1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #ifndef _INET_IP_H 29 #define _INET_IP_H 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #ifdef __cplusplus 34 extern "C" { 35 #endif 36 37 #include <sys/isa_defs.h> 38 #include <sys/types.h> 39 #include <inet/mib2.h> 40 #include <inet/nd.h> 41 #include <sys/atomic.h> 42 #include <net/if_dl.h> 43 #include <net/if.h> 44 #include <netinet/ip.h> 45 #include <netinet/igmp.h> 46 #include <sys/neti.h> 47 #include <sys/hook.h> 48 #include <sys/hook_event.h> 49 #include <sys/hook_impl.h> 50 51 #ifdef _KERNEL 52 #include <netinet/ip6.h> 53 #include <sys/avl.h> 54 #include <sys/vmem.h> 55 #include <sys/squeue.h> 56 #include <net/route.h> 57 #include <sys/systm.h> 58 #include <sys/multidata.h> 59 #include <net/radix.h> 60 61 #ifdef DEBUG 62 #define ILL_DEBUG 63 #define IRE_DEBUG 64 #define NCE_DEBUG 65 #define CONN_DEBUG 66 #endif 67 68 #define IP_DEBUG 69 /* 70 * The mt-streams(9F) flags for the IP module; put here so that other 71 * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set 72 * of flags. 73 */ 74 #define IP_DEVMTFLAGS D_MP 75 #endif /* _KERNEL */ 76 77 #define IP_MOD_NAME "ip" 78 #define IP_DEV_NAME "/dev/ip" 79 #define IP6_DEV_NAME "/dev/ip6" 80 81 #define UDP_MOD_NAME "udp" 82 #define UDP_DEV_NAME "/dev/udp" 83 #define UDP6_DEV_NAME "/dev/udp6" 84 85 #define TCP_MOD_NAME "tcp" 86 #define TCP_DEV_NAME "/dev/tcp" 87 #define TCP6_DEV_NAME "/dev/tcp6" 88 89 #define SCTP_MOD_NAME "sctp" 90 91 /* Minor numbers */ 92 #define IPV4_MINOR 0 93 #define IPV6_MINOR 1 94 #define TCP_MINOR 2 95 #define TCP_MINOR6 3 96 97 #ifndef _IPADDR_T 98 #define _IPADDR_T 99 typedef uint32_t ipaddr_t; 100 #endif 101 102 /* Number of bits in an address */ 103 #define IP_ABITS 32 104 #define IPV6_ABITS 128 105 106 #define IP_HOST_MASK (ipaddr_t)0xffffffffU 107 108 #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) 109 #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) 110 #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) 111 #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) 112 #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) 113 114 /* 115 * Flag to IP write side to indicate that the appln has sent in a pre-built 116 * IP header. Stored in ipha_ident (which is otherwise zero). 117 */ 118 #define IP_HDR_INCLUDED 0xFFFF 119 120 #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) 121 #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) 122 123 #define IPV4_ADDR_LEN 4 124 #define IP_ADDR_LEN IPV4_ADDR_LEN 125 #define IP_ARP_PROTO_TYPE 0x0800 126 127 #define IPV4_VERSION 4 128 #define IP_VERSION IPV4_VERSION 129 #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 130 #define IP_SIMPLE_HDR_LENGTH 20 131 #define IP_MAX_HDR_LENGTH 60 132 133 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) 134 135 #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ 136 137 /* 138 * XXX IP_MAXPACKET is defined in <netinet/ip.h> as well. At some point the 139 * 2 files should be cleaned up to remove all redundant definitions. 140 */ 141 #define IP_MAXPACKET 65535 142 #define IP_SIMPLE_HDR_VERSION \ 143 ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) 144 145 #define UDPH_SIZE 8 146 147 /* Leave room for ip_newroute to tack on the src and target addresses */ 148 #define OK_RESOLVER_MP(mp) \ 149 ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) 150 151 /* 152 * Constants and type definitions to support IP IOCTL commands 153 */ 154 #define IP_IOCTL (('i'<<8)|'p') 155 #define IP_IOC_IRE_DELETE 4 156 #define IP_IOC_IRE_DELETE_NO_REPLY 5 157 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 158 #define IP_IOC_RTS_REQUEST 7 159 160 /* Common definitions used by IP IOCTL data structures */ 161 typedef struct ipllcmd_s { 162 uint_t ipllc_cmd; 163 uint_t ipllc_name_offset; 164 uint_t ipllc_name_length; 165 } ipllc_t; 166 167 /* IP IRE Change Command Structure. */ 168 typedef struct ipic_s { 169 ipllc_t ipic_ipllc; 170 uint_t ipic_ire_type; 171 uint_t ipic_max_frag; 172 uint_t ipic_addr_offset; 173 uint_t ipic_addr_length; 174 uint_t ipic_mask_offset; 175 uint_t ipic_mask_length; 176 uint_t ipic_src_addr_offset; 177 uint_t ipic_src_addr_length; 178 uint_t ipic_ll_hdr_offset; 179 uint_t ipic_ll_hdr_length; 180 uint_t ipic_gateway_addr_offset; 181 uint_t ipic_gateway_addr_length; 182 clock_t ipic_rtt; 183 uint32_t ipic_ssthresh; 184 clock_t ipic_rtt_sd; 185 uchar_t ipic_ire_marks; 186 } ipic_t; 187 188 #define ipic_cmd ipic_ipllc.ipllc_cmd 189 #define ipic_ll_name_length ipic_ipllc.ipllc_name_length 190 #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset 191 192 /* IP IRE Delete Command Structure. */ 193 typedef struct ipid_s { 194 ipllc_t ipid_ipllc; 195 uint_t ipid_ire_type; 196 uint_t ipid_addr_offset; 197 uint_t ipid_addr_length; 198 uint_t ipid_mask_offset; 199 uint_t ipid_mask_length; 200 } ipid_t; 201 202 #define ipid_cmd ipid_ipllc.ipllc_cmd 203 204 #ifdef _KERNEL 205 /* 206 * Temporary state for ip options parser. 207 */ 208 typedef struct ipoptp_s 209 { 210 uint8_t *ipoptp_next; /* next option to look at */ 211 uint8_t *ipoptp_end; /* end of options */ 212 uint8_t *ipoptp_cur; /* start of current option */ 213 uint8_t ipoptp_len; /* length of current option */ 214 uint32_t ipoptp_flags; 215 } ipoptp_t; 216 217 /* 218 * Flag(s) for ipoptp_flags 219 */ 220 #define IPOPTP_ERROR 0x00000001 221 #endif /* _KERNEL */ 222 223 224 /* Controls forwarding of IP packets, set via ndd */ 225 #define IP_FORWARD_NEVER 0 226 #define IP_FORWARD_ALWAYS 1 227 228 #define WE_ARE_FORWARDING (ip_g_forward == IP_FORWARD_ALWAYS) 229 230 #define IPH_HDR_LENGTH(ipha) \ 231 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) 232 233 #define IPH_HDR_VERSION(ipha) \ 234 ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) 235 236 #ifdef _KERNEL 237 /* 238 * IP reassembly macros. We hide starting and ending offsets in b_next and 239 * b_prev of messages on the reassembly queue. The messages are chained using 240 * b_cont. These macros are used in ip_reassemble() so we don't have to see 241 * the ugly casts and assignments. 242 * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent 243 * them. 244 */ 245 #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) 246 #define IP_REASS_SET_START(mp, u) \ 247 ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) 248 #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) 249 #define IP_REASS_SET_END(mp, u) \ 250 ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) 251 252 #define IP_REASS_COMPLETE 0x1 253 #define IP_REASS_PARTIAL 0x2 254 #define IP_REASS_FAILED 0x4 255 256 /* 257 * Test to determine whether this is a module instance of IP or a 258 * driver instance of IP. 259 */ 260 #define CONN_Q(q) (WR(q)->q_next == NULL) 261 262 #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) 263 #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) 264 #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) 265 266 /* 267 * The following two macros are used by IP to get the appropriate 268 * wq and rq for a conn. If it is a TCP conn, then we need 269 * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq 270 * from a conn directly if it knows that the conn is not TCP. 271 */ 272 #define CONNP_TO_WQ(connp) \ 273 (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) 274 275 #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) 276 277 #define GRAB_CONN_LOCK(q) { \ 278 if (q != NULL && CONN_Q(q)) \ 279 mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ 280 } 281 282 #define RELEASE_CONN_LOCK(q) { \ 283 if (q != NULL && CONN_Q(q)) \ 284 mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ 285 } 286 287 /* "Congestion controlled" protocol */ 288 #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) 289 290 /* 291 * Complete the pending operation. Usually an ioctl. Can also 292 * be a bind or option management request that got enqueued 293 * in an ipsq_t. Called on completion of the operation. 294 */ 295 #define CONN_OPER_PENDING_DONE(connp) { \ 296 mutex_enter(&(connp)->conn_lock); \ 297 (connp)->conn_oper_pending_ill = NULL; \ 298 cv_broadcast(&(connp)->conn_refcv); \ 299 mutex_exit(&(connp)->conn_lock); \ 300 CONN_DEC_REF(connp); \ 301 } 302 303 /* Get the credential of an IP queue of unknown type */ 304 #define GET_QUEUE_CRED(wq) \ 305 ((wq)->q_next ? (((ill_t *)(wq)->q_ptr)->ill_credp) \ 306 : ((Q_TO_CONN((wq)))->conn_cred)) 307 308 /* 309 * Flags for the various ip_fanout_* routines. 310 */ 311 #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ 312 #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ 313 #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ 314 #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ 315 #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ 316 #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ 317 #define IP_FF_IPINFO 0x80 /* Used for both V4 and V6 */ 318 #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ 319 #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ 320 #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ 321 322 /* 323 * Following flags are used by IPQoS to determine if policy processing is 324 * required. 325 */ 326 #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ 327 #define IP6_IN_LLMCAST 0x1000 /* Multicast */ 328 329 #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ 330 331 #ifndef IRE_DB_TYPE 332 #define IRE_DB_TYPE M_SIG 333 #endif 334 335 #ifndef IRE_DB_REQ_TYPE 336 #define IRE_DB_REQ_TYPE M_PCSIG 337 #endif 338 339 #ifndef IRE_ARPRESOLVE_TYPE 340 #define IRE_ARPRESOLVE_TYPE M_EVENT 341 #endif 342 343 /* 344 * Values for squeue switch: 345 */ 346 347 #define IP_SQUEUE_ENTER_NODRAIN 1 348 #define IP_SQUEUE_ENTER 2 349 /* 350 * This is part of the interface between Transport provider and 351 * IP which can be used to set policy information. This is usually 352 * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that 353 * only IPSEC_POLICY_SET is there when it is found in the chain. 354 * The information contained is an struct ipsec_req_t. On success 355 * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. 356 * IPSEC_POLICY_SET is never returned. 357 */ 358 #define IPSEC_POLICY_SET M_SETOPTS 359 360 #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ 361 ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) 362 363 #define IRE_IS_TARGET(ire) ((ire != NULL) && \ 364 ((ire)->ire_type != IRE_BROADCAST)) 365 366 /* IP Fragmentation Reassembly Header */ 367 typedef struct ipf_s { 368 struct ipf_s *ipf_hash_next; 369 struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ 370 uint32_t ipf_ident; /* Ident to match. */ 371 uint8_t ipf_protocol; /* Protocol to match. */ 372 uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ 373 time_t ipf_timestamp; /* Reassembly start time. */ 374 mblk_t *ipf_mp; /* mblk we live in. */ 375 mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ 376 int ipf_hole_cnt; /* Number of holes (hard-case). */ 377 int ipf_end; /* Tail end offset (0 -> hard-case). */ 378 uint_t ipf_gen; /* Frag queue generation */ 379 size_t ipf_count; /* Count of bytes used by frag */ 380 uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ 381 in6_addr_t ipf_v6src; /* IPv6 source address */ 382 in6_addr_t ipf_v6dst; /* IPv6 dest address */ 383 uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ 384 uint8_t ipf_ecn; /* ECN info for the fragments */ 385 uint8_t ipf_num_dups; /* Number of times dup frags recvd */ 386 uint16_t ipf_checksum_flags; /* Hardware checksum flags */ 387 uint32_t ipf_checksum; /* Partial checksum of fragment data */ 388 } ipf_t; 389 390 #define ipf_src V4_PART_OF_V6(ipf_v6src) 391 #define ipf_dst V4_PART_OF_V6(ipf_v6dst) 392 393 typedef enum { 394 IB_PKT = 0x01, 395 OB_PKT = 0x02 396 } ip_pkt_t; 397 398 #define UPDATE_IB_PKT_COUNT(ire)\ 399 { \ 400 (ire)->ire_ib_pkt_count++; \ 401 if ((ire)->ire_ipif != NULL) { \ 402 /* \ 403 * forwarding packet \ 404 */ \ 405 if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ 406 atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ 407 else \ 408 atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ 409 } \ 410 } 411 #define UPDATE_OB_PKT_COUNT(ire)\ 412 { \ 413 (ire)->ire_ob_pkt_count++;\ 414 if ((ire)->ire_ipif != NULL) { \ 415 atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ 416 } \ 417 } 418 419 420 #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ 421 { \ 422 switch (ipha->ipha_protocol) { \ 423 case IPPROTO_UDP: \ 424 ip_udp_input(q, mp, ipha, ire, recv_ill); \ 425 break; \ 426 default: \ 427 ip_proto_input(q, mp, ipha, ire, recv_ill); \ 428 break; \ 429 } \ 430 } 431 432 /* 433 * NCE_EXPIRED is TRUE when we have a non-permanent nce that was 434 * found to be REACHABLE more than ip_ire_arp_interval ms ago. 435 * This macro is used to trigger re-arp of existing nce_t entries 436 * so that they can be updated with the latest information. 437 * nce's will get cleaned up (or updated with new info) in the following 438 * circumstances: 439 * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim 440 * when memory is low, 441 * - ip_arp_news, when updates are received. 442 * - if the nce is NCE_EXPIRED(), it will be re-initialized to ND_INITIAL, 443 * so that a new arp request will be triggered. 444 * nce_last is the timestamp that indicates when the nce_res_mp in the 445 * nce_t was last updated to a valid link-layer address. nce_last gets 446 * modified/updated : 447 * - when the nce is created or reinit-ed 448 * - every time we get a sane arp response for the nce. 449 */ 450 #define NCE_EXPIRED(nce) (nce->nce_last > 0 && \ 451 ((nce->nce_flags & NCE_F_PERMANENT) == 0) && \ 452 ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > ip_ire_arp_interval)) 453 454 #endif /* _KERNEL */ 455 456 /* ICMP types */ 457 #define ICMP_ECHO_REPLY 0 458 #define ICMP_DEST_UNREACHABLE 3 459 #define ICMP_SOURCE_QUENCH 4 460 #define ICMP_REDIRECT 5 461 #define ICMP_ECHO_REQUEST 8 462 #define ICMP_ROUTER_ADVERTISEMENT 9 463 #define ICMP_ROUTER_SOLICITATION 10 464 #define ICMP_TIME_EXCEEDED 11 465 #define ICMP_PARAM_PROBLEM 12 466 #define ICMP_TIME_STAMP_REQUEST 13 467 #define ICMP_TIME_STAMP_REPLY 14 468 #define ICMP_INFO_REQUEST 15 469 #define ICMP_INFO_REPLY 16 470 #define ICMP_ADDRESS_MASK_REQUEST 17 471 #define ICMP_ADDRESS_MASK_REPLY 18 472 473 /* ICMP_TIME_EXCEEDED codes */ 474 #define ICMP_TTL_EXCEEDED 0 475 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 476 477 /* ICMP_DEST_UNREACHABLE codes */ 478 #define ICMP_NET_UNREACHABLE 0 479 #define ICMP_HOST_UNREACHABLE 1 480 #define ICMP_PROTOCOL_UNREACHABLE 2 481 #define ICMP_PORT_UNREACHABLE 3 482 #define ICMP_FRAGMENTATION_NEEDED 4 483 #define ICMP_SOURCE_ROUTE_FAILED 5 484 #define ICMP_DEST_NET_UNKNOWN 6 485 #define ICMP_DEST_HOST_UNKNOWN 7 486 #define ICMP_SRC_HOST_ISOLATED 8 487 #define ICMP_DEST_NET_UNREACH_ADMIN 9 488 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 489 #define ICMP_DEST_NET_UNREACH_TOS 11 490 #define ICMP_DEST_HOST_UNREACH_TOS 12 491 492 /* ICMP Header Structure */ 493 typedef struct icmph_s { 494 uint8_t icmph_type; 495 uint8_t icmph_code; 496 uint16_t icmph_checksum; 497 union { 498 struct { /* ECHO request/response structure */ 499 uint16_t u_echo_ident; 500 uint16_t u_echo_seqnum; 501 } u_echo; 502 struct { /* Destination unreachable structure */ 503 uint16_t u_du_zero; 504 uint16_t u_du_mtu; 505 } u_du; 506 struct { /* Parameter problem structure */ 507 uint8_t u_pp_ptr; 508 uint8_t u_pp_rsvd[3]; 509 } u_pp; 510 struct { /* Redirect structure */ 511 ipaddr_t u_rd_gateway; 512 } u_rd; 513 } icmph_u; 514 } icmph_t; 515 516 #define icmph_echo_ident icmph_u.u_echo.u_echo_ident 517 #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum 518 #define icmph_du_zero icmph_u.u_du.u_du_zero 519 #define icmph_du_mtu icmph_u.u_du.u_du_mtu 520 #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr 521 #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway 522 523 #define ICMPH_SIZE 8 524 525 /* 526 * Minimum length of transport layer header included in an ICMP error 527 * message for it to be considered valid. 