xref: /illumos-gate/usr/src/uts/common/inet/ip.h (revision d0e72dff6c5b858c797dfc1172d9c3aed2103940)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #ifndef	_INET_IP_H
29 #define	_INET_IP_H
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #ifdef	__cplusplus
34 extern "C" {
35 #endif
36 
37 #include <sys/isa_defs.h>
38 #include <sys/types.h>
39 #include <inet/mib2.h>
40 #include <inet/nd.h>
41 #include <sys/atomic.h>
42 #include <net/if_dl.h>
43 #include <net/if.h>
44 #include <netinet/ip.h>
45 #include <netinet/igmp.h>
46 
47 #ifdef _KERNEL
48 #include <netinet/ip6.h>
49 #include <sys/avl.h>
50 #include <sys/vmem.h>
51 #include <sys/squeue.h>
52 #include <net/route.h>
53 #include <sys/systm.h>
54 #include <sys/multidata.h>
55 #include <net/radix.h>
56 
57 #ifdef DEBUG
58 #define	ILL_DEBUG
59 #define	IRE_DEBUG
60 #define	NCE_DEBUG
61 #define	CONN_DEBUG
62 #endif
63 
64 #define	IP_DEBUG
65 /*
66  * The mt-streams(9F) flags for the IP module; put here so that other
67  * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set
68  * of flags.
69  */
70 #define	IP_DEVMTFLAGS D_MP
71 #endif	/* _KERNEL */
72 
73 #define	IP_MOD_NAME	"ip"
74 #define	IP_DEV_NAME	"/dev/ip"
75 #define	IP6_DEV_NAME	"/dev/ip6"
76 
77 #define	UDP_MOD_NAME	"udp"
78 #define	UDP_DEV_NAME	"/dev/udp"
79 #define	UDP6_DEV_NAME	"/dev/udp6"
80 
81 #define	TCP_MOD_NAME	"tcp"
82 #define	TCP_DEV_NAME	"/dev/tcp"
83 #define	TCP6_DEV_NAME	"/dev/tcp6"
84 
85 #define	SCTP_MOD_NAME	"sctp"
86 
87 /* Minor numbers */
88 #define	IPV4_MINOR	0
89 #define	IPV6_MINOR	1
90 #define	TCP_MINOR	2
91 #define	TCP_MINOR6	3
92 
93 #ifndef	_IPADDR_T
94 #define	_IPADDR_T
95 typedef uint32_t ipaddr_t;
96 #endif
97 
98 /* Number of bits in an address */
99 #define	IP_ABITS		32
100 #define	IPV6_ABITS		128
101 
102 #define	IP_HOST_MASK		(ipaddr_t)0xffffffffU
103 
104 #define	IP_CSUM(mp, off, sum)		(~ip_cksum(mp, off, sum) & 0xFFFF)
105 #define	IP_CSUM_PARTIAL(mp, off, sum)	ip_cksum(mp, off, sum)
106 #define	IP_BCSUM_PARTIAL(bp, len, sum)	bcksum(bp, len, sum)
107 #define	IP_MD_CSUM(pd, off, sum)	(~ip_md_cksum(pd, off, sum) & 0xffff)
108 #define	IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum)
109 
110 /*
111  * Flag to IP write side to indicate that the appln has sent in a pre-built
112  * IP header. Stored in ipha_ident (which is otherwise zero).
113  */
114 #define	IP_HDR_INCLUDED			0xFFFF
115 
116 #define	ILL_FRAG_HASH_TBL_COUNT	((unsigned int)64)
117 #define	ILL_FRAG_HASH_TBL_SIZE	(ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t))
118 
119 #define	IPV4_ADDR_LEN			4
120 #define	IP_ADDR_LEN			IPV4_ADDR_LEN
121 #define	IP_ARP_PROTO_TYPE		0x0800
122 
123 #define	IPV4_VERSION			4
124 #define	IP_VERSION			IPV4_VERSION
125 #define	IP_SIMPLE_HDR_LENGTH_IN_WORDS	5
126 #define	IP_SIMPLE_HDR_LENGTH		20
127 #define	IP_MAX_HDR_LENGTH		60
128 
129 #define	IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH)
130 
131 #define	IP_MIN_MTU			(IP_MAX_HDR_LENGTH + 8)	/* 68 bytes */
132 
133 /*
134  * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the
135  * 2 files should be cleaned up to remove all redundant definitions.
136  */
137 #define	IP_MAXPACKET			65535
138 #define	IP_SIMPLE_HDR_VERSION \
139 	((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS)
140 
141 #define	UDPH_SIZE			8
142 
143 /* Leave room for ip_newroute to tack on the src and target addresses */
144 #define	OK_RESOLVER_MP(mp)						\
145 	((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN))
146 
147 /*
148  * Constants and type definitions to support IP IOCTL commands
149  */
150 #define	IP_IOCTL			(('i'<<8)|'p')
151 #define	IP_IOC_IRE_DELETE		4
152 #define	IP_IOC_IRE_DELETE_NO_REPLY	5
153 #define	IP_IOC_IRE_ADVISE_NO_REPLY	6
154 #define	IP_IOC_RTS_REQUEST		7
155 
156 /* Common definitions used by IP IOCTL data structures */
157 typedef struct ipllcmd_s {
158 	uint_t	ipllc_cmd;
159 	uint_t	ipllc_name_offset;
160 	uint_t	ipllc_name_length;
161 } ipllc_t;
162 
163 /* IP IRE Change Command Structure. */
164 typedef struct ipic_s {
165 	ipllc_t	ipic_ipllc;
166 	uint_t	ipic_ire_type;
167 	uint_t	ipic_max_frag;
168 	uint_t	ipic_addr_offset;
169 	uint_t	ipic_addr_length;
170 	uint_t	ipic_mask_offset;
171 	uint_t	ipic_mask_length;
172 	uint_t	ipic_src_addr_offset;
173 	uint_t	ipic_src_addr_length;
174 	uint_t	ipic_ll_hdr_offset;
175 	uint_t	ipic_ll_hdr_length;
176 	uint_t	ipic_gateway_addr_offset;
177 	uint_t	ipic_gateway_addr_length;
178 	clock_t	ipic_rtt;
179 	uint32_t ipic_ssthresh;
180 	clock_t	ipic_rtt_sd;
181 	uchar_t ipic_ire_marks;
182 } ipic_t;
183 
184 #define	ipic_cmd		ipic_ipllc.ipllc_cmd
185 #define	ipic_ll_name_length	ipic_ipllc.ipllc_name_length
186 #define	ipic_ll_name_offset	ipic_ipllc.ipllc_name_offset
187 
188 /* IP IRE Delete Command Structure. */
189 typedef struct ipid_s {
190 	ipllc_t	ipid_ipllc;
191 	uint_t	ipid_ire_type;
192 	uint_t	ipid_addr_offset;
193 	uint_t	ipid_addr_length;
194 	uint_t	ipid_mask_offset;
195 	uint_t	ipid_mask_length;
196 } ipid_t;
197 
198 #define	ipid_cmd		ipid_ipllc.ipllc_cmd
199 
200 #ifdef _KERNEL
201 /*
202  * Temporary state for ip options parser.
203  */
204 typedef struct ipoptp_s
205 {
206 	uint8_t		*ipoptp_next;	/* next option to look at */
207 	uint8_t		*ipoptp_end;	/* end of options */
208 	uint8_t		*ipoptp_cur;	/* start of current option */
209 	uint8_t		ipoptp_len;	/* length of current option */
210 	uint32_t	ipoptp_flags;
211 } ipoptp_t;
212 
213 /*
214  * Flag(s) for ipoptp_flags
215  */
216 #define	IPOPTP_ERROR	0x00000001
217 #endif	/* _KERNEL */
218 
219 
220 /* Controls forwarding of IP packets, set via ndd */
221 #define	IP_FORWARD_NEVER	0
222 #define	IP_FORWARD_ALWAYS	1
223 
224 #define	WE_ARE_FORWARDING	(ip_g_forward == IP_FORWARD_ALWAYS)
225 
226 #define	IPH_HDR_LENGTH(ipha)						\
227 	((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2)
228 
229 #define	IPH_HDR_VERSION(ipha)						\
230 	((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4)
231 
232 #ifdef _KERNEL
233 /*
234  * IP reassembly macros.  We hide starting and ending offsets in b_next and
235  * b_prev of messages on the reassembly queue.	The messages are chained using
236  * b_cont.  These macros are used in ip_reassemble() so we don't have to see
237  * the ugly casts and assignments.
238  * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent
239  * them.
240  */
241 #define	IP_REASS_START(mp)		((uint_t)(uintptr_t)((mp)->b_next))
242 #define	IP_REASS_SET_START(mp, u)	\
243 	((mp)->b_next = (mblk_t *)(uintptr_t)(u))
244 #define	IP_REASS_END(mp)		((uint_t)(uintptr_t)((mp)->b_prev))
245 #define	IP_REASS_SET_END(mp, u)		\
246 	((mp)->b_prev = (mblk_t *)(uintptr_t)(u))
247 
248 #define	IP_REASS_COMPLETE	0x1
249 #define	IP_REASS_PARTIAL	0x2
250 #define	IP_REASS_FAILED		0x4
251 
252 /*
253  * Test to determine whether this is a module instance of IP or a
254  * driver instance of IP.
255  */
256 #define	CONN_Q(q)	(WR(q)->q_next == NULL)
257 
258 #define	Q_TO_CONN(q)	((conn_t *)(q)->q_ptr)
259 #define	Q_TO_TCP(q)	(Q_TO_CONN((q))->conn_tcp)
260 #define	Q_TO_UDP(q)	(Q_TO_CONN((q))->conn_udp)
261 
262 /*
263  * The following two macros are used by IP to get the appropriate
264  * wq and rq for a conn. If it is a TCP conn, then we need
265  * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq
266  * from a conn directly if it knows that the conn is not TCP.
267  */
268 #define	CONNP_TO_WQ(connp)	\
269 	(IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq)
270 
271 #define	CONNP_TO_RQ(connp)	RD(CONNP_TO_WQ(connp))
272 
273 #define	GRAB_CONN_LOCK(q)	{				\
274 	if (q != NULL && CONN_Q(q))				\
275 		mutex_enter(&(Q_TO_CONN(q))->conn_lock);	\
276 }
277 
278 #define	RELEASE_CONN_LOCK(q)	{				\
279 	if (q != NULL && CONN_Q(q))				\
280 		mutex_exit(&(Q_TO_CONN(q))->conn_lock);		\
281 }
282 
283 /* "Congestion controlled" protocol */
284 #define	IP_FLOW_CONTROLLED_ULP(p)   ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP)
285 
286 /*
287  * Complete the pending operation. Usually an ioctl. Can also
288  * be a bind or option management request that got enqueued
289  * in an ipsq_t. Called on completion of the operation.
290  */
291 #define	CONN_OPER_PENDING_DONE(connp)	{			\
292 	mutex_enter(&(connp)->conn_lock);			\
293 	(connp)->conn_oper_pending_ill = NULL;			\
294 	cv_broadcast(&(connp)->conn_refcv);			\
295 	mutex_exit(&(connp)->conn_lock);			\
296 	CONN_DEC_REF(connp);					\
297 }
298 
299 /* Get the credential of an IP queue of unknown type */
300 #define	GET_QUEUE_CRED(wq)						\
301 	((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \
302 	    : ((Q_TO_CONN((wq)))->conn_cred))
303 
304 /*
305  * Flags for the various ip_fanout_* routines.
306  */
307 #define	IP_FF_SEND_ICMP		0x01	/* Send an ICMP error */
308 #define	IP_FF_HDR_COMPLETE	0x02	/* Call ip_hdr_complete if error */
309 #define	IP_FF_CKSUM		0x04	/* Recompute ipha_cksum if error */
310 #define	IP_FF_RAWIP		0x08	/* Use rawip mib variable */
311 #define	IP_FF_SRC_QUENCH	0x10	/* OK to send ICMP_SOURCE_QUENCH */
312 #define	IP_FF_SYN_ADDIRE	0x20	/* Add IRE if TCP syn packet */
313 #define	IP_FF_IP6INFO		0x80	/* Add ip6i_t if needed */
314 #define	IP_FF_SEND_SLLA		0x100	/* Send source link layer info ? */
315 #define	IPV6_REACHABILITY_CONFIRMATION	0x200	/* Flags for ip_xmit_v6 */
316 #define	IP_FF_NO_MCAST_LOOP	0x400	/* No multicasts for sending zone */
317 
318 /*
319  * Following flags are used by IPQoS to determine if policy processing is
320  * required.
321  */
322 #define	IP6_NO_IPPOLICY		0x800	/* Don't do IPQoS processing */
323 #define	IP6_IN_LLMCAST		0x1000	/* Multicast */
324 
325 #define	IP_FF_LOOPBACK		0x2000	/* Loopback fanout */
326 
327 #ifndef	IRE_DB_TYPE
328 #define	IRE_DB_TYPE	M_SIG
329 #endif
330 
331 #ifndef	IRE_DB_REQ_TYPE
332 #define	IRE_DB_REQ_TYPE	M_PCSIG
333 #endif
334 
335 #ifndef	IRE_ARPRESOLVE_TYPE
336 #define	IRE_ARPRESOLVE_TYPE	M_EVENT
337 #endif
338 
339 /*
340  * Values for squeue switch:
341  */
342 
343 #define	IP_SQUEUE_ENTER_NODRAIN	1
344 #define	IP_SQUEUE_ENTER	2
345 /*
346  * This is part of the interface between Transport provider and
347  * IP which can be used to set policy information. This is usually
348  * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that
349  * only IPSEC_POLICY_SET is there when it is found in the chain.
350  * The information contained is an struct ipsec_req_t. On success
351  * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned.
352  * IPSEC_POLICY_SET is never returned.
353  */
354 #define	IPSEC_POLICY_SET	M_SETOPTS
355 
356 #define	IRE_IS_LOCAL(ire)	((ire != NULL) && \
357 				((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK)))
358 
359 #define	IRE_IS_TARGET(ire)	((ire != NULL) && \
360 				((ire)->ire_type != IRE_BROADCAST))
361 
362 /* IP Fragmentation Reassembly Header */
363 typedef struct ipf_s {
364 	struct ipf_s	*ipf_hash_next;
365 	struct ipf_s	**ipf_ptphn;	/* Pointer to previous hash next. */
366 	uint32_t	ipf_ident;	/* Ident to match. */
367 	uint8_t		ipf_protocol;	/* Protocol to match. */
368 	uchar_t		ipf_last_frag_seen : 1;	/* Last fragment seen ? */
369 	time_t		ipf_timestamp;	/* Reassembly start time. */
370 	mblk_t		*ipf_mp;	/* mblk we live in. */
371 	mblk_t		*ipf_tail_mp;	/* Frag queue tail pointer. */
372 	int		ipf_hole_cnt;	/* Number of holes (hard-case). */
373 	int		ipf_end;	/* Tail end offset (0 -> hard-case). */
374 	uint_t		ipf_gen;	/* Frag queue generation */
375 	size_t		ipf_count;	/* Count of bytes used by frag */
376 	uint_t		ipf_nf_hdr_len; /* Length of nonfragmented header */
377 	in6_addr_t	ipf_v6src;	/* IPv6 source address */
378 	in6_addr_t	ipf_v6dst;	/* IPv6 dest address */
379 	uint_t		ipf_prev_nexthdr_offset; /* Offset for nexthdr value */
380 	uint8_t		ipf_ecn;	/* ECN info for the fragments */
381 	uint8_t		ipf_num_dups;	/* Number of times dup frags recvd */
382 	uint16_t	ipf_checksum_flags; /* Hardware checksum flags */
383 	uint32_t	ipf_checksum;	/* Partial checksum of fragment data */
384 } ipf_t;
385 
386 #define	ipf_src	V4_PART_OF_V6(ipf_v6src)
387 #define	ipf_dst	V4_PART_OF_V6(ipf_v6dst)
388 
389 typedef enum {
390 	IB_PKT =  0x01,
391 	OB_PKT = 0x02
392 } ip_pkt_t;
393 
394 #define	UPDATE_IB_PKT_COUNT(ire)\
395 	{ \
396 	(ire)->ire_ib_pkt_count++; \
397 	if ((ire)->ire_ipif != NULL) { \
398 		/* \
399 		 * forwarding packet \
400 		 */ \
401 		if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \
402 			atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\
403 		else \
404 			atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\
405 	} \
406 	}
407 #define	UPDATE_OB_PKT_COUNT(ire)\
408 	{ \
409 	(ire)->ire_ob_pkt_count++;\
410 	if ((ire)->ire_ipif != NULL) { \
411 		atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \
412 	} \
413 	}
414 
415 
416 #define	IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \
417 { \
418 	switch (ipha->ipha_protocol) { \
419 		case IPPROTO_UDP: \
420 			ip_udp_input(q, mp, ipha, ire, recv_ill); \
421 			break; \
422 		default: \
423 			ip_proto_input(q, mp, ipha, ire, recv_ill); \
424 			break; \
425 	} \
426 }
427 
428 /*
429  * NCE_EXPIRED is TRUE when we have a non-permanent nce that was
430  * found to be REACHABLE more than ip_ire_arp_interval ms ago.
431  * This macro is used to trigger re-arp of existing nce_t entries
432  * so that they can be updated with the latest information.
433  * nce's will get cleaned up (or updated with new info) in the following
434  * circumstances:
435  * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim
436  *    when memory is low,
437  * - ip_arp_news, when updates are received.
438  * - if the nce is NCE_EXPIRED(), it will be re-initialized to ND_INITIAL,
439  *   so that a new arp request will be triggered.
440  * nce_last is the timestamp that indicates when the nce_res_mp in the
441  * nce_t was last updated to a valid link-layer address.  nce_last gets
442  * modified/updated :
443  *  - when the nce is created  or reinit-ed
444  *  - every time we get a sane arp response for the nce.
445  */
446 #define	NCE_EXPIRED(nce)	(nce->nce_last > 0 && \
447 	((nce->nce_flags & NCE_F_PERMANENT) == 0) && \
448 	((TICK_TO_MSEC(lbolt64) - nce->nce_last) > ip_ire_arp_interval))
449 
450 #endif /* _KERNEL */
451 
452 /* ICMP types */
453 #define	ICMP_ECHO_REPLY			0
454 #define	ICMP_DEST_UNREACHABLE		3
455 #define	ICMP_SOURCE_QUENCH		4
456 #define	ICMP_REDIRECT			5
457 #define	ICMP_ECHO_REQUEST		8
458 #define	ICMP_ROUTER_ADVERTISEMENT	9
459 #define	ICMP_ROUTER_SOLICITATION	10
460 #define	ICMP_TIME_EXCEEDED		11
461 #define	ICMP_PARAM_PROBLEM		12
462 #define	ICMP_TIME_STAMP_REQUEST		13
463 #define	ICMP_TIME_STAMP_REPLY		14
464 #define	ICMP_INFO_REQUEST		15
465 #define	ICMP_INFO_REPLY			16
466 #define	ICMP_ADDRESS_MASK_REQUEST	17
467 #define	ICMP_ADDRESS_MASK_REPLY		18
468 
469 /* ICMP_TIME_EXCEEDED codes */
470 #define	ICMP_TTL_EXCEEDED		0
471 #define	ICMP_REASSEMBLY_TIME_EXCEEDED	1
472 
473 /* ICMP_DEST_UNREACHABLE codes */
474 #define	ICMP_NET_UNREACHABLE		0
475 #define	ICMP_HOST_UNREACHABLE		1
476 #define	ICMP_PROTOCOL_UNREACHABLE	2
477 #define	ICMP_PORT_UNREACHABLE		3
478 #define	ICMP_FRAGMENTATION_NEEDED	4
479 #define	ICMP_SOURCE_ROUTE_FAILED	5
480 #define	ICMP_DEST_NET_UNKNOWN		6
481 #define	ICMP_DEST_HOST_UNKNOWN		7
482 #define	ICMP_SRC_HOST_ISOLATED		8
483 #define	ICMP_DEST_NET_UNREACH_ADMIN	9
484 #define	ICMP_DEST_HOST_UNREACH_ADMIN	10
485 #define	ICMP_DEST_NET_UNREACH_TOS	11
486 #define	ICMP_DEST_HOST_UNREACH_TOS	12
487 
488 /* ICMP Header Structure */
489 typedef struct icmph_s {
490 	uint8_t		icmph_type;
491 	uint8_t		icmph_code;
492 	uint16_t	icmph_checksum;
493 	union {
494 		struct { /* ECHO request/response structure */
495 			uint16_t	u_echo_ident;
496 			uint16_t	u_echo_seqnum;
497 		} u_echo;
498 		struct { /* Destination unreachable structure */
499 			uint16_t	u_du_zero;
500 			uint16_t	u_du_mtu;
501 		} u_du;
502 		struct { /* Parameter problem structure */
503 			uint8_t		u_pp_ptr;
504 			uint8_t		u_pp_rsvd[3];
505 		} u_pp;
506 		struct { /* Redirect structure */
507 			ipaddr_t	u_rd_gateway;
508 		} u_rd;
509 	} icmph_u;
510 } icmph_t;
511 
512 #define	icmph_echo_ident	icmph_u.u_echo.u_echo_ident
513 #define	icmph_echo_seqnum	icmph_u.u_echo.u_echo_seqnum
514 #define	icmph_du_zero		icmph_u.u_du.u_du_zero
515 #define	icmph_du_mtu		icmph_u.u_du.u_du_mtu
516 #define	icmph_pp_ptr		icmph_u.u_pp.u_pp_ptr
517 #define	icmph_rd_gateway	icmph_u.u_rd.u_rd_gateway
518 
519 #define	ICMPH_SIZE	8
520 
521 /*
522  * Minimum length of transport layer header included in an ICMP error
523  * message for it to be considered valid.
