xref: /illumos-gate/usr/src/uts/common/inet/ip.h (revision 65a89a64c60f3061bbe2381edaacc81660af9a95)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #ifndef	_INET_IP_H
29 #define	_INET_IP_H
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #ifdef	__cplusplus
34 extern "C" {
35 #endif
36 
37 #include <sys/isa_defs.h>
38 #include <sys/types.h>
39 #include <inet/mib2.h>
40 #include <inet/nd.h>
41 #include <sys/atomic.h>
42 #include <sys/socket.h>
43 #include <net/if_dl.h>
44 #include <net/if.h>
45 #include <netinet/ip.h>
46 #include <sys/dlpi.h>
47 #include <netinet/igmp.h>
48 
49 #ifdef _KERNEL
50 #include <netinet/ip6.h>
51 #include <sys/avl.h>
52 #include <sys/vmem.h>
53 #include <sys/squeue.h>
54 #include <sys/systm.h>
55 #include <sys/multidata.h>
56 
57 #ifdef DEBUG
58 #define	ILL_DEBUG
59 #define	IRE_DEBUG
60 #define	NCE_DEBUG
61 #define	CONN_DEBUG
62 #endif
63 
64 #define	IP_DEBUG
65 /*
66  * The mt-streams(9F) flags for the IP module; put here so that other
67  * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set
68  * of flags.
69  */
70 #define	IP_DEVMTFLAGS D_MP
71 #endif	/* _KERNEL */
72 
73 #define	IP_MOD_NAME	"ip"
74 #define	IP_DEV_NAME	"/dev/ip"
75 #define	IP6_DEV_NAME	"/dev/ip6"
76 
77 #define	UDP_MOD_NAME	"udp"
78 #define	UDP_DEV_NAME	"/dev/udp"
79 #define	UDP6_DEV_NAME	"/dev/udp6"
80 
81 #define	TCP_MOD_NAME	"tcp"
82 #define	TCP_DEV_NAME	"/dev/tcp"
83 #define	TCP6_DEV_NAME	"/dev/tcp6"
84 
85 /* Minor numbers */
86 #define	IPV4_MINOR	0
87 #define	IPV6_MINOR	1
88 #define	TCP_MINOR	2
89 #define	TCP_MINOR6	3
90 
91 #ifndef	_IPADDR_T
92 #define	_IPADDR_T
93 typedef uint32_t ipaddr_t;
94 #endif
95 
96 /* Number of bits in an address */
97 #define	IP_ABITS		32
98 #define	IPV6_ABITS		128
99 
100 #define	IP_HOST_MASK		(ipaddr_t)0xffffffffU
101 
102 #define	IP_CSUM(mp, off, sum)		(~ip_cksum(mp, off, sum) & 0xFFFF)
103 #define	IP_CSUM_PARTIAL(mp, off, sum)	ip_cksum(mp, off, sum)
104 #define	IP_BCSUM_PARTIAL(bp, len, sum)	bcksum(bp, len, sum)
105 #define	IP_MD_CSUM(pd, off, sum)	(~ip_md_cksum(pd, off, sum) & 0xffff)
106 #define	IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum)
107 
108 /*
109  * Flag to IP write side to indicate that the appln has sent in a pre-built
110  * IP header. Stored in ipha_ident (which is otherwise zero).
111  */
112 #define	IP_HDR_INCLUDED			0xFFFF
113 
114 #define	ILL_FRAG_HASH_TBL_COUNT	((unsigned int)64)
115 #define	ILL_FRAG_HASH_TBL_SIZE	(ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t))
116 
117 #define	IPV4_ADDR_LEN			4
118 #define	IP_ADDR_LEN			IPV4_ADDR_LEN
119 #define	IP_ARP_PROTO_TYPE		0x0800
120 
121 #define	IPV4_VERSION			4
122 #define	IP_VERSION			IPV4_VERSION
123 #define	IP_SIMPLE_HDR_LENGTH_IN_WORDS	5
124 #define	IP_SIMPLE_HDR_LENGTH		20
125 #define	IP_MAX_HDR_LENGTH		60
126 
127 #define	IP_MIN_MTU			(IP_MAX_HDR_LENGTH + 8)	/* 68 bytes */
128 
129 /*
130  * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the
131  * 2 files should be cleaned up to remove all redundant definitions.
132  */
133 #define	IP_MAXPACKET			65535
134 #define	IP_SIMPLE_HDR_VERSION \
135 	((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS)
136 
137 /*
138  * Constants and type definitions to support IP IOCTL commands
139  */
140 #define	IP_IOCTL			(('i'<<8)|'p')
141 #define	IP_IOC_IRE_DELETE		4
142 #define	IP_IOC_IRE_DELETE_NO_REPLY	5
143 #define	IP_IOC_IRE_ADVISE_NO_REPLY	6
144 #define	IP_IOC_RTS_REQUEST		7
145 
146 /* Common definitions used by IP IOCTL data structures */
147 typedef struct ipllcmd_s {
148 	uint_t	ipllc_cmd;
149 	uint_t	ipllc_name_offset;
150 	uint_t	ipllc_name_length;
151 } ipllc_t;
152 
153 /* IP IRE Change Command Structure. */
154 typedef struct ipic_s {
155 	ipllc_t	ipic_ipllc;
156 	uint_t	ipic_ire_type;
157 	uint_t	ipic_max_frag;
158 	uint_t	ipic_addr_offset;
159 	uint_t	ipic_addr_length;
160 	uint_t	ipic_mask_offset;
161 	uint_t	ipic_mask_length;
162 	uint_t	ipic_src_addr_offset;
163 	uint_t	ipic_src_addr_length;
164 	uint_t	ipic_ll_hdr_offset;
165 	uint_t	ipic_ll_hdr_length;
166 	uint_t	ipic_gateway_addr_offset;
167 	uint_t	ipic_gateway_addr_length;
168 	clock_t	ipic_rtt;
169 	uint32_t ipic_ssthresh;
170 	clock_t	ipic_rtt_sd;
171 	uchar_t ipic_ire_marks;
172 } ipic_t;
173 
174 #define	ipic_cmd		ipic_ipllc.ipllc_cmd
175 #define	ipic_ll_name_length	ipic_ipllc.ipllc_name_length
176 #define	ipic_ll_name_offset	ipic_ipllc.ipllc_name_offset
177 
178 /* IP IRE Delete Command Structure. */
179 typedef struct ipid_s {
180 	ipllc_t	ipid_ipllc;
181 	uint_t	ipid_ire_type;
182 	uint_t	ipid_addr_offset;
183 	uint_t	ipid_addr_length;
184 	uint_t	ipid_mask_offset;
185 	uint_t	ipid_mask_length;
186 } ipid_t;
187 
188 #define	ipid_cmd		ipid_ipllc.ipllc_cmd
189 
190 #ifdef _KERNEL
191 /*
192  * Temporary state for ip options parser.
193  */
194 typedef struct ipoptp_s
195 {
196 	uint8_t		*ipoptp_next;	/* next option to look at */
197 	uint8_t		*ipoptp_end;	/* end of options */
198 	uint8_t		*ipoptp_cur;	/* start of current option */
199 	uint8_t		ipoptp_len;	/* length of current option */
200 	uint32_t	ipoptp_flags;
201 } ipoptp_t;
202 
203 /*
204  * Flag(s) for ipoptp_flags
205  */
206 #define	IPOPTP_ERROR	0x00000001
207 #endif	/* _KERNEL */
208 
209 
210 /* Controls forwarding of IP packets, set via ndd */
211 #define	IP_FORWARD_NEVER	0
212 #define	IP_FORWARD_ALWAYS	1
213 
214 #define	WE_ARE_FORWARDING	(ip_g_forward == IP_FORWARD_ALWAYS)
215 
216 #define	IPH_HDR_LENGTH(ipha)						\
217 	((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2)
218 
219 #define	IPH_HDR_VERSION(ipha)						\
220 	((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4)
221 
222 #ifdef _KERNEL
223 /*
224  * IP reassembly macros.  We hide starting and ending offsets in b_next and
225  * b_prev of messages on the reassembly queue.	The messages are chained using
226  * b_cont.  These macros are used in ip_reassemble() so we don't have to see
227  * the ugly casts and assignments.
228  * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent
229  * them.
230  */
231 #define	IP_REASS_START(mp)		((uint_t)(uintptr_t)((mp)->b_next))
232 #define	IP_REASS_SET_START(mp, u)	\
233 	((mp)->b_next = (mblk_t *)(uintptr_t)(u))
234 #define	IP_REASS_END(mp)		((uint_t)(uintptr_t)((mp)->b_prev))
235 #define	IP_REASS_SET_END(mp, u)		\
236 	((mp)->b_prev = (mblk_t *)(uintptr_t)(u))
237 
238 #define	IP_REASS_COMPLETE	0x1
239 #define	IP_REASS_PARTIAL	0x2
240 #define	IP_REASS_FAILED		0x4
241 
242 /*
243  * Test to determine whether this is a module instance of IP or a
244  * driver instance of IP.
245  */
246 #define	CONN_Q(q)	(WR(q)->q_next == NULL)
247 
248 #define	Q_TO_CONN(q)	((conn_t *)(q)->q_ptr)
249 #define	Q_TO_TCP(q)	(Q_TO_CONN((q))->conn_tcp)
250 #define	Q_TO_UDP(q)	(Q_TO_CONN((q))->conn_udp)
251 
252 /*
253  * The following two macros are used by IP to get the appropriate
254  * wq and rq for a conn. If it is a TCP conn, then we need
255  * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq
256  * from a conn directly if it knows that the conn is not TCP.
257  */
258 #define	CONNP_TO_WQ(connp)	\
259 	(IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq)
260 
261 #define	CONNP_TO_RQ(connp)	RD(CONNP_TO_WQ(connp))
262 
263 #define	GRAB_CONN_LOCK(q)	{				\
264 	if (q != NULL && CONN_Q(q))				\
265 		mutex_enter(&(Q_TO_CONN(q))->conn_lock);	\
266 }
267 
268 #define	RELEASE_CONN_LOCK(q)	{				\
269 	if (q != NULL && CONN_Q(q))				\
270 		mutex_exit(&(Q_TO_CONN(q))->conn_lock);		\
271 }
272 
273 /* "Congestion controlled" protocol */
274 #define	IP_FLOW_CONTROLLED_ULP(p)   ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP)
275 
276 /*
277  * Complete the pending operation. Usually an ioctl. Can also
278  * be a bind or option management request that got enqueued
279  * in an ipsq_t. Called on completion of the operation.
280  */
281 #define	CONN_OPER_PENDING_DONE(connp)	{			\
282 	mutex_enter(&(connp)->conn_lock);			\
283 	(connp)->conn_oper_pending_ill = NULL;			\
284 	cv_broadcast(&(connp)->conn_refcv);			\
285 	mutex_exit(&(connp)->conn_lock);			\
286 	CONN_DEC_REF(connp);					\
287 }
288 
289 /* Get the credential of an IP queue of unknown type */
290 #define	GET_QUEUE_CRED(wq)						\
291 	((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \
292 	    : ((Q_TO_CONN((wq)))->conn_cred))
293 
294 /*
295  * Flags for the various ip_fanout_* routines.
296  */
297 #define	IP_FF_SEND_ICMP		0x01	/* Send an ICMP error */
298 #define	IP_FF_HDR_COMPLETE	0x02	/* Call ip_hdr_complete if error */
299 #define	IP_FF_CKSUM		0x04	/* Recompute ipha_cksum if error */
300 #define	IP_FF_RAWIP		0x08	/* Use rawip mib variable */
301 #define	IP_FF_SRC_QUENCH	0x10	/* OK to send ICMP_SOURCE_QUENCH */
302 #define	IP_FF_SYN_ADDIRE	0x20	/* Add IRE if TCP syn packet */
303 #define	IP_FF_IP6INFO		0x80	/* Add ip6i_t if needed */
304 #define	IP_FF_SEND_SLLA		0x100	/* Send source link layer info ? */
305 #define	IPV6_REACHABILITY_CONFIRMATION	0x200	/* Flags for ip_xmit_v6 */
306 #define	IP_FF_NO_MCAST_LOOP	0x400	/* No multicasts for sending zone */
307 
308 /*
309  * Following flags are used by IPQoS to determine if policy processing is
310  * required.
311  */
312 #define	IP6_NO_IPPOLICY		0x800	/* Don't do IPQoS processing */
313 #define	IP6_IN_LLMCAST		0x1000	/* Multicast */
314 
315 #define	IP_FF_LOOPBACK		0x2000	/* Loopback fanout */
316 
317 #ifndef	IRE_DB_TYPE
318 #define	IRE_DB_TYPE	M_SIG
319 #endif
320 
321 #ifndef	IRE_DB_REQ_TYPE
322 #define	IRE_DB_REQ_TYPE	M_PCSIG
323 #endif
324 
325 /*
326  * Values for squeue switch:
327  */
328 
329 #define	IP_SQUEUE_ENTER_NODRAIN	1
330 #define	IP_SQUEUE_ENTER	2
331 /*
332  * This is part of the interface between Transport provider and
333  * IP which can be used to set policy information. This is usually
334  * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that
335  * only IPSEC_POLICY_SET is there when it is found in the chain.
336  * The information contained is an struct ipsec_req_t. On success
337  * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned.
338  * IPSEC_POLICY_SET is never returned.
339  */
340 #define	IPSEC_POLICY_SET	M_SETOPTS
341 
342 #define	IRE_IS_LOCAL(ire)	((ire != NULL) && \
343 				((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK)))
344 
345 #define	IRE_IS_TARGET(ire)	((ire != NULL) && \
346 				((ire)->ire_type != IRE_BROADCAST))
347 
348 /* IP Fragmentation Reassembly Header */
349 typedef struct ipf_s {
350 	struct ipf_s	*ipf_hash_next;
351 	struct ipf_s	**ipf_ptphn;	/* Pointer to previous hash next. */
352 	uint32_t	ipf_ident;	/* Ident to match. */
353 	uint8_t		ipf_protocol;	/* Protocol to match. */
354 	uchar_t		ipf_last_frag_seen : 1;	/* Last fragment seen ? */
355 	time_t		ipf_timestamp;	/* Reassembly start time. */
356 	mblk_t		*ipf_mp;	/* mblk we live in. */
357 	mblk_t		*ipf_tail_mp;	/* Frag queue tail pointer. */
358 	int		ipf_hole_cnt;	/* Number of holes (hard-case). */
359 	int		ipf_end;	/* Tail end offset (0 -> hard-case). */
360 	uint_t		ipf_gen;	/* Frag queue generation */
361 	size_t		ipf_count;	/* Count of bytes used by frag */
362 	uint_t		ipf_nf_hdr_len; /* Length of nonfragmented header */
363 	in6_addr_t	ipf_v6src;	/* IPv6 source address */
364 	in6_addr_t	ipf_v6dst;	/* IPv6 dest address */
365 	uint_t		ipf_prev_nexthdr_offset; /* Offset for nexthdr value */
366 	uint8_t		ipf_ecn;	/* ECN info for the fragments */
367 	uint8_t		ipf_num_dups;	/* Number of times dup frags recvd */
368 	uint16_t	ipf_checksum_flags; /* Hardware checksum flags */
369 	uint32_t	ipf_checksum;	/* Partial checksum of fragment data */
370 } ipf_t;
371 
372 #define	ipf_src	V4_PART_OF_V6(ipf_v6src)
373 #define	ipf_dst	V4_PART_OF_V6(ipf_v6dst)
374 
375 typedef enum {
376 	IB_PKT =  0x01,
377 	OB_PKT = 0x02
378 } ip_pkt_t;
379 
380 #define	UPDATE_IB_PKT_COUNT(ire)\
381 	{ \
382 	(ire)->ire_ib_pkt_count++; \
383 	if ((ire)->ire_ipif != NULL) { \
384 		/* \
385 		 * forwarding packet \
386 		 */ \
387 		if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \
388 			atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\
389 		else \
390 			atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\
391 	} \
392 	}
393 #define	UPDATE_OB_PKT_COUNT(ire)\
394 	{ \
395 	(ire)->ire_ob_pkt_count++;\
396 	if ((ire)->ire_ipif != NULL) { \
397 		atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \
398 	} \
399 	}
400 
401 
402 #define	IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \
403 { \
404 	switch (ipha->ipha_protocol) { \
405 		case IPPROTO_UDP: \
406 			ip_udp_input(q, mp, ipha, ire, recv_ill); \
407 			break; \
408 		default: \
409 			ip_proto_input(q, mp, ipha, ire, recv_ill); \
410 			break; \
411 	} \
412 }
413 
414 
415 #endif /* _KERNEL */
416 
417 /* ICMP types */
418 #define	ICMP_ECHO_REPLY			0
419 #define	ICMP_DEST_UNREACHABLE		3
420 #define	ICMP_SOURCE_QUENCH		4
421 #define	ICMP_REDIRECT			5
422 #define	ICMP_ECHO_REQUEST		8
423 #define	ICMP_ROUTER_ADVERTISEMENT	9
424 #define	ICMP_ROUTER_SOLICITATION	10
425 #define	ICMP_TIME_EXCEEDED		11
426 #define	ICMP_PARAM_PROBLEM		12
427 #define	ICMP_TIME_STAMP_REQUEST		13
428 #define	ICMP_TIME_STAMP_REPLY		14
429 #define	ICMP_INFO_REQUEST		15
430 #define	ICMP_INFO_REPLY			16
431 #define	ICMP_ADDRESS_MASK_REQUEST	17
432 #define	ICMP_ADDRESS_MASK_REPLY		18
433 
434 /* ICMP_TIME_EXCEEDED codes */
435 #define	ICMP_TTL_EXCEEDED		0
436 #define	ICMP_REASSEMBLY_TIME_EXCEEDED	1
437 
438 /* ICMP_DEST_UNREACHABLE codes */
439 #define	ICMP_NET_UNREACHABLE		0
440 #define	ICMP_HOST_UNREACHABLE		1
441 #define	ICMP_PROTOCOL_UNREACHABLE	2
442 #define	ICMP_PORT_UNREACHABLE		3
443 #define	ICMP_FRAGMENTATION_NEEDED	4
444 #define	ICMP_SOURCE_ROUTE_FAILED	5
445 #define	ICMP_DEST_NET_UNKNOWN		6
446 #define	ICMP_DEST_HOST_UNKNOWN		7
447 #define	ICMP_SRC_HOST_ISOLATED		8
448 #define	ICMP_DEST_NET_UNREACH_ADMIN	9
449 #define	ICMP_DEST_HOST_UNREACH_ADMIN	10
450 #define	ICMP_DEST_NET_UNREACH_TOS	11
451 #define	ICMP_DEST_HOST_UNREACH_TOS	12
452 
453 /* ICMP Header Structure */
454 typedef struct icmph_s {
455 	uint8_t		icmph_type;
456 	uint8_t		icmph_code;
457 	uint16_t	icmph_checksum;
458 	union {
459 		struct { /* ECHO request/response structure */
460 			uint16_t	u_echo_ident;
461 			uint16_t	u_echo_seqnum;
462 		} u_echo;
463 		struct { /* Destination unreachable structure */
464 			uint16_t	u_du_zero;
465 			uint16_t	u_du_mtu;
466 		} u_du;
467 		struct { /* Parameter problem structure */
468 			uint8_t		u_pp_ptr;
469 			uint8_t		u_pp_rsvd[3];
470 		} u_pp;
471 		struct { /* Redirect structure */
472 			ipaddr_t	u_rd_gateway;
473 		} u_rd;
474 	} icmph_u;
475 } icmph_t;
476 
477 #define	icmph_echo_ident	icmph_u.u_echo.u_echo_ident
478 #define	icmph_echo_seqnum	icmph_u.u_echo.u_echo_seqnum
479 #define	icmph_du_zero		icmph_u.u_du.u_du_zero
480 #define	icmph_du_mtu		icmph_u.u_du.u_du_mtu
481 #define	icmph_pp_ptr		icmph_u.u_pp.u_pp_ptr
482 #define	icmph_rd_gateway	icmph_u.u_rd.u_rd_gateway
483 
484 #define	ICMPH_SIZE	8
485 
486 /*
487  * Minimum length of transport layer header included in an ICMP error
488  * message for it to be considered valid.