528 */ 529 #define ICMP_MIN_TP_HDR_LEN 8 530 531 /* Aligned IP header */ 532 typedef struct ipha_s { 533 uint8_t ipha_version_and_hdr_length; 534 uint8_t ipha_type_of_service; 535 uint16_t ipha_length; 536 uint16_t ipha_ident; 537 uint16_t ipha_fragment_offset_and_flags; 538 uint8_t ipha_ttl; 539 uint8_t ipha_protocol; 540 uint16_t ipha_hdr_checksum; 541 ipaddr_t ipha_src; 542 ipaddr_t ipha_dst; 543 } ipha_t; 544 545 #define IPH_DF 0x4000 /* Don't fragment */ 546 #define IPH_MF 0x2000 /* More fragments to come */ 547 #define IPH_OFFSET 0x1FFF /* Where the offset lives */ 548 #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ 549 550 /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ 551 #define IPH_ECN_NECT 0x0 /* Not ECN-Capabable Transport */ 552 #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ 553 #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ 554 #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ 555 556 /* IP Mac info structure */ 557 typedef struct ip_m_s { 558 t_uscalar_t ip_m_mac_type; /* From <sys/dlpi.h> */ 559 int ip_m_type; /* From <net/if_types.h> */ 560 boolean_t (*ip_m_v4mapinfo)(uint_t, uint8_t *, uint8_t *, 561 uint32_t *, ipaddr_t *); 562 boolean_t (*ip_m_v6mapinfo)(uint_t, uint8_t *, uint8_t *, 563 uint32_t *, in6_addr_t *); 564 boolean_t (*ip_m_v6intfid)(uint_t, uint8_t *, in6_addr_t *); 565 } ip_m_t; 566 567 /* 568 * The following functions attempt to reduce the link layer dependency 569 * of the IP stack. The current set of link specific operations are: 570 * a. map from IPv4 class D (224.0/4) multicast address range to the link 571 * layer multicast address range. 572 * b. map from IPv6 multicast address range (ff00::/8) to the link 573 * layer multicast address range. 574 * c. derive the default IPv6 interface identifier from the link layer 575 * address. 576 */ 577 #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ 578 (((ip_m)->ip_m_v4mapinfo != NULL) && \ 579 (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) 580 #define MEDIA_V6INTFID(ip_m, plen, phys, v6ptr) \ 581 (((ip_m)->ip_m_v6intfid != NULL) && \ 582 (*(ip_m)->ip_m_v6intfid)(plen, phys, v6ptr)) 583 #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ 584 (((ip_m)->ip_m_v6mapinfo != NULL) && \ 585 (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) 586 587 /* Router entry types */ 588 #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ 589 #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ 590 #define IRE_LOCAL 0x0004 /* Route entry for local address */ 591 #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ 592 #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ 593 #define IRE_CACHE 0x0020 /* Cached Route entry */ 594 #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ 595 /* net without any address mapping. */ 596 #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ 597 /* net with resolver. */ 598 #define IRE_HOST 0x0100 /* Host route entry */ 599 #define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */ 600 601 /* 602 * IRE_MIPRTUN is only set on the ires in the ip_mrtun_table. 603 * This ire_type must not be set for ftable and ctable routing entries. 604 */ 605 #define IRE_MIPRTUN 0x0400 /* Reverse tunnel route entry */ 606 607 #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) 608 #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST) 609 #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ 610 IRE_LOOPBACK) 611 #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) 612 613 /* 614 * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of 615 * the bucket should delete this IRE from this bucket. 616 */ 617 #define IRE_MARK_CONDEMNED 0x0001 618 /* 619 * If a broadcast IRE is marked with IRE_MARK_NORECV, ip_rput will drop the 620 * broadcast packets received on that interface. This is marked only 621 * on broadcast ires. Employed by IPMP, where we have multiple NICs on the 622 * same subnet receiving the same broadcast packet. 623 */ 624 #define IRE_MARK_NORECV 0x0002 625 /* 626 * IRE_CACHE marked this way won't be returned by ire_cache_lookup. Need 627 * to look specifically using MATCH_IRE_MARK_HIDDEN. Used by IPMP. 628 */ 629 #define IRE_MARK_HIDDEN 0x0004 /* Typically Used by in.mpathd */ 630 631 /* 632 * ire with IRE_MARK_NOADD is created in ip_newroute_ipif, when outgoing 633 * interface is specified by IP_XMIT_IF socket option. This ire is not 634 * added in IRE_CACHE. For example, this is used by mipagent to prevent 635 * any entry to be added in the cache table. We do not want to add any 636 * entry for a mobile-node in the routing table for foreign agent originated 637 * packets. Adding routes in cache table in this case, may run the risks of 638 * incorrect routing path in case of private overlapping addresses. 639 */ 640 #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ 641 642 /* 643 * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used 644 * either for forwarding a packet or has not been used for sending 645 * traffic on TCP connections terminated on this system. In both 646 * cases, this IRE is the first to go when IRE is being cleaned up. 647 */ 648 #define IRE_MARK_TEMPORARY 0x0010 649 650 /* 651 * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with 652 * this mark, additional atomic checks need to be performed. For eg: by the 653 * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the 654 * usesrc grouping could have changed in which case we want to fail adding 655 * the IRE_CACHE entry 656 */ 657 #define IRE_MARK_USESRC_CHECK 0x0020 658 659 /* 660 * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the 661 * routing table lookup for the destination is bypassed and the packet is 662 * sent directly to the specified nexthop. The associated IRE_CACHE entries 663 * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up 664 * in regular ire cache lookups. 665 */ 666 #define IRE_MARK_PRIVATE_ADDR 0x0040 667 668 /* 669 * When we send an ARP resolution query for the nexthop gateway's ire, 670 * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk 671 * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag 672 * indicates that information from ARP has not been transferred to a 673 * permanent IRE_CACHE entry. The flag is reset only when the 674 * information is successfully transferred to an ire_cache entry (in 675 * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior 676 * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will 677 * require that the resources (incomplete ire_cache and/or nce) must 678 * be cleaned up. The free callback routine (ire_freemblk()) checks 679 * for IRE_MARK_UNCACHED to see if any resources that are pinned down 680 * will need to be cleaned up or not. 681 */ 682 683 #define IRE_MARK_UNCACHED 0x0080 684 685 /* Flags with ire_expire routine */ 686 #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ 687 #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ 688 #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ 689 690 /* Arguments to ire_flush_cache() */ 691 #define IRE_FLUSH_DELETE 0 692 #define IRE_FLUSH_ADD 1 693 694 /* 695 * Open/close synchronization flags. 696 * These are kept in a separate field in the conn and the synchronization 697 * depends on the atomic 32 bit access to that field. 698 */ 699 #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ 700 #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ 701 #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ 702 #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ 703 #define CONN_QUIESCED 0x10 /* conn is now quiescent */ 704 705 /* 706 * Parameter to ip_output giving the identity of the caller. 707 * IP_WSRV means the packet was enqueued in the STREAMS queue 708 * due to flow control and is now being reprocessed in the context of 709 * the STREAMS service procedure, consequent to flow control relief. 710 * IRE_SEND means the packet is being reprocessed consequent to an 711 * ire cache creation and addition and this may or may not be happening 712 * in the service procedure context. Anything other than the above 2 713 * cases is identified as IP_WPUT. Most commonly this is the case of 714 * packets coming down from the application. 715 */ 716 #ifdef _KERNEL 717 #define IP_WSRV 1 /* Called from ip_wsrv */ 718 #define IP_WPUT 2 /* Called from ip_wput */ 719 #define IRE_SEND 3 /* Called from ire_send */ 720 721 /* 722 * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) 723 */ 724 #define MAX_FILTER_SIZE 64 725 726 typedef struct slist_s { 727 int sl_numsrc; 728 in6_addr_t sl_addr[MAX_FILTER_SIZE]; 729 } slist_t; 730 731 /* 732 * Following struct is used to maintain retransmission state for 733 * a multicast group. One rtx_state_t struct is an in-line field 734 * of the ilm_t struct; the slist_ts in the rtx_state_t struct are 735 * alloc'd as needed. 736 */ 737 typedef struct rtx_state_s { 738 uint_t rtx_timer; /* retrans timer */ 739 int rtx_cnt; /* retrans count */ 740 int rtx_fmode_cnt; /* retrans count for fmode change */ 741 slist_t *rtx_allow; 742 slist_t *rtx_block; 743 } rtx_state_t; 744 745 /* 746 * Used to construct list of multicast address records that will be 747 * sent in a single listener report. 748 */ 749 typedef struct mrec_s { 750 struct mrec_s *mrec_next; 751 uint8_t mrec_type; 752 uint8_t mrec_auxlen; /* currently unused */ 753 in6_addr_t mrec_group; 754 slist_t mrec_srcs; 755 } mrec_t; 756 757 /* Group membership list per upper conn */ 758 /* 759 * XXX add ilg info for ifaddr/ifindex. 760 * XXX can we make ilg survive an ifconfig unplumb + plumb 761 * by setting the ipif/ill to NULL and recover that later? 762 * 763 * ilg_ipif is used by IPv4 as multicast groups are joined using an interface 764 * address (ipif). 765 * ilg_ill is used by IPv6 as multicast groups are joined using an interface 766 * index (phyint->phyint_ifindex). 767 * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. 768 * 769 * ilg records the state of multicast memberships of a socket end point. 770 * ilm records the state of multicast memberships with the driver and is 771 * maintained per interface. 772 * 773 * Notes : 774 * 775 * 1) There is no direct link between a given ilg and ilm. If the 776 * application has joined a group G with ifindex I, we will have 777 * an ilg with ilg_v6group and ilg_ill. There will be a corresponding 778 * ilm with ilm_ill/ilm_v6addr recording the multicast membership. 779 * To delete the membership, 780 * 781 * a) Search for ilg matching on G and I with ilg_v6group 782 * and ilg_ill. Delete ilg_ill. 783 * b) Search the corresponding ilm matching on G and I with 784 * ilm_v6addr and ilm_ill. Delete ilm. 785 * 786 * In IPv4, the only difference is, we look using ipifs instead of 787 * ills. 788 * 789 * 2) With IP multipathing, we want to keep receiving even after the 790 * interface has failed. We do this by moving multicast memberships 791 * to a new_ill within the group. This is acheived by sending 792 * DL_DISABMULTI_REQS on ilg_ill/ilm_ill and sending DL_ENABMULTIREQS 793 * on the new_ill and changing ilg_ill/ilm_ill to new_ill. But, we 794 * need to be able to delete memberships which will still come down 795 * with the ifindex of the old ill which is what the application 796 * knows of. Thus we store the ilm_/ilg_orig_ifindex to keep track 797 * of where we joined initially so that we can lookup even after we 798 * moved the membership. It is also used for moving back the membership 799 * when the old ill has been repaired. This is done by looking up for 800 * ilms with ilm_orig_ifindex matching on the old ill's ifindex. Only 801 * ilms actually move from old ill to new ill. ilgs don't move (just 802 * the ilg_ill is changed when it moves) as it just records the state 803 * of the application that has joined a group G where as ilm records 804 * the state joined with the driver. Thus when we send DL_XXXMULTI_REQs 805 * we also need to keep the ilm in the right ill. 806 * 807 * In IPv4, as ipifs move from old ill to new_ill, ilgs and ilms move 808 * implicitly as we use only ipifs in IPv4. Thus, one can always lookup 809 * a given ilm/ilg even after it fails without the support of 810 * orig_ifindex. We move ilms still to record the driver state as 811 * mentioned above. 812 */ 813 814 /* 815 * The ilg_t and ilm_t members are protected by ipsq. They can be changed only 816 * by a thread executing in the ipsq. In other words add/delete of a 817 * multicast group has to execute in the ipsq. 818 */ 819 #define ILG_DELETED 0x1 /* ilg_flags */ 820 typedef struct ilg_s { 821 in6_addr_t ilg_v6group; 822 struct ipif_s *ilg_ipif; /* Logical interface we are member on */ 823 struct ill_s *ilg_ill; /* Used by IPv6 */ 824 int ilg_orig_ifindex; /* Interface originally joined on */ 825 uint_t ilg_flags; 826 mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 827 slist_t *ilg_filter; 828 } ilg_t; 829 830 831 /* 832 * Multicast address list entry for lower ill. 833 * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. 834 * ilm_ill is used by IPv6 as multicast groups are joined using ill. 835 * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. 836 */ 837 #define ILM_DELETED 0x1 /* ilm_flags */ 838 typedef struct ilm_s { 839 in6_addr_t ilm_v6addr; 840 int ilm_refcnt; 841 uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ 842 struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ 843 struct ilm_s *ilm_next; /* Linked list for each ill */ 844 uint_t ilm_state; /* state of the membership */ 845 struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ 846 int ilm_orig_ifindex; /* V6_MULTICAST_IF/ilm_ipif index */ 847 uint_t ilm_flags; 848 boolean_t ilm_is_new; /* new ilm */ 849 boolean_t ilm_notify_driver; /* Need to notify the driver */ 850 zoneid_t ilm_zoneid; 851 int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ 852 mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ 853 slist_t *ilm_filter; /* source filter list */ 854 slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ 855 rtx_state_t ilm_rtx; /* SCR retransmission state */ 856 } ilm_t; 857 858 #define ilm_addr V4_PART_OF_V6(ilm_v6addr) 859 860 /* 861 * ilm_walker_cleanup needs to execute when the ilm_walker_cnt goes down to 862 * zero. In addition it needs to block new walkers while it is unlinking ilm's 863 * from the list. Thus simple atomics for the ill_ilm_walker_cnt don't suffice. 864 */ 865 #define ILM_WALKER_HOLD(ill) { \ 866 mutex_enter(&(ill)->ill_lock); \ 867 ill->ill_ilm_walker_cnt++; \ 868 mutex_exit(&(ill)->ill_lock); \ 869 } 870 871 #define ILM_WALKER_RELE(ill) { \ 872 mutex_enter(&(ill)->ill_lock); \ 873 (ill)->ill_ilm_walker_cnt--; \ 874 if ((ill)->ill_ilm_walker_cnt == 0 && (ill)->ill_ilm_cleanup_reqd) \ 875 ilm_walker_cleanup(ill); \ 876 mutex_exit(&(ill)->ill_lock); \ 877 } 878 879 /* 880 * Soft reference to an IPsec SA. 881 * 882 * On relative terms, conn's can be persistant (living as long as the 883 * processes which create them), while SA's are ephemeral (dying when 884 * they hit their time-based or byte-based lifetimes). 885 * 886 * We could hold a hard reference to an SA from an ipsec_latch_t, 887 * but this would cause expired SA's to linger for a potentially 888 * unbounded time. 889 * 890 * Instead, we remember the hash bucket number and bucket generation 891 * in addition to the pointer. The bucket generation is incremented on 892 * each deletion. 893 */ 894 typedef struct ipsa_ref_s 895 { 896 struct ipsa_s *ipsr_sa; 897 struct isaf_s *ipsr_bucket; 898 uint64_t ipsr_gen; 899 } ipsa_ref_t; 900 901 /* 902 * IPsec "latching" state. 903 * 904 * In the presence of IPsec policy, fully-bound conn's bind a connection 905 * to more than just the 5-tuple, but also a specific IPsec action and 906 * identity-pair. 907 * 908 * As an optimization, we also cache soft references to IPsec SA's 909 * here so that we can fast-path around most of the work needed for 910 * outbound IPsec SA selection. 911 * 912 * Were it not for TCP's detached connections, this state would be 913 * in-line in conn_t; instead, this is in a separate structure so it 914 * can be handed off to TCP when a connection is detached. 915 */ 916 typedef struct ipsec_latch_s 917 { 918 kmutex_t ipl_lock; 919 uint32_t ipl_refcnt; 920 921 uint64_t ipl_unique; 922 struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ 923 struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ 924 struct ipsec_action_s *ipl_in_action; /* latched action (in) */ 925 struct ipsec_action_s *ipl_out_action; /* latched action (out) */ 926 cred_t *ipl_local_id; 927 struct ipsid_s *ipl_local_cid; 928 struct ipsid_s *ipl_remote_cid; 929 unsigned int 930 ipl_out_action_latched : 1, 931 ipl_in_action_latched : 1, 932 ipl_out_policy_latched : 1, 933 ipl_in_policy_latched : 1, 934 935 ipl_ids_latched : 1, 936 937 ipl_pad_to_bit_31 : 27; 938 939 ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ 940 941 } ipsec_latch_t; 942 943 #define IPLATCH_REFHOLD(ipl) { \ 944 atomic_add_32(&(ipl)->ipl_refcnt, 1); \ 945 ASSERT((ipl)->ipl_refcnt != 0); \ 946 } 947 948 #define IPLATCH_REFRELE(ipl) { \ 949 ASSERT((ipl)->ipl_refcnt != 0); \ 950 membar_exit(); \ 951 if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ 952 iplatch_free(ipl); \ 953 } 954 955 /* 956 * peer identity structure. 