xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio_checksum.c (revision 1bff1300cebf1ea8e11ce928b10e208097e67f24)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25  * Copyright 2013 Saso Kiselkov. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/zio.h>
32 #include <sys/zio_checksum.h>
33 #include <sys/zil.h>
34 #include <sys/abd.h>
35 #include <zfs_fletcher.h>
36 
37 /*
38  * Checksum vectors.
39  *
40  * In the SPA, everything is checksummed.  We support checksum vectors
41  * for three distinct reasons:
42  *
43  *   1. Different kinds of data need different levels of protection.
44  *	For SPA metadata, we always want a very strong checksum.
45  *	For user data, we let users make the trade-off between speed
46  *	and checksum strength.
47  *
48  *   2. Cryptographic hash and MAC algorithms are an area of active research.
49  *	It is likely that in future hash functions will be at least as strong
50  *	as current best-of-breed, and may be substantially faster as well.
51  *	We want the ability to take advantage of these new hashes as soon as
52  *	they become available.
53  *
54  *   3. If someone develops hardware that can compute a strong hash quickly,
55  *	we want the ability to take advantage of that hardware.
56  *
57  * Of course, we don't want a checksum upgrade to invalidate existing
58  * data, so we store the checksum *function* in eight bits of the bp.
59  * This gives us room for up to 256 different checksum functions.
60  *
61  * When writing a block, we always checksum it with the latest-and-greatest
62  * checksum function of the appropriate strength.  When reading a block,
63  * we compare the expected checksum against the actual checksum, which we
64  * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
65  *
66  * SALTED CHECKSUMS
67  *
68  * To enable the use of less secure hash algorithms with dedup, we
69  * introduce the notion of salted checksums (MACs, really).  A salted
70  * checksum is fed both a random 256-bit value (the salt) and the data
71  * to be checksummed.  This salt is kept secret (stored on the pool, but
72  * never shown to the user).  Thus even if an attacker knew of collision
73  * weaknesses in the hash algorithm, they won't be able to mount a known
74  * plaintext attack on the DDT, since the actual hash value cannot be
75  * known ahead of time.  How the salt is used is algorithm-specific
76  * (some might simply prefix it to the data block, others might need to
77  * utilize a full-blown HMAC).  On disk the salt is stored in a ZAP
78  * object in the MOS (DMU_POOL_CHECKSUM_SALT).
79  *
80  * CONTEXT TEMPLATES
81  *
82  * Some hashing algorithms need to perform a substantial amount of
83  * initialization work (e.g. salted checksums above may need to pre-hash
84  * the salt) before being able to process data.  Performing this
85  * redundant work for each block would be wasteful, so we instead allow
86  * a checksum algorithm to do the work once (the first time it's used)
87  * and then keep this pre-initialized context as a template inside the
88  * spa_t (spa_cksum_tmpls).  If the zio_checksum_info_t contains
89  * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to
90  * construct and destruct the pre-initialized checksum context.  The
91  * pre-initialized context is then reused during each checksum
92  * invocation and passed to the checksum function.