489  */
490 #define	ICMP_MIN_TP_HDR_LEN	8
491 
492 /* Aligned IP header */
493 typedef struct ipha_s {
494 	uint8_t		ipha_version_and_hdr_length;
495 	uint8_t		ipha_type_of_service;
496 	uint16_t	ipha_length;
497 	uint16_t	ipha_ident;
498 	uint16_t	ipha_fragment_offset_and_flags;
499 	uint8_t		ipha_ttl;
500 	uint8_t		ipha_protocol;
501 	uint16_t	ipha_hdr_checksum;
502 	ipaddr_t	ipha_src;
503 	ipaddr_t	ipha_dst;
504 } ipha_t;
505 
506 #define	IPH_DF		0x4000	/* Don't fragment */
507 #define	IPH_MF		0x2000	/* More fragments to come */
508 #define	IPH_OFFSET	0x1FFF	/* Where the offset lives */
509 #define	IPH_FRAG_HDR	0x8000	/* IPv6 don't fragment bit */
510 
511 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */
512 #define	IPH_ECN_NECT	0x0	/* Not ECN-Capabable Transport */
513 #define	IPH_ECN_ECT1	0x1	/* ECN-Capable Transport, ECT(1) */
514 #define	IPH_ECN_ECT0	0x2	/* ECN-Capable Transport, ECT(0) */
515 #define	IPH_ECN_CE	0x3	/* ECN-Congestion Experienced (CE) */
516 
517 /* IP Mac info structure */
518 typedef struct ip_m_s {
519 	t_uscalar_t	ip_m_mac_type;	/* From <sys/dlpi.h> */
520 	int		ip_m_type;	/* From <net/if_types.h> */
521 	boolean_t	(*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *,
522 			    uint32_t *, ipaddr_t *);
523 	boolean_t	(*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *,
524 			    uint32_t *, in6_addr_t *);
525 	boolean_t	(*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *);
526 } ip_m_t;
527 
528 /*
529  * The following functions attempt to reduce the link layer dependency
530  * of the IP stack. The current set of link specific operations are:
531  * a. map from IPv4 class D (224.0/4) multicast address range to the link
532  * layer multicast address range.
533  * b. map from IPv6 multicast address range (ff00::/8) to the link
534  * layer multicast address range.
535  * c. derive the default IPv6 interface identifier from the link layer
536  * address.
537  */
538 #define	MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \
539 	(((ip_m)->ip_m_v4mapinfo != NULL) && \
540 	(*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr))
541 #define	MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \
542 	(((ip_m)->ip_m_v6intfid != NULL) && \
543 	(*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr))
544 #define	MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \
545 	(((ip_m)->ip_m_v6mapinfo != NULL) && \
546 	(*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr))
547 
548 /* Router entry types */
549 #define	IRE_BROADCAST		0x0001	/* Route entry for broadcast address */
550 #define	IRE_DEFAULT		0x0002	/* Route entry for default gateway */
551 #define	IRE_LOCAL		0x0004	/* Route entry for local address */
552 #define	IRE_LOOPBACK		0x0008	/* Route entry for loopback address */
553 #define	IRE_PREFIX		0x0010	/* Route entry for prefix routes */
554 #define	IRE_CACHE		0x0020	/* Cached Route entry */
555 #define	IRE_IF_NORESOLVER	0x0040	/* Route entry for local interface */
556 					/* net without any address mapping. */
557 #define	IRE_IF_RESOLVER		0x0080	/* Route entry for local interface */
558 					/* net with resolver. */
559 #define	IRE_HOST		0x0100	/* Host route entry */
560 #define	IRE_HOST_REDIRECT	0x0200	/* Host route entry from redirects */
561 
562 /*
563  * IRE_MIPRTUN is only set on the ires in the ip_mrtun_table.
564  * This ire_type must not be set for ftable and ctable routing entries.
565  */
566 #define	IRE_MIPRTUN		0x0400	/* Reverse tunnel route entry */
567 
568 #define	IRE_INTERFACE		(IRE_IF_NORESOLVER | IRE_IF_RESOLVER)
569 #define	IRE_OFFSUBNET		(IRE_DEFAULT | IRE_PREFIX | IRE_HOST | \
570 				IRE_HOST_REDIRECT)
571 #define	IRE_CACHETABLE		(IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \
572 				IRE_LOOPBACK)
573 #define	IRE_FORWARDTABLE	(IRE_INTERFACE | IRE_OFFSUBNET)
574 
575 /*
576  * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of
577  * the bucket should delete this IRE from this bucket.
578  */
579 #define	IRE_MARK_CONDEMNED	0x0001
580 /*
581  * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the
582  * broadcast packets received on that interface. This is marked only
583  * on broadcast ires. Employed by IPMP, where we have multiple NICs on the
584  * same subnet receiving the same broadcast packet.
585  */
586 #define	IRE_MARK_NORECV		0x0002
587 /*
588  * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need
589  * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP.
590  */
591 #define	IRE_MARK_HIDDEN		0x0004	/* Typically Used by in.mpathd */
592 
593 /*
594  * ire with IRE_MARK_NOADD is  created in ip_newroute_ipif, when outgoing
595  * interface is specified by IP_XMIT_IF socket option. This ire is not
596  * added in IRE_CACHE.  For example, this is used by mipagent to prevent
597  * any entry to be added in the cache table. We do not want to add any
598  * entry for a mobile-node in the routing table for foreign agent originated
599  * packets. Adding routes in cache table in this case, may run the risks of
600  * incorrect routing path in case of private overlapping addresses.
601  */
602 #define	IRE_MARK_NOADD		0x0008	/* Mark not to add ire in cache */
603 
604 /*
605  * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used
606  * either for forwarding a packet or has not been used for sending
607  * traffic on TCP connections terminated on this system.  In both
608  * cases, this IRE is the first to go when IRE is being cleaned up.
609  */
610 #define	IRE_MARK_TEMPORARY	0x0010
611 
612 /*
613  * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with
614  * this mark, additional atomic checks need to be performed. For eg: by the
615  * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the
616  * usesrc grouping could have changed in which case we want to fail adding
617  * the IRE_CACHE entry
618  */
619 #define	IRE_MARK_USESRC_CHECK	0x0020
620 
621 /*
622  * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the
623  * routing table lookup for the destination is bypassed and the packet is
624  * sent directly to the specified nexthop. The associated IRE_CACHE entries
625  * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up
626  * in regular ire cache lookups.
627  */
628 #define	IRE_MARK_PRIVATE_ADDR	0x0040
629 
630 /* Flags with ire_expire routine */
631 #define	FLUSH_ARP_TIME		0x0001	/* ARP info potentially stale timer */
632 #define	FLUSH_REDIRECT_TIME	0x0002	/* Redirects potentially stale */
633 #define	FLUSH_MTU_TIME		0x0004	/* Include path MTU per RFC 1191 */
634 
635 /* Arguments to ire_flush_cache() */
636 #define	IRE_FLUSH_DELETE	0
637 #define	IRE_FLUSH_ADD		1
638 
639 /*
640  * Open/close synchronization flags.
641  * These are kept in a separate field in the conn and the synchronization
642  * depends on the atomic 32 bit access to that field.
643  */
644 #define	CONN_CLOSING		0x01	/* ip_close waiting for ip_wsrv */
645 #define	CONN_IPSEC_LOAD_WAIT	0x02	/* waiting for load */
646 #define	CONN_CONDEMNED		0x04	/* conn is closing, no more refs */
647 #define	CONN_INCIPIENT		0x08	/* conn not yet visible, no refs */
648 #define	CONN_QUIESCED		0x10	/* conn is now quiescent */
649 
650 /*
651  * Parameter to ip_output giving the identity of the caller.
652  * IP_WSRV means the packet was enqueued in the STREAMS queue
653  * due to flow control and is now being reprocessed in the context of
654  * the STREAMS service procedure, consequent to flow control relief.
655  * IRE_SEND means the packet is being reprocessed consequent to an
656  * ire cache creation and addition and this may or may not be happening
657  * in the service procedure context. Anything other than the above 2
658  * cases is identified as IP_WPUT. Most commonly this is the case of
659  * packets coming down from the application.
660  */
661 #ifdef _KERNEL
662 #define	IP_WSRV			1	/* Called from ip_wsrv */
663 #define	IP_WPUT			2	/* Called from ip_wput */
664 #define	IRE_SEND		3	/* Called from ire_send */
665 
666 /*
667  * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2)
668  */
669 #define	MAX_FILTER_SIZE	64
670 
671 typedef struct slist_s {
672 	int		sl_numsrc;
673 	in6_addr_t	sl_addr[MAX_FILTER_SIZE];
674 } slist_t;
675 
676 /*
677  * Following struct is used to maintain retransmission state for
678  * a multicast group.  One rtx_state_t struct is an in-line field
679  * of the ilm_t struct; the slist_ts in the rtx_state_t struct are
680  * alloc'd as needed.
681  */
682 typedef struct rtx_state_s {
683 	uint_t		rtx_timer;	/* retrans timer */
684 	int		rtx_cnt;	/* retrans count */
685 	int		rtx_fmode_cnt;	/* retrans count for fmode change */
686 	slist_t		*rtx_allow;
687 	slist_t		*rtx_block;
688 } rtx_state_t;
689 
690 /*
691  * Used to construct list of multicast address records that will be
692  * sent in a single listener report.
693  */
694 typedef struct mrec_s {
695 	struct mrec_s	*mrec_next;
696 	uint8_t		mrec_type;
697 	uint8_t		mrec_auxlen;	/* currently unused */
698 	in6_addr_t	mrec_group;
699 	slist_t		mrec_srcs;
700 } mrec_t;
701 
702 /* Group membership list per upper conn */
703 /*
704  * XXX add ilg info for ifaddr/ifindex.
705  * XXX can we make ilg survive an ifconfig unplumb + plumb
706  * by setting the ipif/ill to NULL and recover that later?
707  *
708  * ilg_ipif is used by IPv4 as multicast groups are joined using an interface
709  * address (ipif).
710  * ilg_ill is used by IPv6 as multicast groups are joined using an interface
711  * index (phyint->phyint_ifindex).
712  * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6.
713  *
714  * ilg records the state of multicast memberships of a socket end point.
715  * ilm records the state of multicast memberships with the driver and is
716  * maintained per interface.
717  *
718  * Notes :
719  *
720  * 1) There is no direct link between a given ilg and ilm. If the
721  *    application has joined a group G with ifindex I, we will have
722  *    an ilg with ilg_v6group and ilg_ill. There will be a corresponding
723  *    ilm with ilm_ill/ilm_v6addr recording the multicast membership.
724  *    To delete the membership,
725  *
726  *		a) Search for ilg matching on G and I with ilg_v6group
727  *		   and ilg_ill. Delete ilg_ill.
728  *		b) Search the corresponding ilm matching on G and I with
729  *		   ilm_v6addr and ilm_ill. Delete ilm.
730  *
731  *    In IPv4, the only difference is, we look using ipifs instead of
732  *    ills.
733  *
734  * 2) With IP multipathing, we want to keep receiving even after the
735  *    interface has failed. We do this by moving multicast memberships
736  *    to a new_ill within the group. This is acheived by sending
737  *    DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS
738  *    on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we
739  *    need to be able to delete memberships which will still come down
740  *    with the ifindex of the old ill which is what the application
741  *    knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track
742  *    of where we joined initially so that we can lookup even after we
743  *    moved the membership. It is also used for moving back the membership
744  *    when the old ill has been repaired. This is done by looking up for
745  *    ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only
746  *    ilms actually move from old ill to new ill. ilgs don't move (just
747  *    the ilg_ill is changed when it moves) as it just records the state
748  *    of the application that has joined a group G where as ilm records
749  *    the state joined with the driver. Thus when we send DL_XXXMULTI_REQs
750  *    we also need to keep the ilm in the right ill.
751  *
752  *    In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move
753  *    implicitly as we use only ipifs in IPv4. Thus, one can always lookup
754  *    a given ilm/ilg even after it fails without the support of
755  *    orig_ifindex. We move ilms still to record the driver state as
756  *    mentioned above.
757  */
758 
759 /*
760  * The ilg_t and ilm_t members are protected by ipsq. They can be changed only
761  * by a thread executing in the ipsq. In other words add/delete of a
762  * multicast group has to execute in the ipsq.
763  */
764 #define	ILG_DELETED	0x1		/* ilg_flags */
765 typedef struct ilg_s {
766 	in6_addr_t	ilg_v6group;
767 	struct ipif_s	*ilg_ipif;	/* Logical interface we are member on */
768 	struct ill_s	*ilg_ill;	/* Used by IPv6 */
769 	int		ilg_orig_ifindex; /* Interface originally joined on */
770 	uint_t		ilg_flags;
771 	mcast_record_t	ilg_fmode;	/* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
772 	slist_t		*ilg_filter;
773 } ilg_t;
774 
775 
776 /*
777  * Multicast address list entry for lower ill.
778  * ilm_ipif is used by IPv4 as multicast groups are joined using ipif.
779  * ilm_ill is used by IPv6 as multicast groups are joined using ill.
780  * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6.
781  */
782 #define	ILM_DELETED	0x1		/* ilm_flags */
783 typedef struct ilm_s {
784 	in6_addr_t	ilm_v6addr;
785 	int		ilm_refcnt;
786 	uint_t		ilm_timer;	/* IGMP/MLD query resp timer, in msec */
787 	struct ipif_s	*ilm_ipif;	/* Back pointer to ipif for IPv4 */
788 	struct ilm_s	*ilm_next;	/* Linked list for each ill */
789 	uint_t		ilm_state;	/* state of the membership */
790 	struct ill_s	*ilm_ill;	/* Back pointer to ill for IPv6 */
791 	int		ilm_orig_ifindex;  /* V6_MULTICAST_IF/ilm_ipif index */
792 	uint_t		ilm_flags;
793 	boolean_t	ilm_is_new;	/* new ilm */
794 	boolean_t	ilm_notify_driver; /* Need to notify the driver */
795 	zoneid_t	ilm_zoneid;
796 	int		ilm_no_ilg_cnt;	/* number of joins w/ no ilg */
797 	mcast_record_t	ilm_fmode;	/* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */
798 	slist_t		*ilm_filter;	/* source filter list */
799 	slist_t		*ilm_pendsrcs;	/* relevant src addrs for pending req */
800 	rtx_state_t	ilm_rtx;	/* SCR retransmission state */
801 } ilm_t;
802 
803 #define	ilm_addr	V4_PART_OF_V6(ilm_v6addr)
804 
805 /*
806  * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to
807  * zero. In addition it needs to block new walkers while it is unlinking ilm's
808  * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice.
809  */
810 #define	ILM_WALKER_HOLD(ill)    {               \
811 	mutex_enter(&(ill)->ill_lock);          \
812 	ill->ill_ilm_walker_cnt++;              \
813 	mutex_exit(&(ill)->ill_lock);           \
814 }
815 
816 #define	ILM_WALKER_RELE(ill)	{ 		\
817 	mutex_enter(&(ill)->ill_lock);		\
818 	(ill)->ill_ilm_walker_cnt--;		\
819 	if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \
820 		ilm_walker_cleanup(ill);	\
821 	mutex_exit(&(ill)->ill_lock);		\
822 }
823 
824 /*
825  * Soft reference to an IPsec SA.
826  *
827  * On relative terms, conn's can be persistant (living as long as the
828  * processes which create them), while SA's are ephemeral (dying when
829  * they hit their time-based or byte-based lifetimes).
830  *
831  * We could hold a hard reference to an SA from an ipsec_latch_t,
832  * but this would cause expired SA's to linger for a potentially
833  * unbounded time.
834  *
835  * Instead, we remember the hash bucket number and bucket generation
836  * in addition to the pointer.  The bucket generation is incremented on
837  * each deletion.
838  */
839 typedef struct ipsa_ref_s
840 {
841 	struct ipsa_s	*ipsr_sa;
842 	struct isaf_s	*ipsr_bucket;
843 	uint64_t	ipsr_gen;
844 } ipsa_ref_t;
845 
846 /*
847  * IPsec "latching" state.
848  *
849  * In the presence of IPsec policy, fully-bound conn's bind a connection
850  * to more than just the 5-tuple, but also a specific IPsec action and
851  * identity-pair.
852  *
853  * As an optimization, we also cache soft references to IPsec SA's
854  * here so that we can fast-path around most of the work needed for
855  * outbound IPsec SA selection.
856  *
857  * Were it not for TCP's detached connections, this state would be
858  * in-line in conn_t; instead, this is in a separate structure so it
859  * can be handed off to TCP when a connection is detached.
860  */
861 typedef struct ipsec_latch_s
862 {
863 	kmutex_t	ipl_lock;
864 	uint32_t	ipl_refcnt;
865 
866 	uint64_t	ipl_unique;
867 	struct ipsec_policy_s	*ipl_in_policy; /* latched policy (in) */
868 	struct ipsec_policy_s	*ipl_out_policy; /* latched policy (out) */
869 	struct ipsec_action_s	*ipl_in_action;	/* latched action (in) */
870 	struct ipsec_action_s	*ipl_out_action; /* latched action (out) */
871 	cred_t		*ipl_local_id;
872 	struct ipsid_s	*ipl_local_cid;
873 	struct ipsid_s	*ipl_remote_cid;
874 	unsigned int
875 			ipl_out_action_latched : 1,
876 			ipl_in_action_latched : 1,
877 			ipl_out_policy_latched : 1,
878 			ipl_in_policy_latched : 1,
879 
880 			ipl_ids_latched : 1,
881 
882 			ipl_pad_to_bit_31 : 27;
883 
884 	ipsa_ref_t	ipl_ref[2]; /* 0: ESP, 1: AH */
885 
886 } ipsec_latch_t;
887 
888 #define	IPLATCH_REFHOLD(ipl) { \
889 	atomic_add_32(&(ipl)->ipl_refcnt, 1);		\
890 	ASSERT((ipl)->ipl_refcnt != 0);			\
891 }
892 
893 #define	IPLATCH_REFRELE(ipl) {					\
894 	ASSERT((ipl)->ipl_refcnt != 0);				\
895 	membar_exit();						\
896 	if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0)	\
897 		iplatch_free(ipl);				\
898 }
899 
900 /*
901  * peer identity structure.