957 */ 958 959 typedef struct conn_s conn_t; 960 961 /* 962 * The old IP client structure "ipc_t" is gone. All the data is stored in the 963 * connection structure "conn_t" now. The mapping of old and new fields looks 964 * like this: 965 * 966 * ipc_ulp conn_ulp 967 * ipc_rq conn_rq 968 * ipc_wq conn_wq 969 * 970 * ipc_laddr conn_src 971 * ipc_faddr conn_rem 972 * ipc_v6laddr conn_srcv6 973 * ipc_v6faddr conn_remv6 974 * 975 * ipc_lport conn_lport 976 * ipc_fport conn_fport 977 * ipc_ports conn_ports 978 * 979 * ipc_policy conn_policy 980 * ipc_latch conn_latch 981 * 982 * ipc_irc_lock conn_lock 983 * ipc_ire_cache conn_ire_cache 984 * 985 * ipc_state_flags conn_state_flags 986 * ipc_outgoing_ill conn_outgoing_ill 987 * 988 * ipc_dontroute conn_dontroute 989 * ipc_loopback conn_loopback 990 * ipc_broadcast conn_broadcast 991 * ipc_reuseaddr conn_reuseaddr 992 * 993 * ipc_multicast_loop conn_multicast_loop 994 * ipc_multi_router conn_multi_router 995 * ipc_priv_stream conn_priv_stream 996 * ipc_draining conn_draining 997 * 998 * ipc_did_putbq conn_did_putbq 999 * ipc_unspec_src conn_unspec_src 1000 * ipc_policy_cached conn_policy_cached 1001 * 1002 * ipc_in_enforce_policy conn_in_enforce_policy 1003 * ipc_out_enforce_policy conn_out_enforce_policy 1004 * ipc_af_isv6 conn_af_isv6 1005 * ipc_pkt_isv6 conn_pkt_isv6 1006 * 1007 * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo 1008 * 1009 * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit 1010 * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts 1011 * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts 1012 * 1013 * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr 1014 * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts 1015 * ipc_fully_bound conn_fully_bound 1016 * 1017 * ipc_recvif conn_recvif 1018 * 1019 * ipc_recvslla conn_recvslla 1020 * ipc_acking_unbind conn_acking_unbind 1021 * ipc_pad_to_bit_31 conn_pad_to_bit_31 1022 * 1023 * ipc_xmit_if_ill conn_xmit_if_ill 1024 * ipc_nofailover_ill conn_nofailover_ill 1025 * 1026 * ipc_proto conn_proto 1027 * ipc_incoming_ill conn_incoming_ill 1028 * ipc_outgoing_pill conn_outgoing_pill 1029 * ipc_pending_ill conn_pending_ill 1030 * ipc_unbind_mp conn_unbind_mp 1031 * ipc_ilg conn_ilg 1032 * ipc_ilg_allocated conn_ilg_allocated 1033 * ipc_ilg_inuse conn_ilg_inuse 1034 * ipc_ilg_walker_cnt conn_ilg_walker_cnt 1035 * ipc_refcv conn_refcv 1036 * ipc_multicast_ipif conn_multicast_ipif 1037 * ipc_multicast_ill conn_multicast_ill 1038 * ipc_orig_bound_ifindex conn_orig_bound_ifindex 1039 * ipc_orig_multicast_ifindex conn_orig_multicast_ifindex 1040 * ipc_orig_xmit_ifindex conn_orig_xmit_ifindex 1041 * ipc_drain_next conn_drain_next 1042 * ipc_drain_prev conn_drain_prev 1043 * ipc_idl conn_idl 1044 */ 1045 1046 /* 1047 * This is used to match an inbound/outbound datagram with 1048 * policy. 1049 */ 1050 1051 typedef struct ipsec_selector { 1052 in6_addr_t ips_local_addr_v6; 1053 in6_addr_t ips_remote_addr_v6; 1054 uint16_t ips_local_port; 1055 uint16_t ips_remote_port; 1056 uint8_t ips_icmp_type; 1057 uint8_t ips_icmp_code; 1058 uint8_t ips_protocol; 1059 uint8_t ips_isv4 : 1, 1060 ips_is_icmp_inv_acq: 1; 1061 } ipsec_selector_t; 1062 1063 /* 1064 * Note that we put v4 addresses in the *first* 32-bit word of the 1065 * selector rather than the last to simplify the prefix match/mask code 1066 * in spd.c 1067 */ 1068 #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] 1069 #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] 1070 1071 /* Values used in IP by IPSEC Code */ 1072 #define IPSEC_OUTBOUND B_TRUE 1073 #define IPSEC_INBOUND B_FALSE 1074 1075 /* 1076 * There are two variants in policy failures. The packet may come in 1077 * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not 1078 * have the desired level of protection (IPSEC_POLICY_MISMATCH). 1079 */ 1080 #define IPSEC_POLICY_NOT_NEEDED 0 1081 #define IPSEC_POLICY_MISMATCH 1 1082 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 1083 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 1084 #define IPSEC_POLICY_SE_NOT_NEEDED 4 1085 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ 1086 1087 /* 1088 * Folowing macro is used whenever the code does not know whether there 1089 * is a M_CTL present in the front and it needs to examine the actual mp 1090 * i.e the IP header. As a M_CTL message could be in the front, this 1091 * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL 1092 * mp is not present, both first_mp and mp point to the same message. 1093 */ 1094 #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ 1095 (first_mp) = (mp); \ 1096 if ((mp)->b_datap->db_type == M_CTL) { \ 1097 (mp) = (mp)->b_cont; \ 1098 (mctl_present) = B_TRUE; \ 1099 } else { \ 1100 (mctl_present) = B_FALSE; \ 1101 } 1102 1103 /* 1104 * Check with IPSEC inbound policy if 1105 * 1106 * 1) per-socket policy is present - indicated by conn_in_enforce_policy. 1107 * 2) Or if we have not cached policy on the conn and the global policy is 1108 * non-empty. 1109 */ 1110 #define CONN_INBOUND_POLICY_PRESENT(connp) \ 1111 ((connp)->conn_in_enforce_policy || \ 1112 (!((connp)->conn_policy_cached) && \ 1113 ipsec_inbound_v4_policy_present)) 1114 1115 #define CONN_INBOUND_POLICY_PRESENT_V6(connp) \ 1116 ((connp)->conn_in_enforce_policy || \ 1117 (!(connp)->conn_policy_cached && \ 1118 ipsec_inbound_v6_policy_present)) 1119 1120 #define CONN_OUTBOUND_POLICY_PRESENT(connp) \ 1121 ((connp)->conn_out_enforce_policy || \ 1122 (!((connp)->conn_policy_cached) && \ 1123 ipsec_outbound_v4_policy_present)) 1124 1125 #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp) \ 1126 ((connp)->conn_out_enforce_policy || \ 1127 (!(connp)->conn_policy_cached && \ 1128 ipsec_outbound_v6_policy_present)) 1129 1130 /* 1131 * Information cached in IRE for upper layer protocol (ULP). 1132 * 1133 * Notice that ire_max_frag is not included in the iulp_t structure, which 1134 * it may seem that it should. But ire_max_frag cannot really be cached. It 1135 * is fixed for each interface. For MTU found by PMTUd, we may want to cache 1136 * it. But currently, we do not do that. 1137 */ 1138 typedef struct iulp_s { 1139 boolean_t iulp_set; /* Is any metric set? */ 1140 uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ 1141 clock_t iulp_rtt; /* Guestimate in millisecs. */ 1142 clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ 1143 uint32_t iulp_spipe; /* Send pipe size. */ 1144 uint32_t iulp_rpipe; /* Receive pipe size. */ 1145 uint32_t iulp_rtomax; /* Max round trip timeout. */ 1146 uint32_t iulp_sack; /* Use SACK option (TCP)? */ 1147 uint32_t 1148 iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ 1149 iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ 1150 iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ 1151 iulp_pmtud_ok : 1, /* Enable PMTUd? */ 1152 1153 iulp_not_used : 28; 1154 } iulp_t; 1155 1156 /* Zero iulp_t. */ 1157 extern const iulp_t ire_uinfo_null; 1158 1159 /* 1160 * The conn drain list structure. 1161 * The list is protected by idl_lock. Each conn_t inserted in the list 1162 * points back at this idl_t using conn_idl. IP primes the draining of the 1163 * conns queued in these lists, by qenabling the 1st conn of each list. This 1164 * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance 1165 * of ip_wsrv successively qenables the next conn in the list. 1166 * idl_lock protects all other members of idl_t and conn_drain_next 1167 * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED 1168 * flag of the conn_t and conn_idl. 1169 */ 1170 typedef struct idl_s { 1171 conn_t *idl_conn; /* Head of drain list */ 1172 kmutex_t idl_lock; /* Lock for this list */ 1173 conn_t *idl_conn_draining; /* conn that is draining */ 1174 uint32_t 1175 idl_repeat : 1, /* Last conn must re-enable */ 1176 /* drain list again */ 1177 idl_unused : 31; 1178 } idl_t; 1179 1180 #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) 1181 /* 1182 * Interface route structure which holds the necessary information to recreate 1183 * routes that are tied to an interface (namely where ire_ipif != NULL). 1184 * These routes which were initially created via a routing socket or via the 1185 * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be 1186 * traditional interface routes. When an interface comes back up after being 1187 * marked down, this information will be used to recreate the routes. These 1188 * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). 1189 */ 1190 typedef struct ifrt_s { 1191 ushort_t ifrt_type; /* Type of IRE */ 1192 in6_addr_t ifrt_v6addr; /* Address IRE represents. */ 1193 in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ 1194 in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ 1195 in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ 1196 uint32_t ifrt_flags; /* flags related to route */ 1197 uint_t ifrt_max_frag; /* MTU (next hop or path). */ 1198 iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ 1199 } ifrt_t; 1200 1201 #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) 1202 #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) 1203 #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) 1204 #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) 1205 1206 /* Number of IP addresses that can be hosted on a physical interface */ 1207 #define MAX_ADDRS_PER_IF 8192 1208 /* 1209 * Number of Source addresses to be considered for source address 1210 * selection. Used by ipif_select_source[_v6]. 1211 */ 1212 #define MAX_IPIF_SELECT_SOURCE 50 1213 1214 #ifdef IP_DEBUG 1215 /* 1216 * Tracing refholds and refreleases for debugging. Existing tracing mechanisms 1217 * do not allow the granularity need to trace refrences to ipif/ill/ire's. This 1218 * mechanism should be revisited once dtrace is available. 1219 */ 1220 #define IP_STACK_DEPTH 15 1221 typedef struct tr_buf_s { 1222 int tr_depth; 1223 pc_t tr_stack[IP_STACK_DEPTH]; 1224 } tr_buf_t; 1225 1226 typedef struct th_trace_s { 1227 struct th_trace_s *th_next; 1228 struct th_trace_s **th_prev; 1229 kthread_t *th_id; 1230 int th_refcnt; 1231 uint_t th_trace_lastref; 1232 #define TR_BUF_MAX 38 1233 tr_buf_t th_trbuf[TR_BUF_MAX]; 1234 } th_trace_t; 1235 #endif 1236 1237 /* The following are ipif_state_flags */ 1238 #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ 1239 #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ 1240 #define IPIF_MOVING 0x8 /* The ipif is being moved */ 1241 #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ 1242 #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ 1243 1244 /* IP interface structure, one per local address */ 1245 typedef struct ipif_s { 1246 struct ipif_s *ipif_next; 1247 struct ill_s *ipif_ill; /* Back pointer to our ill */ 1248 int ipif_id; /* Logical unit number */ 1249 uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ 1250 uint_t ipif_saved_mtu; /* Save of mtu during ipif_move() */ 1251 in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ 1252 in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ 1253 in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ 1254 in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ 1255 in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ 1256 in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ 1257 uint64_t ipif_flags; /* Interface flags. */ 1258 uint_t ipif_metric; /* BSD if metric, for compatibility. */ 1259 uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ 1260 mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ 1261 /* prevent awkward out of mem */ 1262 /* condition later */ 1263 mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ 1264 /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ 1265 /* on this interface so that they */ 1266 /* can survive ifconfig down. */ 1267 kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ 1268 1269 mrec_t *ipif_igmp_rpt; /* List of group memberships which */ 1270 /* will be reported on. Used when */ 1271 /* handling an igmp timeout. */ 1272 1273 /* 1274 * The packet counts in the ipif contain the sum of the 1275 * packet counts in dead IREs that were affiliated with 1276 * this ipif. 1277 */ 1278 uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ 1279 uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ 1280 uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ 1281 /* Exclusive bit fields, protected by ipsq_t */ 1282 unsigned int 1283 ipif_multicast_up : 1, /* We have joined the allhosts group */ 1284 ipif_solmcast_up : 1, /* We joined solicited node mcast */ 1285 ipif_replace_zero : 1, /* Replacement for zero */ 1286 ipif_was_up : 1, /* ipif was up before */ 1287 1288 ipif_addr_ready : 1, /* DAD is done */ 1289 ipif_was_dup : 1, /* DAD had failed */ 1290 ipif_pad_to_31 : 26; 1291 1292 int ipif_orig_ifindex; /* ifindex before SLIFFAILOVER */ 1293 uint_t ipif_seqid; /* unique index across all ills */ 1294 uint_t ipif_orig_ipifid; /* ipif_id before SLIFFAILOVER */ 1295 uint_t ipif_state_flags; /* See IPIF_* flag defs above */ 1296 uint_t ipif_refcnt; /* active consistent reader cnt */ 1297 uint_t ipif_ire_cnt; /* Number of ire's referencing ipif */ 1298 uint_t ipif_saved_ire_cnt; 1299 zoneid_t 1300 ipif_zoneid; /* zone ID number */ 1301 timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */ 1302 #ifdef ILL_DEBUG 1303 #define IP_TR_HASH_MAX 64 1304 th_trace_t *ipif_trace[IP_TR_HASH_MAX]; 1305 boolean_t ipif_trace_disable; /* True when alloc fails */ 1306 #endif 1307 } ipif_t; 1308 1309 /* 1310 * The following table lists the protection levels of the various members 1311 * of the ipif_t. The following notation is used. 1312 * 1313 * Write once - Written to only once at the time of bringing up 1314 * the interface and can be safely read after the bringup without any lock. 1315 * 1316 * ipsq - Need to execute in the ipsq to perform the indicated access. 1317 * 1318 * ill_lock - Need to hold this mutex to perform the indicated access. 1319 * 1320 * ill_g_lock - Need to hold this rw lock as reader/writer for read access or 1321 * write access respectively. 1322 * 1323 * down ill - Written to only when the ill is down (i.e all ipifs are down) 1324 * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) 1325 * 1326 * Table of ipif_t members and their protection 1327 * 1328 * ipif_next ill_g_lock ill_g_lock 1329 * ipif_ill ipsq + down ipif write once 1330 * ipif_id ipsq + down ipif write once 1331 * ipif_mtu ipsq 1332 * ipif_v6lcl_addr ipsq + down ipif up ipif 1333 * ipif_v6src_addr ipsq + down ipif up ipif 1334 * ipif_v6subnet ipsq + down ipif up ipif 1335 * ipif_v6net_mask ipsq + down ipif up ipif 1336 * 1337 * ipif_v6brd_addr 1338 * ipif_v6pp_dst_addr 1339 * ipif_flags ill_lock ill_lock 1340 * ipif_metric 1341 * ipif_ire_type ipsq + down ill up ill 1342 * 1343 * ipif_arp_del_mp ipsq ipsq 1344 * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock 1345 * ipif_igmp_rpt ipsq ipsq 1346 * 1347 * ipif_fo_pkt_count Approx 1348 * ipif_ib_pkt_count Approx 1349 * ipif_ob_pkt_count Approx 1350 * 1351 * bit fields ill_lock ill_lock 1352 * 1353 * ipif_orig_ifindex ipsq None 1354 * ipif_orig_ipifid ipsq None 1355 * ipif_seqid ipsq Write once 1356 * 1357 * ipif_state_flags ill_lock ill_lock 1358 * ipif_refcnt ill_lock ill_lock 1359 * ipif_ire_cnt ill_lock ill_lock 1360 * ipif_saved_ire_cnt 1361 */ 1362 1363 #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) 1364 1365 #ifdef ILL_DEBUG 1366 #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) 1367 #define ILL_TRACE_REF(ill) ill_trace_ref(ill) 1368 #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) 1369 #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) 1370 #define ILL_TRACE_CLEANUP(ill) ill_trace_cleanup(ill) 1371 #define IPIF_TRACE_CLEANUP(ipif) ipif_trace_cleanup(ipif) 1372 #else 1373 #define IPIF_TRACE_REF(ipif) 1374 #define ILL_TRACE_REF(ill) 1375 #define IPIF_UNTRACE_REF(ipif) 1376 #define ILL_UNTRACE_REF(ill) 1377 #define ILL_TRACE_CLEANUP(ill) 1378 #define IPIF_TRACE_CLEANUP(ipif) 1379 #endif 1380 1381 /* IPv4 compatability macros */ 1382 #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) 1383 #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) 1384 #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) 1385 #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) 1386 #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) 1387 #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) 1388 1389 /* Macros for easy backreferences to the ill. */ 1390 #define ipif_wq ipif_ill->ill_wq 1391 #define ipif_rq ipif_ill->ill_rq 1392 #define ipif_net_type ipif_ill->ill_net_type 1393 #define ipif_resolver_mp ipif_ill->ill_resolver_mp 1394 #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count 1395 #define ipif_bcast_mp ipif_ill->ill_bcast_mp 1396 #define ipif_type ipif_ill->ill_type 1397 #define ipif_isv6 ipif_ill->ill_isv6 1398 1399 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ 1400 1401 /* 1402 * mode value for ip_ioctl_finish for finishing an ioctl 1403 */ 1404 #define CONN_CLOSE 1 /* No mi_copy */ 1405 #define COPYOUT 2 /* do an mi_copyout if needed */ 1406 #define NO_COPYOUT 3 /* do an mi_copy_done */ 1407 #define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT) 1408 1409 /* 1410 * The IP-MT design revolves around the serialization object ipsq_t. 1411 * It is associated with an IPMP group. If IPMP is not enabled, there is 1412 * 1 ipsq_t per phyint. Eg. an ipsq_t would cover both hme0's IPv4 stream 1413 * 1414 * ipsq_lock protects 1415 * ipsq_reentry_cnt, ipsq_writer, ipsq_xopq_mphead, ipsq_xopq_mptail, 1416 * ipsq_mphead, ipsq_mptail, ipsq_split 1417 * 1418 * ipsq_pending_ipif, ipsq_current_ipif, ipsq_pending_mp, ipsq_flags, 1419 * ipsq_waitfor 1420 * 1421 * The fields in the last line above below are set mostly by a writer thread 1422 * But there is an exception in the last call to ipif_ill_refrele_tail which 1423 * could also race with a conn close which could be cleaning up the 1424 * fields. So we choose to protect using ipsq_lock instead of depending on 1425 * the property of the writer. 