524  */
525 #define	ICMP_MIN_TP_HDR_LEN	8
526 
527 /* Aligned IP header */
528 typedef struct ipha_s {
529 	uint8_t		ipha_version_and_hdr_length;
530 	uint8_t		ipha_type_of_service;
531 	uint16_t	ipha_length;
532 	uint16_t	ipha_ident;
533 	uint16_t	ipha_fragment_offset_and_flags;
534 	uint8_t		ipha_ttl;
535 	uint8_t		ipha_protocol;
536 	uint16_t	ipha_hdr_checksum;
537 	ipaddr_t	ipha_src;
538 	ipaddr_t	ipha_dst;
539 } ipha_t;
540 
541 #define	IPH_DF		0x4000	/* Don't fragment */
542 #define	IPH_MF		0x2000	/* More fragments to come */
543 #define	IPH_OFFSET	0x1FFF	/* Where the offset lives */
544 #define	IPH_FRAG_HDR	0x8000	/* IPv6 don't fragment bit */
545 
546 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */
547 #define	IPH_ECN_NECT	0x0	/* Not ECN-Capabable Transport */
548 #define	IPH_ECN_ECT1	0x1	/* ECN-Capable Transport, ECT(1) */
549 #define	IPH_ECN_ECT0	0x2	/* ECN-Capable Transport, ECT(0) */
550 #define	IPH_ECN_CE	0x3	/* ECN-Congestion Experienced (CE) */
551 
552 /* IP Mac info structure */
553 typedef struct ip_m_s {
554 	t_uscalar_t	ip_m_mac_type;	/* From <sys/dlpi.h> */
555 	int		ip_m_type;	/* From <net/if_types.h> */
556 	boolean_t	(*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *,
557 			    uint32_t *, ipaddr_t *);
558 	boolean_t	(*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *,
559 			    uint32_t *, in6_addr_t *);
560 	boolean_t	(*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *);
561 } ip_m_t;
562 
563 /*
564  * The following functions attempt to reduce the link layer dependency
565  * of the IP stack. The current set of link specific operations are:
566  * a. map from IPv4 class D (224.0/4) multicast address range to the link
567  * layer multicast address range.
568  * b. map from IPv6 multicast address range (ff00::/8) to the link
569  * layer multicast address range.
570  * c. derive the default IPv6 interface identifier from the link layer
571  * address.
572  */
573 #define	MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \
574 	(((ip_m)->ip_m_v4mapinfo != NULL) && \
575 	(*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr))
576 #define	MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \
577 	(((ip_m)->ip_m_v6intfid != NULL) && \
578 	(*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr))
579 #define	MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \
580 	(((ip_m)->ip_m_v6mapinfo != NULL) && \
581 	(*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr))
582 
583 /* Router entry types */
584 #define	IRE_BROADCAST		0x0001	/* Route entry for broadcast address */
585 #define	IRE_DEFAULT		0x0002	/* Route entry for default gateway */
586 #define	IRE_LOCAL		0x0004	/* Route entry for local address */
587 #define	IRE_LOOPBACK		0x0008	/* Route entry for loopback address */
588 #define	IRE_PREFIX		0x0010	/* Route entry for prefix routes */
589 #define	IRE_CACHE		0x0020	/* Cached Route entry */
590 #define	IRE_IF_NORESOLVER	0x0040	/* Route entry for local interface */
591 					/* net without any address mapping. */
592 #define	IRE_IF_RESOLVER		0x0080	/* Route entry for local interface */
593 					/* net with resolver. */
594 #define	IRE_HOST		0x0100	/* Host route entry */
595 #define	IRE_HOST_REDIRECT	0x0200	/* Host route entry from redirects */
596 
597 /*
598  * IRE_MIPRTUN is only set on the ires in the ip_mrtun_table.
599  * This ire_type must not be set for ftable and ctable routing entries.
600  */
601 #define	IRE_MIPRTUN		0x0400	/* Reverse tunnel route entry */
602 
603 #define	IRE_INTERFACE		(IRE_IF_NORESOLVER | IRE_IF_RESOLVER)
604 #define	IRE_OFFSUBNET		(IRE_DEFAULT | IRE_PREFIX | IRE_HOST | \
605 				IRE_HOST_REDIRECT)
606 #define	IRE_CACHETABLE		(IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \
607 				IRE_LOOPBACK)
608 #define	IRE_FORWARDTABLE	(IRE_INTERFACE | IRE_OFFSUBNET)
609 
610 /*
611  * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of
612  * the bucket should delete this IRE from this bucket.
613  */
614 #define	IRE_MARK_CONDEMNED	0x0001
615 /*
616  * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the
617  * broadcast packets received on that interface. This is marked only
618  * on broadcast ires. Employed by IPMP, where we have multiple NICs on the
619  * same subnet receiving the same broadcast packet.
620  */
621 #define	IRE_MARK_NORECV		0x0002
622 /*
623  * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need
624  * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP.
625  */
626 #define	IRE_MARK_HIDDEN		0x0004	/* Typically Used by in.mpathd */
627 
628 /*
629  * ire with IRE_MARK_NOADD is  created in ip_newroute_ipif, when outgoing
630  * interface is specified by IP_XMIT_IF socket option. This ire is not
631  * added in IRE_CACHE.  For example, this is used by mipagent to prevent
632  * any entry to be added in the cache table. We do not want to add any
633  * entry for a mobile-node in the routing table for foreign agent originated
634  * packets. Adding routes in cache table in this case, may run the risks of
635  * incorrect routing path in case of private overlapping addresses.
636  */
637 #define	IRE_MARK_NOADD		0x0008	/* Mark not to add ire in cache */
638 
639 /*
640  * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used
641  * either for forwarding a packet or has not been used for sending
642  * traffic on TCP connections terminated on this system.  In both
643  * cases, this IRE is the first to go when IRE is being cleaned up.
644  */
645 #define	IRE_MARK_TEMPORARY	0x0010
646 
647 /*
648  * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with
649  * this mark, additional atomic checks need to be performed. For eg: by the
650  * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the
651  * usesrc grouping could have changed in which case we want to fail adding
652  * the IRE_CACHE entry
653  */
654 #define	IRE_MARK_USESRC_CHECK	0x0020
655 
656 /*
657  * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the
658  * routing table lookup for the destination is bypassed and the packet is
659  * sent directly to the specified nexthop. The associated IRE_CACHE entries
660  * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up
661  * in regular ire cache lookups.
662  */
663 #define	IRE_MARK_PRIVATE_ADDR	0x0040
664 
665 /*
666  * When we send an ARP resolution query for the nexthop gateway's ire,
667  * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk
668  * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag
669  * indicates that information from ARP has not been transferred to a
670  * permanent IRE_CACHE entry. The flag is reset only when the
671  * information is successfully transferred to an ire_cache entry (in
672  * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior
673  * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will
674  * require that the resources (incomplete ire_cache and/or nce) must
675  * be cleaned up. The free callback routine (ire_freemblk()) checks
676  * for IRE_MARK_UNCACHED to see if any resources that are pinned down
677  * will need to be cleaned up or not.
678  */
679 
680 #define	IRE_MARK_UNCACHED	0x0080
681 
682 /* Flags with ire_expire routine */
683 #define	FLUSH_ARP_TIME		0x0001	/* ARP info potentially stale timer */
684 #define	FLUSH_REDIRECT_TIME	0x0002	/* Redirects potentially stale */
685 #define	FLUSH_MTU_TIME		0x0004	/* Include path MTU per RFC 1191 */
686 
687 /* Arguments to ire_flush_cache() */
688 #define	IRE_FLUSH_DELETE	0
689 #define	IRE_FLUSH_ADD		1
690 
691 /*
692  * Open/close synchronization flags.
693  * These are kept in a separate field in the conn and the synchronization
694  * depends on the atomic 32 bit access to that field.
695  */
696 #define	CONN_CLOSING		0x01	/* ip_close waiting for ip_wsrv */
697 #define	CONN_IPSEC_LOAD_WAIT	0x02	/* waiting for load */
698 #define	CONN_CONDEMNED		0x04	/* conn is closing, no more refs */
699 #define	CONN_INCIPIENT		0x08	/* conn not yet visible, no refs */
700 #define	CONN_QUIESCED		0x10	/* conn is now quiescent */
701 
702 /*
703  * Parameter to ip_output giving the identity of the caller.
704  * IP_WSRV means the packet was enqueued in the STREAMS queue
705  * due to flow control and is now being reprocessed in the context of
706  * the STREAMS service procedure, consequent to flow control relief.
707  * IRE_SEND means the packet is being reprocessed consequent to an
708  * ire cache creation and addition and this may or may not be happening
709  * in the service procedure context. Anything other than the above 2
710  * cases is identified as IP_WPUT. Most commonly this is the case of
711  * packets coming down from the application.
712  */
713 #ifdef _KERNEL
714 #define	IP_WSRV			1	/* Called from ip_wsrv */
715 #define	IP_WPUT			2	/* Called from ip_wput */
716 #define	IRE_SEND		3	/* Called from ire_send */
717 
718 /*
719  * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2)
720  */
721 #define	MAX_FILTER_SIZE	64
722 
723 typedef struct slist_s {
724 	int		sl_numsrc;
725 	in6_addr_t	sl_addr[MAX_FILTER_SIZE];
726 } slist_t;
727 
728 /*
729  * Following struct is used to maintain retransmission state for
730  * a multicast group.  One rtx_state_t struct is an in-line field
731  * of the ilm_t struct; the slist_ts in the rtx_state_t struct are
732  * alloc'd as needed.
733  */
734 typedef struct rtx_state_s {
735 	uint_t		rtx_timer;	/* retrans timer */
736 	int		rtx_cnt;	/* retrans count */
737 	int		rtx_fmode_cnt;	/* retrans count for fmode change */
738 	slist_t		*rtx_allow;
739 	slist_t		*rtx_block;
740 } rtx_state_t;
741 
742 /*
743  * Used to construct list of multicast address records that will be
744  * sent in a single listener report.
745  */
746 typedef struct mrec_s {
747 	struct mrec_s	*mrec_next;
748 	uint8_t		mrec_type;
749 	uint8_t		mrec_auxlen;	/* currently unused */
750 	in6_addr_t	mrec_group;
751 	slist_t		mrec_srcs;
752 } mrec_t;
753 
754 /* Group membership list per upper conn */
755 /*
756  * XXX add ilg info for ifaddr/ifindex.
757  * XXX can we make ilg survive an ifconfig unplumb + plumb
758  * by setting the ipif/ill to NULL and recover that later?
759  *
760  * ilg_ipif is used by IPv4 as multicast groups are joined using an interface
761  * address (ipif).
762  * ilg_ill is used by IPv6 as multicast groups are joined using an interface
763  * index (phyint->phyint_ifindex).
764  * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6.
765  *
766  * ilg records the state of multicast memberships of a socket end point.
767  * ilm records the state of multicast memberships with the driver and is
768  * maintained per interface.
769  *
770  * Notes :
771  *
772  * 1) There is no direct link between a given ilg and ilm. If the
773  *    application has joined a group G with ifindex I, we will have
774  *    an ilg with ilg_v6group and ilg_ill. There will be a corresponding
775  *    ilm with ilm_ill/ilm_v6addr recording the multicast membership.
776  *    To delete the membership,
777  *
778  *		a) Search for ilg matching on G and I with ilg_v6group
779  *		   and ilg_ill. Delete ilg_ill.
780  *		b) Search the corresponding ilm matching on G and I with
781  *		   ilm_v6addr and ilm_ill. Delete ilm.
782  *
783  *    In IPv4, the only difference is, we look using ipifs instead of
784  *    ills.
785  *
786  * 2) With IP multipathing, we want to keep receiving even after the
787  *    interface has failed. We do this by moving multicast memberships
788  *    to a new_ill within the group. This is acheived by sending
789  *    DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS
790  *    on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we
791  *    need to be able to delete memberships which will still come down
792  *    with the ifindex of the old ill which is what the application
793  *    knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track
794  *    of where we joined initially so that we can lookup even after we
795  *    moved the membership. It is also used for moving back the membership
796  *    when the old ill has been repaired. This is done by looking up for
797  *    ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only
798  *    ilms actually move from old ill to new ill. ilgs don't move (just
799  *    the ilg_ill is changed when it moves) as it just records the state
800  *    of the application that has joined a group G where as ilm records
801  *    the state joined with the driver. Thus when we send DL_XXXMULTI_REQs
802  *    we also need to keep the ilm in the right ill.
803  *
804  *    In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move
805  *    implicitly as we use only ipifs in IPv4. Thus, one can always lookup
806  *    a given ilm/ilg even after it fails without the support of
807  *    orig_ifindex. We move ilms still to record the driver state as
808  *    mentioned above.
809  */
810 
811 /*
812  * The ilg_t and ilm_t members are protected by ipsq. They can be changed only
813  * by a thread executing in the ipsq. In other words add/delete of a
814  * multicast group has to execute in the ipsq.
815  */
816 #define	ILG_DELETED	0x1		/* ilg_flags */
817 typedef struct ilg_s {
818 	in6_addr_t	ilg_v6group;
819 	struct ipif_s	*ilg_ipif;	/* Logical interface we are member on */
820 	struct ill_s	*ilg_ill;	/* Used by IPv6 */
821 	int		ilg_orig_ifindex; /* Interface originally joined on */
822 	uint_t		ilg_flags;
823 	mcast_record_t	ilg_fmode;	/* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
824 	slist_t		*ilg_filter;
825 } ilg_t;
826 
827 
828 /*
829  * Multicast address list entry for lower ill.
830  * ilm_ipif is used by IPv4 as multicast groups are joined using ipif.
831  * ilm_ill is used by IPv6 as multicast groups are joined using ill.
832  * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6.
833  */
834 #define	ILM_DELETED	0x1		/* ilm_flags */
835 typedef struct ilm_s {
836 	in6_addr_t	ilm_v6addr;
837 	int		ilm_refcnt;
838 	uint_t		ilm_timer;	/* IGMP/MLD query resp timer, in msec */
839 	struct ipif_s	*ilm_ipif;	/* Back pointer to ipif for IPv4 */
840 	struct ilm_s	*ilm_next;	/* Linked list for each ill */
841 	uint_t		ilm_state;	/* state of the membership */
842 	struct ill_s	*ilm_ill;	/* Back pointer to ill for IPv6 */
843 	int		ilm_orig_ifindex;  /* V6_MULTICAST_IF/ilm_ipif index */
844 	uint_t		ilm_flags;
845 	boolean_t	ilm_is_new;	/* new ilm */
846 	boolean_t	ilm_notify_driver; /* Need to notify the driver */
847 	zoneid_t	ilm_zoneid;
848 	int		ilm_no_ilg_cnt;	/* number of joins w/ no ilg */
849 	mcast_record_t	ilm_fmode;	/* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
850 	slist_t		*ilm_filter;	/* source filter list */
851 	slist_t		*ilm_pendsrcs;	/* relevant src addrs for pending req */
852 	rtx_state_t	ilm_rtx;	/* SCR retransmission state */
853 } ilm_t;
854 
855 #define	ilm_addr	V4_PART_OF_V6(ilm_v6addr)
856 
857 /*
858  * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to
859  * zero. In addition it needs to block new walkers while it is unlinking ilm's
860  * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice.
861  */
862 #define	ILM_WALKER_HOLD(ill)    {               \
863 	mutex_enter(&(ill)->ill_lock);          \
864 	ill->ill_ilm_walker_cnt++;              \
865 	mutex_exit(&(ill)->ill_lock);           \
866 }
867 
868 #define	ILM_WALKER_RELE(ill)	{ 		\
869 	mutex_enter(&(ill)->ill_lock);		\
870 	(ill)->ill_ilm_walker_cnt--;		\
871 	if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \
872 		ilm_walker_cleanup(ill);	\
873 	mutex_exit(&(ill)->ill_lock);		\
874 }
875 
876 /*
877  * Soft reference to an IPsec SA.
878  *
879  * On relative terms, conn's can be persistant (living as long as the
880  * processes which create them), while SA's are ephemeral (dying when
881  * they hit their time-based or byte-based lifetimes).
882  *
883  * We could hold a hard reference to an SA from an ipsec_latch_t,
884  * but this would cause expired SA's to linger for a potentially
885  * unbounded time.
886  *
887  * Instead, we remember the hash bucket number and bucket generation
888  * in addition to the pointer.  The bucket generation is incremented on
889  * each deletion.
890  */
891 typedef struct ipsa_ref_s
892 {
893 	struct ipsa_s	*ipsr_sa;
894 	struct isaf_s	*ipsr_bucket;
895 	uint64_t	ipsr_gen;
896 } ipsa_ref_t;
897 
898 /*
899  * IPsec "latching" state.
900  *
901  * In the presence of IPsec policy, fully-bound conn's bind a connection
902  * to more than just the 5-tuple, but also a specific IPsec action and
903  * identity-pair.
904  *
905  * As an optimization, we also cache soft references to IPsec SA's
906  * here so that we can fast-path around most of the work needed for
907  * outbound IPsec SA selection.
908  *
909  * Were it not for TCP's detached connections, this state would be
910  * in-line in conn_t; instead, this is in a separate structure so it
911  * can be handed off to TCP when a connection is detached.
912  */
913 typedef struct ipsec_latch_s
914 {
915 	kmutex_t	ipl_lock;
916 	uint32_t	ipl_refcnt;
917 
918 	uint64_t	ipl_unique;
919 	struct ipsec_policy_s	*ipl_in_policy; /* latched policy (in) */
920 	struct ipsec_policy_s	*ipl_out_policy; /* latched policy (out) */
921 	struct ipsec_action_s	*ipl_in_action;	/* latched action (in) */
922 	struct ipsec_action_s	*ipl_out_action; /* latched action (out) */
923 	cred_t		*ipl_local_id;
924 	struct ipsid_s	*ipl_local_cid;
925 	struct ipsid_s	*ipl_remote_cid;
926 	unsigned int
927 			ipl_out_action_latched : 1,
928 			ipl_in_action_latched : 1,
929 			ipl_out_policy_latched : 1,
930 			ipl_in_policy_latched : 1,
931 
932 			ipl_ids_latched : 1,
933 
934 			ipl_pad_to_bit_31 : 27;
935 
936 	ipsa_ref_t	ipl_ref[2]; /* 0: ESP, 1: AH */
937 
938 } ipsec_latch_t;
939 
940 #define	IPLATCH_REFHOLD(ipl) { \
941 	atomic_add_32(&(ipl)->ipl_refcnt, 1);		\
942 	ASSERT((ipl)->ipl_refcnt != 0);			\
943 }
944 
945 #define	IPLATCH_REFRELE(ipl) {					\
946 	ASSERT((ipl)->ipl_refcnt != 0);				\
947 	membar_exit();						\
948 	if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0)	\
949 		iplatch_free(ipl);				\
950 }
951 
952 /*
953  * peer identity structure.