93  */
94 
95 /*ARGSUSED*/
96 static void
97 abd_checksum_off(abd_t *abd, uint64_t size,
98     const void *ctx_template, zio_cksum_t *zcp)
99 {
100 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
101 }
102 
103 /*ARGSUSED*/
104 void
105 abd_fletcher_2_native(abd_t *abd, uint64_t size,
106     const void *ctx_template, zio_cksum_t *zcp)
107 {
108 	fletcher_init(zcp);
109 	(void) abd_iterate_func(abd, 0, size,
110 	    fletcher_2_incremental_native, zcp);
111 }
112 
113 /*ARGSUSED*/
114 void
115 abd_fletcher_2_byteswap(abd_t *abd, uint64_t size,
116     const void *ctx_template, zio_cksum_t *zcp)
117 {
118 	fletcher_init(zcp);
119 	(void) abd_iterate_func(abd, 0, size,
120 	    fletcher_2_incremental_byteswap, zcp);
121 }
122 
123 /*ARGSUSED*/
124 void
125 abd_fletcher_4_native(abd_t *abd, uint64_t size,
126     const void *ctx_template, zio_cksum_t *zcp)
127 {
128 	fletcher_init(zcp);
129 	(void) abd_iterate_func(abd, 0, size,
130 	    fletcher_4_incremental_native, zcp);
131 }
132 
133 /*ARGSUSED*/
134 void
135 abd_fletcher_4_byteswap(abd_t *abd, uint64_t size,
136     const void *ctx_template, zio_cksum_t *zcp)
137 {
138 	fletcher_init(zcp);
139 	(void) abd_iterate_func(abd, 0, size,
140 	    fletcher_4_incremental_byteswap, zcp);
141 }
142 
143 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
144 	{{NULL, NULL}, NULL, NULL, 0, "inherit"},
145 	{{NULL, NULL}, NULL, NULL, 0, "on"},
146 	{{abd_checksum_off,		abd_checksum_off},
147 	    NULL, NULL, 0, "off"},
148 	{{abd_checksum_SHA256,		abd_checksum_SHA256},
149 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
150 	    "label"},
151 	{{abd_checksum_SHA256,		abd_checksum_SHA256},
152 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
153 	    "gang_header"},
154 	{{abd_fletcher_2_native,	abd_fletcher_2_byteswap},
155 	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"},
156 	{{abd_fletcher_2_native,	abd_fletcher_2_byteswap},
157 	    NULL, NULL, 0, "fletcher2"},
158 	{{abd_fletcher_4_native,	abd_fletcher_4_byteswap},
159 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"},
160 	{{abd_checksum_SHA256,		abd_checksum_SHA256},
161 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
162 	    ZCHECKSUM_FLAG_NOPWRITE, "sha256"},
163 	{{abd_fletcher_4_native,	abd_fletcher_4_byteswap},
164 	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"},
165 	{{abd_checksum_off,		abd_checksum_off},
166 	    NULL, NULL, 0, "noparity"},
167 	{{abd_checksum_SHA512_native,	abd_checksum_SHA512_byteswap},
168 	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
169 	    ZCHECKSUM_FLAG_NOPWRITE, "sha512"},
170 	{{abd_checksum_skein_native,	abd_checksum_skein_byteswap},
171 	    abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free,
172 	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
173 	    ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"},
174 	{{abd_checksum_edonr_native,	abd_checksum_edonr_byteswap},
175 	    abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free,
176 	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED |
177 	    ZCHECKSUM_FLAG_NOPWRITE, "edonr"},
178 };
179 
180 /*
181  * The flag corresponding to the "verify" in dedup=[checksum,]verify
182  * must be cleared first, so callers should use ZIO_CHECKSUM_MASK.
183  */
184 spa_feature_t
185 zio_checksum_to_feature(enum zio_checksum cksum)
186 {
187 	VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0);
188 
189 	switch (cksum) {
190 	case ZIO_CHECKSUM_SHA512:
191 		return (SPA_FEATURE_SHA512);
192 	case ZIO_CHECKSUM_SKEIN:
193 		return (SPA_FEATURE_SKEIN);
194 	case ZIO_CHECKSUM_EDONR:
195 		return (SPA_FEATURE_EDONR);
196 	}
197 	return (SPA_FEATURE_NONE);
198 }
199 
200 enum zio_checksum
201 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
202 {
203 	ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
204 	ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
205 	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
206 
207 	if (child == ZIO_CHECKSUM_INHERIT)
208 		return (parent);
209 
210 	if (child == ZIO_CHECKSUM_ON)
211 		return (ZIO_CHECKSUM_ON_VALUE);
212 
213 	return (child);
214 }
215 
216 enum zio_checksum
217 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
218     enum zio_checksum parent)
219 {
220 	ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
221 	ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
222 	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
223 
224 	if (child == ZIO_CHECKSUM_INHERIT)
225 		return (parent);
226 
227 	if (child == ZIO_CHECKSUM_ON)
228 		return (spa_dedup_checksum(spa));
229 
230 	if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
231 		return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);
232 
233 	ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags &
234 	    ZCHECKSUM_FLAG_DEDUP) ||
235 	    (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);
236 
237 	return (child);
238 }
239 
240 /*
241  * Set the external verifier for a gang block based on <vdev, offset, txg>,
242  * a tuple which is guaranteed to be unique for the life of the pool.
