xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio_inject.c (revision 45ede40b2394db7967e59f19288fae9b62efd4aa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2017, Intel Corporation.
25  */
26 
27 /*
28  * ZFS fault injection
29  *
30  * To handle fault injection, we keep track of a series of zinject_record_t
31  * structures which describe which logical block(s) should be injected with a
32  * fault.  These are kept in a global list.  Each record corresponds to a given
33  * spa_t and maintains a special hold on the spa_t so that it cannot be deleted
34  * or exported while the injection record exists.
35  *
36  * Device level injection is done using the 'zi_guid' field.  If this is set, it
37  * means that the error is destined for a particular device, not a piece of
38  * data.
39  *
40  * This is a rather poor data structure and algorithm, but we don't expect more
41  * than a few faults at any one time, so it should be sufficient for our needs.
42  */
43 
44 #include <sys/arc.h>
45 #include <sys/zio_impl.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/dmu_objset.h>
49 #include <sys/dsl_dataset.h>
50 #include <sys/fs/zfs.h>
51 
52 uint32_t zio_injection_enabled = 0;
53 
54 /*
55  * Data describing each zinject handler registered on the system, and
56  * contains the list node linking the handler in the global zinject
57  * handler list.
58  */
59 typedef struct inject_handler {
60 	int			zi_id;
61 	spa_t			*zi_spa;
62 	zinject_record_t	zi_record;
63 	uint64_t		*zi_lanes;
64 	int			zi_next_lane;
65 	list_node_t		zi_link;
66 } inject_handler_t;
67 
68 /*
69  * List of all zinject handlers registered on the system, protected by
70  * the inject_lock defined below.
71  */
72 static list_t inject_handlers;
73 
74 /*
75  * This protects insertion into, and traversal of, the inject handler
76  * list defined above; as well as the inject_delay_count. Any time a
77  * handler is inserted or removed from the list, this lock should be
78  * taken as a RW_WRITER; and any time traversal is done over the list
79  * (without modification to it) this lock should be taken as a RW_READER.
80  */
81 static krwlock_t inject_lock;
82 
83 /*
84  * This holds the number of zinject delay handlers that have been
85  * registered on the system. It is protected by the inject_lock defined
86  * above. Thus modifications to this count must be a RW_WRITER of the
87  * inject_lock, and reads of this count must be (at least) a RW_READER
88  * of the lock.
89  */
90 static int inject_delay_count = 0;
91 
92 /*
93  * This lock is used only in zio_handle_io_delay(), refer to the comment
94  * in that function for more details.
95  */
96 static kmutex_t inject_delay_mtx;
97 
98 /*
99  * Used to assign unique identifying numbers to each new zinject handler.
100  */
101 static int inject_next_id = 1;
102 
103 /*
104  * Test if the requested frequency was triggered
105  */
106 static boolean_t
107 freq_triggered(uint32_t frequency)
108 {
109 	/*
110 	 * zero implies always (100%)
111 	 */
112 	if (frequency == 0)
113 		return (B_TRUE);
114 
115 	/*
116 	 * Note: we still handle legacy (unscaled) frequecy values
117 	 */
118 	uint32_t maximum = (frequency <= 100) ? 100 : ZI_PERCENTAGE_MAX;
119 
120 	return (spa_get_random(maximum) < frequency);
121 }
122 
123 /*
124  * Returns true if the given record matches the I/O in progress.
125  */
126 static boolean_t
127 zio_match_handler(zbookmark_phys_t *zb, uint64_t type, int dva,
128     zinject_record_t *record, int error)
129 {
130 	/*
131 	 * Check for a match against the MOS, which is based on type
132 	 */
133 	if (zb->zb_objset == DMU_META_OBJSET &&
134 	    record->zi_objset == DMU_META_OBJSET &&
135 	    record->zi_object == DMU_META_DNODE_OBJECT) {
136 		if (record->zi_type == DMU_OT_NONE ||
137 		    type == record->zi_type)
138 			return (freq_triggered(record->zi_freq));
139 		else
140 			return (B_FALSE);
141 	}
142 
143 	/*
144 	 * Check for an exact match.
