this anymore. 24705 */ 24706 mp = first_mp->b_cont; 24707 freeb(first_mp); 24708 first_mp = mp; 24709 mctl_present = B_FALSE; 24710 } else { 24711 /* 24712 * Convert IPSEC_OUT to IPSEC_IN, preserving all 24713 * security properties for the looped-back packet. 24714 */ 24715 mctl_present = B_TRUE; 24716 mp = first_mp->b_cont; 24717 ASSERT(mp != NULL); 24718 ipsec_out_to_in(first_mp); 24719 } 24720 } else { 24721 mctl_present = B_FALSE; 24722 } 24723 24724 DTRACE_PROBE4(ip4__loopback__in__start, 24725 ill_t *, ill, ill_t *, NULL, 24726 ipha_t *, ipha, mblk_t *, first_mp); 24727 24728 FW_HOOKS(ip4_loopback_in_event, ipv4firewall_loopback_in, 24729 ill, NULL, ipha, first_mp, mp); 24730 24731 DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, first_mp); 24732 24733 if (first_mp == NULL) 24734 return; 24735 24736 loopback_packets++; 24737 24738 ip2dbg(("ip_wput_local: from 0x%x to 0x%x in zone %d\n", 24739 ntohl(ipha->ipha_src), ntohl(ipha->ipha_dst), zoneid)); 24740 if (!IS_SIMPLE_IPH(ipha)) { 24741 ip_wput_local_options(ipha); 24742 } 24743 24744 protocol = ipha->ipha_protocol; 24745 switch (protocol) { 24746 case IPPROTO_ICMP: { 24747 ire_t *ire_zone; 24748 ilm_t *ilm; 24749 mblk_t *mp1; 24750 zoneid_t last_zoneid; 24751 24752 if (CLASSD(ipha->ipha_dst) && 24753 !(ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) { 24754 ASSERT(ire_type == IRE_BROADCAST); 24755 /* 24756 * In the multicast case, applications may have joined 24757 * the group from different zones, so we need to deliver 24758 * the packet to each of them. Loop through the 24759 * multicast memberships structures (ilm) on the receive 24760 * ill and send a copy of the packet up each matching 24761 * one. However, we don't do this for multicasts sent on 24762 * the loopback interface (PHYI_LOOPBACK flag set) as 24763 * they must stay in the sender's zone. 24764 * 24765 * ilm_add_v6() ensures that ilms in the same zone are 24766 * contiguous in the ill_ilm list. We use this property 24767 * to avoid sending duplicates needed when two 24768 * applications in the same zone join the same group on 24769 * different logical interfaces: we ignore the ilm if 24770 * it's zoneid is the same as the last matching one. 24771 * In addition, the sending of the packet for 24772 * ire_zoneid is delayed until all of the other ilms 24773 * have been exhausted. 24774 */ 24775 last_zoneid = -1; 24776 ILM_WALKER_HOLD(ill); 24777 for (ilm = ill->ill_ilm; ilm != NULL; 24778 ilm = ilm->ilm_next) { 24779 if ((ilm->ilm_flags & ILM_DELETED) || 24780 ipha->ipha_dst != ilm->ilm_addr || 24781 ilm->ilm_zoneid == last_zoneid || 24782 ilm->ilm_zoneid == zoneid || 24783 !(ilm->ilm_ipif->ipif_flags & IPIF_UP)) 24784 continue; 24785 mp1 = ip_copymsg(first_mp); 24786 if (mp1 == NULL) 24787 continue; 24788 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24789 mctl_present, B_FALSE, ill, 24790 ilm->ilm_zoneid); 24791 last_zoneid = ilm->ilm_zoneid; 24792 } 24793 ILM_WALKER_RELE(ill); 24794 /* 24795 * Loopback case: the sending endpoint has 24796 * IP_MULTICAST_LOOP disabled, therefore we don't 24797 * dispatch the multicast packet to the sending zone. 24798 */ 24799 if (fanout_flags & IP_FF_NO_MCAST_LOOP) { 24800 freemsg(first_mp); 24801 return; 24802 } 24803 } else if (ire_type == IRE_BROADCAST) { 24804 /* 24805 * In the broadcast case, there may be many zones 24806 * which need a copy of the packet delivered to them. 24807 * There is one IRE_BROADCAST per broadcast address 24808 * and per zone; we walk those using a helper function. 24809 * In addition, the sending of the packet for zoneid is 24810 * delayed until all of the other ires have been 24811 * processed. 24812 */ 24813 IRB_REFHOLD(ire->ire_bucket); 24814 ire_zone = NULL; 24815 while ((ire_zone = ire_get_next_bcast_ire(ire_zone, 24816 ire)) != NULL) { 24817 mp1 = ip_copymsg(first_mp); 24818 if (mp1 == NULL) 24819 continue; 24820 24821 UPDATE_IB_PKT_COUNT(ire_zone); 24822 ire_zone->ire_last_used_time = lbolt; 24823 icmp_inbound(q, mp1, B_TRUE, ill, 0, 0, 24824 mctl_present, B_FALSE, ill, 24825 ire_zone->ire_zoneid); 24826 } 24827 IRB_REFRELE(ire->ire_bucket); 24828 } 24829 icmp_inbound(q, first_mp, (ire_type == IRE_BROADCAST), ill, 0, 24830 0, mctl_present, B_FALSE, ill, zoneid); 24831 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24832 "ip_wput_local_end: q %p (%S)", 24833 q, "icmp"); 24834 return; 24835 } 24836 case IPPROTO_IGMP: 24837 if ((mp = igmp_input(q, mp, ill)) == NULL) { 24838 /* Bad packet - discarded by igmp_input */ 24839 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24840 "ip_wput_local_end: q %p (%S)", 24841 q, "igmp_input--bad packet"); 24842 if (mctl_present) 24843 freeb(first_mp); 24844 return; 24845 } 24846 /* 24847 * igmp_input() may have returned the pulled up message. 24848 * So first_mp and ipha need to be reinitialized. 24849 */ 24850 ipha = (ipha_t *)mp->b_rptr; 24851 if (mctl_present) 24852 first_mp->b_cont = mp; 24853 else 24854 first_mp = mp; 24855 /* deliver to local raw users */ 24856 break; 24857 case IPPROTO_ENCAP: 24858 /* 24859 * This case is covered by either ip_fanout_proto, or by 24860 * the above security processing for self-tunneled packets. 24861 */ 24862 break; 24863 case IPPROTO_UDP: { 24864 uint16_t *up; 24865 uint32_t ports; 24866 24867 up = (uint16_t *)(rptr + IPH_HDR_LENGTH(ipha) + 24868 UDP_PORTS_OFFSET); 24869 /* Force a 'valid' checksum. */ 24870 up[3] = 0; 24871 24872 ports = *(uint32_t *)up; 24873 ip_fanout_udp(q, first_mp, ill, ipha, ports, 24874 (ire_type == IRE_BROADCAST), 24875 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24876 IP_FF_SEND_SLLA | IP_FF_IP6INFO, mctl_present, B_FALSE, 24877 ill, zoneid); 24878 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24879 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_udp"); 24880 return; 24881 } 24882 case IPPROTO_TCP: { 24883 24884 /* 24885 * For TCP, discard broadcast packets. 24886 */ 24887 if ((ushort_t)ire_type == IRE_BROADCAST) { 24888 freemsg(first_mp); 24889 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards); 24890 ip2dbg(("ip_wput_local: discard broadcast\n")); 24891 return; 24892 } 24893 24894 if (mp->b_datap->db_type == M_DATA) { 24895 /* 24896 * M_DATA mblk, so init mblk (chain) for no struio(). 24897 */ 24898 mblk_t *mp1 = mp; 24899 24900 do 24901 mp1->b_datap->db_struioflag = 0; 24902 while ((mp1 = mp1->b_cont) != NULL); 24903 } 24904 ASSERT((rptr + IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET + 4) 24905 <= mp->b_wptr); 24906 ip_fanout_tcp(q, first_mp, ill, ipha, 24907 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24908 IP_FF_SYN_ADDIRE | IP_FF_IP6INFO, 24909 mctl_present, B_FALSE, zoneid); 24910 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24911 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_tcp"); 24912 return; 24913 } 24914 case IPPROTO_SCTP: 24915 { 24916 uint32_t ports; 24917 24918 bcopy(rptr + IPH_HDR_LENGTH(ipha), &ports, sizeof (ports)); 24919 ip_fanout_sctp(first_mp, ill, ipha, ports, 24920 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | 24921 IP_FF_IP6INFO, 24922 mctl_present, B_FALSE, 0, zoneid); 24923 return; 24924 } 24925 24926 default: 24927 break; 24928 } 24929 /* 24930 * Find a client for some other protocol. We give 24931 * copies to multiple clients, if more than one is 24932 * bound. 24933 */ 24934 ip_fanout_proto(q, first_mp, ill, ipha, 24935 fanout_flags | IP_FF_SEND_ICMP | IP_FF_HDR_COMPLETE | IP_FF_RAWIP, 24936 mctl_present, B_FALSE, ill, zoneid); 24937 TRACE_2(TR_FAC_IP, TR_IP_WPUT_LOCAL_END, 24938 "ip_wput_local_end: q %p (%S)", q, "ip_fanout_proto"); 24939 #undef rptr 24940 } 24941 24942 /* 24943 * Update any source route, record route, or timestamp options. 24944 * Check that we are at end of strict source route. 24945 * The options have been sanity checked by ip_wput_options(). 24946 */ 24947 static void 24948 ip_wput_local_options(ipha_t *ipha) 24949 { 24950 ipoptp_t opts; 24951 uchar_t *opt; 24952 uint8_t optval; 24953 uint8_t optlen; 24954 ipaddr_t dst; 24955 uint32_t ts; 24956 ire_t *ire; 24957 timestruc_t now; 24958 24959 ip2dbg(("ip_wput_local_options\n")); 24960 for (optval = ipoptp_first(&opts, ipha); 24961 optval != IPOPT_EOL; 24962 optval = ipoptp_next(&opts)) { 24963 opt = opts.ipoptp_cur; 24964 optlen = opts.ipoptp_len; 24965 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0); 24966 switch (optval) { 24967 uint32_t off; 24968 case IPOPT_SSRR: 24969 case IPOPT_LSRR: 24970 off = opt[IPOPT_OFFSET]; 24971 off--; 24972 if (optlen < IP_ADDR_LEN || 24973 off > optlen - IP_ADDR_LEN) { 24974 /* End of source route */ 24975 break; 24976 } 24977 /* 24978 * This will only happen if two consecutive entries 24979 * in the source route contains our address or if 24980 * it is a packet with a loose source route which 24981 * reaches us before consuming the whole source route 24982 */ 24983 ip1dbg(("ip_wput_local_options: not end of SR\n")); 24984 if (optval == IPOPT_SSRR) { 24985 return; 24986 } 24987 /* 24988 * Hack: instead of dropping the packet truncate the 24989 * source route to what has been used by filling the 24990 * rest with IPOPT_NOP. 24991 */ 24992 opt[IPOPT_OLEN] = (uint8_t)off; 24993 while (off < optlen) { 24994 opt[off++] = IPOPT_NOP; 24995 } 24996 break; 24997 case IPOPT_RR: 24998 off = opt[IPOPT_OFFSET]; 24999 off--; 25000 if (optlen < IP_ADDR_LEN || 25001 off > optlen - IP_ADDR_LEN) { 25002 /* No more room - ignore */ 25003 ip1dbg(( 25004 "ip_wput_forward_options: end of RR\n")); 25005 break; 25006 } 25007 dst = htonl(INADDR_LOOPBACK); 25008 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25009 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25010 break; 25011 case IPOPT_TS: 25012 /* Insert timestamp if there is romm */ 25013 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25014 case IPOPT_TS_TSONLY: 25015 off = IPOPT_TS_TIMELEN; 25016 break; 25017 case IPOPT_TS_PRESPEC: 25018 case IPOPT_TS_PRESPEC_RFC791: 25019 /* Verify that the address matched */ 25020 off = opt[IPOPT_OFFSET] - 1; 25021 bcopy((char *)opt + off, &dst, IP_ADDR_LEN); 25022 ire = ire_ctable_lookup(dst, 0, IRE_LOCAL, 25023 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 25024 if (ire == NULL) { 25025 /* Not for us */ 25026 break; 25027 } 25028 ire_refrele(ire); 25029 /* FALLTHRU */ 25030 case IPOPT_TS_TSANDADDR: 25031 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 25032 break; 25033 default: 25034 /* 25035 * ip_*put_options should have already 25036 * dropped this packet. 25037 */ 25038 cmn_err(CE_PANIC, "ip_wput_local_options: " 25039 "unknown IT - bug in ip_wput_options?\n"); 25040 return; /* Keep "lint" happy */ 25041 } 25042 if (opt[IPOPT_OFFSET] - 1 + off > optlen) { 25043 /* Increase overflow counter */ 25044 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1; 25045 opt[IPOPT_POS_OV_FLG] = (uint8_t) 25046 (opt[IPOPT_POS_OV_FLG] & 0x0F) | 25047 (off << 4); 25048 break; 25049 } 25050 off = opt[IPOPT_OFFSET] - 1; 25051 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 25052 case IPOPT_TS_PRESPEC: 25053 case IPOPT_TS_PRESPEC_RFC791: 25054 case IPOPT_TS_TSANDADDR: 25055 dst = htonl(INADDR_LOOPBACK); 25056 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN); 25057 opt[IPOPT_OFFSET] += IP_ADDR_LEN; 25058 /* FALLTHRU */ 25059 case IPOPT_TS_TSONLY: 25060 off = opt[IPOPT_OFFSET] - 1; 25061 /* Compute # of milliseconds since midnight */ 25062 gethrestime(&now); 25063 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 + 25064 now.tv_nsec / (NANOSEC / MILLISEC); 25065 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN); 25066 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN; 25067 break; 25068 } 25069 break; 25070 } 25071 } 25072 } 25073 25074 /* 25075 * Send out a multicast packet on interface ipif. 25076 * The sender does not have an conn. 25077 * Caller verifies that this isn't a PHYI_LOOPBACK. 25078 */ 25079 void 25080 ip_wput_multicast(queue_t *q, mblk_t *mp, ipif_t *ipif, zoneid_t zoneid) 25081 { 25082 ipha_t *ipha; 25083 ire_t *ire; 25084 ipaddr_t dst; 25085 mblk_t *first_mp; 25086 25087 /* igmp_sendpkt always allocates a ipsec_out_t */ 25088 ASSERT(mp->b_datap->db_type == M_CTL); 25089 ASSERT(!ipif->ipif_isv6); 25090 ASSERT(!(ipif->ipif_ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)); 25091 25092 first_mp = mp; 25093 mp = first_mp->b_cont; 25094 ASSERT(mp->b_datap->db_type == M_DATA); 25095 ipha = (ipha_t *)mp->b_rptr; 25096 25097 /* 25098 * Find an IRE which matches the destination and the outgoing 25099 * queue (i.e. the outgoing interface.) 25100 */ 25101 if (ipif->ipif_flags & IPIF_POINTOPOINT) 25102 dst = ipif->ipif_pp_dst_addr; 25103 else 25104 dst = ipha->ipha_dst; 25105 /* 25106 * The source address has already been initialized by the 25107 * caller and hence matching on ILL (MATCH_IRE_ILL) would 25108 * be sufficient rather than MATCH_IRE_IPIF. 25109 * 25110 * This function is used for sending IGMP packets. We need 25111 * to make sure that we send the packet out of the interface 25112 * (ipif->ipif_ill) where we joined the group. This is to 25113 * prevent from switches doing IGMP snooping to send us multicast 25114 * packets for a given group on the interface we have joined. 25115 * If we can't find an ire, igmp_sendpkt has already initialized 25116 * ipsec_out_attach_if so that this will not be load spread in 25117 * ip_newroute_ipif. 25118 */ 25119 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, NULL, 25120 MATCH_IRE_ILL); 25121 if (!ire) { 25122 /* 25123 * Mark this packet to make it be delivered to 25124 * ip_wput_ire after the new ire has been 25125 * created. 25126 */ 25127 mp->b_prev = NULL; 25128 mp->b_next = NULL; 25129 ip_newroute_ipif(q, first_mp, ipif, dst, NULL, RTF_SETSRC, 25130 zoneid); 25131 return; 25132 } 25133 25134 /* 25135 * Honor the RTF_SETSRC flag; this is the only case 25136 * where we force this addr whatever the current src addr is, 25137 * because this address is set by igmp_sendpkt(), and 25138 * cannot be specified by any user. 25139 */ 25140 if (ire->ire_flags & RTF_SETSRC) { 25141 ipha->ipha_src = ire->ire_src_addr; 25142 } 25143 25144 ip_wput_ire(q, first_mp, ire, NULL, B_FALSE, zoneid); 25145 } 25146 25147 /* 25148 * NOTE : This function does not ire_refrele the ire argument passed in. 25149 * 25150 * Copy the link layer header and do IPQoS if needed. Frees the mblk on 25151 * failure. The nce_fp_mp can vanish any time in the case of IRE_MIPRTUN 25152 * and IRE_BROADCAST due to DL_NOTE_FASTPATH_FLUSH. Hence we have to hold 25153 * the ire_lock to access the nce_fp_mp in this case. 25154 * IPQoS assumes that the first M_DATA contains the IP header. So, if we are 25155 * prepending a fastpath message IPQoS processing must precede it, we also set 25156 * the b_band of the fastpath message to that of the mblk returned by IPQoS 25157 * (IPQoS might have set the b_band for CoS marking). 25158 * However, if we are prepending DL_UNITDATA_REQ message, IPQoS processing 25159 * must follow it so that IPQoS can mark the dl_priority field for CoS 25160 * marking, if needed. 25161 */ 25162 static mblk_t * 25163 ip_wput_attach_llhdr(mblk_t *mp, ire_t *ire, ip_proc_t proc, uint32_t ill_index) 25164 { 25165 uint_t hlen; 25166 ipha_t *ipha; 25167 mblk_t *mp1; 25168 boolean_t qos_done = B_FALSE; 25169 uchar_t *ll_hdr; 25170 25171 #define rptr ((uchar_t *)ipha) 25172 25173 ipha = (ipha_t *)mp->b_rptr; 25174 hlen = 0; 25175 LOCK_IRE_FP_MP(ire); 25176 if ((mp1 = ire->ire_nce->nce_fp_mp) != NULL) { 25177 ASSERT(DB_TYPE(mp1) == M_DATA); 25178 /* Initiate IPPF processing */ 25179 if ((proc != 0) && IPP_ENABLED(proc)) { 25180 UNLOCK_IRE_FP_MP(ire); 25181 ip_process(proc, &mp, ill_index); 25182 if (mp == NULL) 25183 return (NULL); 25184 25185 ipha = (ipha_t *)mp->b_rptr; 25186 LOCK_IRE_FP_MP(ire); 25187 if ((mp1 = ire->ire_nce->nce_fp_mp) == NULL) { 25188 qos_done = B_TRUE; 25189 goto no_fp_mp; 25190 } 25191 ASSERT(DB_TYPE(mp1) == M_DATA); 25192 } 25193 hlen = MBLKL(mp1); 25194 /* 25195 * Check if we have enough room to prepend fastpath 25196 * header 25197 */ 25198 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) { 25199 ll_hdr = rptr - hlen; 25200 bcopy(mp1->b_rptr, ll_hdr, hlen); 25201 /* 25202 * Set the b_rptr to the start of the link layer 25203 * header 25204 */ 25205 mp->b_rptr = ll_hdr; 25206 mp1 = mp; 25207 } else { 25208 mp1 = copyb(mp1); 25209 if (mp1 == NULL) 25210 goto unlock_err; 25211 mp1->b_band = mp->b_band; 25212 mp1->b_cont = mp; 25213 /* 25214 * certain system generated traffic may not 25215 * have cred/label in ip header block. This 25216 * is true even for a labeled system. But for 25217 * labeled traffic, inherit the label in the 25218 * new header. 25219 */ 25220 if (DB_CRED(mp) != NULL) 25221 mblk_setcred(mp1, DB_CRED(mp)); 25222 /* 25223 * XXX disable ICK_VALID and compute checksum 25224 * here; can happen if nce_fp_mp changes and 25225 * it can't be copied now due to insufficient 25226 * space. (unlikely, fp mp can change, but it 25227 * does not increase in length) 25228 */ 25229 } 25230 UNLOCK_IRE_FP_MP(ire); 25231 } else { 25232 no_fp_mp: 25233 mp1 = copyb(ire->ire_nce->nce_res_mp); 25234 if (mp1 == NULL) { 25235 unlock_err: 25236 UNLOCK_IRE_FP_MP(ire); 25237 freemsg(mp); 25238 return (NULL); 25239 } 25240 UNLOCK_IRE_FP_MP(ire); 25241 mp1->b_cont = mp; 25242 /* 25243 * certain system generated traffic may not 25244 * have cred/label in ip header block. This 25245 * is true even for a labeled system. But for 25246 * labeled traffic, inherit the label in the 25247 * new header. 25248 */ 25249 if (DB_CRED(mp) != NULL) 25250 mblk_setcred(mp1, DB_CRED(mp)); 25251 if (!qos_done && (proc != 0) && IPP_ENABLED(proc)) { 25252 ip_process(proc, &mp1, ill_index); 25253 if (mp1 == NULL) 25254 return (NULL); 25255 } 25256 } 25257 return (mp1); 25258 #undef rptr 25259 } 25260 25261 /* 25262 * Finish the outbound IPsec processing for an IPv6 packet. This function 25263 * is called from ipsec_out_process() if the IPsec packet was processed 25264 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25265 * asynchronously. 25266 */ 25267 void 25268 ip_wput_ipsec_out_v6(queue_t *q, mblk_t *ipsec_mp, ip6_t *ip6h, ill_t *ill, 25269 ire_t *ire_arg) 25270 { 25271 in6_addr_t *v6dstp; 25272 ire_t *ire; 25273 mblk_t *mp; 25274 ip6_t *ip6h1; 25275 uint_t ill_index; 25276 ipsec_out_t *io; 25277 boolean_t attach_if, hwaccel; 25278 uint32_t flags = IP6_NO_IPPOLICY; 25279 int match_flags; 25280 zoneid_t zoneid; 25281 boolean_t ill_need_rele = B_FALSE; 25282 boolean_t ire_need_rele = B_FALSE; 25283 25284 mp = ipsec_mp->b_cont; 25285 ip6h1 = (ip6_t *)mp->b_rptr; 25286 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25287 ill_index = io->ipsec_out_ill_index; 25288 if (io->ipsec_out_reachable) { 25289 flags |= IPV6_REACHABILITY_CONFIRMATION; 25290 } 25291 attach_if = io->ipsec_out_attach_if; 25292 hwaccel = io->ipsec_out_accelerated; 25293 zoneid = io->ipsec_out_zoneid; 25294 ASSERT(zoneid != ALL_ZONES); 25295 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25296 /* Multicast addresses should have non-zero ill_index. */ 25297 v6dstp = &ip6h->ip6_dst; 25298 ASSERT(ip6h->ip6_nxt != IPPROTO_RAW); 25299 ASSERT(!IN6_IS_ADDR_MULTICAST(v6dstp) || ill_index != 0); 25300 ASSERT(!attach_if || ill_index != 0); 25301 if (ill_index != 0) { 25302 if (ill == NULL) { 25303 ill = ip_grab_attach_ill(NULL, ipsec_mp, ill_index, 25304 B_TRUE); 25305 25306 /* Failure case frees things for us. */ 25307 if (ill == NULL) 25308 return; 25309 25310 ill_need_rele = B_TRUE; 25311 } 25312 /* 25313 * If this packet needs to go out on a particular interface 25314 * honor it. 25315 */ 25316 if (attach_if) { 25317 match_flags = MATCH_IRE_ILL; 25318 25319 /* 25320 * Check if we need an ire that will not be 25321 * looked up by anybody else i.e. HIDDEN. 