1426 * ill_g_lock protects 1427 * ipsq_refs, ipsq_phyint_list 1428 */ 1429 typedef struct ipsq_s { 1430 kmutex_t ipsq_lock; 1431 int ipsq_reentry_cnt; 1432 kthread_t *ipsq_writer; /* current owner (thread id) */ 1433 int ipsq_flags; 1434 mblk_t *ipsq_xopq_mphead; /* list of excl ops mostly ioctls */ 1435 mblk_t *ipsq_xopq_mptail; 1436 mblk_t *ipsq_mphead; /* msgs on ipsq linked thru b_next */ 1437 mblk_t *ipsq_mptail; /* msgs on ipsq linked thru b_next */ 1438 int ipsq_current_ioctl; /* current ioctl, or 0 if no ioctl */ 1439 ipif_t *ipsq_current_ipif; /* ipif associated with current op */ 1440 ipif_t *ipsq_pending_ipif; /* ipif associated w. ipsq_pending_mp */ 1441 mblk_t *ipsq_pending_mp; /* current ioctl mp while waiting for */ 1442 /* response from another module */ 1443 struct ipsq_s *ipsq_next; /* list of all syncq's (ipsq_g_list) */ 1444 uint_t ipsq_refs; /* Number of phyints on this ipsq */ 1445 struct phyint *ipsq_phyint_list; /* List of phyints on this ipsq */ 1446 boolean_t ipsq_split; /* ipsq may need to be split */ 1447 int ipsq_waitfor; /* Values encoded below */ 1448 char ipsq_name[LIFNAMSIZ+1]; /* same as phyint_groupname */ 1449 1450 #ifdef ILL_DEBUG 1451 int ipsq_depth; /* debugging aid */ 1452 pc_t ipsq_stack[IP_STACK_DEPTH]; /* debugging aid */ 1453 #endif 1454 } ipsq_t; 1455 1456 /* ipsq_flags */ 1457 #define IPSQ_GROUP 0x1 /* This ipsq belongs to an IPMP group */ 1458 1459 /* 1460 * ipsq_waitfor: 1461 * 1462 * IPIF_DOWN 1 ipif_down waiting for refcnts to drop 1463 * ILL_DOWN 2 ill_down waiting for refcnts to drop 1464 * IPIF_FREE 3 ipif_free waiting for refcnts to drop 1465 * ILL_FREE 4 ill unplumb waiting for refcnts to drop 1466 * ILL_MOVE_OK 5 failover waiting for refcnts to drop 1467 */ 1468 1469 enum { IPIF_DOWN = 1, ILL_DOWN, IPIF_FREE, ILL_FREE, ILL_MOVE_OK }; 1470 1471 /* Flags passed to ipsq_try_enter */ 1472 #define CUR_OP 0 /* Current ioctl continuing again */ 1473 #define NEW_OP 1 /* New ioctl starting afresh */ 1474 1475 /* 1476 * phyint represents state that is common to both IPv4 and IPv6 interfaces. 1477 * There is a separate ill_t representing IPv4 and IPv6 which has a 1478 * backpointer to the phyint structure for acessing common state. 1479 * 1480 * NOTE : It just stores the group name as there is only one name for 1481 * IPv4 and IPv6 i.e it is a underlying link property. Actually 1482 * IPv4 and IPv6 ill are grouped together when their phyints have 1483 * the same name. 1484 */ 1485 typedef struct phyint { 1486 struct ill_s *phyint_illv4; 1487 struct ill_s *phyint_illv6; 1488 uint_t phyint_ifindex; /* SIOCLSLIFINDEX */ 1489 uint_t phyint_notify_delay; /* SIOCSLIFNOTIFYDELAY */ 1490 char *phyint_groupname; /* SIOCSLIFGROUPNAME */ 1491 uint_t phyint_groupname_len; 1492 uint64_t phyint_flags; 1493 avl_node_t phyint_avl_by_index; /* avl tree by index */ 1494 avl_node_t phyint_avl_by_name; /* avl tree by name */ 1495 kmutex_t phyint_lock; 1496 struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ 1497 struct phyint *phyint_ipsq_next; /* phyint list on this ipsq */ 1498 } phyint_t; 1499 1500 #define CACHE_ALIGN_SIZE 64 1501 1502 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ 1503 CACHE_ALIGN_SIZE) 1504 struct _phyint_list_s_ { 1505 avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ 1506 avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ 1507 }; 1508 1509 typedef union phyint_list_u { 1510 struct _phyint_list_s_ phyint_list_s; 1511 char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; 1512 } phyint_list_t; 1513 1514 #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index 1515 #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name 1516 /* 1517 * ILL groups. We group ills, 1518 * 1519 * - if the ills have the same group name. (New way) 1520 * 1521 * ill_group locking notes: 1522 * 1523 * illgrp_lock protects ill_grp_ill_schednext. 1524 * 1525 * ill_g_lock protects ill_grp_next, illgrp_ill, illgrp_ill_count. 1526 * Holding ill_g_lock freezes the memberships of ills in IPMP groups. 1527 * It also freezes the global list of ills and all ipifs in all ills. 1528 * 1529 * To remove an ipif from the linked list of ipifs of that ill ipif_free_tail 1530 * holds both ill_g_lock, and ill_lock. Similarly to remove an ill from the 1531 * global list of ills, ill_delete_glist holds ill_g_lock as writer. 1532 * This simplifies things for ipif_select_source, illgrp_scheduler etc. 1533 * that need to walk the members of an illgrp. They just hold ill_g_lock 1534 * as reader to do the walk. 1535 * 1536 */ 1537 typedef struct ill_group { 1538 kmutex_t illgrp_lock; 1539 struct ill_group *illgrp_next; /* Next ill_group */ 1540 struct ill_s *illgrp_ill_schednext; /* Next ill to be scheduled */ 1541 struct ill_s *illgrp_ill; /* First ill in the group */ 1542 int illgrp_ill_count; 1543 } ill_group_t; 1544 1545 extern ill_group_t *illgrp_head_v6; 1546 1547 /* 1548 * Fragmentation hash bucket 1549 */ 1550 typedef struct ipfb_s { 1551 struct ipf_s *ipfb_ipf; /* List of ... */ 1552 size_t ipfb_count; /* Count of bytes used by frag(s) */ 1553 kmutex_t ipfb_lock; /* Protect all ipf in list */ 1554 uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ 1555 } ipfb_t; 1556 1557 /* 1558 * IRE bucket structure. Usually there is an array of such structures, 1559 * each pointing to a linked list of ires. irb_refcnt counts the number 1560 * of walkers of a given hash bucket. Usually the reference count is 1561 * bumped up if the walker wants no IRES to be DELETED while walking the 1562 * list. Bumping up does not PREVENT ADDITION. This allows walking a given 1563 * hash bucket without stumbling up on a free pointer. 1564 * 1565 * irb_t structures in ip_ftable are dynamically allocated and freed. 1566 * In order to identify the irb_t structures that can be safely kmem_free'd 1567 * we need to ensure that 1568 * - the irb_refcnt is quiescent, indicating no other walkers, 1569 * - no other threads or ire's are holding references to the irb, 1570 * i.e., irb_nire == 0, 1571 * - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0 1572 */ 1573 typedef struct irb { 1574 struct ire_s *irb_ire; /* First ire in this bucket */ 1575 /* Should be first in this struct */ 1576 krwlock_t irb_lock; /* Protect this bucket */ 1577 uint_t irb_refcnt; /* Protected by irb_lock */ 1578 uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ 1579 #define IRB_MARK_CONDEMNED 0x0001 1580 #define IRB_MARK_FTABLE 0x0002 1581 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */ 1582 uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ 1583 struct ire_s *irb_rr_origin; /* origin for round-robin */ 1584 int irb_nire; /* Num of ftable ire's that ref irb */ 1585 } irb_t; 1586 1587 #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb)) 1588 1589 /* The following are return values of ip_xmit_v4() */ 1590 typedef enum { 1591 SEND_PASSED = 0, /* sent packet out on wire */ 1592 SEND_FAILED, /* sending of packet failed */ 1593 LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */ 1594 LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */ 1595 } ipxmit_state_t; 1596 1597 #define IP_V4_G_HEAD 0 1598 #define IP_V6_G_HEAD 1 1599 1600 #define MAX_G_HEADS 2 1601 1602 /* 1603 * unpadded ill_if structure 1604 */ 1605 struct _ill_if_s_ { 1606 union ill_if_u *illif_next; 1607 union ill_if_u *illif_prev; 1608 avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ 1609 vmem_t *illif_ppa_arena; /* ppa index space */ 1610 uint16_t illif_mcast_v1; /* hints for */ 1611 uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ 1612 int illif_name_len; /* name length */ 1613 char illif_name[LIFNAMSIZ]; /* name of interface type */ 1614 }; 1615 1616 /* cache aligned ill_if structure */ 1617 typedef union ill_if_u { 1618 struct _ill_if_s_ ill_if_s; 1619 char illif_filler[CACHE_ALIGN(_ill_if_s_)]; 1620 } ill_if_t; 1621 1622 1623 #define illif_next ill_if_s.illif_next 1624 #define illif_prev ill_if_s.illif_prev 1625 #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa 1626 #define illif_ppa_arena ill_if_s.illif_ppa_arena 1627 #define illif_mcast_v1 ill_if_s.illif_mcast_v1 1628 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 1629 #define illif_name ill_if_s.illif_name 1630 #define illif_name_len ill_if_s.illif_name_len 1631 1632 typedef struct ill_walk_context_s { 1633 int ctx_current_list; /* current list being searched */ 1634 int ctx_last_list; /* last list to search */ 1635 } ill_walk_context_t; 1636 1637 /* 1638 * ill_gheads structure, one for IPV4 and one for IPV6 1639 */ 1640 struct _ill_g_head_s_ { 1641 ill_if_t *ill_g_list_head; 1642 ill_if_t *ill_g_list_tail; 1643 }; 1644 1645 typedef union ill_g_head_u { 1646 struct _ill_g_head_s_ ill_g_head_s; 1647 char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; 1648 } ill_g_head_t; 1649 1650 #define ill_g_list_head ill_g_head_s.ill_g_list_head 1651 #define ill_g_list_tail ill_g_head_s.ill_g_list_tail 1652 1653 #pragma align CACHE_ALIGN_SIZE(ill_g_heads) 1654 extern ill_g_head_t ill_g_heads[]; /* ILL List Head */ 1655 1656 1657 #define IP_V4_ILL_G_LIST ill_g_heads[IP_V4_G_HEAD].ill_g_list_head 1658 #define IP_V6_ILL_G_LIST ill_g_heads[IP_V6_G_HEAD].ill_g_list_head 1659 #define IP_VX_ILL_G_LIST(i) ill_g_heads[i].ill_g_list_head 1660 1661 #define ILL_START_WALK_V4(ctx_ptr) ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, \ 1662 ctx_ptr) 1663 #define ILL_START_WALK_V6(ctx_ptr) ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, \ 1664 ctx_ptr) 1665 #define ILL_START_WALK_ALL(ctx_ptr) ill_first(MAX_G_HEADS, MAX_G_HEADS, \ 1666 ctx_ptr) 1667 1668 /* 1669 * Capabilities, possible flags for ill_capabilities. 1670 */ 1671 1672 #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ 1673 #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ 1674 #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ 1675 #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ 1676 #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ 1677 #define ILL_CAPAB_POLL 0x20 /* Polling Toggle */ 1678 #define ILL_CAPAB_SOFT_RING 0x40 /* Soft_Ring capability */ 1679 #define ILL_CAPAB_LSO 0x80 /* Large Segment Offload */ 1680 1681 /* 1682 * Per-ill Multidata Transmit capabilities. 1683 */ 1684 typedef struct ill_mdt_capab_s ill_mdt_capab_t; 1685 1686 /* 1687 * Per-ill IPsec capabilities. 1688 */ 1689 typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; 1690 1691 /* 1692 * Per-ill Hardware Checksumming capbilities. 1693 */ 1694 typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; 1695 1696 /* 1697 * Per-ill Zero-copy capabilities. 1698 */ 1699 typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; 1700 1701 /* 1702 * Per-ill Polling/soft ring capbilities. 1703 */ 1704 typedef struct ill_dls_capab_s ill_dls_capab_t; 1705 1706 /* 1707 * Per-ill polling resource map. 1708 */ 1709 typedef struct ill_rx_ring ill_rx_ring_t; 1710 1711 /* 1712 * Per-ill Large Segment Offload capabilities. 1713 */ 1714 typedef struct ill_lso_capab_s ill_lso_capab_t; 1715 1716 /* The following are ill_state_flags */ 1717 #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ 1718 #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ 1719 #define ILL_CHANGING 0x04 /* ILL not globally visible */ 1720 #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ 1721 #define ILL_SOFT_RING_ASSIGN 0x10 /* Makeing soft ring assigment */ 1722 1723 /* Is this an ILL whose source address is used by other ILL's ? */ 1724 #define IS_USESRC_ILL(ill) \ 1725 (((ill)->ill_usesrc_ifindex == 0) && \ 1726 ((ill)->ill_usesrc_grp_next != NULL)) 1727 1728 /* Is this a client/consumer of the usesrc ILL ? */ 1729 #define IS_USESRC_CLI_ILL(ill) \ 1730 (((ill)->ill_usesrc_ifindex != 0) && \ 1731 ((ill)->ill_usesrc_grp_next != NULL)) 1732 1733 /* Is this an virtual network interface (vni) ILL ? */ 1734 #define IS_VNI(ill) \ 1735 (((ill) != NULL) && \ 1736 (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \ 1737 PHYI_VIRTUAL)) 1738 1739 /* 1740 * IP Lower level Structure. 1741 * Instance data structure in ip_open when there is a device below us. 1742 */ 1743 typedef struct ill_s { 1744 ill_if_t *ill_ifptr; /* pointer to interface type */ 1745 queue_t *ill_rq; /* Read queue. */ 1746 queue_t *ill_wq; /* Write queue. */ 1747 1748 int ill_error; /* Error value sent up by device. */ 1749 1750 ipif_t *ill_ipif; /* Interface chain for this ILL. */ 1751 1752 uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ 1753 uint_t ill_max_frag; /* Max IDU from DLPI. */ 1754 char *ill_name; /* Our name. */ 1755 uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */ 1756 uint_t ill_name_length; /* Name length, incl. terminator. */ 1757 char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ 1758 uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ 1759 /* 1760 * Physical Point of Attachment num. If DLPI style 1 provider 1761 * then this is derived from the devname. 1762 */ 1763 uint_t ill_ppa; 1764 t_uscalar_t ill_sap; 1765 t_scalar_t ill_sap_length; /* Including sign (for position) */ 1766 uint_t ill_phys_addr_length; /* Excluding the sap. */ 1767 uint_t ill_bcast_addr_length; /* Only set when the DL provider */ 1768 /* supports broadcast. */ 1769 t_uscalar_t ill_mactype; 1770 uint8_t *ill_frag_ptr; /* Reassembly state. */ 1771 timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ 1772 ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ 1773 ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ 1774 1775 ilm_t *ill_ilm; /* Multicast mebership for lower ill */ 1776 uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ 1777 int ill_mcast_type; /* type of router which is querier */ 1778 /* on this interface */ 1779 uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ 1780 uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ 1781 uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ 1782 uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ 1783 1784 uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ 1785 int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ 1786 1787 mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ 1788 /* 1789 * All non-NULL cells between 'ill_first_mp_to_free' and 1790 * 'ill_last_mp_to_free' are freed in ill_delete. 1791 */ 1792 #define ill_first_mp_to_free ill_bcast_mp 1793 mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ 1794 mblk_t *ill_resolver_mp; /* Resolver template. */ 1795 mblk_t *ill_detach_mp; /* detach mp, or NULL if style1 */ 1796 mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ 1797 mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ 1798 mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ 1799 #define ill_last_mp_to_free ill_phys_addr_mp 1800 1801 cred_t *ill_credp; /* opener's credentials */ 1802 uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ 1803 1804 uint_t ill_state_flags; /* see ILL_* flags above */ 1805 1806 /* Following bit fields protected by ipsq_t */ 1807 uint_t 1808 ill_needs_attach : 1, 1809 ill_reserved : 1, 1810 ill_isv6 : 1, 1811 ill_dlpi_style_set : 1, 1812 1813 ill_ifname_pending : 1, 1814 ill_move_in_progress : 1, /* FAILOVER/FAILBACK in progress */ 1815 ill_join_allmulti : 1, 1816 ill_logical_down : 1, 1817 1818 ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ 1819 ill_promisc_on_phys : 1, /* phys interface in promisc mode */ 1820 ill_dl_up : 1, 1821 ill_up_ipifs : 1, 1822 1823 ill_note_link : 1, /* supports link-up notification */ 1824 1825 ill_pad_to_bit_31 : 19; 1826 1827 /* Following bit fields protected by ill_lock */ 1828 uint_t 1829 ill_fragtimer_executing : 1, 1830 ill_fragtimer_needrestart : 1, 1831 ill_ilm_cleanup_reqd : 1, 1832 ill_arp_closing : 1, 1833 1834 ill_arp_bringup_pending : 1, 1835 ill_mtu_userspecified : 1, /* SIOCSLNKINFO has set the mtu */ 1836 ill_arp_extend : 1, /* ARP has DAD extensions */ 1837 ill_pad_bit_31 : 25; 1838 1839 /* 1840 * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. 