145 	 */
146 	if (zb->zb_objset == record->zi_objset &&
147 	    zb->zb_object == record->zi_object &&
148 	    zb->zb_level == record->zi_level &&
149 	    zb->zb_blkid >= record->zi_start &&
150 	    zb->zb_blkid <= record->zi_end &&
151 	    (record->zi_dvas == 0 || (record->zi_dvas & (1ULL << dva))) &&
152 	    error == record->zi_error) {
153 		return (freq_triggered(record->zi_freq));
154 	}
155 
156 	return (B_FALSE);
157 }
158 
159 /*
160  * Panic the system when a config change happens in the function
161  * specified by tag.
162  */
163 void
164 zio_handle_panic_injection(spa_t *spa, char *tag, uint64_t type)
165 {
166 	inject_handler_t *handler;
167 
168 	rw_enter(&inject_lock, RW_READER);
169 
170 	for (handler = list_head(&inject_handlers); handler != NULL;
171 	    handler = list_next(&inject_handlers, handler)) {
172 
173 		if (spa != handler->zi_spa)
174 			continue;
175 
176 		if (handler->zi_record.zi_type == type &&
177 		    strcmp(tag, handler->zi_record.zi_func) == 0)
178 			panic("Panic requested in function %s\n", tag);
179 	}
180 
181 	rw_exit(&inject_lock);
182 }
183 
184 
185 /*
186  * If this is a physical I/O for a vdev child determine which DVA it is
187  * for. We iterate backwards through the DVAs matching on the offset so
188  * that we end up with ZI_NO_DVA (-1) if we don't find a match.
189  */
190 static int
191 zio_match_dva(zio_t *zio)
192 {
193 	int i = ZI_NO_DVA;
194 
195 	if (zio->io_bp != NULL && zio->io_vd != NULL &&
196 	    zio->io_child_type == ZIO_CHILD_VDEV) {
197 		for (i = BP_GET_NDVAS(zio->io_bp) - 1; i >= 0; i--) {
198 			dva_t *dva = &zio->io_bp->blk_dva[i];
199 			uint64_t off = DVA_GET_OFFSET(dva);
200 			vdev_t *vd = vdev_lookup_top(zio->io_spa,
201 			    DVA_GET_VDEV(dva));
202 
203 			/* Compensate for vdev label added to leaves */
204 			if (zio->io_vd->vdev_ops->vdev_op_leaf)
205 				off += VDEV_LABEL_START_SIZE;
206 
207 			if (zio->io_vd == vd && zio->io_offset == off)
208 				break;
209 		}
210 	}
211 
212 	return (i);
213 }
214 
215 
216 /*
217  * Inject a decryption failure. Decryption failures can occur in
218  * both the ARC and the ZIO layers.
219  */
220 int
221 zio_handle_decrypt_injection(spa_t *spa, const zbookmark_phys_t *zb,
222     uint64_t type, int error)
223 {
224 	int ret = 0;
225 	inject_handler_t *handler;
226 
227 	rw_enter(&inject_lock, RW_READER);
228 
229 	for (handler = list_head(&inject_handlers); handler != NULL;
230 	    handler = list_next(&inject_handlers, handler)) {
231 
232 		if (spa != handler->zi_spa ||
233 		    handler->zi_record.zi_cmd != ZINJECT_DECRYPT_FAULT)
234 			continue;
235 
236 		if (zio_match_handler((zbookmark_phys_t *)zb, type, ZI_NO_DVA,
237 		    &handler->zi_record, error)) {
238 			ret = error;
239 			break;
240 		}
241 	}
242 
243 	rw_exit(&inject_lock);
244 	return (ret);
245 }
246 
247 /*
248  * Determine if the I/O in question should return failure.  Returns the errno
249  * to be returned to the caller.
250  */
251 int
252 zio_handle_fault_injection(zio_t *zio, int error)
253 {
254 	int ret = 0;
255 	inject_handler_t *handler;
256 
257 	/*
258 	 * Ignore I/O not associated with any logical data.
259 	 */
260 	if (zio->io_logical == NULL)
261 		return (0);
262 
263 	/*
264 	 * Currently, we only support fault injection on reads.
