xref: /illumos-gate/usr/src/uts/common/inet/ip.h (revision 8521e5e6630b57b9883c3979cd5589e53f09e044)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #ifndef	_INET_IP_H
29 #define	_INET_IP_H
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #ifdef	__cplusplus
34 extern "C" {
35 #endif
36 
37 #include <sys/isa_defs.h>
38 #include <sys/types.h>
39 #include <inet/mib2.h>
40 #include <inet/nd.h>
41 #include <sys/atomic.h>
42 #include <net/if_dl.h>
43 #include <net/if.h>
44 #include <netinet/ip.h>
45 #include <netinet/igmp.h>
46 #include <sys/neti.h>
47 #include <sys/hook.h>
48 #include <sys/hook_event.h>
49 #include <sys/hook_impl.h>
50 #include <inet/ip_stack.h>
51 
52 #ifdef _KERNEL
53 #include <netinet/ip6.h>
54 #include <sys/avl.h>
55 #include <sys/vmem.h>
56 #include <sys/squeue.h>
57 #include <net/route.h>
58 #include <sys/systm.h>
59 #include <sys/multidata.h>
60 #include <net/radix.h>
61 
62 #ifdef DEBUG
63 #define	ILL_DEBUG
64 #define	IRE_DEBUG
65 #define	NCE_DEBUG
66 #define	CONN_DEBUG
67 #endif
68 
69 #define	IP_DEBUG
70 /*
71  * The mt-streams(9F) flags for the IP module; put here so that other
72  * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set
73  * of flags.
74  */
75 #define	IP_DEVMTFLAGS D_MP
76 #endif	/* _KERNEL */
77 
78 #define	IP_MOD_NAME	"ip"
79 #define	IP_DEV_NAME	"/dev/ip"
80 #define	IP6_DEV_NAME	"/dev/ip6"
81 
82 #define	UDP_MOD_NAME	"udp"
83 #define	UDP_DEV_NAME	"/dev/udp"
84 #define	UDP6_DEV_NAME	"/dev/udp6"
85 
86 #define	TCP_MOD_NAME	"tcp"
87 #define	TCP_DEV_NAME	"/dev/tcp"
88 #define	TCP6_DEV_NAME	"/dev/tcp6"
89 
90 #define	SCTP_MOD_NAME	"sctp"
91 
92 /* Minor numbers */
93 #define	IPV4_MINOR	0
94 #define	IPV6_MINOR	1
95 #define	TCP_MINOR	2
96 #define	TCP_MINOR6	3
97 
98 #ifndef	_IPADDR_T
99 #define	_IPADDR_T
100 typedef uint32_t ipaddr_t;
101 #endif
102 
103 /* Number of bits in an address */
104 #define	IP_ABITS		32
105 #define	IPV6_ABITS		128
106 
107 #define	IP_HOST_MASK		(ipaddr_t)0xffffffffU
108 
109 #define	IP_CSUM(mp, off, sum)		(~ip_cksum(mp, off, sum) & 0xFFFF)
110 #define	IP_CSUM_PARTIAL(mp, off, sum)	ip_cksum(mp, off, sum)
111 #define	IP_BCSUM_PARTIAL(bp, len, sum)	bcksum(bp, len, sum)
112 #define	IP_MD_CSUM(pd, off, sum)	(~ip_md_cksum(pd, off, sum) & 0xffff)
113 #define	IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum)
114 
115 /*
116  * Flag to IP write side to indicate that the appln has sent in a pre-built
117  * IP header. Stored in ipha_ident (which is otherwise zero).
118  */
119 #define	IP_HDR_INCLUDED			0xFFFF
120 
121 #define	ILL_FRAG_HASH_TBL_COUNT	((unsigned int)64)
122 #define	ILL_FRAG_HASH_TBL_SIZE	(ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t))
123 
124 #define	IPV4_ADDR_LEN			4
125 #define	IP_ADDR_LEN			IPV4_ADDR_LEN
126 #define	IP_ARP_PROTO_TYPE		0x0800
127 
128 #define	IPV4_VERSION			4
129 #define	IP_VERSION			IPV4_VERSION
130 #define	IP_SIMPLE_HDR_LENGTH_IN_WORDS	5
131 #define	IP_SIMPLE_HDR_LENGTH		20
132 #define	IP_MAX_HDR_LENGTH		60
133 
134 #define	IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH)
135 
136 #define	IP_MIN_MTU			(IP_MAX_HDR_LENGTH + 8)	/* 68 bytes */
137 
138 /*
139  * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the
140  * 2 files should be cleaned up to remove all redundant definitions.
141  */
142 #define	IP_MAXPACKET			65535
143 #define	IP_SIMPLE_HDR_VERSION \
144 	((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS)
145 
146 #define	UDPH_SIZE			8
147 
148 /* Leave room for ip_newroute to tack on the src and target addresses */
149 #define	OK_RESOLVER_MP(mp)						\
150 	((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN))
151 
152 /*
153  * Constants and type definitions to support IP IOCTL commands
154  */
155 #define	IP_IOCTL			(('i'<<8)|'p')
156 #define	IP_IOC_IRE_DELETE		4
157 #define	IP_IOC_IRE_DELETE_NO_REPLY	5
158 #define	IP_IOC_IRE_ADVISE_NO_REPLY	6
159 #define	IP_IOC_RTS_REQUEST		7
160 
161 /* Common definitions used by IP IOCTL data structures */
162 typedef struct ipllcmd_s {
163 	uint_t	ipllc_cmd;
164 	uint_t	ipllc_name_offset;
165 	uint_t	ipllc_name_length;
166 } ipllc_t;
167 
168 /* IP IRE Change Command Structure. */
169 typedef struct ipic_s {
170 	ipllc_t	ipic_ipllc;
171 	uint_t	ipic_ire_type;
172 	uint_t	ipic_max_frag;
173 	uint_t	ipic_addr_offset;
174 	uint_t	ipic_addr_length;
175 	uint_t	ipic_mask_offset;
176 	uint_t	ipic_mask_length;
177 	uint_t	ipic_src_addr_offset;
178 	uint_t	ipic_src_addr_length;
179 	uint_t	ipic_ll_hdr_offset;
180 	uint_t	ipic_ll_hdr_length;
181 	uint_t	ipic_gateway_addr_offset;
182 	uint_t	ipic_gateway_addr_length;
183 	clock_t	ipic_rtt;
184 	uint32_t ipic_ssthresh;
185 	clock_t	ipic_rtt_sd;
186 	uchar_t ipic_ire_marks;
187 } ipic_t;
188 
189 #define	ipic_cmd		ipic_ipllc.ipllc_cmd
190 #define	ipic_ll_name_length	ipic_ipllc.ipllc_name_length
191 #define	ipic_ll_name_offset	ipic_ipllc.ipllc_name_offset
192 
193 /* IP IRE Delete Command Structure. */
194 typedef struct ipid_s {
195 	ipllc_t	ipid_ipllc;
196 	uint_t	ipid_ire_type;
197 	uint_t	ipid_addr_offset;
198 	uint_t	ipid_addr_length;
199 	uint_t	ipid_mask_offset;
200 	uint_t	ipid_mask_length;
201 } ipid_t;
202 
203 #define	ipid_cmd		ipid_ipllc.ipllc_cmd
204 
205 #ifdef _KERNEL
206 /*
207  * Temporary state for ip options parser.
208  */
209 typedef struct ipoptp_s
210 {
211 	uint8_t		*ipoptp_next;	/* next option to look at */
212 	uint8_t		*ipoptp_end;	/* end of options */
213 	uint8_t		*ipoptp_cur;	/* start of current option */
214 	uint8_t		ipoptp_len;	/* length of current option */
215 	uint32_t	ipoptp_flags;
216 } ipoptp_t;
217 
218 /*
219  * Flag(s) for ipoptp_flags
220  */
221 #define	IPOPTP_ERROR	0x00000001
222 #endif	/* _KERNEL */
223 
224 
225 /* Controls forwarding of IP packets, set via ndd */
226 #define	IP_FORWARD_NEVER	0
227 #define	IP_FORWARD_ALWAYS	1
228 
229 #define	WE_ARE_FORWARDING(ipst)	((ipst)->ips_ip_g_forward == IP_FORWARD_ALWAYS)
230 
231 #define	IPH_HDR_LENGTH(ipha)						\
232 	((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2)
233 
234 #define	IPH_HDR_VERSION(ipha)						\
235 	((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4)
236 
237 #ifdef _KERNEL
238 /*
239  * IP reassembly macros.  We hide starting and ending offsets in b_next and
240  * b_prev of messages on the reassembly queue.	The messages are chained using
241  * b_cont.  These macros are used in ip_reassemble() so we don't have to see
242  * the ugly casts and assignments.
243  * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent
244  * them.
245  */
246 #define	IP_REASS_START(mp)		((uint_t)(uintptr_t)((mp)->b_next))
247 #define	IP_REASS_SET_START(mp, u)	\
248 	((mp)->b_next = (mblk_t *)(uintptr_t)(u))
249 #define	IP_REASS_END(mp)		((uint_t)(uintptr_t)((mp)->b_prev))
250 #define	IP_REASS_SET_END(mp, u)		\
251 	((mp)->b_prev = (mblk_t *)(uintptr_t)(u))
252 
253 #define	IP_REASS_COMPLETE	0x1
254 #define	IP_REASS_PARTIAL	0x2
255 #define	IP_REASS_FAILED		0x4
256 
257 /*
258  * Test to determine whether this is a module instance of IP or a
259  * driver instance of IP.
260  */
261 #define	CONN_Q(q)	(WR(q)->q_next == NULL)
262 
263 #define	Q_TO_CONN(q)	((conn_t *)(q)->q_ptr)
264 #define	Q_TO_TCP(q)	(Q_TO_CONN((q))->conn_tcp)
265 #define	Q_TO_UDP(q)	(Q_TO_CONN((q))->conn_udp)
266 
267 /*
268  * The following two macros are used by IP to get the appropriate
269  * wq and rq for a conn. If it is a TCP conn, then we need
270  * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq
271  * from a conn directly if it knows that the conn is not TCP.
272  */
273 #define	CONNP_TO_WQ(connp)	\
274 	(IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq)
275 
276 #define	CONNP_TO_RQ(connp)	RD(CONNP_TO_WQ(connp))
277 
278 #define	GRAB_CONN_LOCK(q)	{				\
279 	if (q != NULL && CONN_Q(q))				\
280 		mutex_enter(&(Q_TO_CONN(q))->conn_lock);	\
281 }
282 
283 #define	RELEASE_CONN_LOCK(q)	{				\
284 	if (q != NULL && CONN_Q(q))				\
285 		mutex_exit(&(Q_TO_CONN(q))->conn_lock);		\
286 }
287 
288 /* "Congestion controlled" protocol */
289 #define	IP_FLOW_CONTROLLED_ULP(p)   ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP)
290 
291 /*
292  * Complete the pending operation. Usually an ioctl. Can also
293  * be a bind or option management request that got enqueued
294  * in an ipsq_t. Called on completion of the operation.
295  */
296 #define	CONN_OPER_PENDING_DONE(connp)	{			\
297 	mutex_enter(&(connp)->conn_lock);			\
298 	(connp)->conn_oper_pending_ill = NULL;			\
299 	cv_broadcast(&(connp)->conn_refcv);			\
300 	mutex_exit(&(connp)->conn_lock);			\
301 	CONN_DEC_REF(connp);					\
302 }
303 
304 /* Get the credential of an IP queue of unknown type */
305 #define	GET_QUEUE_CRED(wq)						\
306 	((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \
307 	    : ((Q_TO_CONN((wq)))->conn_cred))
308 
309 /*
310  * Flags for the various ip_fanout_* routines.
311  */
312 #define	IP_FF_SEND_ICMP		0x01	/* Send an ICMP error */
313 #define	IP_FF_HDR_COMPLETE	0x02	/* Call ip_hdr_complete if error */
314 #define	IP_FF_CKSUM		0x04	/* Recompute ipha_cksum if error */
315 #define	IP_FF_RAWIP		0x08	/* Use rawip mib variable */
316 #define	IP_FF_SRC_QUENCH	0x10	/* OK to send ICMP_SOURCE_QUENCH */
317 #define	IP_FF_SYN_ADDIRE	0x20	/* Add IRE if TCP syn packet */
318 #define	IP_FF_IPINFO		0x80	/* Used for both V4 and V6 */
319 #define	IP_FF_SEND_SLLA		0x100	/* Send source link layer info ? */
320 #define	IPV6_REACHABILITY_CONFIRMATION	0x200	/* Flags for ip_xmit_v6 */
321 #define	IP_FF_NO_MCAST_LOOP	0x400	/* No multicasts for sending zone */
322 
323 /*
324  * Following flags are used by IPQoS to determine if policy processing is
325  * required.
326  */
327 #define	IP6_NO_IPPOLICY		0x800	/* Don't do IPQoS processing */
328 #define	IP6_IN_LLMCAST		0x1000	/* Multicast */
329 
330 #define	IP_FF_LOOPBACK		0x2000	/* Loopback fanout */
331 
332 #ifndef	IRE_DB_TYPE
333 #define	IRE_DB_TYPE	M_SIG
334 #endif
335 
336 #ifndef	IRE_DB_REQ_TYPE
337 #define	IRE_DB_REQ_TYPE	M_PCSIG
338 #endif
339 
340 #ifndef	IRE_ARPRESOLVE_TYPE
341 #define	IRE_ARPRESOLVE_TYPE	M_EVENT
342 #endif
343 
344 /*
345  * Values for squeue switch:
346  */
347 
348 #define	IP_SQUEUE_ENTER_NODRAIN	1
349 #define	IP_SQUEUE_ENTER	2
350 /*
351  * This is part of the interface between Transport provider and
352  * IP which can be used to set policy information. This is usually
353  * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that
354  * only IPSEC_POLICY_SET is there when it is found in the chain.
355  * The information contained is an struct ipsec_req_t. On success
356  * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned.
357  * IPSEC_POLICY_SET is never returned.
358  */
359 #define	IPSEC_POLICY_SET	M_SETOPTS
360 
361 #define	IRE_IS_LOCAL(ire)	((ire != NULL) && \
362 				((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK)))
363 
364 #define	IRE_IS_TARGET(ire)	((ire != NULL) && \
365 				((ire)->ire_type != IRE_BROADCAST))
366 
367 /* IP Fragmentation Reassembly Header */
368 typedef struct ipf_s {
369 	struct ipf_s	*ipf_hash_next;
370 	struct ipf_s	**ipf_ptphn;	/* Pointer to previous hash next. */
371 	uint32_t	ipf_ident;	/* Ident to match. */
372 	uint8_t		ipf_protocol;	/* Protocol to match. */
373 	uchar_t		ipf_last_frag_seen : 1;	/* Last fragment seen ? */
374 	time_t		ipf_timestamp;	/* Reassembly start time. */
375 	mblk_t		*ipf_mp;	/* mblk we live in. */
376 	mblk_t		*ipf_tail_mp;	/* Frag queue tail pointer. */
377 	int		ipf_hole_cnt;	/* Number of holes (hard-case). */
378 	int		ipf_end;	/* Tail end offset (0 -> hard-case). */
379 	uint_t		ipf_gen;	/* Frag queue generation */
380 	size_t		ipf_count;	/* Count of bytes used by frag */
381 	uint_t		ipf_nf_hdr_len; /* Length of nonfragmented header */
382 	in6_addr_t	ipf_v6src;	/* IPv6 source address */
383 	in6_addr_t	ipf_v6dst;	/* IPv6 dest address */
384 	uint_t		ipf_prev_nexthdr_offset; /* Offset for nexthdr value */
385 	uint8_t		ipf_ecn;	/* ECN info for the fragments */
386 	uint8_t		ipf_num_dups;	/* Number of times dup frags recvd */
387 	uint16_t	ipf_checksum_flags; /* Hardware checksum flags */
388 	uint32_t	ipf_checksum;	/* Partial checksum of fragment data */
389 } ipf_t;
390 
391 #define	ipf_src	V4_PART_OF_V6(ipf_v6src)
392 #define	ipf_dst	V4_PART_OF_V6(ipf_v6dst)
393 
394 typedef enum {
395 	IB_PKT =  0x01,
396 	OB_PKT = 0x02
397 } ip_pkt_t;
398 
399 #define	UPDATE_IB_PKT_COUNT(ire)\
400 	{ \
401 	(ire)->ire_ib_pkt_count++; \
402 	if ((ire)->ire_ipif != NULL) { \
403 		/* \
404 		 * forwarding packet \
405 		 */ \
406 		if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \
407 			atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\
408 		else \
409 			atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\
410 	} \
411 	}
412 #define	UPDATE_OB_PKT_COUNT(ire)\
413 	{ \
414 	(ire)->ire_ob_pkt_count++;\
415 	if ((ire)->ire_ipif != NULL) { \
416 		atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \
417 	} \
418 	}
419 
420 
421 #define	IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \
422 { \
423 	switch (ipha->ipha_protocol) { \
424 		case IPPROTO_UDP: \
425 			ip_udp_input(q, mp, ipha, ire, recv_ill); \
426 			break; \
427 		default: \
428 			ip_proto_input(q, mp, ipha, ire, recv_ill); \
429 			break; \
430 	} \
431 }
432 
433 /*
434  * NCE_EXPIRED is TRUE when we have a non-permanent nce that was
435  * found to be REACHABLE more than ip_ire_arp_interval ms ago.
436  * This macro is used to trigger re-arp of existing nce_t entries
437  * so that they can be updated with the latest information.
438  * nce's will get cleaned up (or updated with new info) in the following
439  * circumstances:
440  * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim
441  *    when memory is low,
442  * - ip_arp_news, when updates are received.
443  * - if the nce is NCE_EXPIRED(), it will be re-initialized to ND_INITIAL,
444  *   so that a new arp request will be triggered.
445  * nce_last is the timestamp that indicates when the nce_res_mp in the
446  * nce_t was last updated to a valid link-layer address.  nce_last gets
447  * modified/updated :
448  *  - when the nce is created  or reinit-ed
449  *  - every time we get a sane arp response for the nce.
450  */
451 #define	NCE_EXPIRED(nce, ipst)	(nce->nce_last > 0 &&	\
452 	    ((nce->nce_flags & NCE_F_PERMANENT) == 0) &&	\
453 	    ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > 		\
454 		(ipst)->ips_ip_ire_arp_interval))
455 
456 #endif /* _KERNEL */
457 
458 /* ICMP types */
459 #define	ICMP_ECHO_REPLY			0
460 #define	ICMP_DEST_UNREACHABLE		3
461 #define	ICMP_SOURCE_QUENCH		4
462 #define	ICMP_REDIRECT			5
463 #define	ICMP_ECHO_REQUEST		8
464 #define	ICMP_ROUTER_ADVERTISEMENT	9
465 #define	ICMP_ROUTER_SOLICITATION	10
466 #define	ICMP_TIME_EXCEEDED		11
467 #define	ICMP_PARAM_PROBLEM		12
468 #define	ICMP_TIME_STAMP_REQUEST		13
469 #define	ICMP_TIME_STAMP_REPLY		14
470 #define	ICMP_INFO_REQUEST		15
471 #define	ICMP_INFO_REPLY			16
472 #define	ICMP_ADDRESS_MASK_REQUEST	17
473 #define	ICMP_ADDRESS_MASK_REPLY		18
474 
475 /* ICMP_TIME_EXCEEDED codes */
476 #define	ICMP_TTL_EXCEEDED		0
477 #define	ICMP_REASSEMBLY_TIME_EXCEEDED	1
478 
479 /* ICMP_DEST_UNREACHABLE codes */
480 #define	ICMP_NET_UNREACHABLE		0
481 #define	ICMP_HOST_UNREACHABLE		1
482 #define	ICMP_PROTOCOL_UNREACHABLE	2
483 #define	ICMP_PORT_UNREACHABLE		3
484 #define	ICMP_FRAGMENTATION_NEEDED	4
485 #define	ICMP_SOURCE_ROUTE_FAILED	5
486 #define	ICMP_DEST_NET_UNKNOWN		6
487 #define	ICMP_DEST_HOST_UNKNOWN		7
488 #define	ICMP_SRC_HOST_ISOLATED		8
489 #define	ICMP_DEST_NET_UNREACH_ADMIN	9
490 #define	ICMP_DEST_HOST_UNREACH_ADMIN	10
491 #define	ICMP_DEST_NET_UNREACH_TOS	11
492 #define	ICMP_DEST_HOST_UNREACH_TOS	12
493 
494 /* ICMP Header Structure */
495 typedef struct icmph_s {
496 	uint8_t		icmph_type;
497 	uint8_t		icmph_code;
498 	uint16_t	icmph_checksum;
499 	union {
500 		struct { /* ECHO request/response structure */
501 			uint16_t	u_echo_ident;
502 			uint16_t	u_echo_seqnum;
503 		} u_echo;
504 		struct { /* Destination unreachable structure */
505 			uint16_t	u_du_zero;
506 			uint16_t	u_du_mtu;
507 		} u_du;
508 		struct { /* Parameter problem structure */
509 			uint8_t		u_pp_ptr;
510 			uint8_t		u_pp_rsvd[3];
511 		} u_pp;
512 		struct { /* Redirect structure */
513 			ipaddr_t	u_rd_gateway;
514 		} u_rd;
515 	} icmph_u;
516 } icmph_t;
517 
518 #define	icmph_echo_ident	icmph_u.u_echo.u_echo_ident
519 #define	icmph_echo_seqnum	icmph_u.u_echo.u_echo_seqnum
520 #define	icmph_du_zero		icmph_u.u_du.u_du_zero
521 #define	icmph_du_mtu		icmph_u.u_du.u_du_mtu
522 #define	icmph_pp_ptr		icmph_u.u_pp.u_pp_ptr
523 #define	icmph_rd_gateway	icmph_u.u_rd.u_rd_gateway
524 
525 #define	ICMPH_SIZE	8
526 
527 /*
528  * Minimum length of transport layer header included in an ICMP error
529  * message for it to be considered valid.