1841 */ 1842 int ill_arp_muxid; /* muxid returned from plink for arp */ 1843 int ill_ip_muxid; /* muxid returned from plink for ip */ 1844 1845 /* 1846 * NIC event information attached, to be used by nic event hooks. 1847 */ 1848 hook_nic_event_t *ill_nic_event_info; 1849 1850 /* 1851 * Used for IP frag reassembly throttling on a per ILL basis. 1852 * 1853 * Note: frag_count is approximate, its added to and subtracted from 1854 * without any locking, so simultaneous load/modify/stores can 1855 * collide, also ill_frag_purge() recalculates its value by 1856 * summing all the ipfb_count's without locking out updates 1857 * to the ipfb's. 1858 */ 1859 uint_t ill_ipf_gen; /* Generation of next fragment queue */ 1860 uint_t ill_frag_count; /* Approx count of all mblk bytes */ 1861 uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ 1862 clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ 1863 int ill_type; /* From <net/if_types.h> */ 1864 uint_t ill_dlpi_multicast_state; /* See below IDS_* */ 1865 uint_t ill_dlpi_fastpath_state; /* See below IDS_* */ 1866 1867 /* 1868 * Capabilities related fields. 1869 */ 1870 uint_t ill_dlpi_capab_state; /* State of capability query, IDS_* */ 1871 uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ 1872 ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ 1873 ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ 1874 ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ 1875 ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ 1876 ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ 1877 ill_dls_capab_t *ill_dls_capab; /* Polling, soft ring capabilities */ 1878 ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */ 1879 1880 /* 1881 * New fields for IPv6 1882 */ 1883 uint8_t ill_max_hops; /* Maximum hops for any logical interface */ 1884 uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ 1885 uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ 1886 uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ 1887 uint_t ill_max_buf; /* Max # of req to buffer for ND */ 1888 in6_addr_t ill_token; 1889 uint_t ill_token_length; 1890 uint32_t ill_xmit_count; /* ndp max multicast xmits */ 1891 mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */ 1892 mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ 1893 /* 1894 * Following two mblks are allocated common to all 1895 * the ipifs when the first interface is coming up. 1896 * It is sent up to arp when the last ipif is coming 1897 * down. 1898 */ 1899 mblk_t *ill_arp_down_mp; 1900 mblk_t *ill_arp_del_mapping_mp; 1901 /* 1902 * Used for implementing IFF_NOARP. As IFF_NOARP is used 1903 * to turn off for all the logicals, it is here instead 1904 * of the ipif. 1905 */ 1906 mblk_t *ill_arp_on_mp; 1907 /* Peer ill of an IPMP move operation */ 1908 struct ill_s *ill_move_peer; 1909 1910 phyint_t *ill_phyint; 1911 uint64_t ill_flags; 1912 ill_group_t *ill_group; 1913 struct ill_s *ill_group_next; 1914 /* 1915 * Reverse tunnel related count. This count 1916 * determines how many mobile nodes are using this 1917 * ill to send packet to reverse tunnel via foreign 1918 * agent. A non-zero count specifies presence of 1919 * mobile node(s) using reverse tunnel through this 1920 * interface. 1921 */ 1922 uint32_t ill_mrtun_refcnt; 1923 1924 /* 1925 * This count is bumped up when a route is added with 1926 * RTA_SRCIFP bit flag using routing socket. 1927 */ 1928 uint32_t ill_srcif_refcnt; 1929 /* 1930 * Pointer to the special interface based routing table. 1931 * This routing table is created dynamically when RTA_SRCIFP 1932 * is set by the routing socket. 1933 */ 1934 irb_t *ill_srcif_table; 1935 kmutex_t ill_lock; /* Please see table below */ 1936 /* 1937 * The ill_nd_lla* fields handle the link layer address option 1938 * from neighbor discovery. This is used for external IPv6 1939 * address resolution. 1940 */ 1941 mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ 1942 uint8_t *ill_nd_lla; /* Link Layer Address */ 1943 uint_t ill_nd_lla_len; /* Link Layer Address length */ 1944 /* 1945 * We now have 3 phys_addr_req's sent down. This field keeps track 1946 * of which one is pending. 1947 */ 1948 t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ 1949 /* 1950 * Used to save errors that occur during plumbing 1951 */ 1952 uint_t ill_ifname_pending_err; 1953 avl_node_t ill_avl_byppa; /* avl node based on ppa */ 1954 void *ill_fastpath_list; /* both ire and nce hang off this */ 1955 uint_t ill_refcnt; /* active refcnt by threads */ 1956 uint_t ill_ire_cnt; /* ires associated with this ill */ 1957 kcondvar_t ill_cv; 1958 uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ 1959 uint_t ill_nce_cnt; /* nces associated with this ill */ 1960 uint_t ill_waiters; /* threads waiting in ipsq_enter */ 1961 /* 1962 * Contains the upper read queue pointer of the module immediately 1963 * beneath IP. This field allows IP to validate sub-capability 1964 * acknowledgments coming up from downstream. 1965 */ 1966 queue_t *ill_lmod_rq; /* read queue pointer of module below */ 1967 uint_t ill_lmod_cnt; /* number of modules beneath IP */ 1968 ip_m_t *ill_media; /* media specific params/functions */ 1969 t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ 1970 uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ 1971 struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ 1972 #ifdef ILL_DEBUG 1973 th_trace_t *ill_trace[IP_TR_HASH_MAX]; 1974 boolean_t ill_trace_disable; /* True when alloc fails */ 1975 #endif 1976 } ill_t; 1977 1978 extern void ill_delete_glist(ill_t *); 1979 1980 /* 1981 * The following table lists the protection levels of the various members 1982 * of the ill_t. Same notation as that used for ipif_t above is used. 1983 * 1984 * Write Read 1985 * 1986 * ill_ifptr ill_g_lock + s Write once 1987 * ill_rq ipsq Write once 1988 * ill_wq ipsq Write once 1989 * 1990 * ill_error ipsq None 1991 * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq 1992 * ill_ipif_up_count ill_lock + ipsq ill_lock 1993 * ill_max_frag ipsq Write once 1994 * 1995 * ill_name ill_g_lock + ipsq Write once 1996 * ill_name_length ill_g_lock + ipsq Write once 1997 * ill_ndd_name ipsq Write once 1998 * ill_net_type ipsq Write once 1999 * ill_ppa ill_g_lock + ipsq Write once 2000 * ill_sap ipsq + down ill Write once 2001 * ill_sap_length ipsq + down ill Write once 2002 * ill_phys_addr_length ipsq + down ill Write once 2003 * 2004 * ill_bcast_addr_length ipsq ipsq 2005 * ill_mactype ipsq ipsq 2006 * ill_frag_ptr ipsq ipsq 2007 * 2008 * ill_frag_timer_id ill_lock ill_lock 2009 * ill_frag_hash_tbl ipsq up ill 2010 * ill_ilm ipsq + ill_lock ill_lock 2011 * ill_mcast_type ill_lock ill_lock 2012 * ill_mcast_v1_time ill_lock ill_lock 2013 * ill_mcast_v2_time ill_lock ill_lock 2014 * ill_mcast_v1_tset ill_lock ill_lock 2015 * ill_mcast_v2_tset ill_lock ill_lock 2016 * ill_mcast_rv ill_lock ill_lock 2017 * ill_mcast_qi ill_lock ill_lock 2018 * ill_pending_mp ill_lock ill_lock 2019 * 2020 * ill_bcast_mp ipsq ipsq 2021 * ill_resolver_mp ipsq only when ill is up 2022 * ill_down_mp ipsq ipsq 2023 * ill_dlpi_deferred ipsq ipsq 2024 * ill_dlpi_pending ipsq and ill_lock ipsq or ill_lock 2025 * ill_phys_addr_mp ipsq + down ill only when ill is up 2026 * ill_phys_addr ipsq + down ill only when ill is up 2027 * 2028 * ill_state_flags ill_lock ill_lock 2029 * exclusive bit flags ipsq_t ipsq_t 2030 * shared bit flags ill_lock ill_lock 2031 * 2032 * ill_arp_muxid ipsq Not atomic 2033 * ill_ip_muxid ipsq Not atomic 2034 * 2035 * ill_ipf_gen Not atomic 2036 * ill_frag_count Approx. not protected 2037 * ill_type ipsq + down ill only when ill is up 2038 * ill_dlpi_multicast_state ill_lock ill_lock 2039 * ill_dlpi_fastpath_state ill_lock ill_lock 2040 * ill_max_hops ipsq Not atomic 2041 * 2042 * ill_max_mtu 2043 * 2044 * ill_reachable_time ipsq + ill_lock ill_lock 2045 * ill_reachable_retrans_time ipsq + ill_lock ill_lock 2046 * ill_max_buf ipsq + ill_lock ill_lock 2047 * 2048 * Next 2 fields need ill_lock because of the get ioctls. They should not 2049 * report partially updated results without executing in the ipsq. 2050 * ill_token ipsq + ill_lock ill_lock 2051 * ill_token_length ipsq + ill_lock ill_lock 2052 * ill_xmit_count ipsq + down ill write once 2053 * ill_ip6_mib ipsq + down ill only when ill is up 2054 * ill_icmp6_mib ipsq + down ill only when ill is up 2055 * ill_arp_down_mp ipsq ipsq 2056 * ill_arp_del_mapping_mp ipsq ipsq 2057 * ill_arp_on_mp ipsq ipsq 2058 * ill_move_peer ipsq ipsq 2059 * 2060 * ill_phyint ipsq, ill_g_lock, ill_lock Any of them 2061 * ill_flags ill_lock ill_lock 2062 * ill_group ipsq, ill_g_lock, ill_lock Any of them 2063 * ill_group_next ipsq, ill_g_lock, ill_lock Any of them 2064 * ill_mrtun_refcnt ill_lock ill_lock 2065 * ill_srcif_refcnt ill_lock ill_lock 2066 * ill_srcif_table ill_lock ill_lock 2067 * ill_nd_lla_mp ipsq + down ill only when ill is up 2068 * ill_nd_lla ipsq + down ill only when ill is up 2069 * ill_nd_lla_len ipsq + down ill only when ill is up 2070 * ill_phys_addr_pend ipsq + down ill only when ill is up 2071 * ill_ifname_pending_err ipsq ipsq 2072 * ill_avl_byppa ipsq, ill_g_lock write once 2073 * 2074 * ill_fastpath_list ill_lock ill_lock 2075 * ill_refcnt ill_lock ill_lock 2076 * ill_ire_cnt ill_lock ill_lock 2077 * ill_cv ill_lock ill_lock 2078 * ill_ilm_walker_cnt ill_lock ill_lock 2079 * ill_nce_cnt ill_lock ill_lock 2080 * ill_trace ill_lock ill_lock 2081 * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock 2082 */ 2083 2084 /* 2085 * For ioctl restart mechanism see ip_reprocess_ioctl() 2086 */ 2087 struct ip_ioctl_cmd_s; 2088 2089 typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, 2090 struct ip_ioctl_cmd_s *, void *); 2091 2092 typedef struct ip_ioctl_cmd_s { 2093 int ipi_cmd; 2094 size_t ipi_copyin_size; 2095 uint_t ipi_flags; 2096 uint_t ipi_cmd_type; 2097 ifunc_t ipi_func; 2098 ifunc_t ipi_func_restart; 2099 } ip_ioctl_cmd_t; 2100 2101 /* 2102 * ipi_cmd_type: 2103 * 2104 * IF_CMD 1 old style ifreq cmd 2105 * LIF_CMD 2 new style lifreq cmd 2106 * MISC_CMD 3 Misc. (non [l]ifreq, tun) cmds 2107 * TUN_CMD 4 tunnel related 2108 */ 2109 2110 enum { IF_CMD = 1, LIF_CMD, MISC_CMD, TUN_CMD }; 2111 2112 #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ 2113 2114 /* Flag values in ipi_flags */ 2115 #define IPI_PRIV 0x1 /* Root only command */ 2116 #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ 2117 #define IPI_WR 0x4 /* Need to grab writer access */ 2118 #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ 2119 #define IPI_REPL 0x10 /* valid for replacement ipif created in MOVE */ 2120 #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ 2121 #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ 2122 2123 extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; 2124 extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; 2125 extern int ip_ndx_ioctl_count; 2126 extern int ip_misc_ioctl_count; 2127 2128 #define ILL_CLEAR_MOVE(ill) { \ 2129 ill_t *peer_ill; \ 2130 \ 2131 peer_ill = (ill)->ill_move_peer; \ 2132 ASSERT(peer_ill != NULL); \ 2133 (ill)->ill_move_in_progress = B_FALSE; \ 2134 peer_ill->ill_move_in_progress = B_FALSE; \ 2135 (ill)->ill_move_peer = NULL; \ 2136 peer_ill->ill_move_peer = NULL; \ 2137 } 2138 2139 /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ 2140 typedef struct ipmx_s { 2141 char ipmx_name[LIFNAMSIZ]; /* if name */ 2142 uint_t 2143 ipmx_arpdev_stream : 1, /* This is the arp stream */ 2144 ipmx_notused : 31; 2145 } ipmx_t; 2146 2147 /* 2148 * State for detecting if a driver supports certain features. 2149 * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. 2150 * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. 2151 * Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. 2152 */ 2153 #define IDS_UNKNOWN 0 /* No DLPI request sent */ 2154 #define IDS_INPROGRESS 1 /* DLPI request sent */ 2155 #define IDS_OK 2 /* DLPI request completed successfully */ 2156 #define IDS_FAILED 3 /* DLPI request failed */ 2157 #define IDS_RENEG 4 /* Driver asked for a renegotiation */ 2158 2159 /* Named Dispatch Parameter Management Structure */ 2160 typedef struct ipparam_s { 2161 uint_t ip_param_min; 2162 uint_t ip_param_max; 2163 uint_t ip_param_value; 2164 char *ip_param_name; 2165 } ipparam_t; 2166 2167 /* Extended NDP Management Structure */ 2168 typedef struct ipndp_s { 2169 ndgetf_t ip_ndp_getf; 2170 ndsetf_t ip_ndp_setf; 2171 caddr_t ip_ndp_data; 2172 char *ip_ndp_name; 2173 } ipndp_t; 2174 2175 /* 2176 * The kernel stores security attributes of all gateways in a database made 2177 * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the 2178 * security-related credentials of the gateway. More than one gateways may 2179 * share entries in the database. 2180 * 2181 * The tsol_gc_t structure represents the gateway to credential association, 2182 * and refers to an entry in the database. One or more tsol_gc_t entities are 2183 * grouped together to form one or more tsol_gcgrp_t, each representing the 2184 * list of security attributes specific to the gateway. A gateway may be 2185 * associated with at most one credentials group. 2186 */ 2187 struct tsol_gcgrp_s; 2188 2189 extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ 2190 2191 /* 2192 * Gateway security credential record. 2193 */ 2194 typedef struct tsol_gcdb_s { 2195 uint_t gcdb_refcnt; /* reference count */ 2196 struct rtsa_s gcdb_attr; /* security attributes */ 2197 #define gcdb_mask gcdb_attr.rtsa_mask 2198 #define gcdb_doi gcdb_attr.rtsa_doi 2199 #define gcdb_slrange gcdb_attr.rtsa_slrange 2200 } tsol_gcdb_t; 2201 2202 /* 2203 * Gateway to credential association. 2204 */ 2205 typedef struct tsol_gc_s { 2206 uint_t gc_refcnt; /* reference count */ 2207 struct tsol_gcgrp_s *gc_grp; /* pointer to group */ 2208 struct tsol_gc_s *gc_prev; /* previous in list */ 2209 struct tsol_gc_s *gc_next; /* next in list */ 2210 tsol_gcdb_t *gc_db; /* pointer to actual credentials */ 2211 } tsol_gc_t; 2212 2213 /* 2214 * Gateway credentials group address. 2215 */ 2216 typedef struct tsol_gcgrp_addr_s { 2217 int ga_af; /* address family */ 2218 in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ 2219 } tsol_gcgrp_addr_t; 2220 2221 /* 2222 * Gateway credentials group. 2223 */ 2224 typedef struct tsol_gcgrp_s { 2225 uint_t gcgrp_refcnt; /* reference count */ 2226 krwlock_t gcgrp_rwlock; /* lock to protect following */ 2227 uint_t gcgrp_count; /* number of credentials */ 2228 tsol_gc_t *gcgrp_head; /* first credential in list */ 2229 tsol_gc_t *gcgrp_tail; /* last credential in list */ 2230 tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ 2231 } tsol_gcgrp_t; 2232 2233 extern kmutex_t gcgrp_lock; 2234 2235 #define GC_REFRELE(p) { \ 2236 ASSERT((p)->gc_grp != NULL); \ 2237 rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ 2238 ASSERT((p)->gc_refcnt > 0); \ 2239 if (--((p)->gc_refcnt) == 0) \ 2240 gc_inactive(p); \ 2241 else \ 2242 rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ 2243 } 2244 2245 #define GCGRP_REFHOLD(p) { \ 2246 mutex_enter(&gcgrp_lock); \ 2247 ++((p)->gcgrp_refcnt); \ 2248 ASSERT((p)->gcgrp_refcnt != 0); \ 2249 mutex_exit(&gcgrp_lock); \ 2250 } 2251 2252 #define GCGRP_REFRELE(p) { \ 2253 mutex_enter(&gcgrp_lock); \ 2254 ASSERT((p)->gcgrp_refcnt > 0); \ 2255 if (--((p)->gcgrp_refcnt) == 0) \ 2256 gcgrp_inactive(p); \ 2257 ASSERT(MUTEX_HELD(&gcgrp_lock)); \ 2258 mutex_exit(&gcgrp_lock); \ 2259 } 2260 2261 /* 2262 * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr 2263 */ 2264 struct tsol_tnrhc; 2265 2266 typedef struct tsol_ire_gw_secattr_s { 2267 kmutex_t igsa_lock; /* lock to protect following */ 2268 struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ 2269 tsol_gc_t *igsa_gc; /* for prefix IREs */ 2270 tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ 2271 } tsol_ire_gw_secattr_t; 2272 2273 /* 2274 * Following are the macros to increment/decrement the reference 2275 * count of the IREs and IRBs (ire bucket). 2276 * 2277 * 1) We bump up the reference count of an IRE to make sure that 2278 * it does not get deleted and freed while we are using it. 2279 * Typically all the lookup functions hold the bucket lock, 2280 * and look for the IRE. If it finds an IRE, it bumps up the 2281 * reference count before dropping the lock. Sometimes we *may* want 2282 * to bump up the reference count after we *looked* up i.e without 2283 * holding the bucket lock. So, the IRE_REFHOLD macro does not assert 2284 * on the bucket lock being held. Any thread trying to delete from 2285 * the hash bucket can still do so but cannot free the IRE if 2286 * ire_refcnt is not 0. 