1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * ZFS fault injection 28 * 29 * To handle fault injection, we keep track of a series of zinject_record_t 30 * structures which describe which logical block(s) should be injected with a 31 * fault. These are kept in a global list. Each record corresponds to a given 32 * spa_t and maintains a special hold on the spa_t so that it cannot be deleted 33 * or exported while the injection record exists. 34 * 35 * Device level injection is done using the 'zi_guid' field. If this is set, it 36 * means that the error is destined for a particular device, not a piece of 37 * data. 38 * 39 * This is a rather poor data structure and algorithm, but we don't expect more 40 * than a few faults at any one time, so it should be sufficient for our needs. 41 */ 42 43 #include <sys/arc.h> 44 #include <sys/zio_impl.h> 45 #include <sys/zfs_ioctl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/dmu_objset.h> 48 #include <sys/fs/zfs.h> 49 50 uint32_t zio_injection_enabled; 51 52 /* 53 * Data describing each zinject handler registered on the system, and 54 * contains the list node linking the handler in the global zinject 55 * handler list. 56 */ 57 typedef struct inject_handler { 58 int zi_id; 59 spa_t *zi_spa; 60 zinject_record_t zi_record; 61 uint64_t *zi_lanes; 62 int zi_next_lane; 63 list_node_t zi_link; 64 } inject_handler_t; 65 66 /* 67 * List of all zinject handlers registered on the system, protected by 68 * the inject_lock defined below. 69 */ 70 static list_t inject_handlers; 71 72 /* 73 * This protects insertion into, and traversal of, the inject handler 74 * list defined above; as well as the inject_delay_count. Any time a 75 * handler is inserted or removed from the list, this lock should be 76 * taken as a RW_WRITER; and any time traversal is done over the list 77 * (without modification to it) this lock should be taken as a RW_READER. 78 */ 79 static krwlock_t inject_lock; 80 81 /* 82 * This holds the number of zinject delay handlers that have been 83 * registered on the system. It is protected by the inject_lock defined 84 * above. Thus modifications to this count must be a RW_WRITER of the 85 * inject_lock, and reads of this count must be (at least) a RW_READER 86 * of the lock. 87 */ 88 static int inject_delay_count = 0; 89 90 /* 91 * This lock is used only in zio_handle_io_delay(), refer to the comment 92 * in that function for more details. 93 */ 94 static kmutex_t inject_delay_mtx; 95 96 /* 97 * Used to assign unique identifying numbers to each new zinject handler. 98 */ 99 static int inject_next_id = 1; 100 101 /* 102 * Returns true if the given record matches the I/O in progress. 103 */ 104 static boolean_t 105 zio_match_handler(zbookmark_phys_t *zb, uint64_t type, 106 zinject_record_t *record, int error) 107 { 108 /* 109 * Check for a match against the MOS, which is based on type 110 */ 111 if (zb->zb_objset == DMU_META_OBJSET && 112 record->zi_objset == DMU_META_OBJSET && 113 record->zi_object == DMU_META_DNODE_OBJECT) { 114 if (record->zi_type == DMU_OT_NONE || 115 type == record->zi_type) 116 return (record->zi_freq == 0 || 117 spa_get_random(100) < record->zi_freq); 118 else 119 return (B_FALSE); 120 } 121 122 /* 123 * Check for an exact match. 