530  */
531 #define	ICMP_MIN_TP_HDR_LEN	8
532 
533 /* Aligned IP header */
534 typedef struct ipha_s {
535 	uint8_t		ipha_version_and_hdr_length;
536 	uint8_t		ipha_type_of_service;
537 	uint16_t	ipha_length;
538 	uint16_t	ipha_ident;
539 	uint16_t	ipha_fragment_offset_and_flags;
540 	uint8_t		ipha_ttl;
541 	uint8_t		ipha_protocol;
542 	uint16_t	ipha_hdr_checksum;
543 	ipaddr_t	ipha_src;
544 	ipaddr_t	ipha_dst;
545 } ipha_t;
546 
547 #define	IPH_DF		0x4000	/* Don't fragment */
548 #define	IPH_MF		0x2000	/* More fragments to come */
549 #define	IPH_OFFSET	0x1FFF	/* Where the offset lives */
550 #define	IPH_FRAG_HDR	0x8000	/* IPv6 don't fragment bit */
551 
552 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */
553 #define	IPH_ECN_NECT	0x0	/* Not ECN-Capabable Transport */
554 #define	IPH_ECN_ECT1	0x1	/* ECN-Capable Transport, ECT(1) */
555 #define	IPH_ECN_ECT0	0x2	/* ECN-Capable Transport, ECT(0) */
556 #define	IPH_ECN_CE	0x3	/* ECN-Congestion Experienced (CE) */
557 
558 /* IP Mac info structure */
559 typedef struct ip_m_s {
560 	t_uscalar_t	ip_m_mac_type;	/* From <sys/dlpi.h> */
561 	int		ip_m_type;	/* From <net/if_types.h> */
562 	boolean_t	(*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *,
563 			    uint32_t *, ipaddr_t *);
564 	boolean_t	(*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *,
565 			    uint32_t *, in6_addr_t *);
566 	boolean_t	(*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *);
567 } ip_m_t;
568 
569 /*
570  * The following functions attempt to reduce the link layer dependency
571  * of the IP stack. The current set of link specific operations are:
572  * a. map from IPv4 class D (224.0/4) multicast address range to the link
573  * layer multicast address range.
574  * b. map from IPv6 multicast address range (ff00::/8) to the link
575  * layer multicast address range.
576  * c. derive the default IPv6 interface identifier from the link layer
577  * address.
578  */
579 #define	MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \
580 	(((ip_m)->ip_m_v4mapinfo != NULL) && \
581 	(*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr))
582 #define	MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \
583 	(((ip_m)->ip_m_v6intfid != NULL) && \
584 	(*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr))
585 #define	MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \
586 	(((ip_m)->ip_m_v6mapinfo != NULL) && \
587 	(*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr))
588 
589 /* Router entry types */
590 #define	IRE_BROADCAST		0x0001	/* Route entry for broadcast address */
591 #define	IRE_DEFAULT		0x0002	/* Route entry for default gateway */
592 #define	IRE_LOCAL		0x0004	/* Route entry for local address */
593 #define	IRE_LOOPBACK		0x0008	/* Route entry for loopback address */
594 #define	IRE_PREFIX		0x0010	/* Route entry for prefix routes */
595 #define	IRE_CACHE		0x0020	/* Cached Route entry */
596 #define	IRE_IF_NORESOLVER	0x0040	/* Route entry for local interface */
597 					/* net without any address mapping. */
598 #define	IRE_IF_RESOLVER		0x0080	/* Route entry for local interface */
599 					/* net with resolver. */
600 #define	IRE_HOST		0x0100	/* Host route entry */
601 #define	IRE_HOST_REDIRECT	0x0200	/* only used for T_SVR4_OPTMGMT_REQ */
602 
603 /*
604  * IRE_MIPRTUN is only set on the ires in the ip_mrtun_table.
605  * This ire_type must not be set for ftable and ctable routing entries.
606  */
607 #define	IRE_MIPRTUN		0x0400	/* Reverse tunnel route entry */
608 
609 #define	IRE_INTERFACE		(IRE_IF_NORESOLVER | IRE_IF_RESOLVER)
610 #define	IRE_OFFSUBNET		(IRE_DEFAULT | IRE_PREFIX | IRE_HOST)
611 #define	IRE_CACHETABLE		(IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \
612 				IRE_LOOPBACK)
613 #define	IRE_FORWARDTABLE	(IRE_INTERFACE | IRE_OFFSUBNET)
614 
615 /*
616  * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of
617  * the bucket should delete this IRE from this bucket.
618  */
619 #define	IRE_MARK_CONDEMNED	0x0001
620 /*
621  * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the
622  * broadcast packets received on that interface. This is marked only
623  * on broadcast ires. Employed by IPMP, where we have multiple NICs on the
624  * same subnet receiving the same broadcast packet.
625  */
626 #define	IRE_MARK_NORECV		0x0002
627 /*
628  * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need
629  * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP.
630  */
631 #define	IRE_MARK_HIDDEN		0x0004	/* Typically Used by in.mpathd */
632 
633 /*
634  * ire with IRE_MARK_NOADD is  created in ip_newroute_ipif, when outgoing
635  * interface is specified by IP_XMIT_IF socket option. This ire is not
636  * added in IRE_CACHE.  For example, this is used by mipagent to prevent
637  * any entry to be added in the cache table. We do not want to add any
638  * entry for a mobile-node in the routing table for foreign agent originated
639  * packets. Adding routes in cache table in this case, may run the risks of
640  * incorrect routing path in case of private overlapping addresses.
641  */
642 #define	IRE_MARK_NOADD		0x0008	/* Mark not to add ire in cache */
643 
644 /*
645  * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used
646  * either for forwarding a packet or has not been used for sending
647  * traffic on TCP connections terminated on this system.  In both
648  * cases, this IRE is the first to go when IRE is being cleaned up.
649  */
650 #define	IRE_MARK_TEMPORARY	0x0010
651 
652 /*
653  * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with
654  * this mark, additional atomic checks need to be performed. For eg: by the
655  * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the
656  * usesrc grouping could have changed in which case we want to fail adding
657  * the IRE_CACHE entry
658  */
659 #define	IRE_MARK_USESRC_CHECK	0x0020
660 
661 /*
662  * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the
663  * routing table lookup for the destination is bypassed and the packet is
664  * sent directly to the specified nexthop. The associated IRE_CACHE entries
665  * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up
666  * in regular ire cache lookups.
667  */
668 #define	IRE_MARK_PRIVATE_ADDR	0x0040
669 
670 /*
671  * When we send an ARP resolution query for the nexthop gateway's ire,
672  * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk
673  * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag
674  * indicates that information from ARP has not been transferred to a
675  * permanent IRE_CACHE entry. The flag is reset only when the
676  * information is successfully transferred to an ire_cache entry (in
677  * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior
678  * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will
679  * require that the resources (incomplete ire_cache and/or nce) must
680  * be cleaned up. The free callback routine (ire_freemblk()) checks
681  * for IRE_MARK_UNCACHED to see if any resources that are pinned down
682  * will need to be cleaned up or not.
683  */
684 
685 #define	IRE_MARK_UNCACHED	0x0080
686 
687 /*
688  * The comment below (and for other netstack_t references) refers
689  * to the fact that we only do netstack_hold in particular cases,
690  * such as the references from open streams (ill_t and conn_t's
691  * pointers). Internally within IP we rely on IP's ability to cleanup e.g.
692  * ire_t's when an ill goes away.
693  */
694 typedef struct ire_expire_arg_s {
695 	int		iea_flush_flag;
696 	ip_stack_t	*iea_ipst;	/* Does not have a netstack_hold */
697 } ire_expire_arg_t;
698 
699 /* Flags with ire_expire routine */
700 #define	FLUSH_ARP_TIME		0x0001	/* ARP info potentially stale timer */
701 #define	FLUSH_REDIRECT_TIME	0x0002	/* Redirects potentially stale */
702 #define	FLUSH_MTU_TIME		0x0004	/* Include path MTU per RFC 1191 */
703 
704 /* Arguments to ire_flush_cache() */
705 #define	IRE_FLUSH_DELETE	0
706 #define	IRE_FLUSH_ADD		1
707 
708 /*
709  * Open/close synchronization flags.
710  * These are kept in a separate field in the conn and the synchronization
711  * depends on the atomic 32 bit access to that field.
712  */
713 #define	CONN_CLOSING		0x01	/* ip_close waiting for ip_wsrv */
714 #define	CONN_IPSEC_LOAD_WAIT	0x02	/* waiting for load */
715 #define	CONN_CONDEMNED		0x04	/* conn is closing, no more refs */
716 #define	CONN_INCIPIENT		0x08	/* conn not yet visible, no refs */
717 #define	CONN_QUIESCED		0x10	/* conn is now quiescent */
718 
719 /* Used to check connection state flags before caching the IRE */
720 #define	CONN_CACHE_IRE(connp)	\
721 	(!((connp)->conn_state_flags & (CONN_CLOSING|CONN_CONDEMNED)))
722 
723 /*
724  * Parameter to ip_output giving the identity of the caller.
725  * IP_WSRV means the packet was enqueued in the STREAMS queue
726  * due to flow control and is now being reprocessed in the context of
727  * the STREAMS service procedure, consequent to flow control relief.
728  * IRE_SEND means the packet is being reprocessed consequent to an
729  * ire cache creation and addition and this may or may not be happening
730  * in the service procedure context. Anything other than the above 2
731  * cases is identified as IP_WPUT. Most commonly this is the case of
732  * packets coming down from the application.
733  */
734 #ifdef _KERNEL
735 #define	IP_WSRV			1	/* Called from ip_wsrv */
736 #define	IP_WPUT			2	/* Called from ip_wput */
737 #define	IRE_SEND		3	/* Called from ire_send */
738 
739 /*
740  * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2)
741  */
742 #define	MAX_FILTER_SIZE	64
743 
744 typedef struct slist_s {
745 	int		sl_numsrc;
746 	in6_addr_t	sl_addr[MAX_FILTER_SIZE];
747 } slist_t;
748 
749 /*
750  * Following struct is used to maintain retransmission state for
751  * a multicast group.  One rtx_state_t struct is an in-line field
752  * of the ilm_t struct; the slist_ts in the rtx_state_t struct are
753  * alloc'd as needed.
754  */
755 typedef struct rtx_state_s {
756 	uint_t		rtx_timer;	/* retrans timer */
757 	int		rtx_cnt;	/* retrans count */
758 	int		rtx_fmode_cnt;	/* retrans count for fmode change */
759 	slist_t		*rtx_allow;
760 	slist_t		*rtx_block;
761 } rtx_state_t;
762 
763 /*
764  * Used to construct list of multicast address records that will be
765  * sent in a single listener report.
766  */
767 typedef struct mrec_s {
768 	struct mrec_s	*mrec_next;
769 	uint8_t		mrec_type;
770 	uint8_t		mrec_auxlen;	/* currently unused */
771 	in6_addr_t	mrec_group;
772 	slist_t		mrec_srcs;
773 } mrec_t;
774 
775 /* Group membership list per upper conn */
776 /*
777  * XXX add ilg info for ifaddr/ifindex.
778  * XXX can we make ilg survive an ifconfig unplumb + plumb
779  * by setting the ipif/ill to NULL and recover that later?
780  *
781  * ilg_ipif is used by IPv4 as multicast groups are joined using an interface
782  * address (ipif).
783  * ilg_ill is used by IPv6 as multicast groups are joined using an interface
784  * index (phyint->phyint_ifindex).
785  * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6.
786  *
787  * ilg records the state of multicast memberships of a socket end point.
788  * ilm records the state of multicast memberships with the driver and is
789  * maintained per interface.
790  *
791  * Notes :
792  *
793  * 1) There is no direct link between a given ilg and ilm. If the
794  *    application has joined a group G with ifindex I, we will have
795  *    an ilg with ilg_v6group and ilg_ill. There will be a corresponding
796  *    ilm with ilm_ill/ilm_v6addr recording the multicast membership.
797  *    To delete the membership,
798  *
799  *		a) Search for ilg matching on G and I with ilg_v6group
800  *		   and ilg_ill. Delete ilg_ill.
801  *		b) Search the corresponding ilm matching on G and I with
802  *		   ilm_v6addr and ilm_ill. Delete ilm.
803  *
804  *    In IPv4, the only difference is, we look using ipifs instead of
805  *    ills.
806  *
807  * 2) With IP multipathing, we want to keep receiving even after the
808  *    interface has failed. We do this by moving multicast memberships
809  *    to a new_ill within the group. This is acheived by sending
810  *    DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS
811  *    on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we
812  *    need to be able to delete memberships which will still come down
813  *    with the ifindex of the old ill which is what the application
814  *    knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track
815  *    of where we joined initially so that we can lookup even after we
816  *    moved the membership. It is also used for moving back the membership
817  *    when the old ill has been repaired. This is done by looking up for
818  *    ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only
819  *    ilms actually move from old ill to new ill. ilgs don't move (just
820  *    the ilg_ill is changed when it moves) as it just records the state
821  *    of the application that has joined a group G where as ilm records
822  *    the state joined with the driver. Thus when we send DL_XXXMULTI_REQs
823  *    we also need to keep the ilm in the right ill.
824  *
825  *    In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move
826  *    implicitly as we use only ipifs in IPv4. Thus, one can always lookup
827  *    a given ilm/ilg even after it fails without the support of
828  *    orig_ifindex. We move ilms still to record the driver state as
829  *    mentioned above.
830  */
831 
832 /*
833  * The ilg_t and ilm_t members are protected by ipsq. They can be changed only
834  * by a thread executing in the ipsq. In other words add/delete of a
835  * multicast group has to execute in the ipsq.
836  */
837 #define	ILG_DELETED	0x1		/* ilg_flags */
838 typedef struct ilg_s {
839 	in6_addr_t	ilg_v6group;
840 	struct ipif_s	*ilg_ipif;	/* Logical interface we are member on */
841 	struct ill_s	*ilg_ill;	/* Used by IPv6 */
842 	int		ilg_orig_ifindex; /* Interface originally joined on */
843 	uint_t		ilg_flags;
844 	mcast_record_t	ilg_fmode;	/* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
845 	slist_t		*ilg_filter;
846 } ilg_t;
847 
848 
849 /*
850  * Multicast address list entry for lower ill.
851  * ilm_ipif is used by IPv4 as multicast groups are joined using ipif.
852  * ilm_ill is used by IPv6 as multicast groups are joined using ill.
853  * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6.
854  *
855  * The comment below (and for other netstack_t references) refers
856  * to the fact that we only do netstack_hold in particular cases,
857  * such as the references from open streams (ill_t and conn_t's
858  * pointers). Internally within IP we rely on IP's ability to cleanup e.g.
859  * ire_t's when an ill goes away.
860  */
861 #define	ILM_DELETED	0x1		/* ilm_flags */
862 typedef struct ilm_s {
863 	in6_addr_t	ilm_v6addr;
864 	int		ilm_refcnt;
865 	uint_t		ilm_timer;	/* IGMP/MLD query resp timer, in msec */
866 	struct ipif_s	*ilm_ipif;	/* Back pointer to ipif for IPv4 */
867 	struct ilm_s	*ilm_next;	/* Linked list for each ill */
868 	uint_t		ilm_state;	/* state of the membership */
869 	struct ill_s	*ilm_ill;	/* Back pointer to ill for IPv6 */
870 	int		ilm_orig_ifindex;  /* V6_MULTICAST_IF/ilm_ipif index */
871 	uint_t		ilm_flags;
872 	boolean_t	ilm_is_new;	/* new ilm */
873 	boolean_t	ilm_notify_driver; /* Need to notify the driver */
874 	zoneid_t	ilm_zoneid;
875 	int		ilm_no_ilg_cnt;	/* number of joins w/ no ilg */
876 	mcast_record_t	ilm_fmode;	/* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
877 	slist_t		*ilm_filter;	/* source filter list */
878 	slist_t		*ilm_pendsrcs;	/* relevant src addrs for pending req */
879 	rtx_state_t	ilm_rtx;	/* SCR retransmission state */
880 	ip_stack_t	*ilm_ipst;	/* Does not have a netstack_hold */
881 } ilm_t;
882 
883 #define	ilm_addr	V4_PART_OF_V6(ilm_v6addr)
884 
885 /*
886  * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to
887  * zero. In addition it needs to block new walkers while it is unlinking ilm's
888  * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice.
889  */
890 #define	ILM_WALKER_HOLD(ill)    {               \
891 	mutex_enter(&(ill)->ill_lock);          \
892 	ill->ill_ilm_walker_cnt++;              \
893 	mutex_exit(&(ill)->ill_lock);           \
894 }
895 
896 #define	ILM_WALKER_RELE(ill)	{ 		\
897 	mutex_enter(&(ill)->ill_lock);		\
898 	(ill)->ill_ilm_walker_cnt--;		\
899 	if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \
900 		ilm_walker_cleanup(ill);	\
901 	mutex_exit(&(ill)->ill_lock);		\
902 }
903 
904 /*
905  * Soft reference to an IPsec SA.
906  *
907  * On relative terms, conn's can be persistant (living as long as the
908  * processes which create them), while SA's are ephemeral (dying when
909  * they hit their time-based or byte-based lifetimes).
910  *
911  * We could hold a hard reference to an SA from an ipsec_latch_t,
912  * but this would cause expired SA's to linger for a potentially
913  * unbounded time.
914  *
915  * Instead, we remember the hash bucket number and bucket generation
916  * in addition to the pointer.  The bucket generation is incremented on
917  * each deletion.
918  */
919 typedef struct ipsa_ref_s
920 {
921 	struct ipsa_s	*ipsr_sa;
922 	struct isaf_s	*ipsr_bucket;
923 	uint64_t	ipsr_gen;
924 } ipsa_ref_t;
925 
926 /*
927  * IPsec "latching" state.
928  *
929  * In the presence of IPsec policy, fully-bound conn's bind a connection
930  * to more than just the 5-tuple, but also a specific IPsec action and
931  * identity-pair.
932  *
933  * As an optimization, we also cache soft references to IPsec SA's
934  * here so that we can fast-path around most of the work needed for
935  * outbound IPsec SA selection.
936  *
937  * Were it not for TCP's detached connections, this state would be
938  * in-line in conn_t; instead, this is in a separate structure so it
939  * can be handed off to TCP when a connection is detached.
940  */
941 typedef struct ipsec_latch_s
942 {
943 	kmutex_t	ipl_lock;
944 	uint32_t	ipl_refcnt;
945 
946 	uint64_t	ipl_unique;
947 	struct ipsec_policy_s	*ipl_in_policy; /* latched policy (in) */
948 	struct ipsec_policy_s	*ipl_out_policy; /* latched policy (out) */
949 	struct ipsec_action_s	*ipl_in_action;	/* latched action (in) */
950 	struct ipsec_action_s	*ipl_out_action; /* latched action (out) */
951 	cred_t		*ipl_local_id;
952 	struct ipsid_s	*ipl_local_cid;
953 	struct ipsid_s	*ipl_remote_cid;
954 	unsigned int
955 			ipl_out_action_latched : 1,
956 			ipl_in_action_latched : 1,
957 			ipl_out_policy_latched : 1,
958 			ipl_in_policy_latched : 1,
959 
960 			ipl_ids_latched : 1,
961 
962 			ipl_pad_to_bit_31 : 27;
963 
964 	ipsa_ref_t	ipl_ref[2]; /* 0: ESP, 1: AH */
965 
966 } ipsec_latch_t;
967 
968 #define	IPLATCH_REFHOLD(ipl) { \
969 	atomic_add_32(&(ipl)->ipl_refcnt, 1);		\
970 	ASSERT((ipl)->ipl_refcnt != 0);			\
971 }
972 
973 #define	IPLATCH_REFRELE(ipl, ns) {				\
974 	ASSERT((ipl)->ipl_refcnt != 0);				\
975 	membar_exit();						\
976 	if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0)	\
977 		iplatch_free(ipl, ns);			\
978 }
979 
980 /*
981  * peer identity structure.