25322 */ 25323 if (ill_is_probeonly(ill)) { 25324 match_flags |= MATCH_IRE_MARK_HIDDEN; 25325 } 25326 } 25327 } 25328 ASSERT(mp != NULL); 25329 25330 if (IN6_IS_ADDR_MULTICAST(v6dstp)) { 25331 boolean_t unspec_src; 25332 ipif_t *ipif; 25333 25334 /* 25335 * Use the ill_index to get the right ill. 25336 */ 25337 unspec_src = io->ipsec_out_unspec_src; 25338 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25339 if (ipif == NULL) { 25340 if (ill_need_rele) 25341 ill_refrele(ill); 25342 freemsg(ipsec_mp); 25343 return; 25344 } 25345 25346 if (ire_arg != NULL) { 25347 ire = ire_arg; 25348 } else { 25349 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25350 zoneid, MBLK_GETLABEL(mp), match_flags); 25351 ire_need_rele = B_TRUE; 25352 } 25353 if (ire != NULL) { 25354 ipif_refrele(ipif); 25355 /* 25356 * XXX Do the multicast forwarding now, as the IPSEC 25357 * processing has been done. 25358 */ 25359 goto send; 25360 } 25361 25362 ip0dbg(("ip_wput_ipsec_out_v6: multicast: IRE disappeared\n")); 25363 mp->b_prev = NULL; 25364 mp->b_next = NULL; 25365 25366 /* 25367 * If the IPsec packet was processed asynchronously, 25368 * drop it now. 25369 */ 25370 if (q == NULL) { 25371 if (ill_need_rele) 25372 ill_refrele(ill); 25373 freemsg(ipsec_mp); 25374 return; 25375 } 25376 25377 ip_newroute_ipif_v6(q, ipsec_mp, ipif, *v6dstp, 25378 unspec_src, zoneid); 25379 ipif_refrele(ipif); 25380 } else { 25381 if (attach_if) { 25382 ipif_t *ipif; 25383 25384 ipif = ipif_get_next_ipif(NULL, ill); 25385 if (ipif == NULL) { 25386 if (ill_need_rele) 25387 ill_refrele(ill); 25388 freemsg(ipsec_mp); 25389 return; 25390 } 25391 ire = ire_ctable_lookup_v6(v6dstp, 0, 0, ipif, 25392 zoneid, MBLK_GETLABEL(mp), match_flags); 25393 ire_need_rele = B_TRUE; 25394 ipif_refrele(ipif); 25395 } else { 25396 if (ire_arg != NULL) { 25397 ire = ire_arg; 25398 } else { 25399 ire = ire_cache_lookup_v6(v6dstp, zoneid, NULL); 25400 ire_need_rele = B_TRUE; 25401 } 25402 } 25403 if (ire != NULL) 25404 goto send; 25405 /* 25406 * ire disappeared underneath. 25407 * 25408 * What we need to do here is the ip_newroute 25409 * logic to get the ire without doing the IPSEC 25410 * processing. Follow the same old path. But this 25411 * time, ip_wput or ire_add_then_send will call us 25412 * directly as all the IPSEC operations are done. 25413 */ 25414 ip1dbg(("ip_wput_ipsec_out_v6: IRE disappeared\n")); 25415 mp->b_prev = NULL; 25416 mp->b_next = NULL; 25417 25418 /* 25419 * If the IPsec packet was processed asynchronously, 25420 * drop it now. 25421 */ 25422 if (q == NULL) { 25423 if (ill_need_rele) 25424 ill_refrele(ill); 25425 freemsg(ipsec_mp); 25426 return; 25427 } 25428 25429 ip_newroute_v6(q, ipsec_mp, v6dstp, &ip6h->ip6_src, ill, 25430 zoneid); 25431 } 25432 if (ill != NULL && ill_need_rele) 25433 ill_refrele(ill); 25434 return; 25435 send: 25436 if (ill != NULL && ill_need_rele) 25437 ill_refrele(ill); 25438 25439 /* Local delivery */ 25440 if (ire->ire_stq == NULL) { 25441 ill_t *out_ill; 25442 ASSERT(q != NULL); 25443 25444 /* PFHooks: LOOPBACK_OUT */ 25445 out_ill = ire->ire_ipif->ipif_ill; 25446 25447 DTRACE_PROBE4(ip6__loopback__out__start, 25448 ill_t *, NULL, ill_t *, out_ill, 25449 ip6_t *, ip6h1, mblk_t *, ipsec_mp); 25450 25451 FW_HOOKS6(ip6_loopback_out_event, ipv6firewall_loopback_out, 25452 NULL, out_ill, ip6h1, ipsec_mp, mp); 25453 25454 DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, ipsec_mp); 25455 25456 if (ipsec_mp != NULL) 25457 ip_wput_local_v6(RD(q), out_ill, 25458 ip6h, ipsec_mp, ire, 0); 25459 if (ire_need_rele) 25460 ire_refrele(ire); 25461 return; 25462 } 25463 /* 25464 * Everything is done. Send it out on the wire. 25465 * We force the insertion of a fragment header using the 25466 * IPH_FRAG_HDR flag in two cases: 25467 * - after reception of an ICMPv6 "packet too big" message 25468 * with a MTU < 1280 (cf. RFC 2460 section 5) 25469 * - for multirouted IPv6 packets, so that the receiver can 25470 * discard duplicates according to their fragment identifier 25471 */ 25472 /* XXX fix flow control problems. */ 25473 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN > ire->ire_max_frag || 25474 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 25475 if (hwaccel) { 25476 /* 25477 * hardware acceleration does not handle these 25478 * "slow path" cases. 25479 */ 25480 /* IPsec KSTATS: should bump bean counter here. */ 25481 if (ire_need_rele) 25482 ire_refrele(ire); 25483 freemsg(ipsec_mp); 25484 return; 25485 } 25486 if (ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN != 25487 (mp->b_cont ? msgdsize(mp) : 25488 mp->b_wptr - (uchar_t *)ip6h)) { 25489 /* IPsec KSTATS: should bump bean counter here. */ 25490 ip0dbg(("Packet length mismatch: %d, %ld\n", 25491 ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN, 25492 msgdsize(mp))); 25493 if (ire_need_rele) 25494 ire_refrele(ire); 25495 freemsg(ipsec_mp); 25496 return; 25497 } 25498 ASSERT(mp->b_prev == NULL); 25499 ip2dbg(("Fragmenting Size = %d, mtu = %d\n", 25500 ntohs(ip6h->ip6_plen) + 25501 IPV6_HDR_LEN, ire->ire_max_frag)); 25502 ip_wput_frag_v6(mp, ire, flags, NULL, B_FALSE, 25503 ire->ire_max_frag); 25504 } else { 25505 UPDATE_OB_PKT_COUNT(ire); 25506 ire->ire_last_used_time = lbolt; 25507 ip_xmit_v6(mp, ire, flags, NULL, B_FALSE, hwaccel ? io : NULL); 25508 } 25509 if (ire_need_rele) 25510 ire_refrele(ire); 25511 freeb(ipsec_mp); 25512 } 25513 25514 void 25515 ipsec_hw_putnext(queue_t *q, mblk_t *mp) 25516 { 25517 mblk_t *hada_mp; /* attributes M_CTL mblk */ 25518 da_ipsec_t *hada; /* data attributes */ 25519 ill_t *ill = (ill_t *)q->q_ptr; 25520 25521 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_hw_putnext: accelerated packet\n")); 25522 25523 if ((ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) == 0) { 25524 /* IPsec KSTATS: Bump lose counter here! */ 25525 freemsg(mp); 25526 return; 25527 } 25528 25529 /* 25530 * It's an IPsec packet that must be 25531 * accelerated by the Provider, and the 25532 * outbound ill is IPsec acceleration capable. 25533 * Prepends the mblk with an IPHADA_M_CTL, and ship it 25534 * to the ill. 25535 * IPsec KSTATS: should bump packet counter here. 25536 */ 25537 25538 hada_mp = allocb(sizeof (da_ipsec_t), BPRI_HI); 25539 if (hada_mp == NULL) { 25540 /* IPsec KSTATS: should bump packet counter here. */ 25541 freemsg(mp); 25542 return; 25543 } 25544 25545 hada_mp->b_datap->db_type = M_CTL; 25546 hada_mp->b_wptr = hada_mp->b_rptr + sizeof (*hada); 25547 hada_mp->b_cont = mp; 25548 25549 hada = (da_ipsec_t *)hada_mp->b_rptr; 25550 bzero(hada, sizeof (da_ipsec_t)); 25551 hada->da_type = IPHADA_M_CTL; 25552 25553 putnext(q, hada_mp); 25554 } 25555 25556 /* 25557 * Finish the outbound IPsec processing. This function is called from 25558 * ipsec_out_process() if the IPsec packet was processed 25559 * synchronously, or from {ah,esp}_kcf_callback() if it was processed 25560 * asynchronously. 25561 */ 25562 void 25563 ip_wput_ipsec_out(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, ill_t *ill, 25564 ire_t *ire_arg) 25565 { 25566 uint32_t v_hlen_tos_len; 25567 ipaddr_t dst; 25568 ipif_t *ipif = NULL; 25569 ire_t *ire; 25570 ire_t *ire1 = NULL; 25571 mblk_t *next_mp = NULL; 25572 uint32_t max_frag; 25573 boolean_t multirt_send = B_FALSE; 25574 mblk_t *mp; 25575 mblk_t *mp1; 25576 ipha_t *ipha1; 25577 uint_t ill_index; 25578 ipsec_out_t *io; 25579 boolean_t attach_if; 25580 int match_flags, offset; 25581 irb_t *irb = NULL; 25582 boolean_t ill_need_rele = B_FALSE, ire_need_rele = B_TRUE; 25583 zoneid_t zoneid; 25584 uint32_t cksum; 25585 uint16_t *up; 25586 ipxmit_state_t pktxmit_state; 25587 #ifdef _BIG_ENDIAN 25588 #define LENGTH (v_hlen_tos_len & 0xFFFF) 25589 #else 25590 #define LENGTH ((v_hlen_tos_len >> 24) | ((v_hlen_tos_len >> 8) & 0xFF00)) 25591 #endif 25592 25593 mp = ipsec_mp->b_cont; 25594 ipha1 = (ipha_t *)mp->b_rptr; 25595 ASSERT(mp != NULL); 25596 v_hlen_tos_len = ((uint32_t *)ipha)[0]; 25597 dst = ipha->ipha_dst; 25598 25599 io = (ipsec_out_t *)ipsec_mp->b_rptr; 25600 ill_index = io->ipsec_out_ill_index; 25601 attach_if = io->ipsec_out_attach_if; 25602 zoneid = io->ipsec_out_zoneid; 25603 ASSERT(zoneid != ALL_ZONES); 25604 match_flags = MATCH_IRE_ILL_GROUP | MATCH_IRE_SECATTR; 25605 if (ill_index != 0) { 25606 if (ill == NULL) { 25607 ill = ip_grab_attach_ill(NULL, ipsec_mp, 25608 ill_index, B_FALSE); 25609 25610 /* Failure case frees things for us. */ 25611 if (ill == NULL) 25612 return; 25613 25614 ill_need_rele = B_TRUE; 25615 } 25616 /* 25617 * If this packet needs to go out on a particular interface 25618 * honor it. 25619 */ 25620 if (attach_if) { 25621 match_flags = MATCH_IRE_ILL | MATCH_IRE_SECATTR; 25622 25623 /* 25624 * Check if we need an ire that will not be 25625 * looked up by anybody else i.e. HIDDEN. 25626 */ 25627 if (ill_is_probeonly(ill)) { 25628 match_flags |= MATCH_IRE_MARK_HIDDEN; 25629 } 25630 } 25631 } 25632 25633 if (CLASSD(dst)) { 25634 boolean_t conn_dontroute; 25635 /* 25636 * Use the ill_index to get the right ipif. 25637 */ 25638 conn_dontroute = io->ipsec_out_dontroute; 25639 if (ill_index == 0) 25640 ipif = ipif_lookup_group(dst, zoneid); 25641 else 25642 (void) ipif_lookup_zoneid(ill, zoneid, 0, &ipif); 25643 if (ipif == NULL) { 25644 ip1dbg(("ip_wput_ipsec_out: No ipif for" 25645 " multicast\n")); 25646 BUMP_MIB(&ip_mib, ipIfStatsOutNoRoutes); 25647 freemsg(ipsec_mp); 25648 goto done; 25649 } 25650 /* 25651 * ipha_src has already been intialized with the 25652 * value of the ipif in ip_wput. All we need now is 25653 * an ire to send this downstream. 25654 */ 25655 ire = ire_ctable_lookup(dst, 0, 0, ipif, zoneid, 25656 MBLK_GETLABEL(mp), match_flags); 25657 if (ire != NULL) { 25658 ill_t *ill1; 25659 /* 25660 * Do the multicast forwarding now, as the IPSEC 25661 * processing has been done. 25662 */ 25663 if (ip_g_mrouter && !conn_dontroute && 25664 (ill1 = ire_to_ill(ire))) { 25665 if (ip_mforward(ill1, ipha, mp)) { 25666 freemsg(ipsec_mp); 25667 ip1dbg(("ip_wput_ipsec_out: mforward " 25668 "failed\n")); 25669 ire_refrele(ire); 25670 goto done; 25671 } 25672 } 25673 goto send; 25674 } 25675 25676 ip0dbg(("ip_wput_ipsec_out: multicast: IRE disappeared\n")); 25677 mp->b_prev = NULL; 25678 mp->b_next = NULL; 25679 25680 /* 25681 * If the IPsec packet was processed asynchronously, 25682 * drop it now. 25683 */ 25684 if (q == NULL) { 25685 freemsg(ipsec_mp); 25686 goto done; 25687 } 25688 25689 /* 25690 * We may be using a wrong ipif to create the ire. 25691 * But it is okay as the source address is assigned 25692 * for the packet already. Next outbound packet would 25693 * create the IRE with the right IPIF in ip_wput. 25694 * 25695 * Also handle RTF_MULTIRT routes. 25696 */ 25697 ip_newroute_ipif(q, ipsec_mp, ipif, dst, NULL, RTF_MULTIRT, 25698 zoneid); 25699 } else { 25700 if (attach_if) { 25701 ire = ire_ctable_lookup(dst, 0, 0, ill->ill_ipif, 25702 zoneid, MBLK_GETLABEL(mp), match_flags); 25703 } else { 25704 if (ire_arg != NULL) { 25705 ire = ire_arg; 25706 ire_need_rele = B_FALSE; 25707 } else { 25708 ire = ire_cache_lookup(dst, zoneid, 25709 MBLK_GETLABEL(mp)); 25710 } 25711 } 25712 if (ire != NULL) { 25713 goto send; 25714 } 25715 25716 /* 25717 * ire disappeared underneath. 25718 * 25719 * What we need to do here is the ip_newroute 25720 * logic to get the ire without doing the IPSEC 25721 * processing. Follow the same old path. But this 25722 * time, ip_wput or ire_add_then_put will call us 25723 * directly as all the IPSEC operations are done. 25724 */ 25725 ip1dbg(("ip_wput_ipsec_out: IRE disappeared\n")); 25726 mp->b_prev = NULL; 25727 mp->b_next = NULL; 25728 25729 /* 25730 * If the IPsec packet was processed asynchronously, 25731 * drop it now. 25732 */ 25733 if (q == NULL) { 25734 freemsg(ipsec_mp); 25735 goto done; 25736 } 25737 25738 /* 25739 * Since we're going through ip_newroute() again, we 25740 * need to make sure we don't: 25741 * 25742 * 1.) Trigger the ASSERT() with the ipha_ident 25743 * overloading. 25744 * 2.) Redo transport-layer checksumming, since we've 25745 * already done all that to get this far. 25746 * 25747 * The easiest way not do either of the above is to set 25748 * the ipha_ident field to IP_HDR_INCLUDED. 25749 */ 25750 ipha->ipha_ident = IP_HDR_INCLUDED; 25751 ip_newroute(q, ipsec_mp, dst, NULL, 25752 (CONN_Q(q) ? Q_TO_CONN(q) : NULL), zoneid); 25753 } 25754 goto done; 25755 send: 25756 if (ipha->ipha_protocol == IPPROTO_UDP && udp_compute_checksum()) { 25757 /* 25758 * ESP NAT-Traversal packet. 25759 * 25760 * Just do software checksum for now. 25761 */ 25762 25763 offset = IP_SIMPLE_HDR_LENGTH + UDP_CHECKSUM_OFFSET; 25764 IP_STAT(ip_out_sw_cksum); 25765 IP_STAT_UPDATE(ip_udp_out_sw_cksum_bytes, 25766 ntohs(htons(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH)); 25767 #define iphs ((uint16_t *)ipha) 25768 cksum = IP_UDP_CSUM_COMP + iphs[6] + iphs[7] + iphs[8] + 25769 iphs[9] + ntohs(htons(ipha->ipha_length) - 25770 IP_SIMPLE_HDR_LENGTH); 25771 #undef iphs 25772 if ((cksum = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH, cksum)) == 0) 25773 cksum = 0xFFFF; 25774 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) 25775 if (mp1->b_wptr - mp1->b_rptr >= 25776 offset + sizeof (uint16_t)) { 25777 up = (uint16_t *)(mp1->b_rptr + offset); 25778 *up = cksum; 25779 break; /* out of for loop */ 25780 } else { 25781 offset -= (mp->b_wptr - mp->b_rptr); 25782 } 25783 } /* Otherwise, just keep the all-zero checksum. */ 25784 25785 if (ire->ire_stq == NULL) { 25786 ill_t *out_ill; 25787 /* 25788 * Loopbacks go through ip_wput_local except for one case. 25789 * We come here if we generate a icmp_frag_needed message 25790 * after IPSEC processing is over. When this function calls 25791 * ip_wput_ire_fragmentit, ip_wput_frag might end up calling 25792 * icmp_frag_needed. The message generated comes back here 25793 * through icmp_frag_needed -> icmp_pkt -> ip_wput -> 25794 * ipsec_out_process -> ip_wput_ipsec_out. We need to set the 25795 * source address as it is usually set in ip_wput_ire. As 25796 * ipsec_out_proc_begin is set, ip_wput calls ipsec_out_process 25797 * and we end up here. We can't enter ip_wput_ire once the 25798 * IPSEC processing is over and hence we need to do it here. 25799 */ 25800 ASSERT(q != NULL); 25801 UPDATE_OB_PKT_COUNT(ire); 25802 ire->ire_last_used_time = lbolt; 25803 if (ipha->ipha_src == 0) 25804 ipha->ipha_src = ire->ire_src_addr; 25805 25806 /* PFHooks: LOOPBACK_OUT */ 25807 out_ill = ire->ire_ipif->ipif_ill; 25808 25809 DTRACE_PROBE4(ip4__loopback__out__start, 25810 ill_t *, NULL, ill_t *, out_ill, 25811 ipha_t *, ipha1, mblk_t *, ipsec_mp); 25812 25813 FW_HOOKS(ip4_loopback_out_event, ipv4firewall_loopback_out, 25814 NULL, out_ill, ipha1, ipsec_mp, mp); 25815 25816 DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, ipsec_mp); 25817 25818 if (ipsec_mp != NULL) 25819 ip_wput_local(RD(q), out_ill, 25820 ipha, ipsec_mp, ire, 0, zoneid); 25821 if (ire_need_rele) 25822 ire_refrele(ire); 25823 goto done; 25824 } 25825 25826 if (ire->ire_max_frag < (unsigned int)LENGTH) { 25827 /* 25828 * We are through with IPSEC processing. 25829 * Fragment this and send it on the wire. 25830 */ 25831 if (io->ipsec_out_accelerated) { 25832 /* 25833 * The packet has been accelerated but must 25834 * be fragmented. This should not happen 25835 * since AH and ESP must not accelerate 25836 * packets that need fragmentation, however 25837 * the configuration could have changed 25838 * since the AH or ESP processing. 25839 * Drop packet. 25840 * IPsec KSTATS: bump bean counter here. 25841 */ 25842 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_wput_ipsec_out: " 25843 "fragmented accelerated packet!\n")); 25844 freemsg(ipsec_mp); 25845 } else { 25846 ip_wput_ire_fragmentit(ipsec_mp, ire, zoneid); 25847 } 25848 if (ire_need_rele) 25849 ire_refrele(ire); 25850 goto done; 25851 } 25852 25853 ip2dbg(("ip_wput_ipsec_out: ipsec_mp %p, ire %p, ire_ipif %p, " 25854 "ipif %p\n", (void *)ipsec_mp, (void *)ire, 25855 (void *)ire->ire_ipif, (void *)ipif)); 25856 25857 /* 25858 * Multiroute the secured packet, unless IPsec really 25859 * requires the packet to go out only through a particular 25860 * interface. 25861 */ 25862 if ((ire->ire_flags & RTF_MULTIRT) && !attach_if) { 25863 ire_t *first_ire; 25864 irb = ire->ire_bucket; 25865 ASSERT(irb != NULL); 25866 /* 25867 * This ire has been looked up as the one that 25868 * goes through the given ipif; 25869 * make sure we do not omit any other multiroute ire 25870 * that may be present in the bucket before this one. 25871 */ 25872 IRB_REFHOLD(irb); 25873 for (first_ire = irb->irb_ire; 25874 first_ire != NULL; 25875 first_ire = first_ire->ire_next) { 25876 if ((first_ire->ire_flags & RTF_MULTIRT) && 25877 (first_ire->ire_addr == ire->ire_addr) && 25878 !(first_ire->ire_marks & 25879 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN))) 25880 break; 25881 } 25882 25883 if ((first_ire != NULL) && (first_ire != ire)) { 25884 /* 25885 * Don't change the ire if the packet must 25886 * be fragmented if sent via this new one. 25887 */ 25888 if (first_ire->ire_max_frag >= (unsigned int)LENGTH) { 25889 IRE_REFHOLD(first_ire); 25890 if (ire_need_rele) 25891 ire_refrele(ire); 25892 else 25893 ire_need_rele = B_TRUE; 25894 ire = first_ire; 25895 } 25896 } 25897 IRB_REFRELE(irb); 25898 25899 multirt_send = B_TRUE; 25900 max_frag = ire->ire_max_frag; 25901 } else { 25902 if ((ire->ire_flags & RTF_MULTIRT) && attach_if) { 25903 ip1dbg(("ip_wput_ipsec_out: ignoring multirouting " 25904 "flag, attach_if %d\n", attach_if)); 25905 } 25906 } 25907 25908 /* 25909 * In most cases, the emission loop below is entered only once. 25910 * Only in the case where the ire holds the RTF_MULTIRT 25911 * flag, we loop to process all RTF_MULTIRT ires in the 25912 * bucket, and send the packet through all crossed 25913 * RTF_MULTIRT routes. 25914 */ 25915 do { 25916 if (multirt_send) { 25917 /* 25918 * ire1 holds here the next ire to process in the 25919 * bucket. If multirouting is expected, 25920 * any non-RTF_MULTIRT ire that has the 25921 * right destination address is ignored. 25922 */ 25923 ASSERT(irb != NULL); 25924 IRB_REFHOLD(irb); 25925 for (ire1 = ire->ire_next; 25926 ire1 != NULL; 25927 ire1 = ire1->ire_next) { 25928 if ((ire1->ire_flags & RTF_MULTIRT) == 0) 25929 continue; 25930 if (ire1->ire_addr != ire->ire_addr) 25931 continue; 25932 if (ire1->ire_marks & 25933 (IRE_MARK_CONDEMNED | IRE_MARK_HIDDEN)) 25934 continue; 25935 /* No loopback here */ 25936 if (ire1->ire_stq == NULL) 25937 continue; 25938 /* 25939 * Ensure we do not exceed the MTU 25940 * of the next route. 