2287 * 2288 * 2) We bump up the reference count on the bucket where the IRE resides 2289 * (IRB), when we want to prevent the IREs getting deleted from a given 2290 * hash bucket. This makes life easier for ire_walk type functions which 2291 * wants to walk the IRE list, call a function, but needs to drop 2292 * the bucket lock to prevent recursive rw_enters. While the 2293 * lock is dropped, the list could be changed by other threads or 2294 * the same thread could end up deleting the ire or the ire pointed by 2295 * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as 2296 * a delete will still remove the ire from the bucket while we have 2297 * dropped the lock and hence the ire_next would be NULL. Thus, we 2298 * need a mechanism to prevent deletions from a given bucket. 2299 * 2300 * To prevent deletions, we bump up the reference count on the 2301 * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED 2302 * both on the ire's ire_marks and the bucket's irb_marks. When the 2303 * reference count on the bucket drops to zero, all the CONDEMNED ires 2304 * are deleted. We don't have to bump up the reference count on the 2305 * bucket if we are walking the bucket and never have to drop the bucket 2306 * lock. Note that IRB_REFHOLD does not prevent addition of new ires 2307 * in the list. It is okay because addition of new ires will not cause 2308 * ire_next to point to freed memory. We do IRB_REFHOLD only when 2309 * all of the 3 conditions are true : 2310 * 2311 * 1) The code needs to walk the IRE bucket from start to end. 2312 * 2) It may have to drop the bucket lock sometimes while doing (1) 2313 * 3) It does not want any ires to be deleted meanwhile. 2314 */ 2315 2316 /* 2317 * Bump up the reference count on the IRE. We cannot assert that the 2318 * bucket lock is being held as it is legal to bump up the reference 2319 * count after the first lookup has returned the IRE without 2320 * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. 2321 */ 2322 2323 #ifndef IRE_DEBUG 2324 2325 #define IRE_REFHOLD_NOTR(ire) IRE_REFHOLD(ire) 2326 #define IRE_UNTRACE_REF(ire) 2327 #define IRE_TRACE_REF(ire) 2328 2329 #else 2330 2331 #define IRE_REFHOLD_NOTR(ire) { \ 2332 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2333 ASSERT((ire)->ire_refcnt != 0); \ 2334 } 2335 2336 #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); 2337 #define IRE_TRACE_REF(ire) ire_trace_ref(ire); 2338 #endif 2339 2340 #define IRE_REFHOLD(ire) { \ 2341 atomic_add_32(&(ire)->ire_refcnt, 1); \ 2342 ASSERT((ire)->ire_refcnt != 0); \ 2343 IRE_TRACE_REF(ire); \ 2344 } 2345 2346 #define IRE_REFHOLD_LOCKED(ire) { \ 2347 IRE_TRACE_REF(ire); \ 2348 (ire)->ire_refcnt++; \ 2349 } 2350 2351 /* 2352 * Decrement the reference count on the IRE. 2353 * In architectures e.g sun4u, where atomic_add_32_nv is just 2354 * a cas, we need to maintain the right memory barrier semantics 2355 * as that of mutex_exit i.e all the loads and stores should complete 2356 * before the cas is executed. membar_exit() does that here. 2357 * 2358 * NOTE : This macro is used only in places where we want performance. 2359 * To avoid bloating the code, we use the function "ire_refrele" 2360 * which essentially calls the macro. 2361 */ 2362 #ifndef IRE_DEBUG 2363 #define IRE_REFRELE(ire) { \ 2364 ASSERT((ire)->ire_refcnt != 0); \ 2365 membar_exit(); \ 2366 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2367 ire_inactive(ire); \ 2368 } 2369 #define IRE_REFRELE_NOTR(ire) IRE_REFRELE(ire) 2370 #else 2371 #define IRE_REFRELE(ire) { \ 2372 if (ire->ire_bucket != NULL) \ 2373 ire_untrace_ref(ire); \ 2374 ASSERT((ire)->ire_refcnt != 0); \ 2375 membar_exit(); \ 2376 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2377 ire_inactive(ire); \ 2378 } 2379 #define IRE_REFRELE_NOTR(ire) { \ 2380 ASSERT((ire)->ire_refcnt != 0); \ 2381 membar_exit(); \ 2382 if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ 2383 ire_inactive(ire); \ 2384 } 2385 #endif 2386 2387 /* 2388 * Bump up the reference count on the hash bucket - IRB to 2389 * prevent ires from being deleted in this bucket. 2390 */ 2391 #define IRB_REFHOLD(irb) { \ 2392 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2393 (irb)->irb_refcnt++; \ 2394 ASSERT((irb)->irb_refcnt != 0); \ 2395 rw_exit(&(irb)->irb_lock); \ 2396 } 2397 #define IRB_REFHOLD_LOCKED(irb) { \ 2398 ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \ 2399 (irb)->irb_refcnt++; \ 2400 ASSERT((irb)->irb_refcnt != 0); \ 2401 } 2402 2403 void irb_refrele_ftable(irb_t *); 2404 /* 2405 * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t 2406 * is statically allocated, so that when the irb_refcnt goes to 0, 2407 * we simply clean up the ire list and continue. 2408 */ 2409 #define IRB_REFRELE(irb) { \ 2410 if ((irb)->irb_marks & IRB_MARK_FTABLE) { \ 2411 irb_refrele_ftable((irb)); \ 2412 } else { \ 2413 rw_enter(&(irb)->irb_lock, RW_WRITER); \ 2414 ASSERT((irb)->irb_refcnt != 0); \ 2415 if (--(irb)->irb_refcnt == 0 && \ 2416 ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ 2417 ire_t *ire_list; \ 2418 \ 2419 ire_list = ire_unlink(irb); \ 2420 rw_exit(&(irb)->irb_lock); \ 2421 ASSERT(ire_list != NULL); \ 2422 ire_cleanup(ire_list); \ 2423 } else { \ 2424 rw_exit(&(irb)->irb_lock); \ 2425 } \ 2426 } \ 2427 } 2428 2429 extern struct kmem_cache *rt_entry_cache; 2430 2431 /* 2432 * Lock the fast path mp for access, since the fp_mp can be deleted 2433 * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST and IRE_MIPRTUN 2434 */ 2435 2436 #define LOCK_IRE_FP_MP(ire) { \ 2437 if ((ire)->ire_type == IRE_BROADCAST || \ 2438 (ire)->ire_type == IRE_MIPRTUN) \ 2439 mutex_enter(&ire->ire_nce->nce_lock); \ 2440 } 2441 #define UNLOCK_IRE_FP_MP(ire) { \ 2442 if ((ire)->ire_type == IRE_BROADCAST || \ 2443 (ire)->ire_type == IRE_MIPRTUN) \ 2444 mutex_exit(&ire->ire_nce->nce_lock); \ 2445 } 2446 2447 typedef struct ire4 { 2448 ipaddr_t ire4_src_addr; /* Source address to use. */ 2449 ipaddr_t ire4_mask; /* Mask for matching this IRE. */ 2450 ipaddr_t ire4_addr; /* Address this IRE represents. */ 2451 ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2452 ipaddr_t ire4_cmask; /* Mask from parent prefix route */ 2453 } ire4_t; 2454 2455 typedef struct ire6 { 2456 in6_addr_t ire6_src_addr; /* Source address to use. */ 2457 in6_addr_t ire6_mask; /* Mask for matching this IRE. */ 2458 in6_addr_t ire6_addr; /* Address this IRE represents. */ 2459 in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ 2460 in6_addr_t ire6_cmask; /* Mask from parent prefix route */ 2461 } ire6_t; 2462 2463 typedef union ire_addr { 2464 ire6_t ire6_u; 2465 ire4_t ire4_u; 2466 } ire_addr_u_t; 2467 2468 /* Internet Routing Entry */ 2469 typedef struct ire_s { 2470 struct ire_s *ire_next; /* The hash chain must be first. */ 2471 struct ire_s **ire_ptpn; /* Pointer to previous next. */ 2472 uint32_t ire_refcnt; /* Number of references */ 2473 mblk_t *ire_mp; /* Non-null if allocated as mblk */ 2474 queue_t *ire_rfq; /* recv from this queue */ 2475 queue_t *ire_stq; /* send to this queue */ 2476 union { 2477 uint_t *max_fragp; /* Used only during ire creation */ 2478 uint_t max_frag; /* MTU (next hop or path). */ 2479 } imf_u; 2480 #define ire_max_frag imf_u.max_frag 2481 #define ire_max_fragp imf_u.max_fragp 2482 uint32_t ire_frag_flag; /* IPH_DF or zero. */ 2483 uint32_t ire_ident; /* Per IRE IP ident. */ 2484 uint32_t ire_tire_mark; /* Used for reclaim of unused. */ 2485 uchar_t ire_ipversion; /* IPv4/IPv6 version */ 2486 uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ 2487 ushort_t ire_type; /* Type of IRE */ 2488 uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ 2489 uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ 2490 uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ 2491 time_t ire_create_time; /* Time (in secs) IRE was created. */ 2492 uint32_t ire_phandle; /* Associate prefix IREs to cache */ 2493 uint32_t ire_ihandle; /* Associate interface IREs to cache */ 2494 ipif_t *ire_ipif; /* the interface that this ire uses */ 2495 uint32_t ire_flags; /* flags related to route (RTF_*) */ 2496 uint_t ire_ipsec_overhead; /* IPSEC overhead */ 2497 /* 2498 * Neighbor Cache Entry for IPv6; arp info for IPv4 2499 */ 2500 struct nce_s *ire_nce; 2501 uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ 2502 ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ 2503 2504 irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ 2505 iulp_t ire_uinfo; /* Upper layer protocol info. */ 2506 /* 2507 * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. 2508 */ 2509 kmutex_t ire_lock; 2510 uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ 2511 /* 2512 * For regular routes in forwarding table and cache table the 2513 * the following entries are NULL/zero. Only reverse tunnel 2514 * table and interface based forwarding table use these fields. 2515 * Routes added with RTA_SRCIFP and RTA_SRC respectively have 2516 * non-zero values for the following fields. 2517 */ 2518 ill_t *ire_in_ill; /* Incoming ill interface */ 2519 ipaddr_t ire_in_src_addr; 2520 /* source ip-addr of incoming packet */ 2521 clock_t ire_last_used_time; /* Last used time */ 2522 tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ 2523 zoneid_t ire_zoneid; /* for local address discrimination */ 2524 /* 2525 * ire's that are embedded inside mblk_t and sent to the external 2526 * resolver use the ire_stq_ifindex to track the ifindex of the 2527 * ire_stq, so that the ill (if it exists) can be correctly recovered 2528 * for cleanup in the esbfree routine when arp failure occurs 2529 */ 2530 uint_t ire_stq_ifindex; 2531 uint_t ire_defense_count; /* number of ARP conflicts */ 2532 uint_t ire_defense_time; /* last time defended (secs) */ 2533 #ifdef IRE_DEBUG 2534 th_trace_t *ire_trace[IP_TR_HASH_MAX]; 2535 boolean_t ire_trace_disable; /* True when alloc fails */ 2536 #endif 2537 } ire_t; 2538 2539 /* IPv4 compatiblity macros */ 2540 #define ire_src_addr ire_u.ire4_u.ire4_src_addr 2541 #define ire_mask ire_u.ire4_u.ire4_mask 2542 #define ire_addr ire_u.ire4_u.ire4_addr 2543 #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr 2544 #define ire_cmask ire_u.ire4_u.ire4_cmask 2545 2546 #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr 2547 #define ire_mask_v6 ire_u.ire6_u.ire6_mask 2548 #define ire_addr_v6 ire_u.ire6_u.ire6_addr 2549 #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr 2550 #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask 2551 2552 /* Convenient typedefs for sockaddrs */ 2553 typedef struct sockaddr_in sin_t; 2554 typedef struct sockaddr_in6 sin6_t; 2555 2556 /* Address structure used for internal bind with IP */ 2557 typedef struct ipa_conn_s { 2558 ipaddr_t ac_laddr; 2559 ipaddr_t ac_faddr; 2560 uint16_t ac_fport; 2561 uint16_t ac_lport; 2562 } ipa_conn_t; 2563 2564 typedef struct ipa6_conn_s { 2565 in6_addr_t ac6_laddr; 2566 in6_addr_t ac6_faddr; 2567 uint16_t ac6_fport; 2568 uint16_t ac6_lport; 2569 } ipa6_conn_t; 2570 2571 /* 2572 * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's 2573 * bind handler. 2574 */ 2575 typedef struct ipa_conn_extended_s { 2576 uint64_t acx_flags; 2577 ipa_conn_t acx_conn; 2578 } ipa_conn_x_t; 2579 2580 typedef struct ipa6_conn_extended_s { 2581 uint64_t ac6x_flags; 2582 ipa6_conn_t ac6x_conn; 2583 } ipa6_conn_x_t; 2584 2585 /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ 2586 #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ 2587 2588 /* Name/Value Descriptor. */ 2589 typedef struct nv_s { 2590 uint64_t nv_value; 2591 char *nv_name; 2592 } nv_t; 2593 2594 /* IP Forwarding Ticket */ 2595 typedef struct ipftk_s { 2596 queue_t *ipftk_queue; 2597 ipaddr_t ipftk_dst; 2598 } ipftk_t; 2599 2600 typedef struct ipt_s { 2601 pfv_t func; /* Routine to call */ 2602 uchar_t *arg; /* ire or nce passed in */ 2603 } ipt_t; 2604 2605 #define ILL_FRAG_HASH(s, i) \ 2606 ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) 2607 2608 /* 2609 * The MAX number of allowed fragmented packets per hash bucket 2610 * calculation is based on the most common mtu size of 1500. This limit 2611 * will work well for other mtu sizes as well. 2612 */ 2613 #define COMMON_IP_MTU 1500 2614 #define MAX_FRAG_MIN 10 2615 #define MAX_FRAG_PKTS \ 2616 MAX(MAX_FRAG_MIN, (2 * (ip_reass_queue_bytes / \ 2617 (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) 2618 2619 /* 2620 * Maximum dups allowed per packet. 2621 */ 2622 extern uint_t ip_max_frag_dups; 2623 2624 /* 2625 * Per-packet information for received packets and transmitted. 2626 * Used by the transport protocols when converting between the packet 2627 * and ancillary data and socket options. 2628 * 2629 * Note: This private data structure and related IPPF_* constant 2630 * definitions are exposed to enable compilation of some debugging tools 2631 * like lsof which use struct tcp_t in <inet/tcp.h>. This is intended to be 2632 * a temporary hack and long term alternate interfaces should be defined 2633 * to support the needs of such tools and private definitions moved to 2634 * private headers. 2635 */ 2636 struct ip6_pkt_s { 2637 uint_t ipp_fields; /* Which fields are valid */ 2638 uint_t ipp_sticky_ignored; /* sticky fields to ignore */ 2639 uint_t ipp_ifindex; /* pktinfo ifindex */ 2640 in6_addr_t ipp_addr; /* pktinfo src/dst addr */ 2641 uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ 2642 uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ 2643 uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ 2644 uint_t ipp_hopoptslen; 2645 uint_t ipp_rtdstoptslen; 2646 uint_t ipp_rthdrlen; 2647 uint_t ipp_dstoptslen; 2648 uint_t ipp_pathmtulen; 2649 uint_t ipp_fraghdrlen; 2650 ip6_hbh_t *ipp_hopopts; 2651 ip6_dest_t *ipp_rtdstopts; 2652 ip6_rthdr_t *ipp_rthdr; 2653 ip6_dest_t *ipp_dstopts; 2654 ip6_frag_t *ipp_fraghdr; 2655 struct ip6_mtuinfo *ipp_pathmtu; 2656 in6_addr_t ipp_nexthop; /* Transmit only */ 2657 uint8_t ipp_tclass; 2658 int8_t ipp_use_min_mtu; 2659 }; 2660 typedef struct ip6_pkt_s ip6_pkt_t; 2661 2662 extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ 2663 2664 /* 2665 * This struct is used by ULP_opt_set() functions to return value of IPv4 2666 * ancillary options. Currently this is only used by udp and icmp and only 2667 * IP_PKTINFO option is supported. 2668 */ 2669 typedef struct ip4_pkt_s { 2670 uint_t ip4_ill_index; /* interface index */ 2671 ipaddr_t ip4_addr; /* source address */ 2672 } ip4_pkt_t; 2673 2674 /* 2675 * Used by ULP's to pass options info to ip_output 2676 * currently only IP_PKTINFO is supported. 2677 */ 2678 typedef struct ip_opt_info_s { 2679 uint_t ip_opt_ill_index; 2680 uint_t ip_opt_flags; 2681 } ip_opt_info_t; 2682 2683 /* 2684 * value for ip_opt_flags 2685 */ 2686 #define IP_VERIFY_SRC 0x1 2687 2688 /* 2689 * This structure is used to convey information from IP and the ULP. 2690 * Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options. 2691 * The type of information field is set to IN_PKTINFO (i.e inbound pkt info) 2692 */ 2693 typedef struct ip_pktinfo { 2694 uint32_t ip_pkt_ulp_type; /* type of info sent */ 2695 uint32_t ip_pkt_flags; /* what is sent up by IP */ 2696 uint32_t ip_pkt_ifindex; /* inbound interface index */ 2697 struct sockaddr_dl ip_pkt_slla; /* has source link layer addr */ 2698 struct in_addr ip_pkt_match_addr; /* matched address */ 2699 } ip_pktinfo_t; 2700 2701 /* 2702 * flags to tell UDP what IP is sending; in_pkt_flags 2703 */ 2704 #define IPF_RECVIF 0x01 /* inbound interface index */ 2705 #define IPF_RECVSLLA 0x02 /* source link layer address */ 2706 /* 2707 * Inbound interface index + matched address. 2708 * Used only by IPV4. 2709 */ 2710 #define IPF_RECVADDR 0x04 2711 2712 /* ipp_fields values */ 2713 #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ 2714 #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ 2715 #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ 2716 #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ 2717 2718 #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ 2719 #define IPPF_HOPLIMIT 0x0020 2720 #define IPPF_HOPOPTS 0x0040 2721 #define IPPF_RTHDR 0x0080 2722 2723 #define IPPF_RTDSTOPTS 0x0100 2724 #define IPPF_DSTOPTS 0x0200 2725 #define IPPF_NEXTHOP 0x0400 2726 #define IPPF_PATHMTU 0x0800 2727 2728 #define IPPF_TCLASS 0x1000 2729 #define IPPF_DONTFRAG 0x2000 2730 #define IPPF_USE_MIN_MTU 0x04000 2731 #define IPPF_MULTICAST_HOPS 0x08000 2732 2733 #define IPPF_UNICAST_HOPS 0x10000 2734 #define IPPF_FRAGHDR 0x20000 2735 2736 #define IPPF_HAS_IP6I \ 2737 (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ 2738 IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ 2739 IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) 2740 2741 #define TCP_PORTS_OFFSET 0 2742 #define UDP_PORTS_OFFSET 0 2743 2744 /* 2745 * lookups return the ill/ipif only if the flags are clear OR Iam writer. 