954  */
955 
956 typedef struct conn_s conn_t;
957 
958 /*
959  * The old IP client structure "ipc_t" is gone. All the data is stored in the
960  * connection structure "conn_t" now. The mapping of old and new fields looks
961  * like this:
962  *
963  * ipc_ulp			conn_ulp
964  * ipc_rq			conn_rq
965  * ipc_wq			conn_wq
966  *
967  * ipc_laddr			conn_src
968  * ipc_faddr			conn_rem
969  * ipc_v6laddr			conn_srcv6
970  * ipc_v6faddr			conn_remv6
971  *
972  * ipc_lport			conn_lport
973  * ipc_fport			conn_fport
974  * ipc_ports			conn_ports
975  *
976  * ipc_policy			conn_policy
977  * ipc_latch			conn_latch
978  *
979  * ipc_irc_lock			conn_lock
980  * ipc_ire_cache		conn_ire_cache
981  *
982  * ipc_state_flags		conn_state_flags
983  * ipc_outgoing_ill		conn_outgoing_ill
984  *
985  * ipc_dontroute 		conn_dontroute
986  * ipc_loopback 		conn_loopback
987  * ipc_broadcast		conn_broadcast
988  * ipc_reuseaddr		conn_reuseaddr
989  *
990  * ipc_multicast_loop		conn_multicast_loop
991  * ipc_multi_router		conn_multi_router
992  * ipc_priv_stream 		conn_priv_stream
993  * ipc_draining 		conn_draining
994  *
995  * ipc_did_putbq		conn_did_putbq
996  * ipc_unspec_src		conn_unspec_src
997  * ipc_policy_cached		conn_policy_cached
998  *
999  * ipc_in_enforce_policy 	conn_in_enforce_policy
1000  * ipc_out_enforce_policy 	conn_out_enforce_policy
1001  * ipc_af_isv6			conn_af_isv6
1002  * ipc_pkt_isv6			conn_pkt_isv6
1003  *
1004  * ipc_ipv6_recvpktinfo		conn_ipv6_recvpktinfo
1005  *
1006  * ipc_ipv6_recvhoplimit	conn_ipv6_recvhoplimit
1007  * ipc_ipv6_recvhopopts		conn_ipv6_recvhopopts
1008  * ipc_ipv6_recvdstopts		conn_ipv6_recvdstopts
1009  *
1010  * ipc_ipv6_recvrthdr 		conn_ipv6_recvrthdr
1011  * ipc_ipv6_recvrtdstopts	conn_ipv6_recvrtdstopts
1012  * ipc_fully_bound		conn_fully_bound
1013  *
1014  * ipc_recvif			conn_recvif
1015  *
1016  * ipc_recvslla 		conn_recvslla
1017  * ipc_acking_unbind 		conn_acking_unbind
1018  * ipc_pad_to_bit_31 		conn_pad_to_bit_31
1019  *
1020  * ipc_xmit_if_ill		conn_xmit_if_ill
1021  * ipc_nofailover_ill		conn_nofailover_ill
1022  *
1023  * ipc_proto			conn_proto
1024  * ipc_incoming_ill		conn_incoming_ill
1025  * ipc_outgoing_pill		conn_outgoing_pill
1026  * ipc_pending_ill		conn_pending_ill
1027  * ipc_unbind_mp		conn_unbind_mp
1028  * ipc_ilg			conn_ilg
1029  * ipc_ilg_allocated		conn_ilg_allocated
1030  * ipc_ilg_inuse		conn_ilg_inuse
1031  * ipc_ilg_walker_cnt		conn_ilg_walker_cnt
1032  * ipc_refcv			conn_refcv
1033  * ipc_multicast_ipif		conn_multicast_ipif
1034  * ipc_multicast_ill		conn_multicast_ill
1035  * ipc_orig_bound_ifindex	conn_orig_bound_ifindex
1036  * ipc_orig_multicast_ifindex	conn_orig_multicast_ifindex
1037  * ipc_orig_xmit_ifindex	conn_orig_xmit_ifindex
1038  * ipc_drain_next		conn_drain_next
1039  * ipc_drain_prev		conn_drain_prev
1040  * ipc_idl			conn_idl
1041  */
1042 
1043 /*
1044  * This is used to match an inbound/outbound datagram with
1045  * policy.
1046  */
1047 
1048 typedef	struct ipsec_selector {
1049 	in6_addr_t	ips_local_addr_v6;
1050 	in6_addr_t	ips_remote_addr_v6;
1051 	uint16_t	ips_local_port;
1052 	uint16_t	ips_remote_port;
1053 	uint8_t		ips_icmp_type;
1054 	uint8_t		ips_icmp_code;
1055 	uint8_t		ips_protocol;
1056 	uint8_t		ips_isv4 : 1,
1057 			ips_is_icmp_inv_acq: 1;
1058 } ipsec_selector_t;
1059 
1060 /*
1061  * Note that we put v4 addresses in the *first* 32-bit word of the
1062  * selector rather than the last to simplify the prefix match/mask code
1063  * in spd.c
1064  */
1065 #define	ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0]
1066 #define	ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0]
1067 
1068 /* Values used in IP by IPSEC Code */
1069 #define		IPSEC_OUTBOUND		B_TRUE
1070 #define		IPSEC_INBOUND		B_FALSE
1071 
1072 /*
1073  * There are two variants in policy failures. The packet may come in
1074  * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not
1075  * have the desired level of protection (IPSEC_POLICY_MISMATCH).
1076  */
1077 #define	IPSEC_POLICY_NOT_NEEDED		0
1078 #define	IPSEC_POLICY_MISMATCH		1
1079 #define	IPSEC_POLICY_AUTH_NOT_NEEDED	2
1080 #define	IPSEC_POLICY_ENCR_NOT_NEEDED	3
1081 #define	IPSEC_POLICY_SE_NOT_NEEDED	4
1082 #define	IPSEC_POLICY_MAX		5	/* Always max + 1. */
1083 
1084 /*
1085  * Folowing macro is used whenever the code does not know whether there
1086  * is a M_CTL present in the front and it needs to examine the actual mp
1087  * i.e the IP header. As a M_CTL message could be in the front, this
1088  * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL
1089  * mp is not present, both first_mp and mp point to the same message.
1090  */
1091 #define	EXTRACT_PKT_MP(mp, first_mp, mctl_present)	\
1092 	(first_mp) = (mp);				\
1093 	if ((mp)->b_datap->db_type == M_CTL) {		\
1094 		(mp) = (mp)->b_cont;			\
1095 		(mctl_present) = B_TRUE;		\
1096 	} else {					\
1097 		(mctl_present) = B_FALSE;		\
1098 	}
1099 
1100 /*
1101  * Check with IPSEC inbound policy if
1102  *
1103  * 1) per-socket policy is present - indicated by conn_in_enforce_policy.
1104  * 2) Or if we have not cached policy on the conn and the global policy is
1105  *    non-empty.
1106  */
1107 #define	CONN_INBOUND_POLICY_PRESENT(connp)	\
1108 	((connp)->conn_in_enforce_policy ||	\
1109 	(!((connp)->conn_policy_cached) &&	\
1110 	ipsec_inbound_v4_policy_present))
1111 
1112 #define	CONN_INBOUND_POLICY_PRESENT_V6(connp)	\
1113 	((connp)->conn_in_enforce_policy ||	\
1114 	(!(connp)->conn_policy_cached &&	\
1115 	ipsec_inbound_v6_policy_present))
1116 
1117 #define	CONN_OUTBOUND_POLICY_PRESENT(connp)	\
1118 	((connp)->conn_out_enforce_policy ||	\
1119 	(!((connp)->conn_policy_cached) &&	\
1120 	ipsec_outbound_v4_policy_present))
1121 
1122 #define	CONN_OUTBOUND_POLICY_PRESENT_V6(connp)	\
1123 	((connp)->conn_out_enforce_policy ||	\
1124 	(!(connp)->conn_policy_cached &&	\
1125 	ipsec_outbound_v6_policy_present))
1126 
1127 /*
1128  * Information cached in IRE for upper layer protocol (ULP).
1129  *
1130  * Notice that ire_max_frag is not included in the iulp_t structure, which
1131  * it may seem that it should.  But ire_max_frag cannot really be cached.  It
1132  * is fixed for each interface.  For MTU found by PMTUd, we may want to cache
1133  * it.  But currently, we do not do that.
1134  */
1135 typedef struct iulp_s {
1136 	boolean_t	iulp_set;	/* Is any metric set? */
1137 	uint32_t	iulp_ssthresh;	/* Slow start threshold (TCP). */
1138 	clock_t		iulp_rtt;	/* Guestimate in millisecs. */
1139 	clock_t		iulp_rtt_sd;	/* Cached value of RTT variance. */
1140 	uint32_t	iulp_spipe;	/* Send pipe size. */
1141 	uint32_t	iulp_rpipe;	/* Receive pipe size. */
1142 	uint32_t	iulp_rtomax;	/* Max round trip timeout. */
1143 	uint32_t	iulp_sack;	/* Use SACK option (TCP)? */
1144 	uint32_t
1145 		iulp_tstamp_ok : 1,	/* Use timestamp option (TCP)? */
1146 		iulp_wscale_ok : 1,	/* Use window scale option (TCP)? */
1147 		iulp_ecn_ok : 1,	/* Enable ECN (for TCP)? */
1148 		iulp_pmtud_ok : 1,	/* Enable PMTUd? */
1149 
1150 		iulp_not_used : 28;
1151 } iulp_t;
1152 
1153 /* Zero iulp_t. */
1154 extern const iulp_t ire_uinfo_null;
1155 
1156 /*
1157  * The conn drain list structure.
1158  * The list is protected by idl_lock. Each conn_t inserted in the list
1159  * points back at this idl_t using conn_idl. IP primes the draining of the
1160  * conns queued in these lists, by qenabling the 1st conn of each list. This
1161  * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance
1162  * of ip_wsrv successively qenables the next conn in the list.
1163  * idl_lock protects all other members of idl_t and conn_drain_next
1164  * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED
1165  * flag of the conn_t and conn_idl.
1166  */
1167 typedef struct idl_s {
1168 	conn_t		*idl_conn;		/* Head of drain list */
1169 	kmutex_t	idl_lock;		/* Lock for this list */
1170 	conn_t		*idl_conn_draining;	/* conn that is draining */
1171 	uint32_t
1172 		idl_repeat : 1,			/* Last conn must re-enable */
1173 						/* drain list again */
1174 		idl_unused : 31;
1175 } idl_t;
1176 
1177 #define	CONN_DRAIN_LIST_LOCK(connp)	(&((connp)->conn_idl->idl_lock))
1178 /*
1179  * Interface route structure which holds the necessary information to recreate
1180  * routes that are tied to an interface (namely where ire_ipif != NULL).
1181  * These routes which were initially created via a routing socket or via the
1182  * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be
1183  * traditional interface routes.  When an interface comes back up after being
1184  * marked down, this information will be used to recreate the routes.  These
1185  * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp).
1186  */
1187 typedef struct ifrt_s {
1188 	ushort_t	ifrt_type;		/* Type of IRE */
1189 	in6_addr_t	ifrt_v6addr;		/* Address IRE represents. */
1190 	in6_addr_t	ifrt_v6gateway_addr;	/* Gateway if IRE_OFFSUBNET */
1191 	in6_addr_t	ifrt_v6src_addr;	/* Src addr if RTF_SETSRC */
1192 	in6_addr_t	ifrt_v6mask;		/* Mask for matching IRE. */
1193 	uint32_t	ifrt_flags;		/* flags related to route */
1194 	uint_t		ifrt_max_frag;		/* MTU (next hop or path). */
1195 	iulp_t		ifrt_iulp_info;		/* Cached IRE ULP info. */
1196 } ifrt_t;
1197 
1198 #define	ifrt_addr		V4_PART_OF_V6(ifrt_v6addr)
1199 #define	ifrt_gateway_addr	V4_PART_OF_V6(ifrt_v6gateway_addr)
1200 #define	ifrt_src_addr		V4_PART_OF_V6(ifrt_v6src_addr)
1201 #define	ifrt_mask		V4_PART_OF_V6(ifrt_v6mask)
1202 
1203 /* Number of IP addresses that can be hosted on a physical interface */
1204 #define	MAX_ADDRS_PER_IF	8192
1205 /*
1206  * Number of Source addresses to be considered for source address
1207  * selection. Used by ipif_select_source[_v6].
1208  */
1209 #define	MAX_IPIF_SELECT_SOURCE	50
1210 
1211 #ifdef IP_DEBUG
1212 /*
1213  * Tracing refholds and refreleases for debugging. Existing tracing mechanisms
1214  * do not allow the granularity need to trace refrences to ipif/ill/ire's. This
1215  * mechanism should be revisited once dtrace is available.
1216  */
1217 #define	IP_STACK_DEPTH	15
1218 typedef struct tr_buf_s {
1219 	int	tr_depth;
1220 	pc_t	tr_stack[IP_STACK_DEPTH];
1221 } tr_buf_t;
1222 
1223 typedef struct th_trace_s {
1224 	struct	th_trace_s *th_next;
1225 	struct	th_trace_s **th_prev;
1226 	kthread_t	*th_id;
1227 	int	th_refcnt;
1228 	uint_t	th_trace_lastref;
1229 #define	TR_BUF_MAX	38
1230 	tr_buf_t th_trbuf[TR_BUF_MAX];
1231 } th_trace_t;
1232 #endif
1233 
1234 /* The following are ipif_state_flags */
1235 #define	IPIF_CONDEMNED		0x1	/* The ipif is being removed */
1236 #define	IPIF_CHANGING		0x2	/* A critcal ipif field is changing */
1237 #define	IPIF_MOVING		0x8	/* The ipif is being moved */
1238 #define	IPIF_SET_LINKLOCAL	0x10	/* transient flag during bringup */
1239 #define	IPIF_ZERO_SOURCE	0x20	/* transient flag during bringup */
1240 
1241 /* IP interface structure, one per local address */
1242 typedef struct ipif_s {
1243 	struct	ipif_s	*ipif_next;
1244 	struct	ill_s	*ipif_ill;	/* Back pointer to our ill */
1245 	int	ipif_id;		/* Logical unit number */
1246 	uint_t	ipif_mtu;		/* Starts at ipif_ill->ill_max_frag */
1247 	uint_t	ipif_saved_mtu;		/* Save of mtu during ipif_move() */
1248 	in6_addr_t ipif_v6lcl_addr;	/* Local IP address for this if. */
1249 	in6_addr_t ipif_v6src_addr;	/* Source IP address for this if. */
1250 	in6_addr_t ipif_v6subnet;	/* Subnet prefix for this if. */
1251 	in6_addr_t ipif_v6net_mask;	/* Net mask for this interface. */
1252 	in6_addr_t ipif_v6brd_addr;	/* Broadcast addr for this interface. */
1253 	in6_addr_t ipif_v6pp_dst_addr;	/* Point-to-point dest address. */
1254 	uint64_t ipif_flags;		/* Interface flags. */
1255 	uint_t	ipif_metric;		/* BSD if metric, for compatibility. */
1256 	uint_t	ipif_ire_type;		/* IRE_LOCAL or IRE_LOOPBACK */
1257 	mblk_t	*ipif_arp_del_mp;	/* Allocated at time arp comes up, to */
1258 					/* prevent awkward out of mem */
1259 					/* condition later */
1260 	mblk_t	*ipif_saved_ire_mp;	/* Allocated for each extra */
1261 					/* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */
1262 					/* on this interface so that they */
1263 					/* can survive ifconfig down. */
1264 	kmutex_t ipif_saved_ire_lock;	/* Protects ipif_saved_ire_mp */
1265 
1266 	mrec_t	*ipif_igmp_rpt;		/* List of group memberships which */
1267 					/* will be reported on.  Used when */
1268 					/* handling an igmp timeout.	   */
1269 
1270 	/*
1271 	 * The packet counts in the ipif contain the sum of the
1272 	 * packet counts in dead IREs that were affiliated with
1273 	 * this ipif.
1274 	 */
1275 	uint_t	ipif_fo_pkt_count;	/* Forwarded thru our dead IREs */
1276 	uint_t	ipif_ib_pkt_count;	/* Inbound packets for our dead IREs */
1277 	uint_t	ipif_ob_pkt_count;	/* Outbound packets to our dead IREs */
1278 	/* Exclusive bit fields, protected by ipsq_t */
1279 	unsigned int
1280 		ipif_multicast_up : 1,	/* We have joined the allhosts group */
1281 		ipif_solmcast_up : 1,	/* We joined solicited node mcast */
1282 		ipif_replace_zero : 1,	/* Replacement for zero */
1283 		ipif_was_up : 1,	/* ipif was up before */
1284 
1285 		ipif_addr_ready : 1,	/* DAD is done */
1286 		ipif_was_dup : 1,	/* DAD had failed */
1287 		ipif_pad_to_31 : 26;
1288 
1289 	int	ipif_orig_ifindex;	/* ifindex before SLIFFAILOVER */
1290 	uint_t	ipif_seqid;		/* unique index across all ills */
1291 	uint_t	ipif_orig_ipifid;	/* ipif_id before SLIFFAILOVER */
1292 	uint_t	ipif_state_flags;	/* See IPIF_* flag defs above */
1293 	uint_t	ipif_refcnt;		/* active consistent reader cnt */
1294 	uint_t	ipif_ire_cnt;		/* Number of ire's referencing ipif */
1295 	uint_t	ipif_saved_ire_cnt;
1296 	zoneid_t
1297 		ipif_zoneid;		/* zone ID number */
1298 	timeout_id_t ipif_recovery_id;	/* Timer for DAD recovery */
1299 #ifdef ILL_DEBUG
1300 #define	IP_TR_HASH_MAX	64
1301 	th_trace_t *ipif_trace[IP_TR_HASH_MAX];
1302 	boolean_t	ipif_trace_disable;	/* True when alloc fails */
1303 #endif
1304 } ipif_t;
1305 
1306 /*
1307  * The following table lists the protection levels of the various members
1308  * of the ipif_t. The following notation is used.
1309  *
1310  * Write once - Written to only once at the time of bringing up
1311  * the interface and can be safely read after the bringup without any lock.
1312  *
1313  * ipsq - Need to execute in the ipsq to perform the indicated access.
1314  *
1315  * ill_lock - Need to hold this mutex to perform the indicated access.
1316  *
1317  * ill_g_lock - Need to hold this rw lock as reader/writer for read access or
1318  * write access respectively.