243  */
244 static void
245 zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp)
246 {
247 	const dva_t *dva = BP_IDENTITY(bp);
248 	uint64_t txg = BP_PHYSICAL_BIRTH(bp);
249 
250 	ASSERT(BP_IS_GANG(bp));
251 
252 	ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
253 }
254 
255 /*
256  * Set the external verifier for a label block based on its offset.
257  * The vdev is implicit, and the txg is unknowable at pool open time --
258  * hence the logic in vdev_uberblock_load() to find the most recent copy.
259  */
260 static void
261 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
262 {
263 	ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
264 }
265 
266 /*
267  * Calls the template init function of a checksum which supports context
268  * templates and installs the template into the spa_t.
269  */
270 static void
271 zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa)
272 {
273 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
274 
275 	if (ci->ci_tmpl_init == NULL)
276 		return;
277 	if (spa->spa_cksum_tmpls[checksum] != NULL)
278 		return;
279 
280 	VERIFY(ci->ci_tmpl_free != NULL);
281 	mutex_enter(&spa->spa_cksum_tmpls_lock);
282 	if (spa->spa_cksum_tmpls[checksum] == NULL) {
283 		spa->spa_cksum_tmpls[checksum] =
284 		    ci->ci_tmpl_init(&spa->spa_cksum_salt);
285 		VERIFY(spa->spa_cksum_tmpls[checksum] != NULL);
286 	}
287 	mutex_exit(&spa->spa_cksum_tmpls_lock);
288 }
289 
290 /* convenience function to update a checksum to accomodate an encryption MAC */
291 static void
292 zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor)
293 {
294 	/*
295 	 * Weak checksums do not have their entropy spread evenly
296 	 * across the bits of the checksum. Therefore, when truncating
297 	 * a weak checksum we XOR the first 2 words with the last 2 so
298 	 * that we don't "lose" any entropy unnecessarily.
299 	 */
300 	if (xor) {
301 		cksum->zc_word[0] ^= cksum->zc_word[2];
302 		cksum->zc_word[1] ^= cksum->zc_word[3];
303 	}
304 
305 	cksum->zc_word[2] = saved->zc_word[2];
306 	cksum->zc_word[3] = saved->zc_word[3];
307 }
308 
309 /*
310  * Generate the checksum.