2746 * ill / ipif lookup functions increment the refcnt on the ill / ipif only 2747 * after calling these macros. This ensures that the refcnt on the ipif or 2748 * ill will eventually drop down to zero. 2749 */ 2750 #define ILL_LOOKUP_FAILED 1 /* Used as error code */ 2751 #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ 2752 2753 #define ILL_CAN_LOOKUP(ill) \ 2754 (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ 2755 IAM_WRITER_ILL(ill)) 2756 2757 #define ILL_CAN_WAIT(ill, q) \ 2758 (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) 2759 2760 #define ILL_CAN_LOOKUP_WALKER(ill) \ 2761 (!((ill)->ill_state_flags & ILL_CONDEMNED)) 2762 2763 #define IPIF_CAN_LOOKUP(ipif) \ 2764 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ 2765 IAM_WRITER_IPIF(ipif)) 2766 2767 /* 2768 * If the parameter 'q' is NULL, the caller is not interested in wait and 2769 * restart of the operation if the ILL or IPIF cannot be looked up when it is 2770 * marked as 'CHANGING'. Typically a thread that tries to send out data will 2771 * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and 2772 * in this case 'q' is NULL 2773 */ 2774 #define IPIF_CAN_WAIT(ipif, q) \ 2775 (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) 2776 2777 #define IPIF_CAN_LOOKUP_WALKER(ipif) \ 2778 (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ 2779 IAM_WRITER_IPIF(ipif)) 2780 2781 /* 2782 * These macros are used by critical set ioctls and failover ioctls to 2783 * mark the ipif appropriately before starting the operation and to clear the 2784 * marks after completing the operation. 2785 */ 2786 #define IPIF_UNMARK_MOVING(ipif) \ 2787 (ipif)->ipif_state_flags &= ~IPIF_MOVING & ~IPIF_CHANGING; 2788 2789 #define ILL_UNMARK_CHANGING(ill) \ 2790 (ill)->ill_state_flags &= ~ILL_CHANGING; 2791 2792 /* Macros used to assert that this thread is a writer */ 2793 #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_writer == curthread) 2794 #define IAM_WRITER_ILL(ill) \ 2795 ((ill)->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2796 #define IAM_WRITER_IPIF(ipif) \ 2797 ((ipif)->ipif_ill->ill_phyint->phyint_ipsq->ipsq_writer == curthread) 2798 2799 /* 2800 * Grab ill locks in the proper order. The order is highest addressed 2801 * ill is locked first. 2802 */ 2803 #define GRAB_ILL_LOCKS(ill_1, ill_2) \ 2804 { \ 2805 if ((ill_1) > (ill_2)) { \ 2806 if (ill_1 != NULL) \ 2807 mutex_enter(&(ill_1)->ill_lock); \ 2808 if (ill_2 != NULL) \ 2809 mutex_enter(&(ill_2)->ill_lock); \ 2810 } else { \ 2811 if (ill_2 != NULL) \ 2812 mutex_enter(&(ill_2)->ill_lock); \ 2813 if (ill_1 != NULL && ill_1 != ill_2) \ 2814 mutex_enter(&(ill_1)->ill_lock); \ 2815 } \ 2816 } 2817 2818 #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ 2819 { \ 2820 if (ill_1 != NULL) \ 2821 mutex_exit(&(ill_1)->ill_lock); \ 2822 if (ill_2 != NULL && ill_2 != ill_1) \ 2823 mutex_exit(&(ill_2)->ill_lock); \ 2824 } 2825 2826 /* Get the other protocol instance ill */ 2827 #define ILL_OTHER(ill) \ 2828 ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ 2829 (ill)->ill_phyint->phyint_illv6) 2830 2831 #define MATCH_V4_ONLY 0x1 2832 #define MATCH_V6_ONLY 0x2 2833 #define MATCH_ILL_ONLY 0x4 2834 2835 /* ioctl command info: Ioctl properties extracted and stored in here */ 2836 typedef struct cmd_info_s 2837 { 2838 char ci_groupname[LIFNAMSIZ + 1]; /* SIOCSLIFGROUPNAME */ 2839 ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ 2840 sin_t *ci_sin; /* the sin struct passed down */ 2841 sin6_t *ci_sin6; /* the sin6_t struct passed down */ 2842 struct lifreq *ci_lifr; /* the lifreq struct passed down */ 2843 } cmd_info_t; 2844 2845 extern krwlock_t ill_g_lock; 2846 extern kmutex_t ip_addr_avail_lock; 2847 extern ipsq_t *ipsq_g_head; 2848 2849 extern ill_t *ip_timer_ill; /* ILL for IRE expiration timer. */ 2850 extern timeout_id_t ip_ire_expire_id; /* IRE expiration timeout id. */ 2851 extern timeout_id_t ip_ire_reclaim_id; /* IRE recalaim timeout id. */ 2852 2853 extern kmutex_t ip_mi_lock; 2854 extern krwlock_t ip_g_nd_lock; /* For adding/removing nd variables */ 2855 extern kmutex_t ip_trash_timer_lock; /* Protects ip_ire_expire_id */ 2856 2857 extern kmutex_t igmp_timer_lock; /* Protects the igmp timer */ 2858 extern kmutex_t mld_timer_lock; /* Protects the mld timer */ 2859 2860 extern krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 2861 2862 extern struct kmem_cache *ire_cache; 2863 2864 extern uint_t ip_redirect_cnt; /* Num of redirect routes in ftable */ 2865 2866 extern ipaddr_t ip_g_all_ones; 2867 extern caddr_t ip_g_nd; /* Named Dispatch List Head */ 2868 2869 extern uint_t ip_loopback_mtu; 2870 2871 extern ipparam_t *ip_param_arr; 2872 2873 extern int ip_g_forward; 2874 extern int ipv6_forward; 2875 extern vmem_t *ip_minor_arena; 2876 2877 #define ip_respond_to_address_mask_broadcast ip_param_arr[0].ip_param_value 2878 #define ip_g_resp_to_echo_bcast ip_param_arr[1].ip_param_value 2879 #define ip_g_resp_to_echo_mcast ip_param_arr[2].ip_param_value 2880 #define ip_g_resp_to_timestamp ip_param_arr[3].ip_param_value 2881 #define ip_g_resp_to_timestamp_bcast ip_param_arr[4].ip_param_value 2882 #define ip_g_send_redirects ip_param_arr[5].ip_param_value 2883 #define ip_g_forward_directed_bcast ip_param_arr[6].ip_param_value 2884 #define ip_debug ip_param_arr[7].ip_param_value 2885 #define ip_mrtdebug ip_param_arr[8].ip_param_value 2886 #define ip_timer_interval ip_param_arr[9].ip_param_value 2887 #define ip_ire_arp_interval ip_param_arr[10].ip_param_value 2888 #define ip_ire_redir_interval ip_param_arr[11].ip_param_value 2889 #define ip_def_ttl ip_param_arr[12].ip_param_value 2890 #define ip_forward_src_routed ip_param_arr[13].ip_param_value 2891 #define ip_wroff_extra ip_param_arr[14].ip_param_value 2892 #define ip_ire_pathmtu_interval ip_param_arr[15].ip_param_value 2893 #define ip_icmp_return ip_param_arr[16].ip_param_value 2894 #define ip_path_mtu_discovery ip_param_arr[17].ip_param_value 2895 #define ip_ignore_delete_time ip_param_arr[18].ip_param_value 2896 #define ip_ignore_redirect ip_param_arr[19].ip_param_value 2897 #define ip_output_queue ip_param_arr[20].ip_param_value 2898 #define ip_broadcast_ttl ip_param_arr[21].ip_param_value 2899 #define ip_icmp_err_interval ip_param_arr[22].ip_param_value 2900 #define ip_icmp_err_burst ip_param_arr[23].ip_param_value 2901 #define ip_reass_queue_bytes ip_param_arr[24].ip_param_value 2902 #define ip_strict_dst_multihoming ip_param_arr[25].ip_param_value 2903 #define ip_addrs_per_if ip_param_arr[26].ip_param_value 2904 #define ipsec_override_persocket_policy ip_param_arr[27].ip_param_value 2905 #define icmp_accept_clear_messages ip_param_arr[28].ip_param_value 2906 #define igmp_accept_clear_messages ip_param_arr[29].ip_param_value 2907 2908 /* IPv6 configuration knobs */ 2909 #define delay_first_probe_time ip_param_arr[30].ip_param_value 2910 #define max_unicast_solicit ip_param_arr[31].ip_param_value 2911 #define ipv6_def_hops ip_param_arr[32].ip_param_value 2912 #define ipv6_icmp_return ip_param_arr[33].ip_param_value 2913 #define ipv6_forward_src_routed ip_param_arr[34].ip_param_value 2914 #define ipv6_resp_echo_mcast ip_param_arr[35].ip_param_value 2915 #define ipv6_send_redirects ip_param_arr[36].ip_param_value 2916 #define ipv6_ignore_redirect ip_param_arr[37].ip_param_value 2917 #define ipv6_strict_dst_multihoming ip_param_arr[38].ip_param_value 2918 #define ip_ire_reclaim_fraction ip_param_arr[39].ip_param_value 2919 #define ipsec_policy_log_interval ip_param_arr[40].ip_param_value 2920 #define pim_accept_clear_messages ip_param_arr[41].ip_param_value 2921 #define ip_ndp_unsolicit_interval ip_param_arr[42].ip_param_value 2922 #define ip_ndp_unsolicit_count ip_param_arr[43].ip_param_value 2923 #define ipv6_ignore_home_address_opt ip_param_arr[44].ip_param_value 2924 #define ip_policy_mask ip_param_arr[45].ip_param_value 2925 #define ip_multirt_resolution_interval ip_param_arr[46].ip_param_value 2926 #define ip_multirt_ttl ip_param_arr[47].ip_param_value 2927 #define ip_multidata_outbound ip_param_arr[48].ip_param_value 2928 #define ip_ndp_defense_interval ip_param_arr[49].ip_param_value 2929 #define ip_max_temp_idle ip_param_arr[50].ip_param_value 2930 #define ip_max_temp_defend ip_param_arr[51].ip_param_value 2931 #define ip_max_defend ip_param_arr[52].ip_param_value 2932 #define ip_defend_interval ip_param_arr[53].ip_param_value 2933 #define ip_dup_recovery ip_param_arr[54].ip_param_value 2934 #define ip_restrict_interzone_loopback ip_param_arr[55].ip_param_value 2935 #define ip_lso_outbound ip_param_arr[56].ip_param_value 2936 #ifdef DEBUG 2937 #define ipv6_drop_inbound_icmpv6 ip_param_arr[57].ip_param_value 2938 #else 2939 #define ipv6_drop_inbound_icmpv6 0 2940 #endif 2941 2942 extern hrtime_t ipsec_policy_failure_last; 2943 2944 extern int dohwcksum; /* use h/w cksum if supported by the h/w */ 2945 #ifdef ZC_TEST 2946 extern int noswcksum; 2947 #endif 2948 2949 extern char ipif_loopback_name[]; 2950 2951 extern nv_t *ire_nv_tbl; 2952 2953 extern time_t ip_g_frag_timeout; 2954 extern clock_t ip_g_frag_timo_ms; 2955 2956 extern mib2_ipIfStatsEntry_t ip_mib; /* For tcpInErrs and udpNoPorts */ 2957 2958 extern struct module_info ip_mod_info; 2959 2960 extern timeout_id_t igmp_slowtimeout_id; 2961 extern timeout_id_t mld_slowtimeout_id; 2962 2963 extern uint_t loopback_packets; 2964 2965 /* 2966 * Hooks structures used inside of ip 2967 */ 2968 extern hook_event_token_t ipv4firewall_physical_in; 2969 extern hook_event_token_t ipv4firewall_physical_out; 2970 extern hook_event_token_t ipv4firewall_forwarding; 2971 extern hook_event_token_t ipv4firewall_loopback_in; 2972 extern hook_event_token_t ipv4firewall_loopback_out; 2973 extern hook_event_token_t ipv4nicevents; 2974 2975 extern hook_event_token_t ipv6firewall_physical_in; 2976 extern hook_event_token_t ipv6firewall_physical_out; 2977 extern hook_event_token_t ipv6firewall_forwarding; 2978 extern hook_event_token_t ipv6firewall_loopback_in; 2979 extern hook_event_token_t ipv6firewall_loopback_out; 2980 extern hook_event_token_t ipv6nicevents; 2981 2982 extern hook_event_t ip4_physical_in_event; 2983 extern hook_event_t ip4_physical_out_event; 2984 extern hook_event_t ip4_forwarding_event; 2985 extern hook_event_t ip4_loopback_in_event; 2986 extern hook_event_t ip4_loopback_out_event; 2987 extern hook_event_t ip4_nic_events; 2988 2989 extern hook_event_t ip6_physical_in_event; 2990 extern hook_event_t ip6_physical_out_event; 2991 extern hook_event_t ip6_forwarding_event; 2992 extern hook_event_t ip6_loopback_in_event; 2993 extern hook_event_t ip6_loopback_out_event; 2994 extern hook_event_t ip6_nic_events; 2995 2996 #define HOOKS4_INTERESTED_PHYSICAL_IN \ 2997 (ip4_physical_in_event.he_interested) 2998 #define HOOKS6_INTERESTED_PHYSICAL_IN \ 2999 (ip6_physical_in_event.he_interested) 3000 #define HOOKS4_INTERESTED_PHYSICAL_OUT \ 3001 (ip4_physical_out_event.he_interested) 3002 #define HOOKS6_INTERESTED_PHYSICAL_OUT \ 3003 (ip6_physical_out_event.he_interested) 3004 #define HOOKS4_INTERESTED_FORWARDING \ 3005 (ip4_forwarding_event.he_interested) 3006 #define HOOKS6_INTERESTED_FORWARDING \ 3007 (ip6_forwarding_event.he_interested) 3008 #define HOOKS4_INTERESTED_LOOPBACK_IN \ 3009 (ip4_loopback_in_event.he_interested) 3010 #define HOOKS6_INTERESTED_LOOPBACK_IN \ 3011 (ip6_loopback_in_event.he_interested) 3012 #define HOOKS4_INTERESTED_LOOPBACK_OUT \ 3013 (ip4_loopback_out_event.he_interested) 3014 #define HOOKS6_INTERESTED_LOOPBACK_OUT \ 3015 (ip6_loopback_out_event.he_interested) 3016 3017 /* 3018 * Hooks marcos used inside of ip 3019 */ 3020 #define IPHA_VHL ipha_version_and_hdr_length 3021 3022 #define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m) \ 3023 \ 3024 if ((_hook).he_interested) { \ 3025 hook_pkt_event_t info; \ 3026 \ 3027 _NOTE(CONSTCOND) \ 3028 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3029 \ 3030 _NOTE(CONSTCOND) \ 3031 if ((_ilp != NULL) && \ 3032 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 3033 info.hpe_ifp = (phy_if_t)((ill_t *) \ 3034 (_ilp))->ill_phyint->phyint_ifindex; \ 3035 else \ 3036 info.hpe_ifp = 0; \ 3037 \ 3038 _NOTE(CONSTCOND) \ 3039 if ((_olp != NULL) && \ 3040 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 3041 info.hpe_ofp = (phy_if_t)((ill_t *) \ 3042 (_olp))->ill_phyint->phyint_ifindex; \ 3043 else \ 3044 info.hpe_ofp = 0; \ 3045 info.hpe_hdr = _iph; \ 3046 info.hpe_mp = &(_fm); \ 3047 info.hpe_mb = _m; \ 3048 if (hook_run(_event, (hook_data_t)&info) != 0) { \ 3049 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3050 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3051 if (_fm != NULL) { \ 3052 freemsg(_fm); \ 3053 _fm = NULL; \ 3054 } \ 3055 _iph = NULL; \ 3056 _m = NULL; \ 3057 } else { \ 3058 _iph = info.hpe_hdr; \ 3059 _m = info.hpe_mb; \ 3060 } \ 3061 } 3062 3063 #define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m) \ 3064 \ 3065 if ((_hook).he_interested) { \ 3066 hook_pkt_event_t info; \ 3067 \ 3068 _NOTE(CONSTCOND) \ 3069 ASSERT((_ilp != NULL) || (_olp != NULL)); \ 3070 \ 3071 _NOTE(CONSTCOND) \ 3072 if ((_ilp != NULL) && \ 3073 (((ill_t *)(_ilp))->ill_phyint != NULL)) \ 3074 info.hpe_ifp = (phy_if_t)((ill_t *) \ 3075 (_ilp))->ill_phyint->phyint_ifindex; \ 3076 else \ 3077 info.hpe_ifp = 0; \ 3078 \ 3079 _NOTE(CONSTCOND) \ 3080 if ((_olp != NULL) && \ 3081 (((ill_t *)(_olp))->ill_phyint != NULL)) \ 3082 info.hpe_ofp = (phy_if_t)((ill_t *) \ 3083 (_olp))->ill_phyint->phyint_ifindex; \ 3084 else \ 3085 info.hpe_ofp = 0; \ 3086 info.hpe_hdr = _iph; \ 3087 info.hpe_mp = &(_fm); \ 3088 info.hpe_mb = _m; \ 3089 if (hook_run(_event, (hook_data_t)&info) != 0) { \ 3090 ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ 3091 (_hook).he_name, (void *)_fm, (void *)_m)); \ 3092 if (_fm != NULL) { \ 3093 freemsg(_fm); \ 3094 _fm = NULL; \ 3095 } \ 3096 _iph = NULL; \ 3097 _m = NULL; \ 3098 } else { \ 3099 _iph = info.hpe_hdr; \ 3100 _m = info.hpe_mb; \ 3101 } \ 3102 } 3103 3104 /* 3105 * Network byte order macros 3106 */ 3107 #ifdef _BIG_ENDIAN 3108 #define N_IN_CLASSD_NET IN_CLASSD_NET 3109 #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP 3110 #else /* _BIG_ENDIAN */ 3111 #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U 3112 #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U 3113 #endif /* _BIG_ENDIAN */ 3114 #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) 3115 3116 #define IP_LOOPBACK_ADDR(addr) \ 3117 ((ntohl(addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) 3118 3119 #ifdef DEBUG 3120 /* IPsec HW acceleration debugging support */ 3121 3122 #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ 3123 #define IPSECHW_SADB 0x0002 /* SADB exchange */ 3124 #define IPSECHW_PKT 0x0004 /* general packet flow */ 3125 #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ 3126 #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ 3127 3128 #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } 3129 #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } 3130 3131 extern uint32_t ipsechw_debug; 3132 #else 3133 #define IPSECHW_DEBUG(f, x) {} 3134 #define IPSECHW_CALL(f, r, x) {} 3135 #endif 3136 3137 #ifdef IP_DEBUG 3138 #include <sys/debug.h> 3139 #include <sys/promif.h> 3140 3141 #define ip0dbg(a) printf a 3142 #define ip1dbg(a) if (ip_debug > 2) printf a 3143 #define ip2dbg(a) if (ip_debug > 3) printf a 3144 #define ip3dbg(a) if (ip_debug > 4) printf a 3145 #else 3146 #define ip0dbg(a) /* */ 3147 #define ip1dbg(a) /* */ 3148 #define ip2dbg(a) /* */ 3149 #define ip3dbg(a) /* */ 3150 #endif /* IP_DEBUG */ 3151 3152 /* Default MAC-layer address string length for mac_colon_addr */ 3153 #define MAC_STR_LEN 128 3154 3155 struct ipsec_out_s; 3156 3157 struct mac_header_info_s; 3158 3159 extern const char *dlpi_prim_str(int); 3160 extern const char *dlpi_err_str(int); 3161 extern void ill_frag_timer(void *); 3162 extern ill_t *ill_first(int, int, ill_walk_context_t *); 3163 extern ill_t *ill_next(ill_walk_context_t *, ill_t *); 3164 extern void ill_frag_timer_start(ill_t *); 3165 extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); 3166 extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); 3167 extern char *ip_dot_addr(ipaddr_t, char *); 3168 extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t); 3169 extern void ip_lwput(queue_t *, mblk_t *); 3170 extern boolean_t icmp_err_rate_limit(void); 3171 extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t); 3172 extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t); 