1319  *
1320  * down ill - Written to only when the ill is down (i.e all ipifs are down)
1321  * up ill - Read only when the ill is up (i.e. at least 1 ipif is up)
1322  *
1323  *		 Table of ipif_t members and their protection
1324  *
1325  * ipif_next		ill_g_lock		ill_g_lock
1326  * ipif_ill		ipsq + down ipif		write once
1327  * ipif_id		ipsq + down ipif		write once
1328  * ipif_mtu		ipsq
1329  * ipif_v6lcl_addr	ipsq + down ipif		up ipif
1330  * ipif_v6src_addr	ipsq + down ipif		up ipif
1331  * ipif_v6subnet	ipsq + down ipif		up ipif
1332  * ipif_v6net_mask	ipsq + down ipif		up ipif
1333  *
1334  * ipif_v6brd_addr
1335  * ipif_v6pp_dst_addr
1336  * ipif_flags		ill_lock		ill_lock
1337  * ipif_metric
1338  * ipif_ire_type	ipsq + down ill		up ill
1339  *
1340  * ipif_arp_del_mp	ipsq			ipsq
1341  * ipif_saved_ire_mp	ipif_saved_ire_lock	ipif_saved_ire_lock
1342  * ipif_igmp_rpt	ipsq			ipsq
1343  *
1344  * ipif_fo_pkt_count	Approx
1345  * ipif_ib_pkt_count	Approx
1346  * ipif_ob_pkt_count	Approx
1347  *
1348  * bit fields		ill_lock		ill_lock
1349  *
1350  * ipif_orig_ifindex	ipsq			None
1351  * ipif_orig_ipifid	ipsq			None
1352  * ipif_seqid		ipsq			Write once
1353  *
1354  * ipif_state_flags	ill_lock		ill_lock
1355  * ipif_refcnt		ill_lock		ill_lock
1356  * ipif_ire_cnt		ill_lock		ill_lock
1357  * ipif_saved_ire_cnt
1358  */
1359 
1360 #define	IP_TR_HASH(tid)	((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1))
1361 
1362 #ifdef ILL_DEBUG
1363 #define	IPIF_TRACE_REF(ipif)	ipif_trace_ref(ipif)
1364 #define	ILL_TRACE_REF(ill)	ill_trace_ref(ill)
1365 #define	IPIF_UNTRACE_REF(ipif)	ipif_untrace_ref(ipif)
1366 #define	ILL_UNTRACE_REF(ill)	ill_untrace_ref(ill)
1367 #define	ILL_TRACE_CLEANUP(ill)	ill_trace_cleanup(ill)
1368 #define	IPIF_TRACE_CLEANUP(ipif)	ipif_trace_cleanup(ipif)
1369 #else
1370 #define	IPIF_TRACE_REF(ipif)
1371 #define	ILL_TRACE_REF(ill)
1372 #define	IPIF_UNTRACE_REF(ipif)
1373 #define	ILL_UNTRACE_REF(ill)
1374 #define	ILL_TRACE_CLEANUP(ill)
1375 #define	IPIF_TRACE_CLEANUP(ipif)
1376 #endif
1377 
1378 /* IPv4 compatability macros */
1379 #define	ipif_lcl_addr		V4_PART_OF_V6(ipif_v6lcl_addr)
1380 #define	ipif_src_addr		V4_PART_OF_V6(ipif_v6src_addr)
1381 #define	ipif_subnet		V4_PART_OF_V6(ipif_v6subnet)
1382 #define	ipif_net_mask		V4_PART_OF_V6(ipif_v6net_mask)
1383 #define	ipif_brd_addr		V4_PART_OF_V6(ipif_v6brd_addr)
1384 #define	ipif_pp_dst_addr	V4_PART_OF_V6(ipif_v6pp_dst_addr)
1385 
1386 /* Macros for easy backreferences to the ill. */
1387 #define	ipif_wq			ipif_ill->ill_wq
1388 #define	ipif_rq			ipif_ill->ill_rq
1389 #define	ipif_net_type		ipif_ill->ill_net_type
1390 #define	ipif_resolver_mp	ipif_ill->ill_resolver_mp
1391 #define	ipif_ipif_up_count	ipif_ill->ill_ipif_up_count
1392 #define	ipif_bcast_mp		ipif_ill->ill_bcast_mp
1393 #define	ipif_type		ipif_ill->ill_type
1394 #define	ipif_isv6		ipif_ill->ill_isv6
1395 
1396 #define	SIOCLIFADDR_NDX 112	/* ndx of SIOCLIFADDR in the ndx ioctl table */
1397 
1398 /*
1399  * mode value for ip_ioctl_finish for finishing an ioctl
1400  */
1401 #define	CONN_CLOSE	1		/* No mi_copy */
1402 #define	COPYOUT		2		/* do an mi_copyout if needed */
1403 #define	NO_COPYOUT	3		/* do an mi_copy_done */
1404 
1405 /*
1406  * The IP-MT design revolves around the serialization object ipsq_t.
1407  * It is associated with an IPMP group. If IPMP is not enabled, there is
1408  * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream
1409  *
1410  * ipsq_lock protects
1411  *	ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail,
1412  *	ipsq_mphead, ipsq_mptail, ipsq_split
1413  *
1414  *	ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags,
1415  *	ipsq_waitfor
1416  *
1417  * The fields in the last line above below are set mostly by a writer thread
1418  * But there is an exception in the last call to ipif_ill_refrele_tail which
1419  * could also race with a conn close which could be cleaning up the
1420  * fields. So we choose to protect using ipsq_lock instead of depending on
1421  * the property of the writer.
1422  * ill_g_lock protects
1423  *	ipsq_refs, ipsq_phyint_list
1424  */
1425 typedef struct ipsq_s {
1426 	kmutex_t ipsq_lock;
1427 	int	ipsq_reentry_cnt;
1428 	kthread_t	*ipsq_writer;	/* current owner (thread id) */
1429 	int	ipsq_flags;
1430 	mblk_t	*ipsq_xopq_mphead;	/* list of excl ops mostly ioctls */
1431 	mblk_t	*ipsq_xopq_mptail;
1432 	mblk_t	*ipsq_mphead;		/* msgs on ipsq linked thru b_next */
1433 	mblk_t	*ipsq_mptail;		/* msgs on ipsq linked thru b_next */
1434 	ipif_t	*ipsq_pending_ipif;	/* ipif associated w. ipsq_pending_mp */
1435 	ipif_t	*ipsq_current_ipif;	/* ipif associated with current ioctl */
1436 	mblk_t	*ipsq_pending_mp;	/* current ioctl mp while waiting for */
1437 					/* response from another module */
1438 	struct	ipsq_s	*ipsq_next;	/* list of all syncq's (ipsq_g_list) */
1439 	uint_t		ipsq_refs;	/* Number of phyints on this ipsq */
1440 	struct phyint	*ipsq_phyint_list; /* List of phyints on this ipsq */
1441 	boolean_t	ipsq_split;	/* ipsq may need to be split */
1442 	int		ipsq_waitfor;	/* Values encoded below */
1443 	char		ipsq_name[LIFNAMSIZ+1];	/* same as phyint_groupname */
1444 	int		ipsq_last_cmd;	/* debugging aid */
1445 #ifdef ILL_DEBUG
1446 	int		ipsq_depth;	/* debugging aid */
1447 	pc_t		ipsq_stack[IP_STACK_DEPTH];	/* debugging aid */
1448 #endif
1449 } ipsq_t;
1450 
1451 /* ipsq_flags */
1452 #define	IPSQ_GROUP	0x1	/* This ipsq belongs to an IPMP group */
1453 
1454 /*
1455  * ipsq_waitfor:
1456  *
1457  * IPIF_DOWN	1	ipif_down waiting for refcnts to drop
1458  * ILL_DOWN	2	ill_down waiting for refcnts to drop
1459  * IPIF_FREE	3	ipif_free waiting for refcnts to drop
1460  * ILL_FREE	4	ill unplumb waiting for refcnts to drop
1461  * ILL_MOVE_OK	5	failover waiting for refcnts to drop
1462  */
1463 
1464 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK };
1465 
1466 /* Flags passed to ipsq_try_enter */
1467 #define	CUR_OP 0		/* Current ioctl continuing again */
1468 #define	NEW_OP 1		/* New ioctl starting afresh */
1469 
1470 /*
1471  * phyint represents state that is common to both IPv4 and IPv6 interfaces.
1472  * There is a separate ill_t representing IPv4 and IPv6 which has a
1473  * backpointer to the phyint structure for acessing common state.
1474  *
1475  * NOTE : It just stores the group name as there is only one name for
1476  *	  IPv4 and IPv6 i.e it is a underlying link property. Actually
1477  *        IPv4 and IPv6 ill are grouped together when their phyints have
1478  *        the same name.
1479  */
1480 typedef struct phyint {
1481 	struct ill_s	*phyint_illv4;
1482 	struct ill_s	*phyint_illv6;
1483 	uint_t		phyint_ifindex;		/* SIOCLSLIFINDEX */
1484 	uint_t		phyint_notify_delay;	/* SIOCSLIFNOTIFYDELAY */
1485 	char		*phyint_groupname;	/* SIOCSLIFGROUPNAME */
1486 	uint_t		phyint_groupname_len;
1487 	uint64_t	phyint_flags;
1488 	avl_node_t	phyint_avl_by_index;	/* avl tree by index */
1489 	avl_node_t	phyint_avl_by_name;	/* avl tree by name */
1490 	kmutex_t	phyint_lock;
1491 	struct ipsq_s	*phyint_ipsq;		/* back pointer to ipsq */
1492 	struct phyint	*phyint_ipsq_next;	/* phyint list on this ipsq */
1493 } phyint_t;
1494 
1495 #define	CACHE_ALIGN_SIZE 64
1496 
1497 #define	CACHE_ALIGN(align_struct)	P2ROUNDUP(sizeof (struct align_struct),\
1498 							CACHE_ALIGN_SIZE)
1499 struct _phyint_list_s_ {
1500 	avl_tree_t	phyint_list_avl_by_index;	/* avl tree by index */
1501 	avl_tree_t	phyint_list_avl_by_name;	/* avl tree by name */
1502 };
1503 
1504 typedef union phyint_list_u {
1505 	struct	_phyint_list_s_ phyint_list_s;
1506 	char	phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)];
1507 } phyint_list_t;
1508 
1509 #define	phyint_list_avl_by_index	phyint_list_s.phyint_list_avl_by_index
1510 #define	phyint_list_avl_by_name		phyint_list_s.phyint_list_avl_by_name
1511 /*
1512  * ILL groups. We group ills,
1513  *
1514  * - if the ills have the same group name. (New way)
1515  *
1516  * ill_group locking notes:
1517  *
1518  * illgrp_lock protects ill_grp_ill_schednext.
1519  *
1520  * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count.
1521  * Holding ill_g_lock freezes the memberships of ills in IPMP groups.
1522  * It also freezes the global list of ills and all ipifs in all ills.
1523  *
1524  * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail
1525  * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the
1526  * global list of ills, ill_delete_glist holds ill_g_lock as writer.
1527  * This simplifies things for ipif_select_source, illgrp_scheduler etc.
1528  * that need to walk the members of an illgrp. They just hold ill_g_lock
1529  * as reader to do the walk.
1530  *
1531  */
1532 typedef	struct ill_group {
1533 	kmutex_t	illgrp_lock;
1534 	struct ill_group *illgrp_next;		/* Next ill_group */
1535 	struct ill_s	*illgrp_ill_schednext;	/* Next ill to be scheduled */
1536 	struct ill_s	*illgrp_ill;		/* First ill in the group */
1537 	int		illgrp_ill_count;
1538 } ill_group_t;
1539 
1540 extern	ill_group_t	*illgrp_head_v6;
1541 
1542 /*
1543  * Fragmentation hash bucket
1544  */
1545 typedef struct ipfb_s {
1546 	struct ipf_s	*ipfb_ipf;	/* List of ... */
1547 	size_t		ipfb_count;	/* Count of bytes used by frag(s) */
1548 	kmutex_t	ipfb_lock;	/* Protect all ipf in list */
1549 	uint_t		ipfb_frag_pkts; /* num of distinct fragmented pkts */
1550 } ipfb_t;
1551 
1552 /*
1553  * IRE bucket structure. Usually there is an array of such structures,
1554  * each pointing to a linked list of ires. irb_refcnt counts the number
1555  * of walkers of a given hash bucket. Usually the reference count is
1556  * bumped up if the walker wants no IRES to be DELETED while walking the
1557  * list. Bumping up does not PREVENT ADDITION. This allows walking a given
1558  * hash bucket without stumbling up on a free pointer.
1559  *
1560  * irb_t structures in ip_ftable are dynamically allocated and freed.
1561  * In order to identify the irb_t structures that cna be safely kmem_free'd
1562  * we need to ensure that
1563  *  - the irb_refcnt is quiescent, indicating no other walkers,
1564  *  - no other threads or ire's are holding references to the irb,
1565  *	i.e., irb_nire == 0,
1566  *  - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0
1567  */
1568 typedef struct irb {
1569 	struct ire_s	*irb_ire;	/* First ire in this bucket */
1570 					/* Should be first in this struct */
1571 	krwlock_t	irb_lock;	/* Protect this bucket */
1572 	uint_t		irb_refcnt;	/* Protected by irb_lock */
1573 	uchar_t		irb_marks;	/* CONDEMNED ires in this bucket ? */
1574 #define	IRB_MARK_CONDEMNED	0x0001
1575 #define	IRB_MARK_FTABLE		0x0002
1576 	uint_t		irb_ire_cnt;	/* Num of active IRE in this bucket */
1577 	uint_t		irb_tmp_ire_cnt; /* Num of temporary IRE */
1578 	struct ire_s	*irb_rr_origin;	/* origin for round-robin */
1579 	int		irb_nire;	/* Num of ftable ire's that ref irb */
1580 } irb_t;
1581 
1582 #define	IRB2RT(irb)	(rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb))
1583 
1584 /* The following are return values of ip_xmit_v4() */
1585 typedef enum {
1586 	SEND_PASSED = 0,	 /* sent packet out on wire */
1587 	SEND_FAILED,	 /* sending of packet failed */
1588 	LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */
1589 	LLHDR_RESLV_FAILED  /* macaddr resl of onlink dst or nexthop failed */
1590 } ipxmit_state_t;
1591 
1592 #define	IP_V4_G_HEAD	0
1593 #define	IP_V6_G_HEAD	1
1594 
1595 #define	MAX_G_HEADS	2
1596 
1597 /*
1598  * unpadded ill_if structure
1599  */
1600 struct 	_ill_if_s_ {
1601 	union ill_if_u	*illif_next;
1602 	union ill_if_u	*illif_prev;
1603 	avl_tree_t	illif_avl_by_ppa;	/* AVL tree sorted on ppa */
1604 	vmem_t		*illif_ppa_arena;	/* ppa index space */
1605 	uint16_t	illif_mcast_v1;		/* hints for		  */
1606 	uint16_t	illif_mcast_v2;		/* [igmp|mld]_slowtimo	  */
1607 	int		illif_name_len;		/* name length */
1608 	char		illif_name[LIFNAMSIZ];	/* name of interface type */
1609 };
1610 
1611 /* cache aligned ill_if structure */
1612 typedef union 	ill_if_u {
1613 	struct  _ill_if_s_ ill_if_s;
1614 	char 	illif_filler[CACHE_ALIGN(_ill_if_s_)];
1615 } ill_if_t;
1616 
1617 
1618 #define	illif_next		ill_if_s.illif_next
1619 #define	illif_prev		ill_if_s.illif_prev
1620 #define	illif_avl_by_ppa	ill_if_s.illif_avl_by_ppa
1621 #define	illif_ppa_arena		ill_if_s.illif_ppa_arena
1622 #define	illif_mcast_v1		ill_if_s.illif_mcast_v1
1623 #define	illif_mcast_v2		ill_if_s.illif_mcast_v2
1624 #define	illif_name		ill_if_s.illif_name
1625 #define	illif_name_len		ill_if_s.illif_name_len
1626 
1627 typedef struct ill_walk_context_s {
1628 	int	ctx_current_list; /* current list being searched */
1629 	int	ctx_last_list;	 /* last list to search */
1630 } ill_walk_context_t;
1631 
1632 /*
1633  * ill_gheads structure, one for IPV4 and one for IPV6
1634  */
1635 struct _ill_g_head_s_ {
1636 	ill_if_t	*ill_g_list_head;
1637 	ill_if_t	*ill_g_list_tail;
1638 };
1639 
1640 typedef union ill_g_head_u {
1641 	struct _ill_g_head_s_ ill_g_head_s;
1642 	char	ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)];
1643 } ill_g_head_t;
1644 
1645 #define	ill_g_list_head	ill_g_head_s.ill_g_list_head
1646 #define	ill_g_list_tail	ill_g_head_s.ill_g_list_tail
1647 
1648 #pragma align CACHE_ALIGN_SIZE(ill_g_heads)
1649 extern ill_g_head_t	ill_g_heads[];	/* ILL List Head */
1650 
1651 
1652 #define	IP_V4_ILL_G_LIST	ill_g_heads[IP_V4_G_HEAD].ill_g_list_head
1653 #define	IP_V6_ILL_G_LIST	ill_g_heads[IP_V6_G_HEAD].ill_g_list_head
1654 #define	IP_VX_ILL_G_LIST(i)	ill_g_heads[i].ill_g_list_head
1655 
1656 #define	ILL_START_WALK_V4(ctx_ptr)	ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, \
1657 					ctx_ptr)
1658 #define	ILL_START_WALK_V6(ctx_ptr)	ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, \
1659 					ctx_ptr)
1660 #define	ILL_START_WALK_ALL(ctx_ptr)	ill_first(MAX_G_HEADS, MAX_G_HEADS, \
1661 					ctx_ptr)
1662 
1663 /*
1664  * Capabilities, possible flags for ill_capabilities.
1665  */
1666 
1667 #define	ILL_CAPAB_AH		0x01		/* IPsec AH acceleration */
1668 #define	ILL_CAPAB_ESP		0x02		/* IPsec ESP acceleration */
1669 #define	ILL_CAPAB_MDT		0x04		/* Multidata Transmit */
1670 #define	ILL_CAPAB_HCKSUM	0x08		/* Hardware checksumming */
1671 #define	ILL_CAPAB_ZEROCOPY	0x10		/* Zero-copy */
1672 #define	ILL_CAPAB_POLL		0x20		/* Polling Toggle */
1673 #define	ILL_CAPAB_SOFT_RING	0x40		/* Soft_Ring capability */
1674 
1675 /*
1676  * Per-ill Multidata Transmit capabilities.
1677  */
1678 typedef struct ill_mdt_capab_s ill_mdt_capab_t;
1679 
1680 /*
1681  * Per-ill IPsec capabilities.
1682  */
1683 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t;
1684 
1685 /*
1686  * Per-ill Hardware Checksumming capbilities.
1687  */
1688 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t;
1689 
1690 /*
1691  * Per-ill Zero-copy capabilities.
1692  */
1693 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t;
1694 
1695 /*
1696  * Per-ill Polling/soft ring capbilities.
1697  */
1698 typedef struct ill_dls_capab_s ill_dls_capab_t;
1699 
1700 /*
1701  * Per-ill polling resource map.
1702  */
1703 typedef struct ill_rx_ring ill_rx_ring_t;
1704 
1705 /* The following are ill_state_flags */
1706 #define	ILL_LL_SUBNET_PENDING	0x01	/* Waiting for DL_INFO_ACK from drv */
1707 #define	ILL_CONDEMNED		0x02	/* No more new ref's to the ILL */
1708 #define	ILL_CHANGING		0x04	/* ILL not globally visible */
1709 #define	ILL_DL_UNBIND_IN_PROGRESS	0x08	/* UNBIND_REQ is sent */
1710 #define	ILL_SOFT_RING_ASSIGN	0x10	/* Makeing soft ring assigment */
1711 
1712 /* Is this an ILL whose source address is used by other ILL's ? */
1713 #define	IS_USESRC_ILL(ill)			\
1714 	(((ill)->ill_usesrc_ifindex == 0) &&	\
1715 	((ill)->ill_usesrc_grp_next != NULL))
1716 
1717 /* Is this a client/consumer of the usesrc ILL ? */
1718 #define	IS_USESRC_CLI_ILL(ill)			\
1719 	(((ill)->ill_usesrc_ifindex != 0) &&	\
1720 	((ill)->ill_usesrc_grp_next != NULL))
1721 
1722 /* Is this an virtual network interface (vni) ILL ? */
1723 #define	IS_VNI(ill)							     \
1724 	(((ill) != NULL) &&						     \
1725 	(((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \
1726 	PHYI_VIRTUAL))
1727 
1728 /*
1729  * IP Lower level Structure.
1730  * Instance data structure in ip_open when there is a device below us.
1731  */
1732 typedef struct ill_s {
1733 	ill_if_t *ill_ifptr;		/* pointer to interface type */
1734 	queue_t	*ill_rq;		/* Read queue. */
1735 	queue_t	*ill_wq;		/* Write queue. */
1736 
1737 	int	ill_error;		/* Error value sent up by device. */
1738 
1739 	ipif_t	*ill_ipif;		/* Interface chain for this ILL. */
1740 
1741 	uint_t	ill_ipif_up_count;	/* Number of IPIFs currently up. */
1742 	uint_t	ill_max_frag;		/* Max IDU from DLPI. */
1743 	char	*ill_name;		/* Our name. */
1744 	uint_t	ill_ipif_dup_count;	/* Number of duplicate addresses. */
1745 	uint_t	ill_name_length;	/* Name length, incl. terminator. */
1746 	char	*ill_ndd_name;		/* Name + ":ip?_forwarding" for NDD. */
1747 	uint_t	ill_net_type;		/* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */
1748 	/*
1749 	 * Physical Point of Attachment num.  If DLPI style 1 provider
1750 	 * then this is derived from the devname.