902  */
903 
904 typedef struct conn_s conn_t;
905 
906 /*
907  * The old IP client structure "ipc_t" is gone. All the data is stored in the
908  * connection structure "conn_t" now. The mapping of old and new fields looks
909  * like this:
910  *
911  * ipc_ulp			conn_ulp
912  * ipc_rq			conn_rq
913  * ipc_wq			conn_wq
914  *
915  * ipc_laddr			conn_src
916  * ipc_faddr			conn_rem
917  * ipc_v6laddr			conn_srcv6
918  * ipc_v6faddr			conn_remv6
919  *
920  * ipc_lport			conn_lport
921  * ipc_fport			conn_fport
922  * ipc_ports			conn_ports
923  *
924  * ipc_policy			conn_policy
925  * ipc_latch			conn_latch
926  *
927  * ipc_irc_lock			conn_lock
928  * ipc_ire_cache		conn_ire_cache
929  *
930  * ipc_state_flags		conn_state_flags
931  * ipc_outgoing_ill		conn_outgoing_ill
932  *
933  * ipc_dontroute 		conn_dontroute
934  * ipc_loopback 		conn_loopback
935  * ipc_broadcast		conn_broadcast
936  * ipc_reuseaddr		conn_reuseaddr
937  *
938  * ipc_multicast_loop		conn_multicast_loop
939  * ipc_multi_router		conn_multi_router
940  * ipc_priv_stream 		conn_priv_stream
941  * ipc_draining 		conn_draining
942  *
943  * ipc_did_putbq		conn_did_putbq
944  * ipc_unspec_src		conn_unspec_src
945  * ipc_policy_cached		conn_policy_cached
946  *
947  * ipc_in_enforce_policy 	conn_in_enforce_policy
948  * ipc_out_enforce_policy 	conn_out_enforce_policy
949  * ipc_af_isv6			conn_af_isv6
950  * ipc_pkt_isv6			conn_pkt_isv6
951  *
952  * ipc_ipv6_recvpktinfo		conn_ipv6_recvpktinfo
953  *
954  * ipc_ipv6_recvhoplimit	conn_ipv6_recvhoplimit
955  * ipc_ipv6_recvhopopts		conn_ipv6_recvhopopts
956  * ipc_ipv6_recvdstopts		conn_ipv6_recvdstopts
957  *
958  * ipc_ipv6_recvrthdr 		conn_ipv6_recvrthdr
959  * ipc_ipv6_recvrtdstopts	conn_ipv6_recvrtdstopts
960  * ipc_fully_bound		conn_fully_bound
961  *
962  * ipc_recvif			conn_recvif
963  *
964  * ipc_recvslla 		conn_recvslla
965  * ipc_acking_unbind 		conn_acking_unbind
966  * ipc_pad_to_bit_31 		conn_pad_to_bit_31
967  *
968  * ipc_xmit_if_ill		conn_xmit_if_ill
969  * ipc_nofailover_ill		conn_nofailover_ill
970  *
971  * ipc_proto			conn_proto
972  * ipc_incoming_ill		conn_incoming_ill
973  * ipc_outgoing_pill		conn_outgoing_pill
974  * ipc_pending_ill		conn_pending_ill
975  * ipc_unbind_mp		conn_unbind_mp
976  * ipc_ilg			conn_ilg
977  * ipc_ilg_allocated		conn_ilg_allocated
978  * ipc_ilg_inuse		conn_ilg_inuse
979  * ipc_ilg_walker_cnt		conn_ilg_walker_cnt
980  * ipc_refcv			conn_refcv
981  * ipc_multicast_ipif		conn_multicast_ipif
982  * ipc_multicast_ill		conn_multicast_ill
983  * ipc_orig_bound_ifindex	conn_orig_bound_ifindex
984  * ipc_orig_multicast_ifindex	conn_orig_multicast_ifindex
985  * ipc_orig_xmit_ifindex	conn_orig_xmit_ifindex
986  * ipc_drain_next		conn_drain_next
987  * ipc_drain_prev		conn_drain_prev
988  * ipc_idl			conn_idl
989  */
990 
991 /*
992  * This is used to match an inbound/outbound datagram with
993  * policy.
994  */
995 
996 typedef	struct ipsec_selector {
997 	in6_addr_t	ips_local_addr_v6;
998 	in6_addr_t	ips_remote_addr_v6;
999 	uint16_t	ips_local_port;
1000 	uint16_t	ips_remote_port;
1001 	uint8_t		ips_icmp_type;
1002 	uint8_t		ips_icmp_code;
1003 	uint8_t		ips_protocol;
1004 	uint8_t		ips_isv4 : 1,
1005 			ips_is_icmp_inv_acq: 1;
1006 } ipsec_selector_t;
1007 
1008 /*
1009  * Note that we put v4 addresses in the *first* 32-bit word of the
1010  * selector rather than the last to simplify the prefix match/mask code
1011  * in spd.c
1012  */
1013 #define	ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0]
1014 #define	ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0]
1015 
1016 /* Values used in IP by IPSEC Code */
1017 #define		IPSEC_OUTBOUND		B_TRUE
1018 #define		IPSEC_INBOUND		B_FALSE
1019 
1020 /*
1021  * There are two variants in policy failures. The packet may come in
1022  * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not
1023  * have the desired level of protection (IPSEC_POLICY_MISMATCH).
1024  */
1025 #define	IPSEC_POLICY_NOT_NEEDED		0
1026 #define	IPSEC_POLICY_MISMATCH		1
1027 #define	IPSEC_POLICY_AUTH_NOT_NEEDED	2
1028 #define	IPSEC_POLICY_ENCR_NOT_NEEDED	3
1029 #define	IPSEC_POLICY_SE_NOT_NEEDED	4
1030 #define	IPSEC_POLICY_MAX		5	/* Always max + 1. */
1031 
1032 /*
1033  * Folowing macro is used whenever the code does not know whether there
1034  * is a M_CTL present in the front and it needs to examine the actual mp
1035  * i.e the IP header. As a M_CTL message could be in the front, this
1036  * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL
1037  * mp is not present, both first_mp and mp point to the same message.
1038  */
1039 #define	EXTRACT_PKT_MP(mp, first_mp, mctl_present)	\
1040 	(first_mp) = (mp);				\
1041 	if ((mp)->b_datap->db_type == M_CTL) {		\
1042 		(mp) = (mp)->b_cont;			\
1043 		(mctl_present) = B_TRUE;		\
1044 	} else {					\
1045 		(mctl_present) = B_FALSE;		\
1046 	}
1047 
1048 /*
1049  * Check with IPSEC inbound policy if
1050  *
1051  * 1) per-socket policy is present - indicated by conn_in_enforce_policy.
1052  * 2) Or if we have not cached policy on the conn and the global policy is
1053  *    non-empty.
1054  */
1055 #define	CONN_INBOUND_POLICY_PRESENT(connp)	\
1056 	((connp)->conn_in_enforce_policy ||	\
1057 	(!((connp)->conn_policy_cached) &&	\
1058 	ipsec_inbound_v4_policy_present))
1059 
1060 #define	CONN_INBOUND_POLICY_PRESENT_V6(connp)	\
1061 	((connp)->conn_in_enforce_policy ||	\
1062 	(!(connp)->conn_policy_cached &&	\
1063 	ipsec_inbound_v6_policy_present))
1064 
1065 #define	CONN_OUTBOUND_POLICY_PRESENT(connp)	\
1066 	((connp)->conn_out_enforce_policy ||	\
1067 	(!((connp)->conn_policy_cached) &&	\
1068 	ipsec_outbound_v4_policy_present))
1069 
1070 #define	CONN_OUTBOUND_POLICY_PRESENT_V6(connp)	\
1071 	((connp)->conn_out_enforce_policy ||	\
1072 	(!(connp)->conn_policy_cached &&	\
1073 	ipsec_outbound_v6_policy_present))
1074 
1075 /*
1076  * Information cached in IRE for upper layer protocol (ULP).
1077  *
1078  * Notice that ire_max_frag is not included in the iulp_t structure, which
1079  * it may seem that it should.  But ire_max_frag cannot really be cached.  It
1080  * is fixed for each interface.  For MTU found by PMTUd, we may want to cache
1081  * it.  But currently, we do not do that.
1082  */
1083 typedef struct iulp_s {
1084 	boolean_t	iulp_set;	/* Is any metric set? */
1085 	uint32_t	iulp_ssthresh;	/* Slow start threshold (TCP). */
1086 	clock_t		iulp_rtt;	/* Guestimate in millisecs. */
1087 	clock_t		iulp_rtt_sd;	/* Cached value of RTT variance. */
1088 	uint32_t	iulp_spipe;	/* Send pipe size. */
1089 	uint32_t	iulp_rpipe;	/* Receive pipe size. */
1090 	uint32_t	iulp_rtomax;	/* Max round trip timeout. */
1091 	uint32_t	iulp_sack;	/* Use SACK option (TCP)? */
1092 	uint32_t
1093 		iulp_tstamp_ok : 1,	/* Use timestamp option (TCP)? */
1094 		iulp_wscale_ok : 1,	/* Use window scale option (TCP)? */
1095 		iulp_ecn_ok : 1,	/* Enable ECN (for TCP)? */
1096 		iulp_pmtud_ok : 1,	/* Enable PMTUd? */
1097 
1098 		iulp_not_used : 28;
1099 } iulp_t;
1100 
1101 /* Zero iulp_t. */
1102 extern const iulp_t ire_uinfo_null;
1103 
1104 /*
1105  * The conn drain list structure.
1106  * The list is protected by idl_lock. Each conn_t inserted in the list
1107  * points back at this idl_t using conn_idl. IP primes the draining of the
1108  * conns queued in these lists, by qenabling the 1st conn of each list. This
1109  * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance
1110  * of ip_wsrv successively qenables the next conn in the list.
1111  * idl_lock protects all other members of idl_t and conn_drain_next
1112  * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED
1113  * flag of the conn_t and conn_idl.
1114  */
1115 typedef struct idl_s {
1116 	conn_t		*idl_conn;		/* Head of drain list */
1117 	kmutex_t	idl_lock;		/* Lock for this list */
1118 	conn_t		*idl_conn_draining;	/* conn that is draining */
1119 	uint32_t
1120 		idl_repeat : 1,			/* Last conn must re-enable */
1121 						/* drain list again */
1122 		idl_unused : 31;
1123 } idl_t;
1124 
1125 #define	CONN_DRAIN_LIST_LOCK(connp)	(&((connp)->conn_idl->idl_lock))
1126 /*
1127  * Interface route structure which holds the necessary information to recreate
1128  * routes that are tied to an interface (namely where ire_ipif != NULL).
1129  * These routes which were initially created via a routing socket or via the
1130  * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be
1131  * traditional interface routes.  When an interface comes back up after being
1132  * marked down, this information will be used to recreate the routes.  These
1133  * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp).
1134  */
1135 typedef struct ifrt_s {
1136 	ushort_t	ifrt_type;		/* Type of IRE */
1137 	in6_addr_t	ifrt_v6addr;		/* Address IRE represents. */
1138 	in6_addr_t	ifrt_v6gateway_addr;	/* Gateway if IRE_OFFSUBNET */
1139 	in6_addr_t	ifrt_v6src_addr;	/* Src addr if RTF_SETSRC */
1140 	in6_addr_t	ifrt_v6mask;		/* Mask for matching IRE. */
1141 	uint32_t	ifrt_flags;		/* flags related to route */
1142 	uint_t		ifrt_max_frag;		/* MTU (next hop or path). */
1143 	iulp_t		ifrt_iulp_info;		/* Cached IRE ULP info. */
1144 } ifrt_t;
1145 
1146 #define	ifrt_addr		V4_PART_OF_V6(ifrt_v6addr)
1147 #define	ifrt_gateway_addr	V4_PART_OF_V6(ifrt_v6gateway_addr)
1148 #define	ifrt_src_addr		V4_PART_OF_V6(ifrt_v6src_addr)
1149 #define	ifrt_mask		V4_PART_OF_V6(ifrt_v6mask)
1150 
1151 /* Number of IP addresses that can be hosted on a physical interface */
1152 #define	MAX_ADDRS_PER_IF	8192
1153 /*
1154  * Number of Source addresses to be considered for source address
1155  * selection. Used by ipif_select_source[_v6].
1156  */
1157 #define	MAX_IPIF_SELECT_SOURCE	50
1158 
1159 #ifdef IP_DEBUG
1160 /*
1161  * Tracing refholds and refreleases for debugging. Existing tracing mechanisms
1162  * do not allow the granularity need to trace refrences to ipif/ill/ire's. This
1163  * mechanism should be revisited once dtrace is available.
1164  */
1165 #define	IP_STACK_DEPTH	15
1166 typedef struct tr_buf_s {
1167 	int	tr_depth;
1168 	pc_t	tr_stack[IP_STACK_DEPTH];
1169 } tr_buf_t;
1170 
1171 typedef struct th_trace_s {
1172 	struct	th_trace_s *th_next;
1173 	struct	th_trace_s **th_prev;
1174 	kthread_t	*th_id;
1175 	int	th_refcnt;
1176 	uint_t	th_trace_lastref;
1177 #define	TR_BUF_MAX	38
1178 	tr_buf_t th_trbuf[TR_BUF_MAX];
1179 } th_trace_t;
1180 #endif
1181 
1182 /* The following are ipif_state_flags */
1183 #define	IPIF_CONDEMNED		0x1	/* The ipif is being removed */
1184 #define	IPIF_CHANGING		0x2	/* A critcal ipif field is changing */
1185 #define	IPIF_MOVING		0x8	/* The ipif is being moved */
1186 #define	IPIF_SET_LINKLOCAL	0x10	/* transient flag during bringup */
1187 #define	IPIF_ZERO_SOURCE	0x20	/* transient flag during bringup */
1188 
1189 /* IP interface structure, one per local address */
1190 typedef struct ipif_s {
1191 	struct	ipif_s	*ipif_next;
1192 	struct	ill_s	*ipif_ill;	/* Back pointer to our ill */
1193 	int	ipif_id;		/* Logical unit number */
1194 	uint_t	ipif_mtu;		/* Starts at ipif_ill->ill_max_frag */
1195 	uint_t	ipif_saved_mtu;		/* Save of mtu during ipif_move() */
1196 	in6_addr_t ipif_v6lcl_addr;	/* Local IP address for this if. */
1197 	in6_addr_t ipif_v6src_addr;	/* Source IP address for this if. */
1198 	in6_addr_t ipif_v6subnet;	/* Subnet prefix for this if. */
1199 	in6_addr_t ipif_v6net_mask;	/* Net mask for this interface. */
1200 	in6_addr_t ipif_v6brd_addr;	/* Broadcast addr for this interface. */
1201 	in6_addr_t ipif_v6pp_dst_addr;	/* Point-to-point dest address. */
1202 	uint64_t ipif_flags;		/* Interface flags. */
1203 	uint_t	ipif_metric;		/* BSD if metric, for compatibility. */
1204 	uint_t	ipif_ire_type;		/* IRE_LOCAL or IRE_LOOPBACK */
1205 	mblk_t	*ipif_arp_del_mp;	/* Allocated at time arp comes up, to */
1206 					/* prevent awkward out of mem */
1207 					/* condition later */
1208 	mblk_t	*ipif_saved_ire_mp;	/* Allocated for each extra */
1209 					/* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */
1210 					/* on this interface so that they */
1211 					/* can survive ifconfig down. */
1212 	kmutex_t ipif_saved_ire_lock;	/* Protects ipif_saved_ire_mp */
1213 
1214 	mrec_t	*ipif_igmp_rpt;		/* List of group memberships which */
1215 					/* will be reported on.  Used when */
1216 					/* handling an igmp timeout.	   */
1217 
1218 	/*
1219 	 * The packet counts in the ipif contain the sum of the
1220 	 * packet counts in dead IREs that were affiliated with
1221 	 * this ipif.
1222 	 */
1223 	uint_t	ipif_fo_pkt_count;	/* Forwarded thru our dead IREs */
1224 	uint_t	ipif_ib_pkt_count;	/* Inbound packets for our dead IREs */
1225 	uint_t	ipif_ob_pkt_count;	/* Outbound packets to our dead IREs */
1226 	/* Exclusive bit fields, protected by ipsq_t */
1227 	unsigned int
1228 		ipif_multicast_up : 1,	/* We have joined the allhosts group */
1229 		ipif_solmcast_up : 1,	/* We joined solicited node mcast */
1230 		ipif_replace_zero : 1,	/* Replacement for zero */
1231 		ipif_was_up : 1,	/* ipif was up before */
1232 
1233 		ipif_pad_to_31 : 28;
1234 
1235 	int	ipif_orig_ifindex;	/* ifindex before SLIFFAILOVER */
1236 	uint_t	ipif_seqid;		/* unique index across all ills */
1237 	uint_t	ipif_orig_ipifid;	/* ipif_id before SLIFFAILOVER */
1238 	uint_t	ipif_state_flags;	/* See IPIF_* flag defs above */
1239 	uint_t	ipif_refcnt;		/* active consistent reader cnt */
1240 	uint_t	ipif_ire_cnt;		/* Number of ire's referencing ipif */
1241 	uint_t	ipif_saved_ire_cnt;
1242 	zoneid_t
1243 		ipif_zoneid;		/* zone ID number */
1244 #ifdef ILL_DEBUG
1245 #define	IP_TR_HASH_MAX	64
1246 	th_trace_t *ipif_trace[IP_TR_HASH_MAX];
1247 	boolean_t	ipif_trace_disable;	/* True when alloc fails */
1248 #endif
1249 } ipif_t;
1250 
1251 /*
1252  * The following table lists the protection levels of the various members
1253  * of the ipif_t. The following notation is used.
1254  *
1255  * Write once - Written to only once at the time of bringing up
1256  * the interface and can be safely read after the bringup without any lock.
1257  *
1258  * ipsq - Need to execute in the ipsq to perform the indicated access.
1259  *
1260  * ill_lock - Need to hold this mutex to perform the indicated access.