982  */
983 
984 typedef struct conn_s conn_t;
985 
986 /*
987  * The old IP client structure "ipc_t" is gone. All the data is stored in the
988  * connection structure "conn_t" now. The mapping of old and new fields looks
989  * like this:
990  *
991  * ipc_ulp			conn_ulp
992  * ipc_rq			conn_rq
993  * ipc_wq			conn_wq
994  *
995  * ipc_laddr			conn_src
996  * ipc_faddr			conn_rem
997  * ipc_v6laddr			conn_srcv6
998  * ipc_v6faddr			conn_remv6
999  *
1000  * ipc_lport			conn_lport
1001  * ipc_fport			conn_fport
1002  * ipc_ports			conn_ports
1003  *
1004  * ipc_policy			conn_policy
1005  * ipc_latch			conn_latch
1006  *
1007  * ipc_irc_lock			conn_lock
1008  * ipc_ire_cache		conn_ire_cache
1009  *
1010  * ipc_state_flags		conn_state_flags
1011  * ipc_outgoing_ill		conn_outgoing_ill
1012  *
1013  * ipc_dontroute 		conn_dontroute
1014  * ipc_loopback 		conn_loopback
1015  * ipc_broadcast		conn_broadcast
1016  * ipc_reuseaddr		conn_reuseaddr
1017  *
1018  * ipc_multicast_loop		conn_multicast_loop
1019  * ipc_multi_router		conn_multi_router
1020  * ipc_priv_stream 		conn_priv_stream
1021  * ipc_draining 		conn_draining
1022  *
1023  * ipc_did_putbq		conn_did_putbq
1024  * ipc_unspec_src		conn_unspec_src
1025  * ipc_policy_cached		conn_policy_cached
1026  *
1027  * ipc_in_enforce_policy 	conn_in_enforce_policy
1028  * ipc_out_enforce_policy 	conn_out_enforce_policy
1029  * ipc_af_isv6			conn_af_isv6
1030  * ipc_pkt_isv6			conn_pkt_isv6
1031  *
1032  * ipc_ipv6_recvpktinfo		conn_ipv6_recvpktinfo
1033  *
1034  * ipc_ipv6_recvhoplimit	conn_ipv6_recvhoplimit
1035  * ipc_ipv6_recvhopopts		conn_ipv6_recvhopopts
1036  * ipc_ipv6_recvdstopts		conn_ipv6_recvdstopts
1037  *
1038  * ipc_ipv6_recvrthdr 		conn_ipv6_recvrthdr
1039  * ipc_ipv6_recvrtdstopts	conn_ipv6_recvrtdstopts
1040  * ipc_fully_bound		conn_fully_bound
1041  *
1042  * ipc_recvif			conn_recvif
1043  *
1044  * ipc_recvslla 		conn_recvslla
1045  * ipc_acking_unbind 		conn_acking_unbind
1046  * ipc_pad_to_bit_31 		conn_pad_to_bit_31
1047  *
1048  * ipc_xmit_if_ill		conn_xmit_if_ill
1049  * ipc_nofailover_ill		conn_nofailover_ill
1050  *
1051  * ipc_proto			conn_proto
1052  * ipc_incoming_ill		conn_incoming_ill
1053  * ipc_outgoing_pill		conn_outgoing_pill
1054  * ipc_pending_ill		conn_pending_ill
1055  * ipc_unbind_mp		conn_unbind_mp
1056  * ipc_ilg			conn_ilg
1057  * ipc_ilg_allocated		conn_ilg_allocated
1058  * ipc_ilg_inuse		conn_ilg_inuse
1059  * ipc_ilg_walker_cnt		conn_ilg_walker_cnt
1060  * ipc_refcv			conn_refcv
1061  * ipc_multicast_ipif		conn_multicast_ipif
1062  * ipc_multicast_ill		conn_multicast_ill
1063  * ipc_orig_bound_ifindex	conn_orig_bound_ifindex
1064  * ipc_orig_multicast_ifindex	conn_orig_multicast_ifindex
1065  * ipc_orig_xmit_ifindex	conn_orig_xmit_ifindex
1066  * ipc_drain_next		conn_drain_next
1067  * ipc_drain_prev		conn_drain_prev
1068  * ipc_idl			conn_idl
1069  */
1070 
1071 /*
1072  * This is used to match an inbound/outbound datagram with
1073  * policy.
1074  */
1075 
1076 typedef	struct ipsec_selector {
1077 	in6_addr_t	ips_local_addr_v6;
1078 	in6_addr_t	ips_remote_addr_v6;
1079 	uint16_t	ips_local_port;
1080 	uint16_t	ips_remote_port;
1081 	uint8_t		ips_icmp_type;
1082 	uint8_t		ips_icmp_code;
1083 	uint8_t		ips_protocol;
1084 	uint8_t		ips_isv4 : 1,
1085 			ips_is_icmp_inv_acq: 1;
1086 } ipsec_selector_t;
1087 
1088 /*
1089  * Note that we put v4 addresses in the *first* 32-bit word of the
1090  * selector rather than the last to simplify the prefix match/mask code
1091  * in spd.c
1092  */
1093 #define	ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0]
1094 #define	ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0]
1095 
1096 /* Values used in IP by IPSEC Code */
1097 #define		IPSEC_OUTBOUND		B_TRUE
1098 #define		IPSEC_INBOUND		B_FALSE
1099 
1100 /*
1101  * There are two variants in policy failures. The packet may come in
1102  * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not
1103  * have the desired level of protection (IPSEC_POLICY_MISMATCH).
1104  */
1105 #define	IPSEC_POLICY_NOT_NEEDED		0
1106 #define	IPSEC_POLICY_MISMATCH		1
1107 #define	IPSEC_POLICY_AUTH_NOT_NEEDED	2
1108 #define	IPSEC_POLICY_ENCR_NOT_NEEDED	3
1109 #define	IPSEC_POLICY_SE_NOT_NEEDED	4
1110 #define	IPSEC_POLICY_MAX		5	/* Always max + 1. */
1111 
1112 /*
1113  * Folowing macro is used whenever the code does not know whether there
1114  * is a M_CTL present in the front and it needs to examine the actual mp
1115  * i.e the IP header. As a M_CTL message could be in the front, this
1116  * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL
1117  * mp is not present, both first_mp and mp point to the same message.
1118  */
1119 #define	EXTRACT_PKT_MP(mp, first_mp, mctl_present)	\
1120 	(first_mp) = (mp);				\
1121 	if ((mp)->b_datap->db_type == M_CTL) {		\
1122 		(mp) = (mp)->b_cont;			\
1123 		(mctl_present) = B_TRUE;		\
1124 	} else {					\
1125 		(mctl_present) = B_FALSE;		\
1126 	}
1127 
1128 /*
1129  * Check with IPSEC inbound policy if
1130  *
1131  * 1) per-socket policy is present - indicated by conn_in_enforce_policy.
1132  * 2) Or if we have not cached policy on the conn and the global policy is
1133  *    non-empty.
1134  */
1135 #define	CONN_INBOUND_POLICY_PRESENT(connp, ipss)	\
1136 	((connp)->conn_in_enforce_policy ||		\
1137 	(!((connp)->conn_policy_cached) && 		\
1138 	(ipss)->ipsec_inbound_v4_policy_present))
1139 
1140 #define	CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)	\
1141 	((connp)->conn_in_enforce_policy ||		\
1142 	(!(connp)->conn_policy_cached &&		\
1143 	(ipss)->ipsec_inbound_v6_policy_present))
1144 
1145 #define	CONN_OUTBOUND_POLICY_PRESENT(connp, ipss)	\
1146 	((connp)->conn_out_enforce_policy ||		\
1147 	(!((connp)->conn_policy_cached) &&		\
1148 	(ipss)->ipsec_outbound_v4_policy_present))
1149 
1150 #define	CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss)	\
1151 	((connp)->conn_out_enforce_policy ||		\
1152 	(!(connp)->conn_policy_cached &&		\
1153 	(ipss)->ipsec_outbound_v6_policy_present))
1154 
1155 /*
1156  * Information cached in IRE for upper layer protocol (ULP).
1157  *
1158  * Notice that ire_max_frag is not included in the iulp_t structure, which
1159  * it may seem that it should.  But ire_max_frag cannot really be cached.  It
1160  * is fixed for each interface.  For MTU found by PMTUd, we may want to cache
1161  * it.  But currently, we do not do that.
1162  */
1163 typedef struct iulp_s {
1164 	boolean_t	iulp_set;	/* Is any metric set? */
1165 	uint32_t	iulp_ssthresh;	/* Slow start threshold (TCP). */
1166 	clock_t		iulp_rtt;	/* Guestimate in millisecs. */
1167 	clock_t		iulp_rtt_sd;	/* Cached value of RTT variance. */
1168 	uint32_t	iulp_spipe;	/* Send pipe size. */
1169 	uint32_t	iulp_rpipe;	/* Receive pipe size. */
1170 	uint32_t	iulp_rtomax;	/* Max round trip timeout. */
1171 	uint32_t	iulp_sack;	/* Use SACK option (TCP)? */
1172 	uint32_t
1173 		iulp_tstamp_ok : 1,	/* Use timestamp option (TCP)? */
1174 		iulp_wscale_ok : 1,	/* Use window scale option (TCP)? */
1175 		iulp_ecn_ok : 1,	/* Enable ECN (for TCP)? */
1176 		iulp_pmtud_ok : 1,	/* Enable PMTUd? */
1177 
1178 		iulp_not_used : 28;
1179 } iulp_t;
1180 
1181 /* Zero iulp_t. */
1182 extern const iulp_t ire_uinfo_null;
1183 
1184 /*
1185  * The conn drain list structure.
1186  * The list is protected by idl_lock. Each conn_t inserted in the list
1187  * points back at this idl_t using conn_idl. IP primes the draining of the
1188  * conns queued in these lists, by qenabling the 1st conn of each list. This
1189  * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance
1190  * of ip_wsrv successively qenables the next conn in the list.
1191  * idl_lock protects all other members of idl_t and conn_drain_next
1192  * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED
1193  * flag of the conn_t and conn_idl.
1194  */
1195 typedef struct idl_s {
1196 	conn_t		*idl_conn;		/* Head of drain list */
1197 	kmutex_t	idl_lock;		/* Lock for this list */
1198 	conn_t		*idl_conn_draining;	/* conn that is draining */
1199 	uint32_t
1200 		idl_repeat : 1,			/* Last conn must re-enable */
1201 						/* drain list again */
1202 		idl_unused : 31;
1203 } idl_t;
1204 
1205 #define	CONN_DRAIN_LIST_LOCK(connp)	(&((connp)->conn_idl->idl_lock))
1206 /*
1207  * Interface route structure which holds the necessary information to recreate
1208  * routes that are tied to an interface (namely where ire_ipif != NULL).
1209  * These routes which were initially created via a routing socket or via the
1210  * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be
1211  * traditional interface routes.  When an interface comes back up after being
1212  * marked down, this information will be used to recreate the routes.  These
1213  * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp).
1214  */
1215 typedef struct ifrt_s {
1216 	ushort_t	ifrt_type;		/* Type of IRE */
1217 	in6_addr_t	ifrt_v6addr;		/* Address IRE represents. */
1218 	in6_addr_t	ifrt_v6gateway_addr;	/* Gateway if IRE_OFFSUBNET */
1219 	in6_addr_t	ifrt_v6src_addr;	/* Src addr if RTF_SETSRC */
1220 	in6_addr_t	ifrt_v6mask;		/* Mask for matching IRE. */
1221 	uint32_t	ifrt_flags;		/* flags related to route */
1222 	uint_t		ifrt_max_frag;		/* MTU (next hop or path). */
1223 	iulp_t		ifrt_iulp_info;		/* Cached IRE ULP info. */
1224 } ifrt_t;
1225 
1226 #define	ifrt_addr		V4_PART_OF_V6(ifrt_v6addr)
1227 #define	ifrt_gateway_addr	V4_PART_OF_V6(ifrt_v6gateway_addr)
1228 #define	ifrt_src_addr		V4_PART_OF_V6(ifrt_v6src_addr)
1229 #define	ifrt_mask		V4_PART_OF_V6(ifrt_v6mask)
1230 
1231 /* Number of IP addresses that can be hosted on a physical interface */
1232 #define	MAX_ADDRS_PER_IF	8192
1233 /*
1234  * Number of Source addresses to be considered for source address
1235  * selection. Used by ipif_select_source[_v6].
1236  */
1237 #define	MAX_IPIF_SELECT_SOURCE	50
1238 
1239 #ifdef IP_DEBUG
1240 /*
1241  * Tracing refholds and refreleases for debugging. Existing tracing mechanisms
1242  * do not allow the granularity need to trace refrences to ipif/ill/ire's. This
1243  * mechanism should be revisited once dtrace is available.
1244  */
1245 #define	IP_STACK_DEPTH	15
1246 typedef struct tr_buf_s {
1247 	int	tr_depth;
1248 	pc_t	tr_stack[IP_STACK_DEPTH];
1249 } tr_buf_t;
1250 
1251 typedef struct th_trace_s {
1252 	struct	th_trace_s *th_next;
1253 	struct	th_trace_s **th_prev;
1254 	kthread_t	*th_id;
1255 	int	th_refcnt;
1256 	uint_t	th_trace_lastref;
1257 #define	TR_BUF_MAX	38
1258 	tr_buf_t th_trbuf[TR_BUF_MAX];
1259 } th_trace_t;
1260 #endif
1261 
1262 /* The following are ipif_state_flags */
1263 #define	IPIF_CONDEMNED		0x1	/* The ipif is being removed */
1264 #define	IPIF_CHANGING		0x2	/* A critcal ipif field is changing */
1265 #define	IPIF_MOVING		0x8	/* The ipif is being moved */
1266 #define	IPIF_SET_LINKLOCAL	0x10	/* transient flag during bringup */
1267 #define	IPIF_ZERO_SOURCE	0x20	/* transient flag during bringup */
1268 
1269 /* IP interface structure, one per local address */
1270 typedef struct ipif_s {
1271 	struct	ipif_s	*ipif_next;
1272 	struct	ill_s	*ipif_ill;	/* Back pointer to our ill */
1273 	int	ipif_id;		/* Logical unit number */
1274 	uint_t	ipif_mtu;		/* Starts at ipif_ill->ill_max_frag */
1275 	uint_t	ipif_saved_mtu;		/* Save of mtu during ipif_move() */
1276 	in6_addr_t ipif_v6lcl_addr;	/* Local IP address for this if. */
1277 	in6_addr_t ipif_v6src_addr;	/* Source IP address for this if. */
1278 	in6_addr_t ipif_v6subnet;	/* Subnet prefix for this if. */
1279 	in6_addr_t ipif_v6net_mask;	/* Net mask for this interface. */
1280 	in6_addr_t ipif_v6brd_addr;	/* Broadcast addr for this interface. */
1281 	in6_addr_t ipif_v6pp_dst_addr;	/* Point-to-point dest address. */
1282 	uint64_t ipif_flags;		/* Interface flags. */
1283 	uint_t	ipif_metric;		/* BSD if metric, for compatibility. */
1284 	uint_t	ipif_ire_type;		/* IRE_LOCAL or IRE_LOOPBACK */
1285 	mblk_t	*ipif_arp_del_mp;	/* Allocated at time arp comes up, to */
1286 					/* prevent awkward out of mem */
1287 					/* condition later */
1288 	mblk_t	*ipif_saved_ire_mp;	/* Allocated for each extra */
1289 					/* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */
1290 					/* on this interface so that they */
1291 					/* can survive ifconfig down. */
1292 	kmutex_t ipif_saved_ire_lock;	/* Protects ipif_saved_ire_mp */
1293 
1294 	mrec_t	*ipif_igmp_rpt;		/* List of group memberships which */
1295 					/* will be reported on.  Used when */
1296 					/* handling an igmp timeout.	   */
1297 
1298 	/*
1299 	 * The packet counts in the ipif contain the sum of the
1300 	 * packet counts in dead IREs that were affiliated with
1301 	 * this ipif.
1302 	 */
1303 	uint_t	ipif_fo_pkt_count;	/* Forwarded thru our dead IREs */
1304 	uint_t	ipif_ib_pkt_count;	/* Inbound packets for our dead IREs */
1305 	uint_t	ipif_ob_pkt_count;	/* Outbound packets to our dead IREs */
1306 	/* Exclusive bit fields, protected by ipsq_t */
1307 	unsigned int
1308 		ipif_multicast_up : 1,	/* We have joined the allhosts group */
1309 		ipif_solmcast_up : 1,	/* We joined solicited node mcast */
1310 		ipif_replace_zero : 1,	/* Replacement for zero */
1311 		ipif_was_up : 1,	/* ipif was up before */
1312 
1313 		ipif_addr_ready : 1,	/* DAD is done */
1314 		ipif_was_dup : 1,	/* DAD had failed */
1315 		ipif_pad_to_31 : 26;
1316 
1317 	int	ipif_orig_ifindex;	/* ifindex before SLIFFAILOVER */
1318 	uint_t	ipif_seqid;		/* unique index across all ills */
1319 	uint_t	ipif_orig_ipifid;	/* ipif_id before SLIFFAILOVER */
1320 	uint_t	ipif_state_flags;	/* See IPIF_* flag defs above */
1321 	uint_t	ipif_refcnt;		/* active consistent reader cnt */
1322 	uint_t	ipif_ire_cnt;		/* Number of ire's referencing ipif */
1323 	uint_t	ipif_saved_ire_cnt;
1324 	zoneid_t
1325 		ipif_zoneid;		/* zone ID number */
1326 	timeout_id_t ipif_recovery_id;	/* Timer for DAD recovery */
1327 #ifdef ILL_DEBUG
1328 #define	IP_TR_HASH_MAX	64
1329 	th_trace_t *ipif_trace[IP_TR_HASH_MAX];
1330 	boolean_t	ipif_trace_disable;	/* True when alloc fails */
1331 #endif
1332 } ipif_t;
1333 
1334 /*
1335  * The following table lists the protection levels of the various members
1336  * of the ipif_t. The following notation is used.
1337  *
1338  * Write once - Written to only once at the time of bringing up
1339  * the interface and can be safely read after the bringup without any lock.
1340  *
1341  * ipsq - Need to execute in the ipsq to perform the indicated access.
1342  *
1343  * ill_lock - Need to hold this mutex to perform the indicated access.
1344  *
1345  * ill_g_lock - Need to hold this rw lock as reader/writer for read access or
1346  * write access respectively.
1347  *
1348  * down ill - Written to only when the ill is down (i.e all ipifs are down)
1349  * up ill - Read only when the ill is up (i.e. at least 1 ipif is up)
1350  *
1351  *		 Table of ipif_t members and their protection
1352  *
1353  * ipif_next		ill_g_lock		ill_g_lock
1354  * ipif_ill		ipsq + down ipif	write once
1355  * ipif_id		ipsq + down ipif	write once
1356  * ipif_mtu		ipsq
1357  * ipif_v6lcl_addr	ipsq + down ipif	up ipif
1358  * ipif_v6src_addr	ipsq + down ipif	up ipif
1359  * ipif_v6subnet	ipsq + down ipif	up ipif
1360  * ipif_v6net_mask	ipsq + down ipif	up ipif
1361  *
1362  * ipif_v6brd_addr
1363  * ipif_v6pp_dst_addr
1364  * ipif_flags		ill_lock		ill_lock
1365  * ipif_metric
1366  * ipif_ire_type	ipsq + down ill		up ill
1367  *
1368  * ipif_arp_del_mp	ipsq			ipsq
1369  * ipif_saved_ire_mp	ipif_saved_ire_lock	ipif_saved_ire_lock
1370  * ipif_igmp_rpt	ipsq			ipsq
1371  *
1372  * ipif_fo_pkt_count	Approx
1373  * ipif_ib_pkt_count	Approx
1374  * ipif_ob_pkt_count	Approx
1375  *
1376  * bit fields		ill_lock		ill_lock
1377  *
1378  * ipif_orig_ifindex	ipsq			None
1379  * ipif_orig_ipifid	ipsq			None
1380  * ipif_seqid		ipsq			Write once
1381  *
1382  * ipif_state_flags	ill_lock		ill_lock
1383  * ipif_refcnt		ill_lock		ill_lock
1384  * ipif_ire_cnt		ill_lock		ill_lock
1385  * ipif_saved_ire_cnt
1386  */
1387 
1388 #define	IP_TR_HASH(tid)	((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1))
1389 
1390 #ifdef ILL_DEBUG
1391 #define	IPIF_TRACE_REF(ipif)	ipif_trace_ref(ipif)
1392 #define	ILL_TRACE_REF(ill)	ill_trace_ref(ill)
1393 #define	IPIF_UNTRACE_REF(ipif)	ipif_untrace_ref(ipif)
1394 #define	ILL_UNTRACE_REF(ill)	ill_untrace_ref(ill)
1395 #define	ILL_TRACE_CLEANUP(ill)	ill_trace_cleanup(ill)
1396 #define	IPIF_TRACE_CLEANUP(ipif)	ipif_trace_cleanup(ipif)
1397 #else
1398 #define	IPIF_TRACE_REF(ipif)
1399 #define	ILL_TRACE_REF(ill)
1400 #define	IPIF_UNTRACE_REF(ipif)
1401 #define	ILL_UNTRACE_REF(ill)
1402 #define	ILL_TRACE_CLEANUP(ill)
1403 #define	IPIF_TRACE_CLEANUP(ipif)
1404 #endif
1405 
1406 /* IPv4 compatability macros */
1407 #define	ipif_lcl_addr		V4_PART_OF_V6(ipif_v6lcl_addr)
1408 #define	ipif_src_addr		V4_PART_OF_V6(ipif_v6src_addr)
1409 #define	ipif_subnet		V4_PART_OF_V6(ipif_v6subnet)
1410 #define	ipif_net_mask		V4_PART_OF_V6(ipif_v6net_mask)
1411 #define	ipif_brd_addr		V4_PART_OF_V6(ipif_v6brd_addr)
1412 #define	ipif_pp_dst_addr	V4_PART_OF_V6(ipif_v6pp_dst_addr)
1413 
1414 /* Macros for easy backreferences to the ill. */
1415 #define	ipif_wq			ipif_ill->ill_wq
1416 #define	ipif_rq			ipif_ill->ill_rq
1417 #define	ipif_net_type		ipif_ill->ill_net_type
1418 #define	ipif_resolver_mp	ipif_ill->ill_resolver_mp
1419 #define	ipif_ipif_up_count	ipif_ill->ill_ipif_up_count
1420 #define	ipif_bcast_mp		ipif_ill->ill_bcast_mp
1421 #define	ipif_type		ipif_ill->ill_type
1422 #define	ipif_isv6		ipif_ill->ill_isv6
1423 
1424 #define	SIOCLIFADDR_NDX 112	/* ndx of SIOCLIFADDR in the ndx ioctl table */
1425 
1426 /*
1427  * mode value for ip_ioctl_finish for finishing an ioctl
1428  */
1429 #define	CONN_CLOSE	1		/* No mi_copy */
1430 #define	COPYOUT		2		/* do an mi_copyout if needed */
1431 #define	NO_COPYOUT	3		/* do an mi_copy_done */
1432 #define	IPI2MODE(ipi)	((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT)
1433 
1434 /*
1435  * The IP-MT design revolves around the serialization object ipsq_t.