25941 */ 25942 if (ire1->ire_max_frag < (unsigned int)LENGTH) { 25943 ip_multirt_bad_mtu(ire1, max_frag); 25944 continue; 25945 } 25946 25947 IRE_REFHOLD(ire1); 25948 break; 25949 } 25950 IRB_REFRELE(irb); 25951 if (ire1 != NULL) { 25952 /* 25953 * We are in a multiple send case, need to 25954 * make a copy of the packet. 25955 */ 25956 next_mp = copymsg(ipsec_mp); 25957 if (next_mp == NULL) { 25958 ire_refrele(ire1); 25959 ire1 = NULL; 25960 } 25961 } 25962 } 25963 /* 25964 * Everything is done. Send it out on the wire 25965 * 25966 * ip_xmit_v4 will call ip_wput_attach_llhdr and then 25967 * either send it on the wire or, in the case of 25968 * HW acceleration, call ipsec_hw_putnext. 25969 */ 25970 if (ire->ire_nce && 25971 ire->ire_nce->nce_state != ND_REACHABLE) { 25972 DTRACE_PROBE2(ip__wput__ipsec__bail, 25973 (ire_t *), ire, (mblk_t *), ipsec_mp); 25974 /* 25975 * If ire's link-layer is unresolved (this 25976 * would only happen if the incomplete ire 25977 * was added to cachetable via forwarding path) 25978 * don't bother going to ip_xmit_v4. Just drop the 25979 * packet. 25980 * There is a slight risk here, in that, if we 25981 * have the forwarding path create an incomplete 25982 * IRE, then until the IRE is completed, any 25983 * transmitted IPSEC packets will be dropped 25984 * instead of being queued waiting for resolution. 25985 * 25986 * But the likelihood of a forwarding packet and a wput 25987 * packet sending to the same dst at the same time 25988 * and there not yet be an ARP entry for it is small. 25989 * Furthermore, if this actually happens, it might 25990 * be likely that wput would generate multiple 25991 * packets (and forwarding would also have a train 25992 * of packets) for that destination. If this is 25993 * the case, some of them would have been dropped 25994 * anyway, since ARP only queues a few packets while 25995 * waiting for resolution 25996 * 25997 * NOTE: We should really call ip_xmit_v4, 25998 * and let it queue the packet and send the 25999 * ARP query and have ARP come back thus: 26000 * <ARP> ip_wput->ip_output->ip-wput_nondata-> 26001 * ip_xmit_v4->ip_wput_attach_llhdr + ipsec 26002 * hw accel work. But it's too complex to get 26003 * the IPsec hw acceleration approach to fit 26004 * well with ip_xmit_v4 doing ARP without 26005 * doing IPSEC simplification. For now, we just 26006 * poke ip_xmit_v4 to trigger the arp resolve, so 26007 * that we can continue with the send on the next 26008 * attempt. 26009 * 26010 * XXX THis should be revisited, when 26011 * the IPsec/IP interaction is cleaned up 26012 */ 26013 ip1dbg(("ip_wput_ipsec_out: ire is incomplete" 26014 " - dropping packet\n")); 26015 freemsg(ipsec_mp); 26016 /* 26017 * Call ip_xmit_v4() to trigger ARP query 26018 * in case the nce_state is ND_INITIAL 26019 */ 26020 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 26021 goto drop_pkt; 26022 } 26023 26024 DTRACE_PROBE4(ip4__physical__out__start, ill_t *, NULL, 26025 ill_t *, ire->ire_ipif->ipif_ill, ipha_t *, ipha1, 26026 mblk_t *, mp); 26027 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 26028 NULL, ire->ire_ipif->ipif_ill, ipha1, mp, mp); 26029 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 26030 if (mp == NULL) 26031 goto drop_pkt; 26032 26033 ip1dbg(("ip_wput_ipsec_out: calling ip_xmit_v4\n")); 26034 pktxmit_state = ip_xmit_v4(mp, ire, 26035 (io->ipsec_out_accelerated ? io : NULL), B_FALSE); 26036 26037 if ((pktxmit_state == SEND_FAILED) || 26038 (pktxmit_state == LLHDR_RESLV_FAILED)) { 26039 26040 freeb(ipsec_mp); /* ip_xmit_v4 frees the mp */ 26041 drop_pkt: 26042 BUMP_MIB(((ill_t *)ire->ire_stq->q_ptr)->ill_ip_mib, 26043 ipIfStatsOutDiscards); 26044 if (ire_need_rele) 26045 ire_refrele(ire); 26046 if (ire1 != NULL) { 26047 ire_refrele(ire1); 26048 freemsg(next_mp); 26049 } 26050 goto done; 26051 } 26052 26053 freeb(ipsec_mp); 26054 if (ire_need_rele) 26055 ire_refrele(ire); 26056 26057 if (ire1 != NULL) { 26058 ire = ire1; 26059 ire_need_rele = B_TRUE; 26060 ASSERT(next_mp); 26061 ipsec_mp = next_mp; 26062 mp = ipsec_mp->b_cont; 26063 ire1 = NULL; 26064 next_mp = NULL; 26065 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26066 } else { 26067 multirt_send = B_FALSE; 26068 } 26069 } while (multirt_send); 26070 done: 26071 if (ill != NULL && ill_need_rele) 26072 ill_refrele(ill); 26073 if (ipif != NULL) 26074 ipif_refrele(ipif); 26075 } 26076 26077 /* 26078 * Get the ill corresponding to the specified ire, and compare its 26079 * capabilities with the protocol and algorithms specified by the 26080 * the SA obtained from ipsec_out. If they match, annotate the 26081 * ipsec_out structure to indicate that the packet needs acceleration. 26082 * 26083 * 26084 * A packet is eligible for outbound hardware acceleration if the 26085 * following conditions are satisfied: 26086 * 26087 * 1. the packet will not be fragmented 26088 * 2. the provider supports the algorithm 26089 * 3. there is no pending control message being exchanged 26090 * 4. snoop is not attached 26091 * 5. the destination address is not a broadcast or multicast address. 26092 * 26093 * Rationale: 26094 * - Hardware drivers do not support fragmentation with 26095 * the current interface. 26096 * - snoop, multicast, and broadcast may result in exposure of 26097 * a cleartext datagram. 26098 * We check all five of these conditions here. 26099 * 26100 * XXX would like to nuke "ire_t *" parameter here; problem is that 26101 * IRE is only way to figure out if a v4 address is a broadcast and 26102 * thus ineligible for acceleration... 26103 */ 26104 static void 26105 ipsec_out_is_accelerated(mblk_t *ipsec_mp, ipsa_t *sa, ill_t *ill, ire_t *ire) 26106 { 26107 ipsec_out_t *io; 26108 mblk_t *data_mp; 26109 uint_t plen, overhead; 26110 26111 if ((sa->ipsa_flags & IPSA_F_HW) == 0) 26112 return; 26113 26114 if (ill == NULL) 26115 return; 26116 26117 /* 26118 * Destination address is a broadcast or multicast. Punt. 26119 */ 26120 if ((ire != NULL) && (ire->ire_type & (IRE_BROADCAST|IRE_LOOPBACK| 26121 IRE_LOCAL))) 26122 return; 26123 26124 data_mp = ipsec_mp->b_cont; 26125 26126 if (ill->ill_isv6) { 26127 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; 26128 26129 if (IN6_IS_ADDR_MULTICAST(&ip6h->ip6_dst)) 26130 return; 26131 26132 plen = ip6h->ip6_plen; 26133 } else { 26134 ipha_t *ipha = (ipha_t *)data_mp->b_rptr; 26135 26136 if (CLASSD(ipha->ipha_dst)) 26137 return; 26138 26139 plen = ipha->ipha_length; 26140 } 26141 /* 26142 * Is there a pending DLPI control message being exchanged 26143 * between IP/IPsec and the DLS Provider? If there is, it 26144 * could be a SADB update, and the state of the DLS Provider 26145 * SADB might not be in sync with the SADB maintained by 26146 * IPsec. To avoid dropping packets or using the wrong keying 26147 * material, we do not accelerate this packet. 26148 */ 26149 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 26150 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26151 "ill_dlpi_pending! don't accelerate packet\n")); 26152 return; 26153 } 26154 26155 /* 26156 * Is the Provider in promiscous mode? If it does, we don't 26157 * accelerate the packet since it will bounce back up to the 26158 * listeners in the clear. 26159 */ 26160 if (ill->ill_promisc_on_phys) { 26161 IPSECHW_DEBUG(IPSECHW_PKT, ("ipsec_out_check_is_accelerated: " 26162 "ill in promiscous mode, don't accelerate packet\n")); 26163 return; 26164 } 26165 26166 /* 26167 * Will the packet require fragmentation? 26168 */ 26169 26170 /* 26171 * IPsec ESP note: this is a pessimistic estimate, but the same 26172 * as is used elsewhere. 26173 * SPI + sequence + MAC + IV(blocksize) + padding(blocksize-1) 26174 * + 2-byte trailer 26175 */ 26176 overhead = (sa->ipsa_type == SADB_SATYPE_AH) ? IPSEC_MAX_AH_HDR_SIZE : 26177 IPSEC_BASE_ESP_HDR_SIZE(sa); 26178 26179 if ((plen + overhead) > ill->ill_max_mtu) 26180 return; 26181 26182 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26183 26184 /* 26185 * Can the ill accelerate this IPsec protocol and algorithm 26186 * specified by the SA? 26187 */ 26188 if (!ipsec_capab_match(ill, io->ipsec_out_capab_ill_index, 26189 ill->ill_isv6, sa)) { 26190 return; 26191 } 26192 26193 /* 26194 * Tell AH or ESP that the outbound ill is capable of 26195 * accelerating this packet. 26196 */ 26197 io->ipsec_out_is_capab_ill = B_TRUE; 26198 } 26199 26200 /* 26201 * Select which AH & ESP SA's to use (if any) for the outbound packet. 26202 * 26203 * If this function returns B_TRUE, the requested SA's have been filled 26204 * into the ipsec_out_*_sa pointers. 26205 * 26206 * If the function returns B_FALSE, the packet has been "consumed", most 26207 * likely by an ACQUIRE sent up via PF_KEY to a key management daemon. 26208 * 26209 * The SA references created by the protocol-specific "select" 26210 * function will be released when the ipsec_mp is freed, thanks to the 26211 * ipsec_out_free destructor -- see spd.c. 26212 */ 26213 static boolean_t 26214 ipsec_out_select_sa(mblk_t *ipsec_mp) 26215 { 26216 boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE; 26217 ipsec_out_t *io; 26218 ipsec_policy_t *pp; 26219 ipsec_action_t *ap; 26220 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26221 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26222 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26223 26224 if (!io->ipsec_out_secure) { 26225 /* 26226 * We came here by mistake. 26227 * Don't bother with ipsec processing 26228 * We should "discourage" this path in the future. 26229 */ 26230 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26231 return (B_FALSE); 26232 } 26233 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26234 ASSERT((io->ipsec_out_policy != NULL) || 26235 (io->ipsec_out_act != NULL)); 26236 26237 ASSERT(io->ipsec_out_failed == B_FALSE); 26238 26239 /* 26240 * IPSEC processing has started. 26241 */ 26242 io->ipsec_out_proc_begin = B_TRUE; 26243 ap = io->ipsec_out_act; 26244 if (ap == NULL) { 26245 pp = io->ipsec_out_policy; 26246 ASSERT(pp != NULL); 26247 ap = pp->ipsp_act; 26248 ASSERT(ap != NULL); 26249 } 26250 26251 /* 26252 * We have an action. now, let's select SA's. 26253 * (In the future, we can cache this in the conn_t..) 26254 */ 26255 if (ap->ipa_want_esp) { 26256 if (io->ipsec_out_esp_sa == NULL) { 26257 need_esp_acquire = !ipsec_outbound_sa(ipsec_mp, 26258 IPPROTO_ESP); 26259 } 26260 ASSERT(need_esp_acquire || io->ipsec_out_esp_sa != NULL); 26261 } 26262 26263 if (ap->ipa_want_ah) { 26264 if (io->ipsec_out_ah_sa == NULL) { 26265 need_ah_acquire = !ipsec_outbound_sa(ipsec_mp, 26266 IPPROTO_AH); 26267 } 26268 ASSERT(need_ah_acquire || io->ipsec_out_ah_sa != NULL); 26269 /* 26270 * The ESP and AH processing order needs to be preserved 26271 * when both protocols are required (ESP should be applied 26272 * before AH for an outbound packet). Force an ESP ACQUIRE 26273 * when both ESP and AH are required, and an AH ACQUIRE 26274 * is needed. 26275 */ 26276 if (ap->ipa_want_esp && need_ah_acquire) 26277 need_esp_acquire = B_TRUE; 26278 } 26279 26280 /* 26281 * Send an ACQUIRE (extended, regular, or both) if we need one. 26282 * Release SAs that got referenced, but will not be used until we 26283 * acquire _all_ of the SAs we need. 26284 */ 26285 if (need_ah_acquire || need_esp_acquire) { 26286 if (io->ipsec_out_ah_sa != NULL) { 26287 IPSA_REFRELE(io->ipsec_out_ah_sa); 26288 io->ipsec_out_ah_sa = NULL; 26289 } 26290 if (io->ipsec_out_esp_sa != NULL) { 26291 IPSA_REFRELE(io->ipsec_out_esp_sa); 26292 io->ipsec_out_esp_sa = NULL; 26293 } 26294 26295 sadb_acquire(ipsec_mp, io, need_ah_acquire, need_esp_acquire); 26296 return (B_FALSE); 26297 } 26298 26299 return (B_TRUE); 26300 } 26301 26302 /* 26303 * Process an IPSEC_OUT message and see what you can 26304 * do with it. 26305 * IPQoS Notes: 26306 * We do IPPF processing if IPP_LOCAL_OUT is enabled before processing for 26307 * IPSec. 26308 * XXX would like to nuke ire_t. 26309 * XXX ill_index better be "real" 26310 */ 26311 void 26312 ipsec_out_process(queue_t *q, mblk_t *ipsec_mp, ire_t *ire, uint_t ill_index) 26313 { 26314 ipsec_out_t *io; 26315 ipsec_policy_t *pp; 26316 ipsec_action_t *ap; 26317 ipha_t *ipha; 26318 ip6_t *ip6h; 26319 mblk_t *mp; 26320 ill_t *ill; 26321 zoneid_t zoneid; 26322 ipsec_status_t ipsec_rc; 26323 boolean_t ill_need_rele = B_FALSE; 26324 26325 io = (ipsec_out_t *)ipsec_mp->b_rptr; 26326 ASSERT(io->ipsec_out_type == IPSEC_OUT); 26327 ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t)); 26328 mp = ipsec_mp->b_cont; 26329 26330 /* 26331 * Initiate IPPF processing. We do it here to account for packets 26332 * coming here that don't have any policy (i.e. !io->ipsec_out_secure). 26333 * We can check for ipsec_out_proc_begin even for such packets, as 26334 * they will always be false (asserted below). 26335 */ 26336 if (IPP_ENABLED(IPP_LOCAL_OUT) && !io->ipsec_out_proc_begin) { 26337 ip_process(IPP_LOCAL_OUT, &mp, io->ipsec_out_ill_index != 0 ? 26338 io->ipsec_out_ill_index : ill_index); 26339 if (mp == NULL) { 26340 ip2dbg(("ipsec_out_process: packet dropped "\ 26341 "during IPPF processing\n")); 26342 freeb(ipsec_mp); 26343 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 26344 return; 26345 } 26346 } 26347 26348 if (!io->ipsec_out_secure) { 26349 /* 26350 * We came here by mistake. 26351 * Don't bother with ipsec processing 26352 * Should "discourage" this path in the future. 26353 */ 26354 ASSERT(io->ipsec_out_proc_begin == B_FALSE); 26355 goto done; 26356 } 26357 ASSERT(io->ipsec_out_need_policy == B_FALSE); 26358 ASSERT((io->ipsec_out_policy != NULL) || 26359 (io->ipsec_out_act != NULL)); 26360 ASSERT(io->ipsec_out_failed == B_FALSE); 26361 26362 if (!ipsec_loaded()) { 26363 ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; 26364 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26365 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 26366 } else { 26367 BUMP_MIB(&ip6_mib, ipIfStatsOutDiscards); 26368 } 26369 ip_drop_packet(ipsec_mp, B_FALSE, NULL, ire, 26370 &ipdrops_ip_ipsec_not_loaded, &ip_dropper); 26371 return; 26372 } 26373 26374 /* 26375 * IPSEC processing has started. 26376 */ 26377 io->ipsec_out_proc_begin = B_TRUE; 26378 ap = io->ipsec_out_act; 26379 if (ap == NULL) { 26380 pp = io->ipsec_out_policy; 26381 ASSERT(pp != NULL); 26382 ap = pp->ipsp_act; 26383 ASSERT(ap != NULL); 26384 } 26385 26386 /* 26387 * Save the outbound ill index. When the packet comes back 26388 * from IPsec, we make sure the ill hasn't changed or disappeared 26389 * before sending it the accelerated packet. 26390 */ 26391 if ((ire != NULL) && (io->ipsec_out_capab_ill_index == 0)) { 26392 int ifindex; 26393 ill = ire_to_ill(ire); 26394 ifindex = ill->ill_phyint->phyint_ifindex; 26395 io->ipsec_out_capab_ill_index = ifindex; 26396 } 26397 26398 /* 26399 * The order of processing is first insert a IP header if needed. 26400 * Then insert the ESP header and then the AH header. 26401 */ 26402 if ((io->ipsec_out_se_done == B_FALSE) && 26403 (ap->ipa_want_se)) { 26404 /* 26405 * First get the outer IP header before sending 26406 * it to ESP. 26407 */ 26408 ipha_t *oipha, *iipha; 26409 mblk_t *outer_mp, *inner_mp; 26410 26411 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) { 26412 (void) mi_strlog(q, 0, SL_ERROR|SL_TRACE|SL_CONSOLE, 26413 "ipsec_out_process: " 26414 "Self-Encapsulation failed: Out of memory\n"); 26415 freemsg(ipsec_mp); 26416 if (ill != NULL) { 26417 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26418 } else { 26419 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 26420 } 26421 return; 26422 } 26423 inner_mp = ipsec_mp->b_cont; 26424 ASSERT(inner_mp->b_datap->db_type == M_DATA); 26425 oipha = (ipha_t *)outer_mp->b_rptr; 26426 iipha = (ipha_t *)inner_mp->b_rptr; 26427 *oipha = *iipha; 26428 outer_mp->b_wptr += sizeof (ipha_t); 26429 oipha->ipha_length = htons(ntohs(iipha->ipha_length) + 26430 sizeof (ipha_t)); 26431 oipha->ipha_protocol = IPPROTO_ENCAP; 26432 oipha->ipha_version_and_hdr_length = 26433 IP_SIMPLE_HDR_VERSION; 26434 oipha->ipha_hdr_checksum = 0; 26435 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha); 26436 outer_mp->b_cont = inner_mp; 26437 ipsec_mp->b_cont = outer_mp; 26438 26439 io->ipsec_out_se_done = B_TRUE; 26440 io->ipsec_out_tunnel = B_TRUE; 26441 } 26442 26443 if (((ap->ipa_want_ah && (io->ipsec_out_ah_sa == NULL)) || 26444 (ap->ipa_want_esp && (io->ipsec_out_esp_sa == NULL))) && 26445 !ipsec_out_select_sa(ipsec_mp)) 26446 return; 26447 26448 /* 26449 * By now, we know what SA's to use. Toss over to ESP & AH 26450 * to do the heavy lifting. 26451 */ 26452 zoneid = io->ipsec_out_zoneid; 26453 ASSERT(zoneid != ALL_ZONES); 26454 if ((io->ipsec_out_esp_done == B_FALSE) && (ap->ipa_want_esp)) { 26455 ASSERT(io->ipsec_out_esp_sa != NULL); 26456 io->ipsec_out_esp_done = B_TRUE; 26457 /* 26458 * Note that since hw accel can only apply one transform, 26459 * not two, we skip hw accel for ESP if we also have AH 26460 * This is an design limitation of the interface 26461 * which should be revisited. 26462 */ 26463 ASSERT(ire != NULL); 26464 if (io->ipsec_out_ah_sa == NULL) { 26465 ill = (ill_t *)ire->ire_stq->q_ptr; 26466 ipsec_out_is_accelerated(ipsec_mp, 26467 io->ipsec_out_esp_sa, ill, ire); 26468 } 26469 26470 ipsec_rc = io->ipsec_out_esp_sa->ipsa_output_func(ipsec_mp); 26471 switch (ipsec_rc) { 26472 case IPSEC_STATUS_SUCCESS: 26473 break; 26474 case IPSEC_STATUS_FAILED: 26475 if (ill != NULL) { 26476 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26477 } else { 26478 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 26479 } 26480 /* FALLTHRU */ 26481 case IPSEC_STATUS_PENDING: 26482 return; 26483 } 26484 } 26485 26486 if ((io->ipsec_out_ah_done == B_FALSE) && (ap->ipa_want_ah)) { 26487 ASSERT(io->ipsec_out_ah_sa != NULL); 26488 io->ipsec_out_ah_done = B_TRUE; 26489 if (ire == NULL) { 26490 int idx = io->ipsec_out_capab_ill_index; 26491 ill = ill_lookup_on_ifindex(idx, B_FALSE, 26492 NULL, NULL, NULL, NULL); 26493 ill_need_rele = B_TRUE; 26494 } else { 26495 ill = (ill_t *)ire->ire_stq->q_ptr; 26496 } 26497 ipsec_out_is_accelerated(ipsec_mp, io->ipsec_out_ah_sa, ill, 26498 ire); 26499 26500 ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); 26501 switch (ipsec_rc) { 26502 case IPSEC_STATUS_SUCCESS: 26503 break; 26504 case IPSEC_STATUS_FAILED: 26505 if (ill != NULL) { 26506 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 26507 } else { 26508 BUMP_MIB(&ip_mib, ipIfStatsOutDiscards); 26509 } 26510 /* FALLTHRU */ 26511 case IPSEC_STATUS_PENDING: 26512 if (ill != NULL && ill_need_rele) 26513 ill_refrele(ill); 26514 return; 26515 } 26516 } 26517 /* 26518 * We are done with IPSEC processing. Send it over 26519 * the wire. 26520 */ 26521 done: 26522 mp = ipsec_mp->b_cont; 26523 ipha = (ipha_t *)mp->b_rptr; 26524 if (IPH_HDR_VERSION(ipha) == IP_VERSION) { 26525 ip_wput_ipsec_out(q, ipsec_mp, ipha, ill, ire); 26526 } else { 26527 ip6h = (ip6_t *)ipha; 26528 ip_wput_ipsec_out_v6(q, ipsec_mp, ip6h, ill, ire); 26529 } 26530 if (ill != NULL && ill_need_rele) 26531 ill_refrele(ill); 26532 } 26533 26534 /* ARGSUSED */ 26535 void 26536 ip_restart_optmgmt(ipsq_t *dummy_sq, queue_t *q, mblk_t *first_mp, void *dummy) 26537 { 26538 opt_restart_t *or; 26539 int err; 26540 conn_t *connp; 26541 26542 ASSERT(CONN_Q(q)); 26543 connp = Q_TO_CONN(q); 26544 26545 ASSERT(first_mp->b_datap->db_type == M_CTL); 26546 or = (opt_restart_t *)first_mp->b_rptr; 26547 /* 26548 * We don't need to pass any credentials here since this is just 26549 * a restart. The credentials are passed in when svr4_optcom_req 26550 * is called the first time (from ip_wput_nondata). 