1751 	 */
1752 	uint_t	ill_ppa;
1753 	t_uscalar_t	ill_sap;
1754 	t_scalar_t	ill_sap_length;	/* Including sign (for position) */
1755 	uint_t	ill_phys_addr_length;	/* Excluding the sap. */
1756 	uint_t	ill_bcast_addr_length;	/* Only set when the DL provider */
1757 					/* supports broadcast. */
1758 	t_uscalar_t	ill_mactype;
1759 	uint8_t	*ill_frag_ptr;		/* Reassembly state. */
1760 	timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */
1761 	ipfb_t	*ill_frag_hash_tbl;	/* Fragment hash list head. */
1762 	ipif_t	*ill_pending_ipif;	/* IPIF waiting for DL operation. */
1763 
1764 	ilm_t	*ill_ilm;		/* Multicast mebership for lower ill */
1765 	uint_t	ill_global_timer;	/* for IGMPv3/MLDv2 general queries */
1766 	int	ill_mcast_type;		/* type of router which is querier */
1767 					/* on this interface */
1768 	uint16_t ill_mcast_v1_time;	/* # slow timeouts since last v1 qry */
1769 	uint16_t ill_mcast_v2_time;	/* # slow timeouts since last v2 qry */
1770 	uint8_t	ill_mcast_v1_tset;	/* 1 => timer is set; 0 => not set */
1771 	uint8_t	ill_mcast_v2_tset;	/* 1 => timer is set; 0 => not set */
1772 
1773 	uint8_t	ill_mcast_rv;		/* IGMPv3/MLDv2 robustness variable */
1774 	int	ill_mcast_qi;		/* IGMPv3/MLDv2 query interval var */
1775 
1776 	mblk_t	*ill_pending_mp;	/* IOCTL/DLPI awaiting completion. */
1777 	/*
1778 	 * All non-NULL cells between 'ill_first_mp_to_free' and
1779 	 * 'ill_last_mp_to_free' are freed in ill_delete.
1780 	 */
1781 #define	ill_first_mp_to_free	ill_bcast_mp
1782 	mblk_t	*ill_bcast_mp;		/* DLPI header for broadcasts. */
1783 	mblk_t	*ill_resolver_mp;	/* Resolver template. */
1784 	mblk_t	*ill_detach_mp;		/* detach mp, or NULL if style1 */
1785 	mblk_t	*ill_unbind_mp;		/* unbind mp from ill_dl_up() */
1786 	mblk_t	*ill_dlpi_deferred;	/* b_next chain of control messages */
1787 	mblk_t	*ill_phys_addr_mp;	/* mblk which holds ill_phys_addr */
1788 #define	ill_last_mp_to_free	ill_phys_addr_mp
1789 
1790 	cred_t	*ill_credp;		/* opener's credentials */
1791 	uint8_t	*ill_phys_addr;		/* ill_phys_addr_mp->b_rptr + off */
1792 
1793 	uint_t	ill_state_flags;	/* see ILL_* flags above */
1794 
1795 	/* Following bit fields protected by ipsq_t */
1796 	uint_t
1797 		ill_needs_attach : 1,
1798 		ill_reserved : 1,
1799 		ill_isv6 : 1,
1800 		ill_dlpi_style_set : 1,
1801 
1802 		ill_ifname_pending : 1,
1803 		ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */
1804 		ill_join_allmulti : 1,
1805 		ill_logical_down : 1,
1806 
1807 		ill_is_6to4tun : 1,	/* Interface is a 6to4 tunnel */
1808 		ill_promisc_on_phys : 1, /* phys interface in promisc mode */
1809 		ill_dl_up : 1,
1810 		ill_up_ipifs : 1,
1811 
1812 		ill_note_link : 1,	/* supports link-up notification */
1813 
1814 		ill_pad_to_bit_31 : 19;
1815 
1816 	/* Following bit fields protected by ill_lock */
1817 	uint_t
1818 		ill_fragtimer_executing : 1,
1819 		ill_fragtimer_needrestart : 1,
1820 		ill_ilm_cleanup_reqd : 1,
1821 		ill_arp_closing : 1,
1822 
1823 		ill_arp_bringup_pending : 1,
1824 		ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */
1825 		ill_arp_extend : 1,	/* ARP has DAD extensions */
1826 		ill_pad_bit_31 : 25;
1827 
1828 	/*
1829 	 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'.
1830 	 */
1831 	int	ill_arp_muxid;		/* muxid returned from plink for arp */
1832 	int	ill_ip_muxid;		/* muxid returned from plink for ip */
1833 
1834 	/*
1835 	 * Used for IP frag reassembly throttling on a per ILL basis.
1836 	 *
1837 	 * Note: frag_count is approximate, its added to and subtracted from
1838 	 *	 without any locking, so simultaneous load/modify/stores can
1839 	 *	 collide, also ill_frag_purge() recalculates its value by
1840 	 *	 summing all the ipfb_count's without locking out updates
1841 	 *	 to the ipfb's.
1842 	 */
1843 	uint_t	ill_ipf_gen;		/* Generation of next fragment queue */
1844 	uint_t	ill_frag_count;		/* Approx count of all mblk bytes */
1845 	uint_t	ill_frag_free_num_pkts;	 /* num of fragmented packets to free */
1846 	clock_t	ill_last_frag_clean_time; /* time when frag's were pruned */
1847 	int	ill_type;		/* From <net/if_types.h> */
1848 	uint_t	ill_dlpi_multicast_state;	/* See below IDS_* */
1849 	uint_t	ill_dlpi_fastpath_state;	/* See below IDS_* */
1850 
1851 	/*
1852 	 * Capabilities related fields.
1853 	 */
1854 	uint_t  ill_dlpi_capab_state;	/* State of capability query, IDS_* */
1855 	uint64_t ill_capabilities;	/* Enabled capabilities, ILL_CAPAB_* */
1856 	ill_mdt_capab_t	*ill_mdt_capab;	/* Multidata Transmit capabilities */
1857 	ill_ipsec_capab_t *ill_ipsec_capab_ah;	/* IPsec AH capabilities */
1858 	ill_ipsec_capab_t *ill_ipsec_capab_esp;	/* IPsec ESP capabilities */
1859 	ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */
1860 	ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */
1861 	ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */
1862 
1863 	/*
1864 	 * New fields for IPv6
1865 	 */
1866 	uint8_t	ill_max_hops;	/* Maximum hops for any logical interface */
1867 	uint_t	ill_max_mtu;	/* Maximum MTU for any logical interface */
1868 	uint32_t ill_reachable_time;	/* Value for ND algorithm in msec */
1869 	uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */
1870 	uint_t	ill_max_buf;		/* Max # of req to buffer for ND */
1871 	in6_addr_t	ill_token;
1872 	uint_t		ill_token_length;
1873 	uint32_t	ill_xmit_count;		/* ndp max multicast xmits */
1874 	mib2_ipv6IfStatsEntry_t	*ill_ip6_mib;	/* Per interface mib */
1875 	mib2_ipv6IfIcmpEntry_t	*ill_icmp6_mib;	/* Per interface mib */
1876 	/*
1877 	 * Following two mblks are allocated common to all
1878 	 * the ipifs when the first interface is coming up.
1879 	 * It is sent up to arp when the last ipif is coming
1880 	 * down.
1881 	 */
1882 	mblk_t			*ill_arp_down_mp;
1883 	mblk_t			*ill_arp_del_mapping_mp;
1884 	/*
1885 	 * Used for implementing IFF_NOARP. As IFF_NOARP is used
1886 	 * to turn off for all the logicals, it is here instead
1887 	 * of the ipif.
1888 	 */
1889 	mblk_t			*ill_arp_on_mp;
1890 	/* Peer ill of an IPMP move operation */
1891 	struct ill_s		*ill_move_peer;
1892 
1893 	phyint_t		*ill_phyint;
1894 	uint64_t		ill_flags;
1895 	ill_group_t		*ill_group;
1896 	struct ill_s		*ill_group_next;
1897 	/*
1898 	 * Reverse tunnel related count. This count
1899 	 * determines how many mobile nodes are using this
1900 	 * ill to send packet to reverse tunnel via foreign
1901 	 * agent. A non-zero count specifies presence of
1902 	 * mobile node(s) using reverse tunnel through this
1903 	 * interface.
1904 	 */
1905 	uint32_t		ill_mrtun_refcnt;
1906 
1907 	/*
1908 	 * This count is bumped up when a route is added with
1909 	 * RTA_SRCIFP bit flag using routing socket.
1910 	 */
1911 	uint32_t		ill_srcif_refcnt;
1912 	/*
1913 	 * Pointer to the special interface based routing table.
1914 	 * This routing table is created dynamically when RTA_SRCIFP
1915 	 * is set by the routing socket.
1916 	 */
1917 	irb_t			*ill_srcif_table;
1918 	kmutex_t	ill_lock;	/* Please see table below */
1919 	/*
1920 	 * The ill_nd_lla* fields handle the link layer address option
1921 	 * from neighbor discovery. This is used for external IPv6
1922 	 * address resolution.
1923 	 */
1924 	mblk_t		*ill_nd_lla_mp;	/* mblk which holds ill_nd_lla */
1925 	uint8_t		*ill_nd_lla;	/* Link Layer Address */
1926 	uint_t		ill_nd_lla_len;	/* Link Layer Address length */
1927 	/*
1928 	 * We now have 3 phys_addr_req's sent down. This field keeps track
1929 	 * of which one is pending.
1930 	 */
1931 	t_uscalar_t	ill_phys_addr_pend; /* which dl_phys_addr_req pending */
1932 	/*
1933 	 * Used to save errors that occur during plumbing
1934 	 */
1935 	uint_t		ill_ifname_pending_err;
1936 	avl_node_t	ill_avl_byppa; /* avl node based on ppa */
1937 	void		*ill_fastpath_list; /* both ire and nce hang off this */
1938 	uint_t		ill_refcnt;	/* active refcnt by threads */
1939 	uint_t		ill_ire_cnt;	/* ires associated with this ill */
1940 	kcondvar_t	ill_cv;
1941 	uint_t		ill_ilm_walker_cnt;	/* snmp ilm walkers */
1942 	uint_t		ill_nce_cnt;	/* nces associated with this ill */
1943 	uint_t		ill_waiters;	/* threads waiting in ipsq_enter */
1944 	/*
1945 	 * Contains the upper read queue pointer of the module immediately
1946 	 * beneath IP.  This field allows IP to validate sub-capability
1947 	 * acknowledgments coming up from downstream.
1948 	 */
1949 	queue_t		*ill_lmod_rq;	/* read queue pointer of module below */
1950 	uint_t		ill_lmod_cnt;	/* number of modules beneath IP */
1951 	ip_m_t		*ill_media;	/* media specific params/functions */
1952 	t_uscalar_t	ill_dlpi_pending; /* Last DLPI primitive issued */
1953 	uint_t		ill_usesrc_ifindex; /* use src addr from this ILL */
1954 	struct ill_s	*ill_usesrc_grp_next; /* Next ILL in the usesrc group */
1955 #ifdef ILL_DEBUG
1956 	th_trace_t	*ill_trace[IP_TR_HASH_MAX];
1957 	boolean_t	ill_trace_disable;	/* True when alloc fails */
1958 #endif
1959 } ill_t;
1960 
1961 extern	void	ill_delete_glist(ill_t *);
1962 
1963 /*
1964  * The following table lists the protection levels of the various members
1965  * of the ill_t. Same notation as that used for ipif_t above is used.
1966  *
1967  *				Write			Read
1968  *
1969  * ill_ifptr			ill_g_lock + s		Write once
1970  * ill_rq			ipsq			Write once
1971  * ill_wq			ipsq			Write once
1972  *
1973  * ill_error			ipsq			None
1974  * ill_ipif			ill_g_lock + ipsq	ill_g_lock OR ipsq
1975  * ill_ipif_up_count		ill_lock + ipsq		ill_lock
1976  * ill_max_frag			ipsq			Write once
1977  *
1978  * ill_name			ill_g_lock + ipsq		Write once
1979  * ill_name_length		ill_g_lock + ipsq		Write once
1980  * ill_ndd_name			ipsq			Write once
1981  * ill_net_type			ipsq			Write once
1982  * ill_ppa			ill_g_lock + ipsq		Write once
1983  * ill_sap			ipsq + down ill		Write once
1984  * ill_sap_length		ipsq + down ill		Write once
1985  * ill_phys_addr_length		ipsq + down ill		Write once
1986  *
1987  * ill_bcast_addr_length	ipsq			ipsq
1988  * ill_mactype			ipsq			ipsq
1989  * ill_frag_ptr			ipsq			ipsq
1990  *
1991  * ill_frag_timer_id		ill_lock		ill_lock
1992  * ill_frag_hash_tbl		ipsq			up ill
1993  * ill_ilm			ipsq + ill_lock		ill_lock
1994  * ill_mcast_type		ill_lock		ill_lock
1995  * ill_mcast_v1_time		ill_lock		ill_lock
1996  * ill_mcast_v2_time		ill_lock		ill_lock
1997  * ill_mcast_v1_tset		ill_lock		ill_lock
1998  * ill_mcast_v2_tset		ill_lock		ill_lock
1999  * ill_mcast_rv			ill_lock		ill_lock
2000  * ill_mcast_qi			ill_lock		ill_lock
2001  * ill_pending_mp		ill_lock		ill_lock
2002  *
2003  * ill_bcast_mp			ipsq			ipsq
2004  * ill_resolver_mp		ipsq			only when ill is up
2005  * ill_down_mp			ipsq			ipsq
2006  * ill_dlpi_deferred		ipsq			ipsq
2007  * ill_phys_addr_mp		ipsq			ipsq
2008  * ill_phys_addr		ipsq			up ill
2009  * ill_ick			ipsq + down ill		only when ill is up
2010  *
2011  * ill_state_flags		ill_lock		ill_lock
2012  * exclusive bit flags		ipsq_t			ipsq_t
2013  * shared bit flags		ill_lock		ill_lock
2014  *
2015  * ill_arp_muxid		ipsq			Not atomic
2016  * ill_ip_muxid			ipsq			Not atomic
2017  *
2018  * ill_ipf_gen			Not atomic
2019  * ill_frag_count		Approx. not protected
2020  * ill_type			ipsq + down ill		only when ill is up
2021  * ill_dlpi_multicast_state	ill_lock		ill_lock
2022  * ill_dlpi_fastpath_state	ill_lock		ill_lock
2023  * ill_max_hops			ipsq			Not atomic
2024  *
2025  * ill_max_mtu
2026  *
2027  * ill_reachable_time		ipsq + ill_lock		ill_lock
2028  * ill_reachable_retrans_time	ipsq  + ill_lock		ill_lock
2029  * ill_max_buf			ipsq + ill_lock		ill_lock
2030  *
2031  * Next 2 fields need ill_lock because of the get ioctls. They should not
2032  * report partially updated results without executing in the ipsq.
2033  * ill_token			ipsq + ill_lock		ill_lock
2034  * ill_token_length		ipsq + ill_lock		ill_lock
2035  * ill_xmit_count		ipsq + down ill		write once
2036  * ill_ip6_mib			ipsq + down ill		only when ill is up
2037  * ill_icmp6_mib		ipsq + down ill		only when ill is up
2038  * ill_arp_down_mp		ipsq			ipsq
2039  * ill_arp_del_mapping_mp	ipsq			ipsq
2040  * ill_arp_on_mp		ipsq			ipsq
2041  * ill_move_peer		ipsq			ipsq
2042  *
2043  * ill_phyint			ipsq, ill_g_lock, ill_lock	Any of them
2044  * ill_flags			ill_lock		ill_lock
2045  * ill_group			ipsq, ill_g_lock, ill_lock	Any of them
2046  * ill_group_next		ipsq, ill_g_lock, ill_lock	Any of them
2047  * ill_mrtun_refcnt		ill_lock		ill_lock
2048  * ill_srcif_refcnt		ill_lock		ill_lock
2049  * ill_srcif_table		ill_lock		ill_lock
2050  * ill_nd_lla_mp		ill_lock		ill_lock
2051  * ill_nd_lla			ill_lock		ill_lock
2052  * ill_nd_lla_len		ill_lock		ill_lock
2053  * ill_phys_addr_pend		ipsq + down ill		only when ill is up
2054  * ill_ifname_pending_err	ipsq			ipsq
2055  * ill_avl_byppa		ipsq, ill_g_lock		Write once
2056  *
2057  * ill_fastpath_list		ill_lock		ill_lock
2058  * ill_refcnt			ill_lock		ill_lock
2059  * ill_ire_cnt			ill_lock		ill_lock
2060  * ill_cv			ill_lock		ill_lock
2061  * ill_ilm_walker_cnt		ill_lock		ill_lock
2062  * ill_nce_cnt			ill_lock		ill_lock
2063  * ill_trace			ill_lock		ill_lock
2064  * ill_usesrc_grp_next		ill_g_usesrc_lock	ill_g_usesrc_lock
2065  */
2066 
2067 /*
2068  * For ioctl restart mechanism see ip_reprocess_ioctl()
2069  */
2070 struct ip_ioctl_cmd_s;
2071 
2072 typedef	int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *,
2073     struct ip_ioctl_cmd_s *, void *);
2074 
2075 typedef struct ip_ioctl_cmd_s {
2076 	int	ipi_cmd;
2077 	size_t	ipi_copyin_size;
2078 	uint_t	ipi_flags;
2079 	uint_t	ipi_cmd_type;
2080 	ifunc_t	ipi_func;
2081 	ifunc_t	ipi_func_restart;
2082 } ip_ioctl_cmd_t;
2083 
2084 /*
2085  * ipi_cmd_type:
2086  *
2087  * IF_CMD		1	old style ifreq cmd
2088  * LIF_CMD		2	new style lifreq cmd
2089  * MISC_CMD		3	Misc. (non [l]ifreq, tun) cmds
2090  * TUN_CMD		4	tunnel related
2091  */
2092 
2093 enum { IF_CMD = 1, LIF_CMD, MISC_CMD, TUN_CMD };
2094 
2095 #define	IPI_DONTCARE	0	/* For ioctl encoded values that don't matter */
2096 
2097 /* Flag values in ipi_flags */
2098 #define	IPI_PRIV	0x1		/* Root only command */
2099 #define	IPI_MODOK	0x2		/* Permitted on mod instance of IP */
2100 #define	IPI_WR		0x4		/* Need to grab writer access */
2101 #define	IPI_GET_CMD	0x8		/* branch to mi_copyout on success */
2102 #define	IPI_REPL	0x10	/* valid for replacement ipif created in MOVE */
2103 #define	IPI_NULL_BCONT	0x20	/* ioctl has not data and hence no b_cont */
2104 #define	IPI_PASS_DOWN	0x40	/* pass this ioctl down when a module only */
2105 
2106 extern ip_ioctl_cmd_t	ip_ndx_ioctl_table[];
2107 extern ip_ioctl_cmd_t	ip_misc_ioctl_table[];
2108 extern int ip_ndx_ioctl_count;
2109 extern int ip_misc_ioctl_count;
2110 
2111 #define	ILL_CLEAR_MOVE(ill) {				\
2112 	ill_t *peer_ill;				\
2113 							\
2114 	peer_ill = (ill)->ill_move_peer;		\
2115 	ASSERT(peer_ill != NULL);			\
2116 	(ill)->ill_move_in_progress = B_FALSE;		\
2117 	peer_ill->ill_move_in_progress = B_FALSE;	\
2118 	(ill)->ill_move_peer = NULL;			\
2119 	peer_ill->ill_move_peer = NULL;			\
2120 }
2121 /* The 2 ill's are same or belong to the same IPMP group */
2122 #define	SAME_IPMP_GROUP(ill_1, ill_2)			\
2123 	(((ill_1)->ill_group != NULL) &&		\
2124 	    ((ill_1)->ill_group == (ill_2)->ill_group))
2125 
2126 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */
2127 typedef struct ipmx_s {
2128 	char	ipmx_name[LIFNAMSIZ];		/* if name */
2129 	uint_t
2130 		ipmx_arpdev_stream : 1,		/* This is the arp stream */
2131 		ipmx_notused : 31;
2132 } ipmx_t;
2133 
2134 /*
2135  * State for detecting if a driver supports certain features.
2136  * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state.
2137  * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state.
2138  * Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state.
2139  */
2140 #define	IDS_UNKNOWN	0	/* No DLPI request sent */
2141 #define	IDS_INPROGRESS	1	/* DLPI request sent */
2142 #define	IDS_OK		2	/* DLPI request completed successfully */
2143 #define	IDS_FAILED	3	/* DLPI request failed */
2144 #define	IDS_RENEG	4	/* Driver asked for a renegotiation */
2145 
2146 /* Named Dispatch Parameter Management Structure */
2147 typedef struct ipparam_s {
2148 	uint_t	ip_param_min;
2149 	uint_t	ip_param_max;
2150 	uint_t	ip_param_value;
2151 	char	*ip_param_name;
2152 } ipparam_t;
2153 
2154 /* Extended NDP Management Structure */
2155 typedef struct ipndp_s {
2156 	ndgetf_t	ip_ndp_getf;
2157 	ndsetf_t	ip_ndp_setf;
2158 	caddr_t		ip_ndp_data;
2159 	char		*ip_ndp_name;
2160 } ipndp_t;
2161 
2162 /*
2163  * The kernel stores security attributes of all gateways in a database made
2164  * up of one or more tsol_gcdb_t elements.  Each tsol_gcdb_t contains the
2165  * security-related credentials of the gateway.  More than one gateways may
2166  * share entries in the database.