1261  *
1262  * ill_g_lock - Need to hold this rw lock as reader/writer for read access or
1263  * write access respectively.
1264  *
1265  * down ill - Written to only when the ill is down (i.e all ipifs are down)
1266  * up ill - Read only when the ill is up (i.e. at least 1 ipif is up)
1267  *
1268  *		 Table of ipif_t members and their protection
1269  *
1270  * ipif_next		ill_g_lock		ill_g_lock
1271  * ipif_ill		ipsq + down ipif		write once
1272  * ipif_id		ipsq + down ipif		write once
1273  * ipif_mtu		ipsq
1274  * ipif_v6lcl_addr	ipsq + down ipif		up ipif
1275  * ipif_v6src_addr	ipsq + down ipif		up ipif
1276  * ipif_v6subnet	ipsq + down ipif		up ipif
1277  * ipif_v6net_mask	ipsq + down ipif		up ipif
1278  *
1279  * ipif_v6brd_addr
1280  * ipif_v6pp_dst_addr
1281  * ipif_flags		ill_lock		ill_lock
1282  * ipif_metric
1283  * ipif_ire_type	ipsq + down ill		up ill
1284  *
1285  * ipif_arp_del_mp	ipsq			ipsq
1286  * ipif_saved_ire_mp	ipif_saved_ire_lock	ipif_saved_ire_lock
1287  * ipif_igmp_rpt	ipsq			ipsq
1288  *
1289  * ipif_fo_pkt_count	Approx
1290  * ipif_ib_pkt_count	Approx
1291  * ipif_ob_pkt_count	Approx
1292  *
1293  * bit fields		ill_lock		ill_lock
1294  *
1295  * ipif_orig_ifindex	ipsq			None
1296  * ipif_orig_ipifid	ipsq			None
1297  * ipif_seqid		ipsq			Write once
1298  *
1299  * ipif_state_flags	ill_lock		ill_lock
1300  * ipif_refcnt		ill_lock		ill_lock
1301  * ipif_ire_cnt		ill_lock		ill_lock
1302  * ipif_saved_ire_cnt
1303  */
1304 
1305 #define	IP_TR_HASH(tid)	((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1))
1306 
1307 #ifdef ILL_DEBUG
1308 #define	IPIF_TRACE_REF(ipif)	ipif_trace_ref(ipif)
1309 #define	ILL_TRACE_REF(ill)	ill_trace_ref(ill)
1310 #define	IPIF_UNTRACE_REF(ipif)	ipif_untrace_ref(ipif)
1311 #define	ILL_UNTRACE_REF(ill)	ill_untrace_ref(ill)
1312 #define	ILL_TRACE_CLEANUP(ill)	ill_trace_cleanup(ill)
1313 #define	IPIF_TRACE_CLEANUP(ipif)	ipif_trace_cleanup(ipif)
1314 #else
1315 #define	IPIF_TRACE_REF(ipif)
1316 #define	ILL_TRACE_REF(ill)
1317 #define	IPIF_UNTRACE_REF(ipif)
1318 #define	ILL_UNTRACE_REF(ill)
1319 #define	ILL_TRACE_CLEANUP(ill)
1320 #define	IPIF_TRACE_CLEANUP(ipif)
1321 #endif
1322 
1323 /* IPv4 compatability macros */
1324 #define	ipif_lcl_addr		V4_PART_OF_V6(ipif_v6lcl_addr)
1325 #define	ipif_src_addr		V4_PART_OF_V6(ipif_v6src_addr)
1326 #define	ipif_subnet		V4_PART_OF_V6(ipif_v6subnet)
1327 #define	ipif_net_mask		V4_PART_OF_V6(ipif_v6net_mask)
1328 #define	ipif_brd_addr		V4_PART_OF_V6(ipif_v6brd_addr)
1329 #define	ipif_pp_dst_addr	V4_PART_OF_V6(ipif_v6pp_dst_addr)
1330 
1331 /* Macros for easy backreferences to the ill. */
1332 #define	ipif_wq			ipif_ill->ill_wq
1333 #define	ipif_rq			ipif_ill->ill_rq
1334 #define	ipif_net_type		ipif_ill->ill_net_type
1335 #define	ipif_resolver_mp	ipif_ill->ill_resolver_mp
1336 #define	ipif_ipif_up_count	ipif_ill->ill_ipif_up_count
1337 #define	ipif_bcast_mp		ipif_ill->ill_bcast_mp
1338 #define	ipif_type		ipif_ill->ill_type
1339 #define	ipif_isv6		ipif_ill->ill_isv6
1340 
1341 #define	SIOCLIFADDR_NDX 112	/* ndx of SIOCLIFADDR in the ndx ioctl table */
1342 
1343 /*
1344  * mode value for ip_ioctl_finish for finishing an ioctl
1345  */
1346 #define	CONN_CLOSE	1		/* No mi_copy */
1347 #define	COPYOUT		2		/* do an mi_copyout if needed */
1348 #define	NO_COPYOUT	3		/* do an mi_copy_done */
1349 
1350 /*
1351  * The IP-MT design revolves around the serialization object ipsq_t.
1352  * It is associated with an IPMP group. If IPMP is not enabled, there is
1353  * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream
1354  *
1355  * ipsq_lock protects
1356  *	ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail,
1357  *	ipsq_mphead, ipsq_mptail, ipsq_split
1358  *
1359  *	ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags,
1360  *	ipsq_waitfor
1361  *
1362  * The fields in the last line above below are set mostly by a writer thread
1363  * But there is an exception in the last call to ipif_ill_refrele_tail which
1364  * could also race with a conn close which could be cleaning up the
1365  * fields. So we choose to protect using ipsq_lock instead of depending on
1366  * the property of the writer.
1367  * ill_g_lock protects
1368  *	ipsq_refs, ipsq_phyint_list
1369  */
1370 typedef struct ipsq_s {
1371 	kmutex_t ipsq_lock;
1372 	int	ipsq_reentry_cnt;
1373 	kthread_t	*ipsq_writer;	/* current owner (thread id) */
1374 	int	ipsq_flags;
1375 	mblk_t	*ipsq_xopq_mphead;	/* list of excl ops mostly ioctls */
1376 	mblk_t	*ipsq_xopq_mptail;
1377 	mblk_t	*ipsq_mphead;		/* msgs on ipsq linked thru b_next */
1378 	mblk_t	*ipsq_mptail;		/* msgs on ipsq linked thru b_next */
1379 	ipif_t	*ipsq_pending_ipif;	/* ipif associated w. ipsq_pending_mp */
1380 	ipif_t	*ipsq_current_ipif;	/* ipif associated with current ioctl */
1381 	mblk_t	*ipsq_pending_mp;	/* current ioctl mp while waiting for */
1382 					/* response from another module */
1383 	struct	ipsq_s	*ipsq_next;	/* list of all syncq's (ipsq_g_list) */
1384 	uint_t		ipsq_refs;	/* Number of phyints on this ipsq */
1385 	struct phyint	*ipsq_phyint_list; /* List of phyints on this ipsq */
1386 	boolean_t	ipsq_split;	/* ipsq may need to be split */
1387 	int		ipsq_waitfor;	/* Values encoded below */
1388 	char		ipsq_name[LIFNAMSIZ+1];	/* same as phyint_groupname */
1389 	int		ipsq_last_cmd;	/* debugging aid */
1390 #ifdef ILL_DEBUG
1391 	int		ipsq_depth;	/* debugging aid */
1392 	pc_t		ipsq_stack[IP_STACK_DEPTH];	/* debugging aid */
1393 #endif
1394 } ipsq_t;
1395 
1396 /* ipsq_flags */
1397 #define	IPSQ_GROUP	0x1	/* This ipsq belongs to an IPMP group */
1398 
1399 /*
1400  * ipsq_waitfor:
1401  *
1402  * IPIF_DOWN	1	ipif_down waiting for refcnts to drop
1403  * ILL_DOWN	2	ill_down waiting for refcnts to drop
1404  * IPIF_FREE	3	ipif_free waiting for refcnts to drop
1405  * ILL_FREE	4	ill unplumb waiting for refcnts to drop
1406  * ILL_MOVE_OK	5	failover waiting for refcnts to drop
1407  */
1408 
1409 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK };
1410 
1411 /* Flags passed to ipsq_try_enter */
1412 #define	CUR_OP 0		/* Current ioctl continuing again */
1413 #define	NEW_OP 1		/* New ioctl starting afresh */
1414 
1415 /*
1416  * phyint represents state that is common to both IPv4 and IPv6 interfaces.
1417  * There is a separate ill_t representing IPv4 and IPv6 which has a
1418  * backpointer to the phyint structure for acessing common state.
1419  *
1420  * NOTE : It just stores the group name as there is only one name for
1421  *	  IPv4 and IPv6 i.e it is a underlying link property. Actually
1422  *        IPv4 and IPv6 ill are grouped together when their phyints have
1423  *        the same name.
1424  */
1425 typedef struct phyint {
1426 	struct ill_s	*phyint_illv4;
1427 	struct ill_s	*phyint_illv6;
1428 	uint_t		phyint_ifindex;		/* SIOCLSLIFINDEX */
1429 	uint_t		phyint_notify_delay;	/* SIOCSLIFNOTIFYDELAY */
1430 	char		*phyint_groupname;	/* SIOCSLIFGROUPNAME */
1431 	uint_t		phyint_groupname_len;
1432 	uint64_t	phyint_flags;
1433 	avl_node_t	phyint_avl_by_index;	/* avl tree by index */
1434 	avl_node_t	phyint_avl_by_name;	/* avl tree by name */
1435 	kmutex_t	phyint_lock;
1436 	struct ipsq_s	*phyint_ipsq;		/* back pointer to ipsq */
1437 	struct phyint	*phyint_ipsq_next;	/* phyint list on this ipsq */
1438 } phyint_t;
1439 
1440 #define	CACHE_ALIGN_SIZE 64
1441 
1442 #define	CACHE_ALIGN(align_struct)	P2ROUNDUP(sizeof (struct align_struct),\
1443 							CACHE_ALIGN_SIZE)
1444 struct _phyint_list_s_ {
1445 	avl_tree_t	phyint_list_avl_by_index;	/* avl tree by index */
1446 	avl_tree_t	phyint_list_avl_by_name;	/* avl tree by name */
1447 };
1448 
1449 typedef union phyint_list_u {
1450 	struct	_phyint_list_s_ phyint_list_s;
1451 	char	phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)];
1452 } phyint_list_t;
1453 
1454 #define	phyint_list_avl_by_index	phyint_list_s.phyint_list_avl_by_index
1455 #define	phyint_list_avl_by_name		phyint_list_s.phyint_list_avl_by_name
1456 /*
1457  * ILL groups. We group ills,
1458  *
1459  * - if the ills have the same group name. (New way)
1460  *
1461  * ill_group locking notes:
1462  *
1463  * illgrp_lock protects ill_grp_ill_schednext.
1464  *
1465  * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count.
1466  * Holding ill_g_lock freezes the memberships of ills in IPMP groups.
1467  * It also freezes the global list of ills and all ipifs in all ills.
1468  *
1469  * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail
1470  * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the
1471  * global list of ills, ill_delete_glist holds ill_g_lock as writer.
1472  * This simplifies things for ipif_select_source, illgrp_scheduler etc.
1473  * that need to walk the members of an illgrp. They just hold ill_g_lock
1474  * as reader to do the walk.
1475  *
1476  */
1477 typedef	struct ill_group {
1478 	kmutex_t	illgrp_lock;
1479 	struct ill_group *illgrp_next;		/* Next ill_group */
1480 	struct ill_s	*illgrp_ill_schednext;	/* Next ill to be scheduled */
1481 	struct ill_s	*illgrp_ill;		/* First ill in the group */
1482 	int		illgrp_ill_count;
1483 } ill_group_t;
1484 
1485 extern	ill_group_t	*illgrp_head_v6;
1486 
1487 /*
1488  * Fragmentation hash bucket
1489  */
1490 typedef struct ipfb_s {
1491 	struct ipf_s	*ipfb_ipf;	/* List of ... */
1492 	size_t		ipfb_count;	/* Count of bytes used by frag(s) */
1493 	kmutex_t	ipfb_lock;	/* Protect all ipf in list */
1494 	uint_t		ipfb_frag_pkts; /* num of distinct fragmented pkts */
1495 } ipfb_t;
1496 
1497 /*
1498  * IRE bucket structure. Usually there is an array of such structures,
1499  * each pointing to a linked list of ires. irb_refcnt counts the number
1500  * of walkers of a given hash bucket. Usually the reference count is
1501  * bumped up if the walker wants no IRES to be DELETED while walking the
1502  * list. Bumping up does not PREVENT ADDITION. This allows walking a given
1503  * hash bucket without stumbling up on a free pointer.
1504  */
1505 typedef struct irb {
1506 	struct ire_s	*irb_ire;	/* First ire in this bucket */
1507 					/* Should be first in this struct */
1508 	krwlock_t	irb_lock;	/* Protect this bucket */
1509 	uint_t		irb_refcnt;	/* Protected by irb_lock */
1510 	uchar_t		irb_marks;	/* CONDEMNED ires in this bucket ? */
1511 	uint_t		irb_ire_cnt;	/* Num of IRE in this bucket */
1512 	uint_t		irb_tmp_ire_cnt; /* Num of temporary IRE */
1513 } irb_t;
1514 
1515 #define	IP_V4_G_HEAD	0
1516 #define	IP_V6_G_HEAD	1
1517 
1518 #define	MAX_G_HEADS	2
1519 
1520 /*
1521  * unpadded ill_if structure
1522  */
1523 struct 	_ill_if_s_ {
1524 	union ill_if_u	*illif_next;
1525 	union ill_if_u	*illif_prev;
1526 	avl_tree_t	illif_avl_by_ppa;	/* AVL tree sorted on ppa */
1527 	vmem_t		*illif_ppa_arena;	/* ppa index space */
1528 	uint16_t	illif_mcast_v1;		/* hints for		  */
1529 	uint16_t	illif_mcast_v2;		/* [igmp|mld]_slowtimo	  */
1530 	int		illif_name_len;		/* name length */
1531 	char		illif_name[LIFNAMSIZ];	/* name of interface type */
1532 };
1533 
1534 /* cache aligned ill_if structure */
1535 typedef union 	ill_if_u {
1536 	struct  _ill_if_s_ ill_if_s;
1537 	char 	illif_filler[CACHE_ALIGN(_ill_if_s_)];
1538 } ill_if_t;
1539 
1540 
1541 #define	illif_next		ill_if_s.illif_next
1542 #define	illif_prev		ill_if_s.illif_prev
1543 #define	illif_avl_by_ppa	ill_if_s.illif_avl_by_ppa
1544 #define	illif_ppa_arena		ill_if_s.illif_ppa_arena
1545 #define	illif_mcast_v1		ill_if_s.illif_mcast_v1
1546 #define	illif_mcast_v2		ill_if_s.illif_mcast_v2
1547 #define	illif_name		ill_if_s.illif_name
1548 #define	illif_name_len		ill_if_s.illif_name_len
1549 
1550 typedef struct ill_walk_context_s {
1551 	int	ctx_current_list; /* current list being searched */
1552 	int	ctx_last_list;	 /* last list to search */
1553 } ill_walk_context_t;
1554 
1555 /*
1556  * ill_gheads structure, one for IPV4 and one for IPV6
1557  */
1558 struct _ill_g_head_s_ {
1559 	ill_if_t	*ill_g_list_head;
1560 	ill_if_t	*ill_g_list_tail;
1561 };
1562 
1563 typedef union ill_g_head_u {
1564 	struct _ill_g_head_s_ ill_g_head_s;
1565 	char	ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)];
1566 } ill_g_head_t;
1567 
1568 #define	ill_g_list_head	ill_g_head_s.ill_g_list_head
1569 #define	ill_g_list_tail	ill_g_head_s.ill_g_list_tail
1570 
1571 #pragma align CACHE_ALIGN_SIZE(ill_g_heads)
1572 extern ill_g_head_t	ill_g_heads[];	/* ILL List Head */
1573 
1574 
1575 #define	IP_V4_ILL_G_LIST	ill_g_heads[IP_V4_G_HEAD].ill_g_list_head
1576 #define	IP_V6_ILL_G_LIST	ill_g_heads[IP_V6_G_HEAD].ill_g_list_head
1577 #define	IP_VX_ILL_G_LIST(i)	ill_g_heads[i].ill_g_list_head
1578 
1579 #define	ILL_START_WALK_V4(ctx_ptr)	ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, \
1580 					ctx_ptr)
1581 #define	ILL_START_WALK_V6(ctx_ptr)	ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, \
1582 					ctx_ptr)
1583 #define	ILL_START_WALK_ALL(ctx_ptr)	ill_first(MAX_G_HEADS, MAX_G_HEADS, \
1584 					ctx_ptr)
1585 
1586 /*
1587  * Capabilities, possible flags for ill_capabilities.
1588  */
1589 
1590 #define	ILL_CAPAB_AH		0x01		/* IPsec AH acceleration */
1591 #define	ILL_CAPAB_ESP		0x02		/* IPsec ESP acceleration */
1592 #define	ILL_CAPAB_MDT		0x04		/* Multidata Transmit */
1593 #define	ILL_CAPAB_HCKSUM	0x08		/* Hardware checksumming */
1594 #define	ILL_CAPAB_ZEROCOPY	0x10		/* Zero-copy */
1595 #define	ILL_CAPAB_POLL		0x20		/* Polling Toggle */
1596 #define	ILL_CAPAB_SOFT_RING	0x40		/* Soft_Ring capability */
1597 
1598 /*
1599  * Per-ill Multidata Transmit capabilities.
1600  */
1601 typedef struct ill_mdt_capab_s ill_mdt_capab_t;
1602 
1603 /*
1604  * Per-ill IPsec capabilities.
1605  */
1606 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t;
1607 
1608 /*
1609  * Per-ill Hardware Checksumming capbilities.
1610  */
1611 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t;
1612 
1613 /*
1614  * Per-ill Zero-copy capabilities.
1615  */
1616 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t;
1617 
1618 /*
1619  * Per-ill Polling/soft ring capbilities.
1620  */
1621 typedef struct ill_dls_capab_s ill_dls_capab_t;
1622 
1623 /*
1624  * Per-ill polling resource map.