26551 */ 26552 if (or->or_type == T_SVR4_OPTMGMT_REQ) { 26553 err = svr4_optcom_req(q, first_mp, NULL, 26554 &ip_opt_obj); 26555 } else { 26556 ASSERT(or->or_type == T_OPTMGMT_REQ); 26557 err = tpi_optcom_req(q, first_mp, NULL, 26558 &ip_opt_obj); 26559 } 26560 if (err != EINPROGRESS) { 26561 /* operation is done */ 26562 CONN_OPER_PENDING_DONE(connp); 26563 } 26564 } 26565 26566 /* 26567 * ioctls that go through a down/up sequence may need to wait for the down 26568 * to complete. This involves waiting for the ire and ipif refcnts to go down 26569 * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail. 26570 */ 26571 /* ARGSUSED */ 26572 void 26573 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26574 { 26575 struct iocblk *iocp; 26576 mblk_t *mp1; 26577 ipif_t *ipif; 26578 ip_ioctl_cmd_t *ipip; 26579 int err; 26580 sin_t *sin; 26581 struct lifreq *lifr; 26582 struct ifreq *ifr; 26583 26584 iocp = (struct iocblk *)mp->b_rptr; 26585 ASSERT(ipsq != NULL); 26586 /* Existence of mp1 verified in ip_wput_nondata */ 26587 mp1 = mp->b_cont->b_cont; 26588 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26589 if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) { 26590 ill_t *ill; 26591 /* 26592 * Special case where ipsq_current_ipif may not be set. 26593 * ill_phyint_reinit merged the v4 and v6 into a single ipsq. 26594 * ill could also have become part of a ipmp group in the 26595 * process, we are here as were not able to complete the 26596 * operation in ipif_set_values because we could not become 26597 * exclusive on the new ipsq, In such a case ipsq_current_ipif 26598 * will not be set so we need to set it. 26599 */ 26600 ill = (ill_t *)q->q_ptr; 26601 ipsq->ipsq_current_ipif = ill->ill_ipif; 26602 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26603 } 26604 26605 ipif = ipsq->ipsq_current_ipif; 26606 ASSERT(ipif != NULL); 26607 if (ipip->ipi_cmd_type == IF_CMD) { 26608 /* This a old style SIOC[GS]IF* command */ 26609 ifr = (struct ifreq *)mp1->b_rptr; 26610 sin = (sin_t *)&ifr->ifr_addr; 26611 } else if (ipip->ipi_cmd_type == LIF_CMD) { 26612 /* This a new style SIOC[GS]LIF* command */ 26613 lifr = (struct lifreq *)mp1->b_rptr; 26614 sin = (sin_t *)&lifr->lifr_addr; 26615 } else { 26616 sin = NULL; 26617 } 26618 26619 err = (*ipip->ipi_func_restart)(ipif, sin, q, mp, ipip, 26620 (void *)mp1->b_rptr); 26621 26622 /* SIOCLIFREMOVEIF could have removed the ipif */ 26623 ip_ioctl_finish(q, mp, err, 26624 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26625 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ipif, ipsq); 26626 } 26627 26628 /* 26629 * ioctl processing 26630 * 26631 * ioctl processing starts with ip_sioctl_copyin_setup which looks up 26632 * the ioctl command in the ioctl tables and determines the copyin data size 26633 * from the ioctl property ipi_copyin_size, and does an mi_copyin() of that 26634 * size. 26635 * 26636 * ioctl processing then continues when the M_IOCDATA makes its way down. 26637 * Now the ioctl is looked up again in the ioctl table, and its properties are 26638 * extracted. The associated 'conn' is then refheld till the end of the ioctl 26639 * and the general ioctl processing function ip_process_ioctl is called. 26640 * ip_process_ioctl determines if the ioctl needs to be serialized, and if 26641 * so goes thru the serialization primitive ipsq_try_enter. Then the 26642 * appropriate function to handle the ioctl is called based on the entry in 26643 * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish 26644 * which also refreleases the 'conn' that was refheld at the start of the 26645 * ioctl. Finally ipsq_exit is called if needed to exit the ipsq. 26646 * ip_extract_lifreq_cmn extracts the interface name from the lifreq/ifreq 26647 * struct and looks up the ipif. ip_extract_tunreq handles the case of tunnel. 26648 * 26649 * Many exclusive ioctls go thru an internal down up sequence as part of 26650 * the operation. For example an attempt to change the IP address of an 26651 * ipif entails ipif_down, set address, ipif_up. Bringing down the interface 26652 * does all the cleanup such as deleting all ires that use this address. 26653 * Then we need to wait till all references to the interface go away. 26654 */ 26655 void 26656 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 26657 { 26658 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 26659 ip_ioctl_cmd_t *ipip = (ip_ioctl_cmd_t *)arg; 26660 cmd_info_t ci; 26661 int err; 26662 boolean_t entered_ipsq = B_FALSE; 26663 26664 ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd)); 26665 26666 if (ipip == NULL) 26667 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26668 26669 /* 26670 * SIOCLIFADDIF needs to go thru a special path since the 26671 * ill may not exist yet. This happens in the case of lo0 26672 * which is created using this ioctl. 26673 */ 26674 if (ipip->ipi_cmd == SIOCLIFADDIF) { 26675 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL); 26676 ip_ioctl_finish(q, mp, err, 26677 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26678 NULL, NULL); 26679 return; 26680 } 26681 26682 ci.ci_ipif = NULL; 26683 switch (ipip->ipi_cmd_type) { 26684 case IF_CMD: 26685 case LIF_CMD: 26686 /* 26687 * ioctls that pass in a [l]ifreq appear here. 26688 * ip_extract_lifreq_cmn returns a refheld ipif in 26689 * ci.ci_ipif 26690 */ 26691 err = ip_extract_lifreq_cmn(q, mp, ipip->ipi_cmd_type, 26692 ipip->ipi_flags, &ci, ip_process_ioctl); 26693 if (err != 0) { 26694 ip_ioctl_finish(q, mp, err, 26695 ipip->ipi_flags & IPI_GET_CMD ? 26696 COPYOUT : NO_COPYOUT, NULL, NULL); 26697 return; 26698 } 26699 ASSERT(ci.ci_ipif != NULL); 26700 break; 26701 26702 case TUN_CMD: 26703 /* 26704 * SIOC[GS]TUNPARAM appear here. ip_extract_tunreq returns 26705 * a refheld ipif in ci.ci_ipif 26706 */ 26707 err = ip_extract_tunreq(q, mp, &ci.ci_ipif, ip_process_ioctl); 26708 if (err != 0) { 26709 ip_ioctl_finish(q, mp, err, 26710 ipip->ipi_flags & IPI_GET_CMD ? 26711 COPYOUT : NO_COPYOUT, NULL, NULL); 26712 return; 26713 } 26714 ASSERT(ci.ci_ipif != NULL); 26715 break; 26716 26717 case MISC_CMD: 26718 /* 26719 * ioctls that neither pass in [l]ifreq or iftun_req come here 26720 * For eg. SIOCGLIFCONF will appear here. 26721 */ 26722 switch (ipip->ipi_cmd) { 26723 case IF_UNITSEL: 26724 /* ioctl comes down the ill */ 26725 ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif; 26726 ipif_refhold(ci.ci_ipif); 26727 break; 26728 case SIOCGMSFILTER: 26729 case SIOCSMSFILTER: 26730 case SIOCGIPMSFILTER: 26731 case SIOCSIPMSFILTER: 26732 err = ip_extract_msfilter(q, mp, &ci.ci_ipif, 26733 ip_process_ioctl); 26734 if (err != 0) { 26735 ip_ioctl_finish(q, mp, err, 26736 ipip->ipi_flags & IPI_GET_CMD ? 26737 COPYOUT : NO_COPYOUT, NULL, NULL); 26738 return; 26739 } 26740 break; 26741 } 26742 err = 0; 26743 ci.ci_sin = NULL; 26744 ci.ci_sin6 = NULL; 26745 ci.ci_lifr = NULL; 26746 break; 26747 } 26748 26749 /* 26750 * If ipsq is non-null, we are already being called exclusively 26751 */ 26752 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 26753 if (!(ipip->ipi_flags & IPI_WR)) { 26754 /* 26755 * A return value of EINPROGRESS means the ioctl is 26756 * either queued and waiting for some reason or has 26757 * already completed. 26758 */ 26759 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26760 ci.ci_lifr); 26761 if (ci.ci_ipif != NULL) 26762 ipif_refrele(ci.ci_ipif); 26763 ip_ioctl_finish(q, mp, err, 26764 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26765 NULL, NULL); 26766 return; 26767 } 26768 26769 ASSERT(ci.ci_ipif != NULL); 26770 26771 if (ipsq == NULL) { 26772 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, 26773 ip_process_ioctl, NEW_OP, B_TRUE); 26774 entered_ipsq = B_TRUE; 26775 } 26776 /* 26777 * Release the ipif so that ipif_down and friends that wait for 26778 * references to go away are not misled about the current ipif_refcnt 26779 * values. We are writer so we can access the ipif even after releasing 26780 * the ipif. 26781 */ 26782 ipif_refrele(ci.ci_ipif); 26783 if (ipsq == NULL) 26784 return; 26785 26786 mutex_enter(&ipsq->ipsq_lock); 26787 ASSERT(ipsq->ipsq_current_ipif == NULL); 26788 ipsq->ipsq_current_ipif = ci.ci_ipif; 26789 ipsq->ipsq_last_cmd = ipip->ipi_cmd; 26790 mutex_exit(&ipsq->ipsq_lock); 26791 mutex_enter(&(ci.ci_ipif)->ipif_ill->ill_lock); 26792 /* 26793 * For most set ioctls that come here, this serves as a single point 26794 * where we set the IPIF_CHANGING flag. This ensures that there won't 26795 * be any new references to the ipif. This helps functions that go 26796 * through this path and end up trying to wait for the refcnts 26797 * associated with the ipif to go down to zero. Some exceptions are 26798 * Failover, Failback, and Groupname commands that operate on more than 26799 * just the ci.ci_ipif. These commands internally determine the 26800 * set of ipif's they operate on and set and clear the IPIF_CHANGING 26801 * flags on that set. Another exception is the Removeif command that 26802 * sets the IPIF_CONDEMNED flag internally after identifying the right 26803 * ipif to operate on. 26804 */ 26805 if (ipip->ipi_cmd != SIOCLIFREMOVEIF && 26806 ipip->ipi_cmd != SIOCLIFFAILOVER && 26807 ipip->ipi_cmd != SIOCLIFFAILBACK && 26808 ipip->ipi_cmd != SIOCSLIFGROUPNAME) 26809 (ci.ci_ipif)->ipif_state_flags |= IPIF_CHANGING; 26810 mutex_exit(&(ci.ci_ipif)->ipif_ill->ill_lock); 26811 26812 /* 26813 * A return value of EINPROGRESS means the ioctl is 26814 * either queued and waiting for some reason or has 26815 * already completed. 26816 */ 26817 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, 26818 ci.ci_lifr); 26819 26820 /* SIOCLIFREMOVEIF could have removed the ipif */ 26821 ip_ioctl_finish(q, mp, err, 26822 ipip->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT, 26823 ipip->ipi_cmd == SIOCLIFREMOVEIF ? NULL : ci.ci_ipif, ipsq); 26824 26825 if (entered_ipsq) 26826 ipsq_exit(ipsq, B_TRUE, B_TRUE); 26827 } 26828 26829 /* 26830 * Complete the ioctl. Typically ioctls use the mi package and need to 26831 * do mi_copyout/mi_copy_done. 26832 */ 26833 void 26834 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, 26835 ipif_t *ipif, ipsq_t *ipsq) 26836 { 26837 conn_t *connp = NULL; 26838 hook_nic_event_t *info; 26839 26840 if (err == EINPROGRESS) 26841 return; 26842 26843 if (CONN_Q(q)) { 26844 connp = Q_TO_CONN(q); 26845 ASSERT(connp->conn_ref >= 2); 26846 } 26847 26848 switch (mode) { 26849 case COPYOUT: 26850 if (err == 0) 26851 mi_copyout(q, mp); 26852 else 26853 mi_copy_done(q, mp, err); 26854 break; 26855 26856 case NO_COPYOUT: 26857 mi_copy_done(q, mp, err); 26858 break; 26859 26860 default: 26861 /* An ioctl aborted through a conn close would take this path */ 26862 break; 26863 } 26864 26865 /* 26866 * The refhold placed at the start of the ioctl is released here. 26867 */ 26868 if (connp != NULL) 26869 CONN_OPER_PENDING_DONE(connp); 26870 26871 /* 26872 * If the ioctl were an exclusive ioctl it would have set 26873 * IPIF_CHANGING at the start of the ioctl which is undone here. 26874 */ 26875 if (ipif != NULL) { 26876 mutex_enter(&(ipif)->ipif_ill->ill_lock); 26877 ipif->ipif_state_flags &= ~IPIF_CHANGING; 26878 26879 /* 26880 * Unhook the nic event message from the ill and enqueue it into 26881 * the nic event taskq. 26882 */ 26883 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 26884 if (ddi_taskq_dispatch(eventq_queue_nic, 26885 ip_ne_queue_func, (void *)info, DDI_SLEEP) 26886 == DDI_FAILURE) { 26887 ip2dbg(("ip_ioctl_finish: ddi_taskq_dispatch" 26888 "failed\n")); 26889 if (info->hne_data != NULL) 26890 kmem_free(info->hne_data, 26891 info->hne_datalen); 26892 kmem_free(info, sizeof (hook_nic_event_t)); 26893 } 26894 26895 ipif->ipif_ill->ill_nic_event_info = NULL; 26896 } 26897 26898 mutex_exit(&(ipif)->ipif_ill->ill_lock); 26899 } 26900 26901 /* 26902 * Clear the current ipif in the ipsq at the completion of the ioctl. 26903 * Note that a non-null ipsq_current_ipif prevents new ioctls from 26904 * entering the ipsq 26905 */ 26906 if (ipsq != NULL) { 26907 mutex_enter(&ipsq->ipsq_lock); 26908 ipsq->ipsq_current_ipif = NULL; 26909 mutex_exit(&ipsq->ipsq_lock); 26910 } 26911 } 26912 26913 /* 26914 * This is called from ip_wput_nondata to resume a deferred TCP bind. 26915 */ 26916 /* ARGSUSED */ 26917 void 26918 ip_resume_tcp_bind(void *arg, mblk_t *mp, void *arg2) 26919 { 26920 conn_t *connp = arg; 26921 tcp_t *tcp; 26922 26923 ASSERT(connp != NULL && IPCL_IS_TCP(connp) && connp->conn_tcp != NULL); 26924 tcp = connp->conn_tcp; 26925 26926 if (connp->conn_tcp->tcp_state == TCPS_CLOSED) 26927 freemsg(mp); 26928 else 26929 tcp_rput_other(tcp, mp); 26930 CONN_OPER_PENDING_DONE(connp); 26931 } 26932 26933 /* Called from ip_wput for all non data messages */ 26934 /* ARGSUSED */ 26935 void 26936 ip_wput_nondata(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 26937 { 26938 mblk_t *mp1; 26939 ire_t *ire, *fake_ire; 26940 ill_t *ill; 26941 struct iocblk *iocp; 26942 ip_ioctl_cmd_t *ipip; 26943 cred_t *cr; 26944 conn_t *connp = NULL; 26945 int cmd, err; 26946 nce_t *nce; 26947 ipif_t *ipif; 26948 26949 if (CONN_Q(q)) 26950 connp = Q_TO_CONN(q); 26951 26952 cr = DB_CREDDEF(mp, GET_QUEUE_CRED(q)); 26953 26954 /* Check if it is a queue to /dev/sctp. */ 26955 if (connp != NULL && connp->conn_ulp == IPPROTO_SCTP && 26956 connp->conn_rq == NULL) { 26957 sctp_wput(q, mp); 26958 return; 26959 } 26960 26961 switch (DB_TYPE(mp)) { 26962 case M_IOCTL: 26963 /* 26964 * IOCTL processing begins in ip_sioctl_copyin_setup which 26965 * will arrange to copy in associated control structures. 26966 */ 26967 ip_sioctl_copyin_setup(q, mp); 26968 return; 26969 case M_IOCDATA: 26970 /* 26971 * Ensure that this is associated with one of our trans- 26972 * parent ioctls. If it's not ours, discard it if we're 26973 * running as a driver, or pass it on if we're a module. 26974 */ 26975 iocp = (struct iocblk *)mp->b_rptr; 26976 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 26977 if (ipip == NULL) { 26978 if (q->q_next == NULL) { 26979 goto nak; 26980 } else { 26981 putnext(q, mp); 26982 } 26983 return; 26984 } else if ((q->q_next != NULL) && 26985 !(ipip->ipi_flags & IPI_MODOK)) { 26986 /* 26987 * the ioctl is one we recognise, but is not 26988 * consumed by IP as a module, pass M_IOCDATA 26989 * for processing downstream, but only for 26990 * common Streams ioctls. 26991 */ 26992 if (ipip->ipi_flags & IPI_PASS_DOWN) { 26993 putnext(q, mp); 26994 return; 26995 } else { 26996 goto nak; 26997 } 26998 } 26999 27000 /* IOCTL continuation following copyin or copyout. */ 27001 if (mi_copy_state(q, mp, NULL) == -1) { 27002 /* 27003 * The copy operation failed. mi_copy_state already 27004 * cleaned up, so we're out of here. 27005 */ 27006 return; 27007 } 27008 /* 27009 * If we just completed a copy in, we become writer and 27010 * continue processing in ip_sioctl_copyin_done. If it 27011 * was a copy out, we call mi_copyout again. If there is 27012 * nothing more to copy out, it will complete the IOCTL. 27013 */ 27014 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) { 27015 if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) { 27016 mi_copy_done(q, mp, EPROTO); 27017 return; 27018 } 27019 /* 27020 * Check for cases that need more copying. A return 27021 * value of 0 means a second copyin has been started, 27022 * so we return; a return value of 1 means no more 27023 * copying is needed, so we continue. 27024 */ 27025 cmd = iocp->ioc_cmd; 27026 if ((cmd == SIOCGMSFILTER || cmd == SIOCSMSFILTER || 27027 cmd == SIOCGIPMSFILTER || cmd == SIOCSIPMSFILTER) && 27028 MI_COPY_COUNT(mp) == 1) { 27029 if (ip_copyin_msfilter(q, mp) == 0) 27030 return; 27031 } 27032 /* 27033 * Refhold the conn, till the ioctl completes. This is 27034 * needed in case the ioctl ends up in the pending mp 27035 * list. Every mp in the ill_pending_mp list and 27036 * the ipsq_pending_mp must have a refhold on the conn 27037 * to resume processing. The refhold is released when 27038 * the ioctl completes. (normally or abnormally) 27039 * In all cases ip_ioctl_finish is called to finish 27040 * the ioctl. 27041 */ 27042 if (connp != NULL) { 27043 /* This is not a reentry */ 27044 ASSERT(ipsq == NULL); 27045 CONN_INC_REF(connp); 27046 } else { 27047 if (!(ipip->ipi_flags & IPI_MODOK)) { 27048 mi_copy_done(q, mp, EINVAL); 27049 return; 27050 } 27051 } 27052 27053 ip_process_ioctl(ipsq, q, mp, ipip); 27054 27055 } else { 27056 mi_copyout(q, mp); 27057 } 27058 return; 27059 nak: 27060 iocp->ioc_error = EINVAL; 27061 mp->b_datap->db_type = M_IOCNAK; 27062 iocp->ioc_count = 0; 27063 qreply(q, mp); 27064 return; 27065 27066 case M_IOCNAK: 27067 /* 27068 * The only way we could get here is if a resolver didn't like 27069 * an IOCTL we sent it. This shouldn't happen. 27070 */ 27071 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 27072 "ip_wput: unexpected M_IOCNAK, ioc_cmd 0x%x", 27073 ((struct iocblk *)mp->b_rptr)->ioc_cmd); 27074 freemsg(mp); 27075 return; 27076 case M_IOCACK: 27077 /* Finish socket ioctls passed through to ARP. */ 27078 ip_sioctl_iocack(q, mp); 27079 return; 27080 case M_FLUSH: 27081 if (*mp->b_rptr & FLUSHW) 27082 flushq(q, FLUSHALL); 27083 if (q->q_next) { 27084 /* 27085 * M_FLUSH is sent up to IP by some drivers during 27086 * unbind. ip_rput has already replied to it. We are 27087 * here for the M_FLUSH that we originated in IP 27088 * before sending the unbind request to the driver. 27089 * Just free it as we don't queue packets in IP 27090 * on the write side of the device instance. 