265 	 */
266 	if (zio->io_type != ZIO_TYPE_READ)
267 		return (0);
268 
269 	rw_enter(&inject_lock, RW_READER);
270 
271 	for (handler = list_head(&inject_handlers); handler != NULL;
272 	    handler = list_next(&inject_handlers, handler)) {
273 
274 		if (zio->io_spa != handler->zi_spa ||
275 		    handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
276 			continue;
277 
278 		/* If this handler matches, return the specified error */
279 		if (zio_match_handler(&zio->io_logical->io_bookmark,
280 		    zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
281 		    zio_match_dva(zio), &handler->zi_record, error)) {
282 			ret = error;
283 			break;
284 		}
285 	}
286 
287 	rw_exit(&inject_lock);
288 
289 	return (ret);
290 }
291 
292 /*
293  * Determine if the zio is part of a label update and has an injection
294  * handler associated with that portion of the label. Currently, we
295  * allow error injection in either the nvlist or the uberblock region of
296  * of the vdev label.
297  */
298 int
299 zio_handle_label_injection(zio_t *zio, int error)
300 {
301 	inject_handler_t *handler;
302 	vdev_t *vd = zio->io_vd;
303 	uint64_t offset = zio->io_offset;
304 	int label;
305 	int ret = 0;
306 
307 	if (offset >= VDEV_LABEL_START_SIZE &&
308 	    offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
309 		return (0);
310 
311 	rw_enter(&inject_lock, RW_READER);
312 
313 	for (handler = list_head(&inject_handlers); handler != NULL;
314 	    handler = list_next(&inject_handlers, handler)) {
315 		uint64_t start = handler->zi_record.zi_start;
316 		uint64_t end = handler->zi_record.zi_end;
317 
318 		if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
319 			continue;
320 
321 		/*
322 		 * The injection region is the relative offsets within a
323 		 * vdev label. We must determine the label which is being
324 		 * updated and adjust our region accordingly.
325 		 */
326 		label = vdev_label_number(vd->vdev_psize, offset);
327 		start = vdev_label_offset(vd->vdev_psize, label, start);
328 		end = vdev_label_offset(vd->vdev_psize, label, end);
329 
330 		if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
331 		    (offset >= start && offset <= end)) {
332 			ret = error;
333 			break;
334 		}
335 	}
336 	rw_exit(&inject_lock);
337 	return (ret);
338 }
339 
340 
341 int
342 zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
343 {
344 	inject_handler_t *handler;
345 	int ret = 0;
346 
347 	/*
348 	 * We skip over faults in the labels unless it's during
349 	 * device open (i.e. zio == NULL).
350 	 */
351 	if (zio != NULL) {
352 		uint64_t offset = zio->io_offset;
353 
354 		if (offset < VDEV_LABEL_START_SIZE ||
355 		    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
356 			return (0);
357 	}
358 
359 	rw_enter(&inject_lock, RW_READER);
360 
361 	for (handler = list_head(&inject_handlers); handler != NULL;
362 	    handler = list_next(&inject_handlers, handler)) {
363 
364 		if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
365 			continue;
366 
367 		if (vd->vdev_guid == handler->zi_record.zi_guid) {
368 			if (handler->zi_record.zi_failfast &&
369 			    (zio == NULL || (zio->io_flags &
370 			    (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
371 				continue;
372 			}
373 
374 			/* Handle type specific I/O failures */
375 			if (zio != NULL &&
376 			    handler->zi_record.zi_iotype != ZIO_TYPES &&
377 			    handler->zi_record.zi_iotype != zio->io_type)
378 				continue;
379 
380 			if (handler->zi_record.zi_error == error) {
381 				/*
382 				 * limit error injection if requested
383 				 */
384 				if (!freq_triggered(handler->zi_record.zi_freq))
385 					continue;
386 
387 				/*
388 				 * For a failed open, pretend like the device
389 				 * has gone away.
390 				 */
391 				if (error == ENXIO)
392 					vd->vdev_stat.vs_aux =
393 					    VDEV_AUX_OPEN_FAILED;
394 
395 				/*
396 				 * Treat these errors as if they had been
397 				 * retried so that all the appropriate stats
398 				 * and FMA events are generated.
399 				 */
400 				if (!handler->zi_record.zi_failfast &&
401 				    zio != NULL)
402 					zio->io_flags |= ZIO_FLAG_IO_RETRY;
403 
404 				ret = error;
405 				break;
406 			}
407 			if (handler->zi_record.zi_error == ENXIO) {
408 				ret = SET_ERROR(EIO);
409 				break;
410 			}
411 		}
412 	}
413 
414 	rw_exit(&inject_lock);
415 
416 	return (ret);
417 }
418 
419 /*
420  * Simulate hardware that ignores cache flushes.  For requested number
421  * of seconds nix the actual writing to disk.