1625  */
1626 typedef struct ill_rx_ring ill_rx_ring_t;
1627 
1628 /* The following are ill_state_flags */
1629 #define	ILL_LL_SUBNET_PENDING	0x01	/* Waiting for DL_INFO_ACK from drv */
1630 #define	ILL_CONDEMNED		0x02	/* No more new ref's to the ILL */
1631 #define	ILL_CHANGING		0x04	/* ILL not globally visible */
1632 #define	ILL_DL_UNBIND_DONE	0x08	/* UNBIND_REQ has been Acked */
1633 #define	ILL_SOFT_RING_ASSIGN	0x10	/* Makeing soft ring assigment */
1634 
1635 /* Is this an ILL whose source address is used by other ILL's ? */
1636 #define	IS_USESRC_ILL(ill)			\
1637 	(((ill)->ill_usesrc_ifindex == 0) &&	\
1638 	((ill)->ill_usesrc_grp_next != NULL))
1639 
1640 /* Is this a client/consumer of the usesrc ILL ? */
1641 #define	IS_USESRC_CLI_ILL(ill)			\
1642 	(((ill)->ill_usesrc_ifindex != 0) &&	\
1643 	((ill)->ill_usesrc_grp_next != NULL))
1644 
1645 /* Is this an virtual network interface (vni) ILL ? */
1646 #define	IS_VNI(ill)							\
1647 	(((ill) != NULL) && !((ill)->ill_phyint->phyint_flags &		\
1648 	PHYI_LOOPBACK) && ((ill)->ill_phyint->phyint_flags &		\
1649 	PHYI_VIRTUAL))
1650 
1651 /*
1652  * IP Lower level Structure.
1653  * Instance data structure in ip_open when there is a device below us.
1654  */
1655 typedef struct ill_s {
1656 	ill_if_t *ill_ifptr;		/* pointer to interface type */
1657 	queue_t	*ill_rq;		/* Read queue. */
1658 	queue_t	*ill_wq;		/* Write queue. */
1659 
1660 	int	ill_error;		/* Error value sent up by device. */
1661 
1662 	ipif_t	*ill_ipif;		/* Interface chain for this ILL. */
1663 
1664 	uint_t	ill_ipif_up_count;	/* Number of IPIFs currently up. */
1665 	uint_t	ill_max_frag;		/* Max IDU from DLPI. */
1666 	char	*ill_name;		/* Our name. */
1667 	uint_t	ill_name_length;	/* Name length, incl. terminator. */
1668 	char	*ill_ndd_name;		/* Name + ":ip?_forwarding" for NDD. */
1669 	uint_t	ill_net_type;		/* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */
1670 	/*
1671 	 * Physical Point of Attachment num.  If DLPI style 1 provider
1672 	 * then this is derived from the devname.
1673 	 */
1674 	uint_t	ill_ppa;
1675 	t_uscalar_t	ill_sap;
1676 	t_scalar_t	ill_sap_length;	/* Including sign (for position) */
1677 	uint_t	ill_phys_addr_length;	/* Excluding the sap. */
1678 	uint_t	ill_bcast_addr_length;	/* Only set when the DL provider */
1679 					/* supports broadcast. */
1680 	t_uscalar_t	ill_mactype;
1681 	uint8_t	*ill_frag_ptr;		/* Reassembly state. */
1682 	timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */
1683 	ipfb_t	*ill_frag_hash_tbl;	/* Fragment hash list head. */
1684 	ipif_t	*ill_pending_ipif;	/* IPIF waiting for DL operation. */
1685 
1686 	ilm_t	*ill_ilm;		/* Multicast mebership for lower ill */
1687 	uint_t	ill_global_timer;	/* for IGMPv3/MLDv2 general queries */
1688 	int	ill_mcast_type;		/* type of router which is querier */
1689 					/* on this interface */
1690 	uint16_t ill_mcast_v1_time;	/* # slow timeouts since last v1 qry */
1691 	uint16_t ill_mcast_v2_time;	/* # slow timeouts since last v2 qry */
1692 	uint8_t	ill_mcast_v1_tset;	/* 1 => timer is set; 0 => not set */
1693 	uint8_t	ill_mcast_v2_tset;	/* 1 => timer is set; 0 => not set */
1694 
1695 	uint8_t	ill_mcast_rv;		/* IGMPv3/MLDv2 robustness variable */
1696 	int	ill_mcast_qi;		/* IGMPv3/MLDv2 query interval var */
1697 
1698 	mblk_t	*ill_pending_mp;	/* IOCTL/DLPI awaiting completion. */
1699 	/*
1700 	 * All non-NULL cells between 'ill_first_mp_to_free' and
1701 	 * 'ill_last_mp_to_free' are freed in ill_delete.
1702 	 */
1703 #define	ill_first_mp_to_free	ill_bcast_mp
1704 	mblk_t	*ill_bcast_mp;		/* DLPI header for broadcasts. */
1705 	mblk_t	*ill_resolver_mp;	/* Resolver template. */
1706 	mblk_t	*ill_detach_mp;		/* detach mp, or NULL if style1 */
1707 	mblk_t	*ill_unbind_mp;		/* unbind mp from ill_dl_up() */
1708 	mblk_t	*ill_dlpi_deferred;	/* b_next chain of control messages */
1709 	mblk_t	*ill_phys_addr_mp;	/* mblk which holds ill_phys_addr */
1710 #define	ill_last_mp_to_free	ill_phys_addr_mp
1711 
1712 	cred_t	*ill_credp;		/* opener's credentials */
1713 	uint8_t	*ill_phys_addr;		/* ill_phys_addr_mp->b_rptr + off */
1714 
1715 	uint_t	ill_state_flags;	/* see ILL_* flags above */
1716 
1717 	/* Following bit fields protected by ipsq_t */
1718 	uint_t
1719 		ill_needs_attach : 1,
1720 		ill_reserved : 1,
1721 		ill_isv6 : 1,
1722 		ill_dlpi_style_set : 1,
1723 
1724 		ill_ifname_pending : 1,
1725 		ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */
1726 		ill_join_allmulti : 1,
1727 		ill_logical_down : 1,
1728 
1729 		ill_is_6to4tun : 1,	/* Interface is a 6to4 tunnel */
1730 		ill_promisc_on_phys : 1, /* phys interface in promisc mode */
1731 		ill_dl_up : 1,
1732 		ill_up_ipifs : 1,
1733 
1734 		ill_pad_to_bit_31 : 20;
1735 
1736 	/* Following bit fields protected by ill_lock */
1737 	uint_t
1738 		ill_fragtimer_executing : 1,
1739 		ill_fragtimer_needrestart : 1,
1740 		ill_ilm_cleanup_reqd : 1,
1741 		ill_arp_closing : 1,
1742 
1743 		ill_arp_bringup_pending : 1,
1744 		ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */
1745 		ill_pad_bit_31 : 26;
1746 
1747 	/*
1748 	 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'.
1749 	 */
1750 	int	ill_arp_muxid;		/* muxid returned from plink for arp */
1751 	int	ill_ip_muxid;		/* muxid returned from plink for ip */
1752 
1753 	/*
1754 	 * Used for IP frag reassembly throttling on a per ILL basis.
1755 	 *
1756 	 * Note: frag_count is approximate, its added to and subtracted from
1757 	 *	 without any locking, so simultaneous load/modify/stores can
1758 	 *	 collide, also ill_frag_purge() recalculates its value by
1759 	 *	 summing all the ipfb_count's without locking out updates
1760 	 *	 to the ipfb's.
1761 	 */
1762 	uint_t	ill_ipf_gen;		/* Generation of next fragment queue */
1763 	uint_t	ill_frag_count;		/* Approx count of all mblk bytes */
1764 	uint_t	ill_frag_free_num_pkts;	 /* num of fragmented packets to free */
1765 	clock_t	ill_last_frag_clean_time; /* time when frag's were pruned */
1766 	int	ill_type;		/* From <net/if_types.h> */
1767 	uint_t	ill_dlpi_multicast_state;	/* See below IDMS_* */
1768 	uint_t	ill_dlpi_fastpath_state;	/* See below IDMS_* */
1769 
1770 	/*
1771 	 * Capabilities related fields.
1772 	 */
1773 	uint_t  ill_capab_state;	/* State of capability query, IDMS_* */
1774 	uint64_t ill_capabilities;	/* Enabled capabilities, ILL_CAPAB_* */
1775 	ill_mdt_capab_t	*ill_mdt_capab;	/* Multidata Transmit capabilities */
1776 	ill_ipsec_capab_t *ill_ipsec_capab_ah;	/* IPsec AH capabilities */
1777 	ill_ipsec_capab_t *ill_ipsec_capab_esp;	/* IPsec ESP capabilities */
1778 	ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */
1779 	ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */
1780 	ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */
1781 
1782 	/*
1783 	 * New fields for IPv6
1784 	 */
1785 	uint8_t	ill_max_hops;	/* Maximum hops for any logical interface */
1786 	uint_t	ill_max_mtu;	/* Maximum MTU for any logical interface */
1787 	uint32_t ill_reachable_time;	/* Value for ND algorithm in msec */
1788 	uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */
1789 	uint_t	ill_max_buf;		/* Max # of req to buffer for ND */
1790 	in6_addr_t	ill_token;
1791 	uint_t		ill_token_length;
1792 	uint32_t	ill_xmit_count;		/* ndp max multicast xmits */
1793 	mib2_ipv6IfStatsEntry_t	*ill_ip6_mib;	/* Per interface mib */
1794 	mib2_ipv6IfIcmpEntry_t	*ill_icmp6_mib;	/* Per interface mib */
1795 	/*
1796 	 * Following two mblks are allocated common to all
1797 	 * the ipifs when the first interface is coming up.
1798 	 * It is sent up to arp when the last ipif is coming
1799 	 * down.
1800 	 */
1801 	mblk_t			*ill_arp_down_mp;
1802 	mblk_t			*ill_arp_del_mapping_mp;
1803 	/*
1804 	 * Used for implementing IFF_NOARP. As IFF_NOARP is used
1805 	 * to turn off for all the logicals, it is here instead
1806 	 * of the ipif.
1807 	 */
1808 	mblk_t			*ill_arp_on_mp;
1809 	/* Peer ill of an IPMP move operation */
1810 	struct ill_s		*ill_move_peer;
1811 
1812 	phyint_t		*ill_phyint;
1813 	uint64_t		ill_flags;
1814 	ill_group_t		*ill_group;
1815 	struct ill_s		*ill_group_next;
1816 	/*
1817 	 * Reverse tunnel related count. This count
1818 	 * determines how many mobile nodes are using this
1819 	 * ill to send packet to reverse tunnel via foreign
1820 	 * agent. A non-zero count specifies presence of
1821 	 * mobile node(s) using reverse tunnel through this
1822 	 * interface.
1823 	 */
1824 	uint32_t		ill_mrtun_refcnt;
1825 
1826 	/*
1827 	 * This count is bumped up when a route is added with
1828 	 * RTA_SRCIFP bit flag using routing socket.
1829 	 */
1830 	uint32_t		ill_srcif_refcnt;
1831 	/*
1832 	 * Pointer to the special interface based routing table.
1833 	 * This routing table is created dynamically when RTA_SRCIFP
1834 	 * is set by the routing socket.
1835 	 */
1836 	irb_t			*ill_srcif_table;
1837 	kmutex_t	ill_lock;	/* Please see table below */
1838 	/*
1839 	 * The ill_nd_lla* fields handle the link layer address option
1840 	 * from neighbor discovery. This is used for external IPv6
1841 	 * address resolution.
1842 	 */
1843 	mblk_t		*ill_nd_lla_mp;	/* mblk which holds ill_nd_lla */
1844 	uint8_t		*ill_nd_lla;	/* Link Layer Address */
1845 	uint_t		ill_nd_lla_len;	/* Link Layer Address length */
1846 	/*
1847 	 * We now have 3 phys_addr_req's sent down. This field keeps track
1848 	 * of which one is pending.
1849 	 */
1850 	t_uscalar_t	ill_phys_addr_pend; /* which dl_phys_addr_req pending */
1851 	/*
1852 	 * Used to save errors that occur during plumbing
1853 	 */
1854 	uint_t		ill_ifname_pending_err;
1855 	avl_node_t	ill_avl_byppa; /* avl node based on ppa */
1856 	void		*ill_fastpath_list; /* both ire and nce hang off this */
1857 	uint_t		ill_refcnt;	/* active refcnt by threads */
1858 	uint_t		ill_ire_cnt;	/* ires associated with this ill */
1859 	kcondvar_t	ill_cv;
1860 	uint_t		ill_ilm_walker_cnt;	/* snmp ilm walkers */
1861 	uint_t		ill_nce_cnt;	/* nces associated with this ill */
1862 	uint_t		ill_waiters;	/* threads waiting in ipsq_enter */
1863 	/*
1864 	 * Contains the upper read queue pointer of the module immediately
1865 	 * beneath IP.  This field allows IP to validate sub-capability
1866 	 * acknowledgments coming up from downstream.
1867 	 */
1868 	queue_t		*ill_lmod_rq;	/* read queue pointer of module below */
1869 	uint_t		ill_lmod_cnt;	/* number of modules beneath IP */
1870 	ip_m_t		*ill_media;	/* media specific params/functions */
1871 	t_uscalar_t	ill_dlpi_pending; /* Last DLPI primitive issued */
1872 	uint_t		ill_usesrc_ifindex; /* use src addr from this ILL */
1873 	struct ill_s	*ill_usesrc_grp_next; /* Next ILL in the usesrc group */
1874 #ifdef ILL_DEBUG
1875 	th_trace_t	*ill_trace[IP_TR_HASH_MAX];
1876 	boolean_t	ill_trace_disable;	/* True when alloc fails */
1877 #endif
1878 } ill_t;
1879 
1880 extern	void	ill_delete_glist(ill_t *);
1881 
1882 /*
1883  * The following table lists the protection levels of the various members
1884  * of the ill_t. Same notation as that used for ipif_t above is used.
1885  *
1886  *				Write			Read
1887  *
1888  * ill_ifptr			ill_g_lock + s		Write once
1889  * ill_rq			ipsq			Write once
1890  * ill_wq			ipsq			Write once
1891  *
1892  * ill_error			ipsq			None
1893  * ill_ipif			ill_g_lock + ipsq	ill_g_lock OR ipsq
1894  * ill_ipif_up_count		ill_lock + ipsq		ill_lock
1895  * ill_max_frag			ipsq			Write once
1896  *
1897  * ill_name			ill_g_lock + ipsq		Write once
1898  * ill_name_length		ill_g_lock + ipsq		Write once
1899  * ill_ndd_name			ipsq			Write once
1900  * ill_net_type			ipsq			Write once
1901  * ill_ppa			ill_g_lock + ipsq		Write once
1902  * ill_sap			ipsq + down ill		Write once
1903  * ill_sap_length		ipsq + down ill		Write once
1904  * ill_phys_addr_length		ipsq + down ill		Write once
1905  *
1906  * ill_bcast_addr_length	ipsq			ipsq
1907  * ill_mactype			ipsq			ipsq
1908  * ill_frag_ptr			ipsq			ipsq
1909  *
1910  * ill_frag_timer_id		ill_lock		ill_lock
1911  * ill_frag_hash_tbl		ipsq			up ill
1912  * ill_ilm			ipsq + ill_lock		ill_lock
1913  * ill_mcast_type		ill_lock		ill_lock
1914  * ill_mcast_v1_time		ill_lock		ill_lock
1915  * ill_mcast_v2_time		ill_lock		ill_lock
1916  * ill_mcast_v1_tset		ill_lock		ill_lock
1917  * ill_mcast_v2_tset		ill_lock		ill_lock
1918  * ill_mcast_rv			ill_lock		ill_lock
1919  * ill_mcast_qi			ill_lock		ill_lock
1920  * ill_pending_mp		ill_lock		ill_lock
1921  *
1922  * ill_bcast_mp			ipsq			ipsq
1923  * ill_resolver_mp		ipsq			only when ill is up
1924  * ill_down_mp			ipsq			ipsq
1925  * ill_dlpi_deferred		ipsq			ipsq
1926  * ill_phys_addr_mp		ipsq			ipsq
1927  * ill_phys_addr		ipsq			up ill
1928  * ill_ick			ipsq + down ill		only when ill is up
1929  *
1930  * ill_state_flags		ill_lock		ill_lock
1931  * exclusive bit flags		ipsq_t			ipsq_t
1932  * shared bit flags		ill_lock		ill_lock
1933  *
1934  * ill_arp_muxid		ipsq			Not atomic
1935  * ill_ip_muxid			ipsq			Not atomic
1936  *
1937  * ill_ipf_gen			Not atomic
1938  * ill_frag_count		Approx. not protected
1939  * ill_type			ipsq + down ill		only when ill is up
1940  * ill_dlpi_multicast_state	ill_lock		ill_lock
1941  * ill_dlpi_fastpath_state	ill_lock		ill_lock
1942  * ill_max_hops			ipsq			Not atomic
1943  *
1944  * ill_max_mtu
1945  *
1946  * ill_reachable_time		ipsq + ill_lock		ill_lock
1947  * ill_reachable_retrans_time	ipsq  + ill_lock		ill_lock
1948  * ill_max_buf			ipsq + ill_lock		ill_lock
1949  *
1950  * Next 2 fields need ill_lock because of the get ioctls. They should not
1951  * report partially updated results without executing in the ipsq.