27091 */ 27092 freemsg(mp); 27093 return; 27094 } 27095 if (*mp->b_rptr & FLUSHR) { 27096 *mp->b_rptr &= ~FLUSHW; 27097 qreply(q, mp); 27098 return; 27099 } 27100 freemsg(mp); 27101 return; 27102 case IRE_DB_REQ_TYPE: 27103 /* An Upper Level Protocol wants a copy of an IRE. */ 27104 ip_ire_req(q, mp); 27105 return; 27106 case M_CTL: 27107 if (mp->b_wptr - mp->b_rptr < sizeof (uint32_t)) 27108 break; 27109 27110 if (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == 27111 TUN_HELLO) { 27112 ASSERT(connp != NULL); 27113 connp->conn_flags |= IPCL_IPTUN; 27114 freeb(mp); 27115 return; 27116 } 27117 27118 if (connp != NULL && *(uint32_t *)mp->b_rptr == 27119 IP_ULP_OUT_LABELED) { 27120 out_labeled_t *olp; 27121 27122 if (mp->b_wptr - mp->b_rptr != sizeof (*olp)) 27123 break; 27124 olp = (out_labeled_t *)mp->b_rptr; 27125 connp->conn_ulp_labeled = olp->out_qnext == q; 27126 freemsg(mp); 27127 return; 27128 } 27129 27130 /* M_CTL messages are used by ARP to tell us things. */ 27131 if ((mp->b_wptr - mp->b_rptr) < sizeof (arc_t)) 27132 break; 27133 switch (((arc_t *)mp->b_rptr)->arc_cmd) { 27134 case AR_ENTRY_SQUERY: 27135 ip_wput_ctl(q, mp); 27136 return; 27137 case AR_CLIENT_NOTIFY: 27138 ip_arp_news(q, mp); 27139 return; 27140 case AR_DLPIOP_DONE: 27141 ASSERT(q->q_next != NULL); 27142 ill = (ill_t *)q->q_ptr; 27143 /* qwriter_ip releases the refhold */ 27144 /* refhold on ill stream is ok without ILL_CAN_LOOKUP */ 27145 ill_refhold(ill); 27146 (void) qwriter_ip(NULL, ill, q, mp, ip_arp_done, 27147 CUR_OP, B_FALSE); 27148 return; 27149 case AR_ARP_CLOSING: 27150 /* 27151 * ARP (above us) is closing. If no ARP bringup is 27152 * currently pending, ack the message so that ARP 27153 * can complete its close. Also mark ill_arp_closing 27154 * so that new ARP bringups will fail. If any 27155 * ARP bringup is currently in progress, we will 27156 * ack this when the current ARP bringup completes. 27157 */ 27158 ASSERT(q->q_next != NULL); 27159 ill = (ill_t *)q->q_ptr; 27160 mutex_enter(&ill->ill_lock); 27161 ill->ill_arp_closing = 1; 27162 if (!ill->ill_arp_bringup_pending) { 27163 mutex_exit(&ill->ill_lock); 27164 qreply(q, mp); 27165 } else { 27166 mutex_exit(&ill->ill_lock); 27167 freemsg(mp); 27168 } 27169 return; 27170 case AR_ARP_EXTEND: 27171 /* 27172 * The ARP module above us is capable of duplicate 27173 * address detection. Old ATM drivers will not send 27174 * this message. 27175 */ 27176 ASSERT(q->q_next != NULL); 27177 ill = (ill_t *)q->q_ptr; 27178 ill->ill_arp_extend = B_TRUE; 27179 freemsg(mp); 27180 return; 27181 default: 27182 break; 27183 } 27184 break; 27185 case M_PROTO: 27186 case M_PCPROTO: 27187 /* 27188 * The only PROTO messages we expect are ULP binds and 27189 * copies of option negotiation acknowledgements. 27190 */ 27191 switch (((union T_primitives *)mp->b_rptr)->type) { 27192 case O_T_BIND_REQ: 27193 case T_BIND_REQ: { 27194 /* Request can get queued in bind */ 27195 ASSERT(connp != NULL); 27196 /* 27197 * Both TCP and UDP call ip_bind_{v4,v6}() directly 27198 * instead of going through this path. We only get 27199 * here in the following cases: 27200 * 27201 * a. Bind retries, where ipsq is non-NULL. 27202 * b. T_BIND_REQ is issued from non TCP/UDP 27203 * transport, e.g. icmp for raw socket, 27204 * in which case ipsq will be NULL. 27205 */ 27206 ASSERT(ipsq != NULL || 27207 (!IPCL_IS_TCP(connp) && !IPCL_IS_UDP(connp))); 27208 27209 /* Don't increment refcnt if this is a re-entry */ 27210 if (ipsq == NULL) 27211 CONN_INC_REF(connp); 27212 mp = connp->conn_af_isv6 ? ip_bind_v6(q, mp, 27213 connp, NULL) : ip_bind_v4(q, mp, connp); 27214 if (mp == NULL) 27215 return; 27216 if (IPCL_IS_TCP(connp)) { 27217 /* 27218 * In the case of TCP endpoint we 27219 * come here only for bind retries 27220 */ 27221 ASSERT(ipsq != NULL); 27222 CONN_INC_REF(connp); 27223 squeue_fill(connp->conn_sqp, mp, 27224 ip_resume_tcp_bind, connp, 27225 SQTAG_BIND_RETRY); 27226 return; 27227 } else if (IPCL_IS_UDP(connp)) { 27228 /* 27229 * In the case of UDP endpoint we 27230 * come here only for bind retries 27231 */ 27232 ASSERT(ipsq != NULL); 27233 udp_resume_bind(connp, mp); 27234 return; 27235 } 27236 qreply(q, mp); 27237 CONN_OPER_PENDING_DONE(connp); 27238 return; 27239 } 27240 case T_SVR4_OPTMGMT_REQ: 27241 ip2dbg(("ip_wput: T_SVR4_OPTMGMT_REQ flags %x\n", 27242 ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags)); 27243 27244 ASSERT(connp != NULL); 27245 if (!snmpcom_req(q, mp, ip_snmp_set, 27246 ip_snmp_get, cr)) { 27247 /* 27248 * Call svr4_optcom_req so that it can 27249 * generate the ack. We don't come here 27250 * if this operation is being restarted. 27251 * ip_restart_optmgmt will drop the conn ref. 27252 * In the case of ipsec option after the ipsec 27253 * load is complete conn_restart_ipsec_waiter 27254 * drops the conn ref. 27255 */ 27256 ASSERT(ipsq == NULL); 27257 CONN_INC_REF(connp); 27258 if (ip_check_for_ipsec_opt(q, mp)) 27259 return; 27260 err = svr4_optcom_req(q, mp, cr, &ip_opt_obj); 27261 if (err != EINPROGRESS) { 27262 /* Operation is done */ 27263 CONN_OPER_PENDING_DONE(connp); 27264 } 27265 } 27266 return; 27267 case T_OPTMGMT_REQ: 27268 ip2dbg(("ip_wput: T_OPTMGMT_REQ\n")); 27269 /* 27270 * Note: No snmpcom_req support through new 27271 * T_OPTMGMT_REQ. 27272 * Call tpi_optcom_req so that it can 27273 * generate the ack. 27274 */ 27275 ASSERT(connp != NULL); 27276 ASSERT(ipsq == NULL); 27277 /* 27278 * We don't come here for restart. ip_restart_optmgmt 27279 * will drop the conn ref. In the case of ipsec option 27280 * after the ipsec load is complete 27281 * conn_restart_ipsec_waiter drops the conn ref. 27282 */ 27283 CONN_INC_REF(connp); 27284 if (ip_check_for_ipsec_opt(q, mp)) 27285 return; 27286 err = tpi_optcom_req(q, mp, cr, &ip_opt_obj); 27287 if (err != EINPROGRESS) { 27288 /* Operation is done */ 27289 CONN_OPER_PENDING_DONE(connp); 27290 } 27291 return; 27292 case T_UNBIND_REQ: 27293 mp = ip_unbind(q, mp); 27294 qreply(q, mp); 27295 return; 27296 default: 27297 /* 27298 * Have to drop any DLPI messages coming down from 27299 * arp (such as an info_req which would cause ip 27300 * to receive an extra info_ack if it was passed 27301 * through. 27302 */ 27303 ip1dbg(("ip_wput_nondata: dropping M_PROTO %d\n", 27304 (int)*(uint_t *)mp->b_rptr)); 27305 freemsg(mp); 27306 return; 27307 } 27308 /* NOTREACHED */ 27309 case IRE_DB_TYPE: { 27310 nce_t *nce; 27311 ill_t *ill; 27312 in6_addr_t gw_addr_v6; 27313 27314 27315 /* 27316 * This is a response back from a resolver. It 27317 * consists of a message chain containing: 27318 * IRE_MBLK-->LL_HDR_MBLK->pkt 27319 * The IRE_MBLK is the one we allocated in ip_newroute. 27320 * The LL_HDR_MBLK is the DLPI header to use to get 27321 * the attached packet, and subsequent ones for the 27322 * same destination, transmitted. 27323 */ 27324 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* ire */ 27325 break; 27326 /* 27327 * First, check to make sure the resolution succeeded. 27328 * If it failed, the second mblk will be empty. 27329 * If it is, free the chain, dropping the packet. 27330 * (We must ire_delete the ire; that frees the ire mblk) 27331 * We're doing this now to support PVCs for ATM; it's 27332 * a partial xresolv implementation. When we fully implement 27333 * xresolv interfaces, instead of freeing everything here 27334 * we'll initiate neighbor discovery. 27335 * 27336 * For v4 (ARP and other external resolvers) the resolver 27337 * frees the message, so no check is needed. This check 27338 * is required, though, for a full xresolve implementation. 27339 * Including this code here now both shows how external 27340 * resolvers can NACK a resolution request using an 27341 * existing design that has no specific provisions for NACKs, 27342 * and also takes into account that the current non-ARP 27343 * external resolver has been coded to use this method of 27344 * NACKing for all IPv6 (xresolv) cases, 27345 * whether our xresolv implementation is complete or not. 27346 * 27347 */ 27348 ire = (ire_t *)mp->b_rptr; 27349 ill = ire_to_ill(ire); 27350 mp1 = mp->b_cont; /* dl_unitdata_req */ 27351 if (mp1->b_rptr == mp1->b_wptr) { 27352 if (ire->ire_ipversion == IPV6_VERSION) { 27353 /* 27354 * XRESOLV interface. 27355 */ 27356 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27357 mutex_enter(&ire->ire_lock); 27358 gw_addr_v6 = ire->ire_gateway_addr_v6; 27359 mutex_exit(&ire->ire_lock); 27360 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27361 nce = ndp_lookup_v6(ill, 27362 &ire->ire_addr_v6, B_FALSE); 27363 } else { 27364 nce = ndp_lookup_v6(ill, &gw_addr_v6, 27365 B_FALSE); 27366 } 27367 if (nce != NULL) { 27368 nce_resolv_failed(nce); 27369 ndp_delete(nce); 27370 NCE_REFRELE(nce); 27371 } 27372 } 27373 mp->b_cont = NULL; 27374 freemsg(mp1); /* frees the pkt as well */ 27375 ASSERT(ire->ire_nce == NULL); 27376 ire_delete((ire_t *)mp->b_rptr); 27377 return; 27378 } 27379 27380 /* 27381 * Split them into IRE_MBLK and pkt and feed it into 27382 * ire_add_then_send. Then in ire_add_then_send 27383 * the IRE will be added, and then the packet will be 27384 * run back through ip_wput. This time it will make 27385 * it to the wire. 27386 */ 27387 mp->b_cont = NULL; 27388 mp = mp1->b_cont; /* now, mp points to pkt */ 27389 mp1->b_cont = NULL; 27390 ip1dbg(("ip_wput_nondata: reply from external resolver \n")); 27391 if (ire->ire_ipversion == IPV6_VERSION) { 27392 /* 27393 * XRESOLV interface. Find the nce and put a copy 27394 * of the dl_unitdata_req in nce_res_mp 27395 */ 27396 ASSERT(ill->ill_flags & ILLF_XRESOLV); 27397 mutex_enter(&ire->ire_lock); 27398 gw_addr_v6 = ire->ire_gateway_addr_v6; 27399 mutex_exit(&ire->ire_lock); 27400 if (IN6_IS_ADDR_UNSPECIFIED(&gw_addr_v6)) { 27401 nce = ndp_lookup_v6(ill, &ire->ire_addr_v6, 27402 B_FALSE); 27403 } else { 27404 nce = ndp_lookup_v6(ill, &gw_addr_v6, B_FALSE); 27405 } 27406 if (nce != NULL) { 27407 /* 27408 * We have to protect nce_res_mp here 27409 * from being accessed by other threads 27410 * while we change the mblk pointer. 27411 * Other functions will also lock the nce when 27412 * accessing nce_res_mp. 27413 * 27414 * The reason we change the mblk pointer 27415 * here rather than copying the resolved address 27416 * into the template is that, unlike with 27417 * ethernet, we have no guarantee that the 27418 * resolved address length will be 27419 * smaller than or equal to the lla length 27420 * with which the template was allocated, 27421 * (for ethernet, they're equal) 27422 * so we have to use the actual resolved 27423 * address mblk - which holds the real 27424 * dl_unitdata_req with the resolved address. 27425 * 27426 * Doing this is the same behavior as was 27427 * previously used in the v4 ARP case. 27428 */ 27429 mutex_enter(&nce->nce_lock); 27430 if (nce->nce_res_mp != NULL) 27431 freemsg(nce->nce_res_mp); 27432 nce->nce_res_mp = mp1; 27433 mutex_exit(&nce->nce_lock); 27434 /* 27435 * We do a fastpath probe here because 27436 * we have resolved the address without 27437 * using Neighbor Discovery. 27438 * In the non-XRESOLV v6 case, the fastpath 27439 * probe is done right after neighbor 27440 * discovery completes. 27441 */ 27442 if (nce->nce_res_mp != NULL) { 27443 int res; 27444 nce_fastpath_list_add(nce); 27445 res = ill_fastpath_probe(ill, 27446 nce->nce_res_mp); 27447 if (res != 0 && res != EAGAIN) 27448 nce_fastpath_list_delete(nce); 27449 } 27450 27451 ire_add_then_send(q, ire, mp); 27452 /* 27453 * Now we have to clean out any packets 27454 * that may have been queued on the nce 27455 * while it was waiting for address resolution 27456 * to complete. 27457 */ 27458 mutex_enter(&nce->nce_lock); 27459 mp1 = nce->nce_qd_mp; 27460 nce->nce_qd_mp = NULL; 27461 mutex_exit(&nce->nce_lock); 27462 while (mp1 != NULL) { 27463 mblk_t *nxt_mp; 27464 queue_t *fwdq = NULL; 27465 ill_t *inbound_ill; 27466 uint_t ifindex; 27467 27468 nxt_mp = mp1->b_next; 27469 mp1->b_next = NULL; 27470 /* 27471 * Retrieve ifindex stored in 27472 * ip_rput_data_v6() 27473 */ 27474 ifindex = 27475 (uint_t)(uintptr_t)mp1->b_prev; 27476 inbound_ill = 27477 ill_lookup_on_ifindex(ifindex, 27478 B_TRUE, NULL, NULL, NULL, 27479 NULL); 27480 mp1->b_prev = NULL; 27481 if (inbound_ill != NULL) 27482 fwdq = inbound_ill->ill_rq; 27483 27484 if (fwdq != NULL) { 27485 put(fwdq, mp1); 27486 ill_refrele(inbound_ill); 27487 } else 27488 put(WR(ill->ill_rq), mp1); 27489 mp1 = nxt_mp; 27490 } 27491 NCE_REFRELE(nce); 27492 } else { /* nce is NULL; clean up */ 27493 ire_delete(ire); 27494 freemsg(mp); 27495 freemsg(mp1); 27496 return; 27497 } 27498 } else { 27499 nce_t *arpce; 27500 /* 27501 * Link layer resolution succeeded. Recompute the 27502 * ire_nce. 27503 */ 27504 ASSERT(ire->ire_type & (IRE_CACHE|IRE_BROADCAST)); 27505 if ((arpce = ndp_lookup_v4(ill, 27506 (ire->ire_gateway_addr != INADDR_ANY ? 27507 &ire->ire_gateway_addr : &ire->ire_addr), 27508 B_FALSE)) == NULL) { 27509 freeb(ire->ire_mp); 27510 freeb(mp1); 27511 freemsg(mp); 27512 return; 27513 } 27514 mutex_enter(&arpce->nce_lock); 27515 arpce->nce_last = TICK_TO_MSEC(lbolt64); 27516 if (arpce->nce_state == ND_REACHABLE) { 27517 /* 27518 * Someone resolved this before us; 27519 * cleanup the res_mp. Since ire has 27520 * not been added yet, the call to ire_add_v4 27521 * from ire_add_then_send (when a dup is 27522 * detected) will clean up the ire. 27523 */ 27524 freeb(mp1); 27525 } else { 27526 if (arpce->nce_res_mp != NULL) 27527 freemsg(arpce->nce_res_mp); 27528 arpce->nce_res_mp = mp1; 27529 arpce->nce_state = ND_REACHABLE; 27530 } 27531 mutex_exit(&arpce->nce_lock); 27532 if (ire->ire_marks & IRE_MARK_NOADD) { 27533 /* 27534 * this ire will not be added to the ire 27535 * cache table, so we can set the ire_nce 27536 * here, as there are no atomicity constraints. 27537 */ 27538 ire->ire_nce = arpce; 27539 /* 27540 * We are associating this nce with the ire 27541 * so change the nce ref taken in 27542 * ndp_lookup_v4() from 27543 * NCE_REFHOLD to NCE_REFHOLD_NOTR 27544 */ 27545 NCE_REFHOLD_TO_REFHOLD_NOTR(ire->ire_nce); 27546 } else { 27547 NCE_REFRELE(arpce); 27548 } 27549 ire_add_then_send(q, ire, mp); 27550 } 27551 return; /* All is well, the packet has been sent. */ 27552 } 27553 case IRE_ARPRESOLVE_TYPE: { 27554 27555 if ((mp->b_wptr - mp->b_rptr) != sizeof (ire_t)) /* fake_ire */ 27556 break; 27557 mp1 = mp->b_cont; /* dl_unitdata_req */ 27558 mp->b_cont = NULL; 27559 /* 27560 * First, check to make sure the resolution succeeded. 27561 * If it failed, the second mblk will be empty. 27562 */ 27563 if (mp1->b_rptr == mp1->b_wptr) { 27564 /* cleanup the incomplete ire, free queued packets */ 27565 freemsg(mp); /* fake ire */ 27566 freeb(mp1); /* dl_unitdata response */ 27567 return; 27568 } 27569 27570 /* 27571 * update any incomplete nce_t found. we lookup the ctable 27572 * and find the nce from the ire->ire_nce because we need 27573 * to pass the ire to ip_xmit_v4 later, and can find both 27574 * ire and nce in one lookup from the ctable. 27575 */ 27576 fake_ire = (ire_t *)mp->b_rptr; 27577 /* 27578 * By the time we come back here from ARP 27579 * the logical outgoing interface of the incomplete ire 27580 * we added in ire_forward could have disappeared, 27581 * causing the incomplete ire to also have 27582 * dissapeared. So we need to retreive the 27583 * proper ipif for the ire before looking 27584 * in ctable; do the ctablelookup based on ire_ipif_seqid 27585 */ 27586 ill = q->q_ptr; 27587 27588 /* Get the outgoing ipif */ 27589 mutex_enter(&ill->ill_lock); 27590 if (ill->ill_state_flags & ILL_CONDEMNED) { 27591 mutex_exit(&ill->ill_lock); 27592 freemsg(mp); /* fake ire */ 27593 freeb(mp1); /* dl_unitdata response */ 27594 return; 27595 } 27596 ipif = ipif_lookup_seqid(ill, fake_ire->ire_ipif_seqid); 27597 27598 if (ipif == NULL) { 27599 mutex_exit(&ill->ill_lock); 27600 ip1dbg(("logical intrf to incomplete ire vanished\n")); 27601 freemsg(mp); 27602 freeb(mp1); 27603 return; 27604 } 27605 ipif_refhold_locked(ipif); 27606 mutex_exit(&ill->ill_lock); 27607 ire = ire_ctable_lookup(fake_ire->ire_addr, 27608 fake_ire->ire_gateway_addr, IRE_CACHE, 27609 ipif, fake_ire->ire_zoneid, NULL, 27610 (MATCH_IRE_GW|MATCH_IRE_IPIF|MATCH_IRE_ZONEONLY)); 27611 ipif_refrele(ipif); 27612 if (ire == NULL) { 27613 /* 27614 * no ire was found; check if there is an nce 27615 * for this lookup; if it has no ire's pointing at it 27616 * cleanup. 27617 */ 27618 if ((nce = ndp_lookup_v4(ill, 27619 (fake_ire->ire_gateway_addr != INADDR_ANY ? 27620 &fake_ire->ire_gateway_addr : &fake_ire->ire_addr), 27621 B_FALSE)) != NULL) { 27622 /* 27623 * cleanup: just reset nce. 27624 * We check for refcnt 2 (one for the nce 27625 * hash list + 1 for the ref taken by 27626 * ndp_lookup_v4) to ensure that there are 27627 * no ire's pointing at the nce. 27628 */ 27629 if (nce->nce_refcnt == 2) { 27630 nce = nce_reinit(nce); 27631 } 27632 if (nce != NULL) 27633 NCE_REFRELE(nce); 27634 } 27635 freeb(mp1); /* dl_unitdata response */ 27636 freemsg(mp); /* fake ire */ 27637 return; 27638 } 27639 nce = ire->ire_nce; 27640 DTRACE_PROBE2(ire__arpresolve__type, 27641 ire_t *, ire, nce_t *, nce); 27642 ASSERT(nce->nce_state != ND_INITIAL); 27643 mutex_enter(&nce->nce_lock); 27644 nce->nce_last = TICK_TO_MSEC(lbolt64); 27645 if (nce->nce_state == ND_REACHABLE) { 27646 /* 27647 * Someone resolved this before us; 27648 * our response is not needed any more. 27649 */ 27650 mutex_exit(&nce->nce_lock); 27651 freeb(mp1); /* dl_unitdata response */ 27652 } else { 27653 if (nce->nce_res_mp != NULL) { 27654 freemsg(nce->nce_res_mp); 27655 /* existing dl_unitdata template */ 27656 } 27657 nce->nce_res_mp = mp1; 27658 nce->nce_state = ND_REACHABLE; 27659 mutex_exit(&nce->nce_lock); 27660 ire_fastpath(ire); 27661 } 27662 /* 27663 * The cached nce_t has been updated to be reachable; 27664 * Set the IRE_MARK_UNCACHED flag and free the fake_ire. 27665 */ 27666 fake_ire->ire_marks &= ~IRE_MARK_UNCACHED; 27667 freemsg(mp); 27668 /* 27669 * send out queued packets. 27670 */ 27671 (void) ip_xmit_v4(NULL, ire, NULL, B_FALSE); 27672 27673 IRE_REFRELE(ire); 27674 return; 27675 } 27676 default: 27677 break; 27678 } 27679 if (q->q_next) { 27680 putnext(q, mp); 27681 } else 27682 freemsg(mp); 27683 } 27684 27685 /* 27686 * Process IP options in an outbound packet. Modify the destination if there 27687 * is a source route option. 27688 * Returns non-zero if something fails in which case an ICMP error has been 27689 * sent and mp freed. 27690 */ 27691 static int 27692 ip_wput_options(queue_t *q, mblk_t *ipsec_mp, ipha_t *ipha, 27693 boolean_t mctl_present, zoneid_t zoneid) 27694 { 27695 ipoptp_t opts; 27696 uchar_t *opt; 27697 uint8_t optval; 27698 uint8_t optlen; 27699 ipaddr_t dst; 27700 intptr_t code = 0; 27701 mblk_t *mp; 27702 ire_t *ire = NULL; 27703 27704 ip2dbg(("ip_wput_options\n")); 27705 mp = ipsec_mp; 27706 if (mctl_present) { 27707 mp = ipsec_mp->b_cont; 27708 } 27709 27710 dst = ipha->ipha_dst; 27711 for (optval = ipoptp_first(&opts, ipha); 27712 optval != IPOPT_EOL; 27713 optval = ipoptp_next(&opts)) { 27714 opt = opts.ipoptp_cur; 27715 optlen = opts.ipoptp_len; 27716 ip2dbg(("ip_wput_options: opt %d, len %d\n", 27717 optval, optlen)); 27718 switch (optval) { 27719 uint32_t off; 27720 case IPOPT_SSRR: 27721 case IPOPT_LSRR: 27722 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27723 ip1dbg(( 27724 "ip_wput_options: bad option offset\n")); 27725 code = (char *)&opt[IPOPT_OLEN] - 27726 (char *)ipha; 27727 goto param_prob; 27728 } 27729 off = opt[IPOPT_OFFSET]; 27730 ip1dbg(("ip_wput_options: next hop 0x%x\n", 27731 ntohl(dst))); 27732 /* 27733 * For strict: verify that dst is directly 27734 * reachable. 