124 */ 125 if (zb->zb_objset == record->zi_objset && 126 zb->zb_object == record->zi_object && 127 zb->zb_level == record->zi_level && 128 zb->zb_blkid >= record->zi_start && 129 zb->zb_blkid <= record->zi_end && 130 error == record->zi_error) 131 return (record->zi_freq == 0 || 132 spa_get_random(100) < record->zi_freq); 133 134 return (B_FALSE); 135 } 136 137 /* 138 * Panic the system when a config change happens in the function 139 * specified by tag. 140 */ 141 void 142 zio_handle_panic_injection(spa_t *spa, char *tag, uint64_t type) 143 { 144 inject_handler_t *handler; 145 146 rw_enter(&inject_lock, RW_READER); 147 148 for (handler = list_head(&inject_handlers); handler != NULL; 149 handler = list_next(&inject_handlers, handler)) { 150 151 if (spa != handler->zi_spa) 152 continue; 153 154 if (handler->zi_record.zi_type == type && 155 strcmp(tag, handler->zi_record.zi_func) == 0) 156 panic("Panic requested in function %s\n", tag); 157 } 158 159 rw_exit(&inject_lock); 160 } 161 162 /* 163 * Determine if the I/O in question should return failure. Returns the errno 164 * to be returned to the caller. 165 */ 166 int 167 zio_handle_fault_injection(zio_t *zio, int error) 168 { 169 int ret = 0; 170 inject_handler_t *handler; 171 172 /* 173 * Ignore I/O not associated with any logical data. 174 */ 175 if (zio->io_logical == NULL) 176 return (0); 177 178 /* 179 * Currently, we only support fault injection on reads. 180 */ 181 if (zio->io_type != ZIO_TYPE_READ) 182 return (0); 183 184 rw_enter(&inject_lock, RW_READER); 185 186 for (handler = list_head(&inject_handlers); handler != NULL; 187 handler = list_next(&inject_handlers, handler)) { 188 189 if (zio->io_spa != handler->zi_spa || 190 handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT) 191 continue; 192 193 /* If this handler matches, return EIO */ 194 if (zio_match_handler(&zio->io_logical->io_bookmark, 195 zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE, 196 &handler->zi_record, error)) { 197 ret = error; 198 break; 199 } 200 } 201 202 rw_exit(&inject_lock); 203 204 return (ret); 205 } 206 207 /* 208 * Determine if the zio is part of a label update and has an injection 209 * handler associated with that portion of the label. Currently, we 210 * allow error injection in either the nvlist or the uberblock region of 211 * of the vdev label. 212 */ 213 int 214 zio_handle_label_injection(zio_t *zio, int error) 215 { 216 inject_handler_t *handler; 217 vdev_t *vd = zio->io_vd; 218 uint64_t offset = zio->io_offset; 219 int label; 220 int ret = 0; 221 222 if (offset >= VDEV_LABEL_START_SIZE && 223 offset < vd->vdev_psize - VDEV_LABEL_END_SIZE) 224 return (0); 225 226 rw_enter(&inject_lock, RW_READER); 227 228 for (handler = list_head(&inject_handlers); handler != NULL; 229 handler = list_next(&inject_handlers, handler)) { 230 uint64_t start = handler->zi_record.zi_start; 231 uint64_t end = handler->zi_record.zi_end; 232 233 if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT) 234 continue; 235 236 /* 237 * The injection region is the relative offsets within a 238 * vdev label. We must determine the label which is being 239 * updated and adjust our region accordingly. 240 */ 241 label = vdev_label_number(vd->vdev_psize, offset); 242 start = vdev_label_offset(vd->vdev_psize, label, start); 243 end = vdev_label_offset(vd->vdev_psize, label, end); 244 245 if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid && 246 (offset >= start && offset <= end)) { 247 ret = error; 248 break; 249 } 250 } 251 rw_exit(&inject_lock); 252 return (ret); 253 } 254 255 256 int 257 zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error) 258 { 259 inject_handler_t *handler; 260 int ret = 0; 261 262 /* 263 * We skip over faults in the labels unless it's during 264 * device open (i.e. zio == NULL). 