311  */
312 void
313 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
314     abd_t *abd, uint64_t size)
315 {
316 	static const uint64_t zec_magic = ZEC_MAGIC;
317 	blkptr_t *bp = zio->io_bp;
318 	uint64_t offset = zio->io_offset;
319 	zio_checksum_info_t *ci;
320 	zio_cksum_t cksum, saved;
321 	spa_t *spa = zio->io_spa;
322 	boolean_t insecure;
323 
324 	ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
325 	ci = &zio_checksum_table[checksum];
326 	ASSERT(ci->ci_func[0] != NULL);
327 	insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0;
328 
329 	zio_checksum_template_init(checksum, spa);
330 
331 	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
332 		zio_eck_t eck;
333 		size_t eck_offset;
334 
335 		bzero(&saved, sizeof (zio_cksum_t));
336 
337 		if (checksum == ZIO_CHECKSUM_ZILOG2) {
338 			zil_chain_t zilc;
339 			abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
340 
341 			size = P2ROUNDUP_TYPED(zilc.zc_nused, ZIL_MIN_BLKSZ,
342 			    uint64_t);
343 			eck = zilc.zc_eck;
344 			eck_offset = offsetof(zil_chain_t, zc_eck);
345 		} else {
346 			eck_offset = size - sizeof (zio_eck_t);
347 			abd_copy_to_buf_off(&eck, abd, eck_offset,
348 			    sizeof (zio_eck_t));
349 		}
350 
351 		if (checksum == ZIO_CHECKSUM_GANG_HEADER) {
352 			zio_checksum_gang_verifier(&eck.zec_cksum, bp);
353 		} else if (checksum == ZIO_CHECKSUM_LABEL) {
354 			zio_checksum_label_verifier(&eck.zec_cksum, offset);
355 		} else {
356 			saved = eck.zec_cksum;
357 			eck.zec_cksum = bp->blk_cksum;
358 		}
359 
360 		abd_copy_from_buf_off(abd, &zec_magic,
361 		    eck_offset + offsetof(zio_eck_t, zec_magic),
362 		    sizeof (zec_magic));
363 		abd_copy_from_buf_off(abd, &eck.zec_cksum,
364 		    eck_offset + offsetof(zio_eck_t, zec_cksum),
365 		    sizeof (zio_cksum_t));
366 
367 		ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
368 		    &cksum);
369 		if (bp != NULL && BP_USES_CRYPT(bp) &&
370 		    BP_GET_TYPE(bp) != DMU_OT_OBJSET)
371 			zio_checksum_handle_crypt(&cksum, &saved, insecure);
372 
373 		abd_copy_from_buf_off(abd, &cksum,
374 		    eck_offset + offsetof(zio_eck_t, zec_cksum),
375 		    sizeof (zio_cksum_t));
376 	} else {
377 		saved = bp->blk_cksum;
378 		ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
379 		    &cksum);
380 		if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
381 			zio_checksum_handle_crypt(&cksum, &saved, insecure);
382 		bp->blk_cksum = cksum;
383 	}
384 }
385 
386 int
387 zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp,
388     enum zio_checksum checksum, abd_t *abd, uint64_t size,
389     uint64_t offset, zio_bad_cksum_t *info)
390 {
391 	zio_checksum_info_t *ci;
392 	zio_cksum_t actual_cksum, expected_cksum;
393 	zio_eck_t eck;
394 	int byteswap;
395 
396 	if (checksum >= ZIO_CHECKSUM_FUNCTIONS)
397 		return (SET_ERROR(EINVAL));
398 
399 	ci = &zio_checksum_table[checksum];
400 
401 	if (ci->ci_func[0] == NULL)
402 		return (SET_ERROR(EINVAL));
403 
404 	zio_checksum_template_init(checksum, spa);
405 
406 	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
407 		zio_cksum_t verifier;
408 		size_t eck_offset;
409 
410 		if (checksum == ZIO_CHECKSUM_ZILOG2) {
411 			zil_chain_t zilc;
412 			uint64_t nused;
413 
414 			abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
415 
416 			eck = zilc.zc_eck;
417 			eck_offset = offsetof(zil_chain_t, zc_eck) +
418 			    offsetof(zio_eck_t, zec_cksum);
419 
420 			if (eck.zec_magic == ZEC_MAGIC) {
421 				nused = zilc.zc_nused;
422 			} else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) {
423 				nused = BSWAP_64(zilc.zc_nused);
424 			} else {
425 				return (SET_ERROR(ECKSUM));
426 			}
427 
428 			if (nused > size) {
429 				return (SET_ERROR(ECKSUM));
430 			}
431 
432 			size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
433 		} else {
434 			eck_offset = size - sizeof (zio_eck_t);