27735 */ 27736 if (optval == IPOPT_SSRR) { 27737 ire = ire_ftable_lookup(dst, 0, 0, 27738 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, 27739 MBLK_GETLABEL(mp), 27740 MATCH_IRE_TYPE | MATCH_IRE_SECATTR); 27741 if (ire == NULL) { 27742 ip1dbg(("ip_wput_options: SSRR not" 27743 " directly reachable: 0x%x\n", 27744 ntohl(dst))); 27745 goto bad_src_route; 27746 } 27747 ire_refrele(ire); 27748 } 27749 break; 27750 case IPOPT_RR: 27751 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27752 ip1dbg(( 27753 "ip_wput_options: bad option offset\n")); 27754 code = (char *)&opt[IPOPT_OLEN] - 27755 (char *)ipha; 27756 goto param_prob; 27757 } 27758 break; 27759 case IPOPT_TS: 27760 /* 27761 * Verify that length >=5 and that there is either 27762 * room for another timestamp or that the overflow 27763 * counter is not maxed out. 27764 */ 27765 code = (char *)&opt[IPOPT_OLEN] - (char *)ipha; 27766 if (optlen < IPOPT_MINLEN_IT) { 27767 goto param_prob; 27768 } 27769 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) { 27770 ip1dbg(( 27771 "ip_wput_options: bad option offset\n")); 27772 code = (char *)&opt[IPOPT_OFFSET] - 27773 (char *)ipha; 27774 goto param_prob; 27775 } 27776 switch (opt[IPOPT_POS_OV_FLG] & 0x0F) { 27777 case IPOPT_TS_TSONLY: 27778 off = IPOPT_TS_TIMELEN; 27779 break; 27780 case IPOPT_TS_TSANDADDR: 27781 case IPOPT_TS_PRESPEC: 27782 case IPOPT_TS_PRESPEC_RFC791: 27783 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN; 27784 break; 27785 default: 27786 code = (char *)&opt[IPOPT_POS_OV_FLG] - 27787 (char *)ipha; 27788 goto param_prob; 27789 } 27790 if (opt[IPOPT_OFFSET] - 1 + off > optlen && 27791 (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) { 27792 /* 27793 * No room and the overflow counter is 15 27794 * already. 27795 */ 27796 goto param_prob; 27797 } 27798 break; 27799 } 27800 } 27801 27802 if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) 27803 return (0); 27804 27805 ip1dbg(("ip_wput_options: error processing IP options.")); 27806 code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha; 27807 27808 param_prob: 27809 /* 27810 * Since ip_wput() isn't close to finished, we fill 27811 * in enough of the header for credible error reporting. 27812 */ 27813 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27814 /* Failed */ 27815 freemsg(ipsec_mp); 27816 return (-1); 27817 } 27818 icmp_param_problem(q, ipsec_mp, (uint8_t)code, zoneid); 27819 return (-1); 27820 27821 bad_src_route: 27822 /* 27823 * Since ip_wput() isn't close to finished, we fill 27824 * in enough of the header for credible error reporting. 27825 */ 27826 if (ip_hdr_complete((ipha_t *)mp->b_rptr, zoneid)) { 27827 /* Failed */ 27828 freemsg(ipsec_mp); 27829 return (-1); 27830 } 27831 icmp_unreachable(q, ipsec_mp, ICMP_SOURCE_ROUTE_FAILED, zoneid); 27832 return (-1); 27833 } 27834 27835 /* 27836 * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT. 27837 * conn_drain_list_cnt can be changed by setting conn_drain_nthreads 27838 * thru /etc/system. 27839 */ 27840 #define CONN_MAXDRAINCNT 64 27841 27842 static void 27843 conn_drain_init(void) 27844 { 27845 int i; 27846 27847 conn_drain_list_cnt = conn_drain_nthreads; 27848 27849 if ((conn_drain_list_cnt == 0) || 27850 (conn_drain_list_cnt > CONN_MAXDRAINCNT)) { 27851 /* 27852 * Default value of the number of drainers is the 27853 * number of cpus, subject to maximum of 8 drainers. 27854 */ 27855 if (boot_max_ncpus != -1) 27856 conn_drain_list_cnt = MIN(boot_max_ncpus, 8); 27857 else 27858 conn_drain_list_cnt = MIN(max_ncpus, 8); 27859 } 27860 27861 conn_drain_list = kmem_zalloc(conn_drain_list_cnt * sizeof (idl_t), 27862 KM_SLEEP); 27863 27864 for (i = 0; i < conn_drain_list_cnt; i++) { 27865 mutex_init(&conn_drain_list[i].idl_lock, NULL, 27866 MUTEX_DEFAULT, NULL); 27867 } 27868 } 27869 27870 static void 27871 conn_drain_fini(void) 27872 { 27873 int i; 27874 27875 for (i = 0; i < conn_drain_list_cnt; i++) 27876 mutex_destroy(&conn_drain_list[i].idl_lock); 27877 kmem_free(conn_drain_list, conn_drain_list_cnt * sizeof (idl_t)); 27878 conn_drain_list = NULL; 27879 } 27880 27881 /* 27882 * Note: For an overview of how flowcontrol is handled in IP please see the 27883 * IP Flowcontrol notes at the top of this file. 27884 * 27885 * Flow control has blocked us from proceeding. Insert the given conn in one 27886 * of the conn drain lists. These conn wq's will be qenabled later on when 27887 * STREAMS flow control does a backenable. conn_walk_drain will enable 27888 * the first conn in each of these drain lists. Each of these qenabled conns 27889 * in turn enables the next in the list, after it runs, or when it closes, 27890 * thus sustaining the drain process. 27891 * 27892 * The only possible calling sequence is ip_wsrv (on conn) -> ip_wput -> 27893 * conn_drain_insert. Thus there can be only 1 instance of conn_drain_insert 27894 * running at any time, on a given conn, since there can be only 1 service proc 27895 * running on a queue at any time. 27896 */ 27897 void 27898 conn_drain_insert(conn_t *connp) 27899 { 27900 idl_t *idl; 27901 uint_t index; 27902 27903 mutex_enter(&connp->conn_lock); 27904 if (connp->conn_state_flags & CONN_CLOSING) { 27905 /* 27906 * The conn is closing as a result of which CONN_CLOSING 27907 * is set. Return. 27908 */ 27909 mutex_exit(&connp->conn_lock); 27910 return; 27911 } else if (connp->conn_idl == NULL) { 27912 /* 27913 * Assign the next drain list round robin. We dont' use 27914 * a lock, and thus it may not be strictly round robin. 27915 * Atomicity of load/stores is enough to make sure that 27916 * conn_drain_list_index is always within bounds. 27917 */ 27918 index = conn_drain_list_index; 27919 ASSERT(index < conn_drain_list_cnt); 27920 connp->conn_idl = &conn_drain_list[index]; 27921 index++; 27922 if (index == conn_drain_list_cnt) 27923 index = 0; 27924 conn_drain_list_index = index; 27925 } 27926 mutex_exit(&connp->conn_lock); 27927 27928 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27929 if ((connp->conn_drain_prev != NULL) || 27930 (connp->conn_state_flags & CONN_CLOSING)) { 27931 /* 27932 * The conn is already in the drain list, OR 27933 * the conn is closing. We need to check again for 27934 * the closing case again since close can happen 27935 * after we drop the conn_lock, and before we 27936 * acquire the CONN_DRAIN_LIST_LOCK. 27937 */ 27938 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27939 return; 27940 } else { 27941 idl = connp->conn_idl; 27942 } 27943 27944 /* 27945 * The conn is not in the drain list. Insert it at the 27946 * tail of the drain list. The drain list is circular 27947 * and doubly linked. idl_conn points to the 1st element 27948 * in the list. 27949 */ 27950 if (idl->idl_conn == NULL) { 27951 idl->idl_conn = connp; 27952 connp->conn_drain_next = connp; 27953 connp->conn_drain_prev = connp; 27954 } else { 27955 conn_t *head = idl->idl_conn; 27956 27957 connp->conn_drain_next = head; 27958 connp->conn_drain_prev = head->conn_drain_prev; 27959 head->conn_drain_prev->conn_drain_next = connp; 27960 head->conn_drain_prev = connp; 27961 } 27962 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 27963 } 27964 27965 /* 27966 * This conn is closing, and we are called from ip_close. OR 27967 * This conn has been serviced by ip_wsrv, and we need to do the tail 27968 * processing. 27969 * If this conn is part of the drain list, we may need to sustain the drain 27970 * process by qenabling the next conn in the drain list. We may also need to 27971 * remove this conn from the list, if it is done. 27972 */ 27973 static void 27974 conn_drain_tail(conn_t *connp, boolean_t closing) 27975 { 27976 idl_t *idl; 27977 27978 /* 27979 * connp->conn_idl is stable at this point, and no lock is needed 27980 * to check it. If we are called from ip_close, close has already 27981 * set CONN_CLOSING, thus freezing the value of conn_idl, and 27982 * called us only because conn_idl is non-null. If we are called thru 27983 * service, conn_idl could be null, but it cannot change because 27984 * service is single-threaded per queue, and there cannot be another 27985 * instance of service trying to call conn_drain_insert on this conn 27986 * now. 27987 */ 27988 ASSERT(!closing || (connp->conn_idl != NULL)); 27989 27990 /* 27991 * If connp->conn_idl is null, the conn has not been inserted into any 27992 * drain list even once since creation of the conn. Just return. 27993 */ 27994 if (connp->conn_idl == NULL) 27995 return; 27996 27997 mutex_enter(CONN_DRAIN_LIST_LOCK(connp)); 27998 27999 if (connp->conn_drain_prev == NULL) { 28000 /* This conn is currently not in the drain list. */ 28001 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28002 return; 28003 } 28004 idl = connp->conn_idl; 28005 if (idl->idl_conn_draining == connp) { 28006 /* 28007 * This conn is the current drainer. If this is the last conn 28008 * in the drain list, we need to do more checks, in the 'if' 28009 * below. Otherwwise we need to just qenable the next conn, 28010 * to sustain the draining, and is handled in the 'else' 28011 * below. 28012 */ 28013 if (connp->conn_drain_next == idl->idl_conn) { 28014 /* 28015 * This conn is the last in this list. This round 28016 * of draining is complete. If idl_repeat is set, 28017 * it means another flow enabling has happened from 28018 * the driver/streams and we need to another round 28019 * of draining. 28020 * If there are more than 2 conns in the drain list, 28021 * do a left rotate by 1, so that all conns except the 28022 * conn at the head move towards the head by 1, and the 28023 * the conn at the head goes to the tail. This attempts 28024 * a more even share for all queues that are being 28025 * drained. 28026 */ 28027 if ((connp->conn_drain_next != connp) && 28028 (idl->idl_conn->conn_drain_next != connp)) { 28029 idl->idl_conn = idl->idl_conn->conn_drain_next; 28030 } 28031 if (idl->idl_repeat) { 28032 qenable(idl->idl_conn->conn_wq); 28033 idl->idl_conn_draining = idl->idl_conn; 28034 idl->idl_repeat = 0; 28035 } else { 28036 idl->idl_conn_draining = NULL; 28037 } 28038 } else { 28039 /* 28040 * If the next queue that we are now qenable'ing, 28041 * is closing, it will remove itself from this list 28042 * and qenable the subsequent queue in ip_close(). 28043 * Serialization is acheived thru idl_lock. 28044 */ 28045 qenable(connp->conn_drain_next->conn_wq); 28046 idl->idl_conn_draining = connp->conn_drain_next; 28047 } 28048 } 28049 if (!connp->conn_did_putbq || closing) { 28050 /* 28051 * Remove ourself from the drain list, if we did not do 28052 * a putbq, or if the conn is closing. 28053 * Note: It is possible that q->q_first is non-null. It means 28054 * that these messages landed after we did a enableok() in 28055 * ip_wsrv. Thus STREAMS will call ip_wsrv once again to 28056 * service them. 28057 */ 28058 if (connp->conn_drain_next == connp) { 28059 /* Singleton in the list */ 28060 ASSERT(connp->conn_drain_prev == connp); 28061 idl->idl_conn = NULL; 28062 idl->idl_conn_draining = NULL; 28063 } else { 28064 connp->conn_drain_prev->conn_drain_next = 28065 connp->conn_drain_next; 28066 connp->conn_drain_next->conn_drain_prev = 28067 connp->conn_drain_prev; 28068 if (idl->idl_conn == connp) 28069 idl->idl_conn = connp->conn_drain_next; 28070 ASSERT(idl->idl_conn_draining != connp); 28071 28072 } 28073 connp->conn_drain_next = NULL; 28074 connp->conn_drain_prev = NULL; 28075 } 28076 mutex_exit(CONN_DRAIN_LIST_LOCK(connp)); 28077 } 28078 28079 /* 28080 * Write service routine. Shared perimeter entry point. 28081 * ip_wsrv can be called in any of the following ways. 28082 * 1. The device queue's messages has fallen below the low water mark 28083 * and STREAMS has backenabled the ill_wq. We walk thru all the 28084 * the drain lists and backenable the first conn in each list. 28085 * 2. The above causes STREAMS to run ip_wsrv on the conn_wq of the 28086 * qenabled non-tcp upper layers. We start dequeing messages and call 28087 * ip_wput for each message. 28088 */ 28089 28090 void 28091 ip_wsrv(queue_t *q) 28092 { 28093 conn_t *connp; 28094 ill_t *ill; 28095 mblk_t *mp; 28096 28097 if (q->q_next) { 28098 ill = (ill_t *)q->q_ptr; 28099 if (ill->ill_state_flags == 0) { 28100 /* 28101 * The device flow control has opened up. 28102 * Walk through conn drain lists and qenable the 28103 * first conn in each list. This makes sense only 28104 * if the stream is fully plumbed and setup. 28105 * Hence the if check above. 28106 */ 28107 ip1dbg(("ip_wsrv: walking\n")); 28108 conn_walk_drain(); 28109 } 28110 return; 28111 } 28112 28113 connp = Q_TO_CONN(q); 28114 ip1dbg(("ip_wsrv: %p %p\n", (void *)q, (void *)connp)); 28115 28116 /* 28117 * 1. Set conn_draining flag to signal that service is active. 28118 * 28119 * 2. ip_output determines whether it has been called from service, 28120 * based on the last parameter. If it is IP_WSRV it concludes it 28121 * has been called from service. 28122 * 28123 * 3. Message ordering is preserved by the following logic. 28124 * i. A directly called ip_output (i.e. not thru service) will queue 28125 * the message at the tail, if conn_draining is set (i.e. service 28126 * is running) or if q->q_first is non-null. 28127 * 28128 * ii. If ip_output is called from service, and if ip_output cannot 28129 * putnext due to flow control, it does a putbq. 28130 * 28131 * 4. noenable the queue so that a putbq from ip_wsrv does not reenable 28132 * (causing an infinite loop). 28133 */ 28134 ASSERT(!connp->conn_did_putbq); 28135 while ((q->q_first != NULL) && !connp->conn_did_putbq) { 28136 connp->conn_draining = 1; 28137 noenable(q); 28138 while ((mp = getq(q)) != NULL) { 28139 ASSERT(CONN_Q(q)); 28140 28141 ip_output(Q_TO_CONN(q), mp, q, IP_WSRV); 28142 if (connp->conn_did_putbq) { 28143 /* ip_wput did a putbq */ 28144 break; 28145 } 28146 } 28147 /* 28148 * At this point, a thread coming down from top, calling 28149 * ip_wput, may end up queueing the message. We have not yet 28150 * enabled the queue, so ip_wsrv won't be called again. 28151 * To avoid this race, check q->q_first again (in the loop) 28152 * If the other thread queued the message before we call 28153 * enableok(), we will catch it in the q->q_first check. 28154 * If the other thread queues the message after we call 28155 * enableok(), ip_wsrv will be called again by STREAMS. 28156 */ 28157 connp->conn_draining = 0; 28158 enableok(q); 28159 } 28160 28161 /* Enable the next conn for draining */ 28162 conn_drain_tail(connp, B_FALSE); 28163 28164 connp->conn_did_putbq = 0; 28165 } 28166 28167 /* 28168 * Walk the list of all conn's calling the function provided with the 28169 * specified argument for each. Note that this only walks conn's that 28170 * have been bound. 28171 * Applies to both IPv4 and IPv6. 28172 */ 28173 static void 28174 conn_walk_fanout(pfv_t func, void *arg, zoneid_t zoneid) 28175 { 28176 conn_walk_fanout_table(ipcl_udp_fanout, ipcl_udp_fanout_size, 28177 func, arg, zoneid); 28178 conn_walk_fanout_table(ipcl_conn_fanout, ipcl_conn_fanout_size, 28179 func, arg, zoneid); 28180 conn_walk_fanout_table(ipcl_bind_fanout, ipcl_bind_fanout_size, 28181 func, arg, zoneid); 28182 conn_walk_fanout_table(ipcl_proto_fanout, 28183 A_CNT(ipcl_proto_fanout), func, arg, zoneid); 28184 conn_walk_fanout_table(ipcl_proto_fanout_v6, 28185 A_CNT(ipcl_proto_fanout_v6), func, arg, zoneid); 28186 } 28187 28188 /* 28189 * Flowcontrol has relieved, and STREAMS has backenabled us. For each list 28190 * of conns that need to be drained, check if drain is already in progress. 28191 * If so set the idl_repeat bit, indicating that the last conn in the list 28192 * needs to reinitiate the drain once again, for the list. If drain is not 28193 * in progress for the list, initiate the draining, by qenabling the 1st 28194 * conn in the list. The drain is self-sustaining, each qenabled conn will 28195 * in turn qenable the next conn, when it is done/blocked/closing. 28196 */ 28197 static void 28198 conn_walk_drain(void) 28199 { 28200 int i; 28201 idl_t *idl; 28202 28203 IP_STAT(ip_conn_walk_drain); 28204 28205 for (i = 0; i < conn_drain_list_cnt; i++) { 28206 idl = &conn_drain_list[i]; 28207 mutex_enter(&idl->idl_lock); 28208 if (idl->idl_conn == NULL) { 28209 mutex_exit(&idl->idl_lock); 28210 continue; 28211 } 28212 /* 28213 * If this list is not being drained currently by 28214 * an ip_wsrv thread, start the process. 28215 */ 28216 if (idl->idl_conn_draining == NULL) { 28217 ASSERT(idl->idl_repeat == 0); 28218 qenable(idl->idl_conn->conn_wq); 28219 idl->idl_conn_draining = idl->idl_conn; 28220 } else { 28221 idl->idl_repeat = 1; 28222 } 28223 mutex_exit(&idl->idl_lock); 28224 } 28225 } 28226 28227 /* 28228 * Walk an conn hash table of `count' buckets, calling func for each entry. 28229 */ 28230 static void 28231 conn_walk_fanout_table(connf_t *connfp, uint_t count, pfv_t func, void *arg, 28232 zoneid_t zoneid) 28233 { 28234 conn_t *connp; 28235 28236 while (count-- > 0) { 28237 mutex_enter(&connfp->connf_lock); 28238 for (connp = connfp->connf_head; connp != NULL; 28239 connp = connp->conn_next) { 28240 if (zoneid == GLOBAL_ZONEID || 28241 zoneid == connp->conn_zoneid) { 28242 CONN_INC_REF(connp); 28243 mutex_exit(&connfp->connf_lock); 28244 (*func)(connp, arg); 28245 mutex_enter(&connfp->connf_lock); 28246 CONN_DEC_REF(connp); 28247 } 28248 } 28249 mutex_exit(&connfp->connf_lock); 28250 connfp++; 28251 } 28252 } 28253 28254 /* ipcl_walk routine invoked for ip_conn_report for each conn. */ 28255 static void 28256 conn_report1(conn_t *connp, void *mp) 28257 { 28258 char buf1[INET6_ADDRSTRLEN]; 28259 char buf2[INET6_ADDRSTRLEN]; 28260 uint_t print_len, buf_len; 28261 28262 ASSERT(connp != NULL); 28263 28264 buf_len = ((mblk_t *)mp)->b_datap->db_lim - ((mblk_t *)mp)->b_wptr; 28265 if (buf_len <= 0) 28266 return; 28267 (void) inet_ntop(AF_INET6, &connp->conn_srcv6, buf1, sizeof (buf1)), 28268 (void) inet_ntop(AF_INET6, &connp->conn_remv6, buf2, sizeof (buf2)), 28269 print_len = snprintf((char *)((mblk_t *)mp)->b_wptr, buf_len, 28270 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 28271 "%5d %s/%05d %s/%05d\n", 28272 (void *)connp, (void *)CONNP_TO_RQ(connp), 28273 (void *)CONNP_TO_WQ(connp), connp->conn_zoneid, 28274 buf1, connp->conn_lport, 28275 buf2, connp->conn_fport); 28276 if (print_len < buf_len) { 28277 ((mblk_t *)mp)->b_wptr += print_len; 28278 } else { 28279 ((mblk_t *)mp)->b_wptr += buf_len; 28280 } 28281 } 28282 28283 /* 28284 * Named Dispatch routine to produce a formatted report on all conns 28285 * that are listed in one of the fanout tables. 28286 * This report is accessed by using the ndd utility to "get" ND variable 28287 * "ip_conn_status". 28288 */ 28289 /* ARGSUSED */ 28290 static int 28291 ip_conn_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 28292 { 28293 (void) mi_mpprintf(mp, 28294 "CONN " MI_COL_HDRPAD_STR 28295 "rfq " MI_COL_HDRPAD_STR 28296 "stq " MI_COL_HDRPAD_STR 28297 " zone local remote"); 28298 28299 /* 28300 * Because of the ndd constraint, at most we can have 64K buffer 28301 * to put in all conn info. So to be more efficient, just 28302 * allocate a 64K buffer here, assuming we need that large buffer. 