265 */ 266 if (zio != NULL) { 267 uint64_t offset = zio->io_offset; 268 269 if (offset < VDEV_LABEL_START_SIZE || 270 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE) 271 return (0); 272 } 273 274 rw_enter(&inject_lock, RW_READER); 275 276 for (handler = list_head(&inject_handlers); handler != NULL; 277 handler = list_next(&inject_handlers, handler)) { 278 279 if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT) 280 continue; 281 282 if (vd->vdev_guid == handler->zi_record.zi_guid) { 283 if (handler->zi_record.zi_failfast && 284 (zio == NULL || (zio->io_flags & 285 (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) { 286 continue; 287 } 288 289 /* Handle type specific I/O failures */ 290 if (zio != NULL && 291 handler->zi_record.zi_iotype != ZIO_TYPES && 292 handler->zi_record.zi_iotype != zio->io_type) 293 continue; 294 295 if (handler->zi_record.zi_error == error) { 296 /* 297 * For a failed open, pretend like the device 298 * has gone away. 299 */ 300 if (error == ENXIO) 301 vd->vdev_stat.vs_aux = 302 VDEV_AUX_OPEN_FAILED; 303 304 /* 305 * Treat these errors as if they had been 306 * retried so that all the appropriate stats 307 * and FMA events are generated. 308 */ 309 if (!handler->zi_record.zi_failfast && 310 zio != NULL) 311 zio->io_flags |= ZIO_FLAG_IO_RETRY; 312 313 ret = error; 314 break; 315 } 316 if (handler->zi_record.zi_error == ENXIO) { 317 ret = SET_ERROR(EIO); 318 break; 319 } 320 } 321 } 322 323 rw_exit(&inject_lock); 324 325 return (ret); 326 } 327 328 /* 329 * Simulate hardware that ignores cache flushes. For requested number 330 * of seconds nix the actual writing to disk. 331 */ 332 void 333 zio_handle_ignored_writes(zio_t *zio) 334 { 335 inject_handler_t *handler; 336 337 rw_enter(&inject_lock, RW_READER); 338 339 for (handler = list_head(&inject_handlers); handler != NULL; 340 handler = list_next(&inject_handlers, handler)) { 341 342 /* Ignore errors not destined for this pool */ 343 if (zio->io_spa != handler->zi_spa || 344 handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES) 345 continue; 346 347 /* 348 * Positive duration implies # of seconds, negative 349 * a number of txgs 350 */ 351 if (handler->zi_record.zi_timer == 0) { 352 if (handler->zi_record.zi_duration > 0) 353 handler->zi_record.zi_timer = ddi_get_lbolt64(); 354 else 355 handler->zi_record.zi_timer = zio->io_txg; 356 } 357 358 /* Have a "problem" writing 60% of the time */ 359 if (spa_get_random(100) < 60) 360 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 361 break; 362 } 363 364 rw_exit(&inject_lock); 365 } 366 367 void 368 spa_handle_ignored_writes(spa_t *spa) 369 { 370 inject_handler_t *handler; 371 372 if (zio_injection_enabled == 0) 373 return; 374 375 rw_enter(&inject_lock, RW_READER); 376 377 for (handler = list_head(&inject_handlers); handler != NULL; 378 handler = list_next(&inject_handlers, handler)) { 379 380 if (spa != handler->zi_spa || 381 handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES) 382 continue; 383 384 if (handler->zi_record.zi_duration > 0) { 385 VERIFY(handler->zi_record.zi_timer == 0 || 386 handler->zi_record.zi_timer + 387 handler->zi_record.zi_duration * hz > 388 ddi_get_lbolt64()); 389 } else { 390 /* duration is negative so the subtraction here adds */ 391 VERIFY(handler->zi_record.zi_timer == 0 || 392 handler->zi_record.zi_timer - 393 handler->zi_record.zi_duration >= 394 spa_syncing_txg(spa)); 395 } 396 } 397 398 rw_exit(&inject_lock); 399 } 400 401 hrtime_t 402 zio_handle_io_delay(zio_t *zio) 403 { 404 vdev_t *vd = zio->io_vd; 405 inject_handler_t *min_handler = NULL; 406 hrtime_t min_target = 0; 407 408 rw_enter(&inject_lock, RW_READER); 409 410 /* 411 * inject_delay_count is a subset of zio_injection_enabled that 412 * is only incremented for delay handlers. These checks are 413 * mainly added to remind the reader why we're not explicitly 414 * checking zio_injection_enabled like the other functions. 