1952  * ill_token			ipsq + ill_lock		ill_lock
1953  * ill_token_length		ipsq + ill_lock		ill_lock
1954  * ill_xmit_count		ipsq + down ill		write once
1955  * ill_ip6_mib			ipsq + down ill		only when ill is up
1956  * ill_icmp6_mib		ipsq + down ill		only when ill is up
1957  * ill_arp_down_mp		ipsq			ipsq
1958  * ill_arp_del_mapping_mp	ipsq			ipsq
1959  * ill_arp_on_mp		ipsq			ipsq
1960  * ill_move_peer		ipsq			ipsq
1961  *
1962  * ill_phyint			ipsq, ill_g_lock, ill_lock	Any of them
1963  * ill_flags			ill_lock		ill_lock
1964  * ill_group			ipsq, ill_g_lock, ill_lock	Any of them
1965  * ill_group_next		ipsq, ill_g_lock, ill_lock	Any of them
1966  * ill_mrtun_refcnt		ill_lock		ill_lock
1967  * ill_srcif_refcnt		ill_lock		ill_lock
1968  * ill_srcif_table		ill_lock		ill_lock
1969  * ill_nd_lla_mp		ill_lock		ill_lock
1970  * ill_nd_lla			ill_lock		ill_lock
1971  * ill_nd_lla_len		ill_lock		ill_lock
1972  * ill_phys_addr_pend		ipsq + down ill		only when ill is up
1973  * ill_ifname_pending_err	ipsq			ipsq
1974  * ill_avl_byppa		ipsq, ill_g_lock		Write once
1975  *
1976  * ill_fastpath_list		ill_lock		ill_lock
1977  * ill_refcnt			ill_lock		ill_lock
1978  * ill_ire_cnt			ill_lock		ill_lock
1979  * ill_cv			ill_lock		ill_lock
1980  * ill_ilm_walker_cnt		ill_lock		ill_lock
1981  * ill_nce_cnt			ill_lock		ill_lock
1982  * ill_trace			ill_lock		ill_lock
1983  * ill_usesrc_grp_next		ill_g_usesrc_lock	ill_g_usesrc_lock
1984  */
1985 
1986 /*
1987  * For ioctl restart mechanism see ip_reprocess_ioctl()
1988  */
1989 struct ip_ioctl_cmd_s;
1990 
1991 typedef	int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *,
1992     struct ip_ioctl_cmd_s *, void *);
1993 
1994 typedef struct ip_ioctl_cmd_s {
1995 	int	ipi_cmd;
1996 	size_t	ipi_copyin_size;
1997 	uint_t	ipi_flags;
1998 	uint_t	ipi_cmd_type;
1999 	ifunc_t	ipi_func;
2000 	ifunc_t	ipi_func_restart;
2001 } ip_ioctl_cmd_t;
2002 
2003 /*
2004  * ipi_cmd_type:
2005  *
2006  * IF_CMD		1	old style ifreq cmd
2007  * LIF_CMD		2	new style lifreq cmd
2008  * MISC_CMD		3	Misc. (non [l]ifreq, tun) cmds
2009  * TUN_CMD		4	tunnel related
2010  */
2011 
2012 enum { IF_CMD = 1, LIF_CMD, MISC_CMD, TUN_CMD };
2013 
2014 #define	IPI_DONTCARE	0	/* For ioctl encoded values that don't matter */
2015 
2016 /* Flag values in ipi_flags */
2017 #define	IPI_PRIV	0x1		/* Root only command */
2018 #define	IPI_MODOK	0x2		/* Permitted on mod instance of IP */
2019 #define	IPI_WR		0x4		/* Need to grab writer access */
2020 #define	IPI_GET_CMD	0x8		/* branch to mi_copyout on success */
2021 #define	IPI_REPL	0x10	/* valid for replacement ipif created in MOVE */
2022 #define	IPI_NULL_BCONT	0x20	/* ioctl has not data and hence no b_cont */
2023 #define	IPI_PASS_DOWN	0x40	/* pass this ioctl down when a module only */
2024 
2025 extern ip_ioctl_cmd_t	ip_ndx_ioctl_table[];
2026 extern ip_ioctl_cmd_t	ip_misc_ioctl_table[];
2027 extern int ip_ndx_ioctl_count;
2028 extern int ip_misc_ioctl_count;
2029 
2030 #define	ILL_CLEAR_MOVE(ill) {				\
2031 	ill_t *peer_ill;				\
2032 							\
2033 	peer_ill = (ill)->ill_move_peer;		\
2034 	ASSERT(peer_ill != NULL);			\
2035 	(ill)->ill_move_in_progress = B_FALSE;		\
2036 	peer_ill->ill_move_in_progress = B_FALSE;	\
2037 	(ill)->ill_move_peer = NULL;			\
2038 	peer_ill->ill_move_peer = NULL;			\
2039 }
2040 
2041 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */
2042 typedef struct ipmx_s {
2043 	char	ipmx_name[LIFNAMSIZ];		/* if name */
2044 	uint_t
2045 		ipmx_arpdev_stream : 1,		/* This is the arp stream */
2046 		ipmx_notused : 31;
2047 } ipmx_t;
2048 
2049 /*
2050  * State for detecting if a driver supports certain features.
2051  * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state.
2052  * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state.
2053  */
2054 #define	IDMS_UNKNOWN	0	/* No DL_ENABMULTI_REQ sent */
2055 #define	IDMS_INPROGRESS	1	/* Sent DL_ENABMULTI_REQ */
2056 #define	IDMS_OK		2	/* DL_ENABMULTI_REQ ok */
2057 #define	IDMS_FAILED	3	/* DL_ENABMULTI_REQ failed */
2058 #define	IDMS_RENEG	4	/* Driver asked for a renegotiation */
2059 
2060 /* Named Dispatch Parameter Management Structure */
2061 typedef struct ipparam_s {
2062 	uint_t	ip_param_min;
2063 	uint_t	ip_param_max;
2064 	uint_t	ip_param_value;
2065 	char	*ip_param_name;
2066 } ipparam_t;
2067 
2068 /* Extended NDP Management Structure */
2069 typedef struct ipndp_s {
2070 	ndgetf_t	ip_ndp_getf;
2071 	ndsetf_t	ip_ndp_setf;
2072 	caddr_t		ip_ndp_data;
2073 	char		*ip_ndp_name;
2074 } ipndp_t;
2075 
2076 /*
2077  * Following are the macros to increment/decrement the reference
2078  * count of the IREs and IRBs (ire bucket).
2079  *
2080  * 1) We bump up the reference count of an IRE to make sure that
2081  *    it does not get deleted and freed while we are using it.
2082  *    Typically all the lookup functions hold the bucket lock,
2083  *    and look for the IRE. If it finds an IRE, it bumps up the
2084  *    reference count before dropping the lock. Sometimes we *may* want
2085  *    to bump up the reference count after we *looked* up i.e without
2086  *    holding the bucket lock. So, the IRE_REFHOLD macro does not assert
2087  *    on the bucket lock being held. Any thread trying to delete from
2088  *    the hash bucket can still do so but cannot free the IRE if
2089  *    ire_refcnt is not 0.
2090  *
2091  * 2) We bump up the reference count on the bucket where the IRE resides
2092  *    (IRB), when we want to prevent the IREs getting deleted from a given
2093  *    hash bucket. This makes life easier for ire_walk type functions which
2094  *    wants to walk the IRE list, call a function, but needs to drop
2095  *    the bucket lock to prevent recursive rw_enters. While the
2096  *    lock is dropped, the list could be changed by other threads or
2097  *    the same thread could end up deleting the ire or the ire pointed by
2098  *    ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as
2099  *    a delete will still remove the ire from the bucket while we have
2100  *    dropped the lock and hence the ire_next would be NULL. Thus, we
2101  *    need a mechanism to prevent deletions from a given bucket.
2102  *
2103  *    To prevent deletions, we bump up the reference count on the
2104  *    bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED
2105  *    both on the ire's ire_marks and the bucket's irb_marks. When the
2106  *    reference count on the bucket drops to zero, all the CONDEMNED ires
2107  *    are deleted. We don't have to bump up the reference count on the
2108  *    bucket if we are walking the bucket and never have to drop the bucket
2109  *    lock. Note that IRB_REFHOLD does not prevent addition of new ires
2110  *    in the list. It is okay because addition of new ires will not cause
2111  *    ire_next to point to freed memory. We do IRB_REFHOLD only when
2112  *    all of the 3 conditions are true :
2113  *
2114  *    1) The code needs to walk the IRE bucket from start to end.
2115  *    2) It may have to drop the bucket lock sometimes while doing (1)
2116  *    3) It does not want any ires to be deleted meanwhile.
2117  */
2118 
2119 /*
2120  * Bump up the reference count on the IRE. We cannot assert that the
2121  * bucket lock is being held as it is legal to bump up the reference
2122  * count after the first lookup has returned the IRE without
2123  * holding the lock. Currently ip_wput does this for caching IRE_CACHEs.
2124  */
2125 
2126 #ifndef IRE_DEBUG
2127 
2128 #define	IRE_REFHOLD_NOTR(ire)	IRE_REFHOLD(ire)
2129 #define	IRE_UNTRACE_REF(ire)
2130 #define	IRE_TRACE_REF(ire)
2131 
2132 #else
2133 
2134 #define	IRE_REFHOLD_NOTR(ire) {				\
2135 	atomic_add_32(&(ire)->ire_refcnt, 1);		\
2136 	ASSERT((ire)->ire_refcnt != 0);			\
2137 }
2138 
2139 #define	IRE_UNTRACE_REF(ire)	ire_untrace_ref(ire);
2140 #define	IRE_TRACE_REF(ire)	ire_trace_ref(ire);
2141 #endif
2142 
2143 #define	IRE_REFHOLD(ire) {				\
2144 	atomic_add_32(&(ire)->ire_refcnt, 1);		\
2145 	ASSERT((ire)->ire_refcnt != 0);			\
2146 	IRE_TRACE_REF(ire);				\
2147 }
2148 
2149 #define	IRE_REFHOLD_LOCKED(ire)	{			\
2150 	IRE_TRACE_REF(ire);				\
2151 	(ire)->ire_refcnt++;				\
2152 }
2153 
2154 /*
2155  * Decrement the reference count on the IRE.
2156  * In architectures e.g sun4u, where atomic_add_32_nv is just
2157  * a cas, we need to maintain the right memory barrier semantics
2158  * as that of mutex_exit i.e all the loads and stores should complete
2159  * before the cas is executed. membar_exit() does that here.
2160  *
2161  * NOTE : This macro is used only in places where we want performance.
2162  *	  To avoid bloating the code, we use the function "ire_refrele"
2163  *	  which essentially calls the macro.
2164  */
2165 #ifndef IRE_DEBUG
2166 #define	IRE_REFRELE(ire) {					\
2167 	ASSERT((ire)->ire_refcnt != 0);				\
2168 	membar_exit();						\
2169 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2170 		ire_inactive(ire);				\
2171 }
2172 #define	IRE_REFRELE_NOTR(ire)	IRE_REFRELE(ire)
2173 #else
2174 #define	IRE_REFRELE(ire) {					\
2175 	if (ire->ire_bucket != NULL)				\
2176 		ire_untrace_ref(ire);				\
2177 	ASSERT((ire)->ire_refcnt != 0);				\
2178 	membar_exit();						\
2179 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2180 		ire_inactive(ire);				\
2181 }
2182 #define	IRE_REFRELE_NOTR(ire) {					\
2183 	ASSERT((ire)->ire_refcnt != 0);				\
2184 	membar_exit();						\
2185 	if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0)	\
2186 		ire_inactive(ire);				\
2187 }
2188 #endif
2189 
2190 /*
2191  * Bump up the reference count on the hash bucket - IRB to
2192  * prevent ires from being deleted in this bucket.
2193  */
2194 #define	IRB_REFHOLD(irb) {				\
2195 	rw_enter(&(irb)->irb_lock, RW_WRITER);		\
2196 	(irb)->irb_refcnt++;				\
2197 	ASSERT((irb)->irb_refcnt != 0);			\
2198 	rw_exit(&(irb)->irb_lock);			\
2199 }
2200 
2201 #define	IRB_REFRELE(irb) {				\
2202 	rw_enter(&(irb)->irb_lock, RW_WRITER);		\
2203 	ASSERT((irb)->irb_refcnt != 0);			\
2204 	if (--(irb)->irb_refcnt	== 0 &&			\
2205 	    ((irb)->irb_marks & IRE_MARK_CONDEMNED)) {	\
2206 		ire_t *ire_list;			\
2207 							\
2208 		ire_list = ire_unlink(irb);		\
2209 		rw_exit(&(irb)->irb_lock);		\
2210 		ASSERT(ire_list != NULL);		\
2211 		ire_cleanup(ire_list);			\
2212 	} else {					\
2213 		rw_exit(&(irb)->irb_lock);		\
2214 	}						\
2215 }
2216 
2217 /*
2218  * Lock the fast path mp for access, since the ire_fp_mp can be deleted
2219  * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST and IRE_MIPRTUN
2220  */
2221 
2222 #define	LOCK_IRE_FP_MP(ire) {				\
2223 		if ((ire)->ire_type == IRE_BROADCAST ||	\
2224 		    (ire)->ire_type == IRE_MIPRTUN)	\
2225 			mutex_enter(&ire->ire_lock);	\
2226 	}
2227 #define	UNLOCK_IRE_FP_MP(ire) {				\
2228 		if ((ire)->ire_type == IRE_BROADCAST ||	\
2229 		    (ire)->ire_type == IRE_MIPRTUN)	\
2230 			mutex_exit(&ire->ire_lock);	\
2231 	}
2232 
2233 typedef struct ire4 {
2234 	ipaddr_t ire4_src_addr;		/* Source address to use. */
2235 	ipaddr_t ire4_mask;		/* Mask for matching this IRE. */
2236 	ipaddr_t ire4_addr;		/* Address this IRE represents. */
2237 	ipaddr_t ire4_gateway_addr;	/* Gateway if IRE_CACHE/IRE_OFFSUBNET */
2238 	ipaddr_t ire4_cmask;		/* Mask from parent prefix route */
2239 } ire4_t;
2240 
2241 typedef struct ire6 {
2242 	in6_addr_t ire6_src_addr;	/* Source address to use. */
2243 	in6_addr_t ire6_mask;		/* Mask for matching this IRE. */
2244 	in6_addr_t ire6_addr;		/* Address this IRE represents. */
2245 	in6_addr_t ire6_gateway_addr;	/* Gateway if IRE_CACHE/IRE_OFFSUBNET */
2246 	in6_addr_t ire6_cmask;		/* Mask from parent prefix route */
2247 } ire6_t;
2248 
2249 typedef union ire_addr {
2250 	ire6_t	ire6_u;
2251 	ire4_t	ire4_u;
2252 } ire_addr_u_t;
2253 
2254 /* Internet Routing Entry */
2255 typedef struct ire_s {
2256 	struct	ire_s	*ire_next;	/* The hash chain must be first. */
2257 	struct	ire_s	**ire_ptpn;	/* Pointer to previous next. */
2258 	uint32_t	ire_refcnt;	/* Number of references */
2259 	mblk_t		*ire_mp;	/* Non-null if allocated as mblk */
2260 	mblk_t		*ire_fp_mp;	/* Fast path header */
2261 	queue_t		*ire_rfq;	/* recv from this queue */
2262 	queue_t		*ire_stq;	/* send to this queue */
2263 	union {
2264 		uint_t	*max_fragp;	/* Used only during ire creation */
2265 		uint_t	max_frag;	/* MTU (next hop or path). */
2266 	} imf_u;
2267 #define	ire_max_frag	imf_u.max_frag
2268 #define	ire_max_fragp	imf_u.max_fragp
2269 	uint32_t	ire_frag_flag;	/* IPH_DF or zero. */
2270 	uint32_t	ire_ident;	/* Per IRE IP ident. */
2271 	uint32_t	ire_tire_mark;	/* Used for reclaim of unused. */
2272 	uchar_t		ire_ipversion;	/* IPv4/IPv6 version */
2273 	uchar_t		ire_marks;	/* IRE_MARK_CONDEMNED etc. */
2274 	ushort_t	ire_type;	/* Type of IRE */
2275 	uint_t	ire_ib_pkt_count;	/* Inbound packets for ire_addr */
2276 	uint_t	ire_ob_pkt_count;	/* Outbound packets to ire_addr */
2277 	uint_t	ire_ll_hdr_length;	/* Non-zero if we do M_DATA prepends */
2278 	time_t	ire_create_time;	/* Time (in secs) IRE was created. */
2279 	mblk_t		*ire_dlureq_mp;	/* DL_UNIT_DATA_REQ/RESOLVER mp */
2280 	uint32_t	ire_phandle;	/* Associate prefix IREs to cache */
2281 	uint32_t	ire_ihandle;	/* Associate interface IREs to cache */
2282 	ipif_t		*ire_ipif;	/* the interface that this ire uses */
2283 	uint32_t	ire_flags;	/* flags related to route (RTF_*) */
2284 	uint_t	ire_ipsec_overhead;	/* IPSEC overhead */
2285 	struct	nce_s	*ire_nce;	/* Neighbor Cache Entry for IPv6 */
2286 	uint_t		ire_masklen;	/* # bits in ire_mask{,_v6} */
2287 	ire_addr_u_t	ire_u;		/* IPv4/IPv6 address info. */
2288 
2289 	irb_t		*ire_bucket;	/* Hash bucket when ire_ptphn is set */
2290 	iulp_t		ire_uinfo;	/* Upper layer protocol info. */
2291 	/*
2292 	 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag.
2293 	 */
2294 	kmutex_t	ire_lock;
2295 	uint_t		ire_ipif_seqid; /* ipif_seqid of ire_ipif */
2296 	/*
2297 	 * For regular routes in forwarding table and cache table the
2298 	 * the following entries are NULL/zero. Only reverse tunnel
2299 	 * table and interface based forwarding table use these fields.
2300 	 * Routes added with RTA_SRCIFP and RTA_SRC respectively have
2301 	 * non-zero values for the following fields.
2302 	 */
2303 	ill_t		*ire_in_ill;	/* Incoming ill interface */
2304 	ipaddr_t	ire_in_src_addr;
2305 					/* source ip-addr of incoming packet */
2306 	clock_t		ire_last_used_time;	/* Last used time */
2307 	struct ire_s 	*ire_fastpath;	/* Pointer to next ire in fastpath */
2308 	zoneid_t	ire_zoneid;	/* for local address discrimination */
2309 #ifdef IRE_DEBUG
2310 	th_trace_t	*ire_trace[IP_TR_HASH_MAX];
2311 	boolean_t	ire_trace_disable;	/* True when alloc fails */
2312 #endif
2313 } ire_t;
2314 
2315 /* IPv4 compatiblity macros */
2316 #define	ire_src_addr		ire_u.ire4_u.ire4_src_addr
2317 #define	ire_mask		ire_u.ire4_u.ire4_mask
2318 #define	ire_addr		ire_u.ire4_u.ire4_addr
2319 #define	ire_gateway_addr	ire_u.ire4_u.ire4_gateway_addr
2320 #define	ire_cmask		ire_u.ire4_u.ire4_cmask
2321 
2322 #define	ire_src_addr_v6		ire_u.ire6_u.ire6_src_addr
2323 #define	ire_mask_v6		ire_u.ire6_u.ire6_mask
2324 #define	ire_addr_v6		ire_u.ire6_u.ire6_addr
2325 #define	ire_gateway_addr_v6	ire_u.ire6_u.ire6_gateway_addr
2326 #define	ire_cmask_v6		ire_u.ire6_u.ire6_cmask
2327 
2328 /* Convenient typedefs for sockaddrs */
2329 typedef	struct sockaddr_in	sin_t;
2330 typedef	struct sockaddr_in6	sin6_t;
2331 
2332 /* Address structure used for internal bind with IP */
2333 typedef struct ipa_conn_s {
2334 	ipaddr_t	ac_laddr;
2335 	ipaddr_t	ac_faddr;
2336 	uint16_t	ac_fport;
2337 	uint16_t	ac_lport;
2338 } ipa_conn_t;
2339 
2340 typedef struct ipa6_conn_s {
2341 	in6_addr_t	ac6_laddr;
2342 	in6_addr_t	ac6_faddr;
2343 	uint16_t	ac6_fport;
2344 	uint16_t	ac6_lport;
2345 } ipa6_conn_t;
2346 
2347 /*
2348  * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's
2349  * bind handler.