422  */
423 void
424 zio_handle_ignored_writes(zio_t *zio)
425 {
426 	inject_handler_t *handler;
427 
428 	rw_enter(&inject_lock, RW_READER);
429 
430 	for (handler = list_head(&inject_handlers); handler != NULL;
431 	    handler = list_next(&inject_handlers, handler)) {
432 
433 		/* Ignore errors not destined for this pool */
434 		if (zio->io_spa != handler->zi_spa ||
435 		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
436 			continue;
437 
438 		/*
439 		 * Positive duration implies # of seconds, negative
440 		 * a number of txgs
441 		 */
442 		if (handler->zi_record.zi_timer == 0) {
443 			if (handler->zi_record.zi_duration > 0)
444 				handler->zi_record.zi_timer = ddi_get_lbolt64();
445 			else
446 				handler->zi_record.zi_timer = zio->io_txg;
447 		}
448 
449 		/* Have a "problem" writing 60% of the time */
450 		if (spa_get_random(100) < 60)
451 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
452 		break;
453 	}
454 
455 	rw_exit(&inject_lock);
456 }
457 
458 void
459 spa_handle_ignored_writes(spa_t *spa)
460 {
461 	inject_handler_t *handler;
462 
463 	if (zio_injection_enabled == 0)
464 		return;
465 
466 	rw_enter(&inject_lock, RW_READER);
467 
468 	for (handler = list_head(&inject_handlers); handler != NULL;
469 	    handler = list_next(&inject_handlers, handler)) {
470 
471 		if (spa != handler->zi_spa ||
472 		    handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
473 			continue;
474 
475 		if (handler->zi_record.zi_duration > 0) {
476 			VERIFY(handler->zi_record.zi_timer == 0 ||
477 			    handler->zi_record.zi_timer +
478 			    handler->zi_record.zi_duration * hz >
479 			    ddi_get_lbolt64());
480 		} else {
481 			/* duration is negative so the subtraction here adds */
482 			VERIFY(handler->zi_record.zi_timer == 0 ||
483 			    handler->zi_record.zi_timer -
484 			    handler->zi_record.zi_duration >=
485 			    spa_syncing_txg(spa));
486 		}
487 	}
488 
489 	rw_exit(&inject_lock);
490 }
491 
492 hrtime_t
493 zio_handle_io_delay(zio_t *zio)
494 {
495 	vdev_t *vd = zio->io_vd;
496 	inject_handler_t *min_handler = NULL;
497 	hrtime_t min_target = 0;
498 
499 	rw_enter(&inject_lock, RW_READER);
500 
501 	/*
502 	 * inject_delay_count is a subset of zio_injection_enabled that
503 	 * is only incremented for delay handlers. These checks are
504 	 * mainly added to remind the reader why we're not explicitly
505 	 * checking zio_injection_enabled like the other functions.
506 	 */
507 	IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
508 	IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
509 
510 	/*
511 	 * If there aren't any inject delay handlers registered, then we
512 	 * can short circuit and simply return 0 here. A value of zero
513 	 * informs zio_delay_interrupt() that this request should not be
514 	 * delayed. This short circuit keeps us from acquiring the
515 	 * inject_delay_mutex unnecessarily.
516 	 */
517 	if (inject_delay_count == 0) {
518 		rw_exit(&inject_lock);
519 		return (0);
520 	}
521 
522 	/*
523 	 * Each inject handler has a number of "lanes" associated with
524 	 * it. Each lane is able to handle requests independently of one
525 	 * another, and at a latency defined by the inject handler
526 	 * record's zi_timer field. Thus if a handler in configured with
527 	 * a single lane with a 10ms latency, it will delay requests
528 	 * such that only a single request is completed every 10ms. So,
529 	 * if more than one request is attempted per each 10ms interval,
530 	 * the average latency of the requests will be greater than
531 	 * 10ms; but if only a single request is submitted each 10ms
532 	 * interval the average latency will be 10ms.