2167  *
2168  * The tsol_gc_t structure represents the gateway to credential association,
2169  * and refers to an entry in the database.  One or more tsol_gc_t entities are
2170  * grouped together to form one or more tsol_gcgrp_t, each representing the
2171  * list of security attributes specific to the gateway.  A gateway may be
2172  * associated with at most one credentials group.
2173  */
2174 struct tsol_gcgrp_s;
2175 
2176 extern uchar_t	ip6opt_ls;	/* TX IPv6 enabler */
2177 
2178 /*
2179  * Gateway security credential record.
2180  */
2181 typedef struct tsol_gcdb_s {
2182 	uint_t		gcdb_refcnt;	/* reference count */
2183 	struct rtsa_s	gcdb_attr;	/* security attributes */
2184 #define	gcdb_mask	gcdb_attr.rtsa_mask
2185 #define	gcdb_doi	gcdb_attr.rtsa_doi
2186 #define	gcdb_slrange	gcdb_attr.rtsa_slrange
2187 } tsol_gcdb_t;
2188 
2189 /*
2190  * Gateway to credential association.
2191  */
2192 typedef struct tsol_gc_s {
2193 	uint_t		gc_refcnt;	/* reference count */
2194 	struct tsol_gcgrp_s *gc_grp;	/* pointer to group */
2195 	struct tsol_gc_s *gc_prev;	/* previous in list */
2196 	struct tsol_gc_s *gc_next;	/* next in list */
2197 	tsol_gcdb_t	*gc_db;		/* pointer to actual credentials */
2198 } tsol_gc_t;
2199 
2200 /*
2201  * Gateway credentials group address.
2202  */
2203 typedef struct tsol_gcgrp_addr_s {
2204 	int		ga_af;		/* address family */
2205 	in6_addr_t	ga_addr;	/* IPv4 mapped or IPv6 address */
2206 } tsol_gcgrp_addr_t;
2207 
2208 /*
2209  * Gateway credentials group.
2210  */
2211 typedef struct tsol_gcgrp_s {
2212 	uint_t		gcgrp_refcnt;	/* reference count */
2213 	krwlock_t	gcgrp_rwlock;	/* lock to protect following */
2214 	uint_t		gcgrp_count;	/* number of credentials */
2215 	tsol_gc_t	*gcgrp_head;	/* first credential in list */
2216 	tsol_gc_t	*gcgrp_tail;	/* last credential in list */
2217 	tsol_gcgrp_addr_t gcgrp_addr;	/* next-hop gateway address */
2218 } tsol_gcgrp_t;
2219 
2220 extern kmutex_t gcgrp_lock;
2221 
2222 #define	GC_REFRELE(p) {				\
2223 	ASSERT((p)->gc_grp != NULL);		\
2224 	rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \
2225 	ASSERT((p)->gc_refcnt > 0);		\
2226 	if (--((p)->gc_refcnt) == 0)		\
2227 		gc_inactive(p);			\
2228 	else					\
2229 		rw_exit(&(p)->gc_grp->gcgrp_rwlock); \
2230 }
2231 
2232 #define	GCGRP_REFHOLD(p) {			\
2233 	mutex_enter(&gcgrp_lock);		\
2234 	++((p)->gcgrp_refcnt);			\
2235 	ASSERT((p)->gcgrp_refcnt != 0);		\
2236 	mutex_exit(&gcgrp_lock);		\
2237 }
2238 
2239 #define	GCGRP_REFRELE(p) {			\
2240 	mutex_enter(&gcgrp_lock);		\
2241 	ASSERT((p)->gcgrp_refcnt > 0);		\
2242 	if (--((p)->gcgrp_refcnt) == 0)		\
2243 		gcgrp_inactive(p);		\
2244 	ASSERT(MUTEX_HELD(&gcgrp_lock));	\
2245 	mutex_exit(&gcgrp_lock);		\
2246 }
2247 
2248 /*
2249  * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr
2250  */
2251 struct tsol_tnrhc;
2252 
2253 typedef struct tsol_ire_gw_secattr_s {
2254 	kmutex_t	igsa_lock;	/* lock to protect following */
2255 	struct tsol_tnrhc *igsa_rhc;	/* host entry for gateway */
2256 	tsol_gc_t	*igsa_gc;	/* for prefix IREs */
2257 	tsol_gcgrp_t	*igsa_gcgrp;	/* for cache IREs */
2258 } tsol_ire_gw_secattr_t;
2259 
2260 /*
2261  * Following are the macros to increment/decrement the reference
2262  * count of the IREs and IRBs (ire bucket).
2263  *
2264  * 1) We bump up the reference count of an IRE to make sure that
2265  *    it does not get deleted and freed while we are using it.
2266  *    Typically all the lookup functions hold the bucket lock,
2267  *    and look for the IRE. If it finds an IRE, it bumps up the
2268  *    reference count before dropping the lock. Sometimes we *may* want
2269  *    to bump up the reference count after we *looked* up i.e without
2270  *    holding the bucket lock. So, the IRE_REFHOLD macro does not assert
2271  *    on the bucket lock being held. Any thread trying to delete from
2272  *    the hash bucket can still do so but cannot free the IRE if
2273  *    ire_refcnt is not 0.
2274  *
2275  * 2) We bump up the reference count on the bucket where the IRE resides
2276  *    (IRB), when we want to prevent the IREs getting deleted from a given
2277  *    hash bucket. This makes life easier for ire_walk type functions which
2278  *    wants to walk the IRE list, call a function, but needs to drop
2279  *    the bucket lock to prevent recursive rw_enters. While the
2280  *    lock is dropped, the list could be changed by other threads or
2281  *    the same thread could end up deleting the ire or the ire pointed by
2282  *    ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as
2283  *    a delete will still remove the ire from the bucket while we have
2284  *    dropped the lock and hence the ire_next would be NULL. Thus, we
2285  *    need a mechanism to prevent deletions from a given bucket.
2286  *
2287  *    To prevent deletions, we bump up the reference count on the
2288  *    bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED
2289  *    both on the ire's ire_marks and the bucket's irb_marks. When the
2290  *    reference count on the bucket drops to zero, all the CONDEMNED ires
2291  *    are deleted. We don't have to bump up the reference count on the
2292  *    bucket if we are walking the bucket and never have to drop the bucket
2293  *    lock. Note that IRB_REFHOLD does not prevent addition of new ires
2294  *    in the list. It is okay because addition of new ires will not cause
2295  *    ire_next to point to freed memory. We do IRB_REFHOLD only when
2296  *    all of the 3 conditions are true :
2297  *
2298  *    1) The code needs to walk the IRE bucket from start to end.
2299  *    2) It may have to drop the bucket lock sometimes while doing (1)
2300  *    3) It does not want any ires to be deleted meanwhile.
2301  */
2302 
2303 /*
2304  * Bump up the reference count on the IRE. We cannot assert that the
2305  * bucket lock is being held as it is legal to bump up the reference
2306  * count after the first lookup has returned the IRE without
2307  * holding the lock. Currently ip_wput does this for caching IRE_CACHEs.
2308  */
2309 
2310 #ifndef IRE_DEBUG
2311 
2312 #define	IRE_REFHOLD_NOTR(ire)	IRE_REFHOLD(ire)
2313 #define	IRE_UNTRACE_REF(ire)
2314 #define	IRE_TRACE_REF(ire)
2315 
2316 #else
2317 
2318 #define	IRE_REFHOLD_NOTR(ire) {				\
2319 	atomic_add_32(&(ire)->ire_refcnt, 1);		\
2320 	ASSERT((ire)->ire_refcnt != 0);			\
2321 }
2322 
2323 #define	IRE_UNTRACE_REF(ire)	ire_untrace_ref(ire);
2324 #define	IRE_TRACE_REF(ire)	ire_trace_ref(ire);
2325 #endif
2326 
2327 #define	IRE_REFHOLD(ire) {				\
2328 	atomic_add_32(&(ire)->ire_refcnt, 1);		\
2329 	ASSERT((ire)->ire_refcnt != 0);			\
2330 	IRE_TRACE_REF(ire);				\
2331 }
2332 
2333 #define	IRE_REFHOLD_LOCKED(ire)	{			\
2334 	IRE_TRACE_REF(ire);				\
2335 	(ire)->ire_refcnt++;				\
2336 }
2337 
2338 /*
2339  * Decrement the reference count on the IRE.
2340  * In architectures e.g sun4u, where atomic_add_32_nv is just
2341  * a cas, we need to maintain the right memory barrier semantics
2342  * as that of mutex_exit i.e all the loads and stores should complete
2343  * before the cas is executed. membar_exit() does that here.
2344  *
2345  * NOTE : This macro is used only in places where we want performance.
2346  *	  To avoid bloating the code, we use the function "ire_refrele"
2347  *	  which essentially calls the macro.
2348  */
2349 #ifndef IRE_DEBUG
2350 #define	IRE_REFRELE(ire) {					\
2351 	ASSERT((ire)->ire_refcnt != 0);				\
2352 	membar_exit();						\
2353 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2354 		ire_inactive(ire);				\
2355 }
2356 #define	IRE_REFRELE_NOTR(ire)	IRE_REFRELE(ire)
2357 #else
2358 #define	IRE_REFRELE(ire) {					\
2359 	if (ire->ire_bucket != NULL)				\
2360 		ire_untrace_ref(ire);				\
2361 	ASSERT((ire)->ire_refcnt != 0);				\
2362 	membar_exit();						\
2363 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2364 		ire_inactive(ire);				\
2365 }
2366 #define	IRE_REFRELE_NOTR(ire) {					\
2367 	ASSERT((ire)->ire_refcnt != 0);				\
2368 	membar_exit();						\
2369 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2370 		ire_inactive(ire);				\
2371 }
2372 #endif
2373 
2374 /*
2375  * Bump up the reference count on the hash bucket - IRB to
2376  * prevent ires from being deleted in this bucket.
2377  */
2378 #define	IRB_REFHOLD(irb) {				\
2379 	rw_enter(&(irb)->irb_lock, RW_WRITER);		\
2380 	(irb)->irb_refcnt++;				\
2381 	ASSERT((irb)->irb_refcnt != 0);			\
2382 	rw_exit(&(irb)->irb_lock);			\
2383 }
2384 #define	IRB_REFHOLD_LOCKED(irb) {			\
2385 	ASSERT(RW_WRITE_HELD(&(irb)->irb_lock));	\
2386 	(irb)->irb_refcnt++;				\
2387 	ASSERT((irb)->irb_refcnt != 0);			\
2388 }
2389 
2390 void irb_refrele_ftable(irb_t *);
2391 /*
2392  * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t
2393  * is statically allocated, so that when the irb_refcnt goes to 0,
2394  * we simply clean up the ire list and continue.
2395  */
2396 #define	IRB_REFRELE(irb) {				\
2397 	if ((irb)->irb_marks & IRB_MARK_FTABLE) {	\
2398 		irb_refrele_ftable((irb));		\
2399 	} else {					\
2400 		rw_enter(&(irb)->irb_lock, RW_WRITER);		\
2401 		ASSERT((irb)->irb_refcnt != 0);			\
2402 		if (--(irb)->irb_refcnt	== 0 &&			\
2403 		    ((irb)->irb_marks & IRE_MARK_CONDEMNED)) {	\
2404 			ire_t *ire_list;			\
2405 								\
2406 			ire_list = ire_unlink(irb);		\
2407 			rw_exit(&(irb)->irb_lock);		\
2408 			ASSERT(ire_list != NULL);		\
2409 			ire_cleanup(ire_list);			\
2410 		} else {					\
2411 			rw_exit(&(irb)->irb_lock);		\
2412 		}						\
2413 	}							\
2414 }
2415 
2416 extern struct kmem_cache *rt_entry_cache;
2417 
2418 /*
2419  * Lock the fast path mp for access, since the fp_mp can be deleted
2420  * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST and IRE_MIPRTUN
2421  */
2422 
2423 #define	LOCK_IRE_FP_MP(ire) {				\
2424 		if ((ire)->ire_type == IRE_BROADCAST ||	\
2425 		    (ire)->ire_type == IRE_MIPRTUN)	\
2426 			mutex_enter(&ire->ire_nce->nce_lock);	\
2427 	}
2428 #define	UNLOCK_IRE_FP_MP(ire) {				\
2429 		if ((ire)->ire_type == IRE_BROADCAST ||	\
2430 		    (ire)->ire_type == IRE_MIPRTUN)	\
2431 			mutex_exit(&ire->ire_nce->nce_lock);	\
2432 	}
2433 
2434 typedef struct ire4 {
2435 	ipaddr_t ire4_src_addr;		/* Source address to use. */
2436 	ipaddr_t ire4_mask;		/* Mask for matching this IRE. */
2437 	ipaddr_t ire4_addr;		/* Address this IRE represents. */
2438 	ipaddr_t ire4_gateway_addr;	/* Gateway if IRE_CACHE/IRE_OFFSUBNET */
2439 	ipaddr_t ire4_cmask;		/* Mask from parent prefix route */
2440 } ire4_t;
2441 
2442 typedef struct ire6 {
2443 	in6_addr_t ire6_src_addr;	/* Source address to use. */
2444 	in6_addr_t ire6_mask;		/* Mask for matching this IRE. */
2445 	in6_addr_t ire6_addr;		/* Address this IRE represents. */
2446 	in6_addr_t ire6_gateway_addr;	/* Gateway if IRE_CACHE/IRE_OFFSUBNET */
2447 	in6_addr_t ire6_cmask;		/* Mask from parent prefix route */
2448 } ire6_t;
2449 
2450 typedef union ire_addr {
2451 	ire6_t	ire6_u;
2452 	ire4_t	ire4_u;
2453 } ire_addr_u_t;
2454 
2455 /* Internet Routing Entry */
2456 typedef struct ire_s {
2457 	struct	ire_s	*ire_next;	/* The hash chain must be first. */
2458 	struct	ire_s	**ire_ptpn;	/* Pointer to previous next. */
2459 	uint32_t	ire_refcnt;	/* Number of references */
2460 	mblk_t		*ire_mp;	/* Non-null if allocated as mblk */
2461 	queue_t		*ire_rfq;	/* recv from this queue */
2462 	queue_t		*ire_stq;	/* send to this queue */
2463 	union {
2464 		uint_t	*max_fragp;	/* Used only during ire creation */
2465 		uint_t	max_frag;	/* MTU (next hop or path). */
2466 	} imf_u;
2467 #define	ire_max_frag	imf_u.max_frag
2468 #define	ire_max_fragp	imf_u.max_fragp
2469 	uint32_t	ire_frag_flag;	/* IPH_DF or zero. */
2470 	uint32_t	ire_ident;	/* Per IRE IP ident. */
2471 	uint32_t	ire_tire_mark;	/* Used for reclaim of unused. */
2472 	uchar_t		ire_ipversion;	/* IPv4/IPv6 version */
2473 	uchar_t		ire_marks;	/* IRE_MARK_CONDEMNED etc. */
2474 	ushort_t	ire_type;	/* Type of IRE */
2475 	uint_t	ire_ib_pkt_count;	/* Inbound packets for ire_addr */
2476 	uint_t	ire_ob_pkt_count;	/* Outbound packets to ire_addr */
2477 	uint_t	ire_ll_hdr_length;	/* Non-zero if we do M_DATA prepends */
2478 	time_t	ire_create_time;	/* Time (in secs) IRE was created. */
2479 	uint32_t	ire_phandle;	/* Associate prefix IREs to cache */
2480 	uint32_t	ire_ihandle;	/* Associate interface IREs to cache */
2481 	ipif_t		*ire_ipif;	/* the interface that this ire uses */
2482 	uint32_t	ire_flags;	/* flags related to route (RTF_*) */
2483 	uint_t	ire_ipsec_overhead;	/* IPSEC overhead */
2484 	/*
2485 	 * Neighbor Cache Entry for IPv6; arp info for IPv4
2486 	 */
2487 	struct	nce_s	*ire_nce;
2488 	uint_t		ire_masklen;	/* # bits in ire_mask{,_v6} */
2489 	ire_addr_u_t	ire_u;		/* IPv4/IPv6 address info. */
2490 
2491 	irb_t		*ire_bucket;	/* Hash bucket when ire_ptphn is set */
2492 	iulp_t		ire_uinfo;	/* Upper layer protocol info. */
2493 	/*
2494 	 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag.
2495 	 */
2496 	kmutex_t	ire_lock;
2497 	uint_t		ire_ipif_seqid; /* ipif_seqid of ire_ipif */
2498 	/*
2499 	 * For regular routes in forwarding table and cache table the
2500 	 * the following entries are NULL/zero. Only reverse tunnel
2501 	 * table and interface based forwarding table use these fields.
2502 	 * Routes added with RTA_SRCIFP and RTA_SRC respectively have
2503 	 * non-zero values for the following fields.
2504 	 */
2505 	ill_t		*ire_in_ill;	/* Incoming ill interface */
2506 	ipaddr_t	ire_in_src_addr;
2507 					/* source ip-addr of incoming packet */
2508 	clock_t		ire_last_used_time;	/* Last used time */
2509 	struct ire_s 	*ire_fastpath;	/* Pointer to next ire in fastpath */
2510 	tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */
2511 	zoneid_t	ire_zoneid;	/* for local address discrimination */
2512 	/*
2513 	 * ire's that are embedded inside mblk_t and sent to the external
2514 	 * resolver use the ire_stq_ifindex to track the ifindex of the
2515 	 * ire_stq, so that the ill (if it exists) can be correctly recovered
2516 	 * for cleanup in the esbfree routine when arp failure occurs
2517 	 */
2518 	uint_t	ire_stq_ifindex;
2519 	uint_t		ire_defense_count;	/* number of ARP conflicts */
2520 	uint_t		ire_defense_time;	/* last time defended (secs) */
2521 #ifdef IRE_DEBUG
2522 	th_trace_t	*ire_trace[IP_TR_HASH_MAX];
2523 	boolean_t	ire_trace_disable;	/* True when alloc fails */
2524 #endif
2525 } ire_t;
2526 
2527 /* IPv4 compatiblity macros */
2528 #define	ire_src_addr		ire_u.ire4_u.ire4_src_addr
2529 #define	ire_mask		ire_u.ire4_u.ire4_mask
2530 #define	ire_addr		ire_u.ire4_u.ire4_addr
2531 #define	ire_gateway_addr	ire_u.ire4_u.ire4_gateway_addr
2532 #define	ire_cmask		ire_u.ire4_u.ire4_cmask
2533 
2534 #define	ire_src_addr_v6		ire_u.ire6_u.ire6_src_addr
2535 #define	ire_mask_v6		ire_u.ire6_u.ire6_mask
2536 #define	ire_addr_v6		ire_u.ire6_u.ire6_addr
2537 #define	ire_gateway_addr_v6	ire_u.ire6_u.ire6_gateway_addr
2538 #define	ire_cmask_v6		ire_u.ire6_u.ire6_cmask
2539 
2540 /* Convenient typedefs for sockaddrs */
2541 typedef	struct sockaddr_in	sin_t;
2542 typedef	struct sockaddr_in6	sin6_t;
2543 
2544 /* Address structure used for internal bind with IP */
2545 typedef struct ipa_conn_s {
2546 	ipaddr_t	ac_laddr;
2547 	ipaddr_t	ac_faddr;
2548 	uint16_t	ac_fport;
2549 	uint16_t	ac_lport;
2550 } ipa_conn_t;
2551 
2552 typedef struct ipa6_conn_s {
2553 	in6_addr_t	ac6_laddr;
2554 	in6_addr_t	ac6_faddr;
2555 	uint16_t	ac6_fport;
2556 	uint16_t	ac6_lport;
2557 } ipa6_conn_t;
2558 
2559 /*
2560  * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's
2561  * bind handler.