2350  */
2351 typedef struct ipa_conn_extended_s {
2352 	uint64_t	acx_flags;
2353 	ipa_conn_t	acx_conn;
2354 } ipa_conn_x_t;
2355 
2356 typedef struct ipa6_conn_extended_s {
2357 	uint64_t	ac6x_flags;
2358 	ipa6_conn_t	ac6x_conn;
2359 } ipa6_conn_x_t;
2360 
2361 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */
2362 #define	ACX_VERIFY_DST	0x1ULL	/* verify destination address is reachable */
2363 
2364 /* Name/Value Descriptor. */
2365 typedef struct nv_s {
2366 	uint64_t nv_value;
2367 	char	*nv_name;
2368 } nv_t;
2369 
2370 /* IP Forwarding Ticket */
2371 typedef	struct ipftk_s {
2372 	queue_t	*ipftk_queue;
2373 	ipaddr_t ipftk_dst;
2374 } ipftk_t;
2375 
2376 typedef struct ipt_s {
2377 	pfv_t	func;		/* Routine to call */
2378 	uchar_t	*arg;		/* ire or nce passed in */
2379 } ipt_t;
2380 
2381 #define	ILL_FRAG_HASH(s, i) \
2382 	((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT)
2383 
2384 /*
2385  * The MAX number of allowed fragmented packets per hash bucket
2386  * calculation is based on the most common mtu size of 1500. This limit
2387  * will work well for other mtu sizes as well.
2388  */
2389 #define	COMMON_IP_MTU 1500
2390 #define	MAX_FRAG_MIN 10
2391 #define	MAX_FRAG_PKTS	\
2392 	MAX(MAX_FRAG_MIN, (2 * (ip_reass_queue_bytes / \
2393 	    (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT))))
2394 
2395 /*
2396  * Maximum dups allowed per packet.
2397  */
2398 extern uint_t ip_max_frag_dups;
2399 
2400 /*
2401  * Per-packet information for received packets and transmitted.
2402  * Used by the transport protocols when converting between the packet
2403  * and ancillary data and socket options.
2404  *
2405  * Note: This private data structure and related IPPF_* constant
2406  * definitions are exposed to enable compilation of some debugging tools
2407  * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be
2408  * a temporary hack and long term alternate interfaces should be defined
2409  * to support the needs of such tools and private definitions moved to
2410  * private headers.
2411  */
2412 struct ip6_pkt_s {
2413 	uint_t		ipp_fields;		/* Which fields are valid */
2414 	uint_t		ipp_sticky_ignored;	/* sticky fields to ignore */
2415 	uint_t		ipp_ifindex;		/* pktinfo ifindex */
2416 	in6_addr_t	ipp_addr;		/* pktinfo src/dst addr */
2417 	uint_t		ipp_unicast_hops;	/* IPV6_UNICAST_HOPS */
2418 	uint_t		ipp_multicast_hops;	/* IPV6_MULTICAST_HOPS */
2419 	uint_t		ipp_hoplimit;		/* IPV6_HOPLIMIT */
2420 	uint_t		ipp_hopoptslen;
2421 	uint_t		ipp_rtdstoptslen;
2422 	uint_t		ipp_rthdrlen;
2423 	uint_t		ipp_dstoptslen;
2424 	uint_t		ipp_pathmtulen;
2425 	ip6_hbh_t	*ipp_hopopts;
2426 	ip6_dest_t	*ipp_rtdstopts;
2427 	ip6_rthdr_t	*ipp_rthdr;
2428 	ip6_dest_t	*ipp_dstopts;
2429 	struct ip6_mtuinfo *ipp_pathmtu;
2430 	in6_addr_t	ipp_nexthop;		/* Transmit only */
2431 	uint8_t		ipp_tclass;
2432 	int8_t		ipp_use_min_mtu;
2433 };
2434 typedef struct ip6_pkt_s ip6_pkt_t;
2435 
2436 /*
2437  * This structure is used to convey information from IP and the ULP.
2438  * Currently used for the IP_RECVSLLA and IP_RECVIF options. The
2439  * type of information field is set to IN_PKTINFO (i.e inbound pkt info)
2440  */
2441 typedef struct in_pktinfo {
2442 	uint32_t		in_pkt_ulp_type;	/* type of info sent */
2443 							/* to UDP */
2444 	uint32_t		in_pkt_flags;	/* what is sent up by IP */
2445 	uint32_t		in_pkt_ifindex;	/* inbound interface index */
2446 	struct sockaddr_dl	in_pkt_slla;	/* has source link layer addr */
2447 } in_pktinfo_t;
2448 
2449 /*
2450  * flags to tell UDP what IP is sending
2451  */
2452 #define	IPF_RECVIF	0x01	/* inbound interface index */
2453 #define	IPF_RECVSLLA	0x02	/* source link layer address */
2454 
2455 /* ipp_fields values */
2456 #define	IPPF_IFINDEX	0x0001	/* Part of in6_pktinfo: ifindex */
2457 #define	IPPF_ADDR	0x0002	/* Part of in6_pktinfo: src/dst addr */
2458 #define	IPPF_SCOPE_ID	0x0004	/* Add xmit ip6i_t for sin6_scope_id */
2459 #define	IPPF_NO_CKSUM	0x0008	/* Add xmit ip6i_t for IP6I_NO_*_CKSUM */
2460 
2461 #define	IPPF_RAW_CKSUM	0x0010	/* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */
2462 #define	IPPF_HOPLIMIT	0x0020
2463 #define	IPPF_HOPOPTS	0x0040
2464 #define	IPPF_RTHDR	0x0080
2465 
2466 #define	IPPF_RTDSTOPTS	0x0100
2467 #define	IPPF_DSTOPTS	0x0200
2468 #define	IPPF_NEXTHOP	0x0400
2469 #define	IPPF_PATHMTU	0x0800
2470 
2471 #define	IPPF_TCLASS	0x1000
2472 #define	IPPF_DONTFRAG	0x2000
2473 #define	IPPF_USE_MIN_MTU	0x04000
2474 #define	IPPF_MULTICAST_HOPS	0x08000
2475 #define	IPPF_UNICAST_HOPS	0x10000
2476 
2477 #define	IPPF_HAS_IP6I \
2478 	(IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \
2479 	IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \
2480 	IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS)
2481 
2482 #define	TCP_PORTS_OFFSET	0
2483 #define	UDP_PORTS_OFFSET	0
2484 
2485 /*
2486  * lookups return the ill/ipif only if the flags are clear OR Iam writer.
2487  * ill / ipif lookup functions increment the refcnt on the ill / ipif only
2488  * after calling these macros. This ensures that the refcnt on the ipif or
2489  * ill will eventually drop down to zero.
2490  */
2491 #define	ILL_LOOKUP_FAILED	1	/* Used as error code */
2492 #define	IPIF_LOOKUP_FAILED	2	/* Used as error code */
2493 
2494 #define	ILL_CAN_LOOKUP(ill) 						\
2495 	(!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) ||	\
2496 	IAM_WRITER_ILL(ill))
2497 
2498 #define	ILL_CAN_WAIT(ill, q)	\
2499 	(((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED)))
2500 
2501 #define	ILL_CAN_LOOKUP_WALKER(ill)	\
2502 	(!((ill)->ill_state_flags & ILL_CONDEMNED))
2503 
2504 #define	IPIF_CAN_LOOKUP(ipif)						\
2505 	(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \
2506 	IAM_WRITER_IPIF(ipif))
2507 
2508 /*
2509  * If the parameter 'q' is NULL, the caller is not interested in wait and
2510  * restart of the operation if the ILL or IPIF cannot be looked up when it is
2511  * marked as 'CHANGING'. Typically a thread that tries to send out data  will
2512  * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and
2513  * in this case 'q' is NULL
2514  */
2515 #define	IPIF_CAN_WAIT(ipif, q)	\
2516 	(((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED)))
2517 
2518 #define	IPIF_CAN_LOOKUP_WALKER(ipif)					\
2519 	(!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) ||		\
2520 	IAM_WRITER_IPIF(ipif))
2521 
2522 /*
2523  * These macros are used by critical set ioctls and failover ioctls to
2524  * mark the ipif appropriately before starting the operation and to clear the
2525  * marks after completing the operation.
2526  */
2527 #define	IPIF_UNMARK_MOVING(ipif)                                \
2528 	(ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING;
2529 
2530 #define	ILL_UNMARK_CHANGING(ill)                                \
2531 	(ill)->ill_state_flags &= ~ILL_CHANGING;
2532 
2533 /* Macros used to assert that this thread is a writer  */
2534 #define	IAM_WRITER_IPSQ(ipsq)	((ipsq)->ipsq_writer == curthread)
2535 #define	IAM_WRITER_ILL(ill)					\
2536 	((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread)
2537 #define	IAM_WRITER_IPIF(ipif)					\
2538 	((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread)
2539 
2540 /*
2541  * Grab ill locks in the proper order. The order is highest addressed
2542  * ill is locked first.
2543  */
2544 #define	GRAB_ILL_LOCKS(ill_1, ill_2)				\
2545 {								\
2546 	if ((ill_1) > (ill_2)) {				\
2547 		if (ill_1 != NULL)				\
2548 			mutex_enter(&(ill_1)->ill_lock);	\
2549 		if (ill_2 != NULL)				\
2550 			mutex_enter(&(ill_2)->ill_lock);	\
2551 	} else {						\
2552 		if (ill_2 != NULL)				\
2553 			mutex_enter(&(ill_2)->ill_lock);	\
2554 		if (ill_1 != NULL && ill_1 != ill_2)		\
2555 			mutex_enter(&(ill_1)->ill_lock);	\
2556 	}							\
2557 }
2558 
2559 #define	RELEASE_ILL_LOCKS(ill_1, ill_2)		\
2560 {						\
2561 	if (ill_1 != NULL)			\
2562 		mutex_exit(&(ill_1)->ill_lock);	\
2563 	if (ill_2 != NULL && ill_2 != ill_1)	\
2564 		mutex_exit(&(ill_2)->ill_lock);	\
2565 }
2566 
2567 /* Get the other protocol instance ill */
2568 #define	ILL_OTHER(ill)						\
2569 	((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 :	\
2570 	    (ill)->ill_phyint->phyint_illv6)
2571 
2572 #define	MATCH_V4_ONLY	0x1
2573 #define	MATCH_V6_ONLY	0x2
2574 #define	MATCH_ILL_ONLY	0x4
2575 
2576 /* ioctl command info: Ioctl properties extracted and stored in here */
2577 typedef struct cmd_info_s
2578 {
2579 	char    ci_groupname[LIFNAMSIZ + 1];	/* SIOCSLIFGROUPNAME */
2580 	ipif_t  *ci_ipif;	/* ipif associated with [l]ifreq ioctl's */
2581 	sin_t	*ci_sin;	/* the sin struct passed down */
2582 	sin6_t	*ci_sin6;	/* the sin6_t struct passed down */
2583 	struct lifreq *ci_lifr;	/* the lifreq struct passed down */
2584 } cmd_info_t;
2585 
2586 extern krwlock_t ill_g_lock;
2587 extern kmutex_t ip_addr_avail_lock;
2588 extern ipsq_t	*ipsq_g_head;
2589 
2590 extern ill_t	*ip_timer_ill;		/* ILL for IRE expiration timer. */
2591 extern timeout_id_t ip_ire_expire_id;	/* IRE expiration timeout id. */
2592 extern timeout_id_t ip_ire_reclaim_id;	/* IRE recalaim timeout id. */
2593 
2594 extern kmutex_t	ip_mi_lock;
2595 extern krwlock_t ip_g_nd_lock;		/* For adding/removing nd variables */
2596 extern kmutex_t ip_trash_timer_lock;	/* Protects ip_ire_expire_id */
2597 
2598 extern kmutex_t igmp_timer_lock;	/* Protects the igmp timer */
2599 extern kmutex_t mld_timer_lock;		/* Protects the mld timer */
2600 
2601 extern krwlock_t ill_g_usesrc_lock;	/* Protects usesrc related fields */
2602 
2603 extern struct kmem_cache *ire_cache;
2604 
2605 extern uint_t	ip_ire_default_count;	/* Number of IPv4 IRE_DEFAULT entries */
2606 extern uint_t	ip_ire_default_index;	/* Walking index used to mod in */
2607 
2608 extern ipaddr_t	ip_g_all_ones;
2609 extern caddr_t	ip_g_nd;		/* Named Dispatch List Head */
2610 
2611 extern uint_t	ip_loopback_mtu;
2612 
2613 extern ipparam_t	*ip_param_arr;
2614 
2615 extern int ip_g_forward;
2616 extern int ipv6_forward;
2617 extern vmem_t *ip_minor_arena;
2618 
2619 #define	ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value
2620 #define	ip_g_send_redirects		ip_param_arr[5].ip_param_value
2621 #define	ip_debug			ip_param_arr[7].ip_param_value
2622 #define	ip_mrtdebug			ip_param_arr[8].ip_param_value
2623 #define	ip_timer_interval		ip_param_arr[9].ip_param_value
2624 #define	ip_ire_arp_interval		ip_param_arr[10].ip_param_value
2625 #define	ip_def_ttl			ip_param_arr[12].ip_param_value
2626 #define	ip_wroff_extra			ip_param_arr[14].ip_param_value
2627 #define	ip_path_mtu_discovery		ip_param_arr[17].ip_param_value
2628 #define	ip_ignore_delete_time		ip_param_arr[18].ip_param_value
2629 #define	ip_output_queue			ip_param_arr[20].ip_param_value
2630 #define	ip_broadcast_ttl		ip_param_arr[21].ip_param_value
2631 #define	ip_icmp_err_interval		ip_param_arr[22].ip_param_value
2632 #define	ip_icmp_err_burst		ip_param_arr[23].ip_param_value
2633 #define	ip_reass_queue_bytes		ip_param_arr[24].ip_param_value
2634 #define	ip_addrs_per_if			ip_param_arr[26].ip_param_value
2635 #define	ipsec_override_persocket_policy	ip_param_arr[27].ip_param_value
2636 #define	icmp_accept_clear_messages	ip_param_arr[28].ip_param_value
2637 #define	delay_first_probe_time		ip_param_arr[30].ip_param_value
2638 #define	max_unicast_solicit		ip_param_arr[31].ip_param_value
2639 #define	ipv6_def_hops			ip_param_arr[32].ip_param_value
2640 #define	ipv6_icmp_return		ip_param_arr[33].ip_param_value
2641 #define	ipv6_forward_src_routed		ip_param_arr[34].ip_param_value
2642 #define	ipv6_resp_echo_mcast		ip_param_arr[35].ip_param_value
2643 #define	ipv6_send_redirects		ip_param_arr[36].ip_param_value
2644 #define	ipv6_ignore_redirect		ip_param_arr[37].ip_param_value
2645 #define	ipv6_strict_dst_multihoming	ip_param_arr[38].ip_param_value
2646 #define	ip_ire_reclaim_fraction		ip_param_arr[39].ip_param_value
2647 #define	ipsec_policy_log_interval	ip_param_arr[40].ip_param_value
2648 #define	ip_ndp_unsolicit_interval	ip_param_arr[42].ip_param_value
2649 #define	ip_ndp_unsolicit_count		ip_param_arr[43].ip_param_value
2650 #define	ipv6_ignore_home_address_opt	ip_param_arr[44].ip_param_value
2651 #define	ip_policy_mask			ip_param_arr[45].ip_param_value
2652 #define	ip_multirt_resolution_interval	ip_param_arr[46].ip_param_value
2653 #define	ip_multirt_ttl			ip_param_arr[47].ip_param_value
2654 #define	ip_multidata_outbound		ip_param_arr[48].ip_param_value
2655 #ifdef DEBUG
2656 #define	ipv6_drop_inbound_icmpv6	ip_param_arr[49].ip_param_value
2657 #else
2658 #define	ipv6_drop_inbound_icmpv6	0
2659 #endif
2660 
2661 extern hrtime_t	ipsec_policy_failure_last;
2662 
2663 extern int	dohwcksum;	/* use h/w cksum if supported by the h/w */
2664 #ifdef ZC_TEST
2665 extern int	noswcksum;
2666 #endif
2667 
2668 extern char	ipif_loopback_name[];
2669 
2670 extern nv_t	*ire_nv_tbl;
2671 
2672 extern time_t	ip_g_frag_timeout;
2673 extern clock_t	ip_g_frag_timo_ms;
2674 
2675 extern mib2_ip_t	ip_mib;	/* For tcpInErrs and udpNoPorts */
2676 
2677 extern struct module_info ip_mod_info;
2678 
2679 extern timeout_id_t	igmp_slowtimeout_id;
2680 extern timeout_id_t	mld_slowtimeout_id;
2681 
2682 extern uint_t	loopback_packets;
2683 
2684 /*
2685  * Network byte order macros
2686  */
2687 #ifdef	_BIG_ENDIAN
2688 #define	N_IN_CLASSD_NET		IN_CLASSD_NET
2689 #define	N_INADDR_UNSPEC_GROUP	INADDR_UNSPEC_GROUP
2690 #else /* _BIG_ENDIAN */
2691 #define	N_IN_CLASSD_NET		(ipaddr_t)0x000000f0U
2692 #define	N_INADDR_UNSPEC_GROUP	(ipaddr_t)0x000000e0U
2693 #endif /* _BIG_ENDIAN */
2694 #define	CLASSD(addr)	(((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP)
2695 
2696 #ifdef DEBUG
2697 /* IPsec HW acceleration debugging support */
2698 
2699 #define	IPSECHW_CAPAB		0x0001	/* capability negotiation */
2700 #define	IPSECHW_SADB		0x0002	/* SADB exchange */
2701 #define	IPSECHW_PKT		0x0004	/* general packet flow */
2702 #define	IPSECHW_PKTIN		0x0008	/* driver in pkt processing details */
2703 #define	IPSECHW_PKTOUT		0x0010	/* driver out pkt processing details */
2704 
2705 #define	IPSECHW_DEBUG(f, x)	if (ipsechw_debug & (f)) { (void) printf x; }
2706 #define	IPSECHW_CALL(f, r, x)	if (ipsechw_debug & (f)) { (void) r x; }
2707 
2708 extern uint32_t ipsechw_debug;
2709 #else
2710 #define	IPSECHW_DEBUG(f, x)	{}
2711 #define	IPSECHW_CALL(f, r, x)	{}
2712 #endif
2713 
2714 #ifdef IP_DEBUG
2715 #include <sys/debug.h>
2716 #include <sys/promif.h>
2717 
2718 #define	ip0dbg(a)	printf a
2719 #define	ip1dbg(a)	if (ip_debug > 2) printf a
2720 #define	ip2dbg(a)	if (ip_debug > 3) printf a
2721 #define	ip3dbg(a)	if (ip_debug > 4) printf a
2722 #else
2723 #define	ip0dbg(a)	/* */
2724 #define	ip1dbg(a)	/* */
2725 #define	ip2dbg(a)	/* */
2726 #define	ip3dbg(a)	/* */
2727 #endif	/* IP_DEBUG */
2728 
2729 extern const char *dlpi_prim_str(int);
2730 extern const char *dlpi_err_str(int);
2731 extern void	ill_frag_timer(void *);
2732 extern ill_t	*ill_first(int, int, ill_walk_context_t *);
2733 extern ill_t	*ill_next(ill_walk_context_t *, ill_t *);
2734 extern void	ill_frag_timer_start(ill_t *);
2735 extern mblk_t	*ip_carve_mp(mblk_t **, ssize_t);
2736 extern mblk_t	*ip_dlpi_alloc(size_t, t_uscalar_t);
2737 extern char	*ip_dot_addr(ipaddr_t, char *);