533 	 *
534 	 * We need to acquire this mutex to prevent multiple concurrent
535 	 * threads being assigned to the same lane of a given inject
536 	 * handler. The mutex allows us to perform the following two
537 	 * operations atomically:
538 	 *
539 	 *	1. determine the minimum handler and minimum target
540 	 *	   value of all the possible handlers
541 	 *	2. update that minimum handler's lane array
542 	 *
543 	 * Without atomicity, two (or more) threads could pick the same
544 	 * lane in step (1), and then conflict with each other in step
545 	 * (2). This could allow a single lane handler to process
546 	 * multiple requests simultaneously, which shouldn't be possible.
547 	 */
548 	mutex_enter(&inject_delay_mtx);
549 
550 	for (inject_handler_t *handler = list_head(&inject_handlers);
551 	    handler != NULL; handler = list_next(&inject_handlers, handler)) {
552 		if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
553 			continue;
554 
555 		if (!freq_triggered(handler->zi_record.zi_freq))
556 			continue;
557 
558 		if (vd->vdev_guid != handler->zi_record.zi_guid)
559 			continue;
560 
561 		/*
562 		 * Defensive; should never happen as the array allocation
563 		 * occurs prior to inserting this handler on the list.
564 		 */
565 		ASSERT3P(handler->zi_lanes, !=, NULL);
566 
567 		/*
568 		 * This should never happen, the zinject command should
569 		 * prevent a user from setting an IO delay with zero lanes.
570 		 */
571 		ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
572 
573 		ASSERT3U(handler->zi_record.zi_nlanes, >,
574 		    handler->zi_next_lane);
575 
576 		/*
577 		 * We want to issue this IO to the lane that will become
578 		 * idle the soonest, so we compare the soonest this
579 		 * specific handler can complete the IO with all other
580 		 * handlers, to find the lowest value of all possible
581 		 * lanes. We then use this lane to submit the request.
582 		 *
583 		 * Since each handler has a constant value for its
584 		 * delay, we can just use the "next" lane for that
585 		 * handler; as it will always be the lane with the
586 		 * lowest value for that particular handler (i.e. the
587 		 * lane that will become idle the soonest). This saves a
588 		 * scan of each handler's lanes array.
589 		 *
590 		 * There's two cases to consider when determining when
591 		 * this specific IO request should complete. If this
592 		 * lane is idle, we want to "submit" the request now so
593 		 * it will complete after zi_timer milliseconds. Thus,
594 		 * we set the target to now + zi_timer.
595 		 *
596 		 * If the lane is busy, we want this request to complete
597 		 * zi_timer milliseconds after the lane becomes idle.
598 		 * Since the 'zi_lanes' array holds the time at which
599 		 * each lane will become idle, we use that value to
600 		 * determine when this request should complete.
601 		 */
602 		hrtime_t idle = handler->zi_record.zi_timer + gethrtime();
603 		hrtime_t busy = handler->zi_record.zi_timer +
604 		    handler->zi_lanes[handler->zi_next_lane];
605 		hrtime_t target = MAX(idle, busy);
606 
607 		if (min_handler == NULL) {
608 			min_handler = handler;
609 			min_target = target;
610 			continue;
611 		}
612 
613 		ASSERT3P(min_handler, !=, NULL);
614 		ASSERT3U(min_target, !=, 0);
615 
616 		/*
617 		 * We don't yet increment the "next lane" variable since
618 		 * we still might find a lower value lane in another
619 		 * handler during any remaining iterations. Once we're
620 		 * sure we've selected the absolute minimum, we'll claim
621 		 * the lane and increment the handler's "next lane"
622 		 * field below.
623 		 */
624 
625 		if (target < min_target) {
626 			min_handler = handler;
627 			min_target = target;
628 		}
629 	}
630 
631 	/*
632 	 * 'min_handler' will be NULL if no IO delays are registered for
633 	 * this vdev, otherwise it will point to the handler containing
634 	 * the lane that will become idle the soonest.
635 	 */
636 	if (min_handler != NULL) {
637 		ASSERT3U(min_target, !=, 0);
638 		min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
639 
640 		/*
641 		 * If we've used all possible lanes for this handler,
642 		 * loop back and start using the first lane again;
643 		 * otherwise, just increment the lane index.