415 */ 416 IMPLY(inject_delay_count > 0, zio_injection_enabled > 0); 417 IMPLY(zio_injection_enabled == 0, inject_delay_count == 0); 418 419 /* 420 * If there aren't any inject delay handlers registered, then we 421 * can short circuit and simply return 0 here. A value of zero 422 * informs zio_delay_interrupt() that this request should not be 423 * delayed. This short circuit keeps us from acquiring the 424 * inject_delay_mutex unnecessarily. 425 */ 426 if (inject_delay_count == 0) { 427 rw_exit(&inject_lock); 428 return (0); 429 } 430 431 /* 432 * Each inject handler has a number of "lanes" associated with 433 * it. Each lane is able to handle requests independently of one 434 * another, and at a latency defined by the inject handler 435 * record's zi_timer field. Thus if a handler in configured with 436 * a single lane with a 10ms latency, it will delay requests 437 * such that only a single request is completed every 10ms. So, 438 * if more than one request is attempted per each 10ms interval, 439 * the average latency of the requests will be greater than 440 * 10ms; but if only a single request is submitted each 10ms 441 * interval the average latency will be 10ms. 442 * 443 * We need to acquire this mutex to prevent multiple concurrent 444 * threads being assigned to the same lane of a given inject 445 * handler. The mutex allows us to perform the following two 446 * operations atomically: 447 * 448 * 1. determine the minimum handler and minimum target 449 * value of all the possible handlers 450 * 2. update that minimum handler's lane array 451 * 452 * Without atomicity, two (or more) threads could pick the same 453 * lane in step (1), and then conflict with each other in step 454 * (2). This could allow a single lane handler to process 455 * multiple requests simultaneously, which shouldn't be possible. 456 */ 457 mutex_enter(&inject_delay_mtx); 458 459 for (inject_handler_t *handler = list_head(&inject_handlers); 460 handler != NULL; handler = list_next(&inject_handlers, handler)) { 461 if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO) 462 continue; 463 464 if (vd->vdev_guid != handler->zi_record.zi_guid) 465 continue; 466 467 /* 468 * Defensive; should never happen as the array allocation 469 * occurs prior to inserting this handler on the list. 470 */ 471 ASSERT3P(handler->zi_lanes, !=, NULL); 472 473 /* 474 * This should never happen, the zinject command should 475 * prevent a user from setting an IO delay with zero lanes. 476 */ 477 ASSERT3U(handler->zi_record.zi_nlanes, !=, 0); 478 479 ASSERT3U(handler->zi_record.zi_nlanes, >, 480 handler->zi_next_lane); 481 482 /* 483 * We want to issue this IO to the lane that will become 484 * idle the soonest, so we compare the soonest this 485 * specific handler can complete the IO with all other 486 * handlers, to find the lowest value of all possible 487 * lanes. We then use this lane to submit the request. 488 * 489 * Since each handler has a constant value for its 490 * delay, we can just use the "next" lane for that 491 * handler; as it will always be the lane with the 492 * lowest value for that particular handler (i.e. the 493 * lane that will become idle the soonest). This saves a 494 * scan of each handler's lanes array. 495 * 496 * There's two cases to consider when determining when 497 * this specific IO request should complete. If this 498 * lane is idle, we want to "submit" the request now so 499 * it will complete after zi_timer milliseconds. Thus, 500 * we set the target to now + zi_timer. 