1436  * It is associated with an IPMP group. If IPMP is not enabled, there is
1437  * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream
1438  *
1439  * ipsq_lock protects
1440  *	ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail,
1441  *	ipsq_mphead, ipsq_mptail, ipsq_split
1442  *
1443  *	ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags,
1444  *	ipsq_waitfor
1445  *
1446  * The fields in the last line above below are set mostly by a writer thread
1447  * But there is an exception in the last call to ipif_ill_refrele_tail which
1448  * could also race with a conn close which could be cleaning up the
1449  * fields. So we choose to protect using ipsq_lock instead of depending on
1450  * the property of the writer.
1451  * ill_g_lock protects
1452  *	ipsq_refs, ipsq_phyint_list
1453  */
1454 typedef struct ipsq_s {
1455 	kmutex_t ipsq_lock;
1456 	int	ipsq_reentry_cnt;
1457 	kthread_t *ipsq_writer;		/* current owner (thread id) */
1458 	int	ipsq_flags;
1459 	mblk_t	*ipsq_xopq_mphead;	/* list of excl ops mostly ioctls */
1460 	mblk_t	*ipsq_xopq_mptail;
1461 	mblk_t	*ipsq_mphead;		/* msgs on ipsq linked thru b_next */
1462 	mblk_t	*ipsq_mptail;		/* msgs on ipsq linked thru b_next */
1463 	int	ipsq_current_ioctl;	/* current ioctl, or 0 if no ioctl */
1464 	ipif_t	*ipsq_current_ipif;	/* ipif associated with current op */
1465 	ipif_t	*ipsq_pending_ipif;	/* ipif associated w. ipsq_pending_mp */
1466 	mblk_t	*ipsq_pending_mp;	/* current ioctl mp while waiting for */
1467 					/* response from another module */
1468 	struct	ipsq_s	*ipsq_next;	/* list of all syncq's (ipsq_g_list) */
1469 	uint_t		ipsq_refs;	/* Number of phyints on this ipsq */
1470 	struct phyint	*ipsq_phyint_list; /* List of phyints on this ipsq */
1471 	boolean_t	ipsq_split;	/* ipsq may need to be split */
1472 	int		ipsq_waitfor;	/* Values encoded below */
1473 	char		ipsq_name[LIFNAMSIZ+1];	/* same as phyint_groupname */
1474 
1475 #ifdef ILL_DEBUG
1476 	int		ipsq_depth;	/* debugging aid */
1477 	pc_t		ipsq_stack[IP_STACK_DEPTH];	/* debugging aid */
1478 #endif
1479 	ip_stack_t	*ipsq_ipst;	/* Does not have a netstack_hold */
1480 } ipsq_t;
1481 
1482 /* ipsq_flags */
1483 #define	IPSQ_GROUP	0x1	/* This ipsq belongs to an IPMP group */
1484 
1485 /*
1486  * ipsq_waitfor:
1487  *
1488  * IPIF_DOWN	1	ipif_down waiting for refcnts to drop
1489  * ILL_DOWN	2	ill_down waiting for refcnts to drop
1490  * IPIF_FREE	3	ipif_free waiting for refcnts to drop
1491  * ILL_FREE	4	ill unplumb waiting for refcnts to drop
1492  * ILL_MOVE_OK	5	failover waiting for refcnts to drop
1493  */
1494 
1495 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK };
1496 
1497 /* Flags passed to ipsq_try_enter */
1498 #define	CUR_OP 0		/* Current ioctl continuing again */
1499 #define	NEW_OP 1		/* New ioctl starting afresh */
1500 
1501 /*
1502  * phyint represents state that is common to both IPv4 and IPv6 interfaces.
1503  * There is a separate ill_t representing IPv4 and IPv6 which has a
1504  * backpointer to the phyint structure for acessing common state.
1505  *
1506  * NOTE : It just stores the group name as there is only one name for
1507  *	  IPv4 and IPv6 i.e it is a underlying link property. Actually
1508  *        IPv4 and IPv6 ill are grouped together when their phyints have
1509  *        the same name.
1510  */
1511 typedef struct phyint {
1512 	struct ill_s	*phyint_illv4;
1513 	struct ill_s	*phyint_illv6;
1514 	uint_t		phyint_ifindex;		/* SIOCLSLIFINDEX */
1515 	uint_t		phyint_notify_delay;	/* SIOCSLIFNOTIFYDELAY */
1516 	char		*phyint_groupname;	/* SIOCSLIFGROUPNAME */
1517 	uint_t		phyint_groupname_len;
1518 	uint64_t	phyint_flags;
1519 	avl_node_t	phyint_avl_by_index;	/* avl tree by index */
1520 	avl_node_t	phyint_avl_by_name;	/* avl tree by name */
1521 	kmutex_t	phyint_lock;
1522 	struct ipsq_s	*phyint_ipsq;		/* back pointer to ipsq */
1523 	struct phyint	*phyint_ipsq_next;	/* phyint list on this ipsq */
1524 } phyint_t;
1525 
1526 #define	CACHE_ALIGN_SIZE 64
1527 
1528 #define	CACHE_ALIGN(align_struct)	P2ROUNDUP(sizeof (struct align_struct),\
1529 							CACHE_ALIGN_SIZE)
1530 struct _phyint_list_s_ {
1531 	avl_tree_t	phyint_list_avl_by_index;	/* avl tree by index */
1532 	avl_tree_t	phyint_list_avl_by_name;	/* avl tree by name */
1533 };
1534 
1535 typedef union phyint_list_u {
1536 	struct	_phyint_list_s_ phyint_list_s;
1537 	char	phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)];
1538 } phyint_list_t;
1539 
1540 #define	phyint_list_avl_by_index	phyint_list_s.phyint_list_avl_by_index
1541 #define	phyint_list_avl_by_name		phyint_list_s.phyint_list_avl_by_name
1542 /*
1543  * ILL groups. We group ills,
1544  *
1545  * - if the ills have the same group name. (New way)
1546  *
1547  * ill_group locking notes:
1548  *
1549  * illgrp_lock protects ill_grp_ill_schednext.
1550  *
1551  * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count.
1552  * Holding ill_g_lock freezes the memberships of ills in IPMP groups.
1553  * It also freezes the global list of ills and all ipifs in all ills.
1554  *
1555  * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail
1556  * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the
1557  * global list of ills, ill_delete_glist holds ill_g_lock as writer.
1558  * This simplifies things for ipif_select_source, illgrp_scheduler etc.
1559  * that need to walk the members of an illgrp. They just hold ill_g_lock
1560  * as reader to do the walk.
1561  *
1562  */
1563 typedef	struct ill_group {
1564 	kmutex_t	illgrp_lock;
1565 	struct ill_group *illgrp_next;		/* Next ill_group */
1566 	struct ill_s	*illgrp_ill_schednext;	/* Next ill to be scheduled */
1567 	struct ill_s	*illgrp_ill;		/* First ill in the group */
1568 	int		illgrp_ill_count;
1569 } ill_group_t;
1570 
1571 /*
1572  * Fragmentation hash bucket
1573  */
1574 typedef struct ipfb_s {
1575 	struct ipf_s	*ipfb_ipf;	/* List of ... */
1576 	size_t		ipfb_count;	/* Count of bytes used by frag(s) */
1577 	kmutex_t	ipfb_lock;	/* Protect all ipf in list */
1578 	uint_t		ipfb_frag_pkts; /* num of distinct fragmented pkts */
1579 } ipfb_t;
1580 
1581 /*
1582  * IRE bucket structure. Usually there is an array of such structures,
1583  * each pointing to a linked list of ires. irb_refcnt counts the number
1584  * of walkers of a given hash bucket. Usually the reference count is
1585  * bumped up if the walker wants no IRES to be DELETED while walking the
1586  * list. Bumping up does not PREVENT ADDITION. This allows walking a given
1587  * hash bucket without stumbling up on a free pointer.
1588  *
1589  * irb_t structures in ip_ftable are dynamically allocated and freed.
1590  * In order to identify the irb_t structures that can be safely kmem_free'd
1591  * we need to ensure that
1592  *  - the irb_refcnt is quiescent, indicating no other walkers,
1593  *  - no other threads or ire's are holding references to the irb,
1594  *	i.e., irb_nire == 0,
1595  *  - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0
1596  */
1597 typedef struct irb {
1598 	struct ire_s	*irb_ire;	/* First ire in this bucket */
1599 					/* Should be first in this struct */
1600 	krwlock_t	irb_lock;	/* Protect this bucket */
1601 	uint_t		irb_refcnt;	/* Protected by irb_lock */
1602 	uchar_t		irb_marks;	/* CONDEMNED ires in this bucket ? */
1603 #define	IRB_MARK_CONDEMNED	0x0001
1604 #define	IRB_MARK_FTABLE		0x0002
1605 	uint_t		irb_ire_cnt;	/* Num of active IRE in this bucket */
1606 	uint_t		irb_tmp_ire_cnt; /* Num of temporary IRE */
1607 	struct ire_s	*irb_rr_origin;	/* origin for round-robin */
1608 	int		irb_nire;	/* Num of ftable ire's that ref irb */
1609 	ip_stack_t	*irb_ipst;	/* Does not have a netstack_hold */
1610 } irb_t;
1611 
1612 #define	IRB2RT(irb)	(rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb))
1613 
1614 /* The following are return values of ip_xmit_v4() */
1615 typedef enum {
1616 	SEND_PASSED = 0,	 /* sent packet out on wire */
1617 	SEND_FAILED,	 /* sending of packet failed */
1618 	LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */
1619 	LLHDR_RESLV_FAILED  /* macaddr resl of onlink dst or nexthop failed */
1620 } ipxmit_state_t;
1621 
1622 #define	IP_V4_G_HEAD	0
1623 #define	IP_V6_G_HEAD	1
1624 
1625 #define	MAX_G_HEADS	2
1626 
1627 /*
1628  * unpadded ill_if structure
1629  */
1630 struct 	_ill_if_s_ {
1631 	union ill_if_u	*illif_next;
1632 	union ill_if_u	*illif_prev;
1633 	avl_tree_t	illif_avl_by_ppa;	/* AVL tree sorted on ppa */
1634 	vmem_t		*illif_ppa_arena;	/* ppa index space */
1635 	uint16_t	illif_mcast_v1;		/* hints for		  */
1636 	uint16_t	illif_mcast_v2;		/* [igmp|mld]_slowtimo	  */
1637 	int		illif_name_len;		/* name length */
1638 	char		illif_name[LIFNAMSIZ];	/* name of interface type */
1639 };
1640 
1641 /* cache aligned ill_if structure */
1642 typedef union 	ill_if_u {
1643 	struct  _ill_if_s_ ill_if_s;
1644 	char 	illif_filler[CACHE_ALIGN(_ill_if_s_)];
1645 } ill_if_t;
1646 
1647 #define	illif_next		ill_if_s.illif_next
1648 #define	illif_prev		ill_if_s.illif_prev
1649 #define	illif_avl_by_ppa	ill_if_s.illif_avl_by_ppa
1650 #define	illif_ppa_arena		ill_if_s.illif_ppa_arena
1651 #define	illif_mcast_v1		ill_if_s.illif_mcast_v1
1652 #define	illif_mcast_v2		ill_if_s.illif_mcast_v2
1653 #define	illif_name		ill_if_s.illif_name
1654 #define	illif_name_len		ill_if_s.illif_name_len
1655 
1656 typedef struct ill_walk_context_s {
1657 	int	ctx_current_list; /* current list being searched */
1658 	int	ctx_last_list;	 /* last list to search */
1659 } ill_walk_context_t;
1660 
1661 /*
1662  * ill_g_heads structure, one for IPV4 and one for IPV6
1663  */
1664 struct _ill_g_head_s_ {
1665 	ill_if_t	*ill_g_list_head;
1666 	ill_if_t	*ill_g_list_tail;
1667 };
1668 
1669 typedef union ill_g_head_u {
1670 	struct _ill_g_head_s_ ill_g_head_s;
1671 	char	ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)];
1672 } ill_g_head_t;
1673 
1674 #define	ill_g_list_head	ill_g_head_s.ill_g_list_head
1675 #define	ill_g_list_tail	ill_g_head_s.ill_g_list_tail
1676 
1677 #define	IP_V4_ILL_G_LIST(ipst)	\
1678 	(ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head
1679 #define	IP_V6_ILL_G_LIST(ipst)	\
1680 	(ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head
1681 #define	IP_VX_ILL_G_LIST(i, ipst)	\
1682 	(ipst)->ips_ill_g_heads[i].ill_g_list_head
1683 
1684 #define	ILL_START_WALK_V4(ctx_ptr, ipst)	\
1685 	ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst)
1686 #define	ILL_START_WALK_V6(ctx_ptr, ipst)	\
1687 	ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst)
1688 #define	ILL_START_WALK_ALL(ctx_ptr, ipst)	\
1689 	ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst)
1690 
1691 /*
1692  * Capabilities, possible flags for ill_capabilities.
1693  */
1694 
1695 #define	ILL_CAPAB_AH		0x01		/* IPsec AH acceleration */
1696 #define	ILL_CAPAB_ESP		0x02		/* IPsec ESP acceleration */
1697 #define	ILL_CAPAB_MDT		0x04		/* Multidata Transmit */
1698 #define	ILL_CAPAB_HCKSUM	0x08		/* Hardware checksumming */
1699 #define	ILL_CAPAB_ZEROCOPY	0x10		/* Zero-copy */
1700 #define	ILL_CAPAB_POLL		0x20		/* Polling Toggle */
1701 #define	ILL_CAPAB_SOFT_RING	0x40		/* Soft_Ring capability */
1702 #define	ILL_CAPAB_LSO		0x80		/* Large Segment Offload */
1703 
1704 /*
1705  * Per-ill Multidata Transmit capabilities.
1706  */
1707 typedef struct ill_mdt_capab_s ill_mdt_capab_t;
1708 
1709 /*
1710  * Per-ill IPsec capabilities.
1711  */
1712 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t;
1713 
1714 /*
1715  * Per-ill Hardware Checksumming capbilities.
1716  */
1717 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t;
1718 
1719 /*
1720  * Per-ill Zero-copy capabilities.
1721  */
1722 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t;
1723 
1724 /*
1725  * Per-ill Polling/soft ring capbilities.
1726  */
1727 typedef struct ill_dls_capab_s ill_dls_capab_t;
1728 
1729 /*
1730  * Per-ill polling resource map.
1731  */
1732 typedef struct ill_rx_ring ill_rx_ring_t;
1733 
1734 /*
1735  * Per-ill Large Segment Offload capabilities.
1736  */
1737 typedef struct ill_lso_capab_s ill_lso_capab_t;
1738 
1739 /* The following are ill_state_flags */
1740 #define	ILL_LL_SUBNET_PENDING	0x01	/* Waiting for DL_INFO_ACK from drv */
1741 #define	ILL_CONDEMNED		0x02	/* No more new ref's to the ILL */
1742 #define	ILL_CHANGING		0x04	/* ILL not globally visible */
1743 #define	ILL_DL_UNBIND_IN_PROGRESS	0x08	/* UNBIND_REQ is sent */
1744 #define	ILL_SOFT_RING_ASSIGN	0x10	/* Makeing soft ring assigment */
1745 
1746 /* Is this an ILL whose source address is used by other ILL's ? */
1747 #define	IS_USESRC_ILL(ill)			\
1748 	(((ill)->ill_usesrc_ifindex == 0) &&	\
1749 	((ill)->ill_usesrc_grp_next != NULL))
1750 
1751 /* Is this a client/consumer of the usesrc ILL ? */
1752 #define	IS_USESRC_CLI_ILL(ill)			\
1753 	(((ill)->ill_usesrc_ifindex != 0) &&	\
1754 	((ill)->ill_usesrc_grp_next != NULL))
1755 
1756 /* Is this an virtual network interface (vni) ILL ? */
1757 #define	IS_VNI(ill)							     \
1758 	(((ill) != NULL) &&						     \
1759 	(((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \
1760 	PHYI_VIRTUAL))
1761 
1762 /*
1763  * IP Lower level Structure.
1764  * Instance data structure in ip_open when there is a device below us.
1765  */
1766 typedef struct ill_s {
1767 	ill_if_t *ill_ifptr;		/* pointer to interface type */
1768 	queue_t	*ill_rq;		/* Read queue. */
1769 	queue_t	*ill_wq;		/* Write queue. */
1770 
1771 	int	ill_error;		/* Error value sent up by device. */
1772 
1773 	ipif_t	*ill_ipif;		/* Interface chain for this ILL. */
1774 
1775 	uint_t	ill_ipif_up_count;	/* Number of IPIFs currently up. */
1776 	uint_t	ill_max_frag;		/* Max IDU from DLPI. */
1777 	char	*ill_name;		/* Our name. */
1778 	uint_t	ill_ipif_dup_count;	/* Number of duplicate addresses. */
1779 	uint_t	ill_name_length;	/* Name length, incl. terminator. */
1780 	char	*ill_ndd_name;		/* Name + ":ip?_forwarding" for NDD. */
1781 	uint_t	ill_net_type;		/* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */
1782 	/*
1783 	 * Physical Point of Attachment num.  If DLPI style 1 provider
1784 	 * then this is derived from the devname.
1785 	 */
1786 	uint_t	ill_ppa;
1787 	t_uscalar_t	ill_sap;
1788 	t_scalar_t	ill_sap_length;	/* Including sign (for position) */
1789 	uint_t	ill_phys_addr_length;	/* Excluding the sap. */
1790 	uint_t	ill_bcast_addr_length;	/* Only set when the DL provider */
1791 					/* supports broadcast. */
1792 	t_uscalar_t	ill_mactype;
1793 	uint8_t	*ill_frag_ptr;		/* Reassembly state. */
1794 	timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */
1795 	ipfb_t	*ill_frag_hash_tbl;	/* Fragment hash list head. */
1796 	ipif_t	*ill_pending_ipif;	/* IPIF waiting for DL operation. */
1797 
1798 	ilm_t	*ill_ilm;		/* Multicast mebership for lower ill */
1799 	uint_t	ill_global_timer;	/* for IGMPv3/MLDv2 general queries */
1800 	int	ill_mcast_type;		/* type of router which is querier */
1801 					/* on this interface */
1802 	uint16_t ill_mcast_v1_time;	/* # slow timeouts since last v1 qry */
1803 	uint16_t ill_mcast_v2_time;	/* # slow timeouts since last v2 qry */
1804 	uint8_t	ill_mcast_v1_tset;	/* 1 => timer is set; 0 => not set */
1805 	uint8_t	ill_mcast_v2_tset;	/* 1 => timer is set; 0 => not set */
1806 
1807 	uint8_t	ill_mcast_rv;		/* IGMPv3/MLDv2 robustness variable */
1808 	int	ill_mcast_qi;		/* IGMPv3/MLDv2 query interval var */
1809 
1810 	mblk_t	*ill_pending_mp;	/* IOCTL/DLPI awaiting completion. */
1811 	/*
1812 	 * All non-NULL cells between 'ill_first_mp_to_free' and
1813 	 * 'ill_last_mp_to_free' are freed in ill_delete.
1814 	 */
1815 #define	ill_first_mp_to_free	ill_bcast_mp
1816 	mblk_t	*ill_bcast_mp;		/* DLPI header for broadcasts. */
1817 	mblk_t	*ill_resolver_mp;	/* Resolver template. */
1818 	mblk_t	*ill_detach_mp;		/* detach mp, or NULL if style1 */
1819 	mblk_t	*ill_unbind_mp;		/* unbind mp from ill_dl_up() */
1820 	mblk_t	*ill_dlpi_deferred;	/* b_next chain of control messages */
1821 	mblk_t	*ill_phys_addr_mp;	/* mblk which holds ill_phys_addr */
1822 #define	ill_last_mp_to_free	ill_phys_addr_mp
1823 
1824 	cred_t	*ill_credp;		/* opener's credentials */
1825 	uint8_t	*ill_phys_addr;		/* ill_phys_addr_mp->b_rptr + off */
1826 
1827 	uint_t	ill_state_flags;	/* see ILL_* flags above */
1828 
1829 	/* Following bit fields protected by ipsq_t */
1830 	uint_t
1831 		ill_needs_attach : 1,
1832 		ill_reserved : 1,
1833 		ill_isv6 : 1,
1834 		ill_dlpi_style_set : 1,
1835 
1836 		ill_ifname_pending : 1,
1837 		ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */
1838 		ill_join_allmulti : 1,
1839 		ill_logical_down : 1,
1840 
1841 		ill_is_6to4tun : 1,	/* Interface is a 6to4 tunnel */
1842 		ill_promisc_on_phys : 1, /* phys interface in promisc mode */
1843 		ill_dl_up : 1,
1844 		ill_up_ipifs : 1,
1845 
1846 		ill_note_link : 1,	/* supports link-up notification */
1847 
1848 		ill_pad_to_bit_31 : 19;
1849 
1850 	/* Following bit fields protected by ill_lock */
1851 	uint_t
1852 		ill_fragtimer_executing : 1,
1853 		ill_fragtimer_needrestart : 1,
1854 		ill_ilm_cleanup_reqd : 1,
1855 		ill_arp_closing : 1,
1856 
1857 		ill_arp_bringup_pending : 1,
1858 		ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */
1859 		ill_arp_extend : 1,	/* ARP has DAD extensions */
1860 		ill_pad_bit_31 : 25;
1861 
1862 	/*
1863 	 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'.