2738 extern void	ip_lwput(queue_t *, mblk_t *);
2739 extern boolean_t icmp_err_rate_limit(void);
2740 extern void	icmp_time_exceeded(queue_t *, mblk_t *, uint8_t);
2741 extern void	icmp_unreachable(queue_t *, mblk_t *, uint8_t);
2742 extern mblk_t	*ip_add_info(mblk_t *, ill_t *, uint_t);
2743 extern mblk_t	*ip_bind_v4(queue_t *, mblk_t *, conn_t *);
2744 extern int	ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t,
2745     ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t,
2746     boolean_t);
2747 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *);
2748 extern int	ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t,
2749     boolean_t, boolean_t, boolean_t);
2750 extern uint_t	ip_cksum(mblk_t *, int, uint32_t);
2751 extern int	ip_close(queue_t *, int);
2752 extern uint16_t	ip_csum_hdr(ipha_t *);
2753 extern void	ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t);
2754 extern void	ip_ire_fini(void);
2755 extern void	ip_ire_init(void);
2756 extern int	ip_open(queue_t *, dev_t *, int, int, cred_t *);
2757 extern int	ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *,
2758     size_t);
2759 extern int	ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t,
2760     int, int, mblk_t *);
2761 extern void	ip_rput(queue_t *, mblk_t *);
2762 extern void	ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, size_t);
2763 extern void	ip_rput_dlpi(queue_t *, mblk_t *);
2764 extern void	ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *);
2765 extern void	ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *);
2766 
2767 extern int	ip_snmpmod_close(queue_t *);
2768 extern void	ip_snmpmod_wput(queue_t *, mblk_t *);
2769 extern void	ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *);
2770 extern void	ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *);
2771 extern void	ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *);
2772 extern void	ip_setqinfo(queue_t *, minor_t, boolean_t);
2773 extern void	ip_trash_ire_reclaim(void *);
2774 extern void	ip_trash_timer_expire(void *);
2775 extern void	ip_wput(queue_t *, mblk_t *);
2776 extern void	ip_output(void *, mblk_t *, void *, int);
2777 extern void	ip_wput_md(queue_t *, mblk_t *, conn_t *);
2778 
2779 extern void	ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int);
2780 extern void	ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *,
2781     int, zoneid_t);
2782 extern void	ip_wput_multicast(queue_t *, mblk_t *, ipif_t *);
2783 extern void	ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *);
2784 extern void	ip_wsrv(queue_t *);
2785 extern char	*ip_nv_lookup(nv_t *, int);
2786 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
2787 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *);
2788 extern ipaddr_t ip_massage_options(ipha_t *);
2789 extern ipaddr_t ip_net_mask(ipaddr_t);
2790 extern void	ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *);
2791 
2792 extern struct qinit rinit_ipv6;
2793 extern struct qinit winit_ipv6;
2794 extern struct qinit rinit_tcp;
2795 extern struct qinit rinit_tcp6;
2796 extern struct qinit winit_tcp;
2797 extern struct qinit rinit_acceptor_tcp;
2798 extern struct qinit winit_acceptor_tcp;
2799 
2800 extern void	conn_drain_insert(conn_t *connp);
2801 extern	int	conn_ipsec_length(conn_t *connp);
2802 extern void	ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *,
2803     ire_t *);
2804 extern ipaddr_t	ip_get_dst(ipha_t *);
2805 extern int	ipsec_out_extra_length(mblk_t *);
2806 extern int	ipsec_in_extra_length(mblk_t *);
2807 extern mblk_t	*ipsec_in_alloc();
2808 extern boolean_t ipsec_in_is_secure(mblk_t *);
2809 extern void	ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t);
2810 extern void	ipsec_out_to_in(mblk_t *);
2811 extern int	ill_forward_set(queue_t *, mblk_t *, boolean_t, caddr_t);
2812 extern void	ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *);
2813 
2814 extern void	ire_cleanup(ire_t *);
2815 extern void	ire_inactive(ire_t *);
2816 extern ire_t	*ire_unlink(irb_t *);
2817 #ifdef IRE_DEBUG
2818 extern	void	ire_trace_ref(ire_t *ire);
2819 extern	void	ire_untrace_ref(ire_t *ire);
2820 extern	void	ire_thread_exit(ire_t *ire, caddr_t);
2821 #endif
2822 #ifdef ILL_DEBUG
2823 extern	void	ill_trace_cleanup(ill_t *);
2824 extern	void	ipif_trace_cleanup(ipif_t *);
2825 #endif
2826 
2827 extern int	ip_srcid_insert(const in6_addr_t *, zoneid_t);
2828 extern int	ip_srcid_remove(const in6_addr_t *, zoneid_t);
2829 extern void	ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t);
2830 extern uint_t	ip_srcid_find_addr(const in6_addr_t *, zoneid_t);
2831 extern int	ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *);
2832 
2833 extern uint8_t	ipoptp_next(ipoptp_t *);
2834 extern uint8_t	ipoptp_first(ipoptp_t *, ipha_t *);
2835 extern ill_t	*ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t);
2836 extern ire_t	*conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **);
2837 extern int	ipsec_req_from_conn(conn_t *, ipsec_req_t *, int);
2838 extern int	ip_snmp_get(queue_t *q, mblk_t *mctl);
2839 extern int	ip_snmp_set(queue_t *q, int, int, uchar_t *, int);
2840 extern void	ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
2841 extern void	ip_quiesce_conn(conn_t *);
2842 extern  void    ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *);
2843 extern void	ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *);
2844 extern void	ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipif_t *,
2845     ipsq_t *);
2846 
2847 extern boolean_t	ipsq_pending_mp_cleanup(ill_t *, conn_t *);
2848 extern void	conn_ioctl_cleanup(conn_t *);
2849 extern ill_t	*conn_get_held_ill(conn_t *, ill_t **, int *);
2850 
2851 struct multidata_s;
2852 struct pdesc_s;
2853 
2854 extern mblk_t	*ip_mdinfo_alloc(ill_mdt_capab_t *);
2855 extern mblk_t	*ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *);
2856 extern uint_t	ip_md_cksum(struct pdesc_s *, int, uint_t);
2857 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *,
2858 			const mblk_t *);
2859 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *,
2860 			uint32_t, uint32_t, uint32_t, uint32_t);
2861 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *,
2862 			uint_t);
2863 extern mblk_t	*ip_unbind(queue_t *, mblk_t *);
2864 
2865 /* Hooks for CGTP (multirt routes) filtering module */
2866 #define	CGTP_FILTER_REV_1	1
2867 #define	CGTP_FILTER_REV_2	2
2868 #define	CGTP_FILTER_REV		CGTP_FILTER_REV_2
2869 
2870 /* cfo_filter, cfo_filter_fp, cfo_filter_v6 hooks return values */
2871 #define	CGTP_IP_PKT_NOT_CGTP	0
2872 #define	CGTP_IP_PKT_PREMIUM	1
2873 #define	CGTP_IP_PKT_DUPLICATE	2
2874 
2875 typedef struct cgtp_filter_ops {
2876 	int	cfo_filter_rev;
2877 	int	(*cfo_change_state)(int);
2878 	int	(*cfo_add_dest_v4)(ipaddr_t, ipaddr_t, ipaddr_t, ipaddr_t);
2879 	int	(*cfo_del_dest_v4)(ipaddr_t, ipaddr_t);
2880 	int	(*cfo_add_dest_v6)(in6_addr_t *, in6_addr_t *, in6_addr_t *,
2881 		    in6_addr_t *);
2882 	int	(*cfo_del_dest_v6)(in6_addr_t *, in6_addr_t *);
2883 	int	(*cfo_filter)(queue_t *, mblk_t *);
2884 	int	(*cfo_filter_fp)(queue_t *, mblk_t *);
2885 	int	(*cfo_filter_v6)(queue_t *, ip6_t *, ip6_frag_t *);
2886 } cgtp_filter_ops_t;
2887 
2888 #define	CGTP_MCAST_SUCCESS	1
2889 
2890 extern cgtp_filter_ops_t *ip_cgtp_filter_ops;
2891 extern boolean_t ip_cgtp_filter;
2892 
2893 extern int	ip_cgtp_filter_supported(void);
2894 extern int	ip_cgtp_filter_register(cgtp_filter_ops_t *);
2895 
2896 /* Flags for ire_multirt_lookup() */
2897 
2898 #define	MULTIRT_USESTAMP	0x0001
2899 #define	MULTIRT_SETSTAMP	0x0002
2900 #define	MULTIRT_CACHEGW		0x0004
2901 
2902 /* Debug stuff for multirt route resolution. */
2903 #if defined(DEBUG) && !defined(__lint)
2904 /* Our "don't send, rather drop" flag. */
2905 #define	MULTIRT_DEBUG_FLAG	0x8000
2906 
2907 #define	MULTIRT_TRACE(x)	ip2dbg(x)
2908 
2909 #define	MULTIRT_DEBUG_TAG(mblk)	\
2910 	do { \
2911 		ASSERT(mblk != NULL); \
2912 		MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \
2913 		__FILE__, __LINE__, \
2914 		(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
2915 		(mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \
2916 	} while (0)
2917 
2918 #define	MULTIRT_DEBUG_UNTAG(mblk) \
2919 	do { \
2920 		ASSERT(mblk != NULL); \
2921 		MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \
2922 		__FILE__, __LINE__, \
2923 		(void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \
2924 		(mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \
2925 	} while (0)
2926 
2927 #define	MULTIRT_DEBUG_TAGGED(mblk) \
2928 	(((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE)
2929 #else
2930 #define	MULTIRT_DEBUG_TAG(mblk)		ASSERT(mblk != NULL)
2931 #define	MULTIRT_DEBUG_UNTAG(mblk)	ASSERT(mblk != NULL)
2932 #define	MULTIRT_DEBUG_TAGGED(mblk)	B_FALSE
2933 #endif
2934 
2935 /*
2936  * Per-ILL Multidata Transmit capabilities.
2937  */
2938 struct ill_mdt_capab_s {
2939 	uint_t ill_mdt_version;  /* interface version */
2940 	uint_t ill_mdt_on;	 /* on/off switch for MDT on this ILL */
2941 	uint_t ill_mdt_hdr_head; /* leading header fragment extra space */
2942 	uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */
2943 	uint_t ill_mdt_max_pld;	 /* maximum payload buffers per Multidata */
2944 	uint_t ill_mdt_span_limit; /* maximum payload span per packet */
2945 };
2946 
2947 struct ill_hcksum_capab_s {
2948 	uint_t	ill_hcksum_version;	/* interface version */
2949 	uint_t	ill_hcksum_txflags;	/* capabilities on transmit */
2950 };
2951 
2952 struct ill_zerocopy_capab_s {
2953 	uint_t	ill_zerocopy_version;	/* interface version */
2954 	uint_t	ill_zerocopy_flags;	/* capabilities */
2955 };
2956 
2957 /* Possible ill_states */
2958 #define	ILL_RING_INPROC		3	/* Being assigned to squeue */
2959 #define	ILL_RING_INUSE		2	/* Already Assigned to Rx Ring */
2960 #define	ILL_RING_BEING_FREED	1	/* Being Unassigned */
2961 #define	ILL_RING_FREE		0	/* Available to be assigned to Ring */
2962 
2963 #define	ILL_MAX_RINGS		256	/* Max num of rx rings we can manage */
2964 #define	ILL_POLLING		0x01	/* Polling in use */
2965 
2966 /*
2967  * These functions pointer types are exported by the mac/dls layer.
2968  * we need to duplicate the definitions here because we cannot
2969  * include mac/dls header files here.
2970  */
2971 typedef void	(*ip_mac_blank_t)(void *, time_t, uint_t);
2972 typedef void	(*ip_dld_tx_t)(void *, mblk_t *);
2973 
2974 typedef void	(*ip_dls_chg_soft_ring_t)(void *, int);
2975 typedef void	(*ip_dls_bind_t)(void *, processorid_t);
2976 typedef void	(*ip_dls_unbind_t)(void *);
2977 
2978 struct ill_rx_ring {
2979 	ip_mac_blank_t		rr_blank; /* Driver interrupt blanking func */
2980 	void			*rr_handle; /* Handle for Rx ring */
2981 	squeue_t		*rr_sqp; /* Squeue the ring is bound to */
2982 	ill_t			*rr_ill; /* back pointer to ill */
2983 	clock_t			rr_poll_time; /* Last lbolt polling was used */
2984 	uint32_t		rr_poll_state; /* polling state flags */
2985 	uint32_t		rr_max_blank_time; /* Max interrupt blank */
2986 	uint32_t		rr_min_blank_time; /* Min interrupt blank */
2987 	uint32_t		rr_max_pkt_cnt; /* Max pkts before interrupt */
2988 	uint32_t		rr_min_pkt_cnt; /* Mix pkts before interrupt */
2989 	uint32_t		rr_normal_blank_time; /* Normal intr freq */
2990 	uint32_t		rr_normal_pkt_cnt; /* Normal intr pkt cnt */
2991 	uint32_t		rr_ring_state; /* State of this ring */
2992 };
2993 
2994 struct ill_dls_capab_s {
2995 	ip_dld_tx_t		ill_tx;		/* Driver Tx routine */
2996 	void			*ill_tx_handle;	/* Driver Tx handle */
2997 	ip_dls_chg_soft_ring_t	ill_dls_change_status;
2998 						/* change soft ring fanout */
2999 	ip_dls_bind_t		ill_dls_bind;	/* to add CPU affinity */
3000 	ip_dls_unbind_t		ill_dls_unbind;	/* remove CPU affinity */
3001 	ill_rx_ring_t		*ill_ring_tbl; /* Ring to Sqp mapping table */
3002 	uint_t			ill_dls_soft_ring_cnt; /* Number of soft ring */
3003 	conn_t			*ill_unbind_conn; /* Conn used during unplumb */
3004 };
3005 
3006 /*
3007  * IP squeues exports
3008  */
3009 extern int 		ip_squeue_profile;
3010 extern int 		ip_squeue_bind;
3011 extern boolean_t 	ip_squeue_fanout;
3012 extern boolean_t	ip_squeue_soft_ring;
3013 extern uint_t		ip_threads_per_cpu;
3014 extern uint_t		ip_squeues_per_cpu;
3015 extern uint_t		ip_soft_rings_cnt;
3016 
3017 typedef struct squeue_set_s {
3018 	kmutex_t	sqs_lock;
3019 	struct squeue_s	**sqs_list;
3020 	int		sqs_size;
3021 	int		sqs_max_size;
3022 	processorid_t	sqs_bind;
3023 } squeue_set_t;
3024 
3025 #define	IP_SQUEUE_GET(hint) 						\
3026 	((!ip_squeue_fanout) ?	(CPU->cpu_squeue_set->sqs_list[0]) :	\
3027 		ip_squeue_random(hint))
3028 
3029 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t);
3030 
3031 extern void ip_squeue_init(void (*)(squeue_t *));
3032 extern squeue_t	*ip_squeue_random(uint_t);
3033 extern squeue_t *ip_squeue_get(ill_rx_ring_t *);
3034 extern void ip_squeue_get_pkts(squeue_t *);
3035 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
3036 extern int ip_squeue_bind_get(queue_t *, mblk_t *, caddr_t, cred_t *);
3037 extern void ip_squeue_clean(void *, mblk_t *, void *);
3038 extern void ip_resume_tcp_bind(void *, mblk_t *, void *);
3039 extern void	ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *,
3040     mblk_t *, size_t);
3041 
3042 extern void tcp_wput(queue_t *, mblk_t *);
3043 
3044 extern int	ip_fill_mtuinfo(struct in6_addr *, in_port_t,
3045 	struct ip6_mtuinfo *);
3046 extern	ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *);
3047 
3048 typedef void    (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *);
3049 
3050 /*
3051  * Squeue tags. Tags only need to be unique when the callback function is the
3052  * same to distinguish between different calls, but we use unique tags for
3053  * convenience anyway.
3054  */
3055 #define	SQTAG_IP_INPUT			1
3056 #define	SQTAG_TCP_INPUT_ICMP_ERR	2
3057 #define	SQTAG_TCP6_INPUT_ICMP_ERR	3
3058 #define	SQTAG_IP_TCP_INPUT		4
3059 #define	SQTAG_IP6_TCP_INPUT		5
3060 #define	SQTAG_IP_TCP_CLOSE		6
3061 #define	SQTAG_TCP_OUTPUT		7
3062 #define	SQTAG_TCP_TIMER			8
3063 #define	SQTAG_TCP_TIMEWAIT		9
3064 #define	SQTAG_TCP_ACCEPT_FINISH		10
3065 #define	SQTAG_TCP_ACCEPT_FINISH_Q0	11
3066 #define	SQTAG_TCP_ACCEPT_PENDING	12
3067 #define	SQTAG_TCP_LISTEN_DISCON		13
3068 #define	SQTAG_TCP_CONN_REQ		14
3069 #define	SQTAG_TCP_EAGER_BLOWOFF		15
3070 #define	SQTAG_TCP_EAGER_CLEANUP		16
3071 #define	SQTAG_TCP_EAGER_CLEANUP_Q0	17
3072 #define	SQTAG_TCP_CONN_IND		18
3073 #define	SQTAG_TCP_RSRV			19
3074 #define	SQTAG_TCP_ABORT_BUCKET		20
3075 #define	SQTAG_TCP_REINPUT		21
3076 #define	SQTAG_TCP_REINPUT_EAGER		22
3077 #define	SQTAG_TCP_INPUT_MCTL		23
3078 #define	SQTAG_TCP_RPUTOTHER		24
3079 #define	SQTAG_IP_PROTO_AGAIN		25
3080 #define	SQTAG_IP_FANOUT_TCP		26
3081 #define	SQTAG_IPSQ_CLEAN_RING		27
3082 #define	SQTAG_TCP_WPUT_OTHER		28
3083 #define	SQTAG_TCP_CONN_REQ_UNBOUND	29
3084 #define	SQTAG_TCP_SEND_PENDING		30
3085 #define	SQTAG_BIND_RETRY		31
3086 #define	SQTAG_UDP_FANOUT		32
3087 #define	SQTAG_UDP_INPUT			33
3088 #define	SQTAG_UDP_WPUT			34
3089 #define	SQTAG_UDP_OUTPUT		35
3090 #define	SQTAG_TCP_KSSL_INPUT		36
3091 
3092 #endif	/* _KERNEL */
3093 
3094 #ifdef	__cplusplus
3095 }
3096 #endif
3097 
3098 #endif	/* _INET_IP_H */
3099