2562  */
2563 typedef struct ipa_conn_extended_s {
2564 	uint64_t	acx_flags;
2565 	ipa_conn_t	acx_conn;
2566 } ipa_conn_x_t;
2567 
2568 typedef struct ipa6_conn_extended_s {
2569 	uint64_t	ac6x_flags;
2570 	ipa6_conn_t	ac6x_conn;
2571 } ipa6_conn_x_t;
2572 
2573 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */
2574 #define	ACX_VERIFY_DST	0x1ULL	/* verify destination address is reachable */
2575 
2576 /* Name/Value Descriptor. */
2577 typedef struct nv_s {
2578 	uint64_t nv_value;
2579 	char	*nv_name;
2580 } nv_t;
2581 
2582 /* IP Forwarding Ticket */
2583 typedef	struct ipftk_s {
2584 	queue_t	*ipftk_queue;
2585 	ipaddr_t ipftk_dst;
2586 } ipftk_t;
2587 
2588 typedef struct ipt_s {
2589 	pfv_t	func;		/* Routine to call */
2590 	uchar_t	*arg;		/* ire or nce passed in */
2591 } ipt_t;
2592 
2593 #define	ILL_FRAG_HASH(s, i) \
2594 	((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT)
2595 
2596 /*
2597  * The MAX number of allowed fragmented packets per hash bucket
2598  * calculation is based on the most common mtu size of 1500. This limit
2599  * will work well for other mtu sizes as well.
2600  */
2601 #define	COMMON_IP_MTU 1500
2602 #define	MAX_FRAG_MIN 10
2603 #define	MAX_FRAG_PKTS	\
2604 	MAX(MAX_FRAG_MIN, (2 * (ip_reass_queue_bytes / \
2605 	    (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT))))
2606 
2607 /*
2608  * Maximum dups allowed per packet.
2609  */
2610 extern uint_t ip_max_frag_dups;
2611 
2612 /*
2613  * Per-packet information for received packets and transmitted.
2614  * Used by the transport protocols when converting between the packet
2615  * and ancillary data and socket options.
2616  *
2617  * Note: This private data structure and related IPPF_* constant
2618  * definitions are exposed to enable compilation of some debugging tools
2619  * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be
2620  * a temporary hack and long term alternate interfaces should be defined
2621  * to support the needs of such tools and private definitions moved to
2622  * private headers.
2623  */
2624 struct ip6_pkt_s {
2625 	uint_t		ipp_fields;		/* Which fields are valid */
2626 	uint_t		ipp_sticky_ignored;	/* sticky fields to ignore */
2627 	uint_t		ipp_ifindex;		/* pktinfo ifindex */
2628 	in6_addr_t	ipp_addr;		/* pktinfo src/dst addr */
2629 	uint_t		ipp_unicast_hops;	/* IPV6_UNICAST_HOPS */
2630 	uint_t		ipp_multicast_hops;	/* IPV6_MULTICAST_HOPS */
2631 	uint_t		ipp_hoplimit;		/* IPV6_HOPLIMIT */
2632 	uint_t		ipp_hopoptslen;
2633 	uint_t		ipp_rtdstoptslen;
2634 	uint_t		ipp_rthdrlen;
2635 	uint_t		ipp_dstoptslen;
2636 	uint_t		ipp_pathmtulen;
2637 	ip6_hbh_t	*ipp_hopopts;
2638 	ip6_dest_t	*ipp_rtdstopts;
2639 	ip6_rthdr_t	*ipp_rthdr;
2640 	ip6_dest_t	*ipp_dstopts;
2641 	struct ip6_mtuinfo *ipp_pathmtu;
2642 	in6_addr_t	ipp_nexthop;		/* Transmit only */
2643 	uint8_t		ipp_tclass;
2644 	int8_t		ipp_use_min_mtu;
2645 };
2646 typedef struct ip6_pkt_s ip6_pkt_t;
2647 
2648 extern void ip6_pkt_free(ip6_pkt_t *);	/* free storage inside ip6_pkt_t */
2649 
2650 /*
2651  * This structure is used to convey information from IP and the ULP.
2652  * Currently used for the IP_RECVSLLA and IP_RECVIF options. The
2653  * type of information field is set to IN_PKTINFO (i.e inbound pkt info)
2654  */
2655 typedef struct in_pktinfo {
2656 	uint32_t		in_pkt_ulp_type;	/* type of info sent */
2657 							/* to UDP */
2658 	uint32_t		in_pkt_flags;	/* what is sent up by IP */
2659 	uint32_t		in_pkt_ifindex;	/* inbound interface index */
2660 	struct sockaddr_dl	in_pkt_slla;	/* has source link layer addr */
2661 } in_pktinfo_t;
2662 
2663 /*
2664  * flags to tell UDP what IP is sending; in_pkt_flags
2665  */
2666 #define	IPF_RECVIF	0x01	/* inbound interface index */
2667 #define	IPF_RECVSLLA	0x02	/* source link layer address */
2668 
2669 /* ipp_fields values */
2670 #define	IPPF_IFINDEX	0x0001	/* Part of in6_pktinfo: ifindex */
2671 #define	IPPF_ADDR	0x0002	/* Part of in6_pktinfo: src/dst addr */
2672 #define	IPPF_SCOPE_ID	0x0004	/* Add xmit ip6i_t for sin6_scope_id */
2673 #define	IPPF_NO_CKSUM	0x0008	/* Add xmit ip6i_t for IP6I_NO_*_CKSUM */
2674 
2675 #define	IPPF_RAW_CKSUM	0x0010	/* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */
2676 #define	IPPF_HOPLIMIT	0x0020
2677 #define	IPPF_HOPOPTS	0x0040
2678 #define	IPPF_RTHDR	0x0080
2679 
2680 #define	IPPF_RTDSTOPTS	0x0100
2681 #define	IPPF_DSTOPTS	0x0200
2682 #define	IPPF_NEXTHOP	0x0400
2683 #define	IPPF_PATHMTU	0x0800
2684 
2685 #define	IPPF_TCLASS	0x1000
2686 #define	IPPF_DONTFRAG	0x2000
2687 #define	IPPF_USE_MIN_MTU	0x04000
2688 #define	IPPF_MULTICAST_HOPS	0x08000
2689 #define	IPPF_UNICAST_HOPS	0x10000
2690 
2691 #define	IPPF_HAS_IP6I \
2692 	(IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \
2693 	IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \
2694 	IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS)
2695 
2696 #define	TCP_PORTS_OFFSET	0
2697 #define	UDP_PORTS_OFFSET	0
2698 
2699 /*
2700  * lookups return the ill/ipif only if the flags are clear OR Iam writer.
2701  * ill / ipif lookup functions increment the refcnt on the ill / ipif only
2702  * after calling these macros. This ensures that the refcnt on the ipif or
2703  * ill will eventually drop down to zero.
2704  */
2705 #define	ILL_LOOKUP_FAILED	1	/* Used as error code */
2706 #define	IPIF_LOOKUP_FAILED	2	/* Used as error code */
2707 
2708 #define	ILL_CAN_LOOKUP(ill) 						\
2709 	(!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) ||	\
2710 	IAM_WRITER_ILL(ill))
2711 
2712 #define	ILL_CAN_WAIT(ill, q)	\
2713 	(((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED)))
2714 
2715 #define	ILL_CAN_LOOKUP_WALKER(ill)	\
2716 	(!((ill)->ill_state_flags & ILL_CONDEMNED))
2717 
2718 #define	IPIF_CAN_LOOKUP(ipif)						\
2719 	(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \
2720 	IAM_WRITER_IPIF(ipif))
2721 
2722 /*
2723  * If the parameter 'q' is NULL, the caller is not interested in wait and
2724  * restart of the operation if the ILL or IPIF cannot be looked up when it is
2725  * marked as 'CHANGING'. Typically a thread that tries to send out data  will
2726  * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and
2727  * in this case 'q' is NULL
2728  */
2729 #define	IPIF_CAN_WAIT(ipif, q)	\
2730 	(((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED)))
2731 
2732 #define	IPIF_CAN_LOOKUP_WALKER(ipif)					\
2733 	(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) ||		\
2734 	IAM_WRITER_IPIF(ipif))
2735 
2736 /*
2737  * These macros are used by critical set ioctls and failover ioctls to
2738  * mark the ipif appropriately before starting the operation and to clear the
2739  * marks after completing the operation.
2740  */
2741 #define	IPIF_UNMARK_MOVING(ipif)                                \
2742 	(ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING;
2743 
2744 #define	ILL_UNMARK_CHANGING(ill)                                \
2745 	(ill)->ill_state_flags &= ~ILL_CHANGING;
2746 
2747 /* Macros used to assert that this thread is a writer  */
2748 #define	IAM_WRITER_IPSQ(ipsq)	((ipsq)->ipsq_writer == curthread)
2749 #define	IAM_WRITER_ILL(ill)					\
2750 	((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread)
2751 #define	IAM_WRITER_IPIF(ipif)					\
2752 	((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread)
2753 
2754 /*
2755  * Grab ill locks in the proper order. The order is highest addressed
2756  * ill is locked first.
2757  */
2758 #define	GRAB_ILL_LOCKS(ill_1, ill_2)				\
2759 {								\
2760 	if ((ill_1) > (ill_2)) {				\
2761 		if (ill_1 != NULL)				\
2762 			mutex_enter(&(ill_1)->ill_lock);	\
2763 		if (ill_2 != NULL)				\
2764 			mutex_enter(&(ill_2)->ill_lock);	\
2765 	} else {						\
2766 		if (ill_2 != NULL)				\
2767 			mutex_enter(&(ill_2)->ill_lock);	\
2768 		if (ill_1 != NULL && ill_1 != ill_2)		\
2769 			mutex_enter(&(ill_1)->ill_lock);	\
2770 	}							\
2771 }
2772 
2773 #define	RELEASE_ILL_LOCKS(ill_1, ill_2)		\
2774 {						\
2775 	if (ill_1 != NULL)			\
2776 		mutex_exit(&(ill_1)->ill_lock);	\
2777 	if (ill_2 != NULL && ill_2 != ill_1)	\
2778 		mutex_exit(&(ill_2)->ill_lock);	\
2779 }
2780 
2781 /* Get the other protocol instance ill */
2782 #define	ILL_OTHER(ill)						\
2783 	((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 :	\
2784 	    (ill)->ill_phyint->phyint_illv6)
2785 
2786 #define	MATCH_V4_ONLY	0x1
2787 #define	MATCH_V6_ONLY	0x2
2788 #define	MATCH_ILL_ONLY	0x4
2789 
2790 /* ioctl command info: Ioctl properties extracted and stored in here */
2791 typedef struct cmd_info_s
2792 {
2793 	char    ci_groupname[LIFNAMSIZ + 1];	/* SIOCSLIFGROUPNAME */
2794 	ipif_t  *ci_ipif;	/* ipif associated with [l]ifreq ioctl's */
2795 	sin_t	*ci_sin;	/* the sin struct passed down */
2796 	sin6_t	*ci_sin6;	/* the sin6_t struct passed down */
2797 	struct lifreq *ci_lifr;	/* the lifreq struct passed down */
2798 } cmd_info_t;
2799 
2800 extern krwlock_t ill_g_lock;
2801 extern kmutex_t ip_addr_avail_lock;
2802 extern ipsq_t	*ipsq_g_head;
2803 
2804 extern ill_t	*ip_timer_ill;		/* ILL for IRE expiration timer. */
2805 extern timeout_id_t ip_ire_expire_id;	/* IRE expiration timeout id. */
2806 extern timeout_id_t ip_ire_reclaim_id;	/* IRE recalaim timeout id. */
2807 
2808 extern kmutex_t	ip_mi_lock;
2809 extern krwlock_t ip_g_nd_lock;		/* For adding/removing nd variables */
2810 extern kmutex_t ip_trash_timer_lock;	/* Protects ip_ire_expire_id */
2811 
2812 extern kmutex_t igmp_timer_lock;	/* Protects the igmp timer */
2813 extern kmutex_t mld_timer_lock;		/* Protects the mld timer */
2814 
2815 extern krwlock_t ill_g_usesrc_lock;	/* Protects usesrc related fields */
2816 
2817 extern struct kmem_cache *ire_cache;
2818 
2819 extern uint_t	ip_redirect_cnt;	/* Num of redirect routes in ftable */
2820 
2821 extern ipaddr_t	ip_g_all_ones;
2822 extern caddr_t	ip_g_nd;		/* Named Dispatch List Head */
2823 
2824 extern uint_t	ip_loopback_mtu;
2825 
2826 extern ipparam_t	*ip_param_arr;
2827 
2828 extern int ip_g_forward;
2829 extern int ipv6_forward;
2830 extern vmem_t *ip_minor_arena;
2831 
2832 #define	ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value
2833 #define	ip_g_resp_to_echo_bcast		ip_param_arr[1].ip_param_value
2834 #define	ip_g_resp_to_echo_mcast		ip_param_arr[2].ip_param_value
2835 #define	ip_g_resp_to_timestamp		ip_param_arr[3].ip_param_value
2836 #define	ip_g_resp_to_timestamp_bcast	ip_param_arr[4].ip_param_value
2837 #define	ip_g_send_redirects		ip_param_arr[5].ip_param_value
2838 #define	ip_g_forward_directed_bcast	ip_param_arr[6].ip_param_value
2839 #define	ip_debug			ip_param_arr[7].ip_param_value
2840 #define	ip_mrtdebug			ip_param_arr[8].ip_param_value
2841 #define	ip_timer_interval		ip_param_arr[9].ip_param_value
2842 #define	ip_ire_arp_interval		ip_param_arr[10].ip_param_value
2843 #define	ip_ire_redir_interval		ip_param_arr[11].ip_param_value
2844 #define	ip_def_ttl			ip_param_arr[12].ip_param_value
2845 #define	ip_forward_src_routed		ip_param_arr[13].ip_param_value
2846 #define	ip_wroff_extra			ip_param_arr[14].ip_param_value
2847 #define	ip_ire_pathmtu_interval		ip_param_arr[15].ip_param_value
2848 #define	ip_icmp_return			ip_param_arr[16].ip_param_value
2849 #define	ip_path_mtu_discovery		ip_param_arr[17].ip_param_value
2850 #define	ip_ignore_delete_time		ip_param_arr[18].ip_param_value
2851 #define	ip_ignore_redirect		ip_param_arr[19].ip_param_value
2852 #define	ip_output_queue			ip_param_arr[20].ip_param_value
2853 #define	ip_broadcast_ttl		ip_param_arr[21].ip_param_value
2854 #define	ip_icmp_err_interval		ip_param_arr[22].ip_param_value
2855 #define	ip_icmp_err_burst		ip_param_arr[23].ip_param_value
2856 #define	ip_reass_queue_bytes		ip_param_arr[24].ip_param_value
2857 #define	ip_strict_dst_multihoming	ip_param_arr[25].ip_param_value
2858 #define	ip_addrs_per_if			ip_param_arr[26].ip_param_value
2859 #define	ipsec_override_persocket_policy	ip_param_arr[27].ip_param_value
2860 #define	icmp_accept_clear_messages	ip_param_arr[28].ip_param_value
2861 #define	igmp_accept_clear_messages	ip_param_arr[29].ip_param_value
2862 
2863 /* IPv6 configuration knobs */
2864 #define	delay_first_probe_time		ip_param_arr[30].ip_param_value
2865 #define	max_unicast_solicit		ip_param_arr[31].ip_param_value
2866 #define	ipv6_def_hops			ip_param_arr[32].ip_param_value
2867 #define	ipv6_icmp_return		ip_param_arr[33].ip_param_value
2868 #define	ipv6_forward_src_routed		ip_param_arr[34].ip_param_value
2869 #define	ipv6_resp_echo_mcast		ip_param_arr[35].ip_param_value
2870 #define	ipv6_send_redirects		ip_param_arr[36].ip_param_value
2871 #define	ipv6_ignore_redirect		ip_param_arr[37].ip_param_value
2872 #define	ipv6_strict_dst_multihoming	ip_param_arr[38].ip_param_value
2873 #define	ip_ire_reclaim_fraction		ip_param_arr[39].ip_param_value
2874 #define	ipsec_policy_log_interval	ip_param_arr[40].ip_param_value
2875 #define	pim_accept_clear_messages	ip_param_arr[41].ip_param_value
2876 #define	ip_ndp_unsolicit_interval	ip_param_arr[42].ip_param_value
2877 #define	ip_ndp_unsolicit_count		ip_param_arr[43].ip_param_value
2878 #define	ipv6_ignore_home_address_opt	ip_param_arr[44].ip_param_value
2879 #define	ip_policy_mask			ip_param_arr[45].ip_param_value
2880 #define	ip_multirt_resolution_interval	ip_param_arr[46].ip_param_value
2881 #define	ip_multirt_ttl			ip_param_arr[47].ip_param_value
2882 #define	ip_multidata_outbound		ip_param_arr[48].ip_param_value
2883 #define	ip_ndp_defense_interval		ip_param_arr[49].ip_param_value
2884 #define	ip_max_temp_idle		ip_param_arr[50].ip_param_value
2885 #define	ip_max_temp_defend		ip_param_arr[51].ip_param_value
2886 #define	ip_max_defend			ip_param_arr[52].ip_param_value
2887 #define	ip_defend_interval		ip_param_arr[53].ip_param_value
2888 #define	ip_dup_recovery			ip_param_arr[54].ip_param_value
2889 #define	ip_restrict_interzone_loopback	ip_param_arr[55].ip_param_value
2890 #ifdef DEBUG
2891 #define	ipv6_drop_inbound_icmpv6	ip_param_arr[56].ip_param_value
2892 #else
2893 #define	ipv6_drop_inbound_icmpv6	0
2894 #endif
2895 
2896 extern hrtime_t	ipsec_policy_failure_last;
2897 
2898 extern int	dohwcksum;	/* use h/w cksum if supported by the h/w */
2899 #ifdef ZC_TEST
2900 extern int	noswcksum;
2901 #endif
2902 
2903 extern char	ipif_loopback_name[];
2904 
2905 extern nv_t	*ire_nv_tbl;
2906 
2907 extern time_t	ip_g_frag_timeout;
2908 extern clock_t	ip_g_frag_timo_ms;
2909 
2910 extern mib2_ip_t	ip_mib;	/* For tcpInErrs and udpNoPorts */
2911 
2912 extern struct module_info ip_mod_info;
2913 
2914 extern timeout_id_t	igmp_slowtimeout_id;
2915 extern timeout_id_t	mld_slowtimeout_id;
2916 
2917 extern uint_t	loopback_packets;
2918 
2919 /*
2920  * Network byte order macros
2921  */
2922 #ifdef	_BIG_ENDIAN
2923 #define	N_IN_CLASSD_NET		IN_CLASSD_NET
2924 #define	N_INADDR_UNSPEC_GROUP	INADDR_UNSPEC_GROUP
2925 #else /* _BIG_ENDIAN */
2926 #define	N_IN_CLASSD_NET		(ipaddr_t)0x000000f0U
2927 #define	N_INADDR_UNSPEC_GROUP	(ipaddr_t)0x000000e0U
2928 #endif /* _BIG_ENDIAN */
2929 #define	CLASSD(addr)	(((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP)
2930 
2931 #define	IP_LOOPBACK_ADDR(addr)			\
2932 	((ntohl(addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
2933 
2934 #ifdef DEBUG
2935 /* IPsec HW acceleration debugging support */
2936 
2937 #define	IPSECHW_CAPAB		0x0001	/* capability negotiation */
2938 #define	IPSECHW_SADB		0x0002	/* SADB exchange */
2939 #define	IPSECHW_PKT		0x0004	/* general packet flow */
2940 #define	IPSECHW_PKTIN		0x0008	/* driver in pkt processing details */
2941 #define	IPSECHW_PKTOUT		0x0010	/* driver out pkt processing details */
2942 
2943 #define	IPSECHW_DEBUG(f, x)	if (ipsechw_debug & (f)) { (void) printf x; }
2944 #define	IPSECHW_CALL(f, r, x)	if (ipsechw_debug & (f)) { (void) r x; }
2945 
2946 extern uint32_t ipsechw_debug;
2947 #else
2948 #define	IPSECHW_DEBUG(f, x)	{}
2949 #define	IPSECHW_CALL(f, r, x)	{}
2950 #endif
2951 
2952 #ifdef IP_DEBUG
2953 #include <sys/debug.h>
2954 #include <sys/promif.h>
2955 
2956 #define	ip0dbg(a)	printf a
2957 #define	ip1dbg(a)	if (ip_debug > 2) printf a
2958 #define	ip2dbg(a)	if (ip_debug > 3) printf a
2959 #define	ip3dbg(a)	if (ip_debug > 4) printf a
2960 #else
2961 #define	ip0dbg(a)	/* */
2962 #define	ip1dbg(a)	/* */
2963 #define	ip2dbg(a)	/* */
2964 #define	ip3dbg(a)	/* */
2965 #endif	/* IP_DEBUG */
2966 
2967 /* Default MAC-layer address string length for mac_colon_addr */
2968 #define	MAC_STR_LEN	128
2969 
2970 struct	ipsec_out_s;
2971 
2972 struct	mac_header_info_s;
2973 
2974 extern const char *dlpi_prim_str(int);
2975 extern const char *dlpi_err_str(int);
2976 extern void	ill_frag_timer(void *);
2977 extern ill_t	*ill_first(int, int, ill_walk_context_t *);