28303 * This should be OK as only privileged processes can do ndd /dev/ip. 28304 */ 28305 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 28306 /* The following may work even if we cannot get a large buf. */ 28307 (void) mi_mpprintf(mp, "<< Out of buffer >>\n"); 28308 return (0); 28309 } 28310 28311 conn_walk_fanout(conn_report1, mp->b_cont, Q_TO_CONN(q)->conn_zoneid); 28312 return (0); 28313 } 28314 28315 /* 28316 * Determine if the ill and multicast aspects of that packets 28317 * "matches" the conn. 28318 */ 28319 boolean_t 28320 conn_wantpacket(conn_t *connp, ill_t *ill, ipha_t *ipha, int fanout_flags, 28321 zoneid_t zoneid) 28322 { 28323 ill_t *in_ill; 28324 boolean_t found; 28325 ipif_t *ipif; 28326 ire_t *ire; 28327 ipaddr_t dst, src; 28328 28329 dst = ipha->ipha_dst; 28330 src = ipha->ipha_src; 28331 28332 /* 28333 * conn_incoming_ill is set by IP_BOUND_IF which limits 28334 * unicast, broadcast and multicast reception to 28335 * conn_incoming_ill. conn_wantpacket itself is called 28336 * only for BROADCAST and multicast. 28337 * 28338 * 1) ip_rput supresses duplicate broadcasts if the ill 28339 * is part of a group. Hence, we should be receiving 28340 * just one copy of broadcast for the whole group. 28341 * Thus, if it is part of the group the packet could 28342 * come on any ill of the group and hence we need a 28343 * match on the group. Otherwise, match on ill should 28344 * be sufficient. 28345 * 28346 * 2) ip_rput does not suppress duplicate multicast packets. 28347 * If there are two interfaces in a ill group and we have 28348 * 2 applications (conns) joined a multicast group G on 28349 * both the interfaces, ilm_lookup_ill filter in ip_rput 28350 * will give us two packets because we join G on both the 28351 * interfaces rather than nominating just one interface 28352 * for receiving multicast like broadcast above. So, 28353 * we have to call ilg_lookup_ill to filter out duplicate 28354 * copies, if ill is part of a group. 28355 */ 28356 in_ill = connp->conn_incoming_ill; 28357 if (in_ill != NULL) { 28358 if (in_ill->ill_group == NULL) { 28359 if (in_ill != ill) 28360 return (B_FALSE); 28361 } else if (in_ill->ill_group != ill->ill_group) { 28362 return (B_FALSE); 28363 } 28364 } 28365 28366 if (!CLASSD(dst)) { 28367 if (IPCL_ZONE_MATCH(connp, zoneid)) 28368 return (B_TRUE); 28369 /* 28370 * The conn is in a different zone; we need to check that this 28371 * broadcast address is configured in the application's zone and 28372 * on one ill in the group. 28373 */ 28374 ipif = ipif_get_next_ipif(NULL, ill); 28375 if (ipif == NULL) 28376 return (B_FALSE); 28377 ire = ire_ctable_lookup(dst, 0, IRE_BROADCAST, ipif, 28378 connp->conn_zoneid, NULL, 28379 (MATCH_IRE_TYPE | MATCH_IRE_ILL_GROUP)); 28380 ipif_refrele(ipif); 28381 if (ire != NULL) { 28382 ire_refrele(ire); 28383 return (B_TRUE); 28384 } else { 28385 return (B_FALSE); 28386 } 28387 } 28388 28389 if ((fanout_flags & IP_FF_NO_MCAST_LOOP) && 28390 connp->conn_zoneid == zoneid) { 28391 /* 28392 * Loopback case: the sending endpoint has IP_MULTICAST_LOOP 28393 * disabled, therefore we don't dispatch the multicast packet to 28394 * the sending zone. 28395 */ 28396 return (B_FALSE); 28397 } 28398 28399 if ((ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) && 28400 connp->conn_zoneid != zoneid) { 28401 /* 28402 * Multicast packet on the loopback interface: we only match 28403 * conns who joined the group in the specified zone. 28404 */ 28405 return (B_FALSE); 28406 } 28407 28408 if (connp->conn_multi_router) { 28409 /* multicast packet and multicast router socket: send up */ 28410 return (B_TRUE); 28411 } 28412 28413 mutex_enter(&connp->conn_lock); 28414 found = (ilg_lookup_ill_withsrc(connp, dst, src, ill) != NULL); 28415 mutex_exit(&connp->conn_lock); 28416 return (found); 28417 } 28418 28419 /* 28420 * Finish processing of "arp_up" when AR_DLPIOP_DONE is received from arp. 28421 */ 28422 /* ARGSUSED */ 28423 static void 28424 ip_arp_done(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy_arg) 28425 { 28426 ill_t *ill = (ill_t *)q->q_ptr; 28427 mblk_t *mp1, *mp2; 28428 ipif_t *ipif; 28429 int err = 0; 28430 conn_t *connp = NULL; 28431 ipsq_t *ipsq; 28432 arc_t *arc; 28433 28434 ip1dbg(("ip_arp_done(%s)\n", ill->ill_name)); 28435 28436 ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (arc_t)); 28437 ASSERT(((arc_t *)mp->b_rptr)->arc_cmd == AR_DLPIOP_DONE); 28438 28439 ASSERT(IAM_WRITER_ILL(ill)); 28440 mp2 = mp->b_cont; 28441 mp->b_cont = NULL; 28442 28443 /* 28444 * We have now received the arp bringup completion message 28445 * from ARP. Mark the arp bringup as done. Also if the arp 28446 * stream has already started closing, send up the AR_ARP_CLOSING 28447 * ack now since ARP is waiting in close for this ack. 28448 */ 28449 mutex_enter(&ill->ill_lock); 28450 ill->ill_arp_bringup_pending = 0; 28451 if (ill->ill_arp_closing) { 28452 mutex_exit(&ill->ill_lock); 28453 /* Let's reuse the mp for sending the ack */ 28454 arc = (arc_t *)mp->b_rptr; 28455 mp->b_wptr = mp->b_rptr + sizeof (arc_t); 28456 arc->arc_cmd = AR_ARP_CLOSING; 28457 qreply(q, mp); 28458 } else { 28459 mutex_exit(&ill->ill_lock); 28460 freeb(mp); 28461 } 28462 28463 /* We should have an IOCTL waiting on this. */ 28464 ipsq = ill->ill_phyint->phyint_ipsq; 28465 ipif = ipsq->ipsq_pending_ipif; 28466 mp1 = ipsq_pending_mp_get(ipsq, &connp); 28467 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 28468 if (mp1 == NULL) { 28469 /* bringup was aborted by the user */ 28470 freemsg(mp2); 28471 return; 28472 } 28473 ASSERT(connp != NULL); 28474 q = CONNP_TO_WQ(connp); 28475 /* 28476 * If the DL_BIND_REQ fails, it is noted 28477 * in arc_name_offset. 28478 */ 28479 err = *((int *)mp2->b_rptr); 28480 if (err == 0) { 28481 if (ipif->ipif_isv6) { 28482 if ((err = ipif_up_done_v6(ipif)) != 0) 28483 ip0dbg(("ip_arp_done: init failed\n")); 28484 } else { 28485 if ((err = ipif_up_done(ipif)) != 0) 28486 ip0dbg(("ip_arp_done: init failed\n")); 28487 } 28488 } else { 28489 ip0dbg(("ip_arp_done: DL_BIND_REQ failed\n")); 28490 } 28491 28492 freemsg(mp2); 28493 28494 if ((err == 0) && (ill->ill_up_ipifs)) { 28495 err = ill_up_ipifs(ill, q, mp1); 28496 if (err == EINPROGRESS) 28497 return; 28498 } 28499 28500 if (ill->ill_up_ipifs) { 28501 ill_group_cleanup(ill); 28502 } 28503 28504 /* 28505 * The ioctl must complete now without EINPROGRESS 28506 * since ipsq_pending_mp_get has removed the ioctl mblk 28507 * from ipsq_pending_mp. Otherwise the ioctl will be 28508 * stuck for ever in the ipsq. 28509 */ 28510 ASSERT(err != EINPROGRESS); 28511 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipif, ipsq); 28512 } 28513 28514 /* Allocate the private structure */ 28515 static int 28516 ip_priv_alloc(void **bufp) 28517 { 28518 void *buf; 28519 28520 if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL) 28521 return (ENOMEM); 28522 28523 *bufp = buf; 28524 return (0); 28525 } 28526 28527 /* Function to delete the private structure */ 28528 void 28529 ip_priv_free(void *buf) 28530 { 28531 ASSERT(buf != NULL); 28532 kmem_free(buf, sizeof (ip_priv_t)); 28533 } 28534 28535 /* 28536 * The entry point for IPPF processing. 28537 * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the 28538 * routine just returns. 28539 * 28540 * When called, ip_process generates an ipp_packet_t structure 28541 * which holds the state information for this packet and invokes the 28542 * the classifier (via ipp_packet_process). The classification, depending on 28543 * configured filters, results in a list of actions for this packet. Invoking 28544 * an action may cause the packet to be dropped, in which case the resulting 28545 * mblk (*mpp) is NULL. proc indicates the callout position for 28546 * this packet and ill_index is the interface this packet on or will leave 28547 * on (inbound and outbound resp.). 28548 */ 28549 void 28550 ip_process(ip_proc_t proc, mblk_t **mpp, uint32_t ill_index) 28551 { 28552 mblk_t *mp; 28553 ip_priv_t *priv; 28554 ipp_action_id_t aid; 28555 int rc = 0; 28556 ipp_packet_t *pp; 28557 #define IP_CLASS "ip" 28558 28559 /* If the classifier is not loaded, return */ 28560 if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) { 28561 return; 28562 } 28563 28564 mp = *mpp; 28565 ASSERT(mp != NULL); 28566 28567 /* Allocate the packet structure */ 28568 rc = ipp_packet_alloc(&pp, IP_CLASS, aid); 28569 if (rc != 0) { 28570 *mpp = NULL; 28571 freemsg(mp); 28572 return; 28573 } 28574 28575 /* Allocate the private structure */ 28576 rc = ip_priv_alloc((void **)&priv); 28577 if (rc != 0) { 28578 *mpp = NULL; 28579 freemsg(mp); 28580 ipp_packet_free(pp); 28581 return; 28582 } 28583 priv->proc = proc; 28584 priv->ill_index = ill_index; 28585 ipp_packet_set_private(pp, priv, ip_priv_free); 28586 ipp_packet_set_data(pp, mp); 28587 28588 /* Invoke the classifier */ 28589 rc = ipp_packet_process(&pp); 28590 if (pp != NULL) { 28591 mp = ipp_packet_get_data(pp); 28592 ipp_packet_free(pp); 28593 if (rc != 0) { 28594 freemsg(mp); 28595 *mpp = NULL; 28596 } 28597 } else { 28598 *mpp = NULL; 28599 } 28600 #undef IP_CLASS 28601 } 28602 28603 /* 28604 * Propagate a multicast group membership operation (add/drop) on 28605 * all the interfaces crossed by the related multirt routes. 28606 * The call is considered successful if the operation succeeds 28607 * on at least one interface. 28608 */ 28609 static int 28610 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t, ipaddr_t, ipaddr_t, 28611 uint_t *, mcast_record_t, ipaddr_t, mblk_t *), ire_t *ire, conn_t *connp, 28612 boolean_t checkonly, ipaddr_t group, mcast_record_t fmode, ipaddr_t src, 28613 mblk_t *first_mp) 28614 { 28615 ire_t *ire_gw; 28616 irb_t *irb; 28617 int error = 0; 28618 opt_restart_t *or; 28619 28620 irb = ire->ire_bucket; 28621 ASSERT(irb != NULL); 28622 28623 ASSERT(DB_TYPE(first_mp) == M_CTL); 28624 28625 or = (opt_restart_t *)first_mp->b_rptr; 28626 IRB_REFHOLD(irb); 28627 for (; ire != NULL; ire = ire->ire_next) { 28628 if ((ire->ire_flags & RTF_MULTIRT) == 0) 28629 continue; 28630 if (ire->ire_addr != group) 28631 continue; 28632 28633 ire_gw = ire_ftable_lookup(ire->ire_gateway_addr, 0, 0, 28634 IRE_INTERFACE, NULL, NULL, ALL_ZONES, 0, NULL, 28635 MATCH_IRE_RECURSIVE | MATCH_IRE_TYPE); 28636 /* No resolver exists for the gateway; skip this ire. */ 28637 if (ire_gw == NULL) 28638 continue; 28639 28640 /* 28641 * This function can return EINPROGRESS. If so the operation 28642 * will be restarted from ip_restart_optmgmt which will 28643 * call ip_opt_set and option processing will restart for 28644 * this option. So we may end up calling 'fn' more than once. 28645 * This requires that 'fn' is idempotent except for the 28646 * return value. The operation is considered a success if 28647 * it succeeds at least once on any one interface. 28648 */ 28649 error = fn(connp, checkonly, group, ire_gw->ire_src_addr, 28650 NULL, fmode, src, first_mp); 28651 if (error == 0) 28652 or->or_private = CGTP_MCAST_SUCCESS; 28653 28654 if (ip_debug > 0) { 28655 ulong_t off; 28656 char *ksym; 28657 ksym = kobj_getsymname((uintptr_t)fn, &off); 28658 ip2dbg(("ip_multirt_apply_membership: " 28659 "called %s, multirt group 0x%08x via itf 0x%08x, " 28660 "error %d [success %u]\n", 28661 ksym ? ksym : "?", 28662 ntohl(group), ntohl(ire_gw->ire_src_addr), 28663 error, or->or_private)); 28664 } 28665 28666 ire_refrele(ire_gw); 28667 if (error == EINPROGRESS) { 28668 IRB_REFRELE(irb); 28669 return (error); 28670 } 28671 } 28672 IRB_REFRELE(irb); 28673 /* 28674 * Consider the call as successful if we succeeded on at least 28675 * one interface. Otherwise, return the last encountered error. 28676 */ 28677 return (or->or_private == CGTP_MCAST_SUCCESS ? 0 : error); 28678 } 28679 28680 28681 /* 28682 * Issue a warning regarding a route crossing an interface with an 28683 * incorrect MTU. Only one message every 'ip_multirt_log_interval' 28684 * amount of time is logged. 28685 */ 28686 static void 28687 ip_multirt_bad_mtu(ire_t *ire, uint32_t max_frag) 28688 { 28689 hrtime_t current = gethrtime(); 28690 char buf[INET_ADDRSTRLEN]; 28691 28692 /* Convert interval in ms to hrtime in ns */ 28693 if (multirt_bad_mtu_last_time + 28694 ((hrtime_t)ip_multirt_log_interval * (hrtime_t)1000000) <= 28695 current) { 28696 cmn_err(CE_WARN, "ip: ignoring multiroute " 28697 "to %s, incorrect MTU %u (expected %u)\n", 28698 ip_dot_addr(ire->ire_addr, buf), 28699 ire->ire_max_frag, max_frag); 28700 28701 multirt_bad_mtu_last_time = current; 28702 } 28703 } 28704 28705 28706 /* 28707 * Get the CGTP (multirouting) filtering status. 28708 * If 0, the CGTP hooks are transparent. 28709 */ 28710 /* ARGSUSED */ 28711 static int 28712 ip_cgtp_filter_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 28713 { 28714 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28715 28716 (void) mi_mpprintf(mp, "%d", (int)*ip_cgtp_filter_value); 28717 return (0); 28718 } 28719 28720 28721 /* 28722 * Set the CGTP (multirouting) filtering status. 28723 * If the status is changed from active to transparent 28724 * or from transparent to active, forward the new status 28725 * to the filtering module (if loaded). 28726 */ 28727 /* ARGSUSED */ 28728 static int 28729 ip_cgtp_filter_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 28730 cred_t *ioc_cr) 28731 { 28732 long new_value; 28733 boolean_t *ip_cgtp_filter_value = (boolean_t *)cp; 28734 28735 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 28736 new_value < 0 || new_value > 1) { 28737 return (EINVAL); 28738 } 28739 28740 /* 28741 * Do not enable CGTP filtering - thus preventing the hooks 28742 * from being invoked - if the version number of the 28743 * filtering module hooks does not match. 28744 */ 28745 if ((ip_cgtp_filter_ops != NULL) && 28746 (ip_cgtp_filter_ops->cfo_filter_rev != CGTP_FILTER_REV)) { 28747 cmn_err(CE_WARN, "IP: CGTP filtering version mismatch " 28748 "(module hooks version %d, expecting %d)\n", 28749 ip_cgtp_filter_ops->cfo_filter_rev, CGTP_FILTER_REV); 28750 return (ENOTSUP); 28751 } 28752 28753 if ((!*ip_cgtp_filter_value) && new_value) { 28754 cmn_err(CE_NOTE, "IP: enabling CGTP filtering%s", 28755 ip_cgtp_filter_ops == NULL ? 28756 " (module not loaded)" : ""); 28757 } 28758 if (*ip_cgtp_filter_value && (!new_value)) { 28759 cmn_err(CE_NOTE, "IP: disabling CGTP filtering%s", 28760 ip_cgtp_filter_ops == NULL ? 28761 " (module not loaded)" : ""); 28762 } 28763 28764 if (ip_cgtp_filter_ops != NULL) { 28765 int res; 28766 if ((res = ip_cgtp_filter_ops->cfo_change_state(new_value))) { 28767 return (res); 28768 } 28769 } 28770 28771 *ip_cgtp_filter_value = (boolean_t)new_value; 28772 28773 return (0); 28774 } 28775 28776 28777 /* 28778 * Return the expected CGTP hooks version number. 28779 */ 28780 int 28781 ip_cgtp_filter_supported(void) 28782 { 28783 return (ip_cgtp_filter_rev); 28784 } 28785 28786 28787 /* 28788 * CGTP hooks can be registered by directly touching ip_cgtp_filter_ops 28789 * or by invoking this function. In the first case, the version number 28790 * of the registered structure is checked at hooks activation time 28791 * in ip_cgtp_filter_set(). 28792 */ 28793 int 28794 ip_cgtp_filter_register(cgtp_filter_ops_t *ops) 28795 { 28796 if (ops->cfo_filter_rev != CGTP_FILTER_REV) 28797 return (ENOTSUP); 28798 28799 ip_cgtp_filter_ops = ops; 28800 return (0); 28801 } 28802 28803 static squeue_func_t 28804 ip_squeue_switch(int val) 28805 { 28806 squeue_func_t rval = squeue_fill; 28807 28808 switch (val) { 28809 case IP_SQUEUE_ENTER_NODRAIN: 28810 rval = squeue_enter_nodrain; 28811 break; 28812 case IP_SQUEUE_ENTER: 28813 rval = squeue_enter; 28814 break; 28815 default: 28816 break; 28817 } 28818 return (rval); 28819 } 28820 28821 /* ARGSUSED */ 28822 static int 28823 ip_input_proc_set(queue_t *q, mblk_t *mp, char *value, 28824 caddr_t addr, cred_t *cr) 28825 { 28826 int *v = (int *)addr; 28827 long new_value; 28828 28829 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28830 return (EINVAL); 28831 28832 ip_input_proc = ip_squeue_switch(new_value); 28833 *v = new_value; 28834 return (0); 28835 } 28836 28837 /* ARGSUSED */ 28838 static int 28839 ip_int_set(queue_t *q, mblk_t *mp, char *value, 28840 caddr_t addr, cred_t *cr) 28841 { 28842 int *v = (int *)addr; 28843 long new_value; 28844 28845 if (ddi_strtol(value, NULL, 10, &new_value) != 0) 28846 return (EINVAL); 28847 28848 *v = new_value; 28849 return (0); 28850 } 28851 28852 static void 28853 ip_kstat_init(void) 28854 { 28855 ip_named_kstat_t template = { 28856 { "forwarding", KSTAT_DATA_UINT32, 0 }, 28857 { "defaultTTL", KSTAT_DATA_UINT32, 0 }, 28858 { "inReceives", KSTAT_DATA_UINT64, 0 }, 28859 { "inHdrErrors", KSTAT_DATA_UINT32, 0 }, 28860 { "inAddrErrors", KSTAT_DATA_UINT32, 0 }, 28861 { "forwDatagrams", KSTAT_DATA_UINT64, 0 }, 28862 { "inUnknownProtos", KSTAT_DATA_UINT32, 0 }, 28863 { "inDiscards", KSTAT_DATA_UINT32, 0 }, 28864 { "inDelivers", KSTAT_DATA_UINT64, 0 }, 28865 { "outRequests", KSTAT_DATA_UINT64, 0 }, 28866 { "outDiscards", KSTAT_DATA_UINT32, 0 }, 28867 { "outNoRoutes", KSTAT_DATA_UINT32, 0 }, 28868 { "reasmTimeout", KSTAT_DATA_UINT32, 0 }, 28869 { "reasmReqds", KSTAT_DATA_UINT32, 0 }, 28870 { "reasmOKs", KSTAT_DATA_UINT32, 0 }, 28871 { "reasmFails", KSTAT_DATA_UINT32, 0 }, 28872 { "fragOKs", KSTAT_DATA_UINT32, 0 }, 28873 { "fragFails", KSTAT_DATA_UINT32, 0 }, 28874 { "fragCreates", KSTAT_DATA_UINT32, 0 }, 28875 { "addrEntrySize", KSTAT_DATA_INT32, 0 }, 28876 { "routeEntrySize", KSTAT_DATA_INT32, 0 }, 28877 { "netToMediaEntrySize", KSTAT_DATA_INT32, 0 }, 28878 { "routingDiscards", KSTAT_DATA_UINT32, 0 }, 28879 { "inErrs", KSTAT_DATA_UINT32, 0 }, 28880 { "noPorts", KSTAT_DATA_UINT32, 0 }, 28881 { "inCksumErrs", KSTAT_DATA_UINT32, 0 }, 28882 { "reasmDuplicates", KSTAT_DATA_UINT32, 0 }, 28883 { "reasmPartDups", KSTAT_DATA_UINT32, 0 }, 28884 { "forwProhibits", KSTAT_DATA_UINT32, 0 }, 28885 { "udpInCksumErrs", KSTAT_DATA_UINT32, 0 }, 28886 { "udpInOverflows", KSTAT_DATA_UINT32, 0 }, 28887 { "rawipInOverflows", KSTAT_DATA_UINT32, 0 }, 28888 { "ipsecInSucceeded", KSTAT_DATA_UINT32, 0 }, 28889 { "ipsecInFailed", KSTAT_DATA_INT32, 0 }, 28890 { "memberEntrySize", KSTAT_DATA_INT32, 0 }, 28891 { "inIPv6", KSTAT_DATA_UINT32, 0 }, 28892 { "outIPv6", KSTAT_DATA_UINT32, 0 }, 28893 { "outSwitchIPv6", KSTAT_DATA_UINT32, 0 }, 28894 }; 28895 28896 ip_mibkp = kstat_create("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED, 28897 NUM_OF_FIELDS(ip_named_kstat_t), 28898 0); 28899 if (!ip_mibkp) 28900 return; 28901 28902 template.forwarding.value.ui32 = WE_ARE_FORWARDING ? 