3173 extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t); 3174 extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); 3175 extern int ip_bind_connected(conn_t *, mblk_t *, ipaddr_t *, uint16_t, 3176 ipaddr_t, uint16_t, boolean_t, boolean_t, boolean_t, 3177 boolean_t); 3178 extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); 3179 extern int ip_bind_laddr(conn_t *, mblk_t *, ipaddr_t, uint16_t, 3180 boolean_t, boolean_t, boolean_t); 3181 extern uint_t ip_cksum(mblk_t *, int, uint32_t); 3182 extern int ip_close(queue_t *, int); 3183 extern uint16_t ip_csum_hdr(ipha_t *); 3184 extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t); 3185 extern void ip_ire_fini(void); 3186 extern void ip_ire_init(void); 3187 extern int ip_open(queue_t *, dev_t *, int, int, cred_t *); 3188 extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, 3189 size_t); 3190 extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, 3191 int, int, mblk_t *); 3192 extern void ip_rput(queue_t *, mblk_t *); 3193 extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, 3194 struct mac_header_info_s *); 3195 extern void ip_rput_dlpi(queue_t *, mblk_t *); 3196 extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); 3197 extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); 3198 3199 extern int ip_snmpmod_close(queue_t *); 3200 extern void ip_snmpmod_wput(queue_t *, mblk_t *); 3201 extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *, 3202 mib2_ipIfStatsEntry_t *); 3203 extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *, 3204 mib2_ipv6IfIcmpEntry_t *); 3205 extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3206 extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); 3207 extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); 3208 extern void ip_setqinfo(queue_t *, minor_t, boolean_t); 3209 extern void ip_trash_ire_reclaim(void *); 3210 extern void ip_trash_timer_expire(void *); 3211 extern void ip_wput(queue_t *, mblk_t *); 3212 extern void ip_output(void *, mblk_t *, void *, int); 3213 extern void ip_output_options(void *, mblk_t *, void *, int, 3214 ip_opt_info_t *); 3215 extern void ip_wput_md(queue_t *, mblk_t *, conn_t *); 3216 3217 extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int, 3218 zoneid_t); 3219 extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, 3220 int, zoneid_t); 3221 extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t); 3222 extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); 3223 extern void ip_wsrv(queue_t *); 3224 extern char *ip_nv_lookup(nv_t *, int); 3225 extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3226 extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); 3227 extern ipaddr_t ip_massage_options(ipha_t *); 3228 extern ipaddr_t ip_net_mask(ipaddr_t); 3229 extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, ill_t *, conn_t *, 3230 zoneid_t); 3231 extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *, 3232 boolean_t); 3233 extern int ip_hdr_complete(ipha_t *, zoneid_t); 3234 3235 extern struct qinit rinit_ipv6; 3236 extern struct qinit winit_ipv6; 3237 extern struct qinit rinit_tcp; 3238 extern struct qinit rinit_tcp6; 3239 extern struct qinit winit_tcp; 3240 extern struct qinit rinit_acceptor_tcp; 3241 extern struct qinit winit_acceptor_tcp; 3242 3243 extern net_data_t ipv4; 3244 extern net_data_t ipv6; 3245 3246 extern void conn_drain_insert(conn_t *connp); 3247 extern int conn_ipsec_length(conn_t *connp); 3248 extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, 3249 ire_t *); 3250 extern ipaddr_t ip_get_dst(ipha_t *); 3251 extern int ipsec_out_extra_length(mblk_t *); 3252 extern int ipsec_in_extra_length(mblk_t *); 3253 extern mblk_t *ipsec_in_alloc(); 3254 extern boolean_t ipsec_in_is_secure(mblk_t *); 3255 extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); 3256 extern void ipsec_out_to_in(mblk_t *); 3257 extern int ill_forward_set(queue_t *, mblk_t *, boolean_t, caddr_t); 3258 extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); 3259 3260 extern void ire_cleanup(ire_t *); 3261 extern void ire_inactive(ire_t *); 3262 extern boolean_t irb_inactive(irb_t *); 3263 extern ire_t *ire_unlink(irb_t *); 3264 #ifdef IRE_DEBUG 3265 extern void ire_trace_ref(ire_t *ire); 3266 extern void ire_untrace_ref(ire_t *ire); 3267 extern void ire_thread_exit(ire_t *ire, caddr_t); 3268 #endif 3269 #ifdef ILL_DEBUG 3270 extern void ill_trace_cleanup(ill_t *); 3271 extern void ipif_trace_cleanup(ipif_t *); 3272 #endif 3273 3274 extern int ip_srcid_insert(const in6_addr_t *, zoneid_t); 3275 extern int ip_srcid_remove(const in6_addr_t *, zoneid_t); 3276 extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t); 3277 extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t); 3278 extern int ip_srcid_report(queue_t *, mblk_t *, caddr_t, cred_t *); 3279 3280 extern uint8_t ipoptp_next(ipoptp_t *); 3281 extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); 3282 extern int ip_opt_get_user(const ipha_t *, uchar_t *); 3283 extern ill_t *ip_grab_attach_ill(ill_t *, mblk_t *, int, boolean_t); 3284 extern ire_t *conn_set_outgoing_ill(conn_t *, ire_t *, ill_t **); 3285 extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); 3286 extern int ip_snmp_get(queue_t *q, mblk_t *mctl); 3287 extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); 3288 extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3289 extern void ip_quiesce_conn(conn_t *); 3290 extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); 3291 extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); 3292 extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *); 3293 3294 extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, 3295 uint_t); 3296 extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, 3297 uint_t); 3298 extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); 3299 3300 extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); 3301 extern void conn_ioctl_cleanup(conn_t *); 3302 extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); 3303 extern ill_t *ip_newroute_get_dst_ill(ill_t *); 3304 3305 struct multidata_s; 3306 struct pdesc_s; 3307 3308 extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); 3309 extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); 3310 extern mblk_t *ip_lsoinfo_alloc(ill_lso_capab_t *); 3311 extern mblk_t *ip_lsoinfo_return(ire_t *, conn_t *, char *, 3312 ill_lso_capab_t *); 3313 extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); 3314 extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, 3315 const mblk_t *); 3316 extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, 3317 uint32_t, uint32_t, uint32_t, uint32_t); 3318 extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, 3319 uint_t); 3320 extern mblk_t *ip_unbind(queue_t *, mblk_t *); 3321 3322 extern void tnet_init(void); 3323 extern void tnet_fini(void); 3324 3325 /* Hooks for CGTP (multirt routes) filtering module */ 3326 #define CGTP_FILTER_REV_1 1 3327 #define CGTP_FILTER_REV_2 2 3328 #define CGTP_FILTER_REV CGTP_FILTER_REV_2 3329 3330 /* cfo_filter, cfo_filter_fp, cfo_filter_v6 hooks return values */ 3331 #define CGTP_IP_PKT_NOT_CGTP 0 3332 #define CGTP_IP_PKT_PREMIUM 1 3333 #define CGTP_IP_PKT_DUPLICATE 2 3334 3335 typedef struct cgtp_filter_ops { 3336 int cfo_filter_rev; 3337 int (*cfo_change_state)(int); 3338 int (*cfo_add_dest_v4)(ipaddr_t, ipaddr_t, ipaddr_t, ipaddr_t); 3339 int (*cfo_del_dest_v4)(ipaddr_t, ipaddr_t); 3340 int (*cfo_add_dest_v6)(in6_addr_t *, in6_addr_t *, in6_addr_t *, 3341 in6_addr_t *); 3342 int (*cfo_del_dest_v6)(in6_addr_t *, in6_addr_t *); 3343 int (*cfo_filter)(queue_t *, mblk_t *); 3344 int (*cfo_filter_fp)(queue_t *, mblk_t *); 3345 int (*cfo_filter_v6)(queue_t *, ip6_t *, ip6_frag_t *); 3346 } cgtp_filter_ops_t; 3347 3348 #define CGTP_MCAST_SUCCESS 1 3349 3350 extern cgtp_filter_ops_t *ip_cgtp_filter_ops; 3351 extern boolean_t ip_cgtp_filter; 3352 3353 extern int ip_cgtp_filter_supported(void); 3354 extern int ip_cgtp_filter_register(cgtp_filter_ops_t *); 3355 3356 /* Flags for ire_multirt_lookup() */ 3357 3358 #define MULTIRT_USESTAMP 0x0001 3359 #define MULTIRT_SETSTAMP 0x0002 3360 #define MULTIRT_CACHEGW 0x0004 3361 3362 /* Debug stuff for multirt route resolution. */ 3363 #if defined(DEBUG) && !defined(__lint) 3364 /* Our "don't send, rather drop" flag. */ 3365 #define MULTIRT_DEBUG_FLAG 0x8000 3366 3367 #define MULTIRT_TRACE(x) ip2dbg(x) 3368 3369 #define MULTIRT_DEBUG_TAG(mblk) \ 3370 do { \ 3371 ASSERT(mblk != NULL); \ 3372 MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ 3373 __FILE__, __LINE__, \ 3374 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3375 (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ 3376 } while (0) 3377 3378 #define MULTIRT_DEBUG_UNTAG(mblk) \ 3379 do { \ 3380 ASSERT(mblk != NULL); \ 3381 MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ 3382 __FILE__, __LINE__, \ 3383 (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ 3384 (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ 3385 } while (0) 3386 3387 #define MULTIRT_DEBUG_TAGGED(mblk) \ 3388 (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) 3389 #else 3390 #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) 3391 #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) 3392 #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE 3393 #endif 3394 3395 /* 3396 * Per-ILL Multidata Transmit capabilities. 3397 */ 3398 struct ill_mdt_capab_s { 3399 uint_t ill_mdt_version; /* interface version */ 3400 uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ 3401 uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ 3402 uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ 3403 uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ 3404 uint_t ill_mdt_span_limit; /* maximum payload span per packet */ 3405 }; 3406 3407 struct ill_hcksum_capab_s { 3408 uint_t ill_hcksum_version; /* interface version */ 3409 uint_t ill_hcksum_txflags; /* capabilities on transmit */ 3410 }; 3411 3412 struct ill_zerocopy_capab_s { 3413 uint_t ill_zerocopy_version; /* interface version */ 3414 uint_t ill_zerocopy_flags; /* capabilities */ 3415 }; 3416 3417 struct ill_lso_capab_s { 3418 uint_t ill_lso_version; /* interface version */ 3419 uint_t ill_lso_on; /* on/off switch for LSO on this ILL */ 3420 uint_t ill_lso_flags; /* capabilities */ 3421 uint_t ill_lso_max; /* maximum size of payload */ 3422 }; 3423 3424 /* Possible ill_states */ 3425 #define ILL_RING_INPROC 3 /* Being assigned to squeue */ 3426 #define ILL_RING_INUSE 2 /* Already Assigned to Rx Ring */ 3427 #define ILL_RING_BEING_FREED 1 /* Being Unassigned */ 3428 #define ILL_RING_FREE 0 /* Available to be assigned to Ring */ 3429 3430 #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ 3431 #define ILL_POLLING 0x01 /* Polling in use */ 3432 3433 /* 3434 * These functions pointer types are exported by the mac/dls layer. 3435 * we need to duplicate the definitions here because we cannot 3436 * include mac/dls header files here. 3437 */ 3438 typedef void (*ip_mac_blank_t)(void *, time_t, uint_t); 3439 typedef void (*ip_dld_tx_t)(void *, mblk_t *); 3440 3441 typedef void (*ip_dls_chg_soft_ring_t)(void *, int); 3442 typedef void (*ip_dls_bind_t)(void *, processorid_t); 3443 typedef void (*ip_dls_unbind_t)(void *); 3444 3445 struct ill_rx_ring { 3446 ip_mac_blank_t rr_blank; /* Driver interrupt blanking func */ 3447 void *rr_handle; /* Handle for Rx ring */ 3448 squeue_t *rr_sqp; /* Squeue the ring is bound to */ 3449 ill_t *rr_ill; /* back pointer to ill */ 3450 clock_t rr_poll_time; /* Last lbolt polling was used */ 3451 uint32_t rr_poll_state; /* polling state flags */ 3452 uint32_t rr_max_blank_time; /* Max interrupt blank */ 3453 uint32_t rr_min_blank_time; /* Min interrupt blank */ 3454 uint32_t rr_max_pkt_cnt; /* Max pkts before interrupt */ 3455 uint32_t rr_min_pkt_cnt; /* Mix pkts before interrupt */ 3456 uint32_t rr_normal_blank_time; /* Normal intr freq */ 3457 uint32_t rr_normal_pkt_cnt; /* Normal intr pkt cnt */ 3458 uint32_t rr_ring_state; /* State of this ring */ 3459 }; 3460 3461 struct ill_dls_capab_s { 3462 ip_dld_tx_t ill_tx; /* Driver Tx routine */ 3463 void *ill_tx_handle; /* Driver Tx handle */ 3464 ip_dls_chg_soft_ring_t ill_dls_change_status; 3465 /* change soft ring fanout */ 3466 ip_dls_bind_t ill_dls_bind; /* to add CPU affinity */ 3467 ip_dls_unbind_t ill_dls_unbind; /* remove CPU affinity */ 3468 ill_rx_ring_t *ill_ring_tbl; /* Ring to Sqp mapping table */ 3469 uint_t ill_dls_soft_ring_cnt; /* Number of soft ring */ 3470 conn_t *ill_unbind_conn; /* Conn used during unplumb */ 3471 }; 3472 3473 /* 3474 * This message is sent by an upper-layer protocol to tell IP that it knows all 3475 * about labels and will construct them itself. IP takes the slow path and 3476 * recomputes the label on every packet when this isn't true. 3477 */ 3478 #define IP_ULP_OUT_LABELED (('O' << 8) + 'L') 3479 typedef struct out_labeled_s { 3480 uint32_t out_labeled_type; /* OUT_LABELED */ 3481 queue_t *out_qnext; /* intermediate detection */ 3482 } out_labeled_t; 3483 3484 /* 3485 * IP squeues exports 3486 */ 3487 extern int ip_squeue_profile; 3488 extern int ip_squeue_bind; 3489 extern boolean_t ip_squeue_fanout; 3490 extern boolean_t ip_squeue_soft_ring; 3491 extern uint_t ip_threads_per_cpu; 3492 extern uint_t ip_squeues_per_cpu; 3493 extern uint_t ip_soft_rings_cnt; 3494 3495 typedef struct squeue_set_s { 3496 kmutex_t sqs_lock; 3497 struct squeue_s **sqs_list; 3498 int sqs_size; 3499 int sqs_max_size; 3500 processorid_t sqs_bind; 3501 } squeue_set_t; 3502 3503 #define IP_SQUEUE_GET(hint) \ 3504 ((!ip_squeue_fanout) ? (CPU->cpu_squeue_set->sqs_list[0]) : \ 3505 ip_squeue_random(hint)) 3506 3507 typedef void (*squeue_func_t)(squeue_t *, mblk_t *, sqproc_t, void *, uint8_t); 3508 3509 extern void ip_squeue_init(void (*)(squeue_t *)); 3510 extern squeue_t *ip_squeue_random(uint_t); 3511 extern squeue_t *ip_squeue_get(ill_rx_ring_t *); 3512 extern void ip_squeue_get_pkts(squeue_t *); 3513 extern int ip_squeue_bind_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *); 3514 extern int ip_squeue_bind_get(queue_t *, mblk_t *, caddr_t, cred_t *); 3515 extern void ip_squeue_clean(void *, mblk_t *, void *); 3516 extern void ip_resume_tcp_bind(void *, mblk_t *, void *); 3517 extern void ip_soft_ring_assignment(ill_t *, ill_rx_ring_t *, 3518 mblk_t *, struct mac_header_info_s *); 3519 3520 extern void tcp_wput(queue_t *, mblk_t *); 3521 3522 extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, 3523 struct ip6_mtuinfo *); 3524 extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); 3525 3526 typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); 3527 3528 /* 3529 * Squeue tags. Tags only need to be unique when the callback function is the 3530 * same to distinguish between different calls, but we use unique tags for 3531 * convenience anyway. 3532 */ 3533 #define SQTAG_IP_INPUT 1 3534 #define SQTAG_TCP_INPUT_ICMP_ERR 2 3535 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 3536 #define SQTAG_IP_TCP_INPUT 4 3537 #define SQTAG_IP6_TCP_INPUT 5 3538 #define SQTAG_IP_TCP_CLOSE 6 3539 #define SQTAG_TCP_OUTPUT 7 3540 #define SQTAG_TCP_TIMER 8 3541 #define SQTAG_TCP_TIMEWAIT 9 3542 #define SQTAG_TCP_ACCEPT_FINISH 10 3543 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 3544 #define SQTAG_TCP_ACCEPT_PENDING 12 3545 #define SQTAG_TCP_LISTEN_DISCON 13 3546 #define SQTAG_TCP_CONN_REQ 14 3547 #define SQTAG_TCP_EAGER_BLOWOFF 15 3548 #define SQTAG_TCP_EAGER_CLEANUP 16 3549 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 3550 #define SQTAG_TCP_CONN_IND 18 3551 #define SQTAG_TCP_RSRV 19 3552 #define SQTAG_TCP_ABORT_BUCKET 20 3553 #define SQTAG_TCP_REINPUT 21 3554 #define SQTAG_TCP_REINPUT_EAGER 22 3555 #define SQTAG_TCP_INPUT_MCTL 23 3556 #define SQTAG_TCP_RPUTOTHER 24 3557 #define SQTAG_IP_PROTO_AGAIN 25 3558 #define SQTAG_IP_FANOUT_TCP 26 3559 #define SQTAG_IPSQ_CLEAN_RING 27 3560 #define SQTAG_TCP_WPUT_OTHER 28 3561 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 3562 #define SQTAG_TCP_SEND_PENDING 30 3563 #define SQTAG_BIND_RETRY 31 3564 #define SQTAG_UDP_FANOUT 32 3565 #define SQTAG_UDP_INPUT 33 3566 #define SQTAG_UDP_WPUT 34 3567 #define SQTAG_UDP_OUTPUT 35 3568 #define SQTAG_TCP_KSSL_INPUT 36 3569 #define SQTAG_TCP_DROP_Q0 37 3570 3571 #define NOT_OVER_IP(ip_wq) \ 3572 (ip_wq->q_next != NULL || \ 3573 (ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || \ 3574 strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname, \ 3575 IP_MOD_NAME) != 0 || \ 3576 ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) 3577 3578 #endif /* _KERNEL */ 3579 3580 #ifdef __cplusplus 3581 } 3582 #endif 3583 3584 #endif /* _INET_IP_H */ 3585