1864 	 */
1865 	int	ill_arp_muxid;		/* muxid returned from plink for arp */
1866 	int	ill_ip_muxid;		/* muxid returned from plink for ip */
1867 
1868 	/*
1869 	 * NIC event information attached, to be used by nic event hooks.
1870 	 */
1871 	hook_nic_event_t	*ill_nic_event_info;
1872 
1873 	/*
1874 	 * Used for IP frag reassembly throttling on a per ILL basis.
1875 	 *
1876 	 * Note: frag_count is approximate, its added to and subtracted from
1877 	 *	 without any locking, so simultaneous load/modify/stores can
1878 	 *	 collide, also ill_frag_purge() recalculates its value by
1879 	 *	 summing all the ipfb_count's without locking out updates
1880 	 *	 to the ipfb's.
1881 	 */
1882 	uint_t	ill_ipf_gen;		/* Generation of next fragment queue */
1883 	uint_t	ill_frag_count;		/* Approx count of all mblk bytes */
1884 	uint_t	ill_frag_free_num_pkts;	 /* num of fragmented packets to free */
1885 	clock_t	ill_last_frag_clean_time; /* time when frag's were pruned */
1886 	int	ill_type;		/* From <net/if_types.h> */
1887 	uint_t	ill_dlpi_multicast_state;	/* See below IDS_* */
1888 	uint_t	ill_dlpi_fastpath_state;	/* See below IDS_* */
1889 
1890 	/*
1891 	 * Capabilities related fields.
1892 	 */
1893 	uint_t  ill_dlpi_capab_state;	/* State of capability query, IDS_* */
1894 	uint64_t ill_capabilities;	/* Enabled capabilities, ILL_CAPAB_* */
1895 	ill_mdt_capab_t	*ill_mdt_capab;	/* Multidata Transmit capabilities */
1896 	ill_ipsec_capab_t *ill_ipsec_capab_ah;	/* IPsec AH capabilities */
1897 	ill_ipsec_capab_t *ill_ipsec_capab_esp;	/* IPsec ESP capabilities */
1898 	ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */
1899 	ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */
1900 	ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */
1901 	ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */
1902 
1903 	/*
1904 	 * New fields for IPv6
1905 	 */
1906 	uint8_t	ill_max_hops;	/* Maximum hops for any logical interface */
1907 	uint_t	ill_max_mtu;	/* Maximum MTU for any logical interface */
1908 	uint32_t ill_reachable_time;	/* Value for ND algorithm in msec */
1909 	uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */
1910 	uint_t	ill_max_buf;		/* Max # of req to buffer for ND */
1911 	in6_addr_t	ill_token;
1912 	uint_t		ill_token_length;
1913 	uint32_t	ill_xmit_count;		/* ndp max multicast xmits */
1914 	mib2_ipIfStatsEntry_t	*ill_ip_mib;	/* ver indep. interface mib */
1915 	mib2_ipv6IfIcmpEntry_t	*ill_icmp6_mib;	/* Per interface mib */
1916 	/*
1917 	 * Following two mblks are allocated common to all
1918 	 * the ipifs when the first interface is coming up.
1919 	 * It is sent up to arp when the last ipif is coming
1920 	 * down.
1921 	 */
1922 	mblk_t			*ill_arp_down_mp;
1923 	mblk_t			*ill_arp_del_mapping_mp;
1924 	/*
1925 	 * Used for implementing IFF_NOARP. As IFF_NOARP is used
1926 	 * to turn off for all the logicals, it is here instead
1927 	 * of the ipif.
1928 	 */
1929 	mblk_t			*ill_arp_on_mp;
1930 	/* Peer ill of an IPMP move operation */
1931 	struct ill_s		*ill_move_peer;
1932 
1933 	phyint_t		*ill_phyint;
1934 	uint64_t		ill_flags;
1935 	ill_group_t		*ill_group;
1936 	struct ill_s		*ill_group_next;
1937 	/*
1938 	 * Reverse tunnel related count. This count
1939 	 * determines how many mobile nodes are using this
1940 	 * ill to send packet to reverse tunnel via foreign
1941 	 * agent. A non-zero count specifies presence of
1942 	 * mobile node(s) using reverse tunnel through this
1943 	 * interface.
1944 	 */
1945 	uint32_t		ill_mrtun_refcnt;
1946 
1947 	/*
1948 	 * This count is bumped up when a route is added with
1949 	 * RTA_SRCIFP bit flag using routing socket.
1950 	 */
1951 	uint32_t		ill_srcif_refcnt;
1952 	/*
1953 	 * Pointer to the special interface based routing table.
1954 	 * This routing table is created dynamically when RTA_SRCIFP
1955 	 * is set by the routing socket.
1956 	 */
1957 	irb_t			*ill_srcif_table;
1958 	kmutex_t	ill_lock;	/* Please see table below */
1959 	/*
1960 	 * The ill_nd_lla* fields handle the link layer address option
1961 	 * from neighbor discovery. This is used for external IPv6
1962 	 * address resolution.
1963 	 */
1964 	mblk_t		*ill_nd_lla_mp;	/* mblk which holds ill_nd_lla */
1965 	uint8_t		*ill_nd_lla;	/* Link Layer Address */
1966 	uint_t		ill_nd_lla_len;	/* Link Layer Address length */
1967 	/*
1968 	 * We now have 3 phys_addr_req's sent down. This field keeps track
1969 	 * of which one is pending.
1970 	 */
1971 	t_uscalar_t	ill_phys_addr_pend; /* which dl_phys_addr_req pending */
1972 	/*
1973 	 * Used to save errors that occur during plumbing
1974 	 */
1975 	uint_t		ill_ifname_pending_err;
1976 	avl_node_t	ill_avl_byppa; /* avl node based on ppa */
1977 	void		*ill_fastpath_list; /* both ire and nce hang off this */
1978 	uint_t		ill_refcnt;	/* active refcnt by threads */
1979 	uint_t		ill_ire_cnt;	/* ires associated with this ill */
1980 	kcondvar_t	ill_cv;
1981 	uint_t		ill_ilm_walker_cnt;	/* snmp ilm walkers */
1982 	uint_t		ill_nce_cnt;	/* nces associated with this ill */
1983 	uint_t		ill_waiters;	/* threads waiting in ipsq_enter */
1984 	/*
1985 	 * Contains the upper read queue pointer of the module immediately
1986 	 * beneath IP.  This field allows IP to validate sub-capability
1987 	 * acknowledgments coming up from downstream.
1988 	 */
1989 	queue_t		*ill_lmod_rq;	/* read queue pointer of module below */
1990 	uint_t		ill_lmod_cnt;	/* number of modules beneath IP */
1991 	ip_m_t		*ill_media;	/* media specific params/functions */
1992 	t_uscalar_t	ill_dlpi_pending; /* Last DLPI primitive issued */
1993 	uint_t		ill_usesrc_ifindex; /* use src addr from this ILL */
1994 	struct ill_s	*ill_usesrc_grp_next; /* Next ILL in the usesrc group */
1995 #ifdef ILL_DEBUG
1996 	th_trace_t	*ill_trace[IP_TR_HASH_MAX];
1997 	boolean_t	ill_trace_disable;	/* True when alloc fails */
1998 #endif
1999 	zoneid_t	ill_zoneid;
2000 	ip_stack_t	*ill_ipst;	/* Corresponds to a netstack_hold */
2001 } ill_t;
2002 
2003 extern	void	ill_delete_glist(ill_t *);
2004 
2005 /*
2006  * The following table lists the protection levels of the various members
2007  * of the ill_t. Same notation as that used for ipif_t above is used.
2008  *
2009  *				Write			Read
2010  *
2011  * ill_ifptr			ill_g_lock + s		Write once
2012  * ill_rq			ipsq			Write once
2013  * ill_wq			ipsq			Write once
2014  *
2015  * ill_error			ipsq			None
2016  * ill_ipif			ill_g_lock + ipsq	ill_g_lock OR ipsq
2017  * ill_ipif_up_count		ill_lock + ipsq		ill_lock
2018  * ill_max_frag			ipsq			Write once
2019  *
2020  * ill_name			ill_g_lock + ipsq	Write once
2021  * ill_name_length		ill_g_lock + ipsq	Write once
2022  * ill_ndd_name			ipsq			Write once
2023  * ill_net_type			ipsq			Write once
2024  * ill_ppa			ill_g_lock + ipsq	Write once
2025  * ill_sap			ipsq + down ill		Write once
2026  * ill_sap_length		ipsq + down ill		Write once
2027  * ill_phys_addr_length		ipsq + down ill		Write once
2028  *
2029  * ill_bcast_addr_length	ipsq			ipsq
2030  * ill_mactype			ipsq			ipsq
2031  * ill_frag_ptr			ipsq			ipsq
2032  *
2033  * ill_frag_timer_id		ill_lock		ill_lock
2034  * ill_frag_hash_tbl		ipsq			up ill
2035  * ill_ilm			ipsq + ill_lock		ill_lock
2036  * ill_mcast_type		ill_lock		ill_lock
2037  * ill_mcast_v1_time		ill_lock		ill_lock
2038  * ill_mcast_v2_time		ill_lock		ill_lock
2039  * ill_mcast_v1_tset		ill_lock		ill_lock
2040  * ill_mcast_v2_tset		ill_lock		ill_lock
2041  * ill_mcast_rv			ill_lock		ill_lock
2042  * ill_mcast_qi			ill_lock		ill_lock
2043  * ill_pending_mp		ill_lock		ill_lock
2044  *
2045  * ill_bcast_mp			ipsq			ipsq
2046  * ill_resolver_mp		ipsq			only when ill is up
2047  * ill_down_mp			ipsq			ipsq
2048  * ill_dlpi_deferred		ipsq			ipsq
2049  * ill_dlpi_pending		ipsq and ill_lock	ipsq or ill_lock
2050  * ill_phys_addr_mp		ipsq + down ill		only when ill is up
2051  * ill_phys_addr		ipsq + down ill		only when ill is up
2052  *
2053  * ill_state_flags		ill_lock		ill_lock
2054  * exclusive bit flags		ipsq_t			ipsq_t
2055  * shared bit flags		ill_lock		ill_lock
2056  *
2057  * ill_arp_muxid		ipsq			Not atomic
2058  * ill_ip_muxid			ipsq			Not atomic
2059  *
2060  * ill_ipf_gen			Not atomic
2061  * ill_frag_count		Approx. not protected
2062  * ill_type			ipsq + down ill		only when ill is up
2063  * ill_dlpi_multicast_state	ill_lock		ill_lock
2064  * ill_dlpi_fastpath_state	ill_lock		ill_lock
2065  * ill_max_hops			ipsq			Not atomic
2066  *
2067  * ill_max_mtu
2068  *
2069  * ill_reachable_time		ipsq + ill_lock		ill_lock
2070  * ill_reachable_retrans_time	ipsq + ill_lock		ill_lock
2071  * ill_max_buf			ipsq + ill_lock		ill_lock
2072  *
2073  * Next 2 fields need ill_lock because of the get ioctls. They should not
2074  * report partially updated results without executing in the ipsq.
2075  * ill_token			ipsq + ill_lock		ill_lock
2076  * ill_token_length		ipsq + ill_lock		ill_lock
2077  * ill_xmit_count		ipsq + down ill		write once
2078  * ill_ip6_mib			ipsq + down ill		only when ill is up
2079  * ill_icmp6_mib		ipsq + down ill		only when ill is up
2080  * ill_arp_down_mp		ipsq			ipsq
2081  * ill_arp_del_mapping_mp	ipsq			ipsq
2082  * ill_arp_on_mp		ipsq			ipsq
2083  * ill_move_peer		ipsq			ipsq
2084  *
2085  * ill_phyint			ipsq, ill_g_lock, ill_lock	Any of them
2086  * ill_flags			ill_lock		ill_lock
2087  * ill_group			ipsq, ill_g_lock, ill_lock	Any of them
2088  * ill_group_next		ipsq, ill_g_lock, ill_lock	Any of them
2089  * ill_mrtun_refcnt		ill_lock		ill_lock
2090  * ill_srcif_refcnt		ill_lock		ill_lock
2091  * ill_srcif_table		ill_lock		ill_lock
2092  * ill_nd_lla_mp		ipsq + down ill		only when ill is up
2093  * ill_nd_lla			ipsq + down ill		only when ill is up
2094  * ill_nd_lla_len		ipsq + down ill		only when ill is up
2095  * ill_phys_addr_pend		ipsq + down ill		only when ill is up
2096  * ill_ifname_pending_err	ipsq			ipsq
2097  * ill_avl_byppa		ipsq, ill_g_lock	write once
2098  *
2099  * ill_fastpath_list		ill_lock		ill_lock
2100  * ill_refcnt			ill_lock		ill_lock
2101  * ill_ire_cnt			ill_lock		ill_lock
2102  * ill_cv			ill_lock		ill_lock
2103  * ill_ilm_walker_cnt		ill_lock		ill_lock
2104  * ill_nce_cnt			ill_lock		ill_lock
2105  * ill_trace			ill_lock		ill_lock
2106  * ill_usesrc_grp_next		ill_g_usesrc_lock	ill_g_usesrc_lock
2107  */
2108 
2109 /*
2110  * For ioctl restart mechanism see ip_reprocess_ioctl()
2111  */
2112 struct ip_ioctl_cmd_s;
2113 
2114 typedef	int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *,
2115     struct ip_ioctl_cmd_s *, void *);
2116 
2117 typedef struct ip_ioctl_cmd_s {
2118 	int	ipi_cmd;
2119 	size_t	ipi_copyin_size;
2120 	uint_t	ipi_flags;
2121 	uint_t	ipi_cmd_type;
2122 	ifunc_t	ipi_func;
2123 	ifunc_t	ipi_func_restart;
2124 } ip_ioctl_cmd_t;
2125 
2126 /*
2127  * ipi_cmd_type:
2128  *
2129  * IF_CMD		1	old style ifreq cmd
2130  * LIF_CMD		2	new style lifreq cmd
2131  * MISC_CMD		3	Misc. (non [l]ifreq, tun) cmds
2132  * TUN_CMD		4	tunnel related
2133  */
2134 
2135 enum { IF_CMD = 1, LIF_CMD, MISC_CMD, TUN_CMD };
2136 
2137 #define	IPI_DONTCARE	0	/* For ioctl encoded values that don't matter */
2138 
2139 /* Flag values in ipi_flags */
2140 #define	IPI_PRIV	0x1		/* Root only command */
2141 #define	IPI_MODOK	0x2		/* Permitted on mod instance of IP */
2142 #define	IPI_WR		0x4		/* Need to grab writer access */
2143 #define	IPI_GET_CMD	0x8		/* branch to mi_copyout on success */
2144 #define	IPI_REPL	0x10	/* valid for replacement ipif created in MOVE */
2145 #define	IPI_NULL_BCONT	0x20	/* ioctl has not data and hence no b_cont */
2146 #define	IPI_PASS_DOWN	0x40	/* pass this ioctl down when a module only */
2147 
2148 extern ip_ioctl_cmd_t	ip_ndx_ioctl_table[];
2149 extern ip_ioctl_cmd_t	ip_misc_ioctl_table[];
2150 extern int ip_ndx_ioctl_count;
2151 extern int ip_misc_ioctl_count;
2152 
2153 #define	ILL_CLEAR_MOVE(ill) {				\
2154 	ill_t *peer_ill;				\
2155 							\
2156 	peer_ill = (ill)->ill_move_peer;		\
2157 	ASSERT(peer_ill != NULL);			\
2158 	(ill)->ill_move_in_progress = B_FALSE;		\
2159 	peer_ill->ill_move_in_progress = B_FALSE;	\
2160 	(ill)->ill_move_peer = NULL;			\
2161 	peer_ill->ill_move_peer = NULL;			\
2162 }
2163 
2164 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */
2165 typedef struct ipmx_s {
2166 	char	ipmx_name[LIFNAMSIZ];		/* if name */
2167 	uint_t
2168 		ipmx_arpdev_stream : 1,		/* This is the arp stream */
2169 		ipmx_notused : 31;
2170 } ipmx_t;
2171 
2172 /*
2173  * State for detecting if a driver supports certain features.
2174  * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state.
2175  * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state.
2176  * Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state.
2177  */
2178 #define	IDS_UNKNOWN	0	/* No DLPI request sent */
2179 #define	IDS_INPROGRESS	1	/* DLPI request sent */
2180 #define	IDS_OK		2	/* DLPI request completed successfully */
2181 #define	IDS_FAILED	3	/* DLPI request failed */
2182 #define	IDS_RENEG	4	/* Driver asked for a renegotiation */
2183 
2184 /* Named Dispatch Parameter Management Structure */
2185 typedef struct ipparam_s {
2186 	uint_t	ip_param_min;
2187 	uint_t	ip_param_max;
2188 	uint_t	ip_param_value;
2189 	char	*ip_param_name;
2190 } ipparam_t;
2191 
2192 /* Extended NDP Management Structure */
2193 typedef struct ipndp_s {
2194 	ndgetf_t	ip_ndp_getf;
2195 	ndsetf_t	ip_ndp_setf;
2196 	caddr_t		ip_ndp_data;
2197 	char		*ip_ndp_name;
2198 } ipndp_t;
2199 
2200 /*
2201  * The kernel stores security attributes of all gateways in a database made
2202  * up of one or more tsol_gcdb_t elements.  Each tsol_gcdb_t contains the
2203  * security-related credentials of the gateway.  More than one gateways may
2204  * share entries in the database.
2205  *
2206  * The tsol_gc_t structure represents the gateway to credential association,
2207  * and refers to an entry in the database.  One or more tsol_gc_t entities are
2208  * grouped together to form one or more tsol_gcgrp_t, each representing the
2209  * list of security attributes specific to the gateway.  A gateway may be
2210  * associated with at most one credentials group.
2211  */
2212 struct tsol_gcgrp_s;
2213 
2214 extern uchar_t	ip6opt_ls;	/* TX IPv6 enabler */
2215 
2216 /*
2217  * Gateway security credential record.
2218  */
2219 typedef struct tsol_gcdb_s {
2220 	uint_t		gcdb_refcnt;	/* reference count */
2221 	struct rtsa_s	gcdb_attr;	/* security attributes */
2222 #define	gcdb_mask	gcdb_attr.rtsa_mask
2223 #define	gcdb_doi	gcdb_attr.rtsa_doi
2224 #define	gcdb_slrange	gcdb_attr.rtsa_slrange
2225 } tsol_gcdb_t;
2226 
2227 /*
2228  * Gateway to credential association.
2229  */
2230 typedef struct tsol_gc_s {
2231 	uint_t		gc_refcnt;	/* reference count */
2232 	struct tsol_gcgrp_s *gc_grp;	/* pointer to group */
2233 	struct tsol_gc_s *gc_prev;	/* previous in list */
2234 	struct tsol_gc_s *gc_next;	/* next in list */
2235 	tsol_gcdb_t	*gc_db;		/* pointer to actual credentials */
2236 } tsol_gc_t;
2237 
2238 /*
2239  * Gateway credentials group address.
2240  */
2241 typedef struct tsol_gcgrp_addr_s {
2242 	int		ga_af;		/* address family */
2243 	in6_addr_t	ga_addr;	/* IPv4 mapped or IPv6 address */
2244 } tsol_gcgrp_addr_t;
2245 
2246 /*
2247  * Gateway credentials group.
2248  */
2249 typedef struct tsol_gcgrp_s {
2250 	uint_t		gcgrp_refcnt;	/* reference count */
2251 	krwlock_t	gcgrp_rwlock;	/* lock to protect following */
2252 	uint_t		gcgrp_count;	/* number of credentials */
2253 	tsol_gc_t	*gcgrp_head;	/* first credential in list */
2254 	tsol_gc_t	*gcgrp_tail;	/* last credential in list */
2255 	tsol_gcgrp_addr_t gcgrp_addr;	/* next-hop gateway address */
2256 } tsol_gcgrp_t;
2257 
2258 extern kmutex_t gcgrp_lock;
2259 
2260 #define	GC_REFRELE(p) {				\
2261 	ASSERT((p)->gc_grp != NULL);		\
2262 	rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \
2263 	ASSERT((p)->gc_refcnt > 0);		\
2264 	if (--((p)->gc_refcnt) == 0)		\
2265 		gc_inactive(p);			\
2266 	else					\
2267 		rw_exit(&(p)->gc_grp->gcgrp_rwlock); \
2268 }
2269 
2270 #define	GCGRP_REFHOLD(p) {			\
2271 	mutex_enter(&gcgrp_lock);		\
2272 	++((p)->gcgrp_refcnt);			\
2273 	ASSERT((p)->gcgrp_refcnt != 0);		\
2274 	mutex_exit(&gcgrp_lock);		\
2275 }
2276 
2277 #define	GCGRP_REFRELE(p) {			\
2278 	mutex_enter(&gcgrp_lock);		\
2279 	ASSERT((p)->gcgrp_refcnt > 0);		\
2280 	if (--((p)->gcgrp_refcnt) == 0)		\
2281 		gcgrp_inactive(p);		\
2282 	ASSERT(MUTEX_HELD(&gcgrp_lock));	\
2283 	mutex_exit(&gcgrp_lock);		\
2284 }
2285 
2286 /*
2287  * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr
2288  */
2289 struct tsol_tnrhc;
2290 
2291 typedef struct tsol_ire_gw_secattr_s {
2292 	kmutex_t	igsa_lock;	/* lock to protect following */
2293 	struct tsol_tnrhc *igsa_rhc;	/* host entry for gateway */
2294 	tsol_gc_t	*igsa_gc;	/* for prefix IREs */
2295 	tsol_gcgrp_t	*igsa_gcgrp;	/* for cache IREs */
2296 } tsol_ire_gw_secattr_t;
2297 
2298 /*
2299  * Following are the macros to increment/decrement the reference
2300  * count of the IREs and IRBs (ire bucket).