435 			abd_copy_to_buf_off(&eck, abd, eck_offset,
436 			    sizeof (zio_eck_t));
437 			eck_offset += offsetof(zio_eck_t, zec_cksum);
438 		}
439 
440 		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
441 			zio_checksum_gang_verifier(&verifier, bp);
442 		else if (checksum == ZIO_CHECKSUM_LABEL)
443 			zio_checksum_label_verifier(&verifier, offset);
444 		else
445 			verifier = bp->blk_cksum;
446 
447 		byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC));
448 
449 		if (byteswap)
450 			byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
451 
452 		expected_cksum = eck.zec_cksum;
453 
454 		abd_copy_from_buf_off(abd, &verifier, eck_offset,
455 		    sizeof (zio_cksum_t));
456 
457 		ci->ci_func[byteswap](abd, size,
458 		    spa->spa_cksum_tmpls[checksum], &actual_cksum);
459 
460 		abd_copy_from_buf_off(abd, &expected_cksum, eck_offset,
461 		    sizeof (zio_cksum_t));
462 
463 		if (byteswap) {
464 			byteswap_uint64_array(&expected_cksum,
465 			    sizeof (zio_cksum_t));
466 		}
467 	} else {
468 		byteswap = BP_SHOULD_BYTESWAP(bp);
469 		expected_cksum = bp->blk_cksum;
470 		ci->ci_func[byteswap](abd, size,
471 		    spa->spa_cksum_tmpls[checksum], &actual_cksum);
472 	}
473 
474 	/*
475 	 * MAC checksums are a special case since half of this checksum will
476 	 * actually be the encryption MAC. This will be verified by the
477 	 * decryption process, so we just check the truncated checksum now.
478 	 * Objset blocks use embedded MACs so we don't truncate the checksum
479 	 * for them.
480 	 */
481 	if (bp != NULL && BP_USES_CRYPT(bp) &&
482 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET) {
483 		if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) {
484 			actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2];
485 			actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3];
486 		}
487 
488 		actual_cksum.zc_word[2] = 0;
489 		actual_cksum.zc_word[3] = 0;
490 		expected_cksum.zc_word[2] = 0;
491 		expected_cksum.zc_word[3] = 0;
492 	}
493 
494 	if (info != NULL) {
495 		info->zbc_expected = expected_cksum;
496 		info->zbc_actual = actual_cksum;
497 		info->zbc_checksum_name = ci->ci_name;
498 		info->zbc_byteswapped = byteswap;
499 		info->zbc_injected = 0;
500 		info->zbc_has_cksum = 1;
501 	}
502 	if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
503 		return (SET_ERROR(ECKSUM));
504 
505 	return (0);
506 }
507 
508 int
509 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
510 {
511 	blkptr_t *bp = zio->io_bp;
512 	uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
513 	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
514 	int error;
515 	uint64_t size = (bp == NULL ? zio->io_size :
516 	    (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
517 	uint64_t offset = zio->io_offset;
518 	abd_t *data = zio->io_abd;
519 	spa_t *spa = zio->io_spa;
520 
521 	error = zio_checksum_error_impl(spa, bp, checksum, data, size,
522 	    offset, info);
523 
524 	if (zio_injection_enabled && error == 0 && zio->io_error == 0) {
525 		error = zio_handle_fault_injection(zio, ECKSUM);
526 		if (error != 0)
527 			info->zbc_injected = 1;
528 	}
529 
530 	return (error);
531 }
532 
533 /*
534  * Called by a spa_t that's about to be deallocated. This steps through
535  * all of the checksum context templates and deallocates any that were
536  * initialized using the algorithm-specific template init function.
537  */
538 void
539 zio_checksum_templates_free(spa_t *spa)
540 {
541 	for (enum zio_checksum checksum = 0;
542 	    checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) {
543 		if (spa->spa_cksum_tmpls[checksum] != NULL) {
544 			zio_checksum_info_t *ci = &zio_checksum_table[checksum];
545 
546 			VERIFY(ci->ci_tmpl_free != NULL);
547 			ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]);
548 			spa->spa_cksum_tmpls[checksum] = NULL;
549 		}
550 	}
551 }
552