644 		 */
645 		min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
646 		    min_handler->zi_record.zi_nlanes;
647 	}
648 
649 	mutex_exit(&inject_delay_mtx);
650 	rw_exit(&inject_lock);
651 
652 	return (min_target);
653 }
654 
655 static int
656 zio_calculate_range(const char *pool, zinject_record_t *record)
657 {
658 	dsl_pool_t *dp;
659 	dsl_dataset_t *ds;
660 	objset_t *os = NULL;
661 	dnode_t *dn = NULL;
662 	int error;
663 
664 	/*
665 	 * Obtain the dnode for object using pool, objset, and object
666 	 */
667 	error = dsl_pool_hold(pool, FTAG, &dp);
668 	if (error)
669 		return (error);
670 
671 	error = dsl_dataset_hold_obj(dp, record->zi_objset, FTAG, &ds);
672 	dsl_pool_rele(dp, FTAG);
673 	if (error)
674 		return (error);
675 
676 	error = dmu_objset_from_ds(ds, &os);
677 	dsl_dataset_rele(ds, FTAG);
678 	if (error)
679 		return (error);
680 
681 	error = dnode_hold(os, record->zi_object, FTAG, &dn);
682 	if (error)
683 		return (error);
684 
685 	/*
686 	 * Translate the range into block IDs
687 	 */
688 	if (record->zi_start != 0 || record->zi_end != -1ULL) {
689 		record->zi_start >>= dn->dn_datablkshift;
690 		record->zi_end >>= dn->dn_datablkshift;
691 	}
692 	if (record->zi_level > 0) {
693 		if (record->zi_level >= dn->dn_nlevels) {
694 			dnode_rele(dn, FTAG);
695 			return (SET_ERROR(EDOM));
696 		}
697 
698 		if (record->zi_start != 0 || record->zi_end != 0) {
699 			int shift = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
700 
701 			for (int level = record->zi_level; level > 0; level--) {
702 				record->zi_start >>= shift;
703 				record->zi_end >>= shift;
704 			}
705 		}
706 	}
707 
708 	dnode_rele(dn, FTAG);
709 	return (0);
710 }
711 
712 /*
713  * Create a new handler for the given record.  We add it to the list, adding
714  * a reference to the spa_t in the process.  We increment zio_injection_enabled,
715  * which is the switch to trigger all fault injection.
716  */
717 int
718 zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
719 {
720 	inject_handler_t *handler;
721 	int error;
722 	spa_t *spa;
723 
724 	/*
725 	 * If this is pool-wide metadata, make sure we unload the corresponding
726 	 * spa_t, so that the next attempt to load it will trigger the fault.
727 	 * We call spa_reset() to unload the pool appropriately.
728 	 */
729 	if (flags & ZINJECT_UNLOAD_SPA)
730 		if ((error = spa_reset(name)) != 0)
731 			return (error);
732 
733 	if (record->zi_cmd == ZINJECT_DELAY_IO) {
734 		/*
735 		 * A value of zero for the number of lanes or for the
736 		 * delay time doesn't make sense.
737 		 */
738 		if (record->zi_timer == 0 || record->zi_nlanes == 0)
739 			return (SET_ERROR(EINVAL));
740 
741 		/*
742 		 * The number of lanes is directly mapped to the size of
743 		 * an array used by the handler. Thus, to ensure the
744 		 * user doesn't trigger an allocation that's "too large"
745 		 * we cap the number of lanes here.
746 		 */
747 		if (record->zi_nlanes >= UINT16_MAX)
748 			return (SET_ERROR(EINVAL));
749 	}
750 
751 	/*
752 	 * If the supplied range was in bytes -- calculate the actual blkid
753 	 */
754 	if (flags & ZINJECT_CALC_RANGE) {
755 		error = zio_calculate_range(name, record);
756 		if (error != 0)
757 			return (error);
758 	}
759 
760 	if (!(flags & ZINJECT_NULL)) {
761 		/*
762 		 * spa_inject_ref() will add an injection reference, which will
763 		 * prevent the pool from being removed from the namespace while
764 		 * still allowing it to be unloaded.
765 		 */
766 		if ((spa = spa_inject_addref(name)) == NULL)
767 			return (SET_ERROR(ENOENT));
768 
769 		handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
770 
771 		handler->zi_spa = spa;
772 		handler->zi_record = *record;
773 
774 		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
775 			handler->zi_lanes = kmem_zalloc(
776 			    sizeof (*handler->zi_lanes) *
777 			    handler->zi_record.zi_nlanes, KM_SLEEP);
778 			handler->zi_next_lane = 0;
779 		} else {
780 			handler->zi_lanes = NULL;
781 			handler->zi_next_lane = 0;
782 		}
783 
784 		rw_enter(&inject_lock, RW_WRITER);
785 
786 		/*
787 		 * We can't move this increment into the conditional
788 		 * above because we need to hold the RW_WRITER lock of
789 		 * inject_lock, and we don't want to hold that while
790 		 * allocating the handler's zi_lanes array.