2978 extern ill_t	*ill_next(ill_walk_context_t *, ill_t *);
2979 extern void	ill_frag_timer_start(ill_t *);
2980 extern mblk_t	*ip_carve_mp(mblk_t **, ssize_t);
2981 extern mblk_t	*ip_dlpi_alloc(size_t, t_uscalar_t);
2982 extern char	*ip_dot_addr(ipaddr_t, char *);
2983 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t);
2984 extern void	ip_lwput(queue_t *, mblk_t *);
2985 extern boolean_t icmp_err_rate_limit(void);
2986 extern void	icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t);
2987 extern void	icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t);
2988 extern mblk_t	*ip_add_info(mblk_t *, ill_t *, uint_t);
2989 extern mblk_t	*ip_bind_v4(queue_t *, mblk_t *, conn_t *);
2990 extern int	ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t,
2991     ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t,
2992     boolean_t);
2993 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *);
2994 extern int	ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t,
2995     boolean_t, boolean_t, boolean_t);
2996 extern uint_t	ip_cksum(mblk_t *, int, uint32_t);
2997 extern int	ip_close(queue_t *, int);
2998 extern uint16_t	ip_csum_hdr(ipha_t *);
2999 extern void	ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t);
3000 extern void	ip_ire_fini(void);
3001 extern void	ip_ire_init(void);
3002 extern int	ip_open(queue_t *, dev_t *, int, int, cred_t *);
3003 extern int	ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *,
3004     size_t);
3005 extern int	ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t,
3006     int, int, mblk_t *);
3007 extern void	ip_rput(queue_t *, mblk_t *);
3008 extern void	ip_input(ill_t *, ill_rx_ring_t *, mblk_t *,
3009     struct mac_header_info_s *);
3010 extern void	ip_rput_dlpi(queue_t *, mblk_t *);
3011 extern void	ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *);
3012 extern void	ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *);
3013 
3014 extern int	ip_snmpmod_close(queue_t *);
3015 extern void	ip_snmpmod_wput(queue_t *, mblk_t *);
3016 extern void	ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *);
3017 extern void	ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *);
3018 extern void	ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *);
3019 extern void	ip_setqinfo(queue_t *, minor_t, boolean_t);
3020 extern void	ip_trash_ire_reclaim(void *);
3021 extern void	ip_trash_timer_expire(void *);
3022 extern void	ip_wput(queue_t *, mblk_t *);
3023 extern void	ip_output(void *, mblk_t *, void *, int);
3024 extern void	ip_wput_md(queue_t *, mblk_t *, conn_t *);
3025 
3026 extern void	ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int,
3027 		    zoneid_t);
3028 extern void	ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *,
3029 		    int, zoneid_t);
3030 extern void	ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t);
3031 extern void	ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *);
3032 extern void	ip_wsrv(queue_t *);
3033 extern char	*ip_nv_lookup(nv_t *, int);
3034 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
3035 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
3036 extern ipaddr_t ip_massage_options(ipha_t *);
3037 extern ipaddr_t ip_net_mask(ipaddr_t);
3038 extern void	ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *,
3039 		    zoneid_t);
3040 extern ipxmit_state_t	ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *,
3041     boolean_t);
3042 extern int	ip_hdr_complete(ipha_t *, zoneid_t);
3043 
3044 extern struct qinit rinit_ipv6;
3045 extern struct qinit winit_ipv6;
3046 extern struct qinit rinit_tcp;
3047 extern struct qinit rinit_tcp6;
3048 extern struct qinit winit_tcp;
3049 extern struct qinit rinit_acceptor_tcp;
3050 extern struct qinit winit_acceptor_tcp;
3051 
3052 extern void	conn_drain_insert(conn_t *connp);
3053 extern	int	conn_ipsec_length(conn_t *connp);
3054 extern void	ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *,
3055     ire_t *);
3056 extern ipaddr_t	ip_get_dst(ipha_t *);
3057 extern int	ipsec_out_extra_length(mblk_t *);
3058 extern int	ipsec_in_extra_length(mblk_t *);
3059 extern mblk_t	*ipsec_in_alloc();
3060 extern boolean_t ipsec_in_is_secure(mblk_t *);
3061 extern void	ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t);
3062 extern void	ipsec_out_to_in(mblk_t *);
3063 extern int	ill_forward_set(queue_t *, mblk_t *, boolean_t, caddr_t);
3064 extern void	ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *);
3065 
3066 extern void	ire_cleanup(ire_t *);
3067 extern void	ire_inactive(ire_t *);
3068 extern boolean_t irb_inactive(irb_t *);
3069 extern ire_t	*ire_unlink(irb_t *);
3070 #ifdef IRE_DEBUG
3071 extern	void	ire_trace_ref(ire_t *ire);
3072 extern	void	ire_untrace_ref(ire_t *ire);
3073 extern	void	ire_thread_exit(ire_t *ire, caddr_t);
3074 #endif
3075 #ifdef ILL_DEBUG
3076 extern	void	ill_trace_cleanup(ill_t *);
3077 extern	void	ipif_trace_cleanup(ipif_t *);
3078 #endif
3079 
3080 extern int	ip_srcid_insert(const in6_addr_t *, zoneid_t);
3081 extern int	ip_srcid_remove(const in6_addr_t *, zoneid_t);
3082 extern void	ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t);
3083 extern uint_t	ip_srcid_find_addr(const in6_addr_t *, zoneid_t);
3084 extern int	ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *);
3085 
3086 extern uint8_t	ipoptp_next(ipoptp_t *);
3087 extern uint8_t	ipoptp_first(ipoptp_t *, ipha_t *);
3088 extern int	ip_opt_get_user(const ipha_t *, uchar_t *);
3089 extern ill_t	*ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t);
3090 extern ire_t	*conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **);
3091 extern int	ipsec_req_from_conn(conn_t *, ipsec_req_t *, int);
3092 extern int	ip_snmp_get(queue_t *q, mblk_t *mctl);
3093 extern int	ip_snmp_set(queue_t *q, int, int, uchar_t *, int);
3094 extern void	ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3095 extern void	ip_quiesce_conn(conn_t *);
3096 extern  void    ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3097 extern void	ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *);
3098 extern void	ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipif_t *,
3099     ipsq_t *);
3100 
3101 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *,
3102     uint_t);
3103 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *,
3104     uint_t);
3105 extern void	ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t);
3106 
3107 extern boolean_t	ipsq_pending_mp_cleanup(ill_t *, conn_t *);
3108 extern void	conn_ioctl_cleanup(conn_t *);
3109 extern ill_t	*conn_get_held_ill(conn_t *, ill_t **, int *);
3110 extern ill_t	*ip_newroute_get_dst_ill(ill_t *);
3111 
3112 struct multidata_s;
3113 struct pdesc_s;
3114 
3115 extern mblk_t	*ip_mdinfo_alloc(ill_mdt_capab_t *);
3116 extern mblk_t	*ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *);
3117 extern uint_t	ip_md_cksum(struct pdesc_s *, int, uint_t);
3118 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *,
3119 			const mblk_t *);
3120 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *,
3121 			uint32_t, uint32_t, uint32_t, uint32_t);
3122 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *,
3123 			uint_t);
3124 extern mblk_t	*ip_unbind(queue_t *, mblk_t *);
3125 
3126 extern void tnet_init(void);
3127 extern void tnet_fini(void);
3128 
3129 /* Hooks for CGTP (multirt routes) filtering module */
3130 #define	CGTP_FILTER_REV_1	1
3131 #define	CGTP_FILTER_REV_2	2
3132 #define	CGTP_FILTER_REV		CGTP_FILTER_REV_2
3133 
3134 /* cfo_filter, cfo_filter_fp, cfo_filter_v6 hooks return values */
3135 #define	CGTP_IP_PKT_NOT_CGTP	0
3136 #define	CGTP_IP_PKT_PREMIUM	1
3137 #define	CGTP_IP_PKT_DUPLICATE	2
3138 
3139 typedef struct cgtp_filter_ops {
3140 	int	cfo_filter_rev;
3141 	int	(*cfo_change_state)(int);
3142 	int	(*cfo_add_dest_v4)(ipaddr_t, ipaddr_t, ipaddr_t, ipaddr_t);
3143 	int	(*cfo_del_dest_v4)(ipaddr_t, ipaddr_t);
3144 	int	(*cfo_add_dest_v6)(in6_addr_t *, in6_addr_t *, in6_addr_t *,
3145 		    in6_addr_t *);
3146 	int	(*cfo_del_dest_v6)(in6_addr_t *, in6_addr_t *);
3147 	int	(*cfo_filter)(queue_t *, mblk_t *);
3148 	int	(*cfo_filter_fp)(queue_t *, mblk_t *);
3149 	int	(*cfo_filter_v6)(queue_t *, ip6_t *, ip6_frag_t *);
3150 } cgtp_filter_ops_t;
3151 
3152 #define	CGTP_MCAST_SUCCESS	1
3153 
3154 extern cgtp_filter_ops_t *ip_cgtp_filter_ops;
3155 extern boolean_t ip_cgtp_filter;
3156 
3157 extern int	ip_cgtp_filter_supported(void);
3158 extern int	ip_cgtp_filter_register(cgtp_filter_ops_t *);
3159 
3160 /* Flags for ire_multirt_lookup() */
3161 
3162 #define	MULTIRT_USESTAMP	0x0001
3163 #define	MULTIRT_SETSTAMP	0x0002
3164 #define	MULTIRT_CACHEGW		0x0004
3165 
3166 /* Debug stuff for multirt route resolution. */
3167 #if defined(DEBUG) && !defined(__lint)
3168 /* Our "don't send, rather drop" flag. */
3169 #define	MULTIRT_DEBUG_FLAG	0x8000
3170 
3171 #define	MULTIRT_TRACE(x)	ip2dbg(x)
3172 
3173 #define	MULTIRT_DEBUG_TAG(mblk)	\
3174 	do { \
3175 		ASSERT(mblk != NULL); \
3176 		MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \
3177 		__FILE__, __LINE__, \
3178 		(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
3179 		(mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \
3180 	} while (0)
3181 
3182 #define	MULTIRT_DEBUG_UNTAG(mblk) \
3183 	do { \
3184 		ASSERT(mblk != NULL); \
3185 		MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \
3186 		__FILE__, __LINE__, \
3187 		(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
3188 		(mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \
3189 	} while (0)
3190 
3191 #define	MULTIRT_DEBUG_TAGGED(mblk) \
3192 	(((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE)
3193 #else
3194 #define	MULTIRT_DEBUG_TAG(mblk)		ASSERT(mblk != NULL)
3195 #define	MULTIRT_DEBUG_UNTAG(mblk)	ASSERT(mblk != NULL)
3196 #define	MULTIRT_DEBUG_TAGGED(mblk)	B_FALSE
3197 #endif
3198 
3199 /*
3200  * Per-ILL Multidata Transmit capabilities.
3201  */
3202 struct ill_mdt_capab_s {
3203 	uint_t ill_mdt_version;  /* interface version */
3204 	uint_t ill_mdt_on;	 /* on/off switch for MDT on this ILL */
3205 	uint_t ill_mdt_hdr_head; /* leading header fragment extra space */
3206 	uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */
3207 	uint_t ill_mdt_max_pld;	 /* maximum payload buffers per Multidata */
3208 	uint_t ill_mdt_span_limit; /* maximum payload span per packet */
3209 };
3210 
3211 struct ill_hcksum_capab_s {
3212 	uint_t	ill_hcksum_version;	/* interface version */
3213 	uint_t	ill_hcksum_txflags;	/* capabilities on transmit */
3214 };
3215 
3216 struct ill_zerocopy_capab_s {
3217 	uint_t	ill_zerocopy_version;	/* interface version */
3218 	uint_t	ill_zerocopy_flags;	/* capabilities */
3219 };
3220 
3221 /* Possible ill_states */
3222 #define	ILL_RING_INPROC		3	/* Being assigned to squeue */
3223 #define	ILL_RING_INUSE		2	/* Already Assigned to Rx Ring */
3224 #define	ILL_RING_BEING_FREED	1	/* Being Unassigned */
3225 #define	ILL_RING_FREE		0	/* Available to be assigned to Ring */
3226 
3227 #define	ILL_MAX_RINGS		256	/* Max num of rx rings we can manage */
3228 #define	ILL_POLLING		0x01	/* Polling in use */
3229 
3230 /*
3231  * These functions pointer types are exported by the mac/dls layer.
3232  * we need to duplicate the definitions here because we cannot
3233  * include mac/dls header files here.
3234  */
3235 typedef void	(*ip_mac_blank_t)(void *, time_t, uint_t);
3236 typedef void	(*ip_dld_tx_t)(void *, mblk_t *);
3237 
3238 typedef void	(*ip_dls_chg_soft_ring_t)(void *, int);
3239 typedef void	(*ip_dls_bind_t)(void *, processorid_t);
3240 typedef void	(*ip_dls_unbind_t)(void *);
3241 
3242 struct ill_rx_ring {
3243 	ip_mac_blank_t		rr_blank; /* Driver interrupt blanking func */
3244 	void			*rr_handle; /* Handle for Rx ring */
3245 	squeue_t		*rr_sqp; /* Squeue the ring is bound to */
3246 	ill_t			*rr_ill; /* back pointer to ill */
3247 	clock_t			rr_poll_time; /* Last lbolt polling was used */
3248 	uint32_t		rr_poll_state; /* polling state flags */
3249 	uint32_t		rr_max_blank_time; /* Max interrupt blank */
3250 	uint32_t		rr_min_blank_time; /* Min interrupt blank */
3251 	uint32_t		rr_max_pkt_cnt; /* Max pkts before interrupt */
3252 	uint32_t		rr_min_pkt_cnt; /* Mix pkts before interrupt */
3253 	uint32_t		rr_normal_blank_time; /* Normal intr freq */
3254 	uint32_t		rr_normal_pkt_cnt; /* Normal intr pkt cnt */
3255 	uint32_t		rr_ring_state; /* State of this ring */
3256 };
3257 
3258 struct ill_dls_capab_s {
3259 	ip_dld_tx_t		ill_tx;		/* Driver Tx routine */
3260 	void			*ill_tx_handle;	/* Driver Tx handle */
3261 	ip_dls_chg_soft_ring_t	ill_dls_change_status;
3262 						/* change soft ring fanout */
3263 	ip_dls_bind_t		ill_dls_bind;	/* to add CPU affinity */
3264 	ip_dls_unbind_t		ill_dls_unbind;	/* remove CPU affinity */
3265 	ill_rx_ring_t		*ill_ring_tbl; /* Ring to Sqp mapping table */
3266 	uint_t			ill_dls_soft_ring_cnt; /* Number of soft ring */
3267 	conn_t			*ill_unbind_conn; /* Conn used during unplumb */
3268 };
3269 
3270 /*
3271  * This message is sent by an upper-layer protocol to tell IP that it knows all
3272  * about labels and will construct them itself.  IP takes the slow path and
3273  * recomputes the label on every packet when this isn't true.
3274  */
3275 #define	IP_ULP_OUT_LABELED		(('O' << 8) + 'L')
3276 typedef struct out_labeled_s {
3277 	uint32_t	out_labeled_type;	/* OUT_LABELED */
3278 	queue_t		*out_qnext;		/* intermediate detection */
3279 } out_labeled_t;
3280 
3281 /*
3282  * IP squeues exports
3283  */
3284 extern int 		ip_squeue_profile;
3285 extern int 		ip_squeue_bind;
3286 extern boolean_t 	ip_squeue_fanout;
3287 extern boolean_t	ip_squeue_soft_ring;
3288 extern uint_t		ip_threads_per_cpu;
3289 extern uint_t		ip_squeues_per_cpu;
3290 extern uint_t		ip_soft_rings_cnt;
3291 
3292 typedef struct squeue_set_s {
3293 	kmutex_t	sqs_lock;
3294 	struct squeue_s	**sqs_list;
3295 	int		sqs_size;
3296 	int		sqs_max_size;
3297 	processorid_t	sqs_bind;
3298 } squeue_set_t;
3299 
3300 #define	IP_SQUEUE_GET(hint) 						\
3301 	((!ip_squeue_fanout) ?	(CPU->cpu_squeue_set->sqs_list[0]) :	\
3302 		ip_squeue_random(hint))
3303 
3304 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t);
3305 
3306 extern void ip_squeue_init(void (*)(squeue_t *));
3307 extern squeue_t	*ip_squeue_random(uint_t);
3308 extern squeue_t *ip_squeue_get(ill_rx_ring_t *);
3309 extern void ip_squeue_get_pkts(squeue_t *);
3310 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
3311 extern int ip_squeue_bind_get(queue_t *, mblk_t *, caddr_t, cred_t *);
3312 extern void ip_squeue_clean(void *, mblk_t *, void *);
3313 extern void ip_resume_tcp_bind(void *, mblk_t *, void *);
3314 extern void	ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *,
3315     mblk_t *, struct mac_header_info_s *);
3316 
3317 extern void tcp_wput(queue_t *, mblk_t *);
3318 
3319 extern int	ip_fill_mtuinfo(struct in6_addr *, in_port_t,
3320 	struct ip6_mtuinfo *);
3321 extern	ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *);
3322 
3323 typedef void    (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *);
3324 
3325 /*
3326  * Squeue tags. Tags only need to be unique when the callback function is the
3327  * same to distinguish between different calls, but we use unique tags for
3328  * convenience anyway.
3329  */
3330 #define	SQTAG_IP_INPUT			1
3331 #define	SQTAG_TCP_INPUT_ICMP_ERR	2
3332 #define	SQTAG_TCP6_INPUT_ICMP_ERR	3
3333 #define	SQTAG_IP_TCP_INPUT		4
3334 #define	SQTAG_IP6_TCP_INPUT		5
3335 #define	SQTAG_IP_TCP_CLOSE		6
3336 #define	SQTAG_TCP_OUTPUT		7
3337 #define	SQTAG_TCP_TIMER			8
3338 #define	SQTAG_TCP_TIMEWAIT		9
3339 #define	SQTAG_TCP_ACCEPT_FINISH		10
3340 #define	SQTAG_TCP_ACCEPT_FINISH_Q0	11
3341 #define	SQTAG_TCP_ACCEPT_PENDING	12
3342 #define	SQTAG_TCP_LISTEN_DISCON		13
3343 #define	SQTAG_TCP_CONN_REQ		14
3344 #define	SQTAG_TCP_EAGER_BLOWOFF		15
3345 #define	SQTAG_TCP_EAGER_CLEANUP		16
3346 #define	SQTAG_TCP_EAGER_CLEANUP_Q0	17
3347 #define	SQTAG_TCP_CONN_IND		18
3348 #define	SQTAG_TCP_RSRV			19
3349 #define	SQTAG_TCP_ABORT_BUCKET		20
3350 #define	SQTAG_TCP_REINPUT		21
3351 #define	SQTAG_TCP_REINPUT_EAGER		22
3352 #define	SQTAG_TCP_INPUT_MCTL		23
3353 #define	SQTAG_TCP_RPUTOTHER		24
3354 #define	SQTAG_IP_PROTO_AGAIN		25
3355 #define	SQTAG_IP_FANOUT_TCP		26
3356 #define	SQTAG_IPSQ_CLEAN_RING		27
3357 #define	SQTAG_TCP_WPUT_OTHER		28
3358 #define	SQTAG_TCP_CONN_REQ_UNBOUND	29
3359 #define	SQTAG_TCP_SEND_PENDING		30
3360 #define	SQTAG_BIND_RETRY		31
3361 #define	SQTAG_UDP_FANOUT		32
3362 #define	SQTAG_UDP_INPUT			33
3363 #define	SQTAG_UDP_WPUT			34
3364 #define	SQTAG_UDP_OUTPUT		35
3365 #define	SQTAG_TCP_KSSL_INPUT		36
3366 
3367 #endif	/* _KERNEL */
3368 
3369 #ifdef	__cplusplus
3370 }
3371 #endif
3372 
3373 #endif	/* _INET_IP_H */
3374