501 * 502 * If the lane is busy, we want this request to complete 503 * zi_timer milliseconds after the lane becomes idle. 504 * Since the 'zi_lanes' array holds the time at which 505 * each lane will become idle, we use that value to 506 * determine when this request should complete. 507 */ 508 hrtime_t idle = handler->zi_record.zi_timer + gethrtime(); 509 hrtime_t busy = handler->zi_record.zi_timer + 510 handler->zi_lanes[handler->zi_next_lane]; 511 hrtime_t target = MAX(idle, busy); 512 513 if (min_handler == NULL) { 514 min_handler = handler; 515 min_target = target; 516 continue; 517 } 518 519 ASSERT3P(min_handler, !=, NULL); 520 ASSERT3U(min_target, !=, 0); 521 522 /* 523 * We don't yet increment the "next lane" variable since 524 * we still might find a lower value lane in another 525 * handler during any remaining iterations. Once we're 526 * sure we've selected the absolute minimum, we'll claim 527 * the lane and increment the handler's "next lane" 528 * field below. 529 */ 530 531 if (target < min_target) { 532 min_handler = handler; 533 min_target = target; 534 } 535 } 536 537 /* 538 * 'min_handler' will be NULL if no IO delays are registered for 539 * this vdev, otherwise it will point to the handler containing 540 * the lane that will become idle the soonest. 541 */ 542 if (min_handler != NULL) { 543 ASSERT3U(min_target, !=, 0); 544 min_handler->zi_lanes[min_handler->zi_next_lane] = min_target; 545 546 /* 547 * If we've used all possible lanes for this handler, 548 * loop back and start using the first lane again; 549 * otherwise, just increment the lane index. 550 */ 551 min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) % 552 min_handler->zi_record.zi_nlanes; 553 } 554 555 mutex_exit(&inject_delay_mtx); 556 rw_exit(&inject_lock); 557 558 return (min_target); 559 } 560 561 /* 562 * Create a new handler for the given record. We add it to the list, adding 563 * a reference to the spa_t in the process. We increment zio_injection_enabled, 564 * which is the switch to trigger all fault injection. 565 */ 566 int 567 zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record) 568 { 569 inject_handler_t *handler; 570 int error; 571 spa_t *spa; 572 573 /* 574 * If this is pool-wide metadata, make sure we unload the corresponding 575 * spa_t, so that the next attempt to load it will trigger the fault. 576 * We call spa_reset() to unload the pool appropriately. 577 */ 578 if (flags & ZINJECT_UNLOAD_SPA) 579 if ((error = spa_reset(name)) != 0) 580 return (error); 581 582 if (record->zi_cmd == ZINJECT_DELAY_IO) { 583 /* 584 * A value of zero for the number of lanes or for the 585 * delay time doesn't make sense. 586 */ 587 if (record->zi_timer == 0 || record->zi_nlanes == 0) 588 return (SET_ERROR(EINVAL)); 589 590 /* 591 * The number of lanes is directly mapped to the size of 592 * an array used by the handler. Thus, to ensure the 593 * user doesn't trigger an allocation that's "too large" 594 * we cap the number of lanes here. 595 */ 596 if (record->zi_nlanes >= UINT16_MAX) 597 return (SET_ERROR(EINVAL)); 598 } 599 600 if (!(flags & ZINJECT_NULL)) { 601 /* 602 * spa_inject_ref() will add an injection reference, which will 603 * prevent the pool from being removed from the namespace while 604 * still allowing it to be unloaded. 605 */ 606 if ((spa = spa_inject_addref(name)) == NULL) 607 return (SET_ERROR(ENOENT)); 608 609 handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP); 610 611 handler->zi_spa = spa; 612 handler->zi_record = *record; 613 614 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) { 615 handler->zi_lanes = kmem_zalloc( 616 sizeof (*handler->zi_lanes) * 617 handler->zi_record.zi_nlanes, KM_SLEEP); 618 handler->zi_next_lane = 0; 619 } else { 620 handler->zi_lanes = NULL; 621 handler->zi_next_lane = 0; 622 } 623 624 rw_enter(&inject_lock, RW_WRITER); 625 626 /* 627 * We can't move this increment into the conditional 628 * above because we need to hold the RW_WRITER lock of 629 * inject_lock, and we don't want to hold that while 630 * allocating the handler's zi_lanes array. 