1:2; 28903 template.defaultTTL.value.ui32 = (uint32_t)ip_def_ttl; 28904 template.reasmTimeout.value.ui32 = ip_g_frag_timeout; 28905 template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t); 28906 template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t); 28907 28908 template.netToMediaEntrySize.value.i32 = 28909 sizeof (mib2_ipNetToMediaEntry_t); 28910 28911 template.memberEntrySize.value.i32 = sizeof (ipv6_member_t); 28912 28913 bcopy(&template, ip_mibkp->ks_data, sizeof (template)); 28914 28915 ip_mibkp->ks_update = ip_kstat_update; 28916 28917 kstat_install(ip_mibkp); 28918 } 28919 28920 static void 28921 ip_kstat_fini(void) 28922 { 28923 28924 if (ip_mibkp != NULL) { 28925 kstat_delete(ip_mibkp); 28926 ip_mibkp = NULL; 28927 } 28928 } 28929 28930 static int 28931 ip_kstat_update(kstat_t *kp, int rw) 28932 { 28933 ip_named_kstat_t *ipkp; 28934 mib2_ipIfStatsEntry_t ipmib; 28935 ill_walk_context_t ctx; 28936 ill_t *ill; 28937 28938 if (!kp || !kp->ks_data) 28939 return (EIO); 28940 28941 if (rw == KSTAT_WRITE) 28942 return (EACCES); 28943 28944 ipkp = (ip_named_kstat_t *)kp->ks_data; 28945 28946 bcopy(&ip_mib, &ipmib, sizeof (ipmib)); 28947 rw_enter(&ill_g_lock, RW_READER); 28948 ill = ILL_START_WALK_V4(&ctx); 28949 for (; ill != NULL; ill = ill_next(&ctx, ill)) 28950 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib); 28951 rw_exit(&ill_g_lock); 28952 28953 ipkp->forwarding.value.ui32 = ipmib.ipIfStatsForwarding; 28954 ipkp->defaultTTL.value.ui32 = ipmib.ipIfStatsDefaultTTL; 28955 ipkp->inReceives.value.ui64 = ipmib.ipIfStatsHCInReceives; 28956 ipkp->inHdrErrors.value.ui32 = ipmib.ipIfStatsInHdrErrors; 28957 ipkp->inAddrErrors.value.ui32 = ipmib.ipIfStatsInAddrErrors; 28958 ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams; 28959 ipkp->inUnknownProtos.value.ui32 = ipmib.ipIfStatsInUnknownProtos; 28960 ipkp->inDiscards.value.ui32 = ipmib.ipIfStatsInDiscards; 28961 ipkp->inDelivers.value.ui64 = ipmib.ipIfStatsHCInDelivers; 28962 ipkp->outRequests.value.ui64 = ipmib.ipIfStatsHCOutRequests; 28963 ipkp->outDiscards.value.ui32 = ipmib.ipIfStatsOutDiscards; 28964 ipkp->outNoRoutes.value.ui32 = ipmib.ipIfStatsOutNoRoutes; 28965 ipkp->reasmTimeout.value.ui32 = ip_g_frag_timeout; 28966 ipkp->reasmReqds.value.ui32 = ipmib.ipIfStatsReasmReqds; 28967 ipkp->reasmOKs.value.ui32 = ipmib.ipIfStatsReasmOKs; 28968 ipkp->reasmFails.value.ui32 = ipmib.ipIfStatsReasmFails; 28969 ipkp->fragOKs.value.ui32 = ipmib.ipIfStatsOutFragOKs; 28970 ipkp->fragFails.value.ui32 = ipmib.ipIfStatsOutFragFails; 28971 ipkp->fragCreates.value.ui32 = ipmib.ipIfStatsOutFragCreates; 28972 28973 ipkp->routingDiscards.value.ui32 = 0; 28974 ipkp->inErrs.value.ui32 = ipmib.tcpIfStatsInErrs; 28975 ipkp->noPorts.value.ui32 = ipmib.udpIfStatsNoPorts; 28976 ipkp->inCksumErrs.value.ui32 = ipmib.ipIfStatsInCksumErrs; 28977 ipkp->reasmDuplicates.value.ui32 = ipmib.ipIfStatsReasmDuplicates; 28978 ipkp->reasmPartDups.value.ui32 = ipmib.ipIfStatsReasmPartDups; 28979 ipkp->forwProhibits.value.ui32 = ipmib.ipIfStatsForwProhibits; 28980 ipkp->udpInCksumErrs.value.ui32 = ipmib.udpIfStatsInCksumErrs; 28981 ipkp->udpInOverflows.value.ui32 = ipmib.udpIfStatsInOverflows; 28982 ipkp->rawipInOverflows.value.ui32 = ipmib.rawipIfStatsInOverflows; 28983 ipkp->ipsecInSucceeded.value.ui32 = ipmib.ipsecIfStatsInSucceeded; 28984 ipkp->ipsecInFailed.value.i32 = ipmib.ipsecIfStatsInFailed; 28985 28986 ipkp->inIPv6.value.ui32 = ipmib.ipIfStatsInWrongIPVersion; 28987 ipkp->outIPv6.value.ui32 = ipmib.ipIfStatsOutWrongIPVersion; 28988 ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion; 28989 28990 return (0); 28991 } 28992 28993 static void 28994 icmp_kstat_init(void) 28995 { 28996 icmp_named_kstat_t template = { 28997 { "inMsgs", KSTAT_DATA_UINT32 }, 28998 { "inErrors", KSTAT_DATA_UINT32 }, 28999 { "inDestUnreachs", KSTAT_DATA_UINT32 }, 29000 { "inTimeExcds", KSTAT_DATA_UINT32 }, 29001 { "inParmProbs", KSTAT_DATA_UINT32 }, 29002 { "inSrcQuenchs", KSTAT_DATA_UINT32 }, 29003 { "inRedirects", KSTAT_DATA_UINT32 }, 29004 { "inEchos", KSTAT_DATA_UINT32 }, 29005 { "inEchoReps", KSTAT_DATA_UINT32 }, 29006 { "inTimestamps", KSTAT_DATA_UINT32 }, 29007 { "inTimestampReps", KSTAT_DATA_UINT32 }, 29008 { "inAddrMasks", KSTAT_DATA_UINT32 }, 29009 { "inAddrMaskReps", KSTAT_DATA_UINT32 }, 29010 { "outMsgs", KSTAT_DATA_UINT32 }, 29011 { "outErrors", KSTAT_DATA_UINT32 }, 29012 { "outDestUnreachs", KSTAT_DATA_UINT32 }, 29013 { "outTimeExcds", KSTAT_DATA_UINT32 }, 29014 { "outParmProbs", KSTAT_DATA_UINT32 }, 29015 { "outSrcQuenchs", KSTAT_DATA_UINT32 }, 29016 { "outRedirects", KSTAT_DATA_UINT32 }, 29017 { "outEchos", KSTAT_DATA_UINT32 }, 29018 { "outEchoReps", KSTAT_DATA_UINT32 }, 29019 { "outTimestamps", KSTAT_DATA_UINT32 }, 29020 { "outTimestampReps", KSTAT_DATA_UINT32 }, 29021 { "outAddrMasks", KSTAT_DATA_UINT32 }, 29022 { "outAddrMaskReps", KSTAT_DATA_UINT32 }, 29023 { "inChksumErrs", KSTAT_DATA_UINT32 }, 29024 { "inUnknowns", KSTAT_DATA_UINT32 }, 29025 { "inFragNeeded", KSTAT_DATA_UINT32 }, 29026 { "outFragNeeded", KSTAT_DATA_UINT32 }, 29027 { "outDrops", KSTAT_DATA_UINT32 }, 29028 { "inOverFlows", KSTAT_DATA_UINT32 }, 29029 { "inBadRedirects", KSTAT_DATA_UINT32 }, 29030 }; 29031 29032 icmp_mibkp = kstat_create("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED, 29033 NUM_OF_FIELDS(icmp_named_kstat_t), 29034 0); 29035 if (icmp_mibkp == NULL) 29036 return; 29037 29038 bcopy(&template, icmp_mibkp->ks_data, sizeof (template)); 29039 29040 icmp_mibkp->ks_update = icmp_kstat_update; 29041 29042 kstat_install(icmp_mibkp); 29043 } 29044 29045 static void 29046 icmp_kstat_fini(void) 29047 { 29048 29049 if (icmp_mibkp != NULL) { 29050 kstat_delete(icmp_mibkp); 29051 icmp_mibkp = NULL; 29052 } 29053 } 29054 29055 static int 29056 icmp_kstat_update(kstat_t *kp, int rw) 29057 { 29058 icmp_named_kstat_t *icmpkp; 29059 29060 if ((kp == NULL) || (kp->ks_data == NULL)) 29061 return (EIO); 29062 29063 if (rw == KSTAT_WRITE) 29064 return (EACCES); 29065 29066 icmpkp = (icmp_named_kstat_t *)kp->ks_data; 29067 29068 icmpkp->inMsgs.value.ui32 = icmp_mib.icmpInMsgs; 29069 icmpkp->inErrors.value.ui32 = icmp_mib.icmpInErrors; 29070 icmpkp->inDestUnreachs.value.ui32 = icmp_mib.icmpInDestUnreachs; 29071 icmpkp->inTimeExcds.value.ui32 = icmp_mib.icmpInTimeExcds; 29072 icmpkp->inParmProbs.value.ui32 = icmp_mib.icmpInParmProbs; 29073 icmpkp->inSrcQuenchs.value.ui32 = icmp_mib.icmpInSrcQuenchs; 29074 icmpkp->inRedirects.value.ui32 = icmp_mib.icmpInRedirects; 29075 icmpkp->inEchos.value.ui32 = icmp_mib.icmpInEchos; 29076 icmpkp->inEchoReps.value.ui32 = icmp_mib.icmpInEchoReps; 29077 icmpkp->inTimestamps.value.ui32 = icmp_mib.icmpInTimestamps; 29078 icmpkp->inTimestampReps.value.ui32 = icmp_mib.icmpInTimestampReps; 29079 icmpkp->inAddrMasks.value.ui32 = icmp_mib.icmpInAddrMasks; 29080 icmpkp->inAddrMaskReps.value.ui32 = icmp_mib.icmpInAddrMaskReps; 29081 icmpkp->outMsgs.value.ui32 = icmp_mib.icmpOutMsgs; 29082 icmpkp->outErrors.value.ui32 = icmp_mib.icmpOutErrors; 29083 icmpkp->outDestUnreachs.value.ui32 = icmp_mib.icmpOutDestUnreachs; 29084 icmpkp->outTimeExcds.value.ui32 = icmp_mib.icmpOutTimeExcds; 29085 icmpkp->outParmProbs.value.ui32 = icmp_mib.icmpOutParmProbs; 29086 icmpkp->outSrcQuenchs.value.ui32 = icmp_mib.icmpOutSrcQuenchs; 29087 icmpkp->outRedirects.value.ui32 = icmp_mib.icmpOutRedirects; 29088 icmpkp->outEchos.value.ui32 = icmp_mib.icmpOutEchos; 29089 icmpkp->outEchoReps.value.ui32 = icmp_mib.icmpOutEchoReps; 29090 icmpkp->outTimestamps.value.ui32 = icmp_mib.icmpOutTimestamps; 29091 icmpkp->outTimestampReps.value.ui32 = icmp_mib.icmpOutTimestampReps; 29092 icmpkp->outAddrMasks.value.ui32 = icmp_mib.icmpOutAddrMasks; 29093 icmpkp->outAddrMaskReps.value.ui32 = icmp_mib.icmpOutAddrMaskReps; 29094 icmpkp->inCksumErrs.value.ui32 = icmp_mib.icmpInCksumErrs; 29095 icmpkp->inUnknowns.value.ui32 = icmp_mib.icmpInUnknowns; 29096 icmpkp->inFragNeeded.value.ui32 = icmp_mib.icmpInFragNeeded; 29097 icmpkp->outFragNeeded.value.ui32 = icmp_mib.icmpOutFragNeeded; 29098 icmpkp->outDrops.value.ui32 = icmp_mib.icmpOutDrops; 29099 icmpkp->inOverflows.value.ui32 = icmp_mib.icmpInOverflows; 29100 icmpkp->inBadRedirects.value.ui32 = icmp_mib.icmpInBadRedirects; 29101 29102 return (0); 29103 } 29104 29105 /* 29106 * This is the fanout function for raw socket opened for SCTP. Note 29107 * that it is called after SCTP checks that there is no socket which 29108 * wants a packet. Then before SCTP handles this out of the blue packet, 29109 * this function is called to see if there is any raw socket for SCTP. 29110 * If there is and it is bound to the correct address, the packet will 29111 * be sent to that socket. Note that only one raw socket can be bound to 29112 * a port. This is assured in ipcl_sctp_hash_insert(); 29113 */ 29114 void 29115 ip_fanout_sctp_raw(mblk_t *mp, ill_t *recv_ill, ipha_t *ipha, boolean_t isv4, 29116 uint32_t ports, boolean_t mctl_present, uint_t flags, boolean_t ip_policy, 29117 uint_t ipif_seqid, zoneid_t zoneid) 29118 { 29119 conn_t *connp; 29120 queue_t *rq; 29121 mblk_t *first_mp; 29122 boolean_t secure; 29123 ip6_t *ip6h; 29124 29125 first_mp = mp; 29126 if (mctl_present) { 29127 mp = first_mp->b_cont; 29128 secure = ipsec_in_is_secure(first_mp); 29129 ASSERT(mp != NULL); 29130 } else { 29131 secure = B_FALSE; 29132 } 29133 ip6h = (isv4) ? NULL : (ip6_t *)ipha; 29134 29135 connp = ipcl_classify_raw(mp, IPPROTO_SCTP, zoneid, ports, ipha); 29136 if (connp == NULL) { 29137 sctp_ootb_input(first_mp, recv_ill, ipif_seqid, zoneid, 29138 mctl_present); 29139 return; 29140 } 29141 rq = connp->conn_rq; 29142 if (!canputnext(rq)) { 29143 CONN_DEC_REF(connp); 29144 BUMP_MIB(recv_ill->ill_ip_mib, rawipIfStatsInOverflows); 29145 freemsg(first_mp); 29146 return; 29147 } 29148 if ((isv4 ? CONN_INBOUND_POLICY_PRESENT(connp) : 29149 CONN_INBOUND_POLICY_PRESENT_V6(connp)) || secure) { 29150 first_mp = ipsec_check_inbound_policy(first_mp, connp, 29151 (isv4 ? ipha : NULL), ip6h, mctl_present); 29152 if (first_mp == NULL) { 29153 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); 29154 CONN_DEC_REF(connp); 29155 return; 29156 } 29157 } 29158 /* 29159 * We probably should not send M_CTL message up to 29160 * raw socket. 29161 */ 29162 if (mctl_present) 29163 freeb(first_mp); 29164 29165 /* Initiate IPPF processing here if needed. */ 29166 if ((isv4 && IPP_ENABLED(IPP_LOCAL_IN) && ip_policy) || 29167 (!isv4 && IP6_IN_IPP(flags))) { 29168 ip_process(IPP_LOCAL_IN, &mp, 29169 recv_ill->ill_phyint->phyint_ifindex); 29170 if (mp == NULL) { 29171 CONN_DEC_REF(connp); 29172 return; 29173 } 29174 } 29175 29176 if (connp->conn_recvif || connp->conn_recvslla || 29177 ((connp->conn_ipv6_recvpktinfo || 29178 (!isv4 && IN6_IS_ADDR_LINKLOCAL(&ip6h->ip6_src))) && 29179 (flags & IP_FF_IP6INFO))) { 29180 int in_flags = 0; 29181 29182 if (connp->conn_recvif || connp->conn_ipv6_recvpktinfo) { 29183 in_flags = IPF_RECVIF; 29184 } 29185 if (connp->conn_recvslla) { 29186 in_flags |= IPF_RECVSLLA; 29187 } 29188 if (isv4) { 29189 mp = ip_add_info(mp, recv_ill, in_flags); 29190 } else { 29191 mp = ip_add_info_v6(mp, recv_ill, &ip6h->ip6_dst); 29192 if (mp == NULL) { 29193 BUMP_MIB(recv_ill->ill_ip_mib, 29194 ipIfStatsInDiscards); 29195 CONN_DEC_REF(connp); 29196 return; 29197 } 29198 } 29199 } 29200 29201 BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsHCInDelivers); 29202 /* 29203 * We are sending the IPSEC_IN message also up. Refer 29204 * to comments above this function. 29205 */ 29206 putnext(rq, mp); 29207 CONN_DEC_REF(connp); 29208 } 29209 29210 #define UPDATE_IP_MIB_OB_COUNTERS(ill, len) \ 29211 { \ 29212 BUMP_MIB((ill)->ill_ip_mib, ipIfStatsHCOutTransmits); \ 29213 UPDATE_MIB((ill)->ill_ip_mib, ipIfStatsHCOutOctets, (len)); \ 29214 } 29215 /* 29216 * This function should be called only if all packet processing 29217 * including fragmentation is complete. Callers of this function 29218 * must set mp->b_prev to one of these values: 29219 * {0, IPP_FWD_OUT, IPP_LOCAL_OUT} 29220 * prior to handing over the mp as first argument to this function. 29221 * 29222 * If the ire passed by caller is incomplete, this function 29223 * queues the packet and if necessary, sends ARP request and bails. 29224 * If the ire passed is fully resolved, we simply prepend 29225 * the link-layer header to the packet, do ipsec hw acceleration 29226 * work if necessary, and send the packet out on the wire. 29227 * 29228 * NOTE: IPSEC will only call this function with fully resolved 29229 * ires if hw acceleration is involved. 29230 * TODO list : 29231 * a Handle M_MULTIDATA so that 29232 * tcp_multisend->tcp_multisend_data can 29233 * call ip_xmit_v4 directly 29234 * b Handle post-ARP work for fragments so that 29235 * ip_wput_frag can call this function. 29236 */ 29237 ipxmit_state_t 29238 ip_xmit_v4(mblk_t *mp, ire_t *ire, ipsec_out_t *io, boolean_t flow_ctl_enabled) 29239 { 29240 nce_t *arpce; 29241 queue_t *q; 29242 int ill_index; 29243 mblk_t *nxt_mp, *first_mp; 29244 boolean_t xmit_drop = B_FALSE; 29245 ip_proc_t proc; 29246 ill_t *out_ill; 29247 int pkt_len; 29248 29249 arpce = ire->ire_nce; 29250 ASSERT(arpce != NULL); 29251 29252 DTRACE_PROBE2(ip__xmit__v4, ire_t *, ire, nce_t *, arpce); 29253 29254 mutex_enter(&arpce->nce_lock); 29255 switch (arpce->nce_state) { 29256 case ND_REACHABLE: 29257 /* If there are other queued packets, queue this packet */ 29258 if (arpce->nce_qd_mp != NULL) { 29259 if (mp != NULL) 29260 nce_queue_mp_common(arpce, mp, B_FALSE); 29261 mp = arpce->nce_qd_mp; 29262 } 29263 arpce->nce_qd_mp = NULL; 29264 mutex_exit(&arpce->nce_lock); 29265 29266 /* 29267 * Flush the queue. In the common case, where the 29268 * ARP is already resolved, it will go through the 29269 * while loop only once. 29270 */ 29271 while (mp != NULL) { 29272 29273 nxt_mp = mp->b_next; 29274 mp->b_next = NULL; 29275 ASSERT(mp->b_datap->db_type != M_CTL); 29276 pkt_len = ntohs(((ipha_t *)mp->b_rptr)->ipha_length); 29277 /* 29278 * This info is needed for IPQOS to do COS marking 29279 * in ip_wput_attach_llhdr->ip_process. 29280 */ 29281 proc = (ip_proc_t)(uintptr_t)mp->b_prev; 29282 mp->b_prev = NULL; 29283 29284 /* set up ill index for outbound qos processing */ 29285 out_ill = ire->ire_ipif->ipif_ill; 29286 ill_index = out_ill->ill_phyint->phyint_ifindex; 29287 first_mp = ip_wput_attach_llhdr(mp, ire, proc, 29288 ill_index); 29289 if (first_mp == NULL) { 29290 xmit_drop = B_TRUE; 29291 BUMP_MIB(out_ill->ill_ip_mib, 29292 ipIfStatsOutDiscards); 29293 goto next_mp; 29294 } 29295 /* non-ipsec hw accel case */ 29296 if (io == NULL || !io->ipsec_out_accelerated) { 29297 /* send it */ 29298 q = ire->ire_stq; 29299 if (proc == IPP_FWD_OUT) { 29300 UPDATE_IB_PKT_COUNT(ire); 29301 } else { 29302 UPDATE_OB_PKT_COUNT(ire); 29303 } 29304 ire->ire_last_used_time = lbolt; 29305 29306 if (flow_ctl_enabled || canputnext(q)) { 29307 if (proc == IPP_FWD_OUT) { 29308 BUMP_MIB(out_ill->ill_ip_mib, 29309 ipIfStatsHCOutForwDatagrams); 29310 } 29311 UPDATE_IP_MIB_OB_COUNTERS(out_ill, 29312 pkt_len); 29313 29314 putnext(q, first_mp); 29315 } else { 29316 BUMP_MIB(out_ill->ill_ip_mib, 29317 ipIfStatsOutDiscards); 29318 xmit_drop = B_TRUE; 29319 freemsg(first_mp); 29320 } 29321 } else { 29322 /* 29323 * Safety Pup says: make sure this 29324 * is going to the right interface! 29325 */ 29326 ill_t *ill1 = 29327 (ill_t *)ire->ire_stq->q_ptr; 29328 int ifindex = 29329 ill1->ill_phyint->phyint_ifindex; 29330 if (ifindex != 29331 io->ipsec_out_capab_ill_index) { 29332 xmit_drop = B_TRUE; 29333 freemsg(mp); 29334 } else { 29335 UPDATE_IP_MIB_OB_COUNTERS(ill1, 29336 pkt_len); 29337 ipsec_hw_putnext(ire->ire_stq, mp); 29338 } 29339 } 29340 next_mp: 29341 mp = nxt_mp; 29342 } /* while (mp != NULL) */ 29343 if (xmit_drop) 29344 return (SEND_FAILED); 29345 else 29346 return (SEND_PASSED); 29347 29348 case ND_INITIAL: 29349 case ND_INCOMPLETE: 29350 29351 /* 29352 * While we do send off packets to dests that 29353 * use fully-resolved CGTP routes, we do not 29354 * handle unresolved CGTP routes. 29355 */ 29356 ASSERT(!(ire->ire_flags & RTF_MULTIRT)); 29357 ASSERT(io == NULL || !io->ipsec_out_accelerated); 29358 29359 if (mp != NULL) { 29360 /* queue the packet */ 29361 nce_queue_mp_common(arpce, mp, B_FALSE); 29362 } 29363 29364 if (arpce->nce_state == ND_INCOMPLETE) { 29365 mutex_exit(&arpce->nce_lock); 29366 DTRACE_PROBE3(ip__xmit__incomplete, 29367 (ire_t *), ire, (mblk_t *), mp, 29368 (ipsec_out_t *), io); 29369 return (LOOKUP_IN_PROGRESS); 29370 } 29371 29372 arpce->nce_state = ND_INCOMPLETE; 29373 mutex_exit(&arpce->nce_lock); 29374 /* 29375 * Note that ire_add() (called from ire_forward()) 29376 * holds a ref on the ire until ARP is completed. 29377 */ 29378 29379 ire_arpresolve(ire, ire_to_ill(ire)); 29380 return (LOOKUP_IN_PROGRESS); 29381 default: 29382 ASSERT(0); 29383 mutex_exit(&arpce->nce_lock); 29384 return (LLHDR_RESLV_FAILED); 29385 } 29386 } 29387 29388 #undef UPDATE_IP_MIB_OB_COUNTERS 29389 29390 /* 29391 * Return B_TRUE if the buffers differ in length or content. 29392 * This is used for comparing extension header buffers. 29393 * Note that an extension header would be declared different 29394 * even if all that changed was the next header value in that header i.e. 29395 * what really changed is the next extension header. 29396 */ 29397 boolean_t 29398 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf, 29399 uint_t blen) 29400 { 29401 if (!b_valid) 29402 blen = 0; 29403 29404 if (alen != blen) 29405 return (B_TRUE); 29406 if (alen == 0) 29407 return (B_FALSE); /* Both zero length */ 29408 return (bcmp(abuf, bbuf, alen)); 29409 } 29410 29411 /* 29412 * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok. 29413 * Return B_FALSE if memory allocation fails - don't change any state! 29414 */ 29415 boolean_t 29416 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29417 const void *src, uint_t srclen) 29418 { 29419 void *dst; 29420 29421 if (!src_valid) 29422 srclen = 0; 29423 29424 ASSERT(*dstlenp == 0); 29425 if (src != NULL && srclen != 0) { 29426 dst = mi_alloc(srclen, BPRI_MED); 29427 if (dst == NULL) 29428 return (B_FALSE); 29429 } else { 29430 dst = NULL; 29431 } 29432 if (*dstp != NULL) 29433 mi_free(*dstp); 29434 *dstp = dst; 29435 *dstlenp = dst == NULL ? 0 : srclen; 29436 return (B_TRUE); 29437 } 29438 29439 /* 29440 * Replace what is in *dst, *dstlen with the source. 29441 * Assumes ip_allocbuf has already been called. 29442 */ 29443 void 29444 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 29445 const void *src, uint_t srclen) 29446 { 29447 if (!src_valid) 29448 srclen = 0; 29449 29450 ASSERT(*dstlenp == srclen); 29451 if (src != NULL && srclen != 0) 29452 bcopy(src, *dstp, srclen); 29453 } 29454 29455 /* 29456 * Free the storage pointed to by the members of an ip6_pkt_t. 29457 */ 29458 void 29459 ip6_pkt_free(ip6_pkt_t *ipp) 29460 { 29461 ASSERT(ipp->ipp_pathmtu == NULL && !(ipp->ipp_fields & IPPF_PATHMTU)); 29462 29463 if (ipp->ipp_fields & IPPF_HOPOPTS) { 29464 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 29465 ipp->ipp_hopopts = NULL; 29466 ipp->ipp_hopoptslen = 0; 29467 } 29468 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 29469 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 29470 ipp->ipp_rtdstopts = NULL; 29471 ipp->ipp_rtdstoptslen = 0; 29472 } 29473 if (ipp->ipp_fields & IPPF_DSTOPTS) { 29474 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 29475 ipp->ipp_dstopts = NULL; 29476 ipp->ipp_dstoptslen = 0; 29477 } 29478 if (ipp->ipp_fields & IPPF_RTHDR) { 29479 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 29480 ipp->ipp_rthdr = NULL; 29481 ipp->ipp_rthdrlen = 0; 29482 } 29483 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 29484 IPPF_RTHDR); 29485 } 29486