2301  *
2302  * 1) We bump up the reference count of an IRE to make sure that
2303  *    it does not get deleted and freed while we are using it.
2304  *    Typically all the lookup functions hold the bucket lock,
2305  *    and look for the IRE. If it finds an IRE, it bumps up the
2306  *    reference count before dropping the lock. Sometimes we *may* want
2307  *    to bump up the reference count after we *looked* up i.e without
2308  *    holding the bucket lock. So, the IRE_REFHOLD macro does not assert
2309  *    on the bucket lock being held. Any thread trying to delete from
2310  *    the hash bucket can still do so but cannot free the IRE if
2311  *    ire_refcnt is not 0.
2312  *
2313  * 2) We bump up the reference count on the bucket where the IRE resides
2314  *    (IRB), when we want to prevent the IREs getting deleted from a given
2315  *    hash bucket. This makes life easier for ire_walk type functions which
2316  *    wants to walk the IRE list, call a function, but needs to drop
2317  *    the bucket lock to prevent recursive rw_enters. While the
2318  *    lock is dropped, the list could be changed by other threads or
2319  *    the same thread could end up deleting the ire or the ire pointed by
2320  *    ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as
2321  *    a delete will still remove the ire from the bucket while we have
2322  *    dropped the lock and hence the ire_next would be NULL. Thus, we
2323  *    need a mechanism to prevent deletions from a given bucket.
2324  *
2325  *    To prevent deletions, we bump up the reference count on the
2326  *    bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED
2327  *    both on the ire's ire_marks and the bucket's irb_marks. When the
2328  *    reference count on the bucket drops to zero, all the CONDEMNED ires
2329  *    are deleted. We don't have to bump up the reference count on the
2330  *    bucket if we are walking the bucket and never have to drop the bucket
2331  *    lock. Note that IRB_REFHOLD does not prevent addition of new ires
2332  *    in the list. It is okay because addition of new ires will not cause
2333  *    ire_next to point to freed memory. We do IRB_REFHOLD only when
2334  *    all of the 3 conditions are true :
2335  *
2336  *    1) The code needs to walk the IRE bucket from start to end.
2337  *    2) It may have to drop the bucket lock sometimes while doing (1)
2338  *    3) It does not want any ires to be deleted meanwhile.
2339  */
2340 
2341 /*
2342  * Bump up the reference count on the IRE. We cannot assert that the
2343  * bucket lock is being held as it is legal to bump up the reference
2344  * count after the first lookup has returned the IRE without
2345  * holding the lock. Currently ip_wput does this for caching IRE_CACHEs.
2346  */
2347 
2348 #ifndef IRE_DEBUG
2349 
2350 #define	IRE_REFHOLD_NOTR(ire)	IRE_REFHOLD(ire)
2351 #define	IRE_UNTRACE_REF(ire)
2352 #define	IRE_TRACE_REF(ire)
2353 
2354 #else
2355 
2356 #define	IRE_REFHOLD_NOTR(ire) {				\
2357 	atomic_add_32(&(ire)->ire_refcnt, 1);		\
2358 	ASSERT((ire)->ire_refcnt != 0);			\
2359 }
2360 
2361 #define	IRE_UNTRACE_REF(ire)	ire_untrace_ref(ire);
2362 #define	IRE_TRACE_REF(ire)	ire_trace_ref(ire);
2363 #endif
2364 
2365 #define	IRE_REFHOLD(ire) {				\
2366 	atomic_add_32(&(ire)->ire_refcnt, 1);		\
2367 	ASSERT((ire)->ire_refcnt != 0);			\
2368 	IRE_TRACE_REF(ire);				\
2369 }
2370 
2371 #define	IRE_REFHOLD_LOCKED(ire)	{			\
2372 	IRE_TRACE_REF(ire);				\
2373 	(ire)->ire_refcnt++;				\
2374 }
2375 
2376 /*
2377  * Decrement the reference count on the IRE.
2378  * In architectures e.g sun4u, where atomic_add_32_nv is just
2379  * a cas, we need to maintain the right memory barrier semantics
2380  * as that of mutex_exit i.e all the loads and stores should complete
2381  * before the cas is executed. membar_exit() does that here.
2382  *
2383  * NOTE : This macro is used only in places where we want performance.
2384  *	  To avoid bloating the code, we use the function "ire_refrele"
2385  *	  which essentially calls the macro.
2386  */
2387 #ifndef IRE_DEBUG
2388 #define	IRE_REFRELE(ire) {					\
2389 	ASSERT((ire)->ire_refcnt != 0);				\
2390 	membar_exit();						\
2391 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2392 		ire_inactive(ire);				\
2393 }
2394 #define	IRE_REFRELE_NOTR(ire)	IRE_REFRELE(ire)
2395 #else
2396 #define	IRE_REFRELE(ire) {					\
2397 	if (ire->ire_bucket != NULL)				\
2398 		ire_untrace_ref(ire);				\
2399 	ASSERT((ire)->ire_refcnt != 0);				\
2400 	membar_exit();						\
2401 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2402 		ire_inactive(ire);				\
2403 }
2404 #define	IRE_REFRELE_NOTR(ire) {				\
2405 	ASSERT((ire)->ire_refcnt != 0);				\
2406 	membar_exit();						\
2407 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2408 		ire_inactive(ire);				\
2409 }
2410 #endif
2411 
2412 /*
2413  * Bump up the reference count on the hash bucket - IRB to
2414  * prevent ires from being deleted in this bucket.
2415  */
2416 #define	IRB_REFHOLD(irb) {				\
2417 	rw_enter(&(irb)->irb_lock, RW_WRITER);		\
2418 	(irb)->irb_refcnt++;				\
2419 	ASSERT((irb)->irb_refcnt != 0);			\
2420 	rw_exit(&(irb)->irb_lock);			\
2421 }
2422 #define	IRB_REFHOLD_LOCKED(irb) {			\
2423 	ASSERT(RW_WRITE_HELD(&(irb)->irb_lock));	\
2424 	(irb)->irb_refcnt++;				\
2425 	ASSERT((irb)->irb_refcnt != 0);			\
2426 }
2427 
2428 void irb_refrele_ftable(irb_t *);
2429 /*
2430  * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t
2431  * is statically allocated, so that when the irb_refcnt goes to 0,
2432  * we simply clean up the ire list and continue.
2433  */
2434 #define	IRB_REFRELE(irb) {				\
2435 	if ((irb)->irb_marks & IRB_MARK_FTABLE) {	\
2436 		irb_refrele_ftable((irb));		\
2437 	} else {					\
2438 		rw_enter(&(irb)->irb_lock, RW_WRITER);		\
2439 		ASSERT((irb)->irb_refcnt != 0);			\
2440 		if (--(irb)->irb_refcnt	== 0 &&			\
2441 		    ((irb)->irb_marks & IRE_MARK_CONDEMNED)) {	\
2442 			ire_t *ire_list;			\
2443 								\
2444 			ire_list = ire_unlink(irb);		\
2445 			rw_exit(&(irb)->irb_lock);		\
2446 			ASSERT(ire_list != NULL);		\
2447 			ire_cleanup(ire_list);			\
2448 		} else {					\
2449 			rw_exit(&(irb)->irb_lock);		\
2450 		}						\
2451 	}							\
2452 }
2453 
2454 extern struct kmem_cache *rt_entry_cache;
2455 
2456 /*
2457  * Lock the fast path mp for access, since the fp_mp can be deleted
2458  * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST and IRE_MIPRTUN
2459  */
2460 
2461 #define	LOCK_IRE_FP_MP(ire) {				\
2462 		if ((ire)->ire_type == IRE_BROADCAST ||	\
2463 		    (ire)->ire_type == IRE_MIPRTUN)	\
2464 			mutex_enter(&ire->ire_nce->nce_lock);	\
2465 	}
2466 #define	UNLOCK_IRE_FP_MP(ire) {				\
2467 		if ((ire)->ire_type == IRE_BROADCAST ||	\
2468 		    (ire)->ire_type == IRE_MIPRTUN)	\
2469 			mutex_exit(&ire->ire_nce->nce_lock);	\
2470 	}
2471 
2472 typedef struct ire4 {
2473 	ipaddr_t ire4_src_addr;		/* Source address to use. */
2474 	ipaddr_t ire4_mask;		/* Mask for matching this IRE. */
2475 	ipaddr_t ire4_addr;		/* Address this IRE represents. */
2476 	ipaddr_t ire4_gateway_addr;	/* Gateway if IRE_CACHE/IRE_OFFSUBNET */
2477 	ipaddr_t ire4_cmask;		/* Mask from parent prefix route */
2478 } ire4_t;
2479 
2480 typedef struct ire6 {
2481 	in6_addr_t ire6_src_addr;	/* Source address to use. */
2482 	in6_addr_t ire6_mask;		/* Mask for matching this IRE. */
2483 	in6_addr_t ire6_addr;		/* Address this IRE represents. */
2484 	in6_addr_t ire6_gateway_addr;	/* Gateway if IRE_CACHE/IRE_OFFSUBNET */
2485 	in6_addr_t ire6_cmask;		/* Mask from parent prefix route */
2486 } ire6_t;
2487 
2488 typedef union ire_addr {
2489 	ire6_t	ire6_u;
2490 	ire4_t	ire4_u;
2491 } ire_addr_u_t;
2492 
2493 /* Internet Routing Entry */
2494 typedef struct ire_s {
2495 	struct	ire_s	*ire_next;	/* The hash chain must be first. */
2496 	struct	ire_s	**ire_ptpn;	/* Pointer to previous next. */
2497 	uint32_t	ire_refcnt;	/* Number of references */
2498 	mblk_t		*ire_mp;	/* Non-null if allocated as mblk */
2499 	queue_t		*ire_rfq;	/* recv from this queue */
2500 	queue_t		*ire_stq;	/* send to this queue */
2501 	union {
2502 		uint_t	*max_fragp;	/* Used only during ire creation */
2503 		uint_t	max_frag;	/* MTU (next hop or path). */
2504 	} imf_u;
2505 #define	ire_max_frag	imf_u.max_frag
2506 #define	ire_max_fragp	imf_u.max_fragp
2507 	uint32_t	ire_frag_flag;	/* IPH_DF or zero. */
2508 	uint32_t	ire_ident;	/* Per IRE IP ident. */
2509 	uint32_t	ire_tire_mark;	/* Used for reclaim of unused. */
2510 	uchar_t		ire_ipversion;	/* IPv4/IPv6 version */
2511 	uchar_t		ire_marks;	/* IRE_MARK_CONDEMNED etc. */
2512 	ushort_t	ire_type;	/* Type of IRE */
2513 	uint_t	ire_ib_pkt_count;	/* Inbound packets for ire_addr */
2514 	uint_t	ire_ob_pkt_count;	/* Outbound packets to ire_addr */
2515 	uint_t	ire_ll_hdr_length;	/* Non-zero if we do M_DATA prepends */
2516 	time_t	ire_create_time;	/* Time (in secs) IRE was created. */
2517 	uint32_t	ire_phandle;	/* Associate prefix IREs to cache */
2518 	uint32_t	ire_ihandle;	/* Associate interface IREs to cache */
2519 	ipif_t		*ire_ipif;	/* the interface that this ire uses */
2520 	uint32_t	ire_flags;	/* flags related to route (RTF_*) */
2521 	uint_t	ire_ipsec_overhead;	/* IPSEC overhead */
2522 	/*
2523 	 * Neighbor Cache Entry for IPv6; arp info for IPv4
2524 	 */
2525 	struct	nce_s	*ire_nce;
2526 	uint_t		ire_masklen;	/* # bits in ire_mask{,_v6} */
2527 	ire_addr_u_t	ire_u;		/* IPv4/IPv6 address info. */
2528 
2529 	irb_t		*ire_bucket;	/* Hash bucket when ire_ptphn is set */
2530 	iulp_t		ire_uinfo;	/* Upper layer protocol info. */
2531 	/*
2532 	 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag.
2533 	 */
2534 	kmutex_t	ire_lock;
2535 	uint_t		ire_ipif_seqid; /* ipif_seqid of ire_ipif */
2536 	/*
2537 	 * For regular routes in forwarding table and cache table the
2538 	 * the following entries are NULL/zero. Only reverse tunnel
2539 	 * table and interface based forwarding table use these fields.
2540 	 * Routes added with RTA_SRCIFP and RTA_SRC respectively have
2541 	 * non-zero values for the following fields.
2542 	 */
2543 	ill_t		*ire_in_ill;	/* Incoming ill interface */
2544 	ipaddr_t	ire_in_src_addr;
2545 					/* source ip-addr of incoming packet */
2546 	clock_t		ire_last_used_time;	/* Last used time */
2547 	tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */
2548 	zoneid_t	ire_zoneid;	/* for local address discrimination */
2549 	/*
2550 	 * ire's that are embedded inside mblk_t and sent to the external
2551 	 * resolver use the ire_stq_ifindex to track the ifindex of the
2552 	 * ire_stq, so that the ill (if it exists) can be correctly recovered
2553 	 * for cleanup in the esbfree routine when arp failure occurs
2554 	 */
2555 	uint_t	ire_stq_ifindex;
2556 	uint_t		ire_defense_count;	/* number of ARP conflicts */
2557 	uint_t		ire_defense_time;	/* last time defended (secs) */
2558 	ip_stack_t	*ire_ipst;	/* Does not have a netstack_hold */
2559 #ifdef IRE_DEBUG
2560 	th_trace_t	*ire_trace[IP_TR_HASH_MAX];
2561 	boolean_t	ire_trace_disable;	/* True when alloc fails */
2562 #endif
2563 } ire_t;
2564 
2565 /* IPv4 compatiblity macros */
2566 #define	ire_src_addr		ire_u.ire4_u.ire4_src_addr
2567 #define	ire_mask		ire_u.ire4_u.ire4_mask
2568 #define	ire_addr		ire_u.ire4_u.ire4_addr
2569 #define	ire_gateway_addr	ire_u.ire4_u.ire4_gateway_addr
2570 #define	ire_cmask		ire_u.ire4_u.ire4_cmask
2571 
2572 #define	ire_src_addr_v6		ire_u.ire6_u.ire6_src_addr
2573 #define	ire_mask_v6		ire_u.ire6_u.ire6_mask
2574 #define	ire_addr_v6		ire_u.ire6_u.ire6_addr
2575 #define	ire_gateway_addr_v6	ire_u.ire6_u.ire6_gateway_addr
2576 #define	ire_cmask_v6		ire_u.ire6_u.ire6_cmask
2577 
2578 /* Convenient typedefs for sockaddrs */
2579 typedef	struct sockaddr_in	sin_t;
2580 typedef	struct sockaddr_in6	sin6_t;
2581 
2582 /* Address structure used for internal bind with IP */
2583 typedef struct ipa_conn_s {
2584 	ipaddr_t	ac_laddr;
2585 	ipaddr_t	ac_faddr;
2586 	uint16_t	ac_fport;
2587 	uint16_t	ac_lport;
2588 } ipa_conn_t;
2589 
2590 typedef struct ipa6_conn_s {
2591 	in6_addr_t	ac6_laddr;
2592 	in6_addr_t	ac6_faddr;
2593 	uint16_t	ac6_fport;
2594 	uint16_t	ac6_lport;
2595 } ipa6_conn_t;
2596 
2597 /*
2598  * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's
2599  * bind handler.
2600  */
2601 typedef struct ipa_conn_extended_s {
2602 	uint64_t	acx_flags;
2603 	ipa_conn_t	acx_conn;
2604 } ipa_conn_x_t;
2605 
2606 typedef struct ipa6_conn_extended_s {
2607 	uint64_t	ac6x_flags;
2608 	ipa6_conn_t	ac6x_conn;
2609 } ipa6_conn_x_t;
2610 
2611 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */
2612 #define	ACX_VERIFY_DST	0x1ULL	/* verify destination address is reachable */
2613 
2614 /* Name/Value Descriptor. */
2615 typedef struct nv_s {
2616 	uint64_t nv_value;
2617 	char	*nv_name;
2618 } nv_t;
2619 
2620 /* IP Forwarding Ticket */
2621 typedef	struct ipftk_s {
2622 	queue_t	*ipftk_queue;
2623 	ipaddr_t ipftk_dst;
2624 } ipftk_t;
2625 
2626 typedef struct ipt_s {
2627 	pfv_t	func;		/* Routine to call */
2628 	uchar_t	*arg;		/* ire or nce passed in */
2629 } ipt_t;
2630 
2631 #define	ILL_FRAG_HASH(s, i) \
2632 	((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT)
2633 
2634 /*
2635  * The MAX number of allowed fragmented packets per hash bucket
2636  * calculation is based on the most common mtu size of 1500. This limit
2637  * will work well for other mtu sizes as well.
2638  */
2639 #define	COMMON_IP_MTU 1500
2640 #define	MAX_FRAG_MIN 10
2641 #define	MAX_FRAG_PKTS(ipst)	\
2642 	MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \
2643 	    (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT))))
2644 
2645 /*
2646  * Maximum dups allowed per packet.
2647  */
2648 extern uint_t ip_max_frag_dups;
2649 
2650 /*
2651  * Per-packet information for received packets and transmitted.
2652  * Used by the transport protocols when converting between the packet
2653  * and ancillary data and socket options.
2654  *
2655  * Note: This private data structure and related IPPF_* constant
2656  * definitions are exposed to enable compilation of some debugging tools
2657  * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be
2658  * a temporary hack and long term alternate interfaces should be defined
2659  * to support the needs of such tools and private definitions moved to
2660  * private headers.
2661  */
2662 struct ip6_pkt_s {
2663 	uint_t		ipp_fields;		/* Which fields are valid */
2664 	uint_t		ipp_sticky_ignored;	/* sticky fields to ignore */
2665 	uint_t		ipp_ifindex;		/* pktinfo ifindex */
2666 	in6_addr_t	ipp_addr;		/* pktinfo src/dst addr */
2667 	uint_t		ipp_unicast_hops;	/* IPV6_UNICAST_HOPS */
2668 	uint_t		ipp_multicast_hops;	/* IPV6_MULTICAST_HOPS */
2669 	uint_t		ipp_hoplimit;		/* IPV6_HOPLIMIT */
2670 	uint_t		ipp_hopoptslen;
2671 	uint_t		ipp_rtdstoptslen;
2672 	uint_t		ipp_rthdrlen;
2673 	uint_t		ipp_dstoptslen;
2674 	uint_t		ipp_pathmtulen;
2675 	uint_t		ipp_fraghdrlen;
2676 	ip6_hbh_t	*ipp_hopopts;
2677 	ip6_dest_t	*ipp_rtdstopts;
2678 	ip6_rthdr_t	*ipp_rthdr;
2679 	ip6_dest_t	*ipp_dstopts;
2680 	ip6_frag_t	*ipp_fraghdr;
2681 	struct ip6_mtuinfo *ipp_pathmtu;
2682 	in6_addr_t	ipp_nexthop;		/* Transmit only */
2683 	uint8_t		ipp_tclass;
2684 	int8_t		ipp_use_min_mtu;
2685 };
2686 typedef struct ip6_pkt_s ip6_pkt_t;
2687 
2688 extern void ip6_pkt_free(ip6_pkt_t *);	/* free storage inside ip6_pkt_t */
2689 
2690 /*
2691  * This struct is used by ULP_opt_set() functions to return value of IPv4
2692  * ancillary options. Currently this is only used by udp and icmp and only
2693  * IP_PKTINFO option is supported.
2694  */
2695 typedef struct ip4_pkt_s {
2696 	uint_t		ip4_ill_index;	/* interface index */
2697 	ipaddr_t	ip4_addr;	/* source address */
2698 } ip4_pkt_t;
2699 
2700 /*
2701  * Used by ULP's to pass options info to ip_output
2702  * currently only IP_PKTINFO is supported.
2703  */
2704 typedef struct ip_opt_info_s {
2705 	uint_t ip_opt_ill_index;
2706 	uint_t ip_opt_flags;
2707 } ip_opt_info_t;
2708 
2709 /*
2710  * value for ip_opt_flags
2711  */
2712 #define	IP_VERIFY_SRC	0x1
2713 
2714 /*
2715  * This structure is used to convey information from IP and the ULP.
2716  * Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options.
2717  * The type of information field is set to IN_PKTINFO (i.e inbound pkt info)
2718  */
2719 typedef struct ip_pktinfo {
2720 	uint32_t		ip_pkt_ulp_type;	/* type of info sent */
2721 	uint32_t		ip_pkt_flags;	/* what is sent up by IP */
2722 	uint32_t		ip_pkt_ifindex;	/* inbound interface index */
2723 	struct sockaddr_dl	ip_pkt_slla;	/* has source link layer addr */
2724 	struct in_addr		ip_pkt_match_addr; /* matched address */
2725 } ip_pktinfo_t;
2726 
2727 /*
2728  * flags to tell UDP what IP is sending; in_pkt_flags
2729  */
2730 #define	IPF_RECVIF	0x01	/* inbound interface index */
2731 #define	IPF_RECVSLLA	0x02	/* source link layer address */
2732 /*
2733  * Inbound interface index + matched address.
2734  * Used only by IPV4.