631 */ 632 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) { 633 ASSERT3S(inject_delay_count, >=, 0); 634 inject_delay_count++; 635 ASSERT3S(inject_delay_count, >, 0); 636 } 637 638 *id = handler->zi_id = inject_next_id++; 639 list_insert_tail(&inject_handlers, handler); 640 atomic_inc_32(&zio_injection_enabled); 641 642 rw_exit(&inject_lock); 643 } 644 645 /* 646 * Flush the ARC, so that any attempts to read this data will end up 647 * going to the ZIO layer. Note that this is a little overkill, but 648 * we don't have the necessary ARC interfaces to do anything else, and 649 * fault injection isn't a performance critical path. 650 */ 651 if (flags & ZINJECT_FLUSH_ARC) 652 /* 653 * We must use FALSE to ensure arc_flush returns, since 654 * we're not preventing concurrent ARC insertions. 655 */ 656 arc_flush(NULL, FALSE); 657 658 return (0); 659 } 660 661 /* 662 * Returns the next record with an ID greater than that supplied to the 663 * function. Used to iterate over all handlers in the system. 664 */ 665 int 666 zio_inject_list_next(int *id, char *name, size_t buflen, 667 zinject_record_t *record) 668 { 669 inject_handler_t *handler; 670 int ret; 671 672 mutex_enter(&spa_namespace_lock); 673 rw_enter(&inject_lock, RW_READER); 674 675 for (handler = list_head(&inject_handlers); handler != NULL; 676 handler = list_next(&inject_handlers, handler)) 677 if (handler->zi_id > *id) 678 break; 679 680 if (handler) { 681 *record = handler->zi_record; 682 *id = handler->zi_id; 683 (void) strncpy(name, spa_name(handler->zi_spa), buflen); 684 ret = 0; 685 } else { 686 ret = SET_ERROR(ENOENT); 687 } 688 689 rw_exit(&inject_lock); 690 mutex_exit(&spa_namespace_lock); 691 692 return (ret); 693 } 694 695 /* 696 * Clear the fault handler with the given identifier, or return ENOENT if none 697 * exists. 698 */ 699 int 700 zio_clear_fault(int id) 701 { 702 inject_handler_t *handler; 703 704 rw_enter(&inject_lock, RW_WRITER); 705 706 for (handler = list_head(&inject_handlers); handler != NULL; 707 handler = list_next(&inject_handlers, handler)) 708 if (handler->zi_id == id) 709 break; 710 711 if (handler == NULL) { 712 rw_exit(&inject_lock); 713 return (SET_ERROR(ENOENT)); 714 } 715 716 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) { 717 ASSERT3S(inject_delay_count, >, 0); 718 inject_delay_count--; 719 ASSERT3S(inject_delay_count, >=, 0); 720 } 721 722 list_remove(&inject_handlers, handler); 723 rw_exit(&inject_lock); 724 725 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) { 726 ASSERT3P(handler->zi_lanes, !=, NULL); 727 kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) * 728 handler->zi_record.zi_nlanes); 729 } else { 730 ASSERT3P(handler->zi_lanes, ==, NULL); 731 } 732 733 spa_inject_delref(handler->zi_spa); 734 kmem_free(handler, sizeof (inject_handler_t)); 735 atomic_dec_32(&zio_injection_enabled); 736 737 return (0); 738 } 739 740 void 741 zio_inject_init(void) 742 { 743 rw_init(&inject_lock, NULL, RW_DEFAULT, NULL); 744 mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL); 745 list_create(&inject_handlers, sizeof (inject_handler_t), 746 offsetof(inject_handler_t, zi_link)); 747 } 748 749 void 750 zio_inject_fini(void) 751 { 752 list_destroy(&inject_handlers); 753 mutex_destroy(&inject_delay_mtx); 754 rw_destroy(&inject_lock); 755 } 756