791 		 */
792 		if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
793 			ASSERT3S(inject_delay_count, >=, 0);
794 			inject_delay_count++;
795 			ASSERT3S(inject_delay_count, >, 0);
796 		}
797 
798 		*id = handler->zi_id = inject_next_id++;
799 		list_insert_tail(&inject_handlers, handler);
800 		atomic_inc_32(&zio_injection_enabled);
801 
802 		rw_exit(&inject_lock);
803 	}
804 
805 	/*
806 	 * Flush the ARC, so that any attempts to read this data will end up
807 	 * going to the ZIO layer.  Note that this is a little overkill, but
808 	 * we don't have the necessary ARC interfaces to do anything else, and
809 	 * fault injection isn't a performance critical path.
810 	 */
811 	if (flags & ZINJECT_FLUSH_ARC)
812 		/*
813 		 * We must use FALSE to ensure arc_flush returns, since
814 		 * we're not preventing concurrent ARC insertions.
815 		 */
816 		arc_flush(NULL, FALSE);
817 
818 	return (0);
819 }
820 
821 /*
822  * Returns the next record with an ID greater than that supplied to the
823  * function.  Used to iterate over all handlers in the system.
824  */
825 int
826 zio_inject_list_next(int *id, char *name, size_t buflen,
827     zinject_record_t *record)
828 {
829 	inject_handler_t *handler;
830 	int ret;
831 
832 	mutex_enter(&spa_namespace_lock);
833 	rw_enter(&inject_lock, RW_READER);
834 
835 	for (handler = list_head(&inject_handlers); handler != NULL;
836 	    handler = list_next(&inject_handlers, handler))
837 		if (handler->zi_id > *id)
838 			break;
839 
840 	if (handler) {
841 		*record = handler->zi_record;
842 		*id = handler->zi_id;
843 		(void) strncpy(name, spa_name(handler->zi_spa), buflen);
844 		ret = 0;
845 	} else {
846 		ret = SET_ERROR(ENOENT);
847 	}
848 
849 	rw_exit(&inject_lock);
850 	mutex_exit(&spa_namespace_lock);
851 
852 	return (ret);
853 }
854 
855 /*
856  * Clear the fault handler with the given identifier, or return ENOENT if none
857  * exists.
858  */
859 int
860 zio_clear_fault(int id)
861 {
862 	inject_handler_t *handler;
863 
864 	rw_enter(&inject_lock, RW_WRITER);
865 
866 	for (handler = list_head(&inject_handlers); handler != NULL;
867 	    handler = list_next(&inject_handlers, handler))
868 		if (handler->zi_id == id)
869 			break;
870 
871 	if (handler == NULL) {
872 		rw_exit(&inject_lock);
873 		return (SET_ERROR(ENOENT));
874 	}
875 
876 	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
877 		ASSERT3S(inject_delay_count, >, 0);
878 		inject_delay_count--;
879 		ASSERT3S(inject_delay_count, >=, 0);
880 	}
881 
882 	list_remove(&inject_handlers, handler);
883 	rw_exit(&inject_lock);
884 
885 	if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
886 		ASSERT3P(handler->zi_lanes, !=, NULL);
887 		kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
888 		    handler->zi_record.zi_nlanes);
889 	} else {
890 		ASSERT3P(handler->zi_lanes, ==, NULL);
891 	}
892 
893 	spa_inject_delref(handler->zi_spa);
894 	kmem_free(handler, sizeof (inject_handler_t));
895 	atomic_dec_32(&zio_injection_enabled);
896 
897 	return (0);
898 }
899 
900 void
901 zio_inject_init(void)
902 {
903 	rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
904 	mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
905 	list_create(&inject_handlers, sizeof (inject_handler_t),
906 	    offsetof(inject_handler_t, zi_link));
907 }
908 
909 void
910 zio_inject_fini(void)
911 {
912 	list_destroy(&inject_handlers);
913 	mutex_destroy(&inject_delay_mtx);
914 	rw_destroy(&inject_lock);
915 }
916