2735  */
2736 #define	IPF_RECVADDR	0x04
2737 
2738 /* ipp_fields values */
2739 #define	IPPF_IFINDEX	0x0001	/* Part of in6_pktinfo: ifindex */
2740 #define	IPPF_ADDR	0x0002	/* Part of in6_pktinfo: src/dst addr */
2741 #define	IPPF_SCOPE_ID	0x0004	/* Add xmit ip6i_t for sin6_scope_id */
2742 #define	IPPF_NO_CKSUM	0x0008	/* Add xmit ip6i_t for IP6I_NO_*_CKSUM */
2743 
2744 #define	IPPF_RAW_CKSUM	0x0010	/* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */
2745 #define	IPPF_HOPLIMIT	0x0020
2746 #define	IPPF_HOPOPTS	0x0040
2747 #define	IPPF_RTHDR	0x0080
2748 
2749 #define	IPPF_RTDSTOPTS	0x0100
2750 #define	IPPF_DSTOPTS	0x0200
2751 #define	IPPF_NEXTHOP	0x0400
2752 #define	IPPF_PATHMTU	0x0800
2753 
2754 #define	IPPF_TCLASS	0x1000
2755 #define	IPPF_DONTFRAG	0x2000
2756 #define	IPPF_USE_MIN_MTU	0x04000
2757 #define	IPPF_MULTICAST_HOPS	0x08000
2758 
2759 #define	IPPF_UNICAST_HOPS	0x10000
2760 #define	IPPF_FRAGHDR		0x20000
2761 
2762 #define	IPPF_HAS_IP6I \
2763 	(IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \
2764 	IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \
2765 	IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS)
2766 
2767 #define	TCP_PORTS_OFFSET	0
2768 #define	UDP_PORTS_OFFSET	0
2769 
2770 /*
2771  * lookups return the ill/ipif only if the flags are clear OR Iam writer.
2772  * ill / ipif lookup functions increment the refcnt on the ill / ipif only
2773  * after calling these macros. This ensures that the refcnt on the ipif or
2774  * ill will eventually drop down to zero.
2775  */
2776 #define	ILL_LOOKUP_FAILED	1	/* Used as error code */
2777 #define	IPIF_LOOKUP_FAILED	2	/* Used as error code */
2778 
2779 #define	ILL_CAN_LOOKUP(ill) 						\
2780 	(!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) ||	\
2781 	IAM_WRITER_ILL(ill))
2782 
2783 #define	ILL_CAN_WAIT(ill, q)	\
2784 	(((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED)))
2785 
2786 #define	ILL_CAN_LOOKUP_WALKER(ill)	\
2787 	(!((ill)->ill_state_flags & ILL_CONDEMNED))
2788 
2789 #define	IPIF_CAN_LOOKUP(ipif)						\
2790 	(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \
2791 	IAM_WRITER_IPIF(ipif))
2792 
2793 /*
2794  * If the parameter 'q' is NULL, the caller is not interested in wait and
2795  * restart of the operation if the ILL or IPIF cannot be looked up when it is
2796  * marked as 'CHANGING'. Typically a thread that tries to send out data  will
2797  * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and
2798  * in this case 'q' is NULL
2799  */
2800 #define	IPIF_CAN_WAIT(ipif, q)	\
2801 	(((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED)))
2802 
2803 #define	IPIF_CAN_LOOKUP_WALKER(ipif)					\
2804 	(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) ||		\
2805 	IAM_WRITER_IPIF(ipif))
2806 
2807 /*
2808  * These macros are used by critical set ioctls and failover ioctls to
2809  * mark the ipif appropriately before starting the operation and to clear the
2810  * marks after completing the operation.
2811  */
2812 #define	IPIF_UNMARK_MOVING(ipif)                                \
2813 	(ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING;
2814 
2815 #define	ILL_UNMARK_CHANGING(ill)                                \
2816 	(ill)->ill_state_flags &= ~ILL_CHANGING;
2817 
2818 /* Macros used to assert that this thread is a writer  */
2819 #define	IAM_WRITER_IPSQ(ipsq)	((ipsq)->ipsq_writer == curthread)
2820 #define	IAM_WRITER_ILL(ill)					\
2821 	((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread)
2822 #define	IAM_WRITER_IPIF(ipif)					\
2823 	((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread)
2824 
2825 /*
2826  * Grab ill locks in the proper order. The order is highest addressed
2827  * ill is locked first.
2828  */
2829 #define	GRAB_ILL_LOCKS(ill_1, ill_2)				\
2830 {								\
2831 	if ((ill_1) > (ill_2)) {				\
2832 		if (ill_1 != NULL)				\
2833 			mutex_enter(&(ill_1)->ill_lock);	\
2834 		if (ill_2 != NULL)				\
2835 			mutex_enter(&(ill_2)->ill_lock);	\
2836 	} else {						\
2837 		if (ill_2 != NULL)				\
2838 			mutex_enter(&(ill_2)->ill_lock);	\
2839 		if (ill_1 != NULL && ill_1 != ill_2)		\
2840 			mutex_enter(&(ill_1)->ill_lock);	\
2841 	}							\
2842 }
2843 
2844 #define	RELEASE_ILL_LOCKS(ill_1, ill_2)		\
2845 {						\
2846 	if (ill_1 != NULL)			\
2847 		mutex_exit(&(ill_1)->ill_lock);	\
2848 	if (ill_2 != NULL && ill_2 != ill_1)	\
2849 		mutex_exit(&(ill_2)->ill_lock);	\
2850 }
2851 
2852 /* Get the other protocol instance ill */
2853 #define	ILL_OTHER(ill)						\
2854 	((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 :	\
2855 	    (ill)->ill_phyint->phyint_illv6)
2856 
2857 #define	MATCH_V4_ONLY	0x1
2858 #define	MATCH_V6_ONLY	0x2
2859 #define	MATCH_ILL_ONLY	0x4
2860 
2861 /* ioctl command info: Ioctl properties extracted and stored in here */
2862 typedef struct cmd_info_s
2863 {
2864 	char    ci_groupname[LIFNAMSIZ + 1];	/* SIOCSLIFGROUPNAME */
2865 	ipif_t  *ci_ipif;	/* ipif associated with [l]ifreq ioctl's */
2866 	sin_t	*ci_sin;	/* the sin struct passed down */
2867 	sin6_t	*ci_sin6;	/* the sin6_t struct passed down */
2868 	struct lifreq *ci_lifr;	/* the lifreq struct passed down */
2869 } cmd_info_t;
2870 
2871 /*
2872  * List of AH and ESP IPsec acceleration capable ills
2873  */
2874 typedef struct ipsec_capab_ill_s {
2875 	uint_t ill_index;
2876 	boolean_t ill_isv6;
2877 	struct ipsec_capab_ill_s *next;
2878 } ipsec_capab_ill_t;
2879 
2880 extern struct kmem_cache *ire_cache;
2881 
2882 extern ipaddr_t	ip_g_all_ones;
2883 
2884 extern	uint_t	ip_loopback_mtu;	/* /etc/system */
2885 
2886 extern vmem_t *ip_minor_arena;
2887 
2888 /*
2889  * ip_g_forward controls IP forwarding.  It takes two values:
2890  *	0: IP_FORWARD_NEVER	Don't forward packets ever.
2891  *	1: IP_FORWARD_ALWAYS	Forward packets for elsewhere.
2892  *
2893  * RFC1122 says there must be a configuration switch to control forwarding,
2894  * but that the default MUST be to not forward packets ever.  Implicit
2895  * control based on configuration of multiple interfaces MUST NOT be
2896  * implemented (Section 3.1).  SunOS 4.1 did provide the "automatic" capability
2897  * and, in fact, it was the default.  That capability is now provided in the
2898  * /etc/rc2.d/S69inet script.
2899  */
2900 
2901 #define	ips_ip_respond_to_address_mask_broadcast ips_param_arr[0].ip_param_value
2902 #define	ips_ip_g_resp_to_echo_bcast	ips_param_arr[1].ip_param_value
2903 #define	ips_ip_g_resp_to_echo_mcast	ips_param_arr[2].ip_param_value
2904 #define	ips_ip_g_resp_to_timestamp	ips_param_arr[3].ip_param_value
2905 #define	ips_ip_g_resp_to_timestamp_bcast ips_param_arr[4].ip_param_value
2906 #define	ips_ip_g_send_redirects		ips_param_arr[5].ip_param_value
2907 #define	ips_ip_g_forward_directed_bcast	ips_param_arr[6].ip_param_value
2908 #define	ips_ip_debug			ips_param_arr[7].ip_param_value
2909 #define	ips_ip_mrtdebug			ips_param_arr[8].ip_param_value
2910 #define	ips_ip_timer_interval		ips_param_arr[9].ip_param_value
2911 #define	ips_ip_ire_arp_interval		ips_param_arr[10].ip_param_value
2912 #define	ips_ip_ire_redir_interval	ips_param_arr[11].ip_param_value
2913 #define	ips_ip_def_ttl			ips_param_arr[12].ip_param_value
2914 #define	ips_ip_forward_src_routed	ips_param_arr[13].ip_param_value
2915 #define	ips_ip_wroff_extra		ips_param_arr[14].ip_param_value
2916 #define	ips_ip_ire_pathmtu_interval	ips_param_arr[15].ip_param_value
2917 #define	ips_ip_icmp_return		ips_param_arr[16].ip_param_value
2918 #define	ips_ip_path_mtu_discovery	ips_param_arr[17].ip_param_value
2919 #define	ips_ip_ignore_delete_time	ips_param_arr[18].ip_param_value
2920 #define	ips_ip_ignore_redirect		ips_param_arr[19].ip_param_value
2921 #define	ips_ip_output_queue		ips_param_arr[20].ip_param_value
2922 #define	ips_ip_broadcast_ttl		ips_param_arr[21].ip_param_value
2923 #define	ips_ip_icmp_err_interval	ips_param_arr[22].ip_param_value
2924 #define	ips_ip_icmp_err_burst		ips_param_arr[23].ip_param_value
2925 #define	ips_ip_reass_queue_bytes	ips_param_arr[24].ip_param_value
2926 #define	ips_ip_strict_dst_multihoming	ips_param_arr[25].ip_param_value
2927 #define	ips_ip_addrs_per_if		ips_param_arr[26].ip_param_value
2928 #define	ips_ipsec_override_persocket_policy ips_param_arr[27].ip_param_value
2929 #define	ips_icmp_accept_clear_messages	ips_param_arr[28].ip_param_value
2930 #define	ips_igmp_accept_clear_messages	ips_param_arr[29].ip_param_value
2931 
2932 /* IPv6 configuration knobs */
2933 #define	ips_delay_first_probe_time	ips_param_arr[30].ip_param_value
2934 #define	ips_max_unicast_solicit		ips_param_arr[31].ip_param_value
2935 #define	ips_ipv6_def_hops		ips_param_arr[32].ip_param_value
2936 #define	ips_ipv6_icmp_return		ips_param_arr[33].ip_param_value
2937 #define	ips_ipv6_forward_src_routed	ips_param_arr[34].ip_param_value
2938 #define	ips_ipv6_resp_echo_mcast	ips_param_arr[35].ip_param_value
2939 #define	ips_ipv6_send_redirects		ips_param_arr[36].ip_param_value
2940 #define	ips_ipv6_ignore_redirect	ips_param_arr[37].ip_param_value
2941 #define	ips_ipv6_strict_dst_multihoming	ips_param_arr[38].ip_param_value
2942 #define	ips_ip_ire_reclaim_fraction	ips_param_arr[39].ip_param_value
2943 #define	ips_ipsec_policy_log_interval	ips_param_arr[40].ip_param_value
2944 #define	ips_pim_accept_clear_messages	ips_param_arr[41].ip_param_value
2945 #define	ips_ip_ndp_unsolicit_interval	ips_param_arr[42].ip_param_value
2946 #define	ips_ip_ndp_unsolicit_count	ips_param_arr[43].ip_param_value
2947 #define	ips_ipv6_ignore_home_address_opt ips_param_arr[44].ip_param_value
2948 #define	ips_ip_policy_mask		ips_param_arr[45].ip_param_value
2949 #define	ips_ip_multirt_resolution_interval ips_param_arr[46].ip_param_value
2950 #define	ips_ip_multirt_ttl  		ips_param_arr[47].ip_param_value
2951 #define	ips_ip_multidata_outbound	ips_param_arr[48].ip_param_value
2952 #define	ips_ip_ndp_defense_interval	ips_param_arr[49].ip_param_value
2953 #define	ips_ip_max_temp_idle		ips_param_arr[50].ip_param_value
2954 #define	ips_ip_max_temp_defend		ips_param_arr[51].ip_param_value
2955 #define	ips_ip_max_defend		ips_param_arr[52].ip_param_value
2956 #define	ips_ip_defend_interval		ips_param_arr[53].ip_param_value
2957 #define	ips_ip_dup_recovery		ips_param_arr[54].ip_param_value
2958 #define	ips_ip_restrict_interzone_loopback ips_param_arr[55].ip_param_value
2959 #define	ips_ip_lso_outbound		ips_param_arr[56].ip_param_value
2960 #define	ips_ipv6_drop_inbound_icmpv6	ips_param_arr[57].ip_param_value
2961 
2962 extern int	dohwcksum;	/* use h/w cksum if supported by the h/w */
2963 #ifdef ZC_TEST
2964 extern int	noswcksum;
2965 #endif
2966 
2967 extern char	ipif_loopback_name[];
2968 
2969 extern nv_t	*ire_nv_tbl;
2970 
2971 extern struct module_info ip_mod_info;
2972 
2973 #define	HOOKS4_INTERESTED_PHYSICAL_IN(ipst)	\
2974 	((ipst)->ips_ip4_physical_in_event.he_interested)
2975 #define	HOOKS6_INTERESTED_PHYSICAL_IN(ipst)	\
2976 	((ipst)->ips_ip6_physical_in_event.he_interested)
2977 #define	HOOKS4_INTERESTED_PHYSICAL_OUT(ipst)	\
2978 	((ipst)->ips_ip4_physical_out_event.he_interested)
2979 #define	HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)	\
2980 	((ipst)->ips_ip6_physical_out_event.he_interested)
2981 #define	HOOKS4_INTERESTED_FORWARDING(ipst)	\
2982 	((ipst)->ips_ip4_forwarding_event.he_interested)
2983 #define	HOOKS6_INTERESTED_FORWARDING(ipst)	\
2984 	((ipst)->ips_ip6_forwarding_event.he_interested)
2985 #define	HOOKS4_INTERESTED_LOOPBACK_IN(ipst)	\
2986 	((ipst)->ips_ip4_loopback_in_event.he_interested)
2987 #define	HOOKS6_INTERESTED_LOOPBACK_IN(ipst)	\
2988 	((ipst)->ips_ip6_loopback_in_event.he_interested)
2989 #define	HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)	\
2990 	((ipst)->ips_ip4_loopback_out_event.he_interested)
2991 #define	HOOKS6_INTERESTED_LOOPBACK_OUT(ipst)	\
2992 	((ipst)->ips_ip6_loopback_out_event.he_interested)
2993 
2994 /*
2995  * Hooks marcos used inside of ip
2996  */
2997 #define	IPHA_VHL	ipha_version_and_hdr_length
2998 
2999 #define	FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, ipst)	\
3000 									\
3001 	if ((_hook).he_interested) {	\
3002 		hook_pkt_event_t info;					\
3003 									\
3004 		_NOTE(CONSTCOND)					\
3005 		ASSERT((_ilp != NULL) || (_olp != NULL));		\
3006 									\
3007 		_NOTE(CONSTCOND)					\
3008 		if ((_ilp != NULL) &&					\
3009 		    (((ill_t *)(_ilp))->ill_phyint != NULL))		\
3010 			info.hpe_ifp = (phy_if_t)((ill_t *)		\
3011 			    (_ilp))->ill_phyint->phyint_ifindex;	\
3012 		else							\
3013 			info.hpe_ifp = 0;				\
3014 									\
3015 		_NOTE(CONSTCOND)					\
3016 		if ((_olp != NULL) &&					\
3017 		    (((ill_t *)(_olp))->ill_phyint != NULL))		\
3018 			info.hpe_ofp = (phy_if_t)((ill_t *)		\
3019 			    (_olp))->ill_phyint->phyint_ifindex;	\
3020 		else							\
3021 			info.hpe_ofp = 0;				\
3022 		info.hpe_hdr = _iph;					\
3023 		info.hpe_mp = &(_fm);					\
3024 		info.hpe_mb = _m;					\
3025 		if (hook_run(_event, (hook_data_t)&info,		\
3026 		    ipst->ips_netstack) != 0) {				\
3027 			ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\
3028 			    (_hook).he_name, (void *)_fm, (void *)_m));	\
3029 			if (_fm != NULL) {				\
3030 				freemsg(_fm);				\
3031 				_fm = NULL;				\
3032 			}						\
3033 			_iph = NULL;					\
3034 			_m = NULL;					\
3035 		} else {						\
3036 			_iph = info.hpe_hdr;				\
3037 			_m = info.hpe_mb;				\
3038 		}							\
3039 	}
3040 
3041 #define	FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, ipst)	\
3042 									\
3043 	if ((_hook).he_interested) {	\
3044 		hook_pkt_event_t info;					\
3045 									\
3046 		_NOTE(CONSTCOND)					\
3047 		ASSERT((_ilp != NULL) || (_olp != NULL));		\
3048 									\
3049 		_NOTE(CONSTCOND)					\
3050 		if ((_ilp != NULL) &&					\
3051 		    (((ill_t *)(_ilp))->ill_phyint != NULL))		\
3052 			info.hpe_ifp = (phy_if_t)((ill_t *)		\
3053 			    (_ilp))->ill_phyint->phyint_ifindex;	\
3054 		else							\
3055 			info.hpe_ifp = 0;				\
3056 									\
3057 		_NOTE(CONSTCOND)					\
3058 		if ((_olp != NULL) &&					\
3059 		    (((ill_t *)(_olp))->ill_phyint != NULL))		\
3060 			info.hpe_ofp = (phy_if_t)((ill_t *)		\
3061 			    (_olp))->ill_phyint->phyint_ifindex;	\
3062 		else							\
3063 			info.hpe_ofp = 0;				\
3064 		info.hpe_hdr = _iph;					\
3065 		info.hpe_mp = &(_fm);					\
3066 		info.hpe_mb = _m;					\
3067 		if (hook_run(_event, (hook_data_t)&info,		\
3068 		    ipst->ips_netstack) != 0) {				\
3069 			ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\
3070 			    (_hook).he_name, (void *)_fm, (void *)_m));	\
3071 			if (_fm != NULL) {				\
3072 				freemsg(_fm);				\
3073 				_fm = NULL;				\
3074 			}						\
3075 			_iph = NULL;					\
3076 			_m = NULL;					\
3077 		} else {						\
3078 			_iph = info.hpe_hdr;				\
3079 			_m = info.hpe_mb;				\
3080 		}							\
3081 	}
3082 
3083 /*
3084  * Network byte order macros
3085  */
3086 #ifdef	_BIG_ENDIAN
3087 #define	N_IN_CLASSD_NET		IN_CLASSD_NET
3088 #define	N_INADDR_UNSPEC_GROUP	INADDR_UNSPEC_GROUP
3089 #else /* _BIG_ENDIAN */
3090 #define	N_IN_CLASSD_NET		(ipaddr_t)0x000000f0U
3091 #define	N_INADDR_UNSPEC_GROUP	(ipaddr_t)0x000000e0U
3092 #endif /* _BIG_ENDIAN */
3093 #define	CLASSD(addr)	(((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP)
3094 
3095 #define	IP_LOOPBACK_ADDR(addr)			\
3096 	((ntohl(addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)
3097 
3098 #ifdef DEBUG
3099 /* IPsec HW acceleration debugging support */
3100 
3101 #define	IPSECHW_CAPAB		0x0001	/* capability negotiation */
3102 #define	IPSECHW_SADB		0x0002	/* SADB exchange */
3103 #define	IPSECHW_PKT		0x0004	/* general packet flow */
3104 #define	IPSECHW_PKTIN		0x0008	/* driver in pkt processing details */
3105 #define	IPSECHW_PKTOUT		0x0010	/* driver out pkt processing details */
3106 
3107 #define	IPSECHW_DEBUG(f, x)	if (ipsechw_debug & (f)) { (void) printf x; }
3108 #define	IPSECHW_CALL(f, r, x)	if (ipsechw_debug & (f)) { (void) r x; }
3109 
3110 extern uint32_t ipsechw_debug;
3111 #else
3112 #define	IPSECHW_DEBUG(f, x)	{}
3113 #define	IPSECHW_CALL(f, r, x)	{}
3114 #endif
3115 
3116 extern int	ip_debug;
3117 
3118 #ifdef IP_DEBUG
3119 #include <sys/debug.h>
3120 #include <sys/promif.h>
3121 
3122 #define	ip0dbg(a)	printf a
3123 #define	ip1dbg(a)	if (ip_debug > 2) printf a
3124 #define	ip2dbg(a)	if (ip_debug > 3) printf a
3125 #define	ip3dbg(a)	if (ip_debug > 4) printf a
3126 #else
3127 #define	ip0dbg(a)	/* */
3128 #define	ip1dbg(a)	/* */
3129 #define	ip2dbg(a)	/* */
3130 #define	ip3dbg(a)	/* */
3131 #endif	/* IP_DEBUG */
3132 
3133 /* Default MAC-layer address string length for mac_colon_addr */
3134 #define	MAC_STR_LEN	128
3135 
3136 struct	ipsec_out_s;
3137 
3138 struct	mac_header_info_s;
3139 
3140 extern const char *dlpi_prim_str(int);
3141 extern const char *dlpi_err_str(int);
3142 extern void	ill_frag_timer(void *);
3143 extern ill_t	*ill_first(int, int, ill_walk_context_t *, ip_stack_t *);
3144 extern ill_t	*ill_next(ill_walk_context_t *, ill_t *);
3145 extern void	ill_frag_timer_start(ill_t *);
3146 extern mblk_t	*ip_carve_mp(mblk_t **, ssize_t);
3147 extern mblk_t	*ip_dlpi_alloc(size_t, t_uscalar_t);
3148 extern char	*ip_dot_addr(ipaddr_t, char *);
3149 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t);
3150 extern void	ip_lwput(queue_t *, mblk_t *);
3151 extern boolean_t icmp_err_rate_limit(ip_stack_t *);
3152 extern void	icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t,
3153     ip_stack_t *);
3154 extern void	icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t,
3155     ip_stack_t *);
3156 extern mblk_t	*ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t, ip_stack_t *);
3157 extern mblk_t	*ip_bind_v4(queue_t *, mblk_t *, conn_t *);
3158 extern int	ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t,
3159     ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t,
3160     boolean_t);
3161 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *);
3162 extern int	ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t,
3163     boolean_t, boolean_t, boolean_t);
3164 extern uint_t	ip_cksum(mblk_t *, int, uint32_t);
3165 extern int	ip_close(queue_t *, int);
3166 extern uint16_t	ip_csum_hdr(ipha_t *);
3167 extern void	ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t,
3168     ip_stack_t *);
3169 extern void	ip_ire_g_fini(void);
3170 extern void	ip_ire_g_init(void);
3171 extern void	ip_ire_fini(ip_stack_t *);
3172 extern void	ip_ire_init(ip_stack_t *);
3173 extern int	ip_open(queue_t *, dev_t *, int, int, cred_t *);
3174 extern int	ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *,
3175     size_t);
3176 extern int	ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t,
3177     int, int, mblk_t *);
3178 extern void	ip_rput(queue_t *, mblk_t *);
3179 extern void	ip_input(ill_t *, ill_rx_ring_t *, mblk_t *,
3180     struct mac_header_info_s *);
3181 extern void	ip_rput_dlpi(queue_t *, mblk_t *);
3182 extern void	ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *);
3183 extern void	ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *);
3184 
3185 extern int	ip_snmpmod_close(queue_t *);
3186 extern void	ip_snmpmod_wput(queue_t *, mblk_t *);
3187 extern void	ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *,
3188 		    mib2_ipIfStatsEntry_t *);
3189 extern void	ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *,
3190 		    mib2_ipv6IfIcmpEntry_t *);
3191 extern void	ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *);
3192 extern void	ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *);
3193 extern void	ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *);
3194 extern ire_t	*ip_check_multihome(void *, ire_t *, ill_t *);
3195 extern void	ip_setqinfo(queue_t *, minor_t, boolean_t, ip_stack_t *);
3196 extern void	ip_trash_ire_reclaim(void *);
3197 extern void	ip_trash_timer_expire(void *);
3198 extern void	ip_wput(queue_t *, mblk_t *);
3199 extern void	ip_output(void *, mblk_t *, void *, int);
3200 extern void	ip_output_options(void *, mblk_t *, void *, int,
3201     ip_opt_info_t *);
3202 extern void	ip_wput_md(queue_t *, mblk_t *, conn_t *);
3203 
3204 extern void	ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int,
3205 		    zoneid_t);
3206 extern void	ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *,
3207 		    int, zoneid_t);
3208 extern void	ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t);
3209 extern void	ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *);
3210 extern void	ip_wsrv(queue_t *);
3211 extern char	*ip_nv_lookup(nv_t *, int);
3212 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
3213 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
3214 extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *);
3215 extern ipaddr_t ip_net_mask(ipaddr_t);
3216 extern void	ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *,
3217 		    zoneid_t, ip_stack_t *);
3218 extern ipxmit_state_t	ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *,
3219     boolean_t);
3220 extern int	ip_hdr_complete(ipha_t *, zoneid_t, ip_stack_t *);
3221 
3222 extern struct qinit rinit_ipv6;
3223 extern struct qinit winit_ipv6;
3224 extern struct qinit rinit_tcp;
3225 extern struct qinit rinit_tcp6;
3226 extern struct qinit winit_tcp;
3227 extern struct qinit rinit_acceptor_tcp;
3228 extern struct qinit winit_acceptor_tcp;
3229 
3230 extern void	conn_drain_insert(conn_t *connp);
3231 extern	int	conn_ipsec_length(conn_t *connp);
3232 extern void	ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *,
3233     ire_t *);
3234 extern ipaddr_t	ip_get_dst(ipha_t *);
3235 extern int	ipsec_out_extra_length(mblk_t *);
3236 extern int	ipsec_in_extra_length(mblk_t *);
3237 extern mblk_t	*ipsec_in_alloc(boolean_t, netstack_t *);
3238 extern boolean_t ipsec_in_is_secure(mblk_t *);
3239 extern void	ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t);
3240 extern void	ipsec_out_to_in(mblk_t *);
3241 extern int	ill_forward_set(queue_t *, mblk_t *, boolean_t, caddr_t);
3242 extern void	ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *);
3243 
3244 extern void	ire_cleanup(ire_t *);
3245 extern void	ire_inactive(ire_t *);
3246 extern boolean_t irb_inactive(irb_t *);
3247 extern ire_t	*ire_unlink(irb_t *);
3248 #ifdef IRE_DEBUG
3249 extern	void	ire_trace_ref(ire_t *ire);
3250 extern	void	ire_untrace_ref(ire_t *ire);
3251 extern	void	ire_thread_exit(ire_t *ire, caddr_t);
3252 #endif
3253 #ifdef ILL_DEBUG
3254 extern	void	ill_trace_cleanup(ill_t *);
3255 extern	void	ipif_trace_cleanup(ipif_t *);
3256 #endif
3257 
3258 extern int	ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *);
3259 extern int	ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *);
3260 extern void	ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *);
3261 extern uint_t	ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *);
3262 extern int	ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *);
3263 
3264 extern uint8_t	ipoptp_next(ipoptp_t *);
3265 extern uint8_t	ipoptp_first(ipoptp_t *, ipha_t *);
3266 extern int	ip_opt_get_user(const ipha_t *, uchar_t *);
3267 extern ill_t	*ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t,
3268     ip_stack_t *);
3269 extern ire_t	*conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **);
3270 extern int	ipsec_req_from_conn(conn_t *, ipsec_req_t *, int);
3271 extern int	ip_snmp_get(queue_t *q, mblk_t *mctl);
3272 extern int	ip_snmp_set(queue_t *q, int, int, uchar_t *, int);
3273 extern void	ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3274 extern void	ip_quiesce_conn(conn_t *);
3275 extern  void    ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
3276 extern void	ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *);
3277 extern void	ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *);
3278 
3279 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *,
3280     uint_t);
3281 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *,
3282     uint_t);
3283 extern void	ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t);
3284 
3285 extern boolean_t	ipsq_pending_mp_cleanup(ill_t *, conn_t *);
3286 extern void	conn_ioctl_cleanup(conn_t *);
3287 extern ill_t	*conn_get_held_ill(conn_t *, ill_t **, int *);
3288 extern ill_t	*ip_newroute_get_dst_ill(ill_t *);
3289 
3290 struct multidata_s;
3291 struct pdesc_s;
3292 
3293 extern mblk_t	*ip_mdinfo_alloc(ill_mdt_capab_t *);
3294 extern mblk_t	*ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *);
3295 extern mblk_t	*ip_lsoinfo_alloc(ill_lso_capab_t *);
3296 extern mblk_t	*ip_lsoinfo_return(ire_t *, conn_t *, char *,
3297     ill_lso_capab_t *);
3298 extern uint_t	ip_md_cksum(struct pdesc_s *, int, uint_t);
3299 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *,
3300 			const mblk_t *);
3301 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *,
3302 			uint32_t, uint32_t, uint32_t, uint32_t);
3303 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *,
3304 			uint_t);
3305 extern mblk_t	*ip_unbind(queue_t *, mblk_t *);
3306 
3307 extern void tnet_init(void);
3308 extern void tnet_fini(void);
3309 
3310 /* Hooks for CGTP (multirt routes) filtering module */
3311 #define	CGTP_FILTER_REV_1	1
3312 #define	CGTP_FILTER_REV_2	2
3313 #define	CGTP_FILTER_REV		CGTP_FILTER_REV_2
3314 
3315 /* cfo_filter, cfo_filter_fp, cfo_filter_v6 hooks return values */
3316 #define	CGTP_IP_PKT_NOT_CGTP	0
3317 #define	CGTP_IP_PKT_PREMIUM	1
3318 #define	CGTP_IP_PKT_DUPLICATE	2
3319 
3320 typedef struct cgtp_filter_ops {
3321 	int	cfo_filter_rev;
3322 	int	(*cfo_change_state)(int);
3323 	int	(*cfo_add_dest_v4)(ipaddr_t, ipaddr_t, ipaddr_t, ipaddr_t);
3324 	int	(*cfo_del_dest_v4)(ipaddr_t, ipaddr_t);
3325 	int	(*cfo_add_dest_v6)(in6_addr_t *, in6_addr_t *, in6_addr_t *,
3326 		    in6_addr_t *);
3327 	int	(*cfo_del_dest_v6)(in6_addr_t *, in6_addr_t *);
3328 	int	(*cfo_filter)(queue_t *, mblk_t *);
3329 	int	(*cfo_filter_fp)(queue_t *, mblk_t *);
3330 	int	(*cfo_filter_v6)(queue_t *, ip6_t *, ip6_frag_t *);
3331 } cgtp_filter_ops_t;
3332 
3333 #define	CGTP_MCAST_SUCCESS	1
3334 
3335 /*
3336  * The separate CGTP module needs these as globals. It uses the first
3337  * to unregister (since there is no ip_cgtp_filter_unregister() function)
3338  * and it uses the second one to verify that the filter has been
3339  * turned off (a ip_cgtp_filter_active() function would be good for that.)
3340  */
3341 extern cgtp_filter_ops_t *ip_cgtp_filter_ops;
3342 extern boolean_t ip_cgtp_filter;
3343 
3344 extern int	ip_cgtp_filter_supported(void);
3345 extern int	ip_cgtp_filter_register(cgtp_filter_ops_t *);
3346 
3347 /* Flags for ire_multirt_lookup() */
3348 
3349 #define	MULTIRT_USESTAMP	0x0001
3350 #define	MULTIRT_SETSTAMP	0x0002
3351 #define	MULTIRT_CACHEGW		0x0004
3352 
3353 /* Debug stuff for multirt route resolution. */
3354 #if defined(DEBUG) && !defined(__lint)
3355 /* Our "don't send, rather drop" flag. */
3356 #define	MULTIRT_DEBUG_FLAG	0x8000
3357 
3358 #define	MULTIRT_TRACE(x)	ip2dbg(x)
3359 
3360 #define	MULTIRT_DEBUG_TAG(mblk)	\
3361 	do { \
3362 		ASSERT(mblk != NULL); \
3363 		MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \
3364 		__FILE__, __LINE__, \
3365 		(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
3366 		(mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \
3367 	} while (0)
3368 
3369 #define	MULTIRT_DEBUG_UNTAG(mblk) \
3370 	do { \
3371 		ASSERT(mblk != NULL); \
3372 		MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \
3373 		__FILE__, __LINE__, \
3374 		(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
3375 		(mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \
3376 	} while (0)
3377 
3378 #define	MULTIRT_DEBUG_TAGGED(mblk) \
3379 	(((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE)
3380 #else
3381 #define	MULTIRT_DEBUG_TAG(mblk)		ASSERT(mblk != NULL)
3382 #define	MULTIRT_DEBUG_UNTAG(mblk)	ASSERT(mblk != NULL)
3383 #define	MULTIRT_DEBUG_TAGGED(mblk)	B_FALSE
3384 #endif
3385 
3386 /*
3387  * Per-ILL Multidata Transmit capabilities.
3388  */
3389 struct ill_mdt_capab_s {
3390 	uint_t ill_mdt_version;  /* interface version */
3391 	uint_t ill_mdt_on;	 /* on/off switch for MDT on this ILL */
3392 	uint_t ill_mdt_hdr_head; /* leading header fragment extra space */
3393 	uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */
3394 	uint_t ill_mdt_max_pld;	 /* maximum payload buffers per Multidata */
3395 	uint_t ill_mdt_span_limit; /* maximum payload span per packet */
3396 };
3397 
3398 struct ill_hcksum_capab_s {
3399 	uint_t	ill_hcksum_version;	/* interface version */
3400 	uint_t	ill_hcksum_txflags;	/* capabilities on transmit */
3401 };
3402 
3403 struct ill_zerocopy_capab_s {
3404 	uint_t	ill_zerocopy_version;	/* interface version */
3405 	uint_t	ill_zerocopy_flags;	/* capabilities */
3406 };
3407 
3408 struct ill_lso_capab_s {
3409 	uint_t	ill_lso_version;	/* interface version */
3410 	uint_t	ill_lso_on;		/* on/off switch for LSO on this ILL */
3411 	uint_t	ill_lso_flags;		/* capabilities */
3412 	uint_t	ill_lso_max;		/* maximum size of payload */
3413 };
3414 
3415 /* Possible ill_states */
3416 #define	ILL_RING_INPROC		3	/* Being assigned to squeue */
3417 #define	ILL_RING_INUSE		2	/* Already Assigned to Rx Ring */
3418 #define	ILL_RING_BEING_FREED	1	/* Being Unassigned */
3419 #define	ILL_RING_FREE		0	/* Available to be assigned to Ring */
3420 
3421 #define	ILL_MAX_RINGS		256	/* Max num of rx rings we can manage */
3422 #define	ILL_POLLING		0x01	/* Polling in use */
3423 
3424 /*
3425  * These functions pointer types are exported by the mac/dls layer.
3426  * we need to duplicate the definitions here because we cannot
3427  * include mac/dls header files here.
3428  */
3429 typedef void	(*ip_mac_blank_t)(void *, time_t, uint_t);
3430 typedef void	(*ip_dld_tx_t)(void *, mblk_t *);
3431 
3432 typedef void	(*ip_dls_chg_soft_ring_t)(void *, int);
3433 typedef void	(*ip_dls_bind_t)(void *, processorid_t);
3434 typedef void	(*ip_dls_unbind_t)(void *);
3435 
3436 struct ill_rx_ring {
3437 	ip_mac_blank_t		rr_blank; /* Driver interrupt blanking func */
3438 	void			*rr_handle; /* Handle for Rx ring */
3439 	squeue_t		*rr_sqp; /* Squeue the ring is bound to */
3440 	ill_t			*rr_ill; /* back pointer to ill */
3441 	clock_t			rr_poll_time; /* Last lbolt polling was used */
3442 	uint32_t		rr_poll_state; /* polling state flags */
3443 	uint32_t		rr_max_blank_time; /* Max interrupt blank */
3444 	uint32_t		rr_min_blank_time; /* Min interrupt blank */
3445 	uint32_t		rr_max_pkt_cnt; /* Max pkts before interrupt */
3446 	uint32_t		rr_min_pkt_cnt; /* Mix pkts before interrupt */
3447 	uint32_t		rr_normal_blank_time; /* Normal intr freq */
3448 	uint32_t		rr_normal_pkt_cnt; /* Normal intr pkt cnt */
3449 	uint32_t		rr_ring_state; /* State of this ring */
3450 };
3451 
3452 struct ill_dls_capab_s {
3453 	ip_dld_tx_t		ill_tx;		/* Driver Tx routine */
3454 	void			*ill_tx_handle;	/* Driver Tx handle */
3455 	ip_dls_chg_soft_ring_t	ill_dls_change_status;
3456 						/* change soft ring fanout */
3457 	ip_dls_bind_t		ill_dls_bind;	/* to add CPU affinity */
3458 	ip_dls_unbind_t		ill_dls_unbind;	/* remove CPU affinity */
3459 	ill_rx_ring_t		*ill_ring_tbl; /* Ring to Sqp mapping table */
3460 	uint_t			ill_dls_soft_ring_cnt; /* Number of soft ring */
3461 	conn_t			*ill_unbind_conn; /* Conn used during unplumb */
3462 };
3463 
3464 /*
3465  * This message is sent by an upper-layer protocol to tell IP that it knows all
3466  * about labels and will construct them itself.  IP takes the slow path and
3467  * recomputes the label on every packet when this isn't true.
3468  */
3469 #define	IP_ULP_OUT_LABELED		(('O' << 8) + 'L')
3470 typedef struct out_labeled_s {
3471 	uint32_t	out_labeled_type;	/* OUT_LABELED */
3472 	queue_t		*out_qnext;		/* intermediate detection */
3473 } out_labeled_t;
3474 
3475 /*
3476  * IP squeues exports
3477  */
3478 extern int 		ip_squeue_profile;
3479 extern int 		ip_squeue_bind;
3480 extern boolean_t 	ip_squeue_fanout;
3481 extern boolean_t	ip_squeue_soft_ring;
3482 extern uint_t		ip_threads_per_cpu;
3483 extern uint_t		ip_squeues_per_cpu;
3484 extern uint_t		ip_soft_rings_cnt;
3485 
3486 typedef struct squeue_set_s {
3487 	kmutex_t	sqs_lock;
3488 	struct squeue_s	**sqs_list;
3489 	int		sqs_size;
3490 	int		sqs_max_size;
3491 	processorid_t	sqs_bind;
3492 } squeue_set_t;
3493 
3494 #define	IP_SQUEUE_GET(hint) 						\
3495 	((!ip_squeue_fanout) ?	(CPU->cpu_squeue_set->sqs_list[0]) :	\
3496 		ip_squeue_random(hint))
3497 
3498 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t);
3499 
3500 extern void ip_squeue_init(void (*)(squeue_t *));
3501 extern squeue_t	*ip_squeue_random(uint_t);
3502 extern squeue_t *ip_squeue_get(ill_rx_ring_t *);
3503 extern void ip_squeue_get_pkts(squeue_t *);
3504 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
3505 extern int ip_squeue_bind_get(queue_t *, mblk_t *, caddr_t, cred_t *);
3506 extern void ip_squeue_clean(void *, mblk_t *, void *);
3507 extern void ip_resume_tcp_bind(void *, mblk_t *, void *);
3508 extern void	ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *,
3509     mblk_t *, struct mac_header_info_s *);
3510 
3511 extern void tcp_wput(queue_t *, mblk_t *);
3512 
3513 extern int	ip_fill_mtuinfo(struct in6_addr *, in_port_t,
3514 	struct ip6_mtuinfo *, netstack_t *);
3515 extern	ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *);
3516 
3517 typedef void    (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *);
3518 
3519 /*
3520  * Squeue tags. Tags only need to be unique when the callback function is the
3521  * same to distinguish between different calls, but we use unique tags for
3522  * convenience anyway.
3523  */
3524 #define	SQTAG_IP_INPUT			1
3525 #define	SQTAG_TCP_INPUT_ICMP_ERR	2
3526 #define	SQTAG_TCP6_INPUT_ICMP_ERR	3
3527 #define	SQTAG_IP_TCP_INPUT		4
3528 #define	SQTAG_IP6_TCP_INPUT		5
3529 #define	SQTAG_IP_TCP_CLOSE		6
3530 #define	SQTAG_TCP_OUTPUT		7
3531 #define	SQTAG_TCP_TIMER			8
3532 #define	SQTAG_TCP_TIMEWAIT		9
3533 #define	SQTAG_TCP_ACCEPT_FINISH		10
3534 #define	SQTAG_TCP_ACCEPT_FINISH_Q0	11
3535 #define	SQTAG_TCP_ACCEPT_PENDING	12
3536 #define	SQTAG_TCP_LISTEN_DISCON		13
3537 #define	SQTAG_TCP_CONN_REQ		14
3538 #define	SQTAG_TCP_EAGER_BLOWOFF		15
3539 #define	SQTAG_TCP_EAGER_CLEANUP		16
3540 #define	SQTAG_TCP_EAGER_CLEANUP_Q0	17
3541 #define	SQTAG_TCP_CONN_IND		18
3542 #define	SQTAG_TCP_RSRV			19
3543 #define	SQTAG_TCP_ABORT_BUCKET		20
3544 #define	SQTAG_TCP_REINPUT		21
3545 #define	SQTAG_TCP_REINPUT_EAGER		22
3546 #define	SQTAG_TCP_INPUT_MCTL		23
3547 #define	SQTAG_TCP_RPUTOTHER		24
3548 #define	SQTAG_IP_PROTO_AGAIN		25
3549 #define	SQTAG_IP_FANOUT_TCP		26
3550 #define	SQTAG_IPSQ_CLEAN_RING		27
3551 #define	SQTAG_TCP_WPUT_OTHER		28
3552 #define	SQTAG_TCP_CONN_REQ_UNBOUND	29
3553 #define	SQTAG_TCP_SEND_PENDING		30
3554 #define	SQTAG_BIND_RETRY		31
3555 #define	SQTAG_UDP_FANOUT		32
3556 #define	SQTAG_UDP_INPUT			33
3557 #define	SQTAG_UDP_WPUT			34
3558 #define	SQTAG_UDP_OUTPUT		35
3559 #define	SQTAG_TCP_KSSL_INPUT		36
3560 #define	SQTAG_TCP_DROP_Q0		37
3561 
3562 #define	NOT_OVER_IP(ip_wq)	\
3563 	(ip_wq->q_next != NULL ||	\
3564 	    (ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL ||	\
3565 	    strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname,	\
3566 	    IP_MOD_NAME) != 0 ||	\
3567 	    ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID)
3568 
3569 #endif	/* _KERNEL */
3570 
3571 #ifdef	__cplusplus
3572 }
3573 #endif
3574